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Kurzfassung

Zentraler Bestandteil dieser Arbeit ist die Untersuchung der Lokalisierung von
elektromagnetischen Feldern in zufällig angeordneten dielektrischen Strukturen.
Der zugrunde liegende physikalische Prozess der Anderson-Lokalisierung ist die
kohärente Vielfachstreuung von Wellen und deren Interferenz. Die auf diese
Weise hervorgerufene Lokalisierung erfolgt auf Sub-Wellenlängen Längenskalen,
im Falle von Licht im Nanometerbereich. Dabei finden die Streuprozesse auf
Zeitskalen von wenigen Femtosekunden statt. Die zeitaufgelöste Untersuchung
von Nanostrukturen hinsichtlich ihrer Lokalisierungseigenschaften mit ultra-
kurzen Laserimpulsen in Verbindung mit hochaufgelöster Mikroskopie stellt
die eigentliche Innovation dar. Die experimentelle Verifikation erfolgt unter
Verwendung eines 2-Photonen-Mikroskops in Kombination mit einem interfero-
metrischen Autokorrelator. Zufällig angeordnete Zinkoxid-Nanonadeln stellen
dabei ein ideales Material zur Untersuchung der raum-zeitlichen Lokalisierungs-
dynamik von Licht dar. Untersuchungen an diesen Nanostrukturen zeigen dabei
stark lokalisierte Photonmoden (Hotspots) mit verlängerten Lebenszeiten im fs-
Bereich. Dabei ermöglicht die Untersuchung der räumlichen Feldverteilung und
deren Fluktuation die Klassifizierung der Lokalisierungsstärke. Die gemessenen
Photonmoden lassen sich somit in den Bereich der starken Lokalisierung einord-
nen. Dabei sind die Stärke der Lokalisierung und die Lebenszeit der Photon-
mode miteinander korreliert. Die Stärke der Lokalisierung hängt von vielen
Faktoren, wie dem Durchmesser der einzelnen Nadeln sowie deren Abstand zur
nächsten Nadel, ab. Dies bezüglich konnte gezeigt werden, daßdie geometrischen
Eigenschaften der Nadeln und ihre räumliche Verteilung entscheidende Faktoren
für die Lokalisierung sind. Des Weiteren wurden goldbeschichtete Zinkoxid-
Nanonadeln mit einem Photo-Emissions-Elektronen-Mikroskops (PEEM) unter-
sucht. Diese Methode ermöglicht die Charakterisierung der von den Nadeln
emittierten Elektronen und damit die Charakterisierung der lokalen elektrischen
Felder mit noch höherer räumlicher Auflösung. Die im Falle dieser Arbeit ver-
wendeten Laser Intensitäten liegen weit unterhalb der Schwelle für einen ”ran-
dom laser”, jedoch kann eine solche Probe von Zinkoxid Nanonadeln bei hinre-
ichend hoher Pumpleistung auch zum lasen angeregt werden.
Unter Verwendung der zeitaufgelösten 2-Photonen-Mikroskopie konnte zum er-
sten Mal die raum-zeitliche Dynamik der Lokalisierung von Licht experimentell
verifiziert werden.

Schlagwörter: Nanostrukturen, Lokalisierung, zeitaufgelösste 2-Photonen-Mikros-
kopie, interferometrische Autokorrelation, PEEM, random lasing
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Summary

The main research aspect of this thesis is experimental evidence for the spatial
and temporal localization dynamics of light in strongly scattering, randomly
arranged dielectric media. The physical concept is the Anderson localization,
an interference phenomenon based on multiply scattered electromagnetic waves.
The localization of light occurs on subwavelength length scales of a few hundred
nanometers. For this reason the scattering events occur on timescales of a few
femtoseconds. The combination of time-resolved experiments using ultrashort
laser pulses and high-resolution optical microscopy to examine the localization
properties of nanostructures is the key method and innovation presented in this
thesis. It is based on a technique of ultra fast second harmonic microscopy and
interferometric autocorrelation. Randomly distributed zinc oxide nano-needles
turned out to be well suited for the investigation of the localization of light. The
investigation of these nanostructures showed strongly localized photon modes
(hotspots) with increased photon mode lifetimes. The fluctuations of the local
electric field allow the classification of the localization strength. The localized
photon modes can be classified into the regime of strong localization (Anderson
localization). This shows that the localization strength and the photon mode
lifetime are correlated. Many parameters influence localization, like the dia-
meter of the needles and the distance to another adjacent needle. Therefore,
the geometric shape and distribution of the needles scattering the light is cru-
cial for the localization. Furthermore, gold coated zinc oxide nano-needles have
been investigated with a higher spatial resolution by using a photo-emission
electron microscope (PEEM). It allows the detection of localized electron emis-
sion generated by localized light and surface plasmon polaritons. Within this
work, the used laser intensities are kept below the threshold to avoid ”random
lasing” from the sample. Nevertheless even random lasing can be observed by
using higher intensities to pump the nano-needle array.
By using the above mentioned techniques, we were able to verify the spatial and
temporal dynamics of the localization of light for the first time.

Keywords: Nanostructures, Localization, time resolved second harmonic
microscopy, interferometric autocorrelation, PEEM, random lasing
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Einleitung

Licht einzufangen ist seit jeher ein Traum der Menschheit. Bereits im Jahre 1597
wurde in einem Kapitel des berühmten ”Lalebuch”, in welchem die skurrilen
Geschichten der sogenannten ”Schildbürger” erzählt werden, von dieser Idee
berichtet. Die Geschichte erzählt vom Bau eines Hauses, in das die Schildbürger
vergessen hatten, Fenster einzubauen. Um dennoch Licht ins Innere des Gebäudes
zu bekommen, versuchten die Schildbürger das Licht außerhalb des Hauses in
Säcken einzufangen. So ließen sie das Licht in die Säcke scheinen, schlossen
diese und trugen diese ins Innere des Hauses. Beim Öffnen der Säcke stell-
ten sie jedoch überrascht fest, dass sich darin kein Licht mehr befand. Den
Schildbürgern war nicht klar, dass das Licht von den Säcken absorbiert wurde.
Inwieweit diese Idee bei der richtigen Wahl der ”Säcke” nicht unbedingt ein
”Schildbürgerstreich” sein muss, wird in dieser Arbeit untersucht.

Die Untersuchung der Lokalisierung von elektromagnetischen Feldern oder
dem Einfangen von Licht in zufällig angeordneten dielektrischen Strukturen
ist zentraler Bestandteil dieser Arbeit. Dabei stellt die zeitaufgelöste Unter-
suchung von Nanostrukturen hinsichtlich ihrer Lokalisierungseigenschaften mit
ultrakurzen Laserimpulsen in Verbindung mit hochaufgelöster Mikroskopie die
eigentliche Inovation dar.
Das Konzept zur Lokalisierung beruht auf der Vorhersage P. W. Andersons im
Jahre 1958 [1]. Er beschreibt in dieser Arbeit das Ausbleiben von Elektronen-
Diffussion, dem unkontrollierten Ausbreiten von Elektronen, bei hinreichender
Unordnung im Festkörper. Das von Anderson aufgestellte Konzept über die
Lokalisierung von Elektronen wurde innerhalb der letzten 55 Jahre auf eine
Vielzahl von modifizierten Theorien und Experimenten angewandt. Diese rei-
chen von klassischer Diffussions- und Transporttheorie bis hin zur Vielfach-
streuung von Wellen in ungeordneten Systemen und den daraus resultierenden
Interferenzphänomenen [2]. Das Phänomen der starken Lokalisierung, auch als
Anderson-Lokalisierung bezeichnet, wurde nach ihm benannt.
Der zugrundeliegende physikalische Prozess der Anderson-Lokalisierung ist die
kohärente Vielfachstreuung von Wellen in zufällig angeordneten Medien. Dies
führt durch konstruktive Interferenz der an verschiedenen Stellen innerhalb des
Mediums gestreuten elektrischen Felder zur Lokalisierung an zufälligen Posi-
tionen. Dies konnte für Elektronenwellen in stark ungeordneten Festkörpern,
wie z.B. in Quanten Drähten (quantum wires) gezeigt werden [3]. Die räum-
liche Dimension des untersuchten Systems beeinflusst dabei jedoch stark die
Lokalisierung. Die angesprochenen quasi eindimensionalen ”quantum wires”
zeigen sogar Lokalisierung für Elektronen mit kinetischen Energien weit ober-
halb der Potentialfluktuationen [4]. An jeder der Potentialfluktuationen existiert
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eine endliche Wahrscheinlichkeit, dass die Welle gestreut wird. Dies führt zu
einer Reduzierung der Transmissionswahrscheinlichkeit.
Die experimentelle Bestätigung von Lokalisierung ist aufwendig und nicht immer
eindeutig. Transmissionsexperimente beispielsweise weisen die Problematik auf,
dass sowohl Absorption als auch Lokalisierung zu einem exponentiellen Abfall
der Amplitude des transmittierten Lichtes führen. Die Stärke des Abfalls skaliert
mit der Probendicke und wird durch das Gesetz von Beer-Lambert beschrieben
[5, 6]. Diesbezüglich ist der exponentielle Abfall keine Signatur, die zweifelsfrei
der Lokalisierung zugeschrieben werden kann [2].
Die Lokalisierung in zwei- oder sogar dreidimensionalen Systemen ist aufwendig
zu berechnen, da alle möglichen Streupfade zur Lokalisierung beitragen. Ein
Ansatz, die Lokalisierungstärke auch in komplexen mehrdimensionalen Syste-
men zu quantifizieren, wurde von Ioffe und Regel formuliert (Ioffe-Regel Kri-
terium) [7]. Es vereinfacht die komplexe Physik der Anderson-Lokalisierung
durch das Produkt aus Wellenvektor und der mittleren freien Weglänge.
Viel allgemeiner können die hier behandelten Lokalisierungsphänomene als ein
generelles Wellen-Phänomen betrachtet werden, das nicht nur für Elektronen
zu beobachten ist. Der Transfer von Lokalisierung in elektronischen Systemen
hin zu elektromagnetischen Wellen, wie z.B. für Licht, ist bereits hinreichend
in der Literatur diskutiert [8, 9]. Lokalisierung tritt bei nahezu allen Wellen
auf. Experimentelle Nachweise existieren für die Lokalisierung von Ultra-Schall
[10], Oberflächen Plasmonen Polaritonen in metallischen Filmen [11] oder von
Licht in zufällig angeordneten dielektrischen Materialien [12, 13]. Dabei kann es
durch Lokalisation und geschlossene Trajektorien von vielfach gestreutem Licht
sogar zu ”Random Lasing” kommen [14].

Jedoch speziell im Falle der Lokalisierung von Licht, welche räumlich auf
Sub-Wellenlängen Längenskalen von wenigen hundert Nanometer auftritt, ist die
direkte mikroskopische und spektroskopische Untersuchung überaus anspruchs-
voll [15]. Die Untersuchung der zeitlichen Struktur ist nochmals anspruchsvoller,
da die Streuprozesse auf Zeitskalen von wenigen Femtosekunden stattfinden.
Erst durch die Entwicklung ultrakurzer Laserimpulse, wie z.B des Ti:Saphir
Laser-Oszillators im Jahre 1986 [16], wurde die Möglichkeit geschaffen, die
zeitliche Struktur von lokalisiertem Licht experimentell zu verifizieren.
Die hohen experimentellen Anforderungen von Lichtlokalisierung in Raum und
Zeit führen vielfach zur Untersuchung indirekter Signaturen der Lokalisierung,
wie z.B. der kohärenten Rückstreuung [5]. Diese ist ein Interferenz-Phänomen,
das auf der konstruktiven Interferenz von vielfach gestreuten Wellen in einem
elastisch streuenden Medium herrührt. Dabei interferieren Wellen einer zu-
fälligen Streutrajektorie mit jeweils der Welle, die in entgegengesetzter Richtung
(”time reversal”) entlang derselben Trajektorie propagiert. Aufgrund der iden-
tischen Trajektorienlänge haben beide Wellen dieselbe Phase und interferieren
konstruktiv. Entsprechend wird die kohärente Rückstreuung als eine Signatur
für Lokalisierung betrachtet[5, 18, 19].
Bei Streuprozessen an Objekten, die kleiner als die Wellenlänge des einfallenden
elektrischen Feldes sind, tritt vielfache Rayleigh-Streuung auf. Dabei werden die
kohärenten Eigenschaften des eletrischen Feldes erhalten.

Für die starke Lokalisierung (Anderson-Lokalisierung) existieren Vorhersagen
über starke Schwankungen der lokalen elektrischen Feldstärke, sowie Änder-
ungen bezüglich der zeitlichen Struktur [2]. Die Interferenz führt zu starken,
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räumlich eng begrenzten elektromagnetischen Feldern, die als ”hotspots” be-
zeichnet werden. Diese ”hotspots” wurden bereits ausführlich für Licht in
photonischen Kristallfasern [20, 21, 22] und in metallischen Nanostrukturen
[11, 23, 24, 25] untersucht. Zusätzlich führt die kohärente Vielfachstreuung zu
einer Modifikation der zeitlichen Struktur des lokalisierten elektrischen Feldes im
”hotspot”, was jedoch nur theoretisch für Oberflächen-Plasmonen-Polaritonen
in ungeordneten Metall-Nanopartikeln berechnet wurde [2, 27]. Somit besitzen
Lokalisierungsphänomene aufgrund von Vielfachstreuung zwei charakteristische
Eigenschaften: Zum einen räumlich eng begrenzte, starke Feldfluktuationen und
zum anderen verlängerte, lokale Lebenszeiten der Felder.
Es gibt vielfache Anwendungen von lokalisiertem Licht. Neben dem ”Random
Lasing” in Zinkoxid-Nanopartikeln [14, 26, 28] und der verstärkten Oberflächen-
Raman-Streuung, die sogar Spektroskopie an einem einzelnen Molekül erlaubt
[29, 30], liegt eine weitere Anwendungsmöglichkeit in der Verstärkung der Kon-
versionseffizienz in der Photovoltaik [31, 32].

Der Hauptaugenmerk dieser Arbeit liegt auf der experimentellen Unter-
suchung der raum-zeitlichen Dynamik von Licht-Lokalisierungseffekten in stark
streuenden dielektrischen Medien. Die Untersuchung der räumlichen Feldverteil-
ung und deren Fluktuation erlaubt die Klassifizierung der Lokalisierungsstärke.
In Verbindung mit zeitaufgelösten Messungen kann die Lokalisierung aufgrund
von Vielfachstreuung verifiziert werden. Die dafür notwendigen theoretischen
Konzepte der Lokalisierung und der Quantifizierung der Lokalisierungsstärke
werden eingeführt (chapter 2). Zufällig angeordnete Zinkoxid-Nanonadeln stellen
dabei ein ideales Material zur Untersuchung der raum-zeitlichen Lokalisierungs-
dynamik von Licht dar.
Die Untersuchung erfolgt unter Verwendung eines 2-Photonen-Mikroskops in
Kombination mit einem interferometrischen Autokorrelator (chapter 3). Dieser
Aufbau erlaubt es auch unterschiedliche Probengeometrien der Zinkoxid-Nano-
nadeln bezüglich ihrer Lokalisierungseigenschaften zu untersuchen (chapter 4).
Unter Verwendung eines Photo-Emissions-Elektronen-Mikroskops (PEEM) und
der Untersuchung von lokalisierter Elektronenemission auf goldbeschichteten
Zinkoxid-Nanonadeln, lässt sich die Lokalisierung elektrischer Felder mit noch
höherer räumlicher Auflösung untersuchen (chapter 5). Abschließend werden
auch die Eigenschaften eines ”random lasers” untersucht (chapter 6).
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Chapter 1

Introduction

For centuries people have been dreaming about trapping light, as already writ-
ten down in the famous ”Lalebuch” from 1597 which is better known as the
”Schildbürger” and their foolish acts. One of the most famous stories deals
with the town hall in which they forgot to implement windows. Due to that,
it was dark inside. The Schildbürger thought about how to solve the problem
and tried to catch light in bags and take them into the house. They wondered
why it still remained dark after opening the bags. They did not realize that the
light was simply absorbed.

Within this thesis, the localization or the trapping of electromagnetic fields
in randomly arranged dielectric media will be investigated by a combination
of time-resolved experiments using ultrashort laser pulses and high-resolution
optical microscopy.
The concept of wave localization is based on a prediction by P.W. Anderson
in 1958 [1] concerning the absence of electron diffusion and the resulting local-
ization of electrons in solid state materials with a sufficient degree of disorder.
Andersons idea has been expanded and modified during the last 50 years to a
variety of theories and experiments from classical diffusion and transport theory
to multiple scattering wave interference phenomena [2]. Strong localization in
disordered systems, also called Anderson localization, was named after him.
Coherent multiple wave scattering within random media is the underlying phys-
ical principle of localization, as demonstrated for electron waves in disordered
solid media, for example in quantum wires [3]. The localization in general
strongly depends on the dimension of the investigated system. It was shown
that even electrons with kinetic energies that exceed the average height of the
potential fluctuations localize in one-dimensional systems [4]. At each potential
fluctuation, there is a finite probability of being scattered. This results in a de-
crease of the total transmission probability. A general problem of transmission
experiments is that both, absorption as well as localization phenomena, lead to
an exponential decrease of the transmitted intensity. This behaviour is related
to the sample thickness as described by Beer-Lambert’s law [5, 6]. Therefore
the exponential decrease is not a signature unambiguously related to localiza-
tion within a sample [2].
Localization in 2- or even 3-dimensions is difficult to simulate numerically, since
all possible scattering paths can contribute to localization forming a locally con-

1



fined material excitation. An attempt to classify different regimes of localization
is based on the Ioffe and Regel criterion [7]. It simplifies the complex physics of
the Anderson localization to the product of the mean free path length and the
wave vector.

However, localization phenomena are not restricted to electrons. They are
a general wave phenomenon. The transfer from localization in electronic sys-
tems to electromagnetic waves, i.e. light, has been discussed in literature [8, 9].
Localization occurs for nearly all kinds of waves as recently demonstrated for
ultrasonic experiments [10], surface plasmon polaritons at metallic films [11] or
light in random dielectric media [12, 13], where closed loops of multiply scat-
tered light can lead to random lasing [14].
But especially for light, a direct microscopic and spectroscopic investigation of
the localization remains challenging to observe [15] since it involves wave lo-
calization on the sub-wavelength length scales in the order of a few hundred
nanometers. The temporal investigation of the localization of light is even more
challenging since the corresponding dynamical scattering processes occur on
timescales of a few femtoseconds. Therefore, the invention of ultrashort laser
pulses, as generated by Ti:Sapphire laser oscillators in 1986 [16], opened the
possibility to investigate the temporal dynamics of localized states.
Due to the high experimental requirements for measuring localization of light
in space and time, a lot of experiments were performed investigating indirect
signatures of localization. One example is the coherent backscattering effect
[5]. Coherent backscattering is an interference phenomenon resulting from the
constructive interference of a multiply scattered wave subjected to a random
walk in an elastically scattering medium and the wave propagating along the
same trajectory in the opposite direction (time-reversed). Due to the same path
length, the phase is the same and they interfere constructively. Therefore en-
hanced coherent backscattering is an indicator for localization [5, 18, 19].
In the regime of multiple Rayleigh scattering, strong fluctuations of the local
field intensity distribution, as well as changes in the temporal response, are
predicted due to interference and the formation of enhanced, spatially highly
confined electromagnetic fields, so-called ”hotspots” [2]. These hotspots have
been studied for light in detail for photonic crystal waveguides [20, 21, 22] and
for metallic nanostructures [11, 23, 24, 25]. In addition, multiple scattering
leads to a distinct modification of the temporal structure of the electromagnetic
fields within the localized spots as calculated for surface plasmon polaritons in
disordered arrays of metal nanoparticles [2, 27]. Therefore, localization due to
multiple coherent scattering has two hallmarks: enhanced spatial electromag-
netic field fluctuations and enhanced local lifetimes.

Applications for the localized photon modes in strongly scattering media
are random lasing in semiconductor powders [14, 26, 28] or surface enhanced
Raman-scattering single molecule spectroscopy [29, 30]. Furthermore, localized
or trapped light inside of structured photovoltaic devices enhance the conversion
efficiency [31, 32].

The main research aspect within this thesis is the experimental evidence
of the space and temporal localization dynamics of light in strongly scattering
random dielectric media, i.e. ZnO nano-needles with diameters in the range of
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30 to 200nm. It is based on a new technique of ultra fast second harmonic
microscopy in combination with interferometric autocorrelation. The inves-
tigation of the spatial confinement field fluctuations allows to determine the
localization strength. In combination with time-resolved measurements the lo-
calization based on multiple scattering is investigated. Therefore, the basic theo-
retical concepts of localization and the classification of the localization strength
are introduced (chapter 2). The spatial and temporal localization properties of
photon modes are measured and classified (chapter 3). This set-up allows to
investigate the localization behaviour of different geometric sample properties of
the ZnO nano-needles (chapter 4). In addition, the localization is investigated
with a higher spatial resolution by using a photo-emission electron microscope
(chapter 5) detecting localized electrons emitted by localized light and surface
plasmon polaritons from gold covered nano-needles. Furthermore, the random
lasing behaviour of the bare ZnO nano-needles (chapter 6) is investigated.
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Chapter 2

Theory

The main part of this thesis deals with the spatial and temporal localization
of light waves. Therefore, the basic theoretical concepts of the localization are
described in this chapter.
Historically, localization was not described for light waves at first. It was de-
scribed by P.W. Anderson in 1958 according the absence of electron diffusion at
a certain amount of disorder. Later on, the localization theory was expanded to
a more general class of wave localization phenomena. Here I follow this histor-
ical approach and first present a brief theoretical description of the transport
and localization properties of electrons in the solid state media (section 2.1). In
section 2.2 these concepts are transferred to the localization of light waves.
The propagation of electrons or matter waves is described by the Schrödinger
equation (section 2.1.2), whereas the propagation of light is described by the
wave equation (Helmholtz equation) derived from Maxwell’s equation (section
2.2.4). Although conceptual differences in the theoretical description for the
propagation of light and material waves exist, both can be described by plane
waves interacting with a constant refractive index, i.e. a constant potential en-
ergy.
In order to understand the experimental results of localized photon modes, one
must consider multiple scattering events. Strong localization or Anderson lo-
calization of light is based on the interference of coherent, elastically scattered
light within strongly scattering media. In section 2.2.4 an indirect signature of
localization, coherent backscattering, which is based on the constructive inter-
ference of time-reversed scattering paths, is described. In section 2.2.5 and 2.2.6
two ways of classifying the localization strength are introduced. The spatial in-
tensity distribution can be divided into localized and delocalized regimes using
the single parameter scaling theory (2.2.5) or the multifractal analysis (2.2.6).
In section 2.3, the approach to describe the light matter interaction is explained.
It is described theoretically based on optical Bloch equations which allow the
deduction of the temporal aspects of localized photon modes. To classify lo-
calization based on the constructive interference of multiply scattered waves, a
distinction between coherent and incoherent photon modes is important. There-
fore, section 2.4 introduces the interferometric frequency resolved autocorrela-
tion technique which is the essential tool when focusing on coherent light.
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2.1 Transport and localization of electrons

The pioneering work of Anderson has spawned a rich variety of theories and
experiments. At first only noticed by few of his colleagues, it took many years
till Andersons publication was noticed more and more. Currently Anderson lo-
calization is a field of research with high priority [33].
In this context, a few other important publications will be mentioned. In 1994,
Belitz and Kirkpatrick [3] reviewed a quantum phase Anderson transition and
developed a general scaling theory of a metal-insulator and related transitions
to compare them with the experimental results. This transition depends on
the dissorder and was demonstrated for electron waves in solid media. The
metalinsulator transition, the general class of the quantum phase transition, is
characterized by its threshold value. Above this threshold value, the solid acts
as a metal whereas below the threshold it behaves like an insulator.
Theoretical simulations with a one-dimensional tight-binding model using long
range correlations in disordered solids were performed in 2002 by Carpena et
al [34] to investigate the effect on the physical properties of the electron wave
function.
In 2008 Billy et al [35] reported the observation of the exponential localization
of a BoseEinstein condensate released into a one-dimensional waveguide in the
presence of a controlled degree of disorder generated by laser speckles. The
direct imaging of the atomic density as function of the time allows to determine
the dissorder, which leads to a localized wave function. Therefore, the local-
ization length within the system was determined as a function of the disorder.
Enhanced disorder results in stronger localization and a decreased localization
length. A small degree of disorder results in extended states which result in a
Gaussian distribution of the local density of states (LDOS).
Richardella et al published an important article in 2010 [36]. They used energy
resolved scanning tunneling microscopy to map electronic states inGa1−xMnxAs
relative to the Fermi energy. For a degree of disorder close to the metal-insulator
phase transition, they observed strong spatial variations in the local value of
the tunneling conductance, which is associated with the local density of states
(LDOS). The spatial fluctuations of the LDOS are used to characterize the lo-
calization behaviour. Within the valence band, the probability distribution of
the normalized LDOS has a Gaussian shape, whereas for energies close to the
Fermi energy and disorders close to the metal-insulator transition, the proba-
bility distribution changes towards a log-normal distribution.
Furthermore, the localization of excitons in semiconductors was investigated.
Hess et al. [37] investigated the spectral distribution of the fluorescence from
GaAs/AlGaAs quantum wells by low-temperature near-field scanning optical
microscopy. They found that distinct emission lines together with magnetic
field and temperature measurements establish laterally localized excitons at in-
terface fluctuations.
Later, Intonit at al. [38] used a similar technique to investigate single quan-
tum wells. They observed spatially resolved photoluminescence spectra with
sharp emission lines from localized excitonic states. The propagation of an ex-
citon within a quantum theory in a 2-dimensional spatially disordered potential
results in characteristic quantum mechanical energy level repulsion related to
spatial and energetic correlations of excitons in disordered quantum systems.
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In order to put these shortly mentioned results into perspective, a brief
introduction to the transport and localization behaviour of electrons is given in
this section. Later, this will be generalized for different kinds of waves, especially
light waves.

2.1.1 Classical transport and drift diffusion of electrons

Electrons can either propagate diffusively or ballistically in the solid state media.
Diffusive transport is a stochastical propagation process of the electrons which
depends on the scattering properties of the medium. The propagation depends
on aspects such as temperature, density of crystal defects, phonons, etc. All
these aspects are described by the mean free path length l which is the distance
between two scattering events. It can be used to classify the transport through
a sample of the thickness d to be either in the diffusive or ballistic regime. The
ballistic and diffusive drift propagation are schematically illustrated in figure
2.1. For diffusive transport, the mean free path length follows l < d. In the case

Figure 2.1: Schematic illustration of the transport of electrons through a solid
state of the length d. The free mean path length l allows to distinguish a the
ballistic propagation with l > d and b the diffusive drift propagation with l < d.

of ballistic transport, the mean free path length is sufficiently large (l > d) for
the electrons to propagate undisturbed.
Drude developed a model in order to describe the diffusive transport of elec-
trons in solids. In general, however, the wave properties of electrons can not
be ignored. In the case of diffusive propagation, multiple scattering leads to
constructive and destructive interference of the different scattered waves. This
results in averaging and allows to describe the propagation of an electron as a
particle in a semi classical picture of motion. The Drude model qualitatively
accounts for the drift diffusion of electrons through solids in an external electric
field ~E. Between the scattering events, the electrons move undisturbed on a
straight line as described by the free-electron approximation. The electrons are
scattered at the ions, defect states, phonons etc., while propagating through
the solid, which strongly influences the mean free path length l. The free path
length corresponds to a mean free propagation or collision time τ . The velo-
city of the electron directly after the collision is described by ~v0. Due to the

7



accelaration of the external electric field, this yields to

me

(
d~v0

dt
+
~vd
τ

)
= −e ~E (2.1)

by using the electron mass me and the elementary charge e. The scattering of an
electron is uncontrolled which results in scattering trajectories in any direction.
Therefore, the average speed of the electron is ~v0 = 0. This leads to

~vd =
−e ~E
me

· τ =
−e ~E
me

· l
vF

(2.2)

connecting the drift velocity ~vd and the mean free path length l to the Fermi
velocity vF =

√
2EF /me. The current density ~j and the conductivity σ are

then described by:

~j = −en~vd =
e2n~E

me
· l
vF

σ =
~j

~E
=
e2n

me
· l
vF

(2.3)

with n = NA·ρ
M , the electron density calculated from the bulk density ρ, the

atomic mass M and the Avogadro constant NA. Equation 2.3 corresponds to
Ohms law. For the case of a typical metal like copper, with a Fermi energy of
approximately 7 eV , the mean free path length1 of the electrons is

lCu =
σme~vF
ne2

≈ 40nm . (2.4)

By using equation 2.2, the mean free path length can be expressed in the mean
free propagation time

τCu =
lCu
~vF
≈ 25 fs (2.5)

for an electron in copper. The short time between two collisions makes it rather
difficult to observe ballistically propagating electrons. The diffusive propagation
of electrons in metals is the general transport condition. Ballistic transport of
an electron, as illustrated in figure 2.1a is therefore limited to t < τ . However,
this can be achieved at low temperatures increasing the mean free path length
l or in nanostructures with l > Λ with Λ the size of the nanostructures [39].

2.1.2 Matter waves

More generally, electric motion in solids must be described in terms of the dy-
namics of electron wave packets. The propagation of a matter wave however can
be described by the time-dependent Schrödinger equation and is characterized
by its wave function Ψ(x, t) [53]. The 1-dimensional Schrödinger equation[

−~2

2m∗
∆ + V (x)

]
Ψ(x, t) = i~

∂

∂t
Ψ(x, t) (2.6)

describes the temporal evolution of the wave function Ψ(x, t) with an effective
massm∗, potential V (x) and energy E. The solution of the Schrödinger equation
depends on the potential energy distribution V (x).

