
Carl von Ossietzky Universität Oldenburg
Fachbereich Informatik

Dissertation

Power Modeling of Embedded Memories

Eike Schmidt

March 25, 2003

zur Erlangung des Grades eines Doktors
der Ingenieurswissenschaften

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2003/schpow03/schpow03.html

Gutachter/Supervisor:
Zweitgutachter/Reviewer:
Tag der Disputation:

Professor Dr. Wolfgang Nebel
Professor Dr. Norbert Wehn
10. Februar 2003

Synopsys and the Synopsys product names described herein are trademarks of Synospys, Inc.

c© 2002,2003 by Eike Schmidt

To my family

Abstract

After Moore’s Law the number of transistors on an integrated circuit doubles every 18 months. New
circuits are furthermore clocked with increasing frequencies. This development not only leads to an
increase of the available functionality, but also to a rise of the electrical power consumption of these
systems.

The power consumption of integrated circuits is problematic in two respects: on one hand the power
must be fed into the system, on the other hand the heat produced on the chip must be dissipated. An
increased power consumption consequently leads to reduced battery lifetimes and increased energy costs.
Today already 80% of the office related power consumption in the USA stems from computers. The heat
development of integrated circuits reduces their reliability and lifetime. The required cooling measures
(ceramic packages, heat fins, fans, etc.) furthermore increase the system cost.

For the development of low power systems it is necessary to estimate and consider the power consumption
already in the early stages of design. For such estimates models of the system blocks are required.

This thesis describes a methodology for the generation of models of the power consumption of embedded
memories. Memories have a special importance among the system blocks as it is forecast that more than
90% of the area of newly developed systems will be occupied by memory within ten years. In addition to
the requirements on models, like accuracy, speed and mathematically closed form the presented approach
specifically adresses the requirements on the modeling procedure. These are mainly the protection of
intellectual property and low modeling costs.

As a key point of the approach a method for the generation of nonlinear (signomial) models from
empirical data is presented. This regression based method allows the generation of piecewise model
functions, which can be used for optimisation through geometric programs. The presented models reduce
the prediction error by up to 95% compared to existing approaches.

v

Abstract

vi

Zusammenfassung

Nach Moore’s Law verdoppelt sich die Zahl der auf einem Computerchip integrierbaren Transistoren alle
18 Monate. Neue Schaltungen werden darüber hinaus mit immer größeren Geschwindigkeiten betrieben.
Diese Entwicklung führt nicht nur zu der gewünschten Zunahme an verfügbarer Funktionalität, sondern
auch zum Anstieg der elektrischen Leistungsaufnahme dieser Systeme.

Die Leistungsaufnahme Integrierter Schaltungen ist aus zwei Blickwinkeln problematisch: Zum einen
muss die Leistung dem System zugeführt, zum andere die entstehende Wärme abgeführt werden. Eine
erhöhte Leistungsaufnahme führt daher zu sinkenden Batterie- und Akkubetriebszeiten und erhöhten
Energiekosten. Schon jetzt entfallen 80% der in den USA in Büroumgebungen verbrauchten Energie
auf Computersysteme. Die Wärmeentwicklung von Integrierten Schaltungen reduziert ihre Verlässigkeit
und Lebensdauer. Die notwendigen Kühlungsmaßnahmen (Keramikgehäuse, Kühlkörper, Lüfter, etc.)
erhöhen zudem die Systemkosten.

Zur Entwicklung von verlustleistungsarmen Systemen ist es notwendig, die Leistungsaufnahme bereits
früh im Entwurf abzuschätzen und in Entwurfsentscheidungen einzubeziehen. Für solche Abschätzungen
sind Modelle der Strukturblöcke notwendig.

Diese Arbeit beschreibt eine Methodik für die Erstellung von Modellen der Leistungsaufnahme von
eingebetteten Speichern. Speichern kommt unter den Strukturblöcken eine besondere Bedeutung zu, da sie
in 10 Jahren voraussichtlich über 90% der Fläche neuentwickelter Schaltungen einnehmen werden. Neben
den Anforderungen an die Modelle, wie Genauigkeit, Geschwindigkeit und mathematischer Geschlossenheit
berücksichtigt der vorgestellte Ansatz insbesondere Anforderungen an den Modellierungsprozess selbst.
Dies sind hauptsächlich der Schutz intellektuellen Eigentums, sowie die Gewährleistung niedriger Model-
lierungskosten.

Als Kernpunkt der Methodik wird ein Verfahren zur Generierung nichtlinearer (signomialer) Modelle
aus empirischen Daten vorgestellt. Das regressionsbasierte Verfahren erlaubt die Erzeugung stückweiser
Modellfunktionen, welche über geometrische Programme optimierbar sind. Die vorgestellten Modelle
reduzieren den Vorhersagefehler um bis zu 95% verglichen mit bisherigen Ansätzen.

vii

Zusammenfassung

viii

Acknowledgements

First of all I would like to thank my supervisor Prof. Dr. Wolfgang Nebel for his trust and support. He
created the fruitful scientific environment that I was glad to share. I would also like to thank Prof. Dr.
Norbert Wehn for taking the time to review this document.

Let me express my gratitude to my colleagues at the OFFIS, the University and Chip Vision Design
Systems.. Special thanks to Dr. Gerd von Cölln, Dr. Lars Kruse, Ansgar Stammermann and Domenik
Helms for many discussions and insightful comments. And all the other people that shared their opinions
and advice, like project partners and the people at the Philips Natlab: thank you.

On a personal note I would like to say thank you to my family for the unwavering support and the vivid
interest during all these years. A special thank you to Nicole for giving me the space, the support and
the love to finish this work with many extra hours. I could not have done this without you. My apologies
to the friends that I neglected too long.

Last but not least my gratitude goes to my employer, the Kuratorium OFFIS e.V., for giving me
the opportunity to participate in the EU projects PEOPLE and POET in which the foundations of the
presented work were conceived.

ix

Acknowledgements

x

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

1 Introduction 1
1.1 Power Consumption . 1
1.2 Memories . 2
1.3 IC Design . 2
1.4 Design Automation . 3
1.5 Models . 3
1.6 Scope and Main Contributions . 4
1.7 Chapter Overview . 4

2 Power Consumption in Memory Circuits 5
2.1 Sources of power dissipation . 5
2.2 Classification of memories . 6
2.3 Block architecture . 7

2.3.1 Address Logic . 8
2.3.2 Read/Write Circuitry . 9
2.3.3 Auxiliary Circuitry . 9

2.4 Types of Memories . 9
2.4.1 Static RAM . 9
2.4.2 Dynamic RAM . 9
2.4.3 ROM . 10
2.4.4 Caches . 11
2.4.5 Register Files . 12
2.4.6 Trends in Memory Development . 12

2.5 Off-chip versus Embedded Memory . 13
2.5.1 Off-chip Memories . 13
2.5.2 Embedded Memory . 14

2.6 Memory Optimization . 14

3 Modeling 19
3.1 Introduction . 19
3.2 Statistical Basics . 20

3.2.1 Random Variables . 20
3.2.2 Experimental Designs . 20
3.2.3 Regression . 21
3.2.4 Interval Estimation . 22
3.2.5 Significance test . 22
3.2.6 Interpolation . 23
3.2.7 Error measures . 24

xi

Contents

3.2.8 Cross Validation . 25
3.3 Requirements . 25

3.3.1 Requirements on the models . 25
3.3.2 Requirements on the Modeling Process . 26
3.3.3 Specific Requirements of Memory Power Modeling 26

4 Related Work 29
4.1 Conceptual Modeling . 29
4.2 Empirical Modeling . 33

4.2.1 Interpolation Techniques . 33
4.2.2 Regression Techniques . 33

4.3 Eclectic Modeling . 34
4.4 Discussion . 35
4.5 Empirical methods . 35

5 Embedded Memory Modeling Methodology 37
5.1 Data Abstraction . 37
5.2 Data Acquisition . 38

5.2.1 Experimental Design . 38
5.2.2 Characterization . 39

5.3 Identification and Fitting . 40
5.3.1 Signomial Models . 41
5.3.2 Variable transformations . 42
5.3.3 Variable Selection . 45
5.3.4 Model Generation Algorithm . 45
5.3.5 Convergence and performance . 47
5.3.6 Relation to other work . 47

5.4 Validation . 48
5.4.1 Mathematical Measures for Quality of Fit . 48
5.4.2 Visual Inspection . 49
5.4.3 Criteria of Acceptance . 50

5.5 Iteration . 50
5.5.1 Piecewise Modeling . 51

5.6 Optimization . 56
5.7 Rounding . 58
5.8 Summary . 59

6 Implementation 61
6.1 ORINOCO Tool Suite . 61
6.2 ORINOCO BEACH . 61

6.2.1 Implementation Framework . 61
6.2.2 Tool Flow . 62

6.3 Model Integration . 64
6.3.1 Model Representation . 64
6.3.2 Operator-Model Relationships . 66
6.3.3 Dynamic Model/Estimator Interaction . 67

6.4 Summary . 68

7 Evaluation 71
7.1 Register Files . 71
7.2 Philips Embedded Memories . 76
7.3 LSI Embedded Memories . 80
7.4 DesignWare data path components . 82

xii

Contents

7.5 Discussion and Summary . 85

8 Summary and Conclusion 91

A ROM Instance Model 93
A.1 Introduction . 93
A.2 Cycle Related Power . 93
A.3 Output (De-)Activation Related Power . 94
A.4 Address Change Related Power . 94

B Characterization Metafile Format 97
B.1 Introduction . 97

B.1.1 EBNF-description of the metafile . 97
B.1.2 Summary of the Functionality . 98

C Pattern sequences for Register File Characterization 101

D Experimental Data 105
D.1 Philips SRAM . 105
D.2 Philips High Speed ROM . 107
D.3 Philips Low Power ROM . 109
D.4 LSI m11 111ha Embedded SRAM . 110
D.5 Wallace Tree Multiplier Module . 112
D.6 Sine Module . 113

List of Figures 116

List of Tables 117

Bibliography 117

Curriculum Vitae 131

xiii

Contents

xiv

1 Introduction

This chapter introduces and motivates the concept of memory power estimation and briefly describes the
scope and contributions of this thesis.

1.1 Power Consumption

Power consumption has become an important aspect in the design of computation intensive integrated
circuits (IC’s). Today it influences the feasibility and cost of designs and entire technologies such as third
generation mobile phones [37]. Consequently it has become a new dimension in the design cost space
complementing the traditional factors performance, area and testability. Power consumption affects the
design and use of IC’s in several ways. The different power related issues can be connected to two main
aspects: a) the energy consumed on the chip has to be provided and b) the energy is turned into heat
within the chip.

Table 1.1: Short and long term forecast of ASIC power consumption [65,66].
Year 2001 2002 2003 2004 2005 2006
Feature size/nm 150 130 107 90 80 70
MTransistors/chip 714 899 910 1020 1286 1620
Max clock /GHz 1.7 2.3 3.1 4.0 5.2 5.6
Min voltage/V 1.2 1.2 1.1 1. 1 1.0 1.0
Power (high)/W 130 140 150 160 170 180
Power (battery)/W 2.4 2.6 2.8 3.2 3.2 3.5

Year 2007 2010 2013 2016
Feature size/nm 65 45 32 22
MTransistors/chip 2041 4081 8163 16326
Max clock /GHz 6.7 11.5 19.3 28.8
Min voltage/V 0.9 0.8 0.7 0.6
Power (high)/W 190 218 251 288
Power (battery)/W 3.5 3.0 3.0 3.0

The necessity to provide power is a sensitive issue especially for mobile systems which are fed by batter-
ies. Battery lifetime as well as weight and volume influence product feasibility and customer acceptance.
Good examples for this category of applications are mobile phones, laptops and personal digital assis-
tants. For stationary systems energy cost is a factor that causes rising concern. According to estimates
done by the U.S. Environmental Protection Agency 80% of the total office equipment electricity is due
to computers [94]. Power consumption does affect circuit reliability. High consumption also means high
on-chip currents. These in turn impact signal integrity negatively (e.g. resistive voltage drops, ground
bounce) and trigger failure mechanisms, such as electro-migration and hot-electron degradation [120].

IC’s do not perform work in the mechanical sense. Instead all the energy fed into the chips is turned
into heat. Some modern ICs reach a heat emission of 30W/cm2 and more. It equals the heat energy
radiated by a 1200◦C hot material and ten times the heat density of an electrical stove [75]. High chip
temperatures, however, can reduce the system reliability. Every 10◦C increase in temperature roughly

1

1 Introduction

doubles the failure rate of components [112]. Cooling measures are hence commonly used to dissipate the
excess heat. These measures range from ceramic chip packages and heat fins, over fans to liquid cooling.
The choice of such cooling can drastically influence production costs. Aggressive cooling using fans may
furthermore affect customer acceptance, e.g. in home hifi and video.

The power consumption will be an even more pressing problem in future: with increasing chip integration
and operating frequency the power demands of systems are expected to rise further (cf. table 1.1). As
the supply voltage will drop in future technologies, the on-chip currents will increase even faster.

1.2 Memories

Memories play an important role in integrated circuits as they are used for both, intermediate information
storage as well as inter-block communication. The pace at which requirements of storage bandwidth and
storage capacity in systems increased has been higher than the progress in memory circuits. This has
rendered memory a bottleneck in many systems and made it a technology driver in the past decades
[110,111].

Table 1.2: Forecast of fraction of ASIC die area used for memory [65].
Year 1999 2002 2005 2008 2011 2014

%area new logic 64 32 16 8 4 2
%area reused logic 16 16 13 9 6 4

%are memory 20 52 71 83 90 94

In considering the power consumption of systems, memories are a crucial aspect as they can be respon-
sible for a major part of the total system dissipation. In the signal processing domain a share of up to
80% of the total power has been attributed to the memory subsystem [157]. It is generally expected that
the fraction of the total system taken by memories will further increase (cf. table 1.2). The major reason
for this is that embedded memory has a relatively small design cost per area in terms of manpower and
time to market. Another reason remarkably is related to power consumption: since the per area heat
development of memories is lower than that of logic, memory can be used to add functionality with a
smaller impact on the total heat.

1.3 IC Design

The design of integrated circuits is a complex process spanning several levels of abstraction. A macro based
top-down design flow is state of the art in most domains and will be assumed throughout this thesis. This
flow employs stepwise refinement and the mapping of functionality onto macro primitives. An exemplary
flow of this kind is described in the following [23, 114]: the flow starts with a system specification that is
divided into tasks. During hardware/software partitioning it is decided which of these tasks to implement
in hard- respectively software. Processor cores for the execution of the software are subsequently allocated
and communication mechanisms are defined, resulting in a behavioral level specification.

Algorithms are used to describe the circuit on behavioral level. No architecture is yet fixed for the
hardware blocks and timing is described for the outside behavior only. In the design flow the algorithmic
descriptions may undergo several transformation iterations (algorithm selection, optimizations). Subse-
quently the behavioral level synthesis steps scheduling, allocation and binding are performed producing a
structural register transfer level description (architecture). This description is a net list of macro blocks
(e.g. functional units like adders, multipliers, etc.) and registers. The timing is cycle accurate, values are
expressed as bit-vectors.

The RT net list is transformed into a gate-level net list during logic synthesis. This consists of the
substitution of RT level blocks by their gate level net lists, controller synthesis, logic optimization, re-
timing and technology mapping. The gate-level representation is a net list of cells, i.e. primitives of the
target technology. Timing is accurate, effects of placement and routing, however, can only be estimated

2

1.4 Design Automation

(e.g. wire-load models). Finally the gate net list is transformed into a layout. Layout synthesis consists
mainly of the steps floorplanning, placement and signal/clock/power routing. The result is a geometric
description of material layers on the die.

1.4 Design Automation

In reaction to the technology developments mentioned above systems on chip have increased in complex-
ity at dramatic speed. Due to this complexity and the importance of time-to-market, iterative design
cycles have become expensive. This situation has pushed the development of technologies to reduce and
shorten design cycles, namely re-use methodologies and electronic design automation. Two intertwined
key technologies in design automation are synthesis and estimation. Synthesis refers to the automated
execution of a design step subject to user defined constraints. Estimation seeks to predict the properties
of the synthesis results for a given design description. For the reasons mentioned there is a strong trend
towards entering an automated design flow as early as possible [114](see also table 1.3). The higher the
level of design, however, the more important is estimation: as the path down to layout gets longer, the
length of the feedback cycle increases and transparency of synthesis results is reduced. Hence design
space exploration greatly benefits by estimation approaches that allow to prune the design space with-
out synthesis. For power reduction it is important to take the power aspect into consideration as early
as possible in the design flow because the optimization potential sharply increases with the abstraction
level (see figure 1.1 left). Consequently it is clearly desirable to use the speed-up of high level estimation
technology to enable power oriented design space exploration (see figure 1.1 right). Furthermore, since
synthesis inherently means the solving of an optimization problem, including the power aspect into this
optimization can, although not yet state of the art in commercial tools, significantly reduce power without
manual intervention [95].

Table 1.3: Behavioral Synthesis Revenue (Millions of Dollars) [131].
Year 1998 1999 2000 2001 2002 2003 2004 2005

Revenue 13.1 10.5 7.8 9.4 11.2 34.5 58.0 79.8

1.5 Models

Models are a mathematical representation of the properties, e.g. the power consumption, of (circuit) prim-
itives obtained by abstraction. They form the basis for both power estimation and optimization/synthesis.
To incorporate memory power into the design space exploration, models for a wide variety of types and
brands of memories are needed. To suite a high-level design flow as sketched above, models must fulfill

Power reduction

opportunities

Power analysis iteration

times

D

e
c

r
e

a
s

i
n

g

d
e

s
i

g
n

i
t
e

r
a

t
i
o

n
s

t
i

m

e
s

System level

Logic level

Register-transfer level

Behavior level

Layout level

Transistor level

10-20X

2-5X

20-50%

seconds - minutes

minutes - hours

hours - days

I
n

c
r

e
a

s
i

n
g

p

o
w

e
r

s

a
v

i
n

g
s

D

e
c

r
e

a
s

i
n

g

a
c

c
u

r
a

c
y

Figure 1.1: Possible power reduction and design iteration times on different levels of abstraction [114].

3

1 Introduction

the speed, accuracy and pragmatic requirements of different abstraction levels. These requirements are
discussed in more detail in Section 3.3.

1.6 Scope and Main Contributions

Power estimation and optimization at high levels of abstraction (e.g. RT level and higher) have been a
focus of research at the research and development institute OFFIS and the Carl-von-Ossietzky University
in Oldenburg in recent years [78, 79, 81, 80, 82, 70, 71]. The behavioral level power estimation tool suite
ORINOCO has been developed as a result of several research projects [3, 107,108,132].

This thesis complements the previous work by incorporating memory power estimation into the ORINOCO
estimator. The main contributions are:

• A discussion of the memory power modeling problem.

• The definition of requirements on high-level power models.

• A new power modeling methodology for embedded memories, widely automating the modeling
process.

• A tool which implements the modeling flow. This tool has in the meantime matured to a commercial
product marketed as part of the ORINOCO tool suite.

• An interface concept for the integration of (memory) power models into the estimation/optimization
tool ORINOCO DALE.

• The evaluation of the methodology and tool using several practical examples.

1.7 Chapter Overview

The rest of this thesis is organized as follows: The next chapter briefly describes the physical aspects of
power consumption as well as the fundamental structures of embedded memories. Memory optimizations
are presented as an application field of models. Chapter 3 contains an introduction to statistical modeling.
It concludes with a catalogue of requirements on memory power models. In chapter 4 related work on the
topic is discussed. Chapter 5 presents the new memory power modeling methodology. The subsequent
chapter discusses the implementation of the modeling flow in the prototype tool ORINOCO BEACH and
the integration of (memory) models in an estimation tool. In chapter 7 the tool and flow is evaluated
using several practical examples. The thesis closes with a short summary and conclusion in chapter 8.

4

2 Power Consumption in Memory Circuits

This chapter begins with a description the physical origins of power dissipation and its effects. This
description is followed by a short introduction to semiconductor memories [110,111,52].

2.1 Sources of power dissipation

This section gives an overview of the physical sources of power dissipation. It is assumed that the reader
is familiar with the basics of electronics, transistors and circuit design.

Four sources of power dissipation can be identified in MOS circuits:

P = Pswitching + Pshort−circuit + Pleakage + Pstatic (2.1)

Pswitching refers to the power consumed for the charging/discharing of internal nodes. Pshort−circuit is
the power related to direct paths from VDD to ground that occur while a gate is switching. Pleakage is
due to currents flowing across off transistors. Pstatic is consumed by permanent power ground paths that
exist for example in pseudo NMOS circuits. In memories such paths are often found in sense amplifiers,
voltage and back-bias generators.

Though its share is expected to decrease, switching power is still the dominant factor (about 80% of
the total in logic circuits [120]). The energy drawn from the power supply to charge a node of capacitance
CL by Vswing can be computed as:

E =
1
2
· CL · VDD · Vswing (2.2)

With α the average number of transitions per clock cycle and fclk the clock frequency Pswitching now
becomes:

Pswitching = 1/2 · α · CL · VDD · Vswing · fclk (2.3)

Assuming full voltage swing (e.g. Vswing = VDD) this equation shows that switching power is quadratically
dependent on the supply voltage and linearly on the switching activity α and the load capacitance CL. The
load capacitance has three components: CL = Cgate + Cdiffusion + Cinterconnect. Capacitances between
the gate and source, drain and bulk are lumped into one capacitance Cgate to ground. Similarly the
diffusion capacitance between drain and bulk form Cdiffusion. Cinterconnect comprises of the capacitance
of the interconnect wire to ground and the cross-capacitances to other wires. It depends on the three
dimensional geometry of the circuit layout.

Unlike the switching power, short-circuit power is dependent on the slope of the input signal. For a
symmetric CMOS inverter the average short-circuit current can be derived as (see [120] [26]):

Imean = α · β

12 · VDD
· (VDD − 2Vt)3 · τ · fclk (2.4)

where β is the transistor strength, Vt the threshold voltage and τ the signal transition time. For more
complex gates the relationship is not as easily computed. Still the equation shows that leakage power
scales linearly with the signal transition times. In well designed logic circuits, short-circuit power can be
kept below 10% of the total power [26]. Short-circuit currents do normally not occur in dynamic circuits:
the pre-charge is turned off before the evaluation phase, preventing a conductive path. Memories in some
cases form an exception to this. Due to very tight timing margins pre-charge and evaluation phase may

5

2 Power Consumption in Memory Circuits

slightly overlap (e.g. for bit-line pre-charge and sensing). [96] show that in future low-threshold technology
short circuit-power can take up to 20% of the total power consumption.

Leakage power mainly stems from two mechanisms: reverse bias diode leakage and sub-threshold leakage.
Reverse bias diode currents occur when the drain-bulk voltage of an off transistor becomes negative and
a reversed diode is formed. The current is given by:

Idiode = Isaturation · (e
V

Vthermal − 1) (2.5)

where Isaturation is the reverse saturation current, V is the drain-bulk voltage and Vthermal = kBT/q (with
kB the Bolzman-constant, T temperature and q the elementary charge) the thermal voltage Vthermal(300◦

K) = 0.026V . The diode current is strongly dependent on diode voltage and temperature. Its contribution
to the overall power consumption is usually small, though. For a 1 million transistor chip, assuming an
average drain area of 10µm2 [26] report leakage currents in the order of 25µA at 25◦C.

The subthreshold current of a MOS transistor is given as:

Isubsthreshold = K · e
(Vgs−Vt)

(nVt) (1− e−
Vds
Vt) (2.6)

where K is a technology dependent parameter, Vgs and Vds the gate-source and drain-source voltages,
Vt the threshold voltage and n a parameter depending on the oxide thickness and the channel depletion
width. The subthreshold current is due to carrier diffusion between source and drain. It occurs when
the gate-source voltage is above the weak inversion point but below the threshold voltage. Subthreshold
currents have traditionally been negligible. They however depend exponentially on the threshold voltage.
At the transistor threshold (Vgs = Vt) approximately 0.14µA/µm gate width is dissipated [26].

In summary the dynamic currents (Pswitching and Pshort−circuit) presently dominate total power con-
sumption of systems. In memories however, where large parts of the circuit are idle for most of the time
and aggressive low voltage and high performance techniques are used Pleakage already is considerable. It
is expected that leakage effects will exceed the capacitive currents during operation around the 2GBit
memory generation [68].

2.2 Classification of memories

Storage media can be divided into mechanical (e.g. punch cards), moving media (e.g. hard drives) and
solid state [110]. The group of solid state memories contains the well established semiconductor memories
and the ferroelectric memories, which are just now turning into marketable products. As semiconductor
memories classify MOS (Metal On Silicon), bipolar and CCD (Charge Coupled Devices). The major types
of MOS memories are: dynamic random access memory (DRAM), static random access memory (SRAM),
read-only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable
ROM (EEPROM) including flash RAM and register file.

The following properties are important for the system environment and are thus used to qualify and
select memories:

1. Speed. The speed is defined by the clock frequency, read and write timing, latencies and bandwidth.

Memory Cell

Wordline

(Activation)

Bitline

(Data Access)

Memory Cell

Wordline

Bitline
 Bitline

Figure 2.1: Single ended and double ended memory cells.

6

2.3 Block architecture

2. Density. The storage capacity per chip area depends mainly on the type of memory cell and tech-
nology used.

3. (Re)programmability. Defines the expected number of writes possible during the memories lifetime.

4. Volatility. Volatile memories loose their content on power off.

5. External organization. External organization refers to the ways a memory can be accessed.

For a characterization of the memory types mentioned above with respect to these categories see table
2.1.

Memories can also be classified according to their role in the system context: Storage elements directly
in the data path are termed foreground memories in contrast to centralized off-data path storage named
background memory. Off-chip memories are distinguished from on-chip or embedded memories. While the
former come in discrete chip packages, the latter are integrated into the ”system on chip” using augmented
CMOS fabrication processes. A final distinction stems from data organization: As a compromise between
cost (in terms of timing, area and power) and performance memory is usually organized in a memory
hierarchy of several levels: Starting with small high-performance memories at the data path, higher levels
comprise larger, but slower memories. Cache memories specifically support the use in hierarchies by
dedicated hardware handling its interaction with the next higher memory. Scratch pad memory refers to a
small and fast on chip RAM with no correspondence in higher levels of the hierarchy and usually directly
under application control [98].

2.3 Block architecture

The core of MOS memories are the memory cells holding the stored bit values (see figure 2.1). A single
ended memory cell has one data in/output line, the more common double ended cells have two com-
plementary in/outputs. Each cell further has a select input. Although the internal cell structures differ
between memory types, the cells themselves are always arranged in two dimensional arrays (see figure
2.2). All select inputs are connected to word lines that run over the array horizontally. Bit lines cross the
array vertically and are connected to the cell data in-/outputs. Each cell consequently has a horizontal
(”column”, ”bit”) and a vertical (”row”, ”word” or ”x”) address. Modern memory commonly consist of
a number Z of such arrays or banks. The B bits belonging to a single data word are stored horizontally,
i.e. with identical word but different column address. Each row holds Y such B bit words and thus Y ·B
columns/bits. A bank consequently has a capacity of X · Y words (X · Y ·B bits) and the total memory
X · Y · Z.

Figure 2.3 shows a typical memory block structure. Thus structure and the functionality of its blocks
can be best explained following a memory access cycle: The cycle begins by the entering of the different
address parts (row, column and bank) into the memories address buffers. Subsequently the addresses are
decoded using n → 2n address decoders (where n is the number of address lines). The decoded bank
address is used to trigger the selected bank. One single word line is then activated according to the row
address connecting all cells of that row to their respective bit lines. Now the read/write circuitry can access
the cells using the bit lines. This block in turn communicates with the outside world via a read/write
bus running over all memory columns horizontally and respective data input/output buffers. The access

Table 2.1: Characteristics of MOS memory types [110].
Characteristic DRAM SRAM ROM EPROM EEPROM

relative cell size 1.5 4-6 1.0 1.5 3-4
volatile yes yes no no no
reprogrammable yes yes no no yes
write speed 30ns 5ns - 30min 10 ms
read speed 30ns 5ns 50ns 80ns 120ns
#erase/write ∞ ∞ 0 500,000

7

2 Power Consumption in Memory Circuits

Bit lines

Word

lines

Figure 2.2: Memory array containing sin-
gle ended cells.

Row

Address

Buffer

Row

Decoder

Column Address

Buffer

Block Address Buffer

Column

Selection

+

Decoder

Read/

Write

Circuitry

Read/

Write

Circuitry

Column

Selection

+

Decoder

Block Decoder + Selection

Read/Write Bus

...

...

Controller

...
Matrix 1
 Matrix z

Figure 2.3: Typical memory block struc-
ture.

sequences are coordinated by a control unit. In synchronous memories this unit is triggered by the clock,
in asynchronous memories by changes at the address/data inputs.

2.3.1 Address Logic

The address decoders are usually decoupled from the address inputs using address buffers. These buffers
reduce the input load and keep the addresses stable during the memory cycle. While latches can fulfill
these requirements, in high performance ”registered” memories registers may take their place offering
more flexibility in the memory I/O timing [111].

During read the data input buffers are disconnected from the internal bus using tri-states. Similarly
the data output unit also often incorporates a tristate buffer to decouple the memory from an external
data bus. Speed and area are the main requirements on address decoders. Commonly they are static (see
figure 2.4) or dynamic CMOS (figure 2.5), possibly cascaded into two or more stages. Power consumption
of decoders are usually dominated by the output drivers. The output loads of the row, column and bank

Address lines

Word line driver

A1

Input buffers

A0

C
 P

WL
 3

0
WL

WL
1

WL
 2

Figure 2.4: Statical Row Decoder.

Clock

Word

line

Word

buffer

V
DD

A

0

A
2

A

1

Figure 2.5: Dynamic Row Decoder.

8

2.4 Types of Memories

decoders are the row lines, the column select circuitry and the bank activation circuitry respectively. Since
the circuitry is symmetrical in respect to the address, power does also not vary significantly with address.

The column select circuitry selects one out of the Y horizontal words. It usually employs pass transistors
to connect the wanted columns to the sensing circuitry. The column decoders have no drivers and so only
their input load contributes to the power consumption.

2.3.2 Read/Write Circuitry

Due to the limited driving capability of memory cells and comparatively high bit line capacitancies the
voltage level changes observed at the bit lines during read are slow and possibly not full swing. Sense
amplifiers are therefore used to accelerate the read process: in the most simple case the amplification is
performed by inverter type buffers. For higher performance differential amplifiers are used. These circuits
amplify the voltage between the two complementary bit lines or, for single ended memories, between the
bit line and a reference line. Several variations of these circuits exist (e.g. figure 2.6). Power considerations
are complicated by the fact that sense amps are not full swing static CMOS. As they have a considerable
DC current, they are often used in pulsed mode. To ensure secure operation inputs and/or outputs are
usually equalized by shorting them during idle periods. Sense amps may be cascaded to achieve sufficient
amplifier gain.

For write accesses it is necessary to drive the bit lines plus the inputs of all deselected cells and one
selected cell. Simple buffers are used to perform this task.

2.3.3 Auxiliary Circuitry

Voltage generators are often used in memory circuits. A half-voltage generator enables VDD/2 bit-line pre-
charge. It usually has a DC current, so that pulsed mode is recommended. Charge pumps are employed
for boosted voltage generators that supply levels above VDD for driving the word lines in DRAMs. Back
bias generators use the same technique to avoid forward biasing of junctions (electrons are injected into
the substrate leading to dynamic circuit problems and reduced refresh times in DRAMs). Leakage control
also requires additional voltages [68].

2.4 Types of Memories

2.4.1 Static RAM

The static RAM is based on bistable transistor flip-flop cells. The most common type of SRAM cell
is depicted in figure 2.7. It consist of two cross coupled inverters that are decoupled from a pair of
complementary bit lines by access transistors. Variations of this scheme use passive loads, single bit-lines
or multiple ports.

During operation the cell is in one of two stable states, where points A and B have complementary logic
levels (A=1, B=0 or A=0,B=1). No refresh is needed and data is retained as long as the supply voltage
is on. On read or write the cell is connected to the bit lines by activation of the pass transistors through
the word line. The bit line connected to the ’1’ node is then pulled high, the one connect to the ’0’ node is
pulled low. Sense amplifiers are used to speed up the reading process by amplifying the voltage difference
between the two bit lines. SRAM read is a non-destructive process as the logic state of the cell remains
unchanged. For writing into a cell, the bit lines are charged to their target values and forced to stay there
while the cell is activated.

The main advantages of static RAM over dynamic RAM are higher speed, no need for refresh and lower
data retention current. Its main drawback is its considerably larger size.

2.4.2 Dynamic RAM

The DRAM memory cell consists of a storage capacitance Cs detached from its single bit line by an
access transistor. This transistor is in turn controlled by the word line (see 2.8). The charge stored in

9

2 Power Consumption in Memory Circuits

DL

P1
 P2

S

eq

DL

eq

SA

S

Figure 2.6: Sense amplifier.

Word

line

Bit lines

P1
P2

BL

N1
N2

N3
N4

B
 A

V
DD

C
BL
BL
C

WL

C

BL

Figure 2.7: Static RAM Cell.

the capacitance determines the logic value of the cell. Since it leaks away over time it is necessary to
refresh the state of the cells in regular intervals. For reading the cell, it is connected to the bit line (usually
pre-charged to VDD/2) by activating the access transistor. The cell capacitance then charges or discharges
the bit line producing a small voltage difference Vswing:

Vswing = (VMC − VBL) · Cs
CBL + Cs

(2.7)

where VMC and VBL are memory and bit-line voltage and CBL is the bit-line capacitance. Sense amplifiers
are used to produce a stable logic value from the small voltage difference. Since the charge state of the cell
converges to that of the bit line during read, reading is inherently a destructive process. As a consequence
sense amps must amplify the signal to full swing on the bit lines in order to write the original state back
into the cell during read. It is necessary to have one amp per column, because all columns of the selected
row are activated and not just the ones read. Writing happens in the same way as in SRAMs by charging
the bit lines to the target value and forcing it there during cell activation.

Each row has to be refreshed in regular intervals to ensure data retention. Refresh is similar to reading
from a row and can be controlled by external or internal controllers.

2.4.3 ROM

The content of ROMs is already defined during mask fabrication and not changeable afterwards. Two
types of ROM arrays exist (see figures 2.9,2.10): the parallel NOR and the series NAND ROM. NOR
ROMs are similar in structure to DRAMs: The word lines drive access transistors, that connect the bit

Read/write select

C
S

Bit line

Word line

Read/write data

Select transistor

Storage capacitor

Figure 2.8: Dynamic RAM Cell.

10

2.4 Types of Memories

Column

Select

Bit line(Read)

V
DD

Word

lines

V
DD
V
DD

Figure 2.9: NAND ROM Array.

Word

lines

Bit lines

Figure 2.10: NOR ROM Array.

lines to ground. During programming, these transistors are disabled for row/column combinations that
contain a zero (or one respectively). Between accesses the bit lines are pre-charged. During read they are
then discharged only if a working access transistor is present. In NAND ROMs the columns are intersected
by pass transistors that are controlled by the word lines. These transistors are replaced by a permanent
connection for row/column combinations that represent a zero (or one). For operation one end of the
columns is connected to VDD while the other is connected to ground. During read the pass transistors
of the not selected rows are activated, while the one of the selected row, if working, is deactivated. The
column can now only charge if no connection to ground exists, i.e. a blocking transistor is present in the
row/column.

While NOR arrays are larger than NAND arrays they have the advantage of being generally faster and
programmable later in the fabrication process.

2.4.4 Caches

Caches are motivated by a mismatch in speed capability of processors and memories. They are buffers
that hold selected information from larger and usually slower (’main’) memory. Therefore they represent
a compromise between cost effectiveness and performance. The selection of cache contents implemented
in different caching strategies is based on the assumptions of spatial and temporal correlation of memory
accesses. A cache memory is a special (SRAM) memory architecture:

A direct-mapped cache consists of several memories: a data RAM, a tag RAM and possibly a status
RAM. The data RAM contains several lines. Each line is a sequence of main memory contents. The
position of the line within the data RAM is the index. The index of a line usually coincides with the
final bits of its main memory address. The index of a certain main memory line is therefore uniquely
determined. This does not hold vice versa: several memory lines can be mapped to one index. The tag
RAM therefore stores the address of origin of each cache line (minus the index part).

A cache read access therefore consists of the following steps: select the index part of the access address.
Read the tag RAM at index. Compare access and tag address to find out wether the cache line is from
the right part of the main memory. If the cache line matches (’cache hit’), read the cache line from the
data RAM. If it does not match (’cache miss’), remove the current content and read in the correct cache
lines from main memory. N-way set associative caches consists of N tag and data memories. A specific
line can be loaded into any of these. Consequently, all of them must be searched in parallel during a read
access.

When introducing redundant information in form of a cache it must be ensured that both, cache and
memory stay coherent. This becomes important, whenever the cache is written. The two most common

11

2 Power Consumption in Memory Circuits

techniques to handle this situation are write-through and copy-back. In the write-through strategy each
write is not only performed to the cache, but also to the main memory. When copy-back is used, data is
modified only in the cache. That makes it necessary to copy the cache line back to main memory when it
is removed from the cache. This copying must however only be conducted for lines that were changed, or
dirty. Copy-back caches therefore store a flag for each cache line, indicating whether it is clean or dirty.
These flags are contained in the status RAM, which is often merged with the tag RAM.

2.4.5 Register Files

While single registers have the advantage of speed and easy integration into the data path, timing and
area scale sub-optimally with the number of registers used. This is the main reason for using dedicated
memories as described previously. Registers files are a compromise between dedicated memories and
registers. They consist of ensembles of registers that share access lines and the address logic [38]. Modern
register files do also employ RAM cell technology. Register files are often used where storage capacity of
intermediate size is required (i.e. a couple of words).

Figure 2.11 shows a simple flip-flop based register file of depth (i.e. number of words) 4 and a bit-width
of 1. The content is stored in the D-flip-flops visible in the center. As each flip-flop permanently drives its
content to the outputs only a multiplexer is needed for the read access. This multiplexer simply selects
the desired flip-flops output. With each clock the flip-flop captures the input. Therefore the output must
be fed back to the input during idle cycles. Multiplexors select between this output value and new write
data for a write access. The multiplexors are controlled by the write enable and the respective decoded
write address. The decoded write addresses are supplied by a decoder block. This block is not necessary
for the read address because the decoding is performed by the output multiplexer.

