
 1

The Acquisition of Functional Planning- and Programming
Knowledge: Diagnosis, Modelling, and User-Adapted Help

An Overview of the Project

"Development of an Adaptive Knowledge Diagnosis and Error Explanation System for the

Acquisition of Programming Knowledge for ABSYNT"

(Grant No. Mo 292/3 1-3)

Claus Möbus, Olaf Schröder

Introduction

The development of runnable models of human information processing and their

empirical validation has become an important research area, especially concerning processes of

knowledge acquisition. Since models of this kind explicitly represent hypothetical knowledge

structures and processes, they enable detailed hypotheses concerning the representation and

change of knowledge, and they enable detailed and sometimes surprising predictions. Thus

they contribute to psychological theorizing and to basic research. On the other hand, modelling

the acquisition and change of knowledge is also one necessary condition for the design of

individualized instruction and help for computer based systems. Individualized, user-centered

online instruction and help not only enhances knowledge acquisition processes but is also

important for the design and development of various software tools. For example, the

acceptance of such tools may depend on their sensitivity to the actual knowledge and intentions

of the user.

The topic of our project has been to empirically investigate and to model processes of

the acquisition, utilization, and optimization of knowledge while working with the ABSYNT

Problem Solving Monitor. (PSM). The ABSYNT PSM is designed to support the acquisition

of basic functional programming concepts by supplying learners with individualized, adaptive

online help and proposals. ABSYNT ("Abstract Syntax Trees") is a functional visual

programming language developed in the project. The ABSYNT PSM provides help for the

learner constructing ABSYNT programs to given tasks.

The design and development of a system like the ABSYNT PSM is not possible without

creating models representing knowledge states and knowledge acquisition processes of

learners. Our system is embedded in a three level approach:

• First there is a theoretical framework of problem solving and knowledge acquisition:

the ISP-DL Theory (Impasse - Success - Problem Solving - Driven Learning). Its purposes are

- to describe and to explain the continuous stream of actions and verbalizations of the
learner while working on programming tasks

 2

- to represent a guideline for design decisions of the system

- to motivate and constrain models of learners´ knowledge states and acquisition
processes.

• An Internal Model or State Model diagnoses the actual domain knowledge of the

learner (rules and schemas) at different states in the knowledge acquisition process. It is

designed to be an integrated part of the ABSYNT PSM ("internal" to it) and to perform online

knowledge diagnosis based on computer-assessable data provided by the learner´s interactions

with the system. The State Model is the basis for user-adapted help.

• An External Model or Process Model is designed to simulate the knowledge

acquisition processes, problem solving heuristics, and (in future) motivational processes of the

learner on a level of detail not available to the State Model. The Process Model is not part of the

ABSYNT PSM ("external" to it) but supports the design of the State Model. The Process

Model is an offline model designed to bridge the gap between the ISP-DL Theory and the State

Model by providing hypothetical reasons for the knowledge state changes represented in the

State Model. For example, the Process Model should hypothesize in which kinds of situations

which kinds of weak heuristics are preferred by the learner.

Thus ISP-DL Theory, State Model and Process Model are designed to be mutually

consistent but serve different purposes. Figure 1 summarizes their interrelationships: The ISP-

DL Theory controls the development of the Process Model and the State Model. Data available

from the learner while working with the system are: stating and testing hypotheses about

created solution proposals, programming actions and the time needed for them, and

verbalizations. Such data are used for online construction and updating of the State Model, and

/ or for offline development and testing predictions of the Process Model. The State Model is in

part based on an Expert Model representing planning knowledge and implementation

knowledge of the ABSYNT domain. Both the State Model and the Expert Model are designed

to provide user-adapted help and explanations.

First we will briefly describe the ISP-DL Theory since it provides the "roof" for the

design of the ABSYNT PSM, the State Model, and the Process Model. Then the ABSYNT

PSM is presented. In the next section we will describe the State Model and empirical analyses

of some of its predictions. In addition, we show which empirical predictions follow from the

State Model for different kinds of help information if the adaptivity of the information to the

learner´s knowledge is varied. Finally, the Process Model is described.

The ISP-DL Theory

As indicated, the ISP-DL Theory is intended to describe the continuous stream of

problem solving and learning of a student as it occurs in a sequence of, for example,

programming sessions. Empirical analyses of students´ sessions working with ABSYNT

 3

(Möbus & Thole, 1990; Schröder, 1990) showed that such streams can be described as an

interplay of problem solving, impasse-driven learning, and success-driven learning. Several

approaches have been concerned with these processes, like van Lehn´s theory of Impasse-

Driven Learning (van Lehn, 1988; 1990; 1991b), SOAR (Laird, Newell & Rosenbloom, 1986;

1987; Newell, 1990; Rosenbloom et al., 1991); or knowledge compilation mechanisms as for

example incorporated in ACT* (Anderson, 1983; 1986; 1989) or described by Wolff (1987;

1991). Consequently, the ISP-DL Theory is an attempt to give an integrated account of the

phenomena described by these and other approaches. The ISP-DL Theory has the following

features (for more detail see Möbus, 1991b; Möbus, Schröder & Thole, in press):

Testing

Predictions

offline

development

External
Process
Model

Help, Explanations

online

Diagnosis

Rules
Schemata
Heuristics
Motivation

Inter-
nal

State
Model

Rules
Schemata

Data

Hypotheses
 testing
Latency
 times
Actions
Verbali-
 zations

I S P - D L Theory

Expert
Model

Planning /
 Intention
Implementation

predictions

ABSYNT
Problem Solving
Monitor

Figure 1: The interrelationships between ISP-DL Theory, Process Model, State Model, Expert

Model, data of the learner, and help and explanations

• The distinction of different problem solving phases (according to Gollwitzer, 1990;

1991): In the Deliberate Phase, the problem solver (PS) thinks about several goals. A goal is a

set of facts which the PS wants to become true (Newell, 1982) and can be expressed as a

predicative description. It ends when the PS chooses one goal to pursue: The PS is now

committed to an intention. In the second phase, the PS plans a solution for the chosen goal. A

plan is a partially ordered sequence or hierarchy of subgoals which may be created by domain-

specific operators or by weak heurtistics. In the third phase, the plan is executed, and finally the

result is evaluated. For example, the PS may check whether the obtained result satisfies the

predicative description representing the main goal.

• The impasse-driven acquisition of new knowledge. Roughly, an impasse is a situation

where "the architecture cannot decide what to do next given the knowledge and the situation that

are at its current focus of attention." (van Lehn, 1991b, p. 19). Impasses may arise at different

 4

points in problem solving (Newell, 1990, p. 174). For example, the PS may not be able to

decide for a goal, or to synthesize a plan, or the plan might not be executable, or there are no

criteria to evaluate a result. In response to impasses, the PS applies weak heuristics, like asking

questions, looking for help, cheating, and so on (Laird, Rosenbloom & Newell, 1987; van

Lehn, 1988; 1989; 1990; 1991b). As a result, new knowledge may be acquired that leads to

overcoming the impasse. So impasses are situations where the learner is likely to actively look

for help (van Lehn, 1988). But it is also possible that the information obtained is not helpful.