1The onductivity at room temperature is σ = 5.9 · 107 1
Ωm

, ~vF = 1.6 · 106 m
s

and ne =

8.5 · 1028 1
m3 .
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i First, a constant potential which does not depend on the spatial position is
considered. The solution of the Schrödinger equation results for V (x) = const
in plane waves

Ψ(x, t) = A0e
i(kx−Et) . (2.7)

The dispersion relation is then described as:

ω = ~k2/2m∗ . (2.8)

The wave function Ψ(x, t) contains all the information and allows for a complete
characterization of the system.

ii In a second case, a non-constant, spatial varying potential is assumed. In
order to do this, the dispersion relation and the wave function are modified.
For the case of a perfect periodic potential V (x) the solution of the Schrödinger
equation results in Bloch waves which are extended across the solid [51]. In
order to describe the propagation of an electron, the wave function should be
represented by a coherent superposition of Bloch waves forming a wave packet.
At some positions in space, the constructive interference results in regions with
a high probability of finding the electron, whereas averaging over constructive
and destructive interference of different waves at other positions results in a
small probability [53].
On time scales t < τ , the scattering of wave packets can be neglected. On these
short femtosecond time scales, they propagate undisturbed and have a well de-
fined phase relation, i.e dephasing and the loss of coherence can be neglected.
At later times t > τ , scattering occurs, which can destroy the phase coherence
depending on the type of scattering. The coherence is destroyed, due to inelas-
tic scattering at phonons. However, the coherence is conserved for elastically
scattered waves at stationary, yet spatially varying potential fluctuations.
The spatial extent of the electron wave function, which corresponds to the prob-
ability of finding the electron wave packet as a function of the position, strongly
depends on the spatial potential fluctuations V (x). By assuming elastic scatter-
ing of the wave packet at V (x), the spatial extent of the wave packet depends
on the potential strength and the correlation length Lc.
For plane waves in a constant potential, the wave packet propagates undisturbed
over the complete system and the electron wave function is extended.
Where increasing potential fluctuations V (x) are still smaller than the kinetic
energy of the electrons, the solution of the wave equation does not result in plane
waves and the electron wave function is not extended across the solid anymore.
However, the wave function is still spread over a large area as illustrated in figure
2.2. For kinetic energies of the electrons smaller than the embedding potential
energy fluctuations, the amplitude of the wave function decreases exponentially
in space as illustrated by the dashed lines in figure 2.2c.
The signature of localization is a decrease in the amplitude of the wave function

Ψ at a certain length scale which is called the localization length ξ. In the case
of strong localization (Anderson localization) it behaves like

|Ψ(x)| ∝ exp(−|x− x0|
ξ

) (2.9)

as function of the position x with x0 being the position of the localized wave
function. The direct measurement of the wave function is challenging. There-

9



Figure 2.2: a Schematic illustration of spatial random potential fluctuations.
Electrons with energies far above the potential fluctuations act on these spatial
scales as extended wave functions b whereas electrons with lower kinetic energy
localize as illustrated in c.
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fore, a lot of indirect measurements are performed. However, indirect mea-
surements like transmission experiments with an exponential decrease of the
amplitude of the wave function are not a signature unambiguously related to
localization. Absorption processes also show an exponential decrease of the am-
plitude of the wave function depending on the sample thickness as described by
Beer-Lambert’s law [6]. Therefore it remains challenging to assign the decrease
in the transmission unambiguously to localization [2].
The analysis of the coherence properties allows to distinguish absorption and
localization. While the coherence is destroyed by absorption, localization based
on elastic scattering conserves the coherence properties. This will not be ex-
plained in further detail in this section. However, the concepts to distinguish
between coherent and incoherent processes are explained in more detail for light
in section 2.4.1.
Due to the exponential drop of the intensity, localized states should be insen-
sitive to changes of the total sample size as long as the sample size is larger
than the localization length ξ. In contrast, extended Eigenfunctions should be
sensitive to the sample size, especially to changes in the boundary conditions.

2.1.3 The Anderson Model

The theoretical model introduced by P.W. Anderson is known as the ”near-
est neighbour tight binding model” [1]. The model is based on solving the
Schrödinger equation on a periodic lattice of i atoms. Electrons propagate by
hopping from one lattice position to the other. The periodic atomic arrange-
ment results in discrete energy values that enable the hopping. The hopping is
described by the matrix element ti,j and the operators a+

i for creating and aj
for annihilating an electron on the lattice position i, j, respectively [40]. This
results in an expression of

T =
∑
i,j

ti,ja
+
i aj (2.10)

for the kinetic energy, neglecting spin interaction [40]. Disorder is introduced
by the potential energy

V =
∑
i

Via
+
i ai (2.11)

in terms of a randomly varying amplitude Vi at each lattice position. The
Hamiltonian of the system is therefore described by:

H = T + V =
∑
i,j

ti,ja
+
i aj +

∑
i

Via
+
i ai . (2.12)

Electrons with kinetic energy ε localize if the disorder of the system, respec-
tively the spread of the amplitude of the potential energies Vi, is sufficiently
large compared to ε. While the electron wave function is extended for a peri-
odically arranged lattice of equal atomic potentials, the Eigenstates of the wave
function localize at a sufficient amount of disorder [41].
The classical diffusion and transport theory is based on many scattering events
but does not consider phase information from previous scattering events. How-
ever, the Anderson localization is based on the coherence of elastic multiply
scattered matter waves. Neglecting previous scattering events and their phases
is simply not correct when describing the Anderson localization.
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2.1.4 Metal-insulator transition and the mobility edge

Various processes, like electron-electron interaction, temperature or disorder can
convert a solid state from metallic to insulating behaviour [47, 48, 49]. How-
ever, this also occurs in bare media with sufficiently strong Coulomb interaction
between electrons and nucleus, leading to an overlap of energy levels known as
the Mott Hubbard insulator transition [17]. In the following, only the metal-
insulator transition (MIT) induced by disorder is considered [1, 50] and strong
Coulomb interaction is neglected.
The induced disorder can be modeled by the use of the Kronig-Penney model.
Within this model, the lattice of a solid state is described by a square potential
well as shown in figure 2.3. Solving the Schrödinger equation for such a system

Figure 2.3: a Steady potential wells with extended states described by Bloch
waves with an energetic bandwidth ∆. b The depth of the wells varies by ±V0/2.

of periodically arranged potential wells results in the known Bloch waves and
energy bands extended over the whole system with a corresponding energetic
bandwidth ∆ [51]. Disorder is induced by using fluctuations in the potential en-
ergy which is chosen to be ±Vi as illustrated in figure 2.3b. The disorder of the
system is characterized by δ = Vi/∆ using the undisturbed energetic bandwidth
∆. The statistic fluctuations of the potential energy wells result in an increas-
ing energetic bandwith [41, 42]. As shown by Mott, implementing a minimum
of disorder immediately leads to localized states at the energetic edges of the
band [17] as illustrated in figure 2.4. The energy that separates extended and
localized states, is called the mobility edge. When further increasing disorder,
the mobility edge shifts towards the center of the energy band and more states
become localized. At a sufficient disorder δc all states become localized. This
disorder is also called the critical disorder strength. Therefore, the increase of
disorder changes the conductivity from metallic behaviour into an insulator. As
in every solid, the position of the Fermi energy allows to classifiy the system into
metallic or insulating behaviour. Therefore, a metal can become an insulator if
the mobility edge at a sufficient amount of disorder reaches the Fermi energy.
This is called Anderson metal-insulator transition and stands in contrast to the
Mott metal-insulator transition, which is due to Coulomb interaction and ex-
hibits a gap in the energy spectrum (band structure).
A simplification of the complex physics of the Anderson localization is based on
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Figure 2.4: Schematic illustration of the metal-insulator transition. An increase
of the disorder δ leads to a shift of the mobility edge towards the centre of the en-
ergetic band and more states are localized. The mobility edge separates localized
and delocalized states. At the critical disorder δc all states are localized.[50, 42]

the Ioffe-Regel criterion.

The Ioffe Regel criterion connects the complex physics behind the Ander-
son localization to the mean free path length [7]. If the product of the free
mean path-length l and the wave vector k is equal or less than 1, the system is
considered to be in the localized regime. For the case that the product is big-
ger than 1, the system is delocalized. The transition from metallic to insulator
behaviour, i.e. delocalized to loclized states, takes place, if

k · l ≈ 1 . (2.13)

2.2 Transport and localization of light

In 1984, S. John realized that the Anderson localization goes far beyond the
localization of electrons. It is a general wave phenomenon in systems with dis-
order and the theoretical description can easily be transferred to electromagnetic
waves, which has been discussed in the literature [8, 9].
In contrast to the propagation of electrons, which are influenced by incoherent
scattering at thermally excited phonons and the strong electron-electron inter-
action, the propagation of light is not as strongly influenced. Light consists of
photons, uncharged bosons. Therefore, they are undisturbed by Coulomb in-
teraction with each other. The undisturbed propagation of light makes it quite
interesting to investigate localization phenomena for light.

13



Due to these circumstances, the experiments presented in this thesis are per-
formed with light. The theoretical treatment of the transport and localization
theory for light are explained in the following section.

2.2.1 Classical transport and diffusion of light

The propagation of light is very similar to the propagation of electrons concern-
ing their behaviour. However, in general, the propagation of light in a trans-
parent medium is a ballistical process. As already introduced for electrons, the
mean free path length l allows to distinguish between ballistic propagation and
diffusion. The mean free path length of light in air is in the range of meters and
decreases to several µm for the case of BaSO4-powder [56], which is an ingre-
dient in white paint. Schematically, the propagating behaviour is illustrated for
light and a fixed propagation direction in figure 2.5. However, the localization

Figure 2.5: Schematic illustration of ballistic propagation a and diffusive prop-
agation b of light in a certain direction through a medium.

of light requires sufficiently strong scattering which results in a short mean free
path length. One way to describe this kind of propagation is based on the dif-
fusion equation, which is based on the continuity equation and Fick’s law. It is
described without external sources by

−D∂
2Ψ

∂t2
+

1

L2
D

Ψ = 0 (2.14)

with the diffusion length LD =
√
D/Sa, the absorption cross section Sa and

the diffusion coefficient D [41]. The diffusion coefficient is a measure of the
mobility of the photons. The probability of finding a photon after time steps
ti is illustrated in figure 2.6. The photon can diffuse in a 1-dimensional system
in the positive or negative direction which results in a spread of the probability
distribution. Within this transport theory all the characteristics of a wave, like
the coherence, are neglected. The photon behaves like a classical particle within
this description.
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Figure 2.6: Probability of finding a photon in a 1-dimensional system at time
steps ti. The photon starts to diffuse in any direction.

2.2.2 Random walk or photon diffusion

Another way to describe the propagation of strongly scattered photons is based
on the random walk model, dividing the propagation into individual ballistic
propagation steps. The random walk model, first discussed by Richard Feyn-
man [46], calculates the probability of finding a photon at a certain position
in time and space. The initial starting position of the photon is assumed to
be x0 = 0. In one dimension, it can propagate in the positive xp or negative
direction xn. Within a time step dt the photon travels the fixed distance s and
the displacement is given after i time steps by x(ti) = x(ti−1)± s.
The total mean displacement of a photon is lim

t→∞
(x(t)) = 0 because the prob-

ability that the photon will travel in the positive or negative direction is the
same.
The spread of the random walk is related to the propagation length of a photon.
This is given by the mean squared displacement:

〈
xj(ti)

2
〉

=
1

N

N∑
j=1

x2
j (ti)

2 =
1

N

N∑
j=1

(
xj(ti−1)2 ± 2xj(ti−1)s+ s2

)
(2.15)

with N being the total number of photons. Since the probability of the photon
propagating in the positive or negative direction is equal, the term 〈2xj(ti−1)s〉 =
0 in equation 2.15 vanishes [57].
Assuming that the photon starts to propagate at x0 = 0 the mean squared dis-
placement changes at each time step by the value of s2 and equation 2.15 can
be written as: 〈

x(ti)
2
〉

= i · s2 (2.16)

The distance of the photon after i propagation steps to the origin is described
by x = (xn − xp) · s = m · s. The mean squared distance is given by

〈
m2
〉

= i
with m = x

s and i = t
dt . this leads to〈

m2
〉

=

〈
x(ti)

2
〉

s2
. (2.17)

By using these relations, the mean square displacement〈
x(ti)

2
〉

= s2 ·
〈
m2
〉

= s2 · i = s2 t

dt
=

s2

2dt
· 2t = D · 2t (2.18)

can be described with the diffusion constant D = s2

2dt . Expanding this expression
to three dimensions, this results in the total mean squared displacement of〈

r(ti)
2
〉

=
〈
x(ti)

2
〉

+
〈
y(ti)

2
〉

+
〈
z(ti)

2
〉

= 3i · s2 = 6D · t . (2.19)
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The characteristic diffusion length

l =
√
〈r2(ti)〉 =

√
6D · t (2.20)

is described by the square root of the mean squared displacement. The proba-
bility distribution with discrete time steps is shown schematically in figure 2.7.
However, after a sufficent number of scattering events, the random walk of the

Figure 2.7: Schematic illustration of the probability of finding a photon within
the random walk model at certain time steps ti.

photon and the diffusion theory deliver the same result.
In order to consider interference effects of light waves, the description based
on the diffusion equation and the random walk are not sufficient. However,
to implement this, the explicit propagation of the electromagnetic wave has
to be considered, i.e. its coherence properties. As well as for the electrons,
the coherence of light is conserved for elastically scattered waves at stationary,
yet spatially varying potential fluctuations, i.e. changes in the refractive index.
The coherence length ξcoh is the characteristic length scale on which interference
effects occur. For distances larger than the coherence length, the information
about its initial phase is destroyed by inelastic scattering at phonons etc. Exper-
imental confirmation of the influence of disorder in a system on the propagation
properties of light was observed by Schwartz et al [13]. Within his experiment,
the transition from ballistic transport to diffusive propagation of light in the
presence of disorder is observed. In the case of strong disorder, even the tran-
sition to localization based on constructive interference is observed.
In order to take interference properties into account a theory based on Maxwell’s
equations will be introduced in the following.

2.2.3 Propagation of light waves

The propagation of electromagnetic waves, i.e. light, is fully described by the
electromagnetic wave theory as formulated by Maxwell. The four Maxwell equa-
tions

∇ ~E =
ρ

ε
(2.21)

∇ ~B = 0 (2.22)

∇× ~E = −∂
~B

∂t
(2.23)

∇× ~B = µ~j + εµ
∂ ~E

∂t
(2.24)
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with ε = ε0εr and µ = µ0µr describe the spatial and temporal evolution of ~E
and ~B and allow to consider coherence properties of electromagnetic waves.
The general validity of the Maxwell equations enables the calculation of various
phenomena of classical electrodynamics. Here I will concentrate on the be-
haviour of the propagation of electromagnetic waves in spatially homogeneous
and inhomogeneous media. Therefore in the following the wave equation is
developed from the Maxwell equations.

The wave equation in homogeneous media can directly be retrieved from
the Maxwell’s equations. In homogeneous media, the permittivity εr(~r) = εr =
const and permeability µr(~r) = µr = const is position independent. By assum-
ing a charge free medium, i.e. ρ = 0 and ~j = 0, the curl of equation 2.23 leads
to

∇×
(
∇× ~E

)
= −∇× ∂ ~B

∂t

∇(∇ ~E︸︷︷︸
=0

)−∆ ~E = − ∂

∂t
∇× ~B

−∆ ~E = − ∂2

∂t2
εµ~E (2.25)

which could be written as

∆ ~E − n2

c2
∂2

∂t2
~E = 0 (2.26)

using the relations for the speed of light 1/c2 = ε0µ0 and for the index of
refraction n2 = εrµr. The solutions of the wave equation are plane waves
described by

E(~r, t) = ~E0e
i(~k~r−ωt) (2.27)

which is the same solution as the solution for the Schrödinger equation. In
contrast, the dispersion relation for electromagnetic waves

ω =
ck

n
. (2.28)

differs from the dispersion relation for matter waves as described by equation
2.8.
This close relation of the Schrödinger equation to the wave equation in electro-
dynamics allows to transfer the theory developed for the localization of electrons
to the localization of photons, i.e. light [8, 9].

The wave equation in inhomogeneous media can also be retrieved di-
rectly from Maxwell’s equation. In the case of an inhomogeneous media the
spatial position influences the electromagnetic wave, described by the position
dependent permittivity εr(~r) and permeability µr(~r). In the following, the per-
meability is not considered, i.e. µr(~r)=1, assuming non magnetic media. There-
fore, the refractive index is determined by n(~r)2 = εr(~r)µr(~r) = εr(~r).

The dependence of the spatial position of εr(~r) using the first Maxwell equa-
tion in 2.21 in a charged free medium ρ = 0 leads to

∇ε(~r) ~E(~r) = ~E(~r)∇ε(~r) + ε(~r)∇ ~E(~r) = ρ = 0 . (2.29)
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By assuming a non-conductive medium (σ = 0) the curl of equation 2.23 leads
to

∇×
(
∇× ~E

)
= −∇× ∂ ~B

∂t

∇( ∇ ~E︸︷︷︸
=

~E(~r)∇ε(~r)
ε(~r)

)−∆ ~E = − ∂

∂t
∇× ~B

∇
~E(~r)∇ε(~r)
ε(~r)

−∆ ~E = − ∂2

∂t2
εµ~E . (2.30)

This can be written as

2∇

(
~E(~r)∇n(~r)

n(~r)

)
−∆ ~E − n2

c2
∂2

∂t2
~E = 0 (2.31)

by using n(~r) =
√
ε(~r)µ(~r) and ∇n(~r)2

n(~r)2 = 2n(~r)∇n(~r)
n(~r)2 . The solution of equation

2.31 is explicitly dependent on the spatial change of the refractive index.
A waveguide with a stepwise change in the refractive index n(~r) is one example
for inhomogeneous media. The stepwise change of the refractive index, however,
leads to problems in the derivation of the refractive index in equation 2.31 [52].
Solution strategies are known from quantum mechanics and a particle in a finite
potential well [53]. If the diameter of the inner waveguide is much smaller than
the wavelength, the wave is not trapped anymore. In this case, the spatial
variation in the refractive index acts only as a scattering source.
Much more complex problems, like randomly distributed scattering objects, can
be calculated by Finite Difference Time Domain (FDTD) calculations [98]. They
are used to calculate time dependent differential equations in section 3.2.4.

2.2.4 Localization of light induced by interference

Another possibility for the localization of electromagnetic waves, apart from the
localization within a structure due to large spatial distortions of the refractive
index, is based on the constructive interference of waves. An inhomogeneous
spatial distribution of the refractive index with a diameter in the sub-wavelength
region acts as a scattering source. This is known as Rayleigh scattering [108].
The scattered waves can interfere with each other resulting in Anderson local-
ization [13, 41].
To understand the behaviour of propagating waves and the interference of mul-
tiply scattered waves, the individual wave trajectories have to be considered. In
general, there is a countless number of different propagation trajectories which
all have to be taken into account. The propagation from a point A to a point
B using different trajectories is schematically illustrated in figure 2.8. However,
within the quantum mechanical approach it is not possible to deduce the exact
position of the propagating photon. Therefore the exact propagation path of
the i-th propagation trajectory can only be determined by its probability ampli-
tude pi. The total probability of a photon getting from A to B is described by
the square of the absolute value when considering the sum over all probability
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Figure 2.8: Schematic illustration of the propagation of light. The light is scat-
tered and propagates from point A to B using different propagation trajectories.

amplitudes:

Ptotal =

∣∣∣∣∑
i

pi

∣∣∣∣2
=

∑
i

|pi|2 +
∑
i 6=j

pip
∗
j = 1.

(2.32)

The classical transport and diffusion theory is based on the propagation of pho-
tons described as classical particles without considering their phase relations.
Therefore the first term in equation 2.32 describes the classical diffusion. The
second term is the quantum-mechanical contribution which describes the in-
terference of two different propagation trajectories i and j. This second term
is neglected within the classical transport theory. This quantum-mechanical
contribution describing the interference is essential to understanding the weak
localization phenomenon.

The Weak localization is one of the most famous indirect experimental con-
firmations of the localization of electromagnetic waves. It was first discovered
by van Albada and Lagedijk [18] and by Wolf and Maret [19] who illuminated
strong scattering sub-micron-size polystyrene spheres with light in the visible
spectral range. Similar results were obtained ten years later by Wiersma who
also observed coherent backscattered light from amplifying random Ti:Sapphire
powders [58].
During these experiments, it was observed that for the same position of radi-
ation source and detector, the signal was two times higher compared to larger
backscattering angles. This phenomenon is called enhanced coherent backscat-
tering and is based on the coherent interference of propagating light of different
wave trajectories within strongly scattering media.

In order to investigate this phenomenon in more detail, the different scatter-
ing trajectories in an array of randomly distributed spheres are analysed. One
possible example from a countless number of random propagation trajectories
is schematically illustrated in figure 2.9a. The electromagnetic wave can propa-
gate clockwise or counter clockwise along the given trajectory indicated by the
red and green lines. The light scattering is assumed to be elastic. Many differ-
ent scattering paths contribute to the backscattered intensity. Variations in the
different path length of the scattering trajectories lead to different phases and
therefore to constructive and destructive interferences. These typically cancel
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Figure 2.9: a Schematic illustration of coherent backscattering. Multiply scat-
tered light is detected as a function of the backscattering angle resulting in the
coherent backscattering cone shown in b.

out over ensembles of backscattering trajectories and a smearing of the speckle
pattern becomes visible. Only the trajectory propagating in the opposite direc-
tion on a given trajectory (time reversal) has the same phase and survives the
averaging.
This was verified by measuring the backscattered light as a function of the
backscattering angle [58], i.e. the angle between radiation source and detector,
as depicted by the electric bulb and the eye in figure 2.9b. At a backscattering
angle of zero degrees, the scattering trajectory and its time reversal path have
the same phase and they coherently add up (constructive interference).
These observations are supported by the calculation of the probability of dif-
ferent trajectories by equation 2.32. Now, the probability p1 describes the light
propagating clockwise and p2 the light propagating counter clockwise. For the
case that origin and end of the trajectory are at the same place, both the
clock- and counter clockwise propagation have the same phase. This results in
p1 = p2 = p. By using equation 2.32 this results in the probability of:

P0 = 2 |p|2 + p1p
∗
2 + p∗1p2

= 4 |p|2 . (2.33)

If the origin and the end of the trajectories are separated in space, they have a
nonzero phase difference resulting in constructive and destructive interference
and the averaging of both waves. Hence we can neglect the contribution of the
interference in equation 2.32. The result is described by

Pα = 2 |p|2 (2.34)

and corresponds to the classical transport theory. This result supports the
doubled intensity observed within the coherent backscattering measurements at
zero degrees [58]. Coherence has to be conserved during all scattering processes,
so elastic scattering is an essential criterion for coherent backscattering. The
closed loops induced by the multiple coherent scattering reduce the diffusion
of the system to a non classical behaviour. This leads to a deviation from
the classical random walk. A loss of coherence during the scattering process
would destroy the interference of phase matched time and time reversal paths of
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multiply scattered waves. The weak localization and the coherent backscattering
cone are therefore precursors for the Anderson localization.

Anderson localization of light has recently recieved a lot of attention in
different experimental observations. In 2006 Störzer et al. [54] presented time-
resolved transmission experiments of light through strongly scattering samples.
They observed deviations from classical diffusion which could not be explained
by absorption. The deviation strongly depends on the mean free path length.
For a short mean free path length, the deviation is much stronger than expected
for a phase transition in the approach of Anderson localization. This observa-
tion was supported by the work of Schwartz et al [13] in 2007. They reported
about Anderson localization in disordered 2-dimensional photonic lattices and
observed the transition from ballistic to diffusive propagation for increasing dis-
order and the Anderson localization of photon modes.
In 2010 Sapienza et al [12] used disordered photonic crystal waveguides to gener-
ate strongly confined Anderson-localized cavity modes. The Anderson localized
photon mode enhanced the light emission from an embedded semiconductor
quantum dot in the waveguide strongly. In general, this allows the use of disor-
dered photonic media for quantum information devices.
The localization of electromagnetic waves is not limited to light, as explained
earlier. The Anderson localization is a general wave phenomenon as established
in the selection of recent publications presented in the following.

The localization of surface plasmon polaritons was given in 1999 by
Gresillon et al [11]. They reported about Anderson localized surface plasmon
modes in a semi continuous metal film leading to optical excitation from sub-
wavelength areas. These strongly confined local electric fields, with huge fluc-
tuations (hotspots) compared to the surrounding in combination with typical
resonance peaks in the near field spectra, were observed. In 2000 Stockman pre-
dicted fluctuations of local electric fields [27]. He calculated rough surfaces andF
metal nano-particles excited by femtosecond laser pulses. The fluctuations of
the local electric fields were predicted to occur on femtosecond time scales and
clearly show enhanced lifetimes compared to the exciting laser pulse. Confined
to nanometer-size regions, the spatial distribution of those fields dramatically
changes as a function of time and differs highly from a steady-state excitation.

Localization of acoustic waves can be considered as the localization of a
longitudinal wave in contrast to the transverse wave, i.e. light. Nevertheless,
the localization caused by constructive interference also occurs in acoustics as
described by Hu et al [10] for localization of ultrasound in a three-dimensional
elastic network. They reported about the first ”transverse localization” in three
dimensions by studying the time-dependent transmission of ultrasound waves
below the mobility edge for aluminum scattering spheres of different diameters.
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2.2.5 Single scaling theory

The single scaling theory was introduced by Abrahams in 1979 [72]. Within this
theory, the complex physics of localization is expressed in a single scalar, the
single scaling parameter g. This value allows to classify the strength of local-
ization based on electric field fluctuations into localized and delocalized regimes
as demonstrated by Riboli et al. [61]. Here, the theory does not distinguish
between different localization mechanisms or microscopic details anymore. All
these properties are completely determined by g. Abrahams deduces the dimen-
sionless scaling parameter g in a d-dimensional hyper cube with the side length
L:

g =

(
e2

~

)−1

· 1

R
=

(
e2

~

)−1

σLd−2 . (2.35)

Therein R is the resistance, e the elementary charge and σ is the classical con-
ductivity.

In 1975 already Thouless discussed the explicit dependance of g on the side
length L of the investigated system (cube) in a paradigm-setting work [45, 59].
Within this approach localized or delocalized Eigenfunctions are set to the cen-
tre of the hyper-cube. For metallic behaviour the conductivity σ is length-
independent per definition. This assumption corresponds to the extended wave
functions (delocalized Eigenfunctions) in metallic solid states [51]. Therefore
g ∝ Ld−2. This dependency on the length and the dimension of the system, in-
dicated by equation 2.35, leads to a high sensitivity to changes in the boundary
conditions by increasing the cube size L. In the case of insulating behaviour, the
wave function is not extended over the solid state. It localizes due to the small
extent of the wave function and shows an exponential relation to the expansion.
Localized states are not sensitive to changes in the boundaries of a sample as
long as L > ξ is fulfilled [44].
In-between localized and delocalized states, there is a critical value of g = gc
which describes the transition from one behaviour to the other. At this transi-
tion the dimensionless value g becomes independent of the scale of the investi-
gated system, i.e. gc is scale-invariant [45].
Due to the exponential decrease of the localized mode, a characteristic length
can be defined. Beyond this length, which is given by the localisation length ξ
(section 2.1.2), the mode can be neglected [44]. For the investigation of the de-
gree of localization of a given system, the system is divided in bd d-dimensional
cubes (b the number of cubes) with the edge length L. The scaling parameter
g(bL) of the newly compounded big cube with the total side length b · L is
now a function f of g(L) and b involving any additional values describing the
microscopic structure. Abrahams et al. assumed that the new system can be
described by the single scaling parameter g of a single cube neglecting all the
microscopic details [72]:

g(bL) = f [b, g(L)]. (2.36)

By using equation 2.36 the so called renormalization group scheme [45] is esti-
mated to

g(L) = f [b, g(L/b)] . (2.37)
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Using these equations, the β function is now defined by

β(g) =
d ln(g)

d ln(L)
. (2.38)

The β function describes the change of the single scaling parameter as a function

Figure 2.10: Plot pf β(g) vs ln(g) published by Abrahams et al. [72]. The figure
presents the change of the single scaling parameter g as a function of the system
size L. It allows to distinguish between localized (β < 0) and extended states
(β > 0) for different dimensions d of the system under investigation.

of the system size L shown in figure 2.10. It depends strongly on the dimension
of the system.
For d = 1 and d = 2 the β function is always negative or equal to zero. This
corresponds to localized states. Increasing L always leads to a decrease of g
and therefore to an insulating behaviour. As indicated by figure 2.10, there
is always localization for one-dimensional and even two-dimensional systems.
Within these systems, there will nevervbe purely extended states.
For the case of d > 2, localized as well as delocalized states can exist. This is
indicated by the zero crossing of β at the critical conductance g = gc. In the
region of g > gc an increase of L leads to an increase of the single scaling para-
meter. Thus the sample leans toward a conducting behaviour. For g < gc the
increasing sample size again decreases the conductance and leads to insulating
behaviour.

A different approach for the single scaling parameter can be deduced by
looking at the spectrum of electromagnetic modes [62]. Electromagnetic modes
can be described by their spectral width δω and the average frequency spacing
to neighbouring modes ∆ω. The degree of spectral mode overlap is expressed
by the dimensionless single scaling parameter

g =
δω

∆ω
. (2.39)

This results in two different scenarios:
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1. δω >> ∆ω ⇒ g > 1 Electromagnetic modes with diffusing be-
haviour correspond to extended modes. Therefore, the energy does not persist
in the sample (cube). It dissipates through the boundaries of the cube. This
results in a short lifetime of the mode and a corresponding broad spectral line
width. In this case, the spectral width of the mode δω exceeds the spectral
average spacing between neighbouring modes allowing the Eigenstate to couple
to the Eigenstates of the surrounding neighbours easily. The overlap of the
Eigenstates create a new wave function which is extended across the sample.
This behaviour tends to g →∞ and can be considered to be a perfect conductor
for electrons, or to be transparent for light.

2. δω << ∆ω ⇒ g < 1 In contrast to that, an exponentially spatially
localized mode preserves the energy within the cube. This results in a long life-
time and a corresponding sharp spectral line width. The sharp spectral width
leads to a small overlap with adjacent Eigenfunctions and coupling is ineffec-
tive. The formation of an extended new wave function is nearly impossible.
This behaviour tends to g → 0 and is comparable to a perfect insulator, i.e.
intransparent for light not considering absorption.

The single scaling parameter g may also be used as a quantitative measure
of the degree of localization as shown by Nieuwenhuizen and van Rossum [63].
They introduced a model to describe the intensity distribution of waves trans-
mitted through multiple scattering media. This semi-analytical model describes
fluctuations in the total transmission through a three-dimensional scattering
medium that couples to different input modes.
Then the probability P (Inorm) to find the normalized intensity Inorm = I

<I> ,
i.e. the intensity normalized to the average intensitiy < I >, of the scattered
and transmitted electromagnetic field is given as a function of g.

P (Inorm) =

∫ i∞

−i∞

1

2π i
ex Inorm−Φ(x)dx (2.40)

The function Φ(x) is called the generation function and is assumed to be an
incident plane wave Φ(x) = Φp(x) or an incident Gaussian wave Φ(x) = Φg(x).

Φp(x) = g · ln
(√

1 +
x

g
+

√
x

g

)2

(2.41)

Φg(x) = g

∫ −1

0

1

y
ln

(√
1 +

x

g
+

√
x

g

)2

dy (2.42)

The corresponding probability distributions for the case of a Gaussian incident
wave are shown in figure 2.11 for different values of g. The intensity distribu-
tion strongly depends on the scaling parameter g. For large values of g, the
distribution is close to a Gaussian distribution centered around I/ < I >= 1.
In contrast, for small values of g, the distribution is described by a log-normal
distribution. For this case, the distribution is much broader due to the increas-
ing probability for high intensity values.
In-between these two limiting cases, a characteristic transition from the Gaus-
sian distribution towards the log-normal distribution can be seen. Based on this
theory, localization (g < 1) is expected to show large fluctuation in the intensity.
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Figure 2.11: Intensity distributions of a Gaussian wave at different values of the
single scaling parameter g. The intensity values are Gaussian distributed for
large values of g, whereas low values of g allow larger intensities, which results
in a log-normal distribution.

