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Abstract

Given a complete non-compact surface Σ embedded in R3, we consider the Dirichlet Lapla-
cian, −∆Ω

D, on the quantum layer Ω, that is defined as a tubular neighborhood of constant
width about Σ. Recently, sufficient geometrical and topological conditions have been found
which guarantee the existence of discrete spectrum, that is isolated points of the spectrum
which are eigenvalues with finite multiplicity.

The purpose of this thesis is to identify relationships between the topology of Σ and
the spectrum of the Dirichlet Laplacian on the quantum layer Ω. More explicitly, we find
a lower bound on the number of eigenvalues of −∆Ω

D in terms of the genus of Σ.

We consider two classes of surfaces Σ: Firstly, Σ is a Euclidean plane with handles, whose
distance to each other is greater than or equal to a constant. Secondly, Σ is a Euclidean
plane outside a compact set with nontrivial topology.

The first result depends on the theorem of Carron, Exner and Krejcirik on quantum
layers around surfaces whose curvatures vanish at infinity. The second result is based on
the papers of Wachsmuth, Teufel and Lampart on approximating the eigenvalues of the
Dirichlet Laplacian on a thin quantum layer and on a paper of Grigor’yan and Netrusov
on estimating the number of the negative eigenvalues of Schrödinger operator.





Zusammenfassung

Für eine vollständige nicht kompakte Fläche Σ, die im R3 eingebettet ist, betrachten wir
den Dirichlet Laplace Operator, −∆Ω

D, auf einer Tubenumgebung Ω von Σ mit konstan-
ter Breite. In letzter Zeit sind hinreichende geometrische und topologische Bedingungen
gefunden worden, die die Existenz von diskretem Spektrum garantieren, das heißt von
isolierten Punkten des Spektrums, die Eigenwerten mit endlicher Vielfachheit sind.

Das Ziel dieser Arbeit ist es, Beziehungen zwischen der Topologie von Σ und dem Spek-
trum von −∆Ω

D zu finden. Genauer finden wir eine untere Schranke für die Anzahl der
Eigenwerte von −∆Ω

D in Termen des Geschlechts von Σ.

Wir betrachten zwei Klassen von Flächen Σ: Zum einen ist Σ eine Euklidische Ebene
mit Henkeln, deren Abstand zueinander größer oder gleich einer Konstanten ist. Zweitens
ist Σ eine Euklidische Ebene außerhalb einer kompakten Menge mit nicht trivialer Topolo-
gie.

Das erste Ergebnis shützt sich auf einen Satz von Carron, Exner und Krejcirik für Tube-
numgebungen von Flächen, deren Krümmungen im Unendlichen verschwinden. Das zweite
Ergebnis beruht auf Veröffentlichungen von Wachsmuth, Teufel und Lampart über die
Approximation der Eigenwerte des Dirichlet Laplace Operators auf einer dünnen Tube-
numgebung einer Fläche und auf einer Veröffentlichung von Grigor’yan und Netrusov über
die Abschätzung der Anzahl der negativen Eigenwerte des Schrödinger-Operators.
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Introduction

The spectrum of the Laplacian on a manifold is a classic research domain within geomet-
ric analysis. One of its interesting areas is the spectrum of the Dirichlet Laplacian on
non-compact Riemannian manifolds which are much less understood than their compact
counterparts. In particular, it is often not even known whether such a manifold has any
discrete spectrum. It has shown recently that a certain type of a non-compact manifold,
called the quantum layer, has a non-empty discrete spectrum by assuming certain geo-
metrical and topological conditions.

Furthermore, the existence of the discrete spectrum of the Laplacian on a manifold is an
interesting phenomenon in both mathematics and physics. The bound states as a physics
terminology are the normalized eigenfunctions that correspond to each point in the dis-
crete spectrum and the ground state is the normalized eigenfunction that corresponds to
the lowest eigenvalue in the discrete spectrum.

Review of the Literature and Research Goal

The general mathematical problem considered in this thesis and its related work is the ex-
istence of the discrete spectrum, σdisc, below the essential spectrum, σess, of the Dirichlet
Laplacian on quantum layers.

A quantum layer Ω is defined in Chapter 1 as a tubular neighbourhood of radius a about
an orientable complete non-compact surface Σ embedded in R3. If the surface is a locally
deformed plane, the existence of the discrete spectrum below the essential spectrum of
the Dirichlet Laplacian on the quantum layer Ω, −∆Ω

D, was demonstrated in [DEK00].
A more general situation was treated in [DEK01] by assuming that Σ has asymptotically
vanishing curvatures and possesses a pole (i.e., the exponential map is a diffeomorphism)
and several conditions are fulfilled. The extension of these conditions for the existence
of the discrete spectrum without assuming the existence of poles on the surface Σ and
without making any other topological and geometrical assumptions was demonstrated in
[CEK04].

To state the main theorem of [CEK04], we need to mention the following assumptions

(H1) The Gauss curvature K of Σ is integrable, i.e.,
∫

Σ |K|dΣ <∞.

(H2) The radius a of the layer is less than the inverse of the maximum principal cur-

vatures k1, k2 of Σ, i.e., a < ρm =
(

max{‖k1‖∞‖k2‖∞}
)−1

.

1
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Theorem (Carron, Exner and Krejcirik, 2004). Let Σ be a complete non-compact con-
nected surface embedded in R3 and satisfying (H1). Let the quantum layer Ω be defined as
a tubular neighborhood of radius a around Σ satisfying (H2).

i) If the Gauss curvature K and the mean curvature M of Σ vanish at infinity, then

inf σess(−∆Ω
D) = κ2

1 :=
( π

2a

)2
.

ii) If the surface Σ is not a plane, then any of the conditions a) − d) below is sufficient
to guarantee that

inf σdisc(−∆Ω
D) < κ2

1.

The conditions are:

a) The total Gauss curvature is non-positive, i.e., K =
∫
Σ

KdΣ ≤ 0,

b) a is small enough and ∇M ∈ L2
loc(Σ),

c) The total mean curvature is infinite, i.e., M2 =
∫
Σ

M2dΣ =∞, and ∇M ∈ L2(Σ),

d) Σ contains a cylindrically symmetric end with positive total Gauss curvature.

In our research, we are interested in the spectral results for a quantum layer Ω around
the surface Σ which is a Euclidian plane with finite number of handles attached. Moreover,
adding a handle H to a surface increases its genus by one, so the genus of Σ is equal to
the number of handles.

Euclidean plane with one handle is constructed by smoothly attaching to it a curved
cylindrical surface H.

Then, for such Σ the total Gauss curvature of Σ is given by the generalization of
Gauss-Bonnet theorem due to (Huber 1957) and (Hartmann 1964)

K =

∫
Σ
KdΣ = −4πg,

Therefore, if there is at least one handles then our surface Σ has a negative total Gauss
curvature.
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Based on that, the main goal of this thesis is to find a lower bound on the number
of the eigenvalues of the Dirichlet Laplacian on this quantum layer Ω in terms of the genus
of Σ. Achieving this main goal passes through writing two theorems. The first main
theorem is as follows:

Main Theorem 1. There is a constant C, so that for all m ∈ N the following is true:
If the reference surface Σ is a Euclidean plane with m-handles H1, ...,Hm whose distance
to each other is at least C, then there are at least m eigenvalues of the Dirichlet Laplacian
−∆D on the quantum layer Ω that are less than κ2

1.

It is important to mention here that the radius of the quantum layer Ω only satisfies
(H2) and no additional assumption.

A different approach to quantum layers is to consider the asymptotic behavior for the
thickness of the radius a going to zero. The asymptotic behavior of the spectrum can be
described using an effective Hamiltonian on Σ. Following this approach led us formulate
our second theorem that depends on sufficiently small a.

The derivation of effective Hamiltonians for constrained quantum layers has been con-
sidered many times in the literature with different motivations and applications, see for
example [WT09] and [WTL10]. By applying the results of there papers to our case,
we construct an effective Hamiltonian Ha

eff on L2(Σ) which is unitary equivalent to the
Hamiltonian on the thin quantum layer Ω, Ha = −a2∆Ω on L2(Ω) up to errors of order
a3. Therefore, the eigenvalues of the effective Hamiltonian Ha

eff are close to those of the
Hamiltonian Ha, so that we can write all eigenvalues of the Hamiltonian Ha such that

λ = Ea +O(a3)

where Ea represents the eigenvalues of the Ha
eff, which is given by

Ha
eff = −a2∆Σ − a2(M2 −K) +

(π
2

)2
+O(a3).

After this result, we found a lower bound on the number of negative eigenvalues of the
Schrödinger operator

L = −∆Σ − (M2 −K),

to estimate a lower bound on the eigenvalues of the Dirichlet Laplacian on the thin quan-
tum layer Ω. Therefore, to get our second main theorem, we use some information from
[GNY04] and take more assumptions on our surface Σ as in the following theorem.

Main Theorem 2. Let Σ be a complete, connected and non-compact surface embedded
in R3 with integrable Gauss curvature. Assume that Σ = Σ1 ∪ Σ2, where Σ1 and Σ2 have
a common boundary, such that:

i) Σ1 = R2 \BR(0), for R > 0, with the Euclidean metric.

ii) Σ2 is a compact surface with boundary, it has bounded diameter, volume and bounded
Gauss curvature from below,

diam(Σ2) ≤ D
vol(Σ2) ≤ ϑ

K ≥ −κ2,

where D,ϑ > 0 and κ ∈ R.
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Denote the number of the negative eigenvalue of the Schrödinger operator L by Neg(L).
Let r′ = 8 max{D−R,R}, then there is a constant C(κ,ϑ,r′) > 0 only depending on κ, ϑ, r′,
such that we have:

Neg(L) ≥ bC(κ,ϑ,r′)

∫
Σ

(M2 −K)dΣc.

In particular,

Neg(L) ≥ bC(κ,ϑ,r′)gc, (0.0.1)

where g is the genus of Σ.

A very simple example of such a surface is shown in the figure below.

Σ = Σ1 ∪ Σ2.

We found in Main Theorem 1 that the number of eigenvalues of the Dirichlet Laplacian
on the quantum layer Ω around our first class surface Σ is greater than or equal to the
number of handles. As from Main Theorem 2, the number of eigenvalues of Ω around our
second class of surfaces depends on the genus g and a constant C.

Thesis Structure

The contents of this thesis are divided as follows:

In the first chapter, we will introduce some geometrical and topological notations on a
surface and we will present some assumptions on quantum layers. We suppose that our
reference surface Σ is complete, connected, orientable, non-compact and embedded in R3,
and that its Gauss curvature K is integrable. The quantum layer Ω of width 2a around
Σ, which we are going to study in this work, is parameterized by the map

L : Ω̃ = Σ× (−a, a)→ Ω ⊆ R3

(x, u) 7→ L(x, u) = x+ un(x),

where L is a diffeomorphism. Then the metric of Ω̃ is defined as the pull-back of the
Euclidean metric via L. Finally, we will consider the Hamiltonian on Ω as the Dirichlet
Laplacian H := −∆Ω

D on L2(Ω).
The assumptions presented in Chapter 1 form the basic foundations for the rest of this
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thesis.

In the second chapter we refer to the References [RS80] and [RS78] to get more back-
ground information on the spectrum of self-adjoint operators on Hilbert spaces and their
properties. In particular, we are interested in the discrete spectrum (isolated points of the
spectrum which are eigenvalues with finite multiplicity) and its complement in the total
spectrum, the essential spectrum. We will use the notations σ(−∆), σdisc(−∆), σess(−∆)
to denote the spectrum, discrete spectrum and essential spectrum, respectively. In Fact,
the spectrum of the Dirichlet Laplacian on a layer of width 2a around the plane has a
purely essential spectrum and coincides with the interval

[
( π2a)2,∞

)
.

In the third chapter we give some background information on topological properties of
surfaces using [Mas89], where we refer to the classification theorem for a compact surface
with or without boundary. At the end of this chapter, we give some topologically notations
on non-compact surfaces and we will apply these to our reference surface Σ.

In Chapter 4, we estimate the first eigenvalue of the essential spectrum of the Dirich-
let Laplacian under the assumption that the surface is asymptotically planar in the sense
that its Gauss and mean curvatures vanish at infinity. We find that this part of the spec-
trum is bounded from below by κ2

1 = ( π2a)2.

We prove in Chapter 5 that there exist three conditions (adopted from [CEK04]) that
guarantee the existence of the discrete spectrum below κ2

1 for the Dirichlet Laplacian on
the quantum layer Ω around the surface Σ which is asymptotically planar. We substan-
tially employ the consequence of [CEK04] that, if the Gauss curvature is integrable then
there always exists a sequence of functions on Σ having the properties of the mollifiers
mentioned in Lemma 5.0.6.

The first main theorem in this thesis is presented in Chapter 6 and states, if the ref-
erence surface Σ is a Euclidian plane with m-handles, that are pairwise at distance greater
than or equal to a constant C, then there are at least m eigenvalues of the −∆Ω

D below κ2
1.

(This constant C will be calculated in the proof of the theorem). Moreover, the number
of eigenvalues depends only on the genus g of the surface and the radius a of the layer
satisfying the hypothesis (H2).

In Chapter 7, we want to approximate the eigenvalues of the Dirichlet Laplacian on a
thin quantum layer Ω, Ha = −a2∆Ω, by constructing the effective Hamiltonian Ha

eff on
L2(Σ). This is done by applying the expression of the effective Hamiltonian in Theorem
3.1 in [WTL10] to our case. Based on that, we can write the eigenvalues λ of −∆Ω

D as
follows

λ =
( π

2a

)2
+ E +O(a) as a→ o,

where E are the corresponding eigenvalues of the Schrödinger operator

L = −∆Σ − (M2 −K).

In Chapter 8, we make more assumptions on our surface Σ to find a lower bound on the
negative eigenvalues of the Schrödinger operator L, where this is our second main theorem.
Then, we can estimate the lower bound on the eigenvalues of the Dirichlet Laplacian of
the corresponding thin quantum layer. Moreover, this lower bound depends on the genus
g and a constant.
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Chapter 1

Quantum Layers

The major goal behind this chapter is to give the geometrical and topological definitions
of a surface concept that will be treated here, that of a complete non-compact surface Σ
embedded in R3. This concept is investigated here as the starting point to define the wider
concept of the quantum layer Ω around this surface. Metric, volume form, Hamiltonian
operator and its quadratic form are defined for the quantum layer Ω.

This chapter starts with general definitions concerning the geometry and topology of
the surface Σ. Then, we look of the the geometrical properties of the quantum layer Ω.
Based on the latter, a metric and volume properties of the quantum layer are specified.
Quadratic forms and self-adjoint operators are introduced in this chapter as well. Finally,
we consider a Hamiltonian operator on the quantum layer Ω which in this case is the
Dirichlet Laplacian and show how it is used on the quantum layer to derive the spectrum
of the Dirichlet Laplacian that will be explained in detail in the next chapter.

An introduction to the geometry and topology of the surface Σ and the corresponding
quantum layer Ω can be found in the article [CEK04]. For more details about general
definitions on the surface Σ see [Gri09] and [Küh02]. The basic definitions and properties
of the quadratic forms and self-adjoint operators can be found in [CL90], [RS80], and
[RS78].

1.1 The Geometry and Topology of the Reference Surface

Let Σ be a smooth surface embedded in R3 without boundary. We will always make the
following assumptions on Σ, as for example that are made in the reference [CEK04]:

(1) Σ is connected, i.e., between any two points in Σ there is a continuous path in Σ.

(2) Σ is complete, i.e., Σ is a connected surface in which for every point p ∈ Σ, and for
any parameterized geodesic γ : [0, ε) → Σ, starting from p = γ(0), this geodesic may
be extended to a parameterized geodesic γ̃ : R→ Σ, defined on the entire line R.

(3) Σ is orientable, i.e., there is a globally defined unit normal vector field n : Σ→ R3.

(4) Σ is non-compact.

Before going into details, it is necessary to recall some basic facts about fundamental forms
and curvatures of Σ, for more details see, [Küh02] and [Gri09] :

7
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Definition 1.1.1. Let Σ ⊂ R3. For any point x ∈ Σ denoted by TxΣ the tangent space
on Σ at x, and define

gx : TxΣ× TxΣ→ R
gx(X,Y ) 7→ 〈X,Y 〉R3

for X,Y ∈ TxΣ.
gx is called the first fundamental form (I) or the induced Riemannian metric of Σ at x.

Definition 1.1.2. Let Σ ⊂ R3 be an oriented surface and n a unit normal vector field for
Σ. For any x ∈ Σ, the Weingarten map is the linear map given by

Lx : TxΣ→ TxΣ

X 7→ −dnx(X).

The second fundamental form of Σ at x is

IIx(X,Y ) := gx(LxX,Y ),

for X,Y ∈ TxΣ.

Definition 1.1.3. Let Σ ⊂ R3 be a surface, x ∈ Σ and X ∈ TxΣ with ‖X‖ = 1. We call
IIx(X,X) the normal curvature Kn of Σ at x in the direction of X.

Definition 1.1.4. Let Σ be a surface, x ∈ Σ. The principal curvatures of Σ at x are the
minimum and the maximum value of II(X,X) over all X ∈ TxΣ with ‖X‖ = 1. They are
denoted by k1 = k1(x), k2 = k2(x). If k1 6= k2, then the corresponding X are called the
principal curvature directions.

Proposition 1.1.5. The principal curvatures at x are the eigenvalues of the Weingarten
map Lx. If k1 6= k2 then the principal curvature directions are the corresponding eigen-
vectors are orthogonal to each other.

Definition 1.1.6. Let Σ be a surface, x ∈ Σ, k1, k2 the principal curvatures at x with
respect to an unit normal vector field n.

(i) the Gaussian curvature of Σ at x is

K = det(Lx) = κ1κ2.

(ii) the mean curvature of Σ at x is

M =
1

2
tr(Lx) =

1

2
(k1 + k2).

Definition 1.1.7. Let x = (x1, x2) be local coordinates of Σ. The 2×2-matrix (gij) is the
matrix of the first fundamental form of the surface Σ corresponding to these coordinates.
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i) The volume element form of the surface Σ is given as follows

dΣ =
√

det gdx.

ii) The total Gauss curvature K and the total mean curvature M are given by the
integrals

K :=

∫
Σ

KdΣ, M2 :=

∫
Σ

M2dΣ. (1.1.1)

Remark 1.1.8. The total mean curvature always exists (although it may be +∞ ), and
in this work we assume that the Gauss curvature of Σ is integrable, i.e.,

K ∈ L1(Σ). (1.1.2)

We are also interested in surfaces which have finite genus and a finite number of ends,
which they are defined as follows

Definition 1.1.9. An open set E ⊆ Σ is called an end of Σ if it is connected, unbounded
and if its boundary ∂E is compact (see Figure. 1.1.1); its total curvatures are defined by
means of (1.1.1) with the domain of integration being the subset E only.

Definition 1.1.10. A manifold embedded in R3 is cylindrically symmetric if it is invariant
under rotations around a fixed axis in R3.

 

Figure 1.1.1: Surface with four ends E1, . . . , E4, with E3, E4 cylindrically symmetric.

Definition 1.1.11. The genus of a surface Σ is the maximum number of non-intersecting
closed curves which can be drawn on Σ without disconnecting the surface.

It can be proved that any surface of finite genus is homomorphic to plane or sphere
with finitely many handles attached (see Figure 1.1.2). Then the genus is equal to the
number of handles.
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 ʹ

 H

Figure 1.1.2: Surface with a handle Σ′ is constructed from Σ by smoothly attaching a
curved cylindrical surface H.

1.2 The Quantum Layer Geometry

First, we introduce the quantum layer geometry and formulate some basic assumptions.

Definition 1.2.1. A quantum layer Ω is defined as a tubular neighborhood of radius a > 0
about an orientable complete non-compact surface Σ,i.e.,

Ω := {z ∈ R3 | dist(z,Σ) < a}. (1.2.1)

We will assume that

a) The principal curvatures k1, k2 of the surface Σ are bounded and

a < ρm :=
(
max

{
‖k1‖∞, ‖k2‖∞

})−1
, (1.2.2)

the number ρm is naturally interpreted as the minimal normal curvature radius of
Σ (the radius of the normal curvature of a surface at a given point is the radius of
a circle that best fits a normal section, the intersection of the surface with a plane
containing the normal to the surface at a particular point). For plane surfaces one can
put ρm :=∞.

b) Ω does not have self intersection, in the sense that the map L defined below in 1.2.3 is
injective.

Also, we may define the quantum layer Ω of width 2a as the image of the mapping

L : Σ× (−a, a) → R3

(x, u) 7→ x+ un(x).
(1.2.3)
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Taking into account that the assumption a) and b) above are always true, then L is in-
jective. Also, we will prove below in Lemma 1.2.5 that L is an immersion, and thus an
embedding.