For example, information intended as help may be too complicated, or confusing, or leading

into a wrong direction. So instead of solving the impasse, a secondary impasse may arise, as

already described by Brown & van Lehn (1980).

• The success-driven improvement of acquired knowledge. Successfully used

knowledge (knowledge which application did not lead to an impasse) may be improved so it

may be used more effectively in the future. More specifically, by rule composition (Anderson,

1983, 1986; Lewis, 1987; Neves & Anderson, 1981; Vere, 1977), the number of control

decisions and subgoals to be set may be reduced, because less rule selections have to be

performed. In contrast to these authors, our composition is based on resolution and unfolding

(Hogger, 1990), see Möbus, Schröder & Thole (1991; in press). This has theoretical and

empirical advantages.

The ABSYNT Problem Solving Monitor

ABSYNT ("Abstract Syntax Trees") is a functional, visual programming language

based on ideas stated in an introductory computer science textbook (Bauer & Goos, 1982).

ABSYNT is a tree representation of pure LISP and is aimed at supporting the acquisition of

basic functional programming skills, including abstraction and recursive systems. The design

of ABSYNT as a visual programming language was based on

• two alternative runnable specifications of the ABSYNT interpreter (Möbus & Thole,

1989; Möbus & Schröder, 1990) which were developed according to cognitive science

principles and constraints (Larkin, Simon, 1987; Pomerantz, 1985)

• empirical studies (Colonius et al., 1987; Schröder, Frank, Colonius, 1987) concerning

the mental representation of and misconceptions about functional programs.

This work served to prepare the development of the ABSYNT PSM (Kohnert, Janke,

1988/91) according to principles of visual learning environments (Glinert, 1990). The

motivation and analysis of ABSYNT with respect to properties of visual languages is described

in Möbus & Thole (1989).

The ABSYNT PSM provides an iconic programming environment (Chang, 1990). Its

main components are a visual editor, a visual trace, and a help component: a hypotheses testing

 5

environment. The design of the ABSYNT PSM is motivated by the ISP-DL Theory in several

respects:

• According to the ISP-DL Theory, the learner will look for and appreciate help if he or

she is caught in an impasse. Without an impasse there is no need for help. So the ABSYNT

PSM does not interrupt the learner (see for example also Winkels & Breuker, 1990), but offers

help. As a side effect, this design principle provides valuable data about the student´s impasses.

• According to the ISP-DL Theory, the learner should be prevented from trapping into

secondary impasses which may lead away from the original problem solving. This may be done

by letting the learner make use of his pre-knowledge at impasses as much as possible. In the

ABSYNT PSM, this principle is realized by the hypotheses testing approach. The learner may

state hypotheses about which part of his current solution proposal he considers correct. The

system then analyzes the hypothesis and gives feedback. The student can also ask the system

for completion proposals (see below). Another reason for the hypotheses testing approach is

that in programs it is usually not possible to absolutely localize bugs. Often the bug consists of

an inconsistency between program parts, and there are several ways to fix it. The hypotheses

testing approach leaves the decision how to change a buggy program to the PS. Again, a side

effect of the hypotheses testing approach is that it provides a rich data source of the learner´s

problem solving.

• According to the ISP-DL Theory, help should be provided at different levels of

problem solving. The ABSYNT PSM supports the problem solving phases of planning,

executing, and evaluating solution proposals. A solution proposal may be planned first by

using goal nodes. So the learner may create a plan and test hypotheses about it without

bothering about its implementation at this stage. The implementation of the goals (thus creating

an executable program) may be done later. Finally, evaluation is again supported by hypothesis

testing.

Figure 2 depicts snapshots from the ABSYNT PSM. Figure 2a shows the visual editor

where ABSYNT programs can be created. There is a head window and a body window. On the

left side of Figure 2a, there is the tool bar of the editor: The bucket is for deleting nodes and

links. The hand is for moving, the pen for naming, and the line for connecting nodes. The

"goal" node will be explained below. Next, there is a constant, parameter and "higher" operator

node (to be named by the learner, using the pen tool). Constant and parameter nodes are the

leaves of ABSYNT trees. Then several primitive operator nodes follow ("if", "+", "-", "*",

...). Editing is done by selecting nodes with the mouse and placing them in the windows, and

by linking, moving, naming, or deleting them. Nodes and links can be created independently: If

a link is created before the to-be-linked nodes are edited, then shadows are automatically created

at the link ends. They serve as place holders for nodes to be edited later. Shadows may also be

created by clicking into a free region of a window.

 6

Constant, parameter and operator nodes are implementation nodes. A syntactically

correct ABSYNT program is runnable if it consists only of implementation nodes.

Implementation nodes have three horizontal parts: an input stripe, a name stripe, and an output

stripe. (Constant nodes have only two stripes because name and output are identical.) In the

visual trace of the ABSYNT PSM (not depicted), input and output stripes are filled with

computation goals and obtained values, so each computational step of the ABSYNT interpreter

can be visualized (Möbus & Schröder, 1989; 1990; Möbus & Thole, 1989).

But as already indicated, in ABSYNT there are also goal nodes designed to support

deliberating and planning. Clicking on the "goal" symbol in the tool bar (Figure 2a, on the left)

causes the tool bar to switch to the actual goal nodes. Goal nodes represent more abstract plan

fragments which may be implemented in several ways by implementation nodes or subtrees.

Visually, goal nodes have no internal structure. In Figure 2a, "LIST EMPTY" and "CASE" are

examples of goal nodes. Each goal node is precisely defined as a predicative description for the

yet to be implemented program fragments. For example, "LIST EMPTY" represents the goal to

test whether a list is empty. The "CASE" node represents the goal to program conditionalized

expressions, that is, condition-expression pairs. The ABSYNT goal nodes are based on a task

analysis which applies the transformation approach developed in the Munich CIP Project

(Bauer et al., 1987; Partsch, 1990). The transformation approach ensures that solution can be

derived to a given task that is correct with respect to the task description. Currently ABSYNT

supports 42 programming tasks. For each task, there is a goal node with a predicative and a

verbal task description. Data types are numbers, truth values, and lists.

