
Fakultät II

Department für Informatik

Abteilung Eingebettete Hardware-/Software-Systeme

Application Mapping and Communication
Synthesis for Object-Oriented

Platform-Based Design

Dissertation

zur Erlangung des

Doktorgrades der Naturwissenschaften

(Doctor rerum naturalium)

vorgelegt von

Kim Grüttner
geboren am 06.03.1979 in Delmenhorst

Oldenburg 2015

Për Nikon dhe Idën time

Submitted: January 22, 2015

Advisor: Prof. Dr.-Ing. Wolfgang Nebel

First Reader: Prof. Dr. Achim Rettberg

Second Reader: Prof. Dr. Rainer Dömer

Defended: March 6, 2015

Abstract

Platform-based design of embedded systems on a chip consists of the parallel functional
application specification, configuration of the hardware platform (i.e. connection of processing,
memory and physical communication channels) and mapping of the application description
on the processing, memory and communication resources of the hardware platform. The
main contribution of this work is the seamless object-oriented modeling and automatic
refinement of communication. In the application model, communication is specified by method
calls on communication objects, independent from a physical communication channel. By
means of mapping rules, these application model method calls are automatically transformed
(synthesized) and implemented on the processing, memory and communication resources of the
hardware platform. This approach enables the exploration and assessment of the impact of
different platform configurations and mapping rules on functional and extra-functional properties.

Keywords: Embedded system on a chip, object-oriented communication, synthesis, remote
method invocation, platform-based design

Kurzzusammenfassung

Der plattformbasierte Entwurf eingebetteter Ein-Chip-Systeme, besteht in der parallelen funk-
tionalen Spezifikation der Applikation, Konfiguration der Hardwareplattform (d.h. Verbindung
von Berechnungs- und Speicherelementen über physikalische Kommunikationskanäle), und der
Abbildung der Applikationsbeschreibung auf die Berechnungs-, Speicher- und Kommunika-
tionsressourcen der Hardwareplattform. Der Hauptbeitrag dieser Arbeit ist die durchgängige
objektorientierte Modellierung und automatischen Verfeinerung der Kommunikation. Diese wird
im Applikationsmodell mit Hilfe von Methodenaufrufen kommunizierender Objekte, unabhängig
von einem physikalischen Übertragungskanal, modelliert. Mit Hilfe einer Abbildungsvorschrift
werden diese Methodenaufrufe durch eine automatische Transformation (Synthese) auf Hardwar-
eressourcen, Speicher und Kommunikationsleitungen der Hardwareplattform abgebildet. Dieses
Verfahren ermöglicht eine Untersuchung und Bewertung unterschiedlicher Plattformkonfigura-
tionen und Abbildungsvorschriften in Bezug auf funktionale und extra-funktionale Eigenschaften.

Schlagwörter: Eingebettetes Ein-Chip-System, objektorientierte Kommunikation, Synthese,
Aufruf entfernter Methoden, plattformbasierter Entwurf

Contents

1 Introduction . 13

1.1 Embedded Systems on a Chip . 14

1.2 Design Challenges . 15

1.3 Contributions . 17

1.4 Basic Idea . 17

1.5 Outline . 20

2 Goals of the Methodology . 25

2.1 Introduction . 25

2.2 Embedded Systems on a Chip (SoC) . 25

2.2.1 IP components . 26

2.2.2 Software Processors . 26

2.2.3 Dedicated Hardware . 27

2.2.4 Memory . 28

2.2.5 Communication Interfaces . 28

2.2.6 Communication Networks . 29

2.2.6.1 Point-To-Point Communication 29

2.2.6.2 Bus Communication . 29

2.2.6.3 Shared Object Communication 30

2.2.7 Application mapping . 31

2.3 Communication in Embedded System . 31

2.3.1 Structural inter-component access techniques 32

2.3.1.1 Memory mapped I/O . 32

2.3.1.2 Port I/O . 33

2.3.2 Behavioral inter-component access techniques 33

2.3.2.1 Polling . 33

2.3.2.2 Interrupts . 33

2.3.2.3 DMA . 34

2.4 Requirements on Communication-Centric Design 35

2.4.1 Modeling . 36

2.4.2 Analysis . 37

2.4.3 Synthesis . 37

2.4.4 Implicit Requirements and Consequences 38

2.5 Summary . 39

4 Contents

3 Terminology. 41
3.1 Introduction . 41
3.2 Selected Mathematical Notations . 41
3.3 Timed Automata . 43

3.3.1 Definition . 43
3.3.2 Graphical notation in Uppaal . 44
3.3.3 Synchronous Value Passing . 45
3.3.4 Properties . 46

3.3.4.1 State Formulae . 46
3.3.4.2 Reachability Properties . 47
3.3.4.3 Safety Properties . 47
3.3.4.4 Liveness Properties . 47

3.4 Model of Computation, Architecture, Structure and Performance 48
3.4.1 Model of Computation (MoC) . 48
3.4.2 Model of Architecture (MoA) . 50
3.4.3 Model of Structure (MoS) . 52
3.4.4 Model of Performance (MoP) . 53
3.4.5 Summary . 55

3.5 Methodology . 57
3.5.1 Design flow . 59
3.5.2 Simulation . 59
3.5.3 Synthesis . 60
3.5.4 Summary . 60

3.6 System Level Design Representation . 61
3.6.1 Language . 61
3.6.2 Program State Machines . 63

3.6.2.1 Program-States . 63
3.6.2.2 Hierarchical composition . 65
3.6.2.3 Communication . 66

3.6.3 Sequential program representation . 68

4 Related Work . 73
4.1 Introduction . 73
4.2 Previous Work . 75

4.2.1 Objective VHDL . 75
4.2.2 Objective VHDL+ . 76
4.2.3 SystemC-Plus . 77
4.2.4 Discussion . 78

4.3 Object-Oriented Communication Concepts in ESL Design 79
4.3.1 OOCL . 79
4.3.2 CHSOM . 80
4.3.3 Actor-oriented . 80
4.3.4 CORBA- and Component-based . 82
4.3.5 C++- and SystemC-based . 84
4.3.6 Summary & Discussion . 86

4.4 SoC communication modeling . 87
4.4.1 SystemC TLM . 88
4.4.2 GreenBus . 88
4.4.3 Accuracy-Adaptive TLMs . 88
4.4.4 OCP SystemC channels . 89
4.4.5 STMicroelectronics TAC . 89
4.4.6 SystemCSV . 89
4.4.7 OCCN . 89
4.4.8 IBM CoreConnect models . 90
4.4.9 ARM AMBA models . 90
4.4.10 CCATB AMBA models . 90
4.4.11 ROM . 90

Contents 5

4.4.12 NoC channels . 90
4.4.13 Summary & Discussion . 90

4.5 SoC Communication Synthesis . 91
4.5.1 SpecC-based . 92
4.5.2 SystemC-based . 93
4.5.3 Commercial SystemC and C/C++ synthesis tools 93

4.5.3.1 SystemCrafter . 93
4.5.3.2 Handel-C . 94
4.5.3.3 C-to-Silicon . 94
4.5.3.4 Cynthesizer . 94
4.5.3.5 CatapultC . 95
4.5.3.6 Vivado . 95
4.5.3.7 eXCite . 96

4.5.4 Summary & Discussion . 96
4.6 Electronic System-Level Synthesis Methodologies 97

4.6.1 Daedalus . 97
4.6.2 System-On-Chip Environment . 99
4.6.3 SystemCoDesigner . 100
4.6.4 Metropolis . 101
4.6.5 Koski . 102
4.6.6 PeaCE/HOPES . 102
4.6.7 Summary & Discussion . 103

4.7 Contribution of this work . 104

5 Methodology, Modeling Elements and Operational Semantics . 109
5.1 Introduction . 109
5.2 Abstraction Layers . 111
5.3 Object Model . 112

5.3.1 Basic Types . 113
5.3.2 Other types . 113
5.3.3 Array . 113
5.3.4 Class . 113
5.3.5 Interface class . 114

5.4 Behavioral Layer . 116
5.4.1 Introduction . 116
5.4.2 Modeling Elements . 118

5.4.2.1 Port . 118
5.4.2.2 Behavior . 119
5.4.2.3 Channels . 125

5.4.3 Operational Semantics . 132
5.4.3.1 Leaf Behavior . 132
5.4.3.2 Sequential composition (SEQ) 134
5.4.3.3 Finite-state machine composition (FSM) 135
5.4.3.4 Parallel composition (PAR) . 136
5.4.3.5 Pipeline composition (PIPE) . 138
5.4.3.6 Hierarchical composition . 142
5.4.3.7 Communication . 149

5.5 Application Layer . 154
5.5.1 Introduction . 154
5.5.2 Modeling Elements . 155

5.5.2.1 Actor . 156
5.5.2.2 Application Layer System . 157
5.5.2.3 Shared Objects . 158

5.5.3 Pre-defined Scheduling Algorithms . 162
5.5.3.1 Static Priority . 163
5.5.3.2 Ceiling Priority . 163
5.5.3.3 Round Robin . 163

6 Contents

5.5.3.4 Modified Round Robin . 164
5.5.4 Timing Annotations . 165

5.5.4.1 Shared Object annotations . 165
5.5.4.2 Actor annotation . 166
5.5.4.3 Timing estimation . 168
5.5.4.4 Timing analysis . 169
5.5.4.5 Properties of Timing Annotations 171
5.5.4.6 Limitations . 172

5.5.5 Mapping rules . 173
5.5.6 Operational Semantics . 175

5.5.6.1 Actor . 176
5.5.6.2 Port . 178
5.5.6.3 Shared Object . 178
5.5.6.4 Putting it all together . 181
5.5.6.5 Properties . 184

5.6 Virtual Target Architecture Layer . 186
5.6.1 Introduction . 186
5.6.2 Modeling Elements . 186

5.6.2.1 Signal and Signal Port . 188
5.6.2.2 RMI Port . 189
5.6.2.3 Serializable Object . 189
5.6.2.4 Virtual Target Architecture Object 190
5.6.2.5 Memory . 190
5.6.2.6 Software Socket . 195
5.6.2.7 Hardware Socket . 195
5.6.2.8 RMI Channel . 197
5.6.2.9 OSSS Channel . 203
5.6.2.10 IP Component . 211
5.6.2.11 Virtual System on Chip . 212

5.6.3 Mapping rules . 213
5.6.3.1 Add support for object serialization 213
5.6.3.2 Software, Actor and Shared Object Behavioral-RT timing refine-

ment . 214
5.6.3.3 RMI timing annotations . 214
5.6.3.4 Memory timing annotations . 216

5.6.4 Operational Semantics . 217
5.6.4.1 RMI Port . 218
5.6.4.2 Shared Object Socket . 220
5.6.4.3 OSSS-Channel . 220
5.6.4.4 Putting it all together . 223
5.6.4.5 Properties . 229

5.7 Target Platform . 230
5.7.1 Introduction . 230
5.7.2 Modeling Elements . 230

5.7.2.1 Software Processing . 231
5.7.2.2 Hardware Processing . 232
5.7.2.3 Memory . 232
5.7.2.4 Communication . 232
5.7.2.5 IP . 233
5.7.2.6 SoC . 233

5.8 Summary . 233

Contents 7

6 Simulation . 235
6.1 Introduction . 235
6.2 Overview . 237

6.2.1 SystemCTM . 237
6.2.2 OSSS . 238
6.2.3 Behavioral Layer . 239
6.2.4 Application Layer . 239

6.2.4.1 Hardware/Software Intersection 239
6.2.4.2 Hardware Section . 240
6.2.4.3 Software Section . 240

6.2.5 Virtual Target Architecture Layer . 240
6.3 Behavioural Layer . 241

6.3.1 Introduction and motivation . 241
6.3.2 Composite Behaviours . 242
6.3.3 Communication . 246
6.3.4 Hierarchical Behaviour composition . 248
6.3.5 Current Limitations . 250

6.4 Application Layer . 251
6.4.1 Shared Object . 251

6.4.1.1 Using Shared Objects . 252
6.4.2 Adapter Socket . 257

6.4.2.1 Using sockets . 257
6.4.2.2 Restrictions . 259

6.4.3 Software Task . 260
6.4.3.1 Declaration of a Software Task 260
6.4.3.2 Instantiation of a Software Task 261
6.4.3.3 Using EETs for specifying the software timing behaviour 262
6.4.3.4 Using EETs and RETs for checking timing consistencies of Soft-

ware Tasks . 263
6.4.3.5 Restrictions when using Software Tasks 265

6.4.4 Hardware/Software Communication . 266
6.4.5 Hardware Module . 268

6.5 Virtual Target Architecture Layer . 269
6.5.1 Architecture Class Library . 269
6.5.2 Remote Method Invocation . 270

6.5.2.1 The General Concept . 270
6.5.2.2 RMI protocol stack . 272

6.5.3 OSSS-Channels . 282
6.5.3.1 Key Concepts . 283
6.5.3.2 A Simple Point-To-Point Channel 284
6.5.3.3 A Channel with Arbitration . 288

6.6 Mapping . 291
6.6.1 Mapping the Consumer/Producer Design Example 292

6.6.1.1 The osss_rmi_if<...> interface stub 293
6.6.1.2 Serialisation of user-defined data types 295
6.6.1.3 The osss_rmi_channel<...> container for synthesisable OSSS-

Channels . 296
6.6.1.4 The osss_object_socket<...> container for Shared Objects . 296
6.6.1.5 The final assembly phase . 297

6.6.2 Architecture Exploration . 300
6.7 Summary . 303

6.7.1 Passive Modeling Elements . 304
6.7.2 Active Modeling Elements . 305
6.7.3 Mapping and Refinement . 306
6.7.4 Review of Goals . 307

8 Contents

7 Synthesis . 311

7.1 Introduction . 311
7.2 Overall Flow . 312
7.3 Parsing and Intermediate Representation . 314
7.4 Target Platform Representation . 315

7.4.1 Software Processor Block . 316
7.4.2 Hardware Block . 319
7.4.3 Memory . 319
7.4.4 Communication Network . 319

7.4.4.1 Point-To-Point Communication 321
7.4.4.2 Bus Communication . 322

7.5 Platform Synthesis . 322
7.5.1 Architectural Context Information . 324
7.5.2 MHS and MSS Generation . 327
7.5.3 UCF Generation . 328
7.5.4 MPD and PAO Generation . 328
7.5.5 OSSS ACI Generation . 329

7.6 Software Synthesis . 329
7.6.1 Introduction . 329
7.6.2 The MicroBlaze Processor Subsystem . 330
7.6.3 Supported Software Language Subset . 331
7.6.4 The OSSS Software Library & RMI protocol stack 335

7.6.4.1 Application Layer . 336
7.6.4.2 RMI Layer . 339
7.6.4.3 Channel Layer . 339
7.6.4.4 The native OPB Interface . 339
7.6.4.5 The FSL Interface . 341

7.6.5 Software Cross-Compilation . 342
7.7 Custom Hardware Synthesis . 343

7.7.1 Fossy . 343
7.7.2 Synthesis Phases . 344

7.7.2.1 Elaborator . 344
7.7.2.2 Channel Synthesis . 345
7.7.2.3 Shared Object Synthesis . 345
7.7.2.4 Class Synthesis . 346
7.7.2.5 Integer Type Synthesis . 347
7.7.2.6 Delaborator . 350
7.7.2.7 Code Generator . 350

7.8 Shared Object Hardware Synthesis . 350
7.8.1 Overview . 350
7.8.2 RMI Controller . 352
7.8.3 Interface Blocks . 353
7.8.4 Scheduler . 354
7.8.5 Guard Evaluator . 354
7.8.6 Behavior Process . 354
7.8.7 Potential Extensions and Optimizations 354
7.8.8 Hardware Client . 355

7.9 Back-End Synthesis . 360
7.9.1 Integration into Xilinx Flow . 362

7.9.1.1 Integrated Software Environment (ISE) 362
7.9.1.2 Xilinx Platform Studio (XPS) 363

7.10 Summary . 364

Contents 9

8 Experiments . 369
8.1 Introduction . 369
8.2 JPEG Encoder . 369

8.2.1 Goals of this experiment . 369
8.2.2 Introduction to JPEG . 369
8.2.3 JPEG encoder model . 372
8.2.4 Results . 374
8.2.5 Conclusion . 375

8.3 Adaptive Video Filter . 377
8.3.1 Goals of this experiment . 377
8.3.2 Model Composition . 377
8.3.3 Modeling in OSSS . 378

8.3.3.1 Behavior Layer Model . 378
8.3.3.2 Application Layer Model . 381
8.3.3.3 Virtual Target Architecture Model 383
8.3.3.4 Target Platform Layer . 383

8.3.4 Conclusion . 383
8.4 NightView Video Filter . 383

8.4.1 Goals of this experiment . 383
8.4.2 Introduction & Motivation . 384
8.4.3 The NightView Application . 385
8.4.4 Target Platform . 386
8.4.5 Video processing algorithms . 386

8.4.5.1 Sobel filter . 386
8.4.5.2 Gamma correction filter . 387
8.4.5.3 Filter configuration examples . 387

8.4.6 Design flow . 387
8.4.7 Modeling in OSSS . 387

8.4.7.1 Application Layer Model (N2b) 388
8.4.7.2 Virtual Target Architecture Layer Model (N3b) 392

8.4.8 Evaluation . 394
8.4.8.1 Simulation performance . 395
8.4.8.2 Model complexity . 395
8.4.8.3 Chip area . 396

8.4.9 Conclusion . 396
8.5 MP3 Decoder . 397

8.5.1 Goals of this experiment . 397
8.5.2 Introduction to MP3 decoding . 397
8.5.3 Modeling in OSSS . 398

8.5.3.1 Profiling . 399
8.5.3.2 Application Layer Model . 400
8.5.3.3 Virtual Target Architecture Layer Model 401
8.5.3.4 Implementation Model . 402

8.5.4 Results . 402
8.5.4.1 Software implementation . 403
8.5.4.2 Hardware/Software implementation 404
8.5.4.3 RMI overhead . 405

8.5.5 Conclusion . 406
8.6 IPv4 Packet Forwarding Switch . 406

8.6.1 Goals of this experiment . 406
8.6.2 Introduction & Motivation . 407
8.6.3 Modeling in OSSS . 407
8.6.4 Synthesis . 409
8.6.5 Conclusion . 417

8.7 JPEG 2000 Decoder . 419
8.7.1 Goals of this experiment . 419
8.7.2 Introduction . 419

10 Contents

8.7.3 Modeling in OSSS . 420

8.7.3.1 Application Layer Model . 420

8.7.3.2 Architecture Layer Model . 422

8.7.4 Implementation Models . 424

8.7.4.1 IDWT Reference Models . 426

8.7.4.2 Fossy Generated Models . 426

8.7.4.3 Comparison . 426

8.7.5 Conclusion . 427

8.8 Summary . 427

9 Conclusion . 431

9.1 Review of Goals . 434

9.2 Limitations and Future Work . 438

A Survey . 445

B Timed Automata Templates and Examples . 461

B.1 Used scheduling algorithms . 461

B.2 Application Layer TA example . 463

B.3 Virtual Target Architecture Layer TA example 465

C Pre-defined Shared Objects . 469

D I2C Protocol OSSS Channel Implementation . 475

D.1 Introduction . 475

D.2 The I2C Bus Protocol . 476

D.2.1 Data Transfer from Master to Slave . 476

D.2.2 Data Transfer from Slave to Master . 476

D.3 OSSS Channel implementation . 478

E Supported Target Platforms . 483

E.1 Supported FPGAs . 483

E.1.1 Virtex-4 . 483

E.1.2 Virtex-II Pro . 484

E.2 Supported Prototyping and Development Boards 485

E.2.1 The Xilinx ML401 Evaluation Platform 485

E.2.2 The Xilinx University Program Virtex-II Pro Development Board 488

E.3 Basic IP components . 490

E.3.1 MicroBlaze Local Memory . 490

E.3.2 Interrupt Controller . 491

E.3.3 Timer . 492

E.3.4 Universal Asynchronous Receiver Transmitter (UART) 492

E.3.5 Microprocessor Debug Module (MDM) . 493

E.3.6 On-Chip Peripheral Bus (OPB) . 493

E.3.6.1 Features . 494

E.3.6.2 FPGA implementation supported features 494

E.3.6.3 Connection . 495

E.3.6.4 Arbitration . 495

E.3.7 Intellectual Property Interface (IPIF) . 496

Contents 11

F Synthesis Subset . 499
F.1 Compatibility to the SystemC Synthesisable Subset 499
F.2 Coding Guidelines . 501

F.2.1 Design Hierarchy . 501
F.2.1.1 Modules . 501
F.2.1.2 Constructors . 502
F.2.1.3 Ports . 503
F.2.1.4 Signals and Channels . 503
F.2.1.5 Bindings . 504

F.2.2 Processes . 504
F.2.2.1 Effect of wait() usage on the number of states 506
F.2.2.2 Reset . 507

F.2.3 Datatypes . 508
F.2.4 Statements and Expressions . 509
F.2.5 Classes and Inheritance . 509
F.2.6 Templates . 510
F.2.7 Namespaces . 510
F.2.8 Polymorphic Objects . 510
F.2.9 Shared Objects . 510
F.2.10 Non-Synthesisable . 511

G Integrated Development Environment . 513
G.1 Introduction . 513
G.2 Using the Eclipse CDT with FOSSY integration 514

G.2.1 Project Navigator . 514
G.2.2 The SystemC Alarm Clock Example . 515
G.2.3 Building the Pre-Synthesis Model . 516
G.2.4 Building the Post-Synthesis Model . 519
G.2.5 Generating VHDL code . 520

G.3 Creating a custom project . 520

H OSSS Behavior Graphs . 521

Bibliography . 525

Curriculum Vitæ. 539

CHAPTER 1

Introduction

This work describes the whole Oldenburg System Synthesis Subset (OSSS) modeling language
and methodology (see Chapter 5), simulator (see Chapter 6) and system synthesis (see Chapter 7).
OSSS has been developed at OFFIS – Institute for Information Technology, during a series of
European research projects:

ODETTE: Object-oriented co-DEsign and functional Test TEchniques [224]

ICODES: Interface- and COmmunication-based Design of Embedded Systems [223]

ANDRES: ANalysis and Design of run-time REconfigurable, heterogeneous Systems [220]

In a national funded project at the Carl von Ossietzky University, called PolyDyn (Polymorphic
Objects for Dynamically reconfigurable FPGAs) [226], further extensions for modeling polymor-
phism in hardware and its implementation using dynamically reconfigurable Field Programmable
Gate Arrays (FPGAs) have been performed. After completion of the ANDRES project, parts of
the OSSS simulation and synthesis technology have been commercialized by CoSynth GmbH &
Co. KG [216].

OSSS

previous

work

this

work +R

multi

tasking

ODETTE

ICODES

ANDRES

PolyDyn

Figure 1.1: Overview of related projects and classification of this work

14 1 Introduction

In particular, this work covers the part of OSSS developed during ICODES and ANDRES,
without covering the polymorphic extensions developed in PolyDyn and ANDRES, as shown in
Figure 1.1. More details about previous and related work can be found in Chapter 4.

The contribution of this work is the definition of the multi-layer OSSS modeling methodology,
supported refinement, simulation and synthesis of object-oriented communication through
Remote Method Invocation (RMI) on top of target System on a Chip specific processing and
communication elements.

Before further defining the aims of this work and its main contributions in Section 1.3, a brief
introduction of the considered class of embedded systems and its associated design challenges
relevant for this thesis is given in Section 1.1 and Section 1.2. After defining the aims of this
thesis in Section 1.3, the basic idea for achieving these aims is described in Section 1.4. This
introduction closes with an outline of this thesis, describing its overall organization and structure
in Section 1.5.

1.1 Embedded Systems on a Chip

Embedded systems in general represent a set of information processing hardware/software systems,
which are integrated in mostly complex technical systems to perform central control functions.
The attribute "embedded" reflects the fact that embedded systems are highly integrated into complex
technical systems and are mostly hidden from the human users of these systems. The attribute
"on a Chip" reflects that the system is fully implemented on a single System on a Chip.

Today, highly integrated embedded Systems on a Chip (SoC) have a wide range of usage in
our daily life, such as telecommunications and automotive. These modern embedded systems
consist of several IP1 blocks plus a few custom components and often use pre-defined technology
platforms to implement them. Existing and upcoming technologies offer ever more possibilities
to cope with the increasing application requirements. Nevertheless, efficiently designing such
systems remains a major challenge since electronic design automation tools and methodologies
cannot keep pace.

In our definition, embedded systems consist of an arbitrary number of the following compo-
nents:

• custom software components to be executed on software processors,

• custom hardware components that may perform computationally intensive (e.g. high-speed
data processing) or time critical computations (e.g. custom real-time communication
protocols),

• pre-designed hardware components, like software processing elements (e.g. ARM, Pow-
erPC), hardware processing elements (e.g. AES, DCT, FFT), memory controllers, memories
(e.g. SRAM, DRAM, Flash), communication controllers (e.g. USB, Ethernet, I2C), and
on-chip communication fabrics (e.g. bus, cross-bar, FIFOs) and

• pre-designed software components, like data processing and control algorithms, operating
systems and device drivers.

It has been observed that the integration of these different pre-designed components into an
efficiently working system is much more difficult than the design of a single component. This
has massively influenced the principle of platform-based design [71].

In practice, most embedded systems are implemented on so-called technology platforms.
These platforms provide a basic configuration consisting of processors, memories, special hardware
resources (or accelerators), communication peripherals, and communication resources (like
buses, special cross-bar switches or Network-on-Chips) to connect them all together. The
application is implemented on top of this platform configuration. Some platforms provide
advanced configuration and parametrization and offer flexibility for the implementation of
different applications (e.g. platform FPGAs [232]).

1Intellectual Property

1.2 Design Challenges 15

1G

2G

2.5G

3G

4G

1

10

100

1.000

10.000

1.000.000

10.000.000

100.000

Performance Shannon‘s law
2x in 8.5 months

Moore‘s law
2x in 18 months

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020

Memory access time
2x in 12 years

Eveready`s law
(Battery energy density)
2x in 10 years

Power
reduction

Algorithmic
complexity

CPU-memory
bandwidth

Source: Jan M. Rabaey

Figure 1.2: Key Technology Gaps

1.2 Design Challenges

From a technical point of view the design of embedded HW/SW systems involves all steps from
the initial specification of the application - what is the system supposed to do - to the efficient
implementation on a technology platform - how is it implemented. The challenge consists in
finding methods for the description and transformation/refinement of the initial specification to
an efficient implementation.

From the industrial point of view, the requirements for the design of embedded systems are
very tight. Targeted development costs and time-to-market needs to be matched, but at the same
time functional and extra-functional product requirements need to be fulfilled. Consequences
for the design process are:

• modeling on the highest possible level of abstraction (mastering of complexity),

• most accurate analysis of system characteristics (prevention of costly re-design cycles),

• high degree of automation (raising efficiency and prevention of errors) and

• re-use of pre-existing hardware and software components.

Figure 1.2 shows the key challenges for the embedded mobile device industry. The performance
growth of mobile phones per generation from analogue (1G) over GSM (2G) to high bandwidth
UMTS (3G) and LTE (4G) follows Shannon’s Law [205, 204], predicting an application complexity
doubling every 8.5 months. For more than 30 years now the integration density of integrated
circuits approximately doubles every 18 months (Moore’s Law [203]). Network connection speeds
doubles every 21 months (Nielsen’s Law [171], not shown in Figure 1.2). As a corollary, Nielsen
noted that, since the network connection speed rate is growing slower than that predicted by
Moore’s Law, user experience would remain communication bandwidth-bound. Battery makers
need 5 to 10 years to achieve comparable increase in power density, and memory access time
performance doubles every 12 years only. The gaps in this figure define the challenges, which
the Electronic Design Automation (EDA) industry is facing:

1. Algorithmic complexity gap,

2. Microprocessor and memory bandwidth gap, and

3. Power reduction gap.

16 1 Introduction

In order to keep up with the rapid technological advances, system design methodologies and EDA
support were always forced to evolve in the past. Without the support of design methodologies
and appropriate tool support, the design gaps are becoming larger:

• We observe a rising complexity of applications and execution platforms. The gap between
these complexities boosts the uncertainty of platform selection and application to platform
mapping. It requires a platform independent application description and EDA tools and
methods able to support application to target architecture mapping and synthesis. For
efficient targeting and exploring different mappings and execution platforms, guided or even
fully automatic synthesis is required. The simulation of the mapping result (application
running on the targeted platform) needs to be fast enough for running it in a design-space
exploration loop to analyze at least the most meaningful parameters within the order of
hours.

• Since the power and especially temperature is the next main limiting factor [16], a balance
between performance and power needs to be found early in the design process. This can
only be performed under explicit consideration of the interaction of application and target
platform. To ensure a sufficient power and temperature control, EDA methods and tools
need to be able to represent the extra-functional properties timing, power and temperature
on all different levels of abstraction and in all executable models.

• To cope with the memory access time gap, smarter application specific memory organi-
zation is required. Treating memory as a homogeneous monolithic block is not possible
anymore. For high-performance and power efficient systems, the parallelization and
possible distributed memory schemes, including memory access scheduling, need to be
supported on all stages of the design process. EDA methods and tools shall be able to
model computation and state/storage explicitly. Mapping of variables and objects of an
application to explicit memory elements of the target architecture needs to be supported.

In custom hardware design, advances in performance and power consumption have been
mainly influenced by new technologies and an evolution in design methodology. The latter
was achieved by several important steps in climbing up the level of abstraction for the design
entry. All these steps gave the productivity in hardware design a great boost and made it
possible to manage the steadily growing complexity of integrated circuits. Software processing
units like micro-controllers, SIMD processors or DSPs have been made more efficient. Modern
platforms support advanced power management capabilities with dynamic frequency scaling
(sometimes independent for processing and memory subsystem) and power islands that needs to
be effectively controlled to maximize the optimization potential.

Thus, there is a need for a new evolving design entry at system level where hardware
and software are described in the same way. The latest trends in software engineering and
hardware design have some commonalities, which might be not apparent on the first look. In
the hardware and software world we observe the introduction of methodologies that separate
the functionality/algorithm from the concrete implementation platform. The hardware world
calls this evolution ESL; the software world calls this model-based design or MDE (Model-
Driven Engineering), with Model-Driven Architecture (MDA). Both follow the Y-chart approach
(separation of functionality - what - from the implementation platform - how).

The availability of this new design entry in conjunction with the traditional bottom-up
approach defines a new viewpoint for the design of embedded systems: How to find a mapping
and implementation of an application onto an execution platform that fulfills all functional and
extra-functional requirements at minimal cost. To avoid expensive redesigns and costly code
modifications, the platform decision should be done before investing money into a concrete target
platform. For this purpose reliable information about the execution behavior of the application
running on the platform in terms of functionality, performance and power consumption are
mandatory.

1.3 Contributions 17

1.3 Contributions

The main goal of this thesis is to provide an efficient methodology for mapping object-oriented
applications to embedded System on Chip architectures, including automatic communication
interface refinement and synthesis. The main distinguishing feature of this thesis is the seamless
support of application-level method call communication on all levels of abstraction, down to a
“silicon-proven” implementation on a FPGA platform.

The main contributions are:

1. Definition of a multi-layer executable parallel object-oriented application de-
scription that supports custom application-level method call communication.

2. Definition of an object-oriented model of target platform that represents processing,
communication and memory resources.

3. Definition of a relation to express computation, communication and memory mappings of
the application to a “bare metal2” target platform, retaining application-level
method calls through Remote Method Invocation (RMI) techniques.

4. Definition of operational semantics and implementation of a pre- and post-target platform
mapping simulation for checking functionality and timing.

5. Definition of timed automata formal model of pure application and target platform
mapped application model to enable analysis of safety (deadlock, method call duration,
mutual exclusiveness of method calls, buffer size limitations) and liveliness properties
(guarantee that a method call will be served).

6. Definition of synthesis semantics and proof-of-concept synthesis of mapped applica-
tion on FPGA target platform (enabling memory space and hardware area analysis)
supporting RMI synthesis for hardware/hardware and hardware/software communication.

1.4 Basic Idea

The section sketches the basic idea for achieving the aims described above. Given a parallel
object-oriented description of an embedded system application with functional, timing and
performance requirements, an implementation on a hardware platform should be realized. The
implementation on the hardware platform shall fulfill the functional and timing requirements of
the application description (see Figure 1.3).

In this work, the parallel object-oriented application description consists of Actors and
Objects, based on the active object design pattern, that decouples method execution from
method invocation for objects that reside in their own thread of control (called Actors)[163].
This way concurrency is introduced and concurrent method invocation requests of different
Actors on the same Object are handled by a scheduler. This application is target platform
independent and can be executed (i.e. simulated) for analysis using a discrete event simulator.

The used “bare metal” target platform model consists of processing, memory and communica-
tion elements. These elements can either be generic or existing pre-designed or custom designed
components. The target platform models are represented as classes and organized in an architec-
ture class library. Different target platforms can be assembled by instantiating and connecting
elements from the architecture class library. The platform model itself is non-executable but
offers communication and memory services for a mapped application model:

Remote Method Invocation (RMI) Service enables to call a method of a remote object, i.e.
an object that is executed on another processing element than the calling object. The RMI
service handles the whole communication protocol over different platform communication
elements and supports serialization and de-serialization (sometimes also called marshalling
and unmarshalling) of a method’s arguments and return values.

2Bare metal (or bare machine), in computer terminology, means a computer without an operating system.

18 1 Introduction

Actor

Communication Link

Interface

Port

Object

Application Domain (what)

System Application Design

Bus
µP/µC

RAM

Bus
IF

Bus
IF

Bus
Arbiter

Memory
Controller

Bus
IF

System Behavior
(what + how)

?

HW

HW

HW

HW

Timing and
Performance

Requirements

requires!

provides?

Functional
Properties

“golden” model!

fulfilled?

Figure 1.3: Problem Statement

Actor

Communication Link

Interface

Port

Object

Application Domain

System Application Design

Bus

Processor

HW
Block

HW
Block

HW
Block

HW
Block

SoC Platform Design/Representation

Architecture Domain

Mapping

SoC Design/
Customization

System Behavior Domain

A B

C

Figure 1.4: Basic Idea: Virtual Platform-Based Design

Memory Service enables user-defined access to user-defined data types (incl. objects) mapped
into linear memory elements of the target platform.

To combine and evaluate the execution of the application model on the target platform, we
are using Platform-Based Design (PBD) techniques (see Section 3.5 for more details on PBD).
Figure 1.4 depicts the combination of application, target platform with the goal to obtain an
executable virtual platform model of the application.

The PBD model enables a separate description of the application A©, the target platform B©
and the mapping between application model and target platform model elements, resulting in
an executable system prototype C©. The executable system prototype represents the execution
times of the Actors executing on the respective processing elements, the communication times for
accessing remote objects. The communication times include access arbitration delay, parameter
serialization and de-serialization times, parameter transfer delay over platform communication
elements (shared bus or dedicated point-to-point channel), and the method execution time itself.
The RMI service is part of the target platform communication elements.

Figure 1.5 gives an introduction to the basic idea of the RMI-based object-oriented commu-
nication mapping. In the Application Model, communication and synchronization is preformed
by user-defined method calls. In the example of Figure 1.5 a) the EngineControl provides
the public method accelerate(). This service is provided by the aggregate PowerBand. In
this simplified example, the EngineControl is a Software Task (i.e. a process to be mapped

1.4 Basic Idea 19

1

Bus

Processor

HW
Block

HW
Block

HW
Block

HW
Block

System Application Design

SoC Platform Design

Introduction -
Basic Idea

EngineControl

#state variable

+accelerate()

PowerBand

+accelerate()

BelowRange

+accelerate()

InRange

+accelerate()

AboveRange

+accelerate()

SW Task HW Module

Critical Sectionsd

EngineControl Pow erBand

1 : accelerate()

2 : update()

3 : accelerate()

Send request

Receive Acknowledge

Send Data

Receive Acknowledge

Send Response

Receive Acknowledge

timeRequest
Phase
Start

Request
Phase

End

Data Phase
Start

Data
Phase

End

Response
Phase
Start
Response

Phase
End

R
M

I

Communication mapping & refinement
covered in this work

a) b)

c)

Figure 1.5: Basic Idea: Flexible Communication Mapping (simplified)

on a software processor of the target platform) and the PowerBand is a Hardware Module (i.e.
a process to be realized as a custom hardware block in the target platform). This scenario
describes a remote method call, since the accelerate method is called from one (software) process
on another (hardware) process. Figure 1.5 b) shows the corresponding message sequence chart
of this remote method call. On the target platform the accelerate method call is requested from
the software processor and is being served by a custom hardware block. In this example the
processor and the hardware block are connected by a shared bus. Figure 1.5 c) shows three
basic protocol phases of a shared bus protocol: Request, Data and Response. The RMI protocol
connects the method call request and invocation (Figure 1.5 b)) with the basic communication
services of the target platform communication elements (Figure 1.5 c)).

Figure 1.6 depicts the concept for system synthesis, based on the virtual platform-based
design approach presented in Figure 1.4. The idea is:

• To provide Application Modeling Elements A© consisting of Actors and Objects that
encapsulate the functional behavior of the application and can be plugged together using
Ports and Interfaces. A Port requires a certain service or set of services, while an Interface
provides a service or a certain set of services. The Application Modeling Elements have
an execution semantics, which can be implemented using a discrete event simulator. The
Application Model can be executed and checked against a functional “golden model”.
Required timing properties of the application model can be expressed using so-called
Required Execution Time (RET) blocks.

• To provide Architecture Modeling Elements B© consisting of processing, memory and
communication elements which can also be connected through ports. These modeling
elements implement services for the Application Model: Processing elements can execute
Actors in hardware (i.e. as dedicated hardware) or software (i.e. as software on a
processor) and share Objects between Actors, Memory Elements can store objects, and
Communication Elements provide a Remote Method Invocation protocol stack to enable

20 1 Introduction

Bus
µP/µC

RAM

Bus
IF

Bus
IF

Bus
Arbiter

Memory
Controller

Bus
IF

Mapping

Application Domain Architecture Domain

System
Behavior
Domain

Block Design &
Characterization

Component
Behavior Domain

Behavior

Protocol

Behavioral
Synthesis,
Software

Compilation

Application Design

SoC
Platform
Design/

Representation

SoC Design & Customization

Synthesis

Modeling
(dynamic)
Element
Library

Modeling
(static)

Element
Library

Modeling
(dynamic)
Element
Library

RTL IP
Element
Library

Timing or
other extra-
functional
property
back-
annotation

A B

C

D

a

Figure 1.6: Basic Idea: System Synthesis

communication between Actors and Objects running on different processing elements (see
Figure 1.5). The Architecture Modeling Elements have an execution semantics which can
be implemented using a discrete event simulator, but they cannot be executed without an
Application Model mapping.

• To map Application Modeling Elements to Architecture Modeling Elements C©, resulting
in an executable virtual platform (called Virtual Target Architecture Model) of the overall
embedded system (see Figure 1.4). Different instantiations and connections of Architecture
Modeling Elements can be used to represent different target platforms. Pre-existing
hardware IP components can be integrated using RMI wrapper objects (called sockets)
which enable the translation of method calls to a pin-level protocol.

• To represent timing and other extra-functional properties of the RTL execution platform
in the Virtual Target Architecture Model through back-annotation techniques a©. The
behavior, which is encapsulated by Actors and Objects, is refined to either the target
platform using cross-compilation or behavioral synthesis techniques. The resulting timing
properties of this refinement can be back annotated into the functional code of inside the
Actors and Objects using so-called Estimated Execution Time (EET) block annotations.
Communication and Memory Elements of the Architecture Model already contain target
platform specific timing annotations. Finally, the mapping specific timing annotations can
be checked against the RETs from the Application Model during model execution.

• To provide a synthesis semantics for each Architecture Modeling element for enabling a
semi-automatic implementation of the Virtual Target Architecture Model as an SoC D©.

1.5 Outline

This work is structured in nine chapters and an appendix. The following chapters are organized
as follows:

Chapter 2: Goals of the Methodology restricts the complex view of an embedded system to
a manageable part which can be handled within the scope of the proposed methodology.
The aim is to define the goals of the design methodology from a designer’s point of view,
especially the aspects concerning modeling, analysis, and synthesis of communication
in an embedded SoCs. These goals will also serve for the evaluation of the proposed
methodology in Chapter 5. The goals presented during this section have been extracted
from a questionnaire which can be found in Appendix A.

The subsections of this chapter are organized as follows: Section 2.2 introduces the
characteristics of embedded Systems on Chip that are in the focus of this thesis, followed

1.5 Outline 21

by Section 2.3 which gives an overview about certain strategies to implement communication
in embedded HW/SW systems. Section 2.4 describes the goals on the design process with
a focus on the communication between different components. Section 2.5 concludes this
chapter and presents a tabular overview of all goals. The coverage of these goals will be
checked in the conclusion of the subsequent chapters 5, 6, 7, 8 and 9.

Chapter 3: Terminology will define basic terms used in this thesis. It start with an overview of
selected mathematical notations (see Section 3.2) used in this work. Since this work is about
modeling, analysis and synthesis of embedded hardware/software systems, Section 3.4
introduces four different views on a model: Model of Computation (MoC), Model of
Architecture (MoA), Model of Structure (MoS) and Model of Performance (MoP). These
models are combined in the X-Chart and constrained for usage in this work.

Section 3.3 briefly introduces timed automata and UPPAAL for the specification of timed
execution semantics and static analysis of the proposed modeling constructs.

An overview of different methodologies and a classification of the methodology proposed
in this thesis is presented in Section 3.5 using the Y-Chart. This includes the presentation
of a simulation-based design flow, and a general introduction to simulation and synthesis.

This chapter closes with a generic system-level design representation covering all relevant
MoCs, enabling separation of computation and communication, used as a starting point
for the proposed object-oriented extensions proposed in this thesis.

Chapter 4: Related Work starts with an overview of previous work used as background of the
work presented in this thesis (Section 4.2). In the following sections, an overview and a
classification of related work along the following topics is presented:

• Section 4.3: Object-oriented communication concepts in Electronic System-Level
(ESL) design

• Section 4.4: SoC communication modeling

• Section 4.5: SoC communication synthesis

• Section 4.6: ESL synthesis methodologies

This chapter closes with a summary of contributions of this work (Section 4.7).

Chapter 5: Methodology, Modeling Elements and Operational Semantics presents the pro-
posed object-oriented methodology, which is a combination of a platform-based design
methodology, called system-level methodology, and an FPGA-based design methodology.
For this purpose, certain combinations of Models of Computation, Architecture, Structure
and Performance have been clustered in four different layers: Behavioral, Application, Vir-
tual Target Architecture and Implementation Layer. In these different layers the associated
design flow is described.

Section 5.2) gives a general overview of the abstraction layers supported by the methodology,
from the pure functional design entry, down to the target platform implementation.

In Section 5.3 the general Object Model used in this thesis is described. In Section 5.4,
Section 5.5 and Section 6.5 the Behavioral Layer, Application Layer and Virtual Target
Architecture Layer modeling elements and their execution semantics is described.

After each of the detailed modeling element descriptions for the Application and the
Virtual Target Architecture Layer in Section 5.5.2 and Section 5.6.2, mapping rules to
establish the design flow for the transitions from one abstraction layer down to another
are presented in Section 5.5.5 and Section 5.6.3. These sections also discuss the necessary
design decisions to drive the mapping process. For the analysis of functional and extra-
functional properties, simulative and analytic techniques can be used on the proposed
abstraction layers. Simulative techniques will be described in more detail in Chapter 6,
while static timing analysis techniques using timed automata is described in the operational
semantics sections 5.4.3 and 5.6.4.

22 1 Introduction

In Section 5.7 only a brief overview of the implementation on the Target Platform Layer
is described. More details about the Virtual Target Architecture to Target Platform Layer
mapping and synthesis step are described in Chapter 7.

This chapter closes with a summary and discussion of the requirements on the methodology
and flow as demanded in Chapter 2.

Chapter 6: Simulation describes the simulation model of the modeling and refinement method-
ology presented in Chapter 5. The simulation covers the presented modeling elements
of the Behavioral, Application and Virtual Target Architecture Layer and the specified
mapping and refinement steps.

Section 6.2 gives a brief overview of SystemC and describes how OSSS (Oldenburg
System Synthesis Subset) extends SystemC. Furthermore, the different layers of the OSSS
simulation library are introduced.

In Section 6.3 the OSSS implementation of the Behavioral Layer is described. The OSSS
Application Layer simulation model elements are described in Section 6.4 and the OSSS
Virtual Target Architecture Layer simulation model elements are described in Section 6.5.

In Section 6.6 the mapping of an executable Application Layer model to a Virtual Target
Architecture Layer model, including an example of simulative architecture exploration, is
described.

This chapter closes with a summary of all supported simulation model elements and the
implemented mapping relations between these modeling elements. The summary closes
with a discussion of the requirements on the simulation or model execution as demanded
in Chapter 2.

Chapter 7: Synthesis presents the OSSS synthesis flow that describes the semi-automatic
transformation from an Application mapped to a Virtual Target Architecture to an FPGA
target platform. The organization of this chapter is described along the implemented
reference synthesis flow.

Section 7.2 gives a detailed overview of the entire OSSS synthesis flow. Section 7.3 describes
the basic parsing and intermediate representation of the input model. Section 7.4 describes
the representation of the Virtual Target Layer modeling elements for the chosen Xilinx
FPGA platform. This is followed by the description of the platform synthesis process
interfacing the specific Xilinx tools in Section 7.5. Section 7.6 describes the library-based
software synthesis approach. Section 7.7 describes the custom hardware synthesis and
Section 7.8 the Shared Object synthesis. Section 7.9 describes the integration with the
Xilinx back-end synthesis and compilation tools to implement the specified system on the
FPGA platform.

This chapter closes with a summary (Section 7.10) and a review of all synthesis related
requirements from Chapter 2.

Chapter 8: Experiments contains experiments for the demonstration and evaluation of the
presented methodology (see Chapter 5), simulation (see Chapter 6) and synthesis (see
Chapter 7). The introduction of this section provides an overview of the presented
experiments, metrics, covered requirements and links to the respective sub-section. This
chapter closes with a discussion of requirements from Chapter 2.

Chapter 9: Conclusion concludes this work along the aims of this thesis from Section 1.3. The
conclusion finally reviews all requirements from Chapter 2 and gives a summary of open
issues and possible future work and research directions.

The appendices of this work contain additional optional material. For a brief overview, the
appendices are organized as follows:

Appendix A: Survey contains a questionnaire that has been conducted in 2005 to obtain
the “Requirements on Hardware/Software Communication Design based on Abstract
Communication Models” [96] in the course of the ICODES project [223]. Participants in

1.5 Outline 23

this questionnaire have been three companies from the automotive, mobile communication
and defense & security domain. The questionnaire has been used to derive requirements
on the methodology of this work, as described in Chapter 2.

Appendix B: Timed Automata Templates and Examples contains additional information
about understanding and reading Uppaal models, used to express the execution semantics
of the modeling elements introduced in Chapter 5. Uppaal models are also used to demon-
strate the analysis of safety and liveliness properties for the introduced object-oriented
communication elements.

Appendix C: Pre-defined Shared Objects contains listings of pre-defined Shared Objects that
replace Shared Variables, Piped Variables, Queues Handshake and Double Handshake
Channels of the Behavior Layer.

Appendix E: Supported Target Platforms contains a description of supported target FPGAs,
prototyping & development boards and basic IP components for the synthesis described
in Chapter 7.

Appendix F: Synthesis Subset gives a short overview of the synthesizable SystemC/OSSS
language constructs accepted by the current implementation of the Fossy synthesis tool,
described in Chapter 7.

Appendix G: Integrated Development Environment gives an overview of the Fossy IDE, based
on the Eclipse CDT Environment. It provides a tool suite for modeling, simulating,
debugging and synthesis of OSSS and SystemCTM designs.

Appendix H: OSSS Behavior Graphs contains plotted structure graphs of three different JPEG
encoder models, described using OSSS Behavior Layer modeling elements. The corre-
sponding experiment can be found in Section 8.2.

CHAPTER 2

Goals of the Methodology

2.1 Introduction

The main goal of the proposed methodology is to improve the design process of digital embedded
hardware/software systems and in this context in particular to improve the design process of
the communication between different system components.

Due to the wide variety of applications and their functional and extra-functional requirements,
embedded systems are realized with many different technologies to meet the requirements of a
certain type of application. These special characteristics of embedded systems make it difficult
to define a single all-purpose design method. As a result the necessary skills and knowledge for
embedded system design are as diverse as the systems that have to be built.

Therefore the concern of this chapter is to restrict the complex view of an embedded system
to a manageable part which can be handled within the scope of the proposed methodology. The
aim is to define the goals of the design methodology from a designer’s point of view, especially
the aspects concerning modeling, analysis, and synthesis of communication in an embedded
SoCs. These goals will also serve for the evaluation of the proposed methodology in Chapter 5.
The goals presented during this section have been extracted from a questionnaire which can be
found in Appendix A. References to certain questions are indicated by Q#, for example Q33 for
question number 33.

The following subsections are organized as follows: Section 2.2 introduces the characteristics
of embedded Systems on Chip that are in the focus of this thesis, followed by Section 2.3 which
gives an overview about certain strategies to implement communication in embedded HW/SW
systems. Section 2.4 describes the goals of the design process with a focus on the communication
between different components. Section 2.5 concludes this chapter and presents an overview of
all goals.

2.2 Embedded Systems on a Chip (SoC)

In Section 1.1 we have given a general definition of embedded systems, their properties and, in
particular, some properties of SoC platforms. This section aims for further restricting the set
of embedded SoCs which can be covered by the proposed design methodology and synthesis
technology.

The class of embedded HW/SW SoCs which will be considered during this thesis typically
consist of software processors, hardware blocks (dedicated hardware accelerators, parallel and
serial I/O components), memories, and interfaces to communication networks as shown in
Figure 2.1.

1http://commons.wikimedia.org/wiki/File:ARMSoCBlockDiagram.png

26 2 Goals of the Methodology

SystemWController

AdvancedWInt0WCtrl0

PowerWMgt0WCtrl0

PLL

Osc

RCWOsc

ResetWCtrl0

BrownoutWDetect

PowerWOnWReset

Prog0WInt0WTimer

WatchdogWTimer

RealWTimeWTimer

DebugWUnit

PIDWCtrl0

JTAG

Scan
Voltage

Regulator

Peripheral

Bridge

M
e

m
o

ry
WC

o
n

tr
o

lle
r

EBI

SRAM

Flash

Flash

Programmer
Peripheral

DataWController

Application/Specific

Logic

CAN

USBWDevice

PWMWCtrl

SynchroWSerialWCtrl

Timer2CounterW7/HADC7/7

TwoWWireWInterface

SPI

USART7/1

EthernetWMAC

P
IO

ARM

Processor

P
IO

P
IO

A
P

B
A

H
B

Figure 2.1: ARM processor based System on Chip1

2.2.1 IP components

With the ability of semiconductor manufacturing technology to integrate several billion transistors
onto a single piece of silicon it is common to build the whole embedded system on a single chip
(system on chip, SoC). Integrated micro-processors have been developed where the processor
is combined with peripherals such as parallel and serial ports, DMA (direct memory access)
controllers and interface logic to create devices that are already suitable for embedded systems
by reducing the hardware design task and costs.

To optimize the design process of embedded systems with respect to development time and
cost, the usage of IP (intellectual property) blocks became of significant importance.

IP blocks are available for many kinds of applications and can cover and affect the whole
design process. IPs are mainly related to implement standard functions and standard interfaces.
Typical IPs are microprocessors, buses, memories and I/O components (see Figure 2.1).

The results of the survey have shown that IP-cores are fundamental components to enable a
fast development and will be used from 0 to 90% during the design process depending on the
certain application which has to be realized.

2.2.2 Software Processors

Software processors are specialized hardware IP components which serve as software execution
units. Each software processor is characterized by a single thread of control, apart from pseudo-
parallelism introduced by (real-time) operating systems. The category of software processors
includes off-the-self microprocessors, micro-controllers, DSPs and application specific processors
(i.e. ASIPs).

2.2 Embedded Systems on a Chip (SoC) 27

All software processors suitable for the proposed methodology have to fulfill certain re-
quirements. The processors should be able to communicate through a shared bus, and they
should also be able to handle at least one external interrupt. Additional I/O ports and internal
peripherals may be useful but not necessary. The processor’s bus interface and interrupts are
essential for building the communication interface to the communication network and thus other
basic components (including other software processors, hardware blocks and memories).

Target architectures suitable for the proposed methodology should be able to support more
than only one software processor in a single platform.

The questionnaire has shown that suitable software processors, with respect to the commer-
cially available target architectures and target platforms, are:

1. hard core software processors: ARM, IBM PowerPC

2. soft core software processors: Altera Nios, Xilinx MicroBlaze

A soft core processor is a synthesizable component described in a hardware description
language. Typically, the provider delivers the hardware description language code with additional
synthesis scripts to ease the task of technology mapping, i.e. implementation for a particular
technology process. Unlike soft core processors, hard core processors already exist as a physical
layout or are even already mapped for a particular technology process.

Software can be seen as the implementation of an algorithm, which is usually a sequence
of instructions. Since most processors have only one thread of execution, parallel behavior
is not supported directly. Nevertheless it is possible to handle multiple concurrent tasks on
one processor. This is done by sharing the processor’s thread of execution among all tasks
which are ready to run. This is called multitasking. It implicates the need for a scheduling
algorithm. Depending on the complexity of the software either a customized scheduler can be
designed or an operating system or real time operating system can be used. As the focus of this
thesis is not on software modeling multitasking and operating systems are not supported in the
presented methodology. An extension of the proposed methodology that enable modeling of
parallel software systems using multitasking and real-time operating systems can be found in
[48, 23, 17].

Embedded SoCs covered in this thesis share the important property of being designed for a
specific application purpose. In contrast to general purpose computer systems like a desktop
PC, the software part of an embedded system is generally fixed for the certain application.

The survey has shown that as source languages for the software in embedded systems often
assembler, C and C++ are used. In the automotive area additionally synchronous languages
like ESTEREL and the data flow language LUSTRE are used.

The entire methodology described in this thesis is implemented as an extension of the System
Level Design Language SystemC. Technically, SystemC is a C++ class library, but from a
methodical point-of-view it can be considered as a C++ extension. For this reason, modeling of
software will be restricted to C/C++. Other software modeling languages can be used if they
can be translated into C/C++ code.

2.2.3 Dedicated Hardware

Hardware blocks can either be pre-designed (i.e. IPs possibly with very restricted access and
therefore only usable as a "black-box") or application specific and custom designed. Usually
hardware blocks can be classified as soft macros (source code, netlist), hard macros (placed &
routed "black-box" e.g. library element) or ASIC (which represents a chip as a whole). To connect
these components with the system’s communication network they must provide an appropriate
communication interface. Hardware blocks which are capable of generating interrupts designated
for a certain software processor or hardware blocks using DMA controllers possibly have to
provide special interfaces to utilize these special communication mechanisms.

In this thesis we assume that application specific hardware is implemented either in a FPGA
(Field Programmable Gate Array) or in an ASIC (Application Specific Integrated Circuit)
or a combination of both. The questionnaire has shown that FPGAs are becoming more
important. The reason for this is that nowadays FPGAs can handle the necessary design
complexity. Furthermore, FPGAs combine the advantages of the flexibility of software through

28 2 Goals of the Methodology

their reconfigurability with the performance of hardware. However, FPGA implementations
have some disadvantages such as higher power consumption and higher per unit cost for large
volumes. Nevertheless, the support for FPGAs has no dramatic effect on the work within thesis,
because modeling will be done on an abstract level, which is largely independent from the
target technology. The final mapping to the desired target technology will be done by existing,
state-of-the-art RTL synthesis tools.

The hardware is composed of several blocks of combinatorial logic and registers as well as
wires connecting them. Therefore it is fully parallel, because the blocks can work independently
from each other. The communication between the hardware blocks is done by signals. The
considered hardware is synchronous that means it is triggered through a common clock signal
which determines the timing behavior. Asynchronous hardware is not regarded in this thesis.

As the complexity of hardware was steadily growing, a more abstract mechanism was needed
to design the hardware. Therefore hardware description languages in conjunction with synthesis
tools are used in the design process. The most common hardware description languages are
VHDL and Verilog. Both of them are are mainly used at RT level. SystemC builds on the
foundations of VHDL and Verilog and will be used to describe custom hardware in this thesis.
A SystemC behavioral RT to VHDL synthesis will be provided to target existing back-end RTL
synthesis tools for custom hardware.

2.2.4 Memory

Memories are essential components in system design and can be treated as a special kind of
pre-designed IP blocks. To use a memory block only its access scheme and access timing are
required. A memory controller with an address decoder providing a communication interface
for the communication network is used to access the memory from various system components.
Software processors essentially need memories to store their data and program. Since hardware
components might also heavily access memories for hardware/hardware or hardware/software
communication, memories in embedded systems are often distributed instead of using a single
monolithic memory.

2.2.5 Communication Interfaces

Communication interfaces provide links between components (that have been described in
the sections above) and the communication network (described in the section below). These
communication interfaces depend completely on the used communication network. Systems with
a heterogeneous communication network, i.e. consisting of different hierarchical buses (with even
possibly different bus protocols) connected by bridges, may include different communication
interfaces dependent on which kind of bus the component is connected to.

The fact that there is no normalized communication interface for IP components often makes
it necessary to build an adapter for the use with a specific communication network.

Components connected to a communication network can be classified in master (client) or
slave (server) components with different communication interfaces. In a master-slave organization
the master starts a transaction by issuing commands and the slave responds by sending/receiving
data to/from the master. When multiple master components are connected to a communication
network, arbitration has to be done in order to share the communication network among
them. This necessary arbitration is done by an arbiter, which can be seen as a part of the
communication network.

Regarding data transfers only, software processors are master components as they are usually
used as central control units which contain the main thread of control. Software processors
capable of handling interrupts can be regarded as both master and slave components whereas
each interrupt handler provides some kind of software slave interface. DSPs and ASIPs as a
special kind of software processors2 can be both master and slave components as well. As DSPs
or ASIPs are often used as co-processors to a general-purpose processor their behavior depends
on the overall system control hierarchy (which can be classified from dependent co-processors
over incrementally controlled and partly dependent co-processors to independent components)

2The DSP itself is equal to any other software processor besides specialization for a different kind of data and
therefore provides a different instruction set.

2.2 Embedded Systems on a Chip (SoC) 29

processes

I/O

processing unit

processes

I/O

processing unit

buffer buffer

channel
processor

dedicated
channel

communication channel

Figure 2.2: Point-to-Point communication [180]

[180]. Dedicated hardware blocks as mentioned above can be either master or slave or both
master and slave dependent on their implemented functionality. Memories are always slave
components as they never initiate any transaction by themselves.

2.2.6 Communication Networks

For SoCs a wide range of communication architectures like shared buses, crossbars, dedicated
point-to-point connections, and network-on-chips (NoCs) exist. This section gives a short
introduction to on-chip communication networks supported by the methodology presented
in this thesis. In contrast to distributed embedded systems, where communication networks
(i.e. Ethernet, LON, EIB, CAN, LIN, FlexRay, MOST etc.) are used to communicate over a
comparatively large distance, on-chip communication networks addresses the inter-component
communication over a shorter distance. NoCs are not addressed in this thesis.

At a high abstraction level communication is established through message passing on
abstract channels. These abstract communication channels have to be mapped to physical
on-chip communication networks as part of the synthesis process.

In the following a point-to-point, a shared bus, and a shared object communication network
for SoCs will be presented.

2.2.6.1 Point-To-Point Communication

In a point-to-point communication (see Figure 2.2) two components are connected via a dedicated
communication channel which optionally is buffered on each component’s side. This buffering
can be used to avoid active waiting and thus allowing the processing unit to proceed with its
operation. The optional channel processor (or arbiter) has to ensure that each logical connection
between processing units is assigned to a single dedicated physical channel at any time. In
embedded SoCs this kind of point-to-point communication is often realized by a communication
network called crossbar switch. In systems where only two components are connected and no
connections to other components occur over time, the channel processor can be omitted and
instead a hard-wired point-to-point connection can realize the communication network.

2.2.6.2 Bus Communication

On the one hand a point-to-point communication architecture achieves a great performance but
on the other hand for huge designs many physical wires are necessary and this would lead to a
big overhead in area consumption. Bus communication tries to overcome this disadvantage. A
bus provides a physical channel which is shared among its connected components. Furthermore
a bus provides a scheduling mechanism for shared medium accesses (as shown in Figure 2.3).
This bus scheduling is usually done by an arbitration unit called bus-arbiter. Performance of
bus communication can be increased by introducing hierarchical buses which are connected by
bridges. Bridges are often used to separate the processor and the memory bus system from the
bus system where the peripherals like timer and I/O components are connected. In this kind of

30 2 Goals of the Methodology

buffer

buffer

bus
arbiter

bus

communication channel

processes

I/O

processing unit

processes

I/O

processing unit

processes

I/O

processing unit

Figure 2.3: Shared bus communication [180]

processes

I/O

processing unit

processes

I/O

processing unit

arbitration

shared object (i.e. memory)

communication
channel 1

communication
channel N

buffer

common
data

Figure 2.4: Shared object communication [180]

hierarchical bus systems the processor’s bus operates at the processor’s clock frequency and the
peripheral bus operates at the peripheral component’s clock frequency, which is usually slower
than the processor clock.

As already described for point-to-point communication the communication interface of each
component can be buffered optionally.

Typical bus systems used in SoC design are: ARM AMBA (Advanced Microcontroller Bus
Architecture), IBM CoreConnect, Altera Avalon, and Silicore/Opencores Wishbone. A summary
of these different bus systems can be found in [145, 84].

2.2.6.3 Shared Object Communication

Figure 2.4 shows shared object communication with the communication channel being either
a point-to-point or bus communication architecture. The access to the shared object has to
be controlled or arbitrated in order to guarantee mutual exclusive access to the data members
it contains. The arbitration of the shared object can be realized in several different ways.
Compared to the bus and point-to-point communication, the shared object communication is a
more abstract concept. As a shared object can be seen as a slave component which responds to
requests of master components, arbitration can either be done by the communication network it

2.3 Communication in Embedded System 31

is connected to, by the shared object itself (slave-side arbitration, in combination with point-
to-point communication channels this is a cross-bar) or even a mixture of both. This kind of
communication is very often used for shared memory communication where the shared object
is represented by (or more precisely includes or encapsulates) a memory or a certain part of a
physical memory. This kind of communication topology is mostly used to avoid multiple copies
of the same data distributed to several memories.

2.2.7 Application mapping

A critical decision in embedded systems is to determine which parts of the design should
be implemented in software and which in hardware. This is called partitioning. Generally,
performance critical components are implemented in hardware while highly configurable or
flexible parts should be implemented in software.

No matter how the system’s functionality is split among the hardware and software, an essen-
tial part of the system is the cooperation of the partitions and consequently the communication,
which will be discussed at Section 2.3 in more detail.

Through a HW/SW interface data, commands and events must be transferred across the
HW/SW boundary. If a computation process is split into hardware and software, intermediate
results have to be transferred for further computation. The interface is neither purely hardware
nor purely software, but a mixture of both.

The HW/SW partitioning decision causes different communication scenarios. Therefore, a
crucial task in system level design is the communication design and the interface synthesis. It
is of great interest to explore as well the different communication alternatives to achieve an
efficient and correct design and implementation of the interfaces.

This also becomes evident in case of modification or maintenance, where changes of hardware
or software components very often entail changes in the interface. Such a modification may be a
re-design of a component, changing its implementation from software to hardware or vice versa.

To summarize this subsection, we have discussed the properties of embedded systems which
are of interest for the design methodology presented in this thesis. We have seen that hardware
and software are both essential and tightly integrated parts of an embedded system. Therefore
the design of an embedded system must equally consider both parts right from the beginning
and throughout the whole design process.

2.3 Communication in Embedded System

One of this thesis’ main issues is the design of the interfaces between hardware and software
components of an embedded SoC. This section presents an overview of typical approaches which
are common in the field of embedded HW/SW systems.

The different communicating processes either implemented in hardware (as components)
or software tasks need a basic concept or mechanism for synchronization and transfer of data,
as shown in Figure 2.5. In addition all communication partners must agree on the same
interpretation of the exchanged data. For example the byte order (little endian and big endian),
alignment and and data types (integer, floating point, ...) representation must be compatible.

In most cases the communication mechanisms are realized by protocols that implement
handshake concepts, which handle the data transfer and the synchronization. These protocols
are mapped to the interface primitives (communication units) provided by the SoC platform.

A communication protocol is a specified sequence of events (transitions) within given timing
requirements that are needed to successfully transfer information and data on a logical or
physical channel. An important criterion of a protocol is that parallel tasks have to synchronize
their actions before they are able to communicate with each other, i.e., they have to perform
some kind of handshake. For instance, if two processes want to communicate, both the sender
process and the receiver process must be ready for the communication and they must be aware
that the partner is also ready.

Since in most cases a shared medium (e.g. a bus) is used by several processes for the
communication, the protocol needs a scheduling and arbitration scheme to determine the
different accesses. For instance, if several processes use the same memory space it has to be

32 2 Goals of the Methodology

Component A

Component B

Component C

Hardware

Task 1

Task 2

Task 3

Software

Interface

Data 1

Data 2

Event

Figure 2.5: HW/SW communication in embedded systems (based on [111])

guaranteed that if a process is writing on the shared memory no other process is reading or
writing. A mutual exclusion is necessary to avoid that more than one process uses the same
data of the memory. To realize mutual exclusion several primitives are known for the software
like semaphores, blocking, mutexes and critical sections.

The communication on the hardware platform can be distinguished in direct and indirect
communication. The usage of direct communication means that the different components
communicate directly over the I/O interfaces without the need of further glue logic components.
The indirect communication indicates that the communication is more complex and the usage
of glue logic like multiplexers, device registers, memories or special controllers is necessary.

Therefore, the demands on the HW/SW communication design are dependent on the
chosen target platform, the processor type, the bus system, existing IP components and the
desired protocol type. This includes the transfer mode, i.e. serial or parallel and which I/O
standards should be used, the transfer type, i.e. synchronous or asynchronous and the available
communication units.

The transfer type, i.e., synchronous or asynchronous bus transaction determines whether the
protocol is defined with respect to the clock or whether a handshake protocol is required.

In a master-slave organization the master starts a bus transaction by issuing commands and
the slave responds by sending/receiving data to/from the master.

2.3.1 Structural inter-component access techniques

To transfer data from the processor to an I/O device (or dedicated hardware) or vice versa, the
processor must be able to address the device and supply one or more command words. There are
basically two methods for this, namely memory mapped I/O and port I/O, which are described
in the following paragraphs.

2.3.1.1 Memory mapped I/O

One traditional and most common interface design (method) is based on so called memory map
tables denoting the mapping of shared data structures to the memory mapped I/O area. These
maps describe in particular the memory address of control information and the access mode.

In memory mapped I/O, portions of the address space are assigned to I/O devices. Reads
and writes to those addresses are interpreted as commands to the I/O device. If the processor
places the address and the data on the memory bus, the memory system ignores the operation,
because the address indicates a portion of the memory space used for I/O. The device controller
recognizes the operation and transmits the data to the device.

For the realization of this method the software designer encapsulates the memory mapping
in functions to access the shared variables and the hardware designer in a VHDL package. The

2.3 Communication in Embedded System 33

encoding and decoding of data types like large integer into bit vectors which fit into the shared
registers has in the most cases to be done manually.

2.3.1.2 Port I/O

Another method for the communication is the usage of dedicated I/O ports of a processor. The
processor provides special instructions for accessing these ports and optionally instructions for
configuring them as inputs or outputs.

2.3.2 Behavioral inter-component access techniques

In order to control the inter-component data transfer, which can be regarded as a sequence of
events specified by a certain protocol, there are two different mechanisms: polling and interrupts.
The data transfer itself can be realized by a software processor by a DMA-Controller or any
other bus master component.

These different mechanisms have different advantages and disadvantages concerning the
processor utilization, the performance and the costs of the I/O system. For this reason an
appropriate solution concerning the desired application has to be chosen. Nevertheless, the
target platform has to support some of the presented mechanisms explicitly in order to control
and realize inter-component data transfer.

2.3.2.1 Polling

Polling is a mechanism in which one component actively checks another component whether an
action is required or if a computation has been finished and the results are available. In most
cases a software component periodically reads status registers of certain custom hardware or
I/O device to check whether an operation is necessary. Hence, the main task is periodically
suspended by the periodic checks.

Polling by its very nature is going to find that no action is required more often than it will
find that servicing is needed. If this is not the case, data could be lost due to under-sampling
which might lead to data over- and under-runs. This means polling spends a lot of time in non-
constructive work. In many embedded systems this is not a problem, but in low power systems,
for example, this unnecessary processing and power consumption might not be acceptable.

If the processor does not perform any other actions than polling, for example because it
cannot proceed with its task without the result it is waiting for, this is called busy waiting.

Polling is also used in hardware to check for incoming data or events. Despite the extensive
parallelism of hardware busy waiting can induce the same negative effects as it has in sequential
software programs. Concerning inter module communication the feasibility of polling depends
on the used hardware/hardware communication network. While polling is no problem when
using point-to-point communication only, it has a major drawback when using shared buses.
Polling easily "pollutes" the bus, which results in a waste of bandwidth. The periodic accesses
to the polled registers also reduce the possible access rate for other module.

To realize hardware/software communication through polling no special hardware components
are required. Polling is supported by any target architecture meeting the requirements above.

2.3.2.2 Interrupts

Interrupts are another way to communicate and synchronize. Interrupts can appear at any time
and are not predictable. Therefore they represent an asynchronous communication mechanism.
The architecture of the embedded system defines the available interrupt mechanism which can
be used by the designer. Typically, an interrupt is sent from a hardware component to one of
the software processors to request servicing. Interrupts alone just carry the information that
an event has occurred. The software part of the application running on the processor handles
the recognized interrupt by so called interrupt service routines (ISR) or interrupt handlers. To
each possible interrupt an associated interrupt handler has to be provided that reacts to the
certain interrupt. The usage of interrupts can be necessary in two cases: On the one hand if an
event has occurred in the hardware or the environment that requires an immediate activity in
the software (ISR has to intervene immediately, possibly complex ISR behavior), on the other

34 2 Goals of the Methodology

hand if the processor has to be informed about the completion of a certain task on a specific
hardware component (ISR sets a flag in software, normally simple ISR behavior). Interrupts
can also be used to send events from one task running on a software processor to another task
running on another software processor.

After an interrupt from the hardware (or another processor) is recognized, the associated
interrupt service routine suspends the current running task on the processor and decides in which
state the system should continue after the execution activated by the interrupt is completed.

If several interrupts are supported by the processor and more than one is active at the same
time, the question is which interrupt has to be served first. One way is to handle the interrupts
by the order in which they have been activated, such that the first interrupt will be served
first and all others will be blocked for that time. This way is applicable for interrupts without
priority and where a short time is necessary to handle the interrupts, including the recognition,
the processing and the return.

Another solution is that the interrupts convey further information like the priority. Con-
sequentially, the priority associated with the interrupts is sufficient to decide which interrupt
handler has to be executed first if more than one interrupt is activated at the same time.

To realize hardware/software communication through interrupts the target architecture
has to fulfill certain requirements. First of all the used software processors must be able to
process at least one interrupt, providing a context switching mechanism and an input port for
the interrupt line. When using multiple interrupt sources with only limited interrupt ports at
the processor, the use of an interrupt controller becomes essential. The interrupt controller
is either connected to the software or to the hardware/software communication network as a
slave component. Additionally it has dedicated unidirectional point-to-point connections to
the interrupt ports of each software processor. An interrupt controller should at least provide
masking and prioritization of interrupts. The advantage of an interrupt driven communication
is that an interrupt eliminates the need for the processor to poll devices and instead allows the
processor to focus on executing the main application. Furthermore, interrupts usually greatly
reduce the latency time between an event is issued and the event is handled.

Since interrupts are suspending the current application running on the processor, many
interrupts can prevent the completion of the main task in an adequate time interval.

Furthermore, with high speed ports, which in turn cause high interrupt frequencies, the cost
of interrupting the processor can be higher than the execution to empty or load a buffer. In
these cases, the limiting factor for the data transfer is the time needed to recognize, to process
and to return from the interrupt. In these situations it is usually more efficient to store the data
locally in a queue/memory and to handle the data transfer via DMA.

2.3.2.3 DMA

Direct memory access (DMA) is a concept to relieve the processor from pure data transfers
between basic system components (hardware block ↔ hardware block, hardware block ↔
memory, memory ↔ memory) and allows it to concentrate on its main task rather than on the
transfer of data.

In the following a DMA-Controller can be understood as a hardware component which is
capable to access a memory or any other peripheral component without occupying the software
processor. Nevertheless, this basic principle is applied in different ways. Thus there are systems
with a central DMA-Coprocessor, but also systems in which every component has its own
decentralized DMA controller.

DMA can be used to reduce the need to interrupt the processor because interrupts are
only issued after a DMA transfer is completed. Based on the assumption that a DMA transfer
encapsulates a sequence of N data transfers the need to interrupt the processor can be reduced
to 1/N compared to a pure PIO3 transfer. This reduction of the interrupt rate can also be
achieved when using bigger buffers and generating an interrupt when the buffer is full. But
nevertheless without using DMA the processor is still occupied with copying data.

To use DMA in conjunction with the communication network of a chosen target architecture
either special hardware components (DMA controller) or special communication interfaces for

3Programmed Input/Output where an interrupt is issued after each data word is available for copying by a
processor

2.4 Requirements on Communication-Centric Design 35

 Requirements

Specification

HW/SW-Partitioning

HW-Implementation SW-Implementation

RTL-Synthesis

Layout/Bitstream Machine Code

Compilation

Modelling
Analysis

Synthesis

Interface

Figure 2.6: Overview of the general design flow and the parts covered in this thesis

each hardware component capable of DMA (in a shared bus architecture these communication
interfaces are classified as bus master or master-slave components) have to be provided. Each
master component issuing a direct memory access requests for the communication network (e.g.
the bus), addresses it and writes directly to the connected memory or other slave peripheral. In
this case some kind of DMA controller is implemented by the hardware component’s master
interface. Generally a DMA controller can be regarded as a special hardware component (master)
connected to the systems communication network capable of issuing data transfers to other
components (slaves).

The DMA controller is a device that can move data between dedicated hardware (i.e. special
I/O components) and memory areas or between memory areas of single or possibly different
physical memories. The DMA controller acts as a hardware implementation of the low-level
buffer filling or emptying interrupt routine. It is preferably used for high bandwidth devices
where the transfer consists primarily of relatively large blocks of data.

For DMA execution the controller needs some parameters that define the data transfer. One
parameter is to determine the memory address which has to be written to or which has to
be read from. Another one specifies the size of the data package to be transferred. The last
parameter encapsulates the information which device has to be informed after the data transfer
is completed.

2.4 Requirements on Communication-Centric Design

This section will describe the requirements on the design process with a focus on the commu-
nication between different components. Figure 2.6 depicts a general overview of the proposed
design flow and highlights the parts covered in this thesis. These include the specification phase
and HW/SW partitioning. For the HW/SW partitioned system description an implementation
of the hardware, software and interface part shall be derived.

For all phases covered in this work, modeling and analysis will be supported. Regarding
synthesis, the specification phase is considered to be covered only partly, because the initial
executable models, written by the designer, are most probably not synthesis able. After manual
refinement following the presented design rules however, the aim is to have an executable
specification of the system including hardware and software parts. This HW/SW partitioned
model will then be further processed automatically through synthesis. The synthesizer generates
the appropriate output language for the target software and hardware parts of the design.

Synthesizable in the context of this thesis relates to the synthesis subset as defined in
Appendix F. The design process from RTL-Synthesis, Software Compilation and below is already

36 2 Goals of the Methodology

HW

B

SW

A

HW

A

Interface

Figure 2.7: Explicit interface objects facilitate component interchangeability

state of the art and not in the focus of this thesis. However, it is absolutely crucial to ensure
that the proposed methodology seamlessly builds on top of existing synthesis technologies in
order to assure a continuous design flow.

The requirements mentioned in the following sections are based on the questionnaire in
Appendix A and are structured according to the design process activities: Modeling, Analysis,
and Synthesis. In the following sections we will discuss the different requirements from the
questionnaire. This chapter closes with a tabular summary of the requirements.

2.4.1 Modeling

The methodology shall provide a modeling language which is able to express hardware and
software components and especially the communication between these (Q44) in a single model.
The modeling language which will be based on SystemC must be able to allow executable
specifications on the one hand and synthesizable specifications on the other hand. The simulation,
i.e. the execution of the specification, shall reflect the system behavior including hardware,
software and their interaction.

As can be seen from the questionnaire (Q4) Matlab/Simulink and C/C++ are very popular
modeling language for the initial specification. In this thesis a Matlab/Simulink entry will not
be supported. But anyhow, using a C code generator for Matlab/Simulink models (e.g. Simulink
Coder aka Real-Time Workshop) enables a manual integration of Matlab/Simulink models in
the supported SystemC-based specification model. Without major manual recoding support
this Matlab/Simulink specification block can only be mapped to Software. Regarding existing
C/C++ models, the same restriction applies. Without manual recoding effort existing C/C++

models can only be mapped to software. Technically, the integration of C/C++ models in our
specification model is straight forward, since SystemC is a C++ library.

In order to show the timing behavior of the HW/SW system, the underlying model needs a
notion of time. The methodology should be able to cover untimed (purely functional) models,
transaction-level models and cycle accurate models, but not all of these models need to be
synthesizable.

The communication between different components plays a central role, due to its importance
in embedded systems as described in Section 2.3. Hence, the methodology needs to provide
modeling elements which allow to describe the communication in such a way that a hardware
implementation of a component can be exchanged by an equivalent software implementation
without changing the rest of the system - or at least with minimal changes. In other words,
the methodology should allow an easy repartitioning of the design. Easy repartitioning is
preferable for the evaluation process and for the usage of IP blocks which may have to be
changed. Therefore the methodology shall provide constructs for a uniform interface description
(Q19) of hardware and software components. This uniform interface is the envisioned mechanism
to allow the interchangeability of components as shown in Figure 2.7.

Besides the requirement of interface objects to facilitate a common handling of software and
hardware components they shall also provide modeling constructs for abstract communication.
For example, method-based or transaction-level interfaces are envisioned instead of signal-level
interfaces as used in VHDL and Verilog.

2.4 Requirements on Communication-Centric Design 37

Such an envisioned mechanism allowing a common interface of hardware and software
components as well as an abstract communication modeling will be based on the concepts of
the so called Shared Objects. These Shared Objects were introduced and used in the former
work for abstract communication (see Section 4.2). Up to now the shared objects have been
limited to HW/HW communication and need to be extended and modified to handle HW/SW
communication as well.

For the hardware modules it is necessary to be still able to describe the modules at RT-
level including constructs like generating for-loops (Q16). Note that this requirement partly
conflicts with requirement of abstract, HW/SW-independent interfaces. For further discussion
see Section 2.5.

Concerning the software, the two most important topics are support of RTOSs (real time
operating system) and multitasking. For these two topics the user requirements diverge, especially
the RTOS support ranges from not necessary to mandatory (Q26). Common, however, is the
growing importance of multitasking and the need to consider timing properties (real time) of the
software (Q27). From the modeling point of view it seems to be most advantageous to keep the
abstract models free from RTOS specifics and to use generic multitasking constructs instead.

Since a design is usually not completely written from scratch a very important issue is the
integration of IP components (Q7). Basically there are two classes of IP components: general
purpose components like CPUs, microcontrollers, DSPs, Memories, etc. and application specific
hardware components like special signal processing blocks, e.g. special filters (Q8), which have
to be regarded.

2.4.2 Analysis

Analysis in the context of this work means execution of the specification and has basically
two purposes (Q5). First, it is done for functional exploration during algorithm development.
Second, it is done for functional verification in order to assure that functional correctness is
preserved during the design process. For this purpose debugging needs to be supported at all
levels of abstraction in the design process (Q33).

There is work in the area of Design Space Exploration (DSE) [5] that explicitly deals with
analysis and (semi-)automatic optimization of further metrics that go beyond the ones mentioned
here. Existing techniques from this research area can be used to guide the designer to find
the optimal architecture and HW/SW partitioning under the given constraints. This will be
an improvement with respect to the current decision process, which is based either on expert
advice/experience or even fixed by a predetermined architecture (Q6).

Currently the functional verification of the system is mainly done by executing the application
on a prototypical hardware or a special development board (Q31). The proposed methodology
shall facilitate a system simulation, i.e. hardware and software, with a reasonably high simulation
performance even for complex systems. It shall be possible to run the system simulation without,
i.e. before, the actual target hardware is available or even determined. The simulation must
reflect the functional behavior of the system as well as basic timing properties of the potential
architecture it will be mapped onto.

Ideally it should be possible to combine models of different levels of abstraction in a single
simulation. For example, combining a clock cycle accurate RTL (register transfer level) hardware
block with an untimed algorithmic block and a software task. This feature will help to establish
a stepwise and incremental refinement process (Q18, Q19, Q20).

Finally, the integration of IP components, which was also a requirement for the modeling
phase, has to be considered for the simulation. Therefore it is necessary for the methodology to
provide concepts to integrate the IP components into the system simulation.

2.4.3 Synthesis

The methodology shall be supported by a (prototypical) synthesis tool. As mentioned before,
synthesis within the context of this work refers to the transformation of the HW/SW partitioned
model into a hardware, software and interface implementation, instead of classical behavioral
synthesis, which is also often called high-level synthesis. Synthesis within the context of this
work will process the HW/SW partitioned system model and produce C/C++ code for the

38 2 Goals of the Methodology

software part (Q35) and VHDL for the hardware part (Q34). The languages ESTEREL and
LUSTRE were also mentioned (Q28), but will not be supported in this work. The generated
software code shall be compliant with C++ standard (ISO/IEC 14882:1998) that it can be
processed with common C++ compilers (e.g. gcc). The generated VHDL code for the hardware
shall be compliant with the synthesizable subsets of Synopsys Design Compiler and Synplify
Pro from Synplicity (Q37). Furthermore, the generated code has to be readable for a human
being such that it is possible to trace problems, bottlenecks or bugs back to the input source
code construct which was the cause of the problem (Q36).

One of the synthesis’ main tasks is to map the abstract communication objects onto concrete
mechanisms such as memory mapped I/O shared memory, interrupts, polling, DMA or proprietary
direct HW/HW communication (Q38, Q39, Q42) and to generate the necessary hardware and
software parts. Especially for the integration of IP components it is necessary that the designer
can control the synthesis in order to enforce a certain communication mechanism, which is
required by the IP component. This can be done for example by constraints in the synthesis
script or by special statements within the source code.

The target technology on which the abstract model can be mapped is described in Section 7.4.
The supported hardware platforms are FPGAs from Xilinx along with its on-chip CPUs (PowerPC
and MicroBlaze) and its on-chip bus systems (Q43). This thesis will not cover RTOS support for
the software part (Q41), extension of this work to support RTOS can be found in [48, 23, 17].

A further requirement for the code generated by the synthesis tool is efficiency (Q32) in
terms of area and critical path (determining fmax, the maximum clock frequency).

2.4.4 Implicit Requirements and Consequences

As described in Section 2.4, SystemC will be used as system modeling language for the software,
the hardware, and the interfaces in between. Although SystemC is based on C++, which is a
software language, SystemC lacks a concept to handle the description of embedded software. As
mentioned before, the simulation kernel handles the progress of time, which is only appropriate
for hardware descriptions. The simulated time advances only at wait() statements and all
other statements do not consume any time. Traditional C++ does not include any explicit
information about the run-time behavior. Therefore simple calls of C++ code within a SystemC
model implicitly assume a zero execution time. Whereas this is sufficient for a pure functional
simulation, it is not sufficient for simulating the interaction between hardware and software.
Hence it is necessary to develop and introduce a notion of time for the software parts of the
model as well. A major concern is the trade-off between accuracy and simulation performance.
For example, a cycle accurate model of the processor including detailed cache behavior will give
very detailed and accurate results, but depending on the model complexity a system simulation
may take too long.

Due to the different nature of Hardware and Software descriptions there will be two different
coding styles, i.e. synthesis subsets: one for the hardware modules and one for the software
modules.

The analysis of the questionnaire has shown that there is a wide variety of IP blocks which
have to be regarded. Within the context of the this thesis, these IP blocks can be classified into
four categories. The first category comprises complete software processing elements, whereas
the second category comprises application specific hardware processing elements. The third
category comprises memory elements, and the fourth category comprises communication routing
infrastructure (e.g. bus, point-to-point, cross-bar, ...). The proposed design methodology needs
to define how the different views (functional, structural) on theses IP components shall be
reflected at the different design phases.

The behavior of application specific IP blocks has to be reflected also at the abstract modeling
level, whereas software processor IP blocks do not have an explicit representation in the abstract
model, but only their influence on the timing of the behavior running on them might be of
interest. IP blocks are becoming even more important during the synthesis phase, because
the abstract model will partly be mapped onto them. For synthesis the integration of existing
VHDL and Verilog IP models shall be possible.

Considering system simulation, the main conflicting topics are the same as for the software
simulation, namely accuracy and simulation performance. To mitigate the problem it should be

2.5 Summary 39

possible to simulate parts of the design on different levels of abstraction. Modules on different
levels of abstraction have different kinds of interfaces, for example method based communication
on the abstract level versus signal based communication on RT level. Therefore a kind of adapter
is needed for the simulation to connect the model on the lower level of abstraction to the one
which is on the higher level of abstraction. In the case of an abstract (high level) model being
synthesized to a lower level implementation, the adapter could be generated by the synthesizer,
too. However, if the designer prefers to describe some of the components directly on RT level,
the adapter to the abstract interface has to be created manually.

2.5 Summary

In Section 2.2 and Section 2.3 the most important aspects of embedded systems with respect
to the work in this thesis have been described. Section 2.4 gave the detailed goals which were
derived from the survey. This conclusion summarizes the goals of the methodology, as presented
in Table 2.1. Most of the goals have been derived from the questionnaire which can be found in
Appendix A. References to certain questions are indicated by Q# (e.g. Q33 for question number
33). Goals that have not been obtained from the questionnaire are marked as "self".

Table 2.1: Summary of the goals of the methodology (G: general, M: modeling, A: analysis, S:
synthesis)

ID Goals Source

G1 Integration of synthesis tool and simulation infrastructure into
Eclipse CDT Framework

self

G2 Introduce a notion of time for the SW parts self

M1 Single modeling language to describe HW and SW Q18

M2 SystemC approach self

M3 Executable Specification and HW/SW partitioned models Q4, Q5

M4 Synthesizable HW/SW partitioned model self

M5 To be able to cover untimed (purely functional) models, transaction-
level models and cycle accurate models

Q20

M6 Methodology needs to provide modeling elements which allow to
describe the communication

Q19, Q44

M7 Easy HW/SW repartitioning of the design (a SW module can be
replaced by a HW module without manually modifying its commu-
nication interfaces)

self

M8 Provide constructs for a uniform interface description Q19

M9 Provide modeling constructs for abstract communication self

M10 Possibility to write hardware modules at RT-level Q16

M11 Support of multitasking Q26

M12 Consideration of (real-)time constraints Q27

M13 Support of operating systems Q41

M14 Integration of IP components Q7, Q9

A1 Debugging on all levels of abstraction Q33

A2 High simulation performance (at least higher that state-of-the-art
RTL simulations)

Q11, Q14, Q17

A3 Basic timing properties shall be reflected by the simulation self

continued on next page

40 2 Goals of the Methodology

Table 2.1: Summary of the goals of the methodology (G: general, M: modeling, A: analysis, S:
synthesis) (continued)

ID Goals Source

A4 Combine models of different levels of abstraction in a single simula-
tion

Q18, Q19, Q20

A5 Consideration of IP components in the simulation Q7

S1 Provide a (prototypical) synthesis tool self

S2 Software output language C++ compliant with C++ standard
(ISO/IEC 14882:1998)

Q35

S3 Hardware language VHDL compliant with the synthesizable subsets
of Synopsys Design Compiler and Synplify Pro from Synplicity

Q34

S4 The generated code has to be readable for a human being Q36

S5 Possibility to map the abstract communication objects onto concrete
mechanisms such as memory mapped IO/ shared memory (using
polling, interrupts and/or DMA) or proprietary direct HW/HW
communication and to generate the necessary HW and SW parts

Q38, Q39, Q42

S6 For the integration of IP components it is necessary that the designer
can control the synthesis and to enforce a certain communication
mechanism, which is required by the IP component

Q7, Q10

S7 Control of the synthesis by constraints in the synthesis script or by
special statements within the source code

Q44

S8 Efficiency of the generated code (for hardware: area and critical
path; for software: memory footprint) compared to a hand-crafted
design

self

CHAPTER 3

Terminology

3.1 Introduction

The chapter will define basic terms used in this thesis. Most of these terms are overloaded and
ambiguously used in different areas of computer science. To avoid any ambiguities this section
will provide a brief definition and describe where in this thesis the definition is required.

This chapter starts with an overview of selected mathematical notations (see Section 3.2)
used in this work. Since this work is about modeling, analysis and synthesis of embedded
hardware/software systems, Section 3.4 introduces four different views on a model: Model of
Computation (MoC), Model of Architecture (MoA), Model of Structure (MoS) and Model of
Performance (MoP). These models are combined in the X-Chart and constrained for usage in
this work.

Section 3.3 briefly introduces timed automata and UPPAAL for the specification of timed
execution semantics and static analysis of the proposed modeling constructs.

An overview different methodologies and a classification of the methodology proposed in
this thesis is presented in Section 3.5. This includes the presentation of a simulation-based
design flow, an introduction to simulation and synthesis. The different design methodologies are
presented using the Y-Chart.

This chapter closes with a generic system-level design representation covering all relevant
MoCs, enabling separation of computation and communication, used as a starting point for the
proposed object-oriented extensions proposed in this thesis.

3.2 Selected Mathematical Notations

This section gives and overview and short explanation of the mathematical notations used in
this thesis.

Definition 3.2.0.1 (Formulas or predicates):

T true

F false

¬P not P

P ∨Q P or Q

P ∧Q P and Q

P ⇒ Q P implies Q

P = Q P equals Q

42 3 Terminology

∀x : P for all x, P holds

∃x : P there exists x such that P holds

∃!x : P there exists exactly one x such that P holds

∀x ∈ A : P for all x in A,P holds

∃x ∈ A : P there exists x in A such that P holds

∃!x ∈ A : P there exists exactly one x in A such that P holds

x ∈ A x is an element of set A

�

Definition 3.2.0.2 (Sets):

{x | P} the set of all x that satisfy P

A ∪B the union of sets A and B

A ∩B the intersection of sets A and B

�

Definition 3.2.0.3 (Tuples):
For an arbitrary domain D and for elements d1, d2, . . . , dn ∈ D, the according n-tuple is written
in the following notations:

unrolled: (d1, d2, . . . , dn)

indexed: (di)i∈{1,...,n}

The domain of tuples of length n is written D1,n:

D1,n := {(di)i∈{1,...,n} | di ∈ D}

The empty tuple will be written ǫ.
The length of tuples of arbitrary domains D can be obtained using | · | metrics:

|D1,n| = n

|ǫ| = 0

The domain of vectors of length n is written D
n
, where D denotes vectors of dynamic length:

D
n

:=

d1

...
dn

 | di ∈ D

The length of vectors can also be obtained using the | · | metrics:

|Dn| = n : for static vectors

|D| = m, with m ∈ N≥0 : for dynamic vectors

�

Definition 3.2.0.4 (Kleene Closure):
Given an arbitrary domain D, we define:

D+ =
⋃

n∈N

D1,n

D∗ = D+ ∪ {ǫ}

�

3.3 Timed Automata 43

Definition 3.2.0.5 (Powerset):
For an arbitrary domain D, let ℘(D) be its powerset, i.e., the set of all subsets of D.

℘(D) := {D′ |D′ ⊆ D}

�

Definition 3.2.0.6 (Image):
Given a function f : M → N and a set M ′ ⊆M , the image of M ′ will be written f(M ′) and is
defined as follows:

f(M ′) := {f(m) |m ∈M ′}

The image of f is a special case f(M). �

3.3 Timed Automata

This section provides the basics of timed automata [186] used to describe the operational
semantics of the proposed modeling language in Chapter 5.

3.3.1 Definition

A timed-automaton is a finite-state machine extended with clock variables. It uses a dense time
model where a clock variable evaluates to a real number. All clocks progress synchronously. A
system can be modeled as a network of timed atuomata in parallel. For improving the applicability
of timed automata the basic timed atuomata model is further extended with bounded discrete
variables that are part of the state. These variables can be used as in imperative programming
languages. Variables can be read, written, and are subject to arithmetic operations. A state
of such an extended timed automata system is defined by the locations of all automata, the
clock values, and the values of the discrete variables. Every automaton may fire an edge (or
transition) separately or synchronize with other automaton, leading to a new state.

We use the following notations: C is a set of clocks and B(C) is the set of conjunctions over
simple conditions of the form x ⊲⊳ y or x− y ⊲⊳ c, where x, y ∈ C, c ∈ N and ⊲⊳∈ {<,≤,=,≥, >}.
A timed-automaton is a finite directed graph annotated with conditions over and resets of
non-negative real valued clocks.

Definition 3.3.1.1 (Timed Automaton (TA)):
A timed automaton is a tuple A = (L, l0, C,A,E, I), where
• L is a set of locations,
• l0 ∈ L is the initial location,
• C is the set of clocks,
• A is a set of actions, co-actions (synchronization with other automata through channels.
c! for notification of an event on channel c and c? for the reception of an event on channel
c) and the internal τ -action,

• E ⊆ L× A× B(c)× 2C × L is a set of edges between locations with an action, a guard
and a set of clocks to be reset, and
• I : L→ B(C) assigns invariants to locations.

�

A clock valuation is a function u : C → R≥0 from the set of clocks to the non-negative reals.
Let R

C be the set of all clock valuations. Let u0(x) = 0 for all x ∈ C. Guards and invariants
are considered as set of clock valuations, writing u ∈ I(l) meaning that u satisfies I(l).

Definition 3.3.1.2 (Semantics of TA):
Let (L, l0, C,A,E, I) be a timed automaton. The semantics is defined as a labeled transition
system 〈S, s0,→〉, where
• S ⊆ L× R

C is the set of states,
• s0 = (l0, u0) is the initial state, and
• →⊆ S × (R≥0 ∪A)× S is the transition relation

44 3 Terminology

such that:
1. (l, u)

d−→ (l, u+ d) if ∀ d′ : 0 ≤ d′ ≤ d =⇒ u+ d′ ∈ I(l), and
2. (l, u)

a−→ (l′, u′) if ∃ e = (l, a, g, r, l′) ∈ E such that u ∈ g, u′ = [r 7→ 0]u, and u′ ∈ I(l′),
where for d ∈ R≥0, u+ d maps to each clock x in C to the value u(x) + d, and [r 7→ 0]u denotes
the clock valuation which maps each clock in r to 0 and agrees with u over C \ r. �

Timed automata can be composed into a network of timed automata over a common set
of clocks and actions, consisting of n timed automata Ai = (Li, l

0
i , C,A,Ei, Ii), 1 ≤ i ≤ n. A

location vector is a vector l = (l1, . . . , ln). We compose the invariant functions into a common
function over location vectors I(l) = ∧iIi(li). We write l[l′i/li] to denote the vector where the
ith element li of l is replaced by l′i. The semantics of a network of timed automata is defined as
follows.

Definition 3.3.1.3 (Semantics of a network of TA):
Let Ai = (Li, l

0
i , C,A,Ei, Ii) be a network of n timed automata. Let l0 = (l01, . . . , l

0
n) be the

initial location vector. The semantics is defined as a transition system 〈S, s0,→〉, where
• S = (L1 × · · · × Ln)× R

C is the set of states,
• s0 = (l0, u0) is the initial state, and
• →⊆ S × S is the transition relation defined by:

1. (l, u)
d−→ (l, u+ d) if ∀ d′ : 0 ≤ d′ ≤ d =⇒ u+ d′ ∈ I(l).

2. (l, u)
a−→ (l[l′i/li], u

′) if ∃ li τgr−−→ l′i such that u ∈ g, u′ = [r 7→ 0]u and u′ ∈ I(l[l′i/li]).

3. (l, u)
a−→ (l[l′j/lj , l

′
i/li], u

′) if ∃ li c?giri−−−−→ l′i and lj
c!gjrj−−−−→ l′j such that u ∈ (gi ∧ gj), u′ =

[ri ∪ rj 7→ 0]u and u′ ∈ I(l[l′j/lj , l
′
i/li]).

�

3.3.2 Graphical notation in Uppaal

In this thesis timed automata will be used for the definition of the operational semantics for all
modeling elements introduced in Chapter 5.

Instead of pure timed automata we will use the Uppaal extended timed automata model.
Uppaal [233] is a toolbox for verification of real-time systems. The tool is designed to verify
systems that can be modeled as networks of timed automata extended with integer variables,
structured data types, user defined functions, and channel synchronization. In the following, the
graphical notation used by Uppaal will be briefly introduced.

Figure 3.1 gives a graphical example of a timed automata network in Uppaal. The example
consists of two timed automata templates Sender(chan &a) (3.1a) and Receiver(chan &a)

(3.1b) each of them has a local clock x.
The sender automata performs a binary synchronization on channel a every 4 time units.

The invariant x<=4 in the initial location start specifies, that this location can be active for
up to 4 time units. The clock guard x==4 on the transition requires to leave location start at
exactly 4 time units, the synchronization on channel a is performed and the clock is set to start
counting from zero again (x=0).

The receiver automata works in a similar way. The initial location start is active for 3
time units. The following location state1 is a committed location. This special location is
semantically equivalent to adding an extra clock y, that is reset on all incoming edges, and
having an invariant y<=0 on the location. Hence, time is not allowed to pass when the system
is in an committed location. Furthermore, a committed location cannot delay and the next
transition must involve an outgoing edge of at least one of the committed locations. Location
state2 is active for 1 time unit and synchronizes with channel a before returning to the initial
location.

Figure 3.1c visualizes the instantiation of the timed automata templates Sender and
Receiver, cp. Listing 3.1.

Figure 3.1d shows the Message Sequence Chart of a symbolic simulation of the timed
automata system from Figure 3.1c. Each automata’s lifeline (vertical lines) depict the sequence
of active locations. The synchronization via channel a is shown as a horizontal line.

3.3 Timed Automata 45

start
x==4

x=0
a!

x<=4

(a) Sender TA Template

x==1

start state1

x==3
x=0

x=0

state2

x<=3

a?

x<=1

(b) Reciever TA Template

(c) TA System/Network

S R

start start

state1

start state2

start start

a

(d) Message Sequence Chart

Figure 3.1: Graphical representation of a timed automata network in Uppaal

1 chan a;
2 S ← Sender(a);
3 R ← Receiver(a);
4 system S, R;

Listing 3.1: Timed automata system shown in Figure 3.1c

3.3.3 Synchronous Value Passing

The different flavors of sender and receiver synchronization over shared binary channels and data
exchange via shared variables1 can be modeled in Uppaal. More specifically, Uppaal enables
modeling of asymmetric and symmetric sender and receiver synchronization. In asymmetric
synchronization one process acts as sender and another process acts as sender, see Figure 3.2a. In
symmetric synchronization a process can be sender and receiver at the same time, i.e. a process
can non-deterministically choose to act as either the sender or the receiver (see Figure 3.2b).

In [120] the following four variations of Synchronous Value Passing are described:

“In one-way value passing a value is transferred from one process to another, whereas
two-way value passing transfers a value in each direction. In unconditional value passing,
the receiver does not block the communication, whereas conditional value passing allows the
receiver to reject the synchronization based on the data that was passed.

In all four cases, the data is passed via the globally declared shared variable var and
synchronization is achieved via the global channels c and d. Each process has local variables
in and out. Although communication via channels is always synchronous, we refer to a c!

as a send-action and c? as a receive-action.
1Uppaal evaluates the assignment of the sending synchronization first, the sender can assign a value to the

shared variable which the receiver can then access directly.

46 3 Terminology

Unconditional Conditional

O
n
e-
w
a
y c!

var := out

‚

‚

‚

‚

‚

c?
in := var,

var := 0

c!
var := out

‚

‚

‚

‚

‚

cond(in)

c?
in := var,

var := 0

A
sy
m
m
et
ri
c
tw

o
-w

a
y c!

var := out

d?
in := var,

var :=0

‚

‚

‚

‚

‚

c?
in := var

d!
var := out

cond1(var)

c!
var := out

d?
in := var,

var :=0

‚

‚

‚

‚

‚

cond2(in)

c?
in := var,

var := out

d!

(a) Asymmetric synchronization

cond(var) cond(in)

c!

var := out

in := var,

var := 0

d?

c?

in := var,

var := out

d!

(b) Symmetric synchroniza-
tion

Figure 3.2: Sender and receiver synchronization styles in timed automata [120]

In one-way value passing only a single channel c and a shared variable var is required.
The sender writes the data to the shared variable and performs a send-action. The receiver
performs the co-action, thereby synchronizing with the sender. Since the update on the
edge with send-action is always evaluated before the update of the edge with the receive-
action, the receiver can access the data written by the sender in the same transition. In
the conditional case, the receiver can block the synchronization according to some predicate
cond(in) involving the value passed by the sender2.

Two-way value passing can be modeled with two one-way value passing pattern with
intermediate committed locations. The committed locations enforce that the synchronization
is atomic. Notice the use of two channels: In the conditional case each process has a predicate
involving the value passed by the other process. The predicates are placed on the invariants
of the committed locations and therefore assignment to the shared variable in the second
process must be moved to the first edge.” [120]

3.3.4 Properties

Uppaal uses a simplified version of TCTL (Timed Computation Tree Logic). Like in TCTL, the
query language consists of path formulae and state formulae. State formulae describe individual
states, whereas path formulae quantify over paths or traces of the model. Path formulae can be
classified into reachability, safety and liveness. Figure 3.3 illustrates the different path formulae
supported by Uppaal. Each type is described below.

3.3.4.1 State Formulae

A state formula is an expression that can be evaluated for a state without looking at the behavior
of the model. For instance, this could be a simple expression, like i == 7, that is true in a state
whenever i equals 7. It is also possible to test whether a particular process is in a given location
using an expression on the form P.l, where P is a process and l is a location.

In Uppaal, deadlock is expressed using a special state formula. The formula simply consists of
the keyword deadlock and is satisfied for all deadlock states. A state is a deadlock state if there
are no outgoing action transitions neither from the state itself or any of its delay successors. Due

2The intuitive placement of this predicate is on the guard of the receiving edge. Unfortunately, this will not
work as expected, since the guards of the edges are evaluated before the updates are executed, i.e., before the
receiver has access to the value. The solution is to place the predicate on the invariant of the target location.

3.3 Timed Automata 47

A[] ϕ

A<> ϕ

E<> ϕ

E[] ϕ

ψ

ϕ ϕ

ϕ

ψ ϕ

Figure 3.3: Path formulae supported in Uppaal. The filled states are those for which a given
state formulae φ holds. Bold edges are used to show the paths the formulae evaluate on [120].

to current limitations in Uppaal, the deadlock state formula can only be used with reachability
and invariantly path formulae.

3.3.4.2 Reachability Properties

Reachability properties ask whether a given state formula, ϕ, possibly can be satisfied by any
reachable state. Another way of stating this is: Does there exist a path starting at the initial
state, such that ϕ is eventually satisfied along that path. The path formula E♦ϕ expresses that
some state satisfying ϕ should be reachable. In Uppaal, this property is expressed by E<> ϕ.

3.3.4.3 Safety Properties

Safety properties are of the form: "something bad will never happen". A variation of this property
is that "something will possibly never happen". In Uppaal these properties are formulated
positively, e.g., something good is invariantly true. Let ϕ be a state formulae. The path formulae
A�ϕ expresses that ϕ should be true in all reachable states. E�ϕ says that there should exist
a maximal path3 such that ϕ is always true. In Uppaal the properties are expressed by A[] ϕ
and E[] ϕ, respectively.

3.3.4.4 Liveness Properties

Liveness properties are of the form: "something will eventually happen". In its simple
form, liveness is expressed with the path formula A♦ϕ, meaning ϕ is eventually satis-
fied. The more useful form is the leads to or response property, written ϕ ψ which
is read as whenever ϕ is satisfied, then eventually ψ will be satisfied. ϕ ψ is equiva-
lent to A�(ϕ⇒ A♦ψ). In Uppaal these properties are written as A<> ϕ and ϕ –> ψ, respectively.

For more details about the specific Uppaal extension, refer to the Uppaal tutorial [120].

3A maximal path is a path that is either infinite or where the last state has no outgoing transitions.

48 3 Terminology

3.4 Model of Computation, Architecture, Structure and
Performance

Definition 3.4.0.1 (Model):
A model is a limited image of the (physical) reality. According to Herbert Stachowiak (General
Model Theory [202] page 131-133) a model is characterized by at least three attributes:

1. Image - A model is always a model of something, an image representation of a natural or
an artificial original, which itself can be a model again.

2. Reduction - in general a model does not capture all attributes of the original, but only
those that appear to relevant to the creator of the model.

3. Pragmatism - models are not uniquely associated with their original per se. They fulfill
their replacement function

a) for certain subjects (for whom?),

b) within certain time intervals (when?), and

c) under certain restrictions on mental or physical operations (for what?).

�

In this work models will be used to obtain different views of a System on Chip (SoC) under
design. The main purpose of our models is to observe, predict and reason about properties of a
SoC design. In particular we will distinguish between the following models:

3.4.1 Model of Computation (MoC)

We use the term Model of Computation (MoC) to focus on issues of concurrency and time. In
literature different definitions can be found [99, 170, 127, 173, 174]. In this work a MoC defines
the time representation and the semantics of communication and synchronization between
processes in a process network. Thus, a MoC defines how computation takes place in a structure
of concurrent processes, hence giving a semantics to such a structure [134, 122]. This semantics
can be used to formulate an abstract machine that is able to execute a model.

As stated in [99] a model of computation should support the following properties:

Implementation independence An abstract model should not expose details of a possible
implementation, e.g. which kind of processor used, how much parallel resources available,
what kind of hardware implementation technology used, details of the memory architecture,
etc. Since a model of computation is a machine abstraction, it should by definition avoid
unnecessary machine details. The benefits of an abstract model include, that analysis
and processing is faster and more efficient, that analysis results are relevant for a larger
set of implementations, and that the same abstract model can be directed to different
architectures and implementations. The drawback of this abstraction is is reduced analysis
accuracy due to a lack of knowledge of the target architecture that can be exploited for
modeling and design.

Composability Since many parts and components are typically developed independently and
integrated into a system, it is important to avoid unexpected interferences. Thus some
kind of composability property [136] is desirable. One step in this direction is to have
a deterministic computational model such as Kahn process networks, that guarantees a
particular behavior independent of the time individual activities and independent of the
amount of available resources in general.

Analyzability A general trade-off exists between the expressiveness of a model and its analyz-
ability. By restricting models in clever ways, one can apply powerful and efficient analysis
and synthesis methods. For instance, the Synchronous Data Flow (SDF) model [195]
allows all actors only a constant amount of input and output tokens in each activation

3.4 Model of Computation, Architecture, Structure and Performance 49

cycle. While this restricts the expressiveness of the model, it allows to efficiently compute
static schedules when they exist. For general datafow graphs this may not be possible
because it could be impossible to ensure that the amount of input and output is always
constant for all actors, even if they are in a particular case. Since SDF covers a fairly large
and important application domain, it has become a very useful model of computation.

To choose the "right" model of computation is of utmost importance, since each MoC has
certain properties, regarding expressiveness and analyzability. Generally speaking there is a
trade-off between expressiveness and analyzability: The more freedom and flexibility a MoC
allows to the designer, the less properties (like schedulability, deadlock freedom, or memory
boundedness) can be guaranteed. Depending on the application (data flow or control dominated)
and the requirements on the overall system (e.g. hard real-time system, no real-time constraints)
the MoC is chosen.

Following [122, 99] MoCs can be organized according to their time abstraction. In this work
the following MoCs will be considered:

• untimed sequential: Pure functional models, written in the sequential programming
languages C and C++ will be used to describe functionality, see Section 3.6.

• untimed process networks: For explicitly expressing concurrency or explicitly specify-
ing potential concurrency at application level, untimed sequential blocks can be composed
in an untimed process network. Classical examples for untimed process networks are
Kahn Process Networks (KPN) [200] and Synchronous Data Flow (SDF). In this work we
consider a more flexible MoC, called Program State Machine (PSM) (see Section 3.6.2).
This model is a superset of KPN and SDF and allows the integration of state-based MoCs,
like Finite State Machines (FSM) and their combination with data flow oriented models.
While PSMs can be used to capture untimed process networks, the leave behavior blocks
of PSMs can also be annotated with execution times, leading to a timed MoC.

• discrete event: A PSM MoC with annotated execution times is a timed discrete event
model. For the implementation of an executable timed PSM model we will use SystemC
(see Chapter 6) that implements discrete event semantics.

• continuous time: To formally define and analyze the protocol, synchronization behavior
and timing properties of a timed process network we will make use of Timed Automata
(TA) (see Section 3.3). Timed Automata are using a continuous time model.

Figure 3.4 gives an overview of the different classes of Models of Computation used in this
work. Each point (A) - (F) represents a different design model. The axes span up a computation
and communication refinement space from un-timed specification over approximate-timed
intermediate to cycle-timed implementation models. The reason for separating computation and
communication refinement is to support the "divide and conquer" principle supported by modern
system-level design languages (ref. "orthogonality" in Section 3.6.1). The arrows between the
design points describe possible refinement paths. The red solid arrows depicts the shortest path
from a specification to an implementation model.

In this thesis the following combinations of Models of Computation and time models will be
used for the different design models:

• (A): The Program State Machine (PSM) MoC (see Section 3.6.2) is used for un-timed
specification models. The implementation of this MoC is realized through mapping it to a
Discrete Event (DE) time model (see Section 6.3).

• (B),(C): Approximate-timed computation and un-timed (B) and approximate-timed (C)
communication models will be represented through Timed Communicating Sequential
Process (TCSP) (see Section 5.5). In this model the execution time of computations and
the communication time is annotated in dense time intervals (i.e. continuous time) using
a timed automata representation (see Chapter 5). The implementation of the TCSP MoC
is realized through mapping it to a Discrete Event (DE) time model (see Section 6.4).

50 3 Terminology

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

PSM

(UT -> DE)

TCSP

(CT -> DE)

TCSP

(CT -> DE)

TCSP

(CT -> SDE)

FSMD

(SDE)

TCSP

(SDE)

Figure 3.4: Classes of Models of Computation used in this work (PSM = Program State
Machine, TCSP = Timed Communicating Sequential Process, FSMD = Finite State Machine
with Data-path) and their time models (UT = Un-Timed, DE = Discrete Event, SDE =
Synchronous Discrete Event, CT = Continuous Time). The "->" symbol denotes a mapping
from the specification to the implementation time domain (chart inspired by [131]).

• (D): Same as (B) and (C). Due to the clock-cycle accuracy of communication, the
implementation of the TCSP MoC is realized through mapping it to a Synchronous
Discrete Event (DE) time model (see Section 6.5). The overall system description is
synchronous to a global clock signal.

• (E): Same as (D), but without a continuous time representation in the specification model.

• (F): The final implementation system is represented as a network of clock cycle accurate
Finite State Machine with Datapath (FSMD) realized in a Synchronous Discrete Event
model.

In this work we will focus on: (A) Behavioral Layer Model (see Section 6.3), (B) Application
Layer Model (see Section 6.4), (C)(D) Virtual Target Architecture Layer Model (see Section 6.5),
and (F) Implementation Model (see Section 7.4).

3.4.2 Model of Architecture (MoA)

A Model of Architecture describes an architecture template, e.g., available resources (processing
elements, storage elements, and communication elements), their capabilities (or services) and
their interconnections. As well as the classification of behavioral models into MoCs, specific
ways of describing architecture templates can be generalized into MoAs [143]. In this sense a
MoA describes the characteristics underlying a class of platform models in order to evaluate
richness of supported target architectures. Such architecture templates can be coarsely sub-
divided based on their processing, memory and communication hierarchy [55]. For processing
elements, this includes single-processor systems, hardware/software processor or co-processor
systems, homogeneous (symmetric), and heterogeneous (asymmetric) multi-processor/multi-core
systems (MPSoCs). Memory elements can be subdivided into shared and distributed memory
architectures. Communication architectures can be grouped into shared bus-based, dedicated
point-to-point or packet-based Network-on-Chip (NoC) approaches. Beside the architecture
template, constraints typically contain mapping restrictions and additional constraints on extra-
functional properties like maximum and minimum clock frequency per architecture element,

3.4 Model of Computation, Architecture, Structure and Performance 51

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

None Abstract PE

Abstract PE

TLM Channel

Memory

Abstract PE

Hier. Channel

Memory

CA PE

Signal

CA Memory

CA PE

TLM Channel

Memory

Figure 3.5: Classes of Models of Architecture used in this work, PE = Processing Element, CA
= Cycle-Accurate (chart inspired by [131])

minimum/maximum size of memory elements, and minimum/maximum width of communication
elements.

In this work we will consider a reduced set of MoAs with the following elements:

Processing Elements can be single processors with local data and instruction memory including
communication interface to a bus or dedicated point-to-point communication infrastructure.
We call this processing element with local memory Processing Element Tile. Different of
these Processing Element Tiles can can be combined to a heterogeneous multi-processor
system. Each Tile of this heterogeneous system can have a different kind of single processor
(i.e. micro- and instruction-set architecture) including peripheral components.

Memory Elements are distributed among Processing Element Tiles to facilitate communication
between applications running on different Tiles. This distributed and shared memory
is protected for concurrent access using special communication wrappers, called Shared
Object.

Communication Elements are shared buses with configurable protocol and bus width, and
dedicated bidirectional point-to-point channels with configurable send and return bitwidth.

Figure 3.5 provides an overview of classes of Models of Architecture used in this work. The
semantics of the diagram are the same as for Figure 3.4.

In this thesis the following Model of Architecture elements will be used:

• (A): No architectural elements are used.

• (B): Abstract Processing Elements (PEs) are used to describe the entity of a processor
(which can be a software processor or custom hardware block). Each PE is an abstrac-
tion from its synthesizable and cycle accurate implementation and only represents a) a
computing resource as a structural block, b) interfaces to communication channels c)
extra-functional properties or requirements (e.g. min and max clock frequency, technology
node dependent chip area).

• (C): Same as in model (B) but with communication between PEs and Memories are
specified by TLM Channels. A TLM channel abstracts from the cycle accurate protocol and
the internal structure of an on-chip bus or point-to-point connection. Communication is

52 3 Terminology

described through send and receive service calls with annotated delays. Channel arbitration
is can be modeled on transaction granularity. Memory elements represent different kinds
of on- and off-chip memories including their controllers. Memory blocks accurately capture
the total size and read/write delays of their physical counterparts. The memory layout
(padding and alignment) is not captured, assuming a perfectly packed memory.

• (D): Same Abstract Processing and Memory Elements as used in (C). Communication
between PEs and Memories are specified by a bit and cycle accurate bus protocol descrip-
tion. For connecting this cycle accurate communication model with the approximately
(non-bit accurate) PE and Memory models transactor components are used. These trans-
actors translate from send and receive service calls to the bit and cycle accurate channel
protocol. The transactors and the bit and cycle accurate channel models are combined in
a Hierarchical Channel model (see Section 6.5.3).

• (E): Same communication channel and memory elements as used in (C). All PEs are
described on a bit and cycle-accurate level. For software processors this is an Instruction
Set Architecture (ISA) accurate specification. For custom hardware it is a clock cycle and
bit accurate FSMD specification.

• (F): Same processing element granularity as used in (E) and same communication channel
granularity as used in (D), but without transactors because all connected components are
specified at bit and cycle accurate granularity. The Memory Elements are specified bit
and cycle-accurate including representation of processing element specific memory layout
(alignment and padding).

3.4.3 Model of Structure (MoS)

Based on the combination of MoCs for component-internal behavior and functional semantics,
the term Model of Structure for separate classification of such implementation representations
and their architectural or structural semantics can be introduced. A MoS allows characterization
of the underlying abstracted semantics of a class of structural models independent of their syntax.
Hence, MoSs can be used to compare expressibility and analyzability of specific implementation
representations. For example, at many levels a netlist concept is used with semantics limited to
describing component connectivity. At the system level, pin-accurate models (PAMs) combine
a netlist with bus-functional component models. Furthermore, transaction-level modeling
(TLM) concepts and techniques are employed to abstract away from pins and wires. Similar
to behavioral models, structural models are often represented in a programming language,
system-level description language (SLDL) or hardware description language (HDL).

In this work the following different MoSs will be used to represent the structure of the system
at different abstraction levels (see Figure 3.6):

• Hierarchical Behavior Model for capturing a pure sequential functional system de-
scription in a hierarchical parallel implementation independent structure.

• Flat Process Network Model represents a computational refined pre-implementation
structure of the application. Processes contain sequentially scheduled behaviors and
communicate through Shared Objects. A process can be implemented in software or in
hardware. Shared Objects are implemented as dedicated hardware resources.

• Transaction Level Model represents an implementation model with processes mapped to
Processing Element Tiles or dedicated Hardware Processing Elements. Shared Objects are
represented as dedicated Hardware Communication Processing Elements. Communication
between Processing Element Tiles, dedicated Hardware Processing Elements, and Hardware
Communication Elements is represented by Routing Elements that represent configurable
shared buses of point-to-point channels. Each Routing Element implements a transport
function that transfers a Communication Payload (Transaction) from a sender to its
receiver. These routers abstract from any signal level structural details.

• Pin Accurate Netlist Model represents a Transaction Level Model with signal level
structural details of each Communication/Routing Element.

3.4 Model of Computation, Architecture, Structure and Performance 53

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

Hierarchical

Behaviors

FPN

FPN with

TA Channels

FPN with

PA Channels

CP with

PA Channels

CP with

TA Channels

Figure 3.6: Classes of Models of Structure used in this work, FPN = Flat Process Network, TA
= Transaction-Accurate, PA = Pin-Accurate, CP = Clocked Process (chart inspired by [131])

3.4.4 Model of Performance (MoP)

A Model of Performance refers to the overall accuracy and granularity in time and memory
space. Generalizing from the detailed definitions of specific performance models, such as timing,
power or cost/area models, a MoP can be used to judge the accuracy of the quality numbers and
the computational effort to get them. Quality numbers are often used as objective values during
design space exploration when identifying the set of optimal or near-optimal implementations.

Figure 3.7 gives a graphical representation of different classes of timing granularity for
Models of Performance. The two axes span a vector space with independent Computation
and Communication components. This construction enables different timing granularity for
computation and communication during the top-down refinement. In Section 3.6.2 the rational
behind this separation of computation and communication will be described in more detail. The
arrows between the different MoPs define possible paths in the refinement from an untimed
system specification (A) to a full cycle-accurate model (F).

In this thesis the following timing granularities will be considered:

(A) Untimed Functional Model (UFM) is a pure functional model with a defined execu-
tion order (this can be a partial order to express concurrency) of functions and explicit
synchronization between partly ordered functions. UFMs are used to capture causality in
system specification models.

(B) Timed Functional Model (TFM) is an extension of the UFM with approximated
execution time/duration annotations for computation elements.

(C) Transaction-Level Model (TLM) is an extension of the UFM with execution time/dura-
tion annotations for computation elements and approximated communication time/duration
annotations of communication elements.

(D) Bus Cycle-Accurate Model (BCAM) is an extension of the TLM with execution
time/duration annotations for computation elements and cycle accurate communication
elements.

(E) Computation Cycle-Accurate Model (CCAM) is an extension of the TLM with
cycle accurate computation elements and approximated communication time/duration
annotations of communication elements.

54 3 Terminology

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

UFM TFM

TLM

BCAM CAM

CCAM

(A) Untimed Functional Model (UFM)

(B) Timed Functional Model (TFM)

(C) Transaction-Level Model (TLM)

(D) Bus Cycle-Accurate Model (BCAM)

(E) Computation Cycle-Accurate Model (CCAM)

(F) Cycle-Accurate Model (CAM)

Figure 3.7: Classes of timing granularity for Models of Performance (based on [27])

(F) Cycle-Accurate Model (CAM) is an extension of the TLM with cycle accurate compu-
tation and communication elements.

In this work we will focus on (A) Untimed Functional Models (UFM) for specification models,
(B) Timed Functional Models (TFM) for times specification models, (C) Transaction Level
Models (TLM) for hardware/software partitioned models, (D) Bus Cycle-Accurate Models
(BCAM) for the virtual platform models, and (F) Cycle-Accurate Models (CAM) for the
implementation models.

Performance models can be subdivided into the following three classes:

Simulative performance models require an executable representation of the Design Under Test
(DUT), an executable input model that generates stimuli for the DUT, and an executable
monitor that compares the results of the DUT for each stimulus with the expected result.
Simulation techniques are widely used for functional test and performance analysis. The
quality and value of a simulation depends on the chosen set of test vectors in the stimuli
set. The main advantage of simulative performance models is that they are able to capture
the function and structure of very complex systems on different abstraction levels. The
main drawback of simulative approaches is their incompleteness regarding the simulation
of all possible combination of input values.

In this work we will use SystemC [219] to implement a simulative performance model at
the timing granularities: (A) Untimed Functional Models (UFM), (B) Timed Functional
Models (TFM), (C) Transaction Level Models (TLM) and (D) Bus Cycle-Accurate Models
(BCAM). VHDL [236] and Verilog [237] will be used as simulative performance model for
(F) Cycle-Accurate Models (CAM).

Analytical performance models are based on an abstract model of the implementation model
including (over-)approximated properties, like Best-Case Execution Time (BCET), Worst-
Case Execution Time (WCET), Best-, and Worst-Case communication delay, etc. These
techniques have the advantage over the simulation-based approaches that system properties
can be calculated independent from input data stimuli. While simulation-based analysis
gives performance evaluation for a specific input experiment, analysis-based approaches
evaluates the system for all possible input stimuli, thus giving a safe upper-bound on
specific performance measures. The drawback of analytical models is that their results
might be too pessimistic or that they suffer from complexity problems resulting in huge
analysis times (sometimes inappropriate for real applications).

3.4 Model of Computation, Architecture, Structure and Performance 55

In this work Timed Automata [191] in UPPAAL [233, 120, 175] are used to formally express
the execution semantics of the system at the timing granularities (B) Timed Functional
Models (TFM) and (C) Transaction Level Models (TLM). The corresponding Timed
Automata representation can be used to check reachability, safety and liveliness properties
which cannot be checked with a pure simulative approach. Analysis of these properties
using model-checking is not part of this thesis. For an application of timing analysis of
SDF applications mapped on shared bus architectures in TLMs using model-checking refer
to [4].

Hybrid approaches try to offer the best properties of simulative and analytical MoPs. Analytical
methods are used to generate stimuli data for a simulation model. These generated stimuli
data can originate from an abstract implementation model with (over-)approximated
extra-functional properties. Thus simulation runs of the implementation system with
realistic and accurate extra-functional properties are used to check whether reported
property violations are really met. From an analytical model stimuli data for simulations
can be generated to serve different purposes:

a) functional coverage based on function point analysis

b) timing analysis based on (critical) path analysis

c) corner-case analysis for extra-functional properties

Hybrid approaches are not covered in this thesis. It is envisioned that future work based on
[4] can be combined with the simulative approach presented in this thesis.

3.4.5 Summary

To summarize the different presented models and to link them together we are using the X-Chart
(see Figure 3.8c) as introduced in [28]. The X-Chart describes a synthesis process that takes as
inputs a specification model, consisting of a Behavior description and Constraints, and explicit
designer decisions. The output of this synthesis process is an implementation model, where the
behavior specification gained structural properties and quality numbers enable the assessment of
the refinement decisions.

The behavioral model represents the intended functionality of the system. Its expressibility
and analyzability can be declared by its underlying Model of Computation (MoC). The constraints
often include an implicit or explicit platform model that describes an architecture template, e.g.,
available resources, their capabilities (or services) and their interconnections. Analogous to the
classification of behavioral models into MoCs, specific ways of describing architecture templates
can be generalized into Models of Architecture (MoA).

The structural model is a refined model from the behavioral model under the constraints of
the specification. In addition to the implementation-independent information of the behavioral
model, the structural model contains information about the realization of design decisions
from the previous synthesis step, i.e., mapping of the behavioral model onto an architecture
template. A structural model is a representation of the resulting architecture as a composition
of components that are internally described as behavioral models for input to the next synthesis
step. The underlying Model of Structure (MoS) can be used for separate classification of such
implementation representations and their architectural or structural semantics. The quality
numbers, like throughput, latency, response time and area, can be described by the concept of
an underlying Model of Performance (MoP). As described above, a MoP refers to the overall
accuracy and granularity in time and space.

Using the X-Chart the different MoCs from Figure 3.8a, MoAs from Figure 3.8b, MoPs from
Figure 3.8d and MoSs from Figure 3.8e can be combined in the following ways:

Different views on a single model This static view on a single design model (A)-(F) enables
different views on its underlying MoC, MoA, MoP and MoS. E.g. for un-timed computation
and communication models (all (A) points) the MoC is defined as a Program State Machine
(PSM), it has no associated MoA, is an Un-timed Functional Model (UFM) and its MoS is a
hierarchical set of Behaviors. For the cycle-timed computation and communication models

56 3 Terminology

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

PSM

(UT -> DE)

TCSP

(CT -> DE)

TCSP

(CT -> DE)

TCSP

(CT -> SDE)

FSMD

(SDE)

TCSP

(SDE)

(a) Model of Computation (MoC) (based on [131])

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

None Abstract PE

Abstract PE

TLM Channel

Memory

Abstract PE

Hier. Channel

Memory

CA PE

Signal

CA Memory

CA PE

TLM Channel

Memory

(b) Model of Architecture (MoA) (based on [131])

Behavior Constraints

Structure
Quality

Numbers

Decision

Making
Refinement

Synthesis

Specification

Implementation

MoC MoA

MoS MoP

(c) X-Chart (based on [28])

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

UFM TFM

TLM

BCAM CAM

CCAM

(d) Model of Performance (MoP) (based on [131])

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

Hierarchical

Behaviors

FPN

FPN with

TA Channels

FPN with

PA Channels

CP with

PA Channels

CP with

TA Channels

(e) Model of Structure (MoS) (based on [131])

Figure 3.8: Summary of presented models

3.5 Methodology 57

(all (F) points) the MoC is defined as a Finite State Machine with Datapath (FSMD), its
associated MoA consist of Cycle-Accurate Processing Elements and Memories connected
through Signals, is a cycle-accurate MoP and its MoS is a set of Clocked Processes with
Pin-Accurate Channels.

Synthesis and refinement of models This view describes the transformation between models
through synthesis as defined by the X-Chart and denoted through the arrows between the
design models (A)-(F). E.g. to describe the synthesis step from design model (A) to (C) the
following mapping to the X-Chart blocks are applied: The Behavior is described as a PSM
(see Figure 3.8a (A)) the Constraints are given as number and types of Abstract PEs, TLM
Channels and Memories including their possible interconnections (see Figure 3.8b (C)).
The Quality Numbers are at TLM granularity (see Figure 3.8d (C)) and the Structure is a
Flat Process Network with Transaction-Accurate Channels (see Figure 3.8e (C)), whose
underlying MoC is a network of Timed Communicating Sequential Processes (TCSP) (see
Figure 3.8a (C)). For the synthesis step from model (C) to (F) the implementation model
of the previous step is used as the Behavior part of the Specification Model and constraints
are described by MoA (F) from Figure 3.8b.

For the proposed methodology Figure 3.9 gives an overview of the mapping of different design
points to the modeling layers to be introduced in Chapter 5. The refinement and synthesis steps
described and supported by the presented work are indicated by red solid arrows:

(A) → (B) describes the refinement of an un-timed specification model of the Behavioral Layer
to a computation approximate- and communication un-timed model of the Application
Layer.

(B) → (D) describes the refinement of an Application Layer model to an approximate- com-
putation and cycle-timed communication model representative of the Virtual Target
Architecture Layer. This step will also be called Application to Virtual Target Architecture
Layer mapping.

(D) → (F) describes the synthesis of an approximate- computation and cycle-timed commu-
nication model representative of the Virtual Target Architecture Layer to a cycle-times
computation and communication model of the Implementation Layer. This step will also
be called Synthesis (see Chapter 7).

In the following section a more general overview and taxonomy of Design Methodologies will
be given.

3.5 Methodology

Definition 3.5.0.1 (Design Methodology):
A Methodology is generally a guideline system for solving a problem, with specific components
such as phases, tasks, methods, techniques and tools. A methodology can be considered to include
multiple methods, each as applied to various facets of the whole scope of the methodology.

The Y-Chart [197, 193, 143] (see Figure 3.10) is a framework to reason about methodologies.
Models are points in the chart at particular level and view. MoCs are classification of behavioral
concepts, MoS and MoA for structural concepts. The Y-Chart makes the assumption that each
design, can be modeled in three basic ways, which emphasize different properties of the same
design. For this purpose the Y-Chart defines

• three orthogonal views: behavior (sometimes called functionality or specification), design
structure (also called netlist or a block diagram), and physical design (sometimes called
layout or board design) defining geometrical aspects,

• four abstraction levels: circuit, logic, processor, and system. Where all three views can be
found on each abstraction level.

58 3 Terminology

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

Behavioural

Layer
Application

Layer

Virtual Target

Architecture

Layer

Implementation

Layer

Figure 3.9: Overview of modeling layers for the proposed methodology. Red arrows indicate
refinement/synthesis steps supported by the methodology. Dotted arrows indicate refinemen-
t/synthesis steps not described in this work.

Behavior
(Function)

Structure
(Netlist)

Physical
(Layout)

Logic

Circuit

Processor

System

RTL

Gates

Transistors

PE,Bus

Specification

Algorithm

Boolean logic

Transfer

(a v b)

M
o

d
e

ls
 o

f
C

o
m

p
u

ta
ti
o

n
 (

M
o

C
s
)

M
o

d
e

ls
 o

f S
tru

c
tu

re
 (M

o
S

s
)

Figure 3.10: Y-Chart [27]

Transformation of a design from one view to another is called synthesis. With regard to the
synthesis and refinement steps in the Y-Chart, design methodologies can be classified, e.g. into
Top-Down, Bottom-Up, and Meet-in-the-middle (more information can be found in [27], Section
2.1 - 2.6). �

The Behavior View represents a design as a black box and describes its outputs in terms of
its inputs over time. The black-box behavior does not indicate in any way how to build the
black box or what its internal structure is. Anyhow, the interconnection and synchronization
and communication semantics of connected black-boxes is specified by an associated MoC. It
is also possible that different black-boxes have different associated MoCs. In this case, for
communication across MoC boundaries special converter elements need to be provided.

3.5 Methodology 59

In the Structural View the black-box is represented as a set of components and connections.
Naturally, the behavior of the black box can be derived from its component behaviors and
their connectivity. However, such a derived behavior may be difficult to understand since it is
"obscured" by the details of each component and connection.

The Physical or Geometrical View adds dimensionality to the structure. It specifies the size
(height and width) of each component, the position of each component, as well as each port and
connection on the silicon chip, printed circuit board, or any other container.

The Y-Chart can also represent a design on different abstraction levels, which are identified
by concentric circles around the origin. Typically, four levels are used: circuit, logic, processor,
and system.

Components on the circuit level are standard cells which consist of N-type or P-type
transistors. On the logic level logic gates and flip-flops are used to generate register-transfer
components. These are represented by storage components such as registers and register files
and by functional units such as ALUs and multipliers. On the processor level, standard and
custom processors, or special-hardware components such as memory controllers, arbiters, bridges,
routers, and various interface components are used. And finally on the system level, systems
consisting of processors, memories, buses, and other processor components.

A database of components to be used in building the structure for a given behavior is used
on each abstraction level. The process of converting the given behavior into a structure on
each abstraction level is called synthesis. After definition and verification of the structural
representation of the design, the next lower abstraction level is reached by further synthesizing
each of the components in the structural view. If each component in the database is given
with its structure and physical dimensions, the physical design can be started which consists of
floorplanning, placement, and routing on the chip, 3 D stack or printed circuit board. Thus each
component in the database may have up to three different models representing three different
axes in the Y-Chart: behavior or function; structure, which contains the components from the
lower level of abstraction; and the physical layout of its structure.

3.5.1 Design flow

Definition 3.5.1.1 (Design flow):
A Design Flow is the explicit combination of electronic design automation (EDA) tools to
accomplish the design of an integrated circuit. The flow of transformations between models in a
design flow is defined by its Design Methodology. Models are core of the design flow definition.
The following different activities are applied to models in each step of a design flow:

• analysis is the extraction of model properties (e.g. syntax check, structural check, func-
tional check, arithmetic operation count, ...)

• synthesis is the transformation of a behavioral to a structural, and from a structural to a
physical model

• verification is an experimental validation or formal proof that the model behavior before
synthesis equals the model behavior after synthesis

The design methodology and modeling flow can be described as a set of models and transformations
between models, resulting in a sequence of design models. Along with the design flow a component
database on each abstraction level of the associated methodology, and the used analysis, synthesis,
and verification tools are defined. �

3.5.2 Simulation

Definition 3.5.2.1 (Simulation):
Simulation is the imitation of the operation of a real-world process or system over time [148].
The act of simulating something first requires that a model be developed; this model represents
the key characteristics or behaviors of the selected physical or abstract system or process. The
model represents the system itself, whereas the simulation represents the operation of the system
over time. �

60 3 Terminology

System design Validation flow

Specification model

Model N

Synthesis / Refinement

Implementation model

Comp.
Lib.

Estimation

Validation
Analysis

Compilation Simulation model

Synthesis / Refinement

Decisions

Figure 3.11: Phases of a generic design flow (based on [27])

Alan Turing used the term "simulation" to refer to what happens when a universal machine
executes a state transition table (in modern terminology, a computer runs a program) that
describes the state transitions, inputs and outputs of a subject discrete-state machine. The
computer simulates the subject machine. Accordingly, in theoretical computer science the term
simulation is a relation between state transition systems, useful in the study of operational
semantics.

In the context of this work simulation is used for the analysis and validation of behavioral
and timing properties of different models in the design flow (see Section 5.2). For this purpose
the proposed design language has a well-defined operational semantics (see Section 5.5 and
Section 6.5) implemented in a discrete event simulation model (see Chapter 6).

3.5.3 Synthesis

Definition 3.5.3.1 (Synthesis):
In general, Synthesis refers to a combination of two or more entities that together form something
new; alternately, it refers to the creating of something by artificial means. In the context of this
work synthesis is defined as a transition from the behavioral view to the structural and physical
view of a model, as represented in the Y-Chart. �

In comparison with the Y-Chart, the X-Chart (as introduced in Figure 3.8) provides a more
detailed view on the different input and output models of each possible synthesis step in the
Y-Chart. In the Y-Chart synthesis is considered as a repeatable refinement process from the
behavior to the structural, and from the structural to the physical view. Synthesis is defined
along each of the concentric abstraction level circles of the Y-Chart. The application of the
X-Chart scheme is performed either once or several times (depending on the available amount
of tool support) on each of these concentric transitions in the Y-Chart.

In this thesis System Synthesis and Processor Synthesis for embedded SoCs will be covered.
An overview of the general meaning and different steps of system and processor synthesis can
be found in [27] (Section 1.2.4 and 1.2.7).

3.5.4 Summary

The section gave a definition of the term Design Methodology, Simulation and Synthesis as used
in this work. Based on the Y-Chart coordinate system, different design methodologies have
been presented. Figure 3.12 provides an outlook on the design methodology used in this work.
It is a combination of the system-level (see [27], Section 2.6) and the FPGA-based (see [27],
Section 2.5) design methodologies. For building a link to the presented X-Chart approach from

3.6 System Level Design Representation 61

Logic

Circuit

Behavior
(function)

Physical
(layout)

Structure
(netlist)

algorithm &

behavioral RT

boolean logic

(a v b)

specification

PE, Bus

RTL

Gates

A

B

C

E
D

F

Behavioral

Layer

Application

Layer

Virtual Target Architecture

Layer

Implementation Layer

Figure 3.12: Combination of System-level and FPGA-based design methodology as used in this
work. The design points (A) - (F) correspond to the X-Chart points in Figure 3.9

Section 3.4, the design points (A) - (F) from Figure 3.9 have been included in the Y-Chart. In
Chapter 5 the design point models (A), (B), (D) and (F), and the associated design flow will be
presented in more detail.

3.6 System Level Design Representation

This section gives a basic introduction to System Level Design Languages. It starts with a
generic definition of a design model representation in a Language. In our case system level design
languages shall be capable of representing an embedded SoC’s MoC, MoA, MoS and MoP on
different level of abstraction. Furthermore, to enable the (semi-) automatic refinement process
between these models in a design flow certain requirements on system level design languages
will be formulated.

The Program State Machine (PSM) hybrid model (capable to represent different MoCs,
MoAs, MoSs and MoPs) will be introduced, since it is the foundation to capture un-timed
behavior for the proposed design methodology. Moreover, the flexible channel concept of PSMs
is the basic infrastructure to enable the communication refinement and synthesis approach in
this work.

Behavior in this work will be captured in an object-oriented model, which is a subset of C++

to enable synthesis for embedded software, communication interfaces (that are both hardware
and software) and custom hardware. A brief introduction to the object model and its graph
representation will be given.

3.6.1 Language

Definition 3.6.1.1 (Language):
A language represents a model in a machine-readable form. All languages have some primitive
building blocks for the description of data and the processes or transformations applied to

62 3 Terminology

them (like the addition of two numbers or the selection of an item from a collection). These
primitives are defined by syntactic and semantic rules which describe their structure and meaning
respectively. �

The syntax of a language describes the possible combinations of symbols that form a syntac-
tically correct program. The meaning given to a combination of symbols is handled by semantics
(either formal or hard-coded in a reference implementation). Most programming languages are
purely textual; they use sequences of text including words, numbers, and punctuation, much like
written natural languages. On the other hand, there are some programming languages which
are more graphical in nature, using visual relationships between symbols to specify a program.

Semantics define the meaning of expressions of a language. They does so by evaluating
the meaning of syntactically legal strings (symbols) defined by a specific language, showing the
computation involved. Semantics describe the processes a machine follows when executing a
program in that specific language. This can be shown by describing the relationship between
the input and output of a program, or an explanation of how the program will execute on a
certain machine.

A variety of different languages can capture one model. E.g., a sequential program model can
be captures in C, C++ or Java. At the same time one language can capture a variety of different
models. E.g., C++ is capable to capture a sequential program model, an object-oriented model,
a data-flow model or a state machine model. Of course, certain languages are better suited for
capturing certain models.

With regard to the different models, introduced in Section 3.4, a System-Level Design
Language (SLDL) shall be capable to capture different MoCs, MoAs, MoSs, and MoPs for the
design and analysis of embedded SoCs. As stated in [160], SLDLs shall have the following
properties:

Executability enables the validation of the represented model through simulation. This property
requires the definition of an operational semantics and a simulator that executes the model
as defined by the operational semantics of its language. For the simulation of embedded
hardware/software systems a discrete event simulation [190, 148] offers a flexible and
efficient fundamental technology.

Synthesizability enables the automatic model to model transformation in a design flow. To
enable synthesizabiliy the denotational semantics needs to be unambiguous. Each language
element from the input model needs to be transformed into one or multiple language
elements of the output model without changing operational semantics between input and
output model.

Modularity is the degree to which a system’s components may be separated and recombined.
Systems are deemed "modular", for example, when they can be decomposed into a number
of components that may be mixed and matched in a variety of configurations. The
components are able to connect, interact, or exchange resources (such as data) in some way,
by adhering to a standardized interface. Unlike a tightly integrated system whereby each
component is designed to work specifically (and often exclusively) with other particular
components in a tightly coupled system, modular systems are composed of components
that are "loosely coupled".

Modularity in SLDL is essential for structuring, reuse, hierarchical composition, maintain-
ability, and applicability of different synthesis rules per structural entity (i.e. module).
Modularity is also used for "separation of concepts" in SLDLs. The separation of computa-
tion and communication in modules/behaviors for computation and ports, interfaces and
channels for communication [160] is one of the golden rules for system-level design. This
separation of concepts enables independent design and refinement of computation and
communication elements in the system. It also allows the integration of pre-designed blocks
and the replacement of communication channels without affecting other modules/behaviors
in the overall system.

Completeness refers to the ability to support all concepts found in embedded systems. For
SLDSs this is the ability to describe different views (MoC, MoA, MoS, MoP) at different
abstraction levels.

3.6 System Level Design Representation 63

Orthogonality Orthogonality comes from the Greek orthos, meaning "straight", and gonia,
meaning "angle". It has somewhat different meanings depending on the context, but most
involve the idea of perpendicular, non-overlapping, varying independently, or uncorrelated.
Orthogonality is a system design property which guarantees that modifying the technical
effect produced by a component of a system neither creates nor propagates side effects
to other components of the system. Typically achieved through separation of concerns
and encapsulation, it is essential for feasible and compact designs of complex systems.
The emergent behavior of a system consisting of components should be controlled strictly
by formal definitions of its logic and not by side effects resulting from poor integration,
i.e. non-orthogonal design of modules and interfaces. Orthogonality reduces testing and
development time because it is easier to verify designs that neither cause side effects nor
depend on them.

In SLDLs the separation of computation and communication enables orthogonality of
these aspects. The replacement of a communication channel with another communication
channel that implements the same interface in another way or with more implementation
and timing details, does not influence the behaviors that use this channel. An example
for orthogonality of data types is that all operators should work on all data types. After
replacing a variable by a signal, all arithmetic operations that have been defined for the
variable shall also be applicable to the signal.

Simplicity is the state or quality of being simple. It usually relates to the burden which a
thing puts on someone trying to explain or understand it. Something which is easy to
understand or explain is simple, in contrast to something complicated. The concept of
simplicity has been related to truth in the field of epistemology. According to Occam’s
razor4, all other things being equal, the simplest theory is the most likely to be true. For
SLDs simplicity can be defined as

• easiness to explain and learn (i.e. based on a known programming paradigm),
• leaning on concepts known from programming languages,
• enabling reuse of behavioral code and algorithms (i.e. C code) and
• automatable refinement/model to model transformation in a single language (i.e.

synthesis).

3.6.2 Program State Machines

Program State Machines (PSM) combine some of the essential formalisms used in the design of
digital systems (cp. [160]). Figure 3.13 give a graphical overview of the different MoCs that
are combined in a PSM. In the first part of this section a brief overview of the different MoCs
from Figure 3.13, leading to the PSM definition, will be given. In the second part of this section
a graphical notation for hierarchical PSM composition will be given. In the last part of this
section the separation of behavior and communication using ports, interfaces and channels will
be presented.

As programming language (see Section 3.6.3) in our PSM model a C++ subset will be defined
in Section 5.3. The internal graph representation of PSM leaf behaviors will be presented in
Section 3.6.3.

3.6.2.1 Program-States

A Finite-State Machine (FSM) is the most popular model for the description of control
systems. An FSM model consists of a set of states, a set of transitions between states, and a set
of actions associated with these states or transitions.

Definition 3.6.2.1 (Finite-State Machine (FSM)):
A Finite-State Machine (FSM) FSM = [S, I,O, F,H, s0] is

S = {s0, s1, . . . , sl} is a set of all states

4Occam’s razor (also written as Ockham’s razor, Latin: lex parsimoniae) is the law of parsimony, economy or
succinctness. It is a principle urging one to select among competing hypotheses that which makes the fewest
assumptions and thereby offers the simplest explanation of the effect.

64 3 Terminology

Finite-State Machine
(FSM)

Dataflow Graph
(DFG)

Hierarchical Concurrent
Finite-State Machine

(HCFSM)

Finite-State Machine
With Datapath

(FSMD)

Programming
Language

Superstate FSMD
(SFSMD)

Program-State Machine
(PSM)

Figure 3.13: Overview of different traditional models unified in Program-State Machines

I = {i0, i1, . . . , im} is a set of inputs

O = {o0, o1, . . . , on} is a set of outputs

F : S × I → S is a next-state function

H : S → O is an output function

s0 ∈ S is an initial state

A moore-type FSM associates outputs with states H : S → O, as given above.
A mealy-type FSM associates outputs with transitions H : S × I → O. �

An extension to eliminate the problem of the state and arc explosion is the introduction
of concurrency and hierarchy. This model is called Hierarchical Concurrent Finite-State
Machine (HCFSM) [169] and is implemented in the widely used StateCharts [194, 187]. States
of a HCFSM can be decomposed into an FSM. Hierarchy, also known as OR-decomposition, can
be decomposed into a flat FSM with the same number of states but more transitions. Concurrent
states, also known as AND-composition, can be decomposed into a sequential FSM with more
states and more transitions (cross product automaton construction).

A Dataflow Graph (DFG) is used for describing computationally intensive systems. Terms
that are used to describe computations can be easily represented by a DFG. It consists of nodes
that represent operations or functions. Directed arcs between nodes define the execution order.
In the context of PSMs we consider dataflow graphs which are homogeneous SDF graphs.

Finite-State Machines with Datapath (FSMD) combine the features of the FSM and
the DFG models since most real world systems consist of both control and computation. The
FSMD is well suited for modeling hardware: Each state transition appears at a single clock
cycle and the operations executed in each state can be interpreted as a set of register-transfer
operations.

Definition 3.6.2.2 (Finite-State Machine with Datapath (FSMD)):
A Finite-State Machine with Datapath (FSMD) FSMD = [S, I,O, V, F,H, s0] is

S = {s0, s1, . . . , sl} is a set of states

I = {i0, i1, . . . , im} is a set of inputs

O = {o0, o1, . . . , on} is a set of outputs

V = {v0, v1, . . . , vn} is a set of variables

F : S × I × V → S is a next-state function

H : S → O ∪ V is an action function

3.6 System Level Design Representation 65

s0 ∈ S is the initial state

I, O, V may represent complex data types (i.e., integers, floating point, etc.). F , H may include
arithmetic operations. H is an action function, not just an output function and describes variable
updates as well as outputs. Complete system state now consists of current state, si, and values
of all variables V . �

Merging the FSMD model with the concept of programming languages leads to the so-called
Superstate FSMD (SFSMD). In this model a superstate does not represent exactly a single
clock cycle as in the FSMD model, but any number of clock cycles which depend on the final
implementation. Such a superstate can be specified by constructs of programming languages, as
mentioned above.

Replacing the FSM model in HCFSMs by a SFSMD model leads to a HCSFSMD, or much
shorter Program-State Machine (PSM) [185].

3.6.2.2 Hierarchical composition

A PSM consists of a hierarchy of program-states with each of them specifying a single mode of
computation. At each point in time only a subset of program-states is active, and thus perform
their computations. A composite program-state can be decomposed into either sequential
or concurrent program-substates. The SpecC [160] language implements a PSM model of
computation where program-states are called behaviors.

b1

b3

b2

B_seq

(a) sequential

b1

b3

b2

b5 b6

b4

B_fsm

(b) finite-state machine

b1

b3

b2

B_par

(c) parallel

b1

b3

b2

B_pipe

(d) pipeline

Figure 3.14: PSM composite behaviors [150]

Figure 3.14 shows the SpecC composite behaviors. A sequential behavior describes a purely
linear control flow between sub-behaviors. In Figure 3.14a leaf behavior b1 is executed until it
reaches its completion point, then leaf behavior b2 is executed, and so on. B_seq is left when
b3 has finished its execution.

This kind of composition corresponds to the linear sequential execution as known from any
imperative programming language. In the finite-state machine behavior in Figure 3.14b the
execution order of the sub-behaviors depends on the evaluation of the transition arcs. After the
initial state b1 has been entered the successor state can be either b2 or b3, depending on which
transitions’ guard expression (not shown in this figure) evaluates to true. B_fsm is left when b6

has finished its execution and no transition can be taken.
In a concurrent behavior, all sub-behaviors become active whenever the parent behavior

is entered. In Figure 3.14c the sub-behaviors b1, b2 and b3 are executed concurrently when
B_par is entered. It is left when all concurrent sub-behaviors have finished their executions.
This corresponds to the general FORK-JOIN pattern.

A combination of concurrent and sequential behaviors is the pipeline behavior. In general a
pipeline describes some sort of stream processing in which the same sequence of operations is
performed on a stream of data. When B_pipe in Figure 3.14d is entered b1 starts its execution.
When it is finished b1 and b2 execute in parallel until both of them are finished. It the next
step b1, b2 and b3 execute in parallel until a certain stop condition evaluates to true. Otherwise
a pipeline behavior runs forever.

Figure 3.15 shows how different composite behaviors can be used to assemble a complex
hierarchical PSM.

66 3 Terminology

B1_1

C1

C3

E1

E2

D2

B1_2

B2_2

B3_2

Top

A1 A2

B2

C2
D1

a > 0

a < 0

a != 0
C4

(a) structural view

Top

A1 A2

B2B1_1 B1_2 B2_2 B3_3

C1 C2 C3

D1 D2

E1 E2

FSM

PAR

SEQ

PAR

SEQ PIPE

C4

(b) hierarchy graph

Figure 3.15: Hierarchical PSM

3.6.2.3 Communication

Considering communication in the design of embedded systems along with a strict refine-
ment process towards a physical implementation model the following basic principles can be
postulated:

(a) Separation of communication and computation.

(b) Declaration of abstract communication primitives.

(c) Enable custom communication implementation on different levels of abstraction.

SpecC provides channels for the explicit description of communication and thus enables the
separation of communication and computation. A channel implements a certain interface that
defines which communication primitives are provided. These abstract communication primitives
can be used by behaviors that represent the computational parts of the design. Communication
is initiated on ports which can be part of behavior. Only ports whose interface type matches
with the interface implemented by a channel can be bound together and therefore establish a
communication link. SystemC has adopted this design pattern directly from SpecC.

Figure 3.16 gives a motivation for the separation of computation and communication.
The traditional model of a block diagram, such as in VHDL or Verilog, is shown in Figure 3.16a.

Two processes, P1 and P2, are communicating via signals s1, s2 and s3. By assigning values to
the signals, according to some predefined protocol, the processes can communicate and exchange
data. As a consequence P1 and P2 contain code for both communication and computation. The
communication part in Figure 3.16a is highlighted, because communication and computation are
mixed in the code and it is not possible to automatically change the communication protocol
when design constraints change. At the same time it is also impossible to automatically switch
to a new algorithm to perform the computation in a different way (i.e. replacing a software with
a hardware algorithm).

In the model in Figure 3.16b communication and computation are separated. Computation
is encapsulated in behaviors, and communication is encapsulated in channels. The computation
is encapsulated in the behaviors B1 and B2, and the communication is contained in the channel
C1. The channel C1 encapsulates the communication as functions, like send and receive. These
functions define the interfaces of the channel. The channel also encapsulates the communication
media, i.e. the variables v1, v2 and v3. On the other hand, the behaviors only contain
computation. In order to communicate, the behaviors call the functions of the channels on ports
connected to the communication service providing channel.

As a result of the separation of communication and computation, the model in Figure 3.16b
supports "plug-and-play". The communication protocol can be exchanged by use of another
channel with compatible interfaces, whenever this is desirable in the design process. In the same

3.6 System Level Design Representation 67

manner, the behaviors can also be exchanged with others, without affecting the communication
protocol.

In the final implementation model, channels are reduced to variables or signals (representing
wires), like in the traditional model (see Figure 3.16c). For the implementation of a channel, its
functions are inlined into the connected behaviors and the encapsulated communication media
are exposed. After inlining, the channel C1 has disappeared. The encapsulated variables v1, v2
and v3 are exposed and the communication protocol is integrated into the behaviors B1 and B2.

s2

s1

s3

P1 P2

(a) Traditional Model: No separation of
computation and communication

B2

v2

v1

v3

B1
C1

(b) New Model: Separation of computation
(behavior) and communication (channel)

B2B1

v2

v1

v3

(c) Implementation Model: Communica-
tion gets inlined with computation (cp.
Traditional Model)

Figure 3.16: Separation of communication and computation using channels [160]

Figure 3.17 gives an overview of different communication methods. In Figure 3.17a shared
variables v1, v1 and v3 are bound to ports of behavior S and R. Ports have an explicit direction in,
out, and inout, that are used to control the direction of data-flow. This model of communication
corresponds to shared memory communication style. In this kind of communication race-
conditions can appear and need to be avoided through careful design (e.g. all ports of S are
output ports and all ports of R are input ports), or explicit synchronization between behaviors S

and R before accessing shared variables. Whenever possible shared variables between parallel
behaviors should be replaced by an explicit channel with access control and synchronization
capabilities.

S R

v3

v2

v1

B

(a) shared variable

S R

v3

v2

v1

B

C

(b) virtual channel

S R

B
C2

C1

(c) hierarchical channel

Figure 3.17: Overview of communication methods [160]

In Figure 3.17b a virtual channel that encapsulates the communication using shared variables
(and events) through a user-defined interface is shown. An example for such a virtual channel is
a CSP-like "double handshake channel". This kind of communication corresponds to message
passing communication where both, the sender and the receiver, need to synchronize before
data is copied from the sender to the receiver. An extension of a virtual channel is hierarchical
channel as shown in Figure 3.17c. This type of nested channel to contains virtual sub-channels
and is commonly used for the description of layered protocol stacks as used in modern shared
bus or network on chip communication infrastructure.

68 3 Terminology

3.6.3 Sequential program representation

As shown in Figure 3.13, programming languages are an important ingredient of Program State
Machines for the description of functionality in leaf behaviors.

Programming languages in general provide a heterogeneous model that supports modeling of
data, activity, and control. Programming languages can be classified into two basic paradigms:
imperative and declarative. Over the last decade imperative programming languages have become
far more accepted than declarative ones. Today, most imperative programming languages support
object-oriented features like encapsulation of data and operations, inheritance, and polymorphism.
Thus, data is modeled by basic types (e.g. integers and reals), composite types (arrays or structs
of basic types) or objects. Activities are modeled by statements, while larger activities can be
structured by functions and procedures. Activities on objects are initiated through method
calls. Control flow is described by control constructs that specify the order in which activities
are to be performed. In imperative languages these are sequential composition (often denoted
by a semicolon), branching (if and switch statements), looping (while, do-while and for

statements), and routine or method calls.
This section introduces basic notations that are used to represent programs in this work.

Moreover, the structure of considered programs will be defined. All definitions used in this
section are reproduced from [139]. A program P consists of variables, expressions (computing a
value from the operands), comparisons, assignments and control structures (loops and branches).
Depending on the control flow, a given sequence of expressions is split into basic blocks.

Definition 3.6.3.1 (Basic Block):
The control flow of a program is defined by jumps which are intra-procedural branches, and calls,
which are inter-procedural branches. These branches divide the program into basic blocks. Control
flow enters basic blocks at the beginning and leaves them at the end, without the possibility of
branching except for the end of the basic block.

Let V be the set of basic blocks. For a given program P this set must be finite: |V | <∞. �

Definition 3.6.3.2 (Routines):
Structuring a program into re-usable (usually parametrized) smaller pieces is done by routines. In
literature the terms "function" and "procedure" also occur, but we define "routine" as a generalized
program substructure also to avoid confusion with mathematical functions.

Let R be the set of routines of P and let r0 be the routine to be invoked upon start of P . In
other words, r0 is the main routine of P .

Every basic block belongs to exactly one routine. The function routine : V → R associates
each basic block with its routine. Vf describes he set of basic blocks of each routine: Vf = {v ∈
V |routine(v) = f}.

Each routine has exactly one basic block that is the first to be executed upon invocation. This
basic block is called start node. The set Starts ⊆ V contains all start nodes of P , one for each
routine. The function start : R→ Starts associates the start node with its routine.

Another important set of basic blocks is constituted by those that contain routine invocations.
These basic blocks are called call nodes. The set Calls ⊆ V contains all call nodes of P . Call
nodes may be associated with more than one start node, if there is more than on possible routine
to be invoked. This happens for computed calls. The following function associates call nodes
with their invoked start node, is defined for all nodes, and returned { } for non-call nodes:

target : V → ℘(Starts)

v 7→ {v′ ∈ V |v invokes v′}

�

Definition 3.6.3.3 (Control Flow Graph):
Each routine has it own control flow graph, consisting of nodes that are basic blocks, and edges
representing the control flow between the blocks. Let CFGf = (Vf , Ef), f ∈ R be the control
flow graph of routine f .

A control flow graph has exactly on start node start(f) via which all control flow enters
routine f . For a path in a graph G, e.g. CFGf , from node v1 to v2, we will write v1 →∗

G v2.

3.6 System Level Design Representation 69

If control flow has several alternative possibilities to continue at run-time after a given basic
block, i.e., if a node in a graph has several outgoing edges, this situation will be called a branch.
Branches in control flow graphs will be called jumps. �

Definition 3.6.3.4 (Call Graph):
A call graph connects call nodes and start nodes. Calls and Satrts constitutes the nodes and
target restricted to Calls defines the intra-procedural edges. The linkage between start and call
nodes is established by adding edges from start to call nodes for each routine.

Formally, a call graph is defined as: CG = (V̂ , Ê), with

1. the nodes V̂ = Calls ∪ Start,

2. and the edges Ê ⊆ V̂ × V̂ , where Ê is defined as:

Ê := {(c, s) : c ∈ Calls, s ∈ target(c)} ∪
⋃

f∈F {(s, c) : s ∈ Starts, c ∈ Calls : ∃s→∗
CF Gf

c}

�

It is required that call nodes have exactly one incoming edge in the CFG. This can be
ensured by inserting additional empty nodes for the call nodes that contradict this requirement.
Together with the definitions above, each call node c also has exactly one outgoing edge in the
CFG. In the CG, c also has exactly one incoming edge (from the start node) and possibly
several outgoing edges (defined by target(c)).

1 void a () {
2 . . . // basic block b1
3 }
4 void b () {
5 a () ; // invocation c3
6 }
7 i n t main () {
8 a () ; // invocation c1
9 b () ; // invocation c2

10 }

Listing 3.2: Example C code for call graph in Figure 3.18

c1

main()

c2 b() c3

a()

= (;); = Calls[Starts; � �= �(;) 2 Calls; 2 target()�[S2 �(;) 2 Starts; 2 Calls9 !� �
target()

Figure 3.18: Call Graph (CG) of Example Listing 3.2. Start nodes are labeled with the name of
the routine and a pair pf parentheses, call nodes are labeled as shown in the comments in the C
source code. The defined CG does not contain return edges, only call edges [139].

Definition 3.6.3.5 (Loops):
The term "loop" will be used for a natural loop as defined in [75]. A natural loop has the following
basic properties:

1. A natural loop has exactly one start node which is executed every time the loop iterates.
This node is called header.

2. A natural loop is repeatable, which means that there is a path back to the header.

�

70 3 Terminology

) c

ba

loop
entry
node

exit
node

CFG edges

CG edges

routines

CFG only nodes

call nodes (CG & CFG)

start nodes (CG & CFG)a

b

c

d

d

local

back
node

Figure 3.19: Control Flow Graph (CFG) modifications by loop transformation. Loop transfor-
mation introduces a ew routine and new call nodes for each loop and transforms the loop into a
recursive routine. Dashed lines represent edges in the call graph, which are introduced by this
transformation [139].

Loops and recursion are handled uniformly by transforming all loops into recursive routines
by making the loop body a routine on its own and inserting inter-procedural edges accordingly.

Another imposed restriction for control flow graphs is, that apart from loops there must
be no other cycles. This restriction is not too strict, since well-done hand written sequential
code, without explicit jumps using goto statements, fulfills this requirement. The use of this
restriction in motivated in the unbounded run-time of control flow cycles. When a path analysis
searches the maximal run-time, loops must be bounded with maximal iteration counts in order
to make the problem solvable. For recursive function calls in this context only tail recursion is
allowed, since tail recursion elimination allows to replace recursive function calls through loops.
But anyhow, to enable analysis the recursion depth will limit the number of loop cycles.

So we assume that aft loop transformation, there must be no cycles in the control flow graphs
at all. All cycles must have been moved to the call graph and marked as loops. Let L be the set
of loops of a program P . Since loops are converted into recursive routines, it holds that L ⊆ R.
The header of a loop is the start node of the loop.

Definition 3.6.3.6 (Loop Header):
The header fo a loop l ∈ L is defined as:

header : L→ Start

l 7→ start(l)

�

Definition 3.6.3.7 (Entry and Back Edges):
The functions

entries : L→ ℘(Ê)

back : L→ ℘(Ê)

assigne to a loops its entry and back edges. �

Definition 3.6.3.8 (Minimum and Maximum Loop Iteration Count):
The number of iterations of loops is specified using two functions. One for the minimum iteration
count and one for the maximum. Iteration bounds are defined for each entry of the loop and,
therefore the functions take the loop entry node as input argument.

Let l be a loop and e ∈ entries(l) one of its entry edges:

• nmin(e) defines the minimum loop execution count per entrance of l via e

• nmax(e) defines the maximum loop execution count per entrance of l via e

3.6 System Level Design Representation 71

back node

exit node

entry edge

exit edge

loop entry node

back edge

loop header

�
2 !Starts7! start()

Figure 3.20: A simple loop with
all the important edges. Dotted
lines and white nodes are in the
call graph, the other items are part
of the control flow graph [139].

exit

f1()

. . .

f2()

startstart

local

call

instr.
call

. . .

return

exit

. . .

call

CFG only nodes

CFG edges

CG edges

CG, CFG nodes

Figure 3.21: CFG and CG of a call of a recursive routine.
This figure clarifies the use of local edges ans shows that
there are no return edges (e.g. from a note in routine f2()

back to the call node in f1()) [139].

�

Definition 3.6.3.9 (Artificial Empty Nodes):
For providing special hooks for analysis and timing annotation we introduce four additional
artificial empty nodes as specific locations in the CFG and CG. At each routine invocation, two
additional nodes are inserted:

• call node: liked with the start node in the CG. The actual call instructions are located in
the block before the call node.

• return node: that indicate the return of a called routine.

Routines are augmented with the following empty nodes:

• start node: routines begin with a start node

• exit node: returning control flow to the caller is gathered in a unique exit node.

�

Definition 3.6.3.10 (Alternative Control Flow and Edge Types):
Alternative control flow occurs at two levels; in the control flow graph, where if-then-else
statements are the most common example, followed by switch statements, and in the call graph,
where function pointers are the most common example. Virtual function calls are a special case
of function pointers.

To handle alternative control flow in CFG, there are different types of edges. These different
types of edges can be used to express different execution times, since jumps for instance have
different execution times for different types of edges.

The edge type is defined as a function that assigns a type to each edge:

type : E → {normal, false, true, local}

normal edge: outgoing edge of basic blocks whose control flow exits the block without alternatives
(i.e. without a branch).

false edge: for a conditional jump, this marks the edge that is taken if the branch is not taken
(also known as fall-through edge). At each block there is maximally one of these edges.

72 3 Terminology

true edge: for a jump, this marks possible branch targets of the jump.

local edge: represents the control flow after a call. This edge is inserted after each call node,
because the graph will not contain flow information about routine returns.

For switch tables, there may be a number of true edges, one for each possible branch target.
Alternative control flow in the call graph is marked in the same way, by using multiple outgoing
edges from a call node to several start nodes. �

CHAPTER 4

Related Work

4.1 Introduction

The OSSS (Oldenburg System Synthesis Subset) System Level Design Language (SLDL) and
methodology has been developed in three successive ICT research projects (see also Figure 1.1):

ODETTE: Object-oriented co-DEsign and functional Test TEchniques [224]

ICODES: Interface- and COmmunication-based Design of Embedded Systems [223]

ANDRES: ANalysis and Design of run-time REconfigurable, heterogeneous Systems) [220]

It provides a design methodology, modeling & simulation library and synthesis tool for
communication dominated hardware/software systems. It allows the designer to start with
an abstract functional executable specification using communication objects between parallel
processes. Designs written in OSSS can be systematically refined and synthesized to various
FPGA-based target architectures and technologies.

The OSSS (Oldenburg System Synthesis Subset) modeling & simulation library is based on
SystemCTM [13]. This library enables the combination of object-oriented concepts known from
parallel object-oriented software design with digital hardware/software design. While raising
the level of abstraction by introducing object-orientation and transaction level modeling (TLM)
techniques, OSSS aims to obtain well-defined synthesis semantics for all available modeling
elements allowing automatic and system synthesis of OSSS models into

• an overall hardware platform description,

• custom software and communication drivers in C++ and

• custom hardware modules in VHDL or SystemC models at Register Transfer Level (RTL).

The resulting hardware platform, software and hardware module descriptions are further
processed using well-established software cross-compilers and RTL-to-gate-level synthesis tools.

Historically, OSSS has been mainly motivated by the use of the object-oriented features of
C++ in synthesizable SystemC models. As the term “class library” suggests, SystemC internally
makes use of the object-oriented features of C++, e.g. classes, inheritance, polymorphism,
communication by method calls, etc. However, these features are not available to the designer
at the same extent when writing synthesizable models. Before synthesis these usually need
to be manually refined to either behavioral or register-transfer level descriptions, constructed
from modules with ports, connected via signals with behavior described as explicit or implicit
state-machines using processes.

74 4 Related Work

(consumer)
process

(producer)
process

:MyBufferClass

get() : IType
put(IType)
is_empty() : bool
is_full() : bool

...

IType, SIZE...

BufferP->put(…);

...

...

BufferP->get();

...

...

BufferP->get();

...

MySharedBuffer

MyBuffer, Scheduler

...

BufferP->put(…);

...

… …

Figure 4.1: Accessing a Shared Object from multiple producer and consumer processes.

Even when neglecting synthesis, the use of bare variables and method calls between parallel
processes in pure simulation models can be problematic1.

This is where OSSS applies. By allowing object-oriented features, like classes and objects,
inheritance, method calls and operator overloading with a well-defined synthesis semantics, the
level of abstraction and the expressiveness are increased.

Another challenge that arises during the integration of hardware and software is the hard-
ware/software communication. When using SystemC to develop an executable specification of a
hardware/software design on a functional level, it is impossible to synthesize it for a certain
hardware platform without extensive manual refinement. Especially the implementation of the
hardware/software communication interface is a very error prone and time-consuming task.
In order to avoid this manual refinement effort, or to keep it as low as possible the OSSS
methodology defines three modeling layers (Behavioral Layer, Application Layer and Virtual
Target Architecture Layer) with dedicated modeling elements and well-defined mapping and
refinement rules between elements in these layers. Finally, the Virtual Target Architecture
Layer description can be synthesized for a specific target platform. Up to now, only a synthesis
back-end for Xilinx FPGAs exists.

Communication modeling is one of the key aspects in the design of complex custom embedded
hardware/software systems. Methodologies and techniques that help to improve the modeling
and synthesis of communication, especially across the hardware/software boundary can also
significantly improve the whole design process.

System-Level Design Languages, like SpecC and SystemC enable the separation of com-
putation and communication by providing the concepts of ports, interfaces and channels. A
channel can be used to encapsulate and abstract from the details of a certain communication
- for instance, a certain protocol -, and allows processes to communicate and exchange data
with each other, based on interface method calls. This concept already has led to a new kind of
design methodology, called transaction level - or transaction based - modeling [131].

The channel concept provides for modeling communication at a higher level, and clearly
separates communication and computation. This makes channels very useful for creating
and refining models for simulation. Since channels do not possess a synthesis semantics in
general, manual channel refinement to a signal level representation or by replacing channels
with pre-designed synthesizable IP components is currently applied.

In this work we use an alternative concept for SystemC channels, based on so-called Shared
Objects [135, 97]. Like any other object, it may specify a set of public and private or protected
methods, while public methods define its interface. This enables processes to call implemented
services on the Shared Object. These user-defined services enable the implementation of
inter-process communication, event notification and data exchange. Figure 4.1 illustrates the
implementation of a shared FIFO buffer. Like channels in SystemC, Shared Objects are using
the concept of port interface binding and Port-Interface-Calls to enable structural decomposition
(e.g. connecting processes and Shared Objects through a hierarchy of modules).

A Shared Object possesses built-in and customizable mechanisms for handling concurrent
accesses, a clear communication refinement and synthesis semantics, and exhibits a timed

1Consider, for example the case when two different processes simultaneously call methods of the same object,
which may lead to an undefined state - similar to writing shared variables from different processes.

4.2 Previous Work 75

behavior during simulation. Handling concurrent accesses is realized by means of a scheduler
that can be specified by the user for each Shared Object. The scheduler determines which
client process is granted access to the Shared Object in the case of concurrent requests. All
other requesting clients are blocked meanwhile. Consequently, accesses are mutual exclusive. In
addition, this is supported by a guard mechanism which allows to associate a side-effect free
Boolean expression2 - the so called guard - with a member function3. Client processes calling
a member function (i.e. a service provided by the Shared Object) whose guard evaluates to
false are ignored for scheduling and the call is effectively blocked until the guard evaluates to
true due to Shared Object state change, effectively caused by another service call. The timed
behavior of Shared Objects gives the designer an early and realistic impression on the temporal
behavior of the modeled system during simulation even before performing synthesis to a signal
level representation.

In Section 4.2 a comparison with previous work towards object-oriented communication
synthesis this work builds on is given. In the following sections a description of the state-of-the-art
and classification of this work with respect to the following topics is given:

• Section 4.3 provides an overview of relevant object-oriented communication concepts
known from parallel distributed system design, applied to embedded system design and
used in Electronic System-Level Design (ESL). Covered work is spanning from a common
hardware/software object model, actor- and active object-based design, Common Object
Request Broker Architecture (CORBA) and Remote Method Invocation (RMI) techniques.
This section targets a classification and comparison of the object-oriented communication
techniques provided by the Shared Objects with other work.

• Section 4.4 provides an overview of past and recent work on SoC platform communica-
tion modeling. It covers the entire spectrum form Transaction Level Modeling (TLM),
Communication Architecture Functional Modeling, to Bus Accurate and Cycle-Accurate
Modeling. This section targets a classification and comparison of the proposed RMI and
OSSS Channel approach with existing work.

• Section 4.5 provides an overview of relevant SoC communication synthesis techniques.
Concerning communication synthesis from abstract channel and protocol specifications
to RTL, several works exist in literature. This overview focuses on C and C++ based
approaches only. This section targets a comparison of the Shared Object, RMI and OSSS
Channel synthesis approach with existing work.

• Section 4.6 gives an overview of entire ESL synthesis methodologies and existing frameworks
available in the research landscape. This section targets a classification and comparison of
the overall OSSS methodology with other approaches.

Finally, in Section 4.7 the contribution of this work, with respect to the analyzed related
work is given and discussed.

4.2 Previous Work

4.2.1 Objective VHDL

In [162] the generation of static digital circuit structures for application specific integrated
circuits from object-oriented models is described. It contains synthesis concepts for classes
with attributes and methods, inheritance of classes, message exchange between objects, and
polymorphism. This work describes synthesis concepts and optimization techniques based on a
meta model of object-oriented system descriptions. This also contains a synthesis rule for VHDL
shared variables, which are not included in the VHDL synthesis subset. Figure 4.2 depicts the
proposed hardware implementation of a shared variable, a predecessor of the Shared Object.
As a result, Objective VHDL, an object-oriented variant of the hardware description language
VHDL, has been implemented. In addition to the definition of the Objective VHDL language, a

2implemented as Boolean expression on the state variables of the Shared Object
3the term "member function" is used as synonym for a method or service, implemented in a class

76 4 Related Work

MUX

DEMUX

Arbitration Unit

1...n
IN_PARAMS

1...n
METHOD_ID

1...n
DONE

METHOD_ID

IN_PARAMS

DONE

Scheduler

Guard

Evaluator

Server

Process

State

OUT_PARAMS

RESET

CLK

Figure 4.2: Shared variable hardware implementation as proposed in [162] (Source: [97])

Protocol-class

Attribute_1

. . .

Attribute_n

Method_1

. . .

Method_n

EO server

i

method_1

. . .

method_n

process

--receive message

--execute message

end process;

EO client

o

process

--send message

end process;

interface server_msg

message_1

. . .

message_n

communication channel

î

“implements”

: generic parameter

Figure 4.3: Objective VHDL+ generic communication model [153] (Source: [152])

translation tool for generation of industry standard VHDL source code from a synthesizable
Objective VHDL model has been proposed.

4.2.2 Objective VHDL+

In [153] an extension for Objective VHDL to enable a consistent communication design for
the structural object-oriented hardware design. As a result generic method call concept based
on a message passing protocol has been proposed. For the separation of computation and
communication, dedicated Channel Objects using interface classes and Channel Ports have been
introduced to Objective VHDL, resulting in the Objective VHDL+ extension. Figure 4.3 depicts
the proposed generic communication model where the server implements a method interface,
which can be directly used by the client. The protocol class implements the communication
channel, connecting client and server. It maps a client’s method call to the physical communi-
cation channel’s signal interface. Finally, a synthesis of the newly integrated object-oriented
modeling elements to standard VHDL has been proposed. Figure 4.4 shows the signal level
implementation of the client to server communication after synthesis.

4.2 Previous Work 77

causal_handshake

data_valid, ack: bit;

r_data_valid, r_ack;

data: gen_type

send (msg: gen_type)

receive (msg: gen_type)

reply (msg: gen_type)

entity server

data_valid

ack

r_data_valid

r_ack

enc_msg

enc_in_params

enc_out_params

while data_valid /= '1' loop

. . .

end loop;

entity client

data_valid

ack

r_data_valid

r_ack

enc_msg

enc_in_params

enc_out_params

. . .

data_valid <= '1';

. . .

Figure 4.4: Objective VHDL+ generic communication model synthesis result[153] (Source: [152])

4.2.3 SystemC-Plus

In [135] present an approach based on the ideas of [162] for object oriented hardware design and
synthesis based on SystemC. This work essentially distinguishes between two basic principle
approaches to object-oriented hardware design: Structural vs. Data Type based object-orientation:
Structural approaches model whole hardware components/entities as concurrent objects, while
Data Type based approaches make use of object-orientation as a way to create new user-defined
data type. To avoid the problem of inheritance anomaly4 [135] focuses on data type based
object-oriented modeling only.

In particular, [135] proposed an extension of the SystemC synthesizable subset [33] to
support:

• declaration of classes and creation of new classes by means of inheritance from already
existing classes,

• deriving classes from multiple and virtual parent classes,

• declaration of data members of scalar and complex type including class types and array
types,

• declaration of member functions and operators,

• redefining member functions and data members in derived classes,

• declaring constructor methods and

• declaring class templates with scalar and type parameters.

4The fundamental object-oriented concept of inheritance can be hardly combined with the concept of concurrent
objects.

“The Inheritance Anomaly is a failure of inheritance to be a useful mechanism for code-reuse that is caused by
the addition of synchronization constructs (method guards, locks, etc.) to object-oriented languages. When
deriving a subclass through inheritance, the presence of synchronization code often forces method overriding on
a scale much larger than when synchronization constructs are absent, to the point where there is no practical
benefit to using inheritance at all.” [92]

78 4 Related Work

Shared Variable

(Objective VHDL)

Interface, Channel, Protocol

(Objective VHDL+)

Global Object/

Shared Object

(SystemC-Plus)

Shared Object

(OSSS)

OSSS Channel,

RMI Channel

(OSSS)

Shared Object Socket

(OSSS)

Virtual Target Architecture Layer

Application Layer

Figure 4.5: Evolution and relation to previous work

Furthermore, some limited support of polymorphism, without the use of pointers, has been
introduced, called tagged object. It is a self-contained object, with an own state space, which
means it is not just a reference to an object, like a pointer. Thus making reference resolution
for a polymorphic object at run-time obsolete.

Finally, the concept of a Global Object has been introduced. A global object is an object,
which is declared as member of a SystemC module. Like any other object, a global object may
specify a set of methods, which forms its interface. This allows processes to communicate and
exchange data via global objects based on method calls. Global Objects are a predecessor of
Shared Objects as extended in this work.

In [97] targets performance optimizing hardware synthesis of Shared Objects in hardware
specifications (based on Global Objects from [135]). It is based upon an earlier proposal for
the hardware implementation of shared variables [162] (see Figure 4.2). The main problem
addressed is the research and development of alternative implementations for Shared Objects,
which are more efficient. I.e. provide a better performance/area ratio, and/or provide a higher
absolute performance compared to [162].

The proposed optimizations target the delay, which is caused when accessing a Shared Object
due to the necessary synchronization between the calling process and the object. This has been
realized by optimizing the implementation of a Shared Object itself, such that the speed at
which accesses are handled is increased, and by optimizing the communication between Shared
Objects and accessing processes.

4.2.4 Discussion

This work builds on top of the foundation of [162, 153, 97] and combines Shared Objects from
[97] with the generic object-oriented communication model of [153]. Figure 4.5 visualizes the
evolution of the discussed concepts and integration in the OSSS Virtual Target Architecture
Layer.

In previous work, the concepts of Shared Variables/Objects and custom communication
channels have been strictly separated. While previous work only focused on the object-orient
description of custom hardware, integration of Shared Objects with its client processes has been
implemented through fixed point-to-point connections. These point-to-point connections have
been implemented using a simple protocol working on a parallel set of wires that match the bit
width of the largest method/service. While [97] considered optimizations of the Shared Object
access protocol it did not allow for customizing or constraining the communication protocol
between client processes and the Shared Object.

4.3 Object-Oriented Communication Concepts in ESL Design 79

The communication channel concept, as presented in [153] offers the possibility to define user-
defined point-to-point channels and protocol implementations on a physical channel (i.e. bunch
of wires/signals). The development of such an customizable point-to-point channel has been
driven by the requirement to enable a stepwise mapping to a constrained set of communication
resources (e.g. total number of allowed wires) and a custom protocol definition (e.g. handshake
channel, FIFO).

Since this work addresses the challenge of object-oriented hardware/software communication,
the idea was to combine both, the high-level concept of Share Objects as Application Level
communication objects and the refinement of client to Shared Object connections. This becomes
even more necessary, when targeting SoC platforms with pre-existing communication IP, such
as buses or crossbar channels, which need to be used to physically bridge hardware/software
boundary.

As a result, this work has extended the Shared Objects of [97] to Application Layer message
passing channels, that fully integrate into the SystemC and SpecC communication channel
methodology (e.g. using explicit port to interface bindings). Furthermore, Application Layer
Shared Objects are explicitly mapped to Shared Object Sockets on the Virtual Target Architec-
ture. These sockets enable the explicit connection with SoC communication resources, such as
buses or user-defined point-to-point connections.

For this purpose the generic communication channel concept of [153] has been extended be
OSSS Channels to cover topologies beyond point-to-point connections (e.g. shared buses and
crossbar switches). The concept of Remote Method Invocation enables a transparent mapping of
the Application message passing communication to the physical channel implementation inside
OSSS Channels.

Dedicated simulation models for OSSS and RMI channels enable to analyze and timing
behavior during simulation. In previous work [97] the timing behavior of a Shared Object has
only been accessible after synthesis to VHDL. This extended simulation model enables faster
design space exploration and a true single language approach.

4.3 Object-Oriented Communication Concepts in ESL Design

Beyond previous work [162, 153, 135, 97] on object-oriented design and synthesis of custom
hardware, the principle of object-oriented design has been applied to ESL design in general. In
this section, related work in the area of object-oriented communication concepts applied to ESL
design is presented and discussed.

4.3.1 OOCL

In [179] Vahid et. al. propose the first idea of an object-oriented communication library for
hardware/software co-design. This library aims to encapsulate communication protocol specific
routines and functionality into channel classes. These channel classes provide generic send and
receive methods to be used by the user program. In this work, the implementations of a serial
point-to-point protocol and a shared bus protocol are presented. Together with the classes,
the library also contains VHDL code for the hardware communication interface, called port.
Multiple channels (i.e. instances of channel classes) can use the same hardware port one after
another. The send and receive methods a non-interruptible.

While providing a separation of user program computation and communication through
encapsulation of the communication protocol implementation in so-called channel classes. Beyond
this encapsulation, the approach does not take further advantage of object-oriented features,
like serialization and de-serialization of user-defined classes.

From the methodological point of view, no explicit separation of port, interface and channel
is provided, thus making use in a system-level model with gradual communication channel
refinement impossible.

80 4 Related Work

4.3.2 CHSOM

In [158] an extension to the traditional component-based development model to include both
hardware and software has been proposed. In the proposed Common Hardware and Software
Object Model (CHSOM) the (Distributed) Common Object Model (COM/DCOM) concept is
generalized towards hardware, software, and hardware/software objects. The Component Object
Model (COM) is a binary-interface standard for software components introduced by Microsoft.
It is used to enable inter-process communication and dynamic object creation in a large range
of programming languages.

In CHSOM, each object is described by a set of interfaces (at least one), a contract (rep-
resenting whether the component is for hardware or software, information about specification
and implementation, and information for software and hardware simulation), and a standard
messaging/invocation/linking mechanism. All of these features are implementation, and caller
independent: Each component and its interfaces are specified using an interface description
language (IDL) that is implementation language neutral. The binary communication interface
is well defined locally and across a network.

Although this is an interesting approach, there is no evidence that the proposed approach
has been successfully implemented and evaluated.

4.3.3 Actor-oriented

The actor model is a generic model of computation where actors are the universal primitives of
concurrency [201]. In actor-oriented design, everything is an actor, similar to object-oriented
design where everything is an object. The main difference between object- and actor-oriented
designs is how concurrency is treated and expressed. In object-oriented design, parallelism needs
to be expressed explicitly, while actors are implicitly parallel.

In general, an actor is a computational entity that, in response to a message it receives, can
concurrently:

• send a finite number of messages to other actors,

• create a finite number of new actors,

• designate the behavior to be used for the next message it receives.

Actor-oriented design has been successfully applied to the design of distributed systems
[196] and to the design of embedded hardware and software systems [138, 31]. Actor-oriented
platforms, such as Simulink [228] or Ptolemy II [134], abstract aspects of program-level platforms,
such as Java, C++, and VHDL.

From a methodical standpoint, actor-oriented design enables the separation of the actor
definition language and the actor composition language, enabling highly polymorphic actor
definitions and design using multiple models of computation as demonstrated in [134].

For equipping object-oriented languages with the concept of concurrency, object-oriented and
actor-oriented techniques have been combined. In [161] a survey of concurrent object-oriented
Languages is provided. It furthermore describes the challenges and difficulties when combining
both techniques (inheritance anomaly is one of these). For this reason, most practically applied
concurrent object-oriented languages put strict constraints on the combination of actor- and
object-oriented features.

The Application and Virtual Target Architecture Layer models, proposed in this work, make
use of a combination of actors and objects. After mapping Shared Objects on the Virtual Target
Architecture Layer, client and Shared Object are running in two independent processes, which
mostly resembles the Active Objects, which is a behavioral pattern for concurrent programming
[182]. The Active Object pattern (also known as Concurrent Object or Actor), decouples method
execution from method invocation in order to simplify synchronized access to an object that
resides in its own thread of control. This pattern enables more independent threads of execution,
to interleave their access to data, modeled as a single object.

