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Abstract:  PETRI-HELP supports novices in learning to model with condition-
event Petri nets. It is based on a theoretical framework recommending that a help
system should offer help, let the learner use pre-knowledge, and support different
problem solving levels. In PETRI-HELP the learner creates Petri nets for given
tasks, test hypotheses about the solutions or fragments of them, and receive
feedback, completions, and correction proposals.
This help refers to Petri net places, transitions, and links. It does not yet support
planning, i.e., creating an abstract solution idea and postponing implementation
decisions, as recommended by the theory and by our empirical work. This paper
describes an approach to support planning within PETRI-HELP. It is based on
transformation rules (Olderog, 1991) for the systematical derivation of a Petri net
from a specification composed of viewpoints of different agents. Applying this
approach to PETRI-HELP will enable the learner to propose solution ideas, test
hypotheses, and get help on an abstract "goal level".

Introduction

Intelligent help systems and knowledge communication systems are expected to supply the user with
information which is sensitive to the actual problem solving situation and to the actual knowledge and intentions
of the user. Developing such systems requires a variety of design decisions, like when to supply remedial
information, what to supply (what determines "good" help?), and how to present it. The acceptance of knowledge
communication systems by users critically depends on satisfactory solutions to these problems.

In order to support design decisions for the development of an intelligent help system, a theoretical
framework of problem solving and learning is needed. Our ISP-DL Theory (impasse - success - problem solving
- driven learning theory) attempts to integrate impasse-driven learning (Laird, Rosenbloom & Newell, 1986;
1987; Newell, 1990; Rosenbloom et al., 1991; van Lehn, 1988; 1991), success-driven learning (e.g., Anderson,
1983; 1986; 1989; Wolff, 1987; 1991), and phases of problem solving (Gollwitzer, 1990). Briefly, the ISP-DL
Theory (Möbus, Schröder & Thole, 1991; 1992) states that problem solving processes may consist of four
phases: The problem solver (PS) deliberates with the result of choosing a goal to persue; then a plan to reach the
goal is created, the plan is executed, and the obtained result is evaluated. Impasses might result at several points
in this process: The PS might not be able to choose a goal, or the plan cannot be created, or execution is not
possible, or the obtained result is not satisfying. The PS reacts to an impasse by problem solving, using weak
heuristics like looking for help, asking, cheating. As a result, the PS may overcome the impasse and acquire new
knowledge (impasse-driven learning). But alternatively, the information obtained may not be helpful but
confusing, so the learner might encounter a secondary impasse (Brown & van Lehn 1980). Finally, if a problem
has been successfully solved without impasses, then the knowledge used is optimized (success-driven learning).

The ISP-DL Theory leads to several design principles for a knowledge communication system:
• According to the theory, the learner will look for and appreciate help if he or she is caught in an
impasse. Without an impasse there is no need for help. So the system should not interrupt the learner
(see for example also Winkels & Breuker, 1990), but offer help.
• The learner should be prevented from trapping into secondary impasses which may lead away from the
original problem solving. So pre-knowledge should be useable at impasses as much as possible. One



way to realize this principle is to let the learner test hypotheses about her or his solutions, and get help
and proposals from the system. This leaves the activity on the learner´s side, the learner is not disturbed
by unwanted system comments. Secondly, accounting for pre-knowledge means that help should be
adapted to the knowledge state of the learner. Help should be user-oriented. This requires a learner model.
• According to the ISP-DL Theory, help should be provided at different phases of problem solving
because impasses may arise in all phases. So a help system should support deliberating, planning,
executing, and evaluating solution proposals. Help should be problem phase oriented.

Centered around the ISP-DL Theory, we develop two help systems: ABSYNT supports functional
programming in a visual language (Möbus, Schröder & Thole, 1992), and PETRI-HELP supports modelling
with condition-event Petri nets (Möbus, Pitschke & Schröder, 1992). According to the theory, modelling with
Petri nets is a problem solving activity consisting of the following sub-activities:

• to develop specifications of systems or processes to be modelled ("deliberating")
• to plan a Petri net solution for a given specification ("planning")
• to actually construct a Petri net ("executing")
• to evaluate the resulting net, for example whether it meets the specification ("evaluating").