In Figure 2a, a wrong solution proposal for an ABSYNT program reversing a list is just

being created. There are nodes not yet linked or even completely unspecified (shaded areas). As

Figure 2a shows, goal nodes and implementation nodes can be mixed ("mixed terms") within a

proposal. The solution proposal in Figure 2a means:

If L is equal to the value of a yet unknown expression,
then the value of REVERSE is NIL,
else if L is an empty list,
then if the value of a yet unknown expression is the empty list,

then the value of REVERSE is the value of L,
else the value of REVERSE is obtained by CONSing the values of two yet

unknown expressions together.

In the hypotheses testing environment the learner may state hypotheses (bold parts of

the program in Figure 2b) about the correctness of a solution proposal or parts thereof for a

given programming task. The hypothesis is: "It is possible to embed the boldly marked

fragment of the program in a correct solution to the current task!". The system then analyzes the

hypothesis.

 7

Figure 2a: Student´s erroneous and overly complicated proposal in the visual editor

Figure 2b: Student´s hypothesis (bold nodes and links)

Figure 2: Snapshots of problem solving with ABSYNT: Student´s erroneous proposal to the
REVERSE problem (Figure 2a), student´s hypothesis proposal (Figure 2b), feedback of the
ABSYNT system (Figure 2c), and completion proposal of the ABSYNT system (Figure 2d)
continued on the next page

 8

Figure 2c: Positive Feedback of the ABSYNT system to student´s hypothesis

Figure 2d: Completion proposals of the ABSYNT system on student demand

 9

If the hypothesis can be confirmed the PS is shown a copy of the hypothesis (Figure

2c). If this information is not sufficient to resolve the impasse, the PS may ask for more

information (completion proposals, Figure 2d). If the hypothesis cannot be confirmed the

learner receives the message that the hypothesis cannot be completed to a solution known by the

system.

In Figure 2b the learner stated a hypothesis which covers a fragment of the proposal

created so far for the "reverse" programming task. The hypothesis contains goal nodes and

implementation nodes. The system recognizes the hypothesis as embeddable, indicating this by

returning a copy of the hypothesis to the student (Figure 2c). If this information is not sufficient

for solving the impasse, the student may ask the system for completion proposals at the open

links. In Figure 2d, the student asked for and received six completions (bold). Two of them are

goal nodes, the others are implementation nodes. The "REVERSE" goal node represents the

task goal. As far as possible, the system tries to generate completions consistent with the

student´s proposal. At one point, the system disagrees with the student´s proposal: The system

proposes "LIST NOT EMPTY" at the third input link of the CASE node, whereas the student´s

original proposal contains "LIST EMPTY" at this point (Figure 2a). Internally, the system has

created a complete solution but the student always gets only minimal information.

The hypotheses testing environment is the most significant aspect where the ABSYNT

PSM differs from other systems designed to support the acquisition of functional programming

knowledge, like the LISP tutor (Anderson & Swarecki, 1986; Anderson, Conrad & Corbett,

1989; Corbett & Anderson, 1992), the SCENT advisor (Greer, 1992; Greer, McCalla & Mark,

1989), and the ELM system (Weber, 1988; 1989; 1992). As indicated, one reason for the

hypotheses testing approach is that in programming a bug usually cannot be absolutely

localized. Hypotheses testing leaves the decision which parts of a buggy solution proposal to

keep to the student and thereby provides a rich data source about the learner´s knowledge and

intentions. Single subject sessions with the ABSYNT PSM revealed that hypotheses testing

was heavily used. It was almost the only means of debugging wrong solution proposals,

despite the fact that the subjects had also the visual trace available. This is partly due to the fact

that in contrast to the trace, hypotheses testing does not require a complete ABSYNT program

solution. Hypotheses testing is possible with incomplete solutions, with goal nodes, and with

mixed terms. So the student may obtain feedback whether he is on the right track at very early

planning stages.

The answers to the learner´s hypotheses are generated by rules defining a goals-means-

relation (GMR) (Levi & Sirovich, 1976; Nilsson, 1980). A subset of these rules may be

viewed as "pure" expert domain knowledge not influenced by learning. Thus we call this set of

rules EXPERT. Currently, EXPERT contains about 1300 planning rules and implementation

rules. The planning rules elaborate goals, and the implementation rules describe how to realize

goals by ABSYNT implementation nodes. The goal decomposition done by the planning rules

 10

follows the CIP transformation approach mentioned earlier. EXPERT is able to analyze and to

synthesize several millions of plans and solutions for the 42 tasks (Möbus, 1990; 1991; Möbus

& Thole, 1990). We think that such a large solution space is necessary because we observed

that especially novices often construct unusual solutions due to local repairs.

The completions shown in Figure 2d (bold program fragments) were generated by

EXPERT rules. EXPERT analyzes and synthesizes solution proposals but is not adaptive to the

learner´s knowledge. Usually EXPERT is able to generate a large set of possible completions.

For example, EXPERT could generate a large number of alternatives for the "LIST NOT

EMPTY" goal node in Figure 2d: for example, the goal nodes NOT, EQUAL, GREATER

THAN 0 (with respect to the length of the list), or the implementation nodes =, ≠. Thus the

problem is to select the most appropriate completion proposal. This is the main function of the

internal State Model. It represents the actual knowledge state of the learner and consists of rules

derived from EXPERT. The State Model should choose a completion which is maximally

consistent with the learner´s current knowledge state. This should minimize the learner´s

surprise to feedback and completion proposals. The State Model is implemented but not yet

integrated into the ABSYNT PSM. It will be described in the next section.

To close this section, Figure 3 gives a summary of the components involved in

planning, programming and hypotheses testing in the ABSYNT PSM. The learner solves

problems, acquires new knowledge due to impasse-driven learning, and optimizes knowledge

due to success-driven learning. In Figure 3, the PS created a partial plan to the "even" task:

"program that tests whether a natural number is even." The situation shows a very early stage

of program development. As can be seen from the screen the PS is trying to do case analysis.

His decision was to split the "even" problem into two cases. The PS defined the first case as "N

EQUAL 0". Under this condition the goal "EVEN" has still to be solved. There is no proposal

for the second case. The PS knows only that under the condition of the second case the original

"EVEN" problem has to be solved. When the PS states a hypothesis, the system analyzes it,

that is, it diagnoses the intentions (planning steps) and the actions (implementation steps) of the

PS. The diagnosis of actions and intentions leads to an updating of the State Model, and to

positive feedback, error messages, or help (completion proposals) which are tailored to the

learner. The learner will process this information (acquire new knowledge, optimize

knowledge) and continue with programming, planning, or hypotheses testing. Figure 3 also

shows the place of the internal process model in this framework.

