Vergleichende anorganisch-geochemische Untersuchungen an phanerozoischen C_{org}-reichen Sedimenten: Ein Beitrag zur Charakterisierung ihrer Fazies.

von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines Doktors der Naturwissenschaften

angenommene Dissertation

vorgelegt von

Holger Lüschen

geb. am 04.05.1971 in Oldenburg

Oldenburg, 2004

Gutachter: 1. Koreferent: Tag der Disputation: Prof. Dr. H.-J. Brumsack Prof. Dr. J. Rullkötter 14. Juli 2004

Während der Anfertigung dieser Dissertation wurden unter meiner Beteiligung folgende Arbeiten, deren Inhalt teilweise Bestandteil dieser Arbeit ist, publiziert bzw. zur Publikation angenommen:

L. Neretin, M.E. Böttcher, B. B. Jørgensen, I. Volkov, H. Lüschen und K. Hilgenfeldt (2004) Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea. *Geochimica et Cosmochimica Acta* **68**, 2081-2093.

B. B. Jørgensen, M.E. Böttcher, H. Lüschen, L. Neretin, I. Volkov (2004) Anaerobic methane oxidation and a deep H₂S sink generate isotopically heavy sulfides in Black Sea sediments. *Geochimica et Cosmochimica Acta* **68**, 2095-2118.

H. Lüschen, B. Schnetger, H.-J. Brumsack, J. Paul (2000) Haupt- und Spurenelementsignaturen des paläozoischen Kupferschiefers und der Exshaw Formation. *Terra Nostra* 2, Potsdam, 73-75.

L. Neretin, M.E. Böttcher, B.B. Jørgensen, I.I. Volkov, H. Lüschen (1999) Pyritazation at the Holocene / Late Pleistocene transition in the Black Sea sediments: Sulfur species and their isotopic composition. *Geochemistry of the Earth's Surface*, 331-334.

So eine Arbeit wird eigentlich nie fertig.

Man muss sie für fertig erklären, wenn man nach Zeit und Umständen das Mögliche getan hat.

Johann Wolfgang von Goethe (1787)

Abkürzungsverzeichnis

a	Jahr					
amu	atomare Masseneinheit					
BEB	BEB Erdgas und Erdöl GMBH, Hannover					
Ca1	Zechsteinkalk					
C _{ges}	Gesamtkohlenstoffgehalt					
C _{min}	mineralische Kohlenstoffkonzentration					
Cmin (FeCO3)	mineralische Kohlenstoffkonzentration in Fe-Carbonaten					
Corg	Organischer Kohlenstoff					
CCRMP	Canadian Certified Reference Material Projekt					
CTBE	Cenoman/Turon Boundary Event					
DOP	Degree of Pyritisation					
FES	Flammenemissionsspektrometrie					
GAAS	Graphitrohratomabsorptionsspektrometrie					
HI	Wasserstoffindex					
ICP-MS	Massenspektrometrie mit induktiv gekoppeltem Plasma					
ID-ICP-MS	Isotopenverdünnungstechnik für die Massenspektrometrie mit induktiv					
	gekoppeltem Plasma					
ICP-OES	Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma					
INAA	Neutronenaktivierungsanalyse					
IR	Infrarot					
LA-ICP-MS	ICP-MS mit Lasersampler					
MIBK	Methylisobutylketon (Methlypentanon)					
NRC-CNRC	Canadian National Research Council					
OI	Sauerstoffindex					
PGE	Platingruppenelemente					
ppb	parts per billion $(\mu g/kg \text{ oder } \mu g/l)$					
ppm	parts per million (mg/kg oder mg/l)					
ppq	parts per quadrillion (pg/kg oder pg/l)					
ppt	parts per trillion (ng/kg oder ng/l)					
RNAA	Radiochemische Neutronen-Aktivierungsanalyse					
S1	Zechsteinkonglomerat					
SABS	South African Bureau of Standards					
S.E.	Stratigrafische Einheit					
STD	Standardabweichung					
T1 I-III	Kupferschieferzyklen eins bis drei					
TKNR	Nummer der topographischen Karte 1:100.000					
U _(auth)	authigenes Uran					
USGS	United States Geological Survey					

Sofern nicht ausdrücklich darauf hingewiesen wird, ist mit den Element-Verhältnissen (z. B Ca/Al oder $SO_4^{2^-}/Na^+$) ausschließlich das Gewichtsverhältnis im Feststoff oder in der Lösung gemeint.

Inhaltsverzeichnis

K	Kurzfassung / Abstract1			
1	Ein	leitung	7	
	1.1	Problemstellung und Zielsetzung	8	
	1.2	Einordnung des Probenmaterials in die Erdgeschichte	. 10	
2	Unt	tersuchungsmethoden	. 15	
	2.1	Probenaufbereitung	. 15	
	2.2	Pauschalparameter (C _{min} , C _{ges} , C _{org} , S)	. 15	
	2.3	Röntgenfluoreszenzsanalyse (RFA)	. 16	
	2.4	Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)	. 16	
	2.5	Salzkorrektur durch Bestimmung von löslichem Na (FES)	. 17	
3	Bes	timmung der PGE- und Re-Konzentrationen in $\mathbf{C}_{\mathrm{org}}$ -reichen Sedimenten mittel	S	
II)-IC	P-MS	. 19	
	3.1	Einleitung	. 19	
	3.2	Prinzip der Isotopenverdünnungstechnik	. 21	
		3.2.1 Grundlagen	. 22	
		3.2.2 Durchmischung des Stoffes in Spike und Probe	. 23	
		3.2.3 Herstellung und Zugabe der Indikatorlösung	. 23	
		3.2.4 Behandlung von Störungen	. 32	
	3.3	Aufschluss des Probenmaterials	. 35	
	3.4	Matrixabtrennung	. 38	
	3.5	Beschreibung der Methode zur PGE- und Re-Messung	. 40	
		3.5.1 Probenaufbereitung	. 40	
		3.5.2 Reinigung der verwendeten Materialien	. 41	
		3.5.3 Messbedingungen	. 41	
		3.5.4 PGE- und Re-Ausbeuten und die Wirksamkeit der Matrixabtrennung	. 43	
		3.5.5 Richtigkeit und Reproduzierbarkeit	. 46	
		3.5.6 Nachweisgrenzen	. 51	
	3.6	Abschließende Beurteilung des Analyseverfahrens	. 51	
4	Rel	konstruktion des Meerwassereintrags in das holozäne Schwarze Meer	. 54	
	4.1	Einleitung	. 54	

	4.2	Charakterisierung des Ablagerungsraums	. 54
	4.3	Untersuchungsmaterial	. 56
	4.4	Haupt- und Spurenelementchemismus	. 57
		4.4.1 Lithostratigraphische Einordnung und Berechnung der Sedimentationsraten	. 57
		4.4.2 Sr-Konzentration in der Carbonatphase	. 59
		4.4.3 Analyse der detritischen Sedimentkomponenten	. 61
		4.4.4 Spurenmetallanreicherungen in den C _{org} -reichen Sedimentlagen	. 67
	4.5	Rekonstruktion des Meerwassereintrags ins Schwarze Meer	. 69
		4.5.1 Modell zur Berechnung der Stoffkonzentrationen im rezenten Wasserkörper	. 69
		4.5.2 Entwicklung der Spurenmetallkonzentrationen im Tiefenwasser nach Einsetze	en
		der anoxischen Bedingungen	. 80
		4.5.3 Interpretation der Spurenmetallprofile im Hinblick auf die Wasserbilanz	. 81
	4.6	Zusammenfassung	. 84
5	Faz	zies-Charakterisierung des Niederrheinischen Kupferschiefers	. 87
	5.1	Einleitung	. 87
	5.2	Charakterisierung des Ablagerungsraums	. 88
	5.3	Untersuchungsmaterial	. 91
		5.3.1 Lokation Niederwald 1	. 91
		5.3.2 Lokation Lohberg	. 92
		5.3.3 Ergänzende Standorte	. 93
	5.4	Ergebnisse	. 93
		5.4.1 Hauptkomponenten	. 93
		5.4.2 Detritische Komponenten	. 96
		5.4.3 Carbonate und Sulfide	. 98
		5.4.4 Pyrit-Schwefel und organischer Kohlenstoff (Corg)	102
		5.4.5 Spurenmetalle	105
	5.5	Diskussion	110
		5.5.1 Carbonatphasen und Fe-Sulfide	110
		5.5.2 Syngenetische und epigenetische Mineralisation	114
		5.5.3 Redoxbedingungen in der Wassersäule	119
		5.5.3.1 V/Al- bzw. V/Cr-Verhältnisse	120
		5.5.3.2 Authigenes Uran: U _(auth)	123

		5.5.3.3 Vergleich der V/Al-Verhältnisse mit den $U_{(auth)}$ -Konzentationen	123
		5.5.3.4 Re/Mo-Verhältnisse	124
		5.5.4 Faziesmodell für den Niederrheinischen Kupferschiefer	128
	5.6	Zusammenfassung	130
6	Rel	construktion des Meerwasserchemismus im Phanerozoikum	132
	6.1	Einleitung	132
	6.2	Einordnung und Charakterisierung des Probenmaterials	133
		6.2.1 Libyen (Unteres Llandovery; ca. 443 Mio. a)	133
		6.2.1.1 Charakterisierung des Ablagerungsraums	133
		6.2.1.2 Untersuchungsmaterial	134
		6.2.2 Graptolithenschiefer aus Thüringen (Llandlovery-Lochkov; 443-418 Mio. a).	134
		6.2.2.1 Charakterisierung des Ablagerungsraums	134
		6.2.2.2 Untersuchungsmaterial	134
		6.2.3 Exshaw Formation (Famenne-Tournai-Grenze; 354 Mio. a)	135
		6.2.3.1 Charakterisierung des Ablagerungsraums	135
		6.2.3.2 Untersuchungsmaterial	136
		6.2.4 Pennsylvanische Zyklothemen (Westphal-Stephan; 361,5-299 Mio. a)	136
		6.2.4.1 Charakterisierung des Ablagerungsraums	136
		6.2.4.2 Untersuchungsmaterial	137
		6.2.5 Posidonienschiefer (Unteres Toarc; ca. 187-190 Mio. a)	138
		6.2.5.1 Charakterisierung des Ablagerungsraums	138
		6.2.5.2 Untersuchungsmaterial	139
		6.2.6 Ergänzende Materialien	139
	6.3	$Vergleich \ der \ Spurenmetallanreicherungen \ phanerozoischer \ C_{org}\text{-reicher \ Sedimenter } and \ and \ begin{tabular}{lllllllllllllllllllllllllllllllllll$	e140
	6.4	Rekonstruktion der Spurenmetallkonzentrationen im Meerwasser	145
	6.5	Zusammenfassung	152
7	PG	E-Anreicherungsmechanismen in marinen Sedimenten	153
	7.1	Einleitung	153
	7.2	PGE-Anreicherungen in C _{org} -reichen Sedimenten	154
	7.3	Mechanismen zur Anreicherung der PGE in marinen Sedimenten	156
	7.4	Konzentrationen der PGE im abgelagerten organischen Material	159
	7.5	Schlussfolgerungen	159

	7.6 Zusammenfassung	160
8	Zusammenfassung	162
9	Literaturverzeichnis	167

Anhang

Tabellenverzeichnis

Tab. 1:	Klassifikationsschemata für sauerstoffarme Milieus
Tab. 2:	Mittlere Ionen/Na ⁺ -Verhältnisse im Porenwasser des Schwarzen Meeres und in
	mittlerem Meerwasser
Tab. 3:	Isotopenzusammensetzung der natürlichen Proben und der Indikatorlösungen 24
Tab. 4:	Übersicht über die durch Reversespiking ermittelten Konzentrationen in den
	Mehrelementspikes 1 bis 3 24
Tab. 5:	Darstellung der optimalen Messsignalverhältnisse Ropt. und der minimalen
	Fehlerübertragungsfaktoren F_R (min) in Abhängigkeit von den Isotopen-
	verhältnissen in den natürlichen Proben und den Isotopenspikes
Tab. 6:	Zu ermittelnde Probenkonzentrationen C_{Pr} der Stoffe Ru, Pd, Re, Ir und Pt
	innerhalb der angegebenen Rahmenbedingungen von R und F_R mit den
	Isotopenspikes 1, 2 und 3 31
Tab. 7:	Interferenzen im PGE-Spektrum unter Berücksichtigung der Geochemie
	anoxischer Sedimente
Tab. 8:	Messbedingungen bei der Bestimmung der PGE- und Re-Konzentrationen durch
	ID-ICP-MS
Tab. 9:	Ausbeuten der PGE und von Re bei der Aufarbeitung der Probe Med-1
Tab. 10:	Anhand des Med-1 Standards (500 mg) ermittelte Matrixabtrennung
Tab. 11:	Vergleich von den selbst gewonnen Messergebnissen mit den Referenzwerten und
	den in anderen Studien ermittelten Messwerten einiger geologischer Standard-
	materialien
Tab. 12:	Reproduzierbarkeiten der ermittelten Ru-, Re-, Ir- und Pt-Konzentrationen in
	einigen typischen anoxischen Sedimenten
Tab. 13:	Nachweisgrenzen für Ru, Re, Ir und Pt51
Tab. 14:	Vor- und Nachteile der hier vorgestellten neuen Methode zur Bestimmung der
	PGE und von Re in anoxischen Sedimenten
Tab. 15:	Sedimentationsraten in den jeweiligen Sedimentlagen der Stationen 6 und 7 59
Tab. 16	Wichtige Parameter zur Berechnung der Stoffflüsse im Schwarzen Meer
Tab. 17:	Ergebnisse der Berechnung der Stoffkonzentrationen in dem dem Tiefenwasser
	zugeführten Wasser und der resultierenden Konzentrationen im Tiefenwasser nach
	dem statischen Modell von Brumsack

Tab. 18: Berechnete Stoffkonzentrationen im Oberflächen- und Tiefenwasser im stabilen
Endzustand nach der iterativen Berechnungsmethode70
Tab. 19: Gegenüberstellung der mit dem iterativen Modell berechneten Konzentrationen
der Elemente im Tiefen- und Oberflächenwasser bei der Zufuhr von mittlerem
Fluss- oder rezentem Donauwasser im 5. Fall
Tab. 20: Übersicht über die Herkunft der Bohrkernproben aus dem Pennsylvanian 13
Tab. 21: Konzentrationen einiger Spurenmetalle im mittleren Meerwasser und im mittleren
Tonschiefer sowie das mittlere Meerwasser/Tonschiefer-Verhältnis
Tab. 22: Konzentrationen einiger Spurenmetalle in mittlerem Meerwasser und mittleren
Hydrothermallösungen sowie deren Verhältnis zueinander
Tab. 23: Mittlere Element/Al-Verhältnisse von Schwarzschiefern aus dem Ordovizium 15
Tab. 24: Mittlere Konzentrationen von Ru, Ir, Pt, Corg, S und Al in einigen Sapropel- und
Schwarzschieferproben

Abbildungsverzeichnis

Abb. 1:	Stratigraphische Einordnung der in dieser Arbeit diskutierten Sapropele und
	Schwarzschiefer 11
Abb. 2:	Das Prinzip der Isotopenverdünnungsanalyse dargestellt an den Massenlinien ¹⁹¹ Ir
	und ¹⁹³ Ir
Abb. 3:	Fehlerübertragungsfaktoren bei verschieden stark an ¹⁹¹ Ir angereicherten
	Isotopenspikes in Abhängigkeit von der Ir-Konzentration in der Probe C_{Pr} und
	dem Messsignalverhältnis R
Abb. 4:	Fehlerübertragungsfaktoren bei verschiedenen Ir-Konzentrationen im Spike C_{Sp}
	bei konstanter Isotopenzusammensetzung in Abhängigkeit von der
	Ir-Konzentration in der Probe CPr und dem Messsignalverhältnis R 29
Abb. 5:	Fehlerübertragungsfaktoren für die Stoffe Ru, Re, Ir und Pt in Abhängigkeit von
	der Konzentration des Stoffes in der Probe C_{Pr} und des Messsignalverhältnisses R. 30
Abb. 6:	Überlagerung der Messsignale durch Interferenzen am Beispiel des Ir
Abb. 7:	Die aktiven Komponenten des TEVA®-Harzes und des Harzes AG 1-X8 39
Abb. 8:	Vergleich der durch externe Kalibrierung und durch die Isotopenverdünnungs-
	technik gewonnenen Re-Daten
Abb. 9:	technik gewonnenen Re-Daten
Abb. 9: Abb. 10	technik gewonnenen Re-Daten
Abb. 9: Abb. 10 Abb. 11	technik gewonnenen Re-Daten
Abb. 9: Abb. 10 Abb. 11	technik gewonnenen Re-Daten
Abb. 9: Abb. 10 Abb. 11 Abb. 12	technik gewonnenen Re-Daten
Abb. 9: Abb. 10 Abb. 11 Abb. 12	technik gewonnenen Re-Daten
Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13	technik gewonnenen Re-Daten.50Geographische Lage der Sedimentkerne aus dem Schwarzen Meer.56:Schematische Lithostratigraphie der Sedimentkerne der Stationen 6 und 7
Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13	technik gewonnenen Re-Daten.50Geographische Lage der Sedimentkerne aus dem Schwarzen Meer.56:Schematische Lithostratigraphie der Sedimentkerne der Stationen 6 und 758:REM-Aufnahmen der rhomboedrischen Carbonatkristalle in Proben von der Station 759:Korrelation von Sr gegen C _{min} in den Sedimenten von den Stationen 6, 7 und GGC 66.60:Berechnete Sr-Konzentrationen der Carbonatphase in den Sedimenten von den Stationen 6, 7 und GGC 66.61
Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13 Abb. 14	technik gewonnenen Re-Daten.50Geographische Lage der Sedimentkerne aus dem Schwarzen Meer.56:Schematische Lithostratigraphie der Sedimentkerne der Stationen 6 und 758:REM-Aufnahmen der rhomboedrischen Carbonatkristalle in Proben von der Station 759:Korrelation von Sr gegen C _{min} in den Sedimenten von den Stationen 6, 7 und GGC 66.60:Berechnete Sr-Konzentrationen der Carbonatphase in den Sedimenten von den Stationen 6, 7 und GGC 66.61:Relative Häufigkeit von SiO2, Al2O3 und CaO in den Sedimenten von den61
Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13 Abb. 14	technik gewonnenen Re-Daten.50Geographische Lage der Sedimentkerne aus dem Schwarzen Meer.56Schematische Lithostratigraphie der Sedimentkerne der Stationen 6 und 758:REM-Aufnahmen der rhomboedrischen Carbonatkristalle in Proben von derStation 759:Korrelation von Sr gegen C _{min} in den Sedimenten von den Stationen 6, 7 undGGC 66.60:Berechnete Sr-Konzentrationen der Carbonatphase in den Sedimenten von denStationen 6, 7 und GGC 66.61:Relative Häufigkeit von SiO2, Al2O3 und CaO in den Sedimenten von denStationen 6 und 7.62
 Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13 Abb. 14 Abb. 15 	technik gewonnenen Re-Daten
 Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13 Abb. 14 Abb. 15 	technik gewonnenen Re-Daten
 Abb. 9: Abb. 10 Abb. 11 Abb. 12 Abb. 13 Abb. 14 Abb. 15 Abb. 16 	technik gewonnenen Re-Daten

Abb. 17: Vergleich der Anreicherungsfaktoren in den Sedimenten des Schwarzen Meeres
relativ zum mittleren Tonschiefer
Abb. 18: Element/Al-Verhältnisse der Elemente Mo, Re, V, U, Cd und Sb in den
Sedimentkernen von den Stationen 6 (oben) und 7 (unten)
Abb. 19: Drei-Boxen-Modell zur Beschreibung der Stoffflüsse im Schwarzen Meer
Abb. 20: Relative Konzentrationsänderung im Tiefenwasser bei konstanter Zufuhr von
Donau- und Meerwasser unter den in Tab. 19 genannten Bedingungen
Abb. 21:Die Dichte von Meerwasser in Abhängigkeit von der Temperatur und dem
Salzgehalt
Abb. 22: Verbreitung des Kupferschiefers und des Marl Slate in Mitteleuropa 89
Abb. 23: Standorte der in dieser Arbeit diskutierten Kupferschieferkerne
Abb. 24: Einteilung der Kupferschieferkerne Niederwald 1 und Lohberg in die Einheiten
Zechsteinkonglomerat (S1) bis Zechsteinkalk (Ca1)
Abb. 25:Relative Häufigkeit von SiO ₂ , Al ₂ O ₃ und CaO an den Standorten Niederwald 1
und Lohberg
Abb. 26:Darstellung der Element/Al-Verhältnisse von Si, Ti, Na und K für die Stationen
Niederwald 1 und Lohberg97
Abb. 27:Darstellung der Element/Al-Verhältnisse von Ca, Mn, Fe, S, Sr und P sowie der
Ca/Mg-Verhältnisse
Abb. 28: Relative Häufigkeit von C_{min} (Fe-Carbonat), Fe _x und S in den Sedimentkernen
Niederwald 1 und Lohberg 102
Abb. 29: Korrelation von Gesamtschwefel gegen C_{org} in den Einheiten T1 I bis Ca1 104
Abb. 30: Anreicherungsgrade von einigen Spurenmetallen im Kupferschieferzyklus T1 I
relativ zum mittleren Tonschiefer 105
Abb. 31:C _{org} -Konzentrationen und Element/Al-Verhältnisse von Mo, V, U, Ni, Co und Re
in den Kernen Niederwald 1 und Lohberg 108
Abb. 32: Element/Al-Verhältnisse von S, Zn, Pb, Ba, Cu, Cd, As und Tl in den Kernen
Niederwald 1 und Lohberg 109
Abb. 33: Vergleichende Darstellung wichtiger Parameter zur Ermittlung der
Redoxbedingungen in der Wassersäule zur Zeit der Ablagerung in den Kernen
Niederwald 1 und Lohberg 122
Abb. 34:Einfluss der Sedimentationsrate auf das Element/Al-Verhältnis von V, Mo und U
in Schwarzschiefern und rezenten Corg-reichen Sedimenten

Abb. 35: Auftragu	ng der Re/Mo-V	/erhältnis	sse geger	die Redo	oxparan	neter V	/Al unc	l U _{(auth}).	126
Abb. 36: Mittlere	Anreicherungs	faktoren	einiger	Spurenm	netalle	relativ	zum	mittlerer	1
Tonschie	fer		•••••			•••••			142
Abb. 37: Anreiche	rungsfaktoren	einiger	Spurer	nmetalle	gegen	über	dem	mittlerer	1

Abb. 38: Häufigkeitsdiagramme der Element/Al-Verhältnisse von Zn, Cd, Re, Mo, U, V und Sb in verschiedenen C_{org}-reichen Sedimenten vom Silur bis zum Tertiär...... 147

Abb. 39: Korrelationsdiagramme von Pt, Ru und Ir gegen Corg und S 158

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit den Haupt- und Spurenmetallgehalten ausgewählter phanerozoischer fossiler Schwarzschiefer (Norwegische Jura/Kreide-Grenze, Posidonienschiefer, Niederrheinischer Kupferschiefer, pennsylvanischen Zyklotheme, *Exshaw Formation*, Graptolithenschiefer aus Thüringen, Lybische Tanezzuft-Formation) und (sub-)rezenter Sapropele (Schwarzes Meer, peruanische Auftriebssedimente) unter besonderer Berücksichtigung der Gehalte der selten untersuchten Spurenmetalle Ag, Bi, Cd, Ir, Pt, Re, Ru, Sb und Tl. Für die Bestimmung der Konzentrationen von Re und der Platingruppenelemente (PGE) Ru, Ir und Pt in anoxischen Sedimenten wurde eine neue Methode entwickelt. Ziel der Arbeit war es, die sedimentären Spurenmetallsignaturen als Paläoumweltindikatoren hinsichtlich der Spurenmetall- und Sauerstoffverfügbarkeit in der Wassersäule während der Ablagerung zu nutzen. In diesem Zusammenhang wurden Überlegungen zur Variabilität in der phanerozoischen Meerwasserzusammensetzung angestellt. Außerdem wurden Hinweise auf die Anreicherungsmechanismen der PGE in marinen Sedimenten erlangt.

Mittels einer Spurenmetallbilanz konnte anhand der Sedimente aus dem Schwarzen Meer nachgewiesen werden, dass die Akkumulation der Spurenmetalle maßgeblich durch die Verfügbarkeit der Metalle in der das Sediment überlagernden Wassersäule limitiert ist. Basis für die gute Übereinstimmung der berechneten Daten mit den von anderen Autoren publizierten Spurenmetallkonzentrationen im Oberflächen- und Tiefenwasser sind die gute Kenntnis über die ozeanographischen Daten, die Spurenmetallkonzentrationen in den dem Schwarzen Meer zugeführten Wassermassen sowie die Spurenmetallgehalte in den anoxischen Sedimenten. Aus der Modellrechnung, den hochaufgelösten vertikalen Spurenmetallsignaturen und anderen paläoökologischen Befunden wird gefolgert, dass zu Beginn der Ablagerung des holozänen Sapropels (*Unit* 2a) der Meerwassereintrag geringer war als heute.

Die in unvererzten anoxischen Sedimenten ermittelten PGE-Konzentrationen waren meistens ähnlich hoch wie in pelagischen Sedimenten. Relativ zum mittleren Tonschiefer sind die PGE in beiden Sedimenttypen etwa bis zum Faktor 10 angereichert. In typischen anoxischen Sedimenten lagen die mittleren Konzentrationen bei 1-3,5 ppb Pt, 0,1-0,3 ppb Ru und 0,03-0,08 ppb Ir. Die höchsten Konzentrationen wurden mit bis zu 15,5 ppb Pt, 1,4 ppb Ru

und 0,27 ppb Ir in einigen ausgewählten Einzelproben gefunden. Ursächlich für die niedrigen PGE-Anreicherungen ist die geringe Verfügbarkeit der Metalle im Meerwasser.

Für die Anreicherung von Pt und Ru in oxischen und C_{org}-reichen Sedimenten sind zwei unterschiedliche Anreicherungsmechanismen wirksam. Redoxprozesse an den Oberflächen von Mn-Oxiden führen zur Anreicherung in oxischen Sedimenten. Für anoxische Sedimente scheint der Eintrag von Pt und Ru mit dem organischen Material von Bedeutung zu sein. Die Kopplung von Ru an den Nährstoffzyklus gilt als wahrscheinlich. Für die geringen Anreicherungen von Ir kann kein besonderer Anreicherungsmechanismus ausgemacht werden.

Die Modellrechnung für das Schwarze Meer stellte im Weiteren eine solide Basis für die Rekonstruktion der während des Phanerozoikums variierenden Meerwasserzusammensetzung und der Ermittlung der Redoxbedingungen im permischen Zechsteinmeer anhand der im Sediment überlieferten Spurenmetallsignaturen dar.

An den zwei hochaufgelöst untersuchten Sedimentkernen des Niederrheinischen Kupferschiefers wurde nachgewiesen, dass vor allem Fe, Zn, Pb, Cu, Ba, As, Cd, Tl, Sb, Ag und Co in wenige cm mächtigen, diskreten Schichten epigenetisch angereichert wurden. Die Niederrheinischen Kupferschiefersedimente des Kerns Niederwald 1 zeigen, im Gegensatz zu den Kupferschiefersedimenten in anderen Regionen, keine ausgeprägten Anreicherungen der PGE. Die hohen Ankerit- und Dolomitgehalte erlauben den Schluss, die Zusammensetzung der Carbonatphase sei wesentlich durch epigenetische Prozesse bestimmt worden, obwohl andere Autoren von einer primären Signatur der Carbonate ausgingen. Weder die Mn/Ca-Verhältnisse noch die Dolomitisierungsgrade erlauben Aussagen über die Sauerstoffverfügbarkeit in der Wassersäule zur Ablagerungszeit.

Die Gehalte von Mo, Re, V, U und Ni wurden kaum sekundär überprägt, so dass ihre Konzentrationen für die Analyse der Redoxbedingungen bei der Ablagerung der Kupferschiefersedimente herangezogen werden konnten. Neben den einschlägigen Redoxparametern hat das an jüngeren Sedimenten diskutierte Re/Mo-Verhältnis brauchbare Zusatzinformationen für die Analyse der Redoxbedingungen geliefert. Die Schwellenwerte, die indikativ für rezente suboxische Sedimente sind, können nicht unmittelbar auf fossile Sedimente übertragen werden. Trotzdem erlaubte die Auswertung der relativen Trends in den Re/Mo-Profilen eine detailiertere Entschlüsselung des Ablagerungsgeschehens, als es mit den anderen Redoxindikatoren allein möglich gewesen wäre.

Die Re/Mo-Verhältnisse und sedimentologische Befunde ermöglichen die Schlussfolgerung, dass während der Kupferschieferablagerung das Redoxpotential zunächst nur langsam zunahm und die euxinischen Bedingungen Bestand hatten, obwohl die V/Al-Verhältnisse und die U_(auth)-Konzentrationen abnahmen. Erst am Übergang vom Kupferschieferzyklus T1 II zum Zyklus T1 III traten suboxische Bedingungen auf, bis die reduzierenden Bedingungen schließlich zusammenbrachen und die Ablagerung des Zechsteinkalks eingeleitet wurde. Für die aus dem östlichen Niederrheinischen Becken stammenden Sedimentkerne Lohberg und Rehmbergschlag wurde gefolgert, sie seien in einem tieferen Becken abgelagert worden, in dem die reduzierenden Bedingungen besonders beständig waren.

Aus den Spurenmetallgehalten der phanerozoischen Schwarzschiefer wird gefolgert, dass Corg-reiche Sedimente wahrscheinlich als Spiegelbild des Meerwasserchemismus zur Ablagerungszeit herangezogen werden können. Dieser Hypothese folgend würde das Reservoir Meerwasser solange mit den leicht löslichen Spurenmetallen Cd, Re, Mo, U und V angereichert, bis das Ausbilden effektiver Senken (z. B. weiträumige anoxische Ablagerungsräume) zum Entzug der Spurenmetalle aus dem Meerwasser und zur Akkumulation im Sediment führt. Die hohen Spurenmetallanreicherungen in den Schwarzschiefern aus dem unteren Ordovizium sind dementsprechend auf das zuvor seltene Ablagern anoxischer Sedimente zurückzuführen. Viele Spurenmetalle konnten sich daher vor dem Ordovizium stark im Reservoir Meerwasser anreichern. Analog zur Modellrechung für das Schwarze Meer führte die Ablagerung Corg-reicher Sedimente im Paläozoikum zur Verarmung der Spurenmetalle, so dass ihre Konzentrationen im paläozoischen Meerwasser vermutlich niedriger waren als im rezenten Meerwasser. Heute weisen vor allem die Spurenmetalle Cd, Re, Mo und U wegen fehlender Senken ungewöhnlich hohe Konzentrationen im Meerwasser auf. Im Jura und in der Kreide führte der vermehrte Ausstoß hydrothermaler Lösungen infolge des Aufbrechens des Großkontinents Pangäa und des Heraushebens von Large Igneous Provinces zu einer Anreicherung von Zn, Cd und Pb im Meerwasser. Aus den hohen Pt-Anreicherungen der Jura/Kreide-Schwarzschiefer wird gefolgert, dass dem Meerwasser möglicherweise auch Pt durch hydrothermale Lösungen zugeführt wurde.

Abstract

In this thesis the contents of major and trace metals of selected Phanerozoic fossil black shales (Norwegian Jurassic/Cretaceous Boundary, Posidonia Shale, Kupferschiefer of the Lower Rhine Basin, Pennsylvanian Cyclothems, Canadian Exshaw Formation, Graptolite Shales from Thuringia, Silurian Tanezzuft Formation) and (sub)-recent sapropels (Black Sea, peruvian upwelling sediments) are presented with emphasis on the rarely investigated trace metals Ag, Bi, Cd, Ir, Pt, Re, Ru, Sb and Tl. For the determination of the concentrations of Re and the platinum-group elements (PGE) Ru, Ir and Pt in anoxic sediments a new method has been developed.

The aim of this study was to make use of the sedimentary trace metal signatures as paleoindicators with respect to the availability of the trace metals in seawater and seawater oxygenation during sedimentation. In this context variations in the Phanerozoic seawater composition have been considered. Moreover information about PGE enrichment mechanisms in marine sediments was obtained.

The trace metal balance calculation for the Black Sea revealed that accumulation of trace metals is limited decisively by their availability in the overlying water column. Basis for the good agreement of the calculated data with the data on surface and deep waters published by other authors is the excellent knowledge of the oceanographic data, the trace metal concentrations added to the Black Sea and the concentration of the trace metals in the anoxic sediments. Following the results of the mass balance calculation, the high-resolution vertical trace metal signatures and the paleoecological results, it can be concluded that the sedimentation of the Holocene sapropel (*Unit* 2a) was initiated under lower seawater influx than today.

The PGE contents in non-mineralized anoxic sediments are most of the time as high as in pelagic sediments. PGE are 10 times enriched vs. average shale in both sediment types. The average contents in anoxic sediments amount to 1-3,5 ppb Pt, 0,1-0,3 ppb Ru and 0,03-0,08 ppb Ir. The maximum values reached 15,5 ppb Pt, 1,4 ppb Ru and 0,27 ppb Ir. The major reason for only slight enrichment of the PGE is the low availability of the PGE in seawater. Two different mechanisms are responsible for the enrichment of Pt and Ru in oxic and organic-matter-rich sediments. Redox processes at manganese oxide surfaces lead to the

enrichment of Pt in oxic sediments. For anoxic TOC-rich sediments, the accumulation of Pt and Ru with organic material seems to be very important. The coupling of Pt and Ru to nutrient cycling seems very likely. The slight enrichment of Ir cannot be attributed to a special process.

Furthermore, the Black Sea's trace metal mass balance is a good basis for the reconstruction of the varying seawater composition during the Phanerozoic and the identification of redox conditions in the Permian Zechstein sea by means of the trace metal signatures.

The high-resolution studies on two Kupferschiefer cores of the Lower Rhine Basin indicated the epigenetic enrichment of Fe, Zn, Pb, Cu, Ba, As, Cd, Tl, Sb, Ag and Co in discrete layers of only few cm thickness. In contrast to other Kupferschiefer localities no pronounced enrichment of the PGE could be found in the sediments of the core Niederwald 1. The high ankerite and dolomite contents allow the conclusion that the composition of the carbonates was strongly influenced by epigenetic processes, though a primary signature of the carbonate phase was supposed earlier. Neither the Mn/Ca ratios nor the dolomite concentrations are indicative of the watercolumn's degree of saturation with oxygen during deposition.

The contents of Mo, Re, V, U and Ni were only slightly influenced by secondary processes, so that their concentrations could be used for the identification of the redox conditions during deposition of the Kupferschiefer sediments. In addition to the common redox parameters the Re/Mo ratio, which is discussed in the recent literature for younger sediments, provided useful information about the redox conditions. Threshold ratios which constrain suboxic conditions in recent sediments are difficult to be transferred to ancient sediments. However the relative trends in the Re/Mo profiles allowed a more detailed interpretation of the environmental conditions during deposition.

Re/Mo ratios suggest that the redox potential rose only slightly during the early Kupferschiefer deposition and euxinic conditions were stable though the V/Al ratios and $U_{(auth)}$ concentrations decreased with time. Only at the transition from cycle T1 II to cycle T1 III suboxic conditions appeared, until the reducing conditions finally changed to oxic. The deposition of the Zechstein Carbonate was initiated. The sediment cores Lohberg and Rehmbergschlag from easterly locations seem to have been deposited in a deeper basin, where reducing conditions were especially stable. Trace metal contents of Phanerozoic black shales may be used as a mirror of corresponding seawater. Following this hypothesis, the reservoir seawater would be enriched with relatively well soluble trace metals like Cd, Re, Mo, U and V, until formation of effective sinks (such as extended anoxic environments) leads to depletion of these elements in the oceans through trapping in marine TOC-rich sediments. The high enrichment of trace metals in black shales of the Lower Ordovician can be attributed to the rare deposition of anoxic sediments before this time interval. Corresponding to this, many trace metals were highly concentrated in seawater before. By analogy with the trace metal balance of the Black Sea the deposition of TOC-rich sediments resulted in a depletion of these trace metals in Paleozoic seawater relative to modern seawater. Especially the trace metals Cd, Re, Mo and U are highly concentrated in modern seawater due to missing sinks. During the Jurassic and the Cretaceous the increased discharge of hydrothermal solutions, initiated by the disintegration of Pangea and the uplift of large igneous provinces, resulted in an enrichment of Zn, Cd and Pb in seawater. High Pt enrichment in two samples of black shales from the Jurassic/Cretaceous boundary suggest Pt release by hydrothermal activity.

1 Einleitung

Die Erde und das darauf angesiedelte Leben sind einem ständigen Wandel und häufigem Wechsel zwischen Kalt- und Warmzeiten bzw. trockenen und feuchten Zeiten unterworfen. Die steuernden Prozesse des Erdklimas sind in einer Vielzahl von Parametern zu suchen. Die Verteilung der Kontinente, die Sonneneinstrahlungsintensität, die globale Zirkulation der Atmosphäre sowie der Ozeane und der damit verbundene Energietransport, die kontinentale Vereisung und resultierende Meeresspiegelschwankungen sowie die Konzentration von klimawirksamen Gasen wie CO₂, CH₄ und H₂O in der Atmosphäre sind nur einige wichtige Faktoren, die einen bedeutenden Einfluss auf das Erdklima und die Lebensbedingungen in den Weltmeeren und auf den Kontinenten haben.

Eine zentrale Aufgabe der Geochemie besteht in der Analyse der Zusammensetzung von marinen Sedimenten, die eine Rekonstruktion der Ablagerungsbedingungen ermöglicht und zum Aufspüren von Steuerungsmechanismen des globalen Klimas beiträgt. Die marinen Sedimente sind dabei als wichtige Dokumente anzusehen, in denen das Klimageschehen und das Ablagerungsmilieu zur Ablagerungszeit überliefert sind. Nach dem Prinzip der Aktuogeologie können die in den alten Sedimenten überlieferten "Schriften" aber nur dann richtig gedeutet werden, wenn die an rezenten Sedimenten erworbenen Erkenntnisse mit den fossilen Ablagerungen in Beziehung gesetzt werden.

Im Wasserkörper und im Sediment bestimmt der Grad der Sauerstoff- bzw. Schwefelwasserstoffsättigung die auftretende Fauna und Flora. Das Redoxpotential hat damit einen bedeutenden Einfluss auf die Artenvielfalt der im Wasser lebenden Organismen. Es werden gewöhnlich die in Tab. 1 genannten Stadien der Sauerstofflimitierung unterschieden. Die Verdrängung des makroskopischen Benthos durch anaerobe Mikroorganismen führt im höchsten Stadium der Sauerstofflimitierung zu einer strengen Laminierung der Sedimente, in denen die Mineralisation des organischen Materials ausschließlich durch Bakterien bewerkstelligt wird. Es treten dann hohe Konzentrationen an organischem Material im Sediment auf. Gegenwärtig sind großräumige anoxische Ablagerungsräume nur in Randmeersituationen (z. B. Schwarzes Meer, Cariaco Trench, Ostsee und Framvaren-Fjord) oder in Auftriebsgebieten (z. B. Peru, Chile, Namibia und Golf von Kalifornien) realisiert. In der Erdgeschichte wurden die Ozeane aber immer wieder von länger andauernden anoxischen Phasen geprägt, in denen die reduzierenden Bedingungen bis weit in die offenen Ozeane hineinreichten.

Bezeichnung	gelöster Sauerstoff [ml O2/l]
oxisch/aerob	(1,0) 2,0 - 860
dysoxisch	(0,1) 0,2 - (1,0) 2,0
anaerob/suboxisch	0 – (0,1) 0,2
euxinisch	0 (H ₂ S anwesend)

Tab. 1: Klassifikationsschemata für sauerstoffarme Milieus (Arthur und Sagemann, 1994; Jones und Manning, 1994; Tyson und Pearson, 1991).

Je nach Bezugsquelle werden unterschiedliche Sauerstoffkonzentrationen genannt.

Die unter einer reduzierenden Wassersäule abgelagerten Sedimente zeichnen sich nicht nur durch hohe Konzentrationen an organischem Kohlenstoff (C_{org}), sondern auch durch hohe Spurenmetallanreicherungen gegenüber dem mittleren Tonschiefer (Wedepohl, 1971a; Wedepohl, 1991), einem durchschnittlichen unter oxischen Bedingungen abgelagerten Sediment aus. Viele Autoren gehen davon aus, dass das Meerwasser die Quelle für die im Sediment angereicherten Metalle darstellt (z. B. Brumsack, 1988; Brumsack, 1989a; Nijenhuis et al., 1999; Piper, 1994) und die im Sediment überlieferten Spurenmetallsignaturen indikativ für die Redoxbedingungen in der Wassersäule zur Ablagerungszeit sind (z. B. Anderson und Fleisher, 1991; Arthur und Sagemann, 1994; Brumsack, 1991; Calvert und Pedersen, 1993; Colodner et al., 1995; Crusius et al., 1996; Crusius und Thomson, 2000; Jones und Manning, 1994).

1.1 Problemstellung und Zielsetzung

In dieser Arbeit wird der These nachgegangen, die Metallgehalte und die Redoxbedingungen in der – den Meeresboden überlagernden – Wassersäule würden sich nachhaltig in den Spurenmetallgehalten der Sedimente widerspiegeln. Dazu wird in Kap. 4 an den Sapropelen des Schwarzen Meeres eine iterative Modellrechnung durchgeführt. Ziel der Rechnung ist es zu überprüfen, inwieweit das in das Schwarze Meer eindringende Meerwasser die wichtigste Quelle für die Spurenmetallanreicherungen in den Sedimenten darstellt. Das System des rezenten Schwarzen Meeres ist ozeanographisch und geochemisch hervorragend untersucht, so dass die eingehenden Daten eine solide Basis für die Modellrechnung darstellen. Schließlich werden aus dem Modell Schlussfolgerungen über die holozäne Wasserbilanz des Schwarzen Meeres gezogen. Ausgehend von diesem relativ gut beschreibbaren jungen System werden die im Sediment überlieferten Spurenmetallsignaturen zur Charakterisierung fossiler Ablagerungsräume genutzt. So werden im Kap. 5 die Haupt- und Spurenelementgehalte zur weiteren Charakterisierung der Fazies des Niederrheinischen Kupferschiefers verwendet. Zudem werden Aussagen über das Redoxpotential in der Wassersäule getroffen. Dabei wird die Relevanz einiger anorganisch-geochemischer Redoxindikatoren, insbesondere des von Crusius (1996) eingeführten Re/Mo-Verhältnisses, diskutiert. Außerdem wird in diesem Zusammenhang auf die Beteiligung der verschiedenen Spurenmetalle an den für den Kupferschiefer typischen, epigenetischen Vererzungen eingegangen.

Im Kap. 6 werden, aufbauend auf die an den Schwarzmeersedimenten erworbenen Erkenntnisse, die Spurenmetallsignaturen einiger C_{org} -reicher Sedimente vom Ordovizium bis zur Gegenwart miteinander verglichen, um Überlegungen zur Verfügbarkeit der Metalle im Meerwasser zur jeweiligen Ablagerungszeit anzustellen. Auch bei dieser Diskussion finden postsedimentäre Prozesse Berücksichtigung.

Obwohl einige hervorragende Arbeiten zum geochemischen Verhalten von Spurenmetallen publiziert wurden, sind die Stoffkreisläufe der Platingruppenelemente (PGE) im marinen Milieu weitgehend unbekannt. Meist wurden nur die wirtschaftlich bedeutsamen metallreichen Lagerstätten, Basalte oder extraterrestrischen Materialien untersucht. Insbesondere die analytischen Schwierigkeiten verhinderten bisher eine zahlenmäßig groß angelegte Studie zu den PGE-Gehalten in marinen Sedimenten im unteren ppbund ppt-Bereich. Die Weiterentwicklung der analytischen Techniken ermöglichte aber schon zu Beginn dieser Arbeit die simultane Bestimmung der PGE-Konzentrationen in Corg-armen Materialien mittels der ID-ICP-MS (Makishima et al., 2001; Pearson und Woodland, 2000; Rehkämper und Halliday, 1997; Yi und Masuda, 1996). Ein Ziel dieser Arbeit bestand daher darin, eine massenspektrometrische Methode zur Bestimmung der PGE-Gehalte in Corg-reichen Sedimenten zu entwickeln und die bestehende Datenbasis hinsichtlich dieses wichtigen Sedimenttyps zu erweitern. Der umfassenden Methodenbeschreibung wird das separate Kap. 3 gewidmet. Im Kap. 6 und Kap. 7 werden erste Daten über die Konzentrationen von Pt, Ru und Ir in Sapropelen und nicht vererzten Schwarzschiefern präsentiert und mögliche syngenetische Anreicherungsmechanismen der PGE in pelagischen und Corg-reichen Sedimenten diskutiert.

1.2 Einordnung des Probenmaterials in die Erdgeschichte

Das untersuchte Material (vgl. Abb. 1) wird zunächst in die verschiedenen erdgeschichtlichen Zeitalter seit dem Ordovizium mit den wichtigsten paläogeologischen, paläoklimatischen und paläoontologischen Aspekten eingeordnet. Basis für den groben Abriss der Erdgeschichte sind die Arbeiten von Faupl (1997), Frakes et al. (1992), Scotese et al. (1999), Stanley (1994) und Witzke (1990). Paläogeographische Karten und eine ausführlichere Diskussion sind den genannten Arbeiten zu entnehmen. Eine detaillierte Charakterisierung der untersuchten Materialien und deren Ablagerungsräume erfolgt in den Kap. 4 (Schwarzes Meer), Kap. 5 (Kupferschiefer) und Kap. 6 (weitere phanerozoische Schwarzschiefer).

Die südliche Drift des Großkontinents Gondwana im Ordovizium ging mit dem Übergang von einer Warmzeit in eine Kaltzeit einher. Baltica driftete aus 30° bis 60° südlicher Breite in nordwestliche Richtung auf das in äquatorialer Lage befindliche Laurentia zu. Im Ordovizium äußerte sich die zunehmende Abkühlung in der Vereisung des Südpols auf dem heutigen nordafrikanischen Kontinent (Blanpied et al., 2000) und einer zirkumpolaren Tiefenwasserbildung. Diese ermöglichte eine Versorgung des Tiefenwassers mit Sauerstoff, obwohl der atmosphärische Sauerstoffgehalt im rezenten Vergleich relativ niedrig war (Berry und Wilde, 1978). Während des späten Ordoviziums und des folgenden Silurs wurden weite Teile der Ozeane aber vermutlich schlecht oder gar nicht belüftet (Berry und Wilde, 1978; Wilde et al., 1991). In den Schelfbereichen der Ozeane hatte sich bereits reges Leben (Riffe, Fische, Pflanzen, Graptolithen) entwickelt. Im Silur gelang den ersten Pflanzen im Zuge des erneuten Meeresspiegelanstiegs, bedingt durch das vermehrte Abschmelzen der kontinentalen Gletscher auf Gondwana, der Übergang vom Wasser zum Land. Die ersten Landpflanzen gediehen zunächst nur in semiaquatischen Lebensräumen. Erst die Gefäßpflanzen, welche zuerst im oberen Silur auftraten, konnten losgelöst vom Wasser aufrecht wachsen. Wahrscheinlich waren die terrestrischen Lebensräume zuvor höchstens von Algen und anderen einfach gebauten Pflanzen bevölkert gewesen. Humusbildende Böden waren noch nicht vorhanden. Im Zuge der marinen Transgression wurden in Libyen an der Ordovizium/Silur-Grenze und in Thüringen (Graptolithenschiefer) vom Silur bis ins **Devon** C_{org}-reiche Sedimente abgelagert.

Abb. 1: Stratigraphische Einordnung der in dieser Arbeit diskutierten Sapropele und Schwarzschiefer nach German (2002). Fett dargestellte Materialien waren Gegenstand der experimentellen Untersuchungen, normal dargestellte Materialien ergänzen diese Arbeit lediglich (Daten von Brumsack, 1986; Lipinski et al., 2002; Quinby-Hunt et al., 1989; Warning und Brumsack, 2000; Werne et al., 2002).

Baltica driftete im Silur weiter äquatorwärts, so dass sich am Ende des Silurs bei der Kollision von Baltica und Laurentia der Iapetus-Ozean am Äquator schloss und der Großkontinent Laurussia, aus dem im Devon der Old-Red-Kontinent hervorging, ausbildete. Der jetzige nordafrikanische Schelfbereich bewegte sich mit Gondwana ebenfalls nordwärts. Wieweit sich die beiden Großkontinente Laurussia und Gondwana im Silur und Devon infolge der nördlichen Drift Gondwanas einander bereits angenähert hatten, ist bislang unklar. Ein möglicher Kontakt von Nord- und Südamerika dürfte aber nachhaltige Folgen auf die ozeanische Zirkulation des Rhea-Ozeans, der das heutige Afrika und Südeuropa (Gondwana) von Mitteleuropa (Laurussia) trennte (Robardet et al., 1990), gehabt haben (Wilde et al., 1991). Im Devon hatte das warme Klima zunächst Bestand.

Im oberen Devon (Famenne) führte der erneute Eintritt in eine kurze Kaltzeit wiederum zur Vereisung des Südpols (Südamerika) und zu starken Meeresspiegelschwankungen. Es kam am nordamerikanischen Schelf zur Ausbildung eines weiten Flachmeerbereichs und zur Ablagerung weit ausgedehnter Schwarzschiefer (z.B. Chattanooga Shale oder Exshaw *Formation*). Im unteren Karbon setzte sich nach einer kurzen Unterbrechung die Abkühlung fort, so dass Gondwana teilweise von einem Eispanzer zugedeckt wurde. Zunächst aber wurden weite Teile der Schelfbereiche von Epikontinentalmeeren überflutet, so dass sich in niedrigen Breiten am Nord-Ost-Rand des Old-Red-Kontinents eine Sumpfvegetation ausbildete. Gondwana und der Old-Red-Kontinent näherten sich derweil stetig an und begannen spätestens im mittleren Karbon zu kollidieren. Aus den oberkarbonischen Wäldern, die fast den gesamten nordamerikanischen Kontinent bedeckten, und den küstennahen Sümpfen entstanden Kohlelagerstätten. Diese sogenannten kohleführenden pennsylvanischen Zyklotheme wurden infolge wechselnder kontinentaler Vereisung durch Trans- und Regressionsbewegungen hervorgerufen. Der steile Temperaturgradient vom Äquator zu den Polen und die riesige Landmasse ermöglichten im Oberkarbon und im Perm wahrscheinlich ein zunehmend trockeneres Klima in den Tropen.

Für das untere Perm finden Ziegler (1990) und Ziegler et al. (1997) zunächst noch Hinweise auf einen tropischen Gürtel. Parrish (1993) führt das Ausbleiben eines feuchten tropischen Gürtels vom mittleren Perm bis zum Jura auf ein mega-monsunales System zurück. Unstrittig ist die zu diesem Zeitpunkt weit nach Norden reichende Vergletscherung des südlichen Gondwanas (Lopez-Gamundi, 1997; Visser, 1997). Der Eintritt ins Perm besiegelte das Ende der häufig auftretenden, weit ausgedehnten anoxischen Sedimentationsräume in den Schelfmeeren des nordamerikanischen Kontinents. Das weitere Driften Gondwanas gipfelte schließlich in der Ausbildung des Superkontinents Pangäa, der von dem riesigen Panthalassa-Ozean und der Tethys umgeben wurde.

Mit dem oberen **Perm**, in dem durch die Kollision von Sibirien mit Osteuropa Pangäa vervollständigt wurde, gibt es keine Hinweise auf eine polare Vereisung am Südpol mehr. Der erneute Wechsel in die Warmzeit bewirkte wieder eine Meerestransgression und weiterhin große Temperaturgegensätze zwischen den Polen und dem Äquator. Im Zuge der Transgression wurden weite Teile Mitteleuropas mehrfach vom Zechsteinmeer überflutet. Hinweise auf das zuletzt heiße, trockene Klima in Mitteleuropa sind unter anderem in den Evaporitserien des Zechsteinmeeres dokumentiert (Paul, 1991). Zunächst kam es in dem nährstoffreichen Randmeer aber zur Ablagerung eines bituminösen Mergels, des **Kupferschiefers**.

In der Trias herrschten ebenfalls weitgehend aride Bedingungen. Zum Ende der Trias wurde der Zerfall Pangäas durch die Anlage eines Riftsystems zwischen Nordamerika und Nordwestafrika eingeleitet. Die östliche Tethys wurde zu einem tiefen, schmalen Meeresarm, der zunächst das heutige Südeuropa von Afrika trennte. Im Jura kam es zu einer Öffnung dieser Gräben und des südlichen Atlantiks sowie zur Überflutung weiter Teile Europas. In einem epikontinentalen Flachmeer, welches die Arktis mit der Tethys verband, wurde während des Lias ε der **Posidonienschiefer** abgelagert.

Der im Jura begonnene vollständige Zerfall Pangäas wurde in der unteren Kreide fortgesetzt und ging mit einer völligen Neuordnung der Kontinente einher. Dieser relativ schnelle Zerfall wurde möglicherweise durch den Aufstieg heißer Mantelkomponenten (*super plumes*) und der Ausbildung von *Large Igneous Provinces* angetrieben (Coffin und Eldholm, 1994; Kerr, 1998; Larson und Kincaid, 1996; Sinton und Duncan, 1997; Wignall, 2001). Die sich neu ausbildenden Ozeane glichen zunächst engen Meeresstraßen. In diesen Bruchzonen wird das Treibhausklima, welches dem Jura und der Kreide gemein war, durch Evaporite belegt. Die höchsten Temperaturen traten vermutlich in der Oberkreide auf und werden auf erhöhten Treibhausgasausstoß zurückgeführt (Jenkyns, 1997; Larson, 1991a; Larson, 1991b). Der geringe Temperaturgradient vom Äquator zu den Polen verhinderte wahrscheinlich die Bildung von polarem Tiefenwasser, so dass weite Teile der Ozeane kaum belüftet wurden. Sauerstoffzehrung im Tiefenwasser der Ozeane war die Folge. Auch in der kurzen schwachen Kaltzeit an der Jura/Kreide-Grenze und in der unteren Kreide bewirkte die Ausbildung von zirkumpolaren Eismassen wahrscheinlich keine ausreichende Abkühlung und Belüftung der Ozeane. Die Ausbildung von Anoxia in den neuartigen, schlecht belüfteten ozeanischen Becken führte zur Bildung bituminöser Tone (Schlanger und Jenkyns, 1976).

Im Tertiär wurden Nordamerika und Eurasien endgültig voneinander getrennt, die Antarktis separiert und die Tethys geschlossen. Diese Prozesse gingen mit einem weiteren Wechsel in eine Kaltzeit einher. Später kam es nur noch gelegentlich zur Ablagerung C_{org}-reicher Sedimente (Arthur und Sagemann, 1994). Die besonderen klimatischen und ozeanografischen Bedingungen erlaubten schließlich noch die Ablagerung der pleistozänen und pliozänen Mittelmeersapropele sowie der holozänen **Sapropele des Schwarzen Meeres** (z. B. Bethoux, 1993; Brumsack, 1989a; Calvert, 1983; Calvert, 1990; Jones und Gagnon, 1994; Kidd et al., 1978; Lourens et al., 2001; Nijenhuis et al., 1999; Ross und Degens, 1974; Warning und Brumsack, 2000; Wehausen, 1999).

2 Untersuchungsmethoden

2.1 Probenaufbereitung

Das Probenmaterial aus dem Schwarzen Meer wurde gefriergetrocknet und in der Achat-Kugelmühle (Fa. Fritsch) 15 bis 20 min bei 200 U/min analysenfein gemahlen. Die älteren Sedimente mussten vor dem Aufmahlen zunächst mit dem Backenbrecher (Fa. Retsch) auf ca. 2 mm Korngröße zerkleinert werden. Das Granulat wurde im Achatbecher 45 bis 75 min bei 200 U/min aufgemahlen.

Das vollständig homogensierte Material wurde mit den folgenden Analyseverfahren untersucht. Die Richtigkeit und Reproduzierbarkeit der Analysengänge wurde mit verschiedenen institutsinternen und internationalen Referenzmaterialien überwacht.

2.2 Pauschalparameter (C_{min}, C_{ges}, C_{org}, S)

Die Bestimmung des mineralischen Kohlenstoffgehaltes (C_{min}) von 50 bis 150 mg Probe erfolgte mittels des CO₂-Coulometers CM 5012 und der Acidifizierungseinheit CM 5130 (beides Fa. UIC[®]). Der carbonatisch gebundene Kohlenstoff wurde bei 70 °C mit 2 N HClO₄ freigesetzt und im Stickstoffstrom in die Analysenzelle eingeleitet. Da die Detektion auf einer pH-Änderung in der Detektoreinheit beruht, wurde der Gasstrom durch gesättigte Silbersulfatfallen (mit H₂SO₄ auf pH = 3 angesäuert) geleitet, um unerwünschten Schwefelwasserstoff zu entfernen. Die pH-Änderung wurde elektrochemisch zurücktitriert, wobei die verbrauchte Ladungsmenge proportional zum freigesetzten CO₂ war. Die Präzision der Messung war besser als 3 %.

Der Gesamtkohlenstoffgehalt (C_{ges}) und die Schwefelkonzentration wurden durch Verbrennungsanalyse mit dem Gerät LECO[®] SC 444 ermittelt. Dazu wurden ca. 100 mg Probe bei 1400 °C im Sauerstoffstrom verbrannt. Die Menge des freigesetzten SO₂ und CO₂ wurden in einem IR-Detektor bestimmt. Die Präzision der Messung war besser als 5 % für S und 3 % für C.

Aus der Differenz von C_{ges} und C_{min} ergab sich der Gehalt von organisch gebundenem Kohlenstoff (C_{org}).

2.3 Röntgenfluoreszenzsanalyse (RFA)

Für die Röntgenfluoreszenzsanalyse (Philips[®] PW 2400) wurden 600 mg der Probe mit 3600 mg di-Lithiumtetraborat (Li₂B₄O₇: Spektromelt[®] A10 von Merck) vermischt und bei 500 °C vorverascht. Anschließend wurden ca. 1000 mg Ammoniumnitrat p.a. zur voroxidierten Schmelzmittel/Proben-Mischung gegeben, erneut homogenisiert und auf 500 °C erhitzt, um Platingifte wie As, C, P und S in unschädliche Oxide zu überführen (Heinrichs und Herrmann, 1990). Der Schritt der Voroxidation sollte heftigen Reaktionen des organischem Materials mit dem Oxidationsmittel entgegenwirken. Bei Corg-armen Proben (Corg < 2 %) wurde die Probe ohne Zwischenschritt direkt mit Ammoniumnitrat bei 500 °C oxidiert. Die so vorbehandelten Proben wurden bei 1200 °C unter Rühren aufgeschmolzen und zu Glastabletten gegossen, welche mittels RFA-Analyse auf ihre Zusammensetzung untersucht wurden. Für die Kalibrierung wurden verschiedene internationale mineralische Referenzproben verwendet. Die analytische Präzision war besser als 2 % für die Hauptkomponenten (Si, Ti, Al, Fe, Mg, Ca, Na, K, P, Mn) und besser als 5 % für die Spurenmetalle (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, Zr). Die Bestimmungsgrenze für die meisten Spurenelemente betrug ca. 8 bis 20 ppm (Wehausen, 1999).

2.4 Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS)

Für die Messung am ICP-MS-Gerät wurden Säureaufschlüsse unter Verwendung von gereinigten Säuren hergestellt. Es wurde 40%-ige HF der Qualität "suprapur" (Fa. Merck[®]) benutzt. Die anderen Säuren wurden ausgehend von p.a.-Qualität im Subboiling-Verfahren gereinigt. Zum Herstellen der Lösungen wurde 18 MΩ-Reinstwasser verwendet. Die Aufschlüsse bzw. Messlösungen wurden in mit 0,3 M HNO₃ (p.a. Qualität) gereinigten PE-Flaschen aufbewahrt und vor der Messung in gereinigten PE-Autosamplerröhrchen verdünnt.

50 bis 100 mg des Probenmaterials wurden über Nacht mit 1 ml konz. HNO_3 im Teflontiegel voroxidiert. Nach Zugabe von 3 ml konz. HF und 3 ml konz. $HClO_4$ wurden die Proben im Druckaufschlusssystem PDS-6 für 6 bis 12 h bei 180 °C aufgeschlossen. Die Temperatur wurde aufgrund des hohen Reduktionspotentials der C_{org}-reichen Proben ausgehend von 60 °C stetig um 30 °C/h erhöht. Die Lösungen wurden 3 mal bei 180 °C mit 6 M HCl abgeraucht, mit 1 ml konz. HNO₃ aufgenommen, mit 15 ml Reinstwasser versetzt und 6 h im Druckaufschlusssystem auf 180 °C erhitzt, um schließlich auf 50 ml aufgefüllt zu werden
(Verdünnungsfaktor 1:500 bis 1:1000). Für die Messung wurden die Lösungen erneut mit 0,3 M HNO₃ verdünnt (endgültiger Verdünnungsfaktor 1:5000). Die Messung von Ag, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Mo, Nd, Ni, Pb, Pr, Rb, Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U, V, Y, Yb, Zn und Zr wurde mit einem doppelfokussierenden magnetischen Sektorfeld-Massenspektrometer "Element" (Finnigan[®] MAT, Germany) durchgeführt.¹ Für detaillierte Informationen siehe auch Schnetger (1997). Die Präzision der Messung war besser als 7 %.

2.5 Salzkorrektur durch Bestimmung von löslichem Na (FES)

Beim Trocknen von marinen salzhaltigen Proben (hier aus dem Schwarzen Meer) wird dem Sediment das im Porenwasser gelöste Salz zugefügt. Dies führt bei den Hauptionen des Meerwassers (Cl⁻, Na⁺, SO₄²⁻, Mg²⁺, Ca²⁺ und K⁺) zu Plusfehlern. Außerdem wird das sedimentäre Material durch das Salz verdünnt, wodurch die Einwaagen verfälscht werden. Alle gemessenen Daten müssen deshalb hinsichtlich dieser Fehler korrigiert werden.

Dazu wurden 30-100 mg des Probenmaterials im Kunststoffgefäß mit 10 ml Reinstwasser versetzt und geschüttelt. Nach Zentrifugieren bei 4000 U/min wurde die überstehende Lösung mit 0,3 M HNO₃ 1:100 verdünnt und mittels Flammenemissionsspektrometrie (FES; Perkin Elmer[®], Atomic Absorption Spectrometer 4100) unter Zusatz eines 0,1%-igen CsCl-Puffers auf Na vermessen. Aus den so ermittelten löslichen Na-Gehalten konnten unter Annahme von konstanten Cl⁻/Na⁺-, Mg²⁺/Na⁺-, Ca²⁺/Na⁺- und K⁺/Na⁺-Verhältnissen die entsprechenden löslichen Beiträge des Porenwassers hinsichtlich der Cl-, Na-, Mg-, Ca- und K-Konzentrationen ermittelt werden. Untersuchungen von Manheim und Chan (1974) zeigten, dass die Zusammensetzung des Porenwassers in Sedimenten des Schwarzen Meeres infolge von Verwitterungsprozessen, Austauschreaktionen und Mineralneubildungen stark variiert und dadurch von der Zusammensetzung des mittleren Meerwassers (Culkin und Cox, 1966) abweicht. Die Korrektur wurde daher mit den in Tab. 2 dargestellten mittleren Ionen/Na⁺-Verhältnissen durchgeführt. Die hohen Standardabweichungen weisen auf starke Abweichungen vom Mittelwert in den Proben mit niedrigem Salzgehalt hin. Da in diesen Proben wegen des geringen Salzgehaltes die Salzkorrektur aber kaum wirksam wurde, tragen diese Abweichungen zu einem tolerierbaren Fehler bei.

¹ Obwohl nicht alle Daten zur Interpretation herangezogen wurden, können sie dem Anhang entnommen werden.

	Cl ⁻ /Na ⁺	K ⁺ /Na ⁺	Ca ²⁺ /Na ⁺	Mg ²⁺ /Na ⁺
Porenwasser des Schwarzen Meeres	1,895	0,030	0,073	0,102
relative Standardabweichung [%] (n = 30)	5,2	25,1	69,3	14,1
Minimum $(n = 30)$	1,786	0,009	0,018	0,068
Maximum $(n = 30)$	2,857	0,041	0,477	0,166
mittleres Meerwasser	1,798	0,036	0,038	0,120

Tab. 2: Mittlere Ionen/Na⁺-Verhältnisse im Porenwasser des Schwarzen Meeres und in mittlerem Meerwasser.

Die Daten stammen aus Arbeiten von Manheim und Chan (1974) sowie Culkin und Cox (1966).

Die anaerobe Sulfatreduktion führt mit zunehmender Tiefe zu einer Abnahme der Sulfatkonzentration und des SO42-/Na+-Verhältnisses im Porenwasser. Die Kenntnis der SO₄²⁻-Konzentration im Porenwasser (M. E. Böttcher, MPI Bremen, persönl. Mittl.) und des SO4²⁻/Na⁺-Verhältnisses im Bodenwasser des Schwarzen Meeres (0,247; Manheim und Chan, 1974) erlaubte eine Abschätzung der SO4²⁻/Na⁺-Verhältnisse und damit der löslichen SO₄²⁻-Gehalte in Abhängigkeit der Teufe. Die anhand der Ionen/Na⁺-Verhältnisse ermittelten Beiträge des Porenwassers an Cl⁻, Na⁺, SO₄²⁻, Mg²⁺, Ca²⁺ und K⁺ wurden von den mittels RFA und LECO® gemessenen Cl-, Na-, S-, Mg-, Ca- und K-Konzentrationen abgezogen, um die Plusfehler zu kompensieren. Die Korrektur der Verdünnung des Probenmaterials durch Meersalz erforderte die Kenntnis des Salzgehaltes der Probe. Zur Abschätzung des Salzgehaltes konnte der lösliche Na-Gehalt herangezogen werden. Dabei wurde berücksichtigt, dass das Na⁺/Salzgehalt-Verhältnis mit abnehmender SO₄²⁻-Konzentration von 0,306 (mittleres Meerwasser Culkin und Cox, 1966) auf maximal 0,332 (vollständiger Verbrauch von Sulfat) zunimmt. Der Verdünnungsfehler durch Salz betrug meist nur 1-30 %, konnte aber bei oberflächennahen Proben bis zu 80 % ausmachen. Alle ermittelten Konzentrationen, auch die zuvor auf Plusfehler korrigierten Cl-, Na-, S-, Mg-, Ca- und K-Konzentrationen, wurden daher entsprechend dem Salzgehalt korrigiert.

Die löslichen Na-Gehalte wurden an einer Auswahl von 80 Sedimentproben des Schwarzen Meeres bestimmt. Davon ausgehend wurden die löslichen Na-Gehalte der anderen Proben abgeschätzt. Die Salzkorrektur konnte so für alle Proben durchgeführt werden. Der Anteil des sedimentären Na ist im Vergleich zum salzgebundenen Na klein. Trotz der sorgfältigen Korrektur sind deshalb bei den Na-Daten die größten Fehler zu erwarten.

3 Bestimmung der PGE- und Re-Konzentrationen in C_{org}-reichen Sedimenten mittels ID-ICP-MS

Die Gehalte der PGE wurden bisher überwiegend an PGE-reichen Proben bestimmt. Erst die Weiterentwicklung der analytischen Techniken erlaubte Messungen niedriger Konzentrationen in analytischen Labors, die ohne Neutronenquellen ausgestattet sind. Trotzdem ist das geochemische Verhalten der PGE im marinen Ablagerungsraum aber noch weitgehend unerforscht. Insbesondere für unvererzte Corg-reiche Sedimente existieren wegen spezieller analytischen Schwierigkeiten wenig Daten, obwohl dieser Sedimenttyp für die globalen Stoffkreisläufe vieler Spurenmetalle eine wesentliche Senke darstellt. Im Rahmen dieser Arbeit wurde eine Analysemethode entwickelt, mit deren Hilfe die Bestimmung der Ru-, Re-, Ir- und Pt-Gehalte in Corg-reichen Sedimenten mittels der ID-ICP-MS in zahlenmäßig groß angelegten Studien durchgeführt werden kann.

3.1 Einleitung

Zur Bestimmung der Konzentrationen der PGE und von Re werden hauptsächlich die Neutronenaktivierungsanalyse (INAA), die ICP-OES oder die GAAS eingesetzt (Hall et al., 1990; Koide et al., 1987; Levai et al., 1998; Sen Gupta, 1989). Die sulfidische Reduktionsschmelze (Dokimasie) dient als klassisches Mittel zur Anreicherung der PGE. Die erstarrte Schmelze wird entweder aufgelöst oder als Feststoff mittels INAA (Asif und Parry, 1989; Hoffman et al., 1978) oder durch LA-ICP-MS (Jarvis et al., 1995; Jorge et al., 1998) auf die PGE-Gehalte untersucht. In jüngerer Zeit rückt die ICP-MS immer mehr in den Mittelpunkt, da eine Optimierung im Bereich der nasschemischen Methoden hinsichtlich der einzusetzenden Probenmenge und der Senkung der Nachweisgrenzen angestrebt wird. In PGE-reichen Proben können die Konzentrationen in einer direkten Messung nach dem Aufschluss der Probe ermittelt werden (Balaram et al., 1997). Die Bestimmung der Konzentrationen der PGE mittels der ICP-MS in nichtvererzten Corg-reichen Proben gestaltet sich aber wegen der niedrigen Konzentrationen (unterer ppb- und ppt-Bereich) und einer Vielzahl von isobaren und molekularen Interferenzen (z.B. Oxide) als schwierig. Die niedrigen Konzentrationen der PGE und die niedrigen Ionenausbeuten im Plasma (Pt: ca. 50 %) äußern sich in geringen Zählraten. Die vergleichsweise hohen Konzentrationen der interferierenden Elemente und die niedrigen Konzentrationen und Ionenausbeuten der PGE verhindern trotz Durchführung einer Interferenzkorrektur eine direkte Bestimmung durch

externe Kalibrierung, da die durch die Korrektur eingeführten Fehler zu groß sind. Diese Arbeit wird zeigen, dass Re in marinen Sedimenten bis zu Konzentrationen von 5 bis 10 ppb (aus einer 1:5000 Verdünnung, vgl. Kap. 2.4) direkt durch externe Kalibrierung mittels ICP-MS bestimmt werden kann. Bei niedrigeren Konzentrationen kann auch hier durch die Interferenzkorrektur kein befriedigendes Ergebnis mehr erzielt werden. Es ist daher notwendig, die PGE und Re vor der Messung von der Probenmatrix möglichst vollständig abzutrennen. Dazu finden neben der Dokimasie die Ausfällung mit Te oder Se (Amosse, 1998; Enzweiler et al., 1995; Jackson et al., 1990; Oguri et al., 1999), die Extraktion mit organischen Lösungsmitteln (Al-Bazi und Chow, 1984) sowie Anionenaustauscherharzen (Enzweiler und Potts, 1995; Makishima et al., 2001; Pearson und Woodland, 2000; Rehkämper und Halliday, 1997; Yi und Masuda, 1996) oder Kationenaustauscherharzen (Ely et al., 1999; Strelow und Victor, 1992) Verwendung. Vor allem die Anionenaustauscherharze konnten in letzter Zeit erfolgreich eingesetzt werden, da die PGE und Re leicht in anionische Komplexe überführt werden können. Da die meisten störenden Komponenten als positiv geladene Ionen oder Komplexe vorliegen, können sie leicht abgetrennt werden. Bei der Quantifizierung durch externe Kalibrierung müssten Verluste der PGE und von Re auf dem Ionenaustauscherharz berücksichtigt werden. Dies gelingt nicht, da keine geeigneten internen Standards zur Verfügung stehen, die der Probelösung vor der Aufgabe auf das Säulenmaterial zweckmäßigerweise zugesetzt werden können. Demgegenüber erlaubt die Methode der Isotopenverdünnung, bei der der Probe vor dem Aufschluss eine Indikatorlösung² zugesetzt wird, eine Quantifizierung der Konzentrationen, ohne dass die Verluste auf dem Ionenaustauscherharz bestimmt werden müssen. Eine externe Kalibrierung ist daher nicht notwendig. Die Indikatorlösung zeichnet sich durch eine Isotopenzusammensetzung aus, die stark von der der Probe abweicht.

In der vorliegenden Arbeit wurde das im Folgenden beschriebene Verfahren zur Bestimmung der Ru-, Re-, Ir- und Pt-Konzentrationen in C_{org} -reichen Sedimenten entwickelt. Es basiert auf einem Säureaufschluss, bei dem sie störenden Matrixelemente mit einem Anionenaustauscherharz abgetrennt werden. Die Quantifizierung erfolgt über die

² Der Begriff "Indikatorlösung" und die an die englischsprachige Literatur angelehnten Begriffe "Isotopenspike" und "Spike" werden im Folgenden synonym benutzt.

Isotopenverdünnungstechnik mittels ICP-MS. Da die Probenaufbereitung und Matrixabtrennung, die Auswahl und Zugabe des Isotopenspikes sowie die Messung am ICP-MS-Gerät eine Fülle von Fehlermöglichkeiten erlauben, werden diese im Folgenden zunächst ausführlich diskutiert. Die detaillierte Beschreibung des gesamten Analysengang erfolgt im Kap. 3.5. Die reproduzierbare Messung von Pd gelang mit dieser Methode nur in Pd-reichen, Cd-armen Proben mit der Verwendung des TEVA[®]-Harzes (EIchroM[®]). Es konnten daher noch keine Pd-Daten in unvererzten anoxischen Sedimenten ermittelt werden. Dennoch wurde Pd in die weiteren Betrachtungen einbezogen, da es prinzipiell möglich sein sollte, die hier vorgestellte Methode analog auf die Pd-Bestimmung zu übertragen.

3.2 Prinzip der Isotopenverdünnungstechnik

Bei der Isotopenverdünnungsanalyse wird dem Material vor dem Aufschluss mit dem Isotopenspike eine genau definierte Menge des zu bestimmenden Stoffs zugesetzt. Die Isotopenzusammensetzung der Indikatorlösung muss, wie im Folgenden gezeigt wird, möglichst stark von der der natürlichen Probe abweichen und sowohl von der Probe als auch vom Spike bekannt sein. Das im Spike angereicherte Isotop sollte in der Probe nur eine geringe Häufigkeit besitzen. Anhand der genannten Informationen und der Messsignale auf mindestens zwei Massenlinien desselben Stoffs kann die Konzentration des Stoffs in der Probe ermittelt werden, ohne dass eine externe Kalibrierung notwendig wird. Verluste während der Probenaufbereitung werden automatisch berücksichtigt, da sich der zu untersuchende Stoff der Indikatorlösung und der Probe chemisch identisch verhalten. Vorraussetzung für das Gelingen der Isotopenverdünnungsanalyse ist eine störungsfreie Messung auf zwei Massenlinien. Störende Elemente müssen daher vor der Messung aus der Messlösung entfernt werden. Außerdem muss eine vollständige Durchmischung des zu bestimmenden Stoffes von Probe und Indikatorlösung gewährleistet sein, bevor Fraktionierungsprozesse zwischen dem Isotopenspike und der Probe bei der Probenaufbereitung wirksam werden können.

In den meisten Fällen ist die Isotopenzusammensetzung der Probe identisch mit der natürlichen Isotopenverteilung. Atomare Zerfallsprozesse oder biologische Stoffwechselprozesse können aber die natürliche Isotopie der zu untersuchenden Stoffe beeinflussen. Der Zerfall von ¹⁸⁷Re zu ¹⁸⁷Os, welcher die Basis für die ¹⁸⁷Os/¹⁸⁶Os-Geochronologie ist (Cohen et al., 1999; Ravizza und Turekian, 1989), kann aber wegen der langen Halbwertszeit von $4,3 \cdot 10^{10}$ Jahren für die hier betrachteten Zeiträume vernachlässigt werden. Die Gehalte der in

der Natur monoisotopischen Elemente Au und Rh können nicht ermittelt werden. Auch der Einsatz künstlicher Au- oder Rh-Isotope ermöglicht wegen der kurzen Halbwertszeiten (< 183 Tage) keine Anwendung der Isotopenverdünnungsanalyse.

3.2.1 Grundlagen

Das Messsignal auf den zwei Massen setzt sich aus dem Beitrag der Probe und dem der Indikatorlösung zusammen (Abb. 2). Die jeweiligen Beiträge von Spike und Probe auf den Massen berechnen sich nach:

$$\mathbf{N}_{\mathrm{Sp/Pr}} \cdot \mathbf{h}_{\mathrm{Sp/Pr}}^{1} \tag{1.1}$$

$$N_{Sp/Pr} \cdot h_{Sp/Pr}^2 \tag{1.2}$$

 $N_{S_{D/Pr}}$: absolute Anzahl der Atome von Spike und Probe

 $h_{Sp/Pr}^{1/2}$: Häufigkeit der Isotope 1 und 2 in Spike und Probe³

*Abb. 2: Das Prinzip der Isotopenverdünnungsanalyse dargestellt an den Massenlinien*¹⁹¹*Ir und*¹⁹³*Ir (verändert nach Heumann, 1988).*

Das Messsignalverhältnis R

$$R = \frac{Intensität^2}{Intensität^1}$$
(1.3)

Intensität^{1/2}: Signalintensität auf den Massen 1 und 2

kann unter Berücksichtigung von (1.1) und (1.2) ausgedrückt werden als

$$R = \frac{N_{Pr}h_{Pr}^{2} + N_{Sp}h_{Sp}^{2}}{N_{Pr}h_{Pr}^{1} + N_{Sp}h_{Sp}^{1}}$$
(1.4)

³ Es ist unerheblich, ob Isotop 1 oder 2 schwerer ist. Im Folgenden wird Isotop 2 als das schwerere angenommen.

Auflösen nach N_{Pr} ergibt

$$N_{Pr} = \frac{N_{Sp} (h_{Sp}^2 - R \cdot h_{Sp}^1)}{R \cdot h_{Pr}^1 - h_{Pr}^2}$$
(1.5)

worin die Atomanzahl NSp und NPr ersetzt werden durch

$$N_{Sp} = \frac{C_{Sp} \cdot E_{Sp}}{M_{Sp}}$$
(1.6)

$$N_{\rm Pr} = \frac{C_{\rm Pr} \cdot E_{\rm Pr}}{M_{\rm Pr}} \tag{1.7}$$

 $C_{Sp/Pr}$: Konzentration des Stoffes in Spike und Probe [ng/g]

E_{Sp/Pr}: Einwaage von Spike und Probe [g]

M_{Sp/Pr}: molare Masse des Stoffes in Spike und Probe [g/mol]

Nach dem Einsetzen von N_{Sp} und N_{Pr} in Gleichung (1.5) und dem Auflösen nach C_{Pr} ergibt sich

$$C_{p_{r}} = \frac{C_{s_{p}}E_{s_{p}}(h_{s_{p}}^{2}-R\cdot h_{s_{p}}^{1})}{(R\cdot h_{p_{r}}^{1}-h_{p_{r}}^{2})\cdot E_{p_{r}}} \cdot \frac{M_{p_{r}}}{M_{s_{p}}}$$
(1.8)

In der Praxis sind weitere Korrekturen von eventuell auftretenden Störungen notwendig. Diese werden in Kap. 3.2.4 eingehend diskutiert.

3.2.2 Durchmischung des Stoffes in Spike und Probe

Nach dem Aufschluss müssen der zu bestimmende Stoff der Probe und des Isotopenspikes vollständig durchmischt sein, damit im weiteren Verlauf der Probenaufbereitung keine Fraktionierungsprozesse zwischen Spike und Probe auftreten. Anhand von Gleichung (1.5) kann gezeigt werden, dass Minusfehler entstehen, wenn nicht gelöste mineralische Bestandteile des zu bestimmenden Stoffes von dem Spike getrennt werden. Verluste der Indikatorlösung gegenüber der Probe (z.B. beim Abrauchen der Aufschlusssäuren) führen zu Plusfehlern.

3.2.3 Herstellung und Zugabe der Indikatorlösung

Die Indikatorlösung kann durch Auflösen von isotopisch angereicherten Edelmetallen (bezogen über Trace Sciences International[®]; Tab. 3) durch Erhitzen im Autoklaven bei 180 °C (Druckaufschlusssystem PDS-6) mit Königswasser hergestellt werden. Ru und Ir werden nur sehr langsam gelöst. Aus den so erhältlichen Lösungen wird eine Mehrelement-

Indikatorlösung mit geeigneten Konzentrationen hergestellt. Die Stammlösungen werden in 6 M HCl, verdünnte Lösungen (< 100 ppb PGE) in 0,25 M HCl in PFA-Flaschen aufbewahrt. Die Konzentrationen der Stoffe in der Mehrelement-Indikatorlösung werden durch *Reversespiking* quantifiziert. Dabei wird der zukünftigen Indikatorlösung eine Lösung zugesetzt, die hinsichtlich ihrer Konzentration und Isotopenzusammensetzung (z.B. natürliche Isotopenverteilung) definiert ist. Die Quantifizierung geschieht analog den Gleichungen (1.1) bis (1.8), wobei die Indikatorlösung als Probe und die natürliche Lösung als Spike fungieren. Für eine störungsfreie Bestimmung der Pd-Konzentration in der Indikatorlösung muss nach dem Mischen von Spike und Probe die HCl mit HNO₃ abgeraucht werden. Die Konzentrationen von Re und den PGE in den benutzten Isotopenspikes 1 bis 3 sind in Tab. 4 dargestellt.

Tab. 3: Isotopenzusammensetzung der natürlichen Proben und der Indikatorlösungen. Da nicht alle Isotope aufgelistet wurden, ergibt sich nicht in jedem Fall eine Summe von 100 %.

	Probe [%]	Spike [%]
⁹⁹ Ru	12,72	97,69
¹⁰¹ Ru	17,07	0,48
¹⁰⁵ Pd	22,33	98,40
106 Pd	27,33	1,24
108 Pd	26,71	0,15
¹⁸⁵ Re	37,40	94,80
¹⁸⁷ Re	62,60	5,20
191 Ir	37,30	98,23
¹⁹³ Ir	62,70	1,77
¹⁹⁴ Pt	32,90	0,67
¹⁹⁵ Pt	33,80	1,69
¹⁹⁶ Pt	25,30	97,25

Tab. 4: Übersicht über die durch Reverse-spiking ermittelten Konzentrationen in den Mehrelementspikes 1 bis 3 [ppb] (n = 15).

	Spike 1	rel. STD [%]	Spike 2	rel. STD [%]	Spike 3	Rel. STD [%]
Ru	0,55	2,3	1,76	2,0	54,18	1,8
Re	12,53	2,4	122,06	1,9	24,50	2,1
Ir	0,50	2,3	1,48	1,6	147,95	1,8
Pt	7,40	1,9	19,83	2,0	1026,31	1,6

Bei der Zugabe des Isotopenspikes zur trockenen Probe muss sichergestellt werden, dass eine exakt definierte Menge des Isotopenspikes zugeführt wird. Es empfiehlt sich daher, den Pipettiervorgang unter Berücksichtigung der Dichte des Spikes auf einer Waage zu kontrollieren. Bei Säurekonzentrationen bis zu 0,35 M HNO₃ und 0,65 M HCl weicht die Dichte weniger als 1 % von der des Wassers ab (Küster und Thiel, 1993). Das Messsignalverhältnis R kann mit höchster Genauigkeit ermittelt werden, wenn die beiden betrachteten Messsignale etwa gleich groß sind (Heumann et al., 1980). Häufig weicht das natürliche Isotopenverhältnis des Stoffes aber nur wenig von eins ab (vgl. Tab. 5). Es bedarf dann nur eines geringen Zusatzes der Indikatorlösung, um das Messsignalverhältnis R \approx 1 in der Messlösung zu erreichen. Der geringe Zusatz des Isotopenspikes äußert sich dann in einer relativ hohen Standardabweichung der ermittelten Konzentration des Stoffes in der Probe, obwohl das Messsignalverhältnis R sehr reproduzierbar bestimmt werden kann. Dies wird durch das Fehlerfortpflanzungsgesetztes der Statistik erklärt (Riepe und Kaiser, 1966). Unter der Annahme, dass die Isotopenzusammensetzung von Isotopenspike und Probe fehlerfrei bestimmt wird, gilt Gleichung (1.9)

$$\sigma_{C_{P_r}}^2 = \sigma_{C_{S_n}}^2 + F_R^2 \cdot \sigma_R^2 \tag{1.9}$$

F_R: Fehlerübertragungsfaktor von R

 σ_x : Standardabweichung der Größe x

Neben der Standardabweichung der Konzentration des Stoffes in der Indikatorlösung $\sigma_{C_{S_p}}$ und derjenigen des Messsignalverhältnisses σ_R wirkt sich vor allem der Fehlerübertragungsfaktor F_R auf das Analysenergebnis C_{Pr} aus (Heumann et al., 1980; Heumann et al., 1977; Riepe und Kaiser, 1966).

Der Fehlerübertragungsfaktor F_R kann nach Riepe und Kaiser (1966) ausgedrückt werden als

$$F_{\rm R} = \frac{(h_{\rm Pr}^2/h_{\rm Pr}^1 - h_{\rm Sp}^2/h_{\rm Sp}^1) \cdot {\rm R}}{({\rm R} - h_{\rm Pr}^2/h_{\rm Pr}^1) \cdot (h_{\rm Sp}^2/h_{\rm Sp}^1 - {\rm R})}$$
(1.10)

 F_R kann sowohl als Funktion der Isotopenverhältnisse von Spike und Probe als auch von R aufgefasst werden. Die Differentiation von F_R nach R ergibt, dass das geometrische Mittel der Isotopenverhältnisse von Probe und Spike das optimale Messsignalverhältnis $R_{opt.}$ bezüglich des Minimalwertes von F_R darstellt (Riepe und Kaiser, 1966).

$$R_{opt.} = \sqrt{h_{Pr}^2 / h_{Pr}^1 \cdot h_{Sp}^2 / h_{Sp}^1}$$
(1.11)

Der minimale Betrag des Fehlerübertragungsfaktors $F_R(min)$ an der Stelle $R_{opt.}$ errechnet sich nach Gleichung (1.12) (Riepe und Kaiser, 1966).

$$F_{\rm R}(\min) = \frac{1 + \sqrt{\frac{h_{\rm Sp}^2 / h_{\rm Sp}^1}{h_{\rm Pr}^2 / h_{\rm Pr}^1}}}{1 - \sqrt{\frac{h_{\rm Sp}^2 / h_{\rm Sp}^1}{h_{\rm Pr}^2 / h_{\rm Pr}^1}}}$$
(1.12)

Anhand der Isotopenverhältnisse aus Tab. 3 ergeben sich die in Tab. 5 dargestellten $R_{opt.}$ und zugehörigen F_R (min). Der minimale Fehlerübertragungsfaktor F_R wird häufig bei stark von eins abweichendem R erreicht.

Tab. 5: Darstellung der optimalen Messsignalverhältnisse $R_{opt.}$ und der minimalen Fehlerübertragungsfaktoren F_R (min) in Abhängigkeit von den Isotopenverhältnissen in den natürlichen Proben und den Isotopenspikes.

	natürlich	Spike	R _{opt.}	F _R (min)
¹⁰¹ Ru/ ⁹⁹ Ru	1,34	0,005	0,08	1,13
$^{106}Pd/^{105}Pd$	1,23	0,013	0,12	1,23
108 Pd/ 106 Pd	1,20	0,002	0,04	1,07
¹⁸⁷ Re/ ¹⁸⁵ Re	1,67	0,055	0,30	1,44
¹⁹³ Ir/ ¹⁹¹ Ir	1,68	0,018	0,17	1,23
¹⁹⁶ Pt/ ¹⁹⁵ Pt	0,75	57,5	6,56	1,16
¹⁹⁶ Pt/ ¹⁹⁴ Pt	0,77	145,2	10,57	1,26

Aus den vorangestellten Überlegungen ergibt sich, dass es zwei wesentliche Kriterien bei der Zugabe der Indikatorlösung einzuhalten gilt. Zum einen soll das Messsignalverhältnis R möglichst nahe eins sein. Zum anderen soll der Fehlerübertragungsfaktor F_R minimale Werte aufweisen. Um das optimale Mischungsverhältnis von Spike und Probe zu ermitteln, können mit Hilfe der Gleichungen (1.4) und (1.10) die zugehörigen Fehlerübertragungsfaktoren F_R errechnet werden (Heumann et al., 1980; Heumann et al., 1977). Unter weiterer Berücksichtigung der Gleichungen (1.6) und (1.7) können die Fehlerübertragungsfaktoren F_R in Abhängigkeit von R und C_{Pr} unter Vorgabe von C_{Sp} , E_{Sp} , E_{Pr} sowie der isotopischen Spikeund Probenzusammensetzung errechnet werden. Im Folgenden wird am Beispiel des Ir gezeigt, wie der Fehlerübertragungsfaktor F_R von R und C_{Pr} abhängt, wenn die Zusammensetzung des Isotopenspikes (Abb. 3) oder die Konzentration des Isotopenspikes variieren (Abb. 4). Unter Vorgabe der akzeptablen Rahmenbedingungen von R = 0,2 bis 5 bzw. R = 0,1 bis 10 und des akzeptablen Fehlerübertragungsfaktors $F_R < 3$ (Heumann et al., 1980) kann die messbare Ir-Konzentration in der Probe ermittelt werden.

Abb. 3: Fehlerübertragungsfaktoren bei verschieden stark an ¹⁹¹Ir angereicherten Isotopenspikes in Abhängigkeit von der Ir-Konzentration in der Probe C_{Pr} und dem Messsignalverhältnis R. Die Beschriftungen an den Kurven geben jeweils die Häufigkeit des ¹⁹¹Ir im Isotopenspike an. Unveränderliche Parameter sind: $E_{Pr} = 0.5 g$; $E_{Sp} = 0.06 g$; $C_{Sp} = 1.5 ppb$; $h_{Pr}^1 = 37.3 \%$; $h_{Pr}^2 = 62.7 \%$. Die beiden unteren Diagramme sind Projektionen auf die XZ- und YZ-Ebene.

Eine Variation der Isotopenzusammensetzung des Spikes wirkt sich bei konstanter Einwaage an Probenmaterial und Indikator direkt auf das Messsignalverhältnis R und damit auf die messbare Ir-Konzentration C_{Pr} aus (Abb. 3). Ein Isotopenspike mit 60%-iger Anreicherung von ¹⁹¹Ir lässt in keiner Mischung ein F_R < 3 zu. Er ist damit für die Messung grundsätzlich ungeeignet. Mit zunehmender Anreicherung von ¹⁹¹Ir im Spike kann der minimale F_R gesenkt werden. Ein Spike mit 80%-iger Anreicherung von ¹⁹¹Ir kann bei Messsignalverhältnissen 0,4 < R < 1,05 verwendet werden (F_R < 3). Der in dieser Arbeit verwendete Spike mit 98,23%-iger Anreicherung zeigt bei 0,027 < R < 1,118 ein F_R < 3. Die niedrigste messbare Ir-Konzentration in der Probe C_{Pr} wird aber durch die zusätzliche Bedingung R > 0,1 bzw. 0,2 weiter eingeschränkt. Abb. 3 zeigt weiterhin, dass mit wachsendem R F_R stark zunimmt. R nähert sich dann so stark der Isotopenzusammensetzung der Probe (¹⁹³Ir_{Pr}/¹⁹¹Ir_{Pr} = 1,68) an, dass der Einfluss der Indikatorlösung auf R zu stark abnimmt. Da F_R quadratisch in Gleichung (1.9) eingeht, nimmt trotz niedrigem σ_R die Standardabweichung der ermittelten Konzentration $\sigma_{C_{pr}}$ deutlich zu.

Der Einfluss der Ir-Konzentration einer Indikatorlösung mit gleicher Isotopenzusammensetzung auf den Zusammenhang zwischen R, der Ir-Konzentration in der Probe C_{Pr} und F_R ist in Abb. 4 dargestellt. Nach Gleichung (1.10) beeinflusst die Konzentration des Spikes den Zusammenhang zwischen R und F_R nicht. Die niedrigste messbare Ir-Konzentration wird also nur durch die Bedingung R > 0,1 bzw. R > 0,2 bestimmt. Die höchste messbare Probenkonzentration ergibt sich aus der Bedingung $F_R < 3$. Die Mengen des Stoffes in Spike und Probe müssen entsprechend aufeinander abgestimmt werden.

Abb. 5 gibt Auskunft über die messbaren Konzentrationen der Stoffe Ru, Re, Ir und Pt, die mit dem Isotopenspike 2 (Tab. 4) bei $E_{Pr} = 0.5$ g und $E_{Sp} = 0.04$ g ermittelt werden können. Den Messbereich limitieren die Bedingungen $F_R < 3$ und 0,1 (für Ru, Re, Ir) $< R^4 < 10$ (für Pt). Da ¹⁹⁴Pt und ¹⁹⁵Pt in der Probe nahezu gleich häufig sind, macht es hinsichtlich des Messbereichs keinen Unterschied, ob das Verhältnis ¹⁹⁶Pt/¹⁹⁴Pt oder ¹⁹⁶Pt/¹⁹⁵Pt zur Auswertung herangezogen wird.

⁴ Je nachdem, welches der beiden betrachteten Isotope das häufigere ist, grenzt die Bedingung R = 0,1 oder R = 10 den unteren Messbereich ein (vgl. Abb. 5).

Abb. 4: Fehlerübertragungsfaktoren bei verschiedenen Ir-Konzentrationen im Spike C_{Sp} bei konstanter Isotopenzusammensetzung in Abhängigkeit von der Ir-Konzentration in der Probe C_{Pr} und dem Messsignalverhältnis R. Die Beschriftungen an den Kurven geben die jeweilige Ir-Konzentration im Spike C_{Sp} [ppb] an. Es sind: $E_{Pr} = 0.5$ g; $E_{Sp} = 0.06$ g; $h_{Sp}^1 = 98.23$ %; $h_{Sp}^2 = 1.77$ %; $h_{Pr}^1 = 37.3$ %; $h_{Pr}^2 = 62.7$ %. Die beiden unteren Diagramme sind Projektionen auf die XZ- und YZ-Ebene.

Abb. 5: Fehlerübertragungsfaktoren für die Stoffe Ru, Re, Ir und Pt in Abhängigkeit von der Konzentration des Stoffes in der Probe C_{Pr} und des Messsignalverhältnisses R. Die Isotopenzusammensetzung der Probe und der Indikatorlösung sowie die Konzentrationen der Stoffe in der Indikatorlösung 2 sind den Tab. 3 und Tab. 4 zu entnehmen. Weiterhin gilt $E_{Pr} = 0,5$ g und $E_{Sp} = 0,04$ g. Die beiden unteren Diagramme sind Projektionen auf die XZ- und YZ-Ebene. Anhand der linken Projektion kann schon vor der Messung überprüft werden, ob für die Messung bei der zu erwartenden Probenkonzentration und der gewünschten Einwaage von Probe und Spike sowie der vorgegebenen Spike-Konzentration eine akzeptable statistische Sicherheit hinsichtlich der Konzentrationsbestimmung erwartet werden kann. Das rechte Diagramm gibt anhand des tatsächlich gemessenen Messsignalverhältnisses R Auskunft darüber, ob die Berechnung der Probenkonzentration überhaupt zulässig ist. Dieser Test ist notwendig, wenn die erwartete Konzentration stark von der Gemessenen abweicht.

	R _{opt.} (hinsichtlich F _R (min)	Messsignalverh. R mit $F_R < 3$	$\begin{array}{c} C_{Pr} \ [ppb] \\ (0,1) \ 0,2 < R < 5(10) \ und \\ F_R < 3 \end{array}$
Spike 1			$E_{Pr} = 0.5 \text{ g}, E_{Sp} = 0.05 \text{ g}$
Ru	0,08	0,007-0,89	(0,03) 0,08-0,83
¹⁰⁶ Pd	0,12	0,019-0,82	(0,10) 0,25-2,55
¹⁰⁸ Pd	0,04	0,002-0,80	(0,11) 0,27–2,6
Re	0,30	0,082-1,13	(0,09) 0,4-5,8
Ir	0,17	0,027-1,12	(0,007) 0,017-0,253
¹⁹⁴ Pt	10,57	1,16-96,7	(0,22) 0,5-5,6
¹⁹⁵ Pt	6,56	1,13-38,2	(0,19) 0,46-5,5
Spike 2			$E_{Pr} = 0.5 \text{ g}, E_{Sp} = 0.04 \text{ g}$
Ru	0,08	0,007-0,89	(0,09) 0,19-2,1
¹⁰⁶ Pd	0,12	0,019-0,82	(0,55) 1,3-13,8
¹⁰⁸ Pd	0,04	0,002-0,80	(0,64) 1,5–14,1
Re	0,30	0,082-1,13	(0,7) 2,5-42,5
Ir	0,17	0,027-1,12	(0,017) 0,04-0,6
¹⁹⁴ Pt	10,57	1,16-96,7	(0,45) 1,1-12,0
¹⁹⁵ Pt	6,56	1,13-38,2	(0,4) 1,0-11,8
Spike 3			$E_{Pr} = 0,1 \text{ g}, E_{Sp} = 0,1 \text{ g}$
Ru	0,08	0,007-0,89	(32) 71-824
¹⁰⁶ Pd	0,12	0,019-0,82	(494) 1200-12500
¹⁰⁸ Pd	0,04	0,002-0,80	(574) 1300–12800
Re	0,30	0,082-1,13	(1,8) 6,1-115
Ir	0,17	0,027-1,12	(20) 48-762
¹⁹⁴ Pt	10,57	1,16-96,7	(305) 692-7775
¹⁹⁵ Pt	6,56	1,13-38,2	(263) 633-7640

Anhand der hier skizzierten Überlegungen wird deutlich, dass ein einziger Mehrelementspike nicht für alle Proben gleich gut geeignet sein kann, da sowohl die Konzentration der Stoffe als auch ihre Verhältnisse zueinander stark variieren können. Es wurden deshalb drei Indikatorlösungen hergestellt (vgl. Tab. 4). Lösung 1 kann für Proben mit sehr niedrigen PGE und Re-Konzentrationen verwendet werden. Lösung 2 ist für typische anoxische Sedimente und Lösung 3 für vererzte Proben geeignet. Die Spike-Konzentrationen wurden so gewählt, dass 40 bis 300 mg der Lösung 50 bis 500 mg Probenmaterial zugesetzt werden sollten. In Tab. 6 sind die Messsignale R und Konzentrationen C_{Pr} dargestellt, bei denen mit den angegebenen Einwaagen von Probe und Spike akzeptable Werte hinsichtlich $\sigma_{C_{pr}}$ zu erwarten sind.

3.2.4 Behandlung von Störungen

In der Praxis treten Störungen durch die gerätespezifische Massenfraktionierung und durch Interferenzen auf. Außerdem nimmt das Hintergrundsignal starken Einfluss auf das Messsignalverhältnis R. Die Interferenzen werden durch Molekülionen oder isobare Überlagerungen der Probenmatrix hervorgerufen (Abb. 6).

Abb. 6: Überlagerung der Messsignale durch Interferenzen am Beispiel des Ir. Die Signale auf den Massen¹⁹¹Ir und¹⁹³Ir werden durch die Molekülionen¹⁷⁵Lu¹⁶O⁺ und¹⁷⁷Hf¹⁶O⁺ sowie den Blindwert verfälscht.¹⁷⁵Lu und¹⁷⁸Hf dienen als Bezugsmassen zur Korrektur der Interferenzen.

Eine Übersicht über die wichtigsten Störungen findet sich in Tab. 7. Die Oxide von Zr, Y, Mo, Tm, Lu und Hf sowie isobare Interferenzen durch Cd, Pt und Hg und die Molekülionen des Cl stellen die wichtigsten Störungen dar (Interferenzfaktoren⁵: 0,0009-0,016). Die Oxidbildungsrate und die Überlagerungsfaktoren müssen mit geeigneten Lösungen ermittelt werden. Chlorid- und Argonidbildung im Plasma konnten unter den in Kap. 3.5 angegebenen Messbedingungen kaum nachgewiesen werden. Der Vollständigkeit halber sind die entsprechenden Molekülionen in Tab. 7 kursiv dargestellt, da sie in den Arbeiten von Ely et al. (1999), Pearson und Woodland (2000) sowie Yi und Masuda (1996) genannt werden.

Tab. 7: Interferenzen im PGE-Spektrum unter Berücksichtigung der Geochemie anoxischer Sedimente (normal bzw. kursiv gesetzt: unter den in Kap. 3.5 genannten Messbedingungen weniger bedeutende Interferenzen mit Interferenzfaktoren < 0,0001; fett: stärkere Störungen).

Masse / Element	99Ru	¹⁰¹ Ru	¹⁰⁵ Pd	¹⁰⁶ Pd	¹⁰⁸ Pd	¹⁸⁵ Re	¹⁸⁷ Re
Cl			³⁵ Cl ₃ ⁺	$^{35}\text{Cl}_3\text{H}^+$	³⁵ Cl ₂ ³⁷ ClH ⁺		
Co	${}^{59}Co^{40}Ar^+$						
Ni	⁶⁴ Ni ³⁵ Cl ⁺ ⁶² Ni ³⁷ Cl ⁺	${}^{64}_{61}Ni^{37}Cl^+_{Ni^{40}}Ar^+_{Ni^{40}}Ar^+_{Ni^{40}}$					
Zn	$^{64}Zn^{35}Cl^+$	$^{66}_{64}Zn^{35}C^+_{77}Cl^+_{77}$	$^{68}Zn^{37}Cl^{+}$	$^{66}Zn^{40}Ar^{+}$	$^{68}Zn^{40}Ar^+$		
Cu			$^{65}Cu^{40}Ar^+$				
Rb		${}^{85}\text{Rb}{}^{16}\text{O}^+$					
Y			⁸⁹ Y ¹⁶ O ⁺				
Zr				90Zr ¹⁶ O ⁺	92Zr ¹⁶ O ⁺		
Мо					⁹² Mo ¹⁶ O ⁺		
Cd				$^{106}Cd^{+}$	$^{108}Cd^{+}$		
Sm						$^{148}Sm^{37}Cl^{+}$	$^{152}Sm^{35}Cl^{+}$
Nd						$^{150}Nd^{35}Cl^{+}$	
Tm						¹⁶⁹ Tm ¹⁶ O ⁺	
Yb							$^{171}{\rm Yb}^{16}{\rm O}^+$
Pt	$^{198}\text{Pt}^{2+}$						

⁵ Der Interferenzfaktor wird nach Gleichung (1.13) berechnet.

Masse / Element	¹⁹¹ Ir	¹⁹³ Ir	¹⁹⁴ Pt	¹⁹⁵ Pt	¹⁹⁶ Pt	
Ce	$^{140}\mathrm{Ce}^{35}\mathrm{ClO}^{+}$	$^{140}\mathrm{Ce}^{37}\mathrm{ClO}^{+}$				
Eu	$^{151}Eu^{40}Ar^{+}$	$^{153}Eu^{40}Ar^{+}$				
Sm	$^{154}Sm^{37}Cl^{+}$					
Dy					$^{161}Dy^{35}Cl^{+}$	
Lu	175Lu16O+					
Hf		¹⁷⁷ Hf ¹⁶ O ⁺	${}^{178}\mathrm{Hf}{}^{16}\mathrm{O}^{+}$	¹⁷⁹ Hf ¹⁶ O ⁺	¹⁸⁰ Hf ¹⁶ O ⁺	
Hg					$^{196}\mathrm{Hg}^{+}$	

Fortsetzung von Tab. 7:

Bei der Berechnung von C_{Pr} müssen die Blindwerte und Interferenzen durch Korrektur des Messsignalverhältnisses R berücksichtigt werden. In Gleichung (1.8) muss anstatt von R das korrigierte Messsignalverhältnis R_k eingehen. Zur Korrektur von R muss neben den Interferenzfaktoren auch die gerätespezifische Massenfraktionierung ermittelt werden. Um die Interferenzfaktoren zu bestimmen, werden PGE-freie Lösungen mit interferierenden Elementen gemessen. Damit neben den Oxiden auch die Chloride entstehen können, wurden 5 ml der HNO₃-sauren Lösungen mit 0,01 Gew.-% HCl versetzt. Dabei wird die Signalintensität auf einer Bezugsmasse Int^{1/2}_{störend} des störenden Stoffes und der gestörten Masse Int^{1/2}_{gestört} ermittelt.⁶ Der Korrekturfaktor K^{1/2}_{Interferenzk} ergibt sich aus Gleichung (1.13).

$$\mathbf{K}_{\mathrm{Interferenzk.}}^{1/2} = \frac{\mathrm{Int}_{\mathrm{gestört}}^{1/2}}{\mathrm{Int}_{\mathrm{störend}}^{1/2}}$$
(1.13)

Int^{1/2}gestört: gemessenes Signal auf den Massen 1 oder 2

Int^{1/2} störend: Messsignal auf den jeweiligen Bezugsmassen der störenden Stoffe

Das Messsignalverhältnis R der Probenlösung setzt sich unter Berücksichtigung der Überlagerungen und des Hintergrundsignals wie folgt zusammen:

$$R = \frac{N_{Pr}h_{Pr}^{2} + N_{Sp}h_{Sp}^{2} + Int_{störend}^{2} \cdot K_{Interferenzk.}^{2} + Blindwert^{2}}{N_{Pr}h_{Pr}^{1} + N_{Sp}h_{Sp}^{1} + Int_{störend}^{1} \cdot K_{Interferenzk.}^{1} + Blindwert^{1}}$$
(1.14)

⁶ Obwohl die Int^{1/2}_{störend} ebenfalls den Index 1/2 trägt, ist hier eine störungsfrei zu messende Masse des interferierenden Stoffes gemeint. Im Beispiel des ¹⁹³Ir wird das Signal durch das Molekülion ¹⁷⁷Hf¹⁶O⁺, überlagert. Das Messsignal von ¹⁷⁷Hf wird aber von ¹⁶¹Dy¹⁶O⁺ überlagert. Zur Bestimmung des Interferenzfaktors wird deshalb die Bezugsmasse ¹⁷⁸Hf herangezogen. In diesem Beispiel entspricht Int²_{gestört} der Masse ¹⁹³Ir, Int²_{störend} der Masse ¹⁷⁸Hf, obwohl nicht ¹⁷⁸Hf¹⁶O⁺ selbst, sondern das ¹⁷⁷Hf¹⁶O⁺ störend wirkt. Dies ist zulässig, da in der Probe ¹⁷⁸Hf und ¹⁷⁷Hf in einem definierten Verhältnis zueinander stehen.

Es ergibt sich das interferenzkorrigierte Signalverhältnis RInterferenzk.

$$\mathbf{R}_{\text{Interferenzk.}} = \frac{\text{Int}_{\text{gem}}^2 - \text{Int}_{\text{störend}}^2 \cdot \mathbf{K}_{\text{Interferenzk.}}^2 - \text{Blindwert}^2}{\text{Int}_{\text{gem}}^1 - \text{Int}_{\text{störend}}^1 \cdot \mathbf{K}_{\text{Interferenzk.}}^1 - \text{Blindwert}^1}$$
(1.15)

Int^{1/2}_{gem}: Messsignal auf den Massen 1 und 2

Zur Bestimmung der Massenfraktionierung kann eine Lösung der PGE mit natürlicher Isotopenverteilung herangezogen werden. Der Korrekturfaktor K_{Massenfr.} errechnet sich nach:

$$\mathbf{K}_{\text{Massenfr.}} = \frac{\mathbf{h}_{\text{nat}}^2 / \mathbf{h}_{\text{nat}}^1}{\mathbf{R}}$$
(1.16)

Das interferenzkorrigierte Messsignalverhältnis $R_{Interferenzk.}$ wird mit $K_{Massenfr.}$ multipliziert, um das korrigierte Messsignalverhältnis R_k zu erhalten.

$$\mathbf{R}_{k} = \mathbf{R}_{\text{Inteferenzk.}} \cdot \mathbf{K}_{\text{Massenfr.}}$$
(1.17)

In der Praxis ersetzt $R_k R$ in Gleichung (1.8):

$$C_{Pr} = \frac{C_{Sp}E_{Sp}(h_{Sp}^{2} - R_{k}h_{Sp}^{1})}{(R_{k}h_{Pr}^{1} - h_{Pr}^{2}) \cdot E_{Pr}} \cdot \frac{M_{Pr}}{M_{Sp}}$$
(1.18)

3.3 Aufschluss des Probenmaterials

Zum Aufschluss der PGE werden in der Literatur verschiedene oxidative Säureaufschlüsse, basische Sinter- oder Schmelzaufschlüsse sowie basische Reduktionsschmelzen (Dokimasie) diskutiert. Neben den Blindwerten durch Fremdeintrag ist die möglichst vollständige Zersetzung der zu untersuchenden Probe ein wesentliches Auswahlkriterium. Geologische Referenzmaterialien enthalten sehr häufig gediegene Komponenten oder Cr-Spinelle (McDonald, 1998; Mitchell und Keays, 1981), welche nur mit sehr starken Oxidationsmitteln bei hohen Temperaturen vollständig zu lösen sind. In anoxischen Sedimenten sind die PGE aber häufig an organisches Material (Li et al., 1999; Mitkin et al., 2000; Plyusnina et al., 2000) oder Sulfide gebunden (Bechtel et al., 2001; Li et al., 1999; Mitchell und Keays, 1981; Pasava, 1993; Sawlowicz, 1993). Im Folgenden wird ein kurzer Abriss über die Vorund Nachteile der Methoden gegeben, damit die Entscheidung bei der Auswahl der Aufschlussmethode transparent wird.

• Nickelsulfid-Schmelzaufschluss (Dokimasie)

Die Dokimasie ist eine trockenchemische Aufschlussmethode, bei der 10-30 g der Probe mit entsprechenden Mengen Na-tetraborat, Na-carbonat, Nickelpulver und Schwefel im Muffelofen bei ca. 1000 °C geschmolzen werden (z.B. Hoffman et al., 1978; Jackson et al., 1990; Parry, 1992; Plessen und Erzinger, 1998; Ravizza und Pyle, 1997; Rehkämper und Halliday, 1997; Robert et al., 1971). Neben der boratisch-silikatischen Schmelze bildet sich eine NiS-Perle, die in HCl oder in Königswasser gelöst wird. Wegen der großen benötigten Probenmenge machen sich *Nugget*-Effekte (Ely et al., 1999; McDonald, 1998; Rehkämper et al., 1999) kaum bemerkbar. Pearson und Woodland (2000) machen auf die begrenzte Eignung der Dokimasie für die Isotopenverdünnungsanalyse aufmerksam, da die vollständige Vermischung der Schmelze mit dem Isotopenspike (siehe Kap. 3.2) besondere Schwierigkeiten bereite. Zudem würden die großen Mengen der benötigten Feststoffe einen erheblichen Blindwert produzieren.

• Na-peroxidaufschlüsse

Bei Peroxidaufschlüssen wird die Probe mit der drei- bis sechsfachen Menge Na-peroxid bzw. Na-peroxid/Na-carbonat/Na-hydroxid-Mischungen versetzt und in geeigneten Tiegelmaterialien (z. B. Zirkoniumtiegel) auf 450 °C (Sinteraufschluss) bis 600 °C (Schmelzaufschluss) erhitzt (z.B. Enzweiler und Potts, 1995; Enzweiler et al., 1995; Yi und Masuda, 1996). Nach dem Aufschluss wird die Mischung zunächst in Reinstwasser gelöst und angesäuert, damit die Säulenchemie zur Matrixabtrennung eingeleitet werden kann (Enzweiler und Potts, 1995; Yi und Masuda, 1996). Gelegentlich schließt sich auch eine Ausfällung mit Te an (Enzweiler et al., 1995). Um heftigen Reaktionen mit dem Oxidationsmittel vorzubeugen, sollten Corg-reiche Proben vorverascht werden. Peroxidaufschlüsse werden unter anderem zum Aufschluss von schwerlöslichen Sulfiden und von Chromiten benutzt (Heinrichs, 1990). Ihr Einsatz erscheint auch bei den PGE günstig. Bei Naperoxidaufschlüssen wurde aber ein erheblicher Fremdeintrag beobachtet (Pearson und Woodland, 2000). Außerdem ist die Vermischung von Spike und Probe problematisch (Yi und Masuda, 1996). Die Verwendung von Zr-Tiegeln führt zu einer Kontamination mit Zr, welches die Messung von Pd (Kap. 3.5) stört.

• Carius-Tubes

Die Carius-Methode konnte von Rehkämper et al. (1998) sowie Pearson und Woodland (2000) erfolgreich angewendet werden. Dabei wird das Probenmaterial zusammen mit konz. HNO_3 oder Königswasser in einem Rohr aus Quarzglas eingeschmolzen und im Bombenofen für 48 h auf 230 °C erhitzt. Für dieses Verfahren sprechen die sehr niedrigen Blindwerte und die sehr guten Ergebnisse hinsichtlich der vollständigen Zersetzung des Probenmaterials. Beim Aufschluss C_{org}-reicher Proben sind weitreichende Sicherheits-vorkehrungen einzuhalten, da die Glasrohre leicht explodieren.

• Aufschlüsse mit Mineralsäuren

Aufschlussvarianten mit HCl, HNO₃ und HF sowie mit H₂O₂, Br₂, HBr finden sich bei Balaram et al. (1997), Chao und Sanzolone (1992), Colodner et al. (1993b), Ely et al. (1999) sowie Totland et al. (1995). In anoxischen Sedimenten liegen die PGE vorwiegend sulfidisch und organisch gebundenen vor (Pasava, 1993; Sawlowicz, 1993). Für die Zersetzung von organischem Material sind sauerstoffspendende Oxidationsmittel geeignet. Refraktäre Komponenten wie Chromite und Cr-Spinelle, Zirkone und andere oxidische Minerale sowie einige Phosphate und die gediegenen Edelmetalle sind mit diesen Mineralsäuren jedoch nur schwer aufzuschließen (Heinrichs, 1989). Der Einsatz von HClO₄ und H₂SO₄ verbietet sich aber trotzdem wegen der geringen Flüchtigkeit und des hohen Säureblindwerts. Eigens durchgeführte Testreihen zeigten, dass selbst dest. HClO₄ oder HClO₄ in suprapur-Qualität hohe Blindwerte hinsichtlich der PGE aufweisen. Außerdem müssen während der Probenaufbereitung die Säuren abgeraucht werden. Bei Verwendung von HClO₄ oder H₂SO₄ ist dafür ein langes Erhitzen bei hohen Temperaturen notwendig. Dies führt zu starken Verlusten von Ru, welches leicht als RuO₄ abgedampft wird (Strelow und Victor, 1992; Yi und Masuda, 1996). Es bietet sich die Verwendung des stark oxidierend wirkenden Königswassers an, das auch viele schwerlösliche Sulfide und Oxide löst (Heinrichs, 1989). Gediegene Komponenten, die zum Lösen hohe Oxidationspotentiale benötigen, sind nur in vererzten Proben (z.B. den internationalen Referenzmaterialien) vorhanden. Während gediegenes Pt und Pd schon von Königswasser gelöst werden, lösen sich elementares Ru und Ir aber selbst in Euchlorin (Gemisch aus rauchender Salzsäure und Natriumchlorat) nur langsam (Hollemann und Wiberg, 1995). Durch Zusatz von HF zum Königswasser können die PGE-Ausbeuten erheblich erhöht werden (Chao und Sanzolone, 1992), da hierdurch auch die sonst stabilen Silikate zersetzt werden. Colodner et al. (1993b), Sighinolfi et al. (1984) und Ely et al. (1999) haben HF/HNO₃ bzw. HF/Königswasser-Aufschlüsse erfolgreich für die Analyse von einigen PGE und Re angewendet. Der niedrige, gut zu kontrollierende Säureblindwert spricht für den Einsatz von Säureaufschlüssen.

Gelegentlich finden sich auch Kombinationen der verschiedenen Methoden (z. B. Säureaufschluss mit anschließendem Na-peroxidaufschluss Jarvis et al., 1997; Kubrakova et al., 1996; Sen Gupta, 1989; Totland et al., 1995). Hierbei werden auch Mikrowellenöfen zum Lösen und Homogenisieren der gespikten Proben verwendet (Colodner et al., 1993b; Jarvis et al., 1997; Kubrakova et al., 1996; Totland et al., 1995; Yi und Masuda, 1996).

3.4 Matrixabtrennung

Alle störenden Stoffe weisen in typischen anoxischen Sedimenten deutlich höhere Konzentrationen (ca. 0,1-200 ppm) als die PGE (bis zu 15 ppb) und Re auf. In vererzten Proben können die störenden Matrixelemente Maximalkonzentrationen bis in den unteren Prozent-Bereich erreichen. Deshalb ist auch bei niedrigen Interferenzfaktoren eine störungsfreie Messung ohne Matrixabtrennung nicht möglich. Die Probenmatrix wird durch Ausfällung mit Te oder Se (Amosse, 1998; Enzweiler et al., 1995; Jackson et al., 1990; Oguri et al., 1999), durch Extraktion mit organischen Lösungsmitteln (Al-Bazi und Chow, 1984) oder durch die Verwendung von Anionen- (Enzweiler et al., 1995; Makishima et al., 2001; Rehkämper und Halliday, 1997; Yi und Masuda, 1996) oder Kationenaustauscherharzen (Ely et al., 1999; Strelow und Victor, 1992) abgetrennt.

• Kationenaustauscherharze

Beim Einsatz des Kationenaustauscherharzes AG 50W-X8 200-400 *mesh*; *hydrogen form* (Bio-Rad[®]) werden die kationischen Komplexe der Probenmatrix vom Harz adsorbiert. Die anionischen PGE- und Re-Komplexe haften nicht auf dem Harz. In der Praxis zeigt sich, dass zwar die Ausbeute hinsichtlich der PGE und Re hoch ist, die negativ geladenen Fluoro-komplexe des Hf, Zr und Ta aber ebenfalls eine geringe Affinität zum Harz aufweisen und mit den PGE eluiert werden. Da vor allem HfO⁺ und ZrO⁺ die Messung von Ir, Pt und Pd stören (Tab. 7), können Kationenaustauscher nicht für die Isotopenverdünnungsanalyse verwendet werden. Der durch die notwendige Interferenzkorrektur eingeführte Fehler ist zu groß.

• Anionenaustauscherharze

Bei Anionenaustauscherharzen werden zunächst die anionischen PGE- und Re-Komplexe vom Harz adsorbiert. Die Probenmatrix passiert das Harz. Erst mit dem Wechsel des Elutionsmittels werden die PGE und Re vom Harz entfernt. Die Ionenaustauscherharze AG 1-X8 200-400 *mesh*; *chloride form* (Bio-Rad[®]) und TEVA[®] 50-100 µm Partikelgröße (EIchroM[®]) wurden auf ihre Leistung getestet. Mit dem TEVA[®]-Harz konnten hinsichtlich der Matrixabtrennung, der Ausbeute und des zeitlichen Aufwands die besten Ergebnisse erreicht werden, obwohl von Rehkämper und Halliday (1997), Yi und Masuda (1996) sowie Pearson und Woodland (2000) das Bio-Rad[®]-Harz verwendet wurde.

Die aktive Komponente des TEVA[®]-Harzes ist ein flüssiges aliphatisches quartäres Amin, welches auf ein inertes Polymergerüst aufgebracht ist (Abb. 7). Es zeigt daher auch bei niedrigen Säurekonzentrationen eine hohe Affinität zu den Zielanionen. Das Bio-Rad[®]-Harz besitzt sterisch weniger anspruchsvolle Reste, so dass auch kleinere Anionen auf dem Harz haften. Das TEVA[®]-Harz wurde ursprünglich für die Abtrennung von Pertechnetat und den Actinoiden entwickelt (Horwitz et al., 1995). Es konnte aber auch für die Anreicherung anionischer Komplexe des Re (Tagami und Uchida, 2000, 2001) und der PGE (Makishima et al., 2001) erfolgreich eingesetzt werden. Makishima et al. (2001) überführten vor der Adsorption auf dem Harz die Chlorokomplexe der PGE in Bromokomplexe, um sie dann mit HJ zu eluieren.

R = Styrol-Divinylbenzol Gitter

Abb. 7: Die aktiven Komponenten des TEVA[®]-Harzes (oben) und des Harzes AG 1-X8 200-400 mesh; chloride form (unten). Die großen Alkylgruppen des TEVA[®]-Harzes erhöhen die Selektivität gegenüber großen anionischen Komplexen.

3.5 Beschreibung der Methode zur PGE- und Re-Messung

3.5.1 Probenaufbereitung

100 mg (Standards) bis 500 mg (Sediment) der getrockneten Probe wurden mit dem Isotopenspike versetzt und im Druckaufschlusssystem PDS-6 mit 8 ml 14 M HNO3 und 6 ml 24 M HF 18 h auf 180 °C erhitzt. Die Temperatur wurde bei Corg-reichen Proben ausgehend von 60 °C stetig um 30 °C/h erhöht. Das Abrauchen der Säuren erfolgte unter Zusatz von zweimal 3 ml 6 M HCl und kurz vor der Trockne von 1 ml 6 M HCl bei 70 °C. Die zugefügten Chloridionen bewirkten eine Stabilisierung der Ru-chlorokomplexe in der Lösung und damit eine höhere Ausbeute von Ru. Beim Abrauchen war besondere Vorsicht geboten, da bis zuletzt sehr giftiger Fluorwasserstoff freigesetzt wurde. Der abgekühlte Rückstand wurde mit 4 ml Königswasser versetzt und bei 180 °C 12 h aufgeschlossen. Im Gegensatz zur Probenmatrix waren die PGE und Re nach diesem Schritt vollständig gelöst. Beim Abrauchen der Säuren wurde die Temperatur langsam auf 70 °C erhöht, um ein Spritzen durch Chlorentwicklung zu vermeiden. Kurz vor der Trockne wurden zweimal 2 ml 6 M HCl zugesetzt, um die PGE in Chlorokomplexe zu überführen und um die HNO₃ abzurauchen. Nach dem Abrauchen der Säuren wurde der Rückstand mit 5 ml 0,25 M HCl bei 70 °C im zugedeckten Gefäß gelöst und nach 12 h heiß auf die gereinigten Säulen gegeben. Durch die erhöhte Temperatur wurde eine schnellere Bindung der Anionen an die Reaktionszentren des Harzes ermöglicht, was zu einer Verbesserung der Ausbeuten führte. Sobald die warme Lösung das Harz passiert hatte, wurde die Probenmatrix mit 50 ml 0,25 M HCl vom Harz entfernt. Ein Erkalten der Lösung auf dem Harz wurde vermieden, da sonst Teile der in heißer Lösung gelösten Probenmatrix auf dem Harz kristallisierten. Die Elution der PGE und des Re erfolgte mit 10 ml 8 M HNO₃. Die Säure dieser PGE-Fraktion wurde bei 60 °C abgeraucht. Zur Stabilisierung der Ru-Chlorokomplexe wurde die Lösung während des Abrauchens der HNO₃ erneut zweimal mit 3 ml 6 M HCl versetzt.⁷ Zuletzt wurde der Rückstand mit 2,5 ml 0,3 M HNO₃ bei 70 °C über Nacht im zugedeckten Gefäß gelöst und innerhalb weniger Tage am ICP-MS-Gerät gemessen.