So the skill of modelling with Petri nets may be decomposed into four corresponding subskills to be
learned by a Petri net modeller. Consequently, PETRI-HELP should support the acquisition of these four
subskills. Currently, mainly "execution" and "evaluation" are supported, as will be shown in the next section
which gives a short overview of the current implementation state of PETRI-HELP, and of some empirical
results. The main section of this paper is concerned with an approach to support the learner´s planning processes
while constructing Petri nets for given tasks. In the final concluding section, we will also touch upon the issue
how to support the learner´s deliberation processes.

A Brief Overview of PETRI-HELP

PETRI-HELP (Möbus, Pitschke & Schröder, 1992) is intended to support novices while constructing
condition-event Petri nets. The learner may create Petri net solutions to given tasks which are specified as sets of
temporal logic formulas. The learner may also hypothesize which (sub)set of the formulas constituting a task
description he thinks is fulfilled by his current solution proposal. The system then gives feedback about fulfilled
and unfulfilled formulas, and may deliver proposals how to complete or to correct the actual state of the solution.

There are two reasons for specifying the tasks in PETRI-HELP as sets of temporal logic formulas.
Firstly, well-defined tasks are necessary in general in order for the system to be able to evaluate Petri net solution
proposals. Secondly, temporal logic specifications allow to verify Petri net proposals by model checking
(Clarke, Emerson & Sistla, 1986; Josko, 1990). So the learner´s task is to construct a condition-event Petri net
that satisfies the given set of temporal logic formulas (i.e., a given task description). Due to model checking, the
system supports free, unconstrained problem solving in that any hypothesis of the learner can be evaluated, and
feedback and completions can be given to it based on rules learned by the system.

Figure 1 shows the temporal-logic specification and an empirical solution proposal to a task, "Bavarian
Biergarten". [], ◊, O are the temporal logic operators. Informally, [] means "always" ("it is always true that ..."),
◊ means "eventually" ("now or at some point in future it will be true that ..."), and O means "nexttime ("at the
next point in time it will be true that ..."). So for example  [] (Ws --> ◊Wro) means: "It is always true that if the
waiter sleeps then he will eventually be ready to accept an order." In the condition-event Petri net, circles
represent places (conditions, states), and rectangles represent transitions (events). The condition represented by a
place is true if the place contains a token. 

PETRI-HELP consists of the following components:
• an editor for constructing condition-event Petri nets and for simulating them.
• a task window where the actual task (= set of temporal logic formulas) is presented. Currently there are
10 tasks in PETRI-HELP, for example, modelling events in a restaurant (Figure 1), in a library, the use
of a telephone, and processes in natural (photosynthesis) as well as technical systems.
• a hypotheses window where the learner may hypothesize which (sub)set of the task formulas he or she
considers fulfilled by the actual Petri net proposal.
• a feedback window where the learner is informed about which formulas of his hypothesis are fulfilled
and which ones not. This analysis is based on a case graph constructor and a model checking algorithm.



_________________________________________________________________________________________
Ws : Waiter is sleeping [] (Ws → ◊ Wro) [] (¬(Ws Λ Wro))
Wro : Waiter is ready to accept order [] (R Λ Ws → ◊ Wrs) [] (¬(Ws ΛWrs))
Wrs : Waiter is ready to serve [] (Wro → ◊ (Ws Λ K)) [] (¬(Wro Λ Wrs))
K : Kitchen got order [] (K →  ◊ P) [] (Ws v Wro v Wrs)
P : Preparation of the meal [] (R Λ Wro → ◊ Wrs) [] (Wrs → ◊ Ws)
R : Meal is ready [] (P →  ◊ R)

O means "nexttime", ◊ means "eventually", [] means "always"

Ws

Wro

K P

R

Wrs

__________________________________________________________________________
Figure 1. Specification and solution to the task "Bavarian biergarten"

• a completion proposal window where the learner gets hints about how to continue with the Petri net
proposal. The completion / correction proposal tells the student which states, transitions, and links
between them to add and which ones to delete, if any. The completion proposal is based on rules learned
by the system from prior sessions with other students. These rules associate subsets of the task
formulas to Petri net fragments fulfilling them.