Therefore the single scaling theory can be used to classify the localization
strength. This has been verified experimentally by comparing the intensity
distribution emitted from samples to the calculated distribution of different val-
ues of g [36, 61]. The best fitting distribution classifies the localization strength
by using the corresponding value of g.

2.2.6 Multifractality

The localization strength can alternatively be investigated based on a multi-
fractal analysis [36, 64, 65]. Therefore the distribution of a measure P on a
geometric carrier (for example a spatially or temporally resolved measurement)
is divided in (fractal) sub distributions of small boxes B with length lbox. Each
of these boxes can than be described by a different Hölder exponent

α = lim
lbox→0

logP (lbox)

log lbox
. (2.43)

The Hölder exponent is also called singularity strength and describes the scal-
ing of the probability, i.e. the fluctuations within a box. For different boxes,
the Hölder exponent produces different values. The distribution of the Hölder
exponents results in the singularity spectrum f(α), also called fractal dimension
or Hausdorff dimension. Therefore the multifractal analysis delivers the singu-
larity spectrum which describes the dynamic of the measure. The singularity
spectrum allows to give any metric structure a fractal dimension. A system
can be called fractal in character, if the fractal dimension is unequal to the real
dimension of the investigated system.
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In many cases, the calculation of the singularity spectrum is affected by numer-
ical errors. One possibility to avoid the occurrence of numerical errors when
calculating the singularity strength α and the singularity spectrum f(α) was
developed by A. Chabra and R.V. Jensen [64]. This method is demonstrated in
the following by an example of randomly generated values, spatially arranged in
a two-dimensional distribution (N ×M pixel) which represents a map of local
intensities I(x, y). Each intensity value corresponds to a single box described
by the theory. Thereby, the single box size lbox is a fixed value given by the
resolution of I(x, y). The values I(x, y) in figure 2.12a are Gaussian distributed2

and the values in figure 2.12b are log-normal distributed3 as can be seen in the
corresponding histograms in figure 2.12c and d.

Figure 2.12: Spatial random intensity distributions for a Gaussian distributed
values and b log-normal distributed values normalized to the mean intensity.
The corresponding histograms are shown in c and d.

For the multifractal analysis, the data has to be vectorized I(x, y) → Ivec,j
with j being the index of the vector ranging from j = 1, 2, ..N ·M with N ·M
as the total number of elements of I(x, y) . In order to consider the original
dimension, which gets lost by the transformation from the matrix to the vector
representation of the data, L∗ is set for a two dimensional quadratic scan to

L∗ =
√
L =

√
M ·N (2.44)

with L being the length of Ivec or simply to the side length N , assuming M = N .
Within the theory, the probability Pj of finding the intensity Ij within a single

2normal distribution with a mean value of 1 and the standard deviation σ = 0.25 with
40,000 data points

3log-normal distribution with a mean value of 1 and the standard deviation σ = 1.2 with
40,000 data points
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box is given by:

Pj =
Ij∑
j Ij

(2.45)

with
∑
j

Pj = 1. The probability to find a certain intensity value in a box with

size lbox is then given for a one parameter family in q of normalized data by
µ(q).

µj(q) =
P qj∑
P qj

(2.46)

The parameter q acts like a ”microscope” for exploring different regions of the
singular measure [64]. For q > 1, the regions of stronger singular strength (re-
gions with strong fluctuations) of Pj are amplified by µj(q), wheras for q < 1 it
delivers insight into regions of weak singularity strength (regions of weak fluc-
tuations) of Pj .
With this microscope parameter q, a relationship between the dimensionality
and therefore the localization strength and the singularity strength, can be
provided. The singularity spectrum f(q) is associated with the fractal dimen-
sionality by a Legendre transformation. It is calculated with:

f(q) =

∑
µj(q) ln[µj(q)]

ln(L∗)
. (2.47)

The singularity strength α(q) is described by:

α(q) =

∑
µi(q) ln[Pi]

ln(L∗)
. (2.48)

The singularity spectrum f(q) and the singularity strength α(q) are connected
by q. It is obvious, that for q = 1 , f(q) and α(q) have the same values, i.e. an
intersection point can be seen if plotted as a function of q as shown in figure 2.13
for the generated Gaussian and log-normal spatial intensity distributions. The

Figure 2.13: The figure shows the singularity spectrum f(q) and the singularity
strength α for a Gaussian a and a Log-normal distribution b.

singularity spectrum always has a maximum at q = 0. The corresponding value
of the singularity strength determines the localization strength. By simply plot-
ting f(q) over α(q), the singularity spectrum f(α) can be estimated as shown
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Figure 2.14: Singularity spectrum f(α) of a multifractal analysis of a Gaus-
sian and a log-normal two-dimensional spatial intensity distribution. The sin-
gularity spectrum for the Gaussian distribution is centered around αgauss0 = 2,
whereas the maximum in the singularity spectrum of the log-normal distribution
is shifted to higher values of αlog0 ≈ 2.1. In addition, the spectral width is much
broader for the log-normal distribution compared to the Gaussian distribution.
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in figure 2.14. For a Log-normal distribution, the f(α) singularity spectrum
gets broadened with a maximum in the spectrum at a singularity strength of
αlog0 ≈ 2.1. In contrast, the spectral width of f(α) is narrowed for the Gaussian
distribution and the spectrum is centered at αgauss0 = 2. This corresponds to
the dimension of the two-dimensional intensity distribution. The strong devia-
tion in the spectral width of f(αlog) is due to the much stronger fluctuation in
the intensity distribution. This results in a larger spread of the Hölder exponent.

In conclusion, this allows the classification of intensity distributions in terms
of their localization strength by using the multifractal analysis and the analy-
sis of the maximum of the singularity spectrum f(α). Experimentally, this
has been demonstrated by Richardella et al [36]. They observed strong spa-
tial fluctuations of the local conductivity on doped Ga1−xMnxAs in the two-
dimensional STM measurement. Within these measurements, the singularity
spectrum shows a strong shift of its maximum to α0 = 2.1 corresponding to a
single scaling parameter of g < 1.

2.3 Light matter interaction

In a classical manner, light-matter interaction is the excitation of charges in a
matter by an oscillating electromagnetic field.
Quantum mechanically, electromagnetic fields couple to discrete quantum states
of the matter [66].
In the following, a semi-classical approach is discussed. Within this approach,
the light matter interaction consider the discrete quantum states of the mat-
ter. However, it does not consider changes in the exciting electromagnetic field.
Semi-classical, the light field is not influenced by absorption. This approach is
justified, if the excitation is sufficiently strong allowing to neglect changes in
the light field, induced by the interaction.
The spectroscopic behaviour of the states can be calculated by using the semi-
classical approach in combination with time-dependent optical Bloch equations.
This gives insight into the time dynamics of photon modes. Therefore a model
based on the density matrix formalism is introduced in the following to describe
the temporal evolution of a system (section 2.3.1), i.e. a single localized photon
mode.
In the case of strongly confined photon modes with sufficient field strength
(hotspot), this can result in nonlinear light matter interaction. Nonlinear light
matter interaction enables the examination of the temporal behaviour of local-
ized photon modes [88] (section 2.4).

A single localized mode in terms of Anderson localization within a random
media can be described by a two-level system. The system consists of a ground
state |0〉 and an excited state |1〉. An external electromagnetic field couples to
the ground state |0〉 and excites the electron by a dipole allowed transition to
the excited state |1〉, as illustrated in figure 2.15.
The system can then be described by the wave function

ψ = a |0〉+ b |1〉 (2.49)

with a,b as the amplitude of the both states. The temporal evolution of the
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Figure 2.15: Coupling of an electromagnetic wave to a two level system con-
sisting of a ground state |0〉 and an excited state |1〉. Both absorption of an
electromagnetic wave and the emission of the wave are allowed.

system is described by the Schrödinger equation 2.6.

2.3.1 Density matrix

By using the Schrödinger equation, which describes the time evolution of pure
quantum states, the dynamic of mixed states can easily be derived [53]. To
achieve this the density matrix is splitted into pure states which fulfill the dy-
namic of the Schrödinger equation. Consequentially the dynamic of the mixed
state can be calculated by the Liouville-von-Neumann equation as explained in
the following.
Within a mixed state, the phase relation of the states is unknown, so that it is
not possible to write them as a linear combination of pure states. However, it is
possible to indicate the probability pi to find the system in the pure state |ψi〉.
In the case of mixed states, the density matrix for our system is described by

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.50)

For pure states, the density matrix results in

ρ = |ψi〉 〈ψi| (2.51)

with ψ as the total wave function of the two-level system. The corresponding
density matrix is described by

ρ = (a |0〉+ b |1〉)(a∗ 〈0|+ b∗ 〈1|) . (2.52)

Multiplication from left and right with the ground and the excited states leads
to different elements of the density matrix

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
=

(
|a|2 ab∗

a∗b |b|2
)

(2.53)

that describes the population of the ground state ρ00 and of the excited state
ρ11 as the diagonal elements. The off-diagonal elements ρ01 = ρ∗10 describe the
coherence terms between the two states.
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2.3.2 Optical Bloch equation

The temporal evolution of a system can be obtained by solving the Liouville-
von-Neumann equation.

ρ̇ =
i

~
[H, ρ] =

i

~
(Hρ− ρH) (2.54)

Solving this equation of motion results in the temporal evolution of all matrix
elements, which gives complete information about the temporal evolution of the
polarisation and population.
The undisturbed Hamiltonian of a two level system is described by the Eigen-
frequencies of the ground state ω0 and the excited state ω1:

H0 =

(
~ω0 0

0 ~ω1

)
. (2.55)

Based on the Liouville von Neumann equation 2.54, the equation of motion
looks like this:

− i~ ∂
∂t

(
ρ00 ρ01

ρ10 ρ11

)
=

(
0 (ω0 − ω1)ρ01

(ω1 − ω0)ρ10 0

)
. (2.56)

In the absence of external influences, the undisturbed system does not show any
changes in the population. It only shows changes in coherence of the two-level
system.
The influence of damping, i.e. the relaxation of the population from the excited
state to the ground state, is considered by implementing a relaxation rate Γ1 =
1/T1, which is determined by the lifetime of the excited state T1. By considering
the conservation of the total population, changes of the ground state population
are connected to the changes of the excited state ˙ρ00 = Γ1ρ11 = − ˙ρ11. These
contributions are added to the Liouville equation of the undisturbed system
which reads as

− i~ ∂
∂t

(
ρ00 ρ01

ρ10 ρ11

)
=

(
Γ1ρ11 (ω0 − ω1)ρ01

(ω1 − ω0)ρ10 −Γ1ρ11

)
. (2.57)

To include possible dephasing between the two states, for example induced by
electron-electron or electron-phonon coupling, the Liouville von Neumann equa-
tion has to be extended to a more general form. The polarisation of the excited
state is changed by the rate Γ2 = 1/T2 with T2 as the dephasing time. The
dephasing time T2 is connected to the lifetime of the excited state by T2 ≥ 2T1.
Due to this term, the coherence between the two states will decay exponentially
at the dephasing Γ2 . This is known as free induction decay [67]. The general
form of the Liouville-von-Neumann equation considering this results in [68]

− i~ ∂
∂t

(
ρ00 ρ01

ρ10 ρ11

)
=

(
Γ1ρ11 (ω0 − ω1)ρ01 − Γ2ρ01

(ω1 − ω0)ρ10 − Γ2ρ10 −Γ1ρ11

)
.

(2.58)
So far the system is undisturbed, i.e. external forces are not taken into account.
In a next step, the influence of an external electromagnetic field is considered.
The spatial extent of the two-level system is assumed to be much smaller than
the wavelength of the incident electromagnetic field. In the case of single atoms
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or nano-structures, this criterion is justified by more than two orders of magni-
tude using excitation around 800nm. This allows us to treat the light matter
interaction in dipole approximation.
The Hamilton operator

H1 = −~dkl · ~E(t) (2.59)

of the light matter interaction is expressed with the dipole moments expectation
value of the dipole operator

~dkl =< Ψk|q~r|Ψl > (2.60)

using the position operator r and the electric charge q. The dipole operator
acts as the projection from an initial state Ψl to the final state Ψk. Considering
equation 2.59 and 2.60, the light-matter interaction Hamiltonian H1 can be
expressed by

H1 =

(
0 ~d01

~E(t)
~d10

~E(t)∗ 0

)
:=

(
0 α(t)
β(t) 0

)
(2.61)

with the substitution α(t) = ~d01
~E(t) and β(t) = ~d10

~E(t)∗. The total Hamilton
operator consists of the undisturbed part describing the system H0 and the light
matter interaction H1.

Htotal = H0 +H1 (2.62)

The Liouville-von-Neumann equation considering external perturbation by an
electric field and additional dephasing and changes in the population of the
states than reads:

−i ∂∂t

(
ρ00 ρ01

ρ10 ρ11

)
= (2.63)(

Γ1ρ11 + αρ10 − βρ01 ~(ω0 − ω1)ρ01 − Γ2ρ01 + α(ρ11 − ρ00)
~(ω1 − ω0)ρ10 − Γ2ρ10 + β(ρ00 − ρ11) −Γ1ρ11 + βρ01 − αρ10

)
.

The emitted electric field Eloc(t) from the two-level system is proportional to the
induced polarisation ρ01 between the ground state |0〉 and the excited state |1〉.
Therefore, it is now possible to apply equation 2.63 to calculate the temporal
evolution of the local electric field Eloc(t) emitted from the two-level system by
using the excitation of an external field, i.e a localized photon mode described
by a certain resonance frequency and dephasing time.

2.4 Interferometric Frequency Resolved Auto-
Correlation and Second Harmonic microscopy

While Interferometric Frequency Resolved AutoCorrelation (IFRAC) is a tech-
nique to determine the pulse structure of ultra-short laser pulses [73], it can also
be used to distinguish between coherent and incoherent emission from a sample
[70]. Coherent waves have a constant relative phase allowing interference effects,
whereas incoherent waves have a random phase relation. The IFRAC technique
is an essential tool within this work and will be discussed in this section.
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Figure 2.16: Schematical illustration of a Mach Zehnder interferometer. An
incident laser pulse is splitted into the laser pulses E(t) and E(t+ τ) using two
identical beam splitters and a variable delay stage to adjust the delay τ . Later,
the nonlinear emission from a BBO crystal can be detected spectrally resolved.

The IFRAC is based on an interferometer generating a pulse pair with a
variable time delay τ as illustrated in figure 2.16. The electric field for each of
the laser pulses can be described by E(t) = ε(t)exp(iωLt) with the amplitude
ε(t) and the laser frequency ωL. The electric field behind the interferometer
consists of both laser pulses which are used to excite a BBO crystal in order to
generate light at the SH frequency. The generation of the SH is assumed to be
instantaneously and frequency independent. This results in the electric field of
the IFRAC signal

EIF (ωd, τ) =

∫ ∞
−∞

(E(t) + E(t+ τ))2exp(−iωdt)dt (2.64)

depending on the detection frequency ωd and the applied time delay τ [69]. The
measured intensity of the IFRAC signal

IIF (ωd, τ) =

∣∣∣∣∫ (E(t) + E(t+ τ))2exp(−iωdt)dt
∣∣∣∣2 (2.65)

is given by the absolute square value of the electric field and can be seen at the
detector. By expanding equation 2.65 to its single terms one obtains:

IIF (ωd, τ) = 2 |ESH(ωd)|2 + 4|EIF (ωd, τ)|2

+ 8cos
[(
ω0 +

ωd
2

)
τ
]
<e
[
EIF (ωd, τ)E∗SH(ωd)exp(i

ωd
2

)
]

+ 2cos [(ω0 + ωd) τ ] |ESH(ωd)|2 . (2.66)

The four different terms in equation 2.66 allow to assign clearly the different
appearing signals shown in an exemplarily measured IFRAC trace IIF of a
Beta-Barium-Borat (BBO) crystal excited by sub 10 fs Ti:Sapphire laser pulses

in figure 2.17a and its Fourier transform ĨIF (ν) = 1√
2π

∫
IIF (τ)e−2πντdτ in b.
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Figure 2.17: a IFRAC trace of a sub 10fs laser pulse b Fouriertransformed
IFRAC trace

The first term ESH = EIF (ωd, τ = 0) describes the time delay independent sec-
ond harmonic (SH) emission. The second term |EFRAC(∆ω, τ)|2 corresponds to
a standard Frequency Resolved Optical Gating (FROG) trace [88]. These terms
form the ”DC-Baseband” which appears at zero delay frequency in figure 2.17b.
The third term contains an oscillating cosine term which modulates the signal
at ω0 + ∆ω

2 . This results in the sidebands appearing in the Fourier transform
at the frequency ±ω0. Due to its oscillating behaviour at the fundamental fre-
quency, this term is also called the fundamental modulated (FM) FROG trace.
The last term is modulated at the SH frequency resulting in sidebands at ±2ω0

[69].

The IFRAC technique is a useful tool to retrieve the electric field E(t) of
the laser pulse but requires a nonlinear source of radiation as demonstrated
for the emission of a BBO crystal[73, 70]. However, for measurements from
samples with incoherent background emission in addition to the SH radiation,
the reconstruction of the local electric field can become challenging. But even for
spectral overlap of coherent and incoherent emission, the IFRAC technique still
provides a clear distinction of both processes. The retrieval of these incoherently
influenced measurements will be explained in the following section.

2.4.1 Distinguishing between coherent and incoherent emis-
sion processes

A direct retrieval of the electric field is sometimes rather challenging since the
coherent emission is influenced by some incoherent background. In cases like
this, it is necessary to separate the coherent from the incoherent emission. One
way to achieve this was recently introduced based on the IFRAC technique [70].
Within this work, the spectral emission from a thin film of zinc oxide (ZnO) on
a sapphire substrate was used as an example to demonstrate the potential of the
IFRAC technique to distinguish between coherent and incoherent emission. The
spectral emission from ZnO, illuminated by short laser pulses from a Ti:Sapphire
laser operating at a central wavelength of 870nm, consists of SH radiation,
spectral clearly separated from an incoherent emission band emitted from defect
states within the ZnO. The recorded spectral emission as a function of the time
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delay is shown in the IFRAC trace in figure 2.18a and the corresponding Fourier
transform in b. The coherent SH emission ranging from 380 − 460nm shows

Figure 2.18: a IFRAC of a sub 10fs laser pulse on a thin film of ZnO. The
emission consists of coherent emission (tilted red line) and incoherent emission
(not tilted red line) b Fourier transformed IFRAC.

significantly different properties in the IFRAC trace compared to the incoherent
emission around 460 − 520nm. The origin of the incoherent emission stems
from defect states within the ZnO and is known from the literature as green
photoluminescence [71]. The excitation based on the ultrashort laser pulse in
the near-IR requires multiphoton induced luminescence. In the case of the
SH, the emission of both laser pulses has a constant phase relation, whereas
the phase relation of the incoherent luminescence excited by the pulse pair is
random. Within the measured IFRAC trace, detection wavelength λd dependent
interference fringes with an oscillation period

T =
2λd
c

=
4π

ωd
(2.67)

with the detection frequency ωd were observed for the coherent second harmonic
(SH) emission from 360 to 440nm. This is illustrated by the red tilted lines at
a delay time of approximately 20 fs in figure 2.18a. For the incoherent emission
from 450 to 520nm, the interference fringes are detection wavelength indepen-
dent, as indicated by the red vertical lines. The interference of the incoherent
luminescence shows interference even with the random phase relation. This in-
terference, however, is not based on the interference of the incoherent emission
generated from the laser pulse pair. It is rather due to the constructive and
destructive interference of the excitation pulse pair on the sample. The oscil-
lating period depends on the fixed absorption frequency ωa of the multi-photon
induced excited state. For the photoluminescence, the coherence gets lost due
to inelastic relaxation processes after absorption of the incident light. A rep-
resentative spectrum measured from a pure ZnO wafer at a fixed time delay
of approximately 100 fs is shown in figure 2.19. The spectrum shows the well-
known interference fringes for the coherent emission on top of some incoherent
background. The spectrum was Fourier-transformed to the frequency domain.
This results in a signal at the frequency which corresponds to the time delay
between the laser pulse pair (not shown here). This signal is filtered by a super
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Figure 2.19: Emission spectrum (black) from ZnO. The extracted SH spectrum
shown in red is retrieved by filtering in the Fourier-domain using a super Gaus-
sian filter.

Gaussian function and transformed back by the inverse Fourier-transformation.
This results in the background free coherent emission shown by the red line in
figure 2.19. This easily allows the distinction between coherent and incoherent
emission from samples. However, at zero time delay, a clear distinction be-
tween coherent and incoherent emission is not possible by using this technique.
Therefore a clear retrieval of the electric field from the IFRAC trace, which is
influenced by the incoherent emission, is rather challenging.
Nevertheless, this technique is an essential tool within this thesis in order to
concentrate on coherent emission from samples and on strongly localized pho-
ton modes in terms of Anderson localization.

In order to describe the experimentally deduced results theoretically, we
used a model based on the optical Bloch equations, introduced in section 2.3.2,
to solve the Liouville-von-Neumann equation for a four level system [70]. The
incoherent emission is described by spontaneous relaxation from the excited
state to the ground state. The coherent SH can directly be described by the
induced polarisation assuming the dipole coupling to be nonlinear. Therefore
equation 2.60 changes when a nonlinear two-photon excitation is taken into
account:

H1 = −~d(2)
kl · ~E(t)2 ~d

(2)
kl =

∑
m

〈ψk| q~r |ψm〉 〈ψm| q~r |ψl〉
(ω − ωmk)(ω − ωml)

. (2.68)

By the use of this retrieval approach, we were able to fully describe the experi-
mentally emitted light and the recorded ZnO IFRAC trace.
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Chapter 3

Spatiotemporal dynamics of
localized photon modes in
randomly arranged ZnO
nano-needle arrays

The following chapter presents the main research conducted for this thesis. It
is the experimental evidence of the spatial and temporal localization dynam-
ics of light in strongly scattering dielectric media. The results were obtained
with high-resolution optical microscopy in combination with time-resolved ex-
periments using ultrashort laser pulses, which allow the direct microscopic and
spectroscopic investigation of the localization. The experimental idea to localize
photon modes within randomly arranged nanostructures is schematically illus-
trated in figure 3.1. An incident laser pulse (red beam) is multiply scattered
within a non-absorbing random needle structure. The scattering is assumed
to be elastic in order to conserve the coherence properties of the incident laser
pulse, which allows the interference of different scattering paths. This leads to
constructive interference of laser pulses from different scattering paths, which
results in spatially highly confined electromagnetic fields, i.e localized photon
modes. The electric field in these photon modes is much higher than in the sur-
roundings. Therefore spatially confined strong electromagnetic fields are also
called ”hotspots”. The electric field amplitude within a hotspot is sufficiently
strong to generate second harmonic radiation at the nano-needles which can be
used as a measure to determine the strength of the confined localized light mode
at the fundamental frequency. Therefore the experimental set-up requires suf-
ficient spatial resolution since the localization occurs on sub-wavelength scales,
i.e. length scales in the order of a few hundred nanometers. The spatial con-
finement and the emission strength of the hotspot are the first hallmark of light
localization.

The second hallmark is a modification of the temporal structure of the elec-
tric field within a localized photon mode. This is induced by multiple coher-
ent scattering and the propagation of the fundamental light within the sample
leading to an increased lifetime of the localized photon modes. Since multiple
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Figure 3.1: Schematic illustration of the experimental idea. The incident laser
pulse (red beam) is multiply scattered within a random needle structure forming
spatially confined high electromagnetic fields by constructive interference. The
electric field is sufficiently strong to generate second harmonic radiation (blue
beam) with an increased lifetime.

scattering occurs on length scales of a few hundred nanometers, the temporal
measurements require ultra fast time resolution on timescales of a few femto-
seconds.

In order to perform localization measurements, the sample has to fulfill sev-
eral requirements such as strong coherent multiple scattering without too much
absorption and sufficient second harmonic generation. Therefore, zinc oxide
(ZnO) is an ideal candidate as will be confirmed in the following.

3.1 Zinc oxide: A candidate for the localization
of photon modes

3.1.1 Zinc oxide properties

In this section the basic properties of zinc oxide (ZnO) will be discussed. ZnO
has a wide range of different applications, ranging from medical applications or
as an add-on in the chemical industry to physical applications like an efficient
antireflection coating to enhance the performance of solar cells [74].

The energetically most favourable atomic structure of ZnO is the Wurtzite
structure as schematically shown in figure 3.2a. Due to the non centro sym-
metric primitive cell with b1 = b2 = 3.2Å and c = 5.2Å, ZnO is known to be
piezo-electric [75]. The typical type of bond is covalent. ZnO binding in the
crystal lattice involves four similar sp3 hybrid orbitals in a tetrahedral geometry
[76]. Four Zn2+ ions form a tetraeder within a O2− ion in the center resulting in
a hexagonal Bravais grid. The electric band structure results from the overlap
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Figure 3.2: a The ZnO crystal in the Wurtzite structure based on covalent sp3

hybridorbitals. The primitive cell formed by the Zn2+ atoms (grey) and the
O2− (blue) is with non centro symmetric with b1 = b2 = 3.2 and c = 5.2. b
Schematic illustration of the band structure of ZnO [77].

of the four sp3 hybrid orbitals and is shown in figure 3.2b. The band formed by
the bonding orbitals decrease in energy because of the favourable interaction be-
tween the parallel spin-paired electrons. The resulting band is called the valence
band. In contrast, the energy band formed by the antibonding orbitals is called
the conduction band, which is separated from the valence band by the band-gap
[78]. ZnO is a II-VI semiconductor with a direct band gap of 3.37eV [79] . Due
to this high band gap, ZnO absorbs light in the UV region as shown in the
measured transmission spectrum T (λ) in figure 3.3. The absolute transmission
is therefore characterized for a 1mm thick ZnO crystal. For excitation in the

Figure 3.3: Absolute transmission through a 1mm thick ZnO crystal.

red and near-IR spectral region, ZnO is nearly transparent. These properties
make ZnO a promising material for opto-electronic applications [79]. Even at
room temperature the large exciton binding energy of approximately 60meV
allows efficient emission from exciton states [80]. Due to the influence of the
crystal field and the spin-orbit interaction of the 2p-level of oxygen at the Γ
point of the Brillouin zone, the valence band splits up into 3 different bands
[81]. These 3 levels are named A,B and C. They are only separated by 5meV .
Optical excitation in the A and B band is only possible for a polarization per-
pendicular to the polar hexagonal axis c. For optical excitation of the C band,
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the polarisation has to be along the polar hexagonal axis c.
In addition ZnO has a high refractive index of almost n ≈ 2 at 800nm wave-

length as shown in figure 3.4. Therefore the scattering of light, which results in a
change of the propagation trajectory, is strong in ZnO. Furthermore, the second

Figure 3.4: Refractive index for ZnO as a function of the wavelength [83].

harmonic efficiency, described by second-order susceptibilities χ(2), is strong for
ZnO [120, 79]. Even a larger effective second order nonlinearity was demon-
strated for thin films of ZnO compared to that of a BBO-crystal measured by
a 20 fs excitation pulse from a Ti:Sapphire oscillator with an almost negligible
group velocity dispersion [84]. The absolute value of χ(2) differs strongly and
depends on the ZnO surface structure and crystal orientation [85]. The an-
gularly resolved SHG signal shows a pronounced dependence on the incidence
laser pulses. However, in thin films bulk effects dominate surface effects for the
second-harmonic generation. The strong scattering and the efficient SH genera-
tion response makes ZnO an interesting applicant for localization measurements
using a two-photon microscope.

3.1.2 ZnO nano-needles produced by metal-organic vapour
phase epitaxy (MOVPE)

Within this work the spatiotemporal dynamics of light localization will be in-
vestigated. This requires a highly scattering, non absorbing pointlike scatterer.
Due to the mentioned properties, randomly arranged ZnO needles with diame-
ters in the sub µm range are chosen. The samples of randomly arranged ZnO
nano-needles are grown on a sapphire (0001) substrate by our cooperation part-
ners at the University of Tokio by using Metal-Organic Vapour Phase Epitaxy
(MOVPE) [86].

ZnO crystallises mainly in two different forms: hexagonal cubic zincblende
and hexagonal wurtzite structure. To receive the zincblende structure, ZnO is
grown on substrates with a cubic lattice structure. However, the most stable and
common structure is the wurtzite structure. To obtain this the ZnO assembles
itself to hexagonal mono-crystalline rod structures on a substrate, e.g. sapphire,
growing along the c-axis as illustrated in figure 3.2. The ZnO nano-needles

40



are produced by using diethyl zinc (DEZn) and oxygen as reactant gas. In
addition, argon is used as a carrier gas in the catalyst-free MOVPE system.
The diameter of the ZnO structures depends on the used temperature. By using
a two-temperature growth technique two different diameters of the needles are
obtained [86]. The growth technique is schematically illustrated in figure 3.5a.
In the first step, 450◦C is kept constant for 35 min. This results in approximately
100nm thick and 1µm long hexagonal needles, which are characterized by SEM
and shown in figure 3.5b. In a second growth step, the temperature is raised

Figure 3.5: a Schematic illustration of the two-temperature growth method
resulting in a approximately 100nm thick needles at the bottom and 10nm thick
needles on top. The thick needles b and the small needles c are characterized
by scanning electron microscopy.[86]

up to 750◦C for 10 min. The needles are again characterized using SEM and
are shown in figure 3.5c. The SEM image shows approximately 30−50nm thin
ZnO needles in diameter on top of most of the thick needles. Therefore, the
higher temperature reduces the needle diameter.

Both samples, the ZnO sample with 100nm thick needles as well as the
samples with additional thin needles on top, are almost transparent for the
visible spectrum. Within this spectral range the ZnO leads to sufficiently strong
coherent scattering of light without getting absorbed within a needle. The needle
diameter is more than one order of magnitude smaller than the wavelength of
the light in the visible region of the spectrum. Therefore, they can be seen
as individual structureless pointlike scatterers. In conclusion, the ZnO nano-
needles fulfill all the sample requirements needed to analyse the spatiotemporal
dynamics of light localization.
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3.2 Spatial localization of light

3.2.1 Experimental set-up

The spatiotemporal dynamics of localized photon modes can experimentally be
verified by measuring both hallmarks of localization: spatially confined electric
fields, i.e. hotspots, and an increased lifetime of the localized photon mode.
Within the first experimental part, the spatial confinement of the localized pho-
ton mode is investigated, which is the first hallmark. To achieve this a highly
suitable method was chosen, which is based on using the ultrafast second har-
monic (SH) microscope. The SH microscope has an enhanced spatial resolution
compared to a classical microscope due to the detection of the nonlinear second
harmonic emission. Furthermore, the nonlinearity allows an increased sensivity
to changes in the local electric field.