 $^{^{7}}$ Auch wenn auf diesen Schritt verzichtet wurde, gelang die Bestimmung der Pd-Konzentrationen in C_{org} -reichen Sedimenten nicht.

3.5.2 Reinigung der verwendeten Materialien

Es kamen nur gereinigte Säuren und Reinstwasser (18 M Ω) zum Einsatz (siehe Kap. 2.4). Die Teflontiegel wurden vor dem Gebrauch zweimal mit 3 ml konz. HCl gereinigt. Die mit 0,1 g (250 µl) TEVA[®]-Harz (ElchroM[®], 50-100 µm Partikelgröße) gepackten Disposaflex[®]-Säulen (Fa. Kimbles Kontes[®], Polyethylenfritte mit 20 µm Porenweite, 8 mm Durchmesser) wurden mit 5 ml 13 M HNO₃, 5 ml 11 M HCl und 10 ml 0,25 M HCl gereinigt. Es wurde nur unbenutztes Harz verwendet. Um Adsorptionseffekte an den Gefäßwandungen zu vermeiden, wurden alle Stamm- und Indikatorlösungen sowie die Aufschlüsse in Teflon- oder teflonisierten Gefäßen aufbewahrt. Nur die Lösungen zur Ermittlung der Interferenz- und Massenfraktionierungsfaktoren sowie die Lösung zum Bestimmen der Spike Konzentrationen durch *Reverse-spiking* wurden unmittelbar vor der Messung in PE-Autosamplerröhrchen angesetzt. Da die Probenmatrix auch nach dem zweiten Aufschlussschritt in einigen Fällen noch nicht vollständig gelöst war, mussten die Tiegel nach dem Aufschluss mit 3 ml HClO₄ gereinigt werden.

3.5.3 Messbedingungen

Die Messung der PGE wurde mit einem doppelfokussierenden magnetischen Sektorfeld-Massenspektrometer "Element" (Finnigan[®] MAT, Bremen) in niedriger Massenauflösung (r = 300 ppm) durchgeführt. Da alle Elemente auf dem Plateau der Massenpeaks gemessen wurden, war eine gute Massenkalibrierung notwendig. Die Ce-Oxidbildung war niedriger als 1,5 %, der prozentuale Anteil doppelt geladener Ce-Ionen war kleiner als 2 %. Neben den PGE und Re wurden auch die interferierenden Elemente gemessen, um den Einfluss der interferierenden Störungen und die Qualität der Matrixabtrennung zu ermitteln. Es wurden drei *Runs* mit jeweils drei *Passes* aufgenommen, um die Verhältnisse ¹⁰¹Ru/⁹⁹Ru, ¹⁰⁶Pd/¹⁰⁵Pd, ¹⁰⁸Pd/¹⁰⁵Pd, ¹⁸⁷Re,¹⁸⁵Re, ¹⁹³Ir/¹⁹¹Ir, ¹⁹⁶Pt/¹⁹⁵Pt und ¹⁹⁶Pt/¹⁹⁴Pt zu bestimmen. Die Signale eines Stoffes auf unterschiedlichen Massen mussten mit der gleichen Magnetmasse gemessen werden. Die relative Standardabweichung von R lag unter 1 %. Die genauen Messbedingungen sind Tab. 8 zu entnehmen.

Instrument	Element; Finnigan [®] MAT
Plasma-Gas	Ar
Plasma-Leistung	1300 W
Zerstäuber	Meinhard (auf 5 °C gekühlte Sprühkammer)
Cool-Gas	14 l/min
Auxiliary-Gas	0,3 l/min
Sample-Gas	0,7-1 l/min
Lösungsverbrauch	0,5 ml/min
Messbereich	60-200 amu
Messzeit pro Probe	120 s
Scan Type	Escan
Zn, Rb, Cd	Analog Modus
alle weiteren Massen	Counting Modus
Sampling-Zeit Ru, Ir	0,2 s
Sampling-Zeit Pd, Re, Pt	0,1 s
Sampling-Zeit Bezugsmassen	0,01-0,05 s
Samples pro Peak	60
Mass, Search und Integration Window	10 amu

Tab. 8: Messbedingungen bei der Bestimmung der PGE- und Re-Konzentrationen durch ID-ICP-MS.

In der Praxis zeigte sich, dass der Prozedurblindwert und der Geräteblindwert durch den *Memory*-Effekt des Gerätes übertroffen wurden. Der *Memory*-Hintergrundwert wurde nach jeder fünften bis zehnten Probe ermittelt. Der Mittelwert wurde gemäß Abb. 6 als Nullwert berücksichtigt. Nach jeder Probenlösung musste das Gerät sorgfältig mit 0,3 M HNO₃ gespült werden, damit wieder das mittlere Hintergrundsignal erreicht wurde (Kontrolle im *Tune*-Fenster). Die zu messenden Lösungen wiesen daher ähnliche Konzentrationen auf. Folglich wurden die Lösungen der natürlichen Proben und der Standards PCC-1 direkt gemessen. Die Lösungen des Standards UMT-1 1:5 und die Lösungen der Referenzmaterialien PTM-1, Sarm-7, PTC-1 wurden mit 0,3 M HNO₃ 1:40 verdünnt. Da die Messlösungen der anoxischen Sedimente häufig sehr viel Re enthielten und die Lösungen der geologischen Referenzstandards stark verdünnt werden mussten, um das Gerät nicht mit den PGE zu kontaminieren, kam es bei Re-armen Proben und einigen geologischen Standards zu systembedingten Kontaminationen mit Re. Niedrige Re-Konzentrationen wurden daher in einer eigenen Messreihe bestimmt.

3.5.4 PGE- und Re-Ausbeuten und die Wirksamkeit der Matrixabtrennung

Zur Bestimmung der PGE-Ausbeuten (siehe Tab. 9) wurden 500 mg des hausinternen Standards Med-1 (Mittelmeersapropel) mit 0,5 ml einer Lösung von 50 ppb Ru, Re, Ir und Pt versetzt. Diese Probe wurde dem vollständigen Analysengang unterzogen und zuletzt auf 5 ml Messvolumen verdünnt. Die PGE- und Re-Konzentrationen der Messlösungen wurden mittels externer Kalibrierung ermittelt. Eine PGE-Konzentration von 5 ppb entsprach einer Ausbeute von 100 %. Bei Re entsprach eine 100%-ige Ausbeute einer Zielkonzentration von 9,5 ppb, da die Re-Konzentration des Probenmaterials 45 ppb betrug. Da die Probe nicht mit Pd versetzt wurde, konnte die Pd-Ausbeute nur anhand von nicht gespikten Massenlinien mittels geologischer Referenzproben, deren Pd und Pt-Gehalte bekannt sind, abgeschätzt werden.

Tab. 9: Ausbeuten der PGE und von Re bei der Aufarbeitung der Probe Med-1. Für Pd konnte anhand der nicht gespikten Isotope die Ausbeute abgeschätzt werden.

Element	Ausbeute [%]
Ru	20-40
Pd	> 60
Re	80-95
Ir	50-70
Pt	80-95

Analog hergestellte Lösungen (Endvolumen: 2,5 ml) wurden außerdem mit dem in Kap 2.4 vorgestellten Messprogramm auf die Konzentrationen der Matrixelemente untersucht. Mit der unter Kap. 3.5.1 beschriebenen Methode konnten die in Tab. 10 erzielten Abtrennungsgrade erzielt werden. Die Effektivität der Abtrennung von Hg wurde nicht bestimmt, da kein Referenzwert zur Verfügung steht. Die Hg-Konzentration in der Messlösung konnte aber grob abgeschätzt werden.

Tab. 10: Anhand des Med-1 Standards (500 mg) ermittelte Matrixabtrennung [%]. Die dritte
Spalte gibt Auskunft über die Konzentration der Matrixelemente in der Messlösung (Endvo-
lumen: 2,5 ml). Die normal gedruckten Elemente stören die Messung von Ru, Pd, Re, Ir und
Pt grundsätzlich nicht. Unterstrichene Elemente könnten zwar die Messung stören, wurden
aber wegen der niedrigen Interferenzfaktoren und/oder der guten Abtrennung bei der
Quantifizierung vernachlässigt. Fett gedruckte, unterstrichene Elemente mussten wegen der
unzureichenden Abtrennung und/oder der hohen Interferenzfaktoren bei der
Interferenzkorrektur berücksichtigt werden. Vergleiche auch Tab. 7.

Element	Matrixab- trennung [%]	Konzentration in der Messlösung bei 2,5 ml Messvolumen [ppb]	gestörte Massen
Ag	> 51 %	≈ 32	
Ba	> 99,95 %	≈ 36	
Bi	> 17 %	≈ 29	
Cd	<u>> 56 %</u>	<u>≈ 350</u>	¹⁰⁶ Pd, ¹⁰⁸ Pd
<u>Ce</u>	<u>> 99,95 %</u>	<u>≈ 5</u>	191 Ir, 193 Ir
<u>Co</u>	<u>> 99,95 %</u>	<u>≈ 3</u>	⁹⁹ Ru
Cr	> 99,95 %	≈ 5	
Cs	> 99,95 %	≈ 0,1	
Cu	> 99,99 %	≈ 2	
Dy	<u>> 99,7 %</u>	<u>≈ 1,5</u>	$\frac{196}{Pt}$
Er	> 99,5 %	≈ 1,5	
Eu	<u>> 99,7 %</u>	<u>≈ 0,2</u>	$\frac{191}{1}$ Ir, $\frac{193}{1}$ Ir
Gd	> 99,7 %	≈ 3,5	
<u>Hf</u>	<u>> 99,9 %</u>	<u>≈ 0,5</u>	¹⁹³ Ir, ¹⁹⁴ Pt, ¹⁹⁵ Pt, ¹⁹⁶ Pt
<u>Hg</u>	<u>?</u>	<u>≈ 2-5</u>	¹⁹⁶ Pt
Но	> 99,7 %	≈ 0,5	
La	> 99,95 %	≈ 3	
Lu	<u>> 99,7 %</u>	<u>≈ 0,2</u>	¹⁹¹ Ir
<u>Mo</u>	<u>> 99,9 %</u>	<u>≈ 0,2</u>	¹⁰⁸ Pd
Nd	<u>> 99,9 %</u>	<u>≈ 4</u>	185 Re
<u>Ni</u>	<u>> 99,99 %</u>	<u>~ 2</u>	99 Ru, 101 Ru
Pb	> 99,98 %	≈ 0,4	
Pr	> 99,7 %	≈ 4,2	
<u>Pt</u>	<u>k. A.</u>	<u>k. A.</u>	⁹⁹ Ru
<u>Rb</u>	<u>> 99,9 %</u>	<u>≈ 9</u>	101 Ru
Sb	> 97,5 %	≈ 16	
Sc	> 99,75 %	≈ 6	

Element	Matrixab- trennung [%]	Konzentration in der Messlösung bei 2,5 ml Messvolumen [ppb]	gestörte Massen
<u>Sm</u>	<u>>99,9 %</u>	<u>≈ 1</u>	$\frac{185}{191}$ Re, $\frac{187}{191}$ Re, $\frac{191}{11}$ Ir
Sr	> 99,99 %	≈ 10	
Tb	> 99,7 %	≈ 3,5	
Th	> 99,9 %	≈ 1	
Tl	> 99,9 %	≈ 0,2	
<u>Tm</u>	<u>> 99,8 %</u>	<u>≈ 0,2</u>	$\frac{185}{\text{Re}}$
U	> 99,98 %	≈ 0,3	
V	> 99,8 %	≈ 100	
<u>Y</u>	<u>>99,7 %</u>	<u>~ 13</u>	¹⁰⁵ Pd
<u>Yb</u>	<u>> 99,7 %</u>	<u>≈ 1,5</u>	$\frac{187}{\text{Re}}$
<u>Zn</u>	<u>>99,7 %</u>	<u>≈ 25</u>	$\frac{{}^{99}\text{Ru, }{}^{101}\text{Ru, }}{{}^{105}\text{Pd, }{}^{105}\text{Pd, }}$
Zr	<u>> 99,9 %</u>	<u>≈ 3</u>	¹⁰⁶ Pd, ¹⁰⁸ Pd

Fortsetzung Tab. 10:

Wie aus Tab. 7 und Tab. 10 hervorgeht, konnten Ru und Re praktisch störungsfrei gemessen werden, da die störenden Elemente nahezu vollständig abgetrennt wurden oder die Störungen kaum wirksam waren. Für die anderen Elemente mussten mit geeigneten Interferenzlösungen die entsprechenden Interferenzkorrekturen eingeleitet werden. Die Störung von ⁹⁹Ru⁺ durch 198 Pt²⁺ (Interferenzfaktor 99 Ru/ 198 Pt: < 0.0001) wurde nur bei sehr hohen Pt-Konzentrationen und niedrigen Ru-Konzentrationen relevant, da ¹⁹⁸Pt sowohl in der Probe als auch in der Indikatorlösung relativ selten ist. Bei einer eventuell notwendigen Korrektur musste aber beachtet werden, dass das Signal von ¹⁹⁸Pt seinerseits durch ¹⁹⁸Hg überlagert wird. ¹⁹⁶Hg sorgte für eine Überlagerung des Signals ¹⁹⁶Pt. Hier musste eine Korrektur durchgeführt werden (Interferenzfaktor ${}^{196}\text{Pt}/{}^{200}\text{Hg}$: ≈ 0.0063). Am stärksten gestört wurde die Messung von Pd. Zwar konnten Zr, Y und Mo zu mehr als 99,7 % abgetrennt werden, die starke Tendenz zur Oxidbildung (Interferenzfaktor ¹⁰⁶Pd/⁹¹Zr: 0,0016) machte aber mindestens beim Zr eine Korrektur notwendig. Da zudem Cd nicht wirksam genug aus der PGE-Fraktion entfernt wurde, wurde außerdem eine Korrektur der isobaren Interferenz für ¹⁰⁶Pd und ¹⁰⁸Pd durchgeführt werden (Interferenzfaktoren ¹⁰⁶Pd/¹¹¹Cd: 0,0956 und ¹⁰⁸Pd/¹¹¹Cd: 0,0690). Diese war wegen der ungüstigen Konzentrationsverhältnisse von Cd und Pd in der Messlösung aber nicht erfolgreich.

Wurde statt 0,25 M HCl 0,35 M HNO₃ zum Konditionieren der Säule und zum Eluieren der Probenmatrix benutzt, so machte sich dies in einem leichten Sinken der PGE-Ausbeuten und einer deutlich besseren Abtrennung von Ag, Bi und Cd bemerkbar (Faktor: 20-70). Allerdings wurde die Zr- und Hf-Konzentration in der PGE-Fraktion um das 20-fache erhöht. Eine größere Säuremenge beim Eluieren der PGE-Fraktion erhöhte die Ausbeute der PGE und von Re kaum. Wurde die Säule nach der PGE-Elution mit weiteren 15 ml konz. HNO₃ gespült, fanden sich in der Spüllösung nur Spuren von Pt. Wurde weniger Spüllösung zum Entfernen der Probenmatrix verwendet, erhöhte sich die Ausbeute der PGE-Elemente etwas. Allerdings wurde die Probenmatrix auch weniger effektiv abgetrennt. Wahrscheinlich traten schon Verluste der PGE beim Entfernen der Probenmatrix auf. Wurden statt 0,1 g 0,2 g TEVA[®]-Harz verwendet, erhöhte sich zwar die Ausbeute der PGE etwas, die Matrixbelastung der PGE-Fraktion nahm aber ebenfalls zu. Umgekehrt verhielt es sich bei einer geringeren Einwaage an Harz. Ein Zusatz von 0,5 ml gesättigtem Bromwasser beim Auflösen des Rückstands nach dem Königswasseraufschluss bewirkte eine erhöhte Ausbeute an Ir, da es vom dreiwertigen in das vierwertige Ir überführt wurde (Rehkämper und Halliday, 1997; Yi und Masuda, 1996), senkte aber gleichzeitig die Ausbeute der anderen PGE. Dies kann anhand der Ergebnisse von Makishima et al. (2001) erklärt werden. Offenbar können die Bromokomplexe der PGE nicht zufriedenstellend mit HCl oder HNO₃ vom Harz entfernt werden.

3.5.5 Richtigkeit und Reproduzierbarkeit

Zur Überprüfung der Richtigkeit und Reproduzierbarkeit der Methode wurden verschiedene internationale Referenzmaterialien untersucht und die erzielten Ergebnisse mit denen anderer Studien verglichen (Tab. 11).

• Platingruppenelemente

Die Referenzwerte der Elemente Ru, Ir und Pt der Materialien Sarm-7 (silikatisches Erz; SABS), PTM-1 (Ni-Cu-Erz; CCRMP) und UMT-1 (ultramafisches Erz; CCRMP) konnten gut reproduziert werden. Die PGE-Daten des sulfidischen Erzes PTC-1 (Fe-Ni-Cu-Erz; CCRMP) fielen durchweg zu niedrig aus. Aber auch die weite Streuung der Daten anderer Autoren macht darauf aufmerksam, dass das Material entweder inhomogen ist oder schwierig aufzuschließen ist. Die Referenzwerte der Proben PCC-1 (Peridotit, USGS) und DTS-1 (Dunit, USGS) konnten ebenfalls erreicht werden. Nur beim Ru könnten Minderbefunde

aufgetreten sein, da Peridotite und Dunite schwierig aufzuschließen sind. Es kann daher nicht ausgeschlossen werden, dass die zu niedrigen Messwerte einem unvollständigen Aufschluss zugrunde liegen. Da die Referenzwerte bzw. Informationswerte für diese beiden Proben zum Teil auf einer sehr geringen Datenbasis basieren (beim DTS-1 nur 1 Ru-Messung), können Übereinstimmungen aber auch nur bedingt erwartet werden. Durch die vorliegende Arbeit werden zum ersten Mal Informationswerte für die Ru-, Ir- und Pt-Konzentration des Standards PACS-1 (NRC-CNRC) angegeben.

• Rhenium

Von den genannten Referenzmaterialien stehen nur wenige Re-Daten zum Vergleich zur Verfügung. Zur Überprüfung der Richtigkeit wurden daher die Probe PACS-1 sowie die hausinternen Standards Med-1 und PSS herangezogen (siehe Tab. 12). Die von Morford et al. (2001) für den PACS-1 ermittelte Re-Konzentration von 5,9 ppb konnte bestätigt werden. Auch die gute Übereinstimmung der ermittelten Re-Konzentrationen mit zwei verschiedenen Methoden (vgl. Abb. 8) sprechen für die Richtigkeit der ermittelten Re-Konzentrationen. Insofern können durch diese Arbeit erste Informationswerte für Re-Konzentrationen in den Referenzmaterialien Sarm-7, PTC-1, PTM-1 und UMT-1 angegeben werden. Die für den UMT-1 ermittelte Re-Konzentration fällt mit 7±0,6 ppb deutlich höher aus als der vom CCRMP herausgegebene Informationswert von 3 ppb. Für die Standards DTS-1 und PCC-1 gehen die Literaturangaben über die Re-Konzentration weit auseinander. Es wurden in unabhängigen Analysen die Werte: < 0.4 ppb; 0,013 ppb und 19 ± 8 ppb bzw. < 1 ppb; 0,046 ppb; 0,07 ppb und 61 ± 9 ppb ermittelt (Gladney et al., 1991). Aus den veröffentlichten Daten erscheint es mir nicht möglich, die von Gladney et al. (1991) Govindaraju (1994) veröffentlichten **Re-Informations**und konzentrationen von 9,5 ppb bzw. 0,058 ppb abzuleiten. Zur Information wurden deshalb trotz der großen Abweichung die hier ermittelten Re-Konzentrationen angeben, obwohl das Messsignalverhältnis 187 Re $/{}^{185}$ Re = 0,06 außerhalb der zulässigen Rahmenbedingungen $(R < 0,1; F_R \approx 10)$ lag und ein größerer Fehler zu erwarten ist. Die für den PTC-1 ermittelte Re-Konzentration weicht deutlich von dem von Jackson et al. (1990) präsentierten Wert ab. Wegen der oben angesprochenen Problematik bezüglich der Homogenität des Materials erscheinen beide Werte wenig vertrauenswürdig.

Probe	Ru [ppb]	Re [ppb]	Ir [ppb]	Pt [ppb]	Aufschluss /Matrixabtrennung / Methode (Isotopenverdünnung) bzw. Anzahl n
Sarm-7					
diese Arbeit	393 ± 30	5,8 ± 0,26	74 ± 4,7	3914 ± 307	n = 5
zertif.9	430 ± 57	k. A.	74 ± 12	3740 ± 45	
				3720 ± 210	Säure / nein / ICP-MS (nein) ¹
	412		70	3792	Na_2O_2 / Te Ausfällung / ICP-MS (ja) ²
	330 ± 41		64 ± 11	2390 ± 370	Säure (Mikrowelle) – Na ₂ O ₂ / Kationenaust. / ICP-MS (nein) ³
andere Studien	425 ± 17		74 ± 1,9	3541 ± 64	Dokimasie / Te-Ausfällung / ICP-MS (nein) ⁴
			74 ± 7	3500 ± 200	Säure (Mikrowelle) – Na ₂ O ₂ / Anionenaust. / ETAAS ⁵
	397 ± 55		71 ± 7,1	3395 ± 458	Dokimasie / Te-Ausfällung / ICP-MS (nein) ⁶
PTC-1					
diese Arbeit	535 ± 10	$192 \pm 6,\!9$	$40 \pm 1{,}7$	2167 ± 316	n = 4
zertif.	650 ± 275^{11}	k. A.	100 ¹⁷	3000 ± 200	
				2710 ± 190	Säure / nein / ICP-MS (nein) ¹
andere Studien	620 ± 110		140 ± 4	1940 ± 330	Säure (Mikrowelle) – Na ₂ O ₂ / Kationenaust. / ICP-MS (nein) ³
	442 ± 46	$85 \pm 28,5$	165 ± 9	2582 ± 284	Dokimasie / Te-Ausfällung / ICP-MS (nein) ⁶
PTM-1					
diese Arbeit	646 ± 37	0,55 ± 0,22	$325\pm9{,}7$	5621 ± 119	n = 5
zertif.	500 ¹⁷	k. A.	300 ¹⁷	5850 ± 200	
ondoro				5870 ± 230	Säure / nein / ICP-MS (nein) ¹
Studien	720 ± 22		320 ± 43	5200 ± 75	Säure (Mikrowelle) – $Na_2O_2/$ Kationenaust. / ICP-MS (nein) ³

Tab. 11: Vergleich von den selbst gewonnen Messergebnissen mit den Referenzwerten und den in anderen Studien ermittelten Messwerten einiger geologischer Standardmaterialien.

Fortsetzung Tab. 11:

Probe	Ru [ppb]	Re [ppb]	Ir [ppb]	Pt [ppb]	Aufschluss /Matrixabtrennung / Methode (Isotopenverdünnung) bzw. Anzahl n
UMT-1					
diese Arbeit	12,2 ± 0,9	7 ± 0.6 (n = 3)	7,8 ± 0,8	154 ± 1,2	n = 6
zertif.9	10,9 ± 1,5	311	8,8 ± 0,6	129 ± 5	
				120 ± 10	Säure / nein / ICP-MS (nein) ¹
J	$9{,}9\pm0{,}38$		$8{,}4\pm0{,}17$	100 ± 9	Na ₂ O ₂ / Te-Ausfällung / ICP-MS (ja) ²
Studien	$12,1 \pm 1,4$		$8,8\pm0,6$	129 ± 5	Dokimasie / keine / LA-ICP-MS ⁷
	11 ± 2		$9,5 \pm 0,8$	130 ± 9	Na ₂ O ₂ / Se, Te, Sn-Ausfällung / ICP-MS (nein) ⁸
PCC-1					
diese Arbeit	$5,2 \pm 1,7$	$0,\!92\pm0,\!12$	$\textbf{3,3} \pm \textbf{0,16}$	6,3 ± 1,8	n = 3
zertif. ¹⁴	10 ± 1,8	k. A.	4,8 ± 1,5	8 ± 3	
				$6{,}6\pm0{,}7$	Säure / MIBK / GAAS ¹²
			$6{,}65 \pm 1{,}5$	$10,1\pm3,7$? / Te-Ausfällung / RNAA ¹³
andere Studien			$4,8\pm1,7$	$8,1\pm4,1$? / Ionenaust. / RNAA ¹³
	3,2	0,1	1,8	7,6	Säure / Anionenaust. / ICP-MS (ja) ¹⁶
			$3,2 \pm 0,4$	5,1 ± 0,6	Na_2O_2 / Anionenaust. / GAAS ¹⁵
DTS-1					
diese Arbeit	0,68	0,14	0,38	2,58	$\mathbf{n} = 1$
zertif. ¹⁴	(2,5; n = 1)	k. A.	0,69 ± 0,24	(3,1 ± 1,7)	
andere				$1,7\pm0,4$	Säure / MIBK / GAAS ¹²
Studien			$0,\!59\pm0,\!06$	1,75	Na_2O_2 / Anionenaust. / GAAS ¹⁵
PACS-1					
diese Arbeit	0,115; 0,100	6,29; 6,09	0,15; 0,07	0,97; 0,86	n = 2
zertif.	k. A.	k. A.	k. A.	k. A.	
andere Studien		$5,9 \pm 0,2$			Säure / nein / ICP-MS (nein) ¹⁰

1: Balaram et al. (1997); 2: Enzweiler et al. (1995); 3: Jarvis et al. (1997); 4: Oguri et al. (1999); 5: Kubrakova et al. (1996); 6: Jackson et al. (1990); 7: Jorge et al. (1998); 8: Amosse (1998); 9: Govindaraju (1994); 10: Morford et al. (2001); 11: Informationswert (CCRMP); 12: Terashima (1991); 13: Evans und Crocket (1992); 14: Gladney et al. (1991); 15: Hodge et al. (1986); 16: http://www.gso.uri.edu/icpms/PGE_Method.htm (abgerufen am 17.09.2002); 17: Potts et al. (1992)

Zur Überprüfung der Reproduzierbarkeit der Messung wurden zwei institutsinterne Standards (Med-1 und PSS) sowie eine Probe des holozänen Sapropels des Schwarzen Meeres (*Unit* 2) mehrfach untersucht (Tab. 12). Die relative Standardabweichung der Messung lag meist deutlich unter 10 %, obwohl die ermittelten Ru-, Ir- und Pt-Konzentrationen sehr niedrig sind.

Tab. 12: Reproduzierbarkeiten der ermittelten Ru-, Re-, Ir- und Pt-Konzentrationen in einigen typischen anoxischen Sedimenten.

Probe	Ru [ppt]	Re [ppb]	Ir [ppt]	Pt [ppt]	Probenanzahl
BS7 120 cm	450; 670	130 (n = 1)	69; 77	3450; 3440	n = 2
Med-1	274 ± 4	$48,3\pm0,3$	77 ± 8	2517 ± 48	n = 3
PSS	74; 63	116 (n = 1)	29; 27	1840; 1850	n = 2

Die gute Reproduzierbarkeit der Methode unterstreicht auch die gute Übereinstimmung der Re-Daten, die mit der externen Kalibrierung (vgl. Kap. 2.4) und der Isotopenverdünnungstechnik gewonnen werden konnten (Abb. 8). Dargestellt sind die Messdaten von 48 Proben aus verschiedenen anoxischen Ablagerungsräumen. Bemerkenswert ist die gute Übereinstimmung in dem niedrigen Konzentrationsbereich. Obwohl die Proben ohne Aufkonzentrierung auf einem Ionenaustauscherharz nur sehr geringe Zählraten bei der Messung aufweisen, konnten zuverlässige Daten gewonnen werden. Bei den Proben mit Re-Konzentrationen unter 5 ppb wurde allerdings statt der sonst üblichen 1:5000 eine 1:2500 Verdünnung verwendet.

Abb. 8: Vergleich der durch externe Kalibrierung und durch die Isotopenverdünnungstechnik gewonnenen Re-Daten. Es sind 48 Einzelbestimmungen einander gegenübergestellt worden. Datenpunkte auf der durchgezogenen Linie belegen eine ideale Übereinstimmung der beiden Messwerte.

3.5.6 Nachweisgrenzen

Die Nachweisgrenzen wurden nach der Methode von Heumann (1988) bestimmt. Dazu wurden bei der Probenaufbereitung jeweils zwei Blindlösungen angesetzt, die bei dem gesamten Analysengang parallel zu den Proben verarbeitet wurden. Die mittlere Konzentration in den Blindlösungen wurde über externe Kalibrierung ermittelt. Aus der dreifachen Standardweichung des Mittelwerts wurden die Nachweisgrenzen ermittelt, indem die Standardweichung auf eine Einwaage von 500 mg und ein Endvolumen der Messlösung von 2,5 ml bezogen wurde.

Tab	13.	Nac	hweise	ren7en	für	Ru	Re	Ir	und	Pt.
I uv.	15.	1 aci	inciss	r cnz,cn	<i>ju</i> 1	m	nc,	11	nna	1 1.

Ru [ppt]	Re [ppt]	Ir [ppt]	Pt [ppt]	
3	40	17	92	

3.6 Abschließende Beurteilung des Analyseverfahrens

Das hier vorgestellte Analyseverfahren ist zur Bestimmung der Ru-, Re-, Ir- und Pt-Konzentrationen in C_{org}-reichen Sedimenten und den meisten untersuchten geologischen Referenzmaterialien geeignet. Sollten die PGE in schwer aufzuschließenden Mineralen wie Cr-Spinellen oder Pyroxenen gebunden sein, könnten möglicherweise die bei höheren Temperaturen arbeitenden Methoden von Meisel et al. (2001), Pearson und Woodland (2000) oder Rehkämper et al. (1998) vorteilhaft sein. Die meisten interferierenden Stoffe werden auf der Ionenaustauschersäule weitgehend abgetrennt. Beim Aufschluss und beim Abrauchen der Aufschluss- oder der Elutionssäuren tritt keine Fraktionierung des Ru zwischen Spike und Probe auf. Sollte beim Abrauchen aus der Indikatorlösung stammendes Ru abdampfen, obwohl einige mineralische Ru-bindende Komponenten noch nicht gelöst waren, wären Plusfehler zu erwarten gewesen. Um die Intensitäten der Messsignale zu erhöhen, wäre es sinnvoll, die Einwaage bei salzhaltigen, C_{org}- oder SiO₂-reichen Proben auf 1 g zu erhöhen. Die genannten Komponenten werden während des Abrauchens abgedampft und tragen nicht zur Probenmatrix bei. Die weiteren Vor- und Nachteile des Analyseverfahrens sind in Tab. 14 einander gegenübergestellt.

	Vorteile	Nachteile
•	geringe Probeneinwaage •	geringe Einwaagen führen bei inhomogenem Probenmaterial zu geringer Reproduzierbarkeit (Nugget-Effekt)
•	PGE- und Re-Konzentrationen können in niedrigen Verdünnungsfaktoren ermittelt werden	
	\rightarrow relativ hohe Zählraten	
•	Verluste während der Probenaufbereitung werden • durch die Isotopenverdünnung automatisch aufgefangen	keine 100%-ige Ausbeute → Senken der Zählraten bei der Messung
•	Adsorption der Chlorokomplexe auf dem Harz erlaubt eine einfache Elution mit HNO ₃ ; es ist keine komplizierte Überführung in Bromo- komplexe und eine Elution mit HJ notwendig (vgl. Makishima et al., 2001)	
•	hervorragende Matrixabtrennung ermöglicht eine nahezu störungsfreie Messung von Ru, Ir, Re und Pt	
•	gute Reproduzierbarkeit der Messung bei an- oxischen Sedimenten verdeutlicht die Eignung der Methode für diesen Sedimenttyp	kein Vollaufschluss; in Abhängigkeit von der Art des Probenmaterials kann es zu Minderbefunden kommen
•	niedriger Fremdeintrag durch geringen Säure- und Feststoffbedarf (einfache Blindwertkontrolle)	
•	relativ geringer Zeitaufwand, da viele Proben parallel bearbeitet werden können	
•	bis auf HF Verzicht auf andere giftige Stoffe wie Brom oder HJ (vgl. Makishima et al., 2001; Rehkämper und Halliday, 1997)	
•	Verzicht auf den Einsatz von HClO ₄ und H ₂ SO ₄ ; dadurch Abrauchvorgänge im vertretbaren Zeitrahmen und mit geringen Verlusten von Ru möglich (vgl. Yi und Masuda, 1996)	

Tab. 14: Vor- und Nachteile der hier vorgestellten neuen Methode zur Bestimmung der PGE und von Re in anoxischen Sedimenten.

Alle Elemente, die auch in gering konzentrierten Lösungen anionische Komplexe ausbilden, weisen hohe Wiederfindungsraten in der PGE-Fraktion auf. Insofern sollte es mit der hier vorgestellten Methode unter Zugabe einer geeigneten Indikatorlösung auch möglich sein, niedrige Ag-, Cd-, Hg- und Pd-Konzentrationen in marinen Sedimenten zu bestimmen. Beim Hg könnten möglicherweise Verluste durch Abdampfen beim Aufschließen der Probe auftreten, bevor Spike und Probe vollständig miteinander vermischt sind. Die Messung von Pd wird aber bei Anwesenheit von Cd gestört. Leider sind die Cd-Konzentrationen in anoxischen Sedimenten häufig > 1 ppm. Versuche, Cd vollständig nach der an Basalten erprobten Methode von Rehkämper und Halliday (1997) von der PGE-Fraktion abzutrennen, verliefen wenig ermutigend. Es kann aber nicht auf andere Massen des Pd ausgewichen
53

werden, da hier isobare Interferenzen mit Ru wirksam werden. Mit der hier vorgestellten neuen Methode konnte wegen der sehr hohen Konzentration von Cd in der Messlösung also kein befriedigendes Ergebnis bezüglich der Pd-Messung erhalten werden. Auch eine Korrektur der isobaren Interferenz durch Cd lieferte keine zuverlässigen Pd-Daten. Insofern erscheint es schwierig, zuverlässige Pd-Daten mittels ICP-MS in anoxischen Sedimenten zu ermitteln, obwohl die störenden Chloride durch eine Desolvationseinheit (z. B. das Probeneinführungssystem "Aridus" der Fa. Cetac[®]) abgetrennt werden könnten.

Die ausführliche Präsentation und Diskussion der mit dieser Methode erhobenen Ru-, Ir- und Pt-Konzentrationen in C_{org} -reichen Sedimenten erfolgt in den Kap. 6 und 7.

4 Rekonstruktion des Meerwassereintrags in das holozäne Schwarze Meer

4.1 Einleitung

Das Schwarze Meer ist das gegenwärtig größte anoxische Meeresbecken der Welt (z. B. Murray et al., 1991; Ross und Degens, 1974). Die Spurenmetallanreicherungen im Sediment (Brumsack, 1989a; Calvert, 1990), induziert durch die permanent anoxischen Bedingungen in der Wassersäule, stimulierten zu umfangreichen Studien bezüglich des geochemischen Verhaltens zahlreicher Spurenmetalle wie z. B. Cd, Mo, Re, U, V, Zn und Mn (z. B. Anderson und Fleisher, 1991; Barnes und Cochran, 1991; Colodner et al., 1995; Crusius et al., 1996; Cutter, 1991; Emerson und Huested, 1991; Guieu und Martin, 2002; Haraldson und Westerlund, 1991; Kiratli und Ergin, 1996; Koide et al., 1986a; Lewis und Landing, 1991, 1992; Murray, 1975; Ravizza et al., 1991). Als Quelle für die Spurenmetalle im Sapropel wird der Wasserkörper vermutet (Brumsack, 1989a). Auf der Grundlage dieser und anderer Arbeiten wird im Folgenden eine Modellvorstellung entwickelt, die die Metallanreicherungen im Sediment erklärt. Dazu wird das untersuchte Material zunächst eingehend charakterisiert und datiert. Schließlich werden Überlegungen zum Meerwassereintrag in den vergangenen 7000 Jahren angestellt. Im Zusammenhang mit dem Meerwassereintrag wird auch auf die Zusammensetzung der terrigen-detritischen Fraktion eingegangen. Grundlage für die Modellvorstellung ist eine weitreichende Kenntnis der Ozeanographie des rezenten Schwarzen Meeres (Özsoy und Ünlüata, 1997) und der Verteilung der Spurenmetalle in den Sedimenten und der rezenten Wassersäule. Das bessere Verständnis dieses vergleichsweise jungen Systems ermöglicht schließlich Überlegungen zur Spurenmetallverfügbarkeit in älteren Ablagerungsräumen (Kap. 5 und 6).

4.2 Charakterisierung des Ablagerungsraums

Im Schwarzen Meer ist die Ausbildung anoxischer Bedingungen unterhalb einer Wassertiefe von etwa 150 m auf die ausgeprägte Wasserschichtung von salzarmem Oberflächenwasser, welches von Flusswasser und Niederschlag genährt wird, über salzreicherem Meerwasser, welches über den Bosporus einströmt, zurückzuführen (Fonselius, 1974; Murray et al., 1991). Die derzeit positive Wasserbilanz des Schwarzen Meeres in dem sonst ariden Raum ist auf das weit ausgedehnte, regenreiche Einzugsgebiet der einströmenden Flüsse zurückzuführen. Die Ausbildung des geschichteten Wasserkörpers ist eng an die Klimaentwicklung gekoppelt. Während des letzten Hochglazials vor 18.000 Jahren wurde der Bosporus aufgrund des niedrigen Meeresspiegels der Ozeane nicht mit Meerwasser überflutet. Das Abschmelzen der Gletscher führte zu einem weiteren Süßwassereintrag in das zunächst limnische Schwarze Meer und in die Ozeane. Der hierdurch hervorgerufene Meeresspiegelanstieg der Ozeane führte schließlich zur Flutung des Schwarzen Meeres mit Meerwasser. Maßgeblichen Einfluss auf den Zeitpunkt der Flutung dürfte die Höhe der Schwelle zwischen dem Mittelmeer und dem Schwarzen Meer in dem tektonisch aktiven Raum gehabt haben (Major et al., 2002; Myers et al., 2003). Ob und wann das von Ryan et al. (1997) beschriebene katastrophale Flutungsereignis auftrat, ist unklar (Görür et al., 2001). Wahrscheinlicher erscheint, dass das Schwarze Meer vor dem Zutritt von Meerwasser zunächst vollständig mit Süßwasser gefüllt wurde (Aksu et al., 1999; Kaminski et al., 2002; Major et al., 2002; Myers et al., 2003). Die Mechanismen, die zur Ausbildung des permanent anoxischen Bodenwasserkörpers führten, werden immer noch kontrovers diskutiert (Arthur und Dean, 1998; Brumsack, 1989a; Calvert, 1990; Calvert und Fontugne, 1987; Calvert und Karlin, 1998; Demaison, 1991; Deuser, 1974; Glenn und Arthur, 1985; Hay, 1988; Hay et al., 1991; Izdar und Ergün, 1991; Jones und Gagnon, 1994; Myers et al., 2003).

Die Sedimente des Schwarzen Meeres werden in drei Abschnitte⁸ eingeteilt (Hay, 1988; Ross und Degens, 1974). Die limnischen Sedimente in großen Teufen werden gemeinhin als *Unit* 3 bezeichnet. Vermutlich begann vor ca. 7100 bis 7500 Jahren nach dem Eindringen von Meerwasser die Ablagerung des feingeschichteten Sapropels, der *Unit* 2 (Jones und Gagnon, 1994). Die Ablagerung von Coccolithen tritt zuerst in *Unit* 1 auf und wurde durch den ansteigenden Salzgehalt im Oberflächenwasser hervorgerufen (Bukry, 1970; Hay et al., 1991). Der Übergang von *Unit* 2 zu *Unit* 1 wird auf ca. 1500 bis 3300 Jahre vor heute datiert (Hay et al., 1991; Jones und Gagnon, 1994).

Die besondere Situation der Überschichtung eines limnischen Systems mit Brackwasser führt zur Diffusion von marinen Komponenten in die darunter liegenden limnischen Sedimente. Vor allem das Fe-S-Mn-System wird nachhaltig diagenetisch überprägt, da Fe und Mn in den limnischen Sedimenten infolge anaeroben Abbaus organischen Materials gelöst werden. Fe²⁺- und Mn²⁺-Ionen werden dabei mobilisiert und stehen erneut für Fällungsprozesse zur Verfügung. Die z. T. auftretenden Mn-Anreicherungen in der *Unit* 2 sind daher vermutlich nicht auf oxische Ablagerungsbedingungen (Arthur und Sagemann, 1994; Calvert, 1990;

⁸ In Anlehnung an die anglistische Literatur wird im Folgenden der Begriff *Unit* verwendet.

Calvert und Pedersen, 1993), sondern auf authigene Mineralneubildungen in der Carbonatphase zurückzuführen. Für die Ausfällung von Fe ist das in das schwefelarme Sediment eindringende HS⁻ von Bedeutung. Es wird nicht nur im, sondern auch unter dem Sapropel gebildet (Jørgensen et al., 2001; Neretin et al., 1999). Die anaerobe Oxidation von Methan mit SO_4^{2-} (Boetius et al., 2000; Hoehler et al., 1994; Niewöhner et al., 1998) spielt dabei eine besondere Rolle. Eine ausführliche Diskussion dieser Prozesse in den Sedimenten von Station 6 und 7 (s. u.) findet sich in den Arbeiten von Jørgensen et al. (2004), Lüschen (1998) und Neretin et al. (2004) und wird an dieser Stelle nicht näher diskutiert.

4.3 Untersuchungsmaterial

Das Material der Stationen 6 (43°31'N; 30°13'O) und 7 (43°41'N; 30°08'O) wurde bei der Ausfahrt der "Petr Kottsov" (September, 1997) unter der Leitung von B.B. Jørgensen in einer Wassertiefe von 380 m und 1176 m gewonnen (Abb. 9). Die Profile wurden aus den Oberflächensedimenten der *Multi-Corer* und den darunterliegenden Sedimenten der Schwerelote zusammengesetzt. Die zusammengesetzten Profile umfassen die *Unit* 1, 2 und Teile von *Unit* 3. Sie haben eine Gesamtlänge von 850 cm (Station 6) und 622 cm (Station 7). Der *Multi-Corer* von Station 6 und nahezu das gesamte Profil von Station 7 wurden weitgehend hochauflösend beprobt.

Abb. 9: Geographische Lage der Probennahmeorte für die Sedimentkerne aus dem Schwarzen Meer.

In die Diskussion wurden auch Daten des Sedimentkerns GGC 66 (43°03'N; 34°04'O; 2190 m Tiefe) und der Kerne BLKS9809 und BLKS9810 berücksichtigt (Liebezeit, 1992; Major et al., 2002; Romba, 1996).

4.4 Haupt- und Spurenelementchemismus

4.4.1 Lithostratigraphische Einordnung und Berechnung der Sedimentationsraten

Anhand der C_{org}- und CaCO₃-Profile können die Sedimentlagen in den Kernen von den Stationen 6 und 7 in die verschiedenen *Units* eingeteilt werden (Abb. 10, Tab. 15). Die CaCO₃-Konzentrationen wurden wegen der hervorragenden Korrelationen zwischen mineralischem Kohlenstoff (C_{min}) und Ca (R > 0,99; nicht dargestellt) von den Ca-Konzentrationen ausgehend berechnet. Im Gegensatz zum Kern GGC 66 wurde die typische von Ross und Degens (1974) und Hay (1988) vorgenommene Einteilung um die *Units* 2a und 2b ergänzt, da schon unterhalb des holozänen Sapropels leicht erhöhte C_{org}-Konzentrationen (St. 6: bis zu 1,1 %; St. 7: bis zu 4 %) beobachtet wurden. Die für einen Sapropel typische schwarze Färbung (Kidd et al., 1978) blieb aber zunächst aus.

In *Unit* 2a treten mit bis zu 25 % die höchsten C_{org} -Konzentrationen auf. Die hohen Carbonatgehalte in *Unit* 1 wurden vor allem durch die Überreste von Coccolithophoriden verursacht (Hay et al., 1991; Ross und Degens, 1974). Die Carbonatkonzentrationen an den Stationen 6 und 7 unterhalb des Sapropels sind sehr variabel und ungewöhnlich hoch (bis zu 70 %). Aber auch über andere Standorte am nordwestlichen Schelf wurde von bis zu 80 % CaCO₃ berichtet (Calvert und Karlin, 1998; Major et al., 2002).

Abb. 10: Schematische Lithostratigraphie der Sedimentkerne der Stationen 6 und 7. Die in Unit 3 eingezeichneten Grenzen (nur Station 7) sind in Anlehnung an Major et al. (2002) anhand der Carbonatgehalte und der K/Al-Verhältnisse (vgl. Abb. 15) angelegt worden. Die Datierung in Jahren erfolgte in Anlehnung an die Arbeiten von Jones und Gagnon (1994) und Major et al. (2002). Man beachte die logarithmische Auftragung der C_{org}-Konzentrationen.

Anhand der gut erhaltenen Carbonatrhomboeder (Abb. 11), die in den Sedimenten von Station 7 mittels Rasterelektronenmikroskopie gefunden wurden, konnte nachgewiesen werden, dass der größte Teil der Kristalle kaum transportiert wurde. Die Carbonate werden daher als authigene Mineralisationsprodukte (Calvert und Karlin, 1998), Evaporationsprodukte (Major et al., 2002) oder als Seekreide (Lüschen, 1998) gedeutet. Das Carbonatprofil von Station 7 (1176 m Tiefe) besitzt im Gegensatz zu dem von Station 6 (380 m Tiefe) drei ausgeprägte Maxima. Die unteren beiden Maxima müssen aber als ein Signal aufgefasst werden, welches durch eine Schwerminerallage zerschnitten wird (vgl. Kap. 4.4.3). Major et al. (2002) fanden im Kern BLKS9810 aus ca. 378 m Wassertiefe ebenfalls ein Carbonatprofil mit zwei Maxima. Die Sedimente von Station 6 und der Kern BLKS9809 aus 240 m Wassertiefe (Major et al., 2002) besitzen nur ein CaCO₃-Maximum. Erstaunlicherweise ähneln sich die Carbonatprofile der Kerne aus 380 m Tiefe wenig, obwohl die Lokationen nur ca. 50 km voneinander entfernt sind.

Abb. 11: REM-Aufnahmen der rhomboedrischen Carbonatkristalle in Proben von der Station 7. Links: kantiger Rhomboeder; rechts: verwitterter, abgerundeter Kristall.

Das Untersuchungsmaterial wurde in Anlehnung an die von Major et al. (2002) untersuchten Kerne datiert (Abb. 10). Aus den Daten der Stationen 6 und 7 ließen sich die in Tab. 15 dargestellten Sedimentationsraten berechnen, aus denen später die für die Modellrechnung bedeutsamen Akkumulationsraten abgeleitet wurden. Die berechneten Sedimentationsraten stimmen etwa mit denen von Calvert und Karlin (1998), Hay (1988) und Major et al. (2002) überein.

Tab. 15: Sedimentationsraten in den jeweiligen Sedimentlagen der Stationen 6 und 7.

	Station 6	Station 7	Sedimentationsrate von St. 6 / 7 [mm·a ⁻¹]
Unit 1	0 - 60 cm	0 - 50 cm	0,3 / 0,25
Unit 2a	60 - 130 cm	50 – 145 cm	0,14 / 0,18
Unit 2b	130 – 190 cm	145 – 236 cm	0,21 / 0,32
Unit 3	190 bis > 850 cm	236 bis > 620 cm	k. A. / 0,4 bis 0,7

4.4.2 Sr-Konzentration in der Carbonatphase

Wie eingangs dargestellt wurde, ist bislang nicht geklärt, wann zuerst Meerwasser in das limnische System eindrang (Jones und Gagnon, 1994; Major et al., 2002). Wahrscheinlich trat die Flutung aber vor der Ablagerung der anoxischen Sedimente auf. Das Element Sr, welches vorrangig in die Carbonatphase eingebaut wird und im mittleren Meerwasser mit 8000 ppb deutlich höher konzentriert ist als im Flusswasser (60 ppb), könnte daher möglicherweise als Meerwasserindikator im Sediment dienen. Im Korrelationsdiagramm Sr gegen C_{min} können drei Gruppen ausgemacht werden (Abb. 12). Diese Gruppen können an den Stationen 6 und 7 näherungsweise den Sedimentlagen der verschiedenen *Units* zugeordnet werden. Die Sedimente der *Unit* 2b bilden mit der *Unit* 3 eine gemeinsame Gruppe. Die Ausgleichsgeraden durch die Punkte der Gruppen *Unit* 1 und *Unit* 2a haben eine deutlich größere Steigung als die Gerade durch die darstellenden Punkte der Gruppen *Unit* 2b und *Unit* 3. Im Kern der Station GGC 66 kann der höhere Sr-Gehalt in den *Units* 1 und 2 nicht beobachtet werden.

Abb. 12: Korrelation von Sr gegen C_{min} in den Sedimenten von den Stationen 6, 7 und GGC 66 (\bullet : Unit 1, \blacksquare : Unit 2a, \square : Unit 2b, \bigcirc : Unit 3).

Aus den Diagrammen kann auch abgelesen werden, dass der geogene Hintergrund von Sr ca. 100 ppm beträgt. Unter Berücksichtigung des geogenen Hintergrundes wurden die Sr-Konzentrationen in der Carbonatphase errechnet (Abb. 13). Die berechneten Sr-Konzentrationen nehmen am Übergang von *Unit* 2b zu *Unit* 2a deutlich zu und verharren dann auf etwas geringerem, im Vergleich zu *Unit* 3 erhöhtem Niveau. Da Aragonit durch diadochen Ersatz deutlich mehr Sr aufnehmen kann als Calcit (Lippmann, 1973; Veizer, 1983), könnten die höheren Sr-Gehalte als Hinweis auf erhöhte Aragonit-Gehalte gedeutet werden. Müller und Stoffers (1974) weisen auf eine dünne Aragonitlage an der Basis des Sapropels hin, welche in den Sedimenten von Station 7 dank der hochauflösenden Beprobung auch identifiziert werden kann (vgl. Abb. 13). Da die Sr-Gehalte aber nicht nur an der Sapropelbasis erhöht sind, ist Aragonit wahrscheinlich auch im gesamten anoxischen Sediment angereichert. Diese Aragonitanreicherung ist möglicherweise auf eine Variation in der Ökologie der aragonitbildenden Organismen zurückzuführen. Die Auswirkungen auf die Population der Mikroorganismen wären am rumänischen Schelf wesentlich deutlicher ablesbar als im zentralen Becken (Kern GGC 66). Die Ursache hierfür könnte in der größeren Nähe zum nährstoffreichen Donaudelta liegen. Es erscheint daher unwahrscheinlich, dass die erhöhten Sr-Konzentrationen in *Unit* 2a und *Unit* 1 auf einen erhöhten Meerwassereintrag zurückzuführen sind, da sich dieser auf das gesamte Becken auswirken sollte.

Abb. 13: Berechnete Sr-Konzentrationen der Carbonatphase in den Sedimenten von den Stationen 6, 7 und GGC 66.

4.4.3 Analyse der detritischen Sedimentkomponenten

Anhand eines Dreieckdiagramms (Abb. 14), in dem die relativen Verhältnisse von SiO₂ (stellvertretend für Quarz oder biogenen Opal), Al₂O₃ (stellvertretend für die Tonmineralfraktion) und CaO (stellvertretend für Carbonat) dargestellt sind (Brumsack, 1989a), kann gezeigt werden, dass die Sedimente am rumänischen Schelf eine vielseitigere Mineralogie als im zentralen und östlichen Becken aufweisen. Es findet sich nicht ausschließlich die von Brumsack (1989a) beschriebene einfache Mischung von tonigdetritischem Material und Carbonat. Der größte Teil der darstellenden Punkte von den Stationen 6 und 7 im Dreiecksdiagramm liegt nahe der Verdünnungslinie Tonschiefer-Carbonat. Dennoch sind einige Sedimentlagen durch stärkeren Eintrag von SiO₂ geprägt. Auffällig ist, dass die darstellenden Punkte aus Sedimentlagen der gleichen Unit an den beiden Stationen z.T. in unterschiedlichen Bereichen liegen. So ist der relative SiO₂-Anteil in den Sedimenten der Unit 1 von der Station 7 höher als in denen von der Station 6. Da die Ti- und Zr-Konzentrationen nicht in gleichem Maße zunehmen wie die Si-Konzentrationen (siehe Abb. 15), könnte dieses auf einen erhöhten Anteil an biogenem Opal hindeuten.

Abb. 14: Relative Häufigkeit [%] von SiO₂, Al_2O_3 und CaO in den Sedimenten von den Stationen 6 und 7.

Die Kenntnis der Si/Al-Verhältnisse des Gesamtsedimentes (Abb. 15) und der wichtigsten Tonminerale sowie die mineralogischen Untersuchungen von Major et al. (2002) erlauben eine Abschätzung des SiO₂-Anteils in der detritischen Komponente relativ zum Tongehalt. Das Si/Al-Verhältnis von Tonmineralen ist mit Werten von 0,7 (Illit, Kaolinit und Chlorit) bis 2.08 (Montmorillonit⁹) im Vergleich den im Gesamtsediment ermittelten zu Si/Al-Verhältnissen (3-7) niedrig. Wird davon ausgegangen, dass nur Ton und Quarz Al und Si liefern, so ergibt sich, dass das tonig-detritische Material, je nach Si-Konzentration, zu 40-65 % aus SiO₂ besteht. Das Si-Signal der Tonfraktion wird deshalb durch die wechselnden Quarz- und Opalgehalte überdeckt. Schwankungen im Si/Al-Verhältnis werden entsprechend durch wechselnde SiO₂-Einträge hervorgerufen.

⁹ Montmorillonit ist nach Müller und Stoffers (1974) der häufigste Smektit im Schwarzen Meer.

Abb. 15: Teufenprofile der Element/Al-Verhältnisse von Si, Ti, Zr und K in den Sedimenten von den Stationen 6 und 7.

In den Sedimenten von Station 6 lassen sich keine Anzeichen für eine Störung der Sedimentation finden. Für Station 7 zeigen die plötzlich ansteigenden Element/Al-Verhältnisse von Si, Ti und Zr einige diskrete Turbiditlagen in der Unit 3 (Teufen: 252 cm, 265-285 cm, 314 cm, 400 cm) an. Diese an Schwermineralen angereicherten Lagen, welche gröberes Material erhöhter Dichte enthalten, unterbrechen die kontinuierliche Sedimentation und haben eine besondere Bedeutung für die authigene Mineralneubildung (Lüschen, 1998). Sie fallen häufig mit einem markanten Signal im K/Al-Profil zusammen. Das Profil der K/Al-Verhältnisse ähnelt dem Illit-Anteil der Tonfraktion in den von Major et al. (2002) untersuchten Sedimentkernen. Es erschient daher wahrscheinlich, dass der K-Eintrag zum großen Teil an diese kaliumhaltige Komponente gekoppelt ist.

An dieser Stelle wird auch auf die stetigen Variationen der Si/Al-, Ti/Al- und Zr/Al-Verhältnisse in *Unit* 2b hingewiesen. So steigen unterhalb des Sapropels in der *Unit* 2b die Element/Al-Verhältnisse für Ti, Zr und Si (nur St. 6) langsam an. Der kontinuierlich ansteigende Schwermineralanteil, der durch diese Elemente repräsentiert wird, weist darauf hin, dass sich das Sedimentationsgeschehen damals stetig geändert hat. So könnte beispielsweise durch erhöhte Niederschläge in Europa vermehrt gröberes, klastisches Material mit den anliefernden Flüssen transportiert worden sein. Dies sollte sich auch in einem

stärkeren vertikalen Salinitätsgradienten geäußert haben, was die Belüftung des Tiefenwassers zunehmend eingeschränkt hätte. Eine verringerte Belüftung des Tiefenwassers und die beginnende Ablagerung C_{org}-reicher Sedimente (*Unit* 2b) könnte auf diese Weise erklärt werden. In diesem Zusammenhang soll aber nicht verschwiegen werden, dass die Element/Al-Verhältnisse von Ti und Zr in den Sedimenten von Station 7 nicht streng mit denen von Si korrelieren, was bedeuten könnte, dass die detritisch zugeführte Mineralfraktion nicht konstant zusammengesetzt war.

Eine weiterer Erklärungsansatz besteht in der Annahme, dass die Zirkulation im Becken des Schwarzen Meeres sich dahingehend verändert hat, dass eine vermehrte Resuspension der feinpartikulären Tonfraktion am Ort der Sedimentablagerung ermöglicht wurde (winnowing). Die dichteren Komponenten, die nicht durch die hohen Strömungsgeschwindigkeiten resuspendiert würden, bildeten das zurückbleibende Schwermineralkonzentrat. Dieser Prozess kann aber nicht in den Teufenprofilen der Element/Al-Verhältnisse von Si, Ti, Zr, K und Rb (nicht dargestellt) identifiziert werden, da die hauptsächlich im Ton vorkommenden Elemente K, Rb und Al gemeinsam mit der Tonfraktion verfrachtet würden¹⁰, während Si, Ti und Zr mit dem gröberen Material zurückblieben. Die Si/Al-, Ti/Al- und Zr/Al-Verhältnisse müssten also ansteigen, während die K/Al- oder Rb/Al-Verhältnisse (nicht dargestellt) konstant bleiben sollten (vgl. Abb. 15). Stattdessen können die carbonatfrei berechneten Konzentrationen zur Interpretation herangezogen werden (Abb. 16). Diese Profile zeigen, dass der carbonatfrei berechnete Anteil der Tonfraktion (repräsentiert durch Al und K) zum Top der Unit 2b tatsächlich zurückgeht, während die Si-, Ti- und Zr-Konzentrationen in der carbonatfreien Fraktion konstant bleiben oder sogar leicht ansteigen. Direkt am Übergang von Unit 2b zu Unit 2a gehen die carbonatfrei berechneten Konzentrationen aller terrigen eingetragenen Elemente deutlich zurück. Eine vermehrte Resuspension der Feinfraktion an der Sedimentoberfläche kann daher nicht ausgeschlossen werden.

¹⁰ Kalifeldspäte spielen im westlichen Schwarzen Meer nur eine untergeordnete Rolle (Müller und Stoffers, 1974).

Station 6

Abb. 16: Teufenprofile der Carbonatgehalte und der carbonatfrei berechneten Konzentrationen von Al, Si, Ti, Zr und K an den Stationen 6 und 7.

Die Sedimentkerne von den Stationen 6 und 7 sowie von der Station BLKS9810 (Major et al., 2002) unterscheiden sich trotz ähnlicher Lage und Wassertiefen signifikant voneinander. Eine weiträumig gültige Interpretation wird durch die Störung der homogenen Sedimentation an Station 7 und durch Rutschungen in der *Unit* 3 zusätzlich erschwert. Ein weiterer möglicher Erklärungsansatz für die wechselnde Zusammensetzung der terrigenen-detritischen Komponenten, der aus mineralogischen und isotopengeochemischen Befunden abgeleitet wurde, findet sich bei Major et al. (2002). Hiernach soll das Schwarze Meer mehrere Stadien mit unterschiedlichen Meer- und Flusswassereinträgen durchlaufen haben, bis es schließlich zur Ausbildung anoxischer Bedingungen in der Wassersäule kam. Es kann daher an dieser Stelle nicht im Detail geklärt werden, welcher der diskutierten Prozesse für die markanten Sedimentprofile am nordwestlichen Schelf ursächlich ist.

Die Fazies-Veränderungen zur Zeit des Übertritts in die anoxische Phase sind aber in den wechselnden C_{org}- und Carbonatkonzentrationen am Übergang von *Unit* 2b zu *Unit* 2a, den Veränderungen in der detritischen Fraktion in der *Unit* 2b sowie den ansteigenden Sr-Konzentrationen (möglicherweise Aragonit-Gehalten) der Carbonatphase der *Unit* 2a und *Unit* 1 dokumentiert. Der klimatische und ozeanographische Wechsel drückt sich also in einem Wandel der abgelagerten detritischen Fraktion, der vermehrten Ablagerung organischen Materials und einer veränderten aragonitbildenden Organismen-Gemeinschaft aus. Die veränderten Strömungsverhältnisse und/oder die veränderten Fluss- und Meerwassereinträge bewirkten offensichtlich die Ausbildung einer Wassersäule, in der die Sauerstoffverfügbarkeit stark eingeschränkt war. Diese Prozesse sollten anhand hochaufgelöster, interdiziplinärer Untersuchungen weiter entschlüsselt werden können.

4.4.4 Spurenmetallanreicherungen in den C_{org}-reichen Sedimentlagen

In Abb. 17 und Abb. 18 sind die Anreicherungsgrade bzw. Profile der wichtigsten Spurenelemente in den Sedimenten des Schwarzen Meeres dargestellt (siehe auch Barnes und Cochran, 1991; Brumsack, 1989a; Calvert, 1990; Ravizza et al., 1991). Die höchsten Anreicherungen finden sich meist an der Basis der *Unit* 2a. Im Vergleich zu anderen anoxischen Sedimenten fallen die Anreicherungen in den Sedimenten des Schwarzen Meeres aber gering aus (vgl. Kap. 6).

Abb. 17: Vergleich der Anreicherungsfaktoren (Element/Al_(Probe) ÷ Element/Al_(mittl. Tonschiefer)) in den Sedimenten des Schwarzen Meeres relativ zum mittleren Tonschiefer (Wedepohl, 1971a; Wedepohl, 1991).

Als Quelle für die Spurenmetalle bieten sich zunächst die über- und unterlagernden Sedimente (Diagenese), hydrothermale Quellen, äolischer Eintrag sowie Fluss- und Meerwasser an. Im rezenten Tiefenwasser weisen vor allem die stark im Meerwasser angereicherten Elemente deutlich niedrigere Konzentrationen als in der konservativen Mischung von Fluss- und Meerwasser mit einer Salinität von 22,5‰ auf (vgl. Tab. 17, Spalten 5, 8 und 12). Außerdem konnte Brumsack (1989a) durch eine Überschlagsrechung zeigen, dass die Spurenmetall-anreicherungen im Sediment des Schwarzen Meeres hauptsächlich mit den Konzentrationen des dem Tiefenwasser zugeführten Wassers korreliert sind. Es wird daher angenommen, dass der das Sediment überlagernde Wasserkörper als syngenetische und limitierende Quelle für die authigene Spurenelementakkumulation in den anoxischen Sedimenten dient (Brumsack, 1989a; Colodner et al., 1995; Emerson und Huested, 1991). Die Metallanreicherungen der Mittelmeersapropele werden analog erklärt (Nijenhuis et al., 1999).

Abb. 18: Element/Al-Verhältnisse der Elemente Mo, Re, V, U, Cd und Sb in den Sedimentkernen von den Stationen 6 (oben) und 7 (unten).

4.5 Rekonstruktion des Meerwassereintrags ins Schwarze Meer

4.5.1 Modell zur Berechnung der Stoffkonzentrationen im rezenten Wasserkörper

Im Folgenden wird der Frage nachgegangen, ob die Spurenmetallkonzentrationen im rezenten Tiefen- und Oberflächenwasser anhand der Spurenmetallanreicherungen im Sediment berechnet werden können. Nur wenn eine realistische Vorhersage für die Meerwasserkonzentrationen gelänge, könnte davon ausgegangenen werden, dass die Stoffflüsse im und ins Schwarze Meer hinreichend gut beschrieben werden und die wesentlichen Quellen der Spurenmetalle tatsächlich erfasst sind.

Zunächst wird das einfache Modell von Brumsack (1989a) auf seine Eignung geprüft. Man könnte annehmen, dass dem Tiefenwasser zugeführte und an Metallen verarmende Wasser würde sukzessiv das Tiefenwasser austauschen. Es sollte sich deshalb durch Differenzbildung die rezente Konzentration im Tiefenwasser errechnen lassen können (Tab. 17, Spalte 8, 9 und 11)¹¹. Die von Brumsack durchgeführte Rechnung wird daher unter Verwendung jüngerer ozeanografischer Daten (Özsoy und Ünlüata, 1997) und der Analysenergebnisse für die Sedimente von den Stationen 6 und 7 wiederholt. Ein Vergleich der so errechneten Konzentrationen mit den tatsächlichen Konzentrationen im Tiefenwasser offenbart aber große Fehler (Tab. 17, Spalte 11 und 12). Einige berechnete Konzentrationen fallen sogar negativ aus. Die Fehlerquellen dieses einfachen Modells sind vor allem in der deterministischen Elementakkumulationsrate und Zufuhr zum Tiefenwasser zu suchen.

Es wurde daher ein komplexeres, iteratives Modell zur Beschreibung der Stoffflüsse im Schwarzen Meer entwickelt, welches die Zirkulation der Wassermassen, die zeitlichen Veränderungen der Stoffkonzentration im Wasserkörper und die davon abhängige Elementakkumulationsrate berücksichtigt (Abb. 19). Der Stofftransport findet dabei hauptsächlich über gelöste Komponenten statt, die sich bei der Mischung konservativ verhalten. Die iterative Modellrechnung lieferte unabhängig vom Ausgangszustand nach 1000 bis 4000 a einen stabilen Endzustand, der mit den jeweiligen rezenten Stoffkonzentrationen im Tiefen- und Oberflächenwasser verglichen wurde.

In dem Modell wurde davon ausgegangen, dass sich der geschichtete Wasserkörper bereits vor 7500 a etabliert hat. Über die damaligen Salzgehalte des Wasserkörpers gibt es aber nur wenig Klarheit. Die Modellrechnungen von Boudreau und LeBlond (1989) sowie von Murray et al. (1991) führten zu dem Schluss, dass der heute zu beobachtende Einstrom von

¹¹ Details zur Rechnung sind der Arbeit von Brumsack (1989a) zu entnehmen.

Meerwasser relativ schnell zur Versalzung des limnischen Systems und zum Wachstum der Choccolithophoridenart *E. huxleyi* im Oberflächenwasser hätte führen müssen. Dennoch finden sich die Schalen von *E. huxleyi* erst seit ca. 2000 a in den Sedimenten der *Unit* 1 (Hay et al., 1991). Über die Salinitätsentwicklung des Schwarzen Meeres und den realistischen Ausgangszustand des Modells kann daher zunächst nur spekuliert werden. Es wurde hier von den in *Tab. 16* dargestellten initialen Salinitäten ausgegangen. Die sich ergebenden Kurven für die Konzentrationsänderungen im Wasserkörper (Kap. 4.5.2) können aber nur begrenzt quantitativ interpretiert werden, da die Konzentrationskurven nur dann den realen zeitlichen Verlauf wiedergeben können, wenn der Ausgangszustand hinreichend gut definiert ist und die in das Modell eingehenden konstanten Parameter über den betrachteten Zeitraum als wahrscheinlich anzusehen sind.

Abb. 19: Drei-Boxen-Modell zur Beschreibung der Stoffflüsse im Schwarzen Meer. Zur Erläuterung der Pfeile siehe Text und Tab. 16.

Grundlage für das vorgestellte Drei-Boxen-Modell waren die Arbeiten von Özsoy und Ünlüata (1997) und die Zwei-Boxen-Modelle von Fonselius (1974) und Colodner et al. (1995). Die komplexe Ozeanographie des Schwarzen Meeres wurde auf das Oberflächenwasser, das Tiefenwasser und eine Mischungszone hinter dem Bosporus reduziert. Damit wurde der Tatsache Rechnung getragen, dass das über den Bosporus eintretende Meerwasser nicht direkt in das Tiefenwasser gelangt, sondern noch im Schelfbereich mit der sich zwischen 50 m und 75 m Tiefe befindenden kalten Wasserschicht weitgehend vermischt wird (Özsoy und Ünlüata, 1997). Ein großer Teil dieser Schicht wird aber durch jährliche Umwälzung dem Oberflächenwasser zugeführt. Dieser Prozess wurde in dem grauen durchgezogenen Pfeil berücksichtigt (V_{O2}). Das restliche Wasser der Es sind:

Mischungszone wurde dem Tiefenwasser zugeführt. Außerdem wurde zunächst vereinfachend postuliert, dass die von Özsoy und Ünlüata (1997) beschriebenen Wasserströme sowie die Konzentrationen der Stoffe im Meer- und Flusswasser (siehe Tab. 17, Spalte 6 bis 8) in den vergangenen 7500 a konstant waren.

Tab. 16: Wichtige Parameter zur Berechnung der Stoffflüsse im Schwarzen Meer.

K: gelöste Konzentration des Stoffes im Wasser A: jährliche authigene Akkumulationsrate des Stoffes über die gesamte Sapropeloberfläche ¹² P: von den migrierenden Wassermassen unabhängiger partikulären Stofftransport durch die Redoxkline K: Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberfläche Indices: FW: Flusswasser MW: Meerwasser MW: Meerwasser M: Mischungszone T: Zufuhr von Tiefenwasser zum Oberflächenwasser OD: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone OE: Rückfluss von der Mischungszone in das Oberflächenwasser Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V ₁₀ : Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone OF: Austausch über die Bosporus OF: Austausch über die Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V ₁₀ : Zufuhr von Oberflächenwasser ziber den Bosporus (600 km ³ a ⁻¹) V ₁₀ : Zufuhr von Oberflächenwasser in der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V ₁₀ : Zufuhr von Oberflächenwasser uber den Bosporus (600 km ³ a ⁻¹) V ₁₀ : Zufuhr von Oberflächenwasser uber den Bosporus (600 km ³ a ⁻¹) V ₁₀ : Zufuhr von Oberflächenwasser uber den Bosporus (600 km ³ a ⁻¹) V ₁₀ : Zufuhr von Oberflächenwasser aut der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V ₁₀ : Zufuhr von Oberflächenwassers V ₁₀ : Zufuhr von Oberflächenwassers V ₁₀ : Zufuhr von der Mischungszone an die Oberflächenwasser V ₁₀ : Austausch des Tiefenwassers V ₁₁ : Austausch des Tiefenwassers V ₁₁ : Austausch des Tiefenwassers V ₁₁ : (V ₁₀ + V ₁₀₀) (1 - x); im Fall x = 0 ist V ₁₇ = 1160 km ³ a ⁻¹] V ₁₁ : Austausch des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K ₁₀₀₀ : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K ₁₀₀₀₀ : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 6 und 7) K ₁₀₀₀₀₀ : K ₁₀₀₀ : (J ₁₀₀₀₀) (J ₁₀₀₀₀₀₀₀) (J ₁₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀	V:	Volumen der transportierten Wassermasse [km ³ ·a ⁻¹]
A: jährliche authigene Akkumulationsrate des Stoffes über die gesante Sapropeloherfläche ¹² P: von den migrierenden Wassermassen unabhängiger partikulärer Stofftransport durch die Redoxkline K: Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberfläche W: Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberflächen Mischungszone T: Zufuhr von Tiefenwasser zum oberflächenwasser OW: Oberflächenwasser zum oberflächenwasser Rickfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberflächen Wis: Meerwasser W: Meerwasser M: Mischlungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V _{MW} : Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V _{M2} : Zufuhr von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V _{M3} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V _{M4} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V _{M2} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V _{M2} : Zufuhr von Oberflächenwasser aus der Mischungszone zun Oberflächenwasser V _{G2} = V _{G1} + V _{MV} · V _f oder V _{G2} = V _{G1} + V _{MV} · V ₁ : = V ₁₂ + V _T ; $0 \le x \le 1$ (beim 1, 2. und 4. Fall ist $x = 0$, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V _T : Austausch des Tiefenwassers V _T = (V ₀ + V _{MW}) · (1 - x); im Fall $x = 0$ ist V _T = 1160 km ³ ·a ⁻¹ V _{G2} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) (300 km ³	K:	gelöste Konzentration des Stoffes im Wasser
P: von den migrierenden Wassermassen unabhängiger partikulärer Stofftranspord turch die Redoxkline K: Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberfläche Faktor zur Festlegung des anteiligen abwärtsgerichteten partikulären Transports durch die Redoxkline Indices: FW: Flusswasser MW: Meerwasser OW: Oberflächenwasser MM: Mischungszone T: Zufuhr von Tiefenwasser zum Oberflächenwasser OE: Rückfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V _{MW} : Meerwassereintrag über den Bosporus (300 km ³ a ⁻¹) V _{MW} : Meerwassereintrag über den Bosporus (300 km ³ a ⁻¹) V _{MW} : Meerwassereintrag über den Bosporus (300 km ³ a ⁻¹) V _{MW} : Austritt von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V _{Q2} : Zufuhr von Oberflächenwasser aund Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V _{Q2} : Zufuhr von Oberflächenwasser aund Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V _{Q2} : Zufuhr von Oberflächenwasser aund Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V _{Q2} : Zufuhr von Oberflächenwasser aund Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V _{Q2} : Zufuhr von Oberflächenwasser aund Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V _{Q2} : Zufuhr von Oberflächenwasser aund Meerwasser aut Meerwasser V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - V _T oder V _{Q2} = V _{Q1} + V _{MW} - (1 - x); in Fall x = 0 ist V _T = 1160 km ³ a ⁻¹ V _T = (V _Q + V _{MW}) · (1 - x); in Fall x = 0 ist V _T = 1160 km ³ a ⁻¹ K _{WW} gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{WW} gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 6 und 7)	A:	jährliche authigene Akkumulationsrate des Stoffes über die gesamte Sapropeloberfläche ¹²
 Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberfläche Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberfläche Faktor zur Festlegung des anteiligen abwärtsgerichteten partikulären Transports durch die Redoxkline Indices: Flusswasser Mischungszone Zufuhr von Tiefenwasser zum Oberflächenwasser Rückfluss von der Mischungszone in das Oberflächenwasser in der Mischungszone Rückfluss von der Mischungszone in das Oberflächenwasser Abfluss über den Bosporus Abfluss über den Bosporus Austausch über die Wasseroberfläche Konstanten: V_{NW}: Flusswassereintrag über den Bosporus (300 km³·a⁻¹) V₂₁: Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km³·a⁻¹) V₂₂: Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km³·a⁻¹) V₂₂: Zufuhr von Meerwasser aus der Mischungszone and ie Oberflächenwasser V₀₂ = V₀·+ V_{MW} - Υ₁ oder V₀₂ = V₀·+ V_{MW} - Y₁ oder V₀₂ = V₀·+ V_{MW} - Y₁ im Fall x = 0 ist V₁ = 1160 km³·a⁻¹ V₀₄: Netto-Wasserveltust über die Oberfläche durch Verdampfung (350 km³·a⁻¹) und Niederschlag (300 km³·a⁻¹) V₀₅: K₀₄ = 0 (der Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K₀₅: K₀₅ = 0 (der Stoffs im Stoffs im Seitmeru (nur in 1. Fall konstant) jährliche Akkumulationsrate des Stoffs im Seitmen (nur in 1. Fall konstant) jährlic	P:	von den migrierenden Wassermassen unabhängiger partikulärer Stofftransport durch die Redoxkline
y: Faktor zur Festlegung des anteiligen abwärtsgerichteten partikulären Transports durch die Redoxkline Indices: FW: Flusswasser WW: Meerwasser WW: Meerwasser CD: Zufuhr von Tiefenwasser zum Oberflächenwasser DI: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone OZ: Rickfluss von der Mischungszone in das Oberflächenwasser Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V ₄ w: Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V ₇ w: Flusswassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V ₈ : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V ₆ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V ₆ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V ₆ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V ₆ : Zufuhr von Oberflächenwasser auf Mischungszone zum Oberflächenwasser V ₆ : V ₆ : V ₆ : V ₆ , W ₆ , V ₆ : V ₆ , W ₆ : V ₆ , V ₇ : 0 ≤ x ≤ 1 (beim 1., 2. und 4. Fall ist x = 0, es findet kein Ricktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V ₇ : Austausch des Tiefenwassers V ₆ : (V ₆ + V _{MW})·(1 - x); im Fall x = 0 ist V ₇ = 1160 km ³ ·a ⁻¹ V ₆ : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ^{3·a⁻¹}) K ₆ : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K ₇ : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K ₆ : K ₆ : e^{-0} (der Stoffmaustausch über die Wasseroberfläche wird vernachläsisjt) A: jährliche Akkumulationsrate des Stoffs im Sediment (nur im 1. Fall konstant) : jährliche rarikulärer Stoffmansport durch die Redoxkline P = K ₆ w. V ₆ w · y wobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stoffransport über die Redoxkline wird vernachlässigt, im 4. u	x:	Faktor zur Festlegung des anteiligen Rückflusses von gemischtem Wasser zur Oberfläche
Indices: FW: Flusswasser WW: Meerwasser WW: Meerwasser WW: Mischungszone F: Zufuhr von Tiefenwasser zum Oberflächenwasser OI: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone O2: Rückfluss von der Mischungszone in das Oberflächenwasser Abfluss über den Bosporus OBER OF: Austausch über die Wasseroberfläche Konstanten: Vyw: Vyw: Flusswassereintrag (350 km ³ a ⁻¹) Vyw: Flusswassereintrag (350 km ³ a ⁻¹) Vyw: Flusswassereintrag (350 km ³ a ⁻¹) Vyw: Flusswasser aud er Mischungszone tum Oberflächenwasser Vog: Zufuhr von Oberflächenwasser iber den Bosporus (600 km ³ a ⁻¹) Vog: Zufuhr von Oberflächenwasser aud er Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) Vog: Zufuhr von ofterwasser aud er Mischungszone aum Oberflächenwasser Vog: Vu + V _M voder Vog = V ₁ + V _{MW} - V ₁ oder Vog: Vu + V _{MW} voder Vog + V _{MW} + V ₁ oder Vog: Vu + V _{MW} + V ₁ oder Vu = (Vo + V _{MW}) + (1 - x); im Fall x = 0 ist V _T = 1160 km ³ a ⁻¹ <	y:	Faktor zur Festlegung des anteiligen abwärtsgerichteten partikulären Transports durch die Redoxkline
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Indices	::
MW: Meerwasser OW: Oberflächenwasser M: Mischungszone T: Zufuhr von Tiefenwasser zum Oberflächenwasser OI: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone O2: Rückfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V _{MW} : Meerwassereintrag über den Bosporus (300 km ³ a ⁻¹) V _{FW} : Flusswassereintrag über den Bosporus (300 km ³ a ⁻¹) V _{FW} : Flusswassereintrag (350 km ³ a ⁻¹) V ₆₁ : Zufuhr von Oberflächenwasser über den Bosporus (600 km ³ a ⁻¹) V ₆₂ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V ₆₀ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V ₆₀ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ a ⁻¹) V ₆₀ : Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser V ₆₂ = V ₆₁ + V _{MW} - V ₇ oder V ₆₂ = V ₆₁ + V _{MW} - V ₇ oder V ₆₂ = V ₆₁ + V _{MW} - V ₇ oder V ₆₂ = V ₆₁ + V _{MW} - V ₇ oder V ₆₂ = V ₆₁ + V _{MW} - V ₁ oder W ₇ : Austausch des Tiefenwassers V ₇ = (V ₆ + V _{MW}) · (1 - x); im Fall x = 0 ist V ₇ = 1160 km ³ a ⁻¹ V ₆₇ : K ₆₇ = 0 (der Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{5W} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 6 und 7) K ₆₇ : K ₆₇ = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachläsigt) A: jährlicher partikulärer Stofftransport durch die Redoxkline P = K ₆₀ · V ₆₀ · · y wobei gilt: 0 ≤ y ≤ 1 (in 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachläsigt, im 4. und 5. Fall wird y empirisch gewählt) k: $k = authigene Elementakkumulation pro Jahr auf der SapropelflächeMinteiwen tuatt KTweeneen · VTw ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)$	FW:	Flusswasser
 OW: Oberflächenwasser Mischungszone Zufuhr von Tiefenwasser zum oberflächenwasser OI: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone Rückfluss von der Mischungszone in das Oberflächenwasser Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V_M:: Meerwassereintrag über den Bosporus (300 km³·a⁻¹) V_F: Flusswassereintrag über den Bosporus (300 km³·a⁻¹) V_K: Meerwassereintrag (350 km³·a⁻¹) V_A: Austritt von Oberflächenwasser über den Bosporus (600 km³·a⁻¹) V₀: Zufuhr von Oberflächenwasser über den Bosporus (600 km³·a⁻¹) V₀: Zufuhr von Oberflächenwasser uber den Bosporus (600 km³·a⁻¹) V₀: Zufuhr von Oberflächenwasser uber den Bosporus (600 km³·a⁻¹) V₀: Zufuhr von Oberflächenwasser uber den Bosporus (100 km³·a⁻¹) V₀: Zufuhr von Oberflächenwasser us der Mischungszone zum Oberflächenwasser V₀: Zufuhr von Meerwasser aus der Mischungszone and ie Oberfläches tatt, im 3. und 5. Fall wird x empirisch gewäht) V₁: Austausch des Tiefenwassers V₁ = (V₀ + V_Mw) · (1 - x); im Fall x = 0 ist V_T = 1160 km³·a⁻¹ V₀: Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km³·a⁻¹) und Niederschlag (300 km³·a⁻¹) V₀: K₀w. gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_Ww: gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 5 und 7) K₀w. ₀ = 0 (der Stoffaustausch über die Uberfläche wird vermachläsigt) A: jährlicher partikuläre Stofftransport durch die Redoxkline P = K₀w. · V₀w. · gwobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline P = K₀w. · V₀w. · gwobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxk	MW:	Meerwasser
M: Mischungszone T: Zufuhr von Tiefenwasser zum Oberflächenwasser OI: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone O2: Rückfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V _{MW} : Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V _{FW} : Flusswassereintrag (350 km ³ ·a ⁻¹) V _K : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V _A : Austritt von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V _{O1} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V _{O2} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V _{O2} : Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser V _{O2} = V _{O1} + V _{MW} - V _T oder V _{O2} = V _{O1} + V _{MW} - V _T oder V _{O2} = V _T · x wobei gilt: x = V _{O2} + V _T ; $0 \le x \le 1$ (beim 1., 2. und 4. Fall ist x = 0, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V _T : Austausch des Tiefenwasser V _T = (V _O + V _{MW}) · (1 - x); im Fall x = 0 ist V _T = 1160 km ^{3·a⁻¹} V _{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ^{3·a⁻¹}) und Niederschlag (300 km ^{3·a⁻¹}) K _{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : jährliche Akkumulationsrate des Stoffe im Sediment (nur in 1. Fall konstant) Pi jährlicher partikulärer Stoffransport durch die Redoxkline P = K _{OW} · V _{OW} · y wobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k: $k = authigene Elementakkumulation pro Jahr auf der Sapropelf$	OW:	Oberflächenwasser
Γ: Zufuhr von Tiefenwasser zum Oberflächenwasser O1: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone O2: Rückfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V _{MW} : V _{MW} : Heerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V _N : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V _{O1} : Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser V _{O2} : Zufuhr von deerwasser aus der Mischungszone aum Oberflächenwasser V _{O2} : Zufuhr von deerwasser aus der Mischungszone an die Oberflächenwasser V _{O2} : Zufuhr von deerwasser aus der Mischungszone an die Oberflächenwasser V _{O2} : Zufuhr von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V _T : Austausch des Tiefenwassers V _T : Austausch des Tiefenwassers V _T : Rücktransport von der Mischungszone an die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ^{3·a⁻¹}) V _{O5} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ^{3·a⁻¹}) und Niederschlag (300 km ^{3·a⁻¹}) V _{G7} : Netto-Wasserverlust üb	M:	Mischungszone
01: Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone 02: Rückfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V_{MW} : Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V_{WW} : Flusswassereintrag (350 km ³ ·a ⁻¹) V_{A} : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V_{A} : Austritt von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} : Zufuhr von Meerwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} : Zufuhr von Meerwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) $V_{O2} = V_{O1} + V_{MW} - V_{T}$ oder $V_{O2} = V_{O1} + V_{MW} - V_{T}$ oder $V_{O2} = V_{T} + x$ wobei gilt: $x = V_{O2} + V_{T}$; $0 \le x \le 1$ (beim 1., 2. und 4. Fall ist $x = 0$, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V_{T} : Austausch des Tiefenwassers $V_{T} = (V_{O} + V_{MW}) \cdot (1 - x)$; im Fall $x = 0$ ist $V_{T} = 1160$ km ³ ·a ⁻¹ V_{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ^{3·a⁻¹}) und Niederschlag (300 km ^{3·a⁻¹}) K_{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_{OF} : $K_{OF} = 0$ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffs im Sediment (nur in 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) $k_{TWeexent} \cdot V_{TW}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	Т:	Zufuhr von Tiefenwasser zum Oberflächenwasser
02: Rückfluss von der Mischungszone in das Oberflächenwasser A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V_{MW} : Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V_{FW} : Flusswassereintrag (350 km ³ ·a ⁻¹) V_{W} : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V_{O1} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} : Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser $V_{O2} = V_{O1} + V_{MW} - V_T$ oder $V_{O2} = V_T + x$ wobei gilt: $x = V_{O2} + V_T$; $0 \le x \le 1$ (beim 1., 2. und 4. Fall ist $x = 0$, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V_T : Austausch des Tiefenwassers $V_T = (V_O + V_{MW}) \cdot (1 - x)$; im Fall $x = 0$ ist $V_T = 1160$ km ³ ·a ⁻¹ V_OF : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) K_{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K_{OF} : $K_{OF} = 0$ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k : $k = \frac{authigene Elementakkumulation pro Jahr auf der SapropelflächeMintelwett Unit1}{K_{TW(recent)}} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	01:	Zufuhr von Oberflächenwasser zum eindringenden Meerwasser in der Mischungszone
A: Abfluss über den Bosporus OF: Austausch über die Wasseroberfläche Konstanten: V_{MW} : Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V_{FW} : Flusswassereintrag (350 km ³ ·a ⁻¹) V_{A} : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V_{O1} : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} : Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser $V_{O2} = V_{O1} + V_{MW} - V_{T}$ oder $V_{O2} = V_{O1} + V_{MW} - V_{T}$ oder $V_{O2} = V_{T} \cdot x$ wobei gilt: $x = V_{O2} + V_{T}$; $0 \le x \le 1$ (beim 1., 2. und 4. Fall ist $x = 0$, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V_{T} : Austausch des Tiefenwassers $V_{T} = (V_{O} + V_{MW}) \cdot (1 - x)$; im Fall $x = 0$ ist $V_{T} = 1160$ km ³ ·a ⁻¹ V_{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) K_{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K_{OF} : $K_{OF} = 0$ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffs im Sediment (nur in 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) $k: \qquad k = \frac{authigene Elementakkumulation pro Jahr auf der SapropelflächeMintetwert Umit}{K_{Tw(texent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	02:	Rückfluss von der Mischungszone in das Oberflächenwasser
$ \text{OF: Austausch über die Wasseroberfläche } \\ \text{Konstanten: } \\ $	A:	Abfluss über den Bosporus
Konstanten: V_{MW} :Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹) V_{FW} :Flusswassereintrag (350 km ³ ·a ⁻¹) V_A :Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V_0 :Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} :Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V_{O2} :Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser $V_{O2} = V_0 + V_{MW} - V_T$ oder $V_{O2} = V_1 + V_{MW} - V_T$ oder $V_{O2} = V_1 + x$ wobei gilt: $x = V_{O2} \neq V_T$; $0 \le x \le 1$ (beim 1., 2. und 4. Fall ist $x = 0$, es findet kein gewählt) V_T :Austausch des Tiefenwassers $V_T = (V_0 + V_{MW}) \cdot (1 - x)$; im Fall $x = 0$ ist $V_T = 1160$ km ³ ·a ⁻¹ V_{OF} :Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) V_{OF} :Retto-Wasserverlust über die Wasseroferfläche tab. 17, Spalte 5) K_{FW} :gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 6 und 7) $K_{OF} = 0$ (der Stoffaustausch über die Wasseroferfläche wird vernachlässigt)A:jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)P:jährliche Xkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)eight icher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) </td <td>OF:</td> <td>Austausch über die Wasseroberfläche</td>	OF:	Austausch über die Wasseroberfläche
$V_{MW}: \text{ Meerwassereintrag über den Bosporus (300 km3·a-1)} \\ V_{FW}: Flusswassereintrag (350 km3·a-1) \\ V_{A}: \text{ Austritt von Oberflächenwasser über den Bosporus (600 km3·a-1)} \\ V_{O1}: Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km3·a-1) \\ V_{O2}: Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser V_{02} = V_{01} + V_{MW} - V_{T} oder V_{02} = V_{01} + V_{MW} - V_{T} oder V_{02} = V_{T} \cdot x wobei gilt: x = V_{02} + V_{T}; 0 \le x \le 1 (beim 1., 2. und 4. Fall ist x = 0, es findet kein gewählt)V_{T}: \text{ Austausch des Tiefenwassers } V_{T} = 0 ist V_{T} = 1160 \text{ km}^{3} \cdot a^{-1}V_{07} = (V_{0} + V_{MW}) \cdot (1 - x); im Fall x = 0 ist V_{T} = 1160 \text{ km}^{3} \cdot a^{-1}V_{07}: \text{ Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km3·a-1) und Niederschlag (300 km3·a-1) (300 \text{ km}^{3}·a^{-1})K_{MW}: gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)K_{FW}: gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)K_{OF}: K_{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)A: jährliche Akkumulationsrate des Stoffes in Sediment (nur im 1. Fall konstant)P:$ jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) $k: k = \frac{\text{authigene Elementakkumulation pro Jahr auf der SapropelflächeMittelwer Unit1}{K_{TW(recent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	Konsta	inten:
V _{FW} : Flusswassereintrag (350 km ³ ·a ⁻¹) V _A : Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹) V ₀₁ : Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹) V ₀₂ : Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser V ₀₂ = V ₀₁ + V _{MW} − V _T oder V ₀₂ = V ₀₁ + V _{MW} − V _T oder V ₀₂ = V ₁ · x wobei gilt: x = V ₀₂ + V _T ; 0 ≤ x ≤ 1 (beim 1., 2. und 4. Fall ist x = 0, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V _T : Austausch des Tiefenwassers V _T = (V ₀ + V _{MW}) · (1 - x); im Fall x = 0 ist V _T = 1160 km ³ ·a ⁻¹ V _{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) K _{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K _{OF} : K _{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffs im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline P = K _{OW} · V _{OW} · y wobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5.	V _{MW} :	Meerwassereintrag über den Bosporus (300 km ³ ·a ⁻¹)
V _A :Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹)V ₀₁ :Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹)V ₀₂ :Zufuhr von Meerwasser aus der Mischungszone zum OberflächenwasserV ₀₂ = V ₀₁ + V _{MW} - V _T oderV ₀₂ = V ₁ · x wobei gilt: x = V ₀₂ + V _T ; 0 ≤ x ≤ 1 (beim 1., 2. und 4. Fall ist x = 0, es findet keinRücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirischgewählt)V _T :Austausch des TiefenwassersV _T = (V ₀ + V _{MW}) · (1 - x); im Fall x = 0 ist V _T = 1160 km ³ ·a ⁻¹ VOF:Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag(300 km ³ ·a ⁻¹)KMW:gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)K _{FW} :gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)K _{OF} :K _{OF} :Q ₀ = V _{0W} · y wobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über dieRedoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)k:k:k=authigene Elementakkumulation pro Jahr auf der Sapropelfläche.K:k=authigene Elementakkumulation pro Jahr auf der Sapropelfläche.Mittigene Elementakkumulation pro Jahr auf der Sapropelflä	V _{FW} :	Flusswassereintrag (350 km ³ ·a ⁻¹)
Vol:Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km³·a ⁻¹)Vo2:Zufuhr von Meerwasser aus der Mischungszone zum OberflächenwasserVo2:Vo1 + V _{MW} - V _T oderVo2 = V _T · x wobei gilt: x = Vo2 + V _T ; 0 ≤ x ≤ 1 (beim 1., 2. und 4. Fall ist x = 0, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt)V _T :Austausch des Tiefenwassers V _T = (V ₀ + V _{MW}) · (1 - x); im Fall x = 0 ist V _T = 1160 km³·a ⁻¹ VO6:Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km³·a ⁻¹) und Niederschlag (300 km³·a ⁻¹)K _{MW} :gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) gkrw:K _{FW} :gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)K _{OF} :K _{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)A:jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)P:jährlicher partikulärer Stofftransport durch die Redoxkline P = K _{OW} · V _{OW} · y wobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)k:k=k:k=k:k=uthigene Elementakkumulation pro Jahr auf der Sapropelfläche _{Mittelwert Unit1} K _{TW(recent)} · V _{TW} ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	V _A :	Austritt von Oberflächenwasser über den Bosporus (600 km ³ ·a ⁻¹)
$V_{02}: Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser V_{02} = V_{01} + V_{MW} - V_{T} oder V_{02} = V_{T} \cdot x wobei gilt: x = V_{02} ÷ V_{T}; 0 ≤ x ≤ 1 (beim 1., 2. und 4. Fall ist x = 0, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) VT: Austausch des Tiefenwassers V_{T} = (V_{0} + V_{MW}) \cdot (1 - x); \text{ im Fall } x = 0 \text{ ist } V_{T} = 1160 \text{ km}^{3} \cdot a^{-1} V_{0F}: \text{ Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km^{3} \cdot a^{-1}) und Niederschlag (300 km^{3} \cdot a^{-1}) K_{MW}: gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_{FW}: gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K_{OF}: K_{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline P = K_{OW} \cdot V_{OW} \cdot y wobei gilt: 0 ≤ y ≤ 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k: k= authigene Elementakkumulation pro Jahr auf der SapropelflächeMinelwert Unit1 KTW(rezent) · VTW ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)$	V ₀₁ :	Zufuhr von Oberflächenwasser und Meerwasser zu der Mischungszone hinterm Bosporus (860 km ³ ·a ⁻¹)
$V_{02} = V_{01} + V_{MW} - V_{T} \text{ oder}$ $V_{02} = V_{T} \cdot x \text{ wobei gilt: } x = V_{02} \div V_{T}; \ 0 \le x \le 1 \text{ (beim 1., 2. und 4. Fall ist } x = 0, \text{ es findet kein}$ Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) $V_{T}: \text{ Austausch des Tiefenwassers}$ $V_{T} = (V_{0} + V_{MW}) \cdot (1 - x); \text{ im Fall } x = 0 \text{ ist } V_{T} = 1160 \text{ km}^{3} \cdot a^{-1}$ $V_{0F}: \text{ Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 \text{ km}^{3} \cdot a^{-1}) \text{ und Niederschlag}}$ $(300 \text{ km}^{3} \cdot a^{-1})$ $K_{MW}: \text{ gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)}$ $K_{FW}: \text{ gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)}$ $K_{OF}: K_{OF} = 0 \text{ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)}$ A: jährliche Akkumulationsrate des Stoffs im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y \text{ wobei gilt: } 0 \le y \le 1 \text{ (im 1. bis 3. Fall ist } y = 0, \text{ der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)$ $k: \qquad k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{Mittelwert Unit!}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	V ₀₂ :	Zufuhr von Meerwasser aus der Mischungszone zum Oberflächenwasser
$V_{02} = V_T \cdot x \text{ wobei gilt: } x = V_{02} + V_T; \ 0 \le x \le 1 \text{ (beim 1., 2. und 4. Fall ist x = 0, es findet kein Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V_T: Austausch des Tiefenwassers V_T = (V_0 + V_{MW}) \cdot (1 - x); \text{ im Fall } x = 0 \text{ ist } V_T = 1160 \text{ km}^3 \cdot a^{-1}V_OF: Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km3 \cdot a^{-1}) und Niederschlag (300 km3 \cdot a^{-1}) und Niederschlag (300 km3 \cdot a^{-1})$ K _{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K _{OF} : K _{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{Mittelwert Unit1}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		$V_{O2} = V_{O1} + V_{MW} - V_{T} \text{ oder}$
Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch gewählt) V _T : Austausch des Tiefenwassers V _T = (V _O + V _{MW}) · (1 - x); im Fall x = 0 ist V _T = 1160 km ³ ·a ⁻¹ V _{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) K _{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K _{OF} : K _{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffs im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline P = K _{OW} · V _{OW} · y wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der SapropelflächeMittelwert Unit1}{K_{TW(rezent)} · V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		$V_{02} = V_T \cdot x$ wobei gilt: $x = V_{02} \div V_T$; $0 \le x \le 1$ (beim 1., 2. und 4. Fall ist $x = 0$, es findet kein
gewählt) V_T : Austausch des Tiefenwassers $V_T = (V_0 + V_{MW}) \cdot (1 - x)$; im Fall $x = 0$ ist $V_T = 1160 \text{ km}^3 \cdot a^{-1}$ V_{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ \cdot a^{-1}) und Niederschlag (300 km ³ \cdot a^{-1}) K_{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K_{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k : $k = \frac{authigene Elementakkumulation pro Jahr auf der Sapropelfläche_{Mittelwert Unitl}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		Rücktransport von der Mischungszone an die Oberfläche statt, im 3. und 5. Fall wird x empirisch
V _T : Austauch des Tiefenwassers V _T = (V ₀ + V _{MW}) · (1 - x); im Fall x = 0 ist V _T = 1160 km ³ ·a ⁻¹ V _{OF} : Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag (300 km ³ ·a ⁻¹) K _{MW} : gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K _{FW} : gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K _{OF} : K _{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline P = K _{OW} · V _{OW} · y wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der SapropelflächeMittelwert Unit1}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		gewählt)
$V_{T} = (V_{O} + V_{MW}) \cdot (1 - x); \text{ im Fall } x = 0 \text{ ist } V_{T} = 1160 \text{ km}^{3} \cdot a^{-1}$ $V_{OF}: \text{ Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 \text{ km}^{3} \cdot a^{-1}) \text{ und Niederschlag}}$ $(300 \text{ km}^{3} \cdot a^{-1})$ $K_{MW}: \text{ gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)}$ $K_{FW}: \text{ gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)}$ $K_{OF}: K_{OF} = 0 \text{ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)}$ $A: \text{ jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)}$ $P: \text{ jährlicher partikulärer Stofftransport durch die Redoxkline}$ $P = K_{OW} \cdot V_{OW} \cdot y \text{ wobei gilt: } 0 \le y \le 1 \text{ (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)}$ $k: k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche_{Mittelwert Unit1}}{K_{TW(rezent)} \cdot V_{TW}}$ $\text{ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)}$	V _T :	Austausch des Tiefenwassers
$V_{OF}: Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km3·a-1) und Niederschlag (300 km3·a-1) K_{MW}: gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5) K_{FW}: gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7) K_{OF}: K_{OF} = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt) A: jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline P = K_{OW} · V_{OW} · y wobei gilt: 0 \le y \le 1 (im 1. bis 3. Fall ist y = 0, der partikuläre Stofftransport über dieRedoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)k: k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{Mittelwert Unit1}}{K_{TW(rezent)} · V_{TW}}ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)$		$V_T = (V_0 + V_{MW}) \cdot (1 - x);$ im Fall $x = 0$ ist $V_T = 1160 \text{ km}^3 \cdot a^{-1}$
$(300 \text{ km}^{3} \cdot \text{a}^{-1})$ $K_{MW}: \text{ gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)}$ $K_{FW}: \text{ gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)}$ $K_{OF}: K_{OF} = 0 \text{ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)}$ $A: \text{ jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)}$ $P: \text{ jährlicher partikulärer Stofftransport durch die Redoxkline}$ $P = K_{OW} \cdot V_{OW} \cdot y \text{ wobei gilt: } 0 \le y \le 1 \text{ (im 1. bis 3. Fall ist } y = 0, \text{ der partikuläre Stofftransport über die Redoxkline}$ $Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)$ $k: k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{\text{Mittelwert Unit1}}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	V _{OF} :	Netto-Wasserverlust über die Oberfläche durch Verdampfung (350 km ³ ·a ⁻¹) und Niederschlag
K_MW:gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)K_FW:gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)K_OF:K_OF = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)A:jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)P:jährlicher partikulärer Stofftransport durch die RedoxklineP = $K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über dieRedoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche_{Mittelwert Unit1}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	01	$(300 \text{ km}^3 \cdot \text{a}^{-1})$
Krw:gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)KoF:KoF = 0 (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)A:jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)P:jährlicher partikulärer Stofftransport durch die RedoxklineP = KoW · VoW · y wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über dieRedoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche_{Mittelwert Unit1}}{K_{TW(rezent)} · V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	K _{MW} :	gelöste Konzentration des Stoffs im Meerwasser (siehe Tab. 17, Spalte 5)
K_{OF}: $K_{OF} = 0$ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)A:jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)P:jährlicher partikulärer Stofftransport durch die RedoxklineP = $K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über dieRedoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche_{Mittelwert Unit1}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	K _{FW} :	gelöste Konzentration des Stoffs im Flusswasser (siehe Tab. 17, Spalte 6 und 7)
A: jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant) P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{\text{Mittelwert Unitl}}}{K_{\text{TW(rezent)}} \cdot V_{\text{TW}}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	K _{OF} :	$K_{OF} = 0$ (der Stoffaustausch über die Wasseroberfläche wird vernachlässigt)
P: jährlicher partikulärer Stofftransport durch die Redoxkline $P = K_{OW} \cdot V_{OW} \cdot y \text{ wobei gilt: } 0 \le y \le 1 \text{ (im 1. bis 3. Fall ist } y = 0, \text{ der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)}$ $k: \qquad k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{\text{Mittelwert Unit1}}}{K_{\text{TW(rezent)}} \cdot V_{\text{TW}}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	A:	jährliche Akkumulationsrate des Stoffes im Sediment (nur im 1. Fall konstant)
$P = K_{OW} \cdot V_{OW} \cdot y \text{ wobei gilt: } 0 \le y \le 1 \text{ (im 1. bis 3. Fall ist } y = 0, \text{ der partikuläre Stofftransport über die Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt)}$ $k: \qquad k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{\text{Mittelwert Unit1}}}{K_{\text{TW(rezent)}} \cdot V_{\text{TW}}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	P:	jährlicher partikulärer Stofftransport durch die Redoxkline
Redoxkline wird vernachlässigt, im 4. und 5. Fall wird y empirisch gewählt) $k: k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche}_{\text{Mittelwert Unit1}}}{K_{\text{TW(rezent)}} \cdot V_{\text{TW}}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		$P = K_{OW} \cdot V_{OW} \cdot y$ wobei gilt: $0 \le y \le 1$ (im 1. bis 3. Fall ist $y = 0$, der partikuläre Stofftransport über die
k: $k = \frac{\text{authigene Elementakkumulation pro Jahr auf der Sapropelfläche_{Mittelwert Unit1}}{K_{TW(rezent)} \cdot V_{TW}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		Redoxkline wird vernachlässigt, im 4. und 5. Fall wird v empirisch gewählt)
k: $k = \frac{K_{\text{TW}(\text{rezent})} + V_{\text{TW}}}{K_{\text{TW}(\text{rezent})} + V_{\text{TW}}}$ ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		authigene Elementakkumulation pro Jahr auf der Sapropelfläche.
ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)	k:	$k = \frac{K}{K}$
ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)		TTW(rezent) VTW
		ist zur Berechnung der variablen Elementakkumulationsrate notwendig (2. bis 5. Fall)

¹² Die Sapropelfläche (390000km²) errechnet sich aus dem Volumen des Tiefenwassers (480000km³) und der mittleren Tiefe des Beckens (1.24km) (Özsoy und Ünlüata, 1997; Ross et al., 1974).

Fortsetzung Tab. 16:

Variablen:

K _M :	Konzentration des Stoffes in der Mischungszone
	$\underline{dK_{M}} \underline{-} \underline{K_{OW} \cdot V_{O1} + K_{MW} \cdot V_{MW}}$
	$dt - V_{01} + V_{MW}$
K _{TW} :	Konzentration des Stoffes im Tiefenwasser
	$\frac{\mathrm{dK}_{\mathrm{TW}}}{\mathrm{K}_{\mathrm{TW}}} - \frac{\mathrm{K}_{\mathrm{TW}} \cdot \mathrm{V}_{\mathrm{TW}} + \mathrm{K}_{\mathrm{M}} \cdot \mathrm{V}_{\mathrm{T}} - \mathrm{K}_{\mathrm{TW}} \cdot \mathrm{V}_{\mathrm{T}} - \mathrm{A}_{\mathrm{TW}}}{\mathrm{K}_{\mathrm{TW}} \cdot \mathrm{K}_{\mathrm{TW}} - \mathrm{K}_{\mathrm{TW}} \cdot \mathrm{V}_{\mathrm{T}} - \mathrm{A}_{\mathrm{TW}}}$
	$dt - V_{TW}$
K _{OW} :	Konzentration des Stoffes im Oberflächenwasser
	$\underline{dK_{ow}} = \underline{K_{ow} \cdot V_{ow} + K_{TW} \cdot V_{T} + K_{M} \cdot V_{o2} + K_{FW} \cdot V_{FW} - K_{oW} \cdot V_{o1} - K_{oW} \cdot V_{A} - K_{oW} \cdot V_{oW} \cdot P}$
	dt V _{ow}
A:	Elementakkumulationsrate
	$\frac{dA}{dt} = K_{TW} \cdot V_{T} \cdot k$

Initiale Stoffkonzentrationen:

K _{OW} :	konservative Mischung von mittlerem Fluss- und Meerwasser mit der Salinität 5‰	
K _{TW} :	konservative Mischung von mittlerem Fluss- und Meerwasser mit der Salinität 10%	, jo
\Rightarrow	initiale K _M : konservative Mischung mit der Salinität 12,7‰	

Sedimentations- und Akkumulationsraten:

	mittlere Sedimentationsrate	mittlere Akkumulationsrate*
Unit 1:	0,30 mm·a ⁻¹	$80 \text{ g} \cdot \text{m}^2 \cdot \text{a}^{-1}$
Unit 2:	0,15 mm·a ⁻¹	$40 \text{ g} \cdot \text{m}^2 \cdot \text{a}^{-1}$
<i>Unit</i> 1 und 2:	$0,19 \text{ mm} \cdot \text{a}^{-1}$	$50 \text{ g} \cdot \text{m}^2 \cdot \text{a}^{-1}$

*: Die mittlere Dichte des Sedimentes betrug 1,2 g·cm⁻³, der mittlere Wassergehalt 75 %. Der mittlere Salzgehalt der getrockneten Proben lag bei ca. 10 %. Die von Calvert und Karlin (1998), Hay (1988) und Hay et al. (1991) berechneten Akkumulationsraten reichen von ca. 40 bis 200 g·m²·a⁻¹.

Als Quelle für die Spurenmetalle dienten der Meer- und Flusswassereintrag. Da die heute ermittelten Stoffkonzentrationen im Flusswasser möglicherweise anthropogen beeinflusst sind, wurde die Modellrechnung zuerst mit mittlerem Flusswasser, dann mit rezentem Donauwasser durchgeführt. Die Donau liefert zusammen mit den europäisch-russischen Flüssen ca. 82 % des einströmenden Flusswassers (Hay et al., 1991) und wird als repräsentativ angesehen. Bei der Berechnung der authigenen Stoffakkumulation (siehe Tab. 17) wurde der partikuläre Stoffeintrag über die Flüsse (Guieu und Martin, 2002; Martin und Whitfield, 1983; Wedepohl, 1971a) berücksichtigt. Der äolische Eintrag über die Atmosphäre wurde vernachlässigt, obwohl das Schwarze Meer in einem ariden Raum liegt. Neben der Elementakkumulation im Sediment diente der Abstrom über den Bosporus als Senke. Details zur Berechung sind Tab. 16 zu entnehmen.

Es wurde zwischen den folgenden fünf Fällen¹³ unterschieden:

- Es wurde angenommen, die Elementakkumulationsrate sei über 7500 a konstant gewesen (siehe Tab. 17, Spalte 4). Zudem sollte kein aszendenter Transport gelöster Komponenten von der Mischungszone ins Oberflächenwasser oder deszendenter Transport von partikulärem Material durch die Redoxkline stattfinden (graue Pfeile).
- 2. Die Elementakkumulationsrate war variabel. Sie war proportional über die Konstante k mit der iterativ berechneten Stoffkonzentration im Tiefenwasser verknüpft (Tab. 18, Spalte 4). Die Konstante berechnete sich aus der gegenwärtigen Stoffmenge im Tiefenwasser und der über die gesamte Sapropelfläche jährlich abgelagerten durchschnittlichen Stoffmenge in *Unit* 1 (vgl. Tab. 16). Es fand kein Transport gelöster Komponenten von der Mischungszone ins Oberflächenwasser oder deszendenter Transport von partikulärem Material durch die Redoxkline statt (graue Pfeile).
- 3. Die Elementakkumulationsrate hing wie beim 2. Fall von der Stoffkonzentration im Tiefenwasser ab. Das Wasser aus der Mischungszone speiste neben dem Tiefenwasser das Oberflächenwasser (durchgezogener grauer Pfeil, x ≠ 0). Das Verhältnis von V_{O2} zu V_T war über 7500 a konstant, konnte aber empirisch festgelegt werden. Partikulärer Transport durch die Redoxkline wurde ausgeschlossen (gestrichelter grauer Pfeil, y = 0).
- 4. Die Elementakkumulationsrate hing wie beim 2. Fall von der Stoffkonzentration im Tiefenwasser ab. Absinkendes partikuläres Material (z.B. durch *Scavenging* an partikulären Fe oder Mn-(Oxo)hydroxiden oder durch organisches Material) erlaubte einen von den Wassermassen unabhängigen Transport durch die Redoxkline (gestrichelter grauer Pfeil; $y \neq 0$). Dieser Mechanismus entzog dem Oberflächenwasser einen über den gesamten Zeitraum konstanten, empirisch gewählten prozentualen Anteil des jeweiligen Stoffes. Der Transport gelöster Komponenten aus der Mischungszone in das Oberflächenwasser wurde nicht zugelassen (durchgezogener grauer Pfeil, x = 0).
- 5. Dieser Fall stellte eine Synthese aus dem dritten und vierten Fall dar. Das Wasser aus der Mischungszone nährte neben dem Tiefenwasser das Oberflächenwasser (durchgezogener grauer Pfeil, x ≠ 0). Zusätzlich erlaubte absinkendes partikuläres Material einen von den Wassermassen unabhängigen Transport durch die Redoxkline (gestrichelter grauer Pfeil, y ≠ 0).

¹³ Die Fälle eins und zwei können vereinfacht als Zwei-Boxen-Modell nach Fonselius (1974) und Colodner et al. (1995) aufgefasst werden.

Die Ergebnisse der Berechnungen sind in den Tab. 18 und Tab. 19 dargestellt. In der jeweiligen Spalte 2 sind zum Vergleich die heute gemessenen Konzentrationen der Stoffe im Tiefen- und Oberflächenwasser gegenübergestellt. Die Tabellen gehen außer auf die berechneten Spurenmetallkonzentrationen auch auf die Salzgehalte ein, anhand derer überprüft werden kann, ob das Modell grundsätzliche Mängel hinsichtlich des Wasserkreislaufs aufweist. Da das Meersalz kaum ins Sediment eingebettet wird, ist es gut für Kontrollrechnungen geeignet.

Diskussion der Ergebnisse:

1. Fall: Wurde anhand der mittleren Spurenmetallkonzentrationen in *Unit* 1 und 2 eine konstante mittlere Elementakkumulationsrate über die vergangenen 7500 a abgeleitet, so konnte die rezente Konzentration im Tiefenwasser nicht realistisch berechnet werden (Tab. 18, Spalte 5). Die Ergebnisse waren ähnlich unrealistisch wie die, die aus der einfachen Überschlagsrechnung von Brumsack (1989a) erhalten wurden.

2. Fall: Die Annahme, die Elementakkumulationsrate sei von der im Tiefenwasser verfügbaren Stoffmenge abhängig, führte zu wesentlich realistischeren Ergebnissen als im 1. Fall. Allerdings waren die beobachteten Abweichungen zu den ermittelten Konzentrationen nach wie vor beträchtlich (Tab. 18, Spalte 6). Die hohen gemessenen Konzentration der konservativen Elemente Re, Mo, U und V im Oberflächenwasser (Colodner et al., 1995; Emerson und Huested, 1991) wurden nicht durch das Modell wiedergegeben. Die berechneten Konzentrationen im Tiefen- und Oberflächenwasser unterschieden sich kaum.

Colodner et al. (1995) kamen bei einer ähnlichen Rechnung zu einem vergleichbaren Ergebnis. Bei dem einfachen Zwei-Boxen-Modell von Colodner et al. (1995) und dem hier betrachteten 2. Fall wurde das Oberflächenwasser aber nur mit spurenmetallarmem Flussbzw. Tiefenwasser und nicht mit Meerwasser (bzw. mit Wasser aus der Mischungszone) gespeist, so dass keine hohen Konzentrationen im Oberflächenwasser erwartet werden konnten. Colodner et al. (1995) nahmen daher an, dass die Kohleverbrennung in den osteuropäischen Staaten insbesondere für Re zu einer anthropogenen Kontamination der Flüsse (siehe Tab. 17, Spalte 6 und 7) und des Oberflächenwassers führe und die präindustrielle Situation durch gleich hohe Stoffkonzentrationen im Tiefen- und

1	2	3	4	5	6	7	8	9	10	11	12
Ele- ment	Ø-Konz. in <i>Unit</i> 1 und 2 [ppm]	authigener Anteil [ppm]	Authigene Element- akkumula- tionsrate	rezentes Ø- Meerwasser [ppt]	rezentes Ø- Flusswasser [ppt]	Donau rezent [ppt]	zugeführte Mischung (22,5‰) [ppt]	Konz- abnahme [ppt]	Spalte 8 ÷ Spalte 9	Konz. TW berechnet [ppt]	rezentes TW [ppt]
Re	0,050	0,050	0,0025	7,7	0,37	14,1	5,1	0,85	6,2	4,30	1,6 (2,5)
Mo	105	104	5,25	10300	500	2330	6759	1752	3,9 (2,9)	5007	288 (450)
Cd	1,2	1,1	0,06	78	20	26,6	50,2	19	2,7 (2,2)	32	0,7 (1)
T1	0,8	0,4	0,02	13,2			8,2	7	1,2	1	
V	185	114	5,78	2010	1000		1651	1928	0,9 (0,6)	-278	300 (460)
U	16,5	14,9	0,75	3200	240	1500	2143	251	8,5 (4,8)	1892	1210 (1880)
Zn	82	30	1,53	330	350	1760	337	511	0,7 (1,1)	-174	75 (116)
Ni	103	66	3,35	390	500		452	1118	0,4 (0,4)	-667	375 (544)
Sb	1,8	1,2	0,06	200	1000	250	505	21	24,4	484	90 (140)
As	14,4	9,0	0,46	1950	1700		1863	152	12,2 (3,7)	1711	750 (1170)
Cu	100	76	3,84	180	1500	4000	640	1281	0,5 (0,6)	-641	32 (50)
Co	20	9	0,47	1,7	200	19,3	72	157	0,5 (0,3)	-84	11,8 (18,3)
Al	4,81 %	0 %									Salinität [‰] 22,5 (35)

Tab. 17: Ergebnisse der Berechnung der Stoffkonzentrationen in dem dem Tiefenwasser zugeführten Wasser (Spalte 10) und der resultierenden Konzentrationen im Tiefenwasser (Spalte 11) nach dem statischen Modell von Brumsack (1989a).

Spalte 2: Mittelwert von *Unit* 1 (n = 64) und *Unit* 2 (n = 26), die längere Ablagerungszeit von Einheit 2 (5500 a) gegenüber Einheit 1 (2000 a) wurde bei der Mittelwertbildung berücksichtigt; Spalte 3: nicht terrigener Anteil, berechnet auf Basis der Element/Al-Verhältnisse des mittleren Tonschiefers (Wedepohl, 1971a; Wedepohl, 1991); Spalte 4: durchschnittliche elementspezifische Akkumulationsrate [mg·m⁻²·a⁻¹], Dichte des Sedimentes: 1,2 g·cm⁻³; Sedimentationsrate: 0,19 mm·a⁻¹; gesamte Akkumulationsrate: 50 g·m⁻²·a⁻¹], Spalte 5: berechnete Mittelwerte (Anbar et al., 1992; Bruland, 1983; Colodner et al., 1993a; Colodner et al., 1993b; Donat und Bruland, 1995; Flegal und Patterson, 1985; Goldberg et al., 1986; Jacinto und Vandenberg, 1989; Martin und Whitfield, 1983; Nozaki, 1997); Spalte 6: berechnete Mittelwerte (Martin und Whitfield, 1983; Nijenhuis et al., 1999); Spalte 7: Donauwasser (Andreae und Froelich, 1984; Colodner et al., 1995; Guieu und Martin, 2002); Spalte 8: Stoffkonzentrationen in der dem Tiefenwasser zugeführten konservativen Mischung aus mittlerem Meer- und Flusswasser mit einer Salinität von 22,5‰; Spalte 9: unter der Annahme die jährliche Austauschrate an der Redoxkline betrage 3 m³/m² oder 1160 km³ bei einer Fläche der Redoxkline von 390000 km², Details zur Rechnung siehe Brumsack (1989a); Spalte 10: Quotient aus der minimal notwendigen und der zur Verfügung stehenden Stoffkonzentration im zugeführten Wasser, in Klammern: Werte errechnet nach Brumsack (1989a); Spalte 11: berechnete Stoffkonzentration im Tiefenwasser (Spalte 8 - Spalte 9); Spalte 12: gemessene Konzentration der Stoffe im Tiefenwasser (Colodner et al., 1995; Emerson und Huested, 1991; Haraldson und Westerlund, 1991; Lewis und Landing, 1992), in Klammern: berechnet für eine Salinität von 35‰ auf der Basis der Literaturdaten.

Tab. 18: Berechnete Stoffkonzentrationen im Oberflächen- und Tiefenwasser im stabilen Endzustand nach der iterativen Berechnungsmethode. Es sind nur die Ergebnisse für die Fälle 1. bis 4. dargestellt (fett und unterstrichen: gute Übereinstimmung mit den rezenten Messwerten, normal und unterstrichen: mäßige Übereinstimmung, normal: keine Übereinstimmung).

1	2	3	4	5	6	7	8	9	10	11	12
Ele- ment	rezentes TW (OW) [ppt]	konser- vative Misch. (rez. Donau)	Konstante k	1. Fall TW (OW) [ppt]	2. Fall TW (OW) [ppt]	3. Fall TW (OW) [ppt]	3. Fall TW (OW) [ppt]	4. Fall TW (OW) [ppt]	2. Fall TW (OW) Donau [ppt]	3. Fall TW (OW) Donau [ppt]	4. Fall TW (OW) Donau [ppt]
Re	1,6 (4,8)	4,1 (10,9)	0,0014	3 (2,5)	<u>2,1</u> (1,8)	<u>1,8</u> (2,1)	<u>1,4</u> (2,7)	2,9 (0,9)	4,6 (7,0)	4,0 (7,7)	7,7 <u>(3,5)</u>
Mo	288 (6720)	5400 (6450)	0,0118	2400 (2000)	532 (543)	424 (1550)	<u>280 (2885)</u>	567 (211)	593 (1031)	473 (2150)	660 (400)
Cd	0,7 (5,3)	44 (47,8)	0,0899	5,4 (9,1)	<u>0,6 (5,3)</u>	<u>0,4</u> (14)	0,3 (25)	0,6 (2,0)	0,6 (6,9)	<u>0,5</u> (16)	<u>0,7</u> (2,6)
V	300 (1500)	1520 (?)	0,0115	-3000 (-2100)	140 (350)	110 (604)	73 (940)	161 (136)			
U	1210 (2000)	1740 (2390)	0,0006	<u>1500</u> (1250)	<u>1320</u> (1100)	<u>1200</u> (1175)	<u>965</u> (1290)	2200 (670)	1650 (1680)	<u>1500 (1760)</u>	2985 (1010)
Zn	75 (390)	342 (1030)	0,0287	-880 (-620)	12,2 (94)	9,7 (152)	6,3 (227)	15 (35)	25 (604)	<u>17 (806)</u>	<u>45 (170)</u>
Ni	350 (470)	465 (?)	0,0060	-2200 (1600)	70 (175)	57 (240)	38 (325)	91 (71)			
Sb	90 (180)	616 (242)	0,0013	530 (660)	250 (440)	220 (475)	165 (530)	470 <u>(226)</u>	<u>110 (150)</u>	<u>97 (164)</u>	<u>76 (184)</u>
As	750 (375)	1840 (?)	0,0010	1600 (1670)	1000 (1200)	<u>890</u> (1300)	<u>688</u> (1460)	<u>1740 (660)</u>			
Cu	32 (65)	157 (20382)	0,0951	-2350 (-1500)	7,8 (366)	6,14 (492)	4,0 (654)	10,9 (136)	19,0 (974)	15,0 (1280)	27,14 (360)
Co	11,8 (75)	101 (10,3)	0,0832	-290 (-180)	1,0 (49)	0,8 <u>(63)</u>	0,5 <u>(82)</u>	1,5 (18,2)	0,1 (4,7)	0,1 (6,3)	0,2 (1,8)
Salini- tät	22,5‰ (17,9‰)	17,9‰		22,5‰ (17,9‰)	22,5‰ (17,9‰)	22,4‰ (17,9‰)	22,2‰ (17,8‰)	22,5‰ (17,9‰)	22,5‰ (17,9‰)	22,4‰ (17,9‰)	22,5‰ (17,9‰)

Spalte 2: Mittelwerte aus Literaturdaten für die Konzentrationen der Stoffe im Tiefenwasser und im Oberflächenwasser (Colodner et al., 1995; Emerson und Huested, 1991; Haraldson und Westerlund, 1991; Lewis und Landing, 1992); Spalte 3: konservative Mischung von mittlerem Fluss- und Meerwasser, in Klammern: mit Wasser der Donau (siehe Tab. 17 Spalte 7); Spalte 4: Konstante $k \implies$ es werden pro Jahr 0,14 % des im Tiefenwasser zur Verfügung stehenden Re ins Sediment eingetragen); Spalte 5: Endkonzentrationen im 1. Fall (statische Elementakkumulationsrate: siehe Tab. 17, Spalte 4); Spalte 6: Endkonzentration im 2. Fall (konzentrationsabhängige Akkumulationsrate); Spalte 7: Endkonzentration im 3. Fall (40 % des Wassers aus der Mischungszone erreichen das Oberflächenwasser; x = 0,4); Spalte 8: Endkonzentration im 3. Fall (70 % des Mischungswassers erreichen das Oberflächenwasser; x = 0,7); Spalte 9: Endkonzentration im 4. Fall (5 % des Materials aus dem Oberflächenwasser werden partikulär in das Tiefenwasser transportiert; y = 0,05); Spalte 10: Endkonzentration im 2. Fall (Flusseintrag mit Donauwasser); Spalte 11: Endkonzentration im 3. Fall, x = 0,4 (Donauwasser); Spalte 12: Endkonzentration im 4. Fall, y = 0,05 (Donauwasser).

