
Me Coapnter lnteraclion Rösdch

F. K1ix. N.A. srftitz, Y- waeh, dd H. wddko (Editos)
O Elevi.r Scimce Publßheß B.v. (North-Holand), 1939

535

KNOI,,{].EDCE SPECIFICATION AND INSTRUCTION FOR A VISUAIJ
COMPUTER IANCUAGE

Cläüs MOFBITS än.l Oläf SCHROFTIFR

FB iO, hfornatik
Unlt on Tutor:lng and Leahinq Systens
Universl!y of oldenburg

one difficult problen in the developnent of intelligent
conpute! aided instruction (ICAI) is the proper design
of instructions and helps. The problem arises because
knowledge diagnosis larqely depends on what kind of
infoination is given to the student.
This paper adresses the question of developing in-
structional and help nater.ial concernlng the operatio-
na1 knowledqe for a visual, functlonal proqraming
1an9ua9e, ABSYNT, The goal of our project is the con-
struction of a problen solvlnq nonitor (PSM) for
TBSYNT. First, ve irM explain our notivation for
choosinq and developinq this task enviroment. Ahen,
we will describe the prograflning envlronnent of liBsYNl.
Next, ve will illustrate sone difficulttes that arose
vhen we used a flrst, only verbally speclfied, non-
visuat descriptlon of the operatlonal knowledqe as
instructional rnaterlal. In parlicular, it iras not
clear whether this descriptlon was conplete and error-
fxee, and it provided no franeqork for semantlc-buq
analyses. Finäl1y, the process is described by t{hich
we generate rule-based specifications of the opera-
tional knowledge and visuäl instr:uctions and helps.
This iterative specification cycle led to two alter-
natlve sets of iconic rules which describe the opera-
ltonal knowledqe of ABSYNT to the studenL-

INTRODUCfION

The matn research goal of aBSYNT is the construction of a
problen solving nonitor (PsM). Sone PsM-relevant reseärch has
been reported about solving problens in simple aritlmetic
tasks (Attisha (1); Attisha and Yazdani (2); Brown and Burton
(3)r Bundy (4); B'rrton (s), vanlehn and Brown (6); Young and
orshea (7)), in quadratlc equations (s'shea (8), (9)). in
siriple algebra problens (sleenan (1or (11), (12), 113), 114),
ln geome!):y (Anderson (15); Ander:son, Boyle, Farrell and
Reiser (16); Anderson, cr:eeno, Kltne and Neves (17)) and in
computer proqrminq (Anderson (18, {19); Anderson, Farrell
and sauer:s \2a), \21) | Anderson and Relser (22); Anderson and
Skwarecki (23); Johnson (24), Johnson and soloi{ay (2s), (26);
Sotoway {27) i \rettz l2A), (29), (3o)). l,re chose the donain of

536 C. Möbus ahd O. Schödet

computei proqraruning because problen solving is the maln
activity of each programer. Furthefirore, errors can be
diagnosed easily. we had to nake some nore desiqn decisions.
Because the PsM should nainly supervlse the planninq processes
of the proqrdmer, we decided to use a sinple proqrffiins
language, the syntax and senantics of which can be learned in
a few hours. We decided to take a purety functionat lanquaqe.
Fron the viev of cognitive sctence functional tanquaqes hawe
sone benefictal characteristics . so less rorking nernory load
on the side of the prograrrner 1s obtainabte by their propex-
ties, referential transparency and nodularity (.öelson, suss-
nan and sussnan (31); chezzi and Jazayeri (32) r Henderson(33), (34)). Furthernore, i:here is sone evidence that there
is a strong correspondency between proqr:a$ner:'s qoals and use
of tunctions (Pennington (3s) i soloway (27); ,Johnson and
Soloway (25)). so re avoid lhe difficult probten of tnrer-
leaving plans in the code which show up in inperatlve pro-
gramning languages because it nakes the diaqnosls of pro-
qr:amer 's plans rather: difficult (solovray (27)). If we take
for granted that a qoal can be represented by a functton, we
can gain a qreat flexibility in the PsM concernlnq the pro-
grming style of lhe student. we can offer hin facilities to
pxogxm in a botlon-up, top-down of niddle-out sryle. The
strategy of building up a goal hierarchy can corr:espond to
the developnen! of the füctional proqrarn.

There are sone sinitar psycholosical leasons for lhe use of
a visual progr.'mlnq lanquage, too. There is sone evidence
that tess vorkins nenory load is obtainable through the use
of diagras lf they support encoding of infomation or 1f
they can be used as an external nernory (Fitter and creen (36) t
creen, sine and Fitter (37) r Payne, sine and creen (38) t
Larkin and sinon (39)). Especlally if we denand the total
visibility of control and dala flo,/i the diagrms
as external nemories.

rhe diagramatic struclurlng of infomation should atso reduce
the mount of verbal infornation which is known to produce a
higher coqnltlve processing load than "good" draqrarns (Larkin
and sinon (39))- "cood" diagrms produce autonatic control
of attentlon nlth the hetp of location objects. These are in
our case object Icons, which are nade of two sorts: slralqht
connection llnes and convex objects. Iconic objects of these
types are knotn to control perceptual grouplng and sinultan-
eo'rs visual infornation processins (Poneranz (40) r chase (41)).
A very crucial point concerning the ',inteltlqence" of an psM
lies in the quality of the design for the feedback system. In
litexature two approaches hawe been proposed. on proposal is
lhe explicit "debugglng" appxoach (Burton (5)r VanLehn (42)):
tracinq an error with the help of a dtaqnostlc procedure and
an extensive bug collection back to unilerlylng nalrules or
nisconceptions. The other idea rests solely on the specified
expert knovledge and a nodel of h'rnan leäxning (Egan and
cleeno (43); sinon and Lea (44); Anderson (45); vanlehn (46),
(47)). Accoxdinq to these rule-based theories of human skltt
acqulsition a learner has to be aware of at least tro types
of infornation. the current goal within the problen and the

A Yßual Computet Lanauaae 531

conditions under nhich rules apply. l4cKendree (48) could shou
in three experlnents, that "goal" information is ewen more
important thän infornation in promotlnq learninq
of skill. This type of feedback deslgn is nore simple to
lnplenent than the "debuqqinq" strategy. But there are stitt
no experinental conparisons bet!^'een lhe two nethods.
Either nay, we have to specify goals and rules an eypert would
use when predicting the conputationat behavior of the Ä3SYNT

!.ihen shculd the tutor adrnlniste! feedback? Our tutorlat strate-
gy is quided by "repair theory" (Broun and vanlehn (49))and
follovs the "nininalist desiqn philosophy,' (carroll (50),(51)).

This means. that 1f the]eärner is given tess (less to read,
less overhead, less to get tanqled in), the learner vill
achieve nore- Exploxative learning should be supported as
Iong as thele is preknowledge on the learner side. only if

feedback becones necessary and infornation
should be given for error recovery.

According to xepair theory an lnpasse occurs, qhen the student
notlces that his solutlon path sholis no proqress or is blocked.
In that sltuation the person tries !o make local patches in
bis problen solving strateqy with qeneral weak heuiistics to
"repair" the problen situation. In our lutorial stxategy we
plan to give feedback and helps only, when this repair
teads to a second error.

2. TI]E PROGRÄ}!tr,IING ENVIRONMENT OF ASSYNT

The proqraminq envlronnent of ABSYNT qas Ceveloped in our
project,, basinq on the "calculation sheet nachine'i (Bauer and
Goos (52)). The conplete progrffiing environnent is lmplemen-
tec in INTERLISP and the object-orlentated fanguage LooPs
(Janke dd (ohnert (53); Kohnert and.tanke (54)) !o have ä
systen qlth direct rnanipulation capabilities r{hich are ab-
solutely necessary prerequisites for cur systen (Fähnrtch and
ziegler (55); Eutchins, Hollan and Nornan (56), shneideflnan
(57), (58)). Follo!/inq Shurs (s9) dimenslonal analysts,

ABSYNT is a languaqe with hlqh visual extent, Ioq scope and
mediü]evel.

^aSYNT
conslsls of lhree nodes: a progrärnning

node, a trace mode, and a prediction node (Kohnert and
.ranke (54)).