On the Application Layer, Shared Objects resemble the Monitor pattern, which ensures that
only one method at a time executes within a passive object, regardless of the number of client
processes that invoke this object’s methods concurrently. The Monitor pattern is a special case

4.3 Object-Oriented Communication Concepts in ESL Design 81

Proxy

Future m1()
Future m2()
Future m3()

Scheduler

dispatch()
enqueue()

INVISIBLE
TO

CLIENTS

VISIBLE
TO

CLIENTS

1

1 2: enqueue(M1)

1: enqueue(new M1)

3: dispatch()

loop {
 m = act_queue_.dequeue()
 if (m.guard()) m.call()
}

Servant
1

m1()
m2()
m3()

Activation
Queue

enqueue()
dequeue()

1

1

n
Method
Request

guard()
call()4: m1()

1 1

M1

M3

M2

�

(a) Active Object pattern as Booch class diagram (Source: [182])

�

�

�

�

�

INVOKE

DEQUEUE SUITABLE

 METHOD REQUEST

RETURN RESULT

EXECUTE

Client

Proxy Activation
Queue

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
S

C
H

E
D

U
L

IN
G

//
E

X
E

C
U

T
IO

N
E

X
E

C
U

T
IO

N
C

O
M

P
L

E
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

ServantServant

 Scheduler Scheduler

CREATE METHODCREATE METHOD
REQUESTREQUEST

reply_to_future()

future()RETURN FUTURERETURN FUTURE

INSERT INTOINSERT INTO
 ACTIVATION QUEUE ACTIVATION QUEUE

enqueue(new M1)

dequeue(M1)

enqueue(M1)

M1

call()

dispatch(M1)

m1()

guard()

(b) Active Object pattern collaboration (Source: [182])

Figure 4.6: Active Object pattern

of the Active Object pattern and in general more efficient than Active Objects since they incur
less context switching and data movement overhead.

Figure 4.6a depicts the Active Object pattern, running in two threads/processes: One in the
client, invoking methods on the Proxy, and the other one in the Scheduler, coordination method
execution.

The Proxy provides an interface that allows clients to invoke public methods on an Active
Object. When a client invokes a method defined by the Proxy, this triggers the construction
and queuing of a Method Request object onto the Scheduler ’s Activation Queue, all of which
occurs in the client’s thread of control.

A Method Request object is used to pass context information about a specific method
invocation on a Proxy from the Proxy to a Scheduler. A Method Request class defines an interface
for executing methods of an Active Object. The interface also contains guard methods that can
be used to determine when a Method Request’s synchronization constraints are met. The proxy
creates instances of these classes when its methods are invoked and return any results back to
clients.

An Activation Queue maintains a bounded buffer of pending Method Requests. In addition,
the Scheduler decides which Method Request to de-queue next and execute on the Servant

82 4 Related Work

Instance 2
(Object B)

Instance 1
(Object A)

Port

Service

Binding

provides

syncs

syncs

request Guard
of

els.

pass-

mem-

proce-

el)
Figure 4.7: Simplified service/request scheme (Source: [119])

that defines the behavior and state hat is being modeled as an Active Object and implements all
methods. This scheduling can realize any custom scheduling algorithm. A Scheduler typically
evaluates synchronization constraints by using method request guards.

Finally, a Future allows a client to obtain the results of method invocations after the Servant
finishes executing the method. When a client invokes methods through a Proxy, a Future is
returned immediately to the client. The Future reserves space for the invoked method to store
its results. When a client wants to obtain these results, it can access the Future, either blocking
or polling until the results are computed and stored into the Future.

Figure 4.6b shows the three phases of collaboration in the Active Object pattern: 1. Method
Request construction and scheduling, 2. Method execution and 3. Completion.

In [119] the combination of Actors and Objects has been proposed for usage in ESL for
the first time. The work introduces a graph-based model for the structural representation of
concurrent object-oriented systems that supports alternative behaviors as well as inheritance,
polymorphism, reconfiguration and mobility. The key contribution of this work is the separation
of the representation of behavior and its usage. Regarding communication, the proposed solution
is based on service/request pairs, comparable to the Active Object pattern presented above.

Figure 4.7 shows the simplified service/request scheme. The Port corresponds to the Proxy,
the Request to the Method Request and the Service to the Servant of the Active Object Pattern.
Guards can already be applied at the Port. Handling concurrent accesses to the provided services
is not further discussed.

4.3.4 CORBA- and Component-based

The Common Object Request Broker Architecture (CORBA) is a standard defined by the
Object Management Group (OMG) [11]. CORBA enables collaboration between networked
systems, e.g. running different operating systems or using different programming languages or
even different hardware. COBRA is based on the same design principles encapsulation and reuse,
like object-oriented languages. If implements the distributed object paradigm [168] implemented
by an Object Request Broker (ORB). An ORB is a middleware which allows program/method
calls to be made from one computer to another via a computer network, providing location
transparency through Remote Procedure Calls (RPC) or Remote Method Invocation (RMI), see
Figure 4.8.

While having its origin in large-scale distributed and networked system, the application of
ORB techniques to embedded system design has been proposed in several work.

In [157] a higher-level system communication model for object-oriented specification and the
design of embedded systems based on service calls over a type-resolved dynamic network has
been proposed. The approach aims lifting the abstraction of communication beyond the send-
receive over a channel. It introduces a higher-level communication mechanism for system-level
specification, which has features supporting object-oriented descriptions and client-server type
communication modeling as in CORBA.

Figure 4.9 depicts the proposed concept of named communication (right) and compares it to
explicit communication through point-to-point channels. Names communication is implemented
as request-service architecture. Tasks provide Services (S) and can send Requests (R) for Services

4.3 Object-Oriented Communication Concepts in ESL Design 83

Object-

reference

Generated

stub-code

Object-Request

Broker

Object-Request

Broker

Object-

implementation

Generated

skeleton-code

(client)--main() (server)--main()

network

Key:

ORB-vendor-supplied-code

ORB-vendor-tool-generated-code

User-defined-application-code

Figure 4.8: High-level paradigm for remote interprocess communications using CORBA (Source:
http://en.wikipedia.org/wiki/File:Orb.svg)

r
s

r

r
s

r

r
s

r

r
s

r

s

Task 1

Task 2

Task 3

Task 4

Counter

Dynamic network

Task 1

Task 2

Task 3

Task 4

Counter

r

Figure 4.9: Explicit versus named communication (Source: [157])

of a dynamic network. The network is based on CORBA and dynamically routes a Request to a
remote service. The work has implemented the request-service architecture as an extension to
SystemC, and simulation experiments have been performed. Synthesis is not covered.

In [58, 9] an object-oriented approach to cope with the HW/SW integration problem in
SoCs is presented. The proposed Object-Oriented Communication Engine (OOCE) is a system-
level middleware particularly designed for SoCs which provides a high-level and homogeneous
view of the system components based on the Distributed Object paradigm (see Figure 4.10).
Communication between components is abstracted by means of a HW implementation of the
Remote Method Invocation (RMI) semantics and all the SW and HW adapters are automatically
generated from functional descriptions of the component’s interface. A prototype implementation
of the OOCE HW interfaces on a Xilinx ML505 has been compared with a Xilinx IPIF-based
implementation [108, 112]. In the experiments, the OOCE implementation outperforms the
IPIF implementation because of the unused burst capabilities in the IPIF implementation.
Furthermore, this approach is focusing on the Stub and Skeleton generation. The integration
and refinement of the hardware and software objects need to be performed manually. Concurrent
accesses to Objects need to be resolved manually.

In [39] a component-oriented hardware/software interface specification and design methodol-
ogy is presented using the CORBA Component Model (CCM). The work proposes requirement
and a configurable mapping OMG IDL (Interface Definition Language) to VHDL. This work only
focuses on a family of hardware interfaces enabling to represent various interaction semantics

http://en.wikipedia.org/wiki/File:Orb.svg

84 4 Related Work

Figure 4.10: OOCE architecture (Source: [9])

and mapping configurations. In [40] an extension towards a complete semantics mapping of
CORBA Interface Definition Language (IDL) and General Inter-ORB Protocol (GIOP) on the
Open Core Protocol (OCP) has been investigated for hardware components and illustrated in a
Software Defined Radio use-case.

In [30] a hardware/software interface design based on the concept of a Bridge Component is
proposed. Bridge Components are specified in platform-specific Bridge Specification Languages
(BSLs) and compiled by the BSL compilers for simulation and deployment. This is similar to
the CORBA-based approaches above, but tries to be closer to the hardware domain specific
languages like VHDL and Verilog. The proposed bride is basically a transactor which translates
from a function call on the software side to a signal level protocol on the hardware side. The
generation of RTL and TLM simulation models is discussed. Nothing is said about synthesis.

4.3.5 C++- and SystemC-based

Since this work has been implemented using C++ and the SystemC class library, an overview of
other work also directly targeting an extension of SystemC for object-oriented communication
will be presented in this section.

A framework for system-level partitioning of object-oriented specifications has been proposed
in [154]. This work presents a strategy that allows the designer to guide the partitioning
with object-oriented techniques. Furthermore, it proposes an object-oriented interface for the
hardware/software partition overlapping communication of objects. Figure 4.11a shows the usage
of interface base classes and multiple interface class inheritance to separate the hardware and
the software view of the same class. In Figure 4.11b class A is realized as hardware component
and a Stub-Skeleton pair for accessing A from the software Object B. The same interface class
concept and Stub-Skeleton technique is used in this thesis.

In [128] the object-oriented partitioning concept of [154] been integrated into SystemC.
The presented design flow includes modeling with UML, hardware/software partitioning and
transformation of object-oriented specifications to regular SystemC.

In [133] an early extension of SystemC for communication refinement, called IPSIM, has been
proposed. It supports an object-oriented design methodology, separates IP modules into behavior
and communication components and further establishes two inter-module communication layers.
The Message Box layer includes generic and system-specific communication, while the driver layer
implements higher-level user-defined communications compared to a device driver. The approach
mainly focuses on hardware IP integration and the integration of software driver functionality

4.3 Object-Oriented Communication Concepts in ESL Design 85

<<Interface>>

AInterface

<<Interface>>

A_SWInterface

<<Interface>>

A_HWInterface

A

A_SWA_HW

<<Interface>><<Interface>>

oase.partitions.Hardware oase.partitions.Software

(a) Instantiating objects of the same class in different
partitions (Source: [154])

A B

<<Interface>>

AInterface

AHardwareSkeletonAHardwareStub

<<Interface>>

...HardwareStub

<<Interface>>

oase.partitions.Hardware

<<Interface>>

oase.partitions.Software

<<Interface>>

BInterface

<<Interface>>

AStubSkeleton

<<Interface>>

..HardwareStubSkeleton

<<Interface>>

...HardwareSkeleton

generated for class A

�

�

�(b) Class diagram of the generated stub/skeleton
pair and its integration in the specification context
(Source: [154])

Figure 4.11: System-level hardware/software partitioning of object-oriented specifications

Figure 4.12: TRAIN architecture overview (Source: [81])

in a hardware/software simulation environment. It does not address hardware/software agnostic
system-level specifications.

TRAIN (TRAnsaction INterchange) [81] is a Virtual Transaction Layer (VTL) architecture
for TLM-based hardware/software co-design for MPSoC platforms. The proposed VTL concept
allows to directly mapping transaction-level communication channels onto a multiprocessor
SoC implementation. VTL is above the physical MPSoC communication architecture, acting
as a hardware abstraction layer for both hardware and software components. TLM channels
are represented by virtual channels, which efficiently route transactions between software and
hardware entities through the on-chip communication network.

Figure 4.12 gives an overview of the TRAIN architecture. The CPU adapter routes transac-
tions between software processes and hardware modules connected to the on-chip communication
network. Accessors connect the hardware IP’s interface to the target bus or NoC using a

86 4 Related Work

SqrLoop

Approx

Dup
Sink

Source

SqrLoop Dup

Approx

Aggregator Aggregator

TLM conform bus

A
ct
o
r-
o
ri
en
te
d

Source

Sink

CPU

m
o
d
el

T
L
M

A
rc
h
it
ec
tu
re

HW

Figure 4.13: Mapping of an actor-oriented model to TLM architecture components (Source:
[64])

Technology Adapter (TA). These are used to connect the CPU adapters and accessors to the
platform’s communication architecture.

In the high-level model, transactions between system components are described by abstract
point-to-point TLM channel method calls like put(data) and get(data) supporting a generic
message passing infrastructure. The presented approach does neither explicitly support an
application level object-oriented techniques nor user-defined service-based communication as
presented in the previous section.

In [67] the concept of [81] has been extended towards user-defined service calls. Instead of
generic read/write or put/get functions, the concept of Hardware Procedure Calls (HPC) is
applied. Through HPC, hardware services are provided to software processes as remote methods
on top of transaction-level communication channels. This is another example for a lightweight
RPC or RMI implementation focusing on the integration of hardware IPs in software dominated
MPSoCs.

In [64] the mapping of actor-oriented models to TLM architectures is presented. In particular,
it describes an approach to map and implement FIFO-Channel based synchronization and data
transport between actors to SystemC TLM 2.0 compliant bus protocols.

Figure 4.13 provides an overview of the Actor model to TLM bus mapping. The key
contribution of [64] is the proposed methodology, which enables to map actor communication
in actor-oriented SystemC models (called SysteMoC [31]) to TLM architectures without any
reimplementation effort. The mapping and refinement concept with minimal reimplementation
effort is similar to the approach taken in this thesis.

The work in [6] aims unified design of hardware and software components using plain C++

making extensive use of template meta-programming techniques and design patterns. Moreover,
aspect-oriented programming and object-oriented programming techniques have been proposed
in order to provide unified C++ descriptions of embedded system components. The basic idea
is to carefully isolate aspects that are specific to hardware and software scenarios. Aspects that
differ significantly in each domain, such as resource allocation and communication, have been
isolated in aspect programs that are applied to the unified descriptions before they are compiled
to software binaries or synthesized to dedicated hardware using high-level synthesis tools. In
summary, [6] provides an overview of best design practices to be applied when using plain C++

as entry for embedded hardware/software design. Communication specific aspects are only
covered superficially, relating to the concept of communication encapsulation in channels and
hardware/software specific proxies. Target SoC specific aspects during synthesis are not covered.
These are hidden in the EPOS library.

4.3.6 Summary & Discussion

This section presented an overview of object-oriented communication concepts proposed for
and used in ESL design. The combination of actors and objects is a commonly used technique

4.4 SoC communication modeling 87

to express concurrency in classic sequential object-oriented descriptions. The Active Object
is a generic pattern used to implement actors. Also OSSS, as proposed in this work makes
use of this pattern. More specifically, the Application and Virtual Target Architecture Layer
models use a combination of actors and objects. After mapping Shared Objects on the Virtual
Target Architecture Layer, client and Shared Object are running in two independent processes,
which mostly resembles the Active Objects. While on the Application Layer, Shared Objects
resemble the Monitor pattern, which ensures that only one method at a time executes within a
passive object, regardless of the number of client processes that invoke this object’s methods
concurrently. The Monitor pattern is a special case of the Active Object pattern and in general
more efficient than Active Objects since they incur less context switching and data movement
overhead. Since OSSS targets embedded SoCs with limited processing and communication
resources, operating under tight extra-functional constraints (e.g. timing and power), some
features of the Active Object pattern have not been considered in this work. Among these
features are asynchronous method calls using future objects for fully decoupling method call
requests from return argument handling. This interesting feature needs to be considered carefully,
since it can induce non-determinism and unbounded memory demands, if not used under certain
constraints. This would be subject to future work.

The Common Object Request Broker Architecture (COBRA) enables to describe the object
interfaces and implemented services independently from its implementation (and implementation
language), call methods on remote objects running on different nodes in a computer network,
and to dynamically look-up and find remote services. Several work has been inspired by this
architecture and proposed similar implementations for embedded SoCs. Also in OSSS the
concept and implementation of the Remote Method Invocation (RMI) Channels stub and
skeleton and marshaling/serialization concepts have been inspired by CORBA’s RPC/RMI
techniques. Like most related work, limitations with respect to dynamic object look-up and
dynamic object and service integration and discovery apply to OSSS. Instead, only statically
mapped communication links can be used with OSSS RMI Channels. Furthermore, OSSS
does not support an implementation language independent interface description as proposed by
several related work.

4.4 SoC communication modeling

This section gives an overview of TLM communication concepts and frameworks for SoC platform
communication modeling. Many TLM layers and terminologies have been suggested by multiple
authors and groups [61]. We adopt the terminology of the SystemC TLM group, but give a more
precise definition of the layers based on Niemann’s and Haubelt’s concept of atomic transactions
[69]:

Functional View (FV) models employ untimed point-to-point communication, focusing purely
on functional behavior.

This layer covers the Untimed Functional Model (UFM) as introduced in Section 3.4.4.

Programmer’s View (PV) models use blocking transactions and passive targets to provide a ba-
sis for early software development. Timing may be modeled coarsely, called "Programmers
View with Timing" (PV+T), bus arbitration is typically not modeled.

This layer covers the Timed Functional Model (TFM) as introduced in Section 3.4.4.

Architecture View (AV) – also called cycle-approximate (CX) – models resemble the bus
architecture and arbitration of an implementation platform with approximated timing.
They are used for timing/performance estimation. The CCATB (Cycle-Count Accurate at
The Boundaries) modeling abstraction maintains observable cycle count accuracy at the
boundary of every read or write transaction occurring in the system. Since we are not
concerned with maintaining accuracy at every cycle boundary, we can speed up both the
simulation speed and the modeling effort. The CCATB modeling abstraction thus allows
fast simulation of system models, similar to TLM while maintaining overall cycle accuracy,
like in CA models which is essential for accurate system exploration.

88 4 Related Work

This layer covers the Transaction Level Model (TLM) and the Computation Cycle-Accurate
Model (CCAM) as introduced in Section 3.4.4.

Verification View (VV) – also called cycle-accurate (CA) or cycle-count (CC) accurate – models
are clocked and represent the exact bus behavior in each cycle. Such models serve as a
reference against which synthesizable RTL implementations are verified.

This layer covers the Bus Cycle-Accurate Model (BCAM) and the Cycle-Accurate Model
(CAM) as introduced in Section 3.4.4.

The following overview of TLM communication concepts and frameworks is based on the
analysis performed in [82, 49].

4.4.1 SystemC TLM

Founded in 2003, the OSCI TLM Working Group (TLM-WG) pioneered the development
of TLM frameworks for SystemC with the release of the OSCI TLM kit 1.0 [114]. A set of
three interfaces is provided that form the heart of the kit, enabling unidirectional blocking,
unidirectional non-blocking, and bidirectional blocking transfers.

The TLM 1.0 kit does not define standard data types nor abstraction levels. The intended
use of the kit is to develop customized channels with it, using application-specific data structures
and user-defined protocols. Thus, the OSCI kit does not help in achieving model interoperability.
Having identified these issues, the OSCI TLM Working Group started working on a revised
version of the kit (OSCI TLM 2.0). A first proposal of concepts has been made available for
public review in spring 2007 [68].

Since 2012, TLM 1.0 and TLM 2.0 have become part of the IEEE Std 1666-2011 (IEEE
Standard for Standard SystemC Language Reference Manual) [13], which is the first revision of
the initial IEEE Std 1666-2005.

4.4.2 GreenBus

The GreenBus [82, 49] is a generic bus model that introduces the concept of transactions
consisting of uninterruptible phases (atoms) which are collections of payload values (quarks).
By identifying bus protocol signals as quarks, the generic model can be customized to model
concrete buses. Simulation can be performed at the layer of transactions, atoms or quarks,
corresponding to approximately timed, cycle-approximate, and cycle-accurate layers.

The GreenBus concepts have been submitted to the Open SystemC Initiative (OSCI) as
interoperability standard proposal, and have been partially adopted in the SystemC TLM
2.0 standard. GreenBus offers a compatibility layer for SystemC TLM 2.0 through sockets
that convert the TLM 2.0 Generic Payload into the corresponding GreenBus data transaction
container and vice versa.

4.4.3 Accuracy-Adaptive TLMs

Transaction level models exist at different abstraction levels, which are characterized as untimed,
approximately timed, cycle-approximate and cycle-accurate. These abstractions provide different
trade-offs between abstraction and accuracy suitable for different use models. The decision,
which abstraction level to employ is usually made by the user prior to simulation based on
the use case and required accuracy. In [54] a modeling technique that allows covering several
abstraction levels in a single model and switching between these abstraction levels at any time,
in particular dynamically during simulation. This feature is employed to automatically adapt
simulation accuracy to an appropriate level depending on the model’s state, leading to an
improved trade-off between simulation performance and accuracy. In [32] this adaptive TLM
modeling has been successfully applied to the AMBA AHB bus and the Fast Simplex Link
(FSL) based on SystemC TLM 2.0. In [15] a modeling style for systematic construction of
accuracy-adaptive TLM models is presented.

4.4 SoC communication modeling 89

4.4.4 OCP SystemC channels

The OCP-IP [86] provides a comprehensive library of point-to-point channels for modeling
of SoCs based on the Open Core Protocol with SystemC [70]. Three levels of abstraction
are supported, namely OCP-tl0 for cycle accurate, OCP-tl1 and OCP-tl2 for CCATB, and
OCP-tl3 for PV communication modeling. A large set of interface methods for both blocking and
non-blocking channel access is provided. OCP channels use predefined data types for transfer
qualifiers such as address, command, thread identifier, etc. and provide basic instrumentation for
transaction monitoring. However, they do not provide any means for communication architecture
simulation, as they only support point-to-point communication.

4.4.5 STMicroelectronics TAC

TAC (Transaction Accurate Communication) [117] is a protocol functional verification and
embedded software development through transaction-accurate communications. It provides a
set of channels and interfaces aiming at the creation of virtual PV prototypes for early software
development.

TAC v1 has been proposed as TLM 1.0 standard to OSCI and TAC v2 has been aligned to
the final TLM 1.0 OSCI standard. It has been built on top of OSCI TLM 1.0 and provides a
pair of so-called initiator and target ports. These ports implement simple blocking read and
write communication methods. As part of TAC a router model is delivered that can add wait
calls to transactions so that approximate (PV+T) communication times are estimated, e.g.
using weighted randomization. However, at this time, TAC did not support communication
architecture simulation.

With TAC v3, the OSCI TLM 2.0 standard is supported as well and enables communication
architecture simulation with register map support (which has not been standardized yet). It
enables register decoding, register and bit field access control, setters & getters, register meta
data (synchronization points) and a unified reporting mechanism.

4.4.6 SystemCSV

The SystemC SV [155] extension of SystemC is an approach to TLM communication modeling
at mixed levels of abstraction. It defines an interface that describes communication among PEs
at different levels of abstraction in terms of interface items. An interface item may represent
either a complete transaction, a frame or word, a field within this frame, or a signal state on a
physical wire.

SystemC SV provides C++ macros with which the composition of interface items can be
described in a declarative style. Interfaces use these macros to automatically decompose interface
items for transmission and reassemble them on reception. Thus, mixed multi-level communication
of PEs at different abstraction levels becomes possible.

While the SystemC SV approach is very appealing for describing point-to-point communica-
tion, it does not support modeling of shared-buses. Also, the simulation speed-up of 160x (as
reported in [155]) when using abstract interface items instead of RTL level interface items is
considerably lower than the performance reached by other TLM frameworks (e.g. [68, 82]).

4.4.7 OCCN

OCCN (On-Chip Communication Network) [121] addresses network-on-chip modeling with
SystemC at mixed abstraction levels. It transports "protocol data units" (PDUs) among PEs.
PDUs are composed of user-definable fields that carry user data and protocol information. An
OCCN channel implements blocking send and receive methods for PDUs. Receive delays and
timeouts can be specified as parameters, enabling PV+T modeling equal to ST TAC.

Coppola et al. propose the implementation of an application API on top of the PDU transport
layer. This API can provide master and slave ports with convenience methods. Similar to OCP
channels, the OCCN channel is a point-to-point channel that does not support communication
architecture simulation.

90 4 Related Work

4.4.8 IBM CoreConnect models

IBM provides SystemC bus functional models for their CoreConnect architecture [98]. They
enable precise CC simulation of the PLB [57], OPB [151], and DCR [76] buses. For each of the
three buses a dedicated API is provided, which are quite comprehensive and low-level. Thus,
the IBM library is a good tool to create a virtual prototype of an already existing CoreConnect
SoC, but is inappropriate for architecture exploration.

4.4.9 ARM AMBA models

A library of AMBA [167] bus functional models is provided by ARM. These models enable
simulation of AHB [83] and AXI [123] on-chip buses. In contrast to the IBM CoreConnect
models, the ARM AMBA bus functional models have been implemented on top of SystemC TLM
2.0 to integrate with existing environments and models and to foster architecture exploration.

4.4.10 CCATB AMBA models

In their paper on the CCATB simulation approach [126], Pasricha et al. present CCATB
Communication Architecture Functional Models (CAFMs) for the AMBA AHB and AXI buses
and compare them with ARM’s cycle accurate bus functional models. A speedup of 55% is
achieved, which is rather unsatisfying in comparison to the other approaches. This limited result
may be due to the utilized instruction set simulator.

4.4.11 ROM

Result Oriented Modeling (ROM) [90] takes advantage of the limited observability within a
transaction to increase the performance. The idea is to calculate the transmission time of
a transaction a priori and then advance simulation time to the end time of the transaction.
This is similar to PV+T approaches such as TAC, but in addition, ROM checks whether a
"disturbing influence" has occurred, such as an overlapping transaction on a shared bus. In this
case, corrective measures are taken if necessary.

Schirner et al. achieve simulation speeds close to that of PV models with this approach.
However, ROM simulation results are only correct when observed at transaction boundaries.
Thus, Bus Accurate (BA) and Cycle-Count accurate (CC) models are not supported. Moreover,
ROM CAFMs are only periodically synchronous to SystemC simulation time.

4.4.12 NoC channels

In [137], Kogel et al. present a a combined bus/NoC simulation framework for packet based
communication via a so-called NoC channel. Multiple masters and slaves can be connected
to the channel. It implements a symmetric request-response communication scheme. Masters
initially not compliant to this interface can be attached by means of adapters.

An advantage of Kogel’s approach over all of the above proposals is that protocol simulation
and the channel inherently supports multiple access arbitration. So-called network engines
can be attached to the channel that implement the behavior of a bus or NoC protocol. Upon
initiation of a transaction, the channel creates a transaction data structure and forwards it to
the network engine. The network engine collects concurrent transaction requests in a queue and
delays them in accordance with the arbitration policy. Transmission times are taken into account
as well, however on a coarse-grained packet basis only. The framework therefore lacks the
possibility of providing CCATB timing estimations. The authors do not consider communication
refinement towards the implementation model.

4.4.13 Summary & Discussion

Table 4.1 provides an overview of the presented techniques recently used for SoC communication
modeling and simulation.

Transaction level modeling as described in [13, 82, 49, 54, 15] is motivated by the need
of an early platform for software development, fast system level design exploration [90] and

4.5 SoC Communication Synthesis 91

Simulation Access Transfer Data
Accuracy Semantics Types Types Topology

PV AV VV B NB word burst fixed user p2p bus NoC

SystemC TLM 2.0 [13] x x x x x x x x x x

GreeBus [82, 49] x x x x x x x x x

Accuracy-Adapt. [54, 15] adaptive x x x x x x

ROM [90] x x x x x

OCP TL1 [86] x x x x x x x

OCP TL2 [86] x x x x x x x

OCP TL3 [86] x x x x x x x

TAC [117] x x x x x x x x x x

SystemC-SV [155] x x x x x x x

OCCN [121] x x x packet x x

IBM CoreConnect [98] x x x x x x

NoC channels [137] x x x x packet x x x x x

OSSS RMI Channels [22] x x packet x x x

OSSS Channels [77, 78] x x x x x x x

PV Programmer’s View B Blocking transfer p2p point-to-point
AV Architecture View NB Non-Blocking transfer bus shared bus or cross-bar
VV Verification View NoC Network-on-Chip

Table 4.1: Overview of communication in SoC platforms (extended from [49])

verification and the usage of system level models in block level verification. These approaches
are focused on the efficient simulation and do not deal explicitly with synthesis or mapping
to a physical target platform. The Open Core Protocol International Partnership (OCP-IP)
tries to overcome this limitation of OSCI TLM. OCP-IP defines a bus-independent open license
protocol [86] with point-to-point interfaces to a bus wrapper interface module. Since OCP does
not define Layer-0 (RTL-Layer), it is not synthesizable without manual refinement.

The goal of OSSS is to enable HW/SW communication modeling with synthesizable channels.
OSSS supports a two-layered channel model. OSSS RMI Channels [22] implement a communica-
tion channel transparent Remote Method Invocation protocol. One layer below OSSS Channels
[77, 78] are using a set of sc_signals internally, which is equivalent to RTL wires and therefore
synthesizable. For shared bus and point-to-point channel modeling a predefined read/write
interface is proposed. A protocol library contains different implementations of these interface
methods, e.g. to simulate the OPB. Data transport and arbitration in OSSS is performed at
RTL abstraction level. Thus, bus simulation is cycle accurate. As a drawback, the simulation
performance achieved with this approach is hardly better than with pure RTL models. Instead
of using synthesizable OSSS Channels, our RMI Channels can also be used on top of SystemC
TLM channels (see [48, 23, 17]) which is not covered in this thesis.

4.5 SoC Communication Synthesis

Starting from a strict separation of computation and communication (see Section 3.6.2), this
work targets SoC communication synthesis as a synonym for channel and interface synthesis. A
channel encapsulates the entire communication protocol and may be hierarchically refined to
represent the physical communication structure (i.e. signals or wires). During channel synthesis,
the protocol state-machines at the channel interface implementations are realized as part of the
computation, as either software of hardware implementation (as shown in Figure 4.14).

As defined in [79]: “It is important to note, that we strictly differentiate between the terms
interface adapter and interface, even though the term interface is often used as synonym for
interface adapter in the literature. An interface is an integral part of a communication component
while an interface adapter is a self-containing entity that interconnects interfaces. Due to the
ambiguity of the term interface, existing interface synthesis approaches cover the construction

92 4 Related Work

B2

v2

v1

v3

B1
C1

(a) Before synthesis: Separation of com-
putation (behavior) and communication
(channel)

B2B1

v2

v1

v3

(b) After synthesis: Communication gets
inlined with computation

Figure 4.14: Channel synthesis in SLDLs [160]

of component interfaces as well as the synthesis of self-containing protocol adapters.”

T

v2

v1

v3

B1

v5

v4

IP
A

Transducer Adapter IPIP busSystem busSynthesizable
behavior

(a) Before synthesis: Separation of computation (behavior), transducer and communication
(channel)

TB1

v5

v4

IP

v2

v1

v3

(b) After synthesis: Communication gets inlined with computation and transducer

Figure 4.15: Channel synthesis with transducer in SLDLs [160]

A transducer, as shown in Figure 4.15, performs protocol translation between two different
protocols. A transducer can be used to connect two different channels, implementing different
protocols. Furthermore, it can be used to connect IP components with a different physical
interface and logical protocol. In this case, an adapter translates the protocol to the physical
interface and the transducer translates between the adapter and the other protocols.

The work in [79] itself combines interface synthesis techniques with reconfigurable computing
concepts to create an interface adapter module (called Interface Block (IFB)), which affords
the deterministic reconfiguration of tasks at runtime. Furthermore, [79] presents an integrated
design flow which supports the modeling and automated synthesis of an IFB. Using worst-case-
execution-time analysis and schedulability analysis, real-time protocol conversion capabilities of
an IFB can be proven. With respect to its reconfigurablity is goes beyond the scope of interface
synthesis covered in this thesis where interfaces and the number of communication partners are
statically fixed during design time. The concept of IFB could be applied as an alternative to
the currently used Xilinx IPIF adapter (see Section 7.8).

Concerning communication synthesis from abstract channel and protocol specifications to
RTL, several works exist in literature. We do not intend to give an exhaustive overview here,
but rather focus on work applicable to the presented channel, transducer and adapter concept
as used in SLDLs such as SpecC and SystemC.

4.5.1 SpecC-based

SpecC [160] is completely refinement driven and introduces lots of useful concepts to perform a
separation of computation and communication. It uses hierarchical behaviors for the specification
of computation and channels for the specification of communication.

4.5 SoC Communication Synthesis 93

The protocol translation can be implemented by user-defined adapter modules. These
wrapper/adapter modules have to be written in the SpecC language and become part of the
SpecC synthesis flow [116]. An automated layer-based generation of System-on-Chip bus
communication models is presented in [63].

Another approach [189] proposes to reduce protocol specifications to the combination of five
basic operations (data read/write, control read/write, time delay). The protocol description is
then broken into blocks (called relations) whose execution is guarded by a condition on one of
the control wires or by a time delay. Finally, the relations of the two protocols are matched
into sets that transfer the same amount of data. Although this algorithm is able to account for
data width mismatch between the two modules, the procedural specification of the protocols
makes it difficult to adapt different data sequencing, so that only the synchronization problem is
solved. The concept was extended to IP based design in [115] and an automatic communication
refinement for system level design in [129].

A different work is that of Boriello [192], who introduces the “event graph” to establish
the correct synchronization of data sequencing. The limitation of this approach is that the
two protocols should be made compatible by manually assigning labels to the data on both
sides, since the specification of the protocols is given at a very low-level of abstraction using
waveforms.

In [177] Interface Based design was proposed as a methodology that attempts to orthogonalize
the communication and the behavior of IPs. Therefore, IP blocks are abstracted to a transition
or messaging level. In this abstract view, complex blocks exchange messages using a robust
user-defined type system rather than using complex signaling conventions based on conventional
wires. The abstracted communication leads to an improvement in the simulation performance.
However, this abstract level is not sufficient for the automated implementation of the protocol
translation. One solution to get to the final implementation is the stepwise refinement of the
protocols down to a pin- and cycle-accurate bus functional model.

4.5.2 SystemC-based

For constructing communication in system level models, SystemCTM [13] has adopted the idea
to orthogonalize communication and behavior. Therefore it has introduced the concept of
primitive and hierarchical channels. Our proposed approach for SystemC channel synthesis is to
allow user-defined abstract synchronization and communication on transaction or message level
granularity. The synchronization behavior of the channel is preserved during synthesis, while
the transaction-based communication is automatically translated to a pin- and cycle accurate
communication channel.

Müller and Siegmund presented a SystemC based specification for protocols [155]. From this
specification a deterministic interface adapter FSM is generated [147, 146]. In order to avoid a
consideration of the complete product FSM, an architecture template is introduced. For the
resulting interface adapter FSM, VHDL code is generated as input for a low-level synthesis. In
our approach we also enable the use of IP communication resources through the generation of
interface protocol FSMs, e.g. for shared busses. A synthesizable specification of the interface
protocol FSM or the entire communication network has been presented in [77].

4.5.3 Commercial SystemC and C/C++ synthesis tools

This section briefly discusses the communication and interface synthesis capabilities of a selection
of commercial SystemC and C to RTL synthesis tools.

4.5.3.1 SystemCrafter

SystemCrafter [230] is a SystemC to VHDL and Verilog synthesis tool. It also support SystemC
output to compare the synthesized design with the input model. The SystemCrafter user
manual [231] language reference reveals that this tool only partially supports the SystemC
synthesizable subset [33]. SystemCrafter does not support user-defined classes, structs and
unions, multi-dimensional arrays typedefs and templates. Advanced control statements like

94 4 Related Work

continue and break are also not supported. From a modeling perspective these are severe
limitations.

Regarding communication, SystemC modules can only communication using sc_signal. No
other SystemC channels are supported. Thus when using user-defined channels, these need to
be manually refined at RT level using ports and signals.

SystemCrafter supports predefined RAM modules sc_module_ram_craft including support
for Xilinx Block RAMS.

4.5.3.2 Handel-C

Handel-C [213, 214] is a subset of C, with non-standard extensions to control hardware instan-
tiation with an emphasis on parallelism. Parallel behavior is described using Communication
Sequential Processes (CSP) [198] keywords (like seq and par in Occam). As defined in CPS,
channels provide communication between parallel threads. These channels are directed: i.e. one
of the paths outputs data onto the channel and the other parallel thread can read the data.
Channels can be created with or without a FIFO capability. For a channel without a FIFO the
first thread to execute the channel read (or write) command waits until the corresponding write
(or read) is executed in the other communicating thread. In this way, the sender and receiver
are performing a rendezvous where they can pass data and synchronize their operation in a
cooperative manner. Handle-C is mainly targeted for FPGA platforms.

4.5.3.3 C-to-Silicon

Cadence C-to-Silicon compiler [208] supports large parts of the SystemC synthesizable subset
[33] and the transaction-level modeling TLM 1.0 API [93]. With this approach, the designer is
capable of building custom point-to-point interfaces. As a high-level synthesis tool, it capable
to automatically schedule SC_THRERADs but also works with manually scheduled SC_CTHREADs.
These features enable a manual protocol refinement down to pin level accuracy when necessary.

Regarding more advanced communication it has built-in support for flex channel block-to-
block streaming communication and enables to interface AXI3 and AXI4-Lite on-chip interconnect
fabrics.

For modeling and integration of memories, different approaches are available. C-to-Silicon is
capable to automatically flatten multi-dimensional arrays into a flat memory array, supports
platform specific built-in RAM (e.g. Xilinx Block RAM).

With these features, C-to-Silicon provides support for manual refinement and interface
inlining for user-defined channels and limited automatic synthesis support for pre-defined point-
to-point connections and AXI on-chip interfaces. This does not explicitly support the designer in
exploiting knowledge about communication and synchronization properties from the algorithmic
description, but requires a manual mapping to the available communication mechanisms.

4.5.3.4 Cynthesizer

Forte Design Systems Cynthesizer [211] fully supports the SystemC synthesizable subset [33]
and allows use of sc_port for abstract communication between modules and to automatically
switch between OSCI TLM 1.0 and pin-level communication interfaces. The provided technique
supports integration of Cynthesizer with any OSCI TLM 1.0 environment for increasing the
simulation performance. To support this TLM feature for synthesis, TLM versions of behavioral
IP for FIFOS, memory interfaces, and streaming interfaces are provided as both, high-speed
TLM simulation and pin-accurate synthesizable models. The Cynthesizer approach also uses
SystemC primitive channel ports for the specification of user-defined communication. In contrast
to our approach, only a transactor synthesis to convert from a method-based interface to a
pin-level interface is provided. The benefit of our approach is that we also consider information
from the high-level channel model with its user-defined communication and synchronization
properties and perform automatic protocol synthesis.

4.5 SoC Communication Synthesis 95

4.5.3.5 CatapultC

Calypto’s Catapult [209] does not require the definition of explicit interface protocols when
starting with a pure ANSI C++ description. But Catapult also supports large parts of the
SystemC synthesizable subset [33]. The usage of SystemC instead of C++ enables to take
advantage of the SystemC modular hierarchy and data types.

Catapult is a true high-level synthesis tool. During behavioral synthesis, interfaces between
behavioral blocks are mapped to either streaming, single- or dual-port RAM, handshaking, FIFO,
or custom built-in I/O components. For communication intensive designs with tight constraints
or the integration with complex bus interfaces, Catapult also allows designers to specify their
interface requirements using cycle-accurate descriptions in SystemC (e.g. SC_CTHREADs with
wait statements at clock boundaries). For this purpose, CatapultC provides its own transaction-
level modeling style, similar to OSCI TLM 1.0. This is basically the same approach with the
same limitations as used in the Forte Cynthesizer described above.

4.5.3.6 Vivado

The Xilinx High-Level Synthesis software Vivado HLS [235, 3] (former XPilot from AutoESL
[35]) transforms a C, C++ or SystemC specification into a Register Transfer Level (RTL)
implementation that synthesizes into a Xilinx FPGA. Vivado supports abstraction of algorithmic
description using C and C++, data type specification (including integer (arbitrary precision),
fixed-point or floating-point) and communication interfaces (FIFO, AXI4, AXI4-Lite, AXI4-
Stream). Optimized for Xilinx FPGAs, it automatically makes use of Xilinx on-chip memories
(distributed RAM and Block RAM) and DSP elements.

Interface synthesis in Vivado is handles differently for the C/C++ and the SystemC entry. In
general, Vivado HLS does not perform interface synthesis on SystemC. Communication between
threads and methods (wrapped by modules) should only be performed using sc_buffer or
sc_signal channels. Furthermore, Vivado supports interface synthesis for some memory inter-
faces, such as RAM (ap_mem_if) and FIFO (sc_fifo_in, sc_fifo_out) ports. For SystemC
Vivado HLS directives to partition the array ports into individual elements are provided. The
Vivado high-level synthesis process may add additional clock cycles to a SystemC design to
meet timing requirements.

The main SystemC limitations in Vivado are:

• An SC_MODULE cannot be nested inside another SC_MODULE. Forcing the designer to manu-
ally flatten the design hierarchy before synthesis.

• An SC_MODULE cannot be derived from another SC_MODULE. Thus effectively preventing
inheritance anomaly for SystemC designs.

• No support for SC_THREAD processes; only clocked threads (SC_CTHREAD) are supported.
This restricts SystemC to behavioral RTL design only.

The C/C++ entry provides more high-level synthesis features, but less control on the resulting
structural representation of the synthesis result, compared to the SystemC entry. Regarding
interface and protocol synthesis, the following is supported:

• Interface types ap_ctrl_none, ap_ctrl_hs and ap_ctrl_chain are used to specify if the
RTL is implemented with block-level handshake signals or not. Block-level handshake
signals specify when the design can start to perform its standard operation and when that
operation ends. These interface types are specified on the function or the function return.

• Array arguments are typically implemented using the ap_memory interface. This type
of port interface is used to communicate with memory elements (RAMs, ROMs) when
the implementation requires random accesses to the memory address locations. Array
arguments are the only arguments that support a random access memory interface. If
only sequential access to the memory elements is required, the ap_fifo interface should
be used.

96 4 Related Work

• An ap_bus interface can communicate with a bus bridge. The interface does not adhere to
any specific bus standard but is generic enough to be used with a bus bridge that in-turn
arbitrates with the system bus. The bus bridge must be able to cache all burst writes.
An ap_bus interface can be used in two ways: standard mode of operation is to perform
individual read and write operations, specifying the address of each and in burst mode,
the base address and the size of the transfer is indicated by the interface (i.e. the data
samples are transferred in consecutive cycles).

• An AXI Stream I/O protocol can be specified as the I/O protocol using mode axis. An
AXI Slave Lite I/O protocol can be specified as one of the I/O protocol using mode
s_axilite. An AXI Master I/O protocol can be specified as one of the I/O protocols
using mode m_axi. A complete description of all AXI interfaces including timing and
ports can be found in [2].

4.5.3.7 eXCite

eXCite [210, 47] is an ISO/ANSI-C (including pointers, structs and type definitions) to Verilog
or VHDL RTL high-level synthesizes tool. The resulting VHDL or Verilog code is suitable
input to FPGA (Altera, Xilinx, Actel) or ASIC logic synthesis tools. eXCite has built-in data
for devices from Altera, Xilinx and Actel. A technology library generator is also available to
customize ASIC library information.

For communication, channels that specify how the generated hardware block will communicate
with its surroundings can be inserted. These channels can be streaming, blocking, or indexed,
like arrays. These channels are accessed through simple C procedure calls in the C code or by
specifying pragmas [206]. A channel library for an Altera FPGA platform with Avalon streaming
and memory-mapped interfaces is included. Other platform’s standard memory, handshake, and
streaming interfaces can be manually integrated.

4.5.4 Summary & Discussion

In this section, an overview of related work in communication channel and interface synthesis
has been provided. It has been mainly focused on synthesis from C- and C++-based SLDL,
including some state-of-the-art synthesis tools.

In this thesis, an alternative concept for SystemC channels is proposed. Shared Objects, like
any other objects may specify a set of methods that form its interface. This allows processes to
communicate and exchange data via Shared Objects using the Interface Method Call (IMC)
mechanism similar to SystemC channels.

The presented related work follows two basic principles for interface and channel synthesis:
custom refinement and mapping to pre-existing communication adapters. In this work, a
combination of both principles will be applied. The Shared Object will be synthesized to custom
hardware, following the basic idea of [135, 97]. For the connection of clients to a Shared Object a
library-based communication adapter synthesis will be applied. In the resulting communication
architecture, the Shared Object can be regarded as a Transducer or Bridge that performs
protocol conversion and guarantees data consistency among its connected client processes.

Compared to arbitrary channels, Shared Objects have a clear synthesis semantics, possess
built-in mechanisms for handling concurrent accesses, and exhibit a timed behavior during
simulation. The handling of concurrent accesses is basically realized by means of a scheduler
that can be specified by the user for each Shared Object. The scheduler determines which client
process is granted to access the Shared Object in the case of concurrent requests. All other
requesting clients are blocked meanwhile. Consequently, accesses are mutual exclusive, which
is supported by a guard mechanism. Additionally, the timed behavior of Shared Objects give
the designer an early and realistic impression on the temporal behavior of the modeled system
during simulation even before performing synthesis.

This work is based on the explicit exploitation of object-oriented constructs used in hardware
design as proposed by [162, 128]. Grimpe et. al. [135, 97] have introduced the concept of
Guarded/Shared and Polymorphic Objects to further raise the abstraction of object-oriented
hardware descriptions while keeping its synthesizability in mind. However, the communication

4.6 Electronic System-Level Synthesis Methodologies 97

between the client processes and the Shared Object followed a pre-defined and static point-
to-point communication protocol only, and did not follow the SystemC channel port-interface
binding concept. In [22] an evolution of the Shared Object directly following the SystemC port
to interface binding and IMC communication style has been presented. This is much closer
to the SystemC channel description and allows much easier replacement of SystemC primitive
channels with Shared Objects. Furthermore, this provides a hook for selectively refinement and
synthesis to different user-defined cycle accurate communication protocols.

Existing commercial C, C++ and SystemC synthesis tools, e.g. [211, 209, 208, 235] allow
behavior level synthesis. However, these tools are well suited for synthesis of complex functional
blocks, but lack adequate support for flexible and predictable communication synthesis5 between
these functional blocks. Some tools offer pre-defined point-to-point communication resources like
FIFO buffers (supporting TLM1.0 interfaces), RAM or dedicated bus interfaces for synthesis.
At the beginning of this work most of these communication and interface synthesis support
has not been available in commercial tools. For this reason the Fossy SystemC synthesis tool
[225] has been developed in the three successive EU projects ODETTE, ICODES and ANDRES.
With the recently available Vivado HLS tool [235], a large part of the complexity of Fossy could
be moved to Vivado and thus only generating synthesizable SystemC code for Shared Objects
and client interfaces.

This work proposes a new SystemC-based coding style for high-level synthesis using Shared
Objects – that allows deterministic access scheduling and user-constrained refinement – for
HW/HW communication, which shall make it easier to convert communication parts from
abstract SystemC description to synthesizable RTL.

4.6 Electronic System-Level Synthesis Methodologies

For a high-level comparison of the overall presented OSSS methodology, this section gives an
overview of major ESL system-level synthesis methodologies. It has been extracted from [28].
For more details on these methodologies, please refer to the original source.

4.6.1 Daedalus

“Daedalus provides an integrated and [...] automated framework for system-level architectural
exploration, system-level synthesis, programming, and prototyping of heterogeneous Multi-
Processor System-on-a-Chip (MPSoC) platforms [72], [53]. The Daedalus design flow [...], leads
the designer in a number of steps from a sequential application (i.e., behavioral specification) to
an MPSoC system implementation on an FPGA with a parallelized version of the application
mapped onto it. This means that Daedalus includes or interfaces with component- and task-level
back-end synthesis processes to produce an MPSoC implementation at the RTL and ISA levels
for hardware components and software processes, respectively. Since the entire design trajectory
can be traversed in only a matter of hours, it offers great potentials for quickly experimenting
with different MPSoCs and exploring a variety of design options during the early stages of
design.

[...]
[The Daedalus framework has been mainly designed for dataflow dominated applications

from the multimedia, imaging, and signal processing domains], that naturally contain tasks
communicating via streams of data. Such applications are conveniently modeled by means of
the Kahn Process Network (KPN) MoC [200]. The KPN MoC [...] is a dataflow network of
concurrent processes that communicate data in a point-to-point fashion over bounded FIFO
channels, using blocking read/write on an empty/full FIFO as synchronization mechanism. The
KPNs that Daedalus operates upon can be manually derived or automatically generated. In
the latter case, behavioral input specifications are sequential C programs. [...] To allow for

5Predictable in the sense that the resulting communication timing is reflected in the input simulation model.
Usually, the effect of communication synthesis can only be observed on the generated output model of the
synthesis tool. For this purpose, most synthesis tool offer a SystemC output model that can be used with the
original testbench.

98 4 Related Work

automatic translation into a KPN, these C applications need to be specified as so called Static
Affine Nested Loop Programs (SANLPs) [73] [...].

In terms of target MoA, Daedalus considers MPSoC platforms in which both programmable
processors and dedicated hardwired IP cores are used as processing components. They commu-
nicate data only through distributed memory units. Each memory unit can be organized as
one or several FIFOs. The data communication and synchronization between processors are
realized by blocking read and write primitives. Such platforms match and support the KPN
operational semantics very well, thereby achieving high performance when KPNs are executed on
the platforms. Also, directly supporting the operational semantics of a KPN, i.e., the blocking
mechanism, in the target platforms allows the processors to be self-scheduled. This means that
there is no need for a global scheduler in the platforms.

Daedalus architectures are constructed from a library of predefined and pre-verified IP
components. These components include a variety of programmable processors, dedicated
hardwired IP cores, memories, and interconnects, thereby allowing the implementation of a
wide range of heterogeneous MPSoC platforms. [...] Daedalus produces platforms in the form of
synthesizable VHDL (i.e., a netlist MoS) together with the C code for KPN processes that are
mapped onto programmable processors. [...] Daedalus designs can be readily implemented on
an FPGA for prototyping.

Daedalus supports the mapping of multiple KPN processes onto a single processor, [either by
performing compile-time scheduling or by using a lightweight multi-threading operating system].

The Daedalus design process is guided by automated DSE, which uses a MoP that combines
a [Task Accurate Performance Model (TAPM)] and an [Instruction Set Accurate Performance
Model (ISAPM)] to evaluate design instances. Moreover, [the Daedalus] computation synthe-
sis [flow] is fully automated, while its communication synthesis is semi-automatic as it uses
communication IP components which may need to be customized by hand.

[...]

[The Daedalus] design flow consists of three key steps, which are implemented by the KPNgen,
Sesame and ESPAM tools respectively.

• KPNgen [73] allows for automatically converting a sequential (SANLP) behavioral specifi-
cation written in C, into a concurrent KPN [200] specification. By means of automated
source-level transformations, KPNgen is also capable of producing different input-output
equivalent KPNs, in which for example the amount of concurrency can be varied. Such
transformations enable behavioral-level DSE.

• The generated or handcrafted KPNs are subsequently used by the Sesame modeling and
simulation environment [88] to perform system-level architectural DSE. [...] Sesame uses
(high-level) architecture model components from the Daedalus IP component library [...].
Sesame allows for evaluating the performance of different design decisions in terms of target
platform architectures (i.e., resource allocation), binding of KPN processes to architecture
resources, and scheduling policies. [Sesame supports fast TAPM-level simulations and a
gradual refinement of its architecture performance models down an ISAPM-level simulation
model to increase accuracy.] [...] Besides exhaustive simulative DSE [...], Sesame also
supports heuristic search methods, such as genetic algorithms, to steer DSE in larger design
spaces. Moreover, it includes an additional design space pruning step, which is based on
analytical models and takes place before DSE to trim the design space that needs to be
studied using simulation.

• Sesame’s DSE results in a set of promising system design candidates, each of which are
described using a XML-based platform description [...] and process binding description.
[These] descriptions, together with the (behavioral) KPN description, act as input to the
ESPAM tool [52]. This tool subsequently uses RTL versions of the components from the
IP library to automatically generate synthesizable VHDL that implements the candidate
MPSoC platform architecture. In addition, it also generates the C code for those KPN
processes that are mapped onto programmable cores. Using commercial synthesis tools
and compilers, this implementation can be [implemented] onto an FPGA for prototyping.

[...]” ([28] c© 2009 IEEE)

4.6 Electronic System-Level Synthesis Methodologies 99

4.6.2 System-On-Chip Environment

“The System-On-Chip Environment (SCE) realizes an interactive and automated design flow with
a consistent and seamless tool chain all the way from specification down to hardware/software
implementation [...] [37]. Starting from an abstract, behavioral specification of the desired system
functionality, the SCE ESL synthesis frontend allows for interactive, user-driven exploration
of the system-level design space. Given design decisions and database components, SCE will
automatically implement the specification on the given target platform and in the process
generate structural TLMs of the system architecture at various levels of abstraction. In a
component- and task-level backend process, hardware and software processors in the TLMs
are then individually synthesized further down to their final RTL and ISA implementations,
respectively.

SCE is based on the SpecC SLDL and methodology [160]. [...]
At the input of the SCE [...] design flow, the behavioral system-level specification provides

the designer with an abstract, high-level model for parallel programming of the platform across
hardware and software processors. Computation is specified in a hierarchical and concurrent
fashion following a Program State Machine (PSM) MoC [188]. [see Section 3.6.2 for PSM
definition] [...]

ESL refinement tools will then take an input specification and automatically implement
it on a given target platform based on a given mapping. Through its processing element
(PE), communication element (CE) and bus databases, SCE supports a system-level MoA
that allows for heterogeneous, bus-based MPSoCs consisting of PEs, such as custom hardware
and programmable software processors, IP blocks, and memories, connected through complex
networks of buses and CEs, such as bridges and transducers.

At the output of the ESL design front-end, intermediate TLMs represent a system-level MoS
that serves as a virtual prototype of the application computation and communication running
on the platform processors, memories and buses. System TLMs automatically generated by
SCE integrate high-level, task-accurate MoPs (TAPMs) with back-annotated task code running
on top of abstract OS and processor models to provide analysis and design validation without
the need for instruction-set simulation.

At the output of the backend, behavioral hardware and software processor models in the
TLM are synthesized down to their component- and task-level implementations ready for further
synthesis and manufacturing. On the hardware side, both application algorithms and bus
interfaces are refined into synthesizable VHDL or Verilog RTL models. On the software side,
code for application tasks, middleware and bus drivers is automatically synthesized into final
target binaries ready for download into the processors.

In addition to VHDL or Verilog descriptions and binary images for each hardware or software
processor, respectively, an implementation model of the system is generated that allows for
co-simulation of hardware RTL models with software instruction-set simulators (ISSs) running
final target binaries. As a result, the pin- and cycle-accurate implementation model realizes a
netlist MoS and a MoP that is based on a CAPM.

[...]
SCE follows a Specify-Explore-Refine methodology [188]. The design process starts from a

model specifying the desired functionality (Specify). In each following design step, the designer
first makes necessary design decisions by exploring the design space (Explore). SCE then
automatically generates a new model at the next lower level of abstraction by integrating
decisions and database component models into the design (Refine). As such, through a gradual,
stepwise refinement process, SCE automatically generates models successively at lower levels of
abstraction and with an increasing amount of implementation detail.

[...]
[The] SCE system design front-end internally consists of four design steps: architecture and

scheduling exploration for design of system computation, followed by network exploration and
communication synthesis for design of system communication.

[...]

• During architecture exploration, the processing platform (PEs and memories) is defined
and the computational aspects of the specification (behaviors and variables) are mapped
onto that platform. During scheduling exploration, the order of execution on the inherently

100 4 Related Work

sequential PEs is determined. Behaviors can be statically scheduled and grouped into
sequential tasks, and remaining concurrent tasks are dynamically scheduled on top of a
real-time operating system (RTOS).

• During network exploration, the system communication topology (busses, CEs and their
connectivity) is defined, and the given end-to-end communication channels are mapped
and routed over that network.

• During communication synthesis, point-to-point links in each network segment are imple-
mented over the actual bus medium, and pin- and bit-accurate parameters, such as bus
addresses and interrupts, are selected.

Finally, in the back-end, hardware and software synthesis of each synthesizable or pro-
grammable PE and CE is performed. Hardware synthesis follows an interactive and automated
high-level synthesis process to take behavioral hardware models down to structural RTL de-
scriptions. For software synthesis, SpecC code for application software, middleware, drivers
and interrupt handlers is generated, cross-compiled, and targeted towards and linked against
real-time operating system (RTOS) to create final target binaries. [...]” ([28] c© 2009 IEEE)

4.6.3 SystemCoDesigner

“The goal of SystemCoDesigner is to automatically map applications written in SystemC to
a heterogeneous MPSoC platform. By automating as many design steps as possible, an early
evaluation of different design options is [possible] [31]. [...] In a first step, the designer writes an
actor-oriented application model using SystemC. In a second step, different hardware accelerators
are automatically generated for actors and stored in a component library. This library also
contains other synthesizable IP cores like processors, buses or memories. The designer defines an
MPSoC platform model from resources in the component library as well as mapping constraints
for the actors, resulting in a system-level specification. An automatic design space exploration
trades off several [...] design objectives. From the set of optimized solutions, the designer selects
promising implementations for rapid prototyping. For this purpose, design decision leading to
the optimized solution are represented as structural TLM. For rapid prototyping, hardware
accelerators are synthesized to the RT level and software is compiled to match the ISA of selected
processors.

[...]
Currently, SystemCoDesigner supports the design of streaming applications only. These

applications are typically modeled by help of dataflow graphs where [nodes] represent actors
and edges represent data dependencies. Due to the complexity of many streaming applications,
they often cannot be modeled as static dataflow graphs [195], [184], where consumption and
production rates are known at compile time. Rather they are described as a combination of
static and dynamic dataflow models, e.g., Kahn Process Networks [200].

[...] SystemCoDesigner assumes that the application model is written in SystemC and
represents a dataflow model, i.e., SystemC modules (actors) only communicate via SystemC
FIFO channels and their functionality is implemented in a single SystemC thread. Such input
descriptions can be transformed into a special subset of SystemC called SysteMoC [31]. An
application modeled in SysteMoC resembles the FunState MoC (Functions driven by State
machines) [156] that allows to express non-deterministic dynamic dataflow (DDF) models.

A SysteMoC model is composed of SysteMoC actors that communicate via queues with
FIFO semantics. Each SysteMoC actor is defined by a finite state machine (FSM) specifying
the communication behavior and methods controlled by the finite state machine. If activated by
the FSM, these methods are executed atomically and data consumption and production is only
performed after computing a method. [...] Furthermore, constant methods, called guards [...],
can be used to test values of internal variables and data in the input channels. If predicates
annotated to a state transition evaluate to true, this transition can be taken and annotated
action methods [...] will be processed atomically.

SysteMoC actors can be transformed into both hardware accelerators and software modules
[31]. The latter one is achieved by straight forward code transformations, whereas the hardware
accelerators are built by help of Forte Cynthesizer [211]. This allows for quick extraction
of important performance parameters like the achieved throughput and the required area [,]

4.6 Electronic System-Level Synthesis Methodologies 101

which are used to calibrate the system-level specification. The generated hardware accelerators
(synthesizable RTL code) are stored in the component library. This component library contains
further synthesizable IP cores including processors, buses, memories, etc. The MoA is a
heterogeneous MPSoC platform [,] which is specified by instantiating and connecting cores from
the component library. Furthermore, the designer has to specify mapping constraints for each
SysteMoC actor. Later, design space exploration is performed to find sets of optimized solutions.

From the set of optimized solutions [,] the designer selects any MPSoC implementation best
suited for his needs. Once this selection has been made, the last step of the proposed ESL design
flow is the rapid prototyping of the corresponding FPGA based implementation in terms of
model refinement. For this purpose, the resulting platform is assembled. Moreover, the program
code for each processor is generated according to the binding of the actors. This results in a
TLM, which is the MoS used as implementation representation by SystemCoDesigner. In order
to generate [...] software schedules, SystemCoDesigner supports the automatic classification of
actors into synchronous or cyclo-static dataflow [56] and clustering static actors bound to the
same processor into a single dynamic actor [38]. Finally, the implementation is compiled into an
FPGA bit stream using the Xilinx Embedded Development Kit (EDK) [95]. [...]

[SystemCoDesigner is capable to explore the design space automatically.] For this purpose, it
optimizes the implementation of the streaming application while considering several objectives
simultaneously, e.g., latency, throughput, area and power consumption. While area consumption
is assumed to be a linear cost function, timing and power estimation requires a simulation-based
performance evaluation during exploration.

SystemCoDesigner generates task-accurate MoPs (TAPM) automatically from the SysteMoC
model and the performance values annotated in the input model [31]. For this purpose, the
MPSoC platform model is translated into a so called virtual architecture using again SystemC.
The performance evaluation is done by linking the SysteMoC model to the virtual architecture.
Each invocation of an action of an actor is then relayed to the virtual component the actor is
bound to. The virtual component then blocks the actor’s execution until the estimated execution
time of the action and possible other preemption times are expired.

Beside evaluating a single design point, design space exploration is responsible for covering the
search space. In order to perform decision making automatically, SystemCoDesigner translates
the input model into a Pseudo Boolean (PB) formula. The variables of this formula encode the
resource allocation, the actor binding, the queue mapping, and the routing of transactions on
the communication structure. Each variable assignment satisfying this formula corresponds to a
feasible implementation of the application. A Pseudo Boolean solver is used to identify these
solutions [31]. The optimization is performed using a Multi-Objective Evolutionary Algorithm.
[...]” ([28] c© 2009 IEEE)

4.6.4 Metropolis

“Metropolis [130] is a modeling and simulation environment based on the platform-based design
paradigm [71]. [...]

Metropolis provides a general, proprietary meta-model language that is used to capture
separate models for “functionality” (behavioral model), “architecture” (platform model) and
their “mapping” (binding and scheduling). The meta-model employs a fundamental event-based
execution model with concepts of concurrent processes communicating through channels (called
media), including associated constraints and quantities. In a similar manner to other system-level
languages, functionality is described in the form of event-driven process networks that are general
in the sense that many classes of MoCs can be represented. In addition, functionality can be
annotated with extra-functional constraints. The architecture is defined following [a] MoA that
uses processes and media to describe available resources (e.g. tasks) and services (e.g. CPUs,
memories or buses), respectively. Quantities can be associated with the architecture to define [a]
MoP at the level of tasks (TAPM). Finally, given a specification in the form of functionality and
architecture, synthesis or refinement is performed by defining [a] MoS as a mapping between the
two through a set of additional constraints synchronizing their event execution.

Metropolis itself does not define any specific design tools but rather a general framework and
language for modeling with support for simulation, validation and analysis of models. Metropolis
includes a front-end for parsing of meta-models and a back-end for translation of meta-models

102 4 Related Work

into C++/SystemC simulation code. In addition, several back-end point tools have emerged for
scheduling, communication design, verification, and hardware synthesis [212].” ([28] c© 2009
IEEE)

4.6.5 Koski

“The Koski design flow [80] provides a single infrastructure for modeling of applications,
automatic architectural design space exploration, and automatic ESL synthesis, programming,
and prototyping of selected MPSoCs. Koski’s design flow starts with the capturing of requirements
for an application and architecture, including design constraints, such as the overall maximum
cost. Subsequently, the functionality of the system is described with an application model in
a UML design environment (using the Statecharts MoC to describe the actual functionality)
and verified with functional simulations. The architecture model consists of components [,]
which are taken from a platform library, targeting the construction of heterogeneous, bus-based
MPSoCs (MoA). The relationship between application and architecture models is described
with a mapping model.

The UML interface handles the transformation of application and architecture models to
an abstracted model for fast architecture exploration. Particularly, the application model is
transformed to an abstract process network model. In addition, the UML interface can back-
annotate the UML design with performance information obtained from lower-level simulations.
Finding a good application-to-architecture mapping is carried out during a two-phase automatic
architecture exploration step consisting of static and dynamic (i.e., simulative) exploration
methods using a TAPM MoP. For controlling the architecture exploration, the designer constrains
the design space by defining the platform parts that can be used as well as the allowed mapping
combinations. In addition, the designer specifies the constraints for performance, area, and
power.

In the last step, the parts of the UML description that were mapped to processors during the
architecture exploration are passed to the automatic code generation. The generated low-level
software code and the RTL descriptions (i.e. a netlist MoS) of the component instances from the
platform (derived from Koski’s platform library) are then combined for physical implementation.
This stage also handles the real-time operating system (RTOS) integration, software executable
generation, and hardware synthesis.” ([28] c© 2009 IEEE)

4.6.6 PeaCE/HOPES

“PeaCE (Ptolemy extension as a Co-design Environment) [46] is an ESL synthesis framework for
multimedia applications. Starting from a Ptolemy II application model, it provides a seamless
co-design flow from functional simulation to system synthesis and prototyping. Although Ptolemy
supports the hierarchical combination of many different Model of Computation, PeaCE restricts
the input model to extension of synchronous dataflow and extended finite state machines. In
PeaCE, the application is modeled by a task graph where tasks are either signal processing
tasks or control tasks. Signal processing tasks are modeled through synchronous piggybacked
dataflow, a dataflow model with control token. Control tasks are modeled by flexible finite state
machines (hierarchical state machines without state transitions crossing hierarchy boundaries).

For functional simulation of the application model, PeaCE provides an automatic C code
generation. For system synthesis, the architecture platform is specified by a list of processors
and synthesizable IP cores resulting in a heterogeneous MPSoC Model of Architecture. The
design space exploration is a two-phased: In a first step the resource allocation and task binding
is performed. During this step, communication overhead is assumed to be proportional to the
amount of consumed and produced data. The objective of this step is to minimize system cost
under timing constraints. In the second step, the communication architecture exploration, that
is bus and memory allocation is performed. For this purpose, communication and memory
traces are generated for those solutions fulfilling the timing constraints in the first step. Design
space exploration in PeaCE can be performed automatically or manually and is guided by an
instruction set accurate performance model. After design space exploration, optimized MPSoC
implementations can be prototyped either using a co-simulation environment or FPGAs. In
both cases, the Model of Structure is a Netlist representing the design decisions.

4.6 Electronic System-Level Synthesis Methodologies 103

Recently, a new framework called HOPES has been proposed as enhancement to PeaCE [50].
The main focus is on generating MPSoC software and overcome the limitations of OpenMP and
MPI. Its input model is called CIC (Common Intermediate Code). A CIC models consists of two
parts: The task code defines each task by the three methods init(), go(), and wrapup(). Inter-
task communication or communication to the environment is established by help of several APIs.
The second part is the architecture information, including the platform definition and additional
constraints. The task code of a CIC model can be either written manually or automatically
generated from PeaCE models.

A CIC translator transforms a CIC model into optimized software for the processors in the
MPSoC platform. For this purpose, the API calls must be replaced by platform specific code,
interface code for hardware accelerators has to be generated, and scheduling of tasks bound
to the same processor has to be performed. Optionally, an OpenMP compiler can be used for
optimization.” ([28] c© 2009 IEEE)

4.6.7 Summary & Discussion

Specification Implementation Decision Making Refinement
Approach MoC MoA MoS MoP DSE Comp Comm Comp Comm

Daedalus
C/

HeMPSoC Netlist
TAPM/

 # #
KPN ISAPM

Koski Statecharts HeMPSoC Netlist TAPM # #

Metropolis PN HeMPSoC TLM TAPM # #

PeaCE/
DDF/FSM HeMPSoC Netlist ISAPM # # #

HoPES

SCE
C/

HeMPSoC
TLM/ TAPM/

PSM Netlist CAPM

SystemCo- C++/
HeMPSoC TLM TAPM

Designer DDF

OSSS
C++/

HeMPSoC
TLM/ TAPM/

PSM Netlist CAPM

DDF Dynamic Dataflow TLM Transaction-Level Model
(K)PN (Kahn) Process Network TAPM Task Accurate Performance Model

PSM Program State Machine ISAPM Instruction Set Accurate Performance Model
HeMPSoC Heterogeneous, Bus-Based CAPM Cycle-Accurate Performance Model

Multi-Processor System-On-Chip

Table 4.2: Classification of different ESL synthesis approaches (based on [28])

Table 4.2 compares the OSSS methodology, using the classification scheme of [28]. The
different ESL synthesis approaches differ in their supported input specifications and resulting
output models. OSSS enables the usage of C++ and Program State Machines (PSM). For
synthesis, the PSM parallel composite behaviors (PAR and PIPE) need to be refined to sequential
actors and Shared Objects for coordination and synchronization. The output of the synthesis is
a Task Accurate Performance model with annotated estimated execution times for the software
part and a Cycle-Accurate Performance Model of the hardware part. Compared to other
methodologies, OSSS has no support for automatic decision taking. Design Space Exploration
(DSE) is not explicitly included in the OSSS framework, but supported by the methodology
through its plug-and-play concept:

• Shared Objects are prepared for handling and arbitrary number of client processes. These
can be added and removed during Application Layer exploration without the need to
modify the Shared Object implementation.

• Shared Object scheduling algorithms can be easily exchanged with minimal configuration
parameter adaptation (i.e. client access priority annotations).

• Shared Object communication link (binding between client port and Shared Object at
Application Layer) to RMI Channel re-mapping enables to explore different communication

104 4 Related Work

topologies: ranging from single shared bus to dedicated point-to-point connections only.

• RMI Channels are realized as hierarchical channels and thus their physical implementation
can be exchanged independently from the RMI protocol layers. For shared buses the
scheduler can be exchanged with minimal configuration parameter adaptation (cp. Shared
Object scheduler exchange), and for point-to-point channels the physical channel width
can be configured.

Computation and Communication refinement is explicitly supported by the OSSS methodol-
ogy, even though it is currently not implemented in a graphical tool. Like most of the presented
ESL frameworks OSSS also targets FPGA platforms for synthesis.

4.7 Contribution of this work

The main contribution of this thesis is to provide an efficient design methodology for mapping
object-oriented applications to embedded System on Chip architectures, including automatic
communication interface refinement and synthesis. The main distinguishing feature of this thesis
is the seamless support of application-level method call communication on all levels of abstraction,
down to an FPGA platform. Already presented in Section 1.3, the main contributions are now
further broken down:

1. Definition of a multi-layer executable parallel object-oriented application de-
scription that supports custom application-level method call communication.

Definition and integration of an executable object-oriented Program State Machine
(OOPSM) model within the OSSS Behavioral Layer [43]. So far, PSM modeling has
only been supported in SpecC. The support of PSMs enables OSSS to capture a wide
range of Models of Computation (MoC) relevant for the design of embedded systems (see
Section 3.6).

Executable actor-oriented OSSS Application Layer consisting of Actors, Objects and
Shared Objects. Custom application-level method calls are supported by custom Shared
Object interface definition and implementation, based on the basic communication channel
principle of Interface Method Calls (IMC) [65, 22].

Shared Objects in this work have the following properties, which are different from previous
work [135, 97] as described in Section 4.2:

Table 4.3: Shared Object modeling contributions

previous work [135, 97] this work

A Shared Object consists of a set of data members (local variables) together with a set of
member functions or methods which operate on those variables.

The data members of a Shared Object must be used only by its methods.

The set of methods provided by a Shared
Object for external use is called its inter-
face. Interaction with a Shared Object is
only allowed through this interface.

The set of methods, explicitly declared in
an interface class, are the interface of a
Shared Object. A Shared Object imple-
ments these interfaces. Interaction with a
Shared Object is only allowed through its
interfaces.

Concurrent accesses to a Shared Object are synchronized by some mechanism. Any such
synchronization mechanism ensures that concurrent requests leave a shared object always
in a consistent state.

Enforcing mutual exclusive execution of all
concurrently requested methods is one, but
not the only possible solution that satisfies
this requirement.

Mutual exclusiveness is enforced.

continued on next page

4.7 Contribution of this work 105

Table 4.3: Shared Object modeling contributions – continued

previous work [135, 97] this work

A Shared Object is passive, which means it is not able to initiate any action by itself
without being externally triggered.

Methods of a Shared Object can have an
associated guard condition. The guard
condition may only involve members of a
Shared Object and input parameters of the
method.

Interface methods of a Shared Object can
have an associated guard condition. The
guard condition may only involve members
of a Shared Object. The guard condition is
not dependent on the input parameters of
the method.

Calls to guarded methods may be accepted, only if the guard evaluates to true. Otherwise
the call will be delayed up to that point. The guard mechanism ensures, that the guard
condition does not change between its evaluation and the execution of the method it is
associated with.

A Shared Object is declared in a scope,
where it could be shared between concur-
rent processes.

A Shared Object can be placed anywhere
in the design hierarchy. Client processes ac-
cess the Shared Object through dedicated
ports by explicit port to Shared Object
binding. This binding can be performed
through the design hierarchy by port to
port bindings. A port is strongly typed by
an interface of the Shared Object. This
strongly typed port can only access the
methods declared by this interface. Note
that a Shared Object can implement mul-
tiple interfaces.

No request to a method gets lost. Requests by the same client must be served and
completed in the same order they were issued. Any parameters returned by a method
invoked on a shared object must be available before their first use.

No method of a shared object must invoke a method of another shared object but itself.
Nested method invocations are executed unsynchronized (and unguarded).

A guarded method execution, once started, can not be interrupted.

The exact latency of a guarded method
execution and the total delay caused by a
request must be regarded as unknown.

On Application Layer, the exact latency of
a guarded method execution and the total
delay caused by a request is unknown a pri-
ori, but becomes visible during simulation
and can be statically analyzed (assuming
deterministic client access patterns).

Furthermore, mapping and refinement rules from OSSS Behavioral Layer to OSSS Appli-
cation Layer models will be defined.

2. Definition of an object-oriented model of target platform that represents processing,
communication and memory resources.

In previous work [162, 135, 97] only modeling of custom hardware has been considered. This
work aims at modeling custom software, hardware and their communication. This work
supports the definition of a target platform consisting of pre-existing processing, memory
and communication resources and their interconnection. This structural representation is
required, to separate the application description on the OSSS Behavioral and Application
Layer from the platform resources. Focusing on communication, the main contributions of
this work are:

106 4 Related Work

OSSS Channels [77, 78] enabling the a self-configurable, executable description of on-chip
bus and point-to-point communication networks. Thus extending the work of [153]
to multi-master buses and flexible arbitration.

OSSS RMI Channels [65, 22] are hierarchical channels, encapsulating OSSS Channels
by providing a Remote Method Invocation protocol for HW/SW and HW/HW
communication.

OSSS Shared Object Sockets [65] for the integration and connection of Application
Layer Shared Objects with OSSS RMI Channels to express communication refinement
of the Actor port to Shared Object binding.

3. Definition of a relation to express computation, communication and memory mappings of
the application to a “bare metal6” target platform, retaining application-level
method calls through Remote Method Invocation (RMI) techniques.

With the ability to refine an OSSS Behavioral Layer model to an OSSS Application Layer
model and the description of a platform computation, memory and communication resource
model, this missing link is a flexible mapping of Application Layer modeling elements to
the platform model.

The platform model in OSSS is called Virtual Target Architecture. This work defines
mapping and refinement rules to transform an executable Application Layer model into
an executable Virtual Target Architecture Layer model. This combined model is a cycle
accurate representation of the platform’s communication resources. The timing granularity
of the custom software and hardware functionality can be refined to cycle approximate
representation (for software) and cycle accurate representation for hardware. However,
this computation timing refinement is not in the scope of this work. This is also one of the
main reasons why this work only covers “bare metal” target platforms. I.e. no operating
systems are considered in this work.

4. Definition of operational semantics and implementation of a pre- and post-target platform
mapping simulation for checking functionality and timing.

As mentioned before, all layers of OSSS can be simulated and enable validation of the
implemented functionality and timing (depending on the actual computation timing
refinement). For this purpose, all OSSS modeling elements have been implemented on top
of SystemC [44, 42]. Our contribution distinguishes between:

pre platform mapping simulation relates to the simulation of the OSSS Behavioral Layer
[43] and the OSSS Application Layer models.

post platform mapping simulation relates to the simulation of the OSSS Virtual Target
Architecture Layer model.

The OSSS Behavioral Layer simulation library can be obtained from http://

system-synthesis.org/_media/osss-behaviour-0.0.2.tar.gz and the OSSS Appli-
cation and Virtual Target Architecture Layer simulation library can be obtained from
http://system-synthesis.org/_media/osss-2.2.1.tar.gz7.

5. Definition of timed automata formal model of pure application and target platform
mapped application model to enable analysis of safety (deadlock, method call duration,
mutual exclusiveness of method calls, buffer size limitations) and liveliness properties
(guarantee that a method call will be served).

Restricting Shared Objects in the usage of guards (i.e. guards are independent on the
arguments of interface methods8) an analytical model of the OSSS Application Layer and
Target Architecture, based on Timed Automata can be derived. In previous work [21,
10] an OSSS to real-time task network to Timed Automata mapping has been presented.

6Bare metal (or bare machine), in computer terminology, means a computer without an operating system.
7This is a public release, which contains OSSS extensions not covered by this work.
8otherwise a static analysis might become infeasible

http://system-synthesis.org/_media/osss-behaviour-0.0.2.tar.gz
http://system-synthesis.org/_media/osss-behaviour-0.0.2.tar.gz
http://system-synthesis.org/_media/osss-2.2.1.tar.gz

4.7 Contribution of this work 107

A combination with the basic concepts presented in [4], led to a direct representation of
OSSS models in UPPAAL Timed Automata.

An OSSS to UPPAAL timed automata representation is provided including the analysis
of the following9:

safety properties of the kind

• System never runs in a deadlock.
• Completion of a method call on a Shared Object never takes longer than a certain

time limit.
• Execution of methods of the same Shared Object are always executed mutually

exclusive.
• The total amount elements in an array of the maximum value of a variable inside

a Shared Object is bounded.

liveness properties of the kind

• When a method call on a Shared Object is requested it will eventually be severed.
• When a method call on a Shared Object is completed another method call

eventually completes.

6. Definition of synthesis semantics and proof-of-concept synthesis of mapped applica-
tion on FPGA target platform (enabling memory space and hardware area analysis)
supporting RMI synthesis for hardware/hardware and hardware/software communication.

For synthesis of the OSSS Application Layer + Virtual Target Architecture Layer model
to an FPGA, a combination of Xilinx EDK (for the hardware platform and software
synthesis), FOSSY (for the SystemC and Shared Object to VHDL synthesis) and Xilinx
ISE (for the VHDL to FPGA configuration bit stream synthesis) will be proposed. The
specific contributions of this work are:

• OSSS Shared Object to VHDL synthesis with a flexible communication channel
interconnect [22], compared to [135, 97], where the client to Shared Object interface
was fixed.

• OSSS Virtual Target Architecture Layer to Xilinx FPGA platform synthesis. This
includes structural analysis of the OSSS Virtual Target Architecture Layer model
including the OSSS Application Layer mapping relationships, intermediate model
representation and Xilinx EDK project output generation.

• OSSS RMI Channel synthesis including custom hardware client interface synthesis,
configurable software driver library and basic run-time support, and Shared Object
RMI controller synthesis.

• Bit width configurable OSSS point-to-point channel synthesis.

9The properties have been implemented, but can be extended

CHAPTER 5

Methodology, Modeling Elements and Operational Semantics

5.1 Introduction

This chapter presents the proposed object-oriented methodology, defines its modeling elements
and their operational semantics. Figure 5.1 (already introduced in the summary of Section 3.5)
describes the design methodology used in this work. It is a combination of a platform-based
design methodology, called system-level methodology, and an FPGA-based design methodology.
For more information about the Y-Chart and the associated design methodologies further
background information can be found in Section 3.5.

In Section 3.4 Models of Computation (MoC), Models of Architecture (MoA), Models of
Structure (MoS) and Models of Performance (MoP) have been introduced and connected with
the X-Chart to describe model refinement and synthesis as depicted by the concentric arrows
from the behavior to the structure and physical views.

As depicted in Figure 5.2 certain combinations of MoC, MoA, MoS and MoP have been
clustered in four different layers: Behavioral (A), Application (B), Virtual Target Architecture
(C)(D)(E) and Implementation Layer (F). Red arrows indicate refinement/synthesis steps
described in this thesis. Dotted arrows indicate refinement/synthesis steps supported by the
methodology but not described in this work.

In this chapter the models (A), (B), (D) and (F), and the associated design flow are described.
The following section (5.2) gives a general overview of the abstraction layers supported by the
methodology, from the pure functional design entry, down to the target platform implementation.

In Section 5.3 the general Object Model used in this thesis is described. In Section 5.4,
Section 5.5 and Section 6.5 the Behavioral Layer (A), Application Layer (B) and Virtual Target
Architecture Layer (D) modeling elements and their operational semantics is described.

After each of the detailed modeling element descriptions for the Application and the Virtual
Target Architecture Layer in Section 5.5.2 and Section 5.6.2, mapping rules to establish the
design flow for the transitions from one abstraction layer down to another are presented in
Section 5.5.5 and Section 5.6.3. These sections also discuss the necessary design decisions to drive
the mapping process. For the analysis of functional and extra-functional properties simulative
and analytic techniques can be used on the proposed abstraction layers. Simulative techniques
will be described in more detail in Chapter 6, while static timing analysis techniques using timed
automata is described in the operational semantics sections 5.4.3 and 5.6.4.

In Section 5.7 only a brief overview of the implementation on the Target Platform Layer
(F) is described. More details about the Virtual Target Architecture to Target Platform Layer
mapping and synthesis step are described in Chapter 7.

This chapter closes with a summary and discussion of the requirements on the methodology
and flow as demanded in Chapter 2.

110 5 Methodology, Modeling Elements and Operational Semantics

Logic

Circuit

Behavior
(function)

Physical
(layout)

Structure
(netlist)

algorithm &

behavioral RT

boolean logic

(a v b)

specification

PE, Bus

RTL

Gates

A

B

C

E
D

F

Behavioral

Layer

Application

Layer

Virtual Target Architecture

Layer

Implementation Layer

Figure 5.1: Proposed design methodology: Combination of System-level and FPGA-based design
methodology as used in this work. The design points (A) - (F) correspond to the X-Chart points
in Figure 5.2

A B

C E

D F

Computation

C
o

m
m

u
n

ic
a

ti
o

n

Un-

timed

Un-

timed

Approximate-

timed

Approximate-

timed

Cycle-

timed

Cycle-

timed

Behavioural

Layer
Application

Layer

Virtual Target

Architecture

Layer

Implementation

Layer

Figure 5.2: Overview of modeling layers for the proposed methodology. Red arrows indicate
refinement/synthesis steps described in this work. Dotted arrows indicate refinement/synthesis
steps not described in this work.

5.2 Abstraction Layers 111

System design Validation flow

Behavioural Layer
Model

BL

comp.

VTAL

comp.

Application Layer
Model

Execution Platform Mapping

Virtual Target Architecture
Layer Model

AL

comp.

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

Backend Estimation

Validation
Analysis

Compilation Simulation model

BSP,
Driver

RTL

IP

Hardware/Software Partitioning

Capture

A

B

C E D

F

Figure 5.3: Design flow (based on scheme in Figure 3.11) used in this work (adapted from [150])

5.2 Abstraction Layers

This sections gives an overview of the proposed abstraction layers and their integration into a
design flow as introduced in Section 3.5.1. Figure 5.3 shows the design flow (based on the scheme
as introduced in Figure 3.11) with the abstraction layers used in this work. In this chapter we
focus on the description of the System Design and the general usage of the Validation Flow
and the Back-end. The simulation models of the Behavior (A), Application (B) and Virtual
Target Architecture (D) Layer will be described in Chapter 6. The back-end including hardware,
software and interface synthesis to end up with an implementation model will be described in
Chapter 7.

The system design, as shown in Figure 5.3 describes the refinement path from the initial
functional design model (A) to a target platform mapped functional model (D) that can be
synthesized into an implementation model (F) for the supported target platforms (cp. red lined
in Figure 5.1 and Figure 5.2).

In a first step the functionality of the embedded system is captured as an executable model.
The capturing of functionality is performed in a structured way by using the provided modeling
elements of the Behavioral Layer. The Behavioral Layer modeling elements are hierarchical
behaviors and a pre-defined set of communication channels that can be composed following
the Program State Machine semantics as introduced in Section 3.6.2. The initial Behavioral
Layer model is untimed and used to expose the maximum degree of parallelism the functional
system description offers (or can be achieved with a reasonable amount of modeling effort).
Execution and profiling of this model can be applied to functional and extra-functional metrics
to identify relevant and computationally intensive elements. This information is used for the
first refinement step from the Behavioral (A) to the Application (B) Layer.

The step from the Behavioral to the Application Layer consists of following major tasks:

1. grouping and re-scheduling of behaviors to be mapped onto processing elements of the
target platform

112 5 Methodology, Modeling Elements and Operational Semantics

2. grouping and re-scheduling of communication channels to be mapped onto Shared Objects

3. back-annotate estimated execution times at leaf behaviors, reflecting the execution time/-
duration of this behavior running on the targeted processing element

4. annotate estimated execution times to Services of Shared Objects, reflecting the time/du-
ration of the communication service being executed on the targeted processing, memory
an/or communication element

The purpose of the re-grouping, re-scheduling and timing annotation of behaviors and
communication channel is to obtain an initial performance model of a certain platform mapping
or hardware/software partitioning.

The main modeling element for computation on the Application Layer is called an Actor
An Actor consist of a single or multiple processes (depending on its kind, either representing
a (sequential) Software Task or a parallel Custom Hardware Module). Communication and
synchronization between Actors is modeled by Shared Objects. These are special communication
objects that provide a method interfaces for communication and guarantee a consistent access
of an arbitrary number of concurrent Actors.

In summary, on the Application Layer we specify the function, logical structure, and an
approximate time response of the system. Profiling results from analysis of the Behavioral
Layer model can be annotated to the Application Layer model to obtain an approximate-timed
behavior. Also back-annotation approaches, where the execution of Leaf Behaviors are profiled
on their expected target processing elements, are possible, but not further discussed here.
Besides the functional correctness of the system, the Application Layer offers an easy evaluation
of design alternatives (e.g. HW/SW partitioning, scheduling, communication structures, and
data locality). Profiling of different Application Layer model alternatives with regard to their
performance can be accomplished easily since the component’s allocations and scheduling can be
changed quickly. Analysis of the executable Application Layer model in early design phases can
help to detect and resolve bottlenecks in the logical structure. This might result in the relocation
of timely critical computations from SW to HW or in reorganizing complex computations in
pipeline structures to enhance the throughput.

The Application Layer Model is executable and abstracts from platform details regarding
the communication between Actors and Shared Objects. To include this information into the
system mode, the Application Layer gets further refined and mapped to a component model of
the targeted implementation or execution platform.

The Virtual Target Architecture Model (VTA Model) adds implementation details of the target
architecture with a special focus on the target platform inter processing element communication
network. Communication links between Actors and Shared Objects of the Application Layer
model are mapped onto cycle accurate communication channels. A flexible model for cycle
accurate bus and point-to-point connections that enables the description of different protocols
and data bandwidths enables exploring the impact of different protocols, data widths and
arbitration schemes on the timing behavior of Application Layer model.

The resulting VTA model’s communication is cycle accurate including the approximate
timing annotation inside Actors. Moreover, the Application Layer mapped on the VTA Layer
model is again an executable model that contains all relevant information required to start the
back-end synthesis flow towards an implementation model.

The VTA model is the input for the Fossy (Functional Oldenburg System Synthesiser)
synthesis tool. It generates the overall system architecture, synthesizable VHDL for each
hardware component, and C/C++ code for each software task. For the software parts a driver
API and for the hardware parts a bus interface is automatically generated. Depending on
the chosen platform, different so-called architecture description files can be generated. Special
properties of different target platforms require adoptions of the synthesis process, e.g. for
embedding special IP blocks or the generation of 3rd party tool specific configuration files.

5.3 Object Model

In this work we will focus on the general-purpose object-oriented C++ programming model [14,
8]. A comparison between different object oriented programming models can be found in [176].

5.3 Object Model 113

Due to the requirements M1 (Single modeling language to describe HW and SW) and M4
(Synthesizable HW/SW partitioned model) from Section 2.5, the generic C++ programming
model is restricted to a reduced object model that will be introduced in the following subsections.

5.3.1 Basic Types

Definition 5.3.1.1 (Basic Types):
For simplicity we assume only the three basic types:

1. integer denotes the set of numbers that can be written without a fractional or decimal
component. We further distinguish between

• unsigned integer denotes the set of positive natural numbers from the interval
[0, 2n− 1], where n is the number of bits in two’s complement machine representation

• signed integer denotes the set of positive and negative natural numbers from the
interval [−2n−1, 2n−1−1], where n is the number of bits in two’s complement machine
representation

2. Boolean denotes the set {false, true}

3. bit denotes the set {0, 1}

�

5.3.2 Other types

In the reference implementation of this methodology based on SystemC more types are supported.
Especially for explicit description of hardware, multivalued logic types can be used, but for our
purposes it will not be of any use to include theses types in this basic definitions. A full list of
supported and synthesizable types can be found in Appendix F.

5.3.3 Array

Definition 5.3.3.1 (Array):
We define an Array as T [n], where T denotes some basic type, class or another array of the
same type and n ≥ 1 is the size of the array.

The index function T [n] × integer≥0 → T allows to access the n elements of the array
starting with index of 0. �

In the following we only consider single dimensional arrays. From an array of basic or class
type T with k ≥ 2 dimensions and sizes sk ≥ 1 for all dimensions, a single dimensional array of
type T with size

∏k
j=1 sj can be constructed.

An index remapping function from k to one dimension is given as

integer[0,s1]×· · ·×integer[0,sk] → integer
[0,

∏
k

j=1
sj]

: ((. . . ((i1 · s2 + i2) · s3 + i3) · . . .) · sk + ik)

with ij , j ∈ [1, k] indexes for each dimension and sizes sk ≥ 1 for each dimension.

5.3.4 Class

Definition 5.3.4.1 (Set of Classes):
The set of all classes C is ℘(C × IF), where C is a class and IF is an interface class. �

Definition 5.3.4.2 (Class):
A Class is a tuple C = [cparent, State,Method], with

1. a single base class cparent ∈ C (single inheritance),

2. a state vector State = T0 × · · · × Tn, with n ≥ 0 where T0, . . . Tn denote some basic types,
classes, or arrays,

114 5 Methodology, Modeling Elements and Operational Semantics

3. and a set of member functions Method = {m0, . . .mm} with mi, i ≥ 0 of the following
kinds:

name : void→ void no arguments and no return type

name : void→ T no arguments and return type T

name : T0 × · · · × Tn → void arguments Ti, i ≥ 0 and no return type

name : T0 × · · · × Tn → T arguments Ti, i ≥ 0 and return type T

�

Each class is required to have at least a default constructor which is a member function with
the same name as its class and without any arguments. The constructor is required to initialize
the state of the class.

If a class shall be copyable and assignable the following two member functions also need to
be defined:

Copy constructor Construct all the object’s members from the equivalent members in the copy
constructor’s parameter

Assignment operator Assign all the object’s members from the equivalent members in the
assignment operator’s parameter

For simplicity we assume for our classes the programming idiom called "Resource Acquisition
Is Initialization" (RAII). In RAII resource acquisition is performed by constructing an appropriate
object. The object manages the lifetime of the resource and the object’s destructor ensures
the resource gets "un-acquired". The destructor is another special member function that gets
called when the lifetime of the object ends. Only dynamically allocated memory (if its usage
is allowed) needs to be released here again. If no dynamically assigned memory is used the
destructor can be omitted.

Normalization/Flattening For the representation of classes in a linear memory array or in
custom hardware [162] the state vector needs to be represented accordingly as well as member
functions and Methods accessing this state vector. We call this linearization Normalization or
Flattening. Classes are normalized or flattened by a state vector concatenation of all parent
class types. Consider a class inheritance relationship cn → cn−1 → · · · → c0, with n ≥ 1 and c0

being the root class with no more parent class(es). Then the flattened state Type of class cn is
c0.State×· · ·× cn−1.State× cn.State. The flattened set of Methods of class cn can be described
as cn.Method ⊎ · · · ⊎ cn−1.Method ⊎ c0.Method, where ⊎ is a modified ∪ with A,B ∈ C:

A ⊎B =

{

A ∪B if A ∩B = ∅
A ∪ (B \A ∩B) ∪ classname_prefix(classof(B), A ∩B) otherwise

The function classname_prefix : C × C.Method → C.Method adds the name of the class
C as a prefix to all Method names in the set C.Method. In other words, the flattened set
of Methods is the union of all Methods. For Methods that have the same name and type of
signature only the method of the class which is the closest to cn is taken into the flattened set.
The remaining methods get a prefix of their class name and are added to the flattened set.

For these normalized or flattened classes all state accesses and invocations of base-class
methods are assumed to be adapted to accesses to the flattened state vector as well as flattened
set of methods.

For more details on synthesis of digital circuits from object-oriented specifications see [162].

5.3.5 Interface class

Definition 5.3.5.1 (Interface Class):
An Interface Class is a tuple IF = [cparent,Method], with

1. a list of base classes cparent ∈ IF of size N ≥ 1 (multiple interface inheritance for N ≥ 2
allowed),

5.3 Object Model 115

A

-a: integer
-b: Boolean

+set_a(integer)
+get_b(): integer
+set_b(Boolean)
+get_b(): Boolean

B

-c: C

+set_c(C)
+get_c(): C

D

-a: integer
+a: bit[10]

+set_a(integer)
+get_a(): integer

C

D'

-A_a: integer
-b: Boolean
-c: C
-a: integer
+a: bit[10]

+A_set_a(integer)
+A_get_a(): integer
+set_b(Boolean)
+get_b(): Boolean
+set_c(C)
+get_c(): C
+set_a(integer)
+get_a(): integer

C

flatten_class(D)

Figure 5.4: Example of flatten_class function applied to a class D. The flat class D′ =
flatten_class(D) without inheritance and a flat/merged state vector and method list. Note
that for conflicting attribute and methods the classname_prefix, in this example A_, has been
applied.

2. and a set (which can be empty) of interface member functions Method = ∅∪{im0, . . . imm}
with imi, i ≥ 0 of the following kinds:

virtual name : void→ void = 0 no arguments and no return type

virtual name : void→ T = 0 no arguments and return type T

virtual name : T0 × · · · × Tn → void = 0 arguments Ti, i ≥ 0 and no return type

virtual name : T0 × · · · × Tn → T = 0 arguments Ti, i ≥ 0 and return type T

Interface classes have no internal state. Interface methods are pure method prototypes
(denoted by = 0) without any implementation.

Interface classes can be of the kinds in, out, and inout given by the following function:

kind(X) : IF → {in, out, inout}

kind(X) =

in, if ∀m ∈ X.Method :

m.kind = void→ void ∨
m.kind = T0 × · · · × Tn → void,

out, if ∀m ∈ X.Method :

m.kind = void→ T,

inout if ∀m ∈ X.Method :

m.kind = void→ void ∨
m.kind = void→ T ∨
m.kind = T0 × · · · × Tn → void ∨
m.kind = T0 × · · · × Tn → T.

�

116 5 Methodology, Modeling Elements and Operational Semantics

Also interface classes can normalized or flattened. The main difference from regular classes
is that interface classes are not allowed to have a state, and thus no state vector flattening needs
to be performed. Regarding the flattening of interface methods we need to consider the special
properties:

• multiple inheritance of other interface classes is allowed,

• interface methods are pure prototypes, i.e. two interface methods are equal if they have
the same name and the same signature.

With these properties, the normalized set of interface methods for a given list of base classes
cparent ∈ IF , where |cparent| is the number of elements of cparent, can be computed using the
recursive function flat_if(cparent):

flat_if(X) : IF → IF

flat_if(X) = X.Method, if |X.cparent| = 0

flat_if(X) =

|X.cparent|−1
⋃

i=0

flat_if(ci)

 ∪X.Method, ci ∈ X.cparent, if |X.cparent| > 0

G'

<<interface>>

<<virtual>>+a()
<<virtual>>+b()
<<virtual>>+c()
<<virtual>>+d()
<<virtual>>+e()
<<virtual>>+f()

G

<<interface>>

<<virtual>>+a()

A

<<interface>>

<<virtual>>+a()
<<virtual>>+b()

B

<<interface>>

<<virtual>>+c()

C

<<interface>>

<<virtual>>+f()

D

<<interface>>

<<virtual>>+b()

E

<<interface>>

<<virtual>>+d()

F

<<interface>>

<<virtual>>+d()
<<virtual>>+f()

flatten_if(G)

Figure 5.5: Example of flatten_if function applied to a hierarchical interface class G. The flat
interface class G′ = flatten_if(G) contains once each pure virtual method inherited by G.

5.4 Behavioral Layer

The proposed methodology starts with capturing the functional (or computational) behavior of
the intended system to be designed. It shall be used to capture the computational behavior of the
system in a way that it enables measuring the complexity of an algorithm in execution time and
memory space. For the design of embedded real-time and resource constrained systems this is a
very important prerequisite for supporting the decision process of mapping and implementation
towards the embedded target platform.

5.4.1 Introduction

For capturing behavior our methodology shall support the following basic elements and composi-
tion rules for the description of a composable model of the application/system under design. The

5.4 Behavioral Layer 117

presented model is inspired by SpecC [150, 160]. The main idea behind the composable behavior
model is the explicit description of an applications structural granularity and dependencies.
These information, only an application expert knows, shall be captured in this initial model.
Subsequent refinement steps can exploit this expert information for the implementation on a
resource constrained hardware/software platform.

The basic orthogonal design elements for capturing behavior are:

Data Types are the fundamentals of computation since instances of data types represent the
objects or operands to be manipulated by corresponding operations. Algorithms are using
operations on instances of data types to implement data transformation that represents
the behavior.

Sequential Behavior describes control and data flow for the manipulation of data in a sequential
order. It is the foundation of sequential imperative and object-oriented programming
languages and the most intuitive way of describing algorithms. A language independent
representation is a Control Data Flow Graph (CDFG).

Parallel Composition of Sequential Behavior allows the specification of application specific
coarse grained concurrency. Parallel composition allows to specify multiple parallel threads
of execution.

Synchronization for managing parallel composition of sequential behaviors. Synchronization is
used to constrain the raw parallelism to guarantee consistency of data shared between
parallel threads. Reliable communication between parallel threads relies on a proper
synchronization scheme. An example of synchronization is the exchange of data (com-
munication) between parallel threads using double- or single handshake protocol. Some
examples of synchronization are pipelined (overlapping) threads or temporal parallelism
following a fork-join semantics.

Hierarchical Composition is completely orthogonal to all design elements mentioned above,
since it can be applied to all of them in the following way:

• data types can be hierarchical to express the composition of high-level data structures
of low-level basic data types. In object-oriented programming languages the hierarchy
can be expressed through aggregation, composition or inheritance. Where the
relationship from aggregation to inheritance becomes stronger. Aggregate [UML
Aggregates] data type can also exist without being part of a composition, the existence
of composite [UML composition] data types depends on the existence of the data
type that instantiated it, while inheritance [UML generalization] is a specialization of
an existing data type which can only add features to its base type.

• sequential behavior can be structured by using functions that encapsulate se-
quential behavior which is used several times with possibly different parameters
(e.g. functional programming completely relies on the composition of side-effect
free (higher-order) functions). In object-oriented programming languages sequential
behavior can also be hierarchically structured using objects which encapsulate data
and corresponding operations/manipulations on these data. Furthermore, the concept
of (hierarchical) finite-state machines can be used to describe hierarchical composition
for sequential behaviors.

• parallel composition can also be hierarchical. Concurrent threads can contain
more parallel compositions, e.g. a pipeline where each pipeline stage contains its
own sup-pipeline or even more parallel sub threads. Or a parallel thread that uses
join-fork and temporally spawns other parallel threads. But anyhow, hierarchical
parallel composition needs to be handled with care since synchronization across
hierarchies might become difficult to handle. Design languages supporting this kind of
hierarchical parallel composition either embed this concept into the overall execution
semantics of the model or offer special synchronization primitives for building and
connection parallel compositions.

118 5 Methodology, Modeling Elements and Operational Semantics

• synchronization is the key for managing parallelism and shall be separated from the
pure algorithmic and computational parts. The separation between computation and
communication is the main design concept to structure and also to use hierarchy in
synchronization. The concept of communication channel refinement and the support
of hierarchical channels for the description of complex communication protocol stacks
allows hierarchical composition for synchronization and communication.

5.4.2 Modeling Elements

The Behavioral Layer is an executable parallel object-oriented model and consists of the following
modeling elements:

5.4.2.1 Port

Definition 5.4.2.1 (Port):
A Port is a Tuple Port = [RequiredIF , BoundIF] with

1. a Required Interface Class RequiredIF ∈ IF . The required interface contains all Services
S as defined in the Methods of flat_if(RequiredIF). All Services S ∈ RequiredIF are
accessible through this port.

2. a Bound Interface BoundIF that provides or forwards the required interface RequiredIF .
BoundIF is either another port with the same Required_IF (hierarchical port to port
binding, or forwarding) or a communication Channel (see Section 5.4.2.3) that implements
the required interface. In this sense:

BoundIF ∈ Channel ∪Port

with the set of all communication Channels Channel and the set of all Ports Port.

The binding relation ⊲ describes Port to Port and Port to Interface bindings in the following
way:

⊲ : Port× Port
pi ⊲ pj = pi.BoundIF := pj if pi.RequiredIF ≡ pj .RequiredIF ∧ i 6= j

⊲ : Port× Channel
p ⊲ ch = p.BoundIF := ch if inh_closure(ch) ∩ p.RequiredIF 6= ∅

For the sake of simplicity we define a function that eliminates port to port bindings as a
recursive function. The function takes a Port as input and returns a flattened port that is directly
connected to bound communication Channels.

flatten_binding(X) : Port→ Port

flatten_binding(X) = X if X.BoundIF ∈ Channel

flatten_binding(X) = flatten_binding(X.BoundIF) if X.BoundIF ∈ Port

With this flattening we can define a valid port to interface binding as:

flatten_binding(Port).BoundIF = Channel⇔ Channel |= Port.RequiredIF

In other words, the binding of a Port to a Channel is valid, if the Channel models or implements
the required interface of the port. The relation "|=" can be expressed as:

Channel |= Port.RequiredIF ⇔ inheritance_closure(Channel) ∩ Port.RequiredIF 6= ∅

The binding relation ⊲ can be flattened, denoted as ⊲↓Channel by applying flatten_binding
in the following way:

⊲↓Channel : Port× Port

5.4 Behavioral Layer 119

pi ⊲↓Channel pj = pi ⊲ flatten_binding(pj)

⊲↓Channel : Port× Channel
p ⊲↓Channel ch = p ⊲ ch

Ports have the kinds in, out, or inout of their required interface class, given by the following
function:

kind(X) : Port→ {in, out, inout}
kind(X) = kind(X.RequiredIF)

�

5.4.2.2 Behavior

Behaviour

#State

Pipeline_StageState

Initial_State End_State

Composite

SEQ

1 1

Beh_child

1

0..*

Port

Required_IF : Interface
1 0..*

Beh_parent1

0..1

FSM

PIPE

PAR

Channel

Provided_IF[1..*] : Interface1 0..*

Binding

1

1

Binding

11

Figure 5.6: Meta-Model of Behavior

Definition 5.4.2.2 (Behavior):
Behavior encapsulates the system’s functionality (in Leaf Behaviors), and specifies the causality
of the system through explicit scheduling using hierarchical and composite (sequential, finite
state machine, parallel or pipelined) behaviors. Communication is explicitly separated from
functionality and encapsulated in Channels (see Section 5.4.2.3). The behavior in this work
describes a reduced kind of Program State Machine (PSM), as introduced in Section 3.6.2.
Timing itself is not part of the Behavior, but can be annotated inside Leaf Behaviors.

A Behavior is defined as a tuple

Behavior =
[
Type, Composite, Behparent, BehChild, State, Port, Channel, Binding

]
,

and the corresponding UML Meta-Model is shown in Figure 5.6:

1. Type = {regular, state, initial_state, end_state, pipeline_stage} is the type of the Be-
havior, with the following semantics:

regular is a regular Behavior and can either be the root Behavior or is part of a either a
sequential (SEQ) or parallel (PAR) composition.

120 5 Methodology, Modeling Elements and Operational Semantics

B_seq

b1

b3

b2

(a) Graphical represen-
tation

1 BEHAVIOUR(B1) {
2 BEHAVIOUR_CTOR(B1) { /∗ l e a f behaviour ∗/ }
3 void main () { /∗ program code goes here ∗/ }
4 } ;
5

6 BEHAVIOUR(B_seq) {
7 B1 b1 ; B2 b2 ; B3 b3 ; //child behaviours
8

9 BEHAVIOUR_CTOR(B_seq) {
10 SEQ(b1 , b2 , b3) ; // sequential behaviour composition
11 }
12 } ;

(b) Textual representation

Figure 5.7: Example of Sequential (SEQ) composite behavior

B_par

b1

b3

b2

(a) Graphical represen-
tation

1 BEHAVIOUR(B_par) {
2 B1 b1 ; B2 b2 ; B3 b3 ; //child behaviours
3

4 CTOR(B_par) {
5 PAR(b1 | b2 | b3) ; // parallel behaviour composition
6 }
7 } ;

(b) Textual representation

Figure 5.8: Example of Parallel (PAR) composite behavior

B_pipe

b1

b3

b2

(a) Graphical represen-
tation

1 PIPELINE_STAGE(B1) {
2 PIPELINE_STAGE_CTOR(B1) { /∗ l e a f behaviour ∗/ }
3 void main () { /∗ program code goes here ∗/ }
4 } ;
5

6 BEHAVIOUR(B_pipe) {
7 B1 b1 ; B2 b2 ; B3 b3 ; //child behaviours
8

9 BEHAVIOUR_CTOR(B_pipe) {
10 PIPE(b1 >> b2 >> b3) ; // pipeline behaviour composition
11 }
12 } ;

(b) Textual representation

Figure 5.9: Example of Pipeline (PIPE) composite behavior

5.4 Behavioral Layer 121

B_fsm

init

read

eval

alarm

out.write(false)

/ counter = 0, level = 0

level = in.read()
[level > 10 &&

 counter <= 5]

/ counter = counter + 1

[level <= 10]

 / counter = 0

[level > 10 && counter >5]

 out.write(true)

(a) Graphical representation

1 BEHAVIOUR(B_fsm) {
2 Port_in<i n t e g e r > in ;
3 Port_out<Boolean> out ;
4 i n t e g e r l e v e l ;
5 i n t e g e r counter ;
6

7 Start_State i n i t ;
8 State read , eva l ;
9 End_State alarm ;

10

11 BEHAVIOUR_CTOR(B_fsm) {
12 // finite state-machine child behaviour composition
13 FSM(
14 (i n i t >> read , GUARD(true) , CALL(B_fsm : : c1) , UPDATE(B_FSM: : u1)) &&
15 (read >> eval , GUARD(true) , CALL(B_fsm : : c2) , UPDATE()) &&
16 (eva l >> read , GUARD(B_fsm : : g3) , CALL() , UPDATE(B_FSM: : u3)) &&
17 (eva l >> read , GUARD(B_fsm : : g4) , CALL() , UPDATE(B_FSM: : u4)) &&
18 (eva l >> alarm , GUARD(B_fsm : : g5) , CALL(B_fsm : : c5) , UPDATE())
19) ;
20 }
21

22 // guard functions (no side-effect)
23 bool g3 () const { re turn (l e v e l <= 10) ; }
24 bool g4 () const { re turn ((l e v e l > 10) && (counter <= 5)) ; }
25 bool g5 () const { re turn ((l e v e l > 10) && (counter > 5)) ; }
26

27 // call functions (with internal and external side-effect)
28 void c1 () { out . wr i t e (f a l s e) ; }
29 void c2 () { l e v e l = in . read () ; }
30 void c5 () { out . wr i t e (t rue) ; }
31

32 // update functions (with internal side-effect only)
33 void u1 () { counter = 0 ; l e v e l = 0 ; }
34 void u3 () { counter = 0 ; }
35 void u4 () { counter = counter + 1 ; }
36 } ;

(b) Textual representation

Figure 5.10: Example of Finite State Machine (FSM) composite behavior

122 5 Methodology, Modeling Elements and Operational Semantics

B1_1

C1

C3

E1

E2
D2

B2_1

B2_2

B2_3

Top

A1 A2

B2

C2 D1

[a > 0]

[a < 0]

[a != 0]
C3 C4

(a) Graphical representation

Top

A1 A2

B2 B1_1 B2_1 B2_2 B2_3

C1 C2 C3

D1 D2

E1 E2

PAR

SEQ PIPE

FSM

PAR

SEQ

C4

(b) Hierarchy tree

Figure 5.11: Example of a complex hierarchical composition of Behaviors. Top is a parallel
composite behavior, A1 is a sequential, and A2 is a pipelined composite behavior. B2 is a finite
state machine, C2 a parallel, and D1 a sequential composition. Leaf behaviors B1_1, B2_1, B2_2,
B2_3, C1, C3, C4, D2, E1, and E2 may contain program code.

state is the basic element of a finite state machine (FSM) composition.

initial_state is a special state type that marks the initial or start state of a FSM compo-
sition. A FSM can only have a single start state.

end_state is a special state type that marks the final or end state of a FSM composition.
A FSM can have 1 to N , with N ≤ number_of_states− 1 end states.

pipeline_stage is the basic element of a pipeline (PIPE) composition.

2. Composite = {SEQ,FSM,PAR,PIPE}∪∅ describes the composite type of the Behavior.
A composite behavior describes the execution order of the Child Behaviors.

Leaf describes a leaf behavior when Composite = ∅∧BehChild = ∅. Leaf behaviors contain
pure computation described as Control Data Flow Graph (CDGF) of Flow Graph.
A leaf behavior is executed in a run-to-completion fashion. Once started it executes
from the root to one of the leaf nodes of the of the associated CDFG. The activation
of a leaf behavior depends on the execution order as defined by its patent Behavior
Behparent.

Sequential (SEQ) composite type requires at least 2 child behaviors |BehChild| ≥ 2
with ∀B ∈ BehChild : B.Type = regular. With {b0, · · · , bN}, N ≥ 1 the SEQ-
Constructor SEQ(b0, · · · , bN) defines the sequential execution sequence b0 → · · · →
bN . The execution of a SEQ composite behavior is completed when sub behavior bN

is completed. Figure 5.7 shows an example of a sequential behavior.

Finite State Machine (FSM) composite type requires at least 2 child behaviors
|BehChild| ≥ 2 with

∃!B ∈ BehChild : B.Type = start_state ∧ ∃B ∈ BehChild : B.Type = end_state.

The finite state machine constructor is FSM(S, P, V, F,H, s0, E) with:

(a) S = {s0, s1, · · · , sl} is the set of all states, with l ≥ 1 number of states. S ⊆
BehChild and ∀s ∈ S \ (s0 ∪ E) : s.Type = state.

(b) P = {p0, p1, · · · , pm} is a set of inputs, output and combined input and output
ports, with I ⊆ Port, with

∀i ∈ I : kind(i) = in ∨ kind(i) = out ∨ kind(i) = inout.

(c) V = {v0, v1, · · · , vn} is a set of variables, with V ⊆ State.

5.4 Behavioral Layer 123

(d) F : S×G×P → S is a next-state function, that can be represented by a transition
table. A transition t from state si ∈ S to state sj ∈ S (where i = j describes a
transition from a state to itself, a so-called self-transition) can be taken when
the side-effect free Boolean guard condition G on the set of variables vi ∈ V
can be evaluated to true, and the interface method call on Port pk ∈ P returns.
For taking a transition the guard evaluation function G : V → Boolean needs to
evaluate to true. If the guard is false no interface method call will be issued. A
transition t can be of the following kinds:

si
[G : V →Boolean], vn:=pk.methodl(v)−−−−−−−−−−−−−−−−−−−−−−−→ sj guarded synchronization (read/write)

si
vn:=pk.methodl(v)−−−−−−−−−−−−→ sj unguarded synchronization (read/write)

si
[G : V →Boolean], pk.methodl(v)−−−−−−−−−−−−−−−−−−−−→ sj guarded synchronization (write)

si
pk.methodl(v)−−−−−−−−−→ sj unguarded synchronization (write)

si
[G : V →Boolean]−−−−−−−−−−→ sj guarded transition

si −−→ sj unconditional/unguarded transition

with vn ∈ V , methodl ∈ IF, and v = {v0, · · · vN} ∪ ∅ where 0 ≤ N ≤ |V | − 1.

(e) H : F × V → V is an output function that describes a state and communication
dependent update of the local Variables V ⊆ State between a transition from one
state to another state. State updates either occur after read/write synchronization
through interface method call of type out or inout via port P or through an
explicit variable update after the guard condition and synchronization call have
been successfully completed. The explicit variable update is a function U : V → V
With H the transition t is extended with the following way:

si
[G : V →Boolean], vn:=pk.methodl(v)−−−−−−−−−−−−−−−−−−−−−−−→

/U : V →V
sj guarded synchronization (read/write)

si
vn:=pk.methodl(v)−−−−−−−−−−−−→

/U : V →V
sj unguarded synchronization (read/write)

si
[G : V →Boolean], pk.methodl(v)−−−−−−−−−−−−−−−−−−−−→

/U : V →V
sj guarded synchronization (write)

si
pk.methodl(v)−−−−−−−−−→

/U : V →V
sj unguarded synchronization (write)

si
[G : V →Boolean]−−−−−−−−−−→

/U : V →V
sj guarded transition

si −−−−−−−→
/U : V →V

sj unconditional/unguarded transition

(f) s0 ∈ S is the only initial state, with s0.T ype = initial_state.

(g) E = {e0, e1, · · · , ep} ⊆ S is a set of end states, with ∀e ∈ E : e.Type = end_state.
When an end state is entered the FSM behavior is finished. An end state has no
sub Behavior ∀e ∈ E : |e.BehChild| = 0.

Figure 5.10 shows an example of a Finite State Machine composite behavior.

Parallel (PAR) composite type requires at least 2 child behaviors |BehChild| ≥ 2 with ∀B ∈
BehChild : B.Type = regular. With {b0, · · · , bN}, N ≥ 1 the PAR-Constructor
PAR(b0| · · · |bN) defines the parallel execution b0|| · · · ||bN . The execution of a PAR
composite behavior is completed when all sub behaviors b0, · · · , bN are completed.
Figure 5.8 shows an example of a parallel composite behavior.

Pipeline (PIPE) composite type requires at least 2 child behaviors |BehChild| ≥ 2 with
∀B ∈ BehChild : B.Type = pipeline_stage. With {b0, · · · , bN}, N ≥ 1 the PIPE-
Constructor PIPE(b0 >> · · · >> bN) defines the pipelined execution sequence
b0 >> · · · >> bN . If a pipelined execution is not constrained it executes in an infinite
loop. If a pipeline execution is constrained by M PIPE(b0 >> · · · >> bN)M , with

124 5 Methodology, Modeling Elements and Operational Semantics

M ≥ N − 1, each pipeline state is executed M times and the pipeline behavior is
completed.
For N = 3 the unconstrained pipeline execution

PIPE(b0 >> b1 >> b2 >> b3)∞

is:

. . .
b0 . . .

b0 b1 . . .
b0 b1 b2 . . .

b0 b1 b2 b3

b0 b1 b2 b3

b0 b1 b2 b3

b0 b1 b2 b3

For N = 3 and M = 3 the constrained pipeline execution

PIPE(b0 >> b1 >> b2 >> b3)3

is:
b0 b1 b2 b3

b0 b1 b2 b3

b0 b1 b2 b3

Figure 5.9 shows an example of a pipelined composite behavior.

3. Behparent ∈ Behavior ∪ ∅ is the parent Behavior. If Behparent = ∅ we call the Behavior
the Root Behavior.

4. BehChild = {b0, · · · , bN} is a set of child or sub Behaviors. If BehChild = ∅ we call this
Behavior a Leaf Behavior.

5. State = T0 × · · · × Tn, with n ≥ 0 where T0, . . . Tn denote some basic types, classes, or
arrays is the state vector of the Behavior. Only Leaf Behavior are allowed to have a
non-empty state: ∀B ∈ Behavior : B.BehChild 6= ∅ ⇒ B.State = ∅. Figure 5.11 shows
an example of a complex behavior hierarchy. The behavior tree shows the Behparent and
BehChild relation along the hierarchy.

6. Port = {p0, · · · , pN} is a set of Ports with pi ∈ Port, 0 ≤ i ≤ N and N ≥ 0. Note that
Port 6= ∅ since ports are the only way to communicate with child or parent behaviors. Ports
have strict binding rules. In general multiple ports can be bound to the same interface of a
Channel, but hierarchical port to port binding is exclusive. I.e. it is not allowed to bind
a port to two different ports in a child behavior. In other words, the intersecting set of
end ports (directly bound to a channel’s interface, and obtained using the flatten_binding
function on a port) in the binding path from ports of all leaf behaviors is empty:

|leaf_beh(X)|−1
⋂

i=0

|bi.P ort|−1
⋂

j=0

bi.f latten_binding(pj)

 = ∅

with X ∈ Behavior, bi ∈ leaf_beh(X), and pj ∈ bi.Port.
The set of leaf Behaviors from a start Behavior X ∈ Behavior can be computed:

leaf_beh(X) : Behavior → {Behavior0, · · · , BehaviorN}
leaf_beh(X) = X if |X.BehChild| = 0

leaf_beh(X) =
|X.BehChild|−1

⋃

i=0

leaf_beh(xi), xi ∈ BehChild if |X.BehChild| > 0

7. Channel = {ch0, · · · , chN} ∪ ∅ is the set of Channels with N ≥ 0 and chi ∈
SharedVariable ∪ PipedVariable ∪Queue ∪Handshake ∪DoubleHandshake for
0 ≤ i ≤ N .

5.4 Behavioral Layer 125

8. Binding = {⊲0, · · · ,⊲N} is a list of binding relations ⊲ with

N =

|Behchild|−1
∑

i=0

|bi.Port|

− 1

where bi ∈ Behchild. The list of binding relations has the following properties:

(a) Ports of all child Behaviors are bound once to either Ports of the Barbour or interfaces
of Channels in the Behavior:

∀bi∈Behchild
∀pj∈bi.P ort : ∃! ⊲∈ Binding with pj ⊲ p ∈ Port ∨ pj ⊲ ch ∈ Channel

(b) One port is uniquely bound to another port. I.e. not two different ports can be bound
to the same port:

∀⊲i∈Binding p ∈
⋃

b∈Behchild

b.Port : ∃!pj ∈ Port ∧ p 6= pj with p ⊲i pj

�

Definition 5.4.2.3 (Parallel Set):
A Parallel Set of a Behavior B consists of pure Sequential Sets of all child behaviors of B. A
Sequential Set only contains composite behaviors of type SEQ and FSM . The parallel set is
defined as

par_set(X) : Behavior → ℘(Behavior)

par_set(X) = append_to_set(X) if |X.BehChild| = 0

par_set(X) =

∀xi ∈ BehChild : (new_set();

par_set(xi);

close_set())

if (X.Composite = PAR ∨
X.Composite = PIPE) ∧
|X.BehChild| > 0

∀xi ∈ BehChild : par_set(xi) if X.Composite 6= PAR ∧
X.Composite 6= PIPE ∧
|X.BehChild| > 0

with

new_set() : creates new set,

append_to_set(X) : appends element X to last created set,

close_set() : closes last created set.

The number of parallel sets in ℘(Behavior) is defined as |par_set(X)|, X ∈ Behavior. Fig-
ure 5.12 gives an example on the computation of par_set. The number of parallel sets describes
the amount of potentially concurrently running running behavior clusters. For a Sequential Set
|par_set(X)| = 1. �

5.4.2.3 Channels

For the communication between leaf behaviors a set of pre-defined channels is provided. Fig-
ure 5.13 gives an overview of the Behavioral Layer channels. In the following, a definition
and property description of the different channel types is given. This subsection closes with a
methodical restriction on the usage of these channel types in the Behavioral Layer models.

Definition 5.4.2.4 (Channel):
A Channel is a tuple CH = [IF, Service] with

1. IF ∈ Interface is the set of interfaces this channel provides.

126 5 Methodology, Modeling Elements and Operational Semantics

Top

A1 A2

B2 B1_1 B2_1 B2_2 B2_3

C1 C2 C3

D1 D2

E1 E2

PAR

SEQ PIPE

FSM

PAR

SEQ

C4

X =

Figure 5.12: Example: Parallel Set computed on hierarchy tree of example from Fig-
ure 5.11. par_set(X) = {{B1_1, C1, C3, C4}, {E1, E2}, {D2}, {B2_1}, {B2_2}, {B2_3}},
|par_set(X)| = 6.

Channel

Shared Variable

-data: T

+read(): T
+write(data: T)

T : typename

Piped Variable

-data: T[Depth]

+read(): T
+write(data: T)
+step()

T : typename
Depth : Integer

Queue

-data: T[Size]
-num_elements: Integer = 0
-put_index: Integer = 0
-get_index: Integer = 0

+put(data: T)
+get(): T
+is_full(): Boolean
+is_empty(): Boolean

T : typename
Size : Integer

Handshake

#data: T
#is_full: Boolean = false
#is_free: Boolean = false
-e: Event

+send(data: T)
+receive(): T

T : typename

Double Handshake

-req: Event
-ack: Event

+send(data: T)
+receive(): T

T : typename

Interface

read_if

+read(): T

T : typename

write_if

+write(data: T)

T : typename

read_write_if

+read(): T
+write(data: T)

T : typename

send_if

+send(data: T)

T : typename

receive_if

+receive(): T

T : typename

send_receive_if

+send(data: T)
+receive(): T

T : typename

put_if

+put(data: T)
+is_full(): Boolean

T : typename

get_if

+get(): T
+is_empty(): Boolean

T : typename

put_get_if

+put(data: T)
+get(): T
+is_full(): Boolean
+is_empty(): Boolean

T : typename

step_if
<<Callback>>

+step()

Figure 5.13: Channels of the Behavioral Layer

2. Service |= IF is the set of all service implementations of this channel as required by the
set of provided interfaces IF .

�

Definition 5.4.2.5 (Shared Variable):
A Shared Variable is a tuple SV = [Type, IF, State, Service] and a special Channel CH =
[IF, Service] with the following properties:

1. Type ∈ integer[N] ∪ Boolean[N] ∪ bit[N] ∪Class with N ≥ 0, where N = 0 is a
shared variable of a basic type or class and N > 0 is a shared variable of an array of a
basic type of size N + 1.

2. IF = {read_if<Type>,write_if<Type>, read_write_if<Type>} with
read_if<Type> ∈ Interface

virtual read : void→ Type = 0

and write_if<Type> ∈ Interface

virtual write : Type→ void = 0

5.4 Behavioral Layer 127

and read_write_if<Type> ∈ Interface

virtual read : void→ Type = 0

virtual write : Type→ void = 0

3. State = {data} with data ∈ Type

4. Service = {read,write} of the following kinds:

read : void→ Type

read() = {return data}
write : Type→ void

write(in) = {data = in}

�

Properties of the Shared Variable, as defined in the SpecC reference implementation [229]:
• one channel instance is required for each shared variable
• multiple leaf behaviors may use the same shared variable instance
• each connected leaf behavior may act as a receiver or sender or both (depending on the

used interface)
• a sender calls write() to store data into the shared variable
• a receiver calls read() to retrieve data from the shared variable
• when using the shared variable with multiple parallel or piped behaviors no guarantees

are given for fairness of access, improper usage can cause race conditions and data
inconsistencies

Definition 5.4.2.6 (Piped Variable):
A Piped Variable is a tuple PV = [Type,Depth, IF, State, Service, Callback] and a special
Shared Variable SV = [Type, IF, State, Service] with the following properties:

1. Type = SV.Type, same type constraints as Shared Variable.

2. Depth ∈ integer[0,∞] is the depth of the pipelined variable. It defines the number of
pipeline steps after the the written data can be accessed via read service.

3. IF = SV.IF , same interface as Shared Variable.

4. State = {data} with data[Depth+ 1] ∈ Type

5. Service = {read,write} of the following kinds:

read : void→ Type

read() = {return data[Depth]}
write : Type→ void

write(in) = {data[0] = in}

6. Callback of the following kind:

step : void→ void

step() = {∀i ∈ {0, . . . , Depth− 1} : data[Depth− i)] = data[Depth− (i+ 1)]}

The step function is triggered by the pipeline controller (see Figure 5.33) after the completion
of each pipeline cycle. The function shifts all elements in the data array by one position
(from lower to higher index).

�

128 5 Methodology, Modeling Elements and Operational Semantics

Properties of the Piped Variable, as defined in the SpecC reference implementation [229]:
• piped variables can only be used in Pipeline composite behaviors
• one channel instance is required for each piped variable
• multiple pipeline stages may use the same piped variable instance
• each connected pipeline stage may act as a receiver or sender or both (depending on the

used interface)
• a sender calls write() to store data into the piped variable
• a receiver calls read() to retrieve data from the piped variable
• when using the piped variable with multiple piped behaviors no guarantees are given for

fairness of access, improper usage can cause race conditions and data inconsistencies

Definition 5.4.2.7 (Queue):
A Queue is a tuple Q = [Type, Size, IF, State, Service] and a special Channel CH =
[IF, Service] with the following properties:

1. Type ∈ integer[N] ∪ Boolean[N] ∪ bit[N] ∪Class with N ≥ 0, where N = 0 is a
shared variable of a basic type or class and N > 0 is a queue of an array of a basic type of
size N + 1.

2. Size ∈ integer>0 is the size (i.e. number of elements) of this queue.

3. IF = {put_if<Type>, get_if<Type>, put_get_if<Type>} with put_if<Type> ∈
Interface

virtual put : Type→ void = 0

virtual is_full : void→ Boolean = 0

and get_if<Type> ∈ Interface

virtual get : void→ Type = 0

virtual is_empty : void→ Boolean = 0

and put_get_if<Type> ∈ Interface

virtual put : Type→ void = 0

virtual get : void→ Type = 0

virtual is_full : void→ Boolean = 0

virtual is_empty : void→ Boolean = 0

4. State = {data[Size], num_elements = 0, put_index = 0, get_index = 0} with
data[Size] ∈ Type[Size] and num_elements, put_index, get_index ∈ integer>0. The
state variables num_elements, put_index, get_index are all initialised with zero.

5. Service = {put, get, is_full, is_empty} of the following kinds:

put : Type→ void

put(in) = {
data[put_index] = in

if (put_index == (Size− 1)) then put_index = 0

else put_index = put_index+ 1

num_elements = num_elements+ 1

}
get : void→ Type

get() = {
Type tmp = data[get_index]

if (get_index == (Size− 1)) then get_index = 0

5.4 Behavioral Layer 129

else get_index = get_index+ 1

num_elements = num_elements− 1

return tmp

}
is_full : void→ Boolean

is_full() = {return num_elements == Size}
is_empty : void→ Boolean

is_empty() = {return num_elements == 0}

�

Properties of the Queue, as defined in the SpecC reference implementation [229]:
• the queue operates in first-in-first-out (FIFO) mode
• one channel instance is required for each queue
• multiple leaf behaviors may use the same channel instance
• each connected leaf behavior may act as a receiver or sender or both (depending on the

used interface)
• a sender calls put() to store data into the queue
• a receiver calls get() to retrieve data from the queue
• the queue is organized as a ring buffer, if insufficient space is available in the queue, a call

of put() will corrupt exiting data in the queue. Calling the is_full() function before
calling put() is recommended to avoid data corruption

• before calling get() on the queue, the is_empty() function should be called to test
whether the queue is empty or not
• when using this queue with multiple parallel or piped behaviors no guarantees are given

for fairness of access, improper usage can cause race conditions and data inconsistencies

Definition 5.4.2.8 (Handshake):
A Handshake is a tuple HS = [Type, IF, State, Event, Service] and a special Channel CH =
[IF, Service] with the following properties:

1. Type ∈ void ∪ integer[N] ∪ Boolean[N] ∪ bit[N] ∪Class with N ≥ 0, where N = 0
is a handshake channel of a basic type or class and N > 0 is a handshake channel of an
array of a basic type of size N + 1. If the type of the handshake channel is void, no data
is transported between sender and receiver. In this case only handshake synchronization is
performed.

2. IF = {send_if<Type>, receive_if<Type>, send_receive_if<Type>} with
send_if<Type> ∈ Interface

virtual send : Type→ void = 0

and receive_if<Type> ∈ Interface

virtual receive : void→ Type = 0

and send_receive_if<Type> ∈ Interface

virtual send : Type→ void = 0

virtual receive : void→ Type = 0

3. State = {data, is_free = false, is_waiting = false} with data ∈ Type and
is_free, is_waiting ∈ Boolean

4. Event = {e}

130 5 Methodology, Modeling Elements and Operational Semantics

5. Service = {send, receive} of the following kinds:

send : Type→ void

send(in) = {
data = in

if is_waiting == true then notify(e)

is_free = true

}
receive : void→ Type

receive() = {
if is_free == false then

is_waiting = true

wait(e)

is_waiting = false

is_full = false

return data

}

�

Properties of the Handshake Channel, as defined in the SpecC reference implementation
[229]:
• this handshake channel provides safe one-way synchronization between a sender and a

receiver
• only one sender and one receiver may use the channel at any time; otherwise, the behavior

is undefined
• a call to send() sends a handshake to the receiver; if the receiver is waiting at the time of

the send(), it will wake up and resume its execution; otherwise, the handshake is stored
until the receiver calls receive()

• the behavior is undefined if send() is called successively without any calls to receive()

• a call to receive() lets the receiver wait for a handshake from the sender
• if a handshake is present at the time of receive(), the call to receive() will immediately

return
• if no handshake is present at the time of receive(), the receiver is suspended until the

sender sends the handshake; then, the receiver will resume its execution
• calling send() will not suspend the sender
• calling receive() may suspend the receiver indefinitely

Definition 5.4.2.9 (Double Handshake):
A Double Handshake is a tuple DHS = [Type, IF, State, Event, Service] and a special Hand-
shake Channel HS = [Type, IF, State, Event, Service] with the following properties:

1. Type = HS.Type

2. IF = HS.IF

3. State = HS.State

4. Event = {req, ack}

5. Service = {send, receive} of the following kinds:

send : Type→ void

send(in) = {
data = in

5.4 Behavioral Layer 131

B_seq

b1 b3 b2

Port

Interface

Shared Variable or Queue

Port to interface binding

Figure 5.14: Communication between sequentially scheduled (Leaf) Behaviors

is_free = true

if is_waiting == true then notify(req)

wait(ack)

}
receive : void→ Type

receive() = {
if is_free == false then

is_waiting = true

wait(req)

is_waiting = false

is_full = false

notify(ack)

return data

}

�

Properties of the Double Handshake Channel, as defined in the SpecC reference implemen-
tation [229]:
• in this channel the sender and receiver must meet in a rendezvous to exchange data
• exactly one receiver and one sender thread may use the same channel instance at the same

time; if used by more than one sender or receiver, the behavior of the channel is undefined
• the same channel instance may be used multiple times in order to transfer multiple data

packets from the sender to the receiver
• using the transceiver interface, the channel may be used bidirectionally
• the sender calls send() to send data to the receiver
• the receiver calls receive() to receive data from the sender
• the channel operates in rendezvous fashion; a call to send() will suspend the sender until

the receiver calls receive(), and vice versa; when both are ready, data is transferred from
the sender to the receiver and both can resume their execution

• calling send() or receive() may suspend either the sender or the receiver indefinitely

The usage of channels is restricted in the following way:

SEQ and FSM Communication between sequentially and finite-state machine scheduled (Leaf)
Behaviors is restricted to Shared Variables or Queues. Arbitrary read/write access
(bidirectional access) is allowed. The usage of Handshake and Double Handshake Channels
is not allowed, since its usage will lead to an infinite suspension of either the sender or
receiver. Piped Variables are only allowed to be used within a Pipeline. Figure 5.14
provides an example of communication between sequentially scheduled (Leaf) Behaviors.

PIPE Communication between pipeline scheduled (Leaf) Behaviors is restricted to Shared
Variables, Queues and Piped Variables. The Piped Variable’s delay annotations indicates
the amount of bridged pipeline stages in the direction of the dataflow. Each delay causes

132 5 Methodology, Modeling Elements and Operational Semantics

B_pipe

b1 b2 b3

1 1

2

1 1

2

3

delayPort

Interface

Piped Variable (with annotated delay)

Port to Interface binding (indicating data flow)

(read and) write access

read only access

Figure 5.15: Communication between pipeline scheduled (Leaf) Behaviors

B_par

b1 b2 (D)HS
(D)HS

Port

Interface

Handshake or Double Handshake Channel

Port to interface binding

Figure 5.16: Communication between parallel scheduled (Leaf) Behaviors

a FIFO depth of Delay + 1 for storing the state of the Variable or Object. The usage
of Handshake and Double Handshake Channels is allowed, but special care should be
taken in the ramp-up and ramp-down phase of the pipeline. In these phases the usage of
Handshake and Double Handshake Communication can lead to an infinite suspension of
either the sender or receiver. Figure 5.15 provides an example of communication between
pipeline scheduled (Leaf) Behaviors.

PAR Communication between parallel scheduled (Leaf) Behaviors can use any kind of channel
(except a Piped Variable). To avoid race conditions and possible data inconsistencies,
communication shall not be realized by resynchronized Shared Variables or Queues but
synchronized Handshake or Double Handshake Channels. Figure 5.16 provides an example
of communication between parallel scheduled (Leaf) Behaviors.

5.4.3 Operational Semantics

After presenting the modeling elements of the Behavior Layer in the last section, now for
these modeling elements the operational semantics will be defined. In this context the term
Operational Semantics is used to describe the execution of the language/modeling elements
through mapping them to the semantics of timed automata (as introduced in Section 3.3). For
the timed automata we use Uppaal notation and graphical representation. For more information
about this notation see Section 3.3.2 and Appendix B.

5.4.3.1 Leaf Behavior

The Behavioral Model is an untimed model, i.e. untimed progress of the model can only happen
inside Leaf Behaviors. Leaf Behaviors can be of type: regular, state, initial state, end state,
and pipeline stage. Inside all these types of Leaf Behaviors the functionality is described using
our Object Model as described in Section 5.3. The functionality inside Leaf Behaviors is a pure
sequential execution model, consisting of a sequence of statements including (data dependent)
loops, branches, and calls to routines. This can be formalized as a combination of Call and
Control Flow Graphs as introduced in our Program Graph Representation Model in Section 3.6.3.

5.4 Behavioral Layer 133

For our tagged signal model each sequential process has a signal s ∈ ℘(T × V), where v ∈ V
denotes the state of the leaf behavior, and t ∈ T is the totally ordered sequence of states,
corresponding to the execution of a program.

For each Behavior we define a single entry and a single exit point. That is a Behavior gets
activated if the control flow reaches its entry point and is finished when the control flow reaches
its exit point. For marking these special entry and exit points in our tagged signal model we
introduce the following two special values:

start ∈ V marks the entry point of a Behavior

end ∈ V marks the exit point of a Behavior

with the following associated events estart, eend ∈ S, t ∈ T :

estart := (t, start)

eend := (t, end)

For each Leaf Behavior Bi we associate a set of signals SBi
⊆ S. Since Leaf Behaviors are

not allowed to contain infinite loops, all signals in SBi
contain a totally ordered finite num-

ber of events e ∈ T ×V . Let LBi
be the maximum length (number of events) of all signals in SBi

.

Definition 5.4.3.1 (Context):
If the associated control flow graph of the Leaf Behavior contains jumps or loops, different input
data or state updates lead to different paths through the control flow. We call these different
possible paths contexts and define that the total number of contexts for each Leaf Behavior is
finite. This can be proven by inductions since no infinite loops are allowed.

We define the context dependent length of signal s ⊆ SBi
of Leaf Behavior Bi as

l : Behavior × N
+
0 → N

+
0

l(Bi, context) = total number of states in Bi for this context

With this definition LBi
= maxj{l(Bi, j)} describes the longest path of executable states in

Bi.
We can now define the following context aware function:

Event constructor e : Behavior×N+
0 ×N+

0 → E creates an event e for Behavior B, context c and
index i. The event consists of tag tB,c,i ∈ T and value vB,c,i ∈ V : e(B, c, i) = (tB,c,i, vB,c,i)

Start constructor start : Behavior → E creates an event estart for Behavior B. The event
consists of tag tB ∈ T and value vB := startB: start(B) = (tB , startB)

End constructor end : Behavior → E creates an event eend for Behavior B. The event consists
of tag tB ∈ T and value vB := endB: end(B) = (tB , endB)

Tag selector T : E → T returns the tag tB,c,i ∈ T of event e: T (e(B, c, i)) = tB,c,i

Value selector V : E → V returns the value vB,c,i ∈ V of event e: V (e(B, c, i)) = vB,c,i

�

The set of signals S(Bi, j) ⊆ SBi
⊆ S of Leaf Behavior Bi for context j can now be written

as:
S(Bi, j) := (start(Bi), e(Bi, j, 0), . . . , e(Bi, j, l(Bi, j)− 1), end(Bi))

With the sequential execution relationship we get si < si+1 ⇔ ei,j < ei+1,k for all 0 ≤ i <
N − 2, and for all j, k ∈ N

+
0 .

134 5 Methodology, Modeling Elements and Operational Semantics

Example (Context aware trace through Leaf Behavior):

1 i n t main () {
2 f o r (i n t i =0; i<k ; i

++) {
3 . . . // B0
4 }
5 . . . // B1
6 i f (. . .) {
7 . . . // B2
8 }
9 e l s e {

10 . . . // B3
11 }
12 }

(a) Textual representation (k ∈
{0, 1, 2})

start

loop entry

node

B1

condition

B2 B3

end

loop start

B0

back node

exit node

B.main()

start

b1

b2 b3

cond0

end

b0

back0

exit0

loop_start0

loop0 nmin(loop0) = 0

nmax(loop0) = 2

(b) Graphical representation (CFG and CG)

Figure 5.17: Example of context generation for Leaf Behaviors without Service Call nodes

Given Behavior B whose programming code is shown in Listing 5.17a its associated CFG
and CG, as shown in Figure 5.17b, can be generated. Assuming bounded loop iterations, given
by the interval [nmin(loop0), nmax(loop0)] we can compute all Signals SB of Behavior B by
covering all paths of its CFG and CG. For this example we get the following set of signals
S(B, j) = SB, j ∈ [0, 5]:

S(B, 0) = (start, loop0, b1, cond0, b2, end)

S(B, 1) = (start, loop0, b1, cond0, b3, end)

S(B, 2) = (start, loop0, loop_start0, b0, exit0, b1, cond0, b2, end)

S(B, 3) = (start, loop0, loop_start0, b0, exit0, b1, cond0, b3, end)

S(B, 4) = (start, loop0, loop_start0, b0, back0, loop_start0, b0, exit0, b1, cond0, b2, end)

S(B, 5) = (start, loop0, loop_start0, b0, back0, loop_start0, b0, exit0, b1, cond0, b3, end)

L(B) = 10

∗

As presented in Section 5.4.2 Leaf Behaviors can be hierarchically composed, either in
a sequential (SEQ), finite state-machine (FSM), parallel (PAR) or pipelined (PIPE) way.
Neglecting channel communication and synchronization between (leaf) Behaviors in the first
place, we can now define the operational semantics for behavior composition. In the following
subsections the execution semantics of allowed behavior compositions is expressed as timed
automata. For the sake of simplicity, an example based mapping instead of a formal mapping
relation between PSM and timed automata has been chosen.

5.4.3.2 Sequential composition (SEQ)

For a sequential composition of Leaf Behaviors B0, . . . , BN , written as B0 → B1 → · · · → BN .
Applying the sequential process constructor SEQ to the signals S0, . . . , SN we get:

SEQ : S × · · · × S → S

SEQ(S(B0, j0), . . . , S(BN , jN)) = (S(B0, j0), . . . , S(BN , jN))

5.4 Behavioral Layer 135

with

S(Bi, j) < S(Bi+1, k) ∀ 0 ≤ i < N ∧ j, k ∈ N
+
0

representing a totally ordered composition of signals for all different combinations of contexts.

B_seq

b1

b3

b2

(a) PSM

b3

b1

b2

(b) Timed-Automaton Template

B_seq

-

b1

b2

b3

(c) Message Sequence Chart

Figure 5.18: Untimed sequential execution

Figure 5.18 shows the mapping of an untimed sequential composition Bseq of Behaviors b1,
b2 and b3 (5.18a) to a timed automaton template (5.18b) and its associated message sequence
chart (5.18c).

5.4.3.3 Finite-state machine composition (FSM)

For a finite-state machine FSM(S, P, V, F,H, s0, E) composition of Leaf Behaviors
{B0, . . . , BN} ∈ S, with s0 = B0 we iteratively apply the FSM signal composition function
that is defined for each state S in the following way:

FSM : Behavior × N
+
0 → S

FSM(B, i) =

(S(B, (context, i)))

if B has no outgoing transitions

(S(B, (context, i)),
∨

(FSM(B0, i), . . . , FSM(BM , i))

if B has outgoing transitions to B0, . . . BM ,

i = i+ 1 if target state has incoming transitions

with the non-deterministic choice function
∨

(· · ·):
∨

(· · ·) : S × · · · × S → S
∨

(fsm0, . . . , fsmN) = fsm0 ∨ . . . ∨ fsmN

Applying function FSM(B0, 0) generates a context aware composite signal with all possible
execution traces of the finite-state machine. Since a finite-state machine describes a pure
sequential execution order of states, the resulting signal is totally ordered, described by:

S(Ba, (i, j)) < S(Bb, (k, l)) if ∃ Ba → Bb ∧ j ≤ l

where i, j, k, l ∈ N
+
0 .

136 5 Methodology, Modeling Elements and Operational Semantics

Example (Finite State Machine context aware trace):

B_fsm

B0

B1

B2

B3

Figure 5.19: Finite State Machine signal trace example

For the state machine, shown in Figure 5.19 we get the following context aware composite
signal description:

FSM(B0, i) = (S(B0, (jB0
, i)),

∨

(FSM(B1, i), FSM(B2, i)))

FSM(B1, i) = (S(B1, (jB1
, i)), FSM(B3, i))

FSM(B2, i) = (S(B2, (jB2
, i)), FSM(B0, i+ 1))

FSM(B3, i) = (S(B3, (jB3
, i)))

∗

B_fsm

init

read

eval

alarm

out.write(false)

/ counter = 0, level = 0

level = in.read()
[level > 10 &&

 counter <= 5]

/ counter = counter + 1

[level <= 10]

 / counter = 0

[level > 10 && counter >5]

 out.write(true)

(a) PSM

level = read(in)
counter = 0

out = write(true)

counter++

out = write(false),
counter = 0, level = 0

level > 10 &&
counter > 5

alarm _state

level > 10 &&
counter <= 5level <= 10

read_state

eval_state

initialise_state

(b) Timed-Automata Template

Figure 5.20: Untimed finite-state machine execution

The mapping to a timed automaton is straightforward and shown in Figure 5.20.

5.4.3.4 Parallel composition (PAR)

For a parallel composition of Leaf Behaviors B0, . . . , BN , written as B0|B1| · · · |BN , applying
the parallel process constructor PAR to the signals S0, . . . , SN we get:

PAR : S × · · · × S → S

PAR(S(B0, j0), . . . , S(BN , jN)) =
∧

(S(B0, j0), . . . , S(BN , jN))

with the Fork-Join function
∧

(· · ·):
∧

(· · ·) : S × · · · × S → S
∧

(S0, . . . , SN) = S0 ∧ . . . ∧ SN

5.4 Behavioral Layer 137

that describes a partial order relationship among the signals S0, . . . , SN in a fork-join semantics:

synchronous start (fork) : T (start(B0)) = · · · = T (start(BN))

synchronous end (join) : T (end(B0)) = · · · = T (end(BN))

B_par

b1

b3

b2

(a) PSM

go!

alltrue(done)

fork

join

(b) PAR_CTRL TA Template

done = false

done = true

go?

m ain

initializ e

finished

(c) PAR_BEH TA Template

(d) Timed-Automata Network

Figure 5.21: Untimed parallel execution

Figure 5.21 shows the parallel composition using a fork-join synchronization as timed
automata. The TA template

PAR_CTRL(urgent broadcast chan &go, bool &done[num_par])

implements the fork-join concept (see Figure 5.21b) for a number of num_par parallel behaviors.
It sends an event to broadcast channel go and waits until all shared variables done[num_par]

are set to true using the alltrue function

bool alltrue(bool a[num_par]) { return forall (i : int[0,num_par-1]) a[i]; }.

Each forked Behavior (see Figure 5.21b) is implemented by the TA template

PAR_BEH(urgent broadcast chan &go, bool &done).

After reception of the go event the main state is executed. Afterwards done is set to true for
affirming the completion of the main function.

Listing 5.1 shows the instantiation of the PAR_CTRL and PAR_BEH templates in a TA network
(see Figure 5.21d) to model the parallel composition of three behaviors as shown in Figure 5.21a.

Figure 5.22 shows the MSC of an arbitrary execution of the TA system from Figure 5.21d.
The important property of the fork-join synchronization is illustrated
• by the synchronous start of the main states in B1, B2 and B3 after B_PAR fired the go

event,
• and activation of the join state of B_PAR after B1, B2 and B3 have all entered their

finished state.

138 5 Methodology, Modeling Elements and Operational Semantics

1 const int num_par ← 3;
2

3 urgent broadcast chan go;
4 bool done[num_par];
5

6 B1 ← PAR_BEH(go, done[0]);
7 B2 ← PAR_BEH(go, done[1]);
8 B3 ← PAR_BEH(go, done[2]);
9 B_PAR ← PAR_CTRL(go, done);

10

11 system B_PAR, B1, B2, B3;

Listing 5.1: Timed automata system shown in Figure 5.21d

B_PAR B1 B2 B3

- - - -

- initializ e

- initializ e

- initializ e initializ e initializ e

fork m ain m ain m ain

m ain finished

finished m ain

fork finished

join finished finished finished

go

Figure 5.22: Example: Message Sequence Chart of untimed parallel execution (cp. Figure 5.21d)

5.4.3.5 Pipeline composition (PIPE)

A pipeline composition of Leaf Behaviors B0, . . . , BN , written as B0 >> B1 >> · · · >> BN is a
combination of parallel and sequential behavior composition. In a pipeline each stage is executed
in parallel to the other stages. This parallel composition is constrained by a sequential execution
order in the activation of the different pipeline stages. In a pipeline composite behavior the
number of invocations of each pipeline stage can be bound to I. For a pipeline with N pipeline
stages the number of total pipeline iterations or I invocations per stage can be computed by:

M : N>0 → N>0

M(I) =

{

2N − 1 if I ≤ N
N + I − 1 if I > N

Applying the pipeline process constructor PIPE to the signals S0, . . . , SN for I invocations
per stage we get:

PIPE : N>0 × S × · · · × S → S

5.4 Behavioral Layer 139

PIPE(I, S(B0, j0), . . . , S(BN , jN)) =

(
∧

(stage(I, S(B0, j0), 0), . . . , stage(I, S(BN , jN), 0)),
∧

(stage(I, S(B0, j0), 1), . . . , stage(I, S(BN , jN), 1)),

...
∧

(stage(I, S(B0, j0),M(I)), . . . , stage(I, S(BN , jN),M(I))))

with the pipeline stage execution function

stage : S × N≥0 → S

stage(I, S(Bi, count[i]), iteration) =

S(Bi, count[i]); count[i] + +

if iteration ≥ i ∧ count[i] ≤ I
⊥

otherwise

where i ≤ N − 1, count[i] ∈ N≥0 × · · · × N≥0
︸ ︷︷ ︸

i

.

The mapping of the pipeline composition operational semantics to timed automata will be
done in two steps: 1st unconstrained pipelines and 2nd constrained pipelines.

B_pipe

b1

b3

b2

(a) PSM

tick!

alltrue(done)

run

start

com plete

(b) PIPELINE_CTRL TA Template

done = true

done = true

num _ticks <
stage_nr

num _ticks++,
done = false

tick?

num _ticks = 0

num _ticks >= stage_nr

wait_for_tick

m ain

(c) PIPELINE_STAGE TA Template

(d) Timed-Automata Network

Figure 5.23: Untimed unconstrained pipeline execution

Unconstrained Pipelines Figure 5.23 shows the unconstrained pipeline composition using a
fork-join synchronization and pipeline stage as timed automata. The TA template

PIPELINE_CTRL(urgent broadcast chan &tick, bool &done[num_stages])

140 5 Methodology, Modeling Elements and Operational Semantics

implements the fork-join concept (see Figure 5.23b) for a number of num_stage pipeline stages. It
sends an event to broadcast channel tick and waits until all shared variables done[num_stages]

are set to true using the alltrue function

bool alltrue(bool a[num_stages]) {return forall (i : int[0,num_stages-1]) a[i];}.

Each forked Pipeline Stage (see Figure 5.23c) is implemented by the TA template

PIPELINE_STAGE(int stage_nr, urgent broadcast chan &tick, bool &done).

After reception of the tick event the total number of passed ticks is checked against the offset
(== stage_numer), for modeling the pipeline’s ramp-up phase. For the case num_ticks >=

stage_nr the main state is executed. Afterwards done is set to true for affirming the completion
of the main function.

1 const int num_stages ← 3;
2

3 urgent broadcast chan tick;
4 bool done[num_stages];
5

6 B1 ← PIPELINE_STAGE(1, tick, done[0]);
7 B2 ← PIPELINE_STAGE(2, tick, done[1]);
8 B3 ← PIPELINE_STAGE(3, tick, done[2]);
9 B_PIPE ← PIPELINE_CTRL(tick, done);

10

11 system B_PIPE, B1, B2, B3;

Listing 5.2: Timed automata system shown in Figure 5.23d

Listing 5.2 shows the instantiation of the PIPELINE_CTRL and PIPELINE_STAGE templates in
a TA network (see Figure 5.23d) to model the pipeline composition of three behaviors as shown
in Figure 5.23a.

Figure 5.25a shows the MSC of an arbitrary execution of the TA system from Figure 5.23d.
The two important properties

1. fork-join synchronization
• by the synchronous start of the pipeline stages B1, B2 and B3 after B_PIPE fires the

tick event,
• and activation of the complete state of B_PIPE after B1, B2 and B3 have all entered

their wait_for_tick states.
2. ramp-up phase

• after 1st tick event main state of only B1 is activated,
• after 2nd tick event main states of B1 and B2 are activated,
• and after 3rd tick event main states of B1, B2 and B3 are activated

are illustrated.

Constrained Pipelines Figure 5.24 shows the constrained pipeline composition using a fork-join
synchronization and pipeline stage as timed automata. The TA template

PIPELINE_CTRL(int bound, urgent broadcast chan &start,

urgent broadcast chan &tick, bool &done[num_stages])

implements the fork-join concept (see Figure 5.24b) for a number of num_stage pipeline stages,
each of them being executed bound times. Before starting with the execution of any pipeline
stage, it sends an event to broadcast channel start to initialize all stages. After initialization, it
sends an event to broadcast channel tick and waits until all shared variables done[num_stages]

are set to true for max_iter(bound) times, with

int max_iter(int upper_bound){ return num_stages + upper_bound - 1; }.

5.4 Behavioral Layer 141

B_pipe

b1

b3

b2

1 ... N

(a) PSM

tick!

num _ticks = 0

num _ticks++

num _ticks <
m ax _iter(bound)

alltrue(done)

num _ticks >= m ax _iter(bound)

start!

start_cycle

finished

cycle_com pleted

run

(b) PIPE Controller TA Template

done = true,
num _ticks = 0,
num _m ain = 0

num _ticks++,
done = falsedone = true

num _m ain++

done = true

num _ticks = 0,
num _m ain = 0

num _m ain < bound

num _ticks >= stage_nr

m ain

num _ticks < stage_nr

num _m ain >= bound

wait_for_start

wait_for_tick

tick?

start?

(c) Pipeline Stage TA Template

(d) Timed-Automata Network

Figure 5.24: Untimed constrained pipeline execution

142 5 Methodology, Modeling Elements and Operational Semantics

Each forked Pipeline Stage (see Figure 5.24c) is implemented by the TA template

PIPELINE_STAGE(int stage_nr,

int bound, urgent broadcast chan &start,

urgent broadcast chan &tick, bool &done).

The start event initializes the internal counters num_ticks (counting the number of tick event)
and num_main (counting the number of main executions). After reception of the tick event
the total number of passed ticks is checked against the offset (== stage_numer), for modeling
the pipeline’s ramp-up phase. For the case num_ticks >= stage_nr the main state is executed.
Afterwards done is set to true for affirming the completion of the main function. When the
bounded number of main executions has been reached, the wait_for_start state is entered
again.

1 const int num_stages ← 3;
2

3 urgent broadcast chan start;
4 urgent broadcast chan tick;
5 bool done[num_stages];
6

7 B1 ← PIPELINE_STAGE(1, max_iter, start, tick, done[0]);
8 B2 ← PIPELINE_STAGE(2, max_iter, start, tick, done[1]);
9 B3 ← PIPELINE_STAGE(3, max_iter, start, tick, done[2]);

10 B_PIPE ← PIPELINE_CTRL(max_iter, start, tick, done);
11

12 system B_PIPE, B1, B2, B3;

Listing 5.3: Timed automata system shown in Figure 5.24d

Listing 5.3 shows the instantiation of the PIPELINE_CTRL and PIPELINE_STAGE templates
in a TA network (see Figure 5.24d) to model the constrained pipeline composition of three
behaviors as shown in Figure 5.24a.

Figure 5.25b shows the MSC of an arbitrary execution of a constrained pipeline system (see
Figure 5.23d) In this example the pipeline constraint, i.e. number of executions per stage, is
I = 1. The following three important properties

1. fork-join synchronization
• by the synchronous start of the pipeline stages B1, B2 and B3 after B_PIPE fires the

tick event,
• and activation of the complete state of B_PIPE after B1, B2 and B3 have all entered

their wait_for_tick states.
2. ramp-up phase

• after 1st tick event main state of B1 gets activated for the first time,
• after 2nd tick event main state B2 get activated for the first time,
• and after 3rd tick event main state of B3, gets activated for the first time.

3. execution constraint: B1, B2 and B3 are executed I = 1 times.
are illustrated.

5.4.3.6 Hierarchical composition

The hierarchical composition can be expressed by by successive application of the signal
composition functions SEQ(· · ·), FSM(· · ·), PAR(· · ·), and PIPE(· · ·) starting at the root
Behavior or Actor, down to the Leaf Behaviors.

To express the hierarchical relationship in timed automata we introduce “stubs” as a generic
representation of ancestor and child behaviors. Figure 5.26 shows the UP_STUB that represents
an ancestor behavior and DOWN_STUB that represents a child behavior.

Figure 5.27 illustrates a hierarchical sequential composition. The corresponding MSC example
resulting from the TA system shown in Listing 5.4 visualizes the following properties:

1. B_seq starts after receiving the up_activate event and terminates, resp. waits for
reactivation, after sending the up_done event.

5.4 Behavioral Layer 143

B_PIPE B1 B2 B3

- - - -

start -

wait_for_tick -

- wait_for_tick

start wait_for_tick wait_for_tick wait_for_tick

run - - -

- wait_for_tick

m ain -

m ain wait_for_tick

run wait_for_tick

com plete

start wait_for_tick wait_for_tick wait_for_tick

run - - -

m ain -

m ain -

m ain wait_for_tick

m ain wait_for_tick

run wait_for_tick

com plete

start wait_for_tick wait_for_tick wait_for_tick

run - - -

m ain -

m ain -

m ain m ain

wait_for_tick m ain

wait_for_tick m ain

run wait_for_tick

com plete

start wait_for_tick wait_for_tick wait_for_tick

tick

tick

tick

(a) unconstrained (∞) pipeline execution (cp. Fig-
ure 5.23d)

B_PIPE B1 B2 B3

- - - -

- wait_for_start

- wait_for_start

- wait_for_start wait_for_start wait_for_start

start_cycle wait_for_tick wait_for_tick wait_for_tick

run - - -

- wait_for_tick

m ain -

m ain wait_for_tick

run wait_for_start

cycle_com pleted

start_cycle wait_for_tick wait_for_tick

run - -

m ain -

m ain wait_for_tick

run wait_for_start

cycle_com pleted

start_cycle wait_for_tick

run -

m ain

run wait_for_start

cycle_com pleted

finished wait_for_start wait_for_start wait_for_start

start

tick

tick

tick

(b) constrained (I = 1) pipeline execution (cp. Fig-
ure 5.24d)

Figure 5.25: Example: Message Sequence Charts of untimed pipeline executions

144 5 Methodology, Modeling Elements and Operational Semantics

up_activate!

up_done?

(a) UP_STUB represents ancestor behavior

down_activate?

down_done!

down_m ain

(b) DOWN_STUB represents child behavior

Figure 5.26: Stubs used as a generic representation of ancestor and child behaviors

UP_stub

B_seq

b1

b3

b2

DOWN_stub

(a) PSM

b3

down_activate!

up_activate?

b2_wait_for_subbehavior

up_done!

down_done?

b1

b2_activate_subbehavior

(b) SEQ TA Template

UP_stub B_seq DOWN_stub

- - -

- b1

b2_activate_subbehavior -

b2_wait_for_subbehavior down_m ain

b3 -

- b3 -

- -

- - -

up_activate

down_activate

down_done

up_done

(c) Message Sequence Chart

Figure 5.27: Hierarchical sequential execution

2. The down_main behavior of DOWN_stub gets activated after completion of b1 and b3 gets
activated after completion of down_main.

3. While down_main is active, behavior B_seq is waiting in b2_waiting_for_subbehavior.

In Figure 5.28 the same style, as used for the hierarchical composition of sequentially
scheduled behaviors, has been applied to a finite-state machine:

1. up_activate? synchronization before entering the initial state of the FSM
2. up_done! synchronization after reaching the final state of the FSM

1 urgent chan up_activate;
2 urgent chan up_done;
3 urgent chan down_activate;
4 urgent chan down_done;
5

6 UP_stub ← UP_STUB(up_activate, up_done);
7 B_seq ← SEQ(up_activate, up_done, down_activate, down_done);
8 DOWN_stub ← DOWN_STUB(down_activate, down_done);
9

10 system UP_stub, B_seq, DOWN_stub;

Listing 5.4: Timed automata system for MSC shown in Figure 5.27c

5.4 Behavioral Layer 145

UP_stub

B_fsm

init

read

eval

alarm

out.write(false)

/ counter = 0, level = 0

level = in.read() [level > 10 &&

 counter <= 5]

/ counter = counter + 1

[level <= 10]

 / counter = 0

[level > 10 && counter >5]

 out.write(true)

DOWN_stub

(a) PSM

level <= 10

level > 10 &&
counter <= 5

level > 10 &&
counter > 5

initialise_state

read_state

eval_state_activate_sub

level = read(in)

out = write(false),
counter = 0, level = 0

down_activate!counter = 0

out = write(true)

counter++

alarm _state

down_done?

up_activate?

up_done!

eval_state_wait_for_sub

down_done?

down_done?

(b) Timed-Automata Template

Figure 5.28: Hierarchical finite-state machine execution

3. inserting committed location with down_activate! synchronization into the wait state
4. inserting a wait state with down_done? synchronization on all outgoing transitions as

replacement for the child behavior

UP_stub

B_par

b1

b3

b2

DOWN_stub

(a) PSM

alltrue(done)

go!

join

up_activate?

up_done!

fork

(b) PAR_CRTL_hier TA Template

initializ e

wait_for_subbehavior

down_activate!

down_done?

done = false

done = true

finished

go?

activate_subbehavior

(c) PAR_BEH_hier TA Template

(d) Timed-Automata Network

Figure 5.29: Untimed hierarchical parallel execution

Figure 5.29 illustrates the hierarchical composition within a parallel composition. In the

146 5 Methodology, Modeling Elements and Operational Semantics

PAR_BEH_hier behavior it follows the same scheme as for the hierarchical sequential composition.
The synchronization with the ancestor is handled through the up_activate and up_done events
in the PAR_CRTL_hier behavior.

1 urgent chan up_activate;
2 urgent chan up_done;
3 urgent chan down_activate;
4 urgent chan down_done;
5

6 urgent broadcast chan go;
7 bool done[num_par];
8

9 B1 ← PAR_BEH(go, done[0]);
10 B2 ← PAR_BEH_hier(go, done[1], down_activate, down_done);
11 DOWN_stub ← DOWN_STUB(down_activate, down_done);
12 B3 ← PAR_BEH(go, done[2]);
13 UP_stub ← UP_STUB(up_activate, up_done);
14 B_PAR ← PAR_CTRL_hier(go, done, up_activate, up_done);
15

16 system UP_stub, B_PAR, B1, B2, DOWN_stub, B3;

Listing 5.5: Timed automata system shown in Figure 5.29d

Listing 5.5 shows the complete TA network as depicted in Figure 5.29d. Figure 5.31a shows
an arbitrary trace example of this TA network. All properties of the parallel composition are
retained and B2 activates down_main and finises after execution of down_main.

Figure 5.30 depicts the hierarchical composition in a constrained pipeline execution. List-
ing 5.6 shows the complete TA network. An exemplary trace of this TA network is shown in
Figure 5.31b. All properties of the I = 1 constrained pipeline execution are retained, while
down_main is executed while pipeline stage B2 is active.

1 urgent chan up_activate;
2 urgent chan up_done;
3 urgent chan down_activate;
4 urgent chan down_done;
5

6 urgent broadcast chan start;
7 urgent broadcast chan tick;
8 bool done[num_stages];
9

10 B1 ← PIPELINE_STAGE(1, max_iter, start, tick, done[0]);
11 B2 ← PIPELINE_STAGE_hier(2, max_iter, start, tick, done[1], down_activate, down_done);
12 DOWN_stub ← DOWN_STUB(down_activate, down_done);
13 B3 ← PIPELINE_STAGE(3, max_iter, start, tick, done[2]);
14 UP_stub ← UP_STUB(up_activate, up_done);
15 B_PIPE ← PIPELINE_CTRL_hier(max_iter, start, tick, done, up_activate, up_done);
16

17 system UP_stub, B_PIPE, B1, B2, DOWN_stub, B3;

Listing 5.6: Timed automata system shown in Figure 5.30d

5.4 Behavioral Layer 147

UP_stub

B_pipe

b1

b3

b2

DOWN_stub

1 ... N

(a) PSM

tick!

up_activate?

num _ticks = 0

num _ticks++

alltrue(done)

finished

num _ticks <
m ax _iter(bound)

num _ticks >= m ax _iter(bound)

up_done!

start_cycle

start!

wait_for_activation

cycle_com pleted

run

(b) PIPELINE_CTRL_hier TA Tem-
plate

start?

num _m ain++

num _ticks++,
done = false

done = true,
num _ticks = 0,
num _m ain = 0

done = true

done = true

num _ticks = 0,
num _m ain = 0

num _m ain < bound

num _ticks >= stage_nr

wait_for_subbehavior

num _ticks < stage_nr

num _m ain >= bound

tick?

down_activate!

wait_for_start

wait_for_tick

down_done?

down_done?

activate_subbehavior

(c) PIPELINE_STAGE_hier TA Tem-
plate

(d) Timed-Automata Network (shows only pipeline controller and hierarchical pipeline stage)

Figure 5.30: Untimed hierarchical constrained pipeline execution

148 5 Methodology, Modeling Elements and Operational Semantics

UP_stub B_PAR B1 B2 DOWN_stub B3

- - - - - -

- initializ e

initializ e -

- - initializ e

- - initializ e initializ e initializ e

fork m ain activate_subbehavior - m ain

wait_for_subbehavior down_m ain

finished -

- -

- -

m ain initializ e

finished

-

initializ e m ain

finished

-

fork initializ e

- join

- -

- - initializ e initializ e - initializ e

up_activate

go

down_activate

down_done

up_done

(a) MSC of untimed parallel execution with hierarchy
(cp. Figure 5.29d)

UP_stub B_PIPE B1 B2 DOWN_stub B3

- - - - - -

- wait_for_start

wait_for_start -

- wait_for_start

- wait_for_activation

- - wait_for_start wait_for_start wait_for_start

start_cycle wait_for_tick wait_for_tick wait_for_tick

run - - -

- wait_for_tick

m ain -

m ain wait_for_tick

run wait_for_start

cycle_com pleted

start_cycle wait_for_tick wait_for_tick

run - -

- wait_for_tick

activate_subbehavior -

wait_for_subbehavior down_m ain

wait_for_start -

run -

cycle_com pleted

start_cycle wait_for_tick

run -

m ain

run wait_for_start

cycle_com pleted

- finished

- wait_for_activation wait_for_start wait_for_start - wait_for_start

up_activate

start

tick

tick

down_activate

down_done

tick

up_done

(b) MSC of untimed constrained pipeline executin
(I = 1) with hierarchy (cp. Figure 5.30d)

Figure 5.31: Example: Message Sequence Charts of untimed parallel and pipelined executions
with hierarchy

5.4 Behavioral Layer 149

5.4.3.7 Communication

For expressing communication among leaf behaviors, we extend the definition of Call Graphs
(see Definition 3.6.3.4) by adding a new node type for Service Calls via Ports on Channels’
interface functions.

Definition 5.4.3.2 (Extended Call Graph):
An extended call graph connects call nodes and and service call nodes with start nodes. Calls,
Services, and Starts constitutes the nodes and target restricted to Calls defines the intra-
procedural edges, while target restricted to Services defines the port to interface calls on
Channels. The linkage between start and
• call nodes is established by adding edges from start to call nodes for each routine.
• service nodes is established by adding edges from start to service nodes for each routine.
Formally, an extended call graph is defined as: CG = (V̂ , Ê), with

1. the nodes V̂ = Calls ∪ Services ∪ Start,
2. and the edges Ê ⊆ V̂ × V̂ , where Ê is defined as:

Ê := {(c, s) : c ∈ Calls, s ∈ target(c)} ∪
⋃

f∈F {(s, c) : s ∈ Starts, c ∈ Calls ∪ Services : ∃s→∗
CF Gf

c}

�

We also need to extend the definition of artificial empty nodes from Definition 3.6.3.9.

Definition 5.4.3.3 (Extended Artificial Empty Nodes):
For providing special hooks for analysis and timing annotation of service calls to Channels we
introduce in addition to Definition 3.6.3.9 the following additional artificial empty nodes as
special locations in the CFG and CG. At each service call invocation two additional nodes are
inserted:
• service call node: linked with start node in the CG. Represents the call to a service via a

port to a Channel. Calls to Channels are blocking calls.
• service return node: indicates the return of a called service of a Channel

Services are augmented with the following empty nodes:
• start node: Service begin with a start node
• exit node: returning control flow to the caller is gathered in a unique exit node.
For each call to a Channel we define a single entry and a single exit point. I.e. a service call

on a Channel gets requested when the control flow of a Behavior reaches a Service Call Node.
After the requested service call has been performed it returns to the control flow of the Behavior
through the Service Return Node. For marking these special call and return nodes in our tagged
signal model we introduce the following special values:

call ∈ V marks the entry point of a Service Call (Request)

return ∈ V marks the return point of a Service Call

with the following associated events: ecall, ereturn ∈ E, t ∈ T :

ecall := (t, call)

ereturn := (t, return)

Since Service Calls are context dependent, which means that their execution might be data or
state dependent. For this purpose we define the following context aware index functions:

call : Behavior × N
+
0 × Channel × N

+
0 → E

call(B, context, Ch, nr) = (tB,context,Ch,nr, callB,context,Ch,nr)

return : Behavior × N
+
0 × Channel × N

+
0 → E

150 5 Methodology, Modeling Elements and Operational Semantics

return(B, context, Ch, nr) = (tB,context,Ch,nr, returnB,context,Ch,nr)

These index functions associate Service Call and Service Return nodes of a Behavior B, with
a context (in which they appear), the Channel Ch the service call is requested from, and the
consecutive number of service requests (starting with 0) on Ch in this context. �

Service Calls on Channels have the following basic properties:

1. Service Calls always return (unless there is a deadlock, due to inconsistent specification,
which is considered as a design error)

2. Service Calls are blocking. I.e. the control flow of the calling Behavior’s context is not
allowed to pass any other node until communication is finished

Example (Context aware trace of Leaf Behavior with Channel communication):

1 f i n t main () {
2 f o r (i n t i =0; i<k ; i

++) {
3 . . . // B0
4 }
5 r e t 0 = f (. . .) ; //

F0
6 i f (. . .) {
7 . . . // B1
8 r e t 1 = ch0−>S0 (

. . .) ; //C0
9 }

10 e l s e {
11 . . . // B2
12 }
13 }

(a) Textual representation (k ∈
{0, 1, 2})

start

loop entry

node

Call

node

condition

B1 B2

service call

node

end

B.main()

B.start

B.f0

B.b1 B.b2

B.ch0

B.cond0

B.end

B.loop0 nmin(B.loop0) = 0

nmax(B.loop0) = 2

return

service ret.

start

f.B0

exit

f.b0

f.exit

f.start

start

S0

exit

ch0.s0

ch0.exit

ch0.start

f;…Ϳ

Ch

B.return.f0

B.return.ch0

(b) Graphical representation

Figure 5.32: Example of context generation for Leaf Behaviors with Service Call nodes

Given Behavior B whose programming code is shown in Listing 5.32a its associated CFG
and CG, as shown in Figure 5.32b, can be generated. Assuming bounded loop iterations,
given by the interval [nmin(loop0), nmax(loop0)] we can compute all Signals SB of Behavior
B by covering all paths its CFG and CG. For this example we get the following set of signals
S(B, j) = SB, j ∈ [0, 5]:

S(B, 0) = (B.start,

B.loop0,

B.f0, f.start, f.B0, f.exit, B.return.f0,

B.cond0,

B.b1,

B.ch0, ch0.start, ch0.s0, ch0.exit, B.return.c0,

B.end)

S(B, 1) = (B.start,

B.loop0,

B.f0, f.start, f.B0, f.exit, B.return.f0,

5.4 Behavioral Layer 151

B.cond0,

B.b2,

B.end)

S(B, 2) = (B.start,

B.loop0, B.loop_start0, B.b0, B.exit0,

B.f0, f.start, f.B0, f.exit, B.return.f0,

B.cond0,

B.b1,

B.ch0, ch0.start, ch0.s0, ch0.exit, B.return.c0,

B.end)

S(B, 3) = (B.start,

B.loop0, B.loop_start0, B.b0, B.exit0,

B.f0, f.start, f.B0, f.exit, B.return.f0,

B.cond0,

B.b2,

B.end)

S(B, 4) = (B.start,

B.loop0, B.loop_start0, B.b0, B.back0, B.loop_start0, B.b0, B.exit0,

B.f0, f.start, f.B0, f.exit, B.return.f0,

B.cond0,

B.b1,

B.ch0, ch0.start, ch0.s0, ch0.exit, B.return.f0,

B.end)

S(B, 5) = (B.start,

B.loop0, B.loop_start0, B.b0, B.back0, B.loop_start0, B.b0, B.exit0,

B.f0, f.start, f.B0, f.exit, B.return.f0,

B.cond0,

B.b2,

B.end)

∗

In the following paragraphs communication in the Behavior Layer model is mapped to the
semantics of Timed Automata.

Shared and Piped Variable A Shared Variable is mapped to a global variable in timed
automata, see Listing 5.8 (declaration in line 8 and TA template accesses by reference in line 17
and 18).

Piped Variables require their own automata as shown in Figure 5.33b and its corresponding
Listing 5.8. Three pipeline stages B1-B3 are connected through shared and piped variables as
depicted in Figure 5.33a. PV_1 with depth 1 connects B1 and B2 and crossed one pipeline stage
boundary, while PV_2 with depth 2 connects B1 and B3 and crosses two pipeline boundaries.

1 Type data[depth+1];
2

3 void step() { for (i : int [0, depth−1]) { data[depth−i] ← data[depth−(i+1)]; } }
4

5 void read_input(Type in) { data[0] ← in; }
6 int update_output() { return data[depth]; }

Listing 5.7: Piped Variable TA template local functions

Each piped variable TA becomes activated through the global pipeline controller’s tick

broadcast event. Upon synchronization new input data is stored at the beginning of the internal
array read_input, the internal array is shifted by one step and the output gets updated by

152 5 Methodology, Modeling Elements and Operational Semantics

B_pipe

B1 B2 B3

1

2

PV_2

sv_0

PV_1

(a) PSM

(b) TA system

Figure 5.33: Shared and Piped Variable TA Example

5.4 Behavioral Layer 153

tick sv_0 pv_1_out pv_2_out

1 1 0 0
2 2 1 0
3 3 2 1
4 4 3 2
.
.
.

.

.

.
.
.
.

.

.

.

Table 5.1: Shared Variable and Piped Variable outputs after number of ticks

picking out the last element of the internal array update_output. All Piped Variable TA
template’s local functions are shown in Listing 5.7.

1 typedef int Type;
2 const int num_stages ← 3;
3

4 urgent broadcast chan tick;
5 bool done[num_stages];
6

7 // shared variable
8 int sv_0;
9

10 // inputs and outputs to piped variable PV_1
11 int pv_1_in;
12 int pv_1_out;
13 // inputs and outputs to piped variable PV_2
14 int pv_2_in;
15 int pv_2_out;
16

17 B1 ← PIPELINE_STAGE_B1(1, tick, done[0], pv_1_in, sv_0, pv_2_in);
18 B2 ← PIPELINE_STAGE_B2(2, tick, done[1], pv_1_out, sv_0);
19 B3 ← PIPELINE_STAGE_B3(3, tick, done[2], pv_2_out);
20 B_PIPE ← PIPELINE_CTRL(tick, done);
21 PV_1 ← PIPED_VARIABLE(1, tick, done, pv_1_in, pv_1_out);
22 PV_2 ← PIPED_VARIABLE(2, tick, done, pv_2_in, pv_2_out);
23

24 system B_PIPE, B1, PV_1, B2, PV_2, B3;

Listing 5.8: Timed automata system shown in Figure 5.33b

Table 5.1 illustrates the assignment of the Shared Variable and Piped Variables at the end of
each tick. Shared Variables immediately take the newly assigned value, PV_1 delays its input
value by one tick and PV_2 delays its output value by two ticks.

Queue The Queue is similar to a shared variable: it’s a shared array with additional bookkeep-
ing to implement a ring-buffer on the linear array. Listing 5.9 shows the shared data structure
Queue (line 3-8) and the bookkeeping functions put, get, is_full and is_empty as defined in
Definition 5.4.2.7.

Figure 5.34 shows the example of using a Queue between parallel behaviors B1 and B2.
Listing 5.10 shows the corresponding system instantiation with Queue Q (line 7) of size 4 (line
2).

After activation, B1 attempts to write the integer sequence {0, . . . , 10} into Queue Q. Before
writing into the Queue, the filling level is checked using the is_full function. If the Queue
is full, the put call is deferred until the receiver has consumed at least one element from the
Queue (!is_full returns true). B2 acts as the receiver and reads from the Queue Q using the
get function. The receiver only reads from the Queue when there is at least on element available
(!is_empty returns true).

Handshaking The semantics of Handshake and Double Handshake Channels can be expressed
by Uppaal timed automata sender and receiver synchronization. Table 5.2 summarizes the

154 5 Methodology, Modeling Elements and Operational Semantics

1 typedef int Type;
2

3 typedef struct {
4 int put_index;
5 int get_index;
6 int num_elements;
7 Type data[QUEUE_SIZE];
8 } Queue;
9

10 void put(Queue &q, Type data) {
11 q.data[q.put_index] ← data;
12 if (q.put_index == (QUEUE_SIZE − 1)) { q.put_index ← 0; }
13 else { q.put_index ← q.put_index + 1; }
14 q.num_elements ← q.num_elements + 1;
15 }
16

17 Type get(Queue &q) {
18 Type tmp ← q.data[q.get_index];
19 if (q.get_index == (QUEUE_SIZE − 1)) { q.get_index ← 0; }
20 else { q.get_index ← q.get_index + 1; }
21 q.num_elements ← q.num_elements − 1;
22 return tmp;
23 }
24

25 bool is_full (Queue q) { return q.num_elements == QUEUE_SIZE; }
26 bool is_empty(Queue q) { return q.num_elements == 0; }

Listing 5.9: Queue definition

Figure 5.34: TA Queue system example

mapping of Handshake and Double Handshake Channels to Timed Automata sender and receiver
synchronization as introduced in Section 3.3.3.

5.5 Application Layer

5.5.1 Introduction

The Application Layer focuses on computational structuring of the Behavior Layer model. It is
an intermediate model introducing computational containers called Actors and Shared Objects
that model communication through method interface calls. The system is modeled as a set
of parallel, communicating actors. A shared resource is called Shared Object, which equips a
user-defined class with specific synchronization facilities and provides a set of services. Shared

5.5 Application Layer 155

1 const int num_par ← 2;
2 const int QUEUE_SIZE ← 4;
3

4 urgent broadcast chan go;
5 bool done[num_par];
6

7 Queue Q;
8 B1 ← PAR_B1(go, done[0], Q);
9 B2 ← PAR_B2(go, done[1], Q);

10 B_PAR ← PAR_CTRL(go, done);
11

12 system B_PAR, B1, B2;

Listing 5.10: TA Queue system as shown in Figure 5.34

Channel Interface(s) Timed Automata

Handshake send_if, receive_if single one-way
Handshake send_receive_if two one-way
Double Handshake send_if, receive_if asymmetric two-way
Double Handshake send_receive_if symmetric two-way

Table 5.2: Mapping Handshake and Double Handshake Channels to Timed Automata sender
and receiver synchronization

Objects are inspired by the Protected Objects known from Ada [183, 60] and automatically
guarantee mutual exclusive access from different actors.

Synchronization is performed by arbitrating concurrent accesses and a special feature called
Guarded Methods, that can be used to block the execution of a method until an optional,
user-defined condition evaluates to true.

The main properties of the Application Layer can be summarized as:

• Main focus on structuring functionality (functional behavior) into schedulable containers:
Actors and Shared Objects

• Modeling style of Actors and Shared Objects ranges from HW/SW implementation
independent over HW/SW retargetable to HW/SW dependent implementation.

• Supports the separation of communication and behavior through Port-Interface-Binding
and method-based communication between Actors and Shared Objects

• Supports timing (back-)annotations of Actors and Shared Objects

• The model is executable

• Supports timing assertions to monitor (data-dependent) timing behavior

In the following refinement step computational containers (Actors and Shared Objects) of
the Application Layer are mapped to processing elements of the Virtual Target Architecture
Layer enabling synthesis of the application on the targeted hardware platform.

In the following all modeling primitives on the Application Layer are introduced. This
following denotational model only covers the required aspects for the description of the mapping
to the Virtual Target Architecture in Section 5.6 and abstracts from the details implicitly
contained in the C++-based implementation model.

5.5.2 Modeling Elements

The Application Layer is an executable parallel object-oriented model and consists of the
following modeling elements:

• Module is a pure structural element (does not model any behavior/functionality). Modules
can be hierarchically composed (i.e. a Module my contain other Modules). Modules can

156 5 Methodology, Modeling Elements and Operational Semantics

contain Actors and Shared Objects (see below). Modules have Ports (see Definition 5.4.2.1)
to forward communication from the Ports of Actors and Sub-Modules to the outside. Each
module is a unique entity object. Modules cannot be copied or passed by value.

• Actor is a specialized Module and container for functionality. An Actor may contain a
single thread of execution or multiple threads of execution. Actors contain Behaviors (see
Definition 5.4.2.2) from the Behavioral Layer to express functionality. Actors cannot be
hierarchically composed (i.e. and Actor is not allowed to contain any other Actors). An
Actor has Ports (see Definition 5.4.2.1) to forward Ports of the inner Behavior(s) to the
outside. Each Actor is a unique entity object. Actors cannot be copied or passed by value.

• Passive Object (the instance of a Class, see Definition 5.3.4.2) basically encapsulates
data and operations on it. Passive Objects can be cloned, copied and passed by value.
Objects can be derived from other Objects as described in Section 5.3.

• Shared Object is a container for a passive Object. Selected methods (called services) of
the inner passive object can be exported through interfaces. Services can be associated
with a side-effect free Boolean condition (called Guard) on the passive Object’s internal
state. A service is only available if its Guard evaluates to true. Shared Object services can
be called from within the Behavior(s) of Actors through Ports. When multiple Actors or
parallel scheduled Behaviors inside one Actor are requesting services of a Shared Object
a dynamic and customizable access arbitration is performed (i.e. Shared Object service
accesses are always mutual exclusive). Each Shared Object is a unique entity object.
Shared Objects cannot be copied or passed by value. From within a service or any other
method of the Shared Object’s internal passive Object, no other Shared Object services
can be called.

In the following subsection these modeling elements will be defined and described in more
detail. The Operational Semantics of Actors and Shared Objects is described in Section 5.5.6.

5.5.2.1 Actor

Actor Behaviour

Port

Required_IF : Interface

Port

Required_IF : Interface
1 1

1 1..*

1 1..*

default binding

1

1

Module

Figure 5.35: Meta-Model of Actors

Definition 5.5.2.1 (Actor):
Figure 5.35 gives an overview of the Actor Meta-Model. An Actor is a tuple

Actor =
[
Behavior, Port

]
, where

1. Behavior ∈ Behavior is the Behavior of this Actor. Depending on the Behaviors proper-
ties we can classify an actor in the following way:

Active Sequential restricts the Behavior and all of its sub Behaviors to:

(a) Type = {regular}
(b) Composite = {SEQ}

5.5 Application Layer 157

An Active Sequential Actor only contains a hierarchical sequential compositions,
executed in an infinite loop. When the execution of the last sequential behavior of the
the root behavior has been finished, the execution of the first sequential behavior of the
root behavior is started again. The number of parallel sets for an active sequential
actor A is |par_set(A.Behavior)| = 1.

Active Parallel restricts the Behavior and all of its sub Behaviors:

(a) Type = {regular, pipeline_stage}
(b) Composite = {SEQ,PAR,PIPE}
An Active Parallel Actor contains an arbitrary hierarchical mixture of sequential,
parallel, and pipeline compositions, executed in an infinite loop. When the execution
of the the root behavior has been finished it is started again. The degree of parallelism
inside an Active Parallel Actor A is |par_set(A.Behavior)| ≥ 1.

Reactive Sequential restricts the Behavior and all of its sub Behaviors to:

(a) Type = {regular, state, initial_state, end_state}
(b) Composite = {SEQ,FSM}
A Reactive Sequential Actor only contains a hierarchical mixture of sequential and
finite-state machine compositions, executed in an infinite loop. When the execution of
the the root behavior has been finished it is started again. The number of parallel sets
for a reactive sequential actor A is |par_set(A.Behavior)| = 1. The term "reactive"
describes the ability to use the reactive behavior of the FSM behavior. Transitions in
FSM behaviors are taken when the guard condition is fulfilled and the blocking read
operation on an in or inout port returns.

Reactive Parallel relieves all restrictions on the Behavior and all of its sub Behaviors:

(a) Type = {regular, state, initial_state, end_state, pipeline_stage}
(b) Composite = {SEQ,FSM,PAR,PIPE}
A Reactive Parallel Actor has no restrictions on its behaviors, but also executed in an
infinite loop. For a reactive parallel actor A is |par_set(A.Behavior)| ≥ 1.

2. Port = {p0, · · · , pN} is a copy of the set of ports as defined by the Behavior of Actor A,
with A.Port ≡ A.Behavior.Port. There is a default binding relation between these ports:

∀0 ≤ i < N : bpi ⊲ mpi

with bpi ∈ A.Behavior.Port and mpi ∈ A.Port ∀0 ≤ i < N .