An embedding is a diffeomorphism onto its image, and in particular the image of an
embedding is a submanifold, Therefore, L : Σ × (−a, a) → Ω is a diffeomorphism and Ω
is the submanifold of R3 of points located between two parallel surfaces at the distance a
from Σ (see Figure. 1.2.1), i.e., if Σ has empty boundary the definitions of Ω via (1.2.1)
and (1.2.3) are equivalent.

Ω 2a

Figure 1.2.1: Quantum layer

1.2.1 Metric Properties of the Layer

First, recall what the concept of pull-pack is: If F : M → N is a smooth map between
manifolds and w is a k-form on N then F ∗w is a k-contravariant tensor on M defined by:
For p ∈M and v1, .., vk ∈ TpM , set

(F ∗w)p(v1, .., vk) := wF (p)

(
dF|p(v1), .., dF|p(vk)

)
.

Writing the metric geucl on Ω with respect to the parameterization L in 1.2.3 means taking
the pull-back

G = L∗geucl,

Now we compute G

G : T(x,u)

(
Σ× (−a, a)

)
× T(x,u)

(
Σ× (−a, a)

)
→ R.

with

G(X,Y ) =
〈
dL(X), dL(Y )

〉
R3

Then,

L :
(
Σ× (−a, a), G

)
→
(
Ω, geukl

)
is an isometry, and since

X,Y ∈ T(x,u)

(
Σ× (−a, a)

)
= TxΣ× Tu(−a, a) = TxΣ× R,
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we may write

X = (XΣ, X
′) and Y = (YΣ, Y

′),

and decompose dL(X) as

dL(X) = dL(XΣ, X
′)

= dL(XΣ, 0) + dL(0, X ′)

and similarly

dL(Y ) = dL(YΣ, 0) + dL(0, Y ′).

We will fix u in (1.2.3), we can write

Lu : Σ→ R3

x 7→ L(x, u)

then we obtain :
Lu = id+ un.

Then:

dL(XΣ, 0) = dLu(XΣ) = XΣ + udn(XΣ)

= XΣ − uL(XΣ)

= (I − uL)XΣ

and
dL(YΣ, 0) = (I − uL)YΣ,

where I = Ix denotes the identity map on TxΣ and L = Lx the Weingarten map of Σ.

Moreover, fix x in (1.2.3)
Lx = x+ (id)n(x)

and it follows that

dL(0, X ′) = dLx(X ′) = n(x)X ′,

dL(0, Y ′) = dLx(Y ′) = n(x)Y ′.

By using the all above equalities, we get

G(X,Y ) =
〈
dL(X), dL(Y )

〉
R3

=
〈
(I − uL)XΣ + n(x) ·X ′, (I − uL)YΣ + n(x) · Y ′

〉
R3

=
〈
(I − uL)XΣ, (I − uL)YΣ

〉
g

+ 0 + 0 +
〈
X ′, Y ′

〉
R

= g
(
(I − uL)XΣ, (I − uL)YΣ

)
+X ′Y ′.

Thus, the metric of Σ× (−a, a) has a block matrix, such that

Gij =

(I − uL)2gµν 0

0 1

 . (1.2.4)
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1.2.2 The Volume Form of the Layer

The volume form of Σ × (−a, a) is by definition the pull-back of the volume form of Ω
under the map L, which is given by the following Lemma .

Lemma 1.2.2.

d
(
Σ× (−a, a)

)
= (1− 2Mu+Ku2)dΣdu. (1.2.5)

Where M,K denote the mean curvature and the Gauss curvature of Σ, respectively.

Proof. Let us apply the definition of pull-back to our situation, but first for a fixed
u. For brevity, we will write

F = Lu : Σ× {u} → Σu

(., u) 7→ id+ un

where Σu = Lu(Σ× {u}).

So we want to calculate F ∗(dΣu), where dΣu denotes the volume form of Σu. Recall the
definition of it: Since Σu is 2-dimensional, dΣu is a 2-form and for q ∈ Σu and V,W ∈ TqΣu,
where the pair V,W is positively oriented, then we have by definition (dΣu)q(V,W ) = the
area of the parallelogram spanned by V and W .

Here, the area is measured with respect to the metric on TqΣu, the metric is just the
Euclidean metric on R3 restricted to the subspace TqΣu, and the usual formula area
= |V ×W | applies. However, we will not use this formula.

Now, let x ∈ Σ and X,Y ∈ TxΣ. Of course X,Y also may be considered tangent vectors
to Σ× {u} at the point p = (x, u). Then, with A = dF|p = dLu(X, 0) = (I − uL)X,(

F ∗(dΣu)
)
p
(X,Y ) = (dΣu)F (p)(AX,AY )

= the area of the parallelogram spanned by AX,AY .

To evaluate this, we first need to understand the meaning of the equation dLu(X, 0) =
(I − uL)X, which in our current notation says dFp = I − uL. This has a very important
geometric meaning (besides the concrete formula): Since both I and L map the tangent
space TxΣ to itself, it shows that dFp also maps TxΣ to itself. Of course dFp also maps
TxΣ to TF (p)Σu, so we obtain that, the tangent space of Σu at F (p) = (x, u) is the same
as the tangent space of Σ at x.
(By the way, this also shows the normal spaces are the same. This will be needed later in
this work.)

Thus, we have A = I − uL, and it maps TxΣ to itself. So by well-known properties
of the area of parallelograms, for X,Y ∈ TxΣ the area of the parallelogram spanned by
AX,AY is | detA | times the area of the parallelogram spanned by X,Y .

So, the area of the latter parallelogram is dΣ(X,Y ), where dΣ is the volume element
of Σ, by the same reason as above for Σu.
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Putting things together, we get(
F ∗(dΣu)

)
p
(X,Y ) = (dΣu)F (p)(AX,AY )

=| detA | dΣ(X,Y ),

and becouse this is true for all X,Y , we obtain(
F ∗(dΣu)

)
=| detA | dΣ.

Since detA > 0 for |u| < a (see Lemma 1.2.4),(
F ∗(dΣu)

)
= (detA)dΣ.

For small a > 0 we have

dvol
(
Σ× (−a, a)

)
=
(
F ∗(dΣu)

)
du

= (detA)dΣdu.

Since the matrix corresponding to the Weingarten map L in local coordinates has the
principle curvatures k1, k2 as eigenvalues, we get

detA = det(I − uL)

= (1− uk1)(1− uk2) = 1− u(k1 + k2) + u2(k1k2),

and by using the definitions of the Gauss curvature and the mean curvature, we get

detA = (1− 2Mu+Ku2)

which shows that

dvol
(
Σ× (−a, a)

)
= (1− 2Mu+Ku2)dΣdu,

therefore

d
(
Σ× (−a, a)

)
= (1− 2Mu+Ku2)dΣdu. �

Remark 1.2.3. Since

d
(
Σ× (−a, a)

)
=
√

detGdxdu

and

dΣ =
√

det gdx,

we have

detG = (1− 2Mu+Ku2)2 det g.

Lemma 1.2.4. Assume that |u| < a. Then the metric G of the Σ × (−a, a) can be
estimated by the metric g of the surface Σ as follows:

C−
√

det g ≤
√

detG ≤ C+

√
det g, (1.2.6)

where C± := (1± aρ−1
m )2 .
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Proof. We have

|u| < a < ρm :=
(
max

{
‖k1‖∞, ‖k2‖∞

})−1
,

ρ−1
m = max

{
‖k1‖∞, ‖k2‖∞

}
.

And
k1 ≤ ‖k1‖∞ ≤ ρ−1

m ,

(If Σ is a plane we can set ρm =∞, ρ−1
m = 0).

Thus

|uk1| ≤ aρ−1
m ⇔ −aρ−1

m ≤ uk1 ≤ aρ−1
m

⇔ 1− aρ−1
m ≤ 1− uk1 ≤ 1 + aρ−1

m

and similarly

1− aρ−1
m ≤ 1− uk2 ≤ 1 + aρ−1

m .

Not that all the elements are positive because aρ−1
m < 1.

This implies

(1− aρ−1
m )2 ≤ (1− uk1)(1− uk2) ≤ (1 + aρ−1

m )2

(1− aρ−1
m )2 ≤ (1− 2uM + u2K) ≤ (1 + aρ−1

m )2. (1.2.7)

Since g is a Riemannian metric, it is positive definite, so the proof is completed by using
the remark above. �

Finally, we can prove the following Lemma:

Lemma 1.2.5. The map L : Σ× (−a, a)→ R3 is an immersion.

Proof. Recall that L is an immersion if for each point (x, u) ∈ Σ × (−a, a) the map
dL(x,u) : T(x,u)

(
Σ× (−a, a)

)
→ TL(x,u)(Ω) = R3 is injective.

This follows from the fact that detG 6= 0, where it is proved in Lemma 1.2.4. �

1.3 Quadratic Forms and Self-Adjoint Operators

In this section we will recall some definitions and important propositions about quadratic
forms and self-adjoint operators. (For more details see [CL90], [RS80]and [RS78]).

Definition 1.3.1. A quadratic form is a map q : D(q)×D(q)→ C, where D(q) is a linear
subset of a Hilbert space H called the domain of the form q, such that q(., ψ) is conjugate
linear and q(ϕ, .) is linear for all ϕ,ψ ∈ D(q).
q is said to be:
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a) Densely defined if D(q) = H.

b) Symmetric if q(ϕ,ψ) = q(ψ,ϕ).

c) non-negative if q(ϕ,ϕ) ≥ 0 for all ϕ ∈ D(q).

d) Semibounded (from below) if there exists M ∈ R, such that q(ϕ,ϕ) ≥ −M‖ϕ‖2 for all
ϕ ∈ D(q).

Definition 1.3.2. Let q be a semibounded quadratic form. q is called closed if the vector
space D(q) is complete with respect to the norm

‖ϕ‖(q) =
[
q(ϕ,ϕ) + (M + 1)‖ϕ‖2

] 1
2 .

Definition 1.3.3. Let A be a non-negative, self-adjoint operator. Then the quadratic form
q defined by D(q) = D(A

1
2 ) and

q(ϕ,ψ) = 〈A
1
2ϕ,A

1
2ψ〉 for ϕ,ψ ∈ D(A

1
2 )

is a closed non-negative form, and we say that it is the quadratic form of the operator A.

Remark 1.3.4. The right hand side of the last equation will very often be denoted 〈Aϕ,ψ〉
even though ϕ may not belong to the domain of A.

Theorem 1.3.5. If q is a closed and semibounded quadratic form, then q is the quadratic
form of a unique self-adjoint operator.

Proof. See [RS80]

Moreover, let us recall the definition of Sobolev spaces and some related notations.

Definition 1.3.6. Let Λ ⊂ Rn be an open set and let m ∈ N0. Hm(Λ) is the set of
functions f ∈ L2(Λ) whose distributional derivatives Dαf are in L2(Λ) for all α with
|α| ≤ m. Hm(Λ) is a Hilbert space with respect to the norm

‖f‖m =
( ∑
|α|≤m

∥∥Dαf
∥∥2

2

)1/2
.

Hm
0 (Λ) is defined to be the completion of C∞0 (Λ) in the norm ‖ · ‖m. Hm(Λ) and Hm

0 (Λ)
are called Sobolev spaces.

In general, Hm
0 (Λ) is proper subset of Hm(Λ).

Proposition 1.3.7. Let Λ be an open set and suppose that m ≥ j ≥ 0. Then:

a) Hm
0 (Λ) ⊂ Hm(Λ).

b) Hm(Λ) ⊂ Hj(Λ).
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c) Hm
0 (Λ) ⊂ Hj

0(Λ).

Proof. (a), (b), and (c) follow immediately from the definitions.

Two important examples of self-adjoint operators are the Dirichlet and Neumann Lapla-
cian which we define now.

Definition 1.3.8. Let Λ be an open subset of Rn.

i) The Dirichlet Laplacian for Λ, −∆Λ
D, is the unique self-adjoint operator on L2(Λ)

corresponding to the quadratic form

q(ψ,ϕ) :=

∫
Λ

〈∇ψ,∇ϕ〉dΛ with domain D(q) := H1
0 (Λ).

ii) The Neumann Laplacian for Λ, −∆Λ
N , is the unique self-adjoint operator on L2(Λ)

whose quadratic form is given by

q(ψ,ϕ) :=

∫
Λ

〈∇ψ,∇ϕ〉dΛ on the domain D(q) := H1(Λ).

An important property of the Dirichlet and Neumann boundary conditions is that
they decouple the space in the sense as in the following Proposition 1.3.10. To be precise
about the decoupling we make some preliminary remarks about direct sums of self-adjoint
operators.

Definition 1.3.9. Let H = H1 ⊕ H2 be a direct sum of Hilbert spaces, and let A1 be a
self-adjoint operator on H1, A2 a self-adjoint operator on H2. Let A be the operator with
domain

D(A) =
{

(ϕ,ψ) | ϕ ∈ D(A1), ψ ∈ D(A2)
}

defined by
A(ϕ,ψ) = (A1ϕ,A2ψ).

We shall write A = A1 ⊕A2.

The properties of A1 ⊕A2 include:

1) A1 ⊕A2 is self-adjoint.

2) q(A1 ⊕A2) = q(A1)⊕ q(A2).

3) If (ϕ,ψ) ∈ D(A1)⊕D(A2), then(
(ϕ,ψ), (A1 ⊕A2)(ϕ,ψ)

)
= (ϕ,A1ϕ) + (ψ,A2ψ)

Proposition 1.3.10. Let Λ1 and Λ2 be disjoint open sets. Then

L2(Λ1 ∪ Λ2) = L2(Λ1)⊕ L2(Λ2).

Under this decomposition, it holds

−∆Λ1∪Λ2
D = −∆Λ1

D ⊕−∆Λ2
D

−∆Λ1∪Λ2
N = −∆Λ1

N ⊕−∆Λ2
N
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Proof. (See [RS78] Proposition 3, Page 269)

Another important property is that the Laplace operator with Dirichlet boundary con-
dition is larger than the Laplace operator with Neumann boundary condition. But to
make this fact rigorous we need some sort of order on operators or quadratic forms. More
precisely:

Definition 1.3.11. Let A and B be self-adjoint operators on H bounded from below. We
say that A ≤ B if and only if:

i) D(B) ⊂ D(A),

ii) for all ψ ∈ D(B), one has (Aψ,ψ) ≤ (Bψ,ψ).

The typical examples include the Dirichlet and Neumann Laplacians for bounded domains.
In fact, from the definitions immediately get:

Proposition 1.3.12. If Λ and Λ′ are bounded domains such that Λ ⊂ Λ′ then one has:

0 ≤ −∆Λ′
D ≤ −∆Λ

D

and for each bounded domain Λ:

0 ≤ −∆Λ
N ≤ −∆Λ

D

which goes under the name of Dirichlet- Neumann bracketing.

Proof. (See [RS78] Proposition 4, Page 270)

1.4 The Hamiltonian on the Layer

After these preliminaries let us define the Hamiltonian H of our model.
The Hamiltonian H is the Dirichlet Laplacian

H := −∆Ω
D on L2(Ω), (1.4.1)

which is defined for an open set Ω ⊂ R3, whose the associated quadratic form is

q(ψ,ϕ) :=

∫
Ω

〈∇ψ,∇ϕ〉dΩ with domain D(q) := H1
0 (Ω).

Here∇ is the gradient corresponding to the metric geucl and 〈., .〉 denotes the inner product
in the manifold Ω induced by geucl, the associated norm will be denoted by |.|. Similarly,
the inner product and the norm in the Hilbert space L2(Ω) will be benoted by (., .) and
‖.‖, respectively. We shall sometimes abuse the notation slightly by writing (., .) =

∫
Ω

|.|dΩ.

A natural way to investigate the operator (1.4.1) is to pass to the coordinates (x, u) on
Ω̃ = Σ× (−a, a) in which it acquires the Laplace-Beltrami form

H̃ := −∆Ω̃
D = − 1√

detG

[∑
∂i
(√

detGGij∂j
)]
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on L2
(
U × (−a, a),

√
detGdxdu

)
, where we denote by (xµ) ≡ (x1, x2) local coordinates for

U ⊂ Σ and by Gij the coefficients of the inverse of the matrix Gij (which is given in the

equation 1.2.4) in the coordinates (xi) ≡ (xµ, u) for Ω̃. Then −∆Ω̃
D splits into a sum of

two parts

−∆Ω̃
D = − 1√

detG

[∑
∂µ
(√

detGGµν∂ν
)

+ ∂u
(√

detGGuu∂u
)]
.

We will denoted by

−∆Σ = − 1√
detG

∑
∂µ
(√

detGGµν∂ν
)

−∆u = − 1√
detG

∂u
(√

detGGuu∂u
)

= − 1

(1− 2Mu+Ku2)
√

det g

[
(−2M + 2uK)

√
det g∂u + (1− 2uM + u2K)

√
det g∂2

u

]
by using the fact that

√
det g does not depend on u, then

−∆u = 2Mu∂u − ∂2
u

where

Mu :=
M −Ku

1− 2Mu+Ku2
.

Then, we can write

−∆Ω̃
D = −∆Σ + 2Mu∂u − ∂2

u. (1.4.2)

The above coordinate change is nothing else than the unitary transformation

Ũ : L2(Ω, dΩ)→ L2
(
Σ× (−a, a),

√
detGdxdu

)
ψ 7→ Ũψ := ψ ◦ L,

which relates the two operators by H̃ = Ũ(−∆Ω
D)Ũ−1.

Lemma 1.4.1. The mean curvature and the Gauss curvature of the parallel surface L(Σ×
{u}) are given respectively:

Mu =
M −Ku

1− 2Mu+Ku2
, (1.4.3)

Ku =
K

1− 2Mu+Ku2
. (1.4.4)

Proof. Fix u, denote for the moment by F = Lu = id + un the map that sends a
point on Σ to the corresponding point on the parallel surface Σu = L(Σ× {u}).
Now the normal vector to Σu is the same as the normal to Σ at the corresponding point
(as we see in the Proof of the Lemma 1.2.2). In other words, if we denote for the moment
the normal vector field to Σu by nu, then for all x we have

nu
(
F (x)

)
= n(x).
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Now differentiate this expression with respect to x to obtain

d
(
nu ◦ F

)
= dn,

(
dnu|F

)(
dF
)

= dn (chain rule),
(
dnu|F

)(
dLu

)
= dn.

Using the definition of the Weingarten map Lu of Σu, we have

Lu = −(dnu|F ),

and we know that

(I − uL) = (dLu),

thus we get

−Lu(I − uL) = −L⇔ Lu(I − uL) = L

⇔ Lu = L(I − uL)−1.

Since the matrix of the Weingarten map L has the principle curvatures k1, k2 as eigenval-
ues, then we can write in a basis of eigenvalues

(I − uL)−1 =

(
1− uk1 0

0 1− uk2

)−1

=
1

det(I − uL)

(
1− uk2 0

0 1− uk1

)
and we obtain

Lu =
1

det(I − uL)

[(
k1 0
0 k2

)(
1− uk2 0

0 1− uk1

)]

=
1

1− 2Mu+Ku2

[(
k1 − uk1k2 0

0 k2 − uk1k2

)]
.

Moreover, denoted by M ′u the mean curvature of Σu has by definition

M ′u =
1

2
trLu

and thus

M ′u =
1

2(1− 2Mu+Ku2)
(k1 + k2 − 2uk1k2)

=
2M − 2uK

2(1− 2Mu+Ku2)

=
M − uK

1− 2Mu+Ku2
= Mu.
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Also, the Gauss curvature of the parallel surface L(Σ× {u}) is given by

Ku = detLu

=
1

(1− 2Mu+Ku2)2

(
k1k2 − uk1k2(k1 + k2) + u2k2

1k
2
2

)

=
K(1− 2Mu+Ku2)

(1− 2Mu+Ku2)2

it follows that

Ku =
K

1− 2Mu+Ku2
. �
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Chapter 2

The Spectrum

Relations between the geometry of a quantum layer Ω in Rd, boundary conditions at ∂Ω,
and spectral properties of the corresponding Laplacian are one of the vintage problems
of mathematical physics. Recent years brought new motivations and focused attention to
aspects of the problem which attracted little attention earlier.

We consider one of the most attractive and important objects from the theory of func-
tional analysis: the spectra for self-adjoint operators on Hilbert space. The spectrum of an
operator of a finite dimensional vector space is precisely the set of eigenvalues. However an
operator on an infinite dimensional space may have additional elements in its spectrum,
and may have no eigenvalues.

In this chapter we start by recalling the definitions of the spectrum of a self-adjoint opera-
tor and its subsets, which are essential spectrum and discrete spectrum. Then we display
some important properties of the essential and discrete spectrum of self-adjoint operators
which we need them in our work. Finally, we calculate the essential spectrum of the
Dirichlet Laplacian on the planer layer Ω0 := R2 × (−a, a).

For more details about the spectrum of self-adjoint operators on Hilbert spaces and its
properties see [RS80] and [RS78].

2.1 The Spectrum of Self-Adjoint Operators

We will mainly be interested in studying self-adjoint operators, whose spectrum is always
a non-empty subset of the real numbers.