2,1 . The lrogranming Mode

The progranming node is shown in Fiqure 1. The screen is
spllt inlo several regions. on the right and below ve have a
nenu bar for nodes. A typical node is divided into three
strlpes: an input stripe (top), a nee stripe (niddle) and
an output stripe (bottom), rhese nodes can be nade to con-
stanls or wariables (with black input stripe) or are lanquaqe
supplied prinitive operators or user defined functions.

538 C. Mbbus ahd O Schtödq

FIGUNI] 1

The irosraftnins L'ode of ABSYNT.

The prograruner sees in the uppet half of the screen lhe nain
vorkshee! and in the lower half another one- Each worksheet
1s called frane. The frme is spltt into a left part:
"head' (in gernan: "Kopf") and tnto a riqht part "body" (in
qerman: 'tRörpertt). The head conlains the local envirome.t
qith pareeter-value bindings and the function narne. ahe
body contains the body of the function.

Progranrninq is done by making up trees fron nodes and links.
The progrärüner enters the menu bar with the nouse, chooses
one;ode and draqs the node to the deslred position in the
frane. Benealh the frme is a coveted grld which orders the
arrangenenls of the nodes so that everythtnq looks tidv.
conneations between the rodes are dr.awn with the nouse. The
connection lines are the "piPetlnes" for lhe control and
alata f1ow. If a node is missed the progranner is xenlndeLl
rlth a phanton node that there 1s something nrlssing. The
edlitor warns qith flashes if unsyntactic prograns are golnq
to be constructed: crossinq of connectlons, hidtng of nodes
etc. The function nane is enleted by the programner with the
help of pop-up-nenus in lhe root node of the head and the
par.meters in the leaves of the head.

E

A Yisual Co mp u t et Lahgaas e 539

If the function is syntactlcally correct, the name of the
function appears in the fra$e title and in one of the nodes
in the nenu bar so that it can be used as a higher operator.
when a problen has to be solved a conputation has to be
initialized by the call of a function, I'his call ts proqranmed
into the "Start"-Tree. Inltiaf nubers äre entered by pop-up-
nenus in constant nodes in lhe s!ärt tree. 1'his tree has a
free without that the iconic bars are consistent.

The design of the prosraming node is motivated by the opera-
tional knowledqe for ABSYNT (Möbus and rhote (60)). Tha! ts,
the features and distinctions necessary for the operattonal
knowledqe (i.e., frame nane and frane nurnber? divlsion of a
node lnto an input stripe, a nee strlpe and an output stripe)
are vlsuatized in the progrminq node as $ell as in the
other modes of the progräminq envlronmen!. we gathered con-
vexging evldence for the usefulness of this design by änalyz-
ing syntactic and senantic bugs in a feasability study based
on the calculation sheet rnachlne (cotonius, Frank, Janke,
Kohnert, Möbus, schröder and Thole (61)).

2.2. 'Itace Mode and Prediction l{ode

If the user has programed a start tree fox his progrmr he
can run the program and get a trace for it. the desisn of
the tr:ace 1s a result of our iterative specification cycle
of developing abstract rules and process icons (to be ex-
plained in part 4 of this paper). In case of recur:s1ve pro-
grams, the actually conputed frare is 1n the 'rpfer half of
the screen. the lower half sholrs the frane one level deeper
in the stack, so that the recurslve call stays visible.
As an experinental tool of the aBSYNT environment, there ls
also a prediction mode. Flere the user can predlct the actions
of the inlerpreter, that is, conpute ABSYNT-prograns by hin-
self, so he can acquire the operalional knonledge for ABSYNT.
In part 4 we explain the instruction and help näterial for
acquiring this knovrledqe.

3. PFILIMINARY INSTRUCTIONAL MATEFIAL AND SEMANI'IC BÜGS

our starting point for developing a functional, visual pro-
gra.Gning language was the I'calculation sheet nachlne" (Bauer
and coos (52); Möbus (62)). h a fixst step, we reconstxucted
it in order to obtaln a paper-and-pencil-velslon for doing
explor:ations. Part of thls reconstruction was a verbal spe-
cification of the syntax and the opelational knowledqe,
1lluslrated by slmple prograns and trees. The essence of the
verbal specittcatlon of the operational knowledge is shown

C. Möbus an l O. Schtö.ld

conputalion of calculation Sheet Progrms:

! Calculation sheet Progran consists of a Long Forn and a
sholt Fom, which nay replace the Long Forn, Before the cal-
cufation slarts, srite the start value(s) in left-to-ri9ht-
order into the paranreter nodes of the Short Forn. Now look
at the Lonq Form. Write into every paräneter node the vafue
whlch 1s in the pardeter node wtth the sane name 1n the

You can start the conputation when every node without input
connectlons in the l-ong Fom has a va]ue.

conputatlon lules.
1. Start vrlth the botton-nost node of the t-ong Fornr.

2. Does this node have no anput connection? If so' tts
conlent is its vatue-

3. Does this node have at least one input connectlon?
If so, then test irhether it is a branchinq node
(if-then-else") .

a) If it is a branchlng node: rhe node connected to its
leftnost input ccnnectlon nust get a watue accordlng
Lo conpuLäLion rules 2 to 4.

- If lhts value is nTrue", then the node connected to
the ntddle tnput connection of the btanching node
("then-node") nust get a value accordtnq to the
conputation rules 2 to 4.

- If this value is "False", then the node connected to
the rlqhtnost input connection of the bxanchlng node
("e1se-node") must get a value according !o the
corlputatlon rules 2 to 4-

b) If it is not a branching node: The node is son'e Cif-
ferent operator node.
Evexy node connected to the input connection (s) of thts
node nust qet a vafue accordinq to the conputation rutes

The operalor: is then conputed according to conputation
rule 4, and lhe obtained value is written into the
operator node.

4. a) If the operatox is ln the following lis! of prinitive
operators, it will be computed in one of the folloqing

+ takes at least !!io nunhers. The nunbers ate added.
takes at feast tvo numbers. The nmbers are nultil)lied.

b) If the operator is not 1n this list ("unknovn operatof),
it is the nane of a Calculation Sheet Proq'r .

A Visual Conputs Ldnsuase 54t

FIGURE 2
Part of the initial verbal specification of the
operational knovledge.

with thls first version of the lanquage, qe perfomed a
feasabllity study. lts aims were

- gettlnq hlnts for the design of the lanquage and the inter_

'- collectlnq syntactic and senantic buqs

- studytng the memory representations of exanple programs
(cf. Hoc (63); Adelson (64); Brooks (65); Letovsky (66) t
Rist {67)) in order to find reasons for bugs and conditions
under shich they occur.

In the sessions, the subject computed calculation sheet pro-
grarns wjrh paber äno pe-cil. Moreover, rhey reoroouced L\s
and corpared dil reranl progr s. The verbäl soeci icalion of
the syntactic and operational knowledge \.tas provided as he1p.

The subjects had no progrrlming knowledge, but prlor to the
sesslons they were introduced to the calculation sheet nachine
and to lhe verbal speclflcatlon. The progxans can be partially
ordered in accordance nlth the proqlaming concePts \dhich they
exdplify (see Figure 3).

FIGURI 3

"calculation sheet't progran.

Make a copY of thls Progran.
write the walue(s) of all node(s) connected to the
input connection(s) of the unknovn operator in left-
to-right-order into lhe paraneeer node(s) of the
short Forn of the copy.
Conpute the Long Foin of the copy according to the
rules given above.
write the obtained value into the bottom-nost node
("nme node") of the short Forn of the copy.
Write lhe value into the unknovn operator node of
the previous calculation sheet prodre.

wlth
ing

Partlal orderinq of

542 c Möbu! aid O. S.h/öde/

a oetäiteo oascrjpLjon ol thp leas€bi. i!v studw rs orovided in
coLonius' Iran\, ianka' Bohnert, vöb!s,scn-ödär anö Fole (b8r.
Here we will focus on the s4antic bugs. Aflogetherr the sub-
jects conputed 75 proqtanls. 188 of the conpulations contained
bugs. It follor,,s a short description.
- Bussy conputatlon of printlive operators (except branchlns):

In sonre case, the arithnetic operator (-n was first used
correc!]y, but then additionally interpreted as the sign ior:
the obtained result (i.e., 7 - 3 - -4). This bug supporled a
decislon concernin_q the design of operator nodes in ABSYNT.

- Bugqy conpulation of the branchinq cperator (if-then-e]se):
In nost cases of buggy conpulation, the result of the pre-
dicate was taken as the result of the branching operator,
although these subjects conputed the then-branch resp- else-
branch coffectly.