The set-up to verify the spatial localization is shown schematically in figure
3.6a. Here, 6 fs p-polarized laser pulses from a Ti:Sapphire oscillator operating
at an 82 MHz repetition rate at 870nm central wavelength with pulse energies
of up to 2.5 nJ are used. The positive dispersion of the pulses induced on the
experiment during the propagation is compensated by a pair of chirped mirrors
(Femtolasers GSM014) and fine-tuned by a pair of wedges (Femtolaser UA124).
This conserves the time structure of the laser pulse to 6 fs. The light intensity
acting on the sample is controlled by a continuous neutral density filter. The
laser beam diameter is enlarged by a pair of concave mirrors by a factor of 3 from
1mm to 3mm which slightly overfills the entrance aperture of the all-reflecting
objective (Davin Optronics 5004-000) with a numerical aperture of NA = 0.5.
By using an all-reflective objective, the laser beam can be focused down to
the diffraction limit of about 1 µm. Simultaneously, the temporal structure of
the ultrashort laser pulse within the focal plan is preserved. Within a classical
microscope objective, a femtosecond laser pulse gets broadened up to several
pikoseconds [87].

The spatial beam profile of the diffraction limited laser pulses in the focal
plane is shown in figure 3.6b. The image of the focus is achieved by raster
scanning an aluminium coated scanning near-field fibre tip through the focal
plane of the 6 fs laser pulses. The aperture of the tip is approximately 200nm
which allows a high spatial resolution. The light coupled into the fibre is detected
by a photomultiplier as a function of the position within the focal plane. The
spatial intensity distribution shows a nearly circular focus spot and additionally
clearly visible Airy rings. The Airy rings are diffraction patterns due to the
limited wave vector spectrum I(klat) of the all-reflecting objective [87]. The
construction of the all-reflecting objective with a small inner mirror and a large
focusing mirror does not allow central lateral wave vectors klat as illustrated in
figure 3.7. This results in Airy rings.

The full width at half maximum of the experimentally deduced intensity
distribution in the focal plane is estimated at xr ≈ 1µm which is in good
agreement with the theoretical value calculated by

xr(λ,NA) =
0.61 · λ
NA

≈ 1µm (3.1)

for an objective with a numerical aperture of NA = 0.5 and a wavelength of
λ = 870nm.
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Figure 3.6: a Experimental set-up: An ultrashort, dispersion-controlled 6 fs
laser pulse is focused by an all-reflecting objective on the sample. The light
emitted from the sample is detected in reflection geometry as a function of
position by raster-scanning the sample and separated from the incident light by
a dichroic mirror. The emission is spectrally resolved using a monochromator
in combination with a CCD camera. b Spatial intensity map of the focal plane
deduced by raster-scanning an aluminium-coated scanning near-field fibre tip
through the focus. The Ti:Sapphire laser is focused on the diffraction limit
allowing a spatial resolution of less than 1µm. c Interferometric autocorrelation
(IAC) trace taken in the focal plane of the reflecting objective showing the
preserved time structure of the 6 fs laser pulse. The measured IAC (black line)
trace is compared to a calculated transform-limited IAC (red line) deduced from
the spectrum shown in the inset.

Figure 3.7: Wave vector spectrum klat of the Cassegrain objective. The central
wave vector components are cut out by the small inner mirror of the objective.
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In addition to the verification of the spatial resolution of the SH microscope,
also the temporal resolution is verified. This is proven by an interferometric
autocorrelation (IAC) measurement using a 10µm thick BBO crystal. IAC
measurements are a common technique to characterize ultrashort laser pulses
using a pulse pair separated by the time delay τ [88]. The IAC is described by

IIAC(τ) =

∣∣∣∣∫ (E(t) + E(t+ τ))2

∣∣∣∣2 dt (3.2)

with the electric field E(t). The experimentally deduced IAC is shown in figure
3.6c in black. It is compared to a theoretical IAC (red), that is calculated from
the laser spectrum shown in the inset of figure 3.6c. Therefore the Fourier-
limited laser pulse is calculated from the spectrum. By using additional disper-
sion the theoretical IAC trace matches the measured trace. This results in a
time duration of the intensity of the electric field of 6 fs (FWHM) within the fo-
cal plane. Therefore the all-reflective objective preserves the temporal structure
of the focused 6 fs laser pulses emitted from the Ti:Sapphire oscillator.

In conclusion, the SH-microscope provides 6 fs laser pulses at a central
wavelength of 870nm focused on an area of 1µm in diameter to investigate
the spatial emission from samples. The light emitted from the sample is col-
lected by the all-reflecting objective in reflection geometry. Light below 550nm
is separated from the fundamental incoming laser beam by a dichroic mirror
(Thorlabs UV Cold mirror FM204) and spectrally dispersed in a monochroma-
tor (Acton Spectra Pro 2500i with a 300lines/500Blaze grid). The spectrum
is finally detected by a liquid-N2 cooled CCD camera (Princeton Instruments
Spec-10). Additionally, BG23 filters (BG23 Schott) are used to avoid scattered
fundamental light and to restrict the detection only on wavelength components
below 500nm.

The ZnO samples are mounted on a hardware-linearized three-axis piezo
scanner(PI NanoCube) at an oblique angel of 30◦ with respect to the incident
horizontally polarized laser pulses. The used piezo scanner allows to raster
scan the sample through the focused laser spot with a position accuracy of less
than 10nm. The tilt of the sample with respect to the incident light allows the
highest electric field components along the ZnO needle axis with the p-polarized
incident laser pulses without blocking the high wave vector components klat and
destroying the diffraction limited focus spot. Due to the tilt of the sample, the
needles are mainly affected by p-polarized light. However, due to the rotation
symmetry and the angular projection, they are also affected by a small amount
of s-polarized light.

Several samples are examined using this experimental method. The investi-
gated samples shown in this thesis consist of a 100nm thick and b 30− 50nm
thin randomly arranged ZnO nano-needle arrays. Both needle diameters are
chosen to be smaller compared to the incident wavelength in order to be in
the regime of coherent Rayleigh scattering. Both samples were produced from
our cooperation partners Takashi Yatsui and Kokoro Kitamura in the group of
Prof. Ohtsu from the University of Tokyo [86]. The characteristics for these
two samples and the experimental results concerning the spatial localization of
light are presented in the following.
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3.2.2 Spatial localization in 100 nm thick ZnO nano-needles

In a first experimental investigation, the 100nm thick ZnO nano-needles were
examined in terms of the spatial localization of photon modes. The sample hab
been produced using only one growth step in the MOVPE at a temperature of
450◦C for 35 min as illustrated in figure 3.5. The surface structure is charac-
terized using scanning electron microscopy (SEM) imaging. The SEM image of
the sample is shown in figure 3.8a. It shows a rough surface structure of vary-

Figure 3.8: a SEM image of the investigated 100nm thick ZnO nano-needles.
Top view of the sample shows randomly distributed cones of ZnO together with
needles in the range of 80 to 120nm. b Spectral emission from the 100nm thick
ZnO nano-needles. The two spectra shown consist mainly of SH emission but
show different localized modes. The band gap emission known to occur in ZnO
at 375nm and green luminescence above 450nm are weak.

ing, randomly distributed larger ZnO cones and smaller needles with diameters
between 80nm and 120nm. The average diameter of the needles is estimated
to be approximately 100nm. Therefore, in the following the sample is referred
as the 100nm thick ZnO nano-needle array.

The spatial localization of photon modes is investigated by the use of the
SH-microscope set-up introduced in figure 3.6. Therefore the sample is excited
with a pulse energy of 50 pJ . The light emitted at the SH frequency from the
sample is spectrally resolved as a function of the excitation position. Typical
normalized spectra of the emitted SH from two different spatial positions on the
100nm thick ZnO nano-needle array are shown in figure 3.8b.

The light emitted from the two different positions clearly shows different
spectral components. It mainly consists of coherent SH emission checked by
interferometric frequency resolved autocorrelation which is not shown here. Fur-
thermore, spectral identification of the band gap transition at approximately
375nm (3.3eV) and the green photoluminescence above 450nm onlyindicate a
very weak emission intensity of these incoherent emission processes. However,
the shape of the two emitted coherent SH-spectra clearly differ from each other
due to photon modes at the two positions.

Spectral integration of the recorded emission from 380 to 440nm results in
the SH intensity ISH . By raster scanning the sample through the focus and
spectrally integrating the SH emission, a two-dimensional map of the local ISH
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is obtained which is shown in figure 3.9a. The emitted SH intensity shows
moderate fluctuations as a function of the spatial position. These moderate
fluctuations are far away from the fluctuations occurring at hotspots as known
from literature [64, 27]. In order to classify the fluctuating emission from the
sample, several methods can be applied.

One method is based on the enhancement of the SH emission which is defined
as η = ISHmax

/ISHmin. This results in the case of the 100nm thick ZnO nano-
needle with an enhancement factor of η ≈ 6. The SH emitted from the sample
is only used as an indirect measure for the fundamental electric field strength.
The interesting parameter within all the measurements is the local electric field
at the fundamental wavelength. The fluctuations at the SH intensity allow
to calculate the fundamental local field enhancement factor f . The general
nonlinear response

Ib ∝
(
Eloc
E0

)2b

= f2b ⇒ f = (η)1/2b (3.3)

scales with the nonlinearity b and is defined by the relation of the local electro-
magnetic field maximum at the fundamental wavelength Eloc and the minimum
electric field at the fundamental frequency E0 [94]. In the case of the SH,
Ib = ISH the nonlinearity is given by bSH = 2. Therefore, the nonlinear be-
haviour of the SH intensity scales with the fourth power of the local electromag-
netic field at the fundamental wavelength. Analysing the spatial SH intensity
distribution, the local field enhancement of the 100nm thick ZnO needles can
be estimated by using equation 3.3 with f100nm ≈ 1.5, which is quite a low
value.

Another concept is based on the normalized fluctuations of the SH intensity.
This will be referred to in the following as normalized enhancement and is
defined by

κ = ISHmax
/ < ISH > (3.4)

with respect to the average SH intensity < ISH >. In the case of the 100nm
thick ZnO nano-needles, this results in κ100nm = 2.4. The normalized enhance-
ment κ will be used in the following section 3.2.5 to deduce the localization
strength.

Not only strong fluctuations of the intensity are a characteristic for a hotspot,
but also the spatially confined emission as a second criterion. Analysing the
cross section of ISH in figure 3.9b shows that the SH emission is extended
over approximately 3.5µm (FWHM). This value is much larger than the optical
resolution of the SH-microscope of xr(λ = 400nm,NA = 0.5) ≈ 500nm calcu-
lated by equation 3.1. An additional way to visualize this spatial extent of the
SH emission can be achieved by calculating the spatial correlation

Cs(∆x,∆y) =

∑
ISH(x, y) · ISH(x+ ∆x, y + ∆y)√∑

ISH(x, y)2

√∑
ISH(x+ ∆x, y + ∆y)

2
(3.5)

with a shift along the x-, y-axis described by ∆x and ∆y, respectively. The spa-
tial correlation is generally used to deduce the typical width, which corresponds
to the average size of a speckle pattern on a surface [89], near-field images in
disordered dielectric structures [90] or quantum dots [91]. In order to calcu-
late the spatial correlation for the SH intensity distribution of the 100nm thick
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Figure 3.9: a Spatial emission map of the local SH emission ISH (integrated
from 380 to 440nm) from the 100nm thick ZnO nano-needle array. The sample
is excited by 6 fs laser pulses with a central wavelength of 870nm. b Cross
section along the dashed line in a. The spatial spread of the emission spots is
much larger than the optical resolution of the SH-microscope.
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ZnO needles by using equation 3.5, a two dimensional zero-padding is applied
to the spatial SH intensity map. The resulting two-dimensional correlation as
a function of the shift along the x and y-axis of the SH emission map is pre-
sented in figure 3.10a for the 100nm thick ZnO nano-needle array. The cross
section for a shift along the x-axis Cs(∆x, 0), as well as the y-axis Cs(0,∆y) is
shown in figure 3.10b. The spatial autocorrelation function CS shows a broad
background in the absence of the characteristic spatial autocorrelation spike, as
expected for a hotspot. This broad background stems either from the spatial
resolution of the SH microscope or the spatial region of the emission. However,
the resolution of the SH microscope is in the order of 500nm, as proven in sec-
tion 3.2.1. A characteristic value of the spatial autocorrelation is the spread at
FWHM ∆CS . The correlation shows a wide spread of ∆CS ≈ 28µm, which is
much larger than twice the resolution of the microscope. Therefore the results
are associated with the spatial extent of the photon modes. From these auto-
correlation plots it appears, that mode localization due to multiple scattering is
weak and the emission from the sample stems mainly from spatially delocalized
photon modes.

In conclusion, the investigated sample shows only marginal fluctuations
of the local SH intensity from delocalized photon modes with a spatial extent
over several µm. The localization strength is determined in detail in section
3.2.5.

3.2.3 Spatial localization in 30 nm thin ZnO nano-needles

The small amount of localization within the investigated 100nm thick ZnO
nano-needle array suggests using samples with changed parameters to increase
the localization of light. Therefore, the sample was modified by using a second
temperature during the MOVPE production process by our cooperation part-
ners from the University of Tokio [86]. The used two-temperature MOVPE was
already introduced in section 3.1.2. The SEM-image of the sample is shown
in figure 3.11 to deduce the geometric sample properties. The bottom layer
produced by the first heating process leads again to an ensemble of larger ZnO
cones and needles with diameters of approximately 100nm. It is in good agree-
ment with the structure shown in figure 3.8. The thin needles produced by an
increased temperature have diameters varying between 20−50nm mainly grown
on most of the thick needles. The average diameter is determined to be approxi-
mately 30nm. Therefore, the sample is referred to in the following as the 30nm
thin ZnO nano-needle array. Furthermore, the needles are homogeneously dis-
tributed, for which most of the 30nm sample do not show any big deviations.
The homogeneous distribution allows to deduce that the average density of the
needles from the SEM-image shown in figure 3.11a is approximately 60 needles
µm−2.

The investigation of the localization properties is performed by placing the
sample of thin ZnO nano-needles in the experimental set-up and measuring
the light emitted from the sample as a function of the excitation position, as
shown in figure 3.6. To achieve this the sample is excited with a pulse energy
of 50 pJ . The spectral integrated SH emission map ISH(x, y) is shown in figure
3.12a. The local emitted SH intensity shows numerously occurring regions of
strong fluctuations. These fluctuations are characterized by the enhancement η
reaching more than a factor of η30nm = ISHmax/ISHmin ≈ 80, comparing the
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Figure 3.10: a Two-dimensional spatial intensity correlation of the SH emission
map of the thick ZnO nano-needle array. b Cross section of the spatial intensity
correlation along the x- and y-axis.
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Figure 3.11: SEM pictures of the investigated ZnO 2step sample. a Side view
at an oblique angle of 52◦ shows randomly arranged ZnO nano-needles homoge-
neously distributed over the sample. The average distance between the needles
is approximately 100nm. b Top view of the needle array shows needle diameters
between 20to 50nm with an average diameter of approximately 30nm.

maximum ISHmax
to the minimum SH intensity ISHmin

. The fluctuations of the
SH allow to calculate the fundamental local field enhancement factor f using
equation 3.3 and taking the nonlinearity of the SH bSH = 2 into account. This
results in a local field enhancement for the 30nm thin ZnO nano-needle array
of f30nm ≈ 3. The field enhancement of the tips enhances not only the local
electromagnetic field at the fundamental frequency, but also the SH emission is
increased [92, 93, 94].
In order to classify the fluctuation strength and to compare the results, the
mean enhancement κ = ISHmax

/ < ISH > is used. For the 30nm thin ZnO
nano-needle array on top of the underlying layer of 100nm thick needles, this
results in κ30nm ≈ 33. This value, as well as the local field enhancement f ,
is obviously much larger compared to the 100nm thick ZnO nano-needle array
with f100nm ≈ 1.5 and κ100nm = 2.4 from the previous measurement in section
3.2.2.
The spatial extent of the SH hotspots is inspected by the cross section of ISH
along the white dashed line in figure 3.12a. This cross section through one of the
strongly emitting SH regions is shown in 3.12b. Here the SH emission is confined
to an area of approximately x ≈ 500nm in diameter. This diameter corresponds
to the optical resolution of the SH-microscope at the detection wavelength of
λd = 400nm calculated from equation 3.1. The strong enhancement of the local
SH intensity in combination with the spatially confined emission fulfill the cri-
terion of a hotspot and a localized photon mode in terms of the first hallmark
of light localization.
The high optical resolution of the SH microscope is sufficient to mainly probe
a single localized mode within the spatial measurements. This claim will be
supported by measurements as well as theoretical work in the following sections
and chapters.

One obvious result of the spectrally resolved two-dimensional intensity mea-
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Figure 3.12: a Spatial emission map of the spectral integrated local SH from the
thin ZnO nano-needle array. The array is excited by 6 fs laser pulses at a central
wavelength of 870nm. b Cross section along the dashed line in a. The hotspots
have a diameter of x ≈ 500nm. This corresponds to the optical resolution of
the SH microscope. c Local SH spectra from different hotspots (red and black)
and the normalized spectrum averaged over the whole sample (blue).
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surement is the strong spectral dependence on the spatial position. The spec-
trum of different hotspots is presented in figure 3.12c. It clearly shows somehow
individual spectral shapes at different hotspots. This is supported by a more
detailed spectral analysis of the strongest hotspot and its surrounding presented
in figure 3.13. The emission within the hotspot position is dramatically stronger
and almost confined to one pixel within the scan. This very confined, highly
enhanced emission in combination with the high spatial resolution allows to ob-
serve spectral changes of the emitted light on the sub µm scale. The emission
at each spatial position delivers different spectral components. The spectrum
shifts from one localized photon mode at the hotspot position in figure 3.13b.e
to another in figure 3.13b.i. This behaviour is caused by the random distribu-
tion of the nano-needles. The incident light at the fundamental frequency is
scattered at each needle. This leads to a large number of scattering trajectories
as explained in section 2.2.4.
At a certain position in space, the elastically scattered light interferes construc-
tively at individual resonance frequencies depending on the scattering trajectory
forming locally very confined hotspots with varying spectral components. These
localized photon modes at the fundamental frequency are sufficiently strong to
excite the SH at the ZnO interface of the nano-needles. This results in a broad
range of observed spectral shapes at different sample positions. These strong
variations of the local emitted SH spectra correspond to different localized pho-
ton modes and are also a strong indicator of photon localization [11].
The excitation below the band gap with sufficient laser pulse energies mainly
leads to SH emission. However, multi-photon induced luminescence from the
band gap or defect states in the ZnO can be observed as well, checked by inter-
ferometric frequency resolved autocorrelation and further explained in section
3.3.

The spatial confinement of the localized photon modes within the 30nm thin
ZnO nano-needle array can additionally be visualized by calculating the spatial
correlation of the two-dimensional SH intensity distribution using equation 3.5.
Therefore two dimensional zero-padding is applied to the spatial SH intensity
map. The resulting two-dimensional correlation distribution CS(∆x,∆y) as a
function of the shift along the x- and y-axis of emission map ISH of the 30nm
thin ZnO nano-needles is presented in figure 3.14a. The cross section along the
x-axis CS(∆x, 0), and the y-axis CS(0,∆y) is shown in figure 3.14b.
The spatial autocorrelation function CS shows the characteristic sharp spatial
autocorrelation spike, as expected for the emission from hotspots. The charac-
teristic value of the spatial autocorrelation is ∆CS ≈ 1.6µm, which is slightly
more than twice the spatial resolution of our microscope. This behaviour in-
dicates, that not all emission spots on the sample are confined to the optical
resolution of the microscope. From these autocorrelation plots it appears that
mode localization due to multiple scattering is strong and the hotspot emission
from the sample stems mainly from spatially localized photon modes which are
essentially determined by the spatial resolution of the SH microscope.

In conclusion, the investigated sample of 30nm thin randomly arranged
dielectric ZnO nano-needles shows strong fluctuations of the local SH intensity
from localized photon modes. This is the first hallmark for the localization of
light.
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Figure 3.13: a Two-dimensional intensity distribution of the SH normalized to
the mean intensity emitted from the thin ZnO nano-needle array. b.a-i Recorded
spectra of the indicated area (red square) of the integrated SH image. The
spectral shape and the emitted SH intensity depends strongly on the spatial
position on a sub-µm scale.

53



Figure 3.14: a Two-dimensional spatial intensity correlation of the SH emission
map of the thin ZnO nano-needle array. b Cross section of the spatial intensity
correlation along the x- and y-axis.
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Localization strength is classified by using spatial intensity fluctuations and
discussed in detail in section 3.2.5. The influence of random lasing, induced
in disordered nano-structures or powders forming a random laser cavity [14], is
ruled out by the low applied incident laser power. The applied laser power is
well below the threshold of random lasing as will be shown in chapter 6.
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3.2.4 FDTD calculation

In addition to the measurements, a three dimensional Finite Difference Time
Domain (FDTD) simulation has been performed by David Leipold within a
collaboration with the TU Ilmenau and the group of Prof. Runge. The simula-
tions were performed by using the MIT Electromagnetic Equation Propagation
(MEEP) software suite [95]. This is a method to solve time dependent differ-
ential equations, by which the time-dependent Maxwell’s equations are solved
for a simulated randomly arranged array of ZnO nano-needles with parameters
comparable to the experimentally investigated samples.

The geometric parameters of the needle distribution are deduced from the
SEM images of the investigated sample. The ZnO nano-needles are simulated
by randomly distributed cylinders on a sapphire substrate in vacuum. In order
to consider the geometric and material properties, the sample is modeled by
a spatial dependent three-dimensional refractive index distribution n(~r) at the
fundamental wavelength by assuming that n(ZnO) = 1.96 and n(Sapphire) =
1.75 are assumed. A section of the used spatial distribution of n(~r) is shown in
figure 3.15a from a top view (left) and side view (right).

It shows a cylinder density of approximately 60 cylinders per µm2. The
cylinders have diameters of 100nm with a randomly varied length between 0.9−
1.0µm to avoid backscattered light from the flat cylinder cabs. The excitation
source is assumed to be a plane wave illuminating the whole sample at once with
a laser pulse at an incident angle of 30◦ with respect to the sample surface. The
laser pulse is set to a Gaussian temporal envelope of 6 fs (FWHM) at 800nm
central wavelength. Due to a limited amount of computing capacity, the electric
field E(~r, t) is calculated with a spatial resolution of 10nm on a 4.5x4.5x2µm
grid which corresponds only to a small section compared to the measurement. In
this case, the time-dependent Maxwell’s equations are solved by calculating the
electric field in the simulation area at a given instant in time to continue with
the magnetic field in the same simulation area at the next instant of time. This
procedure is repeated until the temporal evolution of the electromagnetic field
is fully developed for the simulation area. To obtain the localization behaviour
of the local electromagnetic field, the electromagnetic field of the excitation
laser pulse has to leave the calculation area to deduce the localized electric field
modes, which are small compared to the electric field of the excitation. To
compare the calculated intensity maps at the fundamental wavelength to the
experimental data, the relation for the local SH intensity ISH(~r, t) ∝ |E(r, t)2|2
is used. The resulting spatial distribution of E(~r)4 is shown at time t, after the
excitation pulse has left the simulation area in figure 3.15b. The calculation
itself is expected to be very robust hence neither dispersive nor non-linear or
absorbing materials are involved within the calculation. The simulation shows
bright localized spots of strong spatial electric field fluctuations E(~r)4. As
in the experiment, the incident plane wave is multiply scattering within the
cylinder array and different scattering trajectories are interfering with each other
forming locally enhanced electric fields. These bright localized spots are the
spatial hallmark of localized photon modes and are in general agreement with
the experimental results. The spatial confinement of the bright localized spots of
the electric field is analysed along the dashed line in figure 3.15b. The resulting
cross section in figure 3.15c shows the spatial extent of this hotspot emission.
Within the simulation, the hotspots are localized within a small region in the
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Figure 3.15: a Top view (left) and side view (right) of the refractive index n(~r)
arranged to simulate randomly arranged dielectric cylinders in vacuum on sap-
phire. The needle length is randomly varied between 0.9− 1.0µm. The density
is set to 55 needles per µm2 with a diameter of 100nm. b Two dimensional
intensity distribution of the fourth power of the local electric field E(~r) at large
times t for n(~r) calculated by using a three-dimensional FDTD method with a
resolution of 10nm. The fourth power of the electric field corresponds to the
SH intensity. c Cross section along the dashed line delivering the localization
on a spatial scale of 30nm.
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E(~r)4 map of approximately 30nm (FWHM) in diameter. This is at least one
magnitude smaller than the measured spatial localization in the experiment. In
order to verify this behavior, experiments with an increased optical resolution
would be highly desirable. Experiments with much higher spatial resolution are
presented in chapter 5.

The enhancement of the electric field within the simulation κ = ISHmax
/ <

ISH >∝ E4
loc/ < E4 >≈ 95 is much higher than in the experiments. This

behaviour can be explained by the different optical resolution. The experiment
is performed with a resolution of λd = 500nm measuring at the SH frequency.
In contrast, the FDTD simulation is calculated with a spatial resolution of
only 10nm. To compare both, the FDTD calculation has to be convoluted
with a Gaussian filter comparable to the experimental resolution. The convo-
lution leads to an averaging of the calculated electric field distribution. This
averaging decreases the mean enhancement κ even below the experimentally
deduced value, as shown for four different Gaussian filters with an alterable
width at FWHM ranging from 10nm up to 500nm in figure 3.16. This result

Figure 3.16: a-c Calculated spatial intensity distribution convoluted by different
Gaussian filters of alterable FWHM widths. d Representative section of the
spatial localization within the thin ZnO nano-needles from sample 1 to compare
the emission with the theoreticly calculated intensity-maps [97].

indicates that the experimentally deduced fluctuations of the electric field are
strong. They are even stronger than the calculated fluctuations. The calculated
electric fields strongly depend on the geometric distribution of n(~r). Different
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geometries varying the distances between the cylinders and their diameter are
calculated and shown in section 4.4.

The investigation of the localized photon modes within the cylinders calcu-
lated by the FDTD shows different properties:

a) First the influence of the convolution with the Gaussian filter on the number
of hotspots is examined. A hotspot within this analysis is defined as a local
maximum surrounded by smaller intensity values at each side. The comparison
of the number of hotspots m within the spatial intensity distribution deduced
by FDTD adapted to the experimental conditions using a Gaussian filter with
a FWHM of 0.5µm (figure 3.16c-d) shows clear deviations from the measured
spatial intensity distribution of the thin ZnO nano-needles. It is evident that the
density of hotspots within the simulation mFDTD = 0.5µm−1 is approximately
two times larger than in the experiment with the 30nm thin ZnO nano-needle
array m30nm = 0.3µm−1 as illustrated by the blue star in figure 3.17. However,

Figure 3.17: Density of local maxima on the calculated 4.5x4.5µm grid as a
function of the width of the convoluted Gaussian filter. The convolution hardly
influences the density of hotspots at 1/2, respectively 1/3, of the electric field
maximum. The experimentally deduced density of 0.3µm−1 for the 30nm thin
ZnO nano-needle array (blue star) differs significantly from the theoretical val-
ues.

the number of hotspots deduced from the calculation stays almost constant for
1/2 and 1/3 of the global maximum of E(~r)4 for the different convolutions of
the FDTD calculation with Gaussian functions of alterable widths.
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b) The enhancement η30nm ≈ 80 between bright and dark modes is detected
at λd = 400nm with an optical resolution of 500nm. The excitation area is
defined by the focus diameter of the reflecting objective to be 1µm2 at the
fundamental wavelength. Within this area, approximately 60 needles are illu-
minated simultaneously. Nevertheless the experimentally deduced density of
the hotspots m30nm = 0.3µm−1 already indicates that a hotspot is a rather
rare event. In the case of averaging above adjacent modes this would result in
a spatial broadening and a much more homogeneous E(~r)4 map.
These arguments support the conclusion that the resolution within the exper-
iment is sufficient to mainly probe a single localized mode. In addition this is
supported by the temporal measurement in section 3.3.

The random alignment of the cylinders has a strong influence on the local-
ization and the occurring hotspots in terms of density and intensity. The ZnO
nano-needles distributed are more randomly arranged than the cylinders in the
simulation, which is even increased by the influence of the underlying layer in
the experiment.

However, the excitation of the whole sample at once within the FDTD cal-
culation shows a discrepancy between simulation and experiment. Within the
experiment, the sample is only excited in a confined area. Unaware of the exact
geometry and shape of the investigated area, it is difficult to compare the results
in detail. Nevertheless, all these deviations within the FDTD calculation from
the experimental conditions and the unique characteristics to the spatially local-
ized and strong electric fields show a good agreement. Many different variations
are still under investigation. Including the underlying layer of cones bringing
the simulation closer to the experimental results. However, this will not be
explained here.

3.2.5 Single scaling parameter

One way to classify the localization strength of light is based on the single
scaling theory, as already introduced in section 2.2.5 [59, 72]. Thouless argued
that localization sets in if the level width ∂E is smaller than the level separation
∆E of the Eigenmodes, as described by equation 2.39 which allows a connection
between the spectrum and the transport [60], i.e. between the spectrum and
the single scaling parameter. This single scaling parameter g = ∂E/∆E governs
all aspects of localization, including statistical fluctuations, and is used as a
quantitative measure of the localization strength g [10, 61]. In the following,
the semi-analytical model derived from Nieuwenhuizen and van Rossum [63]
calculates the intensity distribution of a propagating wave through a multiply
scattering medium for certain values of g. Therefore the localization strength
is classified by the intensity fluctuations. The single scaling parameter g allows
to distinguish between the weak and strong localized regimes. The transition
from one regime to the other occurs at g = 1. Values of g < 1 denote stronger
localization within the sample.

The model derived from Nieuwenhuizen and van Rossum describes the inten-
sity fluctuations at the fundamental frequency. Therefore the intensity distri-
bution at fundamental frequency I is calculated from the measured spatial SH
intensity distribution ISH . The relative probability on logarithmic scale of I nor-
malized to the mean emission intensity < I > is shown in a histogram for the dif-
ferent investigated samples in figure 3.18. The histogram of the intensity values
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Figure 3.18: Logarithmic probability distribution P (I/ < I >) of the normalized
intensity distributions of the 100nm thick and 30nm thin ZnO nano-needle
arrays with the corresponding single scaling parameter g. The histogram of the
30nm thin ZnO nano-needle array shows two signatures. A part described by
g = 5.6 and a part above 1.8· < I > with g = 0.6. The part above 1.8· < I >
is between g = 0.25 and g = 1.8 acting like an error bar in the determination
of the localization strength. The emission intensity of the 100nm thick ZnO
nano-needle array is Gaussian distributed and described by g = 15.
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I100nm corresponding to the emission from the 100nm thick ZnO nano-needle
array show a Gaussian distribution centered around I100nm/ < I100nm >= 1.
This behaviour reflects the weak fluctuations in the spatial intensity map ISH
and the low value of κ.