�

5.5.2.2 Application Layer System

Definition 5.5.2.2 (Application Layer System):
The Application Layer System (ALS) defines the boundary of the system to be designed. Fig-
ure 5.36 gives a graphical overview of the Application Layer System Meta-Model. An Application
Layer System is a tuple ALS =

[
Actor, Channel, Port, Binding

]
with

1. Actor = {a0, · · · , aN} is a set of Actors ai ∈ Actor with 0 ≤ i ≤ N and N ≥ 0.

2. Channel = {ch0, · · · , chN} ∪ ∅ is a set of Channels chi ∈ SharedObject with 0 ≤ i ≤ N
and N ≥ 0.

3. Port = {p0, · · · , pN} ∪ ∅ is a set of External Ports pi ∈ Port with 0 ≤ i ≤ N and N ≥ 0.
This set of ports defines communication points to the outside world. All external ports of
ALS are connected to the testbench infrastructure that models the behavior of the system’s
environment. As for hierarchical Behaviors each port can only be bound once. Hence is
not allowed to bind a port of Actor to two different ports in Port.

158 5 Methodology, Modeling Elements and Operational Semantics

Application Layer System (ALS)

Actor

Shared Object (SO)

Provided_IF[1..*] : Interface

Port

Required_IF : Interface

Port

Required_IF : Interface
1 1..*

1 0..*

1 0..*

1 1..*

Binding1

1

Binding1

1

Module

Figure 5.36: Meta-Model of the Application Layer System

4. Binding = {⊲0, · · · ,⊲N} ∪ ∅ is a list of binding relations ⊲ with

N =

|Actor|−1
∑

i=0

|ai.Port|

− 1

where ai ∈ Actor. The list of binding relations has the same properties as the binding
relation for Behaviors:

(a) Ports of all child Actors (∈ Actor) are bound once to either External Ports (∈ Port)
or interfaces of Channels (∈ Channel):

∀childi ∈ Actor∀pj ∈ childi.Port : ∃! ⊲∈ Binding with

pj ⊲ p ∈ Port ∨
pj ⊲ ch ∈ Channel

(b) One port is uniquely bound to another port. I.e. not two different ports can be bound
to the same port:

∀ ⊲i∈ Binding, p ∈
⋃

child∈Actor

child.Port : ∃!pj ∈ Port ∧ p 6= pj with

p ⊲i pj

�

5.5.2.3 Shared Objects

Shared Objects are the modeling primitives for expressing communication between Actors.
Following the object-oriented programming paradigm, it provides a set of services, grouped by
interfaces, to its clients. In our definition a Shared Object offers Services to its clients, which
are Actors, that require subsets of the offered Services. In this terminology a Shared Object is a
server and an Actor or Task is a client.

Figure 5.37 gives a graphical overview of two different Shared Object usages. Figure 5.37a
shows the user-defined class my_class inside a Shared Object. The client accesses the provided
services of the my_class_if through a port. Since only a single client accesses the Shared
Object, no scheduling is required. Figure 5.37b shows the same user-defined class inside a Shared
Object. In this configuration my_class implements two interfaces put_if and get_if which
are used by three clients. One client uses the put interface and two other clients are using the
get interface. Concurrent accesses are arbitrated using a round robin scheduler.

5.5 Application Layer 159

Actor
(Client)

my_class

Type

...

port->put(…);
...

port->get();

...

Shared Object

my_class<Type>,
no_scheduler User-defined Class

(Passive Object)

Access/Protocol Container

Communication Link

Port

Interface

get() : Type
put(Type)
is_empty() : bool
is_full() : bool

my_class_if

get() : Type
put(Type)

Type

(a) no scheduling

my_class
...

port->put(…);
...

...

port->get();

...

Shared Object

my_class<Type>,
round_robin

Put Port ...

port->get();

...

get() : Type
put(Type)
is_empty() : bool
is_full() : bool

Type

Get Port

put_if

put(Type)

Type

get_if

get() : Type

Type

(b) scheduling

Figure 5.37: Shared Object

In the following sections a definition of the Shared Object is given.

Definition 5.5.2.3 (Shared Object):
An OSSS Shared Object is a tuple SO = [cparent, State,Method, Scheduler], where

1. cparent = {cIF0
, · · · , cIFN

, c}, with typeof(cIFi
) = IF, 0 ≤ i ≤ N and typeof(c) = C is

a list of base classes, consisting of one up to N Interface Classes (IF), and one or no
regular Class (C).

The function if_closure collects all valid interface combinations along the interface
inheritance relation. It is defined in the following way:

if_closure(X) : SO ∪ C → IF

if_closure(X) = ∅
if typeof(X) = IF ∧X.cparent = ∅

if_closure(X) = if_closure (↓IF (X.cparent)) ∪

160 5 Methodology, Modeling Elements and Operational Semantics

Shared Object

#State

IF
<<interface>>

Class

Scheduler

Method

Member Function

Guarded Method

<<implements>>

1 0..1

1 1..*

its Guard

1

1

1..*

1

1

1

side-effect free

Shared Object.State -> Boolean

Scheduler_if

Scheduling_Algorithm1 1

<<implements>>

Figure 5.38: Meta-Model of Shared Objects

flat_if (↓IF (X.cparent))

if ↓C (X.cparent) = ∅ ∧X.cparent 6= ∅
if_closure(X) = if_closure (↓IF (X.cparent)) ∪

if_closure (↓C (X.cparent)) ∪
flat_if (↓IF (X.cparent))

if ↓C (X.cparent) 6= ∅

with the projection function:

↓X (Y) : SO ∪ C → X, X ∈ {IF,C}

↓X (Y) =

|Y.cparent|−1
⋃

i=0

ci | ci ∈ Y.cparent ∧ typeof(ci) = X

Figure 5.39 show an example of the application of the if_closure function to a complex
class inheritance relation.

To get the set of Services S a Shared Object provides and implements as Guarded Methods,
we need to create the union of all services using the service_closure function:

service_closure(X) : IF → S

service_closure(X) =
⋃

if∈if_closure(X)

if.Method

Only the set of Services S = service_closure(SO) can be accessed by clients. All other
methods are only accessible inside the Shared Object. For the example in Figure 5.39
service_closure(F) = {a, b, c, d, e}.

2. State = T0 × . . .× Tn is the state vector, with n ≥ 0, where T0, · · · , Tn denote some basic
types, classes, or arrays.

3. Method = M ∪GM is the set of regular member functions (as defined for classes) M = ∅
or M = {m0, · · · ,mm} with mi, i ≥ 0, and Guarded Methods GM = {gm0, · · · , gmn} with

5.5 Application Layer 161

gmj , j ≥ 0 of the following kinds:

guarded name : 〈guard : SO.State→ Boolean, void→ void〉
guarded name : 〈guard : true, void→ void〉
guarded name : 〈guard : SO.State→ Boolean, void→ T 〉
guarded name : 〈guard : true, void→ T 〉
guarded name : 〈guard : SO.State→ Boolean, T0 × · · · × Tn → void〉
guarded name : 〈guard : true, T0 × · · · × Tn → void〉
guarded name : 〈guard : SO.State→ Boolean, T0 × · · · × Tn → T 〉
guarded name : 〈guard : true, T0 × · · · × Tn → T 〉

where each Guarded Method has exactly one associated guard function guard : SO.State→
Boolean. A guard is a side-effect free Boolean condition over the state space of the Shared
Object SO.State. A guarded method is only accessible if the guard function returns true.
If the guard function instead is defined to be always true, the associated guarded method is
always accessible (un-guarded).

We define reqSO ∈ IntegerN
[0,|GM |−1] as the so-called client request vector. It has the

size N of number of clients connected to this Shared Object and contains the identifier
of the requested guarded method of each client. Applying an index function index that
uniquely assigns indexes to a set S of size |S| = M , results in index(S) = {s0, · · · , sM−1},
with si ∈ S. Guarded methods can be uniquely numbered using this index function in the
following way:

GM = index(service_closure(cparent))

The function index−1 returns the index of a given Guarded Method:

index−1 : GM × integer[0,|GM |−1] → gm, with gm ∈ GM
index−1(GM, i) = gmi, with i ∈ [0, |GM | − 1]

The function eval_guard : GM × integer[0,|GM |−1] → Boolean evaluates the guard asso-
ciated to a Guarded Method gmi ∈ GM , written as gmi.guard:

eval_guard(GM, i) = index−1(GM, i).guard

With these functions we can define the guard evaluation function guard_eval that trans-
forms the client request vector reqSO into the guarded request vector guarded_reqSO ∈
BooleanN for number of clients N in the following way:

guard_eval : integerN
[0,|GM |−1] → BooleanN

guard_eval(reqSO) =
{
guarded_reqSO[i] = eval_guard(GM, reqSO[i])|∀i ∈ [0, N − 1]

}

4. Scheduler is a function Scheduler : BooleanN → Integer[0,N−1], which selects from the

guarded request vector guarded_reqSO the client number guarded_reqi ∈ Integer[0,N−1]

to be granted access to the requested guarded method in reqSO.
The next client that is allowed to access the Shared Object SO can be computed as:

next_access(SO) = Scheduler(guard_eval(reqSO))

The associated guarded method to be accessed next is:

reqSO[next_access(SO)]

�

162 5 Methodology, Modeling Elements and Operational Semantics

A

<<interface>>

<<virtual>>+a()
<<virtual>>+b()

B

<<interface>>

<<virtual>>+a()
<<virtual>>+c()

C

<<interface>>

<<virtual>>+a()
<<virtual>>+e()

D

<<interface>>

<<virtual>>+a()
<<virtual>>+b()
<<virtual>>+c()
<<virtual>>+d()

A

<<interface>>

<<virtual>>+a()
<<virtual>>+b()

B

<<interface>>

<<virtual>>+a()
<<virtual>>+c()

C

<<interface>>

<<virtual>>+a()
<<virtual>>+e()

D

<<interface>>

<<virtual>>+d()

E

F

if_closure(F)

Figure 5.39: Example of if_closure function applied to a mixed class and interface class
inheritance. The interface closure of class F if_closure(F) contains all valid combinations of
interface classes of class F .

5.5.3 Pre-defined Scheduling Algorithms

Definition 5.5.3.1 (Scheduling):
Scheduling is the method by which concurrent clients (e.g. processes, threads or data flows) are
given access to a shared resource (e.g. processor, memory or communication channel). This is
usually done to load balance a system effectively or to achieve a certain quality of service. A
scheduling algorithm defines access rules for all clients to the shared resource (also called server).
Scheduling algorithms can be specified to target the following objectives:

Throughput The total number of clients that complete their execution per time unit

Latency more specifically:

Turnaround time: total time between submission of a client’s request to use the shared
resource and its completion

Response time: amount of time it takes from when a client’s request was submitted until
the first shared resource’s response is produced

Waiting Time The time each client (or more generally appropriate times according to each
clients’ priority) is waiting/blocked until access to the shared resource is granted

Fairness The same amount of accesses or the same waiting times of all clients (or more generally:
proportional to each clients’ priority)

In practice, these objectives often conflict (e.g. throughput versus latency), thus a scheduler
will implement a suitable compromise. Preference is given to any one of the above mentioned
concerns depending upon the user’s needs. �

In this work, scheduling will be used to serialize concurrent accesses to Shared Objects and
Communication Elements of the Virtual Target Architecture Layer (see Section 5.6.2). To enable
reuse and plug-and-play of different scheduling algorithms the following generic scheduling
interface is provided.

Definition 5.5.3.2 (Scheduler Interface):
Given a shared resource S and a number of N > 1 clients applying for accessing S. The function

SchedulerIF : BooleanN → Integer[0,N−1] defines the Scheduler Interface for a shared resource
S.

The scheduler interface gets a request vector request ∈ BooleanN that is a Boolean Array
of size N . Each client that is applying for access to S issues its request by assigning true to its
unique position in the array. Each client’s position in the request vector depends on its priority.

5.5 Application Layer 163

The interpretation of the priority index ("zero is highest" or "zero is lowest" priority) is user
defined and needs to be handled by the scheduling algorithm appropriately. After applying the
scheduling algorithm on the given request vector request the client at position i ∈ Integer[0,N−1]

gets access to the shared resource S. �

Some frequently used scheduling algorithms are available, but also user-defined schedulers
can be specified using the generic scheduler interface described above. Pre-defined scheduling
algorithms are described in the following paragraphs.

5.5.3.1 Static Priority

The static priority scheduling algorithm picks the requesting client with the highest priority
from the request vector request and returns its index (see Algorithm 1). Depending on the
interpretation of priorities ("zero is highest" or "zero is lowest") the request vector is traversed
in forward or backward direction (default: zero is lowest priority).

This algorithm does not guarantee fairness, because priorities are static. Depending on the
request characteristics of the clients it may happen that high priority clients get much more
often access to the shared resource than low priority clients. In some cases low priority clients
might get never get access to the shared resource at all.

Algorithm 1 Static Priority Scheduler (with N number of clients)

1: if zero_is_highest = true then
2: for i = 0→ (N − 1) do
3: if request[i] then
4: return i
5: end if
6: end for
7: else
8: for i = 0→ (N − 1) do
9: if request[N − 1− i] then

10: return N − 1− i
11: end if
12: end for
13: end if

5.5.3.2 Ceiling Priority

The ceiling priority scheduling algorithm (see Algorithm 2) all clients are initially sorted in
a certain order, which cannot be influenced and must be regarded as unknown. This order
can be seen as the initial priority of the clients, with the client having the lowest index having
the highest priority. Whenever the schedule function is invoked, the requesting client with the
highest priority is granted, and it is assigned the lowest priority.

Other than in the static priority algorithm, the scheduled client’s priority is dynamically
changed to the lowest possible priority (see lines 14-16). This way the ceiling priority algorithm
guarantees fairness.

The initialization in lines 2-4 is executed only once at the beginning. It is skipped in further
scheduler calls.

5.5.3.3 Round Robin

In the round robin scheduling algorithm (see Algorithm 3) all clients are sorted in a fixed order
and numbered from 0 to N (where N − 1 is the number of clients). If client m, with 0 ≤ m ≤ N
was granted last, the first requesting client following in that order will be granted next. If no
client i, with m < i ≤ N is requesting, counting starts again from 0 (i.e., clients are treated as
being organized in a logical ring). This algorithm requires no client priorities. In the case of
clients with priorities this algorithm simply omits them.

164 5 Methodology, Modeling Elements and Operational Semantics

Algorithm 2 Ceiling Priority Scheduler (with N number of clients)

1: << once only >>
2: for i = 0→ (N − 1) do
3: Integer[0,N−1] history[i]← i
4: end for
5:

6: Integer[0,N−1] grant← 0
7: Boolean ripple← false
8: for i = 0→ (N − 1) do
9: if request[history[i]] ∧ ¬ripple then

10: grant← history[i]
11: ripple← true
12: end if
13: if ripple ∧ (i 6= (N − 1)) then
14: Integer[0,N−1] swap← history[i]
15: history[i]← history[i+ 1]
16: history[i+ 1]← swap
17: end if
18: end for
19: return grant

The initialization in line 2 is executed only once at the beginning. It is skipped in further
scheduler calls.

Algorithm 3 Round Robin Scheduler (with N number of clients)

1: << once only >>
2: Integer[0,N−1] last_grant← N − 1
3:

4: Integer[0,N−1] next_grant← last_grant
5: Boolean break← false
6: for i = 0→ (N − 1) do
7: if ¬break then
8: if next_grant = (N − 1) then
9: next_grant← 0

10: else
11: next_grant← next_grant + 1
12: end if
13: if request[next_grant] then
14: break← true
15: end if
16: end if
17: end for
18: last_grant← next_grant
19: return next_grant

5.5.3.4 Modified Round Robin

The modified round robin scheduling algorithm (see Algorithm 4) works in almost the same
manner as the round robin algorithm above. All clients are sorted in a fixed order and numbered
from 0 to N (where N − 1 is the number of clients). If the scheduling method is activated, the
first requesting client following in that order onto a certain start index m, with 0 ≤ m ≤ N ,
is granted next. Each time a client was granted the start index m is increased by 1, and, if
m+ 1 exceeds N , reset to 0 (i.e., clients are treated as being organized in a logical ring). This
algorithm requires no client priorities. In the case of clients with priorities this algorithm simply

5.5 Application Layer 165

omits them.
The initialization in line 2 is executed only once at the beginning. It is skipped in further

scheduler calls.

Algorithm 4 Modified Round Robin Scheduler (with N number of clients)

1: << once only >>
2: Integer[0,N−1] last_grant← N − 1
3:

4: Integer[0,N−1] next_grant← last_grant
5: Boolean break← false
6: for i = 0→ (N − 1) do
7: if ¬break then
8: if next_grant = (N − 1) then
9: next_grant← 0

10: else
11: next_grant← next_grant + 1
12: end if
13: if request[next_grant] then
14: break← true
15: end if
16: end if
17: end for
18: if last_grant 6= next_grant then
19: if last_grant = (N − 1) then
20: last_grant← 0
21: else
22: last_grant← last_grant + 1
23: end if
24: end if
25: return next_grant

5.5.4 Timing Annotations

Code blocks within Actors and Shared Object services and guards can be annotated by Estimated
Execution Times (EET) and Required Execution Times (RET, monitored during simulation)
as shown in Figure 5.40. With these timing annotations, early performance validation can be
performed.

5.5.4.1 Shared Object annotations

Figure 5.40 depicts a bounded size FIFO (similar to the Queue Channel of the Behavior Layer)
encapsulated by a Shared Object. The interface definitions for putting and getting items of data
type T to/from the FIFO is shown in Listing 5.11. These interface methods of the Shared Object,
also called services, can be called by Actors connected through ports of the proper interface
type. The FIFO class implementing these interfaces as guarded methods is show in Listing 5.12.

The put method is guarded by the !is_full() side-effect free guard. It takes care that the
put is blocked when the FIFO is full. I.e. put can only be called when the FIFO is not full.

The get method is guarded by the !is_empty() side-effect free guard. This way get can
only be called when there is at least a single item in the FIFO, otherwise a call of get is blocked
until an item has been written to the FIFO.

Both, guarded methods and guards have been annotated with the following timing labels:

FIFO.EETput := t_put

FIFO.EETget := t_get

FIFO.EETg0 := t_g0

166 5 Methodology, Modeling Elements and Operational Semantics

FIFO

Shared Object

FIFO<T, Size>, Scheduler

<T, Size>

get() : <T>
put(<T>)
is_empty() : bool
is_full() : bool

B

begin for

B

EET0

end for

begin if

C

B EET2

RET

EET1

put(<T>) {

…

}

EETput end if

schedule() {

…

}

EETsched

get() : <T> {

…

}

EETget

is_empty() {

 …
}

EETg0

is_full() {

 …
}

EETg1

Put
FIFO

Get

EET1

EET0

C RET

FIFO_put_if

FIFO_get_if

Figure 5.40: Timing Annotations at the Application Layer

1 template<class T>
2 class FIFO_put_if : public virtual sc_interface {
3 public:
4 virtual void put(T item) = 0;
5 };
6

7 template<class T>
8 class FIFO_get_if : public virtual sc_interface {
9 public:

10 virtual T get() = 0;
11 };

Listing 5.11: FIFO put and get interface, see Figure 5.40

FIFO.EETg1 := t_g1

5.5.4.2 Actor annotation

As defined in 5.5.2.1 an Actor consists of a (hierarchical) Behavior. Depending on the allowed
set of behavior compositions actors have been classified into Active Sequential, Active Parallel,
Reactive Sequential and Reactive Parallel. Independently from this classification, timing annota-
tions are performed in leaf behavior’s main routines only. Timing annotations can be done at
different granularities, ranging from complete functions over basic blocks to single statements,
provided that the following rules are fulfilled:

• timing block annotations cannot be nested (i.e. an EET block is not allowed to contain
another EET block)

• timing block annotations cannot be overlapping (i.e. an EET block must be completed
before an new EET block begins)

• calls on communication ports (to Shared Objects) are not allowed to be inside any EET
block annotation

5.5 Application Layer 167

1 template<class T, unsigned int Size>
2 class FIFO : public FIFO_put_if<T>, public FIFO_get_if<T> {
3 public:
4 FIFO() : m_put_index(0), m_get_index(0), m_num_items(0) {}
5

6 OSSS_GUARDED_METHOD_VOID(put, OSSS_PARAMS(1, T, item), !is_full()) {
7 OSSS_EET(t_put) {
8 m_buffer[m_put_index] = item;
9 if (m_put_index == (Size−1)) m_put_index = 0;

10 else m_put_index += 1;
11 m_num_items += 1;
12 }
13 }
14

15 OSSS_GUARDED_METHOD(T, get, OSSS_PARAMS(0), !is_empty()) {
16 OSSS_EET(t_get) {
17 T result = m_buffer[m_get_index];
18 if (m_get_index == (Size−1)) m_get_index = 0;
19 else m_get_index += 1;
20 m_num_items −= 1;
21 return result;
22 }
23 }
24

25 bool is_empty() const {
26 OSSS_EET(t_g0) {
27 return m_num_items == 0;
28 }
29 }
30

31 bool is_full() const {
32 OSSS_EET(t_g1) {
33 return m_num_items == Size;
34 }
35 }
36

37 protected:
38 unsigned int m_put_index, m_get_index, m_num_items;
39 T m_buffer[Size];
40 };

Listing 5.12: FIFO class with implementation of guarded put and get methods with timing
annotations, see Figure 5.40

In contrast, RETs can be arbitrarily nested, contain calls on communication ports but may not
overlap.

Listing 5.13 shows RET and EET annotations inside the Active Sequential Put Actor, as
visualized in Figure 5.40. The following timing labels have been used:

Put.RET := t

Put.EET0 := t_0

Put.EET1 := t_1

Put.EET2 := t_2

Listing 5.14 shows RET and EET annotations inside the Active Sequential Get Actor. Here
the following timing labels have been used:

Get.RET := t

Get.EET0 := t_0

Get.EET1 := t_1

168 5 Methodology, Modeling Elements and Operational Semantics

1 class Put : public osss_actor {
2 public:
3 osss_port<osss_shared_if< FIFO_put_if<Packet> > > p_out;
4

5 OSSS_ACTOR_CTOR(Put) { }
6

7 void main() {
8 Packet p;
9 unsigned int c = 0;

10 while(true) {
11 OSSS_RET(t) {
12 OSSS_EET(t_0) {
13 for(int i=0; i<p.size()−1; i++) {
14 p.set_payload(i,c) ;
15 c++;
16 }
17 }
18

19 p_out−>put(p); // Shared Object service call
20

21 if (c>=42) { OSSS_EET(t_1) { c = c∗c; } }
22 else { OSSS_EET(t_2) { c = 0; } }
23 }
24 }
25 }
26 };

Listing 5.13: Put Actor implementation with timing annotations, see Figure 5.40

1 class Get : public osss_actor {
2 public:
3 osss_port<osss_shared_if< FIFO_get_if<Packet> > > p_in;
4

5 OSSS_ACTOR_CTOR(Get) { }
6

7 void main() {
8 Packet p;
9 unsigned int sum = 0;

10 while(true) {
11 OSSS_RET(t) {
12 OSSS_EET(t_0) { for(int i=0; i<p.size()−1; i++) { p.set_payload(i,0); } }
13

14 p = p_in−>get(p); // Shared Object service call
15

16 OSSS_EET(t_1) { for(int i=0; i<p.size()−1; i++) { sum += p.get_payload(i); } }
17 }
18 }
19 }
20 };

Listing 5.14: Get Actor implementation with timing annotations, see Figure 5.40

5.5.4.3 Timing estimation

EETs are obtained from a processing element dependent timing estimation. In literature
different approaches have been presented so far. An overview of these approaches (including
power estimation) and a reference framework for timing and power back annotation has been
presented in [12, 5]. At the Application Layer we are interested in timing estimations for Actors
running on programmable processing elements (i.e. Actor software implementation) and custom
hardware processors (i.e. Actor hardware implementation). In this work the Shared Object can
only by implemented as custom hardware processor.

In Figure 5.41 the process of execution time estimation and back-annotation for programmable
processing elements is visualized on three different levels:

Execution Time Estimation as shown in Figure 5.41a enables the timing annotation of basic

5.5 Application Layer 169

blocks of each Leaf Behavior of an Actor. The basic blocks are obtained from the
Control Data Flow Graph (CDFG) generated by a C/C++ compiler front-end. With a
microarchitecture model of the targeted processing element the data flow of the basic
blocks can be scheduled. With the cycle time of each instruction the delay of each basic
block can be computed.

Processor Timing Estimation adds more microarchitecture specific timing information. For
simple micro-controllers the naive execution time estimation as described above works well,
but for pipelined processors the microarchitectural pipeline scheduling, external memory
delay and branch prediction delay need to be considered, too. Figure 5.41b shows the
example of simple in-order, single issue processor with a three stage pipeline (Instruction
Fetch, Instruction Decode and Execute). The processor datapath model consists of a single
Arithmetic Logical Unit (ALU) with a latency of one clock cycle for each operation. In
this processor datapath model we assume no cache (or a 100% cache hit rate). For the
intermediate 3-address code the operation delay after pipeline scheduling is 42.

Stochastic Memory Delay Model adds data and instruction memory access overhead and
branch prediction delay. For using a statistical model the cache and branch prediction
hit rates need to be available in the data model. In Figure 5.41c a direct-mapped cache
of size 16K with a cache delay CD = 1 cycle, an instruction hit rate HRI = 97.79%
and a data hit rate HRD = 69.96% is used. The branch predictor has a miss penalty
rate MPrate = 60% and a penalty BP = 2 cycles. The latency of the external memory
(to refresh the cache) is Lmem = 8 cycles. With these parameters the following simple
statistical memory delay model can be used:

operation access overhead = Nop · ((1.0−HRI) · (CD + Lmem))

data access overhead = Nld · ((1.0−HRD) · (CD + Lmem))

branch prediction overhead = MPrate ·BP

Nop is the number of operations and Nld is the number of data accesses (load and store)
per basic block. With the given cache and branch prediction model, the memory access
overhead (operation and data access) is 4.1 and the branch delay is 1.2. With this overhead
the EET for the intermediate 3-address code example is 42 + 4.1 + 1.2 = 47.3 cycles. In
this case the timing annotation would result in 47.3 · 1/fclk seconds.

5.5.4.4 Timing analysis

In the FIFO example shown in Figure 5.40 both actors are executed cyclically. The Put.RET
and Get.RET describe the deadlines of the Put and Get Actors. Depending on the timing
annotations of the Actors and the FIFO Shared Objects, an upper boudn to the Put.RET and
Get.RET can be calculated as:

Put.RET ≤ Put.EET0 + Tblocking(Put) + TGE + FIFO.EETsched + FIFO.EETput +

max (Put.EET1, Put.EET2)

Get.RET ≤ Get.EET0 + Tblocking(Get) + TGE + FIFO.EETsched + FIFO.EETget +

Get.EET1

where TGE ≤ NC · max (FIFO.EETg0, F IFO.EETg1) is the upper timing bound of the
guard evaluation depending on the size of the “request vector” of size NC (which is the total
number of clients connected to the Shared Object). The blocking time Tblocking is a more complex
scheduling algorithm and guarded method dependent parameter. If the “wrong” scheduling
algorithm (e.g. a scheduling algorithm that is not fair) in combination with unguarded or only
partially guarded methods is chosen Tblocking can become ∞. However, ∞ blocking times are
considered as design error. To avoid this kind of livelock, proper analysis of the implemented
Shared Object guarded methods in combination with scheduling algorithm needs to be analyzed.
In Section 5.5.6 timed automata will be used to check this kind of property for Shared Objects.

170 5 Methodology, Modeling Elements and Operational Semantics

Timing
Estimation

Actor/Behavior with
timing annotation

Processor Model

const

status

RF

OR

ALU
AR

Mem
DR

offset

CMem

C
W

P
C

AG P

bL

Sum

Add

aL

Mul EET(t1)
BB1

If

If Y N

Y N

BB2 BB3
EET(t2) EET(t3)

Actor/Behavior CDFG

BB1

If

If Y N

Y N

BB2 BB3

(a) Execution Time Estimation

Pipeline
Scheduling

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp

Operations Datapath

Processor Datapath Model

Add
IF
ID

EX: int-ALU IntAdd

Sub
IF
ID

EX: int-ALU IntSub

Int-ALU
Qty: 1
IntAdd IntSub
Lat: 1 Lat: 1

Intermediate 3-addr code

(b) Processor Timing Estimation

Mem. Overhead= 4.1
Branch Delay= 1.2

Cache

D-Mapped

16K

Icache: 97.79%

Dcache: 69.96%

Delay : 1

Memory
Delay: 8

BrPredict
Policy: Taken

Penalty : 2
60.00%

Memory/Branch Model

Mem./Br. Delay
Calcutation

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp

Intermediate 3-addr code

(c) Stochastic Memory Delay Model

Figure 5.41: Processing element timing estimation and back-annotation [27]

5.5 Application Layer 171

In the bounded FIFO example from Figure 5.40 a scheduling independent upper bound for
Tblocking can be calculated as

Tblocking(Put) ≥ 0

Tblocking(Put) ≤ Size · (Get.EET0 + TGE + FIFO.EETsched + FIFO.EETget+

Get.EET1)

Tblocking(Get) ≥ Put.EET0 + TGE + FIFO.EETsched + FIFO.EETput +

max (Put.EET1, Put.EET2)

Tblocking(Get) ≤ Size · (Put.EET0 + TGE + FIFO.EETsched + FIFO.EETput+

max (Put.EET1, Put.EET2))

5.5.4.5 Properties of Timing Annotations

EET (Estimated Execution Time) represents the passing of time as a duration D which is
defined as D = (value, unit), with the value ∈ R

+
0 that specifies the duration, and its associated

time unit ∈ {fs, ps, ns, µs,ms, s}, with the the following meaning

|X| : unit→ R
+

|fs| = 10−15 (femto second)

|ps| = 10−12 (pico second)

|ns| = 10−9 (nano secons)

|µs| = 10−6 (micro second)

|ms| = 10−3 (milli second)

|s| = 100 (second)

EETs can have the following orthogonal properties

• scalar or duration interval: the specified duration of an EET annotation can either be
a simple scalar, e.g. d = (42, µs), or it can be an interval with a lower Dl ∈ D and upper
Du ∈ D bound [Dl, Du]. This can be used to specify a best-case to worst-case interval.
Associating this with a Probability Density Function (PDF, see Definition 5.5.4.1) enables
a probabilistic weighting of duration occurrences in the given duration interval.

If not specified for a duration interval, by default, we use the following uniform distribution
for the duration interval [a = Dl.value · |Dl.unit|, b = Du.value · |Du.unit|], a < b is given:

density function

f(x) =

{
1

b−a if a ≤ x ≤ b
0 otherwise

distribution function

F (x) =

0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if x > b

• inline or external: refer both to the location of the timing annotation. Inline annotations
are of the behavior description inside the code of the leaf behaviors. External annotations
are in a separate location outside the code of the leaf behaviors. In external annotation
mode the annotation specifies a unique identifier consisting of the hierarchical instance
name of the leaf behavior and a uniquely specified annotation name. This annotation
identifier can be used in an external timing configuration file to assign execution durations
or intervals. The advantage of the external annotation is that changing execution times
does not affect changes in the design. Moreover, different annotation files can be used

172 5 Methodology, Modeling Elements and Operational Semantics

to apply different execution time annotations for the same behavior model. A slight
disadvantage of the external over the internal annotations is a run-time overhead due to a
more time consuming look up during simulation. Reading the external configuration file
before and caching it efficiently before simulation starts makes this overhead negligible.

• block or label: a block annotation has an opening { and a closing } bracket. EET block
annotations may not be nested. I.e. an EET block may not contain another EET block.
Block timing annotations may be inline or external. In contrast to block annotation a
label annotation does not refer to a code block in the leaf behavior, but only specifies the
passing of a certain duration or duration interval (between two labels) in a specific code
location.

Definition 5.5.4.1 (Probability Density Function (PDF)):
A Probability Density Function (PDF) is most commonly associated with absolutely continuous
univariate distributions. A random variable X has density f , where f is a non-negative Lebesgue-
integrable function, if:

P [a ≤ X ≤ b] =

∫ b

a

f(x) dx = F (b)− F (a)

∫ ∞

−∞

f(x) dx = 1

Hence, if F is the cumulative distribution function of X, then:

F (x) =

∫ x

−∞

f(u) du,

and (if f is continuous at x)

f(x) =
d

dx
F (x).

�

RET (Required Execution Time) represents a timing requirement to be checked. This timing
requirement can be specified as a duration D or duration interval [Dl, Du] as defined for EETs.
RETs can have the following orthogonal properties:

• scalar or duration interval: a scalar RET duration D has the meaning "not longer than
D", while a duration interval has the meaning "not earlier than Dl and not later than Du.
Every scalar duration D can can also be expressed by the interval duration [0, D].

• inline or external: has exactly the same meaning as for EETs.

• block or label: Since RETs are used to check a path of EETs, an RET needs to contain at
least a single EET. Moreover, and in contrast to EETs, RETs can be nested. RET blocks
are specified in the same way as EETs. RET labels can be compared by their identifier.
Like in external annotations, the statement annotation is specified by a unique identifier
consisting of the hierarchical instance name of the leaf behavior and a uniquely specified
annotation name. In the external timing configuration file a duration or duration interval
between two labels which need to be checked can be specified.

5.5.4.6 Limitations

Since the Application Layer abstracts from some important target architecture details, which
have an impact on the timing of the application, and therefore the accuracy of the application
layer timing estimation. The following restrictions apply to EETs:

Pipeline and Data/Instruction fetch Penalties EET annotations are based on a performance
model of the computational resources the Actors and Shared Objects are mapped to. If this
computation resource is a complex processing element with an internal pipeline (multiple

5.5 Application Layer 173

issue, out of order execution, branch prediction, etc.), data and/or instruction cache all
effects related the pipeline delays and cache misses need to be statistically modeled within
the timing boundaries of each EET’s BCET-WCET interval. Each EET’s boundaries
could be obtained through static code analysis using state-of-the art WCET tools. The
statistical variation of each EET block cannot be obtained automatically so far.

Shared Memory Access Penalties If the data and/or instruction memory (directly connected
to the processor or behind a cache) is shared by multiple processors through a crossbar
or shared bus, the access penalties caused by blocking times due to concurrent memory
accesses are not considered here and beyond the scope of this work. In Section 5.6
considered architectures will be restricted to exclusive data and instruction memories for
all processing elements.

Method Call Overhead All timing related penalties for method call to a Shared Object are
neglected in Application Layer models. The communication overhead for a method call
depends on the chosen communication protocol and spans over the entire protocol stack,
from the application layer down to the physical layer. Communication element allocation
and communication link binding to communication elements is part of the Application
Layer to Virtual Target Architecture mapping. The method call overhead will be modeled
on the Virtual Target Architecture Layer in Section 5.6.

Data Transport Overhead relates to the lower layers of the method call communication protocol
stack and depends on the chosen communication element and the protocol characteristics.
The amount of data to be transported per method call depends on the total size of the
method parameters, return value and, encoding/packing and transport/synchronization
protocol overhead. These information and associated timing penalties will also be added
on the Virtual Target Architecture Layer in Section 5.6.

5.5.5 Mapping rules

For transforming the Behavior Layer model into an Application Layer model, the following steps
should be applied:

1. Actor and Shared Object allocation: In contrast to the Behavior Layer, the
Application Layer explicitly models (shared) computation resources. For modeling
computation resources the Actor and Shared Object container classes are provided. Before
mapping Behaviors and Channels to these containers, the total number of available Actors
and Shared Objects need to be decided by the designer. When targeting a platform
FPGA (as assumed in this work), each used software processing element corresponds to
the allocation of one Actor per processor. For the remaining space (LUTs and BRAMs) in
the FPGA, an Actor for each functionality to be realized as custom hardware needs to be
allocated.

Computation containers representing software processors can be Actors of kind: Active
Sequential or Reactive Sequential.

Computation containers representing custom hardware processor can be Actors of kind:
Active Parallel or Reactive Parallel.

Shared Objects are allocated for the communication between Actors (depending on the
communication dependencies in the Behavior Layer model) and for modeling shared
functionality to be realized in dedicated hardware. Compared to the classification of
Sequential and Parallel Actors, Shared Objects are always of kind Reactive Sequential.

2. Behavior partitioning and mapping: After allocation of computation resources, now
the Leaf Behaviors are mapped onto Actors and Shared Objects. Before actually mapping

174 5 Methodology, Modeling Elements and Operational Semantics

Behaviors, a partitioning step is performed on the Behavior Layer Model. The goal of this
partitioning is to obtain:

(a) A set of parallel scheduled top-level Behaviors, each of them representing a single
computational resource of the Application Layer.

(b) Communication Channels between parallel scheduled top-level Behaviors using Be-
havior Layer Channels with message passing semantics only.

This partitioning step is very similar to the Behavior partitioning in SpecC as described in
[27]. The main difference is the handling of synchronization between parallel and pipelined
Behaviors running on different computation resources. In SpecC blocking message passing
channels (e.g. Double Handshake Channels) are used to retain to fork-join semantics of
parallel scheduled Behaviors on different computation resources (called processing elements
in SpecC). We are using dedicated Shared Objects to implement the fork-join semantics of
PAR Behaviors and the pipeline semantics of PIPE Behaviors.

PAR

Shared Object

PAR<Size>, Scheduler

<Size>

fork()
join()
ready(unsigned int)
start()
done(unsigned int)
exit()

PAR_master_if

B1

B2

B3 while(true) {
 p->ready(3);
 p->start();
 main();
 p->done(3);
 p->exit();
}

B_par

B1

B3

B2

B_par

…
p->fork();
p->join();
…

PAR_slave_if

while(true) {
 p->ready(2);
 p->start();
 main();
 p->done(3);
 p->exit();
}

while(true) {
 p->ready(1);
 p->start();
 main();
 p->done(1);
 p->exit();
}

Figure 5.42: PAR Behavior to Application Layer transformation

Figure 5.42 depicts the PAR Behavior to Application Layer transformation using a dedicated
Shared Object to implement the fork-join synchronization of Behaviors B1, B2 and B3.
The transformation step results in four Actors: one representing the B_par composite
Behavior, and one for each of the parallel composed Behaviors.

Listing C.6 show the details of the PAR Shared Objects used to implement the fork-join
semantics. The PAR_master_if provides services to initiate the fork and to wait for the
completion of all forked processes (join). The PAR_slave_if provides services to each
of the forked Actors. When each Actor is ready the execution of the main routine starts.
After execution of its main routine, each Actor notifies completion (done) and waits for
each of the other Actors to finish (exit).

Figure 5.43 depicts the PIPE Behavior to Application Layer transformation using a
dedicated Shared Object to implement the pipeline scheduling of Behaviors B1, B2 and B3.
The transformation step results in four Actors: one representing the B_pipe composite
Behavior, and one for each of the pipelined Behaviors.

Listing C.7 show the details of the PIPE Shared Objects used to implement the pipeline
execution semantics.

The PIPE_master_if provides a service to set an upper bound of the execution of each
pipeline stage. By default it is zero, resulting in an infinite execution of pipeline. The
fork service starts the pipeline execution and, if the pipeline execution is bounded, join

waits for the completion of the pipeline execution, similar to the PAR Shared Object.

5.5 Application Layer 175

PIPE

Shared Object

PIPE<Stages>, Scheduler

<Stages>

set_limit()
fork()
join()
init()
ready(unsigned int)
start(unsigned int) : bool
done(unsigned int) : bool
exit()

PIPE_master_if

B1

B2

B3

B_pipe

B1

B3

B2

B_pipe

…
p->set_limit(LIMIT);
p->fork();
p->join();
…

PIPE_slave_if

while(true) {
 p->init();
 while(true) {
 p->ready(1);
 if(p->start(1)) { main(); }
 if(p->done(1)) {
 p->exit(); break;
 }
 else {
 p->exit(); continue;
 }
 }
}

for(int i=0; i<LIMIT; i++)

Figure 5.43: PIPE Behavior to Application Layer transformation

The PIPE_slave_if provides services to each of the pipeline stage Actors. The init

barrier is taken after the pipeline master has started the pipeline execution through fork.
When each pipeline stage is ready the execution of the main routine starts only if the
ramp-up phase for the corresponding stage has been completed. At the end of each pipeline
stage’s execution cycle the done call notifies completion of the cycle and checks if the
bounded number of executions for each stage has been reached. If this should be the case,
the exit join-barrier is taken and the init barrier is entered again, waiting for the next
pipeline activation. If the execution bound has not been reached or the pipeline execution
is unbounded, the exit barrier is taken and the ready service is executed again.

The Behavior Layer PAR and PIPE to Application Layer Actor and Shared Object trans-
formation as described above is preformed along the Behavior Layer model’s hierarchy,
resulting in a tree/network of Actors and PAR/PIPE Shared Objects. During this process
new actors are created. If the number of resulting Actors exceeds the limit of allocated
Actor resources, pipeline executions can be easily transformed into a sequential execution.
Also parallel scheduled Behaviors can be scheduled into a sequential execution sequence.
In both cases, communication between formerly parallel scheduled Behaviors requires to
be reconsidered. Synchronization dependencies through Handshake and Double Hand-
shake channels need to be properly resolved during rescheduling. In this work we are not
going further into details of rescheduling. In [7, 1] more details about Behavior Layer
model scheduling, in particular dynamic and communication aware scheduling of parallel
Behaviors, is described.

For sequential SEQ and finite state machine FSM scheduled Behaviors no further adoption
is required when integrating these Behaviors into Actors.

3. Behavior Channel partitioning and mapping:

In a last step the remaining Behavior Layer Channels of kind Shared Variable, Piped
Variable, Queue, Handshake and Double Handshake are replaced by their Shared Object
implementations (see Appendix C).

5.5.6 Operational Semantics

As well as for the Behavior Layer, the operational semantics of the Application Layer is
expressed using timed automata in Uppaal. The timed automata representation expresses the
communication protocol between Actors and Shared Objects as well as the timing annotations
presented in Section 5.5.4. In this timed automaton model EETs are expressed as timing intervals
[BCET,WCET] with best-case and worst-case execution time boundaries. In Uppaal we are
using clock variables in combination of invariants and guard to express the EET intervals.

176 5 Methodology, Modeling Elements and Operational Semantics

FIFO

Shared Object

FIFO<T, Size>, Scheduler

<T, Size>

get() : <T>
put(<T>)
is_empty() : bool
is_full() : bool

B

begin for

B

end for

begin if

C

B

RET

get() : <T> {

…

}

EETget

end if

EET1

EET0

C RET

EET1

EET0

put(<T>) {

…

}

EETput

schedule() {

…

}

EETsched

Put

Get

FIFO

is_empty() {

…

}

EETg0

is_full() {

…

}

EETg1

Figure 5.44: Bounded FIFO producer-consumer example

Figure 5.44 shows a simple producer-consumer Application Layer example with a bounded
FIFO Shared Object. It is the same example already used in Section 5.5.4. EET0 =
[BCET,WCET] is transformed into a state invariant x<=WCET and the guard expression x>=BCET

&& x<= WCET on all outgoing transitions. Clock variable x needs to be reset x = 0 on all entering
transitions of the state with the invariant.

5.5.6.1 Actor

Figure 5.45 models the Put and Get Actors of the example in Figure 5.44. Since both actors in
the example have the same internal structure

1 while{true} {

2 computation of duration EET0 −→ represented as ’’compute_before’’ state

3 communication with FIFO Shared Object −→ represented as ’’called’’ state

4 computation of duration EET1 −→ represented as ’’compute_after’’ state

5 }

both Actors are represented by the same TA template, which in indeed not the general case.
The other commited states are used for untimed synchronization as references for analysis.
Both EET intervals are expressed using a combination of invariant and guarded condition, as
described above. The two clocks x and y are used to express the RET. I.e. clock x cannot be
reused and reset before entering compute_after, because during analysis we want to check the
value of x in state done, representing the duration of RET = EET0 + Tcalled + EET1. Tcalled is the
duration of the communication with the FIFO Shared Object.

A service call is modeled through urgent synchronization with a Port TA. The communication
is initiated through emission of the urgent call event using the shared variables call_cid and

5.5 Application Layer 177

y=0

call_cid=CID, call_m id=MIDx <=EET_before[WCET]

y<=EET_after[WCET]

x =0

done

prepare_call

com pute_after

x >=EET_before[BCET] &&
x <=EET_before[WCET]

y>=EET_after[BCET] &&
y<=EET_after[WCET]

call!

called

com pute_before

idle

ret?

call_done

Figure 5.45: Actor modeled as timed automaton

call_mid to set the client ID and method ID (PUT or GET). Afterward the called state waits
for notification of the call completion through the ret event.

1 // definition of timing annotation intervals
2 typedef int [0,1] EET_type;
3 const EET_type BCET ← 0; // lower bound: Best−Case Execution Time (BCET)
4 const EET_type WCET ← 1; // upper bound: Worst−Case Execution Time (WCET)
5

6 // number of client processes
7 const int NC ← 2;
8 typedef int [0, NC−1] client_type;
9

10 // definition of method ID types
11 typedef int [0,2] method_type;
12 const method_type NOP ← 0; // No OPeration (NOP) represents no service call
13 const method_type PUT ← 1; // represents the put service
14 const method_type GET ← 2; // represents the get service
15

16 // definition of status ID types
17 typedef int [0,2] status_type;
18 const status_type WAIT ← 0; // waiting for access to SO
19 const status_type GRANTED ← 1; // access to SO granted
20 const status_type COMPLETED ← 2; // access to SO has been completed
21

22 // index type for Shared Object scheduler
23 typedef int[−1,NC−1] index_type;
24 index_type granted_cid ← −1; // initially no client is granted
25

26 // definition of FIFO size
27 const int FIFO_SIZE ← 5;

Listing 5.15: Global definitions in the consumer-producer example

Listing 5.15 shows the global definitions used in this example:

• definition of timing annotation intervals
• definition of client ID types: each Actor (called client) has a unique ID
• definition of method ID types: each service of a Shared Object (called method) has a

unique ID
• definition of communication status IDs: each communication of a client with a Shared

Object has a status of this type
• definition of index type for the Shared Object’s scheduler: the scheduling algorithm picks

an element of this index type from a list of enabled clients (i.e. associate service request’s
guard has been evaluated to true)

178 5 Methodology, Modeling Elements and Operational Semantics

call?

m ethod_req[call_cid]!

m ethod_grant[call_cid]?

m id[call_cid]=call_m id,
status[call_cid]=WAIT

status[call_cid]!=WAIT

wait_for_com pletion

status[call_cid]==COMPLETED
m ethod_com plete[call_cid]?

ret!

wait_for_request

idle request_call

Figure 5.46: Port modeled as timed automaton

5.5.6.2 Port

The Port TA is a service call proxy of the Actor TA. Upon activation through the
call event the service call request is registered in the Shared Object’s request vector
mid[call_cid]=call_mid, the status of the communication is set to WAITING and the method
request event method_req[call_cid] is triggered. The wait_for_request state is left as soon
as the communication status has changed to GRANTED. The wait_for_completion state is left
as soon as the communication status has changed to COMPLETED. Afterward the Actor is notified
about the completion of the call through the ret event.

On the Application Layer, the TA model of the Port does not add any timing delays to the
Shared Object communication.

5.5.6.3 Shared Object

As shown in Figure 5.47, a Shared Object is split up into a Controller, Arbiter, Guard Evaluator
and Behavior TA.

Actor0

ActorN-1

Port0

PortN-1

Controller Arbiter

Guard Evaluator

Behavior

Shared Object Actors

Figure 5.47: Overview of Shared Objects TA split-up

Controller The Shared Object’s controller interacts with the ports of all connected Actors.
From each port a dedicated broadcast channel method_req[j] with j ∈ [0, NC − 1] can be used
to trigger the Controller. The Uppaal select statement j : int[0,NC-1] is used to describe
sensitivity on all channels. The committed start state triggers the Shared Object’s Arbiter
TA and waits for getting granted. When access is granted, the port gets informed through the
method_grant event. Afterward the method execution is triggered via the Arbiter TA through
the exec_method event. After the requested method has been completed done_method, the
Port TA gets triggered through the method_complete event.

On the Application Layer, the TA model of the Shared Object Controller does not add any
timing delays to the Shared Object communication.

Arbiter The Shared Object Arbiter as shown in Figure 5.49 is triggered by the Controller TA
through the arbitrate event and triggers the Guard Evaluator TA. The Guard Evaluator goes
through the request vector and filters out all requested whose guards evaluate to false. This

5.5 Application Layer 179

ex ec_m ethod!

so_grant?

arbitrate!

m ethod_com plete[granted_cid]!

done_m ethod? m ethod_grant[granted_cid]!

wait_for_grant

access_granted

startm ethod_req[j]?

done

start_m ethodwait_for_m ethod

idle
j : int[0,NC-1]

Figure 5.48: Shared Object controller modeled as timed automaton

filtering guarantees that only enabled service requests are scheduled. More details about the
Guard Evaluator are described in the next paragraph.

After guard evaluation has been completed a scheduling function is called. The pre-defined
scheduling functions are:
• index_type schedule_static_prio(bool zero_is_highest)

• index_type schedule_ceiling_priority()

• index_type schedule_round_robin()

• index_type schedule_modified_round_robin()

• index_type schedule_least_recently_used()

and can be found in Appendix B, Section B.1. Each scheduling algorithm gets a vector client
IDs with enabled services requests, selects and returns the index of the scheduled client ID.

The schedule state is annotated with scheduling timing interval, called EETSched as describe
in Section 5.5.4.

After scheduling has been completed, the Controller TA is informed about the successful
scheduling, the granted method ID is computed mid_so=mid_guarded[granted_cid] and the
status of the granted client is updated status[granted_cid]=GRANTED.

After the Shared Object Controller enables the execution of the granted method, the method is
executed upon call_so event in the Shared Object’s Behavior TA (see below). After completion
of the method, notified by the ret_so event, the Controller TA is notified about the completion
of the call and the method IDs and the communication status is reset.

Guard Evaluator The Guard Evaluator, as shown in Figure 5.50, is triggered by the Arbiter
TA before applying the scheduling algorithm on the request vector. The delay of the guard
evaluation is modeled again as [BCET,WCET] interval in the eval state. The evaluate()

function shown in Listing 5.16 takes the plain request vector req_in of size NC (number of
clients) and overwrites all service requests with NOP whose guard condition is not fulfilled.

1 bool is_full () { return num_elements == FIFO_SIZE; }
2 bool is_empty() { return num_elements == 0; }
3

4 void evaluate() {
5 for(i : int [0, NC−1]) {
6 if (req_in[i] == PUT ∧ !is_full()) req_out[i] ← PUT;
7 else if (req_in[i] == GET ∧ !is_empty()) req_out[i] ← GET;
8 else req_out[i] ← NOP;
9 }

10 }

Listing 5.16: Functions used in the Shared Object guard evaluator model in Figure 5.50

In the FIFO example, with the guarded methods:

OSSS_GUARDED_METHOD_VOID(put, OSSS_PARAMS(1, T, item), !is_full())

OSSS_GUARDED_METHOD(T, get, OSSS_PARAMS(0), !is_empty())

180 5 Methodology, Modeling Elements and Operational Semantics

eval_guards_done?

so_grant!

eval_guards!

arbitrate?

call_so!

ex ec_m ethod?

done_m ethod!

guard_eval

schedule

call_done

ex ec_done

ret_so?

x >=EET_sched[BCET] &&
x <=EET_sched[WCET] &&
granted_cid==-1

x >=EET_sched[BCET] &&
x <=EET_sched[WCET] &&
granted_cid!=-1
granted

initial

wait_for_ex ec

idle

m id_so=m id_guarded[granted_cid],
status[granted_cid]=GRANTED

x =0,
granted_cid=schedule_m odified_round_robin()

x <=EET_sched[WCET]

initialise_history()

m id[granted_cid]=NOP,
m id_guarded[granted_cid]=NOP,
status[granted_cid]=COMPLETED

Figure 5.49: Shared Object arbiter modeled as timed automaton

idle

eval

x =0
eval_guards?

x <=EET_eval[WCET]

eval_guards_done!

x >=EET_eval[BCET] &&
x <=EET_eval[WCET]
evaluate()

Figure 5.50: Shared Object guard evaluator modeled as timed automaton

5.5 Application Layer 181

the following conditions are evaluated:

if (req_in[i] == PUT && !is_full()) then req_out[i] = PUT

if (req_in[i] == GET && !is_empty()) then req_out[i] = GET

Otherwise, the guard condition is not fulfilled and the requested service call is masked

req_out[i] = NOP

Behavior The provided services of the Shared Object are modeled in the Behavior TA (see
Figure 5.51) which is triggered be the Arbiter TA after guard evaluation and scheduling. Since
a Shared Object is passive and cannot call services of another Shared Object, the resulting
TA represents a look-up table, with a dedicated state per service. The delay of each service is
modeled as [BCET,WCET] interval.

ex ec_put

idle

z <=EET_service[m ethod_id-1][WCET]
ex ec_get

z =0, get()

z =0, put()

z >=EET_service[m ethod_id-1][BCET] &&
z <=EET_service[m ethod_id-1][WCET]

m ethod_id==PUT

z <=EET_service[m ethod_id-1][WCET]

ret_so!

z >=EET_service[m ethod_id-1][BCET] &&
z <=EET_service[m ethod_id-1][WCET]

call_so?

m ethod_id==GET

z =0

z =0

Figure 5.51: Shared Object behavior modeled as timed automaton

Side-effects of the service calls that change the local state of the Shared Object and have an
impact on the guard conditions need to be modeled explicitly. For the FIFO Shared Object the
side-effects on the total number of FIFO elements (num_elements) cause by the put and get

services are modeled through the functions shown in Listing 5.17.

1 void put() { num_elements ← num_elements + 1; }
2 void get() { num_elements ← num_elements − 1; }

Listing 5.17: Functions used in the Shared Object behavior model in Figure 5.51

5.5.6.4 Putting it all together

Listing B.3 instantiates the described TA templates to the bounded FIFO producer-consumer
example shown in Figure 5.44. In line 2-12 of Listing 5.18 the following EET intervals are
defined:

Put.EET0 := put_EET_before = [10, 15]

Put.EET1 := put_EET_after = [4, 5]

Get.EET0 := get_EET_before = [10, 15]

Get.EET1 := get_EET_after = [4, 5]

FIFO.TGE := EET_eval = [1, 1] ≤ NC ·max (FIFO.EETg0, F IFO.EETg1)

FIFO.EETsched := EET_sched = [1, 1]

FIFO.EETput := EET_service[0] = [2, 5]

FIFO.EETget := EET_service[1] = [2, 5]

182 5 Methodology, Modeling Elements and Operational Semantics

RET upper bounds are defined in line 15+16:

Put.RET := PUT_PERIOD = 55

Get.RET := GET_PERIOD = 55

Figure 5.52: Consumer Producer System: Actors with Ports

Figure 5.52 shows the instantiation of the Put and Get Actors with their associated ports
Put_Port and Get_Port. Figure 5.53a shows the FIFO Shared Object’s Controller SO_Ctlr,
Guard Evaluator SO_GE and Behavior SO_Beh. Figure 5.53b shows the Shared Obejct’s Arbiter
SO_Arb.

1 // Timing annotat ions , w r i t t e n as [BCET, WCET] i n t e r v a l s
2 i n t put_EET_before [2] ← {10 , 15} ;
3 i n t put_EET_after [2] ← {4 , 5} ;
4

5 i n t get_EET_before [2] ← {10 , 15} ;
6 i n t get_EET_after [2] ← {4 , 5} ;
7

8 i n t EET_eval [2] ← {1 , 1} ;
9 i n t EET_sched [2] ← {1 , 1} ;

10

11 i n t [0 , FIFO_SIZE] num_elements ← 0 ;
12 i n t EET_service [2] [2] ← {{2 , 5} , {2 , 5}} ;
13

14 // t iming requirements f o r put and g e t c l i e n t s
15 const i n t PUT_PERIOD ← 55 ;
16 const i n t GET_PERIOD ← 55 ;

Listing 5.18: Timing annotations of the consumer-producer example

1 method_type mid_request [NC] ;
2 method_type mid_request_guarded [NC] ;
3 method_type so_mid ← NOP;
4 status_type c a l l _ s t a t u s [NC] ;
5

6 urgent chan put_cal l , put_ret ;
7 c l i en t_type put_cid ;
8 method_type put_call_mid ;
9

10 Put ← Actor (0 , PUT, put_cid , put_call_mid , put_cal l , put_ret ,
11 put_EET_before , put_EET_after) ;
12

13 // to Shared Object C o n t r o l l e r
14 broadcast chan method_req [NC] ;

5.5 Application Layer 183

(a) Controller, Guard Evaluator and Behavior

(b) Arbiter

Figure 5.53: Consumer Producer System: Shared Object

184 5 Methodology, Modeling Elements and Operational Semantics

15 chan method_grant [NC] ;
16 // from Shared Object C o n t r o l l e r
17 urgent chan method_complete [NC] ;
18

19 Put_Port ← Port (put_cid , put_call_mid , put_cal l , put_ret ,
20 method_req , method_grant ,
21 mid_request , c a l l _ s t a t u s ,
22 method_complete) ;
23

24 urgent chan get_ca l l , get_ret ;
25 c l i en t_type get_cid ;
26 method_type get_call_mid ;
27

28 Get ← Actor (1 , GET, get_cid , get_call_mid , get_ca l l , get_ret ,
29 get_EET_before , get_EET_after) ;
30

31 Get_Port ← Port (get_cid , get_call_mid , get_ca l l , get_ret ,
32 method_req , method_grant ,
33 mid_request , c a l l _ s t a t u s ,
34 method_complete) ;
35

36 // to Arb i t e r
37 urgent broadcast chan a r b i t r a t e ;
38 urgent chan so_grant , exec_method , done_method ;
39 method_type scheduled_mid ;
40

41 SO_Ctlr ← SO_Controller (method_req ,
42 a r b i t r a t e , so_grant , granted_cid ,
43 method_grant ,
44 exec_method , done_method ,
45 method_complete) ;
46

47 // Arb i t e r to Server
48 urgent chan ca l l_so , ret_so ;
49 // Arb i t e r to Guard Evaluator
50 urgent chan eval_guards , eval_guards_done ;
51

52 SO_GE ← SO_Guard_Evaluator (eval_guards , eval_guards_done ,
53 mid_request , mid_request_guarded ,
54 num_elements ,
55 EET_eval) ;
56

57 SO_Arb ← SO_Arbiter (a r b i t r a t e ,
58 eval_guards , eval_guards_done ,
59 so_grant ,
60 mid_request , mid_request_guarded , c a l l _ s t a t u s ,
61 exec_method , done_method ,
62 ca l l_so , granted_cid , scheduled_mid , ret_so ,
63 EET_sched) ;
64

65 SO_Beh ← SO_Behavior (ca l l_so , ret_so , scheduled_mid ,
66 EET_service , num_elements) ;
67

68 system Put , Put_Port ,
69 Get , Get_Port ,
70 SO_Ctlr , SO_GE, SO_Arb, SO_Beh ;

Listing 5.19: System definition of the consumer-producer example

5.5.6.5 Properties

The main purpose of a formal model is to verify it with respect to a requirement specification.
Like the model, the requirement specification needs to be expressed in a formally well-defined
language. Uppaal uses a simplified version of TCTL (Timed Computation Tree Logic). Like
in TCTL, the query language consists of path formulae and state formulae. State formulae
describe individual states, whereas path formulae quantify over paths or traces of the model.
Path formulae can be classified into reachability, safety and liveness. More information on the
used query language can be found in Appendix 3.3.4.

5.5 Application Layer 185

Safety properties are of the form: “something bad will never happen”. A variation of this
property is that “something will possibly never happen”.

In Uppaal these properties are formulated positively, e.g., something good is invariantly
true. Let ϕ be a state formulae. The path formulae A�ϕ expresses that ϕ should be true
in all reachable states. While E�ϕ says that there should exist a maximal path1 such
that ϕ is always true.

For the FIFO Shared Object example system in Listing B.3 the following safety properties
are fulfilled:

• A� (not deadlock)

The system does never deadlock.

• A� (Put.done⇒ Put.x ≤ PUT_PERIOD)

The completion of a put call takes never longer than PUT_PERIOD.

• A� (Get.done⇒ Get.x ≤ GET_PERIOD)

The completion of a get call takes never longer than GET_PERIOD

• A� ((Put.call_done⇒ not Get.call_done) and
(Get.call_done⇒ not Put.call_done))

The put and get service call executions are always mutual exclusive.

• A� (num_elements ≤ FIFO_LIMIT)

The total number of elements in the Shared Object’s buffer is always less or equal to
FIFO_LIMIT. Given the timing annotation from Listing 5.18 FIFO_LIMIT depends on
the following parameters:

priority scheduling algorithm FIFO_LIMIT

Put > Get static priority FIFO_SIZE:=5
Put < Get static priority 2
- ceiling priority 2
- round robin 2
- modified round robin 2

Liveness properties are of the form: “something will eventually happen”. In its simple form,
liveness is expressed with the path formula A♦ϕ, meaning ϕ is eventually satisfied. The
more useful form is the “leads to” or “response” property, written ϕ ψ which is read
as whenever ϕ is satisfied, then eventually ψ will be satisfied, e.g. whenever a message is
sent, then eventually it will be received. ϕ ψ is equivalent to A�(ϕ⇒ A♦ψ).

For the FIFO Shared Object example system in Listing B.3 the following liveness properties
are fulfilled:

• Get.called Get.call_done

When a get call is requested it will be eventually served by the Shared Object.

• Put.called Put.call_done

When a put call is requested it will be eventually served by the Shared Object.

• Put.call_done Get.call_done

When a put call is completed a get call eventually completes.

1A maximal path is a path that is either infinite or where the last state has no outgoing transitions.

186 5 Methodology, Modeling Elements and Operational Semantics

5.6 Virtual Target Architecture Layer

5.6.1 Introduction

The Application Layer Model must be further refined and mapped to a virtual architecture to
determine the implementation of the functional model and to enable the synthesis process. In
order to separate the description of the pure application from the architecture it is mapped to, we
provide a third layer called Virtual Target Architecture Layer. On this layer several architecture
building blocks are available which can be used to assemble the overall system architecture.
These building blocks are software processors, memories and (user defined) hardware blocks.
For the interconnection of these blocks different communication networks, like buses or high
speed point-to-point connections are available.

The mapping step from the Application Layer to the Virtual Target Architecture Layer
involves the mapping of Actors and Shared Objects to appropriate architecture building blocks.
Actors which should be implemented in software have to be mapped on a software processor,
while Actors and Shared Objects which should be implemented in hardware have to be mapped
on certain hardware blocks.

Besides the mapping of Actors and Shared Objects, the communication links defined on
the Application Layer have to be mapped on communication resources of the Virtual Target
Architecture Layer. Multiple communication links can be mapped to a shared communication
resource (e.g. a shared bus) but also to dedicated point-to-point connections.

The main properties of the Virtual Target Architecture Layer can be summarized as:

• Main focus on execution platform architecture and configuration, last structural model
before platform and custom hardware/software synthesis

• Enables integration of IP components

• Models the platform’s communication infrastructure independent from the functional/be-
havioral part (i.e. refinement of the communication links between Actors and Shared
Objects from the Application Layer)

• Adds communication behavior and communication time to the Application Layer model

• Not executable on its own, but executable after mapping Application Layer modeling
elements to the provided Virtual Target Architecture modeling elements

5.6.2 Modeling Elements

The Virtual Target Architecture Layer is a structural executable2 parallel object-oriented model.
All Architecture Objects have a fixed location (i.e. inside the SoC architecture) and cannot
be copied or passed by value. Architecture Objects cannot be hierarchically composed. The
Virtual Target Architecture Layer consists of the following modeling elements:

• Software Socket is a pure structural element (does not model any behavior/functionality).
Software Sockets are abstract software processors and mainly represent the communica-
tion interfaces of the processor. A Software Socket has a clock and a reset port. For
communication it has a single RMI Master Port that is connected to an RMI Channel
(see Definition 5.6.2.13). A Software Socket is a container for an Actor of type reactive
sequential or active sequential. All communication of this Actor with Shared Objects is
performed through the single RMI Master Port. Software Sockets belong to a System on
Chip (see Definition 5.6.2.19).

• Hardware Socket is a pure structural element (does not model any behavior/func-
tionality). Hardware Sockets are custom hardware processors and mainly represent the
communication interfaces of this processor. All Hardware Sockets have a clock and a reset

2Some of the Virtual Target Architecture Layer elements (e.g. Software and Hardware Socket) are not
executable by themselves, but after mapping of executable Application Layer elements on them, they become
executable transitionally.

5.6 Virtual Target Architecture Layer 187

port and belong to a System on Chip (see Definition 5.6.2.19). This socket can be of the
following two kinds:

– Shared Object Socket is a container for a single Shared Object. Depending on
the mapping of the Shared Object’s client’s a Shared Object Socket has a scalable
number of RMI Slave Ports (for more details see Definition 5.6.2.11). All service
requests on the contained Shared Objects are performed through these RMI Slave
Ports.

– Actor Socket is a container for an Actor of all types. Actor Sockets have a scalable
number of RMI Master Ports. The number of ports depends on the kind of the
contained Actor:

∗ reactive and active sequential: single RMI Master Port

∗ reactive and active parallel: par_set(B) RMI Master Ports, where B is the
Behavior inside the Socket

All communication of the Actor (inside an Actor Socket) with Shared Objects is
performed through the Actor Socket’s RMI Master Ports.

• Memory elements model a continuous physical area of memory. It might represent an
off-chip memory or an internal SRAM or FPGA Block-RAM (BRAM). Memories can
be used inside the Behavior(s) of Actors and Shared Objects. A Memory block has a
dedicated static total size in bits. Basic data types and passive objects can be mapped
into a Memory Element. Memory elements cannot be accessed directly, but through
accessor proxies. This proxy defines the read and write access granularity (in bits) and
timing penalties/delays. For multi-ported memories each port is modeled by a dedicated
accessor. All objects to be stored inside a Memory element require to be serializable (see
Definition 5.6.2.4).

• Remote Method Invocation (RMI) Channel is the communication medium on the
Virtual Target Architecture for service calls of Actors to Shared Objects. An RMI Channel
has a clock and a reset port. It implements an RMI Master Interface for the connection
with RMI Master Ports and and RMI Slave Interface for the connection with RMI Slave
Ports. The RMI Channel is a hierarchical channel. It contains either a Bus Channel or a
Point-to-Point Channel. The RMI Channel performs the RMI protocol, argument and
return value serialization and de-serialization using the basic single beat or burst transfer
services of the Bus or Point-to-Point Channel. In this work the following generic Channels
are provided:

– Simple Bus has a configurable data and address bus bit-width. The optional bus
arbiter3 can use the same scheduling algorithms as Shared Objects (see Section 5.5.3).
The Simple Bus supports single beat (transmits a single data chunk of the configured
data bus bit-width) and burst (transmits a dynamically configurable amount of data
chunks of the configured bus bit-with, one per clock-cycle without interruption) trans-
fers. The simple bus also takes care of the address handling. Each bus slave/target
port has an associated address range (basic address + size in granularity of data bus
bit-width). The bus maps the targeted address at the master/initiator port into the
activation of the right slave/target port.

– Simple Point-to-Point (P2P) Channel has a single master/initiator and a single
slave/target. The channel is bidirectional with independently configurable send and
return bit-width.

• IP Components are pre-existing synthesizable hardware elements at RT-level. Commu-
nication with IP components is established via signals. IP Components can be connected
with hardware sockets only.

• System on Chip is a pure structural element (does not model any behavior/functionality)
and represents the structural boundary of the modeled SoC. It has a clock and reset port

3The bus arbiter is only used with multiple bus masters/initiators.

188 5 Methodology, Modeling Elements and Operational Semantics

and other ports for off-chip communication. A System on Chip element can contain
Software Sockets, Hardware Sockets and RMI Channels.

Figure 5.54 gives an overview of the Virtual Target Architecture Meta Model. In the following
subsections these modeling elements will be defined.

Application Layer

Virtual Target Architecture Object

+Port_clk: Port_Signal
+Port_rst: Port_Signal

Software Socket Hardware Socket Memory RMI Channel

VTA

Shared Object Socket Actor Socket RMI Bus RMI P2P

Actor

<<mapping>>

1

1

<<mapping>>

1

1

Shared Object

<<mapping>>

1

1

<<RMI binding>>

+M

0..1

0..*

<<RMI binding>>

+M

0..1

0..1

<<RMI binding>> +M

0..*0..*

<<RMI binding>>

+M

0..*0..1

<<RMI binding>>

+S

0..*0..*

<<RMI binding>>

+S

0..*0..1

1

0..*

1

0..*

1

0..*

OSSS Channel

1

1

Bus P2P

Simple Bus Simple P2P Channel

IP Component

<<signal binding>>

0..*

0..1

<<signal binding>>

0..*

0..*

<<memory accessor>>

0..*

0..*

<<memory accessor>>

0..*

0..*

1

0..*

1

0..*

Figure 5.54: Virtual Target Architecture Meta Model

5.6.2.1 Signal and Signal Port

Definition 5.6.2.1 (Signal):
A Signal, called Signal = [DataType] is a simple channel used to exchange plain data of basic
type (see Definition 5.3.1.1) or arrays of basic type (see Definition 5.3.3.1). A signal provides
interfaces for writing, reading of the following kinds:

1. signal_in_if<Data Type> provides write access to the signal

write : DataType→ void

2. signal_out_if<Data Type> provides read access to the signal

read : void→ DataType

3. signal_inout_if<Data Type> provides read and write access to the signal

write : DataType→ void

read : void→ DataType

5.6 Virtual Target Architecture Layer 189

�

Definition 5.6.2.2 (Signal Port):
A Signal Port, called PortSignal = [DataType,RequiredSignalIF

, BoundSignalIF
], is a special

Port (see Definition 5.4.2.1) where DataType can be any basic type or an array of any basic
type. Signal Ports can be of the following kinds:

• Signal In Port: PortSignal_in with

– RequiredSignalIF
:= signal_in_IF < DataType > and

– BoundSignalIF
∈ Signal < DataType >

• Signal Out Port: PortSignal_out with

– RequiredSignalIF
:= signal_out_IF < DataType > and

– BoundSignalIF
∈ Signal < DataType >

• Signal In-Out Port: PortSignal_inout with

– RequiredSignalIF
:= signal_inout_IF < DataType > and

– BoundSignalIF
∈ Signal < DataType >

�

5.6.2.2 RMI Port

Definition 5.6.2.3 (RMI Port):
A Remote Method Invocation (RMI) Port, called PortRMI = [RequiredRMIIF

, BoundRMIIF
],

is a special Port (see Definition 5.4.2.1) of the following kinds:

• RMI Client Port: PortRMIC
with

– RequiredRMIIF
:= RMI_Client_IF and

– BoundRMIIF
∈ RMI Channel

• RMI Server Port: PortRMIS
with

– RequiredRMIIF
:= RMI_Server_IF and

– BoundRMIIF
∈ RMI Channel

Where RMI_Client_IF is the RMI client interface, RMI_Server_IF is the RMI server
interface and RMI Channel is the set of all RMI Channels. Mode details on the RMI Channel
and its interfaces can be found in Definition 5.6.2.13. �

5.6.2.3 Serializable Object

In general, Serialization is the conversion of an object to a series of bits or bytes, so that the
object can be easily saved to persistent storage or streamed across a communication link. The
bit or byte stream can then be deserialised and converted into a replica of the original object.

Definition 5.6.2.4 (Serializable Object):
A Serializable Object is defined by a Serializable Class, which is a tuple

←−
C = [cparent ∪ serializable_object, State,Method]

with:

1. A single user-defined base class cparent ∈ C (single inheritance)

2. and the serializable_object base class.

190 5 Methodology, Modeling Elements and Operational Semantics

3. A state vector State = T0 × · · · × Tn, with n ≥ 0 where T0, . . . Tn denote some basic types,
classes, or arrays. The state vector consists of a volatile (part of the state space not to
be serialized and deserialized) and a non-volatile (part of the state space to be serialized
and deserialized) partition with the following property: State = V State ∪NV State and
V State ∩NV State = ∅. When restoring an object where V State 6= ∅, all elements of this
volatile sub-state-space will be initialized with the default values during object construction.
All elements of the non-volatile sub-state-space will retain their values.

4. A set of member functions Method = {m0, . . .mm} with mi, i ≥ 0 of the following kinds:

name : void→ void no arguments and no return type

name : void→ T no arguments and return type T

name : T0 × · · · × Tn → void arguments Ti, i ≥ 0 and no return type

name : T0 × · · · × Tn → T arguments Ti, i ≥ 0 and return type T

Including the two mandatory serialization and deserialization methods:

serialize : State→ NVState maps the state of the class to a non-volatile

sub-state, whereNVState ⊆ State

deserialize : NVState→ State maps the non-volatile sub-state of the class

into the overall state, whereNVState ⊆ State

A Serializable Class needs a Default Constructor and a Copy Constructor. �

The representation of the object as a bit or byte stream is implementation dependent. In
the following, we assume that the bit or byte stream representation is dense (i.e. the total size
of the bit stream is sum of the bit sizes of all members) and no padding is used.

Serialization support for the Basic Types Integer and Boolean, as well as Arrays of Integer,
Boolean, Bit or user-defined classes is provided.

Classes that contain data members of non-serializable classes in their state vectors are not
serializable as a whole, until all members and members of members, etc. are serializable.

5.6.2.4 Virtual Target Architecture Object

Definition 5.6.2.5 (Virtual Target Architecture Object (VTAO)):
The Virtual Target Architecture Object is the base-class of all Virtual Target Architecture Layer
objects. It only consists of a module with clock and reset port. It is defined as V TAO =
[Portclk, Portrst], where

• Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

• Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) clock synchronous reset port.

All Virtual Target Architecture Layer objects inherit a clock and a reset port from the VTAO. �

5.6.2.5 Memory

Definition 5.6.2.6 (Memory):
A Memory is a tuple Memory = [Portclk, Portrst, Size,Accessor, Type], where

• Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

• Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) reset port.

• Size ∈ N>0 is the total size or capacity of the memory in Bits, with Size mod 8 = 0 (only
multiples of 8 Bit allowed).

5.6 Virtual Target Architecture Layer 191

• Accessor is a vector of MemoryAccessor elements as defined in Definition 5.6.2.7. When
more than one Accessor |Accessor| > 1 is connected the a memory, no guarantee for data
integrity can be provided. I.e. concurrent accesses to the memory are not arbitrated4.

• Type ∈ {None,Basic Type,Object, Basic Type Array,Object Array} is the data type
(see Section 5.3) mapped to this memory.

�

...

port->write(…);
...

Memory

Size, Type

Memory Port

memory_accessor

read(…) : Type
write(…, Type)

Dwidth, Awidth, Type

(a) single client

Memory

Size, Type

...

port->write(…);
...

Memory Port

memory_accessor

read(…) : Type
write(…, Type)

Dwidth, Awidth, Type

...

port->read(…);
...

Memory Port

memory_accessor

read(…) : Type
write(…, Type)

Dwidth, Awidth, Type

(b) multiple clients

Figure 5.55: Memory and Memory Accessor

Figure 5.55 depicts the usage of the Memory and Memory Accessor elements. The Memory
memory element represents a physical storage container of a specific size (in bit). A Memory
Accessor is a channel used to connect hardware clients (HW Actors or Shared Objects) with the
Memory. The Accessor restricts the access granularity to a certain data and address width and
qualifies the logical addressing of the memory content (raging from raw bit-level to object array
access). Figure 5.55a depicts the connection of a Hardware Actor with a Memory using a Memory
Accessor Channel as communication link. In Figure 5.55b two Hardware Actors are accessing
the same Memory element. This kind of shared memory access requires a memory element
with multiple ports (e.g. a dual-ported memory). No guarantee regarding access arbitration
is provided. Using a Shared Object for arbitrating access to a shared memory instead, allows
deterministic access scheduling and should be preferred in most cases.

Definition 5.6.2.7 (Memory Accessor):
A Memory Accessor is a Channel defined as a tuple

MemoryAccessor = [M,DWidth,AWidth,BoundPort], where

• M ∈Memory is the Memory (see Definition 5.6.2.6) the Accessor is bound to.

4When arbitrated memory access is required, a combination of a Shared Object Wrapper (see Definition 5.6.2.11)
in combination with a Memory is recommended.

192 5 Methodology, Modeling Elements and Operational Semantics

• DWidth,AWidth ∈ N>0 is the data and address width of the Accessor in Bits. In order
to match with the total size of the memory M the following constraints for DWidth and
AWidth apply:

M.Size ≥ DWidth · 2AW idth

• BoundPort ∈ PortMem is the Memory Port (see Definition 5.6.2.8) that is bound to
this memory accessor channel. The configuration of the memory accessor depends on the
interface type of the Memory Port. The configuration consists of:

1. mode ∈ {read,write, read/write} is the access mode.

2. kind ∈ {raw, simple, array} is the kind of access granularity with the following
meaning:

raw: defines a raw bit-level access to the memory. The granularity of this raw bit-
level access is defined by data width (DWidth) and address width (AWidth)
parameters.

simple: defines a data type aligned access to the memory. It enables access to the
entire value of a basic type or to the public members of a class stored in the
memory. It also enables to access a complete array of basic types or objects.

array: defines an array and data type aligned access to the memory. For an array
of a basic type or an array of a class type stored in the memory, it enables
access to any element of the respective array (within the bounds of the array).
Additionally it allows the same data type aligned access (like simple) within each
array element.

The supported set of access granularities depends on M.Type in the following way:

(a) if M.Type == None then kind ∈ {raw}

(b) if M.Type == Basic Type then kind ∈ {raw, simple}
(c) if M.Type == Object then kind ∈ {raw, simple}
(d) if M.Type == Basic Type Array then kind ∈ {raw, simple, array}
(e) if M.Type == Object Array then kind ∈ {raw, simple, array}

To support the services of all possible configurations, the Memory Accessor Channel imple-
ments all interfaces shown in Table 5.3. These interfaces provide the following services (only
combined read/write interfaces shown, read interfaces only provide the read services and write
interfaces only provide the write services):

memory_read_write_raw_if 〈 AWidth, DWidth 〉 Provides raw data access. Address range
is within the interval 0, . . . , 2AW idth − 1. Data is a Bitvector of size DWidth.

read : [0, 2AW idth − 1]→ Bitvector[DWidth]

write : [0, 2AW idth − 1]×Bitvector[DWidth]→ void

memory_read_write_simple_if 〈 T 〉 Provides access to a data type T . If this data type T
is a user defined class, this interface offers direct access to the all public members of
this class. public_member〈T 〉(m) is a selector for any public member m of class T .
type_of〈public_member〈T 〉(m)〉 determines the type of the public member m of class T .
If a selected member is a again a user defined class with public members, the
access_helper〈· · · 〉 function can be used to chain several read or write services (e.g.
read(read(m1),m2) reads member m2 of member m1 and write(write(m1),m2, value)
write value to member m2 of member m1).

read : void→ T

read : public_member〈T 〉(m)→ type_of〈public_member〈T 〉(m)〉
read : public_member〈T 〉(m)→ access_helper〈type_of〈public_member〈T 〉(m)〉〉
read : access_helper〈T 〉 × public_member〈T 〉(m)→

5.6 Virtual Target Architecture Layer 193

type_of〈public_member〈T 〉(m)〉
read : access_helper〈T 〉 × public_member〈T 〉(m)→

access_helper〈type_of〈public_member〈T 〉(m)〉〉

write : T → void

write : public_member〈T 〉(m)× type_of〈public_member〈T 〉(m)〉 → void

write : public_member〈T 〉(m)→ access_helper〈type_of〈public_member〈T 〉(m)〉〉
write : access_helper〈T 〉 × public_member〈T 〉(m)×

type_of〈public_member〈T 〉(m)〉 → void

write : access_helper〈T 〉 × public_member〈T 〉(m)→
access_helper〈type_of〈public_member〈T 〉(m)〉〉

memory_read_write_array_if 〈 T 〉 Provides the same services as the
memory_read_write_simple_if〈T 〉 with additional access to array elements. If
T is an array with num_elements〈T 〉 of type T [] the index function read(i) returns the
i-th element with i ∈ [0, num_elements〈T 〉 − 1]. The index function write(i, value) write
value to the i-th element respectively.
For multi-dimensional arrays the read and write index functions can be chained, e.g.
read(read(read(i), j)k) to read the k-th of the j-th of the i-th element of a three
dimensional array, write(write(write(i), j)k, value) writes value to the k-th of the j-th
of the i-th element in the same way.
Array access can also be arbitrarily mixed with direct or chained public member access
of user-defined classes, e.g. read(read(m1), i) reads array element i of member m1 and
write(write(m1), i, value) write value to array position i of member m1.

read : void→ T

read : public_member〈T 〉(m)→ type_of〈public_member〈T 〉(m)〉
read : public_member〈T 〉(m)→ access_helper〈type_of〈public_member〈T 〉(m)〉〉
read : [0, num_elements〈T 〉 − 1]→ T []

read : access_helper〈T 〉 × [0, num_elements〈T 〉 − 1]→ T []

read : access_helper〈T 〉 × [0, num_elements〈T 〉 − 1]→ access_helper〈T []〉
read : [0, num_elements〈T 〉 − 1]→ access_helper〈T []〉
read : access_helper〈T 〉 × public_member〈T 〉(m)→

type_of〈public_member〈T 〉(m)〉
read : access_helper〈T 〉 × public_member〈T 〉(m)→

access_helper〈type_of〈public_member〈T 〉(m)〉〉

write : T → void

write : public_member〈T 〉(m)× type_of〈public_member〈T 〉(m)〉 → void

write : public_member〈T 〉(m)→ access_helper〈type_of〈public_member〈T 〉(m)〉〉
write : [0, num_elements〈T 〉 − 1]× T []→ void

write : access_helper〈T 〉 × [0, num_elements〈T 〉 − 1]× T []→ void

write : access_helper〈T 〉 × [0, num_elements〈T 〉 − 1]→ access_helper〈T []〉
write : [0, num_elements〈T 〉 − 1]→ access_helper〈T []〉
write : access_helper〈T 〉 × public_member〈T 〉(m)×

type_of〈public_member〈T 〉(m)〉 → void

write : access_helper〈T 〉 × public_member〈T 〉(m)→

194 5 Methodology, Modeling Elements and Operational Semantics

mode/kind raw

read memory_read_raw_if<AWidth, DWidth>
write memory_write_raw_if<AWidth, DWidth>
read/write memory_read_write_raw_if<AWidth, DWidth>

mode/kind simple

read memory_read_simple_if<M.Type>
write memory_write_simple_if<M.Type>
read/write memory_read_write_simple_if<M.Type>

mode/kind array

read memory_read_array_if<M.Type>
write memory_write_array_if<M.Type>
read/write memory_read_write_array_if<M.Type>

Table 5.3: Overview of Memory Accessor Channel interfaces

access_helper〈type_of〈public_member〈T 〉(m)〉〉

�

Definition 5.6.2.8 (Memory Port):
A Memory Port, called PortMem = [RequiredMemIF

, BoundMemIF
], is a special Port (see

Definition 5.4.2.1) with BoundMemIF
∈Memory Accessor of the following kinds:

Raw: can be bound to all ma ∈Memory Accessor where ma.M.Size ≥ DWidth · 2AW idth

• Read Raw Port: PortMemread_raw
〈AWidth,DWidth〉 with

RequiredMemIF
:= memory_read_raw_if〈AWidth,DWidth〉

• Write Raw Port: PortMemwrite_raw
〈AWidth,DWidth〉 with

RequiredMemIF
:= memory_write_raw_if〈AWidth,DWidth〉

• Read/Write Raw Port: PortMemread_write_raw
〈AWidth,DWidth〉 with

RequiredMemIF
:= memory_read_write_raw_if〈AWidth,DWidth〉

Simple: can be bound to all ma ∈Memory Accessor where ma.M.Type == T

• Read Simple Port: PortMemread_simple
〈T 〉 with

RequiredMemIF
:= memory_read_simple_if〈T 〉

• Write Simple Port: PortMemwrite_simple
〈T 〉 with

RequiredMemIF
:= memory_write_simple_if〈T 〉

• Read/Write Simple Port: PortMemread_write_simple
〈T 〉 with

RequiredMemIF
:= memory_read_write_simple_if〈T 〉

Array: can be bound to all ma ∈Memory Accessor where ma.M.Type == T

• Read Array Port: PortMemread_array
〈T 〉 with

RequiredMemIF
:= memory_read_array_if〈T 〉

• Write Array Port: PortMemwrite_array
〈T 〉 with

RequiredMemIF
:= memory_write_array_if〈T 〉

• Read/Write Array Port: PortMemread_write_array
〈T 〉 with

RequiredMemIF
:= memory_read_write_array_if〈T 〉

�

5.6 Virtual Target Architecture Layer 195

5.6.2.6 Software Socket

Definition 5.6.2.9 (Software Socket):
The Software Socket is a tuple SocketSW = [Portclk, Portrst, PortRMI , A], where

1. Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

2. Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) reset port. When the reset signal bound to this port is true the Actor A inside the
Software Socket is reset with the next rising edge of the signal bound to Portclk. In this
case the active leaf Behavior of Actor A is terminated immediately and the constructor
of the root Behavior of A is called. When the reset signal changes back to false the
computation restarts at the root Behavior’s main routine with the next rising edge of the
signal bound to Portclk.

3. PortRMI is the single RMI Client Port of type PortRMIC
. The RMI port is bound to an

RMI Channel. All service calls on Ports of Actor A are routed through this RMI port.

4. A ∈ Actor is the Actor mapped to this Software Socket. This Actor’s Behavior can be of
kind Active Sequential and Reactive Sequential. All EET annotations inside the Actor’s
Behaviors are mapped to the corresponding number of clock cycles of the reference frequency
fclkref

(used during timing estimation):

MEET : D→ N≥0

MEET (x) = |x| · fclkref

with duration D = (value, unit) of the EET and the scaling function |X| : unit→ R
+ (see

Section 5.5.4.5).

�

5.6.2.7 Hardware Socket

A Hardware Socket to represent custom hardware elements of the target platform. In the Virtual
Target Architecture Layer this can either be an Actor Socket or a Shared Object Socket.

Definition 5.6.2.10 (Actor Socket):
The Actor Socket is a tuple SocketHW = [Portclk, Portrst, PortRMI , PortMem, PortSignal, A],
where

1. Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

2. Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) reset port. When the reset signal bound to this port is true the Actor A inside the
Actor Socket is reset with the next rising edge of the signal bound to Portclk. In this case
all active leaf Behaviors of Actor A are terminated immediately and the constructor of the
root Behavior of A is called. When the reset signal changes back to false the computation
restarts at the root Behavior’s main routine with the next rising edge of the signal bound
to Portclk.

3. PortRMI is the RMI Client Port vector of type PortRMIC
. The size |PortRMI | of this

vector depends on the type of Behavior B inside Actor A:

|PortRMI | =
{

par_set(B) if B.kind ∈ {Active Parallel, Reactive Parallel}
1 if B.kind ∈ {Active Sequential, Reactive Sequential}

Each element of the RMI port vector is bound to an RMI Channel5. All service calls on
Ports of Actor A are routed through this RMI port vector.

5Multiple elements of the RMI port vector can be bound to the same RMI Channel.

196 5 Methodology, Modeling Elements and Operational Semantics

4. PortMem is a vector of ports pi ∈ PortMem. The Actor A can access these ports after its
binding to the Socket.

5. PortSignal is a vector of ports pi ∈ PortSignal. The Actor A can access these ports after
its binding to the Socket.

6. A ∈ Actor is the Actor mapped to this Actor Socket. This Actor’s Behavior can be of kind
Active Sequential, Reactive Sequential, Active Parallel and Reactive Parallel. For the EET
annotations inside the Actor’s Behaviors one of the following rules needs to be applied:

• mapping to the corresponding number of clock cycles of the reference frequency fclkref

(as described for the Software Socket above) or

• manual insertion of wait(N) boundaries per EET block with the following properties:

(a) N ∈ N>0 is the number of clock cycles

(b) for each EET block E the total number of annotated clock cyles
∑

EET (E) N ≤
MEET (E)

�

Definition 5.6.2.11 (Shared Object Socket):
The Shared Object Socket is a tuple SocketSO = [Portclk, Portrst, PortRMI , PortMem, PortSignal, SO],
where

1. Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

2. Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) reset port. When the reset signal bound to this port is true the Shared Object SO
inside the Socket is reset with the next rising edge of the signal bound to Portclk. In this
case the RMI server process is reset and the constructor of SO is called. When the reset
signal changes back to false the RMI server process is ready for a new RMI transaction
with the next rising edge of the signal bound to Portclk.

3. PortRMI is the RMI Server Port vector of type PortRMIS
. The size |PortRMI | of this

vector depends on the number of RMI Channels (see Definition 5.6.2.13) this Socket is
bound to. For each RMI Channel a dedicated RMI Server Port is required. Each element
of PortRMI is required to be bound to a different channel.

4. PortMem is a vector of ports pi ∈ PortMem. The Shared Object SO can access these
ports after its binding to the Socket.

5. PortSignal is a vector of ports pi ∈ PortSignal. The Shared Object SO can access these
ports after its binding to the Socket.

6. SO ∈ SO is the Shared Object mapped to this Socket. For the EET annotations inside the
Shared Object Services one of the following rules needs to be applied:

• mapping to the corresponding number of clock cycles of the reference frequency fclkref

(as described for the Software Socket above) or

• manual insertion of wait(N) boundaries per EET block with the following properties:

(a) N ∈ N>0 is the number of clock cycles

(b) for each EET block E the total number of annotated clock cyles
∑

EET (E) N ≤
MEET (E)

�

5.6 Virtual Target Architecture Layer 197

RMI general term VTA modeling element

Client Software Socket (see Definition 5.6.2.9) or
Actor Socket (see Definition 5.6.2.10)

Stub RMI Client Port (see Definition 5.6.2.3)
Network RMI Channel (see Definition 5.6.2.13)
Skeleton RMI Server Port (see Definition 5.6.2.3)
Server Shared Object Socket (see Definition 5.6.2.11)

Table 5.4: RMI general term to VTA modeling element mapping

5.6.2.8 RMI Channel

The Remote Method Invocation (RMI) performs the object-oriented equivalent of remote pro-
cedure calls (RPC), with support for direct transfer of serialized objects. RMI is based on a
client server communication scheme. A client sends requests to a server and the server responds
to these requests. Usually, the client and the server are two different computers which are
connected through a communication network. Figure 5.56 gives an overview of the RMI client
server architecture with stub and skeleton.

Figure 5.56: RMI client server architecture with stub and skeleton

The stub acts as a gateway for client side. It represents all public methods of the remote
object and enables the client to call them locally on the stub. The stub transforms a client
side’s call into outgoing requests to the server side object. All requests and responses are routed
through the network, thus enabling reliable communication between client and server.

The stub is responsible for:
• initiating the communication towards the server skeleton
• translating calls (call to object and method ID mapping)
• serialization of the parameters
• informing the skeleton about the call request
• passing arguments to the skeleton over the network
• deserialization of the response from the skeleton (i.e. return data, if any)
• informing the skeleton that the call is complete
The skeleton acts as gateway for server side objects. All incoming client requests are routed

through it. The skeleton wraps server object functionality and exposes it to the clients.
The skeleton is responsible for:
• translating incoming data from the stub to the correct up-calls to server objects
• deserialization of the arguments from received data
• passing arguments to server objects
• serialization of the returned values from server objects
• passing values back to the client stub over the network
Table 5.4 shows the mapping of the RMI general terms to the modeling elements of the

Virtual Target Architecture Layer. The RMI protocol is hidden inside the RMI Channel. The
RMI Ports bound to the RMI Channel, which implements the RMI Client and RMI Server
Interfaces inside the RMI Channel.

Definition 5.6.2.12 (RMI Interface):
The RMI Interface defines the services of the RMI Channel to call remote objects and to route
and transfer the client’s call requests to the Shared Object Socket (Server). The RMI Client Port
can be bound to the RMI Client Interface and the RMI Server Port can be bound to the RMI
Server Interface.

198 5 Methodology, Modeling Elements and Operational Semantics

RMI_Client_IF provides two services:

1. Remote method call with no (void) return value

callprocedure : N≥0 × N≥0 × N≥0 ×Bitvector → void

callprocedure(ClientID,ObjectID,MethodID, Parameters)

2. Remote method call with return value

callfunction : N≥0 × N≥0 × N≥0 ×Bitvector → Bitvector

Return_V alue = callfunction(ClientID,ObjectID,MethodID, Parameters)

where

• ClientID is a globally unique client identifier,
• ObjectID is a globally unique object identifier (each instance of a Shared Object has

this unique identifier; the Object Socket has the same identifier as its Shared Object),
• MethodID is a per object unique method identifier,
• Parameters is the serialized bitvector representation of all parameters of the called

method,
• Return_Value is the serialized bitvector representation of all return parameters of

the called method.

RMI_Server_IF provides five services:

1. Waiting for requests

listen_for_action : void→ N≥0 × N≥0 × N≥0

[ClientID,ObjectID,MethodID] = listen_for_action()

The server listens for requests to serve. If a request from a client has been detected, it
returns the the request’s ClientID, ObjectID and MethodID. IF the ClientID has been
registered for the targeted Shared Object Socket AND the Shared Object Socket contains
a Shared Object with ObjectID AND the Shared Object has a method with MethodID
THEN the requested method call is served.

2. Waiting for guard evaluation and scheduling

wait_for_guard : N≥0 ×Boolean→ void

wait_for_guard(ClientID, is_busy)

This service returns the status of the Shared Object’s guard evaluation and scheduling. IF
the method access request of ClientID has been granted THEN is_busy becomes false,
otherwise it is true.

3. Reception of method parameters

receive_in_params : void→ Bitvector

Parameters = receive_in_params()

This service receives the parameters of the remote method to be called.

4. Waiting for method execution to be finished

return_params_idle : N≥0 ×Boolean→ void

return_params_idle(ClientID, is_busy)

This service return the status of the remote method call of ClientID after the method
parameters have been received. IF the execution of the method has been finished THEN
is_busy becomes false, otherwise it is true.

5.6 Virtual Target Architecture Layer 199

5. Provide method’s return parameters

provide_return_params : N≥0 ×Bitvector → void

provide_return_params(ClientID,Return_V alue)

This service provides the return parameters after completion of the requested method call
of ClientID.

The implementation of these Interfaces and the mapping of these interface services to the chosen
communication network is performed by the RMI Channel. �

Definition 5.6.2.13 (RMI Channel):
The Remote Method Invocation (RMI) Channel is a tuple

RMI_Channel = [Portclk, Portrst,

Bindings,

OSSS_Channel, Start_Address]

where

• Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

• Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) reset port. When the reset signal bound to this port is true the RMI Channel is reset
with the next rising edge of the signal bound to Portclk. When the reset signal changes
back to false the RMI Channel is ready for new RMI calls with the next rising edge of
the signal bound to Portclk.

• Bindings is a list of tuples (Client, Server) with Client ∈ PortRMIC
and Server ∈

PortRMIS
. This list represents the Application Layer Communication Links between Actor

Ports and Shared Objects. The length of the list, written as lBindingsRMI
= |Bindings|

represents the number of maximal parallel method requests on the RMI Channel. Based on
the connection topology we define the following constraints:

– bus topology: lBindingsRMI
≥ 1

– point-to-point topology: lBindingsRMI
= 1

• OSSS_Channel ∈ OSSSChannel is the transport channel inside the RMI channel. For
our RMI Channels this need to be an OSSS Channel (see Definition 5.6.2.14) implementing
a shared bus or point-to-point topology.

• Start_Address ∈ N≥0 is the absolute start address of all RMI servers’s (Shared Object
Socket) Method ID, status, message, argument and return registers which are connected
to this RMI channel (see Figure 5.57 for the example of a memory layout for an Object
Socket with N-1 clients and 32 bit bus data width). For P2P Channels this value has no
effect.

An RMI Channel provides the following helper functions to map unique client and object IDs
to the RMI Channel’s address space and vice versa:

Object ID to Address:

mapOID_to_ADDR : N≥0 → Z

Base_Addr = mapOID_to_ADDR(Object_ID)

Returns the base address (≥ Start_Address) of the address space for an object ID. Returns
-1 if the object ID is invalid.

200 5 Methodology, Modeling Elements and Operational Semantics

Client ID to Address:

mapCID_to_ADDR : N≥0 × N≥0 → Z

Client_Register_Base_Addr = mapCID_to_ADDR(Object_ID, Client_ID)

Returns the base address of the client register for a given object and client ID. Returns -1
if either the object or client ID is invalid.

Object ID to Arguments:

mapOID_to_ARG : N≥0 → Z

Client_Register_Base_Addr = mapOID_to_ARG(Object_ID)

Returns the base address of the arguments register for a given object ID. Returns -1 if the
provided object ID is invalid.

Object ID to Return Value:

mapOID_to_RET : N≥0 → Z

Client_Register_Base_Addr = mapOID_to_RET(Object_ID)

Returns the base address of the return value register for a given object ID. Returns -1 if
the provided object ID is invalid.

Address to Object ID:

mapADDR_to_OID : N≥0 → Z

Object_ID = mapADDR_to_OID(Addr)

Returns the object ID that belongs to the given address. If no registers of the provided
address belong to any object ID the value -1 is returned.

Address to Client ID:

mapADDR_to_CID : N≥0 → Z× Z

〈Object_ID, Client_ID〉 = mapADDR_to_CID(Addr)

Returns the object and client IDs that belongs to the given address. If no registers of the
provided address belong to any object ID the value 〈−1,−1〉 is returned. If the address
belongs to the registers of a valid object, but does not point within the status or message
register of a client, the value 〈OID,−1〉 is returned.

The size of the Argument and Return Value registers have the maximums sizes to hold the
largest parameter list and return value of the corresponding object.

sizeArguments : N≥0 → N≥0

sizeArguments(OID) =

⌈

maxnum_mid(OID)−1
mid=0 {sumnum_param(mid)−1

j=0 size(paramj)})
bus_addr_width

⌉

Method IDs are numbered 0, 1, 2, . . . for each object. num_mid : N≥0 → N>0 provides
the total number of methods for each object ID. Parameters are numbered 0, 1, 2, . . . for each
method. num_param : N≥0 → N≥0 provides the total number of parameters for each method ID.
size : mathbbN≥0 → N≥0 provides the bit-width of a parameter. bus_addr_width is the bit-with
of the shared bus inside the RMI channel, usually in multiples of 8 bit, e.g. 8, 16, 32, 64, . . . bit.

sizeReturn : N≥0 → N≥0

sizeReturn(OID) =

⌈

maxnum_mid(OID)−1
mid=0 {size(return_valmid)}

bus_addr_width

⌉

Same as sizeArguments but returns the total bit-with of the Return Value register. �

5.6 Virtual Target Architecture Layer 201

01516232431

Message Client ID

Status Method ID
}

client 0

Status Method ID
}

client 1

.

.

.

Status Method ID
}

client N-1

Arguments
❤
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤

❤
❤
❤

❤
❤
❤

❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Return Value
❤
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤

❤
❤
❤

❤
❤
❤

❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Figure 5.57: Memory layout (big-endian) for an Object Socket with N-1 clients and 32 bit bus
data width

Bit field ID Name Description

00000000 0 idle either no call requested or last call successfully completed
(i.e. all return values have been read)

00000001 1 requested method call requested (see “Method ID” field)
00000010 2 arg_ready all method arguments have been written into “Arguments”

registers
00000011 3 return_ready method has been executed, return value is available in

“Return Value” registers

Table 5.5: RMI client status register organization

Bit field ID Name Description

00000000 0 no message -
00000001 1 call granted requested call has been granted (see “Method ID” field

for client whose request has been granted)
00000010 2 return value ready requested call has been completely executed and the

return value is available (see “Method ID” field for
client whose call has been completed)

Table 5.6: RMI Object Socket message register organization

202 5 Methodology, Modeling Elements and Operational Semantics

Figure 5.57 shows an example of the memory layout for an Object Socket with N-1 clients
and 32 bit bus data width. Figure 5.58 gives an overview of the phases of RMI client and server
using the described memory layout to communicate and synchronize. Figure 5.59 provides a
more detailed view on the client and server RMI state machines and their interaction.

idle

grant
idle

arguments

return value

request

initiate call

ready

call granted

running

arguments ready

finished

return value ready
return

ready

arg ready

Client

Server (Object Socket)

message register

status register

method and client

mapped

Communication from Client to SO

Event notification SO to Client

(interrupt)

Figure 5.58: Phases of client and server mapped to RMI Channel address layout (based on [17])

IDLE

REQUEST

ARG_READY

RETURN_READY

IDLE

GRANT

READY

RUNNING

FINISHED

callproc, callfunc

wait for S.GRANT

S.GRANT

write agrument vector

wait for S.FINISHED

S.FINISHED

read return value

write Method ID

wait for C.REQUEST

wait for

C.ARG_READY

read argument vector

write return value

wait for

C.RETURN_READY
C.RETURN_READY

C.REQUEST

C.ARG_READY

Client (C) Server (S)

Figure 5.59: Abstract interaction of RMI Client and Server State Machines

Further details on the operational semantics can be found in Section 5.6.4. For implementation
details of the RMI protocol see Section 6.5.2.

5.6 Virtual Target Architecture Layer 203

5.6.2.9 OSSS Channel

Definition 5.6.2.14 (OSSS Channel):
The OSSS Channel is a tuple

OSSS_Channel = [Portclk, Portrst

master, slave,

data_widthmaster, data_widthslave,

addr_width, addr_decoder,

arbiter]

where

1. Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port. When using an OSSS Channel inside an RMI Channel, the clock signal of the OSSS
Channel is derived form the clock signal of the RMI Channel.

2. Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the (active
high) reset port. When the reset signal bound to this port is true the OSSS Channel
is reset with the next rising edge of the signal bound to Portclk. When the reset signal
changes back to false the OSSS Channel is ready for new data transfers with the next
rising edge of the signal bound to Portclk. When using an OSSS Channel inside an RMI
Channel, the reset signal of the OSSS Channel is derived form the reset signal of the RMI
Channel.

3. master ∈ N>0 is the number of channel masters (also called “initiators”) that initiate any
data transfers on the channel. Each master has a unique identifier, for master = M this
would be master0 = 1,master1 = 2, . . . ,masterM−1 = M .

4. slave ∈ N>0 is the number of channel slaves (also called “targets”) that react onto
requests from masters. Each slave has a unique identifier, for slave = S this would be
slave0 = 1, slave1 = 2, . . . , slaveS−1 = S.

5. data_widthmaster ∈ N
master
>0 is a vector of size master with elements of type N>0. It

defines the data width (in bit) of each master in the channel.

6. data_widthslave ∈ N
slave
>0 is a vector of size slave with elements of type N>0. It defines

the data width (in bit) of each slave in the channel.

7. addr_width ∈ N>0 ∪⊥ is the channel’s address width in bits. The symbol ⊥ is used when
the channel has no address lines.

8. addr_decoder is a function N≥0 → Booleanslave that maps an address from the global
address space into the slave’s address space, represented as tuple [base_addr, high_addr]
with base_addr, high_addr ∈ N≥0 ∧ base_addr < high_addr. Address spaces of different
slaves cannot overlap. When the address argument of the mapping function addr_decoder
is within the address space of one of the channel’s slaves, the Boolean output vector gets
“true” on the index of the corresponding slave. Otherwise the Boolean output vector is
“false” for all its elements.

9. arbiter is a function Booleanmaster → N>0 that grants, in the case of multiple masters,
channel access for a single master. The arbiter function selects, based on the provided
scheduling algorithm, one of the masters from the request vector. The OSSS Channel’s ar-
biter function is equivalent to the Shared Object’s scheduler function (see Section 5.5.2.3).
For OSSS Channels the same pre-defined scheduling algorithms can be used (see Sec-
tion 5.5.3).

The OSSS Channel supports two different topologies: Point-to-Point and Shared Bus connec-
tion, with the following properties:

204 5 Methodology, Modeling Elements and Operational Semantics

Point-to-Point (P2P) A Point-to-Point channel is defined as OSSS_ChannelP 2P =
[clk, rst, data_widthmaster, data_widthslave]. It is a specialized OSSS Channel with the
following constraints:

• OSSS_Channel.Portclk := clk

• OSSS_Channel.Portrst := rst

• OSSS_Channel.master := 1

• OSSS_Channel.slave := 1

• OSSS_Channel.data_widthmaster := data_widthmaster

• OSSS_Channel.data_widthslave :=

{

0 if unidirectional

data_widthslave if bidirectional

• OSSS_Channel.addr_width := ⊥
• OSSS_Channel.addr_decoder := ∅
• OSSS_Channel.arbiter := ∅

<<master>>

write_if

<<slave>>

read_if

data

ack

data_widthmaster

1

(a) unidirectional P2P channel

<<master>>

read_write_

master_if

<<slave>>

read_write_

slave_if

datamaster

ackwrite

data_widthmaster

1

dataslave

ackread

data_widthslave

1

(b) bidirectional P2P channel

Figure 5.60: Usage of point-to-point channel interfaces for uni- and bidirectional connections

The OSSS_ChannelP 2P implements a read and a write interface. The master side can
be used through the write_if and the slave side can be used through the read_if:

write_if is the master side interface used to implement an unidirectional point-to-point
channel. In this case data_widthslave := 0 It consists of the following services:

1. Sending plain data from the master to the salve:

write_blocking : Bitvectordata_widthmaster
→ Boolean

success = write_blocking(data_chunk)

Sends a Bitvector of size data_widthmaster to the slave. The function returns
“true” if the transfer has been successfully completed

2. Sending a Serializable Object from the master to the slave:

write_blocking : Serializable_Object→ Boolean

5.6 Virtual Target Architecture Layer 205

success = write_blocking(ser_obj)

Sends a Serializable Object (which can be of different sizes) to the slave. The
function returns “true” if the transfer has been successfully completed.

3. Sending a set of Serializable Objects (called Serializable Archive) from the master
to the slave:

write_blocking : Serializable_Archive→ Boolean

success = write_blocking(ser_arch)

Sends a Serializable Archive (which consists of multiple Serialized Objects) to the
slave. The function returns “true” if the transfer has been successfully completed.

read_if is the slave side interface used to implement an unidirectional point-to-point
channel. In this case data_widthslave := 0 It consists of the following services:

1. Slave receives plain data from the master:

read_blocking : void→ Bitvectordata_widthmaster

data_chunk = read_blocking()

2. Slave receives a Serializable Object from the master:

read_blocking : void→ Serializable_Object

ser_obj = read_blocking()

3. Slave receives a set of Serializable Objects (called Serializable Archive) from the
master:

read_blocking : void→ Serializable_Archive

ser_arch = read_blocking()

read_write_master_if is the master side interface used to implement a bidirectional
point-to-point channel. It consists of the following services:

write_blocking : Bitvectordata_widthmaster
→ Boolean

write_blocking : Serializable_Object→ Boolean

write_blocking : Serializable_Archive→ Boolean

read_blocking : void→ Bitvectordata_widthslave

read_blocking : void→ Serializable_Object

read_blocking : void→ Serializable_Archive

read_write_slave_if is the slave side interface used to implement a bidirectional point-
to-point channel. It consists of the following services:

write_blocking : Bitvectordata_widthslave
→ Boolean

write_blocking : Serializable_Object→ Boolean

write_blocking : Serializable_Archive→ Boolean

read_blocking : void→ Bitvectordata_widthmaster

read_blocking : void→ Serializable_Object

read_blocking : void→ Serializable_Archive

206 5 Methodology, Modeling Elements and Operational Semantics

<<master>>

master_if

<<slave>>

slave_if

datamaster

ctrl

data_widthmaster

N

dataslave

data_widthslave

<<master>>

master_if

<<slave>>

slave_if

arbiter addr_decoder

d

a

t

a

c

t

r

l

datamaster
data_widthmaster

addr addr_width

addr addr_width

dataslave

data_widthslave

addr addr_width

addr addr_width

a

d

d

r

ctrl N

ctrl N

ctrl N

… …

Figure 5.61: Usage of master, slave, arbiter and address decoder for modeling shared buses

Figure 5.60 gives an overview about a possible usage of point-to-point channel interfaces
for uni- and bidirectional connections.

Shared Bus A Shared Bus is defined as

OSSS_ChannelBus = [clk, rst

master, slave,

data_widthmaster, data_widthslave,

addr_width, addr_decoder,

arbiter]

It is a specialized OSSS Channel with the following constraints:

• OSSS_Channel.Portclk := clk

• OSSS_Channel.Portrst := rst

• OSSS_Channel.master := master

• OSSS_Channel.slave := slave

• OSSS_Channel.data_widthmaster := data_widthmaster with
∀i ∈ {0, . . . ,master − 1} : data_widthmaster[i] mod 8 = 0

• OSSS_Channel.data_widthslave := data_widthslave with
∀i ∈ {0, . . . , slave− 1} : data_widthslave[i] mod 8 = 0

• data_widthmaster[i] ≥ data_widthslave[j]
∀i, j i ∈ {0, . . . ,master − 1}, j ∈ {0, . . . , slave− 1}
• OSSS_Channel.addr_width := addr_width with addr_width mod 8 = 0

• OSSS_Channel.addr_decoder := addr_decoder

• OSSS_Channel.arbiter :=

{

∅ if master == 1

arbiter if master > 1

The OSSS_ChannelBus implements a master and a slave interface. The master side can
be used through the master_if and the slave side can be used through the slave_if:

master_if implements the interface of a bus master and consists of the following services:

1. writing plain data, a Serializable Object or a Serializable Archive from a master
to a slave:

5.6 Virtual Target Architecture Layer 207

write_blocking : N≥0 ×Bitvectordata_widthmaster
×Boolean→ Boolean

success = write_blocking(slave_addr, data_chunk, burst)

write_blocking : N≥0 × Serializable_Object×Boolean→ Boolean

success = write_blocking(slave_addr, ser_obj, burst)

write_blocking : N≥0 × Serializable_Archive×Boolean→ Boolean

success = write_blocking(slave_addr, ser_arch, burst)

2. reading plain data, a Serializable Object or a Serializable Archive from a slave:

read_blocking : N≥0 ×Boolean→ Boolean×Bitvectordata_widthmaster

〈success, data_chunk〉 = read_blocking(slave_addr, burst)

read_blocking : N≥0 ×Boolean→ Boolean× Serializable_Object
〈success, ser_obj〉 = read_blocking(slave_addr, burst)

read_blocking : N≥0 ×Boolean→ Boolean× Serializable_Archive
〈success, ser_arch〉 = read_blocking(slave_addr, burst)

slave_if implements the interface of a bus slave and consists of the following services:

1. waits for requests from the master and return the requested service (read or write)
and address:

wait_for_action : void→ N≥0 × {read,write}
〈address, action_type〉 = wait_for_action()

2. writes plain data, a Serializable Object or a Serializable Archive to the master:

write_blocking : Bitvectordata_widthslave
→ void

write_blocking(data_chunk)

write_blocking : Serializable_Object→ void

write_blocking(ser_obj)

write_blocking : Serializable_Archive→ void

write_blocking(ser_arch)

3. reads plain data, a Serializable Object or a Serializable Archive from the master:

read_blocking : void→ Bitvectordata_widthslave

data_chunk = write_blocking()

read_blocking : void→ Serializable_Object

ser_obj = write_blocking()

read_blocking : void→ Serializable_Archive

ser_arch = write_blocking()

208 5 Methodology, Modeling Elements and Operational Semantics

Figure 5.61 gives an overview about possible usage of master, slave, arbiter and address
decoder interfaces for modeling shared buses.

�

Definition 5.6.2.15 (Simple P2P Channel):
The Simple Point-to-Point channel OSSS_ChannelSimpleP 2P = [clk, rst,N,M] is a pre-defined
OSSS Channel optimized for the RMI protocol. Essentially it is an OSSS Channel with the
following constraints:

• OSSS_Channel.Portclk := clk

• OSSS_Channel.Portrst := rst

• OSSS_Channel.master := 1

• OSSS_Channel.slave := 1

• OSSS_Channel.data_widthmaster := N

• OSSS_Channel.data_widthslave := M

• OSSS_Channel.addr_width := ⊥

• OSSS_Channel.addr_decoder := ∅

• OSSS_Channel.arbiter := ∅

<<master>>

read_write_

master_if

<<slave>>

read_write_

slave_if

CLIENT_DATA

CLIENT_STROBE

N

1

SERVER_DATA

SERVER_STROBE

M

1

(a) internal structure

cycle # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

clock

CLIENT_STROBE

CLIENT_DATA[N]

SERVER_STROBE

SERVER_DATA[M]

(b) timing diagram

Figure 5.62: Simple point-to-point channel

Figure 5.62 gives an overview of the internal structure and the timing of the simple P2P
channel. The channel is bidirectional. The master interface at the client side is capable of
streaming data to the slave/server and receive data from the slave/server. The STROBE signals
are used to indicate the availability of data, as well as the end of data stream. Client and
server data transfer can never overlap in time. The bit width N of CLIENT_DATA and M of
SERVER_DATA can be assigned independently from each other. �

5.6 Virtual Target Architecture Layer 209

Definition 5.6.2.16 (Simple Bus):
The Simple Bus

OSSS_ChannelSimpleBus = [clk, rst,

master, slave,

data_width,

addr_width, addr_decoder,

arbiter]

supports a limited subset of the features of the IBM OPB bus [151]. It is an OSSS Channel with
the following constraints:

• OSSS_Channel.Portclk := clk

• OSSS_Channel.Portrst := rst

• OSSS_Channel.master := master

• OSSS_Channel.slave := slave

• OSSS_Channel.data_widthmaster[i] := data_width ∀i ∈ {0, . . . ,master − 1}

• OSSS_Channel.data_widthslave[j] := data_width∀j ∈ {0, . . . , slave− 1}

• data_width mod 8 = 0

• OSSS_Channel.addr_width := addr_width with addr_width mod 8 = 0

• OSSS_Channel.addr_decoder := addr_decoder

• OSSS_Channel.arbiter :=

{

∅ if master == 1

arbiter if master > 1

<<master>>

master_if

<<slave>>

slave_if

data

RNW

data_width data data_width

<<master>>

master_if

<<slave>>

slave_if

arbiter addr_decoder

d

a

t

a

c

t

r

l

addr addr_width addr addr_width

a

d

d

r

RNW

… …

ack ack

grant

re
q

u
e

st
g

ra
n

t

request

OR
select

select

lock

RNW

data_width data data_width

addr addr_width addr addr_width

RNW

ack ack

lock

data

Figure 5.63: Internal structure of the simple bus

Figure 5.63 provides an overview of the internal structure of the simple bus. All masters
are directly connected to the arbiter with a request and grant signal. Upon request, the arbiter
decides which master is allowed to use the bus. When bus access is granted, the master can use
its select signal to put data, address and control information on the bus matrix. The address
decoder is connected with the address bus and enables the corresponding slave, mapped into the
specific address space.

210 5 Methodology, Modeling Elements and Operational Semantics

cycle # 1 2 3 4 5 6

clock

M1_request

M1_grant

M1_select

M1_RNW

address

data

ack

Figure 5.64: Simple bus: basic data transfer

Basic arbitration The bus arbitration process proceed by the following protocol:

1. A master asserts its request signal.

2. The arbiter receives the request and outputs an individual grant signal to each master
according to its scheduling algorithm.

3. The bus master samples its grant signal at the rising edge of clock. Upon grant the
master may then initiate a data transfer with a slave by asserting its select signal.
The bus grant signal is only issued by the arbiter during a valid bus arbitration cycle,
defined as either:

• Idle, which means that select and bus_lock are deasserted, indicating no data
transfer is in progress, or
• Overlapped arbitration cycle, which means that ack is asserted, indicating the

final cycle in a data transfer, and bus_lock is not asserted. Arbitration in this
cycle allows another master to begin a transfer in the following cycle, avoiding
the need for a dead cycle on the bus.

Basic data transfer Figure 5.64 shows a typical simple bus data transfer cycle. In this example
master 1 reads data from a slave. The slave has a two-cycle latency. The master asserts
its M1_request signal to acquire bus access. The arbiter assert the master’s grant signal
according to the bus arbitration protocol, and during a valid bus arbitration cycle. After
sampling the M1_grant signal at the rising edge of the clock the master asserts its
M1_select signal to indicate bus ownership. The slave completes the transfer by asserting
ack, which causes the causes the master to latch data from the data bus on read transfer
and deassert M1_select.

Burst data transfer If a master asserts the bus_lock signal upon assuming control of the bus,
the arbiter will continue to grant the bus to the master which locked it. Grant signals will
be generated if the master asserts its request signal, during a valid arbitration cycle. Bus
requests and grant signals have no effect on bus arbitration, and the master which asserted
the bus_lock signal will retain control of the bus until bus_lock is deasserted for at least
one complete cycle.

Figure 5.65 shows an example where master 1 requires three non-interruptable cycles
of data transfer. The slave in this example has one cycle data transfer latency. The
M1_bus_lock is asserted together with M1_select signal. The master may proceed with
data transfer cycles while asserting M1_bus_lock without engaging in bus arbitration. The
arbiter detects the bus_lock signal and continues to grant the bus to the current master,
regardless of othzer (high priority) requests. This continuous data transfer is called burst
data transfer.

Multiple arbitration requests Figure 5.66 shows multiple bus requests. Both masters 1 and 2
simultaneously request the bus. Master 1 has a higher priority and receives the first grant.

5.6 Virtual Target Architecture Layer 211

cycle # 1 2 3 4 5 6 7

clock

M1_request

M1_grant

M1_bus_lock

M1_select

M1_RNW

address

data

ack

Figure 5.65: Simple bus: burst data transfer

cycle # 1 2 3 4 5 6 7 8

clock

M1_request

M2_request

M1_grant

M2_grant

bus_select

M1_select

M2_select

ack

Figure 5.66: Simple bus: multiple arbitration requests

During cycle 3 master 1 completes its first transaction and master 2 received the grant for
cycle 4. Thus during cycle 3 the arbitration for the bus is overlapped with a data. This
improves the bandwidth of the bus.

�

5.6.2.10 IP Component

Definition 5.6.2.17 (IP Component):
An IP Component is a tuple IPComponent = [Portclk, Portrst, Port], where

• Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port.

• Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is a syn-
chronous, active high reset port.

• Port is a vector of signal ports PortSignal.

�

212 5 Methodology, Modeling Elements and Operational Semantics

5.6.2.11 Virtual System on Chip

Definition 5.6.2.18 (Virtual Target Architecture (VTA)):
A Virtual Target Architecture (VTA) is defined as

V TA = [Portclk, Portrst, PortSignal,

Signal,

SoftwareSocket,

HardwareSocket,

Memory,

RMIChannel,

IPComponent,

Binding]

, where

• Portclk with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is the clock
port of the VTA.

• Portrst with RequiredIF := signal_in_if < bool > and BoundIF ∈ Signal is a syn-
chronous, active high reset port of the VTA.

• PortSignal is a vector of Signal Ports pi ∈ PortSignal. These signals represent the pins of
the Virtual System on Chip.

• Signal is a vector of Signals si ∈ Signal. These Signals are used to connect Signal Ports
of Hardware Sockets and IP Components.

• SoftwareSocket is a vector of Software Socket instances swsi ∈ SocketSW.

• HardwareSocket is a vector of Hardware Socket instances hwsi ∈ SocketHW∪SocketSO.
A Hardware Socket can either be a Shared Object Socket or an Actor Socket.

• Memory is a vector of Memory instances memi ∈Memory.

• RMIChannel is a vector of RMI Channel instances rmii ∈ RMIChannel.

• IPComponent is a vector of IP Component instances ipi ∈ IPComponent.

• Binding is a binding vector consisting of tuples/triples

bi ∈{(cp, vtap) | cp ∈ C.Portclk ∪ C.Portrst, vtap ∈ Portclk ∪ Portrst}×
{(hwsp, vtap) | cp ∈ HWS.PortSignal, vtap ∈ PortSignal}×
{(hwsp, vtas) |hwsp ∈ HWS.PortSignal, vtas ∈ Signal}×
{(rmip, rmich) | rmip ∈ RMIC.PortRMI , rmich ∈ RMIChannel}×
{(hwmp,ma,mem) |hwmp ∈ HWS.PortMem,

ma ∈MemoryAccessor,

mem ∈Memory}

with

C ∈ SoftwareSocket ∪HardwareSocket∪
Memory ∪RMIChannel ∪ IPComponent

HWS ∈ HardwareSocket
RMIC ∈ SoftwareSocket ∪HardwareSocket

5.6 Virtual Target Architecture Layer 213

and represents the following bindings:

Clock and Reset Ports of all Architecture Objects (Software Sockets, Hardware Sockets,
Memories, RMI Channels and IP Components) are bound to Portclk and Portrst of
the VTA using the (cp, vtap) tuple.

Signal Ports of Hardware Sockets (Shared Object Sockets and Actor Sockets) and IP
Components are bound to

1. Signal Ports (Pins) PortSignal of the VTA using the (hwsp, vtap) tuple, thus
establishing a connection to the environment.

2. Signals Signal of the VTA using the (hwsp, vtas) tuple, thus establishing an
internal wiring of Signal Ports of Shared Object Sockets or Actor Sockets with
Signal Ports of IP Components.

RMI Ports of Software Sockets and Hardware Sockets (Shared Object Sockets and Actor
Sockets) are bound to RMI Channels using the (rmip, rmich) tuple.

Memory Ports of Hardware Sockets (Shared Object Sockets and Actor Sockets) are bound
to Memories. Since a Memory Port cannot be bound directly to a Memory Component,
a Memory Accessor Channel is required as proxy using the (hwmp,ma,mem) triple.

�

Definition 5.6.2.19 (Virtual System on Chip):
A Virtual System on Chip is defined as V SoC = [ALS, V TA,Mapping] and consists of

1. ALS is an Application Layer System, as defined in Definition 5.5.2.2.

2. V TA is a Virtual Target Architecture, as defined in Definition 5.6.2.18.

3. Mapping is a mapping vector consisting of tuples

mi ∈{(a, ss) | a ∈ ALS.Actor, ss ∈ V TA.SoftwareSocket}×
{(a, as) | a ∈ ALS.Actor, as ∈ V TA.HardwareSocket|SocketHW

}×
{(so, sos) | so ∈ ALS.Channel, sos ∈ V TA.HardwareSocket|SocketSO

}

An Actor in ALS.Actor can either be mapped

• on a Software Socket in V TA.SoftwareSocket or

• on a Actor Socket in V TA.HardwareSocket|SocketHW
.

A Shared Object in ALS.Channel can only be mapped on a Shared Object Socket in
V TA.HardwareSocket|SocketSO

. All Actors and Shared Object can only be mapped once,
i.e. the mapping relation is bijective (one-to-one correspondence).

�

5.6.3 Mapping rules

For applying the mapping of Actors and Shared Objects as described in Definition 5.6.2.19 the
following preparations and refinements need to be done.

5.6.3.1 Add support for object serialization

To enable the transfer of user defined objects via RMI or to access user defined objects in
memory components the following user-defined classes need to become serializable:

Parameters and return values of Guarded Methods ∀SOi ∈ V SoC.ALS.Channel the follow-
ing parameter types T0, . . . Tn and return types T of Guarded Methods SOi.Method|GM

need to become serializable

guarded name : 〈guard : SOi.State→ Boolean,void→ T 〉

214 5 Methodology, Modeling Elements and Operational Semantics

guarded name : 〈guard : true,void→ T 〉
guarded name : 〈guard : SOi.State→ Boolean, T0 × · · · × Tn → void〉
guarded name : 〈guard : true, T0 × · · · × Tn → void〉
guarded name : 〈guard : SOi.State→ Boolean, T0 × · · · × Tn → T 〉
guarded name : 〈guard : true, T0 × · · · × Tn → T 〉

if T ∈ Class and/or Ti ∈ Class with i ∈ {0, . . . n}.

Content of Memory Components ∀Memi ∈ V SoC.ALS.Memory the data type Memi.T ype
needs to become serializable if Memi.T ype ∈ {Object, ObjectArray}.

5.6.3.2 Software, Actor and Shared Object Behavioral-RT timing refinement

Software Socket ∀ai ∈ V SoC.ALS.Actor where Actor ai is mapped to a Software Socket ssi ∈
V SoC.V TA.SoftwareSocket, the type of ai.Behavior can be of kind Active Sequential
and Reactive Sequential. All EET annotations inside ai.Behavior are mapped to the
corresponding number of clock cycles of the reference frequency fclkref

(used during timing
estimation):

MEET : D→ N≥0

MEET (x) = |x| · fclkref

with duration D = (value, unit) of the EET and the scaling function |X| : unit→ R
+ (see

Section 5.5.4.5).

Actor Socket ∀ai ∈ V SoC.ALS.Actor where Actor ai is mapped to an Actor Socket asi ∈
V SoC.V TA.HardwareSocket|SocketHW

, the type of ai.Behavior can be of kind Active
Sequential, Reactive Sequential, Active Parallel and Reactive Parallel. For the EET
annotations inside ai.Behavior one of the following rules needs to be applied:

• mapping to the corresponding number of clock cycles of the reference frequency
fclkref

(as described for the Software Socket above) or

• manual insertion of wait(N) boundaries per EET block with the following properties:

1. N ∈ N>0 is the number of clock cycles

2. for each EET block E the total number of annotated clock cyles
∑

EET (E) N ≤
MEET (E)

Shared Object Socket ∀soi ∈ V SoC.ALS.Channel where Shared Object soi is mapped to a
Shared Object Socket sosi ∈ V SoC.V TA.HardwareSocket|SocketSO

, for the EET annota-
tions inside the Shared Object’s Services soi.Method and the Shared Object’s Scheduler
soi.Scheduler, one of the following rules needs to be applied:

• mapping to the corresponding number of clock cycles of the reference frequency
fclkref

(as described for the Software Socket above) or

• manual insertion of wait(N) boundaries per EET block with the following properties:

1. N ∈ N>0 is the number of clock cycles

2. for each EET block E the total number of annotated clock cyles
∑

EET (E) N ≤
MEET (E)

5.6.3.3 RMI timing annotations

To represent the protocol timing overhead all RMI services need to be annotated with Estimated
Execution Times (EET) or wait(N) statements to represent their corresponding execution times

5.6 Virtual Target Architecture Layer 215

Phase SocketSW SocketHW

cycle annotation cycle annotation

initialization variable6 static

look-ups:
ObjectID to Address static static
ClientID to Address static static
ObjectID to Argument Ad-
dress

static static

ObjectID to Return Address static static

parameter serialization variable6 N/A7

read serialized chunk static static
write serialized chunk static static
deserialize return value variable6 N/A7

finalization variable6 static

Table 5.7: Pre-defined RMI_Client_IF timing annotation points

on their mapped processing elements (i.e. Software or Hardware Socket). In particular, all
services provided by the RMI interface need to be considered (for details see Definition 5.6.2.12):

RMI_Client_IF provides the following RMI client side services to be annotated:

1. Remote method call with no (void) return value

callprocedure : N≥0 × N≥0 × N≥0 ×Bitvector → void

callprocedure(ClientID,ObjectID,MethodID, Parameters)

2. Remote method call with return value

callfunction : N≥0 × N≥0 × N≥0 ×Bitvector → Bitvector

Return_V alue = callfunction(ClientID,ObjectID,MethodID, Parameters)

The RMI_Client_IF can be accessed from an Actor mapped to a Software or Hardware
Socket. In both cases the timing annotation of callprocedure and callfunction represent
the local computations for preparation, transfer and completion on the corresponding
processing element. These times are RMI protocol implementation and target specific.
Table 5.7 shows all pre-defined RMI_Client_IF timing annotation points which can be used
to annotate the number of cycles for Actor to Hardware and Software Socket mappings.

The sequence of annotation phases for a client RMI call is:

initialization→
ObjectID to Address→ ClientID to Address→

ObjectID to Argument Address→ ObjectID to Return Address→
parameter serialization→

read serialized chunk→ · · · → read serialized chunk→
write serialized chunk→ · · · → write serialized chunk→

deserialize return value→
finalization

In these phases accesses to the OSSS-Channel (Bus or Point-to-Point) are using the
read_blocking and write_blocking services of the master_if. Timing annotation (i.e.

6depends on the called method’s total parameter and return value size
7data is represented serialized in all registers, no need to perfoem this conversation

216 5 Methodology, Modeling Elements and Operational Semantics

read write member access array access

raw static static N/A N/A
simple variable variable static N/A

array variable variable static static

Table 5.8: Timing annotation points of Memory Accessor services

number of clock cycles) for these services are provided by the respective OSSS-Channel
implementations (e.g. see Definition 5.6.2.15 and Definition 5.6.2.16 with the corresponding
timing diagrams). In conjunction with the timing annotations of the RMI client interface
services, as described above, communication times for RMI clients are completely covered.

RMI_Server_IF provides the following RMI server side services that can only be accessed from
the Shared Object Socket implemented in hardware:

1. Waiting for requests

listen_for_action : void→ N≥0 × N≥0 × N≥0

[ClientID,ObjectID,MethodID] = listen_for_action()

The execution of each call to listen_for_action takes one cycle.

2. Waiting for guard evaluation and scheduling

wait_for_guard : N≥0 ×Boolean→ void

wait_for_guard(ClientID, is_busy)

The execution of each call to wait_for_guard takes one cycle.

3. Reception of method parameters

receive_in_params : void→ Bitvector

Parameters = receive_in_params()

The execution of each call to receive_in_params depends on the duration (total
number of cycles) of the parameter transfer from the corresponding client.

4. Waiting for method execution to be finished

return_params_idle : N≥0 ×Boolean→ void

return_params_idle(ClientID, is_busy)

The execution of each call to wait_for_guard takes one cycle.

5. Provide method’s return parameters

provide_return_params : N≥0 ×Bitvector → void

provide_return_params(ClientID,Return_V alue)

The execution of each call to provide_return_params depends on the duration (total
number of cycles) of the return value reception of the corresponding client.

5.6.3.4 Memory timing annotations

For adding memory read and write access times to VTA memory components (see Defini-
tion 5.6.2.6) the provided interface functions of Memory Accessors (see Definition 5.6.2.7) can
be annotated with delay cycles as shown in Table 5.8.

8number of total cycle depend on the ratio of accessed data type size in bit and the data with DW idth of the
Memory Accessor

5.6 Virtual Target Architecture Layer 217

In the raw read, write and read/write interfaces the memory access delay is constant for
all accesses. In the simple read, write and read/write interfaces the memory access delay of all
basic read accesses is constant, as well as for all basic write accesses. But anyhow, the number
of total delay cycle for each individual access depends on the ratio of accessed data type size (in
bit) and the data with DWidth of the Memory Accessor:

access delay(T) =

⌈
size_of(T)

DWidth

⌉

Delays of member accesses in simple and array access interfaces are constant. Also delays of
array accesses are constant. A concatenation of member and/or array accesses results in an
addition of the access delays of each indirection.

5.6.4 Operational Semantics

Like in Section 5.5.6 the operational semantics of the Virtual Target Architecture Layer is
expressed using timed automata (TA) in Uppaal. The timed automata representation expresses
the communication protocol refinement using the RMI- and OSSS-Channel modeling elements
including the presented timing annotations.

Actor0

ActorN-1

RMIPort0

RMIPortN-1

Controller

Arbiter

Guard Evaluator

Behavior

Shared Object

Actors

BusTransmit0

BusTransmitN-1

BusReceive0

BusReceiveN-1

BusReceiver0

BusReceiverN-1

Bus

RMI-Channel

OSSS-Channel

Figure 5.67: Overview of VTA Shared Object, RMI- and OSSS-Channel split-up

Figure 5.67 provides an overview of the network of timed automata modeling an RMI- and
OSSS-Channel implementing a shared bus. It is the same example as used in Section 5.5.6 and
consists of two actors, one putting data into a shared FIFO and another one getting data from
this FIFO. On the Virtual Target Architecture Layer both actors are connected to the FIFO
Shared Object through (an arbitrated) shared bus. Compared to the Application Layer model,
only the automata inside the RMI-Channel box have been modified or newly added to the TA
network. The Actor (see Section 5.5.6.1) and the Shared Object Arbiter, Guard Evaluator and
Behvior TAs (see Section 5.5.6.3) have not been modified. In the following subsections only the
modified and newly added TAs will be described.

218 5 Methodology, Modeling Elements and Operational Semantics

5.6.4.1 RMI Port

The RMI Port (see Figure 5.68) replaces the Port TA of the Application Layer (see Section 5.5.6.2).
The RMI Port describes the RMI protocol and the timing of the different phases according to
Table 5.7. The protocol works along the following phases:

idle waits until the service call gets requested by the connected Actor through the call? event.

C0_initialize models the initialization phase of the RMI call and waits for a configurable time
interval [initialize[BCET], initialize[WCET]].

C1_lookup models different ID to (bus) address look-ups, e.g. ObjectID and ClientID to
address, ObjectID to argument address and ObjectID to return address. It waits for a
configurable time interval [lookup[BCET], lookup[WCET]].

C2_arg_serialisation models the duration of the service argument/parameter serialization. The
model uses the delay serialize_base for the serialization of BIT_WIDTH9 elements and
calculates the delay interval as:

[serialize_base[BCET] · calculate_cycles(method_argument_size[ARG], BIT _W IDT H),

serialize_base[W CET] · calculate_cycles(method_argument_size[ARG], BIT _W IDT H)]

The calculate_cycles function is defined in Listing 5.20.

C3_ID_transmission writes the MethodID to the corresponding address (identifying the client
number). The ID is transferred using a simple (non-burst) bus write access. The
bus_write_single (see Listing 5.20) models a simple write transfer on the bus. The
sr[conn-1]! event is used to send a request to the Bus Master/Transmit TA. The
srr[conn-1]? event indicates send request return (i.e. the completion of the bus access).
The duration of the bus access depends on the delay until the request gets granted by
the bus arbiter and the duration of the bus write access. These delays are defined in the
Transmit and Bus TAs.

C4_waiting_SO_access polls the shared bus for Shared Object access grant of the requested
service. The polling is modeled through a single (non-burst) read transfer using the
bus_read_single function.

C5_stream_args writes the serialized service arguments to the Shared Object Socket’s argument
memory. The duration of the burst access is modeled by Bus Transmit and Bus TA. The
function bus_write_burst (see Listing 5.20) passes the start address, data and length of
the burst to the timing model of the bus. The length of the burst transfer is calculated
using the calculate_cycles function.

C6_wait_completion polls the shared bus for Shared Object service completion. The polling is
modeled through a single (non-burst) read transfer using the bus_read_single function.

C7_stream_results reads the serialized service return value from the Shared Object Socket’s
return value memory. The function bus_read_burst (see Listing 5.20) passes the start
address and length of the burst to the timing model of the bus. The length of the burst
transfer is calculated using the calculate_cycles function.

C8_deserialise_results models the duration of the service return value deserialization. Like for
the argument serialization delay interval is defined and calculated as:

[serialize_base[BCET] ·
calculate_cycles(method_argument_size[RET], BIT_WIDTH),

serialize_base[WCET] ·
calculate_cycles(method_argument_size[RET], BIT_WIDTH)]

C9_finalize models the finalization phase of the RMI call, waits for a configurable time interval
[finalize[BCET], finalize[WCET]] and issues the ret! event to indicate the completion
of the service call at the Actor TA.

5.6 Virtual Target Architecture Layer 219

C2_arg_serialisation

C1_lookup
idle

C3_ID_transm ission

C4_waiting_SO_access

C5_stream _args

sr[conn-1]!

m ethod_req[call_cid]!

m ethod_req[call_cid]!

srr[conn-1]?

sr[conn-1]!

C6_wait_com pletion

C8_deserialise_results

C7_stream _results

call?

C0_initializ e

C9_finaliz e

srr[conn-1]?

t>=serializ e_base[call_cid][BCET]*
calculate_cycles(
 m ethod_argum ent_siz e[call_cid][RET],
 BIT_WIDTH) &&
t<=serializ e_base[call_cid][WCET]*
calculate_cycles(
 m ethod_argum ent_siz e[call_cid][RET],
 BIT_WIDTH)

t>=initializ e[call_cid][BCET] &&
t<=initializ e[call_cid][WCET]

status[call_cid]==COMPLETED

t>=finaliz e[call_cid][BCET] &&
t<=finaliz e[call_cid][WCET]

t>=serializ e_base[call_cid][BCET]*
calculate_cycles(
 m ethod_argum ent_siz e[call_cid][ARG],
 BIT_WIDTH) &&
t<=serializ e_base[call_cid][WCET]*
calculate_cycles(
 m ethod_argum ent_siz e[call_cid][ARG],
 BIT_WIDTH)

status[call_cid]!=COMPLETED

status[call_cid]==GRANTED

status[call_cid]==WAIT

t>=lookup[call_cid][BCET] &&
t<=lookup[call_cid][WCET]

bus_write_burst(
 DESTINATION,
 RMI_data_phase[PARAMS][call_m id],
 calculate_cycles(
 m ethod_argum ent_siz e[call_cid][ARG],
 BIT_WIDTH))

data = bus_read_single(DESTINATION)

data = bus_read_burst(
 DESTINATION,
 calculate_cycles(
 m ethod_argum ent_siz e[call_cid][RET],
 BIT_WIDTH))

t=0

t=0

bus_write_single(DESTINATION,
RMI_data_phase[REQUEST][call_m id])

m id[call_cid]=call_m id

status[call_cid]=WAIT,
t=0

t<=initializ e[call_cid][WCET]

t<=serializ e_base[call_cid][WCET]*
 calculate_cycles(
 m ethod_argum ent_siz e[call_cid][RET],
 BIT_WIDTH)

t<=finaliz e[call_cid][WCET]

data = bus_read_single(DESTINATION)

t=0

t<=serializ e_base[call_cid][WCET]*
 calculate_cycles(
 m ethod_argum ent_siz e[call_cid][ARG],
 BIT_WIDTH)

t=0

t<=lookup[call_cid][WCET]

sr[conn-1]!

srr[conn-1]?

param s_stream ed!

sr[conn-1]!

ret!

srr[conn-1]?

done_RMI!

sr[conn-1]!

srr[conn-1]?

Figure 5.68: RMI Port modeled as timed automaton

220 5 Methodology, Modeling Elements and Operational Semantics

1 c l o c k t ;
2 i n t data ;
3

4 i n t c a l c u l a t e _ c y c l e s (i n t data_size , i n t bit_width) {
5 i n t num_cycles ← 0 ;
6 i f (data_size ≤ bit_width)
7 num_cycles ← 1 ;
8 else {
9 num_cycles ← data_size / bit_width ;

10 i f (data_size % bit_width ! = 0)
11 num_cycles ← num_cycles + 1 ;
12 }
13 return num_cycles ;
14 }
15

16 void bus_write_single (i n t addr , i n t data) {
17 rnw ← f a l s e ;
18 address ← addr ;
19 burst ← f a l s e ;
20 wire ← data ;
21 }
22

23 i n t bus_read_single (i n t addr) {
24 rnw ← t rue ;
25 address ← addr ;
26 burst ← f a l s e ;
27 return wire ;
28 }
29

30 void bus_write_burst (i n t addr , i n t data , i n t s i z e) {
31 rnw ← f a l s e ;
32 address ← addr ;
33 burst ← t rue ;
34 burst_length ← s i z e ;
35 wire ← data ;
36 }
37

38 i n t bus_read_burst (i n t addr , i n t s i z e) {
39 rnw ← t rue ;
40 address ← addr ;
41 burst ← t rue ;
42 burst_length ← s i z e ;
43 return wire ;
44 }

Listing 5.20: RMI Port functions

5.6.4.2 Shared Object Socket

For the Shared Object only a very few modifications, compared to the Application Layer TAs,
have been performed. The Shared Object Controller (see Figure 5.69) is now synchronized with
the RMI Port after the arguments of the requested service have been completely streamed to
the Shared Object’s argument memory using the params_streamed event. After completion of
the RMI protocol the Shared Object Controller and the RMI Port are synchronized using the
done_RMI event.

All other TAs of the Shared Object Socket (Arbiter, Guard Evaluator and Behavior) are
the same as introduced in the operational semantics section of the Application Layer (see
Section 5.5.6).

5.6.4.3 OSSS-Channel

Only a description of a generic shared bus model will be described in the following sections. A
point-to-point channel implementation is not described here, because it can be modeled as a
simple data width dependent delay.

9in our model this is the bit width of the shared bus

5.6 Virtual Target Architecture Layer 221

j : int[0,NC-1]

so_grant?

done_m ethod?

arbitrate!

param s_stream ed?

ex ec_m ethod!

done_RMI?

m ethod_req[j]?

done

wait_for_m ethod

access_granted

idle start

start_m ethod

wait_for_grant

param eters_received

Figure 5.69: Shared Object Controller

Bus Master/Transmitter Figure 5.70 shows the TA template of the master bus interface
(called transmitter). It synchronizes with the send request sr event, issued by the RMI Port.
Before accessing the shared bus, the permission of the bus arbiter is requested using the busreq

event. The grant event issued by the bus arbiter grant access permission to the shared bus.
The send event is used to synchronize with the shared bus model. The receive event models
the release of the bus. Finally the send request receive srr event synchronizes with the RMI
Port and notifies the completion of the requested bus access.

addr = address

bus_burst = burst,
bus_burst_length = burst_length,
busaddr = addr

busreq!

grant?

send!

receive?srr[conn-1]!

sr[conn-1]?

GetBus

Send

req[conn-1] = true

conn != busaddr

Idle

conn== busaddr

Figure 5.70: Bus master interface (transmitter) modeled as timed automaton

Bus Arbiter The shared bus arbiter, shown in Figure 5.71, has the same structure and
implements the same scheduling algorithms as the Shared Object arbiter. The busreq event
starts the selected scheduling algorithm (for the different scheduling algorithms see Section B.1).
The grant event notifies the completion of the scheduling algorithm. The busaddr shared
variable is used to indicate the ID of the granted master. Upon completion of a bus transfer
(notified through the receive broadcast event) an new scheduling phase is initiated.

222 5 Methodology, Modeling Elements and Operational Semantics

busaddr= granted_id+1,
req[granted_id] = false

granted_id!=-1

initialise_history()

granted_id=
 schedule_ceiling_priority()

granted_id==-1

receive?

busreq?

grant!

begin

schedule

Idle

Begin

initial

WaitRelease

Figure 5.71: Bus arbiter modeled as timed automaton

Bus Figure 5.72 shows the TA model of the shared bus medium. The send event initiates the
bus access. A single transaction has the duration D1 and a burst transaction has the duration
D1 +D2 ∗ (bus_burst_length − 1). The receive broadcast event notifies the completion of
the shared medium access.

t = 0

t=0

!bus_burst
send?

t <= D1+(D2*(bus_burst_length-1))

receive!

send?

t <= D1

E Busy_Single

Busy_Burst

t >= D1

bus_burst

Idle

t >= D1+(D2*(bus_burst_length-1))

Figure 5.72: Shared bus medium modeled as timed automaton

Bus Slave/Receiver Figure 5.73a models the bus slave interface (called receive). The automa-
ton gets started by the receive request rr event. Upon receive broadcast event synchronization,
the slave interface is activated at the end of a transaction on the shared bus. After reading or
writing (rnw is the “read not write” flag) data from the shared medium wire the end receive er

event is notified.
Figure 5.73 is a simple TA that implements a bus slave process that listens on the shared

medium continuously. The receive request rr event triggers the slave interface automaton and
the end receive er event synchronizes upon completion of the slave interface’s reception.

5.6 Virtual Target Architecture Layer 223

addr = address

read_data=wire,
wire=0

addr != busaddr
and
busaddr != 0

addr == busaddr
or busaddr == 0

er[conn-1]!

receive?

rr[conn-1]?

RecE

Return

rnw==true

Idle

rnw==false

(a) Bus slave interface (receive)

t = 0,
address = conn

er[conn-1]?

rr[conn-1]!

Check

Wait

(b) Bus slave process (receiver)

Figure 5.73: Bus slave timed automaton models

For keeping the TA model as simple as possible, only the master interface bus access
(including contention and bus arbitration) has been modeled. The transfer of data payload
(e.g. IDs, service argument and return value vectors) is not part of this model. For this reason
the bus slave interface and bus slave process TAs could also be omitted here. Nevertheless, for
symmetry both interfaces of the shared bus have been included in the presented TA model.

5.6.4.4 Putting it all together

Listing B.5 instantiates the described TA templates of the Virtual Target Architecture model of
the bounded FIFO producer-consumer example. In line 4-15 of Listing 5.21 the EET annotations
from the Application Layer model are defined:

Put.EET0 := put_EET_before = [10, 15]

Put.EET1 := put_EET_after = [4, 5]

Get.EET0 := get_EET_before = [10, 15]

Get.EET1 := get_EET_after = [4, 5]

FIFO.TGE := EET_eval = [1, 1] ≤ NC ·max (FIFO.EETg0, F IFO.EETg1)

FIFO.EETsched := EET_sched = [1, 1]

FIFO.EETput := EET_service[0] = [2, 5]

FIFO.EETget := EET_service[1] = [2, 5]

In line 20-24 of Listing 5.21 the EET RMI annotations of the Virtual Target Layer model are
defined:

Put.RMIPort.init := rmi_port_init[0] = [1, 1]

Get.RMIPort.init := rmi_port_init[1] = [1, 1]

Put.RMIPort.lookup := rmi_port_lookup[0] = [1, 2]

Get.RMIPort.lookup := rmi_port_lookup[1] = [1, 2]

Put.RMIPort.serialize_base := rmi_port_serialize_base[0] = [2, 3]

224 5 Methodology, Modeling Elements and Operational Semantics

Get.RMIPort.serialize_base := rmi_port_serialize_base[1] = [2, 3]

Put.RMIPort.deserialize_base := rmi_port_deserialize_base[0] = [1, 2]

Get.RMIPort.deserialize_base := rmi_port_deserialize_base[1] = [1, 2]

Put.RMIPort.final := rmi_port_final[0] = [1, 1]

Get.RMIPort.final := rmi_port_final[1] = [1, 1]

RET upper bounds are defined in line 32+33:

Put.RET := PUT_PERIOD = 110

Get.RET := GET_PERIOD = 110

1 // App l i ca t ion model t iming annotat ions :
2

3 // Timing annotat ions , w r i t t e n as [BCET, WCET] i n t e r v a l s
4 i n t put_EET_before [2] ← {10 , 15} ;
5 i n t put_EET_after [2] ← {4 , 5} ;
6

7 i n t get_EET_before [2] ← {10 , 15} ;
8 i n t get_EET_after [2] ← {4 , 5} ;
9

10 i n t EET_eval [2] ← {1 , 1} ;
11 i n t EET_sched [2] ← {1 , 1} ;
12

13 i n t [0 , FIFO_SIZE] num_elements ← 0 ;
14 // Shared Object s e r v i c e execu t ion time [PUT, GET] [BCET, WCET]
15 i n t EET_service [2] [2] ← {{2 , 5} , {2 , 5}} ;
16

17 // V i r t u a l Target Arch i t ec ture t iming annotat ions :
18

19 // RMI i n i t i a t o r execu t ion times [c l i e n t 0 , c l i e n t 1] [BCET, WCET]
20 i n t rmi_port_init [2] [2] ← { {1 ,1} , {1 ,1} } ;
21 i n t rmi_port_lookup [2] [2] ← { {1 ,2} , {1 ,2} } ;
22 i n t rmi_port_ser ia l i ze_base [2] [2] ← { {2 ,3} , {2 ,3} } ;
23 i n t rmi_port_deser ia l i ze_base [2] [2] ← { {1 ,2} , {1 ,2} } ;
24 i n t rmi_port_f inal [2] [2] ← { {1 ,1} , {1 ,1} } ;
25

26 // A simple bus transmiss ion t a k e s D1 time u n i t s
27 const i n t D1 ← 2 ;
28 // A bus b u r s t t r a n s a c t i o n t a k e s D1+(D2∗(burs t_length −1)) time u n i t s
29 const i n t D2 ← 1 ;
30

31 // t iming requirements f o r put and g e t c l i e n t s
32 const i n t PUT_PERIOD ← 110 ;
33 const i n t GET_PERIOD ← 110 ;

Listing 5.21: Timing annotations

1 method_type mid_request [NC] ;
2 method_type mid_request_guarded [NC] ;
3 method_type so_mid ← NOP;
4 status_type c a l l _ s t a t u s [NC] ;
5

6 urgent chan put_cal l , put_ret ;
7 c l i en t_type put_cid ;
8 method_type put_call_mid ;
9

10 Put ← Actor (0 , PUT, put_cid , put_call_mid , put_cal l , put_ret ,
11 put_EET_before , put_EET_after) ;
12

13 // to RMI Socket
14 broadcast chan method_req [NC] ;
15 urgent chan params_streamed , done_RMI ;
16

17 Put_Port ← RMIPort (put_cid , put_call_mid , put_cal l , put_ret ,
18 method_req , params_streamed , done_RMI ,
19 mid_request , c a l l _ s t a t u s ,
20 rmi_port_init ,

5.6 Virtual Target Architecture Layer 225

Figure 5.74: Put and Get Actors

21 rmi_port_lookup ,
22 rmi_port_ser ia l i ze_base ,
23 rmi_port_deser ia l i ze_base ,
24 rmi_port_final ,
25 1 , 1 , 32) ;
26

27 urgent chan get_ca l l , get_ret ;
28 c l i en t_type get_cid ;
29 method_type get_call_mid ;
30

31 Get ← Actor (1 , GET, get_cid , get_call_mid , get_ca l l , get_ret ,
32 get_EET_before , get_EET_after) ;
33

34 Get_Port ← RMIPort (get_cid , get_call_mid , get_ca l l , get_ret ,
35 method_req , params_streamed , done_RMI ,
36 mid_request , c a l l _ s t a t u s ,
37 rmi_port_init ,
38 rmi_port_lookup ,
39 rmi_port_ser ia l i ze_base ,
40 rmi_port_deser ia l i ze_base ,
41 rmi_port_final ,
42 2 , 1 , 32) ;
43

44 // to Arb i t e r
45 urgent broadcast chan a r b i t r a t e ;
46 urgent chan so_grant , exec_method , done_method ;
47 method_type scheduled_mid ;
48

49 // to Receiver
50 i n t read_data , write_data ;
51

52 SO_Ctrl ← SO_Controller (method_req ,
53 a r b i t r a t e , so_grant , params_streamed , exec_method ,

granted_mid ,
54 done_method , done_RMI ,
55 read_data , write_data) ;
56

57 // Arb i t e r to Shared
58 urgent chan ca l l_so , ret_so ;

226 5 Methodology, Modeling Elements and Operational Semantics

Figure 5.75: RMI Port of Put Actor

5.6 Virtual Target Architecture Layer 227

Figure 5.76: RMI Port of Get Actor

228 5 Methodology, Modeling Elements and Operational Semantics

Figure 5.77: Bus and Bus Arbiter

Figure 5.78: Bus Masters/Transmitters of Put and Get Actors

59

60 // Arb i t e r to Guard Evaluator
61 urgent chan eval_guards , eval_guards_done ;
62

63 SO_GE ← SO_Guard_Evaluator (eval_guards , eval_guards_done ,
64 mid_request , mid_request_guarded ,
65 num_elements ,
66 EET_eval) ;
67

68 SO_Arb ← SO_Arbiter (a r b i t r a t e ,
69 eval_guards , eval_guards_done ,
70 so_grant , exec_method ,
71 mid_request , mid_request_guarded , c a l l _ s t a t u s ,
72 done_method ,
73 ca l l_so , granted_mid , scheduled_mid , ret_so ,
74 EET_sched) ;
75

76 SO_Beh ← SO_Behavior (ca l l_so , ret_so , scheduled_mid ,
77 EET_service , num_elements) ;
78

5.6 Virtual Target Architecture Layer 229

Figure 5.79: Bus Slave/Receiver of Shared Object Socket

79 bus ← Bus (D1 , D2) ;
80 bus_transmitter_0 ← Bus_Transmit (1) ;
81 bus_transmitter_1 ← Bus_Transmit (2) ;
82 bus_receiver_0 ← Bus_Receiver (1) ;
83 bus_receive_0 ← Bus_Receive (1 , read_data , write_data) ;
84 bus_arbiter ← Bus_Arbiter () ;
85

86 system Put , Put_Port ,
87 Get , Get_Port ,
88 SO_Ctrl , SO_GE, SO_Arb, SO_Beh,
89 bus_transmitter_0 , bus_transmitter_1 ,
90 bus_receiver_0 , bus_receive_0 ,
91 bus , bus_arbiter ;

Listing 5.22: System definition

5.6.4.5 Properties

Like in Section 5.5.6.5 a simplified version of TCTL (Timed Computation Tree Logic)10 is used
to check whether all properties of the Application Layer model are still fulfilled in the Virtual
Target Architecture model.

Safety properties For the FIFO Shared Object Virtual Target Architecture model in Listing B.5
we can proof that the following safety properties are fulfilled:

• A� (not deadlock)

The system does never deadlock.

• A� (Put.done⇒ Put.x ≤ PUT_PERIOD)

The completion of a put call takes never longer than PUT_PERIOD.

• A� (Get.done⇒ Get.x ≤ GET_PERIOD)

The completion of a get call takes never longer than GET_PERIOD

10More information on the used query language can be found in Appendix 3.3.4.

230 5 Methodology, Modeling Elements and Operational Semantics

• A� ((Put.call_done⇒ not Get.call_done) and
(Get.call_done⇒ not Put.call_done))

The put and get service call executions are always mutual exclusive.

• A� (num_elements ≤ FIFO_LIMIT)

The total number of elements in the Shared Object’s buffer is always less or equal to
FIFO_LIMIT. Given the timing annotation from Listing 5.21 FIFO_LIMIT depends on
the following parameters:

priority scheduling algorithm FIFO_LIMIT

Put > Get static priority FIFO_SIZE:=5
Put < Get static priority 1
- ceiling priority 1
- round robin 1
- modified round robin 1

Liveness properties For the FIFO Shared Object Virtual Target Architecture model in List-
ing B.5 we can proof that the following liveness properties are fulfilled:

• Get.called Get.call_done

When a get call is requested it will be eventually served by the Shared Object.

• Put.called Put.call_done

When a put call is requested it will be eventually served by the Shared Object.

• Put.call_done Get.call_done

When a put call is completed a get call eventually completes.

5.7 Target Platform11

5.7.1 Introduction

The Target Platform represents the physical implementation of a SoC as defined in Chapter 2. To
end up with an implementation on a Target Platform the following steps have to be performed,
as described in Section 5.2:

1. the application, using the modeling elements of the Application Layer, described in
Section 5.5.2, has to be mapped on the Virtual Target Architecture Layer, as described
Section 5.6,

2. the application mapped on the virtual target architecture has to be transformed or
synthesized to a proper representation for further processing (see Chapter 7), and

3. vendor specific compilers and synthesis tools have to be used to implement the design on
the chosen target platform (see Section 7.9).

While the Virtual Target Architecture Layer model representation can be modified and
retargeted to represent different target platforms, the Target Platform representation ties the
VTA model to a fixed implementation. As already described in Chapter 2, currently only Xilinx
platform FPGAs are supported. More details about the supported Xilinx platforms can be
found in Appendix E.

5.7.2 Modeling Elements

Figure 5.80 shows the supported Xilinx Target Platform modeling elements, including their
relationship to the Virtual Target Architecture modeling elements presented in Section 5.6. The
following subsections only briefly introduce the Xilinx Target Platform elements. More details
can be found in Section 7.4.

11This section is based on [44].

5.7 Target Platform 231

Virtual Target Architecture Object

Software Socket Hardware Socket Memory RMI Channel

VTA

Shared Object Socket

Actor Socket

Xilinx Traget Platform

Xilinx Microblaze

Xilinx BRAM

Xilinx External Memory

Xilinx FPGA

Xilinx OPB

Xilinx PLB Xilinx FSL

Simple P2P Channel

IBM PPC

OSSS Channel

1

1

Bus P2P

Xilinx Architecture Object

Simple Bus

IP Component

Xilinx custom IP Xilinx or 3rd party IP

Figure 5.80: Virtual Target Architecture Meta Model with Xilinx FPGA Target Platform
elements

5.7.2.1 Software Processing

The software processing elements replace the Software Socket in the Virtual Target Architecture
Layer model. Supported software processing elements are:

Xilinx MicroBlaze configurable soft-core processor [103] and

IBM PPC PowerPC 405 RISC processor [26].

Both software processors include the following configurable components:

• local and exclusive data and instruction memory

• timer with optional interrupt

• bus burst interface (optional)

• external data and instruction memory using exclusive memory bus (optional)

• UART with or without interrupt (optional)

• debug module (optional)

More details about the supported software processor configuration can be found in Sec-
tion 7.4.1.

Actors mapped to these software processing elements are cross-compiled for the respective
micro-architecture and linked with start-up and RMI communication libraries. For more details
on software synthesis see Section 7.6.

232 5 Methodology, Modeling Elements and Operational Semantics

5.7.2.2 Hardware Processing

The hardware processing element replaces the Hardware Socket and its derived Actor Socket and
Shared Object Socket. Both elements describe custom hardware whose behavior is defined at the
Behavior and the Application Layer. The custom defined Actors and Shared Objects mapped to
the respective Sockets are transformed into a synthesisable VHDL representation and integrated
as Xilinx custom IP components (more details about the custom hardware synthesis can be
found in Section 7.7). Depending on the ports, interfaces and bindings as defined on the Virtual
Target Architecture Layer, the Xilinx custom IP component can have multiple of the following
interfaces:

Signal: For the connection with Xilinx or other 3rd party IP component’s signal interfaces
(including the Simple Bus and Simple P2P Channel Section 5.6.2.9), memory components
and connection with SoC/FPGA pins.

IPIF: For the connection with Xilinx OPB [105] and Xilinx PLB [25] communication IP
components. The Xilinx IP Interface (IPIF) [108, 112] is a description that can be
automatically translated into VHDL/Verilog modules that act as the interface between
user logic and the PLB or OPB buses. It handles address range checking, implements
user-defined registers, supports fixed length burst transfers including read or write FIFOs.
For more details on the usage of IFIP during interface synthesis see Section 7.8.

FSL: For the connection with Xilinx Fast Simplex Link (FSL) [24] communication. The
FSL is a unidirectional point-to-point communication channel using an unshared non-
arbitrated communication mechanism supporting control and data communication. It has
a configurable data size and FIFO size for buffered message passing. More details about
using the FSL interface can be found in Section 7.6.

5.7.2.3 Memory

To represent dedicated memory elements from the Virtual Target Architecture Layer FPGA
internal Block-RAM (BRAM) [18] and external memory is supported. The synthesis of complex
memory configurations including user-defined object access is not in the scope of this work. The
support of dedicated memory is restricted to the following usage:

Xilinx BRAM: can be configured with different data and address widths in single- or dual-ported
mode using the following access modes:

• raw signal access

• Xilinx OPB or PLB slave

Xilinx External Memory: can be configured with different data and address widths in single-
or multi-ported mode using the following access modes:

• Xilinx OPB [87] or PLB slave [89]

• Xilinx Multi-Channel (MCH) Interfaces (up to 4) [19]

For more details and constraints on memory component usage for platform synthesis see
Section 7.4.3.

5.7.2.4 Communication

In addition to the Simple Bus and Simple P2P Channel (see Section 5.6.2.9) the following
communication channel IP components are supported for RMI:

• Xilinx OPB [105] (shared bus)

• Xilinx PLB [25] (shared bus)

• Xilinx FSL [24] (unidirectional point-to-point)

For more details see Section 7.4.4.

5.8 Summary 233

5.7.2.5 IP

Other IP components using a signal level interface can be included using the Xilinx of 3rd
party IP component element. The Simple Bus and Simple P2P Channel are just two examples.
Another example is a specific actuator or sensor interface. But also the signal level usage of a
memory (also a Xilinx BRAM) can be modeled as custom IP component, i.e. when using the
BRAM as a FIFO or line buffer.

5.7.2.6 SoC

The Xilinx FPGA component specifies the boundary of the chip, including all external ports
and mappings to the pins of the FPGA. For supported FPGAs see Appendix E.

5.8 Summary

In this summary a comparison between the simulation independent goals of Chapter 2 and
the modeling elements, as defined in this chapter. is provided. Table 5.9 presents the goals
and a brief discussion regarding their fulfillment by the presented methodology and modeling
elements. In summary, the methodology fulfills all implementation independent modeling goals
(M5-M9, M12, M14), except for the support of modeling multitasking (M11) and operating
systems (M13). These are considered as future work. Extensions for modeling of multitasking
and operating systems have already been described in [48, 23, 17].

The other simulation model dependent modeling goals (M1-M4, M10) will be discussed in
the summary of the simulation chapter (see Section 6.7), as well as the analysis goals (A1-A5).
The synthesis goals (S1-S8) will be reviewed and discusses in the summary of the synthesis
chapter (see Section 7.10).

Table 5.9: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled)

ID Goal Status Comment

G2 Introduce a notion of
time for the SW parts

 Timing annotations presented in Section 5.5.4
are called Estimated Execution Times (EET)
enable timing annotations of Actors. Required
Execution Time (RET) annotations enable to
check timing requirements within Actors. Actors
mapped on Software Sockets (see Section 5.6.3)
of the Virtual Target Architecture represent the
SW part (Software Tasks) of the SoC platform.

M5 To be able to cover
untimed (purely
functional) models,
transaction-level models
and cycle accurate
models

 The Behavioural Layer (see Section 5.4) enables
untimed (purely functional) system modeling.
The Application Layer (see Section 5.5) enables
transaction-level modeling, because communica-
tion between Actors and Shared Objects is per-
formed by abstract service calls. Application
Layer models mapped to Virtual Target Archi-
tecture Layer models (see Section 5.6) enables
cycle accurate system modeling.

continued on next page

234 5 Methodology, Modeling Elements and Operational Semantics

Table 5.9: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

M6 Methodology needs to
provide modeling ele-
ments which allow to de-
scribe the communica-
tion

 At the Behavioural Layer pre-defined channels for
the communication between Behaviors are pro-
vided (see Section 5.4.2.3). At the Application
Layer, Shared Objects are provided for the com-
munication between Actors (see Section 5.5.2.3).
At the Virtual Target Architecture Layer OSSS-
RMI Channel (see Section 5.6.2.8) containers and
OSSS-Channels (see Section 5.6.2.9) are provided
for modeling communication at the SoC platform.

M7 Easy HW/SW reparti-
tioning of the design (a
SW module can be re-
placed by a HW module
without manually modi-
fying its communication
interfaces)

 At the Application Layer, Actors are used to
model HW and SW components. They have
the same connections (using the same port to
interface binding concept) to Shared Objects.
When replacing an Actor modeling a Software
Task with an Actor modeling a Hardware Module
no modification on the other components (incl.
Shared Objects) of the Application Layer become
necessary.

M8 Provide constructs for
a uniform interface de-
scription

 At the Behavioural Layer, channels with pre-
defined interface services are provided. At the
Application Layer, Shared Objects with user-
defined service interfaces are provided. During
mapping of the Application to the Virtual Target
Architecture the Shared Object service interfaces
are preserved.

M9 Provide modeling con-
structs for abstract com-
munication

 At the Behavioural Layer pre-defined channels for
the communication between Behaviors are pro-
vided (see Section 5.4.2.3). At the Application
Layer, Shared Objects are provided for the com-
munication between Actors (see Section 5.5.2.3).
Both communication concepts abstract from the
signal level implementation of the communica-
tion. At the Virtual Target Architecture Layer
service calls on Shared Objects are implemented
by RMI-Channels and OSSS-Channels.

M11 Support of multitasking # Not supported in this work. Extensions of OSSS
for software multitasking can be found in [48, 23,
17].

M12 Consideration of (real-
)time constraints

 The combination of Estimated Execution Times
(EETs) and Required Execution Times (RETs)
can be used to specify (real-)time constraints (see
Section 5.5.4)

M13 Support of operating sys-
tems

Not supported in this thesis (see M11).

M14 Integration of IP compo-
nents

 IP components can be integrated at the Virtual
Target Architecture Layer and can be connected
with Actor Sockets and Shared Object Sockets
via signals (see Section 5.6.2).

CHAPTER 6

Simulation

6.1 Introduction

This Chapter describes the simulation model of the modeling and refinement methodology
presented in Chapter 5. The simulation covers the presented modeling elements of the Behavioral,
Application and Virtual Target Architecture Layer and the specified mapping and refinement steps.
The implementation has been performed in C++ using the SystemCTM event-driven simulation
interface and library. The presented simulation library is called OSSS (Oldenburg System
Synthesis Subset) simulation library and can be downloaded from http://system-synthesis.

org/download.
Figure 6.1 gives an overview of the simulation library layers and mappings between them.

The Behavioral Layer modeling elements are hierarchical behaviors and a pre-defined set of

1

Target
Platform Bus

µP/µC

RAM

Bus
IF

Bus
IF

Bus
Arbiter

Memory
Controller

Bus
IF

Application
Layer

Virtual Target
Architecture

Layer
Bus

Software
Processor

Hardware
Block

Hardware
Block

Hardware
Block

Hardware
Block

Analysis,
Exploration,
Refinement/

Mapping

Software Task

Communication Link
Interface

Port

Shared Object

Module with Process(es)

Timing

Timed
(estimated)

Gate
delays

Estimated
Timing
(SW)

+
Cycle-

accurate
(HW &

comm.)

Cycle-
accurate

Behavioural
Layer

Analysis,
Exploration,
Refinement/

Mapping

Untimed or
Timed

(estimated)

(Leaf) Behaviour

(Hierarchical)
Behaviour

Parallel Composition

Port

Interface

Channel

Figure 6.1: OSSS simulation library overview of modeling layers and mappings

http://system-synthesis.org/download
http://system-synthesis.org/download

236 6 Simulation

communication channels that can be composed following the Program State Machine semantics
as described in Section 5.4. The initial Behavioral Layer model is untimed and used to expose
the maximum degree of parallelism the functional system description offers (or can be achieved
with a reasonable amount of modeling effort). The OSSS Behavioral Layer simulation model
elements are described in Section 6.3 in more detail. The mapping of an OSSS Behavioral model
to an Application Layer model is described in Section 5.5.5.

The main modeling element at the Application Layer is called Actor. An Actor consist
of a single or multiple processes (depending on its kind, either represented by a (sequential)
Software Task or a parallel Hardware Module). Communication and synchronization between
Actors is modeled by Shared Objects. These are special communication objects that provide a
method interfaces for communication and guarantee a consistent access of an arbitrary number
of concurrent Actors. The semantics of these Application Layer modeling elements is described
in Section 5.5.

Functionality in Leaf Behaviors and Actors is described by a subset of C++. This subset is
extended by hardware data types (i.e. bit vectors) under consistent involvement of object-oriented
features that are supported by the simulation and synthesis infrastructure (see Section 6.2):

• Encapsulation of data and operations (methods) in classes. This is a basic object-oriented
design principle for raising re-use.

• Method-based communication between structural blocks avoids effort of hand-crafted
signal based communication and synchronization.

• Class inheritance allows easy extendability for re-use. Polymorphism, which is based on
inheritance relations, can be used to express implementation alternatives.

• Template classes offer easy parametrization (e.g. buffer sizes) and make IP components
more flexible.

In summary, at the Application Layer we specify the function, logical structure, and an
approximate time response of the system. Profiling results from analysis of the Behavioral
Layer model can be annotated to the Application Layer model to obtain an approximate-timed
behavior. Also back-annotation approaches, where the execution of Leaf Behaviors are profiled
on their expected target processing elements, are possible, but not further discussed here. Besides
evaluation of the functionality of the system, the Application Layer offers an easy evaluation
of design alternatives (e.g. HW/SW partitioning, scheduling, communication structures, and
data locality). Profiling of different Application Layer model alternatives with regard to their
performance can be accomplished easily since the component’s allocations and scheduling can
be changed quickly. Analysis of the executable Application Layer model in early design phases
can help to detect and resolve bottlenecks in the logical structure. This might result in the
relocation of timely critical computations from software to hardware or in reorganizing complex
computations in pipeline structures to enhance the throughput.

The Application Layer Model is executable and abstracts from platform details regarding the
communication between Actors and Shared Objects. The OSSS Application Layer simulation
model elements are described in Section 6.4 in more detail.

The Application Layer gets further refined and mapped to a component model of the targeted
implementation or execution platform. The Virtual Target Architecture Layer model adds
implementation details of the target architecture with a special focus on the target platform inter
processing element communication network. The semantics of the Virtual Target Architecture
Layer modeling elements is described in Section 5.6. The OSSS Virtual Target Architecture
Layer simulation model elements are described in Section 6.5 in more detail.

Communication links between Actors and Shared Objects of the Application Layer model
are mapped onto cycle accurate communication channels. The mapping of the Application to
the Virtual Target Architecture has already been described in Section 5.6.3. A flexible model
for cycle accurate bus and point-to-point connections that enables the description of different
protocols and data bandwidths enables exploring the impact of different protocols, data widths
and arbitration schemes on the timing behavior of Application Layer model.

The resulting Virtual Target Architecture (VTA) model’s communication is cycle accurate
including the approximate timing annotation inside Actors. Moreover, the Application Layer

6.2 Overview 237

C++ MSS MHS VHDL

gcc

Linker

LibGen PlatGen

XST/
Synplify

3
rd

 p
a
rt

y
 t

o
o
ls

O
S
S
S
 F

lo
w

Xilinx
IPs

Bus

P/ C

RAM

Bus

IF

Bus

IF

Bus

Arbiter

Memory

Controller

Bus

IF

VHDLVHDL

Bus

Software

Processor

Hardware

Block

Hardware

Block

Hardware

Block

Hardware

Block

Figure 6.2: Overview of OSSS synthesis

mapped on the VTA Layer model is again an executable model that contains all relevant
information required to start the back-end synthesis flow towards an implementation model.

In Section 6.6 the mapping of an executable Application Layer model to a Virtual Target
Architecture Layer model, including a description of simulative architecture exploration, is
described.

The VTA model is the input for the automatic synthesis process. It generates the overall
system architecture, synthesizable VHDL for each hardware component, and C/C++ code
for each software task. For the software parts a driver API and for the hardware parts a bus
interface is automatically generated. Depending on the chosen platform, different so-called
architecture description files can be generated. Special properties of different target platforms
require adoptions of the synthesis process, e.g. for embedding special IP blocks or the generation
of 3rd party tool specific configuration files. Figure 6.2 shows the overall synthesis process that
has been tailored for Xilinx FPGA target technology.

The Fossy (Functional Oldenburg System Synthesiser) synthesis tool is capable of trans-
forming the Shared Objects and Actors into hardware and software representations that can be
further processed by vendor specific compilers and RTL hardware synthesis tools to end up with
a physical implementation on the chosen Target Platform. More details about the synthesis can
be found in Chapter 7.

6.2 Overview

6.2.1 SystemCTM

Over the last years, SystemCTM [13] has gained much interest in academia and industry all
over the world. The main reason for this popularity is its ease of application, extendability
and flexibility. SystemC is not a language but a C++ class library implementing a discrete
event simulator. Thus, the only additional "tools" a designer needs are his favorite text editor
and a C++ compiler. In order to perform a simulation, the compiled design is executed on
the workstation. No commercial HDL simulator is required. Furthermore, the class library
approach makes it easy to use pre-existing C/C++ code in a SystemC model. This is very
useful, especially for complex testbenches.

The main building blocks of SystemC are modules containing processes for modeling combi-
natorial and sequential circuits. Communication is performed through ports that are bound to
either primitive or hierarchical channels. The built-in primitive signal channel enables modeling

238 6 Simulation

of RT-level communication using delta-cycle update semantics. For more technical details on
SystemC refer to the IEEE Std 1666-2011 Standard SystemC Language Reference Manual [13].

6.2.2 OSSS

OSSS (Oldenburg System Synthesis Subset) extends the synthesizable subset of SystemC [33] by
adding constructs that facilitate the use of object-oriented features with well-defined simulation-
and synthesis-semantics for the description of the hardware part of a Hardware/Software System
on Chip. OSSS supports C++ concepts, like classes, templates, inheritance and the modeling
elements of the Behavior Section 5.4, Application Section 5.5 and Virtual Target Architecture
Section 5.6 Layers. OSSS is provided as an open-source C++ class library [225] which can be
used in arbitrary SystemC models.

C++
SystemC

Software Hardware

OSSS Virtual Target Architecture Layer

OSSS Behaviour Layer

OSSS Software Tasks

new/delete

Pointers

C++ Polymorphism

Classes & Structs

Templates

Inheritance

bool

Synth. subset of
SystemC data types

OSSS data types
(osss_enum, osss_array,
osss_serialisable_object)

Processes
(SC_METHOD,
SC_CTHREAD,
SC_THREAD)

OSSS Shared Objects

OSSS Processors OSSS RMI

OSSS Object Sockets OSSS Memories

Modules

Signal Ports
(sc_in, sc_out, sc_inout)

cross
compiler &
target
dependent

Integer types

References

Enumerations

Arrays

Hierarchical
Channels

Mutex

Semaphore

Events

Report Handling

Tracing

Signals

OSSS IP Components

replaced by

EET, RET

OSSS Application Layer

OSSS Behaviour OSSS Shared Variable OSSS Event

OSSS Channels

Figure 6.3: OSSS language subset overview

Figure 6.3 shows OSSS in comparison to C++ and SystemC. Technically, SystemC is a class
library that builds on top of the C++ language. From a methodical point of view SystemC
extends C++ by a notion of time, concurrent sequential processes, events and signals that are
well known from hardware description languages like VHDL or Verilog. The communication
concept with primitive and hierarchical channels has been directly adopted from SpecC. The
latter point of view is the foundation of the diagram shown in Figure 6.3 where C++ is considered
a subset of SystemC. In particular the OSSS covers

• the entire SystemC synthesizable subset (as defined in [33]),

• compiler and target independent C++ language constructs and some cross compiler and
target processor dependent C++ language elements and standard libraries1

and extends SystemC by

• hardware/software implementation independent Behaviors, Shared Variables and Event
Channels to cover the main system-level modeling elements of the Behavioral Layer,

• Software Tasks, Estimated Execution Time (EET) and Required Execution Time (RET)
annotations, Shared Objects, and serializable data types to cover the modeling elements of
the Application Layer,

1only tested for Xilinx MicroBlaze and PowerPC

6.2 Overview 239

• architectural building blocks like processors, memories, Object Sockets, RMI Channels,
OSSS Channels and IP Components to cover the modeling elements of the Virtual Target
Architecture Layer.

OSSS is subdivided into a hardware/software independent, a software only, a hardware only,
a hardware/software intersection and a virtual target architecture part. In Figure 6.3 this is
illustrated by different colors. In the following subsections these different layers with their most
important language constructs will be briefly described.

6.2.3 Behavioral Layer

The Behavioral Layer provides modeling elements for capturing an embedded system on chip’s
functionality. The Behavioral Layer enables to compose sequential functions hierarchically
through the following compositions: sequential (SEQ), finite state-machine (FSM), parallel
(PAR), pipeline (PIPE).

Communication between these hierarchically composed functions (called Behaviours) is
enabled through Shared Variables and Events. These can be combined and encapsulated in
user-defined channels. The following pre-defined channels (using a combination of Shared
Variables and Events) are provided: Queue, Handshake and Double Handshake.

A SystemC implementation independent description of the Behavioral Layer is presented in
Section 5.4. More implementation details will be provided in Section 6.3.

6.2.4 Application Layer

The Application Layer provides modeling elements for HW/SW co-design of an embedded
system on chip. The provided modeling elements allow restructuring of a Behavioral Layer
model into hardware, software and communication specific elements. The modeling elements are
Software Tasks for encapsulating functionality to be implemented in software, Hardware Modules
for encapsulating functionality to be implemented in custom hardware and Shared Objects for
communication and description of custom hardware accelerators.

To represent execution times of Software Tasks and Hardware Modules, a block annotation
for sequential functional C/C++ code, called Estimated Execution Times (EETs), is provided.
During model execution, timing constraints can be checked using Required Execution Timed
(RET) block annotations.

A SystemC implementation independent description of the Application Layer is presented in
Section 5.5. In the simulation model the introduced concept of Actors is implemented by Software
Tasks and Hardware Modules. More implementation details will be provided in Section 6.4.

6.2.4.1 Hardware/Software Intersection

Modeling elements of the hardware/software intersection can be used in both, the hardware
and the software domain. When considering hardware/software systems the data types of this
intersection describe the backbone for hardware/software communication.

Composite data types like structs and classes in both template and non-template versions
(as known from C++) are allowed. Inheritance (i.e. specialization) which is a very important
feature of object oriented design is also supported.

Data types are the basic C++ types like boolean (bool), integer (signed char, unsigned

char, char, signed/unsigned short, signed unsigned int, ...), and floating point (float,
double). No pointer, reference or “native” array types from C++ are supported in this
intersection. The size of the supported basic types are strongly (cross) compiler dependent (for
more details refer to Section 7.6). As compiler independent bit-true data types the synthesizable
subset of SystemC data types2 are supported as well. E.g. sc_uint<9> data type has a size of
exactly 9 bits after synthesis.

Finally, special OSSS data types are provided:

• osss_enum<nativeCppEnum> serves as a wrapper for native C++ enumeration types
(enum),

2For more information about the synthesizable data types of SystemC please refer to [33]

240 6 Simulation

• osss_array<dataType, Size> serves as a wrapper for native C++ array types (e.g.
unsigned int[16]) and

• osss_serialisable_object is a base class for all user-defined classes that need to be
serialised into a bit-vector representation.

6.2.4.2 Hardware Section

The hardware section consists of two parts: The “traditional” synthesizable subset of Sys-
temC and OSSS Shared Objects. The main structural hardware element is a module
(sc_module) that may contain other modules (sub-modules), processes of kind SC_METHOD

and SC_CTHREAD, signal ports of type sc_in<T>, sc_out<T> or sc_inout<T> (with T ∈
synthesizable data types) and ports to Shared Objects osss_port<osss_shared_if<IF> >

(with IF ∈ inteface class of Shared Object). Ports can be bound to ports of sub-modules
(when they have the same type), to signals sc_signal<T> of compatible type T and to Shared
Objects implementing the required interface IF.

The modeling style of for custom hardware is behavioral RT. Either using sequential functional
behavior with a run-to-completion semantics encapsulated in an SC_METHOD or step-/clock-wise
execution of a sequential functional behavior encapsulated in an SC_CTHREAD (clocked thread).
Wait statements are used to insert clock boundaries into the behavior description. For more
details regarding the process modeling style of custom hardware, see Section F.2.2.

Some of the non-synthesizable SystemC features are events, hierarchical channels, mutexes
and semaphores. These language elements are very useful when designing on a higher level of
abstraction, especially at a time where neither the target architecture nor the target platform
has been specified. In OSSS, Events and user-defined channels for synchronization and commu-
nication are supported at the Behavioral Layer only. For synthesis a replacement for Events and
user-defined channels (including Mutex and Semaphore) is provided through Shared Objects.

Shared Objects provide a mechanism to deal with method calls from concurrently executing
processes and enable modeling of shared resources and abstract communication. They can be
customized in different ways and provide a synthesizable replacement for SystemC Channels
[22], Mutexes and Semaphores. Since they provide a simple guard mechanism that blocks a
method call to a Shared Object until a certain condition evaluates to true, they can even be
used to model events.

There are several other non-synthesisable features of SystemC like signal tracing and report
handling. These features are either used in testbenches or are disabled for synthesis.

6.2.4.3 Software Section

In general the software section of Figure 6.3 contains the whole ISO C++ [14] language.
Practically, the capabilities of different software (cross) compilers for the supported processing
elements limit the software modeling subset.

In OSSS Software Tasks are the execution environment for the software part of a hardware/-
software design. It can be regarded as the software counterpart of an sc_module. While an
sc_module can contain multiple processes implemented in hardware, a Software Task contains
exactly one single thread of control (i.e. representing the sequential software program running
on a processor).

Timing properties of the software running on a processing element are modeled through
EET source-level block annotations.

6.2.5 Virtual Target Architecture Layer

The Virtual Target Architecture Layer is organized as a an extendible Virtual Target Architecture
Class Library containing building blocks that need to be instantiated and connected to assemble
the execution platform consisting of processing elements, memories, custom hardware and
communication networks (OSSS-Channels are used to connect processing elements, memories
and user-defined hardware block with each other). The Application Layer model consisting of
Software Tasks, Hardware Modules and Shared Objects is mapped onto the building blocks
of the Virtual Target Architecture Layer. Communication of Software Tasks and Hardware

6.3 Behavioural Layer 241

Modules with Shared Objects is implemented using a pre-defined Remote Method Invocation
(RMI) protocol.

A SystemC implementation independent description of the Virtual Target Architecture Layer
is presented in Section 5.6. More implementation details will be provided in Section 6.5.

6.3 Behavioural Layer3

The Behavioural Layer is the entry for the initial functional model. It provides all necessary
means to capture a parallel hierarchical functional model of the application and supports different
Models of Computation.

6.3.1 Introduction and motivation

One of the most prominent system design methodologies [160] is based on the SpecC language
[181]. It introduces a minimal set of orthogonal language constructs that can be used for the
description and refinement of embedded hardware/software systems.

The Behavioural Layer of OSSS implements the SpecC Program State Machine model (as
described in Section 3.6.2) in SystemC. In [132] it has been shown that in principle the SpecC
refinement methodology is applicable to SystemC designs as well. By adding SpecC modeling
elements to SystemC major obstacles, as identified in [132], can be overcome:

(a) SystemC supports both static and dynamic scheduling. However a static scheduling allows a
designer to determine the explicitly modeled execution sequence. This is very helpful during
architecture exploration and refinement. SpecC supports only static scheduling using par,
pipe and fsm constructs, or default sequential execution. These features are not available in
SystemC. Moreover when static sensitivity is used for scheduling in SystemC it affects both
the data transfer and the execution sequence (see (d)).

(b) SystemC uses module as the structural entity and process as the behavioural entity. It does
only support hierarchical modeling of processes through explicit (dynamic) process spawning,
which is rather tedious and error-prone. Especially the possibilities of unconstrained process
spawning are a burden on the designer.

(c) In SystemC variables and events cannot be used to connect ports of different modules.
Therefore, they can only be used inside modules or globally. This limits the use of events
for scheduling modules and variables for data transfer between modules.

(d) In SystemC signals are used for data transfer between modules. The value of a signal is
updated after a delta cycle. This concept makes it difficult to use signals in a specification
model (cp. (a)). Therefore, designers should only use dynamic sensitivity for scheduling in
specification models using SystemC. This again turns out to be a tedious and error-prone
task.

Not only SystemC benefits from the the availability of SpecC modeling elements. Also SpecC,
which is a super-set of C, benefits from SystemC/C++ in the following ways:

• User-defined data types and operators (encapsulation of data and operations on them),

• with access protection (public, protected, private),

• generic and template meta-programming,

• reuse and specialization through inheritance & polymorphism (can be applied to both
data and behaviours),

• access to industry standard C++ libraries like STL and BOOST,

• and of course reuse of existing C/C++ code.

3This section is based on own previous work [43].

242 6 Simulation

• For synthesis of the refined behaviour model state-of-the art SystemC synthesis tools can
be used.