Tab. 19: Gegenüberstellung der mit dem iterativen Modell berechneten Konzentrationen der Elemente im Tiefen- und Oberflächenwasser bei der Zufuhr von mittlerem Fluss- (Spalte 3) oder rezentem Donauwasser (Spalte 4) im 5. Fall. 60 % des Wassers und der Spurenmetalle aus der Mischungszone erreichen das Oberflächenwasser (x = 0,6). Für die Nährstoffelemente und die oberflächenreaktiven Stoffe wird für jedes Element empirisch ein abwärtsgerichteter partikulärer Transport durch die Redoxkline angenommen ($y \neq 0$), und zwar so (Spalte 5), dass die Berechnung der heute ermittelten Konzentrationen im Wasserkörper (Spalte 2) gelingt. In den meisten Fällen können mit dem Donauwasser bessere Übereinstimmungen mit den gemessenen Konzentrationen (Spalte 2) berechnet werden als mit dem mittleren Flusswasser (fett und unterstrichen: gute Übereinstimmung mit den rezenten Messwerten, normal und unterstrichen: mäßige Übereinstimmung, normal: keine Übereinstimmung). Da für As, V und Ni keine Daten für die Donau zur Verfügung standen, wurden ihre Konzentrationen im Donauwasser mit dem Modell abgeschätzt (Spalte 6). Außerdem wurden einige wichtige Konstanten variiert, um deren Auswirkung auf die Berechnung zu demonstrieren (Spalte 7 bis 9, restliche Parameter wie bei Spalte 4).

1	2	3	4	5	6	7	8	9
Element	rezentes TW (OW) [ppt]	ber. Konz. TW (OW) [ppt]	ber. Konz. TW (OW) Donau [ppt]	y =	geschätzte Konz. in der Donau [ppt]	bei $S_{\text{Unit1}} = 0,15$ $[\text{mm} \cdot \text{a}^{-1}]$	$V_{MW} = 150,$ $V_A = 450$ $[km^3 \cdot a^{-1}]$	$V_{FW} = 500,$ $V_A = 750$ $[km^3 \cdot a^{-1}]$
Re	1,6 (4,8)	<u>1,6</u> (2,4)	3,4 (8,4)*			2,4 (2,9)	0,9 (1,5)	1,5 (2,1)
Mo	288 (6720)	<u>338 (2350)</u>	<u>378 (3050)</u>			644 (2500)	190 (1500)	320 (2100)
Cd	0,7 (5,3)	<u>0,6 (5,0)</u>	<u>0,6 (5,6)</u>	0,06		0,4 (23)	0,4 (4,1)	0,7 (6,4)
V	300 (1500)	90 (800)	<u>285 (1330)</u>	0,015	5000	550 (1400)	265 (1300)	340 (1650)
U	1210 (2000)	<u>1070</u> (1240)	<u>1330 (1830)</u>			1790 (2060)	1000 (1560)	1300 (1800)
Zn	75 (390)	13 (78)	40 (285)	0,03		80 (293)	40 (290)	51 (370)
Ni	350 (470)	85 (100)	<u>320 (435)</u>	0,04	3000	622 (483)	320 (440)	417 (572)
Sb	90 (180)	190 (510)	<u>83 (180)</u>			125 (199)	73 (174)	87 (190)
As	750 (375)	1900 (535)	<u>1200 (310)</u>	0,05	400	2090 (430)	760 (190)	1230 (315)
Cu	32 (65)	12,3 (26,9)	<u>31 (69)</u>	0,4		62 (70)	31 (69)	43 (97)
Co	11,8 (75)	1,6 (12)	0,2 (1,2)	0,1		0,3 (1,22)	0,2 (1,2)	0,2 (1,7)
Salinität	22,5 (17,9)	22,4 (17,9)	22,4 (17,9)			22,5 (17,9)	15,3 (11,8)	19,9 (14,4)

^{*} Der von Colodner et al. (1995) vorhergesagte Endzustand für Re beträgt 3,7 ppt (9,3 ppt).

Oberflächenwasser gekennzeichnet gewesen sei. Aber auch eine Veränderung der Art des zugeführten Flusswassers konnte außer für Re die hohen gemessenen Oberflächenwasserkonzentrationen nicht rechnerisch bestätigen (Tab. 18, Spalte 6 und 10). Daher legt der Vergleich von Spalte 2 und 3 in Tab. 18 nahe, dass die hohen Konzentrationen der konservativen Elemente im Oberflächenwasser außer für Re vor allem auf die konservative Mischung von Meerwasser mit Flusswasser in der Mischungszone zurückzuführen sein könnten. Diese Mischung würde dann dem Oberflächenwasser beigemischt. Insgesamt erscheint eine Beschreibung der Stoffflüsse nach dem 2. Fall aber so stark vereinfacht zu sein, dass keine zuverlässige Aussagen über die Ursachen für die hohen Konzentrationen im Ober-flächenwasser getroffen werden können.

3. Fall: Unter der Annahme, dass ein Teil des Meerwassers über die kalte zwischengelagerte Wasserschicht dem Oberflächenwasser zugeführt wird, konnten vor allem für die sich konservativ verhaltenden Elemente Re, Mo, V und U realistischere Konzentrationen im Oberflächen- und Tiefenwasser berechnet werden (Tab. 18, Spalte 7, 8 und 11). Die besten Ergebnisse wurden bei der Berechnung mit rezentem Donauwasser statt mittlerem Flusswasser erzielt. Da zum Vergleich mit den gemessenen Daten nur der berechnete stabile Endzustand herangezogen wurde, erscheint es wahrscheinlich, dass außer für Re die erhöhten Konzentrationen der Stoffe in der Donau gegenüber dem mittleren Flusswasser nicht auf anthropogene Effekte zurückzuführen sind. Guieu und Martin (2002) gingen ebenfalls von einer geringen anthropogenen Belastung des Donauwassers aus. Sollte die anthropogene Aktivität ursächlich für die erhöhte Konzentration im Oberflächenwasser sein, so müsste die Konzentration der Stoffe im Oberflächenwasser in naher Zukunft stetig weiter ansteigen.

4. Fall: Wurde der partikuläre Transport durch die Redoxkline ohne eine Beimischung von Meerwasser zum Oberflächenwasser zugelassen, so konnten insbesondere für die partikelreaktiven Elemente Zn, Sb und Cu sowie für das Nährstoffelement Cd Konzentrationen berechnet werden, die gut mit den gemessenen Literaturdaten übereinstimmen (Tab. 18, Spalte 9 und 12). Dies erscheint sinnvoll, da die Elemente ein besonderes Verhalten an der Redoxkline und im Tiefenwasser aufweisen. Wie im 3. Fall konnten die besseren Ergebnisse erhalten werden, wenn die Zufuhr von Donauwasser angenommen wurde. Es erscheint kaum angebracht, ausschließlich für die konservativen Elemente eine Beimischung von Meerwasser zum Oberflächenwasser anzunehmen. Daher wurde eine dem Stoff angepasste Synthese aus dem 3. und 4. Fall berechnet. Die Ergebnisse der Rechnung sind in Tab. 19 dargestellt. Dabei wurde angenommen, dass ca. 60 % des einströmenden Meerwassers und der Spurenmetalle nicht direkt ins anoxische Tiefenwasser sondern zunächst durch konservative Mischung ins Oberflächenwasser gelangen (Parameter x = 0,6). Mit dieser Annahe konnten die gemessenen Salinitäten des Oberflächen- und Tiefenwassers berechnet werden. Weiter wurde angenommen, dass je nach Element ca. 1,5 bis 40 % des gelösten Stoffbestands aus dem Oberflächenwasser durch partikulären Transport ins anoxische Tiefenwasser verfrachtet werden (Parameter y = 0.015-0.4). Dieser Transportmechanismus wurde nur für die partikelreaktiven Elemente zugelassen (Brewer und Spencer, 1974; Calvert und Pedersen, 1993; Cutter, 1991; Emerson und Huested, 1991; Francois, 1988; Jacobs et al., 1985; Kremling, 1983; Lewis und Landing, 1992). Der Parameter y wurde individuell angepasst, so dass die tatsächlichen Konzentrationen im Tiefen- und Oberflächenwasser möglichst gut berechnet werden konnten. Für Cu und Co waren die Beträge für y am höchsten, vermutlich weil beide Elemente im Flusswasser wesentlich höher konzentriert sind als im Meerwasser. Für Co konnten trotzdem keine sinnvollen Konzentrationen berechnet werden. Für Mo und Sb forderte das Modell keinen partikulären Transport, obwohl Untersuchungen an Schwebstoffen Hinweise auf eine Partikelreaktivität von Mo und Sb an der Redoxkline geliefert haben (Berrang und Grill, 1974; Colodner et al., 1993a; Cutter, 1991; Helz et al., 1996). Der größte Teil der im Oberflächenwasser befindlichen Inhaltsstoffe sollte über den Bosporus abfließen. Der Rest sollte sich erneut mit dem eindringenden Meerwasser in der Mischungszone mischen und dem Kreislauf erneut zugeführt werden. Die Zufuhr von Donauwasser führte erwartungsgemäß zu der besten Übereinstimmung mit der rezenten Situation (Tab. 19, Spalte 4). Für Re liegen die berechneten Daten allerdings etwas zu hoch. Für die Elemente V, Ni und As standen für Donauwasser keine Daten zur Verfügung. Es wurde daher rechnerisch versucht, die Konzentrationen in der Donau abzuschätzen (Tab. 19, Spalte 6), indem die rezente Situation im Wasserkörper des Schwarzen Meeres möglichst gut rekonstruiert werden konnte. Obwohl die geschätzten Konzentrationen deutlich vom mittleren

Flusswasser abweichen (vgl. Tab. 17, Spalte 6 und Tab. 19, Spalte 6), erscheinen sie nicht unrealistisch. Shimkus und Trimonis (1974) berichteten von gelösten V- und Ni-Konzentrationen im Dnjepr von 4800 ± 600 ppt und 4900 ± 920 ppt.

Diese einfachen Überlegungen ermöglichen also in guter Näherung die Berechnung der tatsächlich gemessenen Stoffkonzentrationen und Salzgehalte im rezenten Tiefen- und Oberflächenwasser des Schwarzen Meeres. Diese Tatsache soll als Hinweis darauf gewertet werden, dass das Modell die rezenten Stoffflüsse im Schwarzen Meer gut beschreibt und die wichtigste Quelle für die Spurenmetallanreicherungen tatsächlich in den zugeführten Wassermassen zu suchen ist. Die Elemente Re, Mo, Cd, V und U werden dabei hauptsächlich über das Meerwasser eingetragen. Für Ni, Sb, As, Cu und Co ist eine signifikante Zufuhr von Flusswasser zum Tiefenwasser abzuleiten, da diese Elemente in Flusswasser gegenüber Meerwasser angereichert sind und das Tiefenwasser im Vergleich mit mittlerem Brackwasser (Salinität von 22,5‰) nicht übermäßig stark verarmt ist (vgl. Tab. 17, Spalte 8 und 12). Die vorgestellte Massenbilanz erlaubt außerdem die Vermutung, dass die Donau weniger stark anthropogen beeinflusst ist, als man gemeinhin annehmen könnte (vgl. Guieu und Martin, 2002). Nur für Re scheint eine anthropogene Kontamination des Donauwassers nicht ausgeschlossen werden zu können (vgl. Colodner et al., 1995), da die unter Berücksichtigung von rezentem Donauwasser berechnete Endkonzentration im Tiefen- und Oberflächenwasser die heute gemessenen deutlich übertrifft. Der stabile Endzustand ist demnach wahrscheinlich noch nicht erreicht.

Wurden andere Parameter für die Sedimentationsrate der *Unit* 1 oder die transportierten Wassermassen angenommen, so bewirkte dies eine deutliche Änderung der berechneten Konzentrationen im Endzustand (Tab. 19, Spalte 7 bis 9). Diese Tatsache demonstriert, wie sensibel das Modell auf Änderungen reagiert. Für andere Ablagerungsräume können vergleichbare Modellrechnungen daher nur durchgeführt werden, wenn die Rahmenparameter im betrachteten System ausreichend abgesichert sind.

4.5.2 Entwicklung der Spurenmetallkonzentrationen im Tiefenwasser nach Einsetzen der anoxischen Bedingungen

Die Bedeutung der Spurenmetallkonzentrationen als limitierender Faktor für die Anreicherungen im Sediment wird in Abb. 20 deutlich. Hier sind die berechneten Konzentrationsänderungen im Tiefenwasser bei konstanter Zufuhr von Meerwasser und Flusswasser in den letzten 7500 a dargestellt. Als Ausgangszustand wurde eine konservative Mischung von Donauwasser und Meerwasser mit einer Salinität von 12,7 ‰ angenommen. Da der Ausgangszustand nicht ausreichend definiert ist, dürfen die Kurven nur qualitativ interpretiert werden. Die Konzentrationen der Spurenmetalle sinken nach dem Ausbilden anoxischer Bedingungen offenbar unterschiedlich schnell ab. Cd, Zn und Cu werden dem Tiefenwasser sehr schnell entzogen, da die Mechanismen zur Einbettung sehr effektiv sind. Bei Mo, V, U und Re dauert es wesentlich länger, bis sich der stabile Endzustand eingestellt hat. Ursächlich hierfür sind unter anderem die vergleichsweise hohen Konzentrationen dieser Elemente im nachliefernden Meerwasser. Beim Cd wird dieser Effekt von dem sehr effektiven Anreicherungsmechanismus mehr als aufgewogen.

Abb. 20: Relative Konzentrationsänderung im Tiefenwasser bei konstanter Zufuhr von Donauund Meerwasser unter den in Tab. 19 genannten Bedingungen. Es wurde von konservativen Mischungen von Meerwasser mit Donauwasser¹⁴ mit den Salinitäten 5‰ (Oberfläche), 10‰ (Tiefenwasser) und 12,7‰ (Mischungszone) zur Zeit 0 Jahre ausgegangen. Grundlage waren die ozeanographischen Daten von Özsoy und Ünlüata (1997).

4.5.3 Interpretation der Spurenmetallprofile im Hinblick auf die Wasserbilanz

Aufgrund der unzureichenden Datierungen können keine genauen Elementakkumulationsraten berechnet werden. Aus den in Abb. 20 dargestellten Konzentrationsverläufen der Spurenmetalle im Tiefenwasser sollte man aber ableiten können, dass die Elementakkumulationsraten zu Beginn der Sapropelablagerung am höchsten waren, wenn sich die Zufuhr von Spurenmetallen ins Schwarze Meer in den letzten 10.000 Jahren nicht nachhaltig geändert

¹⁴ Für Re wird mittleres Flusswasser herangezogen, da eine anthropogene Kontamination der Donau nicht ausgeschlossen werden kann.

hätte. Die Teufenprofile der Element/Al-Verhältnisse (Abb. 18) zeigen tatsächlich an der Sapropelbasis für viele Elemente die höchsten Anreicherungen. Es darf aus Abb. 20 aber nicht gefolgert werden, dass die Anreicherungen in Unit 1 und im oberen Teil der Unit 2a gleich hoch ausfallen mussten, weil sich die Verfügbarkeit der Spurenmetalle im Tiefenwasser schon nach kurzer Zeit nicht mehr geändert hat. Durch die zusätzliche Ablagerung der Schalen von E. huxleyi war die Sedimentationsrate von Unit 1 nämlich doppelt so hoch wie die von Unit 2a. Die Verdünnung mit Carbonat wird durch die Normierung auf Al kompensiert. Es stand an der Sediment/Wasser-Grenzschicht während der Ablagerung von Unit 2a aber weniger Zeit für die Elementanreicherung zur Verfügung. Die diffusionskontrolliert akkumulierenden Elemente Re, Mo, V und U in Unit 1 sollten daher deutlich niedrigere Element/Al-Verhältnisse aufweisen als in der gesamten Unit 2a und nicht nur an deren Basis (vgl. Abb. 34 in Kap. 5.5.3). Bis auf den initialen Peak an der Sapropelbasis treten aber häufig nur geringe Abnahmen der Element/Al-Verhältnisse am Übergang von Unit 2a zu Unit 1 auf (Abb. 18). Daraus wird gefolgert, dass die Verfügbarkeit der gelösten Metalle im Wasserkörper zur Zeit der Ablagerung von Unit 2a vermutlich noch stärker limitiert war als während der Ablagerung von Unit 1. Dieser Umstand ließe sich anhand einer zunächst niedrigen Zufuhr von Meerwasser und den darin in hohen Konzentrationen vorkommenden Ionen erklären. Der Entzug der Spurenmetalle durch die sedimentäre Senke konnte wahrscheinlich noch nicht durch den lateralen Transport von Mittelmeerwasser kompensiert werden. Dies könnte auf einen sehr starken Ausstrom von Oberflächenwasser (Hiscott und Aksu, 2002; Kaminski et al., 2002) und eine Verlagerung der im Modell beschriebenen Mischungszone in das Marmara-Meer zurückzuführen sein. Eine Zufuhr von Meerwasser oder Brackwasser zum Tiefenwasser wäre dann kaum mehr möglich gewesen. Auch die Modellrechnung konnte nachweisen (Tab. 19, Spalte 8 und 9), dass ein hoher Flusswassereintrag schon bei etwas geringerem Meerwassereintrag einen deutlichen Anstieg des Salzgehaltes verhindert haben dürfte.

Aus Abb. 21 geht hervor, dass schon eine geringe Salinitätsdifferenz zwischen Oberflächenwasser und Tiefenwasser ausreicht, um eine jährliche Umwälzung des Wasserkörpers zu verhindern, da die Dichte des Meerwassers viel stärker durch den Salzgehalt als durch die Temperatur bestimmt wird. So konnte sich wahrscheinlich trotz einer anfänglich geringen Meerwasserzufuhr schon während der Ablagerung von *Unit* 2a ein permanent geschichteter, schlecht belüfteter Wasserkörper ausbilden. Folglich wurde das Tiefenwasser möglicherweise nicht nur mit wenig Meerwasser, sondern auch mit wenig Flusswasser, welches über dem etwas salzhaltigeren Tiefenwasser nahezu ungehindert abfließen konnte, versorgt. Die Konsequenz war wahrscheinlich eine weitgehende Verarmung des Tiefenwassers an allen Spurenmetallen, die typischerweise in anoxischen Sedimenten angereichert sind. Trotz niedriger Sedimentationsraten wurden in den Sedimenten der *Unit* 2a daher nur wenig höhere Anreicherungsgrade als in *Unit* 1 erreicht.

Abb. 21: Die Dichte von Meerwasser in Abhängigkeit von der Temperatur und dem Salzgehalt (Quelle: Deutsches Klimarechenzentrum; abgerufen am 8.12.02 von http://www.hamburgerbildungsserver.de/klima/klimawandel/kw6-a2.html).

Für eine verzögerte und zunächst geringe Meerwasserzufuhr sprechen auch das relativ späte Auftreten der ersten Choccolithophoridenschalen in *Unit* 1 und der marinen Diatomeen (M. E. Böttcher, persönl. Mittl.¹⁵). Der Salinitätsanstieg sollte also deutlich langsamer verlaufen sein, als es aus den heute auftretenden Wasserströmen vermutet werden könnte. Weitere Indizien, die für eine relativ späte Zufuhr von Meerwasser sprechen, wurden bei Major et al. (2002), Manheim und Chan (1974), Hiscott und Aksu (2002) sowie Kaminski et al. (2002) diskutiert.

¹⁵ Die Zählungen wurden an Sedimenten der Station 6 durchgeführt.

Die Interpretation der terrigenen Komponenten oder Carbonate beinhaltet leider keinen eindeutigen Hinweis auf den ersten Meerwassereintrag, obwohl anhand der detritischen Fraktion gezeigt werden konnte, dass sich das Sedimentationsgeschehen kurz vor Beginn der anoxischen Phase am rumänischen Schelf kontinuierlich verändert hat (Abb. 15). Inwieweit die sprunghaft ansteigenden Sr-Konzentrationen in der Carbonatphase auf den Meerwassereintrag und die möglicherweise veränderte Ökologie der aragonitbildenden Mikroorganismen zurückzuführen ist bleibt unklar.

Abschließend bleibt festzuhalten, dass der erste marine Einfluss vermutlich den Übergang in die anoxische Phase bewirkt hat, ohne dass die Salinität des Oberflächenwassers merklich angestiegen ist. Vermutlich reichte schon eine geringe Zufuhr von Meersalz zum Tiefenwasser aus, um eine haline Schichtung zu bewerkstelligen. Es konnten sich daher noch keine marinen Organismen in der photischen Zone etablieren. Da das Meerwasser nachweislich für viele Spurenmetalle die wichtigste Quelle darstellt, fielen die Spurenmetallanreicherungen in der *Unit* 2a trotz der niedrigen Sedimentationsrate vergleichsweise niedrig aus. Erst der zunehmende Meerwassereintrag, hervorgerufen durch das weitere Ansteigens des Meeresspiegels, ermöglichte das Gedeihen von *E. huxleyi* und marinen Diatomeen und erhöhte gleichzeitig die Verfügbarkeit vieler Metalle im Wasserkörper. Es konnten daher während der Ablagerung von *Unit* 1 trotz einer höheren Sedimentationsrate ähnlich hohe Spurenmetallanreicherungen erreicht werden wie in der *Unit* 2a.

4.6 Zusammenfassung

- Die Sedimentkerne von den Stationen 6 und 7 umfassen die Units 1 bis 3. Unit 2 wird im Unterschied zur sonst typischen Stratigraphie in die Units 2a (Holozäner Sapropel) und 2b (Übergangssapropel, C_{org}-Konzentrationen leicht erhöht, keine Schwarzfärbung) unterteilt.
- Das Hauptkomponentensystem Quarz-Ton-Carbonat stellt im wesentlichen eine Mischung von tonigem Material mit Carbonat (bis zu 70 % in *Unit* 3) dar. Im Übergangsbereich von *Unit* 3 zu *Unit* 2a werden sich verändernde Ablagerungsbedingungen durch die Zunahme des refraktär-detritischen Anteils angezeigt. Es wurde die Ablagerung des Übergangssapropels (*Unit* 2b) mit leicht erhöhten C_{org}-Gehalten eingeleitet. In den Sedimenten der *Unit* 3 von Station 7 unterbrechen einige Schwerminerallagen die homogene Sedimentation.

- Anhand der Modellrechnung können für viele Elemente in guter Näherung die gemessenen Konzentrationen im Oberflächen- und Tiefenwasser berechnet werden. Das Modell erfasst offenbar die wesentlichen Stoffflüsse im Schwarzen Meer. Der Modellrechnung folgend werden etwa 60 % des eindringenden Meerwassers mit dem Oberflächenwasser vermischt. Die restlichen 40 % erreichen das Tiefenwasser direkt und sind für den direkten Eintrag von Re, Mo, Cd, V und U verantwortlich. Die im Donauwasser angereicherten Elemente (V), Zn, (Ni), Sb und Cu werden dem Tiefenwasser über die Mischungszone zugeführt. Für die partikelreaktiven Elemente Cd, V, Zn, Ni und Cu muss ein zusätzlicher partikulärer Transport vom Oberflächenwasser ins Tiefenwasser angenommen werden, damit die berechneten Konzentrationen mit den gemessenen Literaturdaten übereinstimmen. Für Co ergibt die Modellrechnung kein sinnvolles Ergebnis.
- Die iterative Modellrechnung zeigt, dass das Ausbilden anoxischer Bedingungen in der Wassersäule des Schwarzen Meeres zur Verarmung der gelösten Komponenten im Wasserkörper führte. Demnach stellt der Wasserkörper die wichtigste Quelle für die im Sediment angereicherten Spurenmetalle dar. Der eingeschränkte Meerwassereintrag und der oberflächennahe Abfluss von Flusswasser limitierten die Zufuhr der Spurenmetalle zum Tiefenwasser, so dass die Anreicherungen in den Sapropelen des Schwarzen Meeres geringer ausfielen als in anderen Sapropelen und Schwarzschiefern (vgl. Kap. 6).
- Der Eintrag von Meerwasser ins Schwarze Meer war zunächst gering. Ein Flutungsereignis fand wahrscheinlich nicht statt. Der Salinitätsanstieg verlief zunächst langsam und führte zu einer langsamen Besiedlung mit marinen oder brackischen Organismen. Die signifikant ansteigenden Sr-Konzentrationen am Übergang von *Unit* 2b zu 2a wurden möglicherweise durch einen Wechsel in der Ökologie der aragonitbildenden Organismen hervorgerufen. Die Zufuhr von Meer- und Flusswasser zum Tiefenwasser war während der Ablagerung von *Unit* 2a geringer als heute. Die Akkumulationsrate der Spurenmetalle im Sediment war entsprechend geringer.
- Für Re befindet sich das System wahrscheinlich noch nicht im Gleichgewichtszustand, da die Donau in der jüngeren Vergangenheit möglicherweise mit Re kontaminiert wurde.
- Vergleichbare Modellrechnungen liefern nur bei genauer Kenntnis der eingehenden Parameter (Akkumulationsrate, Wasserzufuhr, Stoffkonzentrationen in den Wassermassen etc.) ein realistisches Ergebnis.

5 Fazies-Charakterisierung des Niederrheinischen Kupferschiefers

Die Untersuchung der vergleichsweise jungen Sedimente des holozänen Schwarzen Meeres hat gezeigt, welche Bedeutung die Verfügbarkeit der gelösten Komponenten im Wasserkörper für die Spurenmetallanreicherungen im Sediment hat und welche Rückschlüsse sich im Hinblick auf die Ablagerungsbedingungen ziehen lassen. In diesem Kapitel werden die Spurenmetallsignaturen zur Fazies-Charakterisierung eines fossilen C_{org}-reichen Sediments, des Niederrheinischen Kupferschiefers, verwendet.

5.1 Einleitung

Der Kupferschiefer ist ein laminierter, bituminöser Mergel mit einer C_{org}-Konzentration von bis zu 8 % und Carbonatgehalten von bis zu 70 %. Er wurde im oberen Perm vor 258 Mio. Jahren in einer typischen Randmeersituation abgelagert und zeichnet sich durch seine ungewöhnlich hohen Anreicherungen von Cu, Pb, Zn und den PGE aus. Die Vererzungen sind vornehmlich auf die Randbereiche (Lubin, Richelsdorf, Sangershausen, Mansfeld, etc.) beschränkt (z. B. Bechtel et al., 2001; Kucha, 1990; Kucha, 1993; Piestrzynski und Wodzicki, 2000). Es werden dort abbauwürdige Buntmetallgehalte bis in den Prozentbereich und PGE-Konzentrationen bis in den ppm-Bereich erreicht (z. B. Bechtel et al., 2001; Kucha, 1990; Kucha, 1993). Im Kupferschiefer des Niederrheinischen Beckens, welches eine Bucht des Zechsteinmeeres darstellte, findet man außerdem ausgeprägte Baryt-Mineralisationen (Diedel, 1986; Vaughan et al., 1989). Im Zentrum des Zechsteinbeckens treten für Schwarzschiefer typische Anreicherungsgrade der Spurenmetalle auf (Wedepohl, 1994).

Die zur Mineralisation führenden Prozesse werden immer noch lebhaft diskutiert (z. B. Bechtel et al., 2001; Bechtel et al., 1995; Brongersma-Sanders, 1971; Heppenheimer, 1995; Kucha, 1990; Kucha, 1993; Sawlowicz, 1990; Sun, 1996; Sun und Püttmann, 1997; Sun und Püttmann, 2000; Tobschall et al., 1986; Turner und Magaritz, 1986; Vaughan et al., 1989; Wedepohl, 1971b; Wedepohl, 1980). Während einige Autoren zunächst von einer synsedimentären oder frühdiagenetischen Mineralisation ausgegangen sind (Brongersma-Sanders, 1971; Sawlowicz, 1990; Turner und Magaritz, 1986; Wedepohl, 1971b; Wedepohl, 1980), scheint es heute gesichert zu sein, dass dem Kupferschiefer insbesondere in den Randbereichen durch einen mehrphasigen epigenetischen Prozess größere Mengen an (Heppenheimer, 1995; Spurenmetallen zugeführt wurden Sun, 1996; Sun und Püttmann, 1997; Sun und Püttmann, 2000; Vaughan et al., 1989). Eine besondere Rolle dürfte der Transport von meist aszendent, seltener deszendent transportierten chloridischen Hydrothermallösungen gespielt haben. In diesem Zusammenhang wird auch die Rolle des Krefelder Hochs und des im Untergrund angelegten Graben- und Störungssystem diskutiert (Bechtel et al., 1995; Diedel, 1986; Heppenheimer, 1995). Die Spurenmetallanreicherungen wurden offenbar maßgeblich durch den Untergrund beeinflusst. Insbesondere dort, wo der Kupferschiefer dem Rotliegend aufliegt, treten extrem hohe Mineralisationsgrade auf (Diedel, 1986; Vaughan et al., 1989). Im Niederrheinischen Becken liegen die basalen Zechsteinsedimente, das Zechsteinkonglomerat und der Kupferschiefer aber direkt dem Oberkarbon auf. Das Rotliegend fehlt hier ganz. Dies ist darauf zurückzuführen, dass das spätere Niederrheinische Becken im Perm zunächst herausgehoben und erodiert wurde. Daher werden hier zwar hohe Pb-, Zn- und Ba-Anreicherungen gefunden, nicht aber die typischen hohen Cu-Anreicherungen (Diedel, 1986). Weitere Details sind den Arbeiten von Heppenheimer (1995), Schwark (1992) und Vaughan et al. (1989) und den darin zitierten Arbeiten zu entnehmen.

Schwark (1992) hat ein umfassendes Faziesmodell für den Kupferschiefer der Niederrheinischen Bucht entworfen. Dieses wird im Folgenden anhand der hochaufgelösten anorganisch-geochemischen Analyse verifiziert und erweitert. Dazu wurden neben den Konzentrationen der üblichen Spurenmetalle auch die der selteneren Metalle Ag, Bi, Cd, Re, Sb, Tl und der PGE bestimmt. Mithilfe der hochaufgelösten Analyse konnten zuverlässige Informationen über die Beteiligung der Metalle an den epigenetischen Mineralisationsprozessen erlangt werden, was für eine Deutung der Spurenmetallkonzentrationen im Faziesmodell unverzichtbar ist. Schließlich erlauben nur die primären Signaturen Aussagen über das Ablagerungsmilieu. Bei der Interpretation der Spurenmetallsignaturen als Paläomilieuindikatoren wird intensiv auf die Verwendung des Re/Mo-Verhältnisses eingegangen.

5.2 Charakterisierung des Ablagerungsraums

Für das obere Perm, in dem durch die Kollision von Sibirien mit Osteuropa Pangäa vervollständigt wurde, gibt es keine Hinweise auf die polare Vereisung am Südpol mehr. In der paläogeographischen Position des Zechsteinmeeres zwischen 10° und 20° nördlicher Breite herrschte im oberen Perm ein sehr heißes, trockenes Klima. Hinweise dafür sind unter
anderem in den Evaporitserien des Zechsteinmeeres dokumentiert, deren Basis der den Kupferschiefer überlagernde Zechsteinkalk darstellt (Paul, 1991).

Der Wechsel in die Warmzeit bewirkte einen Meeresspiegelanstieg. Das im Perm abgesenkte mitteleuropäische variszische Becken wies im Zentrum schon eine Tiefe von 200 bis 300 m auf (Glennie, 1986). In den Randgebieten entstanden Tröge und durch Schwellen separierte Becken von beträchtlicher Tiefe, beispielsweise das Niederrheinische Becken (Bechtel und Püttmann, 1997; Grice et al., 1997; Paul, 1982). Das variszische Becken wurde im Zuge der Zechsteinmeeres schnell überflutet, da Transgression des sich begleitend zum Meeresspiegelanstieg entlang der östlichen Begrenzung Grönlands ein Nord-Süd ausgerichtetes Grabensystem ausbildete (Stemmerik und Piasecki, 1991; Ziegler, 1982; Ziegler, 1988). Die Vorstöße des Zechsteinmeeres aus dem borealen Ozean reichten von Spitzbergen und Ostgrönland über England, Norddeutschland und Polen bis in die Hessische Senke hinein (Abb. 22). Zeitliche Analoga zum Kupferschiefer stellen der Marl Slate in England und die Ravnefjeld Formation in Grönland dar (Pedersen et al., 2003; Turner und Magaritz, 1986; Vaughan et al., 1989).

Abb. 22: Verbreitung des Kupferschiefers und des Marl Slate in Mitteleuropa (verändert nach Vaughan et al., 1989).

Bei der Aufarbeitung des überspülten karbonischen und permischen Untergrundes wurden viele Nährstoffe freigesetzt, so dass es in dem nur wenige 100 m tiefen Randmeer unter hoher Bioproduktivität zunächst zur Ablagerung anoxischer Sedimente kam (Bechtel und Püttmann, 1997; Grice et al., 1997; Paul, 1982; Tobschall et al., 1986). Dies wird unter anderem durch das Auftreten von grünen Schwefelbakterien (Bechtel und Püttmann, 1997; Grice et al., 2002) und die hohen Spurenmetallanreicherungen belegt (Wedepohl, 1994). Im Allgemeinen wird zwischen der 20 bis 50 cm mächtigen Beckenfazies (Wedepohl, 1964) und der Rand- bzw. Schwellenfazies unterschieden (Paul, 1982). Wedepohl (1994) leitet aus den Spurenmetallsignaturen eine niedrige Sedimentationsrate für den Kupferschiefer ab. Durch die Verdünnung mit terrigenem Material und Carbonat dürfte die Sedimentationsrate in den Randbereichen aber deutlich höher gelegen haben, da hier Mächtigkeiten von bis zu 2 m erreicht werden. Insgesamt wird von einer Ablagerungszeit von 20.000 bis 100.000 Jahren für den Kupferschiefer ausgegangen (Paul, 1982).

Anhand des Carbonat/Tonverhältnisses kann der Kupferschiefer in die Zyklen T1 I-III eingeteilt werden (Paul, 1982). Für das Niederrheinische Becken, welches zur Ablagerungszeit eine von Riffen und Schwellen durchzogene Lagune des Zechsteinmeeres darstellte, wurden die Zyklen zuerst von Schwark (1992) beschrieben. Die Zyklen werden in Kap. 5.4.1 eingehender diskutiert. Nach Schwark (1992) sowie Bechtel und Püttmann (1997) stellt der unterste Zyklus T1 I die Einheit mit den am stärksten reduzierenden Ablagerungsbedingungen dar.

5.3 Untersuchungsmaterial

Im Mittelpunkt der Untersuchungen standen die Sedimentkerne Niederwald 1 und Lohberg aus dem Niederrheinischen Becken. Sie umfassen das liegende Zechsteinkonglomerat (S1), den Kupferschiefer (T1 I bis T1 III) und den hangenden Zechsteinkalk (Ca1). Das Material wurde mir von J. Paul, Universität Göttingen, zur Verfügung gestellt und von der BEB (Hannover) erbohrt. Die Orte der Beprobung sind in Abb. 23 dargestellt. Zudem werden weitere Referenzlokationen (Heppenheimer, 1995; Schallenberg, 1997; Schwark, 1992) in die Diskussion einbezogen.

5.3.1 Lokation Niederwald 1

Der untersuchte Sedimentkern (TKNR: 25; Rechtswert 2532000; Hochwert 5715400) hat eine Länge von 3,04 m. Der Kupferschiefer wurde in 643,170 bis 645,455 m Teufe angetroffen und hat eine Mächtigkeit von 2,29 m. Er liegt direkt dem hellgrauen Zechsteinkonglomerat (Teufe > 645,475 m) auf. Die Hauptkomponenten des Konglomerats, welches zum Top hin stark mineralisiert ist, machen Quarzgerölle und Bruchstücke von Sand/Grobsiltsteinen mit bis zu 2 cm Korngröße aus. Die von Schwark (1992) im Kern Rheinberger Heide angetroffene Basiscarbonatlage fehlt. Die dunklen, bituminösen mergeligen Sedimente werden im Zyklus T1 II und T1 III vereinzelt von 0,2 bis 3,5 cm mächtigen helleren Einschaltungen¹⁶ unterbrochen. Zum Top hin hellt der Kupferschiefer auf. Die strenge Laminierung wird ab der Teufe 643,800 m flaseriger, und bei der Teufe 643,243 m wird der Kupferschiefer vom etwas helleren unlaminierten Zechsteinkalk abgelöst. Insgesamt wurden 160 Proben aus den drei geologischen Einheiten mit einer zeitlichen Auflösung von ca. 100 bis 500 a·cm⁻¹ untersucht. Die Proben wurden in 1 bis 2 cm Abständen genommen.

¹⁶ Die Teufen der separat beprobten Einschaltungen betragen 643,373; 643,467; 643,512; 643,598; 643,650; 643,883; 644,025; 644,038 bis 644,055; 644,167; 644,219; 644,261; 644,277 und 644,402 m.

Abb. 23: Herkunftsorte der in dieser Arbeit diskutierten Kupferschieferkerne. (NWI: **LB**: Lohberg; *HW: Hochwald II* (*Heppenheimer*, 1995); *Niederwald 1;* SR: Schacht (Schallenberg, 1997); *RH: Rheinberger* Heide (Heppenheimer, 1995; Rheinberg Schwark, 1992); MÖ: Möllen II (Heppenheimer, 1995); *RSG: Rehmbergschlag* (Heppenheimer, 1995); Sum : südliche Grenze des Zechstein unter mesozoischer Bedeckung (Teichmüller, 1957). Abbildung verändert nach Schwark (1992).

5.3.2 Lokation Lohberg

Der Kern Lohberg wurde nahe der Bruckhauser Falte und dem Lohberger Horst (Bohrung 5864; TKNR: 25; Rechtswert 2552458; Hochwert 5719388) gewonnen. Die Teufenangaben nehmen vom Hangenden zum Liegenden ab, da der Kern aus einer Hochbohrung stammt. Der Kupferschiefer ist 1,8 m mächtig (Zyklengrenzen bei 13,99 und 14,81 m). Er überlagert das nur in geringer Auflösung beprobte grobe Zechsteinkonglomerat, welches unterhalb von 10,9 m Teufe seine Farbe von grau zu rot wechselt. Am Top ist das Konglomerat durch Pyrit (und weitere sulfidische Begleitminerale) sowie durch Baryt mineralisiert. Das von Schwark (1992) beschriebene Basiscarbonat fehlt. Die bituminösen Sedimente des Kupferschiefers werden am Übergang vom Zyklus T1 II zum T1 III von zwei helleren, C_{org}- und carbonatärmeren, etwas stärker silikatisch geprägten Bändern¹⁷ unterbrochen.

¹⁷ Die Teufen der Einschaltungen betragen 14,799 und 14,823 m (1,2 cm bzw. 0,4 cm mächtig).

Ab einer Teufe von 15,19 m geht der Kupferschiefer in den Zechsteinkalk über. Insgesamt wurden 156 Proben, davon 107 Kupferschieferproben, untersucht. Es ergibt sich damit eine zeitliche Auflösung von 200 bis 1000 a pro Probe.

5.3.3 Ergänzende Standorte

Niederrheinisches Becken:

Die Kerne Hochwald II, Möllen II, Rheinberger Heide, Rehmbergschlag und Schacht Rheinberg wurden von Heppenheimer (1995), Schallenberg (1997) und Schwark (1992) beschrieben und untersucht. Die dort angegebenen Daten wurden zu Vergleichszwecken herangezogen.

Bohrung Goslar Z1 (Harzrand):

Der Kern Goslar Z1 (östlicher Harzrand; Herkunft: BEB) konnte nur sehr lückenhaft beprobt werden. Insgesamt wurden 13 laminierte Kupferschieferproben gewonnen (Teufe: 6,395-6,535 m). Die restlichen Proben konnten nicht eindeutig charakterisiert werden. Eine detailliertere Kernansprache findet sich bei Schwark (1992) und in den hierin zitierten Arbeiten. Das Material ist wesentlich stärker mineralisiert als das des Niederrheinischen Kupferschiefers. Die Proben dienen nur zu Vergleichszwecken und werden nicht detailliert diskutiert. Die Daten können dem Anhang entnommen werden.

5.4 Ergebnisse

5.4.1 Hauptkomponenten

Die Verteilung der Hauptkomponenten C_{org} , C_{min} , S und Al in den Kernen Niederwald 1 und Lohberg ist in Abb. 24 dargestellt. Die von Paul (1982) und Schwark (1992) beschriebenen Zyklen zeichnen sich durch einen zunächst hohen Al-Gehalt, ein Carbonat-Maximum (bis zu 70 %) im Zentrum und eine zum Ende hin erneut ansteigende Al-Konzentration aus und können auch in den hier untersuchten Sedimentkernen wiedergefunden werden. Die Einteilung in die Zyklen T1 I bis T1 III wurde ebenfalls an den Carbonat- und Al- bzw. Ton-Gehalten vorgenommen, obwohl sich ihre Ausgangs- und Endzustände nicht exakt entsprechen. Die Zyklengrenzen innerhalb des Kupferschiefers sind in der Abbildung mittels gestrichelter horizontaler Linien markiert. Sie befinden sich in den Teufen 643,58 m und 644,74 m (Niederwald 1) sowie 13,99 m und 14,81 m (Lohberg). Die äußeren Grenzen des Kupferschiefers sind mit durchgezogenen Linien dargestellt. Die Trizyklizität wird durch eustatische Meeresspiegelschwankungen (Gerlach und Knitzschke, 1978), durch Schwankungen der Redoxkline oder durch Evaporationsphänomene (Paul, 1982) erklärt. Da die Zyklen nicht mit den Erdbahnparametern oder der Sonneneinstrahlungsintensität gekoppelt sind (vgl. Wehausen, 1999 und Lourens et al. 2001), sollte daher besser von Abschnitten oder Einheiten gesprochen werden. In Anlehnung an die Kupferschieferliteratur wird hier jedoch der Begriff Zyklus beibehalten.

Der unterste Kupferschiefer-Zyklus T1 I weist mit bis zu 7,5 % die höchsten C_{org} -Konzentrationen auf. In den darüber liegenden Zyklen T1 II und T1 III übertreffen die C_{org} -Konzentrationen nur selten 2 %. Im Zechsteinkonglomerat und im Zechsteinkalk betragen die C_{org} -Konzentrationen meist 0,5 % oder weniger. Die höchsten S-Konzentrationen wurden nicht im Kupferschiefer, sondern im liegenden Zechsteinkonglomerat gemessen (bis zu 15 % im Kern Niederwald 1). Aber auch im Kupferschiefer finden sich in diskreten Horizonten mit bis zu 8 % hohe Schwefelkonzentrationen (Niederwald 1: T1 I). Meist gehen sie mit erhöhten Fe-Konzentrationen (Abb. 27) und hohen Konzentrationen der chalkophilen Spurenmetalle einher (siehe Kap. 5.4.5). S ist hauptsächlich in den Mineralen Pyrit, Markasit, Bleiglanz und Zinkblende sowie im organischen Material gebunden (Bechtel und Püttmann, 1997; Sun und Püttmann, 1997; Sun und Püttmann, 2000; Vaughan et al., 1989).

Lohberg

Abb. 24: Einteilung der Kupferschieferkerne Niederwald 1 (oben) und Lohberg (unten) in die Einheiten Zechsteinkonglomerat (S1) bis Zechsteinkalk (Ca1). Der Kupferschiefer (T1) wird in die Abschnitte T1 I bis T1 III unterteilt (durchgezogene Linien: äußere Grenzen des Kupferschiefers, gestrichelte Linien: Zyklengrenzen innerhalb des Kupferschiefers). Die grauen Balken markieren die Einschaltungen.

5.4.2 Detritische Komponenten

Die Abb. 25 und Abb. 26 geben Auskunft über die Zusammensetzung der detritischen Phase. Im Kupferschiefer selbst weisen die terrigen-detrischen Komponenten keinen wesentlichen Wechsel in der Mineralzusammensetzung auf. Im Dreiecksdiagramm SiO₂, Al₂O₃, CaO (Abb. 25) liegen die darstellenden Punkte etwas oberhalb der Verdünnungslinie mittlerer Tonschiefer-Carbonat. Im Kern Niederwald 1 nimmt der silikatische Anteil ab dem Zyklus T1 III, im Kern Lohberg im Zechsteinkalk etwas zu. Die Proben des Zechsteinkonglomerats, die Quarzgerölle und Silte enthalten, sind stärker silikatisch bzw. terrigen-detritisch geprägt.

Abb. 25: Relative Häufigkeit [%] von SiO₂, Al_2O_3 und CaO an den Standorten Niederwald 1 (links) und Lohberg (rechts).

Abb. 26: Darstellung der Element/Al-Verhältnisse von Si, Ti, Na und K für die Stationen Niederwald 1 (oben) und Lohberg (unten). Die Zr/Al-Profile (nicht dargestellt) ähneln den Si/Al-Profilen.

Aus Abb. 26 kann der in Abb. 25 angedeutete größere Anteil der refraktär-detrischen Mineralkomponenten besser abgelesen werden. Im oberen Teil des Kerns Niederwald 1 nehmen die Si/Al-, Ti/Al- und Zr/Al-Verhältnisse (nicht dargestellt) deutlich zu. Dies könnte

auf hochenergetischere Ablagerungsbedingungen hinweisen. Der Anstieg des Na/Al-Verhältnisses lässt auf einen geringeren Verwitterungsgrad des lithogenen Materials schließen. Dieser kann aber nicht in den K/Al- und Rb/Al-Verhältnissen (nicht dargestellt) nachgewiesen werden. Der Zechsteinkalk des Kerns Lohberg weist eine vergleichbare Signatur auf, wenngleich sich die Na/Al-, K/Al- und Rb/Al-Verhältnisse (nicht dargestellt) im Zechsteinkalk nicht signifikant von denen des Kupferschiefers unterscheiden. Die Schwankungen in den Na/Al- und Rb/Al-Verhältnissen (nicht dargestellt) sind im gesamten Profil größer.

Eine weitere Untersuchung des Verwitterungsgrades der Tonmineralfraktion über den CIA-Index (Taylor und McLennan, 1985) ist nicht möglich, da bei den komplex zusammengesetzten Carbonat- und Sulfatphasen die carbonatfreie Ca-Konzentration nicht ermittelt werden kann. Die helleren Einschaltungen werden von Schwark (1992) im Kern Rheinberger Heide als Tempestite gedeutet, die eine kurzfristige Belüftung des Wasserkörpers mit sich brachten. Die anorganisch-geochemischen Untersuchungen zeigen, dass sie keine einheitliche Signatur aufweisen, außer dass sie im Vergleich zu den über- und unterlagernden Sedimenten deutlich weniger Corg enthalten (Abb. 24 und Abb. 26). Im Kern Niederwald 1 sind sie in einigen Fällen durch ein leicht erhöhtes Ti/Al-Verhältnis gekennzeichnet, während die Si/Al- und Zr/Al-Verhältnisse diesen Trend nicht konsequent nachzeichnen. Häufig sind sie sogar leicht an Zr verarmt (nicht dargestellt). Die Herkunft der tonig-detritischen Komponente ist offensichtlich recht einheitlich. Im Kern Lohberg zeichnen sich die Bänder ebenfalls nur durch ihre niedrigen Corg-Gehalte und nicht durch eine besondere mineralische Zusammensetzung aus. Eine Deutung der Bänder als Rutschungen oder küstennah abgelagertes Schwermineralkonzentrat ist daher aus anorganisch-geochemischer Sicht nicht nachzuvollziehen. Die helleren Einschaltungen werden im Folgenden als Corg-arme Bänder verstanden und könnten durch ein kurzfristiges Absenken der Redoxkline bis zur Sedimentoberfläche hervorgerufen worden sein.

5.4.3 Carbonate und Sulfide

Die Carbonatphase enthält hauptsächlich die Minerale Dolomit, Calcit und Ankerit (Vaughan et al., 1989). Dies ist insofern interessant, da Mg- und Fe-Carbonate in rezenten marinen Sedimenten relativ selten sind. Die Dolomitpräzipitation wird gegenwärtig in keinem ausgedehnten Ablagerungsraum beobachtet (z. B. Burns et al., 2000; Holland und Zimmerman, 2000; Rouchy et al., 2001). Da die Ablagerung von Fe-Carbonaten in

anoxischen marinen Sedimenten in Konkurrenz zur Fe-Sulfidisierung steht (Berner, 1981; Berner, 1984; Leventhal, 1983), sind Fe-Carbonate in marinen Sedimenten ebenfalls selten. Schwark (1992) sieht in der Feinkörnigkeit der Carbonate, der Erhaltung des Basiscarbonats im Kern Rheinberger Heide und der Koexistenz der Carbonatphasen Hinweise, die gegen eine signifikante Überprägung der Carbonatphase und eine sekundäre Dolomitisierung sprechen.

Abb. 27 stellt die Zusammensetzung der carbonatischen und sulfidischen Phase in den Kernen Niederwald 1 und Lohberg dar. Beide Kerne sind weitgehend dolomitisiert. Der hohe Dolomitisierungsgrad drückt sich in den nahezu konstanten, dem Dolomit (1,63) ähnlichen Ca/Mg-Verhältnissen aus. Ein hoher Dolomitisierungsgrad ist für Standorte der Rand- oder Schwellenfazies üblich (Wedepohl, 1964). Der Dolomitisierungsgrad ist aber stark vom Standort abhängig. Zwischen den Kupferschieferprofilen des niederrheinischen Beckens besteht kein einheitlicher Trend. So nimmt die Dolomitisierung im Kern Rheinberg zum Top hin zu. Dagegen nimmt sie im nahe benachbarten Kern Schacht Rheinberg zum Top hin ab. Die Kerne Möllen II und Rehmbergschlag sind ebenfalls nahezu vollständig dolomitisiert (mittleres Ca/Mg-Verhältnis: 2,0 bzw. 1,8). Im Kern Hochwald II ist Dolomit oder Mg-Calcit seltener anzutreffen (mittleres Ca/Mg-Verhältnis: 5,9).

Das Auftreten von Rhodochrosit bzw. Mn-Ca-Mischcarbonaten ist durch die nahezu parallel verlaufenden Teufenprofile (Abb. 27) von Mn und Ca belegt (Korrelation der Mn/Al- und Ca/Al-Verhältnisse: R = 0.97).

Abb. 27: Darstellung der Element/Al-Verhältnisse von Ca, Mn, Fe, S, Sr und P sowie der Ca/Mg-Verhältnisse (zum Vergleich: Ca/Mg_{Dolomit} = 1,63) in den Kernen Niederwald 1 und Lohberg. Man beachte beim Ca, Mn und Sr die unterschiedliche Skalierung.

Fe kommt in reduzierenden Sedimenten gewöhnlich als Pyrit vor (Berner, 1981; Berner, 1984; Leventhal, 1983), welcher auch hier eines der wichtigsten Fe-Minerale ist. Trotzdem verlaufen die Kurven der Fe/Al- und Ca/Al-Verhältnisse in Abb. 27 in allen drei Kupferschieferzyklen T1 I-III nahezu parallel, was als Hinweis auf einen signifikanten Anteil von Fe-Carbonaten zu verstehen ist. Anhand von Abb. 28, in der die relativen Häufigkeiten von S, reaktivem Eisen¹⁸ Fe_x (Brumsack, 1989a; Canfield et al., 1992) und dem in Fe-Carbonaten gebundenen C_{min}¹⁹ dargestellt sind, wird untersucht, inwieweit die Fe-haltigen Minerale eine Mischung von Fe-Carbonaten mit Fe-Sulfiden darstellen. Die durchgezogenen Linien erlauben eine Abschätzung des Pyritisierungsgrads (Projektion der Datenpunkte, ausgehend von der Ecke C_{min (Fe-Carbonat)} auf die gegenüberliegende Dreiecksseite). Datenpunkte in der Nähe der unteren durchgezogenen Linie weisen auf eine weitgehende Pyritisierung des Fex hin. Damit liegen die darstellenden Punkte in unmittelbarer Nähe des Pyrit-Feldes (2). Hohe Pyritisierungsgrade finden sich in der Einheit T1 I und in einigen diskreten Horizonten am Übergang vom Zyklus T1 I zum T1 II sowie am Übergang zum Zechsteinkalk (vgl. auch Abb. 27). Außerdem sind das Zechsteinkonglomerat und der Zechsteinkalk am Standort Lohberg sowie der Übergang vom Kupferschieferzyklus T1 III zum Zechsteinkalk am Standort Niederwald 1 stark diagenetisch pyritisiert. Die gestrichelte Linie repräsentiert die Verdünnungslinie Pyrit-Ankerit (von 2 zu 2). Die Reihung der darstellenden Punkte entlang dieser Verdünnungslinie zeigt, dass die Fe-haltigen Minerale im wesentlichen eine Mischung von Pyrit mit Ankerit darstellen. Zur Orientierung markieren die Pfeile eine 1:1-Mischung von Pyrit und Ankerit. Datenpunkte unterhalb der Pyrit-Ankerit-Linie sind vermutlich auf Fehler bei der Abschätzung von Fex, auf andere Metallsulfide (z. B. ZnS oder PbS), Ca- und Ba-Sulfate sowie organisch gebundenen S zurückzuführen.

¹⁸ Die Konzentration des reaktiven Fe wurde nach der Formel $Fe_x = Fe_{(ges)} - Al \cdot 0,25$ berechnet (Brumsack, 1989a).

¹⁹ Die mineralische Kohlenstoffkonzentration der Fe-Carbonate C_{min (Fe-Carbonat)} wurde ermittelt, indem zunächst durch Korrelationsanalyse von Ca und Mg mit C_{min} das terrigene Hintergrundsignal von Ca und Mg (0,55 % bzw. 0,9 %) bestimmt wurde. Durch Subtraktion des in Magnesium- und Calciumcarbonat gebundenen C_{min} vom gesamten C_{min} kann in guter Näherung die C_{min (Fe-Carbonat)} erhalten werden.

Abb. 28: Relative Häufigkeit von C_{min} (Fe-Carbonat), Fe_x und S in den Sedimentkernen Niederwald 1 (links) und Lohberg (rechts); durchgezogene graue Linie: Verdünnunglinie C_{min} (Fe-Carbonat) - FeS bzw. Pyrit; gepunktete graue Linie: Verdünnunglinie: Ankerit-Pyrit.

Sr verhält sich bei der Wahl des Wirtsminerals ambivalenter als Ca, Mg und Mn (Abb. 27). Die mäßige Korrelation von Sr/Al gegen Ca/Al (R = 0,62) deutet an, dass Sr nicht ausschließlich carbonatisch gebundenen ist. Im hangenden T1 III und insbesondere im Zechsteinkonglomerat sowie im Zechsteinkalk finden sich neben den Sr-Carbonaten auch Sr-Phosphate.

Im weniger stark reduzierten Zyklus T1 III und dem Zechsteinkalk soll die Konzentration der Ca-Sulfate zunehmen (Diedel, 1986). Dies scheint aber nur für den Kern Lohberg, welcher im Top auch stark mit Bariumsulfat mineralisiert ist (vgl. Abb. 32), zu gelten.

5.4.4 Pyrit-Schwefel und organischer Kohlenstoff (Corg)

Die Korrelationsdiagramme von S gegen C_{org} können Auskunft über die Ablagerungsbedingungen geben (Berner, 1984; Leventhal, 1983). Unter reduzierenden Bedingungen im Sediment kann infolge der bakteriellen Sulfatreduktion reaktives Fe (Brumsack, 1989a; Canfield et al, 1992) als authigenes Fe-Sulfid gebunden werden, und zwar um so mehr, je höher der Anteil reaktiven Eisens und organischen Materials im Sediment ist. Eine Steigung der Ausgleichsgeraden durch die darstellenden Punkte mit einem C_{org}/S -Verhältnis von 2,8±0,8 (Ø-S/C_{org}-Verhältnis: 0,4) ist typisch für marine Sedimente, die unter oxischen Bedingungen abgelagert wurden (Berner, 1984; Lyons und Berner, 1992). Deutlich niedrigere S/C_{org}-Verhältnisse weisen auf eine S-Limitierung bei der Pyritbildung hin. Eine eventuelle Limitierung der Sulfidisierung durch Fe würde sich im Diagramm nicht bemerkbar machen, da der S bei einem Defizit an reaktivem Fe an organisches Material gebunden werden kann. Ein positiver y-Achsenabschnitt weist auf Pyrit hin, der in der euxinischen Wassersäule gebildet und anschließend abgelagert wurde. Ein solches Milieu ist in der Regel Fe-limitiert. Liegen die Datenpunkte deutlich abseits der eingezeichneten Ausgleichsgeraden, so ist davon auszugehen, dass die Proben stark sekundär überprägt wurden und bei der Fazies-Analyse nicht berücksichtigt werden dürfen.

Da der S im Kupferschiefer des Niederrheinischen Beckens nahezu vollständig als sulfidischer S bzw. Pyrit-Schwefel vorliegt (Heppenheimer, 1995), wird im Folgenden nicht zwischen pyritgebundenem Schwefel und Gesamtschwefel unterschieden. Im oberen Bereich des Kerns Lohberg werden dadurch aber Fehler durch Sulfatschwefel eingeführt (Diedel, 1986). In Abb. 29 sind die Korrelationsdiagramme von S gegen C_{org} für die Sedimentkerne Niederwald 1 und Lohberg dargestellt. In den Zyklen T1 I der Kerne Niederwald 1 und Lohberg liegt der größte Teil der darstellenden Punkte im für marine Sedimente typischen Bereich. Die Ausgleichsgeraden haben mit 0,12-0,28 aber deutlich niedrigere Steigungen als dies für marine Sedimente üblich ist. Der y-Achsenabschnitt der Ausgleichsgeraden ist positiv. Im Zyklus T1 III der Kerne Niederwald 1 und Lohberg und im Zechsteinkalk Ca1 des Kerns Lohberg können die Datenpunkte nicht mehr entlang einer Ausgleichsgeraden aufgereiht werden. Gleichzeitig liegen viele Punkte deutlich oberhalb des typischen marinen Bereichs.

Abb. 29: Korrelation von Gesamtschwefel gegen C_{org} in den Einheiten T1 I bis Ca1 (\blacksquare : stark sekundär überprägte Proben; \bullet : andere Proben). Die gestrichelten Linien geben den normalen marinen Bereich an. Anhand der Ausgleichsgeraden durch die darstellenden Punkte der nicht sekundär überprägten Proben können die y-Achsenabschnitte und S/C_{org}-Verhältnisse</sub> (Steigungen der Ausgleichsgeraden) abgelesen werden.

5.4.5 Spurenmetalle

Aus Abb. 30 können die Anreicherungsgrade vieler Spurenmetalle im Zyklus T1 I der Kerne Niederwald 1, Lohberg Rheinberger Heide und Goslar Z1 relativ zum mittleren Tonschiefer abgelesen werden. In anderen C_{org} -reichen Sedimenten nehmen die syngenetischen Spurenmetallanreicherungen häufig von links nach rechts ab (vgl. Abb. 36 im Kap. 6.3). Diese typische Reihenfolge wurde in den Kupferschiefersedimenten aufgebrochen, da die sekundären Vererzungen zu ungewöhnlich hohen Anreicherungen von Cd, Zn, Pb und einigen anderen Spurenmetallen führten. Im Kern Goslar Z1 wurden durch epigenetische Mineralisationsprozesse die höchsten Metallanreicherungen hervorgerufen (Maximal-konzentrationen: 11,7 % C_{org}, 3,5 % S, 97 ppm Cu, 0,89 % Pb, 2,5 % Zn, 300 ppm Ba, 8 ppm Ag, 175 ppm As, 102 ppm Cd, 125 ppm Co, 420 ppm Mo, 242 ppm Ni, 1,51 ppm Re, 10,7 ppm Sb, 16,4 ppm Tl, 38 ppm U, 1452 ppm V).

Abb. 30: Anreicherungsgrade von einigen Spurenmetallen im Kupferschieferzyklus T1 I relativ zum mittleren Tonschiefer (Wedepohl, 1971a; Wedepohl, 1991). Für die durchschnittliche Re-, Ir-, Ru- und Pt-Konzentrationen in der oberen kontinentalen Kruste werden 200 ppt, 22 ppt, 210 ppt und 510 ppt angenommen (Peucker-Ehrenbrink und Jahn, 2001).

In den Abb. 31 und Abb. 32 sind die Profile der Element/Al-Verhältnisse vieler Spurenmetalle sowie der S- und C_{org}-Gehalte dargestellt. An den C_{org}-armen Einschaltungen nehmen zwar die Element/Al-Verhältnisse von Re, Mo, V, U, Ni und Co ab, nicht aber die S/Al-Verhältnisse. Auch in anderen Sedimentlagen des Kupferschiefers ist ein Zusammenhang mit S kaum gegeben. Die gute Korrelation²⁰ zwischen den C_{org}-Gehalten und den Spurenmetallgehalten spricht für eine weitgehende Bindung dieser Elemente an das organische Material. Die geringe sekundäre Überprägung drückt sich in den relativ parallelen Kurvenverläufen des C_{org}-Profils und den entsprechenden Element/Al-Verhältnissen aus. Die höchsten Anreicherungen sind meist im Zyklus T1 I realisiert.

Auffällig sind aber auch die hohen Re-Anreicherungen im Profil des Kerns Lohberg im Zyklus T1 III (Teufe: 15,049-15,079 m) und die Mo-Anreicherungen in der diagenetischen Pyritlage am Top des Kupferschiefers im Kern Niederwald 1. Zudem sind Mo, V, U und Re auch knapp unterhalb des Kupferschiefers schon leicht angereichert, obwohl die C_{org} -Konzentrationen noch gering sind. Die Anreicherungen von Ni und Co im Zechsteinkonglomerat fallen schon etwas höher aus und lehnen sich hier stärker an das S/Al-Profil an. Die Co/Al-Verhältnisse sind an der Kupferschieferbasis gegenüber den C_{org} -Konzentrationen leicht erhöht.

Die chalkophilen Elemente Zn, Pb, Cu, Cd, As, Tl, Ag und Sb (nicht dargestellt) sowie Fe zeigen eine höhere Affinität zu S als zum organischen Material (Abb. 32). Die Ag- und Assowie die Sb- und Tl-Profile sind einander sehr ähnlich. Besonderes hohe Anreicherungen dieser Spurenmetalle finden sich im Zechsteinkonglomerat sowie in diskreten, schwefelhaltigen oder stark pyritisierten Horizonten bis zum Top des Kupferschiefers.In beiden untersuchten Sedimentkernen kann die von Diedel (1986) beschriebene Zonierung Cu, Pb, Zn, Ba ungefähr wiedergefunden werden. Die Cu-Anreicherungen treten schon im Zechsteinkonglomerat auf (max: 180 ppm Cu im Kern Lohberg) und fallen, wie am Niederrhein üblich, gering aus. Die Anreicherungen von Zn und Pb treten erst im Kupferschiefer auf und betragen maximal 2,0 % Zn (Niederwald 1: am Übergang S1 zu T1 I) bzw. 0,22 % Pb (Niederwald 1: am Übergang T1 I zu T1 II). Damit ist das Material im Vergleich zu anderen Kupferschieferstandorten, beispielsweise der Hessischen Senke, immer noch relativ schwach vererzt (vgl. Heppenheimer, 1995).

Am Standort Lohberg findet man im Zechsteinkonglomerat mit bis zu 11,7 % Ba und im Zechsteinkalk mit bis zu 5,2 % Ba starke Baryt-Mineralisationen. Der Kern Niederwald 1 zeigt geringere Ba-Konzentrationen (maximal: 0,12 % im T1 III). Ebenfalls niedrige

²⁰ Korrelationskoeffizienten R für C_{org} [%] gegen Elementkonzentration [ppm] im Zyklus T1 I bis T1 III im Kern Niederwald 1: Mo 0,95; V: 0,90; U: 0,89; Re: 0,93; Ni: 0,91; Co: 0,91 und im Kern Lohberg: Mo: 0,94; V: 0,78; U: 0,93; Re: 0,79 (werden die stark an Re angereicherten Proben im T1 III ausgeblendet: 0,92); Ni: 0,96; Co: 0,73.

Ba-Konzentrationen wurden an den Stationen Hochwald II, Schacht Rheinberg und Rehmbergschlag (maximal: 0,12 % Ba) gemessen. Stärkere Baryt-Vererzungen treten an den Lokationen Möllen II (maximal: 14,6 % Ba an der Basis des T1) und Rheinberger Heide (maximal: 2,3 % Ba im S1) auf. Die Cd-Profile ähneln dem von Zn.

Da As bevorzugt in Fe-Sulfide eingebaut wird (Belzile und Lebel, 1986), werden hohe As/Al-Verhältnisse als Indikator für diagenetische Pyrite herangezogen (vgl. Abb. 27 und Abb. 32). Pyrit und Pyritvorläufer bilden mengenmäßig die häufigsten sulfidischen Minerale und dienen als Wirtsminerale für die anderen Sulfidbildner (Huerta-Diaz und Morse, 1992; Morse und Arakaki, 1993). Die Bindung von Tl, Sb und Ag an diese Fe-Sulfide kann an den parallelen Profilen der Element/Al-Verhältnisse dieser Elemente und denen von Fe bzw. As abgelesen werden. Die entsprechenden Element/Fe-Verhältnisse innerhalb der Profile schwanken aber stark. In diesem Zusammenhang wird auf die Pyritlagen am Top des Zyklus T1 III hingewiesen, welche auch verhältnismäßig hohe Konzentrationen an Mo, Sb, As, T1 und Cu enthalten (Abb. 31 und Abb. 32). Weitere gesteinsbildende Sulfide sind Bleiglanz und Zinkblende. Es treten nur geringe Anreicherungen von Bi auf (siehe Datenanhang).

Für den Niederrheinischen Kupferschiefer existierten bislang keine PGE-Daten. Im Kern Niederwald 1 wurden an 16 ausgewählten Proben vom Zechsteinkonglomerat bis zum Zechsteinkalk die Gehalte von Ru, Pt und Ir bestimmt. Die ermittelten Ir-Konzentrationen liegen häufig im Bereich der Nachweisgrenze (17 ppt Ir). Die Ru-Konzentrationen sind ebenfalls niedrig, liegen aber deutlich oberhalb der Nachweisgrenze von 3 ppt. Die Ru- und Ir-Konzentrationen sind im Zyklus T1 I und im Zechsteinkonglomerat am höchsten. Lediglich in einer Re-reichen Probe (Teufe: 645,33 m; 470 ppb Re) konnten 270 ppt Ir und 1400 ppt Ru gemessen werden. Diese Probe zeichnet sich außerdem durch die höchste C_{org}-Konzentration (7,5 %) und die höchste Pt-Konzentration (950 ppt; Bereich: 260-950 ppt) aus. Selbst in den schwefelreichsten Proben des Zechsteinkonglomerats (5,4 % und 15,1 % S) sind die PGE-Konzentrationen ähnlich niedrig. Da die PGE nur unwesentlich gegenüber dem Tonschiefer angereichert sind (vgl. mittlere obere Erdkruste: 210 ppt Ru, 22 ppt Ir und 510 ppt Pt; Peucker-Ehrenbrink und Jahn, 2001), ergeben sich keine Hinweise auf eine nachhaltige Beteiligung an epigenetischen Vererzungen. Es ist kein strenger Zusammenhang

Abb. 31: C_{org}-Konzentrationen und Element/Al-Verhältnisse von Mo, V, U, Ni, Co und Re in den Kernen Niederwald 1 und Lohberg. Die grauen Linien markieren die helleren C_{org}-ärmeren ein bis drei cm mächtigen Einschaltungen.

Abb. 32: Element/Al-Verhältnisse von S, Zn, Pb, Ba, Cu, Cd, As und Tl in den Kernen Niederwald 1 und Lohberg. Man beachte beim Ba die unterschiedlichen Skalierungen.

zwischen den PGE- und den C_{org} - bzw. S-Gehalten erkennbar. An anderen Kupferschieferstandorten sind die PGE z. T. viel stärker angereichert (z. B. Bechtel et al., 2001; Kucha, 1993; Pasava, 1993).

5.5 Diskussion

5.5.1 Carbonatphasen und Fe-Sulfide

Verschiedene Autoren gehen trotz des sogenannten Dolomitproblems (z. B. Holland und Zimmermann, 2000) von einer synsedimentären Präzipitation des Dolomits aus (Bechtel und Püttmann, 1997; Schwark, 1992; Sweeney et al., 1987; Wedepohl, 1980). Nach Burns et al. (2000), Engelhardt et al. (1973) und Lippmann (1973) sind für eine Dolomitausfällung hohe Salinitäten und hohe Mg/Cl-Verhältnisse im Meerwasser notwendig. Diese Bedingungen sind häufig in ariden, hypersalinen Becken realisiert und werden auch für das Zechsteinmeer angenommen (vgl. Schwark, 1992 und Zitate darin). Zudem sollen ein hoher Kohlenstoffdioxidpartialdruck in der Atmosphäre (Burns et al., 2000) und eine niedrige Sulfatkonzentration (Inhibitorwirkung des Sulfats) für die Dolomitablagerung von Vorteil sein (Baker und Kastner, 1981; Gunatilaka et al., 1984).

Sweeney et al. (1987) vermuteten daher für den Marl Slate, dass die syngenetische Fällung von Dolomit im reduzierenden, sulfatarmen Milieu unterhalb der Redoxkline in der Wassersäule stattgefunden habe. Veränderungen der Redoxbedingungen führten demnach zu unterschiedlichen Dolomitgehalten im Sediment. Dem widerspricht aber die Tatsache, dass auch bei hohen bakteriellen Umsatzraten die Sulfatkonzentration im Wasserkörper kaum abnimmt. So findet man z. B. im Tiefenwasser des Schwarzen Meeres trotz der geringen Austauschrate bei einer Salinität von 22,5 ‰ eine Sulfatkonzentration von ca. 18 mM (Jørgensen et al., 2001; Murray et al., 1991), was der normalen Sulfatkonzentration von 28 mM bei einer Salinität von 35‰ entspricht. Außerdem konnte v. Lith (2001) nachweisen, dass in einem euxinischen System vor allem die sulfatreduzierenden Bakterien die Dolomitpräzipitation katalysieren. Dies erweitert die Vorstellungen von Baker und Kastner (1981) sowie Gunatilaka et al. (1984) insofern, als dass die Dolomitfällung im reduzierenden Milieu nicht ausschließlich anhand der Inhibitorwirkung des Sulfats diskutiert wird. Die Dolomitfällung scheint vielmehr durch hohe Mg-Konzentrationen bzw. Salinitäten, hohe Alkalinitäten und hohe Dichten an sulfatreduzierenden Bakterien begünstigt zu werden (Burns et al., 2000; v. Lith, 2001). Diese Bedingungen sind wegen der niedrigen Migration und den viel größeren Substratkonzentrationen häufiger im Porenwasser als im Meerwasser realisiert.

Nach den Modellen von Sweeney et al. (1987) und Schwark (1992) sollte der Dolomitisierungsgrad im Kupferschiefer zum Top hin sinken, weil im Laufe der Kupferschiefersedimentation die Salinität und die Sulfatkonzentration angestiegen sein sollen. Eine zum Top hin zunehmende Dolomitisierung kann aber nicht allgemeingültig beobachtet werden, da die unterschiedlichen Kerne aus dem Niederrheinischen Becken kein einheitliches Profil bezüglich des Dolomitisierungsgrades aufzeigen. Während an einigen Stationen die Dolomitisierung vom Liegenden zum Hangenden variiert, sind die Sedimente an den Stationen Niederwald 1, Lohberg, Möllen II und Rehmbergschlag auf ganzer Länge nahezu vollständig dolomitisiert. Eine frühdiagenetische Dolomitisierung im Kuperschiefersediment oder an der Meerwasser/Sediment Grenzschicht ist damit viel wahrscheinlicher. Hierdurch könnte auch erklärt werden, dass die Profile der Standorte Niederwald 1 und Lohberg auf ganzer Länge dolomitisiert sind, obwohl euxinische Bedingungen in der Wassersäule nur während der Ablagerung der Einheiten T1 I und T1 II auftraten (vgl. 5.5.4). Im Sediment können sich euxinische Verhältnisse nämlich auch dann ausbilden, wenn die Wassersäule nicht anoxisch ist (Zyklus T1 III). Der von Sweeney et al. (1987) herangezogene Parameter des Verbrauchs von Sulfat an der Redoxkline scheint daher für die Dolomitfällung unerheblich zu sein.

Sowohl an den Carbonaten als auch am Kerogen konnte eine Fraktionierung mit einer leichten Bevorzugung des C-Isotops ¹²C nachgewiesen werden (Bechtel und Püttmann, 1997; Sweeney et al., 1987). Bechtel und Püttmann (1997) gehen daher davon aus, dass auch C_{min} aus aufgearbeitetem organischem Material stammt. Beim anaeroben mikrobiellen Abbau organischen Materials werden häufig so hohe Alkalinitäten im Porenwasser erreicht, dass eine authigene Carbonatbildung direkt im Sediment möglich wird. Bei einer ausreichenden diffusionskontrollierten Zufuhr von gelöstem Mg²⁺ aus dem Meerwasser sollte daher auch die authigene Dolomitbildung im Sediment stattgefunden haben können, denn Matsumoto (1992), Middelburg et al. (1990) und v. Lith (2001) konnten die authigene Bildung von Mg-Carbonaten in rezenten und subrezenten anoxischen Sedimenten bereits nachweisen.

Das Auftreten von Rhodochrosit bzw. Mn-Ca-Mischcarbonaten ist durch die nahezu parallel verlaufenden Teufenprofile von Mn und Ca belegt (Abb. 27). Frühdiagenetische Mn-Ca-Mischcarbonate können bei ausreichend hohen Alkalinitäten unterhalb der Meerwasser/Sediment-Grenzschicht in anoxischen Sedimenten nach der Reduktion von Mn-Oxiden gebildet werden (Huckriede und Meischner, 1996; Lüschen, 1998; Suess, 1979). Auffällig ist, dass das Mn/Ca-Verhältnis in den Kernen Niederwald 1 und Lohberg zum Top hin nur geringfügig abnimmt (nicht dargestellt), obwohl sich die Redoxbedingungen während der Kupferschiefersedimentation nachhaltig geändert haben (Schwark, 1992). Die Mn-Anreicherungen (Abb. 30) in den Carbonaten lassen also wie die Dolomitisierungsgrade keinen Bezug zu den Redoxbedingungen in der Wassersäule erkennen, wie dies von Calvert (1996), Demaison (1991), Pedersen und Calvert (1990) sowie Quinby-Hunt und Wilde (1996) diskutiert wird.

Es wäre also prinzipiell möglich, dass eine authigene Dolomitausfällung und Mn-Ca-Mischcarbonatbildung während der frühen Diagenese im Sediment unter der Beteiligung von sulfatreduzierenden Mikroorganismen vorangetrieben wurde. Die Bildung der feinkristallinen authigenen Carbonate benötigte dann keine sekundäre Rekristallisation. Im Folgenden wird aber gezeigt, dass neben der frühdiagenetischen Dolomitisierung auch eine epigenetische Mineralneubildung denkbar ist. Beide Modelle ließen keinen Bezug zwischen dem Dolomitisierungsgrad im Sediment und den Redoxbedingungen in der Wassersäule erkennen. Die Bildung von Dolomit in der Wassersäule erscheint aber eher unwahrscheinlich, zumal die Mg-Konzentrationen im permischen Meerwasser (52 mmol/l) vermutlich ähnlich hoch waren wie heute (55 mmol/l)und die rezenten Mg/Ca-Verhältnisse (Mg/Ca-Verhältnis: 5,2) die des Perms (Mg/Ca-Verhältnisse: 3,1-4) deutlich übertreffen sollen (Horita et al., 2002).

Für die Bildung authigener Fe-Minerale sind vor allem die gelösten HS⁻- und CO₃²⁻-Konzentrationen im Porenwasser von Bedeutung (Berner, 1981). Über die Verfügbarkeit von S bei der frühdiagenetischen Pyritisierung können möglicherweise die S-C_{org}-Korrelationsdiagramme (Abb. 29) Auskunft geben (Berner, 1984; Leventhal, 1983). Für die Kupferschieferzyklen T1 II und T1 III des Kerns Niederwald 1 liegen viele Datenpunkte deutlich oberhalb des typischen marinen Bereichs. Außerdem können den Punkten keine zuverlässigen Ausgleichsgeraden zugeordnet werden. Gleiches gilt für die Datenpunkte im Zyklus T1 III und im Zechsteinkalk des Kerns Lohberg. Diese erhöhten S-Gehalte sind vermutlich auf epigenetische Prozesse zurückzuführen. Offenbar sind diese Sedimentlagen besonders stark sekundär pyritisiert. In den hangenden, mit Baryt mineralisierten Lagen tragen neben den Pyriten auch Sulfate zum Gesamtschwefelgehalt bei (Diedel, 1986; Vaughan et al., 1989). Die S/C_{org}-Verhältnisse in den vererzten Proben sind für eine Fazies-Analyse bezüglich der Redoxbedingungen in der Wassersäule nicht geeignet.

Der positive y-Achsenabschnitt der Ausgleichsgeraden zeigt für die Zyklen T1 I und T1 II eine euxinische Wassersäule während der Ablagerungszeit an. Die für den Zyklus T1 III (Kern Lohberg) ermittelte Ausgleichsgerade weist einen niedrigeren y-Achsenabschnitt auf. Dies könnte auf ein mit der Zeit ansteigendes Redoxpotential hinweisen. In diesem Fall würde weniger Pyrit in der Wassersäule gebildet und von dort ins Sediment verfrachtet. Die Aussagekraft der S-Signale ist in diesen Sedimentlagen aber stark herabgesetzt.

Die geringen Steigungen der Ausgleichsgeraden in den Zyklen T1 I und T1 II könnten auf eine anfängliche Schwefellimitierung im Porenwasser bei der frühdiagenetischen Pyritisierung im Sediment hinweisen. Zudem folgern Bechtel und Püttmann (1997) aus Untersuchungen an C-Isotopen, es habe ein methanogener Abbau des organischen Materials stattgefunden, was ebenfalls ins Bild der Sulfatlimitierung während der frühen Diagenese passen würde. Auch aus den hohen Gehalten an Ankerit könnten Hinweise auf eine Schwefellimitierung abgeleitet werden. Die eingeschränkte Verfügbarkeit von S sollte dann die vollständige frühdiagenetische Pyritisierung von reaktivem Fe verhindert haben, so dass gelöstes Fe²⁺ mit anderen Bindungspartnern, z. B. mit vollständig oxidiertem organischem Material ($CO_3^{2^-}$), ausgefällt worden sein könnte.

Marowskys (1969) Untersuchungen an S-Isotopen im zentralen Kupferschieferbecken ergaben allerdings keine Hinweise auf ein abgeschlossenes System bezüglich der Sulfatverfügbarkeit während der Sedimentation. Da im Wasserkörper Sulfat keine limitierende Komponente darstellt, erscheint es wenig wahrscheinlich, dass Sulfat im reduzierenden Tiefenwasser trotz der vergleichsweise niedrigen Sulfat-Konzentration des permischen Meerwassers von 19 mmol/1 (Horita et al., 2002) vollständig umgesetzt wurde. Es wäre zwar denkbar, dass in dem durch Schwellen abgetrennten Niederrheinischen Becken der Wasseraustausch und die Sulfatzufuhr so stark eingeschränkt waren, dass die von der Meerwasser/Sediment-Grenzschicht ausgehende Sulfat nachliefernde Diffusion den bakteriellen Umsatz im Porenwasser nicht kompensieren konnte. Dies erscheint angesichts der hohen Sedimentationsraten im Niederrheinischen Becken und den hohen syngenetischen Anreicherungen von Re und Mo im Zyklus T1 I, welche für eine signifikante Meerwasserzufuhr ins Niederrheinische Becken sprechen, aber eher unwahrscheinlich (vgl. Kap. 5.4.5).

Es wird daher ein Szenario favorisiert, nach dem die authigene Bildung von Ankerit, Dolomit, Mn-Ca-Mischcarbonaten und Baryt (vgl. Kap. 5.4.5) unter einer aszendenten epigentischen Zufuhr von gelösten Fe-, Mg-, Mn- und Ba-Ionen unter einer gleichzeitigen oxidativen Zersetzung organischen Materials vonstatten ging. Ist während der epigenetischen Carbonatisierung nur wenig Sulfat verfügbar gewesen, kann auch nur eine geringe Freisetzung von HS⁻ erfolgt sein. Entsprechend würden aszendent zugeführte Fe²⁺-Ionen mit gelöstem $CO_3^{2^-}$ gefällt werden. Die Fe-Carbonate wären dann epigenetisch am Fundort gebildet worden, würden aber nicht auf eine syngenetische S-Limitierung hinweisen. Die Annahme der epigenetischen Mineralneubildung unter S-Mangel könnte also die geringe sekundäre Sulfidisierung und die von Schwark (1992) beschriebene feinkörnige Struktur der Fe-Carbonate erklären. Für diese Hypothese spricht auch die Tatsache, das die hohen Ankeritgehalte kaum durch den Austausch bzw. die Remobilisierung des im Pyrit gebundenen Fe durch Zn, Pb und Cu erklärt werden können. Das Fehlen von gelöstem Sulfat während der epigenetischen Mineralisation würde außerdem erklären, dass die aufsteigenden Ba-haltigen Lösungen den gesamten Kupferschiefer penetrieren konnten und die Baryt-Mineralisationen erst im Top des Kupferschiefers bzw. im Zechsteinkalk auftreten (vgl. Diedel, 1986; Vaughan et al., 1989). Einen der Ankeritfällung analogen Prozess müsste man für die authigene Dolomitiserung und Mn-Carbonatbildung annehmen, da es wenig wahrscheinlich erscheint, dass die aszendenten Lösungen zwar Fe²⁺-Ionen aber keine Mg²⁺- und Mn²⁺-Ionen mit sich führten.

Ob die Dolomite möglicherweise doch frühdiagenetischen bakteriellen Ursprungs sind, könnte vermutlich anhand der Morphologie der Kristalle geklärt werden (v. Lith, 2001). Außerdem könnte eine isotopengeochemische Untersuchung der sulfidischen Phase weitere Klarheit bezüglich einer S-Limitierung während der Ablagerung schaffen und zur weiteren Aufklärung des Zeitpunktes der Ankeritbildung beitragen.

5.5.2 Syngenetische und epigenetische Mineralisation

Die Spurenmetallkonzentrationen lassen Rückschlüsse auf das Ablagerungsmilieu zu, sofern die primären Signaturen erhalten geblieben sind. Wie oben erwähnt, wird für die Spurenmetallmineralisation ein mehrphasiger Anreicherungsmechanismus angenommen, der die Metallverteilung nachhaltig verändert hat (Heppenheimer, 1995; Sun, 1996; Sun und Püttmann, 1997; Sun und Püttmann, 2000; Vaughan et al., 1989). Die erste Stufe bildete die syngenetische oder frühdiagenetische Mineralisation, in der die für Schwarzschiefer typischen Anreicherungsgrade erreicht wurden. Sulfidbildung und die Adsorption an organischem Material waren an dieser Stelle die wichtigsten Prozesse, die zur Spurenmetallanreicherung führen. Über den zyklischen Regenerationsprozess von MnO₂ und gelöstem Mn²⁺ an der Redoxkline wurden viele Spurenmetalle vom Oberflächenwasser ins Tiefenwasser verfrachtet

(Berrang und Grill, 1974; Colodner et al., 1993a; Haraldson und Westerlund, 1991; Jacobs et al., 1987; Jacobs et al., 1985; Lewis und Landing, 1991; Lewis und Landing, 1992; Murray, 1975; Tebo, 1991). In der zweiten bis vierten Stufe (Sun, 1996; Sun und Püttmann, 1997) konnten durch Zufuhr von gelösten Komponenten aus den unterlagernden Sedimentlagen Austauschreaktionen mit Pyrit und Mineralneubildungen stattfinden. Aus dem karbonischen Untergrund dürften von heißen, sauren, chloridischen Lösungen Metallionen heraus gelöst worden sein (Diedel, 1986). Bechtel et al. (1995) folgern aus der geringen thermischen Belastung des organischen Materials, dass keine hydrothermalen Lösungen im Niederrheinischen Becken auftraten. Die thermochemische Sulfatreduktion (Machel, 2001; Sun und Püttmann, 1997) spielt für das Niederrheinische Becken daher wahrscheinlich nur eine untergeordnete Rolle (Bechtel et al., 1995; Heppenheimer, 1995). Die Vererzungen lassen aber keinen Zweifel an dem aszendenten Transport von mobilisierten Spurenmetallen zu.

Obwohl die nachträgliche Überprägung zur Anreicherung einiger Metalle bis in den Prozentbereich führte, sollen in dieser Arbeit die Mineralisationsprozesse nicht im Detail entschlüsselt werden. Dennoch ist es für weitergehende Betrachtungen von Bedeutung, welche der Spurenmetallsignaturen nachhaltig durch epigenetische Prozesse sekundär überprägt wurden.

vorwiegend syngenetisch angereicherte Elemente

Zunächst werden die vorwiegend syngenetischen Anreicherungen von V, Mo, U und Re, welche hauptsächlich mit organischem Material assoziiert sind, diskutiert. Die Reduktion des Vanadyl-Kations (VO^{2+}) in der Wassersäule ermöglicht die Adsorption von V an organisches Material und dadurch hohe Anreicherungsgrade in C_{org}-reichen Sedimenten (Cheshire et al., 1977; Emerson und Huested, 1991; Lewan und Maynard, 1982; Wehrli und Stumm, 1989). Dementsprechend korrelieren die V-Gehalte gut mit den C_{org}-Konzentrationen. Die redoxsensitiven Elemente Mo, U und Re kommen aber selbst im anoxischen Meerwasser in hohen Konzentrationen als Oxoanionen bzw. $UO_2(CO_3)_3^{4-}$ vor und werden erst in den Sedimenten reduziert (Anbar et al., 1992; Anderson und Fleisher, 1991; Crusius et al., 1996; Emerson und Huested, 1991; Klinkhammer und Palmer, 1991; Koide et al., 1986a; Lovley, 1991; Ravizza et al., 1991; Vorlicek und Helz, 2002). Nach der Diffusion ins Porenwasser werden sie entweder adsorptiv an organisches Material gebunden, als Sulfid gefällt bzw. in Fe-Sulfide eingebaut (Mo und Re) oder als UO_2 abgelagert. Nur Mo zeigt

schon im Wasserkörper an der Redoxkline in nennenswertem Maße Partikelreaktivität an Fe-Sulfiden oder Mn-(Oxo)hydroxiden (Berrang und Grill, 1974; Colodner et al., 1993a; Crusius et al., 1996; Crusius und Thomson, 2000; Helz et al., 1996) und kann schon bei der Pyritpräzipitation aus der Wassersäule angereichert werden. In den Anreicherungsmechanismen ist die hohe Affinität dieser Elemente zum organischen Material und die der syngenetischen und frühdiagenetischen Signaturen begründet. Erhaltung Die dargestellt) Korrelationsanalyse von Re gegen Corg (nicht lässt mit ihrem Korrelationskoeffizienten von R = 0.79 vermuten, dass die auffällig hohe Anreicherung von Re im Zyklus T1 III (Abb. 31) möglicherweise durch eine sekundäre Re-Umlagerung hervorgerufen wurde. Werden diese Anreicherungen bei der Korrelationsanalyse ausgeblendet, so ergibt sich ein Korrelationseffizient von R = 0.91. Anhand der so berechneten Ausgleichgeraden kann die wahrscheinlichere syngenetische Re-Konzentration in diesen Sedimentlagen berechnet werden. Sie sollte etwa 130-160 ppb Re betragen haben (tatsächlich gemessen: > 400 ppb Re). Anhand von Untersuchungen der Re- und Os-Isotope sollte geklärt werden können, ob die Re-Anreicherungen in diesen Proben tatsächlich sekundärer Natur sind.

Außerdem zeigen die Elemente Mo, V, Re und U schon knapp unterhalb der Kupferschieferbasis leicht erhöhte Element/Al-Verhältnisse. Diese sind vermutlich ebenfalls auf eine Mobilisierung im Zyklus T1 I zurückzuführen. Eine abwärtsgerichtete Diffusion von Re kann z. B. aus Untersuchungen an Re- und Os-Isotopen abgeleitet werden, da im Zechsteinkonglomerat stark erhöhte ¹⁸⁷Os/¹⁸⁶Os-Verhältnisse gefunden wurden (M. Brauns, Universität Giessen, persönl. Mittl.). Da Re im Kupferschiefer stark angereichert ist und ¹⁸⁷Os ein stabiles Tochterprodukt von ¹⁸⁷Re ist, gibt es keine andere plausible Quelle für ¹⁸⁷Re bzw. das radiogene ¹⁸⁷Os als den Kupferschiefer. Das Re-System scheint aber, mit Ausnahme der Sedimente im Zyklus T1 III des Kerns Lohberg, nur geringfügig gestört worden zu sein (vgl. auch Jaffe et al., 2002), da die Altersbestimmung im Kupferschiefer durch die Re- und Os-Isotope (Cohen et al., 1999; Creaser et al., 2002; Ravizza und Turekian, 1989) ein ungefähres Alter (Errorchrone) von ca. 260 Mio. a anzeigt (Brauns, persönl. Mittl.). Dies entspricht etwa dem Ablagerungsalter des Kupferschiefers. Für Mo, U und V kann ein vergleichbarer abwärtsgerichteter Transport angenommen werden.

• syngenetisch und epigenetisch angereicherte Elemente

Ni und Co sind nicht nur im Kupferschiefer, sondern auch im Zechsteinkonglomerat stark angereichert (Abb. 31). Zwar ähneln deren Element/Al-Profile im Kupferschiefer T1 I-III der C_{org}-Kurve, vor allem im Profil des Kerns Lohberg ergeben sich aber auch sichtbare Zusammenhänge mit dem S-Profil (Abb. 32).

Obwohl Ni wie V zunächst von organischen Liganden komplexiert wird (Lewan und Maynard, 1982), wird es beim Abbau des organischen Materials erneut freigesetzt, um dann als Sulfid gefällt zu werden (Calvert und Pedersen, 1993). Ein großer Teil des Ni wird daher trotz der guten Korrelation mit C_{org} ($R_{Niederwald 1} = 0,83$; $R_{Lohberg} = 0,93$) vermutlich auch in den Sulfiden gebunden sein.

Co ist sehr oberflächenreaktiv (Murray, 1975) und wird mit dem Mn-Zyklus an der Redoxkline in den anoxischen Wasserkörper befördert (Jacobs et al., 1987; Jacobs et al., 1985; Lewis und Landing, 1991; Lewis und Landing, 1992). Co ist ein typischer Sulfidbildner und sedimentiert gewöhnlich nach Kopräzipitation mit in der Wassersäule gebildeten Fe-Sulfiden (Huerta-Diaz und Morse, 1992; Kiratli und Ergin, 1996; Lewis und Landing, 1992; Morse und Arakaki, 1993). Erstaunlicherweise ähnelt zumindest im Kern Niederwald 1 der Verlauf des Co/Al-Profils der C_{org}-Kurve stärker als dem S/Al-Profil. Nur an der Kupferschieferbasis und im Zechsteinkonglomerat weicht das Co/Al-Verhältnis deutlich von der C_{org}-Kurve ab.

Die Anreicherungen von Ni und Co im Zechsteinkonglomerat sind vermutlich auf einen gegenläufigen Transport von gelöstem Co bzw. Ni aus dem liegenden Karbon und gelöstem HS⁻ aus dem darüberliegenden, sulfidisierten Kupferschiefer zurückzuführen. Auf die Bedeutung entgegengesetzter Diffusionsströme für die Mineralneubildung in rezenten Sedimenten wird z. B. in den Arbeiten von Berner (1969), Boesen und Postma (1988) sowie von Lüschen (1998) aufmerksam gemacht. Analog zu dem dort beschriebenen frühdiagenetischen Mechanismus zur Fe-Sulfidfällung sollten Co- und Ni-Sulfide im liegenden Zechsteinkonglomerat gebildet worden sein. Diese Co- und Ni-Anreicherungen dürften also bereits auf spätdiagenetische Prozesse zurückzuführen sein. Einige sulfidreiche Sedimentlagen im Kupferschiefer (z. B. am Übergang vom T1 I zum T1 II) sind durch diesen Prozess ebenfalls leicht überprägt worden.

Insgesamt scheint die primäre Ni-Signatur weitgehend erhalten geblieben zu sein. Die Co-Profile sind wegen der schlechteren Korrelation nachhaltiger überprägt worden (Korrelation von Co gegen C_{org} : $R_{Niederwald 1} = 0,91$ bzw. $R_{Lohberg} = 0,73$).

• vorwiegend epigenetisch angereicherte Elemente

Die epigenetischen Mineralneubildungen beziehen sich fast ausschließlich auf die chalkophilen Elemente und Ba. Vielfach finden sich schon starke Anreicherungen im Zechsteinkonglomerat. Die Anreicherungen von Fe, Zn, Pb, Cu, Cd, As, Tl, Ag und Sb im Zechsteinkonglomerat und im Kupferschiefer sind ebenfalls auf den für Ni und Co beschriebenen Anreicherungsmechanismus zurückzuführen. Sie können teilweise sogar noch im Top des Kupferschiefers angetroffen werden. Die Sulfidfällung dürfte maßgeblich von den Löslichkeitsprodukten der entsprechenden Sulfide bestimmt worden sein, obwohl die Reihenfolge der Metallfällung nicht exakt mit den Beträgen der Löslichkeitsprodukte übereinstimmt. Trotz der starken Schwankungen in den Zn/Fe- bzw. Pb/Fe-Verhältnissen ist nach Heppenheimer (1995) die Pyrit-Verdrängung der bedeutendste Prozess für die Metallogenese des Kupferschiefers im Niederrheinischen Becken. Die sehr hohen Anreicherungen beschränken sich aber auf einige diskrete Horizonte. Da im Kupferschiefer aufgrund der geringen Permeabilität kein lateraler Lösungstransport stattgefunden haben dürfte (Schwark, 1992), könnte dies auf einen lange aufrecht erhaltenen Gleichgewichtszustand der entgegengesetzten Diffusionsströme der sulfidbildenden Metalle und von HShinweisen. In den Horizonten, in denen die Diffusionsfronten von gelösten Metallionen und HS⁻ dauerhaft aufeinandertrafen, könnten sich starke Metallanreicherungen ausbildet haben. Die stark mineralisierten Horizonte sind augenscheinlich nicht zu erkennen und wurden nur durch die einer hochauflösende Beprobung sicher erfasst.

Isotopengeochemische und mineralogische Untersuchungen haben gezeigt, dass selbst die Baryt-Konkretionen im hangenden Zyklus T1 III und dem Zechsteinkalk als Produkt einer den Kupferschiefer von unten durchdringenden Baryt-Front verstanden werden müssen (Vaughan et al., 1989). Die hohen Ba-Anreicherungen im Kern Lohberg treten nur in den C_{org}-armen Horizonten auf, da nur in diesen ausreichend Sulfat für eine Baryt-Fällung vorhanden war. Insofern dürfte der Porenraum im Kupferschiefer während der epigentischen Diagenese relativ arm an Sulfat und HS⁻, dem Produkt der anaeroben Sulfatreduktion, gewesen sein. Entsprechend wurden neben den epigenetisch gebildeten Pyriten wahrscheinlich auch authigene Ankerite ausgefällt. Im Kern Lohberg tragen die Baryt-Konkretionen im Top des Sedimentkerns schon zu ca. einem Drittel der gesamten Schwefelkonzentrationen bei. Diese Sedimentlagen weisen gleichzeitig erhöhte Gips- und Anhydritgehalte auf (vgl. Abb. 27, Abb. 32 und Diedel, 1986). Die Art des Untergrundes hat nach Diedel (1986) einen nachhaltigen Einfluss auf den Metallgehalt und die Zusammensetzung der chloridischen Lösungen gehabt. So werden mit dem Fehlen der Cu-reichen Rotliegendsedimente die niedrigen Cu-Anreicherungen erklärt (Diedel, 1986). Auch die Ba-Vererzungen sollen sich durch die Art des karbonischen Untergrunds erklären lassen (Diedel, 1986). Die westlichen Standorte, welche dem Westphal A oder B aufliegen, müssten demnach Ba-reicher sein als die östlichen, welche vom Westphal C unterlagert werden. Dieser Trend lässt sich aber anhand der hier diskutierten Kerne nicht konsequent nachvollziehen. So zeigen die nahe benachbarten Kerne Lohberg und Rehmbergschlag (Schallenberg, 1997) sowie Niederwald 1 und Station 132 (Diedel, 1986) sehr unterschiedliche Ba-Konzentrationen.

Die hier vorgestellten Profile verdeutlichen, dass in den aus dem Karbon emporgestiegenen Lösungen neben Fe, Zn, Pb, Cu und Ba auch As, Cd, Tl, Sb, Ag und etwas Co enthalten waren. Die entsprechenden Signaturen sind im Zechsteinkonglomerat und im Kupferschiefer nachhaltig überprägt worden, so dass sie keinen Rückschluss auf die ursprünglichen Gehalte mehr zulassen. Der sehr heterogene Untergrund führte zu sehr unterschiedlichen Mineralisationsgraden. Offensichtlich hatte das ausgeprägte Graben- und Störungssystem und die örtliche Nähe des Probenstandortes zu diesen Störungen einen maßgeblichen Einfluss auf die Spurenmetallmineralisation in den Sedimenten des basalen Zechsteins. Im Kupferschiefer sind die Profile von Co, Tl, Ag, Bi und Sb weniger stark überprägt als im Zechsteinkonglomerat. Die Konzentrationen von Mo, Re, V, U, Ni und Pt scheinen, bis auf den Zyklus T1 III im Kern Lohberg, weitgehend unbeeinflusst geblieben zu sein. Sekundäre Überprägungen machen sich für diese Elemente wegen der starken syngenetischen Anreicherung kaum bemerkbar. Geht man davon aus, dass die PGE ebenfalls leicht hätten mobilisiert werden können, so muss gefolgert werden, dass das liegende Karbon sehr niedrige PGE-Konzentrationen aufweist.

5.5.3 Redoxbedingungen in der Wassersäule

Ein Ziel dieser Arbeit ist es, anhand von anorganisch-geochemischen Redoxindikatoren die Ablagerungsbedingungen des Kupferschiefers zu charakterisieren. Grundsätzlich wird zwischen den in Tab. 1 dargestellten Stadien der Sauerstoffarmut unterschieden. Im Kontext der Kupferschiefersedimente wird geprüft, inwieweit die *Proxies* eine Zuordnung zu den einzelnen Stadien der Sauerstoffverfügbarkeit gewährleisten. Nach dem von Schwark (1992) entwickelten Faziesmodell für den Niederrheinischen Kupferschiefer wurden die Sedimente zunächst unter einer reduzierenden Wassersäule mit geringer Salinität abgelagert. Der unterste Zyklus T1 I stellt die Einheit mit den am stärksten reduzierenden Ablagerungsbedingungen dar. Während der Sedimentation nahmen Schwark (1992) zufolge die Salinität und das Redoxpotential zu, so dass die zunächst feine und gleichmäßige Laminierung im Laufe der Ablagerung des Zyklus T1 II etwas flaseriger wurde. Zudem nimmt die Mächtigkeit der siliziklastisch-carbonatischen Einzellaminae zu, während die bituminösen Lagen in ihrer Mächtigkeit konstant bleiben. Mit dem dritten Zyklus T1 III nahm der marine Einfluss wahrscheinlich zwischenzeitlich ab, um von einem stärker terrestrisch geprägten Milieu abgelöst zu werden. Der Übergang zum heißen, trockenen Klima des oberen Perm wird mit dem Zechsteinkalk eingeleitet (Paul, 1991). Die ansteigenden Temperaturen könnten schon im Zyklus T1 III zu einer Meeresspiegelabsenkung geführt haben.

Dieses von Schwark (1992) entwickelte Modell wird im Rahmen der weiteren Diskussion verifiziert und erweitert. Dazu werden unter anderem die nach Arthur und Sagemann (1994), Jones und Manning (1994) sowie Wignall (1994) wichtigsten Redoxparameter herangezogen. Von Jones und Manning (1994) werden die Parameter V/Cr, Ni/Co, DOP (Degree of Pyritisation), U/Th bzw. authigenes U als besonders zuverlässig erachtet. Wegen der diagenetischen Überprägungen können weder das Ni/Co-Verhältnis noch der DOP für die Analyse der Redoxbedingungen in der Wassersäule herangezogen werden. Zuletzt wird das Re/Mo-Verhältnis (Crusius et al., 1996) mit in die Diskussion einbezogen. Eine Darstellung der verwendeten Parameter findet sich in Abb. 33.

5.5.3.1 V/Al- bzw. V/Cr-Verhältnisse

In der Kupferschieferliteratur wird häufig das V/Cr-Verhältnis (Ernst, 1970) zur Analyse der Redoxbedingungen verwendet (Diedel, 1986; Heppenheimer, 1995; Schwark, 1992; Sun und Püttmann, 1996). Demnach sollen V/Cr-Verhältnisse > 2 auf anoxische Bedingungen hinweisen. Die Anwendung des V/Cr-Verhältnisses wurde von Jones und Manning (1994) weiter verfeinert. Die Autoren gehen bei V/Cr-Verhältnissen < 2 von einer oxischen, bei Werten > 4,25 von einer euxinischen Wassersäule aus. Die Normierung der V-Konzentrationen auf Cr soll vor allem eine Normierung auf die detritische Fraktion bewirken. Spinelle, welche häufig viel Cr enthalten, sind aber oft in Schwerminerallagen angereichert. Das detritische Cr/Al-Verhältnis ist daher vom Schwermineraleintrag abhängig.

Außerdem ist Cr in C_{org}-reichen Sedimenten häufig mit organischem Material assoziiert (Brumsack und Gieskes, 1983), so dass die Cr/Al-Verhältnisse gegenüber dem mittleren Tonschiefer leicht erhöht sein können (vgl. Abb. 33). Bei der Normierung auf Cr wird also nur in C_{org}- und schwermineralarmen Sedimenten eine Normierung auf die alumosilikatische Fraktion durchgeführt. Außerdem ist V häufig in Tonmineralen angereichert (Breit und Wanty, 1991), so dass schwankende Toneinträge zu variablen V/Cr-Verhältnissen führen. Um die möglichen Fehlerquellen zu beseitigen, sollte statt des V/Cr-Verhältnisses daher besser das V/Al-Verhältnis zur Analyse der Redoxbedingungen verwendet werden. Anhand des Cr/Al-Verhältnisses des mittleren Tonschiefers (ca. $10 \cdot 10^{-4}$; Wedepohl, 1971a) können die Grenzen des V/Al-Verhältnisses für anoxische bzw. dysoxische Ablagerungsbedingungen abgeschätzt werden. Die für unterschiedliche Redoxzustände indikativen V/Al-Verhältnisse sollten demnach $20 \cdot 10^{-4}$ (dysoxisch) bzw. $42,5 \cdot 10^{-4}$ (euxinisch) betragen.

Im Kupferschiefer beider Kerne sind die V/Al- bzw. V/Cr-Verhältnisse im Zyklus T1 I am höchsten. Diese Sedimente sollten folglich unter euxinischen Bedingungen abgelagert worden sein. Aus dem V/Al-Verhältnis des Kerns Niederwald 1 kann weiter abgelesen werden, dass das Redoxpotential am bzw. kurz nach dem Übergang vom Zyklus T1 I zum Zyklus T1 II sprunghaft zunahm. Das Redoxpotential stieg aber zunächst nicht bis in den oxischen Bereich an. Noch im Zyklus T1 II sollten sich gemäß den V/Al-Verhältnissen wieder stärker reduzierende, möglicherweise euxinische Bedingungen ausgebildet haben. Ein vergleichbares Maximum in den V/Al-Verhältnissen kann auch in den Sedimentkernen Hochwald II, Rheinberger Heide und Schacht Rheinberg (Heppenheimer, 1995; Schallenberg, 1997; Schwark, 1992) erkannt werden. Zum Ende der Kupferschiefersedimentation gingen die V-Anreicherungen im Kern Niederwald 1 erneut zurück, was entsprechend den Schwellenwerten als Hinweis auf dysoxische oder oxische Bedingungen gewertet werden muss. Im Kern Lohberg fällt der Rückgang des V/Al-Profils im zweiten Zyklus geringer aus als am Standort Niederwald 1. Zudem liegt das zweite Maximum der V/Al-Verhältnisse im obersten Zyklus T1 III. Die V/Al-Profile der Kerne Niederwald 1, Lohberg und Rhembergschlag ähneln zwar denen der Kerne Hochwald II, Möllen II, Schacht Rheinberg und Rheinberger Heide dargestellt; Heppenheimer, 1995; Schwark, 1992; (nicht Schallenberg, 1997), liefern aber im Vergleich sehr hohe Absolutwerte. In den Kernen Lohberg und Rhembergschlag (Heppenheimer, 1995) sind die V/Al-Verhältnisse fast auf gesamter Länge größer als 50. Demnach sollten die reduzierenden Bedingungen an diesen Standorten besonders beständig gewesen sein.

Abb. 33: Vergleichende Darstellung wichtiger Parameter zur Ermittlung der Redoxbedingungen in der Wassersäule zur Zeit der Ablagerung in den Kernen Niederwald 1 und Lohberg.

5.5.3.2 Authigenes Uran: U_(auth)

Mit Schwellenkonzentrationen größer 5 bzw. 12 ppm ist $U_{(auth)}$ indikativ für dysoxische bzw. euxinische Ablagerungsbedingungen (Jones und Manning, 1994). Das $U_{(auth)}$ wird hier nicht durch Korrektur mit Th (Jones und Manning, 1994; Wignall, 1994), sondern nach der Formel $U_{(auth)} = U_{(ges)} - Al \cdot U/Al_{(mittl. Tonschiefer)}$ berechnet (Schnetger et al., 2000). Tests an diesen und anderen Materialien zeigten, dass die dadurch eingeführten Differenzen vernachlässigbar sind. Die Aussagekraft des Parameters $U_{(auth)}$ ist durch die Tendenz zur Carbonat- und Phosphatbildung des U begrenzt (Jones und Manning, 1994).

 $U_{(auth)}$ zeigt in beiden Kernen für den liegen Zyklus T1 I euxinische Verhältnisse an (vgl. Abb. 33). Selbst im Zykus T1 II müssten entgegen allen anderen Erkenntnissen schon nach kurzer Zeit oxische Bedingungen aufgetreten sein. Die geringen U-Gehalte im Zyklus T1 II sind insofern erstaunlich, als das U schon unter dysoxischen Bedingungen angereichert wird (Crusius et al., 1996). Im Zyklus T1 III des Kerns Lohberg steigt die Konzentration des U_(auth) kurzfristig an. Hinweise für besonders stabile reduzierende Bedingungen am Standort Lohberg sind nicht erkennbar.

5.5.3.3 Vergleich der V/Al-Verhältnisse mit den U_(auth)-Konzentrationen

Anhand beider Parameter kann in Übereinstimmung mit den Ergebnissen von Schwark (1992) gefolgert werden, dass der liegende Zyklus T1 I unter euxinischen Bedingungen abgelagert wurde. In den Zyklen T1 II und Zyklen T1 III gelingt eine Zuordnung zu anoxischen oder oxischen Ablagerungsbedingungen aber nicht, da beide Parameter zu unterschiedlichen Aussagen bezüglich der Sauerstoffverfügbarkeit führen. Offenbar sind die Parameter zu grob, um zuverlässige Aussagen über den Übergangsbereich von euxinischen bis oxischen Sedimenten machen zu können. Die Probleme rühren vermutlich daher, dass der diffusionsgesteuerte Eintrag von V und U stark von der Sedimentationsrate abhängig ist (vgl. Abb. 34 und Breit und Wanty, 1991; Klinkhammer und Palmer, 1991; Mangini und Dominik, 1979). Die sinkenden V/Al-Verhältnisse und U_(auth)-Konzentrationen legen nahe, dass die Sedimentationsrate während der Ablagerung von Zyklus T1 II höher war als zur Zeit von Zyklus T1 I, zumal der marine Einfluss und damit die Verfügbarkeit an V und U im Zyklus T1 II zugenommen haben sollen (Schwark, 1992). Hinweise auf eine ansteigende Sedimentationsrate finden sich schließlich auch in der zunehmend flaserigen Laminierung des Sediments und der größeren Mächtigkeit der carbonatisch-quarzitischen Laminae. Außerdem weisen Arthur und Sagemann (1994) darauf hin, dass die Anwendung von Th/U-Verhältnissen nur bei niedrigen Sedimentationsraten Anwendung finden darf. Dies kann analog für die Konzentrationen von $U_{(auth)}$ angenommen werden. Es müssen also weitere Parameter zur Analyse der Redoxbedingungen herangezogen werden.

Abb. 34: Einfluss der Sedimentationsrate auf das Element/Al-Verhältnis von V, Mo und U in Schwarzschiefern und rezenten C_{org} -reichen Sedimenten (Schnetger, unveröffentlicht). Das Datenmaterial stammt von Brumsack (1989a): Golf von Kalifornien und Schwarzes Meer; Calvert (1990): Schwarzes Meer, Leventhal (1991): kambrische Alaunschiefer aus Schweden; Spears und Amin (1981): Schwarzschiefer des engl. Namurs; Brumsack (1988): CTBE-Schwarzschiefer.

5.5.3.4 Re/Mo-Verhältnisse

Da die Re- und Mo-Gehalte im Kupferschiefer kaum sekundär überprägt wurden, wird im Weiteren versucht, anhand der Re/Mo-Verhältnisse weitergehende Aussagen über die Ablagerungsbedingungen des Kupferschiefers zu machen. Vor allem im Übergangsbereich dysoxisch-suboxisch-euxinisch könnte die Analyse des Re/Mo-Verhältnisses hilfreich sein, da es zur Identifikation rezenter suboxischer Sedimente herangezogen werden kann (Crusius et al., 1996; Koide et al., 1986a; Morford und Emerson, 1999).

Da Perrhenationen leichter reduziert werden als Molybdationen, kann Re im Gegensatz zum Mo schon unter suboxischen Bedingungen verstärkt im Sediment akkumulieren (Crusius et al., 1996). Zudem trägt die Bindung von Mo an partikuläre Fe-Sulfide in der Wassersäule zur erhöhten Akkumulation von Mo gegenüber Re unter euxinischen Bedingungen bei (Colodner et al., 1993a; Erickson und Helz, 2000; Helz et al., 1996). Suboxische Sedimente besitzen daher hohe Re/Mo-Verhältnisse während anoxische und euxinische Sedimente eher niedrige Re/Mo-Verhältnisse bei hoher Anreicherung von Re und Mo aufweisen. Als indikativen Schwellenwert ziehen Crusius et al. (1996) das Re/Mo-Verhältnis des mittleren Meerwassers $(0,7 \cdot 10^{-3})$ heran.
In Abb. 35 wurden die Re/Mo-Verhältnisse gegen die V/Al-Verhältnisse und die Konzentrationen von $U_{(auth)}$ aufgetragen. In Übereinstimmung mit der Theorie treten besonders hohe Re/Mo-Verhältnisse bei niedrigen V/Al-Verhältnissen sowie niedrigen Konzentrationen von $U_{(auth)}$ auf. Allerdings finden sich auch bei niedrigen V/Al-Verhältnissen bzw. $U_{(auth)}$ -Konzentrationen niedrige Re/Mo-Verhältnisse. Diese Tatsache könnte dazu genutzt werden, gerade das Redoxmilieu im Übergangsbereich von euxinisch zu oxisch genauer zu charakterisieren. Unter der Annahme, dass sich die Diffusionskoeffizienten von Re und Mo nicht zu stark voneinander unterscheiden, dürften sich Änderungen in der Sedimentationsrate nur geringfügig auf das Re/Mo-Verhältnis auswirken. Insofern könnte die Auswertung von Re/Mo-Verhältnissen die Interpretation der zuvor diskutierten Parameter sinnvoll ergänzen. Probleme bei der Interpretation von Re/Mo-Verhältnissen können aber durch die diagenetische Adsorption von Mo auf Mn-(Oxo)hydroxiden (Crusius et al., 1996) eingeführt werden.

Die Teufenprofile der Re/Mo-Verhältnisse sind in Abb. 33 dargestellt. Die C_{org}-armen Einschaltungen sind aufgrund ihrer Matrix nicht für die Akkumulation von Re oder Mo geeignet. Sekundäre Überprägungen durch diagenetische Pyritbildung wirken sich daher in diesen Proben besonders stark auf die Mo-Konzentrationen aus und beeinflussen die Re/Mo-Verhältnisse ungünstig. Die Gefahr der Fehlinterpretation dieser Re/Mo-Verhältnisse ist daher sehr groß. In Abb. 33 wurde auf die Darstellung dieser Datenpunkte verzichtet.

In den Zyklen T1 I sind die Re/Mo-Verhältnisse mit Werten $< 3 \cdot 10^{-3}$ am niedrigsten. Am Übergang vom Zyklus T1 I zum T1 II steigt das Re/Mo-Verhältnis langsam auf Werte zwischen $4 \cdot 10^{-3}$ und $5 \cdot 10^{-3}$ an. Im den hangenden Kupferschieferzyklen T1 III steigen die Re/Mo-Verhältnisse auf Werte $> 20 \cdot 10^{-3}$ an. Im Kern Niederwald 1 betragen die Re-Konzentrationen im Zyklus T1 III zunächst weiterhin ca. 0,1 ppm, während die Mo-Gehalte bereits auf Werte < 25 ppm absinken (Abb. 33). Die Re/Mo-Verhältnisse verharren im Kern Niederwald 1 auch im Zechsteinkalk auf einem hohen Niveau, obwohl die absoluten Konzentrationen von Mo und Re weiter sinken. Der kleine Einbruch des Re/Mo-Verhältnisses am Übergang vom Zyklus T1 III zum Ca1 ist auf eine Mo-Anreicherung in einer diagenetischen Pyritlage zurückzuführen.

Abb. 35: Auftragung der Re/Mo-Verhältnisse gegen die Redoxparameter V/Al und $U_{(auth)}$ in allen untersuchten Proben²¹ (oben) und den Kupferschieferkernen Niederwald 1 und Lohberg (unten).

²¹ Datensatz besteht aus Proben der Sapropele des Schwarzen Meeres (St. 6 und 7); der Mittelmeersapropele (Warning, pers. Mittl.); der Jura/Kreide-Schwarzschiefer (Lipinski, pers. Mittl.), der CTBE-Schwarzschiefer (Warning, pers. Mittl.), des Posidonienschiefers Dotternhausen, des Kupferschiefers T1 I-III (Lohberg und Niederwald 1), der nordamerikanischen Zyklotheme, der Exshaw-Formation, der Graptolithenschiefer aus Thüringen sowie der silurischen Schwarzschiefer aus Libyen. Eine ausführliche Besprechung erfolgt in Kap. 6. Die vererzten Proben *Exshaw Formation (Jura Creek*, Teufe: 4,53 m), pennsylvanische Zyklotheme (*Exshello Shale Member*, Teufe: 219,68) sowie der Kern Goslar Z1 wurden nicht bei der Berechnung der Anreicherungsfaktoren berücksichtigt.

Im Kern Lohberg erreichen die Re-Konzentrationen im Zyklus T1 III mit bis zu 0,5 ppm die höchsten Werte (Re/Mo-Verhältnisse > $30 \cdot 10^{-3}$). Diese starken Anreicherungen von Re in den Teufen 15,049 bis 15,079 sind vermutlich auf sekundäre Umlagerungen von Re zurückzuführen. Wird von einer syngenetischen Re-Akkumulation von ca. 0,15 ppm Re ausgegangen (vgl. Kap. 5.5.2), so ergeben sich immerhin noch Re/Mo-Verhältnisse > $10 \cdot 10^{-3}$. Wie im Kern Niederwald 1 sinken die Re- und Mo-Konzentrationen im Zechsteinkalk des Kerns Lohberg deutlich ab. Das Re/Mo-Verhältnis geht hier im Gegensatz zum Kern Niederwald 1 auch auf Werte um $2 \cdot 10^{-3}$ zurück.

Abschließend kann festgestellt werden, dass in beiden Sedimentkernen die Re/Mo-Verhältnisse von Werten $< 3 \cdot 10^{-3}$ zunächst auf Werte zwischen $4 \cdot 10^{-3}$ bis $5 \cdot 10^{-3}$ ansteigen. Diese Werte liegen deutlich über dem Re/Mo-Verhältnis des rezenten Meerwassers $(0,7 \cdot 10^{-3})$. Die Sedimente sollten also nach Crusius et al. (1996) unter suboxischen Bedingungen abgelagert worden sein. Die Auswertung der anderen Redoxparameter (V/Al; U_(auth); Pyritfällung aus der Wassersäule) und die sedimentologischen Befunde lassen aber keinen Zweifel an einer Ablagerung unter einer euxinischen Wassersäule zu. Dieser Widerspruch verdeutlicht, dass die Schwellenwerte, die an rezenten Sedimenten abgeleiteten wurden, nicht automatisch für ältere Ablagerungsräume oder Randmeere relevant sind. Schließlich findet man auch im rezenten Tiefenwasser des Schwarzen Meeres ein mittleres Re/Mo-Verhältnis von $5,2 \cdot 10^{-3}$ (Colodner et al., 1995).

Der leichte Anstieg der Re/Mo-Verhältnisse am Übergang vom ersten zum zweiten Zyklus zeigt den möglichen Anstieg des Redoxpotentials weniger markant als das V/Al-Verhältnis an. Diese Tatsache könnte dahingehend gedeutet werden, dass nach wie vor euxinische Bedingungen vorherrschten. Die starke Abnahme der V/Al-Verhältnisse und der Rückgang der U_(auth)-Konzentrationen wären dann möglicherweise auf einen Anstieg der Sedimentationsrate zurückzuführen. Am Übergang zum dritten Zyklus nehmen die Re/Mo-Verhältnisse in beiden Sedimentkernen selbst dann deutlich zu (> $10 \cdot 10^{-3}$), wenn man die berichtigten syngenetischen Re-Konzentrationen (ca. 150 ppb Re) zugrunde legt. Dementsprechend müsste das Redoxpotential zunächst nur langsam, zuletzt sprunghaft angestiegen sein. Der markante Anstieg der Re/Mo-Verhältnisse fällt im Übrigen mit dem Rückgang der zwischenzeitlich leicht angestiegenen V/Al-Verhältnisse zusammen. Im Zechsteinkalk erlaubt das Re/Mo-Verhältnis keine abgesicherten Aussagen über die

Redoxbedingungen in der Wassersäule mehr, da sekundäre Faktoren wie z.B. die Bindung von Mo im Pyrit die Verhältnisbildung zu stark beeinflussen.

5.5.4 Faziesmodell für den Niederrheinischen Kupferschiefer

Nach der Flutung und Aufarbeitung des nährstoffreichen permischen Untergrundes konnten sich im Zechsteinmeer schnell euxinische Bedingungen einstellen (Grice et al., 1997; Paul, 1982). Diese führten im Zyklus T1 I nicht nur zur Einbettung von Fe, S und organischem Material, sondern auch zur Akkumulation von Mo, Re, U und V (Abb. 31). Die Ausfällung von Pyrit aus der Wassersäule ist in den Korrelationsdiagrammen S gegen C_{org} belegt (Abb. 29). Die Re/Mo-Verhältnisse sind zunächst niedrig (< 3 \cdot 10⁻³), liegen aber schon über dem nach Crusius (1996) für suboxische Sedimente indikativen Grenzwert von 0,7 \cdot 10⁻³ (Abb. 33).

Trotz der geringen Steigungen der Ausgleichsgeraden in den S-C_{org}-Korrelationsdiagrammen der Zyklen T1 I und T1 II (Abb. 29), des Auftretens von authigen gebildetem Ankerit und der Hinweise auf Methanogenese ist aber nicht von einer Schwefellimitierung bei der frühen Diagenese auszugehen. Es erscheint wahrscheinlicher, dass die epigenetischen Mineralneubildungen nicht nur zur Anreicherung der Bunt- und Spurenmetalle, sondern auch zur Bildung von Fe-, Mg- und Mn-Carbonaten führten (Abb. 27). Die Mn- und Dolomitgehalte lassen dementsprechend keine Aussagen über die Redoxbedingungen in der Wassersäule zu.