As the flip-flops are active even during idle cycles, this type of register files has a considerable standby
power. During asynchronous read accesses the circuit is virtually idle. As all flip-flops drive their content
at the outputs continuously, the only active parts of the circuitry are the output multiplexors. This
leads to very small power consumption during read (about one order of magnitude smaller than write
in the register file evaluated in chapter 7). The bottom side of this is, that the decoding units of the
multiplexors take the majority of the power. These are complicated to model, as the input lines become
highly correlated within the circuitry.

2.4.6 Trends in Memory Development

The traditional design goals area, performance and reliability as well as the newer goals like testability and
power consumption have led to a high amount of diversity in modern memory designs. Speed optimizations
usually target the I/O interface (e.g. access modes), the internal organization (e.g. banking, segmentation)
and the sensing speed. Area optimizations concentrate on the compaction of the memory array layout.
The main themes of cost reduction are testability (e.g. build-in self-test), redundancy and repair. Low
power design tries to reduce the supply voltage while keeping leakage currents at bay. The number
of techniques and architectures is so immense, that the subject cannot be exhaustively treated here
(e.g. [60, 61,145,146,1, 139]).

Overview articles and recent developments can be found in the following papers: [69,68] describe circuit
technology trends for low-power and low-voltage RAMs. A collection of papers on low-power SRAMs and
DRAMs including [69] can be found in [27]. [35] investigate low power techniques for ROMs. Segmentation,
special precharge techniques and data encodings are proposed. [62] give an overview of high-speed DRAM
architectures, like DDR SDRAM, virtual channel SDRAM, RAMBUS and SLDRAM. [5] analyze the
sizing of different decoders for performance and power. [55] compare divided bit line, pulsed word line
and isolate bit line SRAM architectures. [28] present ROM modules using four-phase high-speed pre-
charge/discharge dynamic CMOS logic. [2] investigate the problem of bit line leakage currents and propose
a compensation scheme. [51] compare different dual-VT architectures. [149] investigate current mode sense
amplifiers and introduce an augmented architecture. [76] suggest a current-mode SRAM writing scheme for
low-power. [140] present a state-of-the-art ultra low voltage high-performance embedded DRAM macro.

12

2.5 Off-chip versus Embedded Memory

Q

Q
SET

CLR

DS1

S2

D

C ENB

Multiplexer

Q

Q
SET

CLR

DS1

S2

D

C ENB

Multiplexer

S1

S2

D1

D4

ENB

Decoder

Write Enable

Write Address

Write Data

S1

S4

D

C2C1 ENB

Multiplexer

Read Address

Read Data

Clock

....

....

....................

Figure 2.11: Register file with 4 words of 1 bit.

The high number of techniques published make clear that it is potentially very difficult, if not impossible,
to find a single power model that can represent all state-of-the-art memories.

2.5 Off-chip versus Embedded Memory

Traditionally memory and logic have been situated on separate chips (off-chip memory). Process tech-
nology has developed independently for the two types of circuitry to optimize the performance of the
respective functionality. Memory technology focussed on capacitor concepts (DRAM), noise sensitivity
and yield optimization, while logic technology emphasized high transistor performance and large numbers
of interconnect layers. In recent years very large scale integration has made it possible to integrate memory
and logic blocks (embedded memory). Designers now have the option to use on and/or off-chip storage.

2.5.1 Off-chip Memories

The advantages of using off-chip memories are [74,147,53,105]:

• Expansion: Memory sizes are easily expandable (by replacement with a bigger chip).

• Test: Discrete memory chips are easier to test.

• Yield: Separating the system in several chips increase overall yield.

• Technology: The logic part of system can be fabricated in a pure logic technology.

• Fabs: More fabs are available (since no embedded memory process is required).

• Power: Memory power is not a contribution to logic chip power. By separating memory and logic
the per chip power consumption is reduced. Note that the overall power consumption is increased
by such a separation.

Off-chip memories are highly optimized for performance and/or capacity. Only a few different sizes
and options are available. Each memory constitutes an independent design. Due to the high market
pressure, off-chip memories rarely undergo technology scaling. New technology generations instead bring
augmented designs and increased capacity. The designs of different vendors differ significantly. As the
power is relatively independent of the actual memory size it is very difficult to generate a size dependent
model [24]. Power modeling should therefore be performed on a per instance basis.

13

2 Power Consumption in Memory Circuits

2.5.2 Embedded Memory

Several embedded memory technologies exist today constituting different compromises between logic and
memory technology. Embedded memory is becoming an increasingly important aspect of design [159] due
to the following advantages [74,147,53,105]:

• Power Consumption: As large board wire capacitive loads are avoided, it is possible to save several
factors of energy.

• Bandwidth: By far higher bandwidth and fill frequency (frequency with which the complete memory
can be filled) are achievable.

• Sizes: The memory sizes can be customized to the individual needs.

• Granularity: The memories can be better distributed along the circuit. In this way memory can be
placed where it is needed.

• Cost: The system cost is reduced due to smaller chip count and less pins. On the other hand more
expensive packaging may be needed as chip power increases. Furthermore several voltages might be
required.

• Electromagnetic Interference (EMI): Since less data has to be transferred less EMI is produced
resulting into an increase of reliability.

Embedded memories are usually generated by the memory vendors using a memory compiler. This
software is fed with the desired size parameters and in turn generates the layout by automatically placing
(normally handcrafted) leaf cells. Since memory designs are considered sensitive IP by the vendors, layouts
usually are not disseminated. Users are instead supplied with a different type of memory compiler. This
’user compiler’ assembles abstract memory views to enable the user to perform the design steps without
knowledge of the netlist/layout. Among these views may be power and timing specifications, behavioral
simulation models and possibly EDA tool specific abstracts (Synopsys DB files, LEF, DEF etc.). In the
design houses design space exploration as well as the complete design to layout is performed solely based on
these abstract memory views. Only at the waver fab is the memory layout supplied by the memory vendor
integrated into the layout of the surrounding logic. Power values delivered by user compilers are often
only rough specs. The inaccuracy of such specs is obscured by the fact, that more accurate information
is at no stage of the design available to the users. This thesis therefore presents a methodology for the
generation of accurate power models for embedded memories.

2.6 Memory Optimization

Memories can have a major impact on cost and performance of embedded systems. With the fast devel-
opment of processing units, the processor-memory performance gap still widens. This puts memory more
and more into the focus of system optimization efforts. Traditionally, optimization was based on a single
processor centric multi purpose system view (e.g. classical PC architecture). This has brought forth the
cache based memory hierarchy. A cache hierarchy is however only a compromise dealing with the fact that
the application and workload of the system varies and is not known in advance. In the embedded systems
domain much more can be gained: As the application running on the system is known at design time, the
memory subsystem can be tailored to suit the expected profile of code and data, reducing the costs. As
a consequence embedded systems contain a wide variety of customized non-traditional memory architec-
tures. Not only the memory system is part of the optimization process. As the code of the application is
available and can be modified, it is also a target of memory cost optimizations. The combination of both
targets, the memory subsystem architecture and the application, makes available an optimization space
with huge potential in cost savings. [21] for example report a factor 8.0 saving in the energy consumption
of an MPEG 4 video motion estimation kernel.

Optimizing an application and its implementation for low memory power is a problem far too complex
to be solved with a single isolated technique. A variety of approaches has therefore evolved which focus on

14

2.6 Memory Optimization

different aspects and are often used in combination. An integrated low-power memory subsystem design
methodology is only just evolving [24].

Platform-independent source to source transformations usually form the first step in memory power
aware design. These transformations have the following goals:

1. Elimination of unnecessary storage. The code of many applications contains data transfer state-
ments (e.g. assignments) that are not needed for its functionality. These assignments inflate the
optimization problem and are therefore removed.

2. Increase of data locality. Similar to hardware goods the reduction of time between production and
consumption of data results in reduced storage cost (temporal locality). Increasing spatial and
spatiotemporal locality enables more effective memory architectures (e.g. caches).

3. Increase of Regularity. Increasing the regularity of the code fascilitates subsequent optimizations.
More specifically, balancing the rate of production and consumption of data values makes it possible
to fold these actions and thus heavily increase temporal locality.

4. Unearthing of parallelism. Parallelism that is inherently in the code is often hidden, e.g. by loop
structures. Increasing the visible parallelism increases the optimization potential of later steps.

5. Increase of data reuse. When using a memory hierarchy, introducing value copies into the code
explicitly can prepare the mapping of such copies onto the levels of the hierarchy.

The above goals are usually pursued by loop and dataflow transformations. Most of these transformations
originate from the domain of (parallelizing) compilers. Platform-independent optimizations usually do
not reduce the storage cost themselves. Instead they increase the potential of the subsequent platform-
dependent optimizations.

Platform dependent-optimizations seek to find the optimal memory architecture in terms of power, area
and performance for the given application. This means deciding on how many memories to use of which
type (allocation) and also where to store which data (binding) and in which order to perform the accesses
(scheduling). Due to its complexity, the problem is broken into sub-problems many of which are solved
heuristically. A short overview of standard problems is given in the following (see [101] for a more detailed
discussion).

In order to reduce the area used for registers, register allocation tries to minimize the amount of registers
needed to store a given set of variables. Register allocation begins with a lifetime analysis of the variables.
Based on the lifetimes a conflict graph can be built, containing a conflict for every variable pair with
overlapping lifetimes. An optimal allocation is now a coloring of the graph with a minimal chromatic
number. Alternatively the problem can be cast into a network flow formulation [158]. As this is a
standard problem, a variety of approaches has evolved. [133] gives a good overview of existing techniques.

When separate registers are replaced by register files or memory modules, interconnect costs are reduced.
On the other hand the problem formulation above is in this case complicated by the fact that the number
of parallel accesses is now bounded by the available memory ports. Several ILP based approaches have
been proposed to solve this problem. So far, however, the considered costs only consist of the plain
numbers of ports and memories and do not include power considerations.

When two data values are accessed in the same cycle, they can be mapped onto the same memory only,
if it has multiple ports. As multi-port memories are expensive, the scheduling of accesses has great impact
on the system cost. To obtain a global cost optimum it would be necessary to consider scheduling and
memory allocation and assignment simultaneously. Unfortunately, this is intractable. Traditional design
approaches either assume that the allocation is fixed before scheduling or they perform the allocation
after the scheduling. Recognizing the importance of memory accesses more recent approaches try to
minimize the memory bandwidth during the scheduling phase. The most elaborate technique is proposed
by the IMEC institute [156]: a pre-scheduling step is performed on the memory accesses. This scheduling
produces a partial ordering of the memory accesses minimizing the number parallel memory transfers.
This serves as input both, to the data path scheduling and the memory allocation and assignment.

15

2 Power Consumption in Memory Circuits

For a given schedule the structure of the memory subsystem is defined by allocation and assignment.
Allocation determines the number, type and port configuration used, while the assignment decides where
data values are mapped. Both aspects influence each other and the cost of the solution. Memories
containing more data are bigger and therefore consume more area and energy. They have a tendency to
waste part of their capacity, as words of different bit-widths are stored. Monolithic approaches with one big
memory are hence sub-optimal in area as well as power. Scattering the data over many memories on the
other hand increases the relative cost of peripheral memory logic (e.g. address decoders) and interconnect,
leading again to increased cost. The optimum architecture for power as well as area therefore lies in
between these extremes. The minima are unfortunately usually not the same. A number of approaches
has been suggested to solve the allocation and assignment problem for different specifications and target
architectures. Many of these use or could use energy consumption models as part of their cost functions.

The memory packing problem concerns the question of how to realize a logical memory (as seen be
the designer) by physical memories under given constraints. Here it may be necessary to split logical
memories, when no physical memories with the required size and performance are available. In the
MemPacker utility this problem is solved by a branch-and-bound approach [73]. The MeSA algorithm
uses a clustering approach, grouping behavioral arrays into the same array [115]. [125] extend this idea
to two dimensional clustering, mapping several values onto separate bits of the same memory word. The
approach uses simulated annealing for optimization. [12] suggest application specific memories for the
power optimization of embedded systems. They apply the analytical power model of [72] to optimally
slice SRAM memories. A later publication extends this approach to the integration of a complete back-
end flow [11]. [100] suggests customizing the number of memory banks to the application. This involves
solving the problem of assigning arrays to banks. The HIMALAIA tool developped at IMEC combines the
pre-scheduling described above and an automated memory allocation and assignment step [24,142]. [129]
presents an alternative approach. The APEX algorithm described in [47] first performs a clustering
of access patterns and then explores memory architectures by mapping the patterns heuristically. For
assessing the power cost, a cache/main memory energy ratio is used. [126, 127] and [154, 153] investigate
memory optimizations and data-flow transformations for of MAP Turbo Coders. Multiprocessor systems
are the target of [88]. Integer linear programming is used here to minimize the access costs. The increasing
importance of leakage is recognized by the approach of [67]. They map basic blocks into instruction
memories with different supply and threshold voltages applying a greedy heuristic based on execution
count and size. They present their own analytical model (in essence scaling with

√
#words). The memory

subsystem power minimization problem gains another dimension, when power/performance tradeoffs are
considered. In a system consisting of several tasks this makes it possible to perform an energy aware cycle
budgeting. [22] presents a tool based on HIMALAIA, that produces cycle budget vs. power curves.

As was mentioned earlier, the size of memories has impact on both, area and power consumption. An
effective way to minimize the memory size requirement is to map several data values to the same address
space. This in-place mapping can be used between arrays or among values in one array. Of course a
liveness analysis is necessary to prevent conflicts. This analysis is far from trivial for arrays. For a more
in-depth discussion of this technique see [24].

Bus encoding is a general power technique trying to minimize the switching activity on system busses.
Because large busses usually occur in the memory subsystem, bus encoding is often used in the memory
context. An overview of techniques can be found in [99,101]. Another possibility to reduce the address bus
switching activity is to change the data organization in memory. [98] compare row-major, column-major
and tile-based accesses and find that tile-based organization leads to a 63% reduction in transition count.

In more traditional multi-purpose memory hierarchies, cache development is still the main driving force.
Recent approaches that consider the energy consumption are the following: [42] explore sub-banking,
multiple-line buffers and bit-line segmentation. They perform SPICE simulations. [63] use a simplified
version of the analytical power model of [134] to evaluate way-predictive caches in comparison to phased
caches. [9] suggest L0 caches and evaluate their results using the analytical power model of [151]. [103,104]
apply an analytical model proposed by [128] to show the efficiency of a mixed hardware/software technique
to reduce the required number of tag bits in loops. [64] present a technique to reduce the number of cache
tag comparisons within loops. [43,44] try to optimize a cache based system by considering cache and power
consumption simultaneously. A macro-model is built for the number of cache misses to avoid repeated

16

2.6 Memory Optimization

simulation. Apart from cache tradeoffs and innovative cache architectures a cache-friendly layout of data
in memory and the application of small dedicated scratch pad memories have been proposed [98].

The preceding paragraphs have documented that memory (power) optimizations can drastically reduce
the power consumption of embedded systems. They are therefore able to push the boundary of cost
and feasibility. The savings are achieved by one or several of a multitude of techniques. Many of these
require models for the power consumption of memories. Other, not yet power aware optimizations could
be augmented to use such models for even bigger savings. Supporting tools and integrated methodologies
for the memory optimization problem are currently evolving. These tools, techniques and methods will
be limited by the availability and accuracy of memory power models.

17

2 Power Consumption in Memory Circuits

18

3 Modeling

This chapter introduces the notion of modeling and explains basic statistical concepts used throughout this
thesis. It closes with a discussion of the requirements on the models and modeling process for application
in the context described in chapter 1.

3.1 Introduction

Models are a means to (approximately) describe specific aspects of a complex reality. They are abstractions
of prototypes, defined subsets of the real world. Mathematical models describe quantitative properties of
the prototypes and their relationships by mathematical equations. They are clearly defined and easily
communicated as well as analyzed using mathematical formalisms. When abstraction is applied or the
underlying mechanisms and relationships are not fully known, models will be subject to errors. These
may concern the form and/or the numerical values used. Statistical techniques should accompany the
model building (statistical model building) in this case to quantify expected errors.

Different approaches to model generation may be taken: the conceptual approach, also known as model
synthesis, is based purely on the theory of the area of application. The model arises from the theory
more or less naturally, while remaining degrees of freedom may be exploited to achieve favorable model
structures [45]. In the empirical approach, as the other extreme, the model is generated from an analysis of
empirical data without exploiting theoretical knowledge of underlying relationships. The eclectic approach
seeks to combine conceptual and empirical elements.

Model building usually consists of the following stages:

1. Data Abstraction. In many cases the observed quantities do not serve as model variables directly.
They merely undergo a transformation step to obtain a derived, more suitable, variable (e.g. com-
putation of Hamming distance from vector pairs). Data abstraction consists of the identification of
potential variables and their relationship to observables.

2. Data Acquisition. Data from the field of application is needed for the parameter estimation and the
validation. The availability, controllability and cost of such data has a large impact on the modeling
process.

3. Model Identification. The selection of a suitable mathematical representation. This representa-
tion describes the principle relationships and still contains abstract parameters instead of concrete
numerical values.

4. Fitting by estimation. Appropriate values for the parameters are chosen to minimize a selected error
measure. By this parameter estimation the model is fitted to the data. This stage moves from the
general to the specific numerical form.

5. Validation. The process of comparison of the model with the observed world is called validation.
Statistical techniques are use for the assessment of the model’s properties, its consistency and suit-
ability.

6. Application. Application is the ultimate purpose for which the model is required. Pragmatic con-
siderations influence all other stages.

7. Iteration. The concept of statistical modeling contains the computation and analysis of errors
throughout the modeling process. Should these errors proof to be unacceptably high at any stage,
the modeling process must be re-iterated.

19

3 Modeling

It has to be noted that these stages are usually not adopted in strict sequential order.

3.2 Statistical Basics

The modeling approaches presented in this thesis make extensive use of statistical techniques. This section
gives a short introduction into the fundamental principles and terminology used.

3.2.1 Random Variables

Statistical models are assumed to be subject to random disturbances. Random quantities such as these
disturbances are described by random variables. A formal mathematical definition of random variables
and the concept of ”probability” is technically complicated (for in-depth discussion see [46, 102]). The
intuitive meaning in this reduced context is however quite straight-forward: a random variable V is a
variable that can randomly take on any value v in its domain (write: V = v). The probability is the
likeliness of a specific outcome (write: P (V = v)). Let now V be a continuous random variable. Then
F : R −→ [0, 1], F (x) = P (V ≤ v), i.e. the probability that V is less or equal v, is the distribution function
and f(x) = ∂F (x)

∂x is the probability density function (in short pdf). The mean value or expectation is then
defined as:

E(V) :=
∫
v:f(v)>0

vf(v) (3.1)

The variance is given as:
σ2 = var(V) = E((V − E(V))2) (3.2)

V is called normally distributed if:

f(v) =
1

σ
√

2π
e(v−E(v))2/2σ2

(3.3)

Let Vi be a number of n independent variables. Then the sample mean is:

v̄ :=
1
n

∑
i

vi (3.4)

Likewise the sample variance:

s2 :=
1

n− 1

∑
i

(vi − v̄)2 (3.5)

It can be shown that if the Vi are independent random variables with the same mean E(V) and variance
σ2 and n→∞ the sample mean and variance approximates the distribution mean and variance, i.e.

E(v̄) = E(V) (3.6)
E(s2) = σ2 (3.7)

Furthermore if the Vi are normally distributed or n large, then v̄ is (approximately) normally distributed.

3.2.2 Experimental Designs

An experimental design is a subset of combinations of values of the random variables used for data
acquisition. Let levels(xi) the set of all values variable xi takes in a set of experiments. An experimental
design is then

design ⊆
∏
i

levels(xi) (3.8)

where
∏

stands for the cartesian product. In case of equality, i.e. design =
∏
i levels(xi), the design is

called factorial and the xi factors.

20

3.2 Statistical Basics

Example 1. Let the variables be x1 and x2. Then D = {(1, 2), (1, 3), (4, 2), (4, 3)} is a factorial design
with levels(x1) = {1, 4} and levels(x2) = {2, 3}.

Obviously the choice of the experimental design has a high impact on the quality of the resulting model.
However, even if the experiments are conducted specifically for the modeling, some of the variables may
not be directly under control. This problem can occur for example due to the data abstraction (see section
5.1).

3.2.3 Regression

Linear regression is a common statistical method for model fitting. Consider the following situation: a
dependent variable or response y, is to be modeled by a linear relationship that involves the k independent
or regressor variables xi and k+1 unknown parameters βi. Let y and xi be the vectors of the n observed
values of the respective variables. With ε the vector of errors:

y =

(
k∑
i=1

xi · βi

)
+ β0 + ε (3.9)

Model fitting now is the task of estimating appropriate regression coefficients β̂i to minimize the errors or
residuals ε = y − ŷ (where ŷ is obtained by substituting β̂i in eqn. 3.9). Let X be the matrix formed by
the vertical concatenation n-element 1-vector and the xi and β be the vector of the βi. Then the matrix
formulation is:

y = Xβ + ε (3.10)

The residual or error sum of squares is defined as:

SSE =
n∑
i=1

ε2i =
n∑
i=1

(yi − ŷi)2 = (y −Xβ)′(y −Xβ) (3.11)

The so called least squares estimate of β̂ which has minimum SSE can be obtained as follows: Thinking
of X as a linear projection matrix Xβ defines a subspace of Rn (expectation plain [7]). The closest point
β̂ to y has the property that the remaining error vector is orthogonal to this expectation plain, i.e.:

X′ε = X′(y −Xβ̂) = 0 (3.12)

The least squares estimate follows directly:

β̂ = (X′X)−1X′y (3.13)

The least squares estimate can be easily calculated using computers. It also has a number of desirable
statistical properties given the standard assumptions on all errors. Let ε the random variable of the errors,
with εi arbitrary observations:

1. E(ε) = 0.

2. var(ε) = const = σ2.

3. The εi are independent.

4. The εi are normally distributed.

5. The random variable ε and the regressor variable xi do not influence each other.

See [7], pp. 23-26 for a discussion of these assumptions. Taking them as true the following properties can
be guaranteed:

1. The least squares estimator β̂ is normally distributed.

2. E(β̂) = β. That is to say the estimator is unbiased.

21

3 Modeling

3. β̂ has the highest probability of all estimators (maximum likelihood).

4. Even if the errors are not normally distributed it follows from the Gauss-Markov theorem that β̂
has the smallest variance of all linear unbiased estimators.

Other types of regression
The assumptions for linear regression can also be written as:

η =

(
k∑
i=1

xi · βi

)
+ β0 + ε (3.14)

with

1. yi normally distributed with mean µi and variance σ2

2. µi = ηi.

If any single aspect of this formulation is changed (e.g. a different distribution is assumed), a generalized
linear model results. Robust regression is a technique specifically addressing distributions with a high
amount of outliers (“heavy tailed” distributions). Ridge Regression is used for models with interdependent
regressor variables. Linearizable models are models that are not linear, but that can be transformed into
a linear model.

Nonlinear regression models are of the general form y = f(X,θ)+z, where at least one of the derivatives
of the expectation function with respect to the parameters θ depends on at least one of the parameters.

3.2.4 Interval Estimation

When using regression models for prediction it is often of interest what errors to expect. Regression theory
gives the answer in terms of confidence intervals, i.e. intervals around the point estimate ŷ0 in wich the
true response lies with 1− α probability. The 1− α prediction interval at the point x0 can be computed
as:

ŷ0 ± tα
2 ,n−k ·

√
SSE

n− k
·
(
1 + x0

′(X′X)−1x0

)
(3.15)

Here tα
2 ,n−k is the upper α/2 quantile of the Students t-distribution with n− k degrees of freedom.

3.2.5 Significance test

During model building and evaluation (e.g. during variable selection, see below) it can be necessary to
assess the statistical significance of a term βt+1 · xt+1 (i.e. its “importance”) in a given regression model.
This statistical significance is expressed by the level of confidence in the associated coefficient βt+1 being
different from zero. The level of confidence is determined by testing the following statistical hypothesis:

H0 : βt+1 = 0 (3.16)

The probability of rejecting this hypothesis expresses the confidence in βt+1 differing from zero. The level
of confidence is of course dependent on the rest of the model. Let therefore Φ1 an arbitrary model with t
variables. Let Φ2 the same model expanded by βt+1 · xt+1. Under these circumstances the confidence is
determined using analysis of variance methods through the “partial F-test”:

F0 =
SSR2 − SSR1

MSE2
(3.17)

where SSRi is the regression sum of square and MSEi is the mean square error for model Φi. F0 follows
the Fisher F -distribution, so that we can reject H0 with probability 1 − p if F0 > Fp,1,n−t. The same
partial F-test can be applied either when considering to include new variables into existing models or
when considering to remove variables from models [92].

22

3.2 Statistical Basics

3.2.6 Interpolation

Interpolation is another parameter estimation technique. In contrast to regression it is a locally applied
technique: the model response is not determined by the complete data set, but only by the data points in
the neighborhood of the desired point. Less complex models than for regression are generally used. This
has mainly two reasons: a) an ill specified model has less impact and b) less data points are available
to fix the parameters of the model. When smoothness is not required (e.g. spline interpolation), linear
interpolation is usually employed. Linear interpolation can be formulated as follows:

Let pi the i-th row of matrix X, i.e. the x vector of the point of the i-th observation yi and p the point
to be predicted. Let N denote the set of indices of a given set of adjacent points. Then the goal is to find
a function:

ŷ = f({pi, i ∈ N}) (3.18)

The main problem here is to identify a meaningful set of adjacent points so that f becomes simple,
especially when the dimensionality of the pi, i.e. the number of variables, is high. Note that since this
neighbor identification has to be performed at model application, it is a performance critical step. Practical
solutions for this issue pose restrictions on the pi.

For evaluation purposes a state of the art linear interpolation algorithm is adapted [119]. To tackle the
neighbor identification problem this algorithm is restricted to factorial designs. Based on that simplifying
restriction appropriate adjacent points can be found as follows:

For every one of k factors xi with value x̃i find the adjacent levels, i.e. li ∈ levels(xi) (lower) with
∀m ∈ levels(xi) : m ≤ li ∨m > x̃i and ui ∈ levels(xi) (upper) with ∀m ∈ levels(xi) : m < x̃i ∨m ≥ ui.
When the sets levels(xi) are ordered, li and ui can be obtained by simple search algorithms. All possible
combinations of li and ui for every factor now represent points pj that form a hypercube around x (see
figure 3.1). Finding the appropriate points among the pj means finding a hyper-tetrahedra among the
pj adequately surrounding x. Rovatti et al. show that this problem can be solved by sorting: First, the
values of x̃i are normalized with respect to li and ui (xnormi = x̃i−li

ui−li). Then the xnormi are sorted.
Eventually the set of points is generated as follows: start with the “lower left corner”, e.g. (l1, · · · , lk). For
the next point change the dimension i with lowest xnormi to ui, e.g. (l1, · · · , ui, · · · , lk). Now continue
with the next bigger xnormj and so on. Repeat until k + 1 points are generated.
Example 2. Consider the following three-dimensional factorial interpolation table:

x1 = 0 x1 = 4
x2

1 3 5 1 3 5
0 0.2 0.4 0.6 1.2 1.4 1.6

x3 3 0.3 0.5 0.7 1.3 1.5 1.7
6 0.4 0.6 0.8 1.4 1.6 1.8
9 0.5 0.7 0.9 1.5 1.7 1.9

Let x = (3, 4, 5)t (see also figure 3.1). Then l1 = 0, u1 = 4, l2 = 3, u2 = 5, l3 = 3 and u3 = 6. The
normalization produces xnorm1 = 3

4 , xnorm2 = 1
2 and xnorm3 = 2

3 . The first point generated is then

X

1

X

2

X

3

1

2

3
 4

u

1
 l

1

u

2

l

2

u

3

l

3

Figure 3.1: Identification of adjacent points for interpolation.

23

3 Modeling

the left lower corner: (0, 3, 3)t. Now, as xnorm2 is the smallest normalized value, dimension 2 is changed
first: (0, 5, 3)t. Now dimension 3 contains the next smaller xnorm: (0, 5, 6)t. Finally dimension 1 is
updated: (4, 5, 6)t. The points generated by this procedure subsequently become the reference points for
the interpolation.

Since it is based on sorting, this approach has n · log n complexity in the number of dimensions. Rovatti
et al. prove that this is the optimum [119], i.e. no faster algorithm is possible. For this thesis the algorithm
was implemented in C, using binary search for the identification of adjacent levels and quicksort for the
sorting.

The previous paragraphs have shown, that only by restricting the allowed designs the multi-dimensional
interpolation problem becomes efficiently solvable. For the practical application, however, this restriction
is problematic in several aspects:

1. A varying grid size cannot be realized effectively: if a high density of levels (fine grid) of a variable
xi is necessary for specific levels of the remaining variables, then grid points must be introduced for
all of their levels. Variation of grid size is necessary to stabilize accuracy over the model space.

2. The number of sample points can only be chosen in large steps. This is a direct consequence of 1.
Let ki be the number of levels of variable xi then in-/decreasing the number of levels in xj by one
changes the number of points by

∏
i 6=j ki.

3. Existing data can only be reused if it fits into a grid configuration.

3.2.7 Error measures

For quantitative evaluation of models the following error measures are employed:

1. Mean Square Error (MSE).
The MSE obtained from the regression above by setting MSE = SSE

n−2 is an unbiased estimator of
the variance of the regression coefficients σ̂ := MSE. Should the model be ill-specified, however,
the MSE is inflated by the squared bias.

2. Root Means Square Error (RMS).
The square root of the MSE is an estimator for the variance var, i.e. the squared standard deviation.
For the sake of intuition the RMS error is usually given as fraction of the mean response RMS

ȳ . This
approach will be followed throughout this thesis.

3. The coefficient of multiple determination R2.
Let the observation sum of squares Syy =

∑n
i=1(yi − ȳ)2. Then R2 is defined as: R2 = 1 − SSE

Syy .
It expresses how much of the variability in y can be explained by the (linear) regression model. R2

has to be interpreted with caution as it is merely a measure of linearity and not of fit [45]. Thus a
large value does not necessarily mean that the regression model will be an accurate predictor [92].

4. Max Absolute Relative Error (XARE).
The XARE = max(abs(εi/yi)) is the worst case relative error.

5. Mean Absolute Relative Error (MARE).
The MARE = 1

n

∑n
i=1 abs(εi/yi) is an estimator for the expected relative error of a randomly drawn

instance.

6. Mean Relative Error (MRE).
The MRE = 1

n

∑n
i=1 (εi/yi) is an estimator for the expected relative error of the sum of a large

number of randomly drawn instances.

24

3.3 Requirements

3.2.8 Cross Validation

During model generation the models and their parameters are specifically chosen to minimize selected
errors with respect to a set of observations. The errors of the resulting model with respect to these
observations will therefore tend to underestimate errors encountered with other data. To address this
issue the suggestion of Hjorth et al. [57] is followed here: In a technique called cross validation the total
set of data is split into a regression set and a validation set. Only the regression set is used for the
model building process, while the error measures are computed for both sets separately. The regression
set errors give information about the ability of the model building process to fit a model to the observed
data (regression set). The validation set errors document the predictive performance. If both errors differ
significantly this is an indicator for the regression set being either to small or ill chosen.

3.3 Requirements

For rating and comparison of modeling methods, both existing and newly suggested, the requirements
need to be clearly stated. For reaching the eventual goal of supplying memory models to high level
power estimation and optimization two key demands have to be met: the models must be suitable for
application at high levels of abstraction and the modeling procedure must be widely applicable. More
concrete the requirements can be divided into those referring to the models and those referring to the
modeling procedure itself.

3.3.1 Requirements on the models

1. Accuracy. The predictive quality, expressed in the measures described above, is the ultimate goal.
Model building often has to trade-off between absolute and relative accuracy: While absolute accu-
racy is important for comparing the memory subsystem with other components, relative accuracy
is valuable in evaluating different memory architectures.

From modeling techniques for other circuit aspects at RT and higher levels maximum average errors
in the area of 20% are reported for size scalable models [49, 15, 155, 89]. The same accuracy is
therefore required for memory power models.

2. Speed. The time consumed for calculating the model response must be reasonable in the context
of the surrounding application. The impact highly depends on the number of model evaluations.
Data pattern dependent models for example must be evaluated for each pattern. Data independent
models in contrast only have to be re-evaluated on architecture changes. Optimization algorithms
often exhibit a high iteration count, thus putting more weight on the speed requirement.

3. Abstraction. At high levels of design, e.g. behavioral level, circuit descriptions are abstract. Timing
is for example only loosely fixed (i.e. only in terms of algorithm inherent precedence and designer
specified constraints). Models on these high levels must consequently cope with abstract information
about their environment. They must also be abstract enough themselves to guarantee sufficient
speed.

4. Flexibility. On-chip memories have a high flexibility in size and available options. As a consequence
memory parameters have become a dimension of design. To support high-level estimation and
optimization, memory models must adapt quickly to varying parameters. This requirement differs
from traditional design flows were (memory) power estimation is only conducted after the definition
of a fixed architecture.

5. Analytical form. A model given in analytical form, i.e. as a set of closed equations, is advantageous
in two respects: a) Legibility. An analysis of trends and relationships is facilitated. b) Optimiza-
tion. Analytical optimization techniques are only applicable on closed form representations. These
techniques however often excel purely numerical approaches.

25

3 Modeling

6. IP protection. Memory designs are highly sensible intellectual property. Models must therefore not
allow a reverse-engineering of IP.

3.3.2 Requirements on the Modeling Process

These requirements are often underrated. For the goal of this work however, the promotion of memory
power modeling, they play a central role.

1. IP protection. As mentioned above IP protection is of prime importance. This does not only apply to
the resulting models but also to the modeling procedure itself. Since in-depth information about the
memory designs is required for the modeling, memory vendors can only accept it to be conducted by
trusted instances. Often that means it can only be done by the vendor himself. Modeling approaches
must respect the need for IP protection, or they will not be used in practice.

2. Cost. Modeling cost is the second major hurdle in the spread of memory power modeling method-
ologies. As mentioned above modeling must most often be conducted be the vendor. To be adopted,
methodologies must keep the cost for vendors as low as possible. Main cost factors are manpower,
modeling competence, third party licenses and compute power.

3. Speed. The time taken for modeling influences the overall costs and the ”time to model”. It must
be reasonable in the context of the complete flow. Trading off modeling speed for model application
speed can sometimes be useful, since in contrast to model application modeling is only performed
once.

4. Fit into Flow. A natural fit into the memory generation flow reduces the organizational complexity
and the effort needed.

3.3.3 Specific Requirements of Memory Power Modeling

The nature of the application, i.e. the modeling of the power consumption of memories, has influence on
the specific modeling capabilities required. The structures of memory circuits (cf. section 2.2) combined
with the physical nature of power consumption (summarized in section 2.1) motivate specific requirements
on models. The issues mentioned in the following can be also found in the evaluation examples (see section
7):

1. Multi-dimensionality. The number of relevant memory parameters changes with the type of design.
It can well exceed the three to four parameters usually found in data path power models.

2. Additivity. The currents flowing through all gates of the memory circuit add up to form the total
power consumption. Furthermore the estimation error can be seen as additive. These two observa-
tions motivate an additive model structure.

3. Continuity. The influence of memory parameters on the power consumption can be approximated as
quasi-continuous over wide ranges. This is an important precondition for an effective approximation
by functions (see Taylor approximations). For size related parameters assuming continuity is sensible
as small changes in the parameters should result in small changes in the design. Sporadic jump
discontinuities may however occur, e.g. due to changes of the memory organization at certain size
boundaries. These cases must be detected and modeled. Furthermore size parameters are often
quantized, i.e. they are rounded up to the multiples of a factor. Restricting the parameter values to
these ’real’ values solves this issue. Configuration parameters are usually of non-continuous influence,
but have only few possible values. It is therefore sensible to build a sub-model per option (cf. section
5.1). Data parameters usually consist of bit-vectors or bit-vector pairs. Abstraction function like
the Hamming distance are used to transform them onto a quasi-continuous scale (see section 5.1).

26

3.3 Requirements

4. Nonlinearity. Nonlinearities in the parameters occur in memories in manifold ways: Firstly the
influence of the supply voltage on the power is often assumed to be quadratic following equation 2.3.
This however is not fully correct, as the switched capacitance also varies with VDD due to timing
variations. Furthermore eqn. 2.3 assumes full swing. Yet memories do often contain reduced swing
logic. Nonlinearities can furthermore be found in the sense amplifiers, which often work in current
mode and in the address decoding logic that has a logarithmic (or exponential) component by its
nature (cf. [151]). Nonlinearity is often neglected to make models computationally more tractable.
This thesis advocates that significant accuracy is sacrificed by this.

Model representations have a considerable impact on the performance with respect to the above require-
ments. They are discussed in section 4.5. Standards for the realization of these representations in software
are considered an implementation aspect and therefore discussed in section 6.3.1.

27

3 Modeling

28

4 Related Work

This chapter discusses modeling concepts and related work in memory power modeling. For the sake of
clarity modeling techniques are divided into conceptual, eclectic and empirical.

4.1 Conceptual Modeling

In conceptual approaches the structure of the modeled instances is assumed to be completely transparent.
Models are derived by abstraction from the detailed implementation. The lowest degree of abstraction
in conceptual modeling constitutes complete net-list extraction. In this automated technique a net-list
of capacitances, transistors and resistors and inductances is computed from the geometry of the layout.
The resulting circuit level models can be evaluated using circuit level simulators like SPICE. They are
the most accurate simulation models available (errors within several percent compared to measurements).
Unfortunately complete extraction and simulation is only feasible for very small memory instances.

A consequent step towards more abstract models is made by critical path models [141]: the circuit
level net list is reduced to contain only the active parts plus a set of dummy cells that represented the
collected capacitances of the inactive parts. This approach is quite effective since memories consist of a
high repetition of only few basic blocks. Memory compilers that assemble memory layouts from a set of
leaf-cells can easily be modified to generate such models [97]. Critical path models are the most detailed
simulation models available for all memory sizes. They are therefore commonly used at providers’ sites
for timing and functionality checks. While accuracies within a few percent of full extracted net-lists can
be achieved, the main disadvantage is computational complexity: simulation takes from minutes to hours
per memory cycle. [25] report a time requirement of 30 CPU hours for the delay vs. power optimization of
an SRAM through iterative HSPICE simulation. Another drawback of critical path models is that scaling
the memory instance involves re-simulation.

A distinct advantage of circuit level models is their capability to reflect leakage effects (see section 2.1).
More abstract models are based on an analysis of the switched capacitance, i.e. N · C, where N is the
(average) number of a switches per cycle and C the capacitance. With their restriction to capacitive
currents these models (called analytical models in the following) ignore leakage. The model of [85] uses
the NMOS transistor gate capacitance Ctr as technology dependent base unit. The power consumption
of an SRAM memory cell is then for example computed as:

Pmemcell =
2k

2
(cint · lcolumn + 2n−k · Ctr) · VDD · Vswing (4.1)

with 2n the memory capacity, 2k the number of columns, cint the per unit interconnect capacitance and
lcolumn the length of a column. [39] use a more detailed capacitance model. They give the example of the
word line capacitance:

Cwordline = CDifDrv + 2n · x · CIntPoly2W + 2n · 2 · CgMin (4.2)

where n is the number of column address lines , 2n the number of cells per row/word line, x the horizontal
size of a single memory cell, CDiffDrv the diffusion capacitance of a medium sized word line driver,
CIntPoly2W the interconnect capacitance for a poly line 2λ wide, and CgMin the average gate capacitance
in a minimum transistor.

[4] investigate the effect of size and technology scaling on power, area and delay of SRAMs. Unfortu-
nately they give only vage information about their energy model: The decoder energy is estimated via the

29

4 Related Work

collected critical path capacitances. Bit and word line energy is computed via C · VDD · 2 · Vswing (with
C the respective capacitances). From circuit level simulations the sense amp energy is approximated by
12fj
λ · ws (λ half minimum feature size, ws size of the sense-amp).
In principle switched capacitance models could be augmented by leakage models at the cost of additional

analysis complexity. One way to achieve this could be a leakage characterization as proposed in [40].

Cache Models

As already mentioned in section 2.6 cache optimization has been a very active area in the recent past.
Noticeably only a very small number of energy models are used for a wide range of optimizations: [134]
propose the following cache model (static logic):

Ecache = Edecoding path + Ecell array + EI/O path

Edecoding path = α ·Addr bus bs
Ecell array = β ·Word line size ·Bit line size ·Bit line sb
EI/O path = γ · (Addr pad bs+Data pad bs)

(4.3)

where:
Addr bus bsr no of bit switches on address

busses per instruction
Word line size no of memory cells in a word line
Bit line size no of memory cells in a bit line
Bit line sb no of switching bit lines per instruction
Addr pad bs no of bit switches on address pads per instr.
Data pad bs no of bit switches on data pads per instr.
α, β, γ Technology and implementation dependent

constants
Using this model they compare caches with varying associativity and line size. [72] present a more

detailed analytical model for m-way set-associative caches. The effective capacitances of SRAM cells are
assumed as

Cbit,pr = Nrows · (0.5 · Cd,Q1 + Cbit)
Cbit,r/w = Nrows · (0.5 · Cd,Q1 + Cbit) + Cd,Qp + Cd,Qpa

Cwordline = Ncolumns · (2 · Cg,Q1 + Cwordwire)
(4.4)

where Cbit,pr, Cbit,r/w and Cwordline are the effective load capacitances during precharging and read/write
to a cell and the capacitive load of the word line driver. Cd,Q1, Cd,Qp and Cd,Qpa are the drain capacitances
of the access transistors, the equalization transistor and the precharge enable transistors (Cg,X are the
respective gate capacitances). Cbit is the bit line capacitance over the height of one cell, Cwordwire the word
line capacitance over the width of one cell. For CA accesses the energy consumption is then computed as:

Ecache = Ebit + Eword + Eoutput + Eainput

Ebit = 0.5 · V 2
DD ·

(
Nbit,pr · Cbit,pr +Nbit,w · Cbit,r/w +Nbit,r · Cbit,r/w

+Ncolumns · CA · (Cg,Qpa + Cg,Qpb + Cg,Qp))

Eword = V 2
DD · CA ·Ncolumns · (2 · Cg,Q1 + Cwordwire)

Eoutput = Eaoutput + Edoutput

Eaoutput = 0.5 · V 2
DD · (Nout,a2m · Cout,a2m +Nout,a2c ·Nout,a2c)

Edoutput = 0.5 · V 2
DD · (Nout,d2m · Cout,d2m +Nout,d2c ·Nout,d2c)

Eainput = 0.5 · V 2
DD ·Nainput · ((m+ 1) · 2 ·Nrows · Cin,dec + Cawire)

(4.5)

30

4.1 Conceptual Modeling

with:
Ecache total cache energy
Ebit,Eword energy dissipated in the bit/word lines
Einput,Eoutput dissipation due to input/output transitions
Nbit,pr, Nbit,w, Nbit,r total number of bit line transitions due to

precharge, write and read
Cout,a2m, Cout,d2m the capacitive load of the address/data to

main memory lines
Nout,a2m, Nout,d2m the respective numbers of transistions
Cout,a2c, Cout,d2c load of the CPU side interconnect
Nout,a2c, Nout,d2c the respective numbers of transistions
Nainput address input transitions
Cin,ded gate capacitance of 1. level decoder
Cawire internal wire capacitance of the addressing

Of these variables the capacitances are determined using process models (see [151]). The transition
counts are derived in [72] for several different configurations.

At the same conference [56] extend the model of [134] by the notion of cache misses:

Ecache =Edecoding path + (hit rate) · (Ecell array + EI/O path)
+ (1− hit rate) · (Emain mem · CacheMemRatio)

(4.6)

with Emain mem the base energy consumed by a main memory and CacheMemRatio the ratio of power
consumption of a main memory access to an on-chip cache access. This model however handles the off-chip
accesses erroneously. Consequently [128] propose a corrected model:

Ecache =Edecoding path + (hit rate) · Ecell array
+ (1− hit rate) · (Ecell array + EI/O path + Emain mem)

(4.7)

The model is used for an exhaustive search over on-chip memory, cache and line size as well as associativity
and data organization. The same authors present a more accurate model which combines [72] and [134]
in [129]. The goal is to reach the accuracy of [72] and the simplicity of [134].

Ecache = Edecoding path + Ecell array + EI/O path + Emain mem

Edecoding path = α ·Addr bus bs · (C/L)
Ecell array = β ·Word line size · (Bit line size+ 4.8) · (Nhit +Nmiss)
EI/O path = γ · (Addr pad bs+Data pad bs · 8L)

Emain mem = EI/O path + Em ∗ 8L ∗Nmiss

(4.8)

where C is the cache size, L the cache line size and Nhit, Nmiss the number of hits and misses. This model
is reported to be accurate with respect to [72] within 0.38%. [84] propose the following Cache energy
model:

Ecache = 0.5 · V 2
DD · (CA · Cbit,rd + CA · Cword

+ a · Cbit,wr + b · Cdec + c · Cod)
Cbit,rd = Nbitl ·Nrows · (CSRAM,pr + CSRAM,rd)

+Ncols · Cpr logic
Cword = Ncols · Cword,gate

(4.9)

where:
a · Cbit,wr eff. switched capacitance for writing a bit
b · Cdec eff. switched capacitance for dedoding
c · Cod eff. switched capacitance of the output
Nbitl no. of bitlines
Nrows no. of rows
Ncols no. of columns

31

4 Related Work

The cache model is used in a comprehensive framework for the hardware/software energy optimization
in embedded systems. [160] present an analytical model for register files. Only the read access model is
presented here:

Eregfile,read = Ewl,read + Ebl,read + ESA + ESA,ctrl + Eprecharge,ctrl

Ewl,read = V 2
DD ·Nbits (Cgate ·Wpass,r +Wcell · Cmetal)

Ebl,read = VDD ·Mmargin · Vsense · Cbl,read ·Nbits
Cbl,read = Nreg · (Cmetal ·Hcell + Cdrain ·Wpass,r)

ESA =
1
8
· VDD · Tperiod · Idsat

ESA,ctrl = V 2
DD ·Nbits · (Cgate ·WSA,ctrl +Wcell · Cmetal)

Eprecharge,ctrl = V 2
DD ·Nbits ·

(
Cbl,read

40
+Wcell · Cmetal

)
(4.10)

where:
Cgate, Cdrain gate/drain capacitance per unit width
Wpass,r width of the cell read pass transistor
Wcell,Hcell cell width/height
Cmetal per unit metal layer capacitance
Mmargin length of the safety margin for the word line pulse
Vsense bit line swing for sensing
Nreg number of registers
Tperiod length of sensing period
Idsat transistor saturation current
WSA,ctrl width of sense amp control transistor

Different architectural techniques like current-direction sensing, differential sensing, low-swing write and
port-priority selection are discussed using this model. A model heavily used is the CACTI model proposed
by [151]. It has been developed and enhanced over a period of 8 years and is available as open source
software. A fixed cache architecture template is here decomposed into a large number of simple equivalent
RC circuits. Resistance and capacitance of these circuits are related to geometry (e.g. transistor width)
and technology parameters. The capacitance driven by the address decoder drivers is for example given
as:

Ceq = draincapp(Wdecdrivp, 1) + draincapn(Wdecdriven, 1)
+ 4 ·Ndwl ·Ndbl · gatecap(Wdec3to8n +Wdec3to8p, 10)
+ 2 ·B ·A ·Ndbl ·Nspd · Cwordmetal

(4.11)

where:
Wx width of transistor x
draincapp/n(W,k) drain capacitance of k stacked P/NMOS

transistors of width W
gatecap(W,k) gate capacitance of k stacked PMOS or NMOS

transistors of width W
Ndwl, Ndbl number of horizontal/vertical cache array tiles
Nspd number of cache lines per row
B block size
A associativity
Cwordmetal metal wire capacitance per bit width

As might be anticipated from this example the model is very accurate (errors below 10% are reported)

32

4.2 Empirical Modeling

and scalable with size and associativity, but also very large (involving roughly 100 parameters, therefore
not printed fully here). Unfortunately it cannot be easily adapted to other cache designs (e.g. types of
decoders).

Accuracy is often taken for granted when applying analytical models. Consequently few analytical
models are carefully evaluated. Accuracy is however not a guaranteed property of analytical models. [39]
report an average error of 60%. [72] admit an overestimation of up to 30%, especially with optimized
architectures.

4.2 Empirical Modeling

Empirical modeling treats the internal structure of modeled instances as completely hidden. The models
are built from observations of the instance behavior using statistical techniques. The observations are
gathered by measurement or low level (e.g. circuit or gate level) power estimation. Leakage related power
consumption can be modeled if the low level estimate contains this aspect.

4.2.1 Interpolation Techniques

Interpolation based techniques have been mainly proposed for combinational logic circuits: [48] compares
different lookup tables and suggest a three dimensional table depending on the average input signal proba-
bility (Pin), the average input transition density (Din) and the average output transition density (Dout). [6]
add to this approach by proposing an adaptive characterization technique and a two-stage interpolation
scheme. [70] proposes a 4-dimensional table using the Hamming-distances and signal distances at both
inputs. While [70] is already scalable with respect to size parameters, [48] is extended in [17] to have this
flexibility. [17] report average errors of 6.4%. [50] propose an unscalable 4-dimensional lookup table of Pin,
Din, Dout and the average spacial correlation SCij = P{xi ∧ xj = 1} with average errors of 6%.

4.2.2 Regression Techniques

Regression for memory modeling has been proposed independently by [30] and [32]. The models of [30]
are instance based and not scalable with size parameters. The modeling procedure is based on the ideas
of [10] (see below): A linear regression tree is built as previously suggested for data path components. In
contrast to [10] a software neural network is then used to select the candidate variable on which to split the
model. The results of the clustering are mostly trivial however: clock, write enable, chip select and output
enable are reported to be of major influence on the power consumption. This is however rather obvious
even for non-experts. Errors of 6-8% are presented. [32] also perform linear regression to built separate
models for the structural parts of memories, depending on size parameters and control inputs. They apply
stepwise regression (see section 5.3.3) for selecting the model variables. Since some of the relationships
cannot be adequately expressed using linear dependencies, they perform manual pre-transformations on
some input variables.

Several regression approaches have also been suggested for the high-level power modeling of data path
components. [10] propose a simple linear regression model: the binary variables in and on are 1 whenever
an input/output transition occurred during subsequent cycles. The fitted model is

P =
∑
n

cn · in +
∑
m

c′m · om + c0 + ε (4.12)

To increase the accuracy of this model, tree regression is then applied: the model is split along one of the
binary variables to obtain a piecewise model. This splitting can be performed iteratively, resulting in a
tree-like structure of models. The splitting criterion in this case is the maximum variance σ2.

Basing on the same models [15] propose an in situ characterized model: a behavioral simulation and
a gate-level simulation is run in parallel. As long as the components are not fully characterized, the
gate-level simulator is used to gather samples for a regression model. Once enough data is generated the
simulation switches to the faster behavioral simulator. An iterative type of linear regression called least

33

4 Related Work

mean squares (LMS) is used to effectively perform the regression on the increasing amount of data. Other
such iterative regression techniques are described in [93]. The root mean square errors reported are below
50%.

[155] propose a cycle accurate, non-scalable power model for RT-level components. They introduce
transition variables: all possible switching events on a single bit primary input line are coded into binary
triples [a b c]. An exact functional relation between the cycle power and the transition variables is derived.
This relation is however exponential in the order of input correlations considered. The function is therefore
reduced by omitting the higher correlations. To obtain further improvements, the population of input
vectors is stratified. A piecewise model is the result. Eventually stepwise linear regression is applied to
reduce the number of variables. Relative errors of up to 20% are reported with models involving up to 15
variables (ISCAS benchmarks) .

[13] fit polynomials of third degree for combinational logic circuits. The parameters used are Pin, Din,
Dout (see above), plus the spacial correlation metric Sin and the temporal correlation metric Tin. An
average absolute error of below 2% was shown (selected subset of ISCA-85 benchmarks).

Linear (5 terms) and quadratic (15 terms) polynomials of the variables Pin, Din, SCin, Dout (SC: spacial
correlation coefficient) are used in [49]. RLS regression is performed to allow automatic online character-
ization. They report average errors of 18.08% (ISCAS-89 benchmarks).

In addition to the standard techniques interpolation and regression other empirical methods have been
suggested for power analysis: [29] for example use the concept of power sensitivity: the derivatives of
the power consumption with respect to the primary input activity/probability (power sensitivities) are
computed during an average power analysis. These derivatives can then be used for data sensitive power
estimation. The work of [89] uses clustering: the complete set of switching events is partitioned into
subsets that have similar power consumption. A table containing one energy value per cluster is then
built with average errors of 10% - 15%.

4.3 Eclectic Modeling

Eclectic models are a mixture between conceptual and empirical models in that they rely on some infor-
mation on the internal structure and on some empirical data. Often the structural information is used to
propose mathematical models of which the variables are fitted using empirical data. A very fundamental
approach of this kind for digital logic including memories was [83], where effective capacitance coefficients
were fitted to an abstract architecture model. The approach of [39] is hybrid in a different way: after an
analysis of existing memory modeling approaches it is suggested to model some structural parts of the
memories analytically and some empirically. The error is reported to drop from 60% to 12 %.

The author also has performed eclectic modeling on a Philips embedded ROM [121,123]: in a combina-
tion of conceptual analysis and circuit level simulation an instance based data dependent linear regression
model was developed. The very detailed model (see Appendix A) is characterized using circuit simulation
of critical path models with a predefined stimulus set (30-90 CPU minutes). Mean errors are below 5%
for the memory cycle and below 15% for the (asynchronous) address changes. The main lessons learned
from this modeling project were:

1. Results are not self-evident. The conceptual analysis requires significant human resources.

2. Integrating the characterization into the memory generation flow requires considerable effort. In
this case, for example, the critical path simulation models had to be partly re-written.

3. The models are not easily retargetable to other memories even from Philips.

4. The modeling is IP critical. The document [121] remains confidential for that reason. So is part of
the motivation of the ROM model.

34

4.4 Discussion

4.4 Discussion

When analyzing the described approaches in the light of the requirements formulated here (see section
3.3), the following observations can be made:

Among the conceptual models full and reduced net list models are not sufficiently abstract for high-level
application. They are too complex and thus slow. Size scaling is often a problem too. Through their
abstraction, analytical models solve the complexity problem. They are furthermore often size scalable
and have the form of a set of equations making them fit for optimization algorithms. However, while
the extraction of fixed layouts to gate level net lists can, within limits, be automated, the feasibility of
such an automation could so far not been shown for analytical models. This also means that accuracy
depends very much on the skill and effort of the involved persons. Significant errors can be the result [39].
Furthermore it was shown that ’one size fits all’ assumptions lead to big errors [72]: the analytical models
must fit the underlying architecture. Re-modeling might therefore be necessary with every architectural
change.

In summary the biggest drawbacks of the conceptual modeling, in view of the problem to be solved, are
tied to conceptual modeling processes itself: as in-depth knowledge of the circuitry is necessary, and will
consequently be reflected in the models, IP protection is difficult. Modeling costs in terms of manpower,
competence and “time to model” tend to be high for the same reasons. Today’s analytical models neglect
leakage currents. Yet, as was mentioned in section 2.1, these currents will get more and more important.
As a consequence future memory models will have to include leakage models at the cost of additional
complexity.

The major advantage of empirical modeling is that in-depth knowledge of the application is not required.
This fact opens up potential for automation. While empirical modeling cannot be automated completely
in the general case, the claim of this thesis is that for the specific task of memory power modeling it can
be done to a high extend. Not feeding a high amount of expertise into the modeling process furthermore
has the advantage of IP protection: neither must the modeling be outsourced nor does any detail enter
the model that is not observable from the outside. Abstraction is a further model property that is natural
to empirical modeling.

The drawbacks of empirical modeling are the following: As there is no guarantee that models obtained
only from empirical data are ’right’, accuracy is always a potential issue. Furthermore the demand for
flexibility results in models with a high number of dimensions posing a problem to some empirical model
representations (e.g. [59]). Among the different representations, only regression models have a closed
analytical form. Computational demands can be a further problem.

As a principle drawback eclectic methods do share the need for expert knowledge with the analytical
approaches. The exact properties of the range between the empirical and analytical models and depend
on the combination of techniques used.

This thesis advocates that the necessity for expert intervention with its impact on modeling costs, time
and IP protection is such a severe drawback that approaches with this requirement have to be ruled out.
Empirical techniques are therefore the natural remaining candidates for the modeling task.

4.5 Empirical methods

Empirical modeling approaches combine three aspects that are not completely separable: learning, rep-
resentation and application. The learning strategy describes how a model is built from the observations.
The model representation determines how the model is stored whereas the application refers to the way
forecasts can be drawn from the model. In the following the main streams of empirical modeling are
described. The respective techniques are closely related to machine learning.

1. Table lookup methods store the empirical data directly in a table. Interpolation is used to obtain
intermediate values (see section 3.2.6).

2. Decision diagrams hold the empirical data in a tree structure. Tree pruning can be used to increase
the compactness of the representation [59].

35

4 Related Work

3. Neural networks try to imitate the function and structure of the (human) brain. They are able
to partition high-dimensional event sets by hyper planes. Neural networks are “trained” on the
required response by adapting the interconnect structure and internal weighing of stimuli of the
neurons [34].

4. Genetic algorithms are a generic optimization technique inspired by biology. It can work on different
model representations. Instead of single models genetic algorithms optimize complete sets (“popu-
lations”) of models. The fitness of each model is determined by evaluating it on the characterized
data. The fittest models are then selected and allowed to “reproduce”: they are copied and small
changes (“mutations”) are made. Evaluation, reproduction and mutation are repeated for several
generations.

5. Regression optimizes the parameters of given functions as described in section 3.2.3 [92].

Table 4.1: Properties of empirical modeling techniques.
Table Decision Neural Genetic Regres-

Diagram Network Alg. sion
Compactness - - - ? +

Analytical Form - - - ? +
Application Speed o o - ? +
Generation Speed + + - - o

Required Data o o - - o

Table 4.1 compares general properties of the presented techniques. Decision diagrams and neural net-
works have a tendency to lack compactness. They are not able to produce models in analytical form.
Neural networks have slow learning convergence resulting in a high requirement of observation data.
The properties of genetic algorithms depend strongly on the parameters of the algorithm and the model
representation used. Nevertheless they also need a considerable amount of training data.

Taking together all properties, regression modeling seems to be the most promising paradigm for the
requirements of this thesis. The potential weaknesses of regression techniques were identified previously
as accuracy (out-of-sample problem) and computational complexity of the model building. Furthermore it
was stated above that the advantageous properties of the modeling process is connected to its automation.
In the next chapters a highly automated regression based modeling methodology is demonstrated. This
methodology features modest computational complexity and high accuracy.

36

5 Embedded Memory Modeling Methodology

In the previous chapters the problem of memory power modeling has been motivated, requirements have
been formulated and other existing work was introduced and discussed. This chapter now presents a new
memory power modeling methodology based on statistical concepts. The aim of these techniques is to
allow users to perform memory model building that are neither experts in statistics nor in the internals
of memory circuits, while meeting the requirements defined in section 3.3.

Figure 5.1 depicts the modeling flow detailed below. This flow is orientated at the stages of statistical
modeling described in section 3.1. Its stages are data abstraction, data acquisition (experimental design
and characterization), identification and fitting, validation and iteration.

5.1 Data Abstraction

The data abstraction step, i.e. identification of candidate variables and derivation of such candidate
variables from observables, usually precedes data acquisition and model identification as it impacts both
of them. As this step is heavily dependent on the specific environment, i.e. the memory generator, the type
and manufacturer of memory and the simulator/power estimator, it can not be completely automatized
or formalized. On the other hand it is fairly straight forward in the context of embedded memories as will
be described in this section.

The response variable is clearly identified as the energy or power consumption. Usually it can be
obtained during data acquisition as energy/power per access or average current. The remaining candidate
variables describe input variables to the data acquisition process as well as the modeling: Let V the set of all
variables, Vinstance ⊆ V the set of variables referring to properties of the instances in question. Vinstance
usually contains size related variables (e.g. number rows, number of columns) as well as configuration
related ones (e.g. { ’output enable’ , ’no output enable’ }). Candidates for both types of variables can be
found among the parameters of the generation process, i.e. memory compiler. Size parameters are usually
non-negative integers and can therefore be directly used as model variables. The scope of configuration
parameters is in most cases an enumeration with a small number of members. For the sake of our modeling,
configuration parameters are converted into a set of binary variables using a ’one hot encoding’.

Data

Abstraction

Experimental

Design

Characterization

Characteriza-

tion Data

Identification &

FItting

Validation
Accept?
 Model

yes

no

Figure 5.1: Flow diagram of the proposed modeling methodology.

37

5 Embedded Memory Modeling Methodology

Example 3. Let a variable v ∈ {member1, · · · ,membern}. We now define n binary variables vi ∈ {0, 1}
with: vi = 1⇔ v = memberi.

Variables Vdata for modeling the data impact on the power consumption are less straight-forward as they
must be abstracting: The data streams consist of pairs of bit vectors. For vectors of n bit 4n such pairs
exist. It is therefore necessary to identify functions fa that project pairs of bit vectors onto a numerical
scale according to their power impact. As switching events cause power consumption the most often used
abstraction functions relate to the differences between vectors. They are: the Hamming distance, the
number of rising/falling bits and the weight (number of ones in a vector).

Abstraction for address related variables Vaddress may be even more difficult as it is likely that the
address bits are highly structurally correlated in the memory. In case of such structural correlations
functions like Hamming distance and weight, which abstract from the bit position, are not adequate.
Without knowledge of the internal structure of the decoders abstraction can become very difficult.

Including Vdata or even Vaddress into the modeling procedure will severely increase the data requirement.
The impact of data and addresses on the total memory internal power, however, is usually relatively
small. For example the maximum data related deviation for the SRAM investigated in [121] was below
20 %, the address related effect below 1 %. These effects are normally heavily dominated by the energy
consumed for data and address bus driving. A quick analysis separating the data/address influences (by
reading/writing varying data to/from identical addresses and vice versa) allows an initial assessment of
the impact. Depending on the accuracy requirements and available resources it then has to be carefully
decided whether to include Vdata or Vaddress.

The ranges of all candidate variables together form a space (candidate space), where every point corre-
sponds to an assignment. Not all points in this space have to be valid however, as certain combinations
of variable values may not be legal.

5.2 Data Acquisition

Once candidate variables are identified the data acquisition is performed by synthesizing selected memory
instances, simulating them with given data and estimating power based on the activity data protocolled
during simulation. The first subsection will explain how to decide which instance to select and which
activity to simulate. The second subsection will describe the flows used to generate data in different
scenarios.

5.2.1 Experimental Design

The experimental design consists of defining the sets of instances to be synthesized and the address/data
streams for simulation (cf. section 3.2.2). Each instance/address/data combination corresponds to exactly
one point in the candidate space (sample point). Note that the inverse does generally not hold, as the
candidate variables do not uniquely define the address/data stream and the instance. In experimental
design it is important to adequately cover the candidate space with sample points. Regions lacking
observation points have to be avoided.

In this thesis factorial designs (cf. section 3.2.2) are employed as an easily implementable means to
obtain adequate covers of the parameter candidate space (see section 3.2.2). In factorial designs a number
ki of levels ki,j is selected for each candidate variable vi. All combinations of levels of all candidate
variables are then adopted as sample points. The result is a rectangular grid structure in the candidate
space comprising of

∏
i ki points.

Restrictions and complications arise from the implementation of the design: Since Vinstance variables
map directly to the parameters of the generator they can be directly controlled and are consequently
unproblematic. The degrees of freedom not covered by Vinstance have to be fixed to obtain unique instances.
Usually there exist natural defaults defined by the generator or the application.

The data and address related variables abstract from the concrete bit vector streams as described above.
Hence they are not directly controllable in the characterization process. For data acquisition it is therefore
necessary to generate data/address streams that correspond to the values of the data related variables (e.g.

38

5.2 Data Acquisition

with given hamming distance, etc.) by applying the inverted abstraction functions f−1
a . As mentioned

above these are usually not unique. The problem to be solved is now to synthesize a data stream that
consists of a sequence of vector pairs that each lie in the inverted abstraction f−1

a of all variables in Vdata.
Furthermore it is desirable to perform the synthesis in a random fashion to avoid accidental biasing. A
documentation of approaches to this problem is beyond the scope of this thesis.

In cases where the data acquired in an initial modeling run do not produce sufficient accuracy, further
data acquisition runs may become necessary. In the evaluation phase of the first run the accuracy problem
can usually be tied to a specific region in the candidate plane. The new design can now be specifically
tailored to remedy the problem. This can be done for example by another factorial design that has a high
density of levels in the problematic area. Note that the union of two factorial designs is in general not a
factorial design (figure 5.2). This highlights the advantage of the technique proposed here, which is not
limited to factorial designs.

5.2.2 Characterization

for all instances do
generate memory circuit level net list
generate testbench in SPICE/PStar
for all Vdata, Vaddress combinations do

synthesize data/address streams
perform circuit level simulation/estimation
extract power value

end for
end for

Algorithm 1: Characterization based on circuit-level power analysis.

Characterization refers to the conducting of low level estimation to obtain data for the model building.
The characterization flow in this thesis encompasses three possible scenarios: circuit-level estimation,
gate-level estimation and simple feed back from the memory generator. While circuit level estimation is
the most accurate, it is not always possible due to limitations in time or access to the respective net lists.
In many cases not even a gate-level net-list will be available to users (IP problem). In these cases the fall
back solution is to use the estimates provided by the user version of the memory compiler.

The circuit-level estimation based characterization flow (see algorithm 1) begins with the generation of
the respective memory instance as circuit-level net-list (e.g. SPICE, PowerMill, PStar [113,58, 135,130]).
Subsequently a testbench is synthesized that feeds the circuit with the address/data streams and tracks
its power consumption. Next address and data streams according to the properties defined by the sample
point are generated. The circuit and testbench are then simulated for all such data streams. Finally the
power value of each simulation is extracted from the simulation protocols.

Gate-level estimation based characterization is similar (see algorithm 2). The memory is generated as
gate-level (firm macro) or RT-level (soft macro) net list. Logic synthesis and technology mapping are
performed as necessary. The resulting technology mapped net list is subsequently written out in HDL

Figure 5.2: The union of two factorial designs is in general not a factorial design.

39

5 Embedded Memory Modeling Methodology

for all instances do
generate memory
perform logic synthesis / technology mapping
generate testbench in HDL
for all Vdata, Vaddress combinations do

synthesize data/address streams
simulate memory to obtain switching activity
perform gate-level analysis
extract power value

end for
end for

Algorithm 2: Characterization based on gate-level power analysis.

(e.g. VHDL or Verilog) source code. Timing information is written into an SDF (Standard Delay Format)
file. A matching testbench is also generated in HDL source code. It is then compiled together with the
memory net list for simulation. In the simulation step an HDL simulator is used to track the switching
activity within the circuit during the processing of the generated address/data streams. The simulator
reads the SDF file for timing information. The protocol of switching activity is obtained by using LPI
extensions of the simulators, which write standardized switching activity files (SAIF (Switching Activity
Interchange Format) or VCD (Value Change Dump)). The switching information is subsequently used
by gate-level power estimators such as Synopsys PowerCompilerr [136] or WattWatcher Gater to obtain
the final power consumption estimate.

for all instances do
generate memory
extract power value

end for

Algorithm 3: Characterization based on generator estimate.

As a last resort the characterization can be performed using the customer available memory generator
only. When called to generate customer views like HDL descriptions the generator also provides a power
estimate. These power estimates are usually address/data independent. Furthermore they often constitute
only rough approximations. The flow of this scenario is simple (see algorithm 3): the generator is called
for every instance and the power value is extracted from its report.

Certainly this scenario is the least attractive one. One might even ask why not to activate the memory
compiler directly from the application instead of first generating a model with the proposed methodology.
A couple of reasons stand against this: invoking the compiler is still orders of magnitude slower then
evaluating the model. The compiler does not have to be available at the site of application. Furthermore it
only provides point estimates. The models in contrast have analytical form with the advantages mentioned
before.

5.3 Identification and Fitting

In the proposed approach model identification and fitting go hand in hand. As no other information is
available, searching for an adequate model requires repeated fitting and error analysis. Defining a family
of tentative models has two conflicting objectives: the family is to be kept general enough to express all
relationships occurring and at the same time concrete enough to allow an effective selection and fitting.
The problems to be solved are the selection of a minimal set of variables, the determination of their mutual
interactions and the identification a mathematical expression for their influence on the result.

40

5.3 Identification and Fitting

The next subsection presents a family of mathematical models called signomials. These models are espe-
cially suitable for memory power estimation and optimization (see below). The following two subsections
describe the selection and fitting based on this model family: The first one explains the identification of a
mathematical relationship between candidate variables and the response, second one details the variable
selection process.

5.3.1 Signomial Models

The choice of a family of models represents a compromise between model expressiveness, efficient gen-
eration and applicability as expressed in the requirements in section 3.3. This thesis advocates that for
the task of memory modeling signomials represent a nearly optimal compromise. In the remainder of this
section an effective generation technique will be described. Section 5.6 documents the suitability of sig-
nomials for optimization tasks. Chapter 7 shows that the models generated with the presented technique
outperform existing ones. Signomials are defined as follows:

Let t variables xi, ∀xi : xi ∈ R+. A monomial is then

βi · x
αi,1
li,1
· . . . · xαi,pi

li,pi
=: βi · ξi (X,αi) (5.1)

where βi, αi,j ∈ R, li,j ∈ N, li = [li,1, . . . , li,pi
]′ a vector containing an ordered subset of pi indices of the

original variables, formally:
∀1 ≤ j 6= h ≤ pi : 1 ≤ li,j 6= li,h ≤ t (5.2)

The vector αi contains one exponent for each variable designated by the elements of li. In other words:
each term is a product of a subset of the variables with an individual real valued exponent. In the strict
mathematical sense the monomial is the product βi · ξi. For the sake of simplicity the term monomial (or
term) will in the remainder of this work also be used for only the function ξi.

Given the monomials a signomial can now be defined as a sum of monomials:

f(ξ(X,αi),β) =

(
k∑
i=1

βi · ξi(X,αi)

)
+ β0 (5.3)

Signomials with the restriction βi ∈ R+ are called posynomials. Posynomials, as will be shown later, take
an important role in nonlinear optimization.

Compare the signomials with simple multi-linear regression models (repeated here for convenience):

f(X,β) =

(
k∑
i=1

βi · xi

)
+ β0 (5.4)

Both models have similar outwardly structure and both models are linear in the parameters βi. Therefore
signomials can like multi-linear functions be fitted using linear regression (provided the αi,j are fixed).

For the fitting process the extended signomials are defined by redefining the zero exponent x0 in this
context:

x0
q := lnxq (5.5)

To see why this is appropriate, let:

xλ = eλ ln x = 1 + λ lnx+
1
2
λ2(lnx)2 + · · · (5.6)

leading to

lim
λ→0

(
xλ − 1
λ

)
= lnx (5.7)

Note that the bracketed term on the left side of the equation is a linear transformation of xλ. The
last equation basically expresses that for small λ the relationship between xλ and lnx is approximately
linear [19].

41

5 Embedded Memory Modeling Methodology

To summarize: the parameters of signomials are the coefficients βi, the exponents αi and the subsets
li. Each of the monomials ξi can be viewed as a transformation of the original variables. f has an outer
structure similar to an ordinary multi-linear model.

Continuous nonlinearities can under most circumstance be well linearized using simple power transfor-
mations. Due to the real valued exponents αi a wide range of relationships can be expressed. Among
these are all polynomials xn, reciprocal polynomials 1/xn, roots n

√
x and logarithms logn x. Together with

the possibility to build interaction terms this gives a very broad modeling space.

Piecewise Modeling
Piecewise nonlinear relationships can be easily expressed. A simple example: assume we would like to
split a model at the cut line xi = ϕ, e.g.:

y =

{
β · xαj xi < ϕ

β′ · xα′j xi >= ϕ
(5.8)

We can now define a pair of new artificial discriminator variables:

xd =

{
1 xi < ϕ

0 otherwise
(5.9)

x′d = 1− xd (5.10)

With this variable the piecewise model can be written as

y = β · xαj · xd
+ β′ · xα

′

j · x′d (5.11)

and thus be expressed by the presented model family.

Matrix notation
The model coefficients can be written in a matrix notation that is more convenient for computation: for
a model defined as above this notation is given by a real plus a boolean valued k × t matrix:

Mi,j =

{
αi,q ∃q : li,q = j

0 otherwise
(5.12)

Bi,j =

{
1 ∃q : li,q = j

0 otherwise
(5.13)

Note that the second matrix is necessary because the αi,j may become zero.

5.3.2 Variable transformations

As was stated in [87] research on fitting procedures (’response surface modeling’) has concentrated on
polynomials rather than on signomials. Therefore a new technique is presented in the following subsections
to effectively fit signomials to given observations.

This subsection deals with the first part of fitting these models: fitting the αi,j . For this purpose
the model structure defined by the subsets li is assumed to be fixed. Fitting eqn. 5.3 then still means
determining appropriate transformations αi,j and linear coefficients βi. To tackle this problem an adaptive
transformation of the independent variables is applied. This iterative algorithm extends the work of Box
and Tidwell to handle signomials [20,19].

Let without loss of generality α(0)
i,j = 1 the initial guess for the exponents and ξ(0) with ξ(0) = ξ(X,α(0))

the respective monomials. To improve the exponents, a first order Taylor expansion is performed around

42

5.3 Identification and Fitting

the initial guess

f (ξ,β) = f
(
ξ(0),β

)
+

k∑
i=1

pi∑
j=1

(
αi,j − α(0)

i,j

){∂f (ξ,β)
∂αi,j

}
ξ(0)

α
(0)
i

(5.14)

now the derivative is split: {
∂f (ξ,β)
∂αi,j

}
ξ(0)

α
(0)
i

=
{
∂f (ξ,β)
∂ξi

}
ξ(0)

{
∂ξi
∂αi,j

}
α

(0)
i

(5.15)

the latter can be computed directly (see eqn. 5.1){
∂ξi
∂αi,j

}
α

(0)
i

= x
α

(0)
i,1
li,1
· · · · · x

α
(0)
i,pi

li,pi
· lnxli,j

(5.16)

and (cf. eqn. 5.3) {
∂f (ξ,β)
∂ξi

}
= βi (5.17)

The “real” βi are not known however, since they are dependent on the αi,j , which are not yet correct.
Hence an estimator b for β is computed by a preliminary fit using the initial guess for the alphas

y = f
(
ξ(0), b

)
+ ε (5.18)

With these preliminary considerations the Box-Tidwell algorithm (alg. 4) can be explained: During the
algorithm the χi,j will contain the xαi,j

li,j
with the current α. As the initial guess for all exponents is 1

(line 2), it is sufficient to copy the xli,j
into the χi,j at the start (line 3). In the subsequent step the

estimator b for β is determined through regression (line 5). The same happens with the estimator ci,j for
(αi,j − α(0)

i,j) · βi (line 6). The new approximations of alpha can then be computed (line 7). Finally the
iteration counter is increased and the χ are adapted to the new exponents (line 16+17). The algorithm
is repeated until either the solution has stabilized (the maximum change in αi,j is below the threshold
αthreshold) or a maximum number of iterations imax is reached (line 18). The iteration threshold becomes
necessary for over-determined models (see section 5.3.5) that can make the algorithm fail to converge.
These models also make it necessary to force the exponents to stay within safe bounds, i.e. regions where
over/underflows do not occur. This is achieved by the statements in line 8-15. The choice of values for
imax, αmax and αmin is discussed in section 5.3.5.

Remarks
This transformation differs from the often suggested variance stabilizing transformations in that it is
performed on the input variables instead of the response. The transformation can be seen as a combination
of regression and Gauss-Newton optimization [7]:

The Gauss-Newton technique allows the iterative fitting of a function provided its derivatives are com-
putable. This is achieved by a first order Taylor expansion of all parameters ψi (compare equation 5.14):

f(ψ) = f(ψ(0)) +
∑
i

δi
∂f (X,ψ)

∂ψi
(5.21)

The Gauss increments δ is then computed so as to minimize a given error function (in our case the mean
square error). Finally the parameter estimate ψ is corrected by the gauss increment (ψ′ = ψ + δ).

In the Box-Tidwell method described above only the exponents αi,j are treated as variable parameters
with the Gauss-Newton method. The parameters β are fitted separately using simple regression (cf. eqn.
5.18). The computation of the Gauss increments is also performed by regression. With the seperation
described in equation 5.15 the ∂f(X,ψ)

∂ψi
are in turn computed using the estimates for β.

43

5 Embedded Memory Modeling Methodology

Input: X: matrix of observations, li model structure
Output: αi,j adapted exponents
1: i← 0
2: αi,j ← 1
3: χi,j ← xli,j

4: repeat
5: fit the following equation to obtain the b´s as an estimate of the β′s:

y = f
(
ξ(0), b

)
+ ε (5.19)

6: fit the following equation to acquire the estimates ci,j for (αi,j − α(0)
i,j) · βi:

y = f
(
ξ(0), β

)
+

k∑
i=1

pi∑
j=1

ci,j · ξ(0)i · lnxli,j
+ ε (5.20)

7: obtain the corrected α by setting: αi,j = ci,j

bi
+ α

(0)
i,j

8: for all αi,j do
9: if αi,j > αmax then

10: αi,j ← αmax
11: end if
12: if αi,j < αmin then
13: αi,j ← αmin
14: end if
15: end for
16: i← i+ 1
17: χi,j ← x

αi,j

li,j

18: until max ci,j

bi
< αthreshold or i > imax

Algorithm 4: Box-Tidwell regression for signomials.

44

5.3 Identification and Fitting

5.3.3 Variable Selection

In the previous section it was demonstrated how the exponents are optimized for a given model structure
(set of li). This leaves to be solved the problem of identifying the li. Identifying the variables involved
in a statistical model is a problem of regression analysis called variable selection. Since exhaustive search
is often infeasible due to the number of possibilities (

∑n
i=1 2ik in this case), other techniques have been

proposed (see [92] for an overview). For this thesis stepwise regression is used: Stepwise regression is based
on the F test as a measure of statistical significance (cf. section 3.2.5). Note that for the signomial models
the test described in section 3.2.5 is performed on the monomials βi · ξi instead of simple variables βi · xi.
As stepwise regression is an iterative technique, it integrates well with the other techniques described.

The stepwise regression algorithm proceeds as follows: start with an empty model and add the most
significant variable/ term (highest F0) until significance drops below a probability threshold (“forward
step”). After each inclusion of a new variable check all variables already in the model whether they
have become obsolete (“backward step”). Stop when neither forward step nor backward step changes the
model. The algorithm is described in more detail in the next sub-section.

5.3.4 Model Generation Algorithm

In the preceding section signomial models were introduced. Subsequently the selection and transformation
of variables were described. This section now integrates these fragments in describing the complete model
generation algorithm. The key aspect is the interplay of selection and transformation. The algorithm is
show in listing 5:

The model generation starts with a model containing only a constant (line 1). It is repeated until
convergence is reached (line 2). The ”forward selection” begins in line 3: every monomial in the model
(l. 4) is in turn expanded by a variable not already in the model (l. 5-7). The new monomial is added
to the previous model to build a new one (l. 8). Then the exponents are adapted for the new model
using the technique described above (l. 9). Now the statistical significance of the added term is tested by
performing the F-test on the previous model and the expanded one (l. 10). If the new term is the most
significant candidate so far, it is stored (l. 11-13). If the best candidate over all evaluated models is above
the significance threshold, it is made the new model (l. 17-19). Convergence can only occur if no term
was added (l. 21).

The backward step goes through all monomials of the models (l.24). It removes the respective monomial
from the model and performs the adaption of exponents followed by the significance test (l. 25-27). When
the F-value obtained is the smallest encountered so far, it is stored (l. 28-31). Should the least significant
monomial be under the significance threshold it is removed from the model. The algorithm does only
converge if neither the forward nor the backward step does change the model (l. 33-36).

Example 4. Let the variables be x, y and b. Let further n = 100. The algorithm starts with an ”empty”
model containing only a constant c (represented asM = B =

(
0 0 0

)
). The following new monomials

are considered in the first iteration: c ·x, c · y, c · b. Each corresponding new model is then optimized using
the Box-Tidwell method and rated using the F-test. Suppose the best model turns out to be 11.4 · y0.46

(represented as M =
(

0 0.46 0
)

B =
(

0 1 0
)
. Note that factors like 11.4 are not part of the

matrices as they can always be recovered by a simple regression run), with F max= 3.5. Since the F-value
is above the threshold F (0.9, 1, t+ 2) = 2.76, the new monomial will be included. This ends the forward
step. The backward step is not able to remove a monomial in this iteration. The next forward step then
considers c · x, c · b, c · x · y and c · y · b as new terms.

Remarks

Note that in this algorithm the search space is drastically restricted by considering as new monomials
only monomials already in the model, expanded by a single additional independent variable. Through this
measure the complexity of each forward step is reduced from 2v to k · v where k is the number of terms
and v the number candidate variables. The following reasoning motivates the restriction made: Suppose
the underlying relationship is of the form c2 · xi · xj . For the sake of simplicity the current model only

45

5 Embedded Memory Modeling Methodology

1: converged← false,M ← 0, B ← 0, t← 0
2: while not converged do
3: Fmax ← 0 { “forward step” }
4: for all rows i of M/B do
5: for all columns j, B(i, j) = 0 do
6: m←M(i,), b← B(i,)
7: m(j)← 1, b(j)← 1
8: M ′ ←

(
M
m

)
, B′ ←

(
B
b

)
9: (B′,M ′)← box tidwell(B′,M ′)

10: F0 ← F test(M,B,M ′, B′)
11: if F0 > Fmax then
12: Fmax ← F0

13: Mmax ←M ′, Bmax ← B′

14: end if
15: end for
16: end for
17: if Fmax > F (p, 1, n− t) then
18: M ←Mmax, B ← Bmax
19: t← t+ 1
20: else
21: converged← true
22: end if
23: Fmin ← F (p, 1, n− t) + 1 {“backward step”}
24: for all rows i of M/B do
25: (M ′, B′)← remove row(i,M,B)
26: (B′,M ′)← box tidwell(B′,M ′)
27: F0 ← F test(M ′, B′,M,B)
28: if F0 < Fmin then
29: Fmin ← F0

30: Mmin ←M ′, Bmin ← B′

31: end if
32: end for
33: if Fmin < F (p, 1, n− t) then
34: M ←Mmin, B ← Bmin, t← t− 1
35: converged← false
36: end if
37: end while

Algorithm 5: Iterative model generation.

46

5.3 Identification and Fitting

contains a constant c1. The MSE is:

MSE = mean((c2 · xi · xj − c1)2) (5.22)

By including a term c2 · x̄i · xj or c2 · x̄j · xi the error will reduce unless the means are zero:

MSE = mean((c2 · (xi − x̄i) · xj − c′1)2) or (5.23)

MSE = mean((c2 · xi · (xj − x̄j)− c′1)2) (5.24)

There is therefore a high probability that one of these monomials will enter the model. In the next forward
step the interaction term xi · xj will be considered. Note that as ∀xi : xi ∈ R+, x̄i = x̄j = 0 would mean
that both are zero variables and thus meaningless.

5.3.5 Convergence and performance

Convergence
The algorithm contains two main loops: the iterative variable transformation as inner and the stepwise
regression as outer loop. It is a commonly accepted fact, that the stepwise regression algorithm in the
version described here is cycle free and since the number of possible models is finite it is consequently
terminating (see [90] for proof). For the inner loop, the situation is more complex: in the forward step
new candidates are included in the model. If these candidates are superfluous they can render the model
over-specified. As a consequence the model coefficients are no longer well determined. In these cases
the quotient c/b in algorithm 4 can become numerically unstable. This problem was tackled by limiting
the number of iterations (see also section 5.3.2). In the evaluation chapter an upper bound imax = 30
is chosen. This is motivated by the distribution of iterations required for termination (see figure 5.3):
either the algorithm terminates within the first 30 iterations, or it takes very long to terminate. To avoid
arithmetical overflows and underflows, the exponents are furthermore constraint to an empirically selected
region. For the evaluation chapter αmin = −30 and αmax = +3 are chosen.

Note that these measures are not critical to the algorithm: if the model including the new term is
over-specified, the new term does obviously not improve the model any further. The regression step will
therefore reject this model with high probability.

Complexity
Asymptotical complexity considerations are a complicated issue for iterative algorithms as presented here:
the sequence in which candidate models are tested cannot be exactly predicted and therefore no candidate
can be ruled out a priori. The theoretical worst case is consequently exponential, as is the total number
of possible models. In practical cases the nested structure of the candidate models leads to much lower
effort. The parameter transformation algorithm has been chosen for its quick convergence. It reaches the
upper bound of 30 iterations (involving 60 regression steps) only for over-specified models.

The overhead of introducing an additional input variable is dependent on its involvement in the model:
in best case (for runtime) the new variable does not enter the model. The overhead is linear in this case
because one additional candidate variable per model term is tested in each forward step.

5.3.6 Relation to other work

The techniques of this chapter have similarities to the work of Coumeri and Thomas [32] in also using
stepwise regression for variable selection. Their technique however is restricted to linear models of the
candidate variables. The approach proposed in [32] has three remaining drawbacks that are overcome be
the method presented here:

1. A structural decomposition of the memory circuit is performed before modeling. This is a severe
problem for characterization as observations of all separate components must be generated. Often
the low level simulation models do not allow this.

2. A manual pre-transformation of variables is necessary, violating the notion of black box modeling.

47

5 Embedded Memory Modeling Methodology

Figure 5.3: Typical histogram of the iteration count during the variable transformation. Iteration counts
exceeding 100 are listed under 100.

3. Only linear dependencies can be expressed. As mentioned above linear relationships cannot express
all dependencies within memories adequately.

In the evaluation section both approaches are compared against each other.

5.4 Validation

Whenever empirical modeling is performed, validation is extremely important. Therefore the validation
of the generated models is the consequent next step in the proposed methodology. Two questions must
be answered:

1. How well does the model fit the observations?

2. How well does the model serve as a predictor?

Although the second question can be considered the ultima ratio, both, the first and the second are not
completely separable: a model that only fits past observations but has no predictive quality is clearly
useless. Yet the quality of prediction can itself only be predicted from the model and observations made
before or during model building. In other words the quality of fit to past observations determines the
confidence in predictions. The formal relationship is described below.

From an operative point of view validation is also strongly connected to a third aspect: If it does not
fit well, what is the problem? This question, like the other two, can be investigated by analyzing the
quality of fit. The next subsection describes mathematical measures for such an analysis. Visual analysis,
a technique that accompanies the mathematical measures especially for problem diagnosis, is described
in the next subsection. Finally, criteria for an of acceptance models are discussed.

5.4.1 Mathematical Measures for Quality of Fit

Statistical criteria of fit can be divided into three families [45]:

1. Discrepancy between fitted model and data.

2. Explanatory ability. A measure that reflects how well the data is explained by the model. Likelihood
is such a measure. For linear models with normally distributed errors likelihood is equivalent to the
mean square error [45].

48

5.4 Validation

3. Shape matching. The quality of fit is assessed by the comparison of shapes of the model and the
sampled data. This criterium is particularly used for such models that assume certain statistical
distributions. As we have no distributional model, this criterion is not applicable here.

Based on the assumptions about the nature of errors described in section 3.2.3 regression analysis
supplies criteria of the first two families: The root mean square error (see section 3.2.7) serves as measure
of discrepancy as well as likelihood. It can be used as estimator for the variance of the errors of predictions
made from the model. With this information it is possible to compute a confidence interval for predictions
as described in section 3.2.4. This computation demonstrates the connection between the two issues
mentioned above: The MSE, a traditional criterium of fit, determines the confidence in predictions made
from the model.

The coefficient of multiple determination R2 gives further information about the fit: low values of R2

suggest that the model was not adequately linearized. High values on the other hand are not per se a
guaranty of good fit. The relative error measures provide more intuitive criteria, but are often misleading
when an optimization of the absolute error is performed.

It must however be remembered that all these error measures do not formally document the predictive
qualities but merely give testimony about the sampled data. If such data, i.e. the cross validation set, is
carefully chosen, it is intuitive that the errors observed later in application are similar. This is however
not formally guaranteed.

In the proposed methodology the following criteria of fit are computed (cf. 3.2.7): MSE, standard
deviation, R2, XARE, MARE, MRE.

5.4.2 Visual Inspection

Visual inspection is common practice in statistics. It relies on unsurpassed human capability to intuitively
assess the quality of fit or detect hidden relationships. In the context of the presented methodology it
is often helpful for problem diagnosis when the mathematical error measures are unacceptably high. In
these cases visual inspection can provide hints on the nature of the problem. Two common graphical
representations are suggested here: a) a plot of both, the model and the data, against one or more
variables and b) a plot of the residuals against one or more variables.

Data vs. Model plot
Two different aspects can be investigated with this plot: a) the fit and b) whether the relationship between
candidate variables and response is well defined. The graph gives a good impression about the overall fit
(see figure 5.4). For diagnosis, regions of sudden changes in the observations (jumps, or changes of slope)
can be identified. It is then possible to analyze whether the model adequately reflects these changes.
Regions of increased errors can be found and attributed to either a region of change as described or a lack
of sample points.

If the relationship between candidate variables and response is not well defined this is indicated by a
high degree of scattering of the response. It is an indicator that the data abstraction failed: as some
aspects of the underlying relationship were not or not adequately recognized they have a quasi-random
influence on the response in the plot.

Residuals vs. Variable plot
This plot can be used to identify inadequacies in the model: If a model is correct, the remaining errors are
randomly distributed with constant variance. Therefore, for every variable a plot of the residuals against
the variable should show a random distribution with constant variance. Note that this also applies for
candidate variables not in the model. If such a plot shows a strong correlation of variable and error this
is an indicator that the variable is not adequately represented in the model.

The principle of both graphs are fairly intuitive even for users not versed in statistics. The biggest
limitation of this method is its restriction to three dimensions, meaning that only two variables can be
plotted independently. This can in some cases lead to plots that are counterintuitive at first glance (see
example 5). When assessing such a plot it must always be kept in mind that it represents only a section
of a multidimensional graph.

49

5 Embedded Memory Modeling Methodology

data ✛

✛ ✛ ✛ ✛ ✛

✛ ✛ ✛ ✛
✛

✛ ✛

LIN

1.8 2 2.2 2.4 2.6 2.8 0
500

1000
1500

2000
0

0.5

1

data ✛

✛ ✛ ✛ ✛ ✛

✛ ✛ ✛ ✛
✛

✛ ✛

NON

1.8 2 2.2 2.4 2.6 2.8 0
500

1000
1500

2000
0

0.5

1

voltage
#word lines #word linesvoltage

energy energy

Figure 5.4: The restriction to three dimensions sometimes results in counter intuitive model plots (left).
Nonlinear models can often approximate the response surface better (right).

Example 5. See figure 5.4. It clear seems as if the modeling could easily have performed better. Yet the
graph only shows a small section of the multidimensional graph. Increasing the local accuracy here would
have lead to a worse overall fit.

Note that all candidate variables should be investigated and not just the ones included in the model.

5.4.3 Criteria of Acceptance

The above techniques can be used to compare different models. For the modeling process that is by its
nature iterative, it is also necessary to define criteria when to stop and accept the current model. As the
presented methodology involves users with limited modeling experience, these criteria should be easily
evaluated.

Suitable criteria of acceptance are bounds on one or several measures of fit described above. Values for
such bounds must be chosen with the application context in mind (see section 3.3). It is therefore sensible
that such bounds are not defined by the memory modeler but an expert in the eventual application.

Example 6. In section 3.3 the accuracy requirement of 20% maximum average error (RMS error as well
as MARE) was set as this is the accuracy of models for other circuit aspects at this level of abstraction.
Should a modelling run turn out to produce errors above this threshold, additional modelling effort (e.g.
recharacterization) would be necessary. In industrial environments this would require a cost vs. accuracy
tradeoff.

This example shows, that a tradeoff between accuracy and modeling cost may become necessary. Such
a tradeoff is complicated by the fact that the accuracy gains of additional modeling effort are not known
a priori.

5.5 Iteration

In the previous section possible criteria of acceptance were discussed. If a model does not fulfill these
criteria it is necessary to re-iterate the modeling procedure (cf. section 3.1). This methodology suggests
three different iterative steps: (Re-)defining candidate variables, acquiring more data, regenerating the
model.

(Re-)defining candidate variables
Conjectures about missed aspects in the previous modeling run can trigger this feedback loop. Such
conjectures could be new tentative abstraction functions fa, the necessity of piecewise modeling or the
introduction of completely new candidate. In a newly preformed data abstraction new candidate variables
are defined to reflect the speculations.

In some cases the levels of the new candidate variable resulting from the original experimental design do
not adequately cover the candidate space. In these cases it is necessary to repeat the experimental design

50

5.5 Iteration

and data acquisition step (cf. section 5.2.1) before model generation. Otherwise the model generation can
be performed based on the existing data.

Acquiring more data
When the previous model is close in form to the observations but lacks local or global accuracy, this can
usually be remedied by (locally) increasing the density of sample points. To do so a new experimental
design is set up and characterization is restarted, followed by another model generation run. Note that one
of the strengths of the presented methodology is, that no restrictions are posed on the new experimental
design. It can therefore be chosen independently of the initial design and deal optimally with the accuracy
problem.

Restart at model generation
The model generation procedure is affected by a number of parameters. Among these are for example the
upper and lower bounds for the exponents, or the weight function used. In some cases it can therefore be
sensible to re-execute the model generation with modified parameters (cf. section 6.2.2).

Selecting measures for improvement
As described above, the validation, especially the visual examination, produces insight into shortcomings
of the current model. The selection of an appropriate measure has not been automated, but here is a list
of miss-specifications and measures:

1. Jump discontinuities. When the trend of the observations exhibits sudden changes that are not
adequately reproduced by the model, piecewise modeling is indicated (cf. 5.3.1).

2. Lack of Data. When the form of the model seems appropriate but accuracy is still not satisfying
acquiring more data is the appropriate step. New data can be acquired locally or globally.

3. Inappropriate Transformation. If the residuals vs. variable plot shows strong correlations this means,
that the variable has not been appropriately transformed. As described above, power transformations
are performed by the algorithm automatically. If a different transformation fa is underlying, this
has to be found manually however.

4. Non-multiplicative Interaction Terms. The presented algorithm can find interaction terms only if
they are multiplicative. Other interactions cannot be automatically detected. Non-multiplicative
interaction terms lead to a high degree of scattering in the variable vs. residual plot. If such an
interaction is suspected, it should be included among the candidate variables.

5. Missing variables. Missing variables lead to globally increased errors. Including missing variables
during data abstraction will obviously solve the problem. The most difficult problem consist in
identifying the missing variable. It should be noted, that quite commonly not all variables that
could improve the model are included. Most often this happens for cost reasons as generating the
necessary observations might be exceedingly expensive.

5.5.1 Piecewise Modeling

Size scalable macros may change the internal configuration at certain size boundaries. This leads to jump
discontinuities in the observed power trends. Figure 5.5A exemplifies such a situation for the most simple
case (only one input dimension and linear regression). Discontinuities such as these can best be handled
by piecewise modeling: the original model is split into two independent ones along a defined line, i.e. the
line of discontinuity (figure 5.5B). As described in section 5.3.1 piecewise modeling can be represented
in the suggested model family by introducing discriminator variables. The biggest problem in applying
piecewise modeling therefore remains the identification of the necessary cut lines (also called nodes). In
this section a simple technique is proposed for the detection of co-axial nodes, i.e. lines of the form xi = ϕ
(e.g. the vertical line in figure 5.5B and D). Many other forms of cuts, including interactions of variables,
are imaginable. The restriction to co-axial cuts was made here to limit the search space. As the behavior of
a model is unknown between the levels, it is sensible to furthermore restrict the positions of possible nodes

51

5 Embedded Memory Modeling Methodology

X>phi

Residuals
 Residuals

Y
 Y

A)

C)

B)

D)

Figure 5.5: The steps of node insertion: A) Initial Regression, B) Model including node, C) Analysis of
Residuals, D) Regression on residuals.

for each variable to its levels. The number of candidates is then the sum of the levels of all variables. This
sum is bounded from above by the product of the number of observations n and the number of variables
k. Even in complex modeling situations it is possible to enumerate all candidates and evaluate them.

Performing a complete model generation with every candidate would be too time consuming. Therefore
the following scheme for comparing the candidate nodes was applied: Suppose an initial model has been
fitted to the data (5.5A). A co-axial discontinuity, such as a jump or sudden change in slope at a specific
value of a variable xi, is then detectable in the residuals vs. variable plot of xi (5.5C). The key idea of
the evaluation of cut-line candidates is to perform a one-dimensional piecewise linear regression on the
residuals (5.5D) and let the mean square error serve as its quality measure.

Let r be the residuals of an initial modeling run and xi the variable under investigation with the levels
levels(xi). Let ϕ ∈ levels(xi). Now regress this linear model:

r = β0(xi < ϕ) + β1xi(xi < ϕ) + β2(xi ≥ ϕ) + β3xi(xi ≥ ϕ) (5.25)

The mean square error of this regression can be seen as a first order approximation of the remaining error
after the introduction of the respective cut line. Based on this approximation a candidate variable/level
pair for the cut can be identified as one that produces small errors when applying eqn. 5.25.

Limits of eqn. 5.25 become clear when iterating model generation and node insertion: the regression
model does not take into account the interaction of discriminator variables. This is best explained by an
example:

Example 7. Let a hidden relationship:

y =

{
0.1 · x1 + 0.2 · x2 + 2 if x1 ≥ 6, x2 ≥ 6
0.1 · x1 + 0.2 · x2 otherwise

(5.26)

Figure 5.6 shows the graph of this function. The discontinuities at the value 6 on both axis is clearly
visible. The figure also shows a piecewise linear model fitted to the relationship. This pre-cut model has

52

5.5 Iteration

original relationship
linear model without cuts

2
3

4
5

6
7

8
9

10

x1
1

2
3

4
5

6
7

8
9

10

x2

-1
0
1
2
3
4
5

y

Figure 5.6: A two dimensional relationship and its best linear approximation with one cut in x2.

residuals
model fitte on residuals

2
3

4
5

6
7

8
9

10

x1
1

2
3

4
5

6
7

8
9

10

x2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

y

Figure 5.7: Residuals of the model shown in figure 5.6 and a piecewise linear model of these residuals with
cut in x1.

53

5 Embedded Memory Modeling Methodology

residuals
model fitted on residuals

2
3

4
5

6
7

8
9

10

x1
1

2
3

4
5

6
7

8
9

10

x2

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

y

Figure 5.8: Residuals of the model shown in figure 5.6 and a piecewise linear model on these residuals
using an interaction of the two cuts.

a node along x2 = 6 which we assume was found in the previous cut insertion run. The pre-cut model is
the point of departure for the insertion of the next node. Figure 5.7 shows its residuals. According to the
technique suggested above a piecewise linear model of the form described in eqn. 5.25 is fitted to these
residuals (x1 is the variable under investigation here). This residual model is also shown in the figure.

An analysis of the residuals and their model reveals discrepancies: The residuals are clearly divided
into four quadrants along the lines x1 = 6 and x2 = 6. Since the residual model contains only one node,
it cannot adequately represent these quadrants. A significant error is the result. Does that mean that
introducing the discriminator variables xd2 = (x1 < 6) and xd′2 = (x1 ≥ 6) would not have a big benefit?
No. In fact it would reduce the error to zero. This is the case as the discriminator variables xd1 = (x2 < 6)
and xd′1 = (x2 ≥ 6) are already in the pre-cut model. By combining the two new and the two old variables
through the interaction terms xd1 ·xd2 , xd1 ·xd′2 , xd′1 ·xd2 and xd′1 ·xd′2 . all four quadrants could be handled
separately. In the case of eqn. 5.26 this would result in zero error.

The observation just described means that in cases of repeated cuts the error fitting eqn. 5.25 to the
residuals is not a good predictor because it neglects interactions of nodes. A solution to this problem can
also be demonstrated on the example above: by including the node x2 = 6, that was already in the pre-cut
model, into the residual model, the residual model can effectively forecast the impact of the interactions
of the nodes (see figure 5.8). This leads to the more general requirement: the model on the residuals
should contain all nodes already in the pre-cut model. A respective regression model can be generated by
the method described in algorithm 6 (the ’◦’ symbol stands for a multiplicative concatenation of terms).

Unfortunately the number of pieces in a piecewise model grows worst case exponentially. For algorithm
6 this means that the models D can become very big. Models with many terms however cause several
problems (“overfitting”). A natural measure is therefore to restrict the number of considered variables by
a maximum u. In case this maximum is exceeded, two strategies are possible:

1. Only the first u nodes are considered for every new cut. Later nodes are ignored. The legitimation
for this approach is that the nodes entering the models first have the biggest impact.

2. When considering i nodes, i > u, all
(
i
u

)
possible combinations of u nodes are tested. This is the

more thorough approach, but time complexity can limit its applicability as the number of cases
again grows exponentially.

54

5.5 Iteration

Input: (xi < ϕ), xi ∈ V, ϕ ∈ levels(xi) the cut under investigation.
C ⊂ {(x < ϕ)|x ∈ V, ϕ ∈ levels(x)}

Output: D is set of all summands in the model
D = {(x < ϕ), x(x < ϕ), (x ≥ ϕ), x(x ≥ ϕ)}
for all (c < γ) ∈ C do
Dtmp ← ∅
for all d ∈ D do
Dtmp ← Dtmp ∪ (c < γ) ◦ d
Dtmp ← Dtmp ∪ (c ≥ γ) ◦ d

end for
D ← Dtmp

end for

Algorithm 6: Generation of regression models for cut searches. The ’◦’ denotes concatenations.

Algorithm 7 exemplifies the second solution. Note that the first solution can be emulated by substituting
the second innermost loop by W = C. The input C must only contain the first u nodes in that case.

Input: C ⊂ {(xi < ϕ)|xi ∈ V, ϕ ∈ levels(xi)} set of previous nodes
initialmse: mean square error of previous model

Output: bestcut is candidate node for separating the previous model
bestmse← initialmse
bestcut← ∅
for all x ∈ V do
bestmse(x)← initialmse
for all W ⊆ C, |W | = u or W = C do

for all ϕ ∈ levels(x) do
built regression model with W and (x < ϕ) using algorithm 6
compute MSE by regression
if MSE > bestmse(x) then
bestmse(x)←MSE
bestlevel(x)← ϕ

end if
end for

end for
if bestmse(x) > bestmse then
bestmse← bestmse(x)
bestcut← (x < bestlevel(x))

end if
end for

Algorithm 7: Suggestion of co-axial cut lines for piecewise modeling. Testing all u element cut subsets.

Algorithm 8 describes the complete interactive interplay of model generation and search for nodes. This
algorithm is also implemented in the modeling tool (see next chapter). Two stopping criteria are used:
Failure to include a suggested discriminator variable and suggestion of a node already in the model. Both
criteria indicate that the last model cannot be significantly improved anymore. The highest number of
cuts inserted into a model presented within this thesis was 10 (cf. chapter 7).

Iteratively slicing the model space tends to render models with decreasing errors but increasing complex-
ity. A trade-off between these two therefore has to be performed. For this purpose algorithm 8 protocols
the accuracy and complexity of all intermediate models. The selection is left to the user. The decision
can be taken based on the errors in relation to given bounds, the visually perceived adequacy, and the

55

5 Embedded Memory Modeling Methodology

remaining degrees of freedom of the error.

Input: set V of candidate variables, y response variable with n observations
Output: sequence of models and statistical error measures

repeat
perform model generation as documented in algorithm 5
perform validation by computing statistical error measures
protocol current model and errors
identify tentative partitioning using algorithm 7

until the last partitioning was not used in the model or the suggested partitioning is already in the
model

Algorithm 8: Model generation including iterative partitioning for piecewise modeling.

One drawback of the model segmentation must be mentioned: segmentation reduces the region of
definition of the model. Let x a regressor variable, li−1 and li the i− 1-th respectively i-th level of x. If
now the model is cut at the node x < li, the highest level in the ’lower’ segment is li−1 and the lowest level
in the ’higher’ segment is li. Although the lower segment, by its defintion, extends up to li no observation
is available above li−1. The behavior of the lower segment model is therefore in reality undefined between
li−1 and li. Predictions in that region may have random errors.

5.6 Optimization

As mentioned in the introduction optimization as a major application for memory models. A simple
example of optimization is the determination of the power optimal aspect ratio (height x vs. width y) for
a memory of given size. Mathematically the global optimum of a cost function P (x, y) is sought:

Vmem := minimize P (x, y) (5.27)
subject to x · y > size (5.28)

To support optimization, models must be in a mathematical form that allows to efficiently compute their
global optima subject to constraints. This is not a trivial requirement: the global optimum of general
nonlinear functions cannot be effectively computed even if they are given as closed form equations [18,152].
In such cases, exhaustive search is the only way to obtain at least a near optimal solution. This section
describes how global optimization can be efficiently performed for the family of mathematical models
chosen here. By doing so an integrated methodology from the gathering of observations to the solving of
optimization problems becomes available. This circumstance in turn justifies the choice of signomials as
mathematical models.

Signomials (or more specifically posynomials) are among the most general sub-classes of nonlinear
functions for which an effective global optimization technique exists. The respective technique is called
geometric programming. Because of their high optimization potential, signomials and posynomials have in
recent years been used in many fields, including the optimization of analog circuit properties (e.g. [54,87]).
So far most signomial/posynomial models have been produced analytically, i.e. by circuit analysis. [87]
itself states that “even the one-time user effort required to derive the analytic expressions of performance
metrics is a barrier to the widespread use of techniques such as ours.”

The combination of empirical regression analysis and posynomials for hardware optimization has only
been published very recently [33]. In [33] second order polynomial regression is performed on the perfor-
mance of analog circuits. The resulting model is subsequently transformed into a posynomial. Geometric
programming is then applied to obtain an optimal sizing.

In the remainder of this section it is briefly described how geometric programming can be used to
solve signomial optimization problems. First however a simpler, albeit less compact, representation of
monomials and signomials is introduced. This representation is only valid for non-extended signomials

56

5.6 Optimization

(cf. section 5.3.1). The basic idea of the new representation is to include all variables in all monomials. If
a monomial does not really depend on a specific variable, the variable’s exponent is set to zero, effectively
turning the variable into a constant one (as x0 = 1). Consequently instead of writing:

βi · x
αi,1
li,1
· . . . · xαi,pi

li,pi
(5.29)

now it is simply written

βi · x
α′i,1
i,1 · . . . · x

α′i,m

i,m (5.30)

where:

α′i,j =

{
αi,r if ∃li,r : li,r = j

0 otherwise
(5.31)

Note that this writing can also represent the constant offset (by setting all α’s to zero). The primal
posynomial geometric program is now given as:

VGP := minimize g0(t) (5.32)
subject to gk(t) ≤ 1, k = 1, 2, . . . , p (5.33)

ti > 0, i = 1, 2, . . . ,m (5.34)

where

g0(t) =
n0∑
j=1

βj · t
αj,1
j,1 · . . . · t

αj,m

j,m (5.35)

gk(t) =
nk∑

j=nk−1+1

βj · t
αj,1
j,1 · . . . · t

αj,m

j,m (5.36)

Here, g0(t) is called the objective function and gk(t) the kth constraint function. Each constraint function
consists of (nk − nk−1) monomials and the total number of monomials is np. In the terms of this thesis
g0(t) is the power model, whereas the gk(t) contain additional constraints (e.g. x ·y > size in the example
above). The primal program can be solved by solving the dual. The dual posynomial geometric program
is:

VGP := maximize
np∏
j=1

(βj/xj)xj

p∏
k=1

λλk

k (5.37)

subject to
n0∑
j=1

xj = 1, (5.38)

np∑
j=1

xj · αi,j = 0, i = 1, 2, . . . ,m (5.39)

xj ≥ 0, i = 1, 2, . . . , np (5.40)

where

λk =
nk∑

j=nk−1+1

xj , k = 1, 2, . . . , p. (5.41)

For a primal geometric program (GP) havingm independent variables (ti), p constraints and np monomials
the dual has np non-negative variables (xj) in m+1 linear equations. The degree of difficulty a of GP is
therefore defined as:

degree of difficulty = np −m− 1 (5.42)

57

5 Embedded Memory Modeling Methodology

The interesting point about the dual problem is that its objective function can be turned into a convex
function by taking the negative of the logarithm:

F (x) =
n0∑
j=1

xj · ln
(
xj
cj

)
+

p∑
k=1

nk∑
j=nk−1+1

xj · ln
(

xj
cjλk

)
(5.43)

By this transformation the dual problem becomes an astonishingly simple linearly constraint convex
programming problem

minimize F (x) (5.44)
subject to Ax = b, x ≥ 0 (5.45)

The coefficient Matrix A is
1 · · · 1 0 · · · 0 · · · 0 · · · 0

α1,1 · · · α1,n0 α1,n0+1 · · · α1,n1 · · · α1,np−1+1 · · · α1,np

· ·
αm,1 · · · αm,n0 αm,n0+1 · · · αm,n1 · · · αm,np−1+1 · · · αm,np

 (5.46)

and
bt = [1, 0, . . . , 0] ∈ Rm+1 (5.47)

This problem can be solved by existing techniques (e.g. interior-point algorithms). Their detailed descrip-
tion is beyond the scope of this thesis and can be found for example in [77]. Software implementations of
thesis algorithms are available [31].

The geometric program described in eqn. 5.32 does not incorporate equality constraints. These can
however be emulated by inequality constraints. Let

hk(t) = βj · t
α1,j

1 · . . . · tαm,j
m = 1 (5.48)

This can be written as:

hk(t) = βj · t
α1,j

1 · . . . · tαm,j
m ≤ 1 (5.49)

1
hk(t)

=
1
βj
· t−α1,j

1 · . . . · t−αm,j
m ≤ 1 (5.50)

Note that while in theory this makes the interior-point algorithm unstable, the algorithm still works fine
in most cases [77].

Unfortunately, signomial optimization problems are not directly solvable via geometric programming.
To solve them nevertheless, signomials can be approximated by posynomials. This is achieved by a
sequence of preprocessing steps that substitute all negative coefficients βi. This preprocessing is technically
rather complex and will therefore not be described here. For more detail see [8].

In summary this section has shown that the signomial functions generated by the presented model
building methodology are well suited for optimization. With geometric programming, a broad body of
optimization theory and software exists.

5.7 Rounding

The real valued exponents of signomials have one principle disadvantage: as the real valued power function
is much more complicated to compute than the integer valued one, the computation of general signomials
is significantly slower than that of polynomials. Polynomial models on the other hand are potentially less
accurate than signomials.

In principle it is possible to obtain polynomials by simply rounding the signomials resulting from above.
The exponents are rounded to integer values, or ± 1

2 (square roots). This simple rounding however would
mean sacrificing accuracy: the structure of the optimal polynomial model is likely to differ from the

58

5.8 Summary

structure of the signomial one. To be able to produce polynomial models as well as signomials within
the flow presented above a different modification was therefore made to algorithm 5: Instead of rounding
only the final model, the monomials are rounded after each exponent adaption (box tidwell) step. By
this measure the computation of statistical significance for the in-/exclusion of variables does take into
account the effects of rounding. The exponent rounding scheme just described has been implemented as
an option in the model generation tool described in the next chapter.

5.8 Summary

In this chapter a general empirical modeling technique for memories was proposed. Circuit and gate
level simulation as well as compiler estimates can be used for data acquisition. The model generation
relies on the key ideas of signomial models, input variable transformation (linearization) and multi-linear
regression. Model validation is conducted using statistical error measures and visual inspection. The
modeling flow contains a number of possible iterative loops for the improvement of models. Piecewise
modeling is explicitly supported by a co-axial cut search algorithm. Emphasize was laid on an extensive
automation of the modeling process. Remaining manual steps were designed so as to require as little
knowledge as possible in the areas of statistics and model building. It was shown that the mathematical
form is one of the most general forms, for which effective optimization techniques exist and therefore the
models are well suited for the application in optimization.

59

5 Embedded Memory Modeling Methodology

60

6 Implementation

As already mentioned in the introduction the modeling flow has been implemented as proof of concept
in the prototype tool ORINOCO BEACH. Furthermore the application of the resulting models has been
realized as part of the power estimator ORINOCO DALE. Both tools are part of the behavioral level
power estimation suite ORINOCO. This chapter will briefly document the aspect of the implementation:
section 6.1 gives an overview of the ORINOCO functionality, section 6.2 addresses the model generation
tool BEACH while section 6.3 explains the integration of models into the estimator DALE.

6.1 ORINOCO Tool Suite

ORINOCO is a behavioral level power estimation and optimization tool suite comprising of three tools: the
estimator/optimizer DALE and the modeling tools RIO and BEACH. ORINOCO can be used on C/C++
as well as VHDL descriptions. The functionality of ORINOCO can be best explained following the tool flow
(see figure 6.1): at the beginning the source code description is compiled with an ORINOCO specific C++
compiler (see 1 in figure). This modified GNU compiler generates a control/dataflow file2 (proprietary
format) and instruments the application by introducing additional statements into the program’s object
code3. Subsequently the instrumented program is executed with typical input data streams provided by
the user4. During execution the added statements produce a background file containing an activity profile,
i.e. a representation of the data streams flowing through the application. With these preliminaries the
estimator DALE is started. DALE reads the control/dataflow file and builds an internal control/dataflow
graph-like representation5. Next the activity data is read in and annotated to the respective nodes of the
graph6. The tool is now ready for the estimation itself. The estimation7 forecasts an RT-level architecture
resulting from the algorithm and computes the activity of each functional unit based on this architecture
and the activity profile. Then power models for the different structural components are applied to obtain
the power estimate. These steps are repeated and folded to be able to optimize the forecast architecture
for power. Once the process is finished DALE produces several graphical and textual views of the power
estimation results as well as the optimized architecture.

The purpose of RIO and BEACH is to provide models of RT-level blocks to the estimator. RIO focusses
on combinational data path components like adders and multipliers. It uses a fixed type of data abstraction
and a combination of interpolation and regression [70,71,143] (see also section 4.2.1). BEACH as a black
box modeling tool primarily serves the modeling of memories within ORINOCO. Evaluation results (cf.
chapter 7) encourage the use for other components, like IP blocks.

6.2 ORINOCO BEACH

As the different algorithms involved in the model generation have already been thoroughly described,
this section will not go into detail about the implemented code. Instead, section 6.2.1 only describes the
implementation framework, i.e. languages and tools used. Section 6.2.2 briefly documents the usage and
tool flow of BEACH.

6.2.1 Implementation Framework

The body of BEACH is implemented in C++ and the script language Tcl/Tk: The Tcl/Tk interpreter
has been extended using its C procedure interface [148,109] to recognize the commands of the application.

61

6 Implementation

C/C++ source

code

C++ compilation
1

CDF extraction
2

Instrumentation
3

Control / Data flow

information

Instrumented

executable

of algorithm

Execution of algorithm
4
Typical input

stream

Activity profile

CDFG generation
5

Annotation
6

Estimation
7
Power models
 Power estimates

Figure 6.1: ORINOCO power estimation flow.

The graphical user interface has been completely implemented in Tcl and Tk. This makes it possible
to operate the tool with graphical support in an interactive fashion as well as in batch mode. To limit
the necessary implementation effort, a couple of public domain tools were integrated: For the statistical
computations BEACH relies on the statistics software Macanova, developed at the statistics institute of
the University of Minnesota [14]. Macanova offers base functionality for regression, test statistics and the
manipulation of data structures. It is accessed via a file interface. For the visualization of modeling results
BEACH uses Gnuplot [150]. This de facto standard tool is controlled by exporting data and command
files. Last but not least some file processing functionality is performed by the use of GNU AWK, a script
language dedicated to the processing of text files [116].

6.2.2 Tool Flow

The section describes the tool flow of ORINOCO BEACH (see figure 6.2) [122]. The modeling flow is
represented in the tool as a set of five so called ’views’: Characterization, Data, Terms, Variables and
Model. Each view reflects an aspect of the modeling and is manipulated on a different screen. The flow
is executed by proceeding through the views linearly.

The characterization view is an editor that allows the manipulation of characterization scripts. A simple
language has been developed (see appendix B) to specify the experimental design. A parameterizable
command string is executed for every experiment allowing for example to call a memory generator and
subsequently postprocess its output. While specifying the experimental design it is possible to already
plan for re-iterations of the characterizations, should they be necessary. A special FOR-statement allows
the definition of sequences of decreasing step size. The initial characterization is performed with the
first step size; every new execution then automatically selects the next smaller step size. In this way the
resolution of the characterization can be gradually increased.

When the characterization command is issued, the characterization script is executed and all its outputs
to the standard output are redirected into a data view. Eventually the data view contains the acquired

62

6.2 ORINOCO BEACH

Characterization View:

Define Characterization Scripts

Data View:

View & edit Data in

ASCII Format

Term View:

Define Derived

Variables

Model View:

I
nspect Models and their Properties

Variable View:

Define Variables and their

Ranges, set Parameters

Gnuplot Graphs

„Characterize“ Command

„Generate“ Command

„Check“ Command

Figure 6.2: ORINOCO BEACH tool flow.

Figure 6.3: ORINOCO BEACH variable view.

63

6 Implementation

data in a simple, ASCII table format. The tool flow can also be directly entered by reading such a table
into BEACH. In the data representation names are given to the individual columns of data. Furthermore
the cross validation and regression data sets are selected here. BEACH supports random, equidistant and
manual selection.

Artificial variables derived from the acquired data are defined in the terms view. Expressions for the
computations are given in Macanova syntax. Parameters of the model generation and validation can be
set in the variable view (see figure 6.3). The parameters are:

1. Variables. The independent and dependent variables are declared here. Additionally a range can be
set for each variable defining the model region plotted during visual inspection.

2. Weight Function. To perform weighted regression a weight function can be entered. This allows for
example to minimize relative instead of absolute errors.

3. Lower and upper bounds for exponents. As described in 5.3.5 bounds must be set to the exponents
in the linearization procedure to ensure numerical stability.

4. Rounding. This option allows the exponents to be rounded producing model expressions that are
more easily interpreted and evaluated. The bottom side of this measure is a potential loss of accuracy.

5. Forward only. In the variable selection process it is possible to omit the backward elimination.
The resulting pure forward selection is an alternative variable selection method documented in
literature [45].

After both, the artificial variables have been defined and the parameters have been set, the generate
command can be issued to build a model from the data. Once the generation has finished, the model
expressions, all error measures and the computation time used can be investigated in the model view (see
figure 6.4). The models are also stored in C format. The check command may now be issued to plot the
model and the acquired data against each other. The visible section is defined in the variables view (see
above).

Based on the diagnosis of the errors, the different feedback loops discussed in section 5.5 may now be
initiated, returning to the characterization, data, terms or variables view.

6.3 Model Integration

The practical application of models is an important aspect of modeling (see section 3.1). This section
highlights three central topics in the implementation and integration of the models: the choice of model
representation, the assignment of models to source code operators and the dynamic interaction between
estimator and model. The initial concepts of the integration of the power models into the ORINOCO
DALE estimator were drafted together with G. von Cölln [143] and are developed further in this thesis.

6.3.1 Model Representation

The choice of the software representation of the power models has a high impact on the estimation
efficiency and flexibility. In ORINOCO power models are described using the C++ language. Models are
C++ classes inherited from a common base class. This base class specifies the interface between estimator
and models. In case of BEACH the model equations are directly generated in C++ syntax. The model
interface is open: the interface class and its documentation as well as a set of templates are distributed
with the estimator. This enables users to supply their own models. The libraries of C++ represent a
natural model library concept: The separate model classes are compiled and linked into dynamic libraries.
One or several of these dynamic libraries are then loaded into the estimator at runtime. This approach
ensures the necessary power of expression, programming infrastructure (tools and documentation) and
runtime efficiency.

As an alternative model description language the Advanced Library Format (ALF) has evolved over
recent years. This meta-language is an attempt to unify all model description forms into a common

64

6.3 Model Integration

Figure 6.4: ORINOCO BEACH model view.

standard: ”The fundamental purpose of ALF is to serve as the primary database for all third-party
applications of ASIC cells. In other words, it is an elaborate and formalized version of the databook” [118].
ALF 2.0 is an approved Accellera standard since 2001 and approaches standardization by the IEEE (as
draft standard P1603). ALF offers modeling capabilities for functionality as well as electrical (arithmetic
models) and physical properties (geometric models) of technology cells and circuit sub-blocks. It is intended
to be used in design planning (RTL partitioning, floor plan, pin assignment) and design implementation
(synthesis, as well as layout, timing, power and signal integrity optimization) [117]. A power macro model
for a memory could for example have the following form:

CELL my_memory {
PIN[0:2] Addr { DIRECTION = input; }
PIN[1:4] Dout { DIRECTION = output; }
VECTOR (?! Addr -> ?! Dout) {

ENERGY {
HEADER {

SWITCHING_BITS sba { PIN=Addr; }
SWITCHING_BITS sbd { PIN=Dout; }

} EQUATION {
0.4 + 0.2*LOG(sba) + sbd

} } } }

ALF was not initially chosen as a model interface for ORINOCO as it formerly had a low-level (i.e.
technology cell oriented) focus. In version 2.0 still not all operators necessary for RTL data stream analysis
(e.g. signal distance) are incorporated. Furthermore at the time of decision the standard was still floating
and no parser was available for the language. Last but not least the models are in textual format that
needs to be interpreted by tools at the cost of performance.

With the standard now nearing completion and the availability of a public domain ALF parser since
the end of 2001, a possible future scenario could involve an ALF to ORINOCO translator: ALF models
would be processed by this tool to produce ORINOCO compatible model source code, which could then
be compiled and linked into ORINOCO. This strategy would combine advantages of the ALF standard
with those of the ORINOCO model representation.

65

6 Implementation

+
i
 foo
 j

adder
 ALU
 sqrt

compatible(+
 i
)
 compatible(
 foo
j
)

map(
foo
 j
)
map(+
 i
)

Figure 6.5: Assignment of model to operator.

6.3.2 Operator-Model Relationships

In the DALE estimator each source code operator (e.g. ’+’, ’*’, but also function calls ’call foo’) is mapped
onto an estimation model (e.g. model of a ripple adder). An important aspect in the integration of models
is to define the relationship between operators and the models. Put in simple words the question is: for
a certain operator which model is suitable to estimate its properties? Let O = {oi} the occurrences of
the operators to be estimated. O can contain standard operators, such as additions, but also function
calls that abstract more complex operations (e.g. fft-filter). Let M = {mi} the available models. The
suitable models can then be described by defining a function compatible : O → PM that assigns the set
of compatible models to each operator occurrence (see figure 6.5). From the set of compatible models
eventually one model has to be selected for the estimation. This is expressed by the mapping function
map : O →M .

For the operator/model assignment defining compatible is the key problem: while it is intuitive that the
operator ’+’ can be mapped to a model ’adder’, it is for example not clear, whether the same applies for
the model ’ALU’. Furthermore even if we ’know’ what the ALU can do, it remains unclear whether foo
can be mapped to it. While in the former scenario the semantics of ’ALU’ is unclear, the same is the case
for the function call to foo in the latter case. As a further complication neither the operator occurrences
O nor the available models M are statically known: O varies with the circuit under investigation, M
might change by the addition or removal of estimation models/libraries. The relationship between O and
M can therefore not be statically fixed.

The approach chosen in ORINOCO to fix these problems is the introduction of an additional level of
entities between operators and models. This level represents logic functionalities. Let S = {si} the set of
logic functionalities (see figure 6.6). Let opf : O → S the definition of logic functionality for each operation
and modf : M → PS the functions that each model is able to perform. Then compatible = mod−1

f ◦ opf .
The advantage of introducing the si is that operators and models can rendezvous on them: modf is
defined by the model designers, who know the logic functionalities the models can perform. If a new
model mi is generated that performs a formerly non-existent functionality snew (e.g. IP modeling), this
new functionality can be implicitly declared by including it in modf (mi). The available functionalities
in the estimator is then defined by the models loaded Mloaded through Savailable =

⋃
modf (Mloaded).

Conversely functionalities can be assigned to the operators freely. Formerly nonexistent functionalities
are again implicitly declared. The set of required models is consequently: Srequired = opf (O). Only if all
required functionalities are covered by the loaded models, i.e. Srequired ⊆ Savailable, the mapping may be
performed as described above. Otherwise a warning is produced and the respective operators are ignored
in the estimation.

Example 8. The user assigns the functionality ’square root’ to the call of function foo in the source code.
’square root’ therefore becomes a member of the required functionalities ’square root’ ∈ Srequired. Sup-
posed among the models is a CORDIC element. This element has ’square root’ among its functionalities
(square root ∈ modf (CORDIC)), but also ’vector-length’, ’arg’ and others. Once the library containing

66

6.3 Model Integration

+
i
 foo
 j

adder
 ALU
 CORDIC

op
f
(+
i
)

square root
addition

op
f
(
foo
j
)

mod
f
(adder
)
 mod
f
(ALU
)
 mod
 f
(CORDIC
)

Figure 6.6: Defining the set of compatible models by the introduction of logic functionalities.

the CORDIC model is loaded, ’square root’ is also in Savailable. The call to foo may therefore be estimated
and CORDIC is among the compatible models (CORDIC ∈ compatible(foo)).

Introducing S as described allows to define the sets of compatible models extensible. The method relies
on a consensus between the person generating the model and the user of the estimator. This consensus
can be supported by appropriate documentation.

6.3.3 Dynamic Model/Estimator Interaction

The model integration concept puts emphasize on the dynamic addition and removal of models as well
as a high degree of model autonomy. These aspects as well as the application of the integration concepts
described above, are best documented by explaining the run-time model/estimator interaction.

Point of reference for the models within the estimator is the model manager, a globally static object
(see figure 6.7). The model manager maintains the model catalogue that keeps track of all loaded models
(Mloaded) and the catalogue of functionalities containing all available as well as the required functionalities
(Savailable ∪ Srequired). For each model functionality pair this catalogue furthermore tracks the param-
eter mapping (cf. Mstatic,Mdynamic). On the side of the models each model class is represented by a
model maintenance object (MMO). The MMO is a locally static object, which handles all class specific
functionality and information, e.g. the instantiation of model objects.

A typical model library life-cycle now looks as follows:

1. Loading of dynamic model library

2. Automatic instantiation of one model maintenance object (MMO) for each model class (as locally
static objects).

3. Registration of the model class at the estimator model catalogue by the MMO.

4. Registration of the MMOs at each functionality their models are able to perform. Implicit registra-
tion of all new logic functionalities.

5. Provision of model information as guidance for the mapping phase.

6. Instantiation of models through their MMOs.

7. Customization of the models static properties as defined by estimated source through Ostatic.

8. Repeated calls to estimation methods.

9. Destruction of model objects.

67

6 Implementation

+RegisterModel()

+RegisterOp()

Model Manager

+Instantiate()

+QueryFunctionalities()

+GetModel()

+Unregister()

+Destroy()

MMO

+Instantiate()

+Colorize()

+Estimate()

+Destroy()

Model

+RegisterModel()

+AddOp()

+UnregisterModel()

+RemoveOp()

Catalogue of Functionalities

+AddModel()

+RemoveModel()

Model Catalogue

1

*

1

1

1
 1

Operation
 1
*

1

*

+Instantiate()

+Map()

+Destroy()

Functionality

1

*

*

*

1

*

+Instantiate()

+GetModel()

+Estimate()

+Destroy()

ParameterMap

*

*

1..*

1

1
 *

Figure 6.7: UML Class Diagram of the estimator/model interface [41].

10. Unloading of dynamic library. Implicit destruction of the MMOs. The MMOs in turn unregister the
models from the estimator model catalogue and the functionality catalogue during their destruction.

The communication of the different objects involved is shown in the sequence diagram 6.8.

6.4 Summary

This chapter briefly described the ORINOCO tool suite, the implementation framework of ORINOCO
BEACH, its tool flow and usage. Furthermore it was shown that a flexible and at the same effective
integration of models into an estimation/optimization tool is not a trivial task. Three interacting concepts
were described in detail: the model representation, the assignment of models to operators and the dynamic
life-cycle of estimator models.

68

6.4 Summary

Model Manager

Runtime System

Load library

Model Catalogue

C. of Functionalities

a Functionality

a ParamMap

a MMO

a Model

an Operation

Instantiate

RegisterModel

for every funtionality: RegisterModel

If not existing: Instantiate

AddModel

Query Functionalities

Instantiate

User loads Design

RegisterOp

if not existing: AddOp

Map

If not existing: Instantiate

GetModel

User Selects Mapping

User starts estimation

Instantiate

Estimate

User undloads design

Unregister

Colorize

Estimate

Unload Library

Destroy

GetModel

Destroy

if no longer required: Destroy

UnregisterModel

for every functionality: Destroy

User unloads library

User loads library

Figure 6.8: UML sequence diagram of the estimator/model interface [41].

69

6 Implementation

70

7 Evaluation

This chapter contains the evaluation of the techniques presented in chapter 5. Three different application
cases corresponding to the different characterization flows (cf. algorithms 1 to 3) are shown. In a fourth
case the application of the proposed methodology on other domains of power modeling is exemplified.
Unfortunately the availability of technology information was limited, so that neither DRAMs, caches nor
flash memories could be investigated. The demonstrators are:

1. Register files from the Synopsys DesignWarer library. The characterization was performed by
synthesizing the DesignWare soft-macros and performing gate-level simulations.

2. Philips embedded SRAM, high-speed and low-power ROM. In this case the characterization was
conducted using circuit-level simulation of critical-path models. The experimental design could not
be chosen freely as the majority of data sprang from existing Philips in-house simulations.

3. LSI embedded SRAM. The data in this case was obtained from estimates of the LSI memory compiler.

4. Data-path soft-macros from the Synopsys DesignWarer. To document the applicability of the in-
troduced techniques in related fields, the size dependency of the power consumption of data-path
macros is shown here. The data is again generated by gate-level synthesis and simulation based
gate-level power estimation.

The complete evaluation was performed using the implemented tool described in chapter 6. Three
different model generation approaches are compared: linear interpolation, linear regression and the non-
linear technique proposed here. The representative for linear regression is the approach of Coumeri and
Thomas. As this technique is a subset of the algorithm presented here, it can be effectively emulated
using the BEACH tool by deactivating the power transformation steps. Note that following the notion
of black box modeling we apply the linear regression to the complete circuitry instead of its structural
parts as originally proposed in [32]. For both regression approaches two types of models were built: one
minimizing the mean square error (or, equivalently, the standard deviation) and one minimizing the mean
relative error. The second case could be produced by setting a weight function in BEACH (cf. 6.2.2).
The piecewise modeling by node insertion is orthogonal to linear and nonlinear regression and was hence
applied to both types of modeling. The interpolation was implemented following the suggestion of Rovatti
et al., which is shown in [119] to be time optimal (cf. section 3.2.6). The implementation of both the
table and the interpolation was conducted using C.

7.1 Register Files

The section documents modeling of the cell as well as interconnect energy consumption of register files
given as soft macros from the Synopsys DesignWarer.

Data Abstraction
The standard register file ”DW ram r w s dff” is a flip-flop based one read, one write port register file [138].
It has the following inputs: clock, reset, read address, write address, write enable and chip select. The
only output is the read data. The read operation of this macro is asynchronous and not sensible to the
chip select, in other words changing the read address always initiates a read action. Write is synchronous
and dependent on the activation of both, the chip select and the write enable. From this information four
working modes can be deduced:

71

7 Evaluation

1. Idle clocking. The register file is not accessed but clocked.

2. Read access. By changing the read address an asynchronous read is initiated. This is independent
from the clock.

3. Write access. New write address and data is applied. The chip select and write enable are activated.
The write is then started by the rising clock signal. The write address is in this case different from
the read address so that the new content is not visible at the output.

4. Write through access. Identical to write access except that write and read address are identical
meaning, that the value written becomes immediately visible at the output.

These four working modes can be simulated using suitable short sequences of input vectors (see Appendix
C). The degrees of freedom for these simulations are:

• Instance parameters: number of stored words (depth) and bitwidth

• The address prior to the observed access addrn−1 and during the observed access addrn.

• The data input vector prior to the observed access datan−1 and during the observed access datan.

As mentioned in 5.1 data and address vectors must be abstracted into scalar variables for model building.
Weight and Hamming distance are used for register file modeling as previously suggested. For the address
inputs, the bit-wise Hamming distance is computed:

di := an−1[i] XOR an[i] (7.1)

This finer grain measure can better handle spacial correlations introduced by the address decoders (cf.
2.3.1,A). Weight and (ordinary) Hamming distances are normalized by dividing them by the length of
the parameter bit vectors. The complete set of candidate variables consists of address, data and instance
related variables:

V = Vaddress ∪ Vdata ∪ Vinstance (7.2)
Vaddress = {di(addrn−1, addrn)|1 ≤ i ≤ bitwidth(address)}

∪ {weight(addrn−1), weight(addrn)} (7.3)
Vdata = {d(datan−1, datan),

weight(datan−1), weight(datan)} (7.4)
Vinstance = {depth, bitwidth} (7.5)

Experimental Design
From an analysis of circuit designs the required range of size parameters was determined as 4 ≤ depth,
bitwidth ≤ 32. The ranges of all other variables follow naturally:

di() ∈ {0, 1} , d(), weight() ∈ (0, 1)

The characterization set of instances was defined as a factorial design:

Designs = {(depth, bitwidth)| 4 ≤ depth, bitwidth ≤ 32,
depth, bitwidth even} (7.6)

Address and data parameters were obtained by randomly selecting values for addrn−1, addrn, datan−1

and datan within their ranges. This does mean that the values of the abstracted functions (e.g. Hamming
distances) are not equally distributed. They are instead distributed according to their probability during
the application of the model, provided the data and address streams in the application are not significantly
correlated. The latter assumption does not have to be true, but without knowledge of the application
context it is the most sensible one.

Characterization
The characterization flow is depicted in figure 7.1. The major steps are explained in the following:

72

7.1 Register Files

Synthesis of

Prototype

Compilation for

Simulator

Verilog Gate

Netlist

SDF

Delay File

Parameters

of Prototype

Simulation

Pattern

Generation

Power Estimation

SAIF

Switching

Activity File

Verilog

Testbench

Figure 7.1: Characterization flow for register files.

1. Synthesis of prototype. A register file soft macro is instantiated according to the selected depth and
bit width and synthesized into a LSI ’lcbg11p’ technology gate level net list using the Synopsys
DesignCompilerr [86,137]. The net list is exported as Verilog file. Delay information is exported as
SDF (Standard delay format) file [36].

2. Compilation for simulation. The register file net list is compiled for the simulation using Mentor
Modelsimr [91]. A Verilog testbench is also compiled. The size parameters of the testbench are
adapted using the ”define” functionality so that the testbench source code remains unchanged.

3. Generation of stimuli vectors. addrn−1, addrn, datan−1 and datan are generated randomly. Four
stimuli files according to the four working modes are generated. Weights and Hamming distances
are computed. A Perl script was written for this purpose [144].

4. Simulation. The design is simulated with the four different stimuli files. The simulator’s program-
ming interface is used to protocol all switching activity during these simulations and write this
information out as SAIF (switching activity interchange format) files (see [136], chapter 5).

5. Gate level power estimation. Using the SAIF file and the gate level net list Synopsys PowerCompilerr

computes a power estimate [136]. This estimate is stored in a table together with the values of the
candidate variables.

As motivated above, steps 3 to 5 are executed repeatedly in order to obtain varying values for data
and address parameters. The complete flow is repeated for each element of Designs. Simulating and
estimating the 240 instances eqn. 7.6 in the four working modes with 100 vector pairs 100 vector pairs
each took 610 hours of CPU time on SPARC ULTRA servers running Solaris.

Evaluation

Based on the obtained characterization data the model generation itself is evaluated. For this purpose
the data is split into regression set and validation set (cf. 3.2.8). The following 1066 data sets (equivalent

73

7 Evaluation

to 20 hours of characterization) were used for regression:

depth, bitwidth = 4 · i, 1 ≤ i ≤ 8 (7.7)

awgt1, awgr2, ahd, dwgt1, dwgt2, dhd =
1
4
· i, 0 ≤ i ≤ 4 (7.8)

The remaining 22934 data set were reserved for the cross validation.
Interpolation table size is an issue with this application. With 8 input variables of 15 (depth, bitwidth),

11 (awgt1, awgt2, ahd) and 69 (dwgt1, dwgt2, dhd) levels a full interpolation table would have nearly 100
billion (1011) entries. The main reason for this phenomenon is the grid requirement, i.e. the requirement
that all combinations of levels must be present. In the register file application many combinations of
variables cannot occur. The difference in the data weights can for example not exceed the hamming
distance (dwgt2 − dwgt1 ≤ dhd). While such constraining equations are easily derived, there is no
straight-forward way of using this knowledge to reduce the interpolation table size.

Table 7.1: Cross validation errors for the ”DW ram r w s dff” register file
model.

Type RMS R2 XARE MARE ARE teval tgen Size

Write: Cell Power
I 44.9 0.251 277.0 51.1 -50.8 126328 - -

NA 0.8 1.000 5.8 0.8 -0.2 1134 1843 14
NAr 0.8 1.000 5.9 0.8 -0.3 832 366 9
LA 0.8 1.000 5.9 0.8 -0.3 44 49 14
NR 0.9 1.000 5.1 0.8 -0.1 785 418 9
NRr 0.9 1.000 5.6 0.8 -0.2 963 305 9
LR 1.0 1.000 5.7 0.8 -0.4 44 46 12

Write: Wire Power
I 34.7 0.321 279.4 50.0 -49.6 684055 - -

NA 2.2 0.999 120.5 5.0 -0.9 9197 504 10
NAr 3.0 1.037 71.4 4.9 0.9 2452 607 11
LA 3.5 0.996 37.5 5.2 -0.4 218 25 12
NR 6.6 0.988 32.8 5.5 -1.0 9854 4265 13
NRr 2.8 1.010 40.2 4.5 -1.0 1664 822 10
LR 4.8 0.993 35.3 7.0 -4.6 262 39 14

Write Though: Cell Power
I 43.5 0.231 283.7 51.2 -50.8 687018 - -

NA 1.7 0.999 8.3 1.4 -0.7 7927 438 9
NAr 1.6 1.014 9.5 1.5 -0.8 1883 571 10
LA 1.6 0.999 10.1 1.4 -0.6 349 40 15
NR 1.9 0.999 10.5 1.6 -0.5 9854 536 9
NRr 2.0 0.999 12.8 1.9 -1.4 2015 268 8
LR 2.0 0.999 13.5 1.7 -0.9 218 49 15

Write Through: Wire Power
I 34.8 0.315 280.2 50.2 -49.7 684647 - -

NA 2.2 0.999 100.7 4.9 -1.3 10160 1894 12
NAr 2.8 0.953 48.7 4.1 0.1 2540 416 10
LA 3.3 0.997 33.8 4.7 -0.2 218 15 10
NR 11.0 0.965 21.9 6.6 0.3 6525 178 7
NRr 3.4 0.999 51.3 4.7 -2.2 1927 668 11
LR 4.9 0.993 34.5 6.8 -4.4 218 22 11

Idle Clocking: Cell Power
I 43.6 0.254 271.4 50.6 -50.4 686647 - -

NA 0.0 1.000 0.0 0.0 0.0 6876 903 10
NAr 0.0 1.000 0.0 0.0 0.0 657 57 5
LA 0.0 1.000 0.0 0.0 0.0 131 6 4
NR 0.0 1.000 0.0 0.0 0.0 3898 167 7
NRr 0.0 1.000 0.0 0.0 0.0 482 62 5
LR 0.0 1.000 0.0 0.0 0.0 131 6 4

Idle Clocking: Wire Power
I 33.9 0.350 305.8 51.4 -51.0 685460 - -

NA 2.0 0.999 62.0 3.8 0.1 8846 1001 12

74

7.1 Register Files

Table 7.1: (continued)

Type RMS R2 XARE MARE ARE teval tgen Size

NAr 3.1 0.997 59.3 4.7 0.4 2190 492 10
LA 3.1 0.997 41.7 4.8 -0.1 218 31 14
NR 6.9 0.986 62.9 5.7 -0.9 7489 502 10
NRr 6.2 0.883 37.4 6.9 -4.4 1445 134 7
LR 3.9 0.996 30.5 6.2 -3.3 174 23 11

For this evaluation the table size was reduce by normalizing the input variables and selecting as table
entries the grid also used as regression set (eqn. 7.7,7.8). Through these measures the number of levels is
reduced to 8 (depth, bitwidth), 11 (awgt1, awgt2, ahd) and 5 (dwgt1, dwgt2, dhd) and the total size of the
table to 9 · 106 entries.

Table 7.1 shows the errors of the 22934 cross validation data sets and the modeling parameters obtained
for the write, write through and clock working modes of the register file separated into cell and wire power.
The table is organized as follows:

1. Type. This column contains the model type: I, NA, NAr, NR, NRr, LA or LR. Here ’N’ stands
for nonlinear, ’L’ for linear, ’A’ for minimization of absolute, ’R’ for minimization of relative error
and ’I’ for interpolation. The suffix ’r’ stands for the models generated using the exponent rounding
scheme described in section 5.7.

2. RMS. The root means square error.

3. R2. Coefficient of multiple determination.

4. XARE. Maximum absolute relative error.

5. MARE. Mean absolute relative error.

6. MRE. Mean relative error.

7. teval. Time for one evaluation in nanoseconds. Measured on a 933 Mhz Pentium 3 Mobility, 512 Mb
SDRAM, running Debian Linux.

8. tgen. Time for model generation in seconds. Measured on a 933 Mhz Pentium 3 Mobility, 512 Mb
SDRAM, running Debian Linux. This time does not include characterization.

9. Size. The number of monomials ξi in the model.

In the interpolation case no values are presented for the columns tgen and Size as these categories are not
applicable.

Table 7.2: Cross validation errors for the read accesses of the ”DW ram-
r w s dff” register file model.

Type RMS R2 XARE MARE ARE teval tgen Size

Read: Cell Power
I 174.9 - 3525.5 414.5 353.6 267045 - -

NA 15.9 0.974 356.5 18.4 0.8 2103 106000 23
NAr 15.9 0.974 454.3 18.3 0.1 1534 24527 16
LA 14.0 0.980 265.6 14.7 1.9 114 3452 38
NR 14.4 0.979 422.3 14.8 -0.2 2103 83027 50
NRr 17.1 0.970 313.9 17.4 -1.8 4205 88263 49
LR 15.7 0.975 217.8 14.8 -2.8 170 8945 50

Read: Wire Power
I 254.1 - 4234.4 422.9 360.3 242045 - -

NA 14.0 0.977 439.7 16.1 4.9 1193 12073 13
NAr 15.8 0.971 2081.2 24.1 -1.5 2103 9636 21
LA 13.5 0.979 319.6 16.5 10.7 114 2400 36
NR 14.3 0.976 529.5 15.2 4.5 1875 91874 50
NRr 12.7 0.981 229.0 13.7 7.0 1477 98367 26
LR 13.9 0.977 247.6 13.5 7.8 114 7374 50

75

7 Evaluation

As mentioned in section 2.4.5 asynchronous read accesses constitute an especially challenging model-
ing problem due to intense spacial correlation. In order to achieve the desired accuracy nevertheless the
bit-wise Hamming distances were additionaly included among the candidate variables for the read cases.
By adding these variables a bigger regression set became necessary. This was diagnosed by an extreme
discrepancy between regression and cross validation errors using the old set. See table 7.3 for the com-
parison (note that during cross validation errors can become so high that r2 is not any more well defined.
This is indicated in this and the following tables by ’-’). Consequently, to enlarge the regression set the
restriction 7.8 on the regression subset was dropped. By this measure the regression set increased to 6400
values, equivalent to roughly 40 hours of characterization. The cross validation subset decreased to 17600
values. The results are shown in table 7.2.

Table 7.3: Comparison of regression and cross validation errors for the read accesses to the register file
(NA) using the regression set described in eqn. 7.8.

Type RMS r2 XARE MARE ARE

Regr. 2,1 0.997 284.0 9.1 -1.4
CV 216,7 - 11449.0 25.8 7.6

Results
Most prominent among the results is the bad performance of the interpolation (see also figure 7.2). This
is due to the table density problems described above. With MAR errors around 50% (and even up to
423% in the read cases) this technique is not suitable in its presented form.

Both, the pure linear and nonlinear methods show very similar errors. With MAREs below 7% in all
but the read cases both types of regression behave well. Remembering that the error to be minimized
in the ’A’ cases is the root mean square error and in the ’R’ case the mean relative absolute error, the
nonlinear regression has a better optimization performance than the linear one. The MAREs for read
mode are higher, but stay below 20%. Here, the linear modeling has a slight accuracy advantage.

With the sole exception of the trivial cell power during clocking, the nonlinear models are more compact
than the linear ones, i.e. they draw a comparable accuracy out of less model terms. This is due to the
higher expressive capabilities of the nonlinear models. The tendency of the maximum relative errors of the
nonlinear models to be higher than that of the linear ones is, maybe counterintuitively, a result of the same
circumstance: as the targets of the optimization are the root mean square or the mean absolute relative
error, it is worth while to reduce the mean error at the cost of an increased maximum relative error. The
nonlinear method can, due to its increased flexibility, do this more effectively, than the linear one. This
effect is especially pronounced when optmizing for absolute errors: Large relative errors for small values
of the dependent variable often mean only small absolute errors. A minimization of the absolute error
therefore will tend produce large relative errors for small values of the dependent variable (see figure 7.3).

Interestingly, for the multidimensional models shown here interpolation is by far the slowest model
representation (see column teval). Nonlinear regression outperforms interpolation by a factor of at least
5. Linear regression models can again be up to a factor of 50 quicker. This is due to the use of the
computationally more demanding power functions. The model generation times of the nonlinear models
are by far higher than those of the linear ones (column tgen). With a maximum of 71 minutes for
write/clock and 30 hours for read accesses the time requirements are nevertheless acceptable.

As expected the rounded nonlinear models (’NAr’ and ’NRr’) range between the linear and the nonlinear
ones in accuracy as well as performance in most cases. While the rounded nonlinear approach can in
practice be a good compromise between performance and accuracy, it does not shed any additional light
into this investigation. It will therefore not be pursued here any further.

7.2 Philips Embedded Memories

This section describes the modeling of three types of Philips embedded memories: a single-ported SRAM
(’SRAM’), a low-power ROM (’LPROM’) and a high-speed ROM (’HSROM’).

76

7.2 Philips Embedded Memories

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

45,0%

wpc
ell

wpw
ire

wtpc
ell

wtpw
ire

cp
ce

ll

cp
wire

rp
ce

ll

rp
wire

interpol
NA
NA(rounded)
LA

Figure 7.2: Absolute errors of the register file models. The interpolation error exceeds the scale for read
accesses (175%/255%).

Figure 7.3: Relative residuals as a function of the dependent variable. Minimizing absolute errors can
mean high relative errors for low values of the dependent variable.

Table 7.4: SRAM (126 samples), see section 7.1 for description of the columns.
Type RMS r2 XARE MARE ARE teval tgen Size

Initial
I 0.8 1.000 6.6 1.2 -0.7 8267 - -

NA 1.6 1.000 9.4 2.0 -0.7 4514 6 7.25
LA 4.7 0.997 25.5 7.3 -1.4 74 1 7.0
NR 4.4 0.995 6.0 1.7 -0.1 3919 4 6.25
LR 6.1 0.994 9.5 2.9 -0.9 85 1 7.0

Best
I 0.8 1.000 6.6 1.2 -0.7 8267 - -

NA 0.7 1.000 3.4 0.9 -0.1 6762 1552 13.0
LA 1.0 1.000 4.8 1.1 -0.3 979 118 15.5
NR 1.5 1.000 2.2 0.8 0.0 6450 444 10.25
LR 0.9 1.000 1.4 0.4 0.0 291 3660 32.5

77

7 Evaluation

Data Abstraction
The Philips simulation models for characterization did not allow a free selection of address and data. As a
consequence none of the models presented here does reflect the influence of these aspects. The remaining
candidate variables were related to instance and environmental parameters (cf. section 2.3):

• x: the number of word lines.

• y: the number of words stored in parallel columns.

• z: the number of blocks or banks (only applicable for LPROM).

• b: the bit width.

• vdd: the supply voltage.

The response variable was the average current through the VDD terminal per access. Unfortunately, the
current obtained for the SRAM was averaged over read as well as write accesses so that read and write
could not be modeled separately.

Experimental Design
The model generation was performed based on data already existing at Philips. Therefore it was not
possible to influence the experimental design. The existing design did not show a high degree of regularity.
This circumstance especially put interpolation to a test (see below). A major drawback of the existing
design was that only little data was available for other supply voltages than the nominal 2.5V.

Characterization
The characterization was performed using PStar (Spice like) circuit level simulation. The simulated
critical path models were obtained from the Philips in-house memory compiler. The compiler assembled
the simulation models from net list descriptions of leaf cells extracted from the layout. The models were
tested by Philips to be accurate within a few percent of fully extracted net lists. Each simulation of the
ROMs consisting of 4 cycles took about 20 minutes of CPU time on HP PA-RISC 7200 CPUs. The SRAM
simulations took longer by roughly a factor of 2.

Evaluation
Due to the lack of regularity of the experimental design no natural separation of the characterization data
into regression and validation set existed. 20% of the total data was therefore selected randomly for the
regression set. This procedure was repeated four times. Results presented are averaged over these.

Results
Table 7.4 shows the results for the static RAM modeled as a function of the parameters x, y and b. The
characterization data set consisted of 126 samples, of which 24 were selected for the cross validation.

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

Std.Dev.
initial

Std.Dev. best XARE initial XARE best MARE initial MARE best

I
NA
LA
NR
LR

Figure 7.4: Absolute and relative errors of the SRAM model.

78

7.2 Philips Embedded Memories

Similar to the register files, different cases (NA, LA, NR, LR) are compared using various measures
(cf. section 7.1). Here the results are averaged over the four randomly selected cross validation sets.
Furthermore the algorithm for automatic selection of cuts for piecewise modeling was applied (cf. section
5.5.1). Table 7.4 shows the models without cuts under ’Initial’ and best model obtained under ’Best’. As
best absolute models (’A’) those with the lowest standard deviation were selected. The best relative (’R’)
models were those with the lowest MARE. The complete data for all models can be found in appendix
D.1.

We can see that all models except the ’Initial/LA’ perform very well (see figure 7.4). Worst case relative
errors below 10% are acceptable even for gate level application. The generation takes only a couple of
seconds for the initial models. Here the standard deviation of the ’LA’ model is a factor of two higher
than that of the ’NA’ case. Roughly the same relation holds for the relative errors in the models optimized
for relative accuracy. The accuracy gain by the introduction of piecewise modeling is more pronounced
for the linear regression model. This is due to the fact that the iterative introduction of cuts terminates
later in the linear than in the nonlinear case (cf. appendix D.1). A byproduct of this effect is, that the
’Best’ linear models tend to consist of more monomials, than the nonlinear ones. Expressed the other way
around, the nonlinear modeling is able to produce adequate models with less terms. The more complex
computation of the power functions causes a factor of up to 65 in the evaluation times of linear and
nonlinear models. The interpolation takes even longer than the nonlinear regression. It has slightly bigger
errors than the regression models of the ’Best’ category.

Table 7.5: High speed ROM (127 samples) .
Type RMS r2 XARE MARE ARE teval tgen Size

Initial
I 18.2 0.949 43.1 4.4 1.4 14296 - -

NA 1.5 1.000 25.8 3.7 0.7 6417 55 7.25
LA 2.4 0.999 29.0 5.3 -1.6 167 2 8.0
NR 2.1 0.999 6.5 1.9 0.4 5760 11 6.5
LR 3.6 0.998 6.1 2.4 0.2 198 2 9.75

Best
I 18.2 0.949 43.1 4.4 1.4 14296 - -

NA 1.3 1.000 19.9 3.3 0.4 8781 441 9.75
LA 1.5 1.000 11.9 2.2 -0.2 2021 831 22.0
NR 2.3 0.999 4.9 1.5 0.1 6427 68 6.75
LR 1.6 1.000 4.4 1.2 0.2 2281 1800 24.5

The modeling data for the high speed ROM is displayed in table 7.5 (see appendix D.2 for complete
data). In addition to the variables for the SRAM the 127 original data samples also cover different supply

0

5

10

15

20

25

30

NA LA NR LR

N
o.

 o
f m

on
om

ia
ls

Size initial
Size best

1,00

10,00

100,00

1000,00

10000,00

Gen. time initial Gen. time best

G
en

er
at

io
n

tim
e/

s

NA
LA
NR
LR

Figure 7.5: Size of models (left) and generation time (right) of the high-speed ROMs.

79

7 Evaluation

voltages. In order not to put the linear models at a disadvantage, the squared supply voltage was used as
variable to modeling. The results are quite similar to the SRAM. The interpolation has the highest errors
of all. With XAREs below 30 % and MAREs below 6% all regression models are acceptable. The linear
approach outperforms the nonlinear one only for the best relative case, but this at the price of a more
than three times bigger model (see figure 7.5). Apart from this case the nonlinear technique delivers more
compact as well as accurate models. The model generation time stays below 1800 seconds in all cases, the
linear piecewise models taking longest.

Table 7.6 documents the results for the low power ROM (complete data in appendix D.3). This memory
architecture has a more complicated structure, that is reflected by an additional parameter z (number
of blocks). The advantage of the nonlinear models is even more pronounced in this more complicated
situation (see figure 7.6). Among the initial models only the nonlinear ones are acceptable. As usual
the improvement of linear models through the piecewise modeling is bigger, but the nonlinear ones stay
superior.

Table 7.6: low power ROM including voltages (242 samples).
Type RMS r2 XARE MARE ARE teval tgen Size

Initial
I 14.5 0.983 108.6 12.9 0.4 17136 - -

NA 2.7 0.999 29.8 5.0 0.7 12321 297 12.5
LA 15.8 0.980 72.0 21.1 -13.7 182 5 9.25
NR 5.5 0.997 28.7 5.3 -1.0 10182 165 10.5
LR 18.1 0.973 46.5 12.6 -3.3 220 8 11.75

Best
I 14.5 0.983 108.6 12.9 0.4 17136 - -

NA 2.4 1.000 27.6 4.4 1.2 16264 5166 17.75
LA 5.8 0.997 37.8 7.9 1.0 1759 421 19.5
NR 2.8 0.999 19.2 3.2 -0.6 14838 1160 13.5
LR 8.2 0.994 21.4 3.7 0.0 1642 202 19.75

7.3 LSI Embedded Memories

While the preceding models were based on low level power estimates the model in this section was generated
from the estimate directly produced by a memory generator as a consumer view. The memory under
investigation was a single ported SRAM in the LSI ’lcbg11p’ technology called ’m11 111ha’.

0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

120,0%

140,0%

160,0%

180,0%

Std. dev.
initial

Std. dev.
best

XARE initial XARE best MARE initial MARE best

I
NA
LA
NR
LR

Figure 7.6: Absolute and relative errors of the low-power ROM models.

80

7.3 LSI Embedded Memories

Data Abstraction
The memory generator delivered only data and address independent power estimates. The candidate
variables were therefore restricted to the instance parameters V = Vinstance = {x, b}.

Experimental Design
The parameter range for this memory is given by the generator as: 256 ≤ x ≤ 8192, 4 ≤ b ≤ 80. For the
characterization a factorial design was again chosen:

Design = {(x, b)| x = 64 · i, 4 ≤ i ≤ 128
b = 4 · j, 1 ≤ j ≤ 20} (7.9)

Characterization
The memories were characterized by calling the memory compiler for every instance combination and
redirecting its output into a table.

Evaluation
Similar to the evaluation of the Philips memories 24% of the total of 1500 characterized instances were
randomly chosen for the cross validation set. This process was repeated 4 times.

Table 7.7: Cross validation errors for the LSI m11 111ha embedded SRAM.
Type RMS r2 XARE MARE ARE teval tgen Size

Initial Model
I 0.1 1.000 1.0 0.0 0.0 19629 - -

NA 1.9 0.998 17.1 2.0 0.2 1352 22 3
LA 2.5 0.997 15.8 2.6 -0.6 70 22 4
NR 2.2 0.998 7.3 1.7 0.0 1366 22 3
LR 3.0 0.996 7.8 2.1 -0.1 49 23 4

Best Model
I 0.1 1.000 1.0 0.0 0.0 19629 - -

NA 1.2 0.999 14.1 1.4 0.1 2367 317 8.25
LA 0.1 1.000 2.9 0.1 0.0 4265 9707 41.25
NR 1.3 0.999 6.2 1.0 0.0 4160 877 11.75
LR 0.1 1.000 2.3 0.1 0.0 4202 27019 41.75

Results
In this example (cf. table 7.7) the interpolation approach performed exceptionally well (XARE = 1.0 %,
MARE = 0.0 %). But the other approaches did also show very good results (max XARE = 17.1 %, max

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

18,0%

Std. dev.
Initial

Std. dev.
Best

XARE initial XARE best MARE initial MARE best

I
NA
LA
NR
LR

Figure 7.7: Absolute and relative errors of the m11 111ha SRAM models.

81

7 Evaluation

MARE = 2.6%) with only 3-4 terms (see figure 7.7). This suggests that the underlying model of the
memory generator is a very simple one. The piecewise modeling for linear regression terminates only after
6-9 cuts, resulting in very accurate, but also very large models (Size > 40). This is also reflected in long
generation times.

7.4 DesignWare data path components

In the previous sections several memory modeling cases were exemplified. This section shows the applica-
tion of the proposed modeling methodology in a different field of power modeling: the generation of power
complexity functions for data path macros [124]. It can be seen as a fingerpost to a broader application
domain of the developed methodology and tool. Three different components will be presented: a finite
impulse response (FIR) filter, a sine module and a wallace tree multiplier [106].

Power Complexity
Like memories combinational data path components have a power consumption depending on both, in-
stance (size) parameters and processed data. To reduce the modeling complexity, several approaches
suggest to decompose the models into two sub-models: a data dependent ’activity’ sub-model δ and a size
dependent ’complexity’ or ’capacitance’ sub-model γ [83,16,70]. As motivated by applying equation 2.3
globally, i.e.

Pavg = 1/2 · αavg · Cavg · VDD · Vswing · fclk (7.10)

both sub-models are then assumed to have a multiplicative relationship

P (data, size) = δ(data) · γ(size) (7.11)

While concrete ideas exist on how to generate δ, finding γ is a problem not solved for the general
case. Bogliolo [16] states the relation between power consumption and size cannot be described by a
general analytical formula, since it is dependent on the functionality of the macro. In this section the
introduced black box modeling technique is advocated as a means to solve this problem. The approach
will be evaluated using the enhanced Hamming distance model [70].

Table 7.8: Cross validation errors for the power complexity of the FIR Filter component. The new column
’M’ contains the sequence number of the model (i.e. M − 1 is the number of nodes).

Type M RMS r2 XARE MARE ARE teval tgen Size

I 1 27.4 0.903 45.1 5.2 -4.9 1678 - -
NA 1 42.4 0.768 348.1 114.5 36.7 459 0 2

2 0.9 1.000 7.3 1.8 0.2 482 1 3
LA 1 41.8 0.775 369.9 125.4 35.5 43 0 2

2 0.9 1.000 1.1 0.5 -0.1 44 0 3
3 1.6 1.000 2.6 0.5 0.1 81 1 5

NR 1 75.2 0.272 82.0 35.4 -30.0 457 0 2
2 3.8 0.998 36.0 7.3 2.6 773 1 4
3 4.1 0.998 42.6 10.6 1.9 63 1 3

LR 1 115.7 -0.723 87.1 52.3 -39.8 43 0 2
2 0.9 1.000 1.4 0.7 -0.1 43 0 3
3 0.9 1.000 1.2 0.4 0.0 80 1 5

For building a complexity model data acquisition has to be performed first. Let n instances be chosen to
adequately cover the targeted instance range. Let sizei denote the instance parameter values of instance
i. For each instance a data stream dsi is generated respecting the following property:

∀1 ≤ dsi, dsj ≤ n : δ(dsi) = δ(dsj) (7.12)

Data for data path macros is generated analog to the data for the register file macros: selected instances are
synthesized to gate level and simulated with the appropriate data stream. A gate level power estimation is

82

7.4 DesignWare data path components

then performed based on the collected switching activity. Let ~y be the vector of low level power estimates
for the n instances. Applying equation 7.12 we can then deduce γ from the following relationship:

~y = P (~d, ~size) = const · γ(~size) (7.13)

For more detail about the generation of power complexity functions see [124].

Table 7.9: Cross validation errors for the power complexity of the sine component.
Type RMS r2 XARE MARE ARE teval tgen Size

Intial Model
I 25.9 0.878 36.6 8.7 -4.2 4291 - -

NA 32.5 0.806 43.0 14.7 -2.6 1982 0 3
LA 37.7 0.740 135.2 23.8 -0.8 109 0 3
NR 46.5 0.603 56.4 16.4 -9.4 1982 0 3
LR 15.8 0.451 57.2 26.2 -18.6 91 0 2

Best Model
I 25.9 0.878 36.6 8.7 -4.2 4291 - -

NA 12.1 0.973 44.4 9.9 -2.3 1927 16 7
LA 23.2 0.901 157.7 16.3 1.5 91 0 3
NR 46.5 0.603 56.4 16.4 -9.4 1982 0 3
LR 15.8 0.451 57.2 26.2 -18.6 91 0 2

Table 7.10: Cross validation errors for the power complexity of the sine component II.
Type RMS r2 XARE MARE ARE teval tgen Size

Intial Model
I 19.5 0.927 74.5 10.4 2.7 4473 - -

NA 29.4 0.844 68.9 19.9 4.6 1455 0 3
LA 35.5 0.773 169.0 30.7 11.6 55 1 3
NR 33.4 0.799 43.2 14.3 -1.5 2000 1 4
LR 45.5 0.627 74.4 26.2 -5.5 55 0 2

Best Model
I 19.5 0.927 74.5 10.4 2.7 4473 - -

NA 9.3 0.984 31.3 6.3 1.1 1527 24 7
LA 10.3 0.981 45.8 6.9 1.9 836 58 12
NR 11.6 0.976 53.1 8.2 -0.1 1891 67 8
LR 18.5 0.938 29.8 8.9 0.1 182 3 6

Data Abstraction
As the address and data dependencies are separated into δ, only size parameters remain to be modeled.
These are the internal bit width of the FIR filter, the input and output bit widths of the sine module and
the two input bit widths of the multiplier.

Experimental Design and Evaluation
For the FIR a 100 tap component was chosen as a complex example. The coefficients where chosen
randomly. The internal bit width was varied between 4 and 40 bits in steps of two bits (19 instances).
From these instances each bit width divisible by 4 was selected for regression (10 instances).

DesignFIR = {bw | bw = 2 · i, 2 ≤ i ≤ 20} (7.14)
RegrSetFIR = {bw|bw = 4 · i, 2 ≤ i ≤ 20} (7.15)

Of the sine module 117 instances were characterized in the factorial design described by:

DesignSine = { (bwin, bwout)|bwin = 2 · i, 4 ≤ i ≤ 16,
bwout = 2 · j, 4 ≤ j ≤ 12 } (7.16)

83

7 Evaluation

Figure 7.8: Regression data and NA model (M = 2) for the FIR component (BEACH screenshot).

Two Regression sets were defined (35 and 58 samples):

RegrSetSine1 = { (bwin, bwout)|bwin = 4 · i, 2 ≤ i ≤, 8
bwout = 4 · j, 2 ≤ j ≤ 11 } (7.17)

RegrSetSine2 = { (bwin, bwout)|bwin = 2 · i, 4 ≤ i ≤ 16,
bwout = 2 · j, 4 ≤ j ≤ 22,

bwin = 4 · k ∨̇ bwout = 4 · k, k ∈ N } (7.18)

The wallace tree multiplier was characterized for all combinations of bitwidths between 4 and 32,
respectively 4 and 26:

DesignMult = {(bwa, bwb)|4 ≤ bwa ≤ 32, 4 ≤ bwb ≤ 26} (7.19)

Of these 667 instances all those with two even bit widhts were selected for regression (180 instances).

RegrSetMult = { (bwa, bwb)|bwa = 2 · i, 2 ≤ i ≤ 16,
bwb = 2 · j, 2 ≤ j ≤ 13 } (7.20)

Characterization
The characterization was performed by synthesis and gate level simulation similarly to the register files
(cf. section 7.1). In this case, however, only the input stream dsi had to be simulated for every instance
i.

Results
Table 7.8 shows the errors of all models for the FIR unit. Note that, as the complete set of models are
given instead of only the initial and best, a new column ’M’ has been added to the table. ’M’ refers to
the number of the model in a sequence of cuts (during automatic piecewise modeling). A model with
M = i consequently contains i − 1 automatically generated cuts (see section 5.5.1). Remarkable among
the results is that the initial models of all categories exhibit significant errors. A look at the data shows
the reason for this phenomenon (cf. figure 7.8): the power of the FIR unit explodes by roughly one order

84

7.5 Discussion and Summary

Table 7.11: Cross validation errors for the power complexity of the wallace tree multiplier component.
Type RMS r2 XARE MARE ARE teval tgen Size

Intial Model
I 17.0 0.933 65.7 12.3 0.6 3621 - -

NA 14.5 0.951 114.6 12.5 -0.8 1235 0 3
LA 14.6 0.950 71.2 12.2 2.6 62 1 3
NR 15.6 0.944 50.0 11.2 -2.9 1296 1 3
LR 15.5 0.944 48.6 11.2 -2.9 82 1 4

Best Model
I 17.0 0.933 65.7 12.3 0.6 3621 - -

NA 14.5 0.951 114.6 12.5 -0.8 1235 0 3
LA 14.6 0.950 71.2 12.2 2.6 62 1 3
NR 15.7 0.943 47.5 10.8 -3.5 2428 7 5
LR 15.5 0.944 48.6 11.2 -2.9 82 1 4

of magnitude at 20 bits. The automatic piecewise modeling identifies this discontinuity and splits the
model into two segments as can be seen in the figure. Through this segmentation the errors are kept
reasonable. It can also be seen that the nonlinear regression is less effective in this case. This has two
reasons: the underlying relationship is nearly perfectly linear and the regression set is with 10 elements
very small. The cross validation results for sine component are shown in table 7.9 and 7.10. The nonlinear
method again shows a slight advantage over both linear types of models. It can be observed that for the
first regression set (table 7.9) segmentation is not able to significantly improve the model accuracy. The
second regression set is much better in this respect. The reason for this phenomenon can be found in the
nature of the piecewise modeling applied: as was explained in section 5.5.1 introducing nodes reduces the
region of definition of the model by the range between the levels adjacent to the node. By the choice of
sample points in the second regression set the distance between levels is halved with respect to the first
set. Furthermore there is no level in the remaining cross validation set, that does not occur in at least
one sample point. This change allows a much better convergence of the node insertion. In table 7.11 the
errors for the wallace tree multiplier are displayed. In this example all three modeling approaches have
a very similar performance. Node insertion although not significantly reducing error measures, leads to
intuitively more adequate models (see figure 7.10).

7.5 Discussion and Summary

In the preceding sections the newly proposed modeling methodology was evaluated on a set of practical
examples. Model accuracy, speed and size as well as the model generation performance were analyzed in

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

MARE initial Alt. regr. Set MARE best Alt. regr. Set

I
NA
NR
LA
LR

Figure 7.9: Initial and best relative errors for RegrSetSine1 and alternative regression set RegrSetSine2 .

85

7 Evaluation

 charact. data
0.0067618 +(0.00027746)*out**1.818 +(-0.0016982)*in**-1.0821*out**1.9594

 10
 15

 20
 25

 30

 8 10 12 14 16 18 20 22 24

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 charact. data
0.05582 +(-0.035722)*(out <= 16) +(-6.9662)*in**-2.7607*(out > 16) +(-0.018323)*(in <= 16) +(3.8733e-05)*out**1.7364 +(0.01748)*(out <= 16)*(in <= 16) +(-3.1485)*in**-2.5863

 10
 15

 20
 25

 30

 8 10 12 14 16 18 20 22 24

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

Figure 7.10: Nonlinear absolute models for the wallace tree multiplier: initial (top) and final (bottom).

86

7.5 Discussion and Summary

reference to the requirements defined in section 3.3. The results regarding the most important metric -
accuracy - are again summarized in table 7.12.

Both relative and absolute error values show, that the new technique achieves excellent accuracy. With
RMS errors below 3% and MAR errors below 7.5% the models for memories are in the same accuracy
range as circuit level models. Only the read accesses for registers have higher errors (15.9%/15.2%). All
errors stay clearly within the accuracy requirements defined for RT and behavioral level application in
section 3.3.

Comparing the accuracy of the nonlinear regression with linear regression and interpolation, the fol-
lowing observations can be made: While in simple cases interpolation slightly outperforms the nonlinear
technique (see Table 7.7), it quickly looses ground with increasing complexity (e.g. MAR errors above
50% in table 7.1). The nonlinear technique proposed in this work and linear regression are often close in
accuracy. In some cases however the nonlinear approach clearly outperforms the linear one. For example
the absolute errors of the linear models are nearly a factor of 3 higher for the Philips SRAM and nearly
a factor of 6 for the low power ROM.

The errors for piecewise modeling by node insertion (see section 5.5.1) are listed in table 7.13. They
show clearly, that piecewise modeling is able to reduce the remaining error significantly: as an extreme
case the absolute error for LSI SRAM (linear model) is reduced by a factor of 20. In general the linear
models benefit more from the node insertion than the nonlinear ones.

The errors for the data path macros are summarized in table 7.14. Here, as described above, disconti-
nuities can have a drastic impact. Using node insertion errors below 15% can however be reached for all
components.

In addition to accuracy nonlinear models have one further advantage: compactness. Figure 7.11 shows
the average model size for the different regression based memory models. It can be seen that the nonlinear
models are generally more compact than the linear ones. The NA model for the LSI RAM is more than
a factor 4 smaller than the LA one. It is intuitive that accuracy and compactness come at the price of
an increased model generation time. Consider therefore the average modeling times visualized in figure
7.12. It can be observed that contrary to expectation the nonlinear technique is not generally slower,
than the linear one, when node insertion is performed. While it is indeed slower for register files and LP
ROM it outperforms the linear approach in the HS ROM and LSI RAM examples. This phenomenon can
be explained by the faster convergence of the node insertion procedure and the smaller models produced.
These effects can outweigh the additional effort of the exponent adaption. The maximum average CPU
time is 7.5 hours. Taking together the 8 individual sub-models the complete nonlinear register file model
does require 50 hours. While these times might seem long at first glance three things should be kept
in mind when considering the connected costs: i) in contrast to analytical modeling virtually no human
intervention is required. ii) no other tool licenses are blocked during the model generation. iii) the
modeling is only performed once for each memory.

Figure 7.13 finally contains the average evaluation times. The table size problem of the interpolation
inflates the lookup times for the register files beyond acceptable limits. But also for the other cases
the regression models outperform interpolation. The nonlinear models clearly loose here due to the
complicated computation of real valued power function.

Table 7.12: Optimum absolute (RMS) and relative (MAR) errors of all three compared methods.
Nonlinear Linear Interpolation

Name RMS MARE RMS MARE RMS MARE

Regfile 2.2 6.6 3.5 7.0 43.6 51.4
Regfile(read) 15.9 15.2 14.0 14.8 254.1 422.9
SRAM 1.6 1.7 4.7 2.9 0.8 1.2
HSROM 1.5 1.9 2.4 2.4 18.2 4.4
LPROM 2.7 5.3 15.8 12.6 14.5 12.9
LSI SRAM 1.9 1.7 2.5 2.1 0.1 0.0

87

7 Evaluation

Table 7.13: Optimum absolute (RMS) and relative (MAR) errors after node insertion.
Nonlinear Linear

Name RMS MARE RMS MARE

SRAM 0.7 0.8 1.0 0.4
HSROM 1.3 1.5 1.5 1.2
LPROM 2.4 3.2 5.8 3.7
LSI SRAM 1.2 1.0 0.1 0.1

Table 7.14: Optimum absolute (RMS) and relative (MAR) errors before and after node insertion.
Nonlinear Linear Interpolation

Name RMS MARE RMS MARE RMS MARE

FIR filter 42.4 35.4 41.8 52.3 27.4 5.2
Sine 29.4 14.3 35.5 26.2 19.5 10.4
Multiplier 14.5 11.2 14.6 11.2 17.0 12.3
FIR filter 0.9 7.3 0.9 0.4
Sine 9.3 8.2 10.3 8.9
Multiplier 14.5 10.8 14.6 11.2

0

5

10

15

20

25

30

35

40

45

Regfile SRAM HS ROM LP ROM LSI RAM

NA
LA
NR
LR

Figure 7.11: Average size (in number of monomials) for the different memory models (using node inser-
tion).

0

5000

10000

15000

20000

25000

30000

Regfile SRAM HS ROM LP ROM LSI RAM

NA
LA
NR
LR

Figure 7.12: Average generation time in seconds for the different memory models (using node insertion).

88

7.5 Discussion and Summary

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Regfile SRAM HS ROM LP ROM LSI RAM

I
NA
LA
NR
LR

Figure 7.13: Average evaluation time in nanoseconds for the different memory models. The interpolation
time of the register files exceeds the scale with 508ms.

Summary
In summary the evaluation has shown that nonlinear modeling technique and the node insertion technique
are able to significantly increase the accuracy and compactness compared to existing memory modeling
methods. For memories as well as for the presented data path components the errors stay well below the
defined limits.

The increased capabilities come at the price of a mathematically more complex model. This causes
an increase in model evaluation time. A general increase in model generation time can however not be
observed.

Fundamental limitations lie in the nature of the technique: The presented signomial models are among
the most general functions for which effective optimization strategies exist. Still the expressiveness of
signomials is limited. Not all kinds of relationships can be accurately approximated. One of the most
simple examples of relationships that cannot be expressed is y = (xi + xj)α.

A second principle limitation is the requirement of observation data. All empirical modeling methods
share this requirement of observations as their sole basis for model inference. In principle, the bigger
the modeling freedom, the more data is required. The results above show that the nonlinear technique
presented here works stable with the same amounts of data as the linear one. Nevertheless the more
detailed a relationship must be modeled, the more characterization data is required. The generation effort
of such data eventually is part of the whole modeling effort.

Unfortunately the available technology information for this evaluation was strictly limited. Therefore it
was not possible to exemplify the modeling of DRAMs, flash RAMs or caches. DRAMs and flash RAMs
are in their principle structures quite similar to the memories described above. It is therefore sensible to
assume that the presented technique can also be successfully applied on these memories. In section 2.4.4
it was shown that the core of cache memories consists of two DRAM memory arrays. Analytical cache
models concentrate on these memories (see section 4.1), which should also be easily modeled using the
technique described here. It remains to be seen in how far surrounding logic, like tag comparison, poses
an additional problem to the modeling.

89

7 Evaluation

90

8 Summary and Conclusion

Summary
In this thesis the issue of power modeling for semiconductor memories was elaborated. The relevance
of this issue was documented and the physical effects leading to and the complications arising from
power consumption were briefly described. To outline the modeling problem, an overview over the basic
memory structures as well as statistical modeling techniques was given. A catalogue of requirements was
generated on the background of high-level estimation and optimization applications. Existing approaches
to memory power modeling were analyzed and discussed with respect to these requirements. A new
modeling methodology was then proposed to remedy the flaws of existing approaches. Core of this
methodology is an iterative algorithm that combines variable selection, variable transformation and model
fitting for signomial functions as well as an automated node insertion procedure for piecewise modeling.
For a wide applicability emphasis was laid on keeping the procedure as automatic as possible and making
the interactive steps simple. It was shown that the family of signomial functions is – although nonlinear
– well suited for optimization tasks.

Subsequent to the introduction of the new methodology its implementation in the tool ORINOCO
BEACH and the integration of existing models in the power estimator DALE were documented. To
validate the presented approach, several applications were exemplified: the modeling of three embedded
memories of Philips based on critical-path model simulation, a family of LSI embedded memories based on
memory compiler estimates and register files of Synopsys DesignWarer based on synthesis and gate-level
simulation. In all cases results of the new methodology were compared to linear regression modeling and
linear interpolation.

Conclusion
This thesis contributes the following aspects:

1. A new family of analytical models (signomial models) for memory modeling. These models have
not been suggested for memory modeling before. They are among the most general families of
mathematical functions for which effective optimization techniques exist (see section 5.6). More
specifically, the nonlinear relationships occurring in memory designs can be effectively described
using these models. The presented signomial models reduce the error up to a factor of six compared
to linear models (see section 7.5). The absolute errors as well as the mean absolute relative errors
are below 16% in all cases. The models are therefore well suited for application at RT level and
higher abstraction levels (see requirements in section 3.3). They are generally more compact than
linear models.

2. A set of algorithms for the generation of signomial models. The iterative algorithm presented in
section 5.3.4 is an efficient search procedure combining variable selection and fitting. Its fast con-
vergence allows model generation times that are comparable to that of linear models (see figure
7.12). Maximum average generation time are 6.5 hours. The node insertion algorithm for piecewise
modeling (section 5.5.1) extends the model generation process and allows a reduction of model errors
up to a factor of 20 (see section 7.5). In combination the techniques are well suited even for the
power complexity modeling of data path components: Absolute and mean absolute relative errors
are below 15%. The rounding procedure described in section 5.7 is a further extension that allows
intermediate solutions between linear and nonlinear models in terms of accuracy and evaluation time
(see section 7.1).

91

8 Summary and Conclusion

3. A tool implementation of the generation algorithms. The software tool BEACH described in section
6.2 implements the model generation as well as support for data acquisition and model analysis.
It is currently marketed as one of three tools of the ORINOCO tool suite (see section 6.1). The
evaluation in this thesis was conducted entirely using BEACH.

4. A modeling methodology. As motivated in chapter 3 model building is a complex iterative process.
Chapter 5 describes a modeling methodology centered around the algorithms mentioned above. It
deals with the aspects of data abstraction, data acquisition, variable selection and fitting, validation
and measures in case of lacking accuracy. Emphasize was laid upon the applicability of this method
by (trained) non-experts. The goal of this methodology is to reduce the overall modeling costs (see
section 3.3). The methodology is exemplified in the evaluation in chapter 7.

5. A concept for the integration of models into an estimation tool. As described in chapter 3 the
application of models is an integral part of the model building process. The performance of a power
estimation or optimization application not only depends on the properties of the models, but also on
their effective integration into the application. For these reasons a concept for the integration and
application of the generated models within a power estimation tool was proposed (see section 6.3).
The most important features of this concept are performance and flexibility. The proposed concept
has been implemented and is now part of the behavioral power estimator ORINOCO DALE.

In summary the presented models, tool and methodology clearly meet the requirements defined in section
3.3. Therefore they serve as enabling technology for high-level memory power estimation and optimization.

Outlook
Due to cost and time-to-market requirements intellectual property components will continue to gain an
increasing market share. At the same time design will be conducted at ever higher levels of abstraction
to keep the pace of the technology development. Making available models for properties of IP at the
design level will for this reason be an increasingly important as well as complicated and hence expensive
task. The contribution of this thesis is to provide high-level power modeling of embedded memories at
acceptable cost. As exemplified in section 7.4 the same methodology can also be applied to other kinds
of IP modeling. The presented techniques could therefore serve as basis to approach the more general
problem of IP property modeling.

92

A ROM Instance Model

This chapter describes the ROM model developed previously by the author [121,123].

A.1 Introduction

Let MEM(a) denote the content of address a, wn = MEM(a(n)) and wn−1 = MEM(a(n− 1)) the data
word read in cycle n and n − 1 and w′

n = MEM(a(n) XOR 01). Let OE be the state of the output
enable (active low). The variables Sx respectively Ox are slope and offset of linear approximations. They
are model coefficients that must be fitted by a characterization procedure. The function # specifies the
number respective bit events in two consecutive vectors. #01(i, j) for example denotes the number of
rising bits between vector i and j. The norm || denotes the weight of the respective data word, i.e. the
number of ones contained.

The total power consumption consists of: the power consumed during the memory cycle, during address
changes and during output (de-)activation:

Ptotal = Pcycle + Paddress + Poutput (A.1)

A.2 Cycle Related Power

Cycle-synchronous power can further be sub-divided into the sensing and the z bus related parts and the
rest.

Pcycle(wn, w′
n) = Psensing(wn, w′

n) + Pdriving(wn−1, wn, OE) + Pstatic (A.2)

The sensing related contribution can again be subdivided into bit-line pre-charge, the “corespondent
address”, and the sense amplifiers

Psensing(wn, w′
n) = Pbpre(wn) + Pcaddr(w′

n) + Psenseamps(wn) (A.3)

The dependencies are as follows:

Pbpre(wn) = Sbpre · |wn|+Obpre (A.4)
Pcaddr(w′

n) = Scaddr · |w′
n|+Ocaddr (A.5)

Psenseamps(wn) = Ssenseamps · |wn|+Osenseamps (A.6)

Should the bit invert be active for a specific column, the inverted bit value must be used in these equations.
No other alteration of the model is necessary. The driving related contribution comprises of the power
consumed by the z bus and the output driving.

Pdriving(wn−1, wn, OE) = Pzbus(wn−1, wn) + PoutCycle(wn−1, wn, OE) (A.7)

with

Pzbus(wn−1, wn) = Szdrive01 ·#01(wn−1, wn)
+ Szdrive10 ·#10(wn−1, wn)
+ Szdrive11 ·#11(wn−1, wn)
+Odriving

(A.8)

93

A ROM Instance Model

PoutCycle(wn−1, wn, OE) ={
Soca01 ·#01(wn−1, wn) + Soca10 ·#10(wn−1, wn) +Ooca if OE = 0
Socd01 ·#01(wn−1, wn) + Socd10 ·#10(wn−1, wn) +Oocd if OE = 1

And last but not least:
Pstatic = Ostatic (A.9)

A.3 Output (De-)Activation Related Power

The power related to the (de-)activation of the output is represented as follows: let wo denote the old
value at the output and wn the content on the z bus (i.e. the last value read). Then the asynchronous
output driving power is given as:

Poutput(wo, wn, OE) =


Poact(wo, wn) OE falling
Podeact(wn) OE rising
0 otherwise

(A.10)

with:

Poact(wo, wn) = Soact01 ·#01(wo, wn)
+ Soact10 ·#10(wo, wn)
+ Soact11 ·#11(wo, wn)
+Ooact

(A.11)

and:
Podeact(wo) = Sdeoact · |wo|+Oodeact (A.12)

A.4 Address Change Related Power

The address words are separated into the bit groups X,Y and Z according to their involvement in the
row, column or block addressing. Let Xi, Y i and Zi denote respective i-th bit.

Paddress = PX0 + PXrest + PY 0 + PXrest + PZ (A.13)

PX0 =


CX0r X0 rising
CX0f X0 falling
0 otherwise

(A.14)

PY 0 =


CY 0r Y0 rising
CY 0f Y0 falling
0 otherwise

(A.15)

PZ =
∑
i

PZi
(A.16)

PZi
=


CZir Zi rising
CZif Zi falling
0 otherwise

(A.17)

94

A.4 Address Change Related Power

PY rest = PY drv(yaddr) +
∑
i

PYi (A.18)

where yaddr is the y address. Like above:

PY i =


CY ir Yi rising
CY if Yi falling
0 otherwise

(A.19)

and:
PY drv(yaddr) = fY drv(yaddr) (A.20)

Let
bi(xaddr) = xaddrAND′11′ · 22·i (A.21)

denote the output of the i-th x pre-decoder block at x address xaddr. Then:

PXrest = PXdrv(xaddr) +
∑
i

PXi (A.22)

PXi =


CXir Xi rising
CXif Xi falling
0 otherwise

(A.23)

PXdrv =
∑
i fXdrv(i, bi(xaddr)) (A.24)

Here fXdrv is a function of the decoder block number and the output of the respective decoder block.
The number of coefficients for this extremely detailed type of address change model is high, but bearable.

Let Xrest, Yrest and Z denote the number bits of the respective address part. Then the number of
coefficients is:

NrCoeffs = 2 + 2 ·Xrest+ 2 ·Xrest+ 2 + 2 · Y rest+ 2 ·Y rest+ 2 · Z (A.25)

and:
max(NrCoeffs) = 2 + 2 · 10 + 2 · 10 + 2 + 2 · 3 + 2 ·3 +2 · 6 = 60 (A.26)

95

A ROM Instance Model

96

B Characterization Metafile Format

B.1 Introduction

As mention previously ORINOCO BEACH features a simple characterization description language. This
limited language serves the concise specification of the experimental design. The language itself as well
as its interpreter are based on the script language AWK [116]. In the remainder of this section an
extended Backus-Naur-Form (EBNF) of the language is presented. Subsequently the functionality is
briefly summarized and an example is given.

B.1.1 EBNF-description of the metafile

Here is a pseudo EBNF-description of the metafile. For easier notation the basic tokens Number, String
and Variable are defined using regular expressions.

MetaFile = VarsSection {<NEWLINE>}
[BeginSection {<NEWLINE>}]
[ViewBeforeSection {<NEWLINE>}]
ExecuteSection {<NEWLINE>}
[ViewAfterSection {<NEWLINE>}]
[EndSection{<NEWLINE>}].

VarsSection = "[vars]" <NEWLINE>
{ Variable " = "
("select " { String }+ |
"toggle " { String }+ |
"file " String |
"for " Number " to " Number

[" step " { Number }+]) <NEWLINE>}+.

BeginSection =
"[begin]" <NEWLINE> AwkStringExpression <NEWLINE>.

ViewBeforeSection =
"[viewbefore]" <NEWLINE> AwkStringExpression <NEWLINE>.

ExecuteSection =
"[execute]" AwkStringExpression <NEWLINE>.

ViewAfterSection =
"[viewafter]" <NEWLINE> AwkStringExpression <NEWLINE>.

EndSection =
"[end]" <NEWLINE> AwkStringExpression <NEWLINE>.

AwkStringExpression =

97

B Characterization Metafile Format

[EmbracedString] (<variable> |
<variable>{(‘ ‘|EmbracedString) <variable>})
[EmbracedString].

EmbracedString = ’"’ String ’"’.

Number = "\-?[0-9]+(\.[0-9]+)?".
String = "[!#%&’*-,0-:<>@-Z\\]".
Variable = "[a-zA-Z][!#%&’*-,0-:<>@-Z\\]*".

Comments
• AwkStringExpressions contain everything that gawk evaluates to an expression that is valid in the

form ”printf(AwkStringExpression)”. Variables, strings and even whole functions may occur within
an AwkStringExpression (e.g. in the [execute]-section: ”echo ” 2 ˆ a ” ” e).

• Hash and space must be preceded by the escape character “ ” in Strings. Precision of numbers is
granted up to six digits.

• <NEWLINE> denotes the newline character. No other characters may follow.

• The AwkStringExpression in the ExecuteSection must evaluate to a valid shell-command.

B.1.2 Summary of the Functionality

The metafile is divided into separate chapters by the keywords: [vars], [begin], [viewbefore], [execute],
[viewafter] and [end]. Of these only the two core sections [vars] and [execute] are mandatory. In the
[vars] region the parameters of the characterization are defined as variables. Different generators describe
which values the may be taken by which variable. Both the “select” and the “toggle” generator make
the variable toggle through all strings given. In contrast to “select”, toggle also encompasses the empty
string. The “file” generator makes the variable assume all lines in the specified file. The “for” generator
has the usual semantics, with one exception: the statement allows to specify a sequence of step size. For
the first characterization, the first step size is taken. With every new execution of the characterization,
the respective next step size in the sequence is then used. Samples from previous runs are automatically
identified and omitted from re-characterization.

The [execute] section contains the shell string that is executed for every combination of variable values
specified in the [vars] section. The standard output of the executed shell command is redirected into the
characterization table. It must be a single line.

The remaining sections only serve the purpose of formatting the characterization table: the strings
defined in the [begin] and [end] sections appear in the table before respectively after the lines containing
the characterization data. In every line of the table the content of the [viewbefore] string precedes the
output of the executed shell command and the [viewafter] string follows it.
Example 9. The following small example file is shipped with BEACH:

[vars]

x1 = for 1 to 5 step 2

x2 = for 1 to 10 step 5 2 1

x3 = for 5 to 10 step 5

x4 = for 10 to 1 step -3

x5 = for 10 to 20 step 10 5

[begin]

"\#LABELS x1 x2 x3 x4 x5 pwr"

[viewbefore]

x1" \t"x2" \t"x3" \t"x4" \t"x5" \t"

[execute]

98

B.1 Introduction

"gawk -v x1="x1" -v x2="x2" -v x3="x3" -v x4="x4" -v x5="x5" \

’BEGIN {print 1.7*log(x1)*x2 +0.4*x3*x3 +1*x5*x1 }’"

Performing two characterization runs with this metafile leads to the following characterization table:

Run 2

#LABELS x1 x2 x3 x4 x5 pwr

1 1 5 10 10 20

1 1 5 10 15 25

1 1 5 10 20 30

1 1 5 7 10 20

1 1 5 7 15 25

1 1 5 7 20 30

1 1 5 4 10 20

1 1 5 4 15 25

1 1 5 4 20 30

...

5 9 10 7 20 164.624

5 9 10 4 10 114.624

5 9 10 4 15 139.624

5 9 10 4 20 164.624

5 9 10 1 10 114.624

5 9 10 1 15 139.624

5 9 10 1 20 164.624

99

B Characterization Metafile Format

100

C Pattern sequences for Register File
Characterization

This chapter contains the patterns used for the gate level simulation of register files. As mentioned in
section 7.1 four working modes where distinguished: idle, read, write and write-through. Separate pattern
sequences were generated for these four cases. All sequences however can be expressed as functions of four
common variables: addr1, addr2, dat1 and dat2. Here addr1 and addr2 are legal addresses for the instance
under investigation and dat1 and dat2 are respective bit vectors. addr0 and dat0 furthermore represent
the address and data word zero with appropriate bit width.

The tables C.1 to C.4 show the pattern sequences. The column ’pat’ contains the number of the
respective pattern. ’raddr’, ’waddr’ and ’wdata’ list the read addresses, write addresses and write data
using the number encoding defined above. The ’rst’,’cs’,’we’ and ’clk’ columns display the reset, chip
select, write enable and clock signal. Note that the first three signals are active low. The horizontal line
in the table separates the initialization phase from the power estimation. The power consumption is only
computed for the patterns below the line.

Idle Clocking
For the characterization of the idle clocking power the circuit is reset (patterns 1–4). Then addr2 is
initialized with dat1 (5–8). Reading this value once completes the initialization (9–12). In the part
relevant for estimation the same read is performed again. Therefore no change whatsoever occurs at the
register file’s in- and outputs except the clocking.

Read Access
Here addr1 is initialized with dat1 and addr2 with dat2 (patterns 5–12). Then dat1 is read from addr1
(13–16). In the estimation phase (17–20) dat2 is read from addr2.

Write Access
dat1 is written to addr2. Then an arbitrary value is read from addr1. During estimation dat2 is written
to addr2, while the read address is addr1. The content of addr2 is therefore changed from dat1 to dat2
but dat2 does not become visible at the output.

Write-through Access
The write-through access patterns are similar to the write case. Here, however, write and read address are
identical during the last access so that the newly read word becomes immediately visible at the output.

Table C.1: Patterns for the characterization of register files: Idle Clocking.

pat raddr waddr wdata rst cs we clk
1 0 0 1 0 1 1 0
2 0 0 1 0 1 1 1
3 0 0 1 0 1 1 1
4 0 0 1 0 1 1 0
5 1 2 1 1 0 0 0
6 1 2 1 1 0 0 1
7 1 2 1 1 0 0 1
8 1 2 1 1 0 0 0
9 2 1 2 1 1 1 0
10 2 1 2 1 1 1 1
11 2 1 2 1 1 1 1
12 2 1 2 1 1 1 0

101

C Pattern sequences for Register File Characterization

Table C.1: (continued)

pat raddr waddr wdata rst cs we clk
13 2 1 2 1 1 1 0
14 2 1 2 1 1 1 1
15 2 1 2 1 1 1 1
16 2 1 2 1 1 1 0

Table C.2: Patterns for the characterization of register files: Read Access.

pat raddr waddr wdata rst cs we clk
1 0 0 1 0 1 1 0
2 0 0 1 0 1 1 1
3 0 0 1 0 1 1 1
4 0 0 1 0 1 1 0
5 0 1 1 1 0 0 0
6 0 1 1 1 0 0 1
7 0 1 1 1 0 0 1
8 0 1 1 1 0 0 0
9 0 2 2 1 0 0 0
10 0 2 2 1 0 0 1
11 0 2 2 1 0 0 1
12 0 2 2 1 0 0 0
13 1 0 2 1 1 1 0
14 1 0 2 1 1 1 1
15 1 0 2 1 1 1 1
16 1 0 2 1 1 1 0
17 1 0 2 1 1 1 0
18 2 0 2 1 1 1 0
19 2 0 2 1 1 1 0
20 2 0 2 1 1 1 0

Table C.3: Patterns for the characterization of register files: Write Access.

pat raddr waddr wdata rst cs we clk
1 0 0 1 0 1 1 0
2 0 0 1 0 1 1 1
3 0 0 1 0 1 1 1
4 0 0 1 0 1 1 0
5 2 2 1 1 0 0 0
6 2 2 1 1 0 0 1
7 2 2 1 1 0 0 1
8 2 2 1 1 0 0 0
9 2 1 1 1 1 1 0
10 2 1 1 1 1 1 1
11 2 1 1 1 1 1 1
12 2 1 1 1 1 1 0
13 2 2 2 1 0 0 0
14 2 2 2 1 0 0 1
15 2 2 2 1 0 0 1
16 2 2 2 1 0 0 0

Table C.4: Patterns for the characterization of register files: Write-through
Access.

pat raddr waddr wdata rst cs we clk
1 0 0 1 0 1 1 0
2 0 0 1 0 1 1 1
3 0 0 1 0 1 1 1
4 0 0 1 0 1 1 0
5 1 2 1 1 0 0 0
6 1 2 1 1 0 0 1
7 1 2 1 1 0 0 1

102

Table C.4: (continued)

pat raddr waddr wdata rst cs we clk
8 1 2 1 1 0 0 0
9 1 1 1 1 1 1 0
10 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
12 1 1 1 1 1 1 0
13 1 2 2 1 0 0 0
14 1 2 2 1 0 0 1
15 1 2 2 1 0 0 1
16 1 2 2 1 0 0 0

103

C Pattern sequences for Register File Characterization

104

D Experimental Data

This appendix contains the complete cross validation information of the evaluation examples described in
chapter 7. The tables shown here are organized identically to those in evaluation chapter (for description
see section 7.1) with the following exceptions: The ’type’ information is moved into a headline for all
models of the respective type. Consequently the ’type’ column has been replaced by two columns ’C’
and ’M’: When a model is tested with several cross validation data sets, ’C’ contains the number of
the respective data set. In case the model building was performed using automatic insertion of cuts for
piecewise regression, ’M’ contains the number of the model in the modeling sequence. M = 1 stands for a
model without cuts (shown as ’initial model’ in chapter 7, while a model with M = i contains i− 1 cuts.

D.1 Philips SRAM

Table D.1: Complete cross validation data for the Philips SRAM.

C M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
1 1 0.8 1.000 4.6 0.8 -0.3 7455 - -
2 1 0.8 1.000 9.3 1.2 -0.6 8667 - -
3 1 0.8 1.000 8.1 1.6 -1.3 8263 - -
4 1 0.9 1.000 4.6 1.2 -0.5 8684 - -

Nonlinear Regression, Absolute Errors
1 1 1.6 0.999 9.2 1.6 -1.0 4583 4 7

2 1.2 1.000 3.8 1.3 0.1 5417 43 8
3 1.1 1.000 3.5 0.9 -0.2 6167 102 8
4 1.0 1.000 3.1 0.9 -0.3 6333 235 9
5 1.0 1.000 3.2 0.9 -0.3 7167 497 10

2 1 1.6 1.000 7.6 1.8 -0.1 4333 5 7
2 1.0 1.000 5.6 0.9 -0.1 5583 47 10
3 0.8 1.000 5.0 1.0 -0.2 5250 123 10
4 0.7 1.000 5.0 1.1 -0.2 6500 391 13
5 0.7 1.000 4.1 0.9 -0.1 6875 793 13
6 0.4 1.000 4.9 0.8 -0.2 6958 1456 13

3 1 1.5 1.000 8.5 2.1 -0.5 4348 6 7
2 0.8 1.000 4.0 1.4 0.0 6130 51 10
3 1.0 1.000 8.1 1.8 -0.7 6652 188 12
4 0.8 1.000 3.5 1.3 0.0 6000 363 11
5 0.7 1.000 3.6 1.2 -0.1 6130 738 13
6 3.9 0.998 48.4 4.6 -3.9 8783 1450 13

4 1 1.8 1.000 12.3 2.7 -1.3 4792 7 8
2 1.0 1.000 8.0 1.6 -0.3 7458 95 12
3 2.5 0.999 9.5 1.4 0.2 8375 247 12
4 0.9 1.000 4.2 1.1 -0.2 6833 574 13
5 2.7 0.999 4.5 1.0 0.2 6750 1093 13
6 1.0 1.000 4.7 1.1 0.0 8542 2161 14
7 0.8 1.000 1.9 0.8 0.3 6792 3516 16

Linear Regression, Absolute Errors
1 1 4.3 0.996 21.1 5.5 0.3 42 1 7

2 2.7 0.998 13.1 3.2 -1.8 417 4 10
3 1.0 1.000 3.6 1.1 -0.3 875 19 14
4 1.0 1.000 3.4 1.0 0.6 1000 56 16

105

D Experimental Data

Table D.1: (continued)

C M RMS r2 XARE MARE ARE teval tgen Size

5 1.1 1.000 3.6 1.1 0.4 1042 121 16
6 1.1 1.000 5.2 1.2 0.5 917 204 16
7 1.2 1.000 3.2 1.1 0.5 1000 317 16

2 1 5.0 0.996 24.9 7.3 -2.9 83 1 7
2 2.0 0.999 12.2 2.8 -1.2 458 5 11
3 1.0 1.000 12.4 2.4 -0.4 792 22 14
4 1.0 1.000 4.2 1.5 -0.6 917 65 16
5 0.9 1.000 8.5 1.1 -0.3 1000 122 16
6 0.9 1.000 3.4 1.0 0.1 917 205 16
7 0.9 1.000 8.1 1.4 -0.3 1000 316 16
8 0.8 1.000 5.7 1.1 0.0 1000 462 16
9 0.9 1.000 3.9 1.0 0.0 1083 647 16

3 1 5.2 0.996 32.4 9.4 0.9 130 1 7
2 1.8 1.000 9.3 2.7 -0.6 870 8 13
3 1.6 1.000 7.9 1.8 0.3 957 36 15
4 1.4 1.000 7.2 2.0 -0.2 1087 79 16
5 0.9 1.000 4.6 1.4 -0.6 1043 137 16
6 0.8 1.000 4.1 1.2 -0.4 1000 219 16

4 1 4.2 0.998 23.5 6.9 -3.9 42 1 7
2 2.5 0.999 8.6 2.9 -1.7 125 3 9
3 1.5 1.000 6.2 1.7 -0.9 792 18 14
4 1.4 1.000 3.0 1.0 -0.1 1000 54 16
5 1.2 1.000 2.9 1.0 0.0 1042 111 16
6 1.2 1.000 2.9 1.0 0.0 1000 192 16

Nonlinear Regression, Relative Errors
1 1 1.4 1.000 2.9 1.1 0.4 3917 3 6

2 1.4 1.000 2.6 0.9 0.3 4958 24 7
3 1.3 1.000 2.8 1.0 0.2 5875 127 9

2 1 1.4 1.000 2.3 1.0 0.0 4458 5 7
2 1.9 1.000 2.7 1.0 -0.1 5667 74 9
3 1.2 1.000 1.7 0.8 -0.1 5792 181 9
4 1.0 1.000 1.2 0.5 0.1 9375 1642 14

3 1 1.6 1.000 2.9 1.5 0.3 4174 5 7
2 1.2 1.000 2.4 1.0 0.3 5174 39 9
3 1.9 1.000 2.9 1.3 -0.1 9130 311 13
4 2.1 0.999 9.4 1.3 0.7 5696 476 10

4 1 13.3 0.982 15.9 3.2 -1.1 3125 2 5
2 2.5 0.999 2.5 0.8 -0.4 6292 70 11

Linear Regression, Relative Errors
1 1 5.6 0.993 9.5 2.5 -0.5 42 1 7

2 5.4 0.993 9.1 2.1 0.3 125 3 9
3 4.5 0.995 7.7 1.6 0.2 458 12 11
4 1.6 0.999 4.0 1.0 0.1 792 49 15
5 1.2 1.000 1.8 0.8 0.2 833 142 16
6 1.0 1.000 2.0 0.7 0.0 2000 749 27
7 0.7 1.000 1.7 0.4 0.1 3750 3016 40
8 0.6 1.000 1.1 0.4 0.0 3333 5262 39
9 0.8 1.000 1.6 0.5 0.2 3292 7931 36

2 1 7.5 0.992 10.0 3.5 -1.6 83 1 7
2 8.0 0.991 11.2 2.5 -1.2 83 3 9
3 6.8 0.994 9.8 1.7 -0.9 458 12 11
4 1.4 1.000 4.2 0.9 -0.3 875 53 16
5 0.8 1.000 1.8 0.5 -0.1 1583 230 22
6 0.7 1.000 1.2 0.4 0.0 1958 629 26
7 1.0 1.000 1.3 0.4 -0.1 3042 1893 36
8 1.3 1.000 1.9 0.5 -0.2 2875 3065 32

3 1 5.7 0.996 9.5 3.0 -0.7 130 1 7
2 5.6 0.996 9.3 1.8 0.4 174 3 9
3 4.7 0.997 7.7 1.6 0.1 435 12 11
4 1.4 1.000 2.1 0.7 0.2 913 50 16
5 1.4 1.000 1.7 0.5 0.0 1826 230 23
6 1.5 1.000 1.8 0.5 0.0 2826 737 29

106

D.2 Philips High Speed ROM

Table D.1: (continued)

C M RMS r2 XARE MARE ARE teval tgen Size

7 0.7 1.000 1.9 0.5 0.0 4304 3434 42
8 0.5 1.000 2.1 0.5 -0.1 3261 5410 36

4 1 5.7 0.997 9.2 2.6 -0.7 83 1 7
2 5.6 0.997 9.1 2.0 0.2 83 4 10
3 4.8 0.998 7.8 1.6 0.2 375 14 12
4 2.7 0.999 3.5 1.1 0.0 833 51 15
5 1.4 1.000 2.1 0.9 0.1 1250 177 19
6 1.6 1.000 1.7 0.5 0.0 1708 497 23
7 1.4 1.000 2.5 0.7 0.1 2625 1156 28
8 1.2 1.000 1.7 0.4 0.1 2708 2181 28
9 1.1 1.000 3.6 0.8 -0.4 3125 4108 33
10 1.0 1.000 1.4 0.4 0.1 3542 8012 36
11 1.5 1.000 2.0 0.4 0.0 5208 14276 44

D.2 Philips High Speed ROM

Table D.2: Complete cross validation data for the Philips High Speed ROM
including voltages.

C M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
1 32.9 0.902 56.8 4.7 4.2 12350 - -
2 1.4 1.000 3.2 1.3 0.5 17286 - -
3 3.3 0.999 11.7 2.1 2.0 15250 - -
4 35.4 0.897 100.8 9.3 -1.3 12300 - -

Nonlinear Regression, Absolute Errors
1 1 1.3 1.000 18.1 4.4 0.3 6167 14 7

2 1.4 1.000 20.5 4.8 -0.3 6958 79 7
3 1.3 1.000 17.3 4.0 0.0 7417 165 8
4 1.3 1.000 10.1 2.6 1.1 9417 1140 14

2 1 2.3 0.999 7.7 2.1 -0.6 6000 14 7
2 2.2 0.999 7.0 1.9 -0.6 7167 177 9
3 2.0 1.000 6.8 2.0 -0.6 7000 372 11
4 1.9 1.000 7.3 2.2 -0.3 11750 1035 14

3 1 1.3 1.000 59.6 5.7 2.2 7292 38 8
2 1.2 1.000 29.5 3.9 0.8 7125 135 8

4 1 1.1 1.000 17.8 2.5 0.9 6208 154 7
2 1.1 1.000 30.9 3.0 -1.0 6583 249 9
3 1.0 1.000 25.5 3.1 1.2 8833 429 9
4 1.1 1.000 11.7 2.2 0.4 9333 697 9

Linear Regression, Absolute Errors
1 1 2.0 1.000 26.6 6.9 -5.2 167 1 8

2 1.4 1.000 21.0 5.5 -4.2 250 7 10
3 1.3 1.000 18.4 4.2 -1.2 750 24 12
4 0.8 1.000 13.0 2.8 0.2 1417 174 18
5 1.0 1.000 14.7 2.1 0.6 2500 618 27
5 1.2 1.000 8.4 2.8 0.7 2292 1133 24
6 1.2 1.000 36.4 4.5 0.9 2917 2375 30
7 1.3 1.000 7.7 2.1 0.5 2958 3991 28
8 1.3 1.000 6.9 2.3 0.1 3000 5601 30
9 1.3 1.000 14.3 3.2 0.1 2792 7566 30

2 1 3.6 0.999 23.7 4.7 -2.9 167 2 8
2 4.3 0.998 12.6 3.0 -1.2 625 11 11
3 3.1 0.999 10.3 2.5 -0.8 917 38 14

3 1 1.8 1.000 41.5 5.8 2.1 167 1 8
2 1.5 1.000 29.3 3.9 1.0 708 11 12
3 1.3 1.000 22.5 3.1 0.3 1000 52 14
4 2.3 0.999 15.5 2.3 0.8 2292 277 25
5 2.3 0.999 34.0 3.3 -1.4 2125 599 23

107

D Experimental Data

Table D.2: (continued)

C M RMS r2 XARE MARE ARE teval tgen Size

6 2.0 1.000 16.9 1.8 0.9 2958 1448 30
7 0.9 1.000 9.8 1.3 0.7 3042 2485 30

4 1 2.2 1.000 24.1 3.8 -0.6 167 2 8
2 2.1 1.000 19.1 3.3 -0.3 667 12 11
3 2.0 1.000 20.7 3.6 0.2 500 24 10
4 1.4 1.000 10.1 2.1 -0.4 2125 210 23
5 1.2 1.000 14.7 2.1 -0.9 2708 628 26
6 1.3 1.000 10.9 2.2 -1.0 3167 1169 27
7 1.4 1.000 8.1 1.4 0.0 3000 2158 30
8 1.3 1.000 6.1 1.7 0.3 3167 3486 30

Nonlinear Regression, Relative Errors
1 1 1.7 1.000 4.5 1.8 0.2 5292 9 6
2 1 3.4 0.999 6.5 2.1 0.1 5542 8 6

2 10.4 0.989 15.9 5.9 -0.7 6167 22 5
3 1 1.6 1.000 7.3 1.7 0.8 5292 9 6

2 1.9 1.000 6.5 2.5 0.2 5708 51 6
3 1.8 1.000 3.6 0.8 0.1 7750 161 7

4 1 1.7 1.000 7.8 1.9 0.7 6917 21 8
2 2.4 0.999 4.9 1.3 0.2 7125 94 8
3 2.2 1.000 5.3 1.3 0.2 8542 251 9

Linear Regression, Relative Errors
1 1 3.0 0.999 4.7 2.2 0.1 208 3 11

2 2.5 0.999 5.5 2.1 0.0 708 12 12
3 3.0 0.999 7.6 2.0 0.3 917 35 14
4 1.6 1.000 4.7 1.4 0.2 1542 127 19
5 1.6 1.000 7.5 1.3 0.5 2250 464 25
6 1.5 1.000 6.4 1.3 0.4 2333 1029 27

2 1 5.8 0.996 9.7 3.1 -0.8 167 2 8
2 4.9 0.997 9.8 2.8 -0.6 875 12 12
3 5.5 0.997 11.7 2.7 -0.6 1250 51 16
4 4.9 0.997 9.9 2.2 -0.5 1333 129 16
5 2.9 0.999 8.0 1.6 -0.4 1958 318 22
6 2.8 0.999 4.6 1.2 -0.2 1667 672 22
7 2.3 0.999 3.9 1.1 -0.2 2250 1218 23

3 1 2.8 0.999 4.9 2.5 1.6 208 2 10
2 2.2 0.999 5.2 2.2 1.1 750 12 13
3 2.3 0.999 5.0 2.0 0.6 792 33 14
4 1.1 1.000 3.6 1.2 0.5 1333 134 18
5 2.7 0.999 3.6 1.5 0.4 2625 616 27
6 2.0 1.000 3.4 1.3 0.5 2542 1187 27
7 1.6 1.000 2.6 1.2 0.4 3083 2201 30

4 1 2.7 0.999 5.1 2.0 0.1 208 2 10
2 2.0 1.000 4.1 1.5 -0.2 708 13 13
3 2.9 0.999 5.6 1.7 -0.3 1083 56 15
4 2.7 0.999 4.5 1.6 0.1 1833 152 20
5 2.0 1.000 3.2 1.3 0.2 2292 482 24
6 1.8 1.000 3.5 1.2 0.2 3375 1399 30
7 1.7 1.000 3.6 1.1 0.3 3333 2339 30
8 1.6 1.000 3.6 1.0 -0.1 3083 3470 30
9 1.5 1.000 3.5 1.0 0.1 3208 4818 30

108

D.3 Philips Low Power ROM

D.3 Philips Low Power ROM

Table D.3: Complete cross validation data for the Philips Low Power ROM
including voltages.

C M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
1 1 14.8 0.979 128.6 17.4 -5.3 17051 - -
2 1 17.2 0.979 101.2 13.4 0.6 17105 - -
3 1 14.3 0.988 113.0 10.2 3.8 18457 - -
4 1 11.5 0.988 91.6 10.7 2.4 15929 - -

Nonlinear Regression, Absolute Errors
1 1 3.0 0.999 22.7 4.4 0.3 14745 297 14

2 3.6 0.999 20.7 4.4 0.1 11043 577 11
2 1 2.9 0.999 24.5 4.7 1.6 10872 136 10

2 2.9 0.999 21.2 4.7 1.5 11830 494 11
3 2.7 1.000 22.8 4.6 1.0 14936 2032 16
4 2.7 1.000 36.3 4.2 0.4 14787 4125 16
5 2.5 1.000 27.1 4.1 1.5 15894 9440 20
6 4.7 0.998 40.5 4.4 1.8 17872 13990 16

3 1 2.9 0.999 51.5 6.2 -0.2 13283 544 15
2 2.2 1.000 42.2 5.0 1.2 16543 1978 18
3 2.2 1.000 49.7 6.2 1.1 15826 3333 15

4 1 2.3 1.000 20.4 4.6 1.0 10383 210 11
2 2.3 1.000 51.0 5.5 2.3 14660 1194 16
3 2.3 1.000 28.1 5.9 0.9 15596 3126 18
4 2.6 0.999 21.9 4.0 0.1 12617 3845 10
5 2.0 1.000 18.2 4.0 1.9 17872 8948 19

Linear Absolute
1 1 8.8 0.993 88.6 26.0 -20.3 170 5 10

2 6.3 0.996 73.7 13.7 -5.5 1064 45 15
3 5.5 0.997 40.7 5.3 -1.5 1511 114 18
4 6.2 0.996 66.1 9.2 -5.2 1553 226 18
5 5.4 0.997 39.2 8.2 0.5 1596 398 18
6 7.2 0.995 47.4 8.5 -2.1 1489 577 18

2 1 18.3 0.977 65.0 21.0 -12.2 170 5 9
2 11.5 0.991 28.7 7.0 -0.9 1106 67 16
3 8.2 0.995 47.4 8.3 -2.0 1830 192 20
4 8.0 0.996 44.1 11.5 2.8 1468 304 20

3 1 18.9 0.975 65.5 20.7 -13.5 196 4 8
2 11.7 0.990 16.8 6.2 0.3 1370 55 17
3 9.0 0.994 19.2 6.1 0.5 1565 169 19
4 6.6 0.997 49.2 7.9 -0.3 1587 290 20
5 3.6 0.999 27.0 3.7 0.5 1696 481 20
6 5.5 0.998 48.1 7.6 2.8 2087 702 20

4 1 17.1 0.974 69.0 16.7 -8.6 191 4 10
2 12.8 0.985 26.9 6.3 -0.7 1447 54 17
3 12.1 0.987 39.7 7.9 -2.6 1809 135 20
4 8.3 0.994 34.7 7.9 0.8 1681 306 20
5 6.2 0.997 40.7 8.0 0.1 2277 501 20
6 7.1 0.995 55.3 11.8 0.0 1915 735 20

Nonlinear Relative
1 1 2.9 0.999 28.9 4.2 -2.1 11766 180 11

2 2.3 1.000 21.8 3.6 -1.0 13681 535 12
3 17.3 0.973 45.4 10.4 -3.4 11149 2050 13
4 14.8 0.980 42.9 13.3 0.0 7340 2558 9

2 1 5.0 0.998 14.4 4.1 -0.5 11362 231 13
2 5.2 0.998 14.0 4.4 -0.3 10745 762 12

3 1 12.3 0.989 50.5 10.5 -1.2 6196 43 7
2 14.2 0.986 45.0 9.7 -0.7 7174 202 8
3 12.3 0.989 49.0 11.0 -0.5 6913 398 8
4 1.9 1.000 18.1 2.9 -0.4 15630 1493 12
5 2.4 1.000 19.4 3.0 -0.5 18435 4957 15

4 1 1.7 1.000 21.1 2.4 -0.3 11404 205 11

109

D Experimental Data

Table D.3: (continued)

C M RMS r2 XARE MARE ARE teval tgen Size

2 1.6 1.000 23.6 2.4 -0.3 14383 709 13
3 1.8 1.000 22.4 2.2 -0.4 18681 2380 17
4 1.9 1.000 21.9 2.4 0.0 14745 3707 12
5 2.1 1.000 20.6 2.3 -0.1 14915 5433 14
6 2.3 1.000 20.2 2.3 -0.3 13149 7109 13

Linear Relative
1 1 10.2 0.990 71.3 15.2 -6.9 191 7 10

2 3.1 0.999 36.4 3.9 -1.1 1362 62 19
3 7.1 0.995 36.5 5.0 -1.2 1574 163 18

2 1 20.6 0.971 31.3 11.6 -1.1 213 8 13
2 12.9 0.988 12.9 4.4 1.0 1723 61 20
3 10.9 0.992 15.6 3.7 0.5 1553 149 20
4 10.2 0.993 14.9 3.7 0.9 1830 299 20
5 10.6 0.992 15.6 3.8 0.8 1830 511 20
6 9.1 0.994 14.7 4.2 0.2 1979 754 20
7 8.4 0.995 21.8 4.5 1.1 1936 1171 20

3 1 21.8 0.967 44.2 11.5 -4.8 283 10 13
2 13.3 0.988 13.3 4.0 0.0 1326 51 20
3 11.2 0.991 12.7 3.5 0.2 1457 123 20
4 9.5 0.994 10.3 3.0 -0.1 1739 288 20
5 8.9 0.994 14.2 3.2 0.3 1696 523 20
6 11.5 0.991 24.1 5.3 0.9 2065 785 20
7 8.3 0.995 18.1 4.8 0.0 1891 1083 20

4 1 19.8 0.965 39.3 12.1 -0.3 191 7 11
2 13.1 0.985 22.5 4.7 -0.4 1404 63 20
3 9.8 0.992 24.0 4.4 0.2 1638 161 20
4 8.9 0.993 27.1 4.7 0.0 1809 303 20
5 8.0 0.994 27.5 5.4 -0.7 1851 504 20
6 13.9 0.983 30.2 5.8 0.7 2064 729 20

D.4 LSI m11 111ha Embedded SRAM

Table D.4: Complete cross validation data for LSI m11 111ha Embedded
SRAM.

C M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
1 0.1 1.000 1.0 0.0 0.0 42297 - -
2 0.1 1.000 0.6 0.0 0.0 11541 - -
3 0.1 1.000 1.0 0.0 0.0 12157 - -
4 0.1 1.000 1.3 0.0 0.0 12521 - -

Nonlinear Regression, Absolute Errors
1 1 1.9 0.999 19.2 2.0 0.2 1344 21 3

2 1.3 0.999 20.5 1.5 0.2 2409 61 6
3 1.3 0.999 13.3 1.4 0.1 1429 95 5
4 1.3 0.999 13.1 1.4 0.1 1457 150 6
5 1.3 0.999 11.9 1.3 0.1 2465 347 9

2 1 1.9 0.998 16.6 2.0 0.2 1372 22 3
2 1.3 0.999 13.6 1.4 0.0 1429 57 6
3 1.2 0.999 16.5 1.4 0.1 1457 103 6
4 1.2 0.999 13.4 1.2 0.0 1933 232 9
5 1.0 1.000 13.9 1.2 0.1 1933 469 9

3 1 1.9 0.998 15.3 2.0 0.2 1316 22 3
2 1.3 0.999 17.0 1.5 0.2 3165 73 7
3 1.3 0.999 16.0 1.5 0.1 1429 109 5
4 1.3 0.999 14.5 1.4 0.1 1457 165 6
5 1.3 0.999 14.5 1.4 0.1 1401 238 6

4 1 1.9 0.998 17.3 2.0 0.2 1372 22 3
2 1.3 0.999 15.6 1.4 0.2 3613 75 8

110

D.4 LSI m11 111ha Embedded SRAM

Table D.4: (continued)

C M RMS r2 XARE MARE ARE teval tgen Size

3 1.2 0.999 13.5 1.4 0.2 1429 129 6
4 1.1 0.999 11.8 1.3 0.1 1260 227 8
5 1.1 0.999 13.5 1.4 0.1 1905 377 8

Linear Regression, Absolute Errors
1 1 2.5 0.997 15.1 2.6 -0.5 56 22 4

2 1.7 0.999 15.8 2.0 -0.6 308 42 7
3 0.6 1.000 5.1 0.6 0.0 896 122 15
4 0.4 1.000 5.1 0.4 0.0 1625 443 21
5 0.3 1.000 6.1 0.4 0.0 2521 1164 26
6 0.2 1.000 4.7 0.1 0.0 2885 2586 30
7 0.1 1.000 4.8 0.1 0.0 3529 5379 36

2 1 2.5 0.997 16.4 2.6 -0.6 84 22 4
2 1.7 0.999 17.3 2.1 -0.6 336 42 7
3 0.6 1.000 4.6 0.6 0.0 1204 117 16
4 0.5 1.000 4.1 0.5 0.0 2129 425 22
5 0.3 1.000 4.1 0.4 0.0 2185 1367 23
6 0.2 1.000 2.5 0.1 0.0 3137 2842 32
7 0.1 1.000 2.9 0.1 0.0 3754 5921 36
8 0.1 1.000 1.3 0.1 0.0 4874 12099 45

3 1 2.6 0.997 16.2 2.7 -0.6 56 21 4
2 1.7 0.999 17.1 2.1 -0.6 308 41 7
3 0.7 1.000 4.8 0.6 0.0 1597 138 15
4 0.5 1.000 4.5 0.5 0.0 1821 382 20
5 0.3 1.000 4.5 0.4 0.0 2157 1102 23
6 0.2 1.000 1.9 0.1 0.0 3249 2965 34
7 0.1 1.000 1.7 0.1 0.0 4230 6836 38
8 0.1 1.000 2.3 0.1 0.0 5322 14795 46

4 1 2.6 0.997 15.7 2.6 -0.6 84 21 4
2 1.7 0.999 16.5 2.1 -0.6 336 41 7
3 0.7 1.000 5.7 0.6 0.0 1092 112 15
4 0.5 1.000 5.2 0.5 0.0 2241 388 21
5 0.3 1.000 5.2 0.4 0.0 2605 1186 28
6 0.2 1.000 2.8 0.1 0.0 3642 3289 35
7 0.1 1.000 2.9 0.1 0.0 3726 6259 35
8 0.1 1.000 2.1 0.1 0.0 5014 13344 48

Nonlinear Regression, Relative Errors
1 1 2.2 0.998 7.7 1.7 0.0 1372 22 3

2 1.6 0.999 7.0 1.3 0.0 1989 58 7
3 1.6 0.999 7.0 1.3 0.0 1933 115 7
4 1.6 0.999 7.0 1.3 0.0 2017 195 7
5 1.3 0.999 5.9 1.0 0.0 3642 709 11
6 1.2 0.999 6.3 1.0 0.0 4034 1352 11
7 1.4 0.999 7.1 1.1 0.0 3473 1776 8
8 1.4 0.999 7.1 1.1 0.0 3445 2374 8

2 1 2.2 0.998 7.6 1.8 -0.1 1344 21 3
2 1.4 0.999 7.0 1.2 0.0 2549 57 6
3 1.6 0.999 7.2 1.3 0.0 3670 275 10
4 1.3 0.999 6.8 1.0 0.0 4986 919 14
5 1.6 0.999 9.5 1.2 0.0 2129 1000 6

3 1 2.2 0.998 7.3 1.7 -0.1 1372 22 3
2 1.9 0.998 9.0 1.5 0.0 1344 44 4
3 1.4 0.999 6.8 1.1 0.0 2325 102 7
4 1.3 0.999 5.2 1.1 0.0 3445 332 10
5 1.3 0.999 5.8 1.0 0.0 4342 781 12
6 1.3 0.999 5.5 1.0 0.0 4566 1718 13
7 1.5 0.999 6.5 1.1 0.0 4258 2874 14

4 1 2.2 0.998 6.6 1.7 0.0 1372 21 3
2 1.7 0.999 6.8 1.4 0.0 2241 58 6
3 1.5 0.999 6.6 1.1 0.0 3445 162 9
4 1.5 0.999 6.0 1.2 0.0 2885 355 8
5 1.5 0.999 6.9 1.2 0.0 1877 436 6
6 1.5 0.999 6.9 1.2 0.0 1765 566 6

111

D Experimental Data

Table D.4: (continued)

C M RMS r2 XARE MARE ARE teval tgen Size

Linear Regression, Relative Errors
1 1 3.0 0.996 7.0 2.1 0.0 56 22 4

2 2.0 0.998 4.8 1.5 0.0 336 42 8
3 0.6 1.000 4.9 0.6 0.0 952 118 15
4 0.4 1.000 4.9 0.5 0.0 1344 304 20
5 0.3 1.000 5.2 0.4 0.0 2157 976 22
6 0.2 1.000 4.6 0.1 0.0 2409 2155 30
7 0.2 1.000 4.7 0.1 0.0 3277 4468 34
8 0.1 1.000 3.0 0.1 0.0 3922 9937 41
9 0.1 1.000 3.0 0.1 0.0 4510 34374 43
10 0.1 1.000 3.0 0.1 0.0 5098 51873 45

2 1 3.0 0.996 8.4 2.1 -0.1 56 28 4
2 2.0 0.998 5.6 1.5 0.0 364 55 8
3 0.6 1.000 5.1 0.6 0.0 924 149 15
4 0.5 1.000 5.1 0.5 0.0 1933 403 21
5 0.3 1.000 4.2 0.4 0.0 1737 1277 22
6 0.2 1.000 2.6 0.1 0.0 2605 2658 30
7 0.2 1.000 2.5 0.1 0.0 3193 5308 35

3 1 3.0 0.996 8.1 2.1 -0.1 56 21 4
2 2.0 0.998 5.3 1.5 0.0 336 41 8
3 0.7 1.000 4.9 0.6 0.0 728 103 12
4 0.5 1.000 4.9 0.5 0.0 1401 238 18
5 0.3 1.000 4.2 0.4 0.0 1597 770 22
6 0.2 1.000 1.9 0.2 0.0 2913 2515 32
7 0.2 1.000 1.7 0.1 0.0 3249 5323 35
8 0.1 1.000 2.6 0.1 0.0 3978 11744 40
9 0.1 1.000 2.5 0.1 0.0 4622 21281 41
10 0.1 1.000 1.6 0.1 0.0 4426 34351 41

4 1 3.0 0.996 7.6 2.1 -0.1 28 21 4
2 2.0 0.998 5.1 1.5 0.0 336 42 8
3 0.7 1.000 5.4 0.6 0.0 924 117 15
4 0.5 1.000 5.4 0.5 0.0 1372 284 20
5 0.3 1.000 5.0 0.4 0.0 2577 1007 26
6 0.2 1.000 2.8 0.1 0.0 2913 3270 32
7 0.2 1.000 2.9 0.1 0.0 3726 6344 38
8 0.1 1.000 2.2 0.1 0.0 4482 13210 42
9 0.1 1.000 2.2 0.1 0.0 4034 21207 42
10 0.1 1.000 2.2 0.1 0.0 4678 34041 48

D.5 Wallace Tree Multiplier Module

Table D.5: Complete cross validation data for wallace tree multiplier module.

CV M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
1 1 17.0 0.933 65.7 12.3 0.6 3621 - -

Nonlinear Absolute
1 1 14.5 0.951 114.6 12.5 -0.8 1235 0 3

2 15.0 0.948 94.1 12.9 -1.5 2510 8 6
3 14.6 0.951 64.5 11.6 -0.3 2263 13 4
4 14.5 0.951 56.8 11.3 0.1 1893 23 4
5 14.6 0.950 76.1 11.7 -0.7 2840 52 5

Linear Absolute
1 1 14.6 0.950 71.2 12.2 2.6 62 1 3

2 14.8 0.949 61.4 12.0 2.6 144 1 5
3 15.1 0.947 82.7 12.8 3.4 123 2 5
4 15.0 0.948 52.8 12.0 1.8 144 5 6
5 15.1 0.947 53.3 11.4 0.9 761 18 10
6 15.0 0.948 60.0 11.4 0.8 1049 48 11

112

D.6 Sine Module

Table D.5: (continued)

CV M RMS r2 XARE MARE ARE teval tgen Size

7 15.0 0.948 60.0 11.4 0.8 988 90 11

Nonlinear Relative
1 1 15.6 0.944 50.0 11.2 -2.9 1296 1 3

2 15.7 0.943 47.5 10.8 -3.5 2428 7 5
3 15.7 0.943 116.6 10.9 -3.9 4342 49 8
4 18.0 0.925 80.3 12.1 -3.9 3519 93 7
5 18.0 0.925 80.3 12.1 -3.9 3663 159 7

Linear Relative
1 1 15.5 0.944 48.6 11.2 -2.9 82 1 4

D.6 Sine Module

Table D.6: Complete cross validation data for sine module.

CV M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
1 1 25.9 0.878 36.6 8.7 -4.2 4291 - -

Nonlinear Absolute
1 1 32.5 0.806 43.0 14.7 -2.6 1982 0 3

2 18.7 0.936 80.0 12.5 -2.8 3382 6 6
3 12.1 0.973 44.4 9.9 -2.3 1927 16 7
4 89.7 -0.476 202.7 19.0 13.2 3782 94 11

Linear Absolute
1 1 46.5 0.603 56.4 16.4 -9.4 1982 0 3

2 35.1 0.774 72.4 18.2 -1.5 3400 5 5

Nonlinear Relative
1 1 37.7 0.740 135.2 23.8 -0.8 109 0 3

2 23.2 0.901 157.7 16.3 1.5 91 0 3

Linear Relative
1 1 15.8 0.451 57.2 26.2 -18.6 91 0 2

Table D.7: Second cross validation data set for sine module.

CV M RMS r2 XARE MARE ARE teval tgen Size

Interpolation
2 1 19.5 0.927 74.5 10.4 2.7 4473 - -

Nonlinear Absolute
2 1 29.4 0.844 68.9 19.9 4.6 1455 0 3

2 16.9 0.949 210.3 18.9 7.9 1018 4 4
3 9.3 0.984 31.3 6.3 1.1 1527 24 7

Linear Absolute
2 1 33.4 0.799 43.2 14.3 -1.5 2000 1 4

2 28.3 0.856 55.7 12.7 -2.0 1873 5 5
3 11.6 0.976 53.1 8.2 -0.1 1891 67 8

Nonlinear Relative
2 1 35.5 0.773 169.0 30.7 11.6 55 1 3

2 21.7 0.915 158.1 18.4 8.1 91 1 4
3 9.7 0.983 85.7 8.5 3.1 364 5 7
4 10.7 0.979 87.9 9.2 3.4 418 13 8
5 10.3 0.981 45.8 6.9 1.9 836 58 12
6 11.7 0.976 43.4 8.9 1.9 782 90 11

Linear Relative
2 1 45.5 0.627 74.4 26.2 -5.5 55 0 2

2 38.1 0.738 62.0 20.0 -3.2 145 1 6
3 18.5 0.938 29.8 8.9 0.1 182 3 6

113

D Experimental Data

114

List of Figures

1.1 Possible power reduction and design iteration times on different levels of abstraction [114]. 3

2.1 Single ended and double ended memory cells. 6
2.2 Memory array containing single ended cells. 8
2.3 Typical memory block structure. 8
2.4 Statical Row Decoder. 8
2.5 Dynamic Row Decoder. 8
2.6 Sense amplifier. 10
2.7 Static RAM Cell. 10
2.8 Dynamic RAM Cell. 10
2.9 NAND ROM Array. 11
2.10 NOR ROM Array. 11
2.11 Register file with 4 words of 1 bit. 13

3.1 Identification of adjacent points for interpolation. 23

5.1 Flow diagram of the proposed modeling methodology. 37
5.2 The union of two factorial designs is in general not a factorial design. 39
5.3 Typical histogram of the iteration count during the variable transformation. Iteration

counts exceeding 100 are listed under 100. 48
5.4 The restriction to three dimensions sometimes results in counter intuitive model plots (left).