The implementation of PSMs based on SystemC should meet the following design principles:

(a) Compliant to the IEEE Std-1666
TM

-2011 SystemC standard [13]. Thus, we restrict ourselves
to build our extensions only upon the public classes mentioned in the standard. This also
restricts us to the SystemC scheduler and process abstraction mechanisms. This imposes
some limitations that will be discussed later.

(b) Our proposed extension should fit well into the general rules and coding styles for SystemC
code. Especially the syntax of our extensions should fit seamlessly into the standardized
SystemC API. While all SystemC language constructs carry the sc prefix we have chosen to
use the osss prefix. Moreover, it should be possible to mix SystemC language constructs
with our extensions wherever applicable.

(c) The semantics behind our extension should be equal to the PSM semantics implemented
in SpecC. It is desirable to introduce a syntax that is as close as possible to SpecC. This
should allow for easy porting designs from SpecC to SystemC using our proposed extensions.
To some extent, this requirement is conflicting with the conformance to the SystemC syntax
as required above. Considering this, we have tried to use the best from both worlds.

6.3.2 Composite Behaviours

sc_module

osss_behaviour

<<virtual>>+main(): void
#osss_seq(osss_behaviour): void
#osss_seq(osss_sequential_behaviour_list): void
#osss_fsm(osss_state_transition): void
#osss_fsm(osss_state_transition_list): void
#osss_par(osss_behaviour): void
#osss_par(osss_parallel_behaviour_list): void
#osss_pipe(osss_pipeline_behaviour): void
#osss_pipe(osss_pipeline_behaviour_list): void
<<virtual>>#init(): void
<<virtual>>#final(): void
<<virtual>>#pipe_pre(): void
<<virtual>>#pipe_post(): void
<<virtual>>#pipe_stop_condition(): void
#wait(...): void

osss_pipeline_stageosss_state

osss_initial_state osss_end_state

osss_composite_behaviour

osss_sequential_behaviour

osss_fsm_behaviour

osss_parallel_behaviour

osss_pipeline_behaviour

1 1

1

0..*

sc_port

IF : Class

osss_port

IF : Class
1 0..*

Figure 6.4: OSSS Behaviour class diagram (based on [43])

Figure 6.4 shows the OSSS Behaviour class diagram integrating composite behaviours into
SystemC. The osss_behaviour class is derived directly from the main structural element of
SystemC, the sc_module class. Other leaf behaviours, such as pipeline stages (behaviours that
can be connected to implement a pipeline) and states (behaviours that can be used to build a
finite-state machine) are directly derived from the main behaviour class.

Composite behaviours are implemented using the delegation pattern. The
osss_composite_behaviour class is responsible for the handling of sequential, FSM, parallel,
and pipelined composite behaviours.

6.3 Behavioural Layer 243

The hierarchy relation itself is inherited from the sc_module class since each module is
allowed to contain any number of child modules. Communication out of a behaviour is always
performed through ports. To better distinguish behaviour-related ports from SystemC built-in
ports we have simply derived our osss_port class from the SystemC sc_port implementation.

Pre-defined macros support the definition of behaviours (OSSS_BEHAVIOUR) and default
constructors of behaviours (BEHAVIOUR_CTOR). This is in compliance to the SC_MODULE and
SC_CTOR macros provided by SystemC. Corresponding macros are also provided for other leaf
behaviours:

• osss_state is a regular state of a finite state machine composite behaviour (OSSS_STATE,
STATE_CTOR).

• osss_initial_state is the initial/start state of a finite state machine composite behaviour
(OSSS_INITIAL_STATE, INITIAL_STATE_CTOR). Only a single initial state per finite state
machine is allowed.

• osss_end_state is the end/final state of a finite state machine composite behaviour
(OSSS_END_STATE, END_STATE_CTOR). Multiple but a least one end state per finite state
machine is allowed.

• osss_pipeline_stage is a pipeline stage of a pipeline composite behaviour
(OSSS_PIPELINE_STAGE, PIPELINE_STAGE_CTOR)

The behaviour code itself has to be written into the body of the main() method. When a
behaviour is entered or activated the init() method is executed once. When a behaviour is left
or deactivated the final() method is executed once. The init and final hooks can be used
to force certain code to be executed before and after the execution of the main routine.

B_seq

b1

b3

b2

OSSS_BEHAVIOUR(B1) {
 BEHAVIOUR_CTOR(B1) {}
 void main() {
 // your code here!
 }
};

OSSS_BEHAVIOUR(B_seq) {
 B1 b1;
 B2 b2;
 B3 b3;

 BEHAVIOUR_CTOR(B_seq) {
 osss_seq(b1, b2, b3);
 }
};

behavior B1() {
 void main(void) {
 // your code here!
 }
};

behavior B_seq() {
 B1 b1;
 B2 b2;
 B3 b3;

 void main(void) {
 b1.main();
 b2.main();
 b3.main();
 }
};

[Reset]
...
@110 ns (34 delta) : void B1::main()
@111 ns (38 delta) : void B2::main()
@112 ns (42 delta) : void B3::main()
[End]

Execution trace

SpecC OSSS Behaviour

Figure 6.5: Sequential behaviour composition

A sequential behaviour composition (as shown in Figure 6.5) describes a purely linear control
flow between sub-behaviours. Leaf behaviour b1 is executed until its main() routine has been
finished, then leaf behaviour b2 is executed, and so on. B_seq is left when the last sequentially
schedulued leaf behaviour (b3) has finished its execution.

This kind of composition corresponds to the linear sequential execution as known from any
imperative programming language. In the finite-state machine behaviour in Figure 6.6 the
execution order of the sub-behaviours depends on the evaluation of guards at the transition
arcs. After the initial state s1 has been entered the successor state s2 can be entered when the
transitions’ guard expression a<0 evaluates to true. B_fsm is left when s4, that implements an
end state, has been entered.

244 6 Simulation

OSSS_INITIAL_STATE(S1) {
 INITIAL_STATE_CTOR(S1) {}
 void main() {
 // your code here!
 }
};

OSSS_BEHAVIOUR(B_fsm) {
 osss_in<int> a;

 S1 s1; S2 s2; S3 s3; S4 s4;

 BEHAVIOUR_CTOR(B_fsm) {
 osss_fsm(
 (s1>>s2, osss_cond(B_fsm::c1)) &&
 (s2>>s3, osss_cond(B_fsm::c2)) &&
 (s3>>s4, osss_cond(B_fsm::c3))
);
 }

 bool c1() const { return (a>0); }
 bool c2() const { return (a<0); }
 bool c3() const { return (a!=0); }
};

behavior S1() {
 void main(void) {
 // your code here!
 }
};

behavior B_fsm(int a) {
 S1 s1; S2 s2; S3 s3; S4 s4;

 void main(void) {
 fsm {
 s1: { if (a>0) goto s2; }
 s2: { if (a<0) goto s3; }
 s3: { if (a!=0) goto s4; }
 s4: { break; }
 }
 }
};

B_fsm

S1

S2

S3

S4

a > 0

a < 0

a != 0

SpecC OSSS Behaviour

Figure 6.6: Finite State Machine behaviour composition

B_par

b1

b3

b2

OSSS_BEHAVIOUR(B1) {
 BEHAVIOUR_CTOR(B1) {}
 void main() {
 // your code here!
 }
};

OSSS_BEHAVIOUR(B_par) {
 B1 b1;
 B2 b2;
 B3 b3;

 BEHAVIOUR_CTOR(B_par) {
 osss_par(b1 | b2 | b3);
 }
};

behavior B1() {
 void main(void) {
 // your code here!
 }
};

behavior B_par() {
 B1 b1;
 B2 b2;
 B3 b3;

 void main(void) {
 par {
 b1.main();
 b2.main();
 b3.main();
 }
 }
};

[Reset]
...
@110 ns (34 delta) : void B1::main()
@110 ns (34 delta) : void B2::main()
@110 ns (34 delta) : void B3::main()
[End]

Execution trace

SpecC OSSS Behaviour

Figure 6.7: Parallel or concurrent behaviour composition

In a concurrent behaviour, all sub-behaviours become active whenever the parent behaviour
is entered. In Figure 6.7 the sub-behaviours b1, b2, and b3 are executed concurrently when
B_par becomes activated. B_par is left when all concurrent sub-behaviours b1, b2, and b3 have
finished their executions. This corresponds to the general FORK-JOIN pattern known from
parallel programming.

A combination of concurrent and sequential behaviours is the pipeline behaviour. In general
a pipeline describes some sort of stream processing in which the same sequence of operations
is performed on a stream of data. When B_pipe in Figure 6.8 is activated then b1 starts its
execution. When it is finished b1 and b2 execute in parallel until both of them are finished. In
the next step b1, b2 and b3 execute in parallel until a certain stop condition evaluates to true.
Otherwise a pipeline behaviour runs forever.

The operator>>() specifies the execution order of pipeline stages. Usually a pipeline
executes in an endless loop as shown in Figure 6.8a. Execution of pipeline behaviours can be
limited in two different ways:

static For a fixed amonut of executions for each pipeline stage the pipeline constructor
osss_pipe(...) can be used with a constant that specified the amount of execution times.

6.3 Behavioural Layer 245

Kim Grüttner

B_pipe

b1

b3

b2

OSSS_PIPELINE_STAGE(B1) {
 PIPELINE_STAGE_CTOR(B1) {}
 void main() {
 // your code here!
 }
};

OSSS_BEHAVIOUR(B_pipe) {
 B1 b1; B2 b2; B3 b3;

 BEHAVIOUR_CTOR(B_pipe) {
 osss_pipe(b1 >> b2 >> b3);
 }
};

behavior B1() {
 void main(void) {
 // your code here!
 }
};

behavior B_pipe() {
 B1 b1; B2 b2; B3 b3;

 void main(void) {
 pipe {
 b1.main();
 b2.main();
 b3.main();
 }
 }
};

∞

[Reset]
...
@110 ns (36 delta) : void B1::main()
@111 ns (39 delta) : void B1::main()
@111 ns (39 delta) : void B2::main()
@112 ns (42 delta) : void B2::main()
@112 ns (42 delta) : void B1::main()
@112 ns (42 delta) : void B3::main()
...

Execution trace

SpecC OSSS Behaviour

(a) infinte execution

1 Kim Grüttner

OSSS_PIPELINE_STAGE(B1) {
 PIPELINE_STAGE_CTOR(B1) {}
 void main() {
 // your code here!
 }
};

OSSS_BEHAVIOUR(B_pipe) {
 B1 b1; B2 b2; B3 b3;

 BEHAVIOUR_CTOR(B_pipe) {
 osss_pipe(10, b1 >> b2 >> b3);
 }
};

behavior B1() {
 void main(void) {
 // your code here!
 }
};

behavior B_pipe() {
 B1 b1; B2 b2; B3 b3;

 void main(void) {
 int i;
 pipe(i=0; i<10; i++) {
 b1.main();
 b2.main();
 b3.main();
 }
 }
};

10x

[Reset]
...
@119 ns (63 delta) : void B2::main()
@119 ns (63 delta) : void B1::main()
@119 ns (63 delta) : void B3::main()
@120 ns (66 delta) : void B2::main()
@120 ns (66 delta) : void B3::main()
@121 ns (69 delta) : void B3::main()
[End]

Execution trace

SpecC OSSS Behaviour

B_pipe

b1

b3

b2

1..10

(b) statically bound execution

OSSS_PIPELINE_STAGE(B1) {
 PIPELINE_STAGE_CTOR(B1) {}
 void main() {
 // your code here!
 }
};

OSSS_BEHAVIOUR(B_pipe) {
 osss_in<int> limit;

 B1 b1; B2 b2; B3 b3;

 unsigned int counter;

 BEHAVIOUR_CTOR(B_pipe) {
 osss_pipe(b1 >> b2 >> b3);
 }

 void init() { counter = 0; }
 void pipe_post() { counter++; }
 bool pipe_stop_condition() const {
 return (counter == limit);
 }
};

behavior B1() {
 void main(void) {
 // your code here!
 }
};

behavior B_pipe(int limit) {
 B1 b1; B2 b2; B3 b3;

 void main(void) {
 int i;
 pipe(i=0; i<limit; i++) {
 b1.main();
 b2.main();
 b3.main();
 }
 }
};

limit x

SpecC OSSS Behaviour

B_pipe

b1

b3

b2

1..limit

(c) dynamically bound execution

Figure 6.8: Pipelined behaviour composition

246 6 Simulation

In Figure 6.8b the pipeline construction osss_pipe(10, b1 >> b2 >> b3) specified a
pipeline whose pipeline stages are executed 10 times each.

dynamic If the number of pipeline executions can not be statically bound during design time, a
stop condition that is evaluated during run-time, can be used. In Figure 6.8c the init()

(executed before overall pipeline execution), pipe_pre (executed before each step of the
pipeline), and pipe_post (executed after each step of the pipeline) in conjunction with
the pipe_stop_condition hook can be used to dynamically limit the number of pipeline
iterations. In Figure 6.8c the number of pipeline execution depends on the variable limit

that is read from a shared variable outside B_pipe.

osss_pipeline_stage::main_wrapper(){
...
}

osss_pipeline_stage::main_wrapper(){
...
}

B_pipe

b1

b3

b2

osss_pipeline_stage::main_wrapper(){
 notify ready event
 wait No. pipeline stages
 while(true) {
 wait step event
 main();
 notify complete event
 if(finished)
 break;
 }
 wait until pipeline completed
}

osss_pipeline_behavior::main() {
 init();
 for_each(pipeline stage)
 spawn stage process
 for_each(spawned process)
 wait for termination
 final();
}

osss_pipeline_behavior::step_proc(){
 while(true) {
 for_each(spawned process)
 wait for ready event
 while(true) {
 pipe_pre();
 evaluate stop condition
 notify step event
 for_each(spawned process)
 wait for complete event
 pipe_post();
 if(finished)
 clean-up
 }
 }
}

step
process

step
event

ready
event

complete
event

Figure 6.9: Implementation of pipelined behaviours in OSSS

Figure 6.9 depicts the implementation of pipelined behaviours in OSSS. Upon initialization
of the pipeline, a process is created dynamically for each pipeline stage. The step process waits
until all pipeline stages are ready for execution. If the stop condition of the pipeline does not
evaluate to true a step event is notified. Each pipeline stage is sensitive to this step event and
executes its functionality (encapsulated by the main function) for one time. During the ramp-up
phase, each pipeline stage delays its execution of the main function until it is allowed to be
executed. After execution of each pipeline stage the step process re-evaluates the stop condition
and continues with the pipeline stage activation or terminates the pipeline.

6.3.3 Communication

Until now, we have not talked about communication and data-dependent synchronization.
Considering communication in the design of embedded systems along with a strict refinement
process towards a physical implementation model, the following basic principles can be postulated:

(a) Separation of communication and computation.

(b) Declaration of abstract communication primitives.

(c) Enable custom communication implementation at different levels of abstraction.

SpecC provides channels for the explicit description of communication and thus enables the
separation of communication and computation. A channel implements a certain interface that
defines which communication primitives are provided. These abstract communication primitives
can be used by behaviours that represent the computational parts of the design. Communication
is initiated on ports that belong to a behaviour and can be accessed by its main routine. Only
ports whose interface type matches with the interface implemented by a channel can be bound
together and therefore establish a communication link. SystemC has adopted this design pattern
directly from SpecC.

6.3 Behavioural Layer 247

S R

v3

v2

v1

B

(a) shared variable

S R

v3

v2

v1

B

C

(b) virtual channel

S R

B
C2

C1

(c) hierarchical channel

Figure 6.10: Communication in PSMs [150]

Figure 6.10 shows two different kinds of communication between behaviours. In Figure 6.10a
shared variables v1 to v3 are bound to ports of behaviour S and R. Ports can be of direction in,
out, and inout. This model of communication corresponds to shared memory communication.

In Figure 6.10b a virtual channel that encapsulates the communication using shared variables
through a user-defined interface is shown. An example for such a virtual channel is a CSP-
like “double handshake channel”. This kind of communication corresponds to message passing
communication. An extension of a virtual channel is the so-called hierarchical channel. This
type of channel is allowed to contain virtual channels and is commonly used for the description
of layered protocol stacks used in modern shared buses or network on chips.

A hierarchical channel as shown in Figure 6.10c is a virtual channel containing another
channel. This kind of communication corresponds to a layered protocol stack as used with
modern shared buses or network on chips.

Besides these data-oriented communication and synchronization primitives a notification
concept based on events can be used as well. Events carry no data and occur only once in time
after their notification.

osss_shared_variable

Type : Class
Depth : Integer = 0

osss_event

sc_event

osss_shared_variable_inout_if

Type : Class

osss_shared_variable_in_if

Type : Class

sc_interface

<<implements>>

sc_prim_channelosss_event_inout_if

osss_event_in_if

<<implements>>

osss_in

Type : Class

osss_inout

Type : Class

osss_out

Type : Class

osss_event_in

osss_event_inout

osss_event_out

osss_port

IF : Class

IF = osss_event_in_if

IF = osss_event_inout_if

IF = osss_shared_variable_in_if<Type>

IF = osss_shared_variable_inout_if<Type>

<<bind>>

<<bind>>

<<bind>>

<<bind>>

sc_port

IF : Class

Figure 6.11: OSSS Behaviour communication class diagram

Before having a look at a specific example, we introduce the basic communication and
synchronization primitives. Our implementation follows the "port-interface-channel" concept as
shown in Figure 6.11.

Both channels osss_event and osss_shared_variable<Type, Depth> are derived from
the SystemC primitive channel sc_prim_channel class. They implement different interface
classes to enable read and write accesses. All of these interfaces are derived from the SystemC

248 6 Simulation

sc_interface class. Finally, port classes derived from osss_port that can be bound to different
channel interfaces are supplied.

In SpecC shared variables can be of any type. Therefore, we have implemented them as a
template container class. Shared variables have the advantage over SystemC sc_signals that
they do not follow the delta cycle update semantics.

When using shared variables for the communication between pipeline stages they need an
internal delay representing the number of bypassed pipeline stages. Therefore we have introduced
a second template parameter for specifying the depth of the piped shared variable. By default
shared variables are not piped (i.e. depth = 0).

While shared variables are used in specification and early architecture models, signals are
used inside channels in a communication model. Therefore, it is important to allow mixing of
shared variables and SystemC signals in a model.

6.3.4 Hierarchical Behaviour composition

B1_1

C1

C3

E1

E2

D2

B1_2

B2_2

B3_2

Top

A1 A2

B2

C2
D1

a > 0

a < 0

a != 0
C4

(a) structural view

Top

A1 A2

B2B1_1 B1_2 B2_2 B3_3

C1 C2 C3

D1 D2

E1 E2

FSM

PAR

SEQ

PAR

SEQ PIPE

C4

(b) hierarchy graph

Figure 6.12: Hierarchical PSM

Figure 6.12 gives an example of hierarchical behaviour composition. Figure 6.12a is a
structural view depicting the hierarchy of beahviours. Figure 6.12b is the related hierarchy
graph. Leaf behaviors (gray colored) implement the functionality inside their main() routines.
Non-leaf behaviours are not allowed to implement any functionality.

1 OSSS_BEHAVIOUR(D1) {
2 protected:
3 E1 e1; // sub−behaviour e1
4 E2 e2; // sub−behaviour e2
5

6 public:
7 BEHAVIOUR_CTOR(D1) { osss_seq(e1, e2); } // sequential composition
8 };
9

10 OSSS_STATE(C2) {
11 protected:
12 D1 d1;
13 D2 d2;
14

15 public:
16 STATE_CTOR(C2) { osss_par(d1 | d2); } // parallel composition
17 };
18

19 OSSS_BEHAVIOUR(B2) {
20 osss_in<int> a;
21

22 protected:
23 C1 c1;

6.3 Behavioural Layer 249

24 C2 c2;
25 C3 c3;
26 C4 c4;
27

28 public:
29 BEHAVIOUR_CTOR(B2) {
30 // Finite−State Machine (FSM) composition
31 osss_fsm(
32 // change from state c1 to c2, iff cond1 is true
33 (c1 >> c2, osss_cond(B2::cond1)) &&
34 // change from state c2 to c3, iff cond2 is true
35 (c2 >> c3, osss_cond(B2::cond2)) &&
36 (c3 >> c4, osss_cond(B2::cond3)) &&
37 (c3 >> c1, osss_cond(B2::cond4))
38) ;
39 }
40

41 // conditions for use with state transitions above
42 bool cond1() const { return (a > 0); }
43 bool cond2() const { return (a < 0); }
44 bool cond3() const { return (a != 0); }
45 bool cond4() const { return (a == 0); }
46 };
47

48 OSSS_BEHAVIOUR(A1) {
49 osss_in<int> in_port;
50

51 protected:
52 B1_1 b1_1;
53 B2 b2;
54

55 public:
56 BEHAVIOUR_CTOR(A1) {
57 b2.a(in_port); // port to port binding: port a of behaviour b2
58 // is bound to the in_port of this behaviour.
59 osss_seq(b1_1, b2);
60 }
61 };
62

63 OSSS_BEHAVIOUR(A2) {
64 osss_out<int> a_out;
65

66 protected:
67 B1_2 b1_2;
68 B2_2 b2_2;
69 B3_2 b3_2;
70 unsigned int counter;
71

72 osss_shared_variable<int, 1> v0; // piped (shared) variable
73 osss_shared_variable<int, 1> v1;
74

75 // The following code is used to constrain the number of pipeline
76 // executions for b1_2, b2_2, and b3_2. By default pipelines are
77 // executed as an infinite loop. In this case the pipeline is
78 // executed COUNTER_LIMIT times.
79 virtual void init() { counter = 0; } // Before the pipeline starts
80 // the counter variable is initialised ,
81 virtual void pipe_post() { ++counter; } // it is incremented after each
82 // pipeline execution,
83 virtual bool pipe_stop_condition() const // and the stop condition has been
84 { return (counter == COUNTER_LIMIT); } // reached on COUNTER_LIMIT.
85

86 public:
87 BEHAVIOUR_CTOR(A2) {
88 b1_2.a_out(v0);
89 b2_2.a_in(v0);
90 b2_2.a_out(v1);
91 b3_2.a_in(v1);
92 b3_2.a_out(a_out);
93 osss_pipe(b1_2 >> b2_2 >> b3_2); // pipeline composition
94 }

250 6 Simulation

95 };
96

97 OSSS_BEHAVIOUR(Top) {
98 protected:
99 osss_shared_variable<int> var; // a regular (non−piped) shared variable

100

101 A1 a1;
102 A2 a2;
103

104 public:
105 BEHAVIOUR_CTOR(Top) {
106 a1.in_port(var);
107 osss_par(a1 | a2);
108 }
109 };

Listing 6.1: Composite behaviours of Figure 6.12

Listing 6.1 contains all composite behaviours from the example in Figure 6.12. The Top

behaviour (line 97) contains the two sub-behaviours a1 of type A1 and a2 of type A2. The
osss_par process constructor call performs the parallel composition of behaviour instances
a1 and a2. A shared variable var of type int is used for communication between a1 and the
environment (not shown in the listing). It is bound to the port in_port of a1 (line 99).

Behaviour A2 (line 63) specifies a pipelined computation using the osss_pipe process
constructor (line 93). The operator>>() specifies the execution order of pipeline stages.
Usually a pipeline executes in an endless loop. The pipe_pre and pipe_post (executed before
and after each step of the pipeline) in conjunction with the init and pipe_stop_condition

hooks can be used to manipulate the number of pipeline iterations. In A2 we have specified a
simple for-loop that executes the pipeline exactly COUNTER_LIMIT times.

For the communication between pipeline stages we use pipelined shared variables with a
depth of one, since each of them only crosses a singe pipeline stage. The piped shared variables
are declared in lines 72 and 73 and bound to the ports of the three pipeline stage in lines 88-91.

Behaviour A1 (line 48) describes the sequential composition of behaviours B1_1 and B2 using
the osss_seq process constructor.

In behaviour B2 (line 19) a finite-state machine is specified using the osss_fsm process
constructor. It takes state transition definitions that are concatenated to a list using the
operator&&(). The state transition list (c1 >> c2, osss_cond(B2::cond1)) has the following
semantics: A transition from behaviour c1 to c2 can be taken when the condition B2::cond1

evaluates to true. The condition is implemented by a member function of type bool(void)

const.

6.3.5 Current Limitations

During the implementation of PSMs we have encountered some limitations of the chosen
approach:

(a) Our approach does not support any of the exception mechanisms (trap and interrupt)
available in SpecC. This restriction is due to the underlying non-preemptive SystemC
scheduler. Ways to overcome this limitation are described in [59, 159]. However, it requires
a major change to the SystemC kernel that might become an extension to the current
standard in the future4.

(b) The former restriction imposes that we do only support the transition-on-completion (TOC)
but no transition-immediate (TI) arcs in the finite-state machine implementation.

(c) SystemC is a C++ class library but no language. It imposes the usage of preprocessor
directives (called macros) and restricts us to the syntax of C++ in general. This becomes
rather cumbersome when dealing with complicated compiler error messages that rather
bare the complexity of compilers than helping the designer. This can be mitigated by
implementing various run-time design rule checks which present more useful information.

4In SystemC 2.3.0 an exception mechanism based on [59] has been implemented. At the time of the
implementation of the OSSS Behavior simulation library this SystemC 2.3.0 has not been publicly available.

6.4 Application Layer 251

(d) Debugging can become cumbersome since PSMs may involve parallel behaviour that is
implemented using a low-level thread/process model (such as POSIX). But this is a gen-
eral problem existing for all multi-threaded applications including SpecC. A language or
thread/process model aware debugger can be used to overcome this restriction.

6.4 Application Layer5

The Application Layer in OSSS enables the hardware/software partitioning and modeling of
mixed hardware/software systems without explicit resource binding to processing elements and
communication resources. On this layer the simulation library provides elements to model
hardware modules and software tasks using (passive) objects and Shared Objects which can be
shared between hardware modules and software tasks in the design (see Figure 6.13).

Communication Link

Interface

Port

(Shared) Object
Module/Actor

Process/Behavior

Shared Object

Figure 6.13: The Application Layer and its components (based on [44])

Hardware modules and software tasks are active components, i.e. they contain processes
and thus have an own thread of execution. Shared Objects are passive which means they do
not initiate any execution on their own. Shared Objects (see Section 6.4.1) have two major
properties: on one hand they provide a method based interface for inter-process communication
and on the other hand they are a scheduled shared resource which can be used by different
processes.

Figure 6.14 illustrates a simple producer/consumer design at the Application Layer. The FIFO
(First-In-First-Out) buffer between the producer and the consumer processes is implemented
using a Shared Object. This simple design will be used to illustrate the use of Shared Objects at
the OSSS Application Layer throughout this chapter.

Producer

Consumer

FIFO

Figure 6.14: Producer/Consumer design on Application Layer [44]

6.4.1 Shared Object

A new concept introduced by OSSS is the Shared Object osss_shared<C, S>, with the user-
defined class C and the pre-defined or user-defined scheduler S. While Shared Objects have no
counterpart in C++, they can be used as a synthesisable replacement to model SystemC channels
[22], mutexes, semaphores, and events (see red box in Figure 6.3). They are called "shared"
because their state and behaviour is shared between different concurrent processes. Shared

5This section is based on own previous work [44].

252 6 Simulation

Objects are similar to the monitor concept [199] used in some concurrent software description
languages, because accesses are always mutually exclusive and arbitrated by a scheduler.

At the Application Layer an abstraction from the execution platform processing elements
and the communication details is given. Communication between modules or tasks and Shared
Objects is performed by user-defined method calls using message passing through communication
links. Argument and return types are of any supported C++ data type (no pointers and references
allowed). The communication link has the following properties:

directed: The source of a communication link is called a port while the destination is called an
interface. Please note, that this does not necessarily mean that the data flow is from the
port to the interface only. Since methods with both, a void and a non-void return value
can be called, the data flow is bidirectional.

blocking: A method call to a port does not return until the called method has been completed.

A Shared Object implements at least one interface and only reacts to external method calls
on its implemented interfaces. These methods are called guarded because access to them is
optionally6 restricted by a so called guard expression. An access to such a method is only
granted if this expression evaluates to true and the arbiter returns permission.

The behaviour of a Shared Object as well as the scheduling algorithm of the Shared Object’s
arbiter is custom-designed. Due to this flexibility Shared Objects can be used for a variety of
different purposes:

• Interprocess communication and synchronisation.

• Method interface for hardware modules.

• Modelling shared resources.

We call a process which contains a request to a method of a particular Shared Object a client
or client process of that object. Likewise, we may also refer to a Shared Object as a server.

6.4.1.1 Using Shared Objects

To gain a better understanding of how Shared Objects are used in Application Layer models we
are going to take a closer look at a simple consumer/producer example. The idea of this design
example is to use a Shared Object as a container for a user-defined FIFO class. The FIFO class
provides a method interface for accessing a memory in a First-In-First-Out style. The Shared
Object around the FIFO class enables resource sharing by providing arbitration facilities for
multiple concurrent accesses. The structure of this example is shown in Figure 6.14.

Instantiation and binding of Shared Objects

Figure 6.15 shows a more detailed structure of the producer/consumer example at the Application
Layer. A producer implemented as a software task calls methods defined in the FIFO_put_if

on a local port, which is bound to a buffer Shared Object. Two hardware consumer processes
call methods defined in the FIFO_get_if. The user-defined FIFO class inside the Shared Object
container implements the put and get interface. The behaviour of the Shared Object instance is
determined by the user-defined FIFO class. It is specified to store 10 items of type Packet. A
scheduling class (e.g. the pre-defined osss_round_robin or any other user-defined scheduling
class) arbitrates concurrent accesses to the Shared Object containg the FIFO.

Listing 6.2 shows the OSSS Application Layer top-level design of the producer/consumer
example as depicted in Figure 6.15. The communication links between the components are
established by port to interface bindings: the output port of the producer (line 26) and both
input ports of the consumer processes (line 33) are bound directly to the buffer Shared Object.

OSSS Shared Objects have two predefined ports. The clock_port and the reset_port.
Both ports need to be bound to the global clock an reset signal of the design.

6a guard can be set to true

6.4 Application Layer 253

Notice: The usage of clock and reset ports at the Application Layer is mandatory due to the
usage of the SC_CTHREAD processes. This is a pure technical restriction of the current OSSS
implementation. A replacement with SC_THREAD is desirable, but currently not available.

1 #define OSSS_BLUE // App l i ca t ion Layer Model
2 #include <o s s s . h>
3 #include " Packet . hh "
4 #include "FIFO . hh "
5 #include " Producer . hh "
6 #include " Consumer . hh "
7

8 SC_MODULE(Top) {
9 sc_in<bool> clk , r e s e t ;

10

11 typedef osss_shared<FIFO<Packet , 10>,
12 osss_round_robin> Buffer_t ;
13

14 Producer ∗m_Producer ;
15 Buffer_t ∗m_Buffer ;
16 Consumer ∗m_Consumer [2] ;
17

18 SC_CTOR(Top) {
19 m_Buffer = new Buffer_t (" m_Buffer ") ;
20 m_Buffer−>clock_port (c l k) ;
21 m_Buffer−>reset_port (r e s e t) ;
22

23 m_Producer = new Producer (" m_Producer ") ;
24 m_Producer−>clock_port (c l k) ;
25 m_Producer−>reset_port (r e s e t) ;
26 m_Producer−>output (∗m_Buffer) ;
27

28 m_Consumer [0] = new Consumer ("m_Consumer0") ;
29 m_Consumer [1] = new Consumer ("m_Consumer1") ;
30 for (unsigned int i =0; i <2; ++i) {
31 m_Consumer [i]−> c l k (c l k) ;
32 m_Consumer [i]−> r e s e t (r e s e t) ;
33 m_Consumer [i]−>input (∗m_Buffer) ;
34 }
35 }
36 } ;

Listing 6.2: Top-Level module of the producer/consumer example on Application Layer

m_Producer

m_Consumer1 m_Buffer

m_Consumer2

osss_software_task

osss_shared<FIFO<Packet, 10>, osss_round_robin>

sc_module

FIFO

template<class ItemType>
class FIFO_put_if : public sc_interface {
public:
 virtual void put(ItemType item) = 0;
 virtual bool is_empty() = 0;
 virtual bool is_full() = 0;
};

osss_port<osss_shared_if<FIFO_get_if<Packet> > >

<<implements>> <<implements>>

template<class ItemType>
class FIFO_get_if : public sc_interface {
public:
 virtual ItemType get() = 0;
 virtual bool is_empty() = 0;
 virtual bool is_full() = 0;
};

osss_port<osss_shared_if<FIFO_put_if<Packet> > >

Figure 6.15: Producer/consumer example at the Application Layer [44]

254 6 Simulation

Declaration of Shared Objects

In the following it is shown how a user-defined class, like the FIFO, has to be implemented
to be usable as a Shared Object. First of all an abstract interface class needs to be specified.
This abstract interface class specifies services the Shared Object provides for its attached client
processes. It is possible to have more than a single interface per Shared Object.

Listing 6.3 shows two abstract interface classes (FIFO_put_if and FIFO_get_if), and
the FIFO class implementation itself. The interfaces need to be defined separately from
their implementation and need to be derived from the SystemC interface class sc_interface.
Interfaces of Shared Objects are pure virtual, i.e. they consist out of pure virtual methods and
do not contain any data members.

The FIFO class is derived from both interfaces, the FIFO_put_if<...> (line 20) and the
FIFO_get_if<...> (line 21). Since the FIFO class is not allowed to contain any virtual methods
it needs to implement all method derived from these interfaces. In a user class of a Shared
Object all exported (i.e. public accessible) methods are called guarded methods.

All guarded methods are implemented using special OSSS_GUARDED_METHOD macros (e.g. line
30) to specify the method signature together with its associated guard condition (last argument).
If no guard is specified the guard condition is constantly set to true (e.g. line 45). A guarded
method used inside a guard condition needs to be wrapped by the OSSS_EXPORTED macro (e.g.
line 31).

The internal storage of the FIFO is described using an osss_array (line 60), which is a
bounded vector of a user-defined type that can be converted easily to a physical memory (e.g. a
Xilinx Block-RAM) during architecture refinement.

1 typedef unsigned int FIFO_size_t ;
2

3 template<class ItemType>
4 class FIFO_put_if : public virtual s c _ i n t e r f a c e {
5 public :
6 virtual void put (ItemType item) = 0 ;
7 virtual bool is_empty () = 0 ;
8 virtual bool i s _ f u l l () = 0 ;
9 } ;

10

11 template<class ItemType>
12 class FIFO_get_if : public virtual s c _ i n t e r f a c e {
13 public :
14 virtual ItemType get () = 0 ;
15 virtual bool is_empty () = 0 ;
16 virtual bool i s _ f u l l () = 0 ;
17 } ;
18

19 template<class ItemType , FIFO_size_t Size >
20 class FIFO : public FIFO_put_if<ItemType >,
21 public FIFO_get_if<ItemType>
22 {
23 public :
24

25 FIFO () : m_buffer () ,
26 m_put_index (0) ,
27 m_get_index (0) ,
28 m_num_items(0) {}
29

30 OSSS_GUARDED_METHOD_VOID(put , OSSS_PARAMS(1 , ItemType , item) ,
31 !OSSS_EXPORTED(i s F u l l ())) {
32 m_buffer [m_put_index] = item ;
33 increment_index (m_put_index) ;
34 m_num_items += 1 ;
35 }
36

37 OSSS_GUARDED_METHOD(ItemType , get , OSSS_PARAMS(0) ,
38 !OSSS_EXPORTED(isEmpty ())) {
39 ItemType r e s u l t = m_buffer [m_get_index] ;
40 increment_index (m_get_index) ;
41 m_num_items −= 1 ;
42 return r e s u l t ;

6.4 Application Layer 255

43 }
44

45 OSSS_GUARDED_METHOD(bool , is_empty , OSSS_PARAMS(0) , true) {
46 return m_num_items == 0 ;
47 }
48

49 OSSS_GUARDED_METHOD(bool , i s _ f u l l , OSSS_PARAMS(0) , true) {
50 return m_num_items == S i z e ;
51 }
52

53 protected :
54

55 void increment_index (FIFO_size_t &index) {
56 i f (index == (Size −1)) index = 0 ;
57 else index += 1 ;
58 }
59

60 osss_array<ItemType , S ize > m_buffer ;
61

62 FIFO_size_t m_put_index , m_get_index , m_num_items ;
63 } ;

Listing 6.3: FIFO interface and FIFO class implementation

Comparing the FIFO class from Listing 6.3 with a common C++ class implementation
the main difference in the use of OSSS_GUARDED_METHOD_VOID, OSSS_GUARDED_METHOD and
OSSS_EXPORTED constructs. These macros are provided by the OSSS library to bind a guard
condition to a method.

In principle, any kind of user-defined C++ class can be used as a Shared Object. With
the only restriction: Each method which should be accessible by client processes needs to be
declared in an abstract interface class and implemented as a guarded method.

A C++ method declaration with a void return type of the form:

void methodName(paramType1 param1, ... paramTypeN paramN)

translates into:

OSSS_GUARDED_METHOD_VOID(methodName ,
OSSS_PARAMS(N,

paramType1, param1,

...

paramTypeN, paramN),

guardCondition)

A C++ method with a non-void return type of the form:

return_type methodName(paramType1 param1, ... paramTypeN paramN)

translates into:

OSSS_GUARDED_METHOD(return_type ,
methodName, OSSS_PARAMS(N,

paramType1, param1,

...

paramTypeN, paramN),

guardCondition)

The main benefit of a Shared Object is that several clients can access the methods of that
object without knowing about concurrent accesses from other clients. Thus, it is easy to add
and remove clients of Shared Object without changing the Shared Object itself. Furthermore,
the guard conditions can be used to implement an implicit protocol; that is, to control the order
of accesses for the inquiring clients.

256 6 Simulation

Communication with Shared Objects

Communication with Shared Objects follows the SystemC IMC (Interface Method Call) mecha-
nism. It consists of

Port-Interface Binding: For the establishment of a Communication Link a port of a module or
software task needs to be bound to a Shared Object. This binding requires a port of the
same type as the interface provided by the object. For calling methods on a Shared Object
which implements the interface class IF, a port of type osss_port<osss_shared_if<IF> >

needs to be bound.

Method Call: When the port is bound to a Shared Object is acts like a constant reference. Using
the operator->() on the port allows calling each method which has been declared by the
interface class. As mentioned before, method calls to Shared Objects are blocking. They
do not return control to the caller until the called method has been executed completely.

The schedulers

Concurrent accesses to guarded methods of a Shared Object are handled by a scheduler. The
scheduling algorithm of a Shared Object can be changed easily by replacing the scheduler
class. The OSSS-Library contains some pre-designed schedulers, these are listed in Table 6.1.
Additional user-defined scheduling algorithms can be implemented easily.

Scheduler Description Algo

osss_round_robin • No priorities 3
• Fairness not guaranteed

osss_modified_round_robin • No priorities 4
• Fairness not guaranteed

osss_static_priority<ZeroIsHighestPrio> • Static priorities 1
• Default: Zero is lowest

priority
• Fairness not guaranteed

osss_ceiling_priority<MaxClients> • Dynamic priorities 2
• Fair

osss_least_recently_used<MaxClients> • Dynamic priorities 2
• Fair

Table 6.1: Schedulers included in OSSS

For scheduling algorithms that support priorities these can be set by passing a positive num-
ber to the setPriority() method of an osss_port<osss_shared_if<IF> > during SystemC
elaboration phase. The interpretation of this positive number (e.g. higher number means higher
priority) is scheduling algorithm dependent.

Custom scheduling algorithms are implemented by deriving from class osss_scheduler.
The derived class needs to implement the PositiveNumber schedule(const RequestVector

& clientRequests) method and requires to be purely combinatorial, meaning it must not
contain any wait() statement.

Restrictions when using Shared Objects

Usage of Shared Objects is subject to the following restrictions:

SO-R01: Shared Objects must implement a default constructor.

SO-R02: All methods accessible from outside the Shared Object must be guarded.

SO-R03: Direct access to data members is not possible.

6.4 Application Layer 257

SO-R04: Shared Objects are passive and only react to requests from clients.

SO-R05: Calls to guarded methods are blocking.

SO-R06: Guarded methods are not allowed to be const.

SO-R07: Parameters of guarded methods are not allowed to be of a pointer (*) or a reference
(&) type.

SO-R08: Parameters of guarded methods are not allowed to be const.

SO-R09: Guard expressions must be free of side effects, they must not change the inner state
of the Shared Object.

SO-R10: Guards are only allowed to be dependent on the internal state of the Shared Object.
I.e. the parameters of a guarded method are not allowed to be used in the associated
guard evaluation.

SO-R11: The evaluation of a guard expression must not cause the execution of a wait()

statement.

SO-R12: The guard expression must be satisfiable, meaning it must not be hardwired to false.

As for the Shared Object some restrictions apply to the clients that use Shared Objects:

SO-CL-R1: All client processes of a Shared Object must be driven by the same clock.

SO-CL-R2: Calls to methods of a Shared Object must be done by the operator->() method
of the osss_port<osss_shared_if<IF> >. To complete this call a wait() statement has
to follow after the operator->() call.

SO-CL-R3: Each osss_port<osss_shared_if<IF> > of a sc_module is allowed to be used by
a single process only. If an osss_port<...> bound to a Shared Object is used by more
than one process the simulation produces an error and is aborted immediately.

SO-CL-R4: Processes from which calls to Shared Objects originate must be SC_CTHREADs.

SO-CL-R5: Parameters must be passed as values not references for the call to be synthesizable.

6.4.2 Adapter Socket

Adapter Sockets (short: Sockets) allow access to a low level signal interface from within Shared
Objects. The purpose of sockets depends on whether they are used in combination with Shared
Objects. If the socket interface is used together with a Shared Object it is possible to design a
module that uses a method-based communication interface on one side and a signal interface
on the other side. This kind of method interface to signal level interface adapter is also called
transactor.

In the methodology (see Chapter 5) the possibility to access signals from within a Shared
Object has been introduced at the Virtual Target Architecture Layer (see Section 5.6.2). In
the OSSS simulation library, Adapter Sockets belong to the Application Layer. This allows
to prepare the integration of signal level components and RTL IP components already at
Application Layer.

6.4.2.1 Using sockets

The usage of sockets with a signal level interface will be described by the example of a shared
memory adapter. As shown in Figure 6.16, it consists of a memory module, an adapter module -
which is implemented as a Shared Object - and multiple clients.

The "RAM" module is implemented as a normal SystemC module and does not contain
any constructs specific to sockets, so it will not be described in detail. It implements a signal
interface that contains data-, address- and control signals.

The implementation of the clients also does not contain any constructs specific to sockets.
They implement an interface to a Shared Object. In the next section the "SharedMemAdapter"
module is described in-depth.

258 6 Simulation

RAM

Client 1

Client 2

Client n

SharedMem
Adapter

Method-based
communication

Signal-based
communication

Figure 6.16: Signal adapter socket example [44]

Declaration of a socket

Basically the "SharedMemAdapter" module is declared like a Shared Object. The following
listing shows the declaration of the module.

The only difference to the declaration of a Shared Object is the
OSSS_REQUIRED(if_name){...} section. In this section the signals that make up the
interface are declared the way a module port declaration is done in SystemC.

1 #include <osss.h>
2

3 const unsigned int AddrWidth=4u;
4 const unsigned int DataWidth=8u;
5

6 // This class will be used as shared object and acts as an interface
7 // to a memory
8 class SharedMemAdapter
9 {

10 public:
11

12 typedef sc_uint<AddrWidth> Addr_t;
13 typedef sc_uint<DataWidth> Data_t;
14

15 OSSS_REQUIRED(mem_if)
16 {
17 sc_out<Addr_t> po_Addr;
18 sc_in<Data_t> pi_Data;
19 sc_out<Data_t> po_Data;
20 sc_out<bool> po_bEnable;
21 sc_out<bool> po_bR_W;
22 };
23

24 OSSS_GUARDED_METHOD_VOID(write,
25 OSSS_PARAMS(2, Addr_t, addr, Data_t, data),
26 true);
27

28 OSSS_GUARDED_METHOD(Data_t,
29 read, OSSS_PARAMS(1, Addr_t, addr), true);
30 };

Listing 6.4: Declaration of a socket

1 #include "SharedMemAdapter.hh"
2

3 void
4 SharedMemAdapter::write(Addr_t addr, Data_t data)
5 {
6 mem_if().po_bEnable.write(true);

6.4 Application Layer 259

7 mem_if().po_bR_W.write(false);
8 mem_if().po_Addr.write(addr);
9 mem_if().po_Data.write(data);

10 wait() ;
11 mem_if().po_bEnable.write(false);
12 }
13

14 SharedMemAdapter::Data_t
15 SharedMemAdapter::read(Addr_t addr) const
16 {
17 mem_if().po_bEnable.write(true);
18 mem_if().po_bR_W.write(true);
19 mem_if().po_Addr.write(addr);
20 wait(2);
21 mem_if().po_bEnable.write(false);
22 return mem_if().pi_Data.read();
23 }

Listing 6.5: Implementation of a socket

The implementation of the module resembles the implementation of a Shared Object. The
main difference are the accesses to low level signals from within the Shared Object. Accesses to
the signals of a socket interface are done the following way: if_name.signal_name.read() and
if_name.signal_name.write(). By using this statements signals can be manipulated from
within a Shared Object.

Instantiation of a socket

The instantiation of a socket is quite simple, as can be seen in listing 6.6. The socket variable is
declared of the template type osss_socket< > and the class of the socket is passed as template
parameter during declaration. In this case the socket type is a Shared Object. Every class used
as a socket must contain an OSSS_REQUIRED section.

1 [...]
2 osss_socket<osss_shared<SharedMemAdapter> > m_SharedMem;
3 [...]

Listing 6.6: Instantiation of a socket

Binding signals to a socket

In this case the socket also contains a Shared Object, so the clients have to be bound to the
socket. On the other hand the socket has a port interface that has to be connected to signals in
the surrounding module. The binding of the Shared Object is not be subject of this section.

1 [...]
2 m_SharedMem.get_interface().po_Addr(ms_Addr);
3 m_SharedMem.get_interface().pi_Data(ms_rData);
4 m_SharedMem.get_interface().po_Data(ms_wData);
5 m_SharedMem.get_interface().po_bEnable(ms_bEnable);
6 m_SharedMem.get_interface().po_bR_W(ms_bR_W);
7 [...]

Listing 6.7: Binding socket signals

Binding socket signals to signals in the surrounding module is similar to the binding of port
signals. The only difference is the use of the get_interface() method provided by the socket
object. Listing 6.7 contains an example of how the socket signals are bound. Additionally the
object plugged into the socket can be returned by invoking the plugged_object() method of
the socket.

6.4.2.2 Restrictions

To summarize the sections above, sockets are subject to the following restrictions.

SO-AS-R1: The socket class must contain an OSSS_REQUIRED section.

260 6 Simulation

SO-AS-R2: Accesses to socket signals from within the socket class must be done using
if_name().signal_name.read() or if_name().signal_name.write() where if_name

is the name of the socket interface, which is defined in the OSSS_REQUIRED section.

SO-AS-R3: The socket class must be a Shared Object.

SO-AS-R4: Socket variables must be declared of the osss_socket< > template type.

SO-AS-R5: Socket signals must be bound using the get_interface() method of the socket
variable.

SO-AS-R6: The plugged_object() can be used to get the object plugged into a socket.

6.4.3 Software Task

Natively, SystemC does not support the modeling of software. Although it is very easy to write
algorithms in a sequential and “untimed” or causal timed model, SystemC does not support
a well defined synchronization between hardware and software models. The simulation time
is managed by the SystemC kernel and can only be advanced by calling the wait() function.
The execution of the statements between two successive wait statements does not affect the
simulation time maintained by the kernel. Hence, for a proper synchronization of hardware and
software components it is necessary to introduce a notion of software execution time.

One possibility to introduce execution times would be to use an explicit CPU model (e.g.
based on an instruction set simulator) to execute the software. This approach has two main
disadvantages. Firstly, the simulation performance of an instruction-level simulation is inferior
to a native host code execution and secondly it complicates the introduction of an abstract
communication mechanism between hardware and software. Therefore, we propose an approach
based on the block-level annotation of execution times which overcomes these two disadvantages.

To overcome these limitations of SystemC a new class called osss_software_task is intro-
duced. An OSSS Software Task is the counterpart to a sc_module. While an sc_module is a
structural component specialized for the description of hardware, which is parallel by nature, and
can contain an arbitrary number of (parallel) processes (SC_METHOD, SC_CTHREAD or SC_THREAD),
an arbitrary number of sc_modules (hierarchical modules) and an arbitrary number of sc_ports
for communicating with the “outside world”, an osss_software_task is a structural compo-
nent specialized for the description of sequential software. It only contains a single thread
of control that is provided by a method called main() and implemented as SC_CTHREAD7. For
the osss_software_task two predefined ports, a clock_port and a reset_port, both of type
sc_in<bool> are defined. These ports have to be bound to the top-level’s global clock and reset
signals. Beside these predefined ports, the software task can contain an arbitrary number of ports
of type osss_port<osss_shared_if<IF> >. These ports are used to communicate with Shared
Objects (see Section 6.4.1). In contrast to sc_modules no nesting of osss_software_tasks is
allowed.

Before presenting the usage of software tasks by example, Table 6.2 compares the properties
of sc_module and osss_software_task.

6.4.3.1 Declaration of a Software Task

Listing 6.8 shows the declaration of a software task in OSSS. For convenience the
OSSS_SOFTWARE_TASK macro can be used instead of class my_software_task : public

osss::osss_software_task. Similar to SC_MODULEs the default constructor can be written by
using the OSSS_SOFTWARE_CTOR or OSSS_SW_CTOR macro. The method main is declared pure
virtual in the base class osss_software_task and needs to be implemented by the user. This
method represents the single thread of control for a software task.

7This is a technical restriction of the current OSSS implementation and should be changed to SC_THREAD in
the future.

6.4 Application Layer 261

sc_module osss_software_task

Purpose Structural element for the model-
ing of parallel hardware

Structural element for the model-
ing of sequential software

Class declaration macro
SC_MODULE(class) OSSS_SW_TASK(class)

OSSS_SOFTWARE_TASK(class)

Constructor macro
SC_CTOR(class) OSSS_SW_CTOR(class)

OSSS_SOFTWARE_CTOR(class)

Number of processes 0-N 1 (single thread of control)
Type of processes/ SC_METHOD / next_trigger() -
Notion of time SC_CTHREAD / wait() SC_CTHREAD / OSSS_EET(time)

SC_THREAD / wait(time) SC_THREAD / OSSS_EET(time)

Pre-defined ports
-

sc_in<bool> clock_port

-
sc_in<bool> reset_port

Communication ports sc_port<...> (0-N)
osss_port<osss_shared_if<...> >

(0-N)
osss_port<osss_shared_if<...> >

(0-N)
Hierarchy/Nesting allowed yes (arbitrary depth) no

Table 6.2: Comparison between sc_module and osss_software_task

1 OSSS_SOFTWARE_TASK(my_software_task) {
2 public :
3

4 OSSS_SOFTWARE_CTOR(my_software_task) { }
5

6 // a l t e r n a t i v e c o n s t r u c t o r
7 my_software_task (. . .) : osss_software_task () {
8 /∗ put your so f tware t a s k c o n s t r u c t o r
9 code here ∗/

10 [. . .]
11 }
12

13 virtual void main () {
14 /∗ put your so f tware code here ∗/
15 [. . .]
16 }
17 } ;

Listing 6.8: Declaration of a Software Task

6.4.3.2 Instantiation of a Software Task

Listing 6.9 shows the instantiation of my_software_task as declared in Listing 6.8. To “run” a
software task, its pre-defined clock and reset ports need to be bound to the tob-level’s clock and
reset signals. Please note that both ports clock_port and reset_port are inherited from class
osss_software_task. That is why these ports are available in class my_software_task and
need to be bound, although non of them has been declared in Listing 6.8.

1 #define OSSS_BLUE
2 #include <o s s s . h>
3 #include " my_software_task . h "
4

5 SC_MODULE(Top) {
6 public :
7

8 sc_in<bool> c l k ;
9 sc_in<bool> r e s e t ;

10

11 my_software_task∗ mt ;
12

13 SC_CTOR(Top) {
14 mt = new my_software_task (" my_software_task ") ;
15 // perform bind ing o f s p e c i a l c l o c k and r e s e t por t s

262 6 Simulation

16 mt−>clock_port (c l k) ;
17 mt−>reset_port (r e s e t) ;
18 }
19 } ;

Listing 6.9: Instantiation of a Software Task

6.4.3.3 Using EETs for specifying the software timing behaviour

In our approach we distinguish two types of execution times: the Estimated Execution Time
(EET) and the Required Execution Time (RET). The EET as shown in Listing 6.10 defines the
execution time of the enclosed code block. These annotated times will only affect the simulation
and do not have any synthesis semantics. In principle these times can automatically be obtained
(e.g. through profiling on the target CPU) and back-annotated into the model.

In order to achieve a realistic simulation it is necessary to impose two constraints on the
usage of EETs. Firstly, no communication with other modules must happen within an EET block
and, secondly, there must be no code between the end of an EET block and a communication
statement. The EETs lead to a more accurate timing behaviour than relying on synchronization
through communication alone.

Listing 6.10 shows how to use EET blocks to specify the software timing behaviour. Besides
the OSSS_EET macro we are using the PRINT_MSG macro which prints a kind of execution trace
to the console. This macro does not influence the model execution, it just prints the current
simulation time and call context (i.e. hierarchical module name, source code line and user-
defined string). Have a look at Listing 6.11 to see what this message macro writes to the console
during the execution of task1. Each line in Listing 6.11 corresponds to a call of the PINT_MSG

macro. The EXPECTED_TIME macro is used to check whether the proper simulation time has
passed. When calling EXPECTED_TIME(sc_time(110.0, SC_NS)) it is expected that exactly
110.0 nanoseconds (ns) of simulation time has passed. If either more or less time has passed the
macro writes an error to the console and quits the simulation. Like the PRINT_MSG macro the
EXPECTED_TIME macro is some kind of assertion that does not influence the model execution
either.

72 OSSS_SOFTWARE_TASK(task1) {
73 public :
74

75 OSSS_SOFTWARE_CTOR(task1) { }
76

77 void methodX () {
78 PRINT_MSG(" Beginning methodX ") ;
79 OSSS_EET(sc_time (3 . 0 , SC_US)) {
80 /∗ do something e l s e ∗/
81 }
82 PRINT_MSG(" Completed methodX ") ;
83 }
84

85 virtual void main () {
86 OSSS_EET(sc_time (2 . 0 , SC_US)) {
87 /∗ do something ∗/
88 PRINT_MSG(" Doing something ") ;
89 }
90 PRINT_MSG(" Communication with some other module ") ;
91

92 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
93 sc_time (2 . 0 , SC_US)) ;
94

95 // Note : The execu t ion time of the i n i t i a l i s a t i o n o f i and
96 // f o r check ing the cond i t i on (at l e a s t the f i r s t
97 // time) i s n e g l e c t e d here
98 for (int i =0; i <3; ++i) {
99 OSSS_EET(sc_time (5 . 0 , SC_US)) {

100 PRINT_MSG(" For loop , i t e r a t i o n " << i) ;
101

102 i f (i%2 == 0) {
103 // w i l l be c a l l e d f o r i==0 and i==2
104 methodX () ;

6.4 Application Layer 263

105 }
106 }
107

108 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
109 sc_time (2 . 0 , SC_US)+
110 sc_time (5 . 0 , SC_US) ∗static_cast<double>(i +1)+
111 sc_time (3 . 0 , SC_US) ∗ ((i ==2) ? 2 .0 : 1 . 0)
112) ;
113 }
114 }
115 } ;

Listing 6.10: Usage of EETs in a Software Task

Listing 6.11 shows the console output after "running" the above software task. A clock period
of 10.0 ns is used. Since the simulation starts with 10 synchronous reset cycles the first time
stamp occurs at 110 ns.

110 ns : top.task1(line : 94) Doing something
2110 ns : top.task1(line : 96) Communication with some other module
2110 ns : top.task1(line : 107) For loop, iteration 0
2110 ns : top.task1(line : 83) Beginning methodX
5110 ns : top.task1(line : 87) Completed methodX
10110 ns : top.task1(line : 107) For loop, iteration 1
15110 ns : top.task1(line : 107) For loop, iteration 2
15110 ns : top.task1(line : 83) Beginning methodX
18110 ns : top.task1(line : 87) Completed methodX

Listing 6.11: Console output after running the Software Task from Listing 6.10 (Clock
period is 10.0 ns, number of reset cycles is 10)

6.4.3.4 Using EETs and RETs for checking timing consistencies of Software Tasks

Syntactically the specification of RETs is almost identical to the specification of EETs, but the
simulation semantics is different. The RET results in a piece of code which will not consume
any simulation time at all. It can be considered as a timing constraint on the contained EET
blocks and optional calls to the outside world (e.g. a Shared Object implemented in hardware).

It is also possible to mix and nest EETs and RETs. Doing so will allow for finding RET
violations during the simulation. For instance, if an RET block of 5 ms contains a loop whose
body has an EET of 1 ms per iteration and it performs more than 5 iterations in a simulation
run, the RET block will report an error.

Listing 6.12 shows the usage of EET and RET blocks for checking timing consistencies of
software tasks. In this example all OSSS_EETs are enclosed by OSSS_RET (Required Execution
Time) blocks. They report a timing violation when the amount of time that is passed inside an
RET block is bigger than specified. In this example the RET in line 181 is intentionally violated
by the inner EET block that is executed in a loop for three times. Please note that the timing
violation is reported not until the RET block is left.

124 OSSS_SOFTWARE_TASK(task2) {
125 public :
126

127 OSSS_SW_CTOR(task2) { }
128

129 void methodY () {
130 OSSS_RET(sc_time (6 . 0 , SC_US)) {
131

132 OSSS_EET(sc_time (4 . 0 , SC_US)) {
133

134 }
135 }
136 }
137

138 virtual void main () {
139 PRINT_MSG(" Beginning time c r i t i c a l c a l c u l a t i o n ") ;
140 OSSS_RET(sc_time (1 0 . 0 , SC_US)) {
141

264 6 Simulation

142 OSSS_RET(sc_time (4 . 0 , SC_US)) {
143

144 PRINT_MSG(" Beginning time c r i t i c a l sub−c a l c u l a t i o n 1 ") ;
145 OSSS_EET(sc_time (2 . 0 , SC_US)) {
146 /∗ do something ∗/
147 }
148 PRINT_MSG(" Completed time c r i t i c a l sub−c a l c u l a t i o n 1 ") ;
149

150 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
151 sc_time (2 . 0 , SC_US)) ;
152

153 }
154

155 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
156 sc_time (2 . 0 , SC_US)) ;
157

158 PRINT_MSG(" Beginning time c r i t i c a l sub−c a l c u l a t i o n 2 ") ;
159 OSSS_EET(sc_time (2 . 0 , SC_US)) {
160 /∗ do something ∗/
161 }
162 PRINT_MSG(" Completed time c r i t i c a l sub−c a l c u l a t i o n 2 ") ;
163

164 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
165 sc_time (4 . 0 , SC_US)) ;
166

167 }
168

169 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
170 sc_time (4 . 0 , SC_US)) ;
171

172 PRINT_MSG(" Completed time c r i t i c a l c a l c u l a t i o n ") ;
173

174 PRINT_MSG(" Beginning time c r i t i c a l c a l c u l a t i o n 2 (which w i l l f a i l) ") ;
175 OSSS_RET(sc_time (3 . 0 , SC_US)) {
176

177 for (int i =0; i <3; ++i) {
178 OSSS_EET(sc_time (2 . 0 , SC_US)) {
179 PRINT_MSG(" For loop , i t e r a t i o n " << i) ;
180 }
181 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
182 sc_time (4 . 0 , SC_US)+
183 sc_time (2 . 0 , SC_US) ∗static_cast<double>(i +1)) ;
184

185 }
186 }
187

188 // The prev ious RET i s i n t e n t i o n a l l y v i o l a t e d by inner EETs.
189 // Hence we expec t now == 10.0 us i n s t e a d o f 7.0 us
190 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
191 sc_time (1 0 . 0 , SC_US)) ;
192

193 PRINT_MSG(" Completed time c r i t i c a l c a l c u l a t i o n 2 ") ;
194

195 PRINT_MSG(" Beginning time c r i t i c a l c a l c u l a t i o n 3 (which i s
i n c o n s i s t e n t l y c o n s t r a i n e d) ") ;

196 OSSS_RET(sc_time (5 . 0 , SC_US)) {
197 methodY () ;
198 }
199

200 // The prev ious RET i s i n t e n t i o n a l l y v i o l a t e d by an inner RET.
201 // Hence we expec t now == 10.0 us i n s t e a d o f 7.0 us
202 EXPECTED_TIME(sc_time (1 1 0 . 0 , SC_NS)+ // r e s e t time
203 sc_time (1 4 . 0 , SC_US)) ;
204

205 PRINT_MSG(" Completed time c r i t i c a l c a l c u l a t i o n 3 ") ;
206 }
207 } ;

Listing 6.12: Usage of EETs and RETs in a Software Task

Listing 6.13 shows the console output after "runnig" the above software task. The RET

6.4 Application Layer 265

violation in line 181 is reported as expected.

110 ns : top.task2(line : 146) Beginning time critical calculation
110 ns : top.task2(line : 151) Beginning time critical sub−calculation 1
2110 ns : top.task2(line : 155) Completed time critical sub−calculation 1
2110 ns : top.task2(line : 165) Beginning time critical sub−calculation 2
4110 ns : top.task2(line : 169) Completed time critical sub−calculation 2
4110 ns : top.task2(line : 179) Completed time critical calculation
4110 ns : top.task2(line : 181) Beginning time critical calculation 2

(which will fail)
4110 ns : top.task2(line : 187) For loop, iteration 0
6110 ns : top.task2(line : 187) For loop, iteration 1
8110 ns : top.task2(line : 187) For loop, iteration 2
OSSS_RET violation [top.task2, sw_timing.cpp:182, created : 4110 ns] :

duration: 3 us, deadline: 7110 ns, now: 10110 ns
10110 ns : top.task2(line : 201) Completed time critical calculation 2
10110 ns : top.task2(line : 203) Beginning time critical calculation 3

(which is inconsistently constrained)
14110 ns : top.task2(line : 213) Completed time critical calculation 3

Listing 6.13: Console output after running the Software Task from Listing 6.12 (Clock
period is 10.0 ns, number of reset cycles is 10)

6.4.3.5 Restrictions when using Software Tasks

Software Tasks have the following restrictions:

SW-R1: Must be derived from class osss_software_task or use the
OSSS_SOFTWARE_TASK(...) or OSSS_SW_TASK(...) macros.

SW-R2: Must implement the pure virtual main() routine. The user-defined software behavior
is implemented in this routine only. No other processes (SC_METHOD, SC_CTHREAD or
SC_THREAD) are allowed inside a software task.

SW-R3: A software task may not contain any other software task or module.

SW-R4: Pre-defined ports clock_port and reset_port need to be bound to the global clock.
No other signal ports are allowed for software tasks.

SW-R5: Communication is realized via osss_ports bound to Shared Objects only. No other
communication ports are allowed.

SW-R6: On other timing annotation than OSSS_EET(...) blocks are allowed. A call of the
SystemC wait(...) function is not allowed. For restrictions of software task timing
annotations see below.

For timing annotations within software tasks using Estimated Execution Time (EET) blocks
the following restrictions apply:

EEE-R1: EETs are C++ compound statements (commonly called “blocks”) and may only be
used within the rules of C++.

EET-R2: EET blocks may not be nested (i.e. an EET block may not contain any other EET
block).

EET-R3: EET blocks may not overlap (i.e. no new EET block is allowed to begin before the
currently active EET block has not been closed).

EET-R4: EET blocks may not contain any Shared Object service calls on osss_ports.

For timing timing checks/assertions within software tasks using Required Execution Time
(RET) blocks the following restrictions apply:

RET-R1: RETs are C++ compound statements (commonly called “blocks”) and may only be
used within the rules of C++.

RET-R2: RET blocks may not overlap (i.e. no new RET block is allowed to begin before the
currently active RET block has not been closed).

266 6 Simulation

6.4.4 Hardware/Software Communication

Listing 6.14 shows the producer to be implemented in software. To implement the producer
as a software task the Producer class has to be derived from the osss_software_task. The
communication of a software task with Shared Objects is performed by the usage of specialized
OSSS-Ports. The osss_port is derived from the SystemC sc_port and is bound to the instance
of the Shared Object, see Listing 6.2. The osss_shared_if class implements a Shared Object
interface class used as a base class for the Shared Object class (osss_shared). Thus, the
interface of the osss_port has to be of type osss_shared_if to connect the osss_port of the
software task to a Shared Object. Furthermore, the interface of the object type of the Shared
Object has to be specified as interface of the osss_shared_if. In Listing 6.14 the interface of
the object type that is implemented as a Shared Object is FIFO_if. Thus the output port of
the Producer class is of type osss_port<osss_shared_if<FIFO_if> >.

The FIFO in the producer/consumer example is specified to store items of type Packet. The
implementation of the FIFO is explained in more detail in Section 6.4.1. The methods inside of
the FIFO object are called from the software task by the operator->() on the osss_port. In
the example the put method is called on the output port.

1 class Producer : public osss_software_task {
2 public :
3

4 // connect ion to the shared o b j e c t
5 osss_port<osss_shared_if< FIFO_if<Packet> > > output ;
6

7 // runs only once in the beg inning
8 OSSS_SW_CTOR(Producer) { }
9

10 // has to o v e r r i d e the v i r t u a l main ()
11 void main () {
12 Packet p ;
13 while (true) {
14 OSSS_EET(sc_time (5 0 . 0 , SC_NS)) {
15 /∗ some c a l c u l a t i o n s t h a t take approximate ly
16 50.0 nano seconds ∗/
17 }
18

19 // communication with the " o u t s i d e world "
20 output−>put (p) ;
21

22 OSSS_EET(sc_time (1 0 . 0 , SC_NS)) {
23 /∗ some c a l c u l a t i o n s t h a t take approximate ly
24 10.0 nano seconds ∗/
25 }
26 }
27 }
28 } ;

Listing 6.14: OSSS-Software-Task with annotated Estimated Execution Times

Figure 6.17 illustrates the usage of EETs and RETs in the producer Software Task of the
producer/consumer example. Listing 6.15 has the same block structure using EET and RET
annotation as shown in Figure 6.17. The behaviour of this software task is to generate data
of type Packet and to write them to a FIFO Shared Object. Until now we will only take a
look on the block structure and the EET and RET annotations. The body of the infinite while
loop (line 13) in the main process is constrained by an RET of 2000.0 nanoseconds (line 14).
The following for loop (line 18) initializes the Packet object and assigns a dummy payload.
Since communication with Shared Objects can not be inside EET blocks the call of the put

method on the output port (line 21) is not within the packet initialization block. The same
rule has been applied to the annotation of the following if condition (line 22); the else branch
(line 28) contains a call to a Shared Object (line 34) and thus cannot be enclosed by an EET
block around the entire if-statement.

1 OSSS_SW_TASK(Producer) {
2 osss_port<osss_shared_if<FIFO_put_if<Packet> > > output;
3

6.4 Application Layer 267

m_Producer

main

B

begin for

end for

C

begin if

end if

B

C

B

EET
EET

RET

EET

osss_shared<FIFO<Packet, 10>,
 osss_round_robin>

sc_module

m_Consumer

osss_software_task

osss_port<osss_shared_if<class_n_if> >

B

C

basic block

communication

Figure 6.17: EET statements inside of the main() method of a software task [44]

4 OSSS_SW_CTOR(Producer) : output("output") {}
5

6 protected:
7 virtual void main() {
8 const unsigned char source_addr = 42;
9 unsigned char target_addr = 0;

10 unsigned int offset = 0;
11 Packet p;
12

13 while(true) {
14 OSSS_RET(sc_time(2000.0, SC_NS)) {
15 OSSS_EET(sc_time(120.0, SC_NS)) {
16 p.set_source_addr(source_addr);
17 p.set_target_addr(target_addr);
18 for(unsigned int i = 0; i<p.get_payload_size(); ++i)
19 p.set_payload(i, i+offset) ;
20 }
21 output−>put(p);
22 if (target_addr >= 10) {
23 OSSS_EET(sc_time(10.0, SC_NS)) {
24 target_addr = 0;
25 offset = 0;
26 }
27 }
28 else {
29 OSSS_EET(sc_time(30.0, SC_NS)) {
30 target_addr += 1;
31 offset += 10;
32 p.set_target_addr(target_addr);
33 }
34 output−>put(p);
35 }
36 }
37 }
38 }
39 };

Listing 6.15: Producer Software Task

Listing 6.16 shows the signature of the Packet class, which will be used in the following
examples. It contains data members for a source and a target address and a payload of 10
bytes. To provide the concept of encapsulation the Packet class has several access methods to

268 6 Simulation

its protected data members.

1 class Packet {
2 public:
3

4 Packet();
5

6 unsigned char get_source_addr() const;
7 void set_source_addr(unsigned char addr);
8

9 unsigned char get_target_addr() const;
10 void set_target_addr(unsigned char addr);
11

12 unsigned char get_payload(unsigned int index) const;
13 void set_payload(unsigned int index,
14 unsigned char data);
15

16 unsigned int get_payload_size() const;
17

18 protected:
19 unsigned char m_source_addr;
20 unsigned char m_target_addr;
21 unsigned char m_payload[10];
22 };

Listing 6.16: Signature of the Packet class

6.4.5 Hardware Module

Hardware on the Application Layer is described by the OSSS hardware subset which is basically
the synthesizable SystemC subset, for mode details see Chapter F. A hardware module is an
SC_MODULE with SC_CTHREAD and/or SC_METHOD processes which implement the behaviour.

Ports are used to communicate with other components: SystemC signal ports are used to
communicate directly with other hardware modules. OSSS ports are used to establish the
communication with Shared Objects.

The consumer is an sc_module implementing a single clocked process, which calls the get

method on its input port continuously (line 16). The get method called on the local port is
redirected to a call of the guarded method implemented in the FIFO class, because the input port
is bound to the buffer Shared Object. This abstract communication mechanism is uniform for
SW Tasks and HW modules. It hides the details of the Shared Object’s communication protocol
involving the scheduling and guard evaluation. Furthermore, it enables easy replacement, addition
and removal of software tasks and hardware modules without changing the communication and
synchronization between them.

1 SC_MODULE(Consumer) {
2 sc_in<bool> clk, reset;
3

4 osss_port<osss_shared_if<FIFO_get_if<Packet> > > input;
5

6 SC_CTOR(Consumer) : input("input") {
7 SC_CTHREAD(cons_process, clk.pos());
8 reset_signal_is(reset , true);
9 }

10

11 protected:
12 void cons_process() {
13 Packet p;
14 while(true) {
15 wait() ;
16 p = input−>get();
17 }
18 }
19 };

Listing 6.17: Consumer HW module implementation

6.5 Virtual Target Architecture Layer 269

6.5 Virtual Target Architecture Layer8

This layer provides architecture building blocks to assemble an configure a System on Chip
architecture. These building blocks are software processors, memories, and (user-defined)
hardware blocks. For the interconnection of these blocks different communication channels, like
buses, crossbar switches or point-to-point connections are available. All architecture building
blocks are stored in a hierarchical Architecture Class Library that can be extended by user-defined
architecture elements.

6.5.1 Architecture Class Library

Figure 6.18 shows the building blocks of the Virtual Target Architecture organized as a class
hierarchy. The components shown are supported by the OSSS synthesis flow and can be
used to build a synthesizable Virtual Target Architecture. The supported target architecture
can be assembled from a subset of the Xilinx IP core library available in the Xilinx EDK
(Embedded Development Kit) [239] and the Xilinx ISE (Integrated Synthesis Environment)
[238]. Figure 6.18 only presents a set of selected architecture building blocks used in the following
examples and evaluation of this work. The architecture class library can be extended by more
Xilinx, other vendor and custom components9.

osss_architecture_object

osss_hardware_
block

osss_
memory

osss_basic_
channel

osss_
processor

xilinx_
microblaze

osss_
channel

osss_simple_
point_to_
point_channel

… xilinx_
opb_
channel

osss_
object_
socket

osss_
module

…

xilinx_
blockram

xilinx_
external_
memory

sc_module

osss_system

xilinx_
system

osss_ip_
component

Figure 6.18: Sample of the OSSS Architecture Class Library [44]

All architecture building blocks in Figure 6.18 with a xilinx_ prefix are wrapper classes
for configurable platform IP components provided by Xilinx. More information about these
components can be found in Section 7.4.

The other architecture building blocks are user-defined components: The
osss_hardware_block is a base class for user-defined modules and OSSS Object Sock-
ets. The osss_module is a specialization of an sc_module and adds a mandatory clock and
reset port to assure that all processes are driven by a global clock and reset signal. There is no
semantic difference between the sc_module and the osss_module. The osss_ip_component is
just a wrapper for RT level IP components.

The OSSS-Channel [77, 78] is a concept to model on-chip the communication independently
from RMI protocol and the behavior. It can be used for a cycle accurate specification of a
physical channel model, like a bus or a custom designed point-to-point channel. More details
are given in Section 6.5.3.

8This section is based on own previous work [44].
9This is denoted by the blocks labeled with “...”) is but not further described in this work.

270 6 Simulation

The OSSS-Memory class is used for the explicit specification of memories in the Target
Architecture. In Xilinx FPGAs these dedicated memories can be either internal Block-RAM
or external memory, like SRAM, DRAM or Flash. The osss_system and the specialized
xilinx_system are top-level modules which represent the SoC boundary. All ports of the
xilinx_system are mapped to FPGA pins.

osss_

processor

osss_
hardware_

block

osss_
hardware_

block

osss_
hardware_

block

osss_
hardware_

block

xilinx_opb_channel<…> osss_simple_point_to_point_channel<…>

osss_object_socket<…> osss_module

xilinx_microblaze

xilinx_system

osss_system

Figure 6.19: Example of a Virtual Target Architecture with a single processor and user-defined
hardware [44]

Figure 6.19 shows an example of a Virtual Target Architecture composed of different OSSS
Architecture Objects. It includes a single Xilinx MicroBlazeTMprocessor block connected to a
Xilinx On-Chip Peripheral Bus (OPB) [151, 105] as bus master. Two OSSS Object Sockets are
connected to the OPB as slave components. The lower OSSS Object Socket is connected with
two user-defined hardware-blocks by a point-to-point connection.

6.5.2 Remote Method Invocation

The general meaning of the term Remote Method Invocation (RMI) is the call of a method
(function or procedure) of an object that is not directly accessible to the caller. I.e. it is not
accessible in the instruction memory of the local processor executing certain software. The
remote object has to be physically accessible through a communication network. On the Virtual
Target Architecture Layer the communication network between software tasks, hardware modules,
and Shared Objects is modeled by OSSS-Channels. Thus, RMI in the context of OSSS represents
a method call from a port of a hardware module or software task to an interface of a Shared
Object through an OSSS-Channel.

The subsequent sections are organized as follows: We start with the description of the general
concept behind RMI. This is followed by the presentation of the OSSS-RMI protocol stack.
Afterwards, we show the particular steps of the OSSS design flow that need to be performed in
order to map an application to a specific target architecture. For a better illustration we perform
these steps for the simple consumer/producer example from Section 6.4. After the presentation
of the mapping steps we demonstrate the flexible communication refinement provided by the
OSSS methodology. It enables a simulative architecture exploration, demonstrated with the
producer/consumer example. Finally, we are going to have a look at the physical layer of the
OSSS-RMI protocol. The OSSS-Channel concept provides building blocks for the specification
of synthesizable and cycle accurate communication channels. These channels establish the signal
level communication and transform method based into a signal based communication.

6.5.2.1 The General Concept

Figure 6.20b shows the results of the mapping and communication refinement applied to the
example presented in Figure 6.20a. All communication links from the Application Layer have
been mapped to osss_rmi_channel<...> containers. They serve as wrappers for the OSSS-
Channels that implement the physical structure (bus, point-to-point, or crossbar) and the

6.5 Virtual Target Architecture Layer 271

Application

Virtual Target

Architecture

(VTA)

osss_port<osss_shared_if<IF> >

osss_software_task osss_shared<…>

IF
sc_module

(a) Application to VTA mapping

OSSS-

RMI-lnterface

osss_rmi_channel<

osss_rmi_point_to_point_channel<8,8> >

osss_rmi_channel<xilinx_opb_channel<> >

IF
osss_module

osss_software_task

osss_object_socket<…>

osss_shared<…>

osss_port<osss_rmi_if<IF> >

xilinx_microblaze

xilinx_system

(b) Result of the Application to VTA mapping

Figure 6.20: Communicating processes mapped on Virtual Target Architecture [44]

behavior of the communication protocol. The purpose of the RMI-Channel is the provision of
a generic OSSS-RMI interface and the translation of the OSSS-RMI protocol to the generic
OSSS-Channel protocol.

The osss_software_task has been mapped on a Xilinx MicroBlaze processor that is
connected to an OPB, implemented by an OSSS-Channel (xilinx_opb_channel). Since
we do not want to manually refine all method calls between the Software Task and
the Shared Objects, we need to wrap the OPB channel by an OSSS-RMI container
(osss_rmi_channel<...>). The same wrapping needs to be performed for the point-to-point
connection (osss_rmi_point_to_point_channel<...>) from the osss_modules to the Shared
Object.

As already mentioned above, each Shared Object needs to be wrapped by an
osss_object_socket<...> container. This socket provides a binding mechanism to the
osss_rmi_channel<...> container. Moreover, it performs the OSSS-RMI protocol and fi-
nally calls the remotely requested service on the Shared Object. Thus serving as a virtual “local
client” to the Shared Object.

For calling a remote method from inside of a software task or a hardware module, their
communication ports need to be prepared for RMI. This is a rather technical implication. Like
in all known RMI concepts a local stub or proxy for accessing the remote object has to be

272 6 Simulation

generated. When performing a method call on a local stub the RMI protocol becomes initiated.
This implies a sequence of the following operations:

1. serialization of the remote method arguments, performed at the stub (osss_rmi_if<IF>),

2. submission of the client ID, method ID and the serialized arguments, also performed at
the stub,

3. reception of the client ID, method ID and the serialized parameters at the remote object
socket (osss_object_socket<...>),

4. de-serialization of the parameters at the remote object socket,

5. call of the method by assigning the de-serialized parameters to the method of the remote
object (osss_object_socket<osss_shared<...> >).

When a method with non-void return parameter has been called, the same protocol is
performed on the way back from the remote object to the caller. This caller stub is denoted as
osss_rmi_if<...>. For RMI communication each OSSS-Port needs to be equipped with this
stub. It can be derived automatically from the abstract interface class of the connected Shared
Object, as describe in Section 6.6.

6.5.2.2 RMI protocol stack

After presenting the general RMI concept we will go into more detail concerning the OSSS-RMI.
Figure 6.21 shows the OSSS-RMI protocol stack and gives an overview of the building blocks
and their interfaces.

 Application Layer

 RMI Layer

 Channel IF Layer

 Application Layer

 RMI Layer

 Channel IF Layer

Virtual Target Architecture Layer

Communication Link

osss_port<
 osss_shared_if<IF> >

osss_rmi_channel<...>::client_if osss_rmi_channel<...>::server_if

osss_rmi_channel<...>

sc_module
osss_software_task

Shared Object (class
inside osss_shared<...>)

osss_abstract_channel<...>::master_if,
osss_abstract_basic_channel<...>::
readwrite_if

osss_port<osss_rmi_if<IF> > osss_object_socket<osss_shared<...>
>

osss_abstract_channel<...>::
slave_if,
osss_abstract_basic_channel<...>::
readwrite_if

Channel

Implementation Layer

 Physical Layer Physical Layer
sc_signal

s

Channel

Implementation Layer

osss_abstract_channel<…>,
osss_abstract_basic_

channel<…>
xilinx_opb_channel<…>,

osss_rmi_point_to_point_
channel<…>

master/readwrite transactor slave/readwrite transactor

osss_module

osss_shared<...>

Figure 6.21: The OSSS-RMI protocol stack [44]

On the Application Layer OSSS provides three building blocks: sc_module for describing cus-
tom hardware, osss_software_task for describing software, and osss_shared_object<...>

for describing shared resources, inter process communication, and method interfaces for hard-
ware components. Communication between sc_modules or osss_software_tasks and Shared
Objects is described by an osss_port<osss_shared_if<IF> > to osss_shared<...> binding.
This kind of port to interface binding on the Application Layer creates a direct communication

6.5 Virtual Target Architecture Layer 273

link between the module or the software task and the Shared Object. This kind of communication
modeling is used on the Application Layer as shown in the uppermost part of Figure 6.21.

As shown in the producer/consumer example a communication link on the Application Layer
can be refined by an OSSS-Channel. Since each OSSS-Channel describes a synthesizable signal
based communication, the method call on the Application Layer has to be translated into a
signal based communication and vice versa. This translation is performed by the OSSS-RMI
protocol.

In the following sections the different layers and interfaces of the OSSS-RMI protocol stack are
introduced. The concept and the implementation of OSSS-Channels is explained in Section 6.5.3.

The osss_rmi_channel<...>::client_if

The osss_rmi_channel<...> container provides two interfaces:

• the osss_rmi_channel<...>::client_if interface is used for communication between
the osss_port<osss_rmi_if<IF> > and the osss_rmi_channel<...> and

• the osss_rmi_channel<...>::server_if interface is used for communication between
the osss_object_socket<...> and the osss_rmi_channel<...>.

1 virtual OSSS_Archive_t c a l l _ f u n c t i o n (OSSS_ClientID_t c l i ent ID ,
2 OSSS_ObjectID_t objectID ,
3 OSSS_MethodID_t methodID ,
4 OSSS_Archive_t a r c h i ve) = 0 ;
5

6 virtual void ca l l_procedure (OSSS_ClientID_t c l i ent ID ,
7 OSSS_ObjectID_t objectID ,
8 OSSS_MethodID_t methodID ,
9 OSSS_Archive_t a r c h i ve) = 0 ;

Listing 6.18: The osss_rmi_channel<...>::client_if

Listing 6.18 shows the osss_rmi_channel<...>::client_if that is used
by the osss_port<osss_rmi_if<IF> > to initiate the communication. The
osss_port<osss_rmi_if<IF> >, or more precisely the stub (i.e. the osss_rmi_if<IF>),
translates the invocation of a remote method with a non void return parameter to a call of the
call_function(...) method. If the remote method invocation has a void return parameter
the call_procedure() method is invoked. The clientID, objectID, methodID (all typedefs
to unsigned int) will be described below. The OSSS_Archive_t is a typedef to the type
osss_serialisable_archive which will also be described in the following.

 bool set_temperature_threshold(Temperature low, Temperature high)

osss_software_task

Heater

OSSS_Archive_t call_function(OSSS_ClientID_t, OSSS_ObjectID_t, OSSS_MethodID_t, OSSS_Archive_t)

osss_object_socket<
 osss_shared<Heater> >

Heater_if

osss_port<osss_rmi_if<Heater_if> >

osss_rmi_
channel<…>

osss_rmi_channel<…>::client_if

Figure 6.22: Usage of the osss_rmi_channel<...>::client_if when performing an RMI [44]

Figure 6.22 illustrates the usage of the osss_rmi_channel<...>::client_if when
performing an RMI with a non void return parameter. In this example a software

274 6 Simulation

task controls a heater implemented as a Shared Object. Assuming the software task
calls the set_temperature_threshold(...) method on its OSSS-Port. Both the
osss_rmi_if<Heater_if> and the heater class inside of the Shared Object implement the
Heater_if interface. Thus, the call to the local set_temperature_threshold(...) method
of the osss_rmi_if<Heater_if> stub has to be transformed to a call of the "real" implemen-
tation inside of the heater class of the Shared Object. The first step in each RMI call is the
collection of all necessary information for performing the call. This information consists of
the unique identification of the process performing the method call (OSSS_ClientID_t), the
unique identification of the object implementing the called method (OSSS_ObjectID_t), the
unique identification of the method itself (OSSS_MethodID_t) and their parameters. After
collecting this information the call_function(...) or call_procedure(...) method of the
osss_rmi_channel<...>::client_if is invoked.

The client ID can be extracted from the process ID and the object ID can be extracted from
the osss_object_socket<...>. These IDs need to be unique with respect to the connected
RMI-Channel only. The method ID is extracted from the name of the method inside the
osss_rmi_if<Heater_if> stub. It only needs to be unique with respect to the class imple-
menting it. All parameters of the method need to be serialized into a single bit-vector of
type OSSS_Archive_t. As stated earlier in this document, all parameter types of a method
need to be serializable (i.e. derived from osss_serialisable_object). This is an important
pre-condition because serializable archives of type OSSS_Archive_t can only be constructed out
of osss_serialisable_objects.

Temperature low

OSSS_Archive_t archive

ChannelType::data_chunk[0] ChannelType::data_chunk[1] ChannelType::data_chunk[n] ...

Temperature high

sc_signal<sc_uint<8> >

ChannelType::data_chunk[0] ChannelType::data_chunk[1] ChannelType::data_chunk[n] ...

OSSS_Archive_t archive

Temperature low Temperature high

Application

RMI

Channel

RMI

Application

Figure 6.23: Serialization and de-serialization of method parameters when performing an RMI
[44]

Figure 6.23 shows the serialization and de-serialization of method parameters necessary for
performing an RMI. In our example above the two method parameters of type Temperature
need to be serializable objects. On the RMI Layer they are both added to a serializable archive.
The Channel Layer transforms the serializable archive to data chunks of the width of the signal
interface of the channel (e.g. sc_uint<8>) and transmits it through the channel by using its
specific protocol (e.g. using the xilinx_opb_channel<...> a burst transfer is initiated if the
number of data chunks is greater than eight). On the other side of the channel (i.e. at the slave
interface) data chunks are used to rebuild the serializable archive. Afterwards, the serializable
objects of type Temperature can be extracted from the serializable archive.

Figure 6.24 shows the simplified RMI protocol state machine of the
osss_rmi_channel<...>::client_if. When either the call_function(...) or the
call_procedure(...) method is called on the osss_rmi_channel<...>::client_if the
following states are traversed:

• request_for_method: The request for the call of a certain guarded method of a Shared
Object is initiated. The method ID of the requested method is send to the appropriate

6.5 Virtual Target Architecture Layer 275

request_for_method

wait_for_guard

submit_parameters

wait_for_completion

receive_return_parameter

end_of_transfer

write_blocking(...)

read_blocking(...)

write_blocking(...)

read_blocking(...)

read_blocking(...)

write_blocking(...)

[only at

single

transfer]

[only at

single

transfer]

OSSS RMI Channel OSSS Channel

call_function(...)/

call_procedure(...)

osss_rmi_channel<...>::

client_if

Figure 6.24: RMI protocol state machine of the osss_rmi_channel<...>::client_if [44]

osss_object_socket<...> by a call to the write_blocking(...) method of the OSSS-
Channel.

• wait_for_guard: The osss_object_socket<...> is polled by calling the
read_blocking(...) method on the OSSS-Channel. If the read_blocking(...)

method returns true the access to the Shared Objects guarded method has been granted.
If it return false the polling is continued.

• submit_parameters: The parameters of the called method are transferred through the
OSSS-Channel by calling the write_blocking(...) method.

• wait_for_completion: The osss_object_socket<...> is polled by calling the
read_blocking(...) method on the OSSS-Channel. If the read_blocking(...) method
returns true the requested method call on the Shared Objects has been completed. If it
return false the polling is continued.

• receive_return_parameter: The return parameter of the called method is transferred
through the OSSS-Channel by calling the read_blocking(...) method.

• end_of_transfer: The method ID of the requested method is submitted to the corre-
sponding osss_object_socket<...> by a call to the write_blocking(...) method of
the OSSS-Channel. This last protocol phase quits the method call on the Shared Object.

The osss_rmi_channel<...>::server_if

For the communication between the osss_object_socket<osss_shared<...> > and the
osss_rmi_channel<...> the osss_rmi_channel<...>::server_if is used. Listing 6.19
shows the services provided by the osss_rmi_channel<...>::server_if interface.

276 6 Simulation

1 virtual void l i s t e n _ f o r _ a c t i o n (OSSS_ClientID_t &c l i ent ID ,
2 OSSS_ObjectID_t &objectID ,
3 OSSS_MethodID_t &methodID ,
4 OSSS_MethodID_Record_t∗ methodID_record ,
5 bool i n i t i a l = true) = 0 ;
6

7 virtual void wait_for_guard (OSSS_ClientID_t c l i ent ID ,
8 bool is_busy = true) = 0 ;
9

10 virtual bool receive_in_params (OSSS_Archive_t &arch) = 0 ;
11

12 virtual bool provide_return_params (OSSS_ClientID_t c l i ent ID ,
13 OSSS_Archive_t &arch) = 0 ;
14

15 virtual void return_params_idle (OSSS_ClientID_t c l i ent ID ,
16 bool is_busy = true) = 0 ;

Listing 6.19: The osss_rmi_channel<...>::server_if interface

To understand how these interface methods are used we first will have a closer look at
the internal organization of the osss_object_socket<osss_shared<...> >. As shown in
Figure 6.25, the osss_object_socket<osss_shared<...> > mainly consists of a Shared Object,
a memory block used to store method parameters and at least one osss_object_socket_port.
The osss_object_socket_port is composed of an osss_port<...>, an RMI protocol process,
a memory called methodID_record and an invoke method process.

osss_port<
 osss_channel_if<
 osss_rmi_channel_server_if> >

osss_software_task

Heater
osss_object_socket<
 osss_shared<Heater> >

RMI protocol

invoke
method

osss_object_socket_port

osss_rmi_channel<…>::server_if

methodID_
record

 param memory

osss_rmi_
channel<…>

Figure 6.25: Organisation of the osss_object_socket<osss_shared<...> > container [44]

The osss_port<osss_channel_if<...> > is bound to an osss_rmi_channel<...> and
is used to access the osss_rmi_channel<...>::server_if that is implemented inside the
RMI-Channel. The RMI protocol process uses this port and performs the communication
with the RMI-Channel. The methodID_record is used by the RMI protocol process (shown
in Figure 6.26 as state machine) to store its state and to exchange information with the
invoke method process. The invoke method process is used for the communication with
the Shared Object inside the osss_object_socket<...>. It is some kind of "virtual client"
to the Shared Object because it represents all client processes (inside osss_modules or
osss_software_tasks) attached to the other side of the RMI-Channel that are registered by
this instance of the Shared Object. The invoke method process checks for a valid guard in order
to execute the requested method. If the guard is valid it executes the method of the Shared Object.

To get a better understanding of the RMI protocol executed inside the
osss_object_socket_port we will explain the state machine shown in Figure 6.26.
The syntax of the transition labels is:

Boolean Condition / Action

Multiple actions are separated by commas. For the sake of clarity conditions are written in
black letters while actions are written in red letters. Time passes only when performing a call to

6.5 Virtual Target Architecture Layer 277

the osss_port<osss_channel_if<...> > denoted by port->methodName(...), methodName

is one of the methods of the osss_rmi_channel<...>::server_if interface.

idle

check_guard

wait_for_access

access_granted

method_executing

method_execution_done

not action_to_handle

action_to_handle and

not methodID_record.getMethodID(clientID)

/methodID_record.setGrant(clientID, methodID, false),

 check_for_guard.notify(),

 port->wait_for_guard(...), port->listen_for_action(...)

action_to_handle and

methodID_record.getMethodID(clientID) and

not methodID_record.getGrant(clientID, methodID) and

not methodID_record.executionDone(clientID, methodID)

/port->wait_for_guard(...), port->listen_for_action(...)

action_to_handle and

methodID_record.getMethodID(clientID) and

methodID_record.getGrant(clientID, methodID) and

not methodID_record.isExecuting(clientID, methodID) and

not methodID_record.executionDone(clientID, methodID)

/port->wait_for_guard(..., false), port->listen_for_action(..., false),

 port->receive_in_params(...), execute_method.notify(),

 port->listen_for_action(...)

action_to_handle and

methodID_record.getMethodID(clientID) and

methodID_record.getGrant(cleintID, methodID) and

methodID_record.isExecuting(clientID, methodID) and

not methodID_record.executionDone(clientID, methodID)

/methodID_record.setGrant(clientID, methodID, false),

 port->return_params_idle(...), port->listen_for_action(...)

action_to_handle and

methodID_record.getMethodID(clientID) and

methodID_record.executionDone(clientID, methodID)

/methodID_record.setGrant(clientID, methodID, false),

port->return_params_idle(..., false),

port->listen_for_action(..., false),

 port->provide_return_params(...),

port->listen_for_action(...)

action_to_handle :=

not (objectID == objectID of plugged object) or

not (methodID in plugged object inner class)

1

2

3

4

5

0

/port->listen_for_action(...)

Figure 6.26: osss_object_socket_port RMI protocol state machine [44]

The condition action_to_handle checks whether the RMI initiated from an
osss_port<osss_rmi_if<IF> > needs to be handled by the Shared Object inside this
osss_object_socket<...> or not. The condition action_to_handle is an abbreviation for the
Boolean condition not (objectID == objectID of plugged_object) or for the Boolean condition
not (methodID in Shared Objects inner class) and checks if the required object is plugged into
the Shared Object or if the called method belongs to the plugged object, respectively.

The listen_for_action(...) method is called at the end of each Action-List because
it reads the current state of the RMI Channel and supplies input for the RMI protocol state
machine.

Assuming a method call from an osss_port<osss_rmi_if<IF> > that needs to be served
by the Shared Object plugged into the considered osss_object_socket<...> the state RMI
protocol machine is traversed as follows:

1. If the requested method (identified by its methodID) has not been registered in the
methodID_record for the requesting client (identified by its clientID) the check_guard

state is entered. When leaving the check_guard state the following actions are performed:

(a) The methodID and the clientID of its caller are stored in the methodID_record

(b) The invoke method process is triggered (check_for_guard.notify()) and checks if
the guard condition for the requested method is true

278 6 Simulation

(c) Call of the wait_for_guard(...) method on the port to the RMI-Channel and
thus signalizing the caller that it needs to wait until the guard of the Shared Object
evaluates to true.

(d) Call of the listen_for_action(...) method on the port to the RMI-Channel.

2. If the requested method has already been registered for the requesting client and the guard
has not been evaluated to true and the execution of this guarded method has not been
performed the wait_for_access state is entered. When leaving the wait_for_access

state the following actions are performed:

(a) Call of the wait_for_guard(...) method on the port to the RMI-Channel

(b) Call of the listen_for_action(...) method on the port of the RMI-Channel

3. If the requested method has already been registered for the requesting client and the guard
has been evaluated to true and the requested guarded method is not in execution and
the execution of this guarded method has not been finished the access_granted state is
entered. When leaving the access_granted state the following actions are performed:

(a) Call of the wait_for_guard(..., false) method on the port to the RMI-Channel
and thus signalizing the caller that the guard has evaluated to true and he can start
with the transfer of the method parameters within the next RMI protocol cycle

(b) Call of the listen_for_action(..., false) method on the port to the RMI-
Channel

(c) Call of the reveive_in_params(...) method on the port to the RMI-Channel
and thus copying all method parameters to the parameter memory of the
osss_object_socket<osss_shared<...> >

(d) The invoke method process it triggered and executes the requested guarded method
whose parameters are available in the param memory (see Figure 6.25)

(e) Call of the listen_for_action(...) method on the port to the RMI-Channel

4. If the requested method has already been registered for the requesting client and the guard
has been evaluated to true and the requested guarded method is in execution and the
execution of this guarded method has not been finished the method_executing state is
entered. When leaving the method_executing state the following actions are performed:

(a) For the requesting client and the requested method the grant is set to false inside the
methodID_record

(b) Call of the return_params_idle(...) method on the port to the RMI-Channel and
thus signalizing the caller that it has to wait until the return parameter is available

(c) Call of the listen_for_action(...) method on the port to the RMI-Channel

5. If the requested method has already been registered for the requesting client and the
execution of this guarded method has been finished the method_execution_done state
is entered. When leaving the method_execution_done state the following actions are
performed:

(a) For the requesting client and the requested method the grant is set to false inside the
methodID_record

(b) Call of the return_params_idle(..., false) method on the port to the RMI-
Channel and thus signalizing the caller that the return parameter is available and
that it has to read it upon the next RMI protocol cycle

(c) Call of the listen_for_action(..., false) method on the port to the RMI-
Channel

(d) Call of the provide_return_params(...) method on the port to the RMI-Channel
and thus transmitting the return parameter to the caller.

(e) Call of the listen_for_action(...) method on the port to the RMI-Channel

6.5 Virtual Target Architecture Layer 279

After having a closer look inside the RMI Layer we will now have a look at the Channel Layer
(see Figure 6.21). Most of the internals of the OSSS-Channel will be described in Section 6.5.3.
For this reason the next section will focus only on the interfaces of the OSSS-Channel.

The osss_abstract_basic_channel<...>::readwrite_if

The osss_abstract_basic_channel<unsigned int DataWidth, bool BiDirectional> is
the base class or interface for all channels describing a simple point-to-point connection. The
first template parameter specifies the data with of the data signal interface inside the channel.
The second template parameter specifies whether the point-to-point connection is unidirectional
or bidirectional. As described in the previous section channels usable with the RMI protocol
need to be at least bidirectional. In the following part of this section we only consider the
bidirectional model of the basic channel.

1 virtual bool write_blocking(const data_chunk& data) = 0;
2 virtual bool write_blocking(osss_serialisable_object& ser_obj) = 0;
3 virtual bool write_blocking(osss_serialisable_archive& ser_arch) = 0;
4

5 virtual bool read_blocking(data_chunk& data) = 0;
6 virtual bool read_blocking(osss_serialisable_object& ser_obj) = 0;
7 virtual bool read_blocking(osss_serialisable_archive& ser_arch) = 0;

Listing 6.20: The osss_abstract_basic_channel<...>::readwrite_if interface

The only interface the osss_abstract_basic_channel<..., true> provides is the
readwrite_if shown in Listing 6.20. It provides three different methods for a blocking write
and three different methods for a blocking read service. The difference between these read and
write methods is the granularity of data they accept. As shown in Figure 6.21 the transfer of
method parameters is performed at different granularities dependent on the layer of the OSSS
RMI protocol stack.

The readwrite_if is implemented by the readwrite transactor inside the channel. The
transactor implements the write_blocking(...) and read_blocking(...) methods by
describing how (serialized) objects are transmitted or received using the available low level signal
ports.

The osss_abstract_channel<...>::master_if

The osss_abstract_channel<class Arbiter, class AddressDecoder, unsigned int

MinDataWidth, unsigned int AddressWidth> is the base class or interface for all channels
describing a multiple master to multiple slave communication (e.g. a shared bus or a
crossbar-switch). The first template parameter is used to specify an arbiter class for the channel.
Arbitration becomes necessary when multiple masters require access to the same shared medium.
The second template parameter can be used to specify a centralized address decoder that is
often used in shared buses (e.g. the ARM AMBA bus has a centralized address decoder).
The third template parameter specifies the minimal accessible data width (in the most cases
this should be eight bit). This information is used to construct the data type of data_chunk

(more precisely: typedef std::vector<sc_biguint<MinDataWidth> > data_chunk). The
last template parameter is used to specify the width of the address bus.

For example the Xilinx On-Chip Peripheral Bus used in this thesis implements an
osss_abstract_channel<...> with the following configuration (compatible to [105]):

• Arbiter = osss_static_priority or osss_least_recently_used,

• AddressDecoder = osss_no_address_decoder,

• MinDataWidth = 8 and

• AddressWidth = 32.

280 6 Simulation

1 virtual bool write_block ing (address_type slave_base_addr ,
2 const data_chunk& data) = 0 ;
3 virtual bool write_block ing (address_type slave_base_addr ,
4 o s s s _ s e r i a l i s a b l e _ o b j e c t& ser_obj) = 0 ;
5 virtual bool write_block ing (address_type slave_base_addr ,
6 o s s s _ s e r i a l i s a b l e _ a r c h i v e& ser_arch) = 0 ;
7

8 virtual bool read_blocking (address_type slave_base_addr ,
9 data_chunk& data) = 0 ;

10 virtual bool read_blocking (address_type slave_base_addr ,
11 o s s s _ s e r i a l i s a b l e _ o b j e c t& ser_obj) = 0 ;
12 virtual bool read_blocking (address_type slave_base_addr ,
13 o s s s _ s e r i a l i s a b l e _ a r c h i v e& ser_arch) = 0 ;

Listing 6.21: The osss_abstract_channel<...>::master_if interface

The osss_abstract_channel<...> provides a master and a slave interface. Listing 6.21
shows the master interface with blocking read and blocking write methods. In addition to
the readwrite interface of the osss_abstract_basic_channel<...> the methods shown in
Listing 6.21 need to address a certain slave since more than a single slave can take part. The
granularity of the data has already been explained in the previous sections.

The osss_abstract_channel<...>::slave_if

The slave interface of the osss_abstract_channel<...> shown in Listing 6.22 is the complement
to the master interface. It provides blocking read as well as blocking write methods of the tree
different data granularities. Since the slave cannot perform any action on its own, but can only
react on a master’s request, the wait_for_action(...) method is provided.

1 virtual void wait_for_act ion (const address_type& base_address ,
2 const act ion_type& a c t i o n) = 0 ;
3

4 virtual bool read_blocking (data_chunk& data) = 0 ;
5 virtual bool read_blocking (o s s s _ s e r i a l i s a b l e _ o b j e c t& ser_obj) = 0 ;
6 virtual bool read_blocking (o s s s _ s e r i a l i s a b l e _ a r c h i v e& ser_arch) = 0 ;
7

8 virtual bool write_block ing (const data_chunk& data) = 0 ;
9 virtual bool write_block ing (o s s s _ s e r i a l i s a b l e _ o b j e c t& ser_obj) = 0 ;

10 virtual bool write_block ing (o s s s _ s e r i a l i s a b l e _ a r c h i v e& ser_arch) = 0 ;

Listing 6.22: The osss_abstract_channel<...>::slave_if interface

The wait_for_action(...) method returns the address and the kind of action requested by
a master. Up to now we only support two action types: READ_ACTION and WRITE_ACTION. When
a READ_ACTION is sent by a master the slave has to respond with a call to write_blocking(...).
A WRITE_ACTION needs to be responded by a read_blocking(...) call.

1 osss_port<osss_channel_if<ChannelType::slave_if> > input_port;
2

3 osss_memory<ChannelType::data_type, ChannelType::address_type> memory;
4 ChannelType::address_type address_offset;
5

6 void slave_proc() {
7 ChannelType::data_chunk data;
8 ChannelType::action_type requested_action;
9 ChannelType::address_type requested_address;

10 wait() ;
11

12 while(true) {
13 input_port−>wait_for_action(requested_address, requested_action);
14

15 switch (requested_action) {
16 case ChannelType::WRITE_ACTION :
17 input_port−>read_blocking(data);
18 memory.write(requested_address − address_offset, data);
19 break;
20

21 case ChannelType::READ_ACTION :

6.5 Virtual Target Architecture Layer 281

22 input_port−>write_blocking(memory.read(requested_address − address_offset));
23 break;
24 }
25 }
26 }

Listing 6.23: Using an osss_abstract_channel<...>::slave_if to implement a simple
memory controller

Listing 6.23 shows the usage of an osss_abstract_channel<...>::slave_if to imple-
ment a simple memory controller. The slave_proc process is a CTHREAD that calls the
wait_for_action(...) method on the input_port first. The wait_for_action(...) method
blocks or waits until an action for this memory controller has been detected. After the
wait_for_action(...) method returned from its call the requested action is evaluated. If a
WRITE_ACTION has been issued, the slave reads the data from the bus and stores them into the
memory at the requested address (modified by a user-defined offset). When a READ_ACTION has
been issued the slave writes data from the memory back to the channel.

Summary

osss_rmi_channel

<xilinx_opb_channel<> >

RMI protocol

invoke

method

osss_port<osss_shared_if<IF> >

osss_software_task

osss_object_socket

< osss_shared

<UserClass,

Scheduler> >

osss_object_socket_port

osss_rmi_channel<…>::client_if

osss_rmi_channel<…>::server_if

osss_abstract_

channel<…>::master_if

osss_abstract_

Channel<…>::slave_if

main()

argument memory

osss_port<

osss_channel_if<

osss_rmi_channel_server_if> >

methodID_

record

osss_port<osss_channel_if<

osss_rmi_channel_client_if> >

xilinx_microblaze

m_Producer

m_Buffer

m_Channel1
m_Processor

to m_Consumer1

to m_Consumer2

1

8

2 3
4

5

7
6

9

6

9

Figure 6.27: Processes communicating through OSSS RMI [44]

Figure 6.27 depicts the RMI protocol stack of the HW/SW interface from Figure 6.20. The
producer is mapped onto a Xilinx MicroBlaze processor that communicates with the buffer
Shared Object by using the RMI protocol over a Xilinx OPB Channel.

When a remote method is called on a local port osss_port<osss_shared_if<IF> > 1©,
the RMI protocol becomes initiated. This implies a sequence of the following operations:

• 2© serialization of the arguments of the called method (at this point the serialise()

method is called on each argument of a user-defined class; for all built-in types a predefined
serialization action takes place),

• 3© the client transactor of the OSSS-RMI-Channel performs the RMI protocol which
includes the submission of the caller’s client ID, the callee’s object ID together with the
ID of the called method and the serialized arguments,

282 6 Simulation

• 4© the master transactor of the Xilinx OPB Channel establishes the signal level commu-
nication and transforms the method based communication from the RMI-Channel client
transactor into a signal based 5© OPB protocol compliant transaction.

The RMI server process inside the object socket port 6© performs a method call on the
RMI-Channel server interface 7© parallel to steps 1© - 4©. This call is translated by the OPB
slave transactor 8© to a “listening for action” on the shared bus signals 5©.

When a remote method call to the "listening" object socket is detected the client ID, method
ID and the serialized arguments are received by the protocol process 6©. The serialized method
arguments are written to an argument memory inside the object socket. In the last step the
deserialise() method (as counterpart to serialise()) is called on all arguments and the
method call on the buffer Shared Object is performed 9©.

The same protocol has to be performed on the way back from the remote object to the
caller, when a method with a non-void return argument has been called. Moreover, this protocol
would have been the same for a hardware module instead of a software task as initiator of the
communication.

6.5.3 OSSS-Channels10

osss_rmi_point_to_point_channel<8,8>

xilinx_opb_channel<>

s
la

v
e
 t

ra
n
s
a
c
to

r signals

…

m
a
s
te

r
tr

a
n
s
a
c
to

r

osss_rmi_channel<…>

m
a

s
te

r
tr

a
n

s
.

s
la

v
e

 t
ra

n
s
.

s
la

v
e

 t
ra

n
s
a

c
to

r

arbiterm
a

s
te

r
tr

a
n

s
.

OSSS-Channels

Figure 6.28: Relationship between OSSS-Channels and RMI containers

Figure 6.28 demonstrates the relationship between OSSS-Channels and the generic RMI
container. OSSS-Channels define the internal structure of the RMI channel. Basically an
OSSS-Channel consists of transactors which translate from a method-based communication
to a communication on signal level. The method-based communication follows the generic
RMI protocol. The OSSS-Channel master transactor translates a sequence of read or write
transactions to a sequence of signal value changes. These signal changes follow a certain
communication protocol (e.g. an IBM OPB protocol). The OSSS-Channel slave transactors
serve the same purpose for the way back from a certain physical communication protocol to the
generic RMI protocol. The signals between the master and slave transactors can be wired in

10This section is based on own previous work [77, 78].

6.5 Virtual Target Architecture Layer 283

a flexible way to enable different communication topologies, ranging from point-to-point, over
shared bus to a cross-bar switch topology.

The OSSS-Channel approach is a concept that enables the designer to model the link and
physical protocol layers independently from the RMI layer (representing the network, transport,
session and presentation layers). Building the OSSS-Channel on top of the object oriented
features provided by OSSS enables the transfer of both simple data types (excluding pointers (*)
and references (&)) and objects (containing data members of simple and complex type, including
class types and array types).

In the following subsections the OSSS-Channel approach is introduced. It starts with a
general overview by presenting the key concepts, followed by a modeling example of a simple
point-to-point connection using an OSSS-Channel. After describing these basics, multi-master
OSSS-Channels are introduced. This is done by the example of the xilinx_opb_channel<...>

that has already been used in the previous sections.

6.5.3.1 Key Concepts

The OSSS-Channel concept is based on the separation of port, interface and implementation
known from SpecC and SystemC channels and encapsulates a user-defined protocol and physical
connection. The separation principle allows the designer to choose from different implementations
of a channel as long as they implement the same interfaces. This concept allows the separation
of the application from communication details. Additionally, it eases the exploration of different
communication protocols for a certain design through replacing different channels of the same
interfaces (“plug and play”). This is assisted by storing OSSS-Channels in the library of the
Virtual Target Architecture for easy reuse.

The OSSS-Channel provides mechanisms to generate the necessary communication infras-
tructure. The internal structure consists of transactors, arbiters, address decoders and a signal
level interconnect network. The generation of the internal structure is invoked by the binding of
an OSSS-Port of a module to an OSSS-Channel or by the binding to an RMI-Channel container
that encapsulates an OSSS-Channel. The transactors provide a method based interface to the
outside of the channel and a signal based interface to the signal network inside the channel.
Transactors implement the method interface and utilize the signal interface to realize the physical
layer protocol. If more than one master is connected to the channel an arbiter handles the
requests. The arbitration mechanism is specified by a user-defined scheduling policy (similar to
the scheduling of Shared Objects, actually the same scheduling algorithms can be used).

The main features of the OSSS-Channel are:

• allows to write user-defined link and physical layer protocols

• allows to connect multiple master and slave modules to the same instance of an OSSS-
Channel

• offers a mechanism to model communication between different modules through method
calls

• allows to transfer any valid C++/SystemC data types including classes (no pointers (*)
and references(&))

• follows the hierarchical channel design concept known from SpecC and SystemC (separation
of port, interface and implementation)

• supports the automatic (and dynamic11) generation/construction of the communication
network inside of an OSSS-Channel (invoked by the binding of an OSSS-Port to an
OSSS-Channel). This includes the generation of:

– transactor instances

– arbiter instances with user-defined schedulers

– address decoders
11during SystemC elaboration phase

284 6 Simulation

– signal network connecting these channel internals

• allows to create/expand a library of different channel implementations

• can be directly translated into a synthesizable RTL representation

6.5.3.2 A Simple Point-To-Point Channel

As an introductive example, we will present an OSSS-Channel implementing a uni-
directional point-to-point connection as shown in Figure 6.29. The example con-
sists of two modules (producer and consumer) which communicate directly via an
osss_simple_point_to_point_channel<...>. The producer initiates write transfers on the
channel while the consumer reads from the channel and consumes the transferred data.

valid_line

SHARED_

SIGNAL_LIST

data_lines

...

osss_simple_point_to_point_channel<8>

producer consumer

<
<

T
ra

n
s
a

c
to

r>
>

w
ri
te

r

re
a

d
e

r
<

<
T

ra
n

s
a

c
to

r>
>

data_in

valid_in

data_out

valid_out

write_if read_if

osss_port<osss_channel_if<<write_if> > osss_port<osss_channel_if<<read_if> >

Figure 6.29: OSSS-Channel model of a unidirectional point-to-point connection [78]

Figure 6.30 shows the layer concept of the OSSS-Channel used to implement the
osss_simple_point_to_point_channel<...>. The presented point-to-point channel imple-
ments the osss_abstract_basic_channel that contains two inner interface classes, write_if

and read_if. These interfaces define the methods that have to be implemented by the transactors
of the channel implementation.

In Figure 6.30 these classes are located at the Channel Interface Layer. The design methodol-
ogy of the OSSS-Channel requires each user-defined channel to implement a certain pre-defined
method interface. Otherwise the separation of application and communication and the exchange-
ability of channels, providing the same interface but containing different protocol and signal
level implementations, cannot be guaranteed.

The Channel Implementation Layer contains the transactors that transform the method
based communication initiated from outside the channel to a signal based communication inside
the channel.

The bottom layer, called Channel Access Layer, contains the osss_port_to_channel<...>

port that serves two purposes. Firstly, it creates the channel internals (transactors and their
connections to the inner channel signal interface) upon port to interface binding. And secondly, it
provides the operator->() that is used for calling the methods implemented by the transactors.
In the SystemC terminology this kind of module to channel communication is called Interface
Method Call (IMC).

The uppermost layer is called Channel Generation/Service Layer. It provides services for the
signal level connection between transactors inside the channel and is described in more detail
later in this section.

In our simple example in Figure 6.29 the ports of the producer and consumer
modules are bound to the point-to-point channel. Each port is declared using the
osss_port<osss_channel_if<...> > whose template parameter specifies the method interface
for accessing the channel (see Listing 6.24). The implementation of the method interface classes
is done inside the channels’ transactors. Except for the channel internals (transactors and
their signal based interconnection), our port to interface binding is compliant to the SystemC
port to interface binding methodology. Thus, the point-to-point channel can be used like an

6.5 Virtual Target Architecture Layer 285

osss_basic_channelosss_signal_base

<<Interface>>

osss_abstract_basic_channel

data_width:uint

<<Interface>>

read_if

+read_blocking(out data:data_chunk): bool

+read_blocking(out ser_obj:osss_serialisable_object): bool

+read_blocking(out ser_arch:osss_serialisable_archive): bool

osss_simple_point_to_point_channel

data_width:uint

<<Transactor>>

writer

<<Transactor>>

reader

osss_port<osss_channel_if<...> >

+operator->(): sc_interface

Method_IF:typename

<<bind>>

<<create>>

{if Method_IF

== write_if}

<<create>>

{if Method_IF

== read_if}

Channel Interface Layer

Channel Implementation Layer

Channel Generation/Service Layer

Channel Access Layer

<<Interface>>

write_if

+write_blocking(in data:data_chunk): bool

+write_blocking(in ser_obj:osss_serialisable_object): bool

+write_blocking(in ser_arch:osss_serialisable_archive): bool

Figure 6.30: Layer concept of the OSSS-Channel methodology used to implement a simple
point-to-point channel [78]

sc_signal with the possibility to transfer any user-defined data type and defining the physical
implementation via a constrained set of signals12.

1 typedef osss_simple_point_to_point_channel<8> Channel_t;
2

3 OSSS_REGISTER_TRANSACTOR(Channel_t::writer, Channel_t::write_if);
4 OSSS_REGISTER_TRANSACTOR(Channel_t::reader, Channel_t::read_if);
5

6 SC_MODULE(producer) {
7 osss_port<osss_channel_if<Channel_t::write_if> > out;
8

9 void producer_proc() {
10 ...
11 out−>write_blocking(...);
12 ...
13 }
14 ...
15 };
16

17 SC_MODULE(consumer) {
18 osss_port<osss_channel_if<Channel_t::read_if> > in;
19

20 void consumer_proc() {
21 ...
22 in−>read_blocking(...);
23 ...
24 }
25 ...
26 };

Listing 6.24: Point-to-point example Channel Access Layer

As already shown in Figure 6.30 the write_if requires the implementation of the
write_blocking(...)13 method. This blocking interface method takes an object of type
osss_serialisable_object. That means each object which should be transferred via an

12An sc_signal of a user-defined data type has the bit with of the user-defined data type (i.e. the bit width
resulting from a concatenation of all data members).

13Blocking is meant in the sense of calling a method and not returning from that call until its execution has
been finished.

286 6 Simulation

OSSS-Channel has to be derived from the osss_serialisable_object class. Thus, each class
inheriting from osss_serialisable_object has to implement the purely virtual methods
serialise() and deserialise(). These methods declare which members of the class have to
be serialized and de-serialized (see Section 6.6).

The osss_serialisable_object class enables the serialization and de-serialization of a
data object in order to transfer it by the low level protocol via an arbitrary bit width constrained
set of data_line signals inside the channel. The width of the data_lines signal has to be
determined during declaration of the osss_simple_point_to_point_channel<...> through
its template parameter14 (see Listing 6.24). This use of the serialisable object base class is
necessary to allow the transfer of arbitrary (user-defined) data types by every OSSS-Channel
without a modification of the protocol inside of the channel. Thus, guaranteeing the separation
concept of application/computation and communication.

1 class w r i t e r : public base_type : : write_if {
2 public :
3 sc_out< sc_uint< dataWidth > > data_out ;
4 sc_out<bool> val id_out ;
5

6 OSSS_GENERATE {
7 osss_connect (osss_reg_port (data_out) ,
8 osss_shared_signal (" data_l ines ")) ;
9

10 osss_connect (osss_reg_port (val id_out) ,
11 osss_shared_signal (" v a l i d _ l i n e ")) ;
12 }
13

14 virtual bool write_blocking (osss_serialisable_object& ser_obj) {
15 val id_out = true ;
16 wait (2) ;
17 val id_out = fa l se ;
18 ser_obj . serialise_obj () ;
19 while (! ser_obj . complete ()) {
20 ser_obj . write_chunk_to_port(data_out) ;
21 wait () ;
22 }
23 return true ;
24 }
25 } ;
26

27 class r eader : public base_type : : read_if {
28 public :
29 sc_in< sc_uint< dataWidth > > data_in ;
30 sc_in<bool> val id_in ;
31

32 OSSS_GENERATE {
33 osss_connect (osss_shared_signal (" data_l ines ") ,
34 osss_reg_port (data_in)) ;
35

36 osss_connect (osss_shared_signal (" v a l i d _ l i n e ") ,
37 osss_reg_port (va l id_in)) ;
38 }
39

40 virtual bool read_blocking (osss_serialisable_object& ser_obj) {
41 while (va l id_in . read () == true) wait () ;
42 while (va l id_in . read () == fa l se) wait () ;
43 while (! ser_obj . complete ()) {
44 ser_obj . read_chunk_from_port(data_in) ;
45 wait () ;
46 }
47 ser_obj . deserialise_obj () ;
48 return true ;
49 }
50 } ;

Listing 6.25: Point-to-point example Channel Implementation Layer

14Thus osss_simple_point_to_point_channel<8> declares a point-to-point channel with a data_lines signal
width of 8 bits.

6.5 Virtual Target Architecture Layer 287

We will now have a closer look at the channel internals, i.e. the implementation of the
transactors and their signal level interconnection.

Listing 6.25 shows the implementation of the writer and the reader transactor of the
Channel Implementation Layer. The transactors themselves describe the communication
protocol by implementing the interfaces of the Channel Interface Layer. The writer transactor
implements the write_if and the reader transactor implements the read_if. Figure 6.30
shows that both, the write and the read interface inherit from the osss_signal_base class of
the Channel Generation/Service Layer. This base class provides services for the signal based
interconnection of the transactors.

Each transactor has an RTL SystemC signal interface consisting out of ports and information
about their binding to the signal network inside of the channel. This RTL signal interface
is necessary to provide the synthesizable low level port interface which is used to establish
the signal level communication between the modules connected to the channel. The signal
level communication protocol itself is encapsulated by the transactors. They implement the
write_blocking(...) and the read_blocking(...) methods by describing how (serialized)
objects are transmitted or received using the available signal ports.

In our example a user-defined protocol with two signal level ports (data_out/in and
valid_out/in) for each transactor is chosen. The valid port is used to manage the control and
the data port is used to transfer the serialized object. The width of the data port is defined by
a channel template parameter. These ports are bound to the channel’s communication network
inside the OSSS_GENERATE block statement.

In this section the ports of each transactor are connected by the osss_connect(...) service.
This connection service is used inside the writer transactor to connect the data_out and the
valid_out ports to a shared signal called data_lines and valid_line respectively. It is used
the other way round in the reader transactor, where connections are defined from the shared
signals to the respective ports. In Figure 6.29 this signal based interconnection is visualized by
the SHARED_SIGNAL_LIST which contains the shared signals data_lines and valid_line.

The write_blocking(...) method of the reader transactor generates a control signal
that marks the beginning of a data transfer and transmits it via the valid_out port. After
this notification the serializable object’s attributes are written to a bit vector by invoking the
serialise_obj() method. This bit vector is divided into chunks of the size of the data_out

port. The write_chunk_to_port(...) method is executed in a loop until the transmission of
the whole bit vector has been completed.

The read_blocking(...) method of the reader transactor is the inverse of the
write_bocking(...) method described above. It awaits the beginning of a transmission
and collects the received data chunks until the serializable object is received completely. In the
last stage it rebuilds the serializable object by assigning the bit vector back to the attributes of
the respective object (deserialise_obj()).

The writer and reader transactors inside of the channel are automatically in-
stantiated and connected to the signal network (shared signals) when a port
of the type osss_port<osss_channel_if<...> > is bound to the channel. The
OSSS_REGISTER_TRANSACTOR macro is used to define which transactor has to be generated
in dependence of the method interface it implements (see Listing 6.24).

When transforming an OSSS-Channel into a synthesizable RTL representation the transactors
become part of the connected modules. In the modeling phase a transactor belongs to the
OSSS-Channel while after high level synthesis it belongs to the connected module. Figure 6.31
shows the synthesis result of the unidirectional point-to-point channel presented during this
section. Both writer and reader transactors are “inlined” into the producer and consumer
module (denoted by p∗ and c∗). Or more precisely, the protocol state machines of the transactors
become inlined into the producer and consumer state machines. The ports of the transactors
become ports of the producer and consumer modules. The shared signal list from inside the
OSSS-Channel becomes converted into a simple signal connection.

288 6 Simulation

producer
writer

data_out

valid_out

data_in

valid_in

consumer
reader

sc_signal<sc_uint<8> >

state machine
producer

state machinestate machine
consumerwrite protocol read protocol

state machine

sc_signal<bool>

c*p*

Figure 6.31: Synthesis result of the unidirectional point-to-point channel
(osss_simple_point_to_point_channel<8>) [78]

6.5.3.3 A Channel with Arbitration

In the previous section an OSSS-Channel constituting a simple point-to-point connection
was introduced. Now we consider an OSSS-Channel where multiple master modules use the
same transactor type to initiate transactions. Generally, if several processes want to initiate
transactions on the same channel, an arbitration mechanism becomes necessary. This section
introduces an OSSS-Channel with a generic arbitration mechanism.

The usage of OSSS-Channels with arbitration is very similar to simple point-to-point
connection channels. It uses the same binding, generation and communication mechanisms as
discussed previously. Additionally, the user has to distinguish between master and slave method
interfaces which provide more generation and connection services for the signal connection
inside the channel. This rich set of connection services enables the channel designer to describe
different communication architectures like buses or crossbar switches. Besides these services it
is possible to integrate user-defined arbiters and user-defined address decoders typically found
in state-of-the-art bus implementations [145, 84].

A multi master/slave OSSS-Channel which is used by several modules can implement different
communication protocol schemes defined in its transactors. Each module initiating transactions
(master module) on such an OSSS-Channel uses a master transactor. Modules that only react
on initiated transactions (slave module) use a slave transactor.

There are two possible approaches to activate a slave module upon a master request. One
relies on a central address decoder activating the passively waiting slaves. The other is to keep
the slaves listening to the bus and let them activate themselves when requested (broadcast). We
will call the first address decoding centralized address decoding while the second one will be
considered as distributed address decoding.

The OSSS-Channel supports both centralized and distributed address decoding. Either, by
explicitly specifying an address decoder or by using the predefined osss_no_address_decoder

dummy, which indicates the use of a distributed address decoding scheme.
Figure 6.32 shows the software architecture concept used to implement a channel with

arbitration. Comparing it to Figure 6.30, it contains additional classes that refine the Channel
Generation/Service Layer. This refinement is necessary because of the introduced master-/slave
communication scheme, the more complex inner channel signal interconnections and the arbiter
and address decoder integration. The Channel Interface Layer serves the same purpose as in the
point-to-point channel. It primary enables the separation of application and communication and
secondary the exchangeability of the Channel Implementation Layer. The master_if declares
blocking write and read methods in the same manner as the write and the read interfaces from
Figure 6.30. The additional slave_base_address parameter is used to specify the destination of
the data transfer. Since a slave does not invoke any action on its own, the slave_if contains the
additional wait_for_action(...) method. Called once it waits until the corresponding slave
is accessed by a master and returns the base address and the required action (could either be a
read- or a write-action) requested by the master. Dependent on the action, the corresponding

6.5 Virtual Target Architecture Layer 289

osss_basic_channelosss_signal_base

<<Interface>>

osss_abstract_channel

arbiter:typename

address_decoder:typename

data_width:uint

address_width:uint

xilinx_opb_channel

<<Transactor>>

master

<<Transactor>>

slave

osss_port<osss_channel_if<...> >

+operator->(): sc_interface

Method_IF:typename

<<bind>>

<<create>>

{if Method_IF

== master_if}

<<create>>

{if Method_IF

== slave_if}

Channel Interface Layer

Channel Implementation Layer

osss_master_base osss_slave_base osss_channel

arbiter:typename

address_decoder:typename

<<Interface>>

slave_if

+wait_for_action(out base_addr:addr_type,out action:action_type): void

+write_blocking(in data:data_chunk): bool

+write_blocking(in ser_obj:osss_serialisable_object): bool

+write_blocking(in ser_arch:osss_serialisable_archive): bool

+read_blocking(out data:data_chunk): bool

+read_blocking(out ser_obj:osss_serialisable_object): bool

+read_blocking(out ser_arch:osss_serialisable_archive): bool

xilinx_opb_arbiter

scheduler:typename

osss_no_address_decoder

osss_controller_base

osss_arbiter_baseosss_address_decoder_base

<<Interface>>

osss_scheduler_if

osss_static_priority

Channel Generation/Service Layer

Channel Access Layer

<<Interface>>

master_if

+write_blocking(in slave_base_addr:addr_type,in data:data_chunk): bool

+write_blocking(in slave_base_addr:addr_type,in ser_obj:osss_serialisable_object): bool

+write_blocking(in slave_base_addr:addr_type,in ser_arch:osss_serialisable_archive): bool

+read_blocking(in slave_base_addr:addr_type,out data:data_chunk): bool

+read_blocking(in slave_base_addr:addr_type,out ser_obj:osss_serialisable_object): bool

+read_blocking(in slave_base_addr:addr_type,out ser_arch:osss_serialisable_archive): bool

Figure 6.32: Layer concept of the OSSS-Channel methodology used to implement a channel
with arbitration [78]

write_blocking(...) or read_blocking(...) method of the slave is executed.

VIA_LIST

OPB_ABus

OPB_DBus

AND_OR_

OPB_select OPB_select

OPB_ABus

OPB_DBus

Sl_DBus

<
<

T
ra

n
s
a

c
to

r>
>

s
la

v
e

<
<

T
ra

n
s
a

c
to

r>
>

M_select

M_ABus

M_DBus

OPB_DBus

M_request

OPB_MGrant

<
<

T
ra

n
s
a

c
to

r>
>

M_select

M_ABus

M_DBus

OPB_DBus

M_request

OPB_MGrant

m
a

s
te

r

clock_port

reset_port

OR_VIA_LIST

SIGNAL_LIST

SHARED_

OPB_select

OPB_ABus

OPB_DBus

Sl_DBus

xilinx_opb_channel<xilinx_opb_arbiter<osss_static_priority> >, osss_no_address_decoder>

osss_static_priority

M
U

L
T

I_

S
IG

N
A

L
_

L
IS

T

M
_

re
q

u
es

t

... ...

...

...

<
<

T
ra

n
s
a

c
to

r>
>

slave_if

master_if

master_if

s
la

v
e

consumer0

consumer1

M
_

g
ra

n
t

producer1

producer0

xilinx_opb_arbiter

m
a

s
te

r

(Allows Multiple Bindings)

(Method)

Interface

(Method or CThread)

Process

Legend:

Port

Multi Port

osss_port<osss_channel_if<<master_if> >

osss_port<osss_channel_if<<master_if> >

osss_port<osss_channel_if<<slave_if> >

Figure 6.33: The OSSS-Channel model of a channel with arbitration
(xilinx_opb_channel<...>) [78]

Figure 6.33 depicts an extract of the OSSS-Channel simulation model internals using a bus
architecture with distributed address decoding as specified in [151, 105]. It shows three modules
connected to different transactors. The producer0 and producer1 modules are connected

290 6 Simulation

to a master transactor and communicate with it through methods specified in master_if.
Module consumer0 is a slave module and is connected to a slave transactor. The low level signal
interfaces of the master and the slave transactor are significantly different from each other. Master
transactors are not only connected to the shared signals for data and address communication
but also to an arbiter component. In addition to the SHARED_SIGNAL_LIST, used to connect
the writer and the reader transactor in Figure 6.29, the OR_VIA_LIST, AND_OR_VIA_LIST and
MULTI_SIGNAL_LIST have been introduced in Figure 6.33. The OR_VIA_LIST contains elements
that perform a logical “OR” (∨) on its input signals. The AND_OR_VIA_LIST contains elements
that perform a logical “AND” (∧) on a certain pair of input signals and afterwards a logical
“OR” (∨) on all the outputs of the previously AND-connected stage. The MULTI_SIGNAL_LIST

contains elements that are collecting signals which are not shared but unique to each transactor
(e.g. the request and grant signals from the master transactors to the arbitration unit). All
these lists and their components are part of the Channel Generation/Service Layer. The lists
and the components are scalable which gives the flexibility to add an arbitrary number of master
or slave transactors to the channel (see consumer1 and its slave transactor for an illustration of
what happens if a second slave is attached to the channel).

Another interconnection service provided by the Channel Generation/Service Layer is the
osss_mux_via that models a scalable multiplexer. The user has to specify at least a single
output, a single control and one or arbitrary input signals. While the On-Chip Peripheral Bus
(OPB) modeled in Figure 6.33 uses the and_or_via to implement a distributed multiplexer, the
osss_mux_via is intended to model a centralized multiplexer.

The xilinx_opb_arbiter is a modules with a process to implement a user-definable schedul-
ing policy. To retain the interchangeability of schedulers, each scheduler that should be used
inside such an arbiter block has to implement the osss_scheduler_if. This scheduler interface
belongs to the Channel Interface Layer (see Figure 6.32) and is the same scheduler interface as
used for Shared Objects.

O
R

O
R

O
R

A
N

D
A

N
D

A
N

D
A

N
D

M_select

M_ABus

M_DBus

OPB_DBus

M_request

OPB_MGrant

M_select

M_ABus

M_DBus

OPB_DBus

M_request

OPB_MGrant

master

master

clock_port

reset_port

producer0

producer1

consumer0

OPB_select

OPB_ABus

OPB_DBus

Sl_DBus

slave

master protocol
state machinestate machine

producer1

state machinestate machine
consumer0slave protocol

state machine
arbiter & scheduler

p0*

p1*

c0*

xilinx_opb_arbiter

Figure 6.34: Synthesis result of the channel with arbitration [78]

Figure 6.34 shows the synthesis result for the OSSS-Channel model of the multi master/slave
design. Each transactor once contained in the xilinx_opb_channel<...> is now part of the
respective module (denoted by p0∗, p1∗ and c0∗). The interconnections inside the channel have
been transformed into a communication network consisting of signals, and-gates and or-gates.

Assuming that both, the module and the associated transactor, are described in OSSS they
form a synthesizable module or entity which is directly connected to the generated interconnection

6.6 Mapping 291

network. Like in the synthesis result of the simple point-to-point connection, the master and
slave protocol state machines are directly connected to the respective producer/consumer state
machines (referred to as method inlining during the synthesis step).

The xilinx_opb_arbiter together with its embedded osss_static_priority scheduler
are synthesized to a single state machine. The inlining of the scheduler to the arbiter state
machine works in almost the same manner as the inlining of the producer/consumer with the
master/slave state machines.

The multi ports of the arbiter used by the request and grant signals of the master transactors
have been transformed to single ports. The mandatory clock and reset ports of the producer
and consumer module have been omitted in Figure 6.3415.

6.6 Mapping16

The mapping step from the Application Layer to the Virtual Target Architecture Layer replaces
hardware components by OSSS modules, maps software tasks onto processors and wraps Shared
Objects by so called Object Sockets. Communication links between software tasks or hardware
modules and Shared Objects are replaced by RMI-Channels.

Application

Virtual Target

Architecture

(VTA)

osss_port<osss_shared_if<IF> >

osss_software_task osss_shared<…>

IF
sc_module

Figure 6.35: OSSS Application to Virtual Target Architecture Mapping (top-down) [44]

The mapping of Hardware Modules, Software Tasks, and communication links from the
Application Layer Model to an Execution Platform can be performed under different constraints:

top-down: In a top-down approach the components and the architecture of the target platform
is not fixed. Architecture component allocation and binding of application layer hardware
modules, software tasks, and communication links to these components is an iterative
process to find the optimal execution platform. This approach requires a flexible target ar-
chitecture model to express different component allocations and interconnection topologies
among these components.

bottom-up: In the bottom-up approach the target architecture is more or less fixed. Take
for example a System on Chip consisting out of general purpose software processor part
including standard peripherals. In this case the application model needs to be highly
flexible to be mapped onto the pre-defined architecture.

However, enabling both approaches, a flexible and target architecture independent Application
Layer model and a configurable and extendable Architecture Layer model is needed. Both
approaches have in common that the mapping of abstract communication links from Application

15clock ports of a module connected to a channel must be in the same clock domain (i.e. driven by the same
physical clock)

16This section is based on own previous work [44].

292 6 Simulation

Layer models to physical communication channels in Virtual Target Architecture models is
necessary. In the top-down approach this step is usually called communication refinement.
An abstract communication channel is refined to a concrete protocol implementation on a
physical channel. For the bottom-up approach the term "communication mapping" seems to be
more appropriate since the channel implementation is not derived directly from the application
requirements.

The OSSS methodology is targeted on the mapping of an Application to a Virtual Target
Architecture without17 the need for a manual communication refinement. Starting with an
application model consisting of communicating processes using method calls, several manual
refinement steps are needed to end up with a synthesizable18 description of the application.
These steps involve:

• hardware/software partitioning (which parts of the application or algorithm are imple-
mented in software, and which parts are implemented in hardware),

• system architecture definition (allocation of architectural resources like processor types,
their number, allocatable hardware resources and memories that can be used for the
mapping of the application [top-down], or definition of a fixed execution platform [bottom-
up]),

• refinement of the hardware and software module behaviour (when starting from an
algorithmic description the refinement to dedicated hardware is called behavioural synthesis.
It usually performs scheduling, allocation and binding to a constrained set of hardware
resources),

• and communication refinement (transferring the abstract (e.g. transaction or method
based) communication to a signal based communication channel implementing a defined
protocol).

With OSSS we enable hardware/software partitioning decisions by supporting the designer
in finding the “best” solution by manually exploring different application partitionings. The
OSSS Application Layer modeling elements (see Section 6.4) can be plugged together easily
using Shared Objects as abstract communication medium.

Furthermore, we do not consider behavioural synthesis which converts algorithmic descriptions
into RTL structures. Here we suppose that the behavioural synthesis step has either been
performed manually or by an external tool. The refinement of the software part is another issue
we do not address directly with OSSS. A software task which has been developed and tested on
a host system, different from the specific target processor, can show a different behaviour after
cross-compilation and execution on the embedded target processor. To avoid these portability
problems we advise the designer to make use of the portable subset of the C++ language [207].
Non-portable language constructs should be avoided as much as possible.

The main issue we address with the OSSS methodology is communication refinement. Starting
from a universal method based hardware/software and hardware/hardware communication we
end up with a synthesizable signal based implementation.

In the following sections the Application Layer to Virtual Target Architecture Layer model
mapping is described in more details using the simple producer/consumer example, introduced
earlier. After the mapping description an example using different platform configurations an
mappings for architecture exploration is presented.

6.6.1 Mapping the Consumer/Producer Design Example

In the following section we will map the simple consumer/producer example that has already
been presented in Section 6.4 to the Virtual Target Architecture Layer. The upper part of
Figure 6.36 shows the Application Layer consisting of a producer software task, a Shared Object
that contains a user-defined FIFO class (in this example is parametrized to hold up to 10 objects
of type Packet) and a consumer hardware module. The lower part of Figure 6.36 shows the

17or at least with minimal manual effort
18In our definition "synthesizable" means, each application component can be further processed by state-of-the-

art tools like cross-compilers (for the software part) or RTL synthesis tools (for the hardware part)

6.6 Mapping 293

Virtual Target Architecture Layer, where the mapping and the communication refinement is
accomplished.

Producer

osss_shared<FIFO<Packet, 10>, osss_round_robin >

osss_port<osss_shared_if<FIFO<Packet> > >

Consumer

osss_object_socket<osss_shared<FIFO<Packet, 10>, osss_round_robin > >

osss_port<osss_rmi_if<FIFO_if<Packet> > >

Producer Consumer

osss_rmi_channel<...>

FIFO

FIFO ChannelChannel

Figure 6.36: Communication refinement of the producer/consumer example [44]

In the following we will perform a stepwise communication refinement of the producer/con-
sumer example. To gain a better understanding about the amount of effort a designer has to
spend, some code snippets will be presented. Whenever code from the Application Layer needs
to be changed or extended we highlight these parts in red color.

As stated above, we assume that the hardware/software partitioning has already been
performed (producer implemented as software, consumer implemented as hardware). Additionally,
we assume that the behaviours of the producer, the FIFO, and the consumer are already specified
in a synthesizable way. With these prerequisites the following refinement steps (the order is
negligible) have to be performed:

1. Change all custom hardware modules of type sc_module to type osss_module.

2. Change the OSSS Port interfaces of all Software Tasks and Hardware Modules from
osss_shared_if<IF > to osss_rmi_if<IF >.

3. Build or generate osss_rmi_if<...> stubs for each Shared Object interface (for the
producer/consumer example these are the FIFO_put_if<...> and FIFO_get_if<...>).

4. Equip all user-defined data types with serialization support (in the producer/consumer
example it is the Packet class).

5. Define a custom OSSS-Channel or use a pre-existing OSSS-Channel from the Architecture
Class Library (in the consumer/producer example the xilinx_opb_channel and the
osss_rmi_point_to_point_channel are used).

6. Assemble the top-level design.

6.6.1.1 The osss_rmi_if<...> interface stub

All ports of kind osss_port<osss_shared_if<...> > need to be replaced by ports capable of
performing RMI (i.e. osss_port<osss_rmi_if<...> >). Listing 6.26 and Listing 6.27 highlight
the replaced ports (changes regarding the Application Layer are marked in red color).

1 OSSS_SOFTWARE_TASK(Producer) {
2 osss_port<osss_rmi_if<FIFO__put_if<Packet> > > output;
3

4 OSSS_SW_CTOR(Producer) { }
5

6 virtual void main() { ... }

294 6 Simulation

7 };

Listing 6.26: Producer with RMI port

1 OSSS_MODULE(Consumer) {
2 sc_in<bool> pi_bClk;
3 sc_in<bool> pi_bReset;
4

5 osss_port<osss_rmi_if<FIFO_get_if<Packet> > > input;
6

7 sc_out<Packet> po_Packet;
8

9 SC_CTOR(Consumer) {
10 SC_CTHREAD(main, pi_bClk.pos());
11 reset_signal_is(pi_bReset, true);
12 }
13

14 void main();
15 };

Listing 6.27: Consumer with RMI port

Besides these port modifications, the designer has to provide an implementation of the
osss_rmi_if<...> stub for each Shared Object interface. Concerning the other code of the
producer and the consumer nothing has to be changed because we assume their behaviour
is already synthesizable. Listing 6.28 shows the implementation of the RMI stub for the
FIFO_put_if<ItemType> and FIFO_get_if<ItemType> interfaces.

The stubs are derived from the FIFO_put_if<ItemType> and FIFO_get_if<ItemType>

interface classes. This is necessary because we need to provide a dedicated stub for each
method specified in the interface classes. The stub is created by the OSSS_OBJECT_STUB_CTOR(

_IF_type_) constructor, where _IF_type_ is the type of the interface that needs to be
implemented by this stub (It is usually the interface class the stub is derived from. In our
example this are the FIFO_put_if<ItemType> and FIFO_put_if<ItemType> interfaces).

Hint: When using complex types inside macros it is good practice to make a typedef before
(see lines 4 & 5 in Listing Listing 6.28). Consider the following example: Given a macro that takes
a single argument like #define MY_MACRO(_type_), and type My_Template_Type< a, b, c

>; using the macro MY_MACRO(My_Template_Type< a, b, c >) leads to a compilation er-
ror, since the pre-processor treats each comma as a separated argument. Using typedef

My_Template_Type< a, b, c > my_template_t and instead MY_MACRO(my_template_t)

leads to the desired behaviour.
Each method specified in the interface classes needs to be declared by either the

OSSS_METHOD_VOID_STUB(...) or by the OSSS_METHOD_STUB(...) macro. The first macro is
used for methods with a void return type while the second macro is used for methods with a
non-void return type. These macros are very similar to the OSSS_GUARDED_METHOD_VOID(...)

and the OSSS_GUARDED_METHOD(...) macros used inside the Shared Object’s user-defined class
implementation. The main difference is that the stub macros do not have a guard condition
parameter.

1 template<class ItemType>
2 class osss_rmi_if<FIFO_put_if<ItemType> > : public FIFO_put_if<ItemType> {
3 public:
4 typedef FIFO_put_if<ItemType> base_type;
5 OSSS_OBJECT_STUB_CTOR(base_type);
6

7 OSSS_METHOD_VOID_STUB(put, OSSS_PARAMS(1, ItemType, item));
8 OSSS_METHOD_STUB(bool, is_empty, OSSS_PARAMS(0));
9 OSSS_METHOD_STUB(bool, is_full, OSSS_PARAMS(0));

10 };
11

12 template<class ItemType>
13 class osss_rmi_if<FIFO_get_if<ItemType> > : public FIFO_get_if<ItemType> {
14 public:
15 typedef FIFO_get_if<ItemType> base_type;
16 OSSS_OBJECT_STUB_CTOR(base_type);
17

6.6 Mapping 295

18 OSSS_METHOD_STUB(ItemType, get, OSSS_PARAMS(0));
19 OSSS_METHOD_STUB(bool, is_empty, OSSS_PARAMS(0));
20 OSSS_METHOD_STUB(bool, is_full, OSSS_PARAMS(0));
21 };

Listing 6.28: RMI stubs for the FIFO_put_if<ItemType> and FIFO_get_if<ItemType>

interfaces

The osss_rmi_if<...> acts as a stub or proxy to the remote object. Each method stub
macro generates the appropriate code that is needed to perform a remote method invocation.
This includes the determination of the method ID for the called method, the serialization
of all parameters, the transmission of this data through the bound RMI-Channel and the
de-serialization of the return parameter (for non-void methods only) received from the RMI-
Channel.

6.6.1.2 Serialisation of user-defined data types

All data types that should be transferred via RMI have to be serializable. That means each
data type or user-defined class needs to be decomposable into chunks of a specific size in order
to be transmittable through any channel of arbitrary data width. The OSSS library has support
for all built-in C and C++ data types. Moreover, it supports all synthesizable SystemC data
types. When dealing with user-defined data types like structs or classes some manual effort is
required to make them serializable.

Listing 6.29 shows the user-defined data type Packet that has been equipped with
serialization support. For making a user-defined class serializable it needs to be de-
rived from the class osss_serialisable_object. In addition, it needs to use the
OSSS_IS_SERIALISABLE(_this_class_name_) macro whose only argument is the type of the
actual class.

1 class Packet : public osss_serialisable_object {
2 public :
3 OSSS_IS_SERIALISABLE(Packet) ;
4

5 // d e f a u l t c o n s t r uc t o r
6 OSSS_SERIALISABLE_CTOR(Packet , ()) ;
7

8 // copy c o n s t r u c t o r
9 OSSS_SERIALISABLE_CTOR(Packet , (const Packet &pkt)) ;

10

11 // assignment operator
12 void operator=(const Packet &pkt) ;
13

14 // e q u a l i t y operator
15 bool operator==(const Packet &pkt) ;
16

17 virtual void s e r i a l i s e () {
18 osss_serialisable_object : : store_element (m_source_addr) ;
19 osss_serialisable_object : : store_element (m_target_addr) ;
20 osss_serialisable_object : : store_array (m_payload , 10) ;
21 }
22

23 virtual void deseria l ise () {
24 osss_serialisable_object : : restore_element (m_source_addr) ;
25 osss_serialisable_object : : restore_element (m_target_addr) ;
26 osss_serialisable_object : : restore_array (m_payload , 10) ;
27 }
28

29 unsigned char get_source_addr () const ;
30 void set_source_addr (unsigned char addr) ;
31 unsigned char get_target_addr () const ;
32 void set_target_addr (unsigned char addr) ;
33 unsigned char get_payload (unsigned int index) const ;
34 void set_payload (unsigned int index ,
35 unsigned char data) ;
36 unsigned int get_payload_size () const ;
37

38 protected :

296 6 Simulation

39 unsigned char m_source_addr ;
40 unsigned char m_target_addr ;
41 unsigned char m_payload [1 0] ;
42 } ;

Listing 6.29: Adding de-/serialization support to the user-defined Packet class

Each constructor has to be declared using the macro:
OSSS_SERIALISABLE_CTOR(_this_class_name_, (_paramerter0_, ..., _parameterN_))

In the virtual methods serialise() and deserialise() all attributes of the actual class
that need to be serialized/de-serialized have to be registered. The registration is performed
by the store_element(...) and the restore_element(...) method for scalar types, and
by the store_array(...) and the restore_array(...) method for array types. These store
and restore methods are provided by the osss_serialisable_object base class. It is very
important to notice that the sequence of the store method calls in the serialise method needs to
be exactly the same as the sequence of restore method calls in the deserialise method. Otherwise
the resulting serialization/de-serialization behaviour is undefined. This might become hard
to debug, since the serialise() and the deserialise() methods are called “automatically”
whenever a serialization or de-serialization action is required.

6.6.1.3 The osss_rmi_channel<...> container for synthesisable OSSS-Channels

The osss_rmi_channel<...> is a container class for all OSSS-Channels which implement
the osss_abstract_channel interface (e.g. buses or crossbar-switches). More simple OSSS-
Channels which only implement the osss_abstract_basic_channel interface (e.g. point-to-
point connections) need to be bidirectional in order to work inside an osss_rmi_channel<...>

container.

1 typedef osss_rmi_channel<xilinx_opb_channel<false, false> > HWSWChannelType;
2 typedef osss_rmi_channel<osss_rmi_point_to_point_channel<8, 8> > HWHWChannelType;

Listing 6.30: Usage of the osss_rmi_channel<...> container

Listing 6.30 shows the usage of an osss_rmi_channel<...> container in the producer/con-
sumer example. The HWSWChannelType is a xilinx_opb_channel<...> with a least recently
used scheduler and no registered grants. It allows the connection of multiple master and
multiple slave components. Its data and address size is 32 bit. The HWHWChannelType is an
osss_rmi_point_to_point_channel<...> that is a bidirectional point-to-point connection. Its
data size is 8 bit in each direction.

The intended purpose of the osss_rmi_channel<...> is to separate the high-level RMI
protocol from the low-level bit-accurate protocol of the channel. The channel protocol is imple-
mented by the corresponding channel class (e.g. the xilinx_opb_channel<...> implements
the protocol and manages the interconnection of the master and slave components as specified
in the Xilinx specific implementation of the IBM On-Chip Peripheral Bus [151, 105]). All RMI
protocol specific features that build on top of the channel protocol are implemented inside
the osss_rmi_channel<...> class. The separation of RMI and the channel protocol makes it
possible to design and test a channel independently from the more complex RMI protocol. The
usage of well defined interfaces in both the osss_rmi_channel<...> and the OSSS-Channel
allows to exchange one channel implementation by another. This substitution can be performed
without any needs for modifying the rest of the design. This enables a convenient plug & play
mechanism which allows easy exchange of physical channel implementations.

6.6.1.4 The osss_object_socket<...> container for Shared Objects

The osss_object_socket<...> container class for Shared Objects serves basically the same
purpose as the osss_rmi_channel<...> container for OSSS-Channels. Firstly, it encapsulates
the RMI protocol that is used for communication through channels (i.e. communication to the
outside world) and secondly it encapsulates the method call performed on the Shared Object
itself (i.e. internal communication, represents a virtual client calling a method on the Shared
Objects inner class). This separation allows the designer to plug a Shared Object inside an
osss_object_socket<...> container without the modifying any Shared Object code.

6.6 Mapping 297

1 typedef osss_object_socket<osss_shared<FIFO<Packet, 10>, osss_round_robin> > BufferType;

Listing 6.31: Usage of the osss_object_socket<...> container

Listing 6.31 shows the usage of an osss_object_socket<...> that contains a Shared
Object which contains a FIFO. Concurrent accesses are arbitrated by a round robin scheduling
policy. When using this kind of object socket, the designer does not need to perform any code
modifications, neither on the Shared Object nor on the FIFO<...> class inside of it.

6.6.1.5 The final assembly phase

In the final assembly phase we construct the top-level module containing the whole design
mapped on the Virtual Target Architecture Layer. This involves the following steps:

1. Choose and instantiate software processor(s) available in the Architecture Class
Library.

2. Perform default mappings and substitutions: map software tasks to software pro-
cessors (single task per processor), substitute sc_modules by osss_modules and wrap
Shared Objects by Object Socket containers.

3. Instantiate RMI-Channel containers. Choose OSSS-Channels from the Architecture
Class Library or implement a synthesizable OSSS-Channel for your special needs. Plug
an OSSS-Channel into each RMI-Channel container.

4. Perform logical and physical bindings: The logical binding represents the port to
interface binding from the Application Layer Model. The physical binding describes the
connection of the architecture building blocks (like processors, object sockets, hardware
modules) to the RMI-Channel containers.

As one can see from these four steps, it does not require any changes of the behaviour of
any software tasks or any hardware modules from the Application Layer Model. Nevertheless,
after a profiling run of the Application Model mapped on the Virtual Target Architecture some
changes or optimizations of the application’s behaviour might become apparent. These changes
can be performed separately on the Application Layer Model without affecting the chosen target
architecture.

Listing 6.32 highlights all modifications in the top-level design of the producer/consumer
example during Application to Virtual Target Architecture Layer mapping. A graphical repre-
sentation of the design described in Listing 6.32 can be found in the lower part of Figure 6.36.

In the first part of Listing 6.32 two different kinds of RMI-Channels are defined (see
Listing 6.30). The HWSWChannelType is used for communication between the Producer (software)
and the Shared Object (hardware). The HWHWChannelType is used for communication between
the Consumer (hardware) and the Shared Object. This RMI-Channel definition is followed by
the definition of the bounded Packet FIFO (BufferType) that is a Shared Object plugged into
an osss_object_socket<...> (see Listing 6.31).

1 #define OSSS_GREEN
2 #include " o s s s . h "
3

4 class Top : public osss_system {
5 public :
6

7 sc_in<bool> pi_bClk ;
8 sc_in<bool> pi_bReset ;
9

10 typedef osss_rmi_channel<xilinx_opb_channel<false , false > >
11 HWSWChannelType;
12 typedef osss_rmi_channel<osss_rmi_point_to_point_channel<8, 8> >
13 HWHWChannelType;
14

15 typedef osss_object_socket<osss_shared<FIFO<Packet , 10>,
16 osss_round_robin> > BufferType ;
17

298 6 Simulation

18 Producer∗ m_Producer ;
19 HWSWChannelType∗ m_Channel1 ;
20 BufferType∗ m_Buffer ;
21 HWHWChannelType∗ m_Channel2 ;
22 Consumer∗ m_Consumer ;
23

24 xilinx_microblaze∗ m_Processor ;
25

26 sc_s igna l <Packet> ms_Packet ;
27

28 Top(sc_core : : sc_module_name name) : osss_system (name) {
29 m_Channel1 = new HWSWChannelType(" m_Channel1 ") ;
30 m_Channel1−>clock_port (pi_bClk) ;
31 m_Channel1−>reset_port (pi_bReset) ;
32

33 m_Channel2 = new HWHWChannelType(" m_Channel2 ") ;
34 m_Channel2−>clock_port (pi_bClk) ;
35 m_Channel2−>reset_port (pi_bReset) ;
36

37 m_Buffer = new BufferType () ;
38 m_Buffer−>clock_port (pi_bClk) ;
39 m_Buffer−>reset_port (pi_bReset) ;
40 m_Buffer−>bind (∗m_Channel1) ;
41 m_Buffer−>bind (∗m_Channel2) ;
42

43 // t h i s i s a so f tware t a s k
44 m_Producer = new Producer (" m_Producer ") ;
45 m_Producer−>clock_port (pi_bClk) ;
46 m_Producer−>reset_port (pi_bReset) ;
47 m_Producer−>output (∗m_Buffer) ;
48

49 m_Processor = new xilinx_microblaze (" m_Processor ") ;
50 m_Processor−>clock_port (pi_bClk) ;
51 m_Processor−>reset_port (pi_bReset) ;
52 // t h i s por t b inds the processor to i t s bus (m_Channel1)
53 m_Processor−>rmi_client_port (∗m_Channel1) ;
54 // here the above so f tware t a s k i s added to t h i s processor
55 m_Processor−>add_sw_task(m_Producer) ;
56

57 m_Consumer = new Consumer ("m_Consumer") ;
58 m_Consumer−>pi_bClk (pi_bClk) ;
59 m_Consumer−>pi_bReset (pi_bReset) ;
60 m_Consumer−>po_Packet (ms_Packet) ;
61 m_Consumer−>input (∗m_Channel2, ∗m_Buffer) ;
62 }
63 } ;

Listing 6.32: Modifications on the top-level module of the consumer/producer example

In the constructor of the top-level module Top both channels m_Channel1 and m_Channel2

are instantiated and bound to the global clock and reset signals.

On the Application Layer, the producer and the consumer client were both directly bound to
the Shared Object. Due to the communication refinement, by inserting RMI-Channels between
the producer and the Shared Object as well as between the consumer and the Shared Object the
bindings of the m_Buffer, m_Producer and m_Consumer need to be adapted. The producer and
the Shared Object are bound to the same channel (m_Producer and m_Buffer are both bound
to m_Channel1) and the consumer and the Shared Object are also bound to the same channel
(m_Consumer and m_Buffer are both bound to m_Channel2).

When an osss_object_socket<...> is connected to a shared bus as a slave module an
address map for that slave becomes necessary. An address map consists of a base and high
address that specify the address range a slave component is sensitive to. When a master
drives the address lanes inside the OSSS-Channel the slave whose address range includes this
address gets active and serves the masters request. Although it is possible to specify the
address maps manually we suggest the designer not to do so unless he knows exactly what he
is doing. In the normal case all address maps are calculated and internally assigned by the
osss_rmi_channel<...> automatically.

6.6 Mapping 299

When binding a port of type osss_port<osss_rmi_if<...> > to an
osss_rmi_channel<...> on the Virtual Target Architecture Layer the binding informa-
tion of the Application Layer is retained. A second parameter of the operator() of the
osss_port<osss_rmi_if<...> > class was introduced for that purpose. Having a look at
the code in Listing 6.32 the output port of the producer is bound to the RMI-Channel
and to the object that is plugged into the osss_object_socket<...> (i.e. the Shared
Object itself). The need for retaining this binding information from the Application Layer
is at least necessary for the simulation. Since, by the first method call performed on an
osss_port<osss_shared_if<...> > the corresponding process doing this call is registered at
the Shared Object. The same behaviour has to be retained after mapping the application to the
Virtual Target Architecture and thus using osss_port<osss_rmi_if<...> >.

Until now OSSS is only capable of dealing with a single clock domain per system. This
restriction can be exploited for writing more concise top-level modules. Listing 6.33 shows how
to use the static osss_global_port_registry class to register the global clock and reset signal.

Each component of the Virtual Target Architecture Layer provides a clock and reset interface
that defines a clock_port and a reset_port, both of type sc_in<bool>. The designer can
either decide to perform a manual binding of these ports, or to omit the binding which results
in an automatic binding to the globally registered clock and reset port.

When mapping a design from the Application to the Virtual Target Architecture Layer the
designer has to take care to replace any sc_module by an osss_module. All other architecture
building blocks like processors, object sockets, channels and memories are already capable of the
automatic clock and reset port binding.

1 #define OSSS_GREEN
2 #include " o s s s . h "
3

4 class Top : public osss_system {
5 public :
6

7 sc_in<bool> pi_bClk ;
8 sc_in<bool> pi_bReset ;
9

10 typedef osss_rmi_channel<xil inx_opb_channel<false , false > >
11 HWSWChannelType ;
12 typedef osss_rmi_channel<osss_rmi_point_to_point_channel <8, 8> >
13 HWHWChannelType ;
14

15 typedef osss_object_socket <osss_shared<FIFO<Packet , 10>,
16 osss_round_robin> > BufferType ;
17

18 Producer∗ m_Producer ;
19 HWSWChannelType∗ m_Channel1 ;
20 BufferType∗ m_Buffer ;
21 HWHWChannelType∗ m_Channel2 ;
22 Consumer∗ m_Consumer ;
23

24 x i l i nx_mic rob laze ∗ m_Processor ;
25

26 sc_s igna l <Packet> ms_Packet ;
27

28 Top(sc_core : : sc_module_name name) : osss_system (name) {
29 // r e g i s t e r c l o c k and r e s e t po r t s and make them g l o b a l
30 osss_global_port_registry : : register_clock_port (pi_bClk) ;
31 osss_global_port_registry : : register_reset_port (pi_bReset) ;
32

33 m_Channel1 = new HWSWChannelType(" m_Channel1 ") ;
34 m_Channel2 = new HWHWChannelType(" m_Channel2 ") ;
35

36 m_Buffer = new BufferType () ;
37 m_Buffer−>bind (∗m_Channel1) ;
38 m_Buffer−>bind (∗m_Channel2) ;
39

40 // t h i s i s a so f tware t a s k
41 m_Producer = new Producer (" m_Producer ") ;
42 m_Producer−>output (∗m_Buffer) ;
43

300 6 Simulation

44 m_Processor = new x i l i nx_mic rob laze (" m_Processor ") ;
45 // t h i s por t b inds the processor to i t s bus (m_Channel1)
46 m_Processor−>rmi_cl ient_port (∗m_Channel1) ;
47 // adds the above so f tware t a s k to t h i s processor
48 m_Processor−>add_sw_task (m_Producer) ;
49

50 //CAUTION: Make shure the Consumer has been chagned from sc_module
51 // to osss_module . Otherwise automatic c l o c k and r e s e t por t
52 // b ind ing does not work !
53 m_Consumer = new Consumer ("m_Consumer") ;
54 m_Consumer−>po_Packet (ms_Packet) ;
55 m_Consumer−>input (∗m_Channel2 , ∗m_Buffer) ;
56 }
57 } ;

Listing 6.33: The top-level module from Listing 6.32 with global clock and reset port
bindings

6.6.2 Architecture Exploration

In the previous sections we have shown how to map an Application Layer model to a Virtual
Target Architecture Layer model. After presenting the basic mapping steps this section serves
as a starting point for a simple top-down architecture exploration. During this section we
present two different communication mappings of the producer/consumer example and discuss
some of the profiling results generated from model execution. Moreover, the presented example
demonstrates the flexibility to quickly change the target architecture mapping.

In OSSS, communication links (port to interface bindings) are mapped onto communication
resources of the Virtual Target Architecture Layer, implemented as OSSS-Channels. The provided
flexibility for the designer is very high, since these channels can differ in connection topologies
(ranging from a point-to-point, over a shared bus to a full featured N × N crossbar-switch),
bit sizes and in their communication protocols. Figure 6.37 illustrates two different mapping
alternatives of the producer/consumer example introduced in Figure 6.14.

In all mappings shown in Figure 6.37 the producer software task has been mapped to a Xilinx
MicroBlazeTMprocessor. It would have also been possible to map this task to any other processor
available in the Architecture Class Library. One limitation of the presented OSSS refinement
methodology is that only a single Software Task can be mapped onto each software processor.
Current work that removes this restriction and allows modeling of software multitasking can be
found in [48, 23, 17].

Since the MicroBlaze processor has a built-in OPB interface we have connected it to a Xilinx
OPB channel. However, it is also possible to connect any other channel to the MicroBlaze
processor, but this would imply the use of a bridge or protocol converter. For the sake of
simplicity we have chosen the OPB in this example.

One of the main goals of the OSSS methodology is to provide a seamless synthesizable
communication refinement for hardware/software systems. For the producer/consumer example
this means the behaviours inside the producer software task and the consumer hardware modules
are not affected by the mapping and communication refinement. In particular, the high-
level communication mechanism (of the Application Layer) using method calls on user-defined
interfaces persists after mapping on the Virtual Target Architecture Layer.

The OSSS-Channels on the VTA Layer implement a synthesizable signal-level communication
using architecture specific topologies and communication protocols, like the OPB. To retain
the user-defined method calls from the application model we need a concept to translate them
to these low-level communication resources. This kind of translation is usually performed by
a network protocol stack defining several protocol layers that abstract from the underlying
physical communication resource. In the OSSS methodology we call this concept Remote
Method Invocation (RMI). It enables the call of a method of a remote object through a physical
(i.e. signal-level) connection. More details about the OSSS RMI concept and protocol stack
have been presented in Section 6.5.2.

Each communication link from the Application Layer can be mapped to any
osss_rmi_channel<...> container (denoted by m_Channel1 - 3 in Figure 6.37). They serve as

6.6 Mapping 301

m_Channel1

Virtual Target

Architecture

Xilinx

Microblaze

Object

Socket

Hardware

Block

Hardware

Block

Shared Bus

Topology
Point-to-Point

Topology

O

P

B

Application

Port Interface

m_Producer
m_Consumer1

m_Buffer

m_Channel2

m_Channel3

m_Processor

m_Consumer2
Software Task

Shared Object
Module with Process(es)

(a) Shared bus and point-to-point channel (ALTERNATIVE_A)

Virtual Target

Architecture

Xilinx

Microblaze

Object

Socket

Hardware

Block

Hardware

Block

Shared Bus

Topology

O

P

B

Application

Port Interface

m_Producer m_Buffer

m_Consumer1

m_Consumer2

m_Processor

m_Channel1

Software Task
Module with Process(es)

Shared Object

(b) Single shared bus (ALTERNATIVE_B)

Figure 6.37: Different mapping alternatives of the producer/consumer application [44]

wrappers for the OSSS-Channels, which implement the physical structure and the behaviour
of communication protocols like buses (e.g. OPB) or point-to-point connections. The purpose
of the RMI-Channels is the provision of a specific RMI interface and the translation of the
OSSS-RMI protocol to the physical channel protocol.

Listing 6.34 shows the refined and mapped top-level design of the producer/consumer example
on the Virtual Target Architecture Layer. The two different communication mapping alternatives
from Figure 6.37 are marked with ALTERNATIVE_A/B pre-processor definitions. Another main
difference between the Application and the Virtual Target Architecture Layer top-level design
is the use of the xilinx_system base class (line 8). It serves two purposes: Firstly, it marks
the top-level entity of the design used for synthesis. Secondly, it adds a “hook” to analyze
the structure of the top-level design and generates target specific architecture definition and
configuration files. When using the xilinx_system, configuration files for the Xilinx Platform
Studio are generated during the SystemC elaboration phase (see Section 7.5).

At the beginning two different channel types are defined: the Xilinx OPB (Bus_Ch_t) and
the point-to-point (P2P_Ch_t) channel with a client bit width of 8 (used by the initiator of the
communication) and a server bit width of 32 (used by the target of the communication, i.e.
Shared Objects). In the constructor (line 34) all channels are instantiated and bound to clock
and reset. Depending on the mapping alternative the buffer Shared Object is bound to the
physical connected channels using the bind method of the Object Socket (e.g. line 50). The
producer Software Task is instantiated right before the Xilinx MicroBlaze which is bound to

302 6 Simulation

the OPB channel by its rmi_client_port (line 62). The add_sw_task method is used to map
the producer Software Task to the MicroBlaze (line 63). After mapping the producer to the
processor all communications using the output port of the Software Task are performed through
the connected OPB channel. The binding of the input port of the consumer hardware modules
gets a second parameter (line 71 & 72) on the Virtual Target Architecture Layer. The first one
defines the physical binding to a communication channel. The second parameter defines the
same logical binding to the Shared Object as on the Application Layer.

1 #define OSSS_GREEN // Virtual Target Architecture Layer Model
2 #include <osss.h>
3 #include "Packet.hh"
4 #include "FIFO.hh"
5 #include "Producer.hh"
6 #include "Consumer.hh"
7

8 class Top : public xilinx_system {
9 public:

10 sc_in<bool> clk, reset;
11

12 typedef
13 osss_rmi_channel<xilinx_opb_channel<> > Bus_Ch_t;
14

15 typedef
16 osss_rmi_channel<
17 osss_point_to_point_channel<8, 32> > P2P_Ch_t;
18

19 typedef
20 osss_object_socket<
21 osss_shared<FIFO<Packet, 10>, osss_round_robin> > Buffer_t;
22

23 protected:
24 Bus_Ch_t ∗m_Channel1;
25 P2P_Ch_t ∗m_Channel[2];
26

27 Producer ∗m_Producer;
28 Buffer_t ∗m_Buffer;
29 Consumer ∗m_Consumer[2];
30

31 xilinx_microblaze ∗m_processor;
32

33 public:
34 Top(sc_module_name name) : xilinx_system(name) {
35 m_Channel1 = new Bus_Ch_t("m_Channel1");
36 m_Channel1−>clock_port(clk);
37 m_Channel1−>reset_port(reset);
38 #ifdef ALTERNATIVE_A
39 m_Channel[0] = new P2P_Ch_t("m_Channel2");
40 m_Channel[1] = new P2P_Ch_t("m_Channel3");
41 for(unsigned int i=0; i<2; ++i) {
42 m_Channel[i]−>clock_port(clk);
43 m_Channel[i]−>reset_port(reset);
44 }
45 #endif
46

47 m_Buffer = new Buffer_t("m_Buffer");
48 m_Buffer−>clock_port(clk);
49 m_Buffer−>reset_port(reset);
50 m_Buffer−>bind(∗m_Channel1);
51 #ifdef ALTERNATIVE_A
52 m_Buffer−>bind(∗m_Channel[0]);
53 m_Buffer−>bind(∗m_Channel[1]);
54 #endif
55

56 m_Producer = new Producer("m_Producer");
57 m_Producer−>output(∗m_Buffer);
58

59 m_Processor = new xilinx_microblaze("m_Processor");
60 m_Processor−>clock_port(clk);
61 m_Processor−>reset_port(reset);
62 m_Processor−>rmi_client_port(∗m_Channel1);

6.7 Summary 303

63 m_Processor−>add_sw_task(m_Producer);
64

65 m_Consumer[0] = new Consumer("m_Consumer0");
66 m_Consumer[1] = new Consumer("m_Consumer1");
67 for(unsigned int i=0; i<2; ++i) {
68 m_Consumer[i]−>clock_port(clk);
69 m_Consumer[i]−>reset_port(reset);
70 #ifdef ALTERNATIVE_A
71 m_Consumer[i]−>input(∗m_Channel[i], ∗m_Buffer);
72 #else // ALTERNATIVE_B
73 m_Consumer[i]−>input(∗m_Channel1, ∗m_Buffer);
74 #endif
75 }
76 }
77 };

Listing 6.34: Top-Level module of the producer/consumer example on the VTA Layer

To demonstrate the impact of different communication mappings for the producer/consumer
example we have performed a packet throughput measurement. The measurement has been
performed on the Application Layer Model (ref. Figure 6.14) and the two different Virtual
Architecture Models (ref. Figure 6.37). Table 8.12 shows the results of a simulation with 2000
produced packets at a clock frequency of 100.0 MHz. The simulation time is the duration of the
entire simulation run measured on the same reference workstation.

Implementation Model Simulation Timea Packet Throughput
[s] [Packets/s]

Application Layer 0.2 12 512 512.5
Virtual Target Architecture Layer
ALTERNATIVE_A: OPB & P2P channels 6.4 1 853 705.6
Virtual Target Architecture Layer
ALTERNATIVE_B: OPB channel only 5.8 848 413.9
a Intel(R) Pentium(R) 4 CPU 3.00GHz

Table 6.3: Simulation results of the different producer/consumer models

The Application Layer Model’s simulation time is the shortest while the measured packet
throughput is the highest. This result is not surprising since this layer abstracts from all
communication details. The simulation runs of both Virtual Target Architecture Models take
much longer (about a factor of 30) because they perform a cycle accurate simulation of the
physical communication. A more interesting result is the significant lower packet throughput
of mapping alternative B compared to mapping alternative A. Since alternative B uses only a
single OPB channel we observe lots of bus contention that slows down the packet throughput
dramatically.

This hierarchical RMI-Channel enables the use of arbitrary protocols and physical connection
topologies encapsulated by OSSS-Channels. This "plug-and-play" mechanism is very useful
during communication architecture exploration or for altering design decisions late in the design
flow. For instance the MicroBlaze and its associated OPB channel can be easily exchanged by
an ARM processor connected to an AMBA AHB channel.

For the refinement of the communication mapping the designer only needs to instantiate
an OSSS-RMI-Channel container and plug an OSSS-Channel taken from the architecture class
library into it. Due to the dynamic channel generation and adaptivity, software processors,
object sockets and hardware modules can directly be bound to OSSS-RMI-Channel containers.
They completely abstract from the chosen channel physical behaviour including protocol and
topology.

6.7 Summary

This summary gives an overview and comparison of passive and active modeling elements of
the OSSS simulation library and describes the mapping possibilities from the Behavioral to the

304 6 Simulation

Application and from the Application to the Virtual Target Architecture Layer. This summary
closes with a review of requirements, concerning the simulation model, from Chapter 2.

6.7.1 Passive Modeling Elements

Plain Event Shared Shared Adapter
Object Variable<X> Object<Y> Socket<Z>

Layer Behavioral/ Behavioral Behavioral Application Application
Application

Object Type Value Entity Entity Entity Entity
Usage Inline Shared Shared Exclusive/ Exclusive/

Shared Shared
Assign-/Copyable Yes/Yes No/No Yes/No No/No No/No
Serializable Yes No No No No
Supports Inheritance Yes No No No No
Access arbitration No No No Yes Yes
Guarded access No No No Yes Yes
Provides interface(s) No Yesa Yesa Yesb Yesb

Provides port(s) No No No No Yes
Requires clock No No No Yes Yes
Requires reset No No No Yes Yes
Nesting allowed Yes No No No No

with X ∈ { Basic, Plain Object }, Y ∈ { Plain Object }, Z ∈ { Shared<X> }.
a Fixed interface(s).
b User-defined interface(s).

Table 6.4: Overview of passive OSSS modeling elements

Table 6.4 gives an overview of the passive OSSS modeling elements presented in the this
chapter. In OSSS we distinguish between value and entity object types in the following way:

Value object types have an implicit location. They do not describe an own data path, but are
embedded in the calling or owning thread. Therefore, member functions of value objects are
executed inline to the thread that uses them. Like all objects they are initializable which
usually happens during construction (the constructor is responsible for that). Moreover
they are assignable, copyable and serializable. Assignable means that any other value
object of the same type can be assigned. Copyable means initialization through assignment.
Serialization is a special case of copy that enables to write the state of a value object to a
bit vector representation that can either be stored and restored from a memory or can
be used to send it through a physical channel, like OSSS-Channels using the OSSS-RMI
protocol.

Entity objects can not be copied and sent via RMI-Channels. They have an explicit location
with an exclusive data path. Member function calls on entity objects are therefore not
inlined in the caller thread. They are executed in their own thread on their own data path.
Of course entity objects are initializable like value objects.

The different object types usually correspond to three different usage patterns: inline,
exclusive and shared:

Inline usage pattern means that data and behaviour of an object is embedded into the owning
thread. Since this is the strongest from of exclusiveness (used by a single process only)
usage of guards is not allowed.

exclusive usage pattern means that an object is accessed by a single process. This does not
require any arbitration (like for the inline pattern) guards are not allowed. The main
difference between inline and exclusive lies in the structural separation of caller and callee.

6.7 Summary 305

In the exclusive usage pattern the object has its own dedicated data path apart from the
data path of the caller.

shared usage pattern is a special case of the exclusive one (each Shared Object has all properties
of an Exclusive Object). In contrast to an exclusive object a shared object is capable of
being accessed by more than a single process. To avoid race condition arbitration through
guarded methods (some kind of semaphore) and/or an explicit arbiter is necessary.

Table 6.4 shows that value objects are used inline and entity objects are used exclusive or
shared in OSSS.

Serialization is the process of saving an object onto a storage medium (such as a file, or a
memory buffer) or to transmit it across a network connection link in binary form. The series
of bytes or the format can be used to re-create an object that is identical in its internal state
to the original object (actually, a clone). In OSSS plain objects that need to be send through
RMI-Channels need to be serializable. In some programming languages (e.g. Java), transient
is a keyword used as a field modifier. In OSSS all serializable objects also support transience.
When a field is declared transient, it would not be serialized even if the class to which it belongs
is serialized. In OSSS transience is only supported for serializable objects. Fields that are
not explicitly serialized or de-serialized in the serialise() and deserialse() methods of a
serializable object are transient and will not be sent through an RMI-Channel. When the object
is restored/de-serialized the transient fields are initialized with their default values (as specified
in the constructor).

As we have described in Section 6.5 communication in OSSS is expressed statically through
Port-Interface-Bindings. These binding constitute so-called communication links that are mapped
and refined to OSSS-RMI Channels at the VTA Layer.

6.7.2 Active Modeling Elements

Table 6.5 gives an overview of the available active OSSS modeling elements. In contrast to
passive modeling elements from the previous section, active modeling elements act as initiators,
since they own a thread of control.

Behavior Hardware Module Software Task
osss_behaviour (osss_module) (osss_sw_task)

Layer Behavioral Application Application
Object Type Entity Entity Entity
Usage Active Active Active
Process Type SC_THREADa & SC_CTHREAD & SC_CTHREAD &

SC_CTHREADa SC_METHOD SC_THREAD

No. of threads 1 - N 0 - N 1
Assign-/Copyable No No No
Supports Inheritance Yes Yes Yes
Requires clock Yesb Yes Yesc

Requires reset Yesb Yes Yesc

OSSS ports Yes Yes Yes
Signal ports Yes Yes No
Nesting allowed Yesd Yes No
a The process type is decided at the root Behavior. For modeling of untimed systems, using delta notifications
only, SC_THREAD is required. For using Behaviors to model clock cycle accurate, SC_CTHREAD is required.
b When using the SC_CTHREAD for modeling on clock cycle granularity, the root Behavior need to be bound to
clock and reset.
c Only on Application Layer. After adding SW Task to CPU no clock and reset is needed.
d Sub-Behaviors, called composite Behaviors, can be composed in sequential (SEQ), finite state machine (FSM),
parallel (PAR) or pipelined (PIPE) execution order.

Table 6.5: Overview of active OSSS modeling elements

306 6 Simulation

6.7.3 Mapping and Refinement

Table 6.6 gives and overview of the OSSS Behavioral Layer (BL) to Application Layer (AL)
mapping and refinement possibilities. Leaf Behaviors and hierarchical Behaviors b with
|par_set(b)| = 1 using sequential (SEQ) and finite state machine (FSM) composition can
be mapped to HW Modules and SW Tasks. Hierarchical Behaviors b with |par_set(b)| > 1
using parallel (PAR) and pipeline (PIPE) compositions are mapped to the Application Layer
using the PAR (see Listing C.6) and PIPE (see Listing C.7) Shared Objects. Events cannot be
replaced by Shared Objects directly. Instead, Shared Object replacements for all pre-defined
OSSS Behavioral Channels are provided: Queue (see Listing C.4), Handshake (see Listing C.2)
and Double Handshake (see Listing C.3). Shared and Piped Variables from the OSSS Behavioral
Layer are replaced by Shared Variable (see Listing C.1) and Piped Variable (see Listing C.5)
Shared Objects.

AL Elements HW Module SW Task Shared Object
BL Elements

Behavior Leaf Behavior Leaf Behavior PAR composition
Hierarchical Behavior Hierarchical Behavior PIPE composition

Event – – No
(Double) Handshake

Queue

Shared Variable – – Yes

Table 6.6: Overview of OSSS Behavioral Layer (BL) to Application Layer (AL) mapping &
refinement possibilities

VTAL Elements SW Processor HW Block Memory Channel
AL Elements

HW Module – change sc_module – –
to osss_module

SW Task only single Task – – –
per processora

Plain Object inlined inlined storageb –

Shared Object Not yetc wrapped by shared stated –
Object Socket

Adapter Socket – wrapped by – –
Object Socket

Communication Link – – Not yetd RMI
a Multitasking is not supported here. An extension to support multitasking can be found in [48, 23, 17].
b Value objects should be mappable to dedicated memories. Read-Modify-Write semantics should be supported.
c Along with our works on the support of multitasking we think about the support of Shared Objects for
inter-task communication.
d The use of dedicated memories for the mapping of communication links can be used for the implementation of
a call-by-reference mechanism.

Table 6.7: Overview of OSSS Application Layer (AL) to Virtual Target Architecture Layer
(VTAL) mapping & refinement possibilities

Table 6.7 gives an overview of the OSSS Application Layer (AL) to Virtual Target Architecture

6.7 Summary 307

Layer (VTAL) mapping and refinement possibilities. Until now we have a strict separation
of hardware and software. Hardware Modules are refined into synthesizable behavioral RTL
descriptions and Software Tasks are executed on a software processor. An extension of the
presented modeling elements supports multitasking [48, 23, 17]. Thus, enabling the mapping of
more than a single Software Task to a processor, including the mapping of Shared Objects to
software processors and shared memory. Plain Objects can either be used in Software Tasks or
in Hardware Modules. In both cases they become inlined to the thread of control. The state of
a Plain Object can be mapped to a dedicated memory. However until now it is not possible to
modify attributes of memory mapped objects directly. The support of a Read-Modify-Write
mechanism for the purpose of efficient attribute manipulation will be part of a future release of
the OSSS library.

Until now Shared Objects can be implemented in dedicated hardware, thus limiting the
mapping possibilities and flexibility (and requiring the usage of FPGA platforms of a full
custom ASIC design). This is performed by wrapping them with a so-called Object Socket.
In the extension to support SW multitasking, Shared Objects can also be used inter-task
communication.

Communication Links from the OSSS Application Layer (constituted by port to interface
bindings) are mapped onto physical communication channels on the OSSS Virtual Target
Architecture Layer. With the support of OSSS RMI-Channel containers a generic decoupling
from application-specific method-based communication to architecture specific signal-level
communication is given. The use of dedicated memories for the mapping of communication links
can be used for the implementation of a call-by-reference mechanism. But this is also future
work.

6.7.4 Review of Goals

In Table 6.8 a review of the related goals from Chapter 2 is given.

Table 6.8: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled)

ID Goal Status Comment

G1 Integration of synthesis
tool and simulation in-
frastructure into Eclipse
CDT Framework

 Since OSSS is based on C++ and integration into
the Eclipse C/C++ Development Tooling (CDT)
Framework is possible. Both, the simulator and
the synthesis tool Fossy have been successfully
integrated, see Chapter G.

G2 Introduce a notion of
time for the SW parts

 Estimated Execution Time (EET) blocks, as de-
scribed in Section 6.4.3.3, enable timing anno-
tation of Software Tasks. Required Execution
Time (RET), as described in Section 6.4.3.4, en-
able dynamic run-time checks of software timing
requirements.

M1 Single modeling lan-
guage to describe HW
and SW

 OSSS, as introduced in Section 6.2 covers the
description of HW and SW. At the Application
Layer, SW is described by Software Tasks (see
Section 6.4.3) and HW is described by Hardware
Modules (see Section 6.4.5).

M2 SystemC approach OSSS is based on SystemC as described in Sec-
tion 6.2.

continued on next page

308 6 Simulation

Table 6.8: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

M3 Executable Specifi-
cation and HW/SW
partitioned models

 The OSSS simulation model covers the untimed
specification level modeling (OSSS Behavioural
Layer, see Section 6.3), timed HW/SW parti-
tioned modeling (OSSS Application Layer, see
Section 6.4) and timed execution platform mod-
eling (OSSS Virtual Target Architecture Layer,
see Section 6.5).

M4 Synthesizable HW/SW
partitioned model

 An OSSS Application Layer model (which de-
scribes a HW/SW partitioned model) mapped
to an OSSS Virtual Target Architecture Layer
model is synthesizable with the prototypical syn-
thesis tool Fossy, see Chapter 7.

M10 Possibility to write hard-
ware modules at RT-
level

 HW Modules at the Application Layer (see Sec-
tion 6.4.5) are described at behavioral RT (using
SC_CTHREADs). For more details see Chapter F.

M12 Consideration of
(real-)time constraints

G The combination of EETs and RETs can be used
to specify real-time constraints. Currently RETs
can only be used within one Actor. This mod-
eling restriction restricts the expressiveness of
advanced (real-)time constraints, e.g. end-to-end
deadlines.

M14 Integration of IP compo-
nents

 IP components can be integrated using IP Com-
ponent wrapper modules. Signal based commu-
nication with Hardware Modules and Shared Ob-
jects plugged into Adapter Sockets is supported.

A1 Debugging on all levels
of abstraction

G Debugging of OSSS simulation models is not
directly supported by the methodology or simu-
lation library. But since OSSS builds on top of
SystemC and C++, common waveform visualiza-
tion and debugging tools can be used.

A3 Basic timing properties
shall be reflected by the
simulation

 At the Application Layer timing properties of
Software Tasks are represented by EET blocks
and timing properties of Hardware Modules are
represented by SystemC wait() statements. At
the Virtual Target Architecture Layer timing
properties of the RMI protocol and the on-chip
communication resources (bus, point-to-point)
are added.

A4 Combine models of dif-
ferent levels of abstrac-
tion in a single simula-
tion

G In OSSS Behavioural Layer and Application
Layer modeling elements can be simulated to-
gether. The enables stepwise refinement from
an untimed to a timed simulation model. Ap-
plication and Virtual Target Architecture Layer
modeling elements cannot be mixed (i.e. all Ap-
plication Layer elements need to be mapped to
their corresponding Virtual Target Architecture
elements). At the Application Layer it is possi-
ble to combine timing approximate models with
cycle-accurate models.

continued on next page

6.7 Summary 309

Table 6.8: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

A5 Consideration of IP com-
ponents in the simula-
tion

G SystemC RTL IP components can be integrated
at the Application Layer. VDHL or Verilog RTL
IP components can only be integrated when using
a SystemC and VHDL or Verilog co-simulation
environment (e.g. ModelSim).

CHAPTER 7

Synthesis1

7.1 Introduction

This chapter presents the OSSS synthesis flow. As defined in Section 5.1, synthesis in OSSS is
the transformation of an Application Layer model mapped to a Virtual Target Architecture
Layer model into an Implementation Layer model. In the Y-Chart in Figure 5.1 this is the step
from (D) to (F). Looking to the backend of the design flow presented in Figure 5.3, the synthesis
step consists of hardware, software and hardware/software interface synthesis.

Figure 7.1 shows the OSSS synthesis flow for the producer/consumer example introduced in
Chapter 6. For synthesis we incorporate the behavior as defined by the Application Layer Model,
the allocated hardware resources of the Virtual Target Architecture Model and the mapping
information between them.

During the Architecture Extraction process the Virtual Target Architecture Model is analyzed
and separated into software and hardware partitions. The software partition in Figure 7.1 consists
of the Xilinx MicroBlaze together with its associated SW Task and the OPB channel. The
hardware partition is made up of a single Object Sockets containing the buffer Shared Object,
the two consumer hardware modules and two point-to-point channels.