Der Übertritt in den zweiten Kupferschieferzyklus war unter anderem durch die intensive Evaporation und Regression des Zechsteinmeeres gekennzeichnet (Schwark, 1992). Diese hat vermutlich eine Verlagerung des euxinischen Tiefenwassers in tiefere Beckenteile bewirkt. Die resultierende Zunahme der Sedimentationsrate in den neuen Randbereichen spiegelt sich in der zunehmend flaserigen Textur des Sediments und den mächtigeren carbonatischquarzitischen Laminae im Zyklus T1 II und dem deutlichen Rückgang der Element/Al-Verhältnissen von V, U, Mo und Re wider. Die (suboxischen bis) euxinischen Verhältnisse hatten aber zunächst weiter Bestand, da das Re/Mo-Verhältnis, welches von der Sedimentationsrate weitgehend unabhängig sein sollte, keinen weiteren Anstieg des Redoxpotentials anzeigt. Dies wird auch durch das weitere Auftreten der Biomarker von grünen Schwefelbakterien bestätigt (Bechtel und Püttmann, 1997; Grice et al., 1997). Die im Zyklus T1 II abnehmenden Corg-Konzentrationen werden auf die vermehrte Verdünnung mit Carbonat und die abnehmende Bioproduktivität (Verbrauch des anfangs umfangreichen Nährstoffangebots) zurückgeführt.

Die helleren Corg-armen Einschaltungen im Zyklus T1 II, die in den Kernen Niederwald 1, Rheinberger Heide und Lohberg auftreten, sind wahrscheinlich auf Heraushebungen des Sedimentes aus dem anoxischen Tiefenwasser zurückzuführen. Dies wird als Hinweis auf eine kurzfristig höhere Verfügbarkeit von Sauerstoff an der Sediment/Wasser-Grenzschicht ausgelegt. Eine Deutung der Einschaltungen als Tempestite (Schwark, 1992) oder Turbidite erscheint unwahrscheinlich, da die Bänder nicht konsequent die für Schwermineralkonzentrate typischen hohen Si-, Ti- oder Zr/Al-Verhältnisse aufweisen (Abb. 26). Da das Niederrheinische Becken stark untergliedert war (Grice et al., 1997; Schwark, 1992), wurden die Sedimente der östlichen Kerne Lohberg und Rehmbergschlag vermutlich in einem tieferen Beckenteil abgelagert als die westlichen (Niederwald 1, Hochwald II, Rheinberger Heide, Schacht Rheinberg, Möllen II). Die im tiefen östlichen Becken stabileren reduzierenden Bedingungen sind in den hohen V/Al-, Mo/Al- und Re/Al-Verhältnissen sowie den konstanten Re/Mo-Verhältnissen belegt. Für eine größere Tiefe des östlichen Beckens am Standort Lohberg spricht auch das seltene und späte erste Auftreten der hellen Bänder am Ubergang vom Zyklus T1 II zum Zyklus T1 III. Außerdem nehmen die Corg-Konzentrationen langsamer ab als in den westlichen Kernen. Die Annahme der größeren Wassertiefe im Osten widersprecht allerdings den Schlussfolgerungen von Schwark (1992).

Am Übergang vom Zyklus T1 II zum Zyklus T1 III steigen die V/Al- und U/Al-Verhältnisse zwischenzeitlich erneut an. Dies könnte wieder auf eine sinkende Sedimentationsrate zurückgeführt werden, da die Re/Mo-Verhältnisse praktisch konstant bleiben und die Carbonatkonzentrationen zurückgehen. Erst mit dem erneuten Rückgang der V/Al-Verhältnisse steigen Re/Mo-Verhältnisse die in beiden Kernen deutlich Zugleich gehen die an. Corg-Konzentrationen im Kern Niederwald 1 weiter zurück. Da sich selbst mit den korrigierten Re-Konzentrationen ein Re/Mo-Verhältnis $> 10 \cdot 10^{-3}$ ergibt, kann angenommen werden, dass der Zyklus T1 III durch einen weiteren Anstieg des Redoxpotentials bis in den suboxischen Bereich gekennzeichnet ist. Da im Zyklus T1 III noch keine Anzeichen für Bioturbation erkennbar sind und benthische Organismen erst unter dysoxischen Bedingungen zur Bioturbation beitragen können (Arthur und Sagemann, 1994; Wignall, 1994), hat vermutlich noch kein Wechsel in den dysoxischen Bereich stattgefunden. Die suboxischen Ablagerungsbedingungen wurden über längere Zeit während der Ablagerung des Zykuls T1 III aufrechterhalten, bis sie schließlich zusammenbrachen und die Ablagerung des Zechsteinkalks eingeleitet wurde. Der Übergang zum Zechsteinkalk spiegelt sich unter anderem in den Veränderungen der mineralischen Zusammensetzung der terrigen-detritischen Komponenten wider (Abb. 26). Diese sind vermutlich auf die Regression des Zechsteinmeeres unter einem wärmer werdendem Klima zurückzuführen. Die niedrigen C_{org} , Re-, Mo-, V- und $U_{(auth)}$ -Konzentrationen, die verwischte Laminierung und Spuren der Bioturbation (Schwark, 1992), die niedrigen C_{org} -Konzentrationen und das Fehlen feinverteilter Pyrite (Heppenheimer, 1995) sprechen für eine Ablagerung des Zechsteinkalks unter oxischen Bedingungen. Die weiterhin hohen Re/Mo-Verhältnisse im Kern Niederwald 1 sind auf diagenetische Überprägung des Re/Mo-Verhältnis zurückzuführen.

Demnach scheint vom liegenden zum hangenden Kupferschiefer das Redoxpotential im Niederrheinischen Becken zunächst langsam, dann sprunghaft zugenommen zu haben. Ein Absinken der Redoxkline hat nur zeitweilig zu (dys-)oxischen Bedingungen und der Ablagerung der C_{org}-armen Einschaltungen geführt. Es konnten sich aber während der Ablagerung des Zyklus T1 II über keinen längeren Zeitraum sub- oder gar dysoxische Bedingungen einstellen. An den östlichen Standorten hatten die reduzierenden Bedingungen länger Bestand. Wahrscheinlich wurde das Material in einem tieferen Becken abgelagert. Erst am Übergang vom Zyklus T1 II zum Zyklus T1 III etablierten sich im Zuge der stetig zunehmenden Belüftung langfristig suboxische Bedingungen, bevor die Ablagerung des Zechsteinkalk unter einer belüfteten Wassersäule begann.

Diese detaillierte Analyse der Redoxbedingungen wurde erst unter Berücksichtigung der Re/Mo-Verhältnisse im Kontext mit anderen redoxindikativen Parametern möglich. Demnach scheint das Re/Mo-Verhältnis auch in alten Sedimenten nützliche Zusatzinformationen liefern zu können, obwohl die von Crusius (1996) ermittelten Schwellenwerte nicht unmittelbar übertragen werden können.

5.6 Zusammenfassung

 Der Niederrheinische Kupferschiefer ist ein typischer bituminöser Mergel, der durch Vererzungen sekundär überprägt worden ist. Der heterogene Untergrund und die örtliche Nähe der Sedimentkerne zu den basalen Störungen trugen wesentlich zum Vererzungsgrad des Kupferschiefers bei. Die teilweise nur wenige cm mächtigen Mineralisationshorizonte von Fe, Zn, Pb, Cu, Ba, As, Cd, Tl, Sb, Ag und Co wurden mittels der hochaufgelösten anorganisch-geochemischen Analyse nachgewiesen. Die hohen Ankerit-, Mn-Carbonatund Dolomolitgehalte sind vermutlich auf epigenetische Mineralneubildungen zurückzuführen. Weder die Mn/Ca-Verhältnisse noch die Dolomitisierungsgrade erlauben daher Rückschlüsse auf die Beschaffenheit der Wassersäule zur Zeit der Ablagerung.

- Die Konzentrationen von Mo, Re, V, U und Ni spiegeln weitgehend die syngenetischen Anreicherungsgrade wider und weisen auf eine marine Wassersäule zur Zeit der Ablagerung hin. Die Gehalte der PGE sind, anders als an anderen Kupferschieferstandorten, nicht durch besondere Anreicherungen geprägt. Ihre Verteilung lässt keine vorrangige Assoziation mit C_{org} oder mit S erkennen. Es wird zwar eine Umlagerung aber keine signifikante Zufuhr der PGE aus dem liegenden Karbon vermutet.
- Die Auswertung der Re/Mo-Verhältnisse liefert wertvolle Zusatzinformationen im Hinblick auf die Analyse der Ablagerungsbedingungen. Die Auswertung einzelner Redoxparameter erlaubte keine zuverlässigen Aussagen über den Grad der Sauerstoffsättigung in der Wassersäule. Die Re/Mo-Verhältnisse lassen im Kontext mit den V/Al-Verhältnissen und den U_(auth)-Konzentrationen den Schluss zu, dass während der Kupferschieferablagerung das Redoxpotential zunächst langsam anstieg und während der Ablagerung der Zyklen T1 I und T1 II noch keine langfristigen sub- oder dysoxischen Phasen auftraten. Am Übergang vom Zyklus T1 II zum Zyklus T1 III zeigen die sehr hohen Re/Mo-Verhältnisse und die abnehmenden V/Al-Verhältnisse über einen längeren Zeitraum einen Anstieg des Redoxpotentials bis in den suboxischen Bereich an. Der Rückgang der Element/Al-Verhältnisse von V, Mo, U und Re am Übergang vom Zyklus T1 I zum Zyklus T1 II werden auf ein Ansteigen der Sedimentationsrate zurückgeführt. Diese Annahme wird durch die konstant bleibenden Re/Mo-Verhältnisse und die zunehmend unruhigere Laminierung gestützt.
- Die helleren C_{org}-armen Einschaltungen im Zyklus T1 II sind wahrscheinlich auf ein Absinken der Redoxkline bis zur Sedimentoberfläche zurückzuführen. Die im unteren Teil des Zyklus T1 II vergleichsweise hohen Element/Al-Verhältnissen von V, U, Mo und Re und die zunächst konstanten Re/Mo-Verhältnisse sowie das späte Auftreten der Einschaltungen werden als Hinweise auf zunächst stabile reduzierende Wasserbedingungen und eine niedrigere Sedimentationsrate gewertet. Die östlichen Sedimentkerne (Lohberg und Rehmbergschlag) wurden vermutlich in einem tieferen Becken abgelagert als die westlichen.

6 Rekonstruktion des Meerwasserchemismus im Phanerozoikum

Die vorangehenden Kapitel weisen auf die Bedeutung des Metallgehalts des Wasserkörpers und der Sedimentationsrate für die Spurenmetallanreicherung im reduzierenden Sediment und die Analyse der Redoxbedingungen in der Wassersäule mittels anorganisch-geochemischer Redoxindikatoren hin. Es soll nun geprüft werden, inwieweit die Metallanreicherungen in verschiedenen phanerozoischen C_{org}-reichen Sedimenten Rückschlüsse auf die Zusammensetzung des Meerwassers zur Ablagerungszeit zulassen.

6.1 Einleitung

Die Zusammensetzung des Meerwassers war im Laufe der Erdgeschichte wahrscheinlich nicht konstant, da sowohl der Stoffeintrag als auch der Entzug von gelösten und partikulären Komponenten geschwankt haben sollte. Verschiedene Autoren (z. B. Brennan und Lowenstein, 2002; Emerson und Huested, 1991; Horita et al., 2002; Schaller et al., 2000; Strauss, 1997; Wedepohl, 1995) versuchten durch die Auswertung von erdgeschichtlichen Archiven Rückschlüsse auf die sich verändernde Meerwasserzusammensetzung zu ziehen. Auch C_{org}-reiche Sedimente könnten möglicherweise als ein solches Archiv dienen, da viele redoxsensitive und sulfidbildende Spurenmetalle in diesen Sedimenten syngenetische Anreicherungen um den Faktor zehn bis größer 1000 gegenüber dem mittleren Tonschiefer (Wedepohl, 1971a; Wedepohl, 1991) erreichen. Damit sind anoxische Sedimente, obwohl sie gegenwärtig nur auf knapp 1 % der Fläche des Meeresbodens abgelagert werden, eine effektive Senke für diese Metalle und stellen einen wesentlichen Bestandteil der Stoffkreisläufe dar. In der Erdgeschichte schwankte die räumliche und zeitliche Ausdehnung anoxischer Ablagerungsräume sehr stark. So wurden insbesondere im Paläozoikum, im Jura und in der Kreide Corg-reiche Sedimente abgelagert (z. B. Arthur und Sagemann, 1994; Berry und Wilde, 1978). Die Akkumulation von Spurenmetallen im Sediment hat sich daher möglicherweise nachhaltig auf die Zusammensetzung des Meerwassers ausgewirkt (Brumsack, 1988; Emerson und Huested, 1991; Nijenhuis et al., 1999; Piper, 1994). Dies wird unter anderem an den Metallgehalten der rezenten Sedimente des Schwarzen Meeres (Kap. 4) und der Mittelmeersapropele (Nijenhuis et al., 1999; Warning und Brumsack, 2000) deutlich. Ein Vergleich der Spurenelementgehalte verschiedener Corg-reicher Sedimente vom Silur bis zum Tertiär könnte daher Hinweise auf Veränderungen im Meerwasserchemismus liefern.

Zuletzt wurden ähnliche vergleichende Studien von Vine und Tourtelot (1970) sowie Quinby-Hunt und Wilde (1989) durchgeführt. Die Autoren haben die Zusammensetzung eines mittleren Schwarzschiefers ermittelt, obwohl sich Schwarzschiefer hinsichtlich ihres Chemismus und ihrer Genese deutlich unterscheiden können (z. B. Arthur und Sagemann, 1994; Calvert, 1987; Demaison, 1991; Demaison und Moore, 1980; Pedersen und Calvert, 1990; Quinby-Hunt et al., 1989). Hier wird stattdessen versucht, die spezifischen Spurenmetallsignaturen der verschiedenen Schwarzschiefer in den diskreten Zeitscheiben für die Rekonstruktion der variablen Meerwasserzusammensetzung zu nutzen. Dabei wurden nur Proben mit C_{org} -Konzentration > 1,5 % berücksichtigt. Die Weiterentwicklung der analytischen Techniken erlaubt heute auch die Diskussion der seltener untersuchten Metalle Re, Cd, Sb, Tl, Bi und der PGE.

6.2 Einordnung und Charakterisierung des Probenmaterials

Vor der vergleichenden Diskussion der Spurenmetallsignaturen der Schwarzschiefer werden die wichtigsten hier untersuchten Ablagerungsräume zunächst vorgestellt. Grundlage für die Charakterisierung ist der kurze erdgeschichtliche paläogeographische und paläoklimatologische Abriss aus Kap. 1.2. Dort findet sich auch eine entsprechende geologische Zeitskala.

6.2.1 Libyen (Unteres Llandovery; ca. 443 Mio. a)

6.2.1.1 Charakterisierung des Ablagerungsraums

Der Übergang vom Ordovizium zum Silur war durch das Schmelzen der kontinentalen Gletscher und eine marine Transgression gekennzeichnet. Dabei wurden weite Teile des in kleinere Becken untergliederten, nordafrikanischen Schelfbereichs überflutet (Echikh und Sola, 2000; Lüning et al., 2000b). Während des oberen Ordoviziums konnten die Ozeane im Zuge der zirkumpolaren Vereisung wahrscheinlich belüftet werden (Berry und Wilde, 1978; Wilde et al., 1991). Der Sauerstoffgehalt der in die Becken einströmenden Wassermassen dürfte im unteren Llandovery aber relativ gering gewesen sein, da eine hohe Bioproduktivität am nordafrikanischen Schelf wahrscheinlich für eine Sauerstoffzehrung sorgte (Berry und Wilde, 1990). Die starke Aufgliederung des Randmeers in lokale Becken führte zudem wahrscheinlich zu einer eingeschränkten Zirkulation und Belüftung (Lüning et al., 2000a; Lüning et al., 2000b). Die fortschreitende Transgression sorgte im oberen Llandovery für eine erneute Belüftung in den Becken.

6.2.1.2 Untersuchungsmaterial

Die Proben (n = 21) des Bohrkerns E1-NC 174 aus dem unteren Llandovery (Rhuddanian) wurden auf 12,5° östlicher Länge und 26° nördlicher Breite im Zentrum des Murzuq-Beckens (Libyen) gewonnen. Sie wurden von S. Lüning (Universität Bremen) zur Verfügung gestellt. Der Kern hat eine Länge von 17,4 m und umfasst die gesamte C_{org} -reiche Einheit (2,5-12 % C_{org}) der *Tanezzuft Formation*. Eine detaillierte Beschreibung des Materials findet sich bei Lüning et al. (2000b).

6.2.2 Graptolithenschiefer aus Thüringen (Llandlovery-Lochkov; 443-418 Mio. a)6.2.2.1 Charakterisierung des Ablagerungsraums

Die europäischen Graptolithenschiefer wurden auf dem äquatorwärts driftenden Kontinent Baltica abgelagert. Das Gebiet Thüringens gehörte zur sogenannten Rheischen Subprovinz (Rickards et al., 1990). Die Ablagerung C_{org}-reicher Sedimente wird unter anderem auf den geringen Temperaturgradienten vom Äquator zu den Polen und eine daraus resultierende mangelnde Belüftung des ozeanischen Tiefenwassers zurückgeführt (Berry und Wilde, 1978; Wilde et al., 1991). Eine Rekonstruktion der Ablagerungsbedingungen wurde von Berry et al. (1985) sowie Berry und Wilde (1990) vorgenommen. Demnach lebten die Graptolithen, anhand derer die stratigraphische Einordnung des Probenmaterials durchgeführt wurde, in einer sauerstoffarmen, nitratreichen Zone des Ozeans. Nach dem Wenlock kollidierte Baltica mit Laurentia (Scotese und McKerrow, 1990).

6.2.2.2 Untersuchungsmaterial

Die Bohrkernproben der Saar-1 Tiefbohrung Ronneburg wurden durch die Wismut AG (Ronneburg) und Herrn Jaeger (Museum für Naturkunde, Berlin) zur Verfügung gestellt. Anhand der Leitgraptolithen wurden die Proben dem unteren Graptolithenschiefer (Llandovery und Wenlock; Mächtigkeit: > 30 m) und oberen Graptolithenschiefer (Lochkov; Mächtigkeit: 10-20 m) zugeordnet (Jaeger, 1991). Die Proben wurden entsprechend den Zeitaltern Silur, unteres Devon und mittleres Devon in drei Gruppen zusammengefasst. Proben aus dem intermediären Ockerkalk wurden nicht untersucht. Nach Seidel (1995) wurde der untere Graptolithenschiefer unter euxinischen Bedingungen mit niedriger Sedimentationsrate abgelagert. Diese drückt sich unter anderem in den geringen Mächtigkeiten der Leithorizonte und dem Fehlen klastischen Materials aus. Auch der obere Graptolithenschiefer wurde unter reduzierenden Bedingungen abgelagert. Allerdings war die

Sedimentationsrate deutlich höher (Seidel, 1995). Auskunft über die Mineralogie der Graptolithenschiefer geben die Arbeiten von Seidel (1995) und Dill (1986).

6.2.3 Exshaw Formation (Famenne-Tournai-Grenze; 354 Mio. a)

6.2.3.1 Charakterisierung des Ablagerungsraums

Die Sedimente der Exshaw Formation wurden im Zuge eines Transgressions-Regressions-Transgressions-Zyklus (T-R Zyklus IIf) im westlichen Schelfbereich des nordamerikanischen Kontinents in der Nähe des Äquators abgelagert (Caplan und Bustin, 1996; Johnson et al., 1985; Sandberg et al., 1988; Smith und Bustin, 2000). Im Zuge der Flutung wurden die Carbonat-Riffe des Famenne durch anoxische siliziklastische Sedimente überlagert (Savoy und Mountjoy, 1995; Smith und Bustin, 2000). Die normalerweise 9-11 m mächtigen, grau bis schwarz laminierten Schwarzschiefer der Exshaw Formation erstrecken sich über weite Teile Albertas, British Columbias und der Kanadischen Kordilleren (Caplan und Bustin, 2001) und sind Teil eines weit ausgedehnten anoxischen Ablagerungsraums mit mehreren äquivalenten Horizonten (z.B. Backen Formation, Sappington Member). Sie wurden vermutlich in einer Wassertiefe von mehr als 200 m unterhalb der Wellenbasis abgelagert (Smith und Bustin, 2000) und sind wahrscheinlich in Auftriebszellen am epikontinentalen Schelf des Panthalassa-Ozeans entstanden (Caplan und Bustin, 2001; Jewell, 1995; Parrish, 1982). Die Ausbildung anoxischer Bedingungen infolge zunehmender Nährstoffzufuhr und erhöhter Bioproduktivität führte zum Absterben des riffbildenden Benthos (Caplan et al., 1996) und zur Akkumulation organischen Materials. Dies wird unter anderem durch das Auftreten von Phosphoritknollen und Cherts (Caplan et al., 1996; Savoy und Mountjoy, 1995), die hohen Corg-Gehalte, die HI- und OI-Werte, sowie die Stickstoff-, Schwefel- und Kohlenstoffisotopie des organischen Materials bestätigt (Caplan und Bustin, 1998; Caplan et al., 1996). Witzke (1988) weisen außerdem auf die Möglichkeit der Ausbildung anoxischer Bedingungen durch Überschichtung mit Süßwasser hin (Abfluss vom Antler-Gebirge). Während der marinen Regression, hervorgerufen durch die Antler-, Acadian- und die Ellesmere-Orogenese (Smith und Bustin, 2000), nahm die Wassertiefe vermutlich auf weniger als 200 m ab, so dass die Deposition Corg-reicher Sedimente schließlich endete und laminierte, siltige Tone abgelagert wurden (Caplan und Bustin, 2001; Meijer Drees und Johnston, 1996; Savoy et al., 1999; Smith und Bustin, 2000).

6.2.3.2 Untersuchungsmaterial

Das untersuchte Material stammt zum einen von einem Aufschluss der Typlokalität *Jura Creek* bei Banff, zum anderen aus der Bohrung Shell Whiskey 6-4-33-5W5 aus den Moose Mountains (ca. 70 km süd-südwestlich von Calgary; Teufe: 3687,8-3691,6 m). Über die genaue Stratigraphie am Standort *Jura Creek* gibt die Arbeit von Richards und Higgins (1988) Auskunft. Die Famenne/Tournai-Grenze liegt zwischen 5,5 m und 8,5 m Teufe innerhalb des Schwarzschieferhorizonts. In den Moose Mountains wurden bei der Orogenese der Rocky Mountains die obere siliziklastiche Einheit und Teile des Schwarzschiefers abgeschert. Der Schwarzschieferhorizont weist deshalb nur eine Mächtigkeit von 3,8 m auf. Das Material wurde von der AG Buggisch (Universität Erlangen) zur Verfügung gestellt.

6.2.4 Pennsylvanische Zyklothemen (Westphal-Stephan; 361,5-299 Mio. a)

6.2.4.1 Charakterisierung des Ablagerungsraums

Die bis zu 40 oberkarbonischen Zyklothemen des mittelamerikanischen Kontinents wurden im Zuge von Transgressions- und Regressionszyklen auf dem flachen westlichen epikontinentalen Schelf zwischen 0° und 15° nördlicher Breite abgelagert (Hatch und Leventhal, 1997; Heckel, 1991). Die zyklischen Ablagerungen werden auf Meeresspiegelschwankungen durch Vorstöße und Kontraktionen der kontinentalen Gletscher zurückgeführt (Stanley, 1994). Anhand von Abschätzungen der Sonneneinstrahlungsintensität wird die Dauer eines Zyklus auf 250.000 bis 400.000 Jahre beziffert (Heckel, 1986). Über die Ablagerungsmechanismen und die Ursachen der Spurenmetallanreicherungen wird bis heute diskutiert. Die pennsylvanischen Schwarzschiefer enthalten wesentlich mehr terrestrisches organisches Material als die zuvor beschriebenen älteren Materialien, weswegen aus ihnen bedeutende Kohlelagerstätten hervorgegangen sind (Arthur und Sagemann, 1994; Coveney und Glasrock, 1989; Schultz und Coveney, 1992; Wenger und Baker, 1986). Da von West nach Ost der Anteil marinen organischen Materials zunimmt, wird angenommen, dass vor der Küste eine breite Uferzone mit ausgedehnten Sumpfflächen existierte (Coveney und Glasrock, 1989; Coveney et al., 1987; Schultz und Coveney, 1992). Bei steigendem Wasserspiegel wurden die küstennahen Sümpfe überflutet und in östliche Richtung gedrängt. Die Schwarzschiefer wurden vermutlich nur bei hohen Wasserständen vor der erneuten marinen Regression abgelagert (Heckel, 1991). Unter den pennsylvanischen Schwarzschiefern wird zwischen dem Mecca-Typ (hoher Anteil terrestrischen organischen Materials), dem HeebnerTyp (hoher Anteil marinen organischen Materials) und dem Shanghai-Typ (niedrige Corg-Konzentrationen, geringe Metallgehalte) unterschieden. Die Heebner-Typen wurden möglicherweise in größerer Entfernung zur Küste als die Mecca-Typen unterhalb der Wellenbasis abgelagert und weisen keine aufgearbeiteten Torf- oder Sumpflagen auf (Coveney und Glasrock, 1989). Außerdem treten sie im Gegensatz zu den Mecca-Typen losgelöst von unterlagernden Kohlelagen auf (Schultz und Coveney, 1992). Schwarzschiefer des Mecca-Typs wurden Coveney und Glasrock (1989) sowie Heckel (1991) zufolge vor allem im mittleren Pennsylvanian an der Küste abgelagert. Der Shanghai-Typ tritt im Virgilian in Küstennähe auf (Schultz und Coveney, 1992). Hatch und Leventhal (1992) gehen allerdings davon aus, dass nicht die Entfernung zur Küste sondern die Beschaffenheit der Wassersäule für die Ausbildung der unterschiedlichen Typen verantwortlich ist. Die anoxischen Bedingungen in der Wassersäule werden auf Auftrieb und/oder die Ausbildung einer Dichtesprungschicht durch thermische oder saline Schichtung der Wassersäule zurückgeführt (Coveney et al., 1987; Hatch und Leventhal, 1992; Heckel, 1991; Jewell, 1995; Parrish, 1982). Die Überflutung und der Eintrag von zersetzbarem torfigem Material sorgte für eine hohe Nährstoffverfügbarkeit (Wenger und Baker, 1986). Trotz aller Bemühungen, anhand der Spurenmetallsignaturen Hinweise auf das Ablagerungsgeschehen zu gewinnen, gibt es Hinweise auf eine epigenetische Überprägung (Coveney und Glasrock, 1989; Coveney et al., 2000).

6.2.4.2 Untersuchungsmaterial

Die untersuchten Bohrkernproben stammen aus dem mittleren und oberen Pennsylvanian. Sie wurden in den US-Bundesstaaten Kansas, Missouri und Oklahoma gewonnen. Eine Übersicht über die Probenanzahl der beprobten Horizonte gibt Tab. 20. Informationen über die genaue lokale Ausbreitung der Schwarzschieferhorizonte findet sich in Coveney und Glasrock (1989). Alle Proben stammen vom *Kansas Geological Survey* und wurden von Herrn Kuhn (Universität Erlangen) zur Verfügung gestellt.

Um eine breitere Datenbasis diskutieren zu können, wurden anorganisch-geochemische Daten des *Excello Shale*, *Anna Shale* und *Stark Shale* aus Oklahoma, Kansas und Missouri in die Untersuchungen einbezogen (Hatch und Leventhal, 1992, 1997).

Horizont	Probenanzahl	Bohrloch	Teufe	Ablagerungszeit
Heebner Shale	5	Wireline Test Hole	3,86 – 4,76 m	Virgilian
Heebner Shale	5	Clinton #1	7,10 – 8,06 m	Virgilian
Eudora Shale	8	Wireline Test Hole	116,5 – 117,8 m	Missourian / Virgilian
Lake Neosho Shale	1	KGS Edmond 1	187,3 m	Desmoinesian
Anna Shale	3	KGS Edmond 1	200,0 – 200,3 m	Desmoinesian
Excello Shale	3	KGS Edmond 1a	219,1 – 219,7 m	Desmoinesian

Tab. 20: Übersicht über die Herkunft der Bohrkernproben aus dem Pennsylvanian.

6.2.5 Posidonienschiefer (Unteres Toarc; ca. 187-190 Mio. a)

6.2.5.1 Charakterisierung des Ablagerungsraums

Im unteren Toarc war eine der bedeutendsten jurassischen Transgressionen zu verzeichnen (Hallam, 1981; Hallam, 1988; Haq et al., 1988). Weite Teile des in der Trias gebildeten Superkontinents Pangäa wurden überflutet, und es bildete sich eine Meeresstraße zwischen der Arktis und dem Tethys-Ozean aus (Ziegler, 1988). Das zunächst trockene Klima während der Trias wurde durch humidere Bedingungen im unteren Jura abgelöst (Crowley und North, 1991). Auf den europäischen Schelfgebieten entstanden zwischen 30 bis 40° nördlicher Breite (Ziegler, 1982; Ziegler, 1988; Ziegler et al., 1983) zahlreiche flache Becken, welche über flache Barrieren miteinander in Verbindung standen. Außerdem bestand eine mehr oder weniger offene Verbindung zur Tethys (Riegraf, 1985). In den epikontinentalen Becken wurden im unteren Toarc dunkle, feinlaminierte C_{org} -reiche Sedimente abgelagert (Ziegler, 1982). Die Mächtigkeiten im Beckenbereich liegen meist bei 10 bis 15 m im südwestdeutschen Raum (Riegraf, 1985) bis hin zu 30 m im norddeutschen Raum (z.B. Littke et al., 1991). Die Dauer des Lias ε wird auf 2,4 Mio. Jahre beziffert.

Der Posidonienschiefer Süd-West-Deutschlands wurde vermutlich vorwiegend unter Sauerstoffabschluss abgelagert (z.B. Brumsack, 1991; Littke et al., 1991; Seilacher, 1982). Hochaufgelöste interdisziplinäre Studien von Röhl et al. (2001) und Schmid-Röhl et al. (1999, 2002) konnten aber nachweisen, dass die sauerstofffreien Phasen am Meeresboden kurzfristig unterbrochen wurden. Die steuernden Faktoren des Ablagerungsraums sind demnach außer in der Meeresspiegelentwicklung in der paläogeografischen und klimatischen Rahmensituation, einem von Monsun geprägten System, zu suchen. Die Ablagerungsbedingungen des Posidonienschiefers werden in der Arbeit von Schmid-Röhl (1999) ausführlich diskutiert.

6.2.5.2 Untersuchungsmaterial

Die 33 untersuchten Proben stammen aus einem zusammengesetzen Profil aus dem BEB-Bohrkern 1001 (Standort Dotternhausen), einem Bohrkern der Fa. Rohrbach Zement (Dotternhausen) sowie der 6-8 m² großen Grabungsfläche Dotternhausen und wurden mir von A. Schmid-Röhl (Universität Tübingen) zur Verfügung gestellt. Stark verwittertes Material im oberen und unteren Bereich der Grabungsstelle konnte durch unverwittertes Material aus den Bohrkernen ersetzt werden.

Das Profil umfasst das gesamte Lias ε und beinhaltet neben anderen Carbonateinschaltungen die für den südwestdeutschen Raum bekannten Leithorizonte des Unteren und Oberen Steins. Die hangenden Profilabschnitte Oberer und Wilder Schiefer (Teufe kleiner 655 cm) weisen im Gegensatz zu den liegenden Abschnitten nur noch eine undeutliche Laminierung auf. Neben dem organischen Material (4-16 % C_{org}) und sulfidischen Mineralen, allen voran Pyrit, machen Siliziklastika und Carbonate den größten Teil des Materials aus. Eine genaue Charakterisierung des Profils findet sich bei Schmid-Röhl (1999).

6.2.6 Ergänzende Materialien

Die weiteren in dieser Arbeit untersuchten Materialien (Sapropele aus dem Schwarzen Meer und dem Mittelmeer, die Schwarzschiefer der Jura/Kreide-Grenze und die peruanischen Auftriebssedimente) wurden ausführlich in den Kap. 4 und 5 sowie den Arbeiten von Warning und Brumsack (2000), Lipinski et al. (2002), Brumsack (1986) und Böning et al. (2004) vorgestellt.

Die in dieser Arbeit erhobenen Daten wurden durch folgende Datensätze ergänzt: Mittelmeer und CTBE-Schwarzschiefer (B. Warning, Universität Oldenburg, persönl. Mittl.), Schwarzschiefer der Jura/Kreide-Grenze (M. Lipinski, Universität Oldenburg, persönl. Mittl.), Posidonienschiefer (H.-J. Brumsack, Universität Oldenburg, persönl. Mittl.), Kupferschiefer T1 I (Heppenheimer, 1995; Schallenberg, 1997), pennsylvanische Zyklotheme (Hatch und Leventhal, 1992, 1997), *Exshaw Formation* (Caplan und Bustin, 1996, 1998). Außerdem wurden zur Gegenüberstellung Daten verschiedener Schwarzschiefer aus dem Jura, Silur und Ordovizium (Quinby-Hunt et al., 1989)²² sowie der mitteldevonischen *Oakta Creek Formation* (Werne et al., 2002) herangezogen.

²² Die Daten wurden von C.J. Orth (Los Alamos National Laboratory, USA) gewonnen und am 7.8.2003 unter <u>http://users.rcn.com/patwilde/usgs89.html</u> abgerufen.

6.3 Vergleich der Spurenmetallanreicherungen phanerozoischer Corg-reicher Sedimente

In Abb. 36 und Abb. 37 sind die Anreicherungsfaktoren der wichtigsten Spurenmetalle gegenüber dem mittleren Tonschiefer²³ (Wedepohl, 1971a; Wedepohl, 1991) in einigen phanerozoischen C_{org} -reichen Sedimenten²⁴ dargestellt. Aus den Daten von Vine und Tourtelot (1970) sowie von Quinby-Hunt und Wilde (1989) wurden auch die Anreicherungsfaktoren der mittleren Schwarzschiefer errechnet und mit gestrichelten bzw. durchgezogen Linien gegenübergestellt. Die Anreicherungsfaktoren der PGE konnten z. T. nur an einem sehr kleinen Probensatz berechnet werden. So gehen für die Jura/Kreide-Schwarzschiefer nur zwei Proben, für die Mittelmeersapropele sogar nur eine Einzelprobe (Med-1) in die Berechnung ein. Zum Vergleich wurden auch die Anreicherungsfaktoren von S und C_{org} dargestellt.

Für Re, Mo, Cd, U und Sb erreichen die Anreicherungsfaktoren meist Werte von zehn bis 3000. Die restlichen Elemente, insbesondere Ni, Cu, Zn, Bi und Co zeigen meist sehr niedrige Anreicherungsfaktoren unter zehn. Zn, Mn und Ru sind in einigen Fällen abgereichert. In den von Quinby-Hunt und Wilde (1989) untersuchten Schwarzschiefern sind die Sb- und V-Gehalte z. T. ungewöhnlich niedrig (Abb. 37). Pt und Ir²⁵ sind häufig bis zum Faktor zehn angereichert. Den Diagrammen ist außerdem zu entnehmen, dass die Anreicherungsfaktoren für die jeweiligen Elemente in den unterschiedlichen Materialien meist ähnlich hoch ausfallen und von links nach rechts nahezu stetig abnehmen. Die Reihenfolge der Elements im Meerwasser und im mittleren Tonschiefer (Tab. 21). Ein Bezug des Anreicherungsgrades zur Meerwasser-konzentration erscheint daher naheliegend. Die Elemente Pt, Ru und Ir lassen sich nicht streng in diese Reihenfolge einordnen. Abweichungen von diesem einfachen Prinzip sind vor allem auf die Effektivität der Anreicherungsmechanismen zurückzuführen (vgl. Abb. 20 in Kap. 4). So werden V und Cd stärker und U schwächer angereichert, als man dies anhand der Verfügbarkeit im Meerwasser vermuten könnte.

²³ Als Referenz für die Re-, Pt-, Ru- und Ir-Konzentrationen (0,2 ppb Re, 0,51 ppb Pt, 0,2 ppb Ru und 0,02 ppb Ir) dient Löss, welcher eine gute Näherung für die obere kontinentale Erdkruste darstellt (Peucker-Ehrenbrink und Jahn, 2001).

²⁴ Der Schwerpunkt wurde auf die im ICBM untersuchten Materialien (ergänzt durch diverse Literaturdaten) gesetzt.

²⁵ Die ermittelten Ir-Konzentrationen liegen häufig im Bereich der Nachweisgrenze.

Zuerst fallen die ungewöhnlich hohen Anreicherungen von Zn und Cd in den CTBE-Schwarzschiefern, den Schwarzschiefern an der Jura/Kreide-Grenze, dem Niederrheinischen Kupferschiefer und den pennsylvanischen Zyklothemen auf. Zudem sind Cd in den Mittelmeersapropelen und Pb in den Kupferschiefersedimenten, den pennsylvanischen Zyklothemen und den unterdevonischen und silurischen Graptolithenschiefern aus Thüringen extrem stark angereichert. Die unterdevonischen und silurischen Graptolithenschiefer weisen außerdem sehr hohe Konzentrationen an Sb und Cu auf.

Die Anreicherungen von Zn in den CTBE-Schwarzschiefern und den Schwarzschiefern der Jura/Kreide-Grenze werden auf den vermehrten Ausstoß von Hydrothermallösungen zurückgeführt (Arthur et al., 1990; Brumsack, 1986; Lipinski et al., 2002), welche sowohl bei der Öffnung des Atlantiks als auch bei der Heraushebung von *Large Igneous Provinces* (Coffin und Eldholm, 1994; Kerr, 1998; Larson und Kincaid, 1996; Sinton und Duncan, 1997; Wignall, 2001) austraten. Ein Vergleich der Spurenmetalle in verschiedenen Wässern zeigt, dass Zn nach Fe und Mn am stärksten in Hydrothermallösungen angereichert ist (Tab. 22). Obwohl Pb in Hydrothermallösungen ebenfalls stark angereichert ist, sind die Pb-Anreicherungen in den CTBE-Schwarzschiefern nicht besonders stark ausgeprägt. Dies ist vermutlich auf die geringe Verweilzeit von Pb in der Wassersäule zurückzuführen (Bruland, 1983; Brumsack, 1989b). Trotzdem erkennt man in den CTBE-Schwarzschiefern eine leichte Pb-Anomalie im Vergleich mit den anderen nicht vererzten Materialien. Die extrem hohen Anreicherungen von Zn, Cd und Pb im Kupferschiefer rühren von epigenetischen Mineralisationsprozessen her (vgl. Kap. 5).

Für die Sedimente der pennsylvanischen Zyklotheme müssen ebenfalls sekundäre Überprägungen in Betracht gezogen werden (Coveney und Glasrock, 1989; Coveney et al., 2000), obwohl Coveney und Martin (1983) sowie Coveney et al. (1987) zunächst vermuteten, dass die hohen Spurenmetallanreicherungen des *Mecca Quarry Shale* (Desmoinesian; Illinois) syngenetisch oder frühdiagenetisch entstanden sind. Die Mo- und U-Konzentrationen lassen sich nach Coveney et al. (1987) zwar mit minimalen Ablagerungszeiten von 50.000 bis 70.000 Jahren erklären, nicht aber die z. T. sehr hohen Konzentrationen

Die Proben *Exshaw Formation (Jura Creek*, Teufe: 4,53 m), pennsylvanische Zyklotheme (*Exshello Shale Member*, Teufe: 219,68) sowie der Kern Goslar Z1 wurden nicht bei der Berechnung der Anreicherungsfaktoren berücksichtigt, da sie stark sekundär überprägt sind (vgl. Datenanhang). Die Datensätze wurden ergänzt mit Daten von a: B. Warning, persönl. Mittl.; b: M. Lipinski, persönl. Mittl.; c: H.-J. Brumsack, persönl. Mittl.; d: Heppenheimer (1995) und Schallenberg (1997); e: Hatch und Leventhal (1992, 1997); f: Caplan und Bustin (1996, 1998).

Abb. 36: Mittlere Anreicherungsfaktoren einiger Spurenmetalle relativ zum mittleren Tonschiefer. Die gestrichelten Linien repräsentieren die Anreicherungsfaktoren der Spurenmetalle in dem mittleren Schwarzschiefer von Quinby-Hunt und Wilde (1989), die durchgezogenen Linien entsprechen dem mittleren Schwarzschiefer nach Vine und Tourtelot (1970).

in Schwarzschiefern vom Ordoviziums bis zum Jura. Die Daten stammen von Werne et al. (2002) sowie Quinby-Hunt und Wilde (1989). Die gestrichelten Linien repräsentieren die Anreicherungsfaktoren der Spurenmetalle in dem mittleren Schwarzschiefer nach Quinby-Hunt und Wilde (1989), die durchgezogenen Linien entsprechen dem mittleren Schwarzschiefer nach Vine und Tourtelot (1970).

von bis zu 1,5 % Zn und 0,39 % V (Coveney und Glasrock, 1989). Wird davon ausgegangen, die Metallanreicherung sei syngenetisch bedingt, so müsste z.B. durch submarine Prozesse der Meerwasserchemismus nachhaltig beeinflusst worden sein. Da in Hydrothermallösungen Zn stark angereichert ist, könnten so zwar die hohen Zn-Konzentrationen erklärt werden, nicht aber die hohen Pb- (bis zu 418 ppm) und Re-Konzentrationen (3 ppb-5,7 ppm). Bisher wurden zwar keine Re-Daten für Hydrothermallösungen publiziert, es ist aber davon auszugehen, dass Re wie Mo nur wenig oder gar nicht in hydrothermalen Lösungen angereichert ist. Ein großer Teil dieses Materials weist also wahrscheinlich nicht mehr die primäre Spurenmetallsignatur auf. Es ist wegen der vielen verschiedenen Schwarzschieferhorizonte und lokalen Faktoren sehr heterogen zusammengesetzt.

In den mitteldevonischen thüringischen Graptolithenschiefer sind die Spurenmetalle nur sehr wenig angereichert. Die von Werne et al. (2002) untersuchte mitteldevonische *Oakta Creek Formation* zeigt etwas höhere Anreicherungen (Abb. 37). Mit zunehmendem Alter der Graptolithenschiefer steigen auch in den thüringischen Sedimenten die Anreicherungsfaktoren an. Dies könnte zunächst mit einer niedrigen Sedimentationsrate im Silur erklärt werden (Seidel, 1995). Allerdings steigen die Anreicherungsfaktoren von Pb, Sb und Cu, welche nicht diffusionskontrolliert in das Sediment gelangen, besonders stark an. Außerdem fallen die Pb-,

Sb- und Cu-Anreicherungen in den Schwarzschiefern Libyens (Abb. 36) und Schottlands (Abb. 37) wesentlich geringer aus als in den thüringischen. Wahrscheinlich weisen die unterdevonischen und silurischen Graptolithenschiefer Thüringens daher sekundäre Überprägungen auf. Im bayerischen Graptolithenschiefer sind die Zn-, V- und Pb-Konzentrationen ebenfalls sekundär überprägt. Die absoluten Konzentrationen fallen dort sogar noch höher aus (Dill, 1986). Da die Zn-Gehalte in thüringischen Sedimenten vergleichsweise niedrig sind, erscheint eine hydrothermale Beeinflussung des Meerwassers aber unwahrscheinlich.

Mittelwert mittlerer Meerwasser / Element Literaturdaten Meerwasser [ppt] Meerwasser Tonschiefer Tonschiefer ($\cdot 10^{\circ}$) [ppt] [ppm] 7,23^a 8,24^b 7,7 $0,0002^{m}$ Re 38500 10600^{d} 1.3ⁿ Mo 10000° 10300 7920 3ⁿ U 3200^c 3200 1066 Cd 78^d 78 0,13ⁿ 600 1ⁿ 150^{d} Sb 200^{e} 240^c 200 200 0.055^{b} 0.074^{f} Pt 0.170^{g} 0.00051^{m} 0,100 196 1725^{d} As 1500° 1650^h 1625 10^{n} 162 1.3^j $< 0,005^{i}$ 0.00021^{m} Ru 0,005 24 13^k Tl $12,25^{d}$ 14,35^h 0.68^{n} 19 13.2 V $2000^{\rm e}$ 2500° 1530^d 2010 130^{n} 15 0.00013^{1} 0.00002^{m} Ir 0,00013 6,5 470^d Ni 200^c 500^h 390 68ⁿ 5.7 250^d 200^h 45ⁿ Cu 100° 180 4,0 390^d 320^h 95ⁿ Zn 250^c 330 3,5 0,02^d Bi 0,03^e 0,025 0,13ⁿ 0,2 2,2^h 1.2^{d} 19ⁿ Co 1,7 0,1 2,1^d 3^{c} 2.6^{h} 22^n Pb 2,6 0,1 27,5^d 20^{h} 200° 80 850ⁿ 0,1 Mn

Tab. 21: Konzentrationen einiger Spurenmetalle im mittleren Meerwasser und im mittleren Tonschiefer sowie das mittlere Meerwasser/Tonschiefer-Verhältnis.

a: Anbar et al. (1992); b: Colodner et al. (1993b); c: Martin und Whitfield (1983); d: Bruland (1983), e: Nozaki (1997); f: Jacinto und Vandenberg (1989); g: Goldberg et al. (1986); h: Donat und Bruland (1995); i: Koide et al. (1986b); j: Bekov et al. (1984); k: Flegal und Patterson (1985); l: Anbar et al. (1996); m: Peucker-Ehrenbrink und Jahn (2001); n: Wedepohl (1991).

Element	Meerwasser [ppt]	Hydrothermallösung [ppb]ª	Hydrothermallösung / Meerwasser (· 10 ³)
Zn	330	13790	41500
Pb	2,6	96	39000
Cu	180	705	4350
Co	1,7	19	1700
T1	13,2	10	825
Cd	78	28	410
Sb	200	1,3	5,6
As	1625	34	17
Мо	10300	2,5	0,25

Tab. 22: Konzentrationen einiger Spurenmetalle in mittlerem Meerwasser und mittleren Hydrothermallösungen sowie deren Verhältnis zueinander.

a: Mittelwert aus Daten von Campbell (1988), Metz (2000) und von Damm (1985, 1990, 1995).

Vor allem die wenig angereicherten Elemente reagieren sensibel auf sekundäre Einflüsse. Sie werden daher bis auf Zn, welches ein besonders charakteristisches Anreicherungsverhalten zeigt, bei der folgenden Diskussion vernachlässigt.

6.4 Rekonstruktion der Spurenmetallkonzentrationen im Meerwasser

Die Verteilung der Element/Al-Verhältnisse von Zn, Cd, Re, Mo, U, V und Sb in den verschiedenen Schwarzschiefern ist in Abb. 38 dargestellt. Die durchgezogene Kurve gibt Auskunft über das mittlere Element/Al-Verhältnis des jeweiligen Sedimenttyps. Die hohen Zn- und Cd-Gehalte des Kupferschiefers sind nachweislich sekundärer Natur und werden nicht dargestellt. Für die nordamerkanischen Zyklotheme und silurischen Schwarzschiefer wird eine alternative gestrichelte Kurve angeboten, da bei der Mittelwertbestimmung (durchgezogene Linie) die vermutlich spätdiagenetisch überprägten Proben²⁶ nicht berücksichtigt wurden. Der Schnittpunkt der gestrichelten Kurve mit der Rechtsachse gibt den Mittelwert aus den Element/Al-Verhältnissen aller pennsylvanischen²⁷ und silurischen Proben an.

²⁶ Ausgewählte oberkarbonische Proben mit besonders hohen P, Zn, V oder Cd-Gehalten und die Graptolithenschiefer aus Thüringen wurden nicht dargestellt.

²⁷ Mit Ausnahme der Proben: *Exshello Shale Member*, Teufe: 219,68, deren Spurenmetallgehalte sekundärer Natur sind.

Datensätze ergänzt mit Daten von a: B. Warning, persönl. Mittl.; b: M. Lipinski, persönl. Mittl.; c: Quinby-Hunt et al. (1989); d: Brumsack, persönl. Mittl.; e: Heppenheimer (1995) und Schallenberg (1997); f: Hatch und Leventhal (1992, 1997); g: Caplan und Bustin (1996, 1998); h: Werne (2002).

Abb. 38: Häufigkeitsdiagramme der Element/Al-Verhältnisse von Zn, Cd, Re, Mo, U, V und Sb in verschiedenen C_{org}-reichen Sedimenten vom Silur bis zum Tertiär. Auf der Rechtsachse der Histogramme wurden die Beträge der Element/Al-Verhältnisse, auf der Hochachse die absolute Anzahl der entsprechenden Proben abgetragen. Die Rechtsachse übertreffende Maximalwerte sind mit Pfeilen gekennzeichnet. Die Ziffern geben das durchschnittliche (syngenetische) Element/Al-Verhältnis und die eingehende Probenanzahl an. Bei der Mittelwertberechnung wurden nur die Proben berücksichtigt, die vermutlich keine epigenetische Überprägung aufweisen (Erläuterungen siehe Text). Die zeitliche Änderung der Mittelwerte wird mit der gezogenen Kurve dargestellt. Verläuft die Kurve auβerhalb der Rechsachse, so übertrifft selbst das mittlere Element/Al-Verhältnis die Skalierung (nicht maβstabsgerecht dargestellt). Die gestrichelte Kurve gibt Auskunft über die Mittelwerte, wenn auch die möglicherweise vererzten Proben in die Berechnung einbezogen werden. Die gepunktete senkrechte Linie gibt das Element/Al-Verhältnis des mittleren Tonschiefers wider (Peucker-Ehrenbrink und Jahn, 2001; Wedepohl, 1971a; Wedepohl, 1991).

Besonders hohe Spurenelementanreicherungen finden sich vor allem in den jüngeren C_{org}-reichen Sedimenten wie den tertiären Mittelmeersapropelen, den CTBE-Schwarzschiefern und den Schwarzschiefern der Jura/Kreide-Grenze. In den älteren jurassischen und paläozoischen Schwarzschiefern sind die Spurenmetalle meist weniger stark angereichert (vgl. auch mittlerer Schwarzschiefer auf der Datenbasis von Vine und Tourtelot (1970) sowie Quinby-Hunt und Wilde, 1989). Nur in den pennsylvanischen Kohleflözen und den *Exshaw*-Schwarzschiefern aus Nordamerika sowie den aus Thüringen stammenden silurischen Schwarzschiefern sind einige Metalle ungewöhnlich stark angereichert.

Auf die besonders hohen Anreicherungen von Zn in den anoxischen Sedimenten des späten Mesozoikums (Jura/Kreide-Grenze und CTBE) wurde bereits in Kap. 6.3 eingegangen. Die Cd-Kurve ähnelt der von Zn, bleibt aber auch bei den Mittelmeersapropelen auf einem hohen Niveau. Da Cd besonders schwerlösliche sulfidische Präzipitate bildet, ist es in hydrothermalen Lösungen weniger stark angereichert als Zn (vgl. Tab. 22). Das zunächst in den Feststoffen gebundene Cd wird dem Meerwasser aber schließlich auch durch oxidative Verwitterung der Feststoffe zugeführt, so dass hydrothermale Quellen neben Zn auch Cd freisetzten (Metz und Trefry, 1993). Für den nachhaltigen hydrothermalen Einfluss auf den Meerwasserchemismus durch die Atlantiköffnung sprechen weiterhin die niedrigeren Zn- und Cd-Anreicherungen in den Schwarzschiefern des oberen Jura (Schweiz) und dem Lias (England) sowie dem deutschen Posidonienschiefer (vgl. auch Abb. 37), da diese Sedimente noch vor der Öffnung des Nordatlantiks abgelagert wurden. Die Annahme einer submarinen Zn- und Cd-Quelle könnte also die Anreicherungen in den CTBE-Schwarzschiefern und den Schwarzschiefern an der Jura/Kreide-Grenze erklären. Da die Zn-Konzentrationen in den Mittelmeersapropelen deutlich niedriger ausfallen als in den Schwarzschiefern der Kreide, können die hohen Cd-Anreicherungen hier vermutlich nicht mit der Zufuhr von Hydrothermallösungen erklärt werden. Cd wird als labiles Nährstoffelement in der Wassersäule wesentlich leichter regeneriert als Zn (Brumsack, 1989a; de Baar et al., 1994). Diese Tatsache ist wahrscheinlich die Ursache für die verhältnismäßig hohe Cd-Konzentration im rezenten Meerwasser. Gleichzeitig sind die Fällungsmechanismen für Cd unter anoxischen Bedingungen sehr wirksam. Es ist daher anzunehmen, dass die Frequenz des Auftretens, die räumliche Ausdehnung und die Intensität anoxischer Ereignisse eine wesentliche Rolle für die Cd-Konzentration im Reservoir Meerwasser spielten. Ein häufiges Auftreten weiträumiger reduzierender Ablagerungsräume (Ordovizium bis Jura) sollte also zu einer niedrigen Cd-Konzentration im Meerwasser geführt haben, solange dem Ozean durch fehlende hydrothermale Quellen kein Cd zugeführt wurde. Die Cd-Anreicherungen in den reduzierenden Sedimenten fielen dementsprechend gering aus. Umgekehrt könnte ein Ausbleiben reduzierender Bedingungen (z. B. im Tertiär) ein Ansteigen der Cd-Konzentration im Meerwasserreservoir hervorgerufen haben. Wenige zeitlich und örtlich begrenzte anoxische Ereignisse könnten dann zu den hohen Cd-Anreicherungen in den Mittelmeersapropelen geführt haben. In den ebenfalls jungen Sapropelen des Schwarzen Meeres ist Cd aber trotzdem nur wenig angereichert, da es in dem Randmeer mit beschränkter Wasserzufuhr schnell dem Tiefenwasser entzogen wurde und nicht mehr für eine Anreicherung zur Verfügung stand (vgl. Kap.4).

Analog könnten die höheren Anreicherungen von Re, Mo, V und (U) in den jüngeren Sedimenten gedeutet werden. Ein häufiges Ablagern C_{org}-reicher Sedimente während des Paläozoikums sollte zu einem Entzug der betreffenden Elemente im Meerwasser geführt haben. Die resultierenden Spurenmetallanreicherungen sind meist vergleichsweise gering. Angesichts der hohen Konzentrationen der entsprechenden leichtlöslichen Ionen im Meerwasser (Tab. 21) und der weniger effektiven Anreicherungsmechanismen bewirkte die Akkumulation im Sediment aber vermutlich eine geringere Veränderung der Konzentration im Meerwasser als für Cd (vgl. Kap. 4). Die Anreicherungsfaktoren dieser Elemente unterscheiden sich in den phanerozoischen Schwarzschiefern daher nicht so stark wie für Cd. Eine schnelle Regeneration der Stoffe in der Wassersäule spielte hier keine Rolle.

Die Verteilung von Sb ist weniger gut für die Rekonstruktion der Meerwasserzusammensetzung geeignet, da es zum einen durch vulkanische Prozesse ausgestoßen wird (Quinby-Hunt et al., 1989) und bei der frühen Diagenese umgelagert und in Fe-Sulfide eingebaut wird (Lüschen, 1998). Eine erhöhte tektonische bzw. vulkanische Aktivität am westlichen nordamerikanischen Schelf wird auch für das obere Devon und untere Karbon, die Ablagerungszeit der *Exshaw Formation*, angenommen (Gordey et al., 1987; Savoy und Mountjoy, 1995). Sb ist in diesen Zeitscheiben besonders stark angereichert. Aber auch in jüngeren Schwarzschiefern finden sich hohe Sb-Anreicherungen.

Die besonderen Spurenmetallsignaturen der pennsylvanischen Schwarzschiefer, der Schwarzschiefern der *Exshaw Formation* und der unterdevonischen bzw. silurischen Schwarzschiefer Thüringens sind wahrscheinlich auf besondere lokale Faktoren und/oder besondere Ablagerungsbedingungen zurückzuführen, da sich C_{org}-reiche Sedimente hinsichtlich ihres Chemismus und ihrer Genese deutlich unterscheiden können (z. B. Arthur und Sagemann, 1994; Calvert, 1987; Demaison, 1991; Demaison und Moore, 1980; Pedersen und Calvert, 1990; Werne et al., 2002). Dabei gehen die bedeutendsten Theorien zur Entstehung von Schwarzschiefern von einer hohen Erhaltung des organischen Materials (Stagnationsmodell) und/oder einer hohen Bioproduktivität aus.

So könnten die sedimentspezifischen Spurenmetallsignaturen in den oberkarbonischen Kohleflözen auf die Überflutung und den Eintrag von zersetzbarem torfigem Material zurückzuführen sein. Die hohe Nährstoffverfügbarkeit (Wenger und Baker, 1986), die hohen Cd- und Zn-Konzentrationen sowie die gute Korrelation von Ni mit dem organischen Material (R = 0,91) könnten auf ein Auftriebsgeschehen bzw. eine hohe Bioproduktivität zur Ablagerungszeit hinweisen (vgl. Böning et al., 2004; Brumsack, 1989a), wie es von Jewell (1995) und Parrish (1982) vorgeschlagen wird. Zum anderen könnte der hohe Anteil terrestrischen organischen Materials (Wenger und Baker, 1986) einen nachhaltigen Einfluss auf die Einbettung der mit dem organischen Material assoziierten Metalle Mo, U und V gehabt haben (Coveney et al., 1991). Die hohen Anreicherungen der Metalle in den oberkarbonischen Kohleflözen könnten letztlich auch auf sekundäre Überprägungen zurückzuführen sein (Coveney und Glasrock, 1989; Coveney et al., 2000).

In guter Übereinstimmung mit den Arbeiten von Parrish (1982), Jewell (1995) sowie Caplan und Bustin (2001) ließe sich ein analoges "Auftriebs-Szenario" für die *Exshaw Formation* begründen. Eine besondere Spurenmetallsignatur ist daher nicht überraschend. Allerdings sind die Ag-Konzentrationen in den Sedimenten der *Exshaw Formation* mit $\emptyset = 0,25$ ppm niedriger als in den oberkarbonischen Schwarzschiefern ($\emptyset = 3,4$ ppm). Ag ist als typisches Nährstoffelement in Gebieten mit hoher Bioproduktion häufig stark angereichert (Böning et al., 2004). Die spezifische Spurenmetallsignatur der unterdevonischen und silurischen Graptolithenschiefer Thüringens ist wahrscheinlich auch auf epigenetische Prozesse zurückzuführen, da ihre Pb-, Cu-, V-, Sb- und Re-Gehalte deutlich höher sind als die der nahezu zeitgleich abgelagerten Schwarzschiefer Libyens oder Schottlands.

Insgesamt gestaltet es sich als sehr schwierig, die Spurenmetallkonzentrationen von Corg-reichen Sedimenten als Spiegelbild des Meerwasserchemismus zu verwenden. Selbst wenn sekundär überprägtes Material bei der Diskussion separiert wird, bleibt eine beträchtliche Unschärfe. Allein die beiden wichtigsten unterschiedlichen Prozesse zur Genese Corg-reicher Sedimente (Erhaltung vs. Bioproduktion) äußern sich in einem unterschiedlichen Anreicherungsverhalten vieler Spurenmetalle (Böning et al., 2004; Brumsack, 1989a). Aber auch die Sedimentationsrate und die anteilige Zusammensetzung der fünf Hauptkomponenten Ton, Quarz, Carbonat, organisches Material und dessen Zusammensetzung sowie der Anteil der sulfidischen Phase wirken sich nachhaltig auf die Spurenmetallsignatur eines Sedimentes aus. Die unterschiedlichen terrigenen Einträge können zwar noch durch die Al-Normierung weitgehend kompensiert werden. Da man in Corg-reichen Sedimenten aber häufig gute Korrelationen zwischen Corg und Re, Mo, U, V etc. findet, wirken sich unterschiedliche Konzentrationen organischen Materials häufig trotzdem auf die entsprechenden Element/Al-Verhältnisse aus. Erschwerend kommt hinzu, dass die Element/Corg-Verhältnisse selbst in äquivalenten Horizonten stark schwanken (Bereiche der sedimentspezifischen Mittelwerte $(\cdot 10^{-4});$ alle Ablagerungsräume²⁸ ($\cdot 10^{-4}$) Mittelwerte über für: Mo: 2,75-41; $\emptyset = 17$; Re: 0,0025-0,12; $\emptyset = 0,032$; U: 1,05-7,05; $\emptyset = 3,3;$ V: 13-285; $\emptyset = 111$). Auf die Bedeutung der Sedimentationsrate für die Akkumulationsrate der vorwiegend diffusionskontrolliert akkumulierenden Elemente Mo, V und U und deren Element/Corg-Verhältnisse wird schon bei Anderson und Fleisher (1991), Arthur und Sagemann (1994), Breit und Wanty (1991), Klinkhammer und Palmer (1991) sowie Mangini und Dominik (1979) hingewiesen. Zuletzt können sich auch Korngrößeneffekte und die Porosität auf die Spurenmetallanreicherungen auswirken (Werne et al., 2002).

Trotzdem zeigen diese Untersuchungen, dass während der Atlantiköffnung im oberen Jura und der Kreide das Meerwasser reicher an Cd und vor allem Zn war als heute. Cd ist aber

²⁸ Für die in dieser Arbeit untersuchten Materialien unter Ausschluss der vererzten Materialien.

auch heute im Meerwasserreservoir "angereichert", da es als labiles Nährstoffelement schon in der Wassersäule regeneriert wird und unter den zuletzt vorherrschenden oxischen Bedingungen kaum ins Sediment abgeführt wurde. Vom Ordovizium bis zum Jura waren weit ausgedehnte, reduzierende ozeanische Ereignisse relativ häufig. Diese Schwarzschiefer weisen meist deutlich niedrigere primäre mittlere Element/Al-Verhältnisse auf als die jüngeren Materialien. Es ist daher wahrscheinlich, dass das Meerwasser an den in C_{org}-reichen Sedimenten akkumulierenden Elementen verarmt war. Vor dem Ordovizium wurden nur selten Schwarzschiefer abgelagert. Vermutlich ist dies die Ursache für das mit zunehmendem Alter erneute Ansteigen der Anreicherungsfaktoren bei den ordovizischen Schwarzschiefern (vgl. Tab. 23). Die gelösten Komponenten konnten sich vor dem Ordovizium vermutlich noch im Meerwasser anreichern. Dies unterstreichen auch die vergleichsweise niedrigen mittleren Anreicherungsfaktoren der durchschnittlichen Schwarzschiefer von Vine und Tourtelot (1970) sowie von Quinby-Hunt und Wilde (1989), da deren Analysen vornehmlich an jurassischen und jüngeren paläozoischen Schwarzschiefern durchgeführt wurden.

Die wenigen kambrischen Schwarzschiefer sind bei der periodischen Aufarbeitung der Erdkruste vermutlich weitgehend vernichtet worden. Die erhalten gebliebenen chinesischen kambrischen Schwarzschiefer wurden häufig überarbeitet (Coveney et al., 1992; Leventhal, 1991) und überliefern vermutlich keine Informationen mehr über die Meerwasserzusammensetzung.

Zeit	Zn	Мо	U	V	Sb	Proben- anzahl
Oberes Ordovizium	11	3,9	1,4	48	0,9	81
Mittleres Ordovizium	31	4,6	0,8	33	0,4	23
Unteres Ordovizium	81	15,0	4,4	148	1,1	98

Tab. 23: Mittlere Element/Al-Verhältnisse ($\cdot 10^{-4}$) von Schwarzschiefern aus dem Ordovizium (Daten von Quinby-Hunt et al., 1989).

6.5 Zusammenfassung

- In den untersuchten Schwarzschiefern weisen die meisten Spurenmetalle in der Größenordnung vergleichbare Anreicherungsfaktoren auf. Re, Mo, U, Cd, Sb, As und V sind häufig besonders stark angereichert (Faktoren zehn bis 3000). Die Reihenfolge der Anreicherungsfaktoren entspricht etwa der Größe des Quotienten aus der mittleren Meerwasserkonzentration und der Konzentration im mittleren Tonschiefer. Tl, Ni, Cu, Zn, Bi, Co, Pb, Mn, Pt, Ru und Ir sind in vielen Fällen nur zehnfach oder weniger gegenüber dem mittleren Tonschiefer angereichert. Mn ist in vielen Sedimenten abgereichert, da es unter reduzierenden Bedingungen mobilisiert wird.
- Die Sedimente weisen zeitliche Trends vom Ordovizium bis zur Gegenwart in den mittleren Element/Al-Verhältnissen auf und spiegeln möglicherweise die Zusammensetzung des Meerwassers zur Ablagerungszeit wider. Die Meerwasserzusammensetzung scheint sowohl durch die Zufuhr hydrothermaler oder vulkanischer Lösungen als auch die Häufigkeit und Intensität reduzierender ozeanischer Ereignisse bestimmt worden zu sein.
- Während des Paläozoikums führte die häufige Ablagerung C_{org}-reicher Sedimente vermutlich zu einer Verarmung der Spurenmetalle im Meerwasser und vergleichsweise geringen Anreicherungen im Sediment. Im Tertiär wurden anoxische Sedimente nur selten abgelagert, so dass sich vor allem Cd, Re, Mo, V und (U) wegen der fehlenden Senke im Meerwasser anreichern konnten. Die hohen Konzentrationen im rezenten Meerwasser sind in den hohen Anreicherungen der Mittelmeersapropele dokumentiert.
- Die extrem hohen Anreicherungen von Zn, Cd und Pb sowie einigen anderen Metallen in den Schwarzschiefern an der Jura/Kreide- und der Cenoman/Turon-Grenze sind auf den vermehrten Ausstoß hydrothermaler Lösungen während der Atlantiköffnung zurückzuführen.
- Die Spurenmetallsignaturen des Kupferschiefers, der pennsylvanischen Schwarzschiefer Nordamerikas und den Schwarzschiefern aus Thüringen sind teilweise auf epigenetische Überprägungen zurückzuführen.
- Die betrachteten Ablagerungsräume und Materialien dürften sich in ihren Ablagerungsbedingungen (z. B. den Akkumulationsraten) und durch die sekundären Überprägungen deutlich unterscheiden. Die Interpretation ist dementsprechend mit einer großen Unschärfe verbunden und als erster Diskussionsansatz zu verstehen.

Die Erforschung der PGE-Konzentrationen beschränkte sich bisher meistens auf wirtschaftlich bedeutsame, metallreiche Lagerstätten (Pasava, 1993; Stribrny, 1996; Stribrny et al., 2000) oder auf magmatische Gesteine (Crocket, 2000; Mitchell und Keays, 1981; Rehkämper et al., 1999). In Sedimenten sind PGE-Anreicherungen häufig durch sekundäre Vererzungen (Bechtel et al., 2001; Kucha, 1993; Pasava, 1993; Piestrzynski und Wodzicki, 2000; Sawlowicz, 1993) oder durch submarine exhalative Prozesse während der Ablagerung entstanden (Koide et al., 1991; Pasava, 1993; Pasava et al., 1997; Sawlowicz, 1993). Im rezenten marinen Bereich wird Pt vor allem in Manganknollen angereichert. Nur vereinzelt finden sich in der Literatur Hinweise auf das Verhalten der PGE im marinen Ablagerungsraum (Crocket et al., 1973; Goldberg, 1987; Goldberg et al., 1986; Goldberg und Koide, 1990; Koide et al., 1986b). In diesem Kapitel sollen die Anreicherungsmechanismen für die PGE in marinen Sedimenten weiter entschlüsselt werden.

7.1 Einleitung

Pt bildet im Meerwasser leichtlösliche, stabile $Pt(Cl)_4^{2-}$ oder $Pt(Cl)_6^{2-}$ -Komplexe (Goldberg, 1987; Goldberg et al., 1986; Jacinto und Vandenberg, 1989). Die Pt-Anreicherungen auf Mn-Oberflächen werden sowohl durch die Reduktion als auch durch die Oxidation von $Pt(Cl)_4^{2-}$ erklärt (Goldberg, 1987; Halbach et al., 1989; Hodge et al., 1985). Die hohe Oberflächenreaktivität des Pt ist vermutlich auch für das im Indischen Ozean gemessene *Scavenging*-Profil von Pt verantwortlich (Jacinto und Vandenberg, 1989). Die Kopplung von Pt an den Nährstoffzyklus ist dem Profil des Pazifischen Ozeans zu entnehmen (Hodge et al., 1985). Eine großer Teil des Pt sollte daher in anoxischen Sedimenten mit dem organischen Material assoziiert sein (Li et al., 1999; Mitkin et al., 2000; Plyusnina et al., 2000; Sawlowicz, 1993). Zudem wird der partikuläre metallische Eintrag von Pt nach der Reduktion von Pt(Cl)_4^2- aus einer anoxischen Wassersäule diskutiert (Terashima et al., 1993). In vielen PGE-Lagerstätten liegt natives Pt vor. Häufig ist es auch als sidero- und chalkophiles Element Bestandteil der sulfidischen Phase (Li et al., 1999; Pasava, 1993; Sawlowicz, 1993).

Im Gegensatz zum Pt besitzen die Chlorokomplexe des Ir eine starke Hydrolysetendenz, die als Ursache für die geringe Ir-Konzentration im Meerwasser angesehen wird (Goldberg et al., 1986). Als Mechanismus für die Anreicherung von Ir in Manganknollen wird die Oxidation von Ir(III) zu Ir(IV) vermutet (Goldberg et al., 1986). Obwohl Ir eher als lithophiles Element

angesehen werden muss, ist es häufig in vererzten sulfidischen Materialien angereichert. Ir-Anreicherungen werden häufig im Zusammenhang mit Meteoriteneinschlägen (Alvarez et al., 1980; Evans et al., 1995; Kramer et al., 2001; Sawlowicz, 1993; Wang et al., 1993) oder dem Eintrag von kosmischem Staub (Bruns et al., 1996) diskutiert. Zudem gibt es Hinweise auf eine Mobilisierung von Ir durch die Verschiebung von Redoxgrenzen in marinen Sedimenten (Colodner et al., 1992; Koide et al., 1991; Wang et al., 1993).

Die aquatische Geochemie des Ru ist weitgehend unerforscht. Für die Ru-Konzentration im Meerwasser werden ca. fünf ppq angenommen (Koide et al., 1986b). Es kommt im marinen Bereich in den Oxidationsstufen Ru(III) und Ru(IV) vor (Goldberg und Koide, 1990). Die gelösten $\text{Ru}(\text{Cl})_6^{3-}$ -Komplexe werden leicht hydrolisiert. Die Oxidation zu $\text{Ru}(\text{Cl})_6^{2-}$ spielt wohl nur bei der Anreicherung an Mn-Oxiden eine Rolle. Es wird davon ausgegangen, dass das Pt/Ru-Verhältnis sowohl im Meerwassers als auch in Manganknollen ca. 20 beträgt (Koide et al., 1986b). In pelagischen Sedimenten beträgt das Pt/Ru-Verhältnis ca. vier (Koide et al., 1986b).

7.2 PGE-Anreicherungen in Corg-reichen Sedimenten

Die mittleren Konzentrationen von Ru, Ir und Pt sowie von C_{org}, S und Al in verschiedenen reduzierenden Sedimenten sind in Tab. 24 dargestellt. Vor allem Pt ist relativ zum mittleren Tonschiefer bis zum Faktor zehn angereichert (Abb. 36 in Kap. 6.3). In den hier untersuchten C_{org}-reichen Sedimenten übertreffen die Pt-Konzentrationen aber nur selten drei bis vier ppb. Dieser Wert entspricht der mittleren Pt-Konzentration pelagischer Sedimente (Koide et al., 1986a). Ausnahmen bilden die Einzelproben Jura/Kreide-Grenze 7430-53,59 und die vererzte Probe *Exshello Shale Member* ED1, Teufe: 219,68 der pennsylvanischen Schwarzschiefer Nordamerikas sowie die silurischen Schwarzschiefer Libyens (Tab. 24). Die Ir- und Ru-Konzentrationen sind ebenfalls niedrig und liegen durchweg unter den mittleren von Koide et al. (1986a) ermittelten Konzentrationen pelagischer Sedimente. Die ermittelten Ir-Konzentenrationen liegen häufig sogar im Bereich der Nachweisgrenze (ca. 17 ppt Ir). In den zum Vergleich bereitgestellten Schwarzschiefern sind die PGE häufig stärker angereichert.

Tab. 24: Mittlere Konzentrationen von Ru, Ir, Pt, Corg, S und Al in einigen Sapropel- und Schwarzschieferproben. Zum Vergleich wurden einige Literaturdaten gegenübergestellt. Kursiv dargestellte Werte liegen im Bereich der Nachweisgrenze.

Material	Ru [ppb]	Ir [ppb]	Pt [ppb]	C _{org} [%]	S [%]	Al [%]	Anzahl
Schwarzes Meer Unit 1	0,35	0,06	1,23	7,0	2,0	3,7	3
Schwarzes Meer Unit 2	0,53	0,07	2,96	19,0	2,4	4,5	4
Mittelmeer (Pr. Med-1)	0,27	0,08	2,52	2,4		11,0	1
Jura/Kreide 6307-59,44	0,09	0,03	2,73	5,1	4,4	8,0	1
Jura/Kreide 7430-53,59 ⁺	0,21	0,07	13,07	19,1	4,0	5,3	1
Posidonienschiefer	0,13	0,06	2,19	7,8	3,4	5,7	5
Niederwald 1 T1 I	0,30	0,07	0,63	6,3	3,0	6,9	6
Niederwald 1 T1 I-III	0,18	0,05	0,50	2,9	2,1	6,8	13
Niederwald S1	0,10	0,03	0,72	0,2	10,2	3,5	2
pennsylv. Zyklothemen	0,21	0,04	4,43	12,9	2,0	7,1	7
p. Zyklotheme (Pr. ED1) [⊗]	0,64	0,08	15,49	11,4	2,3	4,4	1
Exshaw Formation	0,06	0,03	1,29	2,6	3,6	5,4	4
Libyen	0,18	0,08	4,80	7,2	5,5	7,1	3
Auftriebsg. Peru SL 40	0,05	0,01	0,64	3,1*		5,7	2
Auftriebsg. Peru MC 45	0,33	0,13	2,00	12,3	1,3	4,3	2
mittl. Tonsch. ^{a,b}	0,21	0,022	0,51	0,2	0,2	8,89	
rezente pelag. Sed. ^{c,d}	0,2-2,2 (Ø=0,98)	0,2-1,2 (Ø=0,45)	0,4-21,9 (Ø=3,8)			9,5 ⁿ	
rezente pelag. Sed. ^e		0,001-0,1 (Ø=0,03)	0,014-9,7 (Ø=1,64)			9,5 ⁿ	
Auftriebsg. Chile, Peru ^f			0,1-8,6				
Manganknollen ^{g,h}	0,95-46 (Ø=13)	0,4-7,4 (Ø=2,1)	6-940 (Ø=240)				
Chattanooga Shale ⁱ		0,6-1,0	23-150				
pennsylv. Zyklothemen ^j	8,6-21,2	0,01-0,03	<3-35				
Chinesische Schwarzsch. ^j	16	0,08	15				
Sulfidl. Chin. Schwarzsch. ^j	23	1,7	295				
polnischer Kupfersch. ^{k,l}	10-52000	11-67	11- 340000				
C1 Chondrite ^m	710	455	1010		5,4	0,86	

*: Die Corg-Konzentrationen wurden anhand der Korrelation von Ni gegen Corg (R > 0,9) abgeschätzt (P. Böning, Universität Oldenburg, persönl. Mittl.).

+: Die Zn-, Cd- und Re-Gehalte dieser Probe betragen 4976 ppm, 99 ppm und 0,38 ppm (Lipinski, pers. Mittl.).

⊗: Die Probe ist stark sekundär überprägt (5,7 ppm Re, 95 ppm Cd, 2554 ppm Mo, 1900 ppm V, 3300 ppm Zn). a: Wedepohl (1971a) und Wedepohl (1991); b: Peucker-Ehrenbrink (2001); c: Koide (1991); d: Crocket (1973);

e: Bruns (1996); f: Koide (1986a); g: Goldberg (1986); h: Koide (1986b); i: Pasava (1993); j: Coveney (1992);

k: Kucha (1990); l: Bechtel (2001); m: McDonough (1995); n: Martin (1983).

7.3 Mechanismen zur Anreicherung der PGE in marinen Sedimenten

Relativ zum mittleren Tonschiefer sind die PGE-Konzentrationen in pelagischen Sedimenten hoch. Sie könnten zunächst mit der niedrigen Sedimentationsrate und dem Eintrag extraterrestrischen Materials erklärt werden. Da die Ir/Pt-Verhältnisse pelagischer Sedimente aber deutlich von denen meteoritischen Materials abweichen, erscheint diese Vermutung eher unwahrscheinlich (vgl. Tab. 24).

Im Chemismus von Tiefseetonen ist vor allem der hohe Mn-Gehalt (6000 ppm) auffällig (Martin und Whitfield, 1983). Die mittlere Mn-Konzentration in Löss, welcher die Basis für die Abschätzung der PGE-Gehalte in der oberen Erdkruste darstellt (Peucker-Ehrenbrink und Jahn, 2001), beträgt dagegen nur 450 ppm Mn (Schnetger, 1992). Auch der mittlere Tonschiefer ist mit 850 ppm vergleichsweise Mn-arm (Wedepohl, 1971a; Wedepohl, 1991). Da die gelösten Komplexe der PGE mit festen Mn-(Oxo)hydroxiden reagieren, werden sie offenbar nicht nur in Manganknollen, sondern auch in den Mn-reichen Tiefseetonen gegenüber dem Tonschiefer bzw. Löss angereichert. Goldberg et al. (1986) ermittelten für pelagische Sedimente ein mittleres Pt/Mn-Verhältnis von $1, 4 \cdot 10^{-7}$.

In anoxischen Sedimenten liegen die mittleren Pt/Mn-Verhältnisse bei $110 \cdot 10^{-7}$ (Bereich: 1,7-700 $\cdot 10^{-7}$). Dieser Umstand ist vor allem auf die niedrigen Mn-Konzentrationen der reduzierenden Sedimente zurückzuführen (Abb. 36 und Abb. 37). Die PGE können keine signifikanten Anreicherungen in C_{org}-reichen Sedimenten über einen *Scavenging*-Mechanismus an Mn-Oberflächen erfahren, da die festen Mn-(Oxo)hydroxide im reduzierenden Milieu aufgelöst werden (Calvert und Pedersen, 1993; Haraldson und Westerlund, 1991; Lewis und Landing, 1991). Sie können aber möglicherweise über den Mn-Zyklus (Murray, 1975) an der Redoxkline in das anoxische Tiefenwasser verfrachtet werden.

Anhand der Korrelationsdiagramme von Pt, Ru und Ir gegen C_{org} und S (Abb. 39) wird weiter herausgearbeitet, in welcher Phase die PGE in den C_{org} -reichen Sedimenten gebunden sind. So findet man in den Sapropelen des Schwarzen Meeres, den Auftriebssedimenten vor der peruanischen Küste, den Schwarzschiefern der *Exshaw Formation*, den pennsylvannischen Zyklothemen und den silurischen Schwarzschiefern des Murzuq-Beckens sehr gute Korrelationen von Pt mit C_{org} (R > 0,91). Bei den anderen Sedimenttypen kann entweder keine Regressionsanalyse durchgeführt werden, oder es besteht kein erkennbarer Zusammenhang zwischen Pt und C_{org} . Da die Ausgleichsgerade durch die beiden Punkte der Jura/KreideSchwarzschiefer eine Ursprungsgerade ist, könnten selbst die hohen Pt-Gehalte in der Probe Jura/Kreide-Grenze 7430-53,59 syngenetischer Natur sein. Die Zufuhr hydrothermaler Lösungen zum Meerwasser sollte sich dann auch auf die Pt-Konzentration des Meerwassers ausgewirkt haben, was durch die gleichzeitig hohen Zn- und Cd-Gehalte dieser Probe nahegelegt wird (vgl. Kap. 6.4).

Für Ru und Ir ist eine strenge Korrelation für die jeweiligen Sedimenttypen nur noch in Einzelfällen gegeben. Hierfür können drei mögliche Ursachen angeführt werden.

Erstens könnten die PGE auch in anderen Komponenten als dem organischen Material, beispielsweise den Sulfiden oder dem terrigenen Detritus gebunden sein. Ein signifikanter Zusammenhang mit den S-Daten ist außer für Pt im Posidonienschiefer (R = 0,73) aber kaum gegeben (R < 0,32). Trotzdem darf daraus nicht gefolgert werden, dass Pt immer ausschließlich in der organischen Phase gebunden ist. Weiterhin könnten besonders niedrige Anreicherungssignale der PGE durch das detritische Hintergrundrauschen (Ru und Ir) oder durch sekundäre Prozesse (Colodner et al., 1992; Jaffe et al., 2002; Peucker-Ehrenbrink und Hannigan, 2000; Sawlowicz, 1993) überlagert worden sein, so dass die Regressionsanalyse kein eindeutiges Ergebnis mehr liefert. Dies ist z. B. für den Kupferschiefer anzunehmen (R < 0,67). Zuletzt könnten sich insbesondere für Ir mögliche Fehler im analytischen Grenzbereich zu stark auswirken. Die pennsylvanischen Zyklothemen zeigen aber trotz der niedrigen Konzentrationen für jedes der drei Elemente eine gute Korrelation mit C_{org}, was gegen eine fehlerhafte Messung spricht.

Es kann daher nicht für jeden Sedimenttyp exakt festgestellt werden, in welcher Phase die PGE gebunden sind. Abschließend kann aber festgehalten werden, dass Pt vorrangig mit dem organischen Material in die anoxische Sedimente gelangt. Die Pt/C_{org}-Verhältnisse streuen um den Mittelwert $0,28 \cdot 10^{-7}$. Die Zuordnung von Ru und insbesondere von Ir zum organischen Material ist aber weniger gut abgesichert. Die syngenetischen Anreicherungen der PGE in C_{org}-reichen Sedimenten fallen sehr gering aus, da ihre Konzentrationen im Meerwasser vergleichsweise niedrig sind (vgl. Tab. 21).

1: Alle Proben außer Probe ED1 (*Exshaw Formation*) und Probe Jura Creek, Teufe: 4,53 m. Die verschiedenen Sedimenttypen sind bei der Korrelationsanlyse und Verhältnisbildung wegen der unterschiedlichen Probenzahlen nicht gleichberechtigt; 2: Schwarzes Meer Station 7; 3: Kupferschiefer Kern Niederwald 1 T1 I; 4: *Exshaw Formation* Kern Shell Whiskey 6-4-33-5W5; 5: Posidonienschiefer Dotternhausen; 6: Pennsylvanische Zyklothemen außer Probe ED1.

Abb. 39: Korrelationsdiagramme von Pt, Ru und Ir gegen C_{org} und S. Unter den Diagrammen sind jeweils die Korrelationskoeffizienten R der Ausgleichsgeraden und die mittleren PGE/ C_{org} -Verhältnisse ($\cdot 10^{-7}$) bzw. PGE/S-Verhältnisse ($\cdot 10^{-7}$) angegeben. Für die Mittelmeersapropele und Jura/Kreide-Schwarzschiefer konnte wegen zu geringer Probenanzahl keine Regressionsanalyse durchgeführt werden.

7.4 Konzentrationen der PGE im abgelagerten organischen Material

Im Folgenden soll die Konzentration von Pt im eingetragenen organischen Material abgeschätzt werden. Anhand der Element/Corg-Verhältnisse wird zunächst die Konzentration des Pt im abgelagerten organischen Material berechnet. Da in den rezenten Sedimenten diagenetische Effekte die geringsten Auswirkungen haben sollten und die Pt/Corg-Verhältnisse der Sapropele des Schwarzen Meeres und die Auftriebssedimente vor Peru bei guter Korrelation ähnliche Beträge aufweisen (vgl. Abb. 39), wird davon ausgegangen, dass die PGE/Corg-Verhältnisse dieser Sedimente repräsentativ sind. Vereinfachend wird weiterhin angenommen, das organische Material habe die Zusammensetzung (CH₂O)₁₀₆(NH₃)₁₆(H₃PO₄) aufgewiesen (Redfield et al., 1963). Demnach betrug die Corg-Konzentration im organischen Material 35,8 %. Anhand dieser Daten kann errechnet werden, dass die Pt-Konzentration im eingetragenen organischen Material bei ca. 2,1 ppb Pt lag. Die von Hodge et al. (1986) gemessenen Pt-Konzentrationen in Algen liegen bei ca. 0,2 ppb (vier Messungen) und damit nur eine Größenordnung unter dem hier berechneten Wert. Die Abweichungen liegen im Bereich der zu erwartenden Schwankungen. In Algenmatten soll sogar eine Pt-Konzentration von 3300 ppb gemessen worden sein (Coveney et al., 1992). Dieser Wert erscheint aber zu hoch. Eine analoge Rechnung kann für Ru und Ir sowie die Nährstoffelemente Ag, Zn, Cd und Ni durchgeführt werden. Die berechneten Konzentrationen im organischen Material betragen 0,4 ppb Ru, 0,08 ppb Ir, 0,74 ppm Ag, 86 ppm Zn, 32 ppm Cd und 96 ppm Ni (Literaturdaten für marines Plankton: 0,08-0,67 ppm Ag, 44-131 ppm Zn, 3,2-22 ppm Cd und 5,2-12 ppm Ni; Brumsack, 1989a). Die Ru- und besonders die Ir-Konzentrationen bewegen sich sicher im spekulativen Bereich, da keine strenge Beziehung zwischen diesen beiden Elementen und C_{org} nachgewiesen werden konnte. Zumindest die berechnete Ru-Konzentration kann aber als Richtwert dienen. Für andere in Corg-reichen Sedimenten angereicherten Elemente können keine sinnvollen Rechenergebnisse hinsichtlich der Konzentration im Plankton erwarten werden, da diese über andere Anreicherungsmechanismen ins Sediment gelangen.

7.5 Schlussfolgerungen

Die PGE werden sowohl in Tiefseetonen als auch in C_{org}-reichen Sedimenten gegenüber dem Tonschiefer schwach angereichert. Die Anreicherungen fallen den niedrigen Konzentrationen im Meerwasser entsprechend gering aus. Im ersten Fall ist die Redoxchemie der gelösten Pt-Komplexe, im zweiten Fall die Bindung von Pt und Ru am organischen Material für die Anreicherungen verantwortlich. Die einfache rechnerische Zuordnung des Pt zum organischen Material erlaubt keine Unterscheidung zwischen der biogenen Inkorporation von Pt ins organische Material und der frühdiagenetischen adsorptiven Bindung von Pt in der Wassersäule, wie sie z. B. für Cr beobachtet wird (Böning et al., 2004). Da Pt sehr oberflächenreaktiv ist, könnte in anoxischen Becken der Mn-Kreislauf an der Redoxkline möglicherweise zu einer Anreicherung von Pt im Tiefenwasser führen. Für das lithophile Ir kann eine Bindung an organisches Material nicht sicher ausgemacht werden.

Während der frühen Diagenese können Pt und Ru wahrscheinlich vom organischen Material freigesetzt werden. Die erneute Ausfällung oder Adsorption an sulfidischen Oberflächen verhindert aber eine großräumige Umlagerung, da in den meisten Fällen die gute Korrelationen von C_{org} mit Pt bestehen bleibt. Im Posidonienschiefer scheint die Sulfidisierung von Pt weiter fortgeschritten zu sein als in den anderen Sedimenten. Im Kupferschiefer könnten epigenetische Prozesse schon eine Umlagerung von Pt, Ru und Ir bewirkt haben, obwohl eine nachhaltige Zufuhr der PGE aus dem Untergrund ausgeblieben ist.

7.6 Zusammenfassung

- Pt, Ru und Ir sind in nicht vererzten C_{org}-reichen Sedimenten und in pelagischen Sedimenten bis zum Faktor 10 gegenüber dem mittleren Tonschiefer angereichert. Die gemessenen durchschnittlichen Konzentrationen betragen 1-3,5 ppb Pt, 0,1-0,3 ppb Ru und 0,03-0,08 ppb Ir.
- Die maximalen ermittelten Konzentrationen betrugen 1,4 ppb Ru (Kupferschiefer, Kern Niederwald 1, Zyklus T1 I), 0,3 ppb Ir (Kupferschiefer, Kern Niederwald 1, Zyklus T1 I) und 13,1 ppb Pt (Schwarzschiefer der Jura/Kreide-Grenze) bzw. 15,5 ppb (pennsylvanische Zyklotheme). Die ungewöhnlich hohen Anreicherungen von Pt in den Schwarzschiefern der Jura/Kreide-Grenze sind möglicherweise syngenetisch entstanden und könnten eventuell mit der Zufuhr hydrothermaler Lösungen zum Meerwasser erklärt werden.
- Für die Anreicherung der PGE in marinen Sedimenten sind zwei unterschiedliche Anreicherungsmechanismen verantwortlich. Die PGE werden in oxischen Sedimenten über Oxidations- und Reduktionsprozesse an Mn-Oberflächen angereichert. Die z. T. sehr guten Korrelationen von Pt und Ru mit C_{org} in anoxischen Sedimenten weisen auf den gemeinsamen, möglicherweise adsorptiven Eintrag der Metalle mit dem organischen Material hin. Anhand der Pt/C_{org}-Verhältnisse im Sediment wurde die ungefähre
Pt-Konzentration im eingetragenen organischen Material auf ca. 2,1 ppb geschätzt. Eine Beteiligung von Pt am Redoxzyklus des Mn erscheint wegen der hohen Partikelreaktivität des Pt möglich. Für Ir konnte kein besonderer Anreicherungsmechanismus ausgemacht werden.

 Durch sekundäre Prozesse können die PGE vom organischen Material freigesetzt werden und in die sulfidische Phase übertreten. Dies wird für den Posidonienschiefer vermutet. Für den Niederrheinischen Kupferschiefer muss von einer Umlagerung der PGE ausgegangen werden.

8 Zusammenfassung

In dieser Arbeit wurden ausgewählte phanerozoische Schwarzschiefer (Norwegische Jura/Kreide-Grenze, Posidonienschiefer, Niederrheinischer Kupferschiefer, pennsylvannische Zyklotheme, *Exshaw Formation*, Graptolithenschiefer aus Thüringen, Lybische Tanezzuft-Formation) und (sub-)rezente C_{org}-reiche Sedimente (Schwarzes Meer, peruanische Auftriebssedimente) anorganisch-geochemisch untersucht. Die aus dem holozänen Schwarzen Meer und dem oberpermischen Zechsteinmeer stammenden Sedimentkerne wurden hochauflösend beprobt. Die Untersuchungen lieferten nicht nur für die häufig bestimmten Hauptkomponenten und Spurenmetalle, sondern auch für die selten untersuchten Metalle Ag, Bi, Cd, Ir, Pt, Re, Ru, Sb und Tl einen umfangreichen Datensatz. Ziel der Arbeit war es, anhand der sedimentären Spurenmetallsignaturen Rückschlüsse auf die Spurenmetall- und Sauerstoffverfügbarkeit in der Wassersäule sowie die Meerwasserzusammensetzung während der Ablagerungszeit zu ziehen. Außerdem wurden die Anreicherungsmechanismen der PGE in marinen Sedimenten entschlüsselt.

Für die Bestimmung niedriger Gehalte von Re, Pt, Ru und Ir in C_{org} -reichen Sedimenten wurde eine neue Methode (Säureaufschluss und ID-ICP-MS nach vorheriger Matrixabtrennung mittels eines Anionenaustauscherharzes) entwickelt. Dabei wurde festgestellt, dass für die Re-Messung in höheren Konzentrationen (> 5ppb) auch mit der direkten Messung (externe Kalibrierung, keine Matrixabtrennung) gute Ergebnisse erhalten werden. Die neue Methode kann wegen der ungünstigen Matrix C_{org}-reicher Sedimente nicht für Pd angewendet werden.

In den meisten Fällen waren die für unvererzte anoxische Sedimente ermittelten Pt-, Ru- und Ir-Konzentrationen ähnlich hoch wie in pelagischen Sedimenten. Relativ zum mittleren Tonschiefer sind die PGE in beiden Sedimenttypen bis zum Faktor 10 angereichert. In typischen anoxischen Sedimenten lagen die mittleren Konzentrationen bei 1-3,5 ppb Pt, 0,1-0,3 ppb Ru und 0,03-0,08 ppb Ir. Die höchsten Konzentrationen wurden in Einzelproben der Jura/Kreide Schwarzschiefer Norwegens (13,1 ppb Pt), den nordamerikanischen pennsylvanischen Zyklothemen (15,5 ppb Pt) und dem Niederrheinischen Kupferschiefer gefunden (bis zu 1,4 ppb Ru und 0,27 ppb Ir). Die hohen Gehalte der Probe von der Jura/Kreide-Grenze sind wahrscheinlich syngenetischer Natur und sind mit der hydrothermalen Aktivität während der Atlantiköffnung zu erklären. Die pennsylvanische Probe ED1 wurde sekundär überprägt. Die Niederrheinischen Kupferschiefersedimente des Kerns Niederwald 1 zeigen im Gegensatz zu den Kupferschiefersedimenten in anderen Regionen keine ausgeprägten Anreicherungen der PGE.

Es wird angenommen, dass für die Anreicherung von Pt und Ru in oxischen und anoxischen C_{org}-reichen Sedimenten zwei unterschiedliche Anreicherungsmechanismen wirksam sind. Während im oxischen Milieu Oxidations- und Reduktionsprozesse an Mn-Oxiden von Bedeutung sind, wird aus den guten Korrelationen von Pt mit C_{org} ein gemeinsamer Eintrag des Pt mit dem organischen Material abgeleitet. Der Eintrag von Pt und Ru ist wahrscheinlich an den Nährstoffzyklus gekoppelt. Zudem könnte die hohe Partikelreaktivität des Pt unter anoxischen Bedingungen eine Beteiligung am Redoxzyklus des Mn und eine Anreicherung von Pt im Tiefenwasser ermöglichen. Die geringen Anreicherungen von Ir können keinem speziellen Anreicherungsmechanismus zugeschrieben werden.

Des weiteren waren zwei vom rumänischen Schelf stammende holozäne Sedimentprofile aus dem Schwarzen Meer Gegenstand der Untersuchungen. Beide Profile umfassten die drei von Ross und Degens (1974) beschriebenen Units 1 bis 3, wobei die Unit 2 zusätzlich in die Units 2a (Holozäner Sapropel) und 2b (Übergangssapropel) unterteilt wurde. In beiden Kernen konnten in der Unit 2b und der Unit 3 stetige Variationen im Hinblick auf die Carbonat- und Schwermineralgehalte erkannt werden. In den anoxischen Sedimenten waren viele Spurenmetalle gegenüber dem mittleren Tonschiefer angereichert. Im Vergleich mit den Sapropelen des Mittelmeeres und einigen anderen fossilen Schwarzschiefern fielen die Spurenmetallanreicherungen gering aus. Es wurde mit einer Modellrechnung nachgewiesen, dass der das Sediment überlagernde Wasserkörper die bedeutendste Quelle für die Spurenmetallanreicherungen im Sediment ist. Die wesentlichen Parameter für die Modellrechnung waren die Akkumulationsraten der Elemente und die Flussraten der Stoffe in den transportierten Wassermassen und an der Redoxkline. Aus der Rechnung folgte, dass zur Zeit nur ca. 40 % des über den Bosporus einfließenden Meerwassers direkt dem Tiefenwasser zugeführt werden. Der Rest wird zunächst dem Oberflächenwasser zugeführt, von wo vor allem die partikelreaktiven Elemente durch einen zusätzlichen partikulären Transportmechanismus ins Tiefenwasser verfrachtet werden. Außerdem konnte abgeleitet werden, dass die gelösten Konzentrationen von Cu, Cd und Zn in einem Randmeer nach Einstellung anoxischer Bedingungen relativ schnell sinken, während die Konzentrationen von U, Re, Sb, Ni, Mo und V trotz eingeschränkter Zufuhr von Meerwasser langsamer abnehmen. Die eingeschränkte Meerwasserzufuhr ist letztlich auch als Ursache für die vergleichsweise niedrigen Spurenmetallanreicherungen in den Sapropelen des Schwarzen Meeres anzusehen. Schließlich erlaubten die Ergebnisse der Modellrechnung, die in den Sapropelen überlieferten Spurenmetallprofile sowie die vertikale Verteilung von Überresten brackischer bzw. mariner Mikroorganismen den Schluss, dass das Schwarze Meer nicht plötzlich mit Meerwasser geflutet wurde, sondern dass der Eintrag von Meerwasser zunächst langsam vonstatten ging und der Meerwassereintrag während der Ablagerung von *Unit* 2a deutlich niedriger war als heute.

Die Rekonstruktion des Wasserhaushalts des Schwarzen Meeres anhand der Spurenmetallbilanz stellte im Weiteren eine solide Basis für die Diskussion bezüglich der Meerwasserzusammensetzung im Phanerozoikum und der Identifikation der Redoxbedingungen in der Wassersäule anhand der im Sediment überlieferten Spurenmetallsignaturen dar.

Anhand der hochaufgelösten Profile des Niederrheinischen Kupferschiefers erfolgte eine Zuordnung der Sedimentlagen zu den Kupferschieferzyklen T1 I bis T1 III. Es wurde nachgewiesen, dass vor allem Fe, Zn, Pb, Cu, Ba, As, Cd, Tl, Sb, Ag und Co in wenige cm mächtigen, diskreten Lagen epigenetisch angereichert wurden. Der heterogene Untergrund und die Nähe zu den basalen Störungssystemen hatten dabei maßgeblichen Einfluss auf den Grad der Metallogenese. Die Gehalte von Mo, Re, V, U und Ni wurden kaum sekundär überprägt. Die Mo-, Re-, U- und V-Konzentrationen wurden daher für die Analyse der Redoxbedingungen bei der Ablagerung der Kupferschiefersedimente herangezogen. Dabei hat neben den einschlägigen Redoxparametern das in der jüngeren Literatur diskutierte Re/Mo-Verhältnis brauchbare Zusatzinformationen für die Analyse der Redoxbedingungen geliefert. Obwohl die von Crusius et al. (1996) ermittelten Schwellenwerte zur Identifikation suboxischer Sedimente nicht unmittelbar übertragen werden konnten, erlaubte die Auswertung der relativen Trends in den Re/Mo-Profilen eine detailiertere Entschlüsselung des Ablagerungsgeschehens, als dies mit den anderen Redoxindikatoren allein möglich gewesen wäre. Bei der Interpretation der Re/Mo-Verhältnisse mussten die Aussagen der verschiedenen Redoxparameter aufeinander abgestimmt und die sehr geringen sekundären Überprägungen der Re- und Mo-Konzentrationen ausgeschlossen werden.

Aus der Interpretation der Re/Mo-Verhältnisse folgte, dass während der Kupferschieferablagerung das Redoxpotential nur langsam zunahm und die euxinischen Bedingungen zunächst Bestand hatten. Erst am Übergang vom Zyklus T1 II zum Zyklus T1 III traten Die Zyklus T1 II suboxische Bedingungen auf. im vergleichsweise niedrigen V/Al-Verhältnisse und U_(auth)-Konzentrationen wurden nicht auf einen Anstieg des Redoxpotentials, sondern auf einen Anstieg der Sedimentationsrate (Verdünnung mit Carbonat) zurückgeführt, da das Re/Mo-Verhältnis gegenüber dem liegenden Zyklus T1 I kaum zugenommen hat. Für die im östlichen Niederrheinischen Becken lokalisierten Sedimentkerne Lohberg und Rehmbergschlag wurde gefolgert, sie seien in einem tieferen Becken abgelagert worden, in dem die reduzierenden Bedingungen besonders beständig waren.

Die hohen Ankerit- und Dolomitgehalte erlauben den Schluss, die Zusammensetzung der Carbonatphase sei wesentlich durch epigenetische Prozesse bestimmt worden, obwohl Schwark (1992) von einer primären Signatur der Carbonate ausgeht. Daher können weder anhand der Mn/Ca-Verhältnisse noch anhand der Dolomitisierungsgrade Aussagen über die Sauerstoffverfügbarkeit in der Wassersäule zur Ablagerungszeit gemacht werden.

Aus der vergleichenden Gegenüberstellung der Spurenmetallgehalte der phanerozoischen Schwarzschiefer wurde abgeleitet, dass C_{org}-reiche Sedimente wahrscheinlich als Spiegelbild des Meerwasserchemismus zur Ablagerungszeit herangezogen werden können. Demnach würde das Reservoir Meerwasser solange mit den leicht löslichen Spurenmetallen Re, Mo, U, V und Cd angereichert, bis das Ausbilden effektiver Senken (z. B. weiträumige anoxische Ablagerungsräume) zum Entzug der Spurenmetalle aus dem Meerwasser und zur Akkumulation im Sediment führt. Dieser Hypothese folgend sind die hohen Spurenmetallanreicherungen in den Schwarzschiefern aus dem unteren Ordovizium vermutlich auf das zuvor seltene Ablagern anoxischer Sedimente zurückzuführen. Viele Spurenmetalle konnten sich vorher entsprechend hoch im Reservoir Meerwasser anreichern. Analog zur Modellrechung für das Schwarze Meer führte die Ablagerung Corg-reicher Sedimente im Paläozoikum zur Verarmung der Spurenmetalle, so dass ihre Konzentrationen im paläozoischen Meerwasser vermutlich niedriger waren als im rezenten Meerwasser. Heute weisen die Spurenmetalle wegen fehlender Senken ungewöhnlich hohe Konzentrationen im Meerwasser auf. Im Jura und in der Kreide führte der vermehrte Ausstoß hydrothermaler Lösungen infolge des Aufbrechens des Großkontinents Pangäa und des Heraushebens von Large Igneous Provinces zu einer Anreicherung von Zn, Cd und Pb sowie möglicherweise von Pt in den Ozeanen.

Mit den schwankenden Konzentrationen von Mo und Re in den Ozeanen und im Tiefenwasser des Schwarzen Meeres wird auch erklärt, warum für die Analyse der Redoxbedingungen im Zechsteinmeer nicht das mittlere Re/Mo-Verhältnis des rezenten Meerwassers herangezogen werden darf.

9 Literaturverzeichnis

- Aksu A. E., Hiscott R. N. und Yasar D. (1999) Oscillating Quaternary water levels of the Marmara Sea and vigorous outflow into the Aegean Sea from the Marmara Sea Black Sea drainage corridor. *Marine Geology* 153, 275-302.
- Al-Bazi S. J. und Chow A. (1984) Platinum Metals Solution Chemistry and Separation Methods (Ion-Exchange and Solvent-Extraction). *Talanta* **31**, 815-836.
- Alvarez L. W., Alvarez W., Asaro F. und Michel H. V. (1980) Extraterrestrial Cause for the Cretaceous-Tertiary Extinction - Experimental Results and Theoretical Interpretation. *Science* 208, 1095-1108.
- Amosse J. (1998) Determination of platinum-group elements and gold in geological matrices by inductively coupled plasma-mass spectrometry (ICP- MS) after separation with selenium and tellurium carriers. *Geostandards Newsletter* 22, 93-102.
- Anbar A. D., Creaser R. A., Papanastassiou D. A. und Wasserburg G. J. (1992) Rhenium in Seawater - Confirmation of Generally Conservative Behavior. *Geochimica et Cosmochimica Acta* 56, 4099-4103.
- Anbar A. D., Wasserburg G. J., Papanastassiou D. A. und Andersson P. S. (1996) Iridium in natural waters. *Science* 273, 1524-1528.
- Anderson R. F. und Fleisher M. Q. (1991) Uranium precipitation in Black Sea sediments. In Black Sea Oceanography (ed. E. Izdar und J. W. Murray), pp. 443-458. Kluwer.
- Andreae M. O. und Froelich P. N. (1984) Arsenic, antimony and germanium biogeochemistry in the Baltic Sea. *Tellus* **36**, 101-117.
- Arthur M. A., Brumsack H.-J., Jenkyns H. C. und Schlanger S. O. (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich cretaceous sequences. In *Cretaceous Resources, Events and Rhythms*, Vol. NATO ASI Series Vol. 304 (ed. R. N. Ginsburg und B. Beaudoin), pp. 75-119. Kluwer Academic Publishers.
- Arthur M. A. und Sagemann B. B. (1994) Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. *Annual Review of Earth and Planet Science* 22, 499-551.
- Arthur M. A. und Dean W. E. (1998) Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea. *Paleoceanography* **13**, 395-411.
- Asif M. und Parry S. J. (1989) Elimination of Reagent Blank Problems in the Fire-Assay Pre-Concentration of the Platinum Group Elements and Gold with a Nickel Sulfide Bead of Less Than One Gram Mass. *Analyst* **114**, 1057-1059.
- Baker P. A. und Kastner M. (1981) Constrains on the formation of dolomite in organic rich continental margin sediments. *Science* **213**, 214-216.
- Balaram V., Hussain S. M., Raj B. U., Charan S. N., Rao D. V. S., Anjaiah K. V., Ramesh S. L. und Ilangovan S. (1997) Determination of gold, platinum, palladium, and silver in rocks and ores by ICP-MS for geochemical exploration studies. *Atomic Spectroscopy* 18, 17-22.
- Barnes C. E. und Cochran J. K. (1991) Geochemistry of Uranium in Black-Sea Sediments. *Deep-Sea Research Part a* **38**, S1237-S1254.
- Bechtel A., Püttmann W. und Hoernes S. (1995) Reconstruction of the Thermal History of the Kupferschiefer within the Zechstein Basin of Central-Europe - a Stable-Isotope and Organic Geochemical Approach. Ore Geology Reviews 9, 371-389.
- Bechtel A. und Püttmann W. (1997) Palaeoceanography of the early Zechstein Sea during Kupferschiefer deposition in the Lower Rhine Basin (Germany): A reappraisal from

stable isotope and organic geochemical investigations. *Palaeogeography Palaeoclimatology Palaeoecology* **136**, 331-358.

- Bechtel A., Ghazi A. M., Elliott W. C. und Oszczepalski S. (2001) The occurrences of the rare earth elements and the platinum group elements in relation to base metal zoning in the vicinity of Rote Fäule in the Kupferschiefer of Poland. *Applied Geochemistry* 16, 375-386.
- Bekov G. I., Letokhov V. S., Radaev V. N., Baturin G. N., Egorov A. S., Kursky A. N. und Narseyev V. A. (1984) Ruthenium in the ocean. *Nature* **312**, 749-750.
- Belzile N. und Lebel J. (1986) Capture of Arsenic by Pyrite in near-Shore Marine-Sediments. *Chemical Geology* **54**, 279-281.
- Berner R. A. (1969) Migration of iron and sulfur. American Journal of Science 268, 1-23.
- Berner R. A. (1981) Authigenic mineral formation resulting from organic matter decomposition in modern sediments. *Fortschritte der Mineralogie* **59**, 117-135.
- Berner R. A. (1984) Sedimentary Pyrite Formation an Update. *Geochimica et Cosmochimica Acta* **48**, 605-615.
- Berrang P. G. und Grill E. V. (1974) The effect of manganese oxide scavenging on molybdenum in Sannich Inlet, British Columbia. *Marine Chemistry* **2**, 124-148.
- Berry W. B. N. und Wilde P. (1978) Progressive ventilation of the oceans an explanation for the distribution of the Lower Paleozoic Black Shales. *American Journal of Science* 278, 257-275.
- Berry W. B. N., Wilde P. und Quinby-Hunt M. S. (1985) The oceanic non-sulfidic oxygen minimum zone: a habitat for graptolites? *Bulletin of the Geological Society of Denmark* **35**, 103-114.
- Berry W. B. N. und Wilde P. (1990) Graptolite biogeography: implications for palaeogeography and palaeoceanography. In *Palaeozoic Palaeogeography and Biogeography*, Vol. 12 (ed. W. S. McKerrow und C. R. Scotese), pp. 129-137. Geological Society Memoir.
- Bethoux J. P. (1993) Mediterranean Sapropel Formation, Dynamic and Climatic Viewpoints. *Oceanologica Acta* 16, 127-133.
- Blanpied C., Deynoux M., Ghienne J.-F. und Rubino J.-L. (2000) Late ordovician glacially related depositional systems of the Gargaf Uplift (Libya) and comparisons with correlative deposits in the Taoudeni Basin (Mauritania). In *Geological Expoloration in Murzuq Basin* (ed. M. A. Sola und D. Worsley), pp. 485-507.
- Boesen C. und Postma D. (1988) Pyrite Formation in Anoxic Environments of the Baltic. *American Journal of Science* 288, 575-603.
- Boetius A., Ravenschlag K., Schubert C. J., Rickert D., Widdel F., Gieseke A., Amann R., Jørgensen B. B., Witte U. und Pfannkuche O. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. *Nature* **407**, 623-626.
- Böning H. P., Brumsack, H.-J., Böttcher M. E., Kriete C., Borchers, S. L. Schnetger B., und Kallmeyer J. (2004) Geochemistry of Peruvian near-surface sediments. *Geochimica et Cosmochimica Acta*, eingereicht
- Boudreau B. P. und LeBlond P. H. (1989) A simple evolutionary for water and salt in the Black Sea. *Paleoceanography* **4**, 157-166.
- Breit G. N. und Wanty R. B. (1991) Vanadium Accumulation in Carbonaceous Rocks a Review of Geochemical Controls During Deposition and Diagenesis. *Chemical Geology* 91, 83-97.
- Brennan S. T. und Lowenstein T. K. (2002) The major-ion composition of Silurian seawater. *Geochimica et Cosmochimica Acta* **66**, 2683-2700.

- Brewer P. G. und Spencer D. W. (1974) Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases. In *The Black Sea - Geology, Chemistry, and Biology* (ed. E. T. Degens und D. A. Ross), pp. 137-143. AAPG Memoir.
- Brongersma-Sanders M. (1971) Origin of major cyclicity of evaporites and bituminous rocks: An actualistic model. *Marine Geology* **11**, 123-144.
- Bruland K. W. (1983) Trace elements in Sea-water. In *Chemical Oceanography*, Vol. 8 (ed. J. P. Riley und R. Chester), pp. 158-220. Academic Press.
- Brumsack H.-J. und Gieskes J. M. (1983) Interstitial Water Trace-Metal Chemistry of Laminated Sediments from the Gulf of California, Mexico. *Marine Chemistry* 14, 89-106.
- Brumsack H.-J. (1986) The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the gulf of California. In *North Atlantic Paleoceanography*, Vol. 21 (ed. C. P. Summerhayes und N. J. Shackleton), pp. 447-462. Geol. Soc. Am. Spec. Publ.
- Brumsack H.-J. (1988) Rezente, Corg-reiche Sedimente als Schlüssel zum Verständnis fossiler Schwarzschiefer. Habilitationsschrift, Universität Göttingen.
- Brumsack H.-J. (1989a) Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. *Geologische Rundschau* **78**, 851-882.
- Brumsack H.-J. (1989b) Meerwasser-Chemismus, neuere Erkenntnisse zum Verhalten ausgewählter Spuremnmetalle. *Naturwissenschaften* **76**, 99-106.
- Brumsack H.-J. (1991) Inorganic geochemistry of the German "Posidonia Shale": paleoenvironmental consequences. In *Modern and Ancient Continental Shelf Anoxia, Geological Society Special Publication*, Vol. 58 (ed. R. V. Tyson und T. H. Pearson), pp. 353-362. Geological Society of London.
- Bruns P., Dullo W. C., Hay W. W., Wold C. N. und Pernicka E. (1996) Iridium concentration as an estimator of instantaneous sediment accumulation. *Journal of Sedimentary Research* 66, 608-612.
- Bukry D. (1970) Geological significance of Coccoliths in fine-grained carbonate bands of postglacial Black Sea sediments. *Nature* **226**, 157-158.
- Burns S. J., McKenzie J. A. und Vasconcelos C. (2000) Dolomite formation and biogeochemical cycles in the Phanerozoic. *Sedimentology* **47** (**Suppl. 1**), 49-61.
- Calvert S. (1996) Sedimentary Geochemistry of Manganese: Implications for the environment of formation of Manganiferous Black Shales. *Economic Geology* **91**, 36-47.
- Calvert S. E. (1983) Geochemistry of Pleistocene Sapropels and Associated Sediments from the Eastern Mediterranean. *Oceanologica Acta* **6**, 255-267.
- Calvert S. E. (1987) Oceanographic controls on the accumulation of oragnic matter in marine sediments. In *Marine petroleum Source Rocks*, Vol. 26 (ed. J. Brooks und A. J. Fleet), pp. 137-151. Geological Cociety special publication Edinburg: Scottish Academical Press.
- Calvert S. E. und Fontugne M. R. (1987) Stable carbon isotopic evidence for the marine origin of the organic matter in the Holocene Black Sea sapropel. *Chemical Geology* **66**, 315-322.
- Calvert S. E. (1990) Geochemistry and Origin of the Holocene Sapropel in the Black Sea. In *Facets of modern Biogeochemistry*, Vol. 1990 (ed. I. V., S. Kempe, W. Michaels und A. Spitzy), pp. 326-352. Springer.
- Calvert S. E. und Pedersen T. F. (1993) Geochemistry of Recent Oxic and Anoxic Marine-Sediments - Implications for the Geological Record. *Marine Geology* **113**, 67-88.

- Calvert S. E. und Karlin R. E. (1998) Organic carbon accumulation in the Holocene sapropel of the Black Sea. *Geology* **26**, 107-110.
- Campbell A. C., Palmer M. R., Klinkhammer G. P., Bowers T. S., Edmond J. S., Lawrence R. J., Casey J. F., Thompson G., Humphris S., Rona P. und Karson J. (1988) Chemistry of hot springs on the Mid-Atlantic Ridge. *Nature* 335, 514-519.
- Canfield D. E., Raiswell R. und Bottrell S. (1992) The Reactivity of Sedimentary Iron Minerals toward Sulfide. *American Journal of Science* **292**, 659-683.
- Caplan M. L. und Bustin R. M. (1996) Factors governing organic matter accumulation and preservation in a marine petroleum source rock from the Upper Devonian to Lower Carboniferous Exshaw Formation, Alberta. *Bulletin of Canadian Petroleum Geology* 44, 474-494.
- Caplan M. L., Bustin R. M. und Grimm K. A. (1996) Demise of a Devonian-Carboniferous carbonate ramp by eutrophication. *Geology* **24**, 715-718.
- Caplan M. L. und Bustin R. M. (1998) Sedimentology and sequence stratigraphy of Devonian-Carboniferous strata, southern Alberta. *Bulletin of Canadian Petroleum Geology* **46**, 487-514.
- Caplan M. L. und Bustin R. M. (2001) Palaeoenvironmental and palaeoceanographic controls on black, laminated mudrock deposition: example from Devonian- Carboniferous strata, Alberta, Canada. *Sedimentary Geology* 145, 45-72.
- Chao T. T. und Sanzolone R. F. (1992) Decomposition Techniques. *Journal of Geochemical Exploration* **44**, 65-106.
- Cheshire M. V., Berrow M. L., Goodman B. A. und Mundie C. M. (1977) Metal Distribution and Nature of Some Cu, Mn and V Complexes in Humic and Fulvic-Acid Fractions of Soil Organic-Matter. *Geochimica et Cosmochimica Acta* **41**, 1131-1138.
- Coffin M. F. und Eldholm O. (1994) Large Igneous Provinces Crustal Structure, Dimensions, and External Consequences. *Reviews of Geophysics* **32**, 1-36.
- Cohen A. S., Coe A. L., Bartlett J. M. und Hawkesworth C. J. (1999) Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. *Earth and Planetary Science Letters* **167**, 159-173.
- Colodner D., Sachs J., Ravizza G., Turekian K., Edmond J. und Boyle E. (1993a) The Geochemical Cycle of Rhenium a Reconnaissance. *Earth and Planetary Science Letters* **117**, 205-221.
- Colodner D., Edmond J. und Boyle E. (1995) Rhenium in the Black-Sea Comparison with Molybdenum and Uranium. *Earth and Planetary Science Letters* **131**, 1-15.
- Colodner D. C., Boyle E. A., Edmond J. M. und Thomson J. (1992) Postdepositional Mobility of Platinum, Iridium and Rhenium in Marine-Sediments. *Nature* **358**, 402-404.
- Colodner D. C., Boyle E. A. und Edmond J. M. (1993b) Determination of Rhenium and Platinum in Natural-Waters and Sediments, and Iridium in Sediments by Flow-Injection Isotope- Dilution Inductively Coupled Plasma-Mass Spectrometry. *Analytical Chemistry* 65, 1419-1425.
- Coveney R. M. und Martin S. P. (1983) Molybdenum and other heavy metals of the Mecca Quarry and Logan Quarry Shales. *Economic Geology* **78**, 132-149.
- Coveney R. M., Leventhal J. S., Glascock M. D. und Hatch J. R. (1987) Origins of Metals and Organic-Matter in the Mecca Quarry Shale Member and Stratigraphically Equivalent Beds across the Midwest. *Economic Geology* **82**, 915-933.
- Coveney R. M. und Glasrock M. D. (1989) A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. *Applied Geochemistry* **4**, 347-367.

- Coveney R. M., Watney W. L. und Maples C. G. (1991) Contrasting depositional models for Pennsylvanian black shale discerning from molybdenum abundances. *Geology* **19**, 147-150.
- Coveney R. M., Murowchick J. B., Grauch R. I., Glascock M. D. und Denison J. R. (1992) Gold and Platinum in Shales with Evidence against Extraterrestrial Sources of Metals. *Chemical Geology* **99**, 101-114.
- Coveney R. M., Ragan V. M. und Brannon J. C. (2000) Temporal benchmarks for modeling Phanerozoic flow of basinal brines and hydrocarbons in the southern Midcontinent based on radiometrically dated calcite. *Geology* **28**, 795-798.
- Creaser R. A., Sannigrahi P., Chacko T. und Selby D. (2002) Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: At test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin. *Geochimica et Cosmochimica Acta* **66**, 3441-3452.
- Crocket J. H., MacDougall J. D. und Harriss R. C. (1973) Gold, palladium and iridium in marine sediments. *Geochimica et Coamochimica Acta* **37**, 2457-2556.
- Crocket J. H. (2000) PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of Kilaueua volcano, Hawaii. *Geochimica et Cosmochimica Acta* 64, 1791-1807.
- Crowley T. J. und North G. (1991) Palaeoclimatology. Oxford University Press.
- Crusius J., Calvert S., Pedersen T. und Sage D. (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. *Earth and Planetary Science Letters* **145**, 65-78.
- Crusius J. und Thomson J. (2000) Comparative behaviour of authigenic Re, U and Mo during reoxidation and subsequent long-term burial in marine sediments. *Geochimica et Cosmochimica Acta* 64, 2233-2242.
- Culkin F. und Cox R. A. (1966) Sodium, potassium, magnesium, calcium and strontium, in sea-water. *Deep-Sea Research* **13**, 789-804.
- Cutter G. A. (1991) Dissolved Arsenic and Antimony in the Black-Sea. *Deep-Sea Research Part a* **38**, S825-S843.
- de Baar H. J. W., Saager P. M., Nolting R. F. und van der Meer J. J. M. (1994) Cadmium versus phosphate in the world ocean. *Marine Chemistry* **46**, 261-281.
- Demaison G. (1991) Anoxia Vs Productivity What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary-Rocks - Discussion. *AAPG Bulletin* **75**, 499-501.
- Demaison G. J. und Moore G. T. (1980) Anoxic Environments and Oil Source Beds. AAPG Bulletin 64, 697-697.
- Deuser W. G. (1974) Evolution of anoxic conditions in Black Sea during Holocene. In *The Black Sea Geology, Chemistry, Biology* (ed. E. T. Degens und D. A. Ross), pp. 133-136. AAPG Memoir.
- Diedel R. (1986) Die Metallogenese des Kupferschiefers in der Niederrheinischen Bucht. Dissertation, RTWH Aachen.
- Dill H. (1986) Metallogenesis of Early Paleozoic Graptolite Shales from the Graefenthal Horst (Northern Bavaria-Fedral Republic of Germany). *Economic Geology* **81**, 889-903.
- Donat J. R. und Bruland K. W. (1995) Trace elements in the Oceans. In *Trace elements in natural waters* (ed. B. Salbu und E. Steinnes), pp. 247-282. CRC Press.
- Echikh K. und Sola M. A. (2000) Geology And hydrocarbon occurences in the Murzuq Basin, SW Libya. In *Geological Expoloration in Murzuq Basin* (ed. M. A. Sola und D. Worsley), pp. 175-222.

- Ely J. C., Neal C. R., O'Neill Jr. J. A. und Jain J. C. (1999) Quantfying the platinum group elements (PGEs) and gold in geological samples using cation exchange pretreatment and ultrasonic nebulization inductively coupled plasma-mass spectrometry (USN-ICP-MS). *Chemical Geology* 157, 219-234.
- Emerson S. R. und Huested S. S. (1991) Ocean Anoxia and the Concentrations of Molybdenum and Vanadium in Seawater. *Marine Chemistry* **34**, 177-196.
- Engelhardt v. W., Füchtbauer H. und Müller G. (1973) *Die Bildung von Sedimenten und Sedimentgesteinen, Teil III.* Schweizerbartsche Buchhandlung.
- Enzweiler J. und Potts P. J. (1995) The Separation of Platinum, Palladium and Gold from Silicate Rocks by the Anion-Exchange Separation of Chloro Complexes after a Sodium Peroxide Fusion an Investigation of Low Recoveries. *Talanta* **42**, 1411-1418.
- Enzweiler J., Potts P. J. und Jarvis K. E. (1995) Determination of Platinum, Palladium, Ruthenium and Iridium in Geological Samples by Isotope-Dilution Inductively-Coupled Plasma-Mass Spectrometry Using a Sodium Peroxide Fusion and Tellurium Coprecipitation. *Analyst* 120, 1391-1396.
- Erickson B. E. und Helz G. R. (2000) Molybdenum(VI)speciation in sulfidic waters: Stability and lability of thiomolybdates. *Geochimica et Cosmochimica Acta* **64**, 1149-1158.
- Ernst T. W. (1970) Geochemical Facies Analysis. Elsevier.
- Evans N. J. und Crocket J. H. (1992) Gold, Iridium, Palladium and Platinum in reference standard PCC-1 and a komatiitic Peridotite: implications for selection of igneous rock reference materials for ppb-level noble metal analysis. *Geostandards Newsletter* **16**, 71-79.
- Evans N. J., Ahrens T. J. und Gregoire D. C. (1995) Fractionation of Ruthenium from Iridium at the Cretaceous- Tertiary Boundary. *Earth and Planetary Science Letters* **134**, 141-153.
- Faupl P. (1997) Historische Geologie. WUV-Universitäts-Verlag.
- Flegal A. R. und Patterson C. C. (1985) Thallium concentrations in seawater. *Marine Chemistry* **15**, 327-331.
- Fonselius S. H. (1974) Phosporus in Black Sea. In *The Black Sea Geology, Chemistry, Biology* (ed. E. T. Degens und D. A. Ross), pp. 144-150. AAPG Memoir.
- Frakes L. A., Francis J. E. und Syktus J. I. (1992) *Climate modes of the phanerozoic : the history of the earth's climate over the past 600 million years*. Cambridge University Press.
- Francois R. (1988) A Study on the Regulation of the Concentrations of Some Trace- Metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British-Columbia, Canada. *Marine Geology* 83, 285-308.
- Gerlach R. und Knitzschke G. (1978) Sedimentationszyklen an der Zechsteinbasis (Z1) im südöstlichen Harzvorland und ihre Beziehungen zu einigen bergtechnischen Problemen. Zeitschrift für Angewandte Geologie 24, 214-221.
- German S. C. (2002) *Stratigraphic Table of Germany 2002*. Bibliothek des Wissenschaftsparks Albert Einstein.
- Gladney E. S., Jones E. A., Nickell E. J. und Roelandts I. (1991) Compilation of elemental concentration data for USGS DTS-1, G-1, PCC-1, W-1. *Geostandard Newsletter* 15, 199-366.
- Glenn C. R. und Arthur M. A. (1985) Sedimentary and Geochemical Indicators of Productivity and Oxygen Contents in Modern and Ancient Basins the Holocene Black-Sea as the Type Anoxic Basin. *Chemical Geology* **48**, 325-354.