 11

Internal
S

tate M
odel

D
iagnosis of actions and

intentions

T
ransform

ation
approach

E
xternal

P
rocess M

odel

H
elp and

error
m

essages

T
ask specification

 A
ctivities / processes

 of the learner:
• P

roblem
 solving: P

lanning,
 program

m
ing, hypotheses

 testing
• Im

passe-driven learning:
 acquisition of new

 know
ledge

• S
uccess-driven learning:

 know
ledge optim

ization

Figure 3: Planning, programming, and hypotheses testing with the ABSYNT PSM

The Internal State Model

 12

The State Model is designed as an integrated part of the ABSYNT PSM. It represents

the actual hypothetical domain knowledge of the learner at different points in the knowledge

acquisition process. The hypothetical domain knowledge is organized as a partial order of micro

rules, schemas, and specific cases. Micro rules represent knowledge newly acquired by

impasse-driven learning but not yet optimized. They describe small planning or implementation

steps in the ABSYNT domain. Schemas and cases are created by rule composition according to

the resolution method (Möbus, Schröder, Thole, in press).

The State Model is created and updated by automatically inspecting the single editing

steps performed by the user while constructing ABSYNT programs (Möbus, Schröder, Thole,

1991; in press). It is constructed according to the following, simplified description:

• After each programming task solved, the action trace of the PS is parsed by the micro

rules, schemas, and cases of the State Model and (as far as needed) by EXPERT rules. (For

example, before the learner has solved the first task, the State Model is empty, so the first

solution has to be parsed completely by EXPERT rules.) According to Corbett, Anderson,

Patterson (1988) we call this process model tracing.

• The composites of all rules just used for parsing are created.

• Each rule used for parsing and each new composite just created is checked for

plausibility. A rule is considered plausible with respect to an action trace if the ABSYNT

program fragments specified by this rule are contained in the action trace in an uninterrupted

temporal sequence.

• Each rule just found plausible is put into the State Model if it is not yet contained in it.

For each plausible rule already in the state model, its credit value is raised. For composites

(schemas and cases), there are two additional requirements: The part of the subject´s action

trace described by a composite must have been performed earlier already, and the actual

sequence has to be performed faster than at that earlier time. This is because composites are

designed to represent knowledge optimization.

Figure 4 illustrates some of the features of the State Model. It depicts a continuous

fragment of a sequence of programming actions performed by a subject. These data and

associated times are stored in the action trace. To give an example, there is a micro rule in

EXPERT which describes the following four actions: Placing an ABSYNT if-then-else node,

and creating three input connections to it. In Figure 4, these four actions are performed at

11:15:52, 11:15:58, 11:16:46, and 11:16:55 (fragments with bold margins). So the actions

corresponding to the "if-then-else-node" rule is interrupted at 11:16:42 and 11:16:50. So this

rule is not plausible. This example illustrates that the State Model is created online based on

detailed data: individual programming actions.

 13

As indicated, the purpose of the State Model is to provide individualized help and

completion proposals. It also gives rise to empirical predictions concerning verbalizations and

order constraints on programming actions. For example, it says that as the learner shifts from

novice to expert (that is, acquires successively more schemas and cases), there will not only be

less verbalizations and more performance speedup, but it also different order constraints for

solution steps.

Figure 5 illustrates this. The upper part of Figure 5 shows a set of four micro rules, and

a set of two schemas. Each rule or schema is abstractly represented as a goals-means-pair (a

goal tree g... and an ABSYNT program fragment a...). The State Model postulates that if the

learner applies a certain rule or schema, then the corresponding programming action(s) should

be performed, and vice versa. If the learner verbalizes an intention, there should be a

corresponding goal in the rule assumed to be applied. Conversely, for goals not part of the rule,

there should be no verbalizations at all (middle part of Figure 5). Together with the concept of

plausibility built into the State Model, this means that if the learner applies a certain rule or

schema, then the corresponding action sequence of actions and goal verbalizations should be

performed in an uninterrupted sequence. Actions and verbalizations stemming from different

rules should not interleave (no-interleaving hypothesis). So if the State Model contains the set

{r1, r2, r3, r4} of micro rules, then an empirical sequence like [g2, a1, a2, ...] should not be

observable (Figure 5) because a1 interrupts the sequence of events [g2, a2] explained by r2.

But an event sequence like [g2, a2, cv, a4, g4, ...] is consistent with the set {r1, r2, r3, r4}:

there is no interleaving of events explained by different rules. "cv" denotes actions and

verbalizations, like moving and rearranging nodes and links, which are indicators of control or

heuristic processes. These control events could occur "between" events of different rules. They

also should not interrupt an event sequence explained by one rule. Control events are to be

explained by the external Process Model.

For the two schemas {s1, s2}, the prediction is that the data explained by s1 should not

interleave with the data explained by s2. Again, control events could occur "between" schema

events. As Figure 5 shows, the event chain [g2, a1, a2, ...] which was inconsistent with {r1,

r2, r3, r4} is consistent with {s1, s2}, but an event chain like [a1, g3, g2, ...] is not, because

a1 and g2 stem from the same schema but are interrupted by g3. So schemas lead to weaker

order constraints than micro rules. But there are more predictions of the State Model: The

application of the schemas should be faster than the application of the micro rules (bottom of

Figure 5) because less control decisions have to be made by the learner (time hypothesis). For

the same reason, we would expect less control actions and verbalizations, that is, less moving,

repositioning, and rearranging of nodes and links (rearrangement hypothesis).

 14

11:14:40 Start of task

11:16:55

0b

a

11:16:42

0b

11:16:50

0b

a

11:16:46

0b

11:15:58

0b

11:15:52

0b

11:15:43

0b

11:15:38

0b

11:15:34

0b

11:15:29

b

11:15:2211:15:1611:15:08

Figure 4: A continuous fragment of a sequence of programming actions performed by a subject

Some of the predictions of the State Model have been tested empirically (Möbus,

Schröder, Thole, 1992). The no-interleaving hypothesis was investigated in the following way:

The action and verbalization sequence of a single subject working with the ABSYNT PSM was

videotyped and categorized, and the State Model was run offline based on the solutions created

by the subject. This led to a sequence of consecutive hypothetical knowledge states of the

subject. Based on this state sequence, it was predicted which actions and verbalizations of the

subject should occur in uninterrupted sequences. This resulted in the model trace (Figure 6, on

the right) which consists of sets. Each set of the model trace corresponds to the application of

one State Model rule. For example, at the state depicted in Figure 6 the State Model contains a

rule that describes three programming actions: to place an ABSYNT "product" node, and to

draw two input links for it. So the actions and verbalizations of each model trace set are

expected to occur in a continuous uninterrupted sequence. The subject trace (on the left of

Figure 6) is the actually observed action and verbalization sequence. The subject trace was

compared to the model trace in the following way: For each adjacent pair of events of the

subject trace, if both events are contained in the same model trace set, then a "+" was assigned,

otherwise a "-" was assigned.