In contrast, the histogram of intensity values corresponding to the emission
of the 30nm thin needles shows a more complex distribution of I30nm. The
histogram of the thin needle array is a composition of two different distributions.
Most of the intensity values are again Gaussian distributed. In addition to the
dominating Gaussian distributed part for values below 1.8 · I30nm/ < I30nm >,
a deviation from the Gaussian distribution at larger intensity values than 1.8 ·
I30nm/ < I30nm > can be observed. The origin of this deviation, described
by a log-normal distribution, are the bright emission spots, i.e the pronounced
fluctuations of ISH shown in figure 3.12. The hotspot emission leads to the
characteristic shift of the maximum of the histogram to I30nm/ < I30nm >≈ 0.9
as already shown in section 2.2.5.

In order to classify the localization strength, the single scaling parameter is
adjusted to match the experimentally deduced intensity distribution
P (I/ < I >)exp by using the least square calculation χ2 described in equation
3.6. The value

χ2 =
∑

(P (I/ < I >)exp − P (In))
2

(3.6)

takes a minimum for the best matching fit by comparing the experimental dis-
tribution to the calculated probability distribution P (In) (equation 2.40) [96].
For the best fit between the calculated and experimentally deduced intensity
distributions, the χ2 value takes a minimum. In the case of the 100nm thick
ZnO nano-needle array, this results in a value of g100nm = 15. The description
of the histogram for the intensity values of the 30nm thin ZnO nano-needles
in terms of g is challenging. By using a value of g = 0.6, a strong discrepancy
of the calculated distribution (green solid line) and the experimental results
(black squares) is obvious, as can easily be seen from figure 3.18. The dominat-
ing Gaussian distribution and the log-normal distribution influence each other in
the histogram. Therefore, the histogram can simply not be described by a single
value of g. However, the Gaussian distribution does not effect the slope of the
histogram for values above 1.8· < I >. Consequently the localization strength is
determined for the Gaussian distribution and log-normal distribution of I30nm

individually by using the least square method for the intensity values below
and above an intensity threshold of 1.8· < I30nm >. The behaviour of χ2 as a
function of g for the thin ZnO nano-needle array is shown in figure 3.19. This
results in a single scaling value of g = 5.6 for the Gaussian distributed part of
the histogram of the thin needles. For the case of the log-normal distributed
part of the histogram, the single scaling parameter is estimated at g = 0.6

As mentioned earlier, the large value of g100nm = 15 indicates delocalized
photon modes within the 100nm thick ZnO nano-needle array. In the case of the
30nm thin ZnO nano-needle array both phenomena, localized and delocalized
photon modes, can be found. Most of the modes correspond to a single scaling
parameter of approximately g = 6, which describes delocalized photon modes.
However, a small fraction is described by g = 0.6. Therefore, the hotspots can
be identified as localized photon modes.

In order to estimate the precision in the calculation of the localization
strength, additional distributions for certain values of g are plotted. The less in-
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Figure 3.19: Least square value χ2 as a function of single scaling parameter
g of the Gaussian distributed part in a and the log-normal distributed part
above 1.8· < I > in b of the histogram of the thin ZnO nano-needle array. The
minimum of the distribution equals the best fitting value of the single scaling
parameter describing the experimental results.

tense intensity values in the histogram can best be described by g = 1.8 whereas
the most intense values are described by g = 0.25. These additonal distributions
can be seen as ”error bars” within the calculated localization strength which is
in between. This finally allows the classification of the electric field within the
hotspot to be at least at the transition from weak to strong localization within
the investigated sample of 30nm thin ZnO nano-needles.
The FDTD simulation shows very strong hotspots, but the resolution of the cal-
culation differs from the experimental resolution. In order to considered this, the
spatial intensity map is convoluted with Gaussian filters of different widths. The
FDTD intensity distributions are strongly influenced by the Gaussian width of
the convolution. For a width corresponding to the optical resolution, this results
in a decrased value of the FDTD enhancement at SH κFDTD ≈ 4, which is much
smaller than the value measured for the thin ZnO nano-needle array κ30nm ≈ 33.
Beside the intensity the histogram and consequently the corresponding single
scaling parameter are influeced by the convolution. The resulting histograms
with their associated values of g are shown in figure 3.20. The single scaling
parameter deduced for a Gaussian width of 500nm for the FDTD calculation
shows a huge discrepancy from the experimentally deduced value. Within the
FDTD, it is described by gFDTD500nm

≈ 4 which is far from the experimentally
deduced value of g30nm = 0.6. This might be due to the simplification of the
ZnO sample with simple cylinders. Additional calculations, which are not part
of this thesis1, implementing an underlying layer of cones below the thin cylin-
ders change the shape of the histogram and lead to a deviation from the almost
Gaussian distribution of the convoluted FDTD calculation. The influence of
the arrangement of needles and underlying layer within the FDTD calculation
is still under investigation and will be discussed in a further publication.

1Part of the work by David Leipold and not shown in this thesis
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Figure 3.20: Convolution of the FDTD calculation with a Gaussian function
to match the experimental resolution changes in the probability distribution as
well as the estimated single scaling parameter.

3.2.6 Multifractal analysis of the spatial intensity distri-
butions

The strength of localization can also be classified using the multifractal analysis
that has been presented in section 2.2.6. The singularity strength α, also called
the Hölder exponent, can be used to classify the localization strength [36]. α
is calculated from the spatial intensity distributions for the 100nm thick and
30nm thin ZnO nano-needle arrays. In addition, it is calculated for the FDTD
calculation and for a theoretical log-normal distribution in order to rank the
experimental results and to support the classification of the localization strength
deduced in the previous section 3.2.5.

By using the description from Chhabra and his co-workers [64], the multi-
fractal analysis requires a sufficient small box size, i.e. a sufficient scanning
resolution within the experiment. The performed spatial measurements fulfill
this criterion with a resolution of 333nm, which is smaller than the optical
resolution of the SH microscope.

The measured intensity distribution of the two dimensional spatial SH emis-
sion ISH(x, y) is transformed to a one-dimensional array ISH(s). The length of
ISH(s) is then described by x · y. This new one-dimensional SH intensity array
is used to calculate the normalized intensity at the fundamental frequency I.

I =

√
ISH〈√
ISH

〉 (3.7)
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The original dimension of the spatial distribution ISH(x, y) is considered in
the one-dimensional array I by L = length(I)1/2 in the case of x = y. The
samples are assumed to be quasi two-dimensional due to the short length of
the ZnO nano-needle arrays of only a few µm in the z-direction. The calculated
singularity spectrum f(α) of the different samples is shown in figure 3.21. Strong

Figure 3.21: Singularity spectrum f(α) as a function of the singularity strength
α. The calculated singularity spectrum of the thick and thin ZnO nano- needles
show only a weak deviation of the maximum from α = 2. The maxima of the
theoretical log-normal distribution as well as the FDTD calculation show much
stronger singularity strengths.

fluctuations in the one-dimensinal array I results in the broad spectral width of
f(α) and a shift of the maximum towards larger Hölder exponents. Delocalized
photon modes have a singularity spectrum centered at α = 2 in two dimensions
anyway, as shown in section 2.2.6. The deviation from α = 2 of the maximum
of f(α) is therefore used to describe the localization properties.

The maximum of the singularity spectrum of the 100nm thick ZnO nano-
needle array shows only a weak deviation in its maximum to higher singularity
strengths (Hölder exponent) of α100nm = 2.002 . This indicates delocalized pho-
ton modes within the 100nm thick ZnO sample supported by the classification
based on the single scaling parameter g.

Interestingly, the calculated singularity spectrum of the 30nm thin ZnO
nano-needles does not show any big difference compared to the result of the
thick needles. The singularity strength of the thin needles α30nm = 2.003 is
only slightly stronger than α100nm. This behaviour differs strongly from the
results of the previous section. Within the analysis of the localization strength
by using the single scaling parameter different histograms of both investigated
samples were observed (figure 3.18). However, the deduced histogram in figure
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3.18 indicates, that only a small fraction of the intensity values of the 30nm
thin ZnO nano-needle array can be attributed to localized photon modes, as
identified by the log-normal distributed part described by g < 1. A deviation
from α = 2 is only expected for these values. Restricting the calculation of the
singularity strength to intensity values above a certain threshold of 1.8· < I >
does not deliver trustworthy results. This is due to the calculation of the singu-
larity strength, which analyses the fluctuations of the intensity. Restricting the
calculation of the singularity spectrum to localized states above a certain inten-
sity threshold Ithres reduces the dynamic range of the intensity fluctuations and
therefore the Hölder exponent gets smaller as for analysing all intensity values.
The delocalized photon modes however dominate the multifractal analysis as can
been seen calculating the singularity spectrum of a theoretical log-normal distri-
bution comparable to the localized part in the measurements. The theoretical
log-normal distribution with a maximum intensity of max(I/ < I >) ≈ 6.5
and a mean value of 1 has a broadened singularity spectrum and a maximum
αlog = 2.024. The shift of αlog to a higher singularity strength indicates local-
ized photon modes within the thereotically assumed distribution. Furthermore,
it confirms the problem of multifractal analysis concerning mixed intensity dis-
tributions.

In conclusion, the multifractal analysis is not a tool which is suitable for the
classification of the localization strength for a mixed system of localized and
delocalized states.
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3.3 Temporal structure of the electric field

After the experimental verification of the spatial localization of photon modes
within the 30nm thin ZnO nano-needle array, the distinct modification of the
temporal structure of the local electric field will experimentally be verified. Lo-
calization induced by multiple scattering must be accompanied by a distinct
modification of the temporal structure of the local electric field as theoretically
demonstrated by Stockman [27]. The multiple scattering results in a superpo-
sition of different modes j at the resonance frequencies ωj . The electric field is
then described by

~E(~r, t) =
∑
j

~Ej(~r)e
−iωjt−γit (3.8)

with the decay constant gamma = 1/τ which is related to the lifetime τ of the
mode. The lifetime of the localized photon modes will be investigated exper-
imentally in this section. Due to the short lifetime of localized photon modes
in nano-structures, a technique which provides femtosecond time resolution is
necessary. Therefore, the set-up is modified to a time-resolved ultra fast SH mi-
croscope by using interferometric frequency resolved autocorrelation (IFRAC).
The measured time traces are compared to calculations by optical Bloch equa-
tions to analyse the temporal structure of the localized photon modes. This
technique allows to spatially resolve the lifetimes of local photon modes with
femtosecond time resolution and on sub-wavelength length scales. In addition,
the deduced lifetimes of localized photon modes within the ZnO needle struc-
tures are verified by theoretical time resolved FDTD calculations.

3.3.1 Experimental Set-up

In order to verify the prediction of enhanced lifetimes of localized electric fields,
the SH microscope set-up has been expanded by a Mach-Zehnder interferometer,
shown schematically in figure 3.22. First order IFRAC measurements based on
the linear emission at the fundamental wavelength does not deliver informa-
tion about the spectral phase [88]. The SH microscope in combination with
the interferometer is therefore particularly well suited. By detecting the SH,
the set-up provides insight to the spectral phase of the electric field [88] and
therefore allows a complete characterization of the local electric field on spatial
scales of 500nm.
Within the set-up, dispersion controlled 6 fs laser pulses are split into pulse pairs
using a Mach-Zehnder interferometer. It consists of two beam splitters (Femto-
lasers Dielectric 50% beam splitters sub 7 fs p-polarized (FO002)) and a variable
delay τ with a precision of 50 as. The pulse pair is focused onto the sample by
the allreflecting objective and the light emitted from the sample is then de-
tected in reflection geometry. It is, therefore, separated from the fundamental
wavelength by a cold mirror, spectrally resolved in the monochromator (Acton
2500i) and detected with the liquid-N2 cooled CCD camera (Ropers Scientific).
By using this experimental set-up, the emission from the sample is detected
spectrally resolved as a function of the time delay between the pulse pair at
different emission spots on the sample.
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Figure 3.22: a Schematic illustration of the experimental set-up: Ultrashort,
dispersion-controlled 6 fs laser pulses are splitted into pulse pairs in a dispersion-
balanced Mach-Zehnder interferometer. They are then focused onto the sample
by the allreflecting objective. The emitted light from the sample is detected in
reflection geometry, separated from the fundamental light by a dichroic mirror
and spectrally resolved using a monochromator in combination with a CCD-
camera. The temporal resolution of the set-up is proven by the interferometric
autocorrelation (IAC) trace of the focused pulses in the focal plane of the objec-
tive shown in the inset. The measured IAC trace (black solid line) is compared
to a dispersion-free IAC trace (red dashed line), simulated by using the measured
spectrum (inset).
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3.3.2 Interferometric Frequency Resolved Autocorrelation

In order to demonstrate the enhanced lifetimes of localized photon modes at
spatial hotspot positions, the interferometric frequency resolved autocorrelation
(IFRAC) method at the SH frequency is used. Therefore, in a first step, the SH
spectra from a beta barium borate (BBO) crystal as a function of the time delay
τ between the pulse pair are recorded spectrally resolved. The BBO crystal is
well-suited for the temporal characterization of ultrashort laser pulses due to its
high optical nonlinearity and its very rapidly decaying induced polarization. The
thickness of the BBO strongly influences its spectral acceptance. To measure
ultrashort laser pulses, thin crystals are necessary [88]. Therefore, a 10µm thin
BBO crystal is used to measure the electric field within the focal plane of the
set-up, which serves as a reference in the following.

The recorded interferometric frequency resolved autocorrelation (IFRAC)
trace IIF (λ, τ) of the BBO is shown as a function of the wavelength λ and the
time delay τ in figure 3.23a. The retrieval of the real value of the electric field

Figure 3.23: a IFRAC trace recorded by using a 10µm thin BBO crystal. b
Retrieved real value of the electric field using a commercial FROG algorithm.
c Spectral phase (blue) and intensity (red) at the fundamental wavelength.

from the IFRAC trace requires the analysis of the amplitude and the spectral
phase. A direct solution to this problem does not exist. So an iterative procedure
based on the minimization of the discrepancy between a simulated IFRAC trace
and the measured trace by adjusting the spectral phase is used [88]. Therefore,
a commercial FROG algorithm2 is used. The IFRAC trace can be decomposed
by a Fourier transformation to its frequency components as described in section
2.4. The spectral phase can be reconstructed from each of the spectral bands.
However, the commercial algorithm retrieves the electric field based on the ana-
lysis of the DC base band. The DC base band, the signal around zero frequency
in the Fourier transform, is therefore isolated by a super Gaussian filter in the
Fourier transformed IFRAC trace ĨIF (λ, ν) = 1√

2π

∫
IIF (λ, τ)e−2πντdτ . By

isolating the DC base band, this results in the known frequency resolved optical
gating trace (FROG)[73] allowing the use of the commercial retrieval procedure.

The retrieved electric field at the fundamental wavelength is shown in figure
3.23b. A pulse duration of 6.5 fs (FWHM) is estimated from the envelope of the
electric field structure. An almost flat spectral phase, shown together with the
fundamental spectrum in figure 3.23c, allows the conclusion that the electric
field measured for the BBO is essentially the one of the bandwidth limited laser

2FROG Version 3.2.2 Femtosoft Technologies
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pulse.
In a second step the temporal evolution of the local electric field is inves-

tigated at different spatial positions on the sample of 30nm thin ZnO nano-
needles. Two positions are chosen as an example to determine the lifetime of
the local electric field: a position outside and a position inside a hotspot. The
resulting IFRAC traces IIF (λ, τ) are shown with the IFRAC measurement of
the BBO crystal, which acts as a reference, in figure 3.24a-c. A comparison of
the measured IFRAC traces with each other along the time axis shows hardly
any obvious change. However, strong changes along the spectral axis can be seen
when comparing the different traces. The spectral width clearly differs for the
three shown cases. For the BBO, the emission ranges from 345−450nm, whereas
it decreases in a position outside of a hotspot to 350 − 440nm. In a position
within a hotspot, it is even more decreased and ranges only from 360− 425nm.
Although the differences of the IFRAC traces along the time-axis seem to be

Figure 3.24: Recorded IFRAC traces IIF (λ, τ) exciting the different samples
with a 6 fs pulses focused to 1µm as a function of the time delay between the laser
pulses. a: IFRAC trace of the 10µm thick BBO which acts as a reference. b:
IFRAC trace at a position outside a SH hotspot. c: IFRAC trace at a position
inside a SH hotspot. d-f : Interferometric autocorrelations deduced spectrally
integrating the corresponding IFRAC traces. The non Gaussian spectrum of the
incident laser pulse leads to slight beatings between 10 and 20 fs time delay. g-i:
Corresponding Fourier transforms of the IFRAC traces along the time axis. The
decreasing spectral width from a broad spectral emission for the BBO towards
a narrow spectral emission width is marked by red ellipses. [97]

marginal, they are analysed in more detail by calculating the interferometric
autocorrelation trace (IAC) IIAC(τ) =

∫
IIF (λ, τ)dλ. The resulting IAC traces

are shown in figure 3.24d-f. The IAC of both ZnO measurements show slight

70



additional oscillations at around τ = 20 fs which are more pronounced compared
to the reference IAC of the BBO crystal. The enhancement of a IAC trace ζ
is described by the ratio of the emitted intensity at perfect temporal overlap
of the pulse pair I(τ = 0) and the intensity emitted individually of each of
the two laser pulses separated by a time delay I(τ → ∞). The enhancement
is an important factor to verify the nonlinearity b of the emission process. By
considering the relation I ∝ |E|2 of the electric field E and the influence of the
nonlinearity, the enhancement is defined by

ζ(b) =
I(τ = 0)b

I(τ →∞)b
=

(2E)2b

E2b + E2b
= 22b−1 . (3.9)

The enhancement value known from the literature based on a second harmonic
process ζ(2) = 8 [88] fits perfect to the deduced enhancement of the BBO IAC
trace ζBBO = 8. The enhancement of the IAC-trace for the position outside of
the hotspot ζout = 7 is slightly less compared to the BBO. However, the IAC for
the hotspot position shows the largest enhancement of ζhot = 13 compared to
the reference. This behaviour is due to a higher nonlinearity. In addition, the
IAC at a hotspot position looks shorter in time as the reference. This behaviour
is owned as well by the higher nonlinearity.

In order to analyse this behaviour in more detail, the whole IFRAC trace
is analysed. Therefore, the Fourier transforms along the time axis ĨIF (λ, ν)
with the delay frequency ν is calculated and plotted on a logarithmic intensity
scale in figure 3.24g-i. It provides a more detailed analysis of the recorded
spectra. A closer look to ĨIF (λ, ν) shows additional incoherent emission from
the ZnO samples. The incoherent emission is indicated (see section 2.4.1) by the
appearing vertically aligned lines in figure 3.24h and i. They are not observed
in the Fourier transform of the BBO IFRAC in g. The incoherent emission
is influences the retrieval of the fundamental electric field as it is in the same
spectral area as the coherent SH emission. The retrieval of the electric field
structures for the ZnO measurements is therefore much more complicated, since
the spectral emission is accompanied by the incoherent emission from the band-
gap transition and green photoluminescence. Both processes are known to occur
in ZnO [71]. The incoherent influence, which changes the enhancement to ζhot =
13, is sufficiently strong to make the commercial retrieval procedure vulnerable.

However, the change from a broad spectral emission from the BBO crystal
towards a narrow spectral emission for the position within the hotspot can be
used to deduce the lifetime of the electric field, since the spectral width is asso-
ciated with the lifetime of the electric field as long as a pure coherent process
is assumed. The strong reduction of the coherent spectral width of the hotspot
emission is already a signature of the increased lifetime of the localized photon
mode within the random array of ZnO nano-needles. Therefore a retrieval pro-
cess based on the spectral width of the measured emission spectra is favoured,
which will be explained in the following.

Retrieval of the local electromagnetic field by using optical Bloch
equations

To describe the experimental results presented in the previous section, and in
particular to retrieve the time structure of the local electric field inside the 30nm
thin ZnO nano-needle array, an optical Bloch equation model for the interaction
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of the incident light field with a single localized mode is introduced. We im-
plicitly assume that the spatial resolution of the experiment is sufficiently high
such that the collected SH signal is mainly emitted from this individual mode
that couples to the incident light. We will later on (section 3.3.3) verify this
approach by comparing the results of the model to numerical three-dimensional
FDTD simulations of the nonlinear response of such a nano-needle array. In this
model, the coupling of the localized light mode to the ZnO needle is treated in
a very phenomenologized picture. It is treated as an effective two level system
with an energy difference corresponding to the band gap of ZnO. The retrieval
of the local electric field is based on the light-matter interaction described by
optical Bloch equations introduced in section 2.3. The two-level system consists
of a ground |0〉 and an excited state |1〉. In order to describe the nonlinear two-
photon excitation process, the Hamilton operator H1 with a generalized Rabi

frequency Ω = d
(2)
01 E(t)2/~ (equation 2.63 and 2.68) is used to match the exper-

imental results. The resonance frequency of the ground state is set to ω0 = 0.
By using this simplified model based on optical Bloch equations, the lifetime of
the optical mode T1 and the resonance frequency of the excited state ω1 are the
only free variables to match the experimental results.

A change of the resonance frequency ω1 leads to a shift of the spectrum
and changes also the coupling efficiency of the incident electromagnetic wave
to the excited state. However, the depletion of the ground state is avoided

by controlling the strength of the nonlinear dipole-operator d
(2)
01 . Best spectral

match to the measured emission spectrum of the BBO and ZnO samples is
achieved by setting ω1BBO

= 2.0 · ωL0
and ω1ZnO

= 2.2 · ωL0 with ωL0 as the
central angular frequency of the incident laser spectrum shown in the inset of
figure 3.22. The same spectrum is used to calculate the incident electric field
which couple to the two level system. Within this calculation, the spectral
phase is assumed to be flat, which results in a Fourier-limited laser pulse with a
pulse duration of 6 fs. This assumption is satisfied by the IFRAC measurement
of the BBO crystal with an almost flat spectral phase shown in figure 3.23.
Furthermore, the light matter interaction is treated in a semi-classical way.
Therefore, the incident electromagnetic field is assumed to be sufficiently strong,
not to be influenced or changed by the interaction with the two level system.
The lifetime T1 of the mode strongly influences the polarization of the excited
state, which is described by the density matrix element ρ01(t). The electric field
at the SH frequency emitted by the two-level system is calculated by using the
relation

ESH ∝ ρ01 . (3.10)

Therefore, the lifetime of the excited state has a direct influence on the spectral
width of the generated electric. The envelope of the electric field at the SH
frequency

S(t) =
√
ESH(t) · ESH(t)∗ (3.11)

is calculated by using the complex conjugated electric field E∗SH . Together
with the phase φSH(t) and the central frequency ωL0

, it allows a complete
characterization of the electric field at the SH frequency

ESH(t) = S(t) · exp(−iφSH(t)− i · 2ωL0
t) . (3.12)

The retrieved complex electromagnetic field already contains all necessary in-
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formation to calculate the field at fundamental frequency. The phase

φSH(t) = arctan

(
Im(ESH(t))

Re(ESH(t))

)
− 2ωL0

t (3.13)

can be deduced by using the real and imaginary part of ESH and subtracting
the fast oscillating term at the central frequency of the SH. The knowledge
about S(t) and φSH(t) allows to calculate the electric field at the fundamental
wavelength by using

E(t) =
√
ESH(t) =

√
S(t) · exp(−i(φSH(t)/2)− i · ωL0

t) . (3.14)

The electric field at the fundamental frequency is the result, we are finally
interested in. It describes the lifetime of the local photon mode. In order to
compare the calculated electric fields to the measurements, the spectrum ISH
has to be calculated based on the time dependent field ESH(t). The spectrum

ISH(ν) = FFT(ESH(t)) · (FFT(ESH(t)))∗ (3.15)

is obtained by the squared value of the Fast Fourier Transformed (FFT) elec-
tric field at the SH frequency ESH(t) and its complex conjugated. For a direct
comparision with the experimental spectra, it is transformed to the wavelength
domain ISH(λ).
The solution of the optical Bloch equation delivers best spectral match by set-
ting the lifetime of the excited state to T1BBO = 1 fs, T1outside = 3.5 fs and
T1inside = 6.5 fs for the three different cases. This corresponds to the dephasing
times of the polarization of T2BBO = 2 fs, T2outside = 7 fs and T2inside = 13 fs.
The corresponding real parts of the electric fields at the SH frequency ESH(t) for
the three different retrieval calculations are shown together with the envelope
S(t) in figure 3.25.

Figure 3.25: Real parts of the normalized electric fields at the SH frequency
(black line) and the envelope S(t) (red line) for (a) the BBO crystal with a
lifetime of the photon mode of T1 = 1 fs, (b) a position outside of a hotspot
with T1 = 3.5 fs and (c) for a position inside of a hotspot with T1 = 6.5 fs.

In a next step, the optical Bloch equations are solved for each time delay
τ of the pulse pair Ep(τ) = E(t) + E(t + τ), generated in the interferometric
autocorrelator. Again the spectrum ISH(λ) is deduced at each time delay, which
finally results in the IFRAC trace IIF (λ, τ). The IFRAC trace is individually
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calculated for each of the three measurements, represented by the three popu-
lation lifetimes T1 of the excited state. The calculated traces IIF (λ, τ) for the
BBO, a position outside and a position inside of the hotspot are shown together
with the Fourier-transformed IFRAC traces ĨIF (λ, ν) and the corresponding
real parts of the electric fields at the fundamental wavelength in figure 3.26.
As in the experiment, the retrieved IFRAC traces IIF (λ, τ) show a decreasing

Figure 3.26: a-c Calculated IFRAC-traces IIF (λ, τ) retrieved by solving a two-
photon excitation of a two-level system by an ultrashort laser pulse using optical
Bloch equations. The dephasing time T2 is adapted to match the experimental
data in 3.24g-i for (a) the BBO crystal with a lifetime of the excited state
of T1BBO = 1 fs, (b) a position outside of a hotspot with a dephasing time of
T1outside = 3.5 fs and (c) for a position inside of a hotspot with T1inside = 6.5 fs.

d-f The corresponding calculated Fourier-transforms ĨIF (λ, ν) of the IFRAC-
traces IIF (λ, τ) are plotted on a logarithmic intensity scale. The change in the
emitted spectral width from a broad spectral emission for the BBO towards a
narrow emission width for a position inside of a hotspot is clearly visible. g-i
Normalized real parts of the electric fields at the fundamental frequency. For the
hotspot position in i the electric field persists for approximately 20 fs (FWHM).

spectral width from a broad spectral shape for T1BBO = 1 fs towards a narrow
spectral emission for T1inside = 6.5 fs, which correspondes to the hotspot po-
sition. The retrieved spectral width, as well as the central frequency matches
quite good to the experimental results. In contrast to the experimental traces,
the retrieved traces show only coherent SH radiation.
The retrieved electric field corresponding to the BBO measurement results in a
pulse duration of approximately 6.5 fs (FWHM). This value and also the tempo-
ral structure of the deduced electric field are in good agreement with the results
obtained by using the commercial FROG algorithm in figure 3.23. Both meth-
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ods show the electric fields of a nearly bandwidth limited laser pulse attesting
the retrieval method based on optical Bloch equations to be functional.
The retrieved electric field at fundamental frequency for the case of T1outside =
3.5 fs already shows an increased lifetime of the photon mode in contrast to
the BBO measurement. The amplitude of the envelope of the electric field
shows an exponential decay on a time scale of approximately 10 fs (FWHM).
This behaviour is even stronger for the case of T1inside = 6.5 fs. In that case,
representing the hotspot emission, the envelope of the electric field shows an
exponential decay on much longer time scales of approximately 20 fs (FWHM).

The origin of the increased lifetime of the electric field is based on the life-
time of the excited state T1. T1 = T2/2 induces a loss of coherence which
is implemented in the shape of the envelope S(t). The increased lifetime of
the electric field is not based on dispersion. Within the retrieval procedure, no
sources of dispersion are involved. Dispersion effects of the ZnO itself however
would result in an even longer lifetime of the electric field. The lifetime of the
localized photon mode can be used to estimate the numbers of scattering events
within the ZnO nano-needle array. By assuming elastic scattering within the
sample, the increased lifetime of up to 20 fs corresponds to a random propa-
gation within the needle array of approximately 6µm. The average distance
between the scatterers of approximately 100 nm results in approximately 60
scattering events. In combination with the small needle diameter, the induced
dispersion is weak and can be ruled out to be an explanation for the increased
lifetime at the hotspot position.

The random alignment of the needles results in a large number of differ-
ent scattering trajectories. Each of the trajectories has its individual resonance
frequency, as explained in section 2.2.4, and therfore the corresponding pho-
ton modes show very different spectral shapes. This is another characteristic
signature of localizaion. In order to verify this behaviour, the spectral shapes
of the retrieved electric fields at the fundamental frequency are analysed and
shown in figure 3.27. The change in the spectral intensity distributions I(λ) for
the different photon modes is obvious. For the case of the BBO, the retrieved
spectrum IBBO(λ) is almost the spectrum of the incident laser pulse shown in
the inset of figure 3.6. In contrast, the spectra of the retrieved fields for the
ZnO sample Iinside(λ) and Ioutside(λ) differ dramatically from the spectrum
of the BBO measurement. Furthermore, Iinside(λ) clearly shows the localized
photon mode which mainly consists of the emission centered around 730nm,
which corresponds to the excited state described by 2.2ωL0 . Ioutside(λ). How-
ever, it shows additional spectral components due to the smaller value of T1.
This change of the spectral emission is in a good agreement to the observed
spectral shifts of the localized photon modes at the hotspot position and its
close surrounding shown in figure 3.13.

Unfortunately the spectrum of the incident laser pulse with a central wave-
length of 870nm is weak in the spectral region of the localized photon mode
observed at the hotspot position. Due to that, only a small fraction of the laser
pulse can couple to the localized photon mode and is localized within the nano-
needle array. However, absolute values of the coupling efficiency and the total
emitted SH intensity are not considered within the discussed retrieval proce-
dure of the photon modes lifetimes. Furthermore, the incoherent emission has
no influence on the retrieved lifetime by using the optical Bloch equation model.
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Figure 3.27: Spectral intensity distributions of the retrieved electric fields for a
the BBO crystal with a photon mode lifetime of T1BBO = 1 fs and a spectrum
that corresponds to the Fourier-limited laser pulse, b the ZnO sample for a
position outside of a hotspot represented by T1outside = 3.5 fs and a red-shifted
spectrum and c the ZnO sample for a position inside of a hotspot represented
byT1inside = 6.5 fs and a red-shifted narrowed spectrum.

This was verified by implementing a second excited state |2〉 with a spontaneous
relaxation to the ground state by using simply the population of the state and
a Lorentzian line shape fitting to the measured photoluminescence spectra (not
shown here).