- Glennie K. W. (1986) Introduction of the Petroleum Geology of the North Sea. Blackwell Scientific.
- Goldberg E. D., Hodge V., Kay P., Stallard M. und Koide M. (1986) Some comparative marine chemistries of platinium and iridium. *Applied Geochemistry* **1**, 227-232.
- Goldberg E. D. (1987) Comparative Chemistry of the Platinum and Other Heavy-Metals in the Marine-Environment. *Pure and Applied Chemistry* **59**, 565-571.
- Goldberg E. D. und Koide M. (1990) Understanding the Marine Chemistries of the Platinum Group- Metals. *Marine Chemistry* **30**, 249-257.
- Gordey S. P., Abbott J. G., Tempelmankluit D. J. und Gabrielse H. (1987) Antler Clastics in the Canadian Cordillera. *Geology* **15**, 103-107.
- Görür N., Cagatay M. N., Emre Ö., Bedri A., Sakinc M., Y. I., Algan O., Erkal T., Kecer M., Akkök R. und Karlik G. (2001) Is the abrupt drowing of the Black Sea shelf at 7150 yr BP a myth? *Marine Geology* **176**, 65-73.
- Govindaraju K. (1994) 1994 Complication of Working Values and Sample Description for 383 Geostandards. *Geostandards Newsletter* **18**, 1-&.
- Grice K., Schaeffer P., Schwark L. und Maxwell J. R. (1997) Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Organic Geochemistry 26, 677-690.
- Guieu C. und Martin J. M. (2002) The level and fate of metals in the Danube River Plume. *Estuarine, Coastal and Shelf Science* **54**, 501-512.
- Gunatilaka A., Saleh A., Al-Temmemi A. und Nassar N. (1984) Occurence of subtidal dolomite in a hypersaline lagoon, Kuwait. *Nature* **311**, 450-452.
- Halbach P., Kriete C., Prause B. und Puteanus D. (1989) Mechanisms to explain the platinum concentration in ferromanganese seamount crusts. *Chemical Geology* **76**, 95-106.
- Hall G. E. M., Pelchat J. C. und Dunn C. E. (1990) The Determination of Au, Pd and Pt in Ashed Vegetation by Icp- Mass Spectrometry and Graphite-Furnace Atomic-Absorption Spectrometry. *Journal of Geochemical Exploration* **37**, 1-23.
- Hallam A. (1981) A revised sea-level curve for the Early Jurassic. *Journal of the Geological Society of London* **138**, 735-743.
- Hallam A. (1988) A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In *Sea-level changes; an integrated approach.*, Vol. 42 (ed. C. K. Wilgus, B. S. Hastings, C. A. Ross, H. Posamentier, J. Van Wagoner und C. S. Kendall), pp. 261-273. SEPM (Society for Sedimentary Geology).
- Haq B. U., Hardenbol J. und Vail P. R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In *Sea-level changes; an integrated approach.*, Vol. 42 (ed. C. K. Wilgus, B. S. Hastings, C. A. Ross, H. Posamentier, J. Van Wagoner und C. S. Kendall), pp. 72-108. SEPM (Society for Sedimentary Geology).
- Haraldson C. und Westerlund S. (1991) Total and suspended cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in the water column of the Black Sea. In *Black Sea Oceanography* (ed. E. Izdar und J. W. Murray), pp. 161-172. Kluwer Academic Publishers.
- Hatch J. R. und Leventhal J. S. (1992) Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian)
 Stark Shale Member of the Dennis Limestone, Wabaunsee Country, Kansas, USA. *Chemical Geology* 99, 65-82.
- Hatch J. R. und Leventhal J. S. (1997) Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale Member of the

Fort Scott Limestone and equivalents, northern Midcontinent region, USA. *Chemical Geology* **134**, 215-235.

- Hay B. J. (1988) Sediment accumulation in the central western part of the Black Sea over the last 5100 years. *Paleoocenography*, 491-508.
- Hay B. J., Arthur M. A., Dean W. E., Neff E. D. und Honjo S. (1991) Sediment Deposition in the Late Holocene Abyssal Black-Sea with Climatic and Chronological Implications. *Deep-Sea Research Part a* 38, S1211-S1235.
- Heckel P. H. (1986) Sea-level curve for Pennsylvannian eustatic marine transgressiveregressive depositional cycles along Midcontinent outcrop belt, North America. *Geology* 14, 330-334.
- Heckel P. H. (1991) Thin widespread Pennsylvanian black shales of Midcontinent North America; a record of a cyclic succession of widespread pycnoclines in a fluctuating epeiric sea. In *Modern and ancient continental shelf anoxia*, Vol. 58 (ed. R. V. Tyson und T. H. Pearson), pp. 259-273. Geological Society of London.
- Heinrichs H. (1989) Aufschlußverfahren in der analytischen Geochemie (Teil 1). *Laborpraxis*, 1140-1147.
- Heinrichs H. (1990) Aufschlußverfahren in der analytischen Geochemie (Teil 2). *Laborpraxis*, 20-25.
- Heinrichs H. und Herrmann A. G. (1990) Praktikum der Analytischen Geochemie. Springer.
- Helz G. R., Miller C. V., Charnock J. M., Mosselmans J. F. W., Pattrick R. A. D., Garner C. D. und Vaughan D. J. (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. *Geochimica et Cosmochimica Acta* 60, 3631-3642.
- Heppenheimer H. (1995) Vergleichende geochemische und petrologische Untersuchungen am Kupferschiefer. Ein Beitrag zur Klärung der Metallogenese. Dissertation.
- Heumann K. G., Kubassek E. und Schwabenbauer W. (1977) Massenspektrometrische Isotopenverdünnungsanalyse geringer Calciumkonzentrationen in Mineralien. *Fresenius Zeitung für Analytische Chemie* **287**, 121-127.
- Heumann K. G., Beer F. und Kifmann R. (1980) Chlorid-Spurenanalyse in Silikatgesteinen durch Massenspektrometrische Isotopenverdünnungsanalyse. *Talanta* **27**, 567-572.
- Heumann K. G. (1988) Isotope dilution mass spectrometry. In *Inorganic Mass Spectrometry*, Vol. 95 (ed. F. Adams, R. Gijbels und R. van Grieken), pp. 301-377. John Wiley & son.
- Hiscott R. N. und Aksu A. E. (2002) Late Quaternary history of the Marmara Sea and Black Sea from high-resolution seismic and gravity-core studies. *Marine Geology* **190**, 261-282.
- Hodge V., Stallard M., Koide M. und Goldberg E. D. (1986) Determination of Platinum and Iridium in Marine Waters, Sediments, and Organisms. *Analytical Chemistry* **58**, 616-620.
- Hodge V. F., Stallard M., Koide M. und Goldberg E. D. (1985) Platinum and the Platinum Anomaly in the Marine-Environment. *Earth and Planetary Science Letters* **72**, 158-162.
- Hoehler T. M., Alperin M. J., Albert D. B. und Martens C. S. (1994) Field and Laboratory Studies of Methane Oxidation in an Anoxic Marine Sediment - Evidence for a Methanogen-Sulfate Reducer Consortium. *Global Biogeochemical Cycles* 8, 451-463.
- Hoffman E. L., Naldrett A. J. und Van Loon J. C. (1978) The determination of all platinumgroup elements and gold in rocks and ore by neutron activation analysis after preconcentration by a nickel sulfide fire assay technique on large samples. *Analytica Chimica Acta* **102**, 157-166.

- Holland H. D. und Zimmerman H. (2000) The dolomite problem revisited. *International Geology Review* **42**, 481-490.
- Hollemann A. F. und Wiberg E. (1995) Lehrbuch der Anorganischen Chemie. de Gruyter.
- Horita J., Zimmermann H. und Holland H. D. (2002) Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. *Geochimica et Cosmochimica Acta* **66**, 3733-3756.
- Horwitz E. P., Dietz M. L., Chiarizia R., Diamond H., Maxwell III S. L. und Nelson M. (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: Application to the characterization of highlevel nuclear waste solutions, *Analytica Chimica Acta* 310, 63-78.
- Huckriede H. und Meischner D. (1996) Origin and environment of manganese-rich sediments within black-shale basins. *Geochimica et Cosmochimica Acta* **60**, 1399-1413.
- Huerta-Diaz M. A. und Morse J. W. (1992) Pyritization of Trace-Metals in Anoxic Marine-Sediments. *Geochimica et Cosmochimica Acta* 56, 2681-2702.
- Izdar E. und Ergün M. (1991) Recent geological evolution of the Black sea: An overview. In *Black Sea Oceanography* (ed. E. Izdar und J. W. Murray), pp. 379-387. Kluwer Academics.
- Jacinto G. S. und Vandenberg C. M. G. (1989) Different Behavior of Platinum in the Indian and Pacific Oceans. *Nature* **338**, 332-334.
- Jackson S. E., Fryer B. J., Gosse W., Healey D. C., Longerich H. P. und Strong D. F. (1990) Determination of the Precious Metals in Geological-Materials by Inductively Coupled Plasma Mass-Spectrometry (Icp-Ms) with Nickel Sulfide Fire-Assay Collection and Tellurium Coprecipitation. *Chemical Geology* 83, 119-132.
- Jacobs L., Emerson S. und Skei J. (1985) Partitioning and Transport of Metals across the O2/H2s Interface in a Permanently Anoxic Basin Framvaren Fjord, Norway. *Geochimica et Cosmochimica Acta* **49**, 1433-1444.
- Jacobs L., Emerson S. und Huested S. S. (1987) Trace-Metal Geochemistry in the Cariaco Trench. *Deep-Sea Research Part a* **34**, 965-981.
- Jaeger H. (1991) Neue Standard-Graptolithenzonenfolge nach der "Großen Krise" an der Wenlock/Ludlow-Grenze (Silur). *Neues Jahrbuch Geologisch Paläontologischer Abhandlungen* **182**, 303-354.
- Jaffe L. A., Peucker-Ehrenbrink B. und Petsch S. T. (2002) Mobility of rhenium, platiunum group elements and organic carbon during black shale weathering. *Earth and Planetary Science Letters* **198**, 339-353.
- Jarvis I., Williams J. G., Parry S. J. und Bertalan E. (1995) Quantitative determination of the platinum-group elements and gold using NiS fire assay with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). *Chemical Geology* **124**, 37-46.
- Jarvis I., Totland M. M. und Jarvis K. E. (1997) Determination of the platinum-group elements in geological materials by ICP_MS using microwave digestion, alkali-fusion, and cation-exchange chromatography. *Chemical Geology* **143**, 27-42.
- Jenkyns H. C. (1997) Mesozoic anoxic events and palaeclimate. Zentralblatt für Geologie und Paläontologie Teil I, 943-949.
- Jewell P. W. (1995) Geologic Consequences of Globe-Encircling Equatorial Currents. *Geology* 23, 117-120.
- Johnson J. G., Klapper G. und Sandberg C. A. (1985) Devonian Eustatic Fluctuations in Euramerica. *Geological Society of America Bulletin* **96**, 567-587.
- Jones B. und Manning D. A. C. (1994) Comparison of Geochemical Indexes Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. *Chemical Geology* 111, 111-129.

- Jones G. A. und Gagnon A. R. (1994) Radiocarbon Chronology of Black-Sea Sediments. *Deep-Sea Research Part I* **41**, 531-557.
- Jorge A. P. D., Enzweiler J., Shibuya E. K., Sarkis J. E. S. und Figueiredo A. M. G. (1998) Platinum-group elements and gold determination NiS fire assay buttons by UV laser ablation ICP-MS. *Geostandards Newsletters* 22, 47-55.
- Jørgensen B. B., Weber A. und Zopfi J. (2001) Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. *Deep-Sea Research Part I* **48**, 2097-2120.
- Jørgensen B. B., Böttcher M. E., Lüschen H., Neretin L. N. und Volkov I. I. (2004) Isotopically heavy sulfides caused by anaerobic methane oxidation and a deep H_2S sink in Black Sea sediments. *Geochimica et Cosmochimica Acta* **68**, 2095-2118.
- Kaminski M. A., Aksu A., Box M., Hiscott R. N., Filipescu S. und Al-Salameen M. (2002) Late glacial to Holocene benthic foraminifera in the Maramra Sea: implications for the Black Sea-Mediterranean Sea connections following the last glaciation. *Marine Geology* **190**, 165-202.
- Kerr A. C. (1998) Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? *Journal of the Geological Society* 155, 619-626.
- Kidd R. B., Cita M. B. und Ryan W. B. F. (1978) Stratigraphy of Eastern Mediterranean sapropel sequences recovered during Leg 42A and their paleoenvironmental significance. In *Initial reports of the Deep-Sea Drilling Project*, Vol. 42 A (ed. R. B. Kidd und P. J. Worstell), pp. 421-442. U.S. Government Printing office.
- Kiratli N. und Ergin M. (1996) Partitioning of heavy metals in surface Black Sea sediments. *Applied Geochemistry* **11**, 775-788.
- Klinkhammer G. P. und Palmer M. R. (1991) Uranium in the Oceans Where It Goes and Why. *Geochimica et Cosmochimica Acta* **55**, 1799-1806.
- Koide M., Hodge V. F., Yang J. S., Stallard M. und Goldberg E. G. (1986a) Some comparative marine chemistries of rhenium, gold, silver, and molybdenum. *Applied Geochemistry* **1**, 705-714.
- Koide M., Stallard M., Hodge V. und Goldberg E. D. (1986b) Preliminary Studies on the Marine Chemistry of Ruthenium. *Netherlands Journal of Sea Research* **20**, 163-166.
- Koide M., Hodge V., Yang J. S. und Goldberg E. D. (1987) Determination of Rhenium in Marine Waters and Sediments by Graphite-Furnace Atomic-Absorption Spectrometry. *Analytical Chemistry* 59, 1802-1805.
- Koide M., Goldberg E. D., Niemeyer S., Gerlach D., Hodge V., Bertine K. K. und Padova A. (1991) Osmium in Marine-Sediments. *Geochimica et Cosmochimica Acta* 55, 1641-1648.
- Kramer U., Stüben D., Berner Z., Stinnesbeck W., Philipp H. und Keller G. (2001) Are Ir anomalies sufficient and unique indicators for cosmic events? *Planetary and Space Science* **49**, 831-837.
- Kremling K. (1983) The Behavior of Zn, Cd, Cu, Ni, Co, Fe, and Mn in Anoxic Baltic Waters. *Marine Chemistry* **13**, 87-108.
- Kubrakova I. V., Kudinova T. F., Kuzmin N. M., Kovalev I. A., Tsysin G. I. und Zolotov Y. A. (1996) Determination of low levels of platinum group metals: New solutions. *Analytica Chimica Acta* 334, 167-175.
- Kucha H. (1990) Geochemistry of the Kupferschiefer, Poland. *Geologische Rundschau* **79**, 387-399.
- Kucha H. (1993) Noble metals associated with Organic matter, Kupferschiefer, Poland. In Special Publication of the Society for Geology Applied to Mineral Deposits, Vol. 9 (ed. J. Parnell, H. Kucha und P. Landais), pp. 153-170. Springer.

Küster F. W. und Thiel A. (1993) Rechentafeln für die chemische Analytik. de Gruyter.

- Larson R. L. (1991a) Geological Consequences of Superplumes. Geology 19, 963-966.
- Larson R. L. (1991b) Latest Pulse of Earth Evidence for a Midcretaceous Superplume. *Geology* **19**, 547-550.
- Larson R. L. und Kincaid C. (1996) Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer. *Geology* **24**, 551-554.
- Levai A., Lasztity A., Zih-Perenyi K. und Horvath Z. (1998) Graphite furnace atomic absorption spectrometry determination and on-line preconcentration of palladium. *Microchemical Journal* **58**, 272-280.
- Leventhal J. (1991) Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattannoga Shale of United States. *Mineralium Deposita* **26**, 104-112.
- Leventhal J. S. (1983) An Interpretation of Carbon and Sulfur Relationships in Black- Sea Sediments as Indicators of Environments of Deposition. *Geochimica et Cosmochimica Acta* **47**, 133-137.
- Lewan M. D. und Maynard J. B. (1982) Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary-Rocks. *Geochimica et Cosmochimica Acta* **46**, 2547-2560.
- Lewis B. L. und Landing W. M. (1991) The Biogeochemistry of Manganese and Iron in the Black-Sea. *Deep-Sea Research Part a* **38**, S773-S803.
- Lewis B. L. und Landing W. M. (1992) The Investigation of Dissolved and Suspended Particulate Trace- Metal Fractionation in the Black-Sea. *Marine Chemistry* **40**, 105-141.
- Li C., Chai C., Mao X. und Quyang H. (1999) Chemical speciation study of platinum metals and other siderophile elements in Precambrian/Cambrian black shale, south China. *Fresenius Journal of Analytical Chemistry* **363**, 602-605.
- Liebezeit G. (1992) Pyrolysis of recent marine sediments II. The Black Sea. Senckenberg maritima 22, 153-170.
- Lipinski M., Warning B. und Brumsack H.-J. (2002) Trace metal sigantures of Jurassic / Cretaceous Black Shales from the Norwegian Shelf and the Barents Sea. *Palaeogeography Palaeoclimate Palaeoecology* **190**, 459-475.
- Lippmann F. (1973) Sedimentary carbonate minerals. Springer.
- Littke R., Baker D. R., Leythaeuser D. und Rullkötter J. (1991) Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany. In *Modern and Ancient Continental Shelf Anoxia*, Vol. 58 (ed. R. V. Tyson und T. H. Pearson), pp. 311-333. Geological Society of London.
- Lopez-Gamundi O. R. (1997) Glacial-postglacial transition in the late Paleozoic Basins of southern South America. In *Late glacial and postglacial environmental changes : Quaternary, Carboniferous Permian, and Proterozoic*, Vol. XII (ed. I. P. Martini), pp. 147-169. Oxford Univ. Press.
- Lourens L. J., Wehausen R. und Brumsack H. J. (2001) Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. *Nature* **409**, 1029-1033.
- Lovley D. R. (1991) Dissimilatory iron(III) and manganese(IV) reduction. *Microbiological reviews* **55**, 259-287.
- Lüning S., Craig J., Fitches B., Mayouf J., Busrewil A., El Dieb M., Gammudi A. und Loydell
 D. K. (2000a) Petroleum source and reservoir rock re-evaluation in the Kufra Basin (SE Libya, NE Chad, NW Sudan). In *Geological Expoloration in Murzuq Basin* (ed. M. A. Sola und D. Worsley), pp. 151-173.

- Lüning S., Craig J., Loydell D. K., Storch P. und Fitches W. R. (2000b) Lowermost silurian 'hot shales' in Northern Africa and Arabia: Regional distribution and depositional model. *Earth Science Reviews* **49**, 121-200.
- Lüschen H. (1998) Hochauflösende geochemische Analyse eines Sedimentkernes aus dem Schwarzen Meer. Diplomarbeit, Carl von Ossietzky Universität, Oldenburg.
- Lyons T. W. und Berner R. A. (1992) Carbon-sulfur-iron systematics of the uppermost deepwater sediments of the Black Sea. *Chemical Geology* **99**, 1-27.
- Machel H. G. (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings old and new insights. *Sedimentary Geology* **140**, 143-175.
- Major C., Ryan W., Lericolais G. und Hajdas I. (2002) Constrains on the Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition. *Marine Geology* **190**, 19-34.
- Makishima A., Nakanishi M. und Nakamura E. (2001) A group seperation method for Ruthenium, Palladium, Rhenium, Osmium, Iridium, and Platinum using their Bromo complexes and an anion exchange resin. *Analytical chemistry* **73**, 5240-5246.
- Mangini A. und Dominik J. (1979) Late Quaternary sapropel on the Mediterranean Ridge: Ubudget and evidence for low sedimentation rates. *Sedimentary Geology* **23**, 113-125.
- Manheim F. T. und Chan K. M. (1974) Intersitial Waters of Black Sea Sediments: New Data and review. In *The Black Sea - Geology, Chemistry, Biology* (ed. E. T. Degens und D. A. Ross), pp. 155-180. AAPG Memoir.
- Marowsky G. (1969) Schwefel, Kohlenstoff- und Sauerstoff-Isotopenuntersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung. *Contributions to Mineralogy and Petrology* **22**, 290-334.
- Martin J. M. und Whitfield M. (1983) The significance of the river input of chemical elements to the ocean. In *Trace Metals in sea water* (ed. C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton und E. D. Goldberg), pp. 265-296. Plenum Press.
- Matsumoto R. (1992) Diagentic dolomite, calcite, rhodochrosite, magnesite and lansfordite from Site 799, Japan Sea - Implications for depositional environments and the diagenesis of organic-rich sediments. *Proceedings of the Ocean Drilling Program* 127/128, 75-96.
- McDonald I. (1998) The need for a common framework for collection and interpretation of data in platinium-group element geochemistry. *Geostandard Newsletter* 22, 85-91.
- McDonough W. F. und Sun S.-s. (1995) The composition of the Earth. *Chemical Geology* **120**, 223-253.
- Meijer Drees N. C. und Johnston D. I. (1996) Famennian and Tournaisian biostratigraphy of the Big Valley, Exshaw and Bakken formations, southeastern Alberta and southwestern Saskatchewan. *Bulletin of Canadian petroleum geology* **44**, 683-694.
- Meisel T., Moser J., Fellner N., Wegscheider W. und Schoenberg R. (2001) Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICP-MS and acid digestion. *Analyst*, 322-328.
- Metz S. und Trefry J. H. (1993) Field and laboratory studies of metal uptake and release by hydrothermal precipitates. *Journal of Geophysical Research* **98**, 9661-9666.
- Metz S. und Trefry J. H. (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. *Geochimica et Cosmochimica Acta* **64**, 2267-2279.
- Middelburg J. J., de Lange G. J. und Kreulen R. (1990) Dolomite formation in anoxic sediments of Kau Bay, Indonesia. *Geology* **18**, 399-402.
- Mitchell R. H. und Keays R. R. (1981) Abundance and distribution of Gold, Palladium and Iridium in some spinel and garnet lherolithes: implications for the nature and origin of

precious metal-rich intergranular components in the upper mantle. *Geochimica et Cosmochimica Acta* **45**, 2425-2442.

- Mitkin V. N., Galizky A. A. und Korda T. M. (2000) Some observations on the determination of gold and the platinum-group elements in black shales. *Geostandards Newsletter* **24**, 227-240.
- Morford J. L. und Emerson S. (1999) The geochemistry of redox sensitive trace metals in sediments. *Geochimica et Cosmochimica Acta* 63, 1735-1750.
- Morford J. L., Russell A. D. und Emerson S. (2001) Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. *Marine Geology* **174**, 355-369.
- Morse J. W. und Arakaki T. (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). *Geochimica et Cosmochimica Acta* **57**, 3635-3640.
- Müller G. und Stoffers P. (1974) Mineralogy and Petrology of Black Sea Basin Sediments. In *The Black Sea - Geology, Chemistry and Biology* (ed. E. T. Degens und D. A. Ross), pp. 201-248. AAPG Memoir.
- Murray J. W. (1975) The interaction of metal ions at the manganese dioxide-solution interface. *Geochimica et Cosmochimica Acta* **39**, 505-519.
- Murray J. W., Top Z. und Özsoy E. (1991) Hydrographic properties and ventilation of the Black Sea. *Deep-Sea Research* **38**, S663-S689.
- Myers P. G., Wielki C., Goldstein S. B. und Rohling E. J. (2003) Hydraulic calculations of postglacial connections between the Mediterranean and the Black Sea. *Marine Geology* **201**, 253-267.
- Neretin L., Böttcher M. E., Jørgensen B. B., Volkov I. und Lüschen H. (1999) Pyritization at the Holocene / Late Pleistocene transition in the Black Sea sediments: Sulfur species and their isotopic composition. *Geochem. Earth's Surf.* Proc. Int. Symp., 5th, 331-334.
- Neretin L., Böttcher M.E., Jørgensen B. B., Volkov I., Lüschen H. und Hilgenfeldt K. (2004) Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea. *Geochimica et Cosmochimica Acta* **68**, 2081-2093.
- Niewöhner C., Hensen C., Kasten S., Zabel M. und Schulz H. D. (1998) Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area of Namibia. *Geochimica et Cosmochimica Acta* **62**, 455-464.
- Nijenhuis I. A., Bosch H.-J., Sinninghe Damsté J. S., Brumsack H.-J. und de Lange G. J. (1999) Organic matter and trace element rich sapropels and black shales: a geochemical comparison. *Earth and Planetary Science Letters* **169**, 277-290.
- Nozaki Y. (1997) A fresh look at element distribution in the north pacific ocean. *Eos: transactions* **78**, 221-223.
- Oguri K., Shimoda G. und Tatsumi Y. (1999) Qualitative determination of gold and the platinum-group elements in geological samples using NiS fire-assay and tellurium coprecipitation with inductively coupled plasma-mass spectrometry (ICP-MS). *Chemical Geology* **157**, 189-197.
- Özsoy E. und Ünlüata Ü. (1997) Oceanography of the Black Sea: a review of some recent results. *Earth-Science Reviews* **42**, 231-272.
- Pancost R. D., Crawford N. und Maxwell J. R. (2002) Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea. *Chemical Geology* **188**, 217-222.
- Parrish J. T. (1982) Upwelling and petroleum source beds, with reference to Paleozoic. *AAPG Bulletin* **66**, 750-774.

- Parrish J. T. (1993) Climate of the supercontinent Pangea. *The Journal of Geology* **101**, 215-233.
- Parry S. J. (1992) Fire Assay for the Preconcentration of the Platinum Group Elements and Gold. In *Preconcentration techniques for trace elements* (ed. Z. B. Alfassi und C. M. Wai), pp. 401-416. CRC Press.
- Pasava J. (1993) Anoxic sediments an important environment for PGE; an overview. Ore Geology Reviews 8, 425-445.
- Pasava J., Loukola-Ruskeeniemi K. und Chernyshov N. M. (1997) Important controls of PGE enrichment in Proterozoic metal-rich black shales. In *Mineral Deposits* (ed. I. 9054108894), pp. 11-14. Balkema.
- Paul J. (1982) Zur Rand und Schwellenfazies des Kupferschiefers. Zeitschrift der deutschen geologischen Gesellschaft **133**, 571-605.
- Paul J. (1991) Zechstein carbonate Marine episodes of a hypersaline sea. Zentralblatt für Geologie und Paläontologie Teil I, 1029-1045.
- Pearson D. G. und Woodland S. J. (2000) Solvent extraction/anion exchange seperation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. *Chemical Geology* 165, 87-107.
- Pedersen M., Nielsen J. K., Boyce A. J. und Fallick A. E. (2003) Timing and genesis of basemetal mineralisation in black shales of the Upper Permian Ravnefjeld Formation, Wegener Halvø, East Greenland. *Mineralium Deposita* 38, 108-123.
- Pedersen T. F. und Calvert S. E. (1990) Anoxia vs. Productivity: What controls the formation of organic-rich sediments and sedimentary rocks? *AAPG Bulletin* **74**, 454-466.
- Peucker-Ehrenbrink B. und Hannigan R. E. (2000) Effects of black shale weathering on the mobility of rhenium and platinum group elements. *Geology* **28**, 475-478.
- Peucker-Ehrenbrink B. und Jahn B. M. (2001) Rhenium-osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust. *Geochemistry Geophysics Geosystems* **2**, U33-U59.
- Piestrzynski A. und Wodzicki A. (2000) Origin of the gold deposit in the Polkowice-West Mine, Lubin-Sieroszowice Mining District, Poland. *Mineralium Deposita* **35**, 37-47.
- Piper D. Z. (1994) Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. *Chemical Geology* **114**, 95-114.
- Plessen H.-G. und Erzinger J. (1998) Determination of the platinium-group elements and gold in twenty rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by nickel sulfide fire assay. *Geostandard Newsletter* 22, 187-194.
- Plyusnina L. P., Kyz´mina T. V., Likhoidov G. G. und Narnov G. A. (2000) Experimental modeling of platinum sorption on organic matter. *Applied Geochemistry* **15**, 777-784.
- Potts P. J., Tindle A. G. und Webb P. C. (1992) *Geochemical reference material compositions: rocks, minerals, sediments, soils, carbonates, refractories and ores used in research and industry.* Whittles.
- Quinby-Hunt M. S., Wilde P., Orth C. J. und Berry W. B. N. (1989) Elemental Geochemistry of Black Shales - Statistical Comparison of Low - Calcic Shales with Other Shales. In *Metalliferous Black Shales and related Ore Deposits*, Vol. 1037 (ed. R. I. Grauch und J. S. Leventhal), pp. 8-15. U. S. Geological Survey Circular.
- Quinby-Hunt M. S. und Wilde P. (1996) Chemical Depositional Environments of Calcic Black Shales. *Economic Geology* **91**, 4-13.
- Ravizza G. und Turekian K. T. (1989) Application of the 187Re-187Os system to black shale geochronometry. *Geochimica et Cosmochimica Acta* **53**, 3257-3262.

- Ravizza G., Turekian K. K. und Hay B. J. (1991) The geochemistry of rhenium and osmium in recent sediments from the black sea. *Geochimica et Cosmochimica Acta* **55**, 3741-3752.
- Ravizza G. und Pyle D. (1997) PGE and Os isotopic analyses of single sample aliquots with NiS fire assay preconcentration. *Chemical Geology* **141**, 251-268.
- Redfield A. C., Ketchum B. H. und Richards F. A. (1963) Chapter 2. In *The composition of seawater; comparative and descriptive oceanography*, Vol. Vol. 2 (ed. M. N. Hill). Wiley.
- Rehkämper M. und Halliday A. N. (1997) Development and application of new ion-exchange techniques for the seperation of the platinum group and other siderophile elements from geological samples. *Talanta* **44**, 663-672.
- Rehkämper M., Halliday A. N. und Wentz R. F. (1998) Low-blank digestion of geological samples for platinum-group element analysis using a modified Carius Tube design. *Fresenius Journal of Analytical Chemistry* **361**, 217-219.
- Rehkämper M., Halliday A. N., Fitton J. G., Lee D.-C., Wieneke M. und Arndt N. T. (1999) Ir, Ru, Pt, and Pd in basalts and komalitiites: New constraints for the geochemical behaviour of the platinum-group elements in the mantle. *Geochimica et Cosmochimica Acta* 63, 3915-3934.
- Richards B. C. und Higgins A. C. (1988) Devonian Carboniferous boundary beds of the Palliser and Exshaw formations at Jura Creek, Rocky Mountains, southwestern Alberta. In *Devonian of the world*, Vol. Memoir 14, Vol. 2 (ed. N. J. McMillan, A. F. Embry und D. J. Glass), pp. 399-412. Canadian Society of Petroleum Geologists.
- Rickards B., Rigby S. und Harris J. H. (1990) Graptoloid biogeography: recent progress, future hopes. In *Palaeozoic Palaeogeography and Biogeography*, Vol. 12 (ed. W. S. McKerrow und C. R. Scotese), pp. 139-145. Geological Society Memoir.
- Riegraf W. (1985) Mikrofauna, Biostratigraphie und Fazies im unteren Toarcium Südwestdeutschlands und Vergleiche mit benachbarten Gebieten. Tübinger Mikropaläontologische Mitteilungen.
- Riepe W. und Kaiser H. (1966) Massenspektrometrische Spurenanalyse von Calcium, Strontium und Barium in Natriumazid durch Isotopenverdünnungtechnik. *Fresenius Zeitung für analytische Chemie* **23**, 321-335.
- Robardet M., Paris F. und Racheboeuf P. R. (1990) Palaeogeographic evolution of southwestern Europe during Early Palaeozoic times. In *Palaeozoic Palaeogeography* and Biogeography, Vol. 12 (ed. W. S. McKerrow und C. R. Scotese), pp. 411-419. Geological Society Memoir.
- Robert R. V. D., Van Wyk E. und Palmer R. (1971) Concentration of noble metals by a fire assay techniquqe using nickel sulfide as a collector. *National Institute of Metallurgy, South Africa* Report No. 1371, 1-16.
- Röhl H. J., Schmid-Röhl A., Oschmann W., Frimmel A. und Schwark L. (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen- depleted ecosystem controlled by sea level and palaeoclimate (vol 165, pg 27, 2001). *Palaeogeography Palaeoclimatology Palaeoecology* 169, 271.
- Romba J. (1996) Anorganisch- und organisch-geochemische Charakterisierung eines Bohrkerns aus dem Schwarzen Meer. Diplomarbeit, ICBM.
- Ross D. A. und Degens E. T. (1974) Recent sediments of Black Sea. In *The Black Sea Geology, Chemistry, Biology*, Vol. 20 (ed. E. T. Degens und D. A. Ross), pp. 183-200. AAPG Memoir.

- Ross D. A., Uchupi E., Prada K. E. und MacIlvane J. C. (1974) Bathymetry and microtopography of Black Sea. In *The Black Sea Geology, Chemistry, and Biology* (ed. E. T. Degens und D. A. Ross), pp. 1-10. AAPG Memoir.
- Rouchy J. M., Taberner C. und Peryt T. M. (2001) Sedimentary and diagenetic transitions between carbonates and evaporites. *Sedimentary Geology* **140**, 1-8.
- Ryan W. B. F., Pitman III W. C., Major C. O., Shimkus K., Moskalenko V., Jones G. A., Dimitrov P., Gorür N., Sakinc M. und Yüce H. (1997) An abrupt drowning of the Black Sea. *Marine Geology* 138, 119-126.
- Sandberg C. A., Poole F. G. und Johnson J. G. (1988) Upper Devonian of Western United States. In *Devonian of the World*, Vol. Devonian System I (ed. N. J. McMillan, A. F. Embrey und D. J. Glass), pp. 183-200. Proc. Can. Soc. Pet. Geol. Int. Symp.
- Savoy L. E. und Mountjoy E. W. (1995) Cratonic-margin and Antler-age foreland basin strata (Middle Devonian to Lower Carboniferous) of the southern canadian Rocky mountains and adjacent plains. In *Stratigraphic evolution of Foreland Basins*, Special Publication No. 52 (ed. S. Dorobek und G. Ross), pp. 213-231. Society for Sedimentary Geology.
- Savoy L. E., Harris A. G. und Mountjoy E. W. (1999) Extension of lithofacies and conodonts biofacies models of late Devonian to Early Carboniferous carbonate ramp and black shale systems, southern Canadian Rocky Mountains. *Canadian journal of earth sciences* 36, 1281-1298.
- Sawlowicz Z. (1990) Primary copper sulphides from the Kupferschiefer, Poland. *Mineralium Deposita* **25**, 262-271.
- Sawlowicz Z. (1993) Iridium and other platinium-group elements as geochemical markers in sedimentary environments. *Paleogeographyy Paleoclimatology Paleoceanography* 104, 253-270.
- Schallenberg T. (1997) Geochemische Faziescharakterisierung des Kupferschiefers im Niederrheinischen Becken. Diplomarbeit, Universität zu Köln.
- Schaller T., Morford J., Emerson S. R. und Feely R. A. (2000) Oxyanions in metalliferous sediments: Tracers for paleoseawater metal concentrations? *Geochimica et Cosmochimica Acta* 63, 2243-2254.
- Schlanger S. O. und Jenkyns H. C. (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179-184.
- Schmid-Röhl A. (1999) Hochauflösende Geochemische Untersuchungen im Posidonienschiefer (Lias ε) von SW-Deutschland. Tübinger Geowissenschaftliche Arbeiten, Reihe A 48, 200.
- Schmid-Röhl A., Röhl J., Oschmann W. und Frimmel A. (1999) Der Posidonienschiefer (Lias ε) Südwestdeutschlands: hochauflösende geochemische, palökologische und sedimentologische Untersuchungen. Zentralblatt für Geologie und Paläontologie Teil I, 989-1004.
- Schmid-Röhl A., Röhl H. J., Oschmann W., Frimmel A. und Schwark L. (2002) Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): global versus regional control. *Geobios* 35, 13-20.
- Schnetger B. (1992) Chemical composition of loess from a local and worldwide view. *Neues Jahrbuch der Mineralogie*, 29-47.
- Schnetger B. (1997) Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions. *Fresenius' Journal of Analytical Chemistry* **359**, 468-472.
- Schnetger B., Brumsack H. J., Schale H., Hinrichs J. und Dittert L. (2000) Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study. *Deep-Sea Research Part II* **47**, 2735-2768.

- Schultz R. B. und Coveney R. M. (1992) Time-dependent changes for Midcontinent Pennsylvanian black shales, U.S.A. *Chemical Geology* **99**, 83-100.
- Schwark L. (1992) Geochemische Fazies-Charakterisierung des Basalen Zechsteins unter besonderer Berücksichtigung der Paläosalinität und des Redoxpotentials. Dissertation, RWTH Aachen.
- Scotese C. R. und McKerrow W. S. (1990) Revised world maps and introduction. In Palaeozoic Palaeogeography and Biogeography, Vol. 12 (ed. W. S. McKerrow und C. R. Scotese), pp. 1-21. Geological Society Memoir.
- Scotese C. R., Boucot A. J. und McKerrow W. S. (1999) Gondwanan palaeogeography and palaeoclimatology. *Journal of African Earth Sciences* **28**, 99-114.
- Seidel G. (1995) Geologie von Thüringen. Schweizerbart.
- Seilacher A. (1982) Posidonia Shales (Toarcium S. Germany) stagnant basin model revailidated. In *Palaeontology, Essential of Histrical Geology* (ed. E. M. Gallitelli), pp. 25-55.
- Sen Gupta J. G. (1989) Determination of trace and ultra-trace amounts of noble metals in geological and related materials by graphite- furnace atomic-absorption spectrometry after seperation by ion-exchange or co-precipitation with tellurium. *Talanta* **36**, 651-656.
- Shimkus K. M. und Trimonis E. S. (1974) Modern Sedimentation in Black Sea. In *The Black Sea Geology, Chemistry, Biology*, Vol. 20 (ed. E. T. Degens und D. A. Ross), pp. 249-278. AAPG Memoir.
- Sighinolfi G. P., Gorgoni C. und Mohamed A. H. (1984) Comprehensive analysis of Precious Metals in some geological standards by flameless A.A. Spectroscopy. *Geostandards Newsletter* 8, 25-29.
- Sinton C. W. und Duncan R. A. (1997) Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. *Economic Geology and the Bulletin of the Society of Economic Geologists* **92**, 836-842.
- Smith M. G. und Bustin R. M. (2000) Late Devonian and early Mississippian Bakken and Exshaw black shale source rocks, western Canada sedimentarty basin: a sequence stratigraphic interpretation. *AAPG Bulletin* **84**, 940-960.
- Stanley S. M. (1994) *Historische Geologie: eine Einführung in die Geschichte der Erde und des Lebens*. Spektrum Akademischer Verlag.
- Stemmerik L. und Piasecki S. (1991) The Upper Permian of East Greenland A review. Zentralblatt für Geologie und Paläontologie Teil I 4, 825-837.
- Strauss H. (1997) The isotopic composition of sedimentary sulfur through time. *Palaeogeography Palaeoclimate Palaeoceanography* **132**, 97-118.
- Strelow F. W. E. und Victor A. H. (1992) Improved seperation of ruthenium from base metals by cation exchange chromatography in hydrochloric acid. *South African Journal Chemistry* 45, 21-24.
- Stribrny B. (1996) Platinmetall- und Goldlagerstätten: Vorkommen, Produktion und Reserven. *Erzmetall* **49**, 191-195.
- Stribrny B., Wellmer F.-W., Burgath K.-P., Oberthür T., Tarkian M. und Pfeiffer T. (2000) Unconventional PGE occurences and PGE mineralisatioon in the Great Dyke: metallogenic and economic aspects. *Mineralium Deposita* **35**, 260-281.
- Suess E. (1979) Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. *Geochimica et Cosmochimica Acta* **43**, 339-352.
- Sun Y. (1996) Geochemical evidence for multi-stage base metal enrichment in Kupferschiefer. Dissertation.

- Sun Y. Z. und Püttmann W. (1996) Relationship between metal enrichment and organic composition in Kupferschiefer hosting structure-controlled mineralization from Oberkatz Schwelle, Germany. *Applied Geochemistry* 11, 567-581.
- Sun Y. Z. und Püttmann W. (1997) Metal accumulation during and after deposition of the Kupferschiefer from the Sangerhausen Basin, Germany. Applied Geochemistry 12, 577-592.
- Sun Y. Z. und Püttmann W. (2000) The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Organic Geochemistry 31, 1143-1161.
- Sweeney M., Turner P. und Vaughan D. J. (1987) The marl slate: A model for the precipitation of calcite, dolomite and sulphites in a newly-formed anoxic sea. *Sedimentology* **34**, 31-48.
- Tagami K. und Uchida S. (2000) Seperation of rhenium by an extraction chromatographic resin for determination by inductively coupled plasma-mass spectrometry. *Analytica Chimica Acta* **405**, 227-229.
- Tagami K. und Uchida S. (2001) ICP-MS determination of Re at ultra trace levels in rock and soil samples. *Journal of Analytical Atomic Spectrometry* **16**, 669-671.
- Taylor S. R. und McLennan S. M. (1985) The continental crust: its composition and evolution. Blackwell.
- Tebo B. M. (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. *Deep-Sea Research* **38 Suppl. 2**, S883-S905.
- Teichmüller R. (1957) Ein Querschnitt durch den Südteil des Niederrheinischen Zechsteinbeckens. *Geologisches Jahrbuch* **73**, 39-50.
- Terashima S. (1991) Determination of platinum and palladium in sixty-eight geochemical reference samples by flameless atomic absorption spectrometry. *Geostandard Newsletter* **15**, 125-128.
- Terashima S., Katayama H. und Itoh S. (1993) Geochemical behaviour of Pt and Pd in coastal marine sediments, southeastern margin of the Japan Sea. *Applied Geochemistry* **8**, 265-271.
- Tobschall H. J., Schmidt F.-P. und Schumacher C. (1986) Kupferschiefer und Kupfervererzungen im Richelsdorfer Gebirge, Hessen. - Ihre Entstehung im Rahmen der sedimentären Entwicklung des basalen Zechsteins. *Fortschritte der Mineralogie* 64, 143-160.
- Totland M. M., Jarvis I. und Jarvis K. E. (1995) Microwave digestion and alkali fusion procedures for the determination of the platinum-group elements and gold in geological materials by ICP-MS. *Chemical Geology* **124**, 21-36.
- Turner P. und Magaritz M. (1986) Chemical and isotopic studies of a core of Marl Slate from NE England; influences of freshwater into the Zechstein Sea. In *The English Zechstein* and related topics, Vol. 22 (ed. G. M. Harwood und D. B. Smith), pp. 19-29. Geol. Soc. Spe. Publ.
- Tyson R. V. und Pearson T. H. (1991) Modern and Ancient Continental Shelf Anoxia: an overview. In *Modern and Ancient Continental Shelf Anoxia, Geological Society Special Publication*, Vol. 58 (ed. R. V. Tyson und T. H. Pearson), pp. 1-24. Geological Society of London.
- v. Lith Y. (2001) The role of sulphate-reducing bacteria in dolomite formation : a study of a recent environment, bacterial cultures, and dolomite concretions. Dissertation, ETH Zürich.

- Vaughan D. J., Sweeney M., Friedrich G., Diedel R. und Haranczyk C. (1989) The Kupferschiefer: An overview with an appraisal of the different types of mineralisation. *Economic Geology* 84, 1003-1027.
- Veizer J. (1983) Trace elements and isotopes in sedimentary carbonates. In *Reviews in Mineralogy*, Vol. 11 (ed. R. J. Reeder), pp. 265-299.
- Vine J. D. und Tourtelot E. B. (1970) Geochemistry of Black Shale Deposits A summary report. *Economic Geology* **65**, 253-272.
- Visser J. N. J. (1997) A review of the Permo-Carboniferous glaciation in Africa. In *Late glacial and postglacial environmental changes : Quaternary, Carboniferous Permian, and Proterozoic*, Vol. XII (ed. I. P. Martini), pp. 169-193. Oxford Univ. Press.
- von Damm K. L., Edmond J. M., Grant B., Measures C. I., Walden B. und Weiss R. F. (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. *Geochimica et Cosmochimica Acta* **49**, 2197-2220.
- von Damm K. L. (1990) Seafloor hydrothermal activity: Black smoker chemistry and chimneys. *Annual Review of Earth and Planet Science* **18**, 173-204.
- von Damm K. L. (1995) Controls on the chemistry and temporal variability of Seafloor hydrothermal Fluids.
- Vorlicek T. P. und Helz G. R. (2002) Catalysis of mineral surfaces Implications for Mo geochemistry in anoxic environments. *Geochimica et Cosmochimica Acta* 67, 3679-3692.
- Wang K., Attrep Jr. M. und Orth C. J. (1993) Global iridium anomaly, mass extinction, and redox change at the Devonian-Carboniferous boundary. *Geology* **21**, 1071-1074.
- Warning B. und Brumsack H. J. (2000) Trace metal signatures of eastern Mediterranean sapropels. *Palaeogeography Palaeoclimatology Palaeoecology* **158**, 293-309.
- Wedepohl K. H. (1964) Untersuchungen am Kupferschiefer in Nordwestdeutschland; Ein Beitrag zur Deutung der Genese bituminöser Sedimente. *Geochimica et Cosmochimica Acta* **28**, 305-364.
- Wedepohl K. H. (1971a) Environmental influences on the chemical composition of shales and clays. In *Physics and chemistry of the earth*, Vol. 8 (ed. L. H. Ahrens, F. Press, S. K. Runcorn und H. L. Urey), pp. 307-333. Pergamon Pergamon.
- Wedepohl K. H. (1971b) "Kupferschiefer" as a Prototype of syngenetic sedimentary Ore Deposits. *Soc. Minining Geol. Japan* **Spec Issue 3**, 268-273.
- Wedepohl K. H. (1980) The geochemistry of the Kupferschiefer bed in Central Europe. *European Copper Deposits*, 129-135.
- Wedepohl K. H. (1991) The composition of the upper earth's crust and the natural cycles of selected metals. Metals in natural raw materials. Natural Resources. In *Metals and their compounds in the environment* (ed. E. Merian), pp. 3-17. VCH.
- Wedepohl K. H. (1994) Composition and origin of the Kupferschiefer bed. *Geological Quarterly* **38**, 623-638.
- Wedepohl K. H. (1995) Stoffbestand und Entwicklung des Meerwassers. *Kali und Steinsalz* **11**, 311-315.
- Wehausen R. (1999) Anorganische Geochemie zyklischer Sedimente aus dem östlichen Mittelmeer: Rekonstruktion der Paläoumweltbedingungen. Dissertation, Carl-von-Ossietzky-Universität Oldenburg, (ICBM).
- Wehrli B. und Stumm W. (1989) Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation. *Geochimica et Cosmochimica Acta* **53**, 69-77.
- Wenger L. M. und Baker D. R. (1986) Variations in organic geochemistry of anoxic-oxic black shale-carbonate sequences in the Pennsylvanain of the Midcontinent, U.S.A. Advances in Organic Geochemistry 10, 85-92.

- Werne J. P., Sagemann B. B., Lyons T. W. und Hollander D. J. (2002) An integrated assessment of a "type euxenic" deposit: Evidence for multiple controls on Black Shale deposition in the Middle Devonian Oatka Creek Formation. *American Journal of Science* **302**, 110-143.
- Wignall P. B. (1994) Black Shales. Oxford University Press.
- Wignall P. B. (2001) Large igneous provinces and mass extinctions. *Earth-Science Reviews* **53**, 1-33.
- Wilde P., Berry W. B. N. und Quinby-Hunt M. S. (1991) Silurian oceanic and atmospheric circulation and chemistry. In *The Murchinson Symposium; proceedings of an international conference on the Silurian System*, Vol. 44 (ed. M. G. Bassett, P. D. Lane und D. Edwards), pp. 123-143. Special Papers in Palaeontology.
- Witzke B. J. und Heckel P. H. (1988) Paleoclimatic indicators and inferred Devonian Paleolatitudes of Euramerica. *Palaeogeography Palaeoclimate Palaeoecology* **2**, 229-248.
- Witzke B. J. (1990) Palaeoclimatic constrains for Palaeozoic Palaeolatitudes of Laurentia and Euramerica. In *Palaeozoic Palaeogeography and Biogeography*, Vol. 12 (ed. W. S. McKerrow und C. R. Scotese), pp. 57-73. Geological Society Memoir.
- Yi Y. V. und Masuda A. (1996) Simultaneous determination of ruthenium, palladium, iridium, and platinum at ultratrace levels by isotope dilution inductively coupled plasma mass spectrometry in geological samples. *Analytical Chemistry* **68**, 1444-1450.
- Ziegler A. M. (1990) Phytogeographic patterns and continental configurations during the Permian period. In *Palaeozoic Palaeogeography and Biogeography*, Vol. 12 (ed. W. S. McKerrow und W. S. Scotese), pp. 363-379. Geological Society Memoir.
- Ziegler A. M., Hulver M. L. und Rowley D. B. (1997) Permian world topography and climate. In Late glacial and postglacial environmental changes : Quaternary, Carboniferous Permian, and Proterozoic, Vol. XII (ed. I. P. Martini), pp. 111-146. Oxford Univ. Press.
- Ziegler P. A. (1982) *Geological Atlas of Central and Western Europe*. Shell International Petroleum Maatschappij B.V.
- Ziegler P. A., Scotese C. R. und Barrett S. F. (1983) Mesozoic and Cenozoic palaeographic maps. In *Tidal friction and earth rotation*, Vol. II (ed. P. Brosche und J. Sündermann), pp. 140-152. Springer.
- Ziegler P. A. (1988) *Evolution of the Arctic-North Atlantic and the Western Tethys*. American Association of Petroleum Geologists Memoires.

Übersicht

$Datenanhang-Hauptkomponenten \ SiO_2-MnO$	A 3 – A 32
Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd	A 33 – A 62
Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf	A 63 – A 91
Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb	A 92 – A 121
Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U	A 122 – A 151
Datenanhang - V, Y, Yb, Zn, Zr, Ru, Ir, Pt	A 152 – A 181
Danksagung	A 183
Lebenslauf	A 184
Erklärung	A 185

A 186

Anmerkung

Auftriebsgebiet vor Peru

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	$P_2O_5[\%]$	MnO [%]
40-45		Kern SL 40	56,28	0,52	10,99	4,02	2,31	2,46	3,89	2,07	0,424	0,033
85-90		Kern SL 40	57,99	0,52	10,53	3,80	1,88	4,11	3,61	1,99	0,402	0,032
14-14,5		Kern MC 45	35,47	0,29	6,80	1,99	2,26	2,63	8,40	1,22	0,545	0,019
23-23,5		Kern MC 45	45,44	0,45	9,56	2,60	1,88	2,51	5,70	1,58	0,743	0,030

Schwarzes Meer Station 6

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
1,50	Unit 1		25,35	0,32	7,09	3,17	1,45	21,20	0,13	1,31	0,202	0,058
2,50	Unit 1		27,31	0,34	7,46	3,24	1,48	21,57		1,34	0,180	0,060
3,50	Unit 1		29,58	0,38	8,25	3,36	1,50	22,55	0,21	1,48	0,155	0,062
4,50	Unit 1		24,39	0,32	7,28	2,96	1,30	27,99	0,11	1,29	0,139	0,056
5,50	Unit 1		24,76	0,33	7,40	3,01	1,33	27,18	0,10	1,31	0,154	0,056
6,50	Unit 1		27,64	0,37	8,35	3,33	1,44	24,68	0,10	1,48	0,153	0,060
7,50	Unit 1		27,30	0,37	8,41	3,37	1,47	24,42	0,17	1,50	0,152	0,062
8,50	Unit 1		27,63	0,37	8,67	3,47	1,45	24,09	0,31	1,53	0,148	0,062
9,50	Unit 1		28,93	0,40	9,36	3,68	1,56	22,82	0,35	1,63	0,158	0,069
11,50	Unit 1		25,56	0,35	8,66	3,43	1,53	25,87	0,45	1,50	0,148	0,062
12,50	Unit 1		23,07	0,32	7,72	3,04	1,42	29,73	0,51	1,32	0,142	0,062
13,50	Unit 1		24,31	0,34	8,17	3,20	1,38	26,75	0,43	1,43	0,144	0,060
14,50	Unit 1		27,21	0,38	8,85	3,52	1,53	23,88	0,37	1,56	0,163	0,066
16,00	Unit 1		24,81	0,34	7,88	3,21	1,46	24,60	0,39	1,36	0,177	0,060
20,00	Unit 1		17,58	0,24	5,65	2,30	1,13	32,43	0,31	0,97	0,148	0,052
22,00	Unit 1		14,48	0,20	4,69	1,90	1,07	36,79	0,66	0,80	0,159	0,050
24,00	Unit 1		26,77	0,37	8,75	3,44	1,74	23,50	0,93	1,54	0,156	0,067
26,00	Unit 1		24,95	0,34	8,18	3,27	1,62	25,47	0,85	1,42	0,168	0,064
30,00	Unit 1		21,88	0,30	7,18	2,85	1,41	28,05	0,89	1,25	0,160	0,062
32,00	Unit 1		27,70	0,38	9,19	3,69	1,79	22,86	1,12	1,62	0,155	0,074
34,00	Unit 1		22,23	0,30	7,26	2,95	1,54	28,37	0,92	1,29	0,179	0,067

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
36,00	Unit 1		21,63	0,29	6,94	2,82	1,45	29,21	0,72	1,24	0,157	0,067
40,00	Unit 1		20,49	0,28	6,60	2,75	1,26	30,32	0,23	1,13	0,151	0,066
42,00	Unit 1		21,81	0,29	6,98	2,83	1,32	28,13	0,45	1,23	0,200	0,073
44,00	Unit 1		23,17	0,31	7,33	3,02	1,43	26,61	0,56	1,26	0,166	0,076
46,00	Unit 1		18,92	0,26	6,03	2,52	1,23	32,06	0,54	1,07	0,147	0,061
49,50	Unit 1		29,02	0,39	9,24	3,75	1,68	21,11	0,58	1,58	0,272	0,064
60,00	Unit 2a		37,97	0,53	12,80	4,88	2,00	13,27	0,28	2,22	0,188	0,058
70,00	Unit 2a		43,65	0,61	14,49	6,12	2,35	6,09	0,29	2,53	0,161	0,062
80,00	Unit 2a		40,71	0,57	13,50	5,21	2,32	6,84	0,84	2,42	0,175	0,051
90,00	Unit 2a		39,43	0,55	13,15	5,02	2,23	6,92	0,66	2,31	0,199	0,059
100,00	Unit 2a		34,31	0,47	11,54	5,12	2,04	5,72	0,96	2,03	0,233	0,094
110,00	Unit 2a		28,22	0,33	8,56	4,74	1,73	5,85	0,90	1,49	0,205	0,073
120,00	Unit 2a		31,35	0,39	9,95	5,56	1,83	5,39	0,73	1,73	0,197	0,062
130,00	Unit 2a		53,96	0,53	9,88	3,26	2,22	7,87	0,80	1,82	0,180	0,038
140,00	Unit 2b		61,49	0,63	9,94	3,51	2,47	7,51	0,82	1,89	0,124	0,042
150,00	Unit 2b		45,53	0,53	9,59	3,36	2,46	16,00	0,87	1,81	0,109	0,046
160,00	Unit 2b		43,73	0,50	9,04	3,41	2,47	18,05	0,89	1,73	0,104	0,058
170,00	Unit 2b		36,79	0,47	9,70	4,05	2,65	20,32	0,66	1,93	0,093	0,090
180,00	Unit 2b		39,21	0,50	10,19	4,24	2,79	18,43	0,95	2,03	0,097	0,111
190,00	Unit 2b		38,36	0,50	10,55	4,40	3,00	18,40	0,70	2,06	0,100	0,121
200,00	Unit 3		49,97	0,55	10,66	4,39	2,71	12,38	0,89	2,10	0,107	0,098
210,00	Unit 3		52,13	0,58	10,66	4,31	2,94	11,08	0,85	2,08	0,108	0,088
220,00	Unit 3		50,36	0,57	10,75	4,30	2,88	11,99	0,93	2,09	0,111	0,090
230,00	Unit 3		50,67	0,58	11,02	4,58	3,04	11,08	0,86	2,13	0,110	0,093
240,00	Unit 3		51,36	0,58	11,00	4,61	2,96	11,16	0,95	2,14	0,117	0,092
250,00	Unit 3		50,81	0,57	10,91	4,56	2,98	11,60	0,89	2,12	0,121	0,091
260,00	Unit 3		49,64	0,57	11,22	4,72	3,07	11,58	0,90	2,20	0,123	0,091
270,00	Unit 3		48,93	0,56	10,91	4,64	2,95	12,47	0,87	2,13	0,122	0,090
280,00	Unit 3		51,56	0,59	11,10	4,75	3,06	10,93	0,84	2,12	0,119	0,086
290,00	Unit 3		52,11	0,59	11,27	4,77	3,14	10,55	0,90	2,15	0,116	0,091
300,00	Unit 3		49,63	0,60	11,94	4,79	3,45	11,00	0,83	2,29	0,114	0,097
310,00	Unit 3		48,84	0,61	12,33	4,96	3,63	10,66	0,83	2,36	0,115	0,103
320,00	Unit 3		48,73	0,61	12,36	4,97	3,63	10,85	0,85	2,38	0,115	0,108

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
330,00	Unit 3		50,16	0,62	12,24	4,87	3,59	10,26	1,01	2,34	0,113	0,107
340,00	Unit 3		49,92	0,63	12,47	4,97	3,67	9,96	0,96	2,38	0,114	0,104
350,00	Unit 3		48,55	0,62	12,73	5,10	3,65	10,31	0,94	2,44	0,111	0,110
360,00	Unit 3		48,82	0,63	12,42	5,03	3,61	10,35	0,97	2,36	0,114	0,115
370,00	Unit 3		48,74	0,61	12,50	5,10	3,63	10,46	1,03	2,40	0,115	0,115
380,00	Unit 3		48,84	0,62	12,49	5,19	3,67	10,24	1,00	2,37	0,114	0,116
410,00	Unit 3		48,11	0,61	12,68	5,14	3,70	10,64	1,03	2,38	0,134	0,122
450,00	Unit 3		48,67	0,62	12,58	5,09	3,72	10,57	1,04	2,36	0,143	0,115
490,00	Unit 3		48,21	0,61	12,53	5,13	3,70	10,68	0,98	2,35	0,139	0,119
530,00	Unit 3		48,79	0,63	12,88	5,12	3,75	10,20	1,02	2,39	0,132	0,115
610,00	Unit 3		47,47	0,61	12,79	5,14	3,67	10,95	0,94	2,34	0,129	0,119
690,00	Unit 3		44,41	0,60	13,27	5,33	3,68	12,25	0,92	2,41	0,124	0,120
770,00	Unit 3		42,83	0,58	12,76	5,31	3,66	13,33	0,81	2,33	0,127	0,124
850,00	Unit 3		42,75	0,58	13,12	5,43	3,65	12,97	0,88	2,41	0,123	0,135

Schwarzes Meer Station 7

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
2,50	Unit 1											
3,50	Unit 1		33,31	0,32	6,70	3,77	1,23	18,27	0,11	1,19	0,141	0,064
4,50	Unit 1		26,45	0,31	6,66	3,64	1,23	24,23	0,09	1,17	0,136	0,062
5,50	Unit 1		24,29	0,30	6,61	3,67	1,21	26,50	0,12	1,16	0,138	0,063
6,50	Unit 1		23,30	0,29	6,60	3,68	1,22	27,17	0,21	1,17	0,133	0,063
7,50	Unit 1		25,09	0,32	7,33	4,07	1,27	25,20	0,09	1,25	0,142	0,069
8,50	Unit 1		26,53	0,34	8,04	4,50	1,34	22,76		1,41	0,171	0,075
9,50	Unit 1		23,71	0,31	7,32	4,04	1,26	26,10	0,08	1,23	0,142	0,068
10,50	Unit 1		23,97	0,30	7,29	4,01	1,21	25,27	0,08	1,24	0,154	0,068
11,50	Unit 1		22,05	0,28	6,70	3,94	1,21	26,04	0,30	1,13	0,136	0,068
12,50	Unit 1		24,96	0,29	7,09	4,34	1,31	21,72	0,08	1,21	0,144	0,073
13,50	Unit 1		24,06	0,28	6,68	4,19	1,25	23,13	0,08	1,17	0,146	0,070
14,50	Unit 1		23,75	0,27	6,26	3,84	1,19	24,29	0,08	1,10	0,151	0,066

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
16,00	Unit 1		20,38	0,22	5,13	3,23	1,01	28,51	0,01	0,86	0,142	0,059
18,00	Unit 1		20,99	0,19	4,63	3,02	0,98	28,33	0,08	0,78	0,136	0,055
20,00	Unit 1		19,36	0,15	3,71	2,29	0,81	32,26		0,64	0,122	0,046
22,00	Unit 1		20,70	0,17	3,99	2,50	0,90	29,56	0,08	0,68	0,134	0,049
24,00	Unit 1		13,75	0,13	3,24	2,12	0,72	36,41		0,55	0,127	0,045
26,00	Unit 1		17,02	0,16	3,98	2,46	0,89	31,94	0,08	0,66	0,140	0,048
28,00	Unit 1		25,77	0,26	6,31	3,74	1,18	23,14	0,08	1,06	0,140	0,062
30,00	Unit 1		27,62	0,30	7,19	4,47	1,32	19,65		1,21	0,150	0,070
32,00	Unit 1		24,68	0,23	5,70	3,64	1,15	23,79	0,10	0,96	0,139	0,061
33,35	Unit 1											0,051
34,15	Unit 1		42,32	0,21	5,36	2,53	1,20	16,15	0,09	0,96	0,087	0,044
34,80	Unit 1		30,74	0,22	5,56	3,01	1,11	21,84	0,08	0,95	0,117	0,051
36,00	Unit 1		31,33	0,24	5,76	3,17	1,16	22,35	0,06	0,95	0,118	0,053
38,00	Unit 1											
39,00	Unit 1											
40,00	Unit 1		25,25	0,24	5,98	3,55	1,14	24,07		1,00	0,136	0,058
40,00	Unit 1		26,11	0,32	7,86	4,45	1,28	22,38	0,16	1,32	0,142	0,055
42,00	Unit 1		19,37	0,20	5,02	3,09	1,00	29,48	0,11	0,82	0,131	0,054
44,00	Unit 1		28,02	0,30	7,27	4,46	1,36	20,32	0,20	1,23	0,154	0,070
46,00	Unit 1		25,02	0,25	6,28	4,17	1,20	24,06	0,27	1,06	0,132	0,067
47,50	Unit 1		27,70	0,22	5,54	3,63	1,09	23,79	0,11	0,92	0,124	0,060
50,00	Unit 1		34,51	0,46	11,32	6,53	1,77	13,53	0,20	1,94	0,150	0,055
60,00	Unit 2a		39,07	0,48	11,68	4,60	1,96	5,71	0,29	2,03	0,169	0,044
70,00	Unit 2a		45,22	0,34	8,23	3,38	1,49	4,44	0,08	1,46	0,164	0,032
80,00	Unit 2a		38,77	0,37	9,13	3,52	1,53	5,91		1,60	0,163	0,031
90,00	Unit 2a		34,11	0,42	10,32	3,95	1,89	7,48	0,32	1,82	0,469	0,034
100,00	Unit 2a		36,93	0,35	8,89	3,45	1,54	3,59	0,08	1,55	0,236	0,031
120,00	Unit 2a		27,21	0,28	7,35	4,53	1,47	3,33	0,25	1,29	0,237	0,030
137,50	Unit 2a		30,77	0,33	8,77	3,77	1,72	3,95	0,39	1,60	0,230	0,029
138,25	Unit 2a		29,08	0,34	9,52	4,00	1,82	3,35	0,24	1,70	0,252	0,027
138,75	Unit 2a		29,29	0,35	9,67	3,89	1,76	3,27	0,30	1,70	0,221	0,026
139,25	Unit 2a		28,87	0,35	9,59	3,83	1,76	4,19	0,30	1,68	0,246	0,024
140,00	Unit 2a		34,50	0,31	8,45	3,64	1,49	2,73		1,41	0,196	0,027

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
140,25	Unit 2a		24,63	0,30	8,07	3,24	1,57	7,32	0,30	1,41	0,197	0,022
141,25	Unit 2a		28,88	0,36	9,51	3,74	1,78	5,78	0,27	1,64	0,192	0,025
141,75	Unit 2a		27,95	0,35	9,09	3,79	1,76	5,35	0,31	1,62	0,207	0,025
142,25	Unit 2a		26,92	0,33	8,76	3,97	1,76	5,71	0,31	1,54	0,217	0,028
142,75	Unit 2a		24,15	0,30	7,61	3,67	1,62	4,50	0,31	1,36	0,240	0,027
143,50	Unit 2a		28,57	0,35	9,24	3,83	1,76	4,64	0,31	1,59	0,213	0,027
144,50	Unit 2a		30,34	0,38	9,97	4,18	1,79	5,12	0,49	1,76	0,206	0,031
145,25	Unit 2a		32,93	0,43	10,76	4,33	2,10	13,17	0,45	1,91	0,150	0,036
145,75	Unit 2b		30,64	0,41	9,84	3,93	2,07	18,49	0,30	1,79	0,133	0,038
146,25	Unit 2b		30,48	0,42	9,92	3,87	2,12	21,30	0,40	1,82	0,126	0,042
146,75	Unit 2b		29,89	0,41	9,79	3,80	2,09	21,73	0,30	1,76	0,116	0,044
147,50	Unit 2b		29,78	0,41	9,77	3,77	2,11	21,77	0,33	1,73	0,114	0,044
148,50	Unit 2b		29,23	0,41	9,55	3,67	2,09	23,45	0,31	1,71	0,113	0,047
149,50	Unit 2b		27,66	0,40	9,02	3,49	2,10	24,63	0,31	1,65	0,112	0,049
150,50	Unit 2b		28,17	0,40	9,17	3,57	2,11	24,40	0,31	1,64	0,113	0,051
151,50	Unit 2b		27,33	0,39	8,91	3,52	2,07	23,94	0,32	1,62	0,111	0,054
153,50	Unit 2b		25,99	0,39	8,26	3,31	2,06	25,93	0,32	1,48	0,106	0,060
155,50	Unit 2b		25,55	0,38	7,91	3,21	2,07	26,17	0,55	1,43	0,109	0,060
155,50	Unit 2b		25,73	0,39	7,97	3,23	2,04	26,33	0,25	1,43	0,109	0,061
156,50	Unit 2b		26,30	0,40	8,31	3,40	2,11	25,92	0,52	1,48	0,111	0,065
156,50	Unit 2b		26,45	0,40	8,35	3,42	2,09	26,04	0,28	1,48	0,111	0,065
160,00	Unit 2b		26,59	0,40	8,33	3,38	2,10	25,99	0,30	1,49	0,108	0,068
160,00	Unit 2b		26,53	0,40	8,23	3,37	2,04	25,80	0,34	1,48	0,110	0,072
164,00	Unit 2b		27,76	0,42	8,93	3,71	2,11	23,79	0,35	1,61	0,118	0,087
168,00	Unit 2b		29,81	0,44	9,54	3,80	2,19	22,17	0,37	1,73	0,128	0,081
172,00	Unit 2b		33,49	0,48	10,65	4,33	2,19	18,10	0,38	1,90	0,128	0,071
178,00	Unit 2b		34,20	0,51	11,03	4,39	2,19	17,98	0,39	1,99	0,119	0,086
180,00	Unit 2b		35,68	0,53	11,55	4,61	2,27	18,06	0,54	2,07	0,124	0,085
182,00	Unit 2b		37,10	0,55	11,92	4,86	2,24	15,30	0,36	2,13	0,129	0,088
186,00	Unit 2b		41,41	0,62	13,50	5,46	2,39	11,36	0,42	2,44	0,143	0,098
190,00	Unit 2b		45,58	0,67	14,73	5,98	2,54	8,05	0,43	2,65	0,148	0,102
194,00	Unit 2b		47,74	0,69	15,53	6,25	2,57	5,54	0,45	2,82	0,153	0,114
196,50	Unit 2b											

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
198,00	Unit 2b		49,25	0,71	16,12	6,35	2,62	5,09	0,46	2,93	0,156	0,109
201,00	Unit 2b		49,02	0,70	16,10	6,63	2,54	4,04	0,47	2,93	0,148	0,119
205,00	Unit 2b		51,64	0,73	16,86	6,97	2,57	2,42	0,48	3,04	0,155	0,123
209,00	Unit 2b		50,46	0,69	16,98	6,91	2,55	2,28	0,49	3,07	0,151	0,123
213,00	Unit 2b		52,83	0,71	17,47	6,84	2,63	1,58	0,50	3,18	0,165	0,102
215,00	Unit 2b		52,38	0,69	17,29	6,89	2,63	1,82	0,51	3,15	0,165	0,103
217,00	Unit 2b		50,43	0,65	16,53	6,84	2,55	2,33	0,51	3,02	0,158	0,112
218,50	Unit 2b		50,09	0,64	16,41	7,30	2,56	2,88	0,52	2,97	0,163	0,113
219,50	Unit 2b		48,78	0,62	15,92	6,26	2,47	5,28	0,52	2,87	0,169	0,092
220,50	Unit 2b		45,86	0,59	14,90	6,13	2,37	8,16	0,52	2,67	0,168	0,081
221,50	Unit 2b		39,33	0,50	12,67	5,05	2,26	14,22	0,52	2,27	0,154	0,077
223,00	Unit 2b		32,94	0,42	10,34	4,01	2,33	21,38	0,68	1,89	0,112	0,087
224,50	Unit 2b		34,44	0,43	11,14	4,30	2,17	19,80	1,04	1,92	0,142	0,103
226,00	Unit 2b		25,11	0,31	8,14	3,11	2,01	28,53	0,70	1,41	0,113	0,083
228,00	Unit 2b		27,36	0,34	8,96	3,37	1,99	26,75	0,70	1,52	0,115	0,077
230,00	Unit 2b		29,26	0,36	9,60	3,51	1,94	24,26	0,78	1,65	0,119	0,073
232,00	Unit 2b		26,98	0,33	8,80	3,36	1,88	26,43	0,66	1,44	0,114	0,079
234,00	Unit 3		21,22	0,26	6,92	2,65	1,79	32,69	0,21	1,15	0,103	0,086
236,00	Unit 3		17,75	0,22	5,78	2,31	1,79	35,79	0,54	0,91	0,096	0,089
238,00	Unit 3		17,39	0,21	5,62	2,23	1,77	36,59	0,53	0,94	0,096	0,087
240,50	Unit 3		15,35	0,19	4,95	1,94	1,73	38,78	0,37	0,80	0,092	0,087
245,00	Unit 3		14,00	0,17	4,50	1,67	1,65	40,38	0,40	0,75	0,089	0,079
245,00	Unit 3		14,04	0,17	4,51	1,68	1,64	40,48	0,28	0,74	0,089	0,079
249,00	Unit 3		14,47	0,17	4,61	1,84	1,60	39,98	0,25	0,76	0,083	0,075
250,50	Unit 3		20,07	0,25	6,04	2,08	1,82	35,03	0,32	1,06	0,086	0,073
251,50	Unit 3		16,50	0,19	4,86	1,85	1,62	38,63	0,27	0,82	0,083	0,085
253,00	Unit 3		15,94	0,19	5,12	1,87	1,59	38,72	0,30	0,87	0,082	0,087
254,50	Unit 3		18,34	0,22	5,79	2,24	1,68	36,29	0,31	0,96	0,093	0,093
255,50	Unit 3		18,19	0,22	5,75	2,21	1,64	37,07	0,34	0,99	0,096	0,091
259,00	Unit 3		18,49	0,22	5,89	2,39	1,63	36,19	0,28	1,04	0,080	0,079
261,00	Unit 3		21,52	0,26	6,73	2,80	1,75	33,12	0,35	1,19	0,081	0,077
263,00	Unit 3		24,42	0,30	7,54	3,03	1,87	31,00	0,44	1,34	0,080	0,073
265,00	Unit 3		41,41	0,52	11,05	4,71	2,70	16,93	0,83	2,15	0,094	0,090

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
266,50	Unit 3		49,14	0,54	10,70	4,76	2,53	13,01	0,96	2,04	0,097	0,073
267,50	Unit 3		52,85	0,49	10,25	3,87	2,25	11,57	1,16	1,93	0,083	0,063
268,50	Unit 3		52,15	0,48	10,55	3,89	2,30	11,47	1,20	2,04	0,081	0,072
270,50	Unit 3		54,08	0,45	10,36	4,00	2,28	10,70	1,26	1,98	0,080	0,082
273,00	Unit 3		52,17	0,47	11,35	4,56	2,56	10,40	1,17	2,18	0,077	0,103
277,00	Unit 3		55,68	0,48	11,05	4,43	2,51	8,59	1,28	2,14	0,077	0,114
279,00	Unit 3											
281,00	Unit 3		57,13	0,45	10,46	3,98	2,30	9,01	1,23	2,01	0,072	0,072
283,00	Unit 3		53,41	0,46	10,18	3,87	2,39	9,98	1,16	1,95	0,078	0,073
284,50	Unit 3		46,42	0,57	11,94	5,68	3,35	11,98	0,95	2,15	0,098	0,098
285,50	Unit 3		51,27	0,55	10,50	4,63	2,88	12,03	0,94	1,98	0,097	0,093
287,00	Unit 3		33,42	0,42	10,44	4,40	2,71	22,20	0,84	1,95	0,094	0,108
287,00	Unit 3		33,60	0,42	10,50	4,42	2,70	22,30	0,62	1,95	0,095	0,109
291,00	Unit 3		31,39	0,41	10,17	3,91	2,68	24,04	0,63	1,92	0,094	0,091
293,00	Unit 3		31,63	0,42	9,97	4,33	2,67	23,14	0,65	1,87	0,095	0,096
295,00	Unit 3		31,27	0,41	9,91	4,23	2,50	23,82	0,66	1,85	0,099	0,136
297,00	Unit 3		33,35	0,44	10,51	4,24	2,61	22,23	0,72	1,90	0,103	0,119
299,00	Unit 3		31,95	0,43	10,36	4,48	2,68	22,73	0,67	1,94	0,097	0,124
303,00	Unit 3		33,34	0,44	10,87	4,51	2,79	21,75	0,74	2,04	0,100	0,143
307,00	Unit 3		30,50	0,40	9,96	4,14	2,57	24,53	0,65	1,87	0,099	0,123
309,50	Unit 3		32,54	0,43	10,47	4,60	2,60	22,50	0,69	1,98	0,101	0,116
311,50	Unit 3		30,71	0,41	9,97	4,63	2,53	23,81	0,66	1,87	0,103	0,122
312,50	Unit 3		34,40	0,46	10,86	4,75	2,86	20,95	0,75	2,06	0,103	0,111
313,50	Unit 3		43,01	0,54	12,04	6,16	3,18	14,17	0,87	2,32	0,109	0,118
314,50	Unit 3		41,40	0,55	12,77	5,75	2,89	14,72	0,85	2,44	0,109	0,122
316,50	Unit 3		39,86	0,53	13,11	6,34	2,95	14,75	0,86	2,54	0,112	0,155
318,50	Unit 3		39,52	0,54	13,34	6,79	3,06	14,28	0,85	2,60	0,108	0,125
319,50	Unit 3		40,45	0,53	13,77	5,50	3,15	13,98	0,97	2,63	0,109	0,114
321,00	Unit 3		40,38	0,53	13,63	5,19	3,15	14,38	0,93	2,63	0,110	0,114
323,00	Unit 3		36,37	0,48	12,31	5,81	2,77	17,76	0,79	2,37	0,109	0,105
325,00	Unit 3		39,31	0,53	13,23	6,76	2,88	14,67	0,85	2,62	0,109	0,104
327,00	Unit 3		42,24	0,57	14,47	8,06	3,11	11,21	0,96	2,88	0,107	0,138
329,00	Unit 3		39,90	0,52	13,78	6,29	3,13	14,12	0,83	2,76	0,105	0,128

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
331,00	Unit 3		41,26	0,53	14,01	5,59	3,14	13,61	0,89	2,74	0,101	0,107
333,00	Unit 3		44,24	0,62	15,58	6,46	3,32	10,42	0,87	3,09	0,106	0,101
337,00	Unit 3		44,75	0,62	15,84	7,22	3,27	9,42	0,97	3,12	0,104	0,105
337,00	Unit 3		45,02	0,62	15,93	7,27	3,26	9,46	0,71	3,13	0,105	0,106
339,00	Unit 3		45,15	0,62	16,04	6,70	3,30	9,44	0,73	3,23	0,102	0,105
341,50	Unit 3		44,77	0,63	16,09	7,67	3,20	8,53	0,73	3,23	0,102	0,106
344,00	Unit 3		44,92	0,62	15,53	9,80	3,02	8,19	0,73	3,09	0,101	0,099
346,00	Unit 3		46,79	0,65	16,24	7,33	3,10	8,21	0,74	3,23	0,104	0,096
348,00	Unit 3		48,85	0,66	16,28	7,10	3,03	6,86	0,74	3,18	0,108	0,083
350,00	Unit 3		50,39	0,68	16,36	6,21	3,08	6,89	0,74	3,19	0,112	0,089
354,00	Unit 3		49,66	0,67	16,51	6,56	3,06	6,64	0,74	3,21	0,110	0,095
358,00	Unit 3		50,15	0,67	16,13	6,55	3,01	6,82	0,75	3,12	0,111	0,088
362,00	Unit 3		50,27	0,67	16,38	6,36	3,04	6,55	0,75	3,20	0,112	0,087
366,00	Unit 3		49,89	0,67	16,65	6,62	3,05	6,54	0,75	3,22	0,109	0,083
370,00	Unit 3		50,28	0,66	16,26	6,51	3,04	6,62	0,75	3,17	0,110	0,087
374,00	Unit 3		49,48	0,65	15,92	6,31	2,91	6,56	0,57	3,10	0,109	0,083
378,00	Unit 3		50,37	0,66	16,38	6,23	3,00	6,62	0,76	3,22	0,111	0,085
382,00	Unit 3		50,15	0,67	16,49	6,31	2,94	6,62	0,76	3,20	0,112	0,081
384,00	Unit 3											
386,00	Unit 3		49,59	0,66	16,30	6,15	3,09	7,03	0,76	3,17	0,115	0,088
390,00	Unit 3		51,09	0,67	16,53	6,02	3,09	6,62	0,76	3,22	0,120	0,087
394,00	Unit 3		49,90	0,67	16,87	6,19	3,16	6,66	0,76	3,26	0,121	0,082
396,00	Unit 3		49,87	0,68	16,89	6,22	3,17	6,66	0,77	3,26	0,123	0,078
397,50	Unit 3		49,82	0,68	16,92	6,45	3,15	6,29	0,77	3,30	0,124	0,069
398,50	Unit 3		49,01	0,69	16,36	6,97	3,25	6,77	0,77	3,22	0,120	0,073
399,50	Unit 3		49,94	0,65	15,23	8,08	3,02	6,64	0,77	3,11	0,120	0,088
400,50	Unit 3		49,77	0,67	17,45	7,17	2,99	5,19	0,77	3,69	0,136	0,091
402,00	Unit 3		51,18	0,68	17,75	7,03	2,89	4,91	0,84	3,73	0,139	0,086
404,00	Unit 3		50,10	0,69	17,98	7,23	2,98	4,87	0,72	3,86	0,141	0,089
406,00	Unit 3		51,18	0,68	17,89	7,13	2,88	4,75	0,71	3,80	0,143	0,085
410,00	Unit 3		50,92	0,70	17,95	7,07	2,91	4,92	0,70	3,74	0,138	0,084
414,00	Unit 3		51,12	0,70	17,72	6,91	2,91	5,20	0,74	3,57	0,134	0,090
418,00	Unit 3		51,47	0,69	17,68	6,68	2,83	5,27	0,72	3,47	0,133	0,087
Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
422,00	Unit 3		51,71	0,69	17,33	6,56	2,81	5,28	0,71	3,35	0,130	0,086
426,00	Unit 3		51,90	0,70	17,31	6,56	2,82	5,31	0,69	3,36	0,130	0,086
430,00	Unit 3		51,06	0,69	17,89	6,86	2,89	5,05	0,70	3,54	0,134	0,088
434,00	Unit 3		51,33	0,69	17,67	6,79	2,87	5,20	0,71	3,47	0,132	0,088
438,00	Unit 3		50,95	0,70	17,80	6,93	2,90	5,13	0,74	3,60	0,137	0,087
442,50	Unit 3		50,87	0,71	17,93	6,96	2,85	5,05	0,69	3,59	0,135	0,086
447,00	Unit 3		51,63	0,71	17,77	6,99	2,86	4,94	0,49	3,63	0,140	0,084
451,00	Unit 3		50,94	0,69	17,72	6,98	2,83	4,85	0,72	3,64	0,141	0,086
455,00	Unit 3		51,25	0,71	17,98	7,06	2,83	4,84	0,69	3,60	0,140	0,082
459,00	Unit 3		50,48	0,72	17,76	7,12	2,90	5,20	0,72	3,63	0,145	0,088
463,00	Unit 3		51,24	0,70	17,70	6,92	2,83	4,95	0,68	3,57	0,139	0,086
465,00	Unit 3		50,66	0,70	17,95	7,10	2,90	5,05	0,72	3,64	0,143	0,090
469,00	Unit 3		51,24	0,71	17,71	6,99	2,84	5,04	0,69	3,60	0,142	0,086
473,00	Unit 3		50,92	0,71	17,87	7,06	2,83	4,82	0,76	3,61	0,139	0,083
477,00	Unit 3		50,99	0,71	17,56	7,01	2,87	5,16	0,65	3,60	0,144	0,090
481,00	Unit 3		51,41	0,72	17,41	6,98	2,87	5,32	0,67	3,54	0,143	0,089
485,00	Unit 3		50,51	0,73	17,28	7,05	2,91	5,58	0,63	3,61	0,145	0,095
489,00	Unit 3		50,90	0,74	17,57	7,11	2,84	5,01	0,63	3,64	0,147	0,088
493,00	Unit 3		50,84	0,73	17,54	7,01	2,81	5,23	0,63	3,57	0,142	0,087
497,00	Unit 3		51,02	0,68	17,23	6,70	2,79	5,79	0,56	3,32	0,133	0,097
501,00	Unit 3		51,05	0,67	17,19	6,48	2,82	5,95	0,72	3,28	0,128	0,096
505,00	Unit 3		50,45	0,66	17,25	6,57	2,86	6,12	0,74	3,27	0,129	0,097
509,00	Unit 3		50,95	0,67	17,18	6,45	2,77	5,98	0,72	3,21	0,128	0,086
513,00	Unit 3		50,74	0,67	16,65	6,53	2,91	6,81	0,69	3,10	0,130	0,096
517,00	Unit 3		50,80	0,64	16,30	6,21	2,75	6,86	0,68	3,08	0,129	0,094
521,00	Unit 3		50,69	0,64	16,24	6,26	2,78	7,09	0,68	3,07	0,131	0,094
525,00	Unit 3		49,64	0,62	16,05	6,22	2,83	7,64	0,75	3,03	0,129	0,101
529,00	Unit 3		50,55	0,64	16,21	6,25	2,77	7,38	0,70	3,06	0,129	0,094
533,00	Unit 3		49,82	0,63	16,50	6,37	2,79	7,00	0,75	3,12	0,130	0,086
537,00	Unit 3		50,47	0,64	16,64	6,42	2,77	6,81	0,50	3,15	0,129	0,086
541,00	Unit 3		50,54	0,64	16,48	6,33	2,76	6,64	0,83	3,15	0,129	0,084
546,00	Unit 3		49,50	0,64	16,64	6,51	2,86	7,19	0,70	3,18	0,130	0,091
550,00	Unit 3		50,06	0,64	16,68	6,48	2,86	6,93	0,71	3,20	0,130	0,087

Daten anhang-Hauptkomponenten

Teufe [cm]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
554,00	Unit 3		51,00	0,65	16,77	6,48	2,78	6,67	0,68	3,16	0,131	0,083
558,00	Unit 3		50,10	0,64	16,68	6,39	2,75	6,89	0,70	3,12	0,128	0,086
562,00	Unit 3											
566,00	Unit 3		49,85	0,62	16,30	6,24	2,80	7,55	0,71	3,05	0,126	0,092
566,00	Unit 3		50,06	0,63	16,37	6,27	2,79	7,57	0,51	3,06	0,127	0,092
570,00	Unit 3		49,32	0,62	16,34	6,31	2,89	7,84	0,66	3,03	0,127	0,097
574,00	Unit 3		49,39	0,62	16,60	6,37	2,85	7,43	0,69	3,05	0,124	0,092
578,00	Unit 3		49,79	0,62	16,18	6,22	2,85	7,72	0,63	2,98	0,123	0,095
582,00	Unit 3		49,93	0,64	16,62	6,34	2,77	7,34	0,66	3,02	0,123	0,088
586,00	Unit 3		50,44	0,63	16,29	6,21	2,78	7,33	0,69	3,01	0,123	0,089
590,00	Unit 3		49,95	0,63	16,46	6,28	2,80	7,45	0,67	3,00	0,125	0,089
594,00	Unit 3		49,87	0,63	16,67	6,30	2,81	7,31	0,66	3,07	0,123	0,088
598,00	Unit 3		49,39	0,63	16,60	6,42	2,82	7,32	0,63	3,07	0,122	0,089
602,00	Unit 3		49,29	0,62	16,49	6,33	2,88	7,82	0,62	3,04	0,123	0,096
606,00	Unit 3		49,81	0,63	16,88	6,36	2,78	7,03	0,63	3,11	0,121	0,084
610,00	Unit 3		49,82	0,63	16,62	6,33	2,80	7,31	0,66	3,06	0,123	0,090
614,00	Unit 3		49,85	0,63	16,51	6,28	2,81	7,31	0,72	3,07	0,123	0,089
618,00	Unit 3		49,62	0,63	16,54	6,27	2,78	7,18	0,66	3,04	0,122	0,088
622,00	Unit 3		49,67	0,63	16,47	6,29	2,80	7,43	0,67	3,02	0,122	0,089

Jura/Kreide-Grenze vor Norwegen

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
59,44		Kern 6307	52,11	0,58	15,08	6,00	1,23	1,07	1,17	1,75	0,146	0,013
53,59		Kern 7430	37,17	0,35	9,96	3,64	1,71	6,15	0,78	1,99	0,466	0,024

Posidonienschiefer Dotternhausen

Teufe [cm]	S.E.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	$P_2O_5[\%]$	MnO [%]
3,5	Wilder Schiefer	28,77	0,47	10,42	5,00	1,61	20,71	0,39	1,77	0,342	0,050
37,5	Wilder Schiefer	32,75	0,55	12,11	5,85	1,69	15,61	0,43	2,09	0,209	0,042

Datenanhang – Hauptkomponenten

Teufe [cm]	S.E.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	$P_2O_5[\%]$	MnO [%]
92,2	Wilder Schiefer, Nagelkalk	16,00	0,25	5,29	2,67	1,02	36,17	0,24	0,84	0,156	0,069
131,9	Wilder Schiefer	20,14	0,31	6,63	3,51	1,15	31,36	0,31	1,11	0,095	0,048
157,4	Wilder Schiefer	31,54	0,48	10,60	4,39	1,47	18,06	0,43	1,86	0,195	0,035
195,8	Wilder Schiefer	25,88	0,39	8,41	4,07	1,27	23,15	0,37	1,47	0,155	0,038
242,0	Wilder Schiefer, Nagelkalk	28,53	0,44	9,55	3,94	1,25	23,16	0,24	1,65	0,144	0,051
270,6	Wilder Schiefer	33,70	0,53	11,20	5,02	1,83	16,53	0,32	2,06	0,199	0,048
323,0	Wilder Schiefer	26,59	0,40	8,69	4,49	1,30	21,42	0,28	1,49	0,245	0,043
363,9	Wilder Schiefer	29,05	0,45	9,47	5,03	1,44	18,41	0,26	1,66	0,295	0,042
400,0	Wilder Schiefer, Inoceramenbank	26,71	0,41	8,31	3,88	1,54	25,35	0,27	1,59	0,901	0,044
418,6	Oberer Schiefer	26,57	0,40	8,18	3,52	1,66	25,11	0,30	1,59	0,871	0,045
470,0	Oberer Schiefer, Obere Bank	22,26	0,34	6,65	3,36	1,12	27,36	0,20	1,20	0,202	0,042
513,5	Oberer Schiefer	23,92	0,38	7,24	4,25	1,24	25,54	0,25	1,37	0,262	0,043
553,2	Oberer Schiefer	20,02	0,32	5,92	3,78	1,06	28,50	0,25	1,11	0,205	0,047
595,2	Oberer Stein	22,37	0,34	6,66	2,39	1,73	31,22	0,28	1,33	0,068	0,061
609,5	Oberer Stein	3,51	0,05	0,82	4,25	0,77	48,77	0,13	0,14	0,017	0,099
650,3	mittlerer Schiefer	27,53	0,43	8,37	4,17	2,23	22,62	0,24	1,72	0,079	0,054
679,5	Steinplatte	4,36	0,06	0,96	4,16	0,72	48,17	0,14	0,16	0,014	0,125
731,2	mittlerer Schiefer	23,82	0,36	6,88	4,35	1,67	25,34	0,26	1,34	0,140	0,057
753,0	mittlerer Schiefer	38,60	0,63	11,55	5,86	2,36	11,70	0,31	2,43	0,212	0,048
800,1	Unterer Stein	1,66	0,02	0,28	1,09	0,72	52,39	0,06		0,031	0,132
848,9	Unterer Schiefer	35,82	0,60	10,51	7,35	1,90	12,23	0,38	2,12	0,306	0,045
877,0	Unterer Schiefer	34,26	0,58	9,90	5,42	1,62	13,53	0,39	1,86	0,237	0,045
930,8	Unterer Schiefer	30,71	0,52	9,05	6,12	1,57	14,45	0,31	1,71	0,127	0,044
957,0	Unterer Schiefer	25,30	0,40	8,27	4,53	1,38	21,64	0,25	1,60	0,252	0,066
981,0	Obere Aschgraue Mergel	40,46	0,65	12,99	4,89	2,34	15,63	0,40	2,60	0,557	0,162
1023,8	Obere Aschgraue Mergel	37,18	0,63	12,37	4,37	2,46	18,21	0,47	2,52	0,137	0,132
1063,0	Seegrasschiefer	34,80	0,54	11,52	7,74	1,92	15,32	0,40	2,30	0,175	0,088
1093,6	Untere Aschgraue Mergel	40,13	0,66	13,95	4,02	2,57	15,22	0,50	2,83	0,118	0,103
1118,7	Tafelfleins	26,93	0,40	8,27	5,93	1,58	19,88	0,37	1,63	0,219	0,088
1132,3	Blaugraue Mergel	32,25	0,53	11,04	3,60	3,12	21,53	0,41	2,22	0,052	0,168
1184,6	Spinatum Bank	15,79	0,24	5,02	1,79	2,63	37,80	0,28	0,97	0,024	0,252

Kupferschiefer Kern Niederwald 1

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
642,850	Ca 1		20,31	0,29	6,37	4,38	12,64	20,29	0,41	1,53	0,055	0,207
642,870	Ca 1		21,32	0,31	6,97	4,13	12,27	19,62	0,36	1,68	0,056	0,199
642,890	Ca 1		20,74	0,30	6,81	4,31	12,56	19,94	0,38	1,65	0,055	0,202
642,910	Ca 1		21,76	0,31	7,01	4,16	12,15	19,44	0,38	1,70	0,055	0,196
642,928	Ca 1		22,34	0,32	7,13	4,04	12,19	19,31	0,40	1,74	0,054	0,193
642,943	Ca 1		23,82	0,35	7,83	3,98	11,56	18,44	0,43	1,89	0,067	0,183
642,960	Ca 1		29,22	0,44	9,70	3,86	10,27	15,85	0,53	2,36	0,075	0,159
642,980	Ca 1		27,18	0,39	8,22	4,00	10,92	17,27	0,46	1,99	0,062	0,171
643,000	Ca 1		31,28	0,46	10,12	3,65	9,87	15,14	0,57	2,46	0,068	0,150
643,020	Ca 1		27,56	0,39	8,39	3,92	10,97	17,16	0,48	2,03	0,063	0,171
643,040	Ca 1		32,29	0,50	10,76	3,69	9,49	14,53	0,56	2,57	0,072	0,142
643,060	Ca 1		26,33	0,37	7,94	4,16	11,18	17,60	0,46	1,91	0,060	0,179
643,080	Ca 1		26,93	0,39	8,17	4,15	10,99	17,32	0,46	1,97	0,069	0,178
643,098	Ca 1		28,68	0,41	8,61	4,07	10,60	16,54	0,51	2,11	0,077	0,172
643,113	Ca 1		31,38	0,45	9,40	3,89	9,78	15,21	0,53	2,28	0,072	0,154
643,128	Ca 1		35,27	0,51	10,61	3,80	8,85	13,48	0,64	2,58	0,077	0,140
643,140	Ca 1		30,17	0,43	9,05	3,99	10,15	15,87	0,51	2,20	0,075	0,163
643,153	Ca 1		40,20	0,63	13,75	3,72	7,22	10,26	0,67	3,31	0,080	0,110
643,168	T1 III		46,73	0,77	16,34	3,75	5,36	6,93	0,72	3,87	0,090	0,081
643,180	T1 III		48,73	0,78	16,31	3,71	4,99	6,33	0,76	3,90	0,094	0,075
643,193	T1 III		38,84	0,58	12,47	4,29	7,67	11,22	0,72	3,03	0,076	0,121
643,208	T1 III		35,06	0,52	11,02	7,01	7,89	11,98	0,61	2,68	0,069	0,127
643,225	T1 III		31,91	0,46	9,70	9,53	8,12	12,39	0,57	2,36	0,061	0,129
643,243	T1 III		34,52	0,56	12,17	7,87	7,32	10,80	0,61	2,93	0,067	0,112
643,260	T1 III		28,30	0,41	8,86	8,11	9,41	14,63	0,56	2,15	0,056	0,153
643,278	T1 III		34,16	0,50	10,42	7,71	7,82	12,10	0,62	2,56	0,069	0,137
643,308	T1 III		30,89	0,45	9,63	4,92	9,43	14,72	0,57	2,32	0,060	0,156
643,323	T1 III		32,15	0,46	9,63	5,27	9,05	14,05	0,54	2,34	0,062	0,157
643,340	T1 III		34,29	0,48	9,57	5,34	8,73	13,56	0,57	2,30	0,063	0,153

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
643,373	T1 III		38,27	0,61	13,10	4,05	7,91	11,59	0,62	3,05	0,077	0,117
643,388	T1 III		38,65	0,57	12,42	4,99	7,35	10,91	0,68	3,02	0,071	0,117
643,413	T1 III		37,59	0,55	11,60	4,93	7,68	11,51	0,67	2,81	0,070	0,127
643,428	T1 III		34,84	0,51	10,88	5,06	8,31	12,85	0,60	2,64	0,066	0,137
643,446	T1 III		33,85	0,47	9,51	5,49	8,71	13,48	0,57	2,29	0,061	0,149
643,461	T1 III		32,10	0,44	9,00	4,73	9,53	14,79	0,54	2,15	0,056	0,159
643,467	T1 III		29,85	0,50	10,97	4,89	9,44	14,57	0,55	2,63	0,060	0,149
643,477	T1 III		32,02	0,45	9,55	5,92	9,01	14,13	0,58	2,31	0,061	0,155
643,498	T1 III		38,83	0,57	12,47	4,57	7,44	11,11	0,69	3,01	0,067	0,114
643,512	T1 III		39,94	0,65	14,52	4,36	6,82	9,70	0,64	3,46	0,079	0,101
643,550	T1 III		46,37	0,71	15,83	4,85	5,06	6,56	0,78	3,82	0,082	0,078
643,565	T1 III		47,06	0,72	16,16	4,98	4,89	6,27	0,75	3,92	0,082	0,074
643,580	T1 III		48,69	0,75	16,99	5,07	4,36	5,24	0,79	4,11	0,085	0,067
643,593	T1 II		50,38	0,80	18,02	5,81	3,43	3,42	0,83	4,33	0,092	0,054
643,598	T1 II		47,56	0,78	16,91	5,34	4,66	5,67	0,75	4,03	0,095	0,074
643,609	T1 II		48,80	0,77	17,33	5,86	4,00	4,60	0,81	4,19	0,089	0,065
643,624	T1 II		46,72	0,73	16,71	5,17	4,62	5,93	0,76	4,03	0,084	0,074
643,638	T1 II		46,93	0,73	17,01	5,31	4,42	5,46	0,77	4,13	0,085	0,072
643,650	T1 II		46,47	0,74	15,60	5,02	5,26	6,92	0,73	3,71	0,099	0,084
643,665	T1 II		44,44	0,70	16,06	5,85	4,98	6,80	0,72	3,90	0,081	0,086
643,683	T1 II		33,80	0,53	12,64	5,26	7,99	12,60	0,58	3,01	0,065	0,133
643,698	T1 II		31,98	0,50	11,85	5,27	8,39	13,57	0,55	2,87	0,062	0,142
643,718	T1 II		36,15	0,57	13,76	5,52	6,93	10,73	0,61	3,33	0,068	0,128
643,738	T1 II		36,50	0,57	13,92	5,88	6,73	10,55	0,64	3,36	0,070	0,138
643,763	T1 II		37,55	0,58	14,28	6,59	6,20	9,46	0,68	3,50	0,072	0,139
643,788	T1 II		43,67	0,67	16,26	5,96	4,53	6,20	0,77	4,00	0,085	0,105
643,805	T1 II		38,79	0,59	14,42	6,12	5,85	8,77	0,72	3,55	0,076	0,145
643,825	T1 II		32,57	0,50	12,11	6,41	7,71	12,37	0,60	2,93	0,068	0,175
643,843	T1 II		35,86	0,54	12,93	5,74	7,06	10,85	0,64	3,15	0,073	0,152
643,858	T1 II		33,44	0,52	12,37	5,96	7,50	12,01	0,62	3,04	0,067	0,166
643,873	T1 II		20,51	0,31	7,34	7,50	10,52	18,60	0,40	1,78	0,037	0,282
643,883	T1 II		23,58	0,37	8,76	6,61	10,51	17,64	0,44	2,12	0,051	0,230
643,895	T1 II		19,68	0,30	7,08	7,73	10,71	18,95	0,40	1,71	0,037	0,282

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
643,915	T1 II		18,25	0,27	6,69	7,96	11,19	19,47	0,35	1,61	0,035	0,277
643,940	T1 II		23,41	0,36	8,63	6,74	10,20	17,19	0,43	2,08	0,046	0,230
643,969	T1 II		29,73	0,46	10,65	5,97	8,55	14,02	0,55	2,57	0,061	0,176
643,987	T1 II		21,06	0,32	7,56	7,43	10,71	18,49	0,40	1,80	0,040	0,248
644,009	T1 II		21,14	0,32	7,58	7,03	10,72	18,54	0,39	1,82	0,038	0,236
644,025	T1 II		27,20	0,44	9,47	6,00	9,78	16,15	0,49	2,25	0,051	0,181
644,033	T1 II		34,62	0,54	12,43	6,42	7,46	11,53	0,63	2,97	0,063	0,130
644,038	T1 II		31,40	0,52	11,69	7,24	8,21	13,11	0,57	2,79	0,068	0,148
644,055	T1 II		31,80	0,54	10,79	5,61	8,79	14,23	0,53	2,55	0,060	0,162
644,080	T1 II		25,29	0,39	9,16	7,03	9,68	16,15	0,48	2,20	0,046	0,182
644,100	T1 II		22,59	0,35	7,94	6,62	10,72	17,97	0,42	1,90	0,042	0,207
644,120	T1 II		27,74	0,44	10,12	5,88	9,49	15,22	0,53	2,41	0,053	0,172
644,139	T1 II		25,87	0,41	9,55	5,84	9,86	16,28	0,44	2,29	0,048	0,182
644,156	T1 II		23,31	0,36	8,58	6,07	10,58	17,65	0,42	2,05	0,041	0,199
644,167	T1 II		28,56	0,46	10,31	6,58	9,39	14,81	0,49	2,46	0,058	0,163
644,185	T1 II		29,19	0,46	10,64	5,41	9,04	14,59	0,57	2,57	0,052	0,165
644,209	T1 II		31,28	0,49	11,55	5,14	8,65	13,60	0,55	2,78	0,058	0,149
644,219	T1 II		31,65	0,51	11,94	5,25	8,45	13,26	0,61	2,88	0,064	0,143
644,225	T1 II		34,50	0,54	12,53	5,32	8,00	12,27	0,65	3,02	0,067	0,137
644,240	T1 II		36,39	0,57	13,08	5,33	7,30	11,02	0,64	3,15	0,065	0,129
644,253	T1 II		27,81	0,44	10,05	5,94	9,55	15,31	0,46	2,39	0,049	0,175
644,261	T1 II		27,65	0,47	10,01	4,95	10,12	16,11	0,43	2,37	0,054	0,178
644,270	T1 II		26,76	0,41	9,49	5,81	9,97	16,02	0,50	2,27	0,044	0,185
644,277	T1 II		27,50	0,48	10,11	4,89	9,93	15,96	0,43	2,39	0,055	0,179
644,289	T1 II		25,16	0,39	9,05	5,76	10,18	16,75	0,43	2,17	0,044	0,197
644,307	T1 II		25,32	0,39	9,07	5,68	10,34	16,89	0,44	2,15	0,044	0,195
644,328	T1 II		24,85	0,38	8,71	5,79	10,44	16,99	0,45	2,09	0,041	0,198
644,353	T1 II		28,22	0,44	10,21	5,46	9,42	15,21	0,49	2,42	0,049	0,174
644,378	T1 II		31,20	0,49	11,52	5,16	8,86	13,68	0,56	2,77	0,057	0,150
644,402	T1 II		30,38	0,49	10,90	5,79	9,05	14,32	0,53	2,61	0,064	0,161
644,426	T1 II		22,89	0,35	8,33	5,91	10,73	17,93	0,43	2,02	0,047	0,203
644,449	T1 II		31,69	0,50	11,60	5,35	8,45	13,18	0,59	2,83	0,061	0,148
644,470	T1 II		32,05	0,50	11,57	5,39	8,43	13,32	0,58	2,80	0,056	0,157

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
644,490	T1 II		27,29	0,42	9,85	5,61	9,71	15,78	0,48	2,37	0,049	0,186
644,513	T1 II		27,68	0,43	9,96	5,56	9,58	15,46	0,50	2,40	0,049	0,187
644,535	T1 II		29,16	0,45	10,25	5,53	9,24	14,77	0,54	2,47	0,051	0,181
644,553	T1 II		29,37	0,45	10,37	5,61	9,10	14,62	0,51	2,50	0,052	0,176
644,568	T1 II		30,24	0,47	10,81	5,53	8,89	14,09	0,53	2,59	0,054	0,169
644,585	T1 II		31,17	0,48	11,33	5,52	8,67	13,55	0,57	2,73	0,055	0,163
644,608	T1 II		39,53	0,63	14,51	5,58	6,22	8,81	0,69	3,49	0,074	0,109
644,633	T1 II		40,07	0,64	15,06	5,55	5,96	8,42	0,73	3,66	0,075	0,105
644,653	T1 II		35,22	0,56	13,26	5,57	7,24	10,95	0,62	3,20	0,065	0,137
644,669	T1 II		32,65	0,52	12,21	5,50	7,96	12,36	0,61	2,95	0,059	0,155
644,686	T1 II		31,91	0,50	11,88	5,78	8,28	12,82	0,60	2,86	0,058	0,160
644,705	T1 II		31,26	0,49	11,61	5,73	8,36	12,99	0,58	2,81	0,058	0,163
644,725	T1 II		30,08	0,47	11,36	5,71	8,56	13,55	0,53	2,73	0,055	0,168
644,743	T1 II		30,17	0,48	11,62	5,57	8,51	13,41	0,57	2,80	0,055	0,167
644,758	T1 I		33,19	0,52	12,80	5,67	7,48	11,62	0,59	3,06	0,060	0,147
644,780	T1 I		42,98	0,67	16,05	6,16	4,36	5,39	0,83	3,85	0,078	0,080
644,810	T1 I		43,37	0,67	16,04	6,66	3,79	4,68	0,67	3,86	0,075	0,082
644,833	T1 I		32,48	0,51	12,34	11,89	4,53	6,70	0,57	2,90	0,053	0,095
644,848	T1 I		37,00	0,56	13,48	5,72	5,42	7,72	0,65	3,25	0,067	0,107
644,878	T1 I		31,78	0,49	11,49	5,42	7,76	12,31	0,61	2,76	0,060	0,160
644,898	T1 I		26,99	0,41	9,77	5,86	9,08	14,80	0,53	2,33	0,050	0,194
644,920	T1 I		29,21	0,45	10,57	5,59	8,48	13,38	0,64	2,54	0,057	0,177
644,940	T1 I		31,97	0,49	11,56	5,36	7,57	11,76	0,66	2,80	0,064	0,158
644,965	T1 I		28,37	0,45	10,38	5,47	8,66	13,77	0,61	2,50	0,057	0,181
644,995	T1 I		26,00	0,41	9,42	5,63	9,20	15,03	0,62	2,28	0,055	0,197
645,018	T1 I		24,85	0,39	9,27	6,17	9,37	15,11	0,57	2,24	0,054	0,206
645,033	T1 I		23,40	0,37	8,96	6,08	9,63	15,51	0,48	2,14	0,049	0,210
645,048	T1 I		26,34	0,42	9,90	5,97	9,09	14,26	0,51	2,38	0,054	0,194
645,065	T1 I		28,62	0,45	10,41	5,86	8,40	13,41	0,56	2,48	0,061	0,179
645,085	T1 I		30,68	0,49	11,45	5,50	7,91	12,20	0,64	2,73	0,066	0,164
645,180	T1 I		36,89	0,60	14,08	5,22	5,70	8,10	0,72	3,39	0,077	0,116
645,200	T1 I		36,28	0,59	14,12	5,22	6,07	8,63	0,75	3,39	0,073	0,121
645,218	T1 I		34,70	0,57	13,74	5,38	6,39	9,28	0,69	3,33	0,071	0,129

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
645,233	T1 I		34,66	0,56	13,70	5,77	6,40	9,26	0,67	3,26	0,066	0,130
645,255	T1 I		34,73	0,56	13,90	5,70	6,24	9,05	0,66	3,35	0,067	0,126
645,280	T1 I		34,70	0,56	13,91	5,37	6,11	8,70	0,79	3,34	0,068	0,120
645,298	T1 I		35,66	0,58	14,40	5,64	5,64	7,88	0,65	3,51	0,074	0,115
645,313	T1 I		35,15	0,57	14,21	5,48	5,98	8,47	0,66	3,44	0,071	0,120
645,328	T1 I		35,74	0,58	14,25	5,43	5,67	7,88	0,68	3,46	0,082	0,114
645,343	T1 I		33,48	0,54	13,10	4,74	7,19	10,76	0,64	3,13	0,067	0,143
645,358	T1 I		34,37	0,55	13,22	5,03	6,94	10,35	0,64	3,17	0,070	0,137
645,408	T1 I		36,59	0,59	13,91	5,03	6,43	9,22	0,71	3,33	0,075	0,125
645,435	T1 I		40,85	0,68	14,52	5,12	5,04	7,00	0,76	3,51	0,091	0,101
645,455	T1 I		38,87	0,65	12,99	5,41	5,95	8,73	0,84	3,12	0,099	0,129
645,475	S1		53,16	0,32	7,00	6,10	5,04	7,83	0,86	1,76	0,100	0,113
645,496	S1		50,30	0,31	6,84	8,14	4,82	7,60	0,97	1,71	0,065	0,109
645,516	S1		51,74	0,32	8,53	5,60	5,36	8,24	0,76	2,20	0,078	0,114
645,535	S1		50,53	0,31	8,95	4,76	5,68	8,70	0,75	2,32	0,108	0,116
645,555	S 1		47,26	0,28	8,19	4,79	6,66	10,49	0,63	2,10	0,101	0,137
645,575	S1		48,30	0,28	8,54	5,05	6,34	9,87	0,65	2,20	0,093	0,130
645,595	S1		59,20	0,33	9,83	5,11	3,98	5,66	0,71	2,58	0,090	0,078
645,615	S1		68,41	0,39	11,81	4,48	1,84	1,81	0,85	3,03	0,100	0,031
645,640	S1		68,04	0,36	10,84	4,87	1,86	1,94	0,88	2,72	0,101	0,036
645,665	S1		72,61	0,31	8,12	5,96	1,05	1,61	0,77	1,88	0,094	0,034
645,685	S 1		62,56	0,32	6,85	11,34	1,45	3,32	0,68	1,59	0,131	0,046
645,705	S1		55,10	0,29	6,14	9,24	4,11	6,93	0,67	1,31	0,103	0,105
645,725	S1		55,26	0,37	7,83	8,36	3,18	6,99	0,80	1,66	1,658	0,077
645,745	S 1		62,58	0,34	8,23	8,39	2,30	3,84	0,73	1,85	0,109	0,061
645,765	S1		63,51	0,59	8,18	13,04	0,56	0,76	1,11	1,72	0,112	0,013
645,785	S1		55,62	0,52	6,44	20,17	0,42	0,70	0,97	1,26	0,100	0,011
645,813	S1		71,62	0,43	9,15	5,12	0,91	2,08	0,93	1,99	0,109	0,022
645,841	S1		77,38	0,31	7,99	1,60	1,09	2,48	0,75	1,84	0,072	0,025
645,864	S1		75,18	0,26	6,45	1,09	0,59	4,14	0,70	1,42	0,139	0,010
645,890	S1		73,55	0,29	7,28	2,26	1,69	3,81	0,78	1,66	0,068	0,045

Datenanhang – Hauptkomponenten

Kupferschiefer Kern Lohberg

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
15,667	Ca 1		37,50	0,48	7,59	6,90	7,57	11,83	0,36	1,56	0,058	0,128
15,660	Ca 1		30,18	0,39	6,12	7,98	8,53	13,54	0,31	1,26	0,046	0,143
15,645	Ca 1		27,09	0,35	5,53	6,10	9,97	15,97	0,31	1,14	0,042	0,180
15,630	Ca 1		21,53	0,29	5,19	8,62	11,10	18,33	0,27	1,06	0,051	0,256
15,615	Ca 1		15,94	0,22	4,10	5,05	9,61	26,39	0,23	0,82	0,051	0,229
15,597	Ca 1		12,67	0,18	3,28	4,18	14,64	23,10	0,21	0,64	0,045	0,184
15,580	Ca 1		13,67	0,19	3,54	3,87	14,71	23,12	0,21	0,70	0,052	0,184
15,565	Ca 1		15,00	0,21	3,96	4,39	13,88	22,09	0,24	0,80	0,055	0,177
15,550	Ca 1		16,53	0,24	4,37	3,44	13,93	21,46	0,25	0,89	0,056	0,174
15,535	Ca 1		17,38	0,25	4,43	4,66	12,71	19,83	0,28	0,90	0,051	0,166
15,520	Ca 1		18,70	0,26	4,88	3,52	13,67	21,20	0,26	1,00	0,054	0,180
15,505	Ca 1		18,46	0,26	4,77	3,59	13,53	20,99	0,25	0,97	0,051	0,173
15,490	Ca 1		19,33	0,27	4,95	3,38	13,53	20,65	0,26	1,01	0,053	0,168
15,475	Ca 1		19,58	0,29	5,00	3,59	12,72	19,56	0,29	1,02	0,052	0,158
15,460	Ca 1		20,31	0,30	4,78	3,05	11,62	19,24	0,31	0,97	0,049	0,151
15,445	Ca 1		18,85	0,28	4,71	3,11	12,95	19,84	0,29	0,96	0,047	0,159
15,427	Ca 1		17,38	0,25	4,43	2,98	13,48	20,77	0,27	0,90	0,048	0,169
15,410	Ca 1		22,47	0,32	5,95	3,43	12,52	19,03	0,31	1,23	0,063	0,169
15,395	Ca 1		23,09	0,34	6,33	3,01	12,31	18,50	0,31	1,32	0,059	0,153
15,380	Ca 1		22,05	0,33	6,76	2,55	13,21	19,57	0,31	1,41	0,050	0,140
15,362	Ca 1		28,35	0,42	7,89	3,56	10,84	16,24	0,36	1,66	0,065	0,149
15,342	Ca 1		28,67	0,41	7,80	3,44	11,00	16,82	0,35	1,62	0,063	0,154
15,321	Ca 1		29,79	0,43	8,22	3,78	10,53	15,92	0,36	1,72	0,070	0,156
15,305	Ca 1		33,67	0,49	9,14	3,91	9,44	14,24	0,39	1,91	0,076	0,150
15,285	Ca 1		30,16	0,44	8,57	3,82	10,46	15,83	0,44	1,79	0,068	0,162
15,268	Ca 1		36,34	0,50	9,18	3,97	8,50	12,91	0,56	1,89	0,074	0,139
15,250	Ca 1		36,61	0,51	9,37	3,85	8,98	13,59	0,51	1,97	0,081	0,143
15,230	Ca 1		34,96	0,47	8,62	3,88	9,42	14,58	0,58	1,80	0,077	0,152
15,210	Ca 1		39,62	0,57	11,22	4,80	7,67	11,41	0,61	2,35	0,084	0,136
15,190	Ca 1		39,49	0,57	11,04	4,67	7,34	11,02	0,50	2,35	0,082	0,129
15,163	T1 III		41,93	0,61	11,71	5,07	5,96	9,02	0,48	2,47	0,077	0,119

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
15,142	T1 III		55,74	0,84	16,83	5,82	2,35	2,03	0,75	3,62	0,096	0,043
15,131	T1 III		55,58	0,84	17,75	5,63	2,21	1,68	0,83	3,81	0,093	0,041
15,123	T1 III		22,24	0,34	7,45	4,85	10,96	18,50	0,52	1,60	0,048	0,243
15,114	T1 III		51,79	0,79	18,66	4,83	2,88	2,74	0,94	3,93	0,095	0,054
15,101	T1 III		50,88	0,79	18,42	5,34	3,06	3,15	0,92	3,84	0,087	0,058
15,090	T1 III		14,85	0,21	4,97	3,10	14,46	22,89	0,37	1,02	0,036	0,230
15,079	T1 III		51,87	0,79	18,14	4,70	2,81	2,32	0,97	3,99	0,106	0,048
15,068	T1 III		49,18	0,76	17,07	4,74	3,50	3,77	0,91	3,77	0,100	0,065
15,060	T1 III		42,04	0,63	14,86	5,06	5,29	7,55	0,84	3,23	0,083	0,111
15,049	T1 III		45,05	0,70	15,90	5,01	4,09	5,26	1,02	3,50	0,098	0,091
15,035	T1 III		16,53	0,24	5,47	3,38	13,51	21,96	0,40	1,16	0,037	0,220
15,035	T1 III		16,53	0,24	5,47	3,38	13,51	21,96	0,40	1,16	0,037	0,220
15,013	T1 III		20,75	0,30	7,15	4,29	11,92	19,36	0,36	1,49	0,044	0,237
14,992	T1 III		29,35	0,43	9,68	4,47	9,23	14,43	0,57	2,15	0,068	0,189
14,969	T1 III		30,70	0,46	10,59	5,08	8,24	13,28	0,61	2,33	0,075	0,194
14,952	T1 III		11,92	0,17	3,99	3,21	14,96	24,83	0,32	0,82	0,029	0,246
14,932	T1 III		20,44	0,31	6,42	4,63	10,83	19,80	0,57	1,40	0,049	0,239
14,908	T1 III		10,57	0,15	3,53	3,09	15,54	25,29	0,26	0,71	0,030	0,270
14,887	T1 III		13,68	0,20	4,51	3,03	14,73	23,59	0,32	0,94	0,034	0,238
14,870	T1 III		15,84	0,24	5,41	3,69	13,29	21,59	0,32	1,11	0,034	0,217
14,850	T1 III		15,15	0,22	5,00	3,74	13,68	23,08	0,30	1,02	0,033	0,234
14,840	T1 III		15,88	0,23	5,16	3,88	13,84	22,29	0,32	1,08	0,034	0,239
14,830	T1 III		14,99	0,22	5,00	3,40	14,36	22,69	0,28	1,04	0,033	0,222
14,823	T1 III		20,81	0,33	7,04	3,78	12,97	19,65	0,34	1,46	0,043	0,172
14,817	T1 III		17,99	0,26	5,76	3,48	13,48	21,09	0,30	1,21	0,039	0,204
14,809	T1 III		17,96	0,26	5,85	3,54	13,46	20,97	0,31	1,23	0,039	0,205
14,799	T1 II		21,27	0,35	7,57	3,86	12,83	19,41	0,33	1,53	0,041	0,173
14,787	T1 II		19,03	0,28	6,26	3,76	13,14	20,65	0,34	1,31	0,039	0,202
14,774	T1 II		17,82	0,26	5,78	3,42	13,21	21,23	0,30	1,19	0,036	0,195
14,753	T1 II		17,64	0,26	5,82	3,59	13,09	21,79	0,31	1,20	0,034	0,202
14,732	T1 II		18,61	0,27	6,10	3,92	12,20	21,63	0,35	1,28	0,035	0,215
14,711	T1 II		15,20	0,22	5,04	3,52	13,74	23,18	0,36	1,04	0,028	0,221
14,691	T1 II		15,71	0,23	5,36	3,74	13,53	22,89	0,30	1,11	0,031	0,225

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
14,671	T1 II		15,25	0,22	5,10	3,48	14,01	22,92	0,35	1,07	0,031	0,219
14,651	T1 II		18,80	0,27	6,19	3,80	12,58	21,18	0,34	1,31	0,034	0,214
14,630	T1 II		19,60	0,29	6,47	4,01	11,83	20,83	0,40	1,36	0,034	0,221
14,608	T1 II		18,35	0,27	5,92	3,66	12,53	22,00	0,30	1,22	0,032	0,209
14,568	T1 II		19,06	0,28	6,06	3,63	12,48	21,53	0,33	1,25	0,033	0,203
14,548	T1 II		17,51	0,25	5,59	3,30	13,26	22,32	0,39	1,16	0,031	0,206
14,528	T1 II		16,30	0,24	5,27	3,47	13,39	22,89	0,37	1,09	0,032	0,223
14,508	T1 II		17,45	0,25	5,54	3,46	12,68	22,54	0,39	1,15	0,031	0,219
14,487	T1 II		23,52	0,35	7,60	4,03	11,19	18,91	0,41	1,60	0,041	0,205
14,468	T1 II		20,77	0,30	6,78	3,74	12,43	19,97	0,44	1,43	0,036	0,196
14,450	T1 II		27,25	0,40	8,90	4,44	10,12	16,56	0,43	1,85	0,046	0,193
14,428	T1 II		30,14	0,44	9,52	4,72	9,31	15,37	0,49	2,01	0,051	0,192
14,411	T1 II		30,31	0,45	9,77	4,75	9,05	14,88	0,49	2,06	0,050	0,186
14,394	T1 II		28,68	0,42	9,20	4,60	9,91	15,89	0,49	1,94	0,048	0,182
14,374	T1 II		33,57	0,50	11,41	5,49	7,86	12,72	0,55	2,41	0,057	0,185
14,355	T1 II		42,22	0,66	14,75	6,48	4,62	7,32	0,85	3,19	0,076	0,128
14,340	T1 II		43,54	0,68	14,86	6,38	4,11	6,45	1,03	3,19	0,080	0,112
14,322	T1 II		31,96	0,48	10,96	5,37	8,05	12,87	0,81	2,34	0,055	0,174
14,302	T1 II		29,78	0,45	10,49	5,26	8,33	13,41	0,81	2,21	0,052	0,174
14,282	T1 II		29,11	0,44	10,42	5,07	8,80	13,91	0,79	2,20	0,052	0,160
14,263	T1 II		36,91	0,56	12,41	5,47	6,14	9,21	0,93	2,70	0,072	0,123
14,243	T1 II		30,69	0,46	10,32	4,94	7,93	12,60	0,82	2,17	0,060	0,161
14,223	T1 II		18,84	0,27	6,14	4,21	11,02	20,51	0,56	1,24	0,033	0,227
14,202	T1 II		18,16	0,27	6,67	4,20	11,37	21,41	0,58	1,24	0,029	0,237
14,178	T1 II		27,35	0,41	8,97	4,58	9,43	14,86	0,72	1,91	0,050	0,169
14,153	T1 II		29,28	0,44	9,72	4,65	8,63	13,49	0,89	2,04	0,054	0,153
14,130	T1 II		26,45	0,39	8,39	4,72	9,52	15,43	0,55	1,74	0,055	0,190
14,110	T1 II		23,02	0,34	7,42	5,02	10,11	17,78	0,56	1,54	0,047	0,229
14,090	T1 II		22,94	0,33	7,16	4,98	10,04	17,67	0,53	1,45	0,050	0,214
14,070	T1 II		25,70	0,38	8,34	4,87	9,46	15,75	0,65	1,72	0,066	0,205
14,050	T1 II		24,99	0,37	8,12	4,89	9,76	15,90	0,66	1,70	0,050	0,208
14,025	T1 II		21,81	0,33	6,97	4,45	10,87	18,00	0,70	1,47	0,044	0,223
14,005	T1 II		16,09	0,23	4,95	4,72	10,98	23,22	0,54	1,00	0,037	0,283