Since our prototypical synthesis backend flow uses the Xilinx Platform Studio and the
Embedded Development Kit (EDK) we are generating vendor-specific architecture definition
files. These are the MSS (Microprocessor Software Specification) and MHS (Microprocessor
Hardware Specification) file that are used for the creation of an EDK project.

For the implementation of the Software Partition we use the MicroBlaze, the OPB and an
OPB DDR-RAM controller from the Xilinx IP core library. The Software Task is extracted from
the Application Layer Model, cross-compiled and linked against a specific OSSS software driver
library. It enables the communication with the Shared Objects using the OSSS RMI protocol.

The entire Hardware Partition is transformed from SystemC/OSSS to synthesizable VHDL
code by our high-level synthesis tool Fossy (Functional Oldenburg System SYnthesiser). The
resulting VHDL code is inserted into the generated EDK project and further processed by
the Xilinx Synthesis Tool (XST) or other third-party RTL synthesis tools. After a mapping
(MAP) and place & route (PAR) step the entire design can be downloaded to a Xilinx FPGA
prototyping board.

The organization of this chapter is described in the following section using Figure 7.2:

1© The input for synthesis is the Application and Virtual Target Architecture Layer model,
as described in Chapter 6.

2© Section 7.3 describes the basic parsing and intermediate representation of the input model.

1This section is based on own previous work [44].

312 7 Synthesis

C++ MSS MHS VHDL

gcc

Linker

LibGen PlatGen

XST

3
rd

 p
a
rt

y
 t

o
o

ls
O

S
S

S
 F

lo
w

Xilinx

IP Lib

DDR
RAM

OPB

IF

OPB
Arbiter

OPB

Xilinx
MicroBlaze

Object
Socket

Hardware
Block

Hardware
Block

OPB

OPB DDR
Controller

Xilinx
MicroBlaze

Synthesised
Shared Object

Synthesised

Consumer

Synthesised

Consumer

Software
Partition

Hardware
Partition

FOSSY
generated

from Xilinx
IP core library

Application Layer Model

MAP

PAR

Xilinx ML401 FPGA prototyping board

Architecture Extraction

Software Extraction

Figure 7.1: OSSS synthesis flow overview for the producer/consumer example

3© Section 7.4 describes the representation of the Virtual Target Layer modeling elements
for the chosen Xilinx FPGA platform. This is followed by the description of the platform
synthesis process interfacing the specific Xilinx tools in Section 7.5.

4© Section 7.6 describes the library-based software synthesis approach.

5© Section 7.7 describes the custom hardware synthesis and Section 7.8 the Shared Object
synthesis.

6© Section 7.9 describes the integration with the Xilinx back-end synthesis and compilation
tools to implement the specified system on the FPGA platform.

This chapter closes with a summary (Section 7.10) and a review of all synthesis related require-
ments from Chapter 2.

7.2 Overall Flow

We now provide a deeper insight into our synthesis flow. Figure 7.2 shows the main phases of the
OSSS synthesis flow for embedded hardware/software systems. The system design takes place
inside the OSSS Design Environment 1© consisting of a single Application Model, (possibly)
multiple Virtual Target Architecture (VTA) Model alternatives and a mapping relation between
them. For the simulation and evaluation of these different systems the OSSS simulation library
is used. The entire synthesis flow can be split into two phases:

Front-end: Describes the target platform and hardware independent part of the overall synthesis
flow, and can be subdivided into the following steps:

1. OSSS design parsing and intermediate representation 2© (see Section 7.3) is performed
by a C++ front-end. The Application Layer design is represented as Abstract Syntax
Tree (AST). Hardware, software and hardware/software interface synthesis work on
this AST representation of the OSSS design.

2. Design elaboration and architectural context extraction 3© (see Section 7.5) performs
analysis of the Application Layer, Virtual Target Architecture Layer, and the mapping.
As a result, the hardware platform configuration, containing both, IP components

7.2 Overall Flow 313

Vendor X Arch.
Class Lib

Xilinx Arch.
Class Lib

OSSS Arch.
Class Lib

OSSS Application
Model

OSSS VTA Model

SystemC
Sim Lib

EDG C++ Front End
cc2cil

SystemC
Synth Lib

Adaptation Layer
cil2xml

OSSS AST

Elaborator

Shared Object Synthesis

Channel Synthesis

Class Synthesis

Integer Type Synthesis

Delaborator

Code Generator

SystemC GenVHDL Gen

SystemC/OSSS Structure
Reflexion

System-Level
Design Rule Check

Design Partitioning
(SW/HW/IP)

Communication Analysis

3rd Party Tool Adaptation Layer

OSSS
ACI

Xilinx EDK Gen Vendor X Gen

SMOG

SW LibGen

.mss .mhs VHDL
wrapper

.mpd .pao

.vhdl
.vhdl

.vhdl
.vhdl

.vhdl
.cpp

FOSSYArchitecture Extraction

OSSS
Sim Lib

OSSS
Synth Lib

.vhdl
.vhdl

.cpp
OSSS

ESWLib

OSSS Design
Environment

Xilinx EDK
Project

C++ Front End

SW Extraction

OSSS
ESWLib

Templates

1

Back-End

2

34 5

6

Figure 7.2: Overview of the OSSS synthesis flow front-end

and custom hardware blocks is represented in an intermediate format. It describes the
configuration of each IP component and custom hardware block, and the connection
via point-to-point channels or shared buses. For shared buses, the address layout of
the overall system is generated, based on the register interface information (required
width and depth) of each IP component.

3. Software extraction and configuration 4© (see Section 7.6) extracts Software Tasks
from the Application Layer model and integrates them each into a self-contained cross-
compilable structure. Before Software Tasks have been part of the Application Layer
model. Now each software task is prepared to be executed on its own target processor.
For communication with peripherals the software driver library is configured with
the target addresses assigned during design elaboration and architectural context
extraction. For the RMI calls to Shared Objects the RMI ports are configured with
the base address of the register interface of the Shared Object, also assigned during
design elaboration and architectural context extraction.

4. High-level synthesis of the user-defined hardware part and the hardware/software
interface of the design 5© (see Section 7.7 and Section 7.8) transforms all custom
hardware blocks, Shared Objects, and custom designed hardware to hardware commu-
nication channels (e.g. point-to-point communication) into synthesizable VHDL code.
Shared Objects that have a connection to a bus get a generic memory interface that
can be attached to different bus slave front-ends. For each supported system-on-chip
bus, a converter translates bus protocol requests to this generic memory/register
interface.

Back-end: Describes the target platform dependent part of the overall synthesis flow 6© (for

314 7 Synthesis

more details see Figure 7.27). For the proof-of-concept implementation of the proposed
synthesis flow the Xilinx Platform Studio (XPS) [239] and the Xilinx Integrated System
Environment (ISE) [238] have been used to implement the back-end flow. It can be
subdivided into the following steps:

1. Platform generation, low-level synthesis, mapping, and place & route describes the
target platform dependent IP configuration, RTL, logic synthesis and place & route.
The platform generation builds the top-level structural design as synthesizable VHDL.
It contains all IP and custom hardware components as synthesizable VHDL or
Verilog. The low-level synthesis performs RTL and logic synthesis of the entire
platform. During mapping the logic and memory elements after low-level synthesis
are mapped to the components (Lookup-Tables (LUTs), Flip-Flops (FFs), Block-
RAMs (BRAMs), and special Hardware Multiplier (MULs)) of the specific target
FPGA. Finally, the place & route process determines the geometrical location of
the LUTs, FFs, BRAMs, and MULs, and determines the routes of the connections
between these elements.

2. Cross compilation of the software part of the design performs a cross-compilation of
the extracted Software Tasks, the peripheral drivers, and the RMI drivers, to an ELF
(Extensible Linking Format) file for each target CPU. Depending on the memory
subsystem configuration (CPU with data and instructions only in local memory or
shared memory) different boot loader instructions are added for staring the software
tasks from memory. Finally different linker scripts are applied to each ELF file for
mapping data and instructions into proper memory locations. The result of this step
is a target platform configuration dependent memory image for each software task.

3. Bit stream initialization and downloading to the hardware platform describes the last
step for programming the FPGA. The bit stream for programming the configuration
SRAM of the FPGA contains the configuration for each LUT, FF, BRAM, MUL
and routing resource obtained from hardware synthesis. Local instruction and data
memory (implemented in BRAMs) is also initialized with the proper memory images
for booting and executing the software.

The Front- and the Back-end including the different sub-phases will be explained in more
detail during the following sections.

7.3 Parsing and Intermediate Representation

For parsing the OSSS Application Layer design we are using the EDG C++ front end [217]. The
front end does syntax and analysis, including complete error checking. The front end translates
source programs into a high-level, tree-structured, in-memory intermediate language. The
intermediate language preserves a great deal of source information (e.g., line numbers, column
numbers, original types, original names), which is helpful in source analysis and transformation
applications.

Implicit and overloaded operations in the source program are made explicit in the intermediate
language, but constructs are not otherwise added, removed, or reordered. The intermediate
language is not machine dependent (e.g., it does not specify registers or dictate the layout of
stack frames).

The front end also includes:

• a C-generating back end, which can be used to generate C code for C++ programs,

• a C++-generating back end, which is useful for source-to-source transformation applica-
tions,

• a pre-linker, which handles automatic template instantiation,

• utilities to write the intermediate language to a file, read it back in, and display it in
human-readable form,

7.4 Target Platform Representation 315

• and a name demangler.

Both the internal Fossy data structure and the intermediate format of the front end are based
on the same ISO/IEC C++ standard [14]. The EDG front-end parser is used and augmented
with a thin adaptation layer converting the front end specific intermediate format to XML,
which is the input for Fossy and the Software Extraction (SMOG).

In order to simplify and to accelerate the high-level synthesis a special OSSS synthesis
library is used. This library includes reduced header files for all OSSS modeling elements. The
same reduced header files are provided for the SystemC library. Since Fossy and the Software
Extraction (SMOG) do not rely on the analysis of all method bodies most of them can be
omitted. This results in a significant speed up during the parsing step.

The central data structure Fossy and SMOG are operating on is the OSSS AST (Abstract
Syntax Tree). Note that the AST also contains non-synthesizable constructs like new, delete,
pointers, floating points, etc. The reason for this is:

• We have a C++ front-end which more or less directly provides this kind of information.

• The Software Extraction operates on the same AST. Since there are no restrictions on
software tasks, every C++ construct may occur.

• There are some “semi”-synthesizable constructs like new (which may be used to instantiate
a module) have to be forwarded to Fossy’s elaborator and therefore have to be represented
internally.

7.4 Target Platform Representation

As already stated in Section 2.2, basic architecture building blocks of embedded hardware/soft-
ware systems can be classified in the following categories: software processors, memories and
(user-defined) hardware blocks. These components can be interconnected by a communication
network, like a shared bus or a high-speed point-to-point connection.

Figure 7.3 shows the building blocks of the Virtual Target Architecture class library. These
components are supported in the synthesis flow and can be used to assemble the Virtual Target
Architecture. For the sake of simplicity, we only provide a few architecture building blocks
instead of a huge library covering all IP components provided by Xilinx.

osss_architecture_object

osss_hardware_
block

osss_
memory

osss_basic_
channel

osss_
processor

xilinx_
microblaze

osss_
channel

osss_
point_to_
point

… IBM_
CoreConnect

… xilinx_
OPB

osss_
object_
socket

osss_
module

…

xilinx_
blockram

xilinx_
external_
memory

Figure 7.3: Architecture class library [44]

For the proof-of-concept implementation and evaluation of the presented synthesis flow,
only a limited set of target platforms can be represented. In general, the choice of the target
platform is a crucial issue in the design process embedded hardware/software systems. It is

316 7 Synthesis

driven by multiple objectives for finding the "best" or "most suitable" target platform for a given
application. The terms "best" or "most suitable" need to be defined with respect to given design
and market constraints (e.g. speed, costs, power consumption or flexibility).

In the context of this work the choice of supported target platforms has been mainly driven
by accessibility and maturity of the platform configuration and synthesis process to be integrated
as back-end into the proposed flow. Combined with the requirements from Chapter 2 the number
of possible target platforms has been further narrowed. At the same time, the set of suitable
target platforms should not be too restricted and adapted only for special hardware/software
designs, but should be generally acceptable for a big class of embedded hardware/software
designs.

The traditional way to prototype a system on chip was to assemble a PCB from the basic
system components which consist of processing elements ("off-the-self" Micro-Processors, Micro-
Controllers or Digital Signal Processors (DSPs)), Application Specific Integrated Circuits (ASICs)
and Field Programmable Gate Arrays (FPGAs). In these prototyping environments ASICs
and FPGAs were used to implement the custom hardware components of the system. Due to
the availability of platform FPGAs which are big enough to implements an entire system on
chip, it became possible to use special prototyping and development boards carrying one FPGA
together with generic peripherals (like interface components and memories). Platform FPGAs
are available with either "hard" or "soft" processor cores plus different integrated peripherals
and a lot of soft IP components. The two market-leading companies for platform FPGAs are
Altera and Xilinx.

Beside platform FPGAs from Altera and Xilinx there are also other FPGAs on the market
that basically differ in the internal structure and technology of the FPGA. For the implementation
of complex embedded hardware/software systems Altera and Xilinx offer the biggest portfolio of
FPGA technology optimized IP components, including high-performance soft-core processors,
and highly productive IP configuration and synthesis tools.

In this work target platform support is limited to Xilinx platform FPGAs and prototyping
boards as described in Appendix E. Figure 7.4 shows an example of a virtual target architecture
composed of different Xilinx specific specializations of generic osss_architecture_objects.
It includes a single Xilinx MicroBlaze processor block connected to a xilinx_OPB as a bus
master. A Xilinx Block-RAM and an osss_object_socket are connected to the OPB as slave
components as well. Two sc_modules are connected to the osss_object_socket using a simple
point-to-point connection (osss_point_to_point).

osss_
processor

osss_

hardware_
block

osss_

hardware_
block

osss_

hardware_
block

osss_
memory

xilinx_OPB osss_point_to_point

xilinx_blockram

osss_object_socket sc_module

xilinx_microblaze

Figure 7.4: Example of a virtual target architecture [44]

Each of the supported architecture building blocks shown in Figure 7.3 will be explained in
more detail during the following subsections.

7.4.1 Software Processor Block

The software processor architecture building block is presented using the Xilinx MicroBlaze,
which is used in the experiments of this work. The xilinx_microblaze is composed of several
other IP cores. The heart of this software processor block is the Xilinx MicroBlaze soft processor
core, which can configured by several options.

7.4 Target Platform Representation 317

The Xilinx MicroBlaze embedded soft-core processor [103] is a reduced instruction set
computer (RISC) optimized for the implementation in Xilinx field programmable gate arrays
(FPGAs). Figure 7.5 shows a diagram of the MicroBlaze core. The backbone of the architecture
is a single-issue, 3-stage pipeline with 32 general-purpose registers, an Arithmetic Logic Unit
(ALU), a shift unit, and two levels of interrupt. This basic design can then be configured with
more advanced features such as barrel shifter, floating-point unit (FPU), caches, exception
handling, debug logic, and others.

DXCL_M

DXCL_S

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

MFSL 0..7

SFSL 0..7

IXCL_M

IXCL_S

I-C
a

c
h

e

D
-C

a
c
h

e

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

Figure 7.5: MicroBlaze core block diagram [103]

Figure 7.6 shows the internal organization of the xilinx_microblaze architecture building
block with internal memory. Since the MicroBlaze has a 32 bit RISC Harvard-Architecture
it needs separate instruction and data memories. The xilinx_microblaze architecture block
shown in Figure 7.6 encapsulates both the memories in separate parts of a Block RAM (BRAM).
The BRAM is capable of storing a maximum of 64 Kbyte of data and 64 Kbyte of instructions.
For the communication with user defined hardware blocks and its peripherals the MicroBalze
processor core is connected to an OPB (On-Chip Peripheral Bus) using the DOPB port. The
MicroBlaze together with its local data and instruction memory constitute the core components
of the xilinx_microblaze block.

MicroBlaze

INT
Ctrl.

OPB MDM

OPB Timer

OPB UART

LMB BRAM

Controller

LMB BRAM

Controller

BRAM
(dual
port)

ILMB

DLMB

IRQ

Timer IRQ

UART IRQ

external IRQ[n]

O

P
B

TX/RX JTAG

xilinx_microblaze

1

1
MDM
IRQ

DOPB

IOPB

Figure 7.6: Organization of the xilinx_microbalze architecture building block (internal
memory, no OPB burst) [44]

318 7 Synthesis

An interrupt controller can be integrated if either interrupts from user defined hardware blocks
or other peripherals (OPB Timer or OPB UART) are necessary. An OPB Timer can be added if
the software running on the MicroBlaze makes use of special functions dealing with explicit timing
behavior (e.g. software waiting for a certain amount of time). The OPB UART and OPB MDM
modules are supported to enable a convenient software debugging environment when running
applications on the prototyping board. Considering a system with multiple xilinx_microblaze

blocks, only one of them can be equipped with an UART for debugging. This restriction results
from the limited physical resources on the prototyping board (e.g. the Xilinx ML401 is equipped
with only one single SUB-D9 connector usable for serial communication). Since a single OPB
MDM (Microprocessor Debug Module) is capable of handling more than one MicroBlaze, only
one of them will be shared among multiple xilinx_microblaze blocks connected to the same
OPB.

The xilinx_external_memory IP component can be used to store data and instructions
when the size of the local BRAM is not big enough to store the entire program (i.e. the Software
Task). Figure 7.7 shows the internal organization of the xilinx_microblaze architecture
building block with external memory. This version of the xilinx_microblaze has to be used if
the software application (either data or instructions) does not fit into the local block RAMs. In
this case, the data and instruction memory of the MicroBlaze is part of an external memory. It
is accessed by the DOPB (for data) and IOPB (for instruction) port, both connected to OPB1.
For accessing the external memory, an appropriate memory controller has to be instantiated.
To speed up the access to the external memory local data (D-Cache) and instruction (I-Cache)
caches (both implemented in block RAMs) can be instantiated (not shown in the figure).

MicroBlaze

INT
Ctrl.

OPB MDM

OPB Timer

OPB UART

LMB BRAM
Controller

BRAM
(dual port)

ILMB

DLMB

IRQ

Timer IRQ

UART IRQ

TX/RX

JTAG

xilinx_microblaze

MDM IRQ

LMB BRAM
Controller

O
P
B
 D

D
R

S
D

R
A
M

C
o
n
tr

o
ll
e
r

D
D

R
S
D

R
A
M

(
o

ff
 c

h
ip

)

DOPB

IOPB

F
S
L
2
O

P
B O

P
B
1 O

P
B
2

u
s
e
r-

d
e
fi
n
e
d
 h

a
rd

w
a
re
slave OPB[n]
w/o burst

slave OPB[n]
with burst

timer
ctrl.

UART
ctrl.

MDM
ctrl.

interrupt ctrl.

F
S

L
 i

n

F
S

L
 o

u
t

Figure 7.7: Organization of the xilinx_microblaze architecture building block (external
memory, with OPB burst) [44]

Additionally, OPB1 is used for configuration and access of the interrupt controller, the timer,
the UART and the MDM. When a user-defined hardware block (i.e. a Shared Object) is attached
to OPB1 the RMI protocol operates in single cycle/beat mode only, because the MicroBlaze is
not capable of initiating burst transfers on its DOPB or IOPB port. The same applies for the
internal memory configuration, show in Figure 7.6 before.

To speed-up data transfer, OPB2 can optionally be connected to an FSL-to-OPB bridge for
enabling the initiation of burst transfers to Shared Objects. Besides the burst capability it can
be used to decouple the communication with an external data and instruction memory connected
to OPB1 from the communication with Shared Objects (using OPB2 via the FSL-to-OPB bridge).
This enables a more accurate estimation of basic-block execution times, given that the OPB1

and the external memory is used exclusively by a single processor.
The MicroBlaze contains eight input and eight output Fast Simplex Link (FSL) interfaces

7.4 Target Platform Representation 319

(see MFSL 0..7 and SFSL 0..7 in Figure 7.5). For the connection to the FSL-to-OPB bridge one
input and one output FSL interface of the MicroBlaze is used. The FSL channels are dedicated
unidirectional point-to-point data streaming interfaces. The FSL interfaces on the MicroBlaze
are 32 bits wide. The same FSL channel can be used to transmit or receive either control or
data words. A separate bit indicates whether the transmitted (received) word is control or data
information. The FSL is a special I/O mechanism of the MicroBlaze that is directly mapped
into its register file. The put and get instructions of MicroBlaze can be used to transfer the
contents of a MicroBlaze register onto the FSL and vice-versa.

To conclude, Table 7.1 shows the configurable features of the supported MicroBlaze system.

7.4.2 Hardware Block (osss_hardware_block)

The osss_hardware_block architecture elements represent the user defined hardware at Appli-
cation Layer mapped to the Virtual Target Architecture Layer. The Application Layer provides
two basic building blocks for user defined hardware: Hardware Modules (osss_module) and
Shared Objects (osss_shared<...>). The basic difference between these application building
blocks is their behavior in terms of activity. Since the module can contain any number of
processes, it is able to initiate action on its own. That is why we consider modules with processes
as active. Unlike the module, the Shared Object is passive. It provides a method interface,
which can be accessed by any hardware module or software task through a port to interface
binding. Thus, a Shared Object is activated when the process of a hardware module or software
task calls a method on the Shared Object and it loses its activity when the method call has
been finished.

In order to reflect the different behavior of a hardware module and a Shared Object, as
described above, the following representations on the Virtual Target Architecture Layer are
provided:

Hardware Module All user defined hardware blocks described by sc_module on the Application
Layer can be realized as osss_module on the Virtual Target Architecture Layer. An
sc_module can be easily replaced by an osss_module through replacing the base class,
replacing SC_THREAD processes by SC_CHTREAD processes and using the pre-defined clock
and reset ports.

Shared Object All Shared Objects on the Application Layer have to be wrapped by an OSSS
Object Socket (i.e. osss_object_socket<osss_shared<...> >) when mapped to the
Virtual Target Architecture Layer. Thus, OSSS Object Sockets are architectural represen-
tatives of the passive Shared Objects at Application Layer.

7.4.3 Memory (osss_memory)

The osss_memory architecture building block can be further subdivided into on-chip
(xilinx_blockram) [94] and off-chip (xilinx_external_memory) memory (see Figure 7.8).
Both types of memory can be used for hardware/software, software/software or hardware/hard-
ware communication. Both memories are attached as slaves to the OPB. A memory controller is
used for accessing the two different memories [125, 106].

The xilinx_blockram module can be instantiated multiple times, depending on the amount
of on-chip memory available in the used FPGA. Each xilinx_blockram module has a config-
urable size from 512 Byte up to 128 kByte.

The xilinx_external_memory module can only be instantiated once, since it uses an off-chip
memory module which is mounted on the prototyping board and which is only available once.
The xilinx_blockram module has a fixed size depending on the prototyping board (e.g. the
Xilinx ML401 prototyping board has a 64 MB of DDR SDRAM).

7.4.4 Communication Network (osss_basic_channel)

For the interconnection of the architecture building blocks, a special kind of channel called
OSSS-Channel is used. This channel serves two purposes:

320 7 Synthesis

Table 7.1: Configurable features of the MicroBlaze soft core processor

MicroBlaze configurable feature Description

On-chip Peripheral Bus (OPB) data side in-
terface

Used for communication with user defined
hardware blocks and/or controller of external
memory. For more details of the OPB see
Section E.3.6.

On-chip Peripheral Bus (OPB) instruction
side interface

Used for communication with controller of
external memory. For more details of the
OPB see Section E.3.6.

Local Memory Bus (LMB) data side interface Used to access data (i.e. static data, stack
and heap) mapped to the local memory (im-
plemented as BRAM). For more information
of the LBM see Section E.3.1.

Local Memory Bus (LMB) instruction side
interface

Yes. Used to access instructions (i.e. the soft-
ware application running on this processor)
mapped to the local memory (implemented
as BRAM). For more information of the LBM
see Section E.3.1.

Fast Simplex Link (FSL) interfaces Cannot be used explicitly, but is the inter-
face to connect with the FSL2OPB bridge to
support burst transfer via OPB.

Instruction and data cache Supported in combination with external mem-
ory configuration (see Figure 7.7).

Hardware barrel shifter Special hardware (instruction) support to
speed-up arbitrary bit-shifting (e.g. used dur-
ing serialization).

Hardware divider Special hardware (instruction) support to
speed-up integer divisions.

Floating point unit (FPU) Special hardware (instructions) to speed-
up calculation with floating point numbers
(float and double).

Timer Supports measurement of software execution
times and run-time assertions based on RET
annotations. The timer (see Section E.3.3) is
configured via OPB and can optionally trigger
an interrupt (e.g. when the counter hits a
certain value) via an interrupt controller.

Universal Asynchronous Receiver Transmitter
(UART)

Supports writing into a serial console or debug
console and supports std::cout streaming.
The UART (see Section E.3.4) can also be
used to send and receive arbitrary data. It
can be connected to the interrupt controller
(e.g. to notify the processor when the UART
send or receive buffer is getting empty or full).

Interrupt Controller Supports to connect arbitrary external inter-
rupt sources to the processors interrupt pin.
The interrupt controller (see Section E.3.2) is
configured and accessed via the OPB.

Microprocessor Debug Module (MDM) Supports connection with a software debugger
(see Section E.3.5).

7.4 Target Platform Representation 321

O

P

B

BRAM

(on-
chip)

DDR

SDRAM
(off-chip)

OPB DDR

Synchronous

SDRAM
Controller

OPB BRAM

Interface
Controller

xilinx_blockram

xilinx_external_memory

*

1

Figure 7.8: Organization of the osss_memory blocks (on-chip xilinx_blockram & off-chip
xilinx_external_memory) [44]

1. Encapsulation of a user-defined communication protocol. That means the channel has spe-
cific communication interfaces for each connected architecture block and the communication
network connecting these interfaces.

2. Representation of architecture building blocks where the communication links of the
application layer can be mapped on.

Virtual Target

Architecture

osss_channel

(e.g. xilinx_OPB)

osss_
processor

osss_
memory

osss_
hardware_

block

osss_
hardware_

block

osss_basic_channel

(e.g. osss_point_to_point)

osss_
hardware_
block

Figure 7.9: Channels connecting the architecture building blocks [44]

Figure 7.9 shows the channels as architecture elements, which interconnect the architecture
building blocks. Details of the communication protocol and the physical wires forming the
connection network are hidden by them.

We can distinguish between two kinds of channels:

• The osss_basic_channel can be used to describe a single master/multiple slave inter-
connection where each communication is modelled as a broadcast from the master to all
the connected slaves. A simple point-to-point connection (osss_point_to_point) can be
considered as a special case of this topology.

• The osss_channel can be used to describe a bus topology with multiple master and
multiple slave components. For the support of multiple masters, an arbitration unit with
exchangeable scheduling policies will be supplied. For further information refer to [77, 78].

7.4.4.1 Point-To-Point Communication (osss_point_to_point)

The osss_point_to_point channel is a simple point-to-point connection between user defined
hardware blocks and is completely customizable by the designer. We will provide a generic
osss_point_to_point channel in the virtual target architecture class library with a fixed
communication protocol and user definable communication data widths. Nevertheless, it is
possible to write completely user defined point-to-point connection and to integrate them into
the architecture class library.

322 7 Synthesis

7.4.4.2 Bus Communication (osss_channel)

On the one hand, a point-to-point communication architecture achieves a great performance
but on the other hand for huge designs many physical wires are necessary and this would lead
to huge area consumption. Bus communication tries to overcome this disadvantage. A bus
provides a physical channel, which is shared among its connected components. Furthermore, a
bus provides a scheduling mechanism for shared medium accesses. This bus scheduling is usually
done by an arbitration unit, called bus-arbiter.

In this work, a bus based communication will be used to cross the hardware/software boundary.
Because a CPU is usually connected to a bus in order to communicate with its environment, we
assume at least a single bus connected to a single CPU in each hardware/software system.

Typical bus systems used in SoC design are ARM AMBA (Advanced Microcontroller Bus
Architecture), IBM CoreConnect, Altera Avalon and Opencores Wishbone. For an overview
of some important SoC bus standards see [145, 84]. Since the chosen MicroBlaze has an IBM
CoreConnect On-Chip Peripheral Bus (OPB) interface we will concentrate on this specific bus
system (see Section E.3.6).

7.5 Platform Synthesis

The synthesis flow starts with an OSSS hardware/software design which has been mapped
from the Application to the Architecture Layer. Therefore all communication links on the
Application Layer have been refined by OSSS-Channels, all software tasks are mapped on
certain processors, Shared Objects are wrapped by osss_object_sockets and all sc_modules
have become osss_modules. That means that all design building blocks are either architecture
building blocks from the architecture class library or wrapped by them.

Figure 7.10 visualizes the architectural context extraction and hardware/software architecture
synthesis for the chosen prototyping board Xilinx ML401 (see Section E.2).

In the first step of the synthesis flow the OSSS HW/SW design is elaborated and architectural
context information used for further synthesis steps is extracted. This is done by the architecture
synthesis part of the OSSS synthesis library that utilizes the SystemC kernel to extract the
design structure. The necessary information is extracted at the end of elaboration phase of
SystemC. After extracting and analyzing the structure of the design the following intermediate
data is generated:

1. Architectural context information stored in an XML format that can be used by the Fossy
high-level-synthesis tool and the OSSS software library generator

2. Microprocessor Hardware Specification (MHS) used by the Xilinx Embedded Development
Kit (EDK)

3. Microprocessor Software Specification (MSS) used by the Xilinx EDK

4. User constraint file (UCF) used by the Xilinx Integrated Software Environment (ISE)

The MHS and the MSS are both Xilinx EDK proprietary formats. The UCF is Xilinx ISE
proprietary and the architectural context information XML file is Fossy proprietary.

The goal of the architecture extraction is the generation of a 3rd party tool specific architecture
description from the VTA Model. Furthermore, the mapping relations between the Application
and the VTA model are analyzed and forwarded to Fossy. The Fossy input is the Application
Model only. All mapping and refinement information from the VTA Model that are necessary
for the HW synthesis of Fossy are stored in a so-called ACI (Architectural Context Information)
file.

The architecture extraction process uses the SystemC/OSSS structure reflexion capabilities
that are available before, during and at the end of the SystemC elaboration phase. In a first step
a system-level design rule check is applied. It checks whether all architecture building blocks are
connected properly and all mapping relations are valid. When no design rule is violated, the
process continues with a partitioning step. Otherwise, an error message reporting the violation
is generated and the synthesis process quits.

7.5 Platform Synthesis 323

O

P

B

C

h

a

n

n

e

l

SW SO HW

HW-Block HW-BlockProcessor

osss system

processor basic channel hardware block basic channel hardware block

RMI port RMI port

SW task

Shared Object

RMI port RMI port

osss module

Xilinx ML401

Xilinx MB Xilinx OPB

osss p2pchannel

Arch. Context Extraction

Xilinx Architecture Synth.

RMI channel RMI channel

object socket

MHS

MSS
UCF

OSSS ACI

generateUCF()
generateMHS()

generateMSS()

Xilinx user IP

MPD

PAO

generateMPD()

OSSS 2.0 HW/SW Design

included for architectural context

extraction and architecture synthesis

generateACI()

OSSS 2.0 Synthesis Library

OSSS SW* OSSS HW*

OSSS RMI*

SystemC*SystemC

Arch. Synth.

Virt. Target Arch.

Architecture Synthesis

Virtual Target Architecture
1.

2.

Figure 7.10: Visualization of the architectural context extraction [44]

During design partitioning the system is split up into software, hardware, and intellectual-
property (IP) partitions. This step is necessary since each partition is treated differently during
the subsequent flow.

Software Partition: The software partition consists of a processor together with its peripherals
like dedicated data & instruction memory, interrupt controller and timers. Since most
processors and its peripherals are connected through a dedicated bus, we also include
this bus into the software partition. Finally yet importantly, all software tasks from the
Application Model are part of the processor’s software partition they are mapped onto.
This information is propagated to the Software Extraction that extracts the software tasks
and all classes it depends on and customizes the OSSS embedded software library (OSSS
ESWLib) used for RMI communication with Shared Objects.

Hardware Partition: A hardware partition consists of the maximum set of osss_modules and
Shared Objects that are connected either by sc_signals or synthesizable OSSS-Channels
(until now we only support point-to-point channels with user-defined bit widths).

IP Partition: An IP partition consists of a single architecture IP component. E.g. an on-chip
bus that should not be generated by Fossy, but used as a pre-existing configurable RTL-IP
core.

During Communication Analysis the mapping from the Application Model’s communication

324 7 Synthesis

links to the VTA Model’s Channels is examined. Both the partition and the communication
analysis results are written to the ACI file that is used by Fossy during hardware synthesis.

The last step is the generation of architecture definition files for a specific 3rd party tool.
Until now, only a Xilinx Platform Studio backend is available. However, other vendor specific
backends can be added. The Xilinx EDK Generator uses the information collected in the analysis
steps above to write an MSS (Microprocessor Software Specification) and MHS (Microprocessor
Hardware Specification) file. The first one describes the software properties of each software
partition and the second one defines the architecture that is composed out of software, hardware
and IP partitions. Each hardware partition is considered as a user-defined IP component whose
skeleton is generated in the last step of the architecture extraction process. All necessary
hardware description files are to be generated by Fossy (see “VHDL dummies”).

7.5.1 Architectural Context Information

The idea of the architectural context extraction is based on a structure reflection during run-time.
This is possible because most of the design structure information is inherent in the simulation
context which is built and managed by the SystemC kernel. During the elaboration phase which
is part of the execution of a SystemC application the module hierarchy is built up. SystemC
provides a convenient programming interface to access this module hierarchy.

The end_of_elaboration() method is part of the standard implementation of the classes
sc_module, sc_port, sc_export and sc_prim_channel. By default these functions do nothing.
They need to be overridden in a user-defined subclass of these classes in order to perform
structure reflection. At the end of the elaboration phase no further modifications are allowed
to the module hierarchy. Therefore, it is reasonable to use this hook to start the structure
reflection.

1 virtual void end_of_elaboration() {
2 std :: vector<sc_object∗> tops = sc_get_top_level_objects();
3 recursive_descent(tops);
4 }
5

6 void recursive_descent(std::vector<sc_object∗>& obj_vec) {
7 for(unsigned int i=0; i<obj_vec.size(); i++) {
8 if (sc_module∗ module = dynamic_cast <sc_module∗>(obj_vec[i])) {
9 sc_interface∗ channel_if = dynamic_cast<sc_interface∗>(obj_vec[i]);

10 if (channel_if) {
11 //add hierarchical channel to design hierarchy
12 }
13 else {
14 //add module to design hierarchy
15 }
16 std :: vector<sc_object∗> children = module−>get_child_objects();
17 recursive_descent(children) ;
18 }
19 else if (sc_port_base∗ port =
20 dynamic_cast <sc_port_base∗>(obj_vec[i])) {
21 //add port to design hierarchy
22 }
23 else if (sc_prim_channel∗ channel =
24 dynamic_cast<sc_prim_channel∗>(obj_vec[i])) {
25 //add primitive channel to design hierarchy
26 }
27 else if (...) {
28 ...
29 }
30 }
31 }

Listing 7.1: Example of structure reflection using the SystemC library

Listing 7.1 gives an example for the usage of the end_of_elaboration() method and illus-
trates how the structure of a SystemC can be traversed. The function recursive_descent(...)

gets a vector of sc_object pointers. The sc_object is a base class of each structural design
element in SystemC. A module or a port of a module is a specialization of that base class.

7.5 Platform Synthesis 325

Thus the dynamic_cast<...>(...) operator can be used during run-time to check whether a
sc_object is a module, a port or a primitive channel.

In addition to the module hierarchy information, the port to interface binding can be
extracted during run-time. In this context a detailed knowledge about interfaces (sc_interface)
is desirable. Since interfaces are not derived from the base class sc_object and therefore do
neither belong to the module hierarchy nor to the object hierarchy it is more difficult to extract
them. By making use of the typeid operator of the C++ run-time type information (RTTI) it
is possible to get the type name of each port.

This structure reflection mechanism has been extended in order to extract the architectural
context information in the OSSS synthesis flow.

Figure 6.18 shows the architecture class library which contains the supported architecture
building blocks. This library contains general elements that are independent from a certain
target platform. These are the osss_architecture_object base class and the osss_processor,
osss_hardware_block, osss_memory and the osss_basic_channel. These classes can be
considered as base classes that categorize architecture elements and serve for the extension by
more target platform specific elements. Up to now the OSSS Synthesis Library only contains
platform dependent building blocks which are IP cores from Xilinx. These are the MicroBlaze
soft processor core, Block RAM, external Memory and the On-Chip Peripheral Bus (OPB). The
concept of the architecture class library allows also supporting other target platforms like for
instance from Altera. In this case the library has to be extended by the IP cores provided by
Altera.

As one can see from Figure 6.18 the osss_architecture_object is derived from sc_module,
which is derived from sc_object. Moreover all OSSS ports are derived from the appropriate
SystemC port class sc_port<IF, N> and all interfaces are derived from the sc_interface

base class. Hence it becomes possible to use the reflective approach that has been sketched in
Listing 7.1.

As shown in Figure 7.10 the structure reflection starts with the architectural context
extraction at the end of elaboration phase. During this phase a tree that represents the
structural hierarchy of the OSSS HW/SW design is generated. In Figure 7.10 the architecture
of a simple hardware/software design is extracted. The top level module describes an OSSS
system that defines the system boundary and connections to the “external world” like clock and
reset ports. This system contains a processor that executes a software task with an RMI port
that is connected to an RMI channel. Additionally, the system contains a hardware block which
is an object socket that contains a Shared Object and two RMI ports. One of the RMI ports
is connected to the same RMI channel as the processor and the other RMI port is connected
to another RMI channel that represents a point-to-point (OSSS p2p) connection. The last
architecture element is a hardware block which is an OSSS module that contains an RMI port
that is connected to the point-to-point channel as well.

After the structure reflection has been completed, the top-level design (which needs to be
derived from osss_system2) is partitioned. We define the following three kinds of partitions:

• Software Subsystem: A software subsystem contains at least a single processor, its
associated software tasks and the bus to which the processor is connected. This partition
is considered as an IP block, since both the processor and the bus are taken from an
existing IP library of the Xilinx EDK.

• Custom IP: A custom IP partition contains any number of hardware modules and Shared
Objects. The main restriction on custom IP block is, that they are only allowed to contain
point-to-point channels, because these are also custom synthesized. This is an important
restriction, because all custom IPs that are identified in this synthesis step are further
processed by Fossy.

• Channel IP: All channels which are not connected to a software processor belong into
this kind of partition. A channel IP contains only a single channel. In the current state of
the OSSS synthesis flow this can only be a Xilinx OPB.

2Because osss_system is the base class to define the SoC boundary (i.e. top-level module for synthesis).

326 7 Synthesis

Figure 7.11 shows the result of the system partitioning based on the producer/-
consumer example mapping alternative A from Section 6.6.1. The software subsystem
osss_software_subsystem_0 contains the producer software task that is mapped on a pro-
cessor of type Xilinx MicroBlaze and its associated Xilinx OPB channel. The custom IP
osss_custom_ip_0 contains both consumer hardware modules, the buffer Shared Object and
the two point-to-point channels.

m_Channel1

Virtual Target

Architecture

Xilinx

Microblaze

Object

Socket

Hardware

Block

Hardware

Block

Shared Bus

Topology
Point-to-Point

Topology

O

P

B

Application

Port Interface

m_Producer
m_Consumer1

m_Buffer

m_Channel2

m_Channel3

m_Processor

m_Consumer2
Software Task

Shared Object
Module with Process(es)

(a) Shared bus and point-to-point channel

top

osss_custom_ip_0

osss_software_subsystem_0

m_Channel2

 [osss_p2p]

m_Channel3

 [osss_p2p]

m_Buffer

m_Channel1

 [xilinx_opb]

m_Consumer1

m_Consumer2

m_Producer m_Processor

 [xilinx_microblaze]

(b) Partitioning graph

Figure 7.11: Partitioning of the producer/consumer example mapping alternative A from
Section 6.6.1 [44]

The next Figure 7.12 shows the result of the system partitioning based on an-
other mapping alternative of the producer/consumer example. The software subsystem
osss_software_subsystem_0 stays unchanged compared with Figure 7.11. Since both point-
to-point channels from the above example have been replaced by a single Xilinx OPB channel
we now have to deal with three instead of a single custom IP. The partitioning results in a
custom IP for each consumer hardware module and the buffer Shared Object since all of these
components are connected to the second Xilinx OPB channel. The channel itself is encapsulated
by the osss_channel_ip_0 partition.

Virtual Target

Architecture

Xilinx

Microblaze

Object

Socket

Hardware

Block

Hardware

Block

Shared Bus

Topology

O

P

B

Application

Port Interface

O

P

B

Shared Bus

Topology

m_Producer m_Buffer

m_Consumer1

m_Consumer2

m_Channel1

m_Channel2

m_Processor

Software Task
Module with Process(es)

Shared Object

(a) Shared bus and point-to-point channel

top

osss_channel_ip_0
osss_custom_ip_1

osss_custom_ip_2 osss_custom_ip_0

osss_software_subsystem_0

m_Channel2

 [xilinx_opb]

m_Consumer1

m_Bufferm_Consumer2

m_Channel1

 [xilinx_opb]

m_Producer m_Processor

 [xilinx_microblaze]

(b) Partitioning graph

Figure 7.12: Partitioning of the producer/consumer example mapping alternative C [44]

The last Figure 7.13 shows the result of the system partitioning based on the mapping
alternative B of the producer/consumer example from Section 6.6.1. Compared to Figure 7.12
the only difference is the missing Xilinx OPB channel m_Channel2 because all communication
links from the Application Layer have been mapped on m_Channel1.

The step of the architectural context extraction is followed by the target platform specific
architecture synthesis. This is done by looking at the most specialized target specific class of
each architecture element identified during architecture context extraction.

Considering the example from Figure 7.10 the OSSS system is specialized by the Xilinx
ML401 development board. This includes the specific ports from the Xilinx Virtex 4 FPGA to

7.5 Platform Synthesis 327

Virtual Target

Architecture

Xilinx

Microblaze

Object

Socket

Hardware

Block

Hardware

Block

Shared Bus

Topology

O

P

B

Application

Port Interface

m_Producer m_Buffer

m_Consumer1

m_Consumer2

m_Processor

m_Channel1

Software Task
Module with Process(es)

Shared Object

(a) Shared bus and point-to-point channel

top

osss_custom_ip_1

osss_custom_ip_2 osss_custom_ip_0

osss_software_subsystem_0

m_Consumer1

m_Buffer

m_Channel1

 [xilinx_opb]

m_Consumer2

m_Producer m_Processor

 [xilinx_microblaze]

(b) Partitioning graph

Figure 7.13: Partitioning of the producer/consumer example mapping alternative B from
Section 6.6.1 [44]

the devices mounted on the ML401 board. This includes the input clock, reset, external memory
and I/O pins. The processor is specialized by a Xilinx MicroBlaze that is connected to an OPB.

Out of the Xilinx specific components the MHS (Microprocessor Hardware Specification)
and the MSS (Microprocessor Software Specification) file for the EDK is generated. The Xilinx
ML401 system description is used to generate a target platform dependent UCF (User Constraint
File) that contains the physical position of the clock, reset and external memory pins. In order
to pack the user-defined IP for using it in the Xilinx EDK an MPD (Microprocessor Peripheral
Definition) and a PAO (Peripheral Analyze Order) file are generated.

The OSSS ACI (Architectural Context Information) file is basically generated from the
information gained during architectural context extraction and gets enriched by some of the
target platform dependent information. In general it contains all the information about the
internal structure of the user-defined hardware part of the system that is further processed
by the high level synthesis tool Fossy. Additionally it contains information about how this
user-defined hardware is integrated and connected to the overall system architecture defined by
the MHS.

In the following sections the generated files will be described in more detail.

7.5.2 MHS and MSS Generation

The Xilinx EDK builds on top of the Xilinx ISE and can be regarded as an entry for the ISE
synthesis flow. The aim of the EDK is the integration of various IP components including
embedded processors, DSP blocks, peripherals and communication IPs. The EDK itself includes
a library of several IP components including the MicroBlaze embedded soft core processor plus
several peripherals which can be interconnected by using the IBM CoreConnect technology.
Since the MicroBlaze is a soft processor core it can be fully customized. By using the Xilinx
EDK a designer can assemble an architecture consisting of different IP components including
user-defined hardware blocks. After the assembly and configuration of the desired architecture
the Xilinx ISE is used to synthesize and download the whole design to an FPGA.

In the proposed synthesis flow the Xilinx EDK serves three purposes:

1. It is used to generate the hardware architecture of the hardware/software design. This
includes the generation of black-box placeholder components for the integration of the
Fossy synthesis output into the overall system architecture.

2. Provides the cross-compiler tool chain for the target processor (MicroBlaze, PowerPC)

3. Serves as a front-end to the Xilinx or Synplicity synthesis tools

During this section we will concentrate on the creation of an EDK project by means of
generating an MHS and an MSS file.

The MHS file defines the system architecture consisting out of peripherals, and embedded
processors. It also defines the connectivity of the system, the address map of each peripheral

328 7 Synthesis

in the system, and the configurable options for each peripheral. It is also possible to specify
multiple processor instances connected to one or more peripherals through one or more buses
and bridges. Since the MHS file is a simple text file it can be created and examined easily by
using a text editor.

This simple file format enables the automatic creation of an MHS. The generation of an
MHS file is performed by the building blocks of the Virtual Target Architecture. Each class
of the architecture class library has a method that appends its configuration to the MHS file.
The MHS file as well as the architectural context information is generated during the end of
elaboration phase.

The Xilinx EDK Platform Generator tool (Platgen) creates the hardware platform using
the MHS file as input. Platgen creates netlist files in various formats such as EDIF and Xilinx
proprietary NGC and top level HDL wrappers to allow the addition of user-defined components
to the automatically generated hardware platform.

The software platform is defined by the Microprocessor Software Specification (MSS) file.
The MSS file defines driver and library customization parameters for peripherals, processor
customization parameters, standard input/output devices, interrupt handler routines, and other
related software features. The MSS file is also a simple text file and thus can be treated like the
MHS.

The creation of the MSS file is analogue to the MHS file generation. It is performed during
the end of elaboration phase of the SystemC kernel. Each class of the architecture class library
has a method that appends information about its software driver to the MSS file.

The MHS and the MSS file are inputs to the Xilinx EDK Library Generator tool (Libgen)
for customization of drivers, libraries, and interrupt-handlers.

7.5.3 UCF Generation

Details such as I/O pin mappings and timing constraints cannot be expressed in Verilog or
VHDL, but are nonetheless important considerations when implementing the design on real
hardware (i.e. an FPGA). The UCF file is an ASCII file specifying physical constraints on the
logical design.

In the proposed synthesis flow the UCF file is generated from the information contained in the
top-level entity of the OSSS design on the Architecture Layer. Its main purpose is the mapping
of logical ports defined in the top-level design (such as clock, reset or user-defined I/O pins) to
the physical port locations of the FPGA. Most of this mapping can be done automatically when
the designer specifies the used kind of prototyping board.

The UCF file is generated during the end of elaboration phase of the SystemC kernel. It is
used as input to the Xilinx ISE Synthesis tools (more precisely the NGDBuild tool that is used
to build up the internal representation for the mapping and the place & route phase).

7.5.4 MPD and PAO Generation

The MPD and the PAO files are both needed to wrap the VHDL files generated by Fossy. They
are used to integrate user-defined hardware blocks as Xilinx EDK compatible IP cores and to
define the further processing of the VHDL files by the back-end RTL synthesis tools.

The Microprocessor Peripheral Definition (MPD) file defines the interface of the peripheral.
An MPD file has the following characteristics:

• Lists ports and default connectivity for bus interfaces

• Lists parameters and default values

• Any MPD parameter is overwritten by the equivalent MHS assignment

Thus the MPD file defines the MHS representation of the user-defined hardware generated
by Fossy.

A Peripheral Analyze Order (PAO) file contains a list of HDL files that are needed for
synthesis, and defines the analysis order for compilation. This information is needed by the back-
end RTL synthesis tools that are used to process the Fossy generated VHDL code. Additionally

7.6 Software Synthesis 329

it defines the compilation order of the software driver during cross-compilation for the target
CPU.

7.5.5 OSSS ACI Generation

In order to perform the hardware/software interface synthesis the following information needs
to be provided by the architectural context extraction:

• The design structure on the Application Layer of the OSSS design at the end of elaboration
phase. It consists of osss_software_tasks and osss_modules containing osss_ports
bound to Shared Objects.

• The design structure on the OSSS Virtual Target Architecture Layer. It consists of
different kinds of architecture building blocks and connections to either OSSS-Channels or
signals. Together with the design structure on the Application Layer model the mapping
is retained. This includes the channel bindings, i.e. the mapping of the communication
links to OSSS-Channels. This implies the number of clients to a Shared Object.

• Object IDs for each Shared Object plugged into an osss_object_socket

• Method IDs for each method of a Shared Object

• Client IDs for each client process performing calls on a Shared Object

• OSSS-Channel transactor specific parameters: E.g. channel bit width of a point-to-point
channel and each client’s address range for bus transactors. The address range of each
slave interface of an osss_object_socket is calculated in dependance on to the number
of clients hidden by the corresponding bus.

This Architectural Context Information (ACI) serves as input for the high-level synthesis
tool Fossy (see Section 7.7) and the RMI-Types generator for the customization of the OSSS
software library (see Section 7.6).

7.6 Software Synthesis

7.6.1 Introduction

In the following sections, the software synthesis with a focus on hardware/software communication
is described. The hardware/software communication is based on the remote method invocation
concept presented in Section 6.5.2. We assume the reader is familiar with the OSSS-RMI
protocol.

In the proposed methodology, we make the following software related assumptions concerning
hardware/software communication:

• a processor can only run a single task because on task scheduling is supported in this work.
I.e. there is a 1 : 1 mapping relation between a Software Task and a processor.

• a processor is intrinsically tied to at least a single communication network (e.g. a bus)

• a processor is the initiator of a communication (i.e. it is a master in the communication
network it is connected to)

• the processor initiates either a sequence of single-beat transfer, a burst transfer or a
sequence of burst transfers on its connected communication network

• RMI is implemented as blocking message passing using polling communication. I.e. no
interrupts are used for the custom hardware/software communication

330 7 Synthesis

In the following sections, we start with an overview of the supported MicroBlaze processor
subsystem. This is followed by a definition of the language subset that is allowed to be used
for synthesis of Software Tasks. The description of the OSSS software stack containing services
for RMI is used to implement the hardware/software communication for Software Tasks. This
section closes with a description of the software cross-compiler tool-chain of the synthesis
back-end flow.

7.6.2 The MicroBlaze Processor Subsystem

Figure 7.14a shows an osss_software_task that has been mapped onto a
xilinx_microblaze processor. The osss_software_task’s main() routine makes use
of an osss_port<osss_rmi_if<IF> > for calling a method on a specific interface (IF) that
is implemented by Shared Object (not shown here). As physical communication medium
a xilinx_opb_channel is used. The osss_rmi_channel<...> wrapper represents the RMI
message passing protocol over the underlying physical OPB channel.

After the architectural context extraction phase of the synthesis design flow (as described
in Section 7.5) a Xilinx MicroBlaze soft processor core connected to an On-Chip Peripheral
Bus (OPB) is generated. Figure 7.14 shows the replacement of the Virtual Target Architecture
software subsystem consisting of the xilinx_microblaze and the xilinx_opb_channel during
platform synthesis.

osss_port<osss_rmi_if<IF> >

osss_software_task

osss_rmi_channel<…>::client_if

osss_abstract_
channel<…>::master_ifmain()

sc_signal<…>

osss_rmi_channel

 <xilinx_opb_channel>

xilinx_microblaze

(a) VTA representation of the Software Subsystem

MicroBlaze

INT
Ctrl.

OPB MDM

OPB Timer

OPB UART

LMB BRAM
Controller

BRAM
(dual port)

ILMB

DLMB

IRQ

Timer IRQ

UART IRQ

TX/RX

JTAG

xilinx_microblaze

MDM IRQ

LMB BRAM
Controller

DOPB

IOPB

O
P
B
1

xilinx_opb_
channel

S
h
a
re

d
 O

b
je

c
ts

 (
u
s
e
r-

d
e
fi
n
e
d
 h

a
rd

w
a
re

)

slave OPB[n]
w/o burst

timer
ctrl.

UART
ctrl.

MDM
ctrl.

interrupt ctrl.

(b) Resulting Target Architecture Software Subsystem (simple)

Figure 7.14: Replacement of Virtual Target Architecture software subsystem during platform
synthesis [44]

7.6 Software Synthesis 331

MicroBlaze

INT
Ctrl.

OPB MDM

OPB Timer

OPB UART

LMB BRAM
Controller

BRAM
(dual port)

ILMB

DLMB

IRQ

Timer IRQ

UART IRQ

TX/RX

JTAG

xilinx_microblaze

MDM IRQ

LMB BRAM
Controller

DOPB

IOPB

F
S
L
2
O

P
B O

P
B
1

xilinx_opb_
channel

O
P
B
2

S
h
a
re

d
 O

b
je

c
ts

 (
u
s
e
r-

d
e
fi
n
e
d
 h

a
rd

w
a
re

)

slave OPB[n]
with burst

timer
ctrl.

UART
ctrl.

MDM
ctrl.

interrupt ctrl.

F
S

L
 i

n

F
S

L
 o

u
t

Figure 7.15: Resulting Target Architecture Software Subsystem (dedicated RMI bus) [44]

Figure 7.14b shows the basic/simple MicroBlaze processor subsystem configuration already
introduced in Section 7.4.1. The xilinx_microblaze component contains a local memory
(implemented in a BRAM) for data and instructions (Harvard architecture), a hardware timer
and an interrupt controller (only if required by the timer, the UART or the microprocessor debug
module (MDM)). The UART and the MDM are not part of the xilinx_microblaze component
since these blocks are only used for debugging on the target platform. The xilinx_microblaze

is always connected to at least one On-Chip Peripheral Bus (xilinx_opb_channel). The
advanced configuration of the MicroBlaze processor subsystem shown in Figure 7.15 uses a
dedicated OPB bus for the implementation of the RMI protocol with the connected Shared
Objects. The OPB2 is connected via an FSL-to-OPB bridge which enables burst transactions
and and better timing predictability, because only RMI communication is segregated from other
bus accesses which are not visible during Virtual Target Architecture Layer model simulation.

For more details on the MicroBlaze processor subsystem refer to Section 7.4.1.

7.6.3 Supported Software Language Subset

As already introduced in Section 6.2, Figure 7.16 shows the relation of OSSS to C++ and
SystemC. OSSS is divided into three different subsets: a software description subset, a hardware
description subset and an architecture description subset. Each of these subsets defines which
modeling elements or language features are allowed in each domain (software, hardware or
architecture). There is one intersection between the software and the hardware domain. This
intersection includes the language features that may be used in both the hardware and the
software domain. This intersection is very important because it defines the hardware/software
interface modeling elements. For instance only the data types situated in the hardware/software
intersection may be used for hardware/software communication.

The osss_software_task is the foundation for the software part of each OSSS design. The
red rectangle in Figure 7.16 shows the definition of the OSSS software language subset that can
be used inside osss_software_tasks.

Each software task has a single main() method which is the root function or entry point
of each task. The software task’s behaviour is implemented inside this main() routine. In
addition to the main() routine the software task contains one or more ports of the type
osss_port<osss_rmi_if<IF> > that are used for hardware/software communication with
Shared Objects. These ports access a user-defined method interface (IF) that is implemented in
a Shared Object (in hardware). Hence, this interface only consists of language elements that are

332 7 Synthesis

C++
SystemC

Software Hardware

OSSS Virtual Target Architecture Layer

OSSS Behaviour Layer

OSSS Software Tasks

new/delete

Pointers

C++ Polymorphism

Classes & Structs

Templates

Inheritance

bool

Synth. subset of
SystemC data types

OSSS data types
(osss_enum, osss_array,
osss_serialisable_object)

Processes
(SC_METHOD,
SC_CTHREAD,
SC_THREAD)

OSSS Shared Objects

Modules

Signal Ports
(sc_in, sc_out, sc_inout)

cross
compiler &
target
dependent

Integer types

References

Enumerations

Arrays

Hierarchical
Channels

Mutex

Semaphore

Events

Report Handling

Tracing

Signals

EET, RET

OSSS Application Layer

OSSS Behaviour OSSS Shared Variable OSSS Event

OSSS Ports

Exceptions

OSSS Processors OSSS RMI

OSSS Object Sockets OSSS Memories

OSSS IP Components

OSSS Channels

Figure 7.16: The OSSS software language subsets (see red rectangle) [44]

in the OSSS hardware subset. Figure 7.17 gives an overview of the synthesis requirements for
software tasks in OSSS.

 port to user-defined Shared Object

 IF is implemented by Shared

Object in hardware

 use synthesizable data types from

the hardware/software

intersection only

 Ports implements RMI protocol

and translates RMI protocol

phases to the target processor’s
physical communication ports

(e.g. MicroBlaze: OPB or FSL

interface)

 OSSS ports are generated and

configured for the target system
during platform synthesis

osss_software_task

main() osss_port<osss_rmi_if<IF> >

1 1-n

 contains the software behaviour

 code is executed on target processor

(e.g. MicroBlaze)

 Goal: functional equivalent

behaviour on host (simulation) and

on target processor

 cannot be guaranteed for all

compiler and target processor

combinations

 code shall be written as portable as

possible (following certain coding

guidelines) or needs to be ported
manually to target processor

Figure 7.17: Synthesis requirements for Software Tasks in OSSS

Practically, the whole ISO C++ language [14] can be used inside a Software Task’s main()

routine.

7.6 Software Synthesis 333

An important issue is the functional equivalent behavior of the software code running on the
simulation host (Software Task running in Application Layer and Virtual Target Architecture
Layer models) and the target processor. For the following reasons C++ is by design not well
suited for the design of (safety-critical) embedded systems:

• The semantics of some C++ constructs are not fully specified, leaving room for portability
issues the behavior of a program may vary depending on what compiler was used (undefined,
unspecified and implementation-defined behavior). E.g. bit fields, but even the size of
basic integer types depends on the target processor architecture.

• C++ makes it very easy for a programmer to make mistakes that cannot be diagnosed
by a compiler (e.g., the use of the assignment operator "=" instead of the comparison
operator "==").

• C++ does not provide any built-in run-time checking, e.g. for arithmetic overflows or
array bound errors.

• While being a strongly-typed language, C++ leaves too many holes to circumvent the
type system, deliberately or unintentionally.

When using C++ for (safety-critical) embedded systems, great care must be taken to avoid
any language constructs and code that can potentially lead to unintended program behavior.
C has most of these issues as well, though, and this has not stopped C becoming one of the
most widely used languages in safety-critical systems. This has only been possible through the
introduction of coding standards that limit language features to a safe subset that can be used
without giving rise to concerns.

The most popular coding standard for using C in safety-critical systems is MISRA-C [124].
It specifies a "safe" subset of the C language in the form of 121 required and 20 advisory
rules. MISRA-C has also had a great influence on another coding standard for using C++ in
safety-critical systems. The "Joint Strike Fighter Air Vehicle C++ Coding Standards for the
System Development and Demonstration Program" [100], or JSF C++ in short, was kind of
revolutionary, as it signaled a move away from Ada as the mandated programming language for
avionics software by the US Department of Defense. JSF C++, while taking many rules from
MISRA-C, is a bit different in concept from MISRA-C (and the new MISRA-C++) as it also
defines coding style and metric guidelines, which the MISRA standards do not have. In total,
JSF C++ defines 221 rules. The current trend to move from C to C++ in the development
of critical systems has lead to the publication of MISRA-C++ [51] in the summer of 2008.
MISRA-C++ takes many rules from MISRA-C and adds many more C++ specific rules, bringing
it to 228 rules.

Another issue affecting the portability of C++ code is based on differences in the byte order
(also called endianess), the word size, and the memory alignment of complex data types. For
hardware/software communication the byte ordering is set to big endian (network byte ordering).

Definition 7.6.3.1 (Endianness):
Endian or endianness refers to the ordering of individually addressable sub-components within
the representation of a larger data item as stored in memory or sent on a serial connection.
Each sub-component in the representation has a unique degree of significance, like the place
value of digits in a decimal number. These sub-components are typically 16-, 32- or 64-bit words,
8-bit bytes, or even bits. �

Figure 7.18 gives a graphical overview of big and little endianess representations in registers
and memories.

Definition 7.6.3.2 (Data structure alignment):
When a CPU reads from or writes to a memory address, it will do this in word sized chunks
(e.g. 4 byte chunks on a 32-bit system). Data structure alignment is the way data is arranged
and accessed in a memory. It consists of two separate but related issues:

1. alignment: means putting the data at a memory offset equal to some multiple of the word
size

3taken from http://commons.wikimedia.org/wiki/File:Endianessmap.svg

http://commons.wikimedia.org/wiki/File:Endianessmap.svg

334 7 Synthesis

Figure 7.18: Big and Little Endianness representations in registers and memories3

2. padding: to align the data, it may be necessary to insert some meaningless bytes between
the end of the last data structure and the start of the next, which is data structure padding

�

For the data structure alignment two different strategies have been considered in this work:

Target CPU Alignment: Using this strategy the data alignment of the target CPU is preserved
and represented in the register interface of the Shared Object. The advantage of this
strategy is that data can be natively represented in hardware. It allows to use memcopy

for an efficient data transfer from Software Tasks to Shared Objects. The disadvantage
is that the Shared Object needs explicit knowledge about the data structure alignment
of each client for properly accessing data elements. This client dependent data structure
alignment mapping information can be generated during Platform Synthesis and provided
to the custom hardware synthesis process using extended Architecture Context Information
(ACI).

Packed: This strategy serializes all data structures into a seamless stream. This packing results
in the smallest possible representation in memory, that is also the default representation
of complex data types in custom hardware. The advantage is that the packed stream
represents a normalized data representation that can natively accessed by custom hardware.
The main disadvantages are the computational overhead to generate the seamless data
stream in software, and the inefficient access when word boundaries are wrapped at memory
line boundaries.

For the software subset of OSSS there are no further restrictions and even some non-portable
language features of C++ are included. Concerning the OSSS design methodology the software
designer has to take care about the portability of software code regarding the targeted execution
platform.

We expect that the functional behavior of the software part developed and executed on the
simulation host machine is the same after cross compiling and running it on the target processor.
In order to make things a little bit more manageable we assume that the compiler front-end
used to compile code for the host machine is the same as in the cross compiler. Currently the
only supported software compiler front-end is the GNU Compiler Collection for C/C++ (gcc

respectively g++) [222], versions >= 3.4.4. The cross compiler used for the MicroBlaze processor
is the mb-gcc port that is based on a gcc 3.4.1 [221]. If possible, the same compiler front-end

7.6 Software Synthesis 335

for compiling the Application Layer and Virtual Target Architecture Layer simulation models
on the host and for the software task cross-compilation shall be used.

7.6.4 The OSSS Software Library & RMI protocol stack

 Application Layer

 RMI Layer

 Channel IF Layer

osss_rmi_channel<xilinx_opb_channel<...> >::client_if

osss_rmi_channel<xilinx_opb_channel<...> >

osss_abstract_channel<...>::master_if

osss_port<osss_rmi_if<IF> >

osss_abstract_channel<…>

 Xilinx IO Library
XIo_In8(…), XIo_In16(…), XIo_In32(…),
XIo_Out8(…), XIo_Out16(…), XIo_Out32(…),
micorblaze_bread_datafsl(…),
microblaze_bread_cntlfsl(…),
microblaze_bwrite_datafsl(…),
microblaze_bwrite_cntlfsl(…)

osss_software_task,

Synthesisable subset of SystemC data types,
OSSS data types (osss_enum, osss_array,
osss_serialisable_object)

OSSS Software API

OSSS RMI Protocol

Physical Layer

Figure 7.19: The OSSS software library used on the Xilinx MicroBlaze processor [44]

The OSSS software library provides features and functionalities for the software part of an
OSSS design that are essential when running it on the target processor. It is divided into the
Software API and the RMI protocol stack, see Figure 7.19:

1. The OSSS Software API (software related parts of the Application Layer) provides:

• The same interface to the software designer during simulation and synthesis (i.e. the
application designer does not need to change any code of the software part of the
system concerning:

(a) the interaction with the osss_software_task,

(b) the communication with the hardware through osss_port<...>

• Software execution environment (osss_software_task)

• Timing annotations (EETs) are neglected, timing constraints (RETs) can be checked
using hardware timer facilities

• Data types for hardware/software communication (synthesizable subset of SystemC
data types and OSSS data types)

• Interface to the OSSS RMI protocol stack (osss_port<osss_rmi_if<...> >)

2. OSSS RMI protocol stack performing the hardware/software communication protocol

336 7 Synthesis

The OSSS Software API has been designed to be as target processor independent as possible
(see discussion in Section 7.6.3). Even most parts of the underlying OSSS RMI protocol stack
are target processor independent. Only the bottommost I/O layer of the OSSS software library
is target processor dependent.

Finally, the OSSS software library and RMI protocol stack is cross-compiled for the specific
target processor (i.e. the Xilinx MicroBlaze processor) together with the user-code from the
Software Task’s main() routine. Depending on the memory configuration (only local, local +
external memory) of the MicroBlaze different linker scripts and boot-loaders are used to generate
the memory image.

The following subsections explain the different layers of the OSSS software library & RMI
protocol stack.

7.6.4.1 Application Layer

The purpose of the OSSS Software Application Layer API is to provide an environment that
with same interface as in the OSSS simulation library. This way software code written for
simulation on the simulation host can be cross-compiled to a specific target processor and retains
its functionality (with respect to the restrictions discussed in Section 7.6.3).

The Application Layer of the OSSS Software Library contains the osss_software_task that
acts as the top-level execution environment for software. Since only a single Software Task can
be mapped on a processor, the osss_software_task is used as a wrapper for the native int

main() entry of a C/C++ program.
The software timing during simulation as defined by EET (Estimated Execution Time)

blocks are eliminated in the OSSS software library. When running the cross-compiled code on
the target CPU itself the timing behavior is inherently defined by the execution order and the
interpretation of the instructions on the target CPU.

Listing 7.2 shows the Producer software task from the producer/consumer example introduced
in Section 6.4. The program starts with an infinite while-loop that first performs some calculations
that take approximately 50.0 milliseconds. It is followed by a call of the put(...) method on the
output port of type osss_port<osss_rmi_if<FIFO_if<Packet> > >. Before the while-loop is
repeated, another calculation that takes approximately 10.0 milliseconds is performed.

1 class Producer : public osss_software_task {
2 public:
3 // connection to the "outside world"
4 osss_port<osss_rmi_if< FIFO_if<Packet> > > output;
5

6 // constructor of the software task
7 OSSS_SW_CTOR(Producer) { }
8

9 // the entrance of the software task
10 void main()
11 {
12 Packet p;
13 while(true) {
14 OSSS_EET(sc_time(50.0, SC_MS)) {
15 // some calculations that take approx. 50.0 milliseconds
16 ...
17 }
18

19 // calling the put method on the Shared Object bound to output
20 output−>put(p);
21

22 OSSS_EET(sc_time(10.0, SC_MS)) {
23 // some calculations that take approx. 10.0 milliseconds
24 ...
25 }
26 }
27 }
28 };
29

30 OSSS_DEFINE_SW_TASK(Producer);

Listing 7.2: OSSS Software Task using an OSSS Port for hardware/software communication

7.6 Software Synthesis 337

The Estimated Execution Times (EETs) have been utilized to reflect the execution time
on the target processor during the simulation on the host system. Therefore, they become
meaningless when the code is compiled for the target processor itself. Listing 7.3 shows the
empty EET macro that is used to eliminate all EET macros from the software code that has
been used during simulation.

Even on the target processor we need to provide a defined entry point for the program. This
is usually done by the int main() or int main(int argc, const char* argv[]) function
as defined in the C++ ISO standard. This "real" main and the start of the main() method
inside the osss_software_task is performed by the code behind the OSSS_DEFINE_SW_TASK(

_task_class_) macro as shown in Listing 7.3.

1 // EETs are not needed when software runs on the target processor
2 #define OSSS_EET(duration)
3

4 namespace osss {
5 namespace osssi {
6 void osss_software_task_start_helper(osss_software_task∗ task) {
7 task−>start_main();
8 }
9 }

10 }
11

12 #define OSSS_DEFINE_SW_TASK(_task_class_) \
13 _task_class_ sw_task(#_task_class_); \
14 int main() { \
15 osss :: osssi :: osss_software_task_start_helper(&sw_task); \
16 return EXIT_SUCCESS; \
17 }

Listing 7.3: Macros for porting an OSSS Software Task from host simulation to the target
processor

All methods that are implemented in hardware (i.e. implemented in Shared Objects) are only
allowed to carry parameters of data types defined in the OSSS hardware/software intersection.
The following tables define the data types that can be used for hardware/software communication.

Type Size in bit

bool sizeof(bool)·BYTE_SIZE
char BYTE_SIZE
unsigned char BYTE_SIZE
signed char BYTE_SIZE
wchar_t sizeof(wchar_t)·BYTE_SIZE
(signed) short sizeof(short)·BYTE_SIZE
unsigned short see above
(signed) int sizeof(int)·BYTE_SIZE
unsigned int see above
(signed) long sizeof(long)·BYTE_SIZE
unsigned long see above
(signed) long long sizeof(long long)·BYTE_SIZE
unsigned long long see above
float sizeof(float)·BYTE_SIZE
double sizeof(double)·BYTE_SIZE
long double sizeof(long double)·BYTE_SIZE

Table 7.2: Supported built-in C++ data types

Table 7.2 defines the supported built-in C++ data types. When transferring data between
hardware and software it must be ensured that the interpretation of the type is the same. For
the interpretation of data types three properties have to be considered:

1. the size in bit

338 7 Synthesis

2. the byte ordering (big- or little-endian)

3. the alignment (for compound data types)

When serializing data in the OSSS RMI protocol we do not explicitly consider the alignment,
because all data members of a serializable object are written one after another into a bit vector.
Since there is no padding between data members no special interpretations of the alignment are
necessary.

The byte ordering is processor dependent. Since the byte ordering in network packets is al-
ways big-endian (also called network order) we use this order in the osss_serialisable_object.
The necessary conversions when the software is executed on a little-endian processor are done
automatically by the serializable object.

The size of each built-in C++ data type is compiler dependent and cannot be influenced by
the designer. Because of the insufficiencies in the ISO C++ standard concerning the definition of
the fundamental types (cf. [14] section 3.9.1) it is up to the compiler to define the exact size of
each built-in type. For this reason sizes in Table 7.2 are defined with respect to the compiler by
using the sizeof(...) operator that returns the number of bytes its operand occupies in the
memory. In most processor architectures known to the author, the size of a byte (BYTE_SIZE) is
8 bit. For some DSPs BYTE_SIZE is 16 bit.

Type Size in bit Remark

sc_bit 1
sc_bv<int W> W
sc_logic 2
sc_lv<int W> 2·W
sc_fix sizeof(sc_fix)·BYTE_SIZE Not synthesizable
sc_fixed<int W, ...> W
sc_fix_fast sizeof(sc_fix_fast)·BYTE_SIZE Not synthesizable
sc_fixed_fast<int W, ...> W ∈ [1 · · · 53] Not synthesizable
sc_ufix sizeof(sc_ufix)·8 Not synthesizable
sc_ufixed<int W, ...> W
sc_ufix_fast sizeof(sc_ufix_fast)·8 Not synthesizable
sc_ufixed_fast<int W, ...> W ∈ [1 · · · 53] Not synthesizable
sc_bigint<int W> W
sc_biguint<int W> W
sc_int<int W> W ∈ [1 · · · 64]
sc_uint<int W> W ∈ [1 · · · 64]

Table 7.3: Overview of SystemC data types

Table 7.3 shows the SystemC data types that are supported for hardware/software commu-
nication. In general all unconstrained types are not supported. This is also conforming with the
SystemC synthesizable subset [33].

Type Size in bit

osss_enum<class Enum> ⌈log2(max_value(Enum) + 1)⌉
osss_array<class ElementType, unsigned int
Size>

sizeof(ElementType)·Size·BYTE_SIZE

osss_serialisable_object osss_serialisable_object::m_bit_vector.size()

Table 7.4: Overview of OSSS data types

Table 7.4 gives an overview of the OSSS data types for hardware/software communication.
The osss_enum<class Enum> type is a serializable replacement for the C++ built-in enumeration
type. It is just a serializable wrapper class that takes a C++ enum as template parameter. The

7.6 Software Synthesis 339

resulting size in bits is calculated by the formula given in Table 7.4, whereas the max_value(...)

function returns the biggest value representation of the enumerators.
The osss_array<class ElementType, unsigned int Size> type is a serializable replace-

ment for the C++ one-dimensional array type. It takes the amount of Size elements of
ElementType type. It implements the operator[](...) for accessing the elements of the
osss_array<...> in the common way.

As already described in Section 6.5.2 the osss_serialisable_object is the base class for
all user-defined data types that need to be used for hardware software communication. The size
of an object derived from osss_serialisable_object is defined by the sum of the size of all
its serializable members. The resulting size is determined by the size of the bit vector of the
serializable object that stores all members added by the serialise() method.

7.6.4.2 RMI Layer

Since a software task can only be the initiator of a communication only the initiator part of the
RMI is implemented in the OSSS RMI protocol of the OSSS software library.

The osss_port<osss_rmi_if<IF> > shown in Figure 7.19 represents the interface between
the OSSS Software API and the OSSS RMI protocol stack.

The designer has to supply the osss_rmi_if<...> container for each interface implemented
by the user-defined class inside a Shared Object.

This interface has to contain stubs for all methods of the type of the interface class. The
stubs are generated by the OSSS_METHOD_STUB(...) and the OSSS_METHOD_VOID_STUB(...)

macros. The OSSS RMI layer of the OSSS software library provides the same macros in order
to reuse the code of all user-defined osss_rmi_if<...> containers.

The communication of the MicroBlaze processor with user-defined hardware blocks
is performed through the OPB. Therefore the RMI layer of the OSSS software
library provides the osss_rmi_channel<xilinx_opb_channel<...> >::client_if inter-
face only. As a consequence the Channel Layer interface needs to provide the
osss_abstract_channel<...>::master_if interface only.

In general the implementation of the RMI layer of the OSSS software library is analogue
to the implementation of this layer in the OSSS simulation library. This layer of the OSSS
software library is implemented with the intention to be as portable as possible between at least
all cross-compilers using a gcc compiler front-end.

7.6.4.3 Channel Layer

The Channel Layer of the OSSS software library shown in Figure 7.19 is the most processor
specific layer of the RMI protocol stack. The Channel Interface Layer is used to encapsulate the
processor dependent implementation from the portable (or processor independent) RMI layer.

The master_if implemented in the Channel Layer performs the translation from the
abstract interface using read_blocking(...) and write_blocking(...) methods to the
Xilinx MicroBlaze specific input/output mechanisms.

The chosen output mechanism of the MicroBlaze depends on whether burst transfers are
used or not used. As discussed in Section 7.6.2 the OPB that is used to connect the MicroBlaze
to the user-defined hardware can be attached to the processor in two different ways. The first
one is to use the native bus interface (IOPB and DOPB) of the MicroBalze. The second one
uses the Fast Simplex Link (FSL) to communicate with a dedicated FSL-to-OPB Bridge, which
is capable of initiating burst transfers on the OPB.

7.6.4.4 The native OPB Interface

The major drawback of the native bus interface is that it does not support the initiation of burst
transfers on the OPB. This limitation results from the technique of memory mapped I/O that
is used for the communication with the peripherals/slaves connected to the OPB. Each data
transfer to a peripheral is described by a memory access to the specific address it is mapped to.
The main advantage of this technique is its simplicity in terms of usage and implementation
since no additional communication controller is needed.

340 7 Synthesis

1 typedef unsigned char Xuint8 ; // unsigned 8− b i t
2 typedef char Xint8 ; // s igned 8− b i t
3 typedef unsigned short Xuint16 ; // unsigned 16− b i t
4 typedef short Xint16 ; // s igned 16− b i t
5 typedef unsigned long Xuint32 ; // unsigned 32− b i t
6 typedef long Xint32 ; // s igned 32− b i t
7

8 #define XIo_In8(InputPtr) (∗ (volat i le Xuint8 ∗) (InputPtr))
9 #define XIo_In16(InputPtr) (∗ (volat i le Xuint16 ∗) (InputPtr))

10 #define XIo_In32(InputPtr) (∗ (volat i le Xuint32 ∗) (InputPtr))
11

12 #define XIo_Out8(OutputPtr , Value) \
13 { (∗ (volat i le Xuint8 ∗) (OutputPtr) = Value) ; }
14

15 #define XIo_Out16(OutputPtr , Value) \
16 { (∗ (volat i le Xuint16 ∗) (OutputPtr) = Value) ; }
17

18 #define XIo_Out32(OutputPtr , Value) \
19 { (∗ (volat i le Xuint32 ∗) (OutputPtr) = Value) ; }

Listing 7.4: Xilinx MicroBlaze specific basic input/output macros

Listing 7.4 shows the Xilinx MicroBlaze specific basic input/output macros. These can be
used to access slave components, which are connected to the OPB and are properly mapped
in the processor’s memory space. The input and output macros are defined in three different
granularities for byte (8-bit), half-word (16-bit) and word (32-bit) accesses.

1 bool write_blocking(address_type slave_base_addr, const data_chunk& data) {
2 switch(data.size()) {
3 case 0:
4 return false;
5 case 1: {
6 Xuint8 byte = data[0];
7 XIo_Out8(slave_base_addr, byte);
8 break;
9 }

10 case 2: {
11 sc_uint<16> d;
12 d.range(7, 0) = data[0];
13 d.range(15, 8) = data[1];
14 Xuint16 word = d;
15 XIo_Out16(slave_base_addr, word);
16 break;
17 }
18 case 4: {
19 sc_uint<32> d;
20 d.range(7, 0) = data[0];
21 d.range(15, 8) = data[1];
22 d.range(23, 16) = data[2];
23 d.range(31, 24) = data[3];
24 Xuint32 dword = d;
25 XIo_Out32(slave_base_addr, dword);
26 break;
27 }
28 default: {
29 vector<sc_uint<32> > data32 = v32_from_v8(data);
30 Xuint32 size = data.size()
31 XIo_Out32(addr, size);
32 for(unsigned int i = 0; i < data32.size() ; i++) {
33 Xuint32 dword = data32[i];
34 XIo_Out32(addr, dword);
35 }
36 break;
37 }
38 }
39 return true;
40 }

Listing 7.5: Implementation of the write_blocking(...) method using the native OPB
interface

7.6 Software Synthesis 341

Listing 7.5 shows the implementation of the write_blocking(...) method. It is defined
in the osss_abstract_chanel<...>::master_if interface. The minimal addressable size of
the Xilinx OPB is a byte and therefore the data_chunk is of type std::vector<sc_uint<8> >.
When the write_blocking(...) method is called it first checks the size of the data_chunk. If
the size of the data_chunk is zero no transmission is initiated and false (which indicates an
error) is returned to the caller of this method. If the size of the data_chunk is one, two or four,
the corresponding XIo_Out macro is called for the given address. If the size of the data_chunk

is three or greater than four first of all the size is written to the addressed slave. After the
size has been submitted the data_chunks are written to the same address with a granularity of
32-bit one after another. Using the FSL interface, this kind of transaction is implemented as a
burst on the OPB.

7.6.4.5 The FSL Interface

The Fast Simplex Link (FSL) interface of the Xilinx MicroBlaze processor has been introduced
in Section 7.4. Since the FSL is directly mapped into the register file of the MicroBlaze, special
put and get instructions are provided. Listing 7.6 shows the blocking variants of the Xilinx
MicroBlaze specific FSL access macros4. They are provided to encapsulate the assembler code
for accessing the FSL specific registers.

1 // Blocking Data Read and Write to FSL channel with id
2 #define microblaze_bread_datafsl(val, id) \
3 asm volatile ("get %0, rfsl" #id : "=d" (val))
4

5 #define microblaze_bwrite_datafsl(val, id) \
6 asm volatile ("put %0, rfsl" #id :: "d" (val))
7

8 // Blocking Control Read and Write to FSL channel with id
9 #define microblaze_bread_cntlfsl(val, id) \

10 asm volatile ("cget %0, rfsl" #id : "=d" (val))
11

12 #define microblaze_bwrite_cntlfsl(val, id) \
13 asm volatile ("cput %0, rfsl" #id :: "d" (val))

Listing 7.6: Xilinx MicroBlaze specific FSL access macros

There are two different blocking read and blocking write macros. One macro is used to
transfer data (_datafsl) and another one to transfer control information (_cntlfsl). The val

parameter represents the transferred data value and the id parameter specifies which of the 8
different FSL interfaces is used.

1 bool write_FSL2OPB_single (const Xuint32 addr , const Xuint32 data ,
2 const FSL2OPB_transfer_mode transfer_mode) {
3 i f ((transfer_mode == FSL2OPB_8) | |
4 (transfer_mode == FSL2OPB_16) | |
5 (transfer_mode == FSL2OPB_32)) {
6 mi crob l aze_bwr i t e_cnt l f s l (transfer_mode , FSL2OPB_OUT_ID) ;
7 mi crob l aze_bwr i t e_cnt l f s l (addr , FSL2OPB_OUT_ID) ;
8 microb laze_bwr i te_data f s l (data , FSL2OPB_OUT_ID) ;
9 return true ;

10 }
11 return fa lse ;
12 }
13

14 bool write_FSL2OPB_burst (const Xuint32 addr , const data_chunk& data) {
15 Xuint32 s i z e = data . s i z e () ;
16 vector <sc_uint <32> > data32 = v32_from_v8 (data) ;
17 mi crob l aze_bwr i t e_cnt l f s l (FSL2OPB_BURST, FSL2OPB_OUT_ID) ;
18 mi crob l aze_bwr i t e_cnt l f s l (addr , FSL2OPB_OUT_ID) ;
19 mi crob l aze_bwr i t e_cnt l f s l (s i z e , FSL2OPB_OUT_ID) ;
20 for (unsigned int i = 0 ; i < data32 . s i z e () ; i++) {
21 Xuint32 f s l_data = data32 [i] ;
22 microb laze_bwr i te_data f s l (f s l_data , FSL2OPB_OUT_ID) ;
23 }

4There are also non-blocking versions of these macros that are not further mentioned here.

342 7 Synthesis

24 return true ;
25 }
26

27 bool write_block ing (address_type slave_base_addr , const data_chunk& data) {
28 switch (data . s i z e ()) {
29 case 0 :
30 return fa lse ;
31 case 1 : {
32 return write_FSL2OPB_single (slave_base_addr , data [0] , FSL2OPB_8) ;
33 }
34 case 2 : {
35 sc_uint <16> d ;
36 d . range (7 , 0) = data [0] ;
37 d . range (15 , 8) = data [1] ;
38 return write_FSL2OPB_single (slave_base_addr , d , FSL2OPB_16) ;
39 }
40 case 4 : {
41 sc_uint <32> d ;
42 d . range (7 , 0) = data [0] ;
43 d . range (15 , 8) = data [1] ;
44 d . range (23 , 16) = data [2] ;
45 d . range (31 , 24) = data [3] ;
46 return write_FSL2OPB_single (slave_base_addr , d , FSL2OPB_32) ;
47 }
48 default : {
49 return write_FSL2OPB_burst (slave_base_addr , data) ;
50 }
51 }
52 }

Listing 7.7: Implementation of the write_blocking(...) method using the FSL interface

Listing 7.7 shows the implementation of the write_blocking(...) method using the
FSL interface that is connected to the FSL2OPB Bridge. The write_FSL2OPB_single(...)

method is used to initiate single cycle transfers on the OPB. The FSL2OPB_transfer_mode

is used to specify the granularity of the transfer, which can either be 8-bit, 16-bit or 32-
bit. The communication with the FSL2OPB Bridge works as follows. The transfer starts
by the submission of the transfer mode followed by the slave base address by using the
microblaze_bwrite_cntlfsl(...) macro. After this control information the data is written
by using the microblaze_bwrite_datafsl(...) macro.

The write_FSL2OPB_burst(...) method is used to initiate a burst transfer on the OPB.
It starts by setting the transfer mode to FSL2OPB_BURST and by submitting the base address
of the slave by using the microblaze_bwrite_cntlfsl(...) macro. Before starting with the
data transfer the length of the burst in number of bytes is transmitted. Afterwards the data is
written by using the microblaze_bwrite_datafsl(...) macro in a for-loop.

7.6.5 Software Cross-Compilation

The synthesis flow for the hardware and the software part of an OSSS design are separated from
each other. The user-defined hardware of the design is processed by Fossy (see Section 7.7.1).
The user-defined software of the design needs to be cross-compiled for the processors defined by
the hardware platform. Up to now, only the MicroBlaze soft processor core is supported.

For the cross-compilation the MicroBlaze gcc (mb-gcc) using a modified gcc 3.4.1 is used.
The Xilinx EDK provides the complete GNU tool chain for the MicroBlaze processor. The input
for the MicroBlaze cross-compiler is the entire code that is used inside an osss_software_task.
When compiling an osss_software_task for the MicroBlaze the OSSS Software Library needs
to be included. It contains the OSSS software API and the OSSS RMI protocol stack describe
before.

As shown in Figure 7.27 the OSSS Software Library Generator is used to add design specific
code to the OSSS Software Library. This design specific code consists out of unique IDs (client
ID, object ID, method ID). This information is necessary to set up a working hardware/software
communication. Both the OSSS RMI protocol stack running on the MicroBlaze and the
implementation of the hardware interface performed by Fossy need to share this specific
information.

7.7 Custom Hardware Synthesis 343

After the osss_software_task (including the OSSS Software Library) has been compiled by
the mb-gcc, it is linked with the Xilinx library. The Xilinx library is generated and compiled by
the Xilinx EDK Library Generator by using the mb-gcc as well. It includes code for performing
I/O with the MicroBlaze processor and communication with Xilinx specific peripherals (e.g. a
printf(...) function and std::cout is provided for sending strings to the UART).

The linking is controlled by a Linker Script that is needed because the MicroBlaze runs in
“stand-alone” mode, i.e. without an operating system. The Linker Script defines the memory
layout of the application. It defines where the different sections for services like memory
allocation and object destruction are mapped in the memory. Additionally it defines the stack
and the heap size. Linker Scripts for program execution from internal (Block RAM only) and/or
external (on board DDRAM) memories are provided.

After linking has been performed an executable file in the Executable and Link Format
(ELF) is generated. When running an application from the internal Block RAM the Xilinx
Bitstream Initialiser is used to initialize the Block RAMs with the context of the ELF file.
After initializing the system.BIT with ELF data from the software compilation the result is
a bitstream with initialized Block RAM resources, called download.BIT. This configuration
file can be downloaded to the FPGA via JTAG by using the Xilinx iMPACT tool. When the
resulting application is too big to be executed from the block RAM only, it needs to be loaded
into the external RAM. This can be performed by a special boot loader via the RS232 port or
by the Xilinx Microprocessor Debugger (XMD, with XDM_stub) in conjunction with the GNU
Debugger (GDB) via JTAG.

7.7 Custom Hardware Synthesis

The synthesis of custom hardware is performed by Fossy (Functional Oldenburg System
SYnthesiser). The hardware interface synthesis affects two entities of a design, namely Shared
Objects and hardware clients of Shared Objects. The mapping of the Application Layer to the
Virtual Architecture Layer guides the hardware interface synthesis process by means of well
defined communication refinement rules.

7.7.1 Fossy

Figure 7.20 gives an overview of the Fossy tool chain. Fossy is written in the pure functional
programming language Haskell [215].

Since both, the internal Fossy data structure and the intermediate format of the front end
are based on the same ISO/IEC C++ standard [14] the implementation of the adaptation layer
is straightforward. The EDG front end parser (called cc2cil) [217] is used and augmented with a
thin layer converting the front end specific intermediate format to XML (called cil2xml). Large
parts of the logic of this conversion layer are automatically generated from the Haskell type
structure.

Haskell values conforming to the type system representing the C++/SystemC/OSSS
grammar are written to and read from XML files. The DTD describing the structure of the
XML is derived from the type system automatically. The human readable XML data is the
input for Fossy and is open to a range of existing XML tools.

Besides the OSSS design on Application Layer information from the Virtual Target Architec-
ture Layer are needed by Fossy. As described in Section 7.5 the architectural context extraction
step is used to generate architectural context information (ACI) that are stored and forwarded
to Fossy in an XML format.

The ACI file contains the following information:

1. The channel bindings, i.e. the mapping of the communication links to OSSS-Channels.
This implies the number of clients to a Shared Object.

2. Transactor specific parameters e.g. channel bit width of a point-to-point channel and each
client’s address range at the Object Socket. Note that the address ranges imply the Shared

344 7 Synthesis

cc2cil

design.cil

Intermediate Format

Frontend−specific

cil2xml design.xml

OSSS 2.0 design mapped

on Architecture Layer

design_arch.cpp

aci.xml

arch.

extr./

synth.

design.vhdl

design.mpd

design.pao

FOSSY

OSSS 2.0 design on

Application Layer

design_app.cpp

Xilinx EDK IP core

Figure 7.20: Fossy high-level synthesiser tool chain [44]

Object ID and the client IDs, since each client has a unique address range for each of its
serving Shared Objects.

3. Method IDs for each method of a Shared Object.

4. The layout of the transmitted, i.e. serialized data.

The output of Fossy is a synthesizable VHDL description of the user-defined hardware part
of the OSSS design. For using this output in the Xilinx back-end synthesis flow it needs to be
“imported” to the Xilinx EDK project. As shown in Figure 7.2 the Fossy synthesis output is
stored in the user repository of the EDK project and thus constitutes a part of the overall OSSS
design architecture. From the Xilinx EDK’s point of view the output generated by Fossy is
treated like a 3rd party IP component.

7.7.2 Synthesis Phases

Fossy is a high-level synthesizer that transforms an OSSS/SystemC description into synthesizable
VHDL code. Compared to other high-level synthesis tools, Fossy does not perform automatic
scheduling of an unscheduled purely sequential C/C++ algorithm. In OSSS the scheduling of
the entire design is performed either statically by the designer using appropriate wait statements
(also called behavioral RTL) or dynamically by using the Shared Object scheduling capabilities.

In the following, we are going roughly through Fossy’s synthesis phases and their associated
design transformations (ref. Figure 7.2).

7.7.2.1 Elaborator

The purpose of the Elaborator module is to infer the resulting SystemC design from a raw C++

translation unit as represented by the front end. More specifically this means to:

• identify and distinguish modules, ports, black-box IP components and signals (including
signals from user-defined classes)

• identify and distinguish processes (SC_METHOD and SC_CTHREAD).

• find the top-level module (i.e. the module derived from osss_system)

• detect SystemC data types

7.7 Custom Hardware Synthesis 345

7.7.2.2 Channel Synthesis

The Channel Synthesis step in Fossy is the replacement of the Application Model communication
links with channels enabling a signal-based and synthesizable communication. The information
about the communication link to OSSS Channel binding has been generated during the Commu-
nication Structure Analysis step of the Architecture Extraction process. The channel binding
information is propagated to Fossy by an ACI file.

Figure 7.21 demonstrates how the communication link to channel binding information is
used for the transformation of the communication structure and the channel instantiation. On
the left side, a hierarchical OSSS Application Layer Design is shown. Client processes (can
either be Software Tasks or Hardware Modules), denoted by C1 to C4 are connected to Shared
Objects (SO1 & SO2). Dashed connections are abstract communication links (port to interface
bindings) while solid connections are signal-level port-to-port bindings. The hierarchical module
containing C2 to C4 has an additional process (denoted by the circular arrow) that is a client
of SO1. All connections that cross the hierarchy boundary are using ports, denoted by small
square symbols.

SO1

C1

SO2

C2 C3

C4

OPB1

P2P

OPB2

SO1

C1

SO2

C2 C3

C4

OPB1

OPB2

P2P

P2P P2P

P2P

P2P

Figure 7.21: Using of the communication mapping information for Channel Synthesis

All communication links on the left side are annotated with their channel bindings from
the ACI. In this example, the communication links are mapped onto two OPB and three
point-to-point (P2P) channels.

On the right side of Figure 7.21 the design after channel synthesis is shown. All communication
links have been implemented through channels and all connections to channels are low-level
signal communications. As one can see, two rules are applied during channel instantiation:

• The channel is instantiated on the lowest hierarchy level possible with respect to its
communication partners position within the design hierarchy.

• Channels whose internal structure is not generated by Fossy (IP channels) like the Xilinx
OPB, need to be moved to the top-level hierarchy.

7.7.2.3 Shared Object Synthesis

The purpose of this synthesis step is the conversion of Shared Objects into “ordinary” hardware
modules. Figure 7.22 demonstrates the structural representation of a Shared Object after
synthesis. The shown Shared Object has two different physical interface (i.e. Object Socket
connections to different OSSS Channels).

Both Interface Blocks IF1 and IF2 consist of a channel protocol specific part and an RMI
protocol specific part. The connection of both interface blocks to the channels is just a set

346 7 Synthesis

Scheduler

IF1
RMI Controller

Guard
Evaluator

Behaviour

IF2

Arg-Mem

State Memory

Request
Request

Update
Protocol
State

Guards

Schedule

Granted
MID/CID

Protocol State

MID

Addr/Data/Ctrl

Return & Argument
Memory

Ret & Arg
MuxCID2IFb

Figure 7.22: Example of a Shared Object’s representation after synthesis

of wires. The channel protocol specific part drives these wires according to the channel’s
communication protocol. The communication with the internal structure of the Shared Object
is performed through the RMI protocol.

The Scheduler Block implements the chosen scheduling algorithm. The Guard Evaluator
checks whether the guard condition associated with the requested guarded method call evaluates
to true. Therefore it needs access to the State Memory of the Shared Object’s Behavior.

The Argument & Return Parameter Memory is used to store incoming and outgoing pa-
rameters of guarded method calls. These memories as well as the state memory either are
implemented as registers or dedicated Block-RAMs.

The Behavior Block contains the method bodies of all guarded methods form the user-class
inside the Shared Object.

Finally, the RMI Controller handles the RMI protocol with the connected clients and drives
the Shared Object’s internal protocol.

More details of the Shared Object synthesis are described in Section 7.8.

7.7.2.4 Class Synthesis

During class synthesis the following steps are performed on the translation unit:

• Removal of unused classes. Definitions of classes which are never instantiated are removed
from the AST.

• Inlining of all global variables, which must be either const or built-in-initialized. Globally
shared variables are not allowed in a hardware design, because of its unrestricted access
from different processed and possibly non-deterministic behavior due to race-conditions.
However global constants and built-in-initialized global variables are becoming members
of all classes using them.

• Private and protected access protectors are substituted by public. Proper access to
class members and member functions is checked during compile-time. Thus in the internal
representation we can omit access protection and set all to public.

• Transformation of constructors to functions.

• Class flattening: Conversion of classes to baseless classes. All base classes are mapped
to member attributes and all base class accesses are changed to access the base member
attribute.

7.7 Custom Hardware Synthesis 347

• Loop normalization: Conversion of for-loops and do-loops to while-loops.

• Transformation of methods to functions: Every method is transformed to a function that
receives a pointer to the object instance as additional first parameter. All method calls
are transformed to function calls. Methods defined outside the Fossy namespace (e.g.
SystemC methods like read() and write()) are not transformed in this step.

• Removal of pointer variables which are created during constructor and method elimination.
In addition, pointers are converted to references and the “address of” (&) and “dereference”
(*) operators are eliminated5.

• Finite State Machine (FSM) transformation: The purpose of this step is to transform
implicit state machines (SC_CTHREADs with embedded wait(...)s) into explicit ones,
i.e. SC_METHODs with explicit state variables. The basic idea is as follows: Each wait is
associated with a state: When a clock edge occurs, an SC_CTHREAD awakes from a certain
wait and runs into another wait. In order to create an SC_METHOD which behaves like the
SC_CTHREAD it must store the wait state where to start next in its state variable. In this
state it performs its work and sets the next state. The FSM transformation looks at the
waits of the SC_CTHREAD and finds the trace of statements which may be executed until
the next wait is reached. Figure 7.23 shows a body of an SC_CTHREAD and all traces from
one wait to another. Each trace results in an explicit state after transformation.

• Union synthesis: Elements of unions are analyzed for the “largest” element. A struct with
a bitvector of the size of the largest element is used to represent the union. Access function
for all union elements are added and appropriate bitvector casts are added to write and
read the data from the single bitvector representing the union.

• Synthesis of bitvector casts.

• Localization of variables in functions: Moves all local variable declarations to the beginning
of the function (C-like). Constants are converted to variables in order to separate the
initialization from the declaration. However, constant expressions should also move to the
front to keep the const qualifier and get constants in output later on.

• Fixup local variables in processes: Moves all local variables of SC_METHODs into the local
variable section of the class.

• Class to struct transformation: All classes are replaced by structures and functions on the
data members of this structure.

• Removal of unused functions and unused enumerations.

7.7.2.5 Integer Type Synthesis

The integer type synthesis converts arithmetic expressions from C++ and SystemC into a form,
which is also valid in VHDL. The goal of the synthesis is to generate functional equivalent C++

and SystemC integer type arithmetic in VHDL.
The supported integer types in SystemC are

1. sc_int<W> signed and sc_uint<W> unsigned integers of bitwidth W

• Must use native C++ data types internally
• Must support at least 64 bits
• Maximum bitwidth is implementation-dependent
• Allow high simulation speed due to the native internal representation

2. sc_bigint<W> signed and sc_biguint<W> unsigned integers of bitwidth W

• Must support any bitwidth

5In OSSS pointers are only allowed for sub-module instantiation. No user-level pointers are supported. For
more details see Appendix F

348 7 Synthesis

void main()
{
out = 0;
wait();

out = 1;
sig = 0;
while(sig != 10)
{
out=2;
wait();
out=3;
sig = sig + 1;

if (sig > 5) wait();
}
out=4;
wait();
out=5;

while(true)
{
out=6;
wait();
out=7;

}
}

s0

s1

s2

s3

s4

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

s0

s1

s2

s3

s4

t0

t1

t3

t2

t4

t5

t6

t7

t8

t9

Figure 7.23: Implicit to explicit state machine transformation

• Flexibility has higher overhead and decreases simulation speed

In a first step all C++ internal integer types are mapped to sc_int<W> and sc_uint<W>.
For used bitsizes see Table 7.2. And in a second step sc_(u)int<W> and sc_big(u)int<W> are
transformed into an equivalent VHDL representation including integer arithmetic.

In SystemC arithmetic is performed using a hidden base classes without visible bitwidths.
This invisible automatic sign extensions may cause overflow, e.g.

sc_uint<64> x = 18446744073709551615ul; // max uint_64

x + x = 18446744073709551614 // overflow

sc_bigint<70>(x) + sc_bigint<70>(x) = 36893488147419103230 // correct result

The result’s bitwidth of a subtraction of two unsigned integers in SystemC is bigger than
expected, because subtraction always promotes its operands to signed. Division in SystemC
needs an extra bit to catch MAX_NEG/-1. In addition, the operator« (shift left) is unbound
on signed integers in SystemC, e.g.

(sc_bigint<4>(1) << 5).length() = 9

(sc_bigint<4>(1) << 50).length() = 54

Table 7.5 gives a comparison of SystemC and VHDL integer arithmetic. To overcome these
differences Fossy uses a simplified internal representation consisting of the following three basic
data types: SIGNED, UNSIGNED, BITVECTOR with the following mapping:

sc_int<W>, sc_bigint<W>→ SIGNED

sc_uint<W>, sc_biguint<W>→ UNSIGNED

sc_bv<W>→ BITVECTOR

All values have bit indices from MSB:(width-1) downto LSB:0 and all range expressions
have type BITVECTOR. Size changes (implicit/explicit casts, arithmetic extensions) become

7.7 Custom Hardware Synthesis 349

SystemC VHDL

Division needs special care because of extra
bit to catch MAX_NEG/-1

Division needs special care because of extra
bit to catch MAX_NEG/-1

Automatic argument expansion in arithmetic No automatic argument expansion in arith-
metic

Result bitwidths big enough for result values Result bitwidths of add/sub unchanged

Unbounded shift left Sane shift left

Ranges implemented with lots of helper
classes

Ranges may have signs, ranges are not expres-
sions

Table 7.5: Comparison of SystemC and VHDL integer arithmetic

explicit RESIZE expressions. Results of arithmetic operations have types/widths following
SystemC semantics:
• promote to signed when there is a signed type involved anywhere,
• use a types wide enough to hold the results and
• shift-left needs an explicit result bitwidth.

The mapping of this intermediate representation to VHDL data types6 is as follows:

SIGNED→ SIGNED

UNSIGNED→ UNSIGNED

BITVECTOR→ STD_LOGIC_VECTOR

With this mapping:
• Results of range expressions need adjustment to (width-1) downto 0.
• Results of range expressions need sign adjustment.
• Casts/arithmetic extensions become calls to RESIZE function.
• SystemC semantics implemented in library using standard VHDL
• Use of functions results in prefix notation

The following SystemC integer calculation:

sc_int<64> result;

sc_uint<5> x1 = "0b11111"; // 31

sc_uint<6> x2 = "0b111111"; // 63

result = (x1 + x2) * 4; // 376

gets transformed into:

variable result : SIGNED(63 downto 0);

variable x1 : UNSIGNED(4 downto 0) := "11111";

variable x2 : UNSIGNED(5 downto 0) := "111111";

result := FOSSY_RESIZE(

FOSSY_MUL(

FOSSY_ADD(x1, x2),

TO_SIGNED(4, 32)),

64);

-- result = 376

where the naïve mapping to the default VHDL functions would generate a wrong result:

result := RESIZE(SIGNED("0" & (x1 + x2)) * TO_SIGNED(4, 32), 64);

-- result = 120

6using IEEE.STD_LOGIC_1164.all and IEEE.NUMERIC_STD.all

350 7 Synthesis

7.7.2.6 Delaborator

The delaborator’s task is to transform an (elaborated) OSSS design into a form on which code
generators work directly, i.e. without any further complex transformations. Furthermore, it
performs name shaping to ease readability of the output code and traceability to the OSSS
Application Layer input design.

7.7.2.7 Code Generator

Fossy has two different code generators that write the nodes of the AST either to synthesizable
VHDL or to equivalent RTL SystemC code. The information about the design partitioning
gained during the Architecture Exploration step is used here to generate appropriate VHDL
files for each user-defined hardware partition.

For using this VHDL output in the Xilinx back-end synthesis flow it needs to be copied/inte-
grated into the Xilinx EDK project structure that has been generated at the end of Architecture
Extraction phase.

7.8 Shared Object Hardware Synthesis

In this section, we describe the synthesis process of the hardware part which is necessary for a
hardware/software or hardware/hardware communication.

In OSSS method-based communication between software and hardware or hardware and
hardware is uniformly done via the RMI protocol and the callee of such a communication
must always be a Shared Object (see Figure 7.24). Therefore, the hardware interface synthesis
regarding the Shared Object is independent of whether the caller is a Hardware Module or
a Software Task. Hence hardware interface synthesis affects two entities of a design, namely
Shared Objects and hardware clients (i.e. Hardware Modules). These two cases will be described
in the following subsections.

7.8.1 Overview

Figure 7.24 shows the domain of the hardware interface synthesis for hardware/software com-
munication. A Shared Object which is wrapped by an osss_object_socket is connected
to a xilinx_opb_channel on the left and an osss_simple_point_to_point_channel on the
right side. Therefore, the Shared Object (or more precisely the UserClass inside the Shared
Object) can be called by any master connected to the OPB (this includes software running
on a MicroBlaze) and by the hardware client connected to the point-to-point channel. The
osss_object_socket_port along with the transactor of the osss_rmi_channel and the trans-
actor of the xilinx_opb_channel or the osss_simple_point_to_point_channel describes
the interface of the Shared Object. For a more detailed description of the elements shown in
Figure 7.24 refer to Section 6.5.2.

Previous research work on the hardware synthesis of Shared Objects [135, 142, 97] focused
on the optimization of Shared Objects for HW/HW communication using a fixed protocol and
communication channel (full parallel access). In this thesis, the new requirements (derived from
Section 2.4) necessitate an extension of the existing synthesis strategy in the following way:

• The Shared Object shall be separated from the communication channel’s media access
and physical layer of the connected clients.

• A Shared Object shall be connected to existing buses (for the communication with the
CPU/SW).

• To enable Hardware/Software communication a hardware independent communication
protocol, called Remote Method Invocation (RMI) shall be handled by a Shared Object.

• Efficient storage of the Shared Object’s state in a hardware/software independent repre-
sentation.

7.8 Shared Object Hardware Synthesis 351

osss_rmi_channel
 <xilinx_opb_channel>

RMI protocol

invoke

method

osss_object_socket
 < osss_shared
 <UserClass,
 Scheduler> >

osss_object_socket_port

osss_rmi_channel<…>::
server_if

osss_abstract_Channel<…>::
slave_if

param memory

osss_port<
 osss_channel_if<
 osss_rmi_channel_server_if> >

methodID_

record

sc_signal<…> sc_signal<…>

osss_rmi_channel
 <osss_simple_
 point_to_point_
 channel>

Figure 7.24: The considered hardware interface part for HW/SW and HW/HW communication

The extended, i.e. hardware/software-enabled, synthesized Shared Object is shown in
Figure 7.25 (in dark blue displayed the new parts of the Shared Object implementation). The
figure follows the producer/consumer example (see Section 6.4) with a software client running on
a CPU connected via a bus to the interface Bus Server IF (on the left side) and two hardware
clients directly connected via a point-to-point connection to P2P Server IFs (on the right side).
In other words, the interfaces are the connections of the Shared Object to its clients. These
interfaces are mainly necessary due to the first requirement (connection to existing buses). The
controller within the Shared Object handles the RMI protocol and manages concurrent requests
with the help of the scheduler.

The efficient storage requirement, which is a direct consequence of the requirements from
Section 2.5 is addressed by the usage of RAM resources: The arguments passed to the guarded
methods and the corresponding return values are stored in the argument RAM. The Shared
Object’s state is hold in the state RAM. For the selected target platform, RAMs are mapped
to the Block-RAM (BRAM) resources available on the FPGA. As can be seen in Figure 7.25
the Block-RAMs are used in a dual port configuration. In the case of the argument RAM it
is necessary to add an additional multiplexer if there is more than one interface which needs
access to the argument RAM.

The synthesis of the scheduler, the guard evaluator and the behavior is based on the work
in [135, 142, 97]. The most significant change is new organization of the interface blocks, the
integration of the RMI Controller, the access of the guard evaluator and the behavior to the
state, return & argument memory access.

The generated hardware structure only depends on the total number of clients, but neither on
their types, i.e. hardware or software nor on their specific connection to the Shared Object. The
Communication Channel Interface ring around the Shared Object’s inner structure abstracts
from the concrete communication channel’s media access and physical layer. For Xilinx Bus
IP (e.g. OPB and PLB) a configurable Intellectual Property Interface (IPIF) is used to keep
the Bus Server IF separated from bus protocol specific details. The Bus Server Interface only
requires a simple register and address access to the bus. All other details are hidden by the
IPIF block. For more details regarding the IPIF, see Section E.3.7.

The inner structure of a certain interface block (i.e. the interface blocks which either connect

352 7 Synthesis

Scheduler

Bus

Server
IF RMI Controller

Guard
Evaluator

Behavior

Arg-Mem

State Memory

Request 0
Request 3

Update

Protocol State 0

Guards

Schedule
Granted
MID/CID

Protocol State 2

MID

Addr/
Data/
Ctrl

Return & Argument

Memory

Ret & Arg
Mux

CID

P2P

Server
IF

1

1

n

m

ValidI

DataI

DataO

ValidO C
lie

n
t
3

P2P

Server
IF

1

1

n

m

ValidI

DataI

DataO

ValidO C
lie

n
t
2

X
il

in
x

IP
IF

X
ili

n
x
 B

u
s
 I
P

C
lie

n
t
0

C
lie

n
t
1

P
2
P

S

la
v
e

IF

P
2
P

S
la

v
e

IF

Shared Object

Communication Channel Interfaces

Request 1

Protocol State 3

Request 2

Addr/
Data/
Ctrl

Protocol State 1

Figure 7.25: Structure of a synthesized Shared Object

the Shared Object to a shared bus or dedicated point-to-point channel) only depends on a few
parameters like the number of clients and their corresponding addresses (for bus interface only).
For a point-to-point channels the only parameter is the bit width. Therefore, a prototypical
synthesis approach is to instantiate pre-designed and properly parametrized hardware structures
at the interfaces.

For the synthesis of the hardware client interface a predefined macro that represents a
combination of the RMI- and the master transactor is used.

For the first synthesis tool prototype, only certain predefined OSSS Channels over which
RMI can be performed, are allowed. Hence, the synthesis tool needs to know on what kind of
predefined channel a communication link is mapped, but it does not process the channel-internal
implementation.

7.8.2 RMI Controller

The controller is the part of the Shared Object, which manages the RMI protocol and triggers
the scheduler, the guard evaluator and the behavior process. For each client, the controller
stores the current protocol phase, which is one of the following four:

• IssueRequest: client is allowed to request the execution of a guarded method

• SendParameters: client must supply the arguments to the method it requested

• WaitForCompletion: client must wait for the execution of the method to complete

• ReadReturnValue: client must read back the result of the method

When the Shared Object is reset, the controller triggers the constructor method in order to
initialize the object’s state. Afterwards, it triggers the guard evaluator to update the guards
according to the current state. When the guards are up to date it signals the scheduler to select
one of the method requests. After the scheduler selected a certain request, it signals the method
ID and the corresponding client ID to the controller. The controller then advances the protocol
phase of the selected client from IssueRequest to SendParameters and switches the Ret- &
Arg-RAM multiplexer according to the client ID. When it is informed by the interface block
that all parameters have been submitted, it starts the behavior process by supplying the ID
of the requested method. Simultaneously, to starting the method it sets the calling client’s
protocol phase to WaitForCompletion. When the behavior process signals the completion of
the method, the controller advances the state to ReadReturnValue and waits until the interface

7.8 Shared Object Hardware Synthesis 353

block signals that the phase is completed. Finally, it sets the protocol phase IssueRequest,
triggers the guard evaluator and the scheduler and a new cycle begins.

The naive synthesis of the controller is straight forward: basically it has to provide a state
machine which creates Shared Object-internal the control signals as described in the previous
scenario. The generated hardware structure only depends on the total number of clients, but
neither on their types, i.e. hardware or software nor on their specific connection to the Shared
Object.

7.8.3 Interface Blocks

The interface blocks Bus & P2P Server IF, as shown in Figure 7.25 are the connections of the
Shared Object to a certain signal-level bus or point to point connection. Clients can access the
Shared Objects only via these connections. There may be multiple clients behind one interface
block. For instance, if a Bus Server IF is connected to a bus like the OPB, requests from
different clients may be sent to the Shared Object. In this case, there are multiple connections
between the interface block and the scheduler as well as between interface block and controller,
namely one per client attached to the interface. This case is indicated by the two request signals
Request 0 and Request 1 for client 0 and 1 in Figure 7.25.

The signal-level interface of a Shared Object’s interface block to the outside world can be
derived from the (slave) transactor of the connected OSSS Channel (see Section 6.5.3). This
information is only available on the Virtual Target Architecture layer where communication
links are actually mapped to OSSS Channels. The signals of the interface block into the Shared
Object are independent of the bound channel and only depend on the number of clients handled
by the particular interface block. The signals into the Shared Object are:

• a request line to the scheduler which indicates the requested method via its unique method
ID (MID)

• data, address and control lines for the argument RAM connected to the multiplexer

• an input from the controller which indicates the current protocol phase and

• an output to the controller in order to indicate it can proceed with the next phase

Furthermore, an interface block needs a state machine for proper cooperation with the
controller and some control logic in order to create correct control signals for the argument
RAM. A description of the cooperation between the interface block and the controller from the
interface block’s point of view can be found at the end of this section. A description of the same
scenario from the controller’s point of view can be found in the next section.

The inner structure of a certain interface block, e.g. for an interface block which connects
to an OPB, is relatively fixed. It only depends on a few parameters like the number of clients
and their corresponding addresses. The same is true for point-to-point channels where the
only parameter is the bitwidth. Therefore, a prototypical synthesis approach is to instantiate
pre-designed and properly parametrized hardware structures.

Example:
Suppose a SW task wants to call a guarded method of a Shared Object. It issues its request
by writing the requested method ID to a certain memory location (which is created by the
software interface synthesis). In the IssueRequest state the interface block detects this
memory access and forwards the requested method ID to the scheduler. The controller will
proceed with the SendParameters state (in the case the method has parameters). When the
interface block detects the SendParameter state it will monitor the bus and listen for writes to
the argument RAM. When the interface block detects that all parameters have been transferred
to the argument RAM it signals the controller to proceed with the next phase. The controller
triggers the behavior process to actually execute the body of the corresponding guarded method.
During the operation of the behavior process, the controller signals the requesting client the
state WaitForCompletion. When the method execution finishes, the controller signals the
interface block the state ReadReturnValue (in the case of a non-void method). The interface

354 7 Synthesis

block then monitors read accesses to the client’s return value address and signals the controller
when all data has been read - the same way it monitors the parameter transfer. ∗

7.8.4 Scheduler

The scheduler’s task is to select one of potentially multiple concurrent requests. Each client can
issue only one request at a time, because a method call to a Shared Object is blocking and hence
a client is not able to call any other method before the initially requested method has finished.

The hardware implementation of the scheduler is automatically derived from the given user-
defined scheduler class. More specifically, the synthesis process extracts the schedule method
of the given scheduler class and creates a process from it, which performs the given function.
Additionally, the incoming requests are masked by the guards such that requests whose guard is
false are not considered by the scheduler.

Compared to the scheduler synthesis as described in [135, 142, 97], the only modification is
the additional Schedule signal. It is necessary, because the guards are not valid in every cycle
and the scheduler must not start before the guards are up to date. Furthermore, an explicit
start signal allows for an extension of a pure combinatorial scheduler to a multi-cycle scheduler.

7.8.5 Guard Evaluator

Because the state is stored in a RAM it is no longer possible to implement the guard expressions as
combinatorial logic. Instead, the guard expression must be a single method call, e.g. isNotFull()

in case of a FIFO’s put method. Since it is not possible to access all data members, i.e. the
whole object state, in parallel, it is consequently not possible to evaluate the guards in parallel -
in the general case. Hence, the synthesized hardware implementation of the guard evaluator is
similar to the behavior process: all guard methods (as opposed to the guarded methods) of the
Shared Object are combined into one process. This process can be triggered by the controller to
update some or all guards. The guard methods’ results are hold in registers at the output of the
guard evaluator and are fed into the scheduler.

7.8.6 Behavior Process

The behavior process finally implements the user-defined behavior given by the bodies of the
guarded methods. The main difference to the synthesis as in [135, 142, 97] is the access to the
arguments and the object’s state, which both are stored in RAM as opposed to registers. There
are two consequences of this approach. Firstly, special control signals for the RAM have to
be generated and potentially more cycles are need for method’s execution, especially when a
member or argument is distributed over multiple memory words. Secondly, the memory layout of
the argument RAM is crucial for the correct communication between client and behavior process.
The memory layout of the state RAM, however, can be chosen freely during the synthesis,
because it can only be accessed from within the Shared Object.

7.8.7 Potential Extensions and Optimizations

There are several extensions, which could be made to the synthesis strategy. Currently, it is not
clear to which extend these extensions and optimizations could be realized in the synthesis tool
prototype. These extensions/optimizations are:

• Block-Ram Parity: The Xilinx Block-Ram offers 16384 data bits and 2048 additional
parity bits. It would be possible to use the extra parity bits to store data, too. The
main difficulty is the fact, that the data bitwidths are no longer powers of 2 (9, 18 and 36
instead of 8, 16 and 32).

• Block-Ram Port Configuration: Each port of a Block-Ram can be configured independently.
This could be used to optimize the data paths to certain client at the expense of a more
complex addressing scheme: When the two ports are configured with different data bus

7.8 Shared Object Hardware Synthesis 355

widths, their address bus widths are different, too, because both ports "see" the same
number of bits in different word sizes.

• Mapping data members to state RAM: There are many ways of mapping data members to
the state RAM. First, multiple data members could be packed into one word if the word
size is larger than the member. The advantage is a better/maximum memory efficiency,
the disadvantage is that write accesses to data member must be preceded by read accesses
of the target memory address in order not to destroy the other attributes stored at the
same memory word. Secondly, if different data members are not packed into the same
memory word, the selection of the data word size determines the memory efficiency. For
example, mapping combinations of 3, 16 and 33 Bit data members to different data bus
widths results in different numbers of wasted bits.

• Combining argument and state RAM. If there are only few arguments and few data
members, the Block Rams could be shared at the expense of additional multiplexers.

• Allocating client-specific argument and return value ranges in the argument RAM. If the
Block-Ram is large enough to hold each client’s arguments then the argument RAM could
be statically partitioned during synthesis such that each client has a dedicated address
range in the argument RAM. The advantage of such an approach is that the controller
could already instruct the next client to send its parameters even though the behavior
process is serving another request. Hence, the parallelism is increased and the delay of
a guarded method invocation is reduced. For this approach to work it is necessary that
the controller not only passes the method ID to the behavior, but also a start address at
which the arguments of the granted client can be found.

• Distributing the argument RAM. The argument RAM could be distributed such that each
client has its own argument RAM. In this case, each interface block would have its own
dedicated Block-Ram port, which could be configured independent of all other interface
block. Although this approach would save the ArgMux, it would require a multiplexer for
the behavior process in order to access the different argument RAMs.

• Direct state RAM access. For simple buffer applications of a Shared Object, a direct
access to the state RAM could decrease the latency of a guarded method. For example, a
put method could directly write the item to the state RAM instead of writing it to the
argument RAM and letting the behavior process copy the item from the argument RAM
to the state RAM.

7.8.8 Hardware Client

In this section we will introduce the hardware interface synthesis of a hardware client to a Shared
Object. A client is always a master and the server, i.e. the Shared Object is always the slave.

On application layer, a hardware client accesses a Shared Object via method calls on an
osss_port<osss_shared_if<...> >. Such a communication link between the client and the
Shared Object is mapped onto an OSSS Channel on the architecture layer. This mapping guides
the hardware interface synthesis process. Two transactors are involved in the communication,
namely the RMI transactor and the channel’s master transactor. The master transactor
determines the hardware client’s signal-level port interface as well as the necessary protocol to
drive these ports.

For the synthesis a predefined macro that represents combinations of the RMI- and the
master transactor is used. More specifically, port-method-calls within the client’s process are
replaced by RMI-over-channel protocol.

1 template< unsigned int A, unsigned int B>
2 struct max_iter { enum { value = (A / B) + ((A % B) ? 1 : 0) }; };
3

4 template< unsigned int A, unsigned int B>
5 struct div { enum { value = (A / B) }; };
6

7 template< unsigned int A, unsigned int B>
8 struct mod { enum { value = (A % B) }; };

356 7 Synthesis

9

10 template<unsigned int N, unsigned int P=0>
11 struct Log2 { enum { value = Log2<N/2,P+1>::value }; };
12

13 template <unsigned int P>
14 struct Log2<0, P> { enum { value = P+1}; };
15

16 template <unsigned int P>
17 struct Log2<1, P> { enum { value = P+1}; };

Listing 7.8: Helper templates for compile-time calculations

Listing 7.8 shows some helper templates used for compile-time calculation of

• max_iter<A, B>::value =
⌈

A
B

⌉

• div<A, B>::value =
⌊

A
B

⌋

• mod<A, B>::value = A mod B

• Log2<N>::value = log N
log 2 + 1

1 SC_MODULE(P2P_Client) {
2 sc_in<bool> clock;
3 sc_in<bool> reset;
4

5 // Point−to−point channel signal interface, replaces
6 // osss_port<osss_shared_if< ... > > p;
7 sc_out<bool> client_strobe;
8 sc_out<sc_bv<N> > client_data;
9 sc_in<bool> server_strobe;

10 sc_in<sc_bv<M> > server_data;
11

12 void main() {
13 client_strobe = false;
14 client_data = ’0’ ;
15 ...
16 wait() ;
17 while(true) {
18 ...
19 // parameters for method call on port p:
20 // 1) method ID (MID_value) of called method
21 sc_bv<MID_size> MID =
22 static_cast<sc_bv<MID_size> >(sc_biguint<MID_size>(MID_value));
23 // 2) serialized method argument vector of size ARG_size_MID (in bit)
24 sc_bv<ARG_size_MID> argument_vector;
25 // 3) serialized return argument vector of size RET_size_MID (in bit)
26 sc_bv<RET_size_MID> return_argument_vector;
27

28 // request method call be sending Method ID (MID) to client
29 for(sc_biguint<Log2<max_iter<MID_size, N>::value> > i = 0;
30 i < div<MID_size, N>::value − 1; i++) {
31 client_strobe.write(true);
32 client_data = MID.range(i∗N+N−1, i∗N);
33 wait() ;
34 }
35 if (mod<MID_size, N>::value != 0) {
36 client_data =
37 MID.range(MID_size − 1, MID_size − mod<MID_size, N> − 1);
38 wait() ;
39 }
40

41 client_strobe.write(false) ;
42 wait() ;
43

44 // wait for grant
45 while(!server_strobe.read()) {
46 wait() ;
47 }
48 while(server_strobe.read()) {

7.8 Shared Object Hardware Synthesis 357

49 wait() ;
50 }
51

52 // send/stream arguments
53 if (has_argument_MID) {
54 for(sc_biguint<Log2<max_iter<ARG_size_MID, N>::value> > i = 0;
55 i < div<ARG_size_MID, N>::value − 1; i++) {
56 client_strobe.write(true);
57 client_data = argument_vector.range(i∗N+N−1, i∗N);
58 wait() ;
59 }
60 if (mod<ARG_size_MID, N>::value != 0) {
61 client_data =
62 argument_vector.range(ARG_size_MID − 1,
63 ARG_size_MID − mod<ARG_size_MID, N> − 1);
64 wait() ;
65 }
66 // argument streaming completed
67 client_strobe.write(false) ;
68 wait() ;
69 }
70

71 // wait for completion
72 while(!server_strobe.read()) {
73 wait() ;
74 }
75 sc_biguint<Log2<max_iter<RET_size_MID, M>::value> > i = 0;
76 while(server_strobe.read()) {
77 // read/stream return argument
78 if (has_return_argument_MID) {
79 if (i < max_iter<RET_size_MID, M>::value) {
80 return_argument_vector.range(i∗M+M−1, i∗M) = server_data.read();
81 i++;
82 }
83 }
84 else
85 wait() ;
86 }
87 ...
88 }
89 }
90

91 SC_CTOR(P2P_Client) {
92 SC_CTHREAD(main, clock.pos());
93 reset_signal_is(reset , true);
94 }
95 };

Listing 7.9: Synthesizable template for a method call over a point-to-point channel

In Listing 7.9 the synthesizable template for a method call from a hardware client to a
Shared Object using the simple point-to-point channel (see Definition 5.6.2.15) is shown. Here,
the read-write master interface is implemented. The RMI protocol is realized on top of the
read-write master interface and implements all RMI protocol phases: request method call, wait
for grant, send/stream arguments, wait from completion, read/stream return argument.

1 SC_MODULE(IPIF_Client) {
2 sc_in<bool> clock;
3 sc_in<bool> reset;
4

5 // Bus IP (IPIF) signal interface, replaces
6 // osss_port<osss_shared_if< ... > > p;
7

8 // IP Master Request
9 sc_out<sc_bv<C_IPIF_AWIDTH> > IP2Bus_Addr;

10 sc_out<sc_bv<C_IPIF_DWIDTH/8> > IP2Bus_MstBE;
11 sc_out<sc_bv<C_IPIF_AWIDTH> > IP2IP_Addr;
12 sc_out<bool> IP2Bus_MstWrReq;
13 sc_out<bool> IP2Bus_MstRdReq;
14 sc_out<bool> IP2Bus_MstBurst;
15 sc_out<sc_bv<C_IPIF_MSTNUM_WIDTH> > IP2Bus_MstNum;

358 7 Synthesis

16

17 // Status Reply to IP Master
18 sc_in<bool> Bus2IP_MstWrAck;
19 sc_in<bool> Bus2IP_MstRdAck;
20 sc_in<bool> Bus2IP_MstLastAck;
21 sc_in<bool> Bus2IP_IPMstTrans;
22

23 // Slave Bus Interface
24 sc_in<sc_bv<C_IPIF_AWIDTH> > Bus2IP_Addr;
25 sc_in<sc_bv<C_IPIF_DWIDTH/8> > Bus2IP_BE;
26 sc_in<bool> Bus2IP_RNW;
27 sc_in<bool> Bus2IP_Burst;
28 sc_in<sc_bv<C_ARD_ID_ARRAY_length> > Bus2IP_CS;
29 sc_in<sc_bv<C_ARD_NUM_CE_ARRAY_length> > Bus2IP_CE;
30 sc_in<sc_bv<C_ARD_NUM_CE_ARRAY_length> > Bus2IP_RdCE;
31 sc_in<sc_bv<C_ARD_NUM_CE_ARRAY_length> > Bus2IP_WrCE;
32 sc_in<bool> Bus2IP_RdReq;
33 sc_in<bool> Bus2IP_WrReq;
34 sc_in<sc_bv<C_IPIF_DWIDTH> > Bus2IP_Data;
35

36 sc_out<sc_bv<C_IPIF_DWIDTH> > IP2Bus_Data;
37 sc_out<bool> IP2Bus_WrAck;
38 sc_out<bool> IP2Bus_RdAck;
39

40 void main() {
41 IP2Bus_Addr = ’0’;
42 IP2Bus_MstBE = ’0’;
43 IP2IP_Addr = ’0’;
44 IP2Bus_MstWrReq = false;
45 IP2Bus_MstRdReq = false;
46 IP2Bus_MstBurst = false;
47 IP2Bus_MstNum = ’0’;
48

49 IP2Bus_Data = ’0’;
50 IP2Bus_WrAck = false;
51 IP2Bus_RdAck = false;
52 ...
53 wait() ;
54 while(true) {
55 ...
56

57 // ID of this client
58 sc_unit<16> client_id = CID;
59

60 // parameters for method call on port p:
61 // 0) object ID (OID_value) of called remote object
62 sc_bv<OID_size> OID =
63 static_cast<sc_bv<OID_size> >(sc_biguint<OID_size>(OID_value));
64 // 1) method ID (MID_value) of called method
65 sc_bv<MID_size> MID =
66 static_cast<sc_bv<MID_size> >(sc_biguint<MID_size>(MID_value));
67

68 // request method call be sending Method ID (MID) to client
69 IP2Bus_MstRdReq = false;
70 IP2Bus_MstWrReq = true;
71 IP2Bus_MstBurst = false;
72 IP2Bus_MstNum = static_cast<sc_bv<C_IPIF_MSTNUM_WIDTH> >(1u);
73 IP2Bus_Addr =
74 static_cast<sc_bv<C_IPIF_AWIDTH> >(client_id_to_address(OID, CID));
75 IP2Bus_MstBE = ’1’;
76 IP2IP_Addr = static_cast<sc_bv<C_IPIF_AWIDTH> >(0u);
77 wait() ;
78

79 // wait for completion of master write transfer
80 while(!Bus2IP_MstLastAck.read())
81 wait() ;
82 while(Bus2IP_MstLastAck.read()) {
83 IP2Bus_MstWrReq = false;
84 wait() ;
85 }
86

7.8 Shared Object Hardware Synthesis 359

87 // read Shared Object’s message register periodically until call is granted
88 while(true) {
89 IP2Bus_MstRdReq = true;
90 IP2Bus_MstBurst = false;
91 IP2Bus_MstNum = static_cast<sc_bv<C_IPIF_MSTNUM_WIDTH> >(1u);
92 IP2Bus_Addr =
93 static_cast<sc_bv<C_IPIF_AWIDTH> >(object_id_to_address(OID));
94 IP2Bus_MstBE = ’1’;
95 IP2IP_Addr = static_cast<sc_bv<C_IPIF_AWIDTH> >(0u);
96 wait() ;
97 // wait for completion of master read transfer
98 while(!Bus2IP_MstLastAck.read())
99 wait() ;

100 while(Bus2IP_MstLastAck.read()) {
101 IP2Bus_MstRdReq = false;
102 wait() ;
103 }
104 if (stauts == GRANTED) break;
105 }
106

107 // stream (write) arguments
108 if (has_argument_MID) {
109 IP2Bus_MstWrReq = true;
110 IP2Bus_MstBurst = true;
111 IP2Bus_MstNum =
112 static_cast<sc_bv<C_IPIF_MSTNUM_WIDTH> >(
113 sc_biguint<C_IPIF_MSTNUM_WIDTH>(
114 max_iter<ARG_size_MID, C_IPIF_DWIDTH>::value));
115 IP2Bus_Addr =
116 static_cast<sc_bv<C_IPIF_AWIDTH> >(object_id_to_arguments(OID));
117 IP2Bus_MstBE = ’1’;
118 IP2IP_Addr = static_cast<sc_bv<C_IPIF_AWIDTH> >(LOCAL_ARG_BASE_ADDR);
119 wait() ;
120

121 // wait for completion of master write transfer
122 while(!Bus2IP_MstLastAck.read())
123 wait() ;
124 while(Bus2IP_MstLastAck.read()) {
125 IP2Bus_MstWrReq = false;
126 IP2Bus_MstBurst = false;
127 wait() ;
128 }
129 }
130

131 // read Shared Object’s message register periodically until call is completed
132 // and return arguments are ready (if any)
133 while(true) {
134 IP2Bus_MstRdReq = true;
135 IP2Bus_MstBurst = false;
136 IP2Bus_MstNum = static_cast<sc_bv<C_IPIF_MSTNUM_WIDTH> >(1u);
137 IP2Bus_Addr =
138 static_cast<sc_bv<C_IPIF_AWIDTH> >(object_id_to_address(OID));
139 IP2Bus_MstBE = ’1’;
140 IP2IP_Addr = static_cast<sc_bv<C_IPIF_AWIDTH> >(0u);
141 wait() ;
142 // wait for completion of master read transfer
143 while(!Bus2IP_MstLastAck.read())
144 wait() ;
145 while(Bus2IP_MstLastAck.read()) {
146 IP2Bus_MstRdReq = false;
147 wait() ;
148 }
149 if (stauts == RETURN_READY) break;
150 }
151

152 // stream (read) return arguments
153 if (has_return_argument_MID) {
154 IP2Bus_MstRdReq = true;
155 IP2Bus_MstBurst = true;
156 IP2Bus_MstNum =
157 static_cast<sc_bv<C_IPIF_MSTNUM_WIDTH> >(

360 7 Synthesis

01516232431

Status Message Method ID

Arguments
❤

❤
❤

❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤

❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤

❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Return Value
❤

❤
❤

❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤

❤
❤
❤

❤
❤
❤

❤
❤
❤

❤
❤

❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Figure 7.26: Memory layout (big-endian) of an RMI client for a 32 bit bus data width

158 sc_biguint<C_IPIF_MSTNUM_WIDTH>(
159 max_iter<RET_size_MID, C_IPIF_DWIDTH>::value));
160 IP2Bus_Addr =
161 static_cast<sc_bv<C_IPIF_AWIDTH> >(object_id_to_return(OID));
162 IP2Bus_MstBE = ’1’;
163 IP2IP_Addr = static_cast<sc_bv<C_IPIF_AWIDTH> >(LOCAL_RET_BASE_ADDR);
164 wait() ;
165

166 // wait for completion of master write transfer
167 while(!Bus2IP_MstLastAck.read())
168 wait() ;
169 while(Bus2IP_MstLastAck.read()) {
170 IP2Bus_MstRdReq = false;
171 IP2Bus_MstBurst = false;
172 wait() ;
173 }
174 }
175 ...
176 }
177 }
178

179 SC_CTOR(IPIF_Client) {
180 SC_CTHREAD(main, clock.pos());
181 reset_signal_is(reset , true);
182 }
183 };

Listing 7.10: Synthesizable template for a method call over a bus channel using IPIF

Listing 7.10 shows the synthesizable template for a method call from a hardware client to a
Shared Object using a shared bus. For separating the physical and the media access layer of
the used bus IP from the hardware client interface, the IPIF (see Section E.3.7) is used. For
realizing RMI with the IPIF master interface, the method and return arguments need to be
stored (in the serialized format) inside a memory of the same bitwidth as the connected IP
channel. Figure 7.26 shows the memory layout (for a 32 bit bus) used inside hardware clients.
The connection of the memory to the IPIF internal slave interface is not shown in Listing 7.10.
For more information about the IPIF master interface usage see [108, 112].

7.9 Back-End Synthesis

Figure 7.27 shows the synthesis flow for the supported target platform. The upper part shows
the tools and libraries developed for processing the OSSS design description while the lower
part implements the back-end flow using Xilinx synthesis tools.

7.9 Back-End Synthesis 361

OSSS SW

OSSS RMI

OSSS Channel

SystemC

Simulation Library Synthesis Library

SW SO HW
HW/SW HW/HW

Top (Application Layer)

Top (Architecture Layer)

O

P

B

C

h

a

n

n

e

l

SW SO HW

HW-Block HW-BlockProcessor

OSSS 2.0 Library

FOSSY

OSSS 2.0 HW/SW Design

architectural context

information (XML)

Processor Hardware

Platform (MHS)

Processor Software

Platform (MSS)

SW-Application Source

(.cpp, .hh)

Drivers,

MDD

MPD, PAO
Libraries,

OS, MLD

PCore,

HDL

Xilinx EDK IP Library

and User Repository

Xilinx EDK

Library

Generator

Xilinx EDK

Platform

Generator

Implementation

Constraint File (UCF)

Compiler (GCC)

.o, .a .o, .a

Linker (GCC)

ELF

Linker Script System and

Wrapper HDL

system.BMM

Xilinx ISE Synthesis (XST)

NGDBuild, MAP, PAR

Xilinx Bitstream Generator

system.BITXilinx Bitstream Initialiser

download.BIT

system_BD.BMM

Xilinx iMPACTDebugger

(XMD,GDB)

download.CMD

Xilinx

FPGA

Device
JTAG Cable

OSSS HW OSSS SW* OSSS HW*

OSSS RMI*

SystemC*

included for architectural context extraction and architecture synthesis

included for Hardware-/and Hardware-Interface synthesis (performed by FOSSY)

OSSS Synthesis Tools

Xilinx / 3rd-Party

Synthesis Tools

Software Library

OSSS SW**

OSSS RMI**

SystemC synth. data types

OSSS SW

Library

Generator

SystemC

Arch. Synth.

Virtual Target Architecture

included for simulation

included for Software cross compilation

* = library element with reduced

 header files for synthesis with FOSSY

** = library element with software only

 language elements for cross-compilation

 on chosen target CPU

Processor I/O

Synplify pro /

3rd Party Synthesiser

VHDL

EDF

Figure 7.27: Overview of the OSSS Back-End Synthesis Flow [44]

The back-end synthesis flow considered here consists of the Xilinx EDK and the Xilinx ISE
to implement an OSSS design on the targeted FPGA prototyping boards.

After running the Xilinx EDK Platform Generator, state-of-the art synthesis tools can be
used to transform the synthesizable system description to a netlist. In Figure 7.27 the Xilinx
Synthesis Technology (XST) synthesizer is used but is it possible to use any other 3rd party
HDL synthesizer (e.g. Synplicity) that is capable of generating EDIF netlists. After the design
has been synthesized it has to be implemented on the chosen FPGA. This step will be performed
by the Xilinx Place & Route tool (PAR). Besides the synthesized netlist the Place & Route tool
needs a constraint file (UCF file) which contains information about the floorplanning and the
connections to the external pins. At the end of the ISE flow, a bitstream (system.BIT) that
contains the configuration for the FPGA is generated.

362 7 Synthesis

7.9.1 Integration into Xilinx Flow

Xilinx provides the Integrated Software Environment (ISE), which can be used to synthesize,
to simulate, to analyze and to download a hardware design to any Xilinx FPGA. As an input
the Xilinx ISE takes VHDL, Verilog and/or EDIF netlists. By providing a constraint file (ucf
file) the ISE can be used to synthesize a hardware design for a specific Xilinx FPGA device,
to generate a configuration bitstream and to download it to the configuration memory of the
FPGA.

The Xilinx Platform Studio (XPS) builds on top of the Xilinx ISE and can be regarded as a
possible design entry of the ISE design flow. The aim of the XPS is the integration of various
IP components including embedded processors, DSP blocks, peripherals and communication
IPs. The XPS itself includes a library of several IP components including the MicroBlaze
embedded soft-core processor plus several peripherals, which can be interconnected by using
the IBM CoreConnect technology. Since the MicroBlaze is a soft processor core it can be fully
customized by the designer instantiating it. By using the XPS a designer can assemble an
architecture consisting out of different IP components including user defined hardware blocks.
After assembling and configuration of the desired architecture the Xilinx ISE is used to synthesize,
simulate and download the whole design to an FPGA.

7.9.1.1 Integrated Software Environment (ISE)

Figure 7.28 gives an overview of the design flow supported by the Xilinx ISE. The design entry is
usually performed by providing VHDL, Verilog and/or EDIF netlists together with a constraint
file. In our aspired design flow, we will use the Xilinx Platform Studio (XPS) to build the
processor system and the overall system architecture. I.e. the XPS will be considered as the
design entry for the ISE.

Design

Synthesis

Design Verification

Behavioral
Simulation

Functional
Simulation

Static Timing
Analysis

Timing
Simulation

Back
Annotation

In-Circuit
Verification

Design

Implementation

Design

Entry

Xilinx Device

Programming

Figure 7.28: Design flow supported by the Xilinx ISE [118]

After the design entry has been performed the Xilinx Synthesis Technology (XST) or another
third party HDL synthesizer can be used. The resulting netlist can be simulated either by
external simulators like ModelSim or by the Xilinx Simulator integrated in the ISE. After the
design has been synthesized it has to be implemented on the chosen FPGA. This step will
be performed by the Xilinx place and route tool (PAR). Besides the synthesized netlist the
place and route tool needs a constraint file (ucf file) which contains information about the
floorplanning and the connections to the external pins. This placed and routed design can be
simulated as before but with respect to the physical implementation on the chosen FPGA. Thus,
this simulation is called timing simulation since it reflects a much more realistic timing than

7.9 Back-End Synthesis 363

the simulation after synthesis. Additionally, a timing analysis will be performed which can be
used to check the fulfillment of external timing constraints or timing constraints specified in the
constraint file. When all functional and timing requirements have been verified successfully, a
configuration bitstream can be generated. The ISE also provides a programming tool (iMPACT)
to download the configuration bitstream to the specific Xilinx device.

7.9.1.2 Xilinx Platform Studio (XPS)

As already stated above, the XPS builds on top of the ISE. In this section, we will roughly
outline the design flow of the XPS. It mainly includes the following phases:

1. Hardware platform creation

2. Hardware platform verification using simulation

3. Software platform creation

4. Software application creation

5. Software verification using debugging

Hardware Platform Creation & Simulation Figure 7.29 shows the hardware platform creation
flow using the XPS.

X10088

HW Spec Ed.

HW Plat. Gen

MHS File

MHS File

XPS, WIZARDS

Platgen EDIF, NGC,
VHD,V,BMM

XPS

Figure 7.29: Hardware platform creation [95]

The hardware platform is defined by the Microprocessor Hardware Specification (MHS) file.
The hardware platform consists of one or more processors and peripherals connected to the
processor busses. Several useful peripherals (which will be considered as IPs) are supplied by
Xilinx, along with the XPS tools. But you can define your own peripherals and include them
in the MHS. The Microprocessor Hardware Specification file is a simple text file that can be
created with any text editor.

The MHS file defines the system architecture consisting of peripherals, and embedded
processors. It also defines the connectivity of the system, the address map of each peripheral
in the system, and the configurable options for each peripheral. You can also specify multiple
processor instances connected to one or more peripherals through one or more buses and bridges
in the MHS.

The Platform Generator tool (Platgen) creates the hardware platform using the MHS file as
input. Platgen creates netlist files in various formats such as EDIF and Xilinx proprietary NGC,
support files for downstream tools, and top level HDL wrappers used to add custom designed
components (synthesized by Fossy) to the automatically generated hardware platform.

After running Platgen, FPGA implementation tools, which are part of ISE, run automatically
to complete the implementation of the hardware. At the end of the ISE flow, a bitstream is
generated to configure the FPGA.

364 7 Synthesis

XPS also supports the simulation of the hardware platform before using Platgen for FPGA
implementation. The simulation platform is based on the hardware platform. Instead of the
Platgen tool the Simgen tool processes the MHS file to create simulation files, such as VHDL,
Verilog, or various compiled models, along with some command files for specific simulators
supported by the tool. If the software application that runs on the hardware platform is available
in executable format, it can initialize memories in the simulation platform.

Software Platform Creation The software platform is defined by the Microprocessor Software
Specification (MSS) file. The MSS file defines driver and library customization parameters
for peripherals, processor customization parameters, standard input/output devices, interrupt
handler routines, and other related software features. The MSS file is a simple text file that can
be created using any text editor.

X9881

SW Spec Ed.

SW Plat. Gen

MSS File

MSS, MHS,
lib/*.c, lib/*.h

Emacs, XPS MSS Editor

libgen libc.a, libXil.a

XPS

Figure 7.30: Software platform creation [95]

The MSS file is an input to the Library Generator tool (Libgen) for customization of drivers,
libraries, and interrupt-handlers. The entire process of creating the software platform is shown
in Figure 7.30.

Software Application Creation & Software Debugging The software application is the code
that runs on the processor(s) defined by the hardware platform. The source code for the
application can be written in a "high level" language such as C or C++. The created source files
are compiles and linked to generate executable files in the Executable and Link Format (ELF).
Therefore, GNU compiler tools for the MicroBlaze (Mb-gcc) and the PowerPC (ppc-gcc) are
used. The Xilinx Microprocessor Debugger (XMD) and the GNU Debugger (GDB) are working
together to debug the software application.

The Xilinx Microprocessor Debugger (XMD) provides an instruction set simulator, and is
optionally connected to a working hardware platform to allow GDB to run the application. This
entire process is depicted in Figure 7.31.

7.10 Summary

In general, the synthesis flow can be subdivided into an OSSS specific part and a 3rd party
back-end flow. Since we have chosen a Xilinx FPGA with a Xilinx MicroBlaze soft processor
core the back-end flow consists out of the state-of-the-art Xilinx synthesis tool chain. For more
information concerning the Xilinx specific tools please refer to [239, 238].

As a precondition, we assumed that the design has been partitioned into hardware and
software parts. The resulting hardware/software design is OSSS compliant and has been refined
from the Application to the Architecture Layer. This refinement step includes the refinement of
each software task, each Shared Object and each hardware module to a description that does not
violate the OSSS synthesis subset. Besides this behavior refinement the mapping to a specific

7.10 Summary 365

X9882

SW Source Ed.

SW Compilers

.c and .h files

.c and .h files
libc.a, libXil.a

Emacs, XPS Source Editor

SW Debuggers

.c and .h files
.elf file

Mb-gdb, ppc-gdb

Mb-gcc, ppc-gcc .elf file

XMD

XPS

Figure 7.31: Software application creation & software debugging [95]

target architecture has been performed. It basically includes the mapping of a software task to
a certain processor and the mapping of the abstract communication links from the Application
Layer to an OSSS-Channel on the Architecture Layer.

To check the functionality and dynamic behavior of this hardware/software design on different
levels of abstraction the OSSS simulation library is used in conjunction with the SystemC discrete
event simulator. The OSSS simulation library provides classes for the modeling of hardware
and software parts of the system on the Application Layer. Additionally, it provides several
architecture elements that can be used to assemble the Virtual Target Architecture. This Virtual
Target Architecture Library includes certain processors, memory blocks, sockets for Shared
Objects, and OSSS-Channels (see Section 6.5). Besides the structural information provided
by these building blocks, the OSSS-Channel enables a clock cycle accurate simulation of the
communication on signal level.

After a successful simulation of the modeled hardware/software system the synthesis process
can be started. The synthesis flow can be divided into the following phases:

1. OSSS synthesis tools

(a) Architectural context extraction and hardware/software architecture synthesis (by
using the OSSS Synthesis Library together with an architecture synthesis back-end
for the Virtual Target Architecture Library)

(b) Software library synthesis (by configuring the OSSS Software Library with information
obtained during architectural context extraction)

(c) High-level synthesis of the user-defined hardware part of the design (by using Fossy
together with the OSSS Synthesis Library constituting a “header-only” version of the
software, hardware, RMI and the SystemC library)

2. Xilinx synthesis tools

(a) Platform generation using the Xilinx Embedded Development Kit (EDK)

(b) RTL synthesis, mapping and place & route (this step can either be performed by the
Xilinx Synthesiser Tools (XST) or by a third party tool supporting Xilinx devices
like Synplify Pro [218])

(c) Software library generation for the low-level software drivers for Xilinx specific IP
cores by using the EDK (this includes the MicroBlaze soft processor core and the
On-Chip Peripheral Bus, OPB)

366 7 Synthesis

(d) Cross-compilation and linking of the software part of the design by using the GNU
compiler tool chain for the Xilinx MicroBlaze processor (part of the EDK)

(e) Bitstream initialization and downloading to the hardware platform

In the following Table 7.6 a review of all synthesis related goals from Chapter 2 is given.

Table 7.6: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled)

ID Goal Status Comment

G1 Integration of synthesis
tool and simulation in-
frastructure into Eclipse
CDT Framework

 Since OSSS is based on C++ and integration into
the Eclipse C/C++ Development Tooling (CDT)
Framework is possible. Both, the simulator and
the synthesis tool Fossy have been successfully
integrated, see Chapter G.

S1 Provide a (prototypical)
synthesis tool

 Fossy is a prototypical synthesis tool Shared Ob-
ject and OSSS Hardware Module to VHDL synthe-
sis, configuration and integration of these custom
hardware blocks into an SoC architecture for Xil-
inx FPGAs.

S2 Software output lan-
guage C++ compliant
with C++ standard
(ISO/IEC 14882:1998)

G In the current implementation Fossy does not
generate any software code. The designer needs
to write C++ code inside the Software Modules,
which is compliant with ISO/IEC 14882:1998.

S3 Hardware language
VHDL compliant with
the synthesizable subsets
of Synopsys Design
Compiler and Synplify
Pro from Synplicity

G The Fossy generated VHDL code has been suc-
cessfully synthesized with Synplify Pro a Xilinx
FPGA. The Synopsys Design Compiler for an
ASIC target has not been tested so far.

S4 The generated code has
to be readable for a hu-
man being

G The Fossy generated VHDL and SystemC code is
human readable. All identifier names are pre-
served (some of them with pre-fixes). Type
transformation (which is necessary to map the
SystemC data type semantics to the VHDL se-
mantics) introduces some additional casts. The
state-machine transformation which translates
implicit to explicit state-machines transforms
SC_CTHREADS into SC_MODULE introducing explicit
states states and next-state logic. With these
transformations the code should stay human read-
able.

S5 Possibility to map the
abstract communication
objects onto concrete
mechanisms such as
memory mapped IO/
shared memory (us-
ing polling, interrupts
and/or DMA) or propri-
etary direct HW/HW
communication and to
generate the necessary
HW and SW parts

G OSSS Application Layer Communication Links
can be mapped to a bus using memory mapped IO
(currently only polling access is supported) or to
any proprietary direct HW/HW communication.
Interrupts and DMA are currently not supported.

continued on next page

7.10 Summary 367

Table 7.6: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

S6 For the integration of IP
components it is neces-
sary that the designer
can control the synthe-
sis and to enforce a
certain communication
mechanism, which is re-
quired by the IP compo-
nent

 The supported modeling style of Hardware mod-
ules is behavioral RTL which enables a clock-cycle
accurate protocol description suitable for RTL IP
component integration.

S7 Control of the synthesis
by constraints in the syn-
thesis script or by spe-
cial statements within
the source code

Currently not supported by Fossy.

S8 Efficiency of the gener-
ated code (for hardware:
area and critical path;
for software: memory
footprint) compared to a
hand-crafted design

G The efficiency of the generated custom hardware
VHDL code in terms of area and critical path
length, mainly depends on the SystemC input
code. We have shown for an industrial use-case
(see Section 8.4) that the Fossy generated VHDL
code has an area overhead of 16% and a maximum
clock frequency reduced by 3% compared to a
hand optimized VHDL design.

CHAPTER 8

Experiments

8.1 Introduction

This chapter contains experiments for the demonstration and evaluation of the presented
methodology (see Chapter 5), simulation (see Chapter 6) and synthesis (see Chapter 7). Table 8.1
gives an overview of the presented experiments, metrics, covered requirements and links to the
respective section. This chapter closes with a discussion of meeting the goals from Chapter 2.

8.2 JPEG Encoder

8.2.1 Goals of this experiment

The focus of this experiment is on demonstrating feasibility and effectiveness of the OSSS
Behavior Layer modeling elements. For evaluation of the OSSS Behavior Layer and comparison
with SpecC, a JPEG encoder design [166, 165] has been ported from SpecC to OSSS Behavior.

The original model is described on four levels of abstraction (specification, architecture,
communication and implementation) following the SpecC refinement methodology [160]. The
specification, architecture and communication models and refinement steps between these models
have been implemented in performed in OSSS. The different model’s execution times will be
compared between the OSSS Behavior and the SpecC reference design.

This experiment has been originally published in [43].

8.2.2 Introduction to JPEG

JPEG is a standard for image compression. It applies to either the full-color images or the gray-
scale images of natural, real-world scenes. Today, parts of JPEG are available as software-only
packages or together with specific hardware support. There are four modes of the operations in
the JPEG standard: the sequential discrete cosine transform DCT-based mode, the progressive
DCT-based mode, the lossless mode and the hierarchical mode. Our design employs the first
mode, the sequential DCT-based mode, which is the simplest and the most commonly used
mode.

Based on the sequential DCT-based mode, the JPEG encoder is divided into four functional
blocks: the image fragmentation block, the DCT block, the quantization block and the entropy-
coding block. The corresponding block diagram in Figure 8.1 illustrates the communication
relationship between these blocks.

In the image fragmentation functional block, an image is divided into the non-overlapping
data blocks, each of which contains an 8× 8 matrix of pixels. In the DCT functional block, each
data block is transformed into a frequency representation. There are two commonly used DCT

370 8 Experiments

Design/-
Experi-
ment

Metrics Covered Goals Pub-
lished

Sec-
tion

JPEG
Encoder

Evaluation of OSSS Behavior Layer mod-
eling elements. Evaluation of hierarchi-
cal composition using Behavior diagrams.
Comparison of simulation speed with
SpecC reference implementation.

M1-M3, A2-A4 [43] 8.2

Adaptive
Video
Filter

Stepwise functional C++ to FPGA plat-
form refinement (Behavior → Applica-
tion→ Virtual Target Architecture) with
IP integration.

M1-M6, M8-M10,
M14

[41] 8.3

NightView
Video
Filter

Shared Object for HW/SW communi-
cation. Application to Virtual Target
Architecture mapping. Comparison with
VHDL simulation speed and model com-
plexity. Evaluation of synthesis results
(area, critical path) against VHDL refer-
ence model.

M1-M6, M8-M10,
M14, A2-A5, S1, S5,
S6, S8

[62,
29]

8.4

MP3
Decoder

Evaluation of C++ and RMI overhead
for HW/SW communication compared
to optimized C-based memory mapped
I/O communication.

M1-M10, A2, A3, S5,
S8

[66] 8.5

IPv4
Packet
Switch

Exploration of HW/SW partitioning and
communication link to RMI/OSSS chan-
nel mapping. Feasibility of the Shared
Object synthesis approach. Assessment
of OSSS productivity gain: Shared Ob-
ject synthesis compared to a manual Sys-
temC primitive channel refinement.

M1-M9, A2-A3, S1,
S5, S8

[65,
22]

8.6

JPEG
2000
Decoder

Exploration of the most promising par-
allel structure by comparing different
HW/SW design alternatives (incl. mul-
tiple Software Tasks) on the Appli-
cation Layer. Comparison of OSSS
custom hardware synthesis with stan-
dard design approach using an industrial
C++/VHDL-based FPGA implementa-
tion.

M1-M10, A2-A4, S1,
S5, S8

[62,
45]

8.7

Table 8.1: Overview of experiments

algorithms for this translation process: the standard DCT and the ChenDCT. The ChenDCT
algorithm is employed in our design. In the quantization block, the DCT output coefficients
are quantized. Finally, in the entropy-coding block, the AC coefficients are encoded by using a
predictive coder and the DC coefficients are encoded by using a run-length coder. Then the
Huffman coding algorithm is employed to generate the JPEG image file.

The file I/O for the JPEG Encoder modeled in the testbench (as shown in Figure 8.2) is not
part of the algorithm itself. First, the height (H) and width (W) of the image are passed from
the bitmap input file reader to the JPEG Encoder, which uses them to determine the number

8.2 JPEG Encoder 371

the RTL description must be analyzed to generate the
corresponding I�O protocol� what�s more� if the two
protocols for the two communicating blocks are not
compatible� a transducer has to be inserted�

Finally� the hardware block� which is DCT block in
our design� is re�ned into the cycle�accurate descrip�
tion� which is the lowest level of abstraction in the
SpecC methodology�

The rest of the report is organized as follows� Sec�
tion � describes the JPEG encoder algorithm� Sec�
tion � describes the JPEG speci�cation model� In
Section �� the translation from the speci�cation model
to the architecture model is shown� In Section 	� a re�
�ned communication model of the JPEG encoder is
given� In Section
� the DCT block of the JPEG en�
coder is re�ned into a clock�cycle accurate RTLmodel�
We conclude this report in Section �

� Introduction of JPEG

JPEG is an standard for image compression� It ap�
plies to either the full�color images or the gray�scale
images of the natural� real�world scenes� Today� parts
of JPEG are already available as software�only pack�
ages or together with speci�c hardware support�

There are four modes of the operations in the JPEG
standard� the sequential discrete cosine transform
�DCT��based mode� the progressive DCT�based mode�
the lossless mode and the hierarchical mode� Our de�
sign employs the �rst mode� the sequential DCT�based
mode� which is the simplest and the most commonly
used mode�

Based on the sequential DCT�based mode� the
JPEG encoder is divided into four functional blocks�
the image fragmentation block� the DCT block� the
quantization block and the entropy coding block� The
corresponding block diagram in Figure � illustrates
the communication relationship between these blocks�

File

JPEG

Image

BMP

Image

File

Image

Fragmentation
DCT zation

Quanti-
Coding
Entropy

Figure �� Block diagram of the JPEG encoder

In the image fragmentation functional block� an im�
age is divided into the non�overlapping data blocks�
each of which contains an ��� matrix of pixels�

In the DCT functional block� each data block is
transformed into a frequency representation� There
are two commonly used DCT algorithms for this trans�
lation process� the standard DCT and the ChenDCT

�DCT�� The ChenDCT algorithm is employed in our
design�

In the quantization block� the DCT output coe��
cients are quantized�

Finally� in the entropy coding block� the AC coef�
�cients are encoded by using a predictive coder and
the DC coe�cients are encoded by using a run�length
coder� Then the Hu�man coding algorithm is em�
ployed to generate the JPEG image�

� Speci�cation Model

The SpecC speci�cation model models the function�
ality of the system without introducing any unneces�
sary implementation details� No timing characteristic
is modeled for the computation and communication
behaviors� When simulated� the speci�cation model
is assumed to be executed in zero time� The speci��
cation model is as Figure ��

��������

����

Figure �� Speci�cation model of the JPEG encoder

The speci�cation model for the JPEG encoder is
illustrated in Figure � in which there are three top�
level behaviors� Read�Bmp File� Write�Bmp File�
and JPEG Encoder� Right now� the Height�Width�
Pixel stream and Encoded Byte are channels for
the communication between these top�level behav�
iors� The JPEG Encoder is further divided into four
sub behaviors� HandleData� DCT� Quantization� and
Hu�manEncode� There are three global variables

�

Figure 8.1: Block diagram of the JPEG encoder [165]

the RTL description must be analyzed to generate the
corresponding I�O protocol� what�s more� if the two
protocols for the two communicating blocks are not
compatible� a transducer has to be inserted�

Finally� the hardware block� which is DCT block in
our design� is re�ned into the cycle�accurate descrip�
tion� which is the lowest level of abstraction in the
SpecC methodology�

The rest of the report is organized as follows� Sec�
tion � describes the JPEG encoder algorithm� Sec�
tion � describes the JPEG speci�cation model� In
Section �� the translation from the speci�cation model
to the architecture model is shown� In Section 	� a re�
�ned communication model of the JPEG encoder is
given� In Section
� the DCT block of the JPEG en�
coder is re�ned into a clock�cycle accurate RTLmodel�
We conclude this report in Section �

� Introduction of JPEG

JPEG is an standard for image compression� It ap�
plies to either the full�color images or the gray�scale
images of the natural� real�world scenes� Today� parts
of JPEG are already available as software�only pack�
ages or together with speci�c hardware support�

There are four modes of the operations in the JPEG
standard� the sequential discrete cosine transform
�DCT��based mode� the progressive DCT�based mode�
the lossless mode and the hierarchical mode� Our de�
sign employs the �rst mode� the sequential DCT�based
mode� which is the simplest and the most commonly
used mode�

Based on the sequential DCT�based mode� the
JPEG encoder is divided into four functional blocks�
the image fragmentation block� the DCT block� the
quantization block and the entropy coding block� The
corresponding block diagram in Figure � illustrates
the communication relationship between these blocks�

Figure �� Block diagram of the JPEG encoder

In the image fragmentation functional block� an im�
age is divided into the non�overlapping data blocks�
each of which contains an ��� matrix of pixels�

In the DCT functional block� each data block is
transformed into a frequency representation� There
are two commonly used DCT algorithms for this trans�
lation process� the standard DCT and the ChenDCT

�DCT�� The ChenDCT algorithm is employed in our
design�

In the quantization block� the DCT output coe��
cients are quantized�

Finally� in the entropy coding block� the AC coef�
�cients are encoded by using a predictive coder and
the DC coe�cients are encoded by using a run�length
coder� Then the Hu�man coding algorithm is em�
ployed to generate the JPEG image�

� Speci�cation Model

The SpecC speci�cation model models the function�
ality of the system without introducing any unneces�
sary implementation details� No timing characteristic
is modeled for the computation and communication
behaviors� When simulated� the speci�cation model
is assumed to be executed in zero time� The speci��
cation model is as Figure ��

��������

����

Testbench
Write .jpeg File

DCT

HandleData

Quantization
Block

Block

Block

Block

JPEG Encoder eobmp

Pixel
Stream

Height
Width

Bytes
Encoded

Testbench
Read .bmp File

hdata ddata qdata

hdata

ddata

qdata

HuffmanEncode

Figure �� Speci�cation model of the JPEG encoder

The speci�cation model for the JPEG encoder is
illustrated in Figure � in which there are three top�
level behaviors� Read�Bmp File� Write�Bmp File�
and JPEG Encoder� Right now� the Height�Width�
Pixel stream and Encoded Byte are channels for
the communication between these top�level behav�
iors� The JPEG Encoder is further divided into four
sub behaviors� HandleData� DCT� Quantization� and
Hu�manEncode� There are three global variables

�

Figure 8.2: JPEG encoder model with testbench for file I/O [165]

of the iterations for the block transfer (H ∗W). Then serials of the image pixel streams (8-bit
wide) are passed to the JPEG Encoder where the image is packed into blocks and then processed
block by block. Each block consists of 8 ∗ 8 bytes of image information. The processed image is
then sent out byte by byte to the file writer block where the final JPG image file is generated.

The JPEG encoder includes four basic blocks: HandleData, DCT, Quantization and Huffma-
nEncoder.

HandleData reads the inputs H ∗W and pixel stream from the input file reader, calculates
the number of the iterations, groups the pixel stream into 8 ∗ 8 pixel matrix (MCUs) and
sends the MCUs to the DCT block.

DCT reads the MCUs passed in from the HandleData block, pre-shifts the MCUs, performs
the Chen forward DCT algorithm on them, and sends the result (still 8 ∗ 8 matrix called
transformed MCUs) to the Quantization block.

Quantization uses a quantization table to quantize each element of the resulting MCUs passed
in from the DCT block and sends the result to the HuffmanEncoder block.

HuffmanEncoder performs a Huffman entropy-encoding and a run-length-encoding (RLE) on
the successive bytes in the incoming MCUs. Each byte is transformed into a bit-sequence
(often smaller than the 8 bits of the input byte). The sequence of encoded bits is then
packed into bytes and written to the output file writer block.

372 8 Experiments

PreshiftDCT

ChenDCT

BoundDCT

DCTHandleData

Quantization HffmnEncode

EncodeStripe
ReceiveData

JPEGEncode

ZigzagMtrx

encodeDC

encodeAC

InitTable

SizeTable

codeTable

orderCodes

SpecifiedHfmAC

InitTable

SizeTable

codeTable

orderCodes

SpecifiedHfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

mduHigh = 1..Height

mduWide = 1..Width

DCEHuffACEHuff

Figure 8.3: Structure of the JPEG encoder specification model [141]

8.2.3 JPEG encoder model

During this experiment, we are going to look on the first three models of a JPEG encoder:
Specification, Architecture, and Communication Model. The fourth model, called implementation
model, is not considered here:

Specification Model (spec) is untimed (or rather causal-timed) and exploits the parallelism
available from the JPEG encoding algorithm, as shown in Figure 8.3. It consists of two
sequential behaviors, JPEGInit followed by JPEGEncode. JPEGInit performs initialization
of the two Huffman tables in two parallel sub-behaviors, and writes the output header.
Then, the actual encoding is done in two nested, pipelined loops. The outer pipeline splits
the image into stripes of 8 lines each. The inner pipeline then splits the stripes into 8
× 8 blocks and processes each block through DCT, quantization and Huffman encoding.
As an example of communication, Figure 8.3 shows the two Huffman tables ACEHuff

and DCEHuff that are sent from JPEGInit to JPEGEncode. Since these two behaviors are
composed sequentially, channels can degenerate to simple variables.

Architecture Model (arch) is obtained after hardware/software partitioning and approximately
timed (i.e. leaf-behaviors with annotated execution times), as shown in Figure 8.4. The
Discrete Cosine Transform (DCT) is implemented in hardware while all other functionality
is implemented in software. For the purpose of computation synthesis, we assumed a
mapping of the encoder on an embedded processor (SW) assisted by a custom hardware
co-processor (HW) for acceleration of the DCT. Software and hardware communicate via
two message-passing channels, sending and receiving 8 × 8 blocks from software to the
DCT processor and back. Behaviors inside the SW processor are statically scheduled
and serialized. The two nested pipelines are converted into two nested, sequential loops.
In Figure 8.4, the software waits for the result of the DCT before continuing with any
processing. By changing only a few lines of code, you will be able to modify the architecture
such that software and hardware operate in a pipelined fashion (i.e. while the DCT is
processing a block the software continues processing of the previous block and prepares the
next one), resulting in 100% utilization of the SW processor. Similarly, other architectural

8.2 JPEG Encoder 373

SpecifiedHfmAC

SpecifiedHfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

HData

SW

DData

PreshiftDCT

ChenDCT

BoundDCT

DCT

SendDData

RecvHData

HandleData

Quantization

HuffmanEncode

EncodeStripe

ReceiveData

JPEGEncode

SendHData

RecvDData

HW

Figure 8.4: Structure of the JPEG encoder architecture model [141]

alternatives can be easily explored in a very short amount of time with minimal changes
in the model.

SpecifiedHfmAC

SpecifiedHfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

SW

PreshiftDCT

ChenDCT

BoundDCT

DCT

SendDData

RecvHData

HW

MWData[31:0]

MRData[31:0]

MAddr[31:0]

MTSB

MTAB

MWDataOE

MRWB

INTC

T

HandleData

Quantization

HuffmanEncode

EncodeStripe

ReceiveData

JPEGEncode

SendHData

RecvDData

Figure 8.5: Structure of the JPEG encoder communication model [141]

Communication Model (comm) implements the hardware/software communication is imple-

374 8 Experiments

mented by a cycle and bit accurate model of a bus, as shown in Figure 8.5. Finally,
for communication synthesis, we connected the two processors via a single bus using a
bit-level bus protocol. Furthermore, it was assumed that the protocol of the DCT IP is
fixed and incompatible with the bus protocol, necessitating the inclusion of a transducer
(Figure 8.5). The SW processor is the master on the bus and drives the address and control
lines. The HW co-processor listens directly on the address bus and its associated control
lines while the transducer translates between data transfer protocols. For synchronization,
the hardware signals the software through the processor’s interrupt line INTC. Inside the
two PEs, bus drivers and interrupt handlers translate the message-passing calls of the
behaviors into bus transactions by driving and sampling the PE’s bus ports according to
the protocol.

8.2.4 Results

The provided OSSS Behavior Layer modeling elements are capable of representing hierarchical
SpecC designs using sequential (SEQ), finite-state machine (FSM, not shown in this experiment),
parallel (PAR) and pipelined (PIPE) behavior composition. Communication between these
hierarchical behaviors can be expressed via a set of pre-defined and user-defined hierarchical
channels and signals. To demonstrate and evaluate the correct hierarchical behavior composition,
including communication, OSSS Behavior models are capable to export their structural and
behavioral composition and hierarchy during model elaboration phase. This exported data
can be visualized using Graphviz [149], a graph visualization software. The chosen graphical
representation is a follows:

Behaviors are represented as a rectangles with the name of the behavior. For composite and
special leaf behaviors, the behavior type is given in square brackets, e.g. m_main [PAR].
Hierarchical behaviors are represented graphically by nested rectangles. A behavior’s main

routine is depicted as an ellipse (dashed line for non-leaf behaviors).

Shared Variables are represented as hexagons with the name of the shared variable. Piped
variables have an extra attribute [piped].

Channels are represented as octagons with the name of the channel. Hierarchi-
cal and pre-defined channels have extra attributes, such as [hierarchical],
[osss_double_handshake_channel] or [sc_signal].

Execution sequence for sequential behaviors is illustrated through connecting the main routines
by arrows in the execution order as defined in the behavior. The execution sequence of
pipelined behaviors is illustrated through connecting the pipeline stage sub-behaviors by
arrows.

Figure 8.6 shows an example graph structure of the model’s JPEGinit behavior (compare
with Figure 8.3).

The following structural representations have been extracted from the OSSS Behavior models:

• Figure H.1 represents the specification model as shown in Figure 8.3,

• Figure H.2 represents the architecture model as shown in Figure 8.4, and

• Figure H.3 represents the communication model as shown in Figure 8.5.

Table 8.2 and Figure 8.7 shows the different JPEG encoder model execution times measured
for input bitmap images of four different dimensions. The results show that the OSSS Behavior
implementation runs significantly faster than the SpecC reference implementation. This becomes
most apparent when comparing the execution times of the comm models.

The main reason for this faster execution are:

1. the OSSS Behavior implementation only uses SC_THREADs with dynamic sensitivity. Using
SC_CTHREADs with static sensitivity in combination with wait() or wait(n) calls reduces
the simulation performance tremendously. Therefore, our implementation forbids using

8.2 JPEG Encoder 375

init [SEQ]

start

huffman [PAR]

sh1 [SEQ]

initTable sizeTable codeTable orderCodes

sh2 [SEQ]

initTable sizeTable codeTable orderCodes

header

ImageWidth_sv ImageHeight_sv DCXhuff_sv ACXhuff_sv

main

main main

main

Xhuff_sv huffcode huffsize lastp

main

main main main main

Xhuff_sv huffcode huffsize lastp

main

main main main main

Figure 8.6: Example: Structure of the JPEG encoder specification model’s JPEGinit behavior

image dimensions [pixel]
model 116× 96 256× 256 461× 346 512× 512

OSSS specificationa 0.088 s 0.455 s 1.103 s 1.762 s
SpecC specificationb 0.106 s 0.564 s 1.335 s 2.122 s

OSSS architecturea 0.056 s 0.265 s 0.640 s 0.997 s
SpecC architectureb 0.109 s 0.593 s 1.423 s 2.226 s

OSSS communicationa 0.233 s 1.271 s 3.128 s 5.011 s
SpecC communicationb 1.099 s 6.396 s 15.364 s 25.445 s

awith OSCI SystemC 2.2
bwith SCRC 2.1, both on Intel R© CoreTM2 CPU 6600@2.40GHz

Table 8.2: JPEG encoder model execution times

that kind of synchronization. Internally only spawning threads with annotated durations
(i.e. clock periods) are used. Moreover, our implementation provides a wait function
wrapper to enable convenient clock cycle timing annotation (as used in SC_CTHREADs) in
the communication model and Estimated Execution Time (EET) blocks in the architecture
model.

2. the SystemC data types (i.e. integer types sc_int<...>, sc_uint<...>, sc_bigint<...>,
sc_biguint<...> and sc_bv<...>) operate faster than the comparable data types in the
non-commercial SpecC reference compiler. This becomes most apparent in the execution
speed difference of the communication models where these data types are used inside the
communication channels.

8.2.5 Conclusion

In this experiment a JPEG encoder specification, architecture and communication model have
been implemented in OSSS. The SpecC reference implementation of the JPEG encoder has been
compared with the OSSS implementation for functional equality through JPEG image output
comparison. The hierarchical behavior composition and scheduling has been compared

1. statically though behavior hierarchy and scheduling graph generation and comparison

2. and dynamically through model execution and behavior trace comparison between the
SpecC and OSSS JPEG encoder models.

376 8 Experiments

116x96
256x256

461x346
512x512

OSSS spec

SpecC spec

OSSS arch

SpecC arch

OSSS comm
SpecC comm

1,099

6,396

15,364

25,445

0,233 1,271
3,128

5,011

0,109 0,593 1,423 2,226
0,056 0,265 0,64 0,997

0,106 0,564 1,335 2,122
0,088 0,455 1,103 1,7620

5

10

15

20

25

30

e
x
e
c
.

ti
m

e
 [

s
]

image dimensions [pixel x pixel]

model

lena_256.bmp (66 KB)

lena_256.jpg (8 KB)

encode

OSCI SystemC 2.2 & SCRC 2.1
on Intel® Core™2 CPU 6600@2.40GHz

Figure 8.7: Comparison of JPEG encoder model execution times [43]

A comparison of the model execution times showed that the OSSS Behavior model imple-
mentation executes faster than the reference SpecC model using the SCRC 2.1 SpeC compiler.

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

only TOC

not
implemented

Source: Rainer Dömer
University of California, Irvine

Figure 8.8: Comparison of OSSS Behaviour features

Figure 8.8 shows a comparison of some modeling features between SpecC, SystemC and OSSS
Behavior. The trap and interrupt features (called exceptions) have not been implemented and
thus not evaluated in OSSS. Regarding the description of state transition systems, OSSS only
implements the Transition On Completion (TOC) feature of SpecC. For a technical discussion
of these feature see Section 6.3. In conclusion, the modeling of finite-state machines in OSSS
has not been evaluated in this design example.

For more information about implementation details, a proof of concept implementation of
the OSSS Behavior Layer, including the JPEG encoder design example (and others), can be
obtained from http://system-synthesis.org/_media/osss-behaviour-0.0.2.tar.gz.

http://system-synthesis.org/_media/osss-behaviour-0.0.2.tar.gz

8.3 Adaptive Video Filter 377

Functional Core
(passive)

Functional Core
(passive)Functionality

Behaviour (active)

Value

Functionality
(passive)

Port
Interface

SW Task HW Module

Shared
Variable

(Hierarchical) Channel/
Shared Object

RMI Channel
(P2P, Bus)

Memory

SW
Processor

Dedicated
HW

Memory

Application
Layer

Virtual Target
Architecture
Layer

Signal

Communication Link

Refinement

Behaviour
Layer

Signal

Figure 8.9: Model composition and refinement in OSSS [41]

8.3 Adaptive Video Filter

8.3.1 Goals of this experiment

The goal of this experiment is to demonstrate the stepwise refinement from a functional C++

description, to a parallel and pipelined OSSS Behavior Layer model, to a hardware/software
partitioned OSSS Application Layer model, its mapping to an OSSS Virtual Target Architecture
Layer model and finally, the synthesis and integration into an FPGA-based video processing
platform.

This experiment demonstrates how generic functional C++ code, in this case

1. functors for data type independent calculations,

2. multi-dimensional arrays for data type independent storage,

can be used throughout the entire OSSS design flow, from the Behavioral to the Virtual Target
Architecture Layer.

For optimizing and integrating the design into an FPGA video processing platform, RT level
IP component integration of a memory block and signal level I/O refinement at the design
boundaries will be performed.

This experiment has been originally published in [41].

8.3.2 Model Composition

OSSS Behavior Layer models can be composed of behaviors and channels (e.g. Shared Objects
or Shared Variables) as shown in Figure 8.9. Behaviors follow the Program-State Machine
semantics and can be hierarchically composed (cp. Section 6.3). They have their own thread of
control and thus can be considered as active. They can be arranged in sequential, parallel or
pipelined execution order. During hardware/software partitioning, behaviors are specialized to
become either software tasks or hardware modules. This decision can be supported by different
functional implementations of the same behavior. Shared Variables can either be implemented
by signals or a dedicated memory. In this work Shared Objects always become dedicated
Hardware. Communication links constituted by the port-interface-bindings are mapped onto
OSSS Remote Method Invocation (RMI) channels. They serve as protocol wrappers around
physical communication resources like point-to-point channels and buses.

378 8 Experiments

8.3.3 Modeling in OSSS

In this section the OSSS methodology is applied to the implementation of an adaptive video
filter. Its basic operation is a discrete 2D convolution

c′(x, y) =
⌊N/2⌋
∑

i=−⌊N/2⌋

⌊N/2⌋
∑

j=−⌊N/2⌋

h(i, j) · c(x− i, y − j)

with filter matrix size N ∈ {x ∈ N |x mod 2 6= 0}, adaptive N×N filter kernel h, input image c,
and filtered image c′. This filter operation should be applied to a video stream with a resolution
of 720× 480, 24 bit RGB, and a refresh rate of 60 Hz (DVD quality). For outputting this as
a progressive picture (full image) a pixel clock of 27 MHz is required. This results in a data
throughput of 648 MBit/s.

Figure 8.10 illustrates the OSSS top-down design flow for the adaptive video filter design.
We start with an algorithmic specification of the filter chain as initial untimed OSSS Behavior
functional model (see Figure 8.10a).

8.3.3.1 Behavior Layer Model

The Behavior Layer model of the video filter design in Figure 8.10a is used to explore the
possible parallelism of a purely sequential C++ functional specification.

This involves determination of a valid scheduling and the explicit modeling of communication.
All functional blocks from the sequential C++ specification model need to be wrapped by OSSS
Behaviors, which can be arranged in sequential, parallel or pipelined execution order. The
communication between behaviors is implemented using shared and piped variables for simple
unidirectional communication. Double Handshake Channels (Video Stream Source and Video
Stream Sink) are used for the synchronization and communication with the environment/test-
bench.

In a first step, we reduce the RGB color space to luminance (gray scale) by applying the
weighted sum

RGBluminance = 0.3 ·R+ 0.59 ·G+ 0.11 ·B
to each pixel from the video stream source. This function is implemented as functor, shown in
Listing 8.1. To enable reuse the functor is configurable for different color model bit widths.

1 template <typename ColorChannelValue, typename GrayChannelValue>
2 struct RGB_To_Luminance {
3

4 GrayChannelValue
5 operator()(ColorChannelValue r, ColorChannelValue g, ColorChannelValue b) const {
6 return static_cast<GrayChannelValue>(
7 ((static_cast<unsigned int>(r)∗4915 +
8 static_cast<unsigned int>(g)∗9667 +
9 static_cast<unsigned int>(b)∗1802) + 8192) >> 14);

10 }
11

12 inline GrayChannelValue
13 operator()(Image::PixelTriple pixel) const {
14 return operator()(pixel.red, pixel.green, pixel .blue);
15 }
16 };

Listing 8.1: RGB to Luminance Functor

1 template<class Beh_t = osss::osss_behaviour>
2 class Color_Conversion_Beh : public Beh_t {
3 public:
4 osss_in <Image::PixelTriple> rgb_in;
5 osss_out<Image::pixel_t> gray_out;
6

7 void main() {
8 gray_out = m_cc(rgb_in);
9 }

8.3 Adaptive Video Filter 379

Video Stream
Source

Video Stream
Sink

RGB to
Luminance

Pixel NxN
Filter

Video Line
Buffer

Filter
Selector

Pixel
Triple

Video Filter Chain
osss_behaviour

osss_shared_variable

osss_behaviour

osss_piped_variable

osss_pipeline_stage

NxN
Configuration

osss_behaviour

(a) OSSS Behavior Layer Model

Filter
Selector

Video Filter Chain
osss_software_task

osss_shared<...>

NxN
Configuration

Video DAC

RGB to
Luminance

Pixel

NxN
Filter

Video Line Buffer

Pixel
Triple

sc_signal sc_signal

osss_module

osss_module

external
video sink (IP)

De-Interlacer external
video source (IP)

(b) OSSS Application Layer Model

De-Interlacer

Video DAC

RGB to
Luminance

Pixel

NxN
Filter

Video Line Buffer

Pixel
Triple

Video Filter Chain
xilinx_microblaze

Filter
Selector

OPB

osss_rmi_channel<xilinx_opb>

B
R

A
M

w
ri

te

re
a

d

osss_object_socket<
osss_shared<...> >

sc_signal sc_signal

osss_software_task

osss_module

osss_module

xilinx_bram

external
video source (IP)

external
video sink (IP)

NxN
Configuration

(c) OSSS Virtual Target Architecture Layer Model

Figure 8.10: OSSS design flow applied to the adaptive video filter design [41]

380 8 Experiments

10

11 protected:
12 RGB_To_Luminance<Image::pixel_t, Image::pixel_t> m_cc;
13 };

Listing 8.2: Color Conversion Behavior

Listing 8.2 shows the RGB to luminance functor embedded inside the color conversion
behavior. The separation of function/functor and behavior enables reuse of the function in
different process contexts. I.e. the same functor will be used inside the OSSS Application Layer’s
hardware module (shown later).

Listing 8.3 shows a code snippet of the functional N ×N filter implementation. The MAC
(multiply accumulate) operation of the 2D convolution is implemented as an overloaded operator
of the Filter_Matrix template class (see line 1-16). It is derived from a square matrix template
class, which itself is implemented as a vector of vectors (see line 2). The operator* gets a
coefficient matrix and performs the element-wise MAC operation.

1 template<class T, unsigned int dimension>
2 struct Filter_Matrix : public Vector<Vector<T, dimension>, dimension> {
3

4 template<typename Matrix_t> Matrix_t
5 operator∗(const Filter_Matrix<Matrix_t, dimension> &matrix) const {
6 Matrix_t result = 0;
7 for (unsigned int i=0; i<dimension; ++i) {
8 for (unsigned int j=0; j<dimension; ++j) {
9 Matrix_t coeff = matrix.get(i, j) ;

10 T pixel = this−>get(i, j);
11 result += coeff ∗ pixel ;
12 }
13 }
14 return result;
15 }
16 };
17

18 template <typename pixel_t, typename coeff_t, unsigned int N>
19 class NxN_Filter {
20 public:
21 coeff_t operator()(const Vector<pixel_t, N >& data) {
22 pixel_matrix <<= 1;
23 pixel_matrix.setCol(0, data);
24 coeff_t result = pixel_matrix ∗ coeff_matrix;
25 return (result >> Filter::COEFF_PRECISION) + shift;
26 }
27

28 protected:
29 coeff_t shift ;
30 Filter_Matrix<pixel_t, N> pixel_matrix;
31 Filter_Matrix<coeff_t, N> coeff_matrix;
32 };

Listing 8.3: N ×N Filter Class

While the Filter_Matrix class defines a value type, the NxN_Filter class functor defines
an entity type (see line 18-32), that is non-copyable and non-assignable. The operator() feeds
a new line into the pixel matrix (left shift by one and column assignment), calls operator* from
Filter_Matrix, performs a normalization and returns the filtered pixel.

1 template<class Beh_t = osss_behaviour>
2 class NxN_Filter_Beh : public Beh_t {
3 public:
4 osss_in<NxN_Configuration<Filter::coeff_t,
5 Filter_Matrix<Filter::coeff_t, Filter :: MATRIX_DIM> > > nxn_conf;
6 osss_in<Vector<Image::pixel_t, Filter::MATRIX_DIM > > pixel_row;
7 osss_out<Filter::coeff_t> filtered_pixel;
8

9 void main() {
10 filter . set_coeffs(nxn_conf);
11 filtered_pixel = filter (pixel_row);
12 }

8.3 Adaptive Video Filter 381

13

14 protected:
15 NxN_Filter<Image::pixel_t, Filter::coeff_t, Filter :: MATRIX_DIM> filter;
16 };

Listing 8.4: N ×N Filter Behavior

Listing 8.4 illustrates the implementation of the N ×N filter behavior. It contains a port to
the filter configuration Shared Variable (line 4-5), an input port for an incoming pixel vector
(line 6) and an output port for the filtered pixel (line 7). The main routine reads the filter
configurations from the Shared Variable and sets it as filter coefficients (line 10). The filter
operation itself is performed by calling the operator() of NxN_Filter at line 11.

1 class Filter_Beh : public osss_behaviour {
2 public:
3 osss_in<NxN_Configuration<Filter::coeff_t,
4 Filter_Matrix<Filter::coeff_t, Filter :: MATRIX_DIM> > > nxn_conf;
5 osss_in<Image::PixelTriple> rgb_input;
6 osss_out<Filter::coeff_t> filtered_out;
7

8 Filter_Beh() {
9 color_conv.rgb_triple(rgb_input);

10 color_conv.gray_pixel(gray_pixel);
11 line_buffer .gray_pixel(gray_pixel);
12 line_buffer .pixel_row(pixel_row);
13 nxn_filter .pixel_row(pixel_row);
14 nxn_filter . filtered_pixel (filtered_out)
15 nxn_filter .nxn_conf(nxn_conf);
16 }
17

18 void main() {
19 osss_pipe(color_conv >> line_buffer >> nxn_filter);
20 }
21

22 protected:
23 osss_piped_variable<Image::pixel_t> gray_pixel;
24 osss_piped_variable<Vector<Image::pixel_t, Filter::MATRIX_DIM> > pixel_row;
25

26 Color_Conversion_Beh<osss_pipeline_stage> color_conv;
27 Cyclic_Buffer_Beh<osss_pipeline_stage> line_buffer;
28 NxN_Filter_Beh<osss_pipeline_stage> nxn_filter;
29 };

Listing 8.5: Video Filter Behavior

The video filter chain is implemented as a pipeline (see Listing 8.5) with the filter selector
behavior running in parallel. The communication between the pipeline stages is performed by
Piped Variables. Communication between the filter selector and the N ×N filter is modeled
using a Shared Variable. The video line buffer is not further described here. Its simple purpose it
to safe N video lines (written pixel by pixel) and to deliver a column of N pixels to be processed
by the N ×N filter.