Adjacent hotspots: In order to analyse the influence of a second spatially
confined emission spot within the optical resolution of the SH microscope on
the measurement, the model has been expanded to a 3-level system with two
excited states and a ground state. This allows simultaneous excitation of both
states. Both excited states are choosen to be energetically close to each other.
The resonance frequencies are set to ω1 = 1.93 · ω0 and ω2 = 2.08 · ω0. In order
to compare the results of the simulated two adjacent modes with the measure-
ments of the 30nm thin ZnO nano-needle array, a lifetime of the two excited
states of T1beat = 6.5 fs is used. The resulting Fourier-transform of the IFRAC
trace ĨIF (λ, ν) is shown together with the IAC IIF (τ) and the electric field E(t)
of the two adjacent modes in figure 3.28. The Fourier transformed IFRAC trace
ĨIF (λ, τ) shows clearly the two adjacent modes at slightly different wavelengths.
The corresponding IAC slightly shows a beating at a time delay of 15 fs. Fur-
thermore, the retrieved electric fields of the two competitive modes clearly show
a beating pattern due to the constructive and destructive interference of the two
modes. However, this beating pattern and the occurrence of different modes in
the IFRAC traces is not observed in the experiments. Even though a hotspot is
a rather rare event with a density of 0.3µm−2, the case of two spatially confined
localized photon modes within the optical resolution of the SH microscope, this
would result in a change in the IFRAC trace and a beating pattern of the electric
field due to a small shift in the Eigenfrequencies of both modes. The measured
IFRAC traces only show one localized mode. This allows the conclusion, that
we indeed mainly probe the emission of a single localized photon mode within
the optical resolution of the SH microscope. This statement is valid as long as
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Figure 3.28: a Fourier transforms ĨIF (λ, τ) of the calculated IFRAC-trace
IIF (λ, τ) on a logarithmic intensity scale calculated by using a two-photon ex-
citation in a three-level system by an ultrashort laser pulse using optical Bloch
equations. The two excited states are set to ω1 = 1.93ω0 and ω2 = 2.08ω0.
b IAC deduced by spectral integrating the IFRAC-trace I(λ, τ). The IAC is
showing a beating at approximately 15 fs. c Retrieved electric field of two ad-
jacent modes at a dephasing time of T2beat = 13 fs. The 2 modes are showing a
clear beat in the temporal structure of the electric field due to interference.

both modes do not have identical resonance frequencies. However, this is im-
probable concerning the random cavities (scattering trajectories) formed within
the needle array.

3.3.3 Temporal evolution of the FDTD

The temporal behaviour of the local electric field in randomly distributed cylin-
ders was again calculated by David Leipold.

In these three-dimensional FDTD calculations, the same geometric distri-
bution is used as for the calculation of the spatial localization. The ZnO nano-
needles are represented by cylinders with varying length between 0.9 and 1µm
along the z-direction in a three-dimensional distribution of the refractive index
n(~r). The length of the cylinders is varied to avoid direct reflection of the
flat caps of the cylinders. The cylinders (n=1.96) are embedded in vacuum
(n=1). A section of the spatial distribution of n(~r) is shown in figure 3.15a.
Above the cylinder array, a layer of vacuum containing the source plane of the
incident laser pulse (6 fs FWHM)is added. Periodic Bloch boundary conditions
in x- and y-direction (the in plane direction of the cylinder array) and strongly
absorbing uniaxial perfectly matched layer (UPML) are assumed in order to
avoid unwanted reflections at the boundaries [99].

Within the calculations using the FDTD method, it is possible to subtract
the incident field of the laser pulse. Therefore, only the localized electric field
as a function of the time can be shown. The temporal behaviour of the elec-
tric field E(~r, t) can be directly taken from the FDTD calculations. Within the
experiment, the SH is used to draw conclusions on the electric field at fundamen-
tal wavelength. Therefore, the experimentally deduced electric field Einside(t)
is compared with the calculated real part of the electric field within a certain
hotspot EFDTD(t) in figure 3.29. The temporal behaviour of the calculated
electric field shows an exponential decay which fits quite well with the exper-
imentally deduced lifetime in the hotspot of the 30nm thin ZnO nano-needle
array. However, in addition, the decay of the signal is superimposed by an oscil-
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latory beating pattern. The beating pattern is known from the previous section
to occur due to the constructive and destructive interference of spectrally sharp
adjacent Eigenmodes. The depicted temporal structure shows an increased life-

Figure 3.29: Comparison of the experimentally deduced lifetime of the real part
of the electric field at a hotspot position in the 30 nm thin ZnO nano-needle array
(red) with the theoretical FDTD calculation (black). The exponential decay of
the electric field calculated by the FDTD fits quite good to the experimentally
deduced electric field with an increased lifetime of 20 fs at FWHM. In contrast
to the experiment, the FDTD calculation shows a beating pattern induced by
the interference of adjacent modes.

time EFDTD(t) of approximately 20 fs (FWHM). Even longer lifetimes can be
observed within the simulation. The strength of the pronounced beating pat-
terns strongly depends on the spatial detection position of the electric field. To
examine this behaviour in more detail, the temporal behaviour of the calculated
electric field is examined for a fixed spatial position in the x- and y-direction.
The temporal evolution of the electric field is now obtained for different detec-
tion positions z, i.e the direction along the vertical axis of the cylinder array.
The electric field for different detection positions of z = 0.5µm, z = 1.0µm
and z = 1.5µm is shown in figure 3.30b at long times after the excitation to
rule out influences of the incoming and reflected laser pulse, which is not sub-
tracted in this case. The electric field shows strong changes as a function of
the z-position above the sample. For low values of z, the beating pattern in the
temporal evolution of the electric field is weak. Increasing the distance z, the
beating is more pronounced as shown in figure 3.30b. The Fourier transforms
along the time axis results in the spectral components which are shown as a
function of the wavelength in c. For low values of z, the spectrum mainly shows
a single dominant mode. When increasing the distance between the sample and
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the detection point, other modes contribute to the spetrum in addition to the
dominant mode. The different modes are interfering with each other resulting
in the temporal beating pattern of the electric field. For a larger distance of the
observation point, the number of modes increases, forming an inhomogeneous
broadend ensemble of modes as indicated in figure 3.30c.

The observed beating pattern for larger distances of the detection point
above the needle array is in good agreement to the calculated electric field of
two adjacent modes in figure 3.28. However, such a beating pattern is not
observed in the experiment. This supports the assumption, that the optical
resolution is sufficient to mainly probe a single localized mode.

Figure 3.30: a The electric field from the FDTD simulation is extracted at
different positions of z. b Temporal behaviour of the local electromagnetic field
deduced by FDTD calculation showing only a weak beating pattern for low
values of z and much more pronounced beating for large values of z. c Spectra
for the different spatial distances above the sample. For low values of z one mode
dominantes, whereas for large values of z an ensemble of modes is observed.

3.3.4 Spatial lifetime imaging of local photon modes

A central remaining question is the connection between the local emitted SH
intensity and the local electromagnetic field lifetime. Within the last section, it
has been demonstrated at certain spatial positions analysing the IFRAC trace,
that the lifetime of the local electromagnetic field within strongly SH active
spots is increased. Furthermore, a central result of the IFRAC measurements
and the retrieval procedure based on optical Bloch equations is that the local
emitted SH can well be described by the dephasing time T2 or the lifetime T1
of the excited state in a 2-level system.

The calculated IFRAC-traces have been matched to the spectral width of
the measured traces and can be used in general for the spatial imaging of local
photon mode lifetimes. However, the experimental complexity of these measure-
ments makes them rather time-consuming. Due to this, the spatial positions
obtaining the local lifetime of the photon mode by using IFRAC is limited.

In order to compare the local SH emission to the local photon mode lifetime,
a spatially resolved two-dimensional map of the local lifetime T1 for a detailed
statistical analysis is highly desirable. Alternatively to the measurement of an
IFRAC-trace at each spatial position, the spectral emission width, which is
associated to the lifetime, can be used to determine the photon mode lifetime.
This requires a single localized and fully coherent photon mode. If more than two
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modes are present, the temporal structure of the local electric field is strongly
influenced as shown exemplary in figure 3.28.

The present experimental results and the FDTD calculations mainly indicate
single localized photon modes. The experimental results (section 3.2.3) show
hotspot emission confined to an area of approximately 500nm with a contrast
of two orders in magnitude. This is already an indicator of a single localized
mode. Averaging over many adjacent modes would result in a spatial broadening
and a more homogeneous emission map. The FDTD simulations (section 3.3.3)
show a dominant mode for small distances above the needle structure. For larger
distances of the detection point, pronounced beating pattern are observed due to
the interference of different modes. The beating pattern is not observed within
the experiment. Therefore the detected spectral width of the coherent emission
is assumed to be from a single localized photon mode. In conclusion, the results
of the previous sections allow to assign the emission to a single localized mode
and therefore the local lifetime of the photon mode can be assigned to a spectral
width.

Therefore the optical Bloch equation is solved for discrete values of the life-
time of the excited state T1. This results in electric fields at SH frequency
ESH(t, T1). By using equation 3.15, the spectrum I(λ, T1) is calculated for
each electric field ESH(t, T1). The spectral width ∆λ at FWHM is deduced
from I(λ, T1). This results in a clear assignment of the spectral width to the
lifetime T1(∆λ). The relation T1(∆λ) for a single mode is shown in figure 3.31.
This relation T1(∆λ) directly allows the determination of the local lifetime of
the excited state from the emitted SH spectrum and therefore a connection to
the lifetime of the local photon mode. Unfortunately the emission from the

Figure 3.31: Connection between a distinct spectral width ∆λ at FWHM and the
lifetime of the photon mode T1 deduced by calculating optical Bloch equations
for different values of T1.

ZnO nano-needle array is not fully coherent. The emission is influenced by two-
photon induced photoluminescence from the band-gap transition in ZnO around
375nm and some weak green photoluminescence. A solution of this problem is
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explained in detail in section 2.4.1. Instead of measuring at each spatial position
an IFRAC trace, the measurement was performed using a fixed time delay of ap-
proximately 240 fs between the phase-looked pulse pair. This technique allows
to distinguish clearly between coherent SH emission and incoherent emission
from the sample. The coherent emission shows interference fringes depending
on the delay between the pulse pair whereas the incoherent emission does not
show, due to its random phase, such a behaviour. This is shown in the rep-
resentative local emission spectrum in figure 3.32. The pure coherent emission

Figure 3.32: a Emission spectrum of ZnO illuminated by phase-looked pulse
pairs at a time delay of approximately 240 fs. The coherent emission shows
interference fringes whereas the incoherent emission (green line) does not show
such a behaviour. b-c Representative coherent SH emission spectra deduced
from two different sample positions by spectrally filtering the incoherent emis-
sion from the total emission. The spectral width is afterwards used to deduce
the lifetime of the local photon mode. [97]

can be deduced by simply subtracting the incoherent emission (green line) by
spectral filtering from the total emission of the sample (red line) as explained
in 2.4.1. The resulting spectra only contains fully coherent emission and the
spectral width can therefore be used to deduce the lifetime of the local photon
mode neglecting dispersion. However, the dispersion is assumed to be weak
due to the small number of scattering events within the photon mode lifetime
and needle diameters in the sub-µm region. By raster-scanning the thin ZnO
nano-needle array with a fixed time delay, maps of the emitted coherent spectral
width are recorded. By considering the relation T1(∆λ) illustrated in figure 3.31
the lifetimes of the local photon modes were deduced from the measurement.

The deduced lifetime map of T1(x, y) in combination with the local SH
intensity ISH(x, y) is shown in figure 3.33. The deduced lifetime of the localized
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Figure 3.33: aMap of the spectrally integrated SH intensity ISH normalized to
the mean SH emission < ISH > and b the corresponding map of lifetimes T1 of
the local photon mode. The map of the photon mode lifetime shows fluctuations
between 2− 8 fs. The correlation between the intensity of the local SH and the
lifetime is hardly visible, even in the magnified image with the red dashed circles
illustrating the hotspot positions, shown in c and d, respectively.
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photon modes T1(x, y) shows fluctuations between 2− 8 fs. These fluctuations
also occur on spatial scales of 500nm determined by the optical resolution of
the SH microscope.

The spectrally integrated map of the SH intensity can now be compared to
the lifetime of the local photon modes. Looking in more detail to the spatial
intensity distribution and photon mode lifetimes in the magnified image in figure
3.33c and d, the hotspot position, indicated by the red dashed circles, does not
show the largest photon mode lifetimes. Enhanced lifetimes of the photon modes
can be identified at hotspot positions of up to T1(21µm, 24.5µm) = 6.5 fs.
However, the largest photon mode lifetimes of up to T1(37µm, 29µm) = 8 fs
are deduced at a spatial position which does not show any strong SH emission.
Due to the multiply scattered waves and the constructive interference , the
local photon mode lifetime is expected to show an increased lifetime at the
hotspot position. In most of the spatial regions, the SH intensity seems to be
uncorrelated to the local photon mode lifetime. This weak connection between
the strongly localized photon modes within the hotspots and the lifetimes is
somehow unexpected. To further analyse this behaviour, the linear correlation
coefficient of two data sets, also called Pearsons value r, is calculated [96]. The
Pearson value r is calculated as follows

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
√∑

(yi − y)2
(3.16)

and describes the correlation between x and y with x, y the accordant mean
values. Pearsons r takes values between -1 and 1. If x and y are both increasing,
the Perason value becomes for a perfect correlation r = 1 (positive correlation).
If x decreases as y increases, it takes a minimum value of r = −1 and x and y
are anti-correlated. For Pearson values around zero, x and y are uncorrelated.

By calculating the correlation between the spectrally integrated SH emission
and the local photon mode lifetimes, the received Pearson correlation coefficient
is only r = 0.11. This supports the impression of the unexpectedly weak corre-
lation between SH intensities and lifetimes. However it can be understood by
taking a closer look at the measured intensity distribution of the 30nm thin
ZnO nano-needle array shown in the histogram in figure 3.18. The histogram
shows two different components. One component is the Gaussian distribution
centered around I/ < I >= 1. It describes the delocalized states, most of the
intensity values belong to. The second component resembles a log-normal dis-
tribution for larger values of I/ < I >. This has been assigned to the localized
photon modes. Therefore it is not remarkable that the correlation is weak. A
correlation between strong SH intensities and enhanced lifetimes is just expected
for the localized photon modes.

By restricting the calculation of the correlation coefficient to the localized
photon modes that exceed a certain intensity threshold Ith, the correlation dras-
tically increases. At approximately Ith = 3· < I > the correlation coefficient
reaches a plateau as indicated by table 3.1 and figure 3.34.

The restriction of the calculation of the Pearson value to intensity values
above a intensity threshold clearly shows a correlation between the local spec-
trally integrated SH intensity and the local photon mode lifetimes. The max-
imum correlation value of r = 0.65 at approximately 4· < I > confirms the
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Ith residual Datapoints Pearson value r
2· < I > 465 /14641 0.31
3· < I > 174 /14641 0.57
4· < I > 80 /14641 0.64
5· < I > 38 /14641 0.63

Table 3.1: Correlation coefficient r as a function of the threshold intensity Ith
with the number of residual data points.

strong correlation of SH intensities and photon mode lifetimes. At 4· < I > still
sufficent datapoints are left allowing this kind of statistical analysis.

Figure 3.34: Correlation coefficient r (Pearson value) between the SH intensity
and the local photon mode lifetime as a function of the SH threshold intensity
Ith. For low threshold values the correlation is weak. The correlation drastically
increases when increasing the threshold and reaches a plateau of approximately
r = 0.65.

The physical explanation of this behaviour can not unambiguously be an-
swered. One assumption is based on the sample characteristics. The sample is
produced by MOVPE using a two temperature growth technique. This results
in a bottom layer of 100nm thick needles with the small needles on top. Lo-
calized photon modes are not observed within the array which conisists only of
the thick nano-needles. Localized modes have only been observed in the sample
with additional 30nm thin ZnO nano-needles on top. The investigation of the
bottom layer showed only delocalized photon modes. Therefore the strong back-
ground influencing the correlation of SH intensities and photon mode lifetimes
might originate in the delocalized modes from the bottom layer of thick needles.
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Chapter 4

Influence of the geometric
sample properties on the
localization behaviour

In this chapter, the influence of the structural properties of ZnO nano-needles,
i.e. the needle size and its density, on the localization of light is investigated in
detail. For obvious reasons, both parameters have a major impact on the ability
of the sample to store electromagnetic waves.
In the first step, we therefore studied different samples by using scanning elec-
tron microscopy (SEM). The characteristic sample properties are presented in
section 4.1.
In a second step, ultra-broadband coherent SH microscopy is used to investigate
the localization in the different samples. The fluctuations of the SH emission
are then taken as a quantitative signature to classify the localization strength.
Therefore, the statistical study of these fluctuations is compared to results based
on a single parameter scaling theory. In addition, spatial correlation functions
of the SH emission from the disordered ZnO nano-needle arrays are analysed
(section 4.2). The experimental results are afterwards validated by a theoretical
calculation based on a ”dipole-dipole interaction” model (section 4.3). Finally,
the experimental results are compared to FDTD simulations of the local three-
dimensional electric field intensity inside the sample (section 4.4).

4.1 Sample characterization by SEM

The size of a nano-object strongly influences the optical properties [100]. In
this chapter, we are especially interested in the correlation between the size of
randomly arranged ZnO nano-needles and the intensity of the locally emitted
SH.
In order to analyse these correlations, samples with different needle diameters
and needle densities have been studied. They are characterized in terms of the
geometric sample properties by using a SEM. In figure 4.1 SEM images of the
investigated samples are shown. The geometric properties of such samples are
deduced from the SEM images and presented in the tabular overview 4.1.

85



Figure 4.1: SEM images of different ZnO nano-structures taken at an angle of
incidence of 52◦. a ZnO nano-needles with an average diameter of d1 = 45nm, a
length of approximately l1 = 500nm and an average distance of approximately
D1 = 100nm produced by a two-temperature MOVPE method (referred to
as Sample 1). b ZnO nano-needles with a diameter of d2 = 200nm, a length
of approximately l2 = 2µm and an average distance between the needles of
about D2 = 1100nm produced by PVD (referred to as Sample 2). c Random
distribution of cones. The cones are slightly overlapping. This results in average
diameters and distances in the 100nm range (referred to as Sample 3).

diameter d distance D length l density %
Sample 1 45nm 100nm 500nm 60µm−2

Sample 2 200nm 1100nm 2000nm 1.8µm−2

Sample 3 100nm 100nm 500nm 60µm−2

Table 4.1: Tabular overview of the geometrical properties of the investigated
samples deduced by SEM.
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Sample 1, shown in figure 4.1a, is produced by using the two-temperature
MOVPE growth technique [86] with a needle density of %1 = 60µm−2.
The second sample in b shows much larger and longer needles compared to
Sample 1. It has been fabricated by using a physical vapour deposition (PVD)
process and consists of a homogenous distribution of ZnO needles [101]. The
density has been determined to %2 = 1.8µm−2.
Sample 3 is also produced by the MOVPE growth technique. However, in com-
parison to Sample 1, only a single temperature is used. The geometric shape
of the needles is very different from that of the other samples. Therefore, the
determination of the geometric properties is difficult. The structure does not
consist of individual needles and can be described best by an ensemble of par-
tially overlapping, randomly distributed cones with a diameter at the bottom
of approximately 100nm and a density of %3 = 60µm−2.

4.2 Experimental results

In order to classify the loclaization, the following experiments are performed
with the same experimental set-up (see figure 3.6) as in the previous chapter.
Therefore the SH spectrum is measured as a function of the excitation position
of the ultra-broadband few-cycle light pulses. The laser pulses are linearly p-
polarized with an angle of incidence of 60◦ degree with respect to the sample
normal. This ensures that a sufficiently large component of the incident electric
field is polarized along the long needle axis. The SH microscope is used in com-
bination with the interferometric autocorrelator (IA) in order to concentrate on
the coherent emission from the samples as explained in detail in section 2.4.1.
By keeping the time delay of the phase locked pulse pair at a fixed time delay of
120 fs, the coherent SH light from the sample shows characteristic oscillations,
which are spectrally related to the time delay. At each position, the coherent
emission is extracted and the complete background free signal is spectrally in-
tegrated. This results in a map of the local SH intensities. The spatial SH
intensity distributions of the three investigated samples are shown in figure 4.2.
The applied pulse energy of the laser was kept at only 20 pJ for all the mea-
surements, which is well below the damage threshold.

The intensity scale for all three images was choosen to be normalized to the
average SH intensity < ISH >. The mean SH emission < ISH > from the thin
ZnO nano-needles of Sample 1 is slightly weaker compared to the mean emission
from Sample 2 and 3. Sample 2 and 3 show comparable emission intensities.
To quantify the intensity fluctuations, the enhancement factor κ, defined by
equation 3.4, is analysed for all samples. This factor is taken as a measure for
the intensity fluctuations of the SH emission. The smallest value of κ3 = 3 is
determined for the ensemble of cones in Sample 3. In addition, the emission
spots in this sample are extended over areas with diameters of approximately
3.5µm (FWHM). In contrast to that, the emission from Sample 2 is spatially
more confined. The typical spot sizes are only 500nm (FWHM) in diameter
limited by the optical resolution of our microscope. Furthermore, the enhance-
ment of κ2 = 5 is bigger compared to Sample 3. However, the largest value of
the enhancement κ1 = 33 is observed for Sample 1, with emission spots spatially
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Figure 4.2: Local SH intensity map ISH(x, y) measured by using SH microscopy.
The upper image of each sub-figure shows the color coded three-dimensional
distribution of the SH, while the lower image shows the corresponding two-
dimensional pattern. The height of the maxima within all images represent the
overall SH intensity normalized to the individual average SH emission. However,
the color code for each measurement was choosen independently. a Sample 1
shows the highest fluctuations of the SH intensity which results in the largest
enhancement value of κ = ISHmax

/ < ISH >= 33. Sample 2 and 3 show much
weaker fluctuations resulting in b κ2 = 5 and c κ3 = 3. Sample 1 and 2 show
very small emission spots with an extension of 500 nm. This spot size is limited
by the microscope resolution. In Sample 3, considerably larger emission spots
are observed, with an average extension of about 3.5µm.
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confined to 500nm in diameter (FWHM).

In a further step, the spatial emission characteristics are analysed by calcu-
lating the spatial autocorrelation CS as introduced in section 3.2.3. In order
to calculate CS , a two dimensional zero-padding is applied to the spatial SH
intensity maps. This allows to apply the formalism described by equation 3.5 to
calculate CS for a spatial shift along the x-axis ∆x and the y-axis ∆y for each
of the three samples. The deduced autocorrelations CS are shown in figure 4.3
for all samples. Each of the samples show almost the same characteristics in the

Figure 4.3: Spatial autocorrelation function CS of the three samples as a func-
tion of the spatial shift along the x-axis in a and along the y-axis in b of the
two-dimensinal intensity distribution.

cases of a shift along the x- and the y-axis. Therefore the analysis of the spatial
autocorrelation is reduced to the x-axis in the following. The autocorrelation
function of Sample 1 clearly shows a peak at around ∆x = 0 with a FWHM
of ∆CS1 = 1.6µm, i.e. slightly more than twice the spatial resolution of our
microscope. This behaviour indicates, that not all emission spots on the sample
are confined to 500nm. This results in a spread of CS . There are only weak
indications for longer range correlations among the emission signals indicated
by the rapid decrease of CS . From these autocorrelation plot it appears that
the emission in Sample 1 stems mainly from spatially isolated hotspots with an
emission size essentially given by the spatial resolution of the SH microscope.

Also Sample 2 shows a clearly resolved emission peak giving rise to a spike
with a resolution-limited width in the autocorrelation function around ∆x = 0.
For this sample, however, the peak is superimposed on a much broader spatial
autocorrelation peak with a width of about ∆CS2 ≈ 25µm. This indicates that a
clear isolation of the emission from a single hotspot is difficult for Sample 2. The
background in the autocorrelation trace can have two different physical origins:
the spatial resolution of our microscope is either not sufficient to spatially resolve
the emission from isolated hotspots or the light scattering in Sample 2 results in
localized modes with a typical spatial extent that is larger than the microscope
resolution.
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Figure 4.4: Histograms of the two-dimensional intensity distributions at fun-
damental frequency in combination with the distribution of the corresponding
single scaling parameter g that were derived from the theory in section 2.2.5.
For the reason of comparison, all three probability distributions are presented
on logarithmic scale and on the same scale of I/ < I >. a Probability distri-
bution of Sample 1. It consists of an Gaussian-distributed part described by
g = 5.6 and a log-normal distributed part. The slope of the log-normal dis-
tributed part fits best to g1 = 0.6. b The probability distribution of Sample
2 fits best to g2 = 5. c The ensemble of cones in Sample 3 shows the weakest
intensity fluctuations, which results in an almost Gaussian distribution and a
high single scaling parameter of g3 = 15.

Although, the hotspot emission in Sample 1 and 2 is confined on spatial
scales of 500nm in diameter, the shape of the spatial autocorrelation function
is much broader for Sample 2. This reflects the much weaker enhancement of κ2

compared to κ1. In Sample 1, the enhancement is sufficiently strong to dominate
the background emission.
Finally, in Sample 3, the spatial autocorrelation maxima around ∆x = 0 is
essentially completely suppressed and the autocorrelation function just shows a
broad background. Evidently, hotspot emission is essentially absent and mode
localization due to multiple scattering is weak.

In order to gain insight into the localization properties, the experimentally
determined SH fluctuations are compared to a statistical model introduced by
Nieuwenhuizen et al. [63], which is described in section 2.2.5. The model is
based on a single parameter scaling theory and discusses the correlation between
the statistical distribution of the local field intensities in a disordered medium
and the scaling parameter g. Values of g < 1 indicate localized photon modes,
whereas g > 1 describes delocalized photon modes as discussed in detail in
section 2.2.5. The probability distribution for a certain value of g is calculated by
using equation 2.40 and the generation of an incident Gaussian wave described
by equation 2.42.

The histograms at the fundamental frequency are now calculated from the
two-dimensional SH intensity distributions and are shown in figure 4.4 together
with the calculated distributions for the single scaling parameters g. The his-
tograms measured for Sample 2 and 3 are quite well reproduced by the Nieuwen-
huizen model when taking values of the scaling parameter of g2 = 5 and g3 = 15,
respectively. This indicates that both samples are clearly in the weak localiza-
tion regime.

The histogram measured for sample 1 is distinctly different. As already
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discussed in detail in section 3.2.5, it cannot be modeled within the Nieuwen-
huizen model by taking a single value for the scaling parameter. Rather, the
histogram consists of a quite broad Gaussian distribution and a well pronounced
exponential tail extending to an enhancement at the fundamental intensity of
Imax/ < I >≈ 6. The Gaussian part of the histogram is well described by
assuming a distribution with a scaling parameter of g = 5.6 whereas a value of
g = 0.6 is needed to reproduce the slope of the pronounced intensity fluctua-
tions in the exponential part of the histogram. Essentially, this indicates that
the bimodal distribution provides evidence that at least some of the localized
photon modes in this sample are in the strong localization regime. Their inten-
sity fluctuations are only understood by assuming a scaling parameter that is
close or below the transition from weak to strong localization. The additional
Gaussian distribution indicates that not all the photon modes are strongly lo-
calized. Some contribution stems from modes that are only weakly localized, as
described by the value of g = 5.6 needed to match the histogram.

The contribution of these weakly localized modes to the SH emission is
comparatively small. Since the field intensities of the weakly localized modes at
the fundamental laser wavelength are at least a factor of 3 smaller than those of
the most strongly localized, their SH emission intensity is more than an order of
magnitude below that of the strongly localized modes. Effectively, the weakly
localized modes in Sample 1 give rise to a weak background in the SH image
of Sample 1 in figure 4.2a. Clearly the SH image is dominated by the strongly
localized modes.

The measurements shown above clearly indicate, that the needles with diam-
eters of only 45nm and an average distance of only 100nm in Sample 1 showed
the strongest evidence for light localization. The 200nm thick nano-needles
with an average distance of approximately 1100nm in Sample 2 also showed
evidence for mode localization. However, the localization strength is signifi-
cantly lower. The photon modes within sample 3 are extended over several µm
with a high value of g. Therefore the ensemble of cones does not give rise to
pronounced mode localization.
In the following, a model is introduced in order to explain the different locali-
sation behaviour within Sample 1 and 2. This model is based on dipole-dipole
interaction after excitation by a constant electric field. Sample 3 is not consid-
ered due to the deviating shape.

4.3 Dipole-dipole interaction model

The experimental results of the previous section show strongly localized photon
modes within Sample 1, 45nm thin ZnO nano-needles with an average distance
of 100nm, whereas Sample 2, 200nm thick needles with an average distance of
1100nm, show only weakly localized photon modes.
In order to verify these experimental observation, a simple model related to
the approach of Novotny and Hecht [102] is presented, which is referred in the
following as ”dipole-dipole interaction” model (DDI model).