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
13,985	T1 II		16,09	0,24	5,20	4,45	11,71	22,43	0,58	1,07	0,035	0,286
13,965	T1 I		13,28	0,19	4,14	4,50	12,01	24,13	0,40	0,83	0,037	0,286
13,945	T1 I		14,34	0,21	4,52	4,35	12,36	23,21	0,50	0,93	0,036	0,281
13,923	T1 I		15,37	0,23	5,04	4,51	11,93	22,32	0,47	1,03	0,041	0,274
13,903	T1 I		19,83	0,30	6,64	4,62	11,11	18,64	0,56	1,37	0,054	0,242
13,881	T1 I		27,19	0,41	8,92	5,06	9,23	14,53	0,68	1,88	0,059	0,189
13,861	T1 I		24,50	0,38	8,19	5,07	9,52	15,76	0,69	1,74	0,058	0,209
13,840	T1 I		27,91	0,43	9,48	5,10	8,47	13,28	0,88	2,00	0,059	0,178
13,819	T1 I		28,95	0,45	9,83	5,20	7,72	12,28	0,87	2,11	0,066	0,175
13,802	T1 I		27,45	0,42	9,32	5,36	8,30	13,34	0,68	1,99	0,064	0,187
13,782	T1 I		28,66	0,44	9,54	5,18	7,83	12,47	0,78	2,04	0,066	0,171
13,762	T1 I		29,10	0,45	9,87	5,47	7,52	12,03	0,83	2,10	0,199	0,161
13,742	T1 I		32,04	0,49	10,86	5,16	7,24	11,22	0,76	2,29	0,066	0,149
13,722	T1 I		32,87	0,51	11,27	5,31	6,91	10,47	1,04	2,42	0,065	0,136
13,702	T1 I		33,02	0,51	11,81	5,36	6,70	10,07	0,81	2,53	0,066	0,130
13,682	T1 I		33,63	0,51	11,75	5,33	6,70	10,15	0,88	2,50	0,066	0,131
13,662	T1 I		33,15	0,51	11,57	5,12	7,07	10,66	0,75	2,47	0,065	0,138
13,643	T1 I		31,52	0,48	11,13	4,99	7,51	11,55	0,86	2,36	0,063	0,144
13,621	T1 I		30,42	0,46	10,69	5,04	7,65	11,83	0,66	2,26	0,065	0,150
13,585	T1 I		29,59	0,45	10,35	4,99	7,90	12,44	0,65	2,19	0,065	0,157
13,567	T1 I		31,25	0,47	10,80	4,94	7,46	11,71	0,73	2,29	0,065	0,152
13,545	T1 I		33,51	0,50	11,23	4,89	7,13	11,19	0,77	2,39	0,075	0,147
13,524	T1 I		34,09	0,52	11,52	4,87	6,95	10,85	0,80	2,45	0,070	0,146
13,513	T1 I		34,33	0,52	11,61	4,83	6,92	10,75	0,75	2,47	0,069	0,144
13,503	T1 I		35,03	0,53	11,77	5,09	6,89	10,53	0,81	2,47	0,068	0,142
13,493	T1 I		32,18	0,50	10,98	4,79	7,54	11,59	1,08	2,34	0,063	0,157
13,483	T1 I		34,84	0,54	11,75	4,92	7,04	10,77	0,80	2,48	0,070	0,146
13,471	T1 I		35,03	0,55	11,74	4,86	6,97	10,79	0,77	2,48	0,071	0,147
13,458	T1 I		36,42	0,57	11,69	4,87	6,74	10,24	0,65	2,41	0,076	0,142
13,450	T1 I		35,38	0,55	11,39	4,74	6,95	10,71	0,70	2,32	0,073	0,147
13,443	T1 I		35,25	0,56	11,26	4,99	7,19	11,26	0,71	2,33	0,074	0,156
13,433	T1 I		34,88	0,55	11,10	4,92	7,27	11,49	0,68	2,30	0,079	0,158
13,423	T1 I		34,45	0,54	11,05	4,88	7,82	12,07	0,51	2,23	0,073	0,167

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
13,414	T1 I		40,84	0,64	12,93	5,11	5,78	8,66	0,64	2,61	0,090	0,129
13,406	T1 I		37,59	0,59	11,79	4,89	6,88	10,51	0,61	2,42	0,081	0,148
13,398	T1 I		35,75	0,57	11,43	4,86	7,17	11,10	0,54	2,32	0,076	0,155
13,389	T1 I		39,17	0,61	12,42	5,07	6,30	9,49	0,64	2,53	0,093	0,144
13,379	T1 I		35,96	0,56	11,20	4,95	7,33	11,41	0,60	2,23	0,091	0,162
13,369	T1 I		32,27	0,49	9,80	4,69	8,60	13,66	0,59	1,96	0,086	0,185
13,357	T1 I		27,58	0,40	8,01	4,78	9,49	16,99	0,51	1,58	0,086	0,221
13,344	S1		32,30	0,15	2,48	10,29	8,26	16,88	0,28	0,50	0,202	0,203
13,326	S1		39,06	0,18	3,48	3,34	8,95	17,65	0,32	0,69	0,960	0,171
13,310	S1		48,05	0,33	5,15	5,13	6,82	11,91	0,52	1,01	0,134	0,148
13,288	S1		77,85	0,56	8,21	3,87	1,78	1,34	0,62	1,64	0,071	0,038
13,260	S1		14,73	0,13	1,83	2,79	13,89	21,92	0,31	0,38	0,021	0,207
13,245	S1		48,79	0,30	3,07	5,83	5,34	8,04	0,43	0,56	0,052	0,121
13,229	S1		44,42	0,19	2,97	7,04	6,56	10,18	0,33	0,53	0,069	0,117
13,211	S1		33,34	0,19	2,80	4,55	8,36	18,37	0,35	0,51	0,054	0,185
13,197	S1		50,95	0,35	5,00	2,11	3,11	6,71	0,67	0,90	0,135	0,069
13,153	S1		35,03	0,22	3,10	2,04	6,06	13,69	0,44	0,58	0,065	0,137
12,829	S1		61,22	0,20	3,77	1,63	2,57	13,73	0,42	0,75	0,045	0,060
12,249	S1		54,04	0,21	3,56	3,05	4,58	14,57	0,34	0,65	0,052	0,110
10,490	S1		66,45	0,25	4,59	3,77	2,10	9,47	0,48	0,82	0,058	0,055
10,400	S1		68,06	0,88	16,02	4,21	0,94	0,32	0,86	2,51	0,117	0,029
10,043	S1		69,46	0,78	14,65	5,00	0,79	0,35	0,98	2,21	0,118	0,018
9,535	S1		63,57	1,00	18,44	4,42	1,19	0,34	1,02	3,24	0,119	0,022
9,205	S1		38,33	0,62	11,66	23,95	3,48	4,93	0,80	2,14	0,299	0,181
7,473	S1		62,00	0,99	19,86	4,06	1,23	0,31	0,92	3,45	0,109	0,022
6,735	S 1		65,48	0,82	14,60	5,03	1,39	0,74	1,03	2,30	0,116	0,096

Kupferschiefer Kern Goslar Z1	
-------------------------------	--

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
6,120			29,42	0,49	8,76	9,08	5,64	17,04	0,55	1,94	0,073	0,203
6,140			30,10	0,48	8,86	3,58	5,49	21,69	0,46	1,95	0,086	0,287
6,140			29,96	0,48	8,87	3,59	5,46	21,60	0,53	1,95	0,085	0,287
6,365			31,96	0,50	8,78	3,82	5,88	19,70	0,74	1,82	0,067	0,220
6,385			37,66	0,57	9,92	4,60	4,50	16,06	0,82	2,02	0,076	0,159
6,395	T1		38,31	0,59	9,99	4,21	4,51	16,08	0,88	2,02	0,079	0,156
6,405	T1		39,62	0,59	10,15	4,23	4,18	15,59	0,83	2,05	0,082	0,151
6,415	T1		41,30	0,60	10,24	4,43	3,63	14,89	0,99	2,07	0,085	0,143
6,426	T1		42,14	0,62	10,62	3,95	3,58	14,48	0,92	2,13	0,086	0,135
6,439	T1		44,20	0,65	11,64	4,06	3,41	12,43	1,01	2,34	0,087	0,117
6,453	T1		25,11	0,39	6,66	3,84	1,92	28,05	0,61	1,38	0,068	0,311
6,465	T1		20,10	0,31	5,21	2,81	1,72	32,36	0,82	1,08	0,061	0,397
6,475	T1		21,32	0,33	5,57	2,44	1,85	32,70	0,50	1,13	0,060	0,397
6,485	T1		19,17	0,29	5,01	2,24	1,76	33,90	0,67	1,01	0,054	0,416
6,495	T1		20,61	0,31	5,42	2,36	1,82	32,76	0,53	1,11	0,058	0,386
6,515	T1		32,56	0,51	9,45	4,20	1,40	15,61	1,16	1,98	0,303	0,174
6,525	T1		14,97	0,24	4,14	2,13	1,14	34,01	0,74	0,85	0,163	0,455
6,535	T1		12,27	0,19	3,30	1,93	1,19	36,88	0,77	0,68	0,173	0,567
7,016			64,36	0,42	11,31	3,01	1,61	5,95	0,94	1,85	0,102	0,089
7,025			61,94	0,31	10,28	3,38	1,75	7,16	1,01	1,52	0,074	0,111
7,034			63,47	0,37	11,22	3,14	1,65	6,34	0,96	1,83	0,085	0,093
7,045			61,25	0,46	12,21	4,42	1,56	5,26	1,00	2,21	0,099	0,080
7,055			57,98	0,66	14,06	6,14	1,65	4,68	0,99	2,74	0,128	0,066
7,065			58,19	0,49	12,43	6,58	1,56	5,26	0,97	2,26	0,107	0,079
7,075			58,72	0,49	12,16	5,32	1,59	6,53	0,93	2,22	0,107	0,089
7,205			56,35	0,68	17,88	4,61	1,49	3,47	0,93	3,87	0,119	0,051
7,215			57,00	0,67	17,63	4,34	1,52	3,74	1,00	3,75	0,125	0,053
7,225			55,04	0,78	19,66	4,76	1,52	2,51	0,98	4,45	0,121	0,041
7,235			57,72	0,33	10,78	3,94	1,46	9,13	0,97	1,61	0,086	0,122

Datenanhang – Hauptkomponenten

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
7,245			58,29	0,16	6,20	3,04	1,19	13,55	0,92	0,64	0,047	0,157
7,255			59,85	0,18	6,19	3,03	1,13	12,76	0,92	0,62	0,051	0,149
7,405			56,86	0,69	16,14	4,35	1,54	4,37	1,04	3,34	0,134	0,063
7,415			58,78	0,59	13,94	4,10	1,62	5,41	1,03	2,68	0,121	0,080
7,425			58,48	0,50	12,00	4,47	1,64	6,29	1,02	2,04	0,101	0,098
7,435			57,17	0,63	14,21	4,92	1,65	5,41	1,00	2,76	0,125	0,081
7,445			56,31	0,69	15,26	4,69	1,58	4,98	0,99	3,07	0,132	0,069
7,455			57,82	0,61	13,53	5,35	1,59	5,49	0,99	2,53	0,119	0,081
7,465			57,92	0,63	13,95	4,78	1,46	5,05	1,01	2,70	0,121	0,074
7,475			57,40	0,63	14,45	4,80	1,57	5,37	0,98	2,79	0,123	0,076
7,499			54,54	0,73	17,92	4,75	1,55	3,98	0,95	3,83	0,132	0,060
7,514			56,15	0,81	18,13	4,53	1,49	3,40	0,96	3,84	0,138	0,047
7,700			67,38	0,39	6,21	3,83	1,96	6,22	0,70	0,73	0,080	0,127
7,722			77,58	0,36	6,34	2,16	1,05	3,00	0,66	0,76	0,076	0,065
7,741			75,22	0,32	8,41	2,18	1,03	2,61	0,95	1,26	0,136	0,059
7,758			68,84	0,31	8,07	3,18	1,72	5,00	0,94	1,12	0,217	0,100
7,778			73,45	0,46	11,38	1,91	0,90	1,68	1,18	1,95	0,142	0,039
7,798			73,46	0,50	12,63	1,68	0,86	1,22	1,24	2,26	0,158	0,028
7,817			71,00	0,38	12,08	2,15	1,20	2,33	1,13	2,17	0,165	0,047
7,834			65,17	0,39	11,77	3,06	1,82	4,33	1,02	2,20	0,158	0,083
7,849			64,10	0,49	12,56	3,12	1,78	4,15	1,08	2,50	0,215	0,076
7,865			68,46	0,35	9,27	3,46	1,64	4,51	1,05	1,42	0,138	0,101
7,885			75,40	0,26	5,16	2,57	1,27	4,76	0,52	0,59	0,113	0,074
7,905			71,36	0,47	10,59	2,32	1,16	3,03	1,12	1,67	0,219	0,055
7,925			71,53	0,42	10,04	2,41	1,23	3,39	1,07	1,55	0,258	0,060
7,945			68,82	0,41	10,22	2,89	1,51	4,17	1,02	1,66	0,203	0,078
7,965			62,51	0,44	10,85	3,76	2,07	5,66	0,99	2,16	0,229	0,107
7,988			70,06	0,33	7,34	3,17	1,73	5,17	0,63	1,21	0,170	0,096

Datenanhang – Hauptkomponenten

Pennsylvanische Zyklothemen

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
3,86	Heebner	WL5	45,18	0,62	12,80	5,02	2,12	6,85	0,76	2,81	3,370	0,028
4,14	Heebner	WL4	46,09	0,67	13,17	6,50	2,38	4,05	0,71	3,00	0,506	0,036
4,33	Heebner	WL3	42,45	0,59	12,59	4,76	2,32	3,30	0,60	2,87	0,778	0,028
4,50	Heebner	WL2	49,86	0,69	13,54	6,16	2,32	3,42	0,82	3,03	0,082	0,033
4,76	Heebner	WL1	42,56	0,57	13,01	4,54	2,23	2,54	0,57	2,91	0,043	0,025
7,10	Heebner	CL5	42,10	0,54	12,63	3,44	1,69	2,02	0,33	2,78	0,803	0,011
7,34	Heebner	CL4	51,80	0,75	14,26	4,66	1,45	0,46	0,55	3,34	0,037	0,012
7,57	Heebner	CL3	43,59	0,56	12,06	6,44	2,27	3,11	0,51	2,78	0,403	0,030
7,82	Heebner	CL2	49,35	0,67	13,21	6,42	2,28	3,75	0,70	2,96	0,062	0,036
8,06	Heebner	CL1	45,22	0,60	13,56	4,51	2,42	3,60	0,50	3,09	0,727	0,028
116,49	Eudora	WL13	56,35	0,90	17,71	5,83	2,42	2,11	1,08	3,57	0,240	0,038
116,59	Eudora	WL12	52,46	0,87	18,16	6,97	2,73	2,53	0,93	3,88	0,213	0,045
116,91	Eudora	WL11	51,08	0,80	18,78	6,93	2,79	1,46	0,87	4,09	0,191	0,044
117,11	Eudora	WL10	56,35	0,88	16,64	7,27	2,42	1,69	1,11	3,46	0,076	0,039
117,35	Eudora	WL9	45,64	0,74	16,17	6,83	2,63	1,99	0,76	3,52	0,280	0,036
117,48	Eudora	WL8	48,27	0,74	15,08	6,48	2,41	4,74	0,96	3,17	1,998	0,036
117,64	Eudora	WL7	47,55	0,74	16,92	6,36	2,50	1,87	0,82	3,86	0,277	0,030
117,82	Eudora	WL6	51,78	0,78	15,96	5,87	3,37	4,68	0,87	3,47	0,057	0,050
187,29	Lake Neosho	ED14	38,91	0,59	12,90	3,56	1,93	15,18	0,72	3,04	8,695	0,032
200,02	Anna	ED13	63,46	0,95	19,18	8,28	3,47	4,86	1,30	3,88	0,104	0,068
200,17	Anna	ED12	40,21	0,59	13,66	4,09	2,57	1,91	0,68	3,01	0,291	0,027
200,33	Anna	ED11	29,02	0,41	9,65	4,16	1,78	8,74	0,59	2,19	4,884	0,026
219,06	Exshello	ED3	66,26	0,60	13,05	4,07	1,98	1,57	0,80	3,23	0,064	0,022
219,42	Exshello	ED2	56,76	0,38	8,07	2,60	1,19	11,36	0,49	2,25	7,906	0,009
219,68	Exshello	ED1	54,39	0,42	8,22	3,61	1,09	4,58	0,57	2,06	2,923	0,013

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
14,55		JC45	25,19	0,33	6,08	2,28	1,69	31,87	0,08	2,55	0,090	0,037
14,20		JC44	26,75	0,37	7,34	2,75	2,07	29,10	0,18	3,04	0,085	0,031
13,75		JC43	43,07	0,63	13,05	5,92	2,03	12,63	0,12	5,50	0,077	0,022
13,15		JC42	48,34	0,67	16,51	3,96	2,12	8,02	0,11	6,59	0,097	0,017
12,75		JC41	43,07	0,63	13,22	4,27	2,03	13,18	0,12	5,48	0,139	0,022
12,50		JC40	40,74	0,57	12,18	4,76	1,93	15,44	0,12	5,23	0,113	0,024
11,85		JC39	50,79	0,69	15,74	5,03	1,96	6,57	0,12	6,49	0,103	0,017
11,35		JC38	34,10	0,33	8,38	3,60	1,79	22,19	0,11	4,17	0,216	0,039
11,00		JC37	72,67	0,45	10,55	1,90	0,90	0,14	0,11	5,30	0,024	0,001
9,65		JC35	67,85	0,43	10,17	3,32	1,22	2,00	0,15	4,95	0,064	0,009
9,45		JC34	67,48	0,41	9,74	3,75	1,53	2,44	0,15	4,59	0,037	0,011
8,95		JC33	72,31	0,44	10,74	1,89	1,16	0,16	0,11	4,77	0,026	0,001
8,65		JC32	70,68	0,27	6,11	3,10	0,76	4,40	0,09	3,11	0,037	0,010
8,40		JC31	80,46	0,26	6,03	1,66	0,45	0,36	0,10	3,17	0,028	0,001
8,15		JC30	77,82	0,33	7,43	1,71	0,54	0,22	0,08	4,10	0,029	0,001
7,95		JC29	75,23	0,37	8,22	1,84	0,64	0,36	0,12	4,56	0,038	0,001
7,65		JC28	82,78	0,21	5,10	1,00	0,38	0,44	0,08	2,66	0,018	0,001
7,35		JC27	77,65	0,30	6,99	1,73	0,63	0,29	0,06	3,51	0,037	0,002
7,20		JC26	78,97	0,26	6,33	2,17	0,52	0,20	0,08	3,27	0,041	0,003
7,05		JC25	76,19	0,24	6,34	1,59	0,43	1,89	0,03	4,19	0,033	0,006
6,90		JC24	82,30	0,20	5,42	1,60	0,46	0,22	0,06	2,83	0,024	0,002
6,35		JC22	75,60	0,23	5,47	3,50	0,83	2,30	0,08	2,72	0,042	0,007
6,10		JC18	77,68	0,24	5,24	2,77	0,71	0,84	0,12	2,41	0,112	0,005
5,63		JC17	63,90	0,08	1,99	1,64	0,44	14,34	0,06	0,91	0,029	0,051
5,53		JC16	77,04	0,37	8,76	1,01	0,84	0,23	0,14	4,00	0,007	0,001
5,18		JC15	75,47	0,31	7,82	2,17	0,70	0,50	0,14	3,79	0,013	0,003
4,83		JC14	73,43	0,36	8,36	3,29	0,87	0,60	0,16	3,86	0,078	0,009
4,58		JC13	46,85	0,25	5,20	4,25	6,64	11,33	0,22	2,56	0,065	0,047
4,53		JC12	43,21	0,50	4,94	10,73	1,97	12,22	0,78	3,28	3,399	0,032

Exshaw Formation Standort Shell Whiskey

Teufe [m]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
3687,80		XD3	41,84	0,36	7,88	5,08	2,24	15,62	0,45	2,85	0,218	0,025
3688,00		XD5+6	49,58	0,46	9,24	3,95	2,85	10,74	0,47	3,38	0,088	0,026
3688,35		XD7	34,31	0,29	5,75	2,89	1,92	25,09	0,58	1,74	0,170	0,035
3688,75		XD9	44,58	0,40	7,93	3,17	2,17	17,29	0,41	2,62	0,076	0,029
3689,10		XD10	58,33	0,50	10,35	3,66	2,55	6,05	0,35	3,64	0,084	0,022
3689,40		Xd11	54,81	0,50	10,30	3,81	2,45	8,35	0,38	3,49	0,157	0,024
3689,70		XD12	60,87	0,55	11,47	4,05	2,28	3,41	0,35	4,13	0,105	0,019
3690,40		XD14	60,64	0,61	12,52	4,45	2,00	3,07	0,32	4,30	0,085	0,014
3690,65		XD15	59,75	0,62	12,42	4,74	1,93	2,77	0,32	4,28	0,069	0,013
3690,85		XD16	58,73	0,64	12,47	5,65	1,97	2,63	0,31	4,29	0,063	0,015
3691,35		XD17	61,13	0,63	12,74	4,28	2,04	2,80	0,32	4,38	0,071	0,013
3691,60		XD18	61,21	0,65	12,86	4,60	1,97	2,60	0,33	4,41	0,083	0,013

Graptolithenschiefer aus Thüringen

S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
Mitteldevon	6529_826	62,34	0,80	15,56	5,78	1,83	0,93	0,70	3,30	0,507	0,034
Mitteldevon	6529_867	60,32	0,74	21,18	5,31	2,46	0,13	1,51	3,58	0,045	0,022
Mitteldevon	7515_428	56,53	0,88	22,37	5,45	2,02	0,16	1,08	3,50	0,075	0,015
Mitteldevon	7515_448	57,35	1,12	19,66	6,78	2,04	0,20	1,05	3,24	0,105	0,021
Mitteldevon	7515_468	63,25	0,60	15,56	5,86	1,95	1,25	0,80	2,29	0,889	0,032
Mitteldevon	6529_823	57,36	1,60	14,22	8,88	2,17	2,47	0,30	3,15	0,324	0,116
Mitteldevon	6529_849	61,27	0,72	18,60	5,16	1,77	0,39	1,20	3,12	0,073	0,026
Mitteldevon	6003_208- 210	57,90	0,68	14,90	7,60	1,60	0,60	0,50	2,90	0,540	0,014
Mitteldevon	7515_490	69,20	0,47	12,70	4,10	1,44	0,10	0,69	2,14	0,053	0,021
Unterdevon	6003_425	48,66	0,74	18,07	6,13	1,72	3,36	0,28	4,44	1,000	0,046
Unterdevon	6003_430	30,14	0,23	4,84	3,63	11,37	16,28	0,20	1,18	0,051	0,345
Unterdevon	6003_433	61,13	0,52	11,77	5,07	1,82	1,61	0,20	3,27	0,813	0,024

Datenanhang – Hauptkomponenten

S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
Unterdevon	6003_438_53	60,81	0,54	12,93	5,79	1,03	1,11	0,80	3,63	0,786	0,013
Unterdevon	6003_443	54,08	0,77	13,89	6,84	3,27	0,24	0,30	3,54	0,175	0,027
Unterdevon	6003_89_178	64,20	0,87	16,20	4,80	1,40	0,20	0,50	3,80	0,200	0,017
Unterdevon	6003_89_186	66,97	0,75	14,11	4,54	0,87	0,22	0,40	2,93	0,750	0,007
Unterdevon	6003_89_193	61,00	0,84	16,81	5,61	1,24	0,15	0,50	3,54	0,327	0,011
Unterdevon	6003_89_428	45,73	0,70	17,15	6,49	1,86	6,71	0,20	4,18	2,049	0,060
Unterdevon	6175_200	21,00	0,18	5,00	6,26	1,18	39,00	0,10	0,88	0,439	0,336
Unterdevon	6175_201	50,97	0,61	13,39	5,94	1,61	5,60	0,20	2,83	2,327	0,031
Unterdevon	6175_218	42,40	0,41	9,20	15,60	1,90	5,70	0,30	2,10	2,410	0,034
Unterdevon	6175_221	60,65	0,61	13,92	4,02	1,59	2,16	0,20	3,03	0,370	0,026
Unterdevon	6175_234	51,04	0,72	13,09	5,27	1,84	2,22	0,20	3,04	0,243	0,023
Unterdevon	6175_249	41,89	0,87	17,84	5,25	1,48	3,77	0,40	4,02	2,079	0,016
Unterdevon	6175_253	54,99	0,45	9,79	4,46	1,97	6,48	0,10	2,20	2,855	0,039
Unterdevon	6175_258	59,82	0,46	11,71	5,32	1,97	4,10	0,16	2,70	1,425	0,033
Unterdevon	6175_274	62,90	0,52	12,55	5,30	1,23	0,62	0,15	3,02	0,134	0,016
Unterdevon	6175_280	46,10	0,74	13,73	4,96	1,58	1,01	0,17	3,44	0,246	0,013
Unterdevon	6177_280	42,97	0,61	13,74	4,05	1,83	9,40	0,13	3,03	3,661	0,038
Unterdevon	6177_283	40,10	0,45	10,15	3,03	1,87	16,69	0,15	2,32	1,554	0,075
Unterdevon	6177_291	53,23	0,70	13,29	5,57	1,51	1,53	0,20	3,17	0,249	0,018
Unterdevon	6177_298	50,31	0,70	13,79	4,48	2,03	2,36	0,20	3,31	0,202	0,025
Unterdevon	6529_954	63,40	0,39	9,43	3,66	1,11	5,53	0,75	2,13	2,293	0,027
Unterdevon	7515_555[53] 1	48,04	0,65	13,44	6,95	1,96	4,42	0,24	3,51	1,781	0,045
Unterdevon	7515_560[53] 1	44,43	0,51	11,20	5,76	1,86	10,54	0,20	2,98	1,900	0,108
Unterdevon	7515_569	53,14	0,42	10,07	10,10	1,68	4,50	0,16	2,81	0,725	0,055
Unterdevon	7515a_488	53,85	0,68	18,00	8,65	1,96	0,14	1,00	2,90	0,061	0,028
Unterdevon	6529_952	58,73	0,42	9,49	6,91	1,36	4,30	0,80	2,10	0,463	0,050
Unterdevon	6003_473	60,00	0,61	15,50	4,90	2,10	0,15	0,70	4,00	0,080	0,021
Unterdevon	6175_261	60,00	0,55	14,40	5,50	1,40	0,70	0,20	2,90	0,045	0,025
Unterdevon	7515_562	43,70	0,41	9,20	5,00	1,40	12,60	0,16	2,50	1,500	0,115
Unterdevon	7515_567	54,40	0,51	11,90	4,40	2,40	4,10	0,20	3,40	2,000	0,075
Unterdevon	7515_573	59,40	0,49	11,70	5,00	1,90	2,70	0,20	3,30	0,800	0,046

Datenanhang – Hauptkomponenten

S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
Unterdevon	7515_590	55,20	0,58	13,30	6,70	1,70	0,50	0,30	4,30	0,160	0,019
Unterdevon	7515_591	56,70	0,57	12,00	5,70	1,80	0,60	0,20	4,00	0,090	0,030
Silur	6003_525	60,48	0,95	18,27	6,60	2,35	1,03	1,10	3,89	0,175	0,091
Silur	6175_343	47,97	0,61	12,81	10,63	3,17	4,29	0,16	3,55	1,374	0,036
Silur	6175_367	75,38	0,16	3,40	4,20	0,63	0,93	0,15	0,81	0,324	0,032
Silur	6175_378	69,08	0,14	3,05	8,29	0,44	0,27	0,23	0,74	0,089	0,021
Silur	6175_383	72,67	0,11	2,57	5,70	0,27	0,23	0,16	0,60	0,163	0,021
Silur	6175_394	80,38	0,15	2,86	3,99	0,33	0,18	0,15	0,68	0,085	0,033
Silur	6175_89_350	46,59	0,39	7,60	22,63	1,57	2,49	0,14	2,02	1,269	0,076
Silur	6175_89_357	65,14	0,34	6,98	4,50	0,96	2,23	0,13	1,97	1,616	0,021
Silur	6177_436	46,09	0,53	11,11	13,82	2,46	4,65		3,07	2,015	0,028
Silur	6177_448	58,72	0,51	10,94	4,31	1,42	1,81		3,00	1,195	0,019
Silur	6177_463	90,53	0,07	1,46	0,97	0,52	0,71		0,34	0,035	0,049
Silur	6177_466	76,64	0,14	2,98	2,21	0,32	0,39		0,69	0,104	0,015
Silur	7512_590_2	60,00	0,53	13,33	5,11	1,19	0,28		4,27	0,132	0,014
Silur	7512_595	88,18	0,07	1,58	1,57	0,50	0,71		0,27	0,424	0,042
Silur	7512_597- 600	64,37	0,22	4,27	5,65	0,74	3,20		0,98	2,026	0,018
Silur	7512_603	68,96	0,25	5,20	5,34	0,93	0,25	0,14	1,35	0,245	0,019
Silur	7512_637	62,59	0,90	17,28	3,33	2,03	1,81	1,10	4,02	0,167	0,089
Silur	7512_86_610	86,51	0,10	2,27	1,86	0,19	0,13		0,44	0,103	0,045
Silur	6177_458	49,34	0,40	8,12	6,02	1,30	0,70		2,23	0,120	0,014
Silur	7512_86_615 -624	85,92	0,08	1,91	1,23	0,22	0,09		0,38	0,056	0,037
Silur	RONN 92_6	63,19	0,78	13,84	8,06	1,04	0,06	0,18	3,12	0,105	0,009
Silur	RONN 92_8	58,06	0,56	10,21	0,87	1,00	0,03		2,62	0,024	0,002
Silur	RONN 92_9	75,61	0,26	4,63	0,85	0,46	0,06		1,21	0,126	0,001
Silur	RONN-92_11	66,49	0,49	10,22	2,10	1,33	0,04		2,91	0,152	0,009
Silur	RONN-92_12	58,79	0,48	9,20	6,02	1,24	0,03	0,09	2,58	0,064	0,011
Silur	RONN-92_3	83,97	0,12	2,55	0,34	0,21	0,04	0,12	0,57	0,017	0,001
 Silur	RONN-92_4	74,79	0,18	4,12	0,39	0,33	0,04	0,11	0,95	0,028	0,001
Silur	6003_522	60,40	0,88	17,00	6,40	2,60	1,60	0,36	3,90	0,200	0,111
 Silur	6003_523	60,60	0,90	17,10	6,30	2,50	1,50	0,24	3,90	0,200	0,108

Daten anhang-Hauptkomponenten

S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
Silur	6175_345	55,30	0,62	13,10	4,20	1,80	0,76	0,02	3,70	0,550	0,015
Silur	6175_363	76,50	0,14	2,80	3,70	0,70	1,45	0,08	0,70	0,690	0,032
Silur	6175_373	74,30	0,15	3,10	3,70	0,33	0,47	0,16	0,76	0,370	0,028
Silur	6177_350	63,10	0,49	12,50	6,30	1,20	0,40		3,00	0,190	0,012
Silur	7515_707	43,60	0,38	7,70	4,40	1,20	3,40	0,24	2,60	2,320	0,044
Silur	7515_719	57,80	0,35	7,20	5,60	1,15	1,70	0,22	2,20	1,030	0,034
Silur	Ronn92_1	92,50	0,03	0,80	0,23	0,16	0,01	0,12	0,25	0,003	0,001
Silur	Ronn92_10	63,50	0,17	5,30	1,15	0,60	0,28	0,11	1,23	1,170	0,003
Silur	Ronn92_13	52,50	0,51	8,48	1,44	1,00	0,02	0,11	2,10	0,060	0,004

Tanezzuft Formation in Libyen

Teufe [ft]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	$P_2O_5[\%]$	MnO [%]
7237,18	Silur	LAN 4-138	44,34	0,88	23,41	9,80	1,88	0,25	0,09	3,05	0,112	0,063
7241,20	Silur	LAN 4-128	42,70	0,88	23,38	10,07	1,75	0,28	0,12	2,82	0,134	0,038
7242,54	Silur	LAN 4-124	42,59	0,82	23,04	10,04	1,75	0,25	0,03	2,82	0,128	0,024
7246,06	Silur	LAN 4-117	39,81	0,75	20,16	12,62	1,34	0,28	0,11	2,68	0,142	0,019
7248,41	Silur	LAN 4-109	38,26	0,66	18,61	12,92	1,30	0,30		2,57	0,143	0,014
7250,25	Silur	LAN 3-105	37,39	0,65	18,43	13,47	1,28	0,30	0,07	2,55	0,149	0,012
7251,59	Silur	LAN 3-101	41,96	0,73	19,26	9,80	1,37	0,36	0,03	2,89	0,184	0,018
7253,10	Silur	LAN 3-97	40,04	0,74	18,02	11,66	1,30	0,32	0,02	2,80	0,175	0,014
7255,28	Silur	LAN 3-92	38,80	0,68	17,63	11,70	1,44	0,81		2,79	0,189	0,039
7256,45	Silur	LAN 3-89	40,38	0,69	17,21	11,50	1,22	0,42	0,02	2,74	0,175	0,015
7257,46	Silur	LAN 3-86	36,42	0,62	16,11	14,60	1,18	0,42	0,00	2,50	0,166	0,014
7259,47	Silur	LAN 3-83	42,66	0,73	18,24	10,07	1,43	0,77	0,13	3,06	0,187	0,035
7262,32	Silur	LAN 3-78	41,47	0,71	17,94	10,51	1,31	0,29	0,03	2,96	0,159	0,013
7265,50	Silur	LAN 3-71	48,05	0,79	18,88	7,30	1,41	0,35	0,08	3,36	0,195	0,015
7268,35	Silur	LAN 2-64	48,99	0,83	19,86	6,97	1,44	0,36	0,07	3,29	0,212	0,015
7271,20	Silur	LAN 2-57	50,69	0,78	18,58	7,02	1,64	0,32	0,03	3,32	0,183	0,017
7274,38	Silur	LAN 2-50	51,11	0,75	17,06	8,16	1,52	0,30	0,01	3,19	0,167	0,022

Datenanhang – Hauptkomponenten

Teufe [ft]	S.E.	Proben- bezeichn.	SiO ₂ [%]	TiO ₂ [%]	Al ₂ O ₃ [%]	Fe ₂ O ₃ [%]	MgO [%]	CaO [%]	Na ₂ O [%]	K ₂ O [%]	P ₂ O ₅ [%]	MnO [%]
7277,57	Silur	LAN 2-42	50,96	0,75	17,80	7,18	1,61	0,36	0,09	3,44	0,188	0,026
7281,76	Ordovizium	LAN 2-29	51,17	0,80	18,38	6,77	1,70	0,32	0,00	3,37	0,194	0,032
7287,63	Ordovizium	LAN 2-15	47,13	0,64	17,42	12,30	1,55	0,24	0,05	3,25	0,133	0,038
7289,80	Ordovizium	LAN 2-11	50,05	0,75	18,26	8,83	1,74	0,27	0,00	3,48	0,161	0,029

Auftriebsgebiet vor Peru

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
40-45		Kern SL 40		0,16	3,37	1,25	0,20	16,0	344	0,26	5,74
85-90		Kern SL 40	3,03	0,53	2,90	1,20	0,28	14,0	395	0,27	8,00
14-14,5		Kern MC 45	14,36	0,24	14,13	1,40	0,80	22,0	223	0,18	78,19
23-23,5		Kern MC 45	10,60	0,09	10,51	1,17	0,85	19,0	291	0,15	44,55

Schwarzes Meer Station 6

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
1,50	Unit 1		13,15			0,98	0,40	26,1	1764	0,56	2,47
2,50	Unit 1		12,04	4,28	7,76	0,96	0,48	23,3	1362	0,55	2,10
3,50	Unit 1		9,57			0,85	0,28	16,4	881	0,43	1,35
4,50	Unit 1		9,88	5,88	4,00	0,75	0,26	14,5	422	0,26	1,12
5,50	Unit 1		10,10	5,75	4,35	0,79	0,33	15,6	556	0,26	1,28
6,50	Unit 1		9,64			0,81	0,29	15,3	477	0,27	1,27
7,50	Unit 1		10,03	5,12	4,91	0,90	0,22	14,7	407	0,25	1,06
8,50	Unit 1		9,47			0,94	0,33	14,6	445	0,26	0,99
9,50	Unit 1		8,86	4,76	4,10	0,97	0,42	14,3	486	0,28	0,80
11,50	Unit 1		10,04			0,97	0,29	14,7	381	0,26	0,82
12,50	Unit 1		9,67	6,21	3,46	0,74	0,22	12,0	350	0,23	0,50
13,50	Unit 1		9,54			0,94	0,25	12,9	427	0,26	0,70
14,50	Unit 1		9,77			1,00	0,30	13,9	470	0,24	0,70
16,00	Unit 1		10,96	5,18	5,77	1,00	0,39	14,2	585	0,23	1,02
20,00	Unit 1		11,69	6,95	4,74	0,72	0,31	10,4	487	0,19	0,67
22,00	Unit 1		11,73			0,48	0,31	8,6	330	0,15	0,50
24,00	Unit 1		10,44	4,84	5,61	0,95	0,38	13,3	617	0,18	0,75
26,00	Unit 1		10,93			1,00	0,27	13,0	620	0,23	0,72
30,00	Unit 1		10,92	5,95	4,97	0,90	0,37	11,7	517	0,19	0,65
32,00	Unit 1		10,00			1,12	0,36	13,2	655	0,21	0,69
34,00	Unit 1		10,98	5,87	5,11	0,93	0,32	12,1	555	0,20	0,67

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
36,00	Unit 1		11,57			0,89	0,25	10,2	681	0,19	0,58
40,00	Unit 1		11,52	6,45	5,07	0,84	0,23	9,9	589	0,17	0,51
42,00	Unit 1		11,06			0,92	0,23	9,6	770	0,20	0,59
44,00	Unit 1		11,94			1,07	0,34	12,0	791	0,22	0,71
46,00	Unit 1		11,28	6,51	4,77	0,79	0,33	10,9	647	0,20	0,65
49,50	Unit 1		10,65			1,20	0,29	14,7	1127	0,25	1,07
60,00	Unit 2a		7,81	2,59	5,23	1,28	0,51	19,5	1163	0,30	0,98
70,00	Unit 2a		7,94	1,25	6,69	1,96	1,12	19,7	1078	0,34	0,69
80,00	Unit 2a		9,80	1,44	8,37	1,50	0,44	14,9	1000	0,34	0,72
90,00	Unit 2a		10,76	1,41	9,35	1,58	0,42	13,8	956	0,35	0,88
100,00	Unit 2a		15,67	1,11	14,56	2,46		18,4	2308		
110,00	Unit 2a		21,49	1,11	20,38	3,40	0,24	22,8	666	0,34	1,17
120,00	Unit 2a		19,37	1,11	18,27	3,32	0,42	24,4	374	0,35	1,19
130,00	Unit 2a		6,68	1,81	4,87	0,79	0,19	10,3	479	0,16	0,42
140,00	Unit 2b		2,70	1,88	0,83	0,68		11,5	507		
150,00	Unit 2b		4,73	3,63	1,11	0,55	0,21	7,1	465	0,18	0,16
160,00	Unit 2b		4,92	4,17	0,75	0,56	0,15	9,2	387	0,17	0,16
170,00	Unit 2b		5,32	4,58	0,74	0,83	0,28	17,3	310	0,23	0,21
180,00	Unit 2b		5,03	4,24	0,79	0,82	0,18	12,2	322	0,25	0,18
190,00	Unit 2b		4,97	4,17	0,80	0,91	0,20	12,2	319	0,26	0,20
200,00	Unit 3		3,54	2,89	0,65	0,87	0,13	13,2	314	0,24	0,20
210,00	Unit 3		3,14	2,63	0,52	0,83	0,24	12,7	324	0,22	0,21
220,00	Unit 3		3,35	2,83	0,52	0,77		8,6	329		
230,00	Unit 3		3,29	2,63	0,66	0,92	0,26	18,3	321	0,24	0,23
240,00	Unit 3		3,25	2,68	0,56	0,92		20,4	324		
250,00	Unit 3		3,29	2,77	0,51	0,86	0,21	19,4	323	0,24	0,21
260,00	Unit 3		3,44	2,77	0,66	0,98		24,0	340		
270,00	Unit 3		3,62	2,91	0,71	0,97	0,21	18,0	331	0,25	0,20
280,00	Unit 3		3,19	2,65	0,54	1,00		15,3	337		
290,00	Unit 3		3,12	2,58	0,53	0,95	0,21	19,0	338	0,25	0,24
300,00	Unit 3		3,24	2,75	0,49	0,78		19,4	367		
310,00	Unit 3		3,24	2,66	0,58	0,83	0,28	17,4	367	0,30	0,24
320,00	Unit 3		3,31	2,76	0,55	0,81		17,4	370		

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]
330,00	Unit 3		3,11	2,62	0,49	0,72	0,19	16,9	368	0,29
340,00	Unit 3		3,09	2,56	0,53	0,44		9,2	375	
350,00	Unit 3		3,20	2,66	0,55	0,50	0,19	9,2	375	0,33
360,00	Unit 3		3,19	2,66	0,53	0,46	0,19	11,7	380	0,31
370,00	Unit 3		3,17	2,65	0,52	0,46	0,18	13,2	375	0,31
380,00	Unit 3		3,14	2,66	0,48	0,42	0,22	14,7	380	0,31
410,00	Unit 3		3,31	2,79	0,51	0,08	0,18	14,7	374	0,32
450,00	Unit 3		3,35	2,73	0,62	0,07	0,17	14,3	380	0,33
490,00	Unit 3		3,28	2,79	0,49	0,08	0,21	14,2	377	0,32
530,00	Unit 3		3,17	2,67	0,51	0,07		14,7	388	
610,00	Unit 3		3,34	2,81	0,53	0,09		15,4	387	
690,00	Unit 3		3,63	3,06	0,57	0,11	0,21	16,7	394	0,35
770,00	Unit 3		3,60	3,31	0,29	0,14		18,2	388	
850,00	Unit 3		3,76	3,15	0,62	0,13		16,6	405	

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Schwarzes Meer Station 7

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
2,50	Unit 1						0,42		2718	0,38	1,49
3,50	Unit 1							20,3	950		
4,50	Unit 1		10,46	5,02	5,44	1,28	0,30	17,5	653	0,37	1,55
5,50	Unit 1		10,69			1,45		16,0	495		
6,50	Unit 1		10,78			1,45	0,22	15,7	369	0,24	1,18
7,50	Unit 1		10,74			1,80	0,37	15,8	439	0,25	1,27
8,50	Unit 1		10,58	4,65	5,93	1,92	0,21	18,1	431	0,26	1,22
9,50	Unit 1		10,59			1,73	0,30	15,6	416	0,26	0,95
10,50	Unit 1		10,92			1,73	0,25	16,9	425	0,27	1,10
11,50	Unit 1		11,87	5,41	6,46	1,82	0,21	16,8	426	0,25	1,02
12,50	Unit 1		12,79			2,19	0,25	18,4	572	0,27	1,19
13,50	Unit 1		12,30			1,99	0,24	19,5	615	0,25	1,20
14,50	Unit 1		12,83			1,79		16,0	530		

Cd [ppm]

0,21 0,22 0,21 0,20 0,20

0,23 0,22

0,22

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
16,00	Unit 1		12,82	5,92	6,90	1,52	0,22	14,7	468	0,20	1,05
18,00	Unit 1		13,25			1,49	0,26	13,7	562	0,18	1,19
20,00	Unit 1		12,71	6,76	5,95	1,00	0,17	10,3	525	0,15	0,68
22,00	Unit 1		12,80			1,14	0,24	11,4	445	0,15	0,80
24,00	Unit 1		13,13			0,79	0,15	9,9	348	0,13	0,59
26,00	Unit 1		13,43			1,21	0,20	12,3	444	0,15	0,70
28,00	Unit 1		12,27	4,81	7,46	1,79	0,22	17,0	534	0,22	0,85
30,00	Unit 1		12,96			2,33	0,62	19,5	722	0,26	1,18
32,00	Unit 1		12,58	4,95	7,63	1,81	0,27	17,1	642	0,22	0,95
33,35	Unit 1		11,02			1,41					
34,15	Unit 1						0,23	9,4	613	0,19	0,76
34,80	Unit 1		6,06			1,05		13,2	626		
36,00	Unit 1		10,30		10,30	1,54		13,9	378		
38,00	Unit 1					1,28					
39,00	Unit 1										
40,00	Unit 1		12,48	4,99	7,49	1,81	0,31	17,0	799	0,23	1,12
40,00	Unit 1		11,33	4,77	6,56	2,06	0,29	17,2	1243	0,24	1,19
42,00	Unit 1		13,08			1,26	0,20	15,4	436	0,17	0,77
44,00	Unit 1		11,64			2,27	0,21	21,4	636	0,24	1,06
46,00	Unit 1		11,47	4,99	6,47	2,21	0,29	20,9	530	0,22	0,95
47,50	Unit 1		11,53			1,95	0,51	16,8	580	0,19	0,81
50,00	Unit 1		10,18	2,84	7,33	3,15	0,29	27,0	1667	0,31	1,27
60,00	Unit 2a		14,11	1,19	12,92	1,95	0,39	12,2	1496	0,32	1,25
70,00	Unit 2a		13,39	0,94	12,45	1,65	0,34	10,6	2082	0,25	1,22
80,00	Unit 2a		15,95	1,24	14,71	1,76	0,27	10,3	1374	0,29	1,44
90,00	Unit 2a		17,52	1,51	16,01	1,81	0,31	11,1	1069	0,32	1,56
100,00	Unit 2a		18,63	0,66	17,97	1,96	0,27	10,4	2743	0,33	1,43
120,00	Unit 2a		26,91	0,64	26,27	3,80	0,40	21,8	642	0,32	1,77
137,50	Unit 2a		22,69	0,86	22,80	2,07		14,6	461	0,31	1,13
138,25	Unit 2a		23,18	0,70	23,25	2,41		14,5	496	0,34	1,29
138,75	Unit 2a		23,12	0,69	22,89	2,03		14,5	577		
139,25	Unit 2a		22,63	0,87	22,03	2,21		14,4	591	0,32	1,32
140,00	Unit 2a		21,78	0,59	21,19	2,18	0,42	12,8	303	0,30	1,30

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
140,25	Unit 2a		23,94	1,55	22,86	2,02		13,3	469	0,26	1,50
141,25	Unit 2a		20,98	1,24	19,93	2,10		12,1	734	0,29	1,49
141,75	Unit 2a		21,72	1,15	20,95	2,22		12,1	972	0,30	1,35
142,25	Unit 2a		23,38	1,21	22,58	2,65		12,2	1560	0,30	1,15
142,75	Unit 2a		26,04	0,93	25,46	2,62		13,4	2948	0,31	1,27
143,50	Unit 2a		21,91	0,99	21,01	2,33		11,1	4313	0,29	1,92
144,50	Unit 2a		20,79	1,09	19,94	2,29		12,1	2046	0,30	1,66
145,25	Unit 2a		12,15	2,95	9,29	1,41		10,6	815	0,28	0,84
145,75	Unit 2b		10,23	4,13	6,20	1,13		7,3	354	0,24	0,53
146,25	Unit 2b		9,28	4,78	4,55	0,86		7,3	281	0,22	0,35
146,75	Unit 2b		8,81	4,86	3,96	0,85		7,3	293	0,21	0,33
147,50	Unit 2b		8,76	4,88	3,89	0,83		7,3	274		
148,50	Unit 2b		8,83	5,25	3,64	0,82		6,2	266		
149,50	Unit 2b		9,13	5,52	3,65	0,77		6,2	263		
150,50	Unit 2b		9,14	5,47	3,74	0,73		7,3	265		
151,50	Unit 2b		8,85	5,38	3,47	0,83		7,2	254		
153,50	Unit 2b		9,04	5,83	3,24	0,80		8,3	239		
155,50	Unit 2b		9,00	5,89	3,16	0,71		7,2	232		
155,50	Unit 2b		9,07	5,93	3,18	0,71		7,2	233		
156,50	Unit 2b		9,04	5,79	3,30	0,77		7,2	242		
156,50	Unit 2b		9,09	5,82	3,31	0,76		7,2	244		
160,00	Unit 2b		8,87	5,75	3,12	0,74		8,3	292	0,20	0,12
160,00	Unit 2b		8,98	5,81	3,23	0,78		9,3	236	0,21	0,11
164,00	Unit 2b		8,80	5,36	3,43	0,90		15,5	248		
168,00	Unit 2b		8,91	4,96	4,03	0,94		13,5	265		
172,00	Unit 2b		7,70	4,06	3,53	0,95		15,5	277		
178,00	Unit 2b		7,10	4,06	3,15	0,98		13,4	283		
180,00	Unit 2b		6,99	3,98	3,01	1,00	0,29	14,5	369	0,26	0,19
182,00	Unit 2b		6,61	3,43	3,23	1,15		17,6	305	0,30	0,31
186,00	Unit 2b		6,06	2,56	3,56	1,29		19,8	320		
190,00	Unit 2b		5,28	1,83	3,51	1,43		21,9	347		
194,00	Unit 2b		4,57	1,28	3,31	1,47		19,8	368		
196,50	Unit 2b		4,10			1,64			347	0,36	0,17

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
198,00	Unit 2b		4,44	1,18	3,29	1,37		17,8	376		
201,00	Unit 2b		4,22	0,94	3,51	1,41		21,9	375		
205,00	Unit 2b		3,62	0,57	3,10	1,77		17,8	395		
209,00	Unit 2b		3,41	0,53	2,91	1,62		22,0	393		
213,00	Unit 2b		3,49	0,38	3,12	1,51		28,3	421	0,38	0,41
215,00	Unit 2b		3,58	0,43	3,19	1,59		28,3	410	0,35	0,44
217,00	Unit 2b		3,65	0,55	3,12	1,66		31,4	412		
218,50	Unit 2b		3,83	0,65	3,23	2,18		41,8	396	0,41	0,27
219,50	Unit 2b		4,26	1,19	3,09	1,39		19,9	381		
220,50	Unit 2b		4,87	1,81	3,24	1,45		27,1	358		
221,50	Unit 2b		5,85	3,22	2,71	0,99		17,6	331		
223,00	Unit 2b		6,29	4,81				11,7	299		
224,50	Unit 2b		6,81	4,40	2,49	0,86		12,3	295		
226,00	Unit 2b		8,23	6,42	1,88	0,53		9,2	253		
228,00	Unit 2b		7,79	5,95	1,84	0,64		8,2	255		
230,00	Unit 2b		7,33	5,40	1,94	0,62		10,2	261		
232,00	Unit 2b		7,55	5,90				9,2	255		
234,00	Unit 3		8,67	7,21	1,48	0,50		7,2	231		
236,00	Unit 3		9,04	7,93				10,2	218		
238,00	Unit 3		9,08	7,97	0,97	0,41		9,1	216	0,10	0,11
240,50	Unit 3		9,60	8,50	1,11	0,34		7,1	365		
245,00	Unit 3		9,78	8,86	0,92	0,24		6,1	205		
245,00	Unit 3		9,80	8,89	0,93	0,24		6,1	205		
249,00	Unit 3		9,67	8,80	0,85	0,20		8,1	204		
250,50	Unit 3		8,54	7,65	0,90	0,22		5,1	222	0,14	0,10
251,50	Unit 3		9,40	8,61	0,99	0,33		4,1	213		
253,00	Unit 3		9,34	8,58	0,71	0,32		4,1	192		
254,50	Unit 3		8,74	7,96				4,1	215		
255,50	Unit 3		8,86	8,02	0,81	0,35		6,1	212		
259,00	Unit 3		8,81	7,87	0,99	0,43		10,2	200		
261,00	Unit 3		7,95	7,22				11,2	210		
263,00	Unit 3		7,56	6,83	0,70	0,50		12,2	233	0,16	0,15
265,00	Unit 3		4,54	3,83	0,68	1,07		34,5	345		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
266,50	Unit 3		3,70	2,92	0,79	1,17		103,6	354	0,22	0,16
267,50	Unit 3		3,14	2,56	0,56	0,49		50,8	292		
268,50	Unit 3		3,13	2,52	0,59	0,56		20,3	291		
270,50	Unit 3		2,91	2,37	0,54	0,74		15,2	279		
273,00	Unit 3		2,95	2,34	0,64	1,04		14,2	299	0,31	0,16
277,00	Unit 3		2,55	1,97	0,57	0,97		18,3	315		
279,00	Unit 3		2,70			0,91					
281,00	Unit 3		2,57	2,03	0,54	0,77		7,1	302		
283,00	Unit 3							5,1	305		
284,50	Unit 3		3,45	2,91	0,53	1,70		10,7	403		
285,50	Unit 3		3,56			1,09		14,2	368	0,28	0,18
287,00	Unit 3		5,59	4,98	0,57	0,92		9,1	319		
287,00	Unit 3		5,62	5,01	0,58	0,92		9,2	321		
291,00	Unit 3		6,08	5,37	0,71	0,65		7,1	317	0,32	0,14
293,00	Unit 3		5,94	5,20				6,1	507		
295,00	Unit 3		6,14	5,30	0,92	0,96		10,2	952		
297,00	Unit 3		5,77	4,93	0,87	0,83		15,2	483	0,43	0,20
299,00	Unit 3		5,89	5,11	0,80	1,10		14,2	338		
303,00	Unit 3		5,63	4,88	0,74	1,08		26,4	367		
307,00	Unit 3		6,17	5,50	0,67	0,97		17,3	345		
309,50	Unit 3		5,77	5,05	0,68	1,08		22,3	334		
311,50	Unit 3		6,02	5,30	0,67	1,20		35,5	319		
312,50	Unit 3		5,40	4,72	0,70	0,99		28,4	343		
313,50	Unit 3		3,86	3,31	0,50	1,79		41,6	373	0,32	0,15
314,50	Unit 3		4,12	3,34	0,80	1,38		43,7	373		
316,50	Unit 3		4,19	3,34	0,94	2,02		37,6	377		
318,50	Unit 3		4,18	3,22	1,11	2,10		12,2	397		
319,50	Unit 3		3,98	3,20				9,1	400		
321,00	Unit 3		4,11	3,28	0,83	0,83		7,1	447	0,27	0,14
323,00	Unit 3		4,80	3,95				10,2	368		
325,00	Unit 3		4,24	3,30	1,02	2,13		17,3	368		
327,00	Unit 3		3,34	2,52	0,85	2,92		30,5	401	0,38	0,24
329,00	Unit 3		3,94	3,22	0,79	1,74		19,3	392		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]		Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
331,00	Unit 3								18,3	408		
333,00	Unit 3		2,97	2,40	0,57	1,36			15,2	422	0,29	0,14
337,00	Unit 3		2,75	2,17	0,62	1,97			20,3	423		
337,00	Unit 3		2,77	2,18	0,63	1,98			20,4	425		
339,00	Unit 3								13,3	437		
341,50	Unit 3		2,80	1,99	1,08	2,02			34,6	426		
344,00	Unit 3		2,49	1,89	0,67	2,97			88,4	401	0,40	0,21
346,00	Unit 3		2,62	1,90	0,91	1,84			35,6	414		
348,00	Unit 3		2,15	1,58					42,7	400		
350,00	Unit 3		2,16			1,14			13,2	402		
354,00	Unit 3		2,06			1,43			11,2	404		
358,00	Unit 3		2,11	1,60	0,53	1,12			17,3	412		
362,00	Unit 3		2,06			0,85			9,2	408		
366,00	Unit 3		2,06	1,52	0,55	0,91			8,2	411		
370,00	Unit 3		2,05			0,92			9,2	406		
374,00	Unit 3		2,11	1,58	0,54	0,87			10,2	399	0,41	0,25
378,00	Unit 3		2,06			0,70			11,2	407		
382,00	Unit 3		2,08	1,53	0,59	0,72			11,2	397		
384,00	Unit 3		2,09			0,56						
386,00	Unit 3		2,22			0,51			12,2	409		
390,00	Unit 3		2,06			0,17			11,2	420		
394,00	Unit 3		2,10	1,59	0,50	0,07			11,2	421		
396,00	Unit 3		2,09	1,57					12,2	417		
397,50	Unit 3		2,04	1,48	0,56	0,13			12,2	429		
398,50	Unit 3		2,16	1,64	0,54	0,29			14,2	432		
399,50	Unit 3		2,07	1,62	0,46	0,81			15,2	384	0,28	0,14
400,50	Unit 3		1,64	,	í í	0,10			11,2	416	í í	
402,00	Unit 3		1.56	1,12	0,45	0,04			10,1	427		
404,00	Unit 3		1,54	1,10	, ,	,	1		12,2	430		
406,00	Unit 3		1,52	,			1		11,2	423		
410.00	Unit 3		1,58	1,12					11.2	411		
414,00	Unit 3		1.68	,					11,2	416		
418,00	Unit 3	1	1,70						12,2	406		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]		Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
422,00	Unit 3		1,70	1,21					11,2	407		
426,00	Unit 3		1,72						12,2	416		
430,00	Unit 3		1,66						12,2	415		
434,00	Unit 3		1,65	1,19					11,2	414		
438,00	Unit 3		1,66						11,2	409		
442,50	Unit 3		1,64	1,15					12,2	424		
447,00	Unit 3								12,2	418		
451,00	Unit 3		1,57	1,11					12,2	417		
455,00	Unit 3		1,60	1,12	0,49	0,04			12,2	412	0,38	0,16
459,00	Unit 3								12,2	420		
463,00	Unit 3		1,61	1,14					13,2	423		
465,00	Unit 3								12,2	421		
469,00	Unit 3								12,2	432		
473,00	Unit 3		1,58	1,09					13,2	420		
477,00	Unit 3								13,2	425		
481,00	Unit 3								12,2	439		
485,00	Unit 3		1,77	1,31					13,2	434		
489,00	Unit 3								14,2	423		
493,00	Unit 3								13,2	422		
497,00	Unit 3		1,83	1,33	0,51	0,05			13,2	438		
501,00	Unit 3								13,2	431		
505,00	Unit 3								14,2	424		
509,00	Unit 3		1,87	1,37					13,2	428		
513,00	Unit 3								13,2	421		
517,00	Unit 3								14,2	420		
521,00	Unit 3		2,13	1,65					13,2	412		
525,00	Unit 3								14,1	409		
529,00	Unit 3		2,21	1,62	0,60	0,05			13,1	416		
533,00	Unit 3		2,09	1,61			T		13,1	415		
537,00	Unit 3			· ·			T		14,2	420		
541,00	Unit 3								14,2	401		
546,00	Unit 3		2,17	1,68					14,2	413		
550,00	Unit 3		,	· · ·					14,2	410		

Teufe [cm]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
554,00	Unit 3							14,2	417		
558,00	Unit 3		2,08	1,59				14,2	422		
562,00	Unit 3										
566,00	Unit 3							14,1	414		
566,00	Unit 3							14,2	416		
570,00	Unit 3		2,31	1,85				14,2	414		
574,00	Unit 3							14,2	405		
578,00	Unit 3							13,1	406		
582,00	Unit 3		2,19	1,70				14,2	421		
586,00	Unit 3							14,1	411		
590,00	Unit 3		2,23	1,67	0,57	0,05		14,2	415	0,37	0,22
594,00	Unit 3		2,16	1,69				14,2	413		
598,00	Unit 3							14,2	412		
602,00	Unit 3							14,2	415		
606,00	Unit 3		2,09	1,60				14,2	427		
610,00	Unit 3							14,2	416		
614,00	Unit 3							14,1	422		
618,00	Unit 3		2,11	1,64				14,2	416		
622,00	Unit 3		2,26	1,62	0,64	0,05		15,2	423	0,36	0,22

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Jura/Kreide-Grenze vor Norwegen

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
59,44		Kern 6307	5,15	0,05	5,10	4,39	0,30	65,0	322	0,19	4,00
53,59		Kern 7430	20,25	1,14	19,11	3,95	9,46	56,0	426	0,27	98,80

Posidonienschiefer Dotternhausen

Teufe [cm]	S.E.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
3,5	Wilder Schiefer	10,73	41,24	5,78	2,88		16,0	186	0,11	0,55

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [cm]	S.E.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
37,5	Wilder Schiefer	11,34	31,60	7,55	3,47		18,0	202		1,62
92,2	Wilder Schiefer, Nagelkalk	12,01	67,30	3,93	1,76		9,0	109		0,41
131,9	Wilder Schiefer	11,59	58,80	4,53	2,23		13,0	122	0,06	0,54
157,4	Wilder Schiefer	12,99	34,90	8,80	2,76		17,0	185		2,03
195,8	Wilder Schiefer	14,83	43,90	9,56	2,69		15,0	177	0,17	1,77
242,0	Wilder Schiefer, Nagelkalk	11,98	44,40	6,65	1,65		15,0	220		0,69
270,6	Wilder Schiefer	10,59	33,70	6,55	2,99		18,0	205	0,14	0,60
323,0	Wilder Schiefer	14,93	41,50	9,95	2,89		15,0	174	0,11	2,97
363,9	Wilder Schiefer	14,66	36,20	10,32	3,23		19,0	172	0,14	4,25
400,0	Wilder Schiefer, Inoceramenbank	11,41	48,60	5,58	2,31		19,0	205	0,15	1,02
418,6	Oberer Schiefer	11,79	48,90	5,92	1,99		16,0	181		0,93
470,0	Oberer Schiefer, Obere Bank	14,88	51,80	8,66	2,32		14,0	168		1,52
513,5	Oberer Schiefer	14,57	48,60	8,74	2,88		16,0	180		1,54
553,2	Oberer Schiefer	16,04	53,80	9,58	2,70		14,0	185	0,09	1,40
595,2	Oberer Stein	10,73	60,30	3,49	1,17		10,0	173	0,16	0,28
609,5	Oberer Stein	11,62	87,50	1,12	3,46		12,0	43	0,01	0,14
650,3	mittlerer Schiefer	11,43	48,00	5,67	2,58		18,0	240	0,17	0,26
679,5	Steinplatte	11,72	86,40	1,35	3,26		10,0	36	0,01	0,08
731,2	mittlerer Schiefer	14,22	48,20	8,44	3,09		11,0	163	0,11	0,61
753,0	mittlerer Schiefer	10,78	24,40	7,85	3,72		14,0	207	0,14	1,93
800,1	Unterer Stein	12,12	95,20	0,70	0,78		5,0	71		0,03
848,9	Unterer Schiefer	12,81	24,90	9,82	4,91		19,0	208		1,12
877,0	Unterer Schiefer	14,07	26,20	10,93	3,67		13,0	202	0,19	2,16
930,8	Unterer Schiefer	17,32	27,50	14,02	4,46		13,0	213	0,15	1,68
957,0	Unterer Schiefer	16,70	39,90	11,91	3,23		13,0	172		3,61
981,0	Obere Aschgraue Mergel	4,48	31,30	0,72	2,12		13,0	307	0,35	0,26
1023,8	Obere Aschgraue Mergel	5,40	39,80	0,62	1,34		11,0	287	0,31	0,23
1063,0	Seegrasschiefer	8,46	29,20	4,96	4,46		26,0	939	0,32	0,38
1093,6	Untere Aschgraue Mergel	4,26	32,00	0,42	0,83		8,0	320	0,35	0,15
1118,7	Tafelfleins	12,58	38,30	7,98	4,34		27,0	221	0,29	2,34
1132,3	Blaugraue Mergel	4,91	38,30	0,31	1,66		6,0	304	0,31	0,18
1184,6	Spinatum Bank	9,05	74,50	0,11	0,06		4,0	114	0,20	0,06

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
642,850	Ca 1		8,89	8,61	0,28	0,12	•	5,0	147	0,11	0,04
642,870	Ca 1		8,51			0,11		5,0	159		
642,890	Ca 1		8,72	8,27	0,45	0,08		5,0	157		
642,910	Ca 1		8,47			0,11		6,0	160		
642,928	Ca 1		8,47	8,20	0,27	0,11		6,0	166		
642,943	Ca 1		8,02			0,16		9,0	178		
642,960	Ca 1		6,99	6,65	0,34	0,21		9,0	215		
642,980	Ca 1		6,26			0,16		9,0	184		
643,000	Ca 1		6,55	6,16	0,39	0,17	0,04	10,0	226	0,14	0,05
643,020	Ca 1		7,50			0,16		8,0	190		
643,040	Ca 1		7,54			0,18		12,0	231		
643,060	Ca 1		7,62	7,48	0,14	0,14		6,0	190		
643,080	Ca 1		7,54			0,16	0,04	7,0	202	0,13	0,02
643,098	Ca 1		7,13	6,79	0,34	0,22		9,0	224		
643,113	Ca 1		6,71			0,22		11,0	229		
643,128	Ca 1		6,10	5,63	0,47	0,26	0,05	11,0	250	0,16	0,06
643,140	Ca 1		7,00			0,19		9,0	214		
643,153	Ca 1		4,72			0,31		12,0	300		
643,168	T1 III		3,12	2,79	0,33	0,33		17,0	360		
643,180	T1 III		2,76	2,46	0,30	0,35	0,09	20,0	340	0,27	0,08
643,193	T1 III		5,12	4,50	0,62	0,66		26,0	284		
643,208	T1 III		5,26			2,85		33,0	267		
643,225	T1 III		5,81	5,07	0,73	5,13	0,34	32,5	237	0,20	0,12
643,243	T1 III		5,26			3,75	0,28	25,0	286	0,20	0,16
643,260	T1 III		6,75	5,91	0,84	3,38	0,38	23,0	299	0,18	0,14
643,278	T1 III		5,81	4,80	1,00	3,17	0,39	28,0	1091	0,21	0,34
643,308	T1 III		6,91	5,99	0,92	0,80		13,0	369		
643,323	T1 III		6,82	5,86	0,95	1,05		13,0	682		
643,340	T1 III		6,25	5,53	0,72	1.00	0,26	14,0	1005	0,17	0,14

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
643,373	T1 III		4,90	4,66	0,23	0,51	0,13	7,0	287	0,13	0,06
643,388	T1 III		5,20	4,45	0,75	1,25		22,0	356		
643,413	T1 III		5,51	4,63	0,88	1,08	0,21	20,0	497	0,20	0,14
643,428	T1 III		5,89	5,13	0,76	1,07		19,0	496		
643,446	T1 III		6,48	5,54	0,94	1,13	0,21	18,0	1028	0,18	0,17
643,461	T1 III		7,04	6,23	0,81	0,58		10,0	403		
643,467	T1 III		6,38	6,00	0,38	1,05		22,0	415		
643,477	T1 III		6,42	5,77	0,65	1,57		18,5	492		
643,498	T1 III		5,18	4,45	0,73	1,00		15,0	310		
643,512	T1 III		4,48	3,87	0,61	0,83	0,17	12,0	319	0,17	0,09
643,550	T1 III		3,39	2,67	0,72	1,27		19,0	474		
643,565	T1 III		3,15	2,43	0,72	1,32	0,17	21,0	465	0,28	0,12
643,580	T1 III		2,85	2,02	0,83	1,44		22,0	512		
643,593	T1 II		2,17	1,30	0,87	2,06		36,0	746		
643,598	T1 II		2,56	2,16	0,40	1,52	0,24	45,0	1191	0,37	0,12
643,609	T1 II		2,63	1,77	0,86	1,98		36,0	1116		
643,624	T1 II		3,11	2,32	0,79	1,41	0,25	27,0	455	0,28	0,12
643,638	T1 II		3,02	2,13	0,89	1,57		26,0	646		
643,650	T1 II		2,97	2,70	0,27	1,23	0,24	30,5	493	0,27	0,21
643,665	T1 II		3,55	2,55	1,00	1,89	0,26	35,0	467	0,26	0,19
643,683	T1 II		5,68	4,99	0,69	1,20		25,0	269		
643,698	T1 II		6,09	5,36	0,73	1,16	0,15	25,0	249	0,19	0,10
643,718	T1 II		5,37	4,20	1,17	1,50		32,0	288		
643,738	T1 II		5,44			1,59		35,0	288		
643,763	T1 II		5,35	3,69	1,66	2,05	0,32	38,0	293	0,28	2,60
643,788	T1 II		5,04			1,69		36,0	340		
643,805	T1 II		5,87	3,45	2,42	1,64		34,0	309		
643,825	T1 II		6,47	4,89	1,58	1,72	0,18	35,0	252	0,24	0,61
643,843	T1 II		6,62	4,25	2,37	1,48		32,0	279		
643,858	T1 II		6,59	4,73	1,86	1,46		33,0	263		
643,873	T1 II		8,75	7,75	1,00	0,97	0,13	21,0	160	0,11	0,32
643,883	T1 II		7,41	7,16	0,24	1,38	0,16	38,0	183	0,17	0,40
643,895	T1 II		8,90	7,88	1,02	0,86	0,17	18,5	151	0,10	0,19

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
643,915	T1 II		9,03	8,27	0,76	0,85	0,07	18,0	140	0,10	0,26
643,940	T1 II		8,32	7,01	1,31	1,15		25,0	190		
643,969	T1 II		7,47	5,62	1,85	1,36	0,25	29,0	232	0,22	0,40
643,987	T1 II		8,50	7,63	0,87	1,22		21,0	171		
644,009	T1 II		8,38	7,65	0,73	1,17	0,13	19,0	161	0,11	0,32
644,025	T1 II		6,90	6,56	0,34	1,24	0,07	20,0	196	0,16	0,28
644,033	T1 II		6,04	4,58	1,46	2,17	0,28	35,0	261	0,22	0,37
644,038	T1 II		5,63	5,30	0,33	2,44	0,20	26,0	249	0,20	1,21
644,055	T1 II		6,15	5,75	0,40	1,03	0,11	18,0	230	0,18	0,54
644,080	T1 II		7,71	6,46	1,25	1,85	0,26	39,5	193	0,21	0,41
644,100	T1 II		8,30	7,32	0,98	1,10		17,0	172		
644,120	T1 II		7,27	6,07	1,20	1,39	0,13	21,0	212	0,17	0,44
644,139	T1 II		7,61	6,52	1,09	1,21		19,0	193		
644,156	T1 II		7,97	7,17	0,80	1,10		18,0	181		
644,167	T1 II		6,26	5,95	0,31	2,13	0,17	25,0	216	0,19	0,53
644,185	T1 II		6,96	5,92	1,04	1,29		26,0	226		
644,209	T1 II		6,61	5,45	1,16	1,39	0,13	28,0	239	0,22	0,75
644,219	T1 II		6,25	5,27	0,98	1,47	0,20	30,0	250	0,20	0,47
644,225	T1 II		6,25	4,82	1,43	1,57		31,0	260		
644,240	T1 II		5,63	4,37	1,26	1,57	0,16	34,0	274	0,24	2,04
644,253	T1 II		6,74	6,08	0,66	1,66		31,0	212		
644,261	T1 II		6,82	6,56	0,26	0,88	0,08	15,0	218	0,18	0,33
644,270	T1 II		7,17	6,45	0,72	1,36	0,14	30,0	198	0,16	2,04
644,277	T1 II		6,76	6,46	0,30	0,84	0,15	16,0	210	0,17	0,26
644,289	T1 II		7,56	6,90	0,65	1,10	0,13	22,0	192	0,13	0,85
644,307	T1 II		7,64	6,91	0,73	1,14		23,0	192		
644,328	T1 II		7,84	6,88	0,96	1,08	0,05	21,0	182	0,14	0,90
644,353	T1 II		7,12	6,18	0,94	1,27		24,0	219		
644,378	T1 II		6,63	5,48	1,15	1,35		28,0	243		
644,402	T1 II		6,13	5,82	0,31	1,46	0,14	31,5	232	0,29	0,42
644,426	T1 II		8,29	7,35	0,94	1,02	0,13	19,0	179	0,11	0,48
644,449	T1 II		6,53	5,30	1,23	1,40	0,17	30,0	248	0,21	0,66
644,470	T1 II		6,31	5,27	1,04	1,39		31,0	253		
Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
644,490	T1 II		7,07	6,40	0,67	1,27	0,12	28,0	203	0,18	1,68
644,513	T1 II		7,17	6,33	0,84	1,17		26,0	205		
644,535	T1 II		7,00			1,23		28,0	224		
644,553	T1 II		6,80	5,95	0,85	1,31	0,14	28,0	216	0,18	1,32
644,568	T1 II		6,59			1,45		30,0	233		
644,585	T1 II		6,42	5,63	0,79	1,47	0,18	31,0	230	0,17	0,94
644,608	T1 II		4,85	3,45	1,40	2,06	0,25	43,0	302	0,25	1,62
644,633	T1 II		4,87			2,05		45,0	318		
644,653	T1 II		5,93	4,32	1,61	1,85		43,0	279		
644,669	T1 II		6,44			1,67		40,0	256		
644,686	T1 II		6,63			1,75		40,0	250		
644,705	T1 II		6,72	5,13	1,59	1,68	0,16	41,0	242	0,27	1,30
644,725	T1 II		7,05			1,63		39,0	235		
644,743	T1 II		7,20	5,25	1,95	1,65	0,23	36,0	244	0,25	0,63
644,758	T1 I		6,80	4,43	2,36	1,90	0,23	45,0	260	0,36	0,69
644,780	T1 I		6,28	2,00	4,28	2,73		63,0	326		
644,810	T1 I		6,12	1,52	4,60	3,35	0,47	58,0	327	0,35	0,67
644,833	T1 I		8,78	2,30	6,48	7,56		114,0	247		
644,848	T1 I		9,69	2,87	6,82	2,39	0,35	55,0	277	0,27	0,59
644,878	T1 I		8,23	4,78	3,45	1,79	0,28	55,0	235	0,26	2,03
644,898	T1 I		8,82			1,59		41,0	208		
644,920	T1 I		9,18	5,34	3,84	1,75		44,0	235		
644,940	T1 I		8,83	4,51	4,32	1,95	0,31	52,0	243	0,25	11,47
644,965	T1 I		9,16	5,46	3,70	1,79	0,39	47,0	218		13,68
644,995	T1 I		9,36			1,64		36,0	209		
645,018	T1 I		10,17	6,09	4,08	1,63	0,28	49,0	199	0,23	9,05
645,033	T1 I		10,90			1,48		43,0	196		
645,048	T1 I		10,00	5,78	4,22	1,50	0,29	43,0	210	0,20	5,33
645,065	T1 I		9,25			1,89		55,5	222		
645,085	T1 I		9,17	4,86	4,31		0,40	56,0	245	0,27	6,48
645,180	T1 I		9,49	2,94	6,54	2,18	0,40	58,0	297	0,33	5,46
645,200	T1 I		8,74	3,32	5,42	2,15	0,42	56,0	292	0,34	14,61
645,218	T1 I		9,04			1,98		56,0	294		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
645,233	T1 I		8,90	3,55	5,35	2,25	0,45	67,0	282	0,34	3,92
645,255	T1 I		9,03			2,22		64,0	289		
645,280	T1 I		9,10	3,35	5,75	2,53		62,0	297		
645,298	T1 I		9,99	2,80	7,18	2,43	0,45	76,0	311	0,35	3,00
645,313	T1 I		9,61			2,24		69,0	303		
645,328	T1 I		10,45	2,99	7,46	2,26	0,38	68,0	309	0,38	1,82
645,343	T1 I		8,75	4,21	4,54	1,50	0,43	39,0	276	0,26	1,72
645,358	T1 I		8,54			1,68	0,48	51,5	286		1,70
645,408	T1 I		8,12	3,55	4,57	1,74	0,41	53,0	297	0,30	4,05
645,435	T1 I		8,22	2,53	5,68	1,99		44,0	328		
645,455	T1 I		7,42	3,41	4,01	2,09	0,56	38,0	304	0,32	22,42
645,475	S1		3,36	3,23	0,13	3,03	0,33	30,0	186	0,12	24,29
645,496	S1		3,25	3,01	0,24	5,38	0,71	99,0	178	0,14	67,98
645,516	S1		3,44	3,35	0,09	2,63	0,22	24,0	198	0,14	7,16
645,535	S1		3,59			1,91		20,0	197		
645,555	S1		4,31	4,19	0,12	1,76	0,14	18,0	183	0,13	4,65
645,575	S1		4,02	3,99	0,02	2,01		17,0	195		
645,595	S1		2,22	2,23	0,00	2,50		20,0	226		
645,615	S1		0,64			2,38	0,15	17,0	267	0,18	1,20
645,640	S1		0,75	0,72	0,03	2,71	0,12	21,0	249	0,16	8,39
645,665	S1		0,38			3,97	0,33	32,0	255	0,19	0,49
645,685	S1		0,71			8,09		72,0	324		
645,705	S1		2,77	2,67	0,10	5,37		36,0	478		
645,725	S1		1,92			5,06	0,21	30,0	482	0,18	0,07
645,745	S1		1,27	1,24	0,03	5,56		32,0	390		
645,765	S1		0,06		0,06	9,57	0,29	44,0	195	0,04	0,09
645,785	S1		0,07			15,08	0,65	79,0	156	0,03	0,13
645,813	S1		0,19	0,22	0,00	3,58	0,21	16,0	345	0,15	0,07
645,841	S 1		0,48	0,43	0,05	0,83	0,09	8,0	321	0,08	0,07
645,864	S1		0,19			2,20		7,0	226		
645,890	S1		1,03	1,00	0,02	1,10	0,34	11,0	496	1,20	0,05

Kupferschiefer Kern Lohberg

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
15,667	Ca 1		4,78	4,46	0,32	3,71	0,24	15,0	24561	0,13	0,08
15,660	Ca 1			5,34			0,19	17,0	39900	0,15	0,06
15,645	Ca 1		6,56	6,40	0,16	3,21		13,0	35875		
15,630	Ca 1							18,0	10132		
15,615	Ca 1		8,98			1,60		8,0	15310		
15,597	Ca 1							7,0	22673	0,06	0,05
15,580	Ca 1		9,42	9,30	0,12	1,38		6,0	16442		
15,565	Ca 1						0,10	6,0	18584	0,08	0,06
15,550	Ca 1		9,05			1,24		5,0	22442		
15,535	Ca 1							5,0	40310	0,11	0,04
15,520	Ca 1		8,92	8,64	0,28	0,85		6,0	9110		
15,505	Ca 1						0,14	6,0	13046	0,09	0,04
15,490	Ca 1		8,59			1,01		5,0	15646		
15,475	Ca 1							6,0	32939	0,09	0,04
15,460	Ca 1		7,67	7,53	0,14	1,80		4,0	52749		
15,445	Ca 1						0,05	6,0	37593	0,09	0,14
15,427	Ca 1		8,66			1,25		5,0	33209		
15,410	Ca 1						0,18	7,0	18471	0,11	0,05
15,395	Ca 1		7,80	7,60	0,20	0,97		6,0	21188		
15,380	Ca 1							5,0	4157	0,09	0,30
15,362	Ca 1		6,91			1,06		11,0	14364		
15,342	Ca 1						0,05	10,0	5049	0,15	0,65
15,321	Ca 1		6,73	6,41	0,32	1,03		11,0	9494		
15,305	Ca 1		6,23			1,03	0,26	9,0	10337	0,18	0,09
15,285	Ca 1		6,64	6,31	0,33	0,95		10,0	5185		
15,268	Ca 1		5,42	4,87	0,55	1,19	0,20	13,0	8684	0,18	0,09
15,250	Ca 1		5,74	5,36	0,38	0,95		11,0	687		
15,230	Ca 1		6,05	5,76	0,29	0,95	0,08	10,0	710	0,15	0,11
15,210	Ca 1		4,97	4,46	0,51	1,42		14,0	559		
15,190	Ca 1		4,72	4,33	0,39	1,70		12,0	13115	0,19	0,07

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
15,163	T1 III		3,91	3,46	0,45	2,26		11,0	30472		
15,142	T1 III		1,18	0,59	0,59	2,78	0,63	17,0	13591	0,31	2,12
15,131	T1 III		1,02	0,44	0,58	2,48		17,0	12999		
15,123	T1 III		9,08	7,20	1,88	1,02	0,26	14,0	8112	0,20	0,29
15,114	T1 III		3,12			1,47		23,0	4165		
15,101	T1 III		2,79	1,02	1,77	1,84	0,57	27,0	3305	0,32	0,19
15,090	T1 III		10,40	9,12	1,28	0,48	0,09	8,0	282	0,09	0,96
15,079	T1 III		3,90	0,69	3,21	1,27	0,26	23,0	2039	0,33	0,34
15,068	T1 III		4,59			1,06	0,25	19,0	2540	0,33	0,26
15,060	T1 III		5,43	2,80	2,63	1,08	0,23	19,0	4031	0,20	0,21
15,049	T1 III		5,27			1,39	0,58	20,0	15677	0,32	0,25
15,035	T1 III		9,76	8,71	1,05	0,68		11,0	3564		
15,035	T1 III		9,76	8,71	1,05	0,68	0,12	11,0	3564	0,21	0,15
15,013	T1 III		8,83	7,54	1,29	0,75		13,0	1718	0,18	1,38
14,992	T1 III		8,23	5,61	2,62	0,92	0,15	15,0	5048	0,17	0,18
14,969	T1 III		7,38	5,13	2,25	1,12		13,0	14585		
14,952	T1 III		10,70	9,78	0,92	0,37	0,03	9,0	142	0,08	0,20
14,932	T1 III		9,30	7,40	1,90	1,01		21,0	8955		
14,908	T1 III		11,05	10,13	0,92	0,36		7,0	116	0,07	0,16
14,887	T1 III		10,55	9,43	1,12	0,44		10,0	403		
14,870	T1 III		9,68	8,53	1,15	0,98		11,0	14138	0,11	0,37
14,850	T1 III		10,10	9,15	0,95	0,63	0,03	10,0	166	0,09	0,23
14,840	T1 III		9,85	8,87	0,98	0,67	0,01	12,0	115	0,10	0,26
14,830	T1 III		10,10	9,13	0,97	0,58		12,0	120	0,09	0,29
14,823	T1 III		8,20	7,87	0,33	1,22		23,0	315	0,13	1,81
14,817	T1 III		9,51	8,46	1,05	0,65	0,02	12,0	171	0,10	0,28
14,809	T1 III		9,64	8,45	1,19	0,68	0,42	12,0	172	0,13	0,25
14,799	T1 II		8,06	7,82	0,23	1,20	0,09	18,0	187	0,13	0,43
14,787	T1 II		9,56	8,23	1,33	0,85	0,11	14,0	212	0,11	0,33
14,774	T1 II		9,57	8,40	1,17	0,74		14,0	170	0,11	0,38
14,753	T1 II		9,54	8,48	1,06	0,70		13,0	231		
14,732	T1 II		9,47	8,23	1,24	0,77		13,0	272	0,11	0,49
14,711	T1 II		9,81	9,04	0,77	0,61		13,0	331		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
14,691	T1 II		9,62	8,85	0,77	0,66	0,08	13,0	237	0,10	0,90
14,671	T1 II		9,89	8,99	0,90	0,60		12,0	452		
14,651	T1 II		9,35	8,20	1,15	0,69		14,0	1095	0,11	0,53
14,630	T1 II		9,15	7,96	1,19	0,73		14,0	868		
14,608	T1 II		9,38	8,30	1,08	0,74		14,0	803	0,11	1,17
14,568	T1 II		9,18	8,14	1,04	0,87		14,0	1012	0,12	0,76
14,548	T1 II		9,58	8,60	0,98	0,70		13,0	687		
14,528	T1 II		9,66	8,76	0,90	0,74		12,0	712	0,09	0,50
14,508	T1 II		9,28	8,42	0,86	0,71		13,0	1009		
14,487	T1 II		8,36			0,99		16,0	778		
14,468	T1 II		8,65	7,72	0,93	0,89	0,12	16,0	675	0,12	0,54
14,450	T1 II		7,48			1,06		19,0	534		
14,428	T1 II		7,27	5,82	1,45	1,23		22,0	1232		
14,411	T1 II		6,89			1,25		23,0	803		
14,394	T1 II		7,58	6,01	1,57	1,25	0,04	23,0	630	0,17	0,83
14,374	T1 II		6,56			1,49		24,0	747		
14,355	T1 II		5,49	2,52	2,97	2,18	0,25	35,0	678	0,28	2,93
14,340	T1 II							35,0	971		
14,322	T1 II		7,36	4,86	2,50	1,71	0,11	30,0	789	0,21	0,61
14,302	T1 II		7,31			1,68		24,0	1035		
14,282	T1 II		8,17	5,27	2,90	1,72	0,15	25,0	453	0,22	0,93
14,263	T1 II		8,53	3,36	5,17	2,19		28,0	570		
14,243	T1 II		9,67	4,77	4,90	1,69		19,0	429	0,23	3,12
14,223	T1 II		10,50	7,71	2,79	1,02	0,05	9,0	616	0,16	2,80
14,202	T1 II		10,40	7,95	2,45	0,91	0,01	11,0	1368	0,14	1,66
14,178	T1 II		9,62	5,69	3,93	1,48		19,0	860	0,20	4,01
14,153	T1 II		8,64			1,52		20,0	925		
14,130	T1 II		9,87	5,90	3,97	1,50		20,0	1065	0,20	4,37
14,110	T1 II		10,50	· · ·	, í	1,50		23,0	579	· ·	ŕ
14,090	T1 II		9,95	6,63	3,32	1,79		24,0	875	0,17	12,00
14,070	T1 II		10,60	· · ·	, í	1,51		20,0	724	· ·	
14,050	T1 II		10,50	6,13	4,37	1,57	0,09	22,0	2266	0,23	5,03
14,025	T1 II		10,30			1,44		20,0	893		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
14,005	T1 II		10,90	8,32	2,58	1,34		18,0	987	0,13	14,87
13,985	T1 II		11,60			1,04		17,0	742		
13,965	T1 I		12,30	8,87	3,43	1,24		20,0	479	0,13	3,45
13,945	T1 I		12,00			1,22		23,0	701		
13,923	T1 I		12,10	8,32	3,78	1,27		17,0	502	0,13	5,32
13,903	T1 I		11,40			1,45		22,0	520		
13,881	T1 I		10,40	5,55	4,85	1,87	0,16	30,0	491	0,21	7,18
13,861	T1 I		11,40	6,01	5,39	1,90		30,0	643	0,19	12,73
13,840	T1 I		10,90	5,06	5,84	2,01		31,0	460		
13,819	T1 I		12,30	4,63	7,67	2,12		32,0	380	0,25	8,10
13,802	T1 I		11,80	5,03	6,77	2,20		31,0	470		
13,782	T1 I		11,80	4,71	7,09	2,22		31,0	458	0,24	14,13
13,762	T1 I		11,30			2,65		35,0	429		
13,742	T1 I		10,70	4,17	6,53	2,23		28,0	483	0,25	12,36
13,722	T1 I		9,69	3,92	5,77	2,35		31,0	1223		
13,702	T1 I		10,30	3,76	6,54	2,36		34,0	519	0,28	8,62
13,682	T1 I		9,71	3,78	5,93	2,54		36,0	799		
13,662	T1 I		10,20	4,00	6,20	2,18		23,0	769	0,27	11,33
13,643	T1 I		9,75	4,34	5,41	2,09		30,0	928		
13,621	T1 I		10,70	4,39	6,31	2,04	0,21	27,0	678	0,27	8,53
13,585	T1 I		10,50	4,66	5,84	1,97		27,0	975	0,26	10,95
13,567	T1 I		10,20			1,94		31,0	1173		
13,545	T1 I		9,28	4,19	5,09	1,84		27,0	1374	0,30	9,39
13,524	T1 I		9,08			1,77		28,0	1955		
13,513	T1 I		8,72	4,09	4,63	1,71		32,0	2123		
13,503	T1 I		8,25	3,97	4,28	1,95	0,32	32,0	1219	0,26	18,33
13,493	T1 I		8,27	4,44	3,83	2,37		27,0	1282		
13,483	T1 I		8,35	4,06	4,29	1,93		31,0	1226		
13,471	T1 I		8,46	4,10	4,36	1,64	0,34	29,0	1148	0,26	5,05
13,458	T1 I		8,32	3,86	4,46	1,75		29,0	1969		
13,450	T1 I		7,89	3,83	4,06	1,61		28,0	1227		
13,443	T1 I		7,96	4,16	3,80	1,60		27,0	940	0,23	2,48
13,433	T1 I		7,93			1,63		24,0	1285		

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
13,423	T1 I		7,67	4,56	3,11	1,49	0,16	24,0	1285	0,24	1,40
13,414	T1 I		6,55	3,18	3,37	1,83		29,0	532		
13,406	T1 I		7,41	3,98	3,43	1,67	0,29	27,0	966	0,26	1,66
13,398	T1 I		7,45	4,15	3,30	1,61		26,0	1220		
13,389	T1 I		6,93	3,56	3,37	1,86	0,32	27,0	374	0,28	1,44
13,379	T1 I		7,33			1,75		25,0	743		
13,369	T1 I		7,56	5,20	2,36	1,63		20,0	611		
13,357	T1 I		8,50	6,34	2,16	1,35	0,29	17,0	510	0,19	1,37
13,344	S1		6,18	5,93	0,25	7,23	0,76	51,0	5380	0,06	0,21
13,326	S1		6,23			1,08		10,0	2173		
13,310	S1		4,36	4,41	0,00	2,34		13,0	3638		
13,288	S1		0,47	0,44	0,04	0,31		5,0	365	0,08	0,11
13,260	S1		8,63	8,72	0,00	2,25		9,0	57316		
13,245	S1		3,06			4,85		28,0	70306		
13,229	S1		3,95	3,95		5,94	0,49	32,0	51211	0,05	0,09
13,211	S1		6,20			2,67		12,0	30740		
13,197	S1		2,21	2,18	0,03	3,24	0,01	11,0	117691	0,07	0,07
13,153	S1							4,0	117099		
12,829	S1		3,66	3,72	0,00	0,20		7,0	3476		
12,249	S1		4,43	4,48	0,00	0,66		8,0	308		
10,490	S1							4,0	586		
10,400	S1		0,09	0,04	0,05	0,12		7,0	363		
10,043	S1		0,06	0,03	0,03	0,04		6,0	1425	0,23	0,05
9,535	S1		0,08	0,03	0,05	0,02		6,0	772		
9,205	S1		1,88	1,76	0,12	0,08		8,0	2871	0,26	0,68
7,473	S1		0,28	0,03	0,25	0,02		5,0	570		
6,735	S1		1,40	0,74	0,66	0,11		5,0	2309		

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
6,120			5,70	5,40	0,30	5,65		125,0	171		
6,140			6,52			0,95		33,0	339		
6,140								30,0	321		
6,365			6,78	6,05	0,73	1,00	0,48	50,0	155	0,21	1,50
6,385			6,34			1,94		95,0	189		
6,395	T1		6,15	4,78	1,37	1,50	0,92	81,0	186	0,25	5,03
6,405	T1		5,90			1,66		90,0	189		
6,415	T1		5,53	4,27	1,26	2,01	1,21	101,0	186	0,27	9,57
6,426	T1		5,65			1,55		82,0	277		
6,439	T1		5,38	3,23	2,15	1,71	1,04	84,0	200	0,35	12,69
6,453	T1		9,51			2,18		116,0	190		
6,465	T1		9,92	7,40	2,52	2,07	2,17	86,0	102	0,16	58,49
6,475	T1		10,25			1,16		62,0	101		
6,485	T1		10,40	7,75	2,65	1,38	1,38	63,0	93	0,15	34,11
6,495	T1		10,60			1,21		63,0	102		
6,515	T1		13,90	2,23	11,67	3,54	8,18	175,0	177	0,51	101,68
6,525	T1		14,20			2,17		112,0	88		
6,535	T1		13,55	6,93	6,62	2,13	7,05	105,0	64	0,52	83,98
7,016			1,99	1,88	0,11	0,11	0,30	68,0	274	1,05	0,21
7,025			2,40	2,28	0,12	0,09		49,0	171		
7,034			2,08			0,17		61,0	317		
7,045			1,94	1,67	0,27	1,37		147,0	207		
7,055			1,72			2,87		200,0	352		
7,065			2,02	1,63		3,14		153,0	190		
7,075			2,19			2,15		110,0	346		
7,205			1,19	0,98	0,21	1,79		134,0	305		
7,215			1,23			1,53		112,0	282		
7,225			0,94	0,72	0,22	1,73		162,0	296		
7,235			2,77			0,92		48,0	176		

Kupferschiefer Kern Goslar Z1

Datenanhang –	Pauschalparamete.	r und Ag, As	, <i>Ba</i> , <i>Bi</i> ,	Cd
Duichannang	1 austraiparantere.	1 1111115, 115	, Du, Di,	Cu

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
7,245			3,62	3,48	0,14	0,54	•	37,0	113		
7,255			3,39	3,30	0,09	0,64		46,0	119		
7,405			1,88			1,64		402,0	284		
7,415			2,29	1,61	0,68	1,31		316,0	409		
7,425			2,72			1,26		311,0	372		
7,435			2,34	1,62	0,72	1,90		237,0	294		
7,445			2,29			1,80		182,0	269		
7,455			2,34	1,64	0,70	2,28		672,0	303		
7,465			2,16			1,87		241,0	378		
7,475			2,28	1,59	0,69	1,84		216,0	342		
7,499			1,74			1,95		160,0	311		
7,514			1,42	0,95	0,47	1,73		176,0	327		
7,700			2,44			0,14		10,0	1071		
7,722			1,23	1,00	0,23	0,08		6,0	760		
7,741			1,00			0,08		4,0	812		
7,758			1,95	1,69	0,26	0,07		4,0	490		
7,778			0,62			0,09		3,0	472		
7,798			0,46	0,34	0,13	0,06		4,0	315		
7,817			0,89			0,06		3,0	251		
7,834			1,60	1,49	0,11	0,05		4,0	251		
7,849			1,61			0,04		4,0	254		
7,865			1,93	1,66	0,27	0,06		4,0	419		
7,885			1,69			0,46		9,0	789		
7,905			1,31	0,99	0,32	0,10		58,0	348		
7,925			1,39			0,09		33,0	354		
7,945			1,67	1,42	0,25	0,10		19,0	358		
7,965			2,11			0,06		12,0	284		
7,988			1,85	1,82	0,03	0,08		7,0	627		

Pennsylvanische Zyklothemen

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
3,86	Heebner	WL5	9,56	0,49	9,07	2,00	1,87	44,0	291	0,30	7,85
4,14	Heebner	WL4	11,05	0,74	10,31	2,98	3,08	64,0	294	0,30	10,67
4,33	Heebner	WL3	17,00	0,51	16,49	1,72	4,92	30,0	266	0,35	19,53
4,50	Heebner	WL2	8,83	0,67	8,16	2,64	3,48	80,0	305	0,30	6,58
4,76	Heebner	WL1	17,95	0,55	17,40	1,72	3,10	32,0	243	0,32	62,60
7,10	Heebner	CL5	18,10	0,01	18,09	0,79	2,63	21,0	276	0,35	6,77
7,34	Heebner	CL4	11,95	0,01	11,94	0,70	3,40	33,0	353	0,36	1,50
7,57	Heebner	CL3	15,20	0,59	14,61	2,61	4,43	59,0	266	0,34	113,91
7,82	Heebner	CL2	8,65	0,81	7,84	2,70	3,98	68,0	307	0,30	45,31
8,06	Heebner	CL1	13,35	0,61	12,74	1,59	2,70	33,0	261	0,31	8,38
116,49	Eudora	WL13	1,58	0,39	1,19	1,08	0,72	16,0	351	0,32	1,04
116,59	Eudora	WL12	2,19	0,50	1,69	1,61	0,90	19,0	363	0,32	0,46
116,91	Eudora	WL11	3,60	0,25	3,35	1,53	0,84	11,0	351	0,35	0,88
117,11	Eudora	WL10	1,69	0,33	1,36	2,32	1,11	17,0	320	0,29	0,41
117,35	Eudora	WL9	10,55	0,34	10,21	2,10	1,36	36,0	320	0,43	0,26
117,48	Eudora	WL8	18,50	0,36	18,14	1,79	2,78	55,0	287	0,33	35,38
117,64	Eudora	WL7	8,32	0,23	8,09	1,86	1,47	27,0	293	0,40	0,53
117,82	Eudora	WL6	3,09	1,25	1,84	1,05	0,71	14,0	306	0,30	0,64
187,29	Lake Neosho	ED14	4,82	0,74	4,08	0,15	0,53	2,0	271	0,86	0,39
200,02	Anna	ED13	2,27	1,08	1,19	2,58	1,50	35,0	396	0,28	8,36
200,17	Anna	ED12	21,47	0,50	20,97	0,84	1,69	18,0	288	0,33	3,97
200,33	Anna	ED11	26,13	0,55	25,58	1,70	3,71	45,0	232	0,36	42,16
219,06	Exshello	ED3	1,49	0,31	1,18	0,49	0,74	11,0	283	0,31	4,44
219,42	Exshello	ED2	2,48	0,10	2,38	0,54	2,13	20,0	219	0,30	6,01
219,68	Exshello	ED1	11,50	0,09	11,41	2,32	6,17	280,0	196	0,32	94,62

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
14,55		JC45	7,28	7,11	0,17	0,92	0,14	13,0	190	0,11	0,10
14,20		JC44	7,10	6,56	0,54	1,18	0,23	18,0	237	0,13	0,08
13,75		JC43	3,80	2,82	0,98	3,45	0,39	33,0	369	0,19	0,50
13,15		JC42	3,52	1,75	1,77	1,80	0,22	16,0	441	0,23	0,60
12,75		JC41	4,56	2,93	1,63	2,27	0,49	14,0	388	0,23	0,23
12,50		JC40	5,02	3,44	1,58	2,61	0,31	10,0	408	0,17	0,13
11,85		JC39	3,11	1,47	1,64	3,08	0,26	13,0	439	0,26	0,12
11,35		JC38	7,66	4,97	2,69	2,29	0,27	19,0	319	0,14	2,36
11,00		JC37	3,49	0,01	3,48	0,67	0,43	22,0	308	0,16	0,19
9,65		JC35	4,33	0,45	3,88	2,25	0,45	24,0	288	0,22	6,37
9,45		JC34	3,94	0,65	3,29	2,45	0,40	27,0	281	0,19	1,98
8,95		JC33	3,95	0,01	3,94	0,46	0,56	21,0	297	0,20	0,48
8,65		JC32	4,59	0,89	3,70	2,04	0,30	23,0	197	0,13	0,38
8,40		JC31	3,87	0,01	3,86	0,50	0,32	17,0	193	0,13	1,47
8,15		JC30	4,11	0,01	4,10	0,63	0,46	19,0	223	0,14	0,44
7,95		JC29	4,29	0,01	4,28	1,19	0,46	20,0	227	0,13	9,35
7,65		JC28	2,80	0,01	2,79	0,50	0,35	16,0	164	0,09	0,23
7,35		JC27	4,43	0,01	4,42	1,21	0,39	19,0	207	0,16	0,46
7,20		JC26	3,38	0,01	3,37	1,68	0,35	19,0	211	0,12	0,57
7,05		JC25	4,13	0,30	3,83	1,11	0,33	18,0	708	0,10	9,34
6,90		JC24	3,82	0,01	3,81	1,18		15,0	170	0,09	2,51
6,35		JC22	3,60	0,51	3,09	2,76		24,0	164	0,11	0,63
6,10		JC18	5,34	0,13	5,21	2,00		25,0	166	0,13	0,23
5,63		JC17	4,67	2,98	1,69	1,19		13,0	96	0,08	0,38
5,53		JC16	3,96	0,01	3,95	0,54		12,0	229	0,17	0,15
5,18		JC15	4,77	0,01	4,76	1,90		15,0	227	0,16	0,35
4,83		JC14	4,81	0,13	4,68	2,51		32,0	254	0,23	0,48
4,58		JC13	7,32	4,21	3,11	3,03		60,0	238	0,16	1,44
4,53		JC12	3,30	2,11	1,19	10,33		470,0	560	0,96	141,71

Exshaw Formation Standort Jura Creek

Teufe [m]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
3687,80		XD3	7,35	3,65	3,70	4,82	0,15	30,0	177	0,20	4,48
3688,00		XD5+6	6,41	2,82	3,59	3,35	0,08	26,0	216	0,19	1,93
3688,35		XD7	7,97	5,70	2,27	2,20		17,0	146	0,10	0,32
3688,75		XD9	6,31	4,03	2,28	2,35		18,0	191	0,13	0,66
3689,10		XD10	4,15	1,65	2,50	2,66	0,00	19,0	244	0,14	0,84
3689,40		Xd11	4,71	2,09	2,62	2,76	0,00	20,0	242	0,15	0,91
3689,70		XD12	3,91	0,96	2,95	3,13	0,02	23,0	273	0,16	3,51
3690,40		XD14	3,00	0,82	2,18	3,35	0,04	26,0	311	0,18	1,53
3690,65		XD15	2,95	0,70	2,25	3,67	0,04	26,0	304	0,19	2,21
3690,85		XD16	2,98	0,65	2,33	4,47	0,07	32,0	315	0,22	1,53
3691,35		XD17	3,11	0,72	2,39	3,21	0,04	24,0	314	0,18	1,49
3691,60		XD18	3,07	0,67	2,40	3,46	0,18	26,0	315	0,20	1,67

Exshaw Formation Standort Shell Whiskey

Graptolithenschiefer aus Thüringen

S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
Mitteldevon	6529_826	3,50		3,50	1,30	0,38	14,0	2137	0,33	0,16
Mitteldevon	6529_867	0,19		0,19	0,25	0,24	8,0	2624	0,27	0,10
Mitteldevon	7515_428	1,80	0,02	1,78	0,50		7,0	6064		0,20
Mitteldevon	7515_448	3,00	0,05	2,95	1,80		10,0	3943		0,20
Mitteldevon	7515_468	1,20		1,20	2,00		14,0	3899		0,15
Mitteldevon	6529_823	2,70	0,33	2,37	2,70	0,60	25,5	2024	0,18	0,89
Mitteldevon	6529_849	2,40		2,40	1,50	0,58	18,0	1935	0,33	0,09
Mitteldevon	6003_208- 210	3,10		3,10	3,80			1060		0,25
Mitteldevon	7515_490	2,90	0,05	2,85	2,00		20,0	3860		0,20
Unterdevon	6003_425	7,30	0,40	6,90	2,50	1,25	34,0	2160	0,46	0,30
Unterdevon	6003_430	10,10	6,90	3,20	1,20	0,67	18,0	16314	0,07	0,29

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
Unterdevon	6003_433	7,00	0,20	6,80	3,40	2,96	60,0	7099	0,39	0,36
Unterdevon	6003_438_53	4,90		4,90	4,50	3,14	63,0	14113	0,27	0,34
Unterdevon	6003_443	9,60	0,10	9,50	2,05	1,09	21,0	5339	0,27	0,24
Unterdevon	6003_89_178	2,20	0,75	1,45	0,16	0,37	2,0	1435	0,29	0,15
Unterdevon	6003_89_186	2,90		2,90	1,20	0,35	22,0	1195	0,24	0,09
Unterdevon	6003_89_193	3,30		3,30	2,80	0,52	19,0	1305	0,40	0,14
Unterdevon	6003_89_428	6,30	1,40	4,90	2,10	0,99	29,0	2057	0,35	0,46
Unterdevon	6175_200	10,60	8,10	2,50	4,30	0,83	28,0	662	0,10	0,46
Unterdevon	6175_201	7,90	0,90	7,00	4,30	3,03	58,0	1767	0,36	1,22
Unterdevon	6175_218	6,60	1,10	5,50	11,40	2,81	109,0	1241	0,30	1,33
Unterdevon	6175_221	6,20	0,50	5,70	2,80	2,37	47,5	1901	0,28	1,33
Unterdevon	6175_234	13,30	0,90	12,40	3,80	1,34	60,5	1407	0,32	1,36
Unterdevon	6175_249	12,90	0,30	12,60	3,80	1,68	52,0	2245	0,42	1,34
Unterdevon	6175_253	8,00	1,40	6,60	2,80	2,39	69,0	1283	0,30	1,29
Unterdevon	6175_258	5,20	0,90	4,30	3,70	2,21	75,5	1522	0,25	0,89
Unterdevon	6175_274	6,90	0,10	6,80	4,00	1,13	59,0	1556	0,31	0,62
Unterdevon	6175_280	14,30	0,40	13,90	4,00	1,10	74,0	1534	0,30	2,08
Unterdevon	6177_280	10,70	2,00	8,70	1,80	1,29	34,5	1882	0,26	0,54
Unterdevon	6177_283	12,20	5,00	7,20	1,30	1,30	30,0	1649	0,19	0,55
Unterdevon	6177_291	10,90		10,90	3,80	1,86	65,3	1402	0,33	0,96
Unterdevon	6177_298	12,10		12,10	2,60	1,65	48,0	1351	0,27	0,74
Unterdevon	6529_954	5,50	0,70	4,80	2,50	3,28	56,0	4289	0,24	5,43
Unterdevon	7515_555[53] 1	10,00	0,60	9,40	4,30		41,5	1882		0,20
Unterdevon	7515_560[53] 1	9,60	2,20	7,40	3,50		52,0	1682		0,50
Unterdevon	7515_569	5,70	0,90	4,80	7,40		67,5	1823		0,80
Unterdevon	7515a_488	2,80		2,80	5,20	1,65	20,0	5012	0,26	0,15
 Unterdevon	6529_952	6,70	1,10	5,60	4,90	1,65	90,0	3143	0,29	1,31
 Unterdevon	6003_473	3,80	0,10	3,70	4,60		36,0	7730		0,25
 Unterdevon	6175_261	6,30	0,20	6,10	4,30		57,0	1520		0,50
Unterdevon	7515_562	9,50	2,90	6,60	3,20		48,0	1390		0,40
Unterdevon	7515_567	6,90	0,50	6,40	2,70		29,0	2190		0,50

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
Unterdevon	7515_573	7,80	0,50	7,30	3,20		28,0	2080		0,50
Unterdevon	7515_590	7,60	0,30	7,30	5,00		68,0	5000		0,40
Unterdevon	7515_591	11,60	0,50	11,10	5,10		65,0	6340		0,50
Silur	6003_525	0,70	0,26	0,44	0,25	0,32	39,0	1330	0,26	0,15
Silur	6175_343	4,80	0,90	3,90	7,90	2,60	41,5	1175	0,29	0,58
Silur	6175_367	8,20	0,30	7,90	3,30	4,61	79,0	841	0,16	6,68
Silur	6175_378	7,40	0,30	7,10	6,50	3,81	145,0	716	0,18	0,45
Silur	6175_383	10,00	0,30	9,70	4,60	4,12	92,0	516	0,21	0,67
Silur	6175_394	7,10	0,20	6,90	3,10	2,10	76,0	502	0,15	1,27
Silur	6175_89_350	2,20	0,23	1,97	14,40	13,40	215,5	770	0,33	0,49
Silur	6175_89_357	9,40	0,15	9,25	3,50	6,84	89,0	949	0,20	1,37
Silur	6177_436	5,30	0,90	4,40	11,50	3,54	61,0	999	0,38	0,41
Silur	6177_448	11,10	0,30	10,80	3,40	6,97	83,5	1677	0,26	1,27
Silur	6177_463	3,20	0,30	2,90	0,30	1,47	48,0	277	0,01	1,05
Silur	6177_466	11,90	0,30	11,60	1,70	1,66	48,0	455	0,12	0,91
Silur	7512_590_2	7,70	0,30	7,40	4,00	2,19	62,0	7257	0,31	0,19
Silur	7512_595	4,70	0,20	4,50	0,36	0,59	15,5	340	0,07	0,12
Silur	7512_597- 600	13,30	0,40	12,90	1,80	1,18	44,0	717	0,20	0,30
Silur	7512_603	9,90	0,80	9,10	4,10	3,84	60,5	564	0,31	0,51
Silur	7512_637	1,10	0,60	0,50	0,60	0,40	19,0	1242	0,24	0,20
Silur	7512_86_610	5,40	0,20	5,20	1,20	1,22	20,0	444	0,09	0,12
Silur	6177_458	21,00	0,70	20,30	5,10	5,24	114,0	1187	0,32	1,96
Silur	7512_86_615 -624	7,80	0,20	7,60	0,85	0,54	13,5	373	0,07	0,14
Silur	RONN 92_6	0,29		0,40	6,20	0,67	12,5	1697	0,16	0,09
Silur	RONN 92_8	9,40	0,30	9,10	4,90	7,64	15,0	1279	0,30	0,38
Silur	RONN 92_9					3,20	15,0	802	0,18	0,28
Silur	RONN-92_11	8,80	0,10	8,70	1,60	12,13	26,0	2212	0,42	0,22
 Silur	RONN-92_12	9,40	0,30	9,10	4,90	 13,78	43,0	1314	0,43	0,18
Silur	RONN-92_3	9,80	0,20	9,60	0,20	1,37	32,0	488	0,12	0,13
Silur	RONN-92_4	14,50	0,40	14,10	0,30	0,83	13,0	662	0,06	0,14
Silur	6003_522	0,93	0,52	0,41	0,38		57,0	1040		0,15

Datenanhar	ıg – Pausche	alparameter ı	und Ag, As,	Ba, Bi, Cd							A 61
	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
	Silur	6003_523	0,88	0,46	0,42	0,35		52,0	1090		0,30
	Silur	6175_345	10,70		10,70	3,20		128,0	1383		2,70
	Silur	6175_363	7,20	0,30	6,90	3,00			629		1,40
	Silur	6175_373	10,70	0,30	10,40	3,00		88,0	734		2,30
	Silur	6177_350	5,10		5,10	4,20			1800		0,50
	Silur	7515_707	13,70	0,10	13,60	4,10			1133		0,60
	Silur	7515_719	14,20	0,50	13,70	4,70		82,0	825		0,70
	Silur	Ronn92_1	5,10	0,20	4,90	0,07		11,0	124		0,15
	Silur	Ronn92_10	20,00	0,30	19,70	0,49		28,0	5094		0,60
	Silur	Ronn92_13	18,60	0,30	18,30	1,60		43,0	1040		0,70

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Tanezzuft Formation in Libyen

Teufe [ft]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
7237,18	Silur	LAN 4-138	3,35	0,61	2,74	5,16	0,47	46,0	419	0,42	1,00
7241,20	Silur	LAN 4-128	4,45	0,58	3,87	5,63	0,49	63,0	371	0,37	2,35
7242,54	Silur	LAN 4-124	5,47	0,58	4,89	6,02	0,57	60,0	355	0,36	1,09
7246,06	Silur	LAN 4-117	6,90	0,46	6,44	9,26	1,24	99,0	342	0,49	1,79
7248,41	Silur	LAN 4-109	9,78	0,45	9,33	10,10	1,14	91,0	347	0,39	3,49
7250,25	Silur	LAN 3-105	10,20	0,45	9,75	10,60	1,13	95,0	331	0,40	2,84
7251,59	Silur	LAN 3-101	10,20	0,49	9,71	6,86	1,29	76,0	377	0,35	2,85
7253,10	Silur	LAN 3-97	11,10	0,46	10,64	8,91	1,23	85,0	362	0,58	4,36
7255,28	Silur	LAN 3-92	11,80	0,60	11,20	8,88	1,43	88,0	362	0,50	5,12
7256,45	Silur	LAN 3-89	12,40	0,45	11,95	9,23	1,20	77,0	369	0,36	4,08
7257,46	Silur	LAN 3-86	12,40	0,44	11,96	11,60	1,23	133,0	334	0,35	7,90
7259,47	Silur	LAN 3-83	9,81	0,59	9,22	7,45	1,29	81,0	365		3,51
7262,32	Silur	LAN 3-78	11,60	0,45	11,15	8,16	1,20	67,0	339	0,51	3,93
7265,50	Silur	LAN 3-71	9,02	0,50	8,52	4,80	0,85	33,0	362	0,47	2,64
7268,35	Silur	LAN 2-64	7,50	0,51	6,99	4,33	0,87	37,0	348		1,18
7271,20	Silur	LAN 2-57	7,33	0,56	6,77	4,16	0,75	28,0	348	0,40	1,79
7274,38	Silur	LAN 2-50	7,32	0,52	6,80	5,32	 0,86	33,0	363	0,55	3,28

Datenanhang – Pauschalparameter und Ag, As, Ba, Bi, Cd

Teufe [ft]	S.E.	Proben- bezeichn.	C _{ges} [%]	C _{min} [%]	C _{org} [%]	S [%]	Ag [ppm] halbquant.	As [ppm]	Ba [ppm]	Bi [ppm]	Cd [ppm]
7277,57	Silur	LAN 2-42	7,43	0,56	6,87	4,21	0,65	27,0	351	0,38	1,51
7281,76	Ordovizium	LAN 2-29	7,62	0,58	7,04	3,65	0,72	26,0	387	0,38	2,11
7287,63	Ordovizium	LAN 2-15	3,84	0,51	3,33	8,92	0,64	74,0	313	0,53	5,03
7289,80	Ordovizium	LAN 2-11	5,10	0,58	4,52	5,43	0,72	47,0	338	0,57	2,64

Auftriebsgebiet vor Peru

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
40-45		Kern SL 40		6,3	75		38					
85-90		Kern SL 40		5,8	79		32					
14-14,5		Kern MC 45		4,4	117		57					
23-23,5		Kern MC 45		4,7	114		44					

Schwarzes Meer Station 6

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
1,50	Unit 1		38	18,3	50	3,49	103	3,05	1,80	0,85	3,42	1,28
2,50	Unit 1		41	19,9	52	3,70	94	3,32	1,91	0,88	3,59	2,27
3,50	Unit 1		43	16,7	59	4,30	66	3,65	2,12	0,92	3,91	2,57
4,50	Unit 1		38	15,8	33	3,79	56	3,29	1,92	0,82	3,54	2,01
5,50	Unit 1		39	16,5	48	3,76	60	3,42	2,06	0,88	3,70	0,41
6,50	Unit 1		43	16,8	54	4,43	59	3,52	2,09	0,90	3,92	0,57
7,50	Unit 1		43	16,0	45	4,36	60	3,71	2,11	0,91	3,95	2,26
8,50	Unit 1		44	17,4	55	4,65	62	3,64	2,14	0,92	4,02	2,22
9,50	Unit 1		49	16,6	61	5,29	63	3,98	2,32	1,00	4,33	2,42
11,50	Unit 1		40	15,3	58	4,74	72	3,37	2,06	0,85	3,75	1,89
12,50	Unit 1		37	12,7	48	4,19	50	3,14	1,89	0,78	3,35	1,72
13,50	Unit 1		39	13,6	51	4,47	60	3,33	1,95	0,84	3,63	1,73
14,50	Unit 1		43	16,3	56	4,71	66	3,59	2,14	0,89	3,82	2,17
16,00	Unit 1		41	16,4	49	4,20	75	3,45	2,01	0,87	3,65	2,03
20,00	Unit 1		28	11,3	31	2,99	60	2,49	1,48	0,64	2,62	1,36
22,00	Unit 1		26	10,5	31	2,53	50	2,32	1,43	0,55	2,36	1,09
24,00	Unit 1		40	15,5	50	4,57	72	3,54	2,08	0,89	3,74	2,07
26,00	Unit 1		41	17,2	53	4,18	69	3,36	1,98	0,86	3,62	0,58
30,00	Unit 1		36	16,5	48	3,76	59	3,02	1,85	0,75	3,23	1,68
32,00	Unit 1		40	21,6	57	4,79	72	3,55	2,13	0,90	3,86	2,06
34,00	Unit 1		38	20,0	44	3,77	57	3,14	1,86	0,80	3,42	1,58

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
36,00	Unit 1		35	16,3	44	3,56	58	3,09	1,82	0,77	3,25	1,63
40,00	Unit 1		30	13,0	41	2,73	53	2,23	1,33	0,57	2,38	0,56
42,00	Unit 1		36	14,9	41	3,64	62	3,07	1,81	0,77	3,20	1,71
44,00	Unit 1		37	20,4	49	3,91	68	3,34	1,97	0,85	3,59	1,57
46,00	Unit 1		40	20,1	40	3,09	60	2,70	1,58	0,70	2,87	1,45
49,50	Unit 1		49	29,8	63	4,80	98	3,63	2,24	0,98	4,12	2,24
60,00	Unit 2a		60	31,9	90	7,51	87	4,10	2,37	1,10	4,48	2,34
70,00	Unit 2a		64	31,2	97	7,72	81	4,58	2,62	1,25	5,03	2,95
80,00	Unit 2a		58	21,2	88	7,20	77	4,23	2,42	1,14	4,67	2,86
90,00	Unit 2a		59	19,1	89	7,09	81	4,23	2,43	1,15	4,66	2,82
100,00	Unit 2a			22,7	73		92					
110,00	Unit 2a		44	27,6	69	4,77	118	3,80	2,09	0,97	4,05	1,70
120,00	Unit 2a		48	36,5	74	5,86	108	3,74	2,10	0,98	4,07	2,04
130,00	Unit 2a		48	8,7	70	4,33	36	3,54	2,07	0,88	3,86	0,75
140,00	Unit 2b			10,0	74		12					
150,00	Unit 2b		52	10,0	78		21	3,56	2,07	0,89	3,91	
160,00	Unit 2b		47	9,8	69		17	3,34	1,92	0,82	3,41	
170,00	Unit 2b		46	11,3	70	5,16	20	3,22	1,81	0,82	3,68	2,89
180,00	Unit 2b		51	12,0	69		22	3,47	1,93	0,89	3,90	
190,00	Unit 2b		49	12,8	77		22	3,39	1,87	0,87	3,85	
200,00	Unit 3		53	12,4	77		18	3,63	2,04	0,93	3,82	
210,00	Unit 3		52	12,1	77		23	3,84	2,20	0,93	4,17	
220,00	Unit 3			13,7	77		14					
230,00	Unit 3		54	13,0	82		19	3,74	2,20	0,95	4,30	
240,00	Unit 3			13,8	78		15					
250,00	Unit 3		53	12,7	56	5,23	18	3,59	2,06	0,94	4,14	3,99
260,00	Unit 3			14,3	86		18					
270,00	Unit 3		51	12,8	78		19	3,55	2,00	0,91	3,96	
280,00	Unit 3			15,8	81		16					
290,00	Unit 3		55	13,2	81	5,55	18	4,09	2,37	0,97	4,45	3,74
300,00	Unit 3			14,3	83		18					
310,00	Unit 3		56	14,4	87	6,64	23	3,93	2,23	1,01	4,54	3,25
320,00	Unit 3			15,3	88		23					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
330,00	Unit 3		56	14,3	86		22	4,09	2,32	1,01	4,32	
340,00	Unit 3			15,3	89		21					
350,00	Unit 3		59	15,0	91		24	4,25	2,37	1,06	4,37	
360,00	Unit 3		58	14,5	91		24	4,22	2,36	1,06	4,57	
370,00	Unit 3		57	15,5	87		24	3,98	2,19	1,02	4,40	
380,00	Unit 3		58	14,9	92		23	3,88	2,21	1,04	4,61	
410,00	Unit 3		58	16,0	88		24	3,90	2,23	1,04	4,62	
450,00	Unit 3		57	14,5	90		25	4,08	2,27	1,04	4,44	
490,00	Unit 3		57	14,5	92	6,50	27	4,04	2,32	1,03	4,51	3,23
530,00	Unit 3			14,7	89		21					
610,00	Unit 3			15,9	93		23					
690,00	Unit 3		57	15,7	98		27	4,02	2,22	1,04	4,53	
770,00	Unit 3			16,7	88		24					
850,00	Unit 3			16,1	89		23					

