Man—Computer Interaction Research

MACINTER-II

F. Klix, N.A. Streitz, Y. Waern, and H. Wandke (Editors) 335
© Elsevier Science Publishers B.V. (North-Holland}, 1959

ENOWLEDGE SPECIFICATION AND INSTRUCTION FOR A VISUAL
COMPUTER LANGUAGE

Claus MOEBUS and Olaf SCHROEDER

Project ABSYNT

FB 10, Informatik

Unit on Tutoring and Learning Systems
University of Oldenburg

Oldenburg, FRG

Cne difficult problem in the development of intelligent
computer aided instruction (ICATI) is the proper design
of instructions and helps. The problem arises because
knowledge diagnosis largely depends on what kind of
information is given to the student.

This paper adresses the question of developing in-
structional and help material concerning the operatio-
nal knowledge for a visual, functional programming
language, ABSYNT. The goal of our project is the con-
struction of a problem scolving monitor (PSM} for
ZBSYNT., First, we will explain our motivation for
choosing and developing this task environment. Then,
we will describe the programming environment of ABSYNT,
Next, we will illustrate some difficulties that arose
when we used a first, only verbally specified, non-
visual description of the operaticnal knowledge as
instructional material. In particular, it was not
clear whether this description was complete and error-
free, and it provided no framework for semantic-bug
analyses., Finally, the process is described by which
we generate rule-based specifications of the opera-
tional knowledge and visual instructions and helps.
This iterative specification cycle led to two alter-
native sets of iconic rules which describe the opera-
tional knowledge of ABSYNT to the student.

INTRODUCTION

The main research goal of ABSYNT is the construction of a
problem solving monitor (PSM), Some PSM-relevant research has
been reported about solving problems in simple arithmetic
tasks (Attisha (1); Attisha and Yazdani (2); Brown and Burton
{(3); Bundy (4); Burton (5); VanLehn and Brown (6); Young and
0'Shea (7)), in guadratic equations (S'Shea (8), (92)), in
simple algebra problems (Sleeman (10, (11), (12), (13), (14),
in geometry {(Anderscon (15); Anderson, Boyle, Farrell and
Reiser (16); Andersocon, Greeno, Kline and Neves (17)) and in
computer programming {(Anderson (18, (19); Anderson, Farrell
and Sauers (20), (21); 2Bnderson and Reiser (22); Anderson and
Skwarecki ({(23); Johnson (24); Johnson and Soloway (25), (26);
Soloway (27); Wertz (28), (29), (30)). We chose the domain of



536 C. Mébus and O. Schrider

computer programming because problem solving is the main
activity of each programmer. Furthermore, errors can be
diagnosed easily. We had to make some more design decisions.
Because the PSM should mainly supervise the planning processes
of the programmer, we decided to use a simple programming
language, the syntax and semantic¢s of which can be learned in
a few hours. We decided to take a purely functional language.
From the view of cognitive science functional languages have
some beneficial characteristics. So less working memory load
on the side of the programmer is obtainable by their proper-
ties, referential transparency and modularity (Abelson, Suss-~
man and Sussman (31); Ghezzi and Jazayeri (32); Henderson
(33), (34}). Furthermore, there is some evidence that there
is a strong correspondency between programmer's goals and use
of functions (Pennington (35); Soloway (27); Johnson and
Scloway (25)). So we avoid the difficult problem of inter-
leaving plans in the code which show up in imperative pro-
gramming languages because it makes the diagnosis of pro-
grammer's plans rather difficult (Soloway (27)). If we take
for granted that a goal can be represented by a function, we
can gain a great flexibility in the PSM concerning the pro-
gramming style of the student. We can offer him facilities to
program in a bottom-up, top-down or middle-cut style. The
strategy of building up a goal hierarchy can correspond to
the development of the functional program.

There are scome similar psychological reasons for the use of

a visual programming language, too. There is some evidence
that less working memory load is obtainable through the use

of diagrams if they support encoding of information or if

they can ke used as an external memory (Fitter and Green (36);
Green, Sime and Fitter (37); Payne, Sime and Green (38);
Larkin and Simon (39)). Especially if we demand the total
visibility of control and data flow the diagrams can serve

as external memories,

The diagrammatic structuring of information should also reduce
the amount of verbal information which is known to produce a
higher cognitive processing load than "good" diagrams (Larkin
and Simon (38)). "Good" diagrams produce automatic control

of attention with the help of location cbjects. These are in
our case object icons, which are made of two sorts: straight
connection lines and convex objects. Iconic objects of these
types are known to control perceptual grouping and simultan-
ecus visual information processing (Pomeranz (40): Chase (41)).
A very crucial point concerning the "intelligence" of an PSM
lies in the quality of the design for the feedback system, In
literature two approaches have been proposed. On proposal is
the explicit "debugging" appreach (Burton (5); VanLehn (42)):
tracing an error with the help of a diagnostic procedure and
an extensive bug collection back to underlying malrules or
misconceptions. The other idea rests solely on the specified
expert knowledge and ‘a model of human learning (Egan and
Greeno (43); Simon and Lea (44); 2nderson (45)}; VanLehn (46),
(47)). RAccording to these rule-based theories of human skill
acquisition a learner has to be aware of at least two types
of information: the current goal within the problem and the



A Visual Computer Language 537

conditions under which rules apply. McKendree (48) could show
in three experiments, that "goal" information is even more
important than "condition" information in promoting learning
of skill. This type of feedback design is more simple to
implement than the "debugging" strategy. But there are still
no experimental compariscns between the two methods.

Either way, we have to specify geoals and rules an expert would
use when predicting the computaticnal behavior of the ABSYNT
interpreter,

When shcould the tutor administer feedback? Our tutorial strate-
gy is guided by "repair theory" (Brown and VanLehn (49))and
follows the "minimalist design philosophy" (Carroll (50),(51)).

This means, that if the learner is given less (less to read,
less overhead, less to get tangled in), the learner will
achieve more. Explorative learning should be supported as
long as there is preknowledge on the learner side, Only if
an error occurs feedback becomes necessary and information
should be given for error recovery.

According to repair theory an impasse occurs, when the student
notices that his solution path shows no progress or is blocked.
In that situation the person tries to make local patches in
his problem sclving strategy with general weak heuristics to
"repair" the problem situation. In our tutorial strategy we
plan to give feedback and helps only, when this repair

leads to a second error.

2. THE PROGRAMMING ENVIRONMENT OF ABSYNT

The programming environment of ABSYNT was developed in our
project, basing on the "calculation sheet machine" (Bauer and
Goos (52)). The complete programming environment is implemen-
ted in INTERLISP and the object-orientated language LOOPS
(Janke and Kohnert (53); Kohnert and Janke (54)) to have a
system with direct manipulation capabilities which are ab-
solutely necessary prerequisites for ocur system (Fdhnrich and
Ziegler (55); Hutchins, Hollan and Norman (56}, Shneiderman
{57), (58))., Following Shu's (59) dimensional analysis,
ABSYNT is a language with high wvisual extent, low scope and
medium level. ABSYNT consists of three modes: a programming
mode, a trace mode, and a prediction mode (Kohnert and

Janke (54)).

2.1. The Programming Mode

The programming mode is shown in Figure 1. The screen is
split into several regions. On the right and below we have a
menu bar for nodes., 2 typical node is divided into three
stripes: an input stripe (top), a name stripe {(middle) and

an output stripe (bottom). These nodes can be made to con-
stants or variables (with black input stripe) or are language
supplied primitive operators or user defined functions.