 15

{ s1 (

g1

g2

,
a1

a2
) s2 (

g3

g4

,
a3

a4
) }

Set of schemas:

{ r1 (g1, a1), r2 (g2, a2),
 r3 (g3, a3), r4 (g4, a4) }

Set of micro rules:

Action and verbalization predictions:
Model: Data:

action <-----> action
goal < ----- verbalization
¬ goal -----> ¬ verbalization

No-interleave predictions for {s1, s2}:
data(s1) before data(cv) before data(s2) or
data(s2) before data(cv) before data(s1)

not: [a1, g3, g2, a3, g4, g1, a2, a4]
but: [g2, a1, a2, g1, cv, a4, g3, a3, g4] or ...

time-interval({s1, s2}) < time-interval({r1, r2, r3, r4})

No-interleave predictions for {r1, r2, r3, r4}:
not: [g2, a1, a2, g1, a4, g3, a3, g4]
but: [g2, a2, cv*, a4, g4, cv, a3, g3, cv, g1, a1] or
 [a3, g3, cv, g2, a2, cv, a1, g1, cv, g4, a4] or ...

* cv is an abbreviation for: control actions and verbalizations

Time-interval predictions

Figure 5: Empirical predictions of the State Model for micro rules vs. schemas

For example, in Figure 6 action events 36 and 37 belong to different model trace sets,

so a "-" is assigned. (On the left of the subject trace, a slightly different but equivalent method

of assigning "+" and "-" is shown.) So "+" denote correspondencies of model trace and subject

trace, and "-" denote contradictions. The whole subject trace contained 76 "+" and 60 "-". Since

more "+" should lead to longer and thus fewer runs (continuous sequences of "+" and "-") than

an equal distribution of "+" and "-", the Runs test was applied. There were 42 runs (p <

0.001), which is consistent with the no-interleaving hypothesis. In addition, many of the

discrepancies ("-") between model trace and subject trace are due to the constant and parameter

node rule (see for example events 36 and 40 in Figure 6).

How can the State Model contribute to user-adapted help generation within the

ABSYNT PSM? Obviously, it should select the completion proposal to present to the learner,

so the learner will receive proposals which are maximally consistent with his pre-knowledge.

 16

Event no. Subject Trace Model Trace

36

37

38

39

40

place constant node

place product node

create link from the
product node to the
second minus node

create link from the
product node
to the constant node

write the value "-1"
into the constant node

+

+

-

{ place constant node,
 write the value "-1"
 into the constant node}
{ place product node,

 create link from the
 product node to the
 second minus node,

 create link from the
 product node
 to the constant node }

.

.

.

+

+

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6: Empirical analysis of the State Model: Subject trace, model trace, correspondencies

(+), and discrepancies (-) between them

But the State Model is also capable to identify knowledge gaps - knowledge not yet

acquired by the PS but necessary to continue with the actual solution proposal. Based on such a

diagnosis, new empirical predictions are possible because the completion proposals selected as

help by the system can be varied according to two dimensions: grain size and amount. If the

grain size is fine, the completion proposal may rest on a chain of micro rules covering the gap.

For example, the completion proposal may consist of an ABSYNT subtree with an explanation

of the goal sequence leading to it. If the grain size is coarse, then the completion proposal may

rest on a single composite. For example, the completion proposal may consist of an ABSYNT

subtree without any explanation. Concerning amount, the information provided may exactly fill

the gap, or too much information is provided, or not enough information so that a part of the

gap remains uncovered. Different combinations of grain size and amount lead to different

hypotheses. For example:

• If the information is fine-grained and exactly fills the gap, then we would expect

that the student considers this information as helpful.

• If the information is coarse-grained and exactly fills the gap then the student

misses explanations. So s/he might either passively accept what is being offered,

or engage in self-explanation (van Lehn, 1991a).

 17

• If the information is fine-grained but exceeds the knowledge gap, then the

student has to"filter" the content relevant to the current situation. This might be

experienced as burdensome.

• If the information leaves a small knowledge gap, then the student might try to

induce one new simple rule and thereby cover the rest of the gap. (This situation

seems similar to the induction of one subprocedure at a time by van Lehn´s

(1987) SIERRA program.)

• Finally, the last case to be considered here is that there is a large gap left, and the

information offered is too coarse. The student should experience such an

information as very inadequate to his current problem. Thus she or he should

feel annoyed or even upset.

There remains much work, of course, to work out these hypotheses and put them to

empirical test. But we think we have shown that the State Model is an empirically fruitful

approach to knowledge diagnosis and adaptive help generation which is testable and also

touches upon further research problems, like motivation and emotion.

The External Process Model

The Process Model is aimed at modelling the knowledge acquisition processes which

hypothetically lead to the changing knowledge states as described by the State Model. It is

conceptualized as a runnable realization of the ISP-DL architecture and tries to give an account

of data not computer-assessable with current technology, like the learner´s verbalizations.

The precursor of the Process Model was a model of the acquisition of a cognitive skill in

the domain of the operational knowledge (interpreter knowledge) about ABSYNT, based on a

theoretical framework of knowledge acquisition (impasse- and success-driven learning) which

was the precursor of the ISP-DL Theory, and empirical analyses of verbal and action protocols.

The starting point for this model consisted of two alternative visual rule sets based on runnable

specifications of the ABSYNT interpreter (Möbus & Thole, 1989). The visual rule sets were

used as help material for subjects while acquiring the operational knowledge (Möbus &

Schröder, 1989; 1990). Rule specific hypotheses concerning memory representation and

working memory load were disconfirmed (Schröder et al., 1990). Therefore, a simulation

model of the knowledge acquisition process was constructed and compared to a detailed

protocol of verbalizations and actions (Schröder, 1990, 1992; Schröder & Kohnert, 1989/90).

According to the model, new knowledge is acquired in response to impasses: Impasses trigger

problem solving processes which involve the use of the help material, and existing knowledge

is optimized if used successfully. The model was compared in detail to a subject trace of actions

and verbalizations. It was able to hypothesize, for example, which kinds of situations lead to

which kinds of weak heuristics and corresponding actions.

 18

The external Process Model in the domain of constructing ABSYNT programs (see also

Schröder & Möbus, 1992) was developed based on the ISP-DL Theory and an empirical

analysis of a subject trace (actions and verbalizations) from a single subject session with

ABSYNT. The analyzed part of the subject trace contained about four hours of problem

solving. Figure 7 depicts the main components of the Process Model as a higher order Petri net

(Huber et al., 1990). Places (circles / ellipses) represent states (e.g., the content of data

memories, mental objects like plans or impasses, or real objects like task descriptions or

solutions). Transitions (rectangles) represent events or process steps. The model consists of the

following steps:

• The description of a programming task is represented as a text graph. The first step is

to understand the task by creating a propositional task representation (Kintsch & Greeno, 1985;

van Dijk & Kintsch, 1983) which is a hierarchy of concept names.