Definition 2.1.1. Let A be a self-adjoint operator on a Hilbert space H. A real number λ
is said to be in the resolvent set ρ(A) of A if λI −A is a bijection with a bounded inverse.
Rλ(A) = (λI −A)−1 is called the resolvent of A at λ. If λ 6∈ ρ(A), then λ is said to be in
the spectrum of A, denoted by σ(A).

Remark 2.1.2. Let A : D ⊂ H → H be a linear operator. Then the operator λI − A :
D → H has bounded inverse, if there exists a bounded operator S : H → H such that:

S(λI −A) = ID, (λI −A)S = IH.

23
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Remark 2.1.3. If λ is an eigenvalue of A, then the operator λI −A is not injective, and
therefore its inverse (λI − A)−1 is not defined. However, the converse statement is not
true: the operator λI − A may not have an inverse and it is injective but not surjective,
even if λ is not an eigenvalue. Thus the spectrum of an operator always contain all its
eigenvalues, but is not limited to them.

The spectrum of a self-adjoint operator decomposes into two necessarily disjoint subsets
as follows:

Definition 2.1.4. Let A be a self-adjoint operator.

a) The discrete spectrum of A, σdisc(A), is defined to be those eigenvalues λ of A which are
of finite multiplicity, i.e., {ψ|Aψ = λψ} is finite dimensional, and are isolated points
of the spectrum.

b) The essential spectrum of A, σess(A), is the complement the σdisc(A) in σ(A), σess =
σ(A) \ σdisc(A).

Remark 2.1.5. If σess(A) = ∅, then A is said to have purely discrete spectrum. If
σdisc(A) = ∅, then A is said to have purely essential spectrum.

The following Theorem is called the Weyl’s criterion theorem, which give the necessary
and sufficient condition for the λ in spectrum:

Theorem 2.1.6. Let A be a self-adjoint operator on a Hilbert space H. Then:

λ ∈ σ(A)⇔ ∃{ψn}∞n=1 so that ‖ψn‖ = 1 and lim
n→∞

‖(A− λ)ψn‖ = 0.

⇔ ∃ψn and C > 0 so that ‖ψn‖ ≥ C,∀n and lim
n→∞

‖(A− λ)ψn‖ = 0.

2.2 The Discrete Spectrum of Self-Adjoint Operators

In this section we deal with self-adjoint operators which are bounded from below. The
min-max principle is an important and useful tool for studying and comparing discrete
spectrum of these operators, see [RS78].

Theorem 2.2.1. (min-max principle, operator form) Let A be a self-adjoint operator that
is bounded from below, i.e., A ≥ cI for some c. Define

µn(A) = sup
ϕ1,..,ϕn−1

UA(ϕ1, .., ϕn−1)

where
UA(ϕ1, .., ϕn−1) = inf

ψ∈D(A);‖ψ‖=1

ψ∈[ϕ1,..,ϕn−1]⊥

(ψ,Aψ)

[ϕ1, .., ϕn−1]⊥ is shorthand for {ψ|(ψ,ϕi) = 0, i = 1, ..., n − 1}. Note that the ϕi are not
necessarily independent.

Then, for each fixed n, either:
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a) there are n eigenvalues (counting degenerate eigenvalues a number of times equal to
their multiplicity) below the bottom of the essential spectrum, and µn(A) is the nth
eigenvalue counting multiplicity;

or

b) µn is the bottom of the essential spectrum, i.e., µn = inf{λ|λ ∈ σess(A)} and in that
case µn = µn+1 = µn+2 = · · · and there are at most n − 1 eigenvalues (counting
multiplicity) below µn.

Proof. See [RS78], Sec. XIII. 1.

From the definition of the µn(A), we immediately have:

Lemma 2.2.2. Let A and B be self-adjoint operators on H that are bounded from below.
If A ≤ B then µn(A) ≤ µn(B), for all n ≥ 1.

Proof. From the definition of A ≤ B, we have

(ψ,Aψ) ≤ (ψ,Bψ) ∀ψ ∈ D(B).

Because D(B) ⊆ D(A), then we get

inf
ψ∈D(A)
‖ψ‖=1

(ψ,Aψ) ≤ inf
ψ∈D(B)
‖ψ‖=1

(ψ,Aψ) ≤ inf
ψ∈D(B)
‖ψ‖=1

(ψ,Bψ),

and so
sup

ϕ1,...,ϕn−1

inf
ψ∈D(A),‖ψ‖=1

ψ∈[ϕ1,..,ϕn−1]⊥

(ψ,Aψ) ≤ sup
ϕ1,...,ϕn−1

inf
ψ∈D(B),‖ψ‖=1

ψ∈[ϕ1,..,ϕn−1]⊥

(ψ,Bψ),

which implies
µn(A) ≤ µn(B) for all n ≥ 1. �

We complete this section by giving criteria that guarantee that a semibounded self-adjoint
operator has purely discrete spectrum.

Theorem 2.2.3. Let Λ be a bounded open set in Rn. The Dirichlet and Neumann Lapla-
cian −∆Λ

D,−∆Λ
N has compact resolvent,

Proof. see [RS78], Sec.XIII.14.

Corollary 2.2.4. If the Dirichlet or Neumann Lablacian has compact resolvent, then it
has purely discrete spectrum and a complete set of eigenfunctions.

2.3 The Essential Spectrum of Self-Adjoint Operators

In this section we will recall some methods of determining the essential spectrum for a
self-adjoint operator A and display important properties that we will need later.

Theorem 2.3.1. Let A be a self-adjoint operator. Then λ ∈ σess(A) if and only if there
exists {ψn}∞n=1 so that ‖ψn‖ = 1, limn→∞ ‖(A − λ)ψn‖ = 0 and {ψn} can be chosen so
that ψn → 0 weakly.
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A sequence as in Theorem 2.3.1 is called a Weyl sequence for A at λ.

Remark 2.3.2. Weak convergence of a sequence ψn ∈ H to an element ψ means that∫
Rd

ψnfdµ→
∫
Rd

ψfdµ

for all function f ∈ L2 (or, more typically, for all f in a dense subset of L2 such as a
space of Schwarz functions, if the sequence {ψn} is bounded).

Another theorem that determiner the essential spectrum for self-adjoint operators is
given in [Don81] as follows:

Theorem 2.3.3. A necessary and sufficient condition for λ ∈ σess(A) of the self-adjoint
operator A is that, for all ε > 0 there exist an infinite dimensional subspace S ⊂ D(A),
for which:

‖(A− λI)f‖ ≤ ε‖f‖, f ∈ S.

Now, to state the classical Weyl theorem which we will use in Section 4, we need the
following definition:

Definition 2.3.4. Let A be a self-adjoint operator and A ≥ 0. An operator B with
D(A) ⊂ D(B) is called relatively compact with respect to A if and only if B(A + 1)−1 is
compact.

Theorem 2.3.5. (classical Weyl theorem) Let A be a self-adjoint operator and let B be a
relatively compact operator with respect to A. then

σess(A) = σess(A+B).

Proof. See [RS78], Sec. XIII. 4.

Remark 2.3.6. If A is self-adjoint and B is compact then σess(A) = σess(A + B). This
holds because B is automatically relatively compact.

Example 2.3.7. Let f ∈ C∞0 (Rn), then Mf the multiplication operator is relatively com-
pact with respect to −∆.

The proof of the Example (see [RS78]).

Finally, by using the Weyl sequence, we get the following proposition:

Proposition 2.3.8. Let H = H1 ⊕H2, and let A1 be a self-adjoint operator on H1, A2 a
self-adjoint operator on H2. Let A = A1 ⊕A2. Then:

σess(A) = σess(A1) ∪ σess(A2).
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Proof. ′ ⊆′, by the theorem 2.3.1 if λ ∈ σess(A) then there is a Weyl sequence {ψn}
for A at λ, where ψn = (ψ1,n, ψ2,n) ∈ D(A) with ψi,n ∈ D(Ai), i = 1, 2.

So that

lim
n→∞

∥∥(A− λ)ψn
∥∥2

= 0

⇔ lim
n→∞

∥∥((A1 ⊕A2)− λ
)(
ψ1,n, ψ2,n

)∥∥2
= 0

⇔ lim
n→∞

∥∥(A1 − λ)ψ1,n, (A2 − λ)ψ2,n

∥∥2
= 0

⇔ lim
n→∞

∥∥(A1 − λ)ψ1,n

∥∥2
= 0 and lim

n→∞

∥∥(A2 − λ)ψ2,n

∥∥2
= 0.

Since for each n, ‖ψ1,n‖2 + ‖ψ2,n‖2 = 1, therefore ‖ψ1,n‖2 ≥ 1
2 or ‖ψ2,n‖2 ≥ 1

2 .

Now, let

S1 =
{
m1 : ‖ψ1,m1‖2 ≥

1

2

}
S2 =

{
m2 : ‖ψ2,m2‖2 ≥

1

2

}
then S1 ∪ S2 = N therefore, S1 or S2 must be infinite. Then it follows from theorem 2.1.6
that λ ∈ σ(A1) or λ ∈ σ(A2).

Now, without loss of generality, assume that S1 is infinite that follows λ ∈ σ(A1) and
there exists ψ1,n satisfying the Weyl’s criterion. Since λ also in σess(A) then, for all
f = (f1, f2) ∈ H, we have

〈f, ψn〉 −−−→
n→∞

0.

Let f = (f1, 0), we get〈
(f1, 0), (ψ1,n, ψ2,n)

〉
−−−→
n→∞

0⇔ 〈f1, ψ1,n〉 −−−→
n→∞

0.

It follows that λ ∈ σess(A1).
Similarly, by assume that λ ∈ σ(A2) we get as above that λ ∈ σess(A2).

′ ⊇′, let λ ∈ σess(A1) ∪ σess(A2) then,
either, λ ∈ σess(A1) by theorem 2.3.1 is equivalent to the existence of a Weyl sequence
{ψ1,n} ∈ H1 for A1 at λ. Then it is easy to check that {ψn} = {(ψ1,n, 0)} ∈ H is a Weyl
sequence for A at λ. so we get λ ∈ σess(A).
or, λ ∈ σess(A2), similarly as above we get λ ∈ σess(A). �



28 CHAPTER 2. THE SPECTRUM

2.4 The Essential Spectrum of the Dirichlet Laplacian on
the Planar Layer Ω0 = R2 × (−a, a)

First, we compute the essential spectrum of the Laplacian −∆ on Rd.

Lemma 2.4.1. Let −∆ be the Laplacian considered as self-adjoint operator in L2(Rd)
with domain the Sobolev space H2(Rd). Then σ(−∆) = σess(−∆) = [0,∞).

Proof. We first consider ν ≥ 0. The functions w(x) = eixξ are the solutions to

−∆w = νw for ν = |ξ|2.

For fixed ν ∈ [0,∞), we take

ψn(x) =
1

n
d
2

ζ
(x
n

)
w(x) =

1

n
d
2

ζ
(x
n

)
eixξ,

where ζ(x) is a smooth function supported on a cube [1, 2]d and∫
Rd

∣∣ζ(x)
∣∣2dx = 1,

then ζ
(
x
n

)
is supported on [n, 2n]d and

1

nd

∫
Rd

∣∣∣ζ(x
n

)∣∣∣2dx = 1.

Because ψn(x) ∈ C∞0 (Rd) we have ψn(x) ∈ H2(Rd).

Now, we have ∥∥ψn(x)
∥∥2

=
1

nd

∫
Rd

∣∣∣ζ(x
n

)
eixξ
∣∣∣2dx

=
1

nd

∫
Rd

∣∣∣ζ(x
n

)∣∣∣2∣∣∣eixξ∣∣∣2dx,
where |eixξ|2 = 1 and with the properties of ζ it follows∥∥ψn(x)

∥∥2
=

1

nd

∫
· · ·
∫

︸ ︷︷ ︸
d−times

∣∣∣ζ(x
n

)∣∣∣2dx1 . . . dxd = 1.

Moreover,∥∥∥(−∆− ν)ψn(x)
∥∥∥2

=
1

nd

∫
Rd

∣∣∣−∆
(
ζ
(x
n

))
eixξ − 2iξ∇

(
ζ
(x
n

))
eixξ + νζ

(x
n

)
eixξ − νζ

(x
n

)
eixξ
∣∣∣2dx

=
1

nd

∫
Rd

∣∣∣ 1

n2

(
−∆ζ

)(x
n

)
− 2iξ

n

(
∇ζ
)(x

n

)∣∣∣2∣∣∣eixξ∣∣∣2dx

=

∫
Rd

∣∣∣ 1

n2

(
−∆ζ

)(
y
)
− 2iξ

n

(
∇ζ
)(
y
)∣∣∣2dy,
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hence
lim
n→∞

∥∥(−∆− ν)ψn(x)
∥∥2

= 0,

thus ν ∈ σ(−∆).

Now we show that ψn → 0 weakly. Indeed, for any function f ∈ S(Rd), the set of
Schwarz functions, then there are constants Md such that∣∣f(x)

∣∣ ≤Md

∣∣x∣∣−d as x→∞.

Then, by using the Schwarz inequality and polar coordinates, we get∣∣∣∣ ∫
Rd

ψnfdx

∣∣∣∣ =

∣∣∣∣ ∫
|x|∈[n,2n]

ψnfdx

∣∣∣∣

≤
( ∫
|x|∈[n,2n]

∣∣ψn∣∣2dx) 1
2
( ∫
|x|∈[n,2n]

∣∣f ∣∣2dx) 1
2

≤Md

( ∫
|x|∈[n,2n]

∣∣x∣∣−2d
dx

) 1
2

= Md

( 2n∫
n

r−2drd−1dr

) 1
2

and an easy computation shows that

2n∫
n

r−d−1dr = −1

d

[
1− 2d

(2n)d

]

which tends to 0 as n→∞. This implies ν ∈ σess(−∆), and so

[0,∞) ⊂ σess(−∆).

Moreover, since −∆ is self-adjoint, it holds σ(−∆) ⊂ R, and because of −∆ ≥ 0, i.e.,
(−∆φ, φ) ≥ 0, we have σ(−∆) ⊂ [0,∞). Then

σess(−∆) ⊂ [0,∞).

From the above it now follows that

σess(−∆) = [0,∞). �

Finally, we will use the argument above in combination with some basic tools from the
theory of partial differential equations to prove the following theorem:

Lemma 2.4.2. The spectrum of −∆ on the planar layer Ω0 := R2×(−a, a), with Dirichlet
conditions is purely essential and coincides with the interval

[
( π2a)2,∞

)
.
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Proof. In order to show this, we first look for solutions to{
−∆φ(x, u) = λφ(x, u), in R2 × (−a, a)

φ(x, u) = 0, on ∂
(
R2 × (−a, a)

) (2.4.1)

which have the multiplicative form

φ(x, u) = η(x)χ(u),

where φ(x, u) have separated variables x ∈ R2 and u ∈ (−a, a).

Then, we have
−∆φ(x, u) = −∆η(x)χ(u)− η(x)χ′′(u),

hence,
−∆η(x)χ(u)− η(x)χ′′(u) = λη(x)χ(u).

This holds if and only if

− ∆η(x)

η(x)
− λ =

χ′′(u)

χ(u)
(2.4.2)

for all x ∈ R2 and u ∈ (−a, a) such that η(x), χ(u) 6= 0.

Now observe that the left hand side of (2.4.2) depends only on x and the right hand
side depends only on u. This is impossible unless each side is constant, say

−∆η(x)

η(x)
− λ = −µ =

χ′′(u)

χ(u)
for all x ∈ R2 and u ∈ (−a, a).

Then
∆η(x) + (λ− µ)η(x) = 0 (2.4.3)

χ′′(u) + µχ(u) = 0. (2.4.4)

We must solve these equations for η, χ and µ.

Notice that Dirichlet conditions for φ(x, u) at u = ±a imply

χ(a) = χ(−a) = 0,

thus a solution of (2.4.4) is of the form

χk(u) =

√
1

a
sin
((
u+ a

)πk
2a

)
,

for k = 1, 2, ..., (see [Cha84]).

Using (2.4.4) to compute µk, we arrive at

−
(πk

2a

)2
√

1

a
sin
((
u+ a

)πk
2a

)
+ µk ·

√
1

a
sin
((
u+ a

)πk
2a

)
= 0,

hence

µk =
(πk

2a

)2
. (2.4.5)

We now divide the rest of the proof into two parts:
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1.
[
( π2a)2,∞

)
⊆ σess(−∆Ω0

D )

2. σess(−∆Ω0
D ) ⊆

[
( π2a)2,∞

)
1. If λ ∈

[
( π2a)2,∞

)
and following λ ≥ µ1 then from the Lemma 2.4.1 there is a Weyl

sequence ψn for −∆ at λ− µ1 on R2.

We now seek a Weyl sequence {ΨN} for −∆ at λ. Let

ΨN (x, u) = ψN (x)χ1(u)

where

χ1(u) =

√
1

a
sin
( π

2a
u+

π

2

)
=

√
1

a
cos
( π

2a
u
)
.

We see that,

∥∥Ψn(x)
∥∥2

=

∫
R2

a∫
−a

∣∣ψn(x)χ1(u)
∣∣2dxdu

=

∫
R2

∣∣ψn(x)
∣∣2dx a∫

−a

∣∣χ1(u)
∣∣2du = 1

Moreover,

∥∥(−∆− λ)Ψn(x, u)
∥∥2

=

∫
R2

a∫
−a

∣∣∣(−∆ψn(x)
)
χ1(u) + ψn(x)

(
−∆χ1(u)

)
− λΨn(x, u)

∣∣∣2dxdu

=

∫
R2

a∫
−a

∣∣∣(−∆ψn(x)
)
χ1(u) + µ1ψn(x)χ1(u)− λΨn(x, u)

∣∣∣2dxdu

=

∫
R2

∣∣∣(−∆− (λ− µ1)
)
ψn(x)

∣∣∣2dx a∫
−a

∣∣χ1(u)
∣∣2du

since ψn(x) is a weyl sequence of λ− µ, and

a∫
−a

∣∣χ1(u)
∣∣2du = 1.

Then

lim
n→∞

∥∥∥(−∆− (λ− µ)
)
ψn(x, u)

∥∥∥ = 0.
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and it follows that
lim
n→∞

∥∥∥(−∆− λ
)
Ψn(x, u)

∥∥∥ = 0.

Thus λ ∈ σ(−∆Ω0
D ) which shows that[( π

2a

)2
,∞
)
⊆ σ(−∆Ω0

D ) (I)

The proof of the first part is completed by showing that Ψn tends weakly to 0. Let
f(x, u) ∈ S

(
Rn × (−a, a)

)
. Similarly as above

∣∣∣ ∫
R2

a∫
−a

Ψn(x, u)f(x, u)
∣∣∣ −−−→
n→∞

0.

This implies that λ− µ ∈ σess(−∆) and therefore,[( π
2a

)2
,∞
)
⊆ σess(−∆Ω0

D ). (II)

2. To prove the second part of the theorem, we want to show that inf σ(−∆Ω0
D ) ≥ ( π2a)2.

We have:

(
−∆φ(x, u), φ(x, u)

)
=

∫
R2

a∫
−a

∣∣∇φ(x, u)
∣∣2dxdu

=

∫
R2

a∫
−a

[∣∣∇R2φ(x, u)
∣∣2 +

∣∣∇uφ(x, u)
∣∣2]dxdu (*)

Since

inf σess

(
− d2

du2

)
D

= inf
ψ:ψ 6=0

ψ(.,±a)=0

a∫
−a

∣∣∇uφ(x, u)
∣∣2du

a∫
−a

∣∣φ(x, u)
∣∣2du =

( π
2a

)2
,

then, for any φ, φ(.,±a) = 0

a∫
−a

∣∣∇uφ(x, u)
∣∣2du ≥ ( π

2a

)2
a∫
−a

∣∣φ(x, u)
∣∣2du,

then ∫
R2

a∫
−a

∣∣∇uφ(x, u)
∣∣2dxdu ≥ ( π

2a

)2
∫
R2

a∫
−a

∣∣φ(x, u)
∣∣2dxdu =

( π
2a

)2∥∥φ(x, u)
∥∥2
,

and the first term of (?) is non-negative, we obtain

(−∆φ, φ) ≥
( π

2a

)2
‖φ‖2

i.e., inf σ(−∆Ω0
D ) ≥

(
π
2a

)2
, and hence

σ(−∆Ω0
D ) ⊆

[( π
2a

)2
,∞
)
. (III)
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From (I), (II) and (III) it follows that

σess(−∆Ω0
D ) =

[( π
2a

)2
,∞
)

and so the spectrum of the planar layer Ω0 := R2×(−a, a) is purely essential and coincides

with the interval
[(

π
2a

)2
,∞
)
.

Definition 2.4.3. The spectral threshold κ2
1 of the planar layer of width 2a is the first

eigenvalue of the Dirichlet Laplacian, i.e., κ2
1 :=

(
π
2a

)2
.