Schwarzes Meer Station 7

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
2,50	Unit 1		26	20,1		2,37		1,96	1,10	0,64	2,29	1,31
3,50	Unit 1			25,8	43		66					
4,50	Unit 1		37	24,1	42	3,44	59	2,99	1,71	0,81	3,35	1,13
5,50	Unit 1			23,9	41		55					
6,50	Unit 1		36	23,2	57	3,31	57	3,00	1,79	0,85	3,44	1,15
7,50	Unit 1		39	24,2	44	3,80	69	3,29	1,85	0,89	3,66	1,31
8,50	Unit 1		41	26,6	50	4,21	72	3,42	1,92	0,89	3,77	1,20
9,50	Unit 1		40	24,3	47	4,07	63	3,37	1,95	0,90	3,98	1,58
10,50	Unit 1		37	23,1	50	3,95	64	3,06	1,72	0,80	3,40	1,33
11,50	Unit 1		36	25,1	44	3,49	63	3,10	1,79	0,82	3,44	1,52
12,50	Unit 1		37	29,5	48	3,76	80	3,23	1,85	0,84	3,54	1,53
13,50	Unit 1		36	29,8	45	3,42	80	3,11	1,74	0,81	3,38	1,53
14,50	Unit 1			26,2	40		74					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
16,00	Unit 1		28	24,3	34	2,57	63	2,56	1,45	0,66	2,75	0,94
18,00	Unit 1		25	23,3	27	2,30	62	2,34	1,37	0,62	2,51	1,04
20,00	Unit 1		20	17,4	21	1,84	53	1,83	1,04	0,49	1,97	0,91
22,00	Unit 1		23	18,4	24	2,05	54	2,17	1,29	0,56	2,33	0,77
24,00	Unit 1		20	16,6	19	1,66	43	1,93	1,19	0,50	2,03	0,82
26,00	Unit 1		26	17,5	27	1,99	49	2,57	1,51	0,65	2,73	0,80
28,00	Unit 1		35	26,3	69	3,08	65	3,04	1,78	0,79	3,38	1,37
30,00	Unit 1		37	32,4	48	3,76	79	3,15	1,83	0,83	3,49	1,54
32,00	Unit 1		32	28,7	39	3,03	69	2,82	1,62	0,73	3,07	1,16
33,35	Unit 1											
34,15	Unit 1		35	22,3	28	3,04	50	3,04	1,66	0,79	3,32	1,42
34,80	Unit 1			23,9	32		49					
36,00	Unit 1			24,3	35		51					
38,00	Unit 1											
39,00	Unit 1											
40,00	Unit 1		39	31,0	42	3,92	67	3,20	1,85	0,86	3,53	1,58
40,00	Unit 1		42	37,7	51	4,28	69	3,27	1,85	0,89	3,65	1,65
42,00	Unit 1		32	27,9	34	2,52	54	2,90	1,73	0,74	3,14	0,90
44,00	Unit 1		40	47,6	50	3,78	73	3,29	1,93	0,88	3,65	1,59
46,00	Unit 1		35	48,0	43	3,32	65	2,86	1,64	0,76	3,17	1,32
47,50	Unit 1		30	42,0	36	2,70	57	2,45	1,39	0,66	2,73	1,16
50,00	Unit 1		53	48,9	73	6,29	94	3,94	2,31	1,08	4,30	2,40
60,00	Unit 2a		51	17,0	71	6,07	98	4,10	2,44	1,12	4,46	3,06
70,00	Unit 2a		38	15,1	49	4,28	82	3,31	1,99	0,90	3,52	2,63
80,00	Unit 2a		39	13,2	57	4,97	108	3,26	1,96	0,88	3,51	2,21
90,00	Unit 2a		43	12,2	66	5,43	122	3,80	2,38	0,98	4,01	2,31
100,00	Unit 2a		36	11,9	58	4,97	112	3,10	1,96	0,86	3,25	2,06
120,00	Unit 2a		35	36,0	54	4,33	127	3,45	2,05	0,85	3,63	1,54
137,50	Unit 2a	1	33	18,2	65	5,60	112	2,96	1,75	0,76	3,33	1,68
138,25	Unit 2a		37	19,3	67	5,94	125	3,32	2,01	0,85	3,76	1,77
138,75	Unit 2a			15,6	60		132					
139,25	Unit 2a	1	37	13,4	66	5,64	129	3,60	2,24	0,90	3,83	1,80
140,00	Unit 2a		32	16,6	51	4,81	130	2,60	1,52	0,67	2,85	1,62

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
140,25	Unit 2a		34	14,1	55	4,88	118	2,85	1,65	0,77	3,17	1,04
141,25	Unit 2a		37	11,6	63	5,60	122	2,98	1,82	0,82	3,37	1,92
141,75	Unit 2a		36	13,0	64	5,68	145	3,01	1,75	0,84	3,48	1,80
142,25	Unit 2a		35	17,2	62	5,18	146	2,90	1,71	0,83	3,30	1,73
142,75	Unit 2a		35	23,5	55	4,64	137	3,10	1,83	1,01	3,54	1,55
143,50	Unit 2a		38	14,3	62	5,51	158	3,00	1,72	1,10	3,61	1,75
144,50	Unit 2a		39	16,0	69	5,57	157	2,87	1,72	0,84	3,32	1,97
145,25	Unit 2a		46	13,7	75	6,39	88	3,57	2,04	1,00	4,19	2,29
145,75	Unit 2b		44	11,3	67	5,71	67	3,60	2,09	0,94	4,07	1,77
146,25	Unit 2b		44	10,2	69	5,55	51	3,53	2,03	0,91	4,10	2,08
146,75	Unit 2b		44	9,0	67	5,71	50	3,42	2,02	0,90	3,96	1,33
147,50	Unit 2b			13,5	63		46					
148,50	Unit 2b			9,3	60		37					
149,50	Unit 2b			9,3	58		42					
150,50	Unit 2b			11,4	60		40					
151,50	Unit 2b			9,3	58		42					
153,50	Unit 2b			9,3	57		41					
155,50	Unit 2b			9,2	52		46					
155,50	Unit 2b			9,3	53		46					
156,50	Unit 2b			10,3	55		44					
156,50	Unit 2b			10,3	56		44					
160,00	Unit 2b		41	9,4	54	4,41	44	3,21	1,84	0,82	3,55	0,98
160,00	Unit 2b		42	10,3	56	4,68	48	3,38	2,01	0,87	3,88	1,89
164,00	Unit 2b			10,3	60		52					
168,00	Unit 2b			12,4	64		59					
172,00	Unit 2b			14,5	67		56					
178,00	Unit 2b			15,5	74		55					
180,00	Unit 2b		55	13,3	76	6,16	56	3,94	2,27	1,05	4,52	2,40
182,00	Unit 2b		58	15,4	85	7,09	65	4,28	2,42	1,10	4,69	2,99
186,00	Unit 2b			16,7	87		61					-
190,00	Unit 2b			19,8	95		71					
194,00	Unit 2b			17,7	100		71					
196,50	Unit 2b		69	18,2		8,00		4,65	2,62	1,26	5,23	3,50

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
198,00	Unit 2b			17,8	106		68					
201,00	Unit 2b			21,9	104		74					
205,00	Unit 2b			23,1	106		75					
209,00	Unit 2b			20,9	108		73					
213,00	Unit 2b		79	21,5	117	9,90	94	5,20	3,03	1,34	5,85	3,65
215,00	Unit 2b		72	22,4	113	8,48	88	5,06	2,84	1,39	5,60	3,79
217,00	Unit 2b			22,0	102		81					
218,50	Unit 2b		61	18,5	100	8,38	66	4,27	2,33	1,11	4,82	2,41
219,50	Unit 2b			18,8	99		83					
220,50	Unit 2b			21,9	92		77					
221,50	Unit 2b			14,5	78		66					
223,00	Unit 2b			14,3	63		38					
224,50	Unit 2b			15,3	67		59					
226,00	Unit 2b			9,2	45		39					
228,00	Unit 2b			10,2	52		42					
230,00	Unit 2b			12,3	55		44					
232,00	Unit 2b			10,2	53		41					
234,00	Unit 3			9,2	40		31					
236,00	Unit 3			8,1	31		30					
238,00	Unit 3		22	7,7	32	2,34	24	1,67	1,00	0,45	1,92	0,68
240,50	Unit 3			6,1	25		23					
245,00	Unit 3			6,1	22		19					
245,00	Unit 3			6,1	22		19					
249,00	Unit 3			6,1	25		19					
250,50	Unit 3		27	6,7	37	2,82	20	1,97	1,13	0,53	2,20	1,37
251,50	Unit 3			7,1	26		22					
253,00	Unit 3			8,1	27		21					
254,50	Unit 3			9,1	35		24					
255,50	Unit 3			7,1	36		21					
259,00	Unit 3			7,1	34		23					
261,00	Unit 3			10,2	39		26					
263,00	Unit 3		33	8,8	46	3,70	25	2,33	1,33	0,62	2,64	1,40
265,00	Unit 3			13,2	74		25					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
266,50	Unit 3		49	16,4	79	4,93	26	3,59	2,09	0,91	4,11	2,96
267,50	Unit 3			14,2	70		30					
268,50	Unit 3			12,2	71		35					
270,50	Unit 3			13,2	69		29					
273,00	Unit 3		49	13,4	78	6,18	29	3,39	1,85	0,89	3,76	2,29
277,00	Unit 3			12,2	76		26					
279,00	Unit 3											
281,00	Unit 3			15,2	70		26					
283,00	Unit 3			12,2	69		25					
284,50	Unit 3			15,7	84		23					
285,50	Unit 3		57	16,3	84	6,56	22	3,93	2,15	1,02	4,48	3,18
287,00	Unit 3			14,2	67		32					
287,00	Unit 3			14,3	67		33					
291,00	Unit 3		62	13,8	77	6,39	41	4,52	2,57	1,20	5,06	3,13
293,00	Unit 3			15,2	68		26					
295,00	Unit 3			11,7	63		27					
297,00	Unit 3		66	15,8	90	9,61	33	4,50	2,41	1,19	5,15	2,74
299,00	Unit 3			12,2	67		26					
303,00	Unit 3			15,2	69		20					
307,00	Unit 3			12,2	64		27					
309,50	Unit 3			14,2	67		30					
311,50	Unit 3			11,2	63		29					
312,50	Unit 3			13,2	70		30					
313,50	Unit 3		55	15,8	78	5,83	28	4,02	2,21	1,03	4,49	2,64
314,50	Unit 3			12,2	84		42					
316,50	Unit 3			18,3	81		37					
318,50	Unit 3			19,3	90		41					
319,50	Unit 3			17,3	91		47					
321,00	Unit 3		41	14,4	78	4,99	35	3,00	1,64	0,81	3,38	2,02
323,00	Unit 3			17,8	83		43					
325,00	Unit 3			15,2	88		46					
327,00	Unit 3		60	19,9	102	8,70	49	4,11	2,30	1,08	4,72	2,74
329,00	Unit 3			17,3	92		40					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
331,00	Unit 3			16,2	96		44					
333,00	Unit 3		64	17,7	104	6,12	29	4,54	2,49	1,17	5,10	3,99
337,00	Unit 3			19,3	106		35					
337,00	Unit 3			19,4	107		36					
339,00	Unit 3			18,3	108		41					
341,50	Unit 3			19,3	109		40					
344,00	Unit 3		68	20,3	107	8,96	38	4,48	2,41	1,19	5,10	2,85
346,00	Unit 3			16,3	107		35					
348,00	Unit 3			19,3	117		40					
350,00	Unit 3			20,4	112		38					
354,00	Unit 3			16,3	114		36					
358,00	Unit 3			20,4	111		36					
362,00	Unit 3			18,3	116		36					
366,00	Unit 3			18,3	114		39					
370,00	Unit 3			19,4	111		37					
374,00	Unit 3		71	19,5	111	10,46	43	4,67	2,65	1,20	5,43	3,26
378,00	Unit 3			18,3	111		37					
382,00	Unit 3			21,4	114		38					
384,00	Unit 3											
386,00	Unit 3			19,3	110		40					
390,00	Unit 3			17,3	113		37					
394,00	Unit 3			18,3	113		43					
396,00	Unit 3			18,3	117		41					
397,50	Unit 3			17,3	116		39					
398,50	Unit 3			24,4	112		38					
399,50	Unit 3		43	17,3	85	6,09	28	3,12	1,75	0,83	3,58	1,15
400,50	Unit 3			21,3	113		39					
402,00	Unit 3			21,3	113		33					
404,00	Unit 3			20,3	112		38					
406,00	Unit 3			20,3	109		37					
410,00	Unit 3			17,3	112		36					
414,00	Unit 3			18,3	114		36					
418,00	Unit 3			17,3	118		37					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
422,00	Unit 3			18,3	114		37					
426,00	Unit 3			18,3	115		40					
430,00	Unit 3			17,3	120		37					
434,00	Unit 3			21,3	116		35					
438,00	Unit 3			20,3	115		36					
442,50	Unit 3			21,3	114		34					
447,00	Unit 3			22,4	112		35					
451,00	Unit 3			18,2	111		33					
455,00	Unit 3		80	18,6	115	9,85	36	4,80	2,65	1,35	6,02	3,64
459,00	Unit 3			17,2	113		34					
463,00	Unit 3			20,3	114		34					
465,00	Unit 3			18,2	114		33					
469,00	Unit 3			19,3	111		33					
473,00	Unit 3			19,2	113		34					
477,00	Unit 3			20,3	114		33					
481,00	Unit 3			20,3	111		33					
485,00	Unit 3			20,3	106		28					
489,00	Unit 3			19,3	113		31					
493,00	Unit 3			21,3	111		32					
497,00	Unit 3			19,3	111		36					
501,00	Unit 3			19,2	116		34					
505,00	Unit 3			20,2	114		35					
509,00	Unit 3			18,2	113		35					
513,00	Unit 3			20,2	108		33					
517,00	Unit 3			17,2	106		31					
521,00	Unit 3			17,2	106		33					
525,00	Unit 3			18,2	105		33					
529,00	Unit 3			17,2	105		34					
533,00	Unit 3			18,2	108		33					
537,00	Unit 3			17,3	107		34					
541,00	Unit 3			17,2	108		31					
546,00	Unit 3			17,2	106		32					
550,00	Unit 3			17,2	113		36					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

554,00	Unit 3		16,2	108		32					
558,00	Unit 3		20,2	108		33					
562,00	Unit 3										
566,00	Unit 3		17,2	107		32					
566,00	Unit 3		17,2	108		32					
570,00	Unit 3		17,2	105		32					
574,00	Unit 3		18,2	107		35					
578,00	Unit 3		19,2	106		33					
582,00	Unit 3		18,2	109		33					
586,00	Unit 3		18,2	107		32					
590,00	Unit 3	67	16,9	115	10,31	37	4,38	2,46	1,17	5,14	3,06
594,00	Unit 3		17,2	110		34					
598,00	Unit 3		17,2	109		33					
602,00	Unit 3		18,2	108		33					
606,00	Unit 3		16,2	113		36					
610,00	Unit 3		19,2	111		33					
614,00	Unit 3		18,2	106		34					
618,00	Unit 3		17,2	107		32					
622,00	Unit 3	66	17,2	113	10,31	38	4,30	2,41	1,16	5,08	3,20

Jura/Kreide-Grenze vor Norwegen

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
59,44		Kern 6307	80	14,8	74		45	6,28	3,35	1,53	6,32	2,56
53,59		Kern 7430	82	8,9	326		243	10,75	6,95	2,38	10,48	2,36

Posidonienschiefer Dotternhausen

Teufe [cm]	S.E.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
3,5	Wilder Schiefer	64	11,9	80	4,99	42	5,01	2,72	1,27	5,51	3,12
37,5	Wilder Schiefer	57	17,0	85	5,58	54					
92,2	Wilder Schiefer, Nagelkalk	29	9,2	34	2,44	24					
131,9	Wilder Schiefer	39	10,7	46	3,34	30	2,82	1,67	0,72	3,12	2,30

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [cm]	S.E.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
157,4	Wilder Schiefer	57	16,5	74	5,03	55					
195,8	Wilder Schiefer	49	15,1	58	4,13	53	4,35	2,41	1,10	4,72	2,76
242,0	Wilder Schiefer, Nagelkalk	51	11,0	67	4,51	43					
270,6	Wilder Schiefer	62	13,8	79	5,66	46	4,67	2,69	1,22	5,26	3,32
323,0	Wilder Schiefer	49	17,2	63	4,34	59	3,83	2,15	0,98	4,33	2,83
363,9	Wilder Schiefer	52	19,5	71	4,83	61	4,04	2,24	1,04	4,51	1,71
400,0	Wilder Schiefer, Inoceramenbank	81	13,8	65	3,68	44	7,08	3,59	1,77	8,02	0,53
418,6	Oberer Schiefer	75	14,6	60	3,50	45					
470,0	Oberer Schiefer, Obere Bank	37	14,8	48	2,96	53					
513,5	Oberer Schiefer	45	19,8	51	3,13	56					
553,2	Oberer Schiefer	44	18,0	41	2,80	58	3,82	2,08	0,98	4,22	2,07
595,2	Oberer Stein	38	12,4	51	3,06	35	3,32	1,94	0,82	3,55	1,91
609,5	Oberer Stein	12	3,5	6	0,47	10					
650,3	mittlerer Schiefer	45	18,7	52	3,97	52	4,06	2,26	0,97	4,28	2,52
679,5	Steinplatte	14	4,1	5	0,49	11					
731,2	mittlerer Schiefer	45	16,9	42	3,01	51	4,14	2,29	1,01	4,44	2,98
753,0	mittlerer Schiefer	58	16,3	73	5,20	78	4,57	2,57	1,10	4,84	3,96
800,1	Unterer Stein	5	2,1	2	0,21	2	0,52	0,32	0,12	0,52	0,77
848,9	Unterer Schiefer	69	19,2	63	4,44	74					
877,0	Unterer Schiefer	66	18,0	63	4,24	95	5,78	3,31	1,37	6,14	4,18
930,8	Unterer Schiefer	64	25,1	62	4,11	112	5,90	3,20	1,45	6,39	4,16
957,0	Unterer Schiefer	72	25,3	54	3,82	90					
981,0	Obere Aschgraue Mergel	91	21,0	69	5,79	40					
1023,8	Obere Aschgraue Mergel	74	22,3	66	5,64	35					
1063,0	Seegrasschiefer	62	37,3	76	5,14	73					
1093,6	Untere Aschgraue Mergel	79	17,2	76	6,39	39					
1118,7	Tafelfleins	52	43,8	57	3,69	109					
1132,3	Blaugraue Mergel	76	18,6	58	5,62	41	4,92	2,86	1,23	5,26	2,67
1184,6	Spinatum Bank	47	8,2	26	2,87	14	3,33	1,74	0,92	3,80	1,67

Kupferschiefer	[·] Kern	Niederwald 1	
----------------	-------------------	--------------	--

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
642,850	Ca 1		35	7,9	42	8,08	4	2,50	1,35	0,66	2,86	1,34
642,870	Ca 1			8,0	39		<5					
642,890	Ca 1			7,0	58		<5					
642,910	Ca 1			8,0	39		<5					
642,928	Ca 1			8,0	45		<5					
642,943	Ca 1			10,0	45		<5					
642,960	Ca 1			10,0	58		<5					
642,980	Ca 1			7,0	48		<5					
643,000	Ca 1		50	9,6	67	12,42	9	3,24	1,81	0,86	3,58	2,01
643,020	Ca 1			8,0	54		<5					
643,040	Ca 1			10,0	62		<5					
643,060	Ca 1			11,0	49		<5					
643,080	Ca 1		43	8,8	55	10,10	11	3,15	1,67	0,82	3,44	0,54
643,098	Ca 1			10,0	54		9					
643,113	Ca 1			10,0	59		6					
643,128	Ca 1		53	11,1	79	13,14	10	3,59	2,03	0,91	4,00	2,84
643,140	Ca 1			9,0	54		5					
643,153	Ca 1			13,0	90		10					
643,168	T1 III			16,0	98		26					
643,180	T1 III		75	17,2	108	18,65	25	4,56	2,59	1,18	5,11	4,39
643,193	T1 III			16,0	84		16					
643,208	T1 III			14,0	72		35					
643,225	T1 III		48	15,9	76	12,21	55	3,20	1,81	0,81	3,56	2,78
643,243	T1 III		58	16,7	90	16,16	48	3,60	1,99	0,94	4,03	2,54
643,260	T1 III		45	17,3	74	11,07	47	3,06	1,69	0,78	3,54	2,49
643,278	T1 III		51	20,5	87	12,94	42	3,34	1,93	0,91	3,68	2,98
643,308	T1 III			16,0	71		7					
643,323	T1 III			15,0	76		16					
643,340	T1 III		49	16,4	81	11,75	16	3,42	1,94	0,86	3,71	3,71

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
643,373	T1 III		62	10,6	93	15,11	14	3,90	2,21	1,03	4,14	3,24
643,388	T1 III			20,0	95		17					
643,413	T1 III		59	20,8	101	14,70	24	3,76	2,13	0,96	4,08	3,29
643,428	T1 III			18,0	80		17					
643,446	T1 III		49	17,9	81	11,67	21	3,53	2,01	0,90	3,80	3,16
643,461	T1 III			14,0	66		8					
643,467	T1 III			14,0	77		13					
643,477	T1 III			16,5	69		18					
643,498	T1 III			15,0	95		16					
643,512	T1 III		68	18,6	106	18,38	22	4,04	2,28	1,12	4,86	3,46
643,550	T1 III			17,0	121		23					
643,565	T1 III		73	18,9	127	20,85	28	4,08	2,39	1,09	4,68	4,24
643,580	T1 III			20,0	128		40					
643,593	T1 II			27,0	132		28					
643,598	T1 II		75	18,5	124	20,81	37	4,45	2,53	1,20	4,83	4,07
643,609	T1 II			26,0	127		33					
643,624	T1 II		76	21,1	132	21,69	27	4,08	2,30	1,09	4,81	3,97
643,638	T1 II			23,0	140		27					
643,650	T1 II		72	15,4	108	17,65	41	4,32	2,45	1,12	4,55	3,58
643,665	T1 II		72	26,3	121	21,25	33	4,05	2,25	1,10	4,39	3,85
643,683	T1 II			19,0	96		23					
643,698	T1 II		59	20,0	97	17,15	25	3,30	1,87	0,92	3,93	2,66
643,718	T1 II			23,0	112		28					
643,738	T1 II			25,0	116		29					
643,763	T1 II		62	25,7	143	20,00	38	3,38	1,91	0,93	3,97	3,07
643,788	T1 II			26,0	163		24					
643,805	T1 II			23,0	151		27					
643,825	T1 II		57	22,6	125	16,38	37	3,15	1,76	0,92	3,63	2,52
643,843	T1 II			23,0	136		31					
643,858	T1 II			24,0	117		31					
643,873	T1 II		38	17,0	67	10,55	20	2,86	1,50	0,74	3,03	1,61
643,883	T1 II		43	17,4	66	12,43	39	3,08	1,65	0,85	3,79	1,65
643,895	T1 II		37	15,8	65	10,34	19	2,71	1,46	0,72	2,97	1,56

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
643,915	T1 II		36	15,6	58	9,97	20	2,73	1,43	0,73	3,06	1,36
643,940	T1 II			20,0	80		23					
643,969	T1 II		52	23,1	104	15,17	32	3,17	1,78	0,85	3,65	2,46
643,987	T1 II			19,0	62		20					
644,009	T1 II		39	16,6	62	10,92	23	2,76	1,50	0,75	3,05	1,57
644,025	T1 II		48	10,9	65	13,15	27	3,30	1,80	0,87	3,70	1,81
644,033	T1 II		58	26,8	92	17,64	39	3,33	1,86	0,90	3,62	2,68
644,038	T1 II		57	14,3	77	15,19	37	3,41	1,88	0,96	3,81	2,32
644,055	T1 II		52	11,0	72	15,54	26	3,59	1,97	0,93	3,85	2,53
644,080	T1 II		46	22,1	70	13,28	33	2,95	1,64	0,80	3,24	1,93
644,100	T1 II			19,0	61		18					
644,120	T1 II		50	20,0	82	14,47	30	3,06	1,68	0,81	3,53	2,24
644,139	T1 II			17,0	71		20					
644,156	T1 II			17,0	60		19					
644,167	T1 II		52	13,2	69	14,12	32	3,35	1,82	0,88	3,65	2,47
644,185	T1 II			17,0	80		25					
644,209	T1 II		53	20,2	89	16,25	29	3,09	1,76	0,84	3,60	2,56
644,219	T1 II		57	18,6	91	16,96	37	3,20	1,80	0,89	3,70	2,45
644,225	T1 II			21,0	92		28					
644,240	T1 II		61	21,5	102	19,30	35	3,38	1,98	0,96	3,80	3,17
644,253	T1 II			15,0	68		27					
644,261	T1 II		52	9,4	69	15,31	23	3,31	1,82	0,92	3,70	1,77
644,270	T1 II		47	15,4	69	14,11	25	2,95	1,64	0,78	3,28	1,88
644,277	T1 II		53	13,7	70	15,53	23	3,49	1,91	0,90	4,05	1,96
644,289	T1 II		47	14,8	65	13,33	23	2,94	1,66	0,80	3,26	1,84
644,307	T1 II			15,0	64		18					
644,328	T1 II		46	16,5	69	13,08	22	2,90	1,59	0,77	3,34	1,78
644,353	T1 II			18,0	76		22					
644,378	T1 II			19,0	87		27					
644,402	T1 II		52	12,1	72	14,69	30	3,31	1,86	0,91	3,72	2,32
644,426	T1 II		42	15,8	65	12,18	21	2,85	1,56	0,78	3,19	1,66
644,449	T1 II		54	21,0	91	15,70	33	3,20	1,85	0,87	3,75	2,65
644,470	T1 II			18,0	86		27					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
644,490	T1 II		49	16,4	73	14,91	26	2,96	1,67	0,82	3,32	2,32
644,513	T1 II			15,0	73		22					
644,535	T1 II			18,0	76		21					
644,553	T1 II		52	18,0	79	15,85	26	3,17	1,79	0,85	3,62	2,37
644,568	T1 II			18,0	79		22					
644,585	T1 II		54	18,0	87	16,47	32	3,17	1,78	0,85	3,39	2,57
644,608	T1 II		65	21,0	113	20,81	42	3,60	2,07	0,97	4,03	3,36
644,633	T1 II			24,0	114		36					
644,653	T1 II			21,0	105		33					
644,669	T1 II			19,0	97		30					
644,686	T1 II			21,0	93		29					
644,705	T1 II		57	21,2	97	18,26	33	3,32	1,87	0,91	3,82	2,60
644,725	T1 II			20,0	92		27					
644,743	T1 II		59	19,9	99	18,10	29	3,21	1,80	0,89	3,54	2,72
644,758	T1 I		62	21,6	110	20,01	33	3,26	1,89	0,91	3,78	2,58
644,780	T1 I			38,0	143		46					
644,810	T1 I		70	47,6	138	22,99	59	3,96	2,42	0,96	3,93	4,74
644,833	T1 I			50,0	101		80					
644,848	T1 I		59	34,1	120	18,85	45	3,43	1,97	0,88	3,61	3,26
644,878	T1 I		58	25,0	104	16,57	34	3,25	1,82	0,85	3,48	2,67
644,898	T1 I			24,0	90		34					
644,920	T1 I			26,0	86		42					
644,940	T1 I		55	29,6	102	16,16	51	3,20	1,84	0,84	3,45	2,83
644,965	T1 I		53	24,3	93	13,68	40					
644,995	T1 I			22,0	78		36					
645,018	T1 I		49	26,7	86	13,16	43	2,85	1,56	0,73	3,32	2,17
645,033	T1 I			25,0	73		38					
645,048	T1 I		53	29,7	79	14,96	43	3,01	1,72	0,82	3,36	2,32
645,065	T1 I			32,0	78		45					
645,085	T1 I		58	34,2	98	16,68	52	3,25	1,79	0,85	3,80	2,88
645,180	T1 I		69	45,5	119	19,97	59	3,45	2,00	0,95	3,79	3,27
645,200	T1 I		68	42,6	121	20,14	54	3,38	1,95	0,88	3,93	3,14
645,218	T1 I			43,0	109		53					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
645,233	T1 I		66	48,2	117	19,68	58	3,26	1,86	0,86	3,79	3,26
645,255	T1 I			49,0	110		50					
645,280	T1 I			50,0	119		56					
645,298	T1 I		73	58,7	130	21,80	68	3,65	2,09	0,99	4,15	3,37
645,313	T1 I			58,0	124		58					
645,328	T1 I		71	59,4	135	20,51	63	3,40	1,91	0,97	4,01	3,06
645,343	T1 I		65	42,2	116	18,77	37	3,22	1,90	0,88	3,92	2,72
645,358	T1 I		64	48,2	127	16,56	53					
645,408	T1 I		69	48,1	138	20,17	57	3,48	2,02	0,92	4,08	3,31
645,435	T1 I			56,0	137		64					
645,455	T1 I		73	61,1	138	16,74	80	4,03	2,27	1,00	4,54	4,11
645,475	S1		40	19,7	58	5,91	50	2,88	1,47	0,74	3,36	4,05
645,496	S1		39	35,8	70	6,24	86	2,70	1,50	0,65	2,91	4,40
645,516	S 1		40	18,5	58	7,63	42	2,80	1,50	0,70	3,21	3,46
645,535	S 1			18,0	52		35					
645,555	S 1		35	14,2	40	7,52	30	2,68	1,39	0,78	3,22	2,26
645,575	S 1			15,0	45		31					
645,595	S 1			17,0	56		36					
645,615	S 1		42	15,5	68	10,95	38	2,51	1,37	0,78	3,04	2,98
645,640	S 1		43	15,6	61	9,73	35	2,44	1,29	0,76	2,99	2,73
645,665	S1		32	21,1	60	6,20	35	2,28	1,22	0,66	2,71	2,65
645,685	S 1			29,0	59		89					
645,705	S 1			21,0	43		52					
645,725	S 1		99	21,4	60	6,03	58	17,73	5,62	8,06	25,20	0,43
645,745	S 1			32,0	45		48					
645,765	S 1		43	11,4	81	5,57	46	3,60	2,05	0,79	3,48	7,24
645,785	S1		35	13,7	82	3,91	34	2,62	1,46	0,61	2,69	6,76
645,813	S1		41	27,6	62	6,39	36	2,95	1,64	0,80	3,28	4,54
645,841	S1		33	12,8	47	6,87	15	2,23	1,26	0,64	2,56	3,18
645,864	S 1			13,0	37		11					
645,890	S1		34	45,5	41	6,32	63	2,41	1,29	0,63	2,52	2,72

Kupferschiefer Kern Lohberg

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
15,667	Ca 1		42	9,4	65	5,19	11	3,09	1,79	0,82	3,51	
15,660	Ca 1		36	9,1		4,13	14	2,70	1,57	0,66	2,84	3,63
15,645	Ca 1			9,0			13					
15,630	Ca 1			11,0			11					
15,615	Ca 1			7,0			5					
15,597	Ca 1		21	4,1		2,44	5	1,77	0,93	0,57	1,89	
15,580	Ca 1			3,0			4					
15,565	Ca 1		24	4,7	26	2,95	7	1,83	1,03	0,65	2,26	1,22
15,550	Ca 1			7,0			3					
15,535	Ca 1		26	5,3		3,21	9	1,92	1,07	0,55	2,19	
15,520	Ca 1			6,0			16					
15,505	Ca 1		28	5,0		3,42	4	2,10	1,19	0,87	2,44	1,66
15,490	Ca 1			5,0			2					
15,475	Ca 1		30	5,1		3,60	6	2,17	1,18	0,71	2,42	1,68
15,460	Ca 1			6,0			10					
15,445	Ca 1		28	5,6	35	3,53	12	2,03	1,17	1,03	2,45	1,93
15,427	Ca 1			6,0			4					
15,410	Ca 1		33	5,7		4,38	5	2,38	1,32	0,91	2,73	1,77
15,395	Ca 1			8,0			4					
15,380	Ca 1		35	5,1		4,83	2	2,24	1,30	0,73	2,55	
15,362	Ca 1			8,0			6					
15,342	Ca 1		41	8,3		5,73	4	2,87	1,66	0,86	3,18	2,43
15,321	Ca 1			9,0			7					
15,305	Ca 1		47	10,1	69	6,68	14	3,36	1,93	1,09	3,66	2,33
15,285	Ca 1			8,0			12					
15,268	Ca 1		46	11,9		6,72	18	3,49	1,98	1,10	3,78	3,77
15,250	Ca 1			10,0			11					
15,230	Ca 1		47	9,0	66	6,30	16	3,29	1,91	0,89	3,90	
15,210	Ca 1			12,0			20					
15,190	Ca 1		51	11,0		8,03	21	3,41	2,02	0,92	3,82	

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
15,163	T1 III			11,0			22					
15,142	T1 III		70	16,0	111	12,83	34	4,16	2,48	1,13	4,74	
15,131	T1 III			17,0	113		34					
15,123	T1 III		38	11,8	79	5,27	27					
15,114	T1 III			24,0	199		32					
15,101	T1 III		72	26,9	178	12,46	31					
15,090	T1 III		28	6,9	59	3,89	19	1,91	1,03	0,58	2,40	
15,079	T1 III		70	21,5	234	12,18	39					
15,068	T1 III		71	19,1	225	11,82	31					
15,060	T1 III		62	18,8	195	11,08	30	3,20	1,87	1,00	3,73	3,32
15,049	T1 III		67	19,1	201	10,82	37					
15,035	T1 III			10,0	61		16					
15,035	T1 III		32	9,7		4,01	18					
15,013	T1 III		37	10,9	86	5,42	21	2,50	1,34	0,73	2,75	1,63
14,992	T1 III		47	11,4	131	7,22	29	2,77	1,59	0,91	3,21	2,14
14,969	T1 III			13,0	135		30					
14,952	T1 III		24	6,5	45	3,06	13	1,64	0,92	0,49	2,02	0,90
14,932	T1 III			13,0	69		26					
14,908	T1 III		23	6,2	41	2,72	9	1,66	0,88	0,47	1,97	0,79
14,887	T1 III			7,0	52		13					
14,870	T1 III		28	10,5	48	4,11	14	1,91	1,08	0,74	2,21	1,32
14,850	T1 III		28	9,4	53	3,78	13	1,83	1,03	0,49	2,11	0,93
14,840	T1 III		29	9,0	52	3,94	16	1,84	1,03	0,51	2,16	1,21
14,830	T1 III		27	8,4	50	3,99	13	1,72	1,00	0,52	2,06	
14,823	T1 III		34	9,2	52	5,36	35	2,14	1,20	0,58	2,32	
14,817	T1 III		30	9,2	56	4,42	14	1,87	1,08	0,56	2,29	
14,809	T1 III		31	8,5	57	4,46	15	1,97	1,11	0,54	2,23	1,20
14,799	T1 II		36	9,1	55	5,71	22	2,11	1,20	0,68	2,59	
14,787	T1 II		33	10,8	59	4,83	20	2,03	1,14	0,57	2,39	1,43
14,774	T1 II		30	8,2	58	4,56	18	1,86	1,06	0,52	2,26	
14,753	T1 II			10,0	59		15					
14,732	T1 II		33	9,1	65	4,60	18	2,00	1,13	0,58	2,38	1,40
14,711	T1 II			10,0	51		13					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
14,691	T1 II		28	8,4	49	4,23	17	1,84	1,02	0,55	2,28	
14,671	T1 II			8,0	49		11					
14,651	T1 II		32	7,7	58	4,80	20	2,00	1,13	0,59	2,30	1,29
14,630	T1 II			10,0	61		18					
14,608	T1 II		31	8,3	58	4,56	21	2,02	1,15	0,60	2,42	1,40
14,568	T1 II		32	9,0	54	4,50	17	2,13	1,26	0,60	2,40	1,87
14,548	T1 II			7,0	52		12					
14,528	T1 II		30	7,4	51	4,13	14	1,98	1,14	0,57	2,39	
14,508	T1 II			8,0	50		13					
14,487	T1 II			11,0	69		19					
14,468	T1 II		36	8,1	60	5,04	19	2,26	1,28	0,63	2,55	1,47
14,450	T1 II			12,0	82		27					
14,428	T1 II			12,0	89		25					
14,411	T1 II			15,0	90		30					
14,394	T1 II		47	13,0	87	6,75	26	2,68	1,55	0,74	3,03	2,18
14,374	T1 II			14,0	114		35					
14,355	T1 II		65	22,6	155	11,43	57	3,29	1,94	1,02	4,08	
14,340	T1 II			24,0	158		55					
14,322	T1 II		53	17,5	120	8,33	40	2,87	1,64	0,81	3,28	2,71
14,302	T1 II			21,0	117		48					
14,282	T1 II		54	19,5	115	8,01	38	2,71	1,60	0,79	3,24	2,50
14,263	T1 II			23,0	147		48					
14,243	T1 II		55	17,2	120	7,82	42	2,90	1,67	0,80	3,30	
14,223	T1 II		37	9,4	66	4,59	24	2,69	1,54	0,70	2,83	2,16
14,202	T1 II		35	8,5	64	4,57	19	2,62	1,57	0,68	2,87	
14,178	T1 II		49	16,5	105	6,76	35	2,70	1,47	0,72	3,08	
14,153	T1 II			18,0	109		47					
14,130	T1 II		46	14,0	91	6,19	30	2,65	1,43	0,72	2,97	
14,110	T1 II			15,0	75		30					
14,090	T1 II		43	13,8	71	5,29	37	2,51	1,37	0,72	2,99	
14,070	T1 II			15,0	87		34					
14,050	T1 II		45	13,5	79	6,05	33	2,74	1,52	0,77	3,01	2,49
14,025	T1 II			13,0	74		28					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
14,005	T1 II		31	9,5	60	3,66	26	2,27	1,22	0,61	2,55	
13,985	T1 II			11,0	55		21					
13,965	T1 I		29	11,1	53	3,15	27	2,07	1,16	0,60	2,40	
13,945	T1 I			12,0	54		23					
13,923	T1 I		32	12,6	52	3,84	30	2,15	1,15	0,64	2,57	
13,903	T1 I			14,0	72		33					
13,881	T1 I		48	18,0	83	6,49	39	2,71	1,54	0,75	3,05	2,52
13,861	T1 I		46	17,5	79	6,12	43	2,55	1,42	0,72	2,85	
13,840	T1 I			21,0	91		45					
13,819	T1 I		54	21,8	95	7,12	47	2,77	1,59	0,79	3,26	
13,802	T1 I			23,0	93		53					
13,782	T1 I		55	22,3	95	7,09	47	2,80	1,52	0,80	3,26	
13,762	T1 I			25,0	97		53					
13,742	T1 I		58	24,0	104	8,01	50	2,93	1,70	0,81	3,40	
13,722	T1 I			26,0	106		47					
13,702	T1 I		62	30,6	115	8,85	51	2,79	1,63	0,82	3,37	
13,682	T1 I			29,0	113		52					
13,662	T1 I		60	24,8	118	8,54	51	2,91	1,63	0,83	3,32	
13,643	T1 I			27,0	112		47					
13,621	T1 I		58	28,0	112	7,80	47	2,77	1,55	0,82	3,24	2,46
13,585	T1 I		57	28,9	107	7,71	47	2,70	1,54	0,81	3,20	
13,567	T1 I			30,0	115		41					
13,545	T1 I		64	27,8	115	8,24	49	2,92	1,64	0,89	3,35	
13,524	T1 I			28,0	128		45					
13,513	T1 I			30,0	135		48					
13,503	T1 I		64	28,0	127	8,32	48	2,89	1,65	0,92	3,58	
13,493	T1 I			25,0	116		58					
13,483	T1 I			30,0	122		53					
13,471	T1 I		63	28,3	123	8,22	49	3,05	1,80	0,90	3,58	3,03
13,458	T1 I			28,0	117		45					
13,450	T1 I			27,0	118		50					
13,443	T1 I		61	29,1	116	7,83	54	3,12	1,79	0,87	3,54	
13,433	T1 I			28,0	108		50					
Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
13,423	T1 I		60	25,2	115	7,53	46	3,22	1,83	0,91	3,67	3,21
13,414	T1 I			33,0	122		50					
13,406	T1 I		66	28,9	115	8,17	52	3,22	1,86	0,91	3,96	
13,398	T1 I			27,0	108		51					
13,389	T1 I		67	33,1	121	8,58	58	3,44	1,96	0,95	4,19	
13,379	T1 I			32,0	103		56					
13,369	T1 I			29,0	91		41					
13,357	T1 I		52	23,7	76	5,55	34	3,33	1,88	0,88	3,74	2,86
13,344	S1		21	26,8	42	1,18	44	2,42	1,16	0,83	3,32	
13,326	S1			11,0	69		9					
13,310	S1			14,0	96		20					
13,288	S1		57	19,3	155	2,89	185	3,69	2,07	1,00	4,29	
13,260	S1			16,0			15					
13,245	S1			48,0	215		36					
13,229	S1		18	43,7		1,30	34	1,61	0,89	0,51	1,91	2,07
13,211	S1			29,0	26		11					
13,197	S1		33	10,0	39	2,16	16	2,51	1,42	1,64	3,12	
13,153	S1			10,0			20					
12,829	S1			8,0	44							
12,249	S1			10,0	84		13					
10,490	S1			7,0	87		17					
10,400	S1			13,0	86							
10,043	S1		67	7,8	87	6,55	4	4,46	2,50	1,13	4,88	7,73
9,535	S1			10,0	103							
9,205	S1		64	35,0	85	6,76	11	8,02	3,59	2,11	8,83	
7,473	S1			9,0	98		10					
6,735	S1			14,0	88							

Kupferschiefer Kern Goslar Z1

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
6,120				22,0	78		51					
6,140				9,0	65		14					
6,140				11,0	62		17					
6,365			49	14,7	65	49,89	17	3,25	1,94	0,77	3,76	
6,385				31,0	79		28					
6,395	T1		58	24,7	82	28,19	24	3,81	2,24	0,82	4,20	4,62
6,405	T1			28,0	81		35					
6,415	T1		61	31,3	85	27,76	35	3,85	2,25	0,87	4,38	4,86
6,426	T1			26,0	83		24					
6,439	T1		66	24,5	92	33,28	30	3,86	2,38	0,88	4,54	5,04
6,453	T1			49,0	73		49					
6,465	T1		42	37,9	60	20,89	44	2,84	1,60	0,65	3,39	2,30
6,475	T1			31,0	64		33					
6,485	T1		39	31,8	61	16,39	34	2,66	1,50	0,60	3,15	2,05
6,495	T1			35,0	71		23					
6,515	T1		59	125,5	159	33,60	97	4,54	2,28	1,10	5,75	1,60
6,525	T1			79,0	75		65					
6,535	T1		35	70,2	61	18,82	68	2,62	1,34	0,63	3,37	1,29
7,016			85	59,6	56	20,93	178	3,38	1,86	1,01	4,57	
7,025				26,0	42		161					
7,034				26,0	49		229					
7,045				34,0	61		321					
7,055				42,0	74		381					
7,065				31,0	61		362					
7,075				27,0	60		679					
7,205				52,0	96		406					
7,215				45,0	90		210					
7,225				67,0	109		294					
7,235				19,0	56		87					

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
7,245				18,0	31		114					
7,255				19,0	38		139					
7,405				108,0	92		95					
7,415				90,0	74		56					
7,425				85,0	58		69					
7,435				60,0	76		76					
7,445				45,0	82		54					
7,455				222,0	74		77					
7,465				47,0	74		84					
7,475				44,0	76		70					
7,499				41,0	97		47					
7,514				44,0	100		72					
7,700				7,0	67		< 10					
7,722				7,0	346		< 10					
7,741				5,0	139		< 10					
7,758				8,0	163		< 10					
7,778				5,0	108		< 10					
7,798				3,0	121		< 10					
7,817				6,0	97		< 10					
7,834				7,0	88		< 10					
7,849				8,0	109		< 10					
7,865				7,0	156		< 10					
7,885				8,0	286		10					
7,905				18,0	95		< 10					
7,925				11,0	115		< 10					
7,945				7,0	90		11					
7,965				9,0	90		< 10					
7,988				9,0	189		17					

Pennsylvanische Zyklothemen

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
3,86	Heebner	WL5	93	15,2	426	6,84	68					
4,14	Heebner	WL4	34	15,4	478	7,58	78	2,23	1,51	0,57	2,35	3,51
4,33	Heebner	WL3	31	11,7	897	7,67	82	1,94	1,33	0,43	1,99	8,61
4,50	Heebner	WL2	29	13,3	341	7,27	74	1,24	1,02	0,33	1,35	3,84
4,76	Heebner	WL1	29	48,0	481	7,04	104	1,15	0,84	0,31	1,29	
7,10	Heebner	CL5	56	13,3	868	6,98	120	2,16	1,36	0,45	2,37	2,79
7,34	Heebner	CL4	37	8,2	583	8,22	60	0,67	0,52	0,22	0,94	4,00
7,57	Heebner	CL3	33	14,4	602	6,92	90	2,43	1,54	0,61	2,53	
7,82	Heebner	CL2	28	15,0	319	7,22	68	1,07	0,90	0,30	1,19	3,72
8,06	Heebner	CL1	51	21,5	355	7,44	131	4,00	2,25	1,03	4,47	
116,49	Eudora	WL13	83	18,0	153	9,15	46	3,63	2,21	0,91	4,26	5,68
116,59	Eudora	WL12	81	25,8	162	8,86	47	4,14	2,47	1,06	4,62	4,11
116,91	Eudora	WL11	67	23,6	195	9,75	64	2,86	1,73	0,74	3,21	3,60
117,11	Eudora	WL10	53	19,2	151	8,01	36	2,48	1,78	0,53	2,43	4,97
117,35	Eudora	WL9	53	20,8	539	8,81	109	3,09	1,97	0,82	3,44	3,48
117,48	Eudora	WL8	67	13,7	929	6,56	131	5,35	3,07	1,36	6,23	
117,64	Eudora	WL7	58	22,3	373	7,81	126	2,40	1,65	0,60	2,58	3,42
117,82	Eudora	WL6	46	14,9	141	7,09	49	2,00	1,48	0,45	2,00	3,40
187,29	Lake Neosho	ED14	195	11,5	1095	6,43	487	19,10	9,59	4,75	23,00	
200,02	Anna	ED13	50	18,7	189	7,43	52	2,40	1,72	0,56	2,52	3,96
200,17	Anna	ED12	28	14,3	954	6,33	138	1,74	1,23	0,40	1,77	3,21
200,33	Anna	ED11	99	10,0	1119	4,96	136	12,79	7,41	2,91	13,64	
219,06	Exshello	ED3	18	12,7	550	5,84	181	0,65	0,68	0,17	0,67	2,98
219,42	Exshello	ED2	89	19,2	1313	4,16	86	9,73	5,99	2,16	10,39	
219,68	Exshello	ED1	91	63,5	210	5,61	161	7,46	3,70	2,15	9,32	

Exshaw Formation Standort Jura Creek

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
14,55		JC45	34	7,2	35	4,45	14	2,84	1,59	0,76	3,33	2,01
14,20		JC44	37	6,5	43	5,37	14	3,28	1,86	0,86	3,84	1,73
13,75		JC43	55	14,1	73	10,57	36	3,57	2,18	0,83	3,97	2,11
13,15		JC42	58	13,7	88	15,10	25	3,62	2,27	0,87	4,08	2,63
12,75		JC41	59	12,6	74	10,80	25	4,08	2,36	1,08	4,92	
12,50		JC40	54	10,9	66	9,61	20	4,03	2,30	1,11	4,90	2,33
11,85		JC39	62	13,4	82	14,24	24	3,90	2,41	0,99	4,58	3,15
11,35		JC38	46	8,6	51	5,46	24	4,10	2,32	1,24	5,29	1,32
11,00		JC37	31	2,1	83	8,63	13	1,55	1,09	0,37	1,55	2,26
9,65		JC35	38	10,3	84	8,02	41	2,95	1,78	0,77	3,44	2,00
9,45		JC34	35	9,2	81	7,60	38	2,59	1,60	0,65	2,87	1,91
8,95		JC33	34	2,4	84	10,15	17	1,68	1,15	0,41	1,81	1,98
8,65		JC32	28	7,2	52	4,42	28	2,29	1,39	0,58	2,70	1,29
8,40		JC31	19	2,2	57	3,74	19	0,89	0,65	0,29	1,17	1,20
8,15		JC30	19	2,1	68	4,63	15	0,96	0,67	0,23	1,00	1,67
7,95		JC29	21	3,0	70	5,04	18	1,09	0,76	0,27	1,15	1,85
7,65		JC28	17	1,4	41	4,02	13	0,92	0,63	0,23	1,03	0,97
7,35		JC27	25	5,2	67	5,63	23	1,64	1,10	0,36	1,77	1,54
7,20		JC26	23	5,2	51	4,61	25	1,56	0,99	0,36	1,79	1,52
7,05		JC25	15	4,9	55	1,54	24	1,26	0,87	0,36	1,24	1,33
6,90		JC24	20	4,6	53	3,81	25	1,45	0,90	0,34	1,60	
6,35		JC22	26	6,5	54	3,99	28	2,00	1,22	0,47	2,26	
6,10		JC18	27	7,6	65	3,91	34	2,65	1,47	0,62	3,25	1,36
5,63		JC17	18	3,9	16	1,43	22	1,44	0,91	0,41	1,70	0,56
5,53		JC16	18	1,2	62	6,15	7	0,58	0,42	0,14	0,66	
5,18		JC15	24	5,5	58	5,34	18	1,34	0,96	0,28	1,29	1,79
4,83		JC14	32	13,1	64	5,85	43	2,67	1,58	0,65	2,98	1,79
4,58		JC13	26	31,9	40	2,62	39	2,40	1,54	0,49	2,46	
4,53		JC12	140	217,4	58	0,66	107	12,92	5,38	3,45	18,28	0,36

Exshaw Formation Standort Shell Whiskey

Teufe [m]	S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
3687,80		XD3	50	9,8	54	4,57	46					
3688,00		XD5+6	38	10,6	64	5,95	39					
3688,35		XD7	34	6,7	40	3,64	24					
3688,75		XD9	38	8,2	55	5,77	23					
3689,10		XD10	39	10,9	66	7,52	25					
3689,40		Xd11	46	11,7	67	7,85	28					
3689,70		XD12	45	12,6	72	8,85	31					
3690,40		XD14	50	15,2	79	10,41	27					
3690,65		XD15	51	13,3	81	10,34	27					
3690,85		XD16	50	16,0	82	10,13	30					
3691,35		XD17	51	14,2	83	10,56	30					
3691,60		XD18	52	14,6	84	10,48	30					

Graptolithenschiefer aus Thüringen

S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
Mitteldevon	6529_826	81	18,0	97	6,00	121	6,21	3,36	2,07	7,65	
Mitteldevon	6529_867	73	24,6	103	9,29	135	3,65	2,16	1,10	4,42	
Mitteldevon	7515_428		19,0	120		160					
Mitteldevon	7515_448		21,0	120		65					
Mitteldevon	7515_468		28,0	80		64					
Mitteldevon	6529_823	58	19,6	197	4,64	73	6,71	3,67	2,27	6,96	3,69
Mitteldevon	6529_849	158	21,3	109	9,25	140	4,94	2,49	2,47	9,24	2,69
Mitteldevon	6003_208-210			83							
Mitteldevon	7515_490		34,0	66		64					
Unterdevon	6003_425	109	27,6	119	12,27	51	7,23	3,98	2,22	9,52	
Unterdevon	6003_430	26	5,9	28	4,15	108	3,32	2,09	1,21	3,08	
Unterdevon	6003_433	31	16,4	110	8,36	227	4,44	3,05	0,99	4,15	2,50
Unterdevon	6003_438_53	65	15,9	85	8,49	144	5,48	3,57	1,44	6,12	

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
Unterdevon	6003_443	108	24,2	96	19,21	44	5,40	3,45	1,87	7,19	
Unterdevon	6003_89_178	68	8,9	97	16,21	7	3,91	2,48	1,47	4,92	
Unterdevon	6003_89_186	104	15,6	87	8,15	76	11,85	5,49	3,27	14,10	
Unterdevon	6003_89_193	66	23,7	104	11,20	110	7,43	3,81	2,03	7,93	
Unterdevon	6003_89_428	108	28,1	130	11,61	52	9,56	5,44	2,50	11,13	2,93
Unterdevon	6175_200	33	9,2	38	2,84	82	2,99	1,91	0,81	3,29	0,43
Unterdevon	6175_201	70	13,8	176	8,94	289	8,11	5,43	1,87	8,08	
Unterdevon	6175_218	46	9,5	147	6,19	356	7,42	4,45	1,70	7,65	
Unterdevon	6175_221	44	12,2	113	9,13	219	4,56	3,12	1,03	4,31	2,61
Unterdevon	6175_234	72	23,3	95	9,43	150	8,96	5,47	1,82	8,56	
Unterdevon	6175_249	69	20,1	244	11,56	462	6,67	4,68	1,50	6,37	
Unterdevon	6175_253	45	11,3	189	6,57	294	7,06	4,57	1,77	7,19	2,17
Unterdevon	6175_258	61	13,4	97	8,04	196	9,23	5,48	2,30	9,80	1,76
Unterdevon	6175_274	64	19,8	71	8,40	141	5,65	3,42	1,34	5,96	
Unterdevon	6175_280	99	24,7	116	10,84	226	9,87	6,20	1,94	9,67	3,85
Unterdevon	6177_280	66	13,5	148	9,93	297	9,84	6,31	2,33	9,53	
Unterdevon	6177_283	48	10,4	111	7,94	187	5,03	3,22	1,26	5,38	
Unterdevon	6177_291	95	23,7	91	9,68	163	9,10	5,90	1,86	8,11	
Unterdevon	6177_298	81	21,6	109	9,68	122	8,44	5,19	1,56	7,58	
Unterdevon	6529_954	75	10,9	157	7,41	292	12,45	8,90	2,50	11,05	
Unterdevon	7515_555[53]		16,5	142		313					
Unterdevon	7515_560[53]		17,5	120		247					
Unterdevon	7515_569		20,5	82		120					
Unterdevon	7515a_488	92	46,9	92	9,84	93	4,47	2,35	1,79	7,07	
Unterdevon	6529_952	59	16,7	97	7,62	500	5,77	3,51	1,34	5,84	2,75
Unterdevon	6003_473		12,0	88		61					
Unterdevon	6175_261		19,0	78		97					
Unterdevon	7515_562		13,0	79		154					
Unterdevon	7515_567		8,0	172		223					
Unterdevon	7515_573		13,0	99		153					
Unterdevon	7515_590		21,0	79		175					
Unterdevon	7515_591		17,0	90		176					
Silur	6003_525	97	18,2	88	8,89	32	6,19	3,29	1,68	7,19	

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
Silur	6175_343	88	14,6	129	6,69	117	12,75	8,14	2,59	12,52	
Silur	6175_367	35	11,3	83	1,57	166	8,50	5,27	1,83	8,47	
Silur	6175_378	37	9,3	107	1,36	172	6,17	3,93	1,42	6,47	
Silur	6175_383	30	6,0	206	1,57	158	7,42	4,60	1,55	7,52	
Silur	6175_394	28	9,8	94	1,98	176	4,37	2,91	0,89	4,19	
Silur	6175_89_350	59	48,8	140	5,42	190	10,30	6,69	1,88	10,00	
Silur	6175_89_357	46	8,8	205	4,70	285	11,80	7,76	2,40	11,32	
Silur	6177_436	61	15,3	119	5,96	128	11,55	7,30	2,44	10,87	
Silur	6177_448	47	12,7	191	6,07	311	7,71	4,68	1,70	7,59	
Silur	6177_463	9	3,0	30	0,77	226	2,31	1,47	0,46	2,16	
Silur	6177_466	25	13,0	44	2,72	141	5,71	3,55	1,16	5,52	
Silur	7512_590_2	53	19,1	84	5,95	171	4,16	3,02	0,94	4,15	2,07
Silur	7512_595	20	4,0	49	1,28	28	6,24	3,92	1,28	5,63	
Silur	7512_597-600	72	10,8	146	3,76	77	22,33	11,45	5,44	23,93	
Silur	7512_603	67	36,5	62	4,22	514	12,43	7,72	2,90	11,76	
Silur	7512_637	97	13,8	95	7,62	14	6,10	3,37	1,68	7,04	
Silur	7512_86_610	24	4,8	83	1,22	679	5,92	3,68	1,38	5,77	
Silur	6177_458	50	23,7	75	6,21	287	7,79	4,59	1,70	7,77	
Silur	7512_86_615- 624	19	7,1	24	1,01	122	4,13	2,47	0,85	3,76	
Silur	RONN 92_6	74	5,5	63	9,84	29	6,36	3,58	1,55	7,00	6,10
Silur	RONN 92_8	65	4,1	132	5,80	41	10,12	6,11	2,18	9,93	
Silur	RONN 92_9	46	1,0	112	3,67	31	9,77	5,56	2,41	10,46	
Silur	RONN-92_11	54	2,3	482	3,62	152	10,26	5,48	2,07	10,01	
Silur	RONN-92_12	43	16,5	263	3,58	243	4,69	2,92	1,41	5,90	
Silur	RONN-92_3	23	1,2	38	1,91	58	4,89	3,14	0,63	3,69	
Silur	RONN-92_4	25	2,3	52	3,18	129	8,88	5,76	1,63	8,33	
Silur	6003_522		26,0	102		46					
Silur	6003_523		15,0	80		108					
Silur	6175_345		17,0	128		495					
Silur	6175_363		8,0	102		239					
Silur	6175_373		13,0	66		273					
Silur	6177_350			81							

Datenanhang – Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf

S.E.	Proben- bezeichn.	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
Silur	7515_707			116							
Silur	7515_719		10,0	137		147					
Silur	Ronn92_1		2,0	9		40					
Silur	Ronn92_10		2,0	243		185					
Silur	Ronn92_13		10,0	188		283					

Tanezzuft Formation in Libyen

Teufe [ft]	S.E.	Proben-	Ce [ppm]	Co [ppm]	Cr [ppm]	Cs [ppm]	Cu [ppm]	Dy [ppm]	Er [ppm]	Eu [ppm]	Gd [ppm]	Hf [ppm]
1		bezeichn.	-11 -		-11 -	-11 -	-11 -	241 3	-11 -		-11 -3	-11 -
7237,18	Silur	LAN 4-138	82		133	9,77	97	6,12	3,57	1,75	6,99	2,96
7241,20	Silur	LAN 4-128	72		110	8,95	117	5,45	3,10	1,50	6,22	2,83
7242,54	Silur	LAN 4-124	71	39,0	110	9,00	127	5,45	3,18	1,47	6,24	2,54
7246,06	Silur	LAN 4-117	71		92	8,13	146	5,91	3,61	1,46	6,21	2,66
7248,41	Silur	LAN 4-109	70		100	9,17	202	6,80	4,03	1,68	7,33	2,37
7250,25	Silur	LAN 3-105	83	50,3	102	9,31	207	7,34	4,53	1,87	7,99	2,19
7251,59	Silur	LAN 3-101	80	41,1	102	9,74	219	7,72	4,70	1,87	8,13	2,53
7253,10	Silur	LAN 3-97	66		99	8,79	216	6,31	3,86	1,57	6,72	3,02
7255,28	Silur	LAN 3-92	85		98	8,74	234	9,59	5,84	2,26	10,05	2,43
7256,45	Silur	LAN 3-89	64		91	8,49	202	7,33	4,56	1,69	7,54	2,94
7257,46	Silur	LAN 3-86	74	46,1	93	8,62	220	6,99	4,42	1,62	7,31	2,34
7259,47	Silur	LAN 3-83	76	41,0	93	9,11	217	7,34	4,55	1,79	7,58	2,59
7262,32	Silur	LAN 3-78	72		90	8,63	206	7,15	4,53	1,68	7,47	2,72
7265,50	Silur	LAN 3-71	72		91	8,63	148	5,82	3,52	1,42	6,42	3,06
7268,35	Silur	LAN 2-64	74	31,9	96	10,06	142	6,76	3,72	1,75	7,59	2,94
7271,20	Silur	LAN 2-57	78	33,8	105	10,39	174	6,14	3,49	1,58	6,90	2,87
7274,38	Silur	LAN 2-50	71		99	9,04	181	6,55	3,81	1,65	7,19	3,15
7277,57	Silur	LAN 2-42	69	30,8	107	9,76	178	5,58	3,30	1,44	5,99	2,95
7281,76	Ordovizium	LAN 2-29	79	28,8	116	10,67	184	7,20	4,15	1,78	7,63	3,34
7287,63	Ordovizium	LAN 2-15	69		88	9,25	135	5,48	3,18	1,44	5,66	2,42
7289,80	Ordovizium	LAN 2-11	72		98	9,63	156	6,33	3,84	1,62	6,90	2,95

Auftriebsgebiet vor Peru

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
40-45		Kern SL 40			46		25,1		40	17,2		90
85-90		Kern SL 40			10		15,0		34	16,2		95
14-14,5		Kern MC 45			26		97,0		110	13,0		40
23-23,5		Kern MC 45			32		38,5		90	11,8		57

Schwarzes Meer Station 6

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
1,50	Unit 1		0,62	19	27	0,25	80,4	17,1	68	61,9	4,4	58
2,50	Unit 1		0,65	21	31	0,27	92,0	18,3	65	60,9	4,7	61
3,50	Unit 1		0,72	22	34	0,29	64,7	20,0	55	44,6	5,1	69
4,50	Unit 1		0,65	20	30	0,26	53,3	17,3	49	23,7	4,4	60
5,50	Unit 1		0,69	19	30	0,28	59,9	18,4	49	24,5	4,7	62
6,50	Unit 1		0,71	22	33	0,28	58,0	19,4	54	26,8	5,1	69
7,50	Unit 1		0,74	22	36	0,30	61,0	19,6	56	25,6	5,0	70
8,50	Unit 1		0,73	22	37	0,29	59,6	19,7	62	22,4	5,0	74
9,50	Unit 1		0,79	25	42	0,32	60,0	21,7	57	21,9	5,5	80
11,50	Unit 1		0,67	20	37	0,28	59,3	18,3	55	20,4	4,8	72
12,50	Unit 1		0,63	19	33	0,25	48,2	15,9	47	18,1	4,3	65
13,50	Unit 1		0,65	20	35	0,26	61,1	18,1	50	20,8	4,6	69
14,50	Unit 1		0,70	22	38	0,29	60,6	18,5	61	18,2	4,9	73
16,00	Unit 1		0,69	20	35	0,29	67,1	18,0	62	20,2	4,5	64
20,00	Unit 1		0,49	14	25	0,20	64,6	13,0	45	16,7	3,2	47
22,00	Unit 1		0,46	13	20	0,19	43,9	11,1	39	11,5	2,9	40
24,00	Unit 1		0,70	21	36	0,29	73,8	18,7	64	23,1	4,8	73
26,00	Unit 1		0,66	20	33	0,28	65,0	18,1	63	22,7	4,6	67
30,00	Unit 1		0,60	18	31	0,25	121,3	15,5	59	11,9	4,0	59
32,00	Unit 1		0,71	20	36	0,30	79,2	19,1	73	15,3	4,9	69
34,00	Unit 1		0,62	19	31	0,26	58,6	16,8	62	12,0	4,3	58

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
36,00	Unit 1		0,60	17	31	0,25	75,7	15,8	58	11,8	4,0	56
40,00	Unit 1		0,44	15	26	0,18	58,7	11,9	51	10,4	3,0	51
42,00	Unit 1		0,61	18	29	0,25	67,2	16,0	60	12,1	4,0	58
44,00	Unit 1		0,66	18	29	0,28	82,9	17,5	72	14,5	4,5	57
46,00	Unit 1		0,53	19	34	0,22	69,8	14,0	64	12,1	3,5	54
49,50	Unit 1		0,73	23	39	0,30	81,3	20,1	89	20,4	5,3	74
60,00	Unit 2a		0,81	28	63	0,34	63,5	24,0	102	19,8	6,3	101
70,00	Unit 2a		0,90	30	63	0,38	98,9	27,0	103	19,1	7,1	113
80,00	Unit 2a		0,83	28	59	0,36	95,7	24,9	104	18,7	6,6	106
90,00	Unit 2a		0,83	28	63	0,36	96,1	25,1	105	20,5	6,5	102
100,00	Unit 2a						190,2		113	17,3		90
110,00	Unit 2a		0,73	21	49	0,31	303,8	20,0	126	15,3	5,0	70
120,00	Unit 2a		0,73	22	45	0,30	337,1	20,4	141	15,5	5,3	81
130,00	Unit 2a		0,71	24	35	0,30	32,4	21,2	54	12,1	5,5	80
140,00	Unit 2b								28	11,8		79
150,00	Unit 2b		0,70	26	35	0,29	2,9	21,5	33	12,3	5,7	80
160,00	Unit 2b		0,65	23	32	0,27	2,1	20,0	32	12,0	5,4	76
170,00	Unit 2b		0,62		36	0,26	1,2	19,9	40	14,5	5,4	89
180,00	Unit 2b		0,66			0,27	1,0	21,7	43	14,9	5,8	91
190,00	Unit 2b		0,64			0,26	0,9	21,3	44	14,8	5,7	96
200,00	Unit 3		0,69			0,27	0,8	23,0	41	14,1	6,2	93
210,00	Unit 3		0,74			0,31	0,7	22,6	46	14,4	6,0	91
220,00	Unit 3								41	14,2		91
230,00	Unit 3		0,74			0,31	0,7	23,4	43	16,2	6,7	92
240,00	Unit 3								42	14,8		92
250,00	Unit 3		0,70		37	0,28	0,9	23,0	43	15,0	6,5	91
260,00	Unit 3								46	15,3		98
270,00	Unit 3		0,68			0,27	0,9	22,0	43	15,2	5,8	94
280,00	Unit 3								42	15,3		93
290,00	Unit 3		0,79		40	0,33	0,9	23,8	46	16,6	6,5	96
300,00	Unit 3								47	16,9		101
310,00	Unit 3		0,76		45	0,30	0,9	24,5	51	18,2	6,7	106
320,00	Unit 3								50	18,4		104

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
330,00	Unit 3		0,79			0,32	0,9	24,1	49	17,4	6,5	105
340,00	Unit 3								51	16,8		105
350,00	Unit 3		0,81			0,32	0,8	25,6	52	19,4	6,8	111
360,00	Unit 3		0,81			0,32	0,7	25,0	51	18,1	6,7	108
370,00	Unit 3		0,75			0,29	0,8	24,5	52	18,1	6,6	107
380,00	Unit 3		0,76			0,30	0,8	24,5	49	18,0	7,3	105
410,00	Unit 3		0,76			0,30	0,9	23,6	51	18,9	7,1	107
450,00	Unit 3		0,78			0,30	1,0	24,8	51	18,5	6,6	109
490,00	Unit 3		0,80		44	0,31	0,7	25,1	55	18,6	6,8	108
530,00	Unit 3								52	18,2		109
610,00	Unit 3								55	18,4		107
690,00	Unit 3		0,76			0,30	0,9	24,7	57	19,2	6,5	117
770,00	Unit 3								53	17,9		110
850,00	Unit 3								54	20,7		112

Schwarzes Meer Station 7

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
2,50	Unit 1		0,39	13	24	0,16		11,3	47	38,7	3,1	
3,50	Unit 1						32,5		54	47,4		53
4,50	Unit 1		0,58	18	26	0,23	33,8	16,5	52	34,4	4,2	55
5,50	Unit 1						29,6		48	25,1		52
6,50	Unit 1		0,61	19	25	0,25	31,4	16,8	53	22,0	4,3	53
7,50	Unit 1		0,64	19	31	0,26	34,8	17,8	54	21,5	4,7	60
8,50	Unit 1		0,67	20	36	0,27	39,9	18,7	62	20,4	4,8	66
9,50	Unit 1		0,70	20	31	0,27	34,1	17,4	53	19,8	4,7	61
10,50	Unit 1		0,60	18	34	0,24	38,9	16,6	56	20,2	4,3	56
11,50	Unit 1		0,62	18	33	0,24	36,9	16,5	62	18,5	4,2	54
12,50	Unit 1		0,63	18	28	0,26	44,6	16,7	71	19,1	4,3	57
13,50	Unit 1		0,61	17	35	0,25	44,2	16,3	69	17,7	4,1	53
14,50	Unit 1						41,0		59	18,2		49

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
16,00	Unit 1		0,50	14	21	0,20	37,2	12,9	55	18,6	3,4	41
18,00	Unit 1		0,45	13	17	0,20	34,2	11,8	50	15,4	2,9	38
20,00	Unit 1		0,36	10	15	0,16	30,8	9,3	39	13,2	2,4	31
22,00	Unit 1		0,44	11	16	0,19	33,7	10,7	42	14,9	2,7	34
24,00	Unit 1		0,39	10	13	0,17	25,6	9,6	36	10,7	2,3	28
26,00	Unit 1		0,52	13	15	0,21	28,3	12,3	44	10,3	3,0	33
28,00	Unit 1		0,60	17	24	0,24	40,5	15,6	72	18,0	4,0	50
30,00	Unit 1		0,62	18	30	0,26	48,3	16,5	74	25,6	4,3	58
32,00	Unit 1		0,56	15	24	0,23	41,6	14,2	66	17,8	3,7	45
33,35	Unit 1											
34,15	Unit 1		0,58	17	25	0,23	31,7	15,5	50	10,8	3,9	47
34,80	Unit 1						35,9		50	10,8		43
36,00	Unit 1						35,9		51	10,4		46
38,00	Unit 1											
39,00	Unit 1											
40,00	Unit 1		0,63	19	36	0,26	45,9	16,9	69	11,3	4,4	58
40,00	Unit 1		0,64	20	38	0,26	53,4	17,7	78	15,8	4,7	64
42,00	Unit 1		0,59	15	28	0,24	39,7	14,2	62	9,4	3,5	41
44,00	Unit 1		0,66	18	41	0,27	51,1	17,2	96	13,2	4,4	57
46,00	Unit 1		0,57	16	33	0,23	50,7	14,9	94	11,5	3,8	51
47,50	Unit 1		0,48	14	22	0,19	37,7	12,9	80	10,3	3,4	41
50,00	Unit 1		0,78	25	59	0,33	69,6	21,9	94	18,5	5,8	92
60,00	Unit 2a		0,82	26	54	0,37	97,1	22,7	107	17,9	5,9	92
70,00	Unit 2a		0,67	19	40	0,32	88,6	17,2	88	13,6	4,4	67
80,00	Unit 2a		0,65	20	45	0,30	99,7	17,8	108	17,2	4,6	76
90,00	Unit 2a		0,78	22	46	0,37	111,3	19,9	112	19,2	5,2	84
100,00	Unit 2a		0,63	18	41	0,30	120,7	16,4	107	15,8	4,2	74
120,00	Unit 2a		0,70	17	37	0,30	198,9	16,1	137	13,2	4,0	62
137,50	Unit 2a		0,59	17	42	0,26	125,2	16,0	128	18,4	4,1	77
138,25	Unit 2a		0,66	19	45	0,29	97,3	17,2	138	15,2	4,5	82
138,75	Unit 2a						76,7		139	16,7		80
139,25	Unit 2a		0,72	20	43	0,31	72,5	17,5	145	18,3	4,7	79
140,00	Unit 2a		0,52	16	36	0,24	193,5	14,2	112	15,1	3,9	70

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
140,25	Unit 2a		0,55	18	37	0,24	68,2	16,2	121	23,3	4,2	72
141,25	Unit 2a		0,59	19	47	0,26	72,7	17,2	122	16,9	4,7	82
141,75	Unit 2a		0,60	19	41	0,25	91,5	17,0	127	19,0	4,5	79
142,25	Unit 2a		0,58	19	37	0,25	128,3	16,6	137	13,7	4,3	77
142,75	Unit 2a		0,61	17	34	0,27	137,8	15,9	146	14,0	4,2	70
143,50	Unit 2a		0,60	19	44	0,26	101,3	17,1	130	18,3	4,5	79
144,50	Unit 2a		0,55	19	44	0,24	114,8	17,3	133	19,8	4,6	82
145,25	Unit 2a		0,69	23	51	0,28	63,4	21,0	101	17,4	5,6	95
145,75	Unit 2b		0,69	22	46	0,28	43,4	20,3	74	15,9	5,3	86
146,25	Unit 2b		0,68	22	47	0,28	29,8	20,2	60	14,7	5,3	87
146,75	Unit 2b		0,68	22	47	0,27	24,9	20,4	56	15,8	5,4	85
147,50	Unit 2b						24,9		50	19,7		86
148,50	Unit 2b						17,6		48	12,4		85
149,50	Unit 2b						16,6		44	14,5		79
150,50	Unit 2b						16,6		46	15,6		85
151,50	Unit 2b						12,4		45	12,4		79
153,50	Unit 2b						7,2		38	12,4		77
155,50	Unit 2b						6,2		35	11,3		71
155,50	Unit 2b						6,2		35	11,4		71
156,50	Unit 2b						5,1		40	13,3		74
156,50	Unit 2b						5,2		40	13,4		74
160,00	Unit 2b		0,63	21	35	0,26	4,9	18,4	40	13,1	5,0	73
160,00	Unit 2b		0,65	21	38	0,27	2,3	20,1	42	13,3	5,1	73
164,00	Unit 2b						3,1		40	13,4		77
168,00	Unit 2b						8,3		46	13,5		84
172,00	Unit 2b						8,3		51	15,5		94
178,00	Unit 2b						7,2		45	16,5		96
180,00	Unit 2b		0,77	27	48	0,31	5,4	24,3	49	15,8	6,8	97
182,00	Unit 2b		0,84	29	55	0,33	5,6	26,1	62	17,6	6,7	111
186,00	Unit 2b						6,3		56	17,7		115
190,00	Unit 2b						5,2		64	19,8		123
194,00	Unit 2b						2,1		66	21,9		129
196,50	Unit 2b		0,91	33	61	0,36	3,0	30,0			7,8	

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
198,00	Unit 2b						3,1		69	20,9		138
201,00	Unit 2b						5,2		70	20,9		136
205,00	Unit 2b						5,2		75	25,2		141
209,00	Unit 2b						3,1		79	20,9		143
213,00	Unit 2b		1,03	36	71	0,43	3,5	33,6	97	22,2	8,6	144
215,00	Unit 2b		1,00	35	78	0,39	3,4	31,6	92	21,9	8,2	147
217,00	Unit 2b								97	18,8		140
218,50	Unit 2b		0,80	30	62	0,29		27,1	77	20,9	7,2	134
219,50	Unit 2b								87	18,8		132
220,50	Unit 2b								90	16,7		123
221,50	Unit 2b								62	14,5		106
223,00	Unit 2b								47	11,2		90
224,50	Unit 2b								59	12,3		90
226,00	Unit 2b								35	9,2		68
228,00	Unit 2b								40	9,2		76
230,00	Unit 2b								41	9,2		81
232,00	Unit 2b								41	10,2		73
234,00	Unit 3								29	7,2		61
236,00	Unit 3								23	6,1		49
238,00	Unit 3		0,34	11	26	0,14	0,8	10,1	22	6,3	2,6	46
240,50	Unit 3								18	4,1		44
245,00	Unit 3								14	4,1		42
245,00	Unit 3								14	4,1		42
249,00	Unit 3								14	5,1		44
250,50	Unit 3		0,39	13	29	0,14		12,3	22	7,7	3,2	55
251,50	Unit 3								17	5,1		46
253,00	Unit 3								18	6,1		50
254,50	Unit 3								20	8,1		52
255,50	Unit 3								21	5,1		52
259,00	Unit 3								21	5,1		55
261,00	Unit 3								24	8,1		60
263,00	Unit 3		0,45	16	31	0,17	0,2	14,7	29	9,2	3,8	68
265,00	Unit 3								42	15,2		99

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
266,50	Unit 3		0,71	24	44	0,29	0,1	22,8	57	14,3	5,7	90
267,50	Unit 3								42	12,2		88
268,50	Unit 3								42	14,2		89
270,50	Unit 3								41	13,2		94
273,00	Unit 3		0,65	24	44	0,23	0,5	21,6	46	15,9	5,6	105
277,00	Unit 3								48	15,2		96
279,00	Unit 3											
281,00	Unit 3								45	13,2		93
283,00	Unit 3								40	14,2		88
284,50	Unit 3								53	16,8		108
285,50	Unit 3		0,76	29	49	0,30	0,6	25,6	49	15,5	6,8	102
287,00	Unit 3								45	14,2		98
287,00	Unit 3								45	14,3		99
291,00	Unit 3		0,89	31	55	0,35	4,4	28,2	50	15,8	7,3	103
293,00	Unit 3								40	14,2		92
295,00	Unit 3								41	12,2		90
297,00	Unit 3		0,85	32	70	0,30		29,4	55	19,2	7,7	126
299,00	Unit 3								44	14,2		95
303,00	Unit 3								46	13,2		99
307,00	Unit 3								40	12,2		92
309,50	Unit 3								46	13,2		96
311,50	Unit 3								44	13,2		92
312,50	Unit 3								44	14,2		99
313,50	Unit 3		0,77	27	47	0,28	0,2	24,4	47	17,5	6,5	109
314,50	Unit 3								50	16,2		113
316,50	Unit 3								61	18,3		118
318,50	Unit 3								65	18,3		119
319,50	Unit 3								56	19,3		126
321,00	Unit 3		0,57	20	42	0,21		18,2	50	17,8	4,9	105
323,00	Unit 3								57	17,8		113
325,00	Unit 3								61	18,3		123
327,00	Unit 3		0,80	30	63	0,30	1,5	27,0	73	20,8	7,0	134
329,00	Unit 3								62	17,3		127

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
331,00	Unit 3								59	20,3		129
333,00	Unit 3		0,86	32	50	0,32	0,1	28,3	61	20,3	7,4	128
337,00	Unit 3								67	20,3		149
337,00	Unit 3								67	20,4		150
339,00	Unit 3								67	21,4		149
341,50	Unit 3								68	22,4		150
344,00	Unit 3		0,83	34	63	0,31	2,0	29,6	66	21,5	8,0	150
346,00	Unit 3								67	20,4		148
348,00	Unit 3								72	23,4		147
350,00	Unit 3								69	22,4		148
354,00	Unit 3								70	23,4		149
358,00	Unit 3								69	23,4		145
362,00	Unit 3								69	22,4		150
366,00	Unit 3								72	24,5		152
370,00	Unit 3								68	22,4		152
374,00	Unit 3		0,89	36	68	0,35	0,8	31,6	73	22,2	8,3	147
378,00	Unit 3								69	21,4		148
382,00	Unit 3								71	22,4		155
384,00	Unit 3											
386,00	Unit 3								68	23,4		149
390,00	Unit 3								67	23,4		152
394,00	Unit 3								68	23,4		153
396,00	Unit 3								71	22,4		152
397,50	Unit 3								72	22,4		150
398,50	Unit 3								68	21,4		149
399,50	Unit 3		0,60	22	47	0,22		19,8	55	18,2	5,1	121
400,50	Unit 3								66	22,3		160
402,00	Unit 3								67	22,3		164
404,00	Unit 3								64	20,3		165
406,00	Unit 3								57	21,3		161
410,00	Unit 3								63	21,3		161
414,00	Unit 3					T			60	22,3		160
418,00	Unit 3								66	21,3		158

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
422,00	Unit 3								72	23,4		155
426,00	Unit 3								71	21,3		154
430,00	Unit 3								68	22,3		159
434,00	Unit 3								72	21,3		157
438,00	Unit 3								66	21,3		159
442,50	Unit 3								68	21,8		161
447,00	Unit 3								72	21,4		161
451,00	Unit 3								61	22,3		161
455,00	Unit 3		0,93	39	74	0,36	0,2	35,3	65	22,6	9,1	161
459,00	Unit 3								63	21,3		161
463,00	Unit 3								68	21,3		158
465,00	Unit 3								63	22,3		163
469,00	Unit 3								63	21,3		159
473,00	Unit 3								67	21,3		164
477,00	Unit 3								66	21,3		157
481,00	Unit 3								66	22,3		161
485,00	Unit 3								64	20,3		159
489,00	Unit 3								62	21,3		161
493,00	Unit 3								64	21,3		157
497,00	Unit 3								60	20,3		154
501,00	Unit 3								68	22,3		154
505,00	Unit 3								71	21,3		154
509,00	Unit 3								63	22,3		153
513,00	Unit 3								67	21,3		150
517,00	Unit 3								59	21,3		145
521,00	Unit 3								57	20,2		145
525,00	Unit 3								61	19,2		140
529,00	Unit 3								59	19,2		144
533,00	Unit 3								58	20,2		148
537,00	Unit 3								61	20,4		152
541,00	Unit 3								59	21,2		147
546,00	Unit 3								61	21,2		149
550,00	Unit 3								65	20,2		150

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Proben-	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
554.00	Unit 3	bezelelili.							63	20.2		151
558.00	Unit 3								65	23.3		131
562.00	Unit 3											
566,00	Unit 3								60	20,2		143
566,00	Unit 3								60	20,3		144
570,00	Unit 3								61	20,2		148
574,00	Unit 3								63	21,2		147
578,00	Unit 3								61	20,2		145
582,00	Unit 3								64	21,2		149
586,00	Unit 3								61	19,2		146
590,00	Unit 3		0,85	35	66	0,33	0,9	29,5	68	21,5	7,9	147
594,00	Unit 3								64	20,2		146
598,00	Unit 3								62	21,2		147
602,00	Unit 3								62	20,2		147
606,00	Unit 3								65	21,2		150
610,00	Unit 3								65	20,2		147
614,00	Unit 3								63	20,2		147
618,00	Unit 3								62	21,2		146
622,00	Unit 3		0,83	35	64	0,32	0,7	29,5	68	20,5	7,9	148

Jura/Kreide-Grenze vor Norwegen

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
59,44		Kern 6307	1,18	35	41	0,43	66,0	34,2	178	23,1	9,2	79
53,59		Kern 7430	2,29	45	33	0,95	166,0	44,1	282	22,3	11,0	71

Posidonienschiefer Dotternhausen

Teufe [cm]	S.E.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
3,5	Wilder Schiefer	0,95	31	40	0,33	37,2	29,3	78	23,3	7,6	77
37,5	Wilder Schiefer		28	44		60,1		119	21,2		90

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [cm]	S.E.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
92,2	Wilder Schiefer, Nagelkalk		15	17		45,2		51	6,5		40
131,9	Wilder Schiefer	0,56	20	21	0,21	39,9	17,3	52	7,3	4,6	50
157,4	Wilder Schiefer		27	32		66,5		104	13,9		82
195,8	Wilder Schiefer	0,85	24	26		83,0	24,3	112	13,5	6,3	67
242,0	Wilder Schiefer, Nagelkalk		25	27		43,8		49	11,5		72
270,6	Wilder Schiefer	0,92	31	39	0,58	28,2	28,6	72	13,9	7,5	88
323,0	Wilder Schiefer	0,74	24	32	0,27	79,1	22,9	125	12,7	6,0	66
363,9	Wilder Schiefer	0,78	25	28	0,29	85,4	24,3	158	15,0	6,3	73
400,0	Wilder Schiefer, Inoceramenbank	1,33	38	24		39,6	40,1	80	9,3	10,1	66
418,6	Oberer Schiefer		33	25		39,9		74	8,5		63
470,0	Ob. Schiefer, Ob. Bank		20	17		77,7		103	9,7		51
513,5	Oberer Schiefer		22	22		32,5		101	10,5		55
553,2	Oberer Schiefer	0,73	21	15	0,24	28,7	21,2	74	9,3	5,4	45
595,2	Oberer Stein	0,65	20	19	0,24	13,9	17,8	35	8,4	4,7	55
609,5	Oberer Stein		6	3		13,1		11	0,6		8
650,3	mittlerer Schiefer	0,79	23	25	0,30	10,0	21,8	36	10,4	5,7	71
679,5	Steinplatte		6	3		12,4		7	1,0		10
731,2	mittlerer Schiefer	0,81	22	21	0,28	14,2	22,0	45	9,1	5,6	54
753,0	mittlerer Schiefer	0,89	30	27	0,33	18,0	26,0	72	13,8	6,9	92
800,1	Unterer Stein	0,11	3	1	0,03	4,1	2,4	2		0,6	5
848,9	Unterer Schiefer		30	24		19,9		64	13,1		82
877,0	Unterer Schiefer	1,14	33	23	0,42	32,8	30,6	86	13,9	7,8	72
930,8	Unterer Schiefer	1,13	29	25	0,41	19,0	30,4	90	29,6	7,8	70
957,0	Unterer Schiefer		31	24		20,4		197	48,0		63
981,0	Obere Aschgraue Mergel		43	41		7,5		85	22,7		103
1023,8	Obere Aschgraue Mergel		37	39		6,4		70	20,2		100
1063,0	Seegrasschiefer		31	38		5,4		159	39,5		92
1093,6	Untere Aschgraue Mergel		40	47		4,3		62	20,7		111
1118,7	Tafelfleins		26	29		15,5		230	57,8		66
1132,3	Blaugraue Mergel	0,96	38	37	0,37	3,9	32,2	66	15,1	8,9	90
1184,6	Spinatum Bank	0,62	23	20		4,9	22,7	33	6,5	5,9	44

Kupferschiefer Kern Niederwald 1

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
642,850	Ca 1		0,48	17	26	0,22	0,2	16,1	20	11,4	4,1	69
642,870	Ca 1								12	11,0		73
642,890	Ca 1								24	11,0		70
642,910	Ca 1								16	15,0		71
642,928	Ca 1								19	15,0		74
642,943	Ca 1								19	17,0		79
642,960	Ca 1								26	22,0		96
642,980	Ca 1								25	16,0		81
643,000	Ca 1		0,62	25	52	0,25	0,7	21,4	33	17,4	5,9	101
643,020	Ca 1								25	14,0		85
643,040	Ca 1								38	20,0		105
643,060	Ca 1								24	16,0		79
643,080	Ca 1		0,58	21	43	0,22	0,2	18,6	29	19,7	5,0	87
643,098	Ca 1								26	17,0		86
643,113	Ca 1								31	25,0		93
643,128	Ca 1		0,69	26	53	0,33	0,5	23,6	39	25,6	6,2	107
643,140	Ca 1								27	26,0		90
643,153	Ca 1								47	35,0		133
643,168	T1 III								49	43,0		159
643,180	T1 III		0,88	37	82	0,39	0,9	32,8	54	35,9	8,7	156
643,193	T1 III								44	61,0		126
643,208	T1 III								50	93,0		111
643,225	T1 III		0,62	24	51	0,29	8,3	21,4	61	79,6	5,6	101
643,243	T1 III		0,69	29	62	0,32	7,9	25,9	58	78,6	6,9	123
643,260	T1 III		0,59	22	49	0,27	8,3	19,6	67	94,6	5,3	93
643,278	T1 III		0,65	25	49	0,31	14,0	22,6	82	221,3	5,9	108
643,308	T1 III						6,0		45	31,0		94
643,323	T1 III						8,0		52	40,0		98
643,340	T1 III		0,68	24	47	0,32	7,5	21,8	57	36,0	5,7	97

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
643,373	T1 III		0,75	32	67	0,35	1,1	26,4	36	55,9	7,0	128
643,388	T1 III								63	171,0		124
643,413	T1 III		0,72	29	51	0,35	5,4	25,9	73	40,2	6,8	117
643,428	T1 III								61	52,0		108
643,446	T1 III		0,68	24	46	0,33	4,6	21,9	63	82,7	5,8	97
643,461	T1 III								41	46,0		92
643,467	T1 III								37	448,0		110
643,477	T1 III								57	96,5		96
643,498	T1 III								56	43,0		125
643,512	T1 III		0,77	35	74	0,36	2,6	28,5	48	63,6	8,0	142
643,550	T1 III								66	131,0		155
643,565	T1 III		0,78	36	90	0,36	2,7	31,6	70	161,4	8,3	159
643,580	T1 III								76	99,0		167
643,593	T1 II								93	281,0		177
643,598	T1 II		0,85	38	80	0,37	6,1	32,2	63	1489,1	8,5	167
643,609	T1 II								90	328,0		172
643,624	T1 II		0,79	39	83	0,34	4,9	31,4	80	263,1	8,5	169
643,638	T1 II								97	107,0		167
643,650	T1 II		0,81	36	80	0,37	6,4	28,5	53	734,1	8,2	150
643,665	T1 II		0,78	36	89	0,33	10,8	30,6	95	132,9	8,4	159
643,683	T1 II						10,0		73	56,0		125
643,698	T1 II		0,64	29	64	0,29	10,3	26,0	75	67,1	6,8	121
643,718	T1 II						17,0		92	113,0		136
643,738	T1 II						21,0		93	168,0		139
643,763	T1 II		0,66	31	70	0,30	31,0	26,8	109	373,0	7,2	147
643,788	T1 II						36,0		116	294,0		163
643,805	T1 II						35,0		111	314,0		147
643,825	T1 II		0,60	28	58	0,29	29,6	24,2	100	299,0	6,5	125
643,843	T1 II						39,0		106	289,0		130
643,858	T1 II						39,0		102	284,0		124
643,873	T1 II		0,54	18	41	0,18	24,4	17,5	68	144,0	4,5	80
643,883	T1 II		0,57	22	41	0,27	45,9	19,5	41	53,8	5,2	92
643,895	T1 II		0,52	18	40	0,17	22,7	17,1	66	116,0	4,4	76

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
643,915	T1 II		0,51	18	35	0,20	24,1	16,9	62	106,8	4,4	71
643,940	T1 II						29,0		76	174,0		88
643,969	T1 II		0,60	26	50	0,28	41,4	22,1	98	283,0	6,0	109
643,987	T1 II						26,0		67	98,0		79
644,009	T1 II		0,53	19	42	0,18	17,9	17,6	69	58,0	4,6	81
644,025	T1 II		0,63	23	50	0,27	16,9	21,4	33	46,2	5,6	97
644,033	T1 II		0,64	29	68	0,27	19,3	23,6	116	306,5	6,6	129
644,038	T1 II		0,65	28	63	0,26	17,9	24,5	45	269,4	6,5	119
644,055	T1 II		0,68	26	57	0,29	7,1	22,8	33	41,9	6,1	111
644,080	T1 II		0,56	23	51	0,22	19,9	20,3	83	967,0	5,3	97
644,100	T1 II						18,0		66	52,0		81
644,120	T1 II		0,58	24	53	0,27	23,1	21,5	81	88,8	5,7	103
644,139	T1 II						23,0		71	77,0		96
644,156	T1 II						18,0		64	53,0		90
644,167	T1 II		0,61	26	52	0,30	18,7	21,0	39	35,9	6,3	109
644,185	T1 II						22,0		75	97,0		107
644,209	T1 II		0,60	27	51	0,30	21,5	23,1	79	113,0	6,3	118
644,219	T1 II		0,61	29	65	0,25	41,4	24,6	71	98,4	6,6	124
644,225	T1 II						29,0		88	130,0		123
644,240	T1 II		0,67	31	62	0,33	19,6	25,9	94	158,0	7,0	134
644,253	T1 II						20,0		48	85,0		103
644,261	T1 II		0,63	26	51	0,30	6,3	22,6	32	30,5	6,1	103
644,270	T1 II		0,57	23	48	0,26	10,2	20,3	59	160,5	5,4	97
644,277	T1 II		0,66	26	51	0,30	11,7	21,6	33	46,7	6,1	103
644,289	T1 II		0,56	23	50	0,23	11,2	20,6	57	57,0	5,4	96
644,307	T1 II						20,0		57	63,0		94
644,328	T1 II		0,56	22	41	0,26	17,2	20,2	63	69,2	5,1	90
644,353	T1 II						21,0		70	91,0		100
644,378	T1 II						25,0		75	105,0		116
644,402	T1 II		0,64	27	53	0,30	12,0	22,6	38	722,5	6,1	112
644,426	T1 II		0,54	21	45	0,22	16,8	18,9	66	102,0	5,0	91
644,449	T1 II		0,63	28	49	0,30	26,8	24,1	83	124,0	6,4	120
644,470	T1 II						17,0		73	122,0		117

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
644,490	T1 II		0,57	25	44	0,28	17,1	21,6	64	78,0	5,6	100
644,513	T1 II						17,0		62	88,0		102
644,535	T1 II						17,0		68	94,0		105
644,553	T1 II		0,61	25	49	0,27	20,0	22,8	72	107,9	6,2	106
644,568	T1 II						26,0		74	108,0		110
644,585	T1 II		0,62	27	63	0,23	23,2	23,2	81	118,0	6,2	118
644,608	T1 II		0,70	32	81	0,30	38,1	27,5	90	268,5	7,5	148
644,633	T1 II						47,0		94	526,0		151
644,653	T1 II						45,0		90	530,0		132
644,669	T1 II						44,0		85	576,0		124
644,686	T1 II						43,0		91	491,0		120
644,705	T1 II		0,64	29	60	0,30	47,1	25,3	86	446,0	6,8	118
644,725	T1 II						52,0		84	539,0		115
644,743	T1 II		0,61	29	66	0,27	66,4	25,2	87	674,4	6,8	123
644,758	T1 I		0,64	31	60	0,29	81,1	26,8	95	1015,0	7,1	131
644,780	T1 I						135,0		138	1222,0		159
644,810	T1 I		0,78	35	91	0,38	144,8	28,8	172	766,7	8,0	160
644,833	T1 I						127,0		168	2207,0		124
644,848	T1 I		0,65	31	74	0,30	124,2	26,5	132	911,0	7,0	141
644,878	T1 I		0,63	29	62	0,24	97,1	25,1	97	873,0	6,7	121
644,898	T1 I						110,0		100	469,0		98
644,920	T1 I						122,0		101	556,0		106
644,940	T1 I		0,62	27	64	0,24	130,4	24,0	115	722,0	6,4	120
644,965	T1 I			26			115,8		93	643,0		105
644,995	T1 I						110,0		79	493,0		97
645,018	T1 I		0,55	25	38	0,25	125,4	21,5	107	348,0	5,6	97
645,033	T1 I						112,0		105	244,0		91
645,048	T1 I		0,59	26	54	0,24	116,0	23,3	113	261,0	6,3	104
645,065	T1 I						139,5		122	210,0		105
645,085	T1 I		0,62	30	56	0,28	155,1	24,6	139	254,0	6,7	116
645,180	T1 I		0,68	34	78	0,28	188,4	29,1	164	475,0	7,9	140
645,200	T1 I		0,66	35	68	0,29	172,9	28,8	146	519,0	7,7	143
645,218	T1 I						162,0		143	362,0		135

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
645,233	T1 I		0,63	33	68	0,33	167,6	27,8	156	357,0	7,5	140
645,255	T1 I						170,0		158	371,0		138
645,280	T1 I						164,0		158	339,0		137
645,298	T1 I		0,71	37	84	0,31	215,2	30,7	194	446,0	8,5	148
645,313	T1 I						196,0		178	394,0		140
645,328	T1 I		0,66	36	69	0,31	186,7	29,9	177	454,0	8,1	143
645,343	T1 I		0,63	32	71	0,27	135,0	26,6	115	266,0	7,6	131
645,358	T1 I			32			104,0		133	282,5		131
645,408	T1 I		0,68	35	68	0,31	71,9	28,9	131	226,5	7,9	137
645,435	T1 I						98,0		139	224,0		139
645,455	T1 I		0,78	37	60	0,34	131,0	31,0	125	143,0	8,2	129
645,475	S 1		0,53	19	24	0,23	15,4	17,6	60	39,0	4,6	69
645,496	S 1		0,51	19	31	0,23	40,0	17,2	99	232,0	4,5	69
645,516	S 1		0,52	20	39	0,23	8,9	17,4	64	34,7	4,3	84
645,535	S 1								49	27,0		85
645,555	S 1		0,49	17	42	0,20	3,9	16,0	64	26,6	4,1	83
645,575	S 1								47	24,0		84
645,595	S 1								60	33,0		95
645,615	S 1		0,46	21	62	0,20	2,5	18,1	57	29,4	4,8	115
645,640	S 1		0,45	21	61	0,16	3,1	18,3	50	25,2	4,8	102
645,665	S1		0,43	16	69	0,17	5,3	14,2	106	40,9	3,6	73
645,685	S1								105	67,0		60
645,705	S 1								57	26,0		54
645,725	S1		2,56	51	50	0,44	4,0	57,9	72	50,9	12,7	69
645,745	S 1								85	36,0		71
645,765	S 1		0,70	21	36	0,29	3,2	18,0	37	55,5	4,9	69
645,785	S1		0,51	16	15	0,19	3,4	14,1	39	92,4	3,7	53
645,813	S1		0,55	20	54	0,24	2,6	18,7	93	107,0	4,8	82
645,841	S 1		0,43	17	48	0,19	0,4	14,8	62	26,0	3,8	72
645,864	S1								52	25,0		56
645,890	S 1		0,44	17	40	0,19	0,3	13,9	71	142,9	3,8	70

Kupferschiefer Kern Lohberg

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
15,667	Ca 1		0,62	21		0,27	11,8	19,1	37	38,0	5,1	66
15,660	Ca 1		0,55	17		0,22	12,2	16,2	38	74,0	4,2	56
15,645	Ca 1								33	40,0		52
15,630	Ca 1								31	58,0		48
15,615	Ca 1								19	52,0		39
15,597	Ca 1		0,35	10		0,14	5,0	9,9	16	15,0	2,5	34
15,580	Ca 1								17	18,0		36
15,565	Ca 1		0,36	11		0,16	6,6	11,7	17	27,0	3,0	38
15,550	Ca 1								17	25,0		41
15,535	Ca 1		0,39	13		0,16	5,9	11,6	20	29,0	3,0	39
15,520	Ca 1								14	19,0		47
15,505	Ca 1		0,41	14		0,18	3,4	13,2	17	25,0	3,4	45
15,490	Ca 1								15	29,0		44
15,475	Ca 1		0,43	15		0,17	3,5	12,9	21	30,0	3,5	46
15,460	Ca 1								21	23,0		45
15,445	Ca 1		0,41	14		0,18	5,0	12,8	21	16,0	3,4	44
15,427	Ca 1								17	16,0		41
15,410	Ca 1		0,48	16		0,19	3,4	14,7	23	37,0	3,9	52
15,395	Ca 1								22	27,0		58
15,380	Ca 1		0,47	17		0,19	0,8	15,1	22	40,0	3,9	62
15,362	Ca 1								30	99,0		69
15,342	Ca 1		0,58	20		0,23	3,3	17,6	32	52,0	4,8	68
15,321	Ca 1								40	78,0		74
15,305	Ca 1		0,67	23		0,28	5,5	20,6	41	245,0	5,6	81
15,285	Ca 1								35	207,0		75
15,268	Ca 1		0,68	24		0,25	2,3	20,8	44	47,0	5,7	86
15,250	Ca 1								38	44,0		83
15,230	Ca 1		0,67	23		0,29	3,9	21,2	38	48,0	5,7	77
15,210	Ca 1								49	256,0		98
15,190	Ca 1		0,70	26		0,29	2,7	23,3	50	76,0	6,1	96

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
15,163	T1 III						11,0		55	53,0		102
15,142	T1 III		0,85	36		0,39	9,0	29,3	71	148,0	8,1	142
15,131	T1 III						17,0		74	98,0		154
15,123	T1 III			19			26,0		77	90,0		66
15,114	T1 III						13,0		105	88,0		163
15,101	T1 III			36			14,0		101	83,0		159
15,090	T1 III		0,38	14		0,15	13,7	13,0	43	107,0	3,5	47
15,079	T1 III			35			14,0		123	112,0		162
15,068	T1 III			37			12,0		114	131,0		151
15,060	T1 III		0,65	32		0,27	13,2	25,6	103	124,0	7,0	130
15,049	T1 III			35			23,0		125	144,0		143
15,035	T1 III						18,0		45	172,0		
15,035	T1 III			16					52	172,0		52
15,013	T1 III		0,47	19		0,16	20,1	16,5	61	173,0	4,5	69
14,992	T1 III		0,56	24		0,22	19,4	19,9	87	134,0	5,5	90
14,969	T1 III						19,0		84	117,0		97
14,952	T1 III		0,32	11		0,13	14,0	11,0	37	238,0	2,9	37
14,932	T1 III						23,0		71	180,0		59
14,908	T1 III		0,32	11		0,12	10,8	10,6	33	152,0	2,7	33
14,887	T1 III						16,0		37	118,0		43
14,870	T1 III		0,38	15		0,14	20,9	12,5	59	251,0	3,5	53
14,850	T1 III		0,36	14		0,14	16,3	12,4	50	165,0	3,3	48
14,840	T1 III		0,36	14		0,15	18,4	12,5	49	110,0	3,2	52
14,830	T1 III		0,34	14		0,15	17,0	12,0	48	95,0	3,2	49
14,823	T1 III		0,44	17		0,17	43,0	14,5	32	34,0	3,8	63
14,817	T1 III		0,38	15		0,17	17,2	13,3	55	69,0	3,6	54
14,809	T1 III		0,39	16		0,15	16,1	12,8	58	56,0	3,5	52
14,799	T1 II		0,42	18		0,18	17,5	15,8	30	28,0	4,2	68
14,787	T1 II		0,40	16		0,17	18,5	14,1	62	66,0	3,8	57
14,774	T1 II		0,38	15		0,15	16,9	13,4	55	72,0	3,6	53
14,753	T1 II						19,0		52	119,0		52
14,732	T1 II		0,41	16		0,17	19,8	14,1	59	89,0	3,8	56
14,711	T1 II						21,0		46	151,0		46

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
14,691	T1 II		0,36	14		0,16	21,4	12,5	48	178,0	3,3	51
14,671	T1 II						17,0		47	126,0		48
14,651	T1 II		0,40	16		0,16	15,8	14,2	53	100,0	3,8	57
14,630	T1 II						18,0		51	79,0		59
14,608	T1 II		0,40	16		0,19	20,3	13,9	53	107,0	3,7	54
14,568	T1 II		0,42	16		0,16	20,4	14,1	57	89,0	3,8	59
14,548	T1 II						17,0		51	60,0		50
14,528	T1 II		0,40	15		0,15	12,5	13,5	57	47,0	3,6	50
14,508	T1 II						13,0		40	74,0		50
14,487	T1 II						22,0		57	60,0		69
14,468	T1 II		0,45	17		0,18	14,5	14,8	49	48,0	4,1	61
14,450	T1 II						21,0		67	66,0		78
14,428	T1 II						25,0		73	82,0		85
14,411	T1 II						32,0		78	77,0		92
14,394	T1 II		0,55	23		0,23	54,0	19,9	79	92,0	5,4	82
14,374	T1 II						31,0		93	94,0		99
14,355	T1 II		0,67	34		0,30	63,9	26,9	158	261,0	7,5	135
14,340	T1 II						71,0		168	325,0		134
14,322	T1 II		0,58	26		0,24	50,4	22,4	134	256,0	6,0	99
14,302	T1 II						60,0		143	252,0		92
14,282	T1 II		0,54	28		0,24	70,4	22,4	132	338,0	6,3	93
14,263	T1 II						109,0		150	538,0		112
14,243	T1 II		0,59	28		0,26	153,0	22,1	130	503,0	6,1	91
14,223	T1 II		0,53	19		0,19	95,1	16,9	78	676,0	4,6	59
14,202	T1 II		0,54	17		0,23	70,1	16,1	73	477,0	4,3	54
14,178	T1 II		0,55	25		0,24	106,0	19,6	130	442,0	5,5	81
14,153	T1 II						98,0		126	460,0		87
14,130	T1 II		0,53	23		0,22	122,0	19,1	116	465,0	5,2	74
14,110	T1 II						125,0		119	357,0		68
14,090	T1 II		0,51	21		0,22	114,0	17,7	116	607,0	4,8	63
14,070	T1 II						137,0		129	511,0		76
14,050	T1 II		0,53	23		0,18	137,7	19,5	120	421,0	5,5	70
14,025	T1 II						94,0		98	355,0		61

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
14,005	T1 II		0,45	15		0,18	79,0	14,0	95	458,0	3,6	45
13,985	T1 II						81,0		85	386,0		47
13,965	T1 I		0,42	14		0,16	106,0	12,7	127	281,0	3,4	40
13,945	T1 I						101,0		101	325,0		43
13,923	T1 I		0,43	15		0,18	119,0	14,2	113	215,0	3,7	46
13,903	T1 I						130,0		155	194,0		60
13,881	T1 I		0,52	24		0,20	178,2	20,7	161	212,0	5,8	78
13,861	T1 I		0,52	23		0,22	164,0	19,0	162	219,0	5,2	73
13,840	T1 I						184,0		168	220,0		84
13,819	T1 I		0,55	27		0,25	194,0	22,1	198	299,0	6,1	87
13,802	T1 I						194,0		185	354,0		84
13,782	T1 I		0,55	27		0,24	195,0	22,0	193	386,0	6,0	85
13,762	T1 I						179,0		192	363,0		85
13,742	T1 I		0,60	29		0,27	185,0	23,4	183	414,0	6,4	95
13,722	T1 I						181,0		171	539,0		102
13,702	T1 I		0,57	31		0,26	199,0	24,6	190	612,0	6,8	108
13,682	T1 I						193,0		187	642,0		105
13,662	T1 I		0,59	31		0,26	199,0	24,0	177	713,0	6,7	105
13,643	T1 I						186,0		162	580,0		99
13,621	T1 I		0,53	30		0,20	194,3	24,3	176	584,0	6,9	99
13,585	T1 I		0,55	29		0,24	171,0	22,9	160	700,0	6,3	92
13,567	T1 I						148,0		164	644,0		96
13,545	T1 I		0,59	32		0,26	179,0	25,2	148	515,0	6,9	101
13,524	T1 I						126,0		156	450,0		103
13,513	T1 I						85,0		173	375,0		100
13,503	T1 I		0,58	32		0,26	81,9	26,5	137	433,0	7,3	103
13,493	T1 I						82,0		113	207,0		100
13,483	T1 I						85,0		130	240,0		103
13,471	T1 I		0,61	33		0,27	84,9	26,4	130	219,0	7,4	103
13,458	T1 I						96,0		129	227,0		99
13,450	T1 I						83,0		115	177,0		95
13,443	T1 I		0,64	31		0,29	102,0	24,7	115	143,0	6,7	94
13,433	T1 I						89,0		109	134,0		96

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
13,423	T1 I		0,63	31		0,24	63,6	25,1	104	109,0	7,2	98
13,414	T1 I						78,0		117	96,0		112
13,406	T1 I		0,65	33		0,27	67,7	27,8	111	95,0	8,0	100
13,398	T1 I						62,0		105	98,0		93
13,389	T1 I		0,69	35		0,28	75,8	28,8	111	86,0	8,1	105
13,379	T1 I						100,0		111	82,0		91
13,369	T1 I						102,0		93	65,0		81
13,357	T1 I		0,64	27		0,22	67,1	23,2	83	55,0	6,4	72
13,344	S1		0,45	10		0,15	12,6	12,0	150	111,0	2,8	22
13,326	S1								167	20,0		29
13,310	S1								113	35,0		39
13,288	S1		0,74	27		0,29	10,0	25,2	218	6,0	6,7	67
13,260	S1						12,0		67	32,0		19
13,245	S1						11,0		159	55,0		26
13,229	S1		0,31	8		0,13	12,6	8,6	147	45,0	2,2	24
13,211	S1						13,0		94	22,0		26
13,197	S1		0,51	16		0,22	4,3	16,1	103	23,0	4,1	36
13,153	S1						16,0		80	8,0		27
12,829	S1						9,0		84	10,0		30
12,249	S1						12,0		151	6,0		27
10,490	S1						9,0		215	6,0		38
10,400	S1						11,0		42	6,0		105
10,043	S1		0,87	E29.340		0,36	5,5	29,0	50	4,0	7,7	92
9,535	S1								40	6,0		141
9,205	S1		1,51	30		0,42		33,9	60	7,0	8,0	98
7,473	S1								46	10,0		144
6,735	S1								56	5,0		98

Kupferschiefer Kern Goslar Z1

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
6,120									93	2385,0		99
6,140									37	220,0		96
6,140									34	223,0		100
6,365			0,63	25	75	0,26	5,2		39	342,0	5,8	91
6,385									90	705,0		103
6,395	T1		0,75	28	81	0,32	23,3		77	651,0	6,7	107
6,405	T1								85	580,0		104
6,415	T1		0,76	30	82	0,32	40,1		90	546,0	7,0	107
6,426	T1								84	547,0		108
6,439	T1		0,76	31	96	0,33	29,8		88	680,0	7,4	122
6,453	T1								116	865,0		75
6,465	T1		0,55	22	34	0,23	82,7		87	568,0	4,7	59
6,475	T1								79	418,0		64
6,485	T1		0,52	21	33	0,20	87,7		78	487,0	4,4	57
6,495	T1								85	563,0		61
6,515	T1		0,83	28	64	0,31	419,6		242	4184,0	7,2	110
6,525	T1								172	4608,0		53
6,535	T1		0,50	17	23	0,18	296,9		159	8850,0	4,1	45
7,016			0,64	43	88	0,25	0,9		88	80,0	9,7	94
7,025									42	70,0		80
7,034									53	68,0		92
7,045									64	79,0		113
7,055									55	90,0		144
7,065									44	87,0		119
7,075									50	263,0		119
7,205									64	956,0		197
7,215									62	643,0		200
7,225									69	588,0		237
7.235									61	134.0		79

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
7,245									74	554,0		36
7,255									89	640,0		33
7,405									192	880,0		171
7,415									148	1638,0		141
7,425									143	4338,0		110
7,435									96	1920,0		147
7,445									78	650,0		160
7,455									265	1050,0		131
7,465									80	4916,0		140
7,475									73	4850,0		144
7,499									70	538,0		197
7,514									71	193,0		187
7,700									180	< 5		40
7,722									1210	< 5		40
7,741									412	< 5		69
7,758									509	< 5		59
7,778									249	< 5		99
7,798									272	< 5		114
7,817									214	< 5		115
7,834									178	< 5		116
7,849									205	< 5		130
7,865									473	< 5		78
7,885									995	< 5		32
7,905									250	< 5		91
7,925									313	< 5		85
7,945									227	< 5		86
7,965									192	< 5		118
7,988									617	< 5		66

Pennsylvanische Zyklothemen

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
3,86	Heebner	WL5		50			23,9		161	73,0		118
4,14	Heebner	WL4	0,47	19	39	0,30	124,3	14,3	207	117,0	3,8	123
4,33	Heebner	WL3	0,40	13	21	0,26	55,7	9,3	246	131,2	2,3	121
4,50	Heebner	WL2	0,27	18	32	0,25	152,6	9,4	181	103,4	2,6	133
4,76	Heebner	WL1	0,26	19	28	0,18	100,3	8,8	324	100,9	2,6	120
7,10	Heebner	CL5	0,45	30	13	0,22	20,3	9,4	317	75,9	2,3	117
7,34	Heebner	CL4	0,14	23	15	0,11	60,6	7,5	146	71,6	2,2	127
7,57	Heebner	CL3	0,50	20	33	0,30	187,4	14,9	276	106,9	4,0	118
7,82	Heebner	CL2	0,24	18	26	0,24	146,4	8,0	204	88,9	2,3	123
8,06	Heebner	CL1	0,77	29	34	0,32	23,0	25,7	269	48,7	6,7	125
116,49	Eudora	WL13	0,71	41	39	0,33	9,2	23,6	97	31,0	6,2	168
116,59	Eudora	WL12	0,82	42	65	0,36	16,2	25,4	122	86,1	6,7	173
116,91	Eudora	WL11	0,57	37	64	0,28	4,7	19,6	148	48,8	5,2	175
117,11	Eudora	WL10	0,53	33	49	0,32	3,8	14,7	107	49,4	4,2	162
117,35	Eudora	WL9	0,63	35	59	0,33	11,2	20,2	295	158,0	5,4	152
117,48	Eudora	WL8	1,07	39	49	0,40	59,6	33,9	336	418,4	9,0	126
117,64	Eudora	WL7	0,50	37	56	0,29	11,3	14,2	276	133,7	4,0	166
117,82	Eudora	WL6	0,44	26	47	0,29	6,8	13,2	91	54,3	3,8	151
187,29	Lake Neosho	ED14	3,53	109	40	1,03	29,7	117,4	153	69,5	29,6	123
200,02	Anna	ED13	0,52	27	39	0,30	16,6	16,7	98	77,5	4,8	145
200,17	Anna	ED12	0,37	13	43	0,26	35,0	9,9	341	172,4	2,6	95
200,33	Anna	ED11	2,55	60	31	0,96	66,8	61,2	473	299,5	15,5	90
219,06	Exshello	ED3	0,16	13	36	0,22	15,3	5,0	201	9,3	1,6	122
219,42	Exshello	ED2	2,02	54	25	0,71	79,1	52,5	186	45,1	13,1	88
219,68	Exshello	ED1	1,38	44	18	0,42	2554,0	49,1	523	1052,0	12,4	93

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
14,55		JC45	0,56	20	16	0,21	5,1	17,0	20	30,4	4,4	75
14,20		JC44	0,65	24	21	0,25	3,0	19,6	28	43,4	5,1	91
13,75		JC43	0,73	34	34	0,32	14,0	24,7	77	115,4	6,8	155
13,15		JC42	0,74	38	41	0,34	9,5	26,7	68	56,3	7,4	198
12,75		JC41	0,80	38	31	0,33	14,9	28,7	67	43,0	7,9	156
12,50		JC40	0,79	36	28	0,32	15,7	28,1	55	38,3	7,4	141
11,85		JC39	0,80	39	35	0,35	14,9	28,2	65	44,8	7,7	194
11,35		JC38	0,82	38	22	0,29	55,2	29,9	96	20,6	7,6	96
11,00		JC37	0,34	18	27	0,18	65,5	12,7	77	14,8	3,6	117
9,65		JC35	0,60	23	30	0,25	61,5	20,2	164	15,4	5,2	128
9,45		JC34	0,54	21	31	0,24	55,0	17,2	159	13,6	4,6	117
8,95		JC33	0,37	21	37	0,18	82,4	14,8	114	12,9	4,2	139
8,65		JC32	0,47	18	20	0,22	64,9	15,5	155	11,0	4,0	71
8,40		JC31	0,20	12	20	0,11	64,2	9,1	119	7,4	2,6	67
8,15		JC30	0,21		16	0,10	81,7	7,6	123	11,2	2,1	78
7,95		JC29	0,25	10	22	0,12	92,0	8,1	139	8,5	2,2	83
7,65		JC28	0,21	10	22	0,10	55,2	7,8	71	6,9	2,2	58
7,35		JC27	0,35	15	25	0,17	97,2	12,6	169	8,8	3,4	85
7,20		JC26	0,33	14	20	0,15	70,8	11,8	133	8,4	3,2	74
7,05		JC25	0,28	8	61	0,14	81,7	6,8	131	5,8	1,8	70
6,90		JC24	0,30	12	24	0,13	62,7	9,9	171	6,0	2,7	64
6,35		JC22	0,41	16	23	0,18	55,8	13,1	218	8,1	3,5	70
6,10		JC18	0,52	16	22	0,19	103,8	16,2	307	10,5	4,1	65
5,63		JC17	0,30	12	11	0,16	39,7	9,7	109	3,3	2,6	25
5,53		JC16	0,13	7	29	0,07	50,4	4,9	130	11,0	1,4	85
5,18		JC15	0,30	14	26	0,15	72,1	10,1	172	10,1	2,9	87
4,83		JC14	0,54	19	30	0,21	85,1	16,4	330	11,8	4,3	96
4,58		JC13	0,50	18	15	0,22	66,5	12,2	479	10,8	3,5	57
4,53		JC12	2,27	82	13	0,38	316,2	86,6	6178	28,0	21,5	42

Exshaw Formation Standort Jura Creek

Exshaw Formation Standort Shell Whiskey

Teufe [m]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
3687,80		XD3		43	32		172,8		161	39,9		86
3688,00		XD5+6		26	31		160,4		128	27,5		103
3688,35		XD7		26	19		94,5		84	18,7		62
3688,75		XD9		28	28		57,8		79	18,0		91
3689,10		XD10		24	39		90,6		64	23,8		119
3689,40		Xd11		28	37		109,3		83	25,2		124
3689,70		XD12		26	41		109,0		119	24,4		133
3690,40		XD14		29	41		67,3		141	23,2		145
3690,65		XD15		29	42		60,5		143	23,0		138
3690,85		XD16		29	40		64,9		169	27,9		142
3691,35		XD17		29	37		56,5		141	20,0		149
3691,60		XD18		30	39		59,3		149	20,8		142

Graptolithenschiefer aus Thüringen

S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
Mitteldevon	6529_826	1,19	44	55	0,45	5,5	42,5	98	16,6	11,0	130
Mitteldevon	6529_867	0,73		98	0,33	0,2	30,5	109	10,5	8,6	160
Mitteldevon	7515_428					1,0		64	6,0		148
Mitteldevon	7515_448							96	15,0		133
Mitteldevon	7515_468					1,0		65	18,0		101
Mitteldevon	6529_823	1,30	34	56	0,43	16,5	33,3	125	17,7	8,4	125
Mitteldevon	6529_849	0,87		71	0,35	1,9	69,9	85	20,5	19,0	139
Mitteldevon	6003_208- 210					15,0		91	51,0		122
Mitteldevon	7515_490					15,0		54	44,0		90
Unterdevon	6003_425	1,38	60	44	0,57	7,2	54,6	129	21,6	14,1	176
Unterdevon	6003_430	0,70	21	32	0,31	27,7	12,9	119	11,9	3,5	43
Unterdevon	6003_433	0,95	19	44	0,50	51,9	19,4	204	45,3	4,9	115

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
Unterdevon	6003_438_53	1,16	37	39	0,58	42,8	34,2	142	53,0	8,7	101
Unterdevon	6003_443	1,10	56	79	0,59	53,1	49,5	205	14,5	13,1	121
Unterdevon	6003_89_178	0,79	37	44	0,42	0,9	32,3	65	40,7	8,6	150
Unterdevon	6003_89_186	2,13	56	26	0,55	2,9	64,0	57	27,6	15,3	122
Unterdevon	6003_89_193	1,38	38	32	0,46	3,8	38,6	66	28,9	9,5	148
Unterdevon	6003_89_428	1,87	61	50	0,74	6,1	53,4	124	21,0	14,2	165
Unterdevon	6175_200	0,62	20	28	0,29	24,2	16,4	65	19,6	4,4	36
Unterdevon	6175_201	1,77	48	43	0,84	68,8	42,3	218	47,0	10,8	107
Unterdevon	6175_218	1,54	31	31	0,61	60,9	32,1	227	45,4	7,7	74
Unterdevon	6175_221	0,98	28	33	0,52	92,1	21,2	180	30,4	5,8	109
Unterdevon	6175_234	1,86	37	44	0,71	117,3	36,6	176	47,9	9,2	114
Unterdevon	6175_249	1,46	55	84	0,83	27,6	36,1	221	38,8	10,1	148
Unterdevon	6175_253	1,48	32	34	0,67	39,4	29,7	166	36,0	7,3	85
Unterdevon	6175_258	1,88	35	40	0,75	35,9	37,2	155	46,3	8,5	97
Unterdevon	6175_274	1,15	31	44	0,46	44,2	29,3	94	84,8	7,6	106
Unterdevon	6175_280	2,04	53	51	0,89	117,4	48,5	233	56,1	12,2	125
Unterdevon	6177_280	2,08	49	93	0,89	27,0	43,8	158	29,3	10,8	120
Unterdevon	6177_283	1,05	35	40	0,51	19,9	26,5	115	22,1	7,0	94
Unterdevon	6177_291	1,95	48	41	0,82	108,5	55,1	212	52,8	13,1	117
Unterdevon	6177_298	1,74	46	44	0,71	88,5	38,6	180	40,7	10,4	121
Unterdevon	6529_954	2,83		21	1,29	69,7	45,9	209	44,0	11,3	86
Unterdevon	7515_555[53] 1					36,0		204	32,0		140
Unterdevon	7515_560[53] 1					52,0		159	40,0		118
Unterdevon	7515_569					51,0		172	58,0		106
Unterdevon	7515a_488	0,80		69	0,36	19,4	48,2	76	24,2	12,4	126
Unterdevon	6529_952	1,18		31	0,51	151,1	29,6	206	57,7	7,6	86
Unterdevon	6003_473					29,0		84	26,0		122
Unterdevon	6175_261					32,0		157	76,0		102
Unterdevon	7515_562					46,0		175	53,0		89
Unterdevon	7515_567					35,0		169	48,0		128
Unterdevon	7515_573					57,0		211	55,0		126
Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
Unterdevon	7515_590					45,0		176	94,0		125
Unterdevon	7515_591					81,0		195	84,0		111
Silur	6003_525	1,15	49	87	0,46	0,4	43,3	46	5,1	11,3	138
Silur	6175_343	2,73	65	47	1,07	11,0	57,1	127	36,7	14,5	125
Silur	6175_367	1,80	24	8	0,70	77,4	30,9	209	58,9	7,0	25
Silur	6175_378	1,30	30	8	0,57	8,3	30,0	137	69,3	7,4	26
Silur	6175_383	1,59	23	7	0,55	37,5	28,7	204	51,9	6,4	23
Silur	6175_394	0,95	18	12	0,44	49,8	18,1	140	44,0	4,3	26
Silur	6175_89_350	2,25	50	26	0,83	15,1	45,6	283	123,0	11,2	74
Silur	6175_89_357	2,56	45	23	1,05	90,0	44,7	272	56,8	10,5	72
Silur	6177_436	2,46	47	56	0,95	19,7	43,2	170	46,2	10,4	108
Silur	6177_448	1,58	31	27	0,67	83,8	33,4	290	48,1	8,2	109
Silur	6177_463	0,48	7	8	0,22	41,2	7,7	69	9,6	1,8	15
Silur	6177_466	1,21	13	17	0,49	121,5	17,9	205	26,6	4,1	32
Silur	7512_590_2	0,92		30	0,51	53,7	24,0	184	38,7	6,5	114
Silur	7512_595	1,35		12	0,47	13,4	20,6	61	25,5	4,7	16
Silur	7512_597- 600	4,26		14	1,23	52,9	78,3	144	79,1	17,8	42
Silur	7512_603	2,61		23	0,99	163,5	49,1	213	55,8	10,8	48
Silur	7512_637	1,17		41	0,46	1,6	41,3	36	6,5	11,2	153
Silur	7512_86_610	1,26		7	0,47	41,0	22,5	90	20,6	4,9	21
Silur	6177_458	1,57	30	25	0,64	120,4	34,9	310	78,9	8,4	82
Silur	7512_86_615 -624	0,85		5	0,32	43,9	13,4	96	13,9	3,0	14
Silur	RONN 92_6	1,23		32	0,43	1,7	34,3	31	14,6	9,0	118
Silur	RONN 92_8	2,06		55	0,83	141,1	46,4	135	42,5	11,5	99
Silur	RONN 92_9	1,96		29	0,68	30,3	41,6	83	28,7	9,5	49
Silur	RONN-92_11	1,93		30	0,88	32,0	45,0	54	47,7	11,2	101
Silur	RONN-92_12	0,95		30	0,54	47,7	35,2	124	54,2	8,3	95
Silur	RONN-92_3	1,06		4	0,41	42,4	11,1	49	8,3	3,0	22
Silur	RONN-92_4	1,92		9	0,72	8,2	15,6	61	30,5	3,6	35
Silur	6003_522					8,0		76	22,0		144
 Silur	6003_523					2,0		84	27,0		143

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
Silur	6175_345					125,0		364	66,0		127
Silur	6175_363					42,0		205	65,0		18
Silur	6175_373					69,0		241	70,0		20
Silur	6177_350							170	65,0		115
Silur	7515_707					80,0		267	63,0		83
Silur	7515_719					109,0		318	57,0		78
Silur	Ronn92_1					11,0		33	29,0		1
Silur	Ronn92_10					16,0		131	157,0		36
Silur	Ronn92_13					175,0		175	59,0		80

