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Abstract

The scope of the present publication-based thesis on periodically forced

optical lattices is twofold: In the first part, the reader is introduced to the

main concepts required to formulate the central results of this thesis, and

a review is given of landmark papers on coherently controlling ultracold

atoms by subjecting them to periodic forces. The second part provides

the author’s own results of original research on the subject and consists

of four publications and a preprint.

The central object of this thesis is a cloud of noninteracting ultracold

atoms or a Bose-Einstein condensate that is trapped in a standing wave of

laser light. In the first chapter the reader is familiarized with the effect of

Bose-Einstein condensation and the mechanisms are discussed to tune the

interaction between the atoms to zero. In addition, various protocols are

sketched for cooling down the atoms to the temperature regime in which

they are trapped by laser light. The chapter closes with the introduction

of Bloch oscillations emerging due to an external constant force acting on

the system.

In the second chapter, the constraint of a constant force is lifted, switch-

ing the focus to time-periodic forces. The concept of “dressing” the system

by a periodic force is central here and the reader is introduced to basic

elements of Floquet theory, a powerful tool to describe periodically driven

systems, which is crucial for exerting control in a precise and efficient

way. The first experimental realizations of periodically modulated optical
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lattices are landmarks in the field and a selection of papers is discussed

representing most recent efforts to exploit external forces for exerting con-

trol. The end of the chapter contains recent theoretical investigations by

the author on multiphoton-like transitions.

The section “Publications” constitutes the central part of this thesis

and contains its main results. Ultracold atoms in optical lattices are much

more flexible systems than the solid state counterpart they are emulating.

On the one hand, the parameters of the system can be varied almost arbi-

trarily, such as the interaction strength between the atoms or the spacing

of the lattice. With the interaction strength tuned to zero, even single-

particle models can accurately be realized experimentally without any

effects present due to the interaction. This allows for a detailed investiga-

tion of single-particle dynamics on a quantum level, whereas many-body

effects can be disentangled at a later stage. On the other hand, these

systems can be subjected to external forces with exceptionally high scaled

amplitudes that would induce polarization effects in traditional crystalline

solids or might even cause them to disintegrate. Hence, driven optical lat-

tices can be used as strong-field simulators, as discussed in Paper I, and

offer the unique possibility to study effects such as multiphoton-like pro-

cesses in their purest form as described in preprint V. In the book chapter

“Dynamic localization in optical lattices”, see Publication II, the effect

of hampering or even completely stopping quantum tunnelling by apply-

ing a periodic force to the atoms is discussed in detail. It is shown that

this effect can be utilized to coherently control the “metal-insulator”–like

transition occurring in sufficiently deep quasiperiodic lattices.

For protocols aiming at driving-induced control, the particle is sub-

jected to pulsed driving: The amplitude of the external force is not kept

constant, but endowed with a smooth envelope function that varies suffi-

ciently slowly in time. In the generic case, the particle is initially prepared
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in a state pertaining to the lowest energy band of the lattice with a Gaus-

sian momentum distribution. A convenient method to monitor transitions

to higher bands is to subject the particle to a pulse with fixed driving fre-

quency and a certain maximum driving amplitude, and to measure the

probability of finding the particle in any but the lowest band after the

pulse. By repeating this procedure for different driving frequencies ω, res-

onances are revealed when the energy ~ω matches gaps in the dispersion

relation of the undriven lattice. But most importantly, additional reso-

nances occur since the bands “dressed” by the driving are ac-Stark-shifted.

The central theoretical concept for understanding the dynamics of a

particle subjected to pulsed driving is the quasienergy surface. According

to Floquet theory, if the lattice system is driven with a fixed frequency

and amplitude measured by K, the energy bands En(k) of the undriven

lattice with wavenumber k and band index n are replaced by quasienergy

bands εn(k), which are defined only modulo ~ω. In the limit of a vanishing

driving amplitude, that is K → 0, the quasienergy bands are continuously

connected to the dispersion relation En(k). If a pulsed driving scenario is

employed instead of a constant amplitude, the quasienergy bands change in

the course of time just as the driving amplitude, thus forming quasienergy

surfaces εn(k,K). The initial wave packet is generically prepared in a

single energy band and hence on a single quasienergy surface. The wave

packet is parallel transported on that surface during the pulse if its en-

velope varies sufficiently slowly. The dynamics of the wave packet on the

quasienergy surface can be monitored by using a family of bases, each

given by a set of spatiotemporal Bloch waves, which are solutions to the

Schrödinger equation with a Hamiltonian periodic both in space and in

time, and which pertain to the instantaneous driving amplitudes during

the pulse. Such a representation of the wave-packet’s dynamics can be

favorable when compared to the traditional crystal-momentum represen-
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tation, which resorts to the static basis of Bloch waves: On the one hand,

the wave-packet’s motion in k space according to the semi-classical acceler-

ation theorem is already incorporated in the bases of spatiotemporal Bloch

waves, which are themselves time-dependent. On the other hand, during

the pulse, the crystal-momentum representation might exhibit transient

excitations, which are caused by the heavily Stark-shifted bands. While

these transient excitations are hard to explain in this setting, the family of

instantaneous spatiotemporal Bloch waves constitutes a set of bases more

adapted to the symmetries of the system and the dynamics remain fully

adiabatic in this representation.

This is true as long the quasienergy surfaces do not anti-cross in the

regions explored by the wave packet during the pulse. The fact that exci-

tations of the wave packet to higher quasienergy surfaces are closely linked

to their morphology can be exploited by choosing the driving frequency

(and hence the quasienergy surfaces) such that the momentum distribution

of the particle is changed deliberately. This allows to exploit interband

transitions to transport parts of the wave-packet’s momentum distribution

selectively to higher bands, thus creating exotic states, as elaborated on

in Paper IV. This concept is vastly expanded by adding a second constant

force, which acts homogeneously on the entire system. As detailed in Pa-

per III, the combination of both forces grants the freedom to move the

wave-packet’s momentum distribution on its quasienergy surface in any

direction, so regions of avoided crossings can deliberately be accessed or

avoided during a single pulse. This is rendered possible by a generaliza-

tion of the well known acceleration theorem by F. Bloch to the Floquet

setting, for which the instantaneous bases for spatiotemporal Bloch waves

turn out to be crucial. In addition, this generalized acceleration theorem

facilitates an efficient theoretical explanation of super Bloch oscillations,

which reduce to the case of “almost resonant tilting” within this context.
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Apart from a preprint, three papers are already published in interna-

tional peer-reviewed journals and one manuscript is printed as a chapter

of the book “Dynamical Tunneling – Theory and Experiment”.
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Zusammenfassung

Die vorliegende publikationsbasierte Dissertation über periodisch ange-

triebene optische Gitter verfolgt zwei Ziele: Im ersten Teil wird der Leser

in die für die Formulierung der zentralen Ergebnisse erforderlichen Kon-

zepte dieser Arbeit eingeführt, und es wird eine Übersicht herausragen-

der Veröffentlichungen zur kohärenten Kontrolle ultrakalter Atome durch

periodische Kräfte gegeben. Der zweite Teil liefert die Ergebnisse selbst-

ständiger Forschung des Autors zu diesem Themengebiet und besteht aus

vier Publikationen sowie einem Preprint.

Das zentrale Objekt der Dissertation ist eine Wolke nicht wechselwirken-

der ultrakalter Atome oder eines Bose-Einstein Kondensates, die in einer

stehenden Welle aus Laserlicht gefangen ist. Im ersten Kapitel wird der Le-

ser mit dem Phänomen der Bose-Einstein Kondensation vertraut gemacht

und es werden die Mechanismen beschrieben, mit denen die Wechselwir-

kung zwischen den Atomen künstlich ausgeschaltet werden kann. Zu-

sätzlich werden verschiedene Kühlverfahren skizziert, mit deren Hilfe die

Atome in jenen Temperaturbereich gebracht werden, der das Einfangen

der Atome durch Laserlicht ermöglicht. Das Kapitel endet mit der Ein-

führung von Bloch-Oszillationen, die durch eine externe konstante Kraft

verursacht werden.

Im zweiten Kapitel wird die Einschränkung einer konstanten Kraft auf-

gehoben und der Fokus liegt auf zeitperiodischen Kräften. Das Konzept,

ein System durch eine periodische Kraft zu ”dressen“ steht hier im Mittel-
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punkt. Der Leser wird dabei in die grundlegenden Elemente der Floquet-

Theorie eingeführt, die ein leistungsfähiges Werkzeug zur Beschreibung pe-

riodisch angetriebener Systeme darstellt und ausschlaggebend ist, um das

System präzise und effizient zu kontrollieren. Die ersten experimentellen

Realisierungen periodisch modulierter optischer Gitter sind Meilensteine

des Forschungsfeldes, und eine Auswahl an Veröffentlichungen zur Aus-

übung von Kontrolle mittels externer Kräfte wird diskutiert. Am Ende

des Kapitels werden jüngste theoretische Forschungsarbeiten des Autors

zu Multiphoton-Übergängen präsentiert.

Der Abschnitt ”Publikationen“ stellt den zentralen Teil dieser Disser-

tation dar und enthält ihre Hauptergebnisse. Ultrakalte Atome in op-

tischen Gittern sind weitaus flexiblere Systeme als ihre Gegenstücke aus

der Festkörperphysik, die sie emulieren. Auf der einen Seite lassen sich

die Systemparameter wie beispielsweise die Wechselwirkungsstärke oder

der Gitterabstand fast beliebig variieren. Bei verschwindender Wechsel-

wirkung sind sogar Einteilchen-Modelle experimentell exakt umsetzbar,

ohne dass sich wechselwirkungsinduzierte Effekte bemerkbar machen. Dies

erlaubt eine genaue Untersuchung der quantenmechanischen Einteilchen-

Dynamik; Vielteilchen-Effekte können so zu einem späteren Zeitpunkt von

Einteilchen-Effekten getrennt werden. Auf der anderen Seite können diese

Systeme externen Kräften mit außergewöhnlich hohen skalierten Ampli-

tuden ausgesetzt werden, die in herkömmlichen kristallinen Festkörpern

zu Polarisationseffekten oder sogar zur Auflösung des Materials führen.

Daher können, wie in Publikation I beschrieben, angetriebene optische

Gitter auch als Starkfeld-Simulatoren verwendet werden und bieten die

einzigartige Möglichkeit, Effekte wie zum Beispiel Multiphoton-Prozesse

in Reinform zu studieren, siehe Preprint V. Das Buchkapitel, dessen Ti-

tel sich mit ”Dynamische Lokalisierung in optischen Gittern“ übersetzt

und als Publikation II in diese Arbeit eingebunden ist, enthält eine de-
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taillierte Diskussion darüber, wie mit Hilfe einer periodischen Kraft das

quantenmechanische Tunneln der Atome im Gitter eingeschränkt oder so-

gar ganz unterbunden werden kann. Es wird aufgezeigt, wie dieser Effekt

zur kohärenten Kontrolle des ”Metall-Isolator“-ähnlichen Überganges in

hinreichend tiefen quasiperiodischen Gittern genutzt werden kann.

Bei Verfahren, die auf eine antriebsinduzierte Kontrolle abzielen, wird

das Teilchen häufig einem gepulsten Antrieb ausgesetzt: Die Amplitude

der externen Kraft wird nicht konstant gehalten, sondern mit einer glat-

ten Einhüllenden versehen, die sich zeitlich hinreichend langsam ändert.

Dabei ist das Teilchen typischerweise in einem Zustand präpariert, der

sich lediglich auf das unterste Energieband des Gitters bezieht und eine

Gauß’sche Impulsverteilung besitzt. Übergänge in höhere Bänder können

auf einfache Art und Weise gemessen werden, indem das Teilchen einem

gepulsten Antrieb mit einer festen Antriebsfrequenz und einer gewissen

Maximalamplitude unterworfen wird, und anschließend die Wahrschein-

lichkeit gemessen wird, das Teilchen in irgendeinem außer dem untersten

Band zu finden. Wird diese Prozedur für verschiedene Antriebsfrequen-

zen ω wiederholt, so treten Resonanzen auf, wenn die Energie ~ω genau

den Energielücken in der Dispersionsrelation des ungetriebenen Gitters

entspricht. Noch wichtiger ist jedoch das Auftreten weiterer Resonanzen

aufgrund der ac-Stark-Verschiebung der durch den Antrieb ”gedressten“

Bänder.

Das zentrale theoretische Konzept zum Verständnis der Dynamik eines

Teilchens, das einem gepulsten Antrieb unterworfen ist, ist die Quasiener-

giefläche. Wenn das Gittersystem mit einer festen Frequenz und einer

mit K bezeichneten Amplitude angetrieben wird, so werden gemäß der

Floquet-Theorie die Energiebänder En(k) des ungetriebenen Gitters mit

Wellenzahl k und Bandindex n durch Quasienergiebänder εn(k) ersetzt,

die lediglich modulo ~ω definiert sind. Im Grenzfall verschwindender An-
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triebsamplitude, das heißt K → 0, sind die Quasienergiebänder kontinu-

ierlich mit der Dispersionsrelation En(k) verbunden. Wird das System

jedoch nicht mit einer konstanten Amplitude angetrieben, sondern statt-

dessen ein gepulster Antrieb verwendet, so ändern sich die Antriebsam-

plituden und mit ihnen die Quasienergiebänder im Laufe der Zeit, und

bilden nun Quasienergieflächen εn(k,K). Das Anfangswellenpaket ist ty-

pischerweise nur in einem einzigen Energieband und damit auf einer ein-

zigen Quasienergiefläche präpariert, und das Wellenpaket wird während

des Pulses auf dieser Fläche paralleltransportiert, vorausgesetzt die Puls-

einhüllende variiert hinreichend langsam. Die Dynamik des Wellenpaketes

auf der Quasienergiefläche kann mit Hilfe einer Schar von Basen verfolgt

werden. Dabei besteht jede einzelne Basis aus raumzeitlichen Blochwel-

len, die sich als Lösung der Schrödingergleichung mit einem räumlich und

zeitlich periodischen Hamilton-Operator ergeben und zu einer instantanen

Antriebsamplitude während des Pulses gehören. Eine solche Darstellung

der Dynamik des Wellenpaketes kann der traditionellen Kristallimpuls-

darstellung (engl. crystal-momentum representation) vorzuziehen sein, die

sich auf eine Basis von statischen Blochwellen bezieht: Einerseits ist die

Bewegung des Wellenpaketes im k-Raum gemäß dem semiklassischen Be-

schleunigungstheorem bereits in die Basen der raumzeitlichen Blochwellen

eingebaut, welche ihrerseits schon zeitabhängig sind. Andererseits kann

die Kristallimpulsdarstellung vorübergehende Anregungen anzeigen, die

durch eine ausgeprägte Stark-Verschiebung der Energiebänder hervorgeru-

fen werden, und in diesem Rahmen nicht zu erklären sind. Die instantanen

raumzeitlichen Blochwellen bilden dagegen eine Schar von Basen, die den

Symmetrien des Systems besser angepasst sind. Eine auf ihnen fußende

Beschreibung der Systemdynamik bleibt in dieser Darstellung vollständig

adiabatisch.

Dies ist korrekt, solange sich die Quasienergieflächen in den Regionen,
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die vom Wellenpaket während des Pulses sondiert werden, nicht antikreu-

zen. Die Tatsache, dass Anregungen des Wellenpaketes in höhere Quasi-

energieflächen eng an deren Morphologie gebunden sind, kann durch die

Wahl der Antriebsfrequenz (und damit die der Quasienergiefläche) aus-

genutzt werden, so dass die Impulsverteilung des Teilchens gezielt verän-

dert werden kann. Dies erlaubt es, Interbandübergänge selektiv für den

Transport von Teilen der Impulsverteilung des Wellenpaketes in höhere

Bänder zu nutzen, und so exotische Zustände zu erzeugen, wie in Veröf-

fentlichung IV ausgeführt wird. Dieses Konzept wird durch das Hinzufü-

gen einer zweiten konstanten Kraft, die homogen auf das gesamte System

wirkt, stark erweitert. Wie in Veröffentlichung III detailliert beschrieben

ist, erlaubt es die Kombination beider Kräfte, die Impulsverteilung des

Wellenpaketes auf dessen Quasienergiefläche in beliebige Richtungen zu

verschieben, so dass vermiedene Kreuzungen während eines Pulses zielge-

richtet angesteuert oder umgangen werden können. Dies wird durch eine

Verallgemeinerung des bekannten Beschleunigungstheorems von F. Bloch

auf den Rahmen der Floquet-Theorie ermöglicht, wobei sich die instan-

tanen Basen der raumzeitlichen Blochwellen als zentral erweisen. Ferner

erlaubt dieses generalisierte Beschleunigungstheorem eine effiziente theo-

retische Beschreibung der sogenannten Super-Bloch-Oszillationen, die sich

in diesem Kontext auf den Fall der ”fast resonanten Verkippung“ reduzie-

ren.

Abgesehen von einem Preprint sind drei im Rahmen der Dissertation

entstandene Arbeiten bereits in internationalen, von Experten begutachte-

ten Zeitschriften veröffentlicht. Ein weiteres Manuskript ist als ein Kapitel

des Buches ”Dynamical Tunneling – Theory and Experiment“ erschienen.
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Preface

The world of quantum mechanics is extremely fascinating and richly in-

terspersed with effects far from everyday experience. When the domain

of classical physics is left behind, expectations are often turned upside

down. For example, a quantum particle in a periodic structure starts os-

cillating in response to a constant force. An analogous situation governed

by classical physics might be the often cited example of a marble in an

egg carton. In this setting, the idea that the marble starts oscillating in

response to gravity appears absurd. Yet, in quantum mechanics this ef-

fect known as “Bloch oscillations” has been observed in experiments with

extremely high accuracy. This was rendered possible due to a new tool for

studying quantum mechanical effects, which emerged only recently: the

Bose-Einstein condensate.

In the 1990s, the first experimental realization of Bose-Einstein con-

densates greatly enhanced the ability to directly observe and experiment

with systems governed by quantum mechanics. A new branch of physics

evolved and many systems known from solid state physics can now be

emulated in an extremely “clean” way. Moreover, the high tunability of

these systems grants much more experimental freedom and the systems’

parameters can be varied up to domains unattainable to their solid state

counterparts: For example, monitoring the system’s response to a contin-

uous change of the lattice spacing over a wide range is impossible with

traditional solids yet easily realized with Bose-Einstein condensates.
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As already pointed out, many of the systems realized with Bose-Einstein

condensates involve periodic potentials. In current experimental setups,

the atoms are trapped in a standing wave of laser light. But how can atoms

be trapped with light? At room temperature, the motion of the atoms is

barely affected by the laser light and the atoms remain untrapped. This

changes, however, if the atoms are cooled down sufficiently. In this con-

text, the notion of “cold” differs greatly from its usual meaning in everyday

life: The atoms – generally heavy atoms such as 87Rb – need to be cooled

down to temperatures of up to a microkelvin. Although this is about an

order of magnitude higher than the critical temperature for Bose-Einstein

condensation, these temperatures were long out of reach of experimental

realization. Yet due to a number of new cooling mechanisms, cryogenic

temperatures even down to 500 pK are now possible. These extreme or

ultracold temperatures, even small when compared to the characteristic

temperature of the universe of about 2.7 K [1], may be grasped by a sim-

ple analogy: Consider a room which is cooled down linearly from 300 K

(slightly above room temperature) to absolute zero in a year, starting at

January 1st, 0:00 am. Then the temperature needed for Bose-Einstein

condensation to set in at about 200 nanokelvin is reached about 20 mil-

liseconds before midnight on New Year’s Eve.

Ultracold atoms and Bose-Einstein condensates in periodic fields lend

themselves to far more than just neat emulations of other systems, though

very valuable by themselves. A door towards a new area of research is

opened up by varying one or more parameters of the system dynamically.

In the newly emerging field of periodically driven atoms in optical lattices

researchers seek to utilize effects induced by the driving to gain control

over these quantum systems. The feasibility to subject particles in an

optical lattice to periodic driving has been demonstrated already, and

with advancing experimental techniques in the past few years, more and
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more complex driving protocols can be implemented, leading to a broad

spectrum of new approaches to control atoms on a quantum level.

This is exactly the scope of the present work, which is divided into three

parts. In the first section, the reader is familiarized with the concept of

Bose-Einstein condensation and introduced to basic mechanisms to explore

the single-particle regime. After some remarks on how particles can be

trapped in optical potentials, the section closes with a first example of ex-

ternal forces: a constant and homogeneous force, which gives rise to Bloch

oscillations. One of the cornerstones of the present work is the second sec-

tion which is devoted to time-periodic forces and the Floquet approach.

Here, landmark experiments in the field of Bose-Einstein condensates in

periodically forced optical lattices are reviewed, and at the end of the

section, multiphoton-like transitions are discussed. The section “Publica-

tions” is the second cornerstone of this work, wherein new approaches to

gain control over the dynamics of forced systems are presented and the

implications of these approaches are illustrated. In conjunction with new

analytical results derived in this thesis, the present work aims at opening

up new vistas for understanding and utilizing periodically forced systems,

and points out future perspectives to achieve these goals.
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Chapter 1.

Bose-Einstein Condensation and

Optical Potentials

In the mid-1920s, Einstein, building on previous work by Bose, predicted

the existence of a new quantum phase emerging when bosonic systems are

cooled below a certain critical temperature: the Bose-Einstein conden-

sate [2, 3, 4]. Definitive for bosonic (fermionic) systems is the symmetry

of its many-body wave function, which is of even (odd) parity under the

exchange of two particles, respectively. These symmetry relations are a

direct consequence of the indistinguishability of the particles. In other

words, it is in principle impossible to label the particles, for example by

assigning a number to each of them. This concept of identical particles

lies at the core of the statistical properties of both bosonic and fermionic

systems, as introduced by Bose and Einstein. The latter remarked in

1925 that this “indirectly implies some hypothesis about a mutual inter-

action of the molecules, which for the present is of entirely enigmatical

nature” [5]; this became known as exchange interaction. Yet, already in

1911 the Polish physicist Natanson brought up the notion of the indistin-

guishability of particles by writing “Yet we regard the elements or entities

of energy as indiscriminative. If we were able to perceive each one of them

separately, the conditions would change fundamentally. This needs to be
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pointed out first and foremost” [6], and in 1915 Ehrenfest and Kamerlingh

Onnes remarked on indistinguishability in a work about Planck’s law [7].

Furthermore, the statistical properties of the system are fundamentally [8]

linked to the spin of its constituents by means of the spin-statistics theo-

rem [9, 10], which associates bosons with integer spin (in units of ~) and

fermions with half-integer spin.

Crucial for the gas to eventually form a Bose-Einstein condensate is the

possibility of the particles to occupy a single energy eigenstate with an

arbitrary number of atoms, a characteristic property of all bosonic par-

ticles, elementary or composite. Yet, massive particles condense only at

extremely low temperatures of a few microkelvin, which is why pure Bose-

Einstein condensation evaded experimental realization for about seven

decades. The experimental observation of Bose-Einstein condensation was

rendered possible due to substantial efforts in the development of new laser

cooling techniques, which use the force of the laser light that acts on the

atoms to slow them down, thus cooling the atoms: After the first inde-

pendent proposals for laser cooling by Hänsch and Schawlow [11] in 1975,

Wineland and Dehmelt [12] in 1975, and Ashkin [13] in 1978, the first

observation of radiation-pressure cooling was reported by Wineland and

co-workers, who cooled ions somewhat below 40 Kelvin with what be-

came known as Doppler cooling [14]. This scheme cools only those atoms

which are resonant to the laser radiation and was improved by Phillips

and Metcalf in 1982 with the Zeeman slower [15], which involves addi-

tional magnetic fields to exploit the Zeeman effect for changing the reso-

nance frequency of the atoms. The commonly accepted temperature limit

for Doppler cooling [16] was first reported to be violated by the group

around Phillips in 1988, who took up a technique developed earlier in

1985 by Chu and co-workers [17] and measured the temperature of a gas

of sodium atoms to be as low as 43 microkelvin [18]. In the same year,
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another assumed limit on cooling was shattered: the recoil limit. Cohen-

Tannoudji and his colleagues used metastable 4He atoms to beat the recoil

limit of 4 microkelvin and cooled the atoms down to 2 microkelvin [19].

At this temperature, the mean velocity of the atoms is reduced to about

4 cm/s. So in only ten years, neutral atoms had gotten a million times

colder! For the “development of methods to cool and trap atoms with

laser light” Phillips, Chu, and Cohen-Tannoudji won the Nobel Prize in

Physics in 1997.

These advances in trapping and cooling techniques of atoms finally cul-

minated in the experimental observation of the first “pure” Bose-Einstein

condensate created in 1995 by Cornell, Wieman and co-workers [20] using
87Rb. Independently, only a few months later, the group around Ket-

terle at MIT generated a condensate with 23Na [21]. All three of them

were awarded the Nobel Prize in Physics in 2001 “for the achievement of

Bose-Einstein condensation in dilute gases of alkali atoms, and for early

fundamental studies of the properties of the condensates” [22]. These sem-

inal works triggered further experiments on this fascinating quantum state

of matter. A whole new area of research was born.

Soon, this exciting field spawned a multitude of experimental realiza-

tions of quantum systems, hitherto unavailable in such a clear and versatile

form: Early seminal experiments include the observations of interference of

two Bose-Einstein condensates [23] in 1997, of quantized vortices [24, 25] at

the turn of 1999, of long-range phase coherence [26] in 2000, and of vortex

lattices [27] in 2001. Whereas the early experiments were conducted with

about half a million atoms, today more than 120 million atoms [28] can be

used in experiments with Bose-Einstein condensates, rendering quantum

mechanical effects visible and explorable on a macroscopic scale.

It should not go unnoticed that the discovery of superfluidity in 1937

by Kapitza [29] and Allen and Misener [30] is linked with Bose-Einstein
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condensation: A superfluid sample of 4He can be regarded as a partially

condensed system, where complete condensation is impeded by the strong

interaction between the atoms. Helium-4 is thus an example of an atomic

species which, although bosonic, does not display complete condensation.

Since 1995, Bose-Einstein condensates have been obtained for a multi-

tude of bosonic atoms, mostly alkalies due to their suitability for working

with traps, but in the search for less massive particles to use in experi-

ments, condensation was even achieved with atomic hydrogen [31]. Only

recently, Weitz and co-workers [32] managed to Bose-condense photons in

a dye-filled optical microcavity. The cavity provides the confining poten-

tials and induces a non-vanishing effective photon mass, so the system can

be mapped to a two-dimensional gas of trapped, massive bosons. With the

Bose-condensation of dysprosium reported in October 2011, the properties

of strongly dipolar Bose-Einstein condensates can be studied experimen-

tally [33, 34].

But even fermionic systems, though the particles are bound by the ex-

clusion principle not to occupy a single quantum state more than once,

can be made to form “fermionic condensates” by coaxing the particles into

bosonic molecules, which then undergo Bose-Einstein condensation albeit

at even lower temperatures than their truly bosonic analog, as first shown

independently by the groups of Jin [35], Grimm [36], and Ketterle [37]

in 2004. A further example of a fermionic condensate is a fermionic su-

perfluid, where electrons form weakly bound pairs below a certain critical

temperature. The condensation of these so-called Cooper pairs is theoret-

ically founded in the BCS transition, discovered 1957 by Bardeen, Cooper,

and Schrieffer [38, 39].

In this chapter, the main concepts this work is founded on are briefly

introduced: First of all, the statistical background describing the transi-

tion to a Bose-Einstein condensate at the critical temperature is discussed.
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The subsequent section focuses on the feasibility of tuning the interaction

of the particles in a gas of ultracold or Bose-condensed atoms. The case of

vanishing interactions is most important for the present work: Since this is

experimentally feasible by tuning the interaction strength to zero, single-

particle dynamics can be enforced in a many-body system. The notion

of a Feshbach resonance is presented, by which the interaction strength

between the atoms can be shifted almost arbitrarily between the strongly

repulsive, noninteracting, and strongly attractive regimes. The third sec-

tion introduces the optical lattice, which enables one to trap the atoms in

a perfectly periodic potential with no defects present. The theoretical de-

scription within the dipole approximation is introduced and experimental

prerequisites for optical lattices are considered.

1.1. Bose-Einstein Condensation

In everyday experience, gases behave classically, show particle-like behav-

ior, and their quantum features remain veiled by relatively high tempera-

tures. The wave-like nature of the particles emerges due to a substantial

overlap of the waves of two particles. The thermodynamical length scale

of those waves – the thermal de Broglie wavelength λ – is connected with

the temperature T of the gas via

λ =
h√

2πmkBT
, (1.1.1)

where h is the Planck constant, m is the mass of the particle, and kB

denotes the Boltzmann constant. Whether the waves of particles in a gas

overlap (on average) is determined by the relation between the thermal

wave length λ and the density n of the particles: A gas can be described

classically if the interparticle separation is large when compared to the

thermal wavelength, that is as long as nλ3 � 1. Thus, the quantum na-

ture of the gas becomes visible for low temperatures or high densities; the
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classical Maxwell-Boltzmann statistics does no longer describe the gas cor-

rectly and is replaced by the corresponding bosonic (or fermionic) quantum

statistics. In this section, the discussion remains restricted to ideal, that

is noninteracting, gases and the calculation of the critical temperature for

the onset of Bose-Einstein condensation is sketched.

Within the grand canonical ensemble, the bosonic partition function of

a gas of N particles with one-particle energies εj contained in a volume V

and in contact with a bath at temperature T and chemical potential µ is

without any approximations given by

Z(µ, V, T ) =
∏
j

1
1− ze−βεj

, (1.1.2)

where z = exp (βµ) is the fugacity with β = 1/(kBT ). The expecta-

tion value of the occupation number of a given state with energy εj then

reads ([40], §54)

〈nj〉 =
1

eβ(εj−µ) − 1
, (1.1.3)

where the restriction µ < ε0 of the chemical potential with respect to the

single-particle ground-state energy ε0 ensures positive occupation num-

bers. Already at this step it can clearly be seen that the ground state is

macroscopically occupied, that is 〈n0〉 = O(N), when the chemical poten-

tial tends to ε0.

For calculating the critical temperature Tc, the grand canonical equa-

tions of state

pV

kBT
= lnZ = −

∑
j

ln
(
1− ze−βεj

)
(1.1.4)

N =
∑
j

〈nj〉 =
∑
j

1
z−1eβεj − 1

. (1.1.5)

are needed, which are valid without any approximation. For sufficiently

high temperatures, which imply the occupation of many energy levels,
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these equations can be evaluated by replacing the sum over j by integrals.

For this so-called continuum approximation the density of states D(ε) is

needed, which is system specific just as the single-particle spectrum. For

particles moving freely in a box of volume V the density of states is

Dfree(ε) =
2πV
h3

(2m)3/2 ε1/2 , (1.1.6)

whereas a three-dimensional harmonic trapping potential leads to [41, 42]

Dharm(ε) ≈ 1
2

ε2

(~ω̄)3
, (1.1.7)

where ω̄ ≡ (ωxωyωz)
1/3 is the geometric mean of the oscillator frequencies

and ~ = h/(2π). When evaluating (1.1.5) a subtlety comes into play:

With ε0 = 0 the occupation number of the ground state

N0 ≡ 〈n0〉 =
1

z−1 − 1
(1.1.8)

is very large for µ → 0, yet its weight in the density of states is zero. So

this term needs to be treated separately yielding

Nex ≡ N −N0 =
2πV
h3

(2m)3/2
∫ ∞

0
dε

ε1/2

eβ(ε−µ) − 1
. (1.1.9)

The integral is known as Bose-Einstein integral function, defined in general

by1

gn(z) =
1

Γ(n)

∫ ∞

0
dx

xn−1

z−1ex − 1
, (1.1.10)

so the number of excited particles is

Nex =
V

λ3
g3/2(z) . (1.1.11)

The fugacity can be written as z = N0/(N0 + 1) as a consequence of

Eq. (1.1.8), so it is obvious that z is restricted to 0 ≤ z < 1. Since the
1In mathematics, the function gn(z) is known as an integral representation of the

polylogarithm, which reduces to the Riemann zeta function ζ(n) for z = 1.
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function g3/2(z) is monotonically increasing in this interval and bounded

by g3/2(1) = ζ(3/2) ≈ 2.612, the number of excited particles remains

restricted as well:

Nex ≤ V

(
2πmkBT

h2

)3/2

ζ(3/2) . (1.1.12)

Consequently, as soon as

N > V

(
2πmkBT

h2

)3/2

ζ(3/2) , (1.1.13)

the number of excited particles is less than the total particle number and

particles are collectively forced to the ground state. This macroscopic

occupation sets in at nλ3 = ζ(3/2) and yields the critical temperature

T free
c =

h2

2πmkB

(
N

V ζ(3/2)

)2/3

(1.1.14)

for a gas moving freely in a box of volume V . For the harmonically trapped

gas, the critical temperature can be calculated in the same manner using

the density of states given by Eq. (1.1.7). In this case, the critical tem-

perature reads

T harm
c =

~ω̄
kB

(
N

ζ(3)

)1/3

(1.1.15)

with ζ(3) ≈ 1.202. Similar to the previous case, at the temperature T harm
c

the thermal de Broglie wavelength reaches the mean interparticle distance

at the center of the trap.

Considering harmonic trapping potentials is not just a theoretical ex-

ercise since they are experimentally indispensable for the cooling process

during which the atoms need to be spatially confined. Additionally, three-

dimensional harmonic trapping opens up the possibility of realizing sys-

tems which are confined in one or more dimensions: By increasing, for

instance, the trapping frequency ωz with respect to the others, the atoms
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remain confined in the x-y plane and the system becomes approximately

two-dimensional. If the dynamics are frozen in y-direction as well, ef-

fectively one-dimensional systems can be studied. Here, typical trapping

frequencies along the tube are on the order of 10–200 Hz, whereas the

radial trapping frequencies can become as high as 100 kHz [43]. But low-

dimensionality leads to obstacles, which even emerge in the argument

sketched above, where two-dimensional systems without a trapping po-

tential require the function g2/2(z) in the limit z → 1, for which the

Bose-Einstein integral function reduces to a harmonic series which di-

verges. Although in a two-dimensional gas a true condensate emerges

only at T = 0K, at sufficiently low temperatures there exists a Kosterlitz-

Thouless transition [44, 45], which, in the Bose-gas framework, is charac-

terized by a quasicondensate with fluctuating phase [46] and has been

realized experimentally in the group of Dalibard and co-workers [47] in

2006.

Only two years prior to the bosonic Kosterlitz-Thouless transition, the

hard-core limit of the Lieb-Liniger model [48, 49], which describes a one-

dimensional Bose gas and is known as Tonks-Girardeau gas [50], was real-

ized experimentally using strong optical lattices [51, 52]. In this gas, strong

repulsive interactions between the atoms dominate the dynamics and in

this one-dimensional system, the hard-core limit prevents the bosons from

passing each other or occupying the same position in space. The latter

feature is similar to the exclusion principle for fermions, but although the

system can be mapped to a gas of noninteracting fermions by the Jordan-

Wigner transformation [53], not all fermionic characteristics, such as its

momentum distribution [54], emerge in the Tonks-Girardeau gas.

For further details the reader is referred to the review article by Petrov

et al. on low-dimensional trapped gases and references therein [55].
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1.2. Tuning the Interaction

Apart from the symmetry-induced exchange interaction, which is not me-

diated by a potential, the particles interact by scattering. In dilute gases

three-particle scattering becomes negligible2 and the scattering processes

are dominated by two-body collisions. In the low-energy regime, implying

very cold atoms and temperatures in the sub-millikelvin range, usually the

collisions with the lowest angular momentum dominate the interaction. In

the bosonic case, all scattering events with nonzero angular momentum

are negligible so only s-wave scattering takes place in good approxima-

tion.3 These scattering events can be described by a single parameter,

the s-wave scattering length asc [56, 57]: Due to the long wavelength of

the scattering particles, the low-scale structure of the interaction potential

remains unresolved and only the lowest order in a partial-wave expansion

has significant influence on the scattering event. The magnitude of the

scattering length gives the strength of the interactions, whereas its sign

determines its kind: positive (negative) scattering lengths describe repul-

sive (attractive) interactions, respectively. In the dilute limit, that is if

the interparticle separation is larger than the scattering length, the com-

plicated interaction potential can be replaced by a pseudopotential ([58],

§10 and [59]). It usually takes on the form of a delta function and is

proportional to the s-wave scattering length, which is the only parameter

entering from the actual scattering potential.

The concept of a Feshbach resonance was put forward 1958 by H. Fesh-

bach in the framework of nuclear physics [60] and independently three

years later by Fano [61] on the background of atomic physics. About two

2An important exception arises in the context of Feshbach resonances and is discussed

below.
3For identical fermions p-wave scattering dominates since Pauli’s exclusion principle

rules out s-wave scattering.
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decades later, it was considered by Stwalley [62] in the context of ultracold

gases, but only 1998 Feshbach resonances were experimentally observed

in a Bose-Einstein condensate by the Ketterle group [63] (for a review

see [64]): An external magnetic field couples the state of two free colliding

atoms to a molecular bound state, as schematically depicted in Fig. 1.1a.

By tuning the strength of the magnetic field, the scattering length of the

atoms can artificially be changed to almost arbitrary values, including

positive and negative values as well as vanishing scattering lengths. In the

vicinity of such a magnetic Feshbach resonance, which occurs at a certain

value of the magnetic field B = B0 and is characterized by the width ∆,

the scattering length can be given as a function of the magnetic field as

first introduced by Moerdijk et al. [65],

asc = ãsc

(
1− ∆

B −B0

)
, (1.2.1)

where ãsc is the background scattering length far from the resonance. As

depicted in Fig. 1.1b, no scattering occurs at B = B0 + ∆. This is most

important for the present work: By adjusting the scattering length to zero,

noninteracting systems can be realized, which are modeled theoretically

as one-particle systems. In this way, genuine effects of one-particle quan-

tum mechanics can be studied in the laboratory without being masked by

interaction effects.

On the one hand, this powerful technique enables easy access to the

regime of strong interactions: Positive scattering lengths of more than

9,000 Bohr radii have been observed using atoms of 85Rb [66]. Yet, mag-

netic Feshbach resonances suffer from high particle losses close to the res-

onance since particle losses due to three-body collisions are proportional

to a4
sc (see [67, 68]) and are thus highly increased. This downside can

be attenuated by the so-called optical Feshbach resonance [69], which has

been realized by Bauer et al. in 2009 using a laser which is near-resonant



12 Chapter 1. Bose-Einstein Condensation and Optical Potentials

interatomic distance

en
er

g
y

∆E

a)

open channel

closed channel

bound state

−2 −1 0 1 2

−5

0

5

(B − B0)/∆

a
s
c
/
ã
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Figure 1.1.: Left panel: The atoms are prepared in the open channel and

scatter at low kinetic energies. The open channel is coupled to a bound

state with energy ∆E in the closed channel. A Feshbach resonance occurs

if the bound molecular state in the closed channel matches the scattering

state in the open channel. This can be controlled by applying a magnetic

field to modify ∆E. Right panel: The scattering length asc as a function

of the magnetic field B according to Eq. (1.2.1). The Feshbach resonance

occurs at B = B0; noninteracting condensates can be realized by tuning

the magnetic field to B = B0 + ∆.

to the bound-to-bound transition [70]. Furthermore, strong coupling to

the bound channel leads to the emergence of weakly bound dimers, so-

called Feshbach molecules [71]. Thus, by forming bosonic bound pairs of

fermions, even condensates with fermionic constituents – “fermionic Bose-

Einstein condensates” – can be observed, as first realized by the Grimm

group [72]. In these systems, the study of the transition from a Bose-

Einstein condensate at repulsive interactions to a fermionic superfluid at
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attractive interactions, continuously connected by a Feshbach resonance,

has attracted considerable attention (see [73, 74] for reviews). The posi-

tions B0 of the resonances vary strongly with atomic species, an overview

is given in the appendix of [64]. Resonances are found in 87Rb at about

400 Gauss and up to 1000 Gauss, whereas in 85Rb they occur at about 160

Gauss [75], which is still large when compared to the earth’s magnetic field

of about 0.5 Gauss. Negative scattering lengths open up the exciting field

of attractive interactions. By rapidly switching the scattering length of a

stable Bose-Einstein condensate from repulsive to attractive, a controlled

collapse of a condensate can be induced as shown by Cornell, Wieman,

and co-workers [76], which causes fragmentation of the condensate into

bright solitons [77].

On the other hand, by tuning the scattering length close to zero – values

on the order of and even less than the Bohr radius have been observed –

the weak interaction regime can be explored. It needs to be mentioned,

though, that the cross section for elastic collisions between bosons is pro-

portional to a2
sc, so too small values of the scattering length suppress

these collisions, which are needed for evaporative cooling, so the conden-

sate needs to be created first. Typical scattering lengths are in the regime

of ten to a few hundred Bohr radii [64].

One prominent example of a system that can be realized by exploiting a

Feshbach resonance to generate a noninteracting system is a single particle

moving in a periodic potential. The spatial freedom of the particles can be

restricted to one spatial dimension, for example by confining the atoms in

the other directions as discussed before, and the dynamics of these systems

will be discussed in Section 1.4, where the focus is on a single particle in

an optical lattice subjected to a constant homogeneous force.
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1.3. Trapping Atoms with Light

Naturally, cooling the atoms is closely linked to trapping them. In order

to cool the atoms they have to be spatially confined and for the atoms

to “feel” a trapping potential they need to be sufficiently cool. Traps can

generally be distinguished by the kind of particles they trap. In ion traps

the Coulomb interaction is exploited to confine the atoms with electric

or electromagnetic fields. The most prominent types of ion traps are the

Paul trap and the Penning trap. For the former, alternating4 electric

fields are used whose potential surfaces form a saddle surface to trap the

ions, a technique for which Dehmelt and Paul were awarded the Nobel

Prize in Physics in 1989 [79, 80]. The Penning trap uses static fields only:

An electric quadrupole field and an additional magnetostatic field trap

the particles spatially. For neutral atoms, traps can be categorized as

radiation-pressure, magnetic, or optical dipole traps (see [81]), the most

prominent example is the magneto-optical trap (MOT). For the purpose

of this work, these traps will not be discussed in detail. In this section,

the focus is on optical lattices and how they can be used as trapping

potentials for ultracold atoms [82, 83]. In particular, the dipole force laser

light exerts on the atoms and the concept of a one-dimensional optical

lattice are introduced.

To understand the basic physics within the framework of a simple model,

the one-dimensional laser field remains unquantized5 and thus acts semi-

classically on a single atom which is modeled as a two-level system, con-

4Charged particles cannot be held in a stable stationary equilibrium by electrostatic

fields only, which is known as Earnshaw’s theorem [78].
5This approximation is justified for a high number of photons in the laser mode and

thus for high laser amplitudes, allowing for a semiclassical description of the radi-

ation field. Its quantization is discussed by Dalibard and Cohen-Tannoudji in [84];

see [85] §5 as well.
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taining a ground state |g〉 and an excited state |e〉, each associated with

the energy Eg and Ee, respectively. The energy gap between the levels is

denoted as ~ω0 ≡ Ee − Eg and they are connected by a dipole transition

characterized by the dipole matrix element µ ≡ 〈e|d̂|g〉, where d̂ denotes

the dipole operator in the direction of the field. The dipole moment is

induced by the standing light wave E(x, t) = E0 cos(kLx) cos(ωLt), where

kL and ωL denote the wavenumber and angular frequency of the laser

light, respectively, and is determined by the gradient of its time-averaged

intensity [86]. The model Hamiltonian reads

H =
p2

2m
1+ ~ω0 |e〉 〈e| − µE(x, t) (|g〉 〈e|+ |e〉 〈g|) , (1.3.1)

where p and m denote the atom’s momentum and mass, respectively, and

1 = |g〉 〈g|+ |e〉 〈e|. In order to derive an effective potential for the atom,

the laser frequency is tuned such that the absolute value of the detuning

δL = ω0 − ωL (1.3.2)

is small compared to ω0, that is |δL| = |ω0−ωL| � ω0. In this case of main

practical interest, the time-dependence of the amplitudes in the ansatz

|Ψ(x, t)〉 = ψg(x, t) |g〉+ ψe(x, t)e−iωLt |e〉 (1.3.3)

is only weak, assuming that the laser perturbs the atom only slightly, that

is µE0 � ~ω0. The Schrödinger equation then yields the equations of

motion for the amplitudes

i~∂tψg(x, t) = − ~2

2m
∂2
xψg(x, t)−

µE0

2
cos(kLx)ψe(x, t) , (1.3.4)

i~∂tψe(x, t) = − ~2

2m
∂2
xψe(x, t)−

µE0

2
cos(kLx)ψg(x, t) + ~δLψe(x, t) ,

(1.3.5)
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where the rotating-wave approximation [87, 88] has been used, discarding

all components oscillating with twice the laser frequency. The occupation

probability of the two levels oscillates between the ground state and the

excited state with the Rabi frequency Ω = µE0/~, which is characteristic

for two-level systems [89]. If the system is initially prepared in the ground

state and a separation of time scales by

Ω � |δL| � ωL, ω0 , (1.3.6)

is assumed, then for times that are small compared to the Rabi period

the first term on the right hand side of Eq. (1.3.5) remains negligible.

Furthermore, ψe(x, t) changes slowly in this time interval and Eq. (1.3.5)

yields

ψe(x, t) ≈
µE0

2~δL
cos(kLx)ψg(x, t) . (1.3.7)

Now, the excited amplitude can be “adiabatically eliminated” in the equa-

tion of motion for the ground state amplitude (1.3.4), so that

i~∂tψg(x, t) ≈

(
− ~2

2m
∂2
x −

(µE0)
2

4~δL
cos2(kLx)

)
ψg(x, t) . (1.3.8)

Utilizing cos2(x) = [1 + cos(2x)]/2 and neglecting constant energy shifts

finally yields

i~∂tψg(x, t) ≈
(
− ~2

2m
∂2
x −

~Ω2

8δL
cos(2kLx)

)
ψg(x, t) . (1.3.9)

Denoting the lattice depth by V0 = (~Ω2)/(4δL), the atom in a standing

light wave “sees” an effective potential

Veff(x) = −V0

2
cos(2kLx) , (1.3.10)

which is spatially periodic and the depth is proportional to the Rabi fre-

quency squared and thus to the laser intensity. The sign of the detuning δL
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Figure 1.2.: The effective potential Veff(x, r) includes a Gaussian radial

profile, which is characterized by the spot size (waist) w. It reduces to

Eq. (1.3.10) for r = 0.

determines whether the atom is attracted to the nodes or antinodes of the

field: For red (blue) detuning δL is positive (negative) and the atom moves

to regions of high (low) laser intensity, respectively. This is also referred

to as high-field or low-field seeking. So the electric field E(x, t) induces an

effective potential for the atoms, which then move in an “optical lattice”:

a spatially periodic potential. Its lattice period denoted by a is connected

to the laser wavelength and wavenumber via kL = π/a = 2π/λL, where the

laser wavelength λL = 2a is typically in the regime of 600 nm to 1100 nm.

Of course, in the laboratory, the standing light wave is not perfectly

one-dimensional but has a Gaussian radial profile with a beam waist w as

shown in Fig. 1.2. The variation of the waist with x has been neglected
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here;6 this corresponds to an infinite Rayleigh length xR. With the lattice

period in the nanometer regime and a Rayleigh length which under realistic

conditions is on the order of a few millimeters [43], the approximation

xR → ∞ is justified and w = w0 in good approximation. Typical beam

waists figure at about 100µm.

As evident from the Schrödinger equation for the ground-state ampli-

tude, Eq. (1.3.9), the characteristic energy of a particle in a standing light

wave is given by the single-particle recoil energy

Er =
~2k2

L

2m
, (1.3.11)

which corresponds to the energy an atom at rest gains from emitting a

photon with wavenumber kL. The recoil energy typically is on the order

of 10−10 eV, so the corresponding recoil frequencies are in the kHz regime.

Experimentally, moderate lattice depths range from 5 to 10 recoil energies

and are thus ten orders of magnitude smaller than those encountered in

traditional solids.

If the lattice-generating beams are not counterpropagating but enclose

an angle of less than 180◦, lattices with an increased lattice constant can

be erected [90, 91]. Two- and three-dimensional lattices are created by

four or six beams and with additional harmonic potentials confining the

motion in two directions; an ensemble of approximately one-dimensional

tubes, even in mutual isolation, can be generated [92, 93, 94].

Due to the theoretical predictions concerning the combination of Bose-

Einstein condensates and optical lattices on the one hand and first exper-

imental verifications of these in the laboratory on the other, the field of

Bose-Einstein condensates and ultracold atoms in optical lattices began to

evolve rapidly. It has already been pointed out that the lattice parameters

6The beam waist varies according to w(x) = w0

p
1 + (x/xR)2 with the Rayleigh length

xR = w2
0π/λL.
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can be controlled almost perfectly and the lattice can even be switched

off during experiments. With the lattice depth as a tuning knob, very

deep lattices lead to the emergence of isolated “condensates” in the indi-

vidual wells – the Mott-insulating state – whereas shallow lattices allow

for a superfluid phase where the condensate is extended over the lattice.

The transition from the superfluid to the Mott insulator is a quantum

phase transition and can be realized by varying the lattice depth during

the experiment; this will be detailed in Section 2.4.

The difference between loading a Bose-Einstein condensate or just ul-

tracold atoms into the lattice is a question of both temperature and

density. Whereas for ultracold atoms these are in the regime of mi-

crokelvin and 1010 cm−3, for Bose-Einstein condensates lower tempera-

tures in the nanokelvin regime and higher densities around 1014 cm−3 are

needed. Higher densities lead to higher filling factors7 of the lattice and

to enhanced interaction effects. Although these can be reduced by means

of Feshbach resonances if unwanted, they open up more general concepts

of nonlinear systems [95] and the field of strongly interacting systems.

For now, the focus is on weakly interacting systems, where interaction-

induced effects do not destroy those of single-particle quantum mechanics.

One prominent example is discussed in the following section.

1.4. Time-Independent Forces and Bloch Oscillations

After observing key quantum signatures of Bose-Einstein condensation

such as the interference between two condensates and the experimental

realization of models from solid-state physics, the desire for enhancing

control over these systems grew. This was rooted not only in the striving

for a more careful state preparation but also in the quest for understanding

7(particles per lattice site)
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phenomena such as high-temperature superconductivity and the long-time

goal of quantum computing, for which careful quantum control is crucial.

A very promising approach for increasing control is an additional force

acting homogeneously on the entire lattice system. More complex forcing

protocols are discussed in Chapter 2 and in the Chapter “Publications”.

In the simplest case, the homogeneous force is constant in time so that the

atoms in the now “tilted” lattice are experiencing a constant acceleration.

This situation was already studied in 1929 by F. Bloch in the framework of

the motion of electrons in solids [96]. The key features of his semiclassical

“acceleration theorem” and the emergence of Bloch oscillations in one

dimension8 are briefly recapitulated in this section, a detailed derivation

is provided in the Appendix A.

The acceleration theorem is derived on the basis of single-particle quan-

tum mechanics and hinges on the assumption that the dynamics of a wave

packet initially prepared in a single energy band remains restricted to this

band. To be definite, the Hamiltonian of the system, describing a particle

of mass m in a periodic lattice potential Vlat(x) accelerated by an inertial

force F in x-direction is given by

H(x) =
p2

2m
+ Vlat(x)− Fx , (1.4.1)

where the lattice potential is spatially periodic, that is Vlat(x) = Vlat(x+a)

with the lattice constant a. With the force absent, that is for F = 0,

the energy eigenvalues of the Hamiltonian are given by the dispersion

relation En(k), where n is the band index and the wavenumber k can

be restricted to the first Brillouin zone [−π/a, π/a[, as known from basic

quantum mechanics. Given an initial single-band wave packet ψ(k, t0) in

momentum space9 centered around some value kc, Bloch’s acceleration

8The results can easily be generalized to higher dimensions.
9For brevity the band index has been dropped.
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theorem states that its time evolution is governed semiclassically by

~k̇c(t) = F . (1.4.2)

Sole requirement for the acceleration theorem is the validity of the single-

band approximation. Obviously, for constant forces F this equation can

easily be solved, yielding a linear growth of kc in time. So the wave packet

traverses the Brillouin zone periodically, since this zone itself is periodic

in quasimomentum k.

The motion in k space can be transformed to a motion in real space,

as has been shown by Jones and Zener [97]; they used the group velocity

vg(t) of the wave packet to derive its motion. Here, in contrast to Bloch’s

approach in momentum space, additional requirements are needed. Most

importantly, the procedure given by Jones and Zener works the better, the

narrower the k-space distribution of the wave packet is. The group velocity

is determined by the derivative of the dispersion relation according to

vg(t) =
1
~

dE
dk

∣∣∣∣
kc(t)

. (1.4.3)

Within the tight-binding approximation [98], the dispersion relation sim-

ply reads E(k) = −(W/2) cos(ka) with the band width W extracted from

the tight-binding Hamiltonian or determined numerically, so that in this

case the group velocity is given by

vg(t) =
Wa

2~
sin [kc(t)a] . (1.4.4)

Writing kL(t)a = ωBt with the Bloch frequency [99]

ωB =
Fa

~
, (1.4.5)

the position of the wave packet’s center is given by

xg(t) = −W

2F
cos (ωBt) (1.4.6)
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with appropriate choice of the origin of the x-axis. So the particle’s mo-

tion due to a constant homogeneous force is periodic in real space. The

amplitude of the oscillation is inversely proportional to the external force;

huge oscillations mimic extended Bloch waves in the limit F → 0. The

somewhat counterintuitive result that a constant force causes the wave

packet to oscillate can be explained qualitatively: If ϕn(x) is a solution of

the stationary Schrödinger equation(
p2

2m
+ Vlat(x)− Fx

)
ϕn(x) = Enϕn(x) , (1.4.7)

then the functions ϕn(x + ma), shifted by m lattice constants, solve the

same equation but with shifted energies En+mFa, known as the Wannier-

Stark ladder [100]. So the external force splits each unperturbed energy

band into a series of energies, equally spaced by Fa. In analogy to the

quantum harmonic oscillator, the equidistant spectrum implies periodic

oscillations of the wave packet and the frequency of these Bloch oscillations

is given by the energy spacing as in Eq. (1.4.5).

From the first theoretical formulation of Bloch oscillations in the 1930s

it took several decades until evidence for the existence of Bloch oscilla-

tors was observed in experiments. In traditional solids their verification is

hampered by electron scattering by phonons and by lattice defects, which

break the translational symmetry of the lattice and lead to decoherence on

a time scale much shorter than the period of the oscillations. Encouraged

by further theoretical efforts [101] and by the idea to focus on semiconduc-

tor superlattices [102, 103], in 1992 Bloch oscillations were predicted to

generate terahertz radiation [104] and were observed for a few cycles in the

same year [105, 106]. With the availability of ultracold atoms and Bose-

Einstein condensates in optical lattices, the observation of Bloch oscilla-

tions was first reported in 1996 with ultracold but non-condensed caesium

atoms [107]. Long-lived oscillations of several seconds were measured and
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proposed to be used for sensitive gravity measurements in 2006 by Ferrari

and co-workers [108]. Being a single-particle phenomenon, Bloch oscil-

lations are most pronounced in weakly to noninteracting systems as the

group around H.-C. Nägerl confirmed by monitoring Bloch oscillations for

over 20,000 cycles [109] and Fattori et al. suggested exploiting them for

atom interferometry [110].
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Chapter 2.

Driving Atoms and Exerting Control:

Time-Periodic Forces

In 2002, the experimental realization of the superfluid-to-Mott insula-

tor transition with 87Rb atoms in an optical lattice by I. Bloch and co-

workers [111] demonstrated unprecedented control over parameters such

as the spacing or the depth of the lattice, the latter being most important

for observing the quantum phase transition. The precision with which

the parameters can be controlled in the laboratory directly reflects the

control over the quantum system itself. The clear-cut observation of the

superfluid-to-Mott insulator transition with Bose-Einstein condensates is

a landmark in the field.

The possibilities of coherent control of the system are hinted at by tech-

niques used in atomic and molecular physics. Here, the field has been

enriched by the use of lasers, which spawned new spectroscopic methods

and enabled deliberate control of atomic and molecular states. Many of

the tools developed there can be transferred directly to the framework of

ultracold atoms. A step towards this has already been done with the in-

troduction of a time-periodic drive into the system. Working with conden-

sates, Lignier et al. achieved a periodic driving of a lattice system in 2007

by inducing a periodic frequency difference between the two counterprop-



26 Chapter 2. Driving Atoms and Exerting Control

agating laser beams [112], whereas already in 1998, Madison et al. used a

periodically driven lattice with cold sodium atoms to study the dynamical

Bloch band suppression [113]. In current experiments, a lattice-generating

laser beam is retroreflected into itself by a mirror, which is mounted onto

a piezoelectric crystal. The periodic shaking of the mirror induces the

periodic driving of the lattice as realized by the Pisa group [114]. With

the position of the mirror oscillating with amplitude L, in the laboratory

frame of reference the lattice potential takes the form

V0

2
cos{kL[x− L cos(ωt)]} . (2.0.1)

As a meaningful dimensionless measure of the driving strength,

K0 =
Fa

~ω
=
π2

2
ω

ωr

L

a
(2.0.2)

is employed with the usual notation, ωr = Er/~ being the recoil frequency,

and F = MLω2 [115]. With ω/ωr and L/a on the order of unity, K0

can easily exceed unity and then corresponds to quite strong forcing, see

Paper I.

By introducing basic elements of Floquet theory, this chapter provides

the theoretical background needed for a systematic understanding of the

physics of periodically driven quantum systems, and additionally reviews

some of the landmark experiments driving this newly developing field.

2.1. The Floquet Approach: Dressing the System

The external drive with frequency ω, which in the generic case gives rise

to an additional term to some (static) Hamiltonian H0, introduces a new

periodicity to the system; the Hamiltonian, now explicitly time depen-

dent, becomes invariant to shifts of T = 2π/ω in time, H(t) = H(t+ T ).

On the one hand, this invalidates the concept of energy conservation: The
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driving force performs (positive or negative) work on the system and en-

ergy conservation is no longer given. From a theorist’s point of view,

the Schrödinger equation cannot be treated with separation of variables

anymore and thus no stationary Schrödinger equation and energy eigen-

values exist. On the other hand, the external forcing is not arbitrary but

periodic in time. Consequently, a differential equation with periodic co-

efficients needs to be treated. For this case, already in 1883 G. Floquet

developed a mathematical theory [116], basic features of which are briefly

introduced here from a physicist’s point of view. Further reference can be

found in [117, 118] among others.

Starting point is the Schrödinger equation with a Hamiltonian periodic

in time,

i~∂t |ψ(t)〉 = H(t) |ψ(t)〉 . (2.1.1)

The particular solutions |ψα(t)〉 to this equation, called “Floquet states”

in this context, can be written as (cf. [119])

|ψα(t)〉 = exp (−iεαt/~) |uα(t)〉 , (2.1.2)

where the Floquet functions |uα(t)〉 are T -periodic. In analogy to energy

eigenvalues in the time-independent framework, the factors εα determining

the linear growth of the phase are dubbed quasienergies, see papers by

Zel’dovich [119] and Ritus [120]. Yet, the quasienergies as well as the

Floquet functions are not defined unambiguously by Eq. (2.1.2), since

with integer m the functions |un(t)〉 exp (imωt) are T -periodic as well and

lead to the identity

exp (−iεnt/~) |un(t)〉 = exp [−i (εn +m~ω) t/~] [|un(t)〉 exp (imωt)] .

(2.1.3)

So the index in Eq. (2.1.2) has to be considered as a double-index α =

(n,m) and for each solution labeled by n, there exist a countably infinite
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number of representatives labeled by m. This richness in solutions can

be described by a different but equivalent approach as first introduced by

Sambe [121] in 1973. Inserting the Floquet states into the Schrödinger

equation leads to an eigenvalue equation for the quasienergies:

[H(t)− i~∂t] |uα(t)〉 = εα |uα(t)〉 . (2.1.4)

If the Hilbert space spanned by the eigenfunctions of the unperturbed

Hamiltonian H0 is denoted by H, the emerging quasienergy operator

H(t)− i~∂t is associated with an extended Hilbert space

K = L2 [0, T ]⊗H , (2.1.5)

in which time and the spatial coordinates are explicitly treated on the

same footing and hence time is integrated over in the scalar product in K
given by

〈〈v|w〉〉 =
1
T

∫ T

0
dt 〈v(t)|w(t)〉 , (2.1.6)

where 〈·|·〉 denotes the usual scalar product in H. A few words regarding

completeness and orthonormality: As eigenstates of the quasienergy op-

erator, the Floquet functions |un(t)〉 exp(imωt) constitute a complete or-

thonormal system in K with respect to the extended scalar product (2.1.6).

All Floquet functions from the same class, that is with n fixed, are or-

thonormal. Additionally, completeness and orthonormality in the original

Hilbert space H holds for the set of Floquet functions |un(t)〉 generated by

picking an arbitrary representative from each class for each fixed time t.

Although the argument leading to Eq. (2.1.3) requires α to be treated

as a double-index and induces the extended Hilbert space K, it simulta-

neously reveals the physical identity of states differing in m only: Flo-

quet functions from the same class are physically equivalent. This is also

true for the quasienergies and consequently, the unbounded spectrum of
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quasienergies can be divided into identical zones of width ~ω, each zone

containing a single representative of each class of quasienergies. In analogy

to the Brillouin zone scheme in solid-state physics, arising from a spatial

periodicity resulting in quasimomenta defined only modulo ~ · 2π/a, the

temporal periodicity leads to quasienergies defined modulo ~ · 2π/T = ~ω.

Here, the fundamental Brillouin zone for quasienergies is agreed to be

[−~ω/2, ~ω/2[.

The power of the Floquet formalism is connected to the possibility to

express every solution |ψ(t)〉 of the Schrödinger equation as

|ψ(t)〉 =
∑
n

cn |un(t)〉 exp (−iεnt/~) , (2.1.7)

where no index m labeling the representatives arises and, most impor-

tantly, the occupation amplitudes are time-independent. In other words:

If a basis of Floquet states is used for describing the time evolution of a

state |ψ(t)〉, the corresponding occupation probabilities |cn|2 remain con-

stant in time. This is in complete analogy to a state expansion into the

eigenstates of the Hamiltonian of time-independent systems.

Apart from the drawback that the Floquet picture remains restricted to

the description of classical fields, and the mathematical difficulty to decide

even for seemingly simple systems whether the quasienergy spectrum is

continuous or a dense point spectrum [122], both only marginal issues for

the present work, the main difficulties with the Floquet formalism in the

context discussed here arise from two points:

(i) How can the quasienergy spectrum for a given system be calculated

numerically? The short answer is that, after an inevitable truncation of

the basis for numerical manageability, the quasienergies can be calculated

by diagonalizing the monodromy operator – the time evolution operator

U(T, 0) for one period T – in the given basis, for which

U(T, 0) |uα(0)〉 = exp (−iεαT/~) |uα(0)〉 (2.1.8)
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holds due to the T -periodicity of the Floquet functions |uα(t)〉. For a de-

tailed description of the calculation of quasienergies the reader is referred

to the Appendix C, where the scheme is exemplified for a lattice system.

(ii) The Floquet formalism describes perfectly periodic systems. In the

physical context of laser radiation interacting with matter, this interaction

and hence the laser radiation itself, when described by Floquet theory,

has never been switched on in the past and will never be turned off in the

future, otherwise the temporal periodicity – the key element in Floquet

theory – will be broken. This is obviously highly unsatisfactory from

the experimental point of view but even theoretically speaking it is likely

that the switching on/off process and its specific protocol can (and indeed

will) change the evolution of a given state of the system. On the one

hand, this makes a theoretical treatment of a more realistic setup with

included switching on and off processes mandatory. On the other hand,

these processes, if understood in detail, can be exploited to deliberately

control the evolution of a given state of the system.

The second key problem, the process of switching the laser on (or off),

can be treated with adiabatic techniques even in the Floquet framework,

provided the relevant parameter – the laser radiation’s amplitude in this

case – is varied slowly with respect to the period of the laser radiation.

This separation of periodic and parametric time scales is close in spirit

to the Born-Oppenheimer approximation [123, 124]. Then, for each point

in time an instantaneous basis of Floquet states can be defined for each

instantaneous amplitude of the laser; a procedure that is derived from

the treatment of parametrically but not periodically varying Hamiltoni-

ans, see [125, 126]. The system dynamics can now be monitored with

respect to this set of Floquet bases despite the loss of formal periodicity

of the Hamiltonian. If the state of the system is connected to a single

quasienergy, for example, its variation with a change of parameters deter-
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mines whether or not the state is able to follow these changes adiabatically.

As is turns out, the concept of an adiabatic transport even holds for lattice

systems, where entire momentum distributions are transported according

to the rules of adiabaticity, as detailed in Publication IV. This concept,

when applied to the framework of Floquet states [127, 128], is called an

adiabatic principle in contrast to the adiabatic theorem. The latter re-

quires an energy gap between the transported state and all other states,

a condition not necessarily met in the Floquet context.

If the Hamiltonian changes such that the evolution is not perfectly adi-

abatic, transitions between different quasienergies occur. For parametric

but not periodic changes of the Hamiltonian, the most prominent model to

describe transition probabilities between two anticrossing energy lines is

the Landau-Zener approach,1 see [132]. This technique can be transferred

to the setup of a periodically changing Hamiltonian, where transitions

between anticrossing quasienergies occur, as discussed (among others) by

Shirley [133].

In the case of periodically changing external fields acting on an atom,

the radiation field is said to be “dressing” the bare atom [134] (that is

the atom without the field present). This terminology of a dressed-atom

picture was coined by Cohen-Tannoudji and co-workers, who were able to

manipulate Landé g-factors by applying an oscillating magnetic field to

the atoms. With the field with amplitude B and frequency ω present, the

1This theory specifies the anticrossing to be linear, that is far from the anticrossing the

energy lines approach straight lines, and the coupling elements are constant in time.

Other models consider different anticrossing geometries (such as tanh-anticrossings

in the second Demkov-Kunike model [129]), time-dependent coupling elements as in

the Rosen-Zener model [130], or a combination of both as in the first Demkov-Kunike

model. For further details the reader is referred to [131] and references therein.
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effective g-factor geff is connected to the original one by

geff = g J0

(
γB

ω

)
, (2.1.9)

where J0 denotes the zero-order Bessel function of the first kind and γ

is the gyromagnetic ratio [135]. Eckardt et al. transferred the dressed-

atom picture to periodically driven ultracold atoms and Bose-Einstein

condensates, and suggest to view them as “dressed matter waves” [136].

First steps have been made to explore the exciting prospect of dressed

matter waves on theoretical as well as experimental grounds. The following

sections review some of the efforts already undertaken to gain insight into

driven matter waves.

2.2. Dynamic Localization

One of the effects induced by an external periodic driving of a lattice sys-

tem is “dynamic localization”. In particular, and in contrast to the pulsed

driving scenarios described in detail in the Publications I, III, and IV, it

resorts to schemes with constant driving amplitudes. This section gives a

short review of the effect and its explanation in terms of Floquet theory.

The line of thought is kept close to the one adopted in Publication II, which

in addition discusses the necessity of semiclassical approximations – in par-

ticular with respect to “extended” wave packets – as well as applications to

bichromatic lattices and the coherent control of the “metal-insulator”–like

transition occurring in the Harper model [137, 138].

Consider a particle moving in a lattice potential. For simplicity the

lattice is assumed to be one-dimensional, but the following discussion can

easily be generalized to higher dimensions. If the wave function of the

particle is initially localized around some lattice site, the width of its

envelope will grow in time since quantum tunneling enables the particle to
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explore its neighborhood as known from basic quantum mechanics. This

dispersive behaviour of the wave packet can be eliminated deliberately

by shaking the lattice in a specific way. This impeded dispersion by an

external force is, in short, dynamic localization.

The term was introduced by Dunlap and Kenkre in 1986, who consid-

ered a charged particle moving in a single-band tight-binding lattice with

sites labeled by m under the influence of a spatially homogeneous but

explicitly time-dependent sinusoidal electric field E(t) [139]. The char-

acteristic energy scale associated with the field’s amplitude, E = qEa, is

proportional to the charge q of the particle and to the lattice constant a.

Dunlap and Kenkre discovered that for times that are long compared to

the driving period, that is for t� 2π/ω, the mean square displacement of

the particle is given by 〈
m2
〉

= 2 (Veff t)
2 . (2.2.1)

The electric field rescales the tunneling energy V connecting neighboring

sites and leads to an effective intersite matrix element

Veff = V J0

(
E
~ω

)
, (2.2.2)

which reduces to V in the limit E → 0. Interestingly, though, Veff can

vanish if the ratio between field amplitude and frequency reaches a zero

of the Bessel function J0. In this case
〈
m2
〉

vanishes, displaying explicit

localization. Dunlap and Kenkre conjectured in 1986 that this effect might

be exploited in higher dimensional systems “for inducing an anisotropy in

the transport properties in ordinarily isotropic material” [139].

The term “coherent destruction of tunneling”, coined in 1991 by Gross-

mann et al. (cf. [140]), describes a closely related concept in double-well

systems. There, by applying a suitable oscillating external force, a state

initially prepared in only one of the wells remains localized in the same

well: The tunneling contact between the wells is “cut”.
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With the experimental realization of lattice as well as double-well sys-

tems in the framework of ultracold atoms and the viability of shaking

these system periodically, driving-induced localization mechanisms could

be put to the test with mesoscopic matter waves. On the many-body level,

Eckardt et al. showed theoretically in 2005 that the superfluid-to-Mott

insulator transition can be induced by an external forcing [141]. The tun-

neling matrix element gets renormalized by a Bessel function and again

the tunneling contact between neighboring sites can be reduced almost

arbitrarily. The details of this transition and the connection to external

driving forces are discussed in Sec. 2.4. The first observation of dynamical

suppression of tunneling as predicted by Eckardt et al. [141] and Creffield

and Monteiro [142] was reported by the Pisa group in 2007: The exper-

imental results confirmed the theoretical considerations [112]. Although

only the absolute value |Jeff/J | could be measured at the time, later ex-

periments allowed to extract the sign of the Bessel function by monitoring

the phase coherence of the condensate [143].

On the single-particle level, Holthaus et al. approached dynamic local-

ization in 1992/93 theoretically by using Floquet theory [144, 145]. In

this language, localization takes place due to a field-induced collapse of

quasienergy bands: Consider the simple model of a one-dimensional tight-

binding system described by the Hamiltonian

H0 = −J
∑
m

(|m+ 1〉 〈m|+ |m〉 〈m+ 1|) , (2.2.3)

where |m〉 denotes a Wannier state localized at themth lattice site and J >

0 is the hopping matrix element between two neighboring sites, spatially

separated by the lattice constant a. In this case, the dispersion relation is

exactly given by

E(k) = −2J cos(ka) , (2.2.4)
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where k is a wavenumber. By adding a term

H1(t) = −F1 cos(ωt)
∑
m

|m〉 am 〈m| (2.2.5)

describing a homogeneous external force F1 cos(ωt) acting on the system,

the Hamiltonian H = H0 +H1 becomes periodic in time and – within the

single-band approximation – the Schrödinger equation is solved by the

functions

|ψk(t)〉 = exp
{
− i

~

∫ t

0
dτ E [qk (τ)]

}∑
m

|m〉 exp [imqk(t)a] (2.2.6)

known as “accelerated Bloch waves” (or Houston states [146] when dis-

cussed in the context of crystal electrons), provided the time-dependent

wave numbers qk(t) obey2

qk(t) = k +
1
~

∫ t

0
dτ F (τ) (2.2.7)

= k +
F1

~ω
sin(ωt) . (2.2.8)

Now, the energies E[qk(t)] are periodic because the force F (t) is, but the

Houston states are not. But they can be cast into the form of Floquet

states simply by rewriting their exponential part as

exp
{
− i

~

∫ t

0
dτ E [qk (τ)]

}
= exp

{
− i

~

∫ t

0
dτ [E (qk (τ))− ε(k)]

}
× exp [−iε(k)t/~] (2.2.9)

using the one-cycle average

ε(k) ≡ 1
T

∫ T

0
dt E [qk (t)] (2.2.10)

= −2Jeff cos(ka) (2.2.11)

2This results from the relation ~q̇k(t) = F (t) obtained by inserting (2.2.6) into the

Schrödinger equation, plus the demand that qk(t) is equal to k at t = 0.
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involving an effective hopping matrix element given by

Jeff = JJ0

(
F1a

~ω

)
. (2.2.12)

The Houston states are now in the form of Floquet states and the aver-

ages (2.2.11) are exactly the quasienergies. But regardless of whether the

detour involving Houston states is taken or the Floquet theory is directly

applied to the problem, both ways result in a Floquet expansion where the

width of the quasienergy band ε(k) changes according to Eq. (2.2.11) when

the driving amplitude changes. If the scaled driving amplitude F1a/(~ω)

reaches a zero of the Bessel function, the quasienergy band is completely

flat. Consequently, all elements in the Floquet expansion of the wave

function gather the same dynamical phase factors. This results in a “pro-

hibited dephasing” at the collapse point.

2.3. Photon-Assisted Tunneling

An external periodic force can be used to suppress the tunneling contact

between adjacent sites in a lattice system by dynamic localization or in

double-well potentials by coherent destruction of tunneling, but quite the

opposite effect can be realized with the same tool: External forces can be

used to enhance tunneling contact; an effect which has become known as

“photon-assisted tunneling”. The term originates from solid state physics,

where, at certain voltages, a photon-irradiated superconducting Josephson

junction exhibits steps in the quasiparticle current [147]. Photon-assisted

tunneling has already been observed in quantum dots [148, 149], super-

conducting diodes [150], semiconductor superlattices [151, 152], and has

recently been seen in double-well and lattice systems with ultracold atoms

and Bose-Einstein condensates as elaborated on in the following.

The scheme of photon-assisted tunneling was transferred to the frame-
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work of ultracold atoms in a double-well potential by Eckardt and co-

workers in 2005, considering individual wells which are modulated peri-

odically in time [153]. In this so-called “bosonic Josephson junction”, the

frequency associated with the “photons” is in the lower kilohertz regime.

For lattice systems, multiphoton processes which increase the tunneling

contact were studied theoretically by Creffield et al. in 2006, who proposed

to exploit these processes for controlling the superfluid-to-Mott insulator

transition [142] and considered effects of the initial driving phase in a

consecutive study [154].

But before photon-assisted tunneling was observed experimentally three

years after the theoretical proposal, an effect similar to photon-assisted

tunneling was realized with Bose-Einstein condensates, which does not rely

on a periodically modulated driving force but on a constant acceleration

leading to a homogeneous “tilting” of the entire lattice. For certain values

of the tilt, spatially separated lattice sites become resonantly coupled as

Sias and co-workers showed experimentally in 2007 [155]. But whereas

this time-independent resonantly enhanced tunneling is mediated by a

tilting force tuned to a difference in the site-dependent energy levels (see

Fig. 2.1a), for photon-assisted tunneling an additional driving force is

needed. In a tilted system the tunneling contact can (partially) be restored

by an external drive with a frequency that is resonantly tuned to bridge

the gap between otherwise uncoupled sites as depicted in Fig. 2.1b. If the

tilting force F is acting on the lattice with wells separated by a distance

a, then the potential difference between adjacent wells is ∆E = Fa. Now,

the resonance condition for photon-assisted tunneling reads

m~ω = Fa (2.3.1)

and denotes what is called an m-photon resonance or a photon-assisted

resonance of the order m. Generally speaking, photon-assisted tunneling
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a)

h̄ω

b)

Figure 2.1.: Upper panel: Resonance enhanced tunneling. The tilting

is tuned such that two states in adjacent sites match energetically. For

different tiltings, even wells that are several sites apart can be resonantly

coupled. Lower panel: Photon-assisted tunneling. The lowest states are

tilted out of resonance. The tunneling contact is restored by shaking the

lattice resonantly with frequency ω, thus bridging the tilting-induced level

separation.



39

is achieved when the driving frequency bridges the energy gap between

two modes; tilting the lattice is just one way to create off-resonant modes.

This scheme of photon-assisted tunneling in a lattice system was exper-

imentally realized for the first time by the Pisa group in 2008 [156] with

a Bose-Einstein condensate in a one-dimensional optical lattice described

by the Hamiltonian

H =− J
∑
〈i,j〉

(
c†icj + c†jci

)
+
U

2

∑
j

nj (nj − 1)

+ ∆E
∑
j

jnj +K cos (ωt)
∑
j

jnj ,
(2.3.2)

where the first line is the Bose-Hubbard Hamiltonian,3 J is the tunneling

energy between adjacent sites, U is the on-site interaction energy, c(†)i
denote the bosonic annihilation (creation) operators, respectively, and nj
is the particle number operator for the jth site. The third and fourth term

additionally introduce the tilting associated with an energy difference ∆E

as described previously and the external driving with amplitude K and

frequency ω. As predicted by Eckardt et al., the periodic driving dresses

the system and leads to a rescaled effective tunneling matrix element

Jeff = JJn(K0) , (2.3.3)

where the nth Bessel function is evaluated at the dimensionless driv-

ing amplitude K0 = K/(~ω). The experiment was performed with a

Bose-Einstein condensate of 87Rb in a lattice with spacing λL = 852 nm

and depth of five recoil energies. The acceleration was implemented by

adding a frequency difference δν between the two lattice-generating laser

beams, which additionally was modulated sinusoidally to induce the time-

dependent force. The ratio |Jeff/J | was extracted by measuring the in

3See Section 2.4 for details.
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situ width of the condensate with and without accelerating and/or shak-

ing the lattice. Both the suppression of tunneling in the homogeneously

accelerated lattice and the photon-assisted restoration of tunneling are

evident in the experimental results shown in [156]. The lower panel of

Fig. 2.2 (taken from Creffield et al. [157]) depicts4 the experimental data

for photon-assisted tunneling as analyzed by Sias et al.. Seemingly, the

data interpolates between a linear and quadratic scaling with the Bessel

function. This results from the assumption that the width of the conden-

sate σ(t) scales linearly in time. However, this is justified only for long

expansion times, as recently pointed out by Creffield et al.: If the correct

scaling (cf. [157, 158])

σ(t) =
√
〈x2〉 − 〈x〉2

= σ0

√
1 + (t/tc)2 (2.3.4)

with the initial width σ0 and tc ∝ |Jeff|−1 is employed to calculate |Jeff/J |,
the agreement between theory and experiment is improved noticeably, as

shown in Fig. 2.2a.

Similar results were obtained in tilted, driven double-well systems [159].

Recent theoretical work by Teichmann et al. even points to fractional

photon-assisted tunneling in a system of a Bose-Einstein condensate in

a double-well potential. Unlike their integer valued predecessor, frac-

tional photon-assisted tunneling processes cannot be explained by a mere

driving-induced renormalization of the tunneling frequencies [160]. In

2011, Esmann and co-workers analyzed the contribution of fractional pho-

ton-assisted tunneling in a double-well superlattice to the particle trans-

fer [161].

4 c© 2010 by the American Physical Society.
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Figure 2.2.: Photon-assisted tunneling in theory and experiment. For a

one-photon resonance, in (a) the theoretically expected (first-order Bessel

function, solid line) and the experimentally measured effective tunnel-

ing are juxtaposed for two different initial condensate sizes [15µm (open

squares), 17µm (solid squares)]. The effective tunneling matrix element is

extracted using the correct scaling given by Eq. (2.3.4). Panel (b) depicts

the same experimental data, but now a linear scaling is assumed, that is

t � tc. The data clearly interpolates between a linear (solid line) and

quadratic (dashed line) scaling in the Bessel function. From [157] with

kind permission of Dr. C. Creffield.
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2.4. The Superfluid-to-Mott Insulator Transition

As one of the landmark experiments with Bose-Einstein condensates, the

superfluid-to-Mott insulator transition has already been mentioned in the

previous sections. The present one focuses on this quantum phase transi-

tion, which emerges naturally in the Bose-Hubbard model, as well as on

its experimental realization, achieved for the first time in 2001. The Bose-

Hubbard model has been studied extensively in the literature. Inevitably,

only an incomplete selection can be given here and the reader is referred

to [111, 141, 162, 163, 164, 165, 166, 167, 168] and references therein. A

description of the superfluid-to-Mott insulator transition can be found in

Sachdev’s “Quantum Phase transitions”, see [169].

The transition itself can easily be sketched: Consider a Bose-Einstein

condensate in a static optical lattice, which is neither accelerated nor

externally driven. Suppose two atoms interact only with each other when

they are in the same well; quantum tunneling is restricted to adjacent

wells only and additionally single-band dynamics are assumed. Then, the

ratio between the energy J associated with a single tunneling event on

the one hand and the (repulsive) on-site interaction energy U on the other

determines the phase of the system. Two cases can be distinguished:

• If the interaction energy scale dominates as in the case of very deep

lattice wells, J/U � 1, quantum tunneling is suppressed and the

system is in a Mott-insulating state. All of the wells are isolated

and phase coherence between the individual condensates is lost.

• If the tunneling energy scale dominates as in the case of rather shal-

low lattice wells, J/U � 1, quantum tunneling events dominate and

the system is in the superfluid state. The condensate is no longer

fractioned and extends phase-coherently over the entire lattice.

Obviously, when slowly increasing the depth of the wells in an initially
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rather shallow lattice, the state of the system changes from the super-

fluid to the Mott-insulating state. Although by no means apparent, the

transition takes place at a certain critical value (J/U)c and is driven by

quantum rather than statistical fluctuations and hence poses an example

for a quantum phase transition, which takes place even at zero tempera-

ture.

The physics of the scenario sketched above is enclosed in the Bose-

Hubbard model. It is closely related to the Hubbard model known from

solid state physics, which describes the very similar “hopping” and interac-

tion of electrons in a lattice system [170]. To be definite, the Bose-Hubbard

model reads

Ĥ = −J
∑
〈i,j〉

(
ĉ†i ĉj + ĉ†j ĉi

)
+
U

2

∑
j

n̂j (n̂j − 1) , (2.4.1)

where −J (J > 0) denotes the hopping matrix element between adjacent

lattice sites, which are summed over in the first term. Note that their

number depends on the dimension d of the lattice; for a simple cubic

lattice each site has 2d nearest neighbors. The second term accounts for

the on-site interaction associated with the energy U and nj(nj − 1)/2 is

exactly the number of pairs in the jth well. This second-quantized form

of the Hamiltonian with the bosonic annihilation (creation) operators ĉ(†)j ,

respectively, which obey the bosonic commutation rules[
ĉi , ĉ

†
j

]
= δij

[
ĉi , ĉj

]
=
[
ĉ†i , ĉ

†
j

]
= 0 , (2.4.2)

refers to a Fock basis of states with occupation numbers nj ,{
|n1, n2, . . . , nM 〉 |

M∑
i=1

ni = N

}
, (2.4.3)

where M is the number of lattice sites. This basis explicitly contains

the particle number N , in contrast to the Hamiltonian (2.4.1). At a first
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glance, the Bose-Hubbard model seems to be a rather simple model with

only the basic tunneling and interaction effects incorporated. Yet it evades

an analytical solution and the existence of a quantum phase transition,

too, indicates the nontrivial physics involved. But even exact numerical

approaches are feasible only for rather small systems with a few particles

and lattice sites (at the most up to ten each). This is due to the dimension

D of the Hilbert space, which grows exponential with the system size:

D =
(
N +M − 1

N

)
∼ ehM , (2.4.4)

with h = (n+ 1) ln(n+ 1)− n lnn and the filling factor n ≡ N/M .

To understand the mechanisms of the quantum phase transition, con-

sider a one dimensional lattice (d = 1) . . .

• in the limit of weak interactions, U/J → 0. The Hamiltonian (2.4.1)

is now diagonal in the basis of Bloch waves

|ψk〉 =
1√
M

M∑
`=1

|`〉 eik`a (2.4.5)

where |`〉 denotes a Wannier function [171] at the `th site and a is

the lattice constant. The many body ground state is then superfluid

(SF) and can be created from the vacuum |0〉:

|SF〉 =
1√
N !

(
1√
M

M∑
`=1

ĉ†`

)N
|0〉 . (2.4.6)

In the limit of weak interactions all particles occupy the single par-

ticle ground state

|ψ0〉 =
1√
M

M∑
`=1

|`〉 , (2.4.7)

which is extended over the entire lattice and corresponds to k = 0

of the single particle dispersion relation

E(k) = −2J cos(ka) (2.4.8)
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of the Bose-Hubbard Hamiltonian in the limit U/J → 0. The ground

state obviously is not separated from the spectrum by an energy gap,

thus elementary excitations are ungapped.

• in the limit of strong interactions, J/U → 0, where the Hamilto-

nian (2.4.1) is now diagonal in the basis of (localized) Wannier states.

For integer n, the many body ground state of the system reads

|MI〉 =
M∏
`=1

(
ĉ†`

)n
√
n!

|0〉 . (2.4.9)

Since no tunneling occurs, the particles cannot move to different

lattice sites and the system is in a Mott-insulating state. Due to the

repulsive interactions it is energetically favorable for the atoms to be

spread out homogeneously over the entire lattice. For integer filling

factors n a perfectly homogeneous distribution is possible: Each

site is filled with n atoms. In this case, elementary excitations are

particle-hole excitations, which are energetically gapped from the

ground state by ∆E = U .

At the critical value (J/U)c, the elementary excitations change character

from ungapped to gapped. For understanding the superfluid-to-Mott in-

sulator transition it is helpful to extend the system to the grand canonical

ensemble, thus allowing fluctuations in particle number. The Hamiltonian

then reads

Ĥgc = −J
∑
〈i,j〉

(
ĉ†i ĉj + ĉ†j ĉi

)
+
U

2

∑
j

n̂j (n̂j − 1)− µN̂ , (2.4.10)

with the chemical potential µ and N̂ =
∑

i n̂i is the particle number

operator.

In the limit J/U → 0 the system is in the Mott-insulating regime, where
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the (integer) occupation numbers ni for the ground state minimize the on-

site energy E(n) = Un(n− 1)/2− µN , leading to

n =


0 if µ/U < 0

g if (g − 1) < µ/U < g

g or (g − 1) if µ/U = g − 1 .

(2.4.11)

with integer g ≥ 1. Hence the system is incompressible for noninteger

µ/U ,
∂ 〈n̂i〉
∂µ

= 0 . (2.4.12)

In the limit J/U → 0, particle-hole excitations increase the energy of the

system by a finite amount E0(N ±1)−E0(N). If J/U is slowly increased,

the energy levels are shifted continuously and the energy gap between the

ground state and a particle-hole excited state decreases. When the energy

lines cross, the previous excited state is energetically favored and becomes

the new ground state: The particle number of the system changes. This

takes place when the energy cost of the excitation is compensated by a gain

in energy due to the delocalization induced by the tunneling. Perturbative

calculations in J/U lead to a phase diagram for the superfluid-to-Mott

insulator transition as sketched in Fig. 2.3. The “Mott lobes” dominate

for small values of J/U except near integer values of µ/U where the system

is superfluid just as in the J/U � 1 regime. The lobes are calculated for

a square 2d lattice geometry in 9th order perturbation theory [according

to Kato, extrapolated (for details see [172])].

When a mean-field approach is used to determine the critical point of

the quantum phase transition, the grand canonical Hamiltonian (2.4.10)

is replaced by the mean-field Hamiltonian

Ĥmf(ψ) =
∑
i

Ĥ
(i)
S , (2.4.13)
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Figure 2.3.: Phase diagram for the superfluid-to-Mott insulator transi-

tion for a square lattice in d = 2 dimensions. In the superfluid regime

(SF) with integer values of 〈n̂〉, the lines of constant density 〈n̂〉 hit the

phase boundary to the Mott-insulating regime (MI) at the tips of the Mott

lobes. For noninteger 〈n̂〉 these lines end at integer values of µ/U in the

limit J/U → 0. Data by courtesy of D. Hinrichs.
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where the single-site Hamiltonian

Ĥ
(i)
S = −2dJ

(
ψ∗ĉi + ψĉ†i − |ψ|

2
)

+
U

2
n̂i(n̂i − 1)− µn̂i (2.4.14)

is equipped with a complex parameter ψ (ψ∗) which controls the strength

with which a particle is coupled “into (out of) the site”, respectively. But

for what values of ψ is the mean-field Hamiltonian a proper replacement

for the grand canonical one? The mean-field ground state is reached for

ψ = 〈ĉ〉ψ , (2.4.15)

that is, this choice for ψ is optimal in the sense that it minimizes the

expectation value Emf(ψ) ≡
〈
Ĥmf(ψ)

〉
ψ

. Since the expectation value of

the difference between mean-field and grand canonical Hamiltonian〈
Ĥgc − Ĥmf(ψ)

〉
ψ

= −2dJM
(
〈ĉ〉ψ − ψ

)2
(2.4.16)

depends on the fluctuations (ĉi − ψ), substituting Ĥgc with Ĥmf is equiv-

alent to neglecting the correlation of those fluctuations.

The trial function Emf(ψ) now is characteristically different for the dif-

ferent phases, as depicted in Fig. 2.4. In the Mott-insulating regime, the

mean-field ground state energy is minimized for ψ0 = 0 (upper panel). If

the tunneling contact is now slowly turned on, the minimum gets broader

until the phase transition (J/U)c is passed. After passing the transition

point the order parameter ψ0 is nonzero and the mean-field energy as a

function of ψ is double-well shaped and exhibits two minima, provided ψ

is chosen real. This is possible since a complex phase factor of ψ can be

absorbed in the definition of the annihilation operator without changing

the commutation relations. For systems with complex order parameters

(which cannot be transformed to real values as it is the case here), the trial

energy has a characteristic “Mexican hat” geometry. This leads to gapped
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Figure 2.4.: Trial mean-field energies as a function of the parameter ψ

(sketched). a) For J/U = 0 the mean-field energy minimum is at ψ0 =

〈ĉ〉 = 0. This implies
〈
ĉ†i ĉj

〉
=
〈
ĉ†i
〉〈
ĉj
〉
, so no long-range correlations exist

and the system is in the Mott-insulating state (MI). These correlations do

exist in the compressible regime (b) as indicated by the order parameter

ψ0, which is nonzero for a state in the superfluid regime (SF).
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excitations in radial direction just as in the Mott phase, but there are ad-

ditional gapless excitations along the “trough” of the Mexican hat, which

are associated with Goldstone modes. This behaviour known as “sponta-

neous symmetry breaking” [173] is characteristic for phase transitions and

can be found in a variety of different physical systems.

The experimental realization of the superfluid-to-Mott insulator tran-

sition with ultracold atoms was first achieved in 3d by Greiner et al. in

2002 [111], four years after the theoretical proposal by Jaksch and co-

workers [163]. Subsequent experiments observed the superfluid-to-Mott

insulator transition in 2d [174] and 1d [167] as well. The experimen-

tal signature used to determine whether the system is in the superfluid

or Mott-insulating state is its momentum distribution, which exhibits a

pronounced interference pattern in the superfluid regime due to phase co-

herence of the superfluid state, whereas in the Mott-insulating regime the

interference pattern vanishes since phase coherence is lost. Notably, phase

coherence of the Mott insulator can be restored by crossing the phase

transition to the superfluid regime, as depicted in Fig. 2.5. The semi-

nal experimental observation of the phase transition clearly demonstrates

the feasibility to emulate complex model systems known from solid state

physics with Bose-Einstein condensates in an extremely transparent and

controlled way, as performed with the Bose-Hubbard model. The model

itself and its range were put to the test and both experimental and theo-

retical efforts included the study of facets of the model such as the in-trap

density distributions [175, 176, 177], the number statistics [177, 178], the

detailed shape of the phase diagram [162, 172, 179], the excitation spec-

trum [111, 180, 181], and more.

As in the case of the already discussed dynamic localization and photon-

assisted tunneling, an additional periodic force acting on the system can

coherently and in a controlled way alter the dynamics of the Bose-Hubbard
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Figure 2.5.: The pronounced interference patterns indicating the super-

fluid state (left) vanish in the Mott-insulating regime due to a loss of

phase coherence (middle), but can be restored by transitioning back to

the superfluid regime (right). Shown here is experimental data for a three-

dimensional optical lattice with more than 100,000 occupied lattice sites.

Figure by courtesy of I. Bloch.
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model and literally drive its phase transition: For simplicity, consider a 1d

Bose-Hubbard model with an additional driving term as done by Eckardt

and Holthaus in 2008 [136], so that the Hamiltonian of the system is given

by

Ĥ(t) = −J
M−1∑
i=1

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+
U

2

M∑
i=1

n̂i (n̂i − 1)

+ [K0 +Kω sin(ωt)]
M∑
i=1

i n̂i , (2.4.17)

whereM denotes the number of lattice sites. Now, without any interaction

between the particles, that is U/J = 0, and tuning the constant force

resonant to the driving by setting

K0 = m~ω (integer m) , (2.4.18)

the driven system approximately behaves like an undriven one, but again

the hopping matrix element is renormalized by a Bessel function according

to

Jeff = (−1)mJm
(
Kω

~ω

)
J . (2.4.19)

If the system is in the high frequency regime (~ω � U and ~ω � J),

Eq. (2.4.19) remains valid even for nozero U (cf. [141]).

Now, since the phase of the system is determined by the parameter J/U

and this parameter gets “renormalized” by the presence of the driving

force, the phase transition can be crossed by varying the driving strength

Kω. Note that, experimentally, the ground state of the undriven system

needs to be transported to the effective ground state of the driven system

– a nontrivial task as discussed in [136]: An adiabatic following of the

many-body wave function imposes conditions on the driving protocol. a)

The quasienergy spectrum has to remain “smooth”, that is without ex-

hibiting major resonances in the spectrum, so the driving frequency has
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to be chosen accordingly. b) To ensure proper adiabaticity, the driving

amplitude needs to vary sufficiently slowly on the one hand, but still fast

enough on the other to pass minor resonances in the spectrum without

them inducing tangible interband transitions.

With these difficulties it was by no means clear whether the Mott-

insulator transition in a periodically driven lattice could be observed ex-

perimentally. This changed in 2009, when the Pisa group demonstrated

the feasibility to induce the phase transition reversibly by changing the

strength of the driving [114], thus extending the range of applicability of

cold atoms in optical lattices. Again, driving the atoms opened up new

vistas for controlling cold atoms on a quantum level.

2.5. Quantum Simulation of Frustrated Classical

Magnetism

Only very recently an article written by the Hamburg group entitled

“Quantum simulation of frustrated classical magnetism in triangular op-

tical lattices” has been published in Science [182]. The paper is appealing

on several levels: Firstly, it provides another example of the fruitful ex-

ploitation of the highly flexible system of Bose-Einstein condensates in

optical lattices to emulate other physical systems with a purity unequaled

by other means. Struck et al. succeeded in finding a way to simulate the

XY model on a triangular lattice, a basic spin system which allows for

frustration due to the lattice geometry [183, 184, 185, 186, 187, 188]. Just

as with the observation of Bloch oscillations and basically for the same rea-

sons, an experimental realization with ordinary solid-state devices poses a

major challenge, yet Bose-Einstein condensates can fill the gap. Secondly,

it is again the external driving of the system that is crucial. In the scheme

adopted by Struck et al. the sign of the hopping matrix elements was
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manipulated by the driving force, thus deliberately rendering the nearest-

neighbor coupling ferro- or antiferromagnetic. The successful utilization

of a driving force again hints at the still latent possibilities to be explored

in periodically driven quantum systems.

The concept of “geometrical frustration”, in the following short “frus-

tration”, can easily be sketched with the help of the plaquettes the lattice

is build of. Consider the spins, for the moment, to have just two align-

ments: up and down. With antiferromagnetic interactions, adjacent spins

on the lattice tend to align antiparallelly to minimize the system’s energy.

If the lattice is build of rectangular plaquettes (a single one is sketched

in Fig. 2.6a), then all four antiferromagnetic bonds between the spins can

be respected by alternating the spins orientation from site to site. If all

↑ ↓

↓ ↑

J̃J̃

J̃

J̃a)

↑ ↓

?

J̃J̃

J̃

b)

↑ ↓

?

J
′

J
′

J

c)

Figure 2.6.: For quadratic plaquettes, a), all antiferromagnetic bonds

(J̃ < 0) can be respected in contrast to triangular plaquettes, b), where

for J , J ′ < 0 the third spin is frustrated since it cannot respect both bonds

simultaneously. In the driven lattice, c), the horizontal and diagonal bonds

can be tuned independently so that different phases can be modeled.

the spins on the entire lattice are aligned in this fashion, the system is

in its (twofold degenerate) ground state. For a lattice build of triangular

plaquettes, on the other hand, this scheme does not work out. One pair

of spins can always be aligned correctly, but not matter how the third one

is oriented, it will violate one of the antiferromagnetic bonds and is hence
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called frustrated, compare Fig. 2.6b. If the lattice is just a single plaque-

tte, the ground state now is threefold degenerate. In general, frustrated

systems allow for highly degenerate ground states, leading to a nonzero

entropy even at zero temperature, to give an example of the intriguing

physics of frustrated systems.

But now back to the XY model [189, 190], the physics of which were

simulated with Bose-Einstein condensates by Struck and co-workers. It

consists of classical vector spins ~Si = [cos(θi), sin(θi)] located at the nodes

of a (triangular) lattice and interacting by nearest-neighbor couplings Jij :

ferromagnetic (antiferromagnetic) interactions are modeled by positive

(negative) Jij , respectively. Since the spin degree of freedom is no longer

restricted to θi = ±π/2 but can explore the the entire plane, θi ∈ [0, 2π[ ,

the XY model is also known as rotor model. The Hamiltonian of the

system is given by

H({θi}) = −
∑
〈i,j〉

Jij ~Si · ~Sj

= −
∑
〈i,j〉

Jij cos(θi − θj) ,
(2.5.1)

where the sum runs over all pairs 〈i, j〉 of adjacent spins. This model can

be mapped to weakly interacting bosons on a triangular lattice forming

a superfluid state. For a lattice depth of 5.6Er, on-site interaction U =

0.004Er, homogeneous tunneling Jij = J , and J̃/U = 0.5 as used by

Struck and co-workers, the system is deep in the superfluid regime.5 In

the weakly interacting regime, the superfluid ground state can locally be

approximated by [186] ∏
i

exp
(
ψi ĉ

†
i

)
|0〉 (2.5.2)

5Note that the phase diagram naturally depends on the geometry of the system, so a

direct comparison with Fig. 2.3 calculated for a quadratic lattice cannot be made

and the reader is referred to reference [191].
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with the discrete local order parameter ψi =
√
ni exp(iθi); the mean num-

ber of atoms at the ith site is ni, and θi denotes the local phase. The

energy of the system without interactions reads in the tight binding limit

E({θi}) = −
∑
〈i,j〉

√
ni
√
njJij cos(θi − θj) , (2.5.3)

which is in the homogeneous case, ni ≡ n for all i, equivalent – up to a

constant factor – to the energy of theXY model given by Eq. (2.5.1). Next

to this formal mapping of both systems, their similarity becomes evident

in the language of phase transitions, too, since both systems belong to the

same universality class [162, 192].

The feature described as “most important”6 to the approach used by

Struck and co-workers is the possibility to tune the parameters J and J ′

(see Fig. 2.6c) independently by shaking the lattice elliptically according

to
~F (t) = Fc cos(ωt)~ey + Fs cos(ωt)~ex , (2.5.4)

resulting in the typical renormalization

J = J0

(
d|Fc|
~ω

)
J̃ (2.5.5)

J ′ = J0

(
d
√
F 2

c /4 + 3F 2
s /4

~ω

)
J̃ (2.5.6)

of the bare coupling element J̃ by a Bessel function J0(z). Thus, J and J ′

can each independently and deliberately be adjusted to zero or ferromag-

netic or antiferromagnetic, leading to different cases as labeled in Tab. 2.1.

The tunability of the hopping matrix elements now is extremely useful for

studying the transition between different phases. Consider, for example,

a perfectly ferromagnetic setting (J = 1 and J ′ = 1) and then slowly

6cf.[182], p. 997
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Table 2.1.: Different phases in the triangular XY model are labeled

according the signs of the coupling parameters J and J ′, defined as in

Fig. 2.6c.

ferromag. rhombic Sp1 Sp2 staggered 1d chains

sign(J) 1 1 -1 -1 1

sign(J ′) 1 -1 -1 1 0

decrease J ′ to −1 while keeping J fixed. At some value of J ′ the phase of

the system will turn from ferromagnetic to rhombic. This is accompanied

by a certain critical value of J ′ and can be understood by calculating the

energy (cf. supplementary material of [182])

E(J, J ′) =

−J − 2|J ′| if |J ′| ≥ −2J

J + J ′2/(2J) if |J ′| < −2J
(2.5.7)

of a single plaquette for a homogeneous system. In Fig. 2.7 the energy

function is shown and the corresponding phases are indicated.7 Since the

first derivative of E(J, J ′) is discontinuous at the boundary between the

ferromagnetic (F) and rhombic (R) phase, the transition is of first order.

The phase transition between the ferromagnetic and spiral 1 (Sp1) phase

and the one between rhombic and spiral 2 (Sp2) are of second order, since

the second derivative of the energy function is discontinuous. Since each

spin configuration is uniquely associated with a quasimomentum distri-

bution, which closely reflects the dispersion relation of the lowest band,

each spin configuration and hence the different phase transitions can be

identified experimentally by time-of-flight absorption imaging.

7The design of Fig. 2.7 is kept close to Fig. S2, which can be found in the supplementary

material of [182].
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Figure 2.7.: The different phases from Tab. 2.1 can be mapped to the

graph of the energy function E(J, J ′). Its first derivative shows a discon-

tinuity at the ferromagnetic-to-rhombic transition (bold black line) and

hence indicates a phase transition of first order. The transition from the

ferromagnetic or rhombic phase to the spiral phases (dashed lines) are of

second order due to a discontinuity of the second derivative of the energy

function.
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Driving ultracold atoms in optical lattices are a powerful tool, which

allows for a clean realization of various spin systems. The recent advances

in controlling the driving parameters and the application of driving forces

to emulate a wide range of solid-state systems point to a new emerging

subfield in the area of ultracold atoms and Bose-Einstein condensates.

2.6. Multiphoton Transitions

So far, multiphoton excitations and the closely related ionization processes

have been investigated in detail in atomic and molecular physics [193,

194, 195, 196, 197]. Advances in the generation of ultrashort laser pulses

opened up new vistas for exploring and understanding these mechanisms

on a fundamental level [198, 199, 200, 201]. With Bose-Einstein conden-

sates as well as ultracold atoms in optical lattices being routinely realized

in current experiments, and with the advent of periodically modulating

these systems, the study of multiphoton excitations becomes applicable

for ultracold atoms and Bose-Einstein condensates in optical lattices sub-

jected to pulsed forcing. Although a transfer of methods as well as a

“clean” realization of multiphoton transitions with optical lattices is of in-

terest in its own right, there is more to gain than just selling the proverbial

old wine in new skins. For example, switching the driving force off during

the pulse becomes feasible in this new framework, thus providing insight

into the dynamics of multiphoton excitations during a single pulse; a pos-

sibility that remains inaccessible with the traditional atomic or molecular

counterpart. For the prefix “multi” to be appropriate, the characteristic

energy gap ∆E between coupled bands needs to be much larger than the

energy ~ω given by the driving. Hence, the driving is restricted to the low

frequency regime, defined by ω � ∆E/~.

On the theoretical level, the multiphoton character of the dynamics is
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directly visible in the Floquet description: One of its key elements are

the quasienergies εn(k), which are defined only up to an integer multiple

of the “photon” energy ~ω, where ω is the driving frequency. Using the

Floquet approach, multiphoton excitations are nothing but quasienergy-

state transitions. The number of photons needed for a specific transition is

given by the distance in ~ω of the corresponding quasienergies. These are

continuously connected to the energy dispersion relation En(k) in the limit

of vanishing driving amplitudes, K → 0, and are ac-Stark-shifted due to

the driving. Since they depend on both the wavenumber k and the driving

amplitude K for each band n, the quasienergies form “quasienergy sur-

faces” εn(k,K), which determine the dynamics of an initial wave packet,

which, without loss of generality, is assumed to be prepared within a single

band. If such a wave packet is subjected to pulsed driving, the driving

amplitude K changes during the pulse from zero to some maximum value

Kmax and then back to zero. Consequently, the basis of spatiotemporal

Bloch waves that is used to describe the wave packet changes as well, and

during the pulse, a family of bases is needed, one basis for each instanta-

neous amplitude. To enable parallel transport of the wave packet on its

quasienergy surface during the pulse (stipulating smoothness of the enve-

lope and a duration of the pulse much longer than the period T = 2π/ω of

the driving), a special connection is required between different instanta-

neous bases. This connection is established by the Schrödinger equation.

The concept of parallel transport is used here as equivalent to the notion

of an adiabatic transport of the wave packet. Whether the wave packet

is transported adiabatically on its quasienergy surface, hinges on its mor-

phology: An adiabatic transport is possible provided those parts of the

quasienergy surface explored by the wave packet remain undisturbed by

any avoided crossings. If, on the other hand, the wave packet passes any

regions with avoided crossings, transitions to the anticrossing surfaces oc-
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cur. The amplitude of the transitions can be estimated for example with

the Landau-Zener transition formula and hinges on the velocity with which

the avoided crossing is passed as well as on its width [99, 128, 202]. In

conjunction with the control mechanisms investigated in Publication III,

where the effects of a homogeneous tilting in addition to the external

driving has been considered, the morphology of quasienergy surfaces can

– once known – deliberately be exploited for the preparation of exotic

states, the principles of which are sketched in Publication IV. But apart

from numerical calculations, can the structure of the quasienergy surfaces

be measured experimentally?

In principle, yes. Multiphoton transitions in combination with pulsed

driving allow for a “spectroscopy” of the quasienergy surfaces. The pro-

cedure is twofold:

(i) The morphology of a quasienergy surface can be screened and an

avoided crossings can be located by subjecting an initial wave packet pre-

pared on a specific band to a pulse and monitoring the final population of

the band the wave packet was initially prepared in (called ‘survival prob-

ability’ in the following). Repeating the experiment with an increased

maximum driving amplitude, deviations from adiabaticity become visible

as soon as avoided crossings on the quasienergy surface are explored. But

since working with driven optical lattices allows for monitoring the dy-

namics within a single pulse, a faster approach suggests itself: Instead of

repeating the experiment with pulses of different maximum driving ampli-

tudes, it is possible to monitor deviations from adiabaticity within the first

half of a single pulse. The times at which transitions occur can be mapped

to the corresponding instantaneous driving amplitudes, thus indicating the

position of the avoided crossings. The information at which wavenumber

the avoided crossing occurs can be isolated by preparing an initial wave

packet with a very narrow k-space distribution centered around some value
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〈k〉. Thus, during the pulse the wave packet explores only a small range

of the quasienergy surface and the avoided crossing can be located. If

the width ∆k of the initial wave packet is much less than the width of

the Brillouin zone, that is ∆k � 2kL, the excitation is determined by a

section εn(〈k〉 ,K) of the quasienergy surfaces in good approximation.

(ii) In a second step the width of the avoided crossing can be estimated

with asymmetric pulses. Just as for locating the avoided crossing and

for the same reasons, this works the better the narrower the initial wave

packet can be prepared in k space. The initial wave packet is subjected

to an asymmetric pulse and the survival probability is monitored after

the pulse. During the switch-on time T (1)
p /2 the amplitude rises to its

maximum value Kmax and then decreases back to zero during T (2)
p /2 with

T
(2)
p ≥ T

(1)
p . Needless to say, the value of Kmax is chosen such that an

avoided crossing is traversed during the pulse. On the one hand, the

switch-on time needs to be substantially larger than the driving period

T for the adiabatic principle to hold, on the other hand it should be so

small that the first transition at the avoided crossing is almost complete.

During the switch-off time, the wave packet hits the avoided crossing a

second time and the final survival probability is formed. When repeating

the experiment, always with a rapid switch-on and an ever larger ramp-

down duration, the transition probability during the switch-off time will

steadily decrease until for T (2)
p � T

(1)
p most of the wave packet stays in

the continuously connected quasienergy states. If the survival probability

is monitored as a function of the switch-off time, an exponential decay

is expected since the transition probability for the second passage of the

avoided crossing reads

PLZ = exp

(
−απ

2

2
T

(2)
p

T

)
(2.6.1)
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with

α ≡ [δε/(~ω)]2

∆ε/(~ω)
, (2.6.2)

where δε is the width of the avoided crossing and ∆ε denotes the diabatic

distance in quasienergy as sketched in Fig. 2.8. With the ratio α extracted

experimentally, the width of the avoided crossing is known assuming the

distance in quasienergy is. Note that equation (2.6.1) holds for an initial

wave packet with only a single wavenumber k rather than a distribution

and pertains to the Landau-Zener scenario of a symmetric and asymp-

totically linear avoided crossing, which is traversed with constant speed

(cf. [99, 203]).

The protocol with steps (i) and (ii) has been implemented numerically

for parameters directly accessible with current experimental setups: A

Bose-Einstein condensate of Cs atoms is loaded into a 1d optical lattice

V (x) = V0/2 cos(2kLx), with kL = 2π/λL and λL denoting the wavelength

of the lattice-generating laser light; the lattice period is a = π/kL. To

explore the single-particle regime, the interaction of the atoms is tuned

to zero by means of a Feshbach resonance, cf. Section 1.2. Introducing

an external force acting periodically on the atoms with some maximum

driving amplitude Fmax, the system is described by the Hamiltonian

H(t) =
p2

2m
+ V (x)− s(t)Fmaxx sin(ωt) , (2.6.3)

where the dimensionless shape function s(t) defines the envelope of the

pulse. Using a rather shallow lattice with depth V0 = 2.3Er, where

Er is the single-photon recoil energy [95], and laser wavenumber λL =

1064.49 nm, the driving frequency is with ω/(2π) = 300Hz fixed in the

low frequency regime, since ~ω = 0.23Er. The smallest gap between the

first and second band figures as 5.05 ~ω, so that more than five “photons”

are required to excite particles from the initially occupied lowest band to

the first excited band.
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δε/(h̄ω)
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Figure 2.8.: Sketch of a Landau-Zener scenario with symmetric and

asymptotically linear quasienergies, separated by δε/(~ω) at closest ap-

proach. The diabatic distance in quasienergy traversed when the param-

eter K is varied from zero to some value K∗ is denoted ∆ε/(~ω); for

example, starting at K = 0 on the quasienergy line marked by the arrow

and setting K∗ = 0.75 yields ∆ε/(~ω) = 0.75. If the parameter K is

varied with constant velocity, the probability to “jump over” the avoided

crossing is given by Eq. (2.6.1).
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(i) Excitations during a single pulse are monitored by plotting the sur-

vival probability of the atoms in the lowest band obtained by numerically

solving the Schrödinger equation with an initial state

ψ(x, 0) =
√

a

2π

∫
dk g1(k, 0)χ1,k(x) , (2.6.4)

where χ1,k(x) are the Bloch states of the lowest band, and the initial

momentum distribution

g1(k, 0) =
(√
π∆k

)−1/2 exp
(
− [k − 〈k〉 (0)]2

2(∆k)2

)
(2.6.5)

is, for this example, centered around 〈k〉 (0)/kL = 0.8 with width ∆k/kL =

0.1. The wave packet is now subjected to pulsed driving, with the envelope

of the pulse given by

s(t) = sin2(πt/Tp) ; 0 ≤ t ≤ Tp ; (2.6.6)

the duration of the pulse is fixed to 60 cycles, Tp = 60T , so the condi-

tion Tp � T is met. After the pulse, that is at t = Tp, the probability

to find the particle in the lowest band is determined; in an experimental

realization the atom number loss from the lattice after the pulse might be

measured. This procedure is now repeated for different maximum driv-

ing amplitudes Kmax ≡ Fmaxa/(~ω), yielding the escape probability as a

function of Kmax. The results of the numerical simulation are displayed in

Fig. 2.9. The excitations visible in this figure can be mapped to avoided

crossings in the quasienergy spectrum, which is available numerically as

well. Since the initial wave packet is with ∆k/kL = 0.1 rather narrow

in k space, a section of the quasienergy surfaces at k/kL should suffice

to explain the main features of the escape probability visible in Fig. 2.9.

Yet only an approximate correspondence can be expected, since the initial

wave packet still is extended in momentum space and explores parts of the
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Figure 2.9.: The wave packet given by Eqs. (2.6.4) and (2.6.5) is sub-

jected to a squared-sine pulse of length Tp = 60T and driving frequency

ω/(2π) = 300 Hz. After the pulse, the escape probability is monitored as a

function of the maximum driving amplitude Kmax. No excitations are vis-

ible after the pulse for maximum driving amplitudes below Kmax ≈ 0.7,

indicating an adiabatic transport on the quasienergy surface the initial

wave packet is prepared on. Larger values of Kmax result in excitations

which hint at avoided crossings in the underlying quasienergy spectrum.
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Figure 2.10.: Quasienergies εn(k) for k/kL = 0.8 and n = 1, 2, 3. The

quasienergy band originating from the lowest energy band n = 1 is indi-

cated by the arrow and exhibits avoided crossings at K ≈ 0.95, 1.4, and

1.8. These cause the transitions observed in Fig. 2.9.
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quasienergy surfaces other than k/kL = 0.8. This reasoning is confirmed in

Fig. 2.10. The locations of the avoided crossings visible in the quasienergy

band connected to the lowest energy band approximately coincide with an

increased escape probability. Even an effect of the first and rather narrow

avoided crossing at K ≈ 0.95 is, though weak, visible in Fig. 2.9. Since

the avoided crossings shift to lower (higher) values of K when the section

is displayed not at k/kL = 0.8 but at lower (higher) wavenumbers, respec-

tively, the increase in escape probability is rather smeared over K. With

the availability of wave packets with a much narrower k-space distribution,

the signatures of the escape probability should be more pronounced.

(ii) To extract information about the width of the avoided crossing,

asymmetric pulses are used as described. These are characterized by a

rising part given by the first half of the envelope (2.6.6) with a fixed

switch-on time T
(1)
p /2 = 5T , while the decreasing part is squared-sine

shaped as well but with a switch-off time T (2)
p /2. The initial wave packet

already employed in part (i) is now subjected to asymmetric pulses and the

survival probability after the pulse is depicted in Fig. 2.11 as a function of

T
(2)
p . The maximum driving amplitudesKmax = 0.6, 1.2, and 1.6 are tuned

such that not one, only one, and two avoided crossings, respectively, are

traversed during the pulse, cf. Fig. 2.10. With the quasienergy spectrum

and thus ∆ε/(~ω) and δε/(~ω) already known for the parameters used in

the simulations, the numerically extracted widths of the avoided crossings

can be compared to the actual ones given by the spectrum. The results

are shown in Tab. 2.2, revealing that the numerically determined widths

of the avoided crossings match the ones read off from the spectrum rather

well. This is the more surprising, since many of the assumptions needed to

apply Eq. (2.6.1) are, in fact, violated: Neither are the avoided crossings

asymptotically linear and symmetric (cf. Fig. 2.10), nor are they traversed

at constant speed (due to the squared-sine envelope). In addition, the
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Figure 2.11.: Survival probability of atoms in the lowest band for three

different maximum driving amplitudes Kmax after asymmetric pulses with

fast switch-on time T (1)
p /2 = 5T , and with varying switch-off durations

T
(2)
p /2. Again, the wave packet is initially centered around 〈k〉 (0)/kL =

0.8. The spectrum determining the dynamics is given by Fig. 2.10. The

expected exponential decay allows for an extraction of the constant α

employed in Eq. (2.6.2), which in turn yields the width δε/(~ω) of the

avoided crossing if the distance ∆ε/(~ω) is known.
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Table 2.2.: Widths δε of the avoided crossings for various driving ampli-

tudes Kmax as read off from the spectrum displayed in Fig. 2.10, and as

calculated from spectral quasienergy distance and from the data seen in

Fig. 2.11. The numerical values match the exact ones surprisingly well.

Kmax δεexact/(~ω) δεnum/(~ω) δεexact/δεnum

0.6 0 3.7× 10−4 0

1.2 0.01 0.00991 1.0030

1.6 0.03 0.02006 1.4955

restriction to only a single quasienergy spectrum at k/kL = 0.8 draws a

drastically simplified picture, since the initial wave packet is actually still

occupying about ten percent of the Brillouin zone.

In this section, a way has been outlined to use periodically driven matter

waves for a kind of “quasienergy spectroscopy”. This once again underlines

the various ways in which exerting a periodic drive on ultracold atoms or

Bose-Einstein condensates can be used as a tool to investigate fundamental

properties of these systems. The schemes discussed here form the content

of Publication V.



Appendix A.

Acceleration Theorem and Group

Velocity

Already in 1929 Felix Bloch discussed in “Über die Quantenmechanik der

Elektronen in Kristallgittern” [96] the acceleration of electrons in a peri-

odic potential endowed with an additional homogeneous field. However,

the occurrence of Bloch oscillations within the single band approximation

was first mentioned by Zener [99]: The presence of a constant force F0

leads to oscillations of an initial wave packet in real space with the Bloch

frequency, which is proportional to the force acting on the particle. The

group velocity of a wave packet, that is well centered around kc in mo-

mentum space in the nth band, is connected with the derivative of the

dispersion relation of the untilted potential via

vg(t) ≡
d
dt
〈x〉 =

1
~

dEn(k)
dk

∣∣∣∣
kc(t)

, (A.1)

whereas in k space the expectation value evolves in a semiclassical manner

according to the “acceleration theorem”

~
d
dt
〈k〉 (t) = F0 . (A.2)

In this appendix, the acceleration theorem (A.2) is derived using the

crystal-momentum representation [204, 205]. An effective Schrödinger
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equation for the k-space distribution is presented. As it turns out, the only

restriction necessary is the single-band approximation, whereas Eq. (A.1)

additionally requires the wave packet to be extended in real space over

at least a few lattice constants. These results are generalized in App. B

to time-periodically driven systems and it is shown that the wave packet

follows the external force in the Floquet picture as well. The general tech-

niques used to derive the acceleration theorem in the framework of not

explicitly time-dependent Hamiltonians can almost directly be transferred

to time-periodic Hamiltonians.

In a first step, the acceleration theorem as well as the expression (A.1) of

the group velocity are derived. The discussion is focused on requirements

for as well as limitations of the theorems. After discussing the accelera-

tion theorem in the first section, the expression for the group velocity is

reviewed subsequently. The appendix closes with numerical data, which

visualizes the previous reasoning.

A.1. Acceleration Theorem

The discussion is splitted in two parts. Firstly, the untilted Hamiltonian

with the external force absent, that is F0 = 0, is considered. After deriving

the acceleration theorem, the Hamiltonian is extended by the additional

force term in a second step, thus breaking translational symmetry.

The eigenvalue equation of the Hamiltonian of the untilted lattice reads(
p2

2m
+ V (x)

)
ϕn,k(x) = En(k)ϕn,k(x) , (A.3)

where the operator on the left hand side is denoted H0(x). The potential

V (x) is assumed to be periodic with period a, so that V (x + a) = V (x).

Thus, the Hamiltonian inherits the periodicity of the potential V (x), that

is H0(x + a) = H0(x). The Bloch waves ϕn,k(x) = exp(ikx)un,k(x) with
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a-periodic functions un,k(x) are normalized such that∫ ∞

−∞
dx ϕ∗n′,k′(x)ϕn,k(x) =

2π
a
δ(k − k′)δnn′ , (A.4)

where all wavenumbers are within the fundamental Brillouin zone B, rang-

ing from −π/a to π/a. As a direct consequence of Eq. (A.4),

2π
a
δ(k − k′)δnn′ =

∫ ∞

−∞
dx ei(k−k′)x u∗n′,k′(x)un,k(x)

=
∞∑

m=−∞
ei(k−k′)ma

∫ a

0
dx ei(k−k′)x u∗n′,k′(x)un,k(x) ,

(A.5)

and with the series representation of the (2π/a)-periodic delta distribution
∞∑

m=−∞
ei(k−k′)ma =

2π
a
δ(k − k′) (A.6)

this yields 〈
un′,k(x)|un,k(x)

〉
=
∫ a

0
dx u∗n′,k(x)un,k(x) = δnn′ (A.7)

for k = k′. This is just the natural scalar product of the a-periodic func-

tions un,k(x).

The key for deriving the acceleration theorem is the validity of the

the single-band approximation, which neglects all interband transitions.

Within this approximation, the band index n is obsolete and omitted in

the following. The initial wave packet is constructed out of the Bloch

waves of a single band:

ψ(x, t0) =
√

a

2π

∫
B

dk g(k, t0)ϕk(x) . (A.8)

The normalization of the Bloch waves given by Eq. (A.4) and the prereq-

uisite of a normalized wave function, that is ‖ψ‖2 = 1, directly yields∫
B

dk |g(k, t0)|2 = 1 . (A.9)
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The k-space distribution is understood to be initially centered around

kc(t0) ≡ 〈k〉 (t0) =
∫
B

dk k |g(k, t0)|2 . (A.10)

The time evolution of 〈k〉 is given by the evolution of g(k, t), which in turn

is stipulated to be generated by an effective Schrödinger equation with an

effective Hamiltonian H0 according to

i~
d
dt
g(k, t) = H0 g(k, t) . (A.11)

With the operator H0 known, the evolution of the expectation value 〈k〉
is consequently given by

d
dt
〈k〉 =

∫
B

dk
(

d
dt
g∗(k, t)

)
k g(k, t) +

∫
B

dk g∗(k, t)k
(

d
dt
g(k, t)

)
=

i
~
〈[H0, k]〉 .

(A.12)

The operator H0 is determined in the following.

To begin with, note that H0(x) is not explicitly time-dependent. Hence,

the solution of the Schrödinger equation is given by

ψ(x, t) = exp
(
− i

~
H0(x)(t− t0)

)
ψ(x, t0)

=
√

a

2π

∫
B

dk g(k, t0) exp
(
− i

~
H0(x)(t− t0)

)
ϕk(x)

=
√

a

2π

∫
B

dk g(k, t)ϕk(x) ,

(A.13)

where

g(k, t) ≡ exp
(
− i

~
E(k)(t− t0)

)
g(k, t0) . (A.14)

In other words, the time evolution operator for the distribution g(k, t) is

given by the exponential in (A.14) and thus the effective Hamiltonian is
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precisely a multiplication with the dispersion relation: H0 = E(k). Note

that the diagonal character of the Hamiltonian expressed in the Bloch

basis is crucial for this.1 The effective Hamiltonian obviously commutes

with k, resulting in

~
d
dt
〈k〉 = 0 (A.15)

as anticipated. The expectation value 〈k〉 of a wave packet remains con-

stant in time as long as the homogeneous force is absent.

The situation is altered, though, if the force is present. Now the Hamil-

tonian of the system

H(x) = H0(x)− F0x (A.16)

is no longer periodic in space. Yet it remains explicitly time-independent

and thus the solution of the Schrödinger equation is given by

ψ(x, t) = exp
(
− i

~
H(x)(t− t0)

)
ψ(x, t0)

=
√

a

2π

∫
B

dk exp
(
− i

~
H(x)(t− t0)

)
g(k, t0)ϕk(x) .

(A.17)

Previously, with F0 = 0, the wave function had been constructed out of

eigenfunctions of the system’s Hamiltonian. Hence, the Hamiltonian in

the time evolution operator had been replaced by the dispersion relation.

Since the wave function in Eq. (A.17) is given in terms of the eigenfunctions

of the untilted lattice and the Hamiltonian (A.16) is no longer diagonal

in the Bloch basis, this replacement is no longer feasible. In order to

calculate the effective Hamiltonian H, which governs the time evolution of

the envelope functions g(k, t), the wave function (A.17) is projected onto

the Bloch waves: With√
a

2π

∫
B

dk′ g(k′, t)
∫ ∞

−∞
dx ϕ∗k(x)ϕk′(x) =

√
2π
a
g(k, t) , (A.18)

1Alternatively, the same result can be obtained by projecting the Schrödinger equation

with the wave function (A.13) onto the Bloch wave ϕk(x).
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the evolution of g(k, t) is given by

i~
d
dt
g(k, t) =

√
a

2π
〈ϕk(x)|H0(x) |ψ(t)〉 − F0

√
a

2π
〈ϕk(x)|x |ψ(t)〉

= E(k)g(k, t)− F0

√
a

2π

∫ ∞

−∞
dx ϕ∗k(x)xψ(x, t) .

(A.19)

Together with the identity

i∂kϕ
∗
k(x) = xϕ∗k(x) + ie−ikx ∂ku

∗
k(x) , (A.20)

this yields

i~
d
dt
g(k, t) = E(k)g(k, t)− iF0 ∂k g(k, t)

+ i
F0a

2π

∫
B

dk′ g(k′, t)
∫ ∞

−∞
dx ei(k′−k)x uk′(x) ∂ku

∗
k(x) .

(A.21)

So the expectation value of x with respect to the Bloch functions, cf.

Eq. (A.19), can be expressed in terms of a derivative with respect to k.

This is crucial for the derivation of the acceleration theorem and rendered

possible due to the spatial structure of the Bloch waves. As shown below,

exactly this derivative occurs in the effective Hamiltonian H and eventu-

ally leads to a nonvanishing commutator [H, k].

The remaining integrals in Eq. (A.21) can be simplified by (i) perform-

ing a translation of x by −a, (ii) rewriting the spatial integral as a sum
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over integrals (cf. Eq. (A.5)), and (iii) applying Eq. (A.6):∫
B

dk′ g(k′, t)
∫ ∞

−∞
dx ei(k′−k)x uk′(x) ∂ku

∗
k(x)

(i)
=
∫
B

dk′ g(k′, t) ei(k′−k)a
∫ ∞

−∞
dx ei(k′−k)x uk′(x) ∂ku

∗
k(x)

(ii)
=
∫
B

dk′ g(k′, t) ei(k′−k)a
∞∑

m=−∞
ei(k′−k)ma

×
∫
B

dx ei(k′−k)x uk′(x) ∂ku
∗
k(x)

(iii)
=

2π
a
g(k, t) 〈∂ku|u〉

(A.22)

Due to 〈∂ku|u〉∗ = 〈u|∂ku〉 and Eq. (A.7), 〈∂ku|u〉 is purely imaginary.

With this, the effective Hamiltonian of the tilted system is

H = E(k)− iF0∂k − F0 Im 〈∂ku|u〉 . (A.23)

The occurrence of ∂k in the effective Hamiltonian effectuates a nonvanish-

ing commutator with k and the rate of change in the expectation value is

given by

~
d
dt
〈k〉 = i 〈[H, k]〉

= F0 〈[∂k, k]〉

= F0 .

(A.24)

This is exactly the acceleration theorem as stated by Bloch. Note that no

assumptions are made but the validity of the single band approximation.

Note that multiplying

i~
d
dt
g(k, t) = [E(k)− iF0∂k − F0 Im 〈∂ku|u〉] g(k, t) (A.25)
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by g∗(k, t) from the left and subtracting the complex conjugate of this

equation leads directly to[
d
dt

+
F0

h

d
dk

]
|g(k, t)|2 = 0 , (A.26)

so that |g(k, t)|2 does not in fact depend on k and t separately but rather

on the combination k − F0t/~ and

|g(k, t)|2 = f(k − F0t/~) . (A.27)

This is in concurrence with the acceleration theorem, yet Eq. (A.27) states

much more for the absolute square of g(k, t): The whole envelope traverses

the Brillouin zone collectively and in a form-invariant manner.

A.2. Group Velocity

The expression (A.1) for the group velocity can be derived using the

Hellmann-Feynman theorem. The single-band approximation in is force

again and the band index is dropped. The Schrödinger equation for the

tilted system reads

i~
d
dt
ψ(x, t) = H(x)ψ(x, t) , (A.28)

where H(x) = H0(x) − F0x. The Baker-Campbell-Hausdorff formula for

x and p reads

e−ikxp eikx = p− ik [x, p] = p+ ~k . (A.29)

Thus, the periodic part of the eigenfunctions of the untilted system is

given by (
1

2m
(p+ ~k)2 + V (x)

)
uk(x) = E(k)uk(x) , (A.30)
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where the operator on the left-hand side is denoted Hk. Switching to bra-

ket notation, multiplying Eq. (A.30) by 〈uk(x)| from the left and taking

the derivative with respect to k yields the Hellmann-Feynman theorem

dE(k)
dk

=
d
dk

〈uk(x)|Hk |uk(x)〉

=
〈
uk(x)

∣∣∣∣dHk

dk

∣∣∣∣uk(x)〉+ E(k)
d
dk

〈uk(x)|uk(x)〉

=
〈
uk(x)

∣∣∣∣dHk

dk

∣∣∣∣uk(x)〉 ,

(A.31)

where Eq. (A.7) has been used in the last step. The integral in Eq. (A.31)

can be represented in terms of Bloch waves by utilizing Eq. (A.29). This

yields
1
~

dE(k)
dk

=
〈
ϕk(x)

∣∣∣ p
m

∣∣∣ϕk(x)〉 . (A.32)

On the other hand, using [pn, x] = −i~∂p pn, the group velocity is given

by

vg(t) ≡
d
dt
〈x〉ψ(x,t) =

i
~
〈[H0, x]〉ψ(x,t) =

1
m
〈p〉ψ(x,t)

=
a

2π

∫
B

dk
∫
B

dk′ g∗(k′, t)g(k, t)
〈
ϕk′(x)

∣∣∣ p
m

∣∣∣ϕk(x)〉 .
(A.33)

The envelope function g(k, t0) is assumed to be well localized in k space

around kc, cf. (A.10). If the characteristic width ξ of g(k, t0) is small

compared to the width of the fundamental Brillouin zone, that is ξ �
2π/a, the group velocity is approximately given by

vg(t) ≈
1
~

dE(k)
dk

∣∣∣∣
kc(t)

. (A.34)

The approximation becomes exact for g(k, t0) =
√

2π/a δ(k − kc). Of

course, “exact” is still to be understood within the limits of the validity

of the single-band approximation. An analogous argument holds for the

tilted system.
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A.3. Numerical Confirmation of the Concepts

The tilted lattice is treated numerically by implementing the Hamilto-

nian (A.16) with a periodic potential of the form

V (x) =
V0

2
cos (2kLx) , (A.35)

with kL ≡ π/a. To ensure the validity of the single-band approximation,

the depth of the lattice is set to V0 = −5.7Er, where Er denotes the recoil

energy, resulting in a band gap ∆E ≈ 2.76Er at k = kL and the band

width of the lowest band is W ≈ 0.22Er. The strength of the external

force figures as F0a/π = 0.01Er, chosen such that the oscillation of the

wave packet extends over several lattice periods. This choice of parameters

renders transitions to higher bands impalpable for at least a few Bloch

periods TB: The Landau-Zener transition probability for a single Bloch

cycle is approximately given by [99, 206]

|T |2 ≈ exp (−2ζ) (A.36)

with the Zener parameter

ζ =
π2

16
(∆E/Er)

2

F0a/Er
. (A.37)

For the parameters studied here, the Zener parameter figures as ζ ≈ 150,

resulting in a diminutive transition probability. With a lattice depth of

−5.7Er, the dynamics remain restricted to nearest neighbor tunneling in

good approximation. Hence, the dispersion relation is well approximated

by

Ẽ(k) = −W
2

cos(ka) . (A.38)

According to Eq. (A.24), the expectation value kc(t) grows linearly in

time,

kc(t) =
1
~
F0t+ k0 . (A.39)
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This yields, together with Eq. (A.34),

vg(t) =
1
~

dẼ(k)
dk

∣∣∣∣∣
kc(t)

=
Wa

2~
sin (ωBt+ k0a) ,

(A.40)

where

ωB ≡
F0a

~
(A.41)

is the Bloch frequency. Thus, the position of the wave packet’s center in

real space evolves according to

xg(t) = − W

2F0
cos (ωBt+ k0a) (A.42)

with appropriate choice of the origin of the x-axis.

Figure A.1 depicts the time evolution for two wave functions in real

space as well as in k space. Both wave functions are initially, that is at

t0 = 0, prepared in the lowest band of the untilted lattice, so the initial

wave function reads

ψ(x, 0) =
√

a

2π

∫
B

dk g1(k, 0)ϕk(x) . (A.43)

The initial k-space distribution

g1(k, 0) =
(√
π∆k

)−1/2 exp
(
− k2

2 (∆k)2

)
(A.44)

is centered around kc/kL = 0 with ∆k = 0.1 kL, so the initial wave packet

carries no net momentum. In the upper row of Fig. A.1, the initial wave

packet is with ∆k/kL = 0.1 well centered in k space. The linear growth of

〈k〉 (t) is apparent and the group velocity is well captured by the semiclas-

sical relation (A.34). As demonstrated in the lower row of the figure, lifting

the condition of a localized wave packet in k space by setting ∆k = kL
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does not affect the validity of the acceleration theorem (A.24), but the

group velocity is no longer accurately described by (A.34), which requires

∆k � kL. Note that, in accordance with Eq. (A.27), in both cases the

momentum wave packet is transported through the Brillouin zone as a

whole without changing its envelope.
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Figure A.1.: Density plots of two wave packets, differing initially in

the width ∆k of the Gaussian distribution in k space and evolving in

a tilted cosine lattice with V0 = −5.7Er and F0a/π = 0.01Er. The left

(right) column depicts the evolution in real (k) space, respectively; dashed

lines mark the semiclassical results. Upper row: With ∆k/kL = 0.1 the

condition ∆k � kL for the applicability of (A.34) is met in contrast to

the lower row with ∆k = kL. The acceleration theorem (A.24) remains

valid in both cases, whereas the group velocity (A.34) does not.
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Appendix B.

Acceleration Theorem for

Hamiltonians Periodic in Time

After deriving the acceleration theorem as well as the group velocity in

App. A for time independent Hamiltonians, the discussion is now general-

ized to explicitly time dependent Hamiltonians with temporal periodicity,

see Publication III. A derivation of a generalized acceleration theorem

along the lines of reasoning of the undriven case is given.

The restriction of a constant force F0 already discussed in App. A is now

lifted: The external force is assumed to be periodic in time with period T

and zero average, so that F (t+ T ) = F (t) and

1
T

∫ T

0
dt F (t) = 0 . (B.1)

The Hamiltonian

H̃0(x, t) =
p2

2m
+ V (x)− F (t)x (B.2)

is thus explicitly time dependent and inherits the temporal periodicity of

the driving force. To restore spatial periodicity, the solution ψ̃(x, t) of

the Schrödinger equation is transformed unitarily by means of ψ(x, t) =

Uψ̃(x, t) with

U ≡ exp
(
− i

~
x

∫ t

0
dt′ F (t′)

)
, (B.3)
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so the Schrödinger equation for the transformed wave function reads

i~
d
dt
ψ(x, t) =

(
1

2m

(
p+

∫ t

0
dt′ F (t′)

)2

+ V (x)

)
ψ(x, t) . (B.4)

Now the Hamiltonian H0(x, t) on the right-hand side is periodic both in

space and in time, that is H(x+a, t) = H(x, t+T ) = H(x, t). Thus, there

are solutions of Eq. (B.4), which take the form of spatiotemporal Bloch

waves

ψn,k(x, t) = e−iεn(k)t/~eikxwn,k(x, t)

≡ e−iεn(k)t/~ϕn,k(x, t) ,
(B.5)

where the functions wn,k(x, t) inherit the periodicity of H0(x, t), namely

wn,k(x, t) = wn,k(x + a, t) = wn,k(x, t + T ). In analogy to the undriven

case, for the periodic part of the spatiotemporal Bloch waves∫ a

0
dx w∗

n′,k(x)wn,k(x) = δnn′ (B.6)

holds (cf. Eq. (A.7)). Their spatial parts are then normalized according

to ∫ ∞

−∞
dx ϕn′,k′(x, t)ϕn,k(x, t) =

2π
a
δnn′δ(k − k′) . (B.7)

The initial wave function at t = 0 is constructed out of Floquet functions

ψ(x, 0) =
√

a

2π

∫
B

dk g(k, 0)ϕk(x, 0) , (B.8)

where the k-space envelope is normalized and centered around kc (as in

Eqs. (A.9) and (A.10)). The wave function evolves according to

ψ(x, t) =
√

a

2π

∫
B

dk g(k, t)ϕk(x, t) , (B.9)

with g(k, t) ≡ g(k, 0)e−iε(k)t/~. Again, the evolution of g(k, t) is demanded

to be governed by an equation of Schrödinger type,

i~
d
dt
g(k, t) = H0g(k, t) (B.10)
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with an effective Hamiltonian H0. For its determination, the Schrödinger

equation (B.4) is projected onto the Floquet function ϕ∗k(x, t). Utilizing

Eq. (A.18) and omitting the argument x for brevity yields

i~
d
dt

∫ ∞

−∞
dx ϕ∗k(t)ψ = i~

d
dt

√
2π
a
g(k, t)

=
∫ ∞

−∞
dx
(

i~
dϕ∗k(t)

dt
ψ(t) + ϕ∗k(t)H0ψ(t)

)
=
∫ ∞

−∞
dx
[(
H0 − i~

d
dt

)
ϕk(t)

]∗
ψ(t)

= ε(k)
∫ ∞

−∞
dx ϕ∗k(t)ψ(t)

= ε(k)

√
2π
a
g(k, t) ,

(B.11)

and hence

i~
d
dt
g(k, t) = ε(k)g(k, t) . (B.12)

In close analogy to the time-independent case, the effective Hamilto-

nian governing the evolution of g(k, t) is just a multiplication with the

quasienergy dispersion relation:

H0 = ε(k) . (B.13)

The evolution of 〈k〉 is determined by the expectation value of the com-

mutator of H0 with k. Since [H0, k] = 0, this results in

d
dt
〈~k〉 = 0 , (B.14)

so that a generalized acceleration theorem holds for the untilted but peri-

odically driven lattice.

Now, the Hamiltonian (B.2) is extended by an additional term −F0x

with a constant force F0. After subjecting the solution of the Schrödinger
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equation to the transformation given by Eq. (B.3), the transformed Hamil-

tonian H(x, t) = H0 − F0x is periodic in time only. Nonetheless, the so-

lution of the Schrödinger equation is expanded into the Floquet states of

the untilted system H0, that is

ψ(x, t) =
√

a

2π

∫
B

dk g(k, t)ϕk(x, t) . (B.15)

Since the Floquet functions ϕk(x, t) are of Bloch type, the relation

i∂kϕ∗k(x, t) = xϕ∗k(x, t) + ie−ikx∂kw
∗
k(x, t) (B.16)

can be exploited to find an expression for the matrix elements of x:

∫ ∞

−∞
dx ϕ∗k(x, t)xϕk′(x, t) = i∂k

∫ ∞

−∞
dx ϕ∗k(x, t)ϕk′(x, t)

− i
∫ ∞

−∞
dx ei(k′−k)xwk′(x, t)∂kw∗

k(x, t)

= i∂k
2π
a
δ(k − k′)− i

2π
a
δ(k − k′) 〈∂kw|w〉 ,

(B.17)

with

〈∂kw|w〉 =
∫ a

0
dx wk(x, t)∂kw∗

k(x, t) . (B.18)

Again, 〈∂kw|w〉 = i Im 〈∂kw|w〉 is purely imaginary. Now, projecting the



89

Schrödinger equation onto the Floquet function ϕ∗k(x, t) yields

i~
d
dt

√
a

2π

∫ ∞

−∞
dx ϕ∗k(x, t)ψ(x, t)

= i~
d
dt
g(k, t)

=
√

a

2π

∫ ∞

−∞
dx
(

i~
dϕ∗k(x, t)

dt
ψ + ϕ∗k(x, t)i~

dψ(x, t)
dt

)
=
√

a

2π

∫ ∞

−∞
dx
[(
H0 − i~

d
dt

)
ϕk(x, t)

]∗
ψ(x, t)

−
√

a

2π
F0

∫ ∞

−∞
dx ϕ∗k(x, t)xψ(x, t) .

(B.19)

Together with Eq. (B.17), the last term in Eq. (B.19) is given by√
a

2π
F0

∫ ∞

−∞
dx ϕ∗k(x, t)xψ(x, t)

=
a

2π
F0

∫
B

dk′ g(k′, t)
∫ ∞

−∞
dx ϕ∗k(x, t)xϕk′(x, t)

= iF0∂kg(k, t) + F0Im 〈∂kw|w〉 g(k, t) ,

(B.20)

so that the evolution of g(k, t) is governed by

i~∂tg(k, t) = Hg(k, t) (B.21)

with the effective Hamiltonian

H = ε(k)− iF0∂k − F0Im 〈∂kw|w〉 . (B.22)

Again, the occurrence of a partial derivative with respect to k in the

effective Hamiltonian gives rise to a nonvanishing commutator with k,

which results in a generalized acceleration theorem for Floquet states

~
d
dt
〈k〉 = i 〈[H, k]〉 = F0. (B.23)
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The analogy to the standard acceleration theorem (A.24) for the crystal-

momentum representation is evident. Multiplying Eq. (B.21) by g∗(k, t)

and subtracting the complex conjugate of the resulting equation yields(
∂

∂t
+
F0

~
∂

∂k

)
|g(k, t)|2 = 0 , (B.24)

which implies that |g(k, t)|2 depends on the combination k − F0t/~, so

that – in close analogy to the undriven case – the distribution g(k, t)

moves through Floquet k space without change of shape.

Note that the seemingly simple dynamics of the wave packet when mon-

itored in the Floquet representation might be unrecognizable in the cus-

tomary crystal-momentum representation due to a multitude of interband

transitions. These are untangled in the Floquet picture, which provides

a transparent view of the wave-packet dynamics. Yet, on the numerical

level, it requires the calculation of Floquet functions as well as quasiener-

gies. A detailed procedure is given in the subsequent appendix.
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Calculation of Quasienergy Spectra

for a Periodically Driven Lattice

After introducing fundamental properties of Floquet theory in Section 2.1,

this appendix focuses on the numerical calculation of quasienergies for a

periodically driven lattice. The key element here is the one-cycle propaga-

tor U(T, 0) of the system, since the quasienergies can be read off directly

from its eigenvalues. The procedure is divided in two steps: Firstly, each

element of a given basis set of functions is propagated according to the

Schrödinger equation yielding a matrix representation of the one-cycle

propagator. Secondly, diagonalizing U(T, 0) yields the quasienergies. To

improve efficiency of the numerical scheme, the symmetries of the system

can be exploited.

Starting point is the Hamiltonian of a single particle of mass m moving

in an optical lattice of depth V0 and laser wavenumber kL within the di-

pole approximation. If the lattice is erected by retroreflecting the lattice-

generating laser radiation with a mirror into itself, then modulating the

mirror’s position in space periodically leads to the Hamiltonian within the

Kramers-Henneberger gauge [115, 207],

H(1)(x, t) =
p2

2m
+
V0

2
cos {2kL [x+ ∆L sin (ωt)]} , (C.1)
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where the driving amplitude and frequency, denoted by ∆L and ω, re-

spectively, induce an inertial force F (t) = F sin(ωt) with F ≡ m∆Lω2.

Transforming the wave functions Ψ(1)(x, t) associated with H
(1)
eff (x, t) ac-

cording to

Ψ(1)(x, t) = exp
[

i
~
∆L sin(ωt)p+

i
8~
m(∆L)2ω sin(2ωt)

]
Ψ(2)(x, t) ,

(C.2)

the new functions Ψ(2)(x, t) are solutions to the Schrödinger equation with

the Hamiltonian in the velocity gauge

H(2)(x, t) =
1

2m
[p+m∆Lω cos(ωt)]2 +

V0

2
cos (2kLx)−

1
4
m (∆Lω)2 ,

(C.3)

where the first term in the exponent of Eq. (C.2) shifts the spatial coor-

dinate x by −∆L sin(ωt) and leads to a term proportional to p. Com-

pleting the square, the remaining terms are combined with those emerg-

ing from the second term in the exponent of Eq. (C.2). This results in

the ponderomotive energy m (∆Lω)2 /4 of the particle, being its aver-

aged kinetic energy due to the quiver motion of the particle. Since the

transformation (C.2) is unitary and periodic (such that the frequencies

involved are integer multiples of the driving frequency), the quasienergy

spectrum remains unchanged. The velocity gauge is favorable when com-

puting the quasienergy spectrum, since the Hamiltonian is now addition-

ally periodic in space as well. Due to the periodicity of the Hamilto-

nian, H(2)(x, t) = H(2)(x + a, t) = H(2)(x, t + T ), according to Floquet

theory, the Schrödinger equation admits quasi-periodic solutions of the

form Ψ(2)(x, t) = exp [i (kx− εn(k)t/~)]wn,k(x, t) with periodic functions

wn,k(x, t) = wn,k(x+a, t) = wn,k(x, t+T ), where the spatial and temporal

period are denoted by a = π/kL and T = 2π/ω, respectively. In conjunc-

tion with Ψ(2)(x, t) = U(t, 0)Ψ(2)(x, 0), the eigenvalue equation for the
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one-cycle propagator

U(T, 0)wn,k(x, T ) = e−iεn(k)T/~wn,k(x, T ) (C.4)

reveals that the quasienergies are known as soon as the eigenvalues are.

A matrix representation of U(T, 0) can be found by propagating a suit-

able basis over one period T for each wavenumber k. This is done nu-

merically by implementing the Schrödinger equation with the Hamilto-

nian (C.3). Due to its temporal periodicity, the solutions can be written

as Ψn,k(x, t) = exp(ikx)un,k(x, t), where the spatially periodic functions

un,k(x, t) := exp(−iεn(k)t/~)wn,k(x, t) are governed by the Schrödinger

equation

i~
d
dt
un,k(x, t) =

[
1

2m

(
p+ ~k +

F

ω
cos(ωt)

)2

+
V0

2
cos(2kLx)

]
un,k(x, t) ;

(C.5)

or equivalently, after switching to proper dimensionless variables z = kLx,

τ = ωt, and k̃ = k/kL,

i
~ω
Er

d
dτ
u
n,ek(z, τ) =

[
−∂2

z + β2 cos2 τ − 2i
(
β cos τ + k̃

)
∂z

+k̃2 + 2βk̃ cos τ +
V0

2Er
cos(2z)

]
u
n,ek(z, τ) , (C.6)

where Er = ~2k2
L/(2m) is the recoil energy and β := (F/kL)/(~ω). With-

out changing the quasienergy spectrum, yet another periodic transforma-

tion of the functions u eliminates the squared-cosine term β2 cos2 τ =

β2/2[cos(2τ) + 1] (apart from its zero-mode β2/2) as well as the term

2βk̃ cos τ yielding

i
~ω
Er

d
dτ
u
n,ek(z, τ) =[

−∂2
z +

β2

2
− 2i

(
β cos τ + k̃

)
∂z + k̃2 +

V0

2Er
cos(2z)

]
u
n,ek(z, τ) , (C.7)
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For numerical implementation, a set {fν(z) : ν = 0, 1, 2, . . . } of basis func-

tions given by

f0(z) =

√
1
π

f1(z) =

√
2
π

sin(2z) f2(z) =

√
2
π

cos(2z)

f3(z) =

√
2
π

sin(4z) f4(z) =

√
2
π

cos(4z) (C.8)

...

is chosen. On the one hand, this automatically ensures the spatial pe-

riodicity of the functions u
n,ek(z, τ). On the other hand, the operators

occurring in Eq. (C.7) become sparse matrices in this basis:

The matrix representation of ∂2/∂z2 is diagonal

∂2

∂z2
→



0

−4

−4

−16

−16
. . .


. (C.9)

The operator ∂/∂z is represented by the tridiagonal matrix

∂

∂z
→



0

0 −2

2 0

0 −4

4 0
. . .


, (C.10)
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whereas the operator cos(2z) yields a pentadiagonal matrix:

cos(2z) → 1
2



0 0
√

2

0 0 0 1
√

2 0 0 0 1

1 0 0 0
. . .

1 0 0
. . .


. (C.11)

Now, the scheme can easily be implemented numerically: The columns

of the one-cycle propagator U(T, 0) are given by propagating the basis

functions (C.8) over a single period. Diagonalizing U(T, 0) yields the

Floquet multipliers exp(−iεn(k)T/~) and hence the quasienergies εn(k)

themselves. Exploiting special symmetries of the system allows for a more

efficient calculation of the one-cycle propagator.
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Publications

The present dissertation is based upon the following contributions to sci-

entific research conducted from April 2009 to March 2012 at the Carl

von Ossietzky University of Oldenburg, Germany. This section states

my contributions to each work, consisting of four papers published in in-

ternational peer-reviewed journals of the Physical Review, a chapter of

the book “Dynamical Tunneling – Theory and Experiment” published by

CRC Press, and a manuscript for a paper that is presently under review

for publication.

The first paper resulting from my studies on periodically driven opti-

cal lattices is titled “Driven optical lattices as strong-field simula-

tors”. The idea to investigate the deviations from an adiabatic transport

of a quantum state in a periodically driven lattice was carried over from

previous investigations on many-body dynamics in double-well systems

conducted for my diploma thesis. With the dynamics of the lattice sys-

tem enriched by the Brillouin-zone structure due to the spatial periodicity

of the lattice, the decision to focus on single-particle dynamics and to dis-

entangle effects induced by the interaction at a later stage came naturally.

This course of action was confirmed by the richness of effects displayed by

the seemingly simple model systems as well as the multitude of modes to

deliberately manipulate the dynamics. Publication I focuses on relevant

parameters for an experimental realization of the proposed scenario. All

numerical work was done by me and an existing source code for the calcu-



122 Publications

lation of quasienergies as well as another one for wave-packet propagation

was carefully checked for errors and expanded to fulfill the requirements

to pulsed driving. I created and prepared all visual data presented in

the paper and wrote the first draft, which was then improved and revised

together with Martin Holthaus.

The publication “Dynamic localization in optical lattices” is prin-

ted as chapter 12 of the book “Dynamical Tunneling – Theory and Ex-

periment” edited by Srihari Keshavamurthy and Peter Schlagheck and

published by CRC Press in March 2011. The first part provides a ba-

sic description of how quantum tunneling can deliberately be impeded by

driving the system – an effect known as dynamic localization. This intro-

duction is followed by an application of this theory to atoms in a bichro-

matic optical lattice, where the “metal-insulator”–like transition can be

controlled by adjusting the amplitude of the driving. With the excep-

tion of Figs. 1 and 2, which were provided by Matthias Langemeyer, and

Figs. 12 and 13 being credited to Oliver Morsch, all numerical work was

performed by me. This includes extending already existing routines and

tuning the system’s parameters as well as selecting and preparing the final

figures for the manuscript. Martin Holthaus and I planned and structured

the chapter, after which Martin Holthaus wrote the draft. I improved and

carefully revised the manuscript.

In August 2011, the paper “Generalized acceleration theorem for

spatiotemporal Bloch waves” was published in Physical Review B.

The idea to investigate what turned out to be a generalization of Bloch’s

familiar acceleration theorem to the Floquet setting was born earlier that

year: At the time I was working on the controlled manipulation of k-space

distributions by subjecting an initial wave packet to pulsed driving, and

I experimented with a homogeneous force acting on the system in addi-

tion to the purely periodic driving. The numerical work to monitor the



123

wave-packet’s dynamics in the set of bases provided by the instantaneous

spatiotemporal Bloch waves was already accomplished. This proved to

be extremely useful for the study and manipulation of wave packets and

revealed the potentials inherent in the then found “dressing and prob-

ing” strategy. These results encouraged me to formulate the generalized

acceleration theorem, I worked out its mathematical formulation in the

following weeks. Its predictions are in full agreement with the numer-

ical results and in addition it allows for a self-contained explanation of

the so-called super Bloch oscillations. The manuscript for the paper was

planned and drafted mainly by me, and revised together with Martin Holt-

haus, who penned the section on super Bloch oscillations. I conducted all

numerical work and provided all figures. This includes the extension of

existing programs as well as the conception and coding of new ones.

Directly after Paper III was published, I focused on finalizing the in-

vestigations already undertaken in coherently controlling dressed matter

waves. The results are printed in “Controlled wave-packet manipula-

tion with driven optical lattices” and relate strongly to the previous

publications. For a periodically driven lattice system, the paper provides

figures of quasienergy surfaces, depicted for the first time in scientific liter-

ature, and utilizes these to explain and predict the dynamics of particles in

those systems. I had already accomplished most of the work when I paused

it to focus on the formulation and implications of the generalized acceler-

ation theorem. The work on the controlled wave-packet manipulation was

resumed and finished in mid-2011, when I planned and wrote the entire

manuscript for which all numerical calculations had already been com-

pleted. Together with Martin Holthaus I revised the manuscript, which

was published in December 2011.

At about the same time, Dr. Elmar Haller, then at the University of

Innsbruck, Austria, visited our group and reported on recent experimental
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investigations on periodically driven lattices in the low-frequency regime

conducted by the Innsbruck group around Prof. Dr. Hanns-Christoph

Nägerl. This prompted an investigation of low-frequency driven optical

lattices and the interrelated multiphoton-like processes with parameters

closely adapted to the Innsbruck experiment. In addition to these consid-

erations, the resulting preprint titled “ac Stark shift and multiphoton-

like resonances in low-frequency driven optical lattices” contains

a proposal to perform avoided quasienergy crossing spectroscopy with

asymmetric pulses. Preliminary experimental measurements performed

by E. Haller confirmed the viability of the theoretical suggestions. All nu-

merical work – including writing and extending the source code, evaluating

the data, and preparing the figures – was performed by me. I sketched

and planned the manuscript together with Martin Holthaus, who wrote

the draft, which was then revised and improved by both of us.
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We argue that ultracold atoms in strongly shaken optical lattices can be subjected to conditions similar to those
experienced by electrons in laser-irradiated crystalline solids, but without introducing secondary polarization
effects. As a consequence, one can induce nonperturbative multiphoton-like resonances due to the mutual
penetration of ac-Stark-shifted Bloch bands. These phenomena can be detected with a combination of currently
available laboratory techniques.
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I. INTRODUCTION

The investigation of ultracold atoms in optical lattices
constitutes a major area of topical research [1–4]. One of the
long-term visions driving this trend stems from the prospect of
using these well-controllable and flexible systems for “emulat-
ing” important quantum many-body problems which still are
not fully understood, such as high-Tc superconductivity [5,6],
and of obtaining information on these by observing their
cold-atom-emulated versions in the laboratory, rather than
attempting necessarily imperfect computer simulations. So far,
interest has been focused mainly on systems governed by a
time-independent Hamiltonian operator, a hallmark example
being provided by the Bose-Hubbard model [7]. However, it is
feasible to subject the lattice atoms to time-dependent external
forces, and thus to study explicitly time-dependent phenomena
[8,9]. Already in 1998 Madison et al. have obtained evidence
for Bloch band narrowing with cold sodium atoms in time-
periodically forced optical lattices [10]; more recently, dy-
namic localization [11,12], photon-assisted tunneling [13], and
coherent control of the superfluid-to-Mott insulator transition
[14] have been demonstrated with Bose-Einstein condensates
in such strongly shaken periodic potentials. Moreover, it has
been suggested to employ oscillating optical lattices for realiz-
ing frustrated quantum antiferromagnetism [15]. In this article
we argue that ultracold atoms in forced optical lattices also
lend themselves to the study of multiphoton-like transitions
under strong-field conditions which are barely accessible with
electrons in solids irradiated by high-power lasers; in particu-
lar, they provide an exceptionally clean testing ground for the
investigation of nonperturbative multiphoton-like resonances.
We first sketch in Sec. II the required setup, and specify
the orders of magnitude of the relevant parameters which
characterize the optical-lattice analogs of strong laser fields.
We then present numerical model calculations in Sec. III,
demonstrating how both perturbative and nonperturbative
resonances manifest themselves. The explanation of these
phenomena makes use of both the spatial periodicity of the
optical lattice and the temporal periodicity of the driving force:
Effectively, one encounters a spatiotemporal crystal, the band
structure of which is controlled by the parameters of the driving
force. This viewpoint is emphasized in the concluding Sec. IV.

II. SIMULATING STRONG LASER FIELDS

A one-dimensional (1D) optical lattice is created,
for example, by shining laser radiation with wavelength
λ = 2π/kL against a mirror and retroreflecting the beam into

itself. An atom of mass M moving in this standing light wave
then experiences a periodic potential with a depth V0 which
is proportional to the laser intensity [2]. Mounting the mirror
on a piezoelectric actuator now allows one to let it oscillate
sinusoidally with a precisely controlled angular frequency ω

and amplitude L, thus shaking the lattice back and forth [14]. In
the laboratory frame, the Hamiltonian describing the particle’s
center-of-mass motion along the lattice direction then reads

Hlab = p2

2M
+ V0

2
cos{2kL[x − L cos(ωt)]}. (1)

The relevant characteristic energy scale is given by the single-
photon recoil energy,

Er = h̄2k2
L

2M
; (2)

typical scaled lattice depths V0/Er range between about 5 and
10. For example, with 87Rb atoms in a lattice erected by light
with wavelength λ = 842 nm one has Er = 1.34 × 10−11 eV,
as corresponding to the recoil frequency νr = Er/(2πh̄) =
3.23 kHz.

Performing a unitary transformation to a frame co-moving
with the lattice, the Hamiltonian acquires the suggestive form
[10,16]

H = p2

2M
+ V0

2
cos(2kLx) − Fx cos(ωt), (3)

with F = MLω2 denoting the amplitude of the inertial force
appearing in this oscillating frame. A meaningful measure for
the strength of this force is the dimensionless parameter [12]

K0 = Fd

h̄ω
, (4)

where d = λ/2 specifies the lattice constant. In terms of
quantities directly accessible in the laboratory, one has

K0 = π2

2

ν

νr

L

d
, (5)

with the driving frequency ν = ω/(2π ), showing that one may
easily realize values K0 > 1 when both ratios ν/νr and L/d

are on the order of unity [11–14]. To appreciate what this
means, consider an atomic analog: A common KrF exciplex
laser provides photons with energy h̄ω = 5.0 eV. Inserting
this into the expression (4), taking the Bohr radius for the
length d, and solving for the electric field strength E = F/e

acting on an electronic charge, one finds that K0 = 1 is reached
only for E = 9.45 × 1010 V/m, which is roughly one-fifth

1050-2947/2010/81(6)/063612(4) 063612-1 ©2010 The American Physical Society
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of the field formally experienced by a ground-state electron
in the hydrogen atom. In this sense, time-periodically forced
optical lattices can serve even as superstrong-field simulators:
Shaking a lattice with large amplitudes L according to the
Hamiltonian (1) simulates perfectly homogeneous fields acting
on particles in periodic potentials in the regime K0 > 1
of the parameter (4) which is hard to reach with laser-
driven electrons in traditional solids, without introducing,
for example, detrimental polarization effects. Thus, ultracold
atoms in driven optical lattices offer the unique possibility to
study superstrong-field–induced multiphoton-like processes in
periodic potentials in their purest form.

III. PERTURBATIVE AND NONPERTURBATIVE
MULTIPHOTON TRANSITIONS

For illustrating the dynamics that become explorable in
this way, we consider a 1D lattice with depth V0 = 5.7Er. Its
single-particle eigenstates are Bloch waves [17],

ϕn,k(x) = exp(ikx)un,k(x), (6)

with lattice-periodic functions un,k(x) = un,k(x + d) labeled
by a band index n and a wave number k; Fig. 1 depicts the
energy dispersion relations En(k) for the lowest bands n =
1,2,3. In the center of the Brillouin zone, that is, at k/kL = 0,
one has E2(0) − E1(0) = 4.690Er, and E3(0) − E1(0) =
5.544Er. We now take an initial state exclusively populating
the lowest band, as described by

ψ(x,t0) =
∫ +kL

−kL

dkg1(k,t0)ϕ1,k(x,t0) (7)

with a Gaussian k-space distribution

g1(k,t0) = (2kL
√

π�k)−1/2 exp

(
− k2

2(�k)2

)
(8)

centered around k/kL = 0, and set �k = 0.1kL for its width, as
appropriate for an initial ensemble of noninteracting ultracold
atoms. This state then is subjected to pulsed forcing with an
amplitude F (t) which rises from zero to a maximum value,
stays constant for a while, and decreases back to zero. For the
sake of definiteness, we consider conditions as already realized
experimentally in Ref. [14]: We take 87Rb as atomic species
in a lattice with λ = 842 nm, and design the envelope of the
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E
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FIG. 1. Lowest three Bloch bands of a 1D optical lattice with
depth V0 = 5.7Er. The lowest band gap is 2.763Er at k = kL.
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FIG. 2. (Color online) Escape probabilities from the lowest Bloch
band after pulses with linear switch-on and switch-off ramps of 10-ms
duration each, and a holding time of 2 ms, during which a specified
value Kmax

0 of the scaled amplitude (4) is reached. Driving frequencies
ω/(2π ) correspond to 87Rb in an optical lattice with λ = 842 nm.
Light, Kmax

0 = 0.7; black, Kmax
0 = 1.3. Of particular interest is the

unexpected, strong, and narrow resonance at ω/(2π ) = 5.3 kHz.

pulse such that F (t) rises linearly within 10 ms, stays constant
for a holding time of 2 ms, and then is linearly switched off in
another 10 ms. For a driving frequency of 5 kHz, say, the ramp
time of 10 ms corresponds to 50 cycles, so that the relatively
slowly changing envelope F (t) may enable adiabatic following
under nonresonant conditions.

Moreover, we rely on the fact that the fraction of atoms
surviving in the lowest band can be accurately determined,
as demonstrated by the Landau-Zener measurements reported
in Ref. [18]. We therefore compute the escape probability
from the lowest band after each pulse, for specified values of
Kmax

0 reached during the plateau phase. Figure 2 shows results
thus obtained for Kmax

0 = 0.7 and Kmax
0 = 1.3, as functions of

the driving frequency ω/(2π ). The pronounced peak pattern
depends markedly on the maximum driving amplitude; for
instance, a further peak has appeared for Kmax

0 = 1.3 at
ω/(2π ) ≈ 4 kHz which was not visible for Kmax

0 = 0.7. A
more complete picture is provided by Fig. 3, which shows a
two-dimensional plot of the escape probability considered as
function of both ω/(2π ) and Kmax

0 , for the same pulse shape
as taken in Fig. 2.

Kmax
0

ω
/
2π

(k
H

z)

0 1 2 3
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10

15

20
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FIG. 3. (Color online) Escape probability versus both driving
frequency ω/(2π ) and maximum scaled amplitude Kmax

0 , for the same
pulse shape as employed in Fig. 2.
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TABLE I. Expected and computed resonance frequencies: νres is
an m-photon transition frequency according to Eq. (9), νpeak is the
position of the corresponding peak where it becomes apparent in
Fig. 3. The entry NV indicates that no peak is visible for the pulse
profile employed here.

m n �En,1/(mEr) νres (kHz) νpeak (kHz)

1 3 5.544 17.932 18.00
1 2 4.690 15.170 15.15
2 3 2.772 8.966 9.00
2 2 2.345 7.585 7.60
3 3 1.848 5.977 5.85

– – 5.30
3 2 1.563 5.057 NV

The positions of most of the peaks in Figs. 2 and 3 (i.e., most
of the system’s resonant frequencies) are easily explained:
Because the initial state is narrowly centered around k/kL = 0,
its response is mainly determined by the energies En(0) in the
Brillouin-zone center. Hence, one expects ordinary m-photon-
like resonances between the initial band n = 1 and higher
bands n = 2,3, . . . when the driving frequency complies with
the condition

�En,1 ≡ En(0) − E1(0) = mh̄ω (9)

for integer m. Indeed, listing these expected m-photon tran-
sition frequencies in Table I and comparing them to the
frequencies of the peaks observed in Fig. 3, one generally
finds quite good agreement.

In some instances, however, the numerical solution of the
Schrödinger equation produces a peak which does not fit into
this naive pattern. Most notably, the sharp spike visible in Fig. 2
at ω/(2π ) = 5.3 kHz does not match Eq. (9) for any reasonable
combination of n and m. Such “nonperturbative” events are
our main concern; we predict that they can be detected
experimentally in already existing setups. These particular
resonances admit a systematic explanation which forces us to
go way beyond the perturbative reasoning underlying Eq. (9).

Because the Hamiltonian (1) is periodic both in space (with
lattice period d = π/kL = λ/2) and in time (with driving
period T = 2π/ω), it gives rise to spatiotemporal Bloch
waves [16],

ψn,k(x,t) = un,k(x,t) exp{i[kx − εn(k)t/h̄]}, (10)

with functions un,k(x,t) = un,k(x + d,t) = un,k(x,t + T )
reflecting translational invariance in space and time on equal
footing, and quasienergies εn(k), in generalization of the usual
Bloch waves (6). While quasimomenta h̄k are determined up to
an integer multiple of 2πh̄/d = 2h̄kL, quasienergies are like-
wise determined up to an integer multiple of the photon energy
2πh̄/T = h̄ω. Figure 4 shows one “quasienergy Brillouin
zone” (of height h̄ω) with states originating from the lowest
three Bloch bands for ω/(2π ) = 5.30 kHz, the frequency of the
extraordinary peak in Fig. 2, and K0 = 0.7, 1.0, and 1.3. There
are various avoided crossings indicating multiphoton-like cou-
plings between the bands; however, with �k = 0.1kL the wave
packet evolving from the initial distribution (8) mainly
explores the interval of quasimomenta indicated by the shaded
areas. The quasienergy band originating from the lowest

−1 0 1
k/kL

ε/
(h̄

ω
)

1

0

(c)

ε/
(h̄

ω
)

1

0

(b)

ε/
(h̄

ω
)

1

0

(a)

FIG. 4. Quasienergies εn(k) for the 1D optical lattice driven with
frequency ω/(2π ) = 5.30 kHz, and scaled amplitudes K0 = 0.7 (a),
1.0 (b), and 1.3 (c). The areas shaded in gray, extending from k =
−0.1kL to k = +0.1kL, mark the range of wave numbers explored by
the initial wave packet. The insets show how the quasienergy band
n = 1 (above) is pinched through with increasing K0 by the band
n = 2, displaced downward by 3h̄ω. This causes the nonperturbative
resonance observed in Fig. 2.

unperturbed energy band n = 1 is shown enlarged in the insets;
with increasing K0 this band is pierced through from below by
the quasienergy band n = 2, displaced down in energy by 3h̄ω

against that representative which is continuously connected
to the bare n = 2 Bloch band. This penetration results in
“active” avoided crossings signaling a strong-field–induced
three-photon resonance; this is responsible for the anomalous
peak at ω/(2π ) = 5.30 kHz.

The dynamics underlying that peak should thus be dis-
cussed in terms of the morphology of the surfaces which
emerge when the quasienergies are considered as functions
of both the wave number k and the instantaneous amplitude F

(or K0): When the driving amplitude F (t) increases during the
upward ramp of a pulse, the initial distribution is shifted almost
adiabatically on its quasienergy surface, parallel to the K0 axis.
As long as the maximum value of K0 lies below the critical
regime where this surface is first being pierced by another one,
the initial distribution is restored with only minor distortion
when the amplitude returns to zero, resulting in negligible
escape probability. However, when the moving distribution
hits an avoided-crossing regime, part of the wave function
undergoes a Landau-Zener-type transition to the anticrossing
band. Both parts of the wave function then evolve separately
on their respective surfaces, until they meet for a second
time during the downward ramp, when they interfere and
thereby establish the final occupation probabilities of the bands
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FIG. 5. (Color online) Stückelberg oscillations of the escape
probability in response to prolongation of the plateau duration thold,
for ω/(2π ) = 5.30 kHz, and Kmax

0 = 1.0 (dashed) and 1.3 (solid line).

involved. This mechanism of splitting and interference implies
that there should be Stückelberg-like oscillations when the
final occupation probabilities are monitored while the length
of the pulses’ plateau segment is varied, because varying the
plateau duration means varying the relative phase picked up
by the two interfering components. Indeed, these oscillations
are clearly visible in Fig. 5.

We remark that the standard perturbative m-photon reso-
nances can be grasped in a similar manner: For frequencies
such that Eq. (9) holds, two quasienergy surfaces are degen-
erate already at F = 0, so that adiabaticity is disabled and the
wave function splits right at the beginning of a pulse [19]. Seen
against this background, a perturbative resonance corresponds
to the removal of a quasienergy degeneracy already present at
F = 0, while a nonperturbative one emerges when ac-Stark-
shifted Bloch bands penetrate each other at a certain finite
driving strength.

IV. CONCLUSIONS

When viewing a time-periodically forced optical lattice
as a spatiotemporal crystal, the natural basis states are the
spatiotemporal Bloch waves (10); the energy bands En(k) of

the undriven lattice turn into quasienergy bands εn(k). The
latter depend not only on the lattice parameters, but also on
the parameters of the driving force. While they differ barely
from the unperturbed energy bands as long as the driving
amplitude is weak, corresponding to values K0 � 1 of the
dimensionless parameter (4), they become strongly distorted,
and even penetrate each other, in the nonperturbative regime.

When subjected to pulsed forcing with an amplitude which
changes slowly compared to the period T = 2π/ω of the
drive, a wave packet can adjust itself adiabatically to a
mere distortion of its quasienergy band. However, when the
wave packet explores a part of a quasienergy band which is
pierced by another one, as exemplified in Fig. 4, Landau-Zener
transitions occur; this mechanism leads to strong nonper-
turbative resonances at frequencies not given by the simple
condition (9). In principle, such resonances should also occur
in solids irradiated by strong laser pulses; however, there
they would be masked by a host of competing effects. The
experimentally proven good controllability of ultracold atoms
in forced optical lattices makes such systems a far better testing
ground for these dynamics.

Our study has been restricted to the single-particle level;
it is reasonable to expect that the phenomena exemplarily
discussed in the present work can immediately be detected with
sufficiently dilute or close-to-ideal Bose-Einstein condensates
in driven optical lattices [12]. Even more, it appears equally
feasible to perform the experiments suggested here under
conditions of sizable interparticle interactions, or even of
strong correlations. The question how the single-particle
scenario outlined above is modified then opens up far-reaching
further lines of investigation, concerning both experiment and
theory.
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Chapter 1

Dynamic localization in optical

lattices

The concept of dynamic localization goes back to an observation reported by Dunlap and

Kenkre in 1986: The wave packet of a single particle moving on a single-band tight-binding

lattice endowed with only nearest-neighbor couplings remains perpetually localized when

driven by a spatially homogeneous ac force, provided the amplitude and the frequency of

that force obey a certain condition [1]. When trying to overcome the limitations of the model,

it is comparatively straightforward to deal with an arbitrary form of the dispersion relation

— thus abandoning the nearest-neighbor approximation — and with arbitrary time-periodic

forces, thus doing away with the restriction to purely sinusoidal driving [2]. But in any real

lattice system an external time-periodic force will induce interband transitions, and it is by

no means obvious whether dynamic localization can survive when these come into play.

In this chapter we consider ultracold atoms in driven optical lattices, which provide par-

ticularly attractive, experimentally well accessible examples of quantum particles in spatially

periodic structures exposed to time-periodic forcing [3, 4, 5]. Such systems are much cleaner,

and more easy to control, than electrons in crystal lattices under the influence of ac electric

fields, for which the original idea had been developed [1]. With the help of results obtained

1
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by numerical calculations we illustrate that such ultracold atoms in kHz-driven optical lat-

tices exhibit dynamic localization in almost its purest form if the parameters are chosen

judiciously, despite the potentially devastating presence of interband transitions.

When viewing dynamic localization as resulting from a band collapse [6, 7], far-reaching

further possibilities emerge. Namely, the actual strength of deviations from exact spatial

periodicity, be they isolated [8], random [9], or quasiperiodic [10, 11], is measured relative

to the effective band width. Thus, when the band in question almost collapses in response

to time-periodic driving, the effects of even slight deviations from exact lattice periodicity

are strongly enhanced. This allows one, in particular, to coherently control the “metal-

insulator”-like incommensurability transition occurring in sufficiently deep quasiperiodic op-

tical lattices [10, 11, 12]. While the very transition has already been observed with Bose-

Einstein condensates in bichromatic optical potentials [13], its coherent control by means of

time-periodic forcing still awaits its experimental verification.

1.1 The basic idea

The one-dimensional tight-binding system described by the Hamiltonian

H0 = −J
∑

ℓ

(

|ℓ+ 1〉〈ℓ|+ |ℓ〉〈ℓ+ 1|
)

, (1.1)

where |ℓ〉 denotes a Wannier state localized at the ℓth lattice site, and J is the hopping

matrix element connecting neighboring sites, is about the simplest model for the formation

of Bloch bands. Assuming that the unspecified number of sites is so large that finite-size

effects may be neglected, its energy eigenstates are Bloch waves

|ϕk〉 =
∑

ℓ

|ℓ〉 exp(iℓka) (1.2)

labeled by a wave number k; the lattice period is given by a. The corresponding energy

dispersion relation reads

E(k) = −2J cos(ka) ; (1.3)
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here we assume J > 0, so that its minimum is located at k = 0 mod 2π/a. Now we let an

external time-dependent, spatially homogeneous force F (t) act on the system, such that the

total Hamiltonian becomes

H(t) = H0 +H1(t) (1.4)

with

H1(t) = −F (t)
∑

ℓ

|ℓ〉aℓ〈ℓ| . (1.5)

It is easy to verify that the wave functions

|ψk(t)〉 = exp
(

− i

h̄

∫ t

0
dτ E(qk(τ))

)

∑

ℓ

|ℓ〉 exp (iℓqk(t)a) (1.6)

then are solutions to the time-dependent Schrödinger equation, provided the time-dependent

wave numbers qk(t) introduced here obey the “semiclassical” relation

h̄q̇k(t) = F (t) . (1.7)

We demand that qk(t) be equal to k at time t = 0, and therefore set

qk(t) = k +
1

h̄

∫ t

0
dτ F (τ) . (1.8)

These wave functions (1.6), originally considered by Houston in the context of crystal elec-

trons exposed to a uniform electric field superimposed on a periodic lattice potential [14],

are known as “accelerated Bloch waves”, or Houston states.

In the particular case of a monochromatic force with angular frequency ω and ampli-

tude F1, given by

F (t) = F1 cos(ωt) , (1.9)

one has

qk(t) = k +
F1

h̄ω
sin(ωt) , (1.10)

so that qk(t) naturally acquires the temporal period T = 2π/ω of the driving force. Then

also E(qk(t)) is T -periodic, but the Houston state (1.6) is not, because the integral appearing
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in the exponential prefactor acquires a contribution which grows linearly with time. In order

to extract that contribution, we calculate the one-cycle average

ε(k) ≡ 1

T

∫ T

0
dτ E(qk(τ))

= −2Jeff cos(ka) , (1.11)

thus obtaining an effective hopping matrix element given by

Jeff = J J0

(

F1a

h̄ω

)

, (1.12)

with J0(z) denoting the Bessel function of zero order. We then write

exp
(

− i

h̄

∫ t

0
dτ E(qk(τ))

)

= exp
(

− i

h̄

∫ t

0
dτ
[

E(qk(τ))− ε(k)
]

)

exp
(

− iε(k)t/h̄
)

, (1.13)

so that the first exponential on the right hand side now is T -periodic by construction. Hence,

for the T -periodic force (1.9) the Houston states (1.6) can be cast into a form

|ψk(t)〉 = |uk(t)〉 exp
(

− iε(k)t/h̄
)

(1.14)

with T -periodic functions |uk(t)〉,

|uk(t)〉 = |uk(t+ T )〉 . (1.15)

This leads to a remarkable conclusion. Any wave packet governed by the full Hamilto-

nian (1.4) with periodic forcing (1.9) can be expanded with respect to these states (1.14)

with coefficents that are constant in time, because the time-dependence already is fully in-

corporated into the states themselves. After each cycle T the T -periodic functions |uk(t)〉
are restored, so that the time evolution of the wave packet, when viewed stroboscopically at

intervals T , is determined by the different “speed” of rotation of the complex phase factors

exp(−iε(k)t/h̄) of the packet’s individual components. But if all quantities ε(k) are equal,

which according to Eqs. (1.11) and (1.12) occurs when the scaled driving amplitude

K0 ≡
F1a

h̄ω
(1.16)
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equals a zero of the Bessel function J0, all phase factors evolve at the same speed, so that the

wave packet reproduces itself exactly after each period: There is some T -periodic wiggling,

but no long-term motion. This, in short, is dynamic localization [1].

The above argument appears so special, and the decisive step (1.13) so swift, that it is not

easy to see how to transfer this finding to more realistic situations: How can one incorporate

deviations from exact lattice periodicity into this reasoning? How to proceed when several

bands are coupled by interband transitions? The answer to these questions is provided by

the Floquet picture, which does not directly take recourse to the spatial lattice periodicity,

but rather builds on the temporal periodicity of the Hamiltonian: When H(t) = H(t+ T ),

there exists a complete set of solutions to the time-dependent Schrödinger equation of the

particular form

|ψn(t)〉 = |un(t)〉 exp(−iεnt/h̄) , (1.17)

where the functions |un(t)〉 = |un(t+ T )〉 inherit the T -periodicity of the underlying Hamil-

tonian. These states are known as Floquet states; the quantities εn are dubbed as quasiener-

gies [15, 16, 17, 18]. Obviously the Houston states (1.6) with time-periodic forcing are

particular examples of such Floquet states; from now on we employ an abstract state label n

instead of the wave number k in order to also admit settings without lattice periodicity.

In the case of the Houston-Floquet states, the determination of their quasienergies (1.11)

essentially was a by-product of the solution of an initial value problem. The general case,

however, has to proceed along a more sophisticated route: Floquet states and quasienergies

are determined by solving the eigenvalue problem

(

H(t)− ih̄
∂

∂t

)

|un(t)〉〉 = εn|un(t)〉〉 , (1.18)

posed in an extended Hilbert space of T -periodic functions; in that space time plays the role

of a coordinate. Therefore, if 〈u1(t)|u2(t)〉 is the scalar product of two T -periodic functions

in the usual physical Hilbert space, their scalar product in the extended space reads [18]

〈〈u1|u2〉〉 ≡
1

T

∫ T

0
dt 〈u1(t)|u2(t)〉 . (1.19)

Hence, we write |un(t)〉 for a Floquet eigenfunction when viewed in the physical Hilbert
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space, and |un(t)〉〉 when that same function is regarded as an element of the extended space.

A most important consequence of this formalism stems from the fact that when |un(t)〉〉
is a solution to the problem (1.18) with eigenvalue εn, then |un(t) exp(imωt)〉〉 is a further

solution with eigenvalue εn+mh̄ω, where we have set ω = 2π/T , and m is any (positive, zero,

or negative) integer, in order to comply with the required T -periodic boundary condition.

For m 6= 0 these two solutions are orthogonal with respect to the scalar product (1.19). But

when going back to the physical Hilbert space, one has

|un(t) exp(imωt)〉 exp
(

− i(εn +mh̄ω)/h̄
)

= |un(t)〉 exp(−iεnt/h̄) , (1.20)

so that the two different solutions represent the same Floquet state (1.17). We conclude

that a physical Floquet state does not simply correspond to an individual solution to the

eigenvalue problem (1.18), but rather to a whole class of such solutions labeled by the state

index n, whereas the “photon” index m distinguishes different representatives of such a class.

Likewise, a quasienergy should not be regarded as a single eigenvalue, but rather as a set

{εn + mh̄ω | m = 0,±1,±2, . . .} associated with one particular state n, while m ranges

through all integers. Therefore, each “quasienergy Brillouin zone” of width h̄ω contains one

quasienergy representative of each state.

The time evolution of any wave function can then be written as a Floquet-state expansion,

|ψ(t)〉 =
∑

n

cn|un(t)〉 exp(−iεnt/h̄) , (1.21)

where the coefficients cn remain constant in time. This is one of the main benefits offered

by the Floquet picture, and allows one to draw many parallels to the evolution of systems

governed by a time-independent Hamiltonian.

Equipped with this set of tools, it is now clear how to investigate the possible occur-

rence of dynamic localization in realistic lattice structures: One has to solve the eigenvalue

problem (1.18) for the Hamiltonian with the respective full lattice potential, and to enquire

whether the resulting quasienergy bands collapse at least approximately, that is, acquire

negligible widths for certain parameters. If so, any wave packet prepared in a quasienergy
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band at a collapse point will suffer from “prohibited dephasing”, as in the archetypal model

specified by Eqs. (1.1), (1.5), and (1.9); and thus remain dynamically localized. Interband

transitions then are automatically included, with multiphoton-like resonances manifesting

themselves through quasienergy-curve anticrossings [19].

In the following section we will carry through this program for ultracold atoms in driven

one-dimensional optical lattices.

1.2 Does it work?

A one-dimensional optical lattice is created by two counterpropagating laser beams with

wave number kL, suitably detuned from a dipole-allowed transition of the atomic species

moving in this standing light wave. By means of the ac Stark effect, the spatially periodic

electric field experienced by the atoms then translates into a cosine potential

Vlat(x) =
V0

2
cos(2kLx) (1.22)

for their translational motion along the lattice, with a depth V0 that is proportional to the

laser intensity [20, 21]. The characteristic energy scale then is given by the single-photon

recoil energy

Erec =
h̄2k2

L

2M
, (1.23)

where M denotes the atomic mass. To give a numerical example, when working with 87Rb

in a lattice generated by laser radiation with wavelength λ = 2π/kL = 842 nm [4, 5] one has

Erec = 1.34 · 10−11 eV. Thus, typical lattice depths of 5 to 10 recoil energies are on the order

of 10−10 eV — which means that one encounters many phenomena with ultracold atoms

in optical lattices which are known from traditional solid-state physics, but scaled down in

energy by no less than 10 orders of magnitude.

This also tells us what “ultracold” means. Taking an ensemble of atoms with a temper-

ature Tens such that kBTens is roughly equal to Erec, say, where kB is Boltzmann’s constant,
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the de Broglie wavelength of these atoms, given by

λdeBroglie =
h√

2πMkBTens

≈ 2√
π

λ

2
, (1.24)

is barely longer than the lattice constant a = λ/2. But in order to experience quantum

mechanical lattice effects, the particles have to be able to “feel” the periodic structure, so

that λdeBroglie should cover at least a few lattice constants — which means that being this

cold is not cold enough: We even require kBTens ≪ Erec.

With hardly any thermal excitation energy left the atoms occupy only the lowest Bloch

band of their optical lattice, so that the single-particle Hamiltonian with the lattice poten-

tial (1.22) translates directly into the single-band tight-binding model (1.1) when working

in a basis of Wannier functions pertaining to that lowest band, and neglecting all couplings

other than those between nearest neighbors, denoted as J . The accuracy of this approxima-

tion increases with increasing lattice depth [4, 12]: For V0/Erec = 5 the magnitude of the

ratio of the neglected matrix element connecting next-to-nearest neighbors to J still reaches

about 5%, but it decreases to about 1% when V0/Erec = 10. Moreover, when expressing

the exact band structure of a cosine lattice in terms of characteristic values of the Mathieu

equation, and noting that the width W of the cosine energy band (1.3) is 4J , one finds the

approximation [21]

J/Erec ∼
4√
π

(

V0

Erec

)3/4

exp

(

−2

√

V0

Erec

)

for V0/Erec ≫ 1 . (1.25)

The requisite still missing now is the time-periodic force corresponding to the model (1.5).

This can be effectuated either by introducing a small oscillating frequency difference between

the two lattice-generating laser beams, as detailed later, or by retro-reflecting one such beam

off an oscillating mirror back into itself [3, 4, 5]. In a frame of reference co-moving with the

oscillating lattice, one then obtains the single-particle Hamiltonian

H(t) =
p2

2M
+ Vlat(x)− F1x cos(ωt+ φ) , (1.26)

where p is the atomic center-of-mass momentum in the lattice direction, the driving force is
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Figure 1.1: Above: One Brillouin zone of quasienergies for the optical lattice (1.22) with
depth V0/Erec = 5.7, driven with scaled frequency h̄ω/Erec = 0.5, vs. the scaled driving ampli-
tude K0. The lower left panel testifies that the first band collapse is almost perfect, whereas
the second one, enlarged in the lower right panel, is already thwarted by multiphoton-like
resonances.

parametrized in accordance with Eq. (1.9), and we have also admitted an arbitrary phase φ.

In all our model calculations we consider a lattice with depth V0/Erec = 5.7, implying

that the width of the lowest Bloch band is W/Erec = 0.22, whereas the gap between this

lowest band and the first excited one figures as ∆/Erec = 2.76. Even for such a com-

paratively shallow lattice, which is routinely being realized in current experiments [5], the

dispersion of the lowest band already is reasonably well described by the tight-binding co-

sine approximation (1.3), setting J = W/4. In order to obtain dynamic localization, the

driving frequency should then be chosen such that the quantum h̄ω is significantly smaller

than the gap ∆, so that, perturbatively speaking, interband transitions require higher-order

multiphoton-like processes, which would be suppressed as long as the driving amplitude F1
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is not too strong [19]. On the other hand, it is reasonable to demand that h̄ω be larger than

the band width, so that the band fits into a single quasienergy Brillouin zone. A good choice

of the driving frequency should therefore adhere to the chain 4J = W < h̄ω < ∆; we take

h̄ω/Erec = 0.5 in all numerical scenarios depicted below. For 87Rb atoms in a lattice with

λ = 842 nm this choice fixes the frequency at ω/(2π) = 1.62 kHz.

Figure 1.1 shows one Brillouin zone of quasienergies for these parameters vs. the scaled

driving amplitude K0, as defined by Eq. (1.16). Observe that the first quasimomentum

Brillouin zone ranges from −h̄π/a = −h̄kL to +h̄π/a = +h̄kL; the homogeneous force does

not mix states with different wave numbers [10]. Hence, we combine quasienergies for states

with k = (i/10) kL in this plot, with i = 0, 1, 2, . . . , 10. In this way, the comparison of

the ideal quasienergy band (1.11) with the one appearing in the actual optical lattice is

greatly facilitated. Evidently the first band collapse is almost perfect, although it is slightly

shifted from K0 = 2.405, the first zero of J0, to K0 ≈ 2.35. In contrast, the second collapse,

expected at K0 = 5.520, already is significantly affected by a host of anticrossings, indicating

multiphoton-like resonances. Thus, with V0/Erec = 5.7 and h̄ω/Erec = 0.5 we may expect

almost perfect dynamic localization at the first collapse point, whereas there will be strong

disturbances of the ideal dynamics at the second one.

In Fig. 1.2 we depict the lowest quasienergy band for K0 = 0, where it coincides with the

original energy band; K0 = 1.18, where its width is reduced by a factor of J0(1.18) = 0.681;

and at the first collapse point, K0 = 2.35. Ideally, a collapsed quasienergy band is completely

flat, so that dynamic localization is associated with an infinite effective mass of the driven

Bloch particle. Here we still observe some residual dispersion, probably resulting from both

next-to-nearest neighbor couplings and couplings to higher bands, but the degree of band

flattening achieved by the driving force is nonetheless impressive.

The ultimate demonstration of dynamic localization requires, of course, the inspection of

wave-packet dynamics. To this end, we first compute the Bloch states 〈x|ϕ1,k〉 of the lowest

energy band of the lattice (1.22), and use them to design an initial wave packet

〈x|ψ(t=0)〉 =
∫ kL

−kL

dk g1(k, t=0) 〈x|ϕ1,k〉 (1.27)
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Figure 1.2: “Lowest” quasienergy band for the optical lattice (1.22) with depth V0/Erec = 5.7,
driven with scaled frequency h̄ω/Erec = 0.5, and scaled amplitudes K0 = 0 (left), 1.18
(middle), and 2.35 (right). Additional curves result from higher bands.

with a Gaussian k-space distribution

g1(k, t=0) =
1

√

2kL

√
π∆k

exp

(

−(k − kc)
2

2(∆k)2

)

(1.28)

centered around some predetermined wave number kc, with width ∆k. The correspond-

ing probability density |〈x|ψ(t= 0)〉|2 is concentrated in the wells of the lattice potential,

equipped with a Gaussian envelope that varies the more slowly with x the narrower its dis-

tribution (1.28), that is, the smaller ∆k. We then take this packet (1.27) as initial condition,

and compute the wave function 〈x|ψ(t)〉 for t > 0 by solving the time-dependent Schrödinger

equation numerically, fixing the phase φ in the Hamiltonian (1.26) at the value φ = π/2.

This means that the force F (t) = F1 cos(ωt+ φ) is instantaneously switched on at t = 0.
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Figure 1.3: Spreading of the Bloch wave packet (1.27) with initial k-space width ∆k/kL = 0.1,
and initial momentum kc/kL = 0, in the unforced optical lattice. In this and the following
figures, density is encoded in shades of gray.
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Figure 1.4: Evolution of the same initial wave packet as in Fig. 1.3 at the first band col-
lapse (K0 = 2.35): Here one encounters almost perfect dynamic localization; wave-packet
spreading is disabled because the quasienergy band is dispersionless.
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Figure 1.5: Evolution of the same inital wave packet as in Fig. 1.3 at the supposed second
band collapse (K0 = 5.52): Here the multiphoton-like resonances visible in Fig. 1.1 lead to
a marked degradation of the localization.

Figure 1.3 shows a density plot of the wave packet when it evolves in the undriven lattice,

that is, for K0 = 0; the density is encoded in shades of gray. In this and the following figures,

spatial extensions are measured in terms of the dimensionless coordinate z = kLx, so that a

distance ∆z/π = 1 corresponds to one lattice period; moreover, the time scale is set by the

period T = 2π/ω. With kc/kL = 0 the initial packet carries no net momentum; its width is

chosen as ∆k/kL = 0.1. As expected, the width of the packet then grows in the course of

time by well-to-well tunneling.

In Fig. 1.4 we depict the density of the wave packet that evolves from the same initial

condition when the driving amplitude is tuned to the first band collapse at K0 = 2.35. Here

we observe dynamic localization at its very best: The spreading has stopped, the packet is

“frozen”.

It is then also of interest to monitor the evolution at the supposed second collapse, at

K0 = 5.52; this is done in Fig. 1.5. While the “regular spreading” that has been prominent in

Fig. 1.3 indeed seems to have stopped, small probability wavelets leak out of the initial packet

almost immediately, spreading rapidly over the lattice. This is an effect of the multiphoton-
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like resonances previously spotted in Fig. 1.1, which assist parts of the wave function in

getting to higher bands, allowing them to escape on a short time scale.

As long as interband transitions remain negligible, the resulting single-band dynamics can

often be regarded as “semiclassical” [22]: Namely, if an initial packet is strongly centered in

k-space around some arbitrary wave number kc ≡ kc(0), this center wave number evolves in

time according to Bloch’s famous “acceleration theorem”

h̄k̇c(t) = F (t) , (1.29)

similar to the evolution (1.7) of the index of a single Houston state. The model Hamilto-

nian (1.26) specifies F (t) = F1 cos(ωt+ φ), so that in this case

kc(t) = kc(0) +
F1

h̄ω

(

sin(ωt+ φ)− sin(φ)
)

. (1.30)

The packet’s group velocity then is given by the derivative of the dispersion relation E(k)

of the band it lives in, evaluated at this moving center wave number (1.30):

vgroup(t) =
1

h̄

dE

dk

∣

∣

∣

∣

∣

kc(t)

. (1.31)

Taking the tight-binding relation (1.3) as a good approximation for the actual lowest energy

band of our model, this yields

vgroup(t) =
2Ja

h̄
sin
(

kc(t)a
)

. (1.32)

Upon time-averaging, one is therefore left with

vgroup =
2Jeffa

h̄
sin
(

kc(0)a−K0 sin(φ)
)

, (1.33)

where Jeff again is the driving-dependent effective hopping matrix element (1.12), and K0 is

the scaled amplitude (1.16). Thus, the initial phase φ may be utilized for imparting some

momentum to the packet. Nonetheless, for any combination of kc(0) and φ the average group

velocity vanishes when Jeff = 0, as corresponding to ideal dynamic localization.
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Figure 1.6: Evolution of the k-space distribution initially given by Eq. (1.28) with width
∆k/kL = 0.1, for K0 = 1.2 and kc/kL = 0. The white-dashed line indicates the “classical”
solution (1.30).
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Figure 1.7: Evolution of the k-space distribution initially given by Eq. (1.28) with width
∆k/kL = 0.1, but now for K0 = 0.4 and kc/kL = 0.8, so that the white-dashed “classical”
solution (1.30) starts from a non-zero value.
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Figure 1.8: Evolution of the Bloch wave packet (1.27) with initial k-space width ∆k/kL = 0.1
and initial momentum kc/kL = 0.8, driven with scaled amplitude K0 = 0.4, as corresponding
to the k-space distribution depicted in Fig. 1.7. The white line marks the trajectory obtained
by integrating the oscillating group velocity (1.32).
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Figure 1.9: Evolution of the Bloch wave packet (1.27) with initial k-space width ∆k/kL = 0.1
and initial momentum kc/kL = 0.8, now driven with scaled amplitude K0 = 2.35: Despite
the nonzero average momentum, the average group velocity vanishes because of the band
collapse. The white line in the center is obtained as described in Fig. 1.8.
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This semiclassical behavior is illustrated by a further set of figures. In Fig. 1.6 we plot

the evolution of the exact k-space density that originates from the initial condition (1.28).

Again we set ∆k/kL = 0.1, meaning that the distribution is sufficiently narrow to ensure the

validity of Eq. (1.31); moreover, kc/kL = 0 and K0 = 1.2. Since φ = π/2, the distribution

then oscillates around k = −F1/(h̄ω), or k/kL = −K0/π, following precisely the k-space

trajectory predicted by Eq. (1.30).

A nonzero average momentum of the packet can likewise be achieved by selecting some

suitable value of kc/kL. Figure 1.7 shows an example with kc/kL = 0.8, while K0 = 0.4 and

∆k/kL = 0.1. This obviously corresponds to a wave function 〈x|ψ(t)〉 which moves into the

positive x-direction all the time; the density of this wave function is displayed in Fig. 1.8.

Here the white line indicates the classical trajectory that results from integrating the group

velocity (1.32); indeed, this trajectory describes the motion of the packet’s center quite well.

When adjusting the driving amplitude to the first collapse, as in Fig. 1.9, the average motion

stops despite the nonzero average momentum, as it should; when increasing K0 to still higher

values, so that Jeff becomes negative, the packet’s direction of motion can even be reversed.

While the semiclassical approach to dynamic localization may be helpful, insofar as it

appeals to our intuition, its explanation in terms of “prohibited dephasing” resulting from a

quasienergy band collapse is much more powerful: This view immediately reveals that not

only does the average motion of a wave packet come to a complete standstill, but so does

its spreading; moreover, prohibited dephasing applies to any initial condition, regardless

whether or not its envelope varies suffiently slowly to justify the semiclassical approxima-

tion. As an extreme example of “nonclassical” motion we consider in Fig. 1.10 the undriven

evolution of a wave function that coincides with a single Wannier function of the optical

lattice [12] at t = 0, and therefore certainly does not possess a slowly varying envelope then,

giving rise to a fairly complex spreading pattern which differs substantially from the semi-

classical one previously visualized in Fig. 1.3. Nonetheless, when driven with the amplitude

K0 = 2.35 marking the first quasienergy band collapse, one observes another occurrence of

dynamic localization, as witnessed by Fig. 1.11; the difference between the two evolution

patterns depicted in Figs. 1.10 and 1.11 could hardly be more striking.
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Figure 1.10: Evolution of the wave function that originates from an initial single Wannier
state in the undriven lattice. This state does not possess a slowly varying envelope, and thus
does not conform to semiclassical dynamics.
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Figure 1.11: Evolution of the wave function that originates from an initial single Wannier
state when driven with scaled amplitude K0 = 2.35. The semiclassical approximation is not
applicable here, but dynamic localization works nonetheless.
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Figure 1.12: Experimental setup for in-situ measurement of dynamic localization of a Bose-
Einstein condensate (BEC) in a driven optical lattice: The frequencies of two laser beams
are shifted with the help of acousto-optic modulators (AOMs) by ν and by ν + ∆ν sin(ωt),
respectively, before being directed against each other by mirrors. The resulting optical lattice
then oscillates in the laboratory frame, giving rise to an oscillating inertial force in the frame
of reference co-moving with the lattice. After the initial longitudinal confinement is switched
off, the BEC expands by well-to-well tunneling; its final width (indicated by the dashed line)
is recorded by imaging its shadow cast by a resonant flash onto a CCD chip. (Figure courtesy
of O. Morsch.)

In actual laboratory experiments it is advantageous to work with a phase-coherent atomic

Bose-Einstein condensate, rather than with individual atoms: If the density of the condensate

is sufficiently low, or if the interatomic s-wave scattering length is tuned close to zero by

means of a Feshbach resonance [13], the condensate is practically ideal, so that one effectively

can perform a measurement on an ensemble of identically prepared noninteracting atoms in

a single shot. Figure 1.12 shows a possible experimental setup [3, 4]: The optical lattice

is formed by two laser beams of wavelength λ, which are directed against each other with

the help of mirrors. Each beam passes through an acousto-optic modulator which shifts its

frequency by ν and by ν+∆ν(t), respectively. Because of the frequency difference ∆ν(t) thus

introduced between the counterpropagating beams, the condensate experiences the potential

Vlab(x, t) =
V0

2
cos

(

2kL

[

x+
λ

2

∫ t

0
dτ ∆ν(τ)

])

(1.34)

in the laboratory frame, which means that the lattice position shifts in time according to

the prescribed protocol ∆ν(t). In a frame of reference co-moving with the lattice, this shift
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translates into the inertial force

F (t) = M
λ

2

d∆ν(t)

dt
. (1.35)

Therefore, choosing ∆ν(t) = ∆νmax sin(ωt + φ) leads to the desired Hamiltonian (1.26) in

the co-moving frame, with the driving amplitude

F1 = Mω
λ

2
∆νmax . (1.36)

Now a Bose-Einstein condensate initially trapped in the center of the oscillating lattice is

allowed to expand freely in the lattice direction by well-to-well tunneling after switching off

the longitudinal confinement, while maintaining a weak transversal confinement in order to

keep the condensate in the lattice. After a variable expansion time, the in situ width of the

condensate is determined by a resonant flash, the shadow cast by which is imaged onto a CCD

chip [3]. The measured expansion rate then is to a good approximation proportional to |Jeff |,
that is, to the absolute value of the effective hopping matrix element (1.12); in principle,

even the sign of Jeff can be deduced from additional time-of-flight measurements [3]. In

Fig. 1.13 we display data for the ratio Jeff/J acquired in this manner by the Pisa group

with a condensate of 87Rb atoms in a lattice of depth V0/Erec = 6.0, driven with frequency

ω/(2π) = 4.0 kHz, after expansion times of 150 milliseconds. Evidently these data match the

expected Bessel function J0(K0) quite well even up to the second zero. Note that here one

has h̄ω/Erec = 1.24, so that the frequency employed in these measurements is significantly

higher than in our model calculations. This means that the inequality 4J < h̄ω is satisfied

in a stronger manner, while h̄ω still remains reasonably small compared to the band gap. As

a consequence, even the second band collapse can be quite well developed. In any case, this

figure strikingly demonstrates that the concept of dynamic localization by now has crossed, in

the context of mesoscopic matter waves, the threshold from an idealized theoretical concept

to a well-controllable laboratory reality.
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Figure 1.13: Experimental results for the ratio Jeff/J of the effective hopping matrix ele-
ment (1.12) to the bare one as a function of the scaled driving amplitude (1.16), obtained with
a Bose-Einstein condensate of 87Rb atoms in an optical lattice with a depth of V0 = 6Erec

(λ = 842 nm), driven with frequency ω/(2π) = 4.0 kHz. The dashed line corresponds to the
expected Bessel function J0(K0). (Figure courtesy of O. Morsch.)
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1.3 What is it good for?

Up to this point we have considered no more than a possible realization of dynamic local-

ization which comes fairly close to the theoretical ideal [1]. Apart from its observation with

dilute Bose-Einstein condensates in time-periodically shifted optical lattices [3, 4], this type

of quantum wave propagation has meanwhile also been made visible by means of an optical

analog based on sinusoidally-curved lithium-niobate waveguide arrays [23]. This is certainly

interesting, but it is not what one would call “deep”; the “prohibited dephasing”-view clearly

reveals that the only physics entering here is summarized by stating that an initial state is

“frozen” in time if the phase factors of all of its spectral components evolve at the same

speed. Yet, the accompanying band collapse furnishes a strong hint that there may be more

in stock. Namely, when the ideal dynamics is somehow perturbed it is the bandwidth which

sets the scale with respect to which the strength of such a perturbation has to be gauged. A

prominent example is provided by the repulsive interaction between ultracold atoms in an

optical lattice; the strength of this interaction is expressed in terms of a parameter U which

quantifies the repulsion energy of one pair of atoms occupying the same lattice site [21]. Ac-

cordingly, the characteristic dimensionless parameter then is the ratio U/J ; here J = W/4

is taken instead of the bandwidth W . Indeed, it is this ratio U/J which decides which quan-

tum phase a gas of ultracold, repulsively interacting atoms in an optical lattice adopts: For

U/J ≪ 1 the system is superfluid, but becomes a Mott insulator when this ratio exceeds a

critical value [21]. Hence, when recalling that J is replaced by the effective hopping matrix

element (1.12) when the system is driven with appropriate parameters, it is only natural to

predict that this superfluid-to-Mott insulator transition can be induced in a time-periodically

shifted optical lattice by varying the driving force [24, 25]: Assuming that one starts in the

superfluid phase, Jeff can then virtually be made arbitrarily small by adjusting the scaled

amplitude K0 to a zero of J0, resulting in a value of U/Jeff so large that the system is forced

to enter the Mott regime. The experimental confirmation of this scenario, achieved by the

Pisa group [5], probably constitutes the first known example of coherent control exerted by

means of time-periodic forcing on a quantum phase transition.

There are other types of perturbations, associated with deviations from perfect transla-
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tional symmetry, which affect even noninteracting ultracold atoms in optical lattices. Most

notably, the system governed by the tight-binding Hamiltonian

HAA = −J
∑

ℓ

(

|ℓ+ 1〉〈ℓ|+ |ℓ〉〈ℓ+ 1|
)

+ V
∑

ℓ

cos(2πgℓ+ δ)|ℓ〉〈ℓ| , (1.37)

differing from its antecedent (1.1) through additional on-site energies which oscillate along

the lattice with amplitude V , shows a quite peculiar behavior when the number g is irrational,

so that this system becomes quasiperiodic [26, 27, 28]: As long as |V/J | < 2, so that the

on-site perturbations are relatively weak, all of its energy eigenstates still remain extended

over the entire lattice in a Bloch-like manner, whereas they are all exponentially localized,

with one common localization length, when |V/J | > 2. Thus, there is a metal-insulator-like,

incommensurability-induced transition at |V/J | = 2, originally studied by Harper [26] in

the context of conduction electrons in a magnetic field, and later by Aubry and André [27];

this transition can be realized approximately with ultracold atoms in a bichromatic optical

lattice described by the potential

Vbic(x) =
V0

2
cos(2kLx) + V1 cos(2gkLx+ δ) . (1.38)

The guiding idea here is to employ a primary lattice with depth V0 for setting up the hosting

tight-binding system (1.1), as before, and then to invoke a secondary lattice with much

smaller depth 2V1 for achieving the required modulation of the local energies at the sites of

the host [10, 11]. When the primary lattice is comparatively shallow, possessing a depth of

only a few recoil energies, the transition occurs stepwise upon increasing V1 [12], featuring

pronounced mobility edges resulting mainly from the next-to-nearest neighbor couplings

between the host’s sites which are present in the full bichromatic potential (1.38), but do

not occur in the Aubry-André model (1.37). When V0/Erec ≫ 1, so that the primary lattice

is so deep that these additional couplings may be safely neglected, the transition occurring

in the actual bichromatic lattice (1.38) is fairly sharp. The parameter J then again is given

approximately by Eq. (1.25); moreover, one has

V/Erec ∼
V1

Erec
exp



− g2

√

V0/Erec



 for V0/Erec ≫ 1 (1.39)
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with reasonably chosen g on the order of unity. Therefore, the equation |V/J | = 2 marking

the metal-insulator-like transition in the ideal Aubry-André model now translates into the

estimate [12]

V c
1

Erec
∼ 8√

π

(

V0

Erec

)3/4

exp



−2

√

V0

Erec
+

g2

√

V0/Erec



 (1.40)

for the critical strength V c
1 of the secondary optical lattice, given a sufficient depth of the

primary one. Indeed, this transiton has been observed with a Bose-Einstein condensate

consisting of 39K atoms, using a magnetically tunable Fesbach resonance for rendering these

atoms practically noninteracting [13].

When ultracold atoms in such a bichromatic lattice (1.38) are subjected to time-periodic

forcing, one obtains an additional knob which can be turned to induce the transition: Be-

cause J is replaced by the effective hopping strength (1.12) when the system is suitably

driven, one can cross the critical border |V/Jeff | = 2 by varying the parameters of the driv-

ing force; the critical parameters then are linked approximately by the relation

|J0(K0)| ∼
√
π

8

V1

Erec

(

V0

Erec

)

−3/4

exp



+2

√

V0

Erec
− g2

√

V0/Erec



 . (1.41)

Hence, it is feasible to coherently control the metal-insulator-like transition exhibited by

noninteracting ultracold atoms in properly designed bichromatic optical potentials through

time-periodic forcing [10, 11]. In order to substantiate this prediction, we now display the

results of further numerical wave-packet calculations. In all of these we employ a primary

lattice with depth V0/Erec = 5.7, as in our preceding studies, and fix the incommensurability

parameter at the golden mean g = (
√

5− 1)/2 up to numerical accuracy. With this choice,

the above estimate (1.40) yields V c
1 /Erec ≈ 0.165 for the critical strength of the secondary

lattice. The driving frequency is given by h̄ω/Erec = 0.5 throughout.

Figure 1.14 visualizes the evolution of a wave function that originates from the same

Gaussian initial state as already employed in Fig. 1.3. Here the driving force is still absent,

and the depth of the secondary lattice is V1/Erec = 0.10, placing the system in its metallic

phase; accordingly, the wave function readily explores the entire lattice. In contrast, when

V1/Erec = 0.25 and the drive is still switched off, the wave function remains localized as shown
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Figure 1.14: Evolution of the same initial wave packet as in Fig. 1.3 in an undriven bichro-
matic optical lattice (1.38). Here the strength of the secondary potential is V1/Erec = 0.10,
so that the system is in its mobile “metallic” phase, allowing the wave function to spread.
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Figure 1.15: Evolution of the same initial wave packet as in Fig. 1.3 in an undriven bichro-
matic optical lattice (1.38). Here the strength of the secondary potential is V1/Erec = 0.25,
so that the system is in its “insulating” phase, keeping the wave function localized.
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Figure 1.16: Evolution of the same initial wave packet as in Fig. 1.3 in a bichromatic optical
lattice (1.38) driven with scaled amplitude K0 = 1.7. The strength of the secondary lattice
is V1/Erec = 0.10, as in Fig. 1.14, so that the system would be in its “metallic” phase if there
were no forcing.

in Fig. 1.15; this indicates that we are encountering the insulating phase now. But the wave

function also remains localized when the secondary lattice is tuned back to V1/Erec = 0.10

and the driving force acts with scaled amplitude K0 = 1.7, as depicted in Fig. 1.16: The

relation (1.41) predicts the transition from the metallic to the insulating phase to have

occurred already at about K0 ≈ 1.3. It should be noted that there is a pronounced difference

from the ideal dynamic localization reviewed in the preceding section: There the wave packet

remains localized only when K0 is exactly equal to a zero of J0. In contrast, here one switches

from the metallic into the insulating phase already when |J0(K0)| becomes sufficiently small.

Finally, we show a corresponding sequence of results for wave functions which evolve from

an initial Wannier state of the primary lattice. In Fig. 1.17 we again consider an undriven

bichromatic lattice with V1/Erec = 0.10, so that the mobile metallic phase enables uninhibited

spreading; in Fig. 1.18, where V1/Erec = 0.25, the system’s insulating character then keeps

the wave function strongly localized. But that same high degree of localization may also be

obtained when again resetting the strength of the secondary lattice to V1/Erec = 0.10, and

switching on the driving force with scaled amplitude K0 = 1.7, as done in Fig. 1.19.
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Figure 1.17: Evolution of the wave function originating from a single Wannier state of the
primary lattice in an undriven bichromatic optical lattice (1.38). Here the strength of the
secondary potential is V1/Erec = 0.10, so that the system is in its “metallic” phase.
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Figure 1.18: Evolution of the wave function originating from a single Wannier state of the
primary lattice in an undriven bichromatic optical lattice (1.38). Here the strength of the
secondary potential is V1/Erec = 0.25, so that the system is in its “insulating” phase.
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Figure 1.19: Evolution of the wave function originating from a single Wannier state of the
primary lattice in a bichromatic optical lattice (1.38) driven with scaled amplitude K0 = 1.7.
The strength of the secondary lattice is V1/Erec = 0.10, as in Fig. 1.17, so that the system
would be in its “metallic” phase if there were no forcing.

These figures vividly illustrate the main message: In the presence of time-periodic forcing

it is the width of the underlying quasienergy band which determines the effective strength

of deviations from perfect spatial periodicity. In an ideal lattice without such deviations

one encounters “only” dynamic localization, but in lattices with isolated, quasiperiodic, or

random perturbations the strengths of these can be adjusted at will by suitably selecting

the parameters of the drive. With regard to experimental tests, the enormous flexibility

offered by ultracold atoms in optical potentials makes such systems far superior to electrons

in ac-driven crystal lattices.

When the concept of controlling the incommensurability-induced metal-insulator transi-

tion exhibited by the Aubry-André model (1.37) by means of time-periodic forcing was con-

ceived [10, 11] the experimental investigation of ultracold atoms in optical lattices was still

in its infancies. But now that this transition has been unambiguously observed with a non-

interacting Bose-Einstein condensate [13], the demonstration of its coherent control has come

into immediate reach. Besides the already established coherent control of the interaction-

induced superfluid-to-Mott insulator transition [5], this demonstration would constitute a
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further milestone achievement in the on-going effort to explore the newly emerging prospects

provided by dressed matter waves.
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A representation is put forward for wave functions of quantum particles in periodic lattice potentials subjected
to homogeneous time-periodic forcing, based on an expansion with respect to Bloch-like states which embody
both the spatial and the temporal periodicity. It is shown that there exists a generalization of Bloch’s famous
acceleration theorem which grows out of this representation and captures the effect of a weak probe force applied
in addition to a strong dressing force. Taken together, these elements point at a “dressing and probing” strategy
for coherent wave-packet manipulation, which could be implemented in present experiments with optical lattices.
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I. INTRODUCTION

The so-called acceleration theorem for wave-packet motion
in periodic potentials, formulated already in 1928 by Bloch,1

has proven to be of outstanding value to solid-state physics
for understanding the dynamics of Bloch electrons within a
semiclassical picture.2,3 In its most-often used variant, this
theorem states that if we consider an electronic wave packet in
a spatially periodic lattice, which is centered in k space around
some wave vector �kc, and if an external electric field �E(t) is
applied under single-band conditions, then this center wave

vector evolves in time according to h̄�̇kc(t) = −e �E(t), with −e

being the electronic charge. Perhaps its best-known application
is the explanation of Bloch oscillations of particles exposed
to a homogeneous, constant force,4–16 which we recapitulate
here in the simplest guise: Take a particle in a one-dimensional
tight-binding energy band E(k) = −(W/2) cos(ka), where W

is the band width and a denotes the lattice period. Assume that
the particle’s wave packet is centered around kc(0) initially
and subjected to a homogeneous force of strength F . Then the
acceleration theorem, now taking the form

h̄k̇c(t) = F, (1)

tells us kc(t) = kc(0) + F t/h̄, so that the packet moves through
k space at a constant rate.1 According to another classic work
by Jones and Zener,17 the particle’s group velocity vg(t) in real
space is determined, quite generally, by the derivative of E(k)
with respect to k when evaluated at the moving center kc(t),

vg(t) = 1

h̄

dE

dk

∣∣∣∣
kc(t)

. (2)

In our case, this relation immediately gives

vg(t) = Wa

2h̄
sin[kc(0)a + ωBt], (3)

implying that the particle’s response to the constant force is
an oscillating motion with the Bloch frequency18 ωB = Fa/h̄.
This elementary example, to which we will come back later
in Sec. IV, strikingly illustrates the power of this type of
approach. But an obvious restriction stems from the necessity
to remain within the scope of the single-band approximation;
the above acceleration theorem (1) is put out of action when
several Bloch bands are substantially coupled by the external
force. Nonetheless, in the present work we demonstrate that

there exists a generalization of the acceleration theorem which
can be applied even under conditions of strong interband
transitions. Specifically, we consider situations in which a
Bloch particle is subjected to a strong oscillating force
which possibly induces pronounced transitions between the
unperturbed energy bands. By abandoning the customary
crystal-momentum representation19 and introducing an al-
ternative Floquet representation instead, we show that the
effect of an additional force then is well captured by another
acceleration theorem which closely mimics the spirit of the
original. We obtain two major results: The Floquet analog
(32) of Bloch’s acceleration theorem (1), and the Floquet
analog (42) of the Jones-Zener expression (2) for the group
velocity. These findings are particularly useful for control
applications, when a strong oscillating field “dresses” the
lattice and thus significantly alters its band structure, while a
second, comparatively weak homogeneous force is employed
to effectuate controlled population transfer. We first outline
the formal mathematical arguments in Secs. II and III, and
then we give two applications of topical interest, discussing
“super” Bloch oscillations in Sec. IV and coherently controlled
interband population transfer in Sec. V. Although we restrict
ourselves here for notational simplicity to one-dimensional
lattices, our results can be carried over to general, higher-
dimensional settings.

II. THE FLOQUET REPRESENTATION

We consider a particle of mass m moving in a one-
dimensional lattice potential V (x) = V (x + a) with spatial pe-
riod a under the influence of a homogeneous, time-dependent
force F (t), as described by the Hamiltonian

H̃0(x,t) = p2

2m
+ V (x) − F (t)x. (4)

Subjecting the particle’s wave function ψ̃(x,t) to the unitary
transformation

ψ̃(x,t) = exp

(
i

h̄
x

∫ t

0
dτ F (τ )

)
ψ(x,t), (5)

the new function ψ(x,t) obeys the Schrödinger equation

ih̄
∂

∂t
ψ(x,t) = H0(x,t)ψ(x,t), (6)

054301-11098-0121/2011/84(5)/054301(11) ©2011 American Physical Society
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with the transformed Hamiltonian

H0(x,t) = 1

2m

(
p +

∫ t

0
dτ F (τ )

)2

+ V (x). (7)

Now let us further assume that the force F (t) is periodic in time
with period T , such that its one-cycle integral either vanishes
or equals an integer multiple of h̄ times the reciprocal lattice
wave number 2π/a:∫ T

0
dt F (t) = r × h̄

2π

a
, r = 0, ± 1, ± 2, . . . . (8)

For example, this is accomplished by a monochromatic
oscillating force with an additional static bias,

F (t) = Fr + Fac cos(ωt), (9)

provided the latter satisfies the condition Fra = rh̄ω. Then
the Floquet theorem guarantees that the time-dependent
Schrödinger equation (6) admits a complete set of spatiotem-
poral Bloch waves,20–22 that is, of solutions of the form

ψn,k(x,t) = exp[ikx − iεn(k)t/h̄]un,k(x,t), (10)

with spatially and temporally periodic functions

un,k(x,t) = un,k(x + a,t) = un,k(x,t + T ). (11)

As usual, n is the band index and k a wave number; εn(k)
thus is the quasienergy dispersion relation for the nth band. If
r = 0 in Eq. (8), the existence of these solutions is obvious,
because then H0(x,t) = H0(x + a,t) = H0(x,t + T ), so that
the wave functions (10) generalize the customary Bloch
waves1 for particles in spatially periodic lattice potentials by
also accounting for the temporal periodicity of the driving
force. When r �= 0, so that H0(x,t) itself is not periodic in time,
spatiotemporal Bloch waves (10) emerge nonetheless because
k is projected to the first quasimomentum Brillouin zone, as
first discussed by Zak.23 In any case, the quasienergies εn(k)
may depend in a complicated manner on the parameters of the
driving force, and the wave functions ψn,k(x,t) pertaining to a
single quasienergy band may be nontrivial mixtures of several
unperturbed energy bands. For later use, we observe that their
spatial parts

ϕn,k(x,t) = exp(ikx)un,k(x,t) (12)

obey the quasienergy eigenvalue equation(
H0(x,t) − ih̄

∂

∂t

)
ϕn,k(x,t) = εn(k)ϕn,k(x,t), (13)

as follows immediately when plugging the solutions (10)
into the Schrödinger equation (6). Throughout, we adopt the
standard normalization∫ ∞

−∞
dx ϕ∗

n′,k′(x,t)ϕn,k(x,t) = 2π

a
δn,n′δ(k − k′). (14)

An arbitrary wave packet ψ(x,t) may now be expanded with
respect to these spatiotemporal Bloch waves and written in the
form

ψ(x,t) =
∑

n

√
a

2π

∫
B

dk gn(k,t)ϕn,k(x,t), (15)

with B = [−π/a,π/a[ denoting the fundamental Brillouin
zone. The expansion coefficients gn(k,t) depend on the way
the system has been prepared and on the way the driving force
has been turned on, whereas the basis functions ϕn,k(x,t) and
their quasienergies εn(k) are given by the eigenvalue equation
(13) and obviously are independent of such details. Clearly,
one has

gn(k,t) = gn(k,0) exp[−iεn(k)t/h̄], (16)

so that the populations |gn(k,t)|2 remain constant in time. This
expansion (15), referred to as the Floquet representation of
the wave packet, is formally reminiscent of its customary
crystal-momentum representation, that is, of an expansion
with respect to the Bloch states of the unperturbed potential
V (x) which underlies the standard acceleration theorem.19,24

There are, however, substantial differences which become
most clear when considering a wave packet occupying a single
quasienergy band,

ψ(x,t) =
√

a

2π

∫
B
dk g(k,t)ϕk(x,t); (17)

here and in the following, we omit the band index n for ease
of notation. Now this wave packet (17) may describe, for
instance, the dynamics in a situation where two unperturbed
energy bands are resonantly coupled by the driving force
F (t); consequently, in a crystal-momentum representation one
would have to account for Rabi-type oscillations between these
two bands by coefficients which quantify the oscillating band
populations. In the Floquet respresentation, on the other hand,
the Rabi oscillations are already incorporated into the basis
states (10), so that one merely encounters single quasienergy
band dynamics, with the remaining time evolution of g(k,t)
simply given by Eq. (16). Thus, although the external force
effectuates transitions between the unperturbed Bloch bands,
there are no inter-quasienergy band transitions; |g(k,t)|2
remains constant in time. Second, even in a situation where
F (t) does not couple different energy bands, the wave packet’s
center kc(t) evolves according to the standard acceleration
theorem h̄k̇c = F in the crystal-momentum representation,
whereas in the Floquet representation the moment

〈k〉 =
∫
B

dk k|g(k,t)|2 (18)

obviously stays constant in time. In short, an expansion of
the wave packet with respect to the spatiotemporal Bloch
waves (10) implies constant coefficients, and hence constant
occupation probabilities, if the external force F (t) adheres to
the specification (8). This formal shift of the dynamics from the
occupation numbers to the basis states which is implied by the
Floquet representation now allows for a clear and physically
transparent description of the additional effects which emerge
when the external force does not obey Eq. (8); these effects
are captured by the generalized acceleration theorem exposed
in the following.

III. THE FLOQUET ACCELERATION THEOREM

We take a wave packet occupying a single quasienergy band
and stipulate that in addition to the possibly strong driving
force F (t) there is a second homogeneous force Fp(t) which
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we denote as the probe force; this is assumed to be sufficiently
weak so that it does not introduce transitions among different
quasienergy bands. To be precise, the total Hamiltonian now
reads

H̃ (x,t) = p2

2m
+ V (x) − F (t)x − Fp(t)x, (19)

where the time-periodic force F (t) is resonant in the sense
of Eq. (8) and thus creates a basis of spatiotemporal Bloch
waves (10), whereas the probe force Fp(t) also is spatially
homogeneous, but not necessarily periodic in time. After
performing the unitary transformation (5), we obtain the
Hamiltonian in the form

H (x,t) = H0(x,t) − Fp(t)x, (20)

with H0(x,t) given by Eq. (7). Moreover, we start from
an initial wave packet of the form (17). Because of the
additional probe force Fp(t), the time evolution of g(k,t)
is no longer given by Eq. (16); the aim now is to find an
effective HamiltonianHwhich governs the resulting dynamics
of g(k,t), under the proposition that this remains restricted to
the single, initially occupied quasienergy band.

Exploiting the normalization (14), we have

g(k,t) =
√

a

2π

∫
dx ϕ∗

k (x,t)ψ(x,t). (21)

This gives

ih̄
∂g

∂t
=

√
a

2π

∫
dx

(
ih̄

∂ϕ∗
k

∂t
ψ + ϕ∗

kHψ

)

=
√

a

2π

∫
dx

([
H0 − ih̄

∂

∂t

]
ϕk

)∗
ψ

−
√

a

2π
Fp

∫
dx ϕ∗

k xψ, (22)

having suppressed the arguments x and t for better legibility;
all integrals here are taken over the entire lattice. In the first
term on the right-hand side of this equation we exploit the
quasienergy eigenvalue equation, Eq. (13), yielding ε(k)g(k,t).
For rewriting the second term we use

ϕ∗
k x = i∂kϕ

∗
k − ie−ikx∂ku

∗
k, (23)

which is obtained by taking the derivative of the complex
conjugate to Eq. (12) with respect to k, and leads to√

a

2π

∫
dx ϕ∗

k xψ = i∂kg − i

√
a

2π

∫
dx e−ikx∂ku

∗
kψ

= i∂kg − i〈∂kuk|uk〉g. (24)

For making the final step, we have resubstituted the expression
(17) for ψ and have made use of the identity∫

dx ei(k′−k)xuk′∂ku
∗
k = 2π

a
δ(k − k′)〈∂kuk|uk〉, (25)

with the scalar product

〈∂kuk|uk〉 =
∫ a

0
dx uk(x,t)∂ku

∗
k(x,t) (26)

being given by an integral over a single lattice period. Note
that

〈uk|uk〉 = 1, (27)

as an immediate consequence of Eq. (14), which implies

〈∂kuk|uk〉 + 〈∂kuk|uk〉∗ = 0, (28)

so that 〈∂kuk|uk〉 is purely imaginary. Collecting all the pieces,
we obtain the desired evolution equation

ih̄
∂

∂t
g(k,t) = Hg(k,t), (29)

with the effective Hamiltonian for the Floquet representation,

H = ε(k) − iFp∂k − Fp Im〈∂kuk|uk〉. (30)

From this expression we deduce the generalized acceleration
theorem, that is, the acceleration theorem for the Floquet
representation: Since the moment (18) obeys the the equation

d

dt
〈k〉 = i

h̄
〈[H,k]〉 (31)

and the commutator appearing here on the right-hand side is
easily evaluated, i[H,k] = Fp, we are directly led to

h̄
d

dt
〈k〉(t) = Fp(t). (32)

This is the central result of the present work; its analogy to the
standard acceleration theorem (1) for the crystal-momentum
representation is evident. Observe that there is an intuitively
clear reason for the appearance of the term proportional to
〈∂kuk|uk〉 in the effective Hamiltonian (30): The twofold
periodic parts uk(x,t) of the spatiotemporal Bloch waves are
obtained by solving the eigenvalue equation (13). This is
done for each wave number k separately, so that one is free
to bestow upon each eigensolution an arbitrary phase factor
exp[iθ (k)]. On the other hand, the evolution equation (29)
for the wave function g(k,t) in the Floquet representation
naturally establishes a “connection” between those different
eigensolutions25,26 and therefore requires information about
the gauge function θ (k); this is provided by the expression
〈∂kuk|uk〉. Note further that when multiplying Eq. (29) by
g∗(k,t) and subtracting the complex conjugate of the resulting
equation, this piece drops out, and one is left with(

∂

∂t
+ Fp(t)

h̄

∂

∂k

)
|g(k,t)|2 = 0. (33)

Thus, |g(k,t)|2 does not depend on k and t separately, but rather
on the combination k − ∫ t

0 dτ Fp(τ )/h̄, so that the distribution
g(k,t) moves through the Floquet k space without change of
shape, again in precise analogy to the classic behavior.1 But
we reemphasize that this seemingly simple dynamics might be
unrecognizable in the usual crystal-momentum representation,
because the system might undergo violent transitions between
different energy bands when monitored in a basis of time-
independent Bloch waves.

As the introductory example has shown, the standard
(crystal momentum) acceleration theorem develops its main
power in combination with the Jones-Zener expression (2)
for the wave packet’s group velocity in real space, and
the question naturally arises whether there exists a similar
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connection in the Floquet representation. Obviously, one can
establish a relation corresponding to Eq. (2) by applying a
stationary-phase argument to the expansion (15), but here we
follow an alternative line of reasoning which may be found
particularly enlightening. Considering a well-localized wave
packet ψ̃(x,t) in the original frame of reference to which the
Hamiltonian operators (4) and (19) pertain, that packet’s group
velocity is given by

vg(t) = d

dt
〈ψ̃(x,t)|x|ψ̃(x,t)〉

= 1

m
〈ψ̃(x,t)|p|ψ̃(x,t)〉. (34)

On the other hand, exploiting the operator identity

e−ikxpeikx = p + h̄k, (35)

the eigenvalue equation (13) transforms into the even more
basic eigenvalue equation(

Hk(x,t) − ih̄
∂

∂t

)
un,k(x,t) = εn(k)un,k(x,t) (36)

for the periodic core pieces un,k(x,t) of the spatiotemporal
Bloch waves (10), invoking the parametrically k-dependent
operator

Hk(x,t) = 1

2m

(
p + h̄k +

∫ t

0
dτF (τ )

)2

+ V (x). (37)

This eigenvalue problem can efficiently be implemented for
numerical calculations.21 It also manifestly contains the origin
of the condition (8) imposed on the oscillating force F (t), since
k is reduced to fall within B. Most importantly, this eigenvalue
problem (36) poses itself in an extended Hilbert space
made up of functions un,k(x,t) which are periodic in both
space and time, in accordance with Eq. (11). Consequently,
“time” has to be regarded as a coordinate in this extended
Hilbert space and therefore needs to be integrated over when
forming a scalar product, just like any spatial coordinate. Thus,
the natural scalar product in this extended Hilbert space is
given by27

〈〈·|·〉〉 ≡ 1

T

∫ T

0
dt 〈·|·〉, (38)

with 〈·|·〉 denoting the standard scalar product in the original,
physical Hilbert space, as already employed in Eqs. (26) and
(27). It follows that the quasienergies εn(k) can be written as
diagonal elements of the matrix of the quasienergy operator,

εn(k) = 〈〈un,k|Hk − ih̄∂t |un,k〉〉 , (39)

inviting us to make use of an analog of the Hellmann-Feynman
theorem:27

d

dk
εn(k) = 〈〈un,k|dHk

dk
|un,k〉〉

= h̄

m
〈〈un,k|p + h̄k +

∫ t

0
dτ F (τ )|un,k〉〉

= h̄

m
〈〈ψ̃n,k|p|ψ̃n,k〉〉. (40)

In the final step we have undone the shift (35); the wave func-
tions ψ̃n,k(x,t) then denote the functions which are obtained

from the spatiotemporal Bloch waves (10) by inverting the
transformation (5). Comparison of Eqs. (34) and (40), keeping
in mind the definition (38), now yields the desired relation:
Supposing that ψ̃(x,t) = ψ̃n,k0 (x,t) were made up from a
single spatiotemporal Bloch wave labeled by n and k0, say,
one would obtain the formal identity

vg ≡ 1

T

∫ T

0
dt vg(t) = 1

h̄

dεn

dk

∣∣∣∣
k0

. (41)

But this is not what we want, because an individual spa-
tiotemporal Bloch wave is uniformly extended over the lattice
and thus does not correspond to a “group” which propagates
in space. Rather, we require a wave packet (17) which is
reasonably well centered in the Floquet k space, with a center
〈k〉 given by Eq. (18). Then we have

vg = 1

h̄

dεn

dk

∣∣∣∣
〈k〉

(42)

to good accuracy, so that the cycle-averaged group velocity
of the Floquet wave packet is given by the derivative of its
quasienergy dispersion relation, evaluated at its center 〈k〉.
Again, this Floquet relation (42) closely mimics its historic
crystal-momentum antecessor, given by Eq. (2). In contrast to
the equation of motion (32) for 〈k〉 itself, which holds exactly
within a single quasienergy band setting, this relation (42)
is an approximation which holds the better, the narrower the
packet’s Floquet k-space distribution. Although it seems self-
evident, it might be worthwhile to stress that the argument
required to evaluate the derivative (42) is Floquet 〈k〉, not
crystal momentum kc.

IV. SUPER BLOCH OSCILLATIONS

The phenomenon termed “super” Bloch oscillations28

arises when a Bloch particle is subjected to both a static (dc)
and an oscillating (ac) force, such that an integer multiple of the
ac frequency is only slightly detuned from the Bloch frequency
associated with the dc component of the force.28–31 Although
the effect itself appears almost trivial from the mathematical
point of view, we nonetheless dwell on this at some length,
because it provides a particularly instructive example for
juxtaposing the familiar crystal-momentum representation to
the Floquet representation introduced in Sec. II and for
demonstrating in detail how they match. To be definite, we
consider the total force to be of the form

F (t) = �(t − t0)[Fdc + Fac cos(ωt)], (43)

where �(t) denotes the Heaviside function, so that both
the dc and the ac component of the force are turned on
instantaneously and simultaneously at t0; that moment t0 thus
determines the relative phase between the Bloch oscillations
caused by the dc component and the driving oscillations of the
ac component.

The basic assumptions now are that (i) we are given an
initial wave packet which occupies a single energy band, being
centered around kc(t0) at the moment t = t0 in the crystal-
momentum representation, and that (ii) interband transitions
remain negligible for t > t0, despite the action of the force
F (t). We then encounter single-band dynamics which are
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fully covered by the “old” acceleration theorem h̄k̇c(t) = F (t),
giving

kc(t) = kc(t0) + 1

h̄

[
Fdc(t − t0) + Fac

ω
sin(ωt)

− Fac

ω
sin(ωt0)

]
(44)

for t > t0. As an archetypal example we now take a tight-
binding cosine energy dispersion relation for the band consid-
ered,

E(k) = −W

2
cos(ka), (45)

parametrized as in the Introduction. Utilizing Eq. (2), one then
finds the packet’s group velocity:

vg(t) = 1

h̄

dE

dk

∣∣∣∣
kc(t)

= Wa

2h̄
sin[kc(t)a]. (46)

This expression describes super Bloch oscillations if we
assume further that the dc component of the force is almost
resonant in the sense of Eq. (8). We therefore decompose this
component according to

Fdc = Fr + δF, (47)

where Fra = rh̄ω with some nonzero integer r as previously
in Eq. (9), so that rω equals the Bloch frequency ωB = Fra/h̄,
while δF is quite small compared to Fr . We then have

Fdca = rh̄ω + h̄δω, (48)

with frequency detuning δω = δFa/h̄, so that the group
velocity (46) takes the form

vg(t) = Wa

2h̄
sin(rωt + δωt + K sin(ωt) + �), (49)

having introduced the scaled driving amplitude

K = Faca

h̄ω
(50)

and a constant phase

� = kc(t0)a − (rω + δω)t0 − K sin(ωt0), (51)

which accounts for the initial conditions. Because δω 
 ω

according to our specifications, the contribution δω t to the
argument of vg does not vary appreciably during one single
cycle T = 2π/ω of the ac component. Thus, when averaging
the instantaneous group velocity over one such cycle, this
“slow” time dependence may be ignored, meaning that δω t

may be considered as constant when taking the average.31

Invoking the Jacobi-Anger indentity in the guise

eiK sin(ωt) =
∞∑

=−∞
J(K)eiωt , (52)

where J(K) denotes the Bessel functions of the first kind, one
immediately obtains

vg(t) = 1

T

∫ T

0
dt vg(t)

= (−1)rJr (K)
Wa

2h̄
sin(δωt + �). (53)

According to the above reasoning, here the “fast” time
dependence is integrated out, but the slow dependence on
δωt remains.31 Integrating, this yields the cycle-averaged drift
motion of the packet, that is, its position xg(t) without the fast
ac quiver,

xg(t) = −(−1)rJr (K)
W

2δF
cos(δωt + �), (54)

with a suitably chosen origin of the x axis. This result
finally clarifies what is “super” with these dynamics: Because
the residual force δF is quite small, the amplitude of this
oscillation (54) can be fairly large; indeed, in a corresponding
experiment with weakly interacting Bose-Einstein conden-
sates in driven optical lattices Haller et al.28 have observed
giant center-of-mass oscillations with displacements across
hundreds of lattice sites. As far as the phenomenon itself
is concerned there is nothing more to add; because one
requires single Bloch-band dynamics right from the outset,
a Floquet treatment is not necessary. Nevertheless the Floquet
approach is of its own intrinsic value even here, since it
provides a somewhat different view which, in contrast to
the above crystal-momentum calculation, is capable of some
generalization.

The Floquet analysis starts from the spatiotemporal Bloch
waves and their quasienergies. In a single-band setting with
an external homogeneous force, these are exceptionally easy
to obtain: Writing the Bloch waves of the undriven lattice in
the form

ϕk(x) =
∑



w(x)eika, (55)

where w(x) denotes a Wannier function localized around the
th lattice site,32 the so-called Houston functions33

ψ̃k(x,t) =
∑



w(x)eiqk (t)a exp

(
− i

h̄

∫ t

0
dτ E[qk(τ )]

)
(56)

are solutions to the time-dependent Schrödinger equation in
the original frame, for arbitrary F (t), provided the “moving
wave numbers” qk(t) are given by

qk(t) = k + 1

h̄

∫ t

0
dτ F (τ ), (57)

always assuming the viability of the single-band
approximation.34 Taking a force of the particular form
(9) with exactly resonant Fr obeying Fra = rh̄ω, we have

qk(t) = k + rωt

a
+ Fac

h̄ω
sin(ωt). (58)

This implies that both the exponentials exp[iqk(t)a] and
E[qk(t)] are T periodic in time, with T = 2π/ω, whereas the
integral over E[qk(t)] is not, because the Fourier expansion
of E[qk(t)] contains a zero mode, so that its integral contains
a linearly growing contribution. But this observation reveals
that the “accelerated Bloch waves” (56) with resonant time-
periodic forcing (9) are precisely the required spatiotemporal
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Bloch waves in the original frame, with their quasienergies
being determined by the zero mode:

ε(k) = 1

T

∫ T

0
dt E[qk(t)]

= −(−1)rJr (K)
W

2
cos(ka). (59)

The remarkable fact that the quasienergy bands collapse, i.e.,
become flat when K is such that Jr (K) = 0, indicates that
an oscillating force can effectively shut down the tunneling
contact between neighboring wells; this “coherent destruction
of tunneling” is a generic feature of driven single-band
systems.34–37 A bit of reflection then shows that the core pieces
uk(x,t) of the spatiotemporal Bloch waves, that is, the solutions
to the eigenvalue equation (36), are given by

uk(x) =
∑



w(x)eika

× exp

(
− i

h̄

∫ t

0
dτ {E[qk(τ )] − ε(k)}

)
. (60)

Although this has not been particularly emphasized, the above
construction makes sure that any spatiotemporal Bloch wave
(56) is labeled by the same wave number k as the ordinary
Bloch wave to which it reduces when the external force
vanishes.34 Otherwise, there is nothing particular about the
choice t = 0 for the lower bound of integration in Eq. (57) for
qk(t): In contrast to Eq. (43), where t = t0 has been singled
out as the moment when the force is turned on, and which
thus designates an initial-value problem for a particular wave
packet, the solution of the eigenvalue problem (36) for the
entire spatiotemporal Bloch basis requires a force F (t) which
is perfectly periodic in time; the resulting expression for qk(t)
thus holds for both t > 0 and t < 0. Also note that it would be
meaningless to include some additional constant phase into the
argument of the ac component of the force (9): Because this
expression holds for all times t , such a phase would merely
amount to a shift of the origin of the time coordinate and
thus is as irrelevant for the calculation of the quasienergy
dispersion relation as would be a shift of the origin of the spatial
coordinate system for the calculation of a crystal’s energy band
structure.

Knowing the quasienergy dispersion relation (59), the
machinery established in Sec. III can be set to work: According
to Eq. (42), the cycle-averaged group velocity of a Floquet
wave packet (17) is given by

vg = 1

h̄

dε

dk

∣∣∣∣
〈k〉

= (−1)rJr (K)
Wa

2h̄
sin(〈k〉a). (61)

If we now turn back to the specific forcing (43), and thus
consider exactly the same initial-value problem as in the
previous crystal-momentum exercise, we can make operational
use of the decomposition (47) of the dc force: Its resonant
part Fr has already been incorporated into the spatiotemporal
Bloch waves (56), which means that it has already been
accounted for in “dressing” the lattice and changing its original
energy dispersion E(k) to the quasienergy dispersion ε(k).
Therefore, it is only the small residual part δF which enters
into the equation of motion for 〈k〉, that is, into the generalized
acceleration theorem (32); this part δF thus constitutes a

particular, time-independent example of a probe force Fp(t)
as considered in Sec. III. We now have

h̄
d

dt
〈k〉(t) = h̄δω

a
, (62)

giving

〈k〉(t) = 〈k〉(t0) + δω

a
(t − t0). (63)

All that remains to be done now is to express the initial Floquet
center 〈k〉(t0) in terms of the initial wave packet’s center
kc(t0), which had been specified in the crystal-momentum
representation. But this is an easy task, comparing the original
Bloch waves (55) to their spatiotemporal descendents (56): At
the moment t0 when the force (43) is turned on, kc(t0) coincides
with qk(t0) for one particular k; this evidently is the desired
〈k〉(t0). The equality identifying 〈k〉(t0) thus is

kc(t0) = q〈k〉(t0)(t0), (64)

which, written out in full detail, reads

kc(t0) = 〈k〉(t0) + rωt0

a
+ Fac

h̄ω
sin(ωt0). (65)

Using this to eliminate 〈k〉(t0) from Eq. (63), we arrive at

〈k〉(t)a = kc(t0)a − rωt0 − K sin(ωt0) + δω(t − t0)

= δωt + � (66)

with precisely the same phase � as already defined in Eq. (51).
Inserting this argument (66) into the cycle-averaged group
velocity (61), and comparing with the previous expression
(53), one confirms that the result of the Floquet analysis fully
coincides with that of the more customary crystal-momentum
calculation. The necessity to painstakingly distinguish be-
tween crystal momentum kc and Floquet 〈k〉 at all stages may
appear a bit mind-boggling; if this is not done with sufficient
care, one might overlook a contribution to �.31 But if respected
properly, the mathematical structure of the Floquet picture
unerringly leads to the correct answer.

If one strips the above reasoning to the bare essentials, that
is, if one starts from the quasienergy dispersion relation (59),
takes its derivative to obtain the formal expression (61) for the
cycle-averaged group velocity, and then inserts the solution
to the equation of motion (62) dictated by the generalized
acceleration theorem in order to compute the group velocity
of the wave packet actually considered, one sees that this
procedure exactly parallels the explanation of the usual Bloch
oscillations, as reviewed in the Introduction. Thus, super Bloch
oscillations may be seen as ordinary Bloch oscillations arising
in response to a weak probe force δF , but occurring in a
spatiotemporal lattice, as created by dressing the original
lattice through application of the strong force (9).

One might finally wish to get away from the particular,
instantaneous onset of the forcing assumed in Eq. (43): The
dc and the ac component might not be switched on simultane-
ously, or not abruptly, possibly involving two different turn-on
functions for the two components. In any case, at some moment
t0 the final amplitudes will have been reached, so that the
previous analysis goes through unaltered for t > t0, if one only
interprets kc(t0) correctly: This would no longer indicate the
crystal-momentum wave number around which the initial wave
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packet had been prepared, but rather that to which the latter had
been shifted during the turn-on phase. Expressed differently,
the phase � in Eqs. (53) and (54) depends significantly on
the precise turn-on protocol: Not surprisingly, the way the
external force has been turned on in the past crucially affects
the coherent wave-packet motion after the turn-on is over.

Aside from its aesthetic value, the Floquet picture offers
at least one further benefit: Bloch oscillations in dressed
lattices may also occur under conditions such that the
quasienergy bands are mixtures of several unperturbed energy
bands, disabling a crystal-momentum treatment. A Floquet
analysis, on the other hand, would merely require one to
replace the single-band quasienergies (59) by the actual
ones and then again invoke the generalized acceleration
theorem (32), similar to the examples worked out in the next
section.

V. COHERENT CONTROL OF INTERBAND
POPULATION TRANSFER

A field of major current interest in which the Floquet picture
may find possibly groundbreaking applications concerns ultra-
cold atoms, or weakly interacting Bose-Einstein condensates,
in time-periodically driven optical lattices.21,28,30,34,38–40 As
opposed to ordinary crystalline matter exposed to high-power
laser fields, such systems offer the advantage that one can
apply even nonperturbatively strong driving forces without
inducing unwanted inhomogeneities, as caused by polarization
effects or domain formation.22 The issue at stake here is
not merely redoing well-known condensed-matter physics in
another setting, and thus selling old wine in new skins, but
rather finding genuinely new ways of coherently controlling
mesoscopic matter waves, such that target states are created
which have not been accessible before and are manipulated
according to some prescribed protocol. Here we point out that
the generalized acceleration theorem (32) may be a valuable
tool in this quest.

A standard one-dimensional (1D) optical lattice is described
by a cosine potential,

V (x) = V0

2
cos(2kLx), (67)

where kL is the wave number of the two counterpropagating
laser beams generating the lattice.41,42 Its depth V0 is measured
in multiples of the single-photon recoil energy

Er = h̄2k2
L

2m
. (68)

For orientation, if one traps 87Rb atoms in a lattice with
kL corresponding to the wavelength λ = 842 nm, as in a
recent experiment by Zenesini et al.,38 one finds Er = 1.34 ×
10−11 eV; typical optical lattices are a few recoil energies deep.

Figure 1 shows quasienergy spectra for such a 1D cosine
lattice (67) with depth V0/Er = 5.7 under pure ac forcing,
that is, for F (t) = Fac cos(ωt) not containing a dc com-
ponent, with driving frequency ω = 3.71 Er/h̄. Under the
laboratory conditions specified above (87Rb at λ = 842 nm),
this corresponds to ω/(2π ) = 12 kHz. Figure 1(a) results
when the scaled driving amplitude (50) is set to zero; this
subfigure therefore is obtained by projecting the lowest three
unperturbed energy bands to the fundamental quasienergy
Brillouin zone, which extends from ε = −h̄ω/2 to ε = +h̄ω/2
on the ordinate. Figure 1(b) displays the quasienergy band
structure for the moderate driving strength K = 0.5; here
avoided crossings show up which generally indicate multi-
photonlike resonances.22 Figure 1(c) then reveals pronounced
ac Stark shifts (that is, shifts of the quasienergies against the
zone-projected original energies) for K = 3.0, corresponding
to truly strong forcing.

We now turn from the quasienergy spectrum to an exem-
plary initial-value problem: At t = 0 we prepare an initial wave
packet (17) in the lowest Bloch band n = 1 with a Gaussian
momentum distribution,

g1(k,0) = (
√

π�k)−1/2 exp

(
− k2

2(�k)2

)
, (69)

centered around kc(0)/kL = 0 with width �k/kL = 0.1, and
subject it to a pulse,

F (t) = Fmaxs(t) sin(ωt), (70)

starting at t = 0 and ending at t = Tp, endowed with a smooth,
squared-sine envelope function:

s(t) = sin2

(
πt

Tp

)
, 0 � t � Tp. (71)
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FIG. 1. (a) Quasienergy spectrum of an ac-driven 1D optical lattice (67) with depth V0/Er = 5.7, scaled driving frequency h̄ω/Er = 3.71,
and scaled driving amplitude K = 0. This figure is obtained by projecting the lowest three energy bands of the undriven lattice to the first
quasienergy Brillouin zone, ranging from ε/(h̄ω) = −1/2 to ε/(h̄ω) = +1/2. (b) Quasienergy band structure for K = 0.5. Here the ac Stark
shifts still are comparatively weak, but the time-periodic forcing introduces pronounced avoided crossings among the “lowest” three bands.
(c) Quasienergy band structure for K = 3.0 for the “lowest” five bands, revealing substantial ac Stark shifts.
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FIG. 2. (Color online) Time evolution of an initial wave packet
(69) under the action of a driving pulse (70) with the smooth squared-
sine envelope (71), with maximum scaled amplitude Kmax = 3.0,
scaled driving frequency h̄ω/Er = 3.71, and pulse length Tp = 50 T ,
where T = 2π/ω is the duration of a single cycle. The main frame
shows the occupation probabilities of the original Bloch energy bands
during the pulse. Apart from the initially populated lowest band
n = 1 (jagged line at the top), both bands n = 2 and n = 3 become
significantly excited during the pulse (jagged lines at the bottom), the
band n = 3 even to a higher extent than n = 2 at maximum driving
strength. In contrast, when monitoring the same dynamics within
the bases provided by the instantaneous spatiotemporal Bloch waves,
only the corresponding Floquet band n = 1 is appreciably occupied,
as shown by the horizontal line at the top and magnified in the inset.
Observe the scale of the inset’s ordinate!

We again set ω = 3.71 Er/h̄, as in Fig. 1; adjust the pulse
length to 50 cycles, Tp = 50 × 2π/ω; and fix the maximum
driving amplitude Fmax such that Kmax = Fmaxa/(h̄ω) = 3.0,
corresponding to the conditions reached in Fig. 1(c). We then
monitor the resulting wave-packet dynamics both in the basis
of the unperturbed energy bands and in the bases provided by
the instantaneous spatiotemporal Bloch waves, that is, in the
family of Floquet bases which are obtained when the driving
amplitude is kept fixed at any value Fac = Fmaxs(t0) reached
during the pulse. Figure 2 displays the results: The jagged
lines in the main frame show the occupation probabilities
of the lowest three unperturbed Bloch bands n = 1, 2, and
3; in the middle of the pulse the band n = 3 contains even
more population than the band n = 2. On the other hand,
the horizontal line at the top depicts the occupation of the
instantaneous Floquet band emerging from the lowest Bloch
band: This Floquet band contains practically all the population
during the entire pulse, which means that the wave function
adjusts itself adiabatically to the changing morphology of its
quasienergy band,22 as previously sketched in Fig. 1, when the
driving amplitude Fmaxs(t) is first increased and then decreased
back to zero. To quantify the precise degree of adiabatic
following, the inset in Fig. 2 shows the variation of the Floquet
band population on a much finer scale. Observe that the final
adiabaticity defect is on the order of merely 0.1%, even though
the driving amplitude reaches its fairly high maximum strength
within no more than 25 cycles.

With respect to the concepts developed in Sec. II, Fig. 2
strikingly demonstrates the advantages of the Floquet picture
over the traditional crystal-momentum representation for the
situation considered. If there were an additional probe force,
its effect would have to be tediously disentangled from the fast
oscillations of the Bloch band populations. When the same
dynamics are seen from the Floquet viewpoint, essentially
“nothing” happens, because practically all inter-Bloch-band
transitions are already accounted for by continuously adapting
the Floquet basis, so that the action of a probe force would stand
out most clearly. Although, of course, the crystal-momentum
representation is mathematically equivalent to the Floquet
picture, there is no question which one is preferable here. Note
also that Fig. 2 answers one further pertinent question: How
do we prepare a wave packet which occupies merely a single
quasienergy band, although it is undergoing rapid transitions
between several Bloch bands at the same time? The recipe for
achieving this is simple: Start with a wave packet occupying
a single Bloch band and switch on the driving force smoothly,
thereby enabling adiabatic following.

At this point an important issue needs to be stressed:
The concept of adiabatic following, or parallel transport in
a differential-geometric language, usually is applied to energy
eigenstates;25,26 in the context of optical lattices this has been
exploited, e.g., by Fratalocchi and Assanto43 for studying
nonlinear adiabatic evolution and emission of coherent Bloch
waves. In contrast, here we consider the adiabatic following of
explicitly time-dependent quasienergy eigenstates, that is, of
solutions to the quasienergy eigenvalue equation (13); this is
what allows us to separate the fast, oscillating time dependence
of the driving force from the slow, parametric time dependence
of its envelope.

Having learned these lessons, we now set the generalized
acceleration theorem (32) to work. Suppose that we are
prompted to empty the ground-state energy band. Starting
again from an initial wave packet (69), we then may proceed as
follows: First we smoothly turn on an ac force which dresses
the lattice, creating avoided quasienergy crossings initially not
“seen” by the adiabatically following packet. For instance,
we may wish to utilize the avoided crossings showing up
in Fig. 1(b). To this end, we again take an ac force with
frequency ω = 3.71 Er/h̄ and fix its scaled driving amplitude
at the plateau value K = 0.5. This dressing force is switched on
during 25 cycles with half a squared-sine envelope, maintained
at maximum amplitude for 50 further cycles, and switched off
again for another 25 cycles, as sketched in Fig. 3(a). If this were
all we did, the wave packet would simply undergo adiabatic
evolution and finally restore its initial condition, as previously
observed in Fig. 2. Instead, once the maximum dressing
amplitude has been reached, we now apply an additional weak
probe force Fp(t) in order to exploit Eq. (32) for moving the
packet away from the Brillouin zone center, driving it over the
avoided crossings that have opened up in Fig. 1(b). This probe
force is implemented in the form of two smooth, squared-sine
shaped dc pulses, one acting during the plateau of the dressing
pulse, the other acting with reversed sign after the dressing
pulse is over, as drawn in Fig. 3(a). The maximum strength of
the probe force here is only 2.5% of that of the dressing force;
for better visibility, the probe force is magnified in Fig. 3(a)
by a factor of 10.
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FIG. 3. (Color online) (a) Protocol for achieving almost complete interband population transfer in a dressed optical lattice by means of a
weak probe force. The dashed line is the scaled envelope of the dressing ac force. The solid line is the negative, scaled probe force, amplified
by a factor of 10. (b) Resulting wave-packet dynamics in the Floquet representation, shown as a contour plot of |g1(k,t)|2. Under the first
action of the probe force the wave packet is shifted in accordance with the generalized acceleration theorem (32), until it undergoes Zener-type
transitions to other quasienergy bands at the avoided crossings visible in Fig. 1(b). After the dressing force is switched off, the second, reversed
action of the probe force shifts the remaining part of the packet back to the Brillouin zone center. (c) Comparison of the initial wave packet
(dashed line) with the part of the wave function that remains in the lowest energy band at the end of the process (solid line).

It is now almost obvious how to describe the response of the
wave packet within the Floquet picture: The initial state (69)
first is adiabatically shifted into a single quasienergy-band
packet during the turn-on of the dressing force. In contrast
to a crystal-momentum representation, all dressing-induced
fast oscillations are taken out of the dynamics of g1(k,t)
in the Floquet representation, as shown in Fig. 3(b). When
the first probe pulse acts at constant dressing amplitude, it
forces the wave packet over the avoided crossing seen in
Fig. 1(b), so that the packet undergoes Zener-type transitions
to “higher” quasienergy bands,18,22 splitting into individual
subpackets associated with the different quasienergy bands
involved. When the dressing force is switched off, each of
these subpackets moves adiabatically on its own quasienergy
surface, finally reaching the continuously connected Bloch
bands. The second, reversed probe pulse, applied after the
dressing pulse is over, then acts in accordance with Bloch’s
original acceleration theorem (1), shifting the various subpack-
ets back to the Brillouin zone center. In the scenario displayed

in Fig. 3, the lowest band is almost entirely depopulated by
the probe-induced Zener transitions, so that only a marginal
fraction of the initial packet returns, as depicted in Fig. 3(c).
Thus, the main part of the initial packet has been placed in
higher Bloch bands, as intended. We have also checked by
explicit calculation that without the comparatively weak probe
pulses the returning wave packet would be almost identical to
the initial one.

The above example of our “dressing and probing” strategy
immediately lends itself to a host of further modifications and
extensions. To give but one further instance, if the probe pulse
is still weaker, such that the wave packet does not pass over
the avoided-crossing regime, but rather stops there, the Zener
transitions are incomplete, so that a signifcant part of the initial
state is recovered when the process is over. This is elaborated
in Fig. 4 with the same dressing force as above, but now
the maximum strength of the probe force amounts to only
1.7% of that of the dressing force. The final subpacket still
occupying the lowest Bloch band then is no longer centered
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FIG. 4. (Color online) (a) Protocol for achieving partial interband population transfer in a dressed optical lattice by means of a weak probe
force. The dashed line is the scaled envelope of the dressing ac force, which is the same as in Fig. 3. The solid line is the negative, scaled probe
force, amplified by a factor of 10; this force is weaker than the one in Fig. 3. (b) Resulting wave-packet dynamics in the Floquet representation,
shown as a contour plot of |g1(k,t)|2. Under the first action of the probe force the wave packet is shifted in accordance with the generalized
acceleration theorem (32), but not as far as in Fig. 3, such that it undergoes only partial Zener transitions. After the dressing force is switched
off, the second, reversed action of the probe force shifts the remaining part of the packet back to the Brillouin zone center. (c) Comparison of
the initial wave packet (dashed line) with the part of the wave function that remains in the lowest energy band at the end of the process (solid
line).
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around k/kL = 0, implying that this subpacket will move over
the lattice. In a sense, the left wing of the initial wave packet
has been cut out, so that Fig. 4 may be regarded as a particular
paradigm of “wave-packet surgery.”44

VI. CONCLUSIONS

Summarizing our line of reasoning, we have introduced in
Sec. II a representation of wave packets of quantum particles
in spatially periodic lattices subjected to homogeneous, time-
periodic forcing which is based on an expansion with respect
to spatiotemporal Bloch waves and reduces to the standard
crystal-momentum representation when the forcing is turned
off. It embodies forcing-induced oscillations into the basis, so
that only the actually relevant dynamics remain to be dealt
with. Within this Floquet representation one encounters many
features already familiar from solid-state physics in time-
independent lattice potentials, but here their scope is different.
As a prominent example, the generalized acceleration theorem
derived in Sec. III takes the same form as its historic antecessor
formulated by Bloch,1 but applies to single quasienergy band
dynamics, which can be drastically different from single
energy band behavior. There are further features which can
be carried over from the crystal-momentum representation to
the Floquet picture and acquire a modified meaning there, such
as the expression for the group velocity of a wave packet or
Zener transitions among different bands.

The super Bloch oscillations considered in Sec. IV provide
a mainly pedagogical example which can be worked out in
full detail analytically. Here the Floquet picture cannot exert
its full strength, because one assumes a priori that the driving
force does not induce transitions from the initially occupied
energy band to other ones, so that the historic acceleration
theorem remains capable of describing the entire dynamics.

The Floquet approach leads to exactly the same result, but
implies a different viewpoint, separating the dc component
of the force into one part which is resonant with the ac
component, and together with the latter dresses the lattice,
creating a quasienergy band; the remaining residual part of the
dc force then probes this new quasienergy band, rather than
the original unperturbed energy band.

This theme of “dressing and probing” also prompts far-
reaching strategies for achieving coherently controlled inter-
band population transfer and even more. Two basic examples
for this have been discussed in Sec. V, but the possibilities
obviously extend much farther. Utilizing the generalized accel-
eration theorem, an initial wave packet may by split coherently
into two components at an avoided quasienergy band crossing
in a dressed lattice, and the lattice may then be redressed
(that is, exposed to an ac force with different parameters)
such that another quasienergy band structure is generated,
possibly involving avoided crossings which affect only one of
the daughter wave packets created in the first step, but not the
other. Moreover, daughter wave packets can be made to move,
possibly into different directions, and to interfere with other
wavelets having been manipulated separately before in distant
parts of the lattice. This vision apparently will be hard to realize
with traditional solids, but it has come into immediate reach
in current laboratory experiments with weakly interacting
Bose-Einstein condensates in driven optical lattices. Seen
against this background, the generalized acceleration theorem
almost provides a blueprint for a wave-packet processor.
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Motivated by recent experimental progress achieved with ultracold atoms in kilohertz-driven optical lattices,
we provide a theoretical discussion of mechanisms governing the response of a particle in a cosine lattice
potential to strong forcing pulses with smooth envelope. Such pulses effectuate adiabatic motion of a wave
packet’s momentum distribution on quasienergy surfaces created by spatiotemporal Bloch waves. Deviations
from adiabaticity can then be deliberately exploited for exerting coherent control and for reaching target states
which may not be accessible by other means. As one particular example, we consider an analog of the π pulses
known from optical resonance. We also suggest adapting further techniques previously developed for controlling
atomic and molecular dynamics by laser pulses to the coherent control of matter waves in shaken optical lattices.
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I. INTRODUCTION

Boosted by the seminal observation of the quantum phase
transition from a superfluid to a Mott insulator in a gas of
ultracold 87Rb atoms trapped by an optical lattice potential [1],
the experimental and theoretical study of ultracold atoms in
optical lattices has matured into a major area of contemporary
research [2–4]. To a large extent, this field is driven by the
promise of simulating complex condensed-matter systems and
obtaining novel insight into phenomena which hitherto are not
understood, such as high-temperature superconductivity.

At present, evidence is accumulating which suggests that
this field is developing a new branch, aiming at the coherent
control of mesoscopic matter waves in optical lattices through
the application of time-periodic forces, with driving frequen-
cies in the lower kilohertz regime. While it had been pointed
out earlier that a metal-insulator–like transition undergone
by ultracold atoms in quasiperiodic optical lattices should
be controllable by adjusting the amplitude of a sinusoidal
drive [5], experimental work in this direction increased pace
only in 2007, with the clear-cut observation of forcing-induced
dynamical suppression of tunneling, and even reversal of
the sign of the tunneling matrix elements, by Arimondo,
Morsch, and co-workers [6,7]. This group also has documented
an analog of photon-assisted tunneling with Bose-Einstein
condensates in shaken optical lattices [8], and has verified that
the superfluid–to–Mott-insulator transition can be coherently
controlled by suitably “dressing” a matter wave in an optical
lattice [9], taking up a theoretical proposal by Eckardt et al.
[10]. The very same principle underlying this form of coherent
control has quite recently been exploited successfully for
emulating frustrated magnetism in driven triangular optical
lattices [11], which may well be regarded as a guiding land-
mark example of quantum simulation. Moreover, there now
exist first experimental results demonstrating active control of
correlated tunneling in ac-driven optical lattices [12].

These experimental advances concerning time-
periodically-driven matter waves are accompanied by
growing theoretical efforts. For example, Kudo et al. have
investigated the possibility of driving-induced control of
bound-pair transport [13], while Tokuno and Giamarchi
have studied a kind of spectroscopy for cold atoms in
periodically phase-modulated optical lattices [14]. Moreover,

Tsuji et al. have pointed out that ac forcing may even change
the interparticle interaction from repulsive to attractive,
possibly allowing one to simulate an effectively attractive
Hubbard model with a temperature below the superconducting
transition temperature [15]. So far, all these considerations
merely involve strict ac forcing with a constant amplitude. In
analogy to the physics of atoms and molecules interacting with
laser pulses, here we suggest that many more control options
should become available when ultracold atoms in optical
lattices are subjected to forcing pulses with a deliberately
shaped envelope.

Such attempts to gain coherent control over mesoscopic
matter waves call for a systematic theory of the response
of ultracold many-body systems to nonperturbatively strong
external forcing. Although one may obtain some insight from
drastically simplified model systems [16], and substantial
progress is being made now with the help of advanced
numerical schemes [17], this goal still is far from accom-
plishment. In this situation, an intermediate step suggests
itself: In experiments with sufficiently dilute Bose-Einstein
condensates in optical lattices, or with condensates for which
the interparticle s-wave scattering length has been tuned
close to zero by means of a Feshbach resonance, one
may ignore interaction effects altogether, and can observe
typical single-particle phenomena, such as ordinary or “super”
Bloch oscillations, with condensates [18–21]. Thus, it seems
advisable to undertake a comprehensive theoretical study of
the possibilities of coherent control of single-particle dynamics
in forced optical lattices. The results of such a study can
then immediately be tested in “interaction-free” condensate
experiments and may help one to disentangle genuine many-
body effects at a later stage.

This is the step we are going to take in the present paper.
Building on our previous work [22], here we provide a detailed
picture of basic mechanisms which imply single-particle state
control: We first demonstrate in Sec. II the feasibility of
adiabatic transport of momentum distributions on quasienergy
surfaces corresponding to time-periodically-forced optical
lattices. This option is opened up by the existence of a basis
of spatiotemporal Bloch waves, that is, of Bloch-like states
which embody both the spatial periodicity of the lattice and
the temporal periodicity of a driving force on equal footing;
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STEPHAN ARLINGHAUS AND MARTIN HOLTHAUS PHYSICAL REVIEW A 84, 063617 (2011)

such states constitute the foundation of our analysis [23]. We
then establish in Sec. III an analog of the π pulses known from
the theory of optical resonance [24] and outline how to utilize
avoided crossings of quasienergy surfaces for “cutting out”
parts of an initially given momentum distribution. Section IV
briefly addresses effects connected to the phase of the driving
force. Taken together, our findings indicate that there is a high
potential for transferring well-established methods currently
used for manipulating and controlling atoms and molecules
by specifically designed laser pulses [25–29] to the newly
emerging field of manipulating and coherently controlling
mesoscopic matter waves in optical lattices by specifically
tailored forces; this prospect is put forward in our conclusions.

II. ADIABATIC TRANSPORT OF MOMENTUM
DISTRIBUTIONS

The starting point of our considerations is a single particle
of mass m moving in a one-dimensional optical lattice potential
[2–4]

V (x) = V0

2
cos(2kLx), (1)

where the lattice depth V0 is proportional to the intensity of
the laser radiation generating the lattice, and kL denotes the
corresponding wave number. Thus, the potential is periodic
with lattice constant a = π/kL, so that V (x) = V (x + a).
Moreover, the particle is subjected to a spatially homogeneous
inertial force F (t), which can be applied by accelerating the
lattice in the laboratory frame [30]. After transforming to a
frame of reference comoving with the lattice, the Hamiltonian
of the system is given by

H̃ (x,t) = p2

2m
+ V (x) − F (t)x. (2)

If we denote the solution to the Schrödinger equation pertain-
ing to Eq. (2) by ψ̃(x,t) and perform the unitary transformation

ψ(x,t) = exp

(
− i

h̄
x

∫ t

0
dτF (τ )

)
ψ̃(x,t), (3)

the transformed functions ψ(x,t) obey a Schrödinger equation
with the new Hamiltonian

H (x,t) = 1

2m

(
p +

∫ t

0
dτF (τ )

)2

+ V (x). (4)

The traditional solid-state approach to monitoring the wave-
packet dynamics now is as follows: The unforced lattice
possesses improper energy eigenstates χn,k(x) which have the
form of Bloch waves [31–33], that is, of plane waves which are
modulated by lattice-periodic functions vn,k(x) = vn,k(x + a),
so that

χn,k(x) = eikxvn,k(x); (5)

these waves solve the time-independent Schrödinger equation(
p2

2m
+ V (x)

)
χn,k(x) = En(k)χn,k(x). (6)

Here n is a band index and k a wave number, so that En(k) is the
energy dispersion relation of the nth Bloch band. Owing to the
periodicity of the lattice, the wave numbers can be restricted to

the first quasimomentum Brillouin zone B = [−π/a, + π/a[.
In addition, we require the normalization∫ +∞

−∞
dx χ∗

n′,k′(x)χn,k(x) = 2π

a
δn,n′δ(k − k′). (7)

When an arbitrary given wave packet ψ(x,t) is expanded with
respect to the Bloch basis in the form

ψ(x,t) =
∑

n

√
a

2π

∫
B

dk gB
n (k,t)χn,k(x), (8)

this convention (7) makes sure that the momentum distribu-
tions |gB

n (k,t)|2 are normalized according to∑
n

∫
B

dk
∣∣gB

n (k,t)
∣∣2 = 1. (9)

In solid-state physics, the expansion (8) is known as the crystal-
momentum representation of the wave packet ψ(x,t).

When there is no external forcing, F (t) ≡ 0, the time
dependence of the expansion coefficients gB

n (k,t) in Eq. (8)
simply reads

gB
n (k,t) = gB

n (k,0)e−iEn(k)t/h̄. (10)

For studying the dynamics under the action of a force F (t), let
us at this point assume that the wave packet initially occupies
only one band with a particular index n, and that the force
remains so weak that it does not induce substantial interband
transitions. Then Bloch’s acceleration theorem [31–33] comes
into play: The packet’s center wave number in k space, given
by the first moment

kc(t) =
∫
B

dk k
∣∣gB

n (k,t)
∣∣2

, (11)

then evolves according to the semiclassical law

h̄k̇c(t) = F (t). (12)

For example, a constant force leads to a linearly increasing
kc(t), which, in its turn, gives rise to Bloch oscillations in real
space.

Although this time-honored approach has many virtues, for
our purposes it is advantageous to look at the wave-packet
dynamics from a different angle. In view of the goal to
exert coherent control on the lattice atom, it is quite natural
to specifically consider sinusoidal forces F (t) = Fac sin(ωt)
in the first place, since then the Hamiltonian (2) is of the
familiar form which also describes a charged particle in
a monochromatic classical radiation field within the dipole
approximation. The most conspicuous difference concerns the
frequencies: Typical frequencies for driving optical lattices
[6–12] fall into the lower kilohertz regime, about 11 orders of
magnitude lower than optical frequencies. In the following, we
merely require that the force be periodic in time with period
T , so that F (t) = F (t + T ), and we assume that its one-cycle
average vanishes, so that

1

T

∫ T

0
dt F (t) = 0. (13)

With these specifications, the transformed Hamiltonian (4) is
periodic in space as well as in time, H (x,t) = H (x + a,t) =
H (x,t + T ). While the ordinary Bloch waves (5) account for
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the spatial periodicity only, the mathematical Floquet theorem
governing the structure of solutions to differential equations
with periodic coefficients [34–36] can now be invoked to
simultaneously incorporate both the spatial and the temporal
periodicity, resulting in a set of solutions to the time-dependent
Schrödinger equation of the suggestive form

ψn,k(x,t) = exp[ikx − iεn(k)t/h̄]un,k(x,t) (14)

with biperiodic functions un,k(x,t) which reflect the
two translational symmetries, un,k(x,t) = un,k(x + a,t) =
un,k(x,t + T ). We refer to these solutions (14) as spatiotem-
poral Bloch waves [23]. The quantities εn(k) determining the
linear growth of the phase factors with time are commonly
known as quasienergies [37,38]. They are obtained by solving
the eigenvalue problem(

H (x,t) − ih̄
∂

∂t

)
ϕn,k(x,t) = εn(k)ϕn,k(x,t), (15)

where the functions ϕn,k(x,t) = exp(ikx)un,k(x,t) denote the
spatial parts of the spatiotemporal Bloch waves (14). Fully in
accordance with our rationale, this eigenvalue problem (15)
is posed in an extended Hilbert space which puts position x

and time t on equal footing [39]. Because of the periodicity of
H (x,t) in time, the eigenvalues εn(k) are defined up to an in-
teger multiple of h̄ω, with ω = 2π/T , which means that there
also is a Brillouin-zone scheme for the quasienergies, with
the fundamental zone Q = [−h̄ω/2, + h̄ω/2[, in analogy to
the fundamental quasimomentum zone B = [−π/a, + π/a[.
Evidently, Eq. (15) now takes the place of the traditional
eigenvalue equation (6), and the spatiotemporal Bloch waves
(14) replace the ordinary Bloch waves (5). Consequently, we
abandon the standard crystal-momentum representation (8)
and instead perform expansions of given wave packets ψ(x,t)
in this new basis: Fixing, in analogy to the previous Eq. (7),
the normalization∫ ∞

−∞
dx ϕ∗

n′,k′(x,t)ϕn,k(x,t) = 2π

a
δn,n′δ(k − k′), (16)

we thus arrive at the Floquet representation [23]

ψ(x,t) =
∑

n

√
a

2π

∫
B

dk gn(k,t)ϕn,k(x,t). (17)

When the amplitude of the driving force goes to zero, the
functions ϕn,k(x,t) reduce to the Bloch waves (5), and the
quasienergies εn(k) approach the energies En(k), modulo h̄ω.
Therefore, in this limit the Bloch expansion (8) coincides with
the Floquet expansion (17). However, in the presence of a
strictly T -periodic force, such as F (t) = Fac sin(ωt), we now
have two different pictures of the same wave-packet dynamics:
Within the crystal-momentum approach, a single-band wave
packet is described by a momentum distribution |gB

n (k,t)|2;
the center of this distribution moves in k space according to
the acceleration theorem (12). In contrast, within the Floquet
picture one merely has

gn(k,t) = gn(k,0)e−iεn(k)t/h̄, (18)

so that the Floquet distribution |gn(k,t)|2 = |gn(k,0)|2 does
not move at all, but stays perfectly constant in time, with the
response to the oscillating force already being incorporated
into the basis states (14).

Clearly, both approaches are mathematically equivalent.
But it is the second one which allows us to make further
contact with advanced techniques developed for studying the
interaction of atoms and molecules with laser radiation, and
for developing schemes for coherent control of ultracold atoms
in driven optical lattices.

Such schemes naturally will involve pulses of driving
forces, that is, nonperiodic forcing. As a simple case, we may
consider pulses of the form

F (t) = F max
ac s(t) sin(ωt), (19)

where the dimensionless shape function s(t) vanishes before
and after the pulse, s(t) = 0 for both t < 0 and t > TP, say,
and is normalized such that its maximum value is 1, implying
that F max

ac is the maximum amplitude encountered during the
pulse.

It is then of key importance to note that the Floquet
picture is meaningful not only for perfectly time-periodic
forces F (t) = F (t + T ), but also for situations in which one
or more system parameters change slowly, that is, undergo
only minor variations during one cycle T [40]. This is the
case, for instance, if the pulse F (t) is equipped with a
“slowly” varying envelope s(t). Then one considers not only
one single-eigenvalue problem (15) corresponding to one
particular amplitude Fac, but rather the family of all such
eigenvalue problems with 0 � Fac � F max

ac . This gives a basis
of spatiotemporal Bloch waves for each instantaneous value of
the amplitude; taken together, these bases serve as a “moving
frame of reference” with respect to which the wave packet
can evolve adiabatically: Under pulse conditions enabling
adiabaticity, the Floquet momentum distributions |gn(k,t)|2
remain almost constant in time, provided the expansion (17)
refers at each moment to that basis of spatiotemporal Bloch
waves which is obtained by fixing the slowly varying amplitude
at its momentary value. Pictorially speaking, the instantaneous
eigenvalues εFac

n (k), considered as functions of wave number k

and driving amplitude Fac, form quasienergy surfaces on which
the momentum distribution can move almost without change
of shape in response to smooth variations of the envelope s(t).

To see what this means in practice, we consider a cosine
lattice (1) with depth V0 = 5.7Er, where Er = h̄2k2

L/(2m)
denotes the single-photon recoil energy [2–4]; this depth is
routinely being realized in current experiments [6–9,11,12].
The width of the lowest Bloch band then amounts to
E1(kL) − E1(0) = 0.220Er, while the lowest band gap is
E2(kL) − E1(kL) = 2.763Er. The maximum separation of the
lowest two bands, encountered in the Brillouin-zone center,
figures as E2(0) − E1(0) = 4.690Er [22]. We then take a wave
packet prepared at time t = 0 in the lowest Bloch band n = 1,

ψ(x,0) =
√

a

2π

∫
B

dk gB
1 (k,0)χ1,k(x), (20)

with a Gaussian initial momentum distribution

gB
1 (k,0) = (

√
π�k)−1/2 exp

(
− k2

2(�k)2

)
(21)
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centered around kc(0)/kL = 0 with width �k/kL = 0.1. This
wave packet is subjected to pulses (19) of length TP with a
squared-sine envelope,

s(t) = sin2

(
π

t

TP

)
; 0 � t � TP. (22)

The frequency selected for the model calculation discussed in
the following is ω = 1.640Er/h̄, well below the lowest band
gap, while the maximum scaled driving amplitude

Kmax
0 = F max

ac a

h̄ω
(23)

is set to Kmax
0 = 0.8. The pulse length is fixed at TP = 10T ,

so that the peak driving strength is reached within no more
than five cycles. We then compute, on the one hand, the
momentum distributions |gB

1 (k,t)|2 in the crystal-momentum
representation, and also perform the Floquet expansions

ψ(x,t) =
∑

n

√
a

2π

∫
B

dk gn(k,t)ϕFac(t)
n,k (x,t) (24)

with respect to the instantaneous solutions ϕ
Fac
n,k(x,t) to the

quasienergy equation (15) in order to obtain the corresponding
Floquet distributions |g1(k,t)|2, on the other.

Figure 1 juxtaposes the results of the two approaches. In
Fig. 1(a) we show the evolution of the crystal-momentum
density |gB

1 (k,t)|2 under the pulse. Because interband transi-
tions remain negligible for the parameters chosen, the packet’s
center moves in perfect accordance with Bloch’s acceleration
theorem (12). On the other hand, Fig. 1(b) depicts the evolution
of the Floquet density |g1(k,t)|2. This density remains prac-
tically constant, indicating almost perfect adiabatic following
of ψ(x,t) with respect to the spatiotemporal Bloch waves:
Despite the short duration of the pulse, the initial distribution
merely makes an adiabatic excursion on its quasienergy
surface, returning more or less unaltered.

Still, Fig. 1 is no more than a look at the same dynamics
from two different viewpoints, and so far neither of these is
better than the other. But now comes the crucial step: Control
is exerted by utilizing interband transitions. While such tran-
sitions fall outside the scope of the semiclassical acceleration
theorem, which explicitly requires a single-band setting, they
can be monitored as deviations from adiabaticity, caused by
near-degeneracies of quasienergy surfaces, within the Floquet
approach. In order to locate the parameters for which such
deviations occur, Fig. 2 shows the final escape probability
from the lowest Bloch band in the amplitude-frequency
plane [22], as resulting from the same initial wave packet
as constructed above after pulses with the envelope (22), with
greater length TP = 50T . Most notably, the “single-photon
resonance” with h̄ω = E2(0) − E1(0) shows up already for
quite small driving amplitudes around h̄ω ≈ 4.690Er; and
one observes a sequence of multiphotonlike resonances at
lower frequencies. Interestingly, there also is a pronounced
frequency window between the two-photon resonance and the
single-photon peak which allows for adiabatic response even to
fairly strong pulses with Kmax

0 > 3. This window appears to be
most suitable for studying single-band phenomena associated
with strong forcing, such as the driving-induced reversal of the
sign of the effective hopping matrix element [6,7].

k/kL

t/
T

(b)

 −0.5 0 0.5 
0

5

10

k/kL

t/
T

(a)

 −0.5 0 0.5 
0

5

10

FIG. 1. (Color online) Response of the initial wave packet (20)
with momentum distribution (21) in an optical lattice with depth
V0/Er = 5.7 to a short pulse (19) with nonresonant scaled frequency
h̄ω/Er = 1.640, maximum scaled amplitude Kmax

0 = 0.8, and pulse
length TP/T = 10. (a) shows the density |gB

1 (k,t)|2 in the crystal-
momentum representation. For comparison, the white-dashed line is
the first moment kc(t), as predicted by the acceleration theorem (12).
(b) depicts the Floquet density |g1(k,t)|2, obtained by expanding the
same wave packet with respect to the instantaneous spatiotemporal
Bloch waves.

The Floquet approach now enables one to look into the
transition dynamics in great detail, and thus to understand
basic principles allowing one to deliberately manipulate the
momentum distribution and to create certain desired target
states; this will be elaborated in the following section.
Before closing the present section, we would like to draw an
interesting comparison: Aside from degeneracies, the adiabatic
motion of a wave packet’s momentum distribution on its
quasienergy surface, as visualized in Fig. 1(b), seems to
resemble the adiabatic evolution of molecular states on their
Born-Oppenheimer potential energy surfaces [41]. There is,
however, an important difference: In the case of cold atoms
in driven optical lattices the concept of adiabatic following
[42,43] has to be applied to each wave number k in parallel,
each one labeling a different spatiotemporal Bloch wave.
Thus, here we are confronted not with adiabatic following
of individual states, but rather with that of a density associated
with a continuum of quasienergy eigenstates.

III. TAILORING THE MOMENTUM DISTRIBUTION

Nonadiabatic transitions, which prevent an initial momen-
tum distribution from returning practically unchanged after a
pulse, result from near-degeneracies of quasienergy surfaces.
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FIG. 2. (Color online) Final escape probabilities from the lowest
Bloch band of an optical lattice with depth V0/Er = 5.7, calculated
for the same initial wave packet as considered in Fig. 1, after pulses
with squared-sine envelope (22) and length TP/T = 50. Observe the
window of almost adiabatic response appearing between the two-
photon and the single-photon resonances.

Two different cases have to be distinguished: Either the
near-degeneracy is induced already at small driving amplitudes
by selecting a resonant frequency, or it shows up only under
strong nonresonant driving, when the ac Stark shift forces two
surfaces into an avoided crossing [22]. In this section we show
that either of these scenarios can be exploited for controlling
and reshaping the k-space distribution coherently. In all model
calculations we consider an optical lattice with depth V0 =
5.7Er and start from the initial Bloch wave packet (20) with
Gaussian coefficients (21), again setting �k/kL = 0.1.

A. Resonant forcing

We now adjust the driving frequency such that h̄ω =
E2(0) − E1(0), so that the lowest two bands are coupled
resonantly in the center of the quasimomentum Brillouin
zone, at k/kL = 0. The length of the pulses with squared-sine
envelope (22) is TP = 50T . Figure 3 shows the resulting final
distributions |gB

1 (k,TP)|2 and |gB
2 (k,TP)|2 for the lowest and

for the first excited Bloch band, respectively, in dependence
on the maximum driving amplitude Kmax

0 . One observes
a smooth, oscillating excitation pattern, the first indication
of which was already visible in Fig. 2. In particular, for
Kmax

0 = 0.186, which is the lowest peak amplitude leading
to maximum population transfer to the band n = 2, the final
excited-band distribution is substantially narrower than the
original one, while the distribution remaining in the lowest
band is bimodal, corresponding to a wave packet moving in
two opposite directions.

With the help of the tools assembled in the preceding
section, these results can be understood in an almost intu-
itive manner, without the need to invoke much formalism.
Figure 4(a) depicts the two quasienergy surfaces involved
in the dynamics, emerging from the two unperturbed Bloch
bands n = 1 and 2. Because of the Brillouin-zone structure
of the quasienergy spectrum, the “one-photon resonant”
driving frequency causes a degeneracy of both surfaces for
vanishing instantaneous scaled amplitude K0 = Faca/(h̄ω).
As a consequence, the initial wave packet is not placed on
an individual quasienergy surface under the action of a pulse,

 −0.2 0 0.2 
0

6

k/kL

k
L
|g

B
(k

,t
)|2 (c)

−0.2

0.2

0

0.8
0

6

k/kL
Kmax

0

(b)

kL|gB
2 (k, TP)|2

−0.2

0.2

0

0.8
0

6

k/kL
Kmax

0

(a)

kL|gB
1 (k, TP)|2

FIG. 3. (Color online) Final momentum distributions in the
lowest (a) and in the first excited (b) Bloch bands after the initial
state has been exposed to pulses with squared-sine envelope (22) and
length TP/T = 50, with varying maximum scaled amplitudes 0 �
Kmax

0 � 0.8. Here the scaled driving frequency is h̄ω/Er = 4.690,
implying h̄ω = E2(0) − E1(0), so that both bands are exactly resonant
at k/kL = 0. (c) compares the final distributions in the first (dotted)
and in the second (dashed) bands to the initial distribution (full
line), for Kmax

0 = 0.186. This particular situation corresponds to a
“π pulse.”

but rather placed coherently on both surfaces: A Floquet
expansion (17) yields contributions for both n = 1 and 2.
Both parts of the wave function then react adiabatically to
the slowly varying amplitude, each one picking up its own
dynamical phase factors, given by the time integrals over
the instantaneous quasienergies εFac

n (k) encountered. When the
driving amplitude goes to zero at the end of the pulse, both
parts of the wave function produce an interference pattern
which determines the final excitation probability: For each
wave number k sufficiently close to resonance, the transition
probability to the first excited band is proportional to the
expression [44]

P
(k)
1→2 = sin2

(
1

2h̄

∫ TP

0
dt

[
ε

Fac(t)
1 (k) − ε

Fac(t)
2 (k)

])
. (25)
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FIG. 4. (Color online) (a) Quasienergy surfaces underlying the
excitation pattern observed in Fig. 3. The upper surface originates
from the unperturbed Bloch band n = 1, the lower one from the
band n = 2. Because of the resonant frequency, both surfaces are
degenerate at k/kL = 0 for vanishing instantaneous amplitude K0.
The quasienergy lines at k/kL = 0 are emphasized for better visibility.
(b) Section through the surfaces at k/kL = 0, showing the removal of
the initial degeneracy.

As seen in Fig. 4(b), for k/kL = 0 the quasienergy difference
ε

Fac
1 (0) − ε

Fac
2 (0) increases linearly with the driving amplitude,

as is typical for a single-photon resonance [44]. Maximum
excitation then is obtained when the argument of the squared
sine in Eq. (25) equals an odd-integer multiple of π/2, the first
such maximum showing up for

1

h̄

∫ TP

0
dt

[
ε

Fac(t)
1 (k) − ε

Fac(t)
2 (k)

] = ±π. (26)

This is reminiscent of the familiar π -pulse condition; indeed,
when the quasienergies are calculated analytically within the
rotating-wave approximation, Eq. (26) reduces to the custom-
ary area theorem known from optical resonance [24,44]. But
here we are confronted with the fact that this condition (26)
cannot be met simultaneously for all components k with one
single pulse shape: When it is satisfied for k/kL = 0, the other
components of the wave packet experience slightly or even
strongly different quasienergies, depending on its initial width
in k space, as becomes evident when looking at Fig. 4(a). This
is exactly what allows one to “cut out” a part of the momentum
distribution, as was demonstrated in Fig. 3(c): Here the pulse
shape is such that Eq. (26) indeed is satisfied for k/kL = 0,
leading to maximum transition probability in the center of the
Brillouin zone. In contrast, the initial degeneracy at k/kL = 0
has no effect on the wings of the initial distribution, so that
these wings return adiabatically. As a result, the pulse transfers

−0.2
0

0.2
0

50

0

6

k/kL
t/T

kL|g1(k, t)|2

FIG. 5. (Color online) Floquet representation of the evolution of
a wave packet initially prepared in the lowest Bloch band, under the
action of a resonant π pulse with Kmax

0 = 0.186. This figure shows
how the final bimodal distribution |g1(k,TP)|2 depicted in Fig. 3(c)
appears after an initial reduction of the original density, corresponding
to the partial occupation of the other resonantly coupled quasienergy
surface; and after a period of almost adiabatic motion during the
middle of the pulse.

a relatively narrow central part of the initial distribution to the
first excited Bloch band, leaving behind a symmetric bimodal
distribution in the lowest one.

It is then of particular interest to monitor the dynamics
during such a pulse in the Floquet representation, instead of
merely looking at the final distributions in the usual crystal-
momentum representation. One such example, visualizing the
the action of the very “π pulse” considered above, is shown in
Fig. 5. Observe how the evolution of |g1(k,t)|2 embodies the
elements discussed before: The distribution soon is reduced
to half its initial height, reflecting the occupation of the
other quasienergy surface at the beginning of the pulse; then
stays about constant during the pulses’ middle part, reflecting
approximately adiabatic motion; and develops the bimodal
pattern only at its end, reflecting the final interference.

B. Nonresonant, strong forcing

For the following second example of wave-packet manip-
ulation we again select the driving frequency ω = 1.640Er/h̄,
as in the previous calculations having led to Fig. 1, but now
we also consider pulses with larger scaled amplitudes Kmax

0 .
In Fig. 6 we display the final distributions |gB

1 (k,TP)|2 and
|gB

2 (k,TP)|2 as resulting from pulses with 0.7 � Kmax
0 � 1.3.

Even for Kmax
0 = 0.8 the initial distribution returns still

undistorted, but for Kmax
0 ≈ 0.9 strong interband transitions

set in, leading to a trimodal excited-band distribution when
Kmax

0 = 1.3.
Once more the explanation for this response behavior is pro-

vided by the morphology of the quasienergy surfaces, shown in
Fig. 7. The surface with comparatively low curvature originates
from the Bloch band n = 1; this surface is penetrated by the
one emerging from the Bloch band n = 2 along a parabola-
shaped line with apex at k/kL = 0 and K0 ≈ 0.9. Along
this line the two surfaces exhibit a narrow avoided crossing.
The quasienergy representatives plotted in Fig. 7 are shifted
against those continuously connected to the original energy
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FIG. 6. (Color online) Final momentum distributions in the
lowest (a) and in the first excited (b) Bloch bands after the initial
state has been exposed to pulses with squared-sine envelope (22)
and length TP/T = 50, with varying maximum scaled amplitudes
0.7 � Kmax

0 � 1.3. Here the nonresonant scaled driving frequency
is h̄ω/Er = 1.640, as in Fig. 1. (c) compares the final distributions
in the first (dotted) and in the second (dashed) bands to the initial
distribution (full line) for Kmax

0 = 1.3.

bands by +h̄ω (n = 1) and by −2h̄ω (n = 2), respectively,
so that the anticrossing marks a “three-photon resonance.”
As long as the maximum pulse amplitude does not reach the
apex of the anticrossing parabola, the momentum distribution
merely moves adiabatically on its quasienergy surface, as
already demonstrated in Fig. 1, and returns without notable
modification. But when Kmax

0 > 0.9 the distribution has to pass
the avoided-crossing line, resulting in partial Landau-Zener
transitions to the other surface. Thus, the onset of excited-band
population in the Kmax

0 -k/kL plane, as observed in Fig. 6(b),
precisely reflects the locus of the band intersection.

Considering a pulse with Kmax
0 > 0.9, the different k

components thus encounter “their” respective avoided crossing

0 0.5 1 1.5
0.3

0.7

K0

ε/
(h̄

ω
)

(b)

(a)

FIG. 7. (Color online) (a) Quasienergy surfaces underlying the
excitation pattern observed in Fig. 6. The almost flat surface originates
from the comparatively narrow Bloch band n = 1, the one with larger
curvature from the band n = 2. Both surfaces undergo an avoided
crossing along a parabola with apex at k/kL = 0 and K0 ≈ 0.9. The
quasienergy lines at k/kL = 0 are emphasized for better visibility.
(b) Section through the surfaces at k/kL = 0, showing the narrow
avoided crossing.

at different amplitudes, and hence at different times. Therefore,
the different components acquire quite different dynamical
phase factors between their first passage through an avoided
crossing during the rise of the pulse and the second passage
taking place during the switch-off. Thus, for each k one finds
Stückelberg oscillations [45] due to the interference of the
parts having evolved on the two different surfaces, but their
phases vary strongly within the Brillouin zone. This feature
is the origin of the trimodal distribution |gB

2 (k,TP)|2 shown in
Fig. 6(c). As can be clearly seen in Fig. 6(b), the center lobe of
this distribution already corresponds to the second Stückelberg
maximum, whereas the two outer lobes still are associated with
the first.

In Fig. 8 we show the evolution of the Floquet distribution
|g1(k,t)|2 during the pulse with maximum amplitude Kmax

0 =
1.3. Evidently the outer wings of this distribution move
adiabatically, not encountering the avoided-crossing line,
whereas the central part jumps to the anticrossing surface with
high probability when passing this line, returning later when
the line is hit a second time.

We remark that by suitable choices of the frequency one
may likewise design pulses which involve higher quasienergy
bands: If the Bloch band n = 1 is slightly detuned from a
multiphoton resonance with a higher band, and if the ac Stark
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FIG. 8. (Color online) Floquet representation of the evolution of
a wave packet initially prepared in the lowest Bloch band, under the
action of a nonresonant pulse with Kmax

0 = 1.3. After an initial period
of almost adiabatic motion, the center of the distribution undergoes
partial Landau-Zener transitions to the anticrossing surface depicted
in Fig. 7, and later returns to the initial surface, subject to Stückelberg
oscillations.

shift forces the quasienergy surfaces emerging from these two
bands into an anticrossing, one can exploit the corresponding
multiphotonlike Landau-Zener transitions in the same manner
as in the example considered here.
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FIG. 9. (Color online) Contour plot of the real-space density
|ψ1(x,t)|2 associated with the lowest Bloch energy band (a),
and of the density |ψ2(x,t)|2 associated with the first excited
band (b), as resulting from a pulse with h̄ω/Er = 1.640, Kmax

0 =
1.5, and T/TP = 30. The phase ϕ in Eq. (27) has been set to
zero. (c) shows the gradual loss of population from the lowest
band.
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FIG. 10. (Color online) As Fig. 9, but for ϕ = π .

IV. PHASE EFFECTS

The solutions to the quasienergy eigenvalue equation (15)
refer to perfectly periodic driving, and thus do not change
when the force F (t) = Fac sin(ωt) is replaced by F (t) =
Fac sin(ωt + ϕ), except for a trivial shift of the time coordinate.
Accordingly, as long as the pulse dynamics are fully adiabatic
they are not affected by the phase ϕ. This is different, however,
under nonadiabatic conditions. Then the transitions effectuated
by a pulse may strongly depend on ϕ, so that this phase offers
an additional handle of control. For demonstration, we replace
the previous pulses (19) by

F (t) = F max
ac s(t) sin(ωt + ϕ), (27)

maintaining the interval 0 � t � TP as the active pulse period
and employing the same squared-sine envelope (22) as before.
Having set ω = 1.640Er/h̄, Kmax

0 = 1.5, and T = 30TP, Fig. 9
shows contour plots of the densities |ψ1(x,t)|2 and |ψ2(x,t)|2
associated with the lowest two Bloch bands, together with
the transition dynamics, for ϕ = 0. Evidently the transfer of
probability to the excited band does not proceed symmetrically
in space.

Figure 10 then depicts the corresponding results for ϕ = π .
While the distribution |ψ2(x,t)|2 here is the exact mirror
image of that displayed in Fig. 9(b), the depopulation of the
lowest band proceeds in exactly the same manner as before.
This finding is easily explained: Replacing ϕ by ϕ + π , and
simultaneously replacing x by −x, leaves the interaction term
−F (t)x in the Hamiltonian (2) invariant, so that a phase shift
by π is equivalent to spatial inversion. Needless to say, one
can also select other values of ϕ and produce results not
predictable by simple symmetry considerations. For example,
the outcome of a passage through an avoided crossing may
depend on the particular instantaneous phase at which this
anticrossing is met. More generally, the possible effects of
the phase of the carrier frequency with respect to the pulse
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envelope closely resemble corresponding effects encountered
in laser-atom interaction [46].

V. CONCLUSIONS AND FURTHER VISIONS

In this paper we have discussed mechanisms which govern
the response of a single particle in a cosine lattice to pulsed
homogeneous forcing, with a view toward controlling weakly
interacting Bose-Einstein condensates in shaken optical lat-
tices. While several successful experiments with ultracold
atoms in strongly ac-forced optical lattices have already been
reported [6–9,11,12,20,21], the systematic exploration of the
possibilities of coherent control opened up, e.g., by deliberate
pulse shaping, is likely to break new ground in ultracold-atom
physics.

This optimistic view is suggested by a simple parallel:
Atomic and molecular physics in itself, not invoking the use
of lasers, already is a fascinating and important subject, but
it becomes infinitely more rich when lasers come into play,
allowing one, on the one hand, to do precision spectroscopy,
and to perform deliberate state manipulations on the other. By
the same token, ultracold atoms in optical lattices offer access
to much fundamental physics, but there is a host of further
options when applying inertial forces, either in the form of
an ac drive for creating dressed matter waves, or in the form
of carefully designed pulses in order to exert active coherent
control.

Here we have focused on elementary mechanisms of control
deriving from pulses with a smooth envelope, leading to
adiabatic motion of a wave packet’s momentum distribution
on quasienergy surfaces created by spatiotemporal Bloch
waves and to deviations from adiabaticity which can be
purposefully exploited for reaching target states which may
not be accessible by other means. The accompanying Floquet

picture offers the distinct advantage that it enables one to
adapt many concepts developed for the theoretical description
of laser-matter interaction, such as the notion of π pulses.
In our opinion, the actual implementation and observation of
such π pulses with dilute Bose-Einstein condensates in shaken
optical lattices constitutes an experimentum crucis: If this can
be done, many further related control scenarios will be equally
viable, also involving variations of the driving frequency.

As a future perspective it seems particularly rewarding to
also carry over advanced strategies devised for controlling
molecular dynamics and even chemical reactions by specifi-
cally engineered laser pulses [25–29]. Such techniques often
involve feedback loops for optimizing the pulse characteristics
with the help of genetic learning algorithms; this approach
is tantamount to “teaching lasers to control molecules” [25].
When working with Bose-Einstein condensates in optical
lattices, control pulses can be applied by piezoelectrically
juggling the position of a mirror which reflects the lattice-
generating laser beam back into itself, thus giving rise to
a moving standing light wave in the laboratory frame, and
to a corresponding inertial force in the comoving frame of
reference. By sheer analogy, one then would “teach mirrors
to control condensates.” In this manner one could assess the
“reachability problem” for condensates in optical lattices and
explore whether one can reach any preselected final-state
distribution with the help of a proper pulse sequence. In
particular, it would be of major interest to apply such strategies
for creating mesoscopic Schrödinger-cat-like states, that is,
quantum superposition states of condensates.
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Kopeinig, and H.-C. Nägerl, Phys. Rev. Lett. 100, 080404
(2008).

[20] A. Alberti, V. V. Ivanov, G. M. Tino, and G. Ferrari, Nat. Phys.
5, 547 (2009).

063617-9



STEPHAN ARLINGHAUS AND MARTIN HOLTHAUS PHYSICAL REVIEW A 84, 063617 (2011)

[21] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and
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We suggest that Bose-Einstein condensates in pulsed optical lattices may provide detailed experi-
mental access to multiphoton-like transitions between ac-Stark-shifted Bloch bands. Such transitions
correspond to resonances described theoretically by avoided quasienergy crossings. We show that
the width of such anticrossings can be inferred from measurements involving asymmetric pulses. We
also introduce a pulse tracking strategy for locating the particular driving amplitudes for which res-
onances occur. Our numerical calculations refer to a currently existing experimental set-up [Haller
et al., PRL 104, 200403 (2010)].

PACS numbers: 42.50.Hz, 67.85.Hj, 03.75.Kk

The study of multiphoton excitation and ionization
processes so far has concerned the interaction of matter
with strong electromagnetic fields [1–4]. In the present
proposal we demonstrate that ideas and concepts devel-
oped in this field of research can also be applied for un-
derstanding the response of ultracold macroscopic mat-
ter waves in optical lattices to pulse-like forcing. Such
systems offer additional handles of control which are not
available in experiments with atoms or molecules exposed
to pulses of laser radiation. Therefore, they can give
novel insights into multiphoton dynamics in general, and
in particular may also allow one to systematically in-
vestigate the effects of interparticle interactions on such
dynamics.

The experimental investigation of Bose-Einstein con-
densates (BECs) in time-periodically forced optical lat-
tices has been pushed forward with remarkable vigor
within the last years, addressing quite diverse topics such
as parametric amplification of matter waves [5], dynamic
localization [6, 7], photon-assisted tunneling [8], coherent
control of the superfluid-to-Mott insulator transition [9],
quantum ratchets [10], super Bloch oscillations [11],
quantum simulation of frustrated magnetism [12], con-
trolled correlated tunneling [13, 14], and even the real-
ization of tunable gauge potentials [15]. The present the-
oretical study of multiphoton-like condensate dynamics
refers to conditions recently realized by Haller et al. [11]:
These authors have loaded BECs of Cs atoms into a verti-
cally oriented 1D optical lattice V (x) = (V0/2) cos(2kLx).
Here kL = 2π/λL, where λL = 1064.49 nm is the wave-
length of the lattice-generating laser light, so that the
lattice period is d = π/kL. We choose a compara-
tively shallow lattice with depth V0 = 2.3Er, where
Er = (~kL)2/(2m) is the single-photon recoil energy [16],
with m denoting the mass of the Cs atoms. Using a mag-
netically induced Feshbach resonance, the s-wave scatter-
ing length of these atoms is tuned to zero [17], so that one
is dealing with a condensate of effectively noninteracting
particles. By means of a time-periodic modulation of the
levitation gradient employed for compensating gravity,
an external oscillating force is introduced which acts on
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FIG. 1: Energy band structure of an unperturbed optical
cosine lattice with depth V0 = 2.3 Er. Measured in terms
of the photon energy ~ω = 0.23 Er, as corresponding to the
driving frequency ω/(2π) = 300 Hz, the gap between the
lowest two bands is ∆1 = 5.05 ~ω at the Brillouin zone edge,
and ∆0 = 18.24 ~ω at its center.

the atoms with maximum amplitude Fmax and frequency
ν = ω/(2π), such that their dynamics are governed by
the Hamiltonian

H(t) =
p2

2m
+ V (x) − s(t)Fmaxx cos(ωt) (1)

with a dimensionless shape function s(t) determining
the envelope of the pulses applied. All calculations re-
ported here are performed for the relatively low frequency
ω/(2π) = 300 Hz, so that ~ω = 0.23Er. As indicated in
Fig. 1, this means that the gap ∆1 = 1.14Er between the
lowest two Bloch bands E1(k) and E2(k) of the unper-
turbed optical lattice, which occurs at the Brillouin zone
edge k/kL = ±1, amounts to 5.05 ~ω: Exciting particles
from the initially occupied lowest band to the first excited
one requires the absorption of more than five “photons”.

A first glimpse at the condensate dynamics under the
action of a force F (t) is provided by Bloch’s acceleration
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FIG. 2: Interband transition probabilities after pulses with
the squared-sine envelope (3) and length Tp = 60×2π/ω, ob-
tained from numerical solutions of the Schrödinger equation.
All atoms which are excited to bands n > 1 after a pulse are
assumed to escape from the lattice.

theorem: The expectation value 〈k〉(t) of an atomic wave
packet in k-space evolves in time according to

~
d

dt
〈k〉(t) = F (t) , (2)

provided interband transitions remain negligible [18]. As-
suming a sinusoidal force F (t) = F cos(ωt)Θ(t) instanta-
neously switched on at time t = 0, this gives 〈k〉(t)/kL =
〈k〉(0)/kL + (K/π) sin(ωt), where K = Fd/(~ω) is a di-
mensionless measure of the driving amplitude. Thus,
when considering a wave packet initially at rest in the
lowest band, so that 〈k〉(0)/kL = 0, the packet’s center
〈k〉(t) just reaches the Brillouin zone edge when K = π.
Because the zone edge gives rise to Zener-type transi-
tions [19], one then expects pronounced excitation of
higher bands. Therefore, one has K ≈ π as a rough
order-of-magnitude estimate of the amplitude required
for inducing multiphoton-like transitions.

This expectation is confirmed by the numerical calcu-
lations summarized in Fig. 2. Here we consider driving
pulses s(t)Fmax cos(ωt) as already incorporated into the
Hamiltonian (1), with a smooth envelope

s(t) = sin2(πt/Tp) ; 0 ≤ t ≤ Tp . (3)

The pulse length is fixed at 60 driving cycles, Tp = 60T
with T = 2π/ω. In order to model the dynamics of a
noninteracting BEC responding to such pulses, we start
with an initial state

ψ(x, 0) =

√

d

2π

∫

dk g1(k, 0)χ1,k(x) (4)

made up from Bloch waves χ1,k(x) of the lowest band,
employing a Gaussian momentum distribution

g1(k, 0) =
(√
π∆k

)

−1/2
exp

(

− [k − 〈k〉(0)]2

2 (∆k)
2

)

(5)

centered around 〈k〉(0)/kL = 0 with width ∆k/kL = 0.1,
and then solve the single-particle Schrödinger equation
by means of a Crank-Nicolson algorithm [20]. Vary-
ing the maximum scaled amplitude Kmax = Fmaxd/(~ω)
from pulse to pulse, we plot the escape probability from
the lattice at the end of each pulse, at t = Tp. Here
we assume that only atoms which finally still populate
the lowest band remain in the lattice, since atoms which
have been excited to higher bands tend to escape from the
shallow lattice quite fast; for later comparison with actual
experimental data it should be borne in mind that a part
of the excited atoms may still be present in the lattice at
t = Tp. Evidently, interband transitions start to make
themselves felt at Kmax ≈ 2.5, and reach substantial
strength when Kmax ≈ 3, confirming the above rough es-
timate. Thus, proof-of-principle experiments performed
along these lines should establish the feasibility of us-
ing BECs in driven optical lattices as novel probes for
multiphoton-like transitions.

In a second step, this tool can be employed for get-
ting more detailed insight into multiphoton dynamics.
Namely, the single-band acceleration theorem (2) ig-
nores an essential element: Not only does the wave
packet’s center 〈k〉(t) move within its band in response to
the external forcing, but also the bands themselves are
“dressed” by the drive, and therefore experience an ac
Stark shift [21]. Hence, initially nonresonant bands may
be shifted such that their separation in energy approaches
an integer multiple of ~ω for certain Bloch wavenum-
bers k, possibly leading to strong resonant interband
coupling, that is, to a multiphoton resonance. Theo-
retically, such resonances are found by computing the
quasienergy bands εn(k) which emerge from the energy
bands En(k) in the presence of a drive with constant
amplitude. These quasienergy bands reflect the ac-Stark-
shifted energy bands, projected into an interval of width
∆ε = ~ω, so that a multiphoton resonance translates
into an avoided quasienergy crossing [4, 21]. For exam-
ple, Fig. 3 shows the quasienergies εn(0) with n = 1, 2, 3
which pertain to the pulses considered in Fig. 2, plotted
versus the scaled amplitude K. The quasienergy orig-
inating from the ground state E1(0) of the optical lat-
tice undergoes two well-resolved avoided crossings when
K > 3, signaling the presence of two individual multi-
photon resonances. The observation that these “large”
resonances begin to show up only for K ≈ π nicely re-
lates the elaborate quasienergy approach to the previous
elementary reasoning based on Eq. (2).

Inspecting that elementary reasoning once again, one
expects multiphoton resonances to occur for smaller driv-
ing amplitudes when the initial packet is centered around
a nonzero wavenumber, 〈k〉(0)/kL 6= 0, since then smaller
amplitudes are required for reaching the Brillouin zone
edge. This expectation is confirmed by Fig. 4, which
depicts quasienergies εn(k) for k/kL = 0.8, with the
first resonance showing up already at K ≈ 0.9. Ex-
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FIG. 3: Quasienergies εn(0) at the center of the Brillouin
zone for an optical lattice with depth V0/Er = 2.3, driven
with scaled frequency ~ω/Er = 0.23. The quasienergy origi-
nating from the lowest band n = 1 is marked by the arrows.
It exhibits a substantial ac Stark shift, and undergoes pro-
nounced avoided crossings for K > 3.
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FIG. 4: Quasienergies εn(k) for k/kL = 0.8 and n = 1, 2, 3.
The arrow indicates the quasienergy originating from the low-
est energy band n = 1.

perimentally, one can prepare an initial state with ar-
bitrary 〈k〉(0) by subjecting the condensate to a suitable
“kick” [22]. Thus, one should also be able to detect the
resonances predicted by Fig. 4. To this end, we propose a
particular kind of “avoided-level-crossing spectroscopy”
based on the use of asymmetric pulses s(t). For illus-
tration, we assume that the rising part of such pulses
be given by the first half of the envelope (3), with fixed

switch-on time T
(1)
p /2 = 5T , while their decreasing part

is described by the second half of a squared-sine enve-

lope, but with a different switch-off time T
(2)
p /2. The

maximum scaled amplitude is Kmax = 1.2. During the
rising part of such a pulse, a wave packet initially cen-
tered around 〈k〉(0)/kL = 0.8 then follows its quasienergy
states adiabatically, until the instantaneous amplitude
reaches the multiphoton resonance at K ≈ 0.9 visible in
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FIG. 5: Survival probability of atoms in the lowest band after

asymmetric pulses with fast switch-on time T
(1)
p /2 = 5 T , and

with varying switch-off durations T
(2)
p /2. The initial packets

were centered around 〈k〉(0)/kL = 0.8, so that the dynamics
are determined by the spectrum shown in Fig. 4; Kmax = 1.2
for all pulses.

Fig. 4. Then the packet undergoes a Landau-Zener tran-
sition to the anticrossing quasienergy states [23]. Due
to the rapid switch-on of the pulse, and to the narrow
quasienergy separation δε at the avoided crossing, that
transition is almost complete. Thereafter, the packet
again adiabatically follows the pulse envelope, until the
resonance is encountered a second time when the ampli-

tude decreases. If then T
(2)
p ≫ T

(1)
p , a major part of the

wave function does not “jump over” the avoided crossing
back to the initial state, but rather stays in the continu-
ously connected quasienergy states. This implies that a
major fraction of the condensate atoms is excited at the
end of the pulse, escaping out of the lattice. When such
an experiment is performed repeatedly with fixed rise

time T
(1)
p /2 while varying the switch-off duration T

(2)
p /2,

one should observe survival probabilities which drop ex-

ponentially with increasing T
(2)
p , allowing one to extract

the quasienergy separation δε at the avoided crossing
from the drop rate by means of the known Landau-Zener
formula for quasienergy states [23].

The results of a series of solutions to the Schrödinger
equation corresponding to this scenario are plotted in
Fig. 5. From the slope of the numerical data we deduce a
quasienergy gap δε/(~ω) = 0.0099, in perfect agreement
with the value 0.01 read off from Fig. 4. These findings
clearly underline that this quasienergy gap δε ≪ ~ω is
the actually relevant energy scale for the multiphoton
transitions under scrutiny here, not the band separation
∆1 = 5.05 ~ω indicated in Fig. 1.

There are further options offered by BECs in driven
optical lattices which have no match in laser-based multi-
photon studies. For example, one can switch off the driv-
ing force abruptly at any moment, and analyze the state
of the wave packet at that particular instant. Specifically,
we again utilize envelopes of the form (3), and let the am-
plitude rapidly drop to zero at some instant Tout, with
0 < Tout < Tp/2. We set Tp = 60T and take initial wave
packets with 〈k〉(0)/kL = 0, as for the previous calcula-
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FIG. 6: (color online) Pulse tracking realized by switching
off the squared-sine envelope (3) with Tp = 60 T abruptly at
t = Tout, and recording the escape probability at this moment.
The onset of interband transitions then reveals the presence
of a multiphoton resonance at the instantaneous amplitude
reached at t = Tout.

tions shown in Fig. 2, and plot the escape probabilities
versus switch-off time Tout in Fig. 6. For Kmax = 1.6 the
wave packet simply follows its quasienergy states adiabat-
ically, not encountering any of the resonances observed
in Fig. 3. However, for Kmax = 2.9 interband transitions
set in at Tout ≈ 25T , that is, when the instantaneous am-
plitude reaches K = Kmaxs(Tout) ≈ 2.7; this is due to a
tiny resonance not resolved in Fig. 3. When Kmax = 4.0,
pronounced interband transitions occur at Tout ≈ 20T ,
corresponding to the instantaneous amplitude K ≈ 3:
This is already in the regime of influence of the first of
the two “large” resonances seen in Fig. 3. Thus, this
“pulse tracking” strategy allows one to experimentally
detect multiphoton resonances, that is, to find those val-
ues of the driving amplitude for which strong resonant
interband transitions occur.

To summarize, we have argued that BECs in pulsed op-
tical lattices can be employed for mimicking multiphoton
processes. The enormous degree of controllability realiz-
able with pulsed optical lattices enables one to obtain in-
formation not reachable with laser-irradiated crystalline
solids; in particular, we have suggested the use of asym-
metric pulses for performing avoided quasienergy cross-
ing spectroscopy. Moreover, we have shown how pulse
tracking by abruptly switching off the driving amplitude
allows one to monitor the dynamics at each moment dur-
ing an individual pulse, and thus to locate multiphoton
resonances between ac-Stark-shifted Bloch bands. Ob-
viously, our approach also lends itself to systematic ex-
plorations of the effects of pulse shaping. Even more
interestingly, one can activate interparticle interactions
by suitably tuning the s-wave scattering length of the Cs
atoms [17]. Hence, the detailed experimental investiga-

tion of the influence of such interactions on multiphoton
transitions has come into immediate reach.

We are indebted to E. Haller for detailed discussions,
and for performing preliminary measurements confirm-
ing the viability of our suggestions. We also acknowledge
support from the Deutsche Forschungsgemeinschaft un-
der grant No. HO 1771/6.
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