8.3.3.2 Application Layer Model

The next step is the refinement of the Behavior Layer Model to a synthesizable Application
Layer Model (see Figure 8.10b). The Application Layer describes a synthesizable HW/SW
partitioning. For this example we have decided to perform the video filter chain in hardware
and the adaptive filter coefficient calculation and selection in software. Therefore, the filter
selector behavior is converted into a Software Task.

All behavior blocks of the video filter pipeline have been converted into osss_modules.
The piped variables have been converted to sc_signals. Listing 8.6 shows the OSSS Module
implementation of the Video Filter Pipeline. The explicit pipeline of the OSSS Behavior Model
has been replaced by a structural description of modules connected through signals. The double
handshake interfaces of the RGB to luminance to the Video Source Stream and the N ×N filter
to the Video Stream Sink have been refined to signal level interfaces in order to get connected
to a de-interlacer and a video DAC IP component.

382 8 Experiments

1 class Filter_Module : public osss_module {
2 public:
3 osss_port<osss_shared_if<NxN_Configuration<Filter::coeff_t,
4 Filter_Matrix<Filter::coeff_t, Filter :: MATRIX_DIM> > > > nxn_conf;
5 sc_in<Image::pixel_t> r_input;
6 sc_in<Image::pixel_t> g_input;
7 sc_in<Image::pixel_t> b_input;
8 sc_out<Filter::coeff_t> filtered_out;
9

10 Filter_Module() {
11 color_conv.r(r_input);
12 color_conv.g(g_pixel);
13 color_conv.b(b_input);
14 color_conv.gray_pixel(gray_pixel);
15 line_buffer .gray_pixel(gray_pixel);
16 line_buffer .pixel_row(pixel_row);
17 nxn_filter .pixel_row(pixel_row);
18 nxn_filter . filtered_pixel (filtered_out)
19 nxn_filter .nxn_conf(nxn_conf);
20 }
21

22 protected:
23 sc_signal<Image::pixel_t> gray_pixel;
24 sc_signal<Vector<Image::pixel_t, Filter::MATRIX_DIM> > pixel_row;
25

26 Color_Conversion_Module color_conv;
27 Cyclic_Buffer_Module line_buffer;
28 NxN_Filter_Module nxn_filter;
29 };

Listing 8.6: Video Filter Module

Listing 8.7 shows the OSSS Module implementation of the N × N Video Filter. For the
implementation, two hardware processes are required. The config_proc process is for polling
and reading the filter configuration from the Shared Object. The filter_proc process performs
the filter operation using the NxN_Filter functor. This filter class is reused from the Behavior
Layer model.

1 class NxN_Filter_Module : public osss_module {
2 public:
3 osss_port<osss_shared_if<nxn_config_read_if> > nxn_conf;
4 sc_in<Vector<Image::pixel_t, Filter::MATRIX_DIM > > pixel_row;
5 sc_out<Filter::coeff_t> filtered_pixel ;
6

7 OSSS_HAS_PROCESS(NxN_Filter_Module);
8

9 NxN_Filter_Module() {
10 SC_CTHREAD(config_proc, osss_module::clock_port.pos());
11 reset_signal_is(osss_module::reset_port, true);
12

13 SC_CTHREAD(filter_proc, osss_module::clock_port.pos());
14 reset_signal_is(osss_module::reset_port, true);
15 }
16

17 protected:
18 void config_proc() {
19 wait() ;
20 while(true) {
21 filter . set_coeffs(conf_in−>get());
22 wait() ;
23 }
24 }
25

26 void filter_proc() {
27 wait() ;
28 while(true) {
29 filtered_pixel = filter (pixel_row);
30 wait() ;
31 }
32 }

8.4 NightView Video Filter 383

Hsync
Vsync
Blanking
Pixel Clock

24 Bit RGB Video Data

Analog
INTERLACED
Video Digital

Video

CCIR
601/656
YCrCb
Data
Format

Composite
(YPrPb)

4:4:4
YCrCb

4:2:2
YCrCb

Create the missing
Chroma data samples

Color Space
Conversion

Video Timing
Extraction

4:4:4
RGB

Select the ACTIVE
LINE BUFFER for
WRITES @ 13.5MHz

Select the ACTIVE
LINE BUFFER for
READS @ 27MHz

DE-INTERLACE by LINE DOUBLING

VDEC1 Board XUP-V2Pro Development System

Analog
PROGRESSIVE
Video

720 x
480 @
60Hz

Line Field
Decoder

4:2:2 to
4:4:4
Conversion

YCrCb to RGB
Conversion

Line Buffer
(BRAM)

Line Buffer
(BRAM)

Buffer Control
Logic

Video Timing
Generation
Logic

Video
DAC

Video
Decoder

Video Filter
Chain

Figure 8.11: Xilinx Virtex-II FPGA implementation (Target Platform Layer) [41]

33

34 NxN_Filter<Image::pixel_t, Filter::coeff_t, Filter :: MATRIX_DIM> filter;
35 };

Listing 8.7: N ×N Filter Module

8.3.3.3 Virtual Target Architecture Model

The final step is to map the Application Layer Model to a Virtual Target Architecture (see
Figure 8.10c). The filter selector Software Task mapped onto a Xilinx MicroBlaze soft-core
processor. The N×N filter configuration Shared Object is attached to the MicroBlaze’s On-Chip
Peripheral Bus (OPB). The communication from the software task to the Shared Object is
implemented using the OSSS RMI Technology. To transport the NxN_Configuration via RMI
it needs to be equipped with serialization support. Furthermore, the video line buffer is refined
to make explicit use of a Xilinx Block RAM (BRAM) resource.

8.3.3.4 Target Platform Layer

The Virtual Target Architecture Layer Model is then automatically processed to a target
technology dependent implementation using the synthesis flow from Figure 6.2. As shown in
Figure 8.11 we have placed the synthesized video filter chain into a video processing environment
on a Virtex-II Pro FPGA board (see Section E.1) equipped with a video decoder daughter board.
Figure 8.12 shows the video filter FPGA implementation in action.

8.3.4 Conclusion

In this experiment, we have used the OSSS methodology for the design of a video filter and
highlighted the following features: OSSS enables design and system synthesis of C++/SystemC
models through a homogeneous system-level description language and simulation environment. It
supports a stepwise and seamless refinement from a hardware/software independent executable
model down to synthesizable hardware and software components and allows integration of
pre-existing IP components. This ranges from RTL IP components with a cycle accurate pin
interface, like RAMs, to system-level IP components, like SW processors and buses.

8.4 NightView Video Filter

8.4.1 Goals of this experiment

The NighView Video Filter is an extension of the Adaptive Video Filter design (see Section 8.3).
It is an industrial design with high throughput and hard real-time requirements, realized in a

384 8 Experiments

Figure 8.12: FPGA implementation of the video filter

mixed hardware/software design. The video processing is implemented as a hardware pipeline,
while the configuration of this processing pipeline is implemented in software.

The goal of this experiment is to demonstrate

• the usage of Shared Objects for hardware/software communication,

• the Application to Virtual Target Architecture Layer mapping and refinement,

and to evaluate

• the simulation performance of OSSS against VHDL,

• the OSSS model complexity against VHDL and

• the synthesis result in terms of area and critical path length (fmax) against manual
optimized VHDL.

This experiment has been originally published in [62] and [29] (available in German only).

8.4.2 Introduction & Motivation

The presented design is an extract from the NightView video processing application, previously
published in [29]. The purpose of the video processing is to bring the scene in front of a car
onto a video display, located within the dashboard of a car. This supports the driver with
additional video information and enhances the view compared to the information the driver can
gain with the own eyes. Therefore, in certain situations like darkness, dawn, fog, etc., NightView
allows a driver to detect critical situations earlier and to react faster than without the system.
Figure 8.13 gives an overview of the NightView system.

NightView is not intended for a driver to exclusively watch the display instead of watching
the street directly, but it helps the driver to early identify situations that are not clear yet and
might become critical. The general idea of NightView is to use a camera to capture the area in
front of a car. With an IR (Infra Red) camera that is very sensitive and specialized for dark
scenes, a video stream is generated. The unmodified video stream is not well suited for a direct
display. To create a satisfying video stream out of the raw data, major effort has to be done
by several algorithms that are applied to modify the original pixel information to enhance the
required scenes. As an output a video stream is generated that - compared to the direct drivers
view - highlights dark scenes that are not in the driver’s visible range. Also, in critical situations
like other cars with high beam in contrary to the own car, the video system shall provide reliable
information.

8.4 NightView Video Filter 385

 Field of View
 Video Camera

 NIR Head-
 lamps

 Low Beam Light

 Image Representation
 on Display

(a) Complete System Overview

Without “Nigh Vision” With “Night Vision”

(b) Comparison of the view with and without NightView

Figure 8.13: Overview of the NightView System [29]

8.4.3 The NightView Application

The original NightView system, from which the design example is derived, can be described in
general as

1. an input stream (usually generated by a video camera),

2. several algorithms to enhance the video stream, and

3. the display of the final video output stream.

To be able to gain a consistent, standalone design example, the input and output components
have to be included. However, the input does not necessarily need to be received from a camera.
For simulation and test, a frame generator reads a frame sequence from a local disk providing
the video input stream. Vice versa, the video output stream is simply dumped to the local disk.
Figure 8.14 shows the general system structure of the NightView application.

 Filter Pipeline

Filter
Configuration

Filter
Configuration

E
x
te

rn
a
l
IP

E
x
te

rn
a
l
IP

Video-
Input-

Interface

Video-
Output-

Interface

NxN-
Filter

Gamma-
Filter

Figure 8.14: The general structure of the NightView application [62]

386 8 Experiments

8.4.4 Target Platform

In order to provide a standalone application, the design target is an FPGA-based video ap-
plication. The chosen target platform consists of the ML401 FPGA board [85], which is used
for the evaluation purpose. Additionally, a VIODC video daughter board [85] providing the
required interfaces for video input and output is connected to the ML401. The video daughter
board has several digital and analogue video interfaces. To avoid several issues related to digital
video processing like e.g. different pixel rates between video source and video sink, the digital
interface (DVI) was chosen for video I/O. As a side effect, DVI sources like PC graphics cards
in combination with TFT displays can be used and allows the usage of PC based multimedia
applications such as DVD players and web cams. Figure 8.15 shows the ML401 board hook-up
with the VIODC board.

Figure 8.15: The VIODC video daughter card connected to the ML401 board [62]

To gain access to the video interfaces, the Video Processing Evaluation Platform (VPEP)
was developed to support rapid prototyping of various kinds of video applications. The VPEP
is an IP core supporting the VIODC video daughter board described above and provides access
to the incoming and outgoing video stream via an AEI bus [74].

8.4.5 Video processing algorithms

The core of the NightView application is the video processing pipeline. Two filters, a Sobel filter
and a Gamma correction filter are successively applied to every single frame of the video stream.
This architecture allows multiple configurations which results in different visual effects.

8.4.5.1 Sobel filter

The Sobel filter is an edge-detecting filter that increases the contrast edges. Given a Sobel
configuration A containing the coefficients ai,j , a two dimensional pixel array P with the
sub-pixels pi,j , and two shift values s1 and s2, the resulting pixel rs is determined by:

rs =
√

r2
1 + r2

2, with r1 = s1 +
1

N

N∑

i,j=0

pi,jai,j and r2 = s2 +
1

N

N∑

i,j=0

pi,jaN−j,i

8.4 NightView Video Filter 387

8.4.5.2 Gamma correction filter

The succeeding Gamma correction is needed to compensate the non-linear perception of the
human eye. Additionally, the general contrast within a video frame is enhanced as well since
the Sobel filter produces rather dark images. The gamma correction works on each pixel-value
(usually provided as a look-up table) and modifis the pixel rs in the following way:

rγ = c · rγ
s

8.4.5.3 Filter configuration examples

The combination of two N×N filters and a Gamma correction filter allow multiple configurations
by using different filter coefficients (see Table 8.3). Within this design example three different
N ×N filter coefficient combinations are used. The first matrix AS is the edge detection matrix
used for the Sobel filter:

AS =
1

9

1 0 −1
2 0 −2
1 0 −1

The second matrix AI is used for the pass-through of the unmodified central pixel:

AI =

0 0 0
0 1 0
0 0 0

The third matrix is the null matrix A0 with all coefficients set to zero. Different combinations
of these three matrices lead to the three configurations used for the NightView design example.
Table 8.3 gives and overview of these filter configurations.

N ×N filter 1 configuration N ×N filter 2 configuration

Plain A1 = AI , S1 = 0 A2 = A0, S2 = 0
Emboss A1 = AS , S1 = 27 A2 = A0, S2 = 0
Sobel A1 = AS , S1 = 0 A2 = AT

S , S2 = 0

Table 8.3: Filter configurations used within the NightView design example

8.4.6 Design flow

To explore different design alternatives, the performed design flow was split into three sub paths
(see Figure 8.16). The main path describes the flow of the actual NightView design example.
Based on the specification (SystemC) of NightView (N1) several sub steps (N2a,b - N4) are
performed resulting in the final design example prototype (N5). Path N2a-N3a consists of a
high-level communication model. This high-level communication model has been refined to a
more RTL-like communication scheme for resource efficient implementation (path N2b-N3b).

The second path leads to the VHDL reference design for which the same specification (N1)
was used as for the first path. Some parts of the reference design, like the interfaces to video
source and sink logic, where reused for the NightView OSSS prototype. The last path (V1 - V3)
is the development of the VPEP-IP (Video Processing Evaluation Platform) [74] required by
the final NightView design to access the DVI connectors of the VIODC.

The implemented interfaces were reused within the first and the second path. The first path
(N2a + N3a) has not been considered for synthesis. All other paths lead to a synthesized design
running on the FPGA target platform.

8.4.7 Modeling in OSSS

In the following sections only the path N1 → N2b → N3b → N4 → N5 from Figure 8.16 will
be presented. The other parts in Figure 8.16 (denoted by dashed boxes) were part of the design

388 8 Experiments

Figure 8.16: NightView modeling paths [62]

space exploration (N2a - N3b, R1 - R2) or were required to interface the video hardware (V1 -
V3).

The following subsections will describe the Application Layer model (N2b) and the Virtual
Target Architecture model (N3b). The next section will discuss the synthesis results (N4)
and the reference implementation model in VHDL (R1). Furthermore, a comparison between
the target platform model (N5) and (R2), both synthesized for the same FPGA, in terms of
maximum clock frequency (critical path analysis) and area will be done.

8.4.7.1 Application Layer Model (N2b)

The NightView design has been modeled in a way that allows easy reconfiguration. Object-
oriented features like encapsulation, templates, etc. have been used as often as possible. E.g.
interfaces used for the description of Shared Objects are reused for various kinds of Shared
Object implementations. Two general purpose interface descriptions have been introduced
to model abstract read and abstract write accesses to a Shared Object. Both interfaces are
parametrized by the read/write parameter/result type (see Listing 8.8) and are used for every
Shared Object instance in the NightView design example.

1 template<class T>
2 class Reader_if : public virtual sc_interface {
3 public:
4 virtual T read() = 0;
5 };
6

7 template<class T>
8 class Writer_if : public virtual sc_interface {
9 public:

10 virtual void write(T &data) = 0;
11 };

Listing 8.8: The reader and writer interface used for all Shared Objects

Reuse also occurs for Shared Objects. A general Storage Shared Object is defined, which
implements the reader and writer interface (see Listing 8.9). It stores a single value similar to a
register but allows accessing it via method calls. The Storage class is parameterized over the
storage type. This way it can be used for different kinds of storage classes. This Storage Shared

8.4 NightView Video Filter 389

Object is used in the Top module where it stores the configuration data of the N ×N and the
Gamma correction filter.

1 template<class T>
2 class Storage : public virtual Reader_if<T>, public virtual Writer_if<T> {
3 public:
4 OSSS_GUARDED_METHOD_VOID(write, OSSS_PARAMS(1, T, item), true) {
5 currentItem = item;
6 isInitialized = true;
7 }
8

9 OSSS_GUARDED_METHOD(T, read, OSSS_PARAMS(0), isInitialized) {
10 return currentItem;
11 }
12

13 private:
14 T currentItem;
15 bool isInitialized ;
16 };

Listing 8.9: Storage Shared Object

Parametrized user defined data types allow additional reuse. A vector class (see Listing 8.10)
is used to model different kinds of array-like type of data. This class is used amongst others for
the representation of filter coefficients, video data, and gamma look-up table.

1 template<class T, unsigned int dimension>
2 class Vector {
3 public:
4 Vector();
5 Vector(T coefficients []) ;
6 Vector(const Vector<T, dimension> &vector);
7 Vector<T, dimension> &operator=(const Vector<T, dimension> &vector);
8 T &operator[](sc_uint<MINIMUM_BIT_WIDTH(dimension) > columnIndex);
9 bool operator==(const Vector<T,dimension> &v);

10 private:
11 T data[dimension];
12 };

Listing 8.10: Vector class

Highlighting the configurability within OSSS, the bit width of the Vector class and other
classes can be automatically kept as small as possible. By using template meta-programming
techniques, the minimal bit width of counters can be determined during compile time (and
respectively synthesis). See Listing 8.11 for the definition of the MINIMUM_BIT_WIDTH macro.

1 #define MINIMUM_BIT_WIDTH(X) MinimumBitWidth<X>::value
2

3 template <int N>
4 struct MinimumBitWidth {
5 enum {value = 1 + MinimumBitWidth<N/2>::value};
6 };
7

8 template <>
9 struct MinimumBitWidth<0> {

10 enum {value = 0};
11 };

Listing 8.11: Template meta-programming to determine the minimal required bit width

Top-Level Module The Top module encapsulates the core modules of the NightView system
(see Figure 8.17). The NightView system is required to enable real-time video processing. This
leads to the following timing constraint: Since a minimal resolution of 640× 480 pixel should be
processed at a frame refresh rate of 60 Hz the total pixel throughput must be about 25 MHz. A
possible way to process such large amounts of data is to introduce a processing pipeline such
that the different processing steps can be done in parallel.

Three modules that buffer the video stream in two dual-ported RAM modules and handle
the translation of the video stream to and from the filter pipeline and the AEI bus act as

390 8 Experiments

the interface to the actual video hardware. Incoming and respectively outgoing pixels are not
handled directly by the video-processing pipeline. They are stored within the two RAM modules,
which allow the whole NightView application to operate as an AEI slave (which is required by
the VPEP IP). Data access width to the RAM is always 32 bit to match the AEI payload size.
Therefore, four pixel chunks are read and respectively written simultaneously.

The Source and the Sink Transactor provide the access to the two RAM modules from the
pipeline. The Source Transactor translates multiple pixel chunks to pixel columns containing N
pixels, which can be transferred to the Filter Pipeline. The Sink Transactor collects incoming
pixels until 4 of them can be combined into a single chunk which can be afterwards written to
the RAM.

RAM

RAM

Filter
Selector

NxN Filter

Config

NxN Filter
Config

Gamma

Filter
Config

Video
Source

Source
Transactor

Filter
Pipeline

Sink
Transactor

Video
Sink

Hardware

Software

Top

AEI
AEI

Ready

SystemC
Module

OSSS
Shared Object

Communication Link

Data Path

Control Path

Figure 8.17: Top-Level Module of the RTL Application Layer Model (N2b) [62]

Testbench Inside the testbench (see Figure 8.18) of the NightView design, the input video
stream is read from the local file system. The Video Producer sequentially reads single image
files (PGM graphics file) and transfers video lines via the AEI bus to the Video Source in the
Top module. The result of the enhancements is requested by the Video Consumer that stores
the received video frames back in the local file system. The Video Consumer is connected to the
Top module via a second AEI bus.

Figure 8.18: Testbench of the RTL Application Layer model (N2b) [62]

Filter Pipeline The core of the NightView design is the Filter Pipeline module (see Figure 8.19).
It mainly consists of two N × N filters and one Gamma filter. The Filter Pipeline can be
configured by different coefficients to meet different needs due to changing environment conditions
(like dusk, night, etc.). The decision of which filter is used is done within software. In the
NightView design a user can select different configurations by using the keypad on the ML401.
The communication between the software and the hardware part is done via Shared Objects
(NxN Filter Config and Gamma Filter Config).

8.4 NightView Video Filter 391

Matrix
Generator

NxN
Filter

NxN
Filter

Geometric
Mean

Gamma
Filter

Filter Pipeline

Pixel Column In Pixel Out

Start Ready

NxN Filter1
Configuration

NxN Filter2
Configuration

Gamma Filter
Configuration

SystemC
Module

OSSS
Shared Object

Communication Link

Data Path

Control Path

Figure 8.19: Filter Pipeline of the RTL Application Layer model (N2b) [62]

To perform the Sobel operation the filter needs an N ×N filter matrix. The filter pipeline
receives an N pixel column as input and outputs a single pixel. The configurations for the
N ×N filters and the Gamma filter are accessed by the filter pipeline via OSSS Shared Objects.
Since the Shared Objects themselves are part of the top module, a simple port-to-port binding
connects the two filters with the enclosing Top module.

The N pixel columns are sequentially received and stored within a shift register (Matrix
Generator). After the first N columns in a video line are received, the first N × N matrix
is complete. The matrix can be now transmitted to the two N × N filters that perform the
core Sobel operation. Afterwards, the two resulting pixels of the N ×N filters are combined
together via the Geometric Mean module. The combined pixel is finally modified by the Gamma
correction filter. After the first N columns of a video line are received, the filter pipeline
processes one pixel per clock cycle.

Figure 8.20: Geometric Mean Module [62]

The Geometric Mean module combines the two resulting pixels from the N × N filters
(Combinator) into a single pixel by determining the geometric mean (see Figure 8.20). The main
function of the geometric mean is the calculation of a square root. To obtain the square root of
s, the Newton iteration (see Equation 8.4.7.1) is applied with a fixed iteration count of 10 (10
iterations deliver sufficiently precise results in this design example).

xn+1 = xn −
f(xn)

f ′(xn)
with f(xn) = x2

n − s

In order to enable a throughput of one pixel per clock cycle the required calculation of the
square root is organized as a sub-pipeline (see Figure 8.21). This sub-pipeline consists of the
10 stages whereas each step calculates one step of the Newton iteration. Each step receives
the actual parameter of the square root and the actual intermediate value of the iteration and
returns the new intermediate value.

392 8 Experiments

Figure 8.21: Sqrt Module [62]

The first and the last stage of the sub-pipeline need some special care: The first stage receives
the same value for the intermediate value because no intermediate value is obtained at this
point. The output parameter of the last stage is not used and is simply connected to a dummy
signal. Finally yet importantly, the control signals indicating frame/line start are forwarded as
well. Due to the 10 iteration steps, the latency of the Sqrt module is 10 clock cycles.

8.4.7.2 Virtual Target Architecture Layer Model (N3b)

The OSSS methodology allows successively transforming the existing design from the Application
Layer to the Virtual Target Architecture Layer. Using the same testbench the design can be
validated against the golden specification model after every transformation step.

In the following a brief description of the NightView architecture depicting the OSSS related
differences to the Application Layer is given.

The top-level module (see Figure 8.22) integrates all hardware modules and the software
task within a single module. Communication between hard- and software is realized through
Shared Objects (similar to the top-level module on the Application layer). The connection to
the video streams is obtained by providing ports to the AEI bus of the VPEP (and its VHDL
implementation).

Two dual-ported RAM modules buffer the video stream and handle the translation of the
video stream to and from the filter pipeline and the AEI bus. To connect the NightView system
with the actual video input and output stream, the Video Source and Sink modules handle the
access to the AEI bus.

Incoming and respectively outgoing pixels are not handled directly by the video processing
pipeline. They are stored within the two RAM modules, which allow the whole NightView
application to operate as an AEI slave (which is required by the VPEP IP). In order to keep
the bandwidth low, the data access to the RAM is always 32 bit wide. Therefore, four pixel
chunks are read and respectively written simultaneously.

Two modules, the Source and the Sink Transactor, provide the access to the two RAM
modules from the pipeline. The Source Transactor translates multiple pixel chunks to pixel
columns containing N pixels which can be transferred to the Filter Pipeline. The Sink Transactor
collects incoming pixels until 4 of them can be combined into a single chunk which can be
afterwards written to the RAM.

1 class Top : public xilinx_system {
2 sc_in<bool> clock_port;
3 sc_in<bool> reset_port;
4

5 // aei ports to video source
6 sc_in<aei_sel_t> aeiSelectSource;
7 sc_out<aei_ready_t> aeiReadySource;
8 sc_in<aei_w1r0_t> aeiWriteEnableSource;
9 sc_in<aei_byteen_t> aeiByteEnableSource;

10 sc_in<aei_addr_t> aeiAddressSource;
11 sc_in<aei_data_t> aeiDataSource;
12

13 // aei ports to video sink
14 // ...
15

16 // Configuration Shared Objects
17 osss_object_socket<osss_shared<Storage<nxnconfig_t> > > ∗nxnConfig;

8.4 NightView Video Filter 393

RAM

RAM

Video
Source

Source
Transactor

Filter
Pipeline

Sink
Transactor

Video
Sink

Hardware

Software

Top

AEI
AEI

Ready

NxN Filter

Config
NxN Filter

Config

Gamma
Filter

Config

Filter
Selector

OPB

Point-2-Point Point-2-Point Point-2-Point

µBlaze

SystemC Module/
OSSS SW Task

OSSS
Shared Object

Communication Link

Data Path

Control Path

Figure 8.22: The Top module of the NightView system on Virtual Target Architecture Layer
(N3b) [62]

18 osss_object_socket<osss_shared<Storage<lookup_t> > > ∗gammaConfig;
19

20 // ...
21

22 SC_HAS_PROCESS(Top);
23

24 Top(sc_core::sc_module_name module_name) : xilinx_system(module_name) {
25 CREATE_OSSS_CHANNEL(mbRMIChan, hwsw_channel_t, "mbRMIChan");
26 CREATE_OSSS_CHANNEL(nxnConf1Chan, hwhw_channel_t, "nxnConf1Chan");
27 CREATE_OSSS_CHANNEL(nxnConf2Chan, hwhw_channel_t, "nxnConfig2Chan");
28 CREATE_OSSS_CHANNEL(gammaConfChan, hwhw_channel_t, "gammaConfChan");
29

30 filterPipeline −>nxnConfiguration1Reader(∗nxnConf1Chan, nxnConfig1);
31 filterPipeline −>nxnConfiguration2Reader(∗nxnConf2Chan, nxnConfig2);
32 filterPipeline −>gammaConfigurationReader(∗gammaConfChan, gammaConfig);
33

34 nxnConfig1.bind(∗mbRMIChan);
35 nxnConfig1.bind(∗nxnConf1Chan);
36 nxnConfig2.bind(∗mbRMIChan);
37 nxnConfig2.bind(∗nxnConf2Chan);
38

39 gammaConfig.bind(∗mbRMIChan);
40 gammaConfig.bind(∗gammaConfChan);
41

42 microProcessor = new xilinx_microblaze("microProcessor");
43 microProcessor−>rmi_client_port(∗mbRMIChan);
44 microProcessor−>add_sw_task(filterSelector);
45 microProcessor−>clock_port(clock);
46 microProcessor−>reset_port(reset);
47

48 microblazeRMIChannel−>clock_port(clock);
49 microblazeRMIChannel−>reset_port(reset);
50

51 nxnConfig1Channel−>clock_port(clock);
52 nxnConfig1Channel−>reset_port(reset);
53 // ...

394 8 Experiments

54 }
55

56 // ...
57 };

Listing 8.12: Top-level module of the Virtual Target Architecture Layer

The former definition of the configuration Shared Objects are adapted to reflect the RMI style
communication on the Virtual Target Architecture Layer. Therefore, the definitions of the Shared
Objects are changed to osss_object_sockets. Additionally, all Shared Object communications
have to be mapped to a specific bus. The communication to the Filter Selector software task is
mapped to the OPB whereas all other communications are mapped to point-to-point channels
(see Figure 8.22 and Listing 8.12).

In order to allow RMI, all data transmitted have to be serialized such that the con-
tained data can be transmitted over the OPB respectively point-to-point channels. E.g.
the Vector class is modified as shown in Listing 8.13. The class itself is now derived from
osss_serialisable_object and has been tagged as serializable by the OSSS_IS_SERIALISABLE

macro. Additionally, all constructors have been wrapped by the OSSS_SERIALISABLE_CTOR

macro. The core of the serialization are the methods serialise() and deserialise() which
perform the actual serialization and deserialization of the object.

1 template<class T, unsigned int dimension>
2 class Vector : public osss_serialisable_object {
3 public:
4 OSSS_IS_SERIALISABLE(Vector);
5

6 OSSS_SERIALISABLE_CTOR(Vector, ()) {}
7

8 OSSS_SERIALISABLE_CTOR(Vector, (T coefficients[])) {
9 for (sc_uint<MINIMUM_BIT_WIDTH(dimension)> i=0; i<dimension; i++)

10 data[i .to_int()] = coefficients [i .to_int()];
11 }
12

13 OSSS_SERIALISABLE_CTOR(Vector, (const Vector<T, dimension> &vector)) {
14 for (sc_uint<MINIMUM_BIT_WIDTH(dimension)> i=0; i<dimension; i++)
15 data[i .to_int()] = vector.data[i .to_int()];
16 }
17

18 // ...
19

20 virtual void serialise () {
21 for (int i = 0; i < dimension; i++)
22 store_element(data[i]) ;
23 }
24

25 virtual void deserialise () {
26 for (int i = 0; i < dimension; i++)
27 restore_element(data[i]) ;
28 }
29

30 // ...
31 };

Listing 8.13: Serialization of the Vector class

Other user defined data types, which are also transmitted via RMI, as the NxNConfiguration
class (that stores the NxN coefficients and the shift value) needs to be equipped with serialization
support in a similar way.

8.4.8 Evaluation

This section describes the evaluation of the NightView design example regarding simulation
performance, code quality, and efficiency of the RTL synthesis. In this evaluation, only the Filter
Pipeline module will be considered for comparison with the NightView reference implementation
(R1).

8.4 NightView Video Filter 395

8.4.8.1 Simulation performance

The different designs presented in Figure 8.16 have been tested with different still picture and
video sequences. For an efficient exploration of many different models, an adequate simulation
speed is necessary.

Table 8.4 shows the simulation time of four selected NightVision implementation versions.
The measured time is the duration of the simulation for filtering an image of the dimension
720×480. Both OSSS models N2b and N3b have been compiled with the Accellera SystemC 2.2.0
kernel. The VHDL models R1 and N4 have been simulated using Mentor Graphics ModelSim
6.1e. All simulations have been performed on a T7600 (Intel Core 2 Duo) running at 2.33 MHz
with 1 GB RAM.

The Fossy generated code has been tested with the same testbench as for model N3b to obtain
comparable simulation results. The resulting simulated execution time of the filter pipeline is
12.3 ms per frame running at a clock frequency of 25 MHz. This results in a throughput of 83
frames per second and leaves enough headroom since the specification only requires 60 frames
per second.

Comparing the simulation times of the OSSS Application Layer and Virtual Target Archi-
tecture Layer models with the VHDL reference or Fossy generated VHDL model shows that
algorithmic exploration and refinement in OSSS is more efficient than in VHDL. Even the VTA
model at RTL is more than 3 times faster without losing any accuracy.

Comparing simulation times between the hand-written VHDL model (R1) and the Fossy-
generated model (N4) an overhead of about 20 % in model N4 can be observed for this design
example. A major source of simulation overhead in the Fossy generated VHDL model (N4)
is the SystemC to VHDL integer type mapping as described in Section 7.7. The introduced
conversion functions to retain the SystemC integer type semantics in VHDL can be elaborated
at VHDL model compile time, but induce additional overhead compared to a native VHDL
integer type usage as done in model R1.

Version (Simulator) Simulation time [s]

Application Layer N2b (SystemC 2.2.0) 76.8
Virtual Target Architecture Layer N3b (SystemC 2.2.0) 123.7
VHDL Reference R1 (ModelSim 6.1e) 413.4
VHDL Fossy generated N4 (ModelSim 6.1e) 495.1

Table 8.4: NightView design simulation times [62, 29]

8.4.8.2 Model complexity

In order to evaluate the model complexity of the generated VHDL code (N4) a comparison with
the hand-written VHDL version (R1) of the NightView design has been performed. Since the
hand-written version does contain neither the MicroBlaze subsystem nor any hardware/software
communication only the video filter pipelines module will be considered again.

However, an objective comparison only based on lines of code metric is not adequate. Different
coding styles, length of lines, etc. largely influence the number of code lines. Especially for
generated code a lines of code metric is not appropriate. The number of code lines shall only be
used as a first indicator here.

Version Lines of Code without comments (Language)

Application Layer N2b 2859 (OSSS/SystemC)
Virtual Target Architecture Layer N3b 3250 (OSSS/SystemC)
VHDL Reference R1 3442 (VHDL)
VHDL FOSSY generated N4 2667 (VHDL)

Table 8.5: NightView design comparisons Lines of Code [62, 29]

396 8 Experiments

The refinement of the Application Layer design (N2b) to the Virtual Target Architecture
Layer design (N3b) requires 391 lines of code. This step could be automated by a tool, as is
consists in adding serialization support to value classes, replacing ports (RMI stub insertion),
configuration of the target platform, and mapping application layer elements to the target
platform resources. The VHDL model N4 that is generated from model N3b has less lines of
code. The reason of this reduction in lines of code is that the Application Layer model as well
as the Virtual Target Architecture Layer model have been written for reuse. Functions, classes,
and processes have been defined for different possible configurations and instantiations. The
generated VHDL code only contains a dedicated configuration and instantiation of the model.
Code that is not used in this configuration does not result in generated code in model N4.

Comparing the hand written reference implementation R1 with the Fossy generated model
N4 we can observe that the number of code lines in the reference model is significantly higher
than in the generated model. The main reason is that the hand written VHDL model uses
different functions and procedures that have been designed for generic reuse in different VHDL
signal processing designs. Moreover, certain coding guidelines (for better code maintainability
and re-use) applied to the reference design result in an increase of lines of code.

8.4.8.3 Chip area

Table 8.6 shows that the synthesis results generated by FOSSY are about in the same range as
the hand-written version. Area usage and estimated frequencies are close to each other’s. A
minor discrepancy might also come from a slightly different implementation of the hand-written
version.

Both designs have been synthesized using the Xilinx Synthesis Tool (XST) 8.2 targeting a
Virtex-4 FPGA. In this design example, the Fossy generated VHDL design needs 16% more
resources (measured as total equivalent gate count) and has a reduced maximum clock frequency
of 3%.

The main source of higher resource consumption of the Fossy generated VHDL design is the
SystemC to VHDL integer type mapping. The design makes excessive use of integer arithmetic
inside the N ×M filters, and the unrolled Newton Iteration for the square root approximation
inside the geometric mean module. The implicit size extensions of SystemC integers, as described
in Section 7.7 comes at the cost of 16% more area (this can be split-up into 36% more flip-flops
for integer type storage elements and 10% more combinatorial overhead). Since the overall
FPGA area utilization is quite low in this example, the critical path and thus the maximum
estimated frequency fmax is only reduced by 3%.

VHDL Reference (R1) VHDL Fossy (N4) Delta

Number of slice flip-flops 441 598 36%
Number of 4 input LUTs 2,098 2,312 10%
Total equivalent gate count 21,131 24,531 16%
Estimated frequency (fmax) [MHz] 78.1 75.7 -3%

Table 8.6: NightView design synthesis results [62, 29]

8.4.9 Conclusion

In the NightView example, the OSSS methodology has been applied to an industrial video
processing application. The simulation of the Application Layer model runs more than 5 times
faster than the VHDL simulation of the handcrafted VHDL design. Even the Virtual Target
Architecture model still runs more than 3 times faster than the VHDL model. From the
modeling point of view, the Application Layer model requires 20% less lines of code for the
same functionality with increased reuse possibilities. OSSS Application Layer code can also
be reused for software implementations for instance. The Virtual Target Architecture Layer
model’s complexity is very similar to the VHDL model complexity. The VHDL model has 5%
more lines of code. The synthesis of the Virtual Target Architecture Layer model leads to a 16%

8.5 MP3 Decoder 397

overhead in chip area and a reduction of the maximum clock frequency of only 3% compared to
the manual optimized VHDL implementation.

8.5 MP3 Decoder

8.5.1 Goals of this experiment

The goal of this experiment is an assessment of the C++ and RMI protocol overhead for
hardware/software communication. For this purpose a comparison with a state-of-the-art
optimized C register-based memory mapped I/O communication is performed. This experiment
has been conducted in an MP3 decoder design. The very compute intense Discrete Cosine
Transform (DCT) of the subband synthesis step in the decoding chain has been implemented
in hardware: As regular VHDL module with register interface and as OSSS Shared Object. A
comparison of the different DCT execution times and communication overhead is performed.
This experiment has been performed originally in [66].

8.5.2 Introduction to MP3 decoding

Figure 8.23 provides an overview of the block structure of an MP3 decoder. The used blocks are
briefly explained in the following subsections.

Sync
and

Error
Checking

Huffman
Decoding

HuffmanTInfo
Decoding

Scalefactor
Decoding

Scalefactor
Information

Huffman
Information

Requantization Reordering

Huffman
codeTbits

MagnitudeTvTsign DCT’ DCT

Bitstream

Joint
Stereo

Decoding

Alias
Reduction

Frequency
Inversion

Synthesis
PolyphaseIMDCT

Filterbank

Right

Alias
Reduction

Frequency
Inversion

Synthesis
PolyphaseIMDCT

Filterbank

Left

PCM

Figure 8.23: MP3 decoder structure [178]

Sync and Error Checking This block receives the encoded MP3 bitstream. Every frame within
the stream is identified by searching for the synchronization word. It is not possible for the
following processing blocks to extract the correct information without correct frame detection.
Error checking recomputes the CRC checksum of each frame and compares it with the stored
checksum.

398 8 Experiments

Huffman Info Decoding & Huffman Decoding Huffman coding is a variable length coding
method. For this reason, the start of the code word needs to be identified. This information
is provided by the Huffman info decoding block. The purpose of this block is to provide all
necessary parameters to the Huffman decoding block to perform a correct decoding. Moreover,
the Huffman info decoder block must insure that 576 frequency lines are generated regardless of
how many frequency lines are described in the Huffman code bits. If less than 576 frequency
lines appear, the Huffman info decoding block adds zero data (padding).

Scalefactor Decoding This block decodes the coded scalefactors, i.e. the first part of the main
data. The scalefactor is obtained from the side information. The decoded scalefactors are used
for requantization.

Requantization The decoded, scaled and quantized frequency lines output from the Huffman
decoder block are requantized using the scalefactors together global gain and preflag field
information.

Reordering In order to increase the efficiency of the Huffman coding, the frequency lines for the
short window cases were reordered into subbands first, then frequency and at last by windows
by the encoder. Samples close in frequency are more likely to have similar values and thus can
be much better Huffman encoded. The reordering block will search for short windows in each of
the 36 subbands. If short windows are found they are reordered.

Joint Stereo Decoding The purpose of the Joint Stereo Decoding block is to perform the
necessary processing to convert the encoded stereo signal into separate left/right signals. The
method used for encoding the stereo signal can be read from the mode and mode extension in
the header of each frame.

Alias Reduction The alias reduction is required to negate the aliasing effects of the polyphase
filterbank in the encoder. The alias reconstruction calculation consists of eight butterfly
calculations for each subband.

Inverse Modified Discrete Cosine Transform (IMDCT) The frequency lines from the Alias
Reduction block are mapped to 32 Polyphase filter subbands. The IMDC will output 18 time
domain samples for each of the 32 subbands.

Frequency Inversion In order to compensate for frequency inversions in the synthesis polyphase
filter bank, every odd time sample of every odd subband is multiplied with −1.

Synthesis Polyphase Filterbank The Synthesis Polyphase Filterbank transforms the 32 sub-
bands of 18 time domain samples in each granule to 18 blocks of 32 PCM samples, which is
the final decoding result. This filterbank uses a 32-point Discrete Cosine transform (DCT) to
perform subband synthesis efficiently. The implementation efficiency of this filterbank is very
important. In dependance on the sampling rate of the audio signal, the filterbank is executed
3000 times per second (e.g. for fsample = 48 kHz).

8.5.3 Modeling in OSSS

The OSSS model is based on the MAD (MPEG audio decoder) decoder [227]. It supports
MPEG-1 and the MPEG-2 extension to lower sampling frequencies, as well as the de facto
MPEG 2.5 format. All three audio layers – Layer I, Layer II, and Layer III (i.e. MP3) – are
fully implemented. MAD has the following special features:
• supports 24-bit PCM output
• 100% fixed-point (integer) computation
• implementation based on the ISO/IEC standards
• available under the terms of the GNU General Public License (GPL)

8.5 MP3 Decoder 399

8.5.3.1 Profiling

We start with a profiling of the MAD decoder on our Xilinx MicroBlaze Target processor.

---------Simulation Statistics---------

Cycles : 22382061

Instructions : 7033278

CPI : 3.182

Loads : 2070903

Stores : 748313

Multiplications : 749741

Divisions : 470

Barrel shifts : 482772

Total # of branches : 355537

of taken branches : 269015 (75.664%)

Calls : 17771

Returns : 17771

ICache Accesses : 7363343

ICache Hits : 7356486 (99.907%)

DCache Accesses : 2070332

DCache Hits : 1524544 (73.638%)

----------Pipeline Stall Info-----------

Total # of stalls : 17344977

IFetch stalls : 340728 (1.964%)

Memory Access stalls : 14993995 (86.446%)

Multiplier stalls : 1499482 (8.645%)

Barrel Shifter stalls : 495732 (2.858%)

Divider stalls : 15040 (0.087%)

--------------Branch Info---------------

Branches w/ delay slot : 207268 (1.195%)

Branches w/o delay slot : 123494 (0.712%)

Listing 8.14: Simulation statistics of MAD decoder execution on a Xilinx MicroBlaze ISS
[66]

Listing 8.14 shows the result of the statistics of the MAD decoder running on a Xilinx
MicroBlaze Instruction Set Simulator (ISS). The data has been obtained from decoding 29
frames with a bit rate of 32 kb/s and a sampling frequency of 44,1 kHz. As show in the statistics,
the decoding takes 22.382.061 clock cycles. When running the processor with a frequency of
100 MHz the corresponds to approximately 223,82 ms. This is clearly below the upper timing
bound of 757,55 ms for seamless real-time decoding.

In addition to the above run-time statistics, the number of executed instructions, the number
of multiplications and divisions, and the number of cache hits are reported. From these statistics,
the configuration of the MicroBlaze processor can be adapted. The reported high number of
multiplications and barrel shifts demand for a dedicated hardware multiplier and special barrel
shifter hardware component to speed-up the decoding.

Each sample counts as 1e-08 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

54.15 0.11 0.11 2088 54.02 54.02 dct32

18.50 0.15 0.04 29 1329.01 5218.27 synth_full

7.90 0.17 0.02 604 27.24 33.43 III_imdct_l

7.34 0.18 0.02 29 527.46 1858.80 mad_layer_III

3.82 0.19 0.01 108 73.71 73.71 III_aliasreduce

1.79 0.19 0.00 1208 3.09 3.09 fastsdct

1.23 0.20 0.00 1856 1.38 1.38 III_freqinver

1.17 0.20 0.00 4743 0.51 0.51 mad_bit_read

1.05 0.20 0.00 666 3.27 3.27 III_overlap

0.72 0.20 0.00 62 24.31 24.31 III_imdct_s

[...]

Listing 8.15: Profiling results of MAD decoder execution on a Xilinx MicroBlaze ISS
(excerpt) [66]

Listing 8.15 shows the profiling results for the same bit stream as used in Listing 8.14. The
profiling reports detailed information for each function of the executed program: the number
calls and their duration. From the profiling run it becomes obvious, that the overall runtime of

400 8 Experiments

the MP3 decoder is dominated by the dct32 function (54,15%) used in the subband synthesis.
In the Application Layer Model the DCT is realized as Shared Object and implemented in
hardware to speed-up the overall decoding process.

8.5.3.2 Application Layer Model

1 class Top : public osss_system {
2 sc_in<bool> Clk;
3 sc_in<bool> Reset;
4

5 player ∗player1;
6 osss_shared< dct > ∗dct_inst;
7

8 Top() {
9 dct_inst = new osss_shared<dct>("dct1");

10 dct_inst−>clock_port(Clk);
11 dct_inst−>reset_port(Reset);
12 player1 = new player("player1");
13 player1−>clock_port(Clk);
14 player1−>reset_port(Reset);
15 player1−>dct_port(∗dct_inst);
16 }
17 };

Listing 8.16: Top-Level module of the Application Layer model

The Application Layer model consists of a single Software Task player and a Shared Object
implementing the DCT. Listing 8.16 shows the top-level module of the Application Layer model.
In this design, the Shared Object is used by a single client only and provides a method-based
interface to the DCT functionality.

1 class player : public osss_software_task {
2 public :
3 osss_port_to_shared< dct_if > dct_port;
4

5 OSSS_SW_CTOR(player) { }
6 ...
7

8 void dct32(mad_fixed_t const in[32], unsigned int slot,
9 mad_fixed_t lo[16][8], mad_fixed_t hi[16][8]) {

10 int i = 0;
11 dct_data input, output;
12 // preparation of the dct data object
13 for(i = 0; i < 32; i++) {
14 input.setData(i, in [i]) ;
15 }
16

17 // call to the DCT Shared Object
18 output = dct_port−>do_dct(input);
19

20 // unpacking of the return data object
21 for(i = 0; i < 16; i++) {
22 hi[15−i][slot] = output.getData(i);
23 lo [i][slot] = output.getData(i+16);
24 }
25 }
26 ...
27 };

Listing 8.17: MP3 player Software Task with DCT Shared Object call

Listing 8.17 shows an excerpt of the player Software Task where the call of the DCT Shared
Object happens. The dct32 function (line 8) is called in the subband synthesis of the MAD
decoder software. Profiling has shown, that this function consumes over 50% of the decoding
time of a frame. By moving the DCT from software to a hardware implementation inside a
Shared Object a certain speed-up is expected, assuming the hardware DCT computes faster
than in software, including the hardware/software communication overhead. Before calling the
do_dct function of the Shared Object (line 18) the DCT data gets stored into an object. After

8.5 MP3 Decoder 401

completion of the DCT, the return data object is unpacked in the same way. The presented
implementation is simple and does not performed pipelined execution (e.g. separate DCT send
and return functions) because the goal of this experiment is measuring the RMI communication
overhead, not presenting the most efficient implementation.

1 class dct_data {
2 public:
3 dct_data() {}
4 void setData(int pos, sc_uint<32> value) { m_data[pos] = value; }
5 sc_uint<32> getData(int pos) { return m_data[pos]; }
6 private:
7 sc_uint<32> m_data[32];
8 };
9

10 class dct_if : public sc_interface {
11 public:
12 virtual dct_data do_dct(dct_data in) = 0;
13 };
14

15 class dct : public dct_if {
16 public:
17 CLASS(dct, NullClass);
18 CONSTRUCTOR(public, dct, ());
19 OSSS_GUARDED_METHOD(dct_data, do_dct, OSSS_PARAMS(1, dct_data, in), true);
20 };

Listing 8.18: DCT Shared Object, with interface declaration and data object definition

Listing 8.18 shows the DCT data object dct_data, the DCT Shared Object interface dct_if

and the DCT Shared Object implementation dct. Since the do_dct service is executed atomically,
no guard condition is specified (i.e. the guard condition is always true).

8.5.3.3 Virtual Target Architecture Layer Model

1 class Top : public xilinx_systsm {
2 public:
3 sc_in<bool> Clk, Reset;
4

5 player ∗player1;
6 osss_rmi_channel<xilinx_opb_channel<false, false> > ∗channel;
7 osss_object_socket <osss_shared< dct > > ∗dct_inst;
8 osss_processor∗ m_processor;
9

10 Top() {
11 channel = new osss_rmi_channel<xilinx_opb_channel<false, false> >("channel");
12 channel−>clock_port(Clk); channel−>reset_port(Reset);
13 dct_inst = new osss_object_socket< osss_shared<dct> >();
14 dct_inst−>clock_port(Clk); dct_inst−>reset_port(Reset);
15 dct_inst−>bind(∗channel);
16 player1 = new player("player1");
17 player1−>dct_port(∗dct_inst);
18 m_processor = new xilinx_microblaze("my_processor");
19 m_processor−>clock_port(Clk); m_processor−>reset_port(Reset);
20 m_processor−>rmi_client_port(∗channel);
21 m_processor−>add_sw_task(player1);
22 }
23 };

Listing 8.19: Top-Level module of the Virtual Target Architecture Layer model

The Software Task is executed on a Xilinx MicroBlaze processor and the Shared Object is
implemented in hardware. For communication between the processor and the Shared Object a
Xilinx OPB bus with a default data width of 32 bit has been chosen. Listing 8.19 shows the
top-level module of the Virtual Target Architecture Layer model.

402 8 Experiments

8.5.3.4 Implementation Model

Figure 8.24 shows a simplified block diagram of the FPGA platform configuration. The
MicroBlaze processor is connected to a block RAM via the LMB interface for data (dlmb) and
instructions (ilmb). This internal RAM contains the start-up code. The MP3 decoder software
and its data structures are in an external DDR-SRAM. The MicroBlaze is connected to this
external DDR-SRAM by multi-channel OPB DDR-SRAM controller (mch_opb_ddr) via data
(dxcl) and instruction cache link (ixcl) interfaces. The DCT Shared Object with OPB interface
is encapsulated in the dct_top block. A SystemACE controller (opb_sysace) is used to read
an MP3 data stream from a Compact-Flash card. The AC97 digital controller (opb_ac97) is
used to send the PCM samples for the left and right channel to a digital/analog converter and
headphone amplifier. The hardware timer/counter module (opb_timer) is used for minimal
intrusive execution time measurement on the FPGA prototype. The other components are used
for debug purpose only.

dlmb

dxcl

ilmb

ixcl

bram_block

ilmb_cntlr

mch_opb_ddr

opb_gpio

/LEDI

R

opb_gpio

/ButtonsI opb_uartlite

dct_top opb_mdm

opb_ac97 opb_intc opb_timer

microblaze

PROCESSOR

mb_opb

KEY

SYMBOLS

BusRinterface

SharedRBus

MasterRPort/Initiator

SlaveRPort/Target

Master/SlaveRPort

COLORS

BusRStandards

DCR

FCB

FSL

LMB

OPB

PLB XilinxRCacheRLink

dlmb_cntlr

opb_sysace

/CFlashI

OPBRSlaveRcomponents

BusRConnections

Figure 8.24: FPGA implementation platform configuration (simplified)

8.5.4 Results

All measurements have been performed on the implementation model using the hardware timer
and MP3 data with a bit rate of 320 kb/s and a sampling frequency of 44,1 kHz. The chosen

8.5 MP3 Decoder 403

bit rate is used for high quality MP3 streams and has the highest computation demand in
the frequency domain. We have chosen the default sampling frequency, even though 48 kHz
maximum sampling frequency would have resulted in a slightly higher number of DCT invocations
per second. Anyhow, for the comparison of the pure software with the hardware/software
implementation and a comparison of the RMI protocol and serialization overhead with a custom
interface communication only a common MP3 stream is required.

8.5.4.1 Software implementation

Time/[s]

U
ti
liz

a
ti
o

n
/[
v

]

Figure 8.25: Processor utilization of the software only implementation [66]

Figure 8.25 shows a scatter plot of the utilization of the MicroBlaze processor for the software
only implementation. Each data point represents the measured decoding time for one frame.The
average processor utilization is 56,138% and the maximum utilization is 109,651%. The shown
scatter plot has been recorded for a specific MP3 stream. Since the MP3 decoder has components
with input data dependent execution times (e.g. Huffman Decoder), different MP3 streams will
generate different processor utilizations.

For hiding the latency for the compact flash access, a ring buffer with configurable size is
used. For this measurement, an input buffer size of 4.096 Byte has been chosen. With this
buffer size three complete frames can be stored. The histogram in Figure 8.26 contains two
groups or clusters. The first cluster contains frames that fit into the buffer without reloading
data from the compact flash card. The second group represents frames where the buffer need to
be refilled from the compact flash card. The ratio frames without buffer refill to frames with
buffer refill is 2:1.

Further increasing the input buffer size enables real-time decoding of the software only
implementation.

In addition to the overall frame decoding time, the execution time of the dct32 function can
be measured. For this purpose the hardware timer is read directly before and after each dct32

call. This measurement has been performed for 12.500 frames and results in a minimal DCT
execution time of 35,98 µs, a maximal execution time of 39,83 µs and an average execution time
of 37,88 µs. This measurement is used for a comparison with the execution time of the hardware
DCT and the RMI communication overhead.

404 8 Experiments

Utilization/[v]

N
u

m
b

e
r/

o
f/
fr

a
m

e
s

Figure 8.26: Histogram of the processor utilization from Figure 8.25 [66]

−

Time6[s]

U
ti
liz

a
ti
o

n
6[
7

]

Figure 8.27: Processor utilization of the hardware/software implementation [66]

8.5.4.2 Hardware/Software implementation

Figure 8.27 shows a scatter plot and Figure 8.28 shows the corresponding histogram of processor
utilization per frame for the decoding the same MP3 stream used above, but for an implemen-
tation with the DCT as dedicated hardware component. The utilization is lower, because the
computation time of the hardware DCT is lower that the software DCT. The average utilization
is 49,322% and the maximum utilization is 102,536%.

This hardware/software implementation does not take advantage of the parallel processing
between hardware and software, e.g. through pipelining software and DCT. Thus, only an
improvement of approximately 7% could be achieved. With a maximum utilization > 100% this
implementation is still not capable for seamless real-time decoding. Doubling the input buffer
from 10 KiB to 20 KiB results in a maximum utilization of 94% and an average utilization of
46%.

8.5 MP3 Decoder 405

fl

UtilizationW[B]

N
u

m
b

e
rW

o
fW
fr

a
m

e
s

Figure 8.28: Histogram of the processor utilization from Figure 8.27 [66]

8.5.4.3 RMI overhead

For the evaluation of the communication overhead, the following measurements are necessary:

1. ∆(dct32)core is the pure DCT functional execution time in number of clock cycles.

2. ∆(dct32)end-to-end is the time between starting the dct32 function and its completion in
clock cycles.

Then, the communication time is:

∆(dct32)communication = ∆(dct32)end-to-end −∆(dct32)core

For a software implementation of the DCT:

∆(dct32)communication = 0⇔ ∆(dct32)end-to-end = ∆(dct32)core

Table 8.7 gives a comparison of average DCT execution times ∆(dct32)end-to-end for a pure
software (SW) and a hardware/software (HW) implementation. For the comparison of the C++

and RMI overhead induced by OSSS, both implementations have been done in optimized C
and C++ code, as used by OSSS. The C-based hardware/software implementation is not using
the RMI protocol, but writes/reads the input/output dct32 parameter array into the hardware
DCT’s register using memory mapped I/O. The C++ hardware/software implementation uses
the RMI protocol and transfers the dct_data objects using the defined RMI protocol phases.

DCT impl. software RMI avg. exec. time compared to
language [# clock cycles] SW DCT [%]

SW C no 3.788 100
HW C no 1.948 51,426
SW C++ no 4.281 113,015
HW C++ yes 2.339 61,748

Table 8.7: Average execution times of the different DCT implementations [66]

The usage of C++ in the software implementation extends the execution time of the DCT
by 13%. The usage of C++ and RMI in the hardware/software implementation extents the
execution time of the DCT by 20%. Thus, the overhead of the RMI protocol is 7% in this
use-case.

Table 8.8 shows the different sizes of the executables. The optimized C implementation has
the smallest size. The C++ implementation without RMI (i.e. without using the OSSS software

406 8 Experiments

DCT impl. SW language RMI size of executable [KiB]

HW C no 93,129
HW C++ no 393,345
HW C++ yes 1.755,055

Table 8.8: Size of executable overview for different implementations [66]

library) is more than 4 times bigger than the C implementation. This increase is mainly caused
by the usage of the C++ libraries for standard input and output. The OSSS implementation is
again more than 4 times bigger than the C++ implementation. This increase is caused by the
full SystemC (synthesizable) data type support and the RMI library which makes use of the
C++ Standard Template Library (STL). Since the OSSS software library has not been designed
for memory size efficiency, optimizations to reduce the total memory size are still possible in the
future.

8.5.5 Conclusion

This experiment has been designed to evaluate the communication overhead of OSSS compared
to a handcrafted C implementation. The chosen MP3 decoder design is an optimized open-
source C implementation and has been ported to the Xilinx MicroBlaze processor first. After
initial software profiling, a simple non-pipelined hardware/software implementation, putting
the most computation intensive part, i.e. the DCT of the subband synthesis, into dedicated
hardware, has been implemented in C and VHDL and as OSSS Application and Virtual Target
Architecture Layer models. The performance measurements on the FPGA target platform
showed that the usage of C++ itself extends the execution time of the DCT by 13%. The OSSS
hardware/software implementation extends the DCT execution time by 20%. The overhead of
the RMI protocol is approximately 7%. This result shows, that the usage of C++ and RMI has
a certain overhead to be considered and compared against the productivity gain.

8.6 IPv4 Packet Forwarding Switch

8.6.1 Goals of this experiment

In this experiment a simple Internet Protocol (IP) packet forwarding switch, implemented in
OSSS is used to evaluate the simulative design space exploration capabilities of the proposed
OSSS methodology. This experiment is subdivided into two parts:

Simulation In the first part (see Section 8.6.3) different hardware/software partitionings on
the Application Layer and different communication link to OSSS Channel mappings are
analyzed for packet throughput using the OSSS simulation library. This part of the
experiment has been previously published in [65].

Synthesis In the second part (see Section 8.6.4) the automatic Shared Object synthesis of an
IP Checker Shared Object is performed to demonstrate and evaluate

• the feasibility of the Shared Object synthesis approach,

• the chip (FPGA) area and throughput of Shared Objects depending on: the number
of clients, interface type (point-to-point, bus) and channel bit width,

• the efficiency compared to a manual SystemC primitive channel refinement for
hardware synthesis,

• and the provision of different communication configurations for design-space explo-
ration without (re)design effort.

This part of the experiment has been previously published in [22].

8.6 IPv4 Packet Forwarding Switch 407

Receive

IPv4

packet

Verify

Version,

Checksum,

and TTL

Lookup

next-hop

(prefix

match)

Update

checksum,

and TTL

Transmit

IPv4

packet Payload

Header

(a) Block diagram of the router

V ersion HLen TOS Length

Ident Flags Offset

TTL Protocol Checksum

SourceAddr

DestinationAddr

Options (variable) Pad
(variable)

0 4 8 16 19 31

Payload

(b) IPv4 packet structure

Figure 8.29: Overview of the IPv4 packet forwarding switch design

8.6.2 Introduction & Motivation

Figure 8.29a gives a general overview of the Internet Protocol (IP) packet switching algorithm.
The IP header is split off from the IP packet because only the header contains information used
for routing of the packet. Figure 8.29b shows the structure of IPv4 packets. For routing, the
header’s version, checksum and Time-to-live (TTL) fields are verified.

TTL is a value in an IP packet that tells a network router whether the packet has been in
the network too long and should be discarded. For a number of reasons, packets may not be
delivered to their destination in a reasonable length of time. For example, a combination of
incorrect routing tables could cause a packet to loop endlessly. A solution is to discard the
packet after a certain time and send a message to the originator, who can decide whether to
resend the packet. The initial TTL value is set, usually by a system default, in an 8-binary
digit field of the packet header. The original idea of TTL was that it would specify a certain
time span in seconds that, when exhausted, would cause the packet to be discarded. Since each
router is required to subtract at least one count from the TTL field, the count is usually used to
mean the number of router hops the packet is allowed before it must be discarded. Each router
that receives a packet subtracts one from the count in the TTL field.

For successful verified headers the next-hop is calculated and mapped to the corresponding
output port of the router. In the last step, the TTL field is decremented by one and the
header checksum is recalculated. IP header and Payload data are joined and sent out at the
corresponding port of the router.

8.6.3 Modeling in OSSS

As a case study, we have implemented an IP version 4 router using the proposed OSSS
methodology. Figure 8.31 shows the initial router design on the Application Layer together with
its testbench. Figure 8.30 shows the class diagram of the implemented IP packet with support
for serialization over OSSS RMI Channels.

The IP router itself consists out of six basic blocks: The Transceiver module receives and
transmits IP packets from either the input or output FIFO queue. When receiving a packet
its header is split off and sent to the Verify Shared Object. The Verify Shared Object checks
whether the header is legal (e.g. checksum, time-to-life (TTL)). When this is the case, the

408 8 Experiments

Transceiver stores the corresponding payload in the Payload Manager Shared Object. Otherwise,
the entire packet is discarded. The Lookup module reads valid IP headers from the Verify
Shared Object and performs a next-hop lookup on the Routing Table Shared Object (we have
implemented the routing algorithm as described in [172]). Dependent on the lookup result the
IP header is forwarded to either Update 0 or Update 1. The Update Shared Objects decrease
the TTL field and update the header checksum. The corresponding Transceiver reads the header
from the verifier, gets the corresponding payload from the Payload Manager, reassembles the IP
packet and writes it to the output FIFO queue.

Figure 8.30: IP packet class diagram

Packet
Offset

Verify 0

Payload
Manager

Transceiver
0

Lookup
0

Routing
Table

Update 0

Verify 1
Transceiver

1

Lookup
1

Update 1

FIFO

FIFO

RX

TX

FIFO

FIFO

RX

TX

Routing
Table

Payload
Size

Address
Trace

Packet
Offset

Payload
Size

Address
Trace

Output
Trace

Output
Trace

DUT

Transceiver Transceiver Lookup Lookup

main main

SWHWHW SW

Figure 8.31: IPv4 router design with testbench on Application Layer

For simulation, we have instantiated IP sources (TX module) and sinks (RX module). The
sources generate IP packets of a predefined address trace, payload size and packet offset (the
time that passes between sending). The sink prints the routed packets to a file. For this example
we have used a static routing table and address trace taken from [172]. The system clock used
during simulation is 100 MHz.

The upper section of Table 8.9 (No. 1-4) shows the simulation results obtained on the
Application Layer for different HW/SW partitionings. We have sent 10000 IP packets with
increasing payload size and an offset of 30 clock cycles to both input FIFOs. The notation
Mi with M ∈ {T, L}, i ∈ {HW,SW} denotes whether the Transceiver (T) or the Lookup (L)
module has been implemented as a hardware module (HW) or as a software task (SW).

As shown in Figure 8.31 at Application Layer different Transceiver and Lookup imple-

8.6 IPv4 Packet Forwarding Switch 409

process_input

process_update

packet_input

packet_output_0

packet_output_1

header_output

header_input

payload_out payload_in

Transceiver

sc_module

(a) Hardware implementation

main

packet_input header_output

header_input

Transceiver

osss_software_task

payload_out payload_in

packet_output_0

packet_output_1

(b) Software implementation

Figure 8.32: Comparison of Transceiver Hardware and Software implementations

mentations can be plugged into the Design under Test (DUT). Figure 8.32 gives a graphical
comparison between the structures of the Transceiver hardware and software implementations.
In the hardware implementation model (Figure 8.32a) independent input and update processes
are used to handle the incoming and outgoing IP packets. For the software implementation
(Figure 8.32b) these two processes have been serialized into a pure sequential execution.

The experiments with different HW/SW partitionings on the Application Layer have shown
that the average throughput is dominated by the Transceiver block. The more blocks are
implemented in SW the lower the average packet throughput gets. The highest achievable
average throughput has been highlighted in Table 8.91.

The two lower parts of Table 8.9 (No. 5-10) show the results after the mapping to the
Virtual Target Architecture Layer has been performed. Software Tasks have been mapped to
Xilinx MicroBlaze processors and communication links have been mapped either onto dedicated
point-to-point or Xilinx OPB channels. The notation Mi

c→ ∗ denotes that all communication
links originating from module M ∈ {T, L} implemented in i ∈ {HW,SW} have been mapped on
channel c ∈ {p2p,OPB}. U instead of ∗ denotes that only the connection to the Update Shared
Objects has been mapped onto channel c. Due to the increased latency and simulation time, we
have changed the number of input IP packets to 2000 and the offset to 500 and 1500 clock cycles.
Figure 8.33 shows two different Virtual Target Architecture implementations of the IPv4 design.

The experiments on the Virtual Target Architecture Layer with more accurate throughput
results have confirmed the observations made on the Application Layer.

In the first part of this experiment, we have presented OSSS as a homogeneous, object-
oriented, executable and synthesizable modeling language for embedded HW/SW systems
on different levels of abstraction. The Application Layer provides a functional view of the
system. The designer can explore the amount of available parallelism and make first a first
HW/SW partitioning decision. On the Virtual Target Architecture Layer software tasks and
communication links are mapped on processors and bit-accurate synthesizable channels. By
changing the interconnection network on the Virtual Target Architecture Layer the impact of
different communication resources on the data throughput can be evaluated through simulation.
Figure 8.34 gives a summary of the IPv4 design and architecture exploration phase of the first
part of this experiment.

8.6.4 Synthesis

The objectives of the synthesis experiment presented in this section are to demonstrate

• the feasibility of the Shared Object synthesis approach,

• the efficiency compared to a manual SystemC primitive channel refinement for hardware
synthesis,

1As one can see the transceiver dominates the throughput performance. We have chosen this implementation
to be the best, because it is expected to be the most cost-efficient.

410 8 Experiments

RX1

RX0 Verify 0

Lookup 0

Routing
Table

Update 0

Payload M.

Transceiver 1 Lookup 1

TX1

xilinx_microblaze

main

Transceiver 0

TX0

main

Verify 1

Update 1

p2p

p
2
p

p
2
p

p2p

p2p

p2p

p2p

p2p

xilinx_microblaze

osss_module

O
P
B

O
P
B

osss_rmi_channel
<xilinx_opb_channel>

osss_object_socket
<osss_shared<Verify> >

o
s
s
s
_
r
m
i
_
c
h
a
n
n
e
l

<
o
s
s
s
_
p
2
p
_
c
h
a
n
n
e
l
>

(a) VTA implementation No. 8 (TSW
OPB
−→ ∗ ; LHW

p2p
−→ ∗)

osss_module

Verify 0

Lookup 0

Routing
Table

Update 0

Payload M.

Transceiver 1 Lookup 1
RX1

TX1

xilinx_microblaze osss_module

main

Transceiver 0

RX0

TX0

main

Verify 1

Update 1

p2p

p
2
p

p
2
p

p2p

xilinx_microblaze

O
P
B

O
P
B

O
P
B

osss_rmi_channel
<xilinx_opb_channel>

(b) VTA implementation No. 9 (TSW
OPB
−→ ∗ ; LHW

OPB
−→ U)

Figure 8.33: Two different Virtual Target Architecture implementations of the IPv4 design

• and the provision of different communication configurations for design-space exploration
without (re)design effort.

To demonstrate the feasibility of the approach, Shared Object synthesis results of the packet
processing part taken from the HW Internet Protocol (IP) packet forwarding switch, as described
above, are presented. Figure 8.35 gives an overview of the IPv4 design Shared Object synthesis
experiment.

The design consists of a single producer process, an IP checker Shared Object, and a variable
number of packet consuming processes. The IP checker Shared Object is connected to its client
processes through a bit-width scalable point-to-point channel. The detailed structure and the
parameters of the design are shown in Figure 8.36.

The producer process generates a continuous stream of IP packets. More specifically, one
IP packet each clock cycle, but it stops the production of more packets when the buffer space
in the IP checker Shared Object is full. It continues with the packet production in the case of
available buffer space.

The IP checker performs IP header version, checksum, and time-to-live (TTL) validation
upon reception (put method) and accepts the packet for delivery (get method) only if the IP
header version and checksum are correct, and the TTL value is bigger than zero. For delivery,
the TTL field is decremented and the checksum is updated. Listing 8.20 shows the IP packet
header. Omitting the optional options and padding filed of the IP header, the total size of the
header is 160 bit. Listing 8.21 shows the implementation of the IP checker Shared Object.

8.6 IPv4 Packet Forwarding Switch 411

No. ∅ Throughput [byte/s] Simulationa Time [s]

Application Layer (Nr. packets: 10000, offset: 30)

1 THW LHW 7.44047e+10 848.74
2 THW LSW 7.44047e+10 864.61
3 TSW LHW 4.74822e+10 629.20
4 TSW LSW 4.70995e+10 710.03

Virtual Target Architecture Layer (Nr. packets: 2000, offset: 500)

5 THW
p2p−→ ∗ LHW

p2p−→ ∗ 1.33018e+08 1500.54

6 THW
p2p−→ ∗ LHW

OPB−→ U 1.33020e+08 1483.57

7 THW
p2p−→ ∗ LSW

OPB−→ ∗ 1.33020e+08 1494.96

Virtual Target Architecture Layer (Nr. packets: 2000, offset: 1500)

8 TSW
OPB−→ ∗ LHW

p2p−→ ∗ 4.1988e+07 11899.48

9 TSW
OPB−→ ∗ LHW

OPB−→ U 4.20569e+07 11066.92

10 TSW
OPB−→ ∗ LSW

OPB−→ ∗ 4.19786e+07 11892.36

aIntel(R) Pentium(R) 4 @3.00GHz, 1MB Cache, 1GB RAM

Table 8.9: Simulation results of different IPv4 router implementations [65]

The IP packets are received by a scalable number of consumer processes that represent a
set of uniform processing elements. This example design can be thought of as a converter that
inspects a serial stream of IP packets, and distributes them over multiple parallel data links to
other processing units.

For comparing the efficiency of the proposed Shared Object synthesis approach with a
manual SystemC primitive channel refinement, we have performed a stepwise refinement of a
functional equivalent pure SystemC high-level model down to a HW synthesizable SystemC
model. To quantify the effort of both implementations we consider the lines of code (LOC) for
both implementation paths.

Design Entity Manual Artifact OSSS [LOC] SystemC [LOC]

IP packet 34 34
producer 28 28
consumer 41 41
channel interface 10 10
channel behavior 27 40

refined behavior - 153
access scheduler - 162
RMI protocol - 113

top-level design 37 35
physical channel 10 -

client interface - 80
server interface - 129
P2P channel 10 64

Total 197 889

Table 8.10: Comparison of automatic OSSS vs. manual SystemC implementation [22]

Table 8.10 shows the experimental results of the design efficiency study based on the IP
checker design. In the first column it shows the main entities of the design: producer module,
consumer module, channel interface definition, channel behavior/interface implementation, and
top-level design. These entities are present in both, the pure SystemC and the OSSS design.
The second column shows the main artifacts of the manual refinement of the pure SystemC

412 8 Experiments

Receive
IPv4

packet

Verify
Version,

Checksum,
TTL

Lookup
next-hop
(prefix
match)

Update
checksum,

TTL

Transmit
IPv4

packet Payload

Header

V ersion HLen TOS Length

Ident Flags Offset

TTL Protocol Checksum

SourceAddr

DestinationAddr

Options (variable) Pad
(variable)

0 4 8 16 19 31

Payload

osss_module

Verify 0

Payload
Manager

Transceiver
0

Lookup
0

Routing
Table

Update 0

Verify 1
Transceiver

1

Lookup
1

Update 1

Transceiver Transceiver

Lookup Lookup

main

main

*

*

sc_module

sc_module

osss_software_task

osss_software_task

class Verify_put_if :
 public sc_core::sc_interface
{
 public:
 virtual void set_ip_address(ip_address) = 0;
 virtual Verifier_Types::icmp_status
 put(ip_wrapped_icmp_header) = 0;
 virtual void add_index(unsigned int index) = 0;
 virtual ip_wrapped_icmp_header get_icmp() = 0;
 virtual bool is_full() = 0;
};

<<implements>> <<implements>>

class Verify_get_if :
 public sc_core::sc_interface
{
 public:
 virtual ip_address get_ip_address() = 0;
 virtual indexed_ip_header get() = 0;
 virtual bool is_empty() = 0;
};

Packet
Offset

FIFO

FIFO

RX

TX

FIFO

FIFO

RX

TX

Payload
Size

Address
Trace

Packet
Offset

Payload
Size

Address
Trace

Output
Trace

Output
Trace

Routing
Table

m
o

d
e
llin

g

Analysis,
Exploration,
Refinement/

Mapping

R
e
fin

e
m

e
n

t &

 M
a
p

p
in

g

Design Specification:

Virtual Target Architecture Layer Model Version B:

Application Layer Model:

osss_shared<Verify>

osss_shared<Update>

o
s
s
s
_
s
h
a
r
e
d
<
P
L
M
a
n
a
g
e
r
>

o
s
s
s
_
s
h
a
r
e
d
<
R
T
a
b
l
e
>

Verify 0

Lookup 0

Routing
Table

Update 0

Payload M.

Transceiver 1 Lookup 1
RX1

TX1

xilinx_microblaze osss_module

main

Transceiver 0

RX0

TX0

main

Verify 1

Update 1

p2p

p
2
p

p
2
p

p2p

xilinx_microblaze

O
P
B

O
P
B

O
P
B

osss_rmi_channel
<xilinx_opb_channel>

Virtual Target Architecture Layer Model Version A:

RX1

RX0 Verify 0

Lookup 0

Routing
Table

Update 0

Payload M.

Transceiver 1 Lookup 1

TX1

xilinx_microblaze

main

Transceiver 0

TX0

main

Verify 1

Update 1

p2p

p
2
p

p
2
p

p2p

p2p

p2p

p2p

p2p

xilinx_microblaze

osss_module

O
P
B

O
P
B

osss_rmi_channel
<xilinx_opb_channel>

osss_object_socket
<osss_shared<Verify> >

o
s
s
s
_
r
m
i
_
c
h
a
n
n
e
l

<
o
s
s
s
_
p
2
p
_
c
h
a
n
n
e
l
>

Figure 8.34: Summary of the IPv4 design and architecture exploration

design towards a synthesizable HW implementation. These artifacts are: the refinement of the
channel’s behavior to be integrated with the access scheduler and the RMI protocol, the client
and server interfaces to the point-to-point (P2P) protocol, and the P2P channel itself. The
presented LOC metric only gives a rough impression of the manual refinement effort. In our
simple example we have measured a factor four gain in productivity. All manual refinement
steps of the pure SystemC design are indeed error-prone and time consuming. Moreover, the
maintenance and the scalability of the number of connected client processes, different scheduling
policies, and P2P channel communication bit-widths is non-trivial compared to the automatic
Shared Object synthesis and adds a big extra effort.

For this purpose we have developed the synthesis tool Fossy [225], that is able to perform
these time-consuming and error-prone Shared Object and communication refinement steps
automatically. By assigning different parameters to the OSSS input model we can perform
complex design-space exploration (DSE) for different communication implementations, number
of client processes, scheduling policies, and physical channel implementations. In the next
experiment we will show, that finding the right balance between the number of packet consuming

8.6 IPv4 Packet Forwarding Switch 413

Receive
IPv4

packet

Verify
Version,

Checksum,
TTL

Lookup
next-hop
(prefix
match)

Update
checksum,

TTL

Transmit
IPv4

packet Payload

Header

V ersion HLen TOS Length

Ident Flags Offset

TTL Protocol Checksum

SourceAddr

DestinationAddr

Options (variable) Pad
(variable)

0 4 8 16 19 31

Payload

capture

Design Specification: Application Layer Model:

Producer
Process [1]

ip_checker

put(ip_header):bool

get() : ip_header

is_empty() : bool

is_full() : bool

ip_header

...
out->put(…);
...

...
in->get();
...

...
in->get();
...

osss_shared

ip_checker<ip_header>, osss_round_robin

…

Custom Behavior
Access Scheduling

Bit-Width Scalable
Point-To-Point Channel

[1 - 20 Byte]

Scalable no. of
Consumer

Processes [1 – 8]

Full IP-Header Bit-Width
Point-To-Point Channel

[20 Byte]

Verify 0

Payload
Manager

Transceiver
0

Routing
Table

Update 0

Verify 1

Update 1

Transceiver 1 Lookup 1

Packet
Offset

FIFO

FIFO

RX

TX

FIFO

FIFO

RX

TX

Payload
Size

Address
Trace

Packet
Offset

Payload
Size

Address
Trace

Output
Trace

Output
Trace

Routing
Table

osss_shared<ip_checker>

osss_shared<Update>

o
s
s
s
_
s
h
a
r
e
d
<
P
L
M
a
n
a
g
e
r
>

o
s
s
s
_
s
h
a
r
e
d
<
R
T
a
b
l
e
>

Transceiver 0 Lookup 0

c
a

p
tu

re

VTA Layer Model (Subsystem):

IP Checker Shared Object after Synthesis:

Scheduler

RMI Controller

Guard

Evaluator

IP Checker

Behavior

Arg-Mem

IP Checker

State Memory

Request
Request

Update Protocol

State

Guards

S
c
h

e
d
u
le

!

Granted

MID/CID

Protocol State

MID

Addr/Data/Ctrl

Return & Argument
Memory

Ret & Arg

Mux

C
ID

P2P

IF

1

1

n

m

ValidI

DataI

DataO

ValidO C
lie

n
t

P2P

IF

1

1

n

m

ValidI

DataI

DataO

ValidO C
lie

n
t

P2P

IF
1

1

n

m

ValidI

DataI

DataO

ValidO

C
lie

n
t

Figure 8.35: Overview of the IPv4 design Shared Object synthesis experiment

Producer
Process [1]

ip_checker

put(ip_header):bool
get() : ip_header
is_empty() : bool
is_full() : bool

ip_header

...

out->put(…);
...

...

in->get();

...

...

in->get();

...

osss_shared

ip_checker<ip_header>, osss_round_robin

…

Custom Behaviour
Access Scheduling

Bit-Width Scalable
Point-To-Point Channel

[1 - 20 Byte]

Scalable no. of
Consumer

Processes [1 – 8]

Full IP-Header Bit-Width
Point-To-Point Channel

[20 Byte]

Figure 8.36: Structure and configuration parameters of the IP-Checker design [22]

414 8 Experiments

processes, packet throughput, and area consumption is a non-trivial task, even in this simple IP
checker design. Using our methodology and synthesis tool enables a DSE without any manual
refinement or (re)design effort.

channel width [bit] throughput [packets/s] # LUTs # FFs fmax [MHz]

number of consumers: 1

160 (full) 2,387,000 386 360 154
64 2,280,000 548 702 152
32 2,204,000 719 852 152
8 1,848,000 1145 1142 154
4 1,463,000 1388 1083 154

number of consumers: 2

160 (full) 4,117,500 522 455 135
64 4,248,000 692 838 144
32 3,876,000 934 1112 136
8 3,172,500 1743 1636 135
4 2,145,000 1889 1585 130

number of consumers: 4

160 (full) 4,650,000 873 631 93
64 4,095,000 1079 1135 90
32 3,818,000 1462 1563 92
8 2,397,000 2832 2618 94
4 1,518,000 3083 2573 92

number of consumers: 6

160 (full) 3,000,000 1201 819 60
64 2,821,000 1629 1446 62
32 2,531,500 1996 2061 61
8 1,479,000 4085 3604 58
4 1,006,500 4476 3432 61

number of consumers: 8

160 (full) 2,700,000 2211 914 54
64 2,457,000 2704 1713 54
32 2,116,500 3142 2468 51
8 1,351,500 5905 4545 53
4 874,500 6394 4529 53

Table 8.11: Results of the automatic HW synthesis experiments [22]

In this DSE experiment, we evaluated several combinations of channel bit-widths and numbers
of consumer processes, as shown in Table 8.11. The results of Table 8.11 are visualised as surface
plot in Figure 8.37 and Figure 8.38. The figures were gained by using our synthesis tool and
processing its generated VHDL output with the Xilinx Synthesis Tool (XST) [238], targeting a
Xilinx Virtex 4 LX25 [91] FPGA. The performance figures were obtained through post-synthesis
simulation, driving the design with fmax

2 as clock frequency.
The columns of Table 8.11 show the chosen bit width of the consumer process’ channels,

the throughput (i.e. the number of packets processed per second), as well as the number of
utilized HW resources (LUTs and register-bits), and the maximum achievable clock frequency.
The experiments have been repeated for a different number of connected consumer processes.

The results show that increasing the number of consumers does not necessarily increase the
throughput. This is because adding more consumers will not increase the throughput until the

2fmax is the maximum clock frequency reported by XST after synthesis, mapping and place and route (critical
path) static timing analysis.

8.6 IPv4 Packet Forwarding Switch 415

1 2 3 4 5 6 7 8

consumers

0

50

100

150

200

channel width [bit]

0

1e+006

2e+006

3e+006

4e+006

5e+006

throughput [packets/s]

Figure 8.37: Visualization of throughput [packets/s] from Table 8.11

point where the time between two requests by the same consumer is lower than the time it takes
to serve the requests of all other consumers. Such a scenario will leave some of the consumers in
a waiting state at all times. Adding more consumers beyond this limit has the opposite effect
since the increase in area consumption decreases the maximum clock frequency and thus reduces
the overall throughput.

Since the bit-width of the channel directly affects the time it takes to transmit one data
packet, the total time taken to serve a request by a client is also affected. This entails that the
optimum number of clients shifts towards lower values for channels with a small bit-widths, as
can be seen when comparing the throughput values for the designs with two, respectively four
consumers.

Furthermore, our results indicate that the lowest resource utilization can be achieved by
using the full width of the data packet as bit-width for the communication channel. Due to the
inevitable rise in complexity of the communication interfaces inside the packet buffer where data
transfers have to be split into several chunks.

This small synthesis experiments demonstrates the usefulness of the automatic synthesis
approach for DSE. It assists the designer in finding the sweet spots in custom communication
intensive HW designs.

1 namespace ip_header_types {
2 enum protocol {
3 ICMP = 1, // Internet Control Message Protocol
4 TCP = 6, // Transmission Control Protocol
5 UDP = 17 // User Datagram Protocol
6 };
7 }
8

9 class ip_header {
10 public:
11 ip_header();
12 ip_header(const ip_header& iph);
13 ip_header& operator=(const ip_header& iph);
14 bool operator==(const ip_header&) const;

416 8 Experiments

15

16 //data field setters and getters
17

18 void version(const sc_uint<4>& v);
19 const sc_uint<4>& version() const;
20

21 const sc_uint<4>& length() const;
22

23 void TOS(const sc_uint<8>& v);
24 const sc_uint<8>& TOS() const;
25

26 void packet_length(const sc_uint<16>& v);
27 const sc_uint<16>& packet_length() const;
28

29 void ID(const sc_uint<16>& v);
30 const sc_uint<16>& ID() const;
31

32 void flag(const sc_uint<3>& v);
33 const sc_uint<3>& flag() const;
34

35 void fragment_offset(const sc_uint<13>& v);
36 const sc_uint<13>& fragment_offset() const;
37

38 void TTL(const sc_uint<8>& v);
39 const sc_uint<8>& TTL() const;
40 bool decrement_TTL();
41

42 void protocol(const ip_header_types::protocol& prot);
43 ip_header_types::protocol protocol() const;
44

45 void source_address(const ip_address& v);
46 const ip_address& source_address() const;
47

48 void destination_address(const ip_address& v);
49 const ip_address& destination_address() const;
50

51 bool checksum_valid(); // return true when header checksum is valid
52 void update_checksum(); // calculates new checksum
53 void decrement_ttl(); // decrements ttl field (without explicitly updating checksum)
54

55 protected:
56 sc_uint<4> m_version;
57 sc_uint<4> m_length;
58 sc_uint<8> m_TOS;
59 sc_uint<16> m_packet_length;
60 sc_uint<16> m_ID;
61 sc_uint<3> m_flag;
62 sc_uint<13> m_fragment_offset;
63 sc_uint<8> m_TTL;
64 sc_uint<8> m_protocol;
65 sc_uint<16> m_checksum;
66 ip_address m_source_address;
67 ip_address m_destination_address;
68 };

Listing 8.20: IP header class used in the experiment

1 class put_if : public virtual sc_interface {
2 public:
3 virtual bool put(ip_header iph) = 0;
4 };
5

6 class get_if : public virtual sc_interface {
7 public:
8 virtual ip_header get() = 0;
9 };

10

11 class ip_checker : public put_if, public get_if {
12 public:
13 ip_checker() : m_full(false), m_empty(true), m_data() {}
14

8.6 IPv4 Packet Forwarding Switch 417

15 OSSS_GUARDED_METHOD(bool, put, OSSS_PARAMS(1, ip_header, iph), !m_full) {
16 if (iph.version() .to_uint() != 4) return false;
17 bool csum_ok = iph.checksum_valid();
18 bool ttl_ok = iph.TTL().to_uint() == 0 ? false : true;
19 if (csum_ok && ttl_ok) {
20 m_data = iph;
21 m_empty = false;
22 m_full = true;
23 }
24 return (csum_ok && ttl_ok);
25 }
26

27 OSSS_GUARDED_METHOD(ip_header, get, OSSS_PARAMS(0), !m_empty) {
28 m_empty = true;
29 m_full = false;
30 m_data.decrement_ttl();
31 m_data.update_checksum();
32 return m_data;
33 }
34

35 private:
36 bool m_full, m_empty;
37 ip_header m_data;
38 };

Listing 8.21: IP checker class used in the experiment

8.6.5 Conclusion

In the first part of this experiment, we have demonstrated the interchangeability of hardware
and software implementations at the Application Layer. Furthermore, the influence on the
packet throughput of different hardware/software configurations and communication link to
OSSS Channels (point-to-point and shared bus) has been analyzed through simulation.

In the second part, we have demonstrated the feasibility of our approach through synthesis
of a communication intensive packet processing design. However, the synthesis results have
shown that the maximum throughput cannot be achieved by simply scaling up the number of
clients. Even though, enough communication headroom would be available. These restrictions
depend on the resulting complexity of the Shared Object which directly affects the critical path,
and thus fmax.

418 8 Experiments

1
2

3
4

5
6

7
8

consumers

0

50

100

150

200

channel width [bit]

0

1000

2000

3000

4000

5000

6000

7000

LUTs

(a) number of LUTs

1
2

3
4

5
6

7
8

consumers
0

50
100

150
200

channel width [bit]

0

1000

2000

3000

4000

5000

FFs

(b) number of FF

1

2
3

4
5

6

7
8

consumers

0
50

100

150

200

channel width [bit]

40

60

80

100

120

140

160

f
max

 [MHz]

(c) fmax [MHz]

Figure 8.38: Visualization of # LUTs, # FFs, and fmax [MHz] from Table 8.11

8.7 JPEG 2000 Decoder 419

8.7 JPEG 2000 Decoder

8.7.1 Goals of this experiment

This experiment describes and evaluates the OSSS methodology for embedded hardware/software
systems and its use in a JPEG 2000 decoder case study. The goal of this experiment is to
identify the most promising parallel structure by comparing different design alternatives on the
Application Layer. Furthermore, the experiment demonstrates usage of the OSSS refinement
process, using the Virtual Target Architecture Layer, for analysis of the system behavior at
cycle-accurate granularity and support of a simulative exploration of different target architectures
for the JPEG 2000 decoder. Finally, this experiment quantitatively compares the OSSS custom
hardware synthesis approach with a standard design approach using an industrial C++/VHDL-
based implementation of the JPEG 2000 decoder on a Xilinx Virtex-4 FPGA.

This experiment has been previously published in [62] and [45].

8.7.2 Introduction

Decoder

Coded

Image

Decoded

Image

IQ IDWT ICT DC Shift

lossless [%]: 88.8% 3.2% 5.5% 0.7% 1.8%

lossy [%]: 78.6% 4.2% 12.4% 1.2% 3.6%

Figure 8.39: JPEG 2000 processing overview [45]

The JPEG 2000 decoder used in this experiment is a recent compression standard targeting
different types of still images (bi-level, gray-level, color, multi-components, etc.). It supports
different characteristics (natural images, scientific, medical, remote sensing imagery, text, etc.)
allowing different imaging models (client/server, real-time transmission, image library archival,
etc.) within a unified system.

As shown in Figure 8.39 the JPEG 2000 decoding chain is composed of several functional
blocks, each of which performs a specific part of the image processing. The core components
are the arithmetic decoder and the IDWT (Inverse Discrete Wavelet Transformation). These
two steps allow compressing and organizing data efficiently. In our case-study the JPEG 2000
decoder supports a lossy (IDWT 97) and lossless (IDWT 53) mode. Most JPEG 2000 images are
processed as tiles (small parts of the image), which are more manageable and more adapted to a
pipelined computation. For more information about JPEG 2000, please refer to [144].

420 8 Experiments

8.7.3 Modeling in OSSS

8.7.3.1 Application Layer Model

Shared Bus

Topology
Point-to-Point

Topology

Hardware

Block

IB
M

O
P

B

Hardware

Block

Hardware

Block

Object

Socket

Object

Socket

O
S

S
S

 A
p

p
li
c
a
ti

o
n

 L
a
y
e
r

O
S

S
S

 V
T
A

 L
a
y
e
r

Module with Process(es)

Shared Object
Software Task

Port Interface

Software Task

Arith. Decoder,

ICT & DC Shift
IQ &

IDWT

Object (Co-Processor)

S
p

e
c
if

ic
a
ti

o
n

L
a
y
e
r

JPEG2000 Decoder

Reference Implementation (SW only) &

Documentation

T
a
r
g

e
t

P
la

tf
o

r
m

(X
il
in

x
 M

L
4
0
1
)

OPB

DDR

RAM

OPB

IF

OPB

Arbiter

MCH

Memory

Controller

OPB

IF

OPB

IF

Xilinx Virtex-4LX25

SW Profiling &
HW/SW Partitioning

(Re-)Scheduling
(Parallelisation &

Pipelining),
Data Locality Exploration

Refinement
(Behaviour &

Communication),

Mapping

A
r
c
h

it
e
c
tu

r
e
 E

x
p

lo
r
a
ti

o
n

Automatic
Synthesis

1

2

Xilinx

MicroBlaze

IQ

IDWT53

IDWT2D

IDWT97 ID
W

T
P

a
ra

m
s

Xilinx

MicroBlaze

4

3

5

6a

7a

Arith. Decoder,

ICT & DC Shift

Object

Socket

Hardware

Block

IB
M

O
P

B

Hardware

Block

Hardware

Block

Object

Socket

6b

7b
Xilinx

MicroBlaze

F
O

S
S

Y

Figure 8.40: Implementation flow [45]

Figure 8.40 shows the Implementation flow of the JPEG 2000 decoder design. The starting
point for our case-study was an existing C/C++ implementation of a JPEG 2000 decoder 1©.

A profiling run of the JPEG 2000 decoder on a Xilinx MicroBlazeTMprocessor (because it is
the only available target processor considered in this case study) points out the execution times
of the algorithmic parts, shown in percentage of the overall computation (for the lossless and
the lossy version) in the upper two lines of Figure 8.39.

The analysis of a software profiling taking into account the number of calls and the execution
time of the algorithmic parts, we decided to parallelize the arithmetic decoder (88.8% for lossless,
78.6% for lossy) and to relocate the IDWT (5.5% for lossless, 12.5% for lossy) and inverse
quantization (IQ, 3.2% for lossless, 4.2% for lossy) to hardware.

8.7 JPEG 2000 Decoder 421

In the initial Application Model a Software Task contains the arithmetic decoder, ICT
and DC Shift (normalisation) 2©. The Shared Object (SO), which here serves merely as a
co-processing unit, implements the IQ and IDWT. The software performs first the decoding,
calls the IQ, calls the IDWT and finally continues with the ICT and the DC Shift. Since all
method-calls to Shared Objects are blocking, the software execution cannot proceed until the
SO has finished its computation. The simulation results in Table 8.12 show a speed-up of about
10% for lossless and 19% for lossy decoding compared to 1©. This speed-up is higher than the
maximum obtainable speed-up because it does not incorporate communication costs yet. The
“real” achievable speed-up can be analyzed after communication refinement on the VTA Layer.

Analyzing the Application Model, it becomes apparent that this structure is not optimal, as
it does not take advantage of executing hardware and software in parallel. Therefore, we changed
the initial Application Model ending up with a parallel version of the JPEG 2000 decoder 3©.
The processing has been parallelized between hardware and software and a pipeline structure
operates in parallel on several tiles of the picture. Regrettably, this effort only has a small
impact on the overall speed-up (cp. Table 8.12).

time

task

HW

SW arith.dec tile N-1

d time required to transfer 3 components

waiting time

d cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

cmp2 cmp3

d

d

d

time

HW

SW arith.dec tile N-1

d time required to transfer 3 components

waiting time

d cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

cmp2 cmp3

d

d

d

d cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

cmp2 cmp3

d

d

d

Figure 8.41: Timing diagram of JPEG 2000 decoder implementation 3© [62]

As shown in Figure 8.41 the arithmetic decoder takes up to 88% of the overall processing time,
it needs to be parallelized to obtain a more significant speedup. The structure and complexity
of the decoder did not allow an affordable hardware implementation. Instead we have chosen
to implement it by four independent Software Tasks (cf. 4© & 5©) performing the arithmetic
decoding of disjoint parts of the image in parallel. The amount of parallel HW was not altered,
since the working load of the IQ+IDWT was rather low. Figure 8.42 shows the timing diagram
for the parallel and pipelined implementation 5©.

The Application Layer models 3© & 5© contain two Shared Objects. The first Shared Object
(IQ) handles the communication and synchronization of one 3© up to four 5© software tasks and
three parallel hardware blocks. Moreover, it contains a data structure to transfer large objects,
such as parts of the images (called tiles) and the IQ algorithm. The ability not only to store
and transfer data (here tiles) but also to perform computations (here IQ) within the object was
considered to be very useful. The IDWT params Shared Object is responsible for exchanging
sequences of parameters between the control part (IDWT2D) and the lossless (IDWT53), and
lossy (IDWT97) part of the IDWT. It is used not only for parameter storage and transfers, but
also as arbitration unit between the three concurrent IDWT components.

After analysis, exploration and behavior refinement on the Application Layer we ended up
with a design delivering an acceptable speedup by a factor of 4.5 for lossless and 5 for lossy
decoding, compared to the software-only implementation. Version 5© suffers from the increased
working load and the corresponding arbitration overhead of the hardware/software Shared

422 8 Experiments

time

task

SW1 arith.dec tile N-1

HW

SW2 arith.dec tile N-1

SW3 arith.dec tile N-1

SW4 arith.dec tile N-1

dc

dc shift

dc shift

time

SW1 arith.dec tile N-1

HW

SW2 arith.dec tile N-1

SW3 arith.dec tile N-1

SW4 arith.dec tile N-1

dc

dc shift

dc shift

Figure 8.42: Timing diagram of JPEG 2000 decoder implementation 5© [62]

Object with seven clients. Hence 5© is slightly slower than 4©.
In an intermediate version of the design example, the IDWT params Shared Object was

not implemented. The IDWT2D was controlling IDWT53 and IDWT97 using simple RTL
signals and a simple communication protocol has been developed. Even though managing
communications in such a way is always possible, it is time consuming and error prone. We
therefore decided for this version to use a Shared Object to manage communications between
different IDWT elements.

With RTL signals, the IDWT lossless processing time is equal to 12.69ms against 14.26ms
with the IDWT params Shared Object. The overhead is therefore of 1.57ms, which represents
an increase of 11%. With RTL signals, the IDWT lossy processing time is equal to 18.02ms
against 19.61ms with the IDWT params Shared Object. The overhead is therefore of 1.59ms,
which represents an increase of 8.1%. The increase in time is therefore the same for both lossless
and lossy modes, around 1.5ms, which seems to be normal. Indeed, the amount of data to be
exchanged between IDWTs in lossless and lossy modes is the same and the architecture of the
system is the same both in the lossless and lossy modes. Consequently, the overhead brought by
the use of a Shared Object has to be the same in lossy and lossless modes.

The time required for a complete process can be split between the time required for commu-
nications (getting parameters, reading data in memory and others) and the time required by
pure processing. The use of a Shared Object will increase the time required for communications.
Consequently, the use of Shared Objects is well adapted in a design where communication time
is non-significant compared to pure processing time.

On one hand, Shared Objects offer the possibility to connect several modules together;
the designer does not have to use explicitly RTL signals and to develop any communication
protocol, which results in significant reduction of development time. On the other hand, using
Shared Objects slows down performances, which is partially due to arbitration and scheduling
mechanisms that are embedded inside the Shared Object. On our design example, the use of
a Shared Object to transfer data between IDWT modules is 1.5ms slower. Consequently, it is
important to consider this overhead in order to keep the best development effort / performances
ratio.

In the next step, the mapping and communication refinement process is performed to end
up with a cycle-accurate Virtual Target Architecture Model.

8.7.3.2 Architecture Layer Model

In essence, the following steps have been performed to transfer the JPEG 2000 Application
Model to a cycle-accurate Virtual Target Architecture Model (e.g. 3© → 6a©).

Software Task → Software Processor: The software task is mapped onto a Software
Processor of the OSSS architecture class library. This mapping is done easily by instantiating a
Xilinx MicroBlaze class and mapping the software task by calling the add_sw_task method on
the processor object.

8.7 JPEG 2000 Decoder 423

1 m_microblaze_0 = new xilinx_microblaze("mb_0");
2 m_microblaze_0−>clock_port(clk);
3 m_microblaze_0−>reset_port(reset);
4 m_microblaze_0−>rmi_client_port(∗opb_bus);
5 m_microblaze_0−>add_sw_task(m_sw_task_0);

Following the OSSS methodology, the timing behavior can already be specified at Application
Layer where it might be rather coarse. At Virtual Target Architecture Layer, it should be refined
to match with the fine-grained cycle-accurate timing of the hardware and the communication
model.

We have performed timing profiling on the chosen target processor running the entire
JPEG 2000 decoder in software. The timing profiles have been back-annotated to the Appli-
cation and the Virtual Target Architecture Models. Assuming the arithmetic decoder takes
approximately 180 ms for a single tile, the following code snippet shows how to perform software
timing annotations. Using the SW profiling information it makes most sense to use the so-called
EET (Estimated Execution Time) blocks to annotate the execution time per function.

1 OSSS_EET(sc_time(180,SC_MS)) {
2 data_send = decode_tile(Image,i+1);
3 }

Shared Object → Object Socket: All Shared Objects are wrapped by so called Object
Sockets. This enables the connection to arbitrary OSSS Channels.

1 osss_shared<IdwtCtrl> IdwtCtrl_SO; //on Application Layer
2 osss_object_socket<osss_shared<IdwtCtrl> > IdwtCtrl_SO; //on VTA Layer

Module → Hardware Block: All modules are replaced by Hardware Blocks, which enable
the connection to the global clock and reset signals and to arbitrary OSSS Channels.

1 SC_MODULE(IDWT53) {...}; //on Application Layer
2 OSSS_MODULE(IDWT53) {...}; //on VTA Layer

Data serialization: The serialization cuts large user-defined data structures into man-
ageable chunks of data to be transferred efficiently via OSSS Channels. The OSSS modeling
library provides pre-defined methods, which can be re-used via inheritance to implement the
serialization method.

1 void serialise () {
2 osss_serialisable::store_element(m_tile);
3 osss_serialisable::store_array(m_data, 16);
4 }

Explicit memory insertion: Some data members - especially large arrays - in HW/SW
Shared Objects should be mapped into explicit memory (in the following listing: Xilinx Block
RAM with 32 bit data and 16 bit address width). In the VTA Model it is important to
assess the effects of data locality in order to reach the best area/performance trade-off for the
implementation. If data were not stored explicitly into such memories, it would be synthesized
as fast registers and dramatically increase the amount of occupied FPGA slices.

1 osss_array<short,2∗N+5> m_array; //on Application Layer
2 xilinx_blockram<osss_array<short,2∗N+5>, 32, 16> m_array; //on VTA Layer

Communication Link → RMI Channel: In this refinement step multiple communication
links can either be bundled in a physical shared bus or each communication link can be mapped
to a dedicated point-to-point connection.

In model 6a©/7a© all communication links to the hardware/software Shared Object (IQ) are
mapped to an OSSS Channel implementing an IBM OPB. Communication links to the IDWT
Params Shared Object are mapped to dedicated point-to-point channels.

All method calls that have been performed through communication links in the Application
Layer Model are now performed through OPB or point-to-point channels using the OSSS RMI
protocol.

424 8 Experiments

The RMI Channels, implementing the RMI protocol on top of OSSS Channels, provides a
simple mechanism to map the method-based communication onto different physical communica-
tion channels. This enables the exploration of alternative mappings leading to more efficient
solutions. For example, model 6b©/7b© uses an alternative mapping where only point-to-point
channels are used to implement the communication of the IDWT hardware blocks with the
Shared Object.

The lower part of Table 8.12 shows the impact of the VTA refinements on the simulation
results. Now we compare the pure Application Layer Models with the corresponding VTA Layer
mappings:

• 3© → 6a©/6b©: The IDWT time is increased significantly (up to a factor of 8). This increase
in time results directly from the channel refinement and the explicit memory insertion in
the VTA model. Anyway, this version is dominated by the software part and therefore the
overall decoding time is not affected significantly.

• 5© → 7a©/7b©: In 7a© the IDWT time is increased even more than in 6a© since three more
processors are competing for access to the single shared bus. The IDWT times of 6b©
and 7b© are equal since in both VTA models the same P2P connections are used and the
hardware/software Shared Object (IQ) decouples the bus accesses initiated by the software
tasks.

Having a look at Table 8.12 we observe the impact of the VTA refinements on the simulation
results. Compared to the simulation models on Application Layer the overall decoding time is
increased by 2.8% in the worst and 0.05% in the best case. The increase in the fraction of the
IDWT time results directly from the channel refinement and the explicit memory insertion in
the VTA model. Figure 8.43 shows a comparison of the AL to VTAL overhead between model
3© and models 6a©/6b©.

time

task

dHW

SW

cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

cmp2 cmp3

d

d

d

d cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

d time required to transfer 3 components

cmp2 cmp3

waiting time

d

d

d

HW

SW

VTA

overhead
VTA

time

dHW

SW

cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

cmp2 cmp3

d

d

d

d cmp1

ICT tile N-1 DCSHIFT tile N-1 arith.dec tile N-1

d time required to transfer 3 components

cmp2 cmp3

waiting time

d

d

d

HW

SW

AL

VTAL

overhead
VTAL

Figure 8.43: Timing diagram of JPEG 2000 decoder comparing the AL to VTAL overhead
between 3© and 6a©/6b© [62]

With all refinements we still observe a speed-up by a factor of 12 (lossless) and 16 (lossy) for
the IDWT in hardware 6b©/7b© compared to the software only execution in 1©. The exploration on
the VTA Layer has confirmed our assumptions obtained from the Application Layer experiments.
It shows that the overall processing time is dominated by the SW arithmetic decoder. Even
after software parallelization, the working load of the shared hardware IDWT does not exceeded
its limit, even when using a single shared bus. This points out that 7a© is an affordable
implementation of the JPEG 2000 decoder while 7b© does better scale with increasing parallelism.

8.7.4 Implementation Models

Figure 8.44 shows the OSSS synthesis flow for the JPEG 2000 decoder design. For synthesis, we
incorporate the behavior of the system as defined by the Application Layer Model, the allocated
HW resources of the VTA Layer and the mapping information between them.

During the synthesis process, the VTA Layer is analyzed and separated into a software and
a hardware subsystem. The software subsystem in our design consists of the Xilinx MicroBlaze

8.7 JPEG 2000 Decoder 425

Version of JPEG Decoder Model Decoding Timea [ms] IDWT Timea [ms]
lossless (speedup) lossy (speedup) lossless lossy

Application Layer

1© SW only on MicroBlaze 3188.79 (1) 2662.76 (1) 173.11 323.13
2© HW/SW not parallel 2847.03 (1.12) 2144.96 (1.24) 1.33 6.62
3© HW/SW parallel (3 IDWT modules) 2845.08 (1.12) 2138.21 (1.25) 3.77 9.12
4© SW parallel (cp. 2©) 712.11 (4.48) 537.62 (4.95) 1.33 6.62
5© SW & HW/SW parallel (cp. 3©) 721.08 (4.42) 550.22 (4.84) 3.77 9.12

Virtual Target Architecture Layer

HW/SW parallel
6a© HW/SW SO connected to bus only 2848.22 (1.12) 2141.38 (1.24) 30.94 36.31
6b© HW/SW SO connected to bus & P2P 2846.48 (1.12) 2139.62 (1.24) 14.26 19.61
SW & HW/SW parallel
7a© HW/SW SO connected to bus only 732.11 (4.35) 558.29 (4.77) 55.99 61.27
7b© HW/SW SO connected to bus & P2P 722.21 (4.42) 551.34 (4.83) 14.26 19.61

atime needed to decode 16 tiles with 3 components each @ 100 MHz

Table 8.12: Simulation results [45]

C++

FOSSY

MSS MHS

VHDL

gcc

Linker

LibGen PlatGen

XST/
Synplify

3
rd

 p
a
rt

y
 t

o
o
ls

O
S
S
S
 F

lo
w

Xilinx
IPs

VHDLVHDL

Xilinx

MicroBlaze
Object

Socket

Hardware

Block

IB
M
O
P
B

Hardware

Block

Hardware

Block

Object

Socket

Xilinx

MicroBlaze

DDR

RAM

IF

Arbiter
Memory

Controller

IF

IF

O
P
B

Figure 8.44: Synthesis flow [45]

together with its associated software task and the OPB. The hardware subsystem is made up
of two Object Sockets containing the hardware/software and the hardware/hardware Shared
Object, three IDWT modules and OSSS Channels for communication between them.

Since our prototypical synthesis flow interfaces the Xilinx Embedded Development Kit (EDK)
we are generating vendor-specific architecture definition files. These are the MSS (Microprocessor
Software Specification) and MHS (Microprocessor Hardware Specification) file that are used
for the creation of an EDK project.

For the implementation of the JPEG 2000 case-study we are using the MicroBlaze, the OPB
and an OPB multi-channel DDR-RAM controller from the Xilinx EDK IP core library.

The software tasks are cross-compiled and linked against a specific OSSS embedded library
that enables the communication with the hardware/software Shared Object. The entire hardware
subsystem is transformed from SystemC/OSSS to synthesizable VHDL code by Fossy. The
resulting VHDL code is inserted into the generated EDK project and further processed by the
Xilinx Synthesis Tool (XST) or other third-party RTL synthesis tools.

In the following we are going to have a closer look on the Fossy generated VHDL code of

426 8 Experiments

lossless (IDWT53)b lossy (IDWT97)b

Fossy reference Fossy reference

Logic Utilization

Number of Slice Flip Flops 298 293 453 674
Number of 4 input LUTs 682 619 1741 1848

Logic Distribution

Number of occupied Slices 436 356 944 1077
Total Number 4 input LUTs 730 634 1747 1878
Number used as logic 682 619 1741 1848
Number used as a route-thru 48 15 6 30

Total equivalent gate count 7882 7146 16052 18885
Estimated max. frequency (fmax) [MHz] 212.1 212.4 136.7 189.3

bwith Xilinx ISE 9.2.02i for Virtex-4 LX25 FPGA

Table 8.13: RTL Synthesis results of the IDWT [45]

the IDWT modules.

8.7.4.1 IDWT Reference Models

A wavelet transform improves encoding efficiency by exploiting pixel correlation. It is composed
of a set of filters that extract parts of the original signal: low-pass filters preserve a blurred
representation of the original signal, while high-pass filters preserve transitions and textures of
the image. On the decoder side, the Inverse Discrete Wavelet Transform reconstructs the image
as shown in Figure 8.39. In the lossless mode (IDWT53) the used filter-bank is a bi-orthogonal
(5,3) with integer taps, and in the lossy mode (IDWT97) it is a Daubechies (9,7).

The handcrafted reference model is written in synthesizable VHDL and consists out of 404
(IDWT53) and 948 (IDWT97) lines of code. Table 8.13 shows the result of the RTL synthesis
performed by the Xilinx Synthesis Tool (XST) of ISE 9.2.02i for a Virtex-4 LX25 FPGA.

8.7.4.2 Fossy Generated Models

The SystemC IDWT models used for simulation and exploration in Section 8.7.3 are described
at the same level of abstraction as the reference model, i.e. RTL. This is necessary at VTA
Layer at least to get a more realistic estimate of the system behavior after implementation.

The synthesizable SystemC IDWT models consist out of 356 (IDWT53) and 903 (IDWT97)
lines of code. The overall structure of the SystemC and the reference VHDL model is very similar.
Both use explicit state machines and functions and procedures to separate the more complex
filter algorithms from the control dominated part. The Fossy generated VHDL models consist
out of 2231 (IDWT53) and 4225 (IDWT97) lines of code where all functions and procedures
have been inlined into a single explicit state machine. Since all identifiers are preserved during
synthesis the resulting VHDL code remains human readable.

8.7.4.3 Comparison

Table 8.13 shows the RTL synthesis results for a Xilinx Virtex-4 FPGA. For the IDWT53 the
results are very similar. The area overhead induced by Fossy is about 10%. Concerning the
IDWT97 the Fossy generated design is 15% smaller but 28% slower than the reference. Since
the JPEG 2000 decoder is a hardware/software design where both the MicroBlaze and the OPB
run with a frequency of 100 MHz the synthesis results perfectly match the timing requirements.

The performance of the IDWT97 Fossy generated design can be improved by adding certain
register levels. Furthermore, the ISE was not capable of synthesizing pre-adders of the desired
input bit widths.

8.8 Summary 427

8.7.5 Conclusion

In this experiment we have presented the modeling and design of a JPEG 2000 decoder using
the OSSS design methodology. The initial Application Model specifies the logical structure
of the application, which identifies parallel components and their communication relations.
The Application Model enables early functional and performance analysis in a rather abstract
thus fast simulation model. Moreover, the designer can easily restructure the model, e.g. the
hardware/software partitioning and assess the effect on the behavior and estimated performance
of the design.

The refinement process leading to the Virtual Target Architecture Model adds implementation
details such as communication protocols and memories. This model exhibits cycle-accurate timing
behavior and is the input for the automatic synthesis process leading to the implementation on
a specific target platform.

The comparison of the synthesis results using the Fossy synthesis tool or a standard VHDL
design process shows no significant difference in the efficiency in terms of area or timing.

8.8 Summary

In this chapter, the OSSS methodology has been applied to a set of different designs. An
overview of these designs can be found in Table 8.1. With the experiments the majority of goals
from Chapter 2 have been met. To summarize the experiments, Table 8.14 presents a review
and discussion of covered goals.

Table 8.14: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled)

ID Goal Status Comment

G2 Introduce a notion of
time for the SW parts

 Estimated Execution Time (EET) blocks, as de-
scribed in Section 6.4.3.3, enable timing anno-
tation of Software Tasks. Required Execution
Time (RET), as described in Section 6.4.3.4, en-
able dynamic run-time checks of software timing
requirements.

M1 Single modeling lan-
guage to describe HW
and SW

 OSSS, as introduced in Section 6.2 covers the
description of HW and SW. On the Application
Layer, SW is described by Software Tasks (see
Section 6.4.3) and HW is described by Hardware
Modules (see Section 6.4.5).

M3 Executable Specifi-
cation and HW/SW
partitioned models

 The OSSS simulation model covers the untimed
specification level modeling (OSSS Behavioural
Layer, see Section 6.3), timed HW/SW parti-
tioned modeling (OSSS Application Layer, see
Section 6.4) and timed execution platform mod-
eling (OSSS Virtual Target Architecture Layer,
see Section 6.5).

M4 Synthesizable HW/SW
partitioned model

 An OSSS Application Layer model (which de-
scribes a HW/SW partitioned model) mapped
to an OSSS Virtual Target Architecture Layer
model is synthesizable with the prototypical syn-
thesis tool Fossy, see Chapter 7.

continued on next page

428 8 Experiments

Table 8.14: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

M5 To be able to cover
untimed (purely
functional) models,
transaction-level models
and cycle accurate
models

 The Behavioural Layer (see Section 5.4) enables
untimed (purely functional) system modeling.
The Application Layer (see Section 5.5) enables
transaction-level modeling, because communica-
tion between Actors and Shared Objects is per-
formed by abstract service calls. Application
Layer models mapped to Virtual Target Archi-
tecture Layer models (see Section 5.6) enables
cycle accurate system modeling.

M7 Easy HW/SW reparti-
tioning of the design (a
SW module can be re-
placed by a HW module
without manually modi-
fying its communication
interfaces)

 At the Application Layer, Actors are used to
model HW and SW components. The have the
same connections (using the same port to inter-
face binding concept) to Shared Objects. When
replacing an Actor modeling a Software Task with
an Actor modeling a Hardware Module no modi-
fication on the other components (incl. Shared
Objects) of the Application Layer become neces-
sary.

M10 Possibility to write hard-
ware modules at RT-
level

 HW Modules at the Application Layer (see Sec-
tion 6.4.5) are described at behavioral RT (using
SC_CTHREADs). For more details see Chapter F.

M14 Integration of IP compo-
nents

 IP components can be integrated using IP Com-
ponent wrapper modules. Signal based commu-
nication with Hardware Modules and Shared Ob-
jects plugged into Adapter Sockets is supported.

A2 High simulation perfor-
mance (at least higher
that state-of-the-art
RTL simulations)

G Our experiment in Section 8.2 show that the
simulation performance of our simulation model
is better than the performance obtained with
the SpecC reference simulator. In our experi-
ment in Section 8.4 we have compared the sim-
ulation speed of a design on the OSSS Applica-
tion Layer and OSSS Virtual Target Architecture
Layer with the simulation speed of the synthe-
sized VHDL and a reference VHDL design sim-
ulated using ModelSim 6.1e. The Application
Layer model simulation has been more than 5
times and the Virtual Target Architecture Layer
model still more than 3 times faster than the
reference VHDL model simulation in ModelSim
6.1e.

A3 Basic timing properties
shall be reflected by the
simulation

 On the Application Layer timing properties of
Software Tasks are represented by EET blocks
and timing properties of Hardware Modules are
represented by SystemC wait() statements. On
the Virtual Target Architecture Layer timing
properties of the RMI protocol and the on-chip
communication resources (bus, point-to-point)
are added.

continued on next page

8.8 Summary 429

Table 8.14: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

A4 Combine models of dif-
ferent levels of abstrac-
tion in a single simula-
tion

G In OSSS Behavioural Layer and Application
Layer modeling elements can be simulated to-
gether. The enables stepwise refinement from
an untimed to a timed simulation model. Ap-
plication and Virtual Target Architecture Layer
modeling elements cannot be mixed (i.e. all Ap-
plication Layer elements need to be mapped to
their corresponding Virtual Target Architecture
elements). On the Application Layer it is possi-
ble to combine timing approximate models with
cycle-accurate models.

S6 For the integration of IP
components it is neces-
sary that the designer
can control the synthesis
and to enforce a certain
communication mecha-
nism, which is required
by the IP component

 The supported modeling style of Hardware mod-
ules is behavioral RTL which enables a clock-cycle
accurate protocol description suitable for RTL
IP component integration.

S8 Efficiency of the gener-
ated code (for hardware:
area and critical path;
for software: memory
footprint) compared to
a hand-crafted design

G The efficiency of the generated custom hardware
VHDL code in terms of area and critical path
length, mainly depends on the SystemC input
code. We have shown for an industrial use-case
(see Section 8.4) that the Fossy generated VHDL
code has an area overhead of 16% and a maximum
clock frequency reduced by 3% compared to a
hand optimized VHDL design.

CHAPTER 9

Conclusion

The OSSS methodology, as presented in this work, supports many useful object-oriented
design concepts such as Actors, Objects, Shared Objects, method-based communication. By
adding a representation of the target hardware platform structural representation, Actors,
Objects and Shared Objects are mapped to specific hardware resources and with the aid of a
synthesis tool, a direct path to the implementation on a FPGA has been presented.

Figure 9.1 gives an overview of the core OSSS modeling layers and the Shared Object and
interface synthesis.

The OSSS Behavioral Layer (not shown in Figure 9.1) and the OSSS Application Layer are
the design entries of OSSS. The Behavioral Layer enables design capturing using an object-
oriented Program State Machine (PSM) model of computation, inspired by SpecC. For synthesis,
a Behavioral Layer model needs to be refined to an Application Layer model first. For this
refinement step, pre-defined Shared Object templates are provided.

The Application Layer enables modeling of a refined functional specification that enables
the differentiation between hardware and software and its communication. "Active" modeling
elements are Actors, which can be Software Tasks or Hardware Modules, and "Passive" modeling
elements are user-defined Objects and Shared Objects. Active modeling elements can only
communicate by using service calls on Shared Object. The service calls are user-defined
transactions that enable to transport any user-defined Object or data type from an Active
modeling element to a Shared Object and vice versa. Thus, the Application Layer only defines a
logical communication architecture with logical communication links between Actors and Shared
Objects.

For implementing an OSSS Application Layer design on an SoC platform, it needs to be
mapped and refined to the Virtual Target Architecture Layer (VTA). The VTA represents the
structural hardware resource description of the target SoC. In OSSS this structural resource
representation abstracts from many hardware platform details using a so-called Architecture
Class Library with generic hardware resource representatives. Theses are Hardware and Software
Sockets and Remote Method Invocation (RMI) Channels. Hardware Sockets are representing
custom hardware blocks with RMI interface (implemented in custom hardware), like an ASIC of
resources of an FPGA. Software Sockets are representing a processor and its run-time system
supporting the RMI protocol. The RMI Channel represents the structural on-chip communication
network, such as a shared bus or dedicated point-to-point connection (expressed as inner channel
using OSSS Channel description). During refinement, components of the Application Layer are
mapped to the VTA. Software Tasks are mapped onto Software Sockets, Hardware Modules are
mapped onto Hardware Sockets, and Shared Objects are mapped onto Shared Object Sockets,
which as special Hardware Sockets. The logical or abstract communication links between Actors
and Shared Objects in the Application Layer model are implemented using the RMI protocol
over a specific interconnect infrastructure, like buses, point-to-point channels as defined in the

432 9 Conclusion

VTA. Thus, method calls from Actors to Shared Objects are automatically refined to an RMI
Message Passing protocol implementation. Different VTA configurations and Application Layer
mappings enable platform exploration.

To finally implement the Application Layer model to VTA Layer mapping on the target
platform, automatic synthesis support is provided. For this purpose, the FOSSY (Functional
Oldenburg System Synthesiser) high-level synthesis tool transforms the Shared Object repre-
sentations of the VTA into synthesizable VHDL models. In this synthesis process, the Shared
Object is split-up into multiple modules responsible for arbitration, scheduling and the behavior.
The RMI message-passing interface is replaced by a signal-based interface. This signal interface
allows integration into existing SoC through provision of a generic, bus-independent interface (cp.
Xilinx IPIF). Furthermore, it allows user-defined communication channel bit-width constraints
on point-to-point channels for supporting constraints on routing resources between different
design partitions, a constraint number of I/O pins (inter SoC communication), a specific area
vs. throughput constraint. The provided synthesis infrastructure enables the integration of
vendor specific back-end synthesis tools and flow. In this work only the Xilinx FPGA back-end
synthesis tool-chain has been presented. These are the Xilinx EDK/ISE tools for platform
generation, low-level synthesis, mapping, and place & route, cross compilation of the software
part of the design, and finally bit-stream initialization and download to the FPGA.

The effectiveness of the presented OSSS methodology and tool-chain has been evaluated by
and shown a set of different design examples.

Section 9.1 summarizes the review of all goals from Chapter 2 and Section 9.2 discusses the
limitation and possible future work.

433

S
o

ft
w

a
re

S

o
c
k
e
t

O
b

je
c
t

S
o

c
k
e
t

H
a
rd

w
a
re

S

o
c
k
e
t

H
a
rd

w
a
re

S

o
c
k
e
t

O
b

je
c
t

S
o

c
k
e
t

R
M

I
C

h
a
n

n
e
l

C
o

m
m

u
n

ic
a
ti

o
n

 L
in

k

P
o

rt

In
te

rf
a
c
e

S
h

a
re

d
 O

b
je

c
t

M
o

d
u

le
 w

it
h

 P
ro

c
e
s
s
(e

s
)

B
u

s

µ
P

/µ
C

R
A

M

B
u

s

A
rb

it
e
r

M
e
m

o
ry

C

o
n

tr
o

ll
e
r

B

u
s

IF

P
2
P

 I
F

P
2
P

 I
F

P
2
P

 I
F

P
2
P

 I
F

B
u

s
 I

F

B
u

s
 I

F

C
h

ip
 A

C

h
ip

 B

IP
 C

o
m

p
o

n
e
n

ts

S
y
n

th
e
s
is

e
d

 H
a
rd

w
a
re

M
a
n

u
a
l

 S
W

R

e
fi

n
e
m

e
n

t

A
u

to
m

a
ti

c
 H

W
 &

In

te
rf

a
c
e
 S

y
n

th
e
s
is

X
il
in

x

P
la

tf
o

rm

S
tu

d
io

A
p

p
li

c
a
ti

o
n

L
a
y
e
r
 M

o
d

e
l

V
ir

tu
a
l

T
a
r
g

e
t

A
r
c
h

it
e
c
tu

r
e
 L

a
y
e
r

M
o

d
e
l

A
n

a
ly

s
is

,
E

x
p

lo
ra

ti
o

n
,

R
e

fi
n

e
m

e
n

t/

M
a

p
p

in
g

T
a
r
g

e
t

 P
la

tf
o

r
m

(
S

o
C

/
S

iP
)

S
y

s
te

m

S
y

n
th

e
s

is

T
im

in
g

 &
 A

re
a

A
n

a
ly

s
is

,
in

c
l.

p

o
s
s

ib
le

re

it
e

ra
ti

o
n

IP
 c

o
m

p
o

n
e
n

t
In

s
ta

n
ti

a
ti

o
n

 &

C
o

n
fi

g
u

ra
ti

o
n

A
p

p
li
c
a
ti

o
n

 L
a
y
e
r

•
D

e
s

ig
n

 E
n

tr
y

 a
n
d
 E

x
e

c
u

ta
b

le
,

F
u

n
c
ti

o
n

a
l
S

p
e

c
if

ic
a

ti
o

n
 t

h
a

t
a

b
s
tr

a
c

ts
 f

ro
m

 t
h

e
 c

o
m

m
u

n
ic

a
ti

o
n

 a
rc

h
it

e
c
tu

re

•
M

o
d

e
lli

n
g

 e
le

m
e
n

ts
 t

h
a

t
a

re
 “

A
ct

iv
e”

 :
S

o
ft

w
a
re

 T
a

s
k
s

 &
 H

a
rd

w
a

re
 M

o
d

u
le

s

•
M

o
d

e
lli

n
g

 e
le

m
e
n

ts
 t

h
a

t
a

re
 “

Pa
ss

iv
e”

 :
S

h
a

re
d

 O
b

je
c

ts
 &

 u
s
e
r-

d
e

fi
n

e
d

 O
b

je
c

ts
/D

a
ta

 T
y

p
e
s

•
S

h
a

re
d

 O
b

je
c

ts
 e

n
a
b

le
 h

ig
h

-l
e

v
e
l,

 m
e

th
o

d
-b

a
s
e

d
,

c
o

m
m

u
n

ic
a

ti
o

n
 v

ia
 u

s
e
r-

d
e

fi
n

e
d

 t
ra

n
s

a
c

ti
o

n
s

P
ro

d
u
c
e
r

P
ro

c
e
s
s

m
y
_
re

n
d

e
z
v
o

u
s
_
c
h

a
n

n
e
l

g
e
t(

)
:
in

t

p
u
t(

 i
n
t

)

is
_
e
m

p
ty

()
 :
 b

o
o
l

is
_
fu

ll(
)

:
b
o
o
l

in
t

.
.
.

o
u
t
-
>p

ut
(…

);

.
.
.

.
.
.

i
n
-
>
g
e
t
(
)
;

.
.
.

o
s
s
s

_
s
h

a
re

d

m
y
_
re

n
d
e
z
v
o
u
s
_
c
h
a
n
n
e
l<

in
t>

,

o
s
s
s
_
ro

u
n
d
_
ro

b
in

U

s
e
r-

d
e
fi
n
e
d

B
e
h
a
v
io

r

A
c
c
e
s
s
 S

c
h
e
d
u
lin

g

In
te

rf
a
c
e
 M

e
th

o
d
 C

a
ll

(I
M

C
)

o
s
s
s
_
p
o
rt

_
to

_
s
h
a
re

d
<

p
u
t_

if
<

in
t>

 >

o
s
s
s
_
p
o
rt

_
to

_
s
h
a
re

d
<

g
e
t_

if
<

in
t>

 >

p
u
t_

if
<

in
t>

g
e
t_

if
<

in
t>

C
o
n
s
u
m

e
r

P
ro

c
e
s
s

t
e
m
p
l
a
t
e
<
c
l
a
s
s

I
t
e
m
T
y
p
e
>

c
l
a
s
s

m
y
_
r
e
n
d
e
z
v
o
u
s
_
c
h
a
n
n
e
l

:

p
u
b
l
i
c

p
u
t
_
i
f
<
I
t
e
m
T
y
p
e
>
,

p
u
b
l
i
c

g
e
t
_
i
f
<
I
t
e
m
T
y
p
e
>

{

p
u
b
l
i
c
:

m
y
_
r
e
n
d
e
z
v
o
u
s
_
c
h
a
n
n
e
l
(
)

:

m
_
v
a
l
u
e
(
)
,

m
_
i
s
_
f
u
l
l
(
f
a
l
s
e
)

{
}

O
S
S
S
_
G
U
A
R
D
E
D
_
M
E
T
H
O
D
_
V
O
I
D
(
p
u
t
,

O
S
S
S
_
P
A
R
A
M
S
(
1
,

I
t
e
m
T
y
p
e
,

i
t
e
m
)
,

!
m
_
i
s
_
f
u
l
l

)

{

m
_
v
a
l
u
e

=

i
t
e
m
;

m
_
i
s
_
f
u
l
l

=

t
r
u
e
;

}

O
S
S
S
_
G
U
A
R
D
E
D
_
M
E
T
H
O
D
(
I
t
e
m
T
y
p
e
,

g
e
t
,

O
S
S
S
_
P
A
R
A
M
S
(
0
)
,

m
_
i
s
_
f
u
l
l

)

{

m
_
i
s
_
f
u
l
l

=

f
a
l
s
e
;

r
e
t
u
r
n

m
_
v
a
l
u
e
;

}

.
.
.

p
r
o
t
e
c
t
e
d
:

I
t
e
m
T
y
p
e

m
_
v
a
l
u
e
;

b
o
o
l

m
_
i
s
_
f
u
l
l
;

}
;

S
c

h
e

d
u

le
r

B
u

s

IF

R
M

I
C

o
n

tr
o

ll
e

r

G
u

a
rd

E
v

a
lu

a
to

r

B
e

h
a

v
io

r

A
rg

-M
e
m

S
ta

te
 M

e
m

o
ry

R
e
q
u

e
s
t

R
e
q
u

e
s
t

U
p
d
a

te

P
ro

to
c
o

l

S
ta

te

G
u
a
rd

s

Schedule!

G
ra

n
te

d

M
ID

/C
ID

P
ro

to
c
o

l
S

ta
te

M
ID

 A
d
d
r/

D
a
ta

/C
tr

l

R
e
tu

rn
 &

 A
rg

u
m

e
n

t
M

e
m

o
ry

R
e
t

&
 A

rg

M
u

x

CID

Xilinx

IPIF

P
2
P

IF

1

1

n

m
 V

a
lid

I

D
a

ta
I

D
a

ta
O

V
a
lid

O

Client

P
2
P

IF

1

1

n

m
 V

a
lid

I

D
a

ta
I

D
a

ta
O

V
a
lid

O

Client

S
h

a
re

d
 O

b
je

c
t

a
n

d
 I
n

te
rf

a
c
e
 S

y
n

th
e
s
is

•
T

h
e
 F

O
S

S
Y

 (
F

u
n

c
ti
o

n
a

l
O

ld
e

n
b
u

rg
 S

y
s
te

m
 S

y
n

th
e
s
is

e
r)

 h
ig

h
-l

e
v

e
l

s
y
n

th
e
s

is
 t

o
o

l
tr

a
n
s
fo

rm
s
 t

h
e

 S
h

a
re

d

O
b

je
c
t

in
to

 a
 s

y
n

th
e

s
is

a
b

le
 V

H
D

L
 m

o
d

e
l

•
S

h
a

re
d

 O
b

je
c
t

is
 s

p
li
t

u
p

 i
n

to
 m

u
lt

ip
le

 m
o

d
u

le
s

 r
e

s
p

o
n

s
ib

le
 f

o
r:

 a
rb

it
ra

ti
o

n
,

s
c
h

e
d
u

lin
g

 &
 t
h

e
 b

e
h

a
v
io

r

•
M

e
th

o
d
-b

a
s
e

d
 c

o
m

m
u
n

ic
a

ti
o

n
 i
n

te
rf

a
c
e

 i
s
 r

e
p

la
c
e

d
 b

y
 s

ig
n

a
l-

b
a

s
e

d
 i

n
te

rf
a

c
e
 w

it
h

 t
h

e
 p

ro
p

e
rt

ie
s
:

1
.

A
llo

w
in

g
 i

n
te

g
ra

ti
o

n
 i

n
to

 e
x

is
ti

n
g

 S
o

C
 t
h

ro
u

g
h
 p

ro
v
is

io
n
 o

f
a
 g

e
n

e
ri
c
 b

u
s
 i
n

te
rf

a
c
e

 (
c
p

.
X

ili
n

x
 I

P
IF

)

2
.

A
llo

w
in

g
 u

s
e
r-

d
e

fi
n

e
d

 c
o

m
m

u
n

ic
a

ti
o

n
 c

h
a

n
n

e
l

b
it

-w
id

th
 c

o
n

s
tr

a
in

ts
 o

n
 p

o
in

t-
to

-p
o

in
t

c
h

a
n
n

e
ls

 f
o

r:

fu
lf
ill

in
g

 c
o

n
s
tr

a
in

ts
 o

n
 r

o
u

ti
n

g
 r

e
s
o

u
rc

e
s
 b

e
tw

e
e
n

 d
if
fe

re
n

t
d

e
s
ig

n
 p

a
rt

it
io

n
s
,

ta
rg

e
ti
n

g
 c

o
n

s
tr

a
in

t

n
u

m
b
e

r
o

f
I/

O
 p

in
s
,

ta
rg

e
ti
n

g
 a

 s
p

e
c
if
ic

 a
re

a
 v

s
.
th

ro
u

g
h
p

u
t

c
o

n
s
tr

a
in

t

•
V

e
n

d
o

r
s

p
e
c

if
ic

 b
a

c
k
-e

n
d

 s
y

n
th

e
s
is

 f
lo

w
 (

e
.g

.
X

ili
n

x
 E

D
K

/I
S

E
 t
o

o
ls

 f
o

r
F

P
G

A
s
):

•
P

la
tf

o
rm

 g
e
n

e
ra

ti
o

n
,

lo
w

-l
e

v
e

l
s
y
n

th
e
s
is

,
m

a
p

p
in

g
,

a
n

d
 p

la
c
e

 &
 r

o
u

te
.

C
ro

s
s

 c
o

m
p

il
a

ti
o

n
 o

f
th

e

s
o

ft
w

a
re

 p
a

rt
 o

f
th

e
 d

e
s
ig

n
.

B
it

s
tr

e
a

m
 i

n
it

ia
li

s
a
ti

o
n

 a
n
d
 d

o
w

n
lo

a
d

 t
o

 t
h
e

 h
a

rd
w

a
re

 p
la

tf
o
rm

.

Im
p

le
m

e
n

ts

g
lu

e
 l
o

g
ic

 t
o

 a

m
e

m
o

ry
-

m
a

p
p

e
d

 b
u

s
 I
F
.

U
s
e

s
 o

u
tp

u
t
 f

ro
m

G
u

a
rd

 E
v
a

lu
a

to
r

a
n

d

re
q

u
e

s
t
s
ig

n
a

ls
 f
ro

m
 I

F

to
 d

ec
id

e
w

hi
ch

 c
lie

nt
’s

re

q
u

e
s
t
is

 b
e

in
g

g
ra

n
te

d
 n

e
x
t.

H
a

n
d

le
s
 t
h

e
 p

ro
to

c
o

l

w
it
h

 a
ll

in
te

rf
a

c
e

b
lo

c
k
s
 a

n
d

 d
ri
v
e

s
 t
h

e

S
ha

re
d

O
bj

ec
t’s

in

te
rn

a
l
p

ro
to

c
o

l:

In
it
ia

te
s
 g

u
a

rd

e
v
a

lu
a

ti
o

n
,
a

c
c
e

s
s

s
c
h

e
d

u
lin

g
,
c
o

n
tr

o
ls

a
rg

u
m

e
n

t
a

n
d

 r
e

tu
rn

v
a

lu
e

 s
tr

e
a

m
in

g
,
a

n
d

in
it
ia

te
s
 a

n
d

 m
o

n
it
o

rs

m
e

th
o

d
 e

x
e

c
u

ti
o

n
.

W
h

e
n

 t
ri
g

g
e

re
d

 b
y
 t

h
e

 R
M

I

C
o

n
tr

o
lle

r
it
 e

v
a

lu
a

te
s
 t
h

e

g
u

a
rd

 e
x
p

re
s
s
io

n
s

d
e

p
e

n
d

e
n

t
o

n
 t
h

e

B
e

h
a

v
io

r'
s
 i
n

te
rn

a
l
s
ta

te

(S
ta

te
 M

e
m

o
ry

).

Im
p

le
m

e
n

ts
 t
h

e
 f

u
n

c
ti
o

n
a

lit
y
 o

f

th
e

G
ua

rd
ed

 M
et

ho
d’

s
bo

di
es

fr

o
m

 t
h

e
 u

s
e

r-
d

e
fi
n

e
d

 S
O

b
e

h
a

v
io

r
c
la

s
s
.

R
W

 a
c
c
e

s
s
 t
o

S
ta

te
,
R

 a
c
c
e

s
s
 t
o

 A
rg

u
m

e
n

t,
 a

n
d

W
 a

c
c
e

s
s
 t
o

 R
e

tu
rn

 M
e

m
o

ry
.

R
e

p
re

s
e

n
ts

 t
h

e
 i
n

te
rn

a
l

s
ta

te
 o

f
th

e
 u

s
e

-d
e

fi
n

e
d

b
e

h
a

v
io

r.
 A

ll
m

e
m

b
e

r

v
a

ri
a

b
le

s
 o

f
th

e
 u

s
e

r-

d
e

fi
n

e
d

 S
O

 b
e

h
a

v
io

r

c
la

s
s
 a

re
 s

to
re

d
 h

e
re

.

Im
p

le
m

e
n

ts
 g

lu
e

 l
o

g
ic

 t
o

a
 b

it
-w

id
th

 s
c
a

la
b

le
 p

o
in

t-

to
-p

o
in

t
c
o

m
m

u
n

ic
a

ti
o

n

p
ro

to
c
o

l.

T
h

is
 m

e
m

o
ry

 i
s
 u

s
e

d
 t
o

s
to

re
 i
n

c
o

m
in

g
 a

n
d

o
u

tg
o

in
g

 p
a

ra
m

e
te

rs
 o

f

G
u

a
rd

e
d

 M
e

th
o

d
 C

a
lls

.

T
h

e
 R

e
tu

rn
 &

 A
rg

u
m

e
n

t

M
U

X
 c

o
n

tr
o

ls
 a

c
c
e

s
s
.

S
h

a
re

d
 O

b
je

c
t

a
ft

e
r

S
y
n

th
e
s
is

t
e
m
p
l
a
t
e
<
c
l
a
s
s

I
t
e
m
T
y
p
e
>

c
l
a
s
s

p
u
t
_
i
f

:

p
u
b
l
i
c

v
i
r
t
u
a
l

s
c
_
i
n
t
e
r
f
a
c
e

{

p
u
b
l
i
c
:

v
i
r
t
u
a
l

v
o
i
d

p
u
t
(
I
t
e
m
T
y
p
e

i
t
e
m
)

=

0
;

v
i
r
t
u
a
l

b
o
o
l

i
s
_
e
m
p
t
y
(
)

=

0
;

}
;

 t
e
m
p
l
a
t
e
<
c
l
a
s
s

I
t
e
m
T
y
p
e
>

c
l
a
s
s

g
e
t
_
i
f

:

p
u
b
l
i
c

v
i
r
t
u
a
l

s
c
_
i
n
t
e
r
f
a
c
e

{

p
u
b
l
i
c
:

v
i
r
t
u
a
l

I
t
e
m
T
y
p
e

g
e
t
(
)

=

0
;

v
i
r
t
u
a
l

b
o
o
l

i
s
_
f
u
l
l
(
)

=

0
;

}
;

V
ir

tu
a
l
T
a
rg

e
t

A
rc

h
it

e
c

tu
re

 (
V

T
A

)
L

a
y
e
r

•
D

u
ri
n

g
 r

e
fi
n

e
m

e
n

t,
 c

o
m

p
o
n

e
n

ts
 o

f
A

p
p

lic
a

ti
o

n
 L

a
y
e
r

a
re

 m
a

p
p

e
d
 t

o
 V

ir
tu

a
l
T
a

rg
e
t
A

rc
h

it
e

c
tu

re
:

•
S

W
 T

a
s
k
s
 o

n
to

 S
W

 S
o

c
k

e
ts

 (
re

p
re

s
e

n
ti
n

g
 a

 S
W

 r
u

n
ti
m

e
 o

n
 a

 p
ro

c
e

s
s
o
r)

•
H

W
 M

o
d
u

le
s
 o

n
to

 H
W

 S
o

c
k
e

ts
 (

re
p
re

s
e

n
ti
n

g
 d

e
d
ic

a
te

d
 h

a
rd

w
a

re
 b

lo
c
k
s
)

•
A

b
s
tr

a
c
t
c

o
m

m
u

n
ic

a
ti

o
n

 l
in

k
s

 b
e

tw
e

e
n

 A
c
ti
v
e

 a
n

d
 P

a
s
s
iv

e
 m

o
d

e
lli

n
g

 e
le

m
e
n

ts
 a

re
 r

e
a

li
z
e

d
 b

y
 a

 s
p

e
c
if

ic

in
te

rc
o

n
n

e
c

t
in

fr
a

s
tr

u
c

tu
re

,
lik

e
 b

u
s
e
s
,

p
o

in
t-

to
-p

o
in

t
c
h

a
n
n

e
ls

,
e

tc
.

D
if
fe

re
n

t
V

T
A

 c
o

n
fi

g
u

ra
ti

o
n

s
 e

n
a

b
le

p

la
tf

o
rm

 e
x

p
lo

ra
ti

o
n

•

M
e

th
o

d
-c

a
ll

s
 t

o
 S

h
a
re

d
 O

b
je

c
ts

 a
re

 a
u

to
m

a
ti
c
a

lly
 r

e
fi

n
e
d

 t
o

 a
 M

e
s

s
a
g

e
 P

a
s

s
in

g
 p

ro
to

c
o

l

T
L
M

2
 R

o
u
te

r

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

S
2

S
3

S
7

T
L
M

2
 R

o
u
te

r

S
1

S
4

S
5

S
6

S
8

S
9

S
W

 T
a
s
k
 o

r
H

W
 M

o
d
u
le

 r
u
n
n
in

g
 o

n
 S

W
 o

r
H

W
 S

o
c
k
e
t
(C

lie
n
t
P

ro
c
e
s
s
)

O
b
je

c
t

S
o
c
k
e
t

S
h
a
re

d
 O

b
je

c
t

S
c
h
e
d
u
le

r

S
h
a
re

d
 O

b
je

c
t

B
e
h
a
v
io

r

m
e

th
o

d
 c

a
ll

m
e

th
o

d
 c

a
ll

re
tu

rn

m
e

th
o

d

re
q

u
e

s
t

m
e

th
o

d

g
ra

n
t

m
e

th
o

d

a
rg

u
m

e
n

ts

n
o

ti
fy

c
o

m
p

l.

re
tu

rn

a
rg

u
m

e
n

t

w
rit

e(
…

)
w

rit
e(

…
)

re
a

d
()

re

a
d

()

re
a

d
()

re
a

d
()

re

a
d

()

re
a

d
()

w

rit
e(

…
)

w
rit

e(
…

)
w

rit
e(

…
)

re
q

u
e

s
t

g
ra

n
t

e
x
e

c
u

te
 g

u
a

rd
e

d
 m

e
th

o
d

RMI Channel
S
C
_
M
O
D
U
L
E
(
V
T
A
_
T
o
p
)

{

t
y
p
e
d
e
f

o
s
s
s
_
r
m
i
_
c
h
a
n
n
e
l
<

.
.
.

>

c
h
a
n
n
e
l
_
t
;

t
y
p
e
d
e
f

o
s
s
s
_
o
b
j
e
c
t
_
s
o
c
k
e
t
<

o
s
s
s
_
s
h
a
r
e
d
<
m
y
_
r
e
n
d
e
z
v
o
u
s
_
c
h
a
n
n
e
l
<
i
n
t
>
,

o
s
s
s
_
r
o
u
n
d
_
r
o
b
i
n
>

>

s
o
_
t
;

S
C
_
C
T
O
R
(
V
T
A
_
T
o
p
)

{

m
_
c
h
a
n
n
e
l

=

n
e
w

c
h
a
n
n
e
l
_
t
(
"
m
_
c
h
a
n
n
e
l
"
)
;

m
_
s
o

=

n
e
w

s
o
_
t
(
"
m
_
s
o
"
)
;

m
_
s
o
-
>
b
i
n
d
(
*
m
_
c
h
a
n
n
e
l
)
;

m
_
p
r
o
d
u
c
e
r

=

n
e
w

P
r
o
d
u
c
e
r
(
"
m
_
p
r
o
d
u
c
e
r
"
)
;

m
_
p
r
o
d
u
c
e
r
-
>
o
u
t
p
u
t
(
*
m
_
c
h
a
n
n
e
l
,

*
m
_
s
o
)
;

m
_
c
o
n
s
u
m
e
r

=

n
e
w

C
o
n
s
u
m
e
r
(
"
m
_
c
o
n
s
u
m
e
r
"
)
;

m
_
c
o
n
s
u
m
e
r
-
>
i
n
p
u
t
(
*
m
_
c
h
a
n
n
e
l
,

*
m
_
s
o
)
;

}

p
r
o
t
e
c
t
e
d
:

c
h
a
n
n
e
l
_
t

*
m
_
c
h
a
n
n
e
l
;

s
o
_
t

*
m
_
s
o
;

}
;

Figure 9.1: Overview of the core OSSS modeling layers, Shared Object and Interface Synthesis

434 9 Conclusion

9.1 Review of Goals

In Table 9.1 this section summarizes the review of all goals from Chapter 2. In Section 9.2 the
limitations of the current work, as also shown in Table 9.1, are discussed and possible future
work is described.

Table 9.1: Review of all goals from Chapter 2 (G: general, M: modeling, A: analysis, S: synthesis,
 : fulfilled, G: partly fulfilled, #: not fulfilled)

ID Goal Status Comment

G1 Integration of synthesis
tool and simulation in-
frastructure into Eclipse
CDT Framework

 Since OSSS is based on C++ and integration into
the Eclipse C/C++ Development Tooling (CDT)
Framework is possible. Both, the simulator and
the synthesis tool Fossy have been successfully
integrated, see Chapter G.

G2 Introduce a notion of
time for the SW parts

 Estimated Execution Time (EET) blocks, as de-
scribed in Section 6.4.3.3, enable timing anno-
tation of Software Tasks. Required Execution
Time (RET), as described in Section 6.4.3.4, en-
able dynamic run-time checks of software timing
requirements.

M1 Single modeling lan-
guage to describe HW
and SW

 OSSS, as introduced in Section 6.2 covers the
description of HW and SW. On the Application
Layer, SW is described by Software Tasks (see
Section 6.4.3) and HW is described by Hardware
Modules (see Section 6.4.5).

M2 SystemC approach OSSS is based on SystemC as described in Sec-
tion 6.2.

M3 Executable Specifi-
cation and HW/SW
partitioned models

 The OSSS simulation model covers the untimed
specification level modeling (OSSS Behavioural
Layer, see Section 6.3), timed HW/SW parti-
tioned modeling (OSSS Application Layer, see
Section 6.4) and timed execution platform mod-
eling (OSSS Virtual Target Architecture Layer,
see Section 6.5).

M4 Synthesizable HW/SW
partitioned model

 An OSSS Application Layer model (which de-
scribes a HW/SW partitioned model) mapped
to an OSSS Virtual Target Architecture Layer
model is synthesizable with the prototypical syn-
thesis tool Fossy, see Chapter 7.

M5 To be able to cover
untimed (purely
functional) models,
transaction-level models
and cycle accurate
models

 The Behavioural Layer (see Section 5.4) enables
untimed (purely functional) system modeling.
The Application Layer (see Section 5.5) enables
transaction-level modeling, because communica-
tion between Actors and Shared Objects is per-
formed by abstract service calls. Application
Layer models mapped to Virtual Target Archi-
tecture Layer models (see Section 5.6) enables
cycle accurate system modeling.

continued on next page

9.1 Review of Goals 435

Table 9.1: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

M6 Methodology needs to
provide modeling ele-
ments which allow to de-
scribe the communica-
tion

 At the Behavioural Layer pre-defined channels for
the communication between Behaviors are pro-
vided (see Section 5.4.2.3). At the Application
Layer, Shared Objects are provided for the com-
munication between Actors (see Section 5.5.2.3).
At the Virtual Target Architecture Layer OSSS-
RMI Channel (see Section 5.6.2.8) containers and
OSSS-Channels (see Section 5.6.2.9) are provided
for modeling communication at the SoC platform.

M7 Easy HW/SW reparti-
tioning of the design (a
SW module can be re-
placed by a HW module
without manually modi-
fying its communication
interfaces)

 At the Application Layer, Actors are used to
model HW and SW components. The have the
same connections (using the same port to inter-
face binding concept) to Shared Objects. When
replacing an Actor modeling a Software Task with
an Actor modeling a Hardware Module no modi-
fication on the other components (incl. Shared
Objects) of the Application Layer become neces-
sary.

M8 Provide constructs for
a uniform interface de-
scription

 At the Behavioural Layer, channels with pre-
defined interface services are provided. At the
Application Layer, Shared Objects with user-
defined service interfaces are provided. During
mapping of the Application to the Virtual Target
Architecture the Shared Object service interfaces
are preserved.

M9 Provide modeling con-
structs for abstract com-
munication

 At the Behavioural Layer pre-defined channels for
the communication between Behaviors are pro-
vided (see Section 5.4.2.3). At the Application
Layer, Shared Objects are provided for the com-
munication between Actors (see Section 5.5.2.3).
Both communication concepts abstract from the
signal level implementation of the communica-
tion. At the Virtual Target Architecture Layer
service calls on Shared Objects are implemented
by RMI-Channels and OSSS-Channels.

M10 Possibility to write hard-
ware modules at RT-
level

 HW Modules at the Application Layer (see Sec-
tion 6.4.5) are described at behavioral RT (using
SC_CTHREADs). For more details, see Chapter F.

M11 Support of multitasking # Not supported in this work. Extensions of OSSS
for software multitasking can be found in [48, 23,
17].

M12 Consideration of
(real-)time constraints

G The combination of EETs and RETs can be used
to specify real-time constraints. Currently RETs
can only be used within one Actor. This mod-
eling restriction restricts the expressiveness of
advanced (real-)time constraints, e.g. end-to-end
deadlines.

M13 Support of operating sys-
tems

Not supported in this thesis (see M11).

continued on next page

436 9 Conclusion

Table 9.1: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

M14 Integration of IP compo-
nents

 IP components can be integrated using IP Com-
ponent wrapper modules. Signal based commu-
nication with Hardware Modules and Shared Ob-
jects plugged into Adapter Sockets is supported.

A1 Debugging on all levels
of abstraction

G Debugging of OSSS simulation models is not
directly supported by the methodology or simu-
lation library. Nevertheless, since OSSS builds
on top of SystemC and C++, common waveform
visualization and debugging tools can be used.

A2 High simulation perfor-
mance (at least higher
that state-of-the-art
RTL simulations)

G Our experiment in Section 8.2 show that the
simulation performance of our simulation model
is better than the performance obtained with
the SpecC reference simulator. In our experi-
ment in Section 8.4 we have compared the sim-
ulation speed of a design on the OSSS Applica-
tion Layer and OSSS Virtual Target Architecture
Layer with the simulation speed of the synthe-
sized VHDL and a reference VHDL design sim-
ulated using ModelSim 6.1e. The Application
Layer model simulation has been more than 5
times and the Virtual Target Architecture Layer
model still more than 3 times faster than the
reference VHDL model simulation in ModelSim
6.1e.

A3 Basic timing properties
shall be reflected by the
simulation

 On the Application Layer timing properties of
Software Tasks are represented by EET blocks
and timing properties of Hardware Modules are
represented by SystemC wait() statements. On
the Virtual Target Architecture Layer timing
properties of the RMI protocol and the on-chip
communication resources (bus, point-to-point)
are added.

A4 Combine models of dif-
ferent levels of abstrac-
tion in a single simula-
tion

G In OSSS Behavioural Layer and Application
Layer modeling elements can be simulated to-
gether. The enables stepwise refinement from
an untimed to a timed simulation model. Ap-
plication and Virtual Target Architecture Layer
modeling elements cannot be mixed (i.e. all Ap-
plication Layer elements need to be mapped to
their corresponding Virtual Target Architecture
elements). On the Application Layer it is possi-
ble to combine timing approximate models with
cycle-accurate models.

A5 Consideration of IP com-
ponents in the simula-
tion

G SystemC RTL IP components can be integrated
on the Application Layer. VDHL or Verilog RTL
IP components can only be integrated when using
a SystemC and VHDL or Verilog co-simulation
environment (e.g. ModelSim).

continued on next page

9.1 Review of Goals 437

Table 9.1: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

S1 Provide a (prototypical)
synthesis tool

 Fossy is a prototypical synthesis tool Shared Ob-
ject and OSSS Hardware Module to VHDL syn-
thesis, configuration and integration of these cus-
tom hardware blocks into an SoC architecture
for Xilinx FPGAs.

S2 Software output lan-
guage C++ compliant
with C++ standard
(ISO/IEC 14882:1998)

G In the current implementation Fossy does not
generate any software code. The designer needs
to write C++ code inside the Software Modules
which is compliant with ISO/IEC 14882:1998.

S3 Hardware language
VHDL compliant with
the synthesizable sub-
sets of Synopsys Design
Compiler and Synplify
Pro from Synplicity

G The Fossy generated VHDL code has been suc-
cessfully synthesized with Synplify Pro a Xilinx
FPGA. The Synopsys Design Compiler for an
ASIC target has not been tested so far.

S4 The generated code has
to be readable for a hu-
man being

G The Fossy generated VHDL and SystemC code
is human readable. All identifier names are
preserved (some of them with pre-fixes). Type
transformation (which is necessary to map the
SystemC data type semantics to the VHDL se-
mantics) introduces some additional casts. The
state-machine transformation which translates
implicit to explicit state-machines transforms
SC_CTHREADS into SC_MODULE introducing ex-
plicit states states and next-state logic. With
these transformations the code should stay hu-
man readable.

S5 Possibility to map the
abstract communication
objects onto concrete
mechanisms such as
memory mapped IO/
shared memory (using
polling, interrupts
and/or DMA) or propri-
etary direct HW/HW
communication and to
generate the necessary
HW and SW parts

G OSSS Application Layer Communication Links
can be mapped to a bus using memory mapped
IO (currently only polling access is supported)
or to any proprietary direct HW/HW communi-
cation. Interrupts and DMA are currently not
supported.

S6 For the integration of IP
components it is neces-
sary that the designer
can control the synthesis
and to enforce a certain
communication mecha-
nism, which is required
by the IP component

 The supported modeling style of Hardware mod-
ules is behavioral RTL which enables a clock-cycle
accurate protocol description suitable for RTL
IP component integration.

continued on next page

438 9 Conclusion

Table 9.1: Review of selected goals from Chapter 2 (G: general, M: modeling, A: analysis, S:
synthesis, : fulfilled, G: partly fulfilled, #: not fulfilled) – continued

ID Goal Status Comment

S7 Control of the synthesis
by constraints in the syn-
thesis script or by spe-
cial statements within
the source code

Currently not supported by Fossy.

S8 Efficiency of the gener-
ated code (for hardware:
area and critical path;
for software: memory
footprint) compared to
a hand-crafted design

G The efficiency of the generated custom hardware
VHDL code in terms of area and critical path
length, mainly depends on the SystemC input
code. We have shown for an industrial use-case
(see Section 8.4) that the Fossy generated VHDL
code has an area overhead of 16% and a maximum
clock frequency reduced by 3% compared to a
hand optimized VHDL design.

9.2 Limitations and Future Work

As already identified in Table 9.1, the presented OSSS methodology has the following limitations.
Some of them have already been addressed in current work, others are still open for future work.

Non-blocking and streaming method calls In this work Shared Object method calls are always
blocking. A client process is actively waiting until the method call is completed and returns.
This limits the amount of possible parallelism and the maximum possible utilization
utilization of the computational resource, the client process is running onto.

Non-blocking method calls would allow the client process to continue its computation after
the method call has been sent to the Shared Object. The use of Futures as method return
container type, enables to access the result of the method call, when it is actually required.
In this case, the immediate access to the Future container object, after the method call has
been issued, would be the same like a blocking method call. This way, blocking method
calls would become a special case of the non-blocking method call mechanism. When
using non-blocking method calls with Future container objects a decision, whether to
allow nested method calls must be taken, since this might lead to Future object resource
allocation problems, when the depth of the nested calls is not bounded and cannot be
statically obtained during design time.

Streaming method calls could also be called "fire and forget" method calls. A client calls
a streaming method on a Shared Object and does not wait for the method to complete.
The access to the Shared Object is blocked until the arguments of the previous streaming
call have been processed. For an efficient implementation of streaming method calls, the
behavior of the Shared Object and the RMI protocol machine should be able to work in
parallel (i.e. as a pipeline) as well.

Both, the non-blocking and the streaming method call mechanisms have not been imple-
mented yet and are subject to future work.

Call by reference In this work Shared Object method calls only allow to pass method arguments
via call by value. In a call by value method call, the arguments are copied from the client
process to the Shared Object and the return value is copied back to the client process.
Using call by reference semantics would enable to use references to data object containers
inside a memory of the target platform. This way the client process would pass only the
information of the arguments memory location to the Shared Object. With this information,
the Shared Object would be able to fetch the data from this memory location and store
back the results in the same memory location (only if the reference is non-const). This
mechanism would relieve the client process from actively copying method call arguments

9.2 Limitations and Future Work 439

Memory
Block

In
te

rc
on

ne
ct

Application
Layer

Virtual Target
Architecture

Layer

Shared Object

Task

Software
Processor

Core 1

RTOS

 OSSS
Runtime

...

Hardware
Block

Software
Processor

Core 0

RTOS

 OSSS
Runtime

T0

T2
T1

T4

T3

T5

S0

S1

S2
Analysis,

Exploration,
Refinement/

Mapping

Timing

Full parallel
tasks with

EETs

Locally
scheduled
tasks with

 EETs

Shared
resources
with EETs

+

Communi-
cation times

+

Figure 9.2: Extension of OSSS for modeling parallel software (Source: [23])

to the Shared Object. Especially in the case of a client, running on a software processor
this can be very inefficient, since data that is already present at a shared memory location
would be unnecessarily copied.

The drawback of the call by reference semantics is the increased complexity of the Shared
Object, since it has to be able to actively fetch data from various memory locations, which
also requires the Shared Object to implement a bus master interface with burst capabilities.
Furthermore, a design time check needs to guarantee that the argument container objects
memory locations can be logically and physically reachable by the Shared Object. Another
challenge is concerning the memory layout consistency. As processors usually use a data
layout that enables fast access by their supported ISA. This way, either shared data
must be represented in a normalized layout, accessible by hardware and software, or the
Shared Object needs to know the memory layout rules of the used software processor. In a
platform with heterogeneous software processors with different memory layouts this might
be challenging. However, the normalized layout might imply a too inefficient access from
the software. Nevertheless, this depends on the actual usage of the shared memory.

Due to the described challenges the call by reference semantics has not been considered in
this work and is subject to future work.

Software multi-tasking has not been addressed in this work. In [48] an extension of this work
regarding software multi-tasking has been published for the first time. It introduces a
software run-time model supporting different scheduling policies, as well as efficient timing
annotations, and deadlines. SW/SW Inter-task communication is modeled via Shared
Objects. The modeling primitives like Software Tasks and Shared Objects are similar
to the elements on the OSSS Application Layer (used in this work) and abstract from
explicit and error-prone synchronization primitives, the underlying RTOSs would provide.
The integrated RTOS abstraction includes different scheduling policies (preemptive and
cooperative), periodic and continuous tasks, priorities, absolute and relative deadlines,
without being targeted to a specific RTOS directly. As long as some locking primitive is
available on the software target architecture, the OSSS software run-time can be mapped
on this platform. A prototypical implementation on an existing RTOS has been published
in [17]. The HW/SW and SW/HW communication capabilities of OSSS have not been fully
integrated with the software multi-tasking implementation in [48]. The communication
refinement still follows the RMI and OSSS Channel approach as presented in this work.

In [23] an extension of [48] to support multi-core architectures has been published. Here,
the OSSS model is not meant to directly represent existing real-time operating system
(RTOS) primitives. Instead, the Software Tasks in OSSS are meant to run on top of a rather
generic (but lightweight) run-time system (see Figure 9.2), where the synchronization and
inter-task communication is modeled with Shared Objects.

440 9 Conclusion

In a refinement step the Application Layer model is mapped to the Virtual Target Archi-
tecture. Each task is then mapped to a specific core, each of which provides a distinct
run-time, as shown in Figure 9.2. Tasks have may have statically or dynamically assigned
priorities, according to a given scheduling policy for each core, an initial startup time,
optional periods and deadlines.

inactive
active

(user EETs)

waiting

(duration)

blocked

aquire

use

(user EETs)

release

initiate

waitunblock

unblock block

Software Task Shared Object

In
te

rf
a

ce
 M

e
th

o
d

 C
a

ll
 (

IM
C

)

(a) Application Layer Model

inactive ready

waiting

(duration)

blocked

aquire

use

(user EETs)

release

Initiate
(init time)

waitunblock

unblock block

Software Task Shared Object

In
te

rf
a

ce
 M

e
th

o
d

 C
a

ll
 (

IM
C

)

running

(user EETs)

assign
(assign time)

deassign
(deassign time)

Scheduler

(scheduling EETs)

Runtime

Shared Communication

Medium

Shared Memory

idle

aquire
(protocol time)

use
(data dep. time)

release
(protocol time)

S
h

a
re

d
 M

e
d

iu
m

 A
cc

e
ss

User Data of Shared Object 0

Access Protocol Data of Shared Object 0

User Data of Shared Object 1

Access Protocol Data of Shared Object 1 Memory Access

(b) Virtual Target Architecture Model

Figure 9.3: Task states and transitions (terminate edges omitted) (Source: [23])

During simulation, the tasks can be in different states as shown in Figure 9.3. We
distinguish between the full parallel Application Model and the core mapped Virtual Target
Architecture Model task state machines. In the Application Model a task can either be
running, waiting or blocked. The distinction between blocked and waiting has been
introduced to ease the detection of deadlocks. A task in the waiting state will enter the
running state after a given amount of time (duration), whereas a blocked task can only
be de-blocked, once the access to a shared resource is granted. In the running state, a
task might access a Shared Object through Interface Method Call (IMC). This either leads
to the acquisition of its critical section (use state) or a suspension in the blocked state.
In this state the task tries to reacquire the shared resource until it gets access.

In the Virtual Target Architecture Model Software Tasks and Shared Objects are grouped
and mapped onto run-times of the cores. During the simulation, the OSSS software
run-time abstraction handles the time-sharing of a single processor core by several Software
Tasks, which are bound to this OS instance. Therefore, a ready state has been introduced.
A scheduler for handling the time-sharing is attached to the set of mapped tasks. Several

9.2 Limitations and Future Work 441

idle

grant
idle

arguments

return value

request

initiate call

ready

call granted

running

arguments ready

finished

return value ready
return
ready

arg ready

Client

HW Shared Object

message register

status register

method and client

grant
finished

running

SW Shared Object

mapped

shared memory

Shared Object
state

lock

idle

request

Client

lock

lock obtainedcall
granted

critical section

mapped

Communication from Client to SO

Event notification SO to Client

(interrupt)

Figure 9.4: Extended interaction and memory layout of Client and Shared Object (Source: [17])

frequently used scheduling policies are already provided by the extended simulation library,
like static priorities (preemptive and cooperative), or earliest-deadline first. Additionally,
arbitrary user-defined scheduling policies can be added. The RTOS overhead of context
switches (assign & deassign times) and execution times of scheduling decisions can be
annotated as well. With this set of basic elements, the behavior of the real RTOS on the
target platform can be modeled.

To improve the real-time capabilities, Guarded Methods that can lead to arbitrary blocking
times due to data-dependent conditions, are ignored. Instead, only the guaranteed mutual
exclusive access to Shared Objects is used for synchronization and communication between
the tasks. Each method of such a Shared Object can then be considered as a critical
section, which is executed atomically. Intra-core communication, i.e. communication
between tasks mapped to the same core, can be handled as usual. Here, the accesses are
ordered according to the local scheduling policy.

Moreover, the Virtual Target Architecture Model allows incorporating the effects of a
shared memory that is connected to the cores via a shared communication medium. In
an implementation on a target architecture the access protocol data, as well as the user
data of a Shared Object are mapped to a specific location in a shared memory. Therefore,
all states of the Shared Object include a certain overhead of shared medium acquisition,
usage and release. These times could also be annotated to the proposed simulation model.
Effects of instruction and data fetches over the shared communication medium are not
covered, assuming that each core has its local data and instruction memory.

Software Shared Objects In this work Shared Objects have only been mappable to Hardware
Sockets, which always results in a hardware implementation. As already discussed in the
context of multi-tasking above, Shared Objects may also be used for SW/SW or in a mixed
SW/SW and HW/SW communication scenario. For this reason, it would be necessary to
allow mapping of Shared Objects to the run-time system of a software processor as well.
This has been described in [17] with a proof-of-concept implementation on Linux (called
OSSS RMI for Linux).

Figure 9.4 depicts the extended interaction and memory layout of client and Shared
Objects in hardware and software. To execute a method of such a Software Shared Object,
the client has to gain exclusive access to the object’s state by obtaining the lock. Secondly,
the grant conditions of the method need to be evaluated. When granted, the requested
method can be executed. Afterwards, and in case of a non-granted guard condition, the

442 9 Conclusion

lock is released again. The explicit implementation of the lock mechanism is required to
enable synchronization across core and OS boundaries.

RMI over SystemC TLM 2.0 Currently, OSSS RMI Channels can only be used with OSSS
Channels. The main drawback of OSSS Channels is their internal usage of signal level
communication. In the worst case, this slows down Virtual Target Architecture model
simulation to the speed of an RTL simulation. This speed is insufficient for design space
exploration in an acceptable time. For this reason, the OSSS RMI protocol shall also be
able to use the SystemC TLM 2.0 API for shared bus communication as well. The RMI
channel implementation already allows this adaptation to SystemC TLM 2.0, but it has
not been implemented as part of this work. The virtual platform in [17] has successfully
implemented the OSSS RMI protocol over a SystemC TLM 2.0 shared bus in Platform
Architect, a commercial virtual platform from Synopsys (formerly provided by CoWare).

Simulation speed enhancements Further possibilities to enhance the simulation speed of OSSS,
as presented in this work is the consequent usage of SC_THREAD processes in Application
Layer and Virtual Target Architecture Layer models only. Currently, Actors in the
Application Layer model are using SC_CTHREADS which are statically sensitive to a clock
event. Instead a SC_THREAD with dynamic sensitivity and timed event notifications (e.g.
wait(20, SC_MS), instead of a series of clock event wait() statements will impact the
overall simulation speed dramatically. Like RMI over SystemC TLM 2.0, this straight
forward optimization has already been applied in [17].

Acknowledgment

First, I would like to thank Ilda and Niko for their patience, understanding, support and
care. Without your support, I would not have been able to finish this work. I would also like to
thank my parents for their enduring support during my studies and the final phase of this thesis.

I am very happy about the continuous support of my first doctoral adviser Wolfgang Nebel.
Thank you very much for accompanying, encouraging and sponsoring me for many years while
being part of the OFFIS family.

I am also very grateful for the support of my second adviser Achim Rettberg, the many
informal discussions we had and his great encouragement that finally convinced me to carry on
and finish this work.

While joining my referee team in the final phase, I received very detailed and precise feedback
from my third adviser Rainer Dömer. Thank you very much for taking many hours of carefully
reading my work and for traveling from Irvine to Oldenburg to participate in my doctoral
defense.

Thank you very much to all members of my examination board, including my three advisers
Wolfgang Nebel, Achim Rettberg and Rainer Dömer, the chairman of my examination board
Andreas Hein, and Ingo Stierand. I know you all had a tough time reading this very extensive
work in a very limited amount of time.

The main results of this work have been obtained in the ICODES project, coordinated by
Frank Oppenheimer, my former group leader and director of the Transportation Division at
OFFIS. Without your commitment in the final phase of my master’s thesis, I would not have
considered starting to work at OFFIS. Thank you for always supporting me and being a great
mentor for so many years.

Very special thanks goes to the former OFFIS ICODES team members: Thorsten Schubert,
Cornelia Grabbe and Claus Brunzema. You have been the best project team I can imagine.
Thank you very much for many deep and fruitful technical discussions and for the great technical
results we have obtained. Without your particular support, this thesis would not have been
possible, since it build on top of many of the technical results you have achieved. In particular,
I want to thank:

• Thorsten "Mr. Fossy" Schubert, for pioneering Fossy, the backbone of the OSSS synthesis.

• Cornelia Grabbe, for supporting the conceptual phase of the OSSS Application and Virtual
Target Architecture Layer definition, the realization of the Software Tasks and Software
Shared Objects and for taking responsibility of the technical coordination of the ICODES
project.

• Claus Brunzema, for enabling full C++ support by connecting the EDG C++ front-end
with Fossy and enabling reliable regression test.

Another thank goes to my former colleague at the University of Oldenburg, Andreas Schal-
lenberg, who worked in the DFG-funded PolyDyn project. Thank you very much for all your
technical contributions to Fossy and your participation in many technical discussions.

444 Acknowledgment

I am very grateful that Philipp A. Hartmann, the best C++ and SystemC expert I know,
has joined our team. His exceptional excellent analysis and problem solving skills prevented me
from many wrong design decisions. At the same time, Philipp has been the main responsible for
enabling software multitasking in OSSS. He has massively influenced all of the OSSS follow-up
activities, many of them still running in projects.

The participation of industrial partners in ICODES has also been extremely good, especially
during OSSS use-case implementation and evaluation phase. As a result, several evaluation case
studies and a substantial survey, which was analysis to set the main goals of this work, have
been published. In particular, I want to mention Fabien Colas-Bigey, Anne-Marie Fouilliart,
Nico Bannow, Jan Freuer, Alessandro Balboni and Giovanna Ferrara.

Thank you very much to my colleagues Andreas Herrholz, Christian Stehno and Henning
Kleen from CoSynth GmbH & Co. KG for picking up the Fossy and OSSS technology, and
taking the chance to offer them as a commercial product and using it in commercial design
service projects. In particular, I want to thank Henning Kleen for writing an excellent master’s
thesis about the evaluation of the OSSS RMI communication and for supporting me in the
Shared Object synthesis implementation and the evaluation of the synthesis results.

Finally, I want to thank all my current and former group members Maher Ali Fakih, Tiemo
Fandrey, Ralph Görgen, Philipp Ittershagen, Daniel Lorenz, Gregor Nitsche, Frank Poppen,
Sven Rosinger, Sören Schreiner and Jörg Walter, that I did not explicitly mention before,
for their strong support and patience with me over the last years. I really felt to be stuck
between a rock and a hard place... but you know what I mean. I am very happy to work with you!

Last but not least, a very special "thank you" to H3C

N

O

N

CH3

N
N

CH3

O

for keeping me

awake late at night and (more or less) "fresh" in the morning.

Kim Grüttner
Oldenburg
March 2015

APPENDIX A

Survey

This survey has been conducted in 2005 to obtain the “Requirements on Hardware/Software
Communication Design based on Abstract Communication Models” [96] for the ICODES project
[223]. Participants in this survey have been three companies from the automotive, mobile
communications and defense & security domain.

446 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

1
H

o
w

d
o
es

a
ty

p
ic

a
l

sy
s-

te
m

lo
o
k

li
k
e?

W
h

a
t

a
re

ty
p

ic
a
l

co
m

p
o
n

en
ts

o
f

y
o
u

r
sy

st
em

?

S
M

C
p

ro
d

u
ct

s
a
re

ty
p

ic
a
ll

y
th

e
N

o
d

e
E

n
ti

ti
es

o
f

th
e

R
a
d

io
A

cc
es

s
N

et
w

o
rk

s
(e

.g
.

B
S

C
,

B
T

S
,

T
R

A
U

fo
r

G
S

M
).

In
th

e
fo

ll
o
w

in
g

w
e

w
il

l
co

n
-

si
d

er
a
s

sy
st

em
th

e
su

b
-s

y
st

em
co

n
st

it
u

te
d

b
y

a
P

C
B

.

In
si

d
e

C
o
m

p
a
n
y

2
,

d
iff

er
en

t
a
p

p
li

ca
ti

o
n

s
o
f

co
m

-
p

le
te

ly
d

iff
er

en
t

co
m

p
le

x
it

y
a
re

b
ei

n
g

d
ev

el
o
p

ed
.

W
it

h
in

th
e

co
n

te
x

t
o
f

IC
O

D
E

S
C

o
m

p
a
n

y
2

w
il

l
b

e
p

re
se

n
t

w
it

h
a

v
id

eo
sy

st
em

th
a
t

ca
n

b
e

fo
u

n
d

a
t

th
e

u
p

p
er

ra
n

g
e

o
f

co
m

p
le

x
it

y.
S

u
ch

v
id

eo
sy

st
em

s
in

g
en

er
a
l

co
n

si
st

o
f

d
iff

er
en

t
st

a
n

d
a
rd

a
n

d
n

o
n

-s
ta

n
d

a
rd

p
ro

ce
ss

o
rs

(F
P

G
A

,
D

S
P

,
µ

C
),

st
a
n

d
a
rd

m
em

o
ri

es
a
n

d
d

is
cr

et
e

lo
g
ic

o
n

a
el

ec
-

tr
o
n

ic
co

n
tr

o
l

u
n

it
(E

C
U

).
T

h
e

co
n

n
ec

ti
o
n

b
e-

tw
ee

n
th

e
co

m
p

o
n

en
ts

is
m

a
in

ly
d

o
n

e
b

y
st

a
n

-
d

a
rd

b
u

se
s.

D
u

e
to

th
e

fa
ct

th
a
t

w
e

u
se

µ
C

in
st

ea
d

o
f

µ
P

,
th

er
e

is
u

su
a
ll

y
a

su
b

sy
st

em
p

ro
-

v
id

ed
w

it
h

th
e

p
ro

ce
ss

o
r

co
re

,
a
ll

co
n

n
ec

te
d

w
it

h
a

si
n

g
le

o
r

se
v
er

a
l

b
u

se
s.

In
S

o
ft

w
a
re

R
a
d

io
A

p
p

li
ca

ti
o
n

s,
th

e
eq

u
ip

m
en

t
h

a
s

to
su

p
p

o
rt

re
a
l-

ti
m

e
b

a
se

-b
a
n

d
p

ro
ce

ss
in

g
,

p
ro

to
co

l
st

a
ck

s
im

p
le

m
en

ta
ti

o
n

,
m

a
n

a
g
em

en
t

a
n

d
co

n
tr

o
l.

P
re

se
n

tl
y,

th
e

H
W

a
rc

h
it

ec
tu

re
is

m
a
in

ly
h

et
er

o
g
en

eo
u

s
a
n

d
in

cl
u

d
es

se
v
er

a
l

D
S

P
s,

G
P

P
s,

a
d

F
P

G
A

s.
F

o
r

h
a
n

d
-h

el
d

te
rm

in
a
ls

,
su

ch
p

ro
ce

ss
o
rs

a
re

in
te

g
ra

te
d

in
si

d
e

S
y

st
em

-
o
n

-a
-c

h
ip

(S
o
C

)
o
r

N
et

w
o
rk

-O
n

-a
-C

h
ip

(N
o
C

)
sy

st
em

s
(e

.g
.

O
M

A
P

2
fr

o
m

T
ex

a
s

In
st

ru
m

en
ts

)

2
W

h
a
t

is
th

e
co

m
p

le
x

it
y

o
f

th
e

sy
st

em
in

te
rm

s
o
f

d
ev

el
o
p

m
en

t
ti

m
e?

T
h

e
a
v
er

a
g
e

ti
m

e
is

1
y
ea

r.
T

h
e

d
ev

el
o
p

m
en

t
ti

m
e

is
v
er

y
d

iff
er

en
t

in
m

ea
n

-
in

g
o
f

d
iff

er
en

t
d

ev
el

o
p

m
en

t
st

a
g
es

.
T

h
e

d
ev

el
-

o
p

m
en

t
fo

ll
o
w

s
th

e
sc

h
em

e
o
f

d
iff

er
en

t
sa

m
p

le
s

A
(f

u
n

ct
io

n
a
l)

–
B

(t
ri

a
l)

–
C

(r
el

ea
se

)
–

D
(p

re
-p

ro
d

u
ct

io
n

,
1
st

sa
m

p
le

)
–

se
ri

es
/
m

a
ss

p
ro

-
d

u
ct

io
n

.
F

ro
m

th
e

st
a
rt

o
f

a
se

ri
es

d
ev

el
o
p

m
en

t
(a

ss
u

m
in

g
a
ll

fu
n

d
a
m

en
ta

ls
a
re

cl
a
ri

fi
ed

)
ti

ll
st

a
rt

o
f

se
ri

es
p

ro
d

u
ct

io
n

1
,5

y
ea

rs
is

a
g
o

o
d

n
u

m
b

er
.

T
h

e
d

ev
el

o
p

m
en

t
ti

m
e

d
ep

en
d

s
o
n

th
e

co
m

p
le

x
-

it
y

o
f

th
e

sy
st

em
a
n

d
o
n

te
a
m

si
ze

.
G

en
er

a
ll

y,
it

ta
k
es

b
et

w
ee

n
si

x
m

o
n

th
s

a
n

d
o
n

e
y
ea

r.

3
W

h
a
t

is
th

e
ra

ti
o

b
et

w
ee

n
h

a
rd

w
a
re

a
n

d
so

ft
w

a
re

d
ev

el
o
p

m
en

t
ti

m
e?

It
is

d
es

ig
n

d
ep

en
d

en
t;

e.
g
.

in
D

S
P

-b
a
se

d
sy

s-
te

m
S

W
d

ev
el

o
p

m
en

t
ca

n
ta

k
e

7
0
%

o
f

d
es

ig
n

eff
o
rt

a
n

d
ti

m
e;

in
o
th

er
d

es
ig

n
s

(d
a
ta

m
a
n

ip
u

-
la

ti
o
n

a
n

d
co

n
tr

o
l

sy
st

em
s)

th
e

ra
ti

o
ca

n
b

e
th

e
o
p

p
o
si

te
o
n

e.

T
h

is
is

a
b

so
lu

te
ly

d
iff

er
en

t,
ev

en
w

it
h

in
th

e
sa

m
e

a
p

p
li

ca
ti

o
n

b
u

t
se

v
er

a
l

sy
st

em
g
en

er
a
ti

o
n

s.
D

e-
p

en
d

in
g

o
n

th
e

v
id

eo
sy

st
em

,
th

e
sa

m
p

le
a
n

d
g
en

er
a
ti

o
n

w
e

h
av

e
sy

st
em

s
w

it
h

H
W

:S
W

1
0
:9

0
,

5
0
:5

0
a
n

d
1
0
0
:0

ra
te

.

O
f

co
u

rs
e

it
d

ep
en

d
s

o
n

th
e

d
es

ig
n

;
fo

r
D

ig
it

a
l

S
ig

n
a
l

P
ro

ce
ss

in
g

sy
st

em
s

th
e

ra
ti

o
is

ro
u

g
h

ly
6
0

%
S

W
a
n

d
4
0

%
H

W
.

4
In

w
h

ic
h

la
n

g
u

a
g
e

(C
+

+
,

S
y

st
em

C
,

E
n

-
g
li

sh
,

M
a
tl

a
b

,
..

.)
d

o
y
o
u

st
a
rt

d
es

cr
ib

in
g

y
o
u

r
ty

p
ic

a
l

a
p

p
li

ca
-

ti
o
n

?

N
a
tu

ra
l

la
n

g
u

a
g
e

is
u

se
d

to
d

es
cr

ib
e

sy
st

em
sp

ec
-

ifi
ca

ti
o
n

.
D

es
ig

n
su

b
se

ts
o
r

a
lg

o
ri

th
m

s
a
re

in
i-

ti
a
ll

y
d

es
cr

ib
ed

u
si

n
g

M
a
tl

a
b

a
n

d
C

/
C

+
+

.
T

o
o
ls

li
k
e

M
L

D
es

ig
n

er
o
r

C
a
d

en
ce

S
P

W
(n

ow
C

ow
a
re

)
a
re

so
m

et
im

es
u

se
d

to
si

m
u

la
te

co
m

m
u

n
ic

a
ti

o
n

p
a
th

s
(t

ra
n

sm
it

te
r/

re
ce

iv
er

).

D
is

cu
ss

io
n

s
o
f

th
e

sy
st

em
re

q
u

ir
em

en
ts

w
it

h
th

e
cu

st
o
m

er
a
re

o
ft

en
b

a
se

d
o
n

n
a
tu

ra
l

la
n

g
u

a
g
e

d
o
cu

m
en

ts
(e

n
g
li

sh
,

g
er

m
a
n

).
F

o
r

th
e

sy
st

em
im

p
le

m
en

ta
ti

o
n

p
ro

ce
ss

a
n

a
b

st
ra

ct
(e

x
ec

u
ta

b
le

)
m

o
d

el
(C

/
C

+
+

,
M

a
tl

a
b

/
S

im
u

li
n

k
,

L
a
b

v
ie

w
)

is
o
ft

en
u

se
d

a
s

a
st

a
rt

in
g

p
o
in

t.

F
ir

st
sp

ec
ifi

ca
ti

o
n

s
a
n

d
re

q
u

ir
em

en
ts

a
re

o
ft

en
w

ri
tt

en
in

n
a
tu

ra
l

la
n

g
u

a
g
e

d
o
cu

m
en

ts
.

In
th

e
D

J
D

d
o

cu
m

en
t,

D
o
ss

ie
r

J
u

st
ifi

ca
ti

f
d

e
D

efi
n

it
io

n
,

u
se

ca
se

s
a
re

n
ow

m
o
re

a
n

d
m

o
re

d
es

cr
ib

ed
u

si
n

g
U

M
L

la
n

g
u

a
g
e.

•
F

o
r

S
ig

n
a
l

p
ro

ce
ss

in
g

a
lg

o
ri

th
m

M
a
tl

a
b

o
r

C
/
C

+
+

la
n

g
u

a
g
e

•
F

o
r

H
a
rd

w
a
re

n
a
tu

ra
l

la
n

g
u

a
g
e,

•
F

o
r

S
W

n
a
tu

ra
l

la
n

g
u

a
g
e

a
n

d
U

M
L

S
y

st
em

C
is

u
n

d
er

ev
a
lu

a
ti

o
n

p
ro

ce
ss

fo
r

H
W

a
n

d
S

W
m

o
d

el
li

n
g
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

447

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

5
W

h
a
t

a
re

th
es

e
m

o
d

el
s

n
ee

d
ed

fo
r?

M
a
in

ly
fo

r
fu

n
ct

io
n

a
l

si
m

u
la

ti
o
n

a
n

d
to

v
er

if
y

p
ro

p
ri

et
a
ry

a
lg

o
ri

th
m

s.
T

h
ey

a
re

u
se

d
fo

r
d

es
cr

ib
in

g
a
n

d
ev

a
lu

a
ti

n
g

d
if

-
fe

re
n
t

a
lg

o
ri

th
m

s
(f

u
n

ct
io

n
a
l
ex

p
lo

ra
ti

o
n

a
n

d
v
er

-
ifi

ca
ti

o
n

)
a
n

d
ra

p
id

p
ro

to
ty

p
in

g
p

u
rp

o
se

s.
T

h
ey

a
re

fu
rt

h
er

u
se

d
to

d
es

cr
ib

e
th

e
d

a
ta

fl
o
w

,
p

ro
-

v
id

e
p

er
fo

rm
a
n

ce
es

ti
m

a
ti

o
n

o
r

ca
n

b
e

u
se

d
a
s

re
fe

re
n

ce
d

es
ig

n
o
r

d
o

cu
m

en
ta

ti
o
n

.
F

u
rt

h
er

m
o
re

,
th

e
p

u
rp

o
se

o
f

su
ch

m
o
d

el
s

is
to

h
a
v
e

a
cl

ea
r

v
ie

w
o
f

a
d

es
ig

n
a
n

d
g
et

a
n

ea
rl

y
es

ti
m

a
ti

o
n

o
f

th
e

sy
st

em
’s

b
eh

a
v

io
u

r.
T

h
e

in
tr

o
d

u
ct

io
n

o
f

S
y

st
em

C
is

cu
rr

en
tl

y
u

n
d

er
ev

a
lu

a
ti

o
n

b
ec

a
u

se
th

is
m

et
h

o
d

o
lo

g
y

/
la

n
g
u

a
g
e

p
ro

m
is

es
a
ll

a
b

o
v
e

n
a
m

ed
a
d

va
n
ta

g
es

in
a

p
ra

ct
ic

a
b

le
w

ay
.

C
/
C

+
+

a
s

a
ty

p
ic

a
l

m
o
d

el
li

n
g

la
n

g
u

a
g
e

is
o
ft

en
b

ei
n

g
m

ov
ed

in
to

th
e

se
ri

es
S

W
d

ev
el

o
p

m
en

t
a
ft

er
p

ro
-

to
ty

p
in

g
.

T
h

es
e

m
o
d

el
s

a
re

u
se

d
to

ex
p

lo
re

a
n

d
v
a
li

d
a
te

D
S

P
a
lg

o
ri

th
m

s.
T

es
t

b
en

ch
es

ca
n

b
e

d
el

iv
er

ed
b
y

th
e

S
ig

n
a
l

P
ro

ce
ss

in
g

a
lg

o
ri

th
m

d
ev

el
o
p

er
to

th
e

H
W

d
es

ig
n

er
to

va
li

d
a
te

th
e

fi
n

a
l

im
p

le
m

en
-

ta
ti

o
n

.

6
D

o
y
o
u

m
a
k
e

p
re

d
ec

i-
si

o
n

s
a
b

o
u

t
h

a
rd

w
a
re

/
-

so
ft

w
a
re

p
a
rt

it
io

n
in

g
?

W
h

ic
h

p
re

-c
o
n

d
it

io
n

s
a
re

d
ec

id
in

g
?

H
W

/
S

W
p

a
rt

it
io

n
s

a
re

m
a
in

ly
in

fl
u

en
ce

d
b
y

a
p

-
p

li
ca

ti
o
n

sp
ec

ifi
c

co
m

p
o
n

en
ts

av
a
il

a
b

il
it

y.
C

o
st

s
a
n

d
p

er
fo

rm
a
n

ce
a
n

a
ly

si
s

a
re

m
a
d

e
to

d
efi

n
e

w
h

ic
h

k
ey

co
m

p
o
n

en
ts

w
il

l
b

e
m

o
re

su
it

a
b

le
fo

r
th

e
sy

st
em

a
n

d
th

en
th

e
H

W
/
S

W
p

o
rt

io
n

is
st

ro
n

g
ly

in
fl

u
en

ce
d

b
y

th
a
t

ch
o
ic

e.
D

ec
is

io
n

s
a
re

ta
k
en

tr
y

in
g

to
d

efi
n

e
w

h
ic

h
w

il
l

b
e

th
e

m
o
st

eff
ec

ti
v
e

im
p

le
m

en
ta

ti
o
n

fo
r

a
n

y
sp

ec
ifi

c
fu

n
c-

ti
o
n

n
ee

d
ed

to
im

p
le

m
en

t
th

e
o
v
er

a
ll

sy
st

em
.

T
h

e
n

ee
d

o
f

fl
ex

ib
il

it
y

o
r

u
n

ce
rt

a
in

sp
ec

ifi
ca

ti
o
n

s
a
re

d
ri

v
in

g
fa

ct
o
rs

to
w

a
rd

s
S

W
im

p
le

m
en

ta
ti

o
n

.
C

u
rr

en
tl

y
th

er
e

is
n

o
t

a
to

o
l

su
p

p
o
rt

ed
d

ec
is

io
n

p
ro

ce
ss

.

B
y

a
ss

u
m

p
ti

o
n

s,
b

y
ex

p
er

ie
n

ce
,

b
y

ca
lc

u
la

ti
n

g
th

ro
u

g
h

p
u

t/
ca

p
a
ci

ty
/
et

c.
,

b
y

te
st

in
g

d
iff

er
en

t
a
lg

o
ri

th
m

s,
b

y
re

q
u

ir
ed

d
es

ig
n

ti
m

e
+

co
st

s
fo

r
im

p
le

m
en

ta
ti

o
n

.
D

ec
is

io
n

s
a
re

o
ft

en
b

a
se

d
o
n

p
re

d
ec

es
so

r
sy

st
em

s
th

a
t

a
re

a
lr

ea
d

y
a
v
a
il

a
b

le
(i

n
p

a
rt

ic
u

la
r

if
th

e
sy

st
em

is
a
n

ex
te

n
si

o
n

o
r

fu
rt

h
er

d
ev

el
o
p

m
en

t
o
f

a
n

ex
is

ti
n

g
o
n

e)
.

F
u

n
ct

io
n

a
l

a
n

d
n

o
n

-f
u

n
ct

io
n

a
l

cr
it

er
ia

a
re

u
se

d
to

m
a
k
e

p
re

d
ec

is
io

n
s

a
b

o
u

t
H

W
/
S

W
p

a
rt

it
io

n
-

in
g
.

T
h

ey
a
re

m
a
in

ly
d

er
iv

ed
fr

o
m

ex
p

er
t

a
d

v
ic

e.
•

F
u

n
ct

io
n

a
l:

ti
m

e
co

n
su

m
ed

,
th

ro
u

g
h

p
u

t,
et

c.
o
f

a
re

so
u

rc
e.

N
ee

d
o
f

re
co

n
fi

g
u

ra
-

b
il

ty
o
f

th
e

sy
st

em
•

N
o
n

-f
u

n
ct

io
n

a
l:

p
ow

er
co

n
su

m
p

ti
o
n

,
co

st
,

o
v
er

a
ll

d
im

en
si

o
n

o
f

th
e

sy
st

em
,

..
.

7
H

o
w

im
p

o
rt

a
n

t
a
re

IP
b

lo
ck

s?
IP

b
lo

ck
a
re

m
a
n

d
a
to

ry
.

A
s

th
e

p
re

ss
u

re
to

re
d

u
ce

th
e

d
es

ig
n

p
h

a
se

is
g
ro

w
in

g
h

ig
h

er
a
n

d
h

ig
h

er
,

th
e

u
se

o
f

IP
fu

n
ct

io
n

s
is

o
n

e
o
f

th
e

v
ia

b
le

w
a
y

s
to

a
d

d
re

ss
th

e
ti

m
in

g
p

re
ss

u
re

.
In

o
rd

er
to

sh
o
rt

en
th

e
d

es
ig

n
cy

cl
e,

IP
fu

n
ct

io
n

b
lo

ck
s

a
re

u
su

a
ll

y
p

u
rc

h
a
se

d
fr

o
m

a
3
rd

p
a
rt

y
co

m
p

a
n

y
a
n

d
n

o
t

d
ev

el
o
p

ed
in

h
o
u

se
.

IP
b

lo
ck

s
a
re

v
er

y
im

p
o
rt

a
n
t

fr
o
m

a
re

u
se

p
o
in

t
o
f

v
ie

w
a
n

d
d

u
e

to
th

e
fa

ct
th

a
t

th
ir

d
p

a
rt

y
co

m
p

o
n

en
ts

(l
ik

e
µ

C
s

)
a
re

u
se

d
.

W
h

en
ev

er
p

o
ss

ib
le

w
e

tr
y

to
re

u
se

ex
is

ti
n

g
IP

(l
ik

e
st

a
n

d
a
rd

fi
lt

er
s

fo
r

v
id

eo
m

a
n

ip
u

la
ti

o
n

)
o
r

if
co

st
s

a
re

a
cc

ep
ta

b
le

,
b

e
b

u
y

IP
.

B
u

t
u

si
n

g
IP

d
ep

en
d

s
o
n

th
e

a
v
a
il

a
b

il
it

y
o
f

IP
fo

r
a

ce
rt

a
in

fu
n

ct
io

n
/

a
lg

o
ri

th
m

s.
E

sp
ec

ia
ll

y
a
d

v
a
n

ce
d

a
lg

o
ri

th
m

s
o
ft

en
d

o
n

o
t

ex
is

t
a
s

IP
a
n

d
th

er
ef

o
re

n
ee

d
to

b
e

im
p

le
m

en
te

d
fr

o
m

sc
ra

tc
h

.

IP
b

lo
ck

a
re

im
p

o
rt

a
n
t

fo
r

re
u

se
b

ec
a
u

se
sy

st
em

co
m

p
le

x
it

y
in

cr
ea

se
a
n

d
w

e
h

av
e

to
fa

ce
ti

m
e

to
m

a
rk

et
a
n

d
d

ev
el

o
p

m
en

t
co

st
.

S
o
m

et
im

es
w

e
a
re

in
d

u
ce

d
to

u
se

IP
fo

r
co

m
p

li
a
n

ce
,

fo
r

in
st

a
n

ce
b

ec
a
u

se
o
f

st
a
n

d
a
rd

in
te

rc
o
n

n
ec

ti
o
n

(P
C

I)
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

448 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

8
W

h
a
t

a
re

ty
p

ic
a
l

IP
b

lo
ck

s?
C

o
h

er
en

tl
y

w
it

h
th

e
g
o
a
l

to
sh

o
rt

en
th

e
d

es
ig

n
cy

cl
e,

u
su

a
ll

y
IP

s
a
re

m
a
in

ly
re

la
te

d
to

th
e

im
p

le
-

m
en

ta
ti

o
n

o
f

’s
ta

n
d

a
rd

fu
n

ct
io

n
s’

o
r

’s
ta

n
d

a
rd

in
te

rf
a
ce

s’
.

T
y

p
ic

a
l

IP
s

a
re

e.
g
.

G
M

A
C

b
lo

ck
,

U
T

O
P

IA
I/

F
,

S
E

R
D

E
S

,
P

C
I.

..
In

th
e

la
st

p
e-

ri
o

d
a
n

im
p

o
rt

a
n
t

cl
a
ss

o
f

IP
s

h
a
s

b
ee

n
a
d

o
p

te
d

in
C

o
m

p
a
n

y
1

d
es

ig
n

p
ro

ce
ss

:
m

ic
ro

p
ro

ce
ss

o
rs

em
b

ed
d

ed
in

F
P

G
A

d
ev

ic
es

.
F

o
cu

si
n

g
o
u

r
a
t-

te
n

ti
o
n

o
n

ly
to

th
e

m
a
rk

et
le

a
d

er
co

m
p

a
n

ie
s,

ex
a
m

p
le

o
f

th
o
se

IP
s

a
re

P
o
w

er
P

C
4
0
5
c

a
n

d
M

ic
ro

B
la

ze
(a

v
a
il

a
b

le
in

X
il

in
x

d
ev

ic
es

),
A

R
M

a
n

d
N

io
s

(a
v
a
il

a
b

le
in

A
lt

er
a

d
ev

ic
es

)
a
n

d
a
ll

th
e

p
er

ip
h

er
a
ls

re
la

te
d

to
su

ch
co

m
p

o
n

en
ts

.

µ
C

s,
st

a
n

d
a
rd

µ
C

p
er

ip
h

er
a
ls

,
st

a
n

d
a
rd

b
lo

ck
s

li
k
e

A
D

C
,

D
A

C
,

G
en

er
ic

m
em

o
ry

(F
P

G
A

),
M

em
o
ry

-I
F

,
F

il
te

r,
M

u
lt

ip
li

er
,

B
u

s-
IF

,
S

ta
n

d
a
rd

S
W

li
k
e

O
S

a
n

d
st

a
n

d
a
rd

fu
n

ct
io

n
s,

et
c.

•
D

S
P

b
lo

ck
s

a
s:

F
F

T
,

F
IR

,
N

C
O

,
R

ee
d

S
o
lo

m
o
n

,
T

u
rb

o
C

o
d

ec
,

V
it

er
b

i,
..

.
•

B
u

s
a
s

R
a
p

id
IO

,
H

T
•

P
ro

ce
ss

o
rs

a
n

d
m

ic
ro

co
n

tr
o
ll

er
s,

•
M

em
o
ri

es
(S

D
R

A
M

),
•

N
et

w
o
rk

in
g

IP
a
s

U
to

p
ia

,
E

th
er

n
et

M
A

C
,

st
sf

rm
,

E
D

K
6
.2

,
et

c.
•

W
e

u
se

ei
th

er
A

lt
a
r

a
n

d
X

il
in

x
d

ev
ic

es

9
C

o
u

ld
y
o
u

g
iv

e
a
n

es
ti

-
m

a
ti

o
n

a
b

o
u

t
th

e
p

er
-

ce
n

ta
g
e

o
f

ex
is

ti
n

g
IP

w
it

h
re

sp
ec

t
to

th
e

ov
er

-
a
ll

d
es

ig
n

?

T
h

e
p

er
ce

n
ta

g
e

o
f

cu
rr

en
t

d
es

ig
n

im
p

le
m

en
te

d
u

si
n

g
3
rd

p
a
rt

y
IP

s
ca

n
o
b
v

io
u

sl
y

va
ry

d
ep

en
d

in
g

o
n

th
e

sp
ec

ifi
c

d
es

ig
n

n
ee

d
s.

A
ro

u
g
h

es
ti

m
a
ti

o
n

st
a
rt

s
fr

o
m

n
o

IP
s

to
6
0
%

o
f

a
w

h
o
le

d
es

ig
n

,
im

p
le

m
en

te
d

b
y

IP
s.

F
ro

m
0
-7

0
%

o
n

E
C

U
’s

d
ep

en
d

in
g

o
n

th
e

d
es

ig
n

.
U

p
to

9
0
%

in
th

e
A

S
IC

d
ev

el
o
p

m
en

t
p

ro
ce

ss
,

if
re

g
a
rd

in
g

"fi
n

e
g
ra

in
"

re
u

se
(w

h
ic

h
m

ea
n

s
re

u
si

n
g

a
n

d
a
d

a
p

ti
n

g
b

lo
ck

s
fr

o
m

fo
rm

er
d

es
ig

n
s)

U
se

o
f

IP
b

lo
ck

s
ca

n
va

ry
d

ep
en

d
in

g
o
n

th
e

sy
s-

te
m

.
S

o
m

et
im

es
it

ca
n

b
e

9
0

%
b

u
t

th
e

av
er

a
g
e

is
b

et
w

ee
n

2
0

a
n

d
3
0

%
.

N
ev

er
th

el
es

s,
w

e
ca

n
se

e
th

a
t

th
e

tr
en

d
s

fo
r

u
si

n
g

IP
b

lo
ck

s
is

in
cr

ea
si

n
g
.

1
0

W
h

a
t

k
in

d
o
f

in
te

rf
a
ce

d
o

es
a

ty
p

ic
a
l

IP
-B

lo
ck

h
a
v
e?

E
x

cl
u

d
in

g
M

ic
ro

p
ro

ce
ss

o
rs

,
cu

rr
en

tl
y

a
d

o
p

te
d

IP
s

in
te

ra
ct

w
it

h
o
th

er
d

es
ig

n
fu

n
ct

io
n

s
v

ia
st

a
n

-
d

a
rd

in
te

rf
a
ce

s
a
n

d
b

u
ss

es
a
n

d
p

ro
to

co
ls

.
E

.g
.

G
M

II
I/

F
,

U
to

p
ia

b
u

s,
A

T
M

p
ro

to
co

l,
E

th
er

-
n

et
p

ro
to

co
l

et
c

..
..

M
ic

ro
p

ro
ce

ss
o
rs

h
a
v
e

th
ei

r
o
w

n
p

ro
p

ri
et

a
ry

b
u

ss
es

(l
ik

e
A

M
B

A
o
r

O
P

B
)

b
u

t,
es

p
ec

ia
ll

y
u

si
n

g
m

ic
ro

p
ro

ce
ss

o
r

so
ft

co
re

(l
ik

e
X

il
in

x
’s

M
ic

ro
B

la
ze

a
n

d
A

lt
er

a
’s

N
io

s)
it

is
a
ls

o
p

o
ss

ib
le

to
in

te
ra

ct
w

it
h

th
e

H
W

p
o
r-

ti
o
n

o
f

a
d

es
ig

n
in

a
v
er

y
d

ir
ec

t
m

a
n

n
er

u
si

n
g

sh
a
re

d
m

em
o
ri

es
o
r

F
IF

O
s.

T
h

e
d

es
ig

n
en

v
i-

ro
n

m
en

ts
p

ro
p

o
se

d
b

y
A

lt
er

a
a
n

d
X

il
in

x
o
ff

er
(o

r
w

il
l

o
ff

er
so

o
n

)
so

m
e

u
ti

li
ti

es
to

im
p

le
m

en
t

’d
ir

ec
t’

in
te

rf
a
ce

s
to

H
W

.

S
ta

n
d

a
rd

b
u

se
s,

sp
ec

ia
li

ze
d

IF
,

p
ro

p
ri

et
y

b
u

se
s,

C
+

+
A

P
Is

,
a
u

to
m

o
ti

v
e

p
ro

to
co

ls
(C

A
N

,
L

IN
,

F
le

x
R

a
y,

..
.)

D
ir

ec
t

in
te

rf
a
ce

s,
In

te
rf

a
ce

s
a
s

F
IF

O
,

m
em

o
ri

es
,

re
g
is

te
rs

,
S

ta
n

d
a
rd

b
u

se
s

a
s

A
M

B
A

,
P

ro
p

ri
et

a
ry

b
u

se
s

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

449

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

1
1

O
n

w
h

ic
h

a
b

st
ra

ct
io

n
le

v
el

d
o

y
o
u

in
te

g
ra

te
th

e
IP

-B
lo

ck
s

in
to

th
e

si
m

u
la

ti
o
n

o
f

th
e

w
h

o
le

sy
st

em
?

W
e

d
o

n
o
t

si
m

u
la

te
th

e
sy

st
em

(P
C

B
).

S
im

u
-

la
ti

o
n

is
ca

rr
ie

d
o
n

a
t

su
b

sy
st

em
le

v
el

(A
S

IC
-

F
P

G
A

-P
la

tf
o
rm

F
P

G
A

-E
m

b
ed

d
ed

p
ro

ce
ss

o
rs

).
T

h
e

IP
b

lo
ck

s
in

g
en

er
a
l

a
re

a
v
a
il

a
b

le
a
s

b
la

ck
-

b
o
x

es
.

U
su

a
ll

y
th

e
IP

s
a
re

in
te

g
ra

te
d

a
t

R
T

L
le

v
el

.
F

o
r

th
e

R
T

L
p

o
rt

io
n

w
e

u
se

th
e

sy
n

th
e-

si
za

b
le

su
b

se
t

o
f

V
H

D
L

.
T

h
e

d
es

cr
ip

ti
o
n

o
f

th
e

su
b

-s
y

st
em

in
w

h
ic

h
th

e
d

ev
ic

e
u

n
d

er
d

ev
el

o
p

-
m

en
t

w
il

l
o
p

er
a
te

a
t

a
h

ig
h

er
le

v
el

o
f

a
b

st
ra

ct
io

n
.

W
e

u
se

th
e

w
h

o
le

ex
p

re
ss

iv
it

y
ca

p
a
ci

ty
o
f

V
H

D
L

a
n

d
V

er
il

o
g

a
n

d
a
ls

o
m

a
n

a
g
e

co
si

m
u

la
ti

o
n

w
it

h
b

lo
ck

d
es

cr
ib

ed
w

it
h

S
y

st
em

c
2
.x

.
O

th
er

si
m

-
u

la
ti

o
n

o
ri

en
te

d
IP

s
a
re

u
se

d
to

cr
ea

te
a

si
m

u
-

la
ti

o
n

sc
en

a
ri

o
.

F
o
r

th
e

ea
rl

y
st

a
g
e

fu
n

ct
io

n
a
l

si
m

u
la

ti
o
n

w
e

a
lw

a
y

s
lo

o
k

fo
r

a
fa

st
a
n

d
fu

n
c-

ti
o
n

a
l
a
cc

u
ra

te
m

o
d

el
.W

e
co

u
ld

d
efi

n
e

it
a
s

cy
cl

e
a
cc

u
ra

te
a
s,

in
th

is
p

h
a
se

,
w

e
m

a
in

ly
p

er
fo

rm
fu

n
ct

io
n

a
l

si
m

u
la

ti
o
n

in
a

cl
o

ck
ed

en
v

ir
o
n

m
en

t.
A

s
fi

rs
t

tr
ia

l
w

e
re

q
u

ir
e

a
n

IP
-B

lo
ck

b
eh

av
io

u
ra

l
m

o
d

el
to

th
e

co
m

p
a
n

y
fr

o
m

w
h

ic
h

w
e

re
ce

iv
e

th
e

IP
-B

lo
ck

a
n

d
in

ca
se

o
f

n
o
n

-a
v
a
il

a
b

il
it

y
o
f

th
is

k
in

d
o
f

m
o

d
el

w
e

cu
rr

en
tl

y
g
en

er
a
te

in
h

o
u

se
a

fu
n

ct
io

n
a
l

b
eh

a
v

io
u

ra
l

m
o
d

el
u

su
a
ll

y
d

es
cr

ib
ed

in
V

H
D

L
.

M
a
in

ly
o
n

a
ll

le
v
el

s.
U

su
a
ll

y
th

er
e

is
a

h
ig

h
le

v
el

m
o

d
el

d
es

cr
ip

ti
o
n

(e
.g

.
fo

r
M

a
tl

a
b

)
a
s

w
el

l
a
s

a
C

+
+

a
n

d
/
o
r

V
H

D
L

d
es

cr
ip

ti
o
n

.
A

S
IC

d
es

ig
n

fl
o
w

:
V

H
D

L
a
t

R
T

-l
ev

el

U
su

a
ll

y
IP

s
a
re

in
te

g
ra

te
d

a
t

R
T

L
le

v
el

,
w

e
cu

r-
re

n
tl

y
u

s
V

H
D

L
R

T
L

o
r

n
et

li
st

s.

1
2

D
o

th
e

IP
-B

lo
ck

s
h

a
v
e

st
a
n

d
a
rd

iz
ed

In
te

rf
a
ce

s
(A

M
B

A
,

..
.)

?

M
o
st

ly
.

S
ee

a
n

sw
er

n
r.

1
0

P
a
rt

ia
ll

y
y
es

in
ca

se
o
f

a
u

to
m

o
ti

v
e

b
u

ss
es

(C
A

N
,

L
IN

,
F

le
x

R
a
y,

..
.)

.
F

u
rt

h
er

m
o
re

,
o
n

ly
in

v
er

y
fe

w
p

a
rt

s
(e

.g
.

P
C

I,
M

em
o
ry

IF
)

A
s

sa
id

in
1
0

w
e

so
m

et
im

es
u

se
p

ro
p

ri
et

a
ry

b
u

se
s.

1
3

A
re

y
o
u

u
si

n
g

S
y

st
em

C
o
r

a
re

y
o
u

p
la

n
n

in
g

to
d

o
so

?

A
t

th
e

m
o
m

en
t

S
y

st
em

C
2
.0

h
a
s

n
o
t

b
ee

n
u

se
d

in
th

e
p

ro
d

u
ct

iv
e

d
es

ig
n

fl
o
w

b
u

t
w

e
ru

n
so

m
e

ex
p

er
im

en
ts

a
n

d
w

e
a
re

p
la

n
n

in
g

it
s

a
d

o
p

ti
o
n

in
th

e
n

ex
t

fu
tu

re
m

a
in

ly
a
s

fu
n

ct
io

n
a
l

m
o

d
el

li
n

g
d

es
cr

ip
ti

o
n

la
n

g
u

a
g
e,

fo
r

fu
n

ct
io

n
a
l

v
er

ifi
ca

ti
o
n

a
n

d
to

ex
p

lo
re

d
iff

er
en

t
a
rc

h
it

ec
tu

ra
l

h
y

p
o
th

es
is

.

N
o
t

y
et

fo
r

co
m

m
er

ci
a
l

d
ev

el
o
p

m
en

t
b

u
t

fo
r

ev
a
l-

u
a
ti

o
n

.
W

e
a
re

tr
y

in
g

to
es

ta
b

li
sh

S
y

st
em

C
in

o
u

r
d

ev
el

o
p

m
en

t
b

ec
a
u

se
o
f

th
e

a
d

v
a
n

ta
g
es

,
it

p
ro

m
is

es
.

H
o
w

ev
er

,
a
p

p
li

ca
b

il
it

y
in

in
d

u
st

ri
a
l

a
re

a
h

a
s

to
b

e
p

ro
v
en

.
A

S
IC

d
es

ig
n

fl
o
w

:
fi

rs
t

st
ep

s
o
f

in
tr

o
d

u
ci

n
g

S
y

st
em

C
cu

rr
en

tl
y

d
o
n

e:
S

y
st

em
C

fo
r

te
st

b
en

ch
su

p
p

o
rt

(S
y

st
em

C
v
er

ifi
-

ca
ti

o
n

li
b

ra
ry

)

S
y

st
em

C
is

in
a
n

ev
a
lu

a
ti

o
n

p
ro

ce
ss

.
A

p
p

li
ca

b
il

-
it

y
to

in
d

u
st

ri
a
l

p
ro

ce
ss

h
a
s

b
ee

n
p

ro
v
en

,
w

e
a
re

n
o
w

u
si

n
g

it
in

"p
il

o
t

p
ro

je
ct

s"
in

p
a
ra

ll
el

w
it

h
st

a
n

d
a
rd

d
es

ig
n

s.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

450 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

1
4

D
o

y
o
u

cr
ea

te
tr

a
n

sa
c-

ti
o
n

le
v
el

m
o

d
el

s?
W

h
a
t

a
re

th
es

e
m

o
d

el
s

n
ee

d
ed

fo
r?

In
so

m
e

ex
p

er
im

en
ta

l
tr

ia
ls

w
e

cr
ea

te
d

T
L

M
s

o
n

ly
w

it
h

fu
n

ct
io

n
a
l

v
er

ifi
ca

ti
o
n

p
u

rp
o
se

s.
Y

es
.

W
e

u
se

tr
a
n

sa
ct

io
n

le
v
el

m
o

d
el

s
fo

r
a
b

st
ra

ct
m

o
d

el
li

n
g

o
f

fu
n

ct
io

n
ca

ll
s

a
n

d
d

a
ta

tr
a
n

sf
er

s
b

et
w

ee
n

m
o

d
u

le
s.

T
ra

n
sa

ct
io

n
a
l

m
o

d
el

s
ca

n
b

e
fu

ll
y

u
n

ti
m

ed
o
r

th
e

ca
n

b
e

p
ro

v
id

ed
w

it
h

a
m

in
im

u
m

o
f

ti
m

in
g

in
fo

rm
a
ti

o
n

li
k
e

th
e

o
v
er

a
ll

ex
ec

u
ti

o
n

ti
m

e
o
f

a
co

m
p

le
te

tr
a
n

sa
ct

io
n

.
T

h
is

m
o

d
el

s
d

o
h

av
e

th
e

a
d

va
n
ta

g
e

o
f

fa
st

im
p

le
m

en
-

ta
ti

o
n

a
n

d
h

ig
h

si
m

u
la

ti
o
n

sp
ee

d
if

a
n

a
cc

u
ra

te
ti

m
in

g
m

o
d

el
li

n
g

is
n

o
t

re
q

u
ir

ed
.

W
e

a
re

n
ow

d
ev

el
o
p

in
g

tr
a
n

sa
ct

io
n

a
l

le
v
el

m
o

d
-

el
s

o
f

H
W

IP
b

lo
ck

s
o
r

w
e

u
se

m
o

d
el

s
d

o
n

e
b
y

th
e

IP
p

ro
v

id
er

.
W

e
a
ls

o
u

se
u

n
-t

im
ed

tr
a
n

sa
ct

io
n

a
l

le
v
el

to
m

o
d

el
S

ig
n

a
l

P
ro

ce
ss

in
g

a
lg

o
ri

th
m

s
a
n

d
d

o
th

e
re

fi
n

em
en

t
st

ep
fr

o
m

fl
o
a
ti

n
g

p
o
in

t
to

fi
x

ed
p

o
in

t
re

p
re

se
n

ta
ti

o
n

b
ef

o
re

th
ei

r
co

d
in

g
to

w
a
rd

s
a

sp
ec

ifi
c

D
S

P
o
r

in
a

H
W

b
lo

ck
.

1
5

D
o

y
o
u

u
se

S
y

st
em

C
’s

(h
ie

ra
rc

h
ic

a
l)

ch
a
n

n
el

s?
In

th
e

ex
p

er
im

en
ta

l
tr

ia
ls

m
en

ti
o
n

ed
in

th
e

tw
o

a
n

sw
er

s
a
b

o
v
e

w
e

u
se

d
so

m
e

h
ie

ra
rc

h
ic

a
l

ch
a
n

-
n

el
s.

W
e

a
re

in
fa

ct
in

te
re

st
ed

in
th

e
ca

p
a
b

il
it

y
o
f

m
o

d
el

li
n

g
ch

a
n

n
el

s
w

h
ic

h
m

a
y

co
n

ta
in

q
u

it
e

co
m

p
le

x
b

eh
av

io
u

r
a
s

o
p

p
o
si

te
o
f

p
ri

m
it

iv
e

ch
a
n

-
n

el
s

(e
.g

.
si

g
n

a
ls

)
w

h
ic

h
ca

n
n

o
t

co
n
ta

in
in

te
rn

a
l

st
ru

ct
u

re
.

W
e

a
re

u
si

n
g

h
ie

ra
rc

h
ic

a
l

a
s

w
el

l
a
s

p
ri

m
it

iv
e

ch
a
n

n
el

s
b

u
t

p
re

fe
r

h
ie

ra
rc

h
ic

a
l

ch
a
n

n
el

s
w

h
en

th
e

ch
a
n

n
el

h
a
s

to
w

o
rk

in
a

"c
a
ll
→

ex
ec
→

re
tu

rn
"

m
a
n

n
er

w
it

h
b

lo
ck

in
g

a
cc

es
s.

T
h

is
is

fo
r

co
m

p
le

x
d

a
ta

tr
a
n

sf
er

s
o
ft

en
th

e
ea

si
es

t
w

a
y

o
f

im
p

le
m

en
ta

ti
o
n

.

W
e

u
se

P
ri

m
it

iv
e

ch
a
n

n
el

s
a
s

F
IF

O
a
n

d
m

u
te

x
es

.
W

e
h

a
v
e

d
o
n

e
so

m
e

ex
er

ci
se

s
w

it
h

h
ie

ra
rc

h
ic

a
l

ch
a
n

n
el

s

1
6

W
h

a
t

k
in

d
o
f

m
o

d
el

li
n

g
co

n
ce

p
ts

w
o
u

ld
y
o
u

p
re

-
fe

r
in

O
S

S
S

,
w

h
ic

h
y
o
u

k
n

o
w

fr
o
m

la
n

g
u

a
g
es

li
k
e

V
H

D
L

,
C

+
+

,
S

y
s-

te
m

C
,.

..
?

A
n

d
w

h
y

?

In
g
en

er
a
l

w
e

w
o
u

ld
li

k
e

to
m

a
in

ta
in

a
ll

th
e

fu
n

c-
ti

o
n

a
l

m
o
d

el
li

n
g

ca
p

a
b

il
it

ie
s

o
f

tr
a
d

it
io

n
a
l

h
a
rd

-
w

a
re

d
es

cr
ip

ti
o
n

la
n

g
u

a
g
es

.
W

e
d

o
n

o
t

ex
p

ec
t

to
h

av
e

a
ll

th
e

C
+

+
a
n

d
S

y
st

em
C

2
.0

co
n

ce
p

ts
b

u
t

w
e

ex
p

ec
t

to
ta

k
e

a
d

va
n
ta

g
e

o
f

O
O

co
n

ce
p

ts
a
s

in
h

er
it

a
n

ce
a
n

d
o
f

sm
a
rt

er
co

m
m

u
n

ic
a
ti

o
n

co
n

ce
p

ts
.

R
T

L
(k

ee
p

th
e

ch
a
n

ce
o
f

a
n

1
:1

d
es

ig
n

,
o
n

ly
d

es
cr

ib
ed

b
y

a
d

es
ig

n
er

,
n

o
t

co
m

p
il

ed
b

y
a

b
e-

h
av

io
u

ra
l

to
o
l,

k
ee

p
co

m
p

a
ti

b
il

it
y

w
it

h
ex

is
ti

n
g

R
T

L
IP

,
k
ee

p
th

e
ch

a
n

ce
to

u
se

fo
rm

a
l

v
er

ifi
ca

-
ti

o
n

to
o
ls

fo
r

1
0
0
%

v
er

ifi
ca

ti
o
n

o
f

so
u

rc
e

co
d

e
w

it
h

co
m

p
il

ed
n

et
li

st
),

B
eh

a
v

io
u

ra
l

(f
o
r

fa
st

er
m

o
d

el
li

n
g
),

te
m

p
la

te
s/

g
en

er
ic

s
a
re

a
b

so
lu

te
ly

re
-

q
u

ir
ed

,
re

cu
rs

iv
e

fu
n

ct
io

n
ca

ll
s

(w
it

h
co

n
st

a
n

t
n
u

m
b

er
o
f

it
er

a
ti

o
n

s)
a
re

so
m

et
im

es
u

se
d

w
it

h
in

V
H

D
L

fo
r

d
es

ig
n

cr
ea

ti
o
n

,
in

V
H

D
L

g
en

er
a
te

co
n

st
ru

ct
s

a
re

v
er

y
o
ft

en
u

se
d

ï¿
1 2

fo
r

S
y

st
em

C
th

er
e

is
n

o
re

a
l

co
n

ce
p

t
fo

r
th

is
(o

n
ly

a
a
rr

ay
o
f

re
fe

re
n

ce
s

to
o
n

e
m

o
d

u
le

a
n

d
a

lo
o
p

th
a
t

cr
ea

te
s

se
v
er

a
l

m
o

d
u

le
in

st
a
n

ce
s.

M
o
re

a
n

d
m

o
re

,
w

e
h

av
e

to
m

o
d

el
la

rg
e

sy
st

em
s

a
t

va
ri

o
u

s
le

v
el

s
a
n

d
re

-u
sa

b
il

it
y,

p
o
rt

a
b

il
it

y
ca

-
p

a
b

il
it

ie
s

b
ec

o
m

e
im

p
o
rt

a
n
t

is
su

es
.

S
o
,

it
m

ea
n

s
fo

r
u

s
th

a
t

h
a
v

in
g

a
n

"o
b

je
ct

o
ri

en
te

d
"

w
a
y

o
f

d
es

ig
n

in
g

o
u

r
a
p

p
li

ca
ti

o
n

s
is

cr
u

ci
a
l.

In
h

er
it

a
n

ce
a
n

d
p

o
ly

m
o
rp

h
is

m
a
re

co
n

ce
p

ts
w

h
ic

h
h

a
v
e

to
b

e
su

p
p

o
rt

ed
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

451

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

1
7

W
h

er
e

d
o

y
o
u

se
e

th
e

a
d

-
v
a
n

ta
g
es

o
f

ea
ch

o
f

th
e

d
iff

er
en

t
m

o
d

el
li

n
g

la
n

-
g
u

a
g
es

?

C
+

+
(o

r
C

):
in

si
m

u
la

ti
o
n

b
ec

a
u

se
it

is
v
er

y
fa

st
in

p
a
rt

ic
u

la
r

fo
r

h
ig

h
a
b

st
ra

ct
io

n
le

v
el

si
m

-
u

la
ti

o
n

V
H

D
L

a
d

v
a
n

ta
g
es

:
in

H
W

m
o
d

el
li

n
g

p
h

a
se

b
ec

a
u

se
it

is
st

a
n

d
a
rd

,
it

is
w

el
l

k
n

o
w

n
b

y
h

w
d

es
ig

n
er

s,
it

is
w

id
el

y
su

p
p

o
rt

ed
b

y
E

D
A

v
en

d
o
rs

,
it

a
ll

ow
s

re
u

se
,

it
a
ll

ow
s

te
ch

n
o
lo

g
y

in
-

d
ep

en
d

en
ce

S
y

st
em

C
:

in
sy

st
em

m
o

d
el

li
n

g
p

h
a
se

b
ec

a
u

se
it

is
a

co
m

m
o
n

la
n

g
u

a
g
e

fo
r

b
o
th

H
W

a
n

d
S

W
;

in
a
d

d
it

io
n

to
th

is
it

is
o
p

en
so

u
rc

e,
it

is
st

a
n

d
a
rd

..
.

•
M

a
tl

a
b

/
S

im
u

li
n

k
:

C
o
n

ce
p

ti
o
n

p
h

a
se

fo
r

H
W

/
S

W
in

d
ep

en
d

en
t

sy
st

em
m

o
d

el
li

n
g
,

h
ea

v
il

y
u

se
d

in
a
u

to
m

o
ti

v
e

d
u

e
to

h
ig

h
ly

h
et

er
o
g
en

eo
u

s
sy

st
em

s.
•

V
H

D
L

a
n

d
V

er
il

o
g
:

H
W

d
es

ig
n

m
o

d
el

li
n

g
(e

st
a
b

li
sh

ed
m

et
h

o
d

o
lo

g
y

a
n

d
to

o
ls

,
fu

ll
co

n
tr

o
l

o
f

th
e

g
en

er
a
te

d
d

es
ig

n
b

y
a

d
e-

si
g
n

er
,

re
u

se
o
f

ex
is

ti
n

g
IP

,
so

m
e

to
o
ls

a
l-

lo
w

to
co

m
p

il
e

a
d

es
ig

n
u

n
d

er
te

st
in

to
a
n

F
P

G
A

a
n

d
in

te
g
ra

te
d

th
is

d
es

ig
n

in
to

th
e

ex
is

ti
n

g
te

st
b

en
ch

th
a
t

o
ff

er
s

a
d

va
n

ta
g
es

in
p

er
fo

rm
a
n

ce
a
n

d
g
iv

es
fi

rs
t

im
p

re
ss

io
n

o
f

th
e

re
a
l

d
es

ig
n

b
eh

av
io

u
r)

,
m

a
in

ly
R

T
L

•
C

+
+

,
te

st
b

en
ch

es
ca

n
b

e
cr

ea
te

d
a
n

d
m

a
in

ta
in

ed
v
er

y
w

el
l

a
n

d
p

ro
v

id
e

a
lo

t
o
f

o
p

ti
o
n

s
to

in
je

ct
a
n

d
ca

p
tu

re
d

a
ta

in
a

si
m

p
le

w
ay

.
C

+
+

m
o

d
el

s
ca

n
b

e
co

m
p

il
ed

to
a
n

ex
ec

u
ta

b
le

m
o
d

el
a
n

d
d

o
n

o
t

ru
n

in
si

d
e

a
si

m
u

la
to

r.
C

+
+

h
a
s

si
g
n

ifi
ca

n
t

a
d

v
a
n

ta
g
es

in
p

er
fo

rm
a
n

ce
v

s.
V

H
D

L
si

m
u

la
to

rs
.

It
is

ea
sy

to
p

ro
v

id
e

a
co

m
-

p
il

ed
C

+
+

d
es

ig
n

h
id

in
g

it
’s

im
p

le
m

en
ta

-
ti

o
n

(i
f

so
u

rc
e

co
d

e
is

n
o
t

p
ro

v
id

ed
)

•
C

/
C

+
+

:
It

is
n

a
tu

ra
l

la
n

g
u

a
g
e

u
se

d
b

y
a
lg

o
ri

th
m

d
ev

el
o
p

er
s,

si
m

u
la

ti
o
n

a
re

v
er

y
fa

st
•

M
a
tl

a
b

:
F

o
r

si
g
n

a
l

p
ro

ce
ss

in
g

a
p

p
li

ca
ti

o
n

it
is

a
n

ea
sy

w
ay

to
ra

p
id

ly
b

u
il

d
a

sy
st

em
,

si
m

u
la

te
a
n

d
v

is
u

a
li

se
th

e
re

su
lt

s.
It

is
a
ls

o
li

k
e

a
st

a
n

d
a
rd

to
ex

ch
a
n

g
e

p
a
rt

o
f

a
n

a
p

p
li

ca
ti

o
n

b
et

w
ee

n
d

iff
er

en
t

te
a
m

s.
•

V
H

D
L

:
It

is
th

e
st

a
n

d
a
rd

fo
r

H
W

d
ev

el
o
p

-
er

s
a
n

d
w

id
el

y
su

p
p

o
rt

ed
b

e
E

D
A

to
o
ls

.
•

S
y

st
em

C
:

It
is

a
u

n
iq

u
e

la
n

g
u

a
g
e

fo
r

fu
n

c-
ti

o
n

a
l

m
o
d

el
is

a
ti

o
n

o
f

m
ix

ed
H

W
/
S

W
sy

st
em

le
v
el

d
o
w

n
to

T
L

M
a
n

d
cy

cl
e

a
c-

cu
ra

te
si

m
u

la
ti

o
n

.
It

im
p

le
m

en
ts

o
b

je
ct

o
ri

en
te

d
te

ch
n

iq
u

es
.

1
8

H
o
w

w
o
u

ld
y
o
u

li
k
e

to
m

o
d

el
h

a
rd

w
a
re

a
n

d
so

ft
w

a
re

in
o
n

e
la

n
-

g
u

a
g
e?

O
u

r
m

a
in

d
es

id
er

a
ta

a
re

th
e

ca
p

a
b

il
it

y
to

d
e-

sc
ri

b
e

a
su

b
sy

st
em

fu
n

ct
io

n
a
li

ty
u

si
n

g
a

si
n

g
le

d
es

cr
ip

ti
o
n

la
n

g
u

a
g
e

w
it

h
o
u

t
h

a
v

in
g

’a
p

ri
o
ri

’
co

n
st

ra
in

ts
a
b

o
u

t
th

e
p

a
rt

it
io

n
b

et
w

ee
n

h
a
rd

-
w

a
re

a
n

d
so

ft
w

a
re

p
o
rt

io
n

.
T

h
e

a
b

st
ra

ct
io

n
le

v
el

co
u

ld
b

e
ti

m
ed

o
r

u
n
ti

m
ed

d
ep

en
d

in
g

o
n

th
e

d
e-

si
g
n

n
ee

d
s.

W
e

w
o
u

ld
li

k
e

to
h

a
v
e

th
e

a
b

il
it

y
to

u
se

th
is

m
o

d
el

to
h

el
p

th
e

d
es

ig
n

er
d

ec
is

io
n

a
b

o
u

t
h

a
rd

w
a
re

/
so

ft
w

a
re

p
a
rt

it
io

n
in

g
.

A
ft

er
th

e
d

efi
n

it
io

n
o
f

th
e

ta
rg

et
p

la
tf

o
rm

(p
ro

ce
ss

o
r

a
n

d
H

W
re

so
u

rc
es

)
w

e
w

o
u

ld
li

k
e

to
h

a
v
e

a
t

le
a
st

u
se

fu
l

h
in

ts
to

re
fi

n
e

S
W

a
n

d
H

W
p

a
rt

s
to

fu
lfi

ll
th

e
ta

rg
et

d
es

ig
n

en
v

ir
o
n

m
en

t
re

q
u

ir
em

en
ts

.

S
y

st
em

C
se

em
s

to
b

e
a

g
o

o
d

ca
n

d
id

a
te

b
u

t
h

a
s

cu
rr

en
tl

y
so

m
e

d
is

a
d

v
a
n

ta
g
es

(n
o
t

a
ll

V
H

D
L

fe
a
tu

re
s

a
re

im
p

le
m

en
te

d
y
et

a
m

et
h

o
d

o
lo

g
y

fo
r

g
en

er
a
ti

n
g

lo
o
p

s
is

n
o
t

y
et

d
efi

n
ed

).
C

u
rr

en
tl

y
th

er
e

a
re

o
n

ly
v
er

y
fe

w
sy

n
th

es
is

to
o
ls

av
a
il

a
b

le
.

F
u

rt
h

er
m

o
re

,
th

es
e

sy
n

th
es

is
to

o
ls

u
su

a
ll

y
h

av
e

m
a
jo

r
re

st
ri

ct
io

n
s.

O
n

th
e

o
th

er
h

a
n

d
th

er
e

is
n

o
co

m
m

o
n

la
n

g
u

a
g
e

to
m

o
d

el
H

W
/
S

W
(e

.g
.

U
M

L
is

u
se

d
fo

r
a
b

st
ra

ct
io

n
a
n

d
fl

o
w

,
b

u
t

n
o
t

fo
r

im
p

le
m

en
ta

ti
o
n

)

T
o

u
se

o
n

ly
o
n

e
m

o
d

el
li

n
g

la
n

g
u

a
g
e

is
v
er

y
im

-
p

o
rt

a
n

t,
b

ec
a
u

se
w

e
li

k
e

to
b

e
a
b

le
to

m
o
d

el
a

sy
st

em
a
t

v
a
ri

o
u

s
le

v
el

o
f

a
b

st
ra

ct
io

n
,

a
ls

o
b

e
a
b

le
to

d
o

p
a
rt

it
io

n
in

g
a
n

d
m

a
p

p
in

g
o
f

th
e

a
p

p
li

-
ca

ti
o
n

o
n

a
sp

ec
ifi

c
a
rc

h
it

ec
tu

re
,

a
n

d
in

a
"s

p
ir

a
l"

a
n

d
in

cr
em

en
ta

l
p

ro
ce

ss
b

e
a
b

le
to

co
n

v
er

g
e

to
th

e
b

es
t

so
lu

ti
o
n

(i
m

p
le

m
en

ta
ti

o
n

)
b

y
m

ea
n

o
f

si
m

u
la

ti
o
n

s.
S

u
ch

k
in

d
o
f

d
ev

el
o
p

m
en

t
is

v
er

y
h

a
rd

to
d

o
w

h
en

y
o
u

h
a
v
e

se
v
er

a
l

la
n

g
u

a
g
es

to
g
et

h
er

.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

452 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

1
9

H
o
w

w
o
u

ld
y
o
u

li
k
e

to
m

o
d

el
th

e
co

m
m

u
n

ic
a
-

ti
o
n

a
n

d
th

e
sy

n
ch

ro
-

n
iz

a
ti

o
n

b
et

w
ee

n
d

iff
er

-
en

t
co

m
p

o
n

en
ts

o
f

th
e

sy
st

em
?

W
e

w
o
u

ld
li

k
e

to
h

av
e

sp
ec

ifi
c

co
n

st
ru

ct
s

to
ea

se
th

e
d

es
ig

n
p

ro
ce

ss
.

B
o
th

H
W

a
n

d
S

W
d

es
ig

n
er

s
sh

o
u

ld
b

e
a
b

le
to

m
a
n

a
g
e

co
h

er
en

tl
y

th
e

in
te

r-
fa

ce
w

it
h

o
u

t
a

d
ee

p
k

n
o
w

le
d

g
e

o
f

b
o
th

w
o
rl

d
s.

T
h

e
m

o
d

el
li

n
g

a
p

p
ro

a
ch

o
f

co
m

m
u

n
ic

a
ti

o
n

a
n

d
sy

n
ch

ro
n

iz
a
ti

o
n

b
et

w
ee

n
m

o
d

u
le

s
h

a
s

to
b

e
fl

ex
i-

b
le

en
o
u

g
h

to
co

v
er

tr
a
n

sa
ct

io
n

a
l,

cy
cl

e
a
cc

u
ra

te
,

b
it

/
si

g
n

a
l-

a
cc

u
ra

te
,

R
T

L
le

v
el

,
m

a
st

er
/
sl

a
v
e-

co
m

m
u

n
ic

a
ti

o
n

,
et

c.

W
e

w
o
u

ld
li

k
e

to
m

o
d

el
co

m
m

u
n

ic
a
ti

o
n

s
a
t

ea
ch

le
v
el

o
f

a
b

st
ra

ct
io

n
in

o
rd

er
to

b
e

a
b

le
to

d
o

re
fi

n
em

en
t

in
ex

p
a
n

d
in

g
a
n

a
b

st
ra

ct
co

m
m

u
n

ic
a
-

ti
o
n

p
ro

to
co

l
in

to
a
n

im
p

le
m

en
ta

ti
o
n

.
W

e
w

a
n

t
fi

rs
t

to
a
d

d
re

ss
T

ra
n

sa
ct

io
n

a
l

a
n

d
cy

cl
e

a
cc

u
ra

te
le

v
el

m
o

d
el

is
a
ti

o
n

.

2
0

W
h

ic
h

n
o
t[

a
t]

io
n

o
f

ti
m

e
is

o
f

in
te

re
st

?
F

o
r

d
es

cr
ip

ti
o
n

a
n

d
a
n

a
ly

si
s,

th
e

lo
w

er
le

v
el

o
f

ti
m

in
g

a
b

st
ra

ct
io

n
is

th
e

cl
o

ck
cy

cl
e.

W
e

w
o
u

ld
li

k
e

a
n
y

w
ay

to
b

e
a
b

le
to

u
se

u
n
ti

m
ed

m
o

d
el

li
n

g
w

h
er

e
ti

m
in

g
n

o
ta

ti
o
n

is
n

o
t

es
se

n
ti

a
l

to
ca

p
tu

re
th

e
fu

n
ct

io
n

a
li

ty
.

T
h

e
n

o
ta

ti
o
n

o
f

ti
m

e
h

a
s

to
b

e
fl

ex
ib

le
en

o
u

g
h

to
co

v
er

u
n

ti
m

ed
tr

a
n

sa
ct

io
n

a
l,

ti
m

ed
(e

v
en

t
tr

ig
g
er

ed
(c

lo
ck

/
si

g
n

a
l)

),
d

el
a
y

li
k
e

w
a
it

(1
0
0
,

S
C

_
M

S
),

fu
n

ct
io

n
/
m

o
d

u
le

ex
ec

u
ti

o
n

ti
m

e,
cy

cl
e-

a
cc

u
ra

te
,

b
it

/
si

g
n

a
l-

a
cc

u
ra

te

C
lo

ck
cy

cl
e,

tr
a
n

sa
ct

io
n

s

2
1

W
h

a
t

m
ea

n
s

o
b

je
ct

-
o
ri

en
te

d
H

W
/
S

W
d

es
ig

n
to

y
o
u

?

U
p

to
n

o
w

w
e

h
a
d

n
o
t

y
et

co
n

si
d

er
ed

o
b

je
ct

-
o
ri

en
te

d
H

W
-S

W
d

es
ig

n
te

ch
n

iq
u

es
U

si
n

g
cl

a
ss

es
,

o
b

je
ct

in
st

a
n

ce
s,

in
h

er
it

a
n

ce
,

p
o
ly

-
m

o
rp

h
is

m
,

v
ir

tu
a
l

in
te

rf
a
ce

s
(t

em
p

la
te

s
a
re

a
C

+
+

fe
a
tu

re
b

u
t

n
o
t

re
a
l

o
b

je
ct

o
ri

en
ta

ti
o
n

,
b

ec
a
u

se
it

is
a

p
re

-c
o
m

p
il

er
is

su
e)

M
o

d
el

li
n

g
fe

a
-

tu
re

s
o
u

tl
in

ed
a
b

ov
e

p
lu

s
a
n

a
ly

si
s

a
n

d
sy

n
th

es
is

ca
p

a
b

il
it

ie
s

(L
in

k
to

im
p

le
m

en
ta

ti
o
n

re
q

u
ir

ed
!)

T
h

is
m

ea
n

s
ea

sy
u

se
o
f

co
m

p
o
n

en
ts

b
ec

a
u

se
b

lo
ck

s
ca

n
b

e
ch

a
n

g
ed

w
it

h
o
u

t
co

n
ce

rn
fo

r
th

ei
r

im
p

le
m

en
ta

ti
o
n

,
a
ss

u
m

in
g

th
a
t

in
te

ra
ct

io
n

s
a
re

w
el

l
d

efi
n

ed
.

2
2

D
o

y
o
u

em
p

lo
y

a
n

y
o
b

je
ct

-o
ri

en
te

d
te

ch
-

n
iq

u
es

d
u

ri
n

g
th

e
d

es
ig

n
p

ro
ce

ss
?

N
o

In
S

W
y
es

,
in

H
W

n
o
t

y
et

O
b

je
ct

o
ri

en
te

d
te

ch
n

iq
u

es
a
re

u
se

d
in

S
W

d
ev

el
-

o
p

m
en

t
b

u
t

n
o
t

fo
r

th
e

m
o
m

en
t

in
H

W
d

es
ig

n
.

2
3

If
so

,
w

h
ic

h
te

ch
n

iq
u

es
d

o
y
o
u

u
se

a
n

d
w

h
er

e
in

th
e

d
es

ig
n

p
ro

ce
ss

d
o

y
o
u

u
se

th
em

?

N
o
t

a
p

p
li

ca
b

le
S

ee
2
2
,

fu
rt

h
er

m
o
re

:
w

e
u

se
C

+
+

in
cl

u
d

in
g

re
a
l

o
b

je
ct

o
ri

en
te

d
d

es
ig

n
fe

a
tu

re
s

fr
o
m

co
n

ce
p

t
u

n
ti

l
se

ri
es

co
d

e.

-

2
4

W
h

a
t

a
re

th
ei

r
b

en
efi

ts
?

N
o
t

a
p

p
li

ca
b

le
R

eu
se

,
cr

ea
ti

o
n

o
f

li
b

ra
ri

es
a
n

d
IP

,
en

ca
p

su
la

ti
o
n

,
re

d
u

ce
d

d
ev

el
o
p

m
en

t
ti

m
e,

le
ss

er
ro

r-
p

ro
n

e
(S

ee
st

a
n

d
a
rd

a
rg

u
m

en
ts

fo
r

O
O

so
ft

w
a
re

d
es

ig
n

)

-

2
5

W
h

a
t

is
th

e
co

m
p

le
x

it
y

o
f

th
e

so
ft

w
a
re

in
te

rm
s

o
f

li
n

es
o
f

co
d

e,
n

u
m

-
b

er
o
f

ta
sk

s,
a
m

o
u

n
t

o
f

m
em

o
ry

,
..

.?

F
o
cu

si
n

g
o
n

o
u

r
ta

rg
et

te
ch

n
o
lo

g
y

(P
la

tf
o
rm

F
P

G
A

),
w

e
h

av
e

in
g
en

er
a
l

a
p

p
li

ca
ti

o
n

s
o
f

so
m

e
th

o
u

sa
n

d
s

o
f

li
n

es
o
f

co
d

e
(1

0
0
0
-8

0
0
0
).

In
so

m
e

ca
se

s
th

is
co

d
e

is
in

p
a
rt

d
ev

el
o
p

ed
fr

o
m

sc
ra

tc
h

a
n

d
in

p
a
rt

in
h

er
it

ed
fr

o
m

p
re

v
io

u
s

re
le

a
se

s
o
f

th
e

a
p

p
li

ca
ti

o
n

s.
O

ft
en

th
er

e
is

o
n

ly
o
n

e
ta

sk
w

it
h

in
te

rr
u

p
t

b
a
se

d
h

a
n

d
li

n
g

o
f

th
e

fu
n

ct
io

n
s.

M
em

o
ry

is
ex

tr
em

el
y

p
ro

je
ct

re
la

te
d

.
It

sp
a
n

s
fr

o
m

5
0
0
K

b
it

s
to

so
m

e
M

b
it

s.

T
h

is
a
b

so
lu

te
ly

d
iff

er
s

b
et

w
ee

n
d

iff
er

en
t

fu
n

c-
ti

o
n

s.
F

u
rt

h
er

m
o
re

,
th

e
u

se
d

O
S

o
n

S
W

sh
o
u

ld
b

e
a
d

d
ed

to
th

e
co

m
p

le
x

it
y

o
f

a
d

es
ig

n
.

U
su

a
ll

y
th

er
e

a
re

se
v
er

a
l

ta
sk

s
ru

n
n

in
g

in
p

a
ra

ll
el

in
S

W
a
n

d
H

W
.

T
h

e
m

em
o
ry

ca
n

b
e

a
fe

w
b
y

te
s

u
p

to
a

fe
w

M
B

y
te

s.

T
h

is
d

ep
en

d
s

o
n

th
e

a
p

p
li

ca
ti

o
n

s
o
f

co
u

rs
e.

In
o
u

r
co

m
m

u
n

ic
a
ti

o
n

sy
st

em
s

m
o
st

o
f

o
u

r
S

o
ft

w
a
re

w
o
rk

-p
a
ck

a
g
es

a
re

5
0
-2

0
0

K
S

L
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

453

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

2
6

H
ow

im
p

o
rt

a
n

t
is

m
u

lt
i-

ta
sk

in
g
?

F
o
cu

si
n

g
o
n

o
u

r
ta

rg
et

te
ch

n
o
lo

g
y

(P
la

tf
o
rm

F
P

G
A

),
a
s

fa
r

a
s

w
e

co
n

ce
rn

,
m

u
lt

it
a
sk

in
g

is
n

o
t

m
a
n

d
a
to

ry
a
t

th
e

b
eg

in
n

in
g
.

In
g
en

er
a
l

w
e

d
ea

l
w

it
h

th
e

im
p

le
m

en
ta

ti
o
n

o
f

se
v
er

a
l
fu

n
ct

io
n

s
o
n

a
p

la
tf

o
rm

w
h

ic
h

h
a
s

o
n

e
o
r

m
o
re

p
ro

ce
ss

o
rs

a
n

d
m

il
li

o
n

s
lo

g
ic

g
a
te

s
a
v
a
il

a
b

le
.

In
p

ri
n

ci
p

le
,

a
n

y
fu

n
ct

io
n

co
u

ld
b

e
im

p
le

m
en

te
d

u
si

n
g

se
v

-
er

a
l

’s
im

p
le

’
p

ro
ce

ss
o
rs

p
er

fo
rm

in
g

a
si

n
g
le

ta
sk

w
it

h
o
u

t
a
n

O
S

o
n

b
o
a
rd

.
A

lt
er

n
a
ti

v
el

y
w

e
co

u
ld

u
se

a
m

o
re

co
m

p
le

x
p

ro
ce

ss
o
r

w
it

h
a

R
T

O
S

to
p

er
fo

rm
th

e
ta

sk
s

m
a
n

a
g
em

en
t.

O
f

co
u

rs
e

th
e

d
es

ig
n

n
ee

d
s

w
il

l
d

ri
v
e

th
e

te
ch

n
ic

a
l

ch
o
ic

e.
In

g
en

er
a
l

w
e

ca
n

st
a
rt

w
it

h
th

e
ea

si
er

a
rc

h
it

ec
tu

re
a
n

d
a
d

d
m

u
lt

it
a
sk

in
g

in
a

su
b

se
q

u
en

t
p

h
a
se

if
p

o
ss

ib
le

.

D
u

e
to

th
e

fa
ct

th
a
t

w
e

u
se

a
re

a
l

ti
m

e
O

S
,

w
it

h
se

v
er

a
l

th
re

a
d

s
ru

n
n

in
g

o
n

it
,

m
u

lt
it

h
re

a
d

in
g

is
a

m
u

st
in

S
W

p
a
rt

it
io

n
s.

In
H

W
a
n
y

p
ro

ce
ss

is
ru

n
n

in
g

in
p

a
ra

ll
el

.
T

h
er

ef
o
re

w
e

ca
n

sa
y

th
a
t

w
e

h
av

e
se

v
er

a
l

th
re

a
d

s
ru

n
n

in
g

in
p

a
ra

ll
el

.
W

e
a
re

u
si

n
g

p
ro

ce
ss

es
in

H
W

+
S

W
th

a
t

a
re

w
o
rk

in
g

o
n

co
m

p
le

te
ly

d
iff

er
en

t
ta

sk
s/

is
su

es
b

es
id

e
th

e
’l

o
w

le
v
el

’
p

ro
ce

ss
es

th
a
t

e.
g
.

’j
u

st
’

sy
n

ch
ro

n
iz

e
so

m
e

in
p

u
t

d
a
ta

to
th

e
in

te
rn

a
l

cl
o

ck
.

M
u

lt
it

a
sk

in
g

is
m

o
re

a
n

d
m

o
re

u
se

,
it

is
im

p
o
r-

ta
n

t
to

m
a
n

a
g
e

ti
m

e
in

co
m

p
le

x
a
p

p
li

ca
ti

o
n

s.
M

o
re

o
v
er

,
a
p

p
li

ca
ti

o
n

s
a
re

b
ec

o
m

in
g

m
o
re

a
n

d
m

o
re

"d
y

n
a
m

ic
"

w
it

h
ta

sk
s

ru
n

n
in

g
in

p
a
ra

ll
el

o
n

d
iff

er
en

t
H

W
re

so
u

rc
es

.

2
7

D
o
es

th
e

so
ft

w
a
re

h
a
v
e

re
a
l-

ti
m

e
co

n
st

ra
in

ts
?

Y
es

.
O

u
r

d
es

ig
n

s
a
re

in
th

e
in

fr
a
st

ru
ct

u
re

te
le

-
co

m
d

o
m

a
in

.
W

e
su

re
ly

h
av

e
ti

m
in

g
co

n
st

ra
in

ts
fo

r
th

e
d

es
ig

n
p

o
rt

io
n

re
la

te
d

to
v
o
ic

e
m

a
n

a
g
e-

m
en

t
a
n

d
so

w
e

ca
n

co
n

si
d

er
th

em
a
s

re
a
l-

ti
m

e
co

n
st

ra
in

ts
.

W
e

ca
n

h
a
v
e

m
o
re

re
la

x
ed

ti
m

in
g

co
n

st
ra

in
ts

fo
r

d
es

ig
n

re
la

te
d

to
d

a
ta

m
a
n

a
g
e-

m
en

t.

W
e

a
re

u
si

n
g

a
re

a
l

ti
m

e
O

S
a
n

d
w

e
d

efi
n

it
el

y
n

ee
d

th
e

re
a
l
ti

m
e

ca
p

a
b

il
it

y
to

sc
h

ed
u

le
d

iff
er

en
t

jo
b

s/
ta

sk
s

b
y

se
tt

in
g

re
a
l

ti
m

e
co

n
st

ra
in

ts
.

S
o

th
e

a
n

sw
er

is
y
es

.

B
ec

a
u

se
w

e
d

es
ig

n
co

m
m

u
n

ic
a
ti

o
n

a
p

p
li

ca
ti

o
n

s,
h

a
rd

re
a
l-

ti
m

e
co

n
st

ra
in

ts
a
re

p
re

se
n

t
a
t

b
a
se

-
b

a
n

d
p

ro
ce

ss
in

g
.

S
o
ft

re
a
l-

ti
m

e
fo

r
p

ro
to

co
l

im
p

le
m

en
ta

ti
o
n

2
8

W
h

a
t

is
/
a
re

y
o
u

r
cu

r-
re

n
t

im
p

le
m

en
ta

ti
o
n

la
n

-
g
u

a
g
e(

s)
fo

r
th

e
so

ft
-

w
a
re

?

F
o
cu

si
n

g
th

e
a
n

sw
er

o
n

P
la

tf
o
rm

F
P

G
A

s,
th

e
so

ft
w

a
re

im
p

le
m

en
ta

ti
o
n

la
n

g
u

a
g
e

is
st

ri
ct

ly
co

n
-

st
ra

in
ed

b
y

th
e

d
es

ig
n

en
v

ir
o
n

m
en

t
re

q
u

ir
em

en
ts

se
t

b
y

th
e

ch
o
se

n
’F

P
G

A
fo

u
n

d
ry

’.
In

g
en

er
a
l

w
e

u
se

’C
/
C

+
+

’
o
r

a
d

ia
le

ct
o
f

’C
/
C

+
+

’
th

a
t

m
ea

n
s

’C
/
C

+
+

’
p

lu
s

sp
ec

ia
l

p
ro

ce
d

u
re

s
a
n

d
li

b
ra

ri
es

a
v
a
il

a
b

le
in

th
e

ch
o
se

n
d

es
ig

n
en

v
ir

o
n

-
m

en
t

a
n

d
n

ec
es

sa
ry

to
in

te
ra

ct
w

it
h

th
e

sp
e-

ci
fi

c
ta

rg
et

.
U

su
a
ll

y
w

e
u

se
sp

ec
ia

li
ze

d
G

N
U

co
m

p
il

er
s

en
h

a
n

ce
d

to
ex

p
lo

it
P

la
tf

o
rm

F
P

G
A

ch
a
ra

ct
er

is
ti

cs
.

C
a
n

d
C

+
+

p
lu

s
a

fe
w

li
n

es
o
f

a
ss

em
b

le
r

in
li

n
e

co
d

e
(d

ir
ec

tl
y

a
d

d
ed

in
to

th
e

C
/
C

+
+

so
u

rc
e

co
d

e
o
r

en
ca

p
su

la
te

d
in

C
/
C

+
+

fu
n

ct
io

n
s/

li
-

b
ra

ri
es

).
In

th
e

a
u

to
m

o
ti

v
e

a
re

a
sy

n
ch

ro
n

o
u

s
la

n
-

g
u

a
g
es

li
k
e

th
e

im
p

er
a
ti

v
e

la
n

g
u

a
g
e

E
S

T
E

R
E

L
a
n

d
th

e
d

a
ta

-fl
o
w

la
n

g
u

a
g
e

L
U

S
T

R
E

a
re

a
ls

o
im

p
o
rt

a
n

t.

W
e

a
re

u
si

n
g

C
(s

o
m

et
im

es
C

+
+

)
la

n
g
u

a
g
e

a
n

d
so

m
et

im
es

a
ss

em
b

ly
co

d
e

fo
r

in
n

er
lo

o
p

s
in

si
g
n

a
l

p
ro

ce
ss

in
g

a
p

p
li

ca
ti

o
n

s
o
n

th
e

D
S

P
si

d
e.

2
9

W
h

a
t

is
th

e
co

m
p

le
x

it
y

o
f

th
e

h
a
rd

w
a
re

in
te

rm
s

o
f

li
n

es
o
f

co
d

e,
n

u
m

-
b

er
o
f

en
ti

ti
es

,
n

u
m

b
er

o
f

g
a
te

s,
..

.?

T
y

p
ic

a
l

F
P

G
A

b
a
se

d
H

W
:

fr
o
m

1
0
0

to
1
3
0

V
H

D
L

fi
le

s
a
n

d
co

n
se

q
u

en
tl

y
en

ti
ti

es
;

ea
ch

fi
le

fr
o
m

5
0

to
2
k

li
n

es
;

fr
o
m

1
0
k

to
3
0
K

F
F

s,
fr

o
m

1
5
k

to
4
5
K

L
U

T
s.

A
n

g
a
te

eq
u

iv
a
le

n
t

fr
o
m

a
fe

w
1
0
0
0

g
a
te

s
to

a
se

v
er

a
l

1
0
0
k

g
a
te

s,
d

ep
en

d
in

g
o
n

th
e

a
p

p
li

ca
ti

o
n

.
F

o
r

co
m

p
le

x
F

P
G

A
w

e
ca

n
h

av
e

1
0

0
0
0

li
n

es
o
f

co
d

e
(

in
se

v
er

a
l

fi
le

s)
,

it
d

ep
en

d
s

o
n

th
e

d
es

ig
n

a
n

d
it

s
n

a
tu

re
.

F
o
r

S
ig

n
a
l

p
ro

ce
ss

in
g

w
e

h
a
v
e

le
ss

li
n

es
o
f

co
d

e
fo

r
m

o
re

g
a
te

s
a
n

d
fo

r
co

n
tr

o
l

a
n

d
in

te
rc

o
n

n
ec

ti
o
n

s
it

is
th

e
o
p

p
o
si

te
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

454 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

3
0

W
h

a
t

is
/
a
re

y
o
u

r
cu

r-
re

n
t

im
p

le
m

en
ta

ti
o
n

la
n

-
g
u

a
g
e(

s)
fo

r
th

e
h

a
rd

-
w

a
re

?

V
H

D
L

fo
r

R
T

L
le

v
el

a
n

d
V

er
il

o
g

fo
r

N
et

li
st

(g
a
te

le
v
el

)
d

es
cr

ip
ti

o
n

.
V

H
D

L
a
n

d
v
er

y
fe

w
li

n
es

o
f

V
er

il
o
g

(a
s

so
u

rc
e

co
d

e
o
r

n
et

li
st

)
if

IP
is

b
ei

n
g

u
se

d
.

W
e

a
re

u
si

n
g

V
H

D
L

a
n

d
v
er

y
ra

re
ly

,
w

h
en

u
si

n
g

IP
s,

V
er

il
o
g

3
1

D
o

y
o
u

p
er

fo
rm

a
n

y
h

a
rd

w
a
re

/
so

ft
w

a
re

co
-

si
m

u
la

ti
o
n

?
H

o
w

?

T
a
rg

et
in

g
P

la
tf

o
rm

F
P

G
A

s,
in

o
u

r
fi

rs
t

tr
ia

ls
w

e
u

se
a

d
ev

el
o
p

m
en

t
b

o
a
rd

(c
o
m

m
er

ci
a
l

o
r

h
o
u

se
-

d
es

ig
n

ed
)

to
p

er
fo

rm
so

m
e

v
er

ifi
ca

ti
o
n

fo
r

h
w

-
sw

d
es

ig
n

.
T

h
is

a
p

p
ro

a
ch

w
a
s

p
o
ss

ib
le

d
u

e
to

th
e

sm
a
ll

d
im

en
si

o
n

o
f

S
W

p
o
rt

io
n

o
f

th
e

d
e-

si
g
n

.
A

t
th

e
m

o
m

en
t

w
e

h
a
v
en

’t
y
et

d
efi

n
ed

a
w

el
l-

st
ru

ct
u

re
d

m
et

h
o
d

a
n

d
to

o
l

se
t

to
p

er
fo

rm
H

W
/
S

W
co

si
m

u
la

ti
o
n

ev
en

if
w

e
a
re

aw
a
re

th
a
t

co
m

m
er

ci
a
l

en
v

ir
o
n

m
en

ts
a
re

a
v
a
il

a
b

le
(S

ea
m

-
le

ss
V

ir
te

x
II

P
ro

co
si

m
u

la
ti

o
n

p
a
ck

a
g
e)

O
n

ly
fo

r
ev

a
lu

a
ti

o
n

p
u

rp
o
se

:
u

p
to

n
ow

b
y

p
ro

-
p

ri
et

a
ry

,
h

id
d

en
to

o
l

im
p

le
m

en
ta

ti
o
n

s
o
f

d
es

ig
n

to
o
ls

o
r

b
y

si
m

u
la

ti
o
n

to
o
ls

w
it

h
a
n

o
p

en
in

te
r-

fa
ce

li
k
e

M
o
d

el
S

im
.

F
o
r

H
W

p
ro

to
ty

p
in

g
u

si
n

g
v
en

d
o
r

sp
ec

ifi
c

p
la

tf
o
rm

s
li

k
e

A
R

M
D

ev
el

o
p

er
S

u
it

e,
et

c.

F
o
r

v
er

ifi
ca

ti
o
n

w
e

u
se

d
ev

el
o
p

m
en

t
b

o
a
rd

.
F

o
r

p
la

tf
o
rm

,
w

it
h

A
R

M
p

ro
ce

ss
o
r

fo
r

ex
a
m

p
le

,
ca

n
u

se
S

ea
m

le
ss

to
o
l

fo
r

co
si

m
u

la
ti

o
n

.

3
2

W
h

ic
h

co
n

st
ra

in
ts

/
co

n
-

d
it

io
n

s
a
re

es
se

n
ti

a
l

to
fi

n
d

a
su

it
a
b

le
H

W
/
S

W
p

a
rt

it
io

n
in

g
?

P
o
ss

ib
il

it
y

to
ev

a
lu

a
te

fr
o
m

th
e

ea
rl

y
p

h
a
se

s
th

e
fe

a
si

b
il

it
y

in
te

rm
o
f

m
em

o
ry

o
cc

u
p

a
ti

o
n

,
h

w
re

so
u

rc
es

u
se

d
,

ti
m

in
g

co
n

st
ra

in
ts

,
co

st
o
f

in
te

rc
o
n

n
ec

ti
o
n

s.

A
re

a
,

sp
ee

d
,

eff
o
rt

fo
r

im
p

le
m

en
ta

ti
o
n

,
fl

ex
ib

il
it

y,
ex

is
ti

n
g

IP
,

a
v
a
il

a
b

le
co

m
p

o
n

en
ts

(l
ik

e
p

ro
ce

s-
so

rs
).

T
h

e
m

o
st

im
p

o
rt

a
n

t
p

o
in

t
is

:
k
ee

p
th

e
co

st
s

a
s

lo
w

a
s

p
o
ss

ib
le

(o
f

co
u

rs
e

re
q

u
ir

em
en

ts
h

av
e

to
b

e
fu

lfi
ll

ed
)

a
n

d
ta

k
e

re
sp

ec
t

o
f

th
e

cu
s-

to
m

er
s

p
re

se
ts

(µ
C

to
b

e
u

se
d

et
c.

)

T
o

fi
n

d
a

su
it

a
b

le
p

a
rt

it
io

n
in

g
w

it
h

h
av

e
to

ta
k
e

in
to

a
cc

o
u

n
t:

•
T

im
e

co
n

st
ra

in
ts

,
•

P
ro

ce
ss

in
g

effi
ci

en
cy

•
F

le
x

ib
il

it
y

•
P

o
w

er
co

n
su

m
p

ti
o
n

3
3

A
t

w
h

ic
h

p
h

a
se

o
f

th
e

d
es

ig
n

fl
ow

a
re

y
o
u

p
la

n
-

n
in

g
to

d
eb

u
g

th
e

d
es

ig
n

(b
ef

o
re

o
r

a
ft

er
th

e
h

ig
h

-
le

v
el

sy
n

th
es

is
)?

S
W

d
eb

u
g
g
in

g
a
n

d
H

W
v
er

ifi
ca

ti
o
n

ta
k
e

p
la

ce
se

v
er

a
l

ti
m

e
a
t

d
iff

er
en

t
d

es
ig

n
p

h
a
se

s.
It

’s
a

co
n

ti
n

u
o
u

s
p

ro
ce

ss
In

o
u

r
o
p

in
io

n
w

e
sh

o
u

ld
p

la
n

a
fu

n
ct

io
n

a
l

d
eb

u
g
/
v
er

ifi
ca

ti
o
n

a
s

so
o
n

a
s

p
o
ss

ib
le

in
th

e
d

es
ig

n
fl

o
w

,
co

n
se

q
u

en
tl

y
a
ls

o
b

ef
o
re

a
n

y
sy

n
th

es
is

ta
sk

.
T

h
e

d
eb

u
g
/
v
er

if
y

p
ro

ce
ss

h
a
s

to
b

e
p

er
fo

rm
ed

in
ev

er
y

d
es

ig
n

p
h

a
se

,
w

it
h

a
n

in
cr

ea
si

n
g

d
et

a
il

le
v
el

a
n

d
w

it
h

a
p

p
ro

p
ri

a
te

to
o
ls

(n
o
t

a
lw

a
y

s
a
v
a
il

a
b

le
to

d
a
y

)

A
lg

o
ri

th
m

ic
v
er

ifi
ca

ti
o
n

w
it

h
to

o
ls

li
k
e

M
a
tl

a
b

u
su

a
ll

y
st

a
rt

s
b

ef
o
re

C
+

+
im

p
le

m
en

ta
ti

o
n

.
T

h
e

d
eb

u
g
g
in

g
o
f

th
e

d
es

ig
n

is
a
cc

o
m

p
a
n

ie
d

b
y

th
e

im
p

le
m

en
ta

ti
o
n

(i
f

a
p

ie
ce

o
f

co
d

e
h

a
s

b
ee

n
ed

it
ed

,
it

w
il

l
b

e
si

m
u

la
te

d
).

U
n

fo
rt

u
n

a
te

ly
it

is
v
er

y
h

a
rd

to
si

m
u

la
te

th
e

co
m

p
le

te
d

es
ig

n
w

h
il

e
p

a
rt

s
a
re

re
a
d

y
o
n

ly
.

F
u

rt
h

er
m

o
re

,
d

eb
u

g
g
in

g
o
f

re
a
l

ti
m

e
sy

st
em

s
ca

n
b

ec
o
m

e
re

a
ll

y
co

m
p

li
-

ca
te

d
.

In
g
en

er
a
l

,
v
er

ifi
ca

ti
o
n

/
d

eb
u

g
g
in

g
sh

o
u

ld
b

e
p

o
ss

ib
le

a
s

so
o
n

a
s

p
o
ss

ib
le

to
su

p
p

o
rt

a
n

ea
rl

y
(m

o
d

el
-b

a
se

d
)

in
te

g
ra

ti
o
n

te
st

.

D
eb

u
g

o
f

th
e

d
es

ig
n

ta
k
es

p
la

ce
a
t

ea
ch

st
ep

o
f

th
e

d
es

ig
n

fl
o
w

.
It

a
a
n

it
er

a
ti

v
e

p
ro

ce
ss

.
W

e
h

a
v
e

to
d

eb
u

g
b

ef
o
re

th
e

sy
n

th
es

is
st

ep
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

455

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

3
4

W
h

ic
h

la
n

g
u

a
g
e

sh
o
u

ld
b

e
su

p
p

o
rt

ed
fr

o
m

th
e

h
ig

h
le

v
el

sy
n

th
es

is
fo

r
th

e
h

a
rd

w
a
re

?

V
H

D
L

If
th

e
q

u
es

ti
o
n

re
fe

rs
to

th
e

im
p

o
rt

a
n

ce
o
f

th
e

o
u

tp
u

t
fo

rm
a
t

o
f

h
ig

h
le

v
el

sy
n
th

es
is

th
e

a
n

sw
er

is
:

V
H

D
L

(i
s

a
m

u
st

),
S

y
st

em
C

(m
ig

h
t

b
ec

o
m

e
v
er

y
im

p
o
rt

a
n

t,
o
n

ce
S

y
st

em
C

sy
n

th
es

is
to

o
ls

b
ec

o
m

e
m

o
re

p
o
p

u
la

r,
m

ig
h

t
b

e
im

p
o
rt

a
n

t
fo

r
b

eh
a
v

io
u

ra
l

sy
n

th
es

is
to

o
ls

.
F

u
rt

h
er

m
o
re

S
y

s-
te

m
C

o
u

tp
u

t
ca

n
ea

si
ly

b
e

u
se

d
in

si
d

e
th

e
sa

m
e

te
st

b
en

ch
a
s

th
e

h
ig

h
le

v
el

d
es

ig
n

d
es

cr
ip

ti
o
n

)
If

th
e

q
u

es
ti

o
n

re
fe

rs
to

th
e

im
p

o
rt

a
n

ce
o
f

th
e

in
p

u
t

fo
rm

a
t

fo
r

h
ig

h
le

v
el

sy
n

th
es

is
th

e
a
n

sw
er

is
:

O
S

S
S

in
a
d

d
it

io
n

to
a
b

ov
e

m
en

ti
o
n

ed
V

H
D

L
/

S
y

st
em

C

If
w

e
a
re

sp
ea

k
in

g
o
f

th
e

o
u

tp
u

t
o
f

th
e

h
ig

h
le

v
el

sy
n

th
es

is
it

is
V

H
D

L
.

3
5

W
h

ic
h

la
n

g
u

a
g
e

sh
o
u

ld
b

e
su

p
p

o
rt

ed
fr

o
m

th
e

h
ig

h
le

v
el

sy
n

th
es

is
fo

r
th

e
so

ft
w

a
re

?

C
/
C

+
+

S
y

n
th

es
iz

a
b

le
su

b
se

t
o
f

S
y

st
em

C
,

C
/
C

+
+

co
n

-
st

ru
ct

s
in

si
d

e
sy

n
th

es
iz

a
b

le
S

y
st

em
C

co
n

st
ru

ct
If

w
e

a
re

sp
ea

k
in

g
o
f

th
e

o
u

tp
u

t
o
f

th
e

h
ig

h
le

v
el

sy
n

th
es

is
it

is
C

/
C

+
+

o
r

em
b

ed
d

ed
C

.

3
6

H
o
w

im
p

o
rt

a
n

t
is

it
fo

r
y
o
u

to
g
et

re
a
d

a
b

le
g
en

-
er

a
te

d
o
u

tp
u

t
(V

H
D

L
,

S
y

st
em

C
,

..
.)

o
u

t
o
f

th
e

h
ig

h
le

v
el

sy
n

th
es

is
re

-
su

lt
?

W
h

y
?

It
is

im
p

o
rt

a
n

t
in

p
a
rt

ic
u

la
r

w
h

en
y
o
u

h
a
v
e

to
so

lv
e

ti
m

in
g

p
ro

b
le

m
s,

a
ss

ig
n

in
g

sp
ec

ifi
c

co
n

-
st

ra
in

ts
o
n

so
m

e
p

a
rt

ic
u

la
r

o
b

je
ct

s
b

ef
o
re

sy
n

-
th

es
is

o
r

a
ft

er
it

o
r

d
u

ri
n

g
fl

o
o
rp

la
n

n
in

g
.

If
th

e
V

H
D

L
R

T
L

is
n

o
t

re
a
d

a
b

le
,

th
e

g
en

er
a
te

d
n

et
li

st
w

il
l

b
e

co
m

p
le

te
ly

cr
y

p
ti

c:
it

w
il

l
b

e
a
lm

o
st

im
-

p
o
ss

ib
le

to
in

se
rt

sp
ec

ia
l

co
n

st
ra

in
ts

.
W

h
en

y
o
u

n
ee

d
a

so
p

h
is

ti
ca

te
d

a
n

d
a
cc

u
ra

te
m

a
n

ip
u

la
ti

o
n

o
f

th
e

b
a
ck

en
d

n
et

li
st

to
so

lv
e

co
m

p
le

x
im

p
le

-
m

en
ta

ti
o
n

p
ro

b
le

m
s,

y
o
u

n
ee

d
a

tr
a
ce

a
b

le
in

p
u

t.

T
h

e
im

p
o
rt

a
n

ce
in

si
d

e
C

o
m

p
a
n

y
2

is
fr

o
m

im
-

p
o
rt

a
n

t
to

v
er

y
im

p
o
rt

a
n

t!
O

n
a

ra
n

g
e

fr
o
m

0
(l

o
w

)
to

1
0

(h
ig

h
)

it
w

o
u

ld
b

e
a

7
to

9
.

T
h

e
re

a
so

n
is

to
h

a
v
e

a
n

o
p

ti
o
n

fo
r

a
d

es
ig

n
er

to
fi

n
d

a
b

u
g

if
sy

n
th

es
is

d
o
es

n
’t

p
ro

d
u

ce
th

e
ex

-
p

ec
te

d
re

su
lt

s
(e

.g
.

h
a
v

in
g

in
m

in
d

th
a
t

ev
er

y
to

o
l

h
a
s

so
m

e
b

u
g
s

a
n

d
fu

rt
h

er
m

o
re

a
d

es
ig

n
er

m
ig

h
t

ca
u

se
a

w
ro

n
g

sy
n

th
es

is
b

y
w

ro
n

g
co

d
-

in
g

st
y

le
o
r

se
tt

in
g

w
ro

n
g

sy
n

th
es

is
p

a
ra

m
et

er
s.

T
h

is
a
ll

m
ig

h
t

cr
ea

te
d

ef
ec

t
d

es
ig

n
s

th
a
t

n
ee

d
to

b
e

d
eb

u
g
g
ed

to
fi

n
d

th
e

p
ro

b
le

m
in

o
rd

er
to

fi
x

it
).

T
h

u
s

d
eb

u
g
g
in

g
o
f

in
te

rm
ed

ia
te

d
es

ig
n

st
ep

s
is

re
q

u
ir

ed
.

T
h

er
ef

o
re

,
th

e
m

o
re

th
e

co
d

e
is

re
a
d

a
b

le
,

th
e

b
et

te
r

it
is

.

It
is

im
p

o
rt

a
n

t
fo

r
d

eb
u

g
if

a
n

y
p

ro
b

le
m

o
cc

u
rs

a
n

d
fo

r
ti

m
in

g
co

n
st

ra
in

ts
.

W
e

d
o

n
o
t

w
a
n

t
to

m
o

d
if

y
th

is
g
en

er
a
te

d
co

d
e.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

456 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

3
7

W
h

a
t

k
in

d
o
f

sy
n

th
es

is
to

o
ls

a
n

d
co

m
p

il
er

s
a
re

y
o
u

p
la

n
n

in
g

to
u

se
a
ft

er
th

e
h

ig
h

le
v
el

sy
n
th

es
is

?

S
y

n
th

es
is

to
o
l:

S
y

n
p

li
fy

P
ro

b
y

S
y

n
p

li
ci

ty
.

C
o
m

-
p

il
er

s:
X

il
in

x
P

la
tf

o
rm

F
P

G
A

S
W

fl
ow

is
b

a
se

d
o
n

en
h

a
n

ce
d

v
er

si
o
n

s
o
f

G
N

U
T

o
o
ls

ta
rg

et
ed

o
n

M
ic

ro
B

la
ze

a
n

d
P

ow
er

P
C

:
m

b
-g

cc
co

m
p

il
er

,
m

b
-

a
s

a
ss

em
b

le
r

a
n

d
m

b
-l

d
lo

a
d

er
/
li

n
k
er

;
p

o
w

er
p

c-
ea

b
i-

g
cc

co
m

p
il

er
,

p
o
w

er
p

c-
ea

b
i-

a
s

a
ss

em
b

le
r

a
n

d
th

e
p

o
w

er
p

c-
ea

b
i-

ld
li

n
k
er

.
S

o
m

e
o
p

ti
o
n

s
h

a
v
e

b
ee

n
a
d

d
ed

o
r

en
h

a
n

ce
d

in
th

e
G

N
U

to
o
l

su
it

e
fo

r
th

e
E

D
K

.
B

o
th

th
e

co
m

p
il

er
s

(p
ow

er
p

c-
ea

b
i-

g
cc

a
n

d
m

b
-g

cc
)

u
se

ce
rt

a
in

li
b

ra
ri

es
fo

r
a
ll

th
e

p
ro

g
ra

m
,

a
n

d
in

p
a
rt

ic
u

la
r

th
e

o
n

e
w

h
ic

h
co

n
-

ta
in

s
d

ri
v
er

s,
so

ft
w

a
re

se
rv

ic
es

(s
u

ch
a
s

X
il

N
et

&
X

il
M

F
S

)
a
n

d
in

it
ia

li
za

ti
o
n

fi
le

s
d

ev
el

o
p

ed
fo

r
th

e
E

D
K

to
o
ls

.
h

e
m

ic
ro

b
la

ze
co

m
p

il
er

o
p

ti
o
n

s
n

ew
w

it
h

re
sp

ec
t

to
G

N
U

st
a
n

d
a
rd

co
m

p
il

er
a
re

re
la

te
d

to
th

e
p

o
ss

ib
il

it
y

o
f

ex
p

lo
it

p
a
rt

ic
u

la
r

ch
a
ra

ct
er

is
ti

cs
o
f

th
e

ta
rg

et
ed

p
ro

ce
ss

o
r,

m
ic

ro
b

-
la

ze
o
r

p
p

c
(f

o
r

ex
a
m

p
le

th
e

ch
o
ic

e
to

u
se

h
w

m
u

lt
ip

li
er

o
r

n
o
t)

o
r

to
sp

ec
ifi

c
o
n

-b
o
a
rd

d
eb

u
g
-

g
in

g
o
p

er
a
ti

o
n

s.
T

h
e

P
o
w

er
P

C
G

N
U

co
m

p
il

er
(p

o
w

er
p

c-
ea

b
i-

g
cc

)
is

b
u

il
t

u
si

n
g

th
e

G
N

U
g
cc

v
er

si
o
n

2
.9

5
.3

-4
.

N
o

en
h

a
n

ce
m

en
ts

h
a
v
e

b
ee

n
d

o
n

e
to

th
e

co
m

p
il

er
.

T
h

e
P

o
w

er
P

C
co

m
p

il
er

d
o
es

n
o
t

su
p

p
o
rt

a
n

y
sp

ec
ia

l
o
p

ti
o
n

s.
A

ll
th

e
li

st
ed

co
m

m
o
n

o
p

ti
o
n

s
a
re

su
p

p
o
rt

ed
b

y
th

e
p

o
w

er
p

c-
ea

b
i

co
m

p
il

er
.

C
u

rr
en

tl
y

th
e

te
a
m

ex
-

p
er

ie
n

ce
re

fe
rs

m
a
in

ly
to

X
il

in
x

b
u

t
th

e
A

lt
er

a
en

v
ir

o
n

m
en

t
is

co
m

p
a
ra

b
le

.
th

e
sw

T
o

o
l

C
h

a
in

is
b

a
se

d
o
n

th
e

st
a
n

d
a
rd

G
N

U
C

co
m

p
il

er
(G

C
C

)
co

m
p

il
er

,
a
ss

em
b

le
r,

li
n

k
er

,
a
n

d
m

a
k
efi

le
fa

ci
li

-
ti

es
.

V
H

D
L

:
S

y
n

o
p

sy
s

d
c_

co
m

p
il

er
,

b
u

t
th

e
cr

ea
te

d
o
u

tp
u

t
sh

o
u

ld
b

e
g
en

er
a
ll

y
v
a
li

d
a
n

d
n

o
t

re
-

st
ri

ct
ed

to
a

sp
ec

ia
l

to
o
l.

C
+

+
:

a
n

y
st

a
n

d
a
rd

C
+

+
co

m
p

il
er

W
e

a
re

u
si

n
g

fo
r

F
P

G
A

d
es

ig
n

:
•

S
u

m
m

it
V

is
u

a
lH

D
L

:
6
.7

•
S

u
m

m
it

V
is

u
a
lE

li
te

:
3
.5

•
T

ex
tu

a
l

ed
it

o
rs

li
k
e

g
ra

sp
,

u
lt

ra
ed

it
,

em
a
cs

•
C

a
d

en
ce

N
C

S
im

ld
v

4
.1

,
ld

v
5
.0

•
S

y
n

p
li

fy
P

ro
7
.6

•
M

en
to

r
G

ra
p

h
ic

s
M

o
d

el
S

im
5
.8

•
M

en
to

r
G

ra
p

h
ic

s
L

eo
n

a
rd

o
S

p
ec

-
tr

u
m

2
0
0
3
.a

,
P

re
ci

si
o
n

2
0
0
4
.a

•
A

lt
er

a
M

a
x

p
lu

s2
1
0
.2

•
A

lt
er

a
Q

u
a
rt

u
s2

4
.0

•
X

il
in

x
IS

E
m

6
.2

i
W

e
a
re

u
si

n
g

D
es

ig
n

C
o
m

p
li

er
fo

r
A

S
IC

.
F

o
r

so
ft

w
a
re

w
e

a
re

u
si

n
g

a
n
y

C
a
n

d
C

+
+

co
m

p
il

er
.

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

457

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

3
8

H
ow

d
o

y
o
u

m
o

d
el

/
re

a
l-

iz
e

th
e

co
m

m
u

n
ic

a
ti

o
n

a
n

d
sy

n
ch

ro
n

iz
a
ti

o
n

in
a

h
a
rd

w
a
re

/
so

ft
w

a
re

d
e-

si
g
n

u
p

to
k

n
o
w

?

U
p

to
n

ow
,

fo
r

th
e

P
la

tf
o
rm

F
P

G
A

ta
rg

et
te

ch
-

n
o
lo

g
y,

d
u

e
to

th
e

la
ck

o
f

a
u

to
m

a
ti

o
n

w
e

re
li

ed
u

p
o
n

th
e

li
m

it
ed

m
et

h
o

d
o
lo

g
y

su
g
g
es

te
d

b
y

th
e

co
m

p
o
n

en
t

su
p

p
li

er
s

E
.g

.
in

th
e

E
D

K
en

v
ir

o
n

-
m

en
t

y
o
u

d
es

cr
ib

e
th

e
H

W
sy

st
em

v
ia

th
e

m
h

s
fi

le
,

a
te

x
t

b
a
se

d
re

p
re

se
n

ta
ti

o
n

o
f

th
e

sy
st

em
in

w
h

ic
h

y
o
u

a
d

d
th

e
se

le
ct

ed
b

u
s,

th
e

p
re

d
e-

fi
n

ed
p

er
ip

h
er

a
ls

a
n

d
y
o
u

r
co

d
e

a
s

n
ew

IP
:

Y
o
u

h
a
v
e

p
re

d
efi

n
ed

d
ri

v
er

s
a
n

d
y
o
u

a
re

g
u

id
ed

in
cr

ea
ti

n
g

y
o
u

r
n

ew
d

ri
v
er

s
fo

r
y
o
u

r
co

d
e.

O
u

r
ex

p
er

ie
n

ce
is

li
m

it
ed

to
si

m
p

le
m

em
o
ry

m
a
p

p
in

g
o
r

in
te

rr
u

p
t

h
a
n

d
li

n
g

a
p

p
ro

a
ch

es
.

B
y

a
b

st
ra

ct
IP

b
lo

ck
s

it
is

h
id

d
en

(l
ik

e
if

b
lo

ck
s

a
re

d
es

ig
n

ed
fo

r
M

a
tl

a
b

fo
r

ex
a
m

p
le

),
o
n

R
T

L
le

v
el

(e
.g

.
ex

is
ti

n
g

IP
)

o
n

si
g
n

a
l

se
n

si
ti

v
it

y,
o
n

S
W

b
y

se
m

a
p

h
o
re

s,
o
n

H
W

+
S

W
b

y
in

te
rr

u
p

ts
,

sh
a
re

d
m

em
o
ry

,
d

ir
ec

t
co

m
m

u
n

ic
a
ti

o
n

,
co

m
m

u
-

n
ic

a
ti

o
n

v
ia

D
M

A

W
e

re
a
li

se
co

m
m

u
n

ic
a
ti

o
n

s
a
n

d
sy

n
ch

ro
n

is
a
ti

o
n

in
H

W
/
S

W
d

es
ig

n
b

y
:

•
In

te
rr

u
p

t
m

ec
h

a
n

is
m

s,
•

fl
a
g
s

•
p

o
ll

in
g

•
sh

a
re

d
m

em
o
ri

es
,

D
M

A
•

d
ir

ec
t

H
W

/
H

W
li

n
k

(s
ig

n
a
l)

•
d

ri
v
er

s

3
9

W
h

ic
h

o
u

tp
u

t
o
f

th
e

h
ig

h
le

v
el

sy
n

th
es

is
d

o
y
o
u

n
ee

d
fo

r
th

e
in

te
r-

fa
ce

s
b

et
w

ee
n

h
a
rd

w
a
re

a
n

d
so

ft
w

a
re

?

A
u

to
m

a
ti

c
g
en

er
a
ti

o
n

o
f

V
H

D
L

m
o
d

u
le

s
a
n

d
C

/
C

+
+

d
ri

v
er

s
O

n
H

W
si

d
e:

A
n

IF
o
f

th
e

m
o

d
u

le
to

a
sp

ec
ifi

c
b

u
s

(i
s

a
m

u
st

)
a
n

d
a

sp
ec

ifi
c

b
u

s
d

es
cr

ip
ti

o
n

(w
o
u

ld
b

e
v
er

y
n

ic
e

b
u

t
n

o
t

re
q

u
ir

ed
).

O
n

S
W

:
A

p
ie

ce
o
f

S
W

th
a
t

ca
n

b
e

in
te

g
ra

te
d

in
to

th
e

ex
is

ti
n

g
S

W
en

v
ir

o
n

m
en

t
+

so
u

rc
e

co
d

e.
T

h
is

m
ig

h
t

in
cl

u
d

e
a
n

im
p

o
rt

in
to

a
S

W
d

es
ig

n
w

it
h

o
r

w
it

h
o
u

t
a
n

O
S

.
F

u
rt

h
er

m
o
re

,
a
ll

in
fo

rm
a
ti

o
n

o
f

th
e

in
te

rr
u

p
t

v
ec

to
r

ta
b

le
(w

it
h

/
w

it
h

o
u

t
O

S
)

o
r

a
th

re
a
d

w
ra

p
p

er
o
r

ev
en

a
li

n
k

a
b

le
d

ri
v
er

(f
o
r

a
n

O
S

)
sh

o
u

ld
b

e
p

ro
v

id
ed

.
O

f
im

p
o
rt

a
n

ce
is

th
a
t

ex
is

ti
n

g
st

a
n

d
a
rd

s
sh

o
u

ld
b

e
re

g
a
rd

ed
.

O
n

S
W

si
d

e
w

e
w

o
u

ld
li

k
e

to
h

a
v
e

V
H

D
L

R
T

L
a
n

d
o
n

S
W

w
e

w
o
u

ld
li

k
e

to
h

a
v
e

co
d

e
to

b
e

in
te

g
ra

te
d

,
C

/
C

+
+

d
ri

v
er

s.

4
0

W
h

a
t

a
re

th
e

ta
rg

et
s

fo
r

th
e

h
a
rd

w
a
re

a
n

d
th

e
so

ft
w

a
re

:
F

P
G

A
s,

C
P

U
s,

..
.?

P
la

tf
o
rm

F
P

G
A

w
it

h
so

ft
co

re
p

ro
ce

ss
o
rs

(m
ic

ro
b

la
ze

,
n

io
s)

a
n

d
h

a
rd

co
re

p
ro

ce
ss

o
rs

(P
P

C
4
0
5
c,

A
R

M
).

P
re

fe
rr

ed
so

lu
ti

o
n

is
th

e
X

il
-

in
x

V
ir

te
x

A
rc

h
it

ec
tu

re
w

it
h

P
P

C

F
P

G
A

(X
il

in
x

V
er

te
x

:
in

d
ee

d
it

is
n

o
t

re
q

u
ir

ed
to

p
ro

v
id

e
X

il
in

x
sp

ec
ifi

c
m

o
d

u
le

s,
b

lo
ck

s,
et

c.
In

st
ea

d
th

e
co

d
e

sh
o
u

ld
b

e
g
en

er
a
ll

y
v
a
li

d
th

a
t

ca
n

b
e

co
m

p
il

ed
to

a
n
y

ta
rg

et
a
rc

h
it

ec
tu

re
.

T
h

e
co

d
e

sh
o
u

ld
n

o
t

co
n

ta
in

ta
rg

et
sp

ec
ifi

c
p

a
rt

s
li

k
e

C
L

O
C

K
_

D
L

L
o
r

I_
B

U
F

_
G

,
B

lo
ck

ra
m

o
r

si
m

il
a
r

is
su

es
),

A
S

IC
(g

en
er

a
l)

,
µ

C
(P

P
C

6
0
3
)

W
e

a
re

u
si

n
g

•
F

P
G

A
X

il
in

x
o
r

A
lt

er
a

•
H

a
rd

co
re

a
s

A
R

M
,

M
IP

S
•

R
IS

C
C

P
U

4
1

W
h

ic
h

o
p

er
a
ti

n
g

sy
s-

te
m

s
d

o
y
o
u

u
se

fo
r

th
e

ta
rg

et
sy

st
em

?
n

o
n

e
o
r

?

N
o
n

e.
If

n
ee

d
ed

w
e

p
re

fe
r

a
n

O
p

en
S

o
u

rc
e

S
o
lu

-
ti

o
n

(e
.g

.
U

C
L

in
u

x
)

O
S

E
K

,
V

x
W

o
rk

s,
R

T
O

S
-L

in
u

x
W

e
a
re

u
si

n
g

V
x

w
o
rk

s
,

L
y

n
x

-O
s,

A
R

T
K

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

458 A Survey

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

4
2

H
ow

d
o

es
y
o
u

r
in

te
rf

a
ce

b
et

w
ee

n
h

a
rd

w
a
re

a
n

d
so

ft
w

a
re

a
n

d
v

ic
e

v
er

sa
lo

o
k

li
k
e?

In
g
en

er
a
l
o
u

r
a
p

p
li

ca
ti

o
n

s
u

se
d

a
ta

st
ru

ct
u

re
d

a
s

p
a
ck

et
s

w
it

h
n

ee
d

o
f

p
a
ra

ll
el

m
a
n

ip
u

la
ti

o
n

a
n

d
p

ro
ce

ss
in

g
.

N
ev

er
th

el
es

s
w

e
a
re

m
ov

in
g

to
w

a
rd

s
fa

st
se

ri
a
l

li
n

k
s.

W
e

a
re

in
te

re
st

ed
in

u
si

n
g

a
ll

th
e

st
a
te

-o
f-

th
e-

a
rt

te
ch

n
o
lo

g
ie

s
in

cl
u

d
in

g
R

o
ck

e-
tI

O
,

P
C

I
E

x
p

re
ss

,
et

c.
to

re
d

u
ce

in
te

rc
o
n

n
ec

ti
o
n

co
m

p
le

x
it

y
a
t

sy
st

em
le

v
el

.
W

e
u

se
a
ll

th
e

tr
a
d

i-
ti

o
n

a
l
H

W
st

ru
ct

u
re

s
a
s

b
u

ff
er

s,
re

g
is

te
rs

,
F

IF
O

s,
a
d

d
re

ss
a
b

le
m

em
o
ri

es
,

u
si

n
g

st
a
n

d
a
rd

p
ro

to
co

ls
w

h
en

in
te

rf
a
ci

n
g

co
m

m
er

ci
a
l

co
m

p
o
n

en
ts

a
n

d
a
d

-h
o

c
p

ro
to

co
ls

w
it

h
in

th
e

su
b

sy
st

em
.

S
ee

a
ls

o
a
n

sw
er

3
8
.

•
D

ir
ec

t
a
cc

es
s

to
m

em
o
ry

a
n

d
p

er
ip

h
er

a
ls

b
y

w
ri

ti
n

g
to

/
re

a
d

in
g

fr
o
m

a
d

d
re

ss
es

•
P

re
p

a
ra

ti
o
n

o
f

d
a
ta

in
si

d
e

m
em

o
ry

(i
n

C
/
C

+
+

a
s

v
a
ri

a
b

le
s

a
n

d
o
b

je
ct

s
o
r

b
y

w
ri

ti
n

g
d

ir
ec

tl
y

in
to

m
em

o
ry

)
a
n

d
d

a
ta

tr
a
n

sf
er

b
y

D
M

A
•

A
ct

iv
e

a
n

d
p

a
ss

iv
e

tr
a
n

sf
er

(a
ct

iv
e

w
ri

te
/

b
ei

n
g

re
a
d

)
•

In
te

rr
u

p
ts

/
P

o
ll

in
g

S
ee

3
8
.

4
3

If
y
o
u

u
se

b
u

s
sy

st
em

s,
w

h
ic

h
b

u
s

d
o

y
o
u

m
o
st

ly
u

se
?

O
P

B
a
n

d
P

L
B

b
u

s
C

u
rr

en
tl

y
u

se
d

b
u

se
s

a
re

P
C

I,
se

v
er

a
l

d
iff

er
-

en
t

se
ri

a
l

L
V

D
S

p
ro

to
co

ls
,

C
A

N
,

L
IN

,
F

le
x

R
ay

,
M

O
S

T
a
n

d
fu

rt
h

er
.

T
h

e
u

se
d

b
u

se
s

h
ow

ev
er

a
re

in
a

st
ea

d
y

p
ro

ce
ss

o
f

p
er

m
a
n

en
t

ev
o
lu

ti
o
n

,
a
d

a
p

-
ta

ti
o
n

a
n

d
re

p
la

ce
m

en
t

ca
u

se
d

b
y

th
e

st
ea

d
il

y
ch

a
n

g
in

g
re

q
u

ir
em

en
ts

li
k
e

p
er

fo
rm

a
n

ce
,

fl
ex

ib
il

-
it

y,
sa

fe
ty

,
re

li
a
b

il
it

y.
T

h
er

ef
o
re

,
th

e
b

u
s

d
es

cr
ip

-
ti

o
n

sh
o
u

ld
st

a
y

a
s

m
u

ch
fl

ex
ib

le
a
s

p
o
ss

ib
le

(i
f

p
o
ss

ib
le

)
o
r

in
o
th

er
w

o
rd

:
D

u
ri

n
g

th
e

co
n

te
x

t
o
f

IC
O

D
E

S
,

it
w

o
u

ld
b

e
a
n

em
p

h
a
si

ze
d

re
q

u
ir

e-
m

en
t

to
p

ro
v

id
e

a
n

A
P

I,
in

to
w

h
ic

h
th

e
d

es
ig

n
er

ca
n

p
la

ce
a
n

ow
n

b
u

s
m

o
d

el
th

a
t

w
o
u

ld
a
ll

ow
a
n

ea
sy

re
p

la
ce

m
en

t
o
f

d
iff

er
en

t
b

u
s

d
es

cr
ip

ti
o
n

s.

A
m

b
a

b
u

s,
F

P
G

A
C

o
re

C
o
n

n
ec

t,
V

M
E

,
p

ro
p

ri
-

et
a
ry

b
u

se
s

co
n

ti
n

u
ed

o
n

n
ex

t
pa

ge

459

Q
Q

u
e

st
io

n
C

o
m

p
a

n
y

1
C

o
m

p
a

n
y

2
C

o
m

p
a

n
y

3

4
4

W
h

a
t

d
o

y
o
u

th
in

k
is

th
e

g
re

a
te

st
b

o
tt

le
n

ec
k

in
th

e
d

es
ig

n
fl

o
w

th
a
t

sh
o
u

ld
b

e
a
d

d
re

ss
ed

in
th

e
co

n
te

x
t

o
f

IC
O

D
E

S
?

W
e

co
n

si
d

er
a
s

th
e

m
a
in

b
o
tt

le
n

ec
k

in
th

e
d

e-
si

g
n

fl
o
w

,
th

e
g
a
p

b
et

w
ee

n
sy

st
em

le
v
el

sp
ec

-
ifi

ca
ti

o
n

s
a
n

d
H

W
o
r

S
W

fl
o
w

s,
i.

e.
th

e
la

ck
o
f

a
w

el
l

d
efi

n
ed

sy
st

em
le

v
el

st
a
rt

in
g

d
es

cr
ip

-
ti

o
n

in
th

e
su

p
p

o
rt

ed
fo

u
n

d
ri

es
fl

o
w

a
n

d
th

e
n

o
n

-a
u

to
m

a
te

d
o
p

er
a
ti

o
n

s
re

q
u

ir
ed

n
o

fl
ex

ib
le

ex
p

lo
ra

ti
o
n

o
f

H
W

-S
W

p
a
rt

it
io

n
in

g
.

In
a
d

d
i-

ti
o
n

to
th

is
th

er
e

a
re

so
m

e
o
th

er
p

ro
b

le
m

s
a
n

d
a
re

a
s

o
f

im
p

ro
v
em

en
t

in
th

e
d

es
ig

n
fl

o
w

:
th

e
ex

is
te

n
ce

o
f

u
n

co
n

n
ec

te
d

H
W

-S
W

d
ev

el
o
p

m
en

t
fl

ow
s,

th
e

p
o
o
r

co
-v

er
ifi

ca
ti

o
n

fl
ow

a
n

d
to

o
ls

es
-

p
ec

ia
ll

y
in

th
e

ea
rl

ie
r

fl
o
w

st
ep

s,
th

e
d

iffi
cu

lt
in

it
ia

l
a
n

a
ly

si
s

a
n

d
id

en
ti

fi
ca

ti
o
n

o
f

p
ro

b
le

m
s

in
th

e
v
er

y
ea

rl
y

st
ep

s
o
f

th
e

d
es

ig
n

fl
ow

,
th

e
la

ck
o
f

"h
ig

h
le

v
el

m
o

d
el

s"
(e

.g
.

A
T

M
W

o
rk

b
en

ch
),

th
e

cr
u

ci
a
l

is
su

e
re

g
a
rd

in
g

in
te

r-
m

o
d

u
le

s
co

m
m

u
n

i-
ca

ti
o
n

d
es

cr
ip

ti
o
n

H
W

-H
W

,
H

W
-S

W
,

S
W

-H
W

,
th

e
p

o
o
r

su
p

p
o
rt

o
f

te
a
m

-b
a
se

d
d

es
ig

n
fl

o
w

.

In
te

ra
ct

io
n

o
f

d
iff

er
en

t
to

o
ls

/
d

es
cr

ip
ti

o
n

la
n

-
g
u

a
g
es •

In
co

n
ce

p
ti

o
n

/
ex

p
lo

ra
ti

o
n

p
h

a
se

:
F

a
st

ev
a
lu

a
ti

o
n

o
f

d
iff

er
en

t
d

es
ig

n
a
lt

er
n

a
ti

v
es

•
In

im
p

le
m

en
ta

ti
o
n

p
h

a
se

:
In

H
W

/
S

W
:

ea
sy

m
o

d
el

li
n

g
o
f

co
m

m
u

n
ic

a
ti

o
n

,
sm

o
o
th

li
n

k
in

to
im

p
le

m
en

ta
ti

o
n

fl
o
w

s
o
n

H
W

a
n

d
S

W
si

d
e

a
s

w
el

l
H

ig
h

le
v
el

o
b

je
ct

o
ri

en
te

d
,

sy
n

th
es

iz
a
b

le
H

W
d

es
cr

ip
ti

o
n

cu
rr

en
tl

y
is

a
n

o
t

ex
is

ti
n

g
p

a
rt

in
th

e
d

es
ig

n
fl

o
w

.
H

o
w

ev
er

,
th

e
d

es
ig

n
er

sh
o
u

ld
b

e
a
b

le
to

k
ee

p
in

fl
u

en
ce

o
n

th
e

cr
ea

te
d

d
es

ig
n

to
h

a
v
e

fu
ll

co
n

tr
o
l

o
f

th
e

re
su

lt
s

if
re

q
u

ir
ed

li
k
e

cy
cl

e
a
cc

u
ra

cy
,

R
T

L
d

es
cr

ip
ti

o
n

,
cr

ea
te

d
m

em
o
ry

/
re

g
is

te
r

st
ru

ct
u

re
s

E
it

h
er

in
S

W
o
r

H
W

d
es

ig
n

co
m

m
u

n
ic

a
ti

o
n

s
b

e-
tw

ee
n

IP
s

(H
W

o
r

S
W

)
a
re

b
ec

o
m

in
g

m
o
re

a
n

d
m

o
re

co
m

p
le

x
.

H
av

in
g

th
e

a
b

il
it

y
to

m
o

d
el

a
n

d
sy

n
th

es
iz

e
th

o
se

co
m

m
u

n
ic

a
ti

o
n

s
a
m

o
n

g
th

o
se

d
iff

er
en

t
IP

co
u

ld
b

ri
n

g
a

re
a
l

p
lu

s
o
n

th
e

q
u

a
l-

it
y

o
f

th
e

d
es

ig
n

(b
ec

a
u

se
th

e
H

W
o
r

S
W

co
m

-
m

u
n

ic
a
ti

o
n

co
d

e
is

g
en

er
a
te

d
a
n

d
so

g
o
o
d

"b
y

co
n

st
ru

ct
io

n
")

a
n

d
p

ro
d

u
ct

iv
it

y
(i

m
p

ro
v
ed

b
y

co
d

e
g
en

er
a
ti

o
n

te
ch

n
iq

u
es

).

4
5

H
o
w

d
o
es

y
o
u

r
en

v
i-

si
o
n

ed
so

lu
ti

o
n

fo
r

th
is

p
ro

b
le

m
lo

o
k

li
k
e?

W
e

th
in

k
th

a
t

th
e

d
ir

ec
ti

o
n

s
in

w
h

ic
h

th
e

re
-

se
a
rc

h
h

a
s

to
a
d

d
re

ss
it

s
eff

o
rt

.
is

th
e

ex
p

lo
it

a
-

ti
o
n

o
f

th
e

h
ig

h
le

v
el

a
p

p
ro

a
ch

es
a
n

d
la

n
g
u

a
g
es

to
g
et

h
er

w
it

h
th

e
d

ev
el

o
p

m
en

t
o
f

cl
o
se

r
H

W
a
n

d
S

W
d

es
ig

n
fl

ow
s,

a
n

d
o
f

h
ig

h
le

v
el

a
n

a
ly

si
s

to
o
ls

(w
h

a
t-

if
a
n

a
ly

si
s,

p
er

fo
rm

a
n

ce
a
n

a
ly

si
s,

..
.)

to
h

el
p

H
W

-S
W

p
a
rt

it
io

n
in

g
a
n

d
a
rc

h
it

ec
tu

ra
l

ch
o
ic

es
.

In
a
d

d
it

io
n

to
th

is
th

e
a
p

p
li

ca
ti

o
n

o
f

m
et

ri
cs

is
su

re
ly

o
f

in
te

re
st

.
F

in
a
ll

y,
w

h
en

it
is

p
o
ss

ib
le

,
it

co
u

ld
b

e
v
er

y
u

se
fu

l
th

e
re

u
se

(w
it

h
re

fi
n

em
en

ts
)

o
f

h
ig

h
le

v
el

d
es

cr
ip

ti
o
n

s
a
s

m
u

ch
a
s

p
o
ss

ib
le

,
u

si
n

g
a
p

p
ro

p
ri

a
te

sy
n

th
es

is
to

o
ls

.

C
u

rr
en

tl
y

w
e

a
re

fo
cu

si
n

g
a

m
et

h
o
d

o
lo

g
y

th
a
t

a
ll

ow
s

to
b

re
a
k

a
C

+
+

d
es

ig
n

d
es

cr
ip

ti
o
n

in
to

a
ex

ec
u

ta
b

le
S

y
st

em
C

sy
st

em
.

d
es

cr
ip

ti
o
n

.
T

im
-

in
g

(e
x

ec
u

ti
o
n

ti
m

e
th

a
t

si
m

u
la

te
s

d
a
ta

tr
a
n

sf
er

s
o
r

is
si

m
il

a
r

to
th

e
o
ri

g
in

a
l

C
+

+
fu

n
ct

io
n

ex
ec

u
-

ti
o
n

ti
m

e)
ca

n
b

e
ea

si
ly

in
se

rt
ed

.
D

ea
d

li
n

es
ca

n
b

e
w

a
tc

h
ed

fo
r.

H
W

/
S

W
m

o
d

u
le

s
ca

n
b

e
ea

si
ly

re
p

la
ce

d
v

s.
ea

ch
o
th

er
,

b
u

se
s

ca
n

b
e

re
p

la
ce

d
,

m
o
d

ifi
ed

o
r

n
ew

st
ru

ct
u

re
d

.
T

h
e

re
su

lt
is

a
b

le
to

g
a
in

a
fa

st
es

ti
m

a
ti

o
n

o
f

h
o
w

a
sy

st
em

w
il

l
b

eh
av

e.
F

u
rt

h
er

m
o
re

d
iff

er
en

t
sy

st
em

co
n

fi
g
u

ra
-

ti
o
n

s
ca

n
b

e
ev

a
lu

a
te

d
w

it
h

in
a

m
in

im
u

m
o
f

ti
m

e.
N

ev
er

th
el

es
s,

th
is

so
lu

ti
o
n

is
m

a
in

ly
th

o
u

g
h
t

fo
r

sy
st

em
si

m
u

la
ti

o
n

a
n

d
cr

ea
ti

o
n

o
f

d
es

ig
n

st
ru

c-
tu

re
s

b
u

t
h

a
s

n
o
t

y
et

a
fo

cu
s

o
n

sy
n
th

es
is

.
L

in
k

to
sy

n
th

es
is

is
st

ro
n

g
ly

en
v

is
io

n
ed

.

-

4
6

W
h

er
e

th
e

q
u

es
ti

o
n

s
in

th
is

d
o
cu

m
en

t
cl

ea
r

to
y
o
u

?

S
o
m

e
q

u
es

ti
o
n

s
w

il
l

b
ec

o
m

e
cl

ea
re

r
a
n

d
so

m
e

a
n

sw
er

s
m

o
re

d
et

a
il

ed
a
s

p
a
rt

o
f

th
e

IC
O

D
E

S
a
ct

iv
it

ie
s

w
h

en
o
u

r
te

a
m

w
il

l
g
a
in

m
o
re

ex
p

e-
ri

en
ce

o
n

in
te

g
ra

te
d

H
W

/
S

W
in

te
rc

o
n

n
ec

ti
o
n

d
es

ig
n

a
n

d
sy

n
th

es
is

In
g
en

er
a
l

y
es

-

APPENDIX B

Timed Automata Templates and Examples

B.1 Used scheduling algorithms

Uppaal implementations of the scheduling algorithms described in Section 5.5.3.
These scheduling algorithms are used inside the Shared Object’s Arbiter timed automaton

template as described in Section 5.5.6 as well as in the Shared Bus Scheduler timed automaton
template as described in Section 5.6.4.

1 // initialisation for Round Robin & Modified Round Robin Scheduler
2 index_type last_grant ← NC−1;
3

4 // history initialisation for Ceiling Priority & Least Recently Used Scheduler
5 index_type history[NC];
6 void initialise_history () {
7 for(i : int [0, NC−1])
8 history [i] ← i;
9 }

10

11 /∗∗
12 ∗ Static Priority Scheduler
13 ∗∗/
14 index_type schedule_static_priority(bool zero_is_highest) {
15 if (zero_is_highest == true) { // zero is highest priority
16 for(i : int [0, NC−1]) {
17 if (mid_guarded[i] ! = NOP)
18 return i;
19 }
20 }
21 else { // zero is lowest priority
22 for(i : int [0, NC−1]) {
23 if (mid_guarded[NC−1−i] ! = NOP)
24 return NC−1−i;
25 }
26 }
27 return −1;
28 }
29

30 /∗∗
31 ∗ Ceiling Priority Scheduler
32 ∗∗/
33 index_type schedule_ceiling_priority() {
34 index_type grant ← 0;
35 bool ripple ← false;
36 for (i : int [0, NC−1]) {
37 if (mid_guarded[history[i]] ! = NOP ∧ !ripple) {
38 grant ← history[i];

462 B Timed Automata Templates and Examples

39 ripple ← true;
40 }
41 if (ripple ∧ (i ! = NC−1)) {
42 index_type swap ← history[i];
43 history [i] ← history[i + 1];
44 history [i + 1] ← swap;
45 }
46 }
47 if (ripple)
48 return grant;
49 else
50 return −1;
51 }
52

53 /∗∗
54 ∗ Round Robin Scheduler
55 ∗∗/
56 index_type schedule_round_robin() {
57 index_type nextGrant ← last_grant;
58 bool breakFlag ← false;
59

60 for(i : int [0, NC−1]) {
61 if (!breakFlag) {
62 if (nextGrant == (NC−1)) {
63 nextGrant ← 0;
64 } else {
65 nextGrant ← nextGrant + 1;
66 }
67 if (mid_guarded[nextGrant] ! = NOP) {
68 breakFlag ← true;
69 }
70 }
71 }
72 if (breakFlag) {
73 last_grant ← nextGrant;
74 return nextGrant;
75 }
76 else
77 return −1;
78 }
79

80 /∗∗
81 ∗ Modified Round Robin Scheduler
82 ∗∗/
83 index_type schedule_modified_round_robin() {
84 index_type nextGrant ← last_grant;
85 bool breakFlag ← false;
86

87 for (i : int [0, NC−1]) {
88 if (!breakFlag) {
89 if (nextGrant == (NC−1)) {
90 nextGrant ← 0;
91 } else {
92 nextGrant ← nextGrant + 1;
93 }
94 if (mid_guarded[nextGrant] ! = NOP) {
95 breakFlag ← true;
96 }
97 }
98 }
99 if (breakFlag) {

100 if (last_grant ! = nextGrant) {
101 if (last_grant == (NC−1)) {
102 last_grant ← 0;
103 } else {
104 last_grant ← last_grant + 1;
105 }
106 }
107 return nextGrant;
108 }
109 else

B.2 Application Layer TA example 463

110 return −1;
111 }
112

113 /∗∗
114 ∗ Least Recently Used Scheduler
115 ∗∗/
116 index_type schedule_least_recently_used() {
117 index_type grant ← 0;
118 index_type j;
119 for(i : int [0, NC−1]) {
120 if (mid_guarded[history[i]] ! = NOP) {
121 grant ← history[i];
122 for(j ← i; j < NC−1; j++) {
123 history [j] ← history[j+1];
124 }
125 history [NC−1] ← grant;
126 return grant;
127 }
128 }
129 return −1;
130 }

Listing B.1: Scheduling algorithms from Section 5.5.3 modeled in Uppaal

B.2 Application Layer TA example

1 // d e f i n i t i o n o f t iming annotat ion i n t e r v a l s
2 typede f i n t [0 , 1] EET_type ;
3 const EET_type BCET ← 0 ; // lower bound : Best−Case Execution Time (BCET)
4 const EET_type WCET ← 1 ; // upper bound : Worst−Case Execution Time (WCET)
5

6 // number o f c l i e n t proc es se s
7 const i n t NC ← 2 ;
8 typede f i n t [0 ,NC−1] c l i ent_type ;
9

10 // d e f i n i t i o n o f method ID types
11 typede f i n t [0 , 2] method_type ;
12 const method_type NOP ← 0 ; // No OPeration (NOP) r e p r e s e n t s no s e r v i c e c a l l
13 const method_type PUT ← 1 ; // r e p r e s e n t s the put s e r v i c e
14 const method_type GET ← 2 ; // r e p r e s e n t s the g e t s e r v i c e
15

16 // d e f i n i t i o n o f s t a t u s ID types
17 typede f i n t [0 , 2] status_type ;
18 const status_type WAIT ← 0 ; // wai t ing f o r access to SO
19 const status_type GRANTED ← 1 ; // access to SO granted
20 const status_type COMPLETED ← 2 ; // access to SO has been completed
21

22 // index type f o r Shared Object s c h e d u l e r
23 typede f i n t [−1 ,NC−1] index_type ;
24 index_type granted_cid ← −1; // i n i t i a l l y no c l i e n t i s granted
25

26 // d e f i n i t i o n o f FIFO s i z e
27 const i n t FIFO_SIZE ← 5 ;

Listing B.2: Global definitions

1 // Timing annotat ions , w r i t t e n as [BCET, WCET] i n t e r v a l s
2 i n t put_EET_before [2] ← {10 , 15} ;
3 i n t put_EET_after [2] ← {4 , 5} ;
4

5 i n t get_EET_before [2] ← {10 , 15} ;
6 i n t get_EET_after [2] ← {4 , 5} ;
7

8 i n t EET_eval [2] ← {1 , 1} ;
9 i n t EET_sched [2] ← {1 , 1} ;

10

11 i n t [0 , FIFO_SIZE] num_elements ← 0 ;
12 i n t EET_service [2] [2] ← {{2 , 5} , {2 , 5}} ;

464 B Timed Automata Templates and Examples

13

14 // Timing a n a l y s i s :
15 // g l o b a l c l o c k
16 c l o c k t ;
17 // t iming requirements f o r put and g e t c l i e n t s
18 const i n t PUT_PERIOD ← 55 ;
19 const i n t GET_PERIOD ← 55 ;
20

21 method_type mid_request [NC] ;
22 method_type mid_request_guarded [NC] ;
23 method_type so_mid ← NOP;
24

25 status_type c a l l _ s t a t u s [NC] ;
26

27 urgent chan put_cal l , put_ret ;
28 c l i en t_type put_cid ;
29 method_type put_call_mid ;
30

31 Put ← Actor (0 , PUT, put_cid , put_call_mid , put_cal l , put_ret ,
32 put_EET_before , put_EET_after) ;
33

34 // to Shared Object C o n t r o l l e r
35 broadcast chan method_req [NC] ;
36 chan method_grant [NC] ;
37 // from Shared Object C o n t r o l l e r
38 urgent chan method_complete [NC] ;
39

40 Put_Port ← Port (put_cid , put_call_mid , put_cal l , put_ret ,
41 method_req , method_grant ,
42 mid_request , c a l l _ s t a t u s ,
43 method_complete) ;
44

45 urgent chan get_ca l l , get_ret ;
46 c l i en t_type get_cid ;
47 method_type get_call_mid ;
48

49 Get ← Actor (1 , GET, get_cid , get_call_mid , get_ca l l , get_ret ,
50 get_EET_before , get_EET_after) ;
51

52 Get_Port ← Port (get_cid , get_call_mid , get_ca l l , get_ret ,
53 method_req , method_grant ,
54 mid_request , c a l l _ s t a t u s ,
55 method_complete) ;
56

57 // to Arb i t e r
58 urgent broadcast chan a r b i t r a t e ;
59 urgent chan so_grant , exec_method , done_method ;
60 method_type scheduled_mid ;
61

62 SO_Ctlr ← SO_Controller (method_req ,
63 a r b i t r a t e , so_grant , granted_cid ,
64 method_grant ,
65 exec_method , done_method ,
66 method_complete) ;
67

68 // Arb i t e r to Server
69 urgent chan ca l l_so , ret_so ;
70 // Arb i t e r to Guard Evaluator
71 urgent chan eval_guards , eval_guards_done ;
72

73 SO_GE ← SO_Guard_Evaluator (eval_guards , eval_guards_done ,
74 mid_request , mid_request_guarded ,
75 num_elements ,
76 EET_eval) ;
77

78 SO_Arb ← SO_Arbiter (a r b i t r a t e ,
79 eval_guards , eval_guards_done ,
80 so_grant ,
81 mid_request , mid_request_guarded , c a l l _ s t a t u s ,
82 exec_method , done_method ,
83 ca l l_so , granted_cid , scheduled_mid , ret_so ,

B.3 Virtual Target Architecture Layer TA example 465

84 EET_sched) ;
85

86 SO_Beh ← SO_Behavior (ca l l_so , ret_so , scheduled_mid ,
87 EET_service , num_elements) ;
88

89 system Put , Put_Port ,
90 Get , Get_Port ,
91 SO_Ctlr , SO_GE, SO_Arb, SO_Beh ;

Listing B.3: System definition

B.3 Virtual Target Architecture Layer TA example

1 // d e f i n i t i o n o f t iming annotat ion i n t e r v a l s
2 typede f i n t [0 , 1] EET_type ;
3 const EET_type BCET ← 0 ; // lower bound : Best−Case Execution Time (BCET)
4 const EET_type WCET ← 1 ; // upper bound : Worst−Case Execution Time (WCET)
5

6 // number o f c l i e n t proc es se s
7 const i n t NC ← 2 ;
8 typede f i n t [0 ,NC−1] c l i ent_type ;
9

10 // d e f i n i t i o n o f method ID types
11 typede f i n t [0 , 2] method_type ;
12 const method_type NOP ← 0 ; // no OPeration (NOP) r e p r e s e n t s no s e r v i c e c a l l
13 const method_type PUT ← 1 ; // r e p r e s e n t s the put s e r v i c e
14 const method_type GET ← 2 ; // r e p r e s e n t s the g e t s e r v i c e
15

16 // d e f i n i t i o n o f s t a t u s ID types
17 typede f i n t [0 , 2] status_type ;
18 const status_type WAIT ← 0 ;
19 const status_type GRANTED ← 1 ;
20 const status_type COMPLETED ← 2 ;
21

22 // index type f o r Shared Object Schedu ler
23 typede f i n t [−1 ,NC−1] index_type ;
24 index_type granted_mid ← −1; // i n i t i a l l y no c l i e n t i s granted
25

26 // d e f i n i t i o n o f FIFO s i z e
27 const i n t FIFO_SIZE ← 5 ;
28

29 // d e f i n i t i o n o f method argument and return va lue s w i t c h e s
30 typede f i n t [0 , 1] method_argument_size_type ;
31 const method_argument_size_type ARG ← 0 ;
32 const method_argument_size_type RET ← 1 ;
33

34 // d e f i n i t i o n o f method agrument s i z e s
35 //
36 // | | argument | re turn |
37 // | ID | s i z e [b i t] | s i z e [b i t] |
38 //|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
39 // | NOP | 0 | 0 |
40 // | PUT | 128 | 0 |
41 // | GET | 0 | 128 |
42 //|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
43 i n t method_argument_size [3] [2] ← { {0 ,0} , {128 ,0} , {0 ,128} } ;
44

45 // d e f i n i t i o n o f RMI phase s w i t c h e s
46 typede f i n t [0 , 6] RMI_data_type ;
47 const RMI_data_type NO_DATA ← 0 ;
48 const RMI_data_type REQUEST ← 1 ;
49 const RMI_data_type PARAMS ← 2 ;
50 const RMI_data_type RETURN ← 3 ;
51

52 // RMI data phases
53 //
54 // | phase | NOP | PUT | GET |
55 //|−−−−−−−−−−−−−−−−−−−−−−−−−−−|

466 B Timed Automata Templates and Examples

56 // | NO_DATA | 0 | 0 | 0 |
57 // | REQUEST | 0 | 1 | 2 |
58 // | PARAMS | 0 | 3 | 4 |
59 // | RETURN | 0 | 5 | 6 |
60 //|−−−−−−−−−−−−−−−−−−−−−−−−−−−|
61 i n t RMI_data_phase [4] [3] ← { {0 ,0 ,0} , {0 ,1 ,2} , {0 ,3 ,4} , {0 ,5 ,6} } ;
62

63 /∗ ∗∗ ∗/
64

65 // Descr ip t ion o f the f u l l y synchronized bus , f o l l o w i n g the OSI termino logy :
66 // The v a r i a b l e wire models the shared bus access at the PHYSICAL LAYER
67 i n t [0 , 6] wire ← 0 ;
68 // rnw ← read not w r i t e (d e f i n e s whether a read or a w r i t e access on
69 // the " wire " i s performed)
70 bool rnw ← t rue ;
71 // The channel send models the sender synchron i za t ion with the Bus
72 urgent chan send ;
73 // The broadcas t channel models bus and r e c e i v e r synchron i za t ion
74 urgent broadcast chan r e c e i v e ;
75

76 // A simple t ransmiss ion t a k e s D1 time u n i t s
77 const i n t D1 ← 2 ;
78 // A b u r s t t r a n s a c t i o n t a k e s D1+(D2∗(burs t_length −1)) time u n i t s
79 const i n t D2 ← 1 ;
80

81 // DATA LINK Layer
82 // Bus addresses range from 1 to P , the adress zero denotes broadcas t
83 const i n t P ← 2 ; // number o f bus addresses (connect ion p o i n t s)
84 i n t [0 ,P] busaddr ← 0 ;
85 bool bus_burst ← f a l s e ;
86 i n t bus_burst_length ← 0 ;
87

88 // MEDIUM ACCESS i s through a t r a n s m i t t e r and r e c i e v e r l o c a l f o r each
connect ion

89 // t r a n s m i t t e r and r e c i e v e r r e q u e s t parameters
90 i n t b u f f e r ; // b u f f e r
91 i n t [0 ,P] address ; // address
92 bool burst ;
93 i n t burst_length ;
94

95 // connect ions f o r t r a n s m i t t e r and r e c i e v e r
96 // sendreques t sr , r e c i e v e r e q u e s t rr , endrec ieve er :
97 urgent chan s r [P] , r r [P] , e r [P] ;
98 urgent chan s r r [P] ;
99

100 // A r b i t r a t i o n i s done through busreq and grant channels
101 urgent broadcast chan busreq ;
102 urgent broadcast chan grant ;
103 bool req [P] ;

Listing B.4: Global definitions

1 // Timing annotat ions , w r i t t e n as [BCET, WCET] i n t e r v a l s
2 i n t put_EET_before [2] ← {10 , 15} ;
3 i n t put_EET_after [2] ← {4 , 5} ;
4

5 i n t get_EET_before [2] ← {10 , 15} ;
6 i n t get_EET_after [2] ← {4 , 5} ;
7

8 i n t EET_eval [2] ← {1 , 1} ;
9 i n t EET_sched [2] ← {1 , 1} ;

10

11 i n t [0 , FIFO_SIZE] num_elements ← 0 ;
12 // Shared Object s e r v i c e execu t ion time [PUT, GET] [BCET, WCET]
13 i n t EET_service [2] [2] ← {{2 , 5} , {2 , 5}} ;
14

15 // RMI i n i t i a t o r execu t ion times [c l i e n t 0 , c l i e n t 1] [BCET, WCET]
16 i n t rmi_port_init [2] [2] ← { {1 ,1} , {1 ,1} } ;
17 i n t rmi_port_lookup [2] [2] ← { {1 ,2} , {1 ,2} } ;
18 i n t rmi_port_ser ia l i ze_base [2] [2] ← { {2 ,3} , {2 ,3} } ;
19 i n t rmi_port_deser ia l i ze_base [2] [2] ← { {1 ,2} , {1 ,2} } ;

B.3 Virtual Target Architecture Layer TA example 467

20 i n t rmi_port_f inal [2] [2] ← { {1 ,1} , {1 ,1} } ;
21

22 // Timing a n a l y s i s :
23 // g l o b a l c l o c k
24 c l o c k t ;
25 // t iming requirements f o r put and g e t c l i e n t s
26 const i n t PUT_PERIOD ← 55 ;
27 const i n t GET_PERIOD ← 55 ;
28

29 method_type mid_request [NC] ;
30 method_type mid_request_guarded [NC] ;
31 method_type so_mid ← NOP;
32

33 status_type c a l l _ s t a t u s [NC] ;
34

35 urgent chan put_cal l , put_ret ;
36 c l i en t_type put_cid ;
37 method_type put_call_mid ;
38

39 Put ← Actor (0 , PUT, put_cid , put_call_mid , put_cal l , put_ret ,
40 put_EET_before , put_EET_after) ;
41

42 // to RMI Socket
43 broadcast chan method_req [NC] ;
44 urgent chan params_streamed ;
45 urgent chan done_RMI ;
46

47 Put_Port ← RMIPort (put_cid , put_call_mid , put_cal l , put_ret ,
48 method_req , params_streamed , done_RMI ,
49 mid_request , c a l l _ s t a t u s ,
50 rmi_port_init ,
51 rmi_port_lookup ,
52 rmi_port_ser ia l i ze_base ,
53 rmi_port_deser ia l i ze_base ,
54 rmi_port_final ,
55 1 , 1 , 32) ;
56

57 urgent chan get_ca l l , get_ret ;
58 c l i en t_type get_cid ;
59 method_type get_call_mid ;
60

61 Get ← Actor (1 , GET, get_cid , get_call_mid , get_ca l l , get_ret ,
62 get_EET_before , get_EET_after) ;
63

64 Get_Port ← RMIPort (get_cid , get_call_mid , get_ca l l , get_ret ,
65 method_req , params_streamed , done_RMI ,
66 mid_request , c a l l _ s t a t u s ,
67 rmi_port_init ,
68 rmi_port_lookup ,
69 rmi_port_ser ia l i ze_base ,
70 rmi_port_deser ia l i ze_base ,
71 rmi_port_final ,
72 2 , 1 , 32) ;
73

74 // to Arb i t e r
75 urgent broadcast chan a r b i t r a t e ;
76 urgent chan so_grant ;
77 urgent chan exec_method ;
78 method_type scheduled_mid ;
79 urgent chan done_method ;
80

81 // to Receiver
82 i n t read_data ;
83 i n t write_data ;
84

85 SO_Ctrl ← SO_Controller (method_req ,
86 a r b i t r a t e , so_grant , params_streamed , exec_method ,

granted_mid ,
87 done_method , done_RMI ,
88 read_data , write_data) ;
89

468 B Timed Automata Templates and Examples

90 // Arb i t e r to Shared
91 urgent chan ca l l _s o ;
92 urgent chan ret_so ;
93

94 // Arb i t e r to Guard Evaluator
95 urgent chan eval_guards ;
96 urgent chan eval_guards_done ;
97

98 SO_GE ← SO_Guard_Evaluator (eval_guards , eval_guards_done ,
99 mid_request , mid_request_guarded ,

100 num_elements ,
101 EET_eval) ;
102

103 SO_Arb ← SO_Arbiter (a r b i t r a t e ,
104 eval_guards , eval_guards_done ,
105 so_grant , exec_method ,
106 mid_request , mid_request_guarded , c a l l _ s t a t u s ,
107 done_method ,
108 ca l l_so , granted_mid , scheduled_mid , ret_so ,
109 EET_sched) ;
110

111 SO_Beh ← SO_Behavior (ca l l_so , ret_so , scheduled_mid ,
112 EET_service , num_elements) ;
113

114 bus ← Bus (D1 , D2) ;
115 bus_transmitter_0 ← Bus_Transmit (1) ;
116 bus_transmitter_1 ← Bus_Transmit (2) ;
117 bus_receiver_0 ← Bus_Receiver (1) ;
118 bus_receive_0 ← Bus_Receive (1 , read_data , write_data) ;
119 bus_arbiter ← Bus_Arbiter () ;
120

121 system Put , Put_Port ,
122 Get , Get_Port ,
123 SO_Ctrl , SO_GE, SO_Arb, SO_Beh,
124 bus_transmitter_0 , bus_transmitter_1 ,
125 bus_receiver_0 , bus_receive_0 ,
126 bus , bus_arbiter ;

Listing B.5: System definition

APPENDIX C

Pre-defined Shared Objects

When mapping Behavior Layer models to Application Layer models, all remaining Behavior
Layer Channels of kind Shared Variable (see Listing C.1), Piped Variable (see Listing C.5),
Queue (see Listing C.4), Handshake (see Listing C.2) and Double Handshake (see Listing C.3)
are replaced by their Shared Object implementations listed below.

1 template<class T>
2 class Shared_Variable : public read_write_if<T> {
3 public:
4 Shared_Variable() : m_data() {}
5

6 OSSS_GUARDED_METHOD_VOID(write, OSSS_PARAMS(1, T, item), true) { m_data = item; }
7 OSSS_GUARDED_METHOD(T, read, OSSS_PARAMS(0), true) { return m_data; }
8

9 protected:
10 T m_data;
11 };

Listing C.1: Shared Variable as Shared Object

1 template<class T>
2 class Handshake : public send_receive_if<T> {
3 public:
4 Handshake() : m_data(), m_data_ready(false) {}
5

6 OSSS_GUARDED_METHOD_VOID(send, OSSS_PARAMS(1, T, item), true) {
7 m_data = item;
8 m_data_ready = true;
9 }

10

11 OSSS_GUARDED_METHOD(T, receive, OSSS_PARAMS(0), m_data_ready) {
12 m_data_ready = false;
13 return m_data;
14 }
15

16 protected:
17 T m_data;
18 bool m_data_ready;
19 };

Listing C.2: Handshake Channel as Shared Object

470 C Pre-defined Shared Objects

1 template<class T>
2 class Double_Handshake_if : public send_receive_if<T> {
3 public:
4 virtual void wait_for_receive() = 0;
5 };
6

7 template<class T>
8 class Double_Handshake : public Double_Handshake_if<T> {
9 public:

10 Double_Handshake() : m_data(), m_data_ready(false) {}
11

12 OSSS_GUARDED_METHOD_VOID(send, OSSS_PARAMS(1, T, item), !m_data_ready) {
13 m_data = item;
14 m_data_ready = true;
15 }
16

17 OSSS_GUARDED_METHOD_VOID(wait_for_receive, OSSS_PARAMS(0), !m_data_ready) {}
18

19 OSSS_GUARDED_METHOD(T, receive, OSSS_PARAMS(0), m_data_ready) {
20 m_data_ready = false;
21 return m_data;
22 }
23

24 protected:
25 T m_data;
26 bool m_data_ready;
27 };

Listing C.3: Double Handshake Channel as Shared Object

1 template<class T, unsigned int Size>
2 class Queue : public put_get_if<T> {
3 public:
4 Queue() : m_put_index(0),
5 m_get_index(0),
6 m_num_items(0) {}
7

8 OSSS_GUARDED_METHOD_VOID(put, OSSS_PARAMS(1, T, item), !OSSS_EXPORTED(is_full())) {
9 m_buffer[m_put_index] = item;

10 increment_index(m_put_index);
11 m_num_items += 1;
12 }
13

14 OSSS_GUARDED_METHOD(T, get, OSSS_PARAMS(0), !OSSS_EXPORTED(is_empty())) {
15 T result = m_buffer[m_get_index];
16 increment_index(m_get_index);
17 m_num_items −= 1;
18 return result;
19 }
20

21 OSSS_GUARDED_METHOD(bool, is_empty, OSSS_PARAMS(0), true) {
22 return m_num_items == 0;
23 }
24

25 OSSS_GUARDED_METHOD(bool, is_full, OSSS_PARAMS(0), true) {
26 return m_num_items == Size;
27 }
28

29 protected:
30

31 void increment_index(unsigned int &index) {
32 if (index == (Size−1)) index = 0;
33 else index += 1;
34 }
35

36 T m_buffer[Size];
37 unsigned int m_put_index, m_get_index, m_num_items;
38 };

Listing C.4: Queue as Shared Object

471

1 template<class T>
2 class Piped_Variable_if : public read_write_if<T> {
3 public:
4 virtual void start_write() = 0;
5 virtual void end_write() = 0;
6 virtual void start_read() = 0;
7 virtual void end_read() = 0;
8 };
9

10 template<class T, unsigned int Depth>
11 class Piped_Variable : public Piped_Variable_if<T> {
12 public:
13 Piped_Variable() : m_data(),
14 m_in_write(false), m_in_read(false),
15 m_start_counter(0), m_access_counter(0) {}
16

17 OSSS_GUARDED_METHOD_VOID(start_write, OSSS_PARAMS(0), !m_in_read) {
18 m_in_write = true;
19 }
20

21 OSSS_GUARDED_METHOD_VOID(end_write, OSSS_PARAMS(0), m_in_write && !m_in_read) {
22 m_access_counter++;
23 if (m_start_counter < Depth) {
24 step() ;
25 m_access_counter = 0;
26 m_start_counter++;
27 }
28 else if (m_access_counter == 2) {
29 step() ;
30 m_access_counter = 0;
31 }
32 m_in_write = false;
33 }
34

35 OSSS_GUARDED_METHOD_VOID(start_read, OSSS_PARAMS(0), !m_in_write) {
36 m_in_read = true;
37 }
38

39 OSSS_GUARDED_METHOD_VOID(end_read, OSSS_PARAMS(0), m_in_read && !m_in_write) {
40 m_access_counter++;
41 if (m_access_counter == 2) {
42 step() ;
43 m_access_counter = 0;
44 }
45 m_in_read = false;
46 }
47

48 OSSS_GUARDED_METHOD_VOID(write, OSSS_PARAMS(1, T, item), m_in_write && !m_in_read) {
49 m_data[0] = item;
50 }
51

52 OSSS_GUARDED_METHOD(T, read, OSSS_PARAMS(0), !m_in_write && m_in_read) {
53 return m_data[Depth];
54 }
55

56 protected:
57 void step() {
58 for(int i=0; i<Depth; i++) {
59 m_data[Depth−i] = m_data[Depth−(i+1)];
60 }
61 }
62

63 T m_data[Depth+1];
64 bool m_in_write, m_in_read;
65 unsigned char m_start_counter, m_access_counter;
66 };

Listing C.5: Piped Variable Variable as Shared Object

472 C Pre-defined Shared Objects

Listing C.6 show the details of the PAR Shared Objects used to implement the fork-join
semantics. The PAR_master_if provides services to initiate the fork and to wait for the
completion of all forked processes (join). The PAR_slave_if provides services to each of the
forked Actors. When each Actor is ready the execution of the main routine starts. After
execution of its main routine, each Actor notifies completion (done) and waits for each of the
other Actors to finish (exit).

1 class PAR_master_if : public virtual sc_interface {
2 public:
3 virtual void fork() = 0;
4 virtual void join() = 0;
5 };
6

7 class PAR_slave_if : public virtual sc_interface {
8 public:
9 virtual void ready(unsigned int id) = 0;

10 virtual void start() = 0;
11 virtual void done(unsigned int id) = 0;
12 virtual void exit() = 0;
13 };
14

15 template<unsigned int Size>
16 class PAR : public PAR_maste_if,
17 public PAR_slave_if {
18 public:
19 PAR() : m_init(false) {
20 for(int i=0; i<Size; i++) { m_ready[i] = false; }
21 }
22

23 OSSS_GUARDED_METHOD_VOID(fork, OSSS_PARAMS(1, unsigned int, id), !m_init) {
24 for(int i=0; i<Size; i++) { m_ready[i] = false; }
25 m_init = true;
26 }
27

28 OSSS_GUARDED_METHOD_VOID(ready, OSSS_PARAMS(1, unsigned int, id), m_init) {
29 m_ready[id] = true;
30 }
31

32 OSSS_GUARDED_METHOD_VOID(start, OSSS_PARAMS(0), all_ready()) { }
33

34 OSSS_GUARDED_METHOD_VOID(done, OSSS_PARAMS(1, unsigned int, id), m_init) {
35 m_ready[id] = false;
36 }
37

38 OSSS_GUARDED_METHOD_VOID(exit, OSSS_PARAMS(0), all_done()) { }
39

40 OSSS_GUARDED_METHOD_VOID(join, OSSS_PARAMS(0), all_done()) { m_init = false; }
41

42 protected:
43 bool all_ready() const {
44 for(int i=0; i<Size; i++) { if (!m_ready[i]) return false; }
45 return true;
46 }
47

48 bool all_done() const {
49 for(int i=0; i<Size; i++) { if (m_ready[i]) return false; }
50 return true;
51 }
52

53 bool m_init;
54 bool m_ready[Size];
55 };

Listing C.6: Shared Object for PAR Behavior fork-join semantics

Listing C.7 show the details of the PIPE Shared Objects used to implement the pipeline
execution semantics.

The PIPE_master_if provides a service to set an upper bound of the execution of each
pipeline stage. By default it is zero, resulting in an infinite execution of pipeline. The fork

service starts the pipeline execution and, if the pipeline execution is bounded, join waits for
the completion of the pipeline execution, similar to the PAR Shared Object.

The PIPE_slave_if provides services to each of the pipeline stage Actors. The init barrier
is taken after the pipeline master has started the pipeline execution through fork. When each
pipeline stage is ready the execution of the main routine starts only if the ramp-up phase for
the corresponding stage has been completed. At the end of each pipeline stage’s execution cycle
the done call notifies completion of the cycle and checks if the bounded number of executions for

473

each stage has been reached. If this should be the case, the exit join-barrier is taken and the
init barrier is entered again, waiting for the next pipeline activation. If the execution bound
has not been reached or the pipeline execution is unbounded, the exit barrier is taken and the
ready service is executed again.

1 class PIPE_master_if : public virtual sc_interface {
2 public:
3 virtual void set_limit(unsigned int limit) = 0;
4 virtual void fork() = 0;
5 virtual void join() = 0;
6 };
7

8 class PIPE_slave_if : public virtual sc_interface {
9 public:

10 virtual void init() = 0;
11 virtual void ready(unsigned int id) = 0;
12 virtual bool start(unsigned int id) = 0;
13 virtual bool done(unsigned int id) = 0;
14 virtual void exit() = 0;
15 };
16

17 template<unsigned int Stages>
18 class PIPE : public PIPE_master_if,
19 public PIPE_slave_if {
20 public:
21 PIPE() : m_init(false),
22 m_limit(0) {
23 for(int i=0; i<Stages; i++) {
24 m_ready[i] = false;
25 m_counter[i] = 0;
26 }
27 }
28

29 OSSS_GUARDED_METHOD_VOID(set_limit, OSSS_PARAMS(1, unsigned int, limit), true) {
30 m_limit = limit;
31 }
32

33 OSSS_GUARDED_METHOD_VOID(fork, OSSS_PARAMS(1, unsigned int, limit), !m_init) {
34 for(int i=0; i<Stages; i++) {
35 m_ready[i] = false;
36 m_counter[i] = 0;
37 }
38 m_init = true;
39 }
40

41 OSSS_GUARDED_METHOD_VOID(init, OSSS_PARAMS(0), m_init) { }
42

43 OSSS_GUARDED_METHOD_VOID(ready, OSSS_PARAMS(1, unsigned int, id), m_init) {
44 m_ready[id] = true;
45 if (m_limit != 0) { m_counter[id]++; }
46 else if (m_counter[id] < id) { m_counter[id]++; }
47 }
48

49 OSSS_GUARDED_METHOD(bool, start, OSSS_PARAMS(1, unsigned int, id), all_ready()) {
50 return (m_counter[id] >= id);
51 }
52

53 OSSS_GUARDED_METHOD(bool, done, OSSS_PARAMS(1, unsigned int, id), m_init) {
54 if (m_limit != 0) {
55 m_ready[id] = false;
56 return (m_counter[id] >= m_limit);
57 }
58 else {
59 m_ready[id] = false;
60 return false;
61 }
62 }
63

64 OSSS_GUARDED_METHOD_VOID(exit, OSSS_PARAMS(0), all_done()) { }
65 OSSS_GUARDED_METHOD_VOID(join, OSSS_PARAMS(0), limit_reached()) {
66 m_init = false;
67 }
68

69 protected:
70 bool all_ready() const {
71 for(int i=0; i<Stages; i++) { if (!m_ready[i]) return false; }
72 return true;
73 }
74

75 bool all_done() const {
76 for(int i=0; i<Stages; i++) { if (m_ready[i]) return false; }
77 return true;
78 }

474 C Pre-defined Shared Objects

79

80 bool limit_reached() const {
81 if (limit == 0) return false;
82 for(int i=0; i<Stages; i++) { if (m_ready[i] && m_counter[i] < m_limit) return false; }
83 return true;
84 }
85

86 bool m_init;
87 unsigned int m_limit;
88 bool m_ready[Stages];
89 unsigned int m_counter[Stages];
90 };

Listing C.7: Shared Object for PIPE Behavior semantics

APPENDIX D

I2C Protocol OSSS Channel Implementation

D.1 Introduction

The I2C (Inter-Integrated-Circuit-Bus) Protocol is primarily used for the communication between
integrated circuits as the name already implies. The complete specification can be found in [164].
This simplified I2C bus protocol is a single master configuration and has been implemented based
on [153] and demonstrates the full support of all Objective VHDL+ communication modeling
capabilities by OSSS Channels.

Master Slave 1 Slave N...

SDA

SCA

Figure D.1: Organization of the I2C bus

The physical implementation of the I2C bus is a bidirectional two wire bus. The SDA (Shift
DAta) line is used for the transportation of the data. The SCL (Shift CLock) line is used for
the synchronization of the data. In our modeling example exactly one bus master has to be
connected to bus. It controls the data transfer on the bus. Furthermore, multiple slaves can be
attached to the bus, but in this modeling experiment the number of slaves has been limited to
two. The bus master initiates each communication on the bus and drives the SCL signal, which
determines the bus clock. The slaves can send or receive data as requested by the bus master.
While the SCL signal is only driven by the single master the SDA signal is either driven by the
master or the slave depending on the direction of the data (the writer drives the SDA line).
When the SDA line is driven by multiple writes the conflict is solved by a "wired and" function.

MSB LSB

A6 A5 A4 A5 A2 A1 A0 R/W

Table D.1: I2C address format

Each slave module has a unique address which consists of eight bits as shown in Table D.1.
A6 down to A0 are the address bits of each slave. The R/W bit is not part of the physical
address but it is used by the master to indicate whether a read or a write transfer is initiated.

476 D I2C Protocol OSSS Channel Implementation

D.2 The I2C Bus Protocol

The data transfer on the SDA line is serial (single signal) and synchronous to the SCL signal.
When no communication takes place, both signals SDA and SCL are high. The master initiates
a transfer with a start condition which wakes up all the attached slaves. A start condition is
characterized by a falling edge of the SDA signal while the SCL signal remains high. The end of
a communication is notified by the master performing the stop condition. A stop condition is
characterized by a rising edge of the SDA signal while the SCL signal remains high. Figure D.2
illustrates the start and the stop conditions in a waveform.

MBC622

SDA

SCL
P

STOP condition

SDA

SCL
S

START condition

Figure D.2: I2C start and stop conditions [164]

D.2.1 Data Transfer from Master to Slave

Table D.2a shows the data transfer from the master to a slave. After setting the start condition,
the master initiates a write request to one of the slaves by transferring his address on the SDA
line. It starts with the MSB, while the last bit indicates a read or a write transfer (setting the
R/W bit to zero indicates a write transfer). Since all slaves are woken up by the master’s start
condition, each slave compares the address with its own. If it matches, the slave acknowledges
the reception of the address by pulling down the SDL line synchronous to with the next clock
event on the SCL line. Now the master sequentially clocks a data byte on the SDA line. The
slave acknowledges the reception of the data byte in the same manner as it acknowledged the
address reception by pulling down the SDA signal. The transmission finishes when either the
slave does not accept the receipt of delivery (acknowledge = 1) and/or the master generates the
stop condition.

S 7 bit slave address R/W=0 A 8 bit data A ... A 8 bit data A/A P

(a) data transfer from master to slave

S 7 bit slave address R/W=1 A 8 bit data A ... A 8 bit data A P

(b) data transfer from slave to master

S start condition A acknowledge A not acknowledge P stop condition

Table D.2: I2C data transfer

D.2.2 Data Transfer from Slave to Master

Table D.2b shows the data transfer from a slave to the master. After setting the start condition
the master initiates a read request to one of the slaves by transferring his address on the SDA
line. It starts with the MSB, while the last bit indicates a read or a read transfer (setting the
R/W bit to one indicates a read transfer). Since all slaves are woken up by the master’s start
condition, each slave compares the address with its own. If it matches, the slave acknowledges the
reception of the address by pulling down the SDL line synchronous to with the next clock event
on the SCL line. Now the slave sequentially clocks a data byte on the SDA line synchronous to

D.2 The I2C Bus Protocol 477

the SCL signal. The master acknowledges (acknowledge = 0) the reception of the data byte
on by pulling down the SDA signal. The transmission finishes when the master refuses the
acknowledgment (acknowledge = 1) followed by the generation of the stop condition.

Figure D.3 shows the master protocol state machines and Figure D.4 shows the slave protocol
state machine which have to be implemented in the master/slave transactors of the OSSS
Channel.

set_start_condition write_address

receive_byteok

set_stop_conditionfailed

ok

switch_off

(a) master_receiving_byte

set_start_condition write_address

write_byteok

set_stop_conditionfailed

ok

switch_off

(b) master_send_byte

Figure D.3: Protocol state machines for the bus master

waiting

listen_for_address

start_condition

address_accepted

received address = own address

read_data

R/W-Bit = 0

write_data

R/W-Bit = 1

stop_condition

stop_condition

Ack = 0

wait_for_stop_or_restart

Ack = 1

stop

restart_condition

restart

Figure D.4: Protocol state machine for the slave (slave_action_byte)

478 D I2C Protocol OSSS Channel Implementation

D.3 OSSS Channel implementation

1 typedef sc_uint<7> Address;
2 typedef sc_uint<8> CompleteAddress;
3 typedef sc_uint<8> SendData;
4 typedef sc_uint<8> ReceiveData;
5

6 class master_method_if : public osss_method_if {
7 public:
8 virtual void master_send_byte(Address addr, SendData sendData) = 0;
9 virtual void master_receive_byte(Address addr, ReceiveData &recData) = 0;

10 };
11

12 class slave_method_if : public osss_method_if {
13 public:
14 virtual void slave_action_byte(Address &addr, SendData &sendData, ReceiveData &recData) = 0;
15 };

Listing D.1: I2C transactor method interface

1 class master_signal_if : public osss_signal_if {
2 public:
3 sc_inout<bool> shiftData;
4 sc_out<bool> shiftClock;
5

6 OSSS_GENERATE {
7 osss_connect(osss_reg_port(shiftData), osss_shared_signal("shiftData"));
8 osss_connect(osss_reg_port(shiftClock), osss_shared_signal("shiftClock"));
9 }

10 };
11

12 class slave_signal_if : public osss_signal_if {
13 public:
14 sc_inout<bool> shiftData;
15 sc_in<bool> shiftClock;
16

17 OSSS_GENERATE {
18 osss_connect(osss_shared_signal("shiftData"), osss_reg_port(shiftData));
19 osss_connect(osss_shared_signal("shiftClock"), osss_reg_port(shiftClock));
20 }
21 };

Listing D.2: I2C transactor signal interface

1 #define HIGH true

2 #define LOW false

3

4 enum State { waiting, listen_for_address, address_accepted, read_data, write_data,
5 wait_for_stop_or_restart, stop_condition, restart_condition };
6

7 class Channel : public osss_basic_channel {
8 public:
9 class Transactor_master: public master_signal_if, public master_method_if {

10 ...
11 };
12

13 class Transactor_slave: public slave_signal_if, public slave_method_if {
14 ...
15 };
16 };
17

18 OSSS_REGISTER_TRANSACTOR(Channel::Transactor_master, master_method_if)
19 OSSS_REGISTER_TRANSACTOR(Channel::Transactor_slave, slave_method_if)

Listing D.3: I2C channel with transactor implementations

D.3 OSSS Channel implementation 479

1 class Transactor_master: public master_signal_if, public master_method_if {
2 public:
3

4 virtual void reset() {
5 shiftData.write(0) ;
6 shiftClock .write(0) ;
7 }
8

9 // intentional private methods for master
10 void set_start_condition() {
11 shiftData.write(HIGH);
12 shiftClock .write(HIGH);
13 wait() ;
14 shiftData.write(LOW);
15 wait() ;
16 shiftClock .write(LOW);
17 wait() ;
18 }
19

20 void write_address(CompleteAddress &completeAddress, bool &sendStatus) {
21 for (int i=0; i<8; i++) {
22 wait() ;
23 shiftData.write(completeAddress[i]);
24 wait() ;
25 shiftClock .write(HIGH);
26 wait(2);
27 shiftClock .write(LOW);
28 wait() ;
29 }
30 //wait for acknowledge
31 shiftData.write(HIGH);
32 wait() ;
33 shiftClock .write(HIGH);
34 wait() ;
35 if (shiftData.read() == 0) {
36 sendStatus = true; //sending ok
37 wait() ;
38 shiftClock .write(LOW);
39 }
40 else {
41 sendStatus = false;
42 wait() ;
43 shiftClock .write(LOW);
44 }
45 }
46

47 void write_byte(SendData &sendData, bool &sendStatus) {
48 for(int i=0; i<8; i++) {
49 wait() ;
50 shiftData.write(sendData[i]) ;
51 wait() ;
52 shiftClock .write(HIGH);
53 wait(2);
54 shiftClock .write(LOW);
55 wait() ;
56 }
57 // wait for acknowledge
58 shiftData.write(HIGH);
59 wait() ;
60 shiftClock .write(HIGH);
61 wait() ;
62 if (shiftData.read() == 0) {
63 sendStatus = true; //sending ok
64 wait() ;
65 shiftClock .write(LOW);
66 }
67 else {
68 sendStatus = false;
69 wait() ;
70 shiftClock .write(LOW);
71 }
72 }
73

74 void receive_byte(ReceiveData &receiveData) {
75 for (int i=0; i<8; i++) {
76 wait() ;
77 shiftClock .write(HIGH);
78 wait() ;
79 receiveData[i] = shiftData.read();
80 wait() ;
81 shiftClock .write(LOW);
82 wait() ;
83 }
84 // set acknowledge

480 D I2C Protocol OSSS Channel Implementation

85 shiftData.write(HIGH);
86 wait() ;
87 shiftClock .write(HIGH);
88 wait(2);
89 shiftClock .write(LOW);
90 wait() ;
91 }
92

93 void set_stop_condition() {
94 wait() ;
95 shiftData.write(LOW);
96 wait() ;
97 shiftClock .write(HIGH);
98 wait() ;
99 shiftData.write(HIGH);

100 wait() ;
101 wait() ;
102 }
103

104 void set_rec_stop_condition() {
105 shiftData.write(LOW);
106 wait() ;
107 shiftClock .write(HIGH);
108 wait() ;
109 shiftData.write(HIGH);
110 wait() ;
111 }
112

113 void set_restart_condition() {
114 wait() ;
115 shiftClock .write(HIGH);
116 shiftData.write(HIGH);
117 wait() ;
118 shiftData.write(LOW);
119 wait() ;
120 shiftClock .write(LOW);
121 wait() ;
122 }
123

124 void switch_off() {
125 shiftClock .write(HIGH);
126 shiftData.write(HIGH);
127 wait() ;
128 }
129

130 // public methods for master
131 virtual void master_send_byte(Address addr, SendData sendData) {
132 sc_uint< 8 > completeAddr;
133 bool sendStatus = false; // false = error, true = ok
134 completeAddr.range(6,0) = addr;
135 completeAddr[7] = 0;
136 set_start_condition();
137 write_address(completeAddr, sendStatus);
138 write_byte(sendData, sendStatus);
139 set_stop_condition();
140 switch_off();
141 }
142

143 virtual void master_receive_byte(Address addr, ReceiveData &recData) {
144 CompleteAddress completeAddr;
145 bool sendStatus = false; // false = error, true = ok
146 completeAddr.range(6,0) = addr;
147 completeAddr[7] = 1;
148 set_start_condition();
149 write_address(completeAddr, sendStatus);
150 receive_byte(recData);
151 set_stop_condition();
152 switch_off();
153 }
154 };

Listing D.4: I2C master transactor implementations

D.3 OSSS Channel implementation 481

1 class Transactor_slave: public slave_signal_if, public slave_method_if {
2 public:
3 State current_state;
4 bool sda_old, sda_new, scl_old, scl_new;
5 CompleteAddress completeAddress;
6 bool rwMode;
7 bool not_stop_loop;
8 bool reading_ok;
9 ReceiveData data;

10

11 virtual void reset() {}
12

13 virtual void slave_action_byte(Address &addr, SendData &sendData, ReceiveData &recData) {
14 bool finished = false;
15 current_state = waiting;
16

17 while (!finished) {
18 switch (current_state) {
19

20 case waiting:
21 // waiting for start_condition
22 // if start condition listen for address
23 sda_old = shiftData.read();
24 scl_old = shiftClock.read();
25 wait() ;
26 sda_new = shiftData.read();
27 scl_new = shiftClock.read();
28 if (((sda_old == 1) && (sda_new == 0)) &&
29 ((scl_old == 1) && (scl_new == 1))) { current_state = listen_for_address; }
30 else { current_state = waiting; }
31 break;
32

33 case listen_for_address:
34 // if address equals own address −> address_accepted()
35 // otherwise −> waiting()
36 // listen as well for the R/W signal
37 for (int i=0; i<8; i++) {
38 while(shiftClock.read() != 0) { wait() ; }
39 while(shiftClock.read() != 1) { wait() ; }
40 completeAddress[i] = shiftData.read();
41 }
42 rwMode = completeAddress[7];
43 if (completeAddress.range(6,0) == addr) { current_state = address_accepted; }
44 else { current_state = waiting; }
45 break;
46

47 case address_accepted:
48 // analyse the R/W bit −> read_data or write_data
49 // confirm received address
50 while(shiftClock.read() != 0) { wait() ; }
51 wait() ;
52 shiftData.write(LOW); //acknowledge
53 wait() ;
54 while(shiftClock.read() != 1) { wait() ; }
55 while(shiftClock.read() == 1) { wait(); }
56 // data from master to slave
57 if (rwMode == 0) { current_state = read_data; }
58 // data from slave to master
59 else { current_state = write_data; }
60 break;
61

62 case read_data:
63 reading_ok = false;
64 not_stop_loop = true;
65 for(int i=0; i<8; i++) {
66 while(shiftClock.read() != 0) { wait() ; }
67 while(shiftClock.read() != 1) { wait() ; }
68 while((shiftClock.read()==1) && not_stop_loop) {
69 sda_old = shiftData.read();
70 scl_old = shiftClock.read();
71 wait() ;
72 sda_new = shiftData.read();
73 scl_new = shiftClock.read();
74 if (((sda_old == 0) && (sda_new == 1)) &&
75 ((scl_old == 1) && (scl_new == 1))) {
76 not_stop_loop = false;
77 current_state = stop_condition;
78 }
79 }
80 if (not_stop_loop == false) {
81 current_state = stop_condition;
82 break;
83 }
84 else { data[i] = sda_old; }

482 D I2C Protocol OSSS Channel Implementation

85 }
86 if (current_state != stop_condition) {
87 //confirm received data
88 while(shiftClock.read() != 0) { wait() ; }
89 shiftData.write(LOW);
90 wait() ;
91 reading_ok = true;
92 while(shiftClock.read() != 1) { wait() ; }
93 while(shiftClock.read() == 1) { wait(); }
94 if (reading_ok) { recData = data; }
95 }
96 break;
97

98 case write_data:
99 for (int i=0; i<8; i++) {

100 while(shiftClock.read() != 0) { wait() ; }
101 wait() ;
102 shiftData.write(sendData[i]) ;
103 wait() ;
104 while(shiftClock.read() != 1) { wait() ; }
105 }
106 while(shiftClock.read() != 0) { wait() ; }
107 while(shiftClock.read() != 1) { wait() ; }
108 wait() ;
109 if (shiftData.read() == 0) { current_state = write_data; }
110 else { current_state = wait_for_stop_or_restart; }
111 break;
112

113 case wait_for_stop_or_restart:
114 not_stop_loop = true;
115 while(shiftClock.read() != 0) { wait() ; }
116 while(shiftClock.read() != 1) { wait() ; }
117 while((shiftClock.read() == 1) && not_stop_loop) {
118 sda_old = shiftData.read();
119 scl_old = shiftClock.read();
120 wait() ;
121 sda_new = shiftData.read();
122 scl_new = shiftClock.read();
123 if (((scl_old == 1) && (scl_new == 1)) &&
124 ((sda_old == 0) && (sda_new == 1))) {
125 current_state = stop_condition;
126 not_stop_loop = false;
127 }
128 else {
129 if (((scl_old == 1) && (scl_new == 1)) &&
130 ((sda_old == 1) && (sda_new == 0))) {
131 current_state = restart_condition;
132 not_stop_loop = false;
133 }
134 }
135 }
136 break;
137

138 case stop_condition:
139 current_state = waiting;
140 finished = true;
141 break;
142

143 case restart_condition:
144 current_state = listen_for_address;
145 break;
146 }
147 }
148 }
149 };

Listing D.5: I2C slave transactor implementations

APPENDIX E

Supported Target Platforms

This chapter gives and introduction to the supported FPGA-based target platforms. For
more details please follow the references to the appropriate technical manuals and descriptions.

E.1 Supported FPGAs

Xilinx is the biggest FPGA manufacturer and offers a variety of Field Programmable Gate Arrays
(from low-cost to high-density). Xilinx also offers the possibility to migrate from an FPGA
prototype design to an ASIC like device, reducing the costs per chip, called EasyPath FPGAs.
Together with their FPGAs Xilinx provides the ISE design software which in conjunction with
the Xilinx Platform Studio can be used for the integration of various IP components including
embedded processors, DSP blocks, interfaces & peripherals, and communication IPs. Xilinx
offers its own embedded processors called PicoBlaze and MicroBlaze which can be connected with
all offered IP components with IBMs CoreConnect interconnection technology. Both PicoBlaze
and MicroBlaze are soft core processors which can be fully customized by the platform designer.

E.1.1 Virtex-4

Virtex-4 devices are user-programmable gate arrays with various configurable elements and
embedded cores optimized for high-density and high-performance system designs. Virtex-4
devices implement the following functionality [234, 91]:

• I/O blocks provide the interface between package pins and the internal configurable logic.
Most popular and leading-edge I/O standards are supported by programmable I/O blocks
(IOBs).

• Configurable Logic Blocks (CLBs), the basic logic elements for Xilinx FPGAs, provide
combinatorial and synchronous logic as well as distributed memory and SRL16 shift register
capability.

• Block RAM modules provide flexible 18Kbit true dual-port RAM, which is cascadable
to form larger memory blocks. In addition, Virtex-4 block RAMs contain optional
programmable FIFO logic for increased device utilization.

• Cascadable embedded XtremeDSP slices with 18-bit x 18-bit dedicated multipliers, inte-
grated Adder, and 48-bit accumulator.

• Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for
clock distribution delay compensation, clock multiplication/division, and coarse-/fine-
grained clock phase shifting.

484 E Supported Target Platforms

• The general routing matrix (GRM) provides an array of routing switches between each
component. Each programmable element is tied to a switch matrix, allowing multiple
connections to the general routing matrix. The overall programmable interconnection
is hierarchical and designed to support high-speed designs. All programmable elements,
including the routing resources, are controlled by values stored in static memory cells.
These values are loaded in the memory cells during configuration and can be reloaded to
change the functions of the programmable elements.

The Virtex-4 family is Xilinx’ high-performance FPGA series and is manufactured with
90nm process technology. It offers three platforms tailored to the requirements of different
application domains. The LX platform is intended for high-performance logic and has the
highest logical cells to feature ratio and the highest I/O to feature ratio within the Virtex-4
family. The SX platform is intended for high-performance digital signal processing and therefore
has the highest DSP block to feature ratio and the highest memory to feature ratio. The FX
platform is intended for embedded processing and high speed serial connectivity. It additionally
includes IBM PowerPC processor(s), Ethernet MAC blocks and RocketIO multi gigabit serial
transceiver(s).

E.1.2 Virtex-II Pro

The Virtex-II Pro and families contain plat-form FPGAs for designs that are based on IP cores
and customized modules. The family incorporates multi-gigabit transceivers and PowerPC
CPU blocks in Virtex-II Pro Series FPGA architecture. It empowers complete solutions for
telecommunication, wireless, networking, video, and DSP applications.

Virtex-II Pro devices are user-programmable gate arrays with various configurable elements
and embedded blocks optimized for high-density and high-performance system designs. Virtex-II
Pro devices implement the following functionality [20]:

• Embedded high-speed serial transceivers enable data bit rate up to 3.125 Gb/s per channel
(RocketIO) or 6.25 Gb/s (RocketIO X).

• Embedded IBM PowerPC 405 RISC processor blocks provide performance up to 400 MHz.

• SelectIO-Ultra blocks provide the interface between package pins and the internal con-
figurable logic. Most popular and leading-edge I/O standards are supported by the
programmable IOBs.

• Configurable Logic Blocks (CLBs) provide functional elements for combinatorial and
synchronous logic, including basic storage elements. BUFTs (3-state buffers) associated
with each CLB element drive dedicated segmentable horizontal routing resources.

• Block SelectRAM+ memory modules provide large 18 Kb storage elements of True Dual-
Port RAM.

• Embedded multiplier blocks are 18-bit x 18-bit dedicated multipliers.

• Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for
clock distribution delay compensation, clock multiplication and division, and coarse- and
fine-grained clock phase shifting.

• The general routing matrix (GRM) is an array of rout-ing switches. Each programmable
element is tied to a switch matrix, allowing multiple connections to the general routing
matrix. The overall programmable interconnection is hierarchical and supports high-speed
designs.

All programmable elements, including the routing resources, are controlled by values stored
in static memory cells. These values are loaded in the memory cells during configuration and
can be reloaded to change the functions of the programmable elements.

E.2 Supported Prototyping and Development Boards 485

E.2 Supported Prototyping and Development Boards

In order to evaluate hardware/software designs using Xilinx FPGAs different development and
prototyping boards are available through Xilinx and their partner companies. The different
prototyping and development boards mainly differ in the peripheral components beside the
FPGA(s) mounted on the PCB. Each prototyping board is equipped with at least one FPGA,
onboard oscillator, flash memory, external memory and a JTAG interface for configuration/pro-
gramming/debugging of the FPGA. Optionally other I/O hardware components with their
interfaces are mounted on the boards (i.e. switches, LEDs, push buttons, LCD displays, RS232
interfaces, Ethernet, USB PHYs or A/D and D/A converters).

Target

Platfor
m

B
us µP/µC

Bus
IF

Bus
IF

Bus Arbiter

Memory
Controll

er

B
u
s
IF

B
u
s
IF

FPG
A User

HW

User
HW

User
HW

User
HW

Target

Platform

Bus
IF

Bus
IF

Bus Arbiter

FPGA

FPGA Prototyping Board

User
HW

User
HW

User
HW

User
HW

Memory Memory
Controller

µP/ µC
Bus
IF

Bus
IF

Sensor

Actuator

Bus

Figure E.1: Target platform showing an FPGA integrated in a prototyping board

Figure E.1 depicts the target platform which is situated at the bottom of Figure 6.1. In
this case all architectural elements of the Virtual Target Architecture will be implemented on
an FPGA. Usually different peripherals, connectors and interfaces connected to the FPGA
are available on a prototyping board. In Figure E.1 these external components are labeled as
Memory, Sensor and Actuator.

To support the evaluation of the methodology we have chosen two FPGA prototyping boards.
The Xilinx ML401 and the Xilinx University Program Virtex-II Pro Development System
(XUPII). Both boards have been chosen because of the supported interfaces, the flexibility
of the FPGA, RTL synthesis tool support, and the portfolio of ready-to-use IP components.
Both boards support important industry-standard peripherals, connectors and interfaces. The
FPGAs, a Virtex-4 on the ML401, and a Virtex-II Pro on the XUPII, support implementation
of custom hardware including soft core processors, and platform IP components. The Virtex-II
Pro contains two high-performance Power PC hard macro processors.

E.2.1 The Xilinx ML401 Evaluation Platform

The Xilinx ML401 evaluation platform carries a Virtex-4 LX25 FPGA together with different
industry-standard peripherals, connectors, and interfaces. This makes the ML401 evaluation
platform to an ideal evaluation environment for a wide range of applications. Figure E.2 shows
the Xilinx Virtex-4 ML401 evaluation platform block diagram.

The key features of the Xilinx ML401 evaluation platform are [85]:

• Virtex-4 FPGA (XC4VLX25-FF668-10)

• 64-MB DDR SDRAM, 32-bit interface running up to 266-MHz data rate

• One differential clock input pair and differential clock output pair with SMA connectors

• One 100-MHz clock oscillator (socketed) plus one extra open 3.3V clock oscillator socket

• General purpose DIP switches, LEDs, and push buttons

• Expansion header with 32 single-ended I/O, 16 LVDS capable differential pairs, 14 spare
I/Os shared with buttons and LEDs, power, JTAG chain expansion capability, and IIC
bus expansion

486 E Supported Target Platforms

Virtex-4

FPGA

GPIO
(Button/LED/DIP Switch)

100 MHz XTAL + User

SMA
(Differiential In/Out Clocks)

Dual PS/2

FLASH

FLASH

Sync
RAM

CPLD

Platform Flash

System ACE

Controller

S
E

L
 M

A
P

S
LV

 S
E

R
IA

L

J
T
A

G
J
T
A

G
J
T
A

G
J
T
A

G
J
T
A

G

M
S

T
R

 S
E

R
L

I/O Expansion Header

USB
Controller

10/100/1000
Enet PHY

AC97
Audio CODEC

16 X 32
Character LCD

CF PC

DDR SDRAM

DDR SDRAM

RS-232 XCVR

Video

IIC EEPROM

RJ-45

Line Out/
Headphone

Mic In /
Line In

VGA

Serial

Host

Peripheral

Peripheral

32

32

32

3216

User IIC Bus

Note: The DIP switch is
not available on the
ML403 board

Figure E.2: Xilinx Virtex-4 ML401 evaluation platform block diagram [85]

• Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, and microphone-in
(mono) jacks

• RS-232 serial port

• 16-character x 2-line LCD display

• One 4-Kb IIC EEPROM

• VGA output: 50 MHz / 24-bit video DAC

• PS/2 mouse and keyboard connectors

• System ACE
TM

CompactFlash configuration controller with Type I/II CompactFlash
connector

• ZBT synchronous SRAM: 9 MB on 32-bit data bus with four parity bits

• Intel StrataFlash (or compatible) linear flash chips (8 MB)

• 10/100/1000 tri-speed Ethernet PHY transceiver

• USB interface chip (Cypress CY7C67300) with host and peripheral ports

• Xilinx XC95144XL CPLD to allow linear flash chips to be used for FPGA configuration

• Xilinx XCF32P Platform Flash configuration storage device

E.2 Supported Prototyping and Development Boards 487

1

13

2

10

20

19

5

17

30

3

23

26 27

32

15

1121

25

7

8

31 33 6 717292879

24

22

12

UG080_02_101504

Figure E.3: Detailed description of Virtex-4 ML401 evaluation platform components (front) [85]

1. Virtex-4 FPGA 18. ZBT Synchronous SRAM
2. DDR SDRAM 19. Linear Flash Chips
3. Differential Clock Input And Output

With SMA Connectors
20. Xilinx XC95144XL CPLD

4. Oscillator Sockets 21. 10/100/1000 Tri-Speed Ethernet PHY
5. LCD Brightness and Contrast Adjust-

ment
22. USB Controller with Host and Peripheral

Ports
6. DIP Switches (Active-High) 23. Xilinx XCF32P Platform Flash Configu-

ration Storage Device
7. User and Error LEDs (Active-High) 24. JTAG Configuration Port
8. User Push Buttons (Active-High) 25. Onboard Power Supplies
9. CPU Reset Button (Active-Low) 26. AC Adapter and Input Power Switch/-

Jack
10. Expansion Headers 27. Power Indicator LED
11. Stereo AC97 Audio Codec 28. INIT LED
12. RS-232 Serial Port 29. DONE LED
13. 16-Character x 2-Line LCD 30. Program Switch
14. IIC Bus with 4-Kb EEPROM 31. Configuration Address and Mode DIP

Switches
15. VGA Output 32. Encryption Key Battery
16. PS/2 Mouse and Keyboard Ports 33. Configuration Source Selector Switch
17. System ACE and CompactFlash Connec-

tor

In the following we will briefly present the Virtex-4 FPGA family and will summarize the
main features of the Virtex-4 LX25 mounted on the ML401 evaluation platform described above.
The main features of the utilized Virtex-4 LX25 FPGA are [91]:

• 24,192 Logic Cells (LCs)

488 E Supported Target Platforms

UG080_03_092004

21

16

16

17

25

14

4

15
11

18

12

19

2

26

24

22

Figure E.4: Detailed description of Virtex-4 ML401 evaluation platform components (back) [85]

• 72 Block RAM/FIFO w/ECC (18 Kbits each = 1,296 Kbits of total block BRAM)

• 48 Extreme DSP Slices

• On- and off-chip system timing management using 8 DCMs (Digital Clock Managers) and
4 PMCD (Phase-Matched Clock Dividers)

• Single-ended electrical standard support for LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and
1.5V), PCI (33 and 66 MHz), PCI-X, GTL and GTL+, HSTL 1.5V and 1.8V (Class I, II,
III, and IV), and SSTL 2.5V and 1.8V (Class I and II).

• Differential electrical standard support for 840 LVDS, Extended LVDS (2.5V), Bus LVDS,
ULVDS, LVPECL 2.5V, and HyperTransport (LDT). All I/Os can be configured as
differential I/O without any placement restriction for flexibility.

• Built-in double-data rate input and output registers enable implementation of DDR and
QDR interfaces.

• Seventeen I/O banks support electrical standards spanning across multiple voltages with
independent reference voltages.

• Supports PicoBlaze and MicroBlaze embedded soft processor cores.

E.2.2 The Xilinx University Program Virtex-II Pro Development Board

The Xilinx University Program Virtex-II Pro Development Board carries a Virtex-II Pro
XC2VP30 FPGA together with different industry-standard peripherals, connectors, and interfaces.
Figure E.5 shows the development board block diagram.

The key features of the Xilinx University Program Virtex-II Pro Development Board are
[34]:

• Virtex
TM

-II Pro FPGA with PowerPC
TM

405 cores

E.2 Supported Prototyping and Development Boards 489

CPU Debug Port

100 MHz System Clock

75 MHz SATA Clock

User Clocks (2)

Platform Flash Configurations (2)

Compact Flash Configurations (8)

USB2 High Speed Configuration

Internal Power Supplies

3.3V

2.5V

1.5V

External Power

4.5-5.5V

High Speed Expansion Port

5V Tolerant Expansion Headers

2 GB DDR SDRAM DIMM Module

Multi-Gigabit Transceiver Port

Serial ATA Ports (3)

RS-232 & PS/2 Ports (2)

10/100 Ethernet PHY

User Push-button Switches (5)

User Switches (4)

User LEDs (4)

XSGA Video Output

AC97 Audio CODEC & Stereo Amp

Virtex-II Pro

FPGA

Figure E.5: XUP Virtex-II Pro Development System Block Diagram [34]

• Up to 2 GB of Double Data Rate (DDR) SDRAM

• System ACE
TM

controller and Type II CompactFlash
TM

connector for FPGA configuration
and data storage

• Embedded Platform Cable USB configuration port

• High-speed SelectMAP FPGA configuration from Platform Flash In-System Programmable
Configuration PROM

• Support for "Golden" and "User" FPGA configuration bitstreams

• On-board 10/100 Ethernet PHY device

• Silicon Serial Number for unique board identification

• RS-232 DB9 serial port

• Two PS-2 serial ports

• Four LEDs connected to Virtex-II Pro I/O pins

• Four switches connected to Virtex-II Pro I/O pins

• Five push buttons connected to Virtex-II Pro I/O pins

• Six expansion connectors joined to 80 Virtex-II Pro I/O pins with over-voltage protection

• High-speed expansion connector joined to 40Virtex-II Pro I/O pins that can be used
differentially or single ended

• AC-97 audio CODEC with audio amplifier and speaker/headphone output and line level
output

• Microphone and line level audio input

• On-board XSGA output, up to 1200 x 1600 at 70 Hz refresh

• Three Serial ATA ports, two Host ports and one Target port

• Off-board expansion MGT link, with user-supplied clock

490 E Supported Target Platforms

• 100 MHz system clock, 75 MHz SATA clock

• Provision for user-supplied clock

• On-board power supplies

• Power-on reset circuitry

• PowerPC 405 reset circuitry

Figure E.6: XUP Virtex-II Pro Development System Board Photo [34]

E.3 Basic IP components

E.3.1 MicroBlaze Local Memory

Since the MicroBlaze soft core processor has a Harvard architecture it needs separated data
and instruction memory. For the data and instruction memory a single block RAM (BRAM)
[94] will be used since it is dual ported. Two physically separated and equally sized areas of the
BRAM will be used for this purpose.

E.3 Basic IP components 491

The dual ported block RAM is a special memory resource physically implemented inside
the Xilinx FPGA (block RAM can be considered as a special kind of FPGA on chip memory,
cp. Section 7.4). The block RAM is connected to the MicroBlaze processor via special point to
point connection, the Local Memory Bus (LMB) [101, 102]. The LMB is a synchronous bus
used primarily to access on-chip block RAM. It uses a minimum number of control signals and
a simple protocol to ensure that local block RAM is accessed in a single clock cycle.

The size of the connected block RAM for local data and instruction is configurable from 2
KB up to 64 KB.

E.3.2 Interrupt Controller

Since the MicroBlaze has only one single interrupt port but there are possibly multiple interrupt
sources among the peripherals and the user defined hardware blocks, it is essential to provide
an interrupt controller. The used interrupt controller [107] is composed of a bus-centric
wrapper containing the interrupt controller core and a bus interface. We make use of a simple,
parametrized interrupt controller that, along with the appropriate bus interface, is attached to
the OPB (On-chip Peripheral Bus).

Figure E.7 shows a block diagram of the interrupt controller which is organized into three
functional units: interrupt detection and request generation, programmable registers and bus
interface.

Interrupt detection can be configured for either level or edge detection for each interrupt
input. If edge detection is chosen, synchronization registers are also included. Interrupt request
generation is also configurable as either a pulse output for an edge sensitive request or as a level
output that is cleared when the interrupt is acknowledged.

Level / Edge

Detection

&

Synchronization

Int_inputs
IRQ

Generation

Irq

Bus

Interface

A
d
d
re

s
s

D
a
ta

C
o
n
tro

l

Bus (OPB or DCR)

Clk

Rst

IntC Core

Reg_addr

Valid_rd

Valid_wr

Data_in

Data_out

Ack

ISR

CIE

IVR

MER

SIE

IAR

IER

IPR

Bus Wrapper

Figure E.7: Interrupt controller block diagram [107]

The interrupt controller contains the following programmer accessible registers [107]:

• Interrupt Status Register (ISR) is a read/write register that, when read, indicates which
interrupt inputs are active (pre-enable bits). Writing to the ISR allows software to generate

492 E Supported Target Platforms

interrupts until the Hardware Interrupt Enable (HIE) bit in the Master Enable Register
(MER) has been enabled.

• Interrupt Pending Register (IPR) is a read only register that provides an indication of
interrupts that are active and enabled (post enable bits). The IPR is an optional register
and can be omitted to reduce FPGA resources required by an interrupt controller.

• Interrupt Enable Register (IER) is a read/write register whose contents are used to enable
selected interrupts.

• Interrupt Acknowledge Register (IAR) is not an actual register. It is a write-only location
used to clear interrupt requests.

• Set Interrupt Enables (SIE) is a write only location that provides the ability to set selected
bits within the IER in one atomic operation, rather than requiring a read/modify/write
sequence.

• Clear Interrupt Enables (CIE) is a write-only location that provides the ability to clear
selected bits within the IER in a single atomic operation. Both SIE and CIE are optional
and can be parametrized out of the design to reduce FPGA resource consumption by the
interrupt controller.

• Interrupt Vector Register (IVR) is a read-only register that contains the ordinal value of
the highest priority interrupt that is active and enabled. The IVR is optional and can be
parametrized out of the design to reduce FPGA resources.

• Master Enable Register (MER) is a read/write, two-bit register used to enable or disable
the IRQ output and to enable hardware interrupts (when hardware interrupts are enabled,
software interrupts are disabled until the interrupt controller is reset).

The On-chip Peripheral Bus (OPB) interface provides a slave interface on the OPB for
transferring data between the interrupt controller and the processor. The registers described
above are memory mapped into the OPB address space and data transfers occur by using OPB
byte enables.

The register addresses are fixed on four byte boundaries and the registers and the data
transfers to and from them are always as wide as the data bus.

The number of interrupt inputs is configurable up to the width of the data bus, which is
also set by a configuration parameter. The base address for the registers in the bus interface of
the interrupt controller is set by a configuration parameter.

