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Kurzzusammenfassung

Seit langem sind Ökologen an dem in der Natur zu beobachtendem Artenreichtum interessiert
und folglich auch an der Entstehung ökologischer Gemeinschaften. Die ersten Untersuchungen
der Arten und deren Interaktionen innerhalb solcher Gemeinschaften, welche als Nahrungsnetze
bezeichnet werden, werde auf das achtzehnte Jahrhundert zurück datiert. Seitdem hat die Bedeu-
tung solcher Nahrungsnetze in der Ökologie zugenommen, da das Wohlergehen der Menschheit
stark von den erbrachten Ökosystemdiensten dieser Nahrungsnetze abhängt.

Jedoch sind viele Nahrungsnetze heutzutage durch externe Umwelteinflüsse, welche durch den
Menschen verursacht werden, stark gefährdet. Um dem Entgegenzuwirken und Nahrungsnetze
zu stabilisieren und zu konservieren ist es notwendig zu verstehen, wie diese Entstehen und auf
äußere Störungen reagieren. Dies soll in dieser Arbeit behandelt werden.

Dazu wird die Modellklasse der allometrischen evolutionären Nahrunsgnetzmodelle verwendet.
Diese Modelle erzeugen Nahrungsnetze indem evolutionäre Prozesse und Populationsdynamik
miteinander kombiniert werden. Arten werden innerhalb dieser Modelle hauptsächlich durch
ihre Körpergröße beschrieben. In einigen Modellen werden zusätzliche beschreibende Eigen-
schaften verwendet, welche jedoch meistens von der Körpergröße abhängig sind. Die Interaktion
zwischen zwei Arten wird durch den Unterschied ihrer Eigenschaften bestimmt. In dieser Arbeit
werden diese Modelle herangezogen, um drei konzeptuelle Fragen bezüglich der Entstehung von
Nahrungsnetzen zu untersuchen. Dies geschieht in drei separaten Kapiteln:

Im ersten Kapitel untersuchen wir Evolution in Nahrungsnetzen und versuchen zu beantworten,
ob die entstehenden Nahrungsnetze aus einem evolutionären Gesichtspunkt aus statisch oder
dynamisch sind. In empirischen Studien werden Nahrungsnetze häufig als statisch behandelt,
jedoch gibt es Belege dafür, dass evolutionäre Dynamiken in der Form von evolutionären Zyklen
in ökologischen Gemeinschaften auftreten können. Unsere theoretischen Untersuchungen im-
plizieren, dass Evolution in vielen Nahrungsnetzen gegenwärtig ist. Des Weiteren finden wir
innerhalb des verwendeten Modells neue evolutionäre Zustände. In diesen unterliegen entweder
einzelne Arten evolutionären Zyklen oder ganze Nahrungsnetze. Die Konkurrenz zwischen Arten
und die Wechselwirkung mit der Ressource sind für diese Zyklen von großer Bedeutung.

Im zweiten Kapitel überprüfen wir den Einfluss von Ressourcen auf die Entstehung von
Nahrungsnetzen mit Hilfe von allometrischen evolutionären Nahrungsnetzmodellen. Dies ist
motiviert durch die Beobachtung, dass viele natürliche Nahrungsnetze mehrere Ressourcen
unterschiedlicher Größe enthalten. Dies wird jedoch in vielen Modellen nicht berücksichtigt
und die meisten Modelle berücksichtigen lediglich eine einzelne Ressource. Aus diesem Grund
untersuchen wir wie zusätzliche Ressourcen die Entstehung von Nahrungsnetzen beeinflussen.
Um dies zu tun, entwickeln wir ein allometrisches Nahrungsnetzmodell in dem Arten lediglich
durch ihre Körpergröße beschrieben werden und schließen zwei Ressourcen unterschiedlicher
Größe in die Modellbeschreibung ein. Unsere Ergebnisse zeigen, dass durch die zusätzliche
Ressource Partitionen innerhalb des Nahrungsnetzes auftreten können. Die Interaktionen zwis-
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chen diesen Partitionen beeinflusst signifikant das Nahrungsnetz. Es können Oszillationen in
den Biomassen der Arten auftreten oder sogar evolutionäre Intermittenz. Hinzu kommt, dass die
Vielfalt der auftretenden Nahrungsnetzstrukturen zunimmt, da der Einfluss von hierarchischen
Körpergrößenzusammenhängen verringert wird.

Im dritten Kapitel wird der Einfluss von einem höher dimensionalen Eigenschaftsraum auf
die Entstehung von Nahrungsnetzen untersucht. Dies wird durch aktuelle Studien motiviert, die
ergeben haben, dass Interaktion zwischen Arten nicht durch eine einzige Größe beschrieben
werden können, sondern dass dazu ein höher dimensionaler Eigenschaftsraum notwendig ist. Dies
wird jedoch von den meisten allometrischen evolutionären Nahrungsnetzmodellen nicht berück-
sichtigt, da in diesen die Artbeschreibung lediglich auf Körpergröße basiert. Aus diesem Grund
führen wir ein allometrisches evolutionäres Nahrungsnetzmodell in einem zwei dimensionalen
Eigenschaftsraum ein, der von der Körpergröße und einer abstrakten Eigenschaft aufgespannt
wird. Unsere Untersuchungen ergeben, dass die zusätzliche unabhängige Eigenschaft die Vielfalt
der möglichen evolutionären Zuständen als auch in der Nahrungsnetztrukuren erhöht. Es treten
evolutionär statische und auch dynamische Zustände auf, sowie Netzwerke mit einer hohen und
niedrigen Ordnung.

Alle durchgeführten Studien zeigen, dass Evolution ein allgegenwärtiger Faktor in Nahrungsnet-
zen ist, der sich in vielfältiger Art und Weise manifestieren kann. Außerdem konnten wir
beobachten, dass die verwendeten minimalistischen Modelle eine hohe Erklärungskraft haben, da
diese Strukturen und Phänomene, welche in der Natur zu beobachten sind, reproduzieren können.
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Abstract

Ecologists have long been interested in species diversity and thus, the emergence of ecological
communities. The first study describing species and their interactions within such a community,
summarised by food webs, dates back to the eighteenth century. Since then, the importance
of food webs for ecology has increased, because humanity strongly depends on the provided
ecosystem services. However, nowadays many food webs are endangered by environmental
changes that are mainly caused by human impact. To stabilise and conserve these food webs, it
is necessary to investigate how they react to perturbations and to understand their emergence.
Therefore, the scope of this thesis is to study the emergence of food webs.

We use the framework of allometric evolutionary food web models, which generates food web
topologies by combining evolution with population dynamics. In these models, the key trait to
characterise a species is bodysize, additional traits are linked to the latter. The interaction strength
between species is determined by their pairwise distances. We use this framework to face three
conceptual questions regarding food web assembly, in three independent research chapters:

In the first chapter, we consider evolution in food webs and ask whether assembled food webs
are evolutionarily static or if evolution is always present. Food webs in empirical and theoretical
studies are mostly treated as evolutionary static, but empirical evidence exists for evolutionary
cycling in ecological communities. Our studies reveal that evolution is present in many food
webs and novel states are introduced: cycling of single morphs and complex food webs. For
these, the competition range between species and feedback with the resource have proven to be
important factors.

In the second chapter, we take a closer look at the importance of resources in allometric
evolutionary food web models. Many empirical food webs contain multiple resources, but many
models neglect this fact by considering a single resource only. Therefore, we study how additional
resources influence food web assembly. To address this issue, we set up an allometric evolutionary
food web model with species characterised by bodysize and include two resources of different
sizes. Our finding shows that the additional resource can cause to the emergence of partitions,
which also occurs in empirical food webs. Interactions between these partitions significantly
influence the network. They give rise to biomass oscillations and evolutionary intermittence
and increase the structural variety of food webs, since hierarchical bodysize interactions are
weakened.

In the third chapter, we investigate the influence of higher dimensional trait space on food
web assembly. This is motivated by recent findings, which state that a higher dimensional trait
space is necessary to describe species interactions. However, most allometric evolutionary food
web models solely base their species description on bodysize as a single trait. We introduce
an allometric evolutionary food web model with species description based on bodysize and a
second independent trait. We find that the additional dimension allows for various behaviours in
evolution and network structures: evolutionary static and dynamic states, as well as ordered and
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unordered food webs.
All our studies show that evolution is present in food webs and can manifest in various ways.

In addition, the introduced minimalistic models have proven to have a high explanatory power,
since they are able to reproduce structures and phenomena that are observed in empirical food
webs.
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Contributions to the chapters of this thesis

Throughout this thesis, I will use we, instead of I for two reasons. First, I want to include the
reader and lead her or him through this work. Second, I did not write the research chapters,
completely on my own. The contributions of all authors for these chapters is listed below:

Chapter 5:
Evolutionary cycles in an evolutionary food web model
Authors: Daniel Ritterskamp∗, Daniel Bearup, Bernd Blasius

DR wrote the program and performed the study, which was supervised by BB. All authors
contributed to the manuscript.

Chapter 6:
Evolutionary food web models: effects of an additional resource
Authors: Daniel Ritterskamp∗, Daniel Bearup, Christoph Feenders, Bernd Blasius

DR, DB and BB developed the model set up. DR wrote the program and performed the study.
DR and CF contributed to the manuscript.

Chapter 7:
A New Dimension: Evolutionary Food Web Dynamics in two
Dimensional Trait Space
Authors: Daniel Ritterskamp∗, Daniel Bearup, Bernd Blasius

DR, and BB developed the model. DR wrote the program and performed the study. All authors
contributed to the manuscript. It was submitted to the Special Issue “Models in Evolution” of the
“Journal of Theoretical Biology”.

In addition, the appendix contains one chapter presenting preliminary results (chapter ap-
pendix A) performed by myself, and a chapter (appendix B) introducing an already published
paper “Evolutionary food web model based on body masses gives realistic networks with per-
manent species turnover” in “Scientific Reports” (doi: 10.1038/srep10955), with myself as an
co-author.
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Part I.

Introduction





1. Motivation

“There’s something that doesn’t make sense. Let’s go and
poke it with a stick.”

— 5th Doctor —
Doctor Who, BBC ONE

Species diversity and thus the emergence of ecological communities is one of the major
topics in ecology (Dunne, 2009; Darwin, 2011). These communities have been investigated
for a long time with the first study dating back to the eighteenth century, which describes fish
consuming each other in a pond (see Egerton (2007)). Since then, the interest of ecologist in these
communities has increased further, since human well-being is strongly linked to the ecosystem
services provided by them (Guo et al., 2010; Millennium Ecosystem Assessment, 2003). The
provided services strongly depend on the stability of these ecological communities, since each
change alters the provided ecosystem services (Dirzo et al., 2014; Dobson et al., 2006).

Thus, it is necessary to conserve these communities and keep them in their current state. To
figure out the necessary steps, one has to understand the assembly of ecological communities and
their reactions to perturbations. This gives rise to the following questions: How do ecological
communities assemble and how do they react to invasive species (Brännström and Johansson,
2012; Lurgi et al., 2014)? What is the influence of resources on ecological communities (Huisman
and Weissing, 1999; Wardle et al., 2004)? How many traits are necessary to characterise interac-
tions between species in a community (Eklöf et al., 2013; Cohen, 1977)? Which mechanisms
make assembled ecological communities stable and persistent (McCann, 2000; May, 1972)?

Therefore, the scope of this thesis is to study the assembly of ecological communities, also
referred to as food webs. For this purpose, we use the framework of allometric evolutionary
food web models. We examine the influence of environmental conditions on food web assembly,
such as resource size distributions or spatial structure in a habitat. In addition, a focus is on
the mechanisms that give rise to food web structures and evolutionary phenomena, which are
observed in empirical data.

1.1. Outline

In this chapter, we introduce the general framework used in this thesis: first, we state the definition
of food webs in chapter 2 and afterwards, we present the theoretical model class to describe food
web assembly in chapter 3: allometric evolutionary food web models. We consider two explicit
model versions, but also state ecological drawbacks within these. After this, we instigate each of
the research chapters in Part II by motivating questions and stating their objectives (chapter 4).
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1. Motivation

Each research chapter (chapter 5–7) represents one of three independent studies, each focuses
on a different aspect of food web assembly. The first research chapter ”Evolutionary cycles in
an evolutionary food web model“ (chapter 5) examines the presence of evolution in food webs,
which is motivated by the fact that these are often treated as evolutionary static in empirical and
theoretical studies. The second research chapter ”Evolutionary food web models: effects of an
additional resource“ (chapter 6), considers the influence of additional resources on the assembly
of food webs. The third research chapter ”A new dimension: evolutionary food web dynamics
in two dimensional trait space“ (chapter 7), investigates the assembly of food webs in a two
dimensional trait space.

In Part III, we answer the motivating questions of each research chapter and the main findings
are summarised. Furthermore, the implications of each research chapter are brought into relation
with each other and open questions and potential future work are presented.

In addition, two additional chapters are included in the appendix. Chapter appendix A entitled
”Spatial sampling: influence on the measured food web“ introduces preliminary results on the
influence of the spatial sampling size on the observed food web. Additional work is necessary
to complete this study and therefore it is only included in the appendix. Chapter appendix B
contains an already published study introducing an allometric evolutionary food web model with
three evolutionary traits, which is able to produce ecological realistic food webs. This paper is
included in the appendix, since it is not in the main focus of this thesis, but gives additional inside
into the assembly of food webs.
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2. Food webs

“It is interesting to contemplate an entangled bank,
clothed with many plants of many kinds, with birds
singing in the bushes, with various insects flitting about,
and with worms crawling through the damp earth, and to
reflect that these elaborately constructed forms, so
different from each other, and dependent on each other in
so complex manner, have all been produced by laws
acting around us.”

— Charles Darwin —
Concluding remarks, The Origin of Species

Within ecological communities species consume each other. These feeding interactions –
trophic links – are summarised in networks; these are called food webs (Dunne, 2009). The food
web is provided with energy by basal taxa ("self feeding"; e.g. autotrophs, dentritus), which are
species that do not feed on any other species. An overview over the history of food webs is given
by Dunne (2009), which is briefly summarised in the following.

The first descriptions of food webs date back to Carl Linnaeus in 1749 and Charles Darwin
in 1832 (Egerton, 2007). The first diagrams that depict food webs appeared in the beginning
of the 19th century, but quickly became common in scientific literature. Within these diagrams
(see Fig. 2.1 for an example), species are represented by nodes, while edges denote feeding links
between them. These links are considered as directed, since energy flows from prey to predator
(arrowheads point in this direction). Species are often aligned along a trait axis, such as bodysize
or trophic level (see caption of Fig. 2.1 for a definition of trophic level).

The first comparative study compiling thirty food webs was published by Cohen (1977, 1997).
To standardise the collected data, he transformed the food web diagrams into binary matrices,
called adjacency matrices. In the following work, we consider adjacency matrices as quadratic
matrices of size S, with S being the number of species contained in a food web. Each species has
an assigned row and column, representing their incoming links (row, feeding input) and outgoing
links (column, predation losses). A one denotes the presence of a link, while zero denotes the
absence. Note that this is not the original definition of Cohen (1977).
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3. Evolutionary food web models
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Figure 2.1.: Schematic food web representation. Arrows depict trophic links with arrowheads
pointing into the direction of the energy flow (from prey to predator). Species are aligned
according to their trophic level. Throughout this thesis, the flow based trophic level is used
(Williams and Martinez, 2004). Therefore, the trophic level of species i is given by ti = 1+
∑ j,Prey νi j · t j with νi j being the fraction of prey j on the total diet of species i. Resources have
per definition a trophic level of one. Species are coloured according to their integer trophic level.

3. Evolutionary food web models

“Many were increasingly of the opinion that they’d all
made a big mistake in coming down from the trees in the
first place. And some said that even the trees had been a
bad move, and that no one should ever have left the
oceans."

—Douglas Adams —
The Hitchhiker’s Guide to the Galaxy (1979 novel)

The assembly of food webs and their reaction to perturbations is an important aspect of
ecological research. However, empirical data that consider the assembly is sparse, since the
driving processes – invasion and evolution – occur on large time scales. To study evolution in
small species, microorganisms were used (Mortlock, 2012), but for larger species theoretical
models have to be applied. A various range of models exist that describe food web assembly, each
focuses on different aspects. An elaborated overview can be found in (Brännström and Johansson,
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2012; Loeuille and Loreau, 2009). In the following, we focus on three main classes: webworld
models, matching models and allometric evolutionary food web models.

The matching model was introduced by Rossberg et al. (2006). Each species is characterised
by two binary sequences of length n, one describes its vulnerability and the other its foraging
ability. Each binary trait can represent oppositions, such as benthic and pelagic, nocturnal and
diurnal, or sessile and vagile. The interaction strength between two species is given by the
matching between the predator’s foraging string and its prey’s vulnerability string. The model
itself considers random extinctions, invasions and speciation processes, but does not include
any resources and population dynamics. Thus, only the presence or absence of species in an
community is described. The resulting food webs have proven to be in good agreement with
empirical food web data.

The webworld model was introduced by Caldarelli et al. (1998) and extended by Drossel et al.
(2001). Similar to the matching model, each species is described by a binary string, representing
the presence or absence of features, which affects interspecific interactions. New species are
introduced by modifying existing species. In contrast to the matching model, the webworld model
includes population dynamics.

Allometric evolutionary food web models characterise species, in contrast to the matching and
webworld model, by continuous traits, with bodysize as the key trait. Therefore, these models
are easy to interpret. In addition, resource dynamics are included. The fact that resources are
explicitly considered and species description is based on bodysize, allows to integrate multiple
different sized resources, a bodysize spectrum within species or an additional continuous traits
(e.g. a spatial dimension). For this reason, we use the evolutionary food web formalism in this
work.

An early predecessor of allometric evolutionary food web models are character displacement
models, which describe the assembly of solely competing communities (Roughgarden, 1972).
Species are characterised by a single continuous trait, which can be interpreted as bodysize, and
determines their resource consumption and competition with other species. It is assumed that
competition is stronger if traits are similar. The assembly itself is described by successively
applying invasion and population dynamics. Within character displacement models, different kind
of assembly algorithms were studied, which gave rise to different assembly dynamics (Rummel
and Roughgarden, 1985; Taper and Case, 1992).

By extending character displacement models to describe the assembly of trophic communities,
Loeuille and Loreau (2005) introduced the first allometric evolutionary food web model. It is well
investigated and several studies exist, which investigated for instance the energetic equivalence
rule (Loeuille and Loreau, 2006) or the mechanisms allowing stable food web structures to arise
(Loeuille and Loreau, 2009; Allhoff and Drossel, 2013) within the model. Extensions of this
model were also developed, to study the emergence of diversification by incorporating gradual
evolution (Brännström et al., 2011), and to investigate how trade-offs in resource consumption
influence the network structure (Ingram et al., 2009). In addition, to produce more realistic food
webs, a recent study introduced additional feeding traits for each species (chapter appendix B).
We refer the reader to Brännström and Johansson (2012) for an extensive overview.
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3. Evolutionary food web models

Population dynamics

Evolution

+

Species definition:

Spatial Position

Feeding Preference

Bodysize

Figure 3.1.: Main idea of allometric evolutionary food web models. Species are characterised
by evolutionary traits, e.g bodysize. Evolution and population dynamics are applied repeatedly.
The first adds new species, which are similar to already existing species to the food web, and the
second changes species biomasses and determines their survival. By doing this time and again
complex food webs emerge.

In allometric evolutionary food web models, species are characterised by their biomass Bi, as
a state variable, and a set of evolutionary traits. Thereby, the key trait is bodysize, but models
exist that include additional evolutionary traits, which however are limited in their evolution.
Independent evolving traits are considered in chapter 7. The emergence of food webs is described
by the interplay of two components: evolution and population dynamics (Fig. 3.1).

Evolution is applied to the evolving traits. Via mutation events, new species are added to the
food web, which are similar in traits to already existing species. These mutation events occur
with a certain rate ω . Following such an event, population dynamics is applied, changing the
biomasses Bi of all present species,to determine their survival. The biomass changes due to
feeding interactions and competition between species. The respective interaction strength is
determined by the relative distance of species in trait space. If the biomass Bi of a given species
falls below a defined extinction threshold θ , it goes extinct and is removed from the food web. By
applying evolution and population dynamics repeatedly, large and complex food webs emerge.

It is assumed that population dynamics and evolution are separated by time scales. Therefore,
the population dynamics have to reach a static fixpoint between mutation events. To guarantee
this, the mutation probability ω has to be sufficiently small. It is evident that this assumption is
not fulfilled if biomass oscillations or chaotic behaviour occurs. However, within the original
model (Loeuille and Loreau, 2005) and most successors only static fixpoints are reached. This
is due to the fact that these are based on chemostat resource dynamics (Novick and Szilard,
1950) with linear functional responses and destabilisation is only possible if time delays between
consumers (Ruan and Wolkowicz, 1996; MacDonald, 1976; Wolkowicz and Xia, 1997) or non-
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3.1. The allometric evolutionary food web model by Loeuille and Loreau (2005)

linear functional responses (Fussmann et al., 2000) are included. However in chapter 6, we show
that weak indirect feedback links between predator-prey pairs can lead to biomass oscillations
within a food web. In this case, the interpretation of the model changes, since population dynamics
and evolution occur on similar time scales, which can be applied to bacterial food webs (Fussmann
et al., 2007).

The energy supply in this models is guaranteed by resources, which are not subject to evolution.
In this work the term resource refers to any kind of energy input into the food web, e.g. light,
nutrients, phytoplankton. Most allometric evolutionary food web models base the assembly on a
single resource, despite the fact that empirical food webs can contain multiple resources (Dunbar,
1953). This problem is addressed in chapter 6.

The evolutionary algorithms used in most allometric evolutionary food web models do not
consider speciation processes. Therefore we use the term morph instead of species in the
following. The evolutionary algorithm itself should be interpreted as an evolutionary based
assembly algorithm, since evolution is not considered on a genetic level and the bodysize
difference between ancestor and mutant can be relatively large. Thus, the evolutionary algorithm
describes mutation and invasion of morphs that are similar to existing ones.

3.1. The allometric evolutionary food web model by Loeuille and
Loreau (2005)

The model by Loeuille and Loreau (2005) is the first allometric evolutionary food web model.
The mechanism allowing the emergence of food web structure is well studied (Loeuille and
Loreau, 2009). We use the classical model by Loeuille and Loreau (2005) in chapter 5 and
an extended multi resource version in chapter 6, to investigate evolution in food webs and the
influence of additional resources on food web assembly. Therefore, we present this classical
model here in more detail. It considers one resource (i = 0) and a variable number of evolving
morphs (i = 1, ...,N). Each morph is described by its population biomass density Bi, as a state
variable, and its bodysize mi. The resource is associated with a fixed bodysize of m0 = 0.

3.1.1. Population dynamics

The change of biomass Bi of morph i is given by the Lotka-Volterra equation, accounting for
reproduction, intrinsic mortality, and losses due to predation and interference competition

dBi

dt
= Bi

(
f (mi)

N

∑
j=0

γ(mi−m j)B j︸ ︷︷ ︸
reproduction

−λ (mi)︸ ︷︷ ︸
mortality

−
N

∑
j=0

γ(m j−mi)B j︸ ︷︷ ︸
predation

−
N

∑
j=1

α(|mi−m j|)B j︸ ︷︷ ︸
competition

)
. (3.1)

Here, the intrinsic mortality λ (mi) = λ0 m−0.25
i and the production efficiency f (mi) = f0 m−0.25

i
scale according to allometric relations with bodysize (Peters, 1986). The feeding kernel γ(·)
describes the feeding rate exerted by predator i on prey j (Fig. 3.2). It is modelled as a one tailed
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Evolutionary trait: Bodysize mi

Kernels: Feeding kernel γ(·)
Competition kernel α(·)

Feeding: Feeding strength γ0
Feeding range σ

Optimal prey distance d
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Competition range β
Resource: Resource inflow I

Resource outflow e
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Scaling relations: Basic mortality rate λ0
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Evolution: Mutation rate ω0
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Figure 3.2.: Interaction kernels and model parameters. Left: One morph is positioned along
the bodysize axis (blue triangle) and its feeding γ(·) and competition kernel α(·) are plotted.
In addition, the resource (green triangle) is shown. Right: Names and symbols of interaction
kernels and parameters of the Loeuille and Loreau (2005) model.

Gaussian function of bodysize differences

γ(mi−m j) =

{
γ0

σ
√

2π exp
(
− (mi−m j−d)2

σ2

)
, mi > m j

0, otherwise,
(3.2)

where γ0 can be used to scale the maximal feeding strength, and σ corresponds to the feeding
range of a morph (i.e., the Gaussian function has standard deviation of σ/

√
2) and d is the optimal

predator-prey bodysize distance. The feeding kernel reaches a maximum for a bodysize distance
d. This follows from empirical observations, which have shown that morphs typically consume
prey smaller than themselves (Vucic-Pestic et al., 2010; Brose et al., 2008; Riede et al., 2011).
The cut-off for mi ≤ m j in the feeding kernel implies that a predator is only able to consume prey
with a strictly smaller bodysize. This causes an asymmetry in trophic interactions: if two morphs
that are nearly identical are considered, the larger one has a slightly larger reproduction growth
(first term in Eq. (3.1)), since it can consume the smaller morph, while the reverse is not possible.
This leads to an intrinsic evolutionary increase in bodysize of morphs, which will be discussed in
chapter 5.
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3.1. The allometric evolutionary food web model by Loeuille and Loreau (2005)

The competition kernel α(·) describes interference competition between two morphs i and j
(Fig. 3.2). It is modelled as a symmetric rectangular function of bodysize differences

α(|mi−m j|) =
{

α0, |mi−m j|< β
0, |mi−m j| ≥ β ,

(3.3)

where α0 is the competition strength and β the competition range.
The biomass change of the resource i = 0 follows a chemostat equation

dB0

dt
=I− eB0−

N

∑
j=1

γ(z j)B j B0 +ν
N

∑
j=1

N

∑
i=1

α(|m j−mi|)B jBi

+ν
N

∑
j=1

λ (m j)B j +ν
N

∑
j=1

N

∑
i=1

(1− f (m j))γ(m j−mi)B jBi,

(3.4)

consisting of a constant resource inflow I, a relative outflow of rate e, losses due to consumption
by morphs, and three terms describing the recycling of a certain fraction ν of dead biomass due to
interference competition, intrinsic mortality, and preyed biomass that is not converted to predator
biomass. The latter is expressed by 1− f (m j).

3.1.2. Evolutionary dynamics

The system is initialised with the resource (bodysize m0 = 0 and initial biomass B0 = I/e) and
a single evolving morph of bodysize z1 = d, corresponding to the maximal feeding strength on
the resource. Each evolving morph mutates with a rate of ω0 per unit biomass and unit time. At
each mutation event of morph k, a new morph M is added to the system with bodysize mM that is
randomly chosen from the mutation interval [0.8mk,1.2mk]. This interval is centred around, and
increases linearly with, the bodysize of the mutating morph mk. The new morph is introduced
with an initial biomass of θ , which is also the extinction threshold. If due to the population
dynamics the biomass Bk of a morph falls below this threshold θ , it is considered to be extinct
and removed from the system.

3.1.3. Classical network structure

The food web structures, which were introduced in the original paper (Loeuille and Loreau, 2005),
are evolutionary static, which denotes that the morph composition does not change any more,
after the initial build up phase. These classical food web structures consist of several trophic level,
each containing several morphs. Each morph consumes all morphs in the trophic level below,
which is independent of the used parameters, since the feeding relations of the model are fixed
(Allhoff and Drossel, 2013).

An example of the temporal evolution of a classical food web and its respective time averaged
biomass-bodysize distribution is shown in Fig. 3.3. The network consists of several clearly
separable bodysize compartments that keep a bodysize distance d to each other, corresponding to
the optimal feeding distance. These compartments are analogous to trophic levels. The morphs
in the same trophic level are separated by a bodysize distance of β , allowing morphs to avoid
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Figure 3.3.: Evolutionary food web dynamics, showing the time averaged biomass-bodysize
histogram of all morphs (left) and the bodysizes of all morphs over time (right). An evolutionarily
static food web emerges, as introduced in the original paper (Loeuille and Loreau, 2005). It
consist of three distinct bodysize compartments, each representing a trophic level. Trophic levels
appear at bodysizes that are multiples of d. Morphs in the same bodysize compartment keep a
distance of β . The parameters were set to: f0 = 0.3, λ0 = 0.1, γ0 = 1, d = 2, I = 10, e = 0.1,
ν = 0.5, ω0 = 1e−05, σ = 1, α0 = 0.3 and β = 0.2.

exclusive competition. The time averaged biomass-bodysize distribution is composed of single
peaks indicating that the morph composition is nearly static after the initial build up of the
network.