Nonlinear models can often approximate the response surface better (right). 50
5.5 The steps of node insertion: A) Initial Regression, B) Model including node, C) Analysis

of Residuals, D) Regression on residuals. 52
5.6 A two dimensional relationship and its best linear approximation with one cut in x2. . . . 53
5.7 Residuals of the model shown in figure 5.6 and a piecewise linear model of these residuals

with cut in x1. 53
5.8 Residuals of the model shown in figure 5.6 and a piecewise linear model on these residuals

using an interaction of the two cuts. 54

6.1 ORINOCO power estimation flow. 62
6.2 ORINOCO BEACH tool flow. 63
6.3 ORINOCO BEACH variable view. 63
6.4 ORINOCO BEACH model view. 65
6.5 Assignment of model to operator. 66
6.6 Defining the set of compatible models by the introduction of logic functionalities. 67
6.7 UML Class Diagram of the estimator/model interface [41]. 68
6.8 UML sequence diagram of the estimator/model interface [41]. 69

7.1 Characterization flow for register files. 73
7.2 Absolute errors of the register file models. The interpolation error exceeds the scale for

read accesses (175%/255%). 77
7.3 Relative residuals as a function of the dependent variable. Minimizing absolute errors can

mean high relative errors for low values of the dependent variable. 77

115

List of Figures

7.4 Absolute and relative errors of the SRAM model. 78
7.5 Size of models (left) and generation time (right) of the high-speed ROMs. 79
7.6 Absolute and relative errors of the low-power ROM models. 80
7.7 Absolute and relative errors of the m11 111ha SRAM models. 81
7.8 Regression data and NA model (M = 2) for the FIR component (BEACH screenshot). . 84
7.9 Initial and best relative errors for RegrSetSine1 and alternative regression set RegrSetSine2 . 85
7.10 Nonlinear absolute models for the wallace tree multiplier: initial (top) and final (bottom). 86
7.11 Average size (in number of monomials) for the different memory models (using node insertion). 88
7.12 Average generation time in seconds for the different memory models (using node insertion). 88
7.13 Average evaluation time in nanoseconds for the different memory models. The interpolation

time of the register files exceeds the scale with 508ms. 89

116

List of Tables

1.1 Short and long term forecast of ASIC power consumption [65,66]. 1
1.2 Forecast of fraction of ASIC die area used for memory [65]. 2
1.3 Behavioral Synthesis Revenue (Millions of Dollars) [131]. 3

2.1 Characteristics of MOS memory types [110]. 7

4.1 Properties of empirical modeling techniques. 36

7.1 Cross validation errors for the ”DW ram r w s dff” register file model. 74
7.2 Cross validation errors for the read accesses of the ”DW ram r w s dff” register file model. 75
7.3 Comparison of regression and cross validation errors for the read accesses to the register

file (NA) using the regression set described in eqn. 7.8. 76
7.4 SRAM (126 samples), see section 7.1 for description of the columns. 77
7.5 High speed ROM (127 samples) . 79
7.6 low power ROM including voltages (242 samples). 80
7.7 Cross validation errors for the LSI m11 111ha embedded SRAM. 81
7.8 Cross validation errors for the power complexity of the FIR Filter component. The new

column ’M’ contains the sequence number of the model (i.e. M − 1 is the number of nodes). 82
7.9 Cross validation errors for the power complexity of the sine component. 83
7.10 Cross validation errors for the power complexity of the sine component II. 83
7.11 Cross validation errors for the power complexity of the wallace tree multiplier component. 85
7.12 Optimum absolute (RMS) and relative (MAR) errors of all three compared methods. . . . 87
7.13 Optimum absolute (RMS) and relative (MAR) errors after node insertion. 88
7.14 Optimum absolute (RMS) and relative (MAR) errors before and after node insertion. . . 88

C.1 Patterns for the characterization of register files: Idle Clocking. 101
C.2 Patterns for the characterization of register files: Read Access. 102
C.3 Patterns for the characterization of register files: Write Access. 102
C.4 Patterns for the characterization of register files: Write-through Access. 102

D.1 Complete cross validation data for the Philips SRAM. 105
D.2 Complete cross validation data for the Philips High Speed ROM including voltages. . . . 107
D.3 Complete cross validation data for the Philips Low Power ROM including voltages. 109
D.4 Complete cross validation data for LSI m11 111ha Embedded SRAM. 110
D.5 Complete cross validation data for wallace tree multiplier module. 112
D.6 Complete cross validation data for sine module. 113
D.7 Second cross validation data set for sine module. 113

117

List of Tables

118

Bibliography

[1] Y. Agata, K. Motomochi, F. Yoshifumi, M. Shirahama, M. Kurumada, N. Kuroda, H. Sadakata,
K. Hayashi, T. Yamada, K. Takahashi, and T. Fujita. An 8-ns random cycle embedded RAM macro
with dual-port interleaved DRAM architecture (d2ram). In IEEE Journal of Solid-State Circuits,
volume 35, no. 11, pages 1668–1671, November 2000.

[2] K. Agawa, H. Hara, T. Takayanagi, and T. Kuroda. A bitline leakage compensation scheme for
low-voltage SRAMs. In IEEE Journal of Solid-State Circuits, volume 36, no. 10, October 2001.

[3] A. Allara, M. Bombana, A. Stammermann, E. Schmidt, L. Kruse, and W. Nebel. VHDL behavioural
power estimations for telecom devices. In Forum for Desgin Languages (FDL), 2001.

[4] B. Amrutur and M. Horowitz. Speed and power scaling of SRAM’s. In IEEE Transactions on
solid-state circuits, volume 35 no. 5, pages 175–185, Febuary 2000.

[5] B. S. Amrutur and M. A. Horowitz. Fast low-power decoders for RAMs. In IEEE Journal of
Solid-State Circuits, volume 36, no. 10, October 2001.

[6] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, and G. De Micheli. Lookup table power macro-models
for behavioral library component. In IEEE Alessandro Volta Memorial Workshop on Low-Power
Design, pages 173–181, Como, Italy, march 1999. IEEE Computer Society.

[7] D. Bates and D. Watts. Nonlinear Regression Analysis and its applications. John Wiley & Sons,
1988.

[8] C. Beightler and D. Phillips. Applied Geometric Programming. John Wiley & Sons Inc., 1976.

[9] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic cache management techniques to reduce
energy in a high-performance processor. In Proceedings 1999 international symposium on Low power
electronics and design, pages 64–69. ACM Press, 1999.

[10] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli. Regression models for behavioral power
estimation. In Int. Works. Power Timing Modelling Performance Integrated Circuits (PATMOS),
pages 179–187, 1996.

[11] L. Benini, L. Macchiarulo, A. Macii, E. Macii, and M. Poncino. From architecture to layout:
Partitioned memory synthesis for embedded systems-on-chip. In Design Automation Conference
(DAC), pages 784–789, Las Vegas, June 2001.

[12] L. Benini, A. Macii, and M. Poncino. Synthesis of application-specific memories for power opti-
mization in embedded systems. In Proceedings of the 2000 international symposium on Low power
electronics and design, pages 300–303, 2000.

[13] G. Bernacchia and M. C. Papaefthymiou. Analytical macromodeling for high-level power estimation.
In Proceeding of the 1999 international conference on Computer-aided design, pages 280–283. IEEE
Press, 1999.

[14] C. Bingham and G. W. Oehlert. An Introduction to MacAnova. Univ. of Minnesota, School of
Statistics, version 4.12 edition, 2001. http://www.stat.umn.edu/macanova/macanova.home.html.

119

http://www.stat.umn.edu/macanova/macanova.home.html

Bibliography

[15] A. Bogliolo, L. Benini, and G. De Micheli. Adaptive least mean square behavioral power modeling.
In ED&TC’97, 1997.

[16] A. Bogliolo, R. Corgnati, E. Macii, and M. Poncino. Parameterized RTL power models for combina-
tional soft macros. In Proceedings of the IEEE-ACM International Conference on Computer Aided
Design, pages 284–287, 1999.

[17] A. Bogliolo, R. Corgnati, E. Macii, and M. Poncino. Parameterized RTL power models for soft
macros. In IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 9, no. 6,
pages 880–887, December 2001.

[18] I. Bomze and W. Grossmann. Optimierung - Theorie und Algorithmen. BI Wissenschaftsverlag,
1993. in German.

[19] G. Box and N. Draper. Empirical Model-Building and Response Surfaces. John Wiley & Sons, 1987.

[20] P. Box and P. Tidwell. Transformations of the independent variables. In Technometrics, volume 4,
no. 4, november 1962.

[21] E. Brockmeyer, L. Nachtergaele, F. V. M. Catthoor, J. Bormans, and H. J. De Man. Low power
memory storage and transfer organization for the MPEG-4 full pel motion estimation on a mul-
timedia processor. In IEEE Transactions on Multimedia, volume 1, no. 2, pages 202–216, June
1999.

[22] E. Brockmeyer, A. Vandecapelle, and F. Catthoor. Systematic cycle budget versus system power
trade-off: a new perspective on system exploration of real-time data-dominated applications. In
Proceedings of the IEEE International Symposium on Low Power Eletronics and Design, 2000.

[23] R. Camposano and W. Wolf, editors. High-Level VLSI Synthesis. Kluwer Academic Publishers,
1991.

[24] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle. Custom
Memory Organisation for Embedded Multimedia System Design. Kluwer Academic Publishers, 1998.

[25] A. Chandna, C. D. Kibler, R. B. Brown, M. Roberts, and K. A. Sakallah. The aurora RAM compiler.
In Design Automation Conference, 1995.

[26] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design. Kluwer Academic
Publishers, 1995.

[27] A. P. Chandrakasan and R. W. Brodersen. Low Power CMOS Design. IEEE Press, 1998.

[28] C.-R. Chang, J.-S. Wang, and C.-H. Yang. Low-power high-speed ROM modules for ASIC applica-
tions. In IEEE Journal of Solid-State Circuits, volume 36, no. 10, October 2001.

[29] Z. Chen, K. Roy, and E. K. P Chong. Estimation of power dissipation using a novel power macro-
modeling technique. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, volume 19, no. 11, pages 1363–1369, 2000.

[30] M. Chinosi, R. Zafalon, and C. Guardino. Automatic characterization and modelling of power
consumption in static RAMs. In International Symposium on Low Power Electronics and Design
(ISLPED), pages 112–114, 1998.

[31] User’s Guide of COPL GP - Computational Optimization Program Library: Geometric Program-
ming, May 2000.

[32] S. Coumeri and D Thomas. Memory modelling for system synthesis. In IEEE Transactions on VLSI
Systems, volume 8, no. 3, june 2000.

120

Bibliography

[33] W. Daems, G. Gielen, and W. Sansen. Simulation-based automatic generation of signomial and
posynomial performance models for analog integrated circuit sizing. In International Conference on
Computer Aided Design (ICCAD), 2001.

[34] DARPA, editor. DARPA Neural Network Study. AFCEA International Press, 1990.

[35] E. de Angel and Jr. E. E. Swartzlander. Survey of low power techniques for ROMs. In Proceedings
of the 1997 international symposium on Low power electronics and design, pages 7–11. ACM Press,
1997.

[36] IEEE Standards Department. P1497 draft standard for standard delay format(SDF) for the elec-
tronic design process. http://www.eda.org/sdf/, 2001.

[37] C. Edwards, P. Clarke, and S. Ohr. Power problems threaten launch of 3G handsets. EETimes,
23.1.2001, 2001.

[38] M. Elrabaa, I. Abu-Khater, and M. Elmasry. Advanced Low-Power Digital Circuit Techniques.
Kluwer Academic Publishers, 1997.

[39] R. Evans and P. Franzon. Energy consumption modelling and optimization for SRAM’s. In IEEE
Transactions on solid-state circuits, volume 30 no. 5, pages 571–579, may 1995.

[40] A. Ferre and J. Firueras. Leakage power bounds in cmos digital technologies. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, volume 21, no. 6, pages 731–738,
June 2002.

[41] M. Fowler and K. Scott. UML Distilled. Applying the Standard Object Modeling Language. Addison
Wesley Longman, 1st corrected reprint edition, 1998.

[42] K. Ghose and M. B. Kamble. Reducing power in superscalar processor caches using subbanking,
multiple line buffers and bit-line segmentation. In Proceedings 1999 international symposium on
Low power electronics and design, pages 70–75. ACM Press, 1999.

[43] T. D. Givargis, F. Vahid, and J. Henkel. Fast cache and bus power estimation for parameterized
system-on-a-chip design. In Design, Automation and Test in Europe (DATE), pages 333–338, Paris,
France, 2000.

[44] T. D. Givargis, F. Vahid, and J. Henkel. Evaluating power consumption of parameterized cache and
bus architectures in system-on-a-chip designs. In IEEE Transactions on Very Large Scale (VLSI)
Systems, volume 9, no. 4, pages 500–508, August 2001.

[45] W. Glichrist. Statistical Modelling. John Wiley & Sons, 1984.

[46] G. Grimmett and D. Strirzaker. Probability and Random Processes. Oxford Science Publications,
1992.

[47] P. Grun, N. Dutt, and A. Nicolau. Access pattern based local memory customization for low power
embedded systems. In Design, Automation and Test in Europe (DATE), pages 778–784, Munich,
Germany, 2001.

[48] S. Gupta and F. Najm. Power macromodelling for high level power estimation. In 34th ACM/IEEE
Design Automation Conference, pages 365–370, june 1997.

[49] S. Gupta and F. Najm. Analytical models for RTL power estimation of combinational and sequential
circuits. In IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
volume 19, no. 7, pages 808–814, july 2000.

[50] S. Gupta and F. Najm. Power modeling for high level power estimation. In IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, volume 8, no. 1, pages 18–29, February 2000.

121

http://www.eda.org/sdf/

Bibliography

[51] F. Hamzaoglu, Y. Te, A. Keshavarzi, K. Zhang, S. Narendra, S. Borkar, M. Stan, and V. De. Dual-
VT SRAM cells with full-swing single-ended bit line sensing for high-performance on-chip cache in
0.13 µm technology generation. In Proceedings of the 2000 international symposium on Low power
electronics and design, pages 15–19. ACM Press, 2000.

[52] T. Haraszti. CMOS Memory Circuity. Kluwer Academic Publishers, 2000.

[53] S. Hein and N. Wehn. Embedded DRAM applications and challenges. In DAC Tutorial: Embedded
Memories in System Design. Siemens Semiconductor Group, 1999.

[54] M. Hershenson, S. S. Mohan, S. P. Boyd, and T. H. Lee. Optimization of inductor circuits via
geometric programming. In Design Automation Conference, 1999.

[55] J. Hezavei, N. Vijaykrishnan, and M. J. Irwin. A comparative study of power efficient SRAM
designs. In Great Lake Symposium on VLSI 2000, pages 117–122, 2000.

[56] P. Hicks, M. Walnock, and R. M. Owens. Analysis of power consumption in memory hierarchies.
In Proceedings of the 1997 international symposium on Low power electronics and design, pages
239–242. ACM Press, 1997.

[57] J. Hjorth. Computer Intensive Statistical Methods. Chapman & Hall, London, England, 1994.

[58] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski. The design and implementation of PowerMill.
In ISLPD’95 Symposium Proceedings, 1995.

[59] S. i. Mianato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic
Publishers, 1996.

[60] IEEE Journal of Solid-State Circuits, volume 34, no. 5, May 1999.

[61] IEEE Journal of Solid-State Circuits, volume 34, no. 11, November 1999.

[62] H. Ikeda and H. Inukai. High-speed DRAM architecture development. In IEEE Journal of Solid-
State Circuits, volume 34, no. 5, pages 685–692, May 199.

[63] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting set-associative cache for high performance
and low energy consumption. In Proceedings 1999 international symposium on Low power electronics
and design, pages 273–275. ACM Press, 1999.

[64] K. Inoue, V. G. Moshnyaga, and K. Murakami. A history-based I-cache for low-energy multimedia
applications. In Proceedings of the International Symposium on on Low Power Electronics and
Design (ISLPED), pages 148–153, August 2002.

[65] International Technology Roadmap for Semiconductors, SEMATECH, 3101 Industrial Terrace Suite
106, Austin TX 78758. International Technology Roadmap for Semiconductors (2000 update), 2000.

[66] International Technology Roadmap for Semiconductors, SEMATECH, 3101 Industrial Terrace Suite
106, Austin TX 78758. International Technology Roadmap for Semiconductors, 2001.

[67] T. Ishihara and H. Yasuura. A power reduction technique with object code merging for application
specific embedded memories. In Design, Automation and Test in Europe (DATE), pages 617–623,
Paris, France, 2000.

[68] K. Itoh. Low-voltage memories for power-aware systems. In Proceedings of the International Sym-
posium on Low Power Eletronics and Design, August 2002.

[69] K. Itoh, K. Sasaki, and N. Yoshinobu. Trends in low-power RAM circuit technologies. In Proceedings
of the IEEE, volume 83, no. 4, April 1995.

122

Bibliography

[70] G. Jochens, L. Kruse, E. Schmidt, and W. Nebel. A new parameterizable power macro-model for
datapath components. In DATE’99, pages 29 – 36, Munich, Germany, 1999.

[71] G. Jochens, L. Kruse, E. Schmidt, A. Stammermann, and W. Nebel. Power macro-modelling for
firm-macros. In PATMOS’00, Goettingen, Germany, 2000.

[72] M. Kamble and K. Ghose. Analytical energy dissipation models for low power caches. In Proc. 1997
Int’l Symp. on Low Power Electronics and Design, 1997.

[73] D. Karchmer and J. Rose. Definition and solution of the memory packing problem for field-
programmable systems. In International Conference on Computer-Aided Design (ICCAD), Novem-
ber 1994.

[74] D. Keitel-Schulz and N. Wehn. Issues in embedded dram development and applications. In Proceed-
ings on 11th international symposium on System synthesis, pages 23–31. IEEE Computer Society,
1998.

[75] Keyes. The future of the transistor. Scientific American, March 1998.

[76] M. M. Khellah and M. I. Elmasry. A low-power high-performance current-mode multiport SRAM.
In IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 9, no. 5, October
2001.

[77] K.O. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solving primal and
dual geometric programs. In Mathematical Programming 76, pages 155–181, 1996.

[78] L. Kruse, E. Schmidt, G. Jochens, and W. Nebel. Low power binding heuristics. In PATMOS’99,
pages 41–50, Kos, Greece, 1999.

[79] L. Kruse, E. Schmidt, G. Jochens, and W. Nebel. Lower and upper bounds on the switching activity
in scheduled data flow graphs. In International Symposium on Low Power Electronics and Design
(ISLPED’99), pages 115–120, San Diego, California, 1999.

[80] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, and W. Nebel. Lower bound estimation for
low-power high-level synthesis. In 13th International Symposium on System Synthesis (ISSS 2000),
Invited Paper, 2000.

[81] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, and W. Nebel. Lower bounds on the power
consumption in scheduled data flow graphs with resource constraints. In Design, Automation and
Test in Europe (DATE), page p. 737, Paris, France, 2000.

[82] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, M. Schulte, E. Macii, and W. Nebel. Esti-
mation of lower and upper bounds on the power consumption from scheduled data flow graphs. In
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 9 no. 1, pages 3–14,
feb 2001.

[83] J. Landman, P. Rabaey. Architectural power analysis: The dual bit type method. In IEEE Trans-
actions on VLSI Systems, volume 3, no. 2, pages 163–187, june 1995.

[84] Y. Li and J. Henkel. A framework for estimating and minimizing energy dissipation of embedded
hw/sw systems. In Proceedings of the Design Automation Conference (DAC), pages 188–193, San
Francisco, CA, USA, June 1998.

[85] D Liu and C. Svensson. Power consumption estimation in CMOS VLSI chips. In IEEE Journal of
Solid-State Circuits, volume 29, no. 6, pages 663–670, june 1994.

[86] LSI Logic Corporation, 1551 McCarthy Boulevard, Milpitas, CA95035. G11-p Cell-Based ASIC
Products Databook, second edition edition, July 1998.

123

Bibliography

[87] P Mandal and V. Visvanathan. CMOS op-amp sizing using a geometric programming formulation.
In IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, volume 20,
no. 1, pages 22–38, January 2001.

[88] S. Meftali, F. Gharsalli, F. Rousseau, and A. Jerraya. An optimal memory allocation for application-
specific multiprocessor system-on-chip. In International Symposium on System Synthesis, pages
19–24, 2001.

[89] H. Mehta, R. M. Owens, and M. J. Irwin. Energy characterization based on clustering. In Proceedings
of the 33rd annual conference on Design automation conference, pages 702–707. ACM Press, 1996.

[90] A. Miller. The convergence of Efroymson’s stepwise regression algorithm. In The American statis-
tician, no. 50, pages 180–181, 1996.

[91] Model Technology. ModelSim SE User’s Guide, version 5.5e edition, 2001.

[92] D. Montgomery and E. Beck. Introduction to linear regression analysis. John Wiley & Sons Inc.,
1982.

[93] A. K. Murugavel, N. Ranganathan, R. Chandramouli, and S. Chavali. Least-squares estimation of
average power in digital CMOS circuits. In IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, volume 10, no. 1, pages 55–58, February 2002.

[94] B. Nadel. The green machine. PC Magazine, 1993.

[95] W. Nebel and J. Mermet, editors. Low Power Design in Deep Submicron Electronics. Kluwer
Academic Publishers, 1997.

[96] K. Nose and T. Sakurai. Analysis and future trend of short-circuit power. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, volume 19, no. 9, September 2000.

[97] K. Ogawa, M. Kohno, and F. Kitomura. Pastel: A parameterized memory characterization system.
In Design, Automation and Test in Europe (DATE), pages 15–20, Paris, 1998. IEEE Computer
Society.

[98] P. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-On-Chip. Kluwer Academic
Publishers, 1999.

[99] P. R. Panda. Low-power memory mapping through reducing address bus activity. In IEEE Trans-
actions on Very Large Scale (VLSI) Systems, volume 7, no. 3, pages 309–319, 1999.

[100] P. R. Panda. Memory bank customization and assignment in behavioral synthesis. In International
Conference on Computer-Aided Design (ICCAD), pages 477–481, 1999.

[101] P. R. Panda, F. Catthor, N.D. Dutt, K. Danckaert, E. Brockmeyer, C. Kullkarni, A. Vandercapelle,
and P. G. Kjeldersberg. Data and memory optimization techniques for embedded systems. In ACM
Transactions on Design Automation od Electronic Systems, volume 6, no. 2, pages 149–206, April
2001.

[102] A. Papoulis. Probability and Random Variables and Stochastic Processes. McGraw-Hill, 1991.

[103] P. Petrov and A. Orailoglu. Data cache energy minimizations through programmable tag size
matching to the applications. In Proceedings of the international symposium on Systems synthesis,
pages 113–117. ACM Press, 2001.

[104] P. Petrov and A. Orailoglu. Performance and power effectiveness in embedded processors – customiz-
able partitioned caches. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, volume 20, no. 11, pages 1309–1318, November 2001.

124

Bibliography

[105] M. Pilsl and B. Rohfleisch. Embedded DRAMs for hard disk drive controllers. In DAC Tutorial:
Embedded Memories in System Design. Infineon Computer Peripherals Engeneering, 1999.

[106] P. Pirsch. Architectures for Digital Signal Processing. John Wiley & Sons, 1998.

[107] F. Poppen and W. Nebel. Comparison of a RT and behavioral level design entry regarding power.
In SNUG Europe, 2001, 2001.

[108] F. Poppen and W. Nebel. Evaluation of a behavioral level low power design flow based on a design
case. In SNUG Boston, 2001, 2001.

[109] A. Pratsch. Entwicklung einer Benutzungsoberfläche für ein Low-Power Framework in Tcl/Tk.
Master’s thesis, University of Oldenburg, 2000. in German.

[110] B. Prince. Semiconductor Memories, a Handbook of Design, Manufacture and Application. John
Wiley & Sons, Inc., 1991.

[111] B. Prince. High Performance Memories, New Architecture DRAMs and SRAMs evolution and
function. John Wiley & Sons, Inc., 1994.

[112] J. Rabaey, L. Guerra, and R. Mehra. Design guidance in the power dimension. In Proc. of the
ICASSP, 1995.

[113] J. M. Rabaey. SPICE User Manuals. Univ. of California, Berkeley. http://bwrc.eecs.berkeley.
edu/Classes/IcBook/SPICE/.

[114] A. Raghunathan, N. K. Jham, and S. Dey. High-Level Power Analysis and Optimization. Kluwer
Academic Publishers, 1998.

[115] L. Ramachandran, D. Gajski, and V. Chaiyakul. An algorithm for array variable clustering. In
Proceedings of the IEEE European Conference on Design Automation (EURO-DAC’93), 1993.

[116] A. Robbins. GAWK: Effective AWK programming. http://www.gnu.org/manual/gawk-3.1.0/
html\protect\unhbox\voidb@x\kern.06em\vbox{\hrulewidth.3em}mono/gawk.html, 2001.

[117] W. Roethig. Coherent functional, electrical and physical modeling of ip blocks using alf. Technical
report, Invited Tutorial CICC’01 2001.

[118] W. Roethig and J. Daniels. A standard for an advanced library format (ALF) describing inte-
grated circuit technology, cells and blocks. Technical Report IEEE 1603 Draft 4, IEEE Standards
Department, April 2002. Unapproved Draft Standard.

[119] R Rovatti, M. Borgatti, and R. Guerrieri. A geometric approach to maximum-speed n-dimensional
continuous linear interpolation in rectangular grids. In IEEE Transactions on Computers, volume
47, no. 8, pages 894–899, august 1998.

[120] K. Roy and S. C. Prasad. Low-Power CMOS VLSI Circuit Design. John Wiley & Sons, Inc., 2000.

[121] E. Schmidt. Analysis and modeling of memories on integrated circuits. Master’s thesis, Carl-von-
Ossietzky University Oldenburg, April 1998. Diplomarbeit at Philips Research Einhoven, Confiden-
tial.

[122] E. Schmidt and K. Kopperschmidt. ORINOCO-BEACH User Guide, version 2.0 edition, 2001.

[123] E. Schmidt, L. Kruse, G. Jochens, E. Huijbregts, W. Nieuweboer, and W. Seelen, E.and Nebel. Power
consumption of on-chip ROMs: Analysis and modelling. In Int. Works. Power Timing Modelling
Performance Integrated Circuits (PATMOS), pages 171–180, Lyngby, Denmark, 1998.

125

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.gnu.org/manual/gawk-3.1.0/htmlprotect unhbox voidb@x kern .06emvbox {hrule width.3em}mono/gawk.html
http://www.gnu.org/manual/gawk-3.1.0/htmlprotect unhbox voidb@x kern .06emvbox {hrule width.3em}mono/gawk.html

Bibliography

[124] E. Schmidt, A. Schulz, L. Kruse, G. von Cölln, and W. Nebel. Automatic generation of complex-
ity functions for high-level power analysis. In Int. Works. Power Timing Modelling Performance
Integrated Circuits (PATMOS), 2001.

[125] H. Schmidt and D. Thomas. Synthesis of application-specific memory designs. In IEEE Transactions
on Very Large Scale Integration, volume 5, no. 1, pages 101–111, 1997.

[126] C. Schurgers, F. Catthor, and M. Engels. Energy efficient data transfer and storage organization
for a MAP turbo decoder module. In Proceedings of the International Symposium on on Low Power
Electronics and Design (ISLPED), pages 76–81, 1999.

[127] C. Schurgers, F. Catthor, and M. Engels. Memory optimization of MAP turbo decoder algorithms.
In IEEE Transactions on Very Large Scale (VLSI) Systems, volume 9, no. 2, pages 305–312, April
2001.

[128] W.-T. Shiue and C. Chakrabarti. Memory exploration for low power, embedded systems. In Pro-
ceedings of the 36th ACM/IEEE conference on Design automation conference, pages 140–145. ACM
Press, 1999.

[129] W.-T. Shiue, S. Udayanarayanan, and C. Chakrabarti. Data memory design and exploration for
low-power embedded systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 6(4):553–568, 2001.

[130] Philips ED&T/Analogue Simulation. Pstar User Manuals, third edition, 1995.

[131] G. Smith, D. Nadamuni, L. Balch, N. Wu, and J. Tully. EDA 2001: Its’ good To be an EDA Vendor
- Market Trends, October 2001. Gartner Report no. SWTA-WW-MT-0102.

[132] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte, and A. Schulz. System
level optimization and design space exploration for low power. In ISSS 2001, 2001.

[133] L. Stok and J. A. G. Jess. Foreground memory management in datapath synthesis. In International
Journal on Circuit Theory and Applications, volume 20, no. 3, pages 235–255, 1992.

[134] C.-L. Su and A. M. Despain. Cache design trade-offs for power and performance optimization: a
case study. In Proceedings 1995 international symposium on Low power electronics and design, pages
63–68. ACM Press, 1995.

[135] Synopsys, Inc. PowerMill Datasheet. http://www.synopsys.com/products/etg/powermill\
protect\unhbox\voidb@x\kern.06em\vbox{\hrulewidth.3em}ds.html.

[136] Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA. Design Compiler Reference Manual,
v2001.08 edition, August 2001.

[137] Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA. Design Compiler User Guide,
v2001.08 edition, August 2001.

[138] Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA. DesignWare Foundation Library
Databook, release2001.02 edition, February 2001.

[139] T. Takahashi, T. Sekiguchi, R. Takemura, S. Narui, H. Fujisawa, S. Miyatake, M. Morino, K. Arai,
S. Yamada, S. Shukuri, M. Nakamura, Y. Tadaki, K. Kajigaya, K. Kimura, and K. Itoh. A multigig-
bit DRAM technology with 6f2 open-bitline cell, distrubuted overdriven sensing, and stacked-flash
fuse. In IEEE Journal of Solid-State Circuits, volume 36, no. 11, November 2001.

[140] S. Tomishima, T. Tsuji, T. Kawaski, M. Ishikawa, T. Inokuchi, H. Kato, H. Tamizaki, W. Abe,
A. Shibayama, Y. Fukushima, M. Niiro, M Maruta, T. Uchikoba, M. Senoh, S. Sakamoto, T. Ooishi,
H. Kikukawa, H. Hidaka, and K Takahahi. A 1.0-V 230-MHz column access embedded DRAM for
portable MPEG applications. In IEEE Journal of Solid-State Circuits, volume 36, no. 11, pages
1721–1727, November 2001.

126

http://www.synopsys.com/products/etg/powermillprotect unhbox voidb@x kern .06emvbox {hrule width.3em}ds.html
http://www.synopsys.com/products/etg/powermillprotect unhbox voidb@x kern .06emvbox {hrule width.3em}ds.html

Bibliography

[141] A. Turier, L. Ben Ammar, and A. Amara. An accurate power and timing modelling technique applied
to a low-power ROM compiler. In Int. Works. Power Timing Modelling Performance Integrated
Circuits (PATMOS), pages 181–190, Lyngby, Denmark, 1998.

[142] A. Vandecapelle, M. Miranda, E. B. F. Catthhoor, and D. Verkest. Global multimedia system design
exploration using accurate memory organization feedback. In Proceedings of the 36th Conference on
Design Automation, 1999.

[143] G. von Cölln. Modellierung und Simulation der Verlustleistung von integrierten Schaltungs-Makros.
PhD thesis, Univ. Oldenburg, Germany, 2001. in German.

[144] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 2000.

[145] C.-C. Wang, C. F. Wu, R.-T. Hwang, and C.-H. Kao. Single-ended SRAM with high-test coverage
and short test time. In IEEE Journal of Solid-State Circuits, volume 35, no. 1, January 2000.

[146] J.-S. Wang, W. Tseng, and H.-Y. Li. Low-power embedded SRAM with current-mode write tech-
nique. In IEEE Journal of Solid-State Circuits, volume 35, no. 1, January 2000.

[147] N. Wehn and S. Hein. Embedded DRAM architectural trade-offs. In Proceedings of the Design,
Automation and Test in Europe 1998 conference on Design, automation and test in Europe, pages
704–708. Institution of Electrical Engineers, 1998.

[148] B. Welch. Practical Programming in Tcl and Tk. Prentice Hall,Inc, 1997.

[149] B. Wicht, S. Paul, and D. Schmitt-Landsiedel. Analysis and compensation of the bitline multiplexer
in SRAM current sense amplifiers. In IEEE Journal of Solid-State Circuits, volume 36, no. 11, pages
1745–1755, November 2001.

[150] T. Williams and C. Kelley. gnuplot - An Interactive Plotting Program, version 3.7 edition, 1998.
http://www.comnets.rwth-aachen.de/doc/gnu/gnuplot37/gnuplot.html.

[151] S. J. E. Wilton and N. P. Jouppi. CACTI: An enhanced cache access and cycle time model. In
IEEE Transactions on solid-state circuits, volume 35, no. 5, pages 677–687, May 1996.

[152] D. Wismer and R. Chattergy. Introduction to nonlinear optimization. Elsevier North Holland Inc.,
1979.

[153] A. Worm, H. Lamm, and N. Wehn. A high-speed map architecture with optimized memory size and
power consumption. In Proc. SiPS 2000, pages 265–274, October 2000.

[154] A. Worm, H. Michel, and N. Wehn. Power minimization by optimizing data transfers in turbo-
decoders, September 199.

[155] Q. Wu, Q. Qiu, M. Pedram, and C. Ding. Cycle-accurate macro-models for RT-level power analysis.
In IEEE Transaction on VLSI Systems, volume 6, no. 4, december 1998.

[156] S. Wuytack, F. Catthoor, G. de Jong, and H. J. De Man. Minimizing the required memory bandwidth
in VLSI system realizations. In IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
volume 7, no. 4, December 1999.

[157] S. Wuytack, F. Catthoor, F. Franssen, L. Nachtergaele, and H. De Man. Global communication and
memory optimizing transformations for low power systems. In IWLPD’94, 1994.

[158] Y. Zhang, X. Hu, and D. Chen. Global register allocation for minimizing energy consumption. In
Proceedings of the International Symposium on on Low Power Electronics and Design (ISLPED),
pages 100–102, 1999.

[159] Y. Zorian, editor. IEEE Design&Test of Computers, May-June 2001.

127

Bibliography

[160] V. Zyuban and P. Kogge. The energy complexity of register files. In Proceedings 1998 international
symposium on Low power electronics and design, pages 305–310. ACM Press, 1998.

128

Bibliography

I herewith declare to have written this thesis only based on the sources listed and without the help of
others. I have not submitted or prepared the submission of this or any other doctoral thesis at the Carl
von Ossietkzy University Oldenburg or any other university.

Hiermit erkläre ich, diese Arbeit ohne fremde Hilfe und nur unter Verwendung der angegebenen Quellen
verfasst zu haben. Ich habe bis dato weder an der Carl von Ossietzky Universität Oldenburg noch an einer
anderen Universität die Eröffnung eines Promotionsverfahrens beantragt oder anderweitig eine Promotion
vorbereitet.

129

Bibliography

130

Curriculum Vitae

1973 Born in Bremerhaven
1979 - 1982 Grundschule Horstedt

Elemenatry school
1982 - 1985 Freie Rudolf-Steiner-Schule in Ottersberg
1985 - 1992 Ratsgymnasium in Rotenburg an der Wümme
07/1992 - 09/1993 Military training
10/1993 - 06/1998 Study of ’Allgemeine Informatik’

General computer science
at the Carl von Ossietzky Universität Oldenburg

11/1997- 30/1998 Diplomarbeit (Master thesis) at
”Philips Natuurkunding Laboratorium”,
Netherlands

6/1998 Diplom in Informatik (MSc in Computer Science)
7/1998 - 11/01 Research assistant at Kuratorium OFFIS e.V.
12/01 - date Manager System Analysis and Optimisation Group

Kuratorium OFFIS e.V.

131

	Title
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Power Consumption
	Memories
	IC Design
	Design Automation
	Models
	Scope and Main Contributions
	Chapter Overview

	Power Consumption in Memory Circuits
	Sources of power dissipation
	Classification of memories
	Block architecture
	Address Logic
	Read/Write Circuitry
	Auxiliary Circuitry

	Types of Memories
	Static RAM
	Dynamic RAM
	ROM
	Caches
	Register Files
	Trends in Memory Development

	Off-chip versus Embedded Memory
	Off-chip Memories
	Embedded Memory

	Memory Optimization

	Modeling
	Introduction
	Statistical Basics
	Random Variables
	Experimental Designs
	Regression
	Interval Estimation
	Significance test
	Interpolation
	Error measures
	Cross Validation

	Requirements
	Requirements on the models
	Requirements on the Modeling Process
	Specific Requirements of Memory Power Modeling

	Related Work
	Conceptual Modeling
	Empirical Modeling
	Interpolation Techniques
	Regression Techniques

	Eclectic Modeling
	Discussion
	Empirical methods

	Embedded Memory Modeling Methodology
	Data Abstraction
	Data Acquisition
	Experimental Design
	Characterization

	Identification and Fitting
	Signomial Models
	Variable transformations
	Variable Selection
	Model Generation Algorithm
	Convergence and performance
	Relation to other work

	Validation
	Mathematical Measures for Quality of Fit
	Visual Inspection
	Criteria of Acceptance

	Iteration
	Piecewise Modeling

	Optimization
	Rounding
	Summary

	Implementation
	ORINOCO Tool Suite
	ORINOCO BEACH
	Implementation Framework
	Tool Flow

	Model Integration
	Model Representation
	Operator-Model Relationships
	Dynamic Model/Estimator Interaction

	Summary

	Evaluation
	Register Files
	Philips Embedded Memories
	LSI Embedded Memories
	DesignWare data path components
	Discussion and Summary

	Summary and Conclusion
	ROM Instance Model
	Introduction
	Cycle Related Power
	Output (De-)Activation Related Power
	Address Change Related Power

	Characterization Metafile Format
	Introduction
	EBNF-description of the metafile
	Summary of the Functionality

	Pattern sequences for Register File Characterization
	Experimental Data
	Philips SRAM
	Philips High Speed ROM
	Philips Low Power ROM
	LSI m11_111ha Embedded SRAM
	Wallace Tree Multiplier Module
	Sine Module

	List of Figures
	List of Tables
	Bibliography
	Declaration
	Curriculum Vitae

	link: Zur Homepage der Dissertation