Tanezzuft Formation in Libyen

Teufe [ft]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
7237,18	Silur	LAN 4-138	1,19	41		0,48	31,5	42,4	122	28,6	11,4	113
7241,20	Silur	LAN 4-128	1,06	34		0,42	24,8	35,9	105	26,9	9,1	88
7242,54	Silur	LAN 4-124	1,08	35		0,43	38,5	33,0	109	26,4	8,5	91
7246,06	Silur	LAN 4-117	1,21	33		0,52	47,8	33,7	116	27,0	8,5	87
7248,41	Silur	LAN 4-109	1,36	32		0,57	67,0	36,9	157	27,2	8,9	87
7250,25	Silur	LAN 3-105	1,50	40		0,63	69,8	38,6	164	29,8	9,5	110
7251,59	Silur	LAN 3-101	1,58	38		0,68	75,1	38,7	178	31,8	9,4	104
7253,10	Silur	LAN 3-97	1,28	29		0,56	54,2	33,8	195	32,0	8,4	78
7255,28	Silur	LAN 3-92	1,95	39		0,80	79,7	46,7	222	30,5	11,2	99
7256,45	Silur	LAN 3-89	1,52	31		0,66	78,5	36,0	169	27,7	9,0	85
7257,46	Silur	LAN 3-86	1,44	37		0,61	140,9	33,3	240	30,5	8,2	93
7259,47	Silur	LAN 3-83	1,48	34		0,65	68,7	37,3	194	34,0	9,6	96
7262,32	Silur	LAN 3-78	1,52	34		0,65	94,7	36,0	171	28,1	9,0	90
7265,50	Silur	LAN 3-71	1,17	34		0,49	55,8	31,7	144	25,0	8,1	87
7268,35	Silur	LAN 2-64	1,31	34		0,51	30,2	38,1	121	27,8	9,2	91
7271,20	Silur	LAN 2-57	1,22	37		0,50	38,7	35,2	125	23,9	8,8	101
7274,38	Silur	LAN 2-50	1,29	32		0,55	29,2	36,6	136	25,4	9,3	93
7277,57	Silur	LAN 2-42	1,13	31		0,47	19,3	30,6	102	25,3	7,9	90

Datenanhang – Ho, La, Li, Lu, Mo, Nd, Ni, Pb, Pr, Rb

Teufe [ft]	S.E.	Proben- bezeichn.	Ho [ppm]	La [ppm]	Li [ppm]	Lu [ppm]	Mo [ppm]	Nd [ppm]	Ni [ppm]	Pb [ppm]	Pr [ppm]	Rb [ppm]
7281,76	Ordovizium	LAN 2-29	1,42	38		0,61	45,1	39,8	125	25,4	10,1	114
7287,63	Ordovizium	LAN 2-15	1,07	32		0,43	14,4	32,5	107	34,3	8,2	96
7289,80	Ordovizium	LAN 2-11	1,27	33		0,54	25,6	36,6	132	29,3	9,3	78

Auftriebsgebiet vor Peru

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
40-45		Kern SL 40	0,0289	1,78			228			0,93		10,8
85-90		Kern SL 40	0,0230	1,13			261			1,15		7,6
14-14,5		Kern MC 45	0,0808	2,56			188			1,83		12,8
23-23,5		Kern MC 45	0,0871	2,06			226			1,05		11,4

Schwarzes Meer Station 6

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
1,50	Unit 1		0,0155	9,95	7,8	3,4	908	0,50	5,2	0,78	0,26	8,9
2,50	Unit 1		0,0165	8,63	8,9	3,6	881	0,53	5,7	0,70	0,28	9,4
3,50	Unit 1			5,15	9,6	3,9	878	0,58	6,5	0,57	0,31	10,1
4,50	Unit 1			3,49	8,1	3,5	1042	0,53	5,6	0,45	0,27	11,9
5,50	Unit 1		0,0190	3,47	8,0	3,7	997	0,55	5,8	0,48	0,29	12,2
6,50	Unit 1		0,0181	3,50	8,6	3,9	912	0,58	6,2	0,48	0,29	11,5
7,50	Unit 1			3,19	9,3	4,0	902	0,59	6,5	0,42	0,31	12,7
8,50	Unit 1		0,0214	2,99	9,7	4,0	898	0,60	6,3	0,49	0,30	13,1
9,50	Unit 1		0,0239	2,59	11,0	4,4	888	0,63	7,3	0,52	0,33	12,8
11,50	Unit 1		0,0212	2,52	9,8	3,8	958	0,54	6,2	0,45	0,29	15,8
12,50	Unit 1			1,83	8,2	3,3	1105	0,49	5,6	0,38	0,26	15,2
13,50	Unit 1		0,0215	2,05	8,8	3,6	994	0,54	5,9	0,42	0,28	11,6
14,50	Unit 1			2,32	9,9	3,8	887	0,58	6,5	0,45	0,30	14,4
16,00	Unit 1		0,0243	2,37	10,0	3,7	965	0,55	6,1	0,48	0,29	15,6
20,00	Unit 1		0,0177	1,52	7,4	2,7	1235	0,40	4,3	0,35	0,21	14,2
22,00	Unit 1		0,0174	1,20	5,9	2,3	1421	0,37	3,8	0,32	0,20	13,3
24,00	Unit 1		0,0257	1,65	10,7	3,8	894	0,56	5,7	0,46	0,30	13,3
26,00	Unit 1		0,0270	1,73	10,1	3,6	988	0,54	6,0	0,47	0,28	15,0
30,00	Unit 1		0,0227	1,42	8,8	3,2	1103	0,47	5,5	0,42	0,26	15,5
32,00	Unit 1		0,0177	1,46	10,2	3,9	917	0,57	5,8	0,47	0,30	14,2
34,00	Unit 1		0,0204	1,49	8,6	3,5	1097	0,51	5,5	0,44	0,27	14,7

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
36,00	Unit 1		0,0173	1,22	8,1	3,2	1129	0,49	5,2	0,40	0,25	13,1
40,00	Unit 1		0,0156	0,99	7,8	2,4	1154	0,36	4,5	0,39	0,19	12,8
42,00	Unit 1		0,0161	1,19	8,5	3,3	1107	0,48	5,2	0,43	0,26	13,7
44,00	Unit 1		0,0172	1,29	8,9	3,6	1106	0,53	5,3	0,46	0,28	13,9
46,00	Unit 1		0,0189	1,33	9,1	2,9	1157	0,43	5,6	0,46	0,23	14,1
49,50	Unit 1			2,00	10,4	4,1	833	0,61	6,9	0,56	0,31	12,1
60,00	Unit 2a		0,0643	2,90	14,8	4,7	509	0,67	8,8	0,68	0,34	14,1
70,00	Unit 2a		0,0501	2,52	17,0	5,4	274	0,73	9,8	0,69	0,38	11,0
80,00	Unit 2a		0,0393	1,80	14,6	5,0	299	0,69	9,5	0,78	0,35	14,4
90,00	Unit 2a		0,0459	1,94	15,7	5,0	338	0,69	9,6	0,79	0,35	15,9
100,00	Unit 2a						327					27,6
110,00	Unit 2a		0,0812	2,72	13,1	4,1	299	0,61	6,2	0,60	0,30	27,2
120,00	Unit 2a		0,0801	3,19	12,8	4,2	259	0,60	7,6	0,63	0,30	17,6
130,00	Unit 2a		0,0137	0,90	9,1	4,1	292	0,58	7,2	0,69	0,30	9,8
140,00	Unit 2b						184					
150,00	Unit 2b		0,0030	0,80	9,5	4,4	304	0,59	8,2	0,47	0,29	2,9
160,00	Unit 2b		0,0022	0,75	9,0	4,0	320	0,55	7,2	0,43	0,27	2,4
170,00	Unit 2b		0,0012	0,85	8,9	3,9	311	0,54	7,5	0,41	0,26	2,0
180,00	Unit 2b		0,0016	0,88	14,7	4,3	295	0,58	8,5	0,49	0,27	2,2
190,00	Unit 2b		0,0013	0,89	10,1	4,2	293	0,57	8,1	0,49	0,26	2,1
200,00	Unit 3		0,0009	0,99	9,4	4,6	236	0,60	8,7	0,49	0,28	2,3
210,00	Unit 3		0,0014	0,81	16,9	4,5	219	0,63	8,0	0,48	0,31	2,2
220,00	Unit 3						239					
230,00	Unit 3		0,0007	0,88	9,3	4,6	221	0,64	8,3	0,49	0,31	2,3
240,00	Unit 3						223					
250,00	Unit 3		0,0008	0,89	10,0	4,5	232	0,61	8,2	0,46	0,28	2,2
260,00	Unit 3						232					
270,00	Unit 3		0,0009	0,83	9,9	4,4	249	0,59	8,3	0,49	0,28	2,1
280,00	Unit 3						228					
290,00	Unit 3		0,0006	0,93	10,4	4,7	222	0,67	8,9	0,51	0,34	2,4
300,00	Unit 3						239					
310,00	Unit 3		0,0006	0,99	11,0	4,8	218	0,67	9,1	0,56	0,31	2,3
320,00	Unit 3						222					

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
330,00	Unit 3		0,0008	0,92	11,4	4,8	213	0,67	9,3	0,57	0,32	2,4
340,00	Unit 3						211					
350,00	Unit 3		0,0008	0,95	11,5	5,1	213	0,70	9,9	0,61	0,33	2,5
360,00	Unit 3		0,0009	0,96	12,4	5,1	213	0,69	9,8	0,58	0,33	2,4
370,00	Unit 3		0,0008	1,00	12,0	4,9	207	0,66	9,6	0,56	0,30	2,3
380,00	Unit 3		0,0006	0,97	10,4	5,0	215	0,67	9,5	0,57	0,31	2,3
410,00	Unit 3		0,0008	1,01	10,6	5,0	215	0,68	9,4	0,59	0,30	2,3
450,00	Unit 3		0,0006	0,99	11,9	4,9	213	0,68	9,5	0,60	0,31	2,3
490,00	Unit 3		0,0004	0,98	11,4	4,9	215	0,69	9,7	0,54	0,33	2,4
530,00	Unit 3						208					
610,00	Unit 3						217					
690,00	Unit 3		0,0007	0,97	12,7	5,0	234	0,67	9,7	0,63	0,31	2,3
770,00	Unit 3						251					
850,00	Unit 3						253					

Schwarzes Meer Station 7

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
2,50	Unit 1		0,0223	3,61	4,9	2,3	672	0,33	3,8	0,42	0,16	4,0
3,50	Unit 1						745					10,8
4,50	Unit 1		0,0305	3,36	7,0	3,4	894	0,51	5,3	0,50	0,25	10,6
5,50	Unit 1						964					14,8
6,50	Unit 1		0,0379	2,51	7,0	3,5	963	0,54	5,2	0,44	0,26	13,7
7,50	Unit 1		0,0415	2,28	7,3	3,7	924	0,57	5,5	0,47	0,27	14,8
8,50	Unit 1		0,0473	2,17	8,6	3,9	854	0,55	6,1	0,47	0,28	14,8
9,50	Unit 1		0,0482	1,89	7,5	3,8	986	0,58	5,9	0,46	0,29	17,9
10,50	Unit 1		0,0424	2,16	7,1	3,4	943	0,50	5,4	0,44	0,25	16,1
11,50	Unit 1		0,0555	1,72	7,3	3,4	972	0,51	5,2	0,43	0,25	15,6
12,50	Unit 1		0,0551	1,85	8,7	3,5	831	0,53	5,5	0,50	0,26	15,0
13,50	Unit 1		0,0575	1,80	7,4	3,4	873	0,50	5,3	0,45	0,25	15,5
14,50	Unit 1						942					14,8

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
16,00	Unit 1		0,0502	1,46	5,7	2,7	1101	0,41	4,2	0,37	0,21	12,6
18,00	Unit 1		0,0386	1,45	5,5	2,5	1066	0,39	3,8	0,35	0,20	11,5
20,00	Unit 1		0,0351	0,89	4,6	2,0	1218	0,31	2,9	0,28	0,16	9,7
22,00	Unit 1		0,0305	1,03	4,8	2,3	1150	0,36	3,4	0,31	0,19	10,4
24,00	Unit 1		0,0257	0,75	4,1	2,0	1375	0,33	2,9	0,28	0,17	10,8
26,00	Unit 1		0,0347	0,95	4,9	2,6	1207	0,43	3,6	0,32	0,22	11,7
28,00	Unit 1		0,0393	1,31	7,5	3,3	862	0,49	5,1	0,41	0,25	11,1
30,00	Unit 1		0,0487	1,71	8,0	3,5	778	0,51	5,6	0,45	0,26	13,8
32,00	Unit 1		0,0464	1,25	6,6	3,0	931	0,46	4,6	0,41	0,23	13,5
33,35	Unit 1		0,0312									
34,15	Unit 1		0,0316	1,17	7,8	3,3	814	0,50	5,2	0,41	0,24	11,8
34,80	Unit 1						868					13,2
36,00	Unit 1						885					7,0
38,00	Unit 1		0,0273									
39,00	Unit 1											
40,00	Unit 1		0,0526	1,36	8,6	3,5	937	0,53	5,6	0,45	0,26	12,8
40,00	Unit 1		0,0498	1,39	8,8	3,6	867	0,54	5,9	0,45	0,27	12,3
42,00	Unit 1		0,0313	1,02	6,0	3,0	1132	0,47	4,1	0,39	0,24	13,4
44,00	Unit 1		0,0540	1,71	8,7	3,6	803	0,54	5,6	0,45	0,28	15,5
46,00	Unit 1		0,0589	1,55	8,2	3,2	931	0,47	4,9	0,42	0,23	11,9
47,50	Unit 1		0,0533	1,24	6,3	2,7	925	0,40	4,2	0,39	0,20	8,0
50,00	Unit 1		0,1074	1,91	12,5	4,5	528	0,64		0,51	0,33	18,6
60,00	Unit 2a		0,0428	1,38	14,4	4,6	303	0,67	8,8	0,64	0,36	20,4
70,00	Unit 2a		0,0295	1,83	11,2	3,5	288	0,54	6,5	0,57	0,29	16,1
80,00	Unit 2a		0,0259	1,17	11,6	3,7	301	0,52	7,1	0,92	0,29	17,6
90,00	Unit 2a		0,0566	1,54	13,0	4,1	358	0,60	7,8	1,04	0,35	29,2
100,00	Unit 2a		0,0750	1,49	11,2	3,3	271	0,49	7,1	0,85	0,29	25,1
120,00	Unit 2a		0,1275	1,91	10,8	3,6	202	0,56	6,2	0,76	0,30	28,4
137,50	Unit 2a		0,0555	1,37		3,2	207	0,48	6,4	0,87	0,25	15,2
138,25	Unit 2a		0,0757	1,54		3,5	200	0,55	6,9	1,02	0,29	16,4
138,75	Unit 2a						194					14,5
139,25	Unit 2a		0,0841	1,45		3,7	283	0,58	6,7	1,21	0,32	18,5
140,00	Unit 2a		0,0639	1,66	10,2	2,9	178	0,43	6,4	0,98	0,22	15,8

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
140,25	Unit 2a		0,0666	1,31		3,3	641	0,47	6,0	0,82	0,24	14,7
141,25	Unit 2a		0,0595	1,34		3,5	373	0,49	6,9	0,94	0,25	15,5
141,75	Unit 2a		0,0586	1,33		3,5	346	0,51	6,6	0,92	0,26	16,3
142,25	Unit 2a		0,0547	1,23		3,2	381	0,49	6,3	0,92	0,24	16,3
142,75	Unit 2a		0,0583	1,37		3,4	293	0,53	5,9	1,02	0,26	16,2
143,50	Unit 2a		0,0436	1,23		3,5	301	0,50	6,8	1,16	0,25	15,9
144,50	Unit 2a		0,0402	1,31		3,4	235	0,47	6,9	1,46	0,24	12,3
145,25	Unit 2a		0,0267	1,17		4,3	285	0,60	7,9	1,00	0,30	15,0
145,75	Unit 2b		0,0172	0,95		4,1	335	0,61	7,4	0,66	0,29	15,9
146,25	Unit 2b		0,0126	0,87		4,1	373	0,59	7,3	0,51	0,30	16,4
146,75	Unit 2b		0,0094	1,12		4,0	389	0,57	7,5	0,44	0,29	13,3
147,50	Unit 2b						379					11,4
148,50	Unit 2b						408					8,3
149,50	Unit 2b						423					6,2
150,50	Unit 2b						432					
151,50	Unit 2b						424					
153,50	Unit 2b						428					
155,50	Unit 2b						432					
155,50	Unit 2b						435					
156,50	Unit 2b						423					
156,50	Unit 2b						425					
160,00	Unit 2b		0,0027	1,28	8,7	3,7	421	0,53	6,9	0,32	0,26	2,7
160,00	Unit 2b		0,0032	1,24		3,8	437	0,57	7,0	0,27	0,28	2,5
164,00	Unit 2b						387					
168,00	Unit 2b						379					
172,00	Unit 2b						315					
178,00	Unit 2b						309					
180,00	Unit 2b		0,0047	0,95	11,2	4,8	316	0,66	8,5	0,39	0,32	2,9
182,00	Unit 2b		0,0052	2,75		4,9	241	0,71	9,6	0,52	0,35	3,2
186,00	Unit 2b						234					
190,00	Unit 2b						197					
194,00	Unit 2b						167					
196,50	Unit 2b		0,0038	2,10		5,7		0,76	11,1	0,57	0,39	3,5

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
198,00	Unit 2b						161					
201,00	Unit 2b						146					
205,00	Unit 2b						129					
209,00	Unit 2b						127					
213,00	Unit 2b		0,0050	3,79		5,9	124	0,87	12,1	0,72	0,44	4,8
215,00	Unit 2b		0,0060	4,24		6,2	128	0,84	12,2	0,75	0,43	5,2
217,00	Unit 2b						128					
218,50	Unit 2b		0,0069	0,94		5,3	131	0,70	10,6	0,64	0,34	4,2
219,50	Unit 2b						167					
220,50	Unit 2b						205					
221,50	Unit 2b						288					
223,00	Unit 2b						365					
224,50	Unit 2b						364					
226,00	Unit 2b						475					
228,00	Unit 2b						448					
230,00	Unit 2b						408					
232,00	Unit 2b						425					
234,00	Unit 3						512					
236,00	Unit 3						542					
238,00	Unit 3		0,0034	1,10		2,0	550	0,28	3,7	0,20	0,14	2,1
240,50	Unit 3						565					
245,00	Unit 3						562					
245,00	Unit 3						564					
249,00	Unit 3						549					
250,50	Unit 3		0,0031	0,71		2,4	495	0,33	4,6	0,26	0,17	1,6
251,50	Unit 3						519					
253,00	Unit 3						523					
254,50	Unit 3						486					
255,50	Unit 3						499					
259,00	Unit 3						475					
261,00	Unit 3						444					
263,00	Unit 3		0,0031	0,87		2,8	423	0,39	5,3	0,29	0,20	1,9
265,00	Unit 3						277					

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
266,50	Unit 3		0,0068	1,49		4,3	236	0,59	8,3	0,41	0,30	2,7
267,50	Unit 3						222					
268,50	Unit 3						219					
270,50	Unit 3						206					
273,00	Unit 3		0,0037	1,01		4,1	212	0,56	8,5	0,52	0,27	2,6
277,00	Unit 3						181					
279,00	Unit 3											
281,00	Unit 3						185					
283,00	Unit 3						195					
284,50	Unit 3						223					
285,50	Unit 3		0,0026	1,32		4,8	211	0,66	9,7	0,52	0,31	2,2
287,00	Unit 3						357					
287,00	Unit 3						358					
291,00	Unit 3		0,0055	1,42		5,5	347	0,76	9,7	0,44	0,38	2,3
293,00	Unit 3						372					
295,00	Unit 3						390					
297,00	Unit 3		0,0017	1,23		5,5	283	0,74	11,7	0,71	0,35	2,2
299,00	Unit 3						370					
303,00	Unit 3						358					
307,00	Unit 3						399					
309,50	Unit 3						376					
311,50	Unit 3						397					
312,50	Unit 3						357					
313,50	Unit 3		0,0032	1,50		4,7	283	0,66	8,9	0,49	0,32	2,2
314,50	Unit 3						302					
316,50	Unit 3						296					
318,50	Unit 3						290					
319,50	Unit 3						290					
321,00	Unit 3		0,0028	0,98		3,6	320	0,49	7,3	0,41	0,25	3,5
323,00	Unit 3						356					
325,00	Unit 3						307					
327,00	Unit 3		0,0032	1,67		5,0	246	0,70	10,3	0,70	0,33	2,8
329,00	Unit 3						258					

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
331,00	Unit 3						238					
333,00	Unit 3		0,0023	1,47		5,4	245	0,74	10,4	0,49	0,36	2,6
337,00	Unit 3						189					
337,00	Unit 3						191					
339,00	Unit 3						188					
341,50	Unit 3						178					
344,00	Unit 3		0,0022	1,84		5,6	183	0,74	11,8	0,70	0,35	2,5
346,00	Unit 3						179					
348,00	Unit 3						175					
350,00	Unit 3						180					
354,00	Unit 3						177					
358,00	Unit 3						182					
362,00	Unit 3						176					
366,00	Unit 3						182					
370,00	Unit 3						181					
374,00	Unit 3		0,0014	1,36		5,5	184	0,80	12,1	0,74	0,38	2,7
378,00	Unit 3						178					
382,00	Unit 3						183					
384,00	Unit 3											
386,00	Unit 3						182					
390,00	Unit 3						178					
394,00	Unit 3						176					
396,00	Unit 3						177					
397,50	Unit 3						172					
398,50	Unit 3						169					
399,50	Unit 3		0,0023	0,48		3,8	163	0,51	7,8	0,40	0,25	2,6
400,50	Unit 3						152					
402,00	Unit 3						151					
404,00	Unit 3						149					
406,00	Unit 3	Ī				T	148				T	
410,00	Unit 3						152					
414,00	Unit 3	Ī				T	158				T	
418,00	Unit 3						162					

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
422,00	Unit 3						162					
426,00	Unit 3						160					
430,00	Unit 3						159					
434,00	Unit 3						161					
438,00	Unit 3						158					
442,50	Unit 3						159					
447,00	Unit 3						159					
451,00	Unit 3						153					
455,00	Unit 3		0,0012	1,13		6,6	159	0,84	13,8	0,73	0,39	2,7
459,00	Unit 3						160					
463,00	Unit 3						154					
465,00	Unit 3						158					
469,00	Unit 3						155					
473,00	Unit 3						157					
477,00	Unit 3						155					
481,00	Unit 3						162					
485,00	Unit 3						157					
489,00	Unit 3						155					
493,00	Unit 3						156					
497,00	Unit 3						169					
501,00	Unit 3						167					
505,00	Unit 3						170					
509,00	Unit 3						173					
513,00	Unit 3						181					
517,00	Unit 3						181					
521,00	Unit 3						189					
525,00	Unit 3						190					
529,00	Unit 3						192					
533,00	Unit 3						188					
537,00	Unit 3						186					
541,00	Unit 3						180					
546,00	Unit 3						187					
550,00	Unit 3						183					

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
554,00	Unit 3						183					
558,00	Unit 3						183					
562,00	Unit 3											
566,00	Unit 3						190					
566,00	Unit 3						191					
570,00	Unit 3						198					
574,00	Unit 3						192					
578,00	Unit 3						193					
582,00	Unit 3						192					
586,00	Unit 3						190					
590,00	Unit 3		0,0013	1,23		5,3	194	0,76	11,8	0,68	0,34	2,5
594,00	Unit 3						189					
598,00	Unit 3						190					
602,00	Unit 3						194					
606,00	Unit 3						188					
610,00	Unit 3						189					
614,00	Unit 3						188					
618,00	Unit 3						184					
622,00	Unit 3		0,0014	1,28		5,2	191	0,75	11,6	0,62	0,34	2,5

Jura/Kreide-Grenze vor Norwegen

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
59,44		Kern 6307	0,1090	11,33	13,4	7,1	204	1,00	12,9	1,46	0,47	15,5
53,59		Kern 7430	0,3790	30,02	19,7	9,3	290	1,62	11,1	11,79	0,95	32,3

Posidonienschiefer Dotternhausen

Teufe [cm]	S.E.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
3,5	Wilder Schiefer	0,1391	1,14	12,7	5,8	2045	0,82	7,5	3,43	0,37	8,0
37,5	Wilder Schiefer	0,1356	1,42	12,8		2323		7,6	5,06		6,6

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [cm]	S.E.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
92,2	Wilder Schiefer, Nagelkalk	0,0871	0,67	6,0		952		3,5	2,71		5,1
131,9	Wilder Schiefer	0,0813	0,89	8,5	3,3	954	0,47	4,6	2,81	0,23	4,7
157,4	Wilder Schiefer	0,1541	1,35	12,2		1737		7,0	5,06		7,2
195,8	Wilder Schiefer	0,1534	1,45		4,8	1441	0,71	5,5	5,13	0,33	9,1
242,0	Wilder Schiefer, Nagelkalk	0,0926	1,17	11,6		1124		6,4	2,68		5,7
270,6	Wilder Schiefer	0,1111	1,37	13,0	5,6	1190	0,78	7,7	2,83	0,36	6,3
323,0	Wilder Schiefer	0,1787	1,50	10,1	4,4	2165	0,64	5,8	6,15	0,29	9,0
363,9	Wilder Schiefer	0,1950	2,13	11,6	4,9	1547	0,67	6,4	8,53	0,31	8,8
400,0	Wilder Schiefer, Inoceramenbank	0,3223	1,35		8,0	1677	1,17	6,1	3,87	0,46	20,2
418,6	Oberer Schiefer	0,2546	1,16	10,3		1777		5,7	3,57		15,6
470,0	Oberer Schiefer, Obere Bank	0,1918	1,40	8,0		3447		4,7	6,51		8,3
513,5	Oberer Schiefer	0,1370	1,44	8,6		3334		5,1	5,98		7,5
553,2	Oberer Schiefer	0,1335	1,44	8,2	4,3	2874	0,63	4,4	4,42	0,27	7,8
595,2	Oberer Stein	0,0288	0,97	8,6	3,6	3486	0,54	5,0	1,05	0,26	3,9
609,5	Oberer Stein	0,0241	0,36	1,3		1700		0,8	0,97		1,4
650,3	mittlerer Schiefer	0,0282	1,39	10,9	4,5	1694	0,65	6,0	1,44	0,32	3,5
679,5	Steinplatte	0,0106	0,33	1,4		1317		0,9	0,62		1,2
731,2	mittlerer Schiefer	0,0291	1,11	9,2	4,5	1326	0,68	5,0	1,59	0,31	3,0
753,0	mittlerer Schiefer	0,0354	1,99	12,0	5,1	501	0,74	7,9	2,16	0,36	4,5
800,1	Unterer Stein	0,0021	0,18	0,4	0,5	309	0,08	0,5	0,16	0,04	1,5
848,9	Unterer Schiefer	0,0201	1,77	12,0		759		7,3	1,84		3,9
877,0	Unterer Schiefer	0,0376	2,29	12,3	6,0	636	0,92	7,3	1,79	0,45	6,0
930,8	Unterer Schiefer	0,0480	1,92	12,8	6,5	619	0,97	6,9	3,00	0,44	5,7
957,0	Unterer Schiefer	0,1250	1,45	12,8		1223		6,4	4,21		7,8
981,0	Obere Aschgraue Mergel	0,0062	0,96	17,2		1310		9,4	0,50		3,5
1023,8	Obere Aschgraue Mergel	0,0082	0,85	15,3		2122		9,0	0,55		2,4
1063,0	Seegrasschiefer	0,0341	1,24	14,5		1669		8,4	0,90		3,0
1093,6	Untere Aschgraue Mergel	0,0039	0,46	17,4		1570		10,4	0,53		2,9
1118,7	Tafelfleins	0,1032	2,01	11,3		870		6,3	2,55		3,4
1132,3	Blaugraue Mergel	0,0035	0,66	15,2	5,7	875	0,80	9,2	0,46	0,39	1,9
1184,6	Spinatum Bank	0,0143	0,33	7,0	4,3		0,56	4,0	0,24	0,24	2,2

Proben-Teufe [m] S.E. Re [ppm] Sb [ppm] Sc [ppm] Sm [ppm] Sr [ppm] Tb [ppm] Th [ppm] Tl [ppm] Tm [ppm] U [ppm] bezeichn. 642.850 Ca 1 0.0089 0.27 5,7 3.2 162 0.44 5,1 0,31 0.20 2,6 642,870 Ca 1 167 3,0 642,890 164 3,0 Ca 1 642,910 3.0 Ca 1 166 642,928 3.0 Ca 1 167 642,943 169 3,0 Ca 1 642.960 3.0 Ca 1 180 642,980 3,0 Ca 1 164 643,000 Ca 1 9,3 186 0,54 7,3 3,7 0.0073 0,43 4,2 0,46 0,26 643,020 Ca 1 3,0 166 643,040 Ca 1 177 4,0 643,060 Ca 1 164 2,0 643,080 Ca 1 0.0051 0.17 7.6 3.9 170 0.52 6.0 0.38 0.24 3,0 643,098 3,0 Ca 1 163 643,113 4,0 Ca 1 166 643,128 0,0165 0,72 9,6 0,61 8,3 0,54 4,0 Ca 1 4,5 183 0.30 643,140 Ca 1 166 4,0 643,153 Ca 1 179 4,0 189 5,0 643,168 T1 III 643,180 T1 III 1,88 13,3 5,9 180 0,75 12,3 0,38 5,0 0.0098 0.90 643,193 T1 III 178 5,0 643,208 5,0 T1 III 171 643,225 T1 III 0,0174 1,34 8,9 163 2,59 3,6 7,6 4,0 0,53 0,27 643,243 10,5 T1 III 0,0213 1,48 4,6 176 0,60 9.0 2,18 0.30 4,0 643,260 T1 III 0,0434 1,48 8,2 3,9 170 0,52 7,1 3,34 0,26 3,3 643,278 T1 III 0,0892 2,48 9,4 4,2 213 0,57 8,3 3,31 0,29 4,0 643,308 173 3.0 T1 III 643,323 T1 III 186 4,0 643,340 T1 III 0,0979 1,53 8,2 4,2 200 0,58 0,93 4,2 7,6 0,29

Kupferschiefer Kern Niederwald 1

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
643,373	T1 III		0,0113	1,05	11,2	4,9	186	0,64	9,6	0,93	0,33	3,7
643,388	T1 III						189					5,0
643,413	T1 III		0,1436	2,12	10,4	4,8	196	0,63	9,2	1,36	0,32	4,5
643,428	T1 III						185					3,0
643,446	T1 III		0,0979	2,10	8,9	4,3	205	0,59	7,8	1,25	0,30	3,4
643,461	T1 III						169					3,0
643,467	T1 III						187					4,0
643,477	T1 III						176					3,0
643,498	T1 III						188					4,0
643,512	T1 III		0,0175	1,45	12,1	5,4	183	0,69	10,8	1,22	0,34	4,6
643,550	T1 III						201					4,0
643,565	T1 III		0,0640	2,36	14,0	5,6	204	0,67	11,3	1,88	0,35	5,0
643,580	T1 III						213					7,0
643,593	T1 II						222					5,0
643,598	T1 II		0,0351	2,66	15,1	5,8	230	0,74	12,1	2,14	0,38	4,0
643,609	T1 II						246					4,0
643,624	T1 II		0,1076	2,81	14,6	5,5	215	0,67	11,3	1,85	0,35	4,6
643,638	T1 II						218					5,0
643,650	T1 II		0,0191	2,58	12,6	5,6	220	0,69	11,3	2,20	0,36	4,3
643,665	T1 II		0,1423	3,69	14,3	5,4	215	0,65	10,9	2,54	0,34	4,6
643,683	T1 II						202					5,0
643,698	T1 II		0,0736	2,53	10,4	4,6	204	0,56	8,1	2,05	0,28	4,2
643,718	T1 II						201					5,0
643,738	T1 II						200					6,0
643,763	T1 II		0,1379	4,26	12,3	4,7	204	0,56	9,4	4,00	0,29	5,2
643,788	T1 II						222					6,0
643,805	T1 II						216					5,0
643,825	T1 II		0,1167	4,31	10,8	4,5	201	0,53	8,4	3,56	0,26	4,5
643,843	T1 II						213					6,0
643,858	T1 II						207					5,0
643,873	T1 II		0,0798	2,52	7,7	3,5	163	0,48	4,9	1,96	0,21	3,1
643,883	T1 II		0,0171	3,98	7,3	3,9	166	0,53	6,5	2,04	0,24	3,7
643,895	T1 II		0,0793	2,24	6,9	3,4	165	0,46	4,7	1,46	0,20	3,6

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
643,915	T1 II		0,0713	2,49	6,3	3,4	160	0,46	4,6	1,68	0,20	3,1
643,940	T1 II						177					4,0
643,969	T1 II		0,1584	3,57	8,8	4,1	198	0,53	7,5	2,87	0,26	5,7
643,987	T1 II						163					4,0
644,009	T1 II		0,0648	2,26	7,4	3,4	168	0,46	5,0	1,70	0,21	3,2
644,025	T1 II		0,0133	1,89	8,4	4,1	165	0,56	7,0	1,59	0,26	4,1
644,033	T1 II		0,1071	3,76	10,7	4,4	204	0,54	8,3	3,12	0,28	5,0
644,038	T1 II		0,0145	2,31	10,3	4,5	200	0,57	8,3	2,51	0,27	4,9
644,055	T1 II		0,0040	1,89	10,1	4,5	168	0,58	8,2	1,19	0,29	4,1
644,080	T1 II		0,0797	2,85	8,6	3,8	174	0,48	6,3	2,62	0,23	3,3
644,100	T1 II						165					3,0
644,120	T1 II		0,0894	2,68	8,2	3,9	183	0,51	6,9	2,27	0,25	3,5
644,139	T1 II						178					4,0
644,156	T1 II						173					4,0
644,167	T1 II		0,0125	2,01	9,1	4,2	176	0,54	7,9	2,17	0,27	3,5
644,185	T1 II						184					6,0
644,209	T1 II		0,0910	3,07	9,5	4,1	192	0,52	8,1	2,57	0,27	4,5
644,219	T1 II		0,0705	3,54	10,2	4,4	208	0,53	8,3	2,65	0,27	6,0
644,225	T1 II						201					5,0
644,240	T1 II		0,0982	3,96	10,8	4,7	197	0,57	9,2	3,32	0,30	5,2
644,253	T1 II						168					4,0
644,261	T1 II		0,0066	1,53	9,3	4,3	177	0,56	7,9	1,10	0,27	4,4
644,270	T1 II		0,0500	3,16	8,4	3,8	174	0,50	6,6	2,25	0,25	4,1
644,277	T1 II		0,0070	2,22	8,2	4,2	167	0,58	7,4	1,19	0,29	3,3
644,289	T1 II		0,0501	2,30	8,7	3,9	171	0,49	6,3	1,75	0,24	3,9
644,307	T1 II						172					3,0
644,328	T1 II		0,0709	2,61	7,7	3,7	165	0,49	6,4	1,64	0,24	3,9
644,353	T1 II						177					4,0
644,378	T1 II						196					5,0
644,402	T1 II		0,0128	2,71	9,3	4,3	181	0,57	7,9	1,80	0,27	3,8
644,426	T1 II		0,0647	2,20	8,4	3,7	174	0,48	5,7	1,47	0,22	4,1
644,449	T1 II		0,1025	3,30	9,9	4,3	196	0,55	8,4	3,00	0,28	5,0
644,470	T1 II						190					5,0

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
644,490	T1 II		0,0651	3,21	8,7	4,0	173	0,51	6,9	2,24	0,25	3,5
644,513	T1 II						181					3,0
644,535	T1 II						182					4,0
644,553	T1 II		0,0884	3,32	9,3	4,2	186	0,53	7,2	2,46	0,26	4,7
644,568	T1 II						190					5,0
644,585	T1 II		0,0935	3,66	10,7	4,3	192	0,52	7,5	2,76	0,26	5,5
644,608	T1 II		0,1172	4,47	12,7	5,0	204	0,59	10,0	4,23	0,31	5,4
644,633	T1 II						213					8,0
644,653	T1 II						206					4,0
644,669	T1 II						201					6,0
644,686	T1 II						205					7,0
644,705	T1 II		0,1515	4,42	10,1	4,5	201	0,56	8,1	3,57	0,28	6,1
644,725	T1 II						202					6,0
644,743	T1 II		0,1925	4,70	10,9	4,5	209	0,53	8,0	3,27	0,27	6,9
644,758	T1 I		0,2260	5,51	11,3	4,6	218	0,56	8,5	3,80	0,28	8,1
644,780	T1 I						236					8,0
644,810	T1 I		0,3336	7,62	13,8	5,0	221	0,62	11,4	7,00	0,37	9,9
644,833	T1 I						186					5,0
644,848	T1 I		0,3450	6,45	12,1	4,5	219	0,54	9,2	4,77	0,29	8,5
644,878	T1 I		0,2792	5,42	10,5	4,3	229	0,53	7,7	3,34	0,27	9,0
644,898	T1 I						209					9,0
644,920	T1 I						226					11,0
644,940	T1 I		0,3054	5,98	10,2	4,3	234	0,53	7,8	3,71	0,26	10,5
644,965	T1 I		0,2676	5,20	10,1		231			3,58		9,7
644,995	T1 I						228					9,0
645,018	T1 I		0,2471	5,28	7,9	3,7	242	0,48	6,3	2,94	0,23	9,8
645,033	T1 I						237					9,0
645,048	T1 I		0,2216	4,73	9,2	4,2	246	0,49	7,1	3,59	0,25	10,7
645,065	T1 I						254					12,0
645,085	T1 I		0,2686	6,61	10,0	4,3	264	0,54	8,1	4,40	0,27	12,2
645,180	T1 I		0,3413	6,69	12,3	5,0	284	0,56	9,6	5,39	0,30	14,1
645,200	T1 I		0,3456	6,32	11,7	4,6	272	0,56	9,4	5,19	0,29	13,6
645,218	T1 I						258					13,0

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
645,233	T1 I		0,3320	6,91	11,7	4,5	267	0,54	9,3	6,43	0,28	12,1
645,255	T1 I						261					13,0
645,280	T1 I						269					11,0
645,298	T1 I		0,4085	8,36	13,1	5,3	283	0,59	10,2	6,46	0,31	12,0
645,313	T1 I						273					11,0
645,328	T1 I		0,4681	8,16	12,5	5,0	289	0,57	9,4	6,50	0,30	12,3
645,343	T1 I		0,3490	5,90	11,9	4,3	261	0,51	8,2	4,58	0,27	10,2
645,358	T1 I		0,3367	5,46	12,2		269			5,29		10,1
645,408	T1 I		0,3484	5,08	11,8	4,8	279	0,57	9,6	5,45	0,30	11,9
645,435	T1 I						295					12,0
645,455	T1 I		0,5048	7,14	11,7	5,2	326	0,66	10,2	6,51	0,34	10,7
645,475	S 1		0,0104	2,03	6,3	3,7	129	0,50	7,1	2,39	0,22	7,0
645,496	S 1		0,0163	4,14	6,5	3,2	132	0,45	6,4	10,71	0,22	4,9
645,516	S 1		0,0083	1,92	7,4	3,6	140	0,49	6,7	1,82	0,22	6,9
645,535	S 1						153					8,0
645,555	S 1		0,0059	1,42	7,5	3,5	140	0,47	6,0	0,94	0,20	6,5
645,575	S 1						139					7,0
645,595	S 1						138					6,5
645,615	S 1		0,0027	1,43	9,2	3,7	139	0,43	8,0	1,25	0,20	7,6
645,640	S 1		0,0033	1,52	8,8	3,6	163	0,43	7,5	1,12	0,19	7,3
645,665	S 1		0,0090	4,30	6,0	3,0	112	0,40	6,0	2,23	0,17	5,4
645,685	S 1						147					5,0
645,705	S 1						140					4,0
645,725	S 1		0,0093	2,00	8,7	20,5	653	3,86	8,5	1,64	0,61	8,5
645,745	S 1						116					7,0
645,765	S 1		0,0041	1,32	6,1	3,7	156	0,57	6,7	12,41	0,30	3,3
645,785	S1		0,0046	2,73	3,4	2,8	132	0,43	5,0	31,25	0,22	2,6
645,813	S1		0,0031	1,61	6,2	3,8	139	0,51	7,8	2,14	0,24	3,8
645,841	S1		0,0022	0,64	5,6	2,9	110	0,39	6,1	0,72	0,18	3,1
645,864	S1						242					3,0
645,890	S1		0,0122	1,24	5,5	2,9	152	0,40	6,5	2,80	0,19	3,2

Kupferschiefer Kern Lohberg

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
15,667	Ca 1		0,0054	0,77	7,6	3,7	694	0,52		0,79	0,27	3,1
15,660	Ca 1		0,0081	0,73	6,6	3,2	1105	0,44		0,75	0,23	2,7
15,645	Ca 1						970					
15,630	Ca 1						330					
15,615	Ca 1						536					
15,597	Ca 1		0,0066	0,36	3,1	2,2	829	0,30		0,33	0,14	2,9
15,580	Ca 1						608					
15,565	Ca 1		0,0059	0,38	3,7	2,4	614	0,32		0,50	0,15	3,0
15,550	Ca 1						675					
15,535	Ca 1		0,0064	0,48	4,0	2,5	1207	0,32		0,39	0,16	2,9
15,520	Ca 1						325					
15,505	Ca 1		0,0068	0,37	4,6	2,7	424	0,35		0,34	0,17	3,1
15,490	Ca 1						444					
15,475	Ca 1		0,0068	0,41	4,8	2,6	880	0,36		0,48	0,18	3,0
15,460	Ca 1						1590					
15,445	Ca 1		0,0071	0,43	4,4	2,6	968	0,35		0,39	0,17	2,7
15,427	Ca 1						946					
15,410	Ca 1		0,0077	0,42	5,7	3,0	428	0,40		0,44	0,20	3,0
15,395	Ca 1						422					
15,380	Ca 1		0,0071	0,27	6,0	3,1	172	0,38		0,31	0,18	2,6
15,362	Ca 1						295					
15,342	Ca 1		0,0146	0,58	7,4	3,6	189	0,48		0,54	0,24	3,3
15,321	Ca 1						244					
15,305	Ca 1		0,0158	0,78	8,6	4,1	270	0,57	7,2	0,86	0,28	3,7
15,285	Ca 1						180					
15,268	Ca 1		0,0117	0,80	8,6	4,1	247	0,57	7,5	0,81	0,28	3,5
15,250	Ca 1						114					
15,230	Ca 1		0,0063	0,69	8,2	4,1	124	0,57		0,82	0,28	3,6
15,210	Ca 1						112					

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
15,190	Ca 1		0,0143	0,95	11,0	4,6	258	0,58		1,24	0,29	4,1
15,163	T1 III						539					
15,142	T1 III		0,0186	2,31	13,9	5,4	305	0,67	11,3	2,48	0,38	4,9
15,131	T1 III						290					
15,123	T1 III		0,0849	1,99	7,4		295		11,8	1,87		4,0
15,114	T1 III						192					
15,101	T1 III		0,1993	2,57	14,3		172		15,8	1,93		5,6
15,090	T1 III		0,0475	0,94	4,5	2,5	147	0,33		0,86	0,15	3,3
15,079	T1 III		0,4918	2,07	13,8		161		17,9	2,42		6,6
15,068	T1 III		0,4942	1,70	14,7		178		21,0	2,24		6,8
15,060	T1 III		0,4018	1,98	13,9	4,6	209	0,53		1,98	0,28	6,1
15,049	T1 III		0,4541	2,42	15,1		472		20,3	2,39		6,8
15,035	T1 III						237					
15,035	T1 III		0,0529	1,34	6,0		240			1,33		3,7
15,013	T1 III		0,0762	2,05	7,3	3,1	175	0,42	4,7	1,39	0,19	3,9
14,992	T1 III		0,1716	1,79	9,3	3,8	248	0,47		1,66	0,23	5,4
14,969	T1 III						475					
14,952	T1 III		0,0342	1,04	3,8	2,2	129	0,28		0,85	0,13	2,8
14,932	T1 III						345					
14,908	T1 III		0,0319	1,08	3,6	2,1	122	0,28		0,70	0,12	2,6
14,887	T1 III						141					
14,870	T1 III		0,0556	1,72	4,6	2,4	420	0,33	3,6	1,39	0,15	3,1
14,850	T1 III		0,0490	1,52	4,9	2,4	122	0,31		1,02	0,15	3,1
14,840	T1 III		0,0453	1,82	4,9	2,4	124	0,31		1,20	0,15	3,1
14,830	T1 III		0,0430	1,57	4,0	2,2	133	0,29		1,07	0,14	2,9
14,823	T1 III		0,0138	4,45	5,7	2,9	122	0,36		1,29	0,18	3,1
14,817	T1 III		0,0485	1,65	5,0	2,4	130	0,32		1,35	0,16	3,2
14,809	T1 III		0,0491	1,69	5,5	2,5	126	0,33		1,16	0,16	3,3
14,799	T1 II		0,0051	4,17	6,2	2,8	130	0,35		1,20	0,18	3,1
14,787	T1 II		0,0532	1,88	5,8	2,6	129	0,34		1,64	0,17	3,4
14,774	T1 II		0,0455	1,69	4,8	2,5	131	0,32		1,45	0,16	3,1
14,753	T1 II						133					
14,732	T1 II		0,0601	1,87	5,6	2,7	126	0,34		1,53	0,17	3,6

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
14,711	T1 II						131					
14,691	T1 II		0,0315	2,04	4,6	2,4	128	0,31		1,10	0,15	3,0
14,671	T1 II						138					
14,651	T1 II		0,0503	1,74	5,7	2,6	165	0,33		1,13	0,17	3,7
14,630	T1 II						148					
14,608	T1 II		0,0484	1,80	5,4	2,7	153	0,34		1,31	0,17	3,8
14,568	T1 II		0,0483	1,97	5,4	2,7	162	0,36	4,3	1,55	0,17	3,7
14,548	T1 II						151					
14,528	T1 II		0,0491	1,59	4,6	2,5	155	0,34		0,97	0,16	3,6
14,508	T1 II						160					
14,487	T1 II						149					
14,468	T1 II		0,0543	2,01	6,2	2,9	153	0,38		1,00	0,19	4,1
14,450	T1 II						139					
14,428	T1 II						160					
14,411	T1 II						148					
14,394	T1 II		0,0806	2,80	8,7		153	0,45		2,21	0,23	5,5
14,374	T1 II						149					
14,355	T1 II		0,2060	4,24	12,5	4,6	153	0,54		5,74	0,30	8,2
14,340	T1 II						160					
14,322	T1 II		0,1670	3,06	10,2		157	0,48		4,11	0,25	6,6
14,302	T1 II						167					
14,282	T1 II		0,2254	3,53	9,2	3,9	173	0,45		4,85	0,24	6,7
14,263	T1 II						171					
14,243	T1 II		0,2955	4,05	8,9	4,0	173	0,49		3,85	0,26	7,1
14,223	T1 II		0,1725	2,32	6,0	3,2	172	0,44	4,6	2,16	0,22	5,4
14,202	T1 II		0,1452	1,77	5,4	3,0	194	0,42		1,60	0,23	5,8
14,178	T1 II		0,2657	3,16	7,4	3,6	188	0,45		3,57	0,23	7,2
14,153	T1 II						194					
14,130	T1 II		0,2395	3,24	7,1	3,5	187	0,45		2,80	0,23	8,0
14,110	T1 II						158					
14,090	T1 II		0,1627	3,66	6,3	3,4	185	0,43		2,61	0,21	7,9
14,070	T1 II		, , , , , , , , , , , , , , , , , , ,				181	, í		, í	·	
14,050	T1 II		0,2123	3,65	7,0	3,5	232	0,45	6,6	2,82	0,22	8,8

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
14,025	T1 II						182					
14,005	T1 II		0,1353	2,36	4,7	2,8	169	0,39		2,42	0,18	6,5
13,985	T1 II						168					
13,965	T1 I		0,1339	2,76	4,0	2,7	159	0,37		2,12	0,17	7,1
13,945	T1 I						167					
13,923	T1 I		0,1491	2,85	4,8	2,9	161	0,38		2,05	0,18	8,2
13,903	T1 I						171					
13,881	T1 I		0,2035	4,16	7,9	3,6	179	0,45	6,0	3,12	0,22	11,9
13,861	T1 I		0,1792	4,08	7,1	3,5	176	0,43		3,12	0,22	12,0
13,840	T1 I						175					
13,819	T1 I		0,2624	4,33	8,3	3,8	180	0,47		3,00	0,24	14,4
13,802	T1 I						183					
13,782	T1 I		0,2682	4,18	8,4	3,9	188	0,46		3,61	0,23	12,9
13,762	T1 I						189					
13,742	T1 I		0,2789	4,31	8,8	4,1	185	0,50		3,47	0,26	10,6
13,722	T1 I						216					
13,702	T1 I		0,3023	4,93	9,5	4,1	196	0,48		4,01	0,25	12,6
13,682	T1 I						212					
13,662	T1 I		0,2697	4,27	9,5	4,2	202	0,49		3,59	0,25	9,2
13,643	T1 I						209					
13,621	T1 I		0,3074	4,46	9,6	4,0	211	0,46	7,1	3,36	0,23	12,5
13,585	T1 I		0,3208	4,25	8,7	4,0	210	0,46		3,51	0,23	12,2
13,567	T1 I						216					
13,545	T1 I		0,3088	4,41	9,3	4,3	244	0,50		3,36	0,25	12,1
13,524	T1 I						256					
13,513	T1 I						253					
13,503	T1 I		0,2429	2,88	10,1	4,2	239	0,49		4,17	0,26	11,8
13,493	T1 I						219					
13,483	T1 I						232					
13,471	T1 I		0,2375	2,92	10,5	4,4	226	0,51		4,03	0,27	11,9
13,458	T1 I						259					
13,450	T1 I	Ī					225					
13,443	T1 I		0,2242	3,18	9,4	4,3	210	0,53		3,56	0,28	10,8

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
13,433	T1 I						227					
13,423	T1 I		0,1931	2,40	10,2	4,3	237	0,53	7,9	3,59	0,26	9,4
13,414	T1 I						234					
13,406	T1 I		0,2127	2,55	10,5	4,6	241	0,55		3,65	0,28	10,4
13,398	T1 I						231					
13,389	T1 I		0,2029	3,08	10,3	4,7	228	0,58		3,83	0,29	10,1
13,379	T1 I						248					
13,369	T1 I						241					
13,357	T1 I		0,1656	2,42	7,8	4,1	213	0,56	6,7	4,83	0,26	8,2
13,344	S1		0,0098	4,03	6,2	3,2	273	0,45		3,59	0,16	4,1
13,326	S1						192					
13,310	S1						164					
13,288	S1		0,0046	0,44	6,9	4,7	43	0,62		0,58	0,31	1,4
13,260	S1						2060					
13,245	S1						2610					
13,229	S1		0,0078	1,81	4,1	1,9	1579	0,28		1,65	0,12	4,5
13,211	S1						1367					
13,197	S1		0,0047	0,84	4,5	3,3	4850	0,44		0,23	0,21	2,3
13,153	S1						6122					
12,829	S1						105					
12,249	S1						68					
10,490	S1						79					
10,400	S1						94					
10,043	S1		0,0027	0,91	11,0	5,7	100	0,74		0,49	0,38	2,5
9,535	S1						112					
9,205	S1		0,0033	2,51	29,6	8,6	192	1,41		0,38	0,50	5,9
7,473	S1						107					
6,735	S1						125					

Proben-Teufe [m] S.E. Sb [ppm] Sc [ppm] Sm [ppm] Sr [ppm] Th [ppm] Tl [ppm] Tm [ppm] U [ppm] Re [ppm] Tb [ppm] bezeichn. 6,120 260 5,0 6,140 227 4,0 6,140 232 6,0 6,365 251 1,13 3.8 0.0436 2.11 8,5 0.55 7.4 0.28 3.8 6,385 230 7,0 6,395 T1 0,1809 3,80 9,3 4,2 233 0,59 9,0 1,92 0,32 5,4 T1 7,0 6,405 228 6,415 T1 0,1759 5,5 6,89 10,1 4,6 218 0,61 9,7 5,41 0,33 6,426 T1 222 7,0 6,439 T1 0,2211 4,98 11,9 214 0,61 10,7 6,3 4.7 2.22 0.33 T1 6,453 305 10,0 6,465 T1 0,2964 5,75 5,4 3,3 317 0,45 4,9 16,38 0,22 9.7 6,475 T1 330 9,0 6,485 T1 0,3220 4,12 4,9 3,1 324 0,42 4,7 3,39 0,20 8,3 6,495 T1 11.0 315 38,1 6,515 T1 1,5059 10,73 8,6 5,9 269 0,77 8,6 11,04 0,31 6,525 T1 361 37.0 T1 6,535 0,7493 7,29 354 3,2 0,18 37,6 3.9 3.0 0,43 6,12 7,016 0,0071 2,67 10,5 5,5 223 0,58 8,1 1,08 0,27 3,7 7,025 127 4,0 7,034 6,0 136 7,045 145 5,0 7,055 163 6,0 7,065 130 6,0 7,075 142 6,0 7,205 187 10,0 9,0 7,215 172 7,225 158 10,0 7,235 179 11,0

Kupferschiefer Kern Goslar Z1

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
7,245							111					7,0
7,255							109					11,0
7,405							167					22,0
7,415							160					20,0
7,425							139					17,0
7,435							148					22,0
7,445							167					22,0
7,455							150					24,0
7,465							149					22,0
7,475							159					21,0
7,499							179					25,0
7,514							191					24,0
7,700							249					6,0
7,722							174					3,0
7,741							244					4,0
7,758							165					4,0
7,778							194					5,0
7,798							138					3,0
7,817							132					4,0
7,834							141					6,0
7,849							145					6,0
7,865							159					5,0
7,885							320					3,0
7,905							143					7,0
7,925							145					2,0
7,945							136					5,0
7,965						T	150					5,0
7,988							162					5,0

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
3,86	Heebner	WL5	0,2283	7,25	13,2		185		13,2	1,22		31,3
4,14	Heebner	WL4	0,3571	15,51	12,9	2,7	134	0,35	9,4	4,48	0,24	21,6
4,33	Heebner	WL3	0,4928	11,64	7,5	1,9	129	0,30	8,3	2,34	0,21	21,8
4,50	Heebner	WL2	0,2230	17,61	12,9	1,6	135	0,19	9,0	6,11	0,18	11,8
4,76	Heebner	WL1	0,6954	11,57	7,7	1,4	130	0,14	8,3	4,75	0,15	11,6
7,10	Heebner	CL5	0,5494	10,17	13,8	1,9	132	0,33	7,2	2,81	0,20	20,3
7,34	Heebner	CL4	0,3737	10,79	14,9	1,1	88	0,11	7,8	4,00	0,08	10,7
7,57	Heebner	CL3	0,4766	16,62	11,9	2,9	105	0,36	9,0	8,46	0,27	27,0
7,82	Heebner	CL2	0,2469	15,55	13,9	1,4	129	0,16	8,0	7,37	0,16	12,1
8,06	Heebner	CL1	0,1457	9,13	9,5	5,1	134	0,66	10,3	1,29	0,34	19,7
116,49	Eudora	WL13	0,0174	1,43	17,1	4,5	248	0,61	11,7	0,82	0,31	5,7
116,59	Eudora	WL12	0,0286	1,65	18,0	5,0	255	0,69	10,7	1,02	0,36	5,3
116,91	Eudora	WL11	0,0487	1,72	19,6	3,6	228	0,47	10,1	0,95	0,26	6,2
117,11	Eudora	WL10	0,0246	1,86	16,3	2,5	211	0,36	9,9	1,02	0,28	5,1
117,35	Eudora	WL9	0,1736	5,65	15,8	3,7	227	0,51	11,0	1,34	0,30	12,9
117,48	Eudora	WL8	0,8772	8,00	12,6	6,3	253	0,88	8,6	1,72	0,44	27,2
117,64	Eudora	WL7	0,1291	4,84	16,9	2,7	270	0,38	10,5	1,20	0,25	15,9
117,82	Eudora	WL6	0,0286	1,23	14,7	2,2	219	0,30	8,8	0,75	0,24	6,3
187,29	Lake Neosho	ED14	0,0062	2,30	14,2	23,6	554	3,41	14,2	1,33	1,24	107,0
200,02	Anna	ED13	0,0691	4,21	13,5	2,7	163	0,37	10,4	0,95	0,27	8,6
200,17	Anna	ED12	0,4869	3,57	9,9	1,8	99	0,27	7,5	1,21	0,20	15,2
200,33	Anna	ED11	0,7125	7,26	10,7	12,5	290	2,12	7,7	2,25	1,03	106,0
219,06	Exshello	ED3	0,0028	3,69	11,5	0,7	118	0,08	4,2	0,92	0,14	6,5
219,42	Exshello	ED2	0,0379	3,68	8,5	9,6	268	1,56	5,7	1,72	0,76	60,0
219,68	Exshello	ED1	5,6983	64,97	7,6	10,0	173	1,34	7,6	9,05	0,50	101,0

Pennsylvanische Zyklothemen

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
14,55		JC45	0,0009	2,05	6,2	3,4	530	0,46	4,9	0,77	0,23	1,7
14,20		JC44	0,0014	0,81	7,3	3,9	601	0,53	5,1	0,99	0,27	3,3
13,75		JC43	0,0023		12,4	4,4	274	0,57	8,4	2,76	0,33	2,8
13,15		JC42	0,0061		15,0	4,6	189	0,57	9,5	3,59	0,34	3,7
12,75		JC41	0,0085	2,40	11,9	5,1	291	0,69	8,4	2,74	0,35	4,3
12,50		JC40	0,0050	1,38	11,0	5,2	338	0,67	7,3	2,61	0,33	4,2
11,85		JC39	0,0033	1,35	14,0	5,1	159	0,63	9,9	3,43	0,35	3,9
11,35		JC38	0,0147	5,21	8,0	5,4	437	0,69	4,8	3,63	0,32	10,7
11,00		JC37	0,0690	14,09	7,6	2,0	22	0,22	4,5	6,15	0,17	11,1
9,65		JC35	0,0615	18,16	9,6	3,8	37	0,47	5,7	4,39	0,26	15,6
9,45		JC34	0,0586	18,43	9,3	3,2	40	0,40	5,6	4,55	0,24	14,5
8,95		JC33	0,0748	20,23	8,4	2,3	27	0,24	4,9	5,04	0,18	13,4
8,65		JC32	0,0700	12,69	5,9	2,8	45	0,37	3,5	3,30	0,21	13,8
8,40		JC31	0,0654	11,15	4,8	1,5	19	0,13	2,9	3,83	0,10	11,6
8,15		JC30	0,0856	16,56	3,9	1,3	18	0,13	2,6	5,21	0,10	11,9
7,95		JC29	0,0865	16,21	4,2	1,4	18	0,15	2,8	5,30	0,12	12,0
7,65		JC28	0,0513	11,62	3,5	1,3	20	0,13	2,4	2,99	0,10	7,3
7,35		JC27	0,0730	18,26	6,5	2,1	16	0,24	3,8	5,52	0,17	15,7
7,20		JC26	0,0521	13,57	5,4	2,1	17	0,24	3,7	4,62	0,15	14,9
7,05		JC25	0,1060	13,55	4,3	1,3	58	0,18	3,0	5,07	0,13	14,1
6,90		JC24	0,0709	10,69	4,4	1,8	17	0,23	3,1	3,37	0,14	11,8
6,35		JC22	0,0729	15,09	5,0	2,5	35	0,32	3,2	4,51	0,18	14,4
6,10		JC18	0,1581	13,32	4,7	3,4	27	0,45	3,4	4,90	0,21	25,1
5,63		JC17	0,0707	4,90	2,6	1,7	153	0,23	1,7	2,02	0,14	10,4
5,53		JC16	0,0490	8,87	1,6	0,7	22	0,07	1,6	3,85	0,07	10,3
5,18		JC15	0,0526	7,26	5,0	1,6	19	0,19	3,1	3,74	0,15	16,4
4,83		JC14	0,0496	10,14	8,1	3,2	27	0,42	5,4	5,43	0,23	27,7
4,58		JC13	0,0614	12,24	5,2	2,4	128	0,36	3,6	11,23	0,23	20,9
4,53		JC12	3,7932	48,09	2,0	17,1	237	2,39	12,5	42,71	0,58	46,8

Exshaw Formation Standort Jura Creek

Teufe [m]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
3687,80		XD3	0,0212	3,35	7,3		266		4,9	5,50		25,9
3688,00		XD5+6	0,0266	2,92	9,5		148		6,4	7,33		17,0
3688,35		XD7	0,0177	1,83	5,5		240		3,8	3,80		10,8
3688,75		XD9	0,0214	1,84	7,9		180		5,2	3,86		9,1
3689,10		XD10	0,0173	1,43	9,5		98		6,2	3,25		14,4
3689,40		Xd11	0,0246	1,76	9,9		118		6,4	4,47		20,6
3689,70		XD12	0,0373	2,38	10,6		72		6,9	5,28		21,4
3690,40		XD14	0,0303	3,41	10,9		78		8,1	6,02		13,0
3690,65		XD15	0,0415	3,49	11,5		76		8,3	6,62		12,6
3690,85		XD16	0,0356	4,53	11,2		95		8,1	7,49		12,6
3691,35		XD17	0,0344	3,55	11,6		77		8,5	6,14		12,4
3691,60		XD18	0,0351	3,90	11,7		79		8,5	6,55		13,1

Exshaw Formation Standort Shell Whiskey

Graptolithenschiefer aus Thüringen

S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
Mitteldevon	6529_826	0,0375	1,71		8,2	58	1,05	10,7	1,00	0,47	5,8
Mitteldevon	6529_867	0,0186	0,54		5,1	152	0,59	13,7	0,92	0,32	2,3
Mitteldevon	7515_428					282					3,0
Mitteldevon	7515_448					332					5,0
Mitteldevon	7515_468					245					4,0
Mitteldevon	6529_823	0,0249	1,23	18,3	6,9	61	1,09	6,6	0,98	0,49	6,2
Mitteldevon	6529_849	0,0322	1,29	16,1	11,4	170	0,98	11,5	1,22	0,35	3,3
Mitteldevon	6003_208- 210					701					9,0
Mitteldevon	7515_490					150					5,0
Unterdevon	6003_425	0,0440	5,28		10,0	44	1,26	14,1	2,03	0,58	8,8
Unterdevon	6003_430	0,0327	4,36		2,5	734	0,50	3,8	1,15	0,30	6,0

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
Unterdevon	6003_433	0,1412	16,92	10,8	4,1	62	0,66	9,0	4,25	0,47	12,1
Unterdevon	6003_438_53	0,0534	19,17		6,4	279	0,87	9,3	2,96	0,54	14,0
Unterdevon	6003_443	0,0506	7,21		8,9	35	0,90	11,8	1,32	0,54	19,8
Unterdevon	6003_89_178	0,0185	0,76		7,2	1137	0,61	12,1	0,89	0,39	9,8
Unterdevon	6003_89_186	0,0216	1,44		13,8	3167	1,97	10,5	0,81	0,68	10,7
Unterdevon	6003_89_193	0,0199	1,79		8,2	1065	1,21	11,9	1,04	0,51	7,2
Unterdevon	6003_89_428	0,0426	6,26	18,0	11,2	89	1,59	14,0	2,05	0,78	10,1
Unterdevon	6175_200	0,0270	7,25	5,4	3,1	540	0,47	3,4	0,99	0,27	12,3
Unterdevon	6175_201	0,1309	42,05		7,7	189	1,23	10,1	2,91	0,80	26,7
Unterdevon	6175_218	0,1111	54,27		7,0	137	1,18	7,5	2,67	0,63	28,9
Unterdevon	6175_221	0,1321	36,91	12,8	4,0	42	0,67	8,7	3,35	0,48	23,8
Unterdevon	6175_234	0,0724	46,81		7,7	72	1,37	10,7	2,52	0,77	27,1
Unterdevon	6175_249	0,0462	21,25		6,2	105	0,99	13,7	2,64	0,73	15,4
Unterdevon	6175_253	0,1130	61,87	10,8	6,6	145	1,08	7,8	2,13	0,66	21,7
Unterdevon	6175_258	0,0485	65,52	13,1	9,0	83	1,47	8,7	2,50	0,77	29,4
Unterdevon	6175_274	0,0247	14,64		5,9	27	0,89	10,0	2,50	0,49	12,7
Unterdevon	6175_280	0,0647	81,93	17,9	9,3	51	1,49	12,2	2,73	0,90	28,3
Unterdevon	6177_280	0,0694	9,20		9,2	160	1,51	11,1	1,59	0,90	21,6
Unterdevon	6177_283	0,0859	10,03		4,9	266	0,78	7,8	1,42	0,47	20,3
Unterdevon	6177_291	0,0500	31,09		9,5	194	1,31	11,1	2,64	0,85	19,7
Unterdevon	6177_298	0,0674	11,88		6,8	118	1,26	10,7	2,03	0,74	18,0
Unterdevon	6529_954	0,1030	24,64		9,6	273	1,78	8,0	2,66	1,29	50,0
Unterdevon	7515_555					94					24,5
Unterdevon	7515_560					216					25,0
Unterdevon	7515_569					75					16,0
Unterdevon	7515a_488	0,1267	1,92		8,6	218	0,83	12,4	1,41	0,35	6,8
Unterdevon	6529_952		24,80	11,5	5,8	124	0,89	7,8	2,92	0,50	20,9
Unterdevon	6003_473					42					6,0
Unterdevon	6175_261					22					14,0
Unterdevon	7515_562					210					17,0
 Unterdevon	7515_567					131					32,0
Unterdevon	7515_573					61					15,0
 Unterdevon	7515_590					37					21,0

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
Unterdevon	7515_591					36					28,0
Silur	6003_525	0,0508	0,98		7,9	97	1,00	16,8	1,08	0,48	6,2
Silur	6175_343	0,0609	25,68		11,3	73	1,93	10,9	2,06	1,15	76,5
Silur	6175_367	0,1040	22,28		7,4	40	1,32	3,3	1,68	0,73	29,6
Silur	6175_378	0,0508	25,02		5,9	22	0,97	3,0	1,75	0,57	14,0
Silur	6175_383	0,1244	31,79		6,3	21	1,15	2,6	1,58	0,61	19,0
Silur	6175_394	0,1208	64,46		3,7	19	0,65	3,1	1,63	0,42	15,1
Silur	6175_89_350	0,0082	87,20		8,7	107	1,54	6,7	2,34	0,91	7,3
Silur	6175_89_357	0,2022	56,84		9,9	87	1,78	5,6	2,54	1,08	41,5
Silur	6177_436	0,0652	31,92		9,5	77	1,72	8,5	2,02	1,02	18,6
Silur	6177_448	0,2023	67,80		7,1	81	1,20	8,5	2,74	0,67	41,0
Silur	6177_463	0,0756	102,54		1,8	15	0,35	1,3	0,53	0,21	20,2
Silur	6177_466	0,1778	53,32		4,4	25	0,88	3,2	1,43	0,50	42,5
Silur	7512_590_2	0,0556	15,02	11,7	4,2	36	0,61	9,6	3,44	0,47	30,4
Silur	7512_595	0,0267	12,03		4,4	83	0,94	1,6	0,40	0,53	8,5
Silur	7512_597- 600	0,0441	48,50		18,9	164	3,67	4,3	1,22	1,45	17,1
Silur	7512_603	0,1453	18,36		11,9	526	1,87	4,9	2,61	1,06	15,6
Silur	7512_637	0,0196	0,85		7,6	142	1,02	16,5	1,06	0,49	3,1
Silur	7512_86_610	0,1125	6,39		5,2	367	0,91	2,2	1,11	0,50	8,0
Silur	6177_458	0,1426	88,58		7,5	35	1,23	6,9	3,49	0,65	55,0
Silur	7512_86_615 -624	0,0701	2,71		3,1	103	0,62	1,8	0,92	0,34	9,0
Silur	RONN 92_6	0,0171	4,02	25,9	6,9	147	1,03	10,1	3,25	0,50	4,8
Silur	RONN 92_8	0,1379	17,40		9,7	50	1,57	7,2	2,62	0,86	14,8
Silur	RONN 92_9	0,1141	38,81		9,5	171	1,58	4,3	1,87	0,75	14,5
Silur	RONN-92_11	0,1152	30,40		8,7	125	1,63	7,9	1,88	0,80	13,7
Silur	RONN-92_12	0,1422	32,70	24,6	6,5	100	0,79	7,9	1,91	0,47	12,1
Silur	RONN-92_3	0,0818	25,21		2,3	39	0,69	2,3	1,15	0,44	7,3
Silur	RONN-92_4	0,0571	19,37		5,2	67	1,34	3,6	1,46	0,80	13,1
 Silur	6003_522					93					51,0
Silur	6003_523					99					4,0
Silur	6175_345					49					39,0

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
Silur	6175_363					48					25,0
Silur	6175_373					43					35,0
Silur	6177_350					27					
Silur	7515_707					169					57,0
Silur	7515_719					71					45,0
Silur	Ronn92_1					12					4,0
Silur	Ronn92_10					750					69,0
Silur	Ronn92_13					82					27,0

Tanezzuft Formation in Libyen

Teufe [ft]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
7237,18	Silur	LAN 4-138	0,0177	4,31	14,6	8,0	89	1,04	13,0	3,46	0,50	7,8
7241,20	Silur	LAN 4-128	0,0121	6,93	11,3	6,8	91	0,93	12,3	4,17	0,44	8,9
7242,54	Silur	LAN 4-124	0,0180	7,62	11,6	6,8	95	0,92	11,5	4,27	0,45	11,9
7246,06	Silur	LAN 4-117	0,0156	10,56	8,1	6,6	79	0,96	9,0	8,10	0,52	23,4
7248,41	Silur	LAN 4-109	0,0214	16,40	9,7	7,5	92	1,12	9,9	8,36	0,58	21,2
7250,25	Silur	LAN 3-105	0,0195	15,82	13,3	8,1	101	1,22	12,0	8,28	0,64	28,0
7251,59	Silur	LAN 3-101	0,0290	21,05	12,1	8,2	97	1,25	12,1	7,10	0,68	31,3
7253,10	Silur	LAN 3-97	0,0178	18,77	7,8	6,7	81	1,02	9,6	11,13	0,54	26,0
7255,28	Silur	LAN 3-92	0,0298	22,99	15,5	9,9	94	1,55	11,1	12,60	0,81	40,4
7256,45	Silur	LAN 3-89	0,0182	16,88	8,5	7,6	95	1,17	9,8	11,39	0,66	29,4
7257,46	Silur	LAN 3-86	0,0343	23,07	10,8	7,2	96	1,11	10,7	12,36	0,62	39,1
7259,47	Silur	LAN 3-83	0,0245	22,97	10,4	7,5	106	1,17	10,6	8,60	0,64	26,1
7262,32	Silur	LAN 3-78	0,0190	14,55	9,0	7,5	85	1,16	10,1	14,46	0,65	33,1
7265,50	Silur	LAN 3-71	0,0229	9,19	7,4	6,5	84	0,94	9,3	6,51	0,50	19,0
7268,35	Silur	LAN 2-64	0,0143	10,53	9,9	7,8	109	1,14	11,8	4,15	0,52	11,9
7271,20	Silur	LAN 2-57	0,0203	8,14	12,5	7,3	94	1,03	12,0	4,72	0,51	11,8
7274,38	Silur	LAN 2-50	0,0126	7,22	13,2	7,7	79	1,08	10,1	5,53	0,55	13,7
7277,57	Silur	LAN 2-42	0,0069	5,95	9,6	6,1	86	0,94	10,7	3,52	0,48	8,7
7281,76	Ordovizium	LAN 2-29	0,0195	5,44	13,6	8,3	89	1,18	12,4	4,43	0,61	13,0

Datenanhang – Re, Sb, Sc, Sm, Sr, Tb, Th, Tl, Tm, U

Teufe [ft]	S.E.	Proben- bezeichn.	Re [ppm]	Sb [ppm]	Sc [ppm]	Sm [ppm]	Sr [ppm]	Tb [ppm]	Th [ppm]	Tl [ppm]	Tm [ppm]	U [ppm]
7287,63	Ordovizium	LAN 2-15	0,0040	6,83	8,5	6,6	78	0,92	9,9	4,01	0,45	6,5
7289,80	Ordovizium	LAN 2-11	0,0117	7,28	11,8	7,5	82	1,05	10,6	4,78	0,54	10,3

Auftriebsgebiet vor Peru

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
40-45		Kern SL 40	125	17		96	121	0,04	0,01	0,74	
85-90		Kern SL 40	107	15		90	121	0,07	0,01	0,55	
14-14,5		Kern MC 45	150	13		86	82	0,55	0,24	2,48	
23-23,5		Kern MC 45	97	20		89	145	0,12	0,03	1,52	

Schwarzes Meer Station 6

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
1,50	Unit 1		132	18	1,65	186	72				
2,50	Unit 1		124	19	1,79	162	85				
3,50	Unit 1		113	21	1,92	122	96				
4,50	Unit 1		98	19	1,70	78	76				
5,50	Unit 1		98	20	1,79	75	78				
6,50	Unit 1		107	21	1,89	83	85				
7,50	Unit 1		109	21	1,96	79	87				
8,50	Unit 1		116	21	1,92	77	86				
9,50	Unit 1		120	23	2,07	76	86				
11,50	Unit 1		133	20	1,83	72	77				
12,50	Unit 1		102	19	1,66	58	71				
13,50	Unit 1		106	20	1,73	62	73				
14,50	Unit 1		122	20	1,88	71	82				
16,00	Unit 1		120	20	1,85	69	76				
20,00	Unit 1		92	15	1,32	50	53				
22,00	Unit 1		79	15	1,27	40	46				
24,00	Unit 1		125	21	1,90	72	81				
26,00	Unit 1		124	20	1,80	64	74				
30,00	Unit 1		113	19	1,66	59	67				
32,00	Unit 1		130	20	1,95	67	85				
34,00	Unit 1		100	19	1,70	61	66				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]		
36,00	Unit 1		95	18	1,62	57	67					
40,00	Unit 1		87	16	1,18	50	56					
42,00	Unit 1		99	17	1,68	58	67					
44,00	Unit 1		100	19	1,78	60	68					
46,00	Unit 1		95	18	1,47	54	55					
49,50	Unit 1		133	21	1,96	624	86					
60,00	Unit 2a		180	23	2,27	97	113					
70,00	Unit 2a		154	24	2,50	103	129					
80,00	Unit 2a		149	22	2,32	97	117					
90,00	Unit 2a		163	23	2,39	103	111					
100,00	Unit 2a		156	22		88	97					
110,00	Unit 2a		167	20	2,01	79	72					
120,00	Unit 2a		184	19	1,98	85	84					
130,00	Unit 2a		119	20	2,00	59	220					
140,00	Unit 2b		72	23		60	316					
150,00	Unit 2b		76	20	1,97	57	208					
160,00	Unit 2b		69	19	1,82	58	197					
170,00	Unit 2b		85	17	1,75	62	131					
180,00	Unit 2b		101	18	1,83	64	142					
190,00	Unit 2b		90	18	1,74	69	130					
200,00	Unit 3		84	19	1,88	64	177					
210,00	Unit 3		108	21	2,07	64	190					
220,00	Unit 3		84	20		65	181					
230,00	Unit 3		88	20	2,16	68	175					
240,00	Unit 3		88	20		68	173					
250,00	Unit 3		88	20	1,93	68	168					
260,00	Unit 3		94	21		69	162					
270,00	Unit 3		91	19	1,84	68	160					
280,00	Unit 3		89	20	, í	68	171			T	T	
290,00	Unit 3	l	93	21	2,27	68	178			T	T	
300,00	Unit 3	1	101	20	· · · ·	76	156					
310,00	Unit 3	1	100	21	2,09	79	156					
320,00	Unit 3		102	22	,	80	151					

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
330,00	Unit 3		101	21	2,16	76	160				
340,00	Unit 3		101	22		78	166				
350,00	Unit 3		104	22	2,20	81	152				
360,00	Unit 3		105	22	2,19	81	164				
370,00	Unit 3		102	21	2,02	80	152				
380,00	Unit 3		100	21	2,11	80	157				
410,00	Unit 3		100	21	2,10	82	144				
450,00	Unit 3		103	21	2,04	80	160				
490,00	Unit 3		107	22	2,15	81	151				
530,00	Unit 3		104	23		82	151				
610,00	Unit 3		105	22		83	141				
690,00	Unit 3		111	21	2,07	87	121				
770,00	Unit 3		107	21		86	122				
850,00	Unit 3		110	22		86	113				

Schwarzes Meer Station 7

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
2,50	Unit 1			11	1,08						
3,50	Unit 1		92	23		136	80				
4,50	Unit 1		87	20	1,48	103	79				
5,50	Unit 1		82	23		87	71				
6,50	Unit 1		85	20	1,55	77	70				
7,50	Unit 1		95	22	1,73	81	74				
8,50	Unit 1		109	22	1,79	82	79				
9,50	Unit 1		101	21	1,75	71	69				
10,50	Unit 1		101	21	1,59	85	64				
11,50	Unit 1		102	21	1,63	65	60				
12,50	Unit 1		123	20	1,67	75	67				
13,50	Unit 1		113	20	1,61	70	66				
14,50	Unit 1		104	24		71	66				
Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
16,00	Unit 1		94	17	1,34	58	51				
18,00	Unit 1		95	17	1,24	57	47				
20,00	Unit 1		73	14	0,97	42	38	0,47	0,06	0,90	
22,00	Unit 1		88	16	1,19	44	42				
24,00	Unit 1		67	16	1,05	36	34				
26,00	Unit 1		86	19	1,35	41	41				
28,00	Unit 1		103	21	1,60	61	58				
30,00	Unit 1		127	21	1,72	75	68				
32,00	Unit 1		110	19	1,53	57	54	0,27	0,07	1,16	
33,35	Unit 1										
34,15	Unit 1		81	19	1,50	49	49				
34,80	Unit 1		97	23		49	50				
36,00	Unit 1		90	21		49	54				
38,00	Unit 1										
39,00	Unit 1										
40,00	Unit 1		117	20	1,72	73	54				
40,00	Unit 1		124	18	1,74	69	66				
42,00	Unit 1		97	20	1,56	49	51				
44,00	Unit 1		132	22	1,78	77	67				
46,00	Unit 1		106	19	1,50	67	56				
47,50	Unit 1		94	17	1,29	433	50				
50,00	Unit 1		164	21	2,17	99	96	0,32	0,06	1,64	
60,00	Unit 2a		184	22	2,35	94	99				
70,00	Unit 2a		163	18	1,94	79	74	0,53	0,05	2,00	
80,00	Unit 2a		215	17	1,86	81	80				
90,00	Unit 2a		233	23	2,36	101	85	0,37	0,07	2,40	
100,00	Unit 2a		203	17	1,90	90	76				
120,00	Unit 2a		234	18	1,93	83	60	0,64	0,08	3,96	
137,50	Unit 2a		242	17	1,72	85	64				
138,25	Unit 2a		249	19	1,94	99	67				
138,75	Unit 2a		255	16		91	71				
139,25	Unit 2a		250	22	2,12	95	69				
140,00	Unit 2a		254	13	1,55	73	66	0,57	0,07	3,50	

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]		
140,25	Unit 2a		229	15	1,54	78	56					
141,25	Unit 2a		256	15	1,69	84	70					
141,75	Unit 2a		244	16	1,71	78	74					
142,25	Unit 2a		256	16	1,63	79	69					
142,75	Unit 2a		251	17	1,76	74	64					
143,50	Unit 2a		266	16	1,68	80	72					
144,50	Unit 2a		261	16	1,60	85	77					
145,25	Unit 2a		208	19	1,97	77	90					
145,75	Unit 2b		158	19	1,91	66	88					
146,25	Unit 2b		147	20	1,94	63	86					
146,75	Unit 2b		128	20	1,92	61	85					
147,50	Unit 2b		126	18		59	81					
148,50	Unit 2b		113	19		59	83					
149,50	Unit 2b		98	19		55	81					
150,50	Unit 2b		99	17		58	85					
151,50	Unit 2b		91	19		56	80					
153,50	Unit 2b		80	18		53	84					
155,50	Unit 2b		77	17		50	84					
155,50	Unit 2b		77	18		51	85					
156,50	Unit 2b		78	17		51	83					
156,50	Unit 2b		78	18		52	84					
160,00	Unit 2b		81	18	1,75	52	85	0,14	0,08	1,10		
160,00	Unit 2b		76	19	1,80	51	85	0,14	0,08	1,10		
164,00	Unit 2b		83	20		56	88					
168,00	Unit 2b		90	22		62	92					
172,00	Unit 2b		95	23		71	105					
178,00	Unit 2b		101	23		69	105					
180,00	Unit 2b		105	22	2,16	70	107					
182,00	Unit 2b		118	23	2,34	75	114					
186,00	Unit 2b		124	24		87	125				T	
190,00	Unit 2b		129	27		96	139				T	
194,00	Unit 2b		142	25		100	140				T	
196,50	Unit 2b				2,58		123					

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
198,00	Unit 2b		145	26		104	141				
201,00	Unit 2b		146	26		104	141				
205,00	Unit 2b		156	27		109	146				
209,00	Unit 2b		161	26		109	136				
213,00	Unit 2b		167	27	2,93	115	142				
215,00	Unit 2b		170	27	2,82	116	136				
217,00	Unit 2b		156	25		112	131				
218,50	Unit 2b		141	23	2,18	112	130				
219,50	Unit 2b		156	25		105	128				
220,50	Unit 2b		143	26		99	123				
221,50	Unit 2b		121	26		84	106				
223,00	Unit 2b		96	18		65	89				
224,50	Unit 2b		104	18		75	94				
226,00	Unit 2b		73	13		52	68				
228,00	Unit 2b		80	14		57	75				
230,00	Unit 2b		89	15		58	78				
232,00	Unit 2b		83	14		59	74				
234,00	Unit 3		60	11		44	62				
236,00	Unit 3		50	10		37	52				
238,00	Unit 3		47	10	0,93	35	50				
240,50	Unit 3		46	8		30	45				
245,00	Unit 3		36	7		27	43				
245,00	Unit 3		37	7		27	43				
249,00	Unit 3		35	7		29	46				
250,50	Unit 3		48	11	1,08	39	62				
251,50	Unit 3		40	8		30	57				
253,00	Unit 3		44	8		30	48				
254,50	Unit 3		48	9		37	56				
255,50	Unit 3		45	9		38	55				
259,00	Unit 3		52	9		39	55				
261,00	Unit 3		58	11		49	64			T	
263,00	Unit 3		60	12	1,27	63	70			T	
265,00	Unit 3		87	18		71	128				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
266,50	Unit 3		90	19	2,02	64	170				
267,50	Unit 3		85	17		65	141				
268,50	Unit 3		85	17		67	122				
270,50	Unit 3		84	15		67	109				
273,00	Unit 3		92	17	1,77	74	104				
277,00	Unit 3		90	17		72	109				
279,00	Unit 3										
281,00	Unit 3		82	14		66	99				
283,00	Unit 3		78	16		67	112				
284,50	Unit 3		93	20		79	130				
285,50	Unit 3		89	20	2,06	66	190				
287,00	Unit 3		94	14		68	86				
287,00	Unit 3		95	14		68	87				
291,00	Unit 3		101	19	2,52	65	79				
293,00	Unit 3		86	15		65	83				
295,00	Unit 3		85	15		63	82				
297,00	Unit 3		114	19	2,28	67	89				
299,00	Unit 3		88	17		68	86				
303,00	Unit 3		89	16		70	85				
307,00	Unit 3		81	14		63	78				
309,50	Unit 3		91	16		67	84				
311,50	Unit 3		88	17		65	81				
312,50	Unit 3		90	19		71	95				
313,50	Unit 3		96	21	2,06	76	113				
314,50	Unit 3		111	21		82	120				
316,50	Unit 3		112	21		86	103				
318,50	Unit 3		117	21		89	99				
319,50	Unit 3		122	20		91	96				
321,00	Unit 3		98	18	1,59	91	96				
323,00	Unit 3		106	20		83	93				
325,00	Unit 3		114	21		86	102				1
327,00	Unit 3		125	21	2,15	96	106				1
329,00	Unit 3		120	20		89	94				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
331,00	Unit 3		124	20		92	102				
333,00	Unit 3		115	22	2,36	101	99				
337,00	Unit 3		138	21		103	101				
337,00	Unit 3		139	21		104	102				
339,00	Unit 3		140	22		106	98				
341,50	Unit 3		140	21		105	100				
344,00	Unit 3		132	22	2,26	102	103				
346,00	Unit 3		145	22		107	106				
348,00	Unit 3		145	23		113	119				
350,00	Unit 3		146	23		105	136				
354,00	Unit 3		147	23		106	124				
358,00	Unit 3		147	23		103	130				
362,00	Unit 3		144	23		104	124				
366,00	Unit 3		150	22		105	123				
370,00	Unit 3		143	22		105	130				
374,00	Unit 3		144	23	2,40	100	125				
378,00	Unit 3		149	22		104	126				
382,00	Unit 3		146	23		106	126				
384,00	Unit 3										
386,00	Unit 3		147	22		108	125				
390,00	Unit 3		143	22		108	133				
394,00	Unit 3		152	23		107	123				
396,00	Unit 3		150	22		109	119				
397,50	Unit 3		153	23		109	120				
398,50	Unit 3		142	22		114	126				
399,50	Unit 3		107	20	1,66	97	157				
400,50	Unit 3		148	24		108	131				
402,00	Unit 3		149	25		111	142				
404,00	Unit 3		148	26		112	132				
406,00	Unit 3		152	24		108	141				
410,00	Unit 3		152	25		110	136				
414,00	Unit 3		155	24		108	127				
418,00	Unit 3		159	24		111	129				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
422,00	Unit 3		151	23		111	134				
426,00	Unit 3		152	24		107	137				
430,00	Unit 3		158	24		110	130				
434,00	Unit 3		156	24		107	129				
438,00	Unit 3		153	24		108	129				
442,50	Unit 3		157	24		110	125				
447,00	Unit 3		150	26		109	138				
451,00	Unit 3		149	24		108	133				
455,00	Unit 3		150	24	2,51	109	136				
459,00	Unit 3		149	25		108	135				
463,00	Unit 3		154	24		104	133				
465,00	Unit 3		154	25		107	132				
469,00	Unit 3		155	23		107	132				
473,00	Unit 3		159	24		107	131				
477,00	Unit 3		150	24		111	131				
481,00	Unit 3		152	24		105	141				
485,00	Unit 3		147	25		103	141				
489,00	Unit 3		153	25		105	143				
493,00	Unit 3		149	25		106	133				
497,00	Unit 3		149	23		107	133				
501,00	Unit 3		155	22		104	125				
505,00	Unit 3		153	22		106	119				
509,00	Unit 3		151	22		104	124				
513,00	Unit 3		147	23		103	136				
517,00	Unit 3		145	21		98	137				
521,00	Unit 3		140	23		99	136				
525,00	Unit 3		140	22		97	128				
529,00	Unit 3		142	22		97	142				
533,00	Unit 3		147	22		99	129				
537,00	Unit 3		147	21		100	136				
541,00	Unit 3	Ī	146	21		99	130			T	
546,00	Unit 3	Ī	146	23		99	128			T	
550,00	Unit 3		143	22		100	127				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
554,00	Unit 3		144	23		105	135				
558,00	Unit 3		143	23		102	126				
562,00	Unit 3										
566,00	Unit 3		143	23		100	126				
566,00	Unit 3		144	23		100	127				
570,00	Unit 3		145	22		100	123				
574,00	Unit 3		147	21		100	123				
578,00	Unit 3		145	22		97	124				
582,00	Unit 3		144	22		100	126				
586,00	Unit 3		145	22		97	135				
590,00	Unit 3		144	22	2,31	99	127				
594,00	Unit 3		146	22		100	119				
598,00	Unit 3		148	22		100	118				
602,00	Unit 3		142	21		98	119				
606,00	Unit 3		151	21		103	118				
610,00	Unit 3		147	21		100	120				
614,00	Unit 3		147	20		110	122				
618,00	Unit 3		145	21		99	117				
622,00	Unit 3		146	23	2,26	100	126				

Jura/Kreide-Grenze vor Norwegen

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
59,44		Kern 6307	583	34	2,90	310	113	0,09	0,03	2,73	
53,59		Kern 7430	1869	79	6,30	4976	92	0,21	0,07	13,07	

Posidonienschiefer Dotternhausen

Teufe [cm]	S.E.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
3,5	Wilder Schiefer	144	28	2,43	103	115				
37,5	Wilder Schiefer	216	21		197	108				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [cm]	S.E.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
92,2	Wilder Schiefer, Nagelkalk	84	11		55	77				
131,9	Wilder Schiefer	113	15	1,56	67	91				
157,4	Wilder Schiefer	214	26		223	143				
195,8	Wilder Schiefer	212	24	2,24	215	100	0,28	0,04	1,81	
242,0	Wilder Schiefer, Nagelkalk	153	22		101	78				
270,6	Wilder Schiefer	140	25	2,38	110	129				
323,0	Wilder Schiefer	209	22	1,95	233	110				
363,9	Wilder Schiefer	262	23	2,06	284	98				
400,0	Wilder Schiefer, Inoceramenbank	145	40	2,79	105	91				
418,6	Oberer Schiefer	150	40		94	98				
470,0	Oberer Schiefer, Obere Bank	219	17		133	88				
513,5	Oberer Schiefer	214	22		147	80				
553,2	Oberer Schiefer	204	21	1,79	146	77				
595,2	Oberer Stein	141	18	1,71	43	70				
609,5	Oberer Stein	28	9		61	101				
650,3	mittlerer Schiefer	131	21	2,09	61	98	0,10	0,03	1,54	
679,5	Steinplatte	25	10		103	117				
731,2	mittlerer Schiefer	150	23	2,00	104	120				
753,0	mittlerer Schiefer	242	25	2,40	204	162				
800,1	Unterer Stein	15	5	0,26	3	36				
848,9	Unterer Schiefer	222	33		154	164				
877,0	Unterer Schiefer	259	34	3,00	143	178	0,15	0,17	3,19	
930,8	Unterer Schiefer	289	30	2,91	159	172				
957,0	Unterer Schiefer	211	39		254	205				
981,0	Obere Aschgraue Mergel	146	45		139	121				
1023,8	Obere Aschgraue Mergel	103	27		365	116				
1063,0	Seegrasschiefer	88	29		105	110	0,04	0,05	2,55	
1093,6	Untere Aschgraue Mergel	108	28		656	111				
1118,7	Tafelfleins	100	36		119	103				
1132,3	Blaugraue Mergel	91	26	2,60	121	98				
1184,6	Spinatum Bank	45	17	1,54						

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
642,850	Ca 1		60	12	1,27	26	80				
642,870	Ca 1		61			29	78				
642,890	Ca 1		58			44	75				
642,910	Ca 1		62			25	77				
642,928	Ca 1		63			38	80				
642,943	Ca 1		70			22	83				
642,960	Ca 1		88			29	99				
642,980	Ca 1		69			31	102				
643,000	Ca 1		83	17	1,64	34	113				
643,020	Ca 1		75			25	107				
643,040	Ca 1		89			28	106				
643,060	Ca 1		75			27	104				
643,080	Ca 1		63	17	1,55	42	106				
643,098	Ca 1		77			29	111				
643,113	Ca 1		87			26	126				
643,128	Ca 1		103	18	1,97	35	147				
643,140	Ca 1		83			45	120				
643,153	Ca 1		126			42	134				
643,168	T1 III		136			40	147				
643,180	T1 III		134	23	2,55	39	150				
643,193	T1 III		120			31	145				
643,208	T1 III		109			31	136				
643,225	T1 III		103	16	1,77	30	129				
643,243	T1 III		128	18	1,97	32	116				
643,260	T1 III		114	15	1,62	30	113				
643,278	T1 III		158	18	1,91	38	137				
643,308	T1 III		165			31	118				
643,323	T1 III		174			37	132			_	
643,340	T1 III		168	18	1,92	39	145				

Kupferschiefer Kern Niederwald 1

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]		
643,373	T1 III		159	21	2,13	35	120	0,07	0,03	0,42		
643,388	T1 III		186			32	151					
643,413	T1 III		211	20	2,10	36	153					
643,428	T1 III		197			35	135					
643,446	T1 III		169	19	1,95	36	139					
643,461	T1 III		145			32	133					
643,467	T1 III		173			32	97					
643,477	T1 III		157			33	129					
643,498	T1 III		164			35	146					
643,512	T1 III		186	20	2,26	38	123					
643,550	T1 III		208			42	162					
643,565	T1 III		203	20	2,32	40	159					
643,580	T1 III		220			47	163					
643,593	T1 II		239			43	165					
643,598	T1 II		210	23	2,44	48	147	0,06	0,03	0,48		
643,609	T1 II		253			59	161					
643,624	T1 II		228	22	2,25	46	148	0,16	0,03	0,49		
643,638	T1 II		239			50	148					
643,650	T1 II		201	22	2,31	61	145					
643,665	T1 II		246	21	2,18	54	139					
643,683	T1 II		261			40	107					
643,698	T1 II		277	17	1,83	36	103					
643,718	T1 II		346			37	112					
643,738	T1 II		405			67	115					
643,763	T1 II		494	17	1,87	657	119					
643,788	T1 II		615			203	139					
643,805	T1 II		577			189	123					
643,825	T1 II	1	473	16	1,71	169	100					
643,843	T1 II	l	501		í í	228	117			T	T	
643,858	T1 II	1	429			163	107					
643,873	T1 II	1	250	15	1,34	113	71					
643,883	T1 II	1	222	14	1,55	102	69					
643,895	T1 II		216	15	1,29	72	68					

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]		
643,915	T1 II		200	14	1,29	82	61					
643,940	T1 II		266			102	77					
643,969	T1 II		307	16	1,68	108	98					
643,987	T1 II		201			107	74					
644,009	T1 II		168	15	1,35	90	72					
644,025	T1 II		144	17	1,70	96	86					
644,033	T1 II		190	17	1,79	71	118					
644,038	T1 II		149	18	1,78	408	97	0,08	0,02	0,42		
644,055	T1 II		133	19	1,88	209	101	0,04	0,10	0,29		
644,080	T1 II		174	15	1,54	95	91					
644,100	T1 II		173			128	80					
644,120	T1 II		211	15	1,63	123	93					
644,139	T1 II		193			116	84					
644,156	T1 II		160			102	79					
644,167	T1 II		143	17	1,73	162	87					
644,185	T1 II		210			235	100					
644,209	T1 II		232	16	1,75	235	106					
644,219	T1 II		229	16	1,70	147	99					
644,225	T1 II		249			187	113					
644,240	T1 II		251	18	2,02	662	128					
644,253	T1 II		173			195	91					
644,261	T1 II		145	18	1,79	92	85					
644,270	T1 II		156	16	1,58	296	92					
644,277	T1 II		152	15	1,82	72	88					
644,289	T1 II		160	16	1,53	260	86					
644,307	T1 II		169			230	89					
644,328	T1 II		174	14	1,56	240	89	0,02	0,02	0,26		
644,353	T1 II		205			240	96					
644,378	T1 II		237			225	102					
644,402	T1 II	l l	148	17	1,80	96	96	0,04	0,03	0,34	T	T T
644,426	T1 II	ľ	171	15	1,43	130	77				T	t
644,449	T1 II		235	17	1,81	190	100				T	t
644,470	T1 II		240			654	113					

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
644,490	T1 II		204	15	1,63	530	92				
644,513	T1 II		214			629	97				
644,535	T1 II		221			552	104				
644,553	T1 II		215	16	1,72	415	100				
644,568	T1 II		227			325	107				
644,585	T1 II		245	17	1,70	314	106				
644,608	T1 II		321	19	1,98	550	128				
644,633	T1 II		375			790	132				
644,653	T1 II		334			543	119				
644,669	T1 II		333			467	112				
644,686	T1 II		318			446	110				
644,705	T1 II		310	17	1,83	407	103				
644,725	T1 II		325			245	101				
644,743	T1 II		352	17	1,75	184	100				
644,758	T1 I		415	17	1,83	189	110				
644,780	T1 I		633			1750	151				
644,810	T1 I		619	21	2,39	156	187				
644,833	T1 I		478			92	153	0,07	0,02	0,41	
644,848	T1 I		548	18	1,92	146	137				
644,878	T1 I		450	17	1,76	667	109				
644,898	T1 I		393			1015	99				
644,920	T1 I		428			3417	107				
644,940	T1 I		451	17	1,72	3938	113				
644,965	T1 I		435	16		4788	97	0,09	0,02	0,43	
644,995	T1 I		383			6246	101				
645,018	T1 I		385	15	1,55	3045	89				
645,033	T1 I		348			1815	83				
645,048	T1 I		377	16	1,65	1539	93				
645,065	T1 I		394			1723	105				
645,085	T1 I		469	17	1,75	2008	110				
645,180	T1 I		586	18	1,96	1528	130	0,08	0,03	0,58	
645,200	T1 I		585	18	1,93	4322	124				
645,218	T1 I		560			1991	115				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
645,233	T1 I		564	17	1,89	1033	115				
645,255	T1 I		570			717	114				
645,280	T1 I		621			7531	111				
645,298	T1 I		626	19	2,04	206	109	0,10	0,04	0,69	
645,313	T1 I		686			134	111				
645,328	T1 I		670	17	1,98	339	113	1,41	0,27	0,95	
645,343	T1 I		622	17	1,78	328	108				
645,358	T1 I		647	17		369	106	0,07	0,04	0,69	
645,408	T1 I		667	18	1,98	560	123				
645,435	T1 I		665			693	152				
645,455	T1 I		546	21	2,21	5108	158				
645,475	S1		88	15	1,45	12267	276				
645,496	S1		168	14	1,47	19876	257	0,18	0,04	0,71	
645,516	S1		78	14	1,44	6256	206				
645,535	S1		64			4391	156				
645,555	S1		60	14	1,31	2178	122				
645,575	S1		59			687	121				
645,595	S1		67			754	132				
645,615	S1		80	13	1,33	295	130		0,08		
645,640	S1		76	13	1,25	2132	110				
645,665	S1		57	12	1,14	199	117				
645,685	S1		43			35	346				
645,705	S1		44			45	267				
645,725	S1		57	78	3,22	35	283				
645,745	S1		56			26	145				
645,765	S1		64	20	2,03	14	351				
645,785	S1		50	14	1,42	14	326	0,02	0,02	0,73	
645,813	S1		60	15	1,55	26	176				
645,841	S1		53	12	1,21	14	116				
645,864	S1		35			35	99				
645,890	S1		49	12	1,23	11	109				

Kupferschiefer Kern Lohberg

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
15,667	Ca 1		81	18	1,82	25	208				
15,660	Ca 1		62	15	1,56	19	173				
15,645	Ca 1					18	152				
15,630	Ca 1					18	112				
15,615	Ca 1					12	79				
15,597	Ca 1		32	10	0,91	11	60				
15,580	Ca 1					11	66				
15,565	Ca 1		42	10	0,96	13	70				
15,550	Ca 1					15	74				
15,535	Ca 1		38	10	1,05	15	83				
15,520	Ca 1					16	88				
15,505	Ca 1		46	11	1,12	13	89				
15,490	Ca 1					14	92				
15,475	Ca 1		46	12	1,16	15	96				
15,460	Ca 1					15	113				
15,445	Ca 1		48	11	1,14	16	91				
15,427	Ca 1					18	80				
15,410	Ca 1		57	13	1,30	19	101				
15,395	Ca 1					20	104				
15,380	Ca 1		55	13	1,26	20	83				
15,362	Ca 1					23	124				
15,342	Ca 1		77	15	1,60	24	130				
15,321	Ca 1					27	132				
15,305	Ca 1		96	18	1,86	28	154				
15,285	Ca 1					25	133				
15,268	Ca 1		95	19	1,91	30	175				
15,250	Ca 1		100			30	168				
15,230	Ca 1		92	18	1,88	30	166				
15,210	Ca 1		126			34	168				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]		
15,190	Ca 1		112	20	2,03	31	169					
15,163	T1 III					35	173					
15,142	T1 III		173	23	2,58	285	226					
15,131	T1 III					1079	205					
15,123	T1 III			13		65	73					
15,114	T1 III					102	170					
15,101	T1 III			19		58	164					
15,090	T1 III		229	11	1,01	34	51					
15,079	T1 III			19		81	165					
15,068	T1 III			20		66	153					
15,060	T1 III		360	17	1,84	55	128					
15,049	T1 III			19		64	147					
15,035	T1 III					31	58					
15,035	T1 III			12		31	53					
15,013	T1 III		331	13	1,25	135	72					
14,992	T1 III		330	15	1,50	47	96					
14,969	T1 III					51	97					
14,952	T1 III		208	9	0,84	32	45					
14,932	T1 III					54	75					
14,908	T1 III		180	9	0,78	23	40					
14,887	T1 III		218			28	51					
14,870	T1 III		257	11	1,01	63	58					
14,850	T1 III		223	10	0,94	44	58					
14,840	T1 III		207	10	0,97	47	59					
14,830	T1 III		187	10	0,94	43	55					
14,823	T1 III		196	12	1,13	330	63					
14,817	T1 III		197	11	1,06	50	68					
14,809	T1 III		189	10	1,06	53	67					
14,799	T1 II		175	12	1,18	56	63					
14,787	T1 II	ľ	220	11	1,09	67	69			T	T	
14,774	T1 II		228	11	1,06	66	65					
14,753	T1 II		238			78	64					
14,732	T1 II		234	11	1,08	92	68					

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]		
14,711	T1 II		217			84	56					
14,691	T1 II		199	10	1,01	72	55					
14,671	T1 II		209			70	57					
14,651	T1 II		269	11	1,07	106	66					
14,630	T1 II		277			133	69					
14,608	T1 II		241	11	1,11	214	70					
14,568	T1 II		230	12	1,15	167	74					
14,548	T1 II		225			104	66					
14,528	T1 II		206	12	1,07	100	63					
14,508	T1 II		233			106	67					
14,487	T1 II		297			162	93					
14,468	T1 II		278	12	1,23	112	76					
14,450	T1 II		372			172	98					
14,428	T1 II		380			233	113					
14,411	T1 II		393			159	117					
14,394	T1 II		429	14	1,53	194	109					
14,374	T1 II		544			1905	120					
14,355	T1 II		659	19	1,96	819	152					
14,340	T1 II		702			583	160					
14,322	T1 II		564	15	1,65	136	112					
14,302	T1 II		557			150	102					
14,282	T1 II		594	14	1,56	196	99					
14,263	T1 II		757			302	131					
14,243	T1 II		682	16	1,70	699	119					
14,223	T1 II		415	15	1,47	589	96					
14,202	T1 II		397	16	1,60	336	99					
14,178	T1 II		563	14	1,56	851	109					
14,153	T1 II		584			441	110					
14,130	T1 II		510	14	1,45	991	101					
14,110	T1 II		445			743	88				T	
14,090	T1 II		422	14	1,41	2769	88				T	
14,070	T1 II		487			1618	99				T	
14,050	T1 II		438	15	1,45	1086	95					

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
14,025	T1 II		433			3973	84				
14,005	T1 II		309	12	1,19	3318	68				
13,985	T1 II		320			1696	65				
13,965	T1 I		279	12	1,09	812	56				
13,945	T1 I		287			914	59				
13,923	T1 I		304	12	1,13	1323	62				
13,903	T1 I		351			1693	75				
13,881	T1 I		407	15	1,51	1698	104				
13,861	T1 I		399	13	1,45	3041	91				
13,840	T1 I		457			2467	101				
13,819	T1 I		487	14	1,57	1967	106				
13,802	T1 I		474			3350	101				
13,782	T1 I		482	14	1,53	3418	105				
13,762	T1 I		488			4974	102				
13,742	T1 I		508	16	1,73	2876	118				
13,722	T1 I		519			3276	123				
13,702	T1 I		548	15	1,66	1990	114				
13,682	T1 I		541			3764	118				
13,662	T1 I		529	15	1,72	2671	120				
13,643	T1 I		552			4647	108				
13,621	T1 I		516	15	1,51	1985	104				
13,585	T1 I		546	14	1,56	2546	94				
13,567	T1 I		570			2567	100				
13,545	T1 I		572	15	1,69	2152	118				
13,524	T1 I		608			945	117				
13,513	T1 I		620			894	114				
13,503	T1 I		593	16	1,70	2458	122				
13,493	T1 I		579			18566	117				
13,483	T1 I	1	601			5211	126				
13,471	T1 I		591	16	1,77	774	128				
13,458	T1 I	l	580			599	139			T	
13,450	T1 I	1	569			620	132				
13,443	T1 I		551	16	1,84	438	130				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
13,433	T1 I		533			487	132				
13,423	T1 I		514	17	1,77	327	132				
13,414	T1 I		553			324	159				
13,406	T1 I		529	18	1,86	341	147				
13,398	T1 I		534			281	135				
13,389	T1 I		507	19	1,96	239	146				
13,379	T1 I		449			176	139				
13,369	T1 I		360			143	132				
13,357	T1 I		288	18	1,71	253	116				
13,344	S1		32	13	1,03	25	99				
13,326	S1					35	84				
13,310	S1					22	193				
13,288	S1		59	20	1,99	41	251				
13,260	S1					15	63				
13,245	S1					23	337				
13,229	S1		45	9	0,80	13	91				
13,211	S1					15	95				
13,197	S1		36	14	1,43	20	245				
13,153	S1					20	96				
12,829	S1					11	137				
12,249	S1		23			15	118				
10,490	S1		32			18	121				
10,400	S1		100			51	287				
10,043	S1		95	22	2,54	43	305				
9,535	S 1		129			66	257				
9,205	S1			41	2,96	69	168				
7,473	S1		124			63	222				
6,735	S1		101			36	264				

Kupferschiefer	Kern	Goslar	Z1
----------------	------	--------	-----------

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
6,120			102			335	145				
6,140			93			22	132				
6,140			93			22	134				
6,365			130	18	1,76	417	143				
6,385			186			2153	176				
6,395	T1		194	19	2,16	1408	184				
6,405	T1		211			1312	192				
6,415	T1		205	20	2,17	2928	199				
6,426	T1		217			1752	201				
6,439	T1		224	20	2,23	3406	203				
6,453	T1		498			4378	122				
6,465	T1		387	16	1,45	15722	96				
6,475	T1		412			1922	100				
6,485	T1		369	15	1,32	8934	89				
6,495	T1		452			4520	95				
6,515	T1		1453	23	1,99	24952	165				
6,525	T1		838			21583	85				
6,535	T1		780	15	1,19	21326	85				
7,016			71	17	1,73	18	126				
7,025			58			68	79				
7,034			64			15	90				
7,045			74			20	124				
7,055			93			22	147				
7,065			77			18	147				
7,075			83			25	149				
7,205			132			37	137				
7,215			128			47	145				
7,225			146			58	152				
7,235			59			96	97				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
7,245			25			807	68				
7,255			21			1461	74				
7,405			233			495	175				
7,415			156			483	189				
7,425			109			691	179				
7,435			119			880	177				
7,445			119			293	168				
7,455			92			173	163				
7,465			91			181	156				
7,475			95			165	166				
7,499			123			189	157				
7,514			126			278	129				
7,700			39			11	206				
7,722			34			6	188				
7,741			48			9	141				
7,758			45			10	128				
7,778			60			11	252				
7,798			70			14	222				
7,817			72			17	111				
7,834			70			14	122				
7,849			82			17	175				
7,865			53			13	155				
7,885			30			7	236				
7,905			55			16	160				
7,925			51			11	142				
7,945			59			12	126				
7,965			72			22	171				
7,988			42			12	216			1	

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
3,86	Heebner	WL5	239	63		704	326				
4,14	Heebner	WL4	815	12	1,88	374	139	0,22	0,04	3,68	
4,33	Heebner	WL3	766	24	1,61	723	349	0,33	0,05	5,87	
4,50	Heebner	WL2	1146	7	1,48	311	139	0,15	0,04	3,39	
4,76	Heebner	WL1	907	11	1,12	2281	213				
7,10	Heebner	CL5	481	25	1,38	326	102				
7,34	Heebner	CL4	757	7	0,68	244	141	0,20	0,04	5,08	
7,57	Heebner	CL3	1877	14	1,89	1803	186	0,24	0,05	5,06	
7,82	Heebner	CL2	1146	7	1,42	890	132				
8,06	Heebner	CL1	188	25	2,15	1201	164				
116,49	Eudora	WL13	149	30	2,15	202	212				
116,59	Eudora	WL12	154	24	2,42	168	160				
116,91	Eudora	WL11	182	20	1,81	269	136	0,06	0,03	1,08	
117,11	Eudora	WL10	169	17	2,04	100	180				
117,35	Eudora	WL9	227	17	2,11	100	131				
117,48	Eudora	WL8	624	36	2,69	3817	135				
117,64	Eudora	WL7	170	16	1,87	191	130				
117,82	Eudora	WL6	124	13	1,81	174	151				
187,29	Lake Neosho	ED14	1081	135	7,00	1140	112				
200,02	Anna	ED13	172	16	1,96	473	181				
200,17	Anna	ED12	555	10	1,57	279	116				
200,33	Anna	ED11	1070	102	6,17	2712	87	0,32	0,06	6,87	
219,06	Exshello	ED3	163	5	1,25	925	116				
219,42	Exshello	ED2	671	83	4,71	571	78				
219,68	Exshello	ED1	1819	37	2,86	3299	79	0,64	0,08	15,49	

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
14,55		JC45	57	18	1,42	13	85				
14,20		JC44	61	22	1,69	17	73				
13,75		JC43	128	22	2,17	21	98				
13,15		JC42	211	22	2,23	96	105				
12,75		JC41	175	27	2,20	39	108				
12,50		JC40	134	27	2,13	25	95				
11,85		JC39	163	24	2,32	25	112				
11,35		JC38	209	33	1,96	457	61				
11,00		JC37	1236	10	1,16	114	85				
9,65		JC35	1374	20	1,68	472	79				
9,45		JC34	1116	17	1,54	149	74				
8,95		JC33	1423	11	1,21	84	78				
8,65		JC32	1085	17	1,42	33	53				
8,40		JC31	1094	7	0,70	197	51				
8,15		JC30	1372	9	0,69	117	67				
7,95		JC29	1358	10	0,79	877	75				
7,65		JC28	952	7	0,64	68	43				
7,35		JC27	1475	11	1,12	69	59				
7,20		JC26	1237	10	0,97	51	57				
7,05		JC25	1179	9	0,88	685	57				
6,90		JC24	1175	10	0,85	214	49				
6,35		JC22	1243	13	1,18	46	53				
6,10		JC18	1516	18	1,27	24	61				
5,63		JC17	608	11	0,97	33	28				
5,53		JC16	580	7	0,45	23	77				
5,18		JC15	423	10	0,98	53	66				
4,83		JC14	397	17	1,44	61	66				
4,58		JC13	165	18	1,49	227	60				
4,53		JC12	43	89	2,93	25308	139				

Exshaw Formation Standort Jura Creek

Exshaw Formation Standort Shell Whiskey

Teufe [m]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
3687,80		XD3	233	38		1110	69	0,06	0,05	2,20	
3688,00		XD5+6	243	20		345	92				
3688,35		XD7	150	20		35	65				
3688,75		XD9	188	18		64	76	0,03	0,03	0,93	
3689,10		XD10	158	16		73	97				
3689,40		Xd11	173	19		104	98				
3689,70		XD12	222	18		693	105				
3690,40		XD14	344	19		185	111		0,02	0,94	
3690,65		XD15	355	19		274	113	0,08	0,04	1,11	
3690,85		XD16	347	19		191	114				
3691,35		XD17	367	20		182	116				
3691,60		XD18	372	21		201	119				

Graptolithenschiefer aus Thüringen

S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
Mitteldevon	6529_826	392	31	3,11	45	117				
Mitteldevon	6529_867	162	19	2,19	50	93				
Mitteldevon	7515_428	166	16		37	112				
Mitteldevon	7515_448	281	21		55	152				
Mitteldevon	7515_468	144	19		40	95				
Mitteldevon	6529_823	401	37	3,03	104	161				
Mitteldevon	6529_849	185	24	2,28	35	102				
Mitteldevon	6003_208- 210	179			46	107				
Mitteldevon	7515_490	112			37	74				
Unterdevon	6003_425	259	42	3,90	53	132				
Unterdevon	6003_430	425	25	2,02	151	49				
Unterdevon	6003_433	1264	29	3,24	142	111				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
Unterdevon	6003_438_53	761	38	3,75	136	96				
Unterdevon	6003_443	751	30	3,81	153	159				
Unterdevon	6003_89_178	184	20	2,75	36	131				
Unterdevon	6003_89_186	240	62	3,93	36	110				
Unterdevon	6003_89_193	233	39	3,20	35	131				
Unterdevon	6003_89_428	225	62	5,07	57	129				
Unterdevon	6175_200	279	21	1,83	29	47				
Unterdevon	6175_201	1870	58	5,26	90	124				
Unterdevon	6175_218	1365	50	4,04	116	106				
Unterdevon	6175_221	2256	34	3,26	80	107				
Unterdevon	6175_234	761	56	4,89	81	154				
Unterdevon	6175_249	1009	47	5,29	170	164				
Unterdevon	6175_253	1391	48	4,33	83	104				
Unterdevon	6175_258	794	64	4,83	52	87				
Unterdevon	6175_274	291	34	3,25	37	91				
Unterdevon	6175_280	1028	66	5,85	102	147				
Unterdevon	6177_280	797	73	5,97	74	131				
Unterdevon	6177_283	912	36	3,26	64	96				
Unterdevon	6177_291	897	62	5,53	51	145				
Unterdevon	6177_298	767	52	4,83	53	143				
Unterdevon	6529_954	1713	108	8,44	403	77				
Unterdevon	7515_555[53] 1	731	45		59	142				
Unterdevon	7515_560[53] 1	684	46		59	110				
Unterdevon	7515_569	580	26		44	92				
Unterdevon	7515a_488	177	20	2,36	50	107				
Unterdevon	6529_952	1746	35	3,30	114	87				
Unterdevon	6003_473	285			104	88				
Unterdevon	6175_261	400			49	89				
Unterdevon	7515_562	389			43	92				
Unterdevon	7515_567	910			63	122				
Unterdevon	7515_573	1220			60	108				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
Unterdevon	7515_590	382			60	106				
Unterdevon	7515_591	538			52	103				
Silur	6003_525	127	30	3,15	69	244				
Silur	6175_343	740	93	7,42	51	157				
Silur	6175_367	900	61	4,53	389	54				
Silur	6175_378	1044	42	3,72	16	54				
Silur	6175_383	1108	53	3,74	35	43				
Silur	6175_394	994	32	2,78	63	53				
Silur	6175_89_350	472	85	5,56	19	119				
Silur	6175_89_357	3414	92	7,05	47	121				
Silur	6177_436	703	89	6,57	45	127				
Silur	6177_448	3241	45	4,39	80	136				
Silur	6177_463	524	15	1,38	49	18				
Silur	6177_466	882	42	3,22	53	48				
Silur	7512_590_2	700	29	3,24	33	91				
Silur	7512_595	791	46	3,27	21	20				
Silur	7512_597- 600	2386	134	8,64	50	64				
Silur	7512_603	687	91	6,71	48	70				
Silur	7512_637	128	31	3,18	37	208				
Silur	7512_86_610	1097	42	3,20	14	31				
Silur	6177_458	1073	45	4,29	104	111				
Silur	7512_86_615 -624	696	28	2,16	10	31				
Silur	RONN 92_6	159	34	3,16	43	221				
Silur	RONN 92_8	1842	63	5,66	99	130				
Silur	RONN 92_9	1302	58	4,65	63	65				
Silur	RONN-92_11	2582	56	5,60	58	155				
Silur	RONN-92_12	2449	27	3,39	61	136				
Silur	RONN-92_3	797	36	2,77	18	48				
 Silur	RONN-92_4	829	66	4,88	35	60				
Silur	6003_522	118			81	246				
Silur	6003_523	119			84	257				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
Silur	6175_345	3690			117	160				
Silur	6175_363	1156			61	51				
Silur	6175_373	1000			72	57				
Silur	6177_350	467			48	37				
Silur	7515_707	1222			39	119				
Silur	7515_719	1966			36	114				
Silur	Ronn92_1	294			18	28				
Silur	Ronn92_10	1695			72	66				
Silur	Ronn92_13	1600			91	156				

Tanezzuft Formation in Libyen

Teufe [ft]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
7237,18	Silur	LAN 4-138	285	28	3,12	164	101				
7241,20	Silur	LAN 4-128	353	26	2,81	279	101				
7242,54	Silur	LAN 4-124	325	28	2,80	154	94				
7246,06	Silur	LAN 4-117	401	31	3,37	146	94				
7248,41	Silur	LAN 4-109	679	34	3,81	213	94				
7250,25	Silur	LAN 3-105	639	43	4,10	189	91				
7251,59	Silur	LAN 3-101	727	45	4,43	150	100	0,19	0,07	4,80	
7253,10	Silur	LAN 3-97	800	30	3,59	223	114				
7255,28	Silur	LAN 3-92	787	48	5,24	253	92				
7256,45	Silur	LAN 3-89	710	37	4,28	201	107				
7257,46	Silur	LAN 3-86	742	46	3,95	226	96	0,17	0,09	5,04	
7259,47	Silur	LAN 3-83	768	38	4,15	192	98				
7262,32	Silur	LAN 3-78	656	39	4,19	170	100				
7265,50	Silur	LAN 3-71	492	31	3,23	178	110				
7268,35	Silur	LAN 2-64	470	32	3,38	161	107				
7271,20	Silur	LAN 2-57	547	34	3,25	134	109				
7274,38	Silur	LAN 2-50	627	29	3,65	167	115				
7277,57	Silur	LAN 2-42	525	31	3,10	119	117				

Datenanhang – V, Y, Yb, Zn, Zr, Ru, Ir, Pt

Teufe [ft]	S.E.	Proben- bezeichn.	V [ppm]	Y [ppm]	Yb [ppm]	Zn [ppm]	Zr [ppm]	Ru [ppb]	Ir [ppb]	Pt [ppb]	
7281,76	Ordovizium	LAN 2-29	687	36	4,02	129	128	0,20	0,07	4,63	
7287,63	Ordovizium	LAN 2-15	408	26	2,87	360	84				
7289,80	Ordovizium	LAN 2-11	593	29	3,49	161	106				

Danksagung

Mein besonderer Dank gilt meinem Doktorvater H.-J. Brumsack, welcher diese Arbeit mit steter Diskussionsbereitschaft begleitet hat. Seine kreativen Beiträge waren bei der Anfertigung dieser Arbeit sehr hilfreich.

Herrn J. Rullkötter sei herzlich für die Übernahme des Korreferats gedankt.

B. Schnetger danke ich für die kompetente Beratung bei allen analytischen Fragestellungen und die kritischen und konstruktiven Diskussionen, welche insbesondere den Fortgang der Methodenentwicklung zur Bestimmung der PGE-Konzentrationen in anoxischen Sedimenten unterstützt haben.

Frau A. Schmid-Röhl und den Herren L. Schwark, J. Paul , T. Kuhn, W. Buggisch und S. Lüning danke ich für die unkomplizierte Bereitstellung des Probenmaterials. Herrn M. Brauns danke ich für die anregenden Diskussionen bezüglich der Isotopenverdünnungsanalyse und der Re-Verteilung im Kupferschiefer.

Außerdem bedanke ich mich allen aktiven und ehemaligen Mitgliedern der AG "Mikrobiogeochemie" einschließlich Frau B. Warning und den Herren J. Hinrichs, R. Wehausen und M. E. Böttcher. Durch die vorbildliche Kooperation war jederzeit eine angenehme und produktive Arbeitsatmosphäre gegeben.

Für die sorgfältige Durchsicht des Manuskript sei Silke, Philipp, Tim und Willm gedankt.

Nicht zuletzt danke ich meiner Mutter und meinem viel zu früh verstorbenen Vater für ihr Vertrauen und die vielseitige Unterstützung während meiner Ausbildung sowie Tomke, die mich im Glauben an das Fertigstellen dieser Arbeit immer unterstützt hat und gerade in der Endphase des Entstehens viel zu oft auf mich verzichten musste.

Zum Schluss sei erwähnt, dass die Arbeit von der Deutschen Forschungsgemeinschaft im Rahmen des Schwerpunktprogramms "Evolution des Systems Erde während des jüngeren Paläozoikums im Spiegel der Sediment-Geochemie" finanziell gefördert wurde.

Lebenslauf

Ich wurde am 4. Mai 1971 in Oldenburg (Niedersachsen) geboren. Von 1977 bis 1983 besuchte ich die Grundschule und Orientierungsstufe in Wardenburg. Die allgemeine Hochschulreife erlangte ich 1990 an der Graf-Anton-Günther Schule in Oldenburg. Nach dem Zivildienst beim Malteser Hilfsdienst begann ich im Wintersemester 1991 das Studium der Chemie an der Carl von Ossietzky Universität Oldenburg. Der Abschluss erfolgte im Dezember 1998 mit dem Diplom. Die Diplomarbeit mit dem Titel "*Hochauflösende Geochemische Analyse eines Sedimentkernes aus dem Schwarzen Meer*" habe ich unter Anleitung von Prof. H.-J. Brumsack angefertigt.

Von Februar 1999 bis Oktober 2002 war ich am "Institut für Chemie und Biologie des Meeres" der Carl von Ossietzky Universität Oldenburg als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe von Prof. H.-J. Brumsack beschäftigt. Die Ergebnisse aus dieser Zeit sind die Grundlage für die vorliegende Arbeit. Seit dem November 2002 bin ich als Studienreferendar für das Lehramt an Gymnasien in Stadthagen tätig.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig angefertigt habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Oldenburg, 17.03.04

[Holger Lüschen]

Anmerkung:

Diese Arbeit ist auch unter:

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/fak05.html

in elektronischer Form erhältlich.