The distinctness of the bodysize compartments strongly depends on the parameters. For
weak competition strengths α0 and small feeding ranges σ , these compartments are distinct (see
example Fig. 3.3), for increasing parameters the bodysize compartments merge and become
indistinguishable. The resource parameters (I,e,ν), the feeding strength γ0 and the competition
range β are kept fixed in the classical studies. The latter parameter is set to small values, imposing
that only morphs with very similar bodysizes interact with each other.
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3.1. The allometric evolutionary food web model by Loeuille and Loreau (2005)

3.1.4. Critical revision

Since the assembly of food webs is highly complex and due to the fact that the model of Loeuille
and Loreau (2005) was the first allometric evolutionary food web model, some ecological facts
are simplified. We are going to address a few of them in the following:

Allometric scaling describes the dependency of morph specific traits (e.g. intrinsic mortality,
conversion efficiency) on bodysize, which was studied in great detail by Peters (1986). The model
of Loeuille and Loreau (2005) is one of the first that incorporated allometric relationships into
the morph description, but the used allometric scaling is incomplete. An additional allometric
factor of m−0.25

i should be included in the predation losses in Eq. (3.1) (see box in chapter 3.2).
Besides, the allometric factor has only a small influence in the model, since all bodysizes are
within a small range [2 : 15]. Therefore, the allometric factor m−0.25

i ranges between [0.84 : 0.5]
and does not lead to different time scales between morphs of different sizes.

The feeding kernel describes the ability of morphs to consume each other. The function used
by Loeuille and Loreau (2005) has an optimum at a certain distance to its own bodysize, as
supported by empirical data, since the energy gained by a predator of a given size increases with
prey bodysize, while the probability for a successful attack decreases (Peters, 1986). However,
it is known that the feeding kernel should be asymmetric and therefore a Riekers function is a
ecological more accurate description (Vucic-Pestic et al., 2010).

The functional response used in the original model is linear, which assumes that the time a
predator spends consuming or foraging for prey is negligible. For very large prey populations, this
is ecologically inaccurate, since the predator growth rate is unrealistic high. This can be corrected
by using a Holling type functional response (Holling, 1959), which incorporates saturation.

Competition in the model causes direct biomass losses. However, competition is rather a time
consuming factor, since empirical studies showed that competition seldom results in death of
individuals. Thus, an alternative way to model competition is to incorporate it into the functional
response (Beddington–DeAngelis functional response; (Beddington, 1975)).

In the model by Loeuille and Loreau (2005), competition is based on interference competition,
described by a boxed shape competition kernel. Thus, competition is either present or absent,
which is an oversimplification. Therefore, the box-function should be substituted by a smooth
function. Competition can also be based on link overlap (similarity of diets), which occurs
between two predators that share the same prey. In this case, the competition kernel is given by the
overlap of the feeding kernels of both competing morphs (MacArthur and Levins, 1967; Scheffer
and van Nes, 2006), resulting in similar sizes of competition and feeding range. As mentioned
above, in the classical study of the model by Loeuille and Loreau (2005) the competition range
was kept small. Motivated by this, we consider the effect of larger competition ranges in chapter 5.

Recently, an ecologically more accurate food web model was introduced, which considered
most of the above mentioned points and also incorporated individual feeding ranges and feeding
centres for each morph (chapter appendix B). In addition to bodysize, the feeding centre and
feeding range evolve within certain preimposed intervals. This model produces network structures
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that are in good agreement with empirical data. However, due to the interdependent morph traits,
the behaviour of the model is highly complex and novel phenomena occur. This hinders the
investigation of specific effects. Therefore, the more minimalistic model by Loeuille and Loreau
(2005) is used in chapter 5 and a multi resource version in chapter 6.

3.2. An allometric evolutionary food web model in two dimensional
trait space

The model of Loeuille and Loreau (2005) characterises morphs solely by their bodysize. Other
studies considered more traits, but these were either limited in their evolutionary range (Ingram
et al.,2009, chapter appendix B). However, recent studies stressed that a higher dimensional
trait space is necessary to describe morph interactions within a food web (Allesina et al., 2008;
Eklöf et al., 2013) Therefore, additional independent evolutionary traits have to be considered in
allometric evolutionary models.

To investigate the effect of this higher dimensional space, we set up an allometric evolutionary
food web model in an two dimensional trait space. For this purpose, we start with the model of
Loeuille and Loreau (2005), complete the allometric scaling, use a more realistic feeding kernel,
base competition on link overlap (see previous section); and add an additional trait dimension to
characterise morphs. The interactions along the additional dimension are motivated by the model
of MacArthur and Levins (1967): morphs interact stronger with decreasing distance along this
axis. However, we decided to keep the additional trait abstract, using only neutral assumptions.
Therefore, the abstract trait can describe space, but also water column hight, time of activity or
resource requirements. It may also be interpreted as an underlying gradient, such as temperature,
salinity, day length, rainfall.

The model considers a variable number of evolving morphs (i = 1, ...N), each characterised
by two evolutionary traits – logarithmic bodysize zi and an abstract trait xi – and a population
biomass density Bi, which varies due to interactions with other morphs. The resource has a
bodysize zR = 0 and is continuously distributed along the abstract trait axis, which has a length
of L. However, we use periodic boundary conditions to simulate an infinite range.

It is to mention that the parameter notation used in the Loeuille and Loreau (2005) model and
this model differ. For instance, the feeding kernel is now referred to as α(·) and the competition
kernel as c(·), see Table 3.1 for a list of all parameters. More important is that this model
considers the logarithmic bodysize z instead of normal bodysize. Therefore, the feeding kernel
becomes asymmetric and the allometric scaling gains influence, since bodysize now spans a range
of [10 : 109] (see section 3.1.4).

3.2.1. Population dynamics

The change of biomass Bi of morph i is given by Lotka-Volterra equations, accounting for
reproduction by consuming other morphs and the resource, intrinsic mortality, and losses due to
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3.2. An allometric evolutionary food web model in two dimensional trait space

Name Symbol
Evolutionary traits: Logarithmic bodysize zi

Abstract trait xi

Kernels: Feeding kernel α(·)
Competition kernel c(·)

Distribution abstract trait u(·)
Abstract trait interaction strength I(·)

Feeding: Attack strength α0
Feeding range σz

Optimal prey distance d
Abstract trait range σx

Competition: Competition strength c0

Resource: Resource input I
Resource outflow e

Scaling relations: Basic mortality rate λ0
Basic production efficiency f0

Evolution: Time between mutations tm
Extinction threshold θ

Table 3.1.: Interaction kernels and parameters of the allometric evolutionary food web model in
two dimensional trait space. Scaling relations and evolutionary parameters are kept fixed. Note
that this model does not have an explicit parameter for the competition range, since feeding and
competition ranges are interdependent due to link overlap competition. This reduces the number
of free parameters.

predation and competition, similar to Loeuille and Loreau (2005),

dBi

dt
= Bi

(
f0 a(zi)

N

∑
j=1,i 6= j

α(zi,z j,xi,x j)B j + f0 a(zi)
∫ L

0
dx α(zi,zR,xi,x)R(x)︸ ︷︷ ︸

reproduction

−λ0 a(zi)︸ ︷︷ ︸
mortality

−
N

∑
j=1

a(z j)α(z j,zi,x j,xi)B j︸ ︷︷ ︸
predation

−
N

∑
j=1

c(zi,z j,xi,x j)B j︸ ︷︷ ︸
competition

)
,

(3.5)

where f0 is the conversion efficiency and λ0 is the basic mortality rate. Feeding interactions,
predation and consumption, and the intrinsic mortality scale according to allometric relations with
bodysize (Peters, 1986), which is expressed by a(zi) = 10−0.25zi . Morphs feed on the continuously
distributed resource, which gives rise to the integral expression in equation (3.5).

The feeding kernel α(·) describes the ability of predator i to consume prey j. We assume
that the feeding kernel is a product of two functions, describing the bodysize and abstract trait
interactions,

α(zi,z j,xi,x j) = α0 αz(zi,z j) I(xi,x j), (3.6)
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with α0 being the attack strength (Fig. 3.4c). The bodysize dependency of the feeding kernel is
similar to Loeuille and Loreau (2005) of Gaussian shape, but only along the logarithmic bodysize
axis. Regarding the normal bodysize axis the feeding kernel is asymmetric as proposed by
Vucic-Pestic et al. (2010). The bodysize dependency of the feeding kernel is given by

αz(zi,z j) =
1

σz
√

2π
exp
(
− (zi− z j− log(d))2

2σ2
z

)
, (3.7)

where d is the optimal predator-prey bodysize distance and σz corresponds to the feeding range
of a morph.

The dependency of the feeding kernel (and the general interaction between two morphs) on
the abstract trait is calculated following MacArthur and Levins (1967). It is assumed that a
given morph utilises a certain range around its abstract trait value xi, described by the utilisation
function

ui(x) =
1

σx
√

2π
exp
(
− (|xi− x|)2

2σ2
x

)
, (3.8)

with a range σx (Fig. 3.4a). The interaction strength between two morphs is then given by the
normalised integral of the product of their utilisation functions (Scheffer and van Nes, 2006):

I(xi,x j) =

∫
∞

−∞
dx ui(x) u j(x)∫
∞

−∞
dx u2

i (x)
=

1
σx
√

4π
exp
(
− (|xi− x j|)2

4σ2
x

)
, (3.9)

which has a width of
√

2σx (Fig. 3.4b).
The function c(·) describes the link overlap competition between two morphs i and j. Com-

petition is therefore based on two morphs sharing potential prey (having a similar diet), and is
determined by their overlap in the abstract trait (Eq. (3.9)) and the potential prey they have in
common. The latter is calculated from the overlap of the morphs’ feeding kernel in bodysize

cz(zi,z j) =

∫
∞

−∞
dz αz(zi,z) αz(z j,z)∫

∞

−∞
dz αz(zi,z))

=
1

σz2
√

π
exp
(
− (zi− z j)

2

4σ2
z

)
. (3.10)

The link overlap competition is then obtained by taking the product of these two overlaps,

c(zi,z j,xi,x j) = c0cz(zi,z j) I(xi,x j), (3.11)

where c0 is the competition strength (Fig. 3.5b). In contrast to the classical model by Loeuille
and Loreau (2005) (section 3.1), the competition ranges in bodysize and abstract trait space are
now related to the ranges of the utilisation function ui(x) and the bodysize feeding kernel αz(·)
and are therefore no independent parameters.
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Figure 3.4.: Derivation of the utilisation overlap I(·) and feeding kernel α(·). a: Utilisation
function uk(x). Following MacArthur and Levins (1967), we assume that a morph k utilises a
certain range σx around its abstract trait value xk, described by its utilisation function (see Eq. 3.8).
b: Utilisation overlap I(·) between two morphs (Eq. (3.9)). It is given by the normalised overlap
of their utilisation functions (grey area in a) and has a width of

√
2σx. c: Feeding kernel α(·),

which is composed of the utilisation overlap I(·) and the bodysize feeding kernel αz(·) (Eq. 3.7).
The latter has a maximum at a logarithmic bodyisze of zi− log(d) and a width of σz.
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Figure 3.5.: Derivation of the competition kernel c(·). a: Overlap of the feeding kernels α(·) of
two morphs. b: Competition kernel c(·), composed of the utilisation overlap I(·) and the overlap
of the bodysize feeding kernels of the competing morphs cz(·). The latter has a width of

√
2σz.

Therefore, the competition ranges in bodysize and the abstract trait depend on the ranges of the
bodysize feeding kernel and the utilisation function and are no independent parameters.
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Annotation: The competition term in Eq. (3.5) has no allometric factor in the biomass representation
of the population sizes, while the reproduction and predation terms include an allometric factor
(a(zi) = 10−0.25zi ). This is due to the fact that we ignore the allometric factors in the individual based
feeding kernel, when calculating the similarity of the diets of two morphs:

If starting from the individual representation (Number of individual Ni), the feeding kernel scales
with bodysizes of the prey and predator (α(zi,z j,xi,x j)100.75zi10z j ). In the biomass representation
this results in the allometric factor a(zi) in the predation and growth term. However, when calculating
link overlap competition (Eq. (3.10)), we neglect these factors, since the similarity of their diets (prey
they have in common) should not be affected by this. Therefore, the competition term has another
allometric factor than the predation and growth terms.

The resource has a constant bodysize and is continuously distributed along the abstract trait
axis. The dynamics of the resource is given by the following chemostat equation

dR(x)
dt

=I− eR(x)−
N

∑
j=1

α(z j,zR,x j,x)B j R(x) (3.12)

where the first and second terms represent a constant input I and an outflow e relative to the
resource biomass respectively. The final term describes losses due to consumption by the morphs
in the system.

3.2.2. Evolutionary dynamics

The evolutionary algorithm differs from the model of Loeuille and Loreau (2005), since we
introduce a fixed mutation period tm = 105 after that we allow one mutation. A morph k is
randomly picked and a mutant M is added to the food web, with a new abstract trait xM ∈
[xk−0.8,xk +0.8] and logarithmic bodysize zM ∈ [zk− log(2),zk + log(2)]. In comparison, the
model by Loeuille and Loreau (2005) assigned each morph an individual mutation probability
and therefore mutation events could occur close to each other, which is not possible with a fixed
mutation period. A mutant is introduced with an initial biomass of θ = 10−10, which is also the
extinction threshold. If the biomass Bk of any morph falls below this threshold it is considered
extinct and removed from the food web.
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Albert grunted. "Do you know what happens to lads who
ask too many questions?" Mort thought for a moment.
"No," he said eventually, "what?" There was silence.
Then Albert straightened up and said, "Damned if I
know.”

— Mort, Discworld Novels —
Terry Pratchett

The previous chapters have highlighted that food web assembly is of high complexity. Conse-
quently, theoretical descriptions have to use approximations and are to a certain extend incomplete.
Therefore, many unanswered conceptual questions exist. Some of them we consider in the fol-
lowing research chapters.

1) Question: How static is static? Food webs in empirical and theoretical studies are mostly
considered as evolutionary static. This idea is also represented in the study of Loeuille and
Loreau (2005), which focused on evolutionary static food webs and did not investigate evolu-
tionary dynamics. However, empirical evidence exist that ecological communities are subject
to evolutionary cycling. A common example are taxon cycles (Roughgarden and Pacala, 1989),
during which an island community consisting of a single resident is invaded by a similar but
slightly larger morph. Invader and resident coevolve with each other until the resident goes extinct.
The bodysize of the invader adapts to the size of the former resident and the cycle resets. The
underlying evolutionary process is driven by competition and therefore, it is to expect that taxon
cycles also occur in larger communities, such as food webs (continental taxon cycles (Ricklefs
and Bermingham, 2002)).

Thus, the objective of chapter 5 is to investigate taxon cycles in food webs and by doing
so, demonstrate that evolution is present in food webs. For this purpose, we use the model by
Loeuille and Loreau (2005) and study an extended competition parameter range (section 3.1.3),
since taxon cycles are driven by competition. We reveal novel states in the model: cycling of
single morphs and complex food webs. For these, the feedback with the resource has proven to
be an important driver.

2) Question: How do resources of different sizes influence food webs? Many empirical food
webs contain multiple resources, such as seaweed, salt, nutrients and dendritus (Dunbar, 1953), or
they include resources that can be divided into size classes, such as phytoplankton (Sommer et al.,
2002; Downing et al., 2014). Morphs can specialise on resources of different sizes, which leads to
the emergence of partitions within a food web, as observed in soil food webs (Wardle et al., 2004;
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Fukami et al., 2006; Larios and Suding, 2014). Despite these empirical observations, allometric
evolutionary food web models neglect the fact that food webs can be based on multiple resources
by considering a single resource only. Therefore, the objective of chapter 6 is to emphasise
the importance of additional resources, when describing the assembly of food webs. For this
purpose, we extend the model of Loeuille and Loreau (2005) by an additional resource of various
size and investigate the emerging structures and their influence on evolution and population
dynamics. We find that additional resources can describe the emergence of partitions, which
increases the structural variety and can also destabilise the population dynamics, leading to
biomass oscillations.

3) Question: How does a higher dimensional trait space influence food web assembly?
Ongoing discussions are taking place about how many dimensions are necessary to determine
morph interactions. Cohen (1977) stated that one dimension is enough, but contradicting studies
were published, which stressed the necessity of a higher dimensional trait space (Allesina et al.,
2008; Eklöf et al., 2013). Nonetheless, it is not only essential to use the right number of
dimensions, but also to consider the correct traits.

Recent empirical studies emphasised the influence of space on food webs (Dunne, 2009;
Amarasekare, 2008): biodiversity patterns are found along latitudinal and longitudinal gradients
(Stomp et al., 2011), network characteristics scale with spatial range of the community (Brose
et al., 2004) and migration processes can stabilize food webs (Holt, 2002).

However, allometric evolutionary food web models focus on bodysize and parameters that
depend on it. Thus, little is known about the influence of space, or more generally an additional
independent trait axis, on food web assembly. Therefore, the objective of chapter 7 is to investigate
food web assembly in higher dimensional trait space and to study the phenomena that occur due
the higher dimensionality. We start exploring the higher dimensional trait space, by constructing
the minimal model in two dimensional trait space, which was introduced in chapter 3.2. In
addition, to demonstrate the ecological accuracy of the higher dimensional food webs, we
compare them to empirical data. Our results show that the additional trait axis allows the
emergence of communities with a great range of network structures and evolutionary dynamics.
For these the relative importance of competition and predation has proven to be a key determinant.

24



Part II.

Research chapters





5. Evolutionary cycles in an evolutionary food
web model

27



5. Evolutionary cycles in an evolutionary food web model

Evolutionary cycles in an evolutionary food web model
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CvO University Oldenburg, ICBM, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany

Abstract

The interplay of population dynamics and evolution within ecological communities has been of
long-standing interest for ecologists and can give rise to evolutionary cycles, e.g. taxon cycles.
Evolutionary cycling was intensely studied in small communities with asymmetric competition;
the latter drives the evolutionary processes. Here we demonstrate that evolutionary cycling
arises naturally in larger species communities if trophic interactions are present, since these are
intrinsically asymmetric. To investigate the evolutionary dynamics of a trophic community, we
use an allometric food web model. We find that evolutionary cycles emerge naturally for a large
parameter ranges. The origin of the evolutionary dynamics is related to an intrinsic asymmetry in
the feeding kernel which creates an evolutionary ratchet, driving species towards larger bodysize.
We reveal different kind of cycles: single morph cycles, and coevolutionary and mixed cycling of
complete food webs. The latter denotes that each trophic level can have a different evolutionary
dynamic. We discuss the generality of our findings and conclude that ongoing evolution in food
webs may be more frequent than commonly believed.

Keywords: Community cycling, Taxon Cycles, Coevolution, Red-Queen Dynamic, Large
community-evolution models

5.1. Introduction

One of the most striking characteristics of ecological communities is their rich structure and
variety among different habitats (Strong, 1992; Persson et al., 1992; Polis, 1991). To explain this
large observed diversity, one of the main goals of evolutionary ecology is to gain a complete un-
derstanding of community assembly. It is known that the assembled community is determined by
the interplay of population dynamics, driven by species interactions (e.g, competition and feeding
relationships), and evolutionary processes, which change the phenotypic traits of populations
within the community and may give rise to emergence of new species by speciation events. The
outcome of such eco-evolutionary processes is not easy to understand from first principles and it
may result in static or dynamic community structures.

The appearance of dynamic structures and cycles has been well-studied for the case of com-
petitive interactions on a niche axis, such as bodysize (MacArthur Levins 1972). Thereby, a

1Corresponding author
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particularly important role has been attributed to the asymmetry of species interactions, which
may be caused for instance by allometric scaling of consumption rates with bodysize. As sug-
gested by Rummel and Roughgarden (1983), the joint effect of colonization and asymmetric
competition favours the occurrence of evolutionary cycles, e.g. taxon cycles. These describe a
scenario where a local habitat, which is occupied by a single resident species, is sequentially
colonization by a new invading species of larger bodysize. This forces the smaller resident to
evolve to even smaller bodysizes, to reduce competition with the larger invader. The larger
invader follows this evolutionary movement and converges in bodysize towards the resident. In
this coevolutionary arms-race towards smaller bodysizes, the resident eventually is driven out of
its fundamental niche range and becomes extinct, leading to a single species community. This
can again be invaded by a larger species and the cycle repeats itself. It was shown that this simple
mechanism is able describe empirical data for Anolis lizards (Roughgarden and Pacala 1989) and
was subsequently investigated in a series of further studies (e.g., Rummel and Rougharden 1985,
Taper and Case 1992, Matsuda and Abrams 1994). In these studies, it was found that evolutionary
cycles are a robust model outcome, but the details of the cycles depend on the specific model
assumptions. In particular, it is possible that the bodysize change of the cycle operates in the
reverse direction, so that species are driven towards larger bodysizes.

While evolutionary cycles have been studied intensely for competitive interactions, not much
is known about their relevance in trophically structured communities. This is quite astonishing,
given the striking structural similarity of allometric evolutionary food web models (Brännström
and Johansson, 2012) to the above mentioned competition models. One of the first allometric
evolutionary food web models, was introduced by Loeuille and Loreau (2005). In this model,
similar to (Rummel and Rougharden 1983, 1985, Taper and Case 1992, Matsuda and Abrams
1994) each species is characterized by its bodysize and feeding and competitive interactions
between species are determined by their difference in bodysize. In addition, allometric relations
are explicitly considered (Peters, 1986). The model, and several variants, were studied in great
detail (Loeuille and Loreau, 2006, 2005; Allhoff and Drossel, 2013; Brännström et al., 2011;
Allhoff et al., 2015a). Given that predator-prey interactions are naturally asymmetric, one would
expect that evolutionary cycles are a typical outcome in evolutionary food web models. However,
all these studies focused mainly on evolutionary static food web structures, whereas evolutionary
cycles have not been considered (Loeuille and Loreau, 2005; Brännström et al., 2011). To our
knowledge only one recent study, investigating a variant of the Loeuille and Loreau (2005) model
with three evolving traits, introduced robust not-static evolutionary behaviour in the form of
irregular extinction avalanches (Allhoff et al., 2015a) - however, such dynamics are quite different
from the regular dynamics of the above described taxon cycles.

In this study, we revisit the well-studied evolutionary allometric food web model by Loeuille
and Loreau (2005). We show that this model indeed can produce evolutionary cycles in a large
parameter range and that the possibility of evolutionary cycles is related to the competition
between species. When Loeuille and Loreau (2005) introduced this model, they found food webs
that are relatively invariant over time. While these results proved to be robust to a broad range of
feeding ranges and competition strength, the rest of the parameter space was relatively unexplored.
In particular, the parameter governing the bodysize distance over which morphs can compete, the
competition range, was limited to rather small values. While some biological justification for this
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range was given, here we argue that this range may be too small. If competition between species
arises from niche overlap (sensu MacArthur and Levins (1967)), we should expect a competition
range that is significantly broader and is of the same order as the feeding range of a species. This
would allow inter-species competition to have a much more significant effect on the evolutionary
dynamics.

Motivated by this observation, we numerically investigate the evolutionary behaviour in the
model (Loeuille and Loreau, 2005), by systematically varying the strength and range of the
competition between species. Our simulations show that evolutionary cycling, where species
are driven towards larger bodysizes, is naturally present in the considered model – not only
between single species but also in large trophic communities. Thereby, we observe a plethora
of dynamics regimes. Beside static food webs, we observe evolutionary single morph cycles,
complex community cycles where different trophic levels undergo separate coevolutionary cycles,
as well as transient dynamics. Using invasion analysis and Pairwise Invasibility Plots (PIPs)
we are able to support the numerical observations, which allows us to explain the mechanism
underlying the evolutionary cycles. Our findings imply that ongoing evolution in food webs may
be more frequent than commonly believed.

5.2. Model

We follow the evolutionary food web model by Loeuille and Loreau (2005). The model considers
one basal resource, such as an inorganic nutrient, (i = 0) and a variable number of evolving
morphs (i= 1, ...,N). We use the term morph, rather than species, since we are not considering the
speciation process. Each morph is described by its population biomass density Bi and bodysize
zi. The resource has a total density B0 and is associated with a non-evolving ‘bodysize’, which
is fixed to the value z0 = 0. The model consists of a population dynamics and an evolutionary
dynamics component, both of which operate on different time scales. The population dynamic
describes the trophic interactions among morphs and determines their respective growth, survival
or extinction. On a larger time-scale, usually after the population dynamics has reached an
attractor, new morphs are added to the community by an evolutionary-algorithm.

5.2.1. Population dynamics

The change of biomass Bi of morph i is given by the Lotka-Volterra equations, accounting
for reproduction, intrinsic mortality, and losses due to predation and interference competition
(Loeuille and Loreau, 2005)

dBi

dt
= Bi

(
f (zi)

N

∑
j=0

γ(zi− z j)B j︸ ︷︷ ︸
Reproduction

− m(zi)︸︷︷︸
Mortality

−
N

∑
j=0

γ(z j− zi)B j︸ ︷︷ ︸
Predation loss

−
N

∑
j=1

α(|zi− z j|)B j︸ ︷︷ ︸
Competition

)
. (5.1)

Here, the intrinsic mortality m(zi) = m0 z−0.25
i and the production efficiency f (zi) = f0 z−0.25

i
scale according to allometric relations with bodysize (Peters, 1986). The function γ(zi− z j)
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describes the consumption rate exerted by predator i on prey j. The model assumes that the
feeding efficiency decays with the bodysize difference as a one tailed Gaussian function

γ(zi− z j) =

{
γ0

σ
√

2π exp
(
− (zi−z j−d)2

σ2

)
, zi > z j

0, zi ≤ z j,
(5.2)

where d is the optimal predator-prey bodysize distance, γ0 can be used to scale the maximal
consumption strength, and σ describes the feeding range of a morph (i.e., the Gaussian function
has standard deviation of σ/

√
2). The cut-off for zi ≤ z j in the feeding kernel implies that that a

predator is only able to consume prey with a strictly smaller bodysize. This causes an asymmetry
in trophic interactions, wherein the larger of two similar sized morphs has a small advantage
since it can consume, but cannot be consumed by, the smaller one.

The function α(|zi− z j|) describes interference competition between two morphs i and j. It is
modelled as a symmetric rectangular function (the competition kernel) of bodysize differences

α(|zi− z j|) =
{

α0, |zi− z j|< β
0, |zi− z j| ≥ β ,

(5.3)

where α0 is the competition strength and β the competition range.
The change in the density of the resource i = 0 follows a chemostat equation

dB0

dt
=I− eB0−

N

∑
j=1

γ(z j)B j B0 +ν
N

∑
j=1

N

∑
i=1

α(|z j− zi|)B jBi

+ν
N

∑
j=1

m(z j)B j +ν
N

∑
j=1

N

∑
i=1

(1− f (z j))γ(z j− zi)B jBi,

(5.4)

consisting of a constant resource inflow I, a relative outflow of rate e, losses due to consumption
by morphs, and three terms describing the recycling of a fraction ν of dead biomass from
interference competition, intrinsic mortality, and consumption.

5.2.2. Evolutionary dynamics

The system is initialized with the resource (trait value z0 = 0 and initial biomass B0 = I/e) and
a single evolving morph of bodysize z1 = d, corresponding to a maximal consumption rate on
the resource. Each evolving morph mutates with a rate of ω0 per unit biomass and unit time. At
each mutation event of a morph k, a new morph is added to the system with bodysize zM that is
randomly chosen from the mutation interval [0.8zk,1.2zk]. This interval is centred around, and
increases linearly with, the bodysize of the mutating morph zk. The new morph is introduced with
an initial biomass of θ , which is also the extinction threshold. If due to the population dynamics
the biomass Bk of any morph falls below this threshold θ , it is considered extinct and removed
from the system.

31



5. Evolutionary cycles in an evolutionary food web model

5.2.3. Parameter values, implementation, and cycle detection

We varied the range β and the strength α0 of the competition kernel as our main control parameters.
The other model parameters are fixed to: f0 = 0.3, m0 = 0.1, γ0 = 1/

√
2, d = 2, I = 10, e= 0.1, ν =

0.5, and σ =
√

2. In contrast to Loeuille and Loreau (2005) we increased the extinction threshold
from Θ = 10−20 to Θ = 10−10 (see also Allhoff and Drossel (2013)) and the mutation rate from
ω0 = 10−6 to ω0 = 10−5. Our robustness tests showed that these deviations from the original
model formulation have no effect on the model outcome, but they allowed us to substantially
increase the considered evolutionary time of our simulation runs. If not stated elsewhere, the
simulations were carried out over 109 time-units. Numerical simulations were performed by
using a Runge-Kutta-Fehlberg method 4/5 (Press et al., 2007) which was implemented in C++.
To ensure the generality of our results, we performed 5 simulations runs with a different sequence
of random numbers for each parameter set. We define a simulated time series as an evolutionary
cycle, if it contains at least one whole period after an initial build up phase of 108 time-units.
Therefore, the maximal observable period length is limited by the remaining 9 ·108 time-units. If
the period length of a cycle is close to this limit, cycling is difficult to determine and may depend
on the realization of the random numbers in the evolutionary algorithm. Here, we say that a
parameter set shows cycling, if any of the five simulation runs does. By this criteria the distinction
between static and cycling food webs depends on the considered time interval, especially in the
transition regions.

5.3. Results

5.3.1. Numerical simulations, revealing four dynamics regions

We used numerical simulations to study the evolutionary dynamics of the food web model
in dependence of the inter-species competition. Exploring the parameter space (β ,α0) of the
competition kernel, we identified four distinct behavioural regimes (regions I - IV). The regions
in which each of these behaviours occur are presented graphically in Fig. 5.1 and exemplary time
series for all regimes are shown in Figs. 5.2 and 5.A.1. Region I is characterized by the build-up
of evolutionary and convergence stable food webs, as introduced by Loeuille and Loreau (2005).
Region II exhibits single morph cycles. In this region the community is composed of the resource
and a monomorphic consumer with a bodysize that is not constant but undergoes evolutionary
cycles within a narrow range. Region III features complex community dynamics. This region is
characterized by co-occurring single morph and polymorphic coevolutionary cycles that cover
several trophic layers. Region IV is a transition area in which single morph cycles can be observed
that eventually become polymorphic. The resulting polymorphisms can be evolutionary static or
dynamic. Our numerical simulations showed that the map of evolutionary outcomes in Fig. 5.1 is
generic. If other model parameters (e.g. σ ,γ0) are altered, the transition lines between the four
regions are changed. However, as long as the parameters chosen allow trophic structure, each of
these types of behaviour can be found. In the following we consider each state, and the transition
between states, in more detail.
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Figure 5.1.: Map of the evolutionary dynamics in dependence of the competition parameters.
The map splits into four regions of distinct dynamic behaviour: Static food webs (region I), single
morph cycles (region II), complex community dynamics (region III), and a transition regime in
which single morph cycles occur but the system eventually becomes polymorphic (region IV).
The black solid line separates the regions of static (region I) and cyclic (region III) polymorphic
food webs and is obtained from numerical simulations. The grey scale indicates the probability P
for a monomorphic system to become dimorphic during one cycle period and is calculated by
analysis of the invasion fitness in a monomorphic system (see section 5.3.2). The black dotted
line shows the isocline of P = 1. To the right of this line single morph cycles can occur. The
white dotted line indicates the isocline of logP =−30 and separates regions II and IV. The red
dots correspond to the examples shown in Fig. 5.2 and the blue dots to the transition states shown
in Fig. Appendix 5.A.1.

Static food webs: region I For small competition ranges β and high competition strengths
α0 (region I) we obtain food webs that are close to an evolutionarily and convergence stable
state. This is exactly the behaviour observed by Loeuille and Loreau (2005). Fig. 5.2a shows an
exemplary time series of a static food web and its distribution of biomass relative to bodysize.
After an initial build-up (not shown), the network structure and morph composition of the food
web is practically static. It consists of several distinct bodysize clusters, each centred at a bodysize
which is a multiple of the optimal feeding distance d. These clusters are analogous to trophic
levels. In particular, a morph in a given cluster predominantly consumes morphs in the cluster
immediately below it and, similarly, is mainly consumed by morphs in the cluster immediately
above it. These trophic levels are further separated into sharp bodysize layers. That is, morphs
in the same trophic level are separated by a bodysize distance of β , which allows them to avoid
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Figure 5.2.: Evolutionary food web dynamics for different competition parameters β and α0.
Each subplot (a-d) corresponds to the parameter combination of a red point in Fig. 5.1 and
shows the time evolution of bodysizes of all morphs after the initial build-up phase (right) and
the corresponding biomass-bodysize histograms (left). a) Static food web, as in Loeuille and
Loreau (2005), for α0 = 0.3 and β = 0.2. b) Single morph cycles (α0 = 0.1 and β = 1.2). The
inset shows a close-up of the simulated cycle in bodysize for a shorter time range. c) Complex
community dynamics, showing different coevolutionary cycles in each trophic level (α0 = 0.1
and β = 0.4). The vertical lines mark time-points at which the two largest morphs in the lowest
trophic level are within competition range. d) Mixed evolutionary cycle, showing the coexistence
of a single morph cycle in the lowest trophic level and coevolutionary cycles in the higher trophic
levels (α0 = 0.1 and β = 0.7).

interference competition (note that here β is much smaller than the optimal feeding distance
d). In the left panel of Fig. 5.2a, we plot the average biomass of morphs of a given bodysize
throughout the simulation. This distribution is composed of single peaks indicating that the
morph composition is static after the initial build up of the network. The envelope of all peaks
within a trophic level is bell shaped. This arises due to differences in growth rate within the
trophic level; morphs close to the centre of a trophic level are at the optimal feeding distance
to the centre of the trophic level below and thus are able to grow faster. The total biomass of a
trophic level decreases with increasing bodysize, due to efficiency losses. Thus, species in higher
trophic level, in general, have smaller bodysize.
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In the example given, the trophic levels are distinct. Increasing the feeding range σ , or
competition strength α0 causes the trophic levels to widen until the trophic levels merge. As
the competition range β increases, the bodysize distance between morphs within a trophic level
increases and fewer morphs can coexist in each level. For sufficiently large β only a single morph
can exist in the system and we enter region II.

Single morph cycles: region II For large competition ranges β (region II) we observe a new
dynamic regime for this model, which we term single morph cycles. This regime is characterized
by a dynamic monomorphic community that consists of the basal resource (of bodysize z0 = 0)
and a single consumer morph with a bodysize that is not constant but undergoes an evolutionary
cycle within a small range, see Fig. 5.2b. The inset shows a close-up of the time series which
displays the bodysize cycle more clearly. In addition, a close-up of the temporal evolution of
the bodysize and biomass over four complete periods of the cycle is shown in the Appendix
(Fig. 5.A.2). In the beginning of a cycle, starting with a small initial bodysize, the resident is
repeatedly replaced by a slightly larger morph. As the resident’s bodysize increases, its biomass
decreases, as seen in the trapezoidal structure of the biomass-bodysize distribution in the left
panel of Fig. 5.2b and in Fig. 5.A.2b in the Appendix. At the end of a cycle, the now large resident
is invaded and outcompeted by a small mutant and the single morph cycle resets. The mechanism
underlying this behaviour is discussed in Section 5.3.2. The biomass-bodysize distribution is in
contrast to region I continuous and not composed of single peaks, because morphs occur in the
whole bodysize range of a cycle.

With increasing competition strength α0 the frequency and amplitude of the cycle decrease
(not shown). The amplitude also decreases with decreasing feeding range σ . This decrease is
very rapidly, but cycles are still present for σ < 0.5. We note that the competition range β always
spans the entirety of the bodysize range of a single morph cycle. As β decreases we eventually
reach a threshold where the system can support a polymorphic food web and enter either region I
or region III.

Complex community dynamics and coevolutionary cycles: regions III and IV For low
competition strength α0 and small to intermediate competition range β we obtain a regime of
complex community dynamics (region III), characterized by polymorphic food webs which are
evolutionarily dynamic. Example time series for this region are plotted in Figs. 5.2c and d. In this
regime, each trophic level within the food web undergoes an evolutionary cycle. In some cases
this is a single morph cycle, as described in the previous section (e.g., the lowest trophic level in
Fig. 5.2d); in other, the trophic level consists of multiple morphs which undergo a coevolutionary
cycle (e.g., the lowest trophic level in Fig. 5.2c).

A close-up of the temporal dynamics of bodysizes and biomasses during a coevolutionary
cycle is shown in Fig. 5.3. At the beginning of the cycle, the bodysizes of all morphs within the
trophic level increase gradually in successive interdependent mutational steps, while maintaining
a constant separation. Initially this increase is gradual until, eventually, the largest morph goes
extinct. The remaining morphs then rapidly increase their bodysize to fill this vacated niche. This
effect cascades down to each of the smaller morphs allowing them to increase their bodysizes at a
similar rate. This upwards movement also leaves a niche at small bodysize which a new morph
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Figure 5.3.: Evolutionary dynamics during a coevolution cycle. a) Close-up of the time evolution
of morph bodysizes zi(t) within one trophic layer, here shown for the first trophic level of Fig. 5.2c.
b) Corresponding time evolution of morph biomasses Bi(t). Identical colours denote evolutionary
akin morphs. The vertical lines mark time instances at which the two largest morphs in this
trophic layer have a bodysize distance smaller than β . At these points the largest morph goes
extinct and a new morph with smaller bodysize can invade the system.

can invade, which functionally resets the cycle to its initial state. The biomasses of the larger
two morphs decrease as their bodysize increases (e.g. red curve in Fig. 5.3). This is because as
their bodysize increases they move away from the optimal distance at which to feed on the next
lowest trophic level. In contrast, the biomass of the smallest morph increases (e.g. blue or yellow
curves), as it approaches the optimal feeding distance. The biomass of the intermediate morph
(e.g. black or blue curves) stays relatively constant, as its bodysize moves from one side of the
optimal feeding distance to the other.

While this describes the coevolutionary cycle within a trophic layer, different trophic levels
within a food web undergo independent cycles. Fig. 5.2c, for example, shows a food web in
which only coevolutionary cycles occur. The network has basically the same structure as in the
static case, consisting of three trophic levels (Fig. 5.2a), but it is evolutionarily dynamic. Within
a trophic level, morphs coevolve with each other and increase their bodysize together. But this
coevolutionary dynamics seems to be independent from the cycling within other trophic levels.
In particular, the trophic levels cycle at different frequencies that decrease with the trophic level;
about two or three cycles of the lowest trophic level occur for every single cycle of intermediate
trophic level. The highest trophic level is nearly static. This implies that the evolutionary process
in each trophic level is independent of the other trophic levels. Similar to the static case (region I),
the biomass of each successive trophic level is less than that of the previous one. But the cycling
causes the biomass-bodysize distribution to become continuous, in contrast to the static case
which had clearly defined peaks.

Coevolution cycles arise in food webs when the competition strength α0 and the competition
range β are low (see Fig.5.1). As for single morph cycles, when α0 increases the frequency and
amplitude of a coevolution cycle decreases, until at sufficient large values of α0 the different
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trophic layers of the food web become evolutionary static in a series of successive infinite period
bifurcations. Finally, when a critical threshold is passed the system enters region I. On the other
hand, starting again in region III, with increasing β fewer morphs can exist in a trophic level
(in an analogous way to that described in Section 5.3.1). As a consequence, the frequency of
these cycles slightly increases with β because with decreasing number of morphs but constant
nutrient input, each morph can acquire a higher biomass, which increases the mutation rates and
the evolutionary speed. Finally, for sufficiently large β we observe the collapse of the whole
polymorphic system into a single morph cycle (region II).

For intermediate values of β , it is also possible for the lowest trophic level to transition to
single morph cycles, while the other trophic levels are unaffected, see Fig. 5.2d. We call such
cases mixed evolutionary cycles. Food webs undergoing mixed evolutionary cycling have clear
similarities to those displaying purely coevolutionary cycling. In Fig. 5.2d we still see three
distinct trophic levels with continuous biomass-bodysize distributions. However, the upper two
trophic levels are much closer together than in the purely coevolutionary case. In addition, while
the biomass-bodysize distributions of these levels remain bell shaped the distribution for the lower
trophic level is approximately rectangular, a clear precursor to the trapezoidal form obtained for
single morph cycles, see Fig. 5.2b. Note that the lower trophic level can occasionally support a
second resident, see Fig. 5.2d at time t = 5 ·108. The single morph cycle stops and both residents
increase in bodysize. Eventually the bigger morph goes extinct, as in a coevolution cycle, and the
single morph cycle starts again. The origin of mixed evolutionary cycles can be made plausible
by the observation that the lowest trophic level is subject to especially strong predation pressure
because its residents can be consumed by morphs in all higher trophic levels. Predation and
competition strength, α0, have the same structure, so the effect of higher predation is reminiscent
to that of higher value of α0 for the lowest trophic level. As a consequence, by comparison with
Fig. 5.1, the lowest trophic level can collapse into a single morph cycle already a value of β for
which the higher trophic levels still undergo a coevolutionary cycle.

The transition into region II, by further increase of β , is characterized by a region of transient
single morph cycles (region IV). In this regime, we can observe single morph cycles that persist
only for a finite time and eventually become polymorphic. The resulting polymorphism can be
either evolutionary static or dynamic, depending on the competition strength α0. If decreasing β
returns the system to region III, as above, we obtain a mixed evolutionary cycle (see example
time series in Fig. 5.A.1a). Alternatively, if decreasing β returns the system to region I then we
will obtain a static food web (see Fig. 5.A.1b). As β increases, the probability that a polymorphic
state emerges from these single morph cycles declines, eventually reaching zero as the system
enters region II.

5.3.2. Invasion analysis

Anatomy of a Single Morph Cycle

The existence of evolutionarily dynamic food webs has not previously been observed in this
model. In this section we seek to develop an understanding of these dynamic states. We start
by considering single morph cycles, which are characterized by a monomorphic system that
undergoes a sequence of replacements of a resident, zR, by a slightly larger mutant, zM . Eventually

37



5. Evolutionary cycles in an evolutionary food web model

0

5

10

2 3 4 5

B
io

m
a
ss

B
R

,
B

0

Bodysize Resident zR

BR

0.1 B0

c)b)

a)

c)

d)

b)

-0.4

-0.2

0

0.2

0.4

2 3 4 5

In
va

si
on

fi
tn

es
s

Bodysize Mutant zM

-0.4

-0.2

0

0.2

0.4

2 3 4 5

In
va

si
on

fi
tn

es
s

Bodysize Mutant zM2

3

4

5

2 3 4 5

B
o
d
y
si

ze
M

u
ta

n
t
z M

Bodysize Resident zR

zR = 2.9

zR = 3.7

Figure 5.4.: Invasion analysis of a single morph cycle. a) Pairwise Invasibility Plot (PIP) in
dependence of the bodysize of the resident zR and of the mutant zM . Regions with negative invasion
fitness, s(zM,zR)< 0, are marked in white and regions with s(zM,zR)> 0 in grey. The bold line
designates the points at which mutant and resident have identical bodysizes (zM = zR), dashed
lines enclose the mutation interval (0.8zR and 1.2zR), and dashed-dotted lines the competition
range (zR±β ). The arrows outline trajectories during a single morph cycle. The shaded areas
delineate the variance of bodysizes during a cycle, where a resident may exceed the jump point
(blue shaded area) or have varying initial bodysize (green shaded area). b, c) Fitness landscape as
a function of the mutant’s bodysize zM, at the beginning of a cycle for zR = 2.9 (b) and close to
the end for zR = 3.7 (c). The plot shows the invasion fitness (red) and its composition by growth
due to resource consumption (green) and predation (blue) and by losses due to predation (orange),
and interference competition (grey), according to Eq. (5.5). For visualization all growth terms are
rescaled by a factor of 0.2. The vertical solid line marks the bodysize zR of the resident and the
two dashed lines border the mutation interval. d) Equilibrium biomass of the resident, BR, and of
the resource, B0, as a function of zR. The vertical lines mark the values of zR corresponding to
panels b) and c). Parameter values are β = 1.2, α = 0.1, corresponding to Point 2b in Fig. 1.
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this gradual increase in resident bodysize ends when a small morph is able to invade and the cycle
resets (Fig. 2b). To gain insight into this process, we consider the invasion fitness s(zM,zR) of a
mutant zM in a monomorphic system of bodysize zR (Geritz et al., 1998). The invasion fitness
s(zM,zR) can be derived from Eq. (5.1) and is given by:

s(zM,zR) = f (zM) γ(zM)B0 + f (zM) γ(zM− zR)BR−m(zM)

− γ(zR− zM)BR−α(|zM− zR|)BR.
(5.5)

Here, B0 and BR denote the equilibrium biomasses of the resource and the resident in the
monomorphic system and are given by Eqs. (5.1) and (5.4). To gain analytically tractable
expressions for the invasion fitness, we neglect the nutrient recycling terms in Eq. (5.4), that is
we take ν equal to zero.

A positive invasion fitness s(zM,zR)> 0 indicates that the mutant is able to invade and establish
itself. Assuming that the population stays monomorphic, we can use Eq. (5.5) to construct
the bodysize ranges which characterize a viable mutant for a given resident bodysize. These
ranges can be summarized graphically using Pairwise Invasibility Plots (PIP) (Geritz et al., 1998).
In Fig. 5.4a we plot a PIP for the parameter set used to obtain Fig. 5.2b. Using this PIP we
find that the evolutionary cycle can be split into two phases as follows. Phase 1: For small
resident bodysizes (zR < 3.54) only mutants with larger bodysizes have positive fitness. Thus,
the resident’s bodysize increases over evolutionary time via a series of replacements by a larger
mutant (blue arrow in Fig. 5.4a). Phase 2: When the resident’s bodysize reaches a critical value
(zR ≥ zJ = 3.54), a second positive fitness region emerges corresponding to mutants which are
smaller than the resident. At this point a jump to a smaller bodysize becomes possible (green
arrows in Fig. 5.4a). Such a jump can produce a resident morph small enough to return the cycle
to its initial state. Having outlined the cycle we now consider its two phases in more detail.

In Fig. 5.4b we plot the invasion fitness (i.e., a cross-section of the PIP) for a typical point
(zR = 2.9) in Phase 1 of the cycle. The dependence of the invasion fitness s(zM,zR) on the
bodysize of the mutant zM (red curve) shows a non-monotonic behaviour, which can be explained
by the way in which s(zM,zR) is composed by different gain and loss terms in Eq. (5.5). We
see that the effects of intrinsic mortality (purple) and competition (grey) are relatively constant
with respect to mutant bodysize, at least within the mutation interval. Note though, that the
competition loss disappears for zM > zR+β , giving rise to the upward jump of the invasion fitness
at zM = 4.1. Here, this region of increased invasion fitness is out of the mutation interval and does
not interfere with the single morph cycle. Growth due to resource consumption (green) declines
gradually with mutant size, as larger morphs have lower resource feeding efficiency (the size
difference becomes larger than the optimal feeding distance zM− z0 > d). The most significant
factor is the effect of asymmetry in the predation interactions. In particular, mutants that are larger
than the resident are able to gain in growth due to feeding on it (blue), while mutants smaller
than the resident suffer from predation by the resident (orange). This, effectively results in an
upward jump of the invasion fitness at zM = zR, which is sufficient to off-set the moderated decay
in feeding efficiency creating a region of positive invasion fitness for increased bodysizes zM > zR.
Consequently, the only viable evolutionary path in Phase 1 is increasing bodysize (blue arrow).

With increasing bodysize of the resident zR, the decline in the feeding efficiency on the resource
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5. Evolutionary cycles in an evolutionary food web model

becomes more severe because the deviation from the optimal feeding distance to the resource
increases. As a consequence, the invasion fitness is increasingly dominated by the relative
contribution of the feeding efficiency (green). In contrast, the jump in the invasion fitness at
zM = zR due to the asymmetry of predation remains largely independent of zR. As a consequence,
the region of positive fitness for larger mutants, zM > zR, shrinks with increasing zR (see Figs. 5.4a
and c). Using analytical and numerical calculations (not shown) we found that this region finally
disappears for a resident bodysize of zmax = 5.09 (independent of the competition parameters α0
and β ). As such zmax is the maximal achievable bodysize of a morph in a monomorphic system
for the given parameter values. Furthermore note that the probability of an evolutionary change,
and hence the speed of the evolutionary dynamics, is proportional to the ratio of the positive
fitness interval to the mutation interval. Thus, as the fitness interval for larger morphs shrinks, the
rate of increase in resident bodysize decreases, going to zero as zR→ zmax.

These effects stem from the apparently paradoxical observation that, while increasing bodysize
is evolutionarily favoured, it results in a less fit resident. In particular, a mutant with a larger
bodysize than the resident is able to invade by preying on the resident. However, once the resident
is driven to extinction, the new resident’s lower feeding efficiency results in it being less able to
exploit the remaining resource at z0. Consequently, as resident bodysize, zR, increases, resident
biomass and utilization of the resource decline. This effect can be seen clearly by plotting resident
and resource biomass against resident bodysize, see Fig. 5.4d.

The increased availability of the resource is responsible for the emergence of a second positive
fitness interval found in Phase 2 of the cycle. A typical invasion fitness profile is plotted in
Fig. 5.4c. The contributions of most growth factors are similar to those obtained in Phase 1
(Fig. 5.4b). However, now the growth due to resource consumption depends more strongly on
mutant size and its maximum contribution is much higher. For sufficiently small mutants the
extra growth gained from greater feeding efficiency is able to off-set the increased losses from
predation, allowing a smaller mutant to displace the resident (green arrows). We refer to the
smallest resident bodysize for which this is possible as the jump point zJ (for the chosen parameter
values zJ = 3.54). When a mutant with bodysize less than this threshold successfully invades the
system, the system resets to Phase 1.

Note that, since mutational steps are random, the range of bodysizes during an evolutionary
cycle varies. The resident’s bodysize can exceed the jump point before the smaller mutant invades
(blue shaded area in Fig. 5.4a). Furthermore, the smaller mutant can occur anywhere within the
positive region of the fitness cross-section obtained for a given resident. The combination of these
two effects allows the smaller mutant to emerge in a relatively wide range (green shaded area in
Fig. 5.4a).

We observed previously that the frequency of single morph cycles was related to the competition
strength α0. This can now be explained as follows. Note first that once the jump point is reached
the cycle can be reset in a single step. Furthermore, such a reset is has a high probability, since
the positive fitness region for the smaller mutant is bigger than that for a larger mutant. Thus, the
system is unlikely to spend a significant amount of evolutionary time in Phase 2. Consequently,
the length of a cycle is primarily determined by the number of evolutionary steps required to
produce a resident with bodysize greater than zJ . The region of positive fitness larger than the
resident, which is responsible for the upwards movement (see Figs. 5.4a and c), narrows with
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increasing competition strength α0 (because the fitness landscape is shifted downwards within
the competition range). Therefore increasing the competition strength reduces the evolutionary
speed and thus the frequency of the cycle.

In summary, the intrinsic asymmetry in the feeding kernel γ(·) in Eq. (5.3) creates an evolu-
tionary ratchet, which results in an increase in the resident’s bodysize. However, the concomitant
decrease in resident feeding efficiency generates a nutrient environment which ultimately allows
the invasion of a small mutant. The interplay between these two processes results in a single
morph evolutionary cycle.

Transition region to dimorphic states While in single morph cycles the mutant always re-
places the resident, we observed that in region IV single morph cycles can become polymorphic.
While the dynamics of such a polymorphic state are analytically intractable (at least using the
techniques outlined above), we are able to determine conditions under which a dimorphic state
can form. In particular, in this model two species are able to coexist only if they do not compete
directly; that is if the distance between their bodysizes is greater than the competitive range, β .
Thus a dimorphism becomes possible when the mutation interval, [0.8zR,1.2zR], contains the
competition interval, [zR−β ,zR +β ]. We call the smallest resident bodysize where this condition
holds the dimorphic point, zD, and note that it is related to the competition range as follows,
zD = 5β . With this in mind the transitory single morph cycles found in region IV can be explained
by the random nature of the mutational steps. In particular, when zD > zJ the resident bodysize
must increase past zJ in order to reach the dimorphic point. Consequently the system must enter
Phase 2 and thus the possibility of the cycle resetting before the system becomes polymorphic
exists. The further above zD is from zJ the more likely it becomes that the cycle resets before it
becomes dimorphic. This intuition is justified formally below.

In Fig. 5.1, we plotted the probability of a single morph cycle becoming dimorphic during
a single cycle. This probability was estimated as follows. For a fixed resident bodysize, the
probability for a given mutational step attaining a particular evolutionary outcome (dimorphism,
upwards or downwards movement in bodysize) is given by the range in the invasion fitness that
leads to the evolutionary event divided by the whole positive fitness area. The negative fitness
area is not considered since an unsuccessful invasion does not alter the system. We start with a
resident of a bodysize of zJ and calculate the probability of each evolutionary outcome (transition
probability) for that resident bodysize. In the next step, we increase the resident bodysize by
the expected mutational step-size of the upwards movement. (This is given by the centre of the
positive fitness responsible for upwards movement.) Thus we calculate the transition probabilities
at each of the expected bodysizes between zJ and zmax and by doing this consecutively we consider
all possible evolutionary trajectories. These trajectories terminate when a dimorphism emerges or
the cycle resets (which is assumed to happen via a downwards movement). The probability to
become dimorphic along a given trajectory is equal to the product of the transition probabilities
of the steps in that trajectory. The overall probability of reaching a dimorphic state is then given
by summing over all trajectories which reach this state.
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Complex Community Dynamics In region III we observe food webs that contain coevolution-
ary, and occasionally single morph, cycles. We have previously observed that the cycles in distinct
trophic levels are independent. As such the behaviour of single morph cycles, even in a polymor-
phic system, can be adequately understood in a monomorphic context, see above. Moreover, the
dynamic patterns of coevolutionary cycles can be made plausible by the evolutionary behaviour
of morphs in a single trophic level. The increase of a morph’s bodysize in a coevolution cycle
is due to the same mechanism as in single morph cycles. The asymmetry in the feeding kernel
γ(·) (Eq. (5.3)), creates an evolutionary ratchet, which drives the morphs to higher bodysizes (see
Fig. 5.3). However, the evolution of the morphs is limited by interference competition. Each
morph, except the largest and the smallest morph, have two neighbours at a bodysize distance
slightly bigger than the competition range β . Therefore mutants of the intermediate morphs
inevitably compete with these neighbours and can not invade. While the smallest morph has only
a larger neighbour, smaller mutants are not viable due to the decreasing ability to feed on the
lower trophic level and high intra trophic level predation. The largest morph in an coevolution
cycle has only a smaller neighbour, thus it can increase its bodysize through the evolutionary
ratchet. All other morphs follow one after another, since they are not bounded upwards any more.
Therefore coevolution is a top-down process in this model. However, just as in the single morph
case, increasing bodysize results in the largest morph reaching an unstable state where it can be
invaded and outcompeted by smaller mutants. This is analogous to the jump point of a single
morph cycle.

In contrast to single morph cycles, the largest resident is not outcompeted by a new offspring of
its own, but by a mutant of the second largest resident. The second largest resident is replaced by
a slightly larger mutant, which is within competition range β of the largest resident. (Time-points,
at which the two largest residents compete are marked by grey vertical lines in Figs. 5.2c and
5.3.) This mutant is close enough to the optimal feeding distance that it can outcompete, and thus
replace, the largest resident. Thus the interference competition from above is removed, allowing
each of the resident morphs to increase its bodysize. A new mutant, descended either from the
smallest resident, or from a resident in a lower trophic level, can invade either close to the end,
or at the beginning, of a cycle; when the interference competition from the smallest resident is
lowest.

5.4. Discussion

The model introduced by Loeuille and Loreau (2005) is well known for evolutionarily static food
webs. We investigated a larger range of competition parameters, and found novel evolutionary
states: cycling of single morphs (region II), cycling of complete food webs (region III), and
transitory states from single morph cycles to polymorphic food webs (region IV). We want to
focus on four main results:

First, the observed evolutionary cycles are based on coevolution, which is driven by competition
and trophic interactions between resident morphs and also the invader. These coevolutionary
processes are observed in empirical studies, where they can also be driven by competition (Connell,
1980; MacArthur, 1957) or trophic interactions (Abrams, 2000). However, it is difficult to study
coevolution in larger communities, since the identification of the evolutionary dynamics and the
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coevolving traits is difficult, due to the high number of complex interactions (Rothstein, 1990).
Our findings show, that the number of interactions can be reduced by dividing morphs in smaller
groups in which interactions are considered, since each trophic level coevolves independently.

Second, we found that food web characteristics are remarkably robust towards evolution. The
network structure, number of morphs and links are mainly constant during evolution. In addition,
the network structures of solely coevolving food webs and static food webs are similar. Therefore
they are not distinguishable on the time scale of the population dynamics. However for mixed
evolutionary food webs the network structure changes: the number of species contained in each
trophic level and the distance between each level loses its regularity.

Third, our results are a good demonstration of the Cope’s rule (Cope, 1896.): During an
evolutionary cycle, morphs increase their bodysize, since a slightly larger morph has a higher
fitness than a smaller morph. In addition, our study suggests a more natural solution for the “End-
less trends to gigantism” paradigm (Hone and Benton, 2005), than mass extinction (Kingsolver
and Pfennig, 2004). Large bodysizes are advantageous over a wide range, especially towards
similar sized morphs, but result in a lower ability to consume the original resource, which finally
increases the vulnerability towards invasion of better adapted morphs.

Fourth, single morph cycles have similar characteristics to taxon cycles (Roughgarden and
Pacala, 1989; Wilson, 1961) and suggest that the downgrade of the environment for the resident
(decreasing resource consumption) is also responsible for the arising evolutionary cycling: the
increase in bodysize of the resident, due to coevolution with invaders results in morphs that
are progressively less suited to their environment and morphs that are better adapted to the
environment can invade. In addition, we propose that taxon cycles might be a transitory phase of
island colonisation: we observe that single morph cycles can be transitory states, after which the
community becomes polymorphic and large food webs emerge. These webs can be either static or
dynamic. The latter can be a possible representation of cycling of larger communities –continental
taxon cycles – which are hypothesised, but hard to study empirically, due the intertwining of the
invasion processes (Ricklefs et al., 2014). Note that within the model used, the estimation of the
time scale considered is not possible without relating it to empirical data, since all variables are
treated as dimensionless.

As mentioned above, evolutionary cycling was studied extensively in competing communities.
(Rummel and Roughgarden (1983); Taper and Case (1992); Matsuda and Abrams (1994)). They
showed that for evolutionary cycles an asymmetry in the (competition) interactions is necessary.
In our study an asymmetry is introduced naturally via trophic interactions and therefore we
suggest that evolutionary cycling is an intrinsic phenomenon in the model of Loeuille and Loreau
(2005) and might also be a general phenomenon in allometric evolutionary food web models.
However, before transferring our results to other models, one has to consider the simplifications
used in the model of Loeuille and Loreau (2005) in more detail, to show the generality of our
findings. We consider the most influential ones: the competition α(·) and the feeding kernel γ(·).

First, the interference competition is box–shaped with a competition range β and it has a strict
cut-off (Eq. (5.3)). Therefore, morphs either compete with a single strength, or competition is
absent. However, competition should change continuously in strength with bodysize distance. A
more realistic form of competition is based on link overlap (MacArthur and Levins, 1967), as
applied by (Allhoff et al., 2015a; Ritterskamp et al., 2015b). The link overlap competition range is
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linked to the feeding range σ of the competing morphs (∝
√

2σ ). If the box-shaped interference
competition is replaced by link overlap competition, evolutionary cycling still occurs. Comparing
link overlap competition with box-shaped competition shows that link overlap competition occurs
over a wider bodysize distance. This justifies the investigated competition range β in our studies.

Second, the feeding kernel γ(·) consists of a truncated Gaussian. This cut-off influences the
evolutionary dynamic as shown in section 5.3.2. Without the cut-off evolutionary, cycling is not
visible anymore and static food webs lose evolutionary stability. However, evolutionary cycling
still occurs, if we replace the feeding kernel by a more ecologically accurate function, e.g. the
Ricker function (Vucic-Pestic et al., 2010).

Evolutionary cycling is robust towards variation of the feeding kernel γ(·) and the shape of
competition α(·). In addition, we have validated the competition range β used in our studies.
Therefore, we suggest that evolutionary cycling in food webs may bebe found in other food web
models and also in empirical data. The next obvious step is therefore to investigate evolutionary
cycling in other ecologically more accurate models e.g. (Allhoff et al., 2015a; Ritterskamp et al.,
2015b).

We have shown that evolutionary cycles occur in the evolutionary food web model used and can
manifest in various ways. However, the underlying mechanism, leading to evolutionary cycling,
is not restricted to the applied model. Therefore, we suggest that evolutionary cycles might be a
general phenomenon in evolutionary food web models and also empirical food webs and therefore
conclude that ongoing evolution in food webs may be more frequent than commonly believed.
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Figure 5.A.1.: Transient dynamic. After a transient of single morph cycles the system becomes
polymorphic. a: Mixed evolutionary behaviour of a food web is visible after the transition. The
competition parameters are set to α0 = 0.1 and β = 0.75. a: A static food web emerges after the
transition. The competition parameters are set to α0 = 0.3 and β = 0.58.
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Figure 5.A.2.: Evolutionary temporal behaviour of a single morph cycle (Fig. 5.2b)). a, b:
Close-up of the biomass B and bodysize z during an single morph cycle shown in Fig. 5.2b.
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Evolutionary food web models: effects of an additional resource
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Abstract

Many empirical food webs contain multiple resources, which can lead to the emergence of
sub-communities – partitions – in a food web that are weakly connected with each other. These
partitions interact and affect the complete food web. However, the fact that food webs can
contain multiple resources is often neglected when theoretically describing food web assembly,
by considering a single resource only. We present an allometric, evolutionary food web model
and include two resources of different sizes. Simulations show that an additional resource can
lead to the emergence of partitions, i.e. groups of species that specialise on different resources.
For certain arrangements of these partitions the interactions between them alter the food web
properties: first, they increase the variety of emerging network structures, since hierarchical
bodysize relationships are weakened. Therefore, they have the potential to explain the variety of
food web structures that is observed in empirical data. Second, they can destabilise the population
dynamics by introducing indirect interactions with a certain strength between predator and prey
species. This leads to biomass oscillations and evolutionary intermittence.

Keywords: Subfood webs, Resource Distribution, Substructures, Partitioning, Intermittence,
Destabilisation, Biomass Oscillations, Large community-evolution models

6.1. Introduction

Ecologists have long been interested in food webs, with the first study dating back to the eighteen
century (see references within (Egerton, 2007)). Many of the investigated food webs contain
multiple resources (energy inputs), such as seaweed, salt, nutrients, and dendritus (Dunbar,
1953), or they include resources that can be divided into size classes, such as phytoplankton
(Sommer et al., 2002; Downing et al., 2014). Both can lead to the emergence of sub-communities,
partitions, within a food web that are weakly connected with each other, e.g. soil food webs
contain above and below ground communities (Wardle et al., 2004; Fukami et al., 2006; Larios
and Suding, 2014).

When modelling the assembly of food webs however, the fact that food webs can be based on
multiple resources of different size classes is often neglected. Within the variety of models that
exist (see Brännström and Johansson (2012) for an overview) resources are either disregarded or

1Corresponding author
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only a single one is incorporated. This also includes the three main classes of food web assembly
models: matching models (Rossberg et al., 2006); webworld models (Caldarelli et al., 1998;
Drossel et al., 2001); and allometric, evolutionary food web models (Loeuille and Loreau, 2005).
The matching model does not include resources and the webworld model considers a single
resource, but the resource biomass is not modelled explicitly. In contrast, allometric, evolutionary
food web models incorporate resource population dynamics explicitly; nevertheless only a single
resource is generally considered. This framework allows however, to study the influence of
different resource sizes, since bodysize is the main trait to characterise species and therefore we
focus on allometric, evolutionary food web models.

Allometric, evolutionary food web models were first introduced by Loeuille and Loreau (2005),
with species properties following allometric bodysize scaling (Peters, 1986). Hence, species
are solely characterised by bodysize and interactions between species are determined by their
bodysize difference. An evolutionary based assembly algorithm is applied, which introduces new
species to the community, while population dynamics determine which of the species survive.
It is assumed that these processes occur on separated time scales. Several extensions of the
original model have been used to study different aspects of food web assembly: to investigate the
mechanism determining food web structure and to reproduce the variety of food web structures
that is observed in empirical data, different feeding ranges and feeding centres for each species
were introduced (Ingram et al., 2009; Allhoff et al., 2015a); to examine the spatial influence
on food web assembly, an additional trait axis was imposed (Ritterskamp et al., 2015b); and to
study diversification, gradual evolutionary change was incorporated (Brännström et al., 2011).
However, we are not aware of any study that considers multiple resources.

In this paper, we present a multi-resource model, including only basic assumptions to keep its
complexity minimal. We extend the model of Loeuille and Loreau (2005) by adding a second
resource with an adjustable bodysize. Since the classical model is well studied, the dynamical
behaviour and the mechanisms that determine the network structures are well understood (Loeuille
and Loreau, 2005, 2009; Ritterskamp et al., 2015a), we can focus on effects that are caused by
the additional resource. In this extended multi-resource model we expect to see more complex
dynamics, since ecological communities can be destabilised by a small number of resources and
exhibit oscillatory and chaotic population dynamics (Huisman and Weissing, 1999; Huisman
et al., 2001; McCann, 2000). The objective of this paper is thus to investigate the role of additional
resources in the assembly of food webs. Within the multi-resource model we (i) investigate the
emerging partitions, (ii) consider their interaction and their influence on the food web structure
and the population dynamics, and (iii) lay out the mechanism responsible for the occurring
biomass oscillations.

6.2. Multi-resource model

The multi-resource model is based on the classical model of Loeuille and Loreau (2005), but the
number of resources and their underlying dynamics are changed. The term resource refers, in the
following, to any kind of energy input into the food web, for instance, nutrients, phytoplankton,
plants or any kind of basal species, whose energy uptake is not described by the model. In
addition, it is assumed that resources do not interfere with each other. The multi-resource model
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considers two of these resources (R1,R2), instead of originally one, and a variable number of
evolving species (i = 1, ...,N). From now on, we use the term morph, rather than species, since
we do not consider speciation processes.

Each morph and resource is described by its population biomass density Bi and bodysize zi.
The resources have a bodysizes of zR1 = 0 and zR2 ≥ 0. The latter will be varied to investigate
the effects of different resource sizes on the food web assembly. The model splits up into
population dynamics and an evolutionary algorithm, each acting on a different time scale. The
population dynamics describe the trophic interactions among morphs and determine their survival
or extinction. On a longer time scale, usually after the population dynamics have reached an
equilibrium, the evolutionary algorithm adds new morphs to the community and can be interpreted
as a morph assembly-algorithm.

6.2.1. Population dynamics

The change of biomass Bi of morph i is given by the Lotka-Volterra equation, describing repro-
duction, intrinsic mortality, and losses due to predation and interference competition

dBi

dt
= Bi

(
f (zi) ∑

j∈{R1,R2,1,...,N}
γ(zi− z j)B j︸ ︷︷ ︸

reproduction

− m(zi)︸︷︷︸
mortality

−
N

∑
j=1

γ(z j− zi)B j︸ ︷︷ ︸
predation loss

−
N

∑
j=1

α(|zi− z j|)B j︸ ︷︷ ︸
competition

)
. (6.1)

The intrinsic mortality m(zi) = m0 z−0.25
i and the production efficiency f (zi) = f0 z−0.25

i scale
with bodysize according to allometric relations (Peters, 1986). The feeding kernel γ(zi− z j)
describes the predation pressure exerted by predator i on prey j. It is modelled as a one tailed
Gaussian function of the bodysize differences

γ(zi− z j) =

{
γ0

σ
√

2π exp
(
− (zi−z j−d)2

σ2

)
, z j < zi

0, otherwise,
(6.2)

where d is the optimal predator-prey bodysize distance, γ0 scales the maximal feeding strength,
and σ corresponds to the feeding range of a morph. The cut-off for zi ≤ z j in the feeding kernel
implies that a predator is only able to consume prey with a strictly smaller bodysize.

The competition kernel α(|zi− z j|) describes interference competition between two morphs i
and j. It is modelled as a symmetric rectangular function of bodysize differences

α(|zi− z j|) =
{

α0, |zi− z j|< β
0, otherwise,

(6.3)

where α0 is the competition strength and β is the competition range.
In contrast to the classical model (Loeuille and Loreau, 2005), we include two resources R1

and R2, with their biomass change given by

dBRi

dt
=IRi− eRiBRi−

N

∑
j=1

γ(z j− zRi)B j BRi i ∈ {1,2}, (6.4)
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consisting of a constant nutrient inflow IRi , a relative outflow eRi , and losses due to consumption
by morphs. Since the recycling term that is contained in the classical model has only a minor
influence on the food web assembly for a single resource (Allhoff and Drossel, 2013), it is omitted
in the multi-resource version. The model can be easily extended by an arbitrary number of
resources.

6.2.2. Evolutionary Dynamics

Each model run is initialised with both resources (zR1 = 0, zR2 , BR1 = IR1/eR1 , BR2 = IR2/eR2) and a
single evolving morph of bodysize z1 = d, corresponding to a maximal feeding rate on resource
R1. Each evolving morph mutates with a rate of ω0 per unit biomass and unit time. At each
mutation event of morph k, a new morph l is added to the system with bodysize zl that is randomly
chosen from the mutation interval [0.8zk,1.2zk]. This interval is centred around the mutating
morph zk and increases linearly with bodysize. The new morph is introduced with an initial
biomass of θ , which is also chosen as the extinction threshold. If, due to the population dynamics,
the biomass Bk of any morph falls below this threshold θ , it is considered extinct and removed
from the food web.

6.2.3. Parameter values

To perform simulations we use the Runge-Kutta-Fehlberg method 4/5 (Press et al., 2007) provided
by the GNU Scientific Library in C++ (Gough, 2009). We varied the size of the second resource
zR2 for different simulations as our main control parameter. The size of the other resource zR1 = 0
remains unchanged. Both resources are interchangeable and their absolute bodysize values are off
little importance, due to the weak influence of the allometric scaling (Allhoff and Drossel, 2013).
All other parameters were set to f0 = 0.3, m0 = 0.1, d = 2, IR1 = IR2 = 5, eR1 = eR2 = 0.1, γ0 = 1,
σ = 1, β = 0.25, α0 = 0.1, such that two identical resources produce the structure introduced in
Fig. 2A (Loeuille and Loreau, 2005) in the classical study. We kept the total biomass input I as in
the classical study (I = IR1 + IR2 = 10), to focus on the influence of the additional resource and
not on effects due to resource enrichment. Following Allhoff and Drossel (2013), we used an
extinction threshold of θ = 10−10, rather than θ = 10−20 Loeuille and Loreau (2005). In addition,
we applied a mutation rate of ω0 = 10−5 (Ritterskamp et al., 2015a), which is larger by a factor
of ten than the original value (Loeuille and Loreau, 2005).

6.3. Results

Size dependence To study the effect of different sized resources on food web assembly, we set
up the model as explained above and vary the size zR2 of the second resource. For representative
resource settings, we consider the temporal evolution of bodysizes, the time averaged biomass-
bodysize histogram, the final network structure (Fig. 6.1), and the biomasses of chosen morphs
(Fig. 6.2 and 6.A.1).
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Figure 6.1.: Network time series for different resource sizes zR2 , which increases from top to
bottom. For each simulation,the time-averaged biomass-bodysize histogram (left panel), the
temporal evolution of bodysizes (middle panel), and the final network structure (right panel) is
shown. Colours of network nodes denote integer trophic levels (see legend). Partitions of morphs
occur in the second trophic level (marked by ellipses in the network plots), with division based on
resource specialisation. All other parameters are set according to Section 6.2.3. To visualise the
food web, it is assumed that a feeding link between two morphs is present, if the feeding kernel
γ(zi− z j) exceeds a threshold value of 0.15 (Loeuille and Loreau, 2005). Throughout this work,
numerical simulations were performed over 5 ·109 time units and all time series are evaluated
after the initial build up phase (tB = 5 ·108). The trophic level is calculated using the flow-based
trophic level (Williams and Martinez, 2004).

51



6. Evolutionary food web models: effects of an additional resource

0

5

10

0 5 · 108 1 · 109

B
io
m
as
s
R
es
ou

rc
es

Time t

0

0.25

0.5

0.75

1

0 5 · 108 1 · 109

B
io
m
as
s
M
or
p
h
s

Time t

0

10

20

30

0 5 · 107 1 · 108

B
io
m
as
s
R
es
ou

rc
es

Time t

0

4

8

0 250 500

0

0.5

1

1.5

0 5 · 107 1 · 108

B
io
m
as
s
M
or
p
h
s

Time t

0

0.2

0.4

0 250 500

Resource R1

Resource R2

Oscillations

Morph 2nd Trophic Level

Morph 3rd Trophic Level

Morph 4th Trophic Level

a

b

Figure 6.2.: Biomass dynamics of food webs in Fig. 6.1b,c. The left column shows the biomasses
of resources R1 and R2. The right column shows the biomasses of representative morphs at
different trophic levels a: Biomasses of the food web presented in Fig. 6.1b (zR2 = 1.3). Biomass
oscillations occur. Their amplitude changes slightly with food web configuration. b: Biomasses
of the food web presented in Fig. 6.1c (zR2 = 1.5). Evolutionary intermittence occurs, i.e. intervals
of stationary states are interrupted by biomass oscillations.

First, we consider the case of two identical resources (zR1= zR2= 0, Fig. 6.1a). Four clearly
separated bodysize compartments occur at multiples of the optimal feeding range d. Each
bodysize compartment represents one trophic level and comprises several morphs. Morphs in
the same compartment keep a specific bodysize distance to each other, corresponding to the
competition range β . All biomasses reach a static fixed point in this case (Fig. 6.A.1a,b) and the
network is also evolutionary static; meaning the morph composition stays unchanged because
new invading morphs are not viable. Each morph is represented in the averaged biomass-bodysize
histogram as a single peak (Fig. 6.1a). The emerging network is identical to the preimposed
structure (see Section 6.2.3) and we refer to it as classical structure. This consistency demonstrates
that two identical resources act as a single one and that the division of one resource into two
identical resources does not influence the food. Since we do not observe additional effects due to
the artificial subdivision of the resource ,we can focus on size effects of the second resource.
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For a second resource size zR2 in-between the size of the first resource (zR1= 0) and the optimal
feeding distance d to the latter, only a single bodysize compartment occurs (Fig. 6.1b). Morphs
in the second trophic level can be divided into two partitions, based on their effective resource
consumption: one partition feeds on both resources and the second one exclusively consumes the
bigger one. In addition to partitions, biomass oscillations of resources and all morphs throughout
all trophic levels occur. (Fig. 6.2a). These biomass oscillations appear to be stable towards
evolution.

For a second resource size zR2 closer to the optimal feeding distance d, one large bodysize
compartment emerges. Partitions, determined by their resource consumption, occur in the second
trophic level (Fig. 6.1c). However in comparison to the previous case, the temporal evolution
of biomasses now shows a more complex behaviour: time intervals of stationary biomasses are
interrupted by oscillations (evolutionary intermittence, Fig. 6.2b). The behaviour of the population
dynamics changes from static to oscillatory by small subsequent evolutionary mutations, each
modifying the food web structure only slightly. Therefore, the food web configurations for the
static and oscillatory regime have to be similar during the transition.

For a second resource zR2 with a bodysize of d, which is the optimal bodysize distance to
the first resource (zR1= 0), the emerging food web consists of four clearly separated bodysize
compartments (Fig. 6.1d). Again, the second trophic level can be divided into two partitions,
which are now nearly disconnected: the first partition consist of the lowest bodysize compartment
that consumes only the smaller resource. The second partition includes the slightly larger bodysize
compartment, which specialised on the larger resource. Upon the the second partition, higher
trophic levels emerge. Note that the second trophic level is now represented by two separate
bodysize compartments. For this configuration of completely disconnected, non interacting
partitions the biomasses reach a stable fixed point (Fig. 6.A.1b,d). For even larger resource sizes,
the partitions completely disconnect (see example in Fig 6.A.2) and each partition consists of
several bodysize compartments, representing different trophic levels, and is solely based on one
of the resources.

To investigate which resource sizes promote biomass oscillations and partitions within the
food web, we continuously vary the size zR2 of the second resource. We look at dynamical and
structural properties: the extrema of the biomass of the larger resource; the fraction of time spent
in an oscillatory state; the number of morphs; the total biomass of all morphs; and the relative
densities of the bodysizes and trophic levels (Fig. 6.3). The biomass extrema (Fig. 6.3a) show
that the considered parameter space splits up into two regimes: a static and an oscillatory regime.

Within the static regime, the biomass extrema overlap and food webs reach a static fixed
point. Over the better part of the regime the bodysize compartments and also the trophic levels
are separated, as shown by the standardised densities (Fig. 6.3d,e). For small zR2 the network
structures are similar to the classical result for identical resources (Fig. 6.1a). Four distinct
bodysize layers occur, each representing a trophic level, and their bodysize centres increase with
increasing zR2 . For large resource sizes nearly disconnected partitions are visible (e.g. Fig. 6.1d)
and the second trophic level is represented by the two lowest bodysize compartments, each
specialised on one of the resources: the lowest bodysize compartment is slightly apart from
the others and specialises on the smaller resource zR1 , while the compartments above show the
classical network structure (Fig. 6.1a). The separated partitions show an increase in total biomass,
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Figure 6.3.: Dependence of network characteristics on the second resource size zR2 . a: Extrema
of the biomass of the second resource R2 and fraction of the total time spent in an oscillatory
state (grey shaded area). If maxima and minima overlap, they are plotted in black, otherwise
in red and blue, respectively b: Time-averaged number of morphs. c: Time-averaged total
biomass. d,e: Standardised densities of the bodysizes and trophic levels. For each resource size
zR2 , 10 simulation runs were evaluated within the considered time interval (see caption Fig.6.1).
Trophic levels and bodysizes were collected from all runs to create the standardised distributions.
The extrema of the resource biomass were taken from the combined dataset consisting of all
simulation runs.

since competition between them, and consequently biomass losses, are minimised. For resource
sizes zR2 close to d

2 the bodysize compartments and trophic level start to merge (Fig. 6.3d,e). The
total number of morphs increases in this region, but apart from this the total number of morphs is
nearly constant over the static regime.

The oscillatory regime starts for a second resource size of d
2 and ends for sizes slightly below

d. Within this regime, the biomass extrema do not overlap and the system is in an oscillatory
state (Fig. 6.3a). The fraction of time spent in an oscillatory state reaches two plateaus close
to the borders of the regime, where it is close to one (deviations are due to inaccuracy in the
identification of the oscillating state). In between, oscillations occur rarely, while the biomass
extrema are not overlapping. This means that oscillations occur, which are interrupted by static
behaviour: evolutionary intermittence (Fig. 6.1c and Fig. 6.2b). Within this intermittent region
the total number of morphs reaches a maximum, while the total biomass is nearly constant
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chains: the longer chain is based on the resource R and contains three morphs (morph 1− 3),
while the second chain includes two morphs (morph 4 and 5), which have a bodysize distance
of d to each other. The bodysize z4 of morph 4 in the second chain is used to position the food
chain and serves as a bifurcation parameter. Arrow width denotes link strength and black marks
the direct feeding link between morph 2 (prey) and 3 (predator). We also consider the indirect
interaction between the predator and prey via morph 4. The prey is consumed by morph 4, while
morph 4 is consumed by the predator. Therefore there is an indirect biomass flow from prey to
predator. b: Bifurcation diagram with bifurcation parameter z4, representing the position of the
second food chain, showing the biomass extrema of the larger resource and the ratio η of the
direct and indirect interaction between predator and prey. If the biomass extrema overlap, they
are shown in black, otherwise maxima are plotted in red and minima in blue. In addition, the
resulting networks are plotted (bottom). The region in which all morphs survive is marked in
grey. The ratio of the direct feeding link and the indirect interaction between morph the predator
and prey is given by η = f (x4)γ(z4−z2)

f (x4) f (x3)γ(z4−z3)γ(z3−z2)
.

(Fig. 6.3b,c). In the oscillatory regime, the trophic levels are mainly indistinguishable and only
one large bodysize compartment is visible (Fig. 6.3d,e), except for resource sizes zR2 close to d.
There the bodysize compartments start to separate slowly, while the system passes into the static
regime. For these resource sizes the largest trophic level also ceases to exist, which reduces the
maximal trophic level from five to four and a small bodysize compartment starts to emerge.
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Interaction of Partitions An additional resource can give rise to partitioned food web struc-
tures. The interactions between these partitions influence food webs in two ways:

First, the variety of possible food web structures increases: the classical food web structure
disappears. The growth rate due to resource consumption over bodysize has now two maxima
instead of original one: the first maximum, which is based on the original resource R1, occurs
at a bodysize of zmax1 = d and the new additional maximum, due to the second resource R2, has
a bodysize of zmax2 = zR2 +d. On each of these maxima, partitions with the classical structure
emerge. However, feeding interactions and competitive exclusion occur between morphs in
different partitions, which alters the overall food web structure. Therefore, the classical food web
structure disappears for certain resource settings (e.g. Fig. 6.1b,c), despite initialising the model
with parameters that lead to its emergence (section 6.2.3). In addition, the variety increases since
one trophic level can be represented by bodysize compartments in each of the partitions (e.g.
Fig. 6.1d).

Second, for intermediate resource sizes zR2 (d/2≤ zR2 ≤ 1.95 < d), partitions can destabilise the
population dynamics: instead of reaching a static fixed point, biomass oscillations or evolutionary
intermittence occurs. In the oscillatory regime, partitions are intertwined, each underlying the
characteristics of the classical structure. However, gaps in bodysize between adjacent trophic
levels of one partition are filled by the other one. This leads to indirect interactions between
morphs of the same partition. In one partition, adjacent trophic levels are strongly connected,
with subsequent levels representing predator and prey morphs. Now, weak indirect interactions
occur between these trophic levels: a predator and a prey morph within the same partition can
interact indirectly via a morph with an intermediate bodysize of the other partition, i.e. the morph
is consumed by the predator and consumes the prey. These indirect connections are responsible
for the destabilisation of the population dynamics, as we demonstrate in the following:

We consider the simplest form of partitioning: two interacting food chains. The first chain is
based on the resource and contains three morphs, while the second one includes two morphs only.
To study the influence of the relative position of the chains to each other and to systematically vary
the indirect interaction strength between predator-prey pairs, we shift the position of the second
chain, while keeping the position of the first one constant (see caption of Fig. 6.4). Note that
this system contains only a single resource, but still explains the biomass destabilisation of the
multi-resource model: resources do not participate in the above mentioned indirect interactions,
but allow the evolutionary algorithm to create the necessary structure. Since we exclude evolution
in this model set-up and put in the structure by hand, we do not lose any explanatory power, but
are able to vary the indirect interaction strength systematically.

We examine the biomass extrema of the resource, the ratio η between the direct feeding link
and the indirect interaction between a predator and its prey in the first chain (morph 2 and 3),
and the resulting network of the surviving morphs as a function of the position of the second
chain (Fig. 6.4b). We find that biomass oscillations occur for specific positions: Within a certain
range all morphs survive (grey region). For smaller values of η , meaning that the biomass flow
through the indirect link is relatively high, a phase shift between the predator-prey pair is induced
(Fig. 6.A.3), which destabilises the complete population. This shows that indirect interactions
between predator and prey can destabilise the population dynamic is supported.

56



6.4. Discussion

The range of the oscillatory regime is broader for larger food webs, since due to the higher
morph number the probability for a predator-prey pair to have the right ratio of indirect interactions
increases. In addition, evolution can also cause a transition between an oscillating and non-
oscillating system (evolutionary intermittence, see Fig. 6.1c), since, as mentioned above, the
transitory networks for the static and oscillatory state are highly similar. Note that the second
resource is not directly causing biomass oscillations, but it is crucial for the emergence of
partitions in the food web, between which suitable feeding links cause the destabilisation.

6.4. Discussion

Most empirical food webs contain multiple resource (e.g. soil food webs (Wardle et al., 2004) or
aquatic food web (Dunbar, 1953)) of different sizes, which is neglected in many existing models
that describe the emergence of food webs. We expanded an allometric, evolutionary food web
model by an additional resource and found three main results:

First, including an additional resource can lead to the partitioning of a food web. Each partition
has a different resource specialisation and either focuses on a single resource or a mix of them.
These partitions, or sub-food webs, can also be observed in empirical food webs with multiple
resources (Wardle et al., 2004; Fukami et al., 2006). In addition, the emerging partitions result
in a larger variety of food web structures: the preimposed distinct trophic levels of the classical
food web structure can become interweaved by the interactions between partitions. In addition,
hierarchical feeding interactions can be softened and the trophic level of a species does not
strictly increase with bodysize. This variety is also observed in empirical food webs: freshwater
ecosystems have a very hierarchical structure (Strong, 1992; Persson et al., 1992), while soil and
marine food webs are more manifold (Polis, 1991).

Second, we found that the partitions, which emerge due to an additional resource, change
the dynamical behaviour of the food web: the static fixed point becomes unstable and biomass
oscillations occur. The underlying mechanism is the interplay of direct feeding link and indirect
interaction (via an additional morph) between predator-prey pairs. For a certain ratio between
both interactions, a phaseshift between predator and prey is induced, which destabilises the food
web. This is in good agreement with other theoretical studies, which showed that either phase
shifts (or time delays, (Ruan and Wolkowicz, 1996; MacDonald, 1976)) or weak interactions
(Schwarzmüller et al., 2015; McCann, 2000) can lead to biomass oscillations. However, the
additional resource is not itself destabilising, as for instance shown by Huisman and Weissing
(1999), but allows the evolutionary algorithm to assemble the necessary partitioned structure.

Third, we observe that evolution can stabilise or destabilise the population dynamics of a food
web, which is referred to as evolutionary intermittence: transitions between biomass oscillations
and stationary behaviour occur that are induced by evolution. The transitions are therefore
an intrinsic evolutionary behaviour and not necessarily an indicator for the endangerment or
structural instability of a food web.

Already one additional resource has an enormous effect on the food web assembly. Therefore,
the next steps are to include even more resources or an underlying continuous resource size
distribution, which occurs in phytoplankton (Sommer et al., 2002; Downing et al., 2014), for
example. Another promising step is also to incorporate the ability of morphs to consume different
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kinds of resources (e.g. light, nutrients, plants, dendritus, Dunbar (1953); Sommer et al. (2002)).
For our studies, we extended the model of Loeuille and Loreau (2005), which uses some

approximations, e.g. in describing morph interactions. However, our findings do not depend on
the particularities of the model by Loeuille and Loreau (2005) and therefore we expect them
to be general features of food webs, which can be found in models that are ecologically more
accurate. It seems likely that within such models, the complexity of the observed phenomena
increases even further. For instance, if the linear functional response is substituted by a Holling
Type functional response (Holling, 1959), the oscillatory regime might widen, since a simple
food chain can already exhibit biomass oscillations (Fussmann et al., 2000; McCann et al., 1998).
The complexity might also increase, if the allometric scaling is included in the reproduction and
predation term in Eq. 7.1 (Brose et al., 2006; Binzer et al., 2011), since full allometric models can
exhibit complex population dynamic Schwarzmüller et al. (2015); Binzer et al. (2011). However
the structural variety is not affected by this.

Many empirical food webs have more than one resource and our studies indicate that it is
worthwhile to include this fact in the description of food web assembly. Doing so, the simple multi-
resource model gives rise to novel structures and dynamics that are lacking in single-resource
models.
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Figure 6.A.1.: Biomass evolution of the food webs shown in Fig. 6.1a (upper row) and d (bottom
row). In the upper row, both resources have identical sizes zR1= zR2= 0. The resources in the
bottom row have a size distance of d (zR1=0 and zR2= d). a,c: Biomasses of both resources.
Note that the curves in a overlap, since both resources have identical sizes. b,d: Biomasses of
representative morphs of different trophic level. All biomasses of the resources and morphs reach
a static fixed point. Small fluctuations are caused by evolutionary modification of the food web.
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Figure 6.A.2.: Network time series and food web structure for a second resource of size zR2 =
6 = 3d: time-averaged biomass-bodysize histogram (left), temporal evolution of bodysizes
contained in the system (middle), and resulting network structure (right). The food web reaches
an evolutionarily static state with two disconnected partitions each of which is based on one
specific resource. The lower partition has a maximal trophic level of three, while the other has
a maximal trophic level of four. Both exhibit the classical structure, but with distinct bodysize
compartments.

Figure 6.A.3.: Sketch of feeding interactions between morphs. The initial considered motifs
(time t0) are a predator (grey) and prey (blue) pair (top panel), and a triangle motif that contains
an additional morph (red) (bottom panel). In both motifs the influence of the increase/decrease
of the biomass of the prey/predator on the other morphs’ biomasses is shown. The biomass of
one of them is fixed to a higher/lower value (t1, underlaid in grey) and sketch the reaction of
the other morphs (t2). The biomasses are indicated by the size of the nodes. Top: In a food
chain, the biomass of the predator is proportional to the prey’s biomass, while the prey’s biomass
is inversely proportional to the predators biomass. Bottom: Due to the additional morph, the
biomass relationships are changed. For instance, the decrease in the prey’s biomass still leads
to an decrease of the predator’s biomass, but due to the additional morph the decrease of the
predator’s biomass is buffered: the predator can consume the red morph. Similar effects can be
seen for a change in the predator’s biomass. If it decreases the prey’s biomass does not increase
linearly, since the red morph also increases in biomass and so does its consumption of the prey.
Therefore the prey’s biomass only increases slightly. The additional morph therefore induces a
phaseshift between prey and predator.
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Abstract

Species within a habitat are not uniformly distributed. However this aspect of community
structure, which is fundamental to many conservation activities, is neglected in the majority of
models of food web assembly. To address this issue, we introduce a model which incorporates a
second dimension, which can be interpreted as space, into the trait space used in evolutionary
food web models. Our results show that the additional trait axis allows the emergence of
communities with a much greater range of network structures, similar to the diversity observed in
real ecological communities. Moreover, the network properties of the food webs obtained are in
good agreement with those of empirical food webs. Community emergence follows a consistent
pattern with spread along the second trait axis occurring before the assembly of higher trophic
levels. Communities can reach either a static final structure, or constantly evolve. We observe
that the relative importance of competition and predation is a key determinant of the network
structure and the evolutionary dynamics. The latter are driven by the interaction – competition
and predation – between small groups of species. The model remains sufficiently simple that we
are able to identify the factors, and mechanisms, which determine the final community state.

Keywords: Spatial food webs, Higher dimensional trait space, Network structure, Evolutionary
dynamics, Large community-evolution models
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7.1. Introduction

Ecologists have long been interested in the complex structures exhibited by empirical food webs,
the first studies dating back at least to the seventeenth century (see Egerton (2007); Dunne (2009)).
Food webs describe the structure of ‘who-eats-whom’ in a community and constitute one of
the most fundamental levels of biological organization. This structural richness has inspired
theoretical approaches to capture food web topology and dynamics in terms of mathematical
models. Most theoretical food web studies can be separated into two categories: generating
food web structures or describing population dynamics. On the one hand, statistical models have
been put forward that combine stochastic elements with simple link assignment rules and allow
networks of trophic interactions between species that closely resemble empirical food webs to

1Corresponding author
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be synthesised (Dunne, 2009). The most prominent examples are the cascade model (Cohen
and Newman, 1985), the niche model (Williams and Martinez, 2000) and the random model
(Heckmann et al., 2012). While these models are able to provide detailed understanding of the
structural complexity of food webs, they fail to predict the fine structure of complex food webs
and intervality of a predator’s diet (Stouffer et al., 2006; Williams and Martinez, 2008; Stouffer
et al., 2007). Recently it was shown that the descriptive power of statistical food web models can
be improved by incorporating multiple trait dimensions (Allesina et al., 2008). Notwithstanding,
statistical food web models are fundamentally restricted in that they rely on ad hoc rules that can
not explain the ecological mechanisms underlying the assembly of food webs and because they
are, in principle, not able to capture the population dynamics.

A separate stream of research has focused on dynamical models, describing the temporal
change of populations within a food web structure. Population dynamics models have proven
to be able to capture a huge range of dynamic complexities, such as population cycles, multi-
stability and chaotic dynamics. However at the same time they suffer from the problem of
how to handle the variability of the model outcome with parametrisation in a high dimensional
parameter space (Fussmann and Heber, 2002; Turchin, 2003). This problem is elegantly solved in
allometric food web models, which were introduced by Yodzis and Innes (1992) and extensively
studied since (Brose et al., 2006; Binzer et al., 2011). These models automatically determine the
model parametrization using allometric scaling to determine how species dynamics vary with
bodysize. However, just as statistical models cannot describe population dynamics, dynamical
models cannot be used to generate food web structure, since the food web topology is required to
initialize the model.

These two approaches are combined in evolutionary food web models, such as the webworld
model (Caldarelli et al., 1998; Drossel et al., 2001), which generate food web topologies using an
evolutionary algorithm and also describe population dynamics. One prominent case are niche
based evolutionary food web models, which were introduced by Loeuille and Loreau (2005). In
these models each species is characterised by a position, related to its bodysize, on a continuous
niche axis. The strengths of interactions between species are then simply determined by their
pairwise distances along the niche axis, taking additionally into account allometric scaling with
bodysize. New species can be added to the community simply by assigning them a trait value,
with the change in food web topology being determined automatically. As such they provide a
simple mean to capture the combinatorial increase in possible food web structures that occurs as
community size increases.

Niche based coevolutionary food web models were examined in great detail. Refinements
of the original model (Loeuille and Loreau, 2005) studied, for example: the influence of trade-
offs in resource consumption on the network structure (Ingram et al., 2009); the emergence
of diversification by incorporating gradual evolution (Brännström et al., 2011); and evolvable
shapes of the feeding interaction kernels to produce more realistic food webs (Allhoff et al.,
2015a). These studies revealed a general difficulty of niche based evolutionary models to generate
realistic food web structures (Allhoff and Drossel, 2013), which could be related to the fact that
only a single evolutionary trait, bodysize, is considered. This observation is corroborated by
analysis of empirical food web data which has shown that a higher number of traits is necessary
to realistically describe species interactions (Eklöf et al., 2013).
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In this work we present an evolutionary food web model in a two dimensional trait space. We
demonstrate that the second trait dimension can be incorporated naturally into the framework
of niche based evolutionary food web models. By doing this, we unify the evolutionary food
web model by Loeuille and Loreau (2005) with the seminal MacArthur and Levins model of
competition along a niche axis (MacArthur and Levins, 1967). Thereby, in our model, species are
described by their trait values in a two dimensional space and their interactions – feeding and
competition – by the niche overlap in this space. The second trait can be interpreted in a variety of
ways, for example as a vertical position in a water column, day time of activity, habitat preference,
a hidden gradient (e.g. temperature, salinity, rainfall, day length) or it may simply be regarded
as a spatial coordinate. Using the new model our objectives are to (i) investigate the population
dynamics and evolutionary behaviour in the two dimensional trait space, (ii) characterise the
transition between different evolutionary behaviours and structures in both dimensions of trait
space, (iii) lay out the underlying mechanism producing these transitions, and (iv) verify the
reasonability of the model by comparing it to empirical data.

7.2. Model

We develop an evolutionary food web model, describing the dynamics of one resource and a
variable number of evolving morphs (i = 1, ...N). We use the term morph instead of species since
we do not consider speciation processes. Each morph is characterised by two evolutionary traits,
logarithmic bodysize zi, and an abstract trait xi, as well as a population biomass density Bi, which
varies due to interactions with other morphs. Following MacArthur and Levins (MacArthur and
Levins, 1967), the strength of morph interactions is determined by their pairwise distance in the
two dimensional trait space: competitive interactions decrease with the distance between two
morphs in either dimension; and so do feeding interactions with regard to their abstract traits, but
they are maximized for a certain offset in the bodysize direction. This follows from empirical
observations that species typically consume prey that is a certain fraction smaller than themselves
(Vucic-Pestic et al., 2010; Brose et al., 2008). The resource of concentration R has a bodysize
zR = 0 and is continuously distributed along the abstract trait axis. The trait axis has a length of L,
however we use periodic boundaries to simulate an infinite range (Scheffer and van Nes, 2006).

The model itself can be divided into two processes, the population dynamics of the community
and an evolutionary algorithm, which occur on separated time scales. The population dynamics
determine the variation in each morph’s biomass Bi. The evolutionary algorithm operates on a
slower time scale, introducing new morphs after the population dynamics have approached a
steady state. We now consider each component in more detail.
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Figure 7.1.: Interaction kernels of the two dimensional food web model. The plots show the
interaction strength described by two-dimensional Gaussian functions (ellipses) of a species with
trait value xi and bodysize zi (indicated by blue circle and triangles). a: The feeding kernel
α(·) is modelled as the product of the bodysize feeding kernel αz(zi− z), with a maximum at
z = zi− log(d) and a width of σz, and the dependency on the abstract trait I(xi− x), centred
around x = xi with a width of

√
2σx. b: The competition kernel c(·) is modelled as the product

of I(xi− x) and the competition kernel in bodysize cz(zi− z) with a width of
√

2σz, given by
the overlap of the bodysize feeding kernels of the competing morphs. Since the competition
kernel is determined by niche overlap the competition ranges are not independent parameters (see
Fig. 7.A.3).

7.2.1. Population dynamics

The change of biomass Bi of morph i is given by Lotka-Volterra equations, accounting for
reproduction by consuming other morphs and the resource, intrinsic mortality, and losses due to
predation and competition

dBi

dt
=Bi

(
f0 a(zi)

N

∑
j=1,i 6= j

α(zi,z j,xi,x j)B j + f0 a(zi)
∫ L

0
dx α(zi,zR,xi,x)R(x)︸ ︷︷ ︸

Reproduction

−m0 a(zi)︸ ︷︷ ︸
Mortality

−
N

∑
j=1

a(z j)α(z j,zi,x j,xi)B j︸ ︷︷ ︸
Predation loss

−
N

∑
j=1

c(zi,z j,xi,x j)B j︸ ︷︷ ︸
Competition

)
,

(7.1)
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where f0 is the conversion efficiency and m0 is the basic mortality rate. Feeding interactions and
the intrinsic mortality scale according to allometric relations with bodysize (Peters, 1986), which
is expressed by a(zi) = 10−0.25zi .

The feeding kernel α(·) describes the ability of predator i to consume prey j. We assume that it
is the product of two functions (Fig. 7.1a), describing the bodysize and abstract trait dependency,

α(zi,z j,xi,x j) = α0 αz(zi,z j) I(xi,x j), (7.2)

with α0 being the attack strength.
Empirical studies suggest that feeding interactions depend on the logarithmic bodysize distances

between morphs and are hump shaped (Vucic-Pestic et al., 2010; Brose et al., 2008). To represent
this we express the bodysize dependency of the feeding kernel by a Gaussian function,

αz(zi,z j) =
1

σz
√

2π
exp
(
− (zi− z j− log(d))2

2σ2
z

)
, (7.3)

where d is the optimal predator-prey bodysize distance and σz corresponds to the feeding range
of a morph. The dependency of the feeding kernel on the abstract trait is given by

I(xi,x j) =
1

σx
√

4π
exp
(
− (|xi− x j|)2

4σ2
x

)
, (7.4)

which is of Gaussian shape with a width of
√

2σx and states the interaction strength of two
morphs along the abstract trait axis, see Fig 7.A.3 for its derivation.

Motivated by the model of MacArthur and Levins (MacArthur and Levins, 1967), the competi-
tion kernel c(·) is determined by the niche overlap between two morphs in the two dimensional
trait space (Fig 7.1b), as the overlap in abstract space I(·) and the prey they have in common
cz(·),

c(zi,z j,xi,x j) = c0 cz(zi− z j) I(xi,x j), (7.5)

where c0 is the competition strength and

cz(zi− z j) =
1

σz2
√

π
exp
(
− (zi− z j)

2

4σ2
z

)
. (7.6)

The latter is calculated by the overlap of the bodysize feeding kernels αz(·) of both morphs, see
Fig. 7.A.3 for more details. The width of the feeding and competition kernels in both dimensions
are determined by the same parameters, with competition range being by a factor of

√
2 larger

than the feeding range.
Unlike the evolving morphs, the resource has a constant bodysize and is continuously dis-

tributed along the abstract trait axis. The dynamics of the resource are given by the following
chemostat equation

dR(x)
dt

=I− eR(x)−
N

∑
j=1

α(z j,zR,x j,x)B j R(x). (7.7)
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Here, the first and second terms represent a constant input and an outflow relative to the resource
biomass and the final term describes losses due to consumption by the morphs in the system.

Following the original formulation of these models by MacArthur and Levins (1967) and
Loeuille and Loreau (2005), we intentionally keep our model as simple as possible. In particular,
we describe predation rates using linear, rather than more realistic (Holling, 1959) functional
responses. This allows us to truly unify both models. If all species have the same bodysize, our
model reduces to the MacArthur and Levins model of competition along a niche axis (MacArthur
and Levins, 1967). In contrast, if all species have the same value of their abstract trait our model
reduces to the evolutionary food web model by Loeuille and Loreau (2005).

7.2.2. Evolutionary dynamics

Every tm time units a randomly chosen morph k mutates, and a mutant m is added to the system,
with a new abstract trait xm ∈ [xk−∆x,xk +∆x], and logarithmic bodysize zm ∈ [zk−∆z,zk +∆z].
The mutant is introduced with an initial biomass of θ , which is also the extinction threshold. If
the biomass Bk of any morph falls below this threshold, as a result of the population dynamics, it
is considered to be extinct and is removed from the system.

7.2.3. Initialization and parameter values

Simulations are performed using the Sundials CVODE solver (Cohen and Hindmarsh, 1996)
in C++ with absolute and relative errors per time step set to 10−12. The abstract trait axis is
discretised by one hundred grid points per unit length and periodic boundaries are applied. All
simulations are initialized with the resource (logarithmic bodysize zR = 0 and a concentration of
R(x) = I/e) and a single evolving morph with an abstract trait of x1 =

L
2 and logarithmic bodysize

z1 = log(d).
Previous studies of evolutionary food web models have established reasonable parameter values

for characterisations of morphs based on bodysize. Our extension to a two dimensional trait space
has no effect on the interpretation of the majority of these parameters. Hence we take: f0 = 0.3,
m0 = 0.1, and d = 100, following (Loeuille and Loreau, 2005); θ = 10−10, from (Allhoff and
Drossel, 2013); and ∆z = log(2), as in (Allhoff et al., 2015a). The mutation time tm is set to 105,
which is sufficiently high for the population dynamics to reach an equilibrium before the next
mutation event.

Parameters describing interactions along the abstract trait dimension cannot be derived from
existing literature. We fix these parameters as follows: I = 1000, e = 0.1, σx = 0.05, and L = 1.
Tests of alternative values of these parameters found that they had no qualitative effect on our
results (see Results). As discussed in Section 7.3 these parameters mainly influence the effective
length of the abstract trait axis. Furthermore, we choose a relatively narrow mutation range in
this direction, ∆x = 0.08, to ensure that mutants are similar to their parents. Finally, to reduce
the number of free parameters, we set the attack strength, α0 = 1.0, and in the simulations
presented in this work we vary the competition strength c0 and feeding range σz as our main
control parameters.
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7. A new dimension: evolutionary food web dynamics in two dimensional trait space

7.2.4. Data evaluation

Since the evolutionary outcome depends on the sequence of random numbers, we perform one
hundred simulation runs for each parameter set, with different seeds. Each simulation runs for
1010 time units, if not stated otherwise. To calculate the network characteristics we collect 20
networks from each simulation run, each 5 ·108 time units, starting at a time of 5 ·108 to omit
the initial assembly phase. This produces a total of 2000 networks for each parameter set. To
calculate the network structure we follow Allhoff et al. (2015a) and remove all links that supply
less than 75% of the biomass contributed by the average link. This cut-off criterion depends
on the feeding kernel and the prey’s biomass density and therefore mimics sampling limits in
empirical data.

The emerging networks are compared to empirical data, in particular the 50 aquatic food webs
in the Adirondack lake data set (Sutherland and of Environmental Conservation, 1989). Since
the model can only produce networks with one resource, we treat all species in the first trophic
level of the empirical food webs as a single species, as proposed by (Rossberg et al., 2006). The
trophic level is calculated using the prey-averaged trophic level, for the empirical data, and the
flow-based trophic level, for networks obtained from simulations (Williams and Martinez, 2004).

7.3. Results

We now investigate how morph interactions influence the emergence of the network structure and
evolutionary behaviour. For this we systematically screen the parameter range of the competition
strength c0 and the feeding range σz. We find three distinct types of community and distinct
regions of parameter space where each type dominates, which means that a type constitutes 80%
of all simulated outcomes (Fig. 7.2). The first type of community is characterised by a complete
absence of trophic structure. A single trophic level builds up, consisting of morphs that consume
the resource, but no further trophic levels emerge. The areas of parameter space where such
communities dominate are denoted Region I. The second type of community has trophic structure
and is evolutionarily static. That is, after an initial dynamic phase of community assembly, the
morphs, and the interactions between them, become fixed. Such food webs dominate in Region II.
The third type of community has trophic structure and is evolutionarily dynamic. The morphs in
the community, and their interactions, change constantly over time and leading to the temporary
emergence of higher trophic levels – evolutionary outbursts – and cases where a given morph
progressively decreases its bodysize. Region III is dominated by food webs of this type.

These regions are robust with respect to variation of the parameters governing interactions
along the abstract trait dimension (see Section 7.2.3 for a specific list). Increasing the level
of resources available, determined by I and e, (beyond the level necessary to support multiple
bodysize layers) or the length of the abstract trait axis L, increases the number of morphs that can
coexist, but does not change the food web type, whereas a larger value of σx is equivalent to a
decrease in available resources or an increase in L.
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Figure 7.2.: Effect of feeding range σz and competition strength c0 on the model outcome. Three
regions in parameter space occur, each of which is dominated by a particular type of community:
Region I is dominated by communities with no trophic structure; Region II by evolutionarily
static food webs; and Region III by evolutionarily dynamic food webs. In between these regions,
an unassigned area occurs that is not dominated by a specific community type (i.e., less than 80%
of simulated communities correspond to a single state, see also Fig. 7.A.1 for the frequencies of
each state). Points denote examples further analysed in Figs. 7.3-7.5 and dotted lines represent
the cross sections shown in Figs. 7.6 and 7.7.

7.3.1. Communities with no trophic structure (Region I)

Region I is dominated by evolutionarily static communities with a single trophic layer of primary
consumers. This region actually splits up into two sub-regions: For small feeding ranges σz,
the single trophic level contains many morphs with nearly identical bodysizes (Fig. 7.3a). This
can be explained by the fact that for small σz only morphs in a narrow bodysize interval can
effectively feed on the resources. However due to the normalisation of the feeding kernel α(·),
resource consumption is relatively high, allowing morphs to coexist in relatively close proximity
along the abstract trait axis. Consequently, the biomass distribution along the abstract trait axis
is nearly uniform (Fig. 7.3c). As is shown in Fig. 7.2 the range of this sub-region in parameter
space increases with competition strength. This is explained by the effect of competition strength
on the emergence of food webs, see below.
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Figure 7.3.: Two characteristic patterns of static communities without trophic structure (Region
I), emerging for the case of a narrow feeding range (σz = 0.4, left column) and a large feeding
range (σz = 1.5, right column). a,b: Positioning of morphs (represented by red circles) in two
dimensional trait space. The green bar illustrates the resource. c,d: Biomass distribution along
the abstract trait axis of the presented network (grey). It is assumed that a morph’s biomass is
distributed around the abstract trait, xi, according to a Gaussian of width σx (see Fig. 7.A.3).
The black line denotes the average over 100 different simulated networks, whereby all biomass
distributions are aligned by setting the maximum biomass value to an abstract trait value of zero.
Therefore an artificial maximum and a subsequent minimum occur at the edges of the abstract
trait axis. Left column (σz = 0.4): Dense morph packing along the abstract trait axis of morphs
with similar bodysize. The biomass is continuously distributed along the trait axis, with the
distributions of the single run and the average overlapping, since the interval between morphs is
close to the distribution range along the abstract trait, σx. Right column (σz = 1.5): Food web
wherein morphs keep a maximal characteristic distance to each other in trait space (see averaged
distribution). Only four morphs are contained, which differ in bodysize, but are restricted to the
same trophic level.

For large feeding ranges σz, the single trophic level contains only a few morphs with a higher
variety in bodysize (Fig. 7.3b). In this case the feeding kernel is broad and morphs in a wider
bodysize spectrum can feed on the resource. However, resource consumption is now low (due to
the normalisation of the feeding kernel), meaning that only a lower level of competition between
morphs can be sustained. Therefore morphs must maintain a larger distance in trait space in order
to coexist. Consequently, in contrast to the case of small σz, the biomass distribution for these
communities displays a rather regular, periodic, structure since neighbouring morph are separated
by trait intervals similar to the distribution range along the abstract trait axis σx. Thereby, the
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structuring along the abstract trait axis paradoxically is explained by the interaction along the
bodysize axis – even though the communities in Region I are characterised by the absence of
trophic structure.

7.3.2. Communities with trophic structure

In our simulations, communities with trophic structure emerge only with high frequency for low
to intermediate competition strengths c0 and intermediate feeding ranges σz. This observation
is consistent with the findings by Loeuille and Loreau (2009), who studied the emergence of
trophic structures in niche based evolutionary food web models by evolutionary branching. For
small feeding ranges, a small increase in bodysize leads to large losses in the feeding input from
the resource and this, in combination with competition with the other morphs, means that larger
mutants are rarely viable. As the feeding range increases, the losses in feeding input from the
resource with increasing bodysize decrease. Thus, the gain in feeding input from smaller morphs
becomes sufficient to offset this loss, and, if competition is not too high, larger mutants become
viable. This ultimately allows additional trophic levels to form. Increasing the feeding range
further ultimately leads to the region described above, where a large range of bodysizes can be
sustained, but morphs have to maintain a large interval between them in trait space. While larger
morphs are viable in this region, they tend to drive their prey to extinction (by a combination of
feeding and competition interactions), and thus multiple trophic levels are unsustainable.

As noted above, in our model two types of food web emerge characterised by whether they
are static or dynamic on evolutionary time scales. We consider each of these behaviours in more
detail below, beginning with the simpler case of evolutionarily static food webs.

7.3.2.1. Evolutionarily static food webs (Region II)

Evolutionarily static food webs dominate in an ellipsoid region of the parameter space, denoted
Region II, at the higher end of feeding ranges where communities with trophic structure are
likely and encompassing a relatively wide range of competition strengths. Figure 7.4 shows three
characteristic examples, for different levels of the competition strengths c0. In all examples, the
morph composition and network structure become static after the initial assembly phase, however
the final morph positioning in the two dimensional trait space and the interaction network depend
on c0.

For large values of the competition strength (left column in Fig. 7.4), the emerging food webs
typically have a highly consistent trophic structure along the abstract trait axis, with chains of
three regularly spaced morphs that keep a logarithmic bodysize distance of log(d) (see Fig. 7.4d).
Adjacent chains display slight shifts in morph bodysize relative to each other and are irregularly
spaced in the abstract trait. Consequently, the biomass distribution (Fig. 7.4g) exhibits small
fluctuations. Neglecting the artificial extrema, the averaged distribution is nearly constant. This
suggests that these fluctuations occur randomly and that there is no structure to the biomass
distribution along the abstract trait. Plotting morphs by their logarithmic bodysize and trophic
level (Fig. 7.4j) reveals three distinct clouds. For logarithmic bodysizes between 4 and 8 we
see a strong positive correlation between trophic level and bodysize. In conjunction with the
example network structure, this suggests that morphs are subject to a strict hierarchical ordering
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Figure 7.4.: Structure of evolutionary static food webs (Region II). Each column presents a
different competition strength c0, decreasing from left to right (see Fig. 7.2 for position in
parameter space). Left column (c0 = 0.012): Static network with distinct bodysize layers.
Middle column (c0 = 0.005): Static network with slightly merged bodysize layers. Right
column (c0 = 0.002): Static network with intertwined bodysize layers. a,b,c: Temporal evolution
of bodysizes (right panels) and bodysize-biomass histograms (left panels) of specific networks
over the last 2.5 · 109 time units. d,e,f: Positioning of morphs in two dimensional trait space
and interaction network. g,h,i: Biomass distribution of all morphs along the abstract axis of
the network shown (grey) and the average over 100 aligned biomass distributions (see caption
of Fig. 7.3 for more details). j,k,l: Morphs’ trophic level against logarithmic bodysize for 100
simulated communities. In all simulations, the feeding range was fixed to σz = 1.
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in bodysize, which determines their role in the food web. In contrast, morphs with trophic level
2 appear to have a relatively large range of bodysizes. This occurs because the ensemble of
communities considered includes systems with and without trophic structure, each exhibiting
different bodysize to trophic level distributions. In communities without a trophic structure,
all morphs have a trophic level of two, but larger bodysizes (see Section 7.3.1), while morphs
in communities with a trophic structure have a bodysize close to d, that is log(d) ≈ 2 for our
parameters.

As competition strength decreases (middle column in Fig. 7.4), the bodysize layers become
less distinct and the variance in bodysize of morphs in a given trophic level increases. In addition,
morphs in adjacent trophic levels can have similar bodysizes, causing the trophic levels to merge.
These losses in regularity extend to the network structure along the abstract niche. The repeating
chain structure observed previously is replaced by an irregular network structure composed of a
variety of motifs. While there is no noticeable change in the distribution of the smallest morphs
along the abstract trait axis, larger morphs appear to cluster into denser patches separated by
relatively large gaps. This is reflected in the biomass distribution (Fig. 7.4h) which displays larger
fluctuations than were observed for higher competition strengths. These fluctuations persist in
the average biomass distribution, which oscillates across the entirety of the abstract trait axis,
although the difference between maxima and minima is small at its midpoint. This indicates
the emergence of a regular pattern in the morph biomasses. The merging of trophic levels is
also reflected in the logarithmic bodysize-trophic level plot (Fig. 7.4k). Whereas previously the
relationship between logarithmic bodysize and trophic level was approximately linear, in these
webs a concave shoulder appears for logarithmic bodysizes between 5 and 7.

These changes become more pronounced as the competition strength weakens further (right
column in Fig. 7.4). In this case there are no distinct clusters of bodysizes, the trophic levels
intertwine and morphs of equal bodysizes can have different trophic levels (see Fig. 7.4f). Thereby,
network structure exhibits even larger variations and morphs of trophic level five can be found
in some ranges of the abstract trait axis. The averaged biomass distribution (Fig. 7.4i) becomes
increasingly inhomogeneous, with greater variation between maxima and minima and wider
peaks. Additionally, the concave shoulder in the logarithmic bodysize-trophic level plot (Fig. 7.4l)
becomes more pronounced. Within this range, trophic levels can hardly be predicted from
bodysize. The varying shape of the logarithmic bodysize-trophic level relationship, from linear to
almost stepped, provides a straightforward diagnostic of the regularity of the food web network
structure.

7.3.2.2. Evolutionarily dynamic food webs (Region III)

Evolutionarily dynamic food webs dominate in a roughly triangular region of the parameter
space, denoted Region III, at the lower end of feeding ranges and competition strengths where
communities with trophic structure are likely. A characteristic example is shown in Fig. 7.5. Three
distinct bodysize layers are present at all times, but the morph composition changes continuously.
Occasionally an additional unstable bodysize layer emerges, temporarily increasing the number
of morphs before it collapses again (see Figs. 7.5a-b). We refer to this phenomenon as an
evolutionary outburst. As shown in Figs. 7.5d-e, the positioning of morphs in trait space strongly
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Figure 7.5.: Characteristics of an evolutionarily dynamic food web (Region III). a: Temporal
behaviour of bodysizes, showing four evolutionary outbursts. b: Corresponding total number
of morphs as a function of time. c: Close up of the temporal development of the bodysizes
shown in (a), demonstrating the evolutionary downwards movement in bodysize (marked in grey).
d,e: Positioning of morphs in trait space and interaction networks, before (d) and during (e) an
evolutionary outburst. Time instances are marked by vertical lines in (a) and (b). f: Biomass
distribution along the abstract trait axis of the networks shown in (d) (grey) and (e) (blue), and
averaged over 100 simulation runs (black). Parameter values c0 = 0.005 and σz = 0.625 (see also
Fig. 7.2).
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differs before and during an evolutionary outburst. The waiting times between outbursts and
durations of outburst are described best by exponential distributions (Fig. 7.A.4). In addition to
evolutionary outbursts, we also observe cases where morphs decrease their bodysize progressively,
a phenomenon we refer to as evolutionary downwards movement. This movement can traverse
several bodysize layers (Fig. 7.5c). The biomass distributions for individual networks exhibit
small fluctuations, however the averaged distribution is nearly constant suggesting that these
fluctuations do not reflect an underlying structure (Fig. 7.5f).

To gain more insight into the two evolutionary phenomena, outbursts and downward move-
ments, we set up a system that can only contain a single predator and prey morph (Fig 7.A.2). In
this small community it becomes relatively easy to disentangle population dynamics and evolu-
tionary processes, leading in this case to the emergence of an evolutionary arms race. Assume
that the predator in this system has bodysize z1 and abstract trait value x1. The prey’s fitness
increases the further it is separated from the centre (z1−d,x1) of the predator’s feeding range
(see sketch in Fig. 7.A.2a). As such, over evolutionary time, the prey will evolve away from this
centre due to a sequence of invasions by more fit mutants. This, in turn, decreases the predator’s
fitness, and consequently, the predator follows the prey by the same evolutionary process. This
co-evolutionary process results in red-queen dynamics (Abrams, 2000; Rosenzweig et al., 1987;
Dommar et al., 2008) between the predator and prey morph, as shown in Figs. 7.A.2b,c.

In larger systems with several morphs, this process can result in local compaction of morphs
with similar bodysizes along the abstract trait axis. Morphs in the same layer generally optimize
their pairwise distance along the abstract trait axis to avoid competition. However, if the losses
of the prey morphs due to predation exceed the losses from increased competition, a coherent
evolutionary motion of prey morphs along the abstract trait axis can be induced. As described
above, predators will tend to follow this evolutionary movement, causing complex co-evolutionary
dynamics (Dommar et al., 2008) and giving rise to transient density fluctuations of prey morphs
in niche space.

This process can temporarily give rise to the formation of localised regions along the abstract
trait axis with unusual high biomass density across all bodysize layers. Whenever, such localised
regions are able to support larger morphs we observe the formation of an additional bodysize layer,
i.e. an evolutionary outburst. However, predation from this higher trophic layer subsequently
decreases the population density of the predators which drive compaction, which eventually
causes the return to a more uniformly distributed biomass distribution. With this reduction in
biomass density, larger morphs can no longer be supported and the evolutionary outburst collapses.
Increasing morph densities along the abstract trait axis, i.e. by increasing resource availability,
increases the duration of evolutionary outbursts and allows them to spread. Further increases
eventually result in the permanent establishment of a larger bodysize layer, which itself may
display evolutionary outbursts (not shown).

In a similar way, the phenomenon of evolutionary downwards movement can be explained
by the emergence of density fluctuations along the trait axis. As an alternative to following its
prey along the abstract trait axis, a predator can instead evolve downwards in bodysize to feed on
lower bodysize layers.
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When this occurs in a region of lower biomass (due to compaction), the downwards drift may
persist over a large number of evolutionary steps and traverse several trophic levels. If no other
prey are found, the downward movement will terminate when the morph is able to feed optimally
on the resource.

7.3.3. Transitions between community types

To study the transitions between community types in the different dynamic regions we now
consider two cross sections of the parameter map (see Figs. 7.2 and 7.6), along which the
parameters are varied separately. Along cross section I, the competition strength c0 is varied,
while the feeding range σz is fixed. Vice versa, for cross section II, σz is varied while c0 stays
the same. For each cross section we plot the frequency of occurrence of the community type
(Figs. 7.6a,d), the structure of the biomass distribution along the abstract trait axis (Figs. 7.6b,e),
and the bodysize distribution (Figs. 7.6c,f), each averaged over 100 realisations. We also include
a key indicating which community type dominates for a given parameter range in Figs. 7.6c,f for
ease of reference.

7.3.3.1. Cross section I: varying the competition strength

For small competition strength c0, the majority of communities are evolutionarily static and are
evenly divided between those with trophic structure and those without (Fig. 7.6a). However
a small increase in competition strength causes the frequency of occurrence for communities
with trophic structure to increase sharply and Region II is entered. As competition strength
increases further the frequency of such communities tends to decline and they are replaced with
communities with no trophic structure. The transitions, first to a region dominated by static
food webs, and then towards domination by communities without trophic structure appear to be
relatively smooth.

As originally observed in Region II, see Section 7.3.2.1, the average biomass distribution
undergoes a transition from heterogeneous to relatively homogeneous with increasing competition
strength (Fig. 7.6b). The differences in biomass distribution for adjacent competition strengths
are, for the most part, small, suggesting another smooth transition. The only exception is at the
lower edge of Region II, where there appears to be a sharp change in the biomass distribution.

Finally, the bodysize spectrum displays a number of interesting features (Fig. 7.6c). In
particular, for a given value of c0 the spectrum exhibits a regular structure, corresponding to
pronounced clusters of morphs at specific bodysize values. For varying values of c0 these clusters
form characteristic branches. We focus first on the branches that start at log bodysize values of
2 (bottom), 5 (middle) and 8 (top), reflecting the structure of a three trophic level network. All
branches are relatively broad, suggesting that the network structure is irregular. This suggestion is
corroborated by the weak (i.e. low frequency) branch that is emerging at a logarithmic bodysize
value of 6, which suggests that a four-level trophic network is present in some areas. As the
competition strength increases the top branch becomes weaker, the emerging branch becomes
stronger, and the middle branch disappears almost entirely. These changes reflect the transition to
a more regular network structure, see Section 7.3.2.1. Finally, at the upper boundary of Region II
the top branch disappears and shortly thereafter the middle branch reappears.

76



7.3. Results

Competition Strength c0

0.01 0.02

0.0

2.0

4.0

6.0

8.0

10.0

12.0

lo
g
B
o
d
y
si
z
e
z

0

0.2

0.4

0.6

0.8

1

F
re
q
u
e
n
c
y

0.4 0.6 0.8 1 1.2

0.0

2.0

4.0

6.0

8.0

10.0

12.0
lo
g
B
o
d
y
si
z
e
z

0

0.2

0.4

0.6

0.8

1

F
re
q
u
e
n
c
y

Feeding Range σz

I II IIII

0.0

0.5

1.0

F
re
q
u
e
n
c
y

Static

Dynamic

No Trophic Structure

II

0.0

0.5

1.0

F
re
q
u
e
n
c
y

Region II

Static

Dynamic

No Trophic Structure

0.0

0.2

0.5

0.8

1.0

A
b
st
ra

c
t
T
ra

it
x

0

0.01

0.02

B
io
m
a
ss

D
is
tr
ib
u
ti
o
n

F
ig

.
4
i

F
ig

.
4
h

F
ig

.4
g

0.0

0.2

0.5

0.8

1.0

A
b
st
ra

c
t
T
ra

it
x

0

0.01

0.02

B
io
m
a
ss

D
is
tr
ib
u
ti
o
n

F
ig

.
5

F
ig

.
4
h

a

b

c

d

e

f

Figure 7.6.: Model outcome along the cross sections through parameter space, shown in Fig. 7.2.
Left column: different values of competition strength c0 for fixed σz = 1 (cross section I).
Right column: different values of feeding range σz for fixed c0 = 0.005 (cross section II). a,d:
Frequencies of the different community types (indicated by colours) in repeated simulation runs.
The grey area marks the regime in which at least 50% of all networks have a trophic structure
(i.e., a maximum trophic level greater than 2.5). The bar above this plot indicates the region
of parameter space (Roman numeral) in which the parameter combination lies. b,e: Average
biomass distribution along the abstract trait axis, normalized by the total biomass. The averaging
was done as explained in the caption of Fig. 7.3. Vertical lines indicate parameter values for
which biomass distributions have been shown in Fig. 7.4 and Fig. 7.5. c,f: Probability density
function of log bodysize. For each parameter we averaged over 100 simulation runs.

The middle branch now corresponds to morphs in communities with no trophic structure which
can have relatively high bodysize, see Section 7.3.1. As competition strength increases further,
the middle branch becomes stronger, indicating the increasing dominance of communities without
a trophic structure (Fig. 7.A.5a).
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7. A new dimension: evolutionary food web dynamics in two dimensional trait space

7.3.3.2. Cross section II: varying the feeding range

For small feeding ranges σz, the system is dominated by communities without a trophic structure
(Region I) (Fig. 7.6d). As the feeding range increases, the frequency of occurrence of evolutionar-
ily dynamic food webs increases until the system reaches Region III. Next, these communities
become evolutionarily stable, and the system passes to Region II, as the feeding range increases
further. Finally, for large feeding ranges these communities lose their trophic structure and the
system returns to Region I.

Initially the average biomass distribution is homogeneous across the majority of the abstract
trait (Fig. 7.6e). As the feeding range increases, periodic structures of biomass emerge, initially
at the edges of the domain, but spreading with σz towards the centre. The differences between
maxima and minima increase significantly with σz, and the width of the oscillations increases
slightly. The transition from a nearly uniform to a structured biomass distribution is fairly smooth.

The bodysize spectrum shows fast transitions in the number of bodysize branches (Fig. 7.6f),
which occur close to the boundaries between regions of the parameter space (Fig. 7.6d). The
branches, corresponding to a single type of community, slowly become broader as σz increases.
There is also a trend towards increasing morph bodysize, until the transition back to communities
without trophic structure.

7.3.4. Drivers of variation in structure

We have observed that the communities generated by this model vary both in type and in their
internal structure. The mechanisms responsible for these variations are explained briefly below.

7.3.4.1. Emergence of community structure

The evolutionary assembly of a community occurs in a bottom-up manner. Originating from the
single initialized morph, new morphs with a similar bodysize spread by mutation events along
the abstract trait axis. As explained in Section 7.3.1, the bodysize range of the morphs in the first
bodysize layer depends on the feeding range σz and the competition strength c0. As the feeding
range increases, so does the range of bodysizes, since morphs are less strongly specialised. Large
competition strengths narrow the bodysize range, since morphs have to optimize the distance to
their prey to compensate competition losses.

After the bodysize layer is established over a region along the abstract trait axis, a second layer
can emerge if the competition strength and feeding range are in the right ranges. This occurs in a
similar way to that described above, a single morph increases its bodysize until it can feed on
a morph in the lower layer. The new layer then spreads across the abstract trait axis. The final
bodysize of morphs in the higher layer depends on the bodysize of their prey in the lower layer.
Therefore the variation in bodysize is passed from lower to higher bodysize layers.

Once all viable bodysize layers are occupied, the community can either become static or
dynamic. Static denotes that morph bodysizes and abstract traits become fixed, indicating that
no niches exist where a mutant can invade, while dynamic refers to a system with available
niches for new mutants and thus the community does never become static. The latter occurs
for small competition strengths and lower feeding ranges, invasions continue to occur, resulting
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in evolutionarily dynamic food webs. In this parameter range, the sensitivity of the interaction
kernels, α(·) and c(·), to variations in bodysize is relatively large (in comparison to the rest of
the parameter space).

7.3.4.2. Transitions in network structure and biomass distribution

The degree of order in the food web network is governed by the minimisation of competition,
while maximising the feeding input. On the one hand, a morph evolutionarily tries to optimise its
feeding input by maintaining an optimal logarithmic bodysize separation of log(d) and a minimal
distance in the abstract trait from its prey. On the other hand, morphs within the same layer
maximize their pairwise distance in trait space to avoid competition.

If the competition strength c0 is high, competition losses exceed the feeding input, and morphs
in the same layer increase their separation along the abstract trait. At the same time, optimization
of the feeding input is important to compensate competition losses. As a consequence, ordered
chainlike structures occur throughout the network. If the competition strength is lowered, feeding
inputs outweigh competition losses, allowing morphs to approach each other. The fitness land-
scape is relatively flat close to a resident, a wide range of traits are viable, and, as such, the first
invading morph fills the open niche and the network structure becomes irregular.

Increasing feeding range σz has a similar effect. For small σz, predators are highly specialised
and thus only a narrow range of mutant bodysizes are viable, resulting in a distinct network
structure. As σz increases predators become less specialised and the fitness landscape becomes
flatter, allowing a more irregular network structure. This irregularity along the abstract trait axis
spreads to higher bodysize layers, as described above.

When the trophic network structure is regular along the abstract trait axis the biomass in a
given region of the abstract trait axis is also regular, since the morph composition of a given local
region is consistent. However, the spacing of basal morphs can be slightly irregular, resulting in
a uniform average biomass distribution. For more irregular networks, the morph composition
of local regions varies, and consequently does the local biomass. This results in a structured
biomass distribution, with large biomass maxima separated by a characteristic interval.

7.3.5. Comparison to empirical data

To justify our model, we compare the resulting food webs to empirical data, collected from
50 lakes in the Adirondack region (Sutherland and of Environmental Conservation, 1989). To
compare food web topologies directly, we choose three common community characteristics for
comparison: number of morphs, maximal trophic level, and food web connectance (Fig. 7.7).
Since the model only considers a single resource, following Rossberg et al. (2006), we treated
all species of trophic level one in the empirical data as a single species. For each parameter pair
along the two cross sections described above (see Section 7.2.4) we collected 2000 simulated food
webs. This ensemble includes communities with a trophic structure (trophic level larger than 2.5,
Region II and III) and without (Region I). Therefore changes in the community characteristics
could be due to either changes in the ratio of occurrences of these types or due to a transition in
the food web structure itself. To separate these effects, we consider a sub-ensemble, consisting
only of communities with trophic structure, in the parameter range where at least 50% of all
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Figure 7.7.: Comparison of characteristics of empirical food webs with simulated networks
along the two cross sections. Left column: different values of competition strength c0 for fixed
σz = 1 (cross section I). Middle column: empirical data, collected from the Adirondack lakes
(Sutherland and of Environmental Conservation, 1989) using boxplots (whiskers extend to 1.5
times the interquartile range above and below the upper and lower quartiles.) Right column:
different values of feeding range σz for fixed c0 = 0.005 (cross section II). Along the cross
sections the dashed lines represent the median over the complete ensemble of all 100 runs per
parameter set. The grey area denotes the parameter regime in which at least 50% of all networks
have a trophic structure (trophic level larger than 2.5). Within this area we considered the trophic
ensemble, all networks with a trophic structure, and calculated the median (black curve) and the
first and third quartile (represented by the dark grey area). a,b,c: Total number of morphs, d,e,f:
connectance, and d,e,f: maximal trophic level. See text for further details.
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communities have such a structure (light grey area, Fig. 7.7). The median values of the community
characteristics chosen are plotted against the varied parameter values for the complete and trophic
ensembles (dashed and solid lines in Fig. 7.7). The interquartile range for the trophic ensemble
is plotted in dark grey and is directly comparable to the interquartile range (grey area) in the
empirical values of these characteristics.

The empirical food webs contain a median of 19.1 species, with an interquartile range between
14 and 25. For both cross sections the trophic ensemble is in good agreement with these values, as
is the complete ensemble for small feeding ranges (Fig. 7.7a-c). The median maximal trophic level
for the empirical food webs is 3.7 with an interquartile range between 3.1 up to 4.0. The trophic
ensembles along each cross section are also in good agreement with these values (Fig. 7.7g-i).

The median connectance of the empirical food webs is 0.20, with an interquartile range between
0.17 and 0.21. Along the parameter ranges shown here, our simulated communities have lower
median connectance (Fig. 7.7d-f). Only communities with two trophic levels and a small number
of morphs (see Fig. 7.3a) are in good agreement with the empirical values. However by combining
the maxima of both cross sections (larger feeding ranges, low competition strength) one can gain
networks with a higher connectance.

Finally, we note that the lower end of extreme values for each characteristic (the lower whisker)
tends to be in good agreement with the complete ensemble at the upper end of competition
strengths and feeding ranges. Empirical food webs with these features typically come from
lakes which are relatively poor habitats which, as such, are unable to support a large number of
species and high trophic levels. This situation would be most naturally represented by taking
a lower value of the resource input I. However the resource limitation could also be expressed
by high competition or a low feeding input (which results from relatively unspecialised feeding
interactions), so this similarity is reasonable.

7.4. Discussion

Existing evolutionary food webs models typically produce either static or dynamic food webs
(Loeuille and Loreau, 2005; Brännström et al., 2011; Allhoff et al., 2015a; Hartvig, 2011; Zhang
et al., 2014). In contrast, our extended model produces both types of behaviour, dependent on the
characteristics of morph interactions. Furthermore, even for food webs of a given evolutionary
type, change in these interactions affects the structural properties of the emergent food webs, a
phenomenon which has not been seen in many evolutionary food web models.

Our model framework allows us to describe a great variety of communities. This is important,
because ecological food webs also display a significant degree of structural, and to a lesser degree
dynamical, variety. Freshwater ecosystems have very distinct, hierarchical structures (Strong,
1992; Persson et al., 1992), while soil and marine ecosystems are often more amorphous (Polis,
1991). In addition, a variety of relationships between bodysize and trophic-level – or even the
lack of a significant correlation – is reported in empirical studies (Riede et al., 2011; Jennings
et al., 2002). While most empirical studies consider food webs to be constant over time, taxon
cycles have been observed in small trophic communities (Roughgarden and Pacala, 1989). Thus,
it is assumed that larger communities can also be dynamic (Ricklefs and Bermingham, 2002).

Since all of these behaviours are reproducible within our relatively simple model, it is possible
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to identify the model properties, and mechanisms, responsible for these differences. For example,
our finding that the relative importance of predation and competition is a key determinant of
food web regularity is supported by empirical observations (Holomuzki, 1986; Hebblewhite and
Merrill, 2009). Our model suggests that, in highly competitive environments, the pressure to
achieve optimal feeding relationships forces the formation of a very rigid food web structure.
In contrast, when competition is weaker, the food web structure is looser as the niches within
the community are less strictly defined. The degree of specialisation on a given prey type has a
similar effect, for the same reasons; we are not aware of a study which has previously made this
connection.

The primary technical difference between our model and its predecessors is the extension of the
trait space into a second dimension. As such it follows that this second dimension is responsible
for the increase in community diversity that we observe. We explain this as follows. In a one
dimensional trait space, for instance in the model of Loeuille and Loreau (2005), morphs feed on
all morphs in the lower trophic level (Allhoff and Drossel, 2013) and consequently the whole
community is linked, directly or indirectly, by feeding interactions. In a two dimensional trait
space this is no longer the case; if morphs are sufficiently far apart in the second dimension, then
they have only negligible influence on each other. This allows the emergence of local variation in
the food web structure. Additionally the expanded trait space provides morphs with a second
evolutionary strategy; in addition to maximising feeding input they can now attempt to avoid
predation (or equivalently search for higher densities of prey).

Previous work using evolutionary food web models has focused on the effects of trophic
interactions on community structure. However, recent empirical studies have highlighted the
influence of spatial factors on the structure of ecological communities (Amarasekare, 2008; Brose
et al., 2004; Dunne, 2009). While we have not explicitly included space in our model, it would
not be uncommon that the position on the abstract trait axis is associated to a spatial coordinate.
This might describe situations where the trait value corresponds to habitat choice or preference
for certain environmental characteristics, such as temperature, humidity, or altitude. In such cases,
the abstract trait axis can be naturally interpreted as a spatial dimension (e.g. geographic latitude),
with the abstract trait value corresponding to the spatial centre of a morph, around which the
latter is distributed with a width of σx. Consequently, the effects attributed to the second trait
dimension, localisation and avoidance, obtain a straightforward spatial interpretation.

On this basis, we can draw two conclusions about the dynamics of spatial community emer-
gence, in particular considering large spatial scales. Firstly, the spatial assembly (horizontal) of
food webs is faster than the trophic (vertical). We observe that a persistent predator can only
emerge after a contiguous region of space has been occupied by their potential prey. Prey in the
centre of this region can not avoid the predator evolutionarily, since it is confined by competition
with other prey populations. For a non confined prey, an arms race emerges between predator and
prey (Fig. 7.A.2) and the predator eventually focuses on the resource. Secondly, for evolutionary
static food webs, propagation of similar morphs across space follows the principle of “First come,
first served” (Munday, 2004; Burke et al., 2011). That is, the first viable morph introduced in a
spatial region establishes and determines the local food web. This is supported by the observation
that the lowest bodysize layer of our simulated food webs is irregular, even when morph feeding
is specialised (low feeding range). Thus, the theoretically optimal morph, with bodysize d, does
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not become established universally. This is a potential explanation for spatial species turnover,
that is the empirical observation that the species filling a given ecological niche vary across a
landscape (Gaston et al., 2007).

While the dynamics of community emergence are consistent for all food webs generated by
our model, the structure of these communities is more variable. As noted above the food web
structure is determined by the characteristics of morph interactions. However, in addition we also
observe variation in the distribution of biomass across the habitat. Furthermore, the variation
in trophic and spatial structures appear to be interdependent. Where the food web structure is
consistent across the domain, the distribution of biomass is relatively uniform, i.e. unstructured.
For varying food web structure however, the biomass concentrates into regularly spaced peaks.
This can be explained relatively intuitively, consistent food web structures are constructed from
similar subnetworks which consequently contain similar biomass. Where the food web structure
varies spatially, subnetworks contain a greater variety in number, and size, of morphs, and thus in
total biomass. Furthermore, as subnetworks increase in size, they impose greater competition
pressure on morphs in the surrounding space, thus reducing the biomass of adjacent subnetworks.
Spatial variation in food web structure and biomass distribution in homogeneous space have been
observed in empirical studies (Berg and Bengtsson, 2007; Ettema and Wardle, 2002; Saetre and
Bååth, 2000; Laverman et al., 2002), but the two phenomena have not previously been connected.

The dynamics of large communities are difficult to observe experimentally due to the time
scales and sampling effort involved (Mercedes and Dunne, 2005). Consequently studies of
such phenomena are largely theoretical. However, our results suggest that such dynamics arise
from the cumulative effect of interactions between small groups of species which can be more
easily studied. In particular, the primary driver of community dynamics in our model, is the
coevolution of predator and prey, red-queen dynamics (Abrams, 2000; Rosenzweig et al., 1987;
Dommar et al., 2008). In small communities this produces characteristic spatio-temporal patterns:
bodysize oscillations and spatial chasing (Fig. 7.A.2) which are also observed in experimental
studies (Holomuzki, 1986). In large communities these patterns combine to produce evolutionary
outbursts, that is the recurring emergence of higher trophic levels for a limited period. These are
similar to the trophic state cycling discovered by Takahashi et al. (2011, 2013) although, in our
model, they are not terminated by evolutionary suicide. Instead when the outburst collapses, top
predators reduce their bodysize until they are able to sustain themselves in an environment with
lower prey density.

The presence of evolutionary outbursts in a community indicates that energy flows from the
resource to the higher trophic levels are unstable. Note that the resources supplied are constant,
the instability lies in the community structure itself. As such, the temporary collapse of a
population of top predators is not necessarily an indication that a given community is endangered.
Nonetheless, we note that changes in resource availability or in species interactions, say due to
the introduction of an invasive species, can have similar effects.

One obvious criticism of the spatial interpretation of the second trait axis, is that species
dispersal typically occurs on a different time scale to evolutionary adaptation. However, resolving
these processes on separate time scales had little effect on the results obtained.

Other criticisms include the simplifying assumptions, such as the use of linear functional
responses instead of a more realistic multi-species functional response (Holling, 1959), or the fact
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that competition leads to biomass losses instead of being described as a time consuming factor
into the functional response (Beddington, 1975). As explained in the Model section, one major
motivation for these simplifications was to preserve the elegance of the model. By keeping the
model close to the original formulation in MacArthur and Levins (1967) and Loeuille and Loreau
(2005), our model naturally unifies the two seminal models that describe species interactions,
either competitive (MacArthur and Levins, 1967) or trophic (Loeuille and Loreau, 2005), from
species positions in niche space. Future investigations should consider these factors and explore
more realistic extensions, such as saturating functional responses. Nevertheless, the food webs
generated by this model are in relatively good agreement with empirical data.

In summary, we have shown that, by adding a second trait dimension, with spatial properties,
to the evolutionary food web framework, much more of the variety found in ecological commu-
nities can be described. Moreover, the framework remains simple enough to allow the factors
determining the type of community obtained to be identified. As such this model represents a
step towards a more general theory of ecological community assembly, structure and dynamics.
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Figure 7.A.1.: Frequencies of occurrence (indicated in grey shading) of the different community
types in repeated simulations, in dependency of the feeding range, σz, and competition strength,
c0 (compare to Fig. 7.2). a: Communities with no trophic structure, b: evolutionary static food
webs, and c: evolutionary dynamic food webs. See Section 7.2.3 for more details.
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Figure 7.A.2.: Predator-prey arms race. The system was parametrised (by setting I = 100,σx =

0.17,σz = 0.7,c0 = 0.001) so that it only contains a single predator (blue) and prey (red) morph.
a: Positioning of predator and prey morphs (circles) in two-dimensional niche space and sketch
of the feeding strength (solid line) and the prey’s fitness landscape in dependence of the value of
the abstract trait. Coloured shading indicates regions of negative (red) and positive (grey) fitness.
b,c: Evolution of bodysize and abstract trait of the predator and prey morph, demonstrating the
emergence of bodysize oscillations (b) and arms races (c). The predator is chasing the prey along
the abstract trait axis. It is even possible for this movement to change directions: If the predator’s
and prey’s abstract traits are similar, the mutational range can exceed the area of negative fitness
(red area in a) and a mutant can occur on the other side of the predator.
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which has a width of σx. b: The utilisation overlap I(·) between two morphs is given by the normalized overlap
(Scheffer and van Nes, 2006) of their utilisation functions:
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−∞
dx u2

i (x)
=

1
σx
√
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− (|xi− x j|)2

4σ2
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)
,

resulting in a Gaussian function with a width of
√

2σx. Right Column: Derivation of the competition kernel c(·) in two
dimensional trait space. c: Feeding kernels α(·) of two morphs in two dimensional trait space. d: Competition kernel
c(·), given by the normalised overlap of the bodysize feeding kernel cz(·) ∼

∫
∞

−∞
dx α(zi− z)α(z j− z), multiplied

with the overlap I(·) of their utilisation functions. This results in a two dimensional Gaussian. The competition ranges
are proportional to the width of the kernels of a single morph and are therefore no independent parameters.
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Figure 7.A.5.: Bodysize spectrum of communities with and without a trophic structure, along
the cross sections of the parameter space, shown in Fig. 7.2. The first column shows cross
section I (different values of competition strength c0, fixed σz = 1). The second column depicts
cross section II (different values of feeding range σz, fixed c0 = 0.005). For each parameter we
averaged over 100 simulation runs. a,b: Bodysize probability density function of communities
without a trophic structure. c,d: Bodysize probability density function of communities with a
trophic structure.
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8. Summary

“Your preparation for the real world is not in the answers
you’ve learned, but in the questions you’ve learned how
to ask yourself.”

— Bill Watterson —

We presented three independent studies each concentrating on different aspects of food web
assembly. Each of these findings was already discussed in the corresponding chapter. However,
we shortly summarise the main findings by answering the motivating questions of each chapter
introduced in section 4 and afterwards, we refer them to each other.

1) Question: How static is static? The objective of chapter 5 was to study evolution in food
webs, in particular evolutionary cycling. The latter seems to be a general phenomenon in
evolutionary food web models and therefore these findings support the existence of continental
taxon cycles (Ricklefs and Bermingham, 2002; Roughgarden and Pacala, 1989). In our study
evolutionary cycling –of single morphs and of complete food webs – is driven by the interplay of
trophic interactions, competition and feedback with the environment. Especially competition has
proven to be an important determinant of the evolutionary behaviour of a food web and we found
that strong competition between morphs can stabilise food webs evolutionary. Our results also
imply that the network structures of evolutionarily static and dynamic food webs do not differ and
therefore are not an indicator for the evolutionary behaviour of empirical food webs. However,
evolutionarily dynamic and static food webs react differently to (evolutionary) perturbations.
Answer: Evolution seems to be a constant factor in food webs.

2) Question: How do resources of different sizes influence food webs? The objective of
chapter 6 was to study the influence of multiple resources of different sizes on the assembly
of food webs. We find that different sized resources give rise to partitions within a food web,
which was also observed in empirical studies (Wardle et al., 2004; Fukami et al., 2006; Larios
and Suding, 2014). These partitions influence the total food web in two ways: Firstly, they
increase the variety of food web structures, since preimposed structures and hierarchical feeding
relationships are softened. Secondly, partitions can destabilise the population dynamics by weak
indirect interactions between predator and prey morphs. This leads to biomass oscillations
and evolutionary intermittence. Due to these significant influences, we conclude that adequate
resource descriptions, which are adapted to a specific food web type, are necessary to realistically
describe food web assembly.
Answer: Size structure in resources can lead to partitions in food webs.
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8. Summary

3) Question: How does a higher dimensional trait space influence food web assembly?
The objective of chapter 7 was to investigate food web assembly in two dimensional trait space
and to study the phenomena that occur due to the higher dimensionality. We found that an
additional dimension leads to a great variety in the evolutionary behaviour and also in the
network structure. This is important, since ecological communities also display this high degree
of variation. For instance, freshwater ecosystems have very distinct, hierarchical structures
(Strong, 1992; Persson et al., 1992), while soil and marine ecosystems are often more amorphous
(Polis, 1991). If the additional dimension is interpreted as space, our study has two additional
implications: Firstly, trophic and spatial structure are intertwined. Secondly, it suggest the
principle of “First come, first served” as an explanation for the high species turnover in space,
which is observed in empirical studies (Gaston et al., 2007; Burke et al., 2011).
Answer: Higher dimensionality increases the variety of food webs.

Up to now, all research chapters are considered completely disconnected from each other.
However, each chapter has implications, which affect the others. Chapter 5 implies that many
food webs exhibit evolutionary dynamics, which is supported by the the findings in chapter 7
and 6. They show that evolutionary dynamics can manifest in various ways.

In chapter 5, we find cycling of single morphs and also complete food webs. During these cycles
the food web structure stays unchanged. In chapter 6, we observe two additional evolutionary
states, which can co-occur. The first state exhibits predators that decrease their bodysize, since
they lost their prey, until they are able to consume the resource. This behaviour is similar to
single morph cycles and was also observed in empirical studies of taxon cycles (Taper and Case,
1992). The second state displays irregular cycling of the complete food web, which alters the
network structure. Therefore, these cycles differs significantly from the cycling of the complete
food web of chapter 5 The irregular cycling is more similar to predator-prey cycles, which are
found in empirical (Holomuzki, 1986) and theoretical studies (Takahashi et al., 2011, 2013).
Another, more subtle, kind of evolutionary state is found in chapter 6: evolutionary intermittence.
Evolution slightly changes the network structure – the network structure barely changes – but it
causes a transition in the population dynamics: the food web alternates between an static and an
oscillatory fixpoint.

Throughout all chapters, hierarchical feeding relationship were embedded in the used model:
morphs with a larger bodysize consume smaller sized morphs, which is supported by empirical
data (Riede et al., 2011; Peters, 1986). Intuitively one can assume that this feeding relationship
should result in food webs, in which the trophic level of morphs increases with bodysize. However,
we find that an additional resource or an additional trait soften the effect of hierarchical feeding
relationships on food web structure: in the same food web, morphs with smaller bodysize can
have higher trophic levels than larger morphs, or morphs with bodysizes that differ considerably
can be within the same trophic level, This results in a high variety of food webs structures, which
can be also observed in empirical data. In addition, a variety of relationships between bodysize
and trophic-level – or even the lack of a significant correlation – was reported in empirical studies
(Riede et al., 2011; Jennings et al., 2002).

The aim of this work was to study food web assembly and in each research chapter, we applied
different models to focus on conceptual questions. These models were kept minimalistic to be
able to understand the underlying mechanisms, however we argued their generality. Despite their
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simplicity, they revealed novel facts, which were interesting from an theoretical and also, more
importantly, from an ecological point of view, since they can be linked to empirical observed
behaviour. By combining these new insights, ecological more reasonable models can be set up,
which are at the same time minimalistic and allow to investigate the mechanism that lead to the
complex structures in nature.

In addition to this minimalistic approaches, conceptual ecological drawbacks, we developed a
model that corrects for many of the ecological shortages of the Loeuille and Loreau (2005) model
and incorporates additional evolutionary feeding traits for each morph (chapter appendix B). This
relatively complex model is able to produce food webs that are in good agreement with empirical
food web data. Thus, the model is a good candidate to investigate the conceptual questions in an
ecological more accurate model.

9. Future work and open questions

“Like any good shaman, professional baseball player, or
politician, my mother always answered questions with
questions.“

— Sherman Alexie —
Ten Little Indians

To understand the assembly of food webs, additional work is necessary and each research
chapter revealed new questions. Many were already addressed in length in each research chapter,
which we are not going to repeat here. Instead, we focus on the spatial interpretation of the
allometric evolutionary food web model introduced in chapter 7. First, we refer it to the spatial
meta-community concept and point out open questions that arose in chapter appendix A. Second,
we propose an extension of the allometric evolutionary food web model in two dimensional trait
space. Afterwards, we introduce ecological questions that the developed models can help to
answer.

Spatial interpretation: In chapter 7, we introduced an allometric evolutionary food web model
with an additional abstract trait axis. By interpreting the latter as space, the model can be used
to study the emergence of spatial food webs. This was done in chapter appendix A. Recent
studies discretised the spatial dimension by patches: each patch contains a single food web, which
are coupled via dispersal. This results in meta-communities (Leibold et al., 2004). Within this
meta-community framework the stability of spatial food webs, regarding the dispersal function
(Gramlich et al., 2015) and the patch topology (Ristl et al., 2014) was investigated and also the
emergence of complexity in spatial food webs (Pillai et al., 2010, 2011).

Furthermore, Urban (2010) emphasised the importance of the interplay of evolution of migra-
tion. Allhoff et al. (2015b) studied the interplay in a chain of coupled patches with each patch
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containing an evolving food web. Since metacommunities describe space only implicitly, while
the continuous model (chapter 7) allows to describe space explicitly, one should compare both
approaches with each other. Patch like structures can be produced by the continuous model,
which then can be compared to the resulting metacommunities. This can be used to point out
limitations of both approaches.

In chapter appendix A, it was shown that food web characteristics scale with spatial sampling
size. Similar effects are known from habitat size (Brose et al., 2004; Connor and McCoy, 1979).
In addition, we were able to show that a discrepancy between perceived and real food web can
occur for spatial inhomogeneous structures if the sampling size or the number of samples are
small.

The preliminary results also showed that one has to reconsider the morph definition in the
spatial context: represent two morphs of similar bodysizes, but different spatial positions, two
populations of the same morph, or are they fundamentally different? To answer this question,
the spatial scale has to be considered. For smaller spatial ranges, for example a lake ecosystem,
morphs of similar bodysizes can be identical, while on larger scales, for instance a continent,
these morphs are different. Therefore, the answer depends on the considered spatial range, which
changes the interpretation of the model.

Model Extension: Now, we are going to introduce a possible extensions of the allometric
evolutionary food web model in two dimensional trait space. The second axis was originally
introduced with the intention to describe space. We found that the single additional spatial
dimension has a significant influence. However, it is necessary to increase the number, since food
web habitats are either considered two dimensional, e.g. stream and terrestrial food webs, or three
dimensional, such as lake communities (Brose et al., 2004).

A second step is to substitute spatial mutations by diffusion. The ordinary differential equations
will become partial differential equations and the system turns into a reaction diffusion system.
For a fixed number of morphs, this was studied in great detail (Cantrell and Cosner, 2003), but
combined with adaptive networks approach (changing number of morphs), the behaviour of the
system is mainly unknown.

The evolutionary algorithm in bodysize can also be replaced by a drift term, given by the
master equation of adaptive dynamics (Dieckmann and Law, 1996). The set of partial differential
equation, reduces to a single one of higher dimension. The drift term, representing evolution,
would be anisotrop and dependent on the trait dimension. This system can be used to predict
evolutionary spatial-temporal patterns of biodiversity.
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Figure 9.1.: Research questions regarding the influence of habitat fragmentation. Figure a-c
consider the decrease of suitable habitat and possible ways to inflict food web assembly, while d
studies the loss of resources due to habitat fragmentation.

Ecological questions One of the main drivers of ecological change is habitat destruction, due
to human influence (Dirzo et al., 2014), leading to an immense loss in biodiversity. Habitat
destruction can occur in several ways, for instance fragmentation of landscapes, or loss of suitable
habitat and vital resources. Each motivates a different research question: how does fragmentation
influence an existing food web (Fig. 9.1a), how does a partially destroyed ecosystem repair itself
(Fig. 9.1b), how does a food web emerge in a fragmented landscape (Fig. 9.1c) and how does a
food web react to the loss of a resource (Fig. 9.1d). The overall goal is to predict the necessary
conservation action to keep the food web in its current state. All of these questions can be studied
by applying the models introduced in chapter 6 or 7.
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9. Future work and open questions

Curtain Call

The aim of this work was to study food web assembly and to do so we focused on three conceptual
factors: evolution as a present element, influence of resources, and the effect of space; each
studied in a minimalistic model. However, we were able to explain phenomena that are observed
in empirical data. In addition, the resulting food web structures in chapter 7 were in good
agreement with empirical food webs. Consequently, each of these factors seems to be important
for food web assembly and therefore we conclude that these should be considered by future
approaches.

With this I want to thank the reader for his/her patience to
stick with me to the very end.
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Part IV.

Appendix





A. Spatial sampling: Influence on the
measured food web

In this chapter, we present preliminary results. They illustrate a useful application of the allometric
evolutionary food web model in two dimensional trait space (chapter 3.2) and point out potential
future work, which can build a bridge between theoretical and empirical studies of spatial food
webs.

A.1. Introduction

Species within a habitat have an underlying spatial distribution. This fact is often neglected when
considering food webs. Most empirical studies sample species over a certain habitat size and
reduce the description of food webs to a single dimension, such as bodysize or trophic level
(Dunne, 2009). Other studies neglect the trophic structure and focus on the influence of habitat
size on network characteristics. That is, how number of species (Connor and McCoy, 1979)
and number of links (Brose et al., 2004) scale with habitat size. However, studying network
characteristics in small spatial food webs is often problematic, since a small spatial sampling
size often corresponds to a decreasing sampling effort and therefore reduces the quality of the
measured food web (Martinez et al., 1999). A discrepancy occurs between perceived and real
food web.

To correct for this and to help to predict the spatial food web, theoretical models can be
used. Many different model approaches exist to describe different aspects of spatial food webs:
trophic meta-communities combined with patch occupancy models are used to study food web
complexity in space (Pillai et al., 2010, 2011); spatial implicit models were applied to investigate
the spatial influence on food web stability (McCann et al., 2005); and allometric evolutionary
food web models on patches (Allhoff et al., 2015b) and in continuous space (chapter 7) were used
to describe the assembly of spatial food webs. We refer to (Dunne, 2009; Amarasekare, 2008) for
a an extensive overview.

However, the influence of sampling size was neglected in many studies. Therefore, we use
the allometric evolutionary food web model introduced in section 3.2 and interpret the abstract
trait axis as a spatial dimension, to describe the assembly of spatial food webs. The objective of
this chapter is, (i) to consider the spatial structure of large food webs and (ii) to investigate the
influence of the sampling size on network characteristics.
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A. Spatial sampling: Influence on the measured food web

A.2. Model

The considered model includes one resource R and a varying number of evolving morphs
(i = 1, ...N). As stated in chapter 3, we use the term morph instead of species, since the
speciation process is not considered. Each of the morphs is characterised by two evolutionary
traits – logarithmic bodysize zi and its abstract trait xi – and a population biomass density Bi,
which varies due to interactions with other morphs. Since only neutral assumption were made
regarding the abstract axis, and more importantly interactions between morphs are stronger if
their abstract trait values are similar, the abstract axis can be interpreted as space with the abstract
trait value representing the spatial position xi of a morph. The spatial axis has a length of L, but
periodic boundary conditions are used to simulate an infinite range. The resource is continuously
distributed in space and has a bodysize zR = 0. For further information about the evolutionary
algorithm and the population dynamics, we refer to section 3.2.

A.3. Initialization and parameter values

The simulations are performed using the Sundials CVODE solver (Cohen and Hindmarsh, 1996)
in C++ with absolute and relative errors per time step set to 10−12. Most of the parameters
are set according to chapter 7: f0 = 0.3, m0 = 0.1, θ = 10−10, ∆z = log(2), I = 1000,e = 0.1,
σx = 0.05, ∆x = 0.08, α0 = 1.0. The spatial length L is set equal to 10, to produce larger spatial
food webs. For comparison, in the previous chapter L was equal to 1. To accelerate the build
up of the food web, we initialised each spatial unit length with one morph n of a logarithmic
bodysize zn = log(d) and a spatial position of xn = n−0.5 with n∈ (1, ...L), instead of initialising
the system with a single morph. This does not change the resulting network structures, since
the lowest bodysize compartment spreads faster than the higher bodysize compartments, which
emerge upon these (chapter 7). In addition, we decrease the interval between mutations to a value
of tm = 104. This increases the number of mutations, which is still sufficiently small, so that the
food web reaches a static fixpoint between two mutational steps.

A.4. Results

First, we consider the example spatial food web (Fig. A.1), which is used to investigate the
influence of spatial sampling size. The parameter are chosen in a way that the food web is
evolutionary static. The morph composition does not change after the initial build up (Fig. A.1a).
It consists of three bodysizes compartments that are separated by gaps (see histogram). The
compartments are blurred, since each contains a high number of morphs with similar bodysizes.
Morphs in the same compartment can have different trophic levels (Fig. A.1c), therefore the
trophic level does not strictly increases with bodysize (see chapter 7 for more details). Locally
the food web consists of food chains, but for increasing spatial range these chains merge and
the network complexity increases. The network structure differs along the spatial axis, since
the maximal trophic level (Fig. A.1d) varies in different spatial regions. This irregularity is not
visible in the biomass distribution (Fig. A.1e). Peaks occur, representing localised food chains, in
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Figure A.1.: Considered spatial food web. a: Temporal evolution of bodysizes (right panel)
and bodysize-biomass histograms (left panel). b: Temporal snapshot of the spatial food web
during the assembly. The time point is marked in a. Morphs within the second trophic level (red
circles) are distributed in space. Locally higher trophic level start to emerge. c: Final spatial
food web. d: Float (black) and integer (grey) maximal trophic level of the local food web. The
spatial sampling size ∆x is equal to 0.01. The influence of the sampling size is discussed in
Fig. A.2. The trophic level is calculated according to the flow-based trophic level (Williams
and Martinez, 2004). e: Total spatial biomass distribution of all morphs. It is assumed that a
morph’s biomass is distributed around it spatial centre xi, according to a Gaussian of width σx

(see Fig. 3.4). The feeding range σz is set to 1.1 and the competition strength c0 is equal to 0.005.
All other parameters are set according to section A.3.
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Figure A.2.: Influence of sampling size ∆x on food web characteristics. The sampling size
denotes the spatial range in which we collect morphs and construct the underlying food web.
For each sampling size ∆x, we collected 1000 networks from the food web shown in Fig A.1.
The number of collected food webs is equal to the number of discretisation points of the spatial
axis and we centred the sample intervals around these points. The network characteristics were
averaged over the collected samples (black lines, insets show curves on a logarithmic scale) and
in addition the characteristics of all sampled food webs are potted (grey). a: Total number of
morphs and fraction of observed morphs. The latter was calculated by binning the bodysize
axis (bin size ∆z = 0.01, bodysize interval [0 : 10]). Morphs in the same bin were considered
as identical, each bin presents therefore one possible morphs and the total number of possible
morphs depends on the bin number. The fraction of observed morphs is calculated by dividing
the occupied bins by the total number of bins. A fraction of one is not reached, since morphs
only occur within the bodysize compartments and bins in between can not be filled. To calculate
the following network characteristics the original morph definition was used (morphs that differ
in at least one trait value are different). b: Maximal trophic level. c: Connectance d: Total
number of links. e: Number of links per morph f: Fraction of realised diet: number of prey that
is consumed divided by the potential number of prey if only bodysizes are considered and the
spatial dimension is neglected.
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a certain distance to each other, but the amplitude shows no correlation with trophic structure.
In addition to the final network structure, one temporal snapshot of the spatial network structure

during the build up is shown (Fig. A.1b). In chapter 7, we already explained how food webs
assemble in this model, but in larger spatial food webs the visibility of these processes increases.
First, the lowest trophic level (red circles) spreads in space and only after the spatial region is
colonised, a higher trophic level can emerge upon it (blue circles). This level also spread in space
and higher trophic levels occur (grey circles).

Now we want to investigate the influence of the spatial sampling size ∆x – the spatial range
in which the food web is measured – on food web characteristics: number of morphs, maximal
trophic level, connectance, total number of links, average number of links per morph and fraction
of realised diet (Fig. A.2). Our findings show that all food web characteristics significantly vary
with sampling size.

The total number of links and total number of morphs increase linearly with sampling size
∆x, only for small sizes a deviation from this behaviour is visible. This is due to the fact that
the presence or absence of predators strongly correlate to their prey (Brose et al., 2004). If the
bodysize axis is binned and morphs within the same bin are considered as identical, the fraction
of observed morphs saturates with increasing sampling size. The probability to include a new
morph decreases with increasing sampling size.

The connectance and the fraction of realised diet decrease rapidly with sampling size, which
has two implications. First, connectance is lower in larger food webs. Second, if the spatial axis is
neglected and only bodysize is considered, as often done in empirical data, the bodysize gaps in a
morphs diet increase with sampling size of the food web. However both effects are overestimated,
due to the applied morph definition: Morphs in different spatial positions are not identical, even if
their bodysizes are the same. Therefore, with increasing sampling range, new morphs are added
constantly, which are due to the spatial distance not connected to previous morphs.

The variation in connectance and the average number of morphs is high in networks measured
with small sampling sizes, while for larger sampling sizes the variance decreases. A similar
behaviour occurs for the maximal trophic level, but with an asymmetric distributed around the
mean value. This asymmetry reflects the spatial variation of the maximal trophic level (Fig. A.1d).

A.5. Discussion, shortcomings and future work

This study is by no means complete. However, first conclusions are possible and problems that
have to be solved can be pointed out. We looked at a large spatial food web and sampled it in
space. We found that sampling size influences network attributes, as emphasised in other studies
(Brose et al., 2004; Connor and McCoy, 1979). In addition, our findings imply that for spatial
inhomogeneous food webs, which are measured with a small sampling size (smaller than the
spatial range of the variation) and a small number of samples, a discrepancy between real and
perceived networks can occur (i.e. due to the asymmetric distribution of the maximal trophic
level) (Martinez et al., 1999). To avoid this, either the sampling size, or the number of samples
has to be increased.

In addition to the example network, we also considered food webs that were produced with
different parameter values (σz ∈ [0.7,1.0,1.1], c0 ∈ [0.001,0.005,0.01]), with two simulation
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runs per parameter value. The relationship between food web characteristics and spatial sampling
size seems to be robust towards parameter variation. Only the absolute values change, as shown
in chapter 7. Nevertheless, additional simulation runs for each parameter set are necessary, to
show the generality of our findings.

One mayor point to consider in this study is the morph definition. Until now, morphs with
similar bodysize but different spatial position are considered as different. This definition is valid
for very large spatial scales, e.g. a continent. However on smaller spatial scales, for example
lakes, two morphs with a similar bodysize can represent two populations of the same morph. The
morph definition therefore depends on the interpretation of the model.

Applying one definition or another, significantly changes the dependency of the network
characteristics on spatial sampling size. For instance, the non-binned (in bodysize) number
of morphs increases nearly linearly with sampling size, while the binned number saturates
(Fig. A.2a). The latter seems to be in better agreement with empirical studies (Connor and
McCoy, 1979; Brose et al., 2004), but these studies also consider smaller habitat sizes. However,
introducing binning, limits the maximal number of possible morphs and affects the value of
all food web characteristics. Therefore, when applying this definition, one either has to adapt
the binning to empirical data, which is to some extend artificial, or one has to normalise both.
However, the functional relationship between food web characteristics and sampling size is not
influenced by this.

To conclude, the presented study can be used to investigate the scaling of food web characteris-
tics with sampling size. With this knowledge, food webs sampled over different habitat sizes can
be compared, without limiting the comparison to size effects. In addition, it can help to avoid
systematic errors, when measuring food webs with an unsuitable sampling size.
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Evolutionary food web model 
based on body masses gives 
realistic networks with permanent 
species turnover
K.T. Allhoff1, D. Ritterskamp2, B.C. Rall3, B. Drossel4 & C. Guill5

The networks of predator-prey interactions in ecological systems are remarkably complex, but 
nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In 
order to understand the mechanism driving the complexity and stability of such food webs, we 
developed an eco-evolutionary model in which new species emerge as modifications of existing ones 
and dynamic ecological interactions determine which species are viable. The food-web structure 
thereby emerges from the dynamical interplay between speciation and trophic interactions. The 
proposed model is less abstract than earlier evolutionary food web models in the sense that all three 
evolving traits have a clear biological meaning, namely the average body mass of the individuals, the 
preferred prey body mass, and the width of their potential prey body mass spectrum. We observed 
networks with a wide range of sizes and structures and high similarity to natural food webs. The 
model networks exhibit a continuous species turnover, but massive extinction waves that affect more 
than 50% of the network are not observed.

Classical models addressing the structure and stability of food webs are based on stochastic algorithms 
that produce structural patterns similar to empirically measured food webs1, such as the niche model2 
or the cascade model3. A more recent approach is to use the empirically found allometries of body size 
and foraging behaviour of individual consumers to predict the links between species on a more biological 
basis4.

However, real food webs are not produced by a generative algorithm, but have been shaped by their 
evolutionary history and show an ongoing species turnover. New species in a food web occur by immi-
gration and speciation, and species vanish due to extinction. Currently, the world faces one of the largest 
extinction waves ever, which is thought to be caused by anthropogenic drivers such as climate change 
and land use5. Even without human interference or other catastrophic causes, and apart from evolution-
ary suicide due to runaway selection6, biological extinctions occur due to intrinsic processes, i.e., the 
dynamic trophic and competitive interactions among species7,8. The stability of food webs in terms of 
resistance to extinction waves after a perturbation (such as the removal or addition of a species), thus 
also depends on the network structure of these interactions between the species9,10, and conversely the 
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network structure results from species extinctions and additions. Understanding the interplay of food 
web structure and stability has therefore been identified as one of the most important questions in ecol-
ogy11.

Over the last decade, several models were introduced that include evolutionary rules on a longer 
time scale, in addition to population dynamics on shorter time scales: The former enables new species 
to enter the system, whereas the latter determines which species are viable and which go extinct. The 
newly emerging species can be modelled and interpreted either as invaders from another, not explic-
itly considered region or as “mutants” of existing species. The emerging network structures evolve in a 
self-organising manner, giving rise to complex, species-rich communities even when starting from initial 
networks with very few species1.

A particularly simple and often cited evolutionary food web model was introduced in 2005 by Loeuille 
and Loreau12 and subsequently modified by several other authors13–15. Each species is characterised by 
its body mass, which is the only evolving trait. Feeding and competition interactions are determined 
via differences in body mass. The fact that body mass is an ecologically interpretable trait makes the 
results from this model easily comparable to empirical data. This major advantage has been pointed out 
in the review on large community-evolution models by Brännström et al.16. The evolutionary process in 
this model generates large networks that show an almost static behaviour, with clearly defined niches 
all of which are and remain occupied. Even if a newly emerging species is slightly better adapted to the 
resources and therefore displaces a species of similar body mass, it has the same feeding preferences 
and hence the same function in the food web, leading to a very low species turnover without secondary 
extinctions15. The network structure is robust with respect to various changes in the population dynamics 
rules, indicating that some simple, robust mechanism structuring these food webs is at work12,15.

Complex networks with a less rigid structure emerge in the evolutionary version of the niche model17. 
The model allows for the evolution of three traits instead of just one, namely the niche value, the centre 
and the width of the feeding range. Other authors describe a species in a more abstract way by a vector 
of many traits, as implemented in the matching model18,19 and in the webworld model20,21. Recently, 
also several individual-based models for evolving food webs were introduced22–24. The emergence of 
complex food webs in these models is highly nontrivial. Some past attempts to set up an evolutionary 
model lead to repeated network collapse instead of persisting complex networks25. Other attempts lead 
to trivial network structures, like simple food chains in the evolving niche model17 or a single trophic 
level in the webworld model21. In both models, adaptive foraging was required in order to obtain more 
complex networks.

Allhoff and Drossel15 suggested that an evolutionary food web model has to fulfil two conditions to 
be able to generate diverse and complex networks. First, it should allow for the evolution of more traits 
in addition to body mass in order to generate several possible survival strategies like for example spe-
cialists and omnivores. This idea is consistent with results from a recent empirical study by Rall et al.26, 
who found that predators of similar body mass differ significantly in their feeding preferences. Second, 
the evolution of each trait has to be restricted in order to prevent unrealistic trends, for example towards 
extremely small or large body masses or towards extremely broad or narrow feeding ranges. In this con-
text, the stabilising effect of adaptive foraging in previous models could be explained by the fact that a 
predator can focus on its most profitable prey without losing adaptation to other prey.

In this paper, we propose a new evolutionary food web model that includes the restriction of trait 
evolution in a more direct way. Similarly to the evolutionary niche model17 and supported by empirical 
data regarding the body-mass ratios of predator-prey pairs27,28, we characterise a species by three traits 
with clear biological meaning: its own body mass (which determines its metabolic rates), its preferred 
prey body mass, and the width of its potential prey body mass spectrum. The evolutionary rules in our 
model confine the traits within certain boundaries, without the requirement to include adaptive foraging.

The model most similar to our model is the one by Loeuille and Loreau12. It also has body mass as 
a key trait and a similar concept for setting the feeding preferences. Our model differs from the model 
by Loeuille and Loreau in the number of traits that characterize a species (3 instead of 1), the functional 
response (Beddington-deAngelis instead of linear), the competition rules (based on link overlap instead 
of body mass differences), the possibility of cannibalism and loops (included only in our model) and 
the resource dynamics. Moreover, we consider body mass ratios instead of body mass differences so 
that the body masses in our model spread over several orders of magnitude instead of only one. The 
bio-energetics of the species in our model follow well documented allometric scaling relationships29, 
leading to networks with realistic body-mass scaling relations that can be tested directly against empirical 
data.

We demonstrate the capabilities of our model by evaluating 18 common food web properties and 
compare them to a data set of 51 empirical food webs from a large variety of different ecosystems. We 
further use the well-known evolutionary model by Loeuille and Loreau12 as a benchmark to assess the 
quality of the predictions of our model. In principle, both models are able to produce diverse networks. 
However, we obtain a higher variability in the feeding preferences and survival strategies and therefore 
more realistic values for the corresponding network properties. Moreover, while the network structures 
of Loeuille and Loreau are static, species turnover and extinction avalanches occur naturally in our 
model.
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The Model
The model includes fast ecological processes (population dynamics), which determine whether a species 
is viable in a given environment that is created by the other species, and slow evolutionary processes 
(speciation events), which add new species and enable the network to grow and produce a self-organised 
structure. A species i is characterised by its body mass, mi, the centre of its feeding range, fi, and the 
width of its feeding range, si. These traits determine the feeding interactions in the community (see 
Fig. 1) and thereby the population dynamics. A summary of all model parameters and variables is given 
in table 1.

Population dynamics. The population dynamics follows the multi-species generalisation of the bio-
energetics approach by Yodzis and Innes30,31. The rates of change of the biomass densities Bi of the 
populations are given by
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is the rate of successful attacks of species i on individuals of species j, with the Gaussian feeding kernel 
Nij as shown in Fig. 1. The parameter hi is the handling time of species i for one unit of prey biomass, 
and cil quantifies interference competition among predators i and l32–34. It depends on their similarity, as 
measured by the overlap ( )∫= ⋅I N N d mlogil ij lj j10  of their feeding kernels, via
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Figure 1. Model illustration using 4 species . Species 3 (black triangle) is characterised by its body mass 
m3, the centre of its feeding range f3, and the width of its feeding range s3. The Gaussian function (black 
curve) describes its attack rate kernel N3j on potential prey species. Here, species 3 feeds on species 2 and 
1 (grey triangles) with a high resp. low attack rate. Species 1 and 2 are consumers of the external resource, 
represented as species 0 with a body mass m0 =  1 (white triangle). Also shown is the corresponding network 
graph.
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The normalisation of the competition with Iii was proposed by Scheffer et al.35 and accounts for the 
fact that the competition matrix is not symmetric. More specialised species exert a higher competition 
pressure than species with broad feeding ranges. The overlap Iil is similar to the niche overlap discussed 
by May36.

We assume that interference competition is significantly higher within a species than between differ-
ent species, e.g. due to territorial or mating behaviour. To account for this, we introduce an intraspecific 
competition parameter cintra and set cii =  cfood +  cintra.

Speciation events. Each simulation starts with a single ancestor species with body mass m1 =  100 
and feeding parameters f1 =  1 and s1 =  1, which is thus feeding on the external resource with its max-
imum attack rate. The initial biomass densities are B0 =  K =  100 for the resource and B1 =  m1 ⋅  ε =  2 ⋅  
10−2 for the ancestor species. The parameter ε is the extinction threshold, i.e., the minimum population 
density required for a population to survive. At each unit time step, species below this extinction thresh-
old get removed from the system.

A speciation event occurs with probability ω =  0.0001 per unit time. This is so rare that the system is 
typically close to a fixed point before the next mutation occurs. Then, one of the currently existing spe-
cies (but not the external resource) is chosen randomly as parent species i for a “mutant” species j. Thus, 
every species has the same probability ω/S to “mutate”, where S is the number of currently viable species. 
The logarithm of the mutant’s body mass, log10(mj), is chosen randomly from the interval [log10(0.5mi), 
log10(2mi)], meaning that the body masses of parent and mutant species differ at most by a factor of 2. 
The mutant’s initial biomass density is set to Bj =  mj ⋅  ε and is taken from the parent species.

The mutant’s feeding traits fj and sj are independent of the parent species. The logarithm of the feed-
ing centre, log10 fj, is drawn randomly from the interval [(log10(mj) −  3), (log10(mj) −  0.5)], meaning that 
the preferred prey body mass is 3 to 1000 times smaller than the consumer’s body mass, and following 
the results from Brose et al.27. The width of the feeding range, sj, is drawn randomly from the interval 
[0.5,1.5]. A small value of sj corresponds to a more specialised consumer, while a large value of sj char-
acterises a consumer with a broad feeding range and lower attack rates. A combination of large preferred 
prey mass fj and a wide feeding range enables a consumer to prey on species with a larger body mass 

parameter meaning

resource

 m0 =  1 body mass

 R =  1 maximum mass-specific growth rate

 K =  100 carrying capacity

 B0 biomass density

species i

 mi  body mass

 fi centre of feeding range

 si standard deviation of feeding range

 Bi biomass density

population dynamics 

 ej =  0.85 (0.45) assimilation efficiency for animal (plant) 
resources

 gij functional response of predator i on prey j

 aij attack rate of predator i on prey j

 = ⋅ .a m1i i
0 75 attack rate parameter

 = . ⋅ − .h m0 398i i
0 75 handling time of predator i

 cil competition on species i from species l

 cfood competition parameter for food

 cintra  intraspecific competition parameter

 = . ⋅ − .x m0 314i i
0 25 respiration rate of species i

evolutionary rules

 ω =  10−4 mutation probability

 ε = 2
104

initial population density of a new species and 
extinction threshold

Table 1.  A summary of all model parameters. The values of the population parameters are based on the 
work by Yodzis and Innes30. If no value is given for a parameter, it is variable.
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than its own. This enables the emergence of cannibalism and feeding loops. The fixed intervals keep the 
evolving traits in reasonable ranges and prevent unrealistic trends, following the results by Allhoff and 
Drossel15.

When testing the robustness of the model predictions with respect to the model details, we used 
alternative rules, where the probability for choosing a parent species is proportional to its biomass (sim-
ilar to the model by Loeuille and Loreau12) or to its inverse generation time − /mi

1 4 so that the mutation 
rate is proportional to the reproduction rate. Furthermore, we tested Gaussian distributions of mutant 
body masses around the parent with a standard deviation between 0.09 and 1. We used a cutoff at two 
standard deviations resulting in a maximum body mass factor between parent and daughter species 
between 102⋅0.09 ≈  1.5 and 102⋅1 ≈  100. The former describes local speciation events, whereas the latter 
describes species invasions from not explicitly modelled regions. We also compared the results to simu-
lations where the mutants body mass is drawn randomly from the interval [10−0.5,106]. Finally, with a 
similar approach, we also included heredity into the feeding parameters si and fi by combining Gaussian 
distributions around the parent’s traits with the above given mutation intervals.

Methods
The computer code for our simulations was written in C. We used the Runge-Kutta-Fehlberg algorithm 
provided by the GNU Scientific library37 for the numerical integration of the differential equations. 
Simulations were run for 5 ⋅  108 time units. For comparison, the generation time of the initial ancestor 
species with body size m1 =  100 is of the order of = ≈

.

.

10
x
1 100

0 3141

0 25
 time units.

The competition parameters cfood and cintra have a strong effect on the diversity of the emerging food 
webs. To obtain the network variability observed in nature, we performed computer simulations with 
all four combinations of cfood =  0.6 or 0.8 and cintra =  1.4 or 1.8. The time series of these simulations are 
shown in the online supplementary material. From each simulation run, we collected 80 food webs 
obtained after every 5 ⋅  106 time units from t =  108 to t =  5 ⋅  108, resulting in a total of 320 different 
networks. Due to the initial build-up of the network, the first 108 time units were not taken into account.

The structure of the emerging food webs is compared both to food webs produced with the model by 
Loeuille and Loreau12 and to empirical food webs. For the empirical data, we re-evaluated 51 of the 65 
food webs from different ecosystem types analysed by Riede et al.38 for which we had body-mass data 
for all species in the network (for the complete list see online supplementary material). For the model 
by Loeuille and Loreau, we evaluated the final network structures obtained with 75 combinations of 
different parameter values. Due to the static network structure, we could not obtain different networks 
from one evolutionary simulation. The niche width was set to = = . , . , . , . , .nw 0 5 1 0 1 5 2 0 2 5s

d

2
 and the 

competition strength to α0 =  0.1, 0.2, 0.3, 0.4, 0.5, similar to the original work. To get networks of com-
parable size we decreased the competition range, β =  0.025, 0.05, 0.075.

Both models use Gaussian feeding kernels with in principle infinite width to describe the feeding 
interactions, meaning that each species can prey on every other species. Thus, for analysis, very weak 
links have to be cut off in order to obtain meaningful network structures. In our networks, we removed 
all links that contribute less than 75% of the average link to the total resources of a consumer. This 
criterion is weaker than it might seem, because most of the links of a predator are very weak, and so is 
the average link strength. Our cutoff measure depends on both the attack rate and the prey’s biomass 
density. It thereby mimics unavoidable sampling limits in empirical food-web studies. For the networks 
produced by the algorithm of Loeuille and Loreau we used the cutoff criterion of the original work and 
removed all links with an attack rate that is smaller than 15% of the respective predator’s potential maxi-
mum attack rate, disregarding the prey’s biomass density. Since the value of the cutoff criterion is to some 
extent arbitrary, we report its effects on the predicted network properties in the online supplementary 
material. There we also show results obtained for the model by Loeuille and Loreau with our cutoff rule.

Results
A typical simulation run. A typical simulation run with the competition parameters cintra =  1.4 and 
cfood =  0.8 is shown in Fig. 2. After an initial period of strong diversification, the system reaches a size of 
approximately 60 species (panel (a)) on 3 to 4 trophic levels above the resource (panel (c)). The species 
form clusters of similar body masses, as shown in panel (b). New predator and prey species emerge pref-
erentially within these clusters: A prey species in a cluster experiences less predation pressure due to the 
saturation of the functional response of the predator, and the predation input of a predator is larger if its 
feeding preferences match such a cluster. Therefore, we observe a trend towards strong specialisation on 
these clusters, resulting in the following network structure. Species in the first cluster have a body mass 
of approximately 101, specialise on the resource and represent most of the second trophic level. Species 
in the second cluster with a body mass of approximately 102 −  103 feed either on the resource (TL ≈  2) 
or on the first cluster (TL ≈  3). Species in the top cluster with a body mass greater than 103 specialise 
either on the first or on the second cluster and therefore have intermediate trophic positions (3 ≤  TL ≤  4). 
Some species have even higher trophic positions due to cannibalism and loops.

The initial build-up of the network continues until the species in the top cluster are close to the 
extinction threshold. Once all clusters have emerged, the system shows a continuous turnover of species. 
We suppose the following turnover mechanism. Mutants with very few predators can occur occasionally 
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if their body mass is between two clusters and if the other species are specialised on the clusters. If 
such a mutant has viable feeding parameters, it can grow a large population and displace many other 
species at once, potentially even causing secondary extinctions. Examples for such extinction events are 
visible at t ≈  2 ⋅  108 and t ≈  4.3 ⋅  108. After an extinction event, the network rearranges, and temporally 
also species with broader feeding ranges appear, before the trend towards specialisation followed by an 
extinction event starts again.

Network evaluation and comparison. We compared 320 networks from our model with 51 empir-
ical networks and 75 networks from the model by Loeuille and Loreau12, see Fig. 3. Panels (a)–(c) show 
the distributions of body masses of all three data sets. The observed peaks in our simulated data corre-
spond to the body mass clusters mentioned before. The distance between the peak maxima is determined 
by the upper boundary of the mutation interval of the feeding centre. Single empirical food webs show 
a similar peak pattern (not shown). In contrast, the body mass distribution of the model by Loeuille and 
Loreau looks blurred, due to our choice of the niche width =nw s

d

2
. With smaller values of the feeding 

range s, the network structure is strongly layered and clusters of body masses that are multiples of the 
feeding distance d occur, where each species feeds on those in the cluster below and is prey to those in 
the cluster above15. We also observed that because we based the network structure on predator-prey 
body-mass ratios instead of body-mass differences, the resulting community-size spectra from our model 
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Figure 2. Network size, body masses and flow-based trophic positions60 of all species occurring during 
one exemplary simulation run with competition parameters cintra = 1.4 and cfood = 0.8. Panel (a) also 
shows the average network size and its standard deviation for 18 simulations with identical parameters but 
different random numbers. Body masses and trophic positions were plotted at every 25th mutation event. 
Network visualisations for the time points indicated by vertical lines are shown in the online supplementary 
material.
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follow empirical observations and theoretical predictions more closely than those from the model by 
Loeuille and Loreau, as shown in the online supplementary material.

Panels (d)–(f) show the distributions of trophic levels of all three data sets. Here, we use the 
short-weighted instead of the flow-based trophic level. This allows for better comparison with the empir-
ical data for which the population sizes are often not available. The comparison between the two models 
reveals the main difference between the two different cutoff rules. A link with intermediate attack rate 
to a small prey population represents only a small proportion of the predator’s diet, and is therefore 
neglected when using our cutoff threshold (75% of the average link). However, it is not recognised as a 
weak link with the cutoff rule by Loeuille and Loreau (15% of the maximum attack rate). On the other 
hand, a link with small attack rate to a big prey population (especially to the resource) is deleted in their 

Figure 3. Frequency distributions of body masses and short-weighted trophic level60, as well as the 
distributions of generality (number of prey species) and vulnerability (number of predators). The latter 
two are normalised by the average number of links per species. nm: 320 networks from 4 simulations of 
our new model with all four combinations of cfood =  0.6 or 0.8 and cintra =  1.4 or 1.8. emp: Average over 51 
empirical food webs. LL: Average over 75 simulations of the model by Loeuille and Loreau12. Note that panel 
(c) shows absolute body masses, since in this model all body masses are in the same order of magnitude. See 
Methods for more information.
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model. Thus, trophic levels are overestimated, whereas our model with our cutoff rule results in a quite 
realistic distribution.

Both models have difficulties reproducing the empirical distributions of generality (number of prey 
species) and vulnerability (number of predators), which are much broader than the distributions pro-
duced by the models (panels (g)–(l)). For the model by Loeuille and Loreau, the distribution results 
from the fact that the species in the model feed only on prey with smaller body masses. The situation is 
similar to the cascade model3, which also constrains predators to feed only on prey with a lower rank. 
Consequently, both generality and vulnerability cannot be larger than twice the average number of links 
per species. In our new model, the distribution of the vulnerability shows two humps. The first hump 
contains the carnivores in the higher trophic levels that feed on herbivores or on other carnivores. They 
have a high generality and a small vulnerability. The second hump contains the herbivores that feed on 
the resource. They are prey to many other species and hence have a high vulnerability.

We ascribe the differences between the models and the empirical distributions to the fact that both 
models have only one resource, which means that all herbivores feed on the same resource, whereas in 
empirical networks herbivores can have more than one resource. Furthermore, both models ignore the 
within-species body-mass distribution by assigning to each species a precise value of the body mass. This 
also narrows down the range of body sizes a species can feed on or is vulnerable to.

By analysing the 320 networks from the 4 simulations separately (see Fig.  4), we found two trends 
concerning the network size (panel (a)): First, the stronger the intraspecific competition cintra, the smaller 
are the population sizes and the more populations can survive on the same amount of energy provided 
by the resource. Second, the stronger the competition for food cfood is, the sooner species can displace 
others resulting in rather small networks with fast evolutionary species turnover.

Both models are able to produce networks of realistic sizes, but tend to overestimate the number 
of links per species (panel (b)) and hence the connectance (panel (c)). The effect is much larger in the 
model by Loeuille and Loreau due to their original cutoff rule. This also explains the high fraction of 
omnivores and the low fraction of top and herbivorous species (panels (d)–(f)), as well as the high val-
ues of the number of chains and the clustering coefficient (panel (o) and (p)) and the small value of the 
characteristic path length (panel (r)). In the online supplementary material, we show that the model by 
Loeuille and Loreau provides more realistic predictions when using our cutoff rule.

Both models fail to reproduce the maximum similarity (panel (q)), due to the same reasons that also 
lead to the narrow distributions of generality and vulnerability. For the remaining panels, the model by 
Loeuille and Loreau performs worse than our model regardless which cutoff rule is used. For example, 
the short-weighted trophic levels (panel (j)–(l)) are not only overestimated due to the cutoff rule, but 
also reflect the regular network structure. As mentioned above, these networks are layer-like structures, 

Figure 4. Network properties of four realisations with different values of the competition parameters. 
w/w: Weak competition, cintra =  1.4/cfood =  0.6. w/s: Weak intraspecific competition and strong competition 
for food, cintra =  1.4 / cfood =  0.8. s/w: Strong intraspecific competition and weak competition for food, 
cintra =  1.6 / cfood =  0.6. s/s: Strong competition, cintra =  1.6 / cfood =  0.8. emp: Average over 51 empirical 
food webs. LL: Average over 75 simulations of the model by Loeuille and Loreau12. See Methods for 
more information. Details on the calculation of these network characteristics can be found in the online 
supplementary material.
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where each cluster represents one trophic level. Since all clusters accommodate a similar number of 
species instead of heaving more species on lower levels like in our model, the mean trophic level is 
overestimated. Moreover, the model does not include cannibalism (panel (m)) and loops (panel (n)), for 
which our model provides good predictions.

Due to the evolution of three instead of one trait, we obtain more diverse network structures than 
Loeuille and Loreau. We observe a higher standard deviation of the generality, the vulnerability and the 
linkedness (panel (g)–(i)), reflecting different feeding preferences and survival strategies.

Robustness of the results against variations of the evolutionary rules. In order to ensure that 
our findings are no artefacts of the specific choice of evolutionary rules, we tested the robustness of our 
results against the changes outlined at the end of the model section. We found that making mutation 
probabilities dependent on biomass or body mass influences the time dependency of the network devel-
opment but leaves the averaged network properties, like the total network size, the distribution of body 
masses and the fraction of species or biomasses per trophic level, mostly unchanged. Also the trend 
towards strong specialisation with subsequent extinctions still occurs in these variants.

When changing the degree to which the parent’s body mass is inherited by the mutant, the main 
effect was that species turnover became slower with stronger inheritance. In this case it is less likely that 
mutants with body masses between two clusters occur, which have few predators and cause extinction 
avalanches. The probability for such mutants increases with a decreasing degree of inheritance, which 
is consistent with our oberservation that the body mass clusters appear to be blurred in case of a very 
low degree of inheritance. The same is true for randomly chosen body masses. However, we still obtain 
large, complex networks.

If the parent species i and the mutant j have similar feeding centres, fi ≈  fj, the initial build-up of 
different trophic levels and their recovery after an extinction avalanche is also slowed down. With very 
strong inheritance of the feeding centre, all species will focus on the resource and no mutant emerges 
with a feeding centre matching the first body mass cluster, leading to trivial structures with only one 
trophic level. If parent and mutant have a similar degree of specialisation, si ≈  sj, all species exert and 
experience a similar competition pressure. Thus, instead of one species displacing another, both popula-
tions stay small and hence more populations per trophic level can survive. However, small or intermedi-
ate degrees of inheritance in the feeding traits leave the network characteristics again mostly unchanged. 
The situation is different, when either the feeding range or the feeding centre is chosen from an interval 
around the parent’s trait without any body mass dependent constraint. In consistency with the predic-
tions of Allhoff and Drossel15, these variants lead to unrealistic trends and trivial instead of complex 
network structures.

Discussion
We introduced a new evolutionary food web model where the feeding links are based on body mass, and 
where species differ by body mass, feeding centre, and feeding range. By iterating population dynamics 
and speciation events for a sufficiently long time, we obtained complex networks, which show a high 
degree of commonality with empirical food webs. The new model is able to produce more realistic and 
more diverse network structures than the model by Loeuille and Loreau12.

Both models use a very similar approach of Gaussian feeding kernels to determine the interactions 
between the species, which by construction leads to perfectly interval networks. Following the results of 
Stouffer et al.39, we assume this to be a reasonable approximation. In contrast to the model by Loeuille 
and Loreau, the new model allows for cannibalism and loops, since the feeding range can extend to body 
masses larger than that of the predator. The species in our model can have different feeding preferences 
and survival strategies, due to the larger number of evolving traits in our model. This leads to a higher 
variability in network characteristics such as linkedness, generality and vulnerability, even though natural 
variability is still larger, which we ascribe to the facts that our model has only one basal resource and 
no body-size structure within species. We showed that an appropriate choice of the cutoff rule for weak 
links is essential for obtaining realistic results for connectance and trophic structure.

The increased number of evolving traits compared to the model by Loeuille and Loreau has also a 
large effect on the evolutionary trends. The networks show an ongoing species turnover and are subject 
to constant restructuring. The species in our model form body mass clusters and the evolutionary process 
is characterised by a trend towards increased specialisation on these clusters. Similar specialisation trends 
have also been observed in other studies15,17. We assume the following explanation for the continuous 
species turnover. The evolved specialists gradually replace less efficient species with broader feeding 
ranges that cover also the gaps between the body mass clusters. Those broad ranged species have the role 
of keystone species that stabilise the networks against the occurrence of large extinction avalanches40,41. 
In the absence of control by such predators, new mutants (or invaders) can find niches between two clus-
ters with very little predation pressure, where they can grow to high abundance and cause extinction ava-
lanches propagating from lower to higher trophic levels. After such extinction events, the empty niches 
can be reoccupied also by species with broader feeding ranges, before the speciation process starts again.

This corresponds to the results of Binzer et al.8, who identified specialised species on high trophic 
levels to be prone to secondary extinctions, and to the results of Rossberg42, who suggested a very simi-
lar turnover mechanism for the results of his model. In consistence with the described mechanism, also 
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Mellard and Ballantyne43 reported that co-evolution of species does not necessarily lead to high levels of 
resilience for the ecosystem as a whole. However, such a turnover mechanism is missing in the model 
by Loeuille and Loreau. There, a displaced species is always replaced by a new species of a very similar 
body mass. And since the body mass is the only evolving trait, the new species has automatically the 
same predators and the same prey, excluding the possibility of secondary extinctions or major changes 
in the network structure15. The same is true for the model version by Brannström et al., which led to 
evolutionary equilibria, where no more mutants are able to invade the system14. Ingram et al. reported 
that also their model extension with evolving feeding ranges, but with fixed predator-prey body mass 
ratios, tends to reach dynamically stable configurations with little structural change13.

However, real ecosystems do show extinction events of different sizes, and their distribution evaluated 
over geological times resembles a power law44. For this reason, it has been suggested that ecosystems 
show self-organised criticality (SOC)45, which means that the intrinsic dynamics of the systems is respon-
sible for the power-law size distribution of extinctions. However, the question remains open due to sparse 
and ambiguous data46,47. Some previous evolutionary food web models, for example the evolutionary 
niche model17, exhibit SOC, whereas other models like the webworld model20 or the model by Loeuille 
and Loreau12 do not. The size distribution of extinction avalanches in our model is a power law with an 
exponent around 4 (not shown). Because of its steepness, this power law covers only approximately one 
decade, meaning that extinction events of more than 10 species are extremely rare. This is not the type 
of SOC required to explain the large extinction events in earth history, where up to 90 percent of all 
species went extinct. Regarding the time span a species is present in the system, our model is consistent 
with paleobiological data concerning the fact that higher trophic level species stay in the system for a 
shorter time span than lower level species46, although it should be mentioned that the exact distribution 
of these time spans in our model depends on the relation between a species’ body mass and its mutation 
probability.

The evolutionary rules implemented in our model are simplified and to some extent artificial. To 
make sure that our results do not depend on these simplified rules, we tested several variations concern-
ing the mutation and inheritance rules. Our general finding is that minor changes in the evolutionary 
algorithm have only minor effects on the results. The overall mechanism with a trend towards speciali-
sation followed by an extinction event as explained above is robust to changes in the evolutionary rules. 
Also the time averaged network structures remain mostly unchanged. However, the typical time period 
for a specialisation-extinction cycle can change with extinction events being triggered sooner or later.

The fact that our networks show realistic patterns concerning many common food web properties 
suggests that our model provides a valuable tool to discuss urgent topics in ecological research. For 
example, the allometric equations are extendable by temperature terms (e.g.48–51). This approach would 
allow to model how warming might change evolution and extinction waves, in order to discuss current 
global change questions.

Another idea would be to address habitat loss and habitat fragmentation as a prominent example of an 
external driver of extinction events52,53. Recently, various approaches have been made to study the influ-
ence of the spatial environment on the food web composition and stability. If space has the structure of 
discrete habitats, these food webs can be interpreted as “networks of networks”54,55. However, most of the 
studies on such metacommunities so far focus on spatial aspects under the assumption that the species 
composition is static, although it has been emphasised that combining the spatial and the evolutionary 
perspective is essential for a better understanding of ecosystems56–58. Recently, Allhoff et al. studied a 
spatial version of the model by Loeuille and Loreau59. However, their findings were associated with the 
applied competition rules and the remarkable stability of the original model, highlighting the assumption 
that a more dynamic species turnover as in our new model would lead to a better understanding of the 
interplay between evolving food web structure and spatial structure.
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