538 C. Mébus and O. Schrdder

= — =

T l———l————w [ ] b [ W i b b ;| ]
SRS | N | T | M TN | ST || T | N P S | . = | s | 1t

L (L It "/ {3 AL )| | | A0 /| /| HE J 52

FIGURE 1
The Programming Mode of ABSYNT.

The programmer sees in the upper half of the screen the main
worksheet and in the lower half another one. Each worksheet
is called frame. The frame is split into a left part:

"head" (in german: "Kopf") and into a right part "body" (in
german: "Kbrper"). The head contains the local environment
with parameter-value bindings and the function name. The
body contains the body of the function.

Programming is done by making up trees from nodes and links.
The programmer enters the menu bar with the mouse, chooses
one node and drags the node to the desired position in the
frame, Beneath the frame is a covered grid which orders the
arrangements of the nodes so that everything looks tidy.
Connections between the nodes are drawn with the mouse. The
connection lines are the "pipelines" for the control and
data flow. If a node is missed the programmer is reminded
with a phantom node that there is something missing. The
editor warns with flashes if unsyntactic programs are going
to be constructed: crossing of connections, hiding of nodes
etc, The function name is entered by the programmer with the
help of pop-up-menus in the root node of the head and the
parameters in the leaves of the head.



A Visual Computer Language 539

If the function is syntactically correct, the name of the
function appears in the frame title and in one of the nodes

in the menu bar so that it can be used as a higher operator.
When a problem has to be solved a computation has to be
initialized by the call of a function. This call is programmed
into the "Start"-Tree. Initial numbers are entered by pop-up-
menus in constant nodes in the start tree. This tree has a
frame without a name, so¢ that the iconic bars are consistent.

The design of the programming mode is motivated by the opera-

tional knowledge for ABSYNT (Mdbus and Thole (60)). That is,
the features and distinctions necessary for the operational
knowledge (i.e., frame name and frame number, division of a

nede into an input stripe, a name stripe and an output stripe)
are visualized in the programming mode as well as in the
other modes of the programming environment. We gathered con-
verging evidence for the usefulness of this design by analyz-
ing syntactic and semantic bugs in a feasability study based
on the calculation sheet machine (Colonius, Frank, Janke,
Kohnert, MSbus, Schrdder and Thole (81)).

2.2. Trace Mode and Prediction Mode

If the user has programmed a start tree for his program, he
can run the program and get a trace for it. The design of
the trace is a result of our iterative specification cycle
of developing abstract rules and process icons (to be ex-
plained in part 4 of this paper). In case of recursive pro-
grams, the actually computed frame is in the upper half of
the screen. The lower half shows the frame one level deeper
in the stack, so that the recursive call stays visible,

As an experimental tool of the ABSYNT environment, there is
also a prediction mode. Here the user can predict the actions
of the interpreter, that is, compute ABSYNT-programs by him-
self, so he can acgquire the operational knowledge for ABSYNT.
In part 4 we explain the instruction and help material for
acquiring this knowledge.

3. PRELIMINARY INSTRUCTICNAL MATERIAL AND SEMANTIC BUGS

Our starting point for developing a functional, wvisual pro-
gramming language was the "calculation sheet machine" (Bauer
and Goos (52); MBbus (62)}). In a first step, we reconstructed
it in order to obtain a paper-and-pencil-version for doing
explorations. Part of this reconstruction was a verbal spe-
cification of the syntax and the operational knowledge,
illustrated by simple programs and trees. The essence of the
verbal specification of the operational knowledge is shown

in Figure 2.



540 C. Mdébus and O. Schroder

Computation of Calculation Sheet Programs:

2 Calculation Sheet Program consists of a Long Form and a
Short Form, which may replace the Long Form. Before the cal-
culation starts, write the start value(s) in left-to-right-
order into the parameter nodes of the Short Form. Now look
at the Long Form. Write into every parameter node the value
which is in the parameter node with the same name in the
Short Form.

You can start the computation when every node without input
connections in the Long Form has a value.

Computaticn rules:
1. Start with the bottom-most node of the Long Form.

2. Does this node have no input connection? If so, its
content is its value.

3. Does this node have at least one input connection?
If so, then test whether it is a branching node
("if-then-else").

a) If it is a branching node: The node connected to its
leftmost input ccnnection must get a value according
to computation rules 2 to 4.

- If this walue is "True", then the node connected to
the middle input connection of the branching node
{("then-node") must get a value according to the
computation rules 2 to 4.

- If this value is "False", then the node connected to
the rightmost input connection of the branching node
("else-node") must get a value according to the
computation rules 2 to 4.

b) If it is not a branching node: The node is some dif-
ferent operator node.
Every node connected tc the input connection(s) of this
node must get a value according to the computation rules
2 to 4.
The operator is then computed according to computation
rule 4, and the obtained value is written intc the
operator node.

4. a) If the operator is in the following list of primitive
operators, it will be computed in one of the following
ways:

+ takes at least two numbers. The numbers are adced.
takes at least two numbers. The numbers are multiplied.

b) If the operator is not in this list ("unknown operator).
it is the name of a Calculation Sheet Program.



A Visuagl Computer Language 541

- Make a copy of this program.

- Write the value(s) of all node(s) ccnnected to the
input connection(s) of the unknown operator in left-
to-right-order inte the parameter node(s) of the
Short Form of the copy.

- Compute the Long Form of the copy according teo the
rules given above,

- Write the obtained wvalue into the bottom-most node
("name node") of the Short Form of the copy.

- Write the value into the unknown operator node of
the previous Calculation Sheet Program,

FIGURE 2
Part of the initial verbal specification of the
operational knowledge.

With this first version of the language, we performed a
feasability study. Its aims were

- getting hints for the design of the language and the inter-
face

= collecting syntactic and semantic bugs

- studying the memory representations of example programs
{(cf. Hoc (63); Adelson (64); Brooks (65); Letovsky (66);
Rist (67)) in order to find reasons for bugs and conditions
under which they occur,

In the sessions, the subject computed calculation sheet pro-
grams with paper and pencil., Moreover, they reproduced them

and compared different programs. The verbal specification of
the syntactic and operational knowledge was provided as help.

The subjects had no programming knowledge, but prior to the
sessions they were introduced to the calculation sheet machine
and to the verbal specification. The programs can be partially
ordered in accordance with the programming ccncepts which they
exemplify (see Figure 3).

recursive programs with branching
programs ////rand abstraction
programs with programs with
branching abstraction

N /

simple programs

FIGURE 3
Partial ordering of "calculation sheet" program.



542 C Mébus and O. Schroder

2 detailed description of the feasability study is provided in
Colonius, Frank, Janke, Kohnert, Mshus, Schrdder and Thole (68).
Here we will focus on the semantic bugs. Bltogether, the sub-
jects computed 75 programs. 18% of the computaticons contained
bugs. It fellows a short description:

- Buggy computation of primitive cperators (except branching):

In some case, the arithmetic operator "-" was first used
correctly, but then additionally interpreted as the sign for
the cbtained result (i.e., 7 - 3 = -4}. This bug supported a

decision ccncerning the design of operator nodes in ABSYNT.

- Buggy computation of the branching cperator (if-then-else):
In most cases of buggy computaticon, the result of the pre-
dicate was taken as the result of the branching operator,
although these subjects computed the then-bkranch resp. else-
branch correctly.

- Buggy cemputation of abstraction: When an abstract operator
appeared more than once in a program, it was computed cor-
rectly for the first time. The obtained result was then
taken as the result of cther occurrences of the abstract
coperator, too, in spite of different arguments.

- Buggy computation of recursion: In some cases the recursive
call was treated as a primitive operator (i.e., addition).
In some other cases, the subjects interrupted the compu-
tation when reaching the recursive call. Then they started
computing the other branch of the branching operator.

In still other cases, the recursive calls were computed
correctly, but the result of the deepest-level incarnation
was taken as the result of the whole program. Postponed
computations were ignored.

However, this collection of semantic bugs gave rise to the
fellowing problems:

- It is unclear whether the bugs arose because of ambiguities
in the instructional material (the verbal description of
the operational knowledge). Therefore, we cannot be certain
if this description can be viewed as the semantic "expert"
knowledge, which in our opinion is a prerequisite for a
user of our language to plan and debug efficiently.

- The verbal description of the operational knowledge is a
poor base for a more detailed and systematic description of
the observed bugs in terms of missing or wrong pieces of
knowledge.

- It seems unnatural to construct a verbal specification of
the operaticnal knowledge for a visual programming language.
The design of a visual language has to be based on the con-
cept of generalized icons (Chang (69)), which can be di-
vided into object icons and process icons. Object icons de-
fine the representation of static language constructs,
whereas process icons specify the representation of data
flow and control flow (see also M&bus and Thole (60)).



A Visual Computer Language 543

Therefore, we decided to use a runnable specification (Davis
{70)) of the language, which was implemented as rule sets in
the course of our project, as a foundation for constructing
process icons, These process icons may then be used as in-

structicnal and help material for the operational knowledge.

Moreover, with a first version of this runable specification
{(rule set A, see below) we realyzed the cobserved semantic
bugs described above (Colonius, Frank, Janke, Kohnert, M&bus ,
Schridder and Thole (68)). This made clear that the rules can
provide a systematic account of most of the bugs. In this
view they could be described as

- missing rules (i.e., buggy computation of a primitive
operator).

- overgeneralized rules; Components of a rule are missing
{(i.e., no distinction between different calls of the
same function is made. This would lead to ignoring post-
poned computations in recursive calls, as described above).

- overly restricted domains of rules: The appropriate rule
is not applied in certain situations (i.e., the general
rule for dealing with function calls is not applied in
case of recursive calls. This would lead to an impasse
followed by tinkering (Brown and VanLehn (49)). So, treating
the recursive call as a primitive operator or switching
to the other branch of the if-then-else-operator (see
above) could be viewed as such attempts to repair the
situation).

On the other hand, the acquisition of the operational know-
ledge could be viewed as acquisition, refinement and gene-
ralization (cf. Norman (71); Goldstein (72) of the rules
(Colonius, Frank, Janke, Kohnert, MSbus, Schrbder and Thole
(61)).

4, CONSTRUCTION OF IMPROVED INSTRUCTIONAL MATERIAL:
PROCESS ICONS

The specification of the operational knowledge was made in an
iterative specification cycle (M&bus (72), (74); Mdbus and
Thole (60) (Figure 4)}.

The first step consisted of the knowledge acquisition phase.
The next step led to a rule set A of 9 main Horn clauses
{(plus some operator-specific rules). The set contained the
minimal abstract knowledge about the interpretation of
ABSYNT programs. The abstract structure was formalized by a
set of PROLOG facts similar to an approach of Genesereth
and Nilsson (75)).



544 C. Mobus and O, Schrider

the lerellve  epeoifiestion  eyels
L il il

far . :
eementle | mewledps

knowledge acquisition
(textbooks, experls)

¥

reprasentation wilh a

Inimal rule set A (8)
new i |
rule sets } *

B (14}, C (29}
relaxation iconic representalion
of minimum with object and
requirement ptocess fcons
{ = leonle rules)
empirical tast ot
Icanic rules with
respect to
. | alention  conirol
and automalic
£ inferences

In INTERLISP
LOOPS

FIGURE 4
The iterative specification cycle for coperational semantic
knowledge.

4.1. Rule Set A and Process Icons

The program is described abstractly by a set of nodes and a
set of connections which are represented by PROLOG facts.

The nodes possess the attributes frame-name, tree-type,
instance-number, name and value. These attributes determine
the location, the within structure and the value of the node.

The connections possess the attributes frame, tree, out-
instance, in-instance and input-number. They link the output-
field of a node with the inputfield of another node.

Semantic knowledge is moulded into two types of rules. One
consists only of one "input" rule and the other of several
"output" rules. The "input" rule (Figure 5) centains the
knowledge about the migration of computation goals and data
between the nodes. The "output" rules contain the knowledge
about computations within one node. Because the nodes have
different meanings, we need different "output" rules. There
is one for each primitive operator, one for the parameters

in the tree "head”, one for constant nodes, one for parameter



A Visual Computer Language 545

nodes in the tree "body", one for the root in the tree "head"
and one for the computation of higher (self defined) operators.
In the last rule parameters are bound in a parallel fashion to
their arguments {call by value) and the new leaves of the tree
"head" are put into the stack. Furthermore we have rules which
contain the knowledge to generate roots and leafs or to check
nodes with respect to their root or leaf status.

input (frame (Frame) ,tree(Tree) ,instance(Instance) ,inputnoc

/+ IF

THEN

{(Inputno) ,value(Value)) :-

connection (frame (Frame) ,tree(Tree) ,out_inst(Out_inst),
in inst(Instance) ,in_inst no(Inputno)}},

output (frame (Frame) ,tree (Tree) ,instance(Out_inst),
name (Name) ,value (Value)).

there is the goal to compute the value of the input
with number Inputno in node Instance in the tree
Tree in the frame Frame,

there is a subgoal to lock for a connection, which
leads to this input from a yet unknown node
Out-inst, which is the source of this connection

there is another subgoal to compute the value of the
node Out-Inst )

(this value is then the wvalue of the goal in the

IF part of this rule.) +/

FIGURE 5
The Abstract Input Rule,

As a further example we include the "output"-rule for a
higher operator (Figure 6). This rule describes the call-
by-value mechanism.

output (frame (Frame) ,tree(Tree), instance(Instance),

name (Name ,value{(Value)):-

node name (frame (Frame) ,tree (Tree) ,instance(Instance},
name (Name) ) ,

findall (Argument,input {frame (Frame) ,tree(Tree),
instance {Instance),
inputno(Inputno) ,value (Argument)) ,List_of_ arguments),
set of (Parameter, (leaf (frame(Name) ,tree (head),
instance (Inst leaf),

node name (frame (Name) ,tree (head) ,instance(Inst_leaf),
name (Paremeter))),

List _of parameters),

forall (parm_arg pair(Parm,Arg,List cf_ parameters,
List of arguments),

(node_name (frame (Name) ,tree (head) ,instance (Inst_parm),
name (Parm} ) ,

asserta(node (frame (Name) ,tree (head) ,instance(Inst_
parm) ,name (Parm) ,value (Arg)})))



546 C. Moébus and 0. Schrider

root (frame (Name) ,tree (head) ,instance (Inst_root head}),!,
output (frame (Name) ,tree (head) ,instance (Inst_root_head),
name (Name) ,value (Value)), -

forall {parm arg pair(Parm,Arg,List_of parameters,

List of arguments), -7
(nodeﬁname(frame(Name),tree(head),instance(lnst parm) ,
name (Parm) ) , -

retract (node (frame (Name) ,tree (head) ,instance (Inst_parm),
name {Parm) ,value))))),!. -

/+ IF there is the goal to compute the output value
of a higher operator node,

THEN the following subgoals have to be solved:
- determine the node name
- compute all input values of the node