E.3.3 Timer

The Timer/Counter [109] is organized as two identical timer modules as shown in Figure E.8.
Each timer module has an associated load register that is used to hold either the initial value
for the counter for event generation, or a capture value, depending on the mode of the timer.

The generate value is used to generate a single interrupt at the expiration of an interval,
or a continuous series of interrupts with a programmable interval. The capture value is the
timer value that has been latched on detection of an external event. The clock rate of the
timer modules is the clock of the OPB (no pre-scaling of the clock is performed). All of the
Timer/Counter interrupts are OR’ed together to generate a single external interrupt signal.
The interrupt service routine reads the control/status registers to determine the source of the
interrupt.

E.3.4 Universal Asynchronous Receiver Transmitter (UART)

The UART [110] integrated in the xilinx_microblaze architecture building bock is usable
for debugging purpose only. It is attached to the OPB as a slave and has several configurable
features:
• OPB slave bus interface with byte-enable support
• One transmit and one receive channel (full duplex)

E.3 Basic IP components 493

TCR0

TLR0

TCR1

TLR1

TCSR0 Load
Register

Load
Register

32b Counter 32b Counter
TCSR1

Control/
Status

Control/
Status

CaptureTrig1CaptureTrig0

GenerateOut1GenerateOut0

OPB Bus

Interrupt Logic TC_Interrupt PWM0

OPB Bus

Figure E.8: Timer/Counter block diagram [109]

• 16-character transmit FIFO and 16-character receive FIFO
• Number of data bits in a character is configurable (5-8)
• Parity which can be turned on/off and can be configured as odd or even
• Configurable baud rate which is derived from the OPB clock

If interrupts are enabled, an interrupt is generated when one of the following conditions is
true:

1. When there exists any valid character in the receive FIFO, the interrupt stays active until
the receive FIFO is empty.

2. When the transmit FIFO goes from not empty to empty, such as when the last character
in the transmit FIFO is transmitted, the interrupt is only active one clock cycle.

The "transmit buffer empty" interrupt is an edge interrupt and the "receive buffer empty" is
a level interrupt.

E.3.5 Microprocessor Debug Module (MDM)

The Microprocessor Debug Module (MDM) [104] which can be shared between multiple Micor-
Blaze processors enables JTAG-based debugging of one or more MicroBlaze processor cores.
The most significant features of the MDM are:

• Support for JTAG-based software debug tools (e.g. the gdb)
• Support for debugging a configurable number (1-8) of MicroBlaze processors
• Support for synchronized control of multiple processors - stop and single step
• Support for a JTAG based UART with an OPB interface

E.3.6 On-Chip Peripheral Bus (OPB)

The IBM CoreConnect bus architecture can be partitioned into three subsystems: PLB (Processor
Local Bus), OPB (On-Chip Peripheral Bus) and DCR (Device Control Register Bus). In the
following we will present the supported OPB only. It is a general-purpose synchronous bus
designed for connection of on-chip peripheral devices.

494 E Supported Target Platforms

E.3.6.1 Features

The OPB includes the following features [113]:
• 32-bit or 64-bit data bus
• Up to 64-bit address
• Supports 8-bit, 16-bit, 32-bit, and 64-bit slaves
• Supports 32-bit and 64-bit masters
• Dynamic bus sizing with byte, half-word, full-word, and double-word transfers
• Optional Byte Enable support
• Distributed multiplexer bus instead of 3-state drivers
• Single cycle transfers between OPB master and OPB slaves (not including arbitration)
• Support for sequential address protocol
• 16-cycle bus time-out (provided by arbiter)
• Slave time-out suppress capability
• Support for multiple OPB bus masters
• Support for bus parking
• Support for bus locking
• Support for slave-requested retry
• Bus arbitration overlapped with last cycle of bus transfers

E.3.6.2 FPGA implementation supported features

The OPB is a full-featured bus architecture with many features that increase bus performance.
Most of these features can be effectively used in an FPGA architecture. However, some features
can result in the inefficient use of FPGA resources or can lower system clock rates. Consequently,
Xilinx uses an efficient subset of the OPB for Xilinx developed OPB devices. Thus, the OPB
provided by Xilinx is not fully OPB V2.1 compliant. A detailed specification of the OPB V2.1
can be found in [151].

Xilinx-developed OPB devices adhere to the following OPB usage rules [113]:

• The width of the OPB data buses and address buses is 32 bits. Note that some peripherals
may parameterize these widths, but currently only 32-bit buses are supported. Peripherals
that are smaller than 32-bits can be attached to the OPB with a corresponding restriction
in addressing. For example, an 8-bit peripheral at base address A can be attached to byte
lane 0, but can only be addressed at A, A+ 4, A+ 8, and so on.

• All OPB devices (masters and slaves) are byte-enable devices. These devices do not
support the legacy data transfer signals and therefore do not support dynamic bus sizing.
OPB masters do not mirror data to unused byte lanes.

• All OPB devices (masters and slaves) are required to output logic zero when they are
inactive. This eliminates the need for the Mn_DBusEn and Sln_DBusEn signals external to
the master or slave. The enable function is still implemented within the device.

• To obtain better timing in the FPGA implementation of the OPB, the OPB_timeout signal
is registered. This means that all slaves must assert Sl_xferAck or Sl_retry on or before
the rising edge of the 16th clock cycle after the assertion of OPB_select. If an OPB slave
wishes to assert Sl_toutSup, Sl_toutSup must be asserted on or before the rising edge of
the 15th clock after the assertion of OPB_select.

• The byte-enables and the least-significant address bits are driven by all masters and
contain consistent information.

• All OPB slave devices that require a continuous address space (use of all byte lanes)
will implement an attachment to the OPB bus that is as wide as the OPB data width,
regardless of device width. This eliminates the need for left justification on the OPB bus
and eliminates the need for masters to mirror write data.

• By convention, registers in all OPB slave devices are aligned to word boundaries (lowest
two address bits are "00"), regardless of the size of the data in the register or the size of
the peripheral.

E.3 Basic IP components 495

Master 0 Master 1 Master 2 Master n

Slave 0 Slave 1 Slave 2 Slave m

OPB Arbiter

OPB Bus Interconnect (bus "OR" function)

Power-on and WDT reset

OPB_V20

DS401_01_020810

Figure E.9: Block diagram of an OPB with several attached master and slave components [105]

E.3.6.3 Connection

An OPB system is composed of masters, slaves, a bus interconnect, and an arbiter as shown in
Figure E.9. The OPB_V20 [105] implements the bus interconnect and arbiter function in an
OPB system. In Xilinx FPGAs, the OPB is implemented as a simple OR structure.

The OPB bus signals are created by logically OR’ing the signals that drive the bus. OPB
devices that are not active during a transaction are required to drive zeros into the OR structure.
This structure forms a distributed multiplexer and results in efficient bus implementations in
FPGAs. Bus arbitration signals such as M_request and OPB_MGrant are directly connected
between the OPB arbiter and each OPB master device.

The OPB_V20 supports up to 16 masters and an unlimited number of slaves (up to the
hardware resources available). The port widths into the OPB_V20 are designed to increase in
size as more masters or slaves are added. Xilinx recommends a maximum of 16 slaves on the
OPB.

For example, the Master Data bus port has the width of the OPB data bus multiplied by the
number of masters in the system. For a 32-bit OPB, Master 0 occupies M_DBus(0:31), Master
1 occupies M_DBus(32:63), and so on. Similarly for slaves, Slave 0 occupies Sl_DBus(0:31),
Slave 1 occupies Sl_DBus(32:63), and so on. The 32-bit OPB data bus (OPB_DBus) is formed
by OR’ing all the master and slave data buses together.

E.3.6.4 Arbitration

The OPB Arbiter is a soft IP core designed for Xilinx FPGAs and contains the following features
[105]:
• Optional OPB slave interface (included in design via a design parameter)
• OPB Arbitration

– arbitrates between 1-16 OPB Masters (the number of masters is parametrizeable)
– arbitration priorities among masters programmable via register write
– priority arbitration mode configurable via a design parameter
∗ Fixed priority arbitration with processor access to read/write Priority Registers
∗ Dynamic priority arbitration implementing a true least recent used (LRU) algo-

rithm
• Two bus parking modes selectable via register write:

– park on selected OPB master (specified in Control Register)
– park on last OPB master which was granted OPB access

496 E Supported Target Platforms

• Watchdog timer which asserts the OPB time-out signal if a slave response is not detected
within 16 clock cycles.
• Registered or combinatorial Grant outputs configurable via a design parameter.

E.3.7 Intellectual Property Interface (IPIF)

The IPIF (Intellectual Property Interface) provides a standardized connection to the Xilinx Bus
IP. The IPIF uses a back-end interface standard called the IPIC (IP Interconnect) which helps
to connect the user logic to the IPIF services. The IPIF provides options which can be selected
by the user, such as:
• Address decoding
• Interrupt management
• Software accessible registers
• IP reset via software-accessible registers
• Module identification register
• Read and write FIFOs between the user logic and the OPB
• Simple DMA capability for the read and transmit sides
• Scatter-Gather DMA (SG DMA) capability for the read and transmit sides

P
R
E
L
I
M
I
N
A

IPC
and

BglueB

Interrupt
Control

RegisterOI/F

Reset

Slave
Attachment

BSRAMBOI/F

Addr_Decode

WriteOFIFO

ReadOFIFO

MasterOI/F

Scatter
Gather

DMA

Master
Attachment

Bus

IP

Control
DataOPath

IP
Core External

I/F

IPIF

Device

IPOInterconnect

xip2053

Figure E.10: A Bus (master/slave) IP using the full feature set of the IPIF [140]

Figure E.10 gives an overview of the IPIF features that can be used to connect a custom
IP component with an available bus IP. The IPIF can be configured for master, slave and
master/slave components.

For the connection of Shared Objects with bus IP, the minimal IPIF configuration, providing
a slave bus interface and simple register access, is used (see Figure E.11).

Having a common interface, the IPIF reduces the development effort for custom bus cores.
The IPIF is available for the Xilinx OPB [108] and PLB [112].

E.3 Basic IP components 497

P
R
E
L
I
M
I
N
A
R
Y

IPC
and

0glue0

RegisterpI/FSlave
Attachment

Addr_Decode
Bus

IP

Control
DatapPath

IP
Core External

I/F

IPIF

Device

IPpInterconnect

xip2054

Figure E.11: A Bus (slave) IP using only the register feature of the IPIF [140]

APPENDIX F

Synthesis Subset1

In general an OSSS application layer design is synthesisable2. This section gives a short
overview of the "really" synthesisable SystemC/OSSS language constructs accepted by the
current implementation of the synthesis tool which will be referred to as Fossy or simply "the
synthesiser".

F.1 Compatibility to the SystemC Synthesisable Subset

Fossy is quite compatible to the SystemC Synthesisable Subset. Table F.1 lists all important
features of the synthesis subset. Unsupported features or features with restricted synthesis
semantics are commented.

C++/SystemCTM feature Comment

Translation units
√

Only one translation unit al-
lowed.

Modules
Definition: SC_MODULE, sc_module inheri-
tance

√

Members: signal, sub-module, ctors,
HAS_PROCESS

√

Ports/Signals: sc_signal, sc_in, sc_out,
sc_inout, sc_in_clk

√

Ports/Signals: sc_out_clk, sc_inout_clk – Not supported, but deprecated
anyway.

Ports/Signals: *_resolved, *_rv – Not supported.
Ctor: w/ and w/o SC_CTOR macro

√

Deriving
√

Datatypes
Integral types

√

Integral promotion, arith. conversion
√

Operators
√

Compounds: arrays, enums, class/struct/u-
nions, functions

√
No pointers and no references
supported.

SysC: sc_int, sc_uint, sc_bigint,
sc_biguint

√

1This section is based on [44, Section 8.4].
2This should be no surprise since OSSS by definition is a synthesis subset.

500 F Synthesis Subset

SysC: fixed-point types – Not supported.
SysC: sc_bv

√

SysC: sc_logic
√

Converted to sc_bv<1> inter-
nally.

SysC: sc_lv – Not supported.
SysC: arithmetic operators

√

SysC: bitwise operators
√

SysC: relational oparators
√

SysC: shift operators
√

SysC: assignment operators
√

No chained assignments, LHS
must be side effect-free.

SysC: bit select operators
√

SysC: part select operators
√

Reverse ranges not supported.
SysC: concatenation operators

√
Assignment to concats not sup-
ported.

SysC: conversion to C integral (to_int(),
to_bool() etc.)

√

SysC: additional methods: iszero(),
sign(), bit(), reverse(), etc.

– accepted, but not fully imple-
mented

Declarations
typedef

√

enums
√

aggregates – Not supported. Reduced sup-
port for ROM initialization
available.

arrays
√

references – Copy-in copy-out support for
functions/methods.

pointers – Pointers allowed for sub-module
instantiation.

Expressions
√

new/delete/pointers not sup-
ported, no chained assignments.
new allowed for sub-module in-
stantiation.

Functions
√

Statements
√

Processes
√

No SC_THREAD supported.
Sub-module instantiation

√
No support for positional port
binding.

Namespaces
√

Classes
Member functions

√

Member vars
√

Inheritance
√

Abstract classes
√

Constructors
√

No default arguments allowed.
Overloading

√

Templates
√

Pre-processing directives
√

Table F.1: Fossy SystemC Synthesisable Subset support

F.2 Coding Guidelines 501

F.2 Coding Guidelines

An OSSS design should be divided into several header (.h) and source files (.cc). Usually
each header/source file pair should contain one module declaration/definition. An exception
to this rule are templates. Templates should be completely described in the header file. A
corresponding source file is not necessary (more precisely: not possible) in this case.

Limitation: Currently Fossy can only process a single translation unit, i.e. a single .cc

file. As a workaround you can write a special main file, e.g. fossy_main.cc which includes all
necessary .cc files. You should not #include any .cc files in header files.

An example of such a structure is shown in Listing F.1 and Listing F.2. The synthesis
always needs a top-level module to start from, i.e. in order to do something useful with the
synthesiser, the design must contain at least one module.

1 #include <systemc.h>
2 #include <osss.h>
3

4 SC_MODULE(SomeModule)
5 {
6 sc_in<bool> somePort;
7

8 void someProcess();
9

10 SC_CTOR(SomeModule)
11 {
12 SC_METHOD(someProcess);
13 sensitive << somePort;
14 }
15 };

Listing F.1: General structure of the Fossy input, SomeModule.h

1 #include "SomeModule.h"
2

3 void
4 SomeModule::someProcess()
5 {
6 /∗ do something useful here ∗/
7 }

Listing F.2: Source file SomeModule.cc corresponding to Listing F.1

F.2.1 Design Hierarchy

F.2.1.1 Modules

SC_MODULE is supported. An SC_MODULE can be defined via the macro SC_MODULE or by manually
deriving from sc_module. If the latter form is used, the macro SC_HAS_PROCESS(<ModuleName>)

has to inserted. An example is shown in Listing F.3.

1 #include <systemc.h>
2

3 SC_MODULE(myModule1)
4 {
5 // ...
6 };
7

8 struct myModule2 : public sc_module
9 {

10 // ...
11

12 // Required if this module contains processes

502 F Synthesis Subset

13 SC_HAS_PROCESS(myModule2);
14 };

Listing F.3: A synthesisable module definition

Limitation: Inheritance is not supported for user modules.

Note: Each module must have exactly one constructor.

F.2.1.2 Constructors

A module constructor can be defined via the macro SC_CTOR or it can be defined manually. An
example is given in Listing F.4 and Listing F.5

1 // Begin of myModule1.h
2 #include <systemc.h>
3

4 SC_MODULE(myModule1)
5 {
6 sc_in<bool> myPort;
7

8 // Alternative 1:
9 // Use SC_CTOR and place the body in the

10 // header file
11 SC_CTOR(myModule1)
12 : myPort("myPort")
13 , // ... more initialisers
14 {
15 /∗ constructor body ∗/
16 }
17

18 // Alternative 2
19 // Manually specify the constructor and
20 // place the body in the header file
21 myModule(sc_module_name name)
22 : myPort("myPort")
23 , // ... more initialisers
24 {
25 /∗ constructor body ∗/
26 }
27

28 // Alternative 3
29 // Manually specify the constructor and
30 // place the body in the source file
31 myModule(sc_module_name);
32 // the body is located in the .cc file
33

34 // Alternative 4:
35 // Use SC_CTOR and place the body in the
36 // source file
37 SC_CTOR(myModule1);
38 // the body is located in the .cc file
39 // (and looks exactly like the one for
40 // Alternative 3).
41

42 };
43 // End of myModule1.h

Listing F.4: Synthesisable module constructors, header file

1 // Begin of myModule1.cc:
2 #include "myModule1.h"
3

4 myModule1::myModule1(sc_module_name)
5 : myPort("myPort")
6 , // ... more initialisers
7 {
8 /∗ constructor body ∗/

F.2 Coding Guidelines 503

9 }
10 // End of myModule1.cc

Listing F.5: Synthesisable module constructors, source file

Limitation: Module constructors must have exactly one parameter: the module name, which
must be of type sc_module_name.

Limitation: Module constructors must not contain complex control structures (if-then-else
etc.). Simple (unrollable) for-loops are allowed.

Note: The name which is supplied as constructor argument to named objects like modules,
ports, signals is ignored by Fossy. The resulting name will always be the attribute name.

F.2.1.3 Ports

The following ports are allowed:

• sc_in<T>

• sc_out<T>

• sc_inout<T>

• osss_port_to_shared<IF>

Ports may be used directly or by pointer. If the pointer variant is used, the port may be
initialised in the intialiser list or in the constructor body as shown in Listing F.6.

1 #include <systemc.h>
2

3 SC_MODULE(Sub)
4 {
5 sc_in<bool> port1, // used directly
6 ∗port2, // by pointer
7 ∗port3; // by pointer
8

9 SC_CTOR(Sub)
10 : port1("port1")
11 , port2(new sc_in<bool>("port2")) // initialised in the
12 // initialiser list
13 {
14 port3 = new sc_in<bool>("port3"); // assigned in the body
15 }
16 };

Listing F.6: Synthesisable ports

The type T may be any valid data type (see Section F.2.3).

The type IF may be any valid (user-defined) interface class.

Limitation: Arrays of ports are not supported. Structs containing ports are not supported.

F.2.1.4 Signals and Channels

The only synthesisable channel is sc_signal<T> where the type T may be any valid data type
(see Section F.2.3).

The instantiation and naming requirements are exactly the same as in the case of ports
(Section F.2.1.3).

Limitation: Structs containing signals are not supported.

504 F Synthesis Subset

F.2.1.5 Bindings

Every port of an instantiated module must be bound within the instantiating (parent) module.

Port bindings must be done via the operator () as shown in the Listing F.7.

1 #include <systemc.h>
2

3 SC_MODULE(Bottom)
4 {
5 sc_in<bool> p1;
6 sc_out<int> p2;
7 sc_in<sc_uint<8> > p3;
8 };
9

10 SC_MODULE(Middle)
11 {
12 sc_in<bool> q1;
13 Bottom b;
14

15 sc_signal<int> s;
16

17 SC_CTOR(Middle)
18 : b("b")
19 {
20 b.p1(q1); // OK port−to−port binding
21 b.p2(s); // OK port−to−signal binding
22 // NOT OK: unbound b.p3
23 }
24 };
25

26 SC_MODULE(Top)
27 {
28 sc_in<sc_uint<8> > r3;
29

30 Middle m;
31

32 SC_CTOR(Top)
33 : m("m")
34 {
35 m.b.p3(r3); // NOT OK: bypasses the module hierarchy
36 }
37 };

Listing F.7: Synthesisable bindings

Forbidden: Bindings must not bypass modules within the hierarchy.

Limitation: Positional binding is not supported.

F.2.2 Processes

The following process types are supported:

• SC_METHOD

• SC_CTHREAD

Constraints on SC_CTHREADs:

• SC_CTHREADs must not share member variables of a module. If two processes must exchange
data either use a signal or a Shared Object. If a data member is exclusively used by a
single process, better make it a local variable of the process body.

F.2 Coding Guidelines 505

• SC_CTHREADs must not terminate, i.e. an infinite loop is required in the process body. If
you somehow need a terminating SC_CTHREAD, place a while(true) wait(); at the end
of the process body.

Constraints on wait(...) usage (in SC_CTHREADs):

• Arbitrary wait(n) is allowed, i.e. n can be any (integer) expression. More specifically it
is not required that n can be determined at compile-time. WARNING: If n cannot be
determined at compile- time it is the user’s responsibility to ensure that n never becomes
zero (If this happens during normal SystemC simulation, the SystemC kernel will raise
an error). Fossy won’t (can’t) check this and consequently won’t raise an error. As a
workaround, you could write if (n) wait(n);. In this case, however, you have to take
special care for the following rules, because the wait() is conditional in this case. The
constraints on conditional wait()s, however, are checked by Fossy.

• Loops must either

1. always run into a wait in each iteration

2. or have a fixed number of iterations which can be determined at compile time (This
restriction is not due to OSSS, but due to the following synthesis tool).

Limitation: Fossy can only determine the number of iterations of for-loops.

Examples are shown in Listing F.8

Forbidden: sensitive_pos and sensitive_neg are not allowed. Use the corresponding
.pos() and .neg() methods of the port.

Forbidden: The deprecated watching(...) is not allowed. Use reset_signal_is(...)

instead.

1 #include <systemc.h>
2

3 SC_MODULE(Top)
4 {
5 sc_in<bool> clk,
6 reset ;
7

8 sc_in<int> px;
9

10 void myMethod();
11

12 // This CTHREAD is intended to show valid and invalid loop
13 // constructs (don’t mind that the loops are actually unreachable).
14 void myCthread()
15 {
16 int x=4;
17 wait() ;
18

19 // Valid loop: always runs into a wait each iteration
20 while(true)
21 {
22 if (x−−)
23 wait(1)
24 else
25 wait(2);
26 }
27

28 // Invalid loop: may do iterations without
29 // running into the wait;
30 while(true)
31 {
32 if (x−−) wait();
33 }
34

35 // Valid loop: always runs into a wait each iteration

506 F Synthesis Subset

36 // Note that the wait() be skipped entirely if the condition
37 // is false before starting the loop.
38 while(x−−) wait();
39

40 // Valid loop: always runs into a wait each iteration
41 while(true)
42 {
43 if (x−−) wait();
44

45 "Some code";
46 wait() ;
47 "More code";
48 }
49

50 if (x==0) x=1;
51

52 // OK: some x which is not zero
53 wait(x);
54

55 // Valid loop: always runs into a wait each iteration ...
56 while(true)
57 {
58 if (x−−) wait();
59

60 // ... since this loop always causes a wait();
61 for (int i=0;i<3;++i)
62 {
63 if (i==x−1) wait(); else wait();
64 }
65 }
66

67 // Valid loop: always runs into a wait each iteration
68 do
69 {
70 wait() ;
71 } while (x−−);
72

73 }
74

75 SC_CTOR(Top)
76 {
77 SC_METHOD(myMethod);
78 sensitive << clk.pos() // Note: .pos()/.neg() only works
79 << reset; // for Boolean ports
80

81 sensitive << px; // OK: there may be multiple
82 // sensitives
83

84 SC_CTHREAD(myCthread(), clk.pos());
85 reset_signal_is(reset , true);
86 }
87 };

Listing F.8: Synthesisable processes

F.2.2.1 Effect of wait() usage on the number of states

In general the number of states of the resulting state machine equals the number of wait()s in
the process body. A special case are loops: if there is a path through the loop body which does
not contain any wait()s, Fossy tries to unroll that loop. Consequently the number of resulting
states is the number of wait() statements3 times the number of iterations. Please keep in mind
that loops with many iterations which have to be unrolled due to non-optimal wait() usage,
cause long synthesis runtimes, high memory consumption and finally a huge (but fast) circuit.

Another special case regarding the number of resulting states are wait(n)s. There are two
different synthesis strategies. The first one is to simply unroll the wait(n) by n wait(1)s which

3In this case the wait()s will be conditional ones, because otherwise the loop would not have a path through
its body without encountering a wait().

F.2 Coding Guidelines 507

results in n states. The second one is to replace the wait(n) by a loop with an unconditional
wait(1) in the loop body. The resulting state machine of the second approach adds only one
state to the state machine and one additional counter. The decision which of both approaches is
chosen, depends on whether n is a compile-time known constant and also on its value.

F.2.2.2 Reset

The reset signal of an SC_CTHREAD is determined by the correpsonding reset_signal_is(..)

statement in the constructor body. Please note that the reset of an SC_CTHREAD is always
synchronous to the SC_CTHREAD’s clock. Consequently, Fossy always creates a state machine
with a synchronous reset.

Note that the pre-reset behaviour before and after synthesis may differ. This is due to
the fact the in the simulation an SC_CTHREAD always starts from the beginning of the method,
whereas after synthesis (and in real hardware) the register which encodes the current state
will start with a random value until it is reset. Starting with a random state in the context of
an SC_CTHREAD would mean to start at some arbitrary wait(). In other words, the SystemC
simulation with SC_CTHREADs suggests that the state machine starts in its initial state even
without reset, which is generally not the case in real hardware. However, after a reset the state
machines before and after synthesis show exactly the same behaviour.

Since an SC_CTHREAD begins its execution from the beginning of the method body when the
reset signal becomes activated, the reset state is determined by path(s) from the beginning of
the method body to all potential first4 wait()s. Note that it is not necessary to test the reset
signal in the body of the process. A typical structure is shown in Listing F.9. Note that it is also
valid to move the first wait() into the while(true) loop, because Fossy will detect that the
loop will always be entered. Consequently it is possible to save one wait() and hence one state
as shown in myCthread2(). The first variant, i.e. myCthread() will result in two equivalent
states, both performing x += px.

1 #include <systemc.h>
2

3 SC_MODULE(Top)
4 {
5 sc_in<bool> clk,
6 reset ;
7

8 sc_in<int> px;
9

10 void myMethod();
11

12 void myCthread()
13 { //
14 int x=4; // Reset Part
15 wait() ; //
16 | State1
17 while(true) | +−−+
18 { | | |
19 x += px; V V | State2
20 wait() ; |
21 | |
22 } +−−+
23 }
24

25 void myCthread2()
26 { //
27 int x=4; // Reset Part
28 //
29 while(true) // +−−+
30 { // V |
31 wait() ; // | State1
32 x += px; | |
33 } +−−+
34 }
35

4There may be more than one possible first wait() in the case of conditional wait()s in the reset part.

508 F Synthesis Subset

36 SC_CTOR(Top)
37 {
38 SC_CTHREAD(myCthread(), clk.pos());
39 reset_signal_is(reset , true);
40 SC_CTHREAD(myCthread2(), clk.pos());
41 reset_signal_is(reset , true);
42 }
43 };

Listing F.9: Reset part of an SC_CTHREAD

F.2.3 Datatypes

The following basic data types can be used for writing synthesisable models:

• bool

• char, unsigned char, signed char

• short, unsigned short,

• int, unsigned int,

• long, unsigned long,

• long long, unsigned long long,

• sc_int<N>, sc_uint<N>,

• sc_bigint<N>, sc_biguint<N>,

• sc_bv<N>,

• sc_logic (converted to sc_bv<1>),

• Enumeration types,

Currently not supported are:

• sc_bit

• sc_lv<N>,

• sc_fixed<WL,IL, Q, O, n>, sc_ufixed<WL,IL, Q, O, n>

• sc_fixed_fast<WL,IL, Q, O, n>, sc_ufixed_fast<WL,IL, Q, O, n>

Complex types like arrays, structures, classes and unions are synthesisable as long as they
are constructed from synthesisable basic types. Classes, however, are regarded in greater detail
in Section F.2.5.

All data types mentioned above can be used in the following places:

• Local variables in functions and processes

• Member variables

• Function parameters and member function parameters

• Signals (sc_signal<T>). Note: This requires T to define the operator==(...) and an
operator<<(...) for stream insertion (and a sc_trace(...) function)

• Signal-ports (sc_in<T>, sc_out<T>, sc_inout<T>)

• typedef

Limitation: The resolved signal sc_signal_rv<N> and the corresponding ports sc_in_rv<N>,
sc_out_rv<N> and sc_inout_rv<N> are currently not allowed for synthesisable models.

F.2 Coding Guidelines 509

F.2.4 Statements and Expressions

The basic statements of C/C++ such as variable declaration and definition, assignments, control
structures like if () else, switch, for and while loops are synthesisable. It is allowed
to have switch statements with fall-through cases, i.e. cases without a break statement.
Functions and function calls are synthesisable as long as they operate on synthesisable data
types and consist of synthesisable constructs.

Parameters may be passed by value or by reference and may be const or non-const.

Forbidden: Functions and operators must not return references.

Limitation: Chaining multiple operator = in assignments (such as a=b=c=d=0; is not
supported, yet.

Limitation: A case-part of a switch-statement which solely contains a break; is not
supported. Workaround: insert an empty expression statement (;) right after the case label:
switch(i) { case 1: ; break; ... }.

Limitation: A variable declaration in a switch-block before the first case label is not
supported.

Limitation: Non-toplevel case labels are not supported.

Limitation: Variable declarations in switch clauses without a surrounding block are not
supported.

Limitation: A non-void routine must not contain a return statement without an expression.

Limitation: Recursion is not supported.

Limitation: sizeof(...) is not supported.

Limitation: Only SystemC bitvector literals with prefix "0b0" are supported, e.g. sc_int<3>

x; x="0b0111"; x="0b0" "111";

F.2.5 Classes and Inheritance

The following features of classes are allowed for synthesis:

• Non-const non-static data members

• const non-static data members

• const static data members

• Non-static member functions

• static member functions

• Virtual member functions (in conjunction with polymorphic objects)

• Pure virtual member functions (in conjunction with polymorphic objects)

• Base class(es) [Limitation: no non-virtual multiple inheritance from one base]

• Virtual base class(es) [Limitation: the virtual bases must not have any data members]

• Constructors [Limitation: copy constructor must have exactly one const& argument;
default constructor must not have defaulted arguments]

510 F Synthesis Subset

• Member initialiser lists

• Overloaded operators

• User-defined implicit casts [Limitation: May collide with Fossy’s SystemC header files,
especially the integer types]

• explicit constructors

Limitation: Copy assignment operators (operator=) must have the return type void and
exactly one const& argument.

Limitation: If a user class contains an array member attribute, a copy constructor must be
defined.

Limitation: Pointers to unused classes or template instances are not allowed. Note: This
includes types like sc_signal<> which are actually templates.

Each data member must be of a synthesisable type (see Section F.2.3) and member functions
must follow the same restrictions as functions do (see Section F.2.4).

Forbidden: Classes must not have an own thread of control, i.e. any SC_METHODs, SC_THREADs
or SC_CTHREADs. These are only allowed in modules.

F.2.6 Templates

Templates can be used to parameterise functions, classes/structs and member functions. Note
that template classes may have template methods. Template specialisation and partial template
specialisation are supported.

F.2.7 Namespaces

Namespaces are supported. The namespaces osss, osss::synthesisable, sc_dt, sc_core and
std are reserved and must not be extended by the user.

F.2.8 Polymorphic Objects

Limitation: Polymorphic objects are not yet supported.

F.2.9 Shared Objects

Each guarded method must overwrite a virtual method from its interface class.

Parameters of guarded methods must be passed by value or const reference.

A guarded method which does not write any attribute must have a wait() in its body.

Limitation: The schedule() method of a scheduler must have a single return at the end of
its body.

Limitation: Initialisation of schedulers must be performed in the constructor body, i.e.
initialiser lists are currently ignored. This limitation also applies to all inherited constructors.

F.2 Coding Guidelines 511

F.2.10 Non-Synthesisable

The following C++/SystemC/OSSS constructs are not synthesisable:

• OSSS architecture layer models

• Pointers (Exception: instantiation of modules, port and signals)

• Pointer arithmetics

• Member pointers

• Dynamic memory allocation with new and delete

• Placement-new

• Exceptions, throw-specifications

• Runtime typeid

• Reference types (Exception: function parameters)

• dynamic_cast

• Destructors (except for empty destructors)

• Static data members

• mutable, volatile

• auto, register

• asm

• inline (has no effect, does not harm)

• Standard C/C++ libraries with string handling, file I/O, ...

• Floating point arithmetic

• Bit fields (not needed – use SystemC data types instead)

• friend (partially implemented)

• sc_time (partially implemented)

APPENDIX G

Integrated Development Environment

G.1 Introduction

Figure G.1: Fossy IDE splash screen

The Fossy IDE (see Figure G.1) is based on the Eclipse CDT Environment and provides a
tool suite for modeling, simulating, debugging and synthesis of OSSS and SystemCTM designs.

• Eclipse is an open source community, whose projects are focused on building an open
development platform comprised of extensible frameworks, tools and run-times for building,
deploying and managing software across the life-cycle (see http://www.eclipse.org/

org/)

• Eclipse CDT (Eclipse C/C++ Development Tooling) provides a fully functional C and
C++ Integrated Development Environment (IDE) for the Eclipse platform. The features
include: support for project creation and managed build for various tool chains, standard
make build, source navigation, various source knowledge tools, such as type hierarchy, call
graph, include browser, macro definition browser, code editor with syntax highlighting,
folding and hyperlink navigation, source code refactoring and code generation, visual
debugging tools, including memory, registers, and disassembly viewers (see http://www.

eclipse.org/cdt/).

Our framework comes with a selection of different tools used for the development of software
and custom hardware with OSSS and SystemC. Our framework consists of:

http://www.eclipse.org/org/
http://www.eclipse.org/org/
http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/

514 G Integrated Development Environment

• Fossy (Functional Oldenburg System Synthesizer): A tool for converting OSSS and
SystemC into synthesizable VHDL

• SystemC 2.2 simulation library from http://www.systemc.org

• Compiler Tool-chain & Build Environment

– MinGW http://www.mingw.org/

– MSYS http://www.mingw.org/wiki/msys

• GTKWave, a fully featured waveform viewer which reads LXT, LXT2, VZT, and GHW as
well as standard Verilog VCD/EVCD files http://gtkwave.sourceforge.net/

• Eclipse IDE for C/C++ developers

– Including VEditor plugin for Verilog and VHDL editing http://veditor.wiki.

sourceforge.net/

– with imported properties for SystemC, Fossy and GTKWave integration

– with imported projects including example projects for Fossy OSSS and SystemC
synthesis

G.2 Using the Eclipse CDT with FOSSY integration

G.2.1 Project Navigator

Figure G.2 shows the main window, with all available projects in the Navigator frame on the
left side.

Figure G.2: Fossy IDE main window

http://www.systemc.org
http://www.mingw.org/
http://www.mingw.org/wiki/msys
http://gtkwave.sourceforge.net/
http://veditor.wiki.sourceforge.net/
http://veditor.wiki.sourceforge.net/

G.2 Using the Eclipse CDT with FOSSY integration 515

G.2.2 The SystemC Alarm Clock Example

This example demonstrates the use of normal classes and objects in SystemC. A simple alarm
clock is modeled with the aid of a Counter class which provide basic counter functionality. The
alarm clock counts clock cycles and raises alarm for one clock cycle each time the specified
period of time has passed. The simulation produces output on stdout as well as a waveform
trace in VCD-format, showing clock, reset and alarm signals over time.

We demonstrate the usage of the Fossy IDE with the SystemC Alarm Clock project. To
open the project just select it in the tree view in the project navigator window on the left side.
Figure G.3 shows the main.cc of the SystemC Alarm Clock example in the editor window.

Figure G.3: main.cc of the SystemC Alarm Clock example in the editor window

Each project is structured by the following directories:

• src: Contains all relevant source files of the project. Open and edit a source file by double
clicking in the project navigator tree view.

• Pre-Synthesis Simulation: This directory contains all files that are generated during
the built of the Pre-Synthesis Simulation target. This target compiles the code and links is
with the SystemC simulation kernel. The generated executable TestSystemC.exe performs
the simulation of the user-specified alarm clock and generates the trace.cvd waveform.

• Post-Synthesis Simulation: This directory contains all files that are generated during
the built of the Post-Synthesis Simulation target. This target performs the synthesis of
the design by using Fossy. It takes the Fossy SystemC output and compiles and links is
with the original testbench and the SystemC simulation kernel. The generated executable
TestSystemC.exe performs the simulation of the user-specified alarm clock after Fossy
synthesis and generates the trace_fossy.cvd waveform. This simulation run show the
design’s behavior after Fossy synthesis. The behavior of the Fossy generated VHDL code is
exactly the same.

516 G Integrated Development Environment

G.2.3 Building the Pre-Synthesis Model

For selecting the pre-synthesis simulation model make sure that the SystemCAlarmClock
node in the project navigator tree is selected and click on “Project → Build Configurations
→ Set Active → Pre-Synthesis Simulation”.

Figure G.4: Build process of the Pre-Synthesis Model

For building this project click on “Project → Build Project” Take a look at the console
window at the bottom where the compiler and linker calls are shown (see Figure G.4).

G.2 Using the Eclipse CDT with FOSSY integration 517

For running the executable, open the Pre-Synthesis Simulation folder in the project
navigator tree and select the file TestSystemC.exe. Then select “Run → Run As Local
C/C++ Application”.

Figure G.5: Execution/Simulation of the Pre-Synthesis Model

Take a look at the console window at the bottom where the output of the SystemC simulation
is shown. After simulation you can find the trace file trace.vcd at the bottom of the SystemC
Alarm Clock project navigator tree (see Figure G.5).

We will now demonstrate how to watch this trace file using GTKWave.
For starting the waveform viewer on the trace file select “Run → External Tools →

GTKWave”. The window as shown in Figure G.6 appears.

Figure G.6: Waveform viewer

518 G Integrated Development Environment

Click on SystemC in the upper right window with the label SST (Signal Search Tree).
Afterwards the following signals should appear in the signals window below: alarm, clock

and reset.
Select each signal and press the Append button to add them to the Waves viewer on the right

side. After all signals have been added to the Waves viewer we need to zoom out by clicking on
the magnifying glass item in the tool bar for several times.

As a result you should see the same window as in Figure G.7.

Figure G.7: Waveform viewer with simulation trace output

G.2 Using the Eclipse CDT with FOSSY integration 519

G.2.4 Building the Post-Synthesis Model

Next we want to perform Fossy synthesis of the Alarm Clock design.
We select the SystemCAlarmClock node in the project navigator tree and activate the post-

synthesis simulation model by clicking on “Project → Build Configurations → Set Active
→ Post-Synthesis Simulation”.

For building this project click on “Project → Build Project”
This should first start Fossy and then call the compiler tool chain including the SystemC

output of Fossy. Take a look at the console window at the bottom to watch the Fossy synthesis
and model compilation process.

The Fossy SystemC output can be examined by opening the Post-Synthesis Simulation folder
in the project navigator tree and by double clicking on the file synthesised_main.cc.

Figure G.8: Execution/Simulation of Post-Synthesis Model

For running the executable, open the Post-Synthesis Simulation folder in the project
navigator tree and select the file TestSystemC.exe. Then select “Run → Run As → Local
C/C++ Application”. The console window at the bottom of Figure G.8 shows the output of
the simulation. This is equal to the console output of the input model (see Figure G.4).

After simulation you can find the trace file trace_fossy.vcd at the bottom of the SystemC
Alarm Clock project navigator tree. This file can be examined by GTKWave in the same way
as shown above for the Pre-Synthesis target.

520 G Integrated Development Environment

G.2.5 Generating VHDL code

This section demonstrates how to use the Fossy Framework to generate VHDL code for either
simulation of Synthesis purpose with 3rd party tools like (Mentor Graphics ModelSim and Xilinx
Synthesis Tool (XST))

For the SystemC Alarm Clock example navigate to the src directory in the project navigator
tree and select the main.cc file.

For starting Fossy synthesis with VHDL output select “Run→ External Tools→ FOSSY
[VHDL]”

This will start a Fossy run in the console window and generate a file named
synthesized_main.vhdl in the src directory. You can view this file with a VHDL editor
by double clicking on the file name.

The window shown in Figure G.9 shows the VHDL editor with its language specific Outline
window on the right side. Since Fossy generated VHDL output is rather large the outline view
helps navigating through the VHDL output.

Figure G.9: VHDL synthesis output view

G.3 Creating a custom project

The recommended way of creating a custom projects is:

1. Copy the SystemCStart project by selecting it in the project navigator tree, pressing the
right mouse button and select Copy

2. Then select the SystemCStart project and press the right mouse button again, but now
select Paste

3. Enter the desired name of your new project in the pop-up window.

4. Now you are ready to start coding, simulation and synthesis.

APPENDIX H

OSSS Behavior Graphs

522 H OSSS Behavior Graphs

m
_
m

ai
n
 [

P
A

R
]

in
p
u
t

d
es

ig
n
 [

S
E

Q
]

jp
eg

 [
S

E
Q

]

in
it

 [
S

E
Q

]

st
ar

t

h
u
ff

m
an

 [
P
A

R
]

sh
1
 [

S
E

Q
]

in
it

T
ab

le
si

ze
T

ab
le

co
d
eT

ab
le

o
rd

er
C

o
d
es

sh
2
 [

S
E

Q
]

in
it

T
ab

le
si

ze
T

ab
le

co
d
eT

ab
le

o
rd

er
C

o
d
es

h
ea

d
er

en
co

d
e

[P
IP

E
]

re
ce

iv
eD

at
a

[P
IP

E
L

IN
E

_
S

T
A

G
E

]

en
co

d
eS

tr
ip

e
[P

IP
E

]

h
an

d
le

D
at

a
[P

IP
E

L
IN

E
_
S

T
A

G
E

]
d
ct

 [
S

E
Q

]

p
re

sh
if

tD
ct

M
at

ri
x

ch
en

D
ct

b
o
u
n
d
D

ct
M

at
ri

x

q
u
an

ti
za

ti
o
n
 [

P
IP

E
L

IN
E

_
S

T
A

G
E

]

h
u
ff

m
an

E
n
co

d
e

[S
E

Q
]

zi
g
za

g
M

at
ri

x
en

co
d
eD

C
en

co
d
eA

C

en
d

o
u
tp

u
t

h
ea

d
er

_
ch

[o
ss

s_
d
o
u
b
le

_
h
an

d
sh

ak
e_

ch
an

n
el

]

p
ix

el
_
ch

[o
ss

s_
d
o
u
b
le

_
h
an

d
sh

ak
e_

ch
an

n
el

]

d
at

a_
ch

[o
ss

s_
d
o
u
b
le

_
h
an

d
sh

ak
e_

ch
an

n
el

]

m
ai

n

m
ai

n

m
ai

n

im
ag

eW
id

th
im

ag
eH

ei
g
h
t

D
C

E
h
u
ff

A
C

E
h
u
ff

b
it

A
d
ap

te
r

[h
ie

ra
rc

h
ic

al
]

m
ai

n

Im
ag

eW
id

th
_
sv

Im
ag

eH
ei

g
h
t_

sv
D

C
X

h
u
ff

_
sv

A
C

X
h
u
ff

_
sv

m
ai

n

m
ai

n

m
ai

n
m

ai
n

m
ai

n

X
h
u
ff

_
sv

h
u
ff

co
d
e

h
u
ff

si
ze

la
st

p

m
ai

n

m
ai

n
m

ai
n

m
ai

n
m

ai
n

X
h
u
ff

_
sv

h
u
ff

co
d
e

h
u
ff

si
ze

la
st

p

m
ai

n

m
ai

n
m

ai
n

m
ai

n
m

ai
n

m
d
u
H

ig
h

M
D

U
H

ig
h

M
D

U
W

id
e

[p
ip

ed
]

st
ri

p
e

[p
ip

ed
]

m
ai

n

m
ai

n
m

ai
n

m
d
u
W

id
e

h
d
at

a
[p

ip
ed

]
d
d
at

a
[p

ip
ed

]
q
d
at

a
[p

ip
ed

]

m
ai

n
m

ai
n

H
D

at
aD

ct
D

D
at

aD
ct

m
ai

n

m
ai

n
m

ai
n

m
ai

n

m
ai

n

O
D

at
a

m
ai

n
m

ai
n

m
ai

n

m
ai

n

Figure H.1: Structure of the JPEG encoder OSSS Behavior Specification Model

523

m_main [PAR]

input

design [PAR]

sw [PIPE]

jpegSW [SEQ]

init [SEQ]

start

huffman [SEQ]

sh1 [SEQ]

initTable sizeTable codeTable orderCodes

sh2 [SEQ]

initTable sizeTable codeTable orderCodes

header

encode [SEQ]

receiveData

encodeStripe [SEQ]

handleData sendHData recvDData quantization

huffmanEncode [SEQ]

zigzagMatrix encodeDC encodeAC

end

hw [PIPE]

dctHW [SEQ]

recvHData dct [SEQ]

preshiftDctMatrix chenDct boundDctMatrix

sendDData

output

header_ch

[osss_double_handshake_channel]

pixel_ch

[osss_double_handshake_channel]

data_ch

[osss_double_handshake_channel]

main

main

chHData

[osss_double_handshake_channel]

chDData

[osss_double_handshake_channel]

main

main

imageWidth imageHeight DCEhuff ACEhuff bitAdapter [hierarchical]

main

ImageWidth_sv ImageHeight_sv DCXhuff_sv ACXhuff_sv

main

main

main main

main

Xhuff_sv huffcode huffsize lastp

main

main

main main main main

Xhuff_sv huffcode huffsize lastp

main main main main

mduHigh MDUWide stripe

main

main main

mduWide hdata ddata qdata

main main main main

main

OData

main main main

main

HData

DDatamain

main main

HDataDct DDataDct

main

main main main

main

Figure H.2: Structure of the JPEG encoder OSSS Behavior Architecture Model

524 H OSSS Behavior Graphs

jp
eg

S
W

 [
S

E
Q

]

in
it

 [
S

E
Q

]

st
ar

t

h
u
ff

m
an

 [
S

E
Q

]

sh
1
 [

S
E

Q
]

in
it

T
ab

le
si

ze
T

ab
le

co
d
eT

ab
le

o
rd

er
C

o
d
es

sh
2
 [

S
E

Q
]

in
it

T
ab

le
si

ze
T

ab
le

co
d
eT

ab
le

o
rd

er
C

o
d
es

h
ea

d
er

en
co

d
e

[S
E

Q
]

re
ce

iv
eD

at
a

en
co

d
eS

tr
ip

e
[S

E
Q

]

h
an

d
le

D
at

a
se

n
d
H

D
at

a
re

cv
D

D
at

a
q
u
an

ti
za

ti
o
n

h
u
ff

m
an

E
n
co

d
e

[S
E

Q
]

zi
g
za

g
M

at
ri

x
en

co
d
eD

C
en

co
d
eA

C

en
d

tr
an

sd
u
ce

r

h
w

 [
P

IP
E

]

d
ct

H
W

 [
S

E
Q

]

re
cv

H
D

at
a

d
ct

 [
S

E
Q

]

p
re

sh
if

tD
ct

M
at

ri
x

ch
en

D
ct

b
o
u
n
d
D

ct
M

at
ri

x

se
n
d
D

D
at

a

o
u
tp

u
t

h
ea

d
er

_
ch

[o
ss

s_
d
o
u
b
le

_
h
an

d
sh

ak
e_

ch
an

n
el

]

p
ix

el
_
ch

[o
ss

s_
d
o
u
b
le

_
h
an

d
sh

ak
e_

ch
an

n
el

]

d
at

a_
ch

[o
ss

s_
d
o
u
b
le

_
h
an

d
sh

ak
e_

ch
an

n
el

]

m
ai

n

M
W

D
A

T
A

[s
c_

si
g
n
al

]

M
R

D
A

T
A

[s
c_

si
g
n
al

]

M
A

D
D

R

[s
c_

si
g
n
al

]

D
B

[o
ss

s_
u
n
ch

ec
k
ed

_
si

g
n
al

]

M
T

S
B

[s
c_

si
g
n
al

]

M
T

A
B

[s
c_

si
g
n
al

]

M
W

D
A

T
A

O
E

[s
c_

si
g
n
al

]

T
S

B

[s
c_

si
g
n
al

]

T
A

B

[s
c_

si
g
n
al

]

D
B

O
E

[s
c_

si
g
n
al

]

M
R

W
B

[s
c_

si
g
n
al

]

IN
T

C

[s
c_

si
g
n
al

]

m
ai

n

b
u
s

[o
ss

s_
p
ri

m
_
ch

an
n
el

]

m
ai

n

im
ag

eW
id

th
im

ag
eH

ei
g
h
t

D
C

E
h
u
ff

A
C

E
h
u
ff

b
it

A
d
ap

te
r

[h
ie

ra
rc

h
ic

al
]

m
ai

n

Im
ag

eW
id

th
_
sv

Im
ag

eH
ei

g
h
t_

sv
D

C
X

h
u
ff

_
sv

A
C

X
h
u
ff

_
sv

m
ai

n

m
ai

n

m
ai

n
m

ai
n

m
ai

n

X
h
u
ff

_
sv

h
u
ff

co
d
e

h
u
ff

si
ze

la
st

p

m
ai

n

m
ai

n

m
ai

n
m

ai
n

m
ai

n
m

ai
n

X
h
u
ff

_
sv

h
u
ff

co
d
e

h
u
ff

si
ze

la
st

p

m
ai

n
m

ai
n

m
ai

n
m

ai
n

m
d
u
H

ig
h

M
D

U
W

id
e

st
ri

p
e

m
ai

n

m
ai

n
m

ai
n

m
d
u
W

id
e

h
d
at

a
d
d
at

a
q
d
at

a

m
ai

n
m

ai
n

m
ai

n
m

ai
n

m
ai

n

O
D

at
a

m
ai

n
m

ai
n

m
ai

n

m
ai

n

b
u
s

[o
ss

s_
p
ri

m
_
ch

an
n
el

]

m
ai

n

H
D

at
a

D
D

at
a

m
ai

n

m
ai

n
m

ai
n

H
D

at
aD

ct
D

D
at

aD
ct

m
ai

n

m
ai

n
m

ai
n

m
ai

n

m
ai

n

Figure H.3: Structure of the JPEG encoder OSSS Behavior communication model

Bibliography

Disclaimer: In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of Carl von Ossietzky Universität Oldenburg’s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to http://www.ieee.org/

publications_standards/publications/rights/rights_link.html to learn how to obtain
a License from RightsLink.

[1] Tim Schmidt, Kim Grüttner, Rainer Dömer, and Achim Rettberg. “A Program State
Machine Based Virtual Processing Model in SystemC”. In: The 4th Embedded Operating
Systems Workshop (EWiLi’14). ACM SIGBED Review (ISSN: 1551–3688) Special
Interest Group on Embedded Systems. Nov. 2014.

[2] Vivado Design Suite – AXI Reference Guide, UG1037 (v1.0). Xilinx. 2014.

[3] Vivado Design Suite – User Guide – High-Level Synthesis, UG902 (v2014.1). Xilinx.
2014.

[4] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. “Towards Perfor-
mance Analysis of SDFGs Mapped to Shared-Bus Architectures Using Model-Checking”.
In: DATE’13: Proceedings of the conference on Design, automation and test in Europe.
2013.

[5] Kim Grüttner, Philipp A. Hartmann, Kai Hylla, Sven Rosinger, Wolfgang Nebel,
Fernando Herrera, Eugenio Villar, Carlo Brandolese, William Fornaciari, Gianluca
Palermo, Chantal Ykman-Couvreur, Davide Quaglia, Francisco Ferrero, and Raúl
Valencia. “The COMPLEX reference framework for HW/SW co-design and power
management supporting platform-based design-space exploration”. In: Microprocessors
and Microsystems - Embedded Hardware Design 37.8-C (2013), pp. 966–980.

[6] T. Mück and A Fröhlich. “Towards Unified Design of Hardware and Software Compo-
nents Using C++”. In: Computers, IEEE Transactions on PP.99 (2013), pp. 1–1. issn:
0018-9340. doi: 10.1109/TC.2013.159.

[7] Tim Schmidt. “A Program State Machine Based Virtual Processing Model in
SystemCTM”. Master Thesis (Diplomarbeit). Germany: Carl von Ossietzky Universität
Oldenburg, 2013.

[8] Bjarne Stroustrup. The C++ Programming Language. 4th. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2013. isbn: 0321563840.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://dx.doi.org/10.1109/TC.2013.159

526 BIBLIOGRAPHY

[9] JesúS Barba, Fernando RincóN, Francisco Moya, Julio Daniel Dondo, and Juan Carlos
LóPez. “A Comprehensive Integration Infrastructure for Embedded System Design”.
In: Microprocess. Microsyst. 36.5 (July 2012), pp. 383–392. issn: 0141-9331. doi:
10.1016/j.micpro.2012.02.007. url: http://dx.doi.org/10.1016/j.micpro.

2012.02.007.

[10] Matthias Bücker, Kim Grüttner, Philipp A. Hartmann, and Ingo Stierand. “System
Specification and Design Languages – Selected Contributions from FDL 2010”. In:
Springer, Jan. 2012. Chap. Mapping of Concurrent Object-Oriented Models to Extended
Real-Time Task Networks. isbn: 978–1–4614–1426–1.

[11] Object Management Group. CORBA Component Model 3.3 Specification. Tech. rep.
Version 3.3. Object Management Group, 2012. url: http://www.omg.org/docs/

formal/06-04-01.pdf.

[12] Kim Grüttner, Philipp A. Hartmann, Kai Hylla, Sven Rosinger, Wolfgang Nebel,
Fernando Herrera, Eugenio Villar, Carlo Brandolese, William Fornaciari, Gianluca
Palermo, Chantal Ykman-Couvreur, Davide Quaglia, Francisco Ferrero, and Raúl
Valencia. “COMPLEX: COdesign and Power Management in PLatform-Based Design
Space EXploration”. In: DSD. IEEE, 2012, pp. 349–358. isbn: 978-1-4673-2498-4.

[13] Accellera Systems Initiative. “IEEE Standard for Standard SystemC Language Refer-
ence Manual”. In: IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) (Sept. 2012),
pp. 1 –638. doi: 10.1109/IEEESTD.2012.6134619.

[14] ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++.
Geneva, Switzerland: International Organization for Standardization, Feb. 2012, 1338
(est.) url: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=50372.

[15] Rauf Salimi Khaligh and Martin Radetzki. “Semantics and efficient simulation of
accuracy-adaptive TLMs”. English. In: Design Automation for Embedded Systems
16.3 (2012), pp. 1–29. issn: 0929-5585. doi: 10.1007/s10617- 012- 9095- 9. url:
http://dx.doi.org/10.1007/s10617-012-9095-9.

[16] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. “Dark Silicon and the End of Multicore Scaling”. In: SIGARCH Comput.
Archit. News 39.3 (June 2011), pp. 365–376. issn: 0163-5964. doi: 10.1145/2024723.

2000108. url: http://doi.acm.org/10.1145/2024723.2000108.

[17] Philipp A. Hartmann, Kim Grüttner, Philipp Ittershagen, and Achim Rettberg. “A
Framework for Generic HW/SW Communication using Remote Method Invocation”.
In: ESLsyn - The 2011 Electronic System Level Synthesis Conference. ECSI. June 2011.

[18] IP Processor Block RAM (BRAM) Block (v1.00a). Xilinx Inc. 2011.

[19] LogiCORE IP XPS Multi-channel External Memory Controller (XPS MCH EMC)
(3.01a). Xilinx Inc. 2011.

[20] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet, DS083
(v5.0). Xilinx Inc. 2011.

[21] Matthias Büker, Kim Grüttner, Philipp A. Hartmann, and Ingo Stierand. “Mapping
of Concurrent Object–Oriented Models to Extended Real–Time Task Networks”. In:
Forum on Specification & Design Languages (FDL). Sept. 2010.

[22] Kim Grüttner, Henning Kleen, Frank Oppenheimer, Achim Rettberg, and Wolfgang
Nebel. “Towards a synthesis semantics for systemC channels”. In: CODES+ISSS 2010.
Ed. by Tony Givargis and Adam Donlin. ACM, 2010, pp. 163–172. isbn: 978-1-60558-
905-3.

[23] Philipp A. Hartmann, Kim Grüttner, Achim Rettberg, and Ina Podolski. “Distributed
Resource-Aware Scheduling for Multi-Core Architectures with SystemC”. In: 7th IFIP
Conference on Distributed and Parallel Embedded Systems (DIPES). Sept. 2010.

[24] LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c). Xilinx Inc. 2010.

[25] LogiCORE IP Processor Local Bus (PLB) v4.6 (v1.05a). Xilinx Inc. 2010.

http://dx.doi.org/10.1016/j.micpro.2012.02.007
http://dx.doi.org/10.1016/j.micpro.2012.02.007
http://dx.doi.org/10.1016/j.micpro.2012.02.007
http://www.omg.org/docs/formal/06-04-01.pdf
http://www.omg.org/docs/formal/06-04-01.pdf
http://dx.doi.org/10.1109/IEEESTD.2012.6134619
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://dx.doi.org/10.1007/s10617-012-9095-9
http://dx.doi.org/10.1007/s10617-012-9095-9
http://dx.doi.org/10.1145/2024723.2000108
http://dx.doi.org/10.1145/2024723.2000108
http://doi.acm.org/10.1145/2024723.2000108

BIBLIOGRAPHY 527

[26] PowerPC Processor Reference Guide. Xilinx Inc. 2010.

[27] Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. Embedded
System Design: Modeling, Synthesis and Verification. 1st. Springer Publishing Company,
Incorporated, 2009. isbn: 1441905030, 9781441905031.

[28] Andreas Gerstlauer, Christian Haubelt, Andy D. Pimentel, Todor P. Stefanov, Daniel D.
Gajski, and Jürgen Teich. “Electronic system-level synthesis methodologies”. In: Trans.
Comp.-Aided Des. Integ. Cir. Sys. 28.10 (Oct. 2009), pp. 1517–1530. issn: 0278-0070.
doi: 10.1109/TCAD.2009.2026356. url: http://dx.doi.org/10.1109/TCAD.2009.

2026356.

[29] Kim Grüttner, Frank Oppenheimer, Wolfgang Nebel, Jan Freuer, and Joachim Ger-
lach. “Rapid Prototyping und Synthese eines videobasierten Fahrerassistenzsystems
mit C++ und SystemC(TM)”. In: 10. Braunschweiger Symposium AAET 2009 –
Automatisierungs–, Assistenzsysteme und eingebettete Systeme für Transportmittel. Feb.
2009.

[30] Kecheng Hao and Fei Xie. “Componentizing hardware/software interface design”. In:
Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09. 2009,
pp. 232–237. doi: 10.1109/DATE.2009.5090663.

[31] Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Gladigau,
Christian Haubelt, Jürgen Teich, and Michael Meredith. “SystemCoDesigner: an
Automatic ESL Synthesis Approach by Design Space Exploration and Behavioral
Synthesis for Streaming Applications”. In: ACM Trans. Des. Autom. Electron. Syst.
14.1 (Jan. 2009), 1:1–1:23. issn: 1084-4309. doi: 10.1145/1455229.1455230. url:
http://doi.acm.org/10.1145/1455229.1455230.

[32] Rauf Salimi Khaligh and Martin Radetzki. “Adaptive Interconnect Models
for Transaction-Level Simulation”. English. In: Languages for Embedded Systems
and their Applications. Ed. by Martin Radetzki. Vol. 36. Lecture Notes in Electrical
Engineering. Springer Netherlands, 2009, pp. 149–165. isbn: 978-1-4020-9713-3. doi:
10.1007/978-1-4020-9714-0_10. url: http://dx.doi.org/10.1007/978-1-4020-

9714-0_10.

[33] Synthesis Working Group Members of the Open SystemC Initiative. SystemC Synthe-
sizable Subset, Draft 1.3. Whitepaper. Open SystemC Initiative (OSCI), 2009.

[34] Xilinx University Program Virtex-II Pro Development System - Hardware Reference
Manual, UG069 (v1.2). Xilinx Inc. 2009.

[35] J. Cong. “A new generation of C-base synthesis tool and domain-specific computing”.
In: SOC Conference, 2008 IEEE International. 2008, pp. 386–386. doi: 10.1109/SOCC.

2008.4641556.

[36] Design, Automation and Test in Europe, DATE 2008, Munich, Germany, March 10-14,
2008. IEEE, 2008. isbn: 978-3-9810801-3-1.

[37] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo
Yu, Samar Abdi, and Daniel D. Gajski. “System-on-chip Environment: A SpecC-
based Framework for Heterogeneous MPSoC Design”. In: EURASIP J. Embedded
Syst. 2008 (Jan. 2008), 5:1–5:13. issn: 1687-3955. doi: 10.1155/2008/647953. url:
http://dx.doi.org/10.1155/2008/647953.

[38] Joachim Falk, Joachim Keinert, Christian Haubelt, Jürgen Teich, and Shuvra S.
Bhattacharyya. “A Generalized Static Data Flow Clustering Algorithm for Mpsoc
Scheduling of Multimedia Applications”. In: Proceedings of the 8th ACM International
Conference on Embedded Software. EMSOFT ’08. Atlanta, GA, USA: ACM, 2008,
pp. 189–198. isbn: 978-1-60558-468-3. doi: 10.1145/1450058.1450084. url: http:

//doi.acm.org/10.1145/1450058.1450084.

[39] G. Gailliard, H. Balp, C. Jouvray, and F. Verdier. “Towards a common HW/SW
interface-centric and component-oriented specification and design methodology”. In:
Forum on Specification, Verification and Design Languages, 2008. FDL 2008. 2008,
pp. 31–36. doi: 10.1109/FDL.2008.4641417.

http://dx.doi.org/10.1109/TCAD.2009.2026356
http://dx.doi.org/10.1109/TCAD.2009.2026356
http://dx.doi.org/10.1109/TCAD.2009.2026356
http://dx.doi.org/10.1109/DATE.2009.5090663
http://dx.doi.org/10.1145/1455229.1455230
http://doi.acm.org/10.1145/1455229.1455230
http://dx.doi.org/10.1007/978-1-4020-9714-0_10
http://dx.doi.org/10.1007/978-1-4020-9714-0_10
http://dx.doi.org/10.1007/978-1-4020-9714-0_10
http://dx.doi.org/10.1109/SOCC.2008.4641556
http://dx.doi.org/10.1109/SOCC.2008.4641556
http://dx.doi.org/10.1155/2008/647953
http://dx.doi.org/10.1155/2008/647953
http://dx.doi.org/10.1145/1450058.1450084
http://doi.acm.org/10.1145/1450058.1450084
http://doi.acm.org/10.1145/1450058.1450084
http://dx.doi.org/10.1109/FDL.2008.4641417

528 BIBLIOGRAPHY

[40] Grégory Gailliard, Hugues Balp, Michel Sarlotte, and François Verdier. “Mapping
Semantics of CORBA IDL and GIOP to Open Core Protocol for Portability and
Interoperability of SDR Waveform Components”. In: DATE. IEEE, 2008, pp. 330–335.
isbn: 978-3-9810801-3-1.

[41] K. Gruttner, F. Oppenheimer, and W. Nebel. “OSSS methodology - system-level
design and synthesis of embedded HW/SW systems in C++”. In: Applied Sciences on
Biomedical and Communication Technologies, 2008. ISABEL ’08. First International
Symposium on. 2008, pp. 1–5. doi: 10.1109/ISABEL.2008.4712587.

[42] Kim Grüttner. OSSS – A Library for Synthesisable System Level Models in Sys-
temC(TM) – The OSSS 2.2.0 Tutorial. OFFIS - Institute for Information Technology.
Sept. 2008.

[43] Kim Grüttner and Wolfgang Nebel. “Modelling Program-State Machines in SystemC”.
In: FDL. IEEE, 2008, pp. 7–12. isbn: 978-1-4244-2265-4.

[44] Kim Grüttner, Andreas Herrholz, Philipp A. Hartmann, Andreas Schallenberg, and
Claus Brunzema. OSSS – A Library for Synthesisable System Level Models in Sys-
temC(TM) – The OSSS 2.2.0 Manual. OFFIS - Institute for Information Technology.
Sept. 2008.

[45] Kim Grüttner, Frank Oppenheimer, Wolfgang Nebel, Fabien Colas-Bigey, and Anne-
Marie Fouilliart. “SystemC-based Modelling, Seamless Refinement, and Synthesis of a
JPEG 2000 Decoder”. In: DATE. IEEE, 2008, pp. 128–133. isbn: 978-3-9810801-3-1.

[46] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and
Young-Pyo Joo. “PeaCE: A Hardware-software Codesign Environment for Multimedia
Embedded Systems”. In: ACM Trans. Des. Autom. Electron. Syst. 12.3 (May 2008),
24:1–24:25. issn: 1084-4309. doi: 10.1145/1255456.1255461. url: http://doi.acm.

org/10.1145/1255456.1255461.

[47] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. “Behavioral partitioning
with exploiting function-level parallelism”. In: SoC Design Conference, 2008. ISOCC
’08. International. Vol. 01. 2008, pp. I–121–I–124. doi: 10.1109/SOCDC.2008.4815588.

[48] P.A. Hartmann, H. Kleen, P. Reinkemeier, and W. Nebel. “Efficient modelling and
simulation of embedded software multi-tasking using SystemC and OSSS”. In: Forum
on Specification, Verification and Design Languages, 2008 (FDL 2008). 2008, pp. 19–24.
doi: 10.1109/FDL.2008.4641415.

[49] Wolfgang Klingauf. “Systematic transaction level communication modeling with sys-
temC”. PhD thesis. 2008, pp. 1–179.

[50] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yunheung Paek.
“A Retargetable Parallel-programming Framework for MPSoC”. In: ACM Trans. Des.
Autom. Electron. Syst. 13.3 (July 2008), 39:1–39:18. issn: 1084-4309. doi: 10.1145/

1367045.1367048. url: http://doi.acm.org/10.1145/1367045.1367048.

[51] MISRA-C: 2008 - Guidelines for the use of the C++ language in critical systems.
MIRA Limited. 2008.

[52] H. Nikolov, T. Stefanov, and E. Deprettere. “Systematic and Automated Multiprocessor
System Design, Programming, and Implementation”. In: Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 27.3 (2008), pp. 542–555. issn:
0278-0070. doi: 10.1109/TCAD.2007.911337.

[53] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. Deprettere. “Daedalus: Toward Composable Multimedia MP-SoC Design”. In:
Proceedings of the 45th Annual Design Automation Conference. DAC ’08. Anaheim,
California: ACM, 2008, pp. 574–579. isbn: 978-1-60558-115-6. doi: 10.1145/1391469.

1391615. url: http://doi.acm.org/10.1145/1391469.1391615.

[54] M. Radetzki and R.S. Khaligh. “Accuracy-Adaptive Simulation of Transaction Level
Models”. In: Design, Automation and Test in Europe, 2008. DATE ’08. 2008, pp. 788–
791. doi: 10.1109/DATE.2008.4484912.

http://dx.doi.org/10.1109/ISABEL.2008.4712587
http://dx.doi.org/10.1145/1255456.1255461
http://doi.acm.org/10.1145/1255456.1255461
http://doi.acm.org/10.1145/1255456.1255461
http://dx.doi.org/10.1109/SOCDC.2008.4815588
http://dx.doi.org/10.1109/FDL.2008.4641415
http://dx.doi.org/10.1145/1367045.1367048
http://dx.doi.org/10.1145/1367045.1367048
http://doi.acm.org/10.1145/1367045.1367048
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1145/1391469.1391615
http://dx.doi.org/10.1145/1391469.1391615
http://doi.acm.org/10.1145/1391469.1391615
http://dx.doi.org/10.1109/DATE.2008.4484912

BIBLIOGRAPHY 529

[55] W. Wolf, A.A. Jerraya, and G. Martin. “Multiprocessor System-on-Chip (MPSoC)
Technology”. In: Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 27.10 (2008), pp. 1701 –1713. issn: 0278-0070. doi: 10.1109/TCAD.

2008.923415.

[56] C. Zebelein, J. Falk, C. Haubelt, and J. Teich. “Classification of General Data Flow
Actors into Known Models of Computation”. In: Formal Methods and Models for
Co-Design, 2008. MEMOCODE 2008. 6th ACM/IEEE International Conference on.
2008, pp. 119–128. doi: 10.1109/MEMCOD.2008.4547699.

[57] 128-Bit Processor Local Bus Architecture Specifications. IBM Inc. 2007.

[58] Jesus Barba, Fernando Rincon, Francisco Moya, Felix J. Villanueva, David Villa, Julio
Dondo, and Juan C. Lopez. “OOCE: Object-Oriented Communication Engine for SoC
Design”. In: DSD ’07: Proceedings of the 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 296–302. isbn: 0-7695-2978-X. doi: http://dx.doi.org/10.1109/

DSD.2007.86.

[59] Bishnupriya Bhattacharya, John Rose, and Stuart Swan. “Language Extensions to
SystemC: Process Control Constructs”. In: DAC. 2007, pp. 35–38.

[60] Alan Burns and Andy J. Wellings. Concurrent and real-time programming in Ada.
Cambridge University Press, 2007, pp. I–XIV, 1–461.

[61] Mark Burton, James Aldis, Robert Günzel, and Wolfgang Klingauf. “Transaction Level
Modelling: A reflection on what TLM is and how TLMs may be classified”. In: FDL.
ECSI, 2007, pp. 92–97.

[62] Fabien Colas-Bigey, Giovanna Ferrara, Jan Freuer, and Joachim Gerlach. Report on
the Evaluation of the Language, Tools and Prototypes Developed in ICODES. ICODES
Deliverable D39 (public). OFFIS Institute for Information Technology, 2007.

[63] A. Gerstlauer, Dongwan Shin, Junyu Peng, R. Domer, and D.D. Gajski. “Auto-
matic Layer-Based Generation of System-On-Chip Bus Communication Models”. In:
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
26.9 (2007), pp. 1676–1687. issn: 0278-0070. doi: 10.1109/TCAD.2007.895794.

[64] Jens Gladigau, Christian Haubelt, Bernhard Niemann, and Jürgen Teich. “Mapping
Actor-Oriented Models to TLM Architectures”. In: Forum on specification and Design
Languages (FDL’07). 2007, pp. 128–133.

[65] Kim Grüttner, Cornelia Grabbe, Frank Oppenheimer, and Wolfgang Nebel. “Object
Oriented Design and Synthesis of Communication in Hardware-/Software Systems with
OSSS”. In: Proceedings of the SASIMI 2007. 2007.

[66] Henning Kleen. “Effizienzanalyse methodenbasierter Hardware/Software Kommunika-
tion aus Synthesesicht”. MA thesis. Carl von Ossietzky Universität Oldenburg, Fakultät
II - Department für Informatik, Abteilung Eingebettete Hardware-/Software-Systeme,
2007.

[67] W. Klingauf, R. Günzel, and C. Schröer. “Embedded software development on top
of transaction-level models”. In: Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference on. 2007, pp. 27–
32.

[68] M. Montoreano. Transaction Level Modeling using OSCI TLM 2.0. Tech. rep. 2007.

[69] Bernhard Niemann and Christian Haubelt. “Towards a Unified Execution Model for
Transactions in TLM”. In: Proceedings of the 5th IEEE/ACM International Conference
on Formal Methods and Models for Codesign. MEMOCODE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 103–112. isbn: 1-4244-1050-9. doi: 10.1109/

MEMCOD.2007.371237. url: http://dx.doi.org/10.1109/MEMCOD.2007.371237.

[70] Open Core Protocol International Partnership (OCP-IP). A SystemC OCP Transaction
Level Communication Channel. Tech. rep. Beaverton, USA, 2007.

http://dx.doi.org/10.1109/TCAD.2008.923415
http://dx.doi.org/10.1109/TCAD.2008.923415
http://dx.doi.org/10.1109/MEMCOD.2008.4547699
http://dx.doi.org/http://dx.doi.org/10.1109/DSD.2007.86
http://dx.doi.org/http://dx.doi.org/10.1109/DSD.2007.86
http://dx.doi.org/10.1109/TCAD.2007.895794
http://dx.doi.org/10.1109/MEMCOD.2007.371237
http://dx.doi.org/10.1109/MEMCOD.2007.371237
http://dx.doi.org/10.1109/MEMCOD.2007.371237

530 BIBLIOGRAPHY

[71] Alberto Sangiovanni-Vincentelli. “Quo Vadis SLD: Reasoning about Trends and Chal-
lenges of System-Level Design”. In: Proceedings of the IEEE 95.3 (2007), pp. 467–506.
url: http://chess.eecs.berkeley.edu/pubs/263.html.

[72] Mark Thompson, Hristo Nikolov, Todor Stefanov, Andy D. Pimentel, Cagkan Erbas,
Simon Polstra, and Ed F. Deprettere. “A Framework for Rapid System-level Exploration,
Synthesis, and Programming of Multimedia MP-SoCs”. In: Proceedings of the 5th
IEEE/ACM International Conference on Hardware/Software Codesign and System
Synthesis. CODES+ISSS ’07. Salzburg, Austria: ACM, 2007, pp. 9–14. isbn: 978-1-
59593-824-4. doi: 10.1145/1289816.1289823. url: http://doi.acm.org/10.1145/

1289816.1289823.

[73] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. “Pn: A Tool for Improved
Derivation of Process Networks”. In: EURASIP J. Embedded Syst. 2007.1 (Jan. 2007),
pp. 19–19. issn: 1687-3955. doi: 10.1155/2007/75947. url: http://dx.doi.org/10.

1155/2007/75947.

[74] VPEP - Video Processing Evaluation Platform (Designers Guide). AE/EIP5, Robert
Bosch GmbH. 2007.

[75] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). 2nd ed. Prentice Hall, Sept. 2006. isbn: 0321486811.
url: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07- 20\

&path=ASIN/0321486811.

[76] Device Control Register Bus 3.5 Architecture Specifications, SA14-2706-03. IBM Inc.
2006.

[77] Kim Grüttner, Cornelia Grabbe, Frank Oppenheimer, and Wolfgang Nebel. “Modelling
and Synthesis of Communication Using OSSS-Channels”. In: MBMV. Ed. by Bernd
Straube and Martin Freibothe. Fraunhofer Institut für Integrierte Schaltungen, 2006,
pp. 38–47.

[78] Kim Grüttner, Cornelia Grabbe, Thorsten Schubert, Claus Brunzema, and Frank
Oppenheimer. “OSSS-Channels: Modelling and Synthesis of Communication”. In:
Forum on specification and Design Languages, FDL 2006, September 19-22, 2006,
Darmstadt, Germany, Proceedings. ECSI, 2006, pp. 327–335. url: http://www.ecsi-

association.org/ecsi/main.asp?l1=library&fn=def&id=393.

[79] Stefan Ihmor. “Modeling and automated synthesis of reconfigurable interfaces”. PhD
thesis. Fakultät für Elektrotechnik, Informatik und Mathematik, Institut für Informatik,
Universität Paderborn, 2006.

[80] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko Hännikäinen, Timo
D. Hämäläinen, Jouni Riihimäki, and Kimmo Kuusilinna. “UML-based Multiprocessor
SoC Design Framework”. In: ACM Trans. Embed. Comput. Syst. 5.2 (May 2006),
pp. 281–320. issn: 1539-9087. doi: 10.1145/1151074.1151077. url: http://doi.

acm.org/10.1145/1151074.1151077.

[81] Wolfgang Klingauf, Hagen Gädke, and Robert Günzel. “TRAIN: A Virtual Transaction
Layer Architecture for TLM-based HW/SW Codesign of Synthesizable MPSoC”. In:
Proceedings of the Conference on Design, Automation and Test in Europe: Proceedings.
DATE ’06. Munich, Germany: European Design and Automation Association, 2006,
pp. 1318–1323. isbn: 3-9810801-0-6. url: http://dl.acm.org/citation.cfm?id=

1131481.1131843.

[82] Wolfgang Klingauf, Robert Günzel, Oliver Bringmann, Pavel Parfuntseu, and Mark
Burton. “GreenBus: A Generic Interconnect Fabric for Transaction Level Modelling”.
In: Proceedings of the 43rd Annual Design Automation Conference. DAC ’06. San
Francisco, CA, USA: ACM, 2006, pp. 905–910. isbn: 1-59593-381-6. doi: 10.1145/

1146909.1147139. url: http://doi.acm.org/10.1145/1146909.1147139.

[83] ARM Ltd. AMBA 3 AHB-Lite Protocol v1.0 Specification. Datasheet. 2006.

[84] M. Mitic and M. Stojcev. An overview of on-chip buses. Tech. rep. Facta Universitatis,
2006.

http://chess.eecs.berkeley.edu/pubs/263.html
http://dx.doi.org/10.1145/1289816.1289823
http://doi.acm.org/10.1145/1289816.1289823
http://doi.acm.org/10.1145/1289816.1289823
http://dx.doi.org/10.1155/2007/75947
http://dx.doi.org/10.1155/2007/75947
http://dx.doi.org/10.1155/2007/75947
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321486811
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0321486811
http://www.ecsi-association.org/ecsi/main.asp?l1=library&fn=def&id=393
http://www.ecsi-association.org/ecsi/main.asp?l1=library&fn=def&id=393
http://dx.doi.org/10.1145/1151074.1151077
http://doi.acm.org/10.1145/1151074.1151077
http://doi.acm.org/10.1145/1151074.1151077
http://dl.acm.org/citation.cfm?id=1131481.1131843
http://dl.acm.org/citation.cfm?id=1131481.1131843
http://dx.doi.org/10.1145/1146909.1147139
http://dx.doi.org/10.1145/1146909.1147139
http://doi.acm.org/10.1145/1146909.1147139

BIBLIOGRAPHY 531

[85] ML401/ML402/ML403 Evaluation Platform - User Guide, UG080 (v2.3). Xilinx Inc.
2006.

[86] Open Core Protocol International Partnership (OCP-IP). Open Core Protocol Specifi-
cation 2.2. Tech. rep. Beaverton, USA, 2006.

[87] OPB External Memory Controller (OPB EMC) (2.00a). Xilinx Inc. 2006.

[88] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. “A Systematic Approach to
Exploring Embedded System Architectures at Multiple Abstraction Levels”. In: IEEE
Trans. Comput. 55.2 (Feb. 2006), pp. 99–112. issn: 0018-9340. doi: 10.1109/TC.2006.

16. url: http://dx.doi.org/10.1109/TC.2006.16.

[89] PLB External Memory Controller (PLB EMC) (2.00a). Xilinx Inc. 2006.

[90] Gunar Schirner and Rainer Dömer. “Fast and Accurate Transaction Level Models
Using Result Oriented Modeling”. In: Proceedings of the 2006 IEEE/ACM International
Conference on Computer-aided Design. ICCAD ’06. San Jose, California: ACM, 2006,
pp. 363–368. isbn: 1-59593-389-1. doi: 10 . 1145 / 1233501 . 1233574. url: http :

//doi.acm.org/10.1145/1233501.1233574.

[91] Virtex-4 Family Overview, DS112 (v1.5). Xilinx Inc. 2006.

[92] Ryan J. Wisnesky. The Inheritance Anomaly Revisited.
http://wisnesky.net/anomaly.pdf. 2006.

[93] A. Rose, S. Swan, J. Pierce and J.-M. Fernandez. Transaction Level Modeling in
SystemC. Whitepaper. OSCI TLM Working Group, 2005.

[94] Block RAM (BRAM) Block (v1.00a), DS444. Xilinx Inc. 2005.

[95] Embedded System Tools Reference Manual - Embedded Development Kit EDK 7.1i,
UG111 (v4.0). Xilinx Inc. 2005.

[96] Cornelia Grabbe, Frank Oppenheimer, and Thorsten Schubert. Requirements on
Hardware/Software Communication Design based on Abstract Communication Models.
ICODES Deliverable D2 (public). OFFIS Institute for Information Technology, 2005.

[97] Eike Grimpe. “Performance Optimising Hardware Synthesis of Shared Objects”. PhD
thesis. Universität Oldenburg, 2005.

[98] IBM PowerPC 405 Evaluation Kit with CoreConnect SystemC TLMs. IBM Corp. 2005.

[99] Axel Jantsch. “Models of Embedded Computation”. In: EMBEDDED SYSTEMS
HANDBOOK. CRC Press, 2005.

[100] Joint Strike FighterAir Vehicle C++ Coding Standards for the System Development
and Demonstration Program. Lockheed Martin Corporation. 2005.

[101] LMB BRAM Interface Controller (v1.00b), DS452. Xilinx Inc. 2005.

[102] Local Memory Bus (LMB) v1.0 (v1.00a), DS445. Xilinx Inc. 2005.

[103] MicroBlaze Processor Reference Guide - Embedded Development Kit EDK 8.1i, UG081
(v5.3). Xilinx Inc. 2005.

[104] Microprocessor Debug Module (MDM) (v2.00a), DS450. Xilinx Inc. 2005.

[105] On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10c), DS401. Xilinx Inc. 2005.

[106] OPB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Controller (v1.10a),
DS424. Xilinx Inc. 2005.

[107] OPB Interrupt Controller (v1.00c), DS473. Xilinx Inc. 2005.

[108] OPB IPIF (v3.01c). Xilinx Inc. 2005.

[109] OPB Timer/Counter (v1.00b), DS465. Xilinx Inc. 2005.

[110] OPB UART Lite (v1.00b), DS422. Xilinx Inc. 2005.

[111] Frank Oppenheimer. “OOCOSIM - An Object-Oriented Co-Design Method for Em-
bedded HW/SW Systems”. eng. PhD thesis. Uhlhornsweg 49-55, 26129 Oldenburg:
Universität Oldenburg, 2005.

http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1145/1233501.1233574
http://doi.acm.org/10.1145/1233501.1233574
http://doi.acm.org/10.1145/1233501.1233574

532 BIBLIOGRAPHY

[112] PLB IPIF (v2.02a). Xilinx Inc. 2005.

[113] Processor IP Reference Guide - OPB Usage in Xilinx FPGAs. Xilinx Inc. 2005.

[114] Adam Rose, Stuart Swan, John Pierce, and Jean-Michel Fernandez. Transaction Level
Modeling in SystemC. Tech. rep. Open SystemC Initiative (OSCI) TLM Working
Group, 2005.

[115] Dongwan Shin and Daniel D. Gajski. Interface Synthesis from Protocol Specification.
Tech. rep. Technical Report CECS-02-13, Department of Information and Computer
Science University of California, Irvine, 2005.

[116] Dongwan Shin, Andreas Gerstlauer, Rainer Dömer, and Daniel D. Gajski. “Automatic
Generation of Communication Architectures”. In: From Specification to Embedded
Systems Application. Springer Science+Business Media, New York, NY, ISBN 0-387-
27557-6, 2005.

[117] STMicroelectronics. TAC: Transaction Accurate Communication.
http://www.greensocs.com/TACPackage. 2005.

[118] Xilinx ISE 7 Software Manuals and Help - PDF Collection. Xilinx Inc. 2005.

[119] Joachim K. Anlauf and Philipp A. Hartmann. “On Actors and Objects - OOP in
System Level Design”. In: FDL. ECSI, 2004, pp. 392–404.

[120] Gerd Behrmann, Alexandre David, and Kim G. Larsen. “A Tutorial on Uppaal”. In:
Formal Methods for the Design of Real-Time Systems: 4th International School on
Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004. Ed. by Marco Bernardo and Flavio Corradini. LNCS 3185. Springer–
Verlag, 2004, pp. 200–236.

[121] Marcello Coppola, Stephane Curaba, Miltos D. Grammatikakis, Riccardo Locatelli,
Giuseppe Maruccia, and Francesco Papariello. “OCCN: A NoC Modeling Framework
for Design Exploration”. In: J. Syst. Archit. 50.2-3 (Feb. 2004), pp. 129–163. issn:
1383-7621. doi: 10.1016/j.sysarc.2003.07.002. url: http://dx.doi.org/10.

1016/j.sysarc.2003.07.002.

[122] A. Jantsch. Modeling Embedded Systems and SoCs: Concurrency and Time in Models of
Computation. Morgan Kaufmann Series in Systems on Silicon. Morgan Kaufmann, 2004.
isbn: 9781558609259. url: http://books.google.de/books?id=hgYhEhzI72IC.

[123] ARM Ltd. AMBA 3 AXI Protocol v1.0 Specification. Datasheet. 2004.

[124] MISRA-C: 2004 - Guidelines for the use of the C language in critical systems. MIRA
Limited. 2004.

[125] OPB Block RAM (BRAM) Interface Controller, DS468. Xilinx Inc. 2004.

[126] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. “Extending the Transac-
tion Level Modeling Approach for Fast Communication Architecture Exploration”. In:
Proceedings of the 41st Annual Design Automation Conference. DAC ’04. San Diego, CA,
USA: ACM, 2004, pp. 113–118. isbn: 1-58113-828-8. doi: 10.1145/996566.996603.
url: http://doi.acm.org/10.1145/996566.996603.

[127] J.M. Paul and D.E. Thomas. “Models of computation for systems-on-chip”. In: Multipro-
cessor Systems-on-Chip. Ed. by A. Jerraya and W. Wolf. Morgan Kaufman Publishers,
2004. Chap. 15.

[128] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and W. Rosenstiel. “Object-
oriented modeling and synthesis of SystemC specifications”. In: ASP-DAC ’04: Pro-
ceedings of the 2004 conference on Asia South Pacific design automation. Yokohama,
Japan: IEEE Press, 2004, pp. 238–243. isbn: 0-7803-8175-0.

[129] Samar Abdi, Dongwan Shin, and Daniel Gajski. “Automatic communication refinement
for system level design”. In: DAC ’03: Proceedings of the 40th conference on Design
automation. Anaheim, CA, USA: ACM, 2003, pp. 300–305. isbn: 1-58113-688-9. doi:
http://doi.acm.org/10.1145/775832.775911.

http://dx.doi.org/10.1016/j.sysarc.2003.07.002
http://dx.doi.org/10.1016/j.sysarc.2003.07.002
http://dx.doi.org/10.1016/j.sysarc.2003.07.002
http://books.google.de/books?id=hgYhEhzI72IC
http://dx.doi.org/10.1145/996566.996603
http://doi.acm.org/10.1145/996566.996603
http://dx.doi.org/http://doi.acm.org/10.1145/775832.775911

BIBLIOGRAPHY 533

[130] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. “Metropolis: an integrated electronic system design environment”. In:
Computer 36.4 (2003), pp. 45–52. issn: 0018-9162. doi: 10.1109/MC.2003.1193228.

[131] Lukai Cai and Daniel Gajski. “Transaction level modeling: an overview”. In:
CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis. Newport Beach, CA, USA:
ACM, 2003, pp. 19–24. isbn: 1-58113-742-7. doi: http://doi.acm.org/10.1145/

944645.944651.

[132] Lukai Cai, Shireesh Verma, and Daniel Gajski. Comparision of SpecC and SystemC
Languages for System Design. Tech. rep. CA, USA: CECS, University of California,
Irvine, 2003.

[133] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. “IPSIM: SystemC 3.0
enhancements for communication refinement”. In: Design, Automation and Test in
Europe Conference and Exhibition, 2003. 2003, 106–111 suppl. doi: 10.1109/DATE.

2003.1186680.

[134] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Yuhong Xiong. “Taming heterogeneity - the Ptolemy approach”. In:
Proceedings of the IEEE 91.1 (2003), pp. 127 –144. issn: 0018-9219. doi: 10.1109/

JPROC.2002.805829.

[135] Eike Grimpe and Frank Oppenheimer. “Extending the SystemC Synthesis Subset by
Object Oriented Features”. In: CODES+ISSS 2003. 2003.

[136] Axel Jantsch and Hannu Tenhunen. “Will networks on chip close the productivity
gap?” In: Networks on chip. Ed. by Axel Jantsch and Hannu Tenhunen. Hingham,
MA, USA: Kluwer Academic Publishers, 2003, pp. 3–18. isbn: 1-4020-7392-5. url:
http://dl.acm.org/citation.cfm?id=903951.903953.

[137] Tim Kogel, Malte Doerper, Andreas Wieferink, Rainer Leupers, Gerd Ascheid, Heinrich
Meyr, and Serge Goossens. “A Modular Simulation Framework for Architectural Explo-
ration of On-chip Interconnection Networks”. In: Proceedings of the 1st IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’03. Newport Beach, CA, USA: ACM, 2003, pp. 7–12. isbn: 1-58113-
742-7. doi: 10.1145/944645.944648. url: http://doi.acm.org/10.1145/944645.

944648.

[138] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. “Actor-Oriented Design
Of Embedded Hardware And Software Systems”. In: Journal of Circuits, Systems, and
Computers 12 (2003), pp. 231–260.

[139] Henrik Theiling. “Control Flow Graphs for Real-Time System Analysis”. PhD thesis.
Universität des Saarlandes, 2003.

[140] Designing Custom OPB Slave Peripherals for MicroBlaze. Xilinx Inc. 2002.

[141] A. Gerstlauer and D. Gajski. System-Level Abstraction Semantics. Tech. rep. CA, USA:
CECS, University of California, Irvine, 2002.

[142] Eike Grimpe, Bernd Timmermann, Tiemo Fandrey, Ramon Biniasch, and Frank
Oppenheimer. “SystemC Object-Oriented Extensions and Synthesis Features”. In:
Forum on Design Languages FDL’02. 2002.

[143] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers. “A
Methodology to Design Programmable Embedded Systems - The Y-Chart Approach”.
In: Embedded Processor Design Challenges: Systems, Architectures, Modeling, and
Simulation - SAMOS. London, UK, UK: Springer-Verlag, 2002, pp. 18–37. isbn: 3-540-
43322-8. url: http://dl.acm.org/citation.cfm?id=646466.691571.

[144] Majid Rabbani and Rajan Joshi. “An overview of the JPEG2000 still image compression
standard”. englisch. In: Signal Processing: Image Communication 17.1 (2002).

http://dx.doi.org/10.1109/MC.2003.1193228
http://dx.doi.org/http://doi.acm.org/10.1145/944645.944651
http://dx.doi.org/http://doi.acm.org/10.1145/944645.944651
http://dx.doi.org/10.1109/DATE.2003.1186680
http://dx.doi.org/10.1109/DATE.2003.1186680
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dl.acm.org/citation.cfm?id=903951.903953
http://dx.doi.org/10.1145/944645.944648
http://doi.acm.org/10.1145/944645.944648
http://doi.acm.org/10.1145/944645.944648
http://dl.acm.org/citation.cfm?id=646466.691571

534 BIBLIOGRAPHY

[145] E. Salminen, V. Lahtinen, K. Kuusilinna, and T. Hamalainen. “Overview of bus-based
system-on-chip interconnections”. In: IEEE International Symposium on Circuits and
Systems, 2002. ISCAS 2002. Vol. 2. 2002, II–372–II–375 vol.2. doi: 10.1109/ISCAS.

2002.1011002.

[146] Robert Siegmund and Dietmar Müller. “A novel synthesis technique for communication
controller hardware from declarative data communication protocol specifications”. In:
DAC ’02: Proceedings of the 39th conference on Design automation. New Orleans,
Louisiana, USA: ACM, 2002, pp. 602–607. isbn: 1-58113-461-4. doi: http://doi.acm.

org/10.1145/513918.514071.

[147] Robert Siegmund and Dietmar Müller. “Automatic Synthesis of Communication Con-
troller Hardware from Protocol Specifications”. In: IEEE Design and Test of Computers
19.4 (2002), pp. 84–95. issn: 0740-7475. doi: http://doi.ieeecomputersociety.

org/10.1109/MDT.2002.1018137.

[148] J. Banks. Discrete-event system simulation. Prentice-Hall international series in in-
dustrial and systems engineering. Prentice Hall, 2001. isbn: 9780130887023. url:
http://books.google.de/books?id=NV1RAAAAMAAJ.

[149] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon
Woodhull. “Graphviz - Open Source Graph Drawing Tools”. In: Graph Drawing’01.
2001, pp. 483–484.

[150] Daniel D. Gajski, Rainer Domer, Junyu Peng, and Andreas Gerstlauer. System Design:
A Practical Guide with Specc. Norwell, MA, USA: Kluwer Academic Publishers, 2001.
isbn: 0792373871.

[151] On-Chip Peripheral Bus Architecture Specifications, SA-14-2528-02. IBM Inc. 2001.

[152] Wolfram Putzke-Röming. “Durchgängiges Kommunikationsdesign für den struktu-
ralen, objektorientierten Hardwareentwurf.” In: Workshop Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen
(MBMV 2001). 2001, pp. 39–48.

[153] Wolfram Putzke-Röming. “Durchgängiges Kommunikationsdesign für den strukturalen,
objektorientierten Hardware-Entwurf”. PhD thesis. Universität Oldenburg, 2001.

[154] Carsten Schulz-key, Tommy Kuhn, and Wolfgang Rosenstiel. “A Framework for System-
Level Partitioning of Object-Oriented Specifications”. In: In Proceedings of the tenth
workshop on Synthesis and System Integration of Mixed Technologies (SASIMI’2001.
2001.

[155] R. Siegmund and D. Müller. “SystemCSV - an Extension of SystemC for Mixed Multi-
level Communication Modeling and Interface-based System Design”. In: Proceedings
of the Conference on Design, Automation and Test in Europe. DATE ’01. Munich,
Germany: IEEE Press, 2001, pp. 26–33. isbn: 0-7695-0993-2. url: http://dl.acm.

org/citation.cfm?id=367072.367080.

[156] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich. “FunState-an
internal design representation for codesign”. In: Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 9.4 (2001), pp. 524–544. issn: 1063-8210. doi: 10.

1109/92.931229.

[157] Kjetil Svarstad, Nezih Ben-fredj, Gabriela Nicolescu, and Ahmed A. Jerraya. “A Higher
Level System Communication Model for Object-Oriented Specification and Design of
Embedded Systems”. In: Proc. of Asia South Pacific Design Automation Conference.
2001.

[158] Hugo A. Andrade and Margarida F. Jacome. “The Common Hardware and Software
Object Model: CHSOM”. In: PDPTA. Ed. by Hamid R. Arabnia. CSREA Press, 2000.

[159] Prashant Arora and Rajesh K. Gupta. “Design and Implementation of a Hierarchical
Exception Handling Extension to SystemC”. In: CASES. 2000, pp. 80–84.

[160] Daniel Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao.
SpecC: Specification Language and Methodology. Kluwer Academic Publishers, 2000.

http://dx.doi.org/10.1109/ISCAS.2002.1011002
http://dx.doi.org/10.1109/ISCAS.2002.1011002
http://dx.doi.org/http://doi.acm.org/10.1145/513918.514071
http://dx.doi.org/http://doi.acm.org/10.1145/513918.514071
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MDT.2002.1018137
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MDT.2002.1018137
http://books.google.de/books?id=NV1RAAAAMAAJ
http://dl.acm.org/citation.cfm?id=367072.367080
http://dl.acm.org/citation.cfm?id=367072.367080
http://dx.doi.org/10.1109/92.931229
http://dx.doi.org/10.1109/92.931229

BIBLIOGRAPHY 535

[161] Michael Philippsen. “A survey of concurrent object-oriented languages”. In: Con-
currency: Practice and Experience 12.10 (2000), pp. 917–980. issn: 1096-9128. doi:
10.1002/1096-9128(20000825)12:10<917::AID-CPE517>3.0.CO;2-F. url: http:

//dx.doi.org/10.1002/1096-9128(20000825)12:10<917::AID-CPE517>3.0.CO;2-

F.

[162] Martin Radetzki. “Synthesis of Digital Circuits from Object-Oriented Specifications”.
PhD thesis. Carl v. Ossietzky Universität Oldenburg, 2000.

[163] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked
Objects. Chichester, UK: Wiley, 2000. isbn: 978-0-471-60695-6.

[164] Philips Semiconductors. The I2C-bus specification. 2000.

[165] Hanyu Yin, Haito Du, Tzu-Chia Lee, and Daniel Gajski. Design of a JPEG Encoder
using SpecC Methodology. Tech. rep. CA, USA: CECS, University of California, Irvine,
2000.

[166] L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li, A. Selka, C. Siskaand L. Sunand S.
Zhao, and D. Gajski. Design of a JPEG Encoding System. Tech. rep. CA, USA: CECS,
University of California, Irvine, 1999.

[167] ARM Ltd. AMBA Specification (Rev 2.0). Datasheet. 1999.

[168] Kassem Saleh, Robert L. Probert, and Hassib Khanafer. “The distributed object
computing paradigm: concepts and applications”. In: Journal of Systems and Software
47.2-3 (1999), pp. 125–131.

[169] A. Girault, B. Lee, and E. A. Lee. Hierarchical Finite State Machines with Multiple
Concurrency Models. Tech. rep. UCB/ERL M97/57. Berkeley, CA 94720: Electronics
Research Laboratory, 1998.

[170] E.A. Lee and A. Sangiovanni-Vincentelli. “A framework for comparing models of
computation”. In: Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 17.12 (1998), pp. 1217 –1229. issn: 0278-0070. doi: 10.1109/43.

736561.

[171] Jakob Nielsen. Nielsen’s Law of Internet Bandwidth.
http://www.nngroup.com/articles/nielsens-law-of-internet-bandwidth/. 1998. url:
http://www.nngroup.com/articles/nielsens-law-of-internet-bandwidth/.

[172] S. Nilsson and G. Karlsson. “Fast address look-up for internet routers”. In: Proceedings
of the IFIP TC6/WG6.2 Fourth International Conference on Broadband Communica-
tions: The future of telecommunications. BC ’98. London, UK, UK: Chapman & Hall,
Ltd., 1998, pp. 11–22. isbn: 0-412-84410-9. url: http://dl.acm.org/citation.cfm?

id=646953.713338.

[173] J.E. Savage. Models of computation: exploring the power of computing. Addison Wesley,
1998. isbn: 9780201895391. url: http://books.google.de/books?id=j2kZAQAAIAAJ.

[174] R.G. Taylor. Models of computation and formal language. Oxford University Press,
New York, 1998.

[175] Kim G. Larsen, Paul Pettersson, and Wang Yi. “Uppaal in a Nutshell”. In: Int.
Journal on Software Tools for Technology Transfer 1.1–2 (Oct. 1997), pp. 134–152.

[176] Frank Manola. Object Model Features Matrix. Tech. rep. X3H7-93-007v12b. National
Committee for Information Technology Standards Technical Committee H7, May 1997.

[177] James A. Rowson and Alberto Sangiovanni-Vincentelli. “Interface-based design”. In:
DAC ’97: Proceedings of the 34th annual conference on Design automation. Anaheim,
California, United States: ACM, 1997, pp. 178–183. isbn: 0-89791-920-3. doi: http:

//doi.acm.org/10.1145/266021.266060.

[178] K. Salomonsen. “Design and Implementation of an MPEG/Audio Layer III Bitstream
Processor”. MA thesis. Aalborg University, Denmark, 1997.

http://dx.doi.org/10.1002/1096-9128(20000825)12:10<917::AID-CPE517>3.0.CO;2-F
http://dx.doi.org/10.1002/1096-9128(20000825)12:10<917::AID-CPE517>3.0.CO;2-F
http://dx.doi.org/10.1002/1096-9128(20000825)12:10<917::AID-CPE517>3.0.CO;2-F
http://dx.doi.org/10.1002/1096-9128(20000825)12:10<917::AID-CPE517>3.0.CO;2-F
http://dx.doi.org/10.1109/43.736561
http://dx.doi.org/10.1109/43.736561
http://www.nngroup.com/articles/nielsens-law-of-internet-bandwidth/
http://dl.acm.org/citation.cfm?id=646953.713338
http://dl.acm.org/citation.cfm?id=646953.713338
http://books.google.de/books?id=j2kZAQAAIAAJ
http://dx.doi.org/http://doi.acm.org/10.1145/266021.266060
http://dx.doi.org/http://doi.acm.org/10.1145/266021.266060

536 BIBLIOGRAPHY

[179] Frank Vahid and Linus Tauro. “An Object-Oriented Communication Library for
Hardware-Software CoDesign”. In: Proceedings of the 5th International Workshop on
Hardware/Software Co-Design. CODES ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 81–. isbn: 0-8186-7895-X. url: http://dl.acm.org/citation.

cfm?id=792768.793495.

[180] Wayne Wolf and Jorgen Staunstrup. Hardware/Software CO-Design: Principles and
Practice. Norwell, MA, USA: Kluwer Academic Publishers, 1997. isbn: 0792380134.

[181] J. Zhu, R. Dömer, and D. Gajski. “Syntax and Semantics of the SpecC language”. In:
Proceedings of the SASIMI 1997. 1997.

[182] R. Greg Lavender and Douglas C. Schmidt. “Pattern Languages of Program Design
2”. In: ed. by John M. Vlissides, James O. Coplien, and Norman L. Kerth. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1996. Chap. Active Object:
An Object Behavioral Pattern for Concurrent Programming, pp. 483–499. isbn: 0-201-
895277. url: http://dl.acm.org/citation.cfm?id=231958.232967.

[183] A. J. Wellings and A. Burns. “Implementing Atomic Actions in Ada 95”. In: IEEE
Transactions on Software Engineering 23 (1996), pp. 107–123.

[184] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. “Cyclo-static data flow”.
In: Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International
Conference on. Vol. 5. 1995, 3255–3258 vol.5. doi: 10.1109/ICASSP.1995.479579.

[185] F. Vahid, S. Narayan, and D. D. Gajski. “SpecCharts: A VHDL Front-End for Embedded
Systems”. In: IEEE Transactions on Computer Aided Design 14.6 (1995), pp. 694–706.

[186] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theoretical
Computer Science 126 (1994), pp. 183–235.

[187] M. von der Beeck. “A Comparison of StateCharts Variants”. In: Proc. of Formal
Techniques in Real Time and Fault Tolerant Systems. Berlin: Springer-Verlag, 1994,
pp. 128–148.

[188] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specification and Design
of Embedded Systems. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994. isbn:
0-13-150731-1.

[189] Sanjiv Narayan and Daniel D. Gajski. “Protocol generation for communication chan-
nels”. In: DAC ’94: Proceedings of the 31st annual conference on Design automation.
San Diego, California, United States: ACM, 1994, pp. 547–551. isbn: 0-89791-653-0.
doi: http://doi.acm.org/10.1145/196244.196530.

[190] C. Cassandras. Discrete Event Systems, Modeling and Performance Analysis. Home-
wood IL: Irwin, 1993.

[191] R. Alur, C. Courcoubetis, and D. Dill. “Model-checking for real-time systems”. In: Logic
in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Symposium on
e. 1990, pp. 414 –425. doi: 10.1109/LICS.1990.113766.

[192] Gaetano Borriello. “A New Interface Specification Methodology and its Application
to Transducer Synthesis”. PhD thesis. EECS Department, University of California,
Berkeley, 1988. url: http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/5639.

html.

[193] D. D. Gajski. Silicon Compilation. Addison-Wesley, 1988.

[194] D. Harel. “StateCharts: a Visual Formalism for Complex Systems”. In: Science of
Programming 8 (1987).

[195] E.A. Lee and D.G. Messerschmitt. “Synchronous data flow”. In: Proceedings of the
IEEE 75.9 (1987), pp. 1235–1245. issn: 0018-9219. doi: 10.1109/PROC.1987.13876.

[196] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. Cam-
bridge, MA, USA: MIT Press, 1986. isbn: 0-262-01092-5.

[197] D. D. Gajski and R.H. Kuhn. “Guest Editor’s Introduction: New VLSI Tools”. In:
IEEE Computer (1983).

http://dl.acm.org/citation.cfm?id=792768.793495
http://dl.acm.org/citation.cfm?id=792768.793495
http://dl.acm.org/citation.cfm?id=231958.232967
http://dx.doi.org/10.1109/ICASSP.1995.479579
http://dx.doi.org/http://doi.acm.org/10.1145/196244.196530
http://dx.doi.org/10.1109/LICS.1990.113766
http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/5639.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/5639.html
http://dx.doi.org/10.1109/PROC.1987.13876

BIBLIOGRAPHY 537

[198] C. A. R. Hoare. “Communicating Sequential Processes (Reprint)”. In: Communications
of the Association for Computing 26.1 (1983), pp. 100–106. issn: 0001-0782 (print),
1557-7317 (electronic).

[199] C. A. R. Hoare. “Monitors: an operating system structuring concept”. In: Commun.
ACM 17.10 (1974), pp. 549–557. issn: 0001-0782. doi: http://doi.acm.org/10.

1145/355620.361161.

[200] Gilles Kahn. “The Semantics of Simple Language for Parallel Programming.” In: IFIP
Congress. 1974, pp. 471–475. url: http://dblp.uni-trier.de/db/conf/ifip/

ifip74.html#Kahn74.

[201] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Universal Modular ACTOR
Formalism for Artificial Intelligence”. In: Proceedings of the 3rd International Joint
Conference on Artificial Intelligence. IJCAI’73. Stanford, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245. url: http://dl.acm.org/citation.cfm?id=

1624775.1624804.

[202] H. Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973. isbn: 9783211811061.
url: http://books.google.de/books?id=DK-EAAAAIAAJ.

[203] Gordon E. Moore. “Cramming More Components onto Integrated Circuits”. In:
Electronics 38.8 (1965), pp. 114–117. url: http://www.intel.com/technology/

mooreslaw/index.htm.

[204] C.E. Shannon. “Communication in the Presence of Noise”. In: Proceedings of the IRE
37.1 (1949), pp. 10–21. issn: 0096-8390. doi: 10.1109/JRPROC.1949.232969.

[205] Claude Shannon. “A Mathematical Theory of Communication”. In: Bell System Tech-
nical Journal 27 (1948), pp. 379–423, 623–656. url: http://cm.bell-labs.com/cm/

ms/what/shannonday/shannon1948.pdf.

[206] Application Note 105: //yx channel_transform Channel to Channel Assignment Guide-
lines. www . yxi . com / applications / 105 - chan2chan . pdf. Y Explorations. url:
www.yxi.com/applications/105-chan2chan.pdf.

[207] C++ Portability Guide, Version 0.8. http://www.mozilla.org/hacking/portable-

cpp.html. url: http://www.mozilla.org/hacking/portable-cpp.html.

[208] Cadence - C-to-Silicon Compiler. www.cadence.com. Cadence. url: www.cadence.

com/products/sd/silicon_compiler/.

[209] Catapult. calypto.com/en/products/catapult/catapult_overview. Calypto. url:
calypto.com/en/products/catapult/catapult_overview.

[210] eXCite. www.yxi.com/products.php. Y Explorations. url: www.yxi.com/products.

php.

[211] Forte Design Systems - Cynthesizer. www.forteds.com. Forte Design Systems. url:
www.forteds.com.

[212] Gigascale Systems Research Center (GSRC). Core design technology for complex
heterogeneous systems. http://www.gigascale.org/theme/core/.

[213] Handel-C. www.mentor.com/products/fpga/handel- c/. Mentor Graphics. url:
www.mentor.com/products/fpga/handel-c/.

[214] Handel-C Language Reference Manual. www.agilityds.com/literature/HandelC_

Language_Reference_Manual.pdf. Mentor Graphics. url: www.agilityds.com/

literature/HandelC_Language_Reference_Manual.pdf.

[215] Haskell general purpose, purely functional programming language homepage. http:

//www.haskell.org. url: http://www.haskell.org.

[216] Homepage of CoSynth GmbH & Co. KG. https://www.cosynth.com. url: https:

//www.cosynth.com.

[217] Homepage of Edison Design Group (EDG). http://www.edg.com. url: http://www.

edg.com.

http://dx.doi.org/http://doi.acm.org/10.1145/355620.361161
http://dx.doi.org/http://doi.acm.org/10.1145/355620.361161
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Kahn74
http://dblp.uni-trier.de/db/conf/ifip/ifip74.html#Kahn74
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://books.google.de/books?id=DK-EAAAAIAAJ
http://www.intel.com/technology/mooreslaw/index.htm
http://www.intel.com/technology/mooreslaw/index.htm
http://dx.doi.org/10.1109/JRPROC.1949.232969
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
www.yxi.com/applications/105-chan2chan.pdf
www.yxi.com/applications/105-chan2chan.pdf
http://www.mozilla.org/hacking/ portable-cpp.html
http://www.mozilla.org/hacking/ portable-cpp.html
http://www.mozilla.org/hacking/portable-cpp.html
www.cadence.com
www.cadence.com/products/sd/silicon_compiler/
www.cadence.com/products/sd/silicon_compiler/
calypto.com/en/products/catapult/catapult_overview
calypto.com/en/products/catapult/catapult_overview
www.yxi.com/products.php
www.yxi.com/products.php
www.yxi.com/products.php
www.forteds.com
www.forteds.com
www.mentor.com/products/fpga/handel-c/
www.mentor.com/products/fpga/handel-c/
www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
http://www.haskell.org
http://www.haskell.org
http://www.haskell.org
https://www.cosynth.com
https://www.cosynth.com
https://www.cosynth.com
http://www.edg.com
http://www.edg.com
http://www.edg.com

538 BIBLIOGRAPHY

[218] Homepage of Synplicity. www.synplicity.com/. url: www.synplicity.com/.

[219] Homepage of the Accellera Systems Initiative. http://www.accellera.org. url:
http://www.accellera.org.

[220] Homepage of the ANDRES Project. http://andres.offis.de. url: http://andres.

offis.de.

[221] Homepage of the GNU Compiler Collection for the Xilinx MicroBlaze Soft Processor
Core (mb-gcc). http://www.xilinx.com/guest_resources/gnu/index.htm. url:
http://www.xilinx.com/guest_resources/gnu/index.htm.

[222] Homepage of the GNU Compiler Collection (gcc) Project. http://gcc.gnu.org/. url:
http://gcc.gnu.org/.

[223] Homepage of the ICODES Project. http://icodes.offis.de. url: http://icodes.

offis.de.

[224] Homepage of the ODETTE Project. http://odette.offis.de. url: http://odette.

offis.de.

[225] Homepage of the OSSS and Fossy Project. http://www.system-synthesis.org. url:
http://www.system-synthesis.org.

[226] Homepage of the PolyDyn Project. http://www.offis.de/struktur/projekte/

polydyn.html. url: http://www.offis.de/struktur/projekte/polydyn.html.

[227] Underbit Technologies Inc. MAD: MPEG Audio Decoder.
http://www.underbit.com/products/mad/.

[228] MathWorks Hompage. http://www.mathworks.de/. url: http://www.mathworks.

de/.

[229] SpecC Hompage at the Center for Embedded Computer Systems (CECS). http://www.

cecs.uci.edu/~specc/. url: http://www.cecs.uci.edu/~specc/.

[230] SystemCrafter. www . systemcrafter . com. SystemCrafter Ltd. url: www .

systemcrafter.com.

[231] SystemCrafter User Manual – Version 3.0.0. www.systemcrafter.com/downloads/

UserManual.pdf. SystemCrafter Ltd. url: www.systemcrafter.com/downloads/

UserManual.pdf.

[232] Xilinx website. http://www.xilinx.com. url: http://www.xilinx.com/support/

software_manuals.htm.

[233] UPPAAL Website. http://www.uppaal.org/. url: http://www.uppaal.org/.

[234] VirtexTM-4 Multi-Platform FPGA. http://www.xilinx.com/products/silicon_

solutions/fpgas/virtex/virtex4/. Xilinx Inc.

[235] Vivado Design Suite. www.xilinx.com/products/design-tools/vivado/. Xilinx.
url: www.xilinx.com/products/design-tools/vivado/.

[236] Website of the IEEE P1076 Study Group - VHDL Analysis and Standardization Group
(VASG). http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome. url: http:

//www.eda.org/twiki/bin/view.cgi/P1076/WebHome.

[237] Website of the IEEE P1364-2005 Group - Verilog Hardware Description Language.
http://www.verilog.com/IEEEVerilog.html. url: http://www.verilog.com/

IEEEVerilog.html.

[238] Xilinx ISE Software Manuals Homepage. http : / / www . xilinx . com / support /

software _ manuals . htm. url: http : / / www . xilinx . com / support / software _

manuals.htm.

[239] Xilinx Platform Studio and the Embedded Development Kit (EDK) Documentation
Homepage. http://www.xilinx.com/ise/embedded/edk_docs.htm. url: http:

//www.xilinx.com/ise/embedded/edk_docs.htm.

www.synplicity.com/
www.synplicity.com/
http://www.accellera.org
http://www.accellera.org
http://andres.offis.de
http://andres.offis.de
http://andres.offis.de
http://www.xilinx.com/guest_resources/gnu/index.htm
http://www.xilinx.com/guest_resources/gnu/index.htm
http://gcc.gnu.org/
http://gcc.gnu.org/
http://icodes.offis.de
http://icodes.offis.de
http://icodes.offis.de
http://odette.offis.de
http://odette.offis.de
http://odette.offis.de
http://www.system-synthesis.org
http://www.system-synthesis.org
http://www.offis.de/struktur/projekte/polydyn.html
http://www.offis.de/struktur/projekte/polydyn.html
http://www.offis.de/struktur/projekte/polydyn.html
http://www.mathworks.de/
http://www.mathworks.de/
http://www.mathworks.de/
http://www.cecs.uci.edu/~specc/
http://www.cecs.uci.edu/~specc/
http://www.cecs.uci.edu/~specc/
www.systemcrafter.com
www.systemcrafter.com
www.systemcrafter.com
www.systemcrafter.com/downloads/User Manual.pdf
www.systemcrafter.com/downloads/User Manual.pdf
www.systemcrafter.com/downloads/User Manual.pdf
www.systemcrafter.com/downloads/User Manual.pdf
http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.uppaal.org/
http://www.uppaal.org/
http://www.xilinx.com/products/silicon_solutions /fpgas/virtex/virtex4/
http://www.xilinx.com/products/silicon_solutions /fpgas/virtex/virtex4/
www.xilinx.com/products/design-tools/vivado/
www.xilinx.com/products/design-tools/vivado/
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome
http://www.eda.org/twiki/bin/view.cgi/P1076/WebHome
http://www.verilog.com/IEEEVerilog.html
http://www.verilog.com/IEEEVerilog.html
http://www.verilog.com/IEEEVerilog.html
http://www.xilinx.com/support/ software_manuals.htm
http://www.xilinx.com/support/ software_manuals.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm

Curriculum Vitæ

Contact

Name: Kim Nico Grüttner

Address: Zum Sonnentau 2
D-27777 Ganderkesee
Germany

E-Mail: kim.gruettner@gmx.de

Date of birth: 6 March 1979

Place of birth: Delmenhorst, Germany

Family status: Married, 1 child

Nationality: German

Languages German (native)

English (fluent)

French (basic)

Vita

June 1998 Completion of general qualification for university entrance at “Gymnasium
Ganderkesee”

August 1999 Completion of civilian service at residential care home for the elderly “Ev.
luth. Wichernstift e.V.” in Ganderkesee

October 1999 Beginning of computer science studies at Carl von Ossietzky Universität
Oldenburg

March 2002 Intermediate examination for a diploma

April 2005 Graduation with a degree (Diploma) in computer science (with honors).
Title of diploma thesis: “Einfluss der durch Hardware-/Software-
Partitionierung hervorgerufenen Kommunikation auf Leistungsdaten einer
Schaltung” (Influence of the communication, caused by hardware/software
partitioning, on the performance of an integrated circuit)

May 2005 Member of research staff at OFFIS – Institute for Information Technology,
Oldenburg

540 Curriculum Vitæ

Oct. 2008 Beginning of PhD thesis at Carl von Ossietzky Universität Oldenburg

since Oct. 2008 Leader/Manager of the “Hardware/Software Design Methodology
Group” at OFFIS – Institute for Information Technology, Oldenburg
http://www.offis.de/en/r_d_divisions/transportation/groups/

hardware_software_design_methodology.html

Nov. 2010 Internal colloquium for PhD thesis at Carl von Ossietzky Universität
Oldenburg, see http://www.informatik.uni-oldenburg.de/download/

aktuell/Kolloquien/22NOV10_Gruettner.pdf

March 2015 Defence of PhD (Dr. rer. nat.) thesis “Application Mapping and Communi-
cation Synthesis for Object-Oriented Platform-Based Design” (summa cum
laude)

April 2015 Appointment as “Principal Scientist” at OFFIS – Institute for Information
Technology, Oldenburg

Research activities

Mar. 2005 – Sept. 2007 Research and development activities in the European research project
“ICODES – Interface and Communication based Design of Embedded Sys-
tems”
Main activities: Definition of the OSSS design methodology with a main
focus on the virtual target architecture. Implementation, test and documen-
tation of the OSSS simulation library (OSSS Shared Objects, OSSS-Channels
and OSSS Remote Method Invocation (RMI)), Evaluation of the simulation
framework with industrial use-cases.
More information at http://www.system-synthesis.org

Sept. 2006 – Jun. 2009 Research and development activities in the European research project
“ANDRES - Analysis and Design of run-time Reconfigurable, heterogeneous
Systems”
Main activities: Integration of Reconfigurable Objects into the OSSS method-
ology, Development of a concept for the integration of Reconfigurable Objects
with the OSSS Virtual Target Architecture Layer and RMI. Implementation
of RTL IP integration support for the synthesis tool FOSSY.
Support during the planning and preparation of a spin-off: CoSynth
(see http://www.cosynth.com)

Dec. 2009 – Mar. 2013 Coordination of the European integrated research project “COMPLEX
– COdesing and power Management in PLatform-based design space Explo-
ration” with 14 European partners
(see http://complex.offis.de)

since Oct. 2013 Coordination of the European integrated research project “CONTREX –
Design of embedded mixed-criticality CONTRol systems under consideration
of EXtra-functional properties” with 15 European partners
(see http://contrex.offis.de)

Teaching activities

Oct. 2009 – Feb. 2010 Main responsible for the module/lecture “System-Level Design” in the
master program “Embedded Systems & Micro-Robotics” at the department
for computer science at Carl von Ossietzky Universität Oldenburg
(see http://ehs.informatik.uni-oldenburg.de/42687.html)

Oct. 2009 – Dec. 2010 Co-Supervision of the student project group “ViDAs – Virtual Driver
Assistance” of the divisions “Safety Critical Embedded Systems” and “Em-
bedded Hardware/Software Systems” at the department for computer science
at Carl von Ossietzky Universität Oldenburg
(see http://vidas.informatik.uni-oldenburg.de/)

http://www.offis.de/en/r_d_divisions/transportation/groups/hardware_software_design_methodology.html
http://www.offis.de/en/r_d_divisions/transportation/groups/hardware_software_design_methodology.html
http://www.informatik.uni-oldenburg.de/download/aktuell/Kolloquien/22NOV10_Gruettner.pdf
http://www.informatik.uni-oldenburg.de/download/aktuell/Kolloquien/22NOV10_Gruettner.pdf
http://www.system-synthesis.org
http://www.cosynth.com
http://complex.offis.de
http://contrex.offis.de
http://ehs.informatik.uni-oldenburg.de/42687.html
http://vidas.informatik.uni-oldenburg.de/

Curriculum Vitæ 541

Apr. 2011 – Sept. 2011 Main responsible for the module/lecture “System-Level Design” in the
master program “Embedded Systems & Micro-Robotics” at the department
for computer science at Carl von Ossietzky Universität Oldenburg
(see http://ehs.informatik.uni-oldenburg.de/42687.html)

Apr. 2012 – Sept. 2012 Main responsible for the module/lecture “System-Level Design” in the
master program “Embedded Systems & Micro-Robotics” at the department
for computer science at Carl von Ossietzky Universität Oldenburg
(see http://ehs.informatik.uni-oldenburg.de/42687.html)

Apr. 2013 – Sept. 2013 Main responsible for the module/lecture “System-Level Design” in the
master program “Embedded Systems & Micro-Robotics” at the department
for computer science at Carl von Ossietzky Universität Oldenburg
(see http://ehs.informatik.uni-oldenburg.de/42687.html)

Apr. 2014 – Sept. 2014 Main responsible for the module/lecture “System-Level Design” in the
master program “Embedded Systems & Micro-Robotics” at the department
for computer science at Carl von Ossietzky Universität Oldenburg
(see http://ehs.informatik.uni-oldenburg.de/42687.html)

Apr. 2015 – Sept. 2015 Main responsible for the module/lecture “System-Level Design” in the
master program “Embedded Systems & Micro-Robotics” at the department
for computer science at Carl von Ossietzky Universität Oldenburg
(see http://ehs.informatik.uni-oldenburg.de/42687.html)

Other activities

2014 Member of the MultiPARTES (Multi-cores Partitioning for Trusted Embed-
ded Systems) EU-Project Advisory Board
(see http://www.multipartes.eu/advisors.html)

Membership in organizations

IEEE Institute of Electrical and Electronics Engineers Member
(http://www.ieee.org)

HiPEAC European Network of Excellence on High Performance and Embedded Ar-
chitecture and Compilation (Affiliate Member)
(http://www.hipeac.net)

ECSI Electronic Chips & Systems design Initiative Member
(http://www.ecsi.org/)

Membership in Program Committees

2011 ESLsyn 2011: The 2011 Electronic System Level Synthesis Conference, June
5-6, 2011 San Diego, California, USA
(http://www.ecsi.org/eslsyn2011)

SORT 2011: 2nd IEEE Workshop on Self-Organizing Real-Time Sys-
tems (Satellite Workshop of 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing)

2012 ESLsyn 2012: The 2012 Electronic System Level Synthesis (ESLSyn) Con-
ference, (co-located with 49th ACM/EDAC/IEEE Design Automation Con-
ference (DAC)) June 2-3, 2012 San Francisco, California, USA
(http://www.ecsi.org/eslsyn2012)

QVVP 2012: Quo Vadis, Virtual Platforms? Challenges and Solutions for
Today and Tomorrow, Workshop at Design Automation & Test in Europe
(DATE) 2012
(http://qvvp12.offis.de)

http://ehs.informatik.uni-oldenburg.de/42687.html
http://ehs.informatik.uni-oldenburg.de/42687.html
http://ehs.informatik.uni-oldenburg.de/42687.html
http://ehs.informatik.uni-oldenburg.de/42687.html
http://ehs.informatik.uni-oldenburg.de/42687.html
http://www.multipartes.eu/advisors.html
http://www.ieee.org
http://www.hipeac.net
http://www.ecsi.org/
http://www.ecsi.org/eslsyn2011
http://www.ecsi.org/eslsyn2012
http://qvvp12.offis.de

542 Curriculum Vitæ

SORT 2012: 3rd IEEE Workshop on Self-Organizing Real-Time Sys-
tems (Satellite Workshop of 15th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing)

2013 ESLsyn 2013: The 2013 Electronic System Level Synthesis (ESLSyn) Con-
ference, (co-located with 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC)) May 31-June 1, 2013 Austin, Texas, USA
(http://www.ecsi.org/eslsyn2013)

IESS 2013: International Embedded Systems Symposium, 17.-19.06.2013
Paderborn, Germany
(http://www.iess.org/)

SORT 2013: 4th IEEE Workshop on Self-Organizing Real-Time Sys-
tems (Satellite Workshop of 16th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing)

2014 DAC Workshop on System to Silicon Performance Modeling and Analysis,
51th ACM/EDAC/IEEE Design Automation Conference (DAC) June 1-5,
2014 San Francisco, CA, USA
(http://www2.dac.com/events/eventdetails.aspx?id=170-6-W)

ESLsyn 2014: The 2014 Electronic System Level Synthesis (ESLSyn) Con-
ference, (co-located with 51th ACM/EDAC/IEEE Design Automation Con-
ference (DAC)) June 1-5, 2014 San Francisco, CA, USA
(http://www.ecsi.org/eslsyn2014)

MCSDIA 2014: Mixed-Criticality System Design, Implementation and Anal-
ysis, Special Session at 17th Euromicro Conference on Digital System Design
(DSD) 27-29 August 2014, Verona, Italy
(http://esd.scienze.univr.it/dsd-seaa-2014/?page_id=361)
(http://www.euromicro.org/dsd/)

SIES 2014: 9th IEEE International Symposium on Industrial Embedded
Systems
June 18-20, 2014, Pisa, Italy
(http://retis.sssup.it/sies2014/)

SORT 2014: 5th IEEE Workshop on Self-Organizing Real-Time Sys-
tems (Satellite Workshop of 16th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing)
(http://www.es.cs.uni-frankfurt.de/?id=sort2014)

2015 DATE 2015: Design, Automation & Test in Europe
Topic D2 - "System Design, High-Level Synthesis and Optimization"
March 9-13, 2015, Grenoble, France
(http://www.date-conference.com/)

1st International Workshop on Investigating Dataflow in Embedded comput-
ing Architecture (IDEA), in conjunction with with HiPEAC 2015 conference
January 19-21, 2015, Amsterdam, The Netherlands
(http://caes.ewi.utwente.nl/idea2015)
(http://www.hipeac.net/2015/amsterdam)

3rd International workshop on the "Integration of mixed-criticality subsys-
tems on multi-core and manycore processors", in conjunction with with
HiPEAC 2015 conference, January 19-21, 2015, Amsterdam, The Nether-
lands
(http://www.hipeac.net/2015/amsterdam)

SIES 2015: 10th IEEE International Symposium on Industrial Embedded
Systems, June 8-10, 2015, Sigen, Germany
(http://www.sies2015.com/)

http://www.ecsi.org/eslsyn2013
http://www.iess.org/
http://www2.dac.com/events/eventdetails.aspx?id=170-6-W
http://www.ecsi.org/eslsyn2014
http://esd.scienze.univr.it/dsd-seaa-2014/?page_id=361
http://www.euromicro.org/dsd/
http://retis.sssup.it/sies2014/
http://www.es.cs.uni-frankfurt.de/?id=sort2014
http://www.date-conference.com/
http://caes.ewi.utwente.nl/idea2015
http://www.hipeac.net/2015/amsterdam
http://www.hipeac.net/2015/amsterdam
http://www.sies2015.com/

Curriculum Vitæ 543

SORT 2015: 6th IEEE Workshop on Self-Organizing Real-Time Sys-
tems (Satellite Workshop of 17th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing)
(http://www.es.cs.uni-frankfurt.de/?id=sort2015)

MCSDIA 2015: Mixed-Criticality System Design, Implementation and Anal-
ysis, Special Session at 18th Euromicro Conference on Digital System Design
(DSD) August 26-28, 2015, Funchal, Madeira, Portugal
(http://paginas.fe.up.pt/~dsd-seaa-2015/dsd2015/)
(http://www.euromicro.org/dsd/)

Embedded Multi-Core Systems for Mixed Criticality Applications in
Dynamic and Changeable Real-Time Environments, Special Session at IEEE
International Conference on Industrial Informatics (INDIN’15), July 22-24,
2015, Cambridge, UK
(http://ww2.anglia.ac.uk/ruskin/en/home/microsites/indin_2015/

special_sessions_/special_session_documents.html)

ESLsyn 2015: The 2015 Electronic System Level Synthesis (ESLSyn) Con-
ference, (co-located with 52th ACM/EDAC/IEEE Design Automation Con-
ference (DAC)) June 10-11, 2015, San Francisco, CA, USA
(http://www.ecsi.org/eslsyn)

EUROCON 2015: 16th International Conference on Computer as a Tool
September 8-11, 2015, Salamanca, Spain
(http://eurocon2015.usal.es/)

2016 DATE 2016: Design, Automation & Test in Europe
Topic D2 - "System Design, High-Level Synthesis and Optimization"
March 14-18, 2016, Dresden, Germany
(http://www.date-conference.com/)

Organization and Co-Organization of Workshops and Conferences

2011 MBMV 2011: 14. Workshop Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen, 21.-23.02.2011,
OFFIS e.V., Oldenburg
(http://mbmv2011.offis.de/)

2012 QVVP 2012: Quo Vadis, Virtual Platforms? Challenges and Solutions for
Today and Tomorrow, Workshop at Design Automation & Test in Europe
(DATE) 2012
(http://qvvp12.offis.de)

CODES+ISSS’12 Special Session: Synthesis of Executable Extra-Functional
System-Level Models for Timing and Power Exploration, Embedded Systems
Week 2012, 7th-12th October 2012, Tampere, Finland
(http://esweek.acm.org/esweek2012/codesisss/)

2014 DAC Workshop on System to Silicon Performance Modeling and Analysis,
51th ACM/EDAC/IEEE Design Automation Conference (DAC) June 1-5,
2014 San Francisco, CA, USA
(http://www2.dac.com/events/eventdetails.aspx?id=170-6-W)

MCSDIA 2014: Mixed-Criticality System Design, Implementation and Anal-
ysis, Special Session at 17th Euromicro Conference on Digital System Design
(DSD) August 27-29, 2014, Verona, Italy
(http://esd.scienze.univr.it/dsd-seaa-2014/?page_id=361)
(http://www.euromicro.org/dsd/)

2015 3rd International workshop on the "Integration of mixed-criticality subsys-
tems on multi-core and manycore processors", in conjunction with with

http://www.es.cs.uni-frankfurt.de/?id=sort2015
http://paginas.fe.up.pt/~dsd-seaa-2015/dsd2015/
http://www.euromicro.org/dsd/
http://ww2.anglia.ac.uk/ruskin/en/home/microsites/indin_2015/special_sessions_/special_session_documents.html
http://ww2.anglia.ac.uk/ruskin/en/home/microsites/indin_2015/special_sessions_/special_session_documents.html
http://www.ecsi.org/eslsyn
http://eurocon2015.usal.es/
http://www.date-conference.com/
http://mbmv2011.offis.de/
http://qvvp12.offis.de
http://esweek.acm.org/esweek2012/codesisss/
http://www2.dac.com/events/eventdetails.aspx?id=170-6-W
http://esd.scienze.univr.it/dsd-seaa-2014/?page_id=361
http://www.euromicro.org/dsd/

544 Curriculum Vitæ

HiPEAC 2015 conference, January 19-21, 2015, Amsterdam, The Nether-
lands
(http://www.hipeac.net/2015/amsterdam)

DAC Workshop on System-to-Silicon Performance Modeling and Analysis,
52th ACM/EDAC/IEEE Design Automation Conference (DAC) June 07,
2015 San Francisco, CA, USA
(http://www2.dac.com/events/eventdetails.aspx?id=182-4-W)

MCSDIA 2015: Mixed-Criticality System Design, Implementation and Anal-
ysis, Special Session at 18th Euromicro Conference on Digital System Design
(DSD) August 26-28, 2015, Funchal, Madeira, Portugal
(http://paginas.fe.up.pt/~dsd-seaa-2015/dsd2015/)
(http://www.euromicro.org/dsd/)

High Integrity Multi-Core Modelling for Future Systems (Hi-MCM), Special
Session at Forum on specification & Design Languages (FDL) September
14-16, 2015, Barcelona, Spain
(http://www.ecsi.org/fdl)
(http://www.ecsi.org/sites/default/files/PDF/fdl2015_cfp_

specialsession_HiMCM.PDF)

Publications and Talks

Thesis

[Th1] Kim Grüttner. “Application Mapping and Communication Synthesis for Object-
Oriented Platform-Based Design”. Doktorarbeit. Carl von Ossietzky Universität Old-
enburg, Fakultät II - Department für Informatik, Abteilung Eingebettete Hardware-
/Software-Systeme, 2015.

[Th2] Kim Grüttner. “Einfluss der durch Hardware-/Software-Partitionierung hervorgerufenen
Kommunikation auf Leistungsdaten einer Schaltung”. Diplomarbeit. Carl von Ossietzky
Universität Oldenburg, Fakultät II - Department für Informatik, Abteilung Eingebettete
Hardware-/Software-Systeme, 2005.

[Th3] Kim Grüttner. “Blinde Quellentrennung – Eine grundlegende Einführung”. Studienar-
beit. Carl von Ossietzky Universität Oldenburg, Institut für Physik, Arbeitsgruppe
Signalverarbeitu, 2004.

[Th4] Alexander Borgerding, Johannes Faber, Kim Grüttner, Thomas Heuer, Baltin Karro,
Stephanie Kemper, Arne Limburg, Iris Menge, Stefan Puch, and Arno Willig. “Pro-
jektgruppe Kooperierende autonome Systeme (KautS) Endbericht”. Projektgruppe-
nendbericht. Carl von Ossietzky Universität Oldenburg, Fakultät II - Department für
Informatik, Abteilung Entwicklung korrekter Systeme, 2003.

Directly related to this dissertation

Articles

[AD1] Tim Schmidt, Kim Grüttner, Rainer Dömer, and Achim Rettberg. “A program state
machine based virtual processing model in SystemC”. In: SIGBED Review 11.4 (2014),
pp. 7–12. doi: 10.1145/2724942.2724943. url: http://doi.acm.org/10.1145/

2724942.2724943.

http://www.hipeac.net/2015/amsterdam
http://www2.dac.com/events/eventdetails.aspx?id=182-4-W
http://paginas.fe.up.pt/~dsd-seaa-2015/dsd2015/
http://www.euromicro.org/dsd/
http://www.ecsi.org/fdl
http://www.ecsi.org/sites/default/files/PDF/fdl2015_cfp_specialsession_HiMCM.PDF
http://www.ecsi.org/sites/default/files/PDF/fdl2015_cfp_specialsession_HiMCM.PDF
http://dx.doi.org/10.1145/2724942.2724943
http://doi.acm.org/10.1145/2724942.2724943
http://doi.acm.org/10.1145/2724942.2724943

Curriculum Vitæ 545

Book chapters

[BD1] Matthias Bücker, Kim Grüttner, Philipp A. Hartmann, and Ingo Stierand. “System
Specification and Design Languages – Selected Contributions from FDL 2010”. In:
Springer, Jan. 2012. Chap. Mapping of Concurrent Object-Oriented Models to Extended
Real-Time Task Networks. isbn: 978–1–4614–1426–1.

Conference papers

[PD1] Tim Schmidt, Kim Grüttner, Rainer Dömer, and Achim Rettberg. “A Program State
Machine Based Virtual Processing Model in SystemC”. In: Proceedings of the Embed
With Linux 2014 Workshop, Lisboa, Portugal, November 13-14, 2014. Ed. by Jalil
Boukhobza, Jean-Philippe Diguet, Pierre Ficheux, José Rufino, and Frank Singhoff.
Vol. 1291. CEUR Workshop Proceedings. CEUR-WS.org, 2014. url: http://ceur-

ws.org/Vol-1291/ewili14_3.pdf.

[PD2] Philipp Ittershagen, Philipp A. Hartmann, Kim Grüttner, and Achim Rettberg. “Ein
generisches Treiber-Framework zur HW/SW-Kommunikation mittels OSSS-RMI”. In:
Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltun-
gen und Systemen (MBMV’2011). Feb. 2011.

[PD3] Matthias Büker, Kim Grüttner, Philipp A. Hartmann, and Ingo Stierand. “Mapping
of Concurrent Object–Oriented Models to Extended Real–Time Task Networks”. In:
Forum on Specification & Design Languages (FDL). Sept. 2010.

[PD4] Kim Grüttner, Henning Kleen, Frank Oppenheimer, Achim Rettberg, and Wolfgang
Nebel. “Towards a Synthesis Semantics for SystemC Channels”. In: International
Conference on Hardware-Software Codesign and System Synthesis (CODES+ISSS).
Oct. 2010.

[PD5] Philipp A. Hartmann, Kim Grüttner, Achim Rettberg, and Ina Podolski. “Distributed
Resource-Aware Scheduling for Multi-Core Architectures with SystemC”. In: 7th IFIP
Conference on Distributed and Parallel Embedded Systems (DIPES). Sept. 2010.

[PD6] Kim Grüttner, Frank Oppenheimer, Wolfgang Nebel, Jan Freuer, and Joachim Ger-
lach. “Rapid Prototyping und Synthese eines videobasierten Fahrerassistenzsystems
mit C++ und SystemC(TM)”. In: 10. Braunschweiger Symposium AAET 2009 –
Automatisierungs- , Assistenzsysteme und eingebettete Systeme für Transportmittel.
Feb. 2009.

[PD7] Kim Grüttner and Wolfgang Nebel. “Modelling Program–State Machines in Sys-
temC(TM)”. In: Forum on Specification and Design Languages (FDL). Sept. 2008.

[PD8] Kim Grüttner, Frank Oppenheimer, and Wolfgang Nebel. “OSSS Methodology – System-
Level Design and Synthesis of Embedded HW/SW Systems in C++”. In: First Interna-
tional Symposium on Applied SCiences in Bio-Mediacl and Communication Technologies
(ISABEL). Jan. 2008.

[PD9] Kim Grüttner, Frank Oppenheimer, Wolfgang Nebel, Fabien Colas-Bigey, and Anne-
Marie Fouilliart. “SystemC-based Modelling, Seamless Refinement, and Synthesis of a
JPEG 2000 Decoder”. In: Design, Automation, & Test in Europe (DATE) Conference.
Apr. 2008.

[PD10] Kim Grüttner, Cornelia Grabbe, Frank Oppenheimer, and Wolfgang Nebel. “Object
Oriented Design and Synthesis of Communication in Hardware-/Software Systems
with OSSS”. In: Workshop on Synthesis And System Integration of Mixed Information
technologies (SASIMI). Oct. 2007.

[PD11] Cornelia Grabbe, Claus Brunzema, Kim Grüttner, Thorsten Schubert, and Frank
Oppenheimer. “Overview of the ICODES Project”. In: Forum on Specification &
Design Languages (FDL). Sept. 2006. isbn: 3–00–019710–9.

http://ceur-ws.org/Vol-1291/ewili14_3.pdf
http://ceur-ws.org/Vol-1291/ewili14_3.pdf

546 Curriculum Vitæ

[PD12] Kim Grüttner, Cornelia Grabbe, Frank Oppenheimer, and Wolfgang Nebel. “Modelling
and Synthesis of Communication Using OSSS-Channels”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen. 9.
ITG/GI/GMM Workshop. Fachgruppe 3 und 4 der RSS Kooperationsgemeinschaft
Rechnergestützter Schaltungs- und Systementwurf der GI, ITG und GMM. Feb. 2006.
isbn: 3–9810287–1–6.

[PD13] Kim Grüttner, Claus Brunzema, Cornelia Grabbe, Thorsten Schubert, and Frank
Oppenheimer. “OSSS-Channels: Modelling and Synthesis of Communication With
SystemC”. In: Forum on Specification & Design Languages (FDL). Sept. 2006. isbn:
3–00–019710–9.

Technical reports

[TD1] Cornelia Grabbe, Kim Grüttner, Thorsten Schubert, and Frank Oppenheimer. Specifi-
cation of Hardware/Software Communication Design Methodology based on Abstract
Communication Models. Tech. rep. OFFIS - Institute for Information Technology, Aug.
2005.

Manuals

[MD1] Kim Grüttner. OSSS – A Library for Synthesisable System Level Models in Sys-
temC(TM) – The OSSS 2.2.0 Tutorial. OFFIS - Institute for Information Technology.
Sept. 2008.

[MD2] Kim Grüttner, Andreas Herrholz, Philipp A. Hartmann, Andreas Schallenberg, and
Claus Brunzema. OSSS – A Library for Synthesisable System Level Models in Sys-
temC(TM) – The OSSS 2.2.0 Manual. OFFIS - Institute for Information Technology.
Sept. 2008.

[MD3] Claus Brunzema, Cornelia Grabbe, Kim Grüttner, Philipp Andreas Hartmann, Andreas
Herrholz, Henning Kleen, Frank Oppenheimer, Andreas Schallenberg, Christian Stehno,
and Thorsten Schubert. OSSS – A Library for Synthesisable System Level Models in
SystemC(TM) – A tutorial for OSSS 2.0. OFFIS - Institute for Information Technology.
Jan. 2007.

Related topics

Articles

[AR1] Kim Grüttner, Philipp A. Hartmann, Kai Hylla, Sven Rosinger, Wolfgang Nebel,
Fernando Herrera, Eugenio Villar, Carlo Brandolese, William Fornaciari, Gianluca
Palermo, Chantal Ykman-Couvreur, Davide Quaglia, Francisco Ferrero, and Raúl
Valencia. “The COMPLEX reference framework for HW/SW co-design and power
management supporting platform-based design-space exploration”. In: Microprocessors
and Microsystems 37.8, Part C (2013). Special Issue on European Projects in Embedded
System Design: EPESD2012, pp. 966 –980. issn: 0141-9331. doi: http://dx.doi.org/

10.1016/j.micpro.2013.09.001. url: http://www.sciencedirect.com/science/

article/pii/S0141933113001221.

Book chapters

[BR1] Kim Grüttner, Kai Hylla, Sven Rosinger, and Wolfgang Nebel. “System Specification
and Design Languages – Selected Contributions from FDL 2010”. In: Springer, Jan.
2012. Chap. Rapid Prototyping of Complex HW/SW Systems using a Timing and
Power Aware ESL Framework. isbn: 978–1–4614–1426–1.

[BR2] Kim Grüttner, Philipp A. Hartmann, Andreas Herrholz, and Frank Oppenheimer. “Re-
configurable Computing – From FPGAs to Hardware/Software Codesign”. In: Springer,
Sept. 2011. Chap. ANDRES – Analysis and Design of Run-Time Reconfigurable,
Heterogeneous Systems. isbn: 978–1–4614–0060–8.

http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.09.001
http://www.sciencedirect.com/science/article/pii/S0141933113001221
http://www.sciencedirect.com/science/article/pii/S0141933113001221

Curriculum Vitæ 547

[BR3] Andreas Schallenberg, Wolfgang Nebel, Andreas Herrholz, Philipp A. Hartmann, Kim
Grüttner, and Frank Oppenheimer. “Dynamically Reconfigurable Systems Architec-
tures, Design Methods and Applications”. In: Springer, Dec. 2009. Chap. POLYDYN
Object-oriented modelling and synthesis targeting dynamically reconfigurable FPGAs.
isbn: 978–90–481–3484–7.

Conference papers

[PR1] Philipp A. Hartmann, Kim Grüttner, and Wolfgang Nebel. “Advanced SystemC Tracing
and Analysis Framework for Extra–Functional Properties”. In: The 11th International
Symposium on Applied Reconfigurable Computing (ARC’15). Apr. 2015.

[PR2] Philipp Ittershagen, Philipp A. Hartmann, Kim Grüttner, and Wolfgang Nebel. “A
Workload Extraction Framework for Software Performance Model Generation”. In:
7th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO). Jan. 2015.

[PR3] Kim Grüttner, Philipp A. Hartmann, Tiemo Fandrey, Kai Hylla, Daniel Lorenz, Ste-
fan Stattelmann, Björn Sander, Oliver Bringmann, Wolfgang Nebel, and Wolfgang
Rosenstiel. “An ESL Timing & Power Estimation and Simulation Framework for Het-
erogeneous SoCs”. In: Proceedings of International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIV), Samos, Greece, July
14–17, 2014. July 2014.

[PR4] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. “Exploiting Segre-
gation in Bus-Based MPSoCs to Improve Scalability of Model-Checking-Based Perfor-
mance Analysis for SDFAs”. In: International Embedded Systems Symposium (IESS).
June 2013.

[PR5] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. “Towards Per-
formance Analysis of SDFGs Mapped to Shared–Bus Architectures Using Model–
Checking”. In: Proceedings of the Conference on Design, Automation and Test in
Europe (DATE) 2013. DATE ’13. 3001 Leuven, Belgium, Belgium: European Design
and Automation Association, Mar. 2013.

[PR6] Philipp Ittershagen, Philipp A. Hartmann, Kim Grüttner, and Wolfgang Nebel. “Ansatz
zur Bewertung der HW/SW–Kommunikation in asymmetrischen Multi–Prozessor–
Systemen”. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen (MBMV’2013). Universität Rostock. Mar. 2013, pp. 197–
208.

[PR7] Philipp Ittershagen, Philipp A. Hartmann, Kim Grüttner, and Achim Rettberg. “Hi-
erarchical Real–Time Scheduling in the Multi–Core Era – An Overview”. In: SORT
2013 – The Fourth IEEE Workshop on Self-Organizing Real-Time Systems. June 2013.

[PR8] Maher Fakih and Kim Grüttner. “Virtual-Platform in the Loop Simulation for Accurate
Timing Analysis of Embedded Software on Multicore Platforms”. In: ASIM STS/G-
MMS Workshop. GI ASIM Fachgruppen "Simulation technischer Systeme" (STS) und
"Grundlagen und Methoden in Modellbildung und Simulation" (GMMS). Feb. 2012.

[PR9] Kim Grüttner, Philipp A. Hartmann, Kai Hylla, Sven Rosinger, Wolfgang Nebel,
Eugenio Herrera Fernando: Villar, Carlo Brandolese, William Fornaciari, Gianluca
Palermo, Chantal Ykman-Couvreur, Davide Quaglia, Francisco Ferrero, and Raul
Valencia. “COMPLEX – COdesign and power Management in PLatform-based design
space EXploration”. In: 15th Euromicro Conference on Digital System Design (DSD).
Euromicro. Sept. 2012.

[PR10] Daniel Lorenz, Kim Grüttner, Nicola Bombieri, Valerio Guarnieri, and Sara Bocchio.
“From RTL IP to Functional System–Level Models with Extra-Functional Properties”.
In: CODES+ISSS’12. Oct. 2012.

548 Curriculum Vitæ

[PR11] Daniel Lorenz, Philipp A. Hartmann, Kim Grüttner, and Achim Rettberg. “Nicht-
invasive Simulation des Energieverbrauchs von Hardware-Komponenten auf Syste-
mebene mit SystemC”. In: 15. Workshop Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (MBMV). Mar. 2012.

[PR12] Daniel Lorenz, Philipp A. Hartmann, Kim Grüttner, and Wolfgang Nebel. “Non-
invasive Power Simulation at System-Level with SystemC”. In: International Workshop
on Power and Timing Modeling, Optimization and Simulation (PATMOS). Sept. 2012.

[PR13] Maher Ali Fakih, Frank Poppen, Kim Grüttner, and Achim Rettberg. “Simulink and
Virtual Hardware Platform Co-Simulation for Accurate Timing Analysis of Embedded
Control Software”. In: ASIM–Konferenz STS/GMMS 2011. ASIM/GI-Fachgruppe.
Shaker Verlag, Feb. 2011. isbn: 978–3–8322–9872–2.

[PR14] Kim Grüttner, Philipp A. Hartmann, Philipp Reinkemeier, Frank Oppenheimer, and
Wolfgang Nebel. “Challenges of Multi- and Many-Core Architectures for Electronic
System-Level Design”. In: SAMOS 2011: International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS XI). July 2011.

[PR15] Philipp A. Hartmann, Kim Grüttner, Philipp Ittershagen, and Achim Rettberg. “A
Framework for Generic HW/SW Communication using Remote Method Invocation”.
In: ESLsyn - The 2011 Electronic System Level Synthesis Conference. ECSI. June 2011.

[PR16] Philipp A. Hartmann, Kim Grüttner, Frank Oppenheimer, and Wolfgang Nebel. “Flex-
ible Mapping of Concurrent Object-Oriented Applications to MPSoC Platforms”. In:
Map2MPSoC Workshop. ArtistDesign NoE. June 2011.

[PR17] Frank Poppen, Roland Koppe, Axel Hahn, and Kim Grüttner. “Impact Simulation of
Changes to Development Processes: An ESL Case Study”. In: Forum on specification
& Design Languages (FDL). Sept. 2011.

[PR18] Kim Grüttner, Kai Hylla, Sven Rosinger, and Wolfgang Nebel. “Towards an ESL
Framework for Timing and Power Aware Rapid Prototyping of HW/SW Systems”. In:
Forum on Specification & Design Languages (FDL). Sept. 2010.

[PR19] Andreas Popp, Andreas Herrholz, Kim Grüttner, Yannick Le Moullec, Peter Koch, and
Wolfgang Nebel. “SystemC-AMS SDF Model Synthesis for Exploration of Heterogeneous
Architectures”. In: IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS). Apr. 2010.

[PR20] Kim Grüttner, Carsten Beth, and Wolfgang Nebel. “Kommunikationsgetriebene
Hardware-/Software-Partitionierung eines Netzwerkprotokollstacks auf einer SoC-
Plattform”. In: INFORMATIK 2005 – Informatik LIVE!, Band 1. Sept. 2005. isbn:
3–88579–396–2.

Technical reports

[TR1] Philipp Reinkemeier, Philipp Ittershagen, Ingo Stierand, Philipp A. Hartmann, Ste-
fan Henkler, and Kim Grüttner. Seamless Segregation for Multi-Core Systems. Tech.
rep. OFFIS e.V., Aug. 2013. url: http://ses.informatik.uni-oldenburg.de/

download/bib/paper/OFFIS-TR2013_SegregationMultiCore_20130805.pdf.

[TR2] J. Wenninger, M. Damm, J. Haase, J. Ou, K. Grüttner, Hartmann P. A., A. Herrholz,
F. Herrera, I Sander, and J. Zhu. Overall Modelling Framework for AHES (Adap-
tive Heterogeneous Embedded Systems). Tech. rep. OFFIS - Institute for Information
Technology, Aug. 2009.

Other

http://ses.informatik.uni-oldenburg.de/download/bib/paper/OFFIS-TR2013_SegregationMultiCore_20130805.pdf
http://ses.informatik.uni-oldenburg.de/download/bib/paper/OFFIS-TR2013_SegregationMultiCore_20130805.pdf

Curriculum Vitæ 549

Articles

[AO1] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. “State-Based
Real-Time Analysis of SDF Applications on MPSoCs with Shared Communication
Resources”. In: Journal of Systems Architecture 0 (2015), pp. –. issn: 1383-7621.
doi: http://dx.doi.org/10.1016/j.sysarc.2015.04.005. url: http://www.

sciencedirect.com/science/article/pii/S1383762115000326.

Conference papers

[PO1] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. “State-Based Real-
Time Analysis of SDF Applications on Multi-Cores”. In: 1st International Workshop
on Investigating Dataflow in Embedded computing Architecture (IDEA). Jan. 2015.

[PO2] Sören Schreiner, Kim Grüttner, Sven Rosinger, and Wolfgang Nebel. “Ein Verfahren
zur Bestimmung eines Powermodells von Xilinx MicroBlaze MPSoCs zur Verwendung
in Virtuellen Plattformen”. In: 18. Workshop Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015). Mar.
2015.

[PO3] Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg. “Multicore Perfor-
mance analysis of a Multi-phase Electrical Motor Controller”. In: Embedded Real Time
Software and Systems Congress (ERTS2) 2014. Feb. 2014.

[PO4] Domenik Helms, Kim Grüttner, Reef Eilers, Malte Metzdorf, Kai Hylla, Frank Poppen,
and Wolfgang Nebel. “Considering Variation and Aging in a Full Chip Design Method-
ology at System Level”. In: Proceedings of The 2014 Electronic System Level Synthesis
Conference (ESLsyn’14), May 31-Jun 01 2014, San Francisco, CA, USA. ECSI. May
2014.

[PO5] Daniel Lorenz, Kim Grüttner, and Wolfgang Nebel. “Data- and State-Dependent Power
Characterisation and Simulation of Black-Box RTL IP Components at System-Level”.
In: 17th Euromicro Conference on Digital Systems Design (DSD 2014). Aug. 2014.

[PO6] Daniel Lorenz, Vincent Ortland, and Kim Grüttner. “Trace-Based Power State Machine
Modelling”. In: Forum on specification & Design Languages (FDL 2014). Oct. 2014.

[PO7] Gregor Nitsche, Kim Grüttner, and Wolfgang Nebel. “Towards Satisfaction Checking of
Power Contracts in UPPAAL”. In: Forum on specification & Design Languages (FDL
2014). Oct. 2014.

[PO8] J.-H. Oetjens, N. Bannow, M. Becker, O. Bringmann, A. Burger, M. Chaari, S.
Chakraborty, R. Drechsler, W. Ecker, K. Grüttner, Th. Kruse, C. Kuznik, H. M.
Le, A. Mauderer, W. Müller, D. Müller-Gritschneder, F. Poppen, H. Post, S. Reiter,
W. Rosenstiel, S. Roth, U. Schlichtmann, A. von Schwerin, B.-A. Tabacaru, and A.
Viehl. “Safety Evaluation of Automotive Electronics Using Virtual Prototypes: State
of the Art and Research Challenges”. In: Proceedings of the 51th Design Automation
Conference (DAC) 2014, San Francisco, CA, USA. June 2014.

[PO9] Sören Schreiner, Kim Grüttner, and Sven Rosinger. “Autonomous flight control meets
custom payload processing: A mixed-critical avionics architecture approach for civilian
UAVs”. In: Proceedings of the 5th IEEE Workshop on Self-Organizing Real-Time
Systems. June 2014.

[PO10] Salvador Trujillo, Roman Obermaisser, Kim Grüttner, Francisco J. Cazorla, and Jon
Perez. “European Project Cluster on Mixed-Criticality Systems”. In: Performance,
Power and Predictability of Many-Core Embedded Systems (3PMCES) Workshop. Mar.
2014.

[PO11] Jörg Walter, Maher Fakih, and Kim Grüttner. “Hardware-Based Real-Time Simulation
on the Raspberry Pi”. In: 2nd Workshop on High-performance and Real-time Embedded
Systems (HiRES 2014). Jan. 2014.

http://dx.doi.org/http://dx.doi.org/10.1016/j.sysarc.2015.04.005
http://www.sciencedirect.com/science/article/pii/S1383762115000326
http://www.sciencedirect.com/science/article/pii/S1383762115000326

550 Curriculum Vitæ

[PO12] Gregor Nitsche, Kim Grüttner, and Wolfgang Nebel. “Power Contracts: A Formal Way
Towards Power–Closure?!” In: 23th International Workshoip on Power and Timng
Modeling, Optimization and Simulation (PATMOS’13). IEEE, Sept. 2013.

[PO13] Matthias Sauppe, Thomas Horn, Erik Markert, Ulrich Heinkel, Daniel Lorenz, Kim
Grüttner, Hans-Werner Sahm, and Klaus-Holger Otto. “A Database for the Integration
of Power Data on System Level”. In: EUROCON 2013, International Conference on
Computer as a Tool. IEEE. July 2013.

[PO14] Frank Poppen and Kim Grüttner. “Co-Simulation of C-based SoC Simulators and
MATLAB Simulink”. In: Simulation Workshop 2012 (SW12). Operational Research
Society. Mar. 2012.

[PO15] Kim Grüttner, Andreas Herrholz, Ulrich Kühne, Daniel Große, Achim Rettberg, Wolf-
gang Nebel, and Rolf Drechsler. “Towards Dependability-aware Design of Hardware
Systems using extended Program State Machines”. In: SORT 2011: 2nd IEEE Workshop
on Self-Organizing Real-Time Systems. Mar. 2011.

[PO16] Sergio Montenegro, Benjamin Vogel, Vladimir Petrovic, Gunter Schoof, Andreas Her-
rholz, and Kim Grüttner. “Spacecraft Area Network (SCAN) for Plug and Play of
Devices”. In: Small Satellite Systems and Services - The 4S Symposium. May 2010.

[PO17] Philipp Reinkemeier, Kim Grüttner, and Wolfgang Nebel. “Eine Fallstudie zur dynamis-
chen Rekonfiguration von Hardware: "Pain or Gain?"” In: 10. ITG/GMM/GI–Workshop
"Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schal-
tungen und Systemen" (MBMV). Mar. 2007.

Technical reports

[TO1] Joseph Borel (ed.) European Design Automation Roadmap 6th Edition – Design Solu-
tions for Europe. Roadmap 6th edition. MEDEA+/CATRENEOffice, Mar. 2009.

Lectures, Talks and Oral Presentations

[L1] Kim Grüttner. CONTREX – Design of embedded mixed-criticality CONTRolsys-
tems under consideration of EXtra-functional properties, at Speakers Corner of
ARTEMIS/ITEA Co-Summit 2015. Mar. 2015.

[L2] Kim Grüttner. Empowering mixed-critical system engineers in the dark silicon era:
Towards power, temperature and aging analysis of heterogeneous MPSoCs at system-
level, Keynote at 1st Workshop on Model-Implementation Fidelity (MiFi) at DATE’15.
Mar. 2015.

[L3] Kim Grüttner. Towards model-based power and temperature analysis of heterogeneous
MPSoCs at system-level, at Kolloquium des Graduiertenkollegs "Heterogene Bildsys-
teme", Friedrich-Alexander-Universität Erlangen Nürnberg, 2015. Apr. 2015.

[L4] Kim Grüttner. Towards power, temperature and aging analysis and estimation for SoCs
at system-level, at MCS: Integration of mixed-criticality subsystems on multi-core and
manycore processors, HiPEAC Conference 2015. Jan. 2015.

[L5] Kim Grüttner. Considering Variation and Aging in a FullChip Design Methodology at
System Level, at Colloquium of Center for Embedded and Cyber-physical Systems at
University of California, Irvine, USA. June 2014.

[L6] Kim Grüttner. Design of embedded mixed-criticality control systems under consideration
of extra-functional properties, at 2nd International workshop on the Integration of mixed-
criticality subsystems on multi-core and manycore processors, HiPEAC Conference
2014. Jan. 2014.

[L7] Kim Grüttner. Modelling, simulation and analysis of mixed-criticality systems under
consideration of extra-functional properties, at 3. Kolloquium Multi-core und Funktionale
Sicherheit in der Automobilindustrie, Infineon, Neubiberg. Nov. 2014.

Curriculum Vitæ 551

[L8] Kim Grüttner. Modelling, Simulation and Analysis of Mixed-Criticality Systems Under
Consideration of Extra-functional Properties, at DAC Workshop on System-to-Silicon
Performance Modeling and Analysis. June 2014.

[L9] Kim Grüttner. CONTREX – Design of embedded mixed-criticality CONTRol systems
under consideration of EXtra-functional properties, at Cyber-Physical Systems: Uplifting
Europe’s innovation capacity. European Commission Directorate General CONNECT
with the support of the ARTEMIS Joint Technology Initiative and Steinbeis-Europa-
Zentrum, Oct. 2013.

[L10] Kim Grüttner, Philipp A. Hartmann, and Frank Oppenheimer. Performance and
Energy Modeling and Analysis in COMPLEX Virtual Platform, at embedded world
Conference 2013. Feb. 2013.

[L11] Kim Grüttner and Frank Oppenheimer. The COMPLEX Virtual Platform Design Ap-
proach for Performance and Energy Efficient Embedded Systems: A European Research
Perspective, at Embedded SW Development on Virtual Platforms Workshop - Ready
for Prime Time?, in conjunction with embedded World 2012 Conference. Feb. 2012.

[L12] Kim Grüttner, Philipp A. Hartmann, Tiemo Fandrey, Kai Hylla, Domenik Helms,
Frank Oppenheimer, Wolfgang Nebel, and Achim Rettberg. Towards Performance
and Energy Efficient Embedded System Design using Virtual Platforms, at The 2012
Electronic System Level Synthesis Conference (ESLsyn). June 2012.

[L13] Wolfgang Nebel, Domenik Helms, Kim Grüttner, and Frank Oppenheimer. Über die
Notwendigkeit neuer Modellierungskonzepte komplexer eingebetteter Systeme, Keynote
at edaWorkshop 2012. May 2012.

[L14] Francisco Ferrero, Kim Grüttner, Fernando Herrera, Gianluca Palermo, Bart Van-
thournout, and Emmanuel Vaumorin. Using the COMPLEX Design Flow for Space
Domain Applications, at Designing for Embedded Parallel Computing Platforms: Archi-
tectures, Design Tools, and Applications (DEPCP’2011), in conjunction with Design,
Automation, and Test in Europe Conference (DATE) 2011. Mar. 2011.

[L15] Kim Grüttner. Challenges in SoC System Synthesis, Panel Discussion: "ESL Synthesis?
Get Real", at the 2011 Electronic System Level Synthesis Conference (ESLsyn). June
2011.

[L16] Kim Grüttner. The COMPLEX ESL Framework for Timing and Power Aware Rapid
Prototyping of HW/SW Systems, at ET12: Early Timing and Power Information of
Complex SoC Designs using Augmented Virtual Platforms, in conjunction with Design,
Automation, and Test in Europe Conference (DATE) 2011. Mar. 2011.

[L17] Kim Grüttner, Kai Hylla, Sven Rosinger, Philipp A. Hartmann, and Wolfgang Nebel.
Enabling Timing and Power Aware Virtual Prototyping of HW/SW Systems, at Work-
shop on Micro Power Management for Macro Systems on Chip (uPM2SoC), in con-
junction with Design, Automation, and Test in Europe Conference (DATE) 2011. Mar.
2011.

[L18] Philipp A. Hartmann, Maher A. Fakih, and Kim Grüttner. Non-intrusive TLM-2.0
Transaction Observation, Interception, and Augmentation, at 24th European SystemC
User’s Group Meeting, in conjunction with FDL 2011. Sept. 2011.

[L19] Philipp A. Hartmann, Philipp Ittershagen, Kim Grütter, Frank Oppenheimer, and
Achim Rettberg. A Framework for Generic HW/SW Communication using Remote
Method Invocation, at Workshop on Designing for Embedded Parallel Computing
Platforms: Architectures, Design Tools, and Applications (DEPCP’2011). in conjunction
with Design, Automation, and Test in Europe Conference (DATE) 2011. Mar. 2011.

[L20] Kim Grüttner. Application Mapping and Communication Synthesis for Object-Oriented
Platform-Based Design, Internes Kolloquium der Fakultät II - Department für Infor-
matik an der Carl von Ossietzky Universität Oldenburg. Nov. 2010.

552 Curriculum Vitæ

[L21] Kim Grüttner and Frank Oppenheimer. ANDRES – Analysis and Design of run-time
Reconfigurable, heterogeneous Systems, at W1: The European landscape of reconfigurable
computing: Lessons learned, new perspectives and innovations, in conjunction with
Design, Automation, and Test in Europe Conference (DATE) 2010. Mar. 2010.

[L22] Philipp A. Hartmann, Kim Grüttner, and Frank Oppenheimer. Exploiting Parallel
Computing Platforms with OSSS, at edaWorkshop 2010. May 2010.

[L23] Philipp A Hartmann, Kim Grüttner, Frank Oppenheimer, and Achim Rettberg. Exploit-
ing Parallel Computing Platforms with OSSS, at W3: Designing for Embedded Parallel
Computing Platforms: Architectures, Design Tools, and Applications, in conjunction
with Design, Automation, and Test in Europe Conference (DATE) 2010. Mar. 2010.

[L24] Frank Oppenheimer and Kim Grüttner. Objektorientierter Entwurf und Synthese von
Hardware-/Softwaresystemen, Informatik-Kolloquium der Universität Bremen. May
2007.

[L25] Frank Oppenheimer and Kim Grüttner. OSSS: An Approach for Modelling, seamless
Refinement, and Synthesis of HW/SW SoC, at 16. European SystemC User’s Group
Meeting, in conjunction with FDL 2007. Sept. 2007.

[L26] Frank Oppenheimer and Kim Grüttner. Objektorientierter Entwurf und Synthese
von Hardware-/Softwaresystemen unter besonderer Berücksichtigung der Hardware-
/Software-Kommunikation, Kolloquium des Instituts für Informatik an der TU Braun-
schweig. Dec. 2006.

Supervised and co-supervised bachelor and master theses

[S1] Christian Nesemann. “Evaluierung von PMD-Sensorik für Fahrerassistenzsysteme”.
Master Thesis (Diplomarbeit). Germany: Carl von Ossietzky Universität Oldenburg,
2013.

[S2] Tim Schmidt. “A Program State Machine Based Virtual Processing Model in
SystemCTM”. Master Thesis (Diplomarbeit). Germany: Carl von Ossietzky Universität
Oldenburg, 2013.

[S3] Sören Schreiner. “Entwicklung eines bordeigenen Syetems zum autonomen Starten und
Landen von mehrmotorigen Helikoptern”. Master Thesis (Diplomarbeit). Germany:
Carl von Ossietzky Universität Oldenburg, 2013.

[S4] Henning Schlender. “Untersuchung des Potentials von Controller- und Compiler-
spezifischen Optimierungen bei der automatischen Generierung von C-Code”. Master
Thesis (Diplomarbeit). Germany: Carl von Ossietzky Universität Oldenburg, 2012.

[S5] Maher Ali Fakih. “Timing Validation of Functional Models on Virtual Platforms”.
Master Thesis (Diplomarbeit). Germany: Carl von Ossietzky Universität Oldenburg,
2011.

[S6] Fabian Meyen. “Entwicklung einer eingebetteten Diagnose Software für ErgoControl2
Steuergeräte”. Master Thesis (Diplomarbeit). Germany: Carl von Ossietzky Universität
Oldenburg, 2011.

[S7] Ina Podolski. “Modelling, Implementing and Validating a Kalman Filter with an
Artificial Neuronal Network for Embedded Systems”. Bachelor Thesis (Studienarbeit).
Germany: Carl von Ossietzky Universität Oldenburg, 2011.

[S8] Björn Grönewold. “Entwicklung einer API zur Anbindung einer GUI an das Echtzeitbe-
triebssystem RODOS”. Diploma Thesis (Diplomarbeit). Germany: Carl von Ossietzky
Universität Oldenburg, 2010.

[S9] Sören Schreiner. “Modellbasierter Entwurf, Validierung und Verifizierung der sicherheit-
skritischen Software eines Quadrokopters”. Bachelor Thesis (Studienarbeit). Germany:
Carl von Ossietzky Universität Oldenburg, 2010.

Curriculum Vitæ 553

[S10] Alexander Stühring. “Entwicklung eines Target Simulation Moduls für einen Doppelk-
ernprozessor zur Durchführung einer Prozessor-In-The-Loop Simulation mit Target
Link”. Bachelor Thesis (Studienarbeit). Germany: Carl von Ossietzky Universität
Oldenburg, 2010.

[S11] Tobias Tiemerding. “Implementierung eines Displaytreibers zur CAN-Bus Diagnose
auf einem externen Display”. Bachelor Thesis (Studienarbeit). Germany: Carl von
Ossietzky Universität Oldenburg, 2010.

[S12] Oliver Miller. “Entwurf und Implementierung eines Kommunikationscoprozessors zur
Remote Method Invocation für die SoC-Kommunikation”. Bachelor Thesis (Studienar-
beit). Germany: Carl von Ossietzky Universität Oldenburg, 2008.

[S13] Christian Ammann. “Multiprocessors on Chip”. Bachelor Thesis (Studienarbeit). Ger-
many: Carl von Ossietzky Universität Oldenburg, 2006.

[S14] Kai Hylla. “Evaluierung busbasierter Kommunikationsprotokolle im SoC-Design und
Entwurf eines abstrakten Interfaces”. Bachelor’s Thesis (Studienarbeit). Germany: Carl
von Ossietzky Universität Oldenburg, 2006.

[S15] Gerold Mauson. “Extraktion und Visualisierung von Strukturinformationen aus
SystemC-Modellen”. Bachelor Thesis (Studienarbeit). Germany: Carl von Ossietzky
Universität Oldenburg, 2006.

[S16] Philipp Reinkemeier. “Laufzeit-Rekonfigurierbare Hardwarekomponenten: Selbstrekon-
figuration eines Xilinx Virtex-4 FPGAs”. Bachelor Thesis (Studienarbeit). Germany:
Carl von Ossietzky Universität Oldenburg, 2006.

	Title: Application Mapping and CommunicationSynthesis for Object-OrientedPlatform-Based Design
	Abstract / Kurzzusammenfassung
	Contents
	1 Introduction
	1.1 Embedded Systems on a Chip
	1.2 Design Challenges
	1.3 Contributions
	1.4 Basic Idea
	1.5 Outline

	2 Goals of the Methodology
	2.1 Introduction
	2.2 Embedded Systems on a Chip (SoC)
	2.2.1 IP components
	2.2.2 Software Processors
	2.2.3 Dedicated Hardware
	2.2.4 Memory
	2.2.5 Communication Interfaces
	2.2.6 Communication Networks
	2.2.6.1 Point-To-Point Communication
	2.2.6.2 Bus Communication
	2.2.6.3 Shared Object Communication

	2.2.7 Application mapping

	2.3 Communication in Embedded System
	2.3.1 Structural inter-component access techniques
	2.3.1.1 Memory mapped I/O
	2.3.1.2 Port I/O

	2.3.2 Behavioral inter-component access techniques
	2.3.2.1 Polling
	2.3.2.2 Interrupts
	2.3.2.3 DMA

	2.4 Requirements on Communication-Centric Design
	2.4.1 Modeling
	2.4.2 Analysis
	2.4.3 Synthesis
	2.4.4 Implicit Requirements and Consequences

	2.5 Summary

	3 Terminology
	3.1 Introduction
	3.2 Selected Mathematical Notations
	3.3 Timed Automata
	3.3.1 Definition
	3.3.2 Graphical notation in Uppaal
	3.3.3 Synchronous Value Passing
	3.3.4 Properties
	3.3.4.1 State Formulae
	3.3.4.2 Reachability Properties
	3.3.4.3 Safety Properties
	3.3.4.4 Liveness Properties

	3.4 Model of Computation, Architecture, Structure and Performance
	3.4.1 Model of Computation (MoC)
	3.4.2 Model of Architecture (MoA)
	3.4.3 Model of Structure (MoS)
	3.4.4 Model of Performance (MoP)
	3.4.5 Summary

	3.5 Methodology
	3.5.1 Design flow
	3.5.2 Simulation
	3.5.3 Synthesis
	3.5.4 Summary

	3.6 System Level Design Representation
	3.6.1 Language
	3.6.2 Program State Machines
	3.6.2.1 Program-States
	3.6.2.2 Hierarchical composition
	3.6.2.3 Communication

	3.6.3 Sequential program representation

	4 Related Work
	4.1 Introduction
	4.2 Previous Work
	4.2.1 Objective VHDL
	4.2.2 Objective VHDL+
	4.2.3 SystemC-Plus
	4.2.4 Discussion

	4.3 Object-Oriented Communication Concepts in ESL Design
	4.3.1 OOCL
	4.3.2 CHSOM
	4.3.3 Actor-oriented
	4.3.4 CORBA- and Component-based
	4.3.5 C++- and SystemC-based
	4.3.6 Summary & Discussion

	4.4 SoC communication modeling
	4.4.1 SystemC TLM
	4.4.2 GreenBus
	4.4.3 Accuracy-Adaptive TLMs
	4.4.4 OCP SystemC channels
	4.4.5 STMicroelectronics TAC
	4.4.6 SystemCSV
	4.4.7 OCCN
	4.4.8 IBM CoreConnect models
	4.4.9 ARM AMBA models
	4.4.10 CCATB AMBA models
	4.4.11 ROM
	4.4.12 NoC channels
	4.4.13 Summary & Discussion

	4.5 SoC Communication Synthesis
	4.5.1 SpecC-based
	4.5.2 SystemC-based
	4.5.3 Commercial SystemC and C/C++ synthesis tools
	4.5.3.1 SystemCrafter
	4.5.3.2 Handel-C
	4.5.3.3 C-to-Silicon
	4.5.3.4 Cynthesizer
	4.5.3.5 CatapultC
	4.5.3.6 Vivado
	4.5.3.7 eXCite

	4.5.4 Summary & Discussion

	4.6 Electronic System-Level Synthesis Methodologies
	4.6.1 Daedalus
	4.6.2 System-On-Chip Environment
	4.6.3 SystemCoDesigner
	4.6.4 Metropolis
	4.6.5 Koski
	4.6.6 PeaCE/HOPES
	4.6.7 Summary & Discussion

	4.7 Contribution of this work

	5 Methodology, Modeling Elements and Operational Semantics
	5.1 Introduction
	5.2 Abstraction Layers
	5.3 Object Model
	5.3.1 Basic Types
	5.3.2 Other types
	5.3.3 Array
	5.3.4 Class
	5.3.5 Interface class

	5.4 Behavioral Layer
	5.4.1 Introduction
	5.4.2 Modeling Elements
	5.4.2.1 Port
	5.4.2.2 Behavior
	5.4.2.3 Channels

	5.4.3 Operational Semantics
	5.4.3.1 Leaf Behavior
	5.4.3.2 Sequential composition (SEQ)
	5.4.3.3 Finite-state machine composition (FSM)
	5.4.3.4 Parallel composition (PAR)
	5.4.3.5 Pipeline composition (PIPE)
	5.4.3.6 Hierarchical composition
	5.4.3.7 Communication

	5.5 Application Layer
	5.5.1 Introduction
	5.5.2 Modeling Elements
	5.5.2.1 Actor
	5.5.2.2 Application Layer System
	5.5.2.3 Shared Objects

	5.5.3 Pre-defined Scheduling Algorithms
	5.5.3.1 Static Priority
	5.5.3.2 Ceiling Priority
	5.5.3.3 Round Robin
	5.5.3.4 Modified Round Robin

	5.5.4 Timing Annotations
	5.5.4.1 Shared Object annotations
	5.5.4.2 Actor annotation
	5.5.4.3 Timing estimation
	5.5.4.4 Timing analysis
	5.5.4.5 Properties of Timing Annotations
	5.5.4.6 Limitations

	5.5.5 Mapping rules
	5.5.6 Operational Semantics
	5.5.6.1 Actor
	5.5.6.2 Port
	5.5.6.3 Shared Object
	5.5.6.4 Putting it all together
	5.5.6.5 Properties

	5.6 Virtual Target Architecture Layer
	5.6.1 Introduction
	5.6.2 Modeling Elements
	5.6.2.1 Signal and Signal Port
	5.6.2.2 RMI Port
	5.6.2.3 Serializable Object
	5.6.2.4 Virtual Target Architecture Object
	5.6.2.5 Memory
	5.6.2.6 Software Socket
	5.6.2.7 Hardware Socket
	5.6.2.8 RMI Channel
	5.6.2.9 OSSS Channel
	5.6.2.10 IP Component
	5.6.2.11 Virtual System on Chip

	5.6.3 Mapping rules
	5.6.3.1 Add support for object serialization
	5.6.3.2 Software, Actor and Shared Object Behavioral-RT timing refinement
	5.6.3.3 RMI timing annotations
	5.6.3.4 Memory timing annotations

	5.6.4 Operational Semantics
	5.6.4.1 RMI Port
	5.6.4.2 Shared Object Socket
	5.6.4.3 OSSS-Channel
	5.6.4.4 Putting it all together
	5.6.4.5 Properties

	5.7 Target Platform
	5.7.1 Introduction
	5.7.2 Modeling Elements
	5.7.2.1 Software Processing
	5.7.2.2 Hardware Processing
	5.7.2.3 Memory
	5.7.2.4 Communication
	5.7.2.5 IP
	5.7.2.6 SoC

	5.8 Summary

	6 Simulation
	6.1 Introduction
	6.2 Overview
	6.2.1 SystemC™
	6.2.2 OSSS
	6.2.3 Behavioral Layer
	6.2.4 Application Layer
	6.2.4.1 Hardware/Software Intersection
	6.2.4.2 Hardware Section
	6.2.4.3 Software Section

	6.2.5 Virtual Target Architecture Layer

	6.3 Behavioural Layer
	6.3.1 Introduction and motivation
	6.3.2 Composite Behaviours
	6.3.3 Communication
	6.3.4 Hierarchical Behaviour composition
	6.3.5 Current Limitations

	6.4 Application Layer
	6.4.1 Shared Object
	6.4.1.1 Using Shared Objects

	6.4.2 Adapter Socket
	6.4.2.1 Using sockets
	6.4.2.2 Restrictions

	6.4.3 Software Task
	6.4.3.1 Declaration of a Software Task
	6.4.3.2 Instantiation of a Software Task
	6.4.3.3 Using EETs for specifying the software timing behaviour
	6.4.3.4 Using EETs and RETs for checking timing consistencies of Software Tasks
	6.4.3.5 Restrictions when using Software Tasks

	6.4.4 Hardware/Software Communication
	6.4.5 Hardware Module

	6.5 Virtual Target Architecture Layer
	6.5.1 Architecture Class Library
	6.5.2 Remote Method Invocation
	6.5.2.1 The General Concept
	6.5.2.2 RMI protocol stack

	6.5.3 OSSS-Channels
	6.5.3.1 Key Concepts
	6.5.3.2 A Simple Point-To-Point Channel
	6.5.3.3 A Channel with Arbitration

	6.6 Mapping
	6.6.1 Mapping the Consumer/Producer Design Example
	6.6.1.1 The osss_rmi_if<...> interface stub
	6.6.1.2 Serialisation of user-defined data types
	6.6.1.3 The osss_rmi_channel<...> container for synthesisable OSSS-Channels
	6.6.1.4 The osss_object_socket<...> container for Shared Objects
	6.6.1.5 The final assembly phase

	6.6.2 Architecture Exploration

	6.7 Summary
	6.7.1 Passive Modeling Elements
	6.7.2 Active Modeling Elements
	6.7.3 Mapping and Refinement
	6.7.4 Review of Goals

	7 Synthesis
	7.1 Introduction
	7.2 Overall Flow
	7.3 Parsing and Intermediate Representation
	7.4 Target Platform Representation
	7.4.1 Software Processor Block
	7.4.2 Hardware Block
	7.4.3 Memory
	7.4.4 Communication Network
	7.4.4.1 Point-To-Point Communication
	7.4.4.2 Bus Communication

	7.5 Platform Synthesis
	7.5.1 Architectural Context Information
	7.5.2 MHS and MSS Generation
	7.5.3 UCF Generation
	7.5.4 MPD and PAO Generation
	7.5.5 OSSS ACI Generation

	7.6 Software Synthesis
	7.6.1 Introduction
	7.6.2 The MicroBlaze Processor Subsystem
	7.6.3 Supported Software Language Subset
	7.6.4 The OSSS Software Library & RMI protocol stack
	7.6.4.1 Application Layer
	7.6.4.2 RMI Layer
	7.6.4.3 Channel Layer
	7.6.4.4 The native OPB Interface
	7.6.4.5 The FSL Interface

	7.6.5 Software Cross-Compilation

	7.7 Custom Hardware Synthesis
	7.7.1 Fossy
	7.7.2 Synthesis Phases
	7.7.2.1 Elaborator
	7.7.2.2 Channel Synthesis
	7.7.2.3 Shared Object Synthesis
	7.7.2.4 Class Synthesis
	7.7.2.5 Integer Type Synthesis
	7.7.2.6 Delaborator
	7.7.2.7 Code Generator

	7.8 Shared Object Hardware Synthesis
	7.8.1 Overview
	7.8.2 RMI Controller
	7.8.3 Interface Blocks
	7.8.4 Scheduler
	7.8.5 Guard Evaluator
	7.8.6 Behavior Process
	7.8.7 Potential Extensions and Optimizations
	7.8.8 Hardware Client

	7.9 Back-End Synthesis
	7.9.1 Integration into Xilinx Flow
	7.9.1.1 Integrated Software Environment (ISE)
	7.9.1.2 Xilinx Platform Studio (XPS)

	7.10 Summary

	8 Experiments
	8.1 Introduction
	8.2 JPEG Encoder
	8.2.1 Goals of this experiment
	8.2.2 Introduction to JPEG
	8.2.3 JPEG encoder model
	8.2.4 Results
	8.2.5 Conclusion

	8.3 Adaptive Video Filter
	8.3.1 Goals of this experiment
	8.3.2 Model Composition
	8.3.3 Modeling in OSSS
	8.3.3.1 Behavior Layer Model
	8.3.3.2 Application Layer Model
	8.3.3.3 Virtual Target Architecture Model
	8.3.3.4 Target Platform Layer

	8.3.4 Conclusion

	8.4 NightView Video Filter
	8.4.1 Goals of this experiment
	8.4.2 Introduction & Motivation
	8.4.3 The NightView Application
	8.4.4 Target Platform
	8.4.5 Video processing algorithms
	8.4.5.1 Sobel filter
	8.4.5.2 Gamma correction filter
	8.4.5.3 Filter configuration examples

	8.4.6 Design flow
	8.4.7 Modeling in OSSS
	8.4.7.1 Application Layer Model (N2b)
	8.4.7.2 Virtual Target Architecture Layer Model (N3b)

	8.4.8 Evaluation
	8.4.8.1 Simulation performance
	8.4.8.2 Model complexity
	8.4.8.3 Chip area

	8.4.9 Conclusion

	8.5 MP3 Decoder
	8.5.1 Goals of this experiment
	8.5.2 Introduction to MP3 decoding
	8.5.3 Modeling in OSSS
	8.5.3.1 Profiling
	8.5.3.2 Application Layer Model
	8.5.3.3 Virtual Target Architecture Layer Model
	8.5.3.4 Implementation Model

	8.5.4 Results
	8.5.4.1 Software implementation
	8.5.4.2 Hardware/Software implementation
	8.5.4.3 RMI overhead

	8.5.5 Conclusion

	8.6 IPv4 Packet Forwarding Switch
	8.6.1 Goals of this experiment
	8.6.2 Introduction & Motivation
	8.6.3 Modeling in OSSS
	8.6.4 Synthesis
	8.6.5 Conclusion

	8.7 JPEG 2000 Decoder
	8.7.1 Goals of this experiment
	8.7.2 Introduction
	8.7.3 Modeling in OSSS
	8.7.3.1 Application Layer Model
	8.7.3.2 Architecture Layer Model

	8.7.4 Implementation Models
	8.7.4.1 IDWT Reference Models
	8.7.4.2 Fossy Generated Models
	8.7.4.3 Comparison

	8.7.5 Conclusion

	8.8 Summary

	9 Conclusion
	9.1 Review of Goals
	9.2 Limitations and Future Work

	A Survey
	B Timed Automata Templates and Examples
	B.1 Used scheduling algorithms
	B.2 Application Layer TA example
	B.3 Virtual Target Architecture Layer TA example

	C Pre-defined Shared Objects
	D I2C Protocol OSSS Channel Implementation
	D.1 Introduction
	D.2 The I2C Bus Protocol
	D.2.1 Data Transfer from Master to Slave
	D.2.2 Data Transfer from Slave to Master

	D.3 OSSS Channel implementation

	E Supported Target Platforms
	E.1 Supported FPGAs
	E.1.1 Virtex-4
	E.1.2 Virtex-II Pro

	E.2 Supported Prototyping and Development Boards
	E.2.1 The Xilinx ML401 Evaluation Platform
	E.2.2 The Xilinx University Program Virtex-II Pro Development Board

	E.3 Basic IP components
	E.3.1 MicroBlaze Local Memory
	E.3.2 Interrupt Controller
	E.3.3 Timer
	E.3.4 Universal Asynchronous Receiver Transmitter (UART)
	E.3.5 Microprocessor Debug Module (MDM)
	E.3.6 On-Chip Peripheral Bus (OPB)
	E.3.6.1 Features
	E.3.6.2 FPGA implementation supported features
	E.3.6.3 Connection
	E.3.6.4 Arbitration

	E.3.7 Intellectual Property Interface (IPIF)

	F Synthesis Subset
	F.1 Compatibility to the SystemC Synthesisable Subset
	F.2 Coding Guidelines
	F.2.1 Design Hierarchy
	F.2.1.1 Modules
	F.2.1.2 Constructors
	F.2.1.3 Ports
	F.2.1.4 Signals and Channels
	F.2.1.5 Bindings

	F.2.2 Processes
	F.2.2.1 Effect of wait() usage on the number of states
	F.2.2.2 Reset

	F.2.3 Datatypes
	F.2.4 Statements and Expressions
	F.2.5 Classes and Inheritance
	F.2.6 Templates
	F.2.7 Namespaces
	F.2.8 Polymorphic Objects
	F.2.9 Shared Objects
	F.2.10 Non-Synthesisable

	G Integrated Development Environment
	G.1 Introduction
	G.2 Using the Eclipse CDT with FOSSY integration
	G.2.1 Project Navigator
	G.2.2 The SystemC Alarm Clock Example
	G.2.3 Building the Pre-Synthesis Model
	G.2.4 Building the Post-Synthesis Model
	G.2.5 Generating VHDL code

	G.3 Creating a custom project

	H OSSS Behavior Graphs
	Bibliography
	Curriculum Vitæ

