Computers in Human Behavier, Vol. 6, pp. 31-49, 1990 0747-5632/90 $3.00 + .00
Printed in the U.5.A, All rights reserved. Copyright & 1990 Pergamon Press plc

Instruction-Based Knowledge Acquisition
and Modification:

The Operational Knowledge for a Functional,
Visual Programming Language*

Olaf Schroder, Klaus-Dieter Frank, Klaus Kohnert,
Claus Mébus, and Matthias Rauterberg

University of Oldenburg

Abstract — This contribution deals with instruction-based knowledge acquisition in a fairly complex
but well-defined domain. The domain is the operational knowledge about the interpreter of ABSYNT,
a functional, visual programming language which was developed in our project. Runnable specifications
of the ABSYNT-inierpreter were translated info sets of visual rules, serving as instructional material for
students to acquire the operational knowledge.

We are concerned with the following questions:

1. How do subjects acquire the operational knowledge while simulating the interpreter of ABSYNT with
the help of the instructional material?

2. How can the operational knowledge gained by subjects be described? For example, does this know!-
edge differ from the instructional material?

If the mental represeniation of the operational knowledge is isomorphic to the instructional maierial,
then hypotheses about cerfain performance aspects can be stated. An experiment was conducted in which
dyades of programming novices acquired the computational knowledge for ABSYNT by computing the
value of ABSYNT-programs with the help of the instructions, thus simulating the inierpreter. The hy-
potheses were disconfirmed. The resulis suggest that the mental representation of the operational knowl-
edge consists of larger units than the insiructional material, leading to the following hypotheses about the
acquisition process and the mental representation of the operational knowledge:

1. When faced with a difficulty, there will be problem solving with the help of the instructions. Thus
new knowledge 15 acquired by failure-driven learning.

2. When faced with familiar sttualions, compound rules are burlt. Thus the existing knowledge is
improved by success-driven learning.

*The research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Psychology
of Knowledge under Grant No. MO 292/3-3.

Requests for reprints should be addressed to Olaf Schrider, Project ABSYNT, FB 10, Unit on
Tutoring and Learning Systems, University of Oldenburg, D-2900 Oldenburg, Federal Republic
of Germany.

31

32 Schrader et al.

A specification of the instruction-based acquisition of the operational knowledge for ABSYNT is cur-
rently developed, based on the detatled analysis of a portion of the data gathered. This specification and
some of its implications are described.

GENERAL RESEARCH PROBLEM

This work is done in the project “Developing a Knowledge-Diagnosis and Error-
Explanation System for the Acquisition of Programming Knowledge for ABSYNT”
(Janke & Kohnert, 1989; Mdobus, 1985; Mébus & Schréder, 1989; Mobus &
Thole, 1989). ABSYNT (Abstract Syntax Trees) is a purely functional, visual
programming language developed in the project, using ideas from the “calculation
sheet machine” (Bauer & Goos, 1982). ABSYNT includes abstraction, recursion,
and call-by-value-semantics.

The goal of the project is to build a problem solving monitor for programming
mm ABSYNT which analyzes the students’ blueprints, gives comments and proposals
(Sleeman & Hendley, 1982).

ABSYNT-programs are collections of trees. The nodes of the trees are constants,
parameters, and primitive and self-defined operators. The connections between the
nodes are the “pipelines” for control and data flow. Programs are edited by tak-
ing nodes with the mouse from a menu bar and connecting them. Figure 1 shows

-
=

Kopl K perper
*_
(— M— b o | fa /|4 5|[a e ¥ | b i i [b []
= === =l = ——j—=
i J|C g, G 7| 7| JIC) | — JC JC i Ik) s)] |G -, .

Figure 1. ABSYNT-program for the factorlal.

Knowledge acquisition and modification 33

- £ 2 o MR CORETR GRS

AL R T ST ¥ Y PR S T L T TS PO AT L T R L R

()] (d)

Figure 2. ABSYNT start tree without function calls, just one primitive operator node. {(a) Before compu-
tation, (b} after application of the visual rule in Figure 3, (¢} after 3 applications of the visual rule in
Figure 4, (d) after application of the visual rule in Figure 5.

an ABSYNT-program for the factorial. A simple start tree without function calls
is displayed in Figures 2a to d.

The ABSYNT-environment also has a visual trace which was implemented
according to the runnable specification (Davis, 1982) of the interpreter. The trace
makes every computational step visible. Thus ABSYNT is suited to support stu-
dents in learning the basic functional programming concepts, and to facilitate
studying these processes (Janke & Kohnert, 1989; Mdébus & Thole, 1989).

We think that a programmer needs a precise understanding of the interpreter
for successful programming. Evidence gathered so far is in accordance with this
assumption: Subjects who had acquired the operational knowledge — that is, the
knowledge about how the ABSYNT-interpreter works — made heavy and successful
use of the visual trace while they were programming in ABSYNT.

34 Schroder ¢f al.

The operational knowledge for ABSYNT can be acquired in the following way:
Since we had developed two alternative runnable specifications of the ABSYNT-
interpreter, we translated them into two alternative sets of visual rules, following
design principles motivated by Larkin and Simon (1987) and Pomerantz (1985)
(see Mobus & Thole, 1989). These visual rules serve as instruction and help mate-
rial for the acquisition of the operational knowledge (Mobus & Schréder, 1989;
Mobus & Thole, 1989).

Besides programming mode and trace mode, ABSYNT also has a prediction
mode. In this mode, the student can simulate the interpreter by performing the
computational steps of the ABSYNT-interpreter with the mouse and keyboard with
the help of the instructional material. So the student can acquire the operational
knowledge in an instruction-based way.