So PETRI-HELP currently supplies two kinds of help: Feedback of fulfilled and unfulfilled formulas,
and completions / corrections of Petri net proposals. How is PETRI-HELP related to the ISP-DL Theory?

• PETRI-HELP offers information. It is up to the learner to state hypotheses (subsets of the set of task
formulas), and to ask for completion proposals. The activity is on the learner´s side.
• PETRI-HELP lets the learner use his or her pre-knowledge because the learner tests hypotheses, gets
completion proposals, and decides what to keep and what to change. In addition, the learner always gets
only minimal information to resolve the actual impasse without telling too much about the solution.
• Yet missing in PETRI-HELP is a user-centered proposal of solution completions. This requires a
model of the individual learner (Möbus, Schröder & Thole, 1992) not yet realized in this domain.
• Also missing is help for a "planning phase": information which is more abstract than the actual Petri
net constructs (states, transitions, and links). Currently, PETRI-HELP provides help for two different
problem solving phases: the execution level (or "language level", the level of Petri net constructs), and
the evaluation level (hypotheses testing, net simulation). But the learner gets no help aimed at impasses
which could arise and be met at a more abstract level than Petri net states, transitions, and links.
Furthermore, there is no support of a "deliberation" phase where the learner may want to find out what
kind of task he or she wants to work on in the first place.

Some of the current shortcomings of PETRI-HELP are mirrored in the results of our empirical work. 25
students working with PETRI-HELP appreciated the two kinds of help differently. Testing hypotheses was
accepted and widely used. Students reported that receiving feedback of fulfilled and unfulfilled fomulas gave
information about where to proceed without obstructing problem solving. In contrast, the reactions to the
completions and correction proposals were less positive. For example, some students criticized that this kind of
help was too detailed and took part of the problem solving away from them. In addition, places, transitions, and
links were just presented but not explained.

So the ISP-DL Theory and empirical studies led to a common implication for PETRI-HELP: Help
information should be provided on a level more abstract than places, transitions, and links. This information
should support planning and hypotheses testing of plans at early stages of problem solving, and it should
support their stepwise transformation into more detailed ones.



Incorporating Viewpoint Centered Planning into PETRI-HELP

We investigate an approach developed by Olderog (1991) that allows to transform a task description (a
specification) into a condition-event Petri net by making use of intermediate specifications as well as "mixed
terms" (terms composed of specification fragments and Petri net fragments). Basically, the intention of Olderog
is to derive a description of the operational behavior of concurrent processes from a set of logical formulas
specifying these processes. A transformation begins with a set of formulas and constructs a process term from it
by transformation rules. The process term expresses a possibly concurrent process in an abstract programming
language. A Petri net, with an explicit representation of concurrency, defines the semantics of the process term.
It can be derived from the term by net construction rules. So a derivation chain can be constructed from the
specification to the Petri net.

Viewpoint Centered Specification

The specification of a process is stated in trace logic (i.e., Hoare, 1985). As a simple example, Figure 2
shows a possible trace-logic specification of (a variant of) the "Bavarian Biergarten":

When observing the events in the "Bavarian Biergarten", we may notice a lot of things. At the
beginning, the waiter may be sleeping (Ws). Then after some other things not of concern here (denoted by @),
the waiter is ready to accept an order (Wro) from a guest. Next, the kitchen receives the order from the waiter (K).
(Of course, there are events in between: The waiter approaches the table, welcomes the guest, receives his order
and goes to the kitchen. But these steps are ignored here.) Then the kitchen prepares the meal (P). When the meal
is ready (R), the waiter is ready to serve (Wrs), and so on.
_________________________________________________________________________________________

Trace of events in the "Bavarian Biergarten":
Ws. @. @. Wro. K. P. @. R. Wrs. Ws. @. Wro. K. @. P ...

-----------------------------------------------------------------------------------------------------------------
Trace logic specification of the "Bavarian Biergarten":
trace ↓ {Κ, P, R} ∈ pref(K.P.R)* Λ
trace ↓ {Ws, Wro, K, R, Wrs} ∈ pref(Ws.Wro.K.R.Wrs)*

-----------------------------------------------------------------------------------------------------------------
View of kitchen: K.P.R.K.P.R....
View of waiter: Ws.Wro.K.R.Wrs.Ws.Wro.K.R.Wrs...

_________________________________________________________________________________________
Figure 2. Trace and trace logic specification of the "Bavarian Biergarten"

We may look at this chain of events from different perspectives (see Figure 2). From the kitchen´s
viewpoint, there are only three relevant events: K, P, R. This is expresssed by "trace ↓ {Κ, P, R} ∈
pref(K.P.R)*". This means: If the trace (= the observed chain of events) is filtered (↓) by looking only at the
events K, P, R, then a trace is obtained that is an element of the set  "pref(K.P.R)*", which is { ε, K, K.P,
K.P.R, K.P.R.K, K.P.R.K.P, K.P.R.K.P.R, ...} (ε is the empty trace). So the kitchen´s view is a succession of
events K.P.R.K.P.R.K... Similarly, we can take the waiter´s point of view. It is a succession of sleeping (Ws),
taking orders (Wro), passing them to the kitchen (K), being told that a meal is ready (R), and serving it (Wrs).

Viewpoint Centered Planning and Implementation

In order to make the transformational approach of Olderog (1991) useable within PETRI-HELP, several
simplifications were made. Figure 3 shows our graphical representations of some transformation rules. In these
representations, each rule has three parts. The upper part contains the name of the rule, the middle part may
contain conditions, and the lower part contains a statement. The parallelism rule has no condition. It says that a
specification which is expressed as a conjunction of terms S and T (S Λ T) is equivalent to two specifications S
and T which have to be implemented as parallel nets. On the PETRI-HELP screen, we may create two goal
regions labeled by S and T, which have yet to be implemented by Petri net fragments. Thus a goal region
represents a specification of a task or subtask: the goal to create a Petri net fragment that is equivalent to that
specification. The dotted crossing lines between the goal regions in Figure 3 mean that these nets will have to be



synchronized (which is specified by the net combination rule). For example, applying the parallelism rule to the
trace specification of the Bavarian Biergarten in Figure 2 leads to the goal regions shown in Figure 4.
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Figure 3. Some transformation rules
_________________________________________________________________________________________

      trace ↓ {Κ, P, R} trace ↓ {Ws, Wro, K, R, Wrs}  
∈ pref(K.P.R)* ∈ pref(Ws.Wro.K.R.Wrs)*

_________________________________________________________________________________________
      Figure 4. Applying the parallelism rule to the trace specification in Figure 2

Now we can construct the two nets for the kitchen and for the waiter separately, and finally we
synchronize them. We will show the construction of the "kitchen net", the "waiter net" is constructed similarly:



"init(S)" is the set of next possible events of a process specified by S. This set might be empty
(deadlock, not shown), contain one element (then the prefix rule is applicable), or more than one element
(handled by the expansion rule). "trace ↓ {Κ, P, R} ∈ pref(K.P.R)*" (goal region 5a in Figure 5) has one
possible next element: K. (Since all non-empty traces in this set begin with K, any value of the variable "trace"
must start with K in order for the formula to be true.) So the prefix rule (Figure 3) is applicable. Now we can
generate a place leading to a transition labeled with K leading to a goal region again (Figure 5b). The place gets a
token because it is the starting place in this construction. The new goal region represents the kitchen after having
received an order from the waiter: "K.trace ↓ {K, P, R} ∈ pref(K.P.R)*". (If "K.trace", which is any trace
starting with K, is projected onto {K, P, R}, then the result is in the set "pref(K.P.R)*".) Figure 5b represents a
mixed expression because it is a mixture of specification parts and places, transitions, and links. Next, the prefix
rule is applicable again because the expression "K.trace ↓ {K, P, R} ∈ pref(K.P.R)*" can only be true if any
value of the variable "trace" begins with P. (Figure 5c). After three applications of the prefix rule (Figure 5d), the
expression "K.P.R.trace ↓ {K, P, R} ∈ pref(Κ.P.R)*" will be obtained. This expression is equivalent to the
original expression "trace ↓ {Κ, P, R} ∈ pref(Κ.P.R)*", because if a trace is in the set "pref(Κ.P.R)*", then the
same trace preceded by K.P.R will also be in this set, and vice versa. Thus the recursion rule is applicable (with
S substituted by "trace ↓ {K, P, R} ∈ pref(Κ.P.R)*", and S' substituted by "K.P.R.trace ↓ {K, P, R} ∈
pref(Κ.P.R)*"). The recursion rule states that if a specification S is equivalent to a mixed expression containing a
specification S', and S and S' are equivalent as well, then changing that mixed expression by removing S' and
introducing recursion still keeps it equivalent to S. Figure 5e shows the result of its application.
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Figure 5. Petri net construction, using prefix and recursion rule

