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Summary 

A fundamental question in neuroscience is how neurons code and process sensory 

information so that precise behavioral responses arise. Briefly, the goal is to “crack” the 

code of the neuronal information processing.  

In this thesis, a small neuronal network of the leech was investigated in order to reveal the 

neuronal coding strategies of its extremely precise behavior. The leech possesses one of 

the smallest neuronal systems with about 10,000 neurons in total, located in a segmented 

ventral nerve cord with units (ganglia) consisting of about 400 neurons. In response to a 

touch of the skin, this animal produces a local bend away from the touch with contraction 

and elongation of muscles. The location accuracy of this behavior is comparable to the 

human fingertip. Fascinating in this network is the small number of neurons required for 

this behavior. Three types of mechanosensory neurons are located at the first stage of the 

neuronal network and code the information about the tactile stimulus: touch (T) cells, 

pressure (P) cells and noxious (N) cells. A number of studies examined the same behavior 

and cells involved (Kristan, 1982; Lockery and Kristan, 1990; Lockery and Sejnowski, 

1992; Lewis and Kristan, 1998; Zoccolan and Torre, 2002; Baca et al., 2005; Thomson 

and Kristan, 2006), but still gaps have to be filled between the coding mechanisms and 

information processing at different network layers.  

The first part of this study aimed at investigating the neuronal responses of the 

mechanosensory cell types to individual touch properties (location, intensity and 

duration). Based on characteristic response features (e.g., spike count, latency, interspike 

intervals, etc.) it was analyzed which feature led to the best stimulus estimation 

performance – i.e., which feature conveyed the most reliable information about the 

underlying touch property. Thomson and Kristan (2006) found a discrepancy between the 

encoding (theoretical estimation of the touch location based on neuronal responses 

elicited by a touch stimulus) and decoding (behavioral location estimation based on 

simulating natural cell responses induced by intracellular current stimulation) of one cell 

type – the P cells. However, results of the present thesis revealed that this discrepancy 

most likely arose from the fact that, in the decoding experiments of Thomson and Kristan 

(2006), the T cells were not stimulated. This highly sensitive cell type showed extremely 

accurate responses which allowed precise stimulus estimations. The results show evidence 

for multiscale coding mechanisms: the location was accurately preserved by a fast 
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temporal code, while the intensity was conveyed by a rate code – both were represented 

by cell ensembles rather than single cells. The touch duration could be best estimated 

based on slow temporal features. 

In the second part of this study, it was analyzed how more complex stimuli – 

combinations of two touch properties: intensity combined with duration and location 

with intensity - were encoded by these cell types. Linking response features and cell types, 

location and intensity combinations were almost perfectly estimated. The findings 

indicated that this neuronal system can encode touch stimuli with a small cell ensemble by 

use of multiplexing: information of touch properties exists in each cell response (of T and 

P cells) but more reliable stimulus images were conveyed by a combination of cell types at 

different time scales (e.g., relative first spike latency vs. summed spike count).   

The third part of the study focused on the processing of sensory information in the next 

stage of the local bend network: the interneurons (see Lockery and Kristan, 1990b). The 

connections between local bend interneurons and the aforementioned mechanosensory 

cells as well as their responses to different touch properties were analyzed. Furthermore, 

stimulus estimation approaches were used for characterizing graded interneuronal 

responses. The results suggested a more complex local bend network than initially 

thought: in particular T cells had an influence on the interneurons and also N cells could 

be involved in the behavior, since they were synaptically linked to the examined 

interneurons. Significantly different response characteristics among interneuron types to 

tactile stimulation suggested specialized filter properties like coincidence detection or 

diverse integration processes.  

 

This thesis provides for the first time a comprehensive picture of coding mechanisms of 

the leech mechanosensory cells and insights into the processing of sensory information by 

interneurons of this network. Moreover, despite the simplicity of the neuronal system, the 

results suggest fundamental coding strategies in somatosensation.     
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Zusammenfassung 

Eine grundlegende Frage der Neurowissenschaften ist es, zu verstehen wie Nervenzellen 

sensorische Informationen codieren und verarbeiten, so dass ein präzises Verhalten 

entsteht. Kurz gesagt, Ziel ist es die neuronale Kommunikation zu “knacken”.  

In der vorliegenden Arbeit wurde ein kleines neuronales Netzwerk des Blutegels 

untersucht, mit dem Ziel die Codierungsstrategien für sein präzises Verhalten zu 

definieren. Der Blutegel besitzt eines der kleinsten neuronalen Systeme mit ~10˙000 

Nervenzellen, welche in Untereinheiten (Ganglien) von ~400 Nervenzellen in einem 

segmentierten Strickleiternervensystem untergebracht sind. Eine Berührung der Haut löst 

bei dem Tier ein lokales Wegbiegen (“Local bend”) des Hautmuskelschlauches aus. Die 

Genauigkeit dieses Verhaltens ist vergleichbar mit der Zweipunktdiskrimination der 

menschlichen Fingerspitze. Faszinierend an diesem System ist die kleine Anzahl an 

Nervenzellen, die für dieses Verhalten benötigt werden. Drei Typen von 

Mechanorezeptoren codieren auf erster Netzwerkebene Informationen über die 

Berührung: Touch/“Tast” (T)-Zellen, Pressure/“Druck” (P)-Zellen und 

Noxious/“Schmerz” (N)-Zellen. In mehreren Studien wurde dieses Verhalten und diese 

Zellen untersucht (Kristan, 1982; Lockery und Kristan, 1990; Lockery und Sejnowski, 

1992; Lewis und Kristan, 1998; Zoccolan und Torre, 2002; Baca et al., 2005; Thomson 

und Kristan, 2006), aber es gab Lücken in Bezug auf Codierungsmechanismen und 

Informationsverarbeitung der einzelnen Netzwerkschichten.  

Ziel des ersten Teils dieser Studie war es, die neuronalen Antworten der 

Mechanorezeptoren auf einzelne Druckeigenschaften (Ort, Intensität, Dauer) zu 

untersuchen. Basierend auf charakteristischen Antwortmerkmalen (z.B. Anzahl der 

Spikes, Antwortlatenz oder Intervalle zwischen den Spikes) wurde analysiert, welches 

Merkmal die beste Stimulusschätzung ermöglichte –  welches Merkmal also die 

zuverlässigste Information über die Druckeigenschaft lieferte. Thomson und Kristan 

(2006) fanden in ihrer Studie, basierend auf neuronalen Antworten eines Zelltypes – den 

P-Zellen –, eine Diskrepanz zwischen Codierung (theoretische Schätzung des Druckortes 

basierend auf Antwortmerkmalen der Nervenzellen bei unterschiedlichen Druckorten) 

und Decodierung (verhaltensbezogene Druckortschätzung basierend auf der Simulation 

von natürlichen Zellantworten ausgelöst durch Strominjektion in die Zellen). Ergebnisse 

der vorliegenden Arbeit lassen darauf schließen, dass diese Diskrepanz aus der fehlenden 
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Stimulation der T-Zellen in den Decodierungsexperimenten folgte. Dieser hochsensitive 

Zelltyp zeigte extrem genaue Antworten, die eine ausgesprochen präzise Schätzung des 

Druckortes ermöglichten. Die Resultate dieser Studie liefern Belege für die Nutzung 

multipler Codierungsmechanismen: der Druckort war höchst exakt enthalten in einem 

schnellen zeitlichen Code, während die Intensität in einen Ratencode übersetzt wurde – 

unter Nutzung mehrerer Zellen anstelle einer einzelnen. Die Druckdauer konnte am 

besten aus langsamen Antwortmerkmalen herausgelesen werden. 

Die zweite Studie beschäftigt sich damit wie komplexere Stimulationen – Kombinationen 

von Druckeigenschaften: Intensität mit Dauer und Ort mit Intensität – durch die 

Mechanorezeptoren codiert wurden. Eine Verbindung von Antwortmerkmalen und 

Zelltypen ermöglichte eine fast perfekte Rekonstruktion von Ort-Intensitäts-

Kombinationen. Die Ergebnisse lassen auf einen spezialisierten Codierungsmechanismus 

unter Nutzung von Multiplexing schließen: Informationen über den Druckreiz waren in 

allen Antworten (von T- und P-Zellen) enthalten, aber ein zuverlässiges Bild wurde erst 

durch mehrere Zellen und unterschiedliche Zeitskalen (z.B.: Zeit zwischen den ersten 

Spikes vs. Anzahl der Spikes) überliefert. 

Als drittes wird die Informationsverarbeitung der nächsten Netzwerkschicht der 

Interneurone (siehe: Lockery und Kristan, 1990b) betrachtet. Es wurden Verbindungen 

zwischen den am Verhalten beteiligten Interneuronen und den Mechanorezeptoren sowie 

ihre Antworten auf die Druckeigenschaften untersucht. Außerdem wurden mit Hilfe der 

theoretischen Stimulusschätzung die graduierten Antworten der Interneurone 

charakterisiert. Die Ergebnisse deuten auf ein komplexeres “Local-bend”-Netzwerk hin 

als vorher angenommen: die T-Zellen hatten eine Einfluss auf die Interneurone und auch 

N-Zellen könnten am Verhalten beteiligt sein, da sie ebenfalls synaptische Verbindungen 

zu den untersuchten Interneurontypen besitzen. Die signifikant unterschiedlichen 

Antworten der Interneurontypen deuten auf spezialisierte Filtereigenschaften wie 

Koinzidenzdetektion oder verschiedene Integrationsprozesse hin. 

Diese Arbeit liefert zum ersten Mal ein umfassendes Bild zu den 

Codierungsmechanismen der Mechanorezeptoren des Blutegels und gibt Einblicke in die 

Verarbeitung auf dem Level von nachgeschalteten Nervenzellen. Zudem weisen die 

Ergebnisse, trotz der Einfachheit des Systems, auf grundlegende somatosensorische 

Codierungsstrategien hin.   
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1. Introduction 

 

Earliest thoughts about the communication of nerve and muscle cells involving electric 

currents were obtained in the late 18th century by Luigi Galvani, who shaped the term 

“animal electricity” (see Piccolino, 1997). About 50 years later, the action potential (or 

“spike”) was initially described as “negative variations” with a directional movement of 

electricity by Emil du Bois-Reymond (Du Bois-Reymond, 1849; Pearce, 2001). Adrian 

and Zotterman characterized in the early 20th century the first idea of neuronal coding, 

when they claimed that the spike count is the decisive factor for stimulus interpretation 

(Adrian, 1926; Adrian and Zotterman, 1926a, b).  

Since then, scientists attempted to interpret this “language” of nerve cells and a number 

of hypotheses about neuronal coding strategies were added to the pure rate coding 

approach of Adrian and Zotterman. For instance, Perkel et al. (1967) stated that the 

temporal arrangement of spikes is not arbitrary but dependent on the stimulus and carries 

important information.  

In the last few decades the knowledge about structures of neuronal networks and 

neuronal pathways (Engel et al., 2001; Bullmore and Sporns, 2009) have grown 

enormously. New coding mechanisms were investigated in all sensory systems of various 

animal models. Besides the above-mentioned debate on rate versus temporal coding 

(Theunissen and Miller, 1995), coding by individual cells versus cell ensembles were 

examined (Sakurai, 1996; Pouget et al., 2000) as well as coding of separated stimulus 

properties versus multiplexed coding of several stimulus properties (Panzeri et al., 2010). 

 

Examinations of these hypotheses require good experimental configurations in which the 

link between stimulus and behavior can be monitored. And at best, general insights 

obtained in one system should be transferred to other animals or systems.  

In this study, a small neuronal network of the leech Hirudo medicinalis with a tight 

connection between sensory inputs and behavioral outputs was used, in order to test the 

aforementioned coding hypotheses. Like other invertebrates – the possibly most famous 

example is the sea slug Aplysia with which Eric R. Kandel investigated the neuronal 

principles of learning (for reviews Kandel, 2001; Kandel et. al, 2014) – the nervous system 

of the leech has several advantages for neuroscientific studies:  
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− small and easily accessible, 

− individually identifiable neurons, 

− relatively simple neuronal networks. 

 

The presence of all neuronal cell types in one ganglion makes it possible to observe 

behavioral responses with only one segment (Kristan et al., 2005; Baca et al., 2005). The 

leech produces such a locally limited behavior in response to a touch of the skin that 

could be of a broader scientific relevance because of its remarkable precision and its 

dependence on various stimulus properties (see 1.1.). These advantages make the leech an 

ideal model organism for investigating the sense of touch; with the glabrous skin as the 

sensory organ (see 1.2.).  

 

 

1.1.  The medicinal leech: nervous system, coding concepts and local 

bend behavior  

 

1.1.1. The system 

 

The medicinal leech Hirudo medicinalis possesses one of the smallest neuronal systems with 

~ 10,000 neurons in total (Kristan et al., 2005). Its rigorously segmented structure, typical 

for annelids, is shown in Figure 1. The central nervous system (CNS) is located in the 

ventral nerve cord, surrounded by the ventral sinus (Fig. 1B) and consists of 21 midbody 

ganglia plus an anterior and a posterior brain in the sucker region (Fig. 1A). The suckers 

comprise fused segments and the corresponding ganglia form the brains: four segments 

form the anterior sucker with the brain and the seven last segments merge into the tail 

sucker and the posterior brain (Kristan et al., 2005).  

The brains coordinate behaviors like swimming, crawling and feeding (Kristan et al., 2005; 

Puhl and Mesce, 2010) although they have different and sometimes counteracting 

functions. The anterior brain, for instance, has inhibitory effects on swimming, whereas 

the posterior brain prolongs swim episodes and counteracts the inhibitory effect of the 

anterior brain (Brodfuehrer and Friesen, 1986; Brodfuehrer et al., 1993). Brains and 

ganglia in the nerve cord are connected through a pair of large lateral connectives and a 
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third smaller connective, the Faivre’s Nerve (Kristan et al., 2005). These three 

interganglionic connectives (Fig. 1A, B) accommodate axons from interneurons and 

ensure the communication between the segments (Kristan et al., 2005). Each segment 

comprises five circumferential annuli. The ganglion of the segment is placed under the 

middle annulus, which also contains sensory end organs, called sensilla (Blackshaw et al., 

1982). The sensilla contains different receptors: light-sensitive receptors as well as ciliated 

mechanosensitive neurons (Kristan et al., 2005). The cilia of the mechanosensitiv neurons 

react to small water movements, which is important for swim triggering (Kristan et al., 

2005).  

 

A huge experimental advantage of the nervous system of the leech is its iterative 

structure: the segmental ganglia are uniformly structured with each other containing about 

400 neurons, except ganglia no. 5 and 6 which contain more neurons to control 

reproductive organs (Zipser, 1979; Kristan et al., 2005). Additionally, all possible types of 

neurons, sensory and motor neurons (SNs and MNs) as well as interneurons (INs), exist 

in each ganglion. The neurons of the leech are monopolar: the soma only exhibit one 

process (Kristan et al., 2005). Synaptic links proceed on fine branches, which emerge 

from subdivision of the main process. These fine branches lay subjacent in the ganglion, 

so called the neuropil, in between the ventral and dorsal layers of cell somata (Kristan et 

al., 2005). Figure 1C shows the ventral side of one segmental ganglion. Six giant glial cells 

surround the neurons and form the characteristic structure of cell clusters (Fig. 1C; 

Kristan et al., 2005). Processes from sensory and motor neurons leave the ganglion 

through the roots and end up in the skin respectively in the muscle layer (Blackshaw, 

1981; Blackshaw et al., 1982; Kristan et al., 2005).  

 

The leech possesses three types of mechanosensory cells: the touch (T) cells, the pressure 

(P) cells and the noxious (N) cells (Nicholls and Baylor, 1968). The characteristic 

modalities of these sensory neurons were defined by Nicholls and Baylor (1968). They 

described the cells in detail based on shape, position, physiological properties and their 

responses to tactile stimulation. They found that each segmental ganglion contains six T 

cells, four P cells and four N cells (Fig. 1C). The cell types can be clearly distinguished  
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Figure 1: The central nervous system of a leech. A. Sketch of the ventral nerve cord of a leech with 21 midbody or 
segmental ganglia and an anterior and posterior brain. Fused segments form the brains and suckers. The 
interganglionic connectives connect ganglia in adjacent segments. Each segment comprises of five circumferential 
annuli. The dots in the middle annulus mark the places of a sensory end organ, called sensilla. Modified from: 
Kristan et al., 2005. B. Cross section of a leech. Ganglia are connected with each other via connectives and each 
segmental ganglion sends also roots into the skin. The leech body is formed by (from outside): skin followed by layers 
of circular, oblique and longitudinal muscles. The ends of the dorsoventral muscles are fixed in the longitudinal 
muscle layer. The ventral nerve cord is surrounded by the ventral sinus (in red brown). Additionally the leech 
possesses a lateral and dorsal sinus. Modified from: Nicholls et al., 2001, “From Neuron to Brain”, p. 294. C. 
Picture (left) and sketch (right) of a segmental ganglion with connectives, roots and cell bodies. Circular edges inside 
the ganglion contour the somata. Exemplarily, some of the sensory neurons in the sketch are labeled: Pressure (“P”) 
cells in orange, touch (“T”) cells in grey, noxious (“N”) cells in blue, cell 157 in green and cell 159 in magenta. 
Dashed lines illustrate the edges of the giant glial cells which form characteristic clusters of neurons in the ganglion. 
Modified from: Lockery and Kristan, 1990b. 
 

N

100 µm

N

157

159

157
159

PP

TT

muscle layers

interganglionic

connectives
roots

segmental 

ganglia

sensilla

eyes    anterior brain

segmental

ganglion

interganglionic

connectives
posterior 

brain
posterior 

sucker



I n t r o d u c t i o n   | 11 

 

 

based on the previously mentioned characteristics (Nicholls and Baylor, 1968). The 

receptive fields of the cells are also robust and distinctly definable: the skin areas where 

the cells respond to tactile stimulation are equal over several preparations and segments 

(Nicholls and Baylor, 1968). The receptive fields overlap strongly in anterior-posterior as 

well as in lateral directions, so that fields of one cell type cover the whole circumference 

of a segment (Fig. 2A; Nicholls and Baylor, 1968; Yau, 1976; Lewis and Kristan, 1998c). 

The sensitivity of each cell is highest in the receptive field center and decreases with 

distance from the center. That is due to the density of nerve endings which the cells 

develop as receptors on the skin (Nicholls and Baylor, 1968; Blackshaw, 1981; Blackshaw 

et al., 1982). Because of this structure (Nicholls and Baylor, 1968; Blackshaw, 1981; 

Blackshaw et al., 1982), the cell soma can also be regarded as an afferent and the nerve 

endings in the skin as receptors (see 1.2).  

 

The classical concept for touch coding that resulted from the study of Nicholls and 

Baylor in 1968 was the following: “Each of the three groups of sensory cells responds to a 

different mechanical stimulus applied to the skin of the ipsilateral body wall. On each side 

of a ganglion three cells respond to a light touch (the T cells), two to maintained pressure 

(the P cells), and two to more severe noxious stimuli such as pinching or squeezing (the 

N cells). The time course of adaptation is characteristic for each type of cell.” (Nicholls 

and Baylor, 1968, p. 755). Hence, the idea was that the three cell types encode different 

intensity ranges of touch stimuli. Carlton and McVean (1995) defined more accurate 

intensity ranges in which each cell type should respond and concluded that T cells are 

responsible for coding of contact information, whereas P cells mainly respond to local 

pressure peaks. They also suggested that T cells encode the velocity of skin deformation. 

N cells have, because of their high pressure thresholds, only little importance for 

exploration of the environment (Carlton and McVean, 1995).   

 

1.1.2. The behavior 

 

Previous studies on the coding of tactile stimuli by the sensory neurons focused mainly 

on a behavioral response: the local bend response (see Fig. 2B, C). During the behavior, 

the leech bends away from the touch (Stuart, 1970; Kristan, 1982; Lockery and Kristan, 
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1990a, b; Lockery and Sejnowski, 1992; Lewis and Kristan, 1998a, b; Zoccolan and Torre, 

2002b; Baca et al., 2005; Thomson and Kristan, 2006) and the magnitude depends on the 

touch intensity and duration (Baca et al., 2005). The discrimination ability of intensities is 

better for low touch intensities than for high intensities and additionally improves with 

longer stimulus durations (Baca et al. 2005). But how these two properties, intensity and 

duration, are encoded by the mechanoreceptors was unknown.  

 

Interestingly, the local bending behavior of the leech is extremely precise (Baca et al. 

2005, Thomson and Kristan, 2006). The animal is able to discriminate behaviorally touch 

locations that are only 9° of the body circumference apart (Thomson and Kristan, 2006), 

which means a distance of 500 µm for a typical animal with a circumference of 2 cm. 

Thomson and Kristan (2006) investigated how two P cells with ventral receptive fields 

(Fig. 2A) respond to touch stimuli with an intensity of 200 mN (~20 g) at different 

locations. They performed encoding experiments, in which they touched the skin and 

recorded the neuronal responses of two ventral P cells simultaneously, as well as decoding 

experiments, in which they stimulated the P cells by current pulses and analyzed elicited 

muscle movements. They tested the discrimination performance of location distances by 

means of stimulus estimation and found that the latency difference of the first spikes of 

two P cells is the best encoder of touch locations (Thomson and Kristan, 2006). With this 

response feature a distance of 4° (~ 222 µm - for a typical leech with 2 cm circumference) 

could be reliably discriminated, whereas the spike count difference reached a value of 13° 

(~ 722 µm) (Thomson and Kristan, 2006). However, the decoding experiments gave a 

different picture: better results were obtained for the spike count difference with 14° 

(~ 778 µm) location distances to be discriminated than for latency differences with 25° 

(~ 1.34 mm) distances (Thomson and Kristan, 2006). Based on these results the authors 

stated that the “count difference is encoded coarsely and decoded precisely, whereas 

latency difference is encoded precisely and decoded coarsely” (Thomson and Kristan, 

2006, p. 8014). The discrepancy might be explained in connection with T cells being more 

involved in decoding (Thomson and Kristan, 2006) of behavioral responses than initially 

thought (Kristan, 1982; Lewis and Kristan, 1998; Zoccolan and Torre, 2002b). 
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Earlier studies showed that T cells are able to elicit the behavior but not so effectively as 

P cells (Nicholls and Baylor, 1968; Kristan, 1982; Lewis and Kristan, 1998c; Zoccolan and 

Torre, 2002b), and whether N cells could also play a role remains unsolved (Kristan et 

al., 2005). As a result, P cells have been regarded as the main trigger for the local bend 

response and suggested neuronal networks for this behavior included only the P cells 

(Fig. 2B, C).  

 

 
    

Figure 2: Receptive field organization and the local bend response. A. Sketch of the receptive field organization of 
ventral P cells (in orange and red) and ventral T cells (in grey). The overlap of the fields is exemplarily shown for a 
circular form (left) and in a sketch of a semi-intact preparation consisting of about three segments, taking the body 
circumference as 360° (right). 1st to 5th mark the annuli of one segment. The skin was stimulated at the 3rd 
annulus around 0°. B. The local bend circuit (simplified). PD = P cell with dorsal receptive field; PV = P cell 
with ventral receptive field; INs = Interneurons; VE, VI and DE, DI mark excitatory (E) or inhibitory (I) 
ventral (V) or dorsal (D) motor neurons. From: Kristan et al., 2005. C. The assumed neuronal network for the 
local bend response. Touching the skin leads to a locally limited bend away from the touch. See Introduction for 
detailed description. Modified from: Thomson and Kristan, 2006 and Kristan et al., 2005.  
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1.1.3. The network   

 

The next level of the neuronal network is formed by interneurons (INs) (Figs. 1C, 2B, C) 

- the largest group of neurons in the leech central nervous system. This cell type sends its 

processes through the connectives into adjacent ganglia, possesses no direct peripheral 

connections and processes information from sensory neurons onto motor neurons 

(Kristan et al., 2005). Several INs are identified and known to be involved in behaviors of 

the leech: crawling (Eisenhart et al., 2000), swimming (Friesen et al., 1978; Weeks, 1982a, 

b, c; Friesen, 1985; Brodfuehrer and Friesen, 1986a, b), shortening (Shaw and Kristan, 

1995), local bending (Lockery and Kristan, 1990a, b), feeding (Zhang et al., 2000), 

reproduction (Zipser, 1979) and heartbeat (Thompson and Stent, 1976; Calabrese, 1980). 

Swimming, crawling, feeding and heartbeat are rhythmic behaviors driven with more 

complex neuronal networks containing central pattern generators and feedback 

mechanisms (Shaw and Kristan, 1997; Wilson and Kleinhaus, 2000; Friesen and Kristan, 

2007; Puhl and Mesce, 2010), whereas shortening and local bending are reflexive and 

episodic behaviors with simpler underlying networks (Lockery et al., 1985; Lockery and 

Kristan, 1990a, b; Lewis and Kristan 1998a, b, c).  

 

In several studies, INs that are involved in the local bend behavior were described and 

used to evaluate a computational neuronal network model (Lockery et al., 1989; Lockery 

and Kristan, 1990a, b; Lockery and Kristan, 1991; Lockery and Sejnowski, 1992; Lockery 

and Sejnowski, 1993a, b; Lewis and Kristan, 1998a, b, c). Nine different INs (eight paired 

and one unpaired) and their connections were physiologically identified by current 

stimulation of P cells (Lockery and Kristan, 1990b). It was found that most of these INs 

receive inputs from ventral as well as dorsal P cells, indicating that the INs are not 

specialized in only one local bend direction (Fig. 2B). They are activated by a wider range 

of touch locations mediated by the corresponding mechanoreceptors (Lockery and 

Kristan, 1990b). The INs send synaptic connections on motor neurons (MNs) that elicit 

the contraction or elongation of the muscles during the local bend (Lockery and Kristan, 

1990a, b). The underlying neuronal network for this behavior (Fig. 2C) was suggested 

with the optimization of a computational neuronal network model (Lockery et al., 1989; 

Lockery and Sejnowski, 1992; Lockery and Sejnowski, 1993a, b; Lewis and Kristan, 
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1998a). The consequential network includes 4 P cells sending their information to about 

25 INs which are connected with 8 MNs (Lockery et al., 1989; Lockery and Kristan, 

1990b; Lockery and Sejnowski, 1992; Lockery and Sejnowski, 1993a, b; Lewis and 

Kristan, 1998a). The proposed computational network was purely feedforward containing 

only excitatory connections (Lockery et al., 1989; Lockery and Sejnowski, 1992; Lockery 

and Sejnowski, 1993a, b; Lewis and Kristan, 1998a), assuming that inhibitory effects on 

the muscles are modulated by inhibitory motor neurons and not by inhibitory 

connections (Kristan et al., 2005; Fig. 2B).   

 

Inhibitory connections were found in lateral connections of mechanosensory cells: P cells 

and N cells have such connections on T cells (Burgin and Szczupak, 2003) and P cells 

form inhibitory polysynaptic chemical connections on other cells of the same type 

(Baltzley et al., 2010). This lateral inhibition on sensory cell level might play a role in 

localization of the local bend response (Baltzley et al., 2010). Additionally, lateral 

inhibition among INs of the local bend network was also found (Baca et al., 2008). These 

results suggest that the local bend network may use balanced excitation and inhibition for 

gain control with a circuit that is more likely to be feedforward inhibitory than purely 

excitatory (Baca et al., 2008). This generalized inhibition means that the motor neurons 

“normally receive a significant level of inhibition that strongly reduces the excitation 

triggered by the stimulus” (Baca et al., 2008, p. 258). 

 

 

1.2.  The sense of touch 

 

After delineating the leech mechanoreceptors and fundamental ideas about the coding of 

touch stimuli by these neurons, some facts about the sense of touch in humans and 

primates should be summarized. Submodalities like shape, texture, motion, grip control, 

vibration, temperature as well as nociception are encoded by human skin receptors (see: 

Saal et al., 2014). The glabrous skin of primates contains four types of mechanoreceptors. 

Slowly adapting type 1 (SA1) afferents end in Merkel cells (about 100 per cm2 skin of the 

fingertip), which are sensitive to static touch and transmit information about the surface 

or form of an object (Johnson, 2001; Johansson and Flanagan, 2009). This afferent type 
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shows strong responses to stimulus onset and decreased – or adapted – responses in the 

sustained phase of the stimulus (Bensmaia, 2008). The slowly adapting type 2 (SA2) 

afferents finish in Ruffini corpuscles, which innervate the skin less densely than the other 

mechanoreceptors (Johnson, 2001; Johansson and Flanagan, 2009). This receptor is 

sensitive to static touch and responds to stretching of the skin (Johnson, 2001; Johansson 

and Flanagan, 2009).  

Rapidly or fast adapting type 1 (RA or FA1) afferents terminate in Meissner corpuscles 

(about 150 per cm2 skin of the fingertip), which are not sensitive to static touch but to 

movement and vibration (Johnson, 2001; Johansson and Flanagan, 2009). The FA1 

afferents respond to transient parts of the stimulus (Bensmaia, 2008) and thus one of the 

most important functions of these afferents would be the stabilization and control of the 

grip (Johnson, 2001; Johansson and Flanagan, 2009). Pacinian or fast adapting type 2 (PC 

or FA2) afferents end in Pacinian corpuscles, which are extremely sensitive to mechanical 

transients and vibration (Johnson, 2001; Johansson and Flanagan, 2009). Additionally, 

free nerve endings in the skin transmit information about temperature and nociception 

(Dykes, 1975). Despite their functional specializations, the different afferents are activated 

by various stimulations and are involved in several overlapping and multiplexed encoding 

tasks (Hollins et al., 2002; Bensmaia, 2008; Johansson and Flanagan, 2009; Harvey et al., 

2013; Zeveke et al., 2013; Saal et al., 2014).  

 

For human tactile afferents, the relative timing of the first spikes provide information 

about fingertip force and object shapes (Johansson and Briznieks, 2004). This information 

is mainly transmitted by FA1 afferents (Johansson and Briznieks, 2004), which also 

respond to the contact and release of objects (Johansson and Flanagan, 2009). In contrast, 

intensity perception was suggested to be encoded mainly in weighted firing rates of the 

three main mechanoreceptive afferents (Muniak et al., 2007; Bensmaia, 2008). Luna et al. 

(2005) suggested that information for vibrotactile discrimination is most likely to be 

coded by the firing rate, computed as a weighted spike count in a time window. However, 

they concluded that temporal properties may play a role for coding by cell ensembles 

(Luna et al., 2005). A recent study of Harvey et al. (2013) showed that the information 

about amplitude and frequency of a tactile stimulus are multiplexed in the primate 

somatosensory cortex. These studies indicate a complex picture of tactile sensation, where 
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submodalities were not assigned to one mechanosensory type but rather combinations of 

multiple afferent types are involved in the coding of several submodalities (Saal et al., 

2014). 

 

 

1.3.  Neuronal coding strategies – an overview 

  

A suitable stimulation generally evokes a pattern of action potentials in a neuron. After 

breakthrough discoveries in the late 18th and early 19th century by Luigi Galvani, Giovanni 

Aldini, Alexander von Humboldt and Emil du Bois-Reymond (Piccolino, 1997; Parent, 

2004; Kettenmann, 1997; Du Bois-Reymond, 1843; Pearce, 2001), stimulus-evoked action 

potentials were found in different sensory systems. Hypotheses about neuronal coding 

strategies were first described by Adrian and colleagues in the early 20th century (Adrian, 

1926; Adrian and Zotterman, 1926a, b; Adrian and Matthews, 1927a, b; 1928). They 

found, in different animals, correlations between the intensity of a tactile stimulus and the 

discharge frequency in mechanoreceptors (Adrian, 1926; Adrian and Zotterman, 1926a, 

b). They also reported that firing rates in the retina increased with light intensity (Adrian 

and Matthews, 1927a, b; 1928), and described adaptive processes with long or very strong 

stimuli (Adrian, 1926; Adrian and Zotterman, 1926a, b; Adrian and Matthews, 1927a, b; 

1928). In the retina, they also found that the “nerve reaction time” depends on the 

strength of the stimulus (Adrian and Matthews, 1927a, b; 1928).   

 

These detailed observations from the early 20th century raise crucial points in the debate 

about neuronal coding: a single stimulus affects several features of a neuronal response 

and different stimulus properties could affect the same response features. For instance, a 

rising light intensity or an increasing light area affects the frequency of action potentials as 

well as the response latencies of the first spikes (or “nerve reaction time”) (Adrian and 

Matthews, 1927a, b, 1928).  

Hence, the questions are: which response features (e.g., spike rate or response latency) 

carry more or major information about the stimulus? Is a combination of response 

features the key to sensory encoding? Or is it the combination of cells and cell types? 
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When one considers the neuron response as a spike train like a Morse code with its own 

rules, the question of neuronal coding could be simplified to a question like: Is the 

number of signals more informative than the time of or between these signals or vice 

versa? For a Morse code, we know that all three features are important to understand 

(decode) the message: the number of signals, the duration of signals as well as the time 

between signals. For neuronal spike trains, however, the solution is not so simple at all. 

First, we have to know to which stimulation – or to which exact stimulus property – the 

neuron responds: What information should be transferred? Second, how many neurons 

are affected by the stimulus: So, what is the amount of the transferred information? And 

we should be aware of the next stage of the information processing: Is the receiving 

neuron able to decode the features which were used by the sending neuron?  

 

In the last decades, a number of studies focused on these questions and described various 

types of neuronal code across systems (for a review see: deCharms and Zador, 2000). 

Gawne and colleagues (1996) investigated the visual system in monkeys and recorded 

responses of striate cortical complex cells to a set of stimuli that varied in orientation and 

contrast. They found that the latency and strength (spikes per second) of neuronal 

responses were influenced differently by the stimulus properties. The latency was strongly 

influenced by the stimulus contrast, whereas the response strength reflected the stimulus 

orientation (Gawne et al., 1996). From these observations, they attributed different 

response features to defined stimulus properties and stated “a more general possibility: 

the response strength encodes information about the localized features in a scene, 

whereas temporal variation carries information that is used to help solve the binding 

problem” (Gawne et al., 1996, p. 1356). However, Shadlen and Newsome (1998) 

concluded, based on their results about neuronal integration mechanisms, that cortical 

neurons unlikely transmit information through timing of their spikes. They suggested 

instead information coding by spike rates of populations of neurons (Shadlen and 

Newsome, 1998).   

 

In contrast, another approach pointed out that temporal coding might be more important 

when coding by cell ensembles is considered (Theunissen and Miller, 1995). Panzeri, 

Petersen and colleagues found that stimulus locations are encoded by the first 
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poststimulus spikes of a population of neurons in the rat somatosensory cortex (Panzeri 

et al., 2001; Petersen et al., 2001; Petersen et al., 2002a; Petersen et al., 2002b). And 

Foffani et al. (2004) suggested that the spike timing is a general property of the rat 

primary somatosensory cortex and not only used by highly specialized brain regions. 

Moreover, studies of Di Lorenzo and colleagues verified that in the nucleus tractus 

solitarius of rats, not only the spike count conveys information about taste stimuli (Di 

Lorenzo and Victor, 2003, 2007; Di Lorenzo et al., 2009): broadly tuned cells are able to 

represent a clear image of the taste domain using temporal characteristics of their 

responses (Di Lorenzo et al., 2009).      

Reich and colleagues (2001) showed that, in the primate visual system, information about 

the contrast is encoded by a temporal – mainly latency – code, supporting the hypothesis 

of Gawne et al. (1996). They emphasized that “temporal structure of neurons’ responses 

may extend the dynamic range for contrast encoding” (Reich et al., 2001, p. 1039) and 

that “information about static features of the stimulus (…) can be multiplexed into the 

temporal structure of the response” (Reich et al., 2001, p. 1047).  

In addition to these studies, evidence for multiplexed encoding was also found in other 

sensory systems. For instance, in recordings from the anterior piriform cortex in awake, 

behaving mice, the information about the odor identity and the impact (“value”) was 

found to be conveyed simultaneously by the neuronal firing pattern (Gire et al., 2013).  

 

Thus, evidence for multiplexing in neuronal responses was found at various different 

stages of processing (see for review Panzeri et al., 2010 and: Huk, 2012; King and Walker, 

2012; Meister et al., 2013; Harvey et al., 2013; Akam and Kullmann, 2014; Saal et al., 

2014). The underlying idea is that the neuronal code transmits complementary 

information through different response features (spike count, latency etc.) that use 

different temporal scales: “Multiplexing increases the encoding capacity of neural 

responses, enables disambiguation of stimuli that cannot be discriminated at a single 

response timescale, and makes sensory representations stable to the presence of variability 

in the sensory world” (Panzeri et al., 2010, p. 111). 
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2. Aims 

 

Coding of sensory stimuli is as complex and variable as the studied systems or animals. 

Regarding neuronal responses, however, the variability and complexity seem to be finite: 

A limited number of characteristics are qualified to carry information about the stimulus. 

My aim was to find definite coherences between stimulus properties and spike patterns in 

one system – may it be ever so simple, but also complex enough to answer questions 

about fundamental principles of neuronal coding. In order to keep the experimental 

design as succinct as possible, the relatively simple neuronal system of the leech was used 

(see 1.1.), where only a few stages of information processing exist between stimulus and 

behavior.  

 

 

2.1.  Encoding of simple touch stimuli by sensory neurons 

 

Thomson and Kristan (2006) extensively investigated encoding and decoding of touch 

locations by P cells of the leech. They used a touch stimulus of 200 mN and changed the 

touch locations in 3° steps (Thomson and Kristan, 2006). Results of the encoding 

experiments showed coherences between touch location and neuronal response features 

(Thomson and Kristan, 2006). They found that latency and spike count differences of cell 

pairs led to different touch location estimations in encoding and decoding experiments: P 

cells stimulated with specific current pulses could not trigger local bend behaviors with 

the same precision as touch stimuli applied to the skin (Thomson and Kristan, 2006). To 

solve this discrepancy, I introduced new aspects into the study (see Methods for details): 

 

1.  The responses of all three mechanosensory cell types, innervating the 

 ventral area of the skin, were investigated. 

2.  The list of response features were extended by adding interspike intervals, 

 properties of spike bursts, and combinations of response features.    

3.  The touch stimulus varied in location, intensity and duration. 
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It was shown that touch intensity and duration shape the magnitude of the local bend 

behavior of the leech (Baca et al. 2005), but the encoding of these properties by 

mechanosensory cells have not been studied so far. Hence, the aim of my study was to 

investigate how all three mechanosensory cell types respond to a wide range of touch 

stimuli. I analyzed the neuronal responses using various different stimulus estimation 

approaches (see 3.2. for details) for defining and studying coding strategies in this small 

neuronal network. The first part of the study aims to: 

 

• Description of response patterns of all three types of sensory neurons to different 

stimulus properties 

• Identification of coding strategies for single touch properties by means of different 

stimulus estimation approaches  

 

 

2.2.  Encoding of complex touch stimuli by sensory neurons 

 

Studies of Lewis and Kristan (1998c) and Baca et al. (2005) revealed that the local bend 

response depends on touch location, intensity and duration. In order to complement 

these investigations of coding strategies, I examined how combinations of these 

properties are encoded by the sensory neurons. The aims are: 

 

• Analysis of spike patterns related to combined stimulus properties  

• Characterization of coding strategies for complex stimuli 

 

Results of the first two parts of this study are mainly contained in the article “Multiplexed 

Encoding of Stimulus Properties by Leech Mechanosensory Cells” submitted on 

5th May 2015 to the Journal of Neuroscience (JN-RM-1753-15) as well as the Frontiers 

Research article “Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of 

the Leech” (see Publications for details).  
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2.3.  Processing of touch stimuli in the local bend network 

 

The coding of touch properties in local bend INs is still not well understood. Lewis 

(1999) described the receptive fields of local bend INs based on the computational model 

of the local bend network (Lockery et al., 1989; Lockery and Kristan, 1990a, b; Lockery 

and Kristan, 1991; Lockery and Sejnowski, 1992; Lockery and Sejnowski, 1993a, b; Lewis 

and Kristan, 1998a, b, c). To investigate how INs respond to tactile stimuli, I focused on 

processing of input from all sensory cell types in mainly two local bend INs (cell 157 and 

159; see Fig 1C; Lockery and Kristan, 1990b). The mechanoreceptors were stimulated by 

touch on the skin or current injection and evoked interneuronal responses were analyzed 

with stimulus estimation approaches (see 3.2. for details) so as to test the assumed 

neuronal network experimentally. The aims are: 

 

• Characterization of responses of specific local bend INs  

• Analysis of connections between sensory neurons and the INs 

• Drawing of conclusions from stimulus estimation methods about processing of 

information in local bend INs 

 

These results are contained in the manuscript “Decoding of Tactile Stimulus Parameters 

by Interneurons of the Local Bend Network” (planned submission to the Journal of 

Neurophysiology in June 2015) and the Frontiers Research article “Encoding of Tactile 

Stimuli by Mechanoreceptors and Interneurons of the Leech” (see Publications for details). 
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3. Methods 

 

3.1.  Experiments 

 

3.1.1.  Preparation 

 

For this study, adult medicinal leeches Hirudo medicinalis from Biebertaler Leech Breeding 

Farm (Biebertal, Germany) were used. The leeches weighed 1 - 2 g (circumference average 

1.96 cm) and were kept in tanks with Ocean Sea Salt 1:1000 diluted with purified water at 

room temperature. Animals were anesthetized with ice-cold saline (Muller et al., 1981) 

before and during dissection. Experiments were done at room temperature. In total, 112 

preparations were used. The body-wall preparation (Fig. 2A) consisted of mid-body 

segments 9 to 11 with corresponding ganglia. Innervations of segment 10 remained 

unscathed. The body-wall was flattened and pinned out, with the epidermis upwards, in a 

plastic Petri dish, which was coated with a silicone elastomere (Sylgard; Dow Corning 

Corporation, Midland, MI, USA). In the area of 5th annulus (counted from anterior) of 

10th segment, a hole was cut into the skin to provide access to the ganglion. The skin was 

stimulated at the middle annulus (3rd annulus of segment 10, Fig. 2A), which was 

identified by location of the sensilla (Blackshaw et al., 1982).  

 

The ventral midline of each preparation was defined as 0°. Touch locations to the left are 

denoted as negative and to the right as positive numbers of degrees (Fig. 2A). While 

stimulating the skin mechanically, intracellular recordings (described below) from all three 

types of sensory cells and two types of interneurons (see Introduction) were performed. The 

mechanosensory cells of Hirudo medicinalis have been well-studied and are easily 

identifiable based on their location in the ganglion, their size and electrical properties 

(Nicholls and Baylor, 1968). Results and descriptions of Lockery and Kristan (1990b) 

were utilized for the identification of the local bend INs. 
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3.1.2. Electrophysiological method 

 

Intracellular recordings were performed from one to three cells at the same time. Sharp 

glass micropipettes with resistances between 20 and 40 MΩ, filled with 3 M potassium-

acetate, were used. Micropipettes contained a filament and had an outer diameter of 

1 mm. The glass electrodes were pulled with the micropipette puller model P-97 from 

Sutter Instruments Co. (Novato, CA, USA).  

The experimental rig consisted of three mechanical micromanipulators type MX-1 

(Narishige Group, Japan), and three amplifiers (model SEC-05X and BA1S) from NPI 

electronic (Tamm, Germany). Data were acquired by an interface BNC-2090 with NI 

PCI-6036E board from National Instruments (Austin, TX, USA). The touch location was 

controlled by a motorized micromanipulator type DC-3K with controller type MS 314 

(Märzhäuser Wetzlar GmbH & Co. KG, Germany). Neuronal responses were recorded 

(sample rate 10 kHz) with Matlab-based custom-developed software (MathWorks, 

Version R2009a, Natick, MA, USA) using the Matlab Data Acquisition Toolbox 

(MathWorks, Natick, MA, USA). The software was developed 2005 and revised 2010 in 

the group of Prof. Dr. Jutta Kretzberg, University of Oldenburg, Germany. In the years 

2010 to 2014, I reworked consistently parts of the software.    

 

3.1.3. Stimulation 

 

For applying touch stimuli onto the skin, a Dual-Mode Lever Arm System (Aurora 

Scientific, Ontario, Canada, Model 300B) with a poker tip size of 1 mm2  was used (see 

Baca et al., 2005; Thomson and Kristan, 2006). The stimulus was varied in intensity (5 to 

200 mN) and location (-20° to +20°, relative to ventral midline, in 5° steps, for the 

estimations). Touch lasted 200 ms (see Thomson and Kristan, 2005; Lewis and Kristan, 

1998) except for the duration encoding experiments, in which stimulus durations of 50, 

200 and 500 ms were combined with intensities of 20 and 60 mN at 0° (Table 1). All 

combinations of stimulus properties were presented 10 – 15 times in pseudo-randomized 

order. 
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3.1.4. Cell staining  

 

In order to visualize cell morphologies and points of contact, interneurons and 

mechanosensory cells were filled through sharp glass electrodes with either 10 mM Alexa-

dyes (Invitrogen, Karlsruhe, Germany) and/or 2% Neurobiotin (Vector Labs, 

Peterborough, UK) in 200 mM KCl. Positive (for Neurobiotin) or negative (for Alexa) 

currents (2-4nA, 500 ms, 1Hz, 30-60 min) were injected and the ganglion was fixated 

afterwards in 4% PFA (Sigma, Muenchen, Germany) for up to 1 hour. After washing with 

0.1 M PBS (6 x 10 min), the ganglion was incubated overnight at 4°C in 1:1000 

Streptavidin (Vector Labs)/PBS/0.5% Triton-X. Next, the ganglion was washed again 

(6 x 10 min) in PBS and embedded with VectaShield (Vector Labs) on a microscope slide 

for confocal microscopy. Multiple cell fillings with Alexa-dyes and Neurobiotin (Fig. 16, 

p. 57) were kindly provided for illustration purposes by Dr. Gerrit Hilgen. 

  

3.1.5. Data set 

 

The numbers of cells used for the statistical evaluation can be found in tables 2, 3, 4 

(sensory neurons; p. 37/41/46) and table 6 (interneurons; p. 54).  

Stimulus duration was estimated based on 12 P cell and 11 T cell single cell recordings. 

The data set for the low intensities consists of 12 P cell and 7 T cell double recordings. 

 
 
Table 1: Varied stimulus properties in the different stimulation protocols used for stimulus estimation (see 
Pirschel and Kretzberg, 2015, submitted). Details on analyzed property combinations see also Results 4.2. 
 

Encoding task Location [°] Intensity [mN] Duration [ms] 

Location -20 to +20 in 5° steps  
10, 50,  

N cells: 100 
200 

Intensities low 0 10, 20, 30, 40, 50 200 

Intensities high 0 10, 20, 50, 70, 100 200 

Duration  0 60 50, 200, 500 

Duration & Intensity 0 20, 60 50, 200, 500 

 

Location & Intensity  -20 to +20 in 10° steps  10, 20, 50 200 
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For the high intensities the data set involves 5 P cell, 8 T cell, 11 P-T and 7 N-P double 

recordings. The location estimation by sensory neurons bases on 5 T cell double 

recordings and 5 P cell double recordings. To approach the full mechanosensory cell 

ensemble, additionally pooled data of these P and T cell double recordings were used for 

the estimation of location-intensity combinations (Table 1). For this purpose, features of 

the 5 P cell double recordings were randomly combined across preparations with the 5 T 

cell double recordings. Tests revealed that the results of these pooled groups (consisting 

of 5 pairs each) did not show significant differences (p < 0.05, Wilcoxon rank sum test). 

For testing connections between cell 157 and the mechanoreceptors, 29 double 

recordings were included in this study: 5 ipsi- and 5 contralateral P cells (for definition see 

Lockery and Kristan, 1990b), 3 ipsi- and 6 contralateral N cells and 4 ipsi-, 6 contralateral 

T cells. For cell 159 only 1 ipsilateral combination for each mechanosensory cell type was 

considered.  

The data set for the location estimation consisted of cells 157 (from 6 experiments) which 

were stimulated at locations -20° to +20° in 5° steps with 50 mN. The results for the 

intensity estimation were based on 7 cells 157 which were stimulated with intensities 

between 10 and 50 mN at location 0°. 

 

 

3.2.  Analysis methods 

 

The spike detection was done by the custom-developed software which was also used for 

data acquisition (see 3.1.2.). The parameters, threshold (in mV), time window (in ms) and 

artifact window (default value 0.5 ms) were manually set. Spikes were traced when: the 

membrane potential exceeded the threshold and fell again by half of the peak within the 

time window. The detection continued in a new interval after the time window in which a 

spike was determined. Fast artifacts could occur at the end or beginning of current stimuli 

due to invalid capacity compensations of the electrodes. On that account, no spike was 

detected when the membrane potential decrease happened during the artifact window. 

The spike time was defined as the time of the maximum spike amplitude. For further data 

analyses, I developed in 2010-2014 software which is customized to the tactile stimulation 
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protocols and enables the analysis of neuronal responses to different stimulus properties 

and their combinations.  

 

To compare encoding performances of the response features, three approaches that 

complement each other were utilized. The pairwise discrimination (Thomson and Kristan, 

2006; see chapter 3.2.3.2.) was used to estimate the minimum difference between touch 

locations and intensities. The classification approach (see chapter 3.2.3.3.) was used to 

quantify how well all experimentally tested stimuli could be classified based on a specific 

neuronal response feature. To confirm stimulus estimation results, mutual information 

(see chapter 3.2.3.4.) between stimulus properties and response features was computed.  

 

 

3.2.1. Response features – Sensory neurons 

 

A cell pair denotes two simultaneously recorded cells. Relative features are computed as 

values of the left cell minus the right cell. Neuronal responses of the sensory neurons 

were quantified by the following response features:  

 

A. Spike count:     total number of spikes elicited by a single cell 

     during the stimulation period.  

B. Relative spike count:   difference of spike counts of a cell pair. 

C. Summed spike count:   sum of spike counts of a cell pair. 

D. Latency:     time [ms] between stimulus onset and first 

     spike of one cell. 

E. Relative latency:    time difference [ms] of the first spikes of a cell 

     pair. 

F. First interspike interval (1st ISI):  time difference [ms] between the first and 

     second spike of one cell. 

G. Relative 1st ISI:    time difference [ms] of the 1st ISIs of a cell pair. 

H. Response duration:   time difference [ms] between the first spike and 

     the last spike of the elicited neuronal response. 

I. Burst strength:    number of spikes in a burst of one cell. 



M e t h o d s   | 28 

 

 

A.            B. 

       
 
C.  

 
 
Figure 3: Response features of interneuronal responses to a touch stimulus. A. Sketch of the analyzed 
response features (see text). Touch stimulus from 0 to 200 ms. B. Filtered (black) and unfiltered (grey) 
response part (0 to 100 ms) plotted together. C. Detected spikelets with threshold 2 mV and detection window 
of 15 ms. Touch stimulus from 200 to 400 ms. 
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J. Burst duration:    time difference [ms] between first and last spike 

     in a burst of one cell. 

 

Responses of all mechanoreceptor types were tested for occurrence of bursts. Bursts were 

identified based on the distribution of interspike intervals. If this distribution was 

bimodal, a threshold was defined separating burst interspike intervals from longer ISIs 

(see Oswald et al., 2007). Since only T cells were found to generate bursts (see Figs. 5A, 

7A; Baltzley et al., 2010) and showed bimodal distributions of ISIs, results for burst 

features were only presented for this cell type.  
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3.2.2.  Response features – Interneurons 

 

The INs respond to inputs from the sensory neurons with graded postsynaptic potentials 

(PSPs) in their somata (Fig. 3). The resting potential of the cell, which is used for the 

definition of the response features, was computed as the mean of the potential 0 to 1 sec 

before the stimulation starts. The starting point of a graded interneuronal response was 

defined as the time point where the membrane potential changed from the resting 

potential by ± two-fold standard deviation. In order to avoid the detection of noise-

induced, short potential peaks, reference values for latency and maximal amplitude were 

averaged over a time window of 5 ms. Time windows for slope and integral depended on 

potential shape and stimulation time. Thus, the interneuronal responses were quantified 

by the following features: 

 

K. Latency:    time [ms] between stimulus onset and starting point of 

    the interneuronal response. 

L. Slope:     increase/ decrease of the signal from start of the    

    response to start time plus 30 ms. 

M. Integral:    area under the graded signal from start of response to 

    start time plus 200 ms. 

N. Maximal amplitude:  potential difference [mV] between the cell’s resting 

    potential and the maximum value of the response.    

O. Spikelets:   Detection features: threshold of 2 mV and 15 ms time 

    window (see 3.1.6.). Definition of spikelet features was 

    like spike features - A., D., and F. - of sensory neurons 

    (see 3.2.1.). 

 

 

3.2.3. Stimulus estimation 

 

The idea of stimulus estimation is to calculate how well the underlying, or presented, 

stimulus can be predicted based on neuronal responses. This method should provide an 

insight into potential encoding strategies which may be used by the neuronal system. 
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Here, I used two different estimation approaches that based on the maximum likelihood 

method (Aldrich, 1997) with a “leave one out” validation (Quian Quiroga and Panzeri, 

2009). Moreover, the mutual information (see 3.2.3.4) was computed to verify the 

consistence of the estimation results.  

Basically, the maximum likelihood method predicts the presented stimulus that most 

likely elicited the neuronal response. The neuronal responses were “separated” into 

response features (e.g., spike count, response latency), and the presented stimulus was 

described by its properties (e.g., touch location). The estimation was expected to reveal 

specific response features as encoder for the presented stimulus property. The “leave one 

out” validation was used for the definitions of test data and training data: each trial was 

used separately as test trial, while the remaining trials comprised the training data set. For 

the training data set, it was known which stimulus elicited the response. This knowledge 

provided the basis for the estimation. At the next step, the test trial was assigned to the 

stimulus (= predicted stimulus), based on the training data which elicited its response 

feature value most probable. The results related the predicted stimulus with the presented 

stimulus. For instance, 100% correct estimation means that all predicted stimuli matched 

the presented stimuli. In the special case that several stimuli elicited the test value with the 

same probability, the test trial was assigned to each of them to equal parts. This procedure 

was performed for all response features of all cells and their combinations.  

  

Based on these ideas, I used two different estimation approaches: a pairwise 

discrimination (see Thomson and Kristan, 2006) and a classification. Main difference of 

these approaches was the number of tested stimuli. The pairwise discrimination compared 

two stimuli and provided an insight into the discriminability threshold of stimulus 

property differences. These results were also comparable to results from the Thomson 

and Kristan study (2006). In contrast, multiple values of a stimulus property were 

compared in the classification (e.g., at 9 locations between -20° and +20° with differences 

of 5°). Results of this approach indicated how well property amounts could be 

distinguished from others.  
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3.2.3.1. Response feature classes 

 

Response feature classes are used for stimulus estimation. Variations in statistical 

properties of the response features, however, caused difficulties for the analysis of 

response classifications: the spike count had only integer numbers < 20, while the latency 

and interspike intervals were continuous variables and the relative features encompassed 

also negative numbers.  

A definition of classes based on absolute values, for instance, could lead to varied class 

numbers higher or lower than the number of presented stimuli: when fewer classes than 

the stimuli were defined, the values in one response feature class could be elicited by two 

(or more) different stimuli and vice versa. This systematic error biases the results: 

 A.                 C.    

 

 

 

 

 

 

 

B.     

      

 

 

 

 

 

 

 

Figure 4: Sketch of the stimulus estimation approaches and the estimation process (see text). A. Pairwise 
discrimination task: the stimulus is estimated based on response features evoked by two different stimuli. Red 
arrows indicate exemplarily the estimated stimulus intensities (left) or locations (right) in one iteration of the 
discrimination task. B. Classification task: the stimulus is estimated based on response features evoked by a set of 
N stimuli. Red arrows indicate exemplarily classified stimulus intensities (left) or locations (right). C. Sketch of the 
stimulus estimation process. S = Training data set elicited by stimulus number N; C = Response feature rank 
class. Top: examples of neuronal responses for two stimulus conditions and their spike counts. 1. Absolute values of 
spike counts in S were sorted and divided into response feature classes C (n = number of stimulus conditions). 2. 
Each value in S was assigned to the most probable response feature class C. 3. The most probable response feature 
class of the test trial was determined based on the borders of the classes. 4. The most probable stimulus class was 
defined based on the response feature class of the test trial. 
 

 

 

Estimation processPairwise discrimination 

Classification

Dorsal           Dorsal

Ventral         Ventral

Dorsal           Dorsal

Ventral         Ventral

A.

B.

S 1 S 2

S 1 S 2 S N-1 S N
?
…

S 1 5    6    5    6        S 2 9   12    9    6 

C 1 5    5    6    6       C 2 6    9    9   12

S 1 C 1 C 1 C 1 C 1 S 2 C 2 C 2 C 2 C 1

6  ≤  7 ≤  12          C 2

Pmax(C2) estimated Stimulus: S2

1.       Sort & divide into classes 

2.       Assign values in S data to most likely class C

3.       Assign test data

4.      Maximum likelihood



M e t h o d s   | 32 

 

 

continuous variables, e.g., the latency, have more often greater numbers of classes with 

this method, while the spike counts are more likely to be divided into fewer groups than 

stimuli. These problems were solved by setting the number of classes equal to the number 

of presented stimuli and by using ranks rather than absolute values:  

 

1. For each response feature, based on the training data set S{1,..,N}, the rank classes C{1,..,N} 

(N = number of presented stimuli) were determined. The absolute values of S 

were first sorted and then divided into equally sized classes C (Fig. 4C, step 1). For 

feature combinations, this step was made for both features, so that two training 

data sets and two corresponding sets of rank classes exist. 

2. The absolute values of the (unsorted) training data set S were assigned according to its 

 rank to the most likely class C  (Fig. 4C, step 2). If more than one class contained 

 the same response feature value (e.g., a spike count of 6; Fig. 4C), this value was 

 assigned to the class with the highest number of occurrences (maximum 

 likelihood; Fig. 4C, step 2: the spike count of 6 in S2 was assigned to C2). If two or 

 more classes were equally probable to elicit the specific value, one of them was 

 chosen by chance. Outputs are new training data sets containing ranks rather than 

 absolute values (Fig. 4C, 3rd row: C1 = 1; C2 = 2 as rank values).  

 For feature combinations, these training data sets were summed, so that the result 

 was one training data set S consisting of summed rank values.  

 For example, a combination of spike counts (SC) and latencies (L):  

 SC1 = [1; 1; 2; 1; 2]; L1 = [2; 2; 1; 1; 1]; SC1&L1 = [3; 3; 3; 2; 3], and so on.  

 This combined training data set (SC{1,..,N}&L{1,..,N}) could be used for further 

 analysis in the same way as for single feature response classes. 

3. In the same way, the test trial was assigned to the most probable response feature class 

 C (Fig. 4C, step 3). If more than one class contained the same response feature 

 value: see procedure in step 2.  

4. The determined class C of the test trial was then assigned to the stimulus which evoked  

 this class C most probably (Fig. 4C, step 4).  

Finally, a confusion matrix (Quian Quiroga and Panzeri, 2009) was calculated, showing 

how well presented stimulus and predicted stimulus match. The more entries are in the 

diagonal, the better is the stimulus estimation (Quian Quiroga and Panzeri, 2009).      
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This procedure was used for all response features A.-H. (sensory neurons) and K.-N. 

(interneurons) individually and in all possible pairwise combinations for all cell types. For 

T cells, burst strength (I.) in combination with burst duration (J.) and with relative latency 

(E.) as a feature pair were additionally analyzed.    

 

3.2.3.2. Pairwise discrimination 

 

The pairwise discrimination (Fig. 4A) deals with the question how well two stimuli can be 

discriminated based on specific response features. This approach reveals the minimum 

differences between intensities or locations, which can be discriminated using the 

neuronal responses. Results are presented as mean values with standard errors of the 

means (SEM) and fitted with a logistic function. Chance level of pairwise discrimination 

was 0.5 and discrimination threshold was defined as 0.75, which corresponded to 75% 

correct estimation (Johnson and Philips, 1981; Thomson and Kristan, 2006).  

 

3.2.3.3. Classification 

 

The idea of the classification approach is to quantify how well a set of N stimuli can be 

estimated based on a specific response feature (Fig. 4B). The test trial was assigned to 

values of the complete stimulus set. Results are given in % correct and displayed in 

boxplots (see Results), in which black dots mark the median values and box edges the 25th 

and 75th percentiles. Whiskers show minimum and maximum data values, which were 

not considered as outliers. Outliers are plotted as individual points and defined as: 

  

x > q3 + 1.5(q3 – q1)          or          x < q1 – 1.5(q3 – q1),  

 

where q1 is the 25th and q3 the 75th percentile (standard Matlab boxplot function). Since 

in our data set all stimuli were presented equally often, the chance level for this method 

was defined as 100/N %. With the classification approach, the stimulus properties 

location, intensity and duration (see Table 1) were analyzed, as well as the combination of 

stimulus properties. Three durations (50, 200 and 500 ms) were combined with two 

intensities (20 and 60 mN) and furthermore, three locations (-20° / 0° / +20°) with two 
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intensities (10 / 50 mN). Additional experiments were performed with up to three 

intensities (10 / 20 / 50 mN) and five locations (-20° / -10° / 0° / +10° / +20).  

 

3.2.3.4. Mutual information 

 

Furthermore, the mutual information (Cover and Thomas, 2006; Quian Quiroga and 

Panzeri, 2009) of all possible pairs of response features with stimulus properties in bits 

was computed:  

 

���, �� � ∑ 	�
, �� log� � ���,��
����������,� ,          

 

where X denotes the stimulus property and Y the observed neuronal response feature. 

p(x, y) is the joint probability distribution function of  X and Y; p(x) and p(y) are the 

marginal probability distribution of X and Y, respectively. Numbers of repetitions and 

stimuli have influences on the maximal information for each response feature. To allow a 

comparison of results, the values in the corresponding tables are normalized by the 

maximal information. 

 

 

3.2.4. Significance tests 

 

Significant influences of stimulus properties on neuronal response features were identified 

with the Kruskal-Wallis significance test (Gibbons, 1985; Hollander and Wolfe, 1999), a 

non-parametric version of the one-way analysis of variance (ANOVA). This test 

compares medians of independent samples from two or more groups. Unless stated 

otherwise, the significance level for the test was p < 0.001. A significance level of 

p < 0.05 was used for the features of the N cells, because of the low firing rate of this cell 

type. The value for p < 0.05 was regarded as “significant” and p < 0.001 as “highly 

significant”. 

Significant differences between classification results were tested with the Wilcoxon rank 

sum test (equivalent to a Mann-Whitney U-test; see: Gibbons, 1985; Hollander and 

Wolfe, 1999), where null hypothesis is that two independent data sets are from identical 
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distributions with equal medians (p < 0.05 “significant”; p < 0.001 “highly significant”). 

For pairwise discrimination, a one tailed t-test with p < 0.05 was applied to define which 

discrimination results were significantly above the performance threshold of 0.75 

(75% correct).  

The Kolmogorov-Smirnov test was used to investigate significant membrane potential 

changes of interneurons in response to spikes of mechanosensory cells. The null 

hypothesis was that the data sets were from the same continuous distribution (p < 0.05).  

All tests were performed with the Matlab Statistics Toolbox (Matlab version 7.8.0 

(R2009a), MathWorks, Natick, MA, USA). 
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4. Results 

 

The three mechanosensory cells types of the leech are generally well defined and 

described (see Introduction). What is missing is a systematical investigation of their ability to 

respond to different touch properties and a broad overview of changes in their response 

features. Moreover, it is mostly unknown how the sensory responses are processed in the 

postsynaptic INs. The results presented here provide a detailed description of the coding 

strategies of the mechanosensory cell types to simple and more complex tactile 

stimulations. A description of these findings is also given in the submitted manuscript 

(see Publications). In addition, the study provided first insights into the mechanisms of the 

next network level and unveiled a new view on the local bend network.  

 

 

4.1. Encoding of simple touch stimuli by sensory neurons  

 

This study gives for the first time a detailed insight into the response characteristics of all 

three types of mechanoreceptors to a broad range of tactile stimuli. The touch location, 

the intensity as well as the duration was varied. Furthermore, the analysis of the neuronal 

responses combines three complementary approaches (see Methods): a pairwise 

discrimination, a classification and the mutual information between stimulus properties 

and response features. These methods revealed fundamental principles of coding 

strategies for the different touch properties.  

 

Distinctly different spiking patterns were generated by each of the cell types in response 

to a touch stimulus. P cells responded in a sustained way with spikes of large amplitudes, 

while T cells generated small and fast spikes in a phasic manner (Figs. 5A, 7A, 10A). 

Remarkably, T cells showed on- and off-bursts in response to the touch (Figs. 5A, 7A, 

10A; see Baltzley et al., 2010). Typical attributes of N cell spikes were a long duration 

combined with a large afterhyperpolarization (Figs. 5A, 7A). This cell type generated 

noticeably less spikes than the other two cell types in response to the stimuli used here 

(Figs. 5, 7). 

 



R e s u l t s   | 37 

 

 

 4.1.1. Encoding of location 

 

The touch location affected the P cell responses (Fig. 5A, C): The response latency 

increased significantly with increasing distance to the center of receptive field, whereas the 

spike count significantly decreased (Table 2). The T cell response features showed similar 

dependencies (Fig. 5A, B). Both cell types showed a small variance across trials in 

latencies compared to spike counts (Fig. 5B, C). The variation of T cell latencies over 

trials at each touch location was even in the range of 1 ms (Fig. 5B). Instead, the 1st ISI of 

both cell types was less strongly influenced by the touch location (Table 2). The results 

for the P cells are in line with the study of Thomson and Kristan (2006) even though 

stimuli of lower intensities were used here. Responses of the third cell type, the N cells, 

suggest the same effects of touch location changes (Table 2), although for this cell type 

higher touch intensities were needed. N cells generated only one spike for intensities 

around 100 mN (see Fig. 7B), which made the analysis of a location influence on 

interspike intervals unfeasible. 

 

To illustrate the encoding performance of P and T cell response features, two different 

stimulus estimation approaches were used (Fig. 6). From all response features 

(see Methods) and possible combinations, the relative response latency gained the highest 

values for the classification, the pairwise discrimination as well as for the mutual 

information (Fig. 6, Table 5) (see Pirschel and Kretzberg, 2013; Kretzberg et al., 2015). 

For a stimulus of 50 mN, this feature results are significantly above the remaining features  

Table 2: Significant changes in response features of the mechanoreceptors due to a location change (see Pirschel 
and Kretzberg, 2015, submitted). The location is changed away from the center of the receptive field (p < 0.001 
for P and T cells; (*) p < 0.05 for N cells, Kruskal-Wallis test). Percentages of cells showing significant changes 
are color-coded, exact numbers of cells are given as 'significant / total' cell numbers. 

 Spike count    [decrease] Latency    [increase] 1st ISI    [increase] 

[mN] 10 50 100 10 50 100 10 50 100 

T cells 9/ 10 10/ 10 - 10/ 10 10/ 10 - 8/ 10 7/ 10 - 

P cells 10/ 10 10/ 10 - 8/ 10 10/ 10 - 1/ 10 5/ 10 - 

N cells (*) - - 7 / 8 - - 5 / 8 - - - 

 

100 %
80 %
60 %
40 %
20 %
0 %
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or feature combinations for P cells (Fig. 6D) (p < 0.05, Wilcoxon rank sum test; P cells: 

13 of 22 cases with p < 0.001). Sole exception is the feature combination of relative spike 

count with relative latency (RC & RL) showing only a slightly lower performance by 

tendency (p = 0.0986). The same applies for the relative latencies of T cells for the 10 mN 

stimulus (Fig. 6C) (p < 0.05, Wilcoxon rank sum test; T cells: 15 of 27 cases with 

p < 0.001). However, two features – the response latency and the relative 1st ISI – for a 

50 mN stimulus were not significantly different from the relative latency of this cell type  

A.                                 

 

B. 

 

 

 

 

  C. 

 

 

 

 

Figure 5: Influences of touch location on neuronal responses of mechanoreceptors (see Pirschel and Kretzberg, 
2015, submitted). A. Representative responses of a right N cell (blue), left T cell (grey) and left P cell (orange) to 
a touch stimulus of 100 mN for 200 ms at -30° (left) and +30° (right). B. Spike count and latency (mean 
and STD) of a T cell double recording for a stimulus of 50 mN. C. Spike count and latency (mean and STD) 
of a P cell double recording for a stimulus of 50 mN.  
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A.      B. 

              
C.  

  
D. 

   
Figure 6:  Estimation results for stimulus location (see Pirschel and Kretzberg, 2015, submitted). A. Pairwise 
discrimination results for location differences between 5° and 40°, around 0°, for the relative latency (RL) of T 
and P cells at two touch intensities (# of cells, see Table 2, stimulus presentations = 10). Black dashed lines show 
chance level and 75% threshold. Asterisks indicate mean values which are significantly (p < 0.05, t-test) above 
threshold. B. Pairwise discrimination results for location differences between 5° and 30°, around 0°, for T-P cell 
recordings for 50 mN (stimulus presentations = 10). Ipsi = ipsilateral; contra = contralateral. Black dashed 
lines show chance level and 75% threshold. Asterisks indicate mean values which are significantly (p < 0.05, t-
test) above threshold. C. Classification result for 9 locations for 10 mN stimulus intensity. T cell features in grey, 
P cells features in orange. Black dashed line show chance level and black dots mark the median values (see 
Methods). Response features: C = spike count; L = latency; I = 1st ISI; RD = response duration; RC = relative 
spike count; RL = relative latency; RI = relative 1st ISI; SC = summed count; BS = burst strength; BD = 
burst duration. Asterisks: p < 0.05, Wilcoxon rank sum test. D. Data correspond to C for a stimulus intensity 
of 50 mN.    
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(Fig. 6D) (p = 0.0586 and p = 0.0556, Wilcoxon rank sum test). Overall, combinations of 

features did not improve the estimation for any of the methods tested (Fig. 6C, D).  

 

For P cells, the relative latency discriminated touch location differences of 10° 

significantly above threshold (stimulus intensity 50 mN; Fig. 6A). This means a distance 

of about 0.6 mm for an average leech (circumference 2 cm) and is in the range of the 

behavioral discrimination threshold measured by Thomson and Kristan (2006). 

Additionally, the estimation performance of T-P cell combination features was analyzed 

(Fig. 6B). The small data set indicated that location estimation was not improved by a 

combination across cell types. Neither ipsilateral nor contralateral T-P cell pairs yielded 

better results than the latencies of single T and P cells (Fig. 6B).   

 

The findings revealed two interesting aspects. First, the location encoding performance 

depended on the stimulus intensity: The relative P cell latency for a stimulus of 50 mN 

allowed significantly better stimulus estimations than this feature at 10 mN (Fig. 6A, C). 

Second, T cells showed distinctly better results for the same tasks than P cells: The 

relative T cell latency allowed a discrimination of location differences smaller than 5° even 

for the low intensity of 10 mN and led to the significantly best estimation of the nine 

possible touch locations (p < 0.05, Wilcoxon rank sum test) (Fig. 6A, C). Moreover, the 

mutual information of relative T cell latencies and location was higher than for any other 

response feature (Table 5). These findings for P cells could be explained by more precise 

response latencies – and consequently more precise relative latencies – for higher touch 

intensities (see Table 2): averaging over many cells showed an increasing accuracy of 

latencies for ascending intensity values (see Fig. 7C). 

 

The touch location was most precisely encoded by a temporal ensemble code – the 

relative latency of the first spikes of a cell pair of the same type. Additionally, the 

encoding performance was influenced by the touch intensity – for different cell types 

varyingly strong – which may indicate different specializations of cell types.  
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4.1.2. Encoding of intensity 

 

The traditional hypothesis for intensity encoding is that the mechanosensory cell types 

respond to separated touch intensity ranges (Nicholls and Baylor, 1968). As a result the 

cell type itself encodes the stimulus intensity. Surprisingly, here all three types of 

mechanosensory cells responded to strongly overlapping intensity ranges (50 – 200 mN; 

Fig. 7) (see Pirschel and Kretzberg, 2013): P cells were already activated by a light touch 

of 5 mN, while T cells spike counts did not completely saturate for stimulus intensities 

around 200 mN and N cells show spikes reliably around 100 mN (Fig. 7). Generally, 

stimulus intensity significantly affected the spike counts and latencies of P and T cells 

(Table 3). This effect was more salient at lower intensities and attenuates for higher 

intensities (Table 3). The T cell latency was strikingly precise – independent of the touch 

intensity and number of cells in the data set (Fig. 7C). N cells are known to be the leech’s 

nociceptors (Kristan et al., 2005) and their impact on encoding touch stimuli at the 

intensity ranges tested is presumably very low. Although N cells responded to the 

stimulus intensities up to 200 mN with a low spike number (Fig. 7), none of the analyzed 

N cell response features were found to depend significantly on touch intensity (Table 3). 

 

These results seem to contradict to a certain extent the hypothesis that the activated cell 

type itself is the intensity encoder. To test if the intensity is encoded in a response feature, 

the aforementioned approaches were utilized. The feature which led to the best 

performance was generally the spike count (Fig. 8) (see Pirschel and Kretzberg, 2011; 

2012 and 2013). Nevertheless, the analysis outcome for this property was not so obvious: 

 

Table 3: Significant changes in response features of the mechanoreceptors due to an intensity increase (p < 0.001, 
Kruskal-Wallis test) (see Pirschel and Kretzberg, 2015, submitted). Percentages of cells showing significant 
changes are color-coded, exact numbers of cells are given as 'significant / total' cell numbers. Low intensities are < 
50 mN; Medium (med) intensities 50 to 100 mN; High intensities 100 up to 200 mN.    

 Spike count    [increase] Latency    [decrease] 1st ISI    [decrease] 

Intensity low med high low med high low med high 

T cells 21/ 33 10/ 26 3/ 7 25/ 33 14/ 26 5/ 7 12/ 33 8/ 26 2/ 7 

P cells 36/ 42 14/ 23 3/ 6 38/ 42 9/ 23 1/ 6 20/ 42 8/ 23 1/ 6 

N cells - 1/ 27 0/ 4 - 0/ 27 0/ 4 - 0/ 27 0/ 4 

 

100 %
80 %
60 %
40 %
20 %
0 %
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similar results for response latencies and spike counts of T and P cells were revealed in 

both estimation approaches (Fig. 8). The same applies to the mutual information between 

these features and the touch intensity (Table 5). Slightly better results were found for the 

summed spike count of cell pairs (Fig. 8). Overall, intensity estimation results were not as 

statistically clear as the location estimation results for the intensity range tested here. 

 

The summed spike count of T and P cells tended to give the best estimations (Fig. 8): 

with approximately 70% correct estimations of five intensities and a significant pairwise 

discrimination of 30 mN intensity differences (Fig.  8). Especially relative spike counts 

A.           Figure 7: Influences of 
          touch intensity on 
          neuronal responses of 
          mechanoreceptors  
          (Pirschel and Kretzberg, 
          2015, submitted). A. 
          Representative responses 
          of a right N cell (blue), 
          left T cell (grey) and P 
B.          cell (orange) to a touch
          stimulus of 50 mN (left)
          and 100 mN (right) for 
          200 ms at 0°. B. Spike 
          count (mean and STD) 
          for P cells (orange), T 
          cells (blue) for intensities 
          of 5 to 200 mN. C. 
          Latency (mean and 
          STD) for the same cells 
          and conditions like B.  

C.            
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  A.  B.    

         
 
C.  

     
 D. 

                   
Figure 8: Estimation results for stimulus intensities (see Pirschel and Kretzberg, 2015, submitted). A. Pairwise 
discrimination of intensity differences between 10 and 90 mN, compared to the 10 mN stimulus. N = 5 PP; 8 
TT; 11 PT; 7 NP cell double recordings. Black dashed lines show chance level and 75% threshold. Asterisks 
indicate mean values which are significantly (p < 0.05, t-test) above threshold. Response features: see 
Abbreviations. B. Pairwise discrimination of intensity differences between 10 and 40 mN, compared to the 10 
mN stimulus. N = 12 PP and 7 TT cell double recordings. C. Classification results. 5 intensities between 10 
and 100 mN at 0°. Same cells as in A. Black dashed line show chance level and black dots mark the median 
values (see Methods). Response features: see Abbreviations. D. Classification results. 5 intensities between 10 and 
50 mN at 0°. Same cells as in B. Black dashed line show chance level and black dots mark the median values 
(see Methods). Response features: see Abbreviations.   
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A.           B. 

     

C.            D.

     

E.              F.

     

Figure 9: Influence of the touch location on intensity discrimination results. Black dashed lines show chance level 
and 75% threshold. Asterisks indicate mean values which are significantly (p < 0.05, t-test) above threshold. A. 
Discrimination of intensity differences between 10 and 40 mN, compared to the 10 mN stimulus, for 5 left P cells 
and B. for 5 right P cell recordings. C. Discrimination of intensity differences between 10 and 90 mN, compared 
to the 10 mN stimulus. Spike count of 4 left T cells and D. for spike count of 4 right T cells. E. Discrimination 
of intensity differences between 10 and 90 mN, compared to the 10 mN stimulus. Latency of 4 left T cells and F. 
for latency of 4 right T cells. 

 

and relative latencies lagged behind this feature. Acceptable classification values could 

also be yielded by T cell burst features, in particular the burst duration (Fig. 8C). 

Downstream neurons might be able to evaluate T cell bursts, which makes it an 
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interesting feature for further investigations on the level of interneurons. Addition of N 

cell spike counts was less effective than it was hypothesized. For higher intensities (200 

mN and higher), where N cells could be more active, a summation of spike counts of this 

cell type might have a greater impact. 

A larger data set of P and T cells stimulated with a range of lower intensities showed 

qualitatively the same results regarding the best performing features (Fig. 8B, D) (see 

Pirschel and Kretzberg, 2012). However, with  this  data  set  intensity  differences of 

10 mN could be discriminated above threshold based on the summed spike count of two 

P cells (Fig. 8B). Notably, response latencies of single T cells showed good estimation 

performances (Fig. 8B). This feature is highly significantly influenced by the touch 

intensity (Table 3) as well as the location (Table 2). Since it counts on owing to the 

precision of the first T cell spikes, this feature may reflect even small intensity changes. 

But it is yet questionable whether postsynaptic cells could use absolute response latencies 

of single cells without any reference point (e.g., spike of another cell, etc.).  

 

It was shown that the encoding of the touch location was intensity-dependent (see 

Pirschel and Kretzberg, 2012). Since the touch intensities also influenced the responses of 

the sensory neurons to locations, the estimation of intensity differences was tested with 

varied locations (Fig. 9). However, the estimation at 0° works quite well for P and T cells. 

The results at preferred stimulation locations (more to the center of the receptive fields) 

did not show a reliable tendency to better or worse performances. Conceivably, this effect 

may be more prominent for stimulus locations with a larger distance (e.g., -40° vs. +40°) 

or at higher intensities. The location indeed affected the absolute spike count of the cells 

(see Table 2), but likely not the relations between spike counts at different intensities. For 

instance, low touch intensities elicited low spike counts at preferred locations as well as at 

peripheral locations. This held true for high intensities. Absolute spike counts were lower 

at peripheral locations for all touch intensities related to preferred locations (Fig. 5).   

 

In conclusion, the summed spike count was the most suitable response feature for 

intensity encoding, which suggest a rate code based on a population of cells for this 

property. For a faster – but coarser - encoding of intensity, it may be feasible to use the 

onset bursts of T cells.   
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4.1.3. Encoding of duration  

 

The third stimulus property investigated was the touch duration. This property mainly 

affected spike counts and periods of spike occurrence, defined as response duration. This 

is not surprising, since all cell types show no spontaneous activity in the absence of 

stimulation. For a 60 mN stimulus, the spike counts and the response duration 

significantly increased with stimulus duration in all P and T cells (p < 0.001, Kruskal-

Wallis test) (Table 4, Fig. 10A, B) (see Pirschel and Kretzberg, 2011). The same applied 

for the lower intensity, except for spike counts of T cells: only 5 of 10 T cell spike counts 

showed a significant increase depending on the stimulus duration (p < 0.001, Kruskal-

Wallis test) (Table 4, Fig. 10A). Besides the absolute values of features, the variance of 

these features also increased with longer touch durations (Fig. 10B). It seems that spikes 

occurred more unreliably after some time of constant stimulation (see Figs. 5A, 7A, 10A).  

 

For the estimation of response duration, the spike count yielded the best results, slightly 

better than the response duration (Fig. 10B). Accordingly, the highest mutual information 

with duration was reached by the spike count of P cells (Table 5). Thus, the touch 

duration was represented in slow encoding features, the total spike count and the 

response duration. Conceivably, the characteristic spiking pattern of T cells (Figs. 5A, 7A, 

and 10A) with bursts at the beginning and at the end of stimulus could be used by 

downstream neurons to detect the start and end time of a touch.    

 

Table 4: Significant changes in response features of P and T cells due to an duration increase (p < 0.001, 
Kruskal-Wallis test). Percentages of cells showing significant changes are color-coded, exact numbers of cells are 
given as 'significant / total' cell numbers.  

 
Spike count  
[increase] 

Response Duration 
[increase] 

Intensity  20 mN 60 mN 20 mN 60 mN 

T cells 5/ 10 10/ 10 10/ 10 10/ 10 

P cells 11/ 12 12/ 12 12/ 12 12/ 12 

 

100 %
80 %
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40 %
20 %
0 %
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A.          

 
B. 

                        
  C.          D.    

Figure 10: Influences of the stimulus duration on neuronal responses of mechanoreceptors (see Pirschel and 
Kretzberg, 2015, submitted). A. Representative responses of a T cell (grey) and P cell (orange) to a touch stimulus 
of 60 mN for 50 ms (left) and 500 ms (right) at 0°. B. Spike count (mean and STD) for P cells (orange) and T 
cells (grey) for stimuli of 20 and 60 mN with 50, 200 and 500 ms duration at 0° stimulus location. C. 
Classification results for 60 mN stimulus intensity with three durations (Table 1). Black dashed line show chance 
level and black dots mark the median values (see Methods). Response features: see Abbreviations. P cell features 
(orange), T cell features (grey). D. Classification results for two intensities with three durations (Table 1). Legend as 
in B.  
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4.2. Encoding of complex touch stimuli by sensory neurons 

 

The magnitude of the local bend behavior depends on various stimulus properties (Baca 

et al., 2006). Since estimation of the individual touch properties revealed specific response 

features as good encoders, the question here is how more complex stimuli could be read 

out from neuronal responses. The results of encoding of single stimulus properties 

revealed considerable ambiguity: As was shown for single cell responses, touch intensity 

affected the same features as did the touch location. Shifting the touch towards the 

receptive field center led to a decreasing latency and an increasing spike count, just as an 

increase of touch intensity at the same touch location. Moreover, a longer duration 

affected the spike count similar to a rising intensity. 

 

The best encoder for intensity as well as duration was found to be the spike count (see 

Results 4.1.). However, combination of two intensities with three durations (Table 1) can 

be estimated best from response duration (T cells RD vs. C: p = 0.0535; Wilcoxon rank 

sum test) (Fig. 10D). Accordingly, the highest mutual information with the combination 

of intensity and duration was reached by this feature (Table 5). The response duration 

may gain relevance with task complexity when spike counts represent additional stimulus 

properties. Baca and colleagues (2005) found that longer stimulus durations (200 vs. 500 

ms) led to significantly larger local bend responses with the same stimulus intensities 

(Baca et al., 2005). Here, spike counts are strongly influenced by touch intensities and 

durations, which may indicate, in line with findings by Baca et al. (2005), that spike counts 

and response durations behaviorally affect the strength of muscle responses.       

 

For the estimation of individual stimulus properties of location and intensity, two 

different ensemble codes were identified: a temporal feature – the relative latency of two 

cells of the same type – was found to be the best encoder for touch location. Touch 

intensity was encoded best by a spike count code – the summed spike count of cell pairs. 

For different intensity-location combinations (Table 1, Fig. 11), best estimations were 

obtained by the relative latency of T cells and the summed spike count of P cells (Fig. 

11A, C, E; Table 5). Even for more difficult tasks (5 locations and 3 intensities, Fig. 11D), 

the results were above chance level.   
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A.                B.    

         
C.                 D. 

 
E.                 F. 

     
Figure 11:  Estimation results for combination of location and intensity (modified, Pirschel and Kretzberg, 2015, 
submitted). Response features: see Abbreviations. Black dashed lines show chance level. P cell pairs (orange); T cell 
pairs (grey); pooled data of P cell summed spike count (SC) and T cell relative latency (RL) (red), T cell SC and P 
cell RL (dark grey); SC of P cell plus T cell pooled data (counts of 4 mechanoreceptors) with RL of T cells (dark 
red) and RL of P cells (blue). Asterisks indicate a significant difference (p< 0.05, Wilcoxon rank sum test). A. 1st 
property combination 3 locations with 2 intensities ([-20 | 0 | 20] with [10, 50 mN]). Chance level: 16.6%. B. 
Results for SC for intensity estimation (Int) and RL for location estimation (Loc). Location-intensity combination 
as in A. C. 2nd property combination 5 locations with 2 intensities ([-20 | -10 | 0 | +10 | 20] with [10, 20 
mN]). Chance level: 10%. D. Results for SC for Int estimation and RL for Loc estimation. Location-intensity 
combination as in C. E. 3rd property combination 5 locations with 3 intensities ([-20 | -10 | 0 | +10 | 20] with 
[10, 20, 50 mN]). Chance level: 6.6%. F. Results for SC for Int estimation and RL for Loc estimation. 
Location-intensity combination as in E.  
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However, a feature combination of summed spike count and relative latency did not 

improve the estimation for the combination of 3 locations and 2 intensities (Fig. 11A, C). 

Remarkably, this feature combination gained better results for more difficult tasks (Fig. 

11C and E): for 5 locations and 3 intensities (Fig. 11E), the P cell feature combination 

performed significantly better than individual features (p < 0.05, Wilcoxon rank sum test), 

and the relative T cell latencies did not yield significantly better results than summed spike 

count and relative latencies (T cells: RL vs. RL&SC1.Combi p = 0.025; RL vs. RL&SC2.Combi 

p = 0.004; RL vs. RL&SC3.Combi p = 0.209; Wilcoxon rank sum test; Fig. 11A, C, E).  

 

Based on the analysis results of the individual stimulus properties, a property-dependent 

cell type feature combination was tested (Fig. 11B, D, and F). For this analysis, a pooled 

data set containing 5 P cell and 5 T cell double recordings was used (see Methods), because 

simultaneous recordings from 4 sensory neurons was unfeasible due to technically 

A.             B. 
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12:  Estimation results for property-dependent cell type feature combinations. Response features: see 
Abbreviations. Black dashed lines show chance level. One asterisk: significant difference (p < 0.05, Wilcoxon 
rank sum test); Two asterisks: highly significant difference (p < 0.001, Wilcoxon rank sum test) – to all other 
feature combinations. A. Results for different feature combinations for the property combination 3 locations with 2 
intensities ([-20 | 0 | 20] with [10, 50 mN]), 3rd case as in B. details see text. SC = summed spike count; RL 
= relative latency; RC = relative spike count; RI = relative 1st ISI; Int = Intensity; Loc = Location. B. Results 
for combinations of the features SC and RL. Location-intensity combination as in A. Description of case 1st – 4th

see text.  
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limitations. Outcomes from this pooled data set were very consistent across preparations. 

Features of T cells and P cells were teamed to investigate if the stimulus estimation of a 

location-intensity combination can be improved by the integration of several cell types. 

First, results of all possible combinations of the response features summed spike count 

and relative latency as well as relative spike count and relative first ISI were analyzed (Fig. 

12A). In this task the feature combination of summed spike count with relative latency led 

to the significantly best result (Fig. 12A). 

   

Second, in order to find the best performance for this feature team, the following four 

sets for all possible cell pairings (P w/ P, T w/ T, P w/ T and T w/ P) were tested (Fig. 

12B):  

1st: Summed spike count for intensity and location encoding,  

2nd: Relative latency for intensity and location encoding,  

3rd: Summed spike count for intensity encoding and relative latency for location encoding,  

4th: Relative latency for intensity and summed spike count for location encoding. 

 

The best estimation results were achieved, for all cell type combinations, by the 3rd case: 

summed spike count for intensity encoding and relative latency for location encoding 

(Fig. 12B). Furthermore, for this set the best performance was reached by a combination 

of summed spike counts of P cells and relative latencies of T cells (Fig. 11B, D, and F) 

(see Kretzberg et al., 2015). This combination of cell type and feature classified six 

different stimuli almost perfectly (median 90% correct, Fig. 11B) and also led to the best 

performances in tasks involving more locations and intensities (Fig. 11D, E). These 

results were not improved by adding the spike counts of two P and two T cells (summed 

counts of 4 mechanoreceptors). This extended to more difficult tasks with 5 locations and 

several intensities (Fig. 11B, D, and F).  

 

In summary, the first spike times of a cell pair reflected best the touch location. This 

feature makes an extremely fast and precise encoding of the location possible. The 

stimulus intensity could be best estimated by a rate code. On the one hand, P and T cells 

seem to be specialized in encoding preferred stimulus properties: Summed spike counts 

of P cells encode best stimulus intensity, while relative latencies of T cells encode the 
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touch location. On the other hand, the neuronal responses of both cell types contain 

information about all three stimulus properties (Fig. 11). These results suggest that 

multiplexing of sensory information may be used by this small and simple system to code 

complex stimuli in a highly precise manner.  

  

For instance, relevant for the leech behavior might be vibrating or moving stimuli, which 

were not investigated in this study. However, an individual example with such a 

stimulation is shown in Figure 13. The trace accidentally arose due to technical problems: 

the poker tip vibrated just above the skin at a location of -10°. Unfortunately the signal of 

the poker was not recorded, but still the T cell and P cell recording leaves an impression 

of how the cells would respond to vibrating stimuli.   

 

 
Table 5: Normalized mutual information of response features with stimulus properties (see Pirschel and 
Kretzberg, 2015, submitted). Bold numbers indicate the highest normalized mutual information. Sum = 
Summed;  Rel = Relative; Resp = Response; Dur = Duration. Stimulus properties for the combined encoding 
tasks see Table 1.  

Location 
Int [mN] Cells Count Latency Sum Count Rel Latency 

10 T  0.35 ± 0.12 0.49 ± 0.15 0.30 ± 0.11 0.73 ± 0.12 

10 P  0.35 ± 0.07 0.36 ± 0.07 0.25 ± 0.07 0.45 ± 0.12 

50 T  0.33 ± 0.04 0.51 ± 0.16 0.28 ± 0.08 0.61 ± 0.09 

50 P  0.36 ± 0.04 0.49 ± 0.10 0.33 ± 0.06 0.62 ± 0.09 

Intensity 

Loc [°] Cells Count Latency Sum Count Rel Latency 

0 T  0.44± 0.15 0.46 ± 0.16 0.48 ± 0.15 0.28 ± 0.17 

0 P  0.40 ± 0.09 0.39 ± 0.12 0.47 ± 0.11 0.25 ± 0.11 

0 N-P -  - 0.41 ± 0.13 0.23 ± 0.17 

0 P-T - - 0.52 ± 0.18 0.38 ± 0.11 

Duration  

Int [mN] Cells Count Latency 1st ISI Resp Dur 

60 T 0.60 ± 0.24 0.11 ± 0.15 0.12 ± 0.12 0.59 ± 0.17 

60 P 0.84 ± 0.11 0.10 ± 0.08 0.18 ± 0.09 0.72 ± 0.12 

Duration & Intensity 

 Cells Count Latency 1st ISI Resp Dur 

3 & 2 T 0.42 ± 0.13 0.34 ± 0.21 0.32 ± 0.13 0.49 ± 0.12 

3 & 2 P 0.50 ± 0.07 0.30 ± 0.7 0.32 ± 0.09 0.53 ± 0.05 

Location & Intensity 

 Cells Count Latency Sum Count Rel Latency 

3 & 2 T 0.38 ± 0.14 0.56 ± 0.07 0.36 ± 0.11 0.71 ± 0.08 

3 & 2 P 0.53 ± 0.14 0.49 ± 0.15 0.52 ± 0.13 0.52 ± 0.20 
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4.3. Processing of touch stimuli in the local bend network  

 

The aims of the third study were to analyze connections of INs of the local bend network 

and mechanosensory cells as well as to characterize the responses of these INs to tactile 

stimulation. Whereas some details were known about the involved INs and their 

connections to P cells (Lockery and Kristan, 1990b), no experimental data existed with 

tactile stimulation of local bend INs so far. Here, the data are mainly from cell 157, whose 

graded responses were also analyzed by means of the stimulus estimation approaches (see 

3.2. for details), and to a minor degree from cell 159 (see Fig 1C; Lockery and Kristan 

1990b). For characterization of the graded responses, the response features integral and 

amplitude, the slope as well as latency were used (see Methods). In the last section, a 

smattering of responses from cell 161 and 162 are shown.  

 

4.3.1 Influence of touch properties on interneuronal responses 

 

All recorded cells 157 showed strong correlations between the interneuronal response 

features and the touch location (Table 6; Figs. 14, 15, 18). Like the mechanoreceptors, the 

cell 157 seems to have a spatially structured receptive field, showing greater responses at 

stimulus locations nearer to the receptive field center (Figs. 14, 15). Apparently, the 

receptive field of cell 157 covers a larger area (Fig. 15A, B) than the fields of the 

A.        B. 

 
 

Figure 13:  Neuronal responses of a left T cell and left P cell to vibrating skin stimulation (see Results 4.2)    
at - 10°. A. Complete trace of 60 sec stimulation. B. Magnification of the time 20 to 30 sec trace in A.   

20 30      s
-80
-60
-40
-20

0

[m
V

]

20 30      s
-55
-50
-45
-40
-35

[m
V

]

P cell (left)

0 10 20 30 40 50 Time [s]
-80
-60
-40
-20

0

[m
V

]

0 10 20 30 40 50 Time [s]
-55
-50
-45
-40
-35

[m
V

]

P cell (left)

T cell (left)

P cell (left)

Time [s]

P cell (left)

T cell (left)



R e s u l t s   | 54 

 

 

mechanosensory cells which overspan about 180° (Nicholls and Baylor, 1968; Yau, 1976; 

Blackshaw, 1981; Blackshaw et al., 1982; Lewis and Kristan, 1998c): cell 157 responded 

over a range of 140° with still increasing responses, which indicates a receptive field of 

about 280° or broader. This could be explained by the inputs from several 

mechanosensory cells processed by the IN (connections of INs-P cells: Lockery and 

Kristan, 1990b). The touch intensity, in particular lower intensities in the range of 10 to 

50 mN, also affected significantly the interneuronal response features (Table 6). 

 

Compared to cell 157, the response shape of cell 159 seems to be more influenced by T 

cells (Fig. 14). The response of this cell type clearly reflected the phasic response patterns 

of T cells to tactile stimulation (Fig. 14B). Additionally, the response lasted longer than in 

cell 157 (Fig. 14B). Cell 159 also showed a spatially structured receptive field (Table 6; Fig. 

15E, F). Qualitative differences in receptive fields between cell 159 and 157 could not be 

analyzed here owing to the lack of recordings. 

 

In addition to excitatory postsynaptic potentials (EPSPs) in response to mechanosensory 

cell spikes, both IN types showed fast membrane fluctuations of small amplitudes called 

spikelets (Fig. 3; Epsztein et al., 2010). The spikelet frequency depended on the 

membrane potential. After penetration of the cell membrane, the INs were depolarized  

 
Table 6: Significant changes in interneuronal response features due to location and intensity changes. Location 
changed towards the center of the receptive field of the mechanoreceptors (p < 0.05, Kruskal-Wallis test). Only if 
the cell features show clear dependencies (increase or decrease), they were stated as “significant”. Low intensities: < 
50mN; High intensities: up to 100 mN. Exact numbers of cells are given as 'significant/total' cell numbers.  
 

cell 157 

Location Intensity 
Amplitude 
[increase] 

Latency 
[decrease] 

Integral 
[increase] 

Slope 
[increase] 

9 Locs 
50 mN 8/ 8 6/ 8 8/ 8 8/ 8 

70 mN 7/ 7 7/ 7 7/ 7 7/ 7 

0° 
5 Ints low 8/ 11 6/ 11 9/ 11 7/ 11 

5 Ints high 5/ 10 2/ 10 7/ 10 4/ 10 

cell 159 

Location Intensity 
Amplitude 
[increase] 

Latency 
[decrease] 

Integral  
[increase] 

 Slope  
[increase] 

9 Loc 
50 mN 1 / 1 1 / 1 1 / 1 1 / 1 

70 mN 2 / 2 2 / 2 2 / 2 2 / 2 
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A.  

B. 

C.  

 
D. 

 
 
Figure 14: Examples of stimulus location and intensity influences on responses of mechanosensory cells and 
interneurons. A. Representative responses of a right T cell (grey), left P cell (orange) and left cell 157 (green) to a 
touch stimulus of 70 mN for 200 ms at -20° (left), 0°  and +20° (right). B. Representative responses of a left 
T cell (grey) and left cell 159 (magenta) to a touch stimulus of 50 mN for 200 ms at -20° (left), 0°  and 
+20° (right). C. Representative responses of a right T cell (dark grey), left T cell (light grey) and right cell 157 
(green) to a touch stimulus of 70 mN for 200 ms at -20° (left), 0°  and +20° (right). D. Representative 
responses of a right P cell (orange), left P cell (red) and cell 157 (green) to a touch stimulus of 10 mN (left), 30 
mN and 50 mN (right) for 200 ms at 0°.    
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here around -20 to -30 mV membrane potential and showed frequent spontaneous 

spikelets. This effect was also described by Lockery and Kristan (1990b). When their 

membrane potentials were more hyperpolarized, the INs showed the spikelets 

considerably less frequent (Fig. 14). Connections between the mechanoreceptors and cell  
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A.                      B.   

       
C.            D. 

 
E.                                                     F. 

 
G.                     H. 

 
  
Figure 15: Examples of the stimulus influence on amplitude and integral (mean and STD). A. 
Amplitude in mV of a right cell 157 stimulated with 70 mN at locations: -20° to +120°. B. Integral 
of the same cell as in A. C. Amplitude in mV of a left cell 157 (light grey) and a right cell 157 (dark 
grey) stimulated with 70 mN at locations: -20° to +20°.  D. Integral of the same cells as in C. E. 
Amplitude in mV of a left cell 159 stimulated with 70 mN at locations: -30° to +20°. F. Integral of 
the same cell as in E. G. Amplitude in mV for a cell 157 stimulated at 0° with intensities between 10 
and 100 mN H. Integral for the same cell as in G.  
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A.   

        
B. 

          
C. 

    
Figure 16: Connections between cell 157 and ipsilateral 
mechanoreceptors. A. Cell staining of T cells (blue), P cell (red), cell 
157 (green). Magnification (right): Arrowheads indicate putative P cell 
input sites, arrows putative T cell input sites. From Gerrit Hilgen. B. 
Cell stainings of T cells (blue), cell 159 (magenta). Arrowheads 
indicate putative T cell input sites. From Gerrit Hilgen. C. Double 
recordings of mechanoreceptors - cell 157 (left), cell 159 (right). The 
mechanoreceptors were stimulated by current (black bar, see Methods) 
and IN responses were recorded simultaneously. First row: INs paired 
with T cells; Second row: IN with P cells; Third row: IN with N cells.    
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157 as well as cell 159 were 

analyzed by  cell  staining  

and  intracellular  double  

recordings  with  current  

stimulations  of  the 

mechanoreceptors (see 

Methods). Dr. Gerrit Hilgen 

obtained the cell staining, 

and kindly provided them for 

illustration purposes. 

P cell, T cell as well as N cell 

spikes significantly changed 

the interneuronal membrane 

potential of all recorded cells 

157 (see Methods; p < 0.05, 

Kolmogorov-Smirnov test) 

(Fig. 16). Connections of T 

and P cells to cell 157 were 

visualized by cell staining 

(Fig. 16A). The analysis 

showed points of contact of 

P cell (red) and T cell (blue) 

to cell 157 (green). Higher 

magnifications of a subset of 

confocal microscope layers 

(Fig. 16A) showed putative 

P cell (arrowheads) and 

T cell (arrows) input sites 

(Fig. 16A) to cell 157 (green).  

                                                     

To test whether all INs 
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respond similarly to mechanosensory cell inputs, recordings from cell 159 were 

performed. This IN is located near cell 157 (Lockery and Kristan, 1990b) but showed 

distinctly different response shapes to the same tactile stimulation (see Fig. 14). The shape 

of interneuronal responses, electrophysiological recordings (Fig. 16C) and cell staining 

(Fig. 16B) suggest also a synaptic coupling of cell 159 and T cells (see Pirschel et al., 

2015), while the effect of N cells spikes in the 159 soma is less strong than in 157 (Fig. 

16C).  

All three types of mechanosensory cells influenced the investigated INs and cell staining 

suggests monosynaptic connections from mechanoreceptors to cells 157 and 159. 

   

4.3.2 Interneuronal response latency 

 

For the latency computation, the threshold was defined by the resting potential of the cell 

plus/minus its two-fold standard deviation (see Methods). The latency of the graded 

interneuronal responses was strongly influenced by fluctuations of the resting potential: 

appearances of spikelets, for instance, biased the definition of the threshold and so the 

latency. Also influences by network activity cannot be ruled out, which made the 

interneuronal response latency the most unstable feature.  

Nevertheless, the response latency of cells 157 and 159 showed significant changes to 

touch location alteration and less strongly to intensity changes (Table 6, Fig. 17). 

Interestingly, for tactile stimulations, the response latency of cell 157 was faster than the 

first P cell spikes and more in the range of the latencies of T cells (Fig. 17), which 

indicates that the initiation or slope of the cell 157 response could be triggered by T cells 

rather than by P cells. Cell 159 showed also a short latency which suggests – besides its 

response pattern (4.3.1., Fig. 14) – a direct connection from T to cell 159 (Figs. 15 and 

17). 

Figure 18A shows the latency of a right cell 157 and a simultaneously recorded left P cell. 

The P cell did not generate spikes to stimuli at locations over +30° which were outside of 

the receptive field (Fig. 18A).      
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A.           B. 

 
C.        D. 

 
E.       F.   

          
                           

       
Figure 17: Examples of stimulus intensity influence on response latencies of INs. A. Latency in ms (mean 
and STD) of a right cell 157 (dark green) and a simultaneously recorded left P cell (orange), stimulated with 
70 mN at locations between -20° to +120°. B. Latency in ms (mean and STD) of a left cell 157 (green) and 
a right cell 157 (dark green) stimulated with 70 mN at  locations between  -20° to +20°. C. Latency in ms 
(mean and STD) of a left cell 157 (green) and a right T cell (grey), stimulated with 70 mN at locations 
between -20° to +20°. D. Latency in ms (mean and STD) of a left cell 159 (magenta) and left T cell (light 
grey), stimulated with 70 mN at locations between -30° to +20°. E. Latency in ms (mean and STD) of 
simultaneously recorded cell 157, T cell (grey) and P cell (orange) for intensities of 10 to 50 mN at location 0°. 
F. Latency in ms (mean and STD) for a double recording of a cell 159 (magenta) and a T cell (grey), 
stimulated at 0° with intensities 50, 70 and 100 mN.  
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4.3.3. Stimulus estimation based on graded response features 

 

The aforementioned estimation approaches (see Methods) were used to investigate how the 

response features (amplitude, integral, latency and slope) of the graded interneuronal 

responses of cell 157 encoded touch properties (Fig. 18). Additionally, the encoding 

ability of spikelets (Fig. 19) was tested.  

 

Surprisingly, even smallest touch location differences of 5° could be discriminated 

significantly above threshold (Fig. 18A) (see Pirschel et al., 2015). For the pairwise 

discrimination of touch locations (Fig. 18A) equally good results were yielded by the 

amplitude and the integral as well as a combination of these features. The same 

combination and the integral were also the best encoders for intensity differences (Fig. 

18C). However, the response feature which led to the best classification results – for 

location as well as intensity estimation – was the integral (Fig. 18B, D). Intuitively, this is 

not surprising, since the integral depends on both amplitude and slope of the 

interneuronal response and may reflect hence its shape most reliably. Combinations of 

response features or spikelet features (Fig. 19) did not improve the estimation. 

Accordingly, the highest mutual information with the touch location or with the intensity 

was also reached by the integral (Table 7). Only for high intensities, the amplitude and the 

combination of amplitude with integral yielded slightly higher values than the integral. 

Additionally, the intensity estimation performance of two left cells 157 at different 

locations was also analyzed (Fig. 18E). The intensity discrimination seems to be more 

precise when the location was closer to the receptive field center of the cells, in this case  

-20°.  

 

Table 7: Normalized mutual information of response features with stimulus properties for cell 
157 response features. Ampl = Amplitude; A & In = Amplitude - integral combination. Low 
intensities: Intensities < 50mN; High intensities: up to 100 mN. 

Location Intensity Ampl Latency Integral Slope A & In 

9 Locs 50 mN 0.46 ± 0.12 0.26 ± 0.04 0.48 ± 0.08 0.33 ± 0.09 0.46 ± 0.1  

0° 5 Ints low 0.18 ± 0.11 0.14 ± 0.06 0.24 ± 0.13 0.19 ± 0.09 0.23 ± 0.11  

0° 5 Ints high 0.23 ± 0.18 0.15 ± 0.13 0.22 ± 0.14 0.20 ± 0.14 0.24 ±  0.17 
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A.                           B. 

 
C.                           D. 

 
E.          F. 

       
 

Figure 18: Stimulus estimation results for cell 157 response features. A. Pairwise discrimination for location 
differences 5° to 40°, stimulation center 0°, for 50 mN (n = 6). Black dashed lines show chance level and 75% 
threshold. Asterisks indicate mean values which are significantly (p < 0.05, t-test) above threshold. B. 
Classification of 9 locations for 50 mN. Black dashed line show chance level and black dots mark median 
values. A = Amplitude; L = Latency; In = Integral; S = Slope. C. Pairwise discrimination for intensity 
differences between 10 and 40 mN, at 0° (n = 7). D. Classification of 5 intensities between 10 and 50 mN at 
0°. E. Pairwise discrimination of intensity differences at -20° and +20° of cells 157 (n = 2, both left). F. 
Pairwise discrimination of intensity differences at 0° for the same cells as in E. 
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A.                            B.        

 
C.                             D. 

      
 

Figure 19: Stimulus estimation results for spikelet features of cell 157. A. Pairwise discrimination for location 
differences 5° to 40°, stimulation center  0°, for 50 mN (n = 6). Black dashed lines show chance level and 
75% threshold. Asterisks indicate mean values which are significantly (p < 0.05, t-test) above threshold. B. 
Classification of 9 locations for 50 mN. Black dashed line show chance level and black dots mark median 
values. Sp = Spikelet count; L = Latency; I = 1st ISI; RD = Response duration. C. Pairwise discrimination 
for intensity differences between 10 and 40 mN, at 0° (n = 7). D. Classification of 5 intensities between 10 
and 50 mN at 0°.  
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In summary, it is possible to use the responses of one IN type, which received inputs 

from several types of mechanosensory cells (in this case spike trains of 2 P cells and 2 T 

cells), for estimating the underlying stimulus properties significantly above chance and 

even extremely precisely (see Pirschel et al., 2015). The feature which gained the best and 

most reliable results was the integral of the interneuronal response (see also Kappel et al., 

2011). Touch properties also seem to influence the interneuronal response features 



R e s u l t s   | 63 

 

 

differently from the mechanoreceptor response features (e.g., Figs. 18E and 9). This raises 

the question if the INs accomplish different functions, for instance, as slow integrators or 

as coincidence detectors and process different information about touch stimuli. That 

might be emphasized by the distinctly diverse response patterns of different IN types to 

tactile stimulation (Figs. 14, 20). For instance, cell 162 generated spikes in response to 

touch (Fig. 20B) and is coupled with T cells (Fig. 20B; according to Gerrit Hilgen, 

personal communication, the connection is also visible anatomically). Additionally, some 

INs were observed showing both IPSPs and EPSPs (Fig. 20A). These findings may hint 

to different specializations of IN types. To characterize these INs and their connections 

to the mechanoreceptors and to test the coding hypotheses on the level of INs might 

contribute to the understanding of this small neuronal network.    
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A.     

   
B. 

    
 
C. 

                       
 
Figure 20: Exemplary neuronal responses of several local bend INs to skin stimulation. A. Spontaneous 
EPSPs of a right cell 161 (upper trace) and as a response IPSPs in a right cell 157 (lower trace). B. Stimulation 
with 70 mN at 0° and the neuronal responses of a T cell and a cell 162 (left). Response of the same cell 162 to 
current stimulation of the T cell (right). C. Recording of three INs, a right cell 157, a left cell 162 and a left cell 
157 stimulated at 0° with 70 mN.  
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5. Discussion 

 

 

The local bend behavior of the leech shows an extreme precision regarding the touch 

location (Thomson and Kristan, 2006). Additionally, intensity and duration of the touch 

influences the magnitude of the behavioral response (Baca et al., 2005). Based on these 

findings, the present study was designed to investigate how touch stimuli are encoded by 

neurons of the leech. For all three mechanosensory cell types, neuronal responses 

depended on touch location and intensity. Furthermore, touch duration affected both P 

and T cell responses. Stimulus estimation approaches revealed specific response features 

indicating various possible encoding mechanisms: relative latencies led to the best 

location estimation performances, while (summed) spike counts and the response 

duration represented the touch intensities and durations best. These findings may suggest 

that several coding strategies could be used by the small neuronal network of the leech: 

temporal as well as rate coding by ensembles of cells.  

For the next level of the local bend network, it was found that T cells may play a bigger 

role than initially thought: not only neuronal responses of this cell type represent the 

touch location highly accurately, but also synaptic connections between T cells and the 

interneurons 157 and 159 exist. Touch location can be predicted surprisingly accurately 

based on graded responses of cell 157. In particular integrals of the interneuronal 

responses were suited for this task. It was also shown that the interneuronal responses 

vary strongly across IN types, which may indicate different specialized functions of the 

INs in this network.  

Part of results dealing with the mechanosensory cells have been discussed also in the 

submitted publication (see chapter 6. for details). Here, a new view on the local bend 

network and a more comprehensive picture of mechanosensory coding will be discussed 

as well as technical limitations and future perspectives.    
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5.1. Technical limitations 

 

The leech possesses in one segment 14 mechanosensory cells of 3 types in total (see 

Introduction; Kristan et al., 2005). Stimulating only the ventral area of the segment activated 

maximum 6 mechanosensory cells, two of each type. The N cells showed spikes reliably 

around 100 mN, so lower intensities activated 4 mechanoreceptors: 2 T and 2 P cells. The 

comprehensive investigation of responses of all three mechanoreceptor types and two 

types of interneurons due to three touch dimensions (location, intensity, duration) led to 

numerous combination options. One limitation of this study was that it was not possible 

to record, for instance, a full set of mechanoreceptors at the same time: the experimental 

setup allowed recording from up to 3 cells at the same time. This limit constituted 

primarily of the space available for micromanipulators and electrodes. Another factor that 

influenced the recording stability, especially of interneurons, and set limits to ranges of 

touch locations and intensities was the semi-intact preparation: the muscles, which 

remained connected with the ganglion via the roots, contracted in response to the touch.  

 

An IN recording which showed recording instabilities was shown in figures 15A, B and 

17A. It lasted almost 3 hours and covered 15 different touch locations. After a recording 

time of about 1.5h, the IN generated degraded responses due to stimulation place 

changes. A sudden change in the integral of the response at plus 30° can be noted (Fig. 

15B, p. 56), while changes in amplitude (Fig. 15A) and response latency (Fig. 17A, p. 59) 

were much smaller.  

To enhance the recording stability, it would be possible to use whole cell loose patch 

recordings for mechanosensory neurons (see Thomson and Kristan, 2006). For 

interneurons, this method was not a good option, because of their small graded response 

in the soma. Additionally, for loose patch recordings, the glial sheath had to be removed. 

The glial sheath regulates the potassium concentration in the space between nerve cells 

and it could not be ruled out that its function influences the neuronal network activity 

(Nicholls, 1969; Leite Costa and Moreira Neto, 2015). Furthermore, synaptic connections 

could be easily damaged by desheating the ganglion.   
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Nevertheless, the present study gave first insights into response characteristics of several 

INs and a comprehensive picture of mechanosensory cell responses. The results may 

constitute an important basis for future studies with more complex tactile stimulations 

(e.g., moving, rising and vibrating properties or stimulations across adjacent segments, so 

that receptive fields of cells of neighboring ganglia would be activated), which would 

further reveal refined coherences between stimulus properties, response features and cell 

types. Comprehensive decoding experiments (see Thomson and Kristan, 2006) including 

all mechanosensory cell types and several stimulus properties would additionally provide 

insights into the behavioral relevance of the found response features. Therefore, findings 

from this study would help to choose optimal stimulations. Furthermore, the descriptions 

of interneuron characteristics could be used, for instance, for future studies using voltage 

sensitive dye recordings which make it possible to record the activity of the neuronal 

network.  

 

Besides experimental issues, the analysis of the neuronal responses revealed interesting 

questions. One aspect was statistical differences of response features (the spike count had 

integer numbers, the latency and interspike intervals were continuous variables and the 

relative features encompassed also negative numbers) and the resultant influence on the 

stimulus estimation. Using ranks rather than absolute response feature values solved this 

problem. But, response feature combinations showed that variances and distributions of 

the features still had an influence on the stimulus estimation. At first sight, it may be 

surprising that response feature combinations did not improve the estimation 

performances. Only when summed spike counts and relative latencies of two P and T 

cells, respectively, were combined for estimating stimulus property combinations, did 

coupling of response features add up (Fig. 11). Thomson and Kristan (2006) also found 

the lack of improvement by feature combinations and suggested the “lack of 

independence among the measures” (Thomson and Kristan, 2006, p. 8013) as a possible 

reason. Here, adding features also seemed to enhance redundant information, which may 

lead to an unfavorable variability of information rather than to a better accuracy. For 

instance, the summed spike count was maximal around 0° and decreased in both sides of 

its distribution. In contrast, the relative latency had negative values at negative touch 

location degrees, was 0 around 0° and became positive at positive touch locations. 
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Combination of these features did not improve the estimation since the summed spike 

count did not add information about the touch location. Moreover, the high variance of 

this feature negatively affected the much more precise relative latencies.  

 

It is not known yet whether INs are able to encode the extremely precise latency 

differences of the mechanoreceptors and what influence the spike count and bursts of 

spikes may have on the interneuronal responses. In addition to electrophysiological 

approaches the relevance of response features (e.g., like latency, spike count or interspike 

intervals) of mechanosensory cells for interneuronal responses could be addressed in a 

computational network model, in which connection strength as well as preferred stimulus 

properties and varied coding strategies could be systematically analyzed. These 

investigations would give more insights into processing and weighting of the sensory 

information.  

 

  

5.2. New view on the local bend network  

 

The neuronal network of the local bend is able to process highly accurate information 

about touch stimulus properties and thus to elicit a precise behavioral response (Baca et 

al., 2005; Thomson and Kristan, 2006). Fascinatingly, only a very small number of 

neurons are involved in this network (Kristan, 2005). The INs form the second layer of 

the neuronal network of the local bend behavior. Several prior studies examined this 

behavior (Kristan, 1982; Lockery and Kristan, 1990; Lockery and Sejnowski, 1992; Lewis 

and Kristan, 1998; Zoccolan and Torre, 2002a; Baca et al., 2005; Thomson and Kristan, 

2006), but it was still unknown how the INs process touch properties. Based on these 

facts, I aimed to reveal how the INs respond to tactile stimulation of the skin, how INs 

are connected to all types of mechanosensory cells and if it is possible to predict the 

presented stimulus from interneuronal responses.   

 

Stimulus estimation methods are mainly used for analyses of spike trains (Averbeck et al., 

2006; Pouget, 2000). However, in this study, features of graded responses were used to 

estimate underlying stimulus properties. The results were more than convincing: smallest 
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location distances and intensity differences could be discriminated based on responses of 

one IN, which processed in that case spike trains from 4 mechanosensory cells (2 T cells 

and 2 P cells). The interneuronal responses, which look on first sight quite noisy, seem to 

decode the spike trains of the mechanosensory cells in a precise manner. The integral of 

responses led to the best stimulus estimations. This feature was influenced by slope and 

amplitude of the response and therefore probably led to the most reliable interpretation 

of the signal. The slope and the response latency, on the other hand, showed the lowest 

estimation performances. To the latency of interneuronal responses applied that spikelets 

or other fluctuations of the resting potential strongly influenced the reliability of the 

computation. Different spikelet frequencies in the INs could be observed depending on 

membrane potential levels. A study by Lockery and Kristan (1990b), which found the 

same relation between spontaneous spikelets and the membrane potential, did not find a 

correlation between these small action potentials and events in motor neurons. Therefore, 

it is not clear yet how relevant interneuronal spikelets may be for synaptic transmission. 

Here, the estimation performance of spikelet features like counts and interspike intervals 

only achieved stimulus estimation results slightly above chance level (Fig. 19, p. 62).   

 

Previous studies on the local bend behavior focused on P cells and synaptic connections 

between this cell type and local bend INs (Lockery et al., 1989; Lockery and Kristan, 

1990a, b; Lockery and Kristan, 1991; Lockery and Sejnowski, 1992; Lockery and 

Sejnowski, 1993a, b; Lewis and Kristan, 1998a, b, c). In this study, connections between 

INs and all types of mechanosensory cells were investigated. Staining of multiple cells 

(kindly provided by Dr. Gerrit Hilgen) showed putative input sites of P and T cells to cell 

157 as well as of T cells and cell 159 (Fig. 16A, B, p. 57). Furthermore, N cell spikes were 

able to elicit PSPs in cell 157 (Fig. 16C). These results suggest that information from all 

mechanosensory cells could be integrated in cell 157. Lockery and Kristan (1990b) 

described that synaptic potentials cell 159 did not show time-locking to P cell spikes while 

other local bend INs did. This finding could be explained by the influence of T cells on 

the cell 159 found in this study (Figs. 14 and 17, p. 55 and 59).  

 

The experimental sketch of the receptive field of the IN cell 157 (Fig. 15A, p. 56) fit in 

with the receptive fields of other local bend INs, which Lewis (1999) inferred in his study 
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using the experimental data of Lockery and Kristan (1990b). IN types exist in pairs, 

receiving inputs from all mechanosensory types existing in one ganglion (Kristan et al., 

2005). This indicates that INs may have a broader receptive field than the 

mechanosensory cells – depending on their connections to the mechanosensory cells. 

This hypothesis was confirmed by the results of this study (see Fig. 15A): The cell 157 

responded over a range of 140° with still increasing responses, which indicates a receptive 

field of about 280° or broader, whereas the mechanosensory cells overspan an area of 

about 180° (Kristan et al., 2005). Additionally, the different response patterns of the IN 

types (Figs. 14 and 20, p. 55 and 64) lead to the conclusion that IN types with different 

coding functions should exist in this network.  

For instance, cell 157 and 159 showed short response latencies, ranging between the T 

cell and the P cell response latencies (Figs. 17 and 5, 7, p. 59 and 38,42). Furthermore, 

previous findings may suggest an involvement of cell 157 and 159 in other behaviors: 

Briggman and colleagues (2005) used voltage sensitive dye recording to investigate 

decision-making in the leech and found neurons which discriminated very early in time 

between the two behaviors of swimming and crawling (Briggman et al., 2005). These 

neurons were found in the region of the ganglion where cell 157 and 159 are located 

(Briggman et al., 2005: Fig. 4C). The neuronal system of the leech with its small amount 

of neurons gains complexity, suggesting that the same INs could switch between 

behaviors (Shaw and Kristan, 1997; Baca et al., 2005, Briggman et al., 2005). 

 

In conclusion, the local bend network appears to be more complex than a “simple” feed 

forward network with only input from one mechanosensory cell type (Lockery et al., 

1989; Lockery and Kristan, 1990a, b; Lockery and Kristan, 1991; Lockery and Sejnowski, 

1992; Lockery and Sejnowski, 1993a, b; Lewis and Kristan, 1998a, b, c). Results of this 

study outline a network that involves particularly the T cells and possibly N cells in 

addition to the P cells. Furthermore, the different response patterns of the IN types may 

indicate different specializations. It might be that INs process as coincidence detectors 

the relative latencies and consequently decode the touch location, or merge, as slow 

integrators, the spike counts for decoding the touch intensity. Descending interneurons 

which showed specialized stimulus property preferences were found in the stick insect 

antennal mechanosensory pathway (Ache and Dürr, 2013). However, none of these 
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groups of interneurons were activated by only one stimulus property (Ache and Dürr, 

2013). 

 

 

5.3. Coding strategies  

 

A number of studies examined the local bend behavior and the corresponding 

mechanosensory cells, but details about encoding of stimulus property combinations and 

correlations of response features and cell types were still unknown. Different coding 

mechanisms based on neuronal responses can be employed to solve this question: rate 

coding as well as temporal coding, single cell and population coding mechanisms and 

multiplexed encoding with single and combined response features. Here, my aim was to 

answer questions about fundamental principles of neuronal coding in a simple neuronal 

network. 

 

5.3.1. Rate coding versus temporal coding  

 

Different coding mechanisms were found to predict best the touch properties: The touch 

location was represented by a fast temporal code, the duration by a slower temporal 

feature and the intensity was encoded by a rate code.  

These results may answer open questions from previous studies: Thomson and Kristan 

investigated the encoding of stimulus location based on two P cells with overlapping 

receptive fields and analyzed response features of spike counts, latencies and their relative 

combinations (Thomson and Kristan, 2006). The discrepancy between encoding and 

decoding of relative latencies, combined with the results of this study, may indicate a 

behaviorally relevant involvement of T cells in decoding of touch locations.  

 

Furthermore, Baca and colleagues found that the ability of leeches to discriminate 

stimulus intensities is higher for low intensities and falls off linearly with rising intensities. 

They also found that a longer stimulus duration improves the discriminability (Baca et al., 

2005). Similar effects were also described in psychophysical measurements of monkeys 

(Hernandez et al., 1997). However, the encoding performance for the touch location was 

not improved by longer stimulus durations (Lewis and Kristan, 1998; Baca et al., 2005). 



D i s c u s s i o n   | 72 

 

 

Hence, the first 100 ms of two P cell responses were concluded to convey the 

information about the stimulus location (Lewis and Kristan, 1998). Both observations 

also agree well with the results of this study: If touch location are encoded by the latency 

difference of a cell pair, additional spikes will not improve the estimation. For the 

intensity, which was best predicted by a rate code, longer stimulus durations would 

increase the ability to discriminate behaviorally relevant intensity values (see Baca et al., 

2005).  

 

5.3.2. Individual cells versus cell ensembles 

 

The response of each cell type carried information about all stimulus properties. But a 

more complete and precise image of the stimulus was processed by incorporating several 

cell types. The results showed that stimulus properties could be predicted based on 

responses of single cells but combinations of different locations and intensities were 

almost perfect encoded by responses of four cells of two types.  

For leech mechanoreceptors, previous studies claimed specializations for the different 

mechanoreceptor types: Carlton and McVean (1995) stated that “T cells function more 

like displacement receptors at low velocities and more like velocity receptors above the 

transition point” (Carlton and McVean, 1995; p. 790), whereas P cell activation was 

concluded to be the main trigger of the local bend response (Nicholls and Baylor, 1968; 

Kristan, 1982; Lewis and Kristan, 1998c; Zoccolan and Torre, 2002b).  

 

I want to merge these results into one hypothesis: the key task of the local bend network 

is the encoding of the touch location. To perform this task as accurately as possible, the 

neuronal network is specialized to minimize influences of, for instance, the touch 

intensity on the response latency by having cells with strongly overlapping intensity 

ranges. The significant effect of the touch intensity on the response latency attenuates at 

higher amounts, whereas it influences spike counts more strongly (see Tables 2, 3; p. 37, 

41). That applies to P cells in particular. For a broad range of intensities, T cells showed 

extremely precise latencies, while P cell latencies became more accurate for touch 

intensities of about 100 mN (Fig. 7C, p. 42). Both cell types were activated at behavioral 

relevant stimulus intensities (Carlton and McVean, 1997; Baca et al., 2005). Conceivably, 
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T cells may play an important role in coding touch locations, while P cell responses are 

able to modulate the strength of the muscle responses and gain more impact on the 

location coding with higher touch intensities. Assuming that precise encoding of the 

touch location is the key task, using this combination of extremely precise first spikes and 

spike counts, lead to a fast encoding, which enables a fast and precise behavioral response 

adjusted to touch intensities and durations.  

 

5.3.3. Separated coding versus multiplexed coding of  stimulus     

properties  

 

Estimations of individual stimulus properties and their combinations revealed that 

responses of T and P cells contained information about all stimulus properties. It was 

possible to associate individual response feature with particular stimulus properties: for 

instance, relative latencies with touch locations and spike counts with touch intensities.  

Moreover, the specific response features found in the analysis suggesting a multiplexing in 

the sense of Panzeri et al. (2010). The multiplexed code is a “neural code in which 

complementary information is represented on different temporal scales. For example, 

when information is represented by the precise timing of individual spikes on the scale of 

milliseconds and the slow modulation of the spike count on the scale of hundreds of 

milliseconds.” (Panzeri et al., 2010, p. 111).  

The estimation performances of two T and two P cells for location-intensity 

combinations showed this multiplexing (Fig. 11, p. 49): using the summed spike count for 

encoding of touch intensities and the relative latency for estimation of locations yielded 

better results than individual features. Combinations across cell types (summed spike 

count of P cells and relative latencies of T cells) predicted 3 locations combined with 2 

intensities almost perfectly (see Fig. 11B). However, for 5 locations combined with 3 

intensities, the estimation based on cells of the same type and across cell types did not 

differ significantly (see Fig. 11F).   

 

In sum, this small and simple system seems to use the specializations of cell types with 

different response characteristics and shows an impressive computational strategy of 

balancing between producing redundant information (neuronal responses contain the 
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information about all stimulus properties) and uniqueness (the extremely reliable first 

spikes of T cells or the sustained responses of the P cells).    

 

 

5.4. Of Worms and Men... 

 

The mechanoreceptors of the leech show similar spiking patterns to human SA1- (P cells; 

sustained, slowly adapting) and FA1-/ RA- afferents (T cells; rapidly adapting, on- and 

off-bursts; Figs. 5A, 7A) (leech: Figs. 5A, 7A, 10A and 14; Nicholls and Baylor, 1968; 

Baca et al., 2005; human: Vallbo and Johansson, 1984; Wheat et al. 1995; Johansson and 

Flanagan, 2009; Abreira and Ginty, 2013). Furthermore, leech mechanoreceptors could be 

regarded as afferents (their cell soma) with skin receptors (their nerve endings). Thus, the 

leech may be, besides investigating of coding in a small neuronal network, also interesting 

for studying fundamental coding principles of the sense of touch. Studies of the primate 

sense of touch are discussed here and, in more detail, in the submitted publication 

(Pirschel and Kretzberg, 2015; see Publications for details). 

 

In primate tactile afferents, the temporal structure of mechanosensory spike patterns 

conveys information about spatio-temporal properties of a tactile stimulation and shapes 

the perception (Johansson and Briznieks, 2004; Johansson and Flanagan, 2009; 

Mackevicius et al., 2012; Weber et al., 2013; Harvey et al., 2013), whereas the intensity of a 

touch is represented in a rate code (Bensmaia, 2008; Harvey et al., 2013). Thus, Muniak et 

al. hypothesized, in their study on monkeys, that intensity perception is mainly encoded in 

weighted firing rates of the three main mechanoreceptive afferents and that information 

of different stimulus properties of these submodalities would all in all give a complete 

picture of the stimulus intensity (Muniak et al., 2007).  

The aforementioned results of the leech mechanosensory system agree with these 

suggestions: temporal features encode spatial information while spike count features of 

several cell types convey information about the stimulus intensity. Furthermore, evidence 

for multiplexed coding is not only found in this study of the leech but is also discussed 

across various sensory modalities and animal models (Panzeri et al., 2010; Fotowat et al., 

2011; Ainsworth at al., 2012; Wohrer et al., 2013) and in particular for the tactile sense of 
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primates (Harvey et al., 2013; Saal and Bensmaia, 2014). More complex, natural 

stimulations, such as touching and manipulating objects, always evoke responses in both 

SA and FA afferents and induce perceptions based on several stimulus properties 

(Johansson and Flanagan, 2009; Saal and Bensmaia, 2014). Recent studies claim that – 

contrary to the classical “labeled line” theory (Abreira and Ginty, 2013; Zeveke et al., 

2013), which assumes that afferent types remain segregated – that neurons of the 

somatosensory cortex receive inputs from several afferent types and tactile information is 

integrated already on early stages of processing (Saal and Bensmaia, 2014).  

Similarly, although much simpler, the investigated INs of the local bend network integrate 

responses of several mechanosensory cell types and may process specific features. 

 

In conclusion, despite the simplicity of the neuronal network, this study provides 

evidence that sensory coding is rather based on combined response features across cell 

types than on a dichotomy of rate code versus temporal code in separated cell ensembles. 

The leech with its simple nervous system provides not merely experimental advantages 

but also insights into integration principles and multiplexed coding of stimulus properties 

similar to findings in human somatosensation.  
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Abstract  

Sensory coding has long been discussed in terms of a dichotomy between spike timing and rate 
coding. However, recent studies found that in primate mechanoperception and other sensory 
systems spike rates and timing of cell ensembles complement each other. They simultaneously 
carry information about different stimulus properti es in a multiplexed way. Here, we present 
evidence for multiplexed encoding in the tiny ensemble of leech mechanoreceptors, consisting of 
only four individual cells. Each mechanoreceptor neuron of the leech varies spike count and 
response latency to both touch intensity and location, leading to ambiguous responses to 
different stimuli. Nevertheless, three different stimulus estimation techniques consistently reveal 
that the neuronal ensemble allows reliable decoding of both stimulus properties. The relative 
timing of the first spikes of two mechanoreceptors encodes stimulus location, while summed 
spike counts represent touch intensity. These results apply to two mechanoreceptor types, the 
transient responses of T (touch) cells, as well as the sustained responses of P (pressure) cells. 
Differences between the cell types become evident for the estimation of combined stimulus 
properties. The best estimation performance is obtained when the relative first spike timing of 
the faster and temporally more precise T cells for stimulus location. Simultaneously, the 
sustained responses of P cells indicate touch intensity by summed spike counts and stimulus 
duration by the duration of spike responses. The striking similarities of these results with 
previous findings on primate mechanosensory afferents suggest multiplexed encoding as a 
general principle of somatosensation.  

 

Key words: sensory coding, mechanosensors, latency, spike count, multiplexing, population coding, 
leech, local bend network 
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Introduction 

Encoding of sensory stimuli has been studied 
intensively across species and sensory systems. 
Nevertheless, several open questions still 
remain in particular for encoding of complex 
stimuli, comprising combined stimulus 
properties. Traditionally, neural coding has 
been discussed in terms of dichotomies: 1) 
Rate encoding versus temporal encoding 
(Theunissen and Miller, 1995); 2) encoding by 
individual cells versus cell ensembles (Sakurai, 
1996); 3) encoding of single stimulus 
properties versus multiplexing (Panzeri et al., 
2010). 
These three pairs of hypotheses have been 
discussed recently for the somatosensory 
pathway of the primate hand (Saal and 
Bensmaia, 2014). They concluded that 
populations of mixed cell types encode 
different properties of touch stimuli in a 
multiplexed way, using both rate coding and 
temporal response features. In our study, we 
have tested the three pairs of hypotheses for a 
much smaller somatosensory system, the tiny 
ensemble of leech mechanosensory cells. 
The skin of the leech is innervated by three 
different types of mechanoreceptors, which are 
classically attributed to different intensities of 
tactile stimuli: T cells for touch, P cells for 
pressure and N cells for noxious intensities 
(Nicholls and Baylor, 1968). These 
individually characterized cells provide the 
sensory input for a reflex behavior, which we 
can use to scrutinize their encoding properties. 
The local bend reflex (Kristan et al., 2005) 
causes the leech body wall to bend away from 
tactile stimulation depending on touch 
intensity, location and duration. Touch 
locations are discriminated by the leech 
mechanoreceptors even more finely than by the 
human finger tip, causing different behavioral 
reactions for stimuli that are only 500 µm apart 
(Baca et al. 2005, Thomson and Kristan, 
2006).  
The goal of this study is to identify the 
encoding properties of the mechanosensory 
cell ensemble which form the basis of this 
surprisingly precise behavior. We have 

adopted the approach of Thomson and Kristan 
(2006), who investigated encoding of touch 
location by spike count versus response latency 
of mechanosensory P cells. They have found 
that relative latency of two P cells encodes 
touch location precisely enough to explain the 
behavioral performance. Their results agree 
with the evidence for latency coding of 
location-specific information in other systems 
like the somatosensory cortex of rats (Foffani 
et al., 2004) and human tactile afferents 
(Johansson and Briznieks, 2004). However, 
Thomson and Kristan also have shown that 
two P cells responding with specific latency 
differences to electrical stimulation could not 
trigger local bend movements with the same 
local precision as touch stimuli applied to the 
skin. To solve this contradiction, we have 
introduced three new aspects into the analyses, 
which allow us to infer a much more complete 
picture of the sensory coding:  
Firstly, we have investigated responses of all 
three mechanosensory cell types. Since only 
maximally two cells of each type innervate 
each patch of the skin, an ensemble of 
maximally six cells must transmit all tactile 
information available to the animal.   
Secondly, we have extended the list of 
analyzed neuronal response features. Interspike 
intervals, burst properties, and combinations of 
response features have been considered as 
additional candidate codes. Like Thomson and 
Kristan (2006), we have compared coding 
performances of individual cells and cell pairs 
for all response features.  
Thirdly, we have analyzed encoding of three 
stimulus properties, touch location, intensity 
and duration, as well as their combinations. 
While intensity and duration have been shown 
to shape behavioral responses of the leech 
(Baca et al. 2005), their encoding by 
mechanosensory cells have not been studied so 
far.  
When considering combinations of stimulus 
properties and multiple response features in all 
cell types, leech tactile encoding strikingly 
resembles published findings obtained in the 
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primate fingertip (Saal and Bensmaia, 2014): 
While each sensory cell responds ambiguously 
to different combinations of stimulus 
properties, a tiny ensemble of four cells with 
mixed cell types encodes stimulus 
combinations cooperatively. Relative spike 
timing encodes stimulus location and 
combined spike counts represent stimulus 
intensity simultaneously in a multiplexed way.  
 
Materials and Methods 
 
Physiology 
We used adult medicinal leeches from 
Biebertaler Leech Breeding Farm (Biebertal, 
Germany). The leeches weighed 1 - 2 g and 
were kept in tanks with Ocean Sea Salt 1:1000 
diluted with purified water at room 
temperature. Animals were anesthetized with 
ice-cold saline (Muller et al., 1981) before and 
during dissection. Experiments were done at 
room temperature. In total,70 preparations 
were used for this study. The body-wall 
preparation (Fig. 1) consisted of mid-body 
segments 9 to 11 with corresponding ganglia 
of the ventral nerve cord. Innervations of 
segment 10 remained unscathed. The body-
wall was flattened and pinned out with the 
epidermal side of the skin facing upwards in a 

plastic Petri dish, which was coated with a 
silicone elastomere (Sylgard; Dow Corning 
Corporation, Midland, MI, USA). In the area 
of the 5th annulus (counted from anterior) of 
segment 10, a hole was cut into the skin to 
provide access to the ventral side of the 
ganglion, where mechanosensory cell somata 
are located (Kristan et al., 2005). The skin was 
stimulated at the middle annulus (3rd annulus 
of segment 10), which was identified by 
location of the sensilla (Blackshaw et al., 
1982).  
The ventral midline of each preparation was 
defined as 0°. Touch locations to the left are 
denoted as negative and to the right as positive 
numbers of degrees (Fig. 1). While stimulating 
the skin mechanically, we performed single, 
double or triple intracellular recordings from 
mechanosensory cells of all types: Pressure (P) 
cells, Touch (T) cells and Noxious (N) cells 
(see Nicholls and Baylor, 1968). These cells 
have been well-studied and are easily 
identifiable based on their location in the 
ganglion, their size and electrical properties 
(Nicholls and Baylor, 1968; Kristan et al., 
2005). We used glass electrodes with 
resistances between 20 and 40 MΩ, filled with 
potassium-acetate (3M). For numbers of 

 Figure 1: Sketch of the body-wall preparation 
with receptive fields of T cells (grey), P cells 
(orange) and N cells (blue). Ventral midline is 
defined as 0°. Touch locations to the right were 
stated as plus degrees and to the left as minus 
degrees. The left end of the preparation marks 
minus 180°, the right side plus 180°. Responses of 
1 to 3 mechanosensory cells were recorded 
intracellularly while the skin was stimulated 
mechanically by the poker. 
 
 

Anterior

Posterior

PokerDorsal            Lateral                 Ventral
-20 0 +20

0 0

Electrode  #1          #2             #3

 
Table 1: Varied stimulus properties in the different 
stimulation protocols. 
 

Encoding 
task 

Location 
[°] 

Intensity 
[mN] 

Duration 
[ms] 

Location 
-20 to 

+20 in 5° 
steps 

10, 50,  
N cells: 100 

200 

Intensities 
low 

0 
10, 20, 30, 

40, 50 
200 

Intensities 
high 

0 
10, 20, 50, 

70, 100 
200 

Duration  0 60 
50, 200, 

500 

Duration 
& 

Intensity 
0 20,60 

50, 200, 
500 

Location 
& 

Intensity 

-20 , 0°, 
+20  

10, 50 200 
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recorded cells and cell pairs see Tables 2, 3 
and 5.  The experimental rig consisted of 
mechanical micromanipulators type MX-1 
(Narishige Group, Japan), amplifiers (model 
SEC-05X and BA1S) from NPI electronic 
(Tamm, Germany) and the data was acquired 
by an interface BNC-2090 with NI PCI-6036E 
board from National Instruments (Austin, TX, 
USA). Neuronal responses were recorded 
(sample rate 10 kHz) and analyzed with a 
custom-developed Matlab software 
(MathWorks, Natick, MA, USA). 
 
Stimulation 
For applying pressure stimuli onto the skin, we 
used a Dual-Mode Lever Arm System (Aurora 
Scientific, Ontario, Canada, Model 300B) (see 
Baca et al. 2005; Thomson and Kristan, 2006) 
with a poker tip size of 1 mm2. The stimulus 
was varied in intensity (5 to 200 mN) and 
location (-20° to +20°, relative to ventral 
midline, in 5° steps). Touch lasted 200 ms (see 
Thomson and Kristan, 2005; Lewis and 
Kristan, 1998) except for the duration 
encoding experiments, in which stimulus 
durations of 50, 200 and 500 ms were 
combined with intensities of 20 and 60 mN at 
0° (Table 1). All combinations of stimulus 
properties were presented 10 – 15 times in 
pseudo-randomized order. 
 
Analyzed Response Features 
The time of maximum spike amplitude was 
defined as the spike time. The neuronal 
responses were quantified by the following 
response features for single as well as for two 
simultaneously recorded cells (cell pair):  

A. Spike count: total number of spikes 
elicited by a single cell during the 
stimulation.  

B. Relative spike count: difference of 
spike counts of a cell pair. 

C. Summed spike count: sum of spike 
counts of a cell pair. 

D. Latency: time between stimulus onset 
and first spike of one cell. 

E. Relative latency: time difference of the 
first spikes of a cell pair. 

F. First interspike interval (1st ISI): time 
difference between the first and second 
spike of one cell. 

G. Relative 1st ISI: time difference of the 
ISIs of a cell pair. 

H. Response duration: time difference 
between the first spike and the last 
spike of the elicited neuronal response. 

I. Burst strength: number of spikes in a 
burst of one cell. 

J. Burst duration: time difference 
between first and last spike in a burst 
of one cell. 

Bursts were identified based on the distribution 
of ISIs. If this distribution was bimodal, we 
defined a threshold separating burst ISIs from 
longer ISIs (Oswald et al., 2007). The 
responses of all mechanoreceptor types were 
tested for occurrence of bursts. Since only T 
cells were found to generate bursts (see Fig. 4 
 

 
Figure 2: Sketch of the two estimation 
approaches. A Pairwise discrimination task: the 
stimulus is estimated based on response features 
evoked by two different stimuli. Red arrows 
indicate exemplary stimulus intensities (left) or 
locations (right), for which responses are shown 
in the figure and used for the shown 
discrimination task. B Classification task: the 
stimulus is estimated based on response features 
evoked by a set of N stimuli. Red arrows indicate 
stimulus intensities (left) or locations (right), for 
which cell responses were classified.  
 

Pairwise discrimination 

Classification

Dorsal           Dorsal

Ventral         Ventral

Dorsal           Dorsal

Ventral         Ventral

A.

B.

S 1 S 2

S 1 S 2 S N-1 S N
?
…
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and 5; Baltzley et al., 2010) burst features of 
this cell type are shown in Figures 4, 6 and 7.  
 
Stimulus Estimation 
The aim of stimulus estimation is to calculate 
how well the value of a stimulus property can 
be estimated based on a specific response 
feature. We used two stimulus estimation 
approaches based on a maximum likelihood 
method (Aldrich, 1997): Pairwise 
discrimination and stimulus classification (see 
below and Fig. 2). In both approaches a “leave 
one out” validation was applied (Quian 
Quiroga and Panzeri, 2009). Each trial was 
used separately as test data, while the 
remaining trials comprised the training data 
set, for which it was known which stimulus 
elicited which response. This training data set 
was used to calculate the confusion matrix (see 
next section) for each response feature. For the 
test trial, we determined the response feature 
class (see next paragraph) that was most 
probable to elicit the observed feature value.  
The estimated stimulus for each test trial (Fig. 
2) was defined as the stimulus value with the 
highest probability of eliciting a response 
belonging to the test trial’s response feature 
class (maximum likelihood). If more than one 

Table 2: Number of cells used  for stimulus estimation. 
 

 
 
Encoding 
task 

T cells P cells N cells NP combined TP combined 

Single 
cells 

Cell 
pairs 

Single 
cells 

Cell 
pairs 

Single 
cells 

Cell 
pairs 

Single 
cells 

Cell 
pairs 

Single 
cells 

Cell 
pairs 

Location 10 5 10 5 8 4 - - - - 

Intensities low 14 7 24 12 - - - - - - 

Intensities high 16 8 10 5 - - 14 7 22 11 

Duration 10 - 12 - - - - - - - 

Duration & 
Intensity 

10 - 12 - - - - - - - 

Location & 
Intensity 

10 5 10 5 - - - - - - 

 

 
 
 
Figure 3: Sketch of the stimulus estimation 
process. S = Training data set elicited by 
stimulus number N; C = Response feature rank 
class. Top row: 4 example trials for each of two 
stimulus conditions and their corresponding spike 
counts (used as example response feature in this 
figure). 1.: Spike counts are sorted and divided 
into classes of equal size. 2.: For each response 
elicited by a specific stimulus the most probable 
response feature rank class is determined. 3.: The 
response feature value (here: spike count) is 
determined for a test trial, compared to the 
borders of the response feature rank classes, and 
assigned to one class according to its rank. 4.: 
For the test trial, the stimulus class with the 
highest probability of eliciting the calculated 
response feature rank class is the estimated 
stimulus.  
 

S 1 5    6    5    6        S 2 9   12    9    6 

C 1 5    5    6    6       C 2 6    9    9   12

S 1 C 1 C 1 C 1 C 1 S 2 C 2 C 2 C 2 C 1

6  <  7 <  12          C 2

Pmax(C2) estimated Stimulus: S2

1.       Sort & divide into classes 

2.       Assign values in S data to most likely class C

3.       Assign test data

4.      Maximum likelihood
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stimulus value shared the highest probability, 
the trial was assigned to all of them to equal 
parts. Finally, we calculated the percentage of 
correct estimations by comparing the estimated 
stimuli with the stimulus values, which 
experimentally elicited the responses.  
 
Response Feature Classes for Stimulus 
Estimation 
For a fair comparison of the different response 
features A-J, we processed all of them in the 
same way even though they differed 
considerably in their statistical properties (e.g. 
spike count can only have integer numbers < 
20, while latency is a continuous variable). 
Therefore, we used response feature ranks 
rather than absolute values: 
1. We determined for each response feature 
(see Fig. 3), based on the training data set 
S{1,..,N}, the rank classes C{1,..,N} where N was the 
number of different stimuli presented in the 
experiment (Table 1). The absolute values of S 
were sorted and divided into commensurate 
classes C. Consequently, S1 contain all the 
(unsorted) response feature values which were 
evoked by stimulus No. 1, whereas C1 could 
contain values which were evoked by other 
stimuli S{1,..,N} (see Fig. 3).  
2. Each absolute response feature value of the 
training data set S was assigned according to 
its rank to the most likely class C  (Fig. 3).  
For feature combinations, the class indices 
{1,..,N} of each feature were summed after this 
assignment. Hence, the training data set S 
could be used for further analysis in the same 
way as for single feature response classes. 
3. In the same way, the test data was assigned 
to the most probable response feature class C 

(Fig. 3).   
If in step 2 and 3 the same response feature 
value (e.g. a spike count of 6; Fig. 3) was 
contained in more than one class contained, 
this value was assigned to the class with the 
highest number of occurrence (maximum 
likelihood; Fig. 3). If two or more classes were 
equally probable to elicit the specific value, 
one of them was chosen by chance.  

4. The determined class C of the test data was 
now assigned to the stimulus with the highest 
probability evoking this class C (Fig. 3).  
Finally, we calculated an N�N confusion 
matrix showing how often each of the N 
stimulus values elicited a response belonging 
to each of the N response feature classes. 
This procedure was used for all response 
features A-H individually and in all possible 
pairwise combinations for all cells. For T cells, 
we additionally analyzed burst strength (I.) in 
combination with burst duration (J.) and with 
relative latency (E.) as feature pairs.   
  
Pairwise discrimination 
The pairwise discrimination (Fig. 2A) deals 
with the question how well two stimuli can be 
discriminated based on specific response 
features. This approach reveals the minimum 
differences between intensities or locations, 
which can be discriminated based on the 
neuronal responses. Results are represented as 
mean values with standard error of the means  
(SEM) and fitted with a logistic function. 
Chance level of pairwise discrimination is 0.5 
and discrimination threshold was defined as 
0.75 (75% correct estimation) (Johnson and 
Philips, 1981; Thomson and Kristan, 2006).  
 
Classification 
The idea of the classification approach is to 
quantify how well a set of N stimuli can be 
estimated based on a specific response feature 
(Fig. 2B). The test data was assigned to values 
of the complete stimulus set. Results are given 
in % correct and displayed in boxplots (Figs. 4, 
6, 7), in which black dots mark the median 
values and box edges the 25th (q1) and 75th 
(q3) percentiles. Whiskers show minimum and 
maximum data values, which were not 
considered as outliers. Outliers, determined by 
the standard Matlab boxplot function as values 
x > q3 + 1.5(q3 – q1) or x < q1 – 1.5(q3 – q1), are 
plotted as individual dots. Since in our data set 
all stimuli were presented equally often, the 
chance level for this method was defined as 
100/N %.   
With the classification approach, we analyzed 
the stimulus properties location, intensity and 
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Figure 4: Influences of touch location on neuronal responses of mechanosensors. A Representative responses 
in mV of a right N cell (blue), left T cell (grey) and left P cell (orange) to a touch stimulus of 100 mN for 200 
ms at -30° (left) and +30° (right). B Spike count and latency (Mean and STD) of a T cell double recording 
with 10 repeated stimulus presentations and a stimulus intensity of 50 mN. Ventral midline is defined as 0°. 
Touch locations to the right referred to by positive numbers of degrees, locations to the left by negative 
numbers. C Spike count and latency (Mean and STD) of a P cell double recording with 10 repeated stimulus 
presentations and a stimulus intensity of 50 mN. 

 

duration (see Table 1), as well as the 
combination of stimulus properties.  
We combined three durations (50, 200 and 500 
ms) with two intensities (20 and 60 mN) (Fig. 
8). Furthermore, we combined three locations 
(-20° / 0° / +20°) with two intensities (10 / 50 
mN) (Fig. 9). Additional experiments were 
performed with up to three intensities (10 / 20 / 
50 mN) and five locations (-20° / -10° / 0° / 
+10° / +20°).  

For estimation of these location-intensity 
combinations, we additionally used pooled 
data of P and T cell double recordings to 
approximate encoding by the full 
mechanosensory cell ensemble. Features of the 
five P cell double recordings were randomly 
combined across preparations with the five T 
cell double recordings. Therefore, we also 
tested whether the estimation results of the 
pooled groups showed significant differences. 
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Figure 5: Estimation results for stimulus location. A Pairwise discrimination results for location differences 
between 5° and 40° away from 0°, for T and P cells and two touch intensities (number of cells, see Table 2, for 
each recording number of stimulus presentations = 10). Black dashed lines show chance level and 75% 
threshold. Asterisks indicate mean values, which are significantly (p < 0.05, t-test) above threshold. B 
Classification result for 9 locations for 50 mN. Black dashed line show chance level and black dots mark the 
median values (see Material and Methods). Response features: C = spike count; L = latency; I = 1st ISI; RD = 
response duration; RC = relative spike count; RL = relative latency; RI = relative 1st ISI; SC = summed spike 
count; BS = burst strength; BD = burst duration. 
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RL P cells 50 mN

The results were stable and without significant 
differences across the pooled data groups.   
 
Mutual information 
We computed the mutual information (Quian 
Quiroga and Panzeri, 2009) of all possible 
pairs of response features and stimulus 
properties in bits.  

���, �� � � 	�
, �� ���� � 	�
, ��
	�
�	�����,� ,   

 
where X denotes the stimulus property and Y 
the observed neuronal response feature. p(x, y) 
is the joint probability distribution function of 
X and Y; p(x) and p(y) are the marginal 
probability distribution of X and Y 
respectively. The values in Table 4 are 
normalized by the maximal information. 
 
Significance tests 
Significant influence of stimulus properties on 
neuronal response features was identified with 
the Kruskal-Wallis significance test (Gibbons, 
1985; Hollander and Wolfe, 1999), a non-
parametric version of the one-way analysis of 
variance (ANOVA). This test compares 
medians of independent samples from two or 
more groups. When not stated otherwise, the 
significance level for the test was p < 0.001 
(Table 3 and 5). A significance level of 

p < 0.05 was used for the features of the N 
cells (Table 3 and 5), because of the low firing 
rate of this cell type. We regard p < 0.05 as 
“significant” and p < 0.001 as “highly 
significant”. 
Significant differences between classification 
results were tested with the Kruskal-Wallis test 
with p < 0.05 (Fig. 9). For pairwise 
discrimination, a one tailed t-test with p < 0.05 
was applied to define which discrimination 
results were significantly above the 
performance threshold of 75 % (see Fig. 5 and 
6). All tests were performed with the Matlab 
Statistics Toolbox (MathWorks, Natick, MA, 
USA). 
 
Results 
 
We utilized three complementary approaches 
to compare encoding performances of several 
response features for specific touch stimulus 
properties and their combinations. Firstly, 
pairwise discrimination (Thomson and Kristan, 
2006) was used to estimate the minimum 
difference between touch locations or 
intensities, which could be discriminated based 
on a specific neuronal response feature.  
Secondly, we applied a classification approach 
to get a broader perspective on stimulus 
encoding. This method was used to quantify 

A.                 B. 
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how well all experimentally tested stimulus 
locations or intensities could be discriminated 
based on a specific neuronal response feature. 
Thirdly, the results obtained by both estimation 
approaches were confirmed by calculating the 
mutual information between stimulus 
properties and response features. With these 
three methods we studied encoding of the 
stimulus properties touch location, intensity 
and duration, as well as their combinations.  
  
 
Encoding of Location 
In agreement with Thomson and Kristan 
(2006) we found that response latency and 
spike count of P cells depend on touch location 
(Fig. 4A, C). Qualitatively the same 

dependencies were also found for T cell 
responses (Fig. 4A, B). In both cell types 
latency increased and spike count decreased 
significantly with increasing distance to the 
center of the receptive field, while the 1st ISI 
was less strongly influenced by touch location 
(Table 3). Remarkably, both cell types show a 
small variance across trials in latencies 
compared to spike counts (Fig. 4B, C).  
N cells generally needed higher touch 
intensities for activation and generated smaller 
numbers of spikes. Nevertheless, dependencies 
of N cell responses on stimulus location were 
similar to the other two cell types, despite a 
lower level of significance (Table 3).   
Encoding performances of several P and T cell 
response features were investigated with two 
stimulus estimation methods (Fig. 5). For P 
cells, our results support the finding of 
Thomson and Kristan (2006) that the relative 
latency of both cells is the best encoder of 
touch location. For a stimulus intensity of 50 
mN, touch location differences of 10° could 
significantly be discriminated (Fig. 5A). That 
means for an average leech with a 
circumference of 2.5 cm a distance of about 
0.7 mm. In the more general task of stimulus 
estimation, relative P cell latency allowed 
assigning 60 % of response traces correctly to 
one of nine classes corresponding to the nine 
different stimulus locations. Moreover, the 
mutual information of relative latency and 
location of a 50 mN stimulus was higher than 
for any other P cell response features (Table 
4).  
When comparing cell types, we found that 
relative latencies of T cell responses encode 
touch location even more precisely than P cell 
responses (Fig. 5, Table 4). This finding was 
particularly evident for very soft touch stimuli 
of 10 mN, which could not be discriminated 
based on P cell responses, while T cell 
responses allowed a significant discrimination 
of location differences as small as 5° (Fig. 5A). 
When a higher touch intensity of  50 mN was 
applied, T cell relative latencies still 
outperformed P cell responses with a lower 
discrimination threshold of only 5° location 
difference (Fig. 5A) and a larger percentage of 

 A. 
 
 
 
 
 
 
B. 
 
 
 
 
 
 
 
 
C. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Influences of stimulus intensity on 
neuronal responses of mechanosensors.  
A Representative responses in mV of a right N cell 
(blue), left T cell (grey) and P cell (orange) to a 
touch stimulus of 50 mN (left) and 100 mN (right) for 
200 ms at 0° (ventral midline). B Spike count and 
latency (mean and STD) for P cells (orange), T cells 
(grey) and N cells (blue) for intensities of 5 to 200 
mN. 
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about 70% correct estimations of touch 
location (Fig. 5B).  
Combinations of response features did not 
improve encoding of touch location compared 
to relative latency of the pair of T cells data 
(not shown). A smaller set of double 
recordings of one T and one P cell indicated 
that location estimation based on the 
combination of T and P cell features fell short 
behind relative latencies of two T or two P 
cells.  
We conclude that touch location is most 
precisely encoded by a temporal ensemble 
code – relative timing of the first spikes 
produced by a pair of cells of the same type.  
 