• Based on the task representation, a plan for a solution proposal is created by making

use of domain knowledge. The domain knowledge is a set of concepts. Each concept has a

name, an input-output description that can be calculated with example values, and (possibly) an

implementation in ABSYNT. So a concept corresponds to a micro rule, a schema, or a case.

But a concept may be incomplete, the ABSYNT implementation may be missing. As a simple

example, the concept "multiplication of two numbers" may be known, but its implementation in

ABSYNT may be unknown. (So an incomplete concept represents the pre-knowledge before

working with ABSYNT.) The plan consists of instantiations of concepts of the domain

knowledge.

• After the plan is created, there are several possibilities. The simplest possibility is that

the plan is executed. Alternatively, an impasse might arise. This happens if the plan cannot be

executed because of missing ABSYNT implementation knowledge in one or more concept

instantiations. Now several heuristics are possible. The first one is to look for help. The help

material given to subjects consisted of example calculations of the primitive ABSYNT operator

nodes. So for each primitive ABSYNT operator, the concept in question is calculated with the

same input values than the example calculations. If the result is the same, then the primitive

ABSYNT operator is inserted into the concept instantiation, and it is stored with the original

uninstantiated concept as well (acquisition of new knowledge). If no such ABSYNT operator is

found, then the heuristic has failed. Still the plan cannot be executed. The next heuristic (switch

focus) is tried: Another part of the plan is implemented first. Of course this does not solve the

impasse, so the impasse will be encountered again. The third heuristic is restructuring. It is

tried to replace the concept instantiation by another one that has the same input-output behavior.

(This is checked with example values). For example, the plan fragment to change the sign of a

number can be replaced by multiplication with -1. If such replacement is created, then it is

stored in the knowledge base (acquisition of new knowledge), and the plan is changed

accordingly. Otherwise the fourth heuristic, analogy, is tried. The analogical transfer is

 19

basically syntactical, but in addition adjustments are made in the target solution which are again

based on calculations with input-output descriptions.

represent task

create plan

nonexecutable?

heuristic:
look for help

heuristic:
switch focus

heuristic:
restructure

heuristic:
analogize

execute plan

evaluate: test hypothesis

resolve
impasse

optimize domain knowledge

acquire new domain knowledge

 text
graph

task repre-
sentation

plan

 domain
knowledge

 nonexe-
cutable plan

modified
 plan

ABSYNT
 program

result

(next task)

executable?

still nonexecutable?

 execu-
table plan

executed
 plan

Figure 7: The external Process Model

• After an executable plan has been created and executed, the resulting ABSYNT

program is evaluated by hypotheses testing. If the feedback is that the whole proposal is

correct, then the concepts used with this task are composed, based on the executed plan, and

the next task may be tried. If the feedback is that the proposal cannot be recognized by

 20

hypothesis testing, then the executed plan is debugged (= resolve impasse). Strategies of

hypotheses testing and debugging are not yet part of the model.

A trace of the model was stepwise compared to the subject trace of solving five

programming tasks. One result was that 65% (about 200) protocol categories of the subject

trace were reproduced by the model. What is the significance of the external Process Model for

the ISP-DL Theory, the internal State Model, and for help design?

• Concerning the ISP-DL Theory, the Process Model specifies types of impasses, like

missing implementation knowledge and negative feedback, and hypothetical weak heuristics

and the conditions for their application. These hypotheses can be used to make the ISP-DL

Theory more detailed and empirically testable.

• Concerning the State Model, the Process Model specifies when which new knowledge

is acquired and optimized. So the Process Model gives hypotheses about how the knowledge

contained in the State Model might be generated. The Process Model might also help to find out

how to modify the State Model if its predictions are disconfirmed.

• Concerning help design, hypotheses of the Process Model about weak heuristics can

be used to design domain-unspecific, "strategical" help. For example, with the model it should

be possible to recommend to the learner to look for analogies in certain situations, or to think

about reformulating goals or to ask for their preconditions in other situations.

Conclusions

We described an approach to diagnose and model knowledge and knowledge acquisition

processes, and to apply these results to user-adapted help. Our appraoch has three levels:

• a theoretical framework, the ISP-DL Theory, of problem solving and knowledge

modification

• an internal State Model for online diagnosis and generation of user-adapted help

• an external Process Model for offline generation of hypotheses about impasses, weak

heuristics, knowledge acquisition and optimization.

 The three levels are intended to be mutually consistent but serve different purposes. The

ABSYNT PSM designed to support the acquisition of basic functional programming skills in a

visual language is a concrete realization of this approach. In line with the ISP-DL Theory, it

offers help to the learner to make use of at impasses, it tries to be maximally consistent with the

learner´s knowledge state by hypotheses testing, and it supports the problem solving states of

planning, execution, and evaluation. Planning in ABSYNT is based on a transformation

approach. Execution leads to runnable ABSYNT programs, and evaluation is based on the

hypotheses testing approach.

 21

The internal State Model represents knowledge states consisting of newly acquired and

optimized knowledge, as required by the ISP-DL Theory. It is continuously updated based on

the online analysis of small action steps. It allows a large amount of predictions concerning the

interleaving of action subsequences, times, and rearrangements like moving and repositioning

program fragments. Some of these predictions were empirically analyzed. The external Process

Model is designed to bridge the gap between the State Model and the ISP-DL Theory by

providing hypothetical reasons (impasses, weak heuristics, ...) for the knowledge state changes

described by the State Model.

Further work will be directed to integrate the State Model and the Process Model into the

ABSYNT PSM, to investigate the empirical predictions, and to generate explanations of the

system for positive and negative feedback in response to hypotheses testing, and to completion

proposals now provided by the ABSYNT PSM.

Our three level approach has been developed in the context of functional programming

but is not constrained to it. In a related project, we develop a help system, PETRI-HELP,

which is designed to support modelling concurrent or distributed processes with Petri nets

(Möbus, Pitschke, Schröder, 1992). A research goal is to study the question how much of the

theory and models is domain independent.