Viewpoint Centered Synchronization

When nets have been created for different viewpoints, they have to be glued together to one single net.
This is achieved by the net combination rule (Figure 3). It says that if two transitions with the same name occur
in two nets, then an arrow should lead from each of its preconditions (in both nets) to the transition, and an
arrow should lead from the transition to each postcondition as well. The net combination rule will combine nets
for the two views in Figure 2 to the net shown in Figure 6b. (K and R are the synchronizing transitions.)

Using the transformation approach, different strategies are possible. For example, we can take a look at
the two different views of Figure 2 simultaneously and thus avoid the parallelism rule. The result is shown in
Figure 6a. Alternatively, the components of a net can be developed separately by using the parallelism rule, and
then glued together by the net combination rule, as shown in Figure 6b. In general, intermediate strategies
between maximal sequentiality and maximal parallelism are possible too, though not in this simple example.
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Figure 6. Two Petri nets derived from the trace specification in Figure 2. Figure 6a (on the left): net derived by
a sequential strategy, Figure 6b (on the right): net derived by a parallel strategy

Supporting planning of Petri nets in PETRI-HELP

How can the transformational approach support learners in constructing Petri nets?
1. If the learner does not know how to proceed and asks for a completion proposal, the system may offer

goal regions (as illustrated in Figures 4 and 5) as help. So the learner would be provided with descriptions of
subtasks yet to be solved, and with recommendations how to decompose the task into subtasks. Thus the system
would not be restricted to help on the level of places, transitions, and links.

2. The learner may state hypotheses about goal regions, not only about Petri net fragments. So the
learner may get information whether he or she is "on the right track" at very early planning stages. For example,
the learner may ask the system if it is appropriate to structure the problem of Figure 2 into two parallel
components (Figure 4) without bothering about what the components will exactly look like. So the learner may
postpone implementation considerations and work with partial plans and mixed expressions.

3. The learner may receive direct guidance in Petri net construction by using the transformation rules as
help. So the learner may create a Petri net solution by stepwise application of the rules, that is, in a
systematical, derivational way. In order to find out whether this is feasable, we carried out a single subject study.
The subject was a novice concerning Petri nets. Her task was to create the "restaurant" net with paper and pencil,
using graphical representations of the transformation rules as shown in Figure 3. The subject adopted a
maximally parallel strategy. She needed some assistance for applying the parallelism and recursion rule, she did
not immediately realize their applicability. But in general, she had no serious problems with this task. This
preliminary result suggests that the approach is feasable as a basis for supporting novices in Petri net design.

Conclusions

In PETRI-HELP as currently implemented, tasks are specified as temporal logic formulas. One of their
advantages is that there are no restrictions to possible solutions (Petri nets), except that the set of formulas has
to be fulfilled. Any solution proposal can be analyzed. So the temporal logic approach allows "free",
unconstrained problem solving, but does not support planning "above" the level of places, transitions, and links,
and it does not support a systematic, guided construction of a solution.

We have shown an approach to incorporate planning into Petri net design which is more abstract than
the Petri net constructs. The approach allows to systematically construct a net proposal, starting from a trace
logic formula. Furthermore, it is a sound basis for letting the learner express initial ideas, partial plans, test
hypotheses about them, and receive proposals from the system at the same level. The learner is enabled to think
about specifications (and "mixed terms") without bothering about their implementation from the beginning.

Our future work is concerned with combining the temporal logic and the trace logic approach so that free
problem solving, guided systematical problem solving, and abstract planning are possible as well.



With respect to our theoretical framework, the problem solving level of deliberation remains still
uncovered. This means that the learner should be supported by PETRI-HELP in generating the specification of
some system or process. Then the Petri net solution created by the learner would be checked against this
specification. In assisting the learner to create a specification, the system may help the learner and help in a
dialog to acquire and to integrate the knowledge needed.
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