In what follows we will use the corresponding normalized eigenfunction given explicitly
by

χ1(u) :=

√
1

a
cosκ1u.
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Chapter 3

The Topology of Surfaces

In mathematics, specifically, in topology, a surface is a 2-dimensional topological manifold
such that each point has a neighbourhood homeomorphic to the Euclidean plane.

In the field of topology, one common problem is to find a classification of various topo-
logical spaces. For compact 2-manifolds there is a classification theorem , giving a simple
procedure for obtaining all possible compact 2-manifolds up to homeomorphy. Moreover,
by using the Euler characteristic for surfaces, this theorem enables us to decide whether
or not any two compact 2-manifolds are homeomorphic. This may be considered an ideal
theorem.

In this chapter, we define the Euler characteristic of a topological space, then we calcu-
late it in the special case of a triangulated compact surface, where this surface is defined
below. After that we display the classification theorem for compact connected surfaces
and for compact , connected surfaces with boundary. Finally, we give some remarks on
non-compact surfaces and use these tools to study some important topological properties
of our reference surface. Recall that this is a complete, connected and non-compact surface
with a finite total Gauss curvature.

For more details about the topology of surfaces, see [Mas89]. There all theorems given
below are proved (unless stated otherwise) and it is this monograph the figures were taken
from.

3.1 The Euler Characteristic of a Topological Space

The most familiar definition of the Euler characteristic of a topological space is as follows

Definition 3.1.1. The Euler characteristic of a topological space X, denoted by χ(X), is
defined as the alternating sum of Betti numbers

χ(X) =
∑
k≥0

(−1)kbk(X),

where the k-th Betti number bk(X) is the dimension of the homology group Hk(X). χ(X)
is only defined for spaces X which satisfy bk(X) <∞, for all k, and bk(X) = 0 for k ≥ k0

for some k0 ∈ N.

35
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For a surface, bi = 0 for i > 2, therefore its Euler characteristic is χ = b0 − b1 + b2.
An informal interpretation of the first three Betti numbers is:

. b0 is the number of connected components

. b1 is the number of two-dimensional or ”circular” holes

. b2 is the number of three-dimensional holes or ”voids”.

The calculation of Betti numbers for connected surfaces is studied in [Spr81], we only want
to give the following theorem since we will need it in our work:

Theorem 3.1.2. For any connected surface , b0 = 1. For any compact orientable surface,
b2 = 1. For any non-compact orientable surface, b2 = 0.

Proof. See [Spr81], chapter 5.

3.2 The Euler Characteristic of a Triangulated Compact
Surface

In this section we assume that the given surface is triangulated, i.e., divided up into
triangles which fit together nicely. Such a subdivision is very useful in the study of
compact surfaces in general.

Definition 3.2.1. A triangulation of a compact surface S consists of a finite family of
closed subsets {T1, T2, . . . , Tn} that cover S, and a family of homeomorphisms ϕi : T ′i →
Ti, i = 1, . . . , n, where each T ′i is a triangle in the plane R2 (i.e., a compact subset of R2

bounded by three distinct straight lines). The Ti are called ”triangles”. The subsets of the
Ti that are the images of the vertices and edges of the triangle T ′i under ϕi are also called
vertices and edges, respectively. Finally, it is required that any two distinct triangles, Ti
and Tj, either be disjoint, have a single vertex in common, or have one entire edge in
common.

Perhaps the conditions in the definition are clarified by Figure 3.2.1, which shows three
unallowable types of intersection of triangles.

 

Figure 3.2.1: Some types of intersection forbidden in a triangulation.
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Theorem 3.2.2. (T.Rado 1925) For any compact surface S, there exists a triangulation
of S.

Now, we calculate the Euler characteristic of a triangulated surface.

Theorem 3.2.3. Let S be a compact surface with triangulation {T1, . . . , Tn}. Let

v = total number of vertices of S,

e = total number of edges of S,

t = total number of triangles (in this case, t = n).

Then the Euler characteristic of S is

χ(S) = v − e+ t (3.2.1)

Corollary 3.2.4. The number v − e + t depends only on S, not on the triangulation
chosen.

Definition 3.2.5. The quotient space of the 2-sphere S2 obtained by identifying every pair
of diametrically opposite points is called the projective plane. We shall also refer to any
space homeomorphic to this quotient space as the projective plane.

Example 3.2.6. Figure 3.2.2 suggests uniform methods of triangulating the sphere, tours,
and projective plane so that we may make the number of triangles as large as we please.
Using such triangulations, we see that the Euler characteristics of the sphere, torus, and
projective plane are 2, 0, and 1, respectively. It also shows that the Euler characteristics
are independent of the number of vertical and horizontal dividing lines in the diagrams for
the sphere and torus, and of the number of radial lines or concentric circles in the case of
the diagram for the projective plane.

3.3 Statement of Classification theorem of Compact, Con-
nected Surfaces

Our present goal is to find an easy method for distinguishing between compact surfaces.
In order to state our main result we first need to define the connected sum of two such
surfaces.

Definition 3.3.1. Let S1 and S2 be disjoint compact surfaces. The connected sum of S1

and S2, denoted S1#S2, is constructed by removing a disk from each one, and then joining
them along the boundaries of the holes.

To be precise see figure 3.3.1 for a schematic display of the connected sum of two tori.
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Figure 3.2.2: Computing the Euler characteristic from a triangulation. (a) Sphere. (b)
Torus. (c) Projective plane.

Proposition 3.3.2. Let S1 and S2 be compact surfaces. The Euler characteristic of S1

and S2 is related to that of the connected sum, S1#S2, by the formula

χ(S1#S2) = χ(S1) + χ(S2)− 2.

Proof. Assume S1 and S2 are triangulated. Form their connected sum by removing
from each the interior of a triangle, and then identifying edges and vertices of the bound-
aries of the removed triangles. The formula then follows by counting vertices, edges, and
triangles before and after the formation of the connected sum. More specifically, given
equation (3.2.1), by identifying three pairs of vertices and three pairs of edges, we have

χ(S1#S2) = (v1 + v2 − 3)− (e1 + e2 − 3) + (f1 − 1 + f2 − 1)

where v1, e1, and f1 are the numbers of vertices, edges, and faces, respectively, of S1, and
v2, e2 and f2 are the numbers of vertices, edges, and faces, respectively, of S2. simplifying



3.3. CLASSIFICATION THEOREM OF COMPACT, CONNECTED SURFACES 39

Figure 3.3.1: (a) Two disjoint tori, T1 and T2. (b) Disjoint tori with holes cut out. (c)
The connected sum T1#T2.

the right hand-side, we have

χ(S1#S2) = χ(S1) + χ(S2)− 2

which is the desired result. �

We now return to our main problem, namely finding all compact connected surfaces.
Using connected sums there appear to be infinitely many different surfaces. The surfaces
obtained in this way are indeed all distinct, as is stated in the following theorem.

Theorem 3.3.3. (Classification Theorem For Compact Surfaces) Any compact, orientable
surface is homeomorphic to a sphere or a connected sum of tori. Any compact, nonori-
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entable surface is homeomorphic to the connected sum of projective planes. And the number
of tori respectively projective planes is uniquely determined by the surface.

Then, we have the following important result:

Theorem 3.3.4. Let S1 and S2 be compact surfaces. Then, S1 and S2 are homeomorphic
if and only if their Euler characteristics are equal and both are orientable or both are
nonorientable.

This is a topological theorem par excellence; it reduces the classification problem for
compact surfaces to the determination of the orientability and Euler characteristic. More-
over, Theorem 3.3.4 makes clear what are all possible compact surfaces.

We close this section by giving some standard terminology. A surface that is the con-
nected sum of n tori or n projective planes is said to be of genus n, whereas a sphere is
of genus 0. By using the Proposition 3.3.2, we can easily prove The relation between the
genus g and the Euler characteristic χ of a compact surface:

χ =

{
2− 2g in the orientable case,

2− g in the nonorientable case.

3.4 The Classification of Compact, Connected Surfaces with
Boundary

We define the notion of a manifold with boundary, which is a slight generalization of that
of a manifold.

Definition 3.4.1. A topological n-dimensional manifold with boundary is a Hausdorff
space such that each point has an open neighborhood homeomorphic either to the open disk
Un = {(x1, . . . , xn) ∈ Rn : |x| < 1} or to the space {x ∈ Un : x1 ≥ 0}.
The set of all points that have an open neighborhood homeomorphic to Un is called the
interior of the manifold, and the set of those points p that have an open neighborhood V
such that there exists a homeomorphism h of V onto {x ∈ Un : x1 ≥ 0} with h(p) =
(0, 0, . . . , 0) is called boundary of the manifold.

So we obtain a compact surface with boundary by selecting a finite number of disjoint
closed discs in a compact surface and removing their interiors. The number of boundary
components is equal to the number of discs chosen.
Conversely, assume that S is a compact surface with boundary and that the boundary has
k components k ≥ 1. Each boundary component is a compact, connected 1−manifold, i.e.,
a circle. It is clear that we obtain a compact surface S∗ if we take k closed discs and glue
the boundary of the ith disc to the ith component of the boundary of S. The topological
type of the resulting surface S∗ obviously depends only on the topological type of S.
What is not so obvious is that a sort of converse statement is true: The topological type
of the surface with boundary S depends only on the number of its boundary components
and the topological type of the surface S∗ obtained by gluing a disc onto each boundary
component.
We can state this in another way: If we start with a compact surface S∗ and construct
a surface with boundary by removing the interiors of k closed discs, which are pairwise
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disjoint, then the location of the discs that are to be removed does not matter. The
resulting manifold with boundary will be topologically the same no matter how the position
of the discs is chosen. We will state this result formally as follows:

Theorem 3.4.2. Let S1 and S2 be compact, connected surfaces with boundary and assume
that their boundaries have the same number of components. Then, S1 and S2 are homeo-
morphic if and only if the surfaces S∗1 and S∗2 (obtained by gluing a disc to each boundary
component) are homeomorphic.

The Euler characteristic of a triangulated surface with boundary is defined in exactly
the same way as in the case of a surface without boundary. With the use of the Euler
characteristic, we can give a complete set of invariants for the classification of compact
surfaces with boundary:

Theorem 3.4.3. Let S1 and S2 be compact, connected surfaces with boundary. Then, S1

and S2 are homeomorphic if and only if they have the same number of boundary compo-
nents, they are both orientable or nonorientable, and they have the same Euler character-
istic.

Proof. Let S be a compact, connected surface, with or without boundary. Assume
that S is given a definite triangulation, and that we form a new surface S′ with boundary
by removing the interior of one triangle, which is contained entirely in the interior of S.
It is clear that the boundary of S′ has one more component than the boundary of S, and
that

χ(S′) = χ(S)− 1,

i.e., the Euler characteristic is reduced by one.

It follows that, if we start with a triangulated surface S∗ (without boundary), and re-
move the interiors of k pairwise disjoint triangles, we obtain a surface S with boundary
such that

χ(S) = χ(S∗)− k.

According to the explanations before Theorem 3.4.2, we obtain in this way every surface
with boundary S whose boundary has k components. Thus, we see that the Euler char-
acteristic of S uniquely determines that of S∗ and vice versa.

Now, assume that S1 and S2 are homeomorphic, then the boundary of S1 is homeo-
morphic to the boundary of S2, it follows that they have the same number of boundary
components. By Theorem 3.4.2, S∗1 and S∗2 are homeomorphic and by Theorem 3.3.4
they have the same Euler characteristic and both are either orientable or non-orientable.
Because

χ(S1) = χ(S∗1)− k,

χ(S2) = χ(S∗2)− k,
(3.4.1)

S1 and S2 have the same Euler characteristic, and both are orientable or non-orientable.

Conversely, let S1 and S2 have the same number of boundary components and the same
Euler characteristic and assume both are orientable or non-orientable. Then by equations
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(3.4.1), S∗1 and S∗2 have the same Euler characteristic and both are orientable or non-
orientable. It follows from Theorem 3.3.4 that they are homeomorphic and from Theorem
3.4.2 that S1 and S2 homeomorphic. �

Definition 3.4.4. The genus of a compact surface S with boundary is defined to be the
genus of the compact surface S∗ obtained by attaching a disc to each boundary component
of S.

3.5 Remarks on Non-Compact Surfaces

We can divide non-compact surfaces into two large classes: those that have a countable
basis for their topology, and those that do not. Usually, it is assumed that there is a
countable basis of open sets and a theorem of Rado’ asserts that a surface can be trian-
gulated if and only if its topology has a countable basis.

Triangulation of a non-compact surface means the same as triangulation of a compact
surface, except that the number of triangles is necessarily infinite, and that it is further
required that each point has a neighborhood that meets only finitely many triangles.

The existence of triangulations for surfaces having a countable basis is very important
and many of the known results in the subject are only proved by using this fact. For the
remainder of this chapter we shall only consider such surfaces.

Because there is a classification theorem for compact surfaces, it is natural to inquire
wether or not there is a classification theorem for non-compact surfaces. Actually, there
is a classification theorem, but it does not seem to be easily applicable to problems that
arise in the subject. Although it would take us too far afield to give all the details, we can
explain the idea behind this theorem.

Definition 3.5.1. Let S be a non-compact surface. As usual, by a compactification of S
we mean a compact Hausdorff space X, which contains S as an open, dense subspace. Two
compactifications, X and Y , are regarded as equivalent if there exists a homeomorphism
h of X onto Y such that h|S is the identity map.

Example 3.5.2. Let S′ be a compact surface with boundary, and let S be its interior.
Then S′ is a compactification of S.

To state our next theorem, we need one more definition.

Definition 3.5.3. Let X be a topological space and let A be a subspace. A is said to be
nonseparating on X if, for any open connected subset U of X, U −A is connected.

Theorem 3.5.4. Let S be a non-compact surface. There exists a compactification X of
S, which has the following three properties:

1) X is locally connected, i.e., for any point x of X and neighborhood U of x, there is a
neighborhood V of x such that V is connected and contained in U .
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2) β(S) = X − S is totally disconnected, i.e., the connected components in β(S) are
one-point sets.

3) β(S) is nonseparating on X.

Moreover, any two compactifications X1 and X2 of S having these three properties are
equivalent.

Example 3.5.5. Let S′ be a compact, connected surface, and let A be a closed, totally
disconnected subset of S′. For example, A could a finite subset. Let S = S′−A, then it is
plausible, and can be proved, that S′ is a compactification of S having the three properties
stated in Theorem 3.5.4. Hence, we may take X = S′ and β(S) = A. In general, however,
X will not be a surface.

The space β(S) is called the ideal boundary or set of ends of S, its points called bound-
ary components or ends. Correspondingly, X is sometimes called the end-compactification
of S.

3.6 The Topology of the Reference Surface Σ

Now, we go back to our reference surface Σ to give more remarks on the relationship be-
tween the total Gauss curvature and the Euler characteristic of the surface. Recall that Σ
is assumed to be a complete, orientable, connected, non-compact surface with finite total
Gauss curvature.

The famous Gauss-Bonnet Theorem asserts that the total Gauss curvature of a com-
pact orientable two-dimensional manifold without boundary is a constant multiple of its
Euler characteristic. If a surface is complete and noncompact but has integrable Gauss
curvature, then the total Gauss curvature is no longer a completely topological invariant.
In 1957, Huber proved the following:

Theorem 3.6.1. A complete, non-compact surface Σ with integrable curvature is confor-
mally equivalent to a compact Riemannian surface with finitely many punctures (removing
points).

In particular, Huber also showed that in this case∫
Σ
K ≤ 2πχ(Σ), (3.6.1)

where χ(Σ) is the Euler characteristic of Σ, we will define it later. This theorem is related
to Theorem 3.5.4: There, the compact Riemannian surface is X and the finitely many
punctures are β(S). Moreover, the finitely many punctures correspond to the ends of Σ,
i.e., for any puncture p there is a corresponding end Ep = B \ {p}, where B is a geodesic
ball around p in X. Since

χ(Σ) = χ(of a compact Riemannian surface with boundary),

by Theorem 3.4.3

χ(Σ) = χ(of a compact Riemannian surface)− (the number of boundary component),
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and it follows that
χ(Σ) = 2− 2g − e, (3.6.2)

where e is the number of ends (the number of the boundary components), and g is the
genus of Σ.

Let us denote the ends by {E1, . . . , Ek} and define the corresponding isoperimetric con-
stants λi by

λi = lim
r→∞

area(Br ∩ Ei)
πr2

,

relative to any fixed point p ∈ Σ with respect to which the geodesic ball Br of radius r is
taken. It is easy to show that this definition is independent of the specific choice of ends Ei.

The contribution of the ends to the deficit in (3.6.1) is given by the following formula.

Theorem 3.6.2 (Hartman). Let Σ be a complete, non-compact surface with integrable
Gauss curvature. Then ∫

Σ
K = 2π

(
χ(Σ)−

k∑
i=1

λi

)
, (3.6.3)

where χ(Σ) is the Euler characteristic of the surface.

Remark 3.6.3. Since the Gauss curvature of Σ is assumed to be integrable, χ(Σ) is finite
and it follows that Σ must have finite topological type: it must have finite genus and only
finitely many ends.

Remark 3.6.4. We defined the Euler characteristic by χ(Σ) =
∑

(−1)kbk, where bk is the
k-th Betti number, and we saw that for a connected, non-compact surface χ(Σ) = 1− b1,
where b1 = 2g, and in the case that Σ also has integrable Gauss curvature we see from
Hartman’s formula that, in fact, ∫

Σ
K ≤ 2π. (3.6.4)

Moreover, if we assume that
∫

ΣK > 0, then by (3.6.3) we must have b1 = 0 as well.
This means, χ(Σ) = 1, which via the uniformization theorem for surfaces ”Any simply
connected Riemannian surface is conformally equivalent to the unit sphere in Euclidean 3-
space, the Euclidean plane or the Euclidean disc” implies that Σ is conformally equivalent
to R2. Therefore, we see that positive total Gauss curvature surfaces are topologically very
simple, they are essentially just R2.



Chapter 4

The Essential Spectrum of the
Dirichlet Laplacian on Quantum
Layers

It was shown in Chapter 2 that the essential spectrum of the planar layer Ω0 = R2×(−a, a)
starts from the lowest eigenvalue κ2

1 = ( π2a)2. In this section we will compute the infimum
of the essential spectrum of a quantum layer Ω around a surface which is asymptotically
planar.

We shall localize the essential spectrum of −∆Ω
D for asymptotically planar layers, so that

the curvatures of the underlying surface vanish at infinity :

K,M
∞−→ 0 (4.0.1)

Here, a function f defined on a non-compact manifold Σ is said to vanish at infinity if

∀ε > 0 ∃Rε > 0, xε ∈ Σ ∀x ∈ Σ\B(xε, Rε) :
∣∣f(x)

∣∣ < ε, (4.0.2)

where B(xε, Rε) denotes the open ball of center xε and radius Rε. Note that property
(4.0.1) is equivalent to the vanishing of the principal curvatures, i.e., k1, k2

∞−→ 0.

Remark 4.0.5. We will always work on Ω̃ := Σ× (−a, a) instead of Ω, using the identi-
fication L : Ω̃→ Ω in Section 1.

The metric on Ω̃ corresponding to the Euclidean metric on Ω is

G(X,Y ) = g
(
(I − uL)XΣ, (I − uL)YΣ

)
+X ′Y ′

where X = (XΣ, X
′) and Y = (YΣ, Y

′), with volume element

d
(
Σ× (−a, a)

)
= (1− 2Mu+Ku2)dΣdu

and the Laplace operator −∆ associated with G.

Because L : (Ω̃, G)→ (Ω, geucl) is an isometry, we have

σess(−∆Ω
D) = σess(−∆Ω̃

D),

and similarly for σ and σdisc.

45
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Theorem 4.0.6. Let Σ be a complete, connected, non-compact surface embedded in R3

and suppose its Gauss curvature K satisfies

K ∈ L1(Σ). (H1)

Let the layer Ω be defined by

Ω :=
{
z ∈ R3 | dist(z,Σ) < a

}
,

i.e., as a tube of radius a > 0 about Σ, where

a < ρm :=
(
max

{
‖k1‖∞, ‖k2‖∞

})−1
. (H2)

If the curvatures K and M vanish at infinity, then

inf σess(−∆Ω
D) = κ2

1.

The proof of this theorem will be divided into two steps: Establishing a lower and an
upper bound, this is done in Section 4.1 respectively 4.2.

4.1 A Lower Bound on the Essential Spectrum of −∆D on
Quantum Layers

To prove a lower bound, we will use the min-max principle in combination with notations
from earlier sections.

Theorem 4.1.1. inf σess(−∆Ω
D) ≥ κ2

1.

Proof. Fix ε > 0. Choose B(xε, Rε) as in (4.0.2) for f = |k1|+ |k2|, and consider an
open, precompact set B ⊇ B(xε, Rε) with C1-smooth boundary.