- Buggy co$,putation of abstraction I when an abstract operatox
appeared nore than once in a prosrarn, it l'as conPuted cor-
rectly for the firs! lifle. The obtained result was then
taken as the resuL! of olher of the abstract
operälor, too, in spile of different arqunents.

- Buggy coFfutation of recursion: In sonre cases the recursive
call was treated as a pr:initive operator (i.e., addition),
In some other cases, the subjects interrupted the conpu-
tation when reaching the recursive call. Then they started
computing the othe! branch of the branching operator.
In still other cases, the recursive calls were conputed
correctty, but the result of the deepest-level lncarnation
was laken as the result of the qhole progran. Postponed
conputations were ignored.

However, this collection of senantic bugs gawe rise to the
fotlovinq problens I

- It 1s unclear whether the bugs arose because of mblguities
in the instructional materlal (the verbal description of
the operational knowledge). Therefore, we cannot be certaln
if this description can be viewed as the semantic "expert"
knovledge, which in our opinion is a prerequisite for a
user of our language to plan and debug efficiently.

- rhe verbal description of the operational knowledse is a
poor base for a nor:e detailed and systenatic descfiption of
the obsexved bugs in terms of nl.ssinq or wrong pieces of

- It seens unnatural to construct a verbal speciftcation of
lhe operational knowledge for a visual progra''minq languaqe.
The design of a wisual language has to be based on the con-
cept of generalized icons (chang (69)), which can be di-
vided into object icons and process 1cons, object icons de-
fine the representation of static language constructs 'vrhereas process icons specify the representation of data
flow and control flow (see also Möbus and Thole (5o)).

A Yisudl Conputer Ldnwase 543

Therefore, r,/e decided to use a runnable specification (Davis
(7o)) of the languaqe, lrhicb was inplemented as rule sets in
the course of our project, as a foundation for constructinq
process icons. These process icons nay then be used as tn-
structional and help naterial for the operational knowledge.

Moreover, with a flrst version of this runable specification
(rule set a, see berow) we realyzed the observed senantlc
bug6 described äbove (colonius, Frank, Janke, rohnert, Möbus,
schröder and Tho]e (68)). This nade cleat ehat the rules can
piovide a syslenätic account of rnost of the bugs. In thls
wiew they could be described as

- nissing rules (i.e., buggy comPutätion of a Prinltiwe

- overqenelalized rules: C@ponents of a rule axe nisslnq
(i.e., no distinction between different calls of the
sme function is nade. Thls {ould lead to ignoring post-
poned computations 1n recursive calls, as descrlbed above).

- overly restrlcted donains of rules: The appropriate rule
is no! applled in certaln situations (i.e., the general
rule for dealing rrlth function calls is not applied in
case of xecursive cal]s. This would lead to an inpasse
follored by tinkering (Broi{n and vanlehn (49)). so, treatinq
the recurslwe call as a prlmltlve operator or switching
to the other branch of the if-then-else-oBerator (see
above) could be wiewed as such attenrpts to repair the

on the other harid, the acquisition of the operational know-
Iedge could be viewed as acquisition, refinment and gene-
ralization (cf. Noflnan (71); coldslein (72) of the rules
(Colonius, Flank, Janke, Kohnert, Möbus, schröder and Thote
(61)) .

4. CONSTRUCTION OF IMPROVED INSTRUCTIONA]- MATERIAL:
pRoctss rcoNs

The specification of the operational knowledge was nade ln an
iteratiwe specification cycle (Möbus (72), (74) ; Möbus and
rhore (60) (Fisure 4)).
The first step consisted of the knowledge acquisition phase.
The next step led to a rule set A of 9 naln Horn clauses
(plus sorne operator-specific rules). The set contained the
nlnlnal abstract knorledge about the interpretation of
ABSYNT proqrans, The äbstract structure was formalized by a
set of PRoLOG facts sinilar to an approach of cenesereth
and Nllsson (75)).

544 C Möhus an.] O S.hftdet

goltur.lprolNi*oioro!.
id@nßod0!i.lol00'nüad

.'Iü@rMr',0o

FIGURE 4
rhe iterative speciflcation cycle fox operational senantic

4.1. Rule set A and Process Icons

The progrm is described abstractly by a set of nodes and a
se! of connections which are represented by PFoLoG facts.
The nodes possess the attributes frafre_nee, tree_type,
instance-number , nme and value. These attributes deternine
the locatlon, the within str:ucture and the välue of the node.

The connectlons possess the attxibules frde, tree, out-
instance, in-instance and input-nunber. TheY link the output-
field of a node with the inputfield of another. node.

senantic knovledge ls moulded into tlvo types of rules' one
consists only of one "input" rule and the other of several
"output" rules. The "1nput" rule (Flgure 5) contains the
knowledse about the nigration of conputatlon goals and data
betqeen the nodes. The "output" rules iontain the knolrledqe
about computations within one node. Because the nodes have
different meaninqs, se need different "outPut" rules. There
is one for each primilive operatot, one for the pararneters
in the tree "head", one for constant nodes, one for paraneter

li*ro; "*ßrb;l
+t;**;-;lr-

I;;;J
lq***,1

t_r

A YLtual Coüputet Ldngadge 545

nodes 1n the tree "body", one for the root in the
and one for the computäLion or liqher (sel f de'-Lned) operators.
In the last rule paraneters are boüd in a parallel fashion to
their argments (call by value) and the new leaves of the tree

put lnto the stack. Furthemore we have rules whlch
contain the knowledge to generate i.oots and leafs or to check
nodes with respect to thei! root or leaf status.

input(frane (Free),lree(Tree),ins!ance (hstance),inputno
(Inputno) ,value (value)):-
connection (frde (Frme) ,tree {Tree) ,out lnst (out_inst) ,
in inst (hstance) , in_inst_no (Inputno)) ,
ouEput (frän1e (Frare) ,tree (rree) , instance (out_inst) ,
na.re (Name) ,value (value)) ,

/+ IF there is the 9oa1 to conpute the walue of the input
wlth nünber Inputno in node Instance in the tree
Tree ln the frane Free,

THEN there ls a subgoal to look for a connectlonr which
leads to this input flom a yet unknown node
out-instr vhich is the source of this connection

therc is another subgoal to conpute the value of the

(this value is then the walue of the qoal in the
IF part of this rule.) +/

FIGURE 5
The Abstract Input Rule.

As a further ex ple we include the "output"_rule for a
highe! opexator (Ftgure 6). This rule descrlbes the call-
by-value nechanisn.

output (franLe (Frane) ,tree (Tree) i instance(hstance),
n e (Nalie,value (va]ue)) : -
node näne (fralie (rrame) ,tree (rree) ,lnstance (Instance) ,
nmeTNde)) ,
findall {Arguent,lnput (fra]ne (Frme) , tree (Tree) 'instance(hstance),
inputno(I nouLno).value (Algurnent' r,f i s!_o'_argunrents),
set oI (Pararel er, (teaf (f!äme (Nane) , ! ree (head) ,
insEance(hst leaf) ,
node,nme (frafie (Nane) r tree (head) , instance (hst_leaf) ,
narne (Pareßeter))) r
I-ist of Parameters) .
forä11 (pan_arg_pa1r (Parn

'Arq , Lis t_cf_Pararneters ,
Llst of aromenLs),
(nodE näneifrane(Näne),Ltee{head),rnsL€nce(rnst Parn)
näne (6arm)) ,
asserta (node (frane (Name) , tree (head) , instance (Inst_
parm) ,narne (Parn) ,walue (Arq)))))

546 C- Möbß and O Schtudq

root (f rarne (Nee),tree (head), :instance (Inst root-head)), I

output (frame (Nm;) , lree (head) , instance (hgt-ro6t-head) ,
nane (Nme) ,va1ue (value)) .
fora11(parü arq_pair (ParnL, A!9 , Llst-of-parmeters ,
List of arqurnents),
(nodä n -ifralne('iae),Irea(heäo),i-stancerTnst-oar*),

retract (node (f ralne (Nane) rtree (head),instance (Inst-parn)
nme(Parn),value))))),i -

IF thele is the qoal to conpute the output value
of a higher opetator node,

THEN the following subgoals have to be solved:

- deternine the node n€lne

/+

- conpute all input values of the node

- determine all parmelers of the frde whose
nde is identical to the node nane

- put the par eter-arguent bindings into
the nelr local envlronnent

- find the head root of the frme
- conpute the outPut value of the head f,oot

(this value is then the value of the qoal
in the IF Part of this rule)

- destroy the]ocal environnent

FIGURE 6

The Abstract output Rufe for a H1gher oPeratot

In the nent steP of the sPecificatlon cvcler we trled an
iconic represeniation of ahe facts and Eorn clauses of rule
set !. "":reb\, we kepl in mind oesiqn princioles rhlcl_ are
-oriväLed by p"-.tant, (40) aro Larkin and sjmon (39).
ponerantz näae s@e caretul studies about setective and
dljvided äLrention infomaLion Plocess.Lno. one consequercF 'or
our design was that tine_indexed infornation had to be
spatiat indexed bY locations, too, Inforßation l{ith the sane
time index should have lhe sa$e sPatlal index. Thls neans
tha! this infomation should appear in the sane location' In
our design ä location is identical tith a vtsual object'
these in;ights were suppotted bv the fomal analvsls of
Larkln and sinron (39). They showed under what circunstances
ä diaoramat:c rep,eser -ar-ion o' info-,rätion consuaes less
conDutatjonal re.ä"t..s ,. an jr'ornatjonal equivalenL sen-
r"ni-ar r"pt.sent.r lon. L igure ? demons races los the con-
n,,räLLon oi Lhe well-known lactoriäl woulo looK lLke, i" we

;eep the rurber 01 object icons Lo a ninimu: L'ere js onlv
."." ri"*" r.. recursi;e contputalions and internediäte results
;nd computation 9oa1s (repr;sented bv "?") disappear when
no longer needed for the contputatlon.

541

FIGURE 7
Trace within a Hypothetical Environment According to

so we realized that a vlsual representatio; of the facts and
Ho-n cläuses of !-1e seL A according to Lhe recoTendaLions
of Ponerantz a4d larkin and sinon was only possible if re
"enflched" the iconic structure. This means that re had to
add lcontc etenents which !{ere not present in the abstract

A second reason for an enrichment and, thereby, a nodtflcation
of rule set A. was that rule set A led to iconic represe.-
lations with disjunctive rules. Iconlc rules wlth disjunctive

4 Yßu a I Conp u t er LanquoEe

we see that value and 9oa1 stacks are collapsed into the
various fields of a node. For the appllcatlon of an operator
lre have !o select a1t nurbers with the sane line index, Tine
indexed tnfomation ras not location indexed. Ponerantz (4o)
shoved lhat this kind of selective attention is extremely
dtfficult and not trainable. If the function gets nore con-
pl1caled]lke a txee recursive function, a diagramatic in-
fonnalion of this kind would be conpletely nisleading. Eere,
the postulate of total vislbillty lvould]eäd to a wisual
trace \{lth an infornation overload. cornputational errors would

548 C. Möbus an l O. Schtö.let

conditions requlre selective attention, which causes natchinq
errors anal lo;ger processing time (Eourne (?6); Havqood and
Bourne (77), Madin, i^rattemaker and Michalski (78)).

So qe had to nodify rute set A because of the follo\dlng
reasons, rhich result fron constxaints in the hunan infor-
natlon plocessorr we tanted to avoid 1. anv undesired per-
ceptual qrouping of lnfomation in oPeratot nodes, 2. iconlc
ruies lriah disjunctive conditlons. a.d 3. visual hindins of
dynelc successor franes älready put on a stack-

4.2. Rufe seL B and Process lcorE

As shovn above, an attenpt to visuaUy represent rl1fe set A
forced us to r:elax our requirenent to use onlv a nlnlnal
nmber of obiec! icons (see the ilerative speclfication
cycle, Flqur; 4). This requtred vaxious modiflcations of the
a;stract ;ufes. we came up wlth a retd.ed rule set B with
14 nain rules (plus operator-specific rules).

tn rule set B, the "output" rule for a hiqher operator is -nodified. Whe; a highet oPerator is ca]1ed, a fresh copv of
the orioinal lrahe ts crealed. Itl order to avoid a ontv
DarLIv iislb.le "spaqhetLi"-stack in the se_se tha- 'rorn one
'r'me_ severar .e"- sncce.."t frames coulo be oPered bv c.I_
tinq 'l^iqhe!" operato!s, we allowed onlv onp call Öer "!äne
at the -; enr. lhis lesLlls in a depch-Iirsl sealci in t|e
call tree. The copies of the fr:anes are ordeted bv ftme
nMber and put on a frane stack. The argurnents are copied in
pdallel inio the parmeter leaves of the head. Nodes and
;onnecllons get th; new attribute fr.me number? too. This
altors to lo;ation-indlex tine-indexed infornation. The "out-
ouE" rule io! hlqher operarors 1s sPtit lnto Lwo rules cor-
Iesponding Lo th; call Localjon (starL tree' bodv tree)'
rigirre e Ähows the abstlact outPut rule for higher oPerators
in the slart tiee.

output (frame na,ne (Frde-na$e) , fxalie-no (Frane-no) ,tree-
type (Tree tyPe) ,
iiiitance nolinstance no) nme-stripe (Narne-stripe) 'output striPe (Output-striPe)t: -

nodä nane (frarne-nme (rrare-nanel ,ffanF-no
rt raie nol,cree-tvpe{Tree cvPe) 'insEance no (1r;lance 16),nane sLriPel\ane

srripe))i
hiqher öp(nme(Näne strjpe)).'rree Lvpe=sLart,
noi r i"ierr-"d nane sEriPe (rräme-naie (Frare-nane) .
frase no (Frtre no).

tr6e-lype (T?ee-tvPe)' tnstance-no (AnY-instance-
no))),

findä11 (Arqment, input (frane-na,ne (Frane-nde) 'frame no (Frane_no) ,
trAe type(r?ee-tvPe),instance-no(rnstance-no) t
inpuTnö'frnputnot,output-strip6(Arswent)),

A Yßual Camputet LanguaEe 549

/+ rF

Llst_of_arguments) ,
asEert (inverted_nan'e_stripe (f lame_nane (Frane_nane),
f rme_no (rrde_no) ,

tree_type (Tree_type),instance_no(Instance_noo))),
copy_f ree_on_top (f ree_nde (Nee-stripe), top_f rme_
no (rop_frare,no)) ,
flndal l (Parameter, (leaf (free_nee (Nme_stripe) ,
frane no(Top frame no) ,

tree type (head) ,lnstance no(rnst leaf)),
node narne (frame narne (Nane stripe),
franä no (rop_fr-ane_no) , träe_lype (head) ,
instance_no (Inst_leaf),
näne_stripe (Paraneter))), List_of_paraneters),

foral1 (pam_argjair (Pam,Arg , Li st_of_paran'eters ,
List_of_argMents).

(node nde (free nee(Nee st'ipe) ?fra,re_no
(rop Erme no) ,
tree type (head) ,instance no(Inst parm),
nEne_s Lri De I Pär- I),
nodlfy (frane narne (Name_stripe) rfr e_no
(rop frar.e_no),
tree_type (head) , instance_no (Inst_Paxn) ,
output stripe(Arg)))).

root (frame,nane (Nanle_stripe) , frde_no (Top_fr e_
no),tree type (head) ,

lnstance no (hst root_head)),!,
output (frame nane (Na$e stripe) , frarle_no (rop_frme_
no) , tree_type (head) ,

instance_no (Inst_root_head),nane_strlpe
(Nde_stripe),
output_stripe (output_stripe)) ,

r:etract (inverted_nane_stripe (främe_nme (Frane_
nane) , fra,ne no(Frane no),

tree_type (Tree_type) ,lnstance_no {Instance_no))) ,
delete_frame_f ron_top, ! .

the outpu! value of a

operator in the

stripe in the tree

there is the goal

(1) the node nane
start tree,

(2) tbere is no inverted nde
i,hlch contains the node,

THAN create the subgoal to compute all input values of
the node,

AND after this subgoal ls fulfltted,
(1) lnvert the narne stripe of the node,
(2) create the frane rith the operators nde and

place it on top of the frame stack,
(3) bind the pa! eters,
(4) detemine it's head root,
(5) create the subgoal to compute the output

value of the head root
(thls ialue ls then tbe value of the goal

550 c Möbüs dnd O. Schtödet

FIGURE 8

Abstract Rule 5 of Rufe se! B (ca]1-bv-va1ue,
.aL1 in start tree) .

in the IF Part of this rule),

AND after thls subgoal is fulfilled,

(6) undo the inversion of the narne strlPe
of the node,

(7) alelete the upper visible frane' +/

The behavior of these rules led to a new visual ttace' Tine-
i"äex"a int"'.ati" Iocation-indexed so that un-
ä..ii.a p.t".pt"ur sroupins could not occur anv lonser'

Because we used reculslve rules, the conlrot and data flow
ä.i"iää Lr.rouqt' the parärneters. An iconlc rePresantat'on would
rFduire Lhät interrediate resulLs shouLd be vlsibte only unen-.iä"-u!1"r"-t" i p.noi"q "p.'"'i"n.

so co-DutaLional ooals and

;;':;;;i;;" '."'it"
.'6 k;pt visible ontv as ro-s äs Lrev

"i"-.üroluL.lv
necessarv roi the onqoing conpulaLion',,rnter-

medlaEe results "die" before the corresPordtng
This is no! oPtj,naL lron a cognjtive science Polrl ot vte!t'.
;;;;";; ;-;.ö;"'*"r sno wantÄ !o recapiturate the conputation
;;.;;;; ;.; t; reconstruct rorner conPutations mentalrY' rhts
i."a" io nioner qorkinq toenorY load for the progralnner'

so we haal to relax the nininun assünPtion a second tine.(see
ri."i. ar ""0 introduce even nore visual redunclancv' rhls
."3-1.".-i" accoratance !r1th the thlrd PrlnciPle of Fitter
and creen (36) -

But there sete sone other reasons thich influenced the de_

"i.r"" to modif\ Lhe rule se! a second Line' FirsL' as aen-
;i;;;ä.-;"1;; "ä'" .tir: recursive. rt' rrocess 'Lcons derived
i;;-;;";;4i". rures are used as lnst!ucrionar and heLo
;;;'i;;;'i;.y ioi." r,i.r'.. \'orkind renorY toäd because or-rhe
me"."r näint.ina"ce of a qoat stack with return Points' secono'
ä.ii""t'i"" of iconlc n:rei rrom rule set B st11l leads to tllo
disjunctiwe ru1es.

4.3.

A l/ß@l Co,llputet Laneuage

Rule Set C and Process Icong

The third rule set vith 29 (plus operator-specific) rules was
motivated by the postulate, that the extent of the inter-
nediate lesult should not end before the life of a frme ends.
Tbls seened to require only a few chänges to the visual inter-
face. But the abstract rufes had to be rewtitten conpletely.
There is no "input" rule any longer, we have 18 "output" rules
lnstead vrhich all lost their paraneters. Like production lules
they nanipulate the nodes directly via the databasis. Conpu-
tations goals ("?") and input and output wafues are written
lnto the nodes. For this purpose a ner attribute input-stripe
is added to the nodes.

We have tncluded exanples for abstract parts of object icons
in Flgure 9 and exmples for abstract rules ln Fisures 10 and
11. The pRol,OG facts 1n Flgure 9 describe t$o nodes and two
connections in the inconpfete progran of Flgure 1. Both nodes
are in the root posltlon of tbe head and the body of the
program, respectlvely. The rules 1n Flgures 10 and 11 are
conparable to parts of lhe abstract rule 5 of rule-set B
shown in Flqure 8. The computatlonal behavior of rule set C
ras "frozen" 1n our INTERLISP/LooPs-Irnplernenta!1on ((ohnert
andJanke (54)). This conpletes the specification cycle
(Figure 4).

node (f räne_n e (f ac), f lde_no (c), tree_type (head),
lnstance no(2),

lnput:stripe((enpty)).nee_stripe(fac),output_stripe
(enpty)).

node (frame_narne { fac) , frde_no (o) , tree_type (body) ,
tnstance no(11),

tnput:stripe ({empty,enpty, ernpty)) ,nane-stripe (if) ,
output-stripe (empty)) .

connectlon (frane_nane (fac) , frarie_no (o) , tree-type (head) ,
out_instänce_no (1) ,

in instänce no{2),input no{l)) ,
connection (f rarne name (f ac), f rarne no (o),tree type (body),
oLt_instance ('lO);

in instance no (11),input no(3)).

FIGURE 9
An exeple for Abstract Nodes dd Connections.

551

5s2 C. Möbus an l O. Schtö.ld

nme is a higher operatoi.
ls located in the start tree.
stripe of the node is the only
öne in the tree whlch contalns the node.

(4) The output-stripe of the node contains a "?".
(5) The tnput-strlpe of the node contains al1

inPut values.

TEEN create the frme wilh the oPerators nane and place
it on LoP of tl_e'räl-e stack.
Invert the name striPe of the node.

node (frarne nane (Frarne-name) , frarne*no (Frme-no) ,
tree type (Tree type),

in;tance no (instance_no) , inPut-stripe (Input-strlpe) ,
n4e stI j pe ('{ee strjper.
outPit stlipe (ouEPut-stripe)) ,

higher oFerator (nä,ne (Näne-st!iPe)) ,
Tree tYPe = start,
not(inverted n e_striPe(fr e-nane(Frde-nane),
frarne no (Frante_not, lr:ee-type (Txee-tvpe) ,

lnsaance_no lany_instance-no))),
outPut strlPe = ?,
forallTon (E leßent , rnput_stripe) . value (Elenent)) ,
copy_frde_on_top (free nane (Nde-striPe),lop-frane-no
(rop fr drie_no)),
asse;t (lnvFrLed nalne sLripe(rrane n e(rrane nde),
flee no(Frane ;o),ttee type (Tree-tYPe) ,

i nsEance -o tinstarce nolI L
root (frane:nde (Na,'ne-slripe) , trane-no (rop-free-no) 'tree tvpe (head) ,

in;tance no(Instance no root head)),
nodiry {flafie-n e (Name:s L;iPe);Irne-no (rob-'rame-r o) 'tree type(heäd),

in;t;;ce no(Instance no root head),output striPe(?)),
nodify (fräfre nee (Nane-st?iPe);frane-no (rop:frme-no) ,
tree type (head) ,

tn;t;ce no (hstance_no-root-head), lnPut-stripe
(lnput stripe)) ,

blnd-i,a!äneter-of-top-frde (input-striPe (Input-stripe)) ,

/+ IF there is a node which has the followinq features:

Detefinine it's head root'
Put a "?" into it's output_stripe.
Transfer the input_slxiPe of the noce to the

Bind the paraneters. +/

FICURE 1O

Äbstract Rule I of Rule Set C (First par! of call-t'v_välue,
catl in start tree).

node(ffde n e(Fr F nafe),Irane no(Fr e ro).
tree Eype (-ree Lvpe),-
inst-dce_no(In;tance_no),1nput stripe(Input stripe),
name_strIPc (Nre_s Lripe) r

outPut striPe (output stripe)) ,
hisher_oFerator (na$e (N-arne_stripe)) ,
Tree_type = start,
inverted_nme_str.ipe (frame nane (Fra,ne nane),frärne no(Frane_ro),trae (ype (Tree i)pe),

instance_no (Instance_no)) ,
Output_stripe = ?,
foral1(on (Element?input stripe) ,walue (Elment)) ,
value_of *upper_visible_f !ame (output_stript_root_head),
no exist lovrer visible freeiäai?iii;älii;ä" iäiai,ä,ä,i" no (Frane no) .
tree_Lype(Tree typä) ,

instance no(hstance no),output stripe(output stripe
root head)),

delete frane fron top,
retract (lnverted_n e_stripe (frme_nde (Free-nante) ,
fralne no(Pra,ae no),tree type(rree type),

-LnsEance no rirsLan.e Fo))) ,
output.

/+ rF there :s a node which has the followlnq features:

A ViMl Computet La suaee 553

the output_stripe of lhe

nane stripe of the node. +/

(1) The node narne ls a higher operator.
(2) The node is located in the start tree.
(3) The nane stripe of the node is inverted,
(4) The output stripe of the node contains a "?"(5) The input_stripe of the node contains all

input values.
(6) The head root of the upper visible frä$e

contä1ns a välue,
(7) There is no other visible frane.

THEN tlansfer this value into
Delete the upper visible
Undo the inversion of the

FIGURE 11
Abstlact rule 9 of Rule set c (second part of call-by-value,
catl in start !ree).

In the visual trace, intemediate results now live as lonq as
thelr frane. As with rule set B, there is no undeslred per-
cept'ral grouping. Process icons derived fron rule set c would
not be applied recursively, and there lrould be no dls'iunctions

554

on the basis of rule sets B and c re developed iconic rules
to describe the opelationä] behavior of the ÄBsYNT-lnterpre-
ter so it can be used by a student. we 90! two different
iconic rule sets B and c vith I resp- 16 iconlc rules, based
on the abstlact rule sets B and c explalned above, respecti-
vely. The iconic rules are visual representations only of the
"input"-rules and "output"-rules of the abstract r:ule sets.
Additlonal rules of the abstract rule sets (i.e-, for testinq
if a node is a root or a leaf) as well as the operato!-spe-
cific rules are explained in an appendix rhich is added to
the icon:c rule sets when used by a student. The appendix
also contains a short introduction to the syntax of the
lconic ru1es. so, conplete instr'rctlonal and help materlal

we tried to nake the iconic rules as self-explaining as
possible. Figure 12 shows lhe rule fron the iconjc rule set B
vhlch 1s based on the abstract rule shown ln Figure 8.
Figures 13 and 14 are partially correspondlnq to the rule
sholvn in Fiqure 12. They betong to lhe iconic rule set c.
and are based on the abstract lules shoqn in Figures 1o

The lhick the left side of the rule of the iconic
rufe set B in Flgure 12 indicate that this rule nay be entered
here. The thick arrons to the right side indicate that the
lule nay be left here. So, if the first situation description
is.true, the first action can be executed. Now the user nay
teporarily have to leave the rule in order to produce lhe
conputational state which sattsfies the second siluation
description. tle qltl have to do thls vith the help of other
rüles. If the second situation description is txue, the
second action can be peiformed. In contrastr the rules of lhe
iconlc rule set C (Figures 13 änd l4) are indlvidual situation-

C. Möbus ah.1 O. S.hfidq

Tqo iconic rufe sets a instruction and help naterial

A l,ßual Caftputet LqnCLaCe 555

Fulo 5: .oflpu n9 t hrqhd .

Flrsl 3lluanon;

#
I .".-- Ir#

lnr..m6dl.t. rrtu.tronl

I
I

lnr.rh.dl.re .cIon.

continued on next page

556 C. Möbus and O. Schödet

+

Rul. 5 conrlnu.di

L.3l .rl!rtlon:

h r hFI d' p. oitrrß önt vr u... tr
.oil.,dlh.,in.di*'

tsd
-T-

FIGURE 12
Iconic Fule 5 0f lcontc Rule Set B on the Basis of Abstract
Rule 5 in Figure 8.

>-];#l-;;.trP

A Yisual Coftputet Laksüase

Huls I : compurrn! hrgh.r op...ror nod. rn .t.rr rr€.:
M.klng lr.m., blndlng p.r.d.r.rt, p.lrrng g.rr to h..d root

Sllustlon: A hishq op6r.rcr nodo ic p3n or üd sud k...
Th6ro b

^o
invonod nam€ srip. in ü. nd lß..

Tho ourpr,l srip. oi rh€ iod.6nlälß a '?',
Th.lipor stipo ol ü. nod. dnraid only välu*.

Acllon: Mak. a t.nd wirh r rh6 iop or rh. rr3h. srack.
lnvöd rh. näh. drip€ or rh. hiolrgr op6raror nodo
wlr. . '?' inro rho oupul tllp. or lh. h.ad rcor ot rhis kam..
Wdra rha lnpur va uor or lh. hlgh.r op6r*or nodo inb rh. inpur srp€
ol this hdad r.or, pr.sodlng th6r od.r.
wdro lhd varu. ot 6ach lnplr f6ld tnlo rho ourput ri6td or lho tßked h.ad i6.t.

1- ugner operator node

FIGURE 13
Iconic Rule 8 of Iconic Rule set c on the Basis of Abstract
Rule 8 ln Figure 10.

Ful6 9 : F.rchlng v.iu. lo. hllho, op.r.t.r

Slluallon: a high.r opoaror ...e r. p.n or ft6 rbn lE€.
Th. nan€ sl.ip. or rhat iodo is rnv.n d.
th. ourpur drip. ot lh. rcd.6.raiß a "?".
llt hPü slrip€ @nI.lnr o.ly v.lu...
Th...l. a nam. wfih th. opohlor'r iam€ on rop ot rhd rmdd !la.*
Th. ourpu 3rrip. ol rh. h..d rer $. upps vlsib . Iram. con€irc . vatu€
Th€.. .xisß no low.r vl.ibl.lr.6.,

558 C. Möbus ard O. Schtöde,

<- hlghet opotatot Doele

actlon: rtrn. rhrs v.ru. rilo rh. ourpu sulpe or th. heh€. opor.ro. nod. or rh. s6n reo.
0.1.!. rh. upp.r vlslbl. iras..
U.rdo lh. iv.Glon ol th. dd. ndp. ot rh. hrgher op6r.ror md6.

FIGURE 14
Iconlc Rufe 9 of lconic Fule Set c on the Basts of

v rh ! Iqure r.

Moreower, the rule sets a]lolr a more fine-grained classi-
fication of proq!äns. Ftgure 15 sholis the partial order of
prograns based on lhe rule sets. As conpared to the partial
orderi]rg used in the feasability study (Figure 3), it can be
used fol nore elaborate task construction and sequencing.

oloqlars wirh lecursion and abstraction
\

proerans vlLh br".."j"r\

,/
^""

)
p.rograns witn proqr;s wrtn ,,/

A Yisüal Conputet Laüsuase

5. SOME IMPI,ICAIIIONS

branchinq abstraction

sinple progr s

FIGURE 15
Parltal ordering of ABSYNT progres.

The different structure of the two iconic rule sets is due
to alifferences in the correspondinq abstract rule sets. It
raises sone psycholoqlcally relevant questlons. Slnce useis
of the lconlc rule set B häve to remember the points vhere
they tenporarily left rules? errors änd/or the mount of
search for the next conputätionat step should increäse !'rhen
1. there ale nany pendlng lules, and 2. nany comPutational
steps were necessaiy in order !o continue work on a penaling
rute. That ls, nenoty faults shoutd lncrease in such con-

559

l,iith the tconic rule sets at hand, re aie novr able to over-
come the shortconings of the verbal speciflcatlon of the
operatlonal knowledge I

- There is piecise and unarbiguous lnstructional and help
näterial concerning the operational knonledge-

- we can be sure that the operatlonal knoqledge acquired by
the proqranmer Is a solld base for prograft.lng and
debugging.

- we have a frdework for: analyzinq senantlc buqs. rhey can
be lelated to the rules,

560 C. Möbus and O. S.hftdet

Putatlonal states. h contrast, for user:s of the iconlc rule
set c there should be no dlfferences in errors or amount of
search in the see ccmputational states. In contrast, for
users of the iconic rule set c there should r'e no dtfferences
in errors or dount of search 1n the sane computatlonal states.
On the other hand one nay. suggest that rule set B enhances
understanding of the structure of the computational process,
since it is a nore integrated representatlon as rule set C.

ln a recent study re asked progranming novices to conpute
proqrans (that is? to predict tbe trace) with the aid of the
iconic rule sets (plus appendlx). The subjects had no serious
trouble nith the iconic rules. Also, the predicted different
effects of the iconic r:ule sets B and c seen to energe.

As the evaluation of thts sludy vil] be completed, the nert
step will be to inpfenent the iconic rules for instructional
and help purposes so that the inteipreter becones self e:-
plaininqr and the sludent can get this infoflnatlon when he ls
uncertain abou! conputational processes of the nachine.

6. REFERENCES

(1) Attlsha, M., Non-borro1,, subtraction Algorithn. workinq
Paper I^1-T19, Conputer science Dept. (University of
Exeter, 1984) -

(2) lttisha. M.r Yazdani, M., An Expert Systen for Diagno-
sinq childrenst Multiplicätion Elors. Research Report
R-117, conputer science Dept. (University of Exeter,
1983).

(3)
(4)

(5)

(5)

(7)
(8)

(9)

Bro$n, J.S.; Buxton, R.R., Cognltive Science (1978) 2.
Bundy? 4.. Computer Mode]tng of Math4aticäI Reasoning
(New York. Acadenic Press, 1983).
Burton, R.R.. Diaqnosing Bugs in a Sinple Plocedural
skill. In: Sleenan, D.; Brown, J.s. (eds.): Intelligent
ruloring systerns (Nei{ York: Acadenic Press, 1982)
pp. 157-183.
van Lehn, K.; Brown, tt.S., Planning Nets: A Repxesen-
latlon fol Formalizing Analogles and Senäntic Models of
Pr:ocedural skills, h: Snor, F.E.; Federico, P.A.;
uontague, w.E. (eds.): Aptltude, learning and Instruc-
tion. vol. II: Cognitive Process Anälyses of Learning
and Problen solving (Eillsdale, N,,r.: Erlbaun, l98O)
pp,95-137.
Young, R.M.; o'shea, T,r Cognitive Science (1981) 5.
O'shea, T., self-Inprovinq reachinq systens (Basel:
Birkhäuser, 1979) .
o'shea. T,, Int. Journal of Man-Machine studies (1979)
11, and 'n: 5leenänr D.; Broun, J.S. {eds.): Tntelligenr
Tutorins Systens (New Yor:k: Acadenic Press,1982).

A Vhual Conputet Laks\ase 561

('lo) Sleenan, D.H., Assessing Aspects of Conpetence 1n
Baslc }-lgebra. In: Sleeman, D.; Brown, ,t.S, (eds.):
Intelligent Tutoring systens (New Academic Press,1982).

(11) sleenan, D.H., Inferring student Models for Intellisent
Compuler-Alded Instruction. In: Michalski rR.S. ;
carbonell,J.G.; Mitchell,T.M. (eds.) | Machine I.earnlnq:
An Artificial rntefligence Approach (Palo Afto: Tioga
Publ. co. ,1983) pp. 483-51o.

(12) sleenan, D.Il., Cognitive Sclence (19e4) 8.
(13) sleenän, D.Il., Int- Journal of Man-üachine studies

119851 22.
('14) sleenanr D.Ir., rnferrlng (Ma])rules fron Puplls Proto-

cols. In: Steels, I,-r canpbelf, J.A. (eds.): Pxogress
tn ktlficial Inteltigence (chichestei, sussexr Ellis
Honrood r,rd.. 1985).

(15) .Anderson, J.R., Acquisition of Proof skills in ceonetry.
In: Michalski, R.s.; Carbonell, J.G,; Mitchell, r.M.
(eds.): Machine Learnlng. An lrtlficial rntelligence
Apploach. (Pa1o Alto: Tiogra Publ. Co., 1983) pp. 191-
219.

(15) Arderson, ,t.R., Boyle. C.F.; Farrellr R,; Reiser,8.J.,
Cognitive plinciples in the Desiqn of Conputer Tutors.
In: Morrls, P. (ed.): Modelltnq coqnltion (chlchester,
Sussex:,t. wlley, 1967) pp. 93-133.

(17) Anderson, Lt.R., creeno, .t.c.; Kllne, P.,r.; Neves,D.M.,
Acquisition of Problen-solving sktll. h: Anderson,J.R.
(ed.): cognitiwe skills änd their Acquisltjon (Ellls-
dale, Erlbam, 1981) pp. '191-230.

(18) Anderson, J.R., Leärning to Prograrn. Proceedings of the
Eighth Intehational Joint conference on Artificial
InteUigence (Ios Altos, california: Moxgan Raufnän,
1983) .

(19) Anderson, J.R., Production systens, Lear:ning and Tutor-
ing. In: Klahr, D.; r,angley, P.; Neches, F. (eds.):
Production Systen Modefs of Learning and Developnent
(Can'bridge, Mass.: MIT Press 1987) pp. 437-454.

(2o) Snderson, J.R.r Farrellr R.; sauers. R., Learning to
Plan 1n LISP. Technlcal Report ONR-82-2, Dei,artnent
of Psychotogy, carnegie-Me11on university (Pittsburg,
PA, 1982).

(rU Anoerson,.J-R.t Farrerr, l?.; sauers, f., Loqnr(1ve
Scaence (1984) 8.

(22) Anderson, ,t.R. r Reiser, 8.J., BYTE (1985) 4.
(23) Anderson, ,J.R-; Slrarecki, E., Comunications of the AcM

(1986) 2e (9).
(24) .tohnson, w.IJ., htention-Based Diagnosis of Nowice

Prograrünlng Errors (Los A1tos, California: Moxgän
Kaufnan Publ. , 1986).

562 C. Möbusand O S.h riPt

(25) Johnson, W.L.; Soloway, E., PROUST: An Autonatic
Debugger fox PAscÄL Progr s. BYTE (1985) aprtl,
Fp. 179-19A, and in: kearsleyrc.p. (ed.) | Artificial
Intelligence and Instruction {Feäding, Mass.: Addison
wesley, 1987), pp. 49-67.

(27) Soloway, E., Connunicalions of the AcM, 29 (1986) 9.
(24) we!:tz, 11., \tournal of Man-Machlne studies (1982) i6.
(29) Wertz, U., rntelligence artiflclelle: appticarion ä

l'Analyse de Progrmers (paris: Masson, 1985).
(30) Wertz, H.. Autonatic Correction Inprovenent of pxoq!&s

(chrchesLer. West Sussex: t 11-s Horwood rLd.,l987r.
(31) Abelson, E.; sussnan, c.J. r sussnan, ,J., structure and

Interpretation of Conpurer progxes (Cdnbridge, Mass.r
MIr Press, 1985) .

(32) eh.ezzi, c.r Yazayeri, M.r Programinq ianguäge concepls
2/E. (New York: Wi1ey, 1987).

(33) Eenderson, P., Functional Progrämingr Äppticalion and
Inplenentalion. (Enqlei{ood clif fs, N.,r. : prentice Hatl,
1980) .

(34) Henderson, P., IEEE Transactions on Soflware Engineering.
sE- 122 (1986) pp.241-25o.

(35) Pennington, N,, coqnitive Psychology 11987) 19.
(36) Fttter, M,; creen, T.F.c.. when Do Diagräns Make cood

conputer languages? Int. Journal of Man-Machine sludies?
(1979) 11 pp. 235-261 . and 1n: coonrbs, M.,J-r ?fty, J.L.(eds.): conputinq skills and the User hterface
(New York: Acadenic Pressr 1981) pp. 253-287.

(37) Green, T.R.c.; Sine. M,E.r Fitter:, M.,t., The Art of
Notation- Inr coonbs, M.J.; llry, J.L. (eds.): conpuring
Skills and the User hterface (New Yorkr Acadenlc Pxess,
1941) pp. 221-251.

(38) Payne, S.J.; Siner M.E.; creen,T.R.c., Int. Journat of
14an-Machire st Ldles (1984) 21.

(39) Larkin, J.H.; Sinon, H.A.? Cognitive science ('1987) 11.
(40) Ponerantzr ,J.R.: Perceptual Organlzation in Infornation

Processing. In: Aitkenhead, A.M.; Slack, J.M. (eds.).Issues in coqnltive Modeting (Hl]lsdaler Erlbam, 1985)
Pp- 127-158.

(41) chase, w.c., visual hfornatlon processing, in: Boff,
K.R,; Kaufrnann, l-. and Thonas, J.P. (eds.)r]randbook of
Perceptlon änd Huan Perfornance, vol. II. cognitive
Processes and Perfonnance (Neq Yoikr wiley, 1986)
pP.28-1 - 2A-71-

(42) van !ehn, R., Bugs are not Enoughr Empirical Studtes of
Bugs, Inpasses and Bepairs in Procedural sklffs. xERox
rarc. cognitlve and Instructlonal science cro'rp (1981)
CIS-11 (sSL-81-2) and Journal of Mathenatical Behavior
(1982) 3.

A fßual Camputel Ldneudge

(43) Egan, D.E.r creeno, ,J.c., Theory of Rule Induction:
(nowledge acquireC in concep! Learning. serial Pattern
Learninq, and Problen solving. In: Gregg, t.w. (ed.):
Knowledqe and cognition (Potonac: Erlbau, 1974)pp,
43- 103.

(44) Simon. Il.A.; Lea, c., Problern Solwinq and Rule Induction:
A Ünified view. In: Gre99, L.!i. (ed.): Rnowledge and
Cognilion (Potonac: Erlbaun, '1974) pp- 1a5-127.

(45) Anderson,,J.R., The Architecture of cognition. c bridge
Mass. I Harvard Universlty Pres8 1983.

(46) van].ehn, K., Artificial Intelligence ('1987) 31 .

(4/l vän Lehn. K., Towards a lheory of]rpässe-Driven Lcar--
ing. ONR Tech. Rep., CMU-University (Pittsburgh, USA,
1947).

(48) McKendlee, .t,, Feedback content During cornprex skilf
Acquisition. Inr Salvendy, G.; Sauter, S.L.; Hurrefl,
,r.\t. {eds.): social, Ergononic änd stress Aspects of
work lilth conputers (Ansterdän: Elsevier science PubI.,
1987) pp. 181-188.

(49) Brorrn, ,J,s.; van rehn, K., coqnitive sclence (198o) 4.
(50) Carroll,,J.M., Mlnlnalist Deslgn for Active Users. In:

shackler B. (ed,): hteract 84, First IFIP conference
of Hwan-conputer-Interaction (Ansterdm: Ersewier,a
North Holland, 1984) .

(51) carroll, J.M., Mininafist Training (Datänation, 1984).
(52) Bauer, F.L.; Goos, G., Infornatik. 1. Teil (Beilin,

springer, 1982 (3. Edilion)).
(53) Janke, c. and Rohnert, '., Inter'ace Design of a visual

Progrämring 1-an9ua9e : Ewaluating Runnable specif ications
Accordlng to psychological Criteria (this volune).

(54) Kohnertr 1<, and ,ianke, G.: Object-oriented Inplenen-
tation of the ABSYNT Environnent. ABSYNT Report (1988) 4.

(55) Fähnr.ich, K-P. and ziesfer, ,t., workstatlon Using Direct
Manipulation as Inleraction Mode, in: Proceedings of
INTEFACT '84, vo]. II, 19854 pp. 2o3-2o8 (in gennan:
Direkte Mänipulation afs Inter:aktionsfom d Arbeits-
platzrechnern, in. Bu]linger. F.,r. (Ersg,), Software-
Ergononie r85-Mensch-Conputer-hteraktlon (Stuttgart:
reubner, 1985) pp. 75-8s.

(55) Hutchins, E.L.r Hoffan, J.D. and Norman, D.A., Dlrect
!{anipulatlon Interfaces, in: Nornan, D.A. änd Drapef,
S.w. (eds.): User centered systen Design - Nes Pelspec-
tives on tlunan Conp'rter Interaclion (Hiltsdale, N.J.:
Lawrence Erfbaun Ass., 1986) pp. 87-'124.

(57) Shneiderman, 8., IEEE computer (1983) 16 (8).
(58) Shneldernan, 8., Designing the osei Interface: strategies

for Effective Huan-Conpute! Interaction (Read1n9,
Mass.: Addison-Wesley, 198?) .

564 C Möb sa dO Schö.|e.

(59) shu, N.c., vlsual Progrärinlng r,anguages I A perspectlve
and a Di$ensiona-r Analysls, rn: Changr T-; rchikawa,
iigonenides, p.A. (eds.): Visuat Languages (Nes york,
Pfenun Press, 1985) pp. '11-34.

(60) Möbus, C. and Thole, 8..t., Tutors, rnstructions and IlefpB
IaSYNT Feport 3/88 (1988), to appear in: christalter, Th.(ed.): Künstliche rntelligenz KrFs 1987, Eeidelberg,
springer, iecture Notes in conputer science (in prinr).

(61) colonius, Frank, Janke, Kohnert, Möbus, schröder and
Thole, syntaktische und smantlsche Fehter in funktio-
nalen graphischen Progräimen, ÄBSVNT Report 2 (1987).

(52) Möbus, c., Die Entwicklunq zün proglmierexperten durch
das Problenlösen nit Autonalen. in: Mandt and Flscher(Hrsg.), lernen in Dialoq nlt den conputer (utinchenr
Urban & sehwaxzenberg, 1985) pp. 140-154.

{63) Hac, ,i.M., Int. J. of Man-Machine srudies (j977) 9.
(64) Adelson,8., Memory and cognition (1981) 9.
(65) Brooks, R., Int. J. of Man-Machine studies (1983) 18.
(66) Letovsky, s-, cognitive Processes in proqrarn cornpr:ehen-

sion. hr soloway. !r.r ryengar, s. (eds.). EnpilicäI
studies of Ploqrmers (Ne!i York, Ab1ex, 1986) pp. 58-8o.

(67) Ristr R.S., Plans in Programing: Definitlon, Denonstra-
tion, and Dewelopnent. In: soloqay, E.r lyengar, s. (eds.)
Enpirical studies of Programers (New york, Äblex, 1986)
PP. 28-47.

(68) colonius, Frank. Janke, Rohnert, Möbus, schröder and
Thole, stand des DFc-Plojekts ,,Ent\dlck1un9 einer wis-
sensdiagnostik- und Fehlererklärungskonponente beim Er-
werb von Prograiwiemissen für ÄBSYNT',, Inr cunzenhäuser,
F. und Mandl, t1. (Hrsg.)r htelLigente ternsystene (1987)
pp. 8O-9O, Institut fiir Infornatik der Unlversität Stutt-gart und Deutsches hstitut für Felnstudlen an der Uii-
versltä! Tübingen.

(69) Chans, s.(., Visual Languages: A Tutorial and survey.
In: Golnyr P.; Tauber, M.J. (eds.). vis'ralization in
Progr:aming. Lecture Notes in conputer sclence, No. 282(Berlinr springer, 1967).

(7O) Davis, R.E., Runnlbfe speciricatlon as a Design Tool, in:
clark, K.L.; Tärnlund, s.a. (eds.): togic progrming
(New York: Acäd{ic Press, 1982) pp. 141-149.

(71) Norman, D.4., Notes Tonard a Theory of Conplex Learnlnq.
Inr lesgold, A.M.; Pellegrino, J.W.; Fokkema. S.D.,
Glaser, R. {eds.): cognitive Psychology and Instruction
(New Yolk, Pfenu Press, 1978) pp. 39-48.

(72) .olos.ein, 1.P., _he Ceneric claph: Ä PeprasenLaLion olthe EvoluLion ol Droccdural Xnowledqe, in: sleemän, D.
and Brown, J-s. (eds.): Intelligent Tutoring systems
(New York: Acadenic Pless, 1982),

A Viwl Computel Ldngudge 565

(?3) M<tbus, c., Logic Progles as a Speciflcation and Des-
criptlon root in the Design process of an Intelligent
Tutorlng systen, inr Salvendy, c. (ed.): !\bridged Pro-
ceedlngs of the ECI International '87 (1987) p. 1'19.

(?4) Möbus, c., specifications of Instructions and Eetps for
an fcAl-systen in the Field of craphtcal Progräming.
Paper Presented at the Flrst European seninar on htelli-
gent Tutoring Systens. Conunlssion of the European Con-
n'unities (Rottenbutq, 25. - 31. october 1987).

(?5) Genesereth, M,R.r Nilsson, N.J., Logical Foundations of
Artificial Intefllgence (Los Altos, California: Morqan
Raufman, 1987) .

(?6) Bourne, L.E-, An Inference Model of Conceptual Fule
Learnlng. In: solso, R, (ed.): Theorles 1n cosnitive
psychology. (washington,D,C.: Erlbaunr 19?4) pp. 231-256.

(77) Eaygood, F.c.; Bourne, L.E., Psycnological Revlew (1965)
72-

(78) Medln, D.1,.; trallennaker, W.D.i Mlchalsßl, R.s., cognl-
tive science, 1987) 1 1 .

REPRINTED FROM

Man-Cornputer Irrteraction Researdr
MACINTER_II

Selected Papers ofthe
. \.'lan-Cumputer l teraction Re\e.rrch Nerwork of
I ThelnrernJrional(nion(llPslchologicrls(rence{lUP\\sr
I
I

Edited bv

F I{-Ix
Deparh ent of Psycbology

HumboAt Uniueßi4)
B er lin, G ennan Democr.a ic Rep u b I i c

N, A, STREITZ
I n te grated Pub li c at io n on.l

Infomalk n Slstelns I nstitute
G e s e I L\cha.ft rtrr M ath ena t ih un d D ate nu eratü e i t un g

Dann-stad' Federal Repub lic of Gerrnanl

Y \TAERN
D eP artm ent of P Vc bo lo g)

Uniueßi\) ofStockbolm
Stockbohn. 9oedert

H. \TANDKE
D epartnEn t of Pqt cb o lo lgl

Humbodt Unirersiiy
Berlin, German Delnocrat ic Republic

NORTH-HOII,AND
AMSTERDAM .NE\(TYORK O)GORD TOKYO

1989