References
Anderson, J.R., The Architecture of Cognition. Cambridge: Harvard University Press, 1983
Anderson, J.R., Knowledge Compilation: The General Learning Mechanism, in Michalski, R.S.; Carbonell,

J.G.; Mitchell, T.M.(eds), Machine Learning, Vol. II. Los Altos: Kaufman, 1986, 289-310
Anderson, J.R., A Theory of the Origins of Human Knowledge. Artificial Intelligence, 40, 1989, 313-351
Anderson, J.R., Conrad, F.G., Corbett, A.T., Skill Acquisition and the LISP Tutor, Cognitive Science, 1989,

13, 467-505
Anderson, J.R., Swarecki, E., The Automated Tutoring of Introductory Computer Programming,

Communications of the ACM, 1986, 29, 842-849
Bauer, F.L., Ehler, H., Horsch, A., Möller, B., Partsch, H., Paukner, O., Pepper, P., The Munich Project CIP,

Vol. II: The Program Transformation System CIP-S, Berlin: Springer (LNCS 292), 1987
Bauer, F.L., Goos, G., Informatik (Vol. 1), Berlin: Springer, 1982 (3rd ed.)
Brown, J.S., Burton, R.R., Diagnosing Bugs in a Simple Procedural Skill, in D. Sleeman, J.S. Brown,

Intelligent Tutoring Systems, New York: Academic Press, 1982, 157-183
Chang, S.K. (ed), Principles of Visual Programming Systems, Englewood Cliffs: Prentice Hall, 1990
Colonius, H., Frank, K.D., Janke, G., Kohnert, K., Möbus, C., Schröder, O., Thole, H.-J., Stand des DFG-

Projekts "Entwicklung einer Wissensdiagnostik- und Fehlererklärungskomponente beim Erwerb von
Programmierwissen für ABSYNT", in: R. Gunzenhäuser & H. Mandl (Hrsgb), "Intelligente Lernsysteme", 80
- 90, 1987, Institut für Informatik der Universität Stuttgart & Deutsches Institut für Fernstudien an der
Universität Tübingen

Corbett, A.T., Anderson, J.R., Patterson, E.J., Problem Compilation and Tutoring Flexibility in the LISP
Tutor, Procedings of the First Int. Conf. on Intelligent Tutoring Systems ITS-88, Montreal, 423-429

Corbett, A.T., Anderson, J.R., Student Modeling and Mastery Learning in a Computer-Based Programming
Tutor, in C. Frasson, G. Gauthier, G.I. McCalla (eds), Intelligent Tutoring Systems (Proceedings ITS 92),
Berlin: Springer, 1992 (LNCS 608), 413-420

Glinert, E.P., Nontextual Programming Environments, in Chang (ed), Principles of Visual Programming
Systems, Englewood Cliffs: Prentice Hall, 1990, 144-230

Gollwitzer, P.M., Action Phases and Mind-Sets, in: E.T. Higgins & R.M. Sorrentino (eds), Handbook of
Motivation and Cognition: Foundations of Social Behavior, 1990, Vol.2, 53-92

Gollwitzer, P.M., Abwägen und Planen, Göttingen, Toronto: Verlag für Psychologie, 1991
Greer, J., Granularity and Context in Learning, University of Saskatchewan, Saskatoon, Canada, 1992
Greer, J., McCalla, G.I., Mark, M.A., Incorporating Granularity-Based Recognition into SCENT, Proceedings

4th Int. Conference on Artificial Intelligence and Education, Amsterdam, 1989
Hogger, Ch.J., Essentials of Logic Programming, Oxford University Press, 1990

 22

Huber, P., Jensen, K., Shapiro, R.M., Hierarchies in Coloured Petri Nets, in G. Rozenberg (ed.), Advances in
Petri Nets 1990, LNCS, Heidelberg: Springer

Kintsch, W., Greeno, J. G., Understanding and Solving Word Arithmetic Problems. Psych. Review, 92, 1,
1985, 109-129

Kohnert, K., Janke, G., The Environments of ABSYNT: A Problem Solving Monitor for a Functional Visual
Programming Language. ABSYNT-Report 4/88, Oldenburg, 1988 (revised 1991)

Kowalski, R., Logic for Problem Solving, Amsterdam: Elsevier Science Publ., 1979
Laird, J.E., Rosenbloom, P.S., Newell, A., Universal Subgoaling and Chunking. The Automatic Generation

and Learning of Goal Hierarchies, Boston: Kluwer, 1986
Laird, J.E., Rosenbloom, P.S., Newell, A., SOAR: An Architecture for General Intelligence, Artificial Intelli-

gence, 1987, 33, 1-64
Larkin, J.H., Simon, H.A., Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cognitive, Science,

11, 1987, 65-99
Levi G., Sirovich, F., Generalized And/Or-Graphs. Artificial Intelligence, 1976, 7, 243-259
Lewis, C., Composition of Productions, in Klahr, D., Langley, P., Neches, R. (eds), Production, System

Models of Learning and Development. Cambridge: MIT Press, 1987, 329-358
Möbus, C., Toward the Design of Adaptive Instructions and Helps for Knowledge Communication with the

Problem Solving Monitor ABSYNT. in: V. Marik, O. Stepankova & Z. Zdrahal (eds): Artificial Intelligence
in Higher Education, Proceedings of the CEPES UNESCO International Symposium Prague, CSFR, October
23 - 25, 1989, Berlin - Heidelberg - New York: Springer, Lecture Notes in Artificial Intelligence, Vol.451,
1990, 138 - 145

Möbus, C., The Relevance of Computational Models of Knowledge Acquisition for the Design of Helps in the
Problem Solving Monitor ABSYNT, in R.Lewis & S.Otsuki (eds), Advanced Research on Computers in
Education, Proceedings of the IFIP TC3 International Conference on Advanced Research on Computers in
Education Tokyo, Japan, 18-20 July, 1990, Elsevier Science Publishers B.V. (North-Holland), 1991a, 137-144

Möbus, C., Wissenserwerb mit kooperativen Systemen, in: P. Gorny (Hrsgb), Informatik und Schule 1991,
Informatik: Wege zur Vielfalt beim Lehren und Lernen, GI-Fachtagung, Oldenburg, Oktober 1991,
Proceedings, Berlin: Springer (Informatik-Fachberichte 292), 1991b, 288 - 298

Möbus, C., Pitschke, K., Schröder, O., Towards the Theory-Guided Design of Help Systems for Programming
and Modelling Tasks, in C. Frasson, G. Gauthier, G.I. McCalla (eds), Intelligent Tutoring Systems,
Proceedings ITS 92, Berlin: Springer (LNCS 608), 1992, 294-301

Möbus, C., Schröder, O., Knowledge Specification and Instructions for a Visual Computer Language, in: F.
Klix, N.A. Streitz, Y. Waern & N. Wandke (eds), MACINTER-II Man-Computer-Interaction Research,
Proceedings of the Second Network Seminar of MACINTER held in Berlin/GDR, March 21 - 25, 1988,
Amsterdam: North Holland, 1989, 535 - 565

Möbus, C., Schröder, O., Representing Semantic Knowledge with 2-dimensional Rules in the Domain of
Functional Programming, in: P.Gorny & M. Tauber (eds), Visualization in Human-Computer Interaction, 7th
Interdisciplinary Workshop in Informatics and Psychology, Schärding. Austria, May 1988; Lecture Notes in
Computer Science, Vol. 439, Berlin-Heidelberg-NewYork: Springer, 1990, 47-81

Möbus, C., Schröder, O., Thole, H.-J., Runtime Modeling the Novice-Expert Shift in Programming Skills on
a Rule-Schema-Case Continuum, in: J. Kay; A. Quilici (eds), Proceedings of the IJCAI Workshop W.4 Agent
Modelling for Intelligent Interaction, 12th Int. Joint Conf. on Artificial Intelligence, Darling Harbour, Sydney,
Australia, 24-30 August 1991, 137-143

Möbus, C., Schröder, O., Thole, H.-J., Diagnosing and Evaluating the Acquisition Process of Problem Solving
Schemata in the Domain of Functional Programming, to appear in G. McCalla (ed), Student Modelling: The
Key to Individualized Knowledge-Based Instruction, in press

Möbus, C., Thole, H.-J., Tutors, Instructions and Helps, in: Christaller, Th. (ed), Künstliche Intelligenz KIFS
1987, Informatik-Fachberichte 202, Heidelberg: Springer, 1989, 336 - 385

Möbus, C., Thole, H.-J., Interactive Support for Planning Visual Programs in the Problem Solving Monitor
ABSYNT: Giving Feedback to User Hypotheses on the Basis of a Goals-Means-Relation, in: D.H. Norrie, H.-
W. Six (eds), Computer Assisted Learning. Proceedings of the 3rd International Conference on Computer-
Assisted Learning ICCAL 90, Hagen, F.R.Germany, Lecture Notes in Computer Science, Vol. 438,
Heidelberg: Springer, 1990, 36-49

Neves, D.M., Anderson, J.R., Knowledge Compilation: Mechanisms for the Automatization of, Cognitive
Skills, in Anderson, J.R. (ed), Cognitive Skills and their Acquisition. Hillsdale, Erlbaum, 1981, 57-84

Newell, A., The Knowledge Level. Artificial Intelligence, 1982, 18, 87-127
Newell, A., Unified Theories of Cognition, Cambridge: Harvard University Press, 1990
Nilsson, N.J., Principles of Artificial Intelligence. Palo Alto: Tioga Publ. Co., 1980
Partsch, H.A., Specification and Transformation of Programs: A Formal Approach to Software Development,

Berlin: Springer, 1990
Pomerantz, J.R., Perceptual Organization in Information Processing, in Aitkenhead, A.M., Slack, J.M. (eds),

Issues in Cognitive Modeling. Hillsdale: Erlbaum, 1985, 127-158
Rosenbloom, P.S., Laird, J.E., Newell, A., McCarl, R., A Preliminary Analysis of the SOAR Architecture as a

Basis for General Intelligence, Artificial Intelligence, 1991, 47, 289-305
Schröder, O., A Model of the Acquisition of Rule Knowledge with Visual Helps: The Operational Knowledge

for a Functional, Visual Programming Language, in: D.H. Norrie, H.-W. Six (eds), Computer Assisted

 23

Learning. Proceedings of the 3rd International Conference on Computer-Assisted Learning ICCAL 90, Hagen,
F.R.Germany, Lecture Notes in Computer Science, Vol. 438, Heidelberg: Springer, 1990, 142-157

Schröder, O., Erwerb von Regelwissen mit visuellen Hilfen: Das Semantikwissen für eine graphische,
funktionale Programmiersprache. Frankfurt: Lang, 1992

Schröder, O., Frank, K.D., Colonius, H., Gedächtnisrepräsentation funktionaler, graphischer Programme,
ABSYNT-Report 1/87, Oldenburg, 1987

Schröder, O., Frank, K.D., Kohnert, K., Möbus, C., Rauterberg, M., Instruction-Based Knowledge Acquisition
and Modification: The Operational Knowledge for a Functional, Visual Programming Language, Computers in
Human Behavior, Vol. 6, 1990, 31-49

Schröder, O., Kohnert, K., Toward a Model of Instruction-Based Knowledge Acquisition: The Operational
Knowledge for a Functional, Visual Programming Language. Journal of Artificial Intelligence and Education,
Vol. 1, No. 2, 1989/90, 105-128

Schröder, O., Möbus, C., Zur Modellierung des hilfegeleiteten Wissenserwerbs beim Problemlösen, in K.
Reiss, M. Reiss, H. Spandl (Hrsg), Maschinelles Lernen - Modellierung von Lernen mit Maschinen, Berlin,
Heidelberg: Springer, 1992, 23-62

Van Dijk, T.A., Kintsch, W., Strategies of Discourse Comprehension. New York: Academic Press, 1983
Van Lehn, K., Learning One Subprocedure per Lesson, Artificial Intelligence, 1987, 31, 1-40
Van Lehn, K., Toward a Theory of Impasse-Driven Learning. In: Mandl, H.; Lesgold, A. (eds): Learning Issues

for Intelligent Tutoring Systems. New York: Springer, 1988, 19-41
Van Lehn, K., Learning Events in the Acquisition of Three Skills, Proc. 11th Conf. Cognitive Science Society,

Ann Arbor, Michigan, 1989, 434-441
Van Lehn, K., Mind Bugs: The Origins of Procedural Misconceptions, Cambridge: MIT Press, 1990
Van Lehn, K., Two Pseudo-Students: Applications of Machine Learning to Formative Evaluation, in R. Lewis,

S. Otsuki (eds), Advanced Research on Computers in Education ARCE 90, Elsevier IFIP, 1991a, 17-25
Van Lehn, K., Rule Acquisition Events in the Discovery of Problem Solving Strategies, Cognitive Science,

1991b, 15, 1-47
Vere, S.A., Relational Production Systems, Artificial Intelligence, 1977, 8, 47-68
Weber, G., Cognitive Diagnosis and Episodic Modeling in an Intelligent LISP Tutor, Proceedings Intelligent

Tutoring Systems ITS 88, 207-214
Weber, G., Automatische kognitive Diagnose in einem Programmier-Tutor, in D. Metzing (ed), Künstliche

Intelligenz GWAI 89, Berlin: Springer, 1989, 331-336
Weber, G., Analogien in einem fallbasierten Lernmodell, in K. Reiss, M. Reiss, H. Spandl (Hrsg),

Maschinelles Lernen - Modellierung von Lernen mit Maschinen, Berlin, Heidelberg: Springer, 1992, 143-175
Winkels, R., Breuker, J., Discourse Planning in Intelligent Help Systems, in C. Frasson, G. Gauthier (eds),

Intelligent Tutoring Systems, Norwood: Ablex, 1990, 124-139
Wolff, J.G., Cognitive Development as Optimisation, in Bolc, L. (ed), Computational Models of Learning.

Berlin: Springer, 1987, 161-205
Wolff, J.G., Towards a Theory of Cognition and Computing, Chichester: Ellis Horwood, 1991