Here we deal with the instruction-based knowledge acquisition in the fairly com-
plex, but well-defined domain of the operational knowledge about the interpreter
of ABSYNT. We divide this issue into the following problems:

1. How can the acquired knowledge (the mental representation) be described?
Does it differ from the instructions? If so, in what respects, and why (see also
Newell & Simon, 1972, Chapter 3)? Why do certain difficulties, bugs, and mis-
interpretations arise while using the instructions?

2. How do subjects acquire the operational knowledge while simulating the inter-
preter of ABSYNT under guidance of the instructional material?

3. What do the answers to these questions imply for the design and improve-
ment of the instructional material?

We think that these questions are also relevant to the issues of computer-assisted
instruction and for the design of tutorial systems:

1. It is important to know what the student is being told, and what is left out
(what is not mentioned) when acquiring a new knowledge domain. His/her con-
cepts and misconceptions may originate in the instructions given. In the domain
of the operational knowledge, we approached this problem by basing the instruc-
tions on runnable specifications. The instructional material could also be used for
help and feedback in case of problems.

2. Understanding the process of instruction-based knowledge acquisition may
motivate design principles. For instance, our investigations indicate that the
instructions could be adapted to the student’s current knowledge state by merg-
ing visual rules together. This would create visual compound rules. (An example
will be given below.) So if there is a specification of the instruction-based knowl-
edge acquisition process, then the instructions could be adapted step by step to the
actual knowledge state of the learner. Thus it would be possible to provide help
which is tailored to the subject.

TASK ANALYSIS, GENERAL ASSUMPTIONS, AND HYPOTHESES

There are two alternative versions of the instructional material: two alternative
visual rule sets. They are completely displayed in Mdbus and Schrider (in press).
The first rule set consists of eight rules. It is “operator-centered,” since each rule
describes the complete computation of some ABSYNT-node. Most rules of this set
consist of several subrules. The application of those rules consists of several steps:

Knowledge acquisition and modification 35

(a) The first subrule is applied, (b) then the rule instantiation is suspended and
stacked, and other rules have to be applied, until (c) the rule instantiation is
retrieved, and the next subrule is applied.

In contrast, the other rule set consists of 16 rules. It is “state-centered,” since
each rule describes a specific change of a state of some node. This rule set has a
flat structure. Like a production system, any applicable rule may be applied, and
then the rule instantiation may be forgotten immediately. As an example, Figures
3 to 5 show rules of the state-centered rule set.

The visual rules shown in Figures 3 and 5 roughly correspond to the two
subrules of the first visual rule of the operator-centered rule set.

Rule 1: Computing of primitive speratorneda (Ns IF-THEN-ELSE-nede [).

Situation

1] The cutput stripe of & pimiive
operatornode cordamna a™?",

2)The primdtive opemtornode isnot an IF-
THEN-ELSEnode.

ATheinput siripe ol the pricitive
operatornode is emply.

' Dverview

Rule 1: Compuling of primilive eperator node (No IF-THEN-ELSE-nede 9

Action

Write 8”77 i everyinput field of the
primitive operatornode,

Figure 3. Rule of the state-centered rule set.

36 Schroder et al.

Rule 4: Feiching Input vaiue for operator node.

Situation

1)The output stripa of an operator node

conlains a "7

2)Any input lield of the operalor node |

conlains a 7.

3)The input held of the operatornogeis | """, i

connected with another node whose e

oulput siripe contains a value. X(
..... e

Overview Action

Aule 4: Fetching Input value lor operator node.

Action

Write the output value of the node
connected with the input tield nto the
input figld.

Duerview

Figure 4. Rule of the state-centered rule set.

How might the operational knowledge built up by subjects with the help of the
instructional material be described? Anderson, Greeno, Kline and Neves (1981),
van Dijk and Kintsch (1983, Chapter 10), and Kintsch and Greeno (1985) seem
to share the following view about the utilization of domain-specific knowledge: The
units of the domain knowledge (for example, a geometry postulate: Anderson et al.,
knowledge about set relations and properties: Kintsch & Greeno) are represented
as facts; at least as long as they are not proceduralized. So in order to make use
of a knowledge unit, an instance of it has to be loaded into working memory and
instantiated by the features of the current task. After the actions specified in this
instantiation are executed, the instantiation is discarded. When the actions of the
instantiation cannot be performed immediately, because intermediate, preparatory

Knowledge acquisition and modification 37

Ruls 2: Computing primitive operstor node (No IF-THEN-ELSE-nodal).

Situation

1) The output stripa of a primitive
oparator noda contains a =77,

2)The primitive operator node is nat an IF-
THEN-ELSE-node.

3)The inpul siripe of the primitive
operator node contains valuas only. of b >

Rule 2: Comp g pr p nods (No IF-THEN-ELSE-nodsl).

Action
1) Compute the primilive operator node.

2)Wrile the valua inta the oulpul stripe of
the primifive operalor node.

[Instruction] B overview ¥ Situation § & X © 1 &)

Figure 5. Rule of the state-centered rule set.

steps are necessary, then the instantiation must be held in working memory until
the time for its continuation or completion has come.

Kintsch and Greeno (1985) found that problem difficulty can be related to the
amount of information which must be simultaneously available in working mem-
ory. Information which is needed but not available in working memory at a given
point in the problem-solving process has to be retrieved from an “episodic mem-
ory.” This may cause errors. Thus performance on a problem is better if there is
less information in working memory. Similarly, Egan and Greeno (1974) found
in the domain of the Tower-of-Hanoi-puzzle that the number of goals that have
to be remembered in order to perform a certain disc move is related to the num-
ber of errors made instead of this move.

38 Schrider et al.

Following these ideas and findings, we made the following assumptions concern-
ing the mental representation of the operational knowledge constructed by subjects:

1. The operational knowledge acquired by subjects consists of units. Each unit
is the mental representation of a visual rule of the instructional material. Thus each
unit is an “internal rule” corresponding to an “external rule.” This assumption
seems particularly plausible in the domain at hand for two reasons: (a) It is easy
to find subjects who will not have any preknowledge of the operational knowledge
for a functional programming language, so the knowledge built up by these sub-
Jjects would be mainly determined by the visual, external rules of the instructional
material, (b) since the instructional material for the operational knowledge of the
ABSYNT-interpreter rests on runnable specifications, we can be sure that it is pre-
cise, complete, and correct. So if one constructs a mental representation which is
isomorphic to the instructions, then one could master any situation within the
knowledge domain. Thus the operational knowledge can be acquired as presented
in the instructions without doing any further inferences.

2. In order to apply an internal rule, this rule has to be loaded into working
memory and instantiated with some part of the computational situation currently
visible on the screen. Thus, the elements of the working memory are instantiated
internal rules.

3. There is a limited working memory capacity. This means that (a) as more
elements are in working memory, the performance decreases. Also, (b) the more
new working memory elements are created after the creation of a certain work-
ing memory element, the more likely it is that this working memory element gets
lost.

According to these assumptions, the mental representation of the operational
knowledge constructed by subjects while simulating the interpreter with the help
of the instructions is isomorphic to the instructional material — the visual rules (first
assumption, see above). So the mental operations should reflect the structure of
the used rule set (second assumption): Users of the operator-centered rule set would
have to stack and to retrieve rule instantiations. In contrast, users of the state-
centered rule set would not.

With respect to the assumed limited working memory capacity (third assump-
tion), we expected that users of the operator-centered rule set would have difficul-
ties with certain computation situations on the screen, where according to the
operator-centered rule set (a) the number of rule instantiations on the stack is high,
or (b) a rule instantiation that has been on the stack for a long time has to be
retrieved. That is, there are many intermediate steps between stacking and retriev-
ing a rule instantiation. In contrast, users of the state-centered rule set should not
have special problems with the same situations because they do not have to main-
tain a stack.

The difficulties expected for the users of the operator-centered rule set in the two
types of situations just mentioned should show up as more time needed in these
situations because the relevant rule instantiation has to be retrieved, or, alterna-
tively, reconstructed with the help of the external, visual rules. Additionally, it
should be more likely to make an error when there are many rule instantiations
in working memory (when the stack is large).

These hypotheses are depicted in Table 1. The number of rule instantiations on
the stack is subsequently referred to as “s.” The number of intermediate steps
between stacking and retrieving a rule instantiation will be referred to as “i.”

Knowledge acquisition and modification 39

Table 1. Overview of the hypotheses

Computational situaticns with the following
features according to the operator-
centered rule set:

s and/or i high s and i low

users of the operator-centered rule set * make more mistakes *make |less mistakes
*need more time sneed less time

users of the state-centered rule set * make less mistakes * make |less mistakes
#need less time sneed less time

THE EXPERIMENT
Overview

The experiment had two parts. In part one, 12 subjects computed correct
ABSYNT-programs, thus simulating the ABSYNT-interpreter in the prediction
mode. The subjects worked in dyades (Miyake, 1986). Three dyades were supplied
with the operator-centered rule set, and the other three dyades were supplied with
the state-centered rule set.

In part two, the subjects worked individually. Partially computed ABSYNT-
programs were presented to them. The task was to decide whether these partial
computations were correct. Part two served the following purpose: If one has to
judge if a partially computed ABSYNT-program is correct, s/he has to mentally
trace the computational steps leading to the displayed situation. For each computa-
tional step in this sequence, there is a certain s and ¢ according to the operator-
centered rule set. So if there are effects of s and i, as postulated in the hypotheses
(Table 1), then these effects sum up across all the mentally traced computational
steps. Therefore the effects should show up very clearly.

Material

For part one, the material consisted of the two visual rule sets (operator-centered
vs. state-centered), of a glossary, of 33 ABSYNT-programs to be computed, and
of instructions about the subjects’ task to compute the programs. The glossary con-
tained an explanation of the basic concepts mentioned in the rules, a legend for
the visual rules, and a description of how to handle mouse and keyboard. The
ABSYNT-programs were grouped into sets of increasing difficulty. They were par-
tially ordered by the number of visual rules sufficient for their computation. Func-
tion calls, branching, abstraction, recursion, and combinations of these concepts
were introduced step by step. Each concept was exemplified by up to six programs,
making up the total of 33 programs.

For part two, the material consisted of 15 partially computed ABSYNT-
programs (depicted on paper). There were three computational situations exem-
plifying s low, ¢ low; three more for s high, ¢ low, another three for s low, ¢ high,
and six wrong computational situations. The latter served for (a) making sure that
each program is checked completely, and (b) minimizing practice effects with this
task: The first three computational situations presented were wrong. The other
ones were randomized.

40 Schrider et al.

Experimental Design

For part one of the experiment, the independent variables were:

1. The supplied rule set (operator- vs. state-centered)

2. Four categories of difficulties of computational situations, according to the
operator-centered rule set: (a) s low, 7 low (s + i < 5). Examples are the first steps
in the computation of a program. (b) s low, 7 high (s < 4; 1 > 9). Examples are
the last steps in the computation of a program. (c) s high, i low (s > 5; i = 0). An
example is binding the body parameters. (d) s high, i high (s > 5; { > 20). An
example is passing a value from one frame (incarnation of an ABSYNT-program)
back to the calling operator node.

The dependent variables were: (a) number of errors (wrong computational
steps), and (b) the time needed for each computational step.

For part two, the independent variables were:

1. Preknowledge (training with the operator- vs. state-centered rule set in part
one)

2. Three categories of difficulties of computational situations, according to the
operator-centered rule set: (a) s low, 7 low (s + ¢ < 4); (b) s high, i low (s > 6;
1 < 3); (c) s low; ¢ high (s < 5; ¢ > 20).

The dependent variables were: (a) number of wrong judgements ahout the cor-
rectness of the presented computational situations, and (b) the decision time needed
for each presented computational situation.

Subjects

Subjects were 12 students of psychology at the University of Oldenburg. All sub-
Jects were programming novices. They were paid for participation.

Procedure

Each dyade was introduced to the basic concepts of ABSYNT used in the visual
rules, and was familiarized with mouse and keyboard. Additionally, they answered
questions about their programming experience.

Then the subjects started with part one: computation of the ABSYNT-programs.
They were asked not to consult the experimenter, but to make use of the supplied
material in case of problems. The material was presented in a folder. The subjects
were free to use it whenever they wanted.

Each dyade computed the same ABSYNT-programs, which were presented in
fixed order. Each time a new concept was introduced, the supplied visual rules
were augmented with additionally needed visual rules. So the subjects never had
more visual rules than actually needed.

During the first computation of each ABSYNT-program, there was no feedback
by the experimenter. In case of correct computation, the next ABSYNT-program
was presented. In case of a mistake, the program was presented again. This time,
feedback was given immediately in case of another mistake. (The subjects were told
that the last computational step was wrong.)

The actions of the subjects and their verbalizations were video and audiotaped.
Since each dyade computed 33 ABSYNT-programs, there were about 2500 com-
putational steps performed by each dyade. Each dyade worked about 12 hours in
6 sessions.

Knowledge acquisition and modification 41

For part two, each subject was supplied with the 15 computation situations, and
with written instructions concerning the task. If a situation was considered as
wrong, the next situation had to be taken. Otherwise, the immediately next com-
putational step had to be filled in with pencil. For each situation the time was
recorded.

Results

The latency times for part one and part two were evaluated by two Brown-Mood-
tests (Lienert, 1973, p. 205 f.) in order to test for the interactions (see Table 1),
because there were multiple measurements for each pair of subjects within each
cell, and the latency times were not normally distributed and with unequal vari-
ances. For part one, those computational steps were discarded which were done
in situations not belonging to one of the four categories of difficulties of computa-
tional situations. Secondly, only correct computational steps were included for the
analysis of the time latencies. Finally, in order to obtain equally sized cells, some
randomly selected data of part one were dropped.

The interactions between supplied rule set and categories of difficulties of com-
putational situations, based on latency times, were not significant: Chi? = 3.86;
d.f. = 3; p > 0.2 for part one (2 = 165 data points per cell), and Chi? = 0.99;
d.f. = 2; p > 0.5 for part two (n = 18 data points per cell).

The error frequencies were not analyzed statistically, since there were only few
errors. For part one, there were 33 wrong computational steps (= 0.75%)
altogether in the computational situations belonging to one of the four categories
of difficulties of computational situations. The users of the operator-centered rule
set made 1.3%, 0.7%, 2.4%, and 0.9% errors in the computational situations
s low, i low; s high, ¢ low; s low, ¢ high; s high, 7 high, respectively. The users of
the state-centered rule set made 0.9%, 0.1%, 3.0%, and 0.9% errors in the same
situations. For part two, there were 17 (or 15%) wrong judgements of computa-
tional situations: 10 mistakes (28 %) for the combination “operator-centered rule
set; s and/or 7 high”; 7 mistakes (10%) for all other combinations.

Discussion

The main result is that the different structure of the two rule sets did not show up
in the subjects’ performance. One could hypothesize that the subjects did not make
much use of the instructions but used their own ideas instead, so that instructions
did not have a strong influence on the knowledge acquired. But this is not plau-
sible since, among other results, in 98 % of the cases where the subjects were faced
with a situation covered by a new rule, they looked this rule up in the instructions.
Additionally, the total error rate was 0.71% (users of the operator-centered rule
set) and 1.19% (users of the state-centered rule set), although the subjects did not
have any functional programming knowledge. Without much use of the instruc-
tions, there would certainly have been more errors.

S0 the hypotheses were disconfirmed. With respect to the assumptions stated
above, we see the following possibilities for this outcome:

1. There is no one-to-one-mapping between the individual visual rules and the
units of the mental representation of the operational knowledge for ABSYNT. That
is, the internal rules are not isomorphic to the external rules. That is, instead of
constructing an isomorphic representation, the subjects used the instructions as a
base for constructing something different.

42 Schroder ef al.

2. There is no need to load the internal rules (the acquired knowledge) into
working memory because this knowledge is proceduralized. Thus there are no
problems of limited working memory capacity with this knowledge (Anderson
et al., 1981).

We favor the first possibility for the following reasons: The computational steps
made by the subjects can be classified into four categories:

(a) Correct computational steps which are done quickly and without any ver-
balizations. Sequences of such steps seem to be produced by knowledge units which
correspond to more than one external, visual rule.

(b) Correct computational steps which are preceded by a verbalization and pos-
sibly by a short lookup of the corresponding visual rule.

(c) Correct computational steps which are preceded by problems: In these sit-
uations, the subjects initially do not know what to do, and they make heavy use
of the instructions. These problematical situations are not only situations which
require the application of a new, not yet encountered rule, but also situations
requiring the application of an already known rule in a new situation (that is, a
situation on the screen which contains some new concept, for instance branching,
for which there are one or more new, not yet encountered visual rules).

(d) Wrong computational steps: Wrong applications of new, not yet encountered
visual rules, but also the inappropriate use of already known rules in new
situations.

Problems or errors (= categories ¢ and d) with already known rules in new sit-
uations occur often. This was the case in 52 % of the situations where an already
known rule had to be applied in a new situation. In contrast, problems or errors
occurred in only 7% of the computational steps altogether, This “Einstellung” effect
1s clearly not in accordance with the assumption that the operational knowledge
acquired by the subjects consists of internal rules that are just isomorphs to the
external, visual rules. Instead, our interpretation is that independently of the sup-
plied visual rule set, the subjects constructed larger knowledge units which were
tuned to the particular type of ABSYNT-programs currently encountered. When
the type of ABSYNT-programs was changed by introducing a new concept (and
correspondingly, one or more new visual rules), these knowledge units were not
applicable any more, leading to problems or even errors with already known rules.

Thus we view the acquisition of the operational knowledge as a two-stage-process:

1. Acquisition of new knowledge in response to difficulties with the help of the
instructional material, that is, impasse or failure-driven learning.

2. Improvement of existing knowledge by creation of compound rules, that is,
success-driven learning.

In order to make these ideas concrete, a specification of the instruction-based
acquisition of the operational knowledge for ABSYNT is currently developed. In
the rest of this paper, we will describe this specification and some of its implications.

SPECIFICATION OF THE ACQUISITION OF THE
OPERATIONAL KNOWLEDGE

Purpose of the Specification

The specification of the processes of the instruction-based acquisition of the oper-
ational knowledge has the following objectives:

Knowledge acquisition and modification 43

1. To achieve an integrated description of the data gathered. By this, we inves-
tigate the following questions: How can the knowledge acquired with the help of
the instructions be described? How can the acquisition of this knowledge be de-
scribed? Does this knowledge differ from the instructions? For instance, do the sub-
jects reorganize or reinterpret the instructions? When do the subjects not follow
the instructions? If so, what might be the reasons for this?

2. To generate predictions about performance aspects in certain computational
situations.

3. To generate further design criteria concerning the instructional material; for
instance, whether it would be feasible and sensible to adapt the instructional mate-
rial to the actual knowledge state of the learner.

Current State of the Specification

The operational knowledge for ABSYNT acquired by the subjects is represented
as a rule net. The rule net is continuously changed by acquisition of new knowl-
edge due to problem solving, and by improvement of existing knowledge due to
practice.

Acquisition of new knowledge is triggered by difficulties (Laird, Rosenbloom,
& Newell, 1986), or impasses (Brown & van Lehn, 1980; van Lehn, 1987, 1988).
In response to a difficulty, there are problem-solving steps with the help of the
instructional material, the external, visual rules. If successful, the problem-solving
steps lead to the generation of new information. This information is then used to
augment the rule net. Thus the rule net is changed in order to cope with new
situations.

Improvement of existing knowledge is triggered by practice with several instances
of the same type of ABSYNT program. During practice, rules of the rule net are
merged into compound rules. Thus the rule net is changed in order to handle a
given type of situation more efficiently.

The current state of the specification was developed in the light of these guide-
lines and by protocol analysis of a portion of the data (see below).

The Rule Net

We distinguish internal rules (the rules of the rule net) and external rules (the rules
of the instructional material). In the rule net (Figure 6), a rule consists of a directed
labeled link with two nodes (connected by an and-node) below it. The link is the
condition (C) of the rule. The first node is the action (A). The second node is a
recursive call of the top node of the rule net. Figure 6a depicts a rule net abstractly.
If the rule net specifies the knowledge of a user of the operator-centered rule set,
then the rules of the rule net are (a) the hypothetical internal representations of
the subrules of the external, visual rules of the operator-centered rule set, or (b) com-
pound rules built from such subrules. If the rule net specifies the knowledge of a
user of the state-centered rule set, then the rules of the rule net are (a) the hypo-
thetical internal representations of the external, visual rules of the state-centered
rule set, or (b) compound rules built from such rules. Thus the structure of the
rule net is the same for the knowledge acquired by the operator- and state-centered
rule set.

For example, C1 in Figure 6a is the internal representation of the situation
description of the visual rule of Figure 3. Al is the internal representation of the

44 Schroder et al.

do task

A1 do task A2 do task A3 do task

(@)

do task
C
C4 c2
L check
A3 do task task gosl
Ag U0 ta k A2 do task
A1 do task
(b)
do task
c4
c2,
Cc1
check
task goal
A4 do task
® A2,3 do task
Al do task .

(c)

Figure 6. (a) A rule net, (b) knowledge acquisition by failure-driven learning, (c) knowledge improvement
by success-driven learning.

action description of this visual rule. The “task goal” is the goal given to the sub-
jects: The output stripe of the root node of the start tree must contain a value (see
Figure 2d).

Acquisition of New Knowledge

New knowledge is acquired in response to a difficulty. Currently there are two
main types of difficulties:

D1: No condition leaving the top node is satisfied by the situation currently visi-
ble on the screen, and the task goal is not yet fulfilled.

D2: There is feedback that the last computational step was wrong.

In response to a difficulty, problem solving is starting. There are the following
main categories of problem solving steps:

Knowledge acquisition and modification 45

P1: “Working backward™: In case of D1 there might be a rule in the rule net
which action description does not make use of information obtained by the bind-
ing of the condition of this rule. For example, it is always possible to fill an empty
input stripe with computation goals (“?”) (the action description of the visual rule
in Figure 3), even if the conditions in which this is allowed (the situation description
of the visual rule in Figure 3) are not true. So if there is such a rule in the rule
net, it serves as the starting point for “working backward” with the help of the
visual rules: There will be an attempt to fulfill the unfulfilled condition. For exam-
ple, the output stripe of an ABSYNT-node might be empty. Thus the unfulfilled
condition for filling its input stripe with computation goals is that the output stripe
must contain a computation goal (see Figure 3). So a goal is set to put a compu-
tation goal into the output stripe of this node. Then a visual rule is looked for which
achieves this.

P2: “Trial and error”: Also in case of D1, there might be just an attempt to find
an applicable visual rule. Thus the visual rules are scanned until an applicable rule
is found. This is also done if there is no unfulfilled but currently “applicable” rule
in the rule net. :

P3: Identification of an unfulfilled condition: In case of D2, there is an attempt
to find the difference between the computational situation currently visible on the
screen and the visual rule whose action corresponds to the computational step just
applied. That is, it is tried to find the reason for the mistake. As the result, an
instance of D1 arises.

So after P1, P2, or P3, there is new information: With the help of the visual
rules, an applicable rule is found, or an unfulfilled condition element of a rule
already part of the rule net is identified. This new information is then used to aug-
ment the rule net with the new rule (Figure 6b), or to augment the condition of
an existing rule with the identified condition element.

Improvement of Existing Knowledge

If no difficulties arise, the rule net is improved by building compound rules. The
result is depicted abstractly in Figure 6¢: Two rules leaving the top node (“do task”)
are merged into one in a way that tries to use ideas of composition (Anderson,
1983, 1986; Anderson et al., 1981; Neves & Anderson, 1981). The compound rule
is formed by inspection of the trace of rule applications. For example, C2 — A2
and C3 = A3 of Figure 6b might be composed into C2,3 — A2,3 of Figure 6¢. In
order to illustrate how this might proceed, it is assumed that (a) C2 — A2 of Fig-
ure 6b is the internal representation of the visual rule in Figure 4; (b) C3 — A3
of Figure 6b is the internal representation of the visual rule in Figure 5; (c) C2,3 -
A2,3 of Figure 6c is the internal representation of the rule in Figure 7. (This is not
a visual rule of the instructional material; see below.)

The trace of the rule applications consists of three applications of the visual rule
in Figure 4 to the situation depicted in Figure 2b (this leads to the situation
depicted in Figure 2c) and one application of the rule in Figure 5 to the situation
depicted in Figure 2c (this yields the situation depicted in Figure 2d).

1. The three input fields in the three instantiations of the rule of Figure 4 are
generalized to “all input fields” (cf. Benjamin, 1987). These “all input fields” are
identical to the “input stripe” in the condition of the instantiation of the rule in Fig-
ure 5. Therefore, in the condition and action part of the new compound rule (Fig-

{6 Schroder et al.

New rule: fetching input values and computing primitive operator node (no IF-THEN-ELSE)

Situation

1)The outpul siripe of a primitive operator
node contains a "7

2)The primitive operator node is natan IF-
THEN-ELSE-node.

J)The input stripe of the primitive operator
node contains 2" only,

4)All input fields of the primitive operator
node are connected with another node
whose output stipe containg a value.

New rule: fetching input walues and computing primitive aperator nods (no IF-THEH-EﬂSE}

Action

1)Write the outpul value of the node
connecled with each input held into each
input hielet of the primitive operator node.

2)Compute the pnmitive oparator node.

3)Write the value into the outpur stripe of
the primilive aperator node.

Figure 7. Example of a “visual compound rule” based on the visual rules in Figures 4 and 5.

ure 7) “all input fields” are specified by all the conditions and the actions for input
fields mentioned in the rule of Figure 4. But the condition for these input fields
required by the rule of Figure 5 (namely, that they contain values) is not included
in the condition of the new rule, because this is the result of the three applications
of the rule in Figure 4, which are followed here by the application of the rule in
Figure 5.

2. The operator node in the three bindings of the rule in Figure 4 is the same
as the primitive operator node (no if node) in the binding of the rule in Figure 5
(namely, the “<” node in Figure 2). Therefore, only “primitive operator node (no
if node)” is included in the rule in Figure 7.

3. The action of the rule in Figure 5 is included in the action of the new rule.

Knowledge acquisition and modification 47

The resulting new rule is an improvement because it reduces matching. For
example, the sequence of the three applications of the rule in Figure 4 and the one
application of the rule in Figure 5 test the “<” node of Figure 2 four times. Apply-
ing the new rule instead would test this node only once.

But if now a computational situation is encountered where the original rules are
needed in combination with new rules, then a difficulty will arise again, since the
original rules are not available as single rules any more; they have become part
of a compound rule. (For example, the original rules C2 - A2 and C3 — A3 are
not contained in the rule net of Figure 6¢). So there will be problem solving again,
and the original rules are added again to the rule net.

EMPIRICAL BASE
Some Questions of Method

The data of one dyade are used for the derivation of the specification. The other
data are used for validation (Card, Moran, & Newell, 1983, Ch. 5).

The relevant data are the computational steps performed by the subjects (includ-
ing bugs and the sequencing of the computational steps), and verbalizations. Only
the verbalizations of one (the more active) subject of the dyade are analyzed.
Therefore the specification hypothesizes knowledge states and acquisition for one
subject, not for a dyade. The advantage of letting subjects work in dyades is that
the verbalizations are richer and more natural (Miyake, 1986). The disadvantage
is that we had to find ways of how to deal with the verbalizations of the other sub-
ject. A convention is: If B (the subject whose verbalizations are not regarded)
objects to or proposes some rule or computational step, and A (the subject whose
verbalizations are of interest) accepts this, then the objection/proposal is treated
as if made by A. Otherwise, B’s objection/proposal and A’s reply to it are removed
from the protocol.

Protocol Analysis

The aim of the protocol analysis is to operationalize the activities prior to each com-
putational step: difficulties, problem solving steps, applications of rules of the rule
net, and applications of the action steps of compound rules.

About four hours of computing ABSYNT-programs by one pair of subjects were
protocol analyzed. The segments of the protocol were assigned to coding catego-
ries. Then sequences of coding categories were aggregated into types of difficul-
ties and into types of problem solving steps. Table 2 is a simplified list of some of
the operationalizations.

We try to base the assignment of coding categories on key words (Miyake, 1986)
as far as possible. For instance, key words for “state sequence of computational
steps” are “first . . ., then . . .”. Key words for “notice that a rule is not applica-
ble” are “but,” “wrong,” etc., “find internal rule” is assigned if, for instance, a rule
number is mentioned. The corresponding visual rule might subsequently be
checked, but critical to the assignment of this coding category is that the idea is
expressed first. In contrast, “find external rule” is assigned if the visual rules are
consulted first. “Find internal or external rule” is a superordinate category for “find
internal rule” and “find external rule.”

48 Schroder et al,

Table 2. Some examples for the operationalization of activities prior to computational
steps in terms of coding categories of the protocol

Activities prior to comp. step Coding categories of the protocol
Difficulty D1 “notice that a rule is not applicable”
Difficulty D2 negative feedback by the experimenter
Working backward {(P1} “state a goal” + “find internal or external rule”
+ “state sequence of computational steps”
Binding rule of rule net “find internal rule"
Binding next action step of compound rule no verbalization

SOME IMPLICATIONS OF THE SPECIFICATION
Some Predictions

One of the next steps will be to evaluate the specification. For example, there are
the following predictions:

1. Prediction of situations causing difficulties because there is no rule in the rule
net that handles the current situation.

2. Prediction of computational steps preceded by “find internal rule” verbaliza-
tions because they are generated by a rule of the rule net.

3. Prediction of computational steps performed silently because they are gen-
erated by the action steps of compound rules.

4. Prediction of specific problem solving steps in response to specific difficulties.

Implications for Further Improvement of the Instructional Material

There are also suggestions about how the instructions might be improved. If the
subject is not sure about applying a compound rule in a new situation, then it
would seem appropriate if the instructions are adapted to the current knowledge
acquired by the learner. This would mean to augment the instructions by adding
visual compound rules. So the instructional material could be tailored step by step
to the knowledge acquisition process of the learner. Figure 7 provides an exam-
ple of a visual compound rule.

Open Questions; Future Research

The next steps will be;

1. To evaluate the specification for the derivation data. This involves compar-
ing predicted and observed difficulties, problem solving steps, applications of rules
of the rule net, and of the action steps of compound rules.

2. To evaluate the specification for the validation data in the same way.

3. To continue the implementation of the specification. An implementation of
the specification is necessary for (a) a full and detailed evaluation, and (b) the gen-
eration of not yet encountered hypotheses.

One concern for future is the extension of the specification to other task domains
(1.e., the acquisition of programming knowledge for ABSYNT). This is another
topic within our project. It will necessitate an augmentation towards the inclusion
of elements of inductive learning.

Knowledoe acquisition and modification 48

REFERENCES

Anderson, J.R. (1983). The Architecture of cognition. Cambridge, MA: Harvard University Press.

Anderson, J.R. (1986). Knowledge compilation: The general learning mechanism. In R.8. Michal-
ski, J.G. Carbonell, & T.M. Mitchell (Eds.), Machine learning, Vol. II. pp. 289-310. Los Altos:
Kaufman.

Anderson, J.R., Greeno, J.G., Kline, P.J., & Neves, D.M. (1981). Acquisition of problem-salving
skill. In J.R. Anderson (Ed), Cognitive skiils and their acquisition. pp. 191-230, Hillsdale, NJ: Erl-
baum.

Bauer, F.L., & Goos, G. (1982). Informatik. 1. Teil. Berlin, Springer, (3. Auflage).

Benjamin, D.P. (1987). Learning strategies by reasoning about rules. 10th Int. Joint Conf. on Artifi-
cial Intelligence, Mailand, 1987.

Brown,].8., & van Lehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills.
Cognitive Science, 4, 379-426.

Card, S.K., Moran, T.P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale,
N.]J.: Erlbaum.

Davis, E.R. (1982). Runnable specifications as a design tool. In K.L. Clark, & S.A. Tarnlund
(Eds.), Logic programming. pp. 141-149. New York: Academic Press.

Egan, D.E., & Greeno, J.G. (1974). Theory of rule induction: Knowledge acquired in concept learn-
ing, serial pattern learning, and problem solving. In LW, Gregg (Ed.), Knowledge and Cognition.
pp- 43-103. Potomac: Erlbaum.

Janke, G., & Kohnert, K. (1989). Interface design of a visual programming language: Evaluating
runnable specifications. In F. Klix, N.A. Streitz, Y. Waern & N. Wandke (Eds.), pp. 567-581.
MACINTER-IT Man-computer-interaction research, Proceedings of the Second Network Seminar of MACINTER.
Berlin/GDR,, March 21-25, 1988, Amsterdam: Elsevier.

Kintsch, W., & Greeno, J.G. (1985). Understanding and solving word arithmetic problems. Psych.
Review, 92, 109-129.

Laird, J., Rosenbloom, P.S., & Newell, A. (Eds.) (1986). Untversal subgoaling and chunking. Boston,
MA: Kluwer Academic Publ, 135-199.

Larkin, J.H., & Simon, H.A. (1987). Why a diagram is (sometimes) worth ten thousand words.
Cognitive Setence, 11, 65-99.

Lienert, G.A. (1973). Verteilungsfreie Methoden in der Biostatistik, Band 1. Meisenheim: Hain.

Miyake, N. (1986). Constructive interaction an the iterative process of understanding. Cognitive Sci-
ence, 10, 151-177.

Mobus, C. (1985). Die Entwicklung zum Programmierexperten durch das Problemldsen mit
Autornaten. In Mandl, H.; Fischer, P.M. (Hg): Lernen im Dialog mit dem Computer. 140-154. Miin-
chen: Urban & Schwarzenberg.

Moébus, C., & Schréder, O., Knowledge specification and instruction for a visual computer lan-
guage. In F. Klix, H. Wandke, N.A. Streitz, & Y. Waern (Eds.): Man-computer inferaction research,
MACINTER II, pp. 535-565.

Mobus, C., & Schrdder, O. (in press). Representing semantic knowledge with 2-dimensicnal rules
in the domain of functional programming. In M. Tauber & P. Gorny (Eds.), Visualization in human-
computer interaction, Heidelberg, Springer Computer Science Lecture Series.

Mébus, C., & Thole, H.J. (1989). Tutors, instructions, and helps. In Th. Christaller (Ed.), Kiinst-
liche Intelligenz, pp. 336-385. KIFSB7, Heidelberg, Springer Computer Science Lecture Series.

Neves, D.M., & Anderson, J.R. (1981). Knowledge compilation: Mechanisms for the automati-
zation of cognitive skills. In J.R. Anderson (Ed.), Cognitive skills and their acquisition. 57-84. Hills-
dale, NJ: Erlbaum.

Newell, A., & Simon, H.A. (1972). Human problem selving. Englewood Cliffs, NJ: Prentice Hall.

Pomerantz, J.R. (1985). Perceptual organization in information processing. In A.M. Aitkenhead,
J.M. Slack, (Eds.), Issues in cognitive modeling. 127-158. Hillsdale, NJ: Erlbaum.

Sleeman, D.H., & Hendley, R.]. (1982). ACE: A system which analyses complex explanations. In
D. Sleeman &].S. Brown, Intelligent tutoring systems (pp. 99-118). New York: Academic Press.

van Dijk, T.A., & Kintsch, W. (1983). Strategies of discourse processing. New York: Academic Press.

van Lehn, K., (1987). Learning one subprocedure per lesson. Ariificial Intelligence. 31, 1-40.

van Lehn, K. (1988). Towards a theory of impasse-driven learning. In Mandl H., & Lesgold, A.:
Learning issues for intellivent tutoring systems. 19-41. Springer, New York.

Computers in Human Behavior

Volume 6, Number 1 1990

SPECIAL ISSUE:

GERMAN EXPERIMENTAL RESEARCH IN LEARNING
AND INSTRUCTION WITH COMPUTERS

Detlev Leutner

L. Kotter

A. Auffenfeld
K. L. Jingst
H. Struchholz

Detlev Leutner
Gerd Schumacher

Olaf Schrider
Klaus-Dieter Frank
Klaus Kohnert
Claus Mdbus
Matthias Rauterberg

Franz Schmalhofer
Otte Kiihn

Paula Messamer

Rhona Charron

Klaus Breuer
Ruediger Kummer

INDEXED IN Psychol. Abstr., Psyc
rent Index to Journals in Education

CONTENTS
1 Softstrip Table of Contents
1 Editorial

3 Optimization of Teaching and Learning
of Concepts

17 The Effects of Different On-Line Adaptive
Response Time Limits on Speed and
Amount of Learning in Computer Assisted
Instruction and Intelligent Tutoring

31 Instruction-Based Knowledge Acquisition
and Modification: The Operational
Knowledge for a Functional, Visual
Programming Language

51 An Experimental Evaluation of Different
Amounts of Receptive and Exploratory
Learning in a Tutoring System

69 Cognitive Effects from Process Learning
with Computer-Based Simulations

continued on inside back cover

INFQ, PsychLIT, Current Contents, Social Science Citation Index, Cur-
(CIJE), International Bibliography of Periodic Literature, International

Bibliography Book Reviews, Ergonomics Abstracts, Software Reviews on File, Computer Publishers & Publi-
cations, Engineering Index Monthly, Engineering Index Annual, COMPENDEX, Ei Engineering Meetings,
World Patent Information, Sciol Abstr, Bioeng Abstr, Cam Sci Abstr, Excerp Med, IBZ & IBR, Info Sci Abstr,
Libr Sci Abstr, $8SA/CISA/ECA/ISMEC

ISSN 0747-5632
(759)