The idea of this model is the following: We assume that a single nano-needle
essentially acts as a dipolar light scatterer. Its scattering efficiency is given by
that of a dielectric cylinder with corresponding diameter d and length l. This
scattering efficiency for a incident plane wave, described by its field amplitude
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E0 and intensity I = 1
2cε0E

2
0 can be calculated using Mie theory. Herein, E0 is

the incident electric field. The results of this calculation then allow us to replace
the cylinder by a fictitious point dipole emitter with an induced dipole moment
~pi = αi · E0. Here, αi is the effective polarizability of the needle. The dipole ~p
acts as a source of an electric field ~Ei.
When assuming N cylinders/dipoles, the dipoles do not only interact with the
incident field E0 but also with the total electric field

Etoti (~ri) = E0 +

N∑
j 6=i

Ej(~ri) (4.1)

that can be written as a sum of the incident field E0 and the scattered electric
fields from the j-th cylinder. Thus the dipolar coupling between the needles
modifies the light scattering.
Effectively, this model corresponds to a discrete dipole approximation for the
scattering problem [104]. Here, however, the emphasis lies on analyzing the
effect of the average needle diameter and the distance. For this we focus on a
discussion of the most simple case of a pair of nano-needles. In this way, the
needles can be represented by dipolar scatterers with a polarizability α1 and α2

located at the positions ~r1 and ~r2.
A schematic illustration of the DDI model is shown in figure 4.5. The two

Figure 4.5: Schematic illustration of the used ”dipole-dipole interaction” model
of two identical cylinders. An incident electric field, described by its intensity
I0, is scattered at the cylinders placed at ~r1 and ~r2 . The scattered incident
light induces a dipole moment ~p1 and ~p2. Therefore each cylinder acts as the
source of radiation and emits an electric field Ei with a characteristic dipole
pattern illustrated by the colored background of the image for ~E1. The emitted
light from the first cylinder couples to the second cylinder at a distance D. In
the same way the emission of cylinder 2 can be described.

important variables are the distance D between the two cylinders and their

92



diameter d. The length l of the cylinders is kept constant for all different
diameters and distances for the reason of simplicity. The scattering cross section
Csca is depending on the cylinder diameter, whereas the distance between the
cylinders influences the electric field strength at the spatial position of the second
cylinder.
The calculation of the scattering cross section for a cylinder is following the
approach of Bohren and Huffman [108] and of van de Hulst [107], which is
discussed in detail in the appendix A. The scattering cross section

Csca = Qsca ·G (4.2)

is the product of the geometrical cross section G, i.e, the surface area of the
scattering object perpendicular to the incident light, and the scattering efficiency
factor Qsca. For a cylinder, the geometrical cross section is given by Gcyl = d · l.
The scattering efficiency factor for a polarization along the cylinder axis can be
written as [108]

Qsca ‖=
2

x

[
|b0|2 + 2

∞∑
n=1

(
|an|2 + |bn|2

)]
. (4.3)

The scattering coefficients an and bn are described by Bessel functions of the
first Jn or second kind Yn (also called Neumann function Nn) and the Hankel
function Hn. The Hankel functions however can be written as a linear combi-
nation of Bessel functions H

(1)
n = Jn + i Yn. The coefficents of order n

an =

(
Dn(mx)

m + n
x

)
Jn(x)− Jn−1(x)(

Dn(mx)
m + n

x

)
H

(1)
n (x)−H(1)

n−1(x)
(4.4)

bn =

(
Dn(mx)m+ n

x

)
Jn(x)− Jn−1(x)(

Dn(mx)m+ n
x

)
H

(1)
n (x)−H(1)

n−1(x)
(4.5)

are calculated by using the logarithmic derivative and the recurrence relation
as described in the appendix A. Herein, the value x = k · d2 = 2π

λ ·
d
2 denotes the

dimensionless size parameter and m the complex refractive index of the mater-
ial. The refractive index of ZnO is given by m = 1.95 + i0.0043. The imaginary
part describes the absorption and has an influence on the calculated scattering
cross section.
The calculated distribution of Csca(d)

vol using cylinders of unit length l normal-

ized to the volume vol =
(
d
2

)2 · π · l is shown in figure 4.6 for a polarization
along the cylinder axis. The wavelength was chosen similar to the central wave-
length of the experiment to λ = 870nm. The calculated scattering cross section
shows oscillations, which depend on the diameter of the scattering object and
therefore also on the used wavelength and the refractive index. These oscilla-
tions are known as geometric resonances [108]. The values taken for the thin
and thick cylinders corresponding to the experimentally deduced sample para-
meters and are marked by the red circle (Sample 1) and blue square (Sample
2). In case of Sample 2, a first geometric resonance slightly influences the Csca
value. However, the value of Csca

vol for the thick needles is at least one magnitude
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Figure 4.6: Calculated scattering cross section Csca for a polarization along
the cylinder axis normalized to the volume vol of a cylinder of unit length.
For the calculation, a wavelength of λ = 870nm and a refractive index of
m = 1.95 + i0.0043 was chosen. The values of Csca that correspond to the thin
needles (Sample 1) are marked by the red circle and by the blue square for the
thick needles (Sample 2).

larger compared to the value of the thin needles. Unfortunately, the asymptotic
behaviour of the scattering cross section

Csca
vol

∼ 4

π d2
(4.6)

described by Bohren delivers a discrepancy by a factor of two. Nevertheless, the
shape of Csca is in good agreement with the literature.

In the DDI model, an incident electric field with the intensity I0 and electric
field strength E0 is scattered by the nano-cylinders. Therefore the scattered
power

Pd(d) = I0 · Csca(d) (4.7)

can be calculated. The radiated power Pd of a classical dipole with the scalar
dipole moment p is given as

Pd(p) =
ω4

0p
2

12πε0c3
⇒ p(Pd) =

√
12πε0c3 · Pd

ω4
0

(4.8)

with ω0 being the resonance frequency of the dipole[105].
In general, the induced polarization depends on the total electric field described
by equation 4.1. Assuming only two cylinders within this approach, the electric
field from the second dipole at the spatial position of the first is orders of mag-
nitude smaller than the incident electric field, i.e. E2(~r1) << E0. Therefore the
calculation of the induced polarization is restricted to the incident electric field
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neglecting the influence of the adjacent dipole. In combination with equation
4.7, the induced dipole moment p1 of the first cylinder is calculated as

p1 =

√
12πε0c3 · I0 · Csca1(d)

ω4
0

(4.9)

with a polarizability of

α1 =

√
6πε2

0c
4 · Csca1(d)

ω4
0

. (4.10)

The induced dipole moment of the second cylinder is described by

p2 =

√
12πε0c3 · I0 · Csca2(d)

ω4
0

(4.11)

with a polarizability of

α2 =

√
6πε2

0c
4 · Csca2(d)

ω4
0

. (4.12)

First, we concentrate on the description of the first cylinder. Due to the induced
dipole moment p1 = p10 · δ(r1) at position r1, the first cylinder itself acts as a
dipole and therefore as a source of electromagnetic radiation.
The emitted electric field of a radiating single dipole, located at a spatial position
~ri, is described by [106]

~Ei(~ri, ~rj) =
1

4πε0

([
ω2

|~rj |c2
(~n× ~pi)× ~n

+ [3~n(~n~pi)− ~pi]

(
1

|~rj |3
− iω0

c|~rj |2

)]
eik|~rj |

)
eiω0|~rj |/c

= g(~ri, ~rj) · ~pi

(4.13)

with ~n =
~rj
|~rj | . It can be expressed by the product of the dipole moment

~pi = ~pi,0 · δ(~r − ~ri) and the transfer function g(~ri, ~rj) to any spatial observation
point ~rj .

Depending on the distance from the observation point ~rj to the emitting
dipole, the different contributions can be distinguished in (i) the long range far
field emission described by the first part of equation 4.13, which depends on
1
r , (ii) a near field contribution described by the second term, which depends

on ( 1
r3 ) and (iii) the radiation described by the term ik

r2 which is called the
intermediate field.

Within this model, the induced dipole moment at the first cylinder is as-
sumed to be oriented along the z-axis, ~p1 = p ·~ez. The second cylinder is placed
on the x-axis at distance D, aligned as well along the z-axis. Therefore, the
distance between both is described by ~r = D · ~ex. The strength of the electric
field emitted from the first cylinder depends on the dipole moment p1 and the
spatial position, i.e. on the distance and angle. The chosen geometry allows
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to represent the time-independent electric field E1~ez in the following in scalar
representation. This results in

E1(r1, D) =
1

4πε0

[
k2p1

D
− 3p1 ·

(
1

D3
− ik

D2

)]
eikD (4.14)

at the spatial position of the second cylinder.
To first approximation [103], the strength of the dipole coupling δij between

the two needles is then given by

δ12 =
p2 · E1(r1, r2)

~
(4.15)

and by

δ21 =
p1 · E2(r2, r1)

~
. (4.16)

In the following we concentrate on δ12. In the same way, the calculation can
be performed by using δ21. This coupling strength evidently depends on the
product of the polarizabilities of the two dipole emitters and on the distance D
between them.

The resulting two-dimensional distribution of the dipole coupling strength,
here taken as the absolute value of δ12, is shown as a function of the distance
D and the cylinder-diameter d in figure 4.7.

Not all combinations of distances between the needles and their diameter
are possible. Therefore the black area of δ12 indicates the parameter space, that
is geometrically forbidden. The absolute values of δ12 that correspond to the
different experimental conditions are marked by the red circle for Sample 1 and
by the red square for Sample 2. For sufficiently small distances, the contribution
of the near field dramatically dominates the electric field described by equation
4.14.
In contrast, at larger distances, the near field coupling rapidly decreases with
1/D3 and the electric field is dominated by the long-ranging far field that de-
pends on 1/D. The transition from near field to far field coupling, illustrated
in figure 4.7b is also effected by the needle diameter. In a first approximation it
occurs at D > d. The values of δ12 that correspond to the different experimen-
tal conditions are again marked by the red circle for Sample 1 and by the red
square for Sample 2. It clearly shows that the coupling in Sample 1 is mainly
achieved by near field coupling. In contrast, the average distance between adja-
cent cylinders in Sample 2 is too large for near field interactions. Therefore the
coupling between the cylinders in Sample 2 is based on far field coupling.
In order to quantify the difference in the coupling strength, the coupling strength
ratio Πmodel is defined by

Πmodel =
|δ12sample1|
|δ12sample2|

= 0.4 (4.17)

Since this value is smaller than unity, the coupling between the thin cylinders is
slightly weaker than for the thick cylinders. However, the values are in a com-
parable range which is really surprising due to the much larger scattering cross
section of the thick cylinders. This result is not influenced by the deviation of
the calculated scattering cross section from the its asymptotic behaviour, since
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Figure 4.7: a Absolute value of the coupling strength δ12 of two adjacent cylin-
ders calculated by using the ”dipole-dipole interaction” model. The coupling
strength is calculated as a function of the cylinder diameter d and the average
distance D between the cylinders. The excitation wavelength was chosen to be
λ = 870nm and the complex refractive index m = 1.95 + i0.0043 was used to
model the ZnO material. The corresponding coupling strength are drawn in the
plot based on the geometric parameters of the samples. Therefore the red circle
describes the coupling strength for Sample 1 and by the red square for Sample 2.
The black area indicates the parameter space, that is geometrically forbidden.
b Cross sections along the white dashed lines of a for Sample 1 (red line) and
for Sample 2 (black line). The distribution of the coupling strength δ12 shows
the transition from near-field to far-field coupling illustrated by the shaded area.
The corresponding distances are marked by the red circle for Sample 1 and by
the red square for Sample 2.
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both values of δ12sample are influenced by a factor of two.
Now the results from this easy model will be compared to the experimental find-
ings from section 4.2. The ratio of the experimental second harmonic enhance-
ment values κi of the measured intensities for thin and thick ZnO nano-needles
was determined to:

Π(SH)
exp =

κ1

κ2
=

33

6
= 5.5 (4.18)

This suggests that despite their much smaller scattering cross section, the near-
field coupling between the small cylinders in Sample 1 is sufficiently large to
result in a comparable or even larger dipolar coupling than between the large
cylinders in Sample 2.
However, for a direct comparison with the experiment, the dependence of the
nonlinearity of the SH measurement ISH ∝ E4 on the fundamental electric field
E needs to be considered. This results in a ratio of

Πexp = 4

√
κ1

κ2
= 1.5 (4.19)

which is already a quite good agreement between Πmodel and Πexp, although
using this simplified model of only two scattering events.

Nevertheless, multiple interaction, not only considering two cylinders, as in
the DDI model, should be considered. Therefore a different approach using
FDTD simulations is used in the following to verify the experimental results.

4.4 FDTD calculation

In order to analyse the coupling and the overlap of the spatial modes, a three-
dimensional FDTD calculation is performed. This allows to examine the local-
ization behaviour due to multiple scattering for Sample 1 and 2 in detail. The
simulation has been performed by our collaboration partner David Leipold.
Within this calculation, the ZnO nano-needles are modeled by cylinders with
the refractive index n = 1.96 at 800nm. The calculations are performed for
two different sample structures that correspond to Sample 1 and Sample 2. The
thin needles of Sample 1 are replaced by 45nm thick cylinders with an aver-
age distance between the cylinders of 100nm. In addition, the thick needles
are modeled by cylinders with a diameter of 200nm and a average distance of
1100nm. For both samples, a simulation area of 5× 5µm is used.
The two-dimensional intensity distribution at the fundamental frequency are
calculated by exciting the samples with ultra-short laser pulses with a pulse
duration of 6 fs and a central wavelength of λ = 800nm. A section of the cal-
culated two-dimensional distributions IF

<IF>
normalized to the average intensity

< IF > for the small and thick cylinders is shown in figure 4.8.
Due to the influence of surrounding cylinders, the spatial intensity profile is

not symmetric. Obviously the thick single cylinder scatters light more strongly
than the thin cylinder, as indicated by the different colour code in figure 4.8b.
This behaviour is in a good agreement with the calculated scattering cross sec-
tions in the previous section. As can be further seen from the cross sections
in figure 4.8c and d along the white dased lines in the spatial intensity distri-
butions. In the case of the thick cylinders, the intensity decrease on a spatial
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Figure 4.8: FDTD calculation of the spatial intensity distribution at the funda-
mental frequency IF / < IF > of cylinders with the refractive index of n = 1.96.
They are excited by 6 fs laser pulse at 800nm central wavelength. In order
to match the experimental conditions, the cylinder diameters are chosen to be
45nm in a and 200nm in b. The cross sections along the white dashed lines
in the spatial intensity distribution are shown for the 45nm thin cylinders in c
and for the 200nm thick cylinders in d.
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scale of approximately 200nm, which is much smaller than the average distance
between two adjacent cylinders. In the case of the thin cylinders, the inten-
sity drastically decreases on a spatial scale which is comparable to the average
distance of an adjacent cylinder for Sample 1. Therefore a sufficicent amount
of intensity is left at the spatial position of an adjacent cylinder. The average
distance of 100nm between the thin cylinders is therefore sufficient small to
allow near-field coupling between adjacent cylinders.

When calculating the scattering of an ensemble of cylinders, this results in
a three-dimensional intensity distribution, which is shown in figure 4.9. Here,
intensity values above a threshold of 0.8 · IF

<IF>
are shown in red. The shown

intensity distribution corresponds to a time of 300 fs after the excitation with
the laser pulse to ensure that the excitation pulse has left the investigation area
and only localized photon modes are left within the sample. The small distance

Figure 4.9: FDTD calculation at the fundamental intensity of randomly dis-
tributed cylinder arrays with the refractive index of n = 1.96 excited by 6 fs
laser pulses at 800nm central wavelength on an area of 5x5µm2. High intensity
values above a threshold of 0.8 · IF

<IF>
are shown in red, the underlying needle

structure is depicted in grey. The system parameters are chosen to match the
experimental conditions. In a cylinders with a diameter of 45nm and a density
of 4.7µm−2 are calculated. For b, cylinders with diameters of 200nm and a
density of 1.8µm−2 are used.

between the thin needles allows the coupling of the local electric field to an adja-
cent cylinder. This behaviour forms connected local modes that involve several
cylinders. The spatial mode overlap allows the wave function to propagate
through the sample, which results in the interference of different scattering tra-
jectories within the sample. At spatial positions with constructive interference
of the different scattered wave functions, the local electric field is enhanced as
illustrated in figure 4.9a, which results in localized photon modes. Therefore the
spatial mode overlap acts as a measure of the ability to localize electromagnetic
fields in terms of multiple scattered waves and interference.

In contrast, the large distance between the thick needles in combination
with the strong spatial decay of the local electric field does not allow sufficient
coupling to the local electric fields of adjacent cylinders. Therefore they act as
single emission sources, as can be seen in figure 4.9b. High emission intensities
(red) are confined to single cylinders.

The three-dimensional intensity distribution is integrated along the z-direction
resulting in a two-dimensional intensity distribution at the fundamental wave-
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length. In order to compare the calculated results to those obtained from the
measurements, the simulated probability distribution at the fundamental inten-
sity is shown in a histogram for the 200nm thick and 45nm thin cylinders (black
circles) in figure 4.10. In addition, the experimental results are shown as red
squares. Again the localization strength is classified by using the single scaling

Figure 4.10: Probability distribution at the fundamental intensity of a the
200nm thick cylinders (black) and ZnO nano-needles (red) and b for the 45nm
thin cylinders (black) and ZnO nano-needles (red). The distribution of the single
scaling parameter values that fit best to the slope of the calculated simulations
are shown as blue lines with g200nm = 5 and g45nm = 2.

parameter g. Best fitting values of g to the slope of the calculated intensity
distribution results in g200nm = 5 for the 200nm thick cylinders. Compared to
the experimental results, the simulation is slightly stronger localized as the ex-
periment, however the shape of the histogram fits well to the experimental data.
The localization strength of the 45nm thin cylinders is classified by g45nm = 2,
which is close to the deduced localization strength of the experiment. However,
the experimental intensity distribution shows a larger spread of the localized
tail in the histogram.

In summary, these FDTD calculations show that the large-diameter needles
in Sample 2 are mainly coupled via their far fields, whereas near-field coupling
dominates in Sample 1. This enhanced near-field coupling apparently overcom-
pensates the reduction in the scattering cross section with decreasing needle
diameter and results in stronger light localization in the closely packed needle
array of sample 1. This is an interesting result that suggests that highly disor-
dered nanocrystalline materials can be very efficient in multiple light scattering
and localization provided that they are sufficiently closely packed to couple
via their near-fields. The results of these FDTD simulation therefore provide
a convincing microscopic explanation for the surprisingly strong localization
phenomena that are observed in this thesis for such small diameter dielectric
nanoparticles.
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Chapter 5

Electron emission from ZnO
nano-needles investigated
by Photo-Emission Electron
Microscopy

The investigation of the spatial localization is limited by the optical resolution
of the used SH microscope to approximately 500nm. However, the numerical
simulations performed by using the FDTD method show the localization to oc-
cur on spatial scales confinement to 30nm, i.e more than one order of magnitude
smaller than the optical resolution. In order to analyse this discrepancy, the lo-
calization within the thin ZnO nano-needle array is investigated by using of a
photo-emission electron microscope (PEEM).
The PEEM allows to measure spatially resolved dynamics of photo-excited elec-
trons with a resolution that firstly depends on the applied extractor voltage
between the sample and the detector and secondly depends on the mode of the
electric lens system guiding the electrons. However, it provides at least spatial
resolutions of 40nm [115]. This is almost the same order of magnitude as pre-
dicted by the FDTD calculations. This high spatial resolution is achieved by
improved electron optics [116, 117].
Another advantage of the PEEM, in contrast to the raster scanning method of
the SH microscope, is that it allows two-dimensional spatial electron emission
imaging of the complete investigation area instantaneously. In combination with
ultrashort laser pulse excitation, it has the potential to visualize variations of
lifetimes of the local electric fields in nano-structures [113].
The following PEEM measurements concerning the electron emission from gold
covered ZnO nano-needles are performed in a collaboration with the group of
Prof. Dr. Aeschlimann from the TU Kaiserslautern together with Pascal Mel-
chior.

Within the experiments, the needles act as field enhanced electron emitters,
like sharp metallic tips. This technique of electron generation is currently under
strong investigations, but still at an early stage of development [110]. Illu-
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minated with fs-laser pulses polarized along the tip axis of the sharp gold tips,
the emission is strongly confined to spatial regions of a few tens of nanometers
at the end of the tip. Now, the electron emission depends on the applied laser
intensity and allows multi-photon ionization (MPI) [109] and above threshold
ionization (ATI) at even higher intensities [111, 112]. In the case of the gold
coated ZnO nano-needles, the sample shows optical as well as plasmonic be-
haviour, as observed for PEEM measurements on gold coated nanostructures
on indium tin oxide [114].

5.1 Gold-covered ZnO nano-needles

The uncovered ZnO nano-needles used in the previous chapters show only a
very weak electron emission when illuminated directly by fs-laser pulses. Due
to this behaviour, the investigated thin ZnO nano-needle array is coated with
an approximately 10nm thin film of gold1. The investigated samples of bare
thin ZnO nano-needles and the gold-coated ZnO nano-needles are characterized
by scanning electron microscopy and shown in figure 5.1. The needles of the

Figure 5.1: SEM images of the investigated ZnO nano-needle sample. a Bare
ZnO nano-needle array with 20nm thin needles. b ZnO nano-needles covered
with a few atomic layers thin film of gold. The diameter of the needles remains
even after coating in the sub 30nm range.

uncoated sample have a diameter of approximately 20nm. The diameter of
the needles is not strongly influenced by covering them with a thin film of
gold. Even after coating, the needle diameter is still in the sub-30nm region
and can therefore act as a point-like scatterer for fs-laser pulses in the infrared
spectral region. The thin film of only a few atomic layers of gold still provides
the sample to be almost transparent. Therefore we expect optical, as well as

1The samples are coated by our collaboration partners at the University of Tokyo
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plasmonic behaviour from the sample, i.e. multiply scattered light and localized
photon modes, as well as the excitation of surface plasmon polaritons.

5.2 Experimental Set-up

The experimental set-up to measure the spatial confined emission of electrons
induced by optical excitation of gold coated ZnO nano-needles is shown schemat-
ically in figure 5.2. In order to investigate the electron emission from the sample,

Figure 5.2: Schematic illustration of the PEEM set-up. Laser pulses with a
variable delay τ are weakly focused to the investigation area of approximately
100µm in diameter onto the sample of ZnO nano-needles with an angle of inci-
dence of 65◦ to the sample normal. The sample is placed in front of the electric
lens system of the PEEM. The weak focus allows to illuminate the complete in-
vestigated area without moving the sample. Electrons emitted from the sample
are collected by the strong bias voltage between the sample and the lens system
and are guided towards a micro channel plate (MCP). In combination with a
phosphor screen and a CCD camera the spatial electron emission is imaged.

a Ti:Sapphire oscillator (Tsunami Spectra Physics) with a pulse duration of ap-
proximately 25 fs (FWHM) and pulse energies of 5nJ working at a repetition
rate of 80MHz is used to excite the sample. The spectrum of the laser is shown
in figure 5.3a together with the Fourier-limited electric field structure of the
pulse in b. Due to the propagation of electrons and the high operating voltage
of the PEEM, the set-up is placed in a UHV vacuum chamber which is working
at a pressure of approximately 10−10mbar. This low preasure avoids electron
collisions with residual gas molecules and electric flashovers. Such a low pressure
allows voltages up to 10 kV with only a small gap between sample and electric
lens system of the PEEM. For high voltages, it provides a spatial resolution of
less than 40nm [115].
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Figure 5.3: a Spectrum of the laser pulses from the Tsunami laser oscillator.
b Fourier-limited electric field of the laser pulse calculated from the spectrum.
The pulse duration is approximately 25 fs at FWHM.

Time-resolved measurements are possible by using the pulse pair generated in
a Mach-Zehnder interferometer, stabilized by a HeNe laser [118]. By using a
stabilized interferometer small fluctuations in the time delay between the laser
pulses are compensated. Hence, fluctuations of the incident electric field are
strongly suppressed. This is important during long accumulation times of the
electron emission at a certain time delay τ .
The laser pulses are focused by a lens with a focal length of f = 500mm onto
the sample in the vacuum chamber at an angle of incidence of 65◦ to the normal
of the sample. Therewith, the focus diameter has a diameter of approximately
100µm, providing an illumination of the complete investigation area. This al-
lows simultaneously the excitation of different modes and a direct comparison
of different spatial emission spots within the investigated area.
The electrons emitted from the sample are accelerated by the strong electric field
between the sample and the outer electrode of the objective lens. Depending
on the spatial emission spot, the electrons are guided by a series of electrostatic
lenses that magnify the spatial emission image as illustrated in figure 5.2. At
the end of the lens system, the electrons hit a micro channel plate (MCP) which
consists out of thousands of µm-thick channels. An incident electron is ampli-
fied by a cascade effect within the MCP. The amplified electron signal leaves
the MCP, is converted by a phosphor screen and spatially imaged by a CCD
camera.
Operating the PEEM at a voltage of 8 kV , it allows spatial imaging with a
resolution of less than 40nm which is in general sufficient to measure the elec-
tron emission localized to a single needle. During the examination of the gold
coated ZnO nano-needles, a smaller operating voltage was used. Therefore the
resolution within the experiment is limited to approximately 50nm.
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5.3 Spatially localized electron emission

The spatial emission from the two different ZnO nano-needle arrays (bare and
gold coated ZnO) is caracterized in the following. Therefore, the samples are
excited by 25 fs p-polarized laser pulses with a pulse energy of 0.5nJ . In order
to verify the spatial localization properties independently from the temporal
behaviour, the time delay of the pulse pair is set to τ = 0, i.e. both pulses
are overlapping in time. Since the electron emission of the bare ZnO needles is
very weak, the results of the spatial emission are only shown for the gold coated
sample in the following.
The resulting two-dimensional intensity map of the local electron emission from
the gold coated sample is shown in figure 5.4a. Although the size of the excited
area exceeds the area observed by the PEEM, the two-dimensional intensity
map shows localized hotspots of electron emission surrounded by comparatively
large areas of weak emission. The cross section in figure 5.4b along the white
dashed line in a shows strong spatially confined hotspots of electron emission.
The deduced diameters of the hotspots are determined to approximately 300nm
(FWHM). Despite the much better resolution of the PEEM, the spatial confine-
ment of the electron emission is allmost of the same size compared to the optical
experiments presented in section 3.2.3. Furthermore, compared to the predic-
tion of the FDTD calculation in section 3.2.4, the confinement of the electron
emission is one magnitude larger.
This supports, that the electron emission of a hotspot is not localized to a single
needle, instead it involves many needles.
Although the gold film is only a few atomic layers, the discrepancy in the pre-
diction of the spatial localization between FDTD calculations and the PEEM
measurements raise the question if there is an influence of the gold layer on top
of the needles. The spatial FDTD calculations in section 3.2.4 were performed
by assuming the refractive index of bare ZnO cylinders when neglecting the
gold layer on top or the bottom layer of thick needles below the thin needles.
Therefore a direct comparison might be difficult.

Now the concern is focused on the local field enhancement. The enhance-
ment of the electron emission is determined to ηe− = Ie−max

/Ie−min
≈ 580. Since

for the electron emission a four-photon process is required (b = 4) the fun-
damental field enhancement factor can be obtained by using equation 3.3 to
fe− = (Eloc/E0)1/8 = 2.2. However, this value is lower compared to the fun-
damental field enhancement deduced by the SH emission from the bare ZnO
needles (fSH = 3).

The mean enhancement is given by κe− =
max(Ie− )

<Ie−>
≈ 62. When considering

the high nonlinearity of the emission process, this is an unexpected low value,
scince the corresponding values at the fundamental of κfe− = 2.7 are even less
compared to the value deduced for the SH measurements on the bare thin ZnO
nano-needle array κfSH = 5.9. One of the possible explanations for this be-
haviour is the limited 12-bit resolution of the used camera attached to the MCP
in combination with the high nonlinearity of the emission process.

Furthermore, the spatial electron emission is analysed by calculating the
spatial autocorrelation function CS . In order to apply the formalism described
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Figure 5.4: aTwo-dimensional map of the electron emission from the gold cov-
ered ZnO nano-needle array excited with p-polarized 25 fs laser pulses with pulse
energies of 0.5nJ . The intensity of the electron emission Ie− is normalized to
the mean intensity < Ie− >. b Cross section of the electron emission along the
white dashed line in a showing a hotspot diameter of approximately 300nm
(FWHM).
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by equation 3.5, a two dimensional zero-padding is applied to the spatial elec-
tron emission map. The spatial autocorrelation CS is calculated for a spatial
shift along the x-axis ∆x and along the y-axis ∆y. The resulting spatial auto-
correlation traces are shown in figure 5.5. It displays a clear maximum centered

Figure 5.5: Spatial autocorrelation CS as a function of the spatial shift along
the x-axis ∆x and along the y-axis ∆y.

around ∆x = 0 and ∆y = 0. For both cases, the width of the autocorrelation
peak is in the order of ∆CS = 2.1µm. This value is much larger than twice
the resolution of the PEEM and also much larger than twice the diameter of
the hotspot deduced in figure 5.4b. This behaviour indicates, that most of the
emission spots are extended over larger areas, which results in the spread of CS .
This indication is supported by the background in the autocorrelation trace.
The scattered electric fields within the gold coated needle array results in local-
ized modes with a typical spatial extent that is much larger than the resolution
of the PEEM.

5.4 Single scaling parameter of the electron emis-
sion

In order to classify the localization strength of the electric field that results to
the localized electron emission, the single scaling parameter g will be analysed in
this section. Based on the theory derived from Nieuwenhuizen and van Rossum
[63], presented in section 2.2.5, here the fundamental intensity has to be consid-
ered. The electron emission process in the gold coated ZnO nano-needle array
for p-polarized incident laser light is based on a nonlinearity of b ≈ 4. This has
been proven by measuring the electron emission as a function of the excitation
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power (not shown here) and is in a good agreement to values from the literature

for the emission from gold tips [109, 110]. By considering the relation If ∝ I1/b
e− ,

it is possible to calculate the fundamental intensity If from the electron emis-
sion Ie− .

The histogram of the spatial localization measurements at the fundamental
intensity If/ < If > is calculated and shown in figure 5.6. Herein areas of low

Figure 5.6: Logarithmic probability distribution of the measured electron inten-
sity map If calculated from Ie− of the gold covered ZnO needles. The distribu-
tion is divided into three regimes. A Gaussian distribution that describes the
delocalized states below 1.2· < If >, a log-normal distribution above 1.8· < If >
for the localized states and in addition a third component is visible in the range
of 1.2· < If > and 1.8· < If >, which was not observed in all experiments on
bare ZnO.

intensity are described by a distribution centered around 1· < If >. This re-
sults in a dominant Gaussian distribution as already has been observed for the
optical measurements in section 3.2.3. The hotspots of strong electron emission
are represented by large values of If/ < If >. Therefore the hotspot emission
results in a deviation from the Gaussian distribution towards a log-normal dis-
tribution at values above 1.8· < If >. In between theses distributions, a third
distribution becomes visible. This additional component in the histogram of
the gold covered ZnO needles was not observed for all optical experiments on
the bare ZnO needles (figure 3.18). It can be identified by the deviation from
the Gaussian distribution at approximately 1.2· < If >, as well as from the
log-normal distributed part at 1.8· < If >. Therefore the few atomic layers of
gold on top of the needles strongly influence the histogram and therefore as well
the localization properties.
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In order to classify the localization strength, the single scaling parameter g
is again calculated by using an independent scaling value for each of the three
different components in the histogram. The values of g that fitted best to the
distribution are deduced by the least-square-method described by equation 3.6.
The single scaling parameter that fitted best to the Gaussian distribution cor-
responds to g ≈ 50. Therefore most of the intensity values can be addressed to
the electron emission induced by delocalized electric fields.
The log-normal distribution for values above 1.8· < If > is represented best by
a single scaling parameter of g = 1.4. This value is close to the transition from
weak to strong localization and allows the conclusion that the electric fields re-
sponsible for the hotspot emission are localized.
Finally, the distribution in between 1.2· < If > and 1.8· < If > is described by
g = 4.6. This only indicates weakly localized electric fields.
A direct comparison of the localization strengths deduced by the optical SH-
microscope measurements on the bare ZnO nano-needles and the electron emis-
sion from the gold covered ZnO sample shows a slightly higher localization
strength for the case of the uncoated ZnO. Several influences in addition to the
gold coating might be responsible for this deviation, by example the different
detection using the PEEM set-up or the longer pulse duration of the excitation.