- determine all parameters of the frame whose
name is identical to the node name

- put the parameter-argument bindings intoc
the new local environment

- find the head root of the frame

- compute the output value of the head rcot
(this value is then the value of the goal
in the IF part of this rule)

- destroy the local envircnment

FIGURE 6
The Abstract Output Rule for a Higher Operator

In the next step of the specification cycle, we tried an
iconic representation of the facts and Horn clauses of rule
set A. Thereby, we kept in mind design principles which are
motivated by Pomerantz (40) and Larkin and Simon (39).
Pomerantz made some careful studies about selective and
divided attention information processing. One consequence for
our design was that time-indexed information had to be
spatial indexed by locations, too. Information with the same
time index should have the same spatial index. This means
that this information should appear in the same location. In
our design a location is identical with a visual object.
These insights were supported by the formal analysis of
Larkin and Simeon (39). They showed under what circumstances
a diagrammatic representation of information consumes less
computational resources as an informational equivalent sen-
tential representation. Figure 7 demonstrates how the com=-
putation of the well-known factorial would look like, if we
keep the number of object icons to a minimum: there is only
one frame for recursive computations and intermediate results
and computation goals (represented by ") disappear when

no longer needed for the computation.



A Visual Computer Language 547

We see that value and goal stacks are collapsed into the
various fields of a node. For the application of an operator
we have to select all numbers with the same time index. Time
indexed information was not location indexed. Pomerantz (40)
showed that this kind of selective attention is extremely
difficult and not trainable. If the function gets more com-
plicated like a tree recursive function, a diagrammatic in-
formation of this kind would be completely misleading. Here,
the postulate of total visibility would lead to a wvisual
trace with an information overload. Computational errors would
be inevitable.

o
[[T3
Ll (== ¥§g

Mext computation

-

ol

—— === =

i
Btary

1
™N
fa

FIGURE 7
Trace within a Hypothetical Environment According to
Rule Set A.

So we realized that a visual representation of the facts and
Horn clauses of rule set A according to the recommendations
of Pomerantz and Larkin and Simon was only possible if we
"enriched" the iconic structure. This means that we had to
add iconic elements which were not present in the abstract
structure,

A second reason for an enrichment and, thereby,'a modification
of rule set A, was that rule $et A led to iconic represen-
tations with disjunctive rules. Iconic rules with disjunctive



548 . C Mobus gnd 0. Schrider

conditions require selective attention, which causes matching
errors and longer processing time (Bourne (76); Haygood and
Bourne (77); Medin, Wattenmaker and Michalski (78)).

So we had to modify rule set A because of the following
reascons, which result from constraints in the human infor-
mation processor: We wanted to avoid 1. any undesired per-
ceptual grouping of information in operator nodes, 2. icenic
rules with disjunctive conditions, and 3. visual hinding of
dynamic successor frames already put on a stack.

4.2, Rule Set B and Process Icons

As shown above, an attempt to visually represent rule set A
forced us to relax our requirement to use only a minimal
number of cobject icons (see the iterative specification
cycle, Figure 4). This required various modifications of the
abstract rules. We came up with a relaxed rule set B with

14 main rules (plus operator-specific rules).

In rule set B, the "output" rule for a higher operator is
modified. When a higher operator is called, a fresh copy of
the original frame is created. In order to avoid a only
partly visible "spaghetti"-stack in the sense that from cne
frame several new successor frames could be opened by cal-
ling "higher" operators, we allowed only one call per frame
at the moment. This results in a depth-first search in the
call tree. The copies of the frames are ordered by frame
number and put on a frame stack. The arguments are copied in
parallel into the parameter leaves of the head. Nodes and
connections get the new attribute frame number, too. This
allows to location-index time-indexed information. The "out-
put" rule for higher operators is split into two rules cor-
responding to the call location (start tree, body tree).
Figure 8 shows the abstract output rule for higher operators
in the start tree.

output(frame_name(Frame_name},frameﬁno(Frame_po),tree_
type(Tree_ type),
instance no(Instance_no}name_stripe(Name_stripe),
output stripe (Output_stripe)]):-
node name(frameﬂname(Frame_name),frame_no
(Frame no),tree type(Tree type),
instance no (Instance no) ,name_stripe(Name_
stripe)},
higher op(name(Name_stripe)),Tree_type=start,
not {inverted_name stripe (frame_name (Frame:name) ,
frame no{Frame noj,
tree type(Tree_type),instance_no(Any_instance_
ne))),
findall (Argument,input (frame name (Frame_name) ,
frame no(Frame_ no),
tree_type(Tree_type),instance_po(Instance_po),
inputno(Inputno),output_stripe(Argument}),



A Visual Computer Language 549

List_of arguments),
assert (inverted name _stripe(frame_ name (Frame name),
frame no(Frame no),

tree type(Tree type) ,instance no(Instance noo))},
copy_ frame on top(frame name(Name—strlpe) top_frame_
no (Top frame no)),
findalT(Paraﬁeter,(leaf(frame_name(Name_stripe),
frame no(Top_frame no)},

Tree type(head),instance no{Inst leaf)),

node name (frame name(Name stripeY,

frame _no(Top_ frame _no), tree _type (head),

instance no(Inst leaf),

name strlpe(Parameter))), List_of parameters),
forall (parm | arg_pair (Parm,Arg,List of _parameters,
List_of arguments},

(node name (frame name (Name_stripe) ,frame no

(Top_frame no},

treé_type(head),instance_no(Inst_parm),

name_stripe (Parm)),

modify (frame name (Name _stripe) ,frame_nc

(Top_frame_no),

treeﬁtype(head) instance_no(Inst_parm),

output_stripe (Arg)))),
root (frame name(Name _stripe),frame no(Top frame
no) ,tree type(head),

instance_no(Inst_root_head)),!,
output (frame_: name (Name strlpe) frame no (Top frame_
no) ,tree type(head),

1nstance_no(Inst_root_head),name_stripe

(Name stripe),

output stripe (Output stripe)),
retract{inverted name stripe(frame name (Frame_
name) ,frame no(Frame_no),

tree type(Tree type) ,instance _no{Instance no)})),
delete frame from t0p,..

/+ IPF there is the goal to compute the output value of a
node AND
(1) the node name is a higher operator in the
start tree,
(2) there is no inverted name stripe in the tree
which contains the node,

THAN create the subgoal to compute all input values of
the node,

AND after this subgoal is fulfilled,

{1) invert the name stripe of the node,

(2) create the frame with the operators name and
place it on top of the frame stack,

(3) bind the parameters,

(4) determine it's head root,

(5) create the subgoal to compute the output
value of the head root
(this value is then the value of the goal



550 ) C Mdbus and 0. Schroder

in the IF part of this rule),
AND after this subgoal is fulfilled,

(6) undo the inversion of the name stripe
of the node,

(7) delete the upper visible frame. +/

FIGURE 8
Ibstract Rule 5 of Rule Set B (Call-by-Value,
call in start tree}.

The behavior of these rules led to a new visual trace. Time-
indexed information was now location-indexed so that un-
desired perceptual grouping could not occur any longer.

Because we used recursive rules, the control and data flow
occured through the parameters. An iconic representation would
require that intermediate results ghould be visible only when
they belong to a pending operation. So computational goals and
intermediate results are kept visible only as long as they

are absolutely necessary for the ongeing computation. Inter-
mediate results "die" before the corresponding frame "dies".
This is not optimal from a cognitive science point of view,
because a programmer who wants to recapitulate the computation
history has to reconstruct former computations mentally. This
leads to higher working memory load for the programmer.

So we had to relax the minimum assumption a gsecond time (see
Figure 4) and introduce even more visual redundancy. This
was i.e. in accordance with the third principle of Fitter
and Green (36).

But there were some other reasons which influenced the de-
cision to modify the rule set a second time. First, as men-
tioned, rules were still recursive. If nrocess icons derived
from recursive rules are used as instructional and help
material, they force higher working memory load because of the
mental maintainance of a goal stack with return peints. Second,
derivation of iconic rules from rule set B still leads to two
disjunctive rules.



A Visual Computer Language 551

4.3. Rule Set C and Proccess Icons

The third rule set with 29 (plus operator-specific) rules was
motivated by the postulate, that the extent of the inter-
mediate result should not end before the life of a frame ends.
This seemed to require only a few changes to the visual inter-
face. But the abstract rules had to be rewritten completely.
There is no "input" rule any longer. We have 18 "output" rules
instead which all lost their parameters. Like production rules
they manipulate the nodes directly wvia the databasis. Compu-
tations geoals ("?") and input and ocutput values are written
into the nodes, For this purpose a new attribute input-stripe
is added to the nodes,

We have included examples for abstract parts of object icons
in Figure 9 and examples for abstract rules in Figures 10 and
11. The PROLOG facts in Figure 9 describe two nodes and two
connections in the incomplete program of Figure 1. Both nodes
are in the root position of the head and the bedy of the
program, respectively. The rules in Figures 10 and 11 are
comparable to parts of the abstract rule 5 of rule-set B
shown in Figure 8. The computational behavior of rule set C
was "frozen" in our INTERLISP/LOOPS-Implementation (Kohnert
and Janke (54)). This completes the specification cycle
(Figure 4).

node (frame_name (fac) ,frame no(C),tree_type(head),
instance no(2), -
input-stripe((empty)} ,name_stripe(fac) ,output_stripe
{empty) ).
node (frame_name (fac) ,frame_no(0) ,tree_type (body),
instance no(11),
input-stripe ( (empty ,empty,empty) ) ,name-stripe(if),
ocutput-stripe (empty)).
connection (frame name (fac),frame no(0),tree_type(head),
out_instance no(1),
in_instance no(2),input no(1)).
connection (frame_name{fac),frame_no(0},tree_type{body),
out_instance(10),
in_instance no(11) ,input no(3)).

FIGURE 9
An example for Abstract Nodes and Connections,



552

C. Mobus and Q. Schrider

output:-

node (frame_name (Frame_name) ,frame_ no (Frame_no) ,
tree type(Tree type) ,
instance no(Instance no),input_stripe(Input_stripe},
name strlpe(Name strlpe),
output strlpe(Output strlpe)),
higher operator(name(wame stripe)),
Tree_type = start,
not (inverted name strlpe(frame name (Frame name) ,
frame no(Frame no) ,tree type(Tree type) ,
instance no(Any 1nstance _no))),
Output__ stripe = 7,
forall(on(Element,Input stripe),value(Element)),
copy_frame on_top(frame_ name(Name _stripe) ,top_frame no
(Top frame_ no)),
assertflnverted name_stripe (frame_name (Frame _name) ,
frame no(Frame _no) ,tree_type (Tree_ " type) ,
instance no{Instance no))),
root (frame name (Name strlpe} frame_no(Top_frame _no},
tree type(head),
1nstance no(Instance_no_root head)),
modlfy(frame name (Name strlpe) L frame no(Top_frame_no),
tree type(head),
instance no{Instance no_root head) ,ocutput_ stripe(?)),
modlfy(frame name (Name “stripe), frame no(Top frame no),
tree type(head),
instance no (Instance no_root _head) ,input_ stripe
{Input stripe)),
bind parameter of_ top_frame (input_ stripe (Input_stripe)),

output.

/+ IF

there is a node which has the following features:
(1) The node name is a hicher operator,
(2) The node is located in the start tree.

(3) The name stripe of the node is the only
inverted one in the tree which contains the node.

(4) The output stripe of the node contains a i

(5) The input_stripe of the node contains all
input values.

THEN create the frame with the operators name and place

it on top of the frame stack.
Invert the name stripe of the node.
Determine it's head root.

Put a "?" into it's output_stripe.

Transfer the input stripe of the node to the
head root.

Bind the parameters., +/

FIGURE 10

Abstract Rule 8 of Rule Set C (First part of Call-by-Value,
call in start tree).



A Visual Computer Language 553

output:-
node (frame name (Frame name) ,frame no(Frame no),
tree_type (Tree_type),
instance no(Instance no),input stripe(Input stripe),
name_stripe (Name_stripe), - -
output_stripe (Output_stripe)},
higher coperator (name(Name stripe)),
Tree_type = start, -
inverted name strlpe(frame name (Frame_name) ,frame no
(Frame_no) ,tree type (Tree_type),
instance no(Instance no)),
Output . stripe = ?,
forall(on(Element°1nput stripe) ,value (Element) )},
value of upper visible frame(Output stript_root_head),
no exist lower visible frame,
modlfy(frame(Frame name} ,frame _no(Frame no),
tree_type(Tree type),
instance no(Instance _no) ,output_stripe (Output_stripe_
root head)),
delete frame from ._top,
retract (inverted name _stripe (frame_name(Frame name) ,
frame no(Frame no) ,tree_type (Tree type),
1nstance_no(Instance no))),
output. .

/+ IF there is a node which has the following features:

(1) The node name is a higher operator.

(2) The node is located in the start tree.

{(3) The name stripe of the node is inverted.

(4) The cutput stripe of the node contains a "?".

(5) The input stripe of the node contains all
input values.

{6) The head root of the upper visible frame
contains a value,

(7) There is no other wvisible frame.

THEN transfer this wvalue into the output stripe of the
node. -
Delete the upper wvisible frame.
Unde the inversion of the name stripe of the node, +/

FIGURE 11
Abstract rule 9 of Rule Set C (Second part of Call-by-Value,
call in start tree).

In the visual trace, intermediate results now live as long as
their frame. As with rule set B, there is no undesired per-
ceptual grouping. Process icons derived from rule set C would
not be applied recursively, and there would be nc disjunctions.



554 C. Moébus and O. Schrider

4.4, Two iconic rule sets a instruction and help material

On the basis of rule sets B and C we developed iconic rules
to describe the operational behavior of the ABSYNT-interpre-
ter so it can be used by a student. We got two different
iconic rule sets B and C with 8 resp. 16 iconic rules, based
on the abstract rule sets B and C explained above, respecti-
vely. The iconic rules are visual representations only cof the
"input"-rules and "output"-rules of the abstract rule sets.
2dditional rules of the abstract rule sets (i.e., for testing
if a node is a root or a leaf) as well as the operator-spe-
cific rules are explained in an appendix which is added to
the iconic rule sets when used by a student. The appendix
also contains a short introducticn to the syntax of the
iconic rules, So, complete instructional and help material

is provided.

We tried to make the iconic rules as self-explaining as
possible. Figure 12 shows the rule from the iconic rule set B
which is based on the abstract rule shown in Figure 8,
Figures 13 and 14 are partially corresponding to the rule
shown in Figure 12. They belong to the iconic rule set C,

and are based on the abstract rules shown in Figures 10

and 11.

The thick arrows on the left side of the rule of the iconic
rule set B in Figure 12 indicate that this rule may be entered
here, The thick arrows to the right side indicate that the
rule may be left here. So, if the first situation description
is.true, the first action can be executed. Now the user may
temporarily have to leave the rule in order to produce the
computational state which satisfies the second situation
description. He will have to do this with the help of other
rules. If the second situation description is true, the

second action can be performed. In contrast, the rules of the
iconic rule set C (Figures 13 and 14) are individual situation-
action pairs.



A Visual Computer Language 555

Rule 5: Computing & higher operator ncde In start tree

First sltuatlon: Elrst action:
A 7" jg in the oulput siipe of a highar -
operalor noda in the start iree. Write a "?* Into each
It's input stripe is amply, Input field.
There is no Invened name stripe in the stan req.

atarg start
-+ hlgher LA I
=names e~ opersior «names
> node -
{ ) { I)

Intermedlate sltuation: Intermedlate action:
A "7 is in the output stripe Invart the name stripe of the higher oparator node.
of a nigher operator node in Make a frame wilh the operator's name and place il on lop ol the lrame
tha star tres. it's input sirlpa stack.
containg anly values. Write the value of sach Inpu field into tha cutput fisld of each
Thera is no Inverted name siipa head leal of this frame, preserving their ordar.
In the start tres. Wiite @ *?” inlo tha output stripe of the head rool.
start <names

hesd body

fishy

»> o=

|
wcv
<val x 2 <NAME B>

<val x> } t <al.>" ]

- e
f

higher ainrt
operator
node

“<Namé>

continued on next page



556 C. Mobus and O. Schroder

Rule 5 contlnued: Computing s higher cperator node In start tree

Last sltuatlon:

A “7 Is In the cuput stripe of a higher operator node in the start iree.
It's Input stripe conlalns only values. Its name siipe is invenad.
Thare is a frama with the cperator's nama on lop of Lhe frame slack.
The output siripe of the head root of this frame contalns a value.

=nNama>

hand

body

<yal x>

<NaMmes»
\ -:wllul:_J

atart

()

Last action:

Wrlte this value into the cutput atdpe of the highsr oparalor noda of the stan iree.

Undo tha inversion of the nama stripa of the node.
Dalale tha [rama from top of the slack

gtary

<val h! <«al.»

<valus»

Y P

FIGURE 12
Iconic Rule 5 of Iconic Rule Set B on the Basis of

Rule 5 in Figure 8.

=faAmEs »

=namox» bfl— higher cperalor nods

Ibstract



A Visual Computer Language 557

Rule 8 : Computing higher operator node In start tree:
Making frame, binding parametlers, passing goal to head root

Sltuation: A higher operator node is part of tha start trea.
Thete is no inverled nama stripe in tha stan tree.
The output stripe of the node contains a *?",
The Input stripe of tha node contains only values.

start

<val x>| <val..> :

<Namax>

?
(li

4 pigher operator node

Action: Make a Irame with the operator's name and place it on the top of the frama stack.
Invart the name stripe of the higher operator node.
Write a *?* into the output strips of the head root of this frame.
Write the. Input values of the higher operalor node into the inpul stripe
of this haad root, presarving their ordar.
Write the value of sach Input field into the output field of the linked head leaf.

| <name a» |

L o<vel x> )

kval xgeval..>

<Mames>
head Body

<NEME>

N

atart

o[

© <hnames

FIGURE 13
Iconic Rule 8 of Iconic Rule Set C on the Basis of Abstract

Rule 8 in Figure 10.



558 C. Mdbus and O. Schroder

Rule 9 : Fetching value for higher operator node In start tree

Situatlon: A higher operator node [s part of tha start trea.
The name siripe of that node is invertad,
The output stripa of the node contains a “7*.
It's Input stripe contains only values,
There is a frame with the aperator's name on top of the lrams stack
The output stripe of the head root the upper visible frame contains a value.
There exisls no lowar visible frame,

<Name»

head body

<valuss

start

<val x»f <val.>

<Namo»

<@§- higher operator node

Actlon: Write this value Into the output stripe of the higher operator node of the start tree.
Delste the upper visible frama.
Undo the inversien of the nama stripe of the higher operator node.

start

<val x;| <val,..>

<Name»

<value>

{ )

FIGURE 14
Iconic Rule 9 of Iconic Rule Set C on the Basis of
Abstract Rule 9 in Figure 11.



A Visuagl Computer Language 559

5. SOME IMFLICATIONS

With the iconic rule sets at hand, we are now able to over-
come the shortcomings of the verbal specification of the
cperational knowledge:

- There is precise and unambiguous instructional and help
material concerning the operational knowledge.

- We can be sure that the operational knowledge acquired by
the programmer is a solid base for programming and
debugging.

- We have a framework for analyzing semantic bugs. They can
be related to the rules.

Moreover, the rule sets allow a more fine-grained classi-
fication of programs. Figure 15 shows the partial order of
programs kbased on the rule sets. As compared to the partial
ordering used in the feasability study (Figure 3), it can be
used for more elaborate task construction and sequencing.

programs with recursion and abstraction

/

recursive programs with branching
programs //// and abstraction
programs with programs with
branching abstraction

N

simple programs

start trees

FIGURE 15
Partial ordering of ABSYNT programs.

The different structure of the two iconic rule sets is due
to differences in the corresponding abstract rule sets. It
raises some psychologically relevant questions. Since users
of the iconic rule set B have to remember the points where
they temporarily left rules, errors and/or the amount of
search for the next computational step should increase when
1. there are many pending rules, and 2. many computational
steps were necessary in order to continue work on a pending
rule. That is, memory faults should increase in such com-



560 C Mébus and O. Schroder

putational states. In contrast, for users of the iconic rule
set C there should be no differences in errors or amount of
search in the same computational states. In contrast, for
users of the iconic rule set C there should be no differences
in errors or amount of search in the same computational states.

On the other hand one may.suggest that rule set B enhances
understanding of the structure of the computational process,
since it is a more integrated representation as rule set C.

In a recent study we asked programming novices to compute
programs (that is, to predict the trace) with the aid of the
iceonic rule sets (plus appendix). The subjects had no serious
trouble with the iconic rules. Also, the predicted different
effects of the iconic rule sets B and C seem to emerge.

As the evaluation of this study will be completed, the next
step will be to implement the iconic rules for instructional
and help purposes so that the interpreter becomes self ex-—
plaining, and the student can get this information when he is
uncertain about computational processes of the machine.

6. REFERENCES

(1) Attisha, M., Non-borrow Subtraction Algorithm. Working
Paper W-119, Computer Science Dept. (University of
Exeter, 1984).

(2) 2ttisha, M.; Yazdani, M., 2n Expert System for Diagno-
sing Childrens' Multiplication Erors. Research Report
R-117, Computer Science Dept. {(University of Exeter,
1983).

(3) Brown, J.S,; Burton, R.R., Cognitive Science (1978} 2.

(4) Bundy, A., Computer Modeling of Mathematical Reasoning
{(New York: Academic Press, 1983).

(5) Burton, R.R., Diagnosing Bugs in a Simple Procedural
Skill., In: Sleeman, D.; Brown, J.S. {(eds.): Intelligent
Tutoring Systems (New York: Academic Press, 1982)
pp. 157-183.

(6) wvan Lehn, K.; Brown, J.5., Planning Nets: 2 Represen-
tation for Formalizing Analogies and Semantic Models of
Procedural Skills. In: Snow, R.E.; Federico, P.A,;
Montague, W.E. (eds.): Aptitude, Learning and Instruc-
tion. Vol. II: Cognitive Process Analyses of Learning
and Problem Solving (Hillsdale, N.J.: Erlbaum, 1980)
pp. 95-137.

(7) Young, R.M.; 0'Shea, T.; Cognitive Science (1981) 5.

(8) O©O'Shea, T., Self-Improving Teaching Systems {Basel:
Birkhduser, 1979).

{(9) 0O'Shea, T., Int. Journal of Man-Machine Studies (1979)
11, and in: Sleeman, D.; Brown, J.S5. f{eds.): Intelligent
Tutoring Systems (New York: Academic Press,1982).,



(10)

(1)

(12)
(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
(23)

(24)

A Visual Computer Language 561

Sleeman, D.H., Assessing Aspects of Competence in
Basic Rlgebra. In: Sleeman, D.; Brown, J.S5. (eds.):
Intelligent Tutoring Systems (New Academic Press,1882).

Sleeman, D.H., Inferring Student Models for Intelligent
Computer-Aided Instruction. In: Michalski,R.S.;
Carbonell ,J.G.; Mitchell,T.M. (eds.): Machine Learning:
An Artificial Intelligence Approach (Palo Alto: Tioga
Publ. Co.,1983) pp. 483-510.

Sleeman, D.H., Cognitive Science (1984) 8.

Sleeman, D.H., Int. Journal of Man-Machine Studies
(1985) 22.

Sleeman, D.H., Inferring (Mal)rules from Pupils Proto-
cols. In: Steels, L.; Campbell, J.2. {eds.): Progress

in Artificial Intelligence (Chichester, Sussex; Ellis

Horweood Ltd., 1986).

Anderson, J.R., Acquisition of Proof Skills in Gecmetry.
In: Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M.
(eds.): Machine Learning: 2&n 2rtificial Intelligence
2pproach. (Pale Alto: Tioga Publ. Co., 1983) pp. 191-
219.

Anderson, J.R.; Boyle, C.F.; Farrell, R.; Reiser, B.J.,
Cognitive Principles in the Design of Computer Tutors.

In: Morris, P. (ed.): Modelling Cognition (Chichester,

Sussex: J. Wiley, 1987) pp. 93-133.

Anderson, J.R.; Greeno, J.G.; Kline, P.J.; Neves,D.M,,
Acquisition of Problem-Solving Skill., In: Anderson,J.R.
(ed.): Cognitive Skills and their BAcquisition (Hills-
dale, Erlbaum, 1981) pp. 191-230.

Anderson, J.R., Learning to Program. Proceedings of the
Eighth International Joint Conference on Artificial
Intelligence (Los Altos, California: Morgan Kaufman,
1983).

Anderson, J.R., Production Systems, Learning and Tutor-
ing. In:; Klahr, D.; Langley, P.; Neches, R, (eds.):
Production System Models of Learning and Development
(Cambridge, Mass.: MIT Press 1987) pp. 437-453.

Anderson, J.R.; Farrell, R.; Sauers, R., Learning to
Plan in LISP. Technical Report ONR-82-2, Department
of Psychology, Carnegie-Mellon University (Pittsburg,
PA, 1982).

Anderscn, J.R.; Farrell, R.; Sauers, R., Cognitive
Science (1984) 8.

Anderson, J.R.; Reiser, B.J., BYTE (198b) 4.

Anderson, J.R.; Swarecki, E., Communications of the ACM
(1986) 2¥ (9).

Johnson, W.L., Intention-Based Diagnosis of Novice
Programming Errors (Los Altos, California: Morgan
Kaufman Publ., 1986).



562

(25)

(27)
(28)
(29)

(30}

(31)

(32)

(33)

(34)

(35)
(36)

(37)

(38)

(39)
(40)

(41)

(42)

C. Mobus and O, Schraoder

Jchnson, W.L.; Scloway, E., PROUST: An Automatic
Debugger for PASCAL Programs, BYTE (1985) 2pril,

pp. 179-190, and in: Kearsley,G.P. (ed.): 2rtificial
Intelligence and Instruction (Reading, Mass.: Addison
Wesley, 1987), pp. 49-67.

Scloway, E., Communications of the ACM, 29 (1986) 9.
Wertz, H., Journal of Man-Machine Studies (1982) 16,

Wertz, H., Intelligence Artificielle: Epplication &
l'Analyse de Programmers (Paris: Masson, 1985).

Wertz, H., Autcomatic Correction Improvement of Programs
(Chichester, West Sussex: Ellis Horwood Ltd.,1987}.

Abelson, H.; Sussman, G.J.; Sussman, J., Structure and
Interpretation of Computer Programs (Cambridge, Mass.:
MIT Press, 1985).

Ghezzi, C.; Yazayeri, M., Programming Language Concepts
2/E. (New York: Wiley, 1987}).

Henderson, P., Functional Programming: Application and
Implementation. (Englewood Cliffs., W.J.: Prentice Hall,
1980) .

Henderscn, P., IEEE Transactions on Software Engineering
SE-122 (1986) pp. 241-250.

Pennington, N., Cognitive Psychology (1987} 19,

Fitter, M.; Green, T,.R.G., When Do Diagrams Make Good
Computer Languages? Int. Journal of Man-Machine Studies,
(1979) 11 pp. 235-261, and in: Coombs, M.J.; 2lty, J.L.
(eds.): Computing Skills and the User Interface

(New York: Academic Press, 1981) pp. 253-287.

Green, T.R.G.; Sime, M.E.; Fitter, M.J., The Art of
Notation. In: Coombs, M.J.; 2lty, J.L. (eds.): Computing
Skills and the User Interface (New York: Academic Press,
1981) pp. 221-251.

Payne, 5.J.; Sime, M.E.; Green,T.R.G., Int. Journal of
Man-Machine Studies (1984) 21.

Larkin, J.H.; Simon, H.A., Cognitive Science (1987) 11.

Pomerantz, J.R.: Perceptual Organization in Information
Processing. In: Aitkenhead, A.M.; Slack, J.M. (eds.):
Issues in Cognitive Modeling (Hillsdale: Erlbaum, 1985}
pp—- 127-158.

Chase, W.G., Visual Information Processing, in: Boff,
K.R.; Kaufmann, L. and Thomas, J.P. (eds.): Handbook of
Perception and Human Performance, Vol. II. Cognitive
Processes and Performance (New York: Wiley, 1986)

pp. 28-1 - 28=71.

van Lehn, K., Bugs are not Enough: Empirical Studies of
Bugs, Impasses and Repairs in Procedural Skills. XEROX

Farc. Cognitive and Instructional Science Group (1981)

CIS~-11 (SSL-81-2) and Journal of Mathematical Behavior

(1982) 3.



(43)

(44)

(45)

(46)
(47)

(48)

(49)
(50)

(31)
(32)

(53)

(54)

(55)

(56)

(57)
(58)

A Visual Computer Language 563

Egan, D.E.; Greeno, J.G., Theory of Rule Induction:
Knowledge Acquired in Concept Learning, Serial Pattern
Learning, and Problem Sclving, In: Gregg, L.W. (ed.):
Knowledge and Cognition {(Potomac: Erlbaum, 1%74)pp.
43-103.

Simon, H.A.; Lea, G., Problem Solving and Rule Induction:
A Unified View. In: Gregg, L.W. (ed.): Knowledge and
Cognition (Potomac: Erlbaum, 1974) pp. 105-127.

Anderson, J.R., The Architecture of Cognition. Cambridge
Mass.: Harvard University Press 1983,

van Lehn, K., Artificial Intelligence (1987) 31.

van Lehn, K., Towards a Theory of Impasse-Driven Learn-
ing. ONR Tech. Rep., CMU-University (Pittsburgh, USA,
1987).

McKendree, J., Feedback Content During Complex Skill
Zequisition, In: Salvendy, G.; Sauter, S.L.; Hurrell,
J.J. (eds.): Social, Ergonomic and Stress Aspects cof
Work with Computers (Amsterdam: Elsevier Science Publ,,
1987) pp. 181-188.

Brown, J.S.; van Lehn, K., Cognitive Science (1980) 4.

Carroll, J.M., Minimalist Design for Active Users. In:
Shackle, B. (ed.): Interact 84, First IFIP Conference
of Human-Computer-Interaction (Amsterdam: Elsevier/
North Heolland, 1984).

Carroll, J.M,, Minimalist Training (Datamation, 1984),

Bauer, F.L.; Goos, G., Informatik. 1. Teil (Berlin,
Springer, 1982 (3. Edition}}.

Janke, G. and Kohnert, K., Interface Design of a Visual
Programming Language: Evaluating Runnable Specifications
According to Psychological Criteria (this volume).

Kohnert, K. and Janke, G.: Object-oriented Implemen-
tation of the ABSYNT Environment, ABSYNT Report (1988) 4,

Fédhnrich, K.P. and Ziegler, J., Workstation Using Direct
Manipulation as Interaction Mode, in: Proceedings of
INTERACT '84, Vol. II, 1985a pp. 203-208 (in german:
Direkte Manipulation als Interaktionsform an Arbeits-
platzrechnern, in: Bullinger, H.J. (Hrsg.), Software-
Ergonomie '85-Mensch-Computer-Interaktion (Stuttgart:
Teubner, 1985) pp. 75-85.

Hutchins, E.L.; Hollan, J.D. and Norman, D.A., Direct
Manipulation Interfaces, in: Norman, D.A. and Draper,
5.W. (eds.): User Centered System Design - New Perspec-—
tives on Human Computer Interaction (Hillsdale, N.J.:
Lawrence Erlbaum Ass., 1986) pp. 87-124,

Shneiderman, B., IEEE Computer (1983) 16 (8).

Shneiderman, B., Designing the User Interface: Strategies
for Effective Human-Computer Interaction (Reading,
Mass,: Addison-Wesley, 1987).



564

(59)

(60)

(61)

(62)

(63)
(64)
(65)
(66)

(67)

(68)

(69)

(70)

(71)

(72}

C. Mobius and O. Schrider

Shu, N.C., Visual Programming Languages: A Perspective
and a Dimensional Analysis, In: Chang, T.; Ichikawa,
Ligomenides, P.A. (eds.): Visual Languages (New York,
Plenum Press, 1986) pp. 11-34,

Mtbus, C. and Thole, H.J., Tutors, Instructions and Helps
EBSYNT Report 3/88 (1988), to appear in: Christaller, Th,
(ed.): Kinstliche Intelligenz KIFS 1987, Heidelberg,
Springer, Lecture Notes in Computer Science (in print).

Colonius, Frank, Janke, Kohnert, M8bus, Schr&der and
Thole, Syntaktische und semantische Fehler in funktio-
nalen graphischen Programmen, ABSYNT Report 2 (1987).

M&bus, C., Die Entwicklung zum Programmierexperten durch
das Probleml&sen mit Automaten. in: Mandl and Fischer
(Hrsg.), Lernen im Dialog mit dem Computer (Miinchen:
Urban & Sehwarzenberg, 1985) pp. 140-154.

Hoe, J.M., Int. J. of Man-Machine Studies (1977} 9.
Adelson, B., Memory and Cognition (1981) 9.
Brooks, R., Int, J. of Man-Machine Studies (1983) 18,

Letovsky, S., Cognitive Processes in Program Comprehen-
sion. In: Soloway, b.; Iyengar, S. (eds.): Empirical
Studies of Programmers (New York, Ablex, 1986) pp. 58-80.

Rist, R.S5., Plans in Programming: Definition, Demonstra-
tion, and Develepment. In: Socloway, E.; Iyengar, S. (eds.)
Empirical Studies of Programmers {(New York, 2Ablex, 1986)
pp. 28-47,

Colonius, Frank, Janke, Kohnert, M3bus, Schrdder and
Thole, Stand des DFG-Projekts "Entwicklung einer Wis-
sensdiagnostik- und Fehlererklirungskomponente beim Er-
werb von Programmierwissen flir ABSYNT", In: Gunzenhduser,
R. und Mandl, H. (Hrsg.): Intelligente Lernsysteme (1987)
pp. 80-%0, Institut fiir Informatik der Universitdt Stutt-
gart und Deutsches Institut fiir Fernstudien an der Uni-
versitdt Tilbingen.

Chang, S.K., Visual Languages: A Tutorial and Survey.
In: Gorny, P.; Tauber, M.J. (eds.): Visualization in
Programming. Lecture Notes in Computer Science, No, 282
{(Berlin: Springer, 1987).

Davis, R.E., Runnible Specitication as a Design Tool, in:
Clark, K.L.; Tdrnlund, S.A. (eds.): Logic Programming
(New York: Academic Press, 1982) pp. 141-149,

Norman, D.A., Notes Toward a Theory of Complex Learning.
In: Lesgold, A.M.; Pellegrino, J.W.; Fokkema, S.D.;
Glaser, R. (eds.): Cognitive Psychology and Instruction
(New York, Plenum Press, 1978) pp. 39-48.

Goldstein, I.P., The Genetic Graph: A Representation of
the Evolution of Procedural Knowledge, in: Sleeman, D.
and Brown, J.S. (eds.): Intelligent Tutoring Systems
(New York: Academic Press, 1982).



(73)

(74)

(75)

(76)

(77)

(78)

A Visual Computer Language 565

Mocbus, C., Logic Programs as a Specification and Des-
cription Tool in the Design Process of an Intelligent
Tutoring System, in: Salvendy, G. {ed.): Abridged Pro-
ceedings of the HCI International '87 (1987) p. 119.

M&bus, C., Specifications of Instructiocns and Helps for
an ICAI-System in the Field of Graphical Programming.
Paper Presented at the First Eurcopean Seminar on Intelli-
gent Tutoring Systems. Commissicn of the European Com-
munities (Rottenburg, 25. - 31. Octcber 1987}.

Genesereth, M.R.; Nilsson, N.J., Logical Foundations of
Artificial Intelligence (Los Altos, California: Morgan
Kaufman, 1987).

Bourne, L.E., An Inference Model of Conceptual Rule
Learning. In: Solso, R. (ed.): Theories in cognitive
psychelogy, (Washington,D.C.: Erlbaum, 1974) pp. 231-256.

Haygood, R.C.; Bourne, L.E., Psychological Review {(1965)
72.

Medin, D.L.; Wattenmaker, W.D.; Michalski, R.S., Cogni-
tive Science, 1987) 11.



REPRINTED FROM

Man-Computer Interaction Research
MACINTER-II

Selected Papers of the
Man-Computer Interaction Research Network of
The International Union of Psychological Science (IUPsyS)

Edited by

F. KLIX

Department of Psychology
Humboldt University
Berlin, German Democratic Republic

N.A. STREITZ

Integrated Publication and
Information Systems Institute
Gesellschafi fiir Mathematik und Datenwerarbeitung
Darmstadt, Federal Republic of Germany

Y. WAERN

Department of Psychology
University of Stockbolm
Stockholm, Sweden

H. WANDKE

Department of Psychology
Humboldt University
Berlin, German Democratic Republic

(
1989

NORTH-HOLLAND
AMSTERDAM - NEW YORK - OXFORD - TOKYO