Now, we divide Ω̃ into an exterior and an interior part, by putting

Ω̃int := B × (−a, a) and Ω̃ext := Ω̃\Ω̃int.

Then we conclude from (H2), (1.2.7) and (4.0.1) that

∀(x, u) ∈ Ω̃ext : (1− aε)2 ≤ 1− 2M(x)u+K(x)u2 ≤ (1 + aε)2. (4.1.1)

Imposing Neumann boundary conditions at the common boundary of Ω̃ext and Ω̃int, we
arrive at the decoupled operator

−∆N := −∆ext
N ⊕−∆int

N

with associated quadratic form qN := qextN ⊕ qintN (see Proposition 1.3.10), where

qextN (ψ, φ) :=

∫
Ω̃ext

〈∇ψ,∇φ〉dΩ̃, D(qextN ) := {ψ ∈ H1(Ω̃ext) | ψ(·,±a) = 0}
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and qintN (ψ, φ) is given similar formula, by exchanging ext for int.

By Proposition 2.3.8, we have

σess(−∆N ) = σess(−∆ext
N ) ∪ σess(−∆int

N ),

but the spectrum of the interior part is purely discrete by Corollary 2.2.3, so the essential
components are determined by the exterior part only,

σess(−∆N ) = σess(−∆ext
N ),

and since −∆N ≤ −∆Ω̃
D, the min-max principle gives the following estimate:

inf σ(−∆ext
N ) ≤ inf σess(−∆ext

N ) ≤ inf σess(−∆Ω̃
D) (4.1.2)

Now, we have

qextN (ψ,ψ) =

∫
Ω̃ext

〈
∇ψ,∇ψ

〉
G
dΩ̃

=

a∫
−a

∫
Σ\B

〈
∇ψ,∇ψ

〉
G
d
(
Σ× (−a, a)

)
,

and by using inequality (4.1.1) and the definition of the metric G, where〈
∇ψ,∇ψ

〉
G

=
〈
∇ψ,∇ψ

〉
g

+
〈∂ψ
∂u

,
∂ψ

∂u

〉
du2
,

we get

qextN (ψ,ψ) =

a∫
−a

∫
Σ\B

(〈
∇ψ,∇ψ

〉
g

+
(∂ψ
∂u

)2
)(

1− 2Mu+Ku2
)
dΣdu

≥
a∫
−a

∫
Σ\B

(〈
∇ψ,∇ψ

〉
g

+
(∂ψ
∂u

)2
)(

1− aε)2dΣdu. (4.1.3)

Now

inf σess

(
− d2

du2

)
D

= inf
ψ:ψ 6=0

ψ(.,±a)=0

a∫
−a

(
∂ψ
∂u

)2
du

a∫
−a
ψ2du

= κ2
1,

and so we obtain
a∫
−a

(∂ψ
∂u

)2
du ≥ κ2

1

a∫
−a

ψ2du,

for any ψ with ψ(.,±a) = 0. Since clearly 〈∇ψ,∇ψ〉 ≥ 0, (4.1.3) yields:

qextN (ψ,ψ) ≥ (1− aε)2

a∫
−a

∫
Σ\B

κ2
1ψ

2dΣdu
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By using inequality (4.1.1) again, we get

qextN (ψ,ψ) ≥ (1− aε)2

(1 + aε)2
κ2

1

a∫
−a

∫
Σ\B

ψ2(1 + aε)2dΣdu

≥ (1− aε)2

(1 + aε)2
κ2

1

a∫
−a

∫
Σ\B

ψ2(1− 2Mu+Ku2)dΣdu

=
(1− aε)2

(1 + aε)2
κ2

1

∫
Ω̃ext

ψ2dΩ̃.

And, as an immediate consequence

qextN (ψ,ψ)∫
Ω̃ext

ψ2dΩ̃
≥ (1− aε)2

(1 + aε)2
κ2

1,

which implies

inf σ(−∆ext
N ) ≥ (1− aε)2

(1 + aε)2
κ2

1.

Therefore, from inequality (4.1.2), we get

inf σess(−∆Ω̃
N ) ≥ (1− aε)2

(1 + aε)2
κ2

1.

The claim then follows from the fact that ε can be chosen arbitrarily small. �

4.2 An Upper Bound on the Essential Spectrum of −∆D on
Quantum Layers

At the beginning of the proof of the upper bound, we will use Theorem 2.3.3 and the
following theorem from [LZ11].

Theorem 4.2.1. Let Σ be a complete, non-compact Riemannian surface. Assume that

lim
x→∞

K(x) = 0.

Then, the essential spectrum of the Laplacian −∆ of Σ is the interval [0,∞).

Then, we complete the proof by using Weyl’s Theorem, Theorem 2.3.5.

Remark 4.2.2. We will use the corresponding normalized eigenfunction given explicitly
by

χ1(u) :=

√
1

a
cosκ1u.
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By using the identities |∇u| = 1 and the equation (1.4.2), we get

−∆u = 2Mu

and

−∆χ1(u) = 2Muχ
′
1(u) + κ2

1χ1(u), (4.2.1)

where

Mu =
M −Ku

1− 2Mu+Ku2
.

Theorem 4.2.3. inf σess(−∆Ω
D) ≤ κ2

1.

Proof. It follows from Theorem 4.2.1 that if K vanishes at infinity then the threshold
of the essential spectrum of the Laplacian on Σ equals 0. Thus, by Theorem 2.3.3, for any
ε > 0 there exists an infinite dimensional subspace Sg ⊆ H2(Σ) such that

∀ϕ ∈ Sg : ‖ −∆ϕ‖g ≤ ε‖ϕ‖g, (4.2.2)

and by using Green’s formula and the Cauchy-Schwartz inequality, we get for ϕ ∈ Sg

‖∇ϕ‖2g = (∇ϕ,∇ϕ)g = (−∆ϕ,ϕ)g

≤ ‖ −∆ϕ‖g‖ϕ‖g
≤ ε‖ϕ‖2g. (4.2.3)

Now, ∀ϕ ∈ H2(Σ) and by using equation (1.4.2) and Green’s formula, we have

q[ϕχ1] =
(
ϕχ1,−∆(ϕχ1)

)
=
(
ϕχ1, (−∆Σ + 2Mu∂u − ∂2

u)ϕχ1

)
=
(
(∇ϕ)χ1, (∇ϕ)χ1

)
+
(
ϕχ1, 2Muϕ(∂uχ1)

)
+
(
ϕχ1, ϕ(−∂2

uχ1)
)

=
∥∥(∇ϕ)χ1

∥∥2
+
(
ϕχ1, 2Muϕ(∂uχ1)

)
+ κ2

1

∥∥ϕχ1

∥∥2
. (4.2.4)

Firstly, we will compute the second term on the right-hand side of equation (4.2.4), we
get

(
ϕχ1, 2Muϕχ

′
1) =

∫
Σ

ϕ2

a∫
−a

2Muχ1χ
′
1(1− 2Mu+Ku2)dΣdu

=

∫
Σ

ϕ2

a∫
−a

2(M −Ku)χ1χ
′
1dΣdu,
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and by integrating by parts with respect to u, it follows that

(
ϕχ1, 2Muϕχ

′
1) =

∫
Σ

ϕ2
[
(M −Ku)χ2

1

∣∣∣a
−a

+

a∫
−a

Kχ2
1du
]
dΣ

=

∫
Σ

ϕ2

a∫
−a

K

(1− 2Mu+Ku2)
χ2

1(1− 2Mu+Ku2)dΣdu

=

∫
Ω̃

ϕ2Kuχ
2
1dΩ̃

= (ϕχ1,Kuϕχ1), (4.2.5)

where Ku is defined in Lemma 1.4.1.

Secondly, we can compute the first term on the right-hand side of equation (4.2.4) as
the following Lemma

Lemma 4.2.4.

∥∥(∇ϕ)χ1

∥∥2 ≤ ε(C+ \ C−)‖ϕχ1‖2

where C± = (1± aρ−1
m )2.
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Proof. By using the estimates (1.2.7) and (4.2.3), we get

∥∥(∇ϕ)χ1

∥∥2
=

∫
Σ

a∫
−a

∣∣(∇ϕ)χ1

∣∣2√Gdudx

≤ C+

a∫
−a

χ2
1du

∫
Σ

|∇ϕ|2√gdx

≤ ε(C+)

a∫
−a

χ2
1du

∫
Σ

|ϕ|2√gdx

= ε(C+ \ C−)

a∫
−a

χ2
1du

∫
Σ

|ϕ|2(C−)
√
gdx

≤ ε(C+ \ C−)

∫
Σ

a∫
−a

|ϕχ1|2
√
Gdxdu

= ε(C+ \ C−)‖ϕχ1‖2. �

Using equations (4.2.4), (4.2.5) and Lemma 4.2.4, we see that

∀ϕ ∈ Sg :
∥∥∇(ϕχ1)

∥∥2 ≤ ε(C+ \ C−)‖ϕχ1‖2 + (ϕχ1,Kuϕχ1) + κ2
1‖ϕχ1‖2, (4.2.6)

hence for any ε > 0 there exists S := Sg ⊗ χ1 ⊂ H2(Ω̃) such that

∀ψ ∈ S : ‖∇ψ‖2 − (ψ,Kuψ) ≤
(
κ2

1 + ε(C+ \ C−)
)
‖ψ‖2.

This proves that

inf σess(−∆Ω̃
D −Ku) ≤ κ2

1.

The proof of Theorem 4.2.3 is completed by showing that Ku is relatively compact with

respect to −∆Ω̃
D. Since Ku vanishes at infinity by assumption (4.0.1), the operator

Ku(−∆Ω̃
D + 1)−1 is compact in L2(Ω̃), and by the Weyl’s Theorem, Theorem 2.3.5

σess(−∆Ω̃
D) = σess(−∆Ω̃

D −Ku).

Thus
inf σess(−∆Ω̃

D) ≤ κ2
1. �

Remark 4.2.5. Notice that only K
∞−→ 0 is needed in order to establish the upper bound.

Proof (of Theorem 4.0.6): This is a direct consequence of Theorem 4.1.1 and 4.2.3.
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Chapter 5

Existence of Discrete Spectrum of
the Dirichlet Laplacian on
Quantum Layers

The aim of this chapter is the following: establishing certain geometric conditions which
guarantee the existence of discrete spectrum for the Dirichlet Laplacian on the quantum
layer Ω (which is asymptotically planar) below κ2

1. Since we have shown that the spectral
threshold for layers around asymptotically planar surfaces is just κ2

1, the spectrum below
this value consists of discrete eigenvalues.

The proof is based on the variational idea of finding a test function ψ in the domain

of −∆Ω̃
D such that

q1[ψ] := q[ψ]− κ2
1‖ψ‖2 < 0. (5.0.1)

The important technical tool needed to construct ψ is the existence of appropriate molli-
fiers on Σ. This is ensured by the following lemma

Lemma 5.0.6. Let Σ be a surface as in Theorem 4.0.6 and assume (H1). Then, there
exists a sequence {ϕn}n∈N of smooth functions with compact supports in Σ such that

(1) ∀n ∈ N : 0 ≤ ϕn ≤ 1,

(2) ‖∇ϕn‖g −−−→
n→∞

0,

(3) ϕn −−−→
n→∞

1 uniformly on compact subsets of Σ.

Proof. see [CEK04].

This sequence enables us to cut off a generalized test function which would give formally
a negative value of the statement (5.0.1).

Remark 5.0.7. In the special case when Σ = K ′ ∪ Σ′, where K ′ is compact and Σ′ is
isometric to R2 \BR(0) for some R > 0, we can construct ϕn as follows:
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Firstly, we define ϕ̃n ∈ C∞0 (Σ) by

ϕ̃n(x) =



1, x ∈ K ′ or R ≤ r ≤ nR

1
lognR log n2R2

r , nR ≤ r ≤ n2R2

0, r ≥ n2R2

(5.0.2)

where r = |x|. Then we define ϕn(x) by smoothing ϕ̃n(x) on an interval of length 1 around
nR and n2R2.
Now, we want to prove that ϕn(x) satisfies the three properties in Lemma 5.0.6:

(1) It is clear that 0 ≤ ϕn ≤ 1, for all n ∈ N.

(2) We start by calculating ∇ϕ̃n(x):

∇ϕ̃n(x) =



0, x ∈ K ′ or R ≤ r ≤ nR

−1
r

1
lognR

∂
∂r , nR ≤ r ≤ n2R2

0, r ≥ n2R2

Then,

‖∇ϕ̃n‖2 =

∫
Σ

∣∣∇ϕ̃n(x)
∣∣2dΣ =

1

(log nR)2

∫ n2R2

nR

1

r2
rdr

=
1

(log nR)2
log r

∣∣∣∣n2R2

nR

=
1

(log nR)2
(log n2R2 − log nR)

=
1

(log nR)2
log nR =

1

log nR
.

Since, we have

a)
∣∣∇ϕn(x)

∣∣ = 0 for R ≤ r < nR− 1

2
or r > n2R2 +

1

2

b)
∣∣∇ϕn(x)

∣∣ ≤ C

(log nR)nR
for nR− 1

2
< r < nR+

1

2

c)
∣∣∇ϕn(x)

∣∣ =
∣∣∇ϕ̃n(x)

∣∣ for nR+
1

2
< r < n2R2 − 1

2

d)
∣∣∇ϕn(x)

∣∣ ≤ C ′

(log nR)n2R2
for n2R2 − 1

2
< r < n2R2 +

1

2
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we arrive at,

‖∇ϕn‖2 =

∫ nR+ 1
2

nR− 1
2

∣∣∇ϕn(x)
∣∣2rdr +

∫ n2R2− 1
2

nR+ 1
2

∣∣∇ϕ̃n(x)
∣∣2rdr +

∫ n2R2+ 1
2

n2R2− 1
2

∣∣∇ϕn(x)
∣∣2rdr

≤ 1 max
nR− 1

2
<r<nR+ 1

2

(∣∣∇ϕn(x)
∣∣2r)+

1

log nR
+ 1. max

n2R2− 1
2
<r<n2R2+ 1

2

(∣∣∇ϕn(x)
∣∣2r)

=
C2

(log nR)2(nR)2

(
nR+

1

2

)
+

1

log nR
+

C ′2

(log nR)2(n2R2)2
(n2R2 +

1

2
)

≤ C2
1

(log nR)2(nR)
+

1

log nR
+

C ′21
(log nR)2(n2R2)

.

Thus,

lim
n→∞

‖∇ϕn‖2 = 0.

(3) For all compact sets K ⊂⊂ Σ, there exists n1, such that K ∩ Σ′ ⊂ Bn1R− 1
2
(0), i.e.,

we have R ≤ r ≤ n1R − 1
2 for all x ∈ K ∩ Σ′. Therefore, for all n ≥ n1, we get that

R ≤ r ≤ nR− 1
2 , for all x ∈ K, and hence ϕn(x) = 1 on K.

5.1 The First Condition

Theorem 5.1.1. Let Σ be a surface as in Theorem 4.0.6. Assume (H1), (H2), and suppose
that Σ is not a plane. If the surface has non-positive total Gauss curvature, i.e., K ≤ 0,
then

inf σ(−∆Ω
D) < κ2

1.

Consequently, if the surface Σ is not a plane but its curvatures vanish at infinity, then the
condition K ≤ 0 is sufficient to guarantee that −∆Ω

D has at least one eigenvalue of finite
multiplicity below the threshold of its essential spectrum, i.e. σdisc(−∆Ω

D) 6= ∅.

Before we are going into the proof we will give the following lemma which told us that
in our case, the mean curvature M could not be zero every where:

Lemma 5.1.2. If M = 0 on the whole surface and K = 0 then Σ is a plane.

Proof. Since M(x) = 0 every where then k1(x) = −k2(x) for all x ∈ Σ, and we have

K =

∫
Σ

K(x)dΣ =

∫
Σ

−k2
1(x)dΣ = 0

that follows k1(x) = k2(x) = 0 for all x ∈ Σ, then Σ is a plane.

Proof of Theorem 5.1.1. We begin the construction of ψ by considering

ψ = ϕnχ1 ∈ q(−∆Ω̃
D) =

{
ψ ∈ H1(Ω̃), ψ(.,±a) = 0

}
,
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where ϕn is defined as in Lemma 5.0.6. Since −∆Ω = −∆Σ + 2Mu∂u − ∂2
u, then we have:

q[ψ] =
(
ϕnχ1,−∆(ϕnχ1)

)
=
∥∥(∇ϕn)χ1

∥∥2
+
(
ϕnχ1, 2Muϕnχ

′
1

)
+ κ2

1

∥∥ϕnχ1

∥∥2
(5.1.1)

Firstly, we will calculate the second term in the right-hand side of equation (5.1.1). By

means of (1.4.3), integration by parts and since
a∫
−a
χ2

1du = 1, we get

(
ϕnχ1, 2Muϕnχ

′
1

)
=

∫
Σ

ϕ2
n

∫ a

−a
2Muχ1χ

′
1(1− 2Mu+Ku2)dΣdu

=

∫
Σ

ϕ2
n

a∫
−a

2(M −Ku)χ1χ
′
1dΣdu

=

∫
Σ

ϕ2
n

[
(M −Ku)χ2

1

∣∣a
−a +

a∫
−a

Kχ2
1du
]
dΣ

=

∫
Σ

ϕ2
nKdΣ

a∫
−a

χ2
1du

= (ϕn,Kϕn)g.

By means of (1.4.3), integration by parts and since
a∫
−a
χ2

1du = 1.

By using inequality (1.2.7), we can estimate the first term at the right-hand side of (5.1.1)
as follows

∥∥(∇ϕn)χ1

∥∥2
=

a∫
−a

∫
Σ

(∇ϕn)2χ2
1(1− 2Mu+Ku2)dΣdu

≤ (1 + aρ−1)2

∫
Σ

(∇ϕn)2dΣ

a∫
−a

χ2
1du

= (1 + aρ−1)2‖∇ϕn‖2g.

Then, it follows from above that

q1[ϕnχ1] ≤ (1 + aρ−1)2‖∇ϕn‖2g + (ϕn,Kϕn)g. (5.1.2)



5.1. THE FIRST CONDITION 57

By using the Lemma 5.0.6 and the dominated convergence theorem, we get:

(1 + aρ−1)2‖∇ϕn‖2g −−−→n→∞
0

(ϕn,Kϕn)g −−−→
n→∞

∫
Σ

KdΣ = K.

If K < 0, then this shows that we can find n0 ∈ N such that q1[ϕn0χ1] < 0.

In order to deal with the case K = 0, we construct the test function by adding a small
deformation term to ψ. For a real number ε, which will be specified later, we set

ψε = ψ + εθ,

where

θ(x, u) := j(x)uχ1(u),

and j is a smooth positive function on Σ with compact support in a region where the
mean curvature M is nonzero and does not change sign.

Since θ is clearly a function in D(q) as well, we may write

q1[ϕnχ1 + εθ] = q1[ϕnχ1] + 2εq1(θ, ϕnχ1) + ε2q1[θ]. (5.1.3)

Since K = 0, the first term in the right-hand side of this identity tends to zero as n→∞
as we have seen above. We now calculate the quadratic form in the second term. By
means of (1.4.2) and by using Green’s formula, we have

q1(θ, ϕnχ1) = q(θ, ϕnχ1)− κ2
1(θ, ϕnχ1)

=
(
θ,−∆(ϕnχ1)

)
− κ2

1(θ, ϕnχ1)

=
(
θ, (−∆ϕn)χ1

)
+ (θ, 2Muϕn∂uχ1)− (θ, ϕn∂

2
uχ1)− κ2

1(θ, ϕnχ1)

=
(
∇θ, (∇ϕn)χ1

)
+ (θ, 2Muϕnχ

′
1) + κ2

1(θ, ϕnχ1)− κ2
1(θ, ϕnχ1)

=
(
∇θ, (∇ϕn)χ1

)
+ (θ, 2Muϕnχ

′
1)

In the following, we will calculate each of these terms:
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a) By means of (1.4.3), we have

(θ, 2Muϕnχ
′
1) =

∫
Σ

a∫
−a

2θMuϕnχ
′
1(1− 2Mu+Ku2)dΣdu

=

∫
Σ

a∫
−a

2uχ1χ
′
1jϕn(M −Ku)dΣdu

=

∫
Σ

jϕnMdΣ

a∫
−a

2uχ1χ
′
1du−

∫
Σ

jϕnKdΣ

a∫
−a

2u2χ1χ
′
1du

and it is easy to check that

a∫
−a

2uχ1χ
′
1du = −1,

(5.1.4)
a∫
−a

2u2χ1χ
′
1du = 0

which shows that

(θ, 2Muϕnχ
′
1) = −(j,Mϕn)g. (5.1.5)

b) We calculate

(
∇θ, (∇ϕn)χ1

)
=

∫
Σ

a∫
−a

∇θ∇ϕnχ1(1− 2Mu+Ku2)dΣdu

=

∫
Σ

∇j∇ϕn

a∫
−a

uχ2
1(1− 2Mu+Ku2)dΣdu

+

∫
Σ

j∇ϕn

a∫
−a

χ2
1(1− 2Mu+Ku2)dΣdu

+

∫
Σ

j∇ϕn

a∫
−a

2uχ′1χ1(1− 2Mu+Ku2)dΣdu,
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and it is a straightforward exercise to compute:

a∫
−a

uχ2
1du = 0

a∫
−a

u2χ2
1du =

a2

3
− 1

2κ2
1

(5.1.6)

a∫
−a

u3χ2
1du = 0

a∫
−a

2u3χ1χ
′
1du = −3

(a2

3
− 1

2κ2
1

)
Then, we get

(
∇θ, (∇ϕn)χ1

)
= −2

(a2

3
− 1

2κ2
1

)[ ∫
Σ

∇j∇ϕnMdΣ +

∫
Σ

j∇ϕnKdΣ
]
. (5.1.7)

By means of the Schwarz inequality, boundedness of K and M , properties of j and Lemma
5.0.6, it follows that the last equation tend to zero as n → ∞. Moreover, the equation
(5.1.5) tend to

(θ, 2Muϕnχ
′
1) −−−→

n→∞
−(j,M)g.

Now, we go back to equation (5.1.3). Since θ does not depend on n, one gets

q1[ϕnχ1 + εθ] −−−→
n→∞

−2ε(j,M)g + ε2q1[θ],

and since (j,M)g 6= 0 which may be made negative by choosing ε sufficiently close to 0
and of an appropriate sign. �

An interesting new spectral result then follows from the observation that making the
topology of Σ more complicated than that of a plane, one always achieves the basic con-
dition K ≤ 0 is satisfied:

Lemma 5.1.3. Let Σ be a complete, connected but not simply connected and non-compact
surface , then its total Gauss curvature is non-positive, i.e., K ≤ 0.

Proof. In 1957, Huber showed that the total Gauss curvature of this surface Σ is
given by

K =

∫
Σ

KdΣ ≤ 2πχ(Σ),

and we need only show that χ(Σ) ≤ 0. The Euler characteristic of non-compact manifold
is given by

χ = 2− 2g − e

where g is the genus of Σ and e is the number of ends. Since the surface is not simply
connected, g ≥ 1. Then, for all e ∈ N, the Euler characteristic of a non-compact, not
simply connected surface is non-positive. �
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Corollary 5.1.4. Under the assumptions of Theorem 4.0.6, one has inf σ(−∆Ω
D) < κ2

1

whenever Σ is not homeomorphic to a plane.

5.2 The Second and Third Conditions

We establish the next two conditions in the following theorem.

Theorem 5.2.1. Let Σ be a surface as in the Theorem 4.0.6. Assume (H1), (H2), and
suppose that Σ is asymptotically a plane. Then, any of the conditions

(a) The radius of the layer a is small enough and ∇M ∈ L2
loc(Σ),

(b) M =∞ and ∇M ∈ L2(Σ)

is sufficient to guarantee that
inf σ(−∆Ω

D) < κ2
1.

Proof. For the two conditions, we will use the test function

ψn(x, u) =
(
1 +M(x)u

)
ϕn(x)χ1(u),

where ϕn(x) is a function satisfying Lemma 5.0.6. Since

∇ψn(., u) =(1 +Mu)(∇ϕn)χ1(u) + (∇M)uϕnχ1(u)

+
(
(1 +Mu)ϕnχ

′
1(u) +Mϕnχ1(u)

)
∇u,

it is easy to see that ψn ∈ D(q) provided ∇M ∈ L2
loc(Σ).

Now, we want to prove that

q1[ψn] = q[ψn]− κ2
1‖ψn‖2 < 0.

Since ∇ϕn and ∇M are orthogonal to ∇u, then we have

q[ψn] = ‖∇ψn‖2 =
∥∥(1 +Mu)|∇ϕn|χ1 + |∇M |uϕnχ1

∥∥2

(5.2.1)

+
∥∥(1 +Mu)ϕnχ

′
1 +Mϕnχ1

∥∥2

By using Minkovski’s inequality
(
|f+g|2 ≤ 2(|f |2+|g|2)

)
on the first line at the right-hand

side of (5.2.1), and since the curvatures K and M are uniformly bounded due to (H2), we
obtain∥∥(1 +Mu)|∇ϕn|χ1 + |∇M |uϕnχ1

∥∥2 ≤ 2
((

1 + a‖M‖∞
)2∥∥|∇ϕn|χ1

∥∥2
+ a2

∥∥|∇M |ϕnχ1

∥∥2
)
.

The second term at the right-hand side of (5.2.1) can be rewritten as follows:∥∥(1 +Mu)ϕnχ
′
1 +Mϕnχ1

∥∥2
=
∥∥(1 +Mu)ϕnχ

′
1

∥∥2
+
∥∥Mϕnχ1

∥∥2

(5.2.2)

+ 2
∥∥M(1 +Mu)ϕ2

nχ1χ
′
1

∥∥
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We start by calculating the first term at the right-hand side of (5.2.2).

∥∥(1 +Mu)ϕnχ
′
1

∥∥2
=

∫
Σ

a∫
−a

(1 +Mu)2ϕ2
nχ
′2
1 (1− 2Mu+Ku2)dudΣ

and the terms in the right-hand side of the this last equation amount to:

a)

∫
Σ

ϕ2
n

[ a∫
−a

χ′21 (1− 2Mu+Ku2)du

]
dΣ =

∫
Σ

ϕ2
n

[ a∫
−a

χ′21 du

]
dΣ− 2

∫
Σ

Mϕ2
n

[ a∫
−a

uχ′21 du

]
dΣ

+

∫
Σ

Kϕ2
n

[ a∫
−a

u2χ′21 du

]
dΣ

=κ2
1

∫
Σ

ϕ2
ndΣ + 0 +

(κ2
1a

2

3
+

1

2

)∫
Σ

Kϕ2
ndΣ

b)2

∫
Σ

Mϕ2
n

[ a∫
−a

uχ′21 (1− 2Mu+Ku2)du

]
dΣ =2

∫
Σ

Mϕ2
n

[ a∫
−a

uχ′21 du

]
dΣ− 4

∫
Σ

M2ϕ2
n

[ a∫
−a

u2χ′21 du

]
dΣ

+ 2

∫
Σ

MKϕ2
n

[ a∫
−a

u3χ′21 du

]
dΣ

=0− 4
(κ2

1a
2

3
+

1

2

)∫
Σ

M2ϕ2
ndΣ + 0

c)

∫
Σ

M2ϕ2
n

[ a∫
−a

u2χ′21 (1− 2Mu+Ku2)du

]
dΣ =

∫
Σ

M2ϕ2
n

[ a∫
−a

u2χ′21 du

]
dΣ− 2

∫
Σ

M3ϕ2
n

[ a∫
−a

u3χ′21 du

]
dΣ

+

∫
Σ

M2Kϕ2
n

[ a∫
−a

u4χ′21 du

]
dΣ

=
(κ2

1a
2

3
+

1

2

)∫
Σ

M2ϕ2
ndΣ− 0

+
(κ2

1a
4

5
+ a2 − 3

2κ2
1

)∫
Σ

M2Kϕ2
ndΣ
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Thus

∥∥(1 +Mu)ϕnχ
′
1

∥∥2
=κ2

1

∫
Σ

ϕ2
ndΣ +

(κ2
1a

2

3
+

1

2

)∫
Σ

Kϕ2
ndΣ− 3

(κ2
1a

2

3
+

1

2

)∫
Σ

M2ϕ2
ndΣ

+
(κ2

1a
4

5
+ a2 − 3

2κ2
1

)∫
Σ

M2Kϕ2
ndΣ

In the same way, by using equations (5.1.4) and (5.1.6) we calculate the second and third
terms at the right hand side of (5.2.2), and also the term −κ2

1‖ψn‖2. We get

‖Mϕnχ1‖2 =

∫
Σ

M2ϕ2
ndΣ +

(a2

3
− 1

2κ2
1

)∫
Σ

M2Kϕ2
ndΣ

2
∥∥M(1 +Mu)ϕ2

nχ1χ
′
1

∥∥ =

∫
Σ

M2ϕ2
ndΣ− 6

(a2

3
− 1

2κ2
1

)∫
Σ

M2Kϕ2
ndΣ

−κ2
1‖ψn‖2 =− κ2

1

∫
Σ

ϕ2
ndΣ + 3

(a2κ2
1

3
− 1

2

)∫
Σ

M2ϕ2
ndΣ−

(a2κ2
1

3
− 1

2

)∫
Σ

Kϕ2
ndΣ

−
(a4κ2

1

5
− a2 +

3

2κ2
1

)∫
Σ

M2Kϕ2
ndΣ

By adding (5.2.2) to the the term −κ2
1‖ψn‖2, we obtain

∥∥(1 +Mu)ϕnχ
′
1 +Mϕnχ1

∥∥2 − κ2
1

∥∥ψn∥∥2
=
(
ϕn, (K −M2)ϕn

)
g

+
π2 − 6

12κ2
1

(
ϕn,KM

2ϕn
)
g
.

Therefore,

q1[ψn] ≤ 2
((

1 + a‖M‖∞
)2∥∥|∇ϕn|χ1

∥∥2
+ a2

∥∥|∇M |ϕnχ1

∥∥2
)

+
(
ϕn, (K −M2)ϕn

)
g

+ π2−6
12κ21

(
ϕn,KM

2ϕn
)
g
.

(5.2.3)

Proof of Theorem 5.2.1 under Condition (a). To begin with the integral containing
K −M2 in (5.2.3) is always negative for any nonplanar and noncompact surface, since
this term can be rewritten by means of the principle curvatures, i.e.,

K −M2 = −1

4
(k1 − k2)2.
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Secondly, by applying Lemma 5.0.6 and (1.2.7) to the first term at the right-hand side of
(5.2.3), we have

(
1 + a‖M‖∞

)2∥∥|∇ϕn|χ1

∥∥2
=
(
1 + a‖M‖∞

)2 ∫
Σ

a∫
−a

|∇ϕn|2χ2
1(1− 2Mu+Ku2)dudΣ

≤
(
1 + a‖M‖∞

)2
C+

∫
Σ

|∇ϕn|2
a∫
−a

χ2
1dudΣ

=
(
1 + a‖M‖∞

)2
C+

∫
Σ

|∇ϕn|2dΣ −−−→
n→∞

0.

The remaining terms vanish for n fixed as a→ 0. (For the latter,note that κ−2
1 is propor-

tional to a2). Hence we can find a sufficiently large n0 ∈ N such that the sum of the first
term in the right-hand side of (5.2.3) and the first integral at the second line of (5.2.3) is
negative, and then choose the layer half-width a sufficiently small so that q1[ψn] < 0.

Proof of Theorem 5.2.1 under Condition (b). Since ∇M ∈ L2(Σ) and (H1) holds
true, all the terms at the right-hand side of (5.2.3) except the first integral at the second
line tend to finite values as n → ∞. In more detail, by using Lemma 5.0.6, (1.2.7), and
the dominated convergence theorem, we see that(

1 + a‖M‖∞
)2∥∥|∇ϕn|χ1

∥∥2 ≤
(
1 + a‖M‖∞

)2
C+

∫
Σ

|∇ϕn|2dΣ −−−→
n→∞

0,

a2
∥∥|∇M |ϕnχ1

∥∥2 ≤ a2C+

∫
Σ

|∇M |2ϕ2
ndΣ −−−→

n→∞
a2C+

∫
Σ

|∇M |2dΣ <∞,

(ϕn,KM
2ϕn)g =

∫
Σ

KM2ϕ2
ndΣ −−−→

n→∞

∫
Σ

KM2dΣ <∞.

For the remaining term, we arrive at(
ϕn, (K −M2)ϕn

)
g

=

∫
Σ

(K −M2)ϕ2
ndΣ −−−→

n→∞

∫
Σ

(K −M2) = −∞,

since M =
∫
Σ

M2dΣ =∞. Hence we can find n0 ∈ N such that q1[ψn0 ] < 0. �

By combining Theorem 5.2.1 with White’s Proposition ”Let Σ be an embedded surface in
R3. If K ∈ L1(Σ) and

∫
Σ

K > 0, then
∫
Σ

M2 =∞”, we obtain the following:

Corollary 5.2.2. Let Σ be an embedded surface in R3 of integrable Gauss curvature. If∫
Σ

K > 0 and ∇gM ∈ L2(Σ), then inf σ(−∆Ω
D) < κ2

1.



64 CHAPTER 5. EXISTENCE OF DISCRETE SPECTRUM OF −∆Ω
D



Chapter 6

Estimating the Number of
Eigenvalues of the Dirchlet
Laplacian on Layers

As we have seen in Chapter 5 if our reference surface Σ has at lest one genus then its total
Gauss curvature is non-positive K ≤ 0. Therefore, the spectrum of −∆Ω

D has at least one
eigenvalue below κ2

1 = ( π2a)2.

In this chapter we want to find a lower bound on the number of the eigenvalues be-
low κ2

1 = ( π2a)2 of the Dirichlet Laplacian on a quantum layer Ω in terms of the genus g of
Σ. We now define a geometric handle of a plane as follows

Definition 6.0.3. A geometric handle H of a plane is a surface with boundary which has
genus 1, whose boundary is connected, and so that a neighborhood U of ∂H is isometric
to the annulus BR+1(0) \BR(0) in R2 for some R > 0, where we call the smallest such R
the exterior radius of H.

6.1 A Lower Bound on the Number of Eigenvalues of the
Dirichlet Laplacian on Layers

Firstly, we will display the following theorem which gives us a sufficient condition to
estimate the number of eigenvalues of self-adjoint operators bounded from below.

Theorem 6.1.1. Let A be a self-adjoint operator on a Hilbert space H, that is bounded
from below. Assume that W ⊂ D(A), with dimW = k, and

∀ψ ∈W, if ψ 6= 0,
q[ψ]

‖ψ‖2
≤ E.

If E < inf σess(A), then there are at least k eigenvalues ≤ E.

Proof. For any given functions ϕ1, . . . , ϕk−1 ∈ H, let L be the linear map, defined by

L : W → Rk−1

ψ 7→
(
(ψ,ϕ1), . . . , (ψ,ϕk−1)

)
.
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Since
dimW = dim Im(L) + dim ker(L)

and dimW = k, dim Im(L) ≤ k− 1, we get dim ker(L) ≥ 1. Thus, there exists ψ ∈ ker(L)
where ψ 6= 0. Therefore, we can find ψ ∈W ∩ [ϕ1, . . . , ϕk−1]⊥, such that

ψ 6= 0,
q[ψ]

‖ψ‖2
≤ E.

Then, we get

inf
ψ∈W,ψ 6=0

ψ∈[ϕ1,...,ϕk−1]⊥

q[ψ]

‖ψ‖2
≤ E,

and because W ⊂ D(A), it follows that

sup
ϕ1,...,ϕk−1

inf
ψ∈D(A),ψ 6=0

ψ∈[ϕ1,...,ϕk−1]⊥

q[ψ]

‖ψ‖2
≤ E.

By min-max principle, Theorem 2.2.1, for

µk = sup
ϕ1,...,ϕk−1

inf
ψ∈D(A),ψ 6=0

ψ∈[ϕ1,...,ϕk−1]⊥

q[ψ]

‖ψ‖2
.

either

a) µk < inf σess(A), then there are at least k eigenvalues below the bottom of the essential
spectrum;

or

b) µk = inf σess(A), and in that case there are at most k − 1 eigenvalues below µk.

Since µk ≤ E and E < inf σess(A), µk satisfies the first case, i.e., there are at least k
eigenvalues ≤ E. �

Now, we arrive at the first main result of this thesis, in which we relate the topolog-
ical structure of the reference surface to the spectrum of quantum layers around these
surfaces.

Theorem 6.1.2. (Main Theorem 1) Let m ∈ N. There is a constant C, such that:
If the reference surface Σ is a Euclidean plane with m-handles H1, . . . ,Hm, whose distance
to each other is greater than or equal to C, then there are at least m eigenvalues of the
Dirichlet Laplacian −∆D on the quantum layer Ω less than κ2

1.

Proof. To start with, we will make the following assumptions for all i = 1, . . . ,m:

We take Σi to be a Euclidean plane R2 with one handle Hi, so that each Σi has genus 1,
one end and negative total Gauss curvature, where

K =

∫
Σi

KdΣi = −4π.
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Let Ri be a smallest exterior radius of Hi. Then, we may write Σi = Hi ∪Σ′i, where Σ′i is
isometric to R2 \ BRi(0). Therefore, by Remark 5.0.7 we can construct a mollifier ϕin as
in equation (5.0.2). We have already shown in the proof of Theorem 5.1.1 that

q1[ϕinχ1] ≤ C+‖∇ϕin‖2 + (ϕin ,Kϕin).

Now, we want to find no ∈ N such that q1[ϕinχ1] < 0. We have seen in Remark 5.0.7 that

‖∇ϕin‖2 ≤
Q

log nRi
,

where Q is a positive constant, and since K = 0 outside the handle and ϕin = 1 on Hi,

(ϕin ,Kϕin) =

∫
Σi

KϕindΣi =

∫
Hi

KdΣi =

∫
Σi

KdΣi = K = −4π.

Therefore, we have

C+‖∇ϕin‖2 + (ϕin ,Kϕin) < 0

if

Q

log nRi
<

4π

C+
equivalently, n >

e
QC+
2π

Ri
=
Co
Ri
.

Thus, there exist n0 ∈ N, such that n0 >
C0
Ri

for all i = 1, ...,m, and for fi = ϕin0 we have

q[fiχ1] < κ2
1‖fiχ1‖2. (6.1.1)

Then one may consider the fi as functions on Σ (the surface with m-handles Hi, i =
1, . . . ,m). Also, let pi ∈ Hi and pj ∈ Hj , where i 6= j, i, j = 1, . . . ,m and assume that

dist(pi, pj) ≥ C = n2
0R

2
i + n2

0R
2
j >

(C0

Ri

)2
R2
i +

(C0

Rj

)2
R2
j = 2C2

0 .

Therefore, each two different test functions fi and fj have disjoint compact supports, and
so

q(fiχ1, fjχ1) = 0.

Now, apply Theorem 6.1.1 to W = span{f1, . . . , fm} ⊂ H2(Σ). If ψ ∈W ,

ψ =
m∑
i=1

αifi,

we have

q[ψχ1] = q
[
(α1f1 + . . .+ αmfm)χ1

]
= α2

1q[f1χ1] + . . .+ α2
mq[fmχ1],

and so

‖ψχ1‖2 = α2
1‖f1χ1‖2 + . . .+ α2

m‖fmχ1‖2. (6.1.2)
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by using (6.1.1), we may set

E = max

{
q[fiχ1]

‖fiχ1‖2
, i = 1, . . . ,m

}
< κ2

1,

and from (6.1.2), we get

q[ψχ1] ≤ E
(
α2

1‖f1χ1‖2 + . . .+ α2
m‖fmχ1‖2

)
= E‖ψχ1‖2.

Now, because dimW = m there are at least m eigenvalues ≤ E < κ2
1. �



Chapter 7

Approximation of Eigenvalues

Our goal in this section is to approximate the discrete spectrum and the associated eigen-
functions of the Hamiltonian Ha = −a2∆Ω

D by using an effective Schrödinger operator
Ha

eff on L2(Σ). Here −∆Ω
D is the Dirichlet Laplacian on the quantum layer Ω = Ωa of

width 2a around Σ and the factor a2 has been put in for convenience because otherwise
the spectrum of Ha would diverge in the limit a→ 0.

We derive an effective Schrödinger equation on the surface Σ and we prove that the
eigenvalues of the corresponding effective Hamiltonian Ha

eff below a certain value coincide
up to errors of order a3 with those of Hamiltonian Ha.

Approximation of Eigenvalues of Hamiltonian has been done in a more general situation
in [WT09] and [WTL10].

7.1 Approximation of Eigenvalues in a General Case

In this section, we discuss the general result of [WTL10], Theorem 3.1, which uses the
effective Hamiltonian to approximate certain parts of the discrete spectrum and the as-
sociated eigenfunctions of the Hamiltonian Ha. This result shows how to obtain the
approximations of eigenvalues of Ha from the eigenvalues of Ha

eff and vice versa.

This theorem is stated in greater generality than we need here: Let (A, G) be a Rie-
mannian manifold of dimension d + k (d, k ∈ N) with metric G, C ⊂ A be a smooth
submanifold without boundary of dimension d equipped with the induced metric g = G|C .
C may be compact or non-compact.
At C there is a natural decomposition TA|C = TC ×NC of A’s tangent bundle into the
tangent and the normal bundle of C. Furthermore, let Ω ⊂ A be the tube of radius a > 0
around C. (In [WTL10] more general tubes with varying radii and shapes of cross-sections
are considered).

Now, we will state Theorem 3.1 in [WTL10] for A = R3, geucl the Euclidean metric
and C an orientable submanifold of dimension 2. In this case we may identify NC with
C ×R by virtue of a unit normal vector field N , identifying the point (x, tN) ∈ NC with
(x, t) ∈ C × R.
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Moreover, let

Ω̂ :=
{

(x, t) : x ∈ C, |t| < 1
}

= C × (−1, 1) ⊂ NC,

Ω̃ :=
{

(x, u) = (x, at) : (x, t) ∈ Ω̂
}

= C × (−a, a) ⊂ NC,

and

Φ : NC → R3

(x, u) 7→ x+ uNx,

be the exponential map. We assume that there exists a0 > 0, so that Φ|
Ω̃

is a diffeomor-
phism onto its image. The quantum layer Ω around C is defined, for a ≤ a0, as

Ω := Φ(Ω̃).

If geucl denoted the Euclidean metric on Ω, we define the metric and the Hamiltonian on
Ω̃ for each a > 0, as

G := (Φ)∗(geucl),

H̃a := a2H̃ = −a2∆Ω̃,

where −∆Ω̃ is the Laplace operator on Ω̃ for the metric G.

Moreover, we can also scale any subset of Ω̂ in the normal direction via

φ|
Ω̂

: Ω̂→ Ω̃

(x, t) 7→ (x, at) = (x, u).

Now, we want to define the Hamiltonian Ĥa on Ω̂ via an unitary transform as in the
following definition:

Definition 7.1.1. Let dΩ̃ be the volume element of Ω̃ for the metric G, and dΩ = dCdu
be the volume element of the product metric g + du2 on C × (−a, a).

i) The unitary transform Û is defined by

Û : L2(Ω̃, dΩ)→ L2(Ω̃, dΩ̃)

ψ 7→ σ−
1
2ψ,

where

σ =
dΩ̃

dΩ
.

ii) The dilation operator D̂ is defined by

D̂ : L2(Ω̂, dCdt)→ L2(Ω̃, dΩ)

(D̂ψ)(x, u) := a−
1
2ψ(x,

u

a
).

Then, we define the Hamiltonian Ĥa as

Ĥa = D̂∗Û∗H̃aÛD̂ on L2(Ω̂, dCdt).
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In [WT09] has been shown that, the leading order of Ĥa may be split as

Ĥa = −a2∆C + V − ∂2
t +O(a3), (7.1.1)

Where −∆C is the Laplacian on C and V is a function depending on the coordinates x,
only.

For x ∈ C, let

Ω̂(x) = Ω̂ ∩NxC.

The restriction of

Ĝ := (φ)∗(G)

to NxC is the Euclidean metric, which it is the metric on Ω̂ and Ω̂(x) is its unit ball.
We denote by χ(x, .) the first L2-normalized eigenfunction of the Laplacian −∂2

t on Ω̂(x)
and by E the associated eigenvalue. E and χ are independent of x, so that χ(x, t) = χ(t)
for t ∈ (−1, 1).
The associated space

P = ker(−∂2
t − EI)

= {ϕ(x)χ(t), ϕ(x) ∈ L2(C, g)} ⊂ L2(Ω̂, Ĝ),

may be identified with L2(C, g) via the unitary operator

U : P → L2(C, g) (7.1.2)

ϕ(x)χ(t) 7→ ϕ(x)

P is approximately invariant under Ĥa in the following sense: the projection P onto P is
the spectral projection of −∂2

t and we know that [∂2
t , P ] = [E,P ] = 0. Hence

[P, Ĥa] = [P,−a2∆C + V ] +O(a3) = O(a3).

Remark 7.1.2. In [WTL10], more general operators are considered where the func-
tion V does not depend only on x, the codimension of C is k 6= 1 and Hamiltonian
Ha = −a2∆C + V − ∆n + O(a) where −∆n is the normal Hamiltonian. Therefore
[P, Ĥa] = O(a). Then, they use adiabatic perturbation theory to get a better approxi-
mation of the spectrum:

Fix Emax <∞. Via adiabatic perturbation theory it is possible to construct a projection

P a = P + aP 1 + a2P 2 (7.1.3)

and a unitary

Ua : Pa → L2(C, g) (7.1.4)

such that

[P a, Ĥa]χ(−∞,Emax](Ĥ
a) = O(a3),

where χ(−∞, Emax] is the characteristic function of (−∞, Emax].

The Theorem 3.1 in [WTL10] in a general case is as follows, where the latin indices
i, j, ... running from 1 to d for the normal coordinates on C.
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Theorem 7.1.3. Let E be the first eigenvalue of −∆n and Emax < ∞. There are c > 0
and a0 > 0 such that for a < a0 there exist a Riemannian metric ga on C, an orthogonal
projection P a and a unitary operator Ua as in (7.1.3) and (7.1.4), respectively. Then the
operator Ha

eff defined by

Ha
eff := UaP aĤaP aUa∗ with domain UaD(Ĥa)

satisfies the following:

For all functions a 7→ Ea and a 7→ Êa defined for a ∈ (0, a0) with lim supaE
a < Emax and

lim supa Ê
a < Emax one has

(i) Ha
effϕ

a = Eaϕa ⇒
∥∥(Ĥa − Ea)Ua∗ϕa

∥∥ ≤ ca3‖Ua∗ϕa‖,

(ii) Ĥaψa = Êaψa ⇒
∥∥(Ha

eff − Êa)UaP aψa
∥∥ ≤ ca3‖ψa‖.

For ϕ1 = χ(−∞,Emax](−a2∆C + E)ϕ1 the effective Hamiltonian Ha
eff is given by

(ϕ2, H
a
effϕ1)C =

∫
C

[
(ga)ij(pa)iϕ2(pa)jϕ1 + ϕ2Eϕ1 − a2ϕ2U

a∗
1 R−∆t(E)Ua1ϕ1

+ a2ϕ2(Vgeom + VBH + Vamb)ϕ1

]
dC +O(a3), (7.1.5)

where

(ga)ij = gij + aAij + a2(term contain R) + a2Bij
1 ,

(pa)i = a∂i − a
(
χ(t),∇hi χ(t)

)
− a2(term contain R) + a2Bij

2 ,

R−∂2t (E) = (1− P a)(−∆n − E)−1(1− P a),

Ua1 = 2gij∇hi χ(t)a∂j + a2Bij
3 ,

Vgeom = −1

4
η2 +

1

2
Rijij + (term contain R)

VBH = gij
(
∇hi χ(t), (1− p)∇hjχ(t)

)
,

Vamb = term contain R,

with 1
2η the mean curvature, R,R the Riemann tensor of C and A, and terms Aij , Bij

1 , B
ij
2 , B

ij
3

which can be compute from the curvature data of C and A.

At the beginning, we assumed that A = R3 with an Euclidean metric, hence all the
terms that contain R are vanish because the Riemann tensor with respect to the Euclidean
metric equals zero. Moreover, let v ∈ TxC, and a function χ(t) on NC, the lift of v to
NC has no t-component, and thus ∇hvχ(t) = 0. Then, we can rewrite the above Theorem
in the special case such that
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Theorem 7.1.4. Let E be the first Dirichlet eigenvalue of −∂2
t on [−1, 1], P the orthogonal

projection and U the unitary operator associated with E as in (7.1.2). Then the effective
Hamiltonian Ha

eff defined by

Ha
eff : = UPĤaPU∗ with domain UD(Ĥa)

= −a2∆C + E + Vgeom +O(a3).

satisfies the following:

For all functions a 7→ Ea and a 7→ Êa defined for a ∈ (0, a0) with lim supaE
a < Emax and

lim supa Ê
a < Emax one has

(i) Ha
effϕ = Eaϕ⇒

∥∥(Ĥa − Ea)U∗ϕ
∥∥ ≤ ca3‖U∗ϕ‖,

(ii) Ĥaψ = Êaψ ⇒
∥∥(Ha

eff − Êa)UPψ
∥∥ ≤ ca3‖ψ‖.

7.2 Approximation of the Eigenvalues of the Dirichlet Lapla-
cian on Thin Layers

In this section we will apply the above statements to our case where A = R3, geucl is the
Euclidean metric and C = Σ is a complete, connected and non-compact surface embedded
in R3.
Recall that the quantum layer Ω of width 2a around Σ is the image of the mapping

L : Σ× (−a, a)→ R3

(x, u) 7→ x+ un,

where Ω̃ = Σ× (−a, a).

We also considered the Dirichlet Laplacian −∆Ω̃
D on L2(Ω̃), which we can write by us-

ing the coordinate (x, u) ( see Chapter 1, Section: The Hamiltonian) as

−∆Ω̃ = − 1√
detG

∂µ
√

detGGµν∂ν + 2
M −Ku

1− 2Mu+Ku2
∂u − ∂2

u,

on L2
(
Σ× (−a, a), dΩ̃

)
, where dΩ̃ = (1− 2Mu+Ku2)dΣdu.

At the same time, we can define an alternative form of the Hamiltonian by using the
following unitary transformation,

Û : L2
(
Σ× (−a, a), dΣdu

)
→ L2

(
Σ× (−a, a), dΩ̃

)
ψ(x, u) 7→ σ−

1
2ψ(x, u),

where

σ =
dΩ̃

dΣdu
= (1− 2Mu+Ku2).

This leads to the unitary equivalent operator

Ĥ1 = (Û)−1H̃Û .
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Simplifying notation, we will denote ∂uσ = σ′ and ∂2
uσ = σ′′, then we can write Ĥ1 as

Ĥ1 = σ
1
2

(
− 1√

detG
∂µ
√

detGGµν∂ν −
σ′

σ
∂u − ∂2

u

)
σ−

1
2 (7.2.1)

and by using the equations

(σ−
1
2 )′ = −1

2
σ−

3
2σ′,

(σ−
1
2 )′′ =

3

4
σ−

5
2σ′2 − 1

2
σ−

3
2σ′′

=
1

4
σ−

5
2 (3σ′2 − 2σσ′′),

we can calculate the second and the third terms in the right hand side of equation (7.2.1):

σ
1
2
(
− σ′

σ
∂u
)
σ−

1
2 =

1

2
σ−2σ′2 − σ′

σ
∂u,

σ
1
2 (−∂2

u)σ−
1
2 = −1

4
σ−2(3σ′2 − 2σσ′′) +

σ′

σ
∂u − ∂2

u.

By adding the last two equations, we get

σ
1
2 (−∂2

u)σ−
1
2 + σ

1
2
(
− σ′

σ
∂u
)
σ−

1
2 =

1

4
σ−2(−σ′2 + 2σσ′′)− ∂2

u

=
1

4(1− 2Mu+Ku2)2

[
− (−2M + 2Ku)2

+ 2(1− 2Mu+Ku2)(2K)
]
− ∂2

u

=
K −M2

(1− 2Mu+Ku2)2
− ∂2

u.

Also, the first term in the right hand side of equation (7.2.1), can be rewritten as

σ
1
2

(
− 1

(
√

detG)
∂µ
√

detGGµν∂ν

)
σ−

1
2 = σ

1
2

(
− σ−

1
2

1√
det g

∂µσ
1
2

√
det gGµν∂ν

)
σ−

1
2

= − 1√
det g

∂µ
√

det gGµν∂ν −
1√

det g
∂µ
√

detGGµν(∂νσ
− 1

2 ).

Then, we have

Ĥ1 = − 1√
det g

∂µ
√

det gGµν∂ν −
1√

det g
∂µ
√

detGGµν(∂νσ
− 1

2 ) +
K −M2

(1− 2Mu+Ku2)2
−∂2

u.

Now, we define the dilation operator

D̂ : L2
(
Σ× (−1, 1), dΣdt

)
→ L2

(
Σ× (−a, a), dΣdu

)
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by

(D̂ψ)(x, u) := a−
1
2ψ
(
x,
u

a

)
.

For the function

ψ(x, t) = ϕ(x)χ(t) = ϕ(x) cos
(πt

2

)
we get

(D̂ψ)(x, u) = a−
1
2ψ
(
x,
u

a

)
= a−

1
2ϕ(x)χ

(u
a

)
=

√
1

a
ϕ(x) cos

(πu
2a

)
Moreover, the dilation Hamiltonian, is given by

Ĥ2 := (D̂)−1Ĥ1D̂

= (D̂)−1

[
− 1√

det g
∂µ
√

det gGµν∂ν −
1√

det g
∂µ
√

detGGµν(∂νσ
− 1

2 )

+
K −M2

(1− 2Mu+Ku2)2
− ∂2

u

]
D̂.

We will calculate each term of the last equation, denoting

σ̂ = (D̂)−1σD̂ = 1− 2M(at) +K(at)2,

det Ĝ = (D̂)−1(detG)D̂.

Now,

(D̂)−1

[
− 1√

det g
∂µ
√

det gGµν∂ν −
1√

det g
∂µ
√

detGGµν(∂νσ
− 1

2 )

]
D̂

= − 1√
det g

∂µ
√

det gGµν∂ν −
1√

det g
∂µ

√
det ĜGµν(∂ν σ̂

− 1
2 ),

(D̂)−1

[
K −M2

(1− 2Mu+Ku2)2

]
D̂ =

K −M2(
1− 2M(at) +K(at)2

)2 ,
(D̂)−1

[
− ∂2

u

]
D̂ = −∂2

at = − 1

a2
∂2
t ,

and thus

Ĥ2 = − 1√
det g

∂µ
√

det gGµν∂ν−
1√

det g
∂µ

√
det ĜGµν(∂ν σ̂

− 1
2 )+

K −M2(
1− 2M(at) +K(at)2

)2− 1

a2
∂2
t ,

where, the first three terms depend on x and t and ∂2
t independent of x. For a thin layers

the Hamiltonian decouples into a sum of two operators

Ĥ2x = − 1√
det g

∂µ
√

det ggµν∂ν + (K −M2),

Ĥ2t = − 1

a2
∂2
t
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Therefore, it follows that

Ĥ2 = − 1√
det g

∂µ
√

det ggµν∂ν + (K −M2)− 1

a2
∂2
t +O(a).

Writing Ĥa = a2Ĥ2, so we get

Ĥa = −a2∆Σ + a2(K −M2)− ∂2
t +O(a3).

Now, we will check that this coincides with Theorem 7.1.4 when applied to our case. To
begin with, we will compute the effective Hamiltonian Ha

eff of Ĥa. The first eigenvalue of
−∂2

t is E = (π2 )2 and the corresponding eigenfunction is χ1(t) = cos πt2 , thus the associated
eigenspace is given by

P = ker
(
− ∂2

t −
(π

2

)2)
=
{
ϕ(x)χ1(t), ϕ(x) ∈ L2(Σ)

}
(7.2.2)

and the unitary operator U is:

U : P → L2(Σ)

ϕ(x)χ1(t) 7→ ϕ(x). (7.2.3)

Furthermore, the effective Hamiltonian Ha
eff is given in the following theorem

Lemma 7.2.1. For E = (π2 )2, the first Dirichlet eigenvalue of −∂2
t on [−1, 1], and for all

ϕ ∈ L2(Σ), the quadratic form corresponding to effective Hamiltonian Ha
eff of Ĥa, is given

by

(ϕ,Ha
effϕ)Σ =

∫
Σ

[
a2(∇ϕ)2 +

(π
2

)2
ϕ2 + a2(K −M2)ϕ2

]
dΣ +O(a3).

Proof. For i, j = x1, x2 the coordinates on Σ, we will calculate the components in the
equation (7.1.5) as follows:

(ga)ij = gij +O(a),

(pa)i = a∇i +O(a2),

Ua1 = O(a2),

VBH = 0,

Vamb = 0.

Moreover, since R is the Riemann tensor of Σ and Rijij = hjjhii−hijhji, where (hij) is the
matrix associated to the second fundamental form then

ΣijR
ij
ij = 0 + κ1κ2 + κ1κ2 + 0 = 2K,

and since M = 1
2η is the mean curvature, then we have

Vgeom = K −M2.
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By using equation (7.1.5), we obtain

Ha
eff = −a2∆Σ + a2(K −M2) +

(π
2

)2
+O(a3). �

At the close of this section, we rewrite Theorem 7.1.4 adopted to our case.

Theorem 7.2.2. Let E = (π2 )2 be the first eigenvalue of −∂2
t , P an orthogonal projection

and U a unitary operator defined in 7.2.3. Then the effective Hamiltonian

Ha
eff : = UPĤaPU∗ with domain UD(Ĥa)

= −a2∆Σ + a2(K −M2) +
(π

2

)2
+O(a3).

satisfies the following:

For all functions a 7→ Ea and a 7→ Êa defined for a ∈ (0, a0) with lim supaE
a < E

and lim supa Ê
a < E one has

(i) Ha
effϕ = Eaϕ⇒

∥∥(Ĥa − Ea)U∗ϕ
∥∥ ≤ ca3‖U∗ϕ‖,

(ii) Ĥaψ = Êaψ ⇒
∥∥(Ha

eff − Êa)UPψ
∥∥ ≤ ca3‖ψ‖.

Remark 7.2.3. We recall that for any self-adjoint operator H the bound
∥∥(H − λ)ψ

∥∥ <
δ‖ψ‖ for λ ∈ R, implies that H has spectrum in the interval [λ − δ, λ + δ]. So that the
statement (i) in Theorem 7.2.2 entails that Ĥa has an eigenvalue in the interval of length
2ca3 around the eigenvalue Ea of Ha

eff. Then for a given family of eigenvalues Ea of Ha
eff

with lim supaE
a < E and a family of corresponding eigenfunctions ϕ, we may write the

corresponding eigenvalues of Ĥa as

λ = Ea +O(a3)

= eigenvalue of
(
− a2(∆Σ − (M2 −K)

)
+
(π

2

)2
+O(a3).

Remark 7.2.4. Since By means of (1.2.6) and ψ(x, t) = ϕn(x)χ1(t), we have

‖ψ‖2 =

1∫
−1

∫
Σ

ϕ2χ2
1

√
Gdtdx

≤ C+

1∫
−1

χ2
1dt

∫
Σ

ϕ2√gdx

= C+\C−
∫
Σ

ϕ2C−
√
gdx

≤ C+\C−
∫
Σ

ϕ2
√
Gdx = C+\C−‖ϕ‖2 = C‖UPψ‖2.

Then, we can also derive bounds for the eigenvalues of Ha
eff from the eigenvalue of Ĥa.
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Chapter 8

Estimating the Number of
Eigenvalues of the Dirichlet
Laplacian on Thin Layers

The goal of this chapter is to give a lower bound on the number of eigenvalues of the Dirich-
let Laplacian on a thin quantum layer Ω around the reference surface Σ with bounded
Gauss curvature from below, in terms of the genus g of the surface Σ.

We have seen in Theorem 7.2.2 that we may write the eigenvalues of the Dirichlet Laplacian
−∆D on the thin quantum layer Ω in the following way:

λ =
( π

2a

)2
+ E +O(a) as a→ 0,

where E is the corresponding eigenvalues of the Schrödinger operator L = −∆Σ − V ,
where

V = M2 −K =
(k1 − k2

2

)2
.

In order to obtain a lower bound on the number of eigenvalues of −∆Ω
D which are less than

κ2
1 = ( π2a)2, we therefore need to find a lower bound on the number of negative eigenvalues

of the Schrödinger operator L.

For more details on how to find negative eigenvalues of Schrödinger operators see [GNY04].

8.1 Introduction and Statement

8.1.1 Covering Property

Definition 8.1.1. Given l > 1 and a positive integer N , we say that a metric space (X, d)
satisfies the (l, N)-covering property if, for any ball B(x, r) in X, there exists a family of
at most N balls of radius r/l, which cover B(x, r).

Lemma 8.1.2. If a metric space (X, d) satisfies the (l, N)-covering property then it sat-
isfies the (λ,Q)-covering property for any λ > 1 and some Q = Q(λ, l,N).

79
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Proof. Indeed, let j be a positive integer such that lj−1 < λ < lj . Since the (λ,Q)-
covering property is monotone in λ, it suffices to assume that λ = lj where j ∈ N. If j = 1
then the claim is trivial. Let us make the inductive step from j to j + 1. By the induc-
tive hypothesis, any ball B(x, r) can be covered by at most Qj balls B(xi, r/l

j) and each
ball B(xi, r/l

j) can be covered by at most N balls of radius r/lj+1 each. Hence, B(x, r)
can be covered by at most Qj+1 := NQj balls of radius r/lj+1 each, which settles the claim.

For example, if Q = Q(λ, 2, N) and λ < 2j then a ball of radius r can be covered by
at most Q = N j balls of radius r/λ.

8.1.2 Finding Disjoint Annuli in a Metric Space

Let (X, d) be a metric space. By an annulus in X we mean any set A ⊂ X of the form

A =
{
x ∈ X : r ≤ d(x, a) < R

}
,

where a ∈ X (in particular, if r = 0 then A is the ball B(x,R)). Also, denote by 2A the
following annulus:

2A =
{
x ∈ X :

1

2
r ≤ d(x, a) < 2R

}
.

The following theorem proves the existence of disjoint annuli and is key to our approach
to estimating the number of eigenvalues.

Theorem 8.1.3. Let (X, d) be a metric space and ν a non-atomic Radon measure on X.
Assume that the metric space (X, d) satisfies the following:

1. All metric balls B(x, r) =
{
y ∈ X : d(x, y) < r

}
in X are precompact.

2. (X, d) has the (2, N)- covering property.

Then for any positive integer k, there exists a sequence {Ai}ki=1 of k annuli in X such that

(i) the annuli 2Ai are disjoint,

(ii) ν(Ai) ≥ cN ν(X)
k , for any i = 1, 2, . . . , k.

Here cN is a positive constant depending on N . (For example, one can define it by c−1
N =

2 + 4Q(1600, 2, N) where Q = N11 by Lemma 8.1.2).

Remark 8.1.4. A measure ν on X is called a Radon measure if ν is inner regular, defined
on all Borel sets on X and is finite on all compact sets.

8.1.3 Eigenvalues of Schrödinger Operators

Let X be a Riemannian manifold and −∆ be the Laplace operator on X. Given a non-
negative function V , where V ∈ L1

loc(X,µ) and µ is the Riemannian measure on X,
consider the Schrödinger operator

L = −∆− V

and the associated quadratic form

q[f ] :=

∫
X

f(Lf)dµ =

∫
X

(
|∇f |2 − V f2

)
dµ,
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defined for all f ∈ H1(X).

For any λ, define the counting function Nλ(L) as the supremum of the dimensions of
all vector spaces V ⊂ H1(X) such that

q[f ] < λ‖f‖2 for all f ∈ V, f 6= 0.

In particular, if the spectrum of L below λ is discrete, then Nλ(L) is just the number of
eigenvalues of L which are smaller than λ, counted with multiplicities. In the case λ = 0,
we will also use the notation

Neg(L) = N0(L).

8.2 Estimating the Number of Negative Eigenvalues of Schrödinger
Operators

We start this section by the following remark

Remark 8.2.1. If we apply the Corollary 5.6 of [GNY04], which say ”If Σ is a Riemann
surface which is conformal to (Σg \P ), where Σg is a closed orientable Riemann surface of
genus g and P is a finite subset of Σg, then, for any non-negative function V ∈ L1

loc(Σ),
we have

Neg(−∆Σ − V ) ≥
∫

Σ V dΣ

C(g + 1)
, (8.2.1)

where C is a positive constant.”, in our case where Σ is a complete connected non-compact
surface with finite total Gauss curvature. Since, By Theorem 3.6.1, our surface Σ is
conformally equivalent to a compact Riemann surface with finitely many punctures and
V = M2 −K is a non negative function in L1

loc(Σ). Then we have:

Neg
(
−∆Σ − (M2 −K)

)
≥
∫

Σ(M2 −K)dΣ

C(g + 1)
, (8.2.2)

and ∫
Σ

(M2 −K)dΣ ≥ −
∫
Σ

KdΣ ≥ 2π(e+ 2g − 2), (8.2.3)

and we also have χ(Σ) < 0 and hence e+ 2g ≥ 3, which implies

e+ 2g − 2 ≥ 1

2
(g + 1). (8.2.4)

Indeed, if (8.2.4) fails then 2e+ 3g ≤ 4, which is not compatible with e+ 2g ≥ 3. Substi-
tuting (8.2.4) and (8.2.3) into (8.2.2) we obtain

Neg(L) ≥ π

C
= C ′, (8.2.5)

where C ′ is a positive constant.

But this result is not very useful because the bound on Neg(L) is independent of the genus
g of the surface Σ and C ′ could well be less than 1 which showed that Neg(L) ≥ 1. Then,
we have at least one eigenvalue of −∆Ω

D and this we have already proved in Corollary 5.1.4.
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Therefore, we might need more assumptions to get stronger results. First, we will
recall some information from [GNY04].

The following result gives a lower bound on the number of negative eigenvalues of the
Schrödinger operator in a complete Rimannian manifold:

Theorem 8.2.2. Let X be a complete Riemannian manifold. Assume that for some
constants N and M , the following is true:

(i) any ball B(x, r) in X can be cover by at most N balls of radii r
2 ,

(ii) for all x ∈ X and r > 0
vol
(
B(x, r)

)
≤Mr2. (8.2.6)

Then, for any function V is defined as above,

Neg(−∆− V ) ≥
⌊
CN,M

∫
X

V dµ
⌋
, (8.2.7)

where the constant CN,M only depends on N and M .

Proof. to begin with, let us describe an approach to the proof. Since

Neg(L) = sup
{

dimV : V ⊂ H1(X) and q(f) < 0 ∀f ∈ V\{0}
}
,

it suffices to construct a subspace V of H1(X) such that q[f ] is negative on V and

dim(V) ≥ C
∫
X

V dµ, where C = CN,M .

We will construct V as the span of functions fi, where {fi}ki=1 is a sequence of functions
with disjoint compact supports such that q[fi] < 0. Then q[f ] < 0 will be true for any
non-zero function f ∈ span{fi}, and dimV = k. Hence it suffices to construct a sequence
{fi}ki=1 of functions with disjoint compact supports such that, for any i = 1, ..., k,∫

X

|∇fi|2dµ <
∫
X

V f2
i dµ,

and

k ≥ C
∫
X

V dµ.

For an annulus A =
{
x ∈ X : r ≤ d(x, a) < R

}
, consider the following function

f(x) =



1, x ∈ A,

0, x /∈ 2A,

1
ln 2 ln 2|x|

r
r
2 ≤ |x| ≤ r,

1
ln 2 ln 2R

|x| R ≤ |x| ≤ 2R.

(8.2.8)

where |x| means the distance d(x, a).
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Lemma 8.2.3. Under assumption (ii) of Theorem 8.2.2, the function f of (8.2.8) satisfies∫
X

|∇f |2dµ ≤ CM,

for some constant C.

Proof. From the definition of f , it is clear that ∇f = 0 in A or outside 2A and∣∣∇f(x)
∣∣ ≤ C ′

r
if

r

2
≤ |x| ≤ r,

∣∣∇f(x)
∣∣ ≤ C ′

R
if R ≤ |x| ≤ 2R,

where C ′ independent of r and R. By using hypothesis (ii) of the Theorem 8.2.2 then, we
have ∫

X

|∇f |2dµ =

∫
r
2
≤d(x,a)≤r

|∇f |2dµ+

∫
R≤d(x,a)≤2R

|∇f |2dµ

≤ C ′2

r2
vol
(r

2
≤ d(x, a) ≤ r

)
+
C ′2

R2
vol
(
R ≤ d(x, a) ≤ 2R

)

≤ C ′2

r2
vol
(
d(x, a) ≤ r

)
+
C ′2

R2
vol
(
d(x, a) ≤ 2R

)

≤ C ′2

r2
Mr2 +

4C ′2

R2
MR2

≤ CM. �

Now we need a sequence of annuli {Ai}ki=1, but such that the annuli 2Ai are mutually
disjoint. Then, we define fi for each pair (Ai, 2Ai) as above.
By applying Theorem 8.1.3 with the measure ν, where dν = V dµ, we know that for any
positive integer k, there exist k annuli Ai in M such that∫

Ai

V dµ ≥ cN
ν(X)

k
,

and the annuli 2Ai are disjoint. k will be chosen later. Also note that∫
X

V f2
i dµ ≥

∫
Ai

V f2
i dµ =

∫
Ai

V dµ.

Hence by Lemma 8.2.3, the condition∫
X

|∇fi|2dµ <
∫
X

V f2
i dµ
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will be satisfied if ∫
Ai

V dµ ≥ cN
ν(X)

k
> CM. (8.2.9)

For simplicity, let v = CM
cN

. We have two cases:

i) If ν(X) ≤ v then such a k cannot be constructed.

ii) If ν(X) > v, then there exists an integer k ∈
[

1
2
ν(X)
v , ν(X)

v

)
. This k satisfies (8.2.9),

hence there are k annuli satisfying the hypotheses of Theorem 8.1.3, and we can
define the test function fi for each pair (Ai, 2Ai) as above. In this way we obtain a
sequence of functions with disjoint supports and with∫

X

|∇f |2dµ ≤ CM.

Now we consider the linear space V spanned by above test functions fi. V is a k-dimensional
subspace of H1(X) such that for any f ∈ V\{0}∫

X

|∇f |2dµ <
∫
X

V f2dµ,

i.e., q[f ] < 0, whence it follows that

Neg(−∆− V ) ≥ k.

Thus, we obtain

Neg(−∆− V ) ≥ cN
2CM

ν(X) ≥
⌊
CN,M

∫
X

V dµ
⌋
.

Also in the case where ν(X) ≤ v we have

cN
2CM

∫
X

V dµ < 1,

and

Neg(−∆− V ) ≥ 0 =
⌊
CN,M

∫
X

V dµ
⌋
,

is trivially true. �

Remark 8.2.4. For comparison theorem of Cwickel-Lieb-Rozenblum states that, for any
non-negative function V in Rn, n > 2,

Neg(L) ≤ C
∫
Rn

V
n
2 dµ, (8.2.10)

where C depends only on the dimension n. It is known that (8.2.10) is not true in R2

whereas, by Theorem 8.2.2, the opposite inequality (8.2.7) holds in R2.
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8.3 A Lower Bound on the Number of the Eigenvalues of
−∆D on Thin Layers

We want to apply Theorem 8.2.2 to our case where Σ is a complete, connected and non-
compact surface embedded in R3 with finite total Gauss curvature.

First, Σ needs to satisfy the (2, N)-covering property which is hypothesis (i) in Theorem
8.2.2. Hence we need more assumptions on Σ one of them being that the Gauss curvature
of Σ bounded from below. One of the most useful consequences of a lower bound on
the Ricci curvature (which in 2 dimensions is the Gauss curvature) is the Bishop-Gromov
Theorem:

Theorem 8.3.1. Let X be a complete n-dimensional Riemannian manifold, such that
Ric ≥ (n− 1)κ, where κ ∈ R. Denote by b(r) the volume of a ball of radius r in a simply
connected n-dimensional manifold with constant curvature κ. For 0 < r < R, we have

vol
(
B(R)

)
vol
(
B(r)

) ≤ b(R)

b(r)
. (8.3.1)

Furthermore,
vol
(
B(r)

)
b(r)

→ 1 as r → 0,

and hence vol
(
B(r)

)
≤ b(r).

One of the direct applications of this theorem is Gromov’s packing lemma.

Lemma 8.3.2. Let X be as in Theorem 8.3.1. For each r > 0, there exists a number
N of balls of radius r

2 that are covering a ball of radius r, such that N ≤ C(r, κ) where
C(r, κ) is a constant depends only on r and κ.

Proof. FixB(r), a ball of radius r inX, and consider a maximal family
{
B(xi, r/4)

}N
i=1

of disjoint balls inside B(5r/4). Then the corresponding family of balls of radius r/2,{
B(xi, r/2)

}N
i=1

, cover B(r).

To prove this, we assume that the corresponding family of balls of radius r/2,
{
B(xi, r/2)

}N
i=1

,
dose not cover B(r). Then, there is at least one point x̃ ∈ B(r) with

x̃ 6∈ ∪Ni=1B(xi, r/2), i.e., d(x̃, xi) > r/2 for all i = 1, . . . , N,

and the ball B(x̃, r/4) is disjoint with B(xi, r/4) for all i = 1, . . . , N and contained in

B(x, 5r/4). But then the family
{
B(xi, r/4)

}N
i=1

is not maximal, which contradicts the
assumption.

Moreover, by virtue of the Bishop-Gromve Theorem, we have

volB(r/4) ≥ C(r, κ)−1 volB(r),

where C(r, k) is a constant depending only on r and κ. Since the balls B(xi, r/4) are
disjoint, we have

vol
(
B(r)

)
≥

N∑
i=1

volB(xi, r/4) ≥ NC(r, k)−1 volB(r),
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and therefore N ≤ C(r, k). �

The following theorem will give us an insight into which additional assumptions we should
put on Σ.

Theorem 8.3.3. (Main Theorem 2) Let Σ be a complete, connected and non-compact
surface embedded in R3 with integrable Gauss curvature. Assume that Σ = Σ1∪Σ2, where
Σ1 and Σ2 have a common boundary such that:

i) Σ1 = R2 \BR(0), for R > 0, with the Euclidean metric.

ii) Σ2 is a compact surface with boundary, it has bounded diameter, volume and bounded
Gauss curvature from below,

diam(Σ2) ≤ D
vol(Σ2) ≤ ϑ

K ≥ −κ2,

where D,ϑ > 0 and κ ∈ R, (a very simple example of such a surface, see Fig 8.3.1).

Let r′ = 8 max{D−R,R}, then there is a constant C(κ,ϑ,r′) > 0, only depending on κ, ϑ, r′,
such that we have:

Neg
(
−∆Σ − (M2 −K)

)
≥
⌊
C(κ,ϑ,r′)

∫
Σ

(M2 −K)dΣ
⌋
.

In particular,

Neg
(
−∆Σ − (M2 −K)

)
≥ bC(κ,ϑ,r′)gc, (8.3.2)

where g is the genus of Σ.

Figure 8.3.1: Σ = Σ1 ∪ Σ2.

Remark 8.3.4. In the proof of the theorem, we will explain why we take r′ = 8 max{D−
R,R} like that, where this assumption is necessary to prove that the surface Σ satisfies
the (2, N)-covering property when the radius of the ball B(x, r) in Σ is very large, for all
x ∈ Σ.
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Proof. We begin by proving that Σ satisfies hypothesis (ii) of Theorem 8.3.3. There-
fore, we want to find a constant M , such that for all x ∈ Σ and r > 0,

volB(x, r) ≤Mr2.

We distinguish two cases, because the volume of the ball B(x, r) for r small is dominated
by the handles and for r >> R is dominated by the Euclidean volume.

a) r ≤ r′. Since K ≥ −κ2, it follows from the Bishop-Gromov Theorem that, for all
x ∈ Σ,

volB(x, r) ≤ b(x, r),

where b(x, r) is the volume of the ball of radius r centered at x in a simply connected
2-dimensional hyperbolic manifold with constant curvature −κ2. This quantity equals

2π

κ2

(
cosh(rκ)− 1

)
,

and using the Taylor series

cosh(rκ) = 1 +
(rκ)2

2!
+

(rκ)4

4!
+ · · · ,

we can write

volB(x, r) ≤ 2π

κ2

((rκ)2

2!
+

(rκ)4

4!
+ · · ·

)

= 2πr2
( 1

2!
+
r2κ2

4!
+
r4κ4

6!
+ · · ·

)

≤ 2πr2
( 1

2!
+
r′2κ2

4!
+
r′4κ4

6!
+ · · ·

)

≤ πr2
(

1 +
r′2κ2

2!
+
r′4κ4

4!
+ · · ·

)

≤ πer′κr2

= M1(r′, κ)r2,

where M1(r′, κ) = πer
′κ is clearly positive and only depends on r′ and κ.

b) r ≥ r′. For all x ∈ Σ, we have

B(x, r) =
(
Σ1 ∩B(x, r)

)
∪
(
Σ2 ∩B(x, r)

)
.

Since

vol
(
Σ1 ∩B(x, r)

)
≤ πr2,

vol
(
Σ2 ∩B(x, r)

)
≤ vol(Σ2) ≤ ϑ,



88 CHAPTER 8. EIGENVALUES OF −∆D ON THIN LAYERS

we arrive at

volB(x, r) ≤ ϑ+ πr2,

= πr2
( ϑ

πr2
+ 1
)
,

≤ πr2
( ϑ

πr′2
+ 1
)
,

= M2(r′, ϑ)r2,

where M2(r′, ϑ) = π( ϑ
πr′2 + 1) is positive and only depends on r′ and ϑ.

In conclusion, using M = max
{
M1(r′, κ),M2(r′, ϑ)

}
, we get volB(x, r) ≤Mr2.

In this next step, we again use the theorem of Bishop-Gromov and the packing lemma to
prove that Σ satisfies the (2,N)-covering property. Here, we also distinguish the two cases
above:

a’) r ≤ r′. For all x ∈ Σ, we have

volB(x, r)

volB(x, r/2)
≤ b(x, r)

b(x, r/2)
=

cosh(rκ)− 1

cosh(rκ/2)− 1
,

and similar to the above, we obtain

cosh(rκ)− 1 ≤ r2κ2
( 1

2!
+
r2κ2

4!
+ · · ·

)

≤ r2κ2
( 1

2!
+
r′2κ2

4!
+ · · ·

)

≤ κ2er
′κr2

≤ c1(r′, κ)r2,

where c1(r′, κ) is a positive constant and only depends on r′ and κ. Also,

cosh(rκ/2)− 1 ≥ (rκ/2)2

2
=
r2κ2

8
,

which gives
volB(x, r)

volB(x, r/2)
≤ N1(r′, κ),

for N1(r′, κ) = 8er
′κ.

b’) r ≥ r′. We want to prove that there is a constant N2(r′, ϑ), such that for all x ∈ Σ,

volB(x, r)

volB(x, r/2)
≤ N2(r′, ϑ).

As we have seen in b), for all x ∈ Σ,

volB(x, r) ≤M2(r′, ϑ)r2.
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We now prove the existence of a constant c2(r′, ϑ) such that volB(x, r) ≥ r2c2(r′, ϑ):

a”) If x 6∈ Σ2, we have
1

2
B(x, r/2) ⊂ Σ1

and then

volB(x, r/2) ≥ π(r/2)2

2
=
πr2

8
.

b”) If x ∈ Σ2, in this case r′ = 8 max{D − R,R} is a sufficient condition to prove that
there exists a constant c2(r′, ϑ), satisfying that volB(x, r/2) ≥ c2(r′, ϑ)r2 for r very
large, because we can find an annulus

A =
{
x0 ∈ Σ1 : R < |x0| < (r/2)− (D −R)

}
is contained in B(x, r/2):

To prove that: Suppose R < |x0| < (r/2) − (D − R). Then, let P be the point
with |p| = R and closest to x0, i.e.,

d(x0, p) = |x0| −R
d(p, x) ≤ D.

Then it follows that

d(x0, x) ≤ d(x0, p) + d(p, x)

≤ |x0| −R+D < r/2.

Now, we obtain

volB(x, r/2) ≥ vol(A)

= π
[(
r/2− (D −R)

)2 −R2
]
,

since D −R ≤ r′/8 ≤ r/8, and so

r/2− (D −R) ≥ r/2− r/8 = 3r/8

R ≤ r′/8 ≤ r/8.

Therefore, (
r/2− (D −R)

)2 −R2 ≥ r2

8

and we get

volB(x, r/2) ≥ r2c2(r′, ϑ),

where c2(r′, ϑ) = π
8 . From the above, we then have

volB(x, r)

volB(x, r/2)
≤ N2(r′, ϑ).

where N2(r′, ϑ) = 8( ϑ
πr′2 + 1) is a constant depending on r′ and ϑ, only.
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Now, using the packing lemma and the constant N = max
{
N1(r′, κ), N2(r′, ϑ)

}
, we know

that each ball of radius r can be covered by at most N balls of radius r/2.

By Theorem 8.2.2, there is a constant CN,M depending on N and M only such that
for V = M2 −K, we have

Neg
(
−∆Σ − (M2 −K)

)
≥
⌊
CN,M

∫
Σ

V dΣ
⌋
.

Since M and N depend only on κ, ϑ, r′, we may write CN,M = C(κ,ϑ,r′). Finally, as we
have seen at the beginning of this chapter∫

Σ

(M2 −K) ≥ π(g + 1),

which yields
Neg

(
−∆Σ − (M2 −K)

)
≥ bC(κ,ϑ,r′)gc. �

Corollary 8.3.5. Let Σ be a surface as in the Theorem 8.3.3, and Ω be the quantum layer
of radius a around Σ. Then, there exists a0 > 0 such that for all a ≤ a0, the number of
eigenvalues of −∆Ω

D is at least
⌊
C(κ,ϑ,r′)g

⌋
.



Chapter 9

Concluding Remarks

The main interest of this thesis was to find a lower bound on the number of eigenvalues of
the Dirichlet Laplacian, −∆Ω

D, on a quantum layer Ω in terms of the genus g of a surface Σ.

In the first Main Theorem 6.1.2, we found a lower bound which depends only on the
genus of Σ, if Σ is a Euclidean plane with a finite number of handles whose distance to
each other is at least a constant.

The statement of the second main result is, if Σ is a Euclidean plane outside a com-
pact set with nontrivial topology, then the number of eigenvalues of −∆D on thin layer
is greater than or equal to g multiplied by a constant C. Since C depends on bounds for
some geometrical quantities, it would be desirable to study the relation of these bounds
to the genus.

However, the question how to evaluate the number Cg stays open. Further investiga-
tion may involve the question if the first result is true if Σ is not a Euclidean plane outside
the handles.
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