The complexity of the sample and the detection process makes an interpre-
tation of the additional component in the histogram rather challenging. The
almost transparent gold sample allows the propagation and the scattering of
light waves as well as in the bare ZnO needle structure. In addition, the thin
layer of gold allows plasmonic excitation leading to electron emission as recently
demonstrated for gold tips [110]. Here, the authors launch electrons by optically
excited surface plasmon polaritons (SPP) which localize at the end of a sharp
gold tip with approximately 20nm tip radius. Due to the high field enhance-
ment at the end of these tips, which is also present for the gold covered ZnO
nano-needle array, the SPP is able to launch an electron which might be the
explanation of the third component in the histogram.

In conclusion, the determination of the single scaling parameter is a powerful
tool to investigate the localization strength. Even for intensity distributions of
the gold coated ZnO needles, which is a superposition of localized and delocal-
ized electric fields, this method delivers significant results when restricting the
analysis to intensity values above a certain intensity threshold.
Furthermore, this procedure is very robust due to the strong signal generated by
highly spatially confined and enhanced electric fields. The alternative approach
to classify the localization strength [36] by applying a multi fractal analysis to
the data does not deliver trustworthy results. As described in section 3.2.6 ,
the multifractal analysis is not suited to analyse mixed intensity distributions
of localized and delocalized states.
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5.5 Interferometric autocorrelation of the elec-
tron emission

In the following, we analyse the time structure of the local electric fields within
the gold coated ZnO nano-needles by measuring the emitted electrons as a func-
tion of the delay time τ between the laser pulses. Since the spot size of the laser
is much larger than the field of view of the PEEM, the incident electric field is
assumed to be identical at each spatial position within the investigation area.
Therefore each of the observed hotspots is affected identically by changes or
fluctuations in the exciting electric field. A direct comparison of the recorded
time traces of the emitted electrons from different spatial positions is therefore
much more traceable.
Now, the electron emission at the spatial position of two hotspots is accumulated
as a function of the time delay. This results in the interferometric autocorrela-
tion (IAC) traces shown in figure 5.7.
The enhancement ζ of an IAC trace, defined by equation 3.9, strongly depends

Figure 5.7: Interferometric autocorrelation traces from two different electron
emission hotspots after excitation by laser pulse pairs with a pulse duration of
25 fs. Although excited by the same electric field and detected simultaneously,
the IAC traces vary in shape and enhancement. This is a strong hint for different
time structures of the local electric field.

on the nonlinearity b of the emission process. For the four-photon process of
the electron emission, this results in a theoretical enhancement of the IAC of
ζ = 128. However, slight changes in the nonlinearity can lead to strong changes
in the enhancement of the IAC. The minimum nonlinearity deduced from a
power dependance of the electron emission from a hotspot on the gold coated
ZnO nano-needle array was determined to b = 3.5 (not shown here). This small
deviation from a four-photon process already decreases the theoretical enhance-
ment of the IAC to ζ(b = 3.5) = 64. The enhancement ζ of the recorded IAC
traces with ζ1 ≈ 72 and ζ2 ≈ 80 is within the predicted range. Additional
reasons of this deviation from the theoretical value of ζ = 128 might be:
i) The influence of dispersion changes the enhancement. Due to the limited
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delay time of the IACs, strong dispersion can not clearly be attributed. The
expected changes due to dispersion of the 25 fs laser pulses are observable at
much longer delay times compared to the measurement.
ii) The shape of the IAC traces is not symmetric which is also influencing the
enhancement.

An adequate conclusion about the individual lifetime of each of these hotspots
is challenging. The retrieval of the electric field from the autocorrelation requires
symmetric IAC traces. Unfortunately, the non-symmetric shape of the IAC
traces, prevents a direct retrieval of the local electric field within a hotspot.
Nevertheless clear differences in the shape of the asymmetric IAC traces, al-
though the excition is identical, indicates fluctuations in the lifetime of the local
electric fields within the gold covered ZnO nano-needle array. A more detailed
and precise analysis recommends a laser with sub 10 fs pulse duration and a
symmetric IAC trace.
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Chapter 6

Random Lasing in ZnO
nano-structures

In the following chapter, the localization properties of the uncoated, thin ZnO
nano-needle array are investigated for higher excitation energies. This is nec-
essary to exclude random lasing (RL) effects for the localization measurements
performed in chapter 3.
In general, lasing occurs as soon as the gain within a laser resonator exceeds
the losses. It is interesting to note, that one not necessarily needs a resonator
for lasing. Therefore, random lasing can occur providing only coherent feedback
from strong scattering [122, 123]. The scattering loop therefore acts as a ran-
dom resonator. This kind of laser is called a random laser.
Localization of light in amplifying media occurs in semiconductor powders due
to strong scattering and a short mean free path length. This allows sufficient co-
herent feedback for random lasing. Cao et al [14] reported about the observation
of lasing modes above the lasing threshold in powders of zinc oxide nanoparticles.
The scattering loop determines the occurring discrete laser modes. Due to the
random alignment of scatterers, there is a countless number of scattering loops
with different lasing modes.
Fallert et al. reported about the observation of random lasing from localized as
well as from extended modes. However, the localized modes have a lower loss
rate than the extended modes [28]. Especially nanostructures based on ZnO
are highly suited due to their property to combine strong scattering and gain.
Therefore they behave as a prototypical random lasing source as shown for ZnO
nano-powders by Cao et al [14] or Fallert et al [28].
Here, random lasing within an individual needle is not possible because the size
of the ZnO nano-needles is simply to small to act as a resonator itself. This is
only observed for particles of dimensions larger than the wavelength [124, 125].

6.1 Power dependence at low fluence excitation

The experimental investigation of the random lasing properties is realized by
measuring the optical SH emission from the thin ZnO nano-needles as a function
of the input excitation fluence [J/cm2]. Here we use again the SH microscope
set-up introduced in section 3.2.1. The bare ZnO nano-needles with diameters
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between 20 to 50nm are illuminated by 6 fs laser pulses from the Ti:Sapphire
oscillator. The laser pulses are focused to the diffraction limit of approximately
1µm and the SH-emission from a hotspot on the sample is spectrally resolved as
a function of the applied laser fluence. The fluence is varied from 1.5mJ/cm2 to
7mJ/cm2 by means of a neutral density filter. The resulting spectral emission
as a function of the applied fluence is shown on a semi-logarithmic scale in figure
6.1 between 320 and 510 nm. The spectral emission rises for different excitation

Figure 6.1: Emission spectrum for different excitation fluences on a semi-
logarithmic scale. The spectrum consists of the band gap emission around
375 nm and the SH around 400 nm.

fluences and changes as well in the shape of the emission spectrum. For low
excitation fluences, the SH around 400nm is the dominant emission process.
The influence of the band gap transition (BGT) around 375nm gets dominant
with increasing fluence. Integration of a small spectral region of 400−410nm for
the SH and of 370−380nm for the BGT results in the output power dependences
which is shown for both processes as a function of the fluence in figure 6.2.
The deduced nonlinearity b, fitted to the respective output fluences, show very
different values for the SH and BGT. The nonlinearity of the SH is estimated
to be bSH = 2.1. This fulfils the expectation of a two-photon process. The
emission from the BGT however shows a much higher nonlinearity of bBG =
3.6. By considering the laser spectrum (figure 3.6c inset), a three or even two-
photon process would have been sufficient. In conclusion, the highly nonlinear
emission process excites the electrons to energetically much higher states in the
conduction band. By radiation-less relaxation of the electrons they reach the
lowest level in the conduction band. The recombination with the hole in the
valence band emits incoherent light, which corresponds to the BGT. Here, the
coherence gets lost during the radiation-less relaxation process.
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Figure 6.2: Spectrally integrated emission intensities of the SH and the BGT as
a function of the input fluence. The fluence used in the localization experiment
is marked by the blue ellipse.

The observed behaviour of the output power over the investigated fluence range
shows only a nonlinear behavior for the SH emission, as well as for the BGT.
However, no strong deviation from this behaviour is observed which would be
the expectation for the random lasing threshold.
The measurements of the localization of light were performed at a fluence of
approximately F = 2.5mJ/cm2. At this fluence (blue ellipse in figure 6.2) the
investigated hotspot does not show any random lasing at all.
However, even at fluences above 7mJ/cm2 the thin ZnO nano-needle array
does not show any random lasing signatures. More than that, destruction of
the filigree thin ZnO needle array occurs, which is confirmed by SEM imaging.
The high repetition rate of the laser oscillator heat up the sample in a step by
step process. The 12.5ns pulse separation is not sufficient to avoid the heating
process. This leads to melting of the thin ZnO needles that destroy the sample
and the scattering properties.

6.2 Power dependence for high fluences: Ran-
dom lasing

The verification of the random lasing process, which is known to occur in ZnO
nano-structures [14, 28], is achieved by investigating the thin ZnO nano-needle
array with higher fluences by using a chirped pulse amplification (CPA) system
with a pulse duration of 120 fs at a repetition rate of 5 kHz (Spitfire Pro from
Spectra Physics). Therewith, the applied energy is low enough to avoid ther-
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mal damages of the ZnO structure due to the large pulse to pulse separation of
200µs .
Since material dispersion is negligible for the 120 fs laser pulses, a lens with a
focal length of f = 50mm is used instead of the reflecting objective to illuminate
an area on the sample with a diameter of approximately 300µm. By this, we
excite many scattering loops simultaneously. The spectral emission from the
sample is detected as a function of the applied fluence and is shown in the inset
of figure 6.3 for certain values of the fluence. In agreement with the previous
measurement, the SH emission dominates at low fluences, whereas the emission
from the BGT increases faster because of its higher nonlinearity. At high flu-
ences, the emission from the BGT dominates the spectrum. For low fluences,

Figure 6.3: Output power of the emission integrated above the BGT at around
375nm. The output power shows a clear deviation of the deduced nonlinear-
ity at around 9.5mJ/cm2 which is a clear hint for the lasing threshold. The
experiments concerning the localization behaviour are performed at a much
lower fluence of 2.5mJ/cm2 marked by the blue ellipse. Inset: Emission spec-
tra deduced from the ZnO sample at different excitation fluences plotted on a
semi-logarithmic scale.

the from the previouse section known nonlinear behaviour is observed for the
emission of the SH and the BGT.
By increasing the fluence, the spectrally integrated emission in the range of the
BGT shows a clear deviation from the nonlinear behaviour, which easily can be
seen in figure 6.3. At a fluence of approximately 9.5mJ/cm2 the emission from
the BGT dramatically increases. This deviation is known from literature and
is a clear signature of the lasing threshold [126]. The experiments concerning
the localization behaviour of light within the thin ZnO nano-needle array are
performed at a much lower fluence of 2.5mJ/cm2 marked by the blue ellipse.
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The random scattering trajectories (closed loops) are acting as a kind of re-
sonator. As soon as the light propagating in the scattering loop reaches the
laser threshold, the light gets amplified in the ZnO needles by stimulated emis-
sion. Therefore the ZnO needles act as scattering source and as gain medium
simultaneously.
In contrast to other random lasing measurements, the observed spectral emis-
sion does not show very sharp peaks in the spectrum as observed for resonant
random lasing by Cao [14]. The resonant random lasing shows sharp resonances
by coupling the incident light to closed random loop cavities, which changes
dramatically as a function of the excitation position, simply due to coupling
to different random cavities. However, the non resonant RL shows spectrally
broad lasing modes [126]. This corresponds to the measured broad lasing emis-
sion from the BGT deduced for the thin ZnO nano-needle array as can be seen
from the spectra shown in the inset of figure 6.3.

In conclusion, the fluence allows the comparison of the excitation even when
the pulse duration and the illumination area are totally different. The random
lasing occurs at a fluence which is much larger than applied in the localization
experiment. This allows to exclude the occurrence of random lasing within the
spatial localization measurements in chapter 3.2.
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Chapter 7

Conclusion and Outlook

Within this thesis a new approach to study the spatio-temporal dynamics of lo-
calized light in randomly arranged dielectric nanostructures is presented . This
technique is based on an ultra fast second-harmonic microscope in combination
with an interferometric autocorrelator. The nonlinear detection process of the
SH microscope makes this technique highly sensitive to changes in local electric
fields. Therefore, it is an ideal tool for investigating the localization of light
at the fundamental frequency. Furthermore, the spatial resolution of the mi-
croscope is enhanced by a factor of two compared to the diffraction limit at
the fundamental frequency. This allows a spatial resolution of approximately
500nm and therefore enables the precise examination of localized photon modes.
Localization of photon modes in terms of the Anderson localization requires suf-
ficiently strong scattering. Zinc oxide is a strong scattering source due to its
large refractive index of almost 2 at 800nm. In addition, it is almost trans-
parent over the entire visible spectrum and especially at the wavelength of the
used Ti:Sapphire laser. Furthermore, the second harmonic generation is strong
due to a high second order susceptibility. Therefore, the chosen samples of ZnO
nano-needles are ideal candidates for multiple scattering experiments and the
investigation of localization.

As it is shown within this work, the localization properties depend drama-
tically on the geometric properties of the sample. By using 6 fs laser pulses
with a central frequency of 870nm to excite the sample, the 100nm thick need-
les did not show localized hotspots and also the spatial confinement of the
increased SH regions was much larger (3.5µm) than the optical resolution of
the SH-microscope. In contrast, when illuminating a similar ZnO structure
with additional 30nm thin needles on top of the thick needles, the localization
properties have been dramatically changed. This resulted in spatially confined
hotspots with a diameter of 500nm (FWHM) with intense emission at the SH
frequency. The strong confinement of the emission was supported by spatial
autocorrelation. The strong enhanced emission within a hotspot results in a
field enhancement of the locally averaged electric field of η ≈ 3.
In addition to the measurements, a three-dimensional FDTD simulation has
shown that the localization occurs on spatial scales of 30nm, which is at least
one order of magnitude smaller than the measured localization of the hotspots
in the thin ZnO nano-needle array. The calculated enhancement is quite strong.
Surprisingly, the enhancement deduced from the measurements is even larger
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than the FDTD calculation when considering the different spatial resolution.
Based on the SH fluctuations, the localization strength was determined by using
the single scaling theory to analyse the histogram of the SH intensities. In the
case of the thick ZnO nano-needle array, no localized hotspots were observed.
Therefore, the determined value of the single scaling parameter g indicates that
the photon modes within this sample were delocalized. In contrast, the his-
togram of the thin ZnO nano-needle array (30nm thin ZnO nano-needle on
top of a bottom layer of 100nm thick needles) is a composition of a dominant
Gaussian distribution and a log-normal distribution. The determined values of
the single scaling parameter g indicated, that most of the photon modes were
delocalized. These delocalized photon modes act as a background and could
be attributed to the bottom layer of thick needles. However, the localization
strength, at the spatial position of the hotspots, was determined by the single
scaling theory to be at least at the transition from weak to strong localization.
Although the background of the bottom layer only slightly influenced the esti-
mated single scaling parameter, it had a dramatic influence on the classification
of the localization strength by using multifractal analysis. This influence im-
pedes the analysis of the localization strength and did not deliver trustworthy
results. Therefore, multifractal analysis is not suited to determine the localiza-
tion strength for mixed systems of localized and delocalized photon modes.

In addition to the spatial localization, the temporal aspects of light localiza-
tion by using interferometric frequency-resolved autocorrelation were examined.
This technique allowes in combination with the SH microscope to deduce the
photon mode lifetimes from sub-µm2 areas with with femtosecond-time reso-
lution. To my knowledge, the presented measurements were the first attempts
to investigate the temporal dynamics of localized photon modes in dielectric
media.
The recorded IFRAC traces from the ZnO nano-needles at the SH were influ-
enced by the spectral overlap with the incoherent emission from the band gap
transmission and the green photoluminescence. Therefore, a direct retrieval of
the local electric field from the IFRAC traces was rather challenging. However,
the emission from the thin ZnO nano-needles within the IFRAC measurements
clearly showed a narrowed spectral width compared to a reference measurement
from a BBO crystal. The spectral width is even more decreased for a position
within a hotspot.
Nevertheless, in order to deduce the local photon mode lifetime, a model based
on optical Bloch equations was used. The corresponding equations for a two-
level system were solved by assuming a two-photon excitation. The resonance
frequency and the dephasing time of the system had been the only free para-
meters that matched the experimental results. The retrieval of the local electric
field at the fundamental frequency for the BBO measurement, which was used as
a reference, showed an allmost bandwidth-limited laser pulse of 6.5 fs (FWHM).
In contrast, the retrieved electromagnetic field of the ZnO nano-needle array
showed an increased lifetime which persists within a hotspot for approximately
20 fs (FWHM).
Instead of measuring an IFRAC trace at each spatial position to receive a map
of local electric field lifetimes, the spectral width of the SH was used as an
indicator for the photon mode lifetime. The spectral width was calculated by
the use of the optical Bloch equations as a function of the lifetime of the ex-
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cited state, i.e. T1. This allowed to assign the experimentally deduced coherent
spectral width to the lifetime of the excited state, i.e. to the photon mode life-
time. Therefore, the coherent part of the emission from the ZnO sample had to
be extracted. The IFRAC set-up allowed the distinction between coherent and
incoherent emission from the sample by using two, temporally seperated, laser
pulses at a fixed time delay. Finally, this resulted in pure coherent emission,
which allowed to deduce a two-dimensional map of the lifetime of the local elec-
tric field. The results indicated a weak correlation between the two-dimensional
map of local electric field lifetimes and the two-dimensional map of the intensity
at the SH. The correlation between these two distributions increased dramati-
cally by restricting the correlation to localized states above a certain intensity
threshold.
Additional calculations by FDTD simulations of the lifetime of the local photon
mode showed excellent agreement with the experimental results. However, there
was a beating of two adjacent photon modes which depends strongly on the dis-
tance of the observation point within the simulation. The beating vanished
for small distances and one dominant photon mode could be observed. This
beating of two adjacent modes would clearly be visible in the IFRAC-trace but
was not observed within the experimental results. Therefore, the resolution of
the SH microscope was sufficient to mainly probe a single localized photon mode.

In the next step, the influence of the geometric sample properties, i.e. the
diameter of the needles and the average distance between adjacent needles, on
the localization was investigated. To achieve this 45nm thin ZnO nano-needles
with an average distance of 100nm were compared in terms of localization
strength, based on the single scaling theory, with 200nm thick needles that
have an average distance of 1100nm. In both cases, the localized hotspots were
spatially confined to areas limited by the optical resolution. Surprisingly, the
thin needles showed the strongest localized photon modes.
The experimental results were compared to the calculation based on a ”dipole-
dipole interaction” model. This model considers the influence of the scattering
at cylinders as a function of the diameter and the decrease of the electric field
as a function of the propagation distance to a second, identical cylinder. It
indicated a comparable coupling strength for both cases. This result is rather
surprising due to the much stronger light scattering at the thick needles. How-
ever, the stronger scattering is nearly compensated by the occuring near-field
coupling between the thin needles. In contrast, the large distance between the
thick needles and the strong spatially decreasing electric field only allows far-
field coupling. Hence, the thick needles act as single emission sources which is
also supported by the FDTD calculations. The small distance between the thin
needles in the FDTD simulation also supports near-field coupling between the
local electric fields of adjacent needles, forming overlapping local modes over
spatial regions involving several needles. This again results in enhanced local
electric fields.

Measurements with increased spatial resolution of approximately 50nm were
performed on gold coated ZnO nano-needles by using a photo-emission electron
microscope (PEEM). The gold coated needles were illuminated by 25 fs laser
pulses with a central wavelength of 800nm. This resulted in localized hotspots
of electron emission. These hotspots had a diameter of 300nm (FWHM), which
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was less than deduced optically by the SH microscope (500nm) on the bare ZnO
needles, but much larger than the FDTD calculations (30nm). Therefore, the
electron emission was not confined to a single needle.
The localization strength of the light at the fundamental frequency was not as
strong within the gold covered ZnO nano-needles as in the bare ZnO needles.
One explanation for this difference might be an observed additional component
in the histogram between the localized and delocalized modes. This additional
component was not observed for the uncoated ZnO needle array and might be
attributed to the plasmonic behaviour induced by the thin film of gold on top
of the ZnO needles.
The lifetime measurements of the local electric fields from different hotspots
clearly showed different interferometric autocorrelation (IAC) traces. Unfor-
tunately they were not symmetric making the retrieval of the time structure
challenging and not trustworthy. Nevertheless, the IAC traces already indi-
cated different lifetimes of the local electric fields.

Finally, the random lasing properties of the thin ZnO nano-needles were in-
vestigated. In the case of 6 fs laser pulses from a Ti:Sapphire oscillator with a
repetition rate of 80 MHZ, random lasing was not observed within a hotspot
up to a fluence of 7mJ/cm2. Rather destrucion of the sophisticated sample
occured at these fluence values. The use of a chirped pulse amplification (CPA)
system with 120 fs laser pulses at a repetition rate of only 5 kHz allowed much
higher fluences. Random lasing from the band gap transition in ZnO occured
at around 9mJ/cm2 identified by the typical lasing threshold behaviour. How-
ever, the localization measurements were performed on a much lower fluence of
approximately 2mJ/cm2. This ruled out the influence of random lasing in the
localization measurement.

Outlook

The successful use of ultra-broadband SH microscopy in combination with femto-
second time resolution to investigate localization in two-dimensional dielectric
media opens a wide range of further applications. One of the most promising ap-
plications for this method is the investigation of localization in three-dimensional
samples or bulk materials [127].
Another possible application is the structured surface of solar cells. The ZnO
material is transparent and multiple scattering within the needle array increases
the lifetime of the electric field within the structure. The coupling efficiency of
the solar cell could be enhanced if the light persisted longer in the array to
generate electric current [32].
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[80] U. Özgür , Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan,
V.Avrutin S.-J. Cho and H. Morkoc: A comprehensive review of ZnO
materials and devices. Journal of Applied Physics 98, 041301 (2005).

[81] J.P. Richters: Optische Eigenschaften von ZnO-Nanodrhten: Einfluss
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Appendix A

Scattering cross section

The calculation of the scattering cross section Cs of a single nano-object is
following the approach of van de Hulst [107] and of Bohren [108]. In general, it

is based on solving the wave equation for the electric field ~E and the magnetic
field ~H.

∇2 ~E + k2 ~E = 0 ∇2 ~H + k2 ~H = 0 (A.1)

with k2 = ω2 · ε(~r)µ(~r) and ω the angular frequency of the field. The scattering
object is described by a spatial dependent permittivity ε(~r) = ε0εr(~r) and per-
meability µ(~r) = µ0µr(~r). In the absence of free charges, i.e. ρ = 0 and ~j = 0,
the electric field as well as the magnetic field

∇ ~E = 0 ∇ ~H = 0 (A.2)

are divergence free. The wave vector function ~Ψ is assumed to solve the equa-
tions in A.1. In order to simplify this calculation, a solution based on a scalar
wave function ψ is desired. Therefore the vector functions ~M and ~N are con-
structed by

~M = ∇× ~cψ ∇× ~N = k ~M (A.3)

to solve the vector wave equation A.1. This criterion is fulfilled, if the scalar
generating function ψ together with the guiding vector ~c is a solution of the
scalar wave equation

∇2ψ + k2ψ = 0 . (A.4)

We concentrate on the electric field which can than be expressed in terms of

~E = E0

∞∑
i=1

in
2n+ 1

n(n+ 1)
( ~Mo,n − ~Ne,n) (A.5)

with indices e and o describing even and odd solutions.
For a spherical scattering object, it makes sense to formulate the wave equa-

tion A.4 in spherical coordinates.

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0 (A.6)

For a spherical object, the guiding vector is described by ~c = ~r. In order to
solve equation A.6, a separation ansatz is used.

ψ(r, θ, φ) = R(r) ·Θ(θ) · Φ(φ) (A.7)

135



This results in three independent equations for Φ, Θ and R.

∂2Φ

∂φ2
+m2Φ = 0 (A.8)

1

sin θ

∂

∂θ
sin θ

∂Θ

∂θ
+

(
n(n+ 1)− m2

sin2 θ

)
Θ = 0 (A.9)

∂

∂r

(
r2 ∂R

∂r

)
+
(
k2r2 − n(n+ 1)

)
R = 0 (A.10)

Solutions of equation A.8 are given by Φe = cos(mφ) for the even and Φe =
sin(mφ) for the odd solutions. Equation A.9 is solved by the Legendre functions
Pnmd

(cos θ) of degree md and order n. The use of a dimensionless size parameter
x = kr changes equation A.10 to

x
∂

∂x

(
x
∂Z

∂x

)
+
(
x2 − n(n+ 1)2

)
Z = 0 (A.11)

with Z describing the Bessel function. Different kinds of Bessel functions fulfil
equation A.11. First kind of Bessel function J and the second kind Y (also called
Neumann function and sometimes named by N) can be used. For spherical
scattering objects, it is meaningful to use the spherical Bessel functions which
are described by

jn(x) =

√
π

2x
Jn+ 1

2
(x) yn(x) =

√
π

2x
Yn+ 1

2
(x) . (A.12)

Different orders n of the Bessel functions can be obtained by using the recurrence
relations

Zn−1(x) + Zn+1(x) =
2n+ 1

x
Zn(x) (A.13)

∂

∂p
Zn(x) =

n

2n+ 1
Zn−1(x)− n+ 1

2n+ 1
Zn+1(x) . (A.14)

Also every linear combination of jn(x) and yn(x) solves equation A.10. These

combinations are called spherical Hankel functions h
(1)
n and h

(2)
n .

h(1)
n = jn(x) + iyn(x) h(2)

n = jn(x)− iyn(x) (A.15)

By using the first two orders

j0(x) =
sinx

x
y0(x) = −cosx

x
(A.16)

j1(x) =
sinx

x2
− cosx

x
y1(x) = −cosx

x2
− sinx

x
(A.17)

any other order of the spherical Bessel functions can be calculated using the
recurrence relation A.14.

With this knowledge, the generating function ψ that satisfies the scalar wave
equation can be written down to

ψe,m,n(x, θ, φ) = cos(mφ) · Pnm(cos θ) · Zn(x) (A.18)
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for the even and

ψe,m,n(x, θ, φ) = sin(mφ) · Pnm(cos θ) · Zn(x) (A.19)

for the odd solutions of the wave function.
The scattering of an electromagnetic wave at a sphere can fully be character-

ized by an incident wave, a scattered wave and the wave inside the sphere. The
incident plane wave can be written in terms of a linear combination of spherical
waves with the scalar generating function

u1 = eiωt cos(φ)

∞∑
n=1

(−i)n 2n+ 1

n(n+ 1)
· Pn1 (cos θ) · jn(x) (A.20)

v1 = eiωt sin(φ)

∞∑
n=1

(−i)n 2n+ 1

n(n+ 1)
· Pn1 (cos θ) · jn(x) (A.21)

The wave scattered at the spherical particle is described by:

u2 = eiωt cos(φ)

∞∑
n=1

(−i)n(−an)
2n+ 1

n(n+ 1)
· Pn1 (cos θ) · h(2)

n (x) (A.22)

v2 = eiωt sin(φ)

∞∑
n=1

(−i)n(−bn)
2n+ 1

n(n+ 1)
· Pn1 (cos θ) · h(2)

n (x) (A.23)

The wave inside of the scattering object is described by

u3 = eiωt cos(φ)

∞∑
n=1

(−i)n(cn)
2n+ 1

n(n+ 1)
· Pn1 (cos θ) · jn(y) (A.24)

v3 = eiωt sin(φ)

∞∑
n=1

(−i)n(dn)
2n+ 1

n(n+ 1)
· Pn1 (cos θ) · jn(y) (A.25)

with y = kmr and m the complex refractive index.
By using the continuity condition at the interface of the object for the wave

function and its first derivative, the scattering coefficients an and bn can be
determined. For a spherical scattering object they are given by

an =
ψ′n(y)ψn(x)−mψn(y)ψ′n(x)

ψ′n(y)ξn(x)−mψn(y)ξ′n(x)
(A.26)

bn =
mψ′n(y)ψn(x)− ψn(y)ψ′n(x)

mψ′n(y)ξn(x)− ψn(y)ξ′n(x)
(A.27)

substituting ψn(x) = x · jn(x) =
√

πx
2 Jn+1/2(x) and ξn(x) = x · h(2)

n (x) =√
πx
2 h

(2)
n+1/2(x). This allows to calculate the generating function ψ and hence

by using equation A.3 also the local electric and magnetic field.
The scattering efficiency factor Qsca can be determined by

Qsca =
2

x2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
(A.28)
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The scattering cross section Csca is defined by

Csca = Qsca ·G (A.29)

with the geometrical cross section G. For a sphere, the geometrical cross section
is given by Gsp = πa2 with a the radius. More details and the calculated
scattering cross section can be found in [108].

Cylinders: In order to calculate the scattering cross section of a cylinder,
the derivation changes slightly1. In this case, the scattering coefficients are
described by

an =

(
Dn(mx)

m + n
x

)
Jn(x)− Jn−1(x)(

Dn(mx)
m + n

x

)
H

(1)
n (x)−H(1)

n−1(x)
(A.30)

and

bn =

(
Dn(mx)m+ n

x

)
Jn(x)− Jn−1(x)(

Dn(mx)m+ n
x

)
H

(1)
n (x)−H(1)

n−1(x)
. (A.31)

The logarithmic derivative and the recurrence relation

Dn(mx) =
J ′n(mx)

Jn(mx)
J ′n(mx) = Jn−1(mx)− n

mx
Jn(mx) (A.32)

allows to deduce any order for all kinds of Bessel and Hankel functions and to
calculate the wave function ψ and the resulting electric and magnetic fields.

In the case of the cylinder geometry, the guiding vector is expressed as
~c = ~ez if the cylinder-axis is aligned along the z-direction. The expression of
the efficiency factor Q for the scattering and extinction changes in the case of
an incident electric field with a wave vector perpendicular to the cylinder and
a polarization along the cylinder axis ‖. It is given as

Qsca ‖=
2

x

[
|b0|2 + 2

∞∑
n=1

(
|an|2 + |bn|2

)]
(A.33)

Qext ‖=
2

x
<

[
b20 + 2

∞∑
n=1

bn

]
(A.34)

and for a polarization perpendicular ⊥ to the cylinder axis by

Qsca ⊥=
2

x

[
|a0|2 + 2

∞∑
n=1

(
|an|2 + |bn|2

)]
(A.35)

Qext ⊥=
2

x
<

[
a2

0 + 2

∞∑
n=1

an

]
. (A.36)

The scattering cross section Csca is determined by equation A.29 with the ge-
ometrical cross section Gcyl = d · l. Here, d is the diameter and l is the length
of the cylinder. The resulting scattering cross sections are shown for the two
different polarizations of the incident electric field in figure A.1. Unfortunately,

1The details are described in [108] Potpourri of particles
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Figure A.1: Calculated scattering cross section normalized to the volume of
a cylinder of unit length with the refractive index m = 1.95 + i0.0043. The
polarization of the scattered incident wave (λ = 870nm) is assumed to be
perpendicular (⊥) or along the cylinder axis (||).

the asymptotic behaviour of the scattering cross section

Csca
vol

∼ 4

π d2
(A.37)

described by Bohren delivers a discrepancy by a factor of two. Nevertheless, the
shape of Csca is in good agreement with the literature.
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