 
Encoding of Intensity 
 When varying the force of touch stimuli 
applied to a constant position of the skin, we 
found that all three types of mechanosensory 
cells responded to strongly overlapping 
intensity ranges (50 – 200 mN) (Fig. 6). P 
cells, as well as T cells were already activated 
by extremely light touch of 5 mN.  
Elevating stimulus intensity increased spike 
counts and decreased response latencies of the 
three cell types (Fig. 6). These effects were 
most pronounced for P cells and T cells 
stimulated in the lower intensity range (Table 
5). N cells generally responded with a small 
number of spikes to stimulus intensities up to 
200 mN. None of the analyzed N cell response 
features were found to depend significantly on 
touch intensity (Table 5).  
 
Stimulus estimation and mutual information 

based on single T cell or P cell responses 
revealed similar results for absolute latencies 
and spike counts (Fig. 7B, Table 4). Summing 
spike counts of two cells improved the results 
slightly, while the performance of relative 
latencies clearly fell short (Fig. 7, Table 4).  
Qualitatively the same results were found for a 
large data set of P and T cells (Tables 1, 2), 
which were stimulated with a lower range of 
intensities (results not shown). Since 
postsynaptic cells are not able to make use of 
absolute latencies without any further 
reference point, we conclude that spike rates 
are the most suitable response feature for 
intensity encoding.  
Concerning the interaction of cell responses, 
we found that the sum of P cell and T cell 
spike counts encoded touch intensity at least as 
good as cell pairs of the same type (Fig. 7). 
Using the summed spike counts of one P cell 
and one T cell yielded approximately 70% 
correct estimations of five different intensities 
and a pairwise discrimination became 
significant at 30 mN intensity difference. For 
the intensity range used in this study, 
discrimination performance based on single P 
cell spike counts was improved only 
marginally by adding N cell spike counts (Fig. 
7). However, N cell responses could gain 
relevance for higher stimulus intensities.  
In summary, touch intensity is encoded by a 
rate code, in which responses of different cell 
types might be combined.   
 
 
Encoding of Duration 
To analyze the encoding of touch duration, we  

 
Table 3: Significant changes in response features of the mechanosensors due to a location change away from 
the center of the receptive field (p < 0.001 for P and T cells; p < 0.05 for N cells, Kruskal-Wallis test). 
Percentages of cells showing significant changes are color coded, exact numbers of cells are given as 
'significant / total' cell numbers. 
 

 Spike count    [decrease] Latency    [increase] 1st ISI    [increase] 
Intensity 

[mN] 
10 50 100 10 50 100 10 50 100 

T cells 9/ 10 10/ 10 - 10/ 10 10/ 10 - 8/ 10 7/ 10 - 
P cells 10/ 10 10/ 10 - 8/ 10 10/ 10 - 1/ 10 5/ 10 - 
N cells - - 7/ 8 - - 5/ 8 - - - 

  

100 %
80 %
60 %
40 %
20 %
0 %
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Figure 7: Estimation results for stimulus intensity. A Pairwise discrimination of intensity differences between 10 
and 90 mN, compared to 10 mN. Black dashed lines show chance level and 75% threshold. Asterisks indicate 
mean values, which are significantly (p < 0.05, ttest) above threshold. B Classification results. 5 intensities 
between 10 and 100 mN at 0°. Black dashed line show chance level and black dots mark the median values (see 
Material and Methods). Response features: C = spike count; L = latency; I = 1st ISI; RD = response duration; 
RC = relative spike count; RL = relative latency; RI = relative 1st ISI; SC = summed spike count; BS = burst 
strength; BD = burst duration.  
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 touched the skin with 
two intensities (20 and 
60 mN) for three 
durations (50, 200, 500 
ms). When applying the 
lower intensity of 20 
mN, increase in spike 
count was highly 
significant in 11 of 12 P 
cells and in 5 of 10 T 
cells (p < 0.001, Kruskal-
Wallis test). For the 
higher intensity, all cells 
of both types showed a 
highly significant 
increase in spike count 
(Fig. 8A).  
Since the 
mechanosensory cells are 
not spontaneously active, 
their response duration 
mimics stimulus duration 
(Fig. 8B). For both cell 
types the spike count and 
response duration 
yielded best results for 
stimulus duration 
estimation (Fig. 8B). The 
highest mutual 
information with 
stimulus duration was 

 
 
Table 4: Normalized mutual information of response features with stimulus 
properties. Bold numbers indicate the response feature with the highest mutual 
information with the stimulus condition. Sum = Summed;  Rel = Relative; Resp = 
Response; Dur = Duration. Stimulus properties for the combined encoding tasks 
see Table 1. 
 

Location 

Int [mN] Cells Count Latency Sum Count Rel Latency 

10 T  0.35 ± 0.12 0.49 ± 0.15 0.30 ± 0.11 0.73 ± 0.12 

10 P  0.35 ± 0.07 0.36 ± 0.07 0.25 ± 0.07 0.45 ± 0.12 

50 T  0.33 ± 0.04 0.51 ± 0.16 0.28 ± 0.08 0.61 ± 0.09 

50 P  0.36 ± 0.04 0.49 ± 0.10 0.33 ± 0.06 0.62 ± 0.09 

Intensity 

Loc [°] Cells Count Latency Sum Count Rel Latency 

0 T  0.44± 0.15 0.46 ± 0.16 0.48 ± 0.15 0.28 ± 0.17 

0 P  0.40 ± 0.09 0.39 ± 0.12 0.47 ± 0.11 0.25 ± 0.11 

0 N-P   0.41 ± 0.13 0.23 ± 0.17 

0 P-T   0.52 ± 0.18 0.38 ± 0.11 

Duration  

Int [mN] Cells Count Latency 1st ISI Resp Dur 

60 T 0.60 ± 0.24 0.11 ± 0.15 0.12 ± 0.12 0.59 ± 0.17 

60 P 0.84 ± 0.11 0.10 ± 0.08 0.18 ± 0.09 0.72 ± 0.12 

Duration & Intensity 

 Cells Count Latency 1st ISI Resp Dur 

3 & 2 T 0.42 ± 0.13 0.34 ± 0.21 0.32 ± 0.13 0.49 ± 0.12 

3 & 2 P 0.50 ± 0.07 0.30 ± 0.7 0.32 ± 0.09 0.53 ± 0.05 

Location & Intensity 

 Cells Count Latency Sum Count Rel Latency 

3 & 2 T 0.38 ± 0.14 0.56 ± 0.07 0.36 ± 0.11 0.71 ± 0.08 

3 & 2 P 0.53 ± 0.14 0.49 ± 0.15 0.52 ± 0.13 0.52 ± 0.20 

 
 

A.                 B. 



S u b m i t t e d  M a n u s c r i p t  “  M u l t i p l e x e d  m e c h a n o s e n s o r y  c o d i n g “   | 
89 

 

 

attained by the spike count of P cells (Table 4). 
Nevertheless, when stimulus duration is varied 
in combination with intensity, the combination 

of stimulus properties (Table 1) can be 
estimated best based on the response duration 
of P cells (Fig. 8C). Accordingly, this feature 
also yielded the highest mutual information 
with the combination of stimulus intensity and 
duration (Table 4).  
Based on these results, we conclude that the 
stimulus duration is best encoded by response 
duration, a slow temporal response feature.   
 
 
Encoding of Property Combinations 
For the estimation of individual stimulus 
properties location and intensity, we identified 
two different ensemble codes. A temporal 
feature – the relative latency of two cells of the 
same type – was found to be the best encoder 
for touch location. Touch intensity was 
encoded best by a spike count code – the 
summed spike count of cell pairs.  
Since touch intensity and location were found 
to affect the same response features of T and P 
cells, responses of individual cells to combined 
stimulus properties must be ambiguous. A 
response trace with a low latency and a high 
spike count could be elicited either by a light 
touch close to the receptive field center, or by a 
stronger touch farther away. Moreover, 
estimation of touch depends on stimulus 
intensity (Fig. 5).   
To test how the leech could solve this 
ambiguity problem, we stimulated the skin 
with combinations of two intensities and three 
locations (Table 1), while performing T cell 
and P cell double recordings (Fig. 9). The  
resulting 6 stimuli could be estimated above 
chance level based on responses of each of 
both cell types (Fig. 9A). Similar results were 
obtained in additional experiments, with up to 
15 different stimuli, also for different values of 
response feature combinations (data not 
shown). For T cells, best estimation results for 
the combined stimulus were attained by 
relative latency (Fig. 9A, Table 4). For P cells, 
the combined stimulus features were estimated 
best based on summed spike counts or a 
combination of summed counts and relative 
latencies (Fig. 9A, Table 4). For both cell 
types, estimation results improved greatly 

Figure 8: Influences of the stimulus duration on 
neuronal responses of mechanosensors. A Spike 
count (Mean and STD) for P cells (orange) and T 
cells (grey) for stimuli of 20 and 60 mN with 50, 200 
and 500 ms duration at 0° stimulus location. B 
Classification results for 60 mN stimulus intensity 
with three durations (Table 1). Black dashed line 
show chance level and black dots mark the median 
values (see Material and Methods). Response 
features: C = spike count; L = latency; I = 1st ISI; 
RD = response duration. P cell features are shown 
in orange, T cell features in grey. C Classification 
results for two intensities in combination with three 
durations (Table 1). Response features and legend 
see B.  
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 Figure 9:  Estimation results for combination of location and intensity. A Results for combination of 3 
locations (-20 / 0 / 20) and 2 intensities (10, 50 mN). C = spike count; L = latency; I = 1st ISI; RC = relative 
spike count; RL = relative latency; RI = relative 1st ISI; SC = summed spike count; BS = burst strength; BD = 
burst duration. Black dashed lines show chance level. B Results for combination of summed spike count (SC) 
for intensity estimation (Int) and relative latency (RL) for location estimation (Loc). P cell pairs in orange, T 
cell pairs in light grey, pooled data of P cell SC and T cell RL in red and of T cell SC and P cell RL in dark 
grey; SC of P cell and T cell pooled data with RL of T cells in purple and with RL of P cells in blue. The first 
response feature is used for intensity estimation, the second one for location estimation. Asterisk: significant 
difference (p< 0.05). The same location-intensity combination like in A is used.  
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A. B.

when stimulus properties were estimated 
separately based on the previously found 
optimal response features – location with 
relative latencies and intensity with summed 
spike counts (Fig. 9B, two left-most box plots).   
To strictly test if interaction of both cell types 
improves estimation performance, 
simultaneous recording of both T together with 
both P cells would be necessary. However, due 
to our technical limitation of maximally three 
intracellular electrodes, we had to approximate 
full ensemble responses by pooling recordings 
across preparations. When analyzing all 
possible pairs of combined experiments we 
found very consistent results across 

preparations. The six different stimuli could be 
estimated almost perfectly (median 90% 
correct, Fig. 9B), when P cell spike counts 
were summed to estimate intensity and T cell 
relative latencies were used for location 
estimation. Summing spike counts of all four T 
and P cells for intensity estimation did not 
change the result significantly. All other 
combinations of cell types, response features 
and stimulus properties led to significantly 
lower results (Fig. 9B). Qualitatively the same 
results – albeit on a lower level of correct 
estimations – were found for more difficult 
tasks with more stimulus combinations (see 
methods, results not shown). 

 
Table 5: Significant changes in response features of the mechanosensors due to an intensity increase (p < 0.001, 
Kruskal-Wallis test). Percentages of cells showing significant changes are color coded, exact numbers of cells 
are given as 'significant / total' cell numbers. Low intensities are < 50 mN; Medium (med) intensities 50 to 100 
mN; High intensities 100 up to 200 mN.  
 
 Spike count    [increase] Latency    [decrease] 1st ISI    [decrease] 
Intensity low med high low med high low med high 
T cells 21/ 33  10/ 26  3/ 7  25/ 33  14/ 26 5/ 7  12/ 33  8/ 26  2/ 7 
P cells  36/ 42  14/ 23  3/ 6  38/ 42  9/ 23  1/ 6  20/ 42  8/ 23  1/ 6 
N cells -  1/ 27  0/ 4 - 0/ 27 0/ 4 - 0/ 27  0/ 4 
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In conclusion, we found that individual 
mechanoreceptors of both types encode 
different stimulus  properties in a multiplexed 
way and that the optimal strategy for decoding 
combinations of stimulus properties is to 
assume cell-type specific tasks and coding 
strategies. Best stimulus estimation results are 
obtained when relative latencies of T cells are 
used for the estimation of touch location in 
combination with summed spike counts of P 
cells for the estimation of stimulus intensity.  
 
Discussion  
 
The leech is able to react surprisingly precisely 
to touch stimuli, despite its small nervous 
system and low numbers of mechanosensory 
neurons (Kristan et al., 2005; Baca et al., 2005; 
Thomson and Kristan, 2006). Several prior 
studies examined leech mechanosensory cells 
and local bend behavior (Kristan, 1982; 
Lockery and Kristan, 1990; Lockery and 
Sejnowski, 1992; Lewis and Kristan, 1998; 
Zoccolan and Torre, 2002; Baca et al., 2005; 
Thomson and Kristan, 2006), but neither 
encoding of stimulus property combinations 
nor the interaction of mechanosensory cell 
types have been examined so far. In this study, 
we present evidence that multiplexed encoding 
of touch properties by two mechanoreceptor 
types provides the basis for the excellent 
behavioral performance of stimulus 
discrimination.  
Regarding the literature on leech 
mechanoreception, these results could provide 
the solution to an open question left by the 
study of Thomson and Kristan (2006). 
Analyzing P cell responses, they found, in 
agreement with our study, relative latency to 
be the best encoder for stimulus location. 
Nevertheless, electric stimulation of P cells 
simulating their responses to tactile stimuli did 
not elicit local bend muscle contractions with 
the same spatial precision as tactile stimuli 
themselves. Our results suggest that the 
extremely precisely timed T cell spikes are 
required to achieve this behavioral goal.    
In a broader perspective, we discuss our results 
in the context of primate mechanoreception 

and identify common principles of 
somatosensory encoding.    
 
Rate coding versus temporal coding 
While rate and temporal coding traditionally 
were discussed controversially (Theunissen 
and Miller, 1995; Shadlen and Newsome, 
1998; deCharms and Zador, 2000), recent 
studies found in several sensory systems 
evidence for simultaneous usage of both types 
of encoding representing different stimulus 
aspects (Panzeri et al., 2010; Ainsworth at al., 
2012; Wohrer et al., 2013). In particular the 
somatosensory system was found to rely on 
both spike rates and timing simultaneously 
(Harvey et al., 2013; Saal and Bensmaia, 
2014). Mechanoreceptors of the primate 
glabrous skin and their downstream cortical 
targets seem to represent spatio-temporal 
features of tactile stimuli with temporal 
response properties (Johansson and Birznieks, 
2004; Mackevicius et al., 2012, Weber et al. 
2013, Harvey et al., 2013), while touch 
intensity is represented by a rate code 
(Bensmaia, 2008; Harvey et al., 2013).  In 
good accordance with these results, we found 
evidence that the leech mechanosensory 
system also uses both types of encoding 
simultaneously. By means of stimulus 
estimation methods, we identified a temporal 
feature – relative latencies – to be the best 
encoder for touch location. At the same time a 
rate code – summed spike counts – encoded 
touch intensity best. Spike counts also allowed 
estimation of stimulus duration. Hence, this 
study provides additional evidence that sensory 
coding should be discussed in terms of the 
general principles of response feature 
combinations rather than a dichotomy of spike 
count versus spike timing code. 
 
Individual cells versus cell ensembles 
The classical hypothesis about 
mechanoreception of the primate glabrous skin 
is a labeled line code (Abreira and Ginty, 
2013; Zeveke et al., 2013), which assumes that 
different receptor types provide input to 
isolated channels of information transmission 
for different modalities. However, several 
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recent studies found evidence, that signals 
from different mechanoreceptor types 
participate in shaping cortical response 
patterns, causing an integrated perception of 
several aspects of cutaneous stimulation 
(Bensmaia 2008; Abreira and Ginty, 2013; 
Zeveke et al., 2013; Saal and Bensmaia, 2014). 
These findings are particularly relevant for 
natural tactile stimulation in behavioral 
contexts, because touching and manipulating 
objects always cause perception shaped by 
several combined stimulus properties 
(Johansson and Flanagan, 2009; Saal and 
Bensmaia, 2014). In particular, SA-I (slowly 
adapting) and FA-I/RA (rapidly adapting) 
afferents were shown to provide input to the 
same target cells in the somatosensory cortex 
(Saal and Bensmaia, 2014) and both to be 
involved in overlapping sensory tasks like 
perception of intensity (Bensmaia, 2008), 
stimulus shape (Johansson and Birznieks, 
2004) and texture (Weber et al., 2013) of 
tactile stimuli.  
The mechanoreceptors of the leech serve the 
same function as mammalian mechanosensory 
afferents, i.e. transmitting mechanically 
induced action potentials to the central nervous 
system. They respond strikingly similarly to 
the afferents of the mammalian glabrous skin, 
e.g. the human fingertip and rodent paws 
(Zimermann et al., 2014). P cells resemble SA-
I afferents in their sustained, slowly adapting 
responses to constant touch stimulation, while 
T cells share with FA-I afferents the rapidly 
adapting bursts after stimulus onset and also 
tend to produce a short off-response at 
stimulus offset (leech: see Fig. 4A; Nicholls 
and Baylor, 1968; Baca et al., 2005; human: 
Vallbo and Johansson, 1984; Johansson and 
Flanagan, 2009; Abreira and Ginty, 2013).  
Remarkably, these two leech receptor types 
seem to play very similar functional roles in 
encoding tactile stimulus properties like their 
primate counterparts. For humans and 
monkeys it was found that estimation of touch 
intensity requires the integration of several 
afferents (Johnson 1974; Muniak et al., 2007; 
Bensmaia, 2008; but see Arabazadeh et al., 
2014). SA-I afferents are essential for intensity 

estimation of constant touch stimuli, but the 
perceived intensity of vibrating stimuli is 
approximated best by the weighted sum of 
activities of all afferent types (Muniak et al., 
2007; Bensmaia, 2008). In agreement, we 
found summed spike counts of two or more 
leech mechanoreceptors to allow best touch 
intensity estimation, in particular if responses 
of at least one P cell were included.  
Primates and leeches also share a common 
ensemble coding principle for spatial 
properties of touch stimuli, the relative timing 
of first spikes. In humans, the relative timing 
of first spikes represents the shape of tactile 
stimuli, with RA afferents allowing faster 
decoding than SA-I (Johansson and Birznieks, 
2004). In leeches, the location of a small touch 
stimulus can be estimated very precisely based 
on the relative latency of two mechanosensory 
cells, in particular a pair of T cells.  
 
Encoding of single stimulus properties versus 
multiplexing of stimulus properties 
Leech mechanosensory cells and primate 
mechanosensory afferents clearly encode 
multiple properties of tactile stimuli in a 
multiplexed way. As already discussed, each 
slowly adapting (SA-I and P), as well as each 
rapidly adapting (RA and T) cell tunes its spike 
rate to stimulus intensity and at the same time 
its first spike latency to spatial aspects of 
tactile stimuli. Hence, response features on 
different temporal scales simultaneously 
represent complementary information on two 
different stimulus properties. This finding 
exactly matches the definition of multiplexing 
given by Panzeri et al. (2010).  
However, our estimation of stimulus property 
combinations, i.e. stimulus location and 
intensity, suggests specialization of cell types 
for encoding one of the stimulus properties 
with a single response feature. The relative 
timing of the fast and temporally precise first 
spikes of T cells provide the information about 
stimulus location, while the summed spike 
counts of sustained P cell responses indicate 
stimulus intensity (Fig. 9). In particular 
combinations of response features can be 
predicted much better when responses of both 
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mechanoreceptor types are considered than for 
each cell type separately. Hence, our results of 
stimulus encoding on the sensor cell level 
suggest that their multiplexed signals may be 
split for decoding. Nevertheless, this 
hypothesis needs to be tested experimentally 
on the next level of sensory signal processing, 
the responses of postsynaptic interneurons in 
the leech local bend network. If the leech uses 
the strategy we identified, we would expect to 
find coincidence detector interneurons 
sensitive to relative spike timing on the one 
hand and temporal integrator interneurons 
summing inputs over time on the other hand. 
Further experiments will reveal if these distinct 
types of interneurons exist or whether 
multiplexed coding of stimulus properties is 
carried onto the next network layer.  
Studies on the primate sensory system so far 
usually focused on one stimulus property. To 
the best of our knowledge, no results were 
published yet on the encoding of combined 
intensity and spatial properties of tactile 
stimuli. Anyhow, very good evidence exists 
that neurons in the somatosensory cortex 
receive inputs from both SA-I and RA 
afferents and tune their responses to several 
(individually analyzed) properties of tactile 
stimuli, including intensity and spatial features 
(Saal and Bensmaia, 2014).  
  
Conclusion 
Leech mechanoreceptors and afferents of the 
primate glabrous skin share not only their 
response patterns to tactile stimulation, but 
also several mechanisms of encoding. Despite 
the great difference in numbers of participating 
cells, both systems seem to use the same 
stimulus property-specific ensemble encoding 
strategies. Since these encoding strategies are 
shared by two systems as different as the 
human fingertip and the leech body wall, they 
might be general mechanisms underlying 
somatosensation in general. Though, the 
question of combined encoding of multiple 
stimulus properties requires further analyses, 
particularly in the context of natural tactile 
stimuli. When an object is touched by the hand 
of a primate or by the body wall of a moving 

leech, it induces complex, temporally and 
spatially dynamic mechanical stimulation 
(Johansson and Flanagan, 2009), comprising 
several stimulus properties. The 
experimentally easily approachable, 
minimalistic system of the leech might help to 
understand how various stimulus features are 
integrated into one consistent perception 
representing an object touched by a human 
finger tip. 
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