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1 Introduction

The aim of the present work is the development of the theory of Fourier hyperfunctions in one
variable with values in a non-necessarily metrizable locally convex space E and to find neces-
sary and sufficient conditions such that a reasonable theory of E-valued Fourier hyperfunctions
is possible. In particular, it is shown that, if E is an ultrabornological PLS-space, such a theory
exists if and only if E satisfies the so-called property (PA). It will turn out that the vector-valued
Fourier hyperfunctions can be realized as the sheaf generated by equivalence classes of certain
compactly supported E-valued functionals and interpreted as boundary values of slowly increas-
ing holomorphic functions.

Scalar-valued Fourier hyperfunctions R were introduced by Kawai [28] in 1970. He constructed
them as a flabby sheaf on D,,, where D,, means the radial compactification of R”, using coho-
mology theory and Hérmander’s L?-estimates [20]. He proved that the global sections are stable
under Fourier transformation .7, i.e. .#:R(D,) — R (D) is an isomorphism. This sheaf is a
generalization of the sheaf B of hyperfunctions on R” which was developed by Sato [55] (and
[56]); in particular, R|g, = B holds. Hyperfunctions emerged as an useful tool in the theory
of partial differential equations (see [33]), in particular, in the solution of the abstract Cauchy
problem. Komatsu developed the theory of Laplace hyperfunctions, a theory of operator val-
ued generalized functions with a suitable Laplace transform, more precisely, for operators in
Banach spaces, and the abstract Cauchy problem was solved by a condition on the resolvent
of the operator which characterized the generators of hyperfunction semigroups (see [34], [35],
[36] and [37]). This theory was improved and extended beyond operators in Banach spaces by
Domanski and Langenbruch (see [14], [15]). Since some partial differential equations can be
taken as ordinary vector-valued equations (e.g. [50], [51]), the question arose whether there
was a vector-valued counterpart for the theory of (Fourier) hyperfunctions. Whereas Schwartz
achieved this in the analogous theory of distributions by tensor products [58], one faces a crucial
problem in the development of such a theory of vector-valued, in short, E-valued where E is a
locally convex space, Fourier hyperfunctions, namely, the lack of a natural linear topology on the
scalar-valued (Fourier) hyperfunctions (with the exception of the space of global sections in the
case of Fourier hyperfunctions). Despite of this difficulty, Ion and Kawai [21](1975) developed
a theory of hyperfunctions with values in Fréchet spaces, Ito and Nagamachi [24](1975) a theory
of Fourier hyperfunctions with values in Hilbert spaces, which was used by Mugibayashi and
Nagamachi ([48], [49]) for an axiomatic formulation of quantum field theory in terms of Fourier
hyperfunctions, and Junker [26](1979) a theory of Fourier hyperfunctions with values in Fréchet
spaces. Although Ito tried to extend the theory of Fourier hyperfunctions to non-Fréchet spaces E
([23], [22]), his effort has some mathematical gaps. He only realizes them in form of a presheaf
satisfying the sheaf condition (S1) of Bredon [9, 1.5, p. 5] and then defines the sheaf of general
Fourier hyperfunctions as the associated sheaf (see [9, 1.3, p. 5]). Even worse, it is not certain
whether the restrictiction maps he defines exist for a general locally convex space E, so it is not
even sure if his E-valued Fourier hyperfunctions form a presheaf at all (see Remark 6.3 and the
remarks before it). But their existence can be assured by an additional condition for E, viz. E
has to be strictly admissible which is explained in the forthcoming. As we will see, a reasonable
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theory of E-valued Fourier hyperfunctions is indeed impossible, at least in one variable, for ul-
trabornological PLS-spaces E not satisfying the so-called property (PA).

Domarski and Langenbruch [13](2008) not only overcame these obstacles and developed a the-
ory of vector-valued hyperfunctions beyond the class of Fréchet spaces, but also found natural
limits of this kind of theory. They characterized in a large natural class of locally convex spaces
those spaces for which a reasonable theory of E-valued hyperfunctions exists at all (see [13,
Theorem 8.9, p. 1139]). To be more precise: they state that a reasonable theory of E-valued
hyperfunctions should generate a flabby sheaf with the property that the set of sections supported
by a compact subset K c R” should coincide with L(A(K),E), the space of linear continuous
operators from A (K) to E where A(K) denotes the space of germs of real analytic functions on
K. Transferring this condition to the theory of Fourier hyperfunctions, I am convinced that a rea-
sonable theory of E-valued hyperfunctions (in one variable) should produce a flabby sheaf such
that the set of sections supported by a compact subset K c R should coincide with "the space of
E-valued P,-functionals" L (P, (K),E) where R is the radial compactification of R and P, (K)
the space of rapidly decreasing holomorphic germs near K (see Definition 3.1). If one restricts
such a sheaf to R, the restricted sheaf fulfills the condition of Domarski and Langenbruch for a
reasonable theory of E-valued hyperfunctions, since P, (K) =.A(K) for compact K c R, which is
desirable in the spirit of the property R‘R = BB of the scalar-valued case. Furthermore, the global
sections of such a sheaf are stable under Fourier transformation (see Theorem 4.6). This implies
that for those spaces E, for which a reasonable theory of E-valued hyperfunctions is impossible,
a reasonable theory of E-valued Fourier hyperfunctions is impossible as well. A long list of ex-
amples of spaces E for which a reasonable theory of E-valued Fourier hyperfunctions is possible
resp. impossible can be found in Example 5.26 resp. Example 5.27(a).

In the approach of Domarnski and Langenbruch the existence of an E-valued sheaf of hyperfunc-
tions is deeply connected with the solvability of the E-valued Laplace equation; namely, if the
(n+1)-dimensional Laplace operator

An+l:coo ('Q'7E) - C* (QaE)

is surjective for every open set Q c R**! where C* (Q,E) is the space of smooth E-valued
functions on Q, then a reasonable theory of E-valued hyperfunctions on R” is possible (see [13,
Theorem 6.9, p. 1125]). For E-valued Fourier hyperfunctions in one variable the corresponding
counterpart is the following. A complete locally convex space E is called admissible if the
Cauchy-Riemann operator

9:£P (@\K,E) - EP (@\K,E)

is surjective for any compact set K c R where C := R+iR and £ (@ \K,E ) is, roughly speaking,
the space of smooth E-valued slowly increasing functions outside K (see Definition 3.2). E is
called strictly admissible if £ is admissible and, in addition,

9:C*(Q,E) - C* (Q,E)

is surjective for any open set Q c C. We will prove that E being strictly admissible yields to the
existence of a reasonable theory of E-valued Fourier hyperfunctions in one variable. Hence the
whole Section 5 is dedicated to this problem and culminates in the main theorem of this section,
Theorem 5.25, where all the classes of strictly admissible spaces known so far are collected, in
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particular, ultrabornological PLS-spaces with property (PA). The main tools of this section are
the splitting theory for Fréchet spaces of Vogt [63] and new results on the splitting theory for
PLS-spaces by Bonet and Domarski [8] as well as results on tensor products obtained in Section
3 (see Theorem 3.11).

In correspondence with the scalar-valued case, the E-valued Fourier hyperfunctions are defined
in Section 6 from two different points of view for a strictly admissible space E. On the one hand
as the sheaf generated by equivalence classes of E-valued P.-functionals, and on the other as the
sheaf of boundary values of the elements of Q¢ (U \R,E ) . This is, to put it roughly, the space

of holomorphic E-valued slowly increasing functions on U outside an open set Q c R, where U
is an open set in C with U nR = Q (see Definition 6.7). The construction of these sheaves will
benefit from some kind of Kothe duality established in Section 4 (see Theorem 4.1) and it will
turn out that both sheaves are isomorphic (see Theorem 6.11). At the end of the section, it will
turn out, as already mentioned in parts, that, if £ is an ultrabornolgical PLS-space, a reasonable
theory of E-valued Fourier hyperfunctions in one variable exists if and only if E satisfies the
property (PA) (see Theorem 6.14).






2 Notation and preliminaries

By E we will (almost) always denote a complete locally convex space equipped with the system
of semi-norms (pg) 44, Where A is a directed set. The only exceptions are Theorem 5.1, the
Lemmas 5.3-5.5, Remark 5.9 and a short remark right after Example 5.12, where E denotes a
fundamental solution.

Basic notations for sets, the spaces R and C

We denote by R the radial compactifaction of R defined as follows. We set R := Ru {+oc0} and
equip this space with the topology given by:
A set Q c R is open iff

« OnRisopenin (R,|:|) and
e there exists a € R such that [a,00] c Q, if 0o € Q, or [-00,a] c Q, if —co € Q.

Remark that R, equipped with this topology, is a compact space. Furthermore, we define
infg:=oco and sup@:=-oo

as well as [a,b] = @ for a, b e R, a>b. Moreover, we set —oo0 +a := —oo and oo +a := oo for a € R.
In addition, we define [x]:=min{k€Z |x <k} for xe R.

Further, we define C := R+ iR and equip it with the product topology. In particular, this means that
an open set U c C contains co or —oo iff there exist a ¢ R and & >0 such that ([a, 0] +i] - €,€[) cU
resp. ([-o0,a]+i]-€,€[) cU.

Let z € C. Then there are x, y € R such that z = x+iy. We use the usual notation Re(z) := x and
Im (z) := y. In short, we often just use for an element z € C the notation z = z; + iz without previ-
ously pointing that out. Furthermore, we also use a notation of mixed-type

. Z
z=z21+i220=(21,22) = (Z;),

hence consider C as the vector space R? equipped with the usual multiplication. Further, we
denote by (z|w) the usual scalar product of z, w € R?. We define the distance of two subsets
My, M; c C via
{ inf |z-y|, if My, M, 2,
d(M(),Ml)Z: zeMy, yeMy
00, ifMy=@orM =.

If My is compact and M closed such that MynM; = @, then there exists zg € My with d (Mo, M) =
d(zo,M ), in particular, d (My,M;) > 0 (see for example [31, 1.4.1I. Beispiel, p. 31]).

Moreover, we denote by D, (z) :={weC| |w—-z| < r} the ball around z € C with radius r > 0.

For an universal set (basic set) U we denote the absolute complement of a subset M c U by
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MC := U \ M. Further, we denote by #M the number of elements of a set M and for a subset M of
a topological space X the set of inner points of M by M, the closure of M by M and the boundary
of M by dM.

Spaces of continuous linear operators

By L(E,F) we denote the space of continuous linear operators from X to ¥ where X and Y are
locally convex spaces. If F =C, we just write E’ := L(E,C) for the dual space. By Ls (E,F),
L.(E,F), L., (E,F), L:(E,F), L,(E,F) and L, (E,F) we denote the space L(E,F) equipped
with the weak topoplogy, the topology of uniform convergence on precompact subsets of E, the
compact open topology, the Mackey topology, the topology of uniform convergence on equicon-
tinuous subsets of E and the strong topology. Sometimes we also use the symbol 6 (E’, E) for the
weak topology and the symbol A (E’, E) for the topology of uniform convergence on precompact
sets on E’. But, if not otherwise stated, L(E,F) resp. E’ is always equipped with the strong
topology and we only write L, (E, F ), if we want to emphasize this fact.

Moreover, we often use the notation

(T,x):=T (x)

forTeL(E,F)andx€E.

Later, when we are concerned with tensor products, we will use the so-called e-product which is
defined by E€F := L, (E!,F) for complete locally convex spaces E and F. Remark that E! = E/,
if E is complete. This definition of the e-product coincides with the original one by Schwartz
[58, Définition, p. 18] if E is (quasi-)complete. For the references to the book [25] of Jarchow
in this context, whose definition of the €-product also differs in general from the one given here,
we remark that they coincide if E is complete by [25, 9.3.7. Theorem, p. 179], which is the case
we are interested in.

Infinetely partial differentiable functions, distributions and
holomorphic functions

Let ne N and U c R" be open. By C* (U) and C* (U,E) we denote the spaces of scalar- and
E-valued infinitely differentiable functions on U. For f € C* (U, E) we use the usual notation

9@ afae )= () () 0o

with o € Nj and denote by |c|:= 0 +--- + ¢, the order of differentiation. Further, we use for
a, B € Nj the notation
p<a: = VO0<i<n: Bi<q

(5)= ()5

if B < o, where the right hand side is defined by ordinary binomial coefficients. We remark that
B < a implies |B| < |a|. This notation is useful when we are concerned with partial derivatives of

and define
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products (Leibniz rule).
The space of infinitely differentiable functions with compact support in U is defined by

CP(U):=DU):= limind Cg (K)

KcU compact

where
Co (K):={feC®(R") [ f(x)=0Vx¢K}.

Every element f of D(U) can be regarded as an element of D (R") just by the trivial setting
f:=00n UC. Moreover, we set for k € Ny and f € C3° (R?)

£ M= sup [9%f (x)]-

xeR
oeNg, |or|<k

Il is a norm on C§° (R") for any .

The dual D' (U) :=D(U)' is called the space of distributions on U. The Dirac distribution &
is defined via 6 (@) := ¢ (0), ¢ € D(R"), and for a locally integrable function feL! (U) we
denote by T the regular distribution defined by

T ()= [ f(x)9(@)dx, peD(U).
The partial derivatives of a distribution T € D’ (U) are defined by

9°T (9) = (-1)"'T (3%9), 9eD(U).

The convolution 7 * ¢ of a distribution T € D’ (R") and a test function ¢ € D (R") is defined by

(T+@)(x) =T (p(x=-)), xeR".

In particular, we have § * ¢ = ¢ and
(Tr+9) (@)= [ FO)@G=y)dy, xeR", eR)

for feL) (R")and ¢ e D(R").

Furthermore, 0% (T + @) = (d%T) @ =T % (d%*@) is valid for T € D' (R") and ¢ € D(R"). For
more details on the theory of distributions see [18].

Let U c C be open. By O (U) and O (U, E) we denote the spaces of scalar- and E-valued holo-
morphic functions on U.

PLS-spaces, Proj' and Ext' functor and splitting of exact
sequences

Let us recall that a locally convex space X is a PLS-space (PLN-space) if X = limprojy.Xy
where Xy are DFS-spaces, i.e. the strong duals of Fréchet-Schwartz spaces (DFN-spaces, i.e.
the strong duals of nuclear Fréchet spaces). Xy being a DFS-space is equivalent by [45, The-
orem 25.20, p. 286] to the existence of a sequence of Banach spaces (Xy,),.y such that
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Xy = limind,en Xy, With compact linking maps. For this reason DFS-spaces are also called
LS-spaces. Examples of PLS-spaces are the space of distributions D’ (Q) and the space of real
analytic functions A (Q). In particular, every Fréchet-Schwartz space is a PLS-space (for a short
proof see [13, Proof of Proposition 4.3, p. 1113-1114]). For more examples see Example 5.26
and Example 5.27. Further, we recall that a LFS-space is an inductive limit of a sequence of
Fréchet-Schwartz spaces. For more details on PLS-spaces we refer to [11].

We repeat some homological tools, mostly working in the background of the results at the end
of Section 6. The Proj] functor is defined as follows. Let X := limprojy.yXy where (Xy) is a
sequence of locally convex spaces with a sequence of linking maps i%“:XNH — Xy. One defines

Proj}veN(XN) = HXN/imG, GZHXN—> 1—1)(]\]7
NeN NeN NeN

o ((xn)) = (i v =) y oy -

For reduced spectra of DFS-spaces or Banach spaces, meaning that iy: X — Xy has a dense range
for every N e N, Plroj1 depends only on X and not on the spectrum itself. We remark that a PLS-
space X is ultrabornological iff Proj 'x=0 by [65, Corollary 3.3.10, p. 46].

We have the following relation between the terminology of homological algebra and the theory
of locally convex spaces, which can be found in [53, §4+8§9] and [65, Chap. 2+5]. The category
LCS of locally convex spaces resp. the category F of Fréchet spaces consists of (not necessarily
Hausdorff) locally convex spaces resp. Fréchet spaces (over the same scalar field R or C) as
objects and continuous linear maps (operators) as morphisms. So, we use the notation L (X,Y)
for Hom (X,Y), where X and Y are locally convex spaces resp. Fréchet spaces, and the group
structure is given by the usual addition. In the following, let K be LCS or F. An operator f:X — Y,
X, Y € K, is a monomorphism iff it is injective. An operator f:X — Y, where X, Y € LCS (resp.
X, Y € F), is an epimorphism, iff it is surjective (resp. it has dense range). In K every operator
f:X — Y has a kernel, namely, the subspace f~! ({0}) c X equipped with the induced topology, it
has a cokernel, namely, in LCS the quotient space Y/f (X) and in F the quotient space Y/ f (X),
equipped with the quotient topology. Accordingly, the subspace f(X) c Y, equipped with the
induced topology, can be interpreted as the image of f and the quotient space X/f~!({0}),
equipped with the quotient topology, as the coimage of f (for F keep in mind that f~! ({0}) =
£~1({0})). Further, the morphism

FXIFHH0)) = (X)), [x] = £ (%),

is a bimorphism, i.e. it is a monomorphism as well as an epimorphism. Thus the category X
is semi-abelian. f:X — Y is a homomorphism iff it is open onto its range. A space [ in K is
called injective iff for every f € L(X,I), where X in K, and every monohomomorphism (i.e. a
topological embedding) i:X — ¥, where Y in K, there is an extension fe L(Y,I) of f,i.e. foi=f.
The crucial point is that the category K has many injective objects by [53, Corollary 4.1, p. 23]
resp. [65, Theorem 2.2.1 and a subsequent remark, p. 13-14], i.e. for every object X of K there
exist an injective object I and a monohomomorphism i: X — I. In particular, this implies that every
object X in K has an injective resolution, i.e. there exists an exact complex

0 X150 > o
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where [; are injective objects in K for every k. For a fixed locally convex space (resp. Fréchet
space) E one considers the functor L(E,-) assigning to a locally convex space (resp. Fréchet
space) X the linear space L(E,X) and to an operator 7:X — Y the linear map T*:L(E,X) —
L(E)Y), f+ foT. This covariant functor is injective and additive. Since K has many injective
objects, the construction of the right derived functors of L(E,-) is possible and they are denoted
with Ext* (E,-) . For any injective resolution of X we have

Ext* (E,X) = keri; /imi}_ |, k>1,

where i;:L(X,Ix) = L(X,Ixs1), i*(T) =i;oT, and Ext’ (E,X) = L(E,X). Then the following
Theorem (see [53, Proposition 2.1, p. 13] and [53, Proposition 9.1, p. 49] or [65, Theorem 2.1.1,
p. 11-12] and [65, Theorem 5.1.1, p. 77]) is valid:

Theorem. /) Let E be a locally convex space (resp. Fréchet space) and

0->x5v8750

an exact sequence sequence of locally convex spaces (resp. Fréchet spaces). Then there is an
exact complex

* * 60 81
0-L(E,X) 1—>L(E,Y)Q—>L (E,Z)>Ext' (E,X) - Ext' (E,Y) - Ext! (E,Z) >Ext*>(E,X) - ---

where I*:L(E,X) - L(E,Y), I*(T):=10T,and Q*:L(E,Y) - L(E,Z), Q*(T):=QoT.
2) Let X be a locally convex space (resp. Fréchet space) and

0 ESGAF >0

an exact sequence of locally convex spaces (resp. Fréchet spaces). Then there is an exact complex

* . o
0—L(F,X)5L(G,X)3L(E,X) X! (F,X) - Ext' (G,X) - Ext' (E,X) > Ext*(F,X) - ---

where q.:L(F,X)—>L(G,X), q«(T):=Toq,and i.:L(G,X) > L(E,X), i.(T):=Toi.

The connection to splitting theory is now as follows. Let E and F be locally convex spaces
(resp. Fréchet spaces). Then the following conditions are equivalent by [65, Proposition 5.1.3, p.
79] resp. [63, 1.8. Theorem, p. 11]:

» Every exact sequence
0> ESG3F 50 2.2)

splits (i.e. ¢ has a right inverse or, equivalently, i has a left inverse) where G is a locally
convex space (resp. Fréchet space).

« Ext' (F,E)=0

Furthermore, we remark that an exact sequence (2.2) is always topologically exact in F, i.e. the
continuous, linear maps i and g are open onto their image due to the open mapping theorem. If
E and F are PLS-spaces and every topologically exact sequence (2.2), where G is a PLS-space,
splits, then this is correspondingly denoted by Ext},LS (F,E) = 0. Note that this really is a differ-
ence. There is a close relation between the functors Proj1 and Ext! (for Fréchet spaces) resp.
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Ext}DLS or, more precisely, their vanishing (see for example [63, 1.2 Theorem, p. 9] and [8, The-
orem 3.4, p. 9]). This is only a short summary. For more details see [52], [53], [65], for splitting
theory of Fréchet spaces [63] and for splitting theory of PLS-spaces [8].

For the classical theory of hyperfunctions see [27], [S7] or [47]. For the sheaf theory see [9]
or [39]. For the theory of locally convex spaces see [45] or [16]. For the theory of tensor prod-
ucts see [25] or [60].

Since the theory of E-valued hyperfunctions developed by Domarski and Langenbruch in [13]
was the initial point of my work, many theorems proven here were obtained by modifying the
proofs of their counterparts in [13]. Thus it is refered to these counterparts in a footnote of the
following kind,

counterpart: [13, Theorem X.Y, p. xy].
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3 Vector-valued functions with
exponential growth conditions

This section is dedicated to some basic topological properties of the spaces already mentioned
in the introduction, the space P.(K) of rapidly decreasing holomorphic germs near K, the
space £¢XP (@\ K.E ) of smooth E-valued slowly increasing functions outside K and the space
oep (@\K JE ) of holomorphic E-valued slowly increasing functions outside K where K is a
compact subset of R. In particular, it will turn out that the space P, (K) is a DFS-space and that
gexn (@ K ,(C) as well as O«P (@\ K ,C) are nuclear Fréchet spaces. Using the nuclearity, we

obtain a representation of £ (@\ K.E ) and Q&P (@ \NK,E ) via tensor products at the end of
this section, namely,

EP(CNK,E) 2 &P (C\K,C)€eE 2 £°P (C\K,C) &¢E 2“7 (C\K,C) &zE

and the same for O®? (C\K,E).

Then the results of this section will be used as auxiliary tools in the following sections.

We begin with the definitions of the spaces above. For a compact set KcRandneR, n> 1, we
define the sets

2. if KcR,
In,ol+i]=1fn. [, oo ek, moo ek,
U,(K):= Cld 7K C n
(K) =z eCldGRnC) <y oy ) if oo ¢ K, —o0 €K,

(]=o0,-n[u]n,o0[) +i]-1/n,1/n[, ifooeK,-c0€K,

3=

Figure 3.1: U,(K) for +o00 € K

and c
5, (K) = (Un(K)) “n{zeC| fim ()] <n)

where the closure and the complement are taken in C.

11



3 Vector-valued functions with exponential growth conditions

Sl

K n

Figure 3.2: S, (K) for oo e K

3.1 Definition (rapidly decreasing holomorphic germs). Let K c R be a compact set. The space
of rapidly decreasing holomorphic germs near K is defined as

P.(K):= limgld 0, (U, (K))
ne
where

O (Un (K)) = {f € O (Un (K)) nC(Tn () | 171, = w1 (2) RO < oo}
zeUn(K

and O (@) := 0 and the spectral mappings are given by
ﬂn,k:On (Un (K)) - Ok (Uk (K)) y Tk (f) = f‘Uk(K)’ n<k.

Recall that E is a complete locally convex space equipped with the system of semi-norms (p¢) g4 -

3.2 Definition (vector-valued slowly increasing infinitely continuously differentiable resp. holo-
morphic functions). Let K c R be a compact set.

a) ForneR, n> 1, we define
ET(Sn(K),E):={feC®(Sy(K),E) |[VoreA, meNy:|flknma <o}

where

|f|K7n7m7oc = sup  pa (aﬁf(z))e_%me(zﬂ_
2€8n(K)

BeNG,|Bl<m

The space of vector-valued slowly increasing infinitely continuously differentiable func-
tions outside K is defined as

g7 (C~K,E) :=limproj £ (S, (K) ,E)

nEsz

where the spectral mappings are given by

T & (St (K) E) ~ &7 (S0 (K) E), Ts (1) 3= 0 <k

12
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b) ForneR, n> 1, we define
On? (Sy(K),E):={feO(S,(K),E) |VaeA:|flkna<oo}

where

|flknai= sup pa(f(2)) e nlRe(2)]
2€8:(K)

The space of vector-valued slowly increasing holomorphic functions outside K is defined
as
O“? (C\K,E) :=limproj O;7 (S, (K) ,E)

nEN22

where the spectral mappings are given by
nn,k:O/ixp (Sk (K) 7E) - OZXP (Sn (K) 7E) ; nn,k (f) = f|Sn(K)’ n<k.

If not necessary, the subscript K in the notation of the semi-norms is omitted and in the Banach-
valued, particularly, scalar-valued, case the subscript & as well. The notation for the spaces in

the scalar-valued case is &, (S, (K)) = &7 (Su (K),C), £¢P (CNK) =P (C\K,C) as well
as 057 (S, (K)) = 037 (S, (K),C) and 0P (C\K) := 0« (C\K,C).

The mappings 7, ; in the Definitions 3.1 and 3.2 are obviously linear and continuous.
Now we take a closer look at the sets U, (K) and S, (K).

3.3 Remark. Let K c R be compactand neR, n> 1.

(1) The set U, (K) is open and has finitely many components.
(2) Let K # @ and Z be a component of U, (K). We define @ := minZnK and b := maxZnK if
existing (in R).

a) If Z is bounded, there exists 0 < R < 1/n such that for all 0 < r < R:
{zeCld(z[a,b]) <r}c Z

b) If ZnR is bounded from below and unbounded from above and a exists, there exists
O<R<1/nsuchthatforall0<r<R:{zeC|d(z,[a,o0[)<r}cZ

¢) If ZnR is bounded from above and unbounded from below and b exists, there exists
O0<R<1/nsuchthatforall0<r<R:{zeC|d(z,]-0c0,b])<r}cZ

d) If ZnR is unbounded from below and above, there exists 0 < R < 1/» such that for all
0<r<R:{zeC|d(z,R)<r}cZ

e) If ZnR is bounded from below and unbounded from above and a does not exist, then
Z =]n,co[+i]-1/n,1/n[ . If ZNR is bounded from above and unbounded from below
and b does not exist, then Z =] — co,—n[+i |-1/n,1/n] .

—
(3) LetgeR, g>n>1,McS,(K) and O a component of M€ such that OnS,, (K) # @. Then
—C
OnS,(K) #+@.

(4) LetgeR, g>n>1. Then

d(&Uq(K)ﬁUn(K)):%—cl], g>n>1,K+0,

13



Proof.

2)

3)
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3 Vector-valued functions with exponential growth conditions

and
l—l, g>n>1, K+,
d(9S4(K),d8,(K))=4" ¢
q-n, g>n>1,K=0.
(1) Consider the case oo € K, —o0 ¢ K. Obviously U, (K) is an open set. Let (Zl’?)l.el

denote the components of U, (K) . Then U, (K) = (J;; Z!' and by definition of a component
there is j €/ such that Z7 is the only component including |n,00[+i]=1/n,1/n[ . Further-
more, there exists m € R with U;er. (Zl” mR) c [m,n] by assumption. For i # j the length
A (Zl" N ]R) of the interval Z;nIR, where A denotes the Lebesgue measure, is estimated from
below by A (Zl” mR) >2/n by definition of U, (K). Since all Z!' are pairwise disjoint, this
implies that / has to be finite. The others cases can analogously be proven.

a) Since ZnK is closed in R and therefore compact, a and b exist. Hence [a,b] cZ
by definition of U, (K) and as Z is connected. [a,b] being a compact subset of the
open set Z implies there is € > 0 such that ([a,b]+i]-€,€[) c Z by the tube lemma.
The choice of R := min(e, %) completes the proof by definiton of U, (K) and since

a,beZnk.

b) If Zn Kn]-o0,n] #+ @, then a exists and analogously to a) there exists R > 0 such that
forall0<r<R:
{zeCld(z,[a;n])<ricZ
By definition of U, (K) this brings forth {z e C| d(z,[a,o0[) <r} cZ.
If Zn Kn]-o0,n] =@ and a exists, the desired R > 0 exists by definition of U, (K)
sincen¢Zn K and Zn K is closed in R, thus d (n,Zn K) > 0.

¢) Analogously to b).

d) By the assumptions ZnK n[-n,n] # @. Analogously to a) there exists R > 0 such that
forall0<r<R:
{zeC|d(z,[-n,n])<r}cZ
Like in b) and c¢) this brings forth {ze C| d(z,R) <r} c Z.

e) This follows directly by the definition of U, (K) and as Z is a component of U, (K) .

. <7 C
By definition we have S, (K) =U,(K)J{zeC]||Im(z)|>n} and
—— —
Sq(K) =Uy;(K)J{zeC||Im(z)|>gq}. So the components of S, (K) are
{zeC|Im(z) >n}, {zeC| Im(z) < —n} and the components of U, (K). The components
—C
of S;(K) are {zeC|Im(z)>gq}, {ze C|Im(z) <—-g} and the components of U, (K). If
OnU,(K) + @, then there is a component Z" of U, (K) such that OnZ" + @. To be more
precise, Z" c O by virtue of the properties of M and O being a component of MC. If this

component contains a point x € K, then there is a component Z¢ of U, (K) which contains
this point as well. Hence we have

xe(Z9nZ")cZ"cO

and OnS,(K) #@.If Z" does not contain a point of K, then it must be an unbounded
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component. So we have

(]Cb oo[+i[—1/q7 I/Q]) Cc (]n,oo[+i]—l/n, l/n[) cZ"

or

(100, =q[+i[~1/a,Yfa]) € (1 - 00, —n[+i]=1/n,1/u[) c Z".

Thus there is a component Z9 of U, (K) with Z4nZ" + & implying OnS,(K) # & like
above.
If On{zeC| [Im(z)|>n} + @, the statement is obvious.

In the following keep in mind that
1

since gn > 1.
ko Koo
Let K # @. By virtue of (1) we have U; (K) = L-jZl.], kj < oo, and thus dU; (K) = Lj&ZiJ for
i=1 i=1

j € {n,q} with the notations from the proof of (1). By definition every Z is contained in
some ZZ)-
If Zi”0 is bounded, we obtain
1 1
d(0z!,0Z)=---
0 n q
by definition of U; (K).
If ZZ) is unbounded, w.l.o.g. ZZ) NR is bounded from below and unbounded from above,
we define a := minZi’é NK and ag := minZiq N K if existing (in R). If a exists, we have the
following cases:
) 1 1
l. case:n<a-, gsa-
Then er(l) :]I’l, Oo[+i]_]/”> ]/”[7 Zlq :]q7 oo[+i]_]/q, I/Q[ and

n q‘

1 1 1 1
d(&Zf,&Z{é) :min(q—n,ﬁ—zl)

2. case:nga—%,a—é<q<a

Then Z}! =|n,00[+i]=1/n,\n[ , Z =Dy, (a)u(]g,o0[+i]-1/q,1/q[) and

V2| 1 I 1
d((?Zlg?aZi’(’))=m1n(;—zl,a—n—g)=ﬁ—a
—_——

>

=

. 1
3.case:n<a-;,a<q

If ag exists, we have a < ag. If Zl.q is bounded or unbounded and ag — cl] <g<agyorag<q,
then

9 97 emin(2_2 g_p_Lyoi_d
d(aZi,c?Zio)—mm(n 7 ap—n . )_n .
———
Za,n,$2%,$

15
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Ifg<ag- Cl[ or agp does not exist, then

. 1 1 1 1
d(&Zlq,aZZ)) :mln(q—n,ﬁ—a) = ;—5
1 1

4. case:a—y <n<a,q<a-;

Then ZZ) = Dl/,, (a) U (]n, oo[+i]—1/n, 1/n[) s Z;I =]q, oo[+i]—1/q7 1/q[, and

d(9z{,07} ) =min(d(9Z! n{zeC|Re(z) <q},dZ} n{zeC|Re(z) <q}),
d(0Z!n{zeC|Re(z)2q},0Z} n{ze C|Re(z) 2q}))

Q=

=1
n

i ; 1 1
:mm(d(qﬂ]—]/q,l/q[,&ZZ)n{zeC| Re(2) Sq})%_c_])
>q—n
L1
e

(This case is not possible if g,n € N.)
5.case:a-1<n<a, a—%1<q<a
Then Z}! = Dy, (a) v (Jn, 00[+i]-1/n,1/n[), Z! =Dy, (a)u(]g,00[+i]-1/q,1/q[) and so

d(0z{,07} ) =min(d(9Z! n{zeC|Re(z) <a},dZ} n{zeC|Re(z)<a}),
d(&Zl.qm{zeC|Re(z)Za},&Zﬂ)m{zeC| Re(z)za}))

Q=

_1
—min(d(9Z/n{zeC|Re(2) <a},dZ! n{zC|Re(2) ga}),%—é)

2q-n

= ; — ;_
6. case: a—% <mn<a<q
We get the same equalities/estimates like in the fifth case by replacing a with ag or g if ag
does not exist.
7.case:a<n
Then Z ={z€C| d(z,[a,00[nK) <1/n} u(]n,00[+i]-1/n,1/n[) and several different cases
are possible for the structure of Zl.q. But, in all cases, we have

d(0zf,07}) = 11
n q

due to (3.1).

If a does not exist, we have Z} =]n, oo[+i]-1/n,1/n[ and Z1 =]q,00[+i]-1/4,/q[ , hence the

same situation like in the first case. Combining these results, we get the first statement of

(4). The second statement of (4) follows by (3.1) and the definitions of the sets involved,
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except for K = @. In this case it is obvious.
O

The previous remark will often be useful, amongst others, for the choice of paths of integrals
in Section 4. The next lemma describes the relation between partial and complex derivatives of
higher order of a holomorphic function.

3.4 Lemma. Let U c C be an open set and f € O (U). ForzeU and o= (0y,0) € N3 one has

9%f (z) =i floD () (3.2)
where f(2) denotes the |o|-th complex derivative of f.

Proof. This lemma can be proven by induction over |¢|. For || = 0 this is obviously true. Now
assume that (3.2) holds for |a| = n with n € Ny. For [0t =n+1 one has & = § +y with B, 7€ NJ and
|B|=n and |y| = 1. The assumption and the fact that f € O (U) implies f(BD) e O (U) lead to

9%f(2) :m(aﬁf) (z) = iﬁzay(f(lﬁ\))(z)

assumption

[0, (f(lﬁl))(z), ify=(1,0)
P20y (f(lﬁl))(z)7 ify=(0,1)
) i fUB+D) (z), ify=(1,0)
| Pif(BED (7)), ify=(0,1)
- iazf(|0‘|) (Z) .

O

Let U c C be open and f € O(U,E). For ze U and n € Ny we denote the point evaluation of

complex derivatives with 6Z(") f:=f(z) and for o e N (2) the point evaluation of partial derivatives
with 6{% f1= 927 (z).
Next, we prove that P, (K) is a DFS-space, which is only mentioned by Kawai ([28, p. 469]).
Part ii) and the hint to use [6] in part iv) of the proof of statement (1) of the following theorem
can be found in the proof of [26, 1.11 Satz, p. 11]. For the sake of completeness and since the
ideas of the proof will be used in the following, a full proof of statement (1) is given here.

3.5 Theorem. Let K c R, K # @, be a compact set.
(1) P.(K) is a DFS-space.

(2) The set of point evaluations of complex derivatives {5)5(;1 ) |xpe KnR ne No} is total in

P.(K),, ie. span{5§§) |xo e KnR,ne NO} is dense in Py (K)),, if KcRor oo € K, 00 ¢ K
and oo is not an isolated point of K or — € K, 00 ¢ K and —oo is not an isolated point of
K or oo € K and oo and —oo are not isolated points of K. The same is true for the set of

point evaluations of partial derivatives {5)6(006) |xoe KNR, ax € N(Z)} .

(3) The set of point evaluations {8y, | xo € K nR} is total in P (K),, if K has no isolated points.

17
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3 Vector-valued functions with exponential growth conditions

() 1) |], is a norm on O, (U, (K)). Next, we show that this space is complete.
Now let (fi)rey be a Cauchy sequence in O, (U,(K)). Let € >0 and M c U,(K)
compact. Then there exists N € N such that for all k,m >N

8>||fk_fm||n: sup |fk(Z)_fm(Z)|€%‘Re(Z)|

zeUn(K)

> sup |fi(2)—fm(2)]

zeUn(K)
>sup|fi (2) = fin (2) |-
zeM

Thus ( f;) is also a Cauchy sequence in CB (Un (K)) = {f eC (Un (K)) | f bounded} ,
equipped with the norm

[ £l = sup |f(2)],

zeUp (K)

as well as in O (U, (K)), equipped with the topology induced by the semi-norms
pm (f) = SUA13|f (2)|; M c Un (K) compact, (3.3)
ZE

and has a limit f resp. F in these spaces since they are complete by [45, 5.16 Beispiele
(3), p- 35] resp. [60, Example II, p. 91]. The functions f and F coincide on U, (K)
because for all z € U, (K) and all & > 0 there exists Ny € N such that for all k > Nj

[f (@) =F @) <1f (@) = fu @I+ i (2) - F Q) < |f = fi + Py (fie— F) < 280

Hence f is holomorphic on U, (K) and continuous on the closure. Since every Cauchy
sequence is bounded, there exists C = C(n) > 0 with |f; (z) [e"/"Re(2)l < C for all z €
U,(K) and k € N implying f € O, (U,(K)) by pointwise convergence. Using the
pointwise convergence again, we get for all z € U, (K) and for all k >N

fe(2) = £ (@) [enReEl = tim |£i (2) = fin () ler @< lim | fi— full, < &

and therefore | f; — f|,, < €. This means (f; ),y converges to f in O, (U, (K)) as well,
connoting this space to be a Banach space.

ii) The mappings 7, y: On (Uy (K)) = Op (Uy (K)) ,n < m, are injective by virtue of the

identity theorem and the definition of sets U, (K), n € N. Thus the considered spec-
trum is an embedding spectrum.

iii) Let M c Uy, (K) compact. For all f € B, :={ge€ O, (U,(K)) | |gll, <1} and all ze M

F @< fl, <1,

so sup g, pm (f) < 1. Thus B, is bounded in O (U, (K)) with respect to the semi-
norms (3.3). As this space is a Fréchet-Montel space by [60, Proposition 34.4, p.
357], B, is relatively compact and hence relatively sequentially compact by [45, 4.8
Satz, p. 19].

iv) What remains to be shown, is that for all n € N there exists m > n such that
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Tum: On (Un (K)) = Op (U (K)) is a compact mapping. Because the considered
spaces are Banach spaces by 1), it suffices, due to [45, 4.10 Corollar, p. 20], to
show the existence of m >n such that (7, (fx)),y has a convergent subsequence
in Oy, (U (K)) for every sequence ( fi);. in B,. According to [6, Th. (b), p. 67-68]
set m :=2n. Let € >0 and choose Q := Uz, (K)n{z€C||Re(z)|<max(0,-2nlne)}.
Then Q c U,, compact and

1
eﬂ|Re(Z)| 1

sup ———= sup e mRe@l < g (3.4)
O (B0 O w0 chise
In addition, we observe that
€ € _ 1, €>1
C(S) - Sup62n|Re(Z)| <em max(0,-2nlng) _ ) > ) (3.5)
ZEQ %, €L 1

Now let (f)y be a sequence in B,,. By iii) it has a convergent subsequence ( fk,)
with respect to the semi-norms (3.3). Then there exists N € N such that for /, j > N

po(fi—fi;) = sugm, (2) - fi; ()| < € (3.6)

leN

and therefore

| 700,20 (fi) = Ton.2n (Si) |,
<sup|f, (2)~ fi, (D) 2RO+ sup  [fi, (2) - i, (2) e ReC)]
z€Q —

ZEUQn(K)\Q
1 ez €71RE@)

<CEOWPIAL () fy (s s Uy () ()OI

z€Q 2Unn (K)NQ enlRe(@)]
<C(e)e*+ sup i, (2) = fx; (2) |€%|Re(z)‘ sup ¢~ 7 /Re(2)|
(3.6) zeUn, (K)NQ 202, (K)NQ
<C(e)e*+e  sup |fy, (2) - fi, (Z)|e%|Re(Z)I
G zeUon (K)NQ
<C(e)e*+e sup |fi, (2)- fi, (2)]erlReC)

zeUn(K)

<c(ee e (il * 14 ,)
<C(e)e’+2e

Si€Bn
e2+2e, e>1,
<
(3.5 3¢, e<l1.

Hence the subsequence (77:,172” ( fx, ) ) jeny Of (77:,,’2,, (fx) ) reny converges in Oz (U (K))
proving the compactness of 7, 5.
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3 Vector-valued functions with exponential growth conditions

(2) We set F := span{5x(:) | xo eKmR,neNo}. 5,6((;1) is linear and for k e N and f € Oy (Ui (K))

<857, £ >] = | (x0)|

|
= L)m-]dz‘
27i aDi(xo) (z-x0)
<n!(2k)"  max )If(Z)|

ZE&DL (XO
2k
<nl(2)" max e tRGN sup |f(z)|etRe@
z€dB | (x0) U, (K)
2k k
<nt (26)" | £

Hence 5)6(()" ) is continuous on Ok (Ui (K)) for arbitrary k and so on P, (K) implying F c
P.(K)'. As P, (K) is a DFS-space, it is reflexive by [45, 25.19 Satz (1), p. 285] which
means that the canonical embedding J: P, (K) — P, (K)", f+ J(f), defined by
J(f):P.(K) - C, T T(f), is a topological isomorphism. Hence for the polar set F°
of F one has

F°={yeP.(K)"|VT eF:y(T)=0}
~{feP.(K)|VT eF:J(f)(T)=0}
={feP.(K)|VT eF:T(f)=0}=M.

ForfeMandT::SX(:)eF
0=7(f)=f" (x0)

is valid. Thus f is identical to zero on a neighbourhood of x( (by Taylor series expansion)
since n € Ny is arbitrary and f is holomorphic near xg € U, (K). Due to the assumptions
every component of U, (K) contains a point xy € KNR so f is identical to zero on U, (K)
by the identity theorem. Therefore F° = {0} and thus F is dense in P, (K)' by the bipolar
theorem. The adjunct is due to (3.2).

(3) The proof is similar to (2). We define F :=span{dy, | xo € KnRR}. Then, like above, for
fe{geP.(K)|VTeF:T(g)=0}and T:=68,, ¢ F

0=T(f)=/f(x0).

Due to the assumptions every component Z of U, (K) contains a point xo € KnR and every
point in ZNn K NR is an accumulation point of this set. So f is identical to zero on U, (K)
by the identity theorem.

O]

The proof of the first part of the next theorem is due to Junker [26, 1.4 Lemma (2), p. 5], but
there for a Fréchet space E and on the level of the projective limit (here, the second part) and we
need results on the level of the projective spectra. The proof of the fourth part can be found in
[26, 1.4 Lemma (1), p. 5], but again for the projective limit. Since we need it as well on the level
of the projective spectrum plus the appearing inequality resp. the idea of the proof will be used
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several times, it is given here.
3.6 Theorem. Ler K c R be a compact set.

(1) Let neR, n> 1. Then &, (S, (K),E) and O, (S, (K),E) are complete locally convex
spaces. In particular, they are Fréchet spaces if E is a Fréchet space and the latter is a
Banach space if E is a Banach space.

(2) E«p (@ \K,E ) and Q&P (@ \K,E ) are complete locally convex spaces. In particular, they
are Fréchet spaces if E is a Fréchet space.

(3) O&p (@ K ) is a Fréchet-Schwartz space.

(4) (a) Let ne N5y, me Ny, a €A and k € N, k > n. Then there exists C = C(n,k,m) >0 such
that

|f|n,m,a < C|f|k7(x (37)

forall f e O (Sk(K),E).
In particular, we have O;" (S;.(K),E) c &;" (S, (K) ,E).

(b) O«p (@ K, E) is a topological subspace of £¢*P (@ K, E) .

Proof. (1) Obviously |flyma, m € No, resp. |f]|n o are semi-norms for o € A and the spaces
EP (S, (K),E) resp. 077 (S,(K),E) equipped with these systems of semi-norms are
locally convex. What remains to be shown, is that they are complete.

i) Let (fi),en be a Cauchy sequence in &,;7 (S, (K),E). The space C* (S, (K) ,E)
equipped with the system of semi-norms

P (f) = sup pa (9P £(2)), (3.8)

Z
BeNG,|Bl<m

M c S, (K) compact, m e Ny and « € A, is complete by [60, Proposition 44.1, p. 446].
The inclusion &;*" (S, (K),E) = C* (S, (K),E) is continuous since for all M c S, (K)
compact, m € Ny and o € A

PM m,a (f) < Supe%|Re(Z)|‘f
zeM

n,m,o

forall f €&, (S, (K),E). Thus (fi) is @ Cauchy sequence in C* (S, (K),E) as well
and has a limit f in this space due to the completeness. Let € >0, m e Ny, @ € A and
z€ 8, (K). As this convergence implies pointwise convergence, there exists N (z) € N such

that for all / > N (z)
Pa(9Pfi(2)-00F () <5 (39)
for all B € N3, |B| < m. Furthermore, there exists Ny € N such that for all k,{ > Ny
fe= filnm.a < g (3.10)
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3 Vector-valued functions with exponential growth conditions

by assumption. Hence we get for all k > Ny by choosing [ > max (N (z),Np)

pa (9P (2)) e iR pg (9P fi (2)) e nlRe()
<Pa (3Bfk (z)- 8Bf(z)) o~ iRe()]
< pa (9P fi(2) - 9P f1(2)) e RO g (9P £ (2) - 9P £ (2)) ¢~ nRe(2)

<1
: Su? )pa(aﬁfk(w)_aﬁfl(w))e_’l"Re(w)'+pa(8ﬁf,(z)_aﬂf(z))
weSu (K
"fie(w)= 9" ~ilRe(w)] | €
(3%9)%?:?[() Pa (7 fi(w) =7 fi(w))e -2
7€N6,|Y|§m
= |f —f| +E
=k~ Jllnm,a >
<g
(3.10)

for all |B| <m and so |fy — flima < € as well as | flyma < €+ |fk|nma for all k > Ny. This
means that f € &7 (S, (K),E) and that (f;),y converges to f in &7 (S, (K),E) as k
tends to oo.

ii) The completeness of 0,7 (S, (K),E) can be proven in the same way using the com-
pleteness of the space O (S, (K),E) equipped with the system of semi-norms

PM,a (f):= SUAE[)POC (f(2)), (3.11)

M c S, (K) compact and « € A. The remaining endorsement is evident.
(2) This follows by (1) and [16, 2.4 Korollar, p. 36].

(3) This proof follows the ideas of the proof of Theorem 3.5(1). By [32, Remark 6, p. 380] we
have to show that for all n € N, exists p > n such that 7, ,: 057 (S, (K)) > 057 (S, (K))
is a compact mapping. Because the considered spaces are Banach spaces by (1), it suffices
to show the existence of p > n such that (nn »( fk)) 4y Das a convergent subsequence in

0,7 (S, (K)) for every sequence ( fi) ey in B, where By, :={g € O;7 (S, (K)) |lglp < 1}-

Choose p :=2n. Let € >0 and choose Q:=S,(K)n{zeC||Re(z)| <max{0,-2nlne}}.
Then Q c S, (K) compact and

1
—zIRe(2)|
e n 1
Sup —d4 o= Sup e_ﬂlRe(ZN < €.
w50 e 3R es, (K)n0 e

Let M c S, (K) be compact and pyy like in (3.11). For all f € By, we have

pur (f) < superlRel £ < Cur,
zeM

——
—_— <]
::CM,n

s0 sup rep, Pm (f) < Cyn- Thus By, is bounded in O (82, (K)) with respect to the semi-
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norms (3.11). As this space is a Fréchet-Montel space, B», is relatively compact and hence
relatively sequentially compact. The rest of the proof is analogous to part iv) of the proof
of Theorem 3.5(1) using in the last step the completeness of 0,7 (S, (K)) by (1).

(4) (a) Choose r := 2 51> K#@, resp. ri= = kn >, K = @. By the Cauchy inequality we have for
every f € O (S (K),E)

Flama= sup  pa( 9Pf(z) )enlRe@

sy

ZESn(K) ~—
ﬁEN(%,MﬂSm ;Ziﬁzf(m‘)(z)
< sp Bl e o (70 a0
zeSp(K) TP IE—]
BeNG, 1Bl<m
<t sup G max o (7() )
zeSn(K) rBlg—
BeNG, Bl<m
, !
<en sup |[|3[3| k.o < 00,
BeNG, [Bl<m T
:;C

thus O (Si (K),E) € £ (S (K) ,E).
(b) By part (a) O (@ \K,E ) is included in £¢7 (@\ K.E ) and the induced topology is
not finer than the initial one. On the other hand, for all & € A and n € Ny,

|f|n,(x = |f|n,0,a

holds for any f € O¢P (@ \K,E ) which proves the statement.
O]

3.7 Theorem. Let K c R be compact. Then the spaces EP (@ K ) and Q&P (@ K ) are nuclear.

Proof. Since Q%P (@ K ) is a topological subspace of £¢P (@ \K ) by Theorem 3.11(4)(b) and
nuclearity is inherited by topological subspaces of nuclear spaces due to [16, 27.2.1. Satz, p.
155], we only need to show that £ (@\K ) is nuclear. The following proof is inspired by a
proof of nuclearity for the space of (non-weighted) C*-functions in [45, 28.9 Beispiele (1), p.
330].

1. Let n e Ny and m € Ny. First of all, we construct a partition of unity. Choose 0 < & < ﬁ
and set € := % For j € Z? and r > 0 we define

06 =ei+(5:3)]* 05 @ =ej 5 (e-ne-r) + (0.7,

Further, we define J := {j € Z? | O (j,€)nS,(K) # @} . For all j € J it follows, by the choice
of h, that Q(j,3€) c Sp, (K), since 2v/2€ = \/2h < 3- <n, and that

SH(K)CUQ(]ag)CUQ(]a?’S)CSZn(K)

jeJ jeJ
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3 Vector-valued functions with exponential growth conditions

Choose 0<€<d(Q(j,€),0(j,3€)) = € (in particular this choice is independent of ;). The
set J is countably infinite, i.e. there exists a bijection a:N — J, where we write a; := a (k)
for k € N. The construction of the partition of unity is now done like in [18, Theorem 1.4.1,
p. 25].

(i) Let vy be the characteristic function of Q (a,€) + Dz, (0) and x € Cg° (D1 (0)) a non-
negative function such that [ ydx = 1. Then y,, defined by xz, (x) := (9/4)_2 4 (;;—4) )
has its support in the ball Dg;, (0) and [ ye,dx = 1, so the convolution

Vi = v * X € C3° (Q(akag) +Ds; (0)),

0<y<1and y;=1onQ(ae)+Dy,(0) since 1 -y = (1-vg)* Xz, vanishes on

Q (ax,€) +Dg/y (0).

(i) By virtue of this construction we get ([18, (1.4.2), p. 25]): For all ke N and all o ¢ Ng
there exists a constant Cy, > 0 only depending on o, especially not on k, such that

Jof
0%y sca(i) .

(i11) Like in the proofs of [18, Theorem 1.4.4, p. 27, Theorem 1.4.10, p. 30] we define

Oe=Ye(1-y1)...(1-yi1).

Due to (i) we have supp ¢ c supp Y and ¢ € C3° (Q(ak,s) +Dsg (0)) :

(iv) For { € Ujes Q(J,€) = Uken Q (ak, €) we define M ({) == {ke N | { e supp ¢y} . For all
¢ we have M () c {keN | esuppy;} and hence #M ({) <9 by the construction
of Y, and the definition of the squares. In other words, all but a finite number of
functions ¢ vanish identically on any compact subset of Uje; Q (j,€).

(v) We have on Ugen Q (ag, €)

(Z‘Pk)_l = —H(l—llfk)(j)o

keN (iid);  keN
(iv

and thus > ;v @ =1.

2. Let fe&ep (@\K), o€ N2, || <m, and z € Q(ay,€). We have Q (ay,€) c O (a,3¢) and
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there exist b;, ¢;, i = 1,2, such that Q (ar,3€) = [b1,c1] x [ba,c2]. We get (by induction)

0% (@ f) (2)| = |0% (@) (z1,22) = 9% (i f) (b1, 22) |

=0
(i)
21 71
- (a1 +1,0) .
o) (i) (Go.za) dbowi |
21
| [ ate@ (gup) (.22)d|
1
2z & Cn—ay -1
= (m+1,0)
‘/bl ~[bl \/b.l a ((Pkf)(gm—apZZ)de_al dCldCO

<lar=bi" [ 201 (g f) (G122 d
1
m— m— 2 @ m m
<lzi by "M |z1 - by aszl sz ‘9( +h +1)(‘Pkf)(§1»§2)‘d§2d§1

£(3€)2Wl—‘a‘

3¢)2m-led gm+Lm+1) ( )|d 3.12
Fu%ini( 8) Q(ak,3£)| (Pf ‘ C ( )

9(H+1.0) (¢ f) (50,22)0'50‘

Furthermore, we get for all z € S, (K)

|<9°‘f(Z)| |<9°‘( Z(Pkf) (Z)I(—)\ > 9%(uf) (2)]

sz|aa(<pkf)<z>\( > 10%(p) @)

) keM (z

S D Y N Y [(S]T /S ERE)

(3.12) keM(2)

Now we denote by #; := €ay + (%, %) the center of the squares Q (ay,€) and Q (a,3€) and
consider the mapping
®:R? - R?, & (w) = 3w -21.

Then @ is a C! -diffeomorphism, (D®) (w) = ((3) (3)) as Jacobian matrix and ® (Q (ax,€)) =
0O (ay,3¢€) . Moreover, we obtain via chain rule for all § € N

P (@) (@ (w)) =37FloP (g fo®) (w). (3.14)

Since
supp (@xf o ®) c supp (¢ o P) c O (. €) (3.15)
for all k € N by (iii) and the definition of ®, we get for k, [ e N, k#1,

[supp (@ o @) nsupp (¢ o®)] c [O(a,€)n O (a1,€)] =@

and thus by (3.14)

supp([aﬁ ((pkf)] o D) msupp([aﬁ ((plf)] od)=g. (3.16)
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3 Vector-valued functions with exponential growth conditions

In addition, we have for z€ S, (K) and all we Q (ay,€), ke M(z),

[Re (w)| - [Re (z)| < [Re (w) —Re(z)[ < 2¢

and so . | )
€
-—IR -—|R —. 17
[Re(2)] < - [Re ()] + (317
Applying the transformation formula to (3.13), we obtain for all z€ S, (K)
|aaf(z)|e_%|Re(Z)|
:9(38)2m—\06| Z / |a(m+1,m+1)((pkf) (3w_2tk)‘dwef%|Re(z)|
ke (z) ¥ (@:€)
<9(3e)" et ¥ [ jglmrim) 3w—21)] e~ s R gy
(3.17)( ) ke]\z/[%z) Q(%S)‘ (oef)( 0|
= 9(3g)2mlol 3 o(m+1m+1) 30— 20 e 2 Re ()] 71
615 3€) keﬂ;z) S (K) | (@f)( Wl
(:)9 (38)2’"_‘0"8278 fsz © Z ‘a(m+l,m+l) ((Pkf) (3w_2tk)|e—%|Re(w)|dW
v (K kem(z)
<9 (38)2m—\a|62n—8 fsz © Z |a(m+1,m+l) ((Pkf) (3w_2tk)‘e—%|Re(w)|dW
n keN
m= Z m+1,m —_LiRe(w
. ) ;
<9max (3¢,1)™" e fs2 “ | S 9me L) (g £) (3w —21) [e Ry,
:TD n keN
Therefore, it follows that
Fliw= " sup_ [9%F ()]
7 ZES"(K)v
oeNZ, |o|<m
<D o 0 ‘ D 9(m+Lm+1) (o 1Y (3w_2tk)‘e—%|Re(w)|dW‘ (3.18)
n keN

. For €85, (K) set

AE)[f]:= 3 almlme ) (@, £) (3¢ —21) e 2iRe(Q)],

keN

By (3.16) there is at most one kg € N such that { € supp([&ﬁ ((pkof)] oCI)). Otherwise we
have A({)[f] =0 and choose an arbitrary ko € N. Due to (ii), (iii) and the Leibniz rule, we
also have, with the notation /72 := (m+ 1,m+ 1), that there exists a constant C >0, depending
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on m and & (not on {), such that

91 (g1, 1) (3¢ -2,
=I5 ()0 701 (3¢ ~20,) 977 (3¢ -2,

Y<m
S(Z(m)‘a’;’_y(pko(3g—2tko)|) sup  |9P £ (w)|
Y<m Y weQ ako,3£,
BeNG, [Bl<l

<C  sup  [9Pr(w)].
weQ(akoﬁs),
ﬂEN%, |Bl<2(m+1)

This implies, keeping ¢ € Q (ay,,€) by (3.15) in mind,

A [ =3 a0 1me) (g £) (3 —24) e 3 Re(E)

keN
< ‘a(m+1,m+1) ((Pkof) (3C _2%) |e—ﬁ|Re(C)|

<C sup ‘aﬁf(w)|e—ﬁ\Re(C)|
weQ(a,:{Oﬁe)7
BeNG, [Bl<2(m+1)

<Cen sup |8Bf(w) |e‘TIn|Re(W)|
=C weQ(akO.Ss),
BeN3, |B|<2(m+1)

If we set V := {f egerp (@\K) | flonamen) Cll}, then V is an absolutely convex neigh-
bourhood of zero in £¢7 (K') . We claim that the mapping

A:S5, (K) —» %P (CNK)

!/
o
is continuous. Let & >0 and { € Sy, (K) and w.L.o.g. there is ko with ¢ € supp (@, fo®) c

Q(ako,e) (see (3.15)). Then choose 0 < §; < d(C,&Q(akO,s)). For all w € S5, (K), such
that |w— {| < &y, the following is valid for all f € 4P (C\K):

[Aw) [f1-A(5) [f]]
_ ‘a(m+l,m+l) ((Pkof) (3W—2fk0) o~ mRe(wW)| _ g(m+1,m+1) ((Pkof) (3C _2tk0)e—§|Re(g)|‘

Since 901+ 1) (@ ) (3--2t,) e~ 2Re0)l s continuous on Sy, (K), there is & = 85 (f) >
0 such that

AW)[f1-A(S)[f]l <&
for all w e Sy, (K) with [w—{| <min(8;,8,) = & (f). For a finite set M c £47 (C\K)
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3 Vector-valued functions with exponential growth conditions

define 6 := minyep O (f) > 0. Then we get for all w € S5, (K) , such that jw—{| <8,

;EAB'A(W) [f1-A(S) [f]l <&

which proves the claim. In addition, we have A(S,, (K)) c V° by (3.19). Next we set

wC(V) > Coue)=D [ a(a(@)eHRCla.

Due to the Alaoglu-Bourbaki theorem V° is o (5 exp (@ K ), ,E5P (@ K )) —compact and

goA is Lebesgue measurable since g and A are continuous. Moreover, u is linear and, if
we equip C(V°) with the norm

lgll:= sup|g ()], ge C(V°),
yeve

continuous as

u(g)| <D s( A )le” 2/1'R6<C)‘dc<Df

su e~z ROl g
S (K) P|g()’)‘ ¢

n(K) yeve
eV

=D/ e~ 3Re(O)l g <D '
[ Clsh <Dl

<4nD [ e_ﬁ‘xldx:D] <00
Hence there exists a (positive) measure [l on (V°, o (5 exp (@\ K )/,Sexl’ (@\ K ))) and a

Borel measurable function hp:V° — C with |hg ()| = 1 for all y € V° by [45, 13.10 Satz von
Riesz, p. 102], such that

u()= | ghodu. (3.20)

4. Altogether, we obtain, keeping in mind that every f € £¢P (@\K ) defines a continuous
(linear) functional J (f):V° - C, y~y(f), that

FlunSs? Jo, o WO EROag=p [ () (@a(@)feHRlag
w3, [V Dlhodi= [ b(Hlho()dn ()
- < [ (Do ()ldi ()

=fvo v (H)ldu(y)-

=1

Therefore, £¢P (@\ K ) is nuclear by [45, § 28, Definition, p. 324].!

]

'Usually it is required that the measure 1 is a positive Radon measure, see for example [54, 4.1.5. Satz, p. 64]. But
this is not needed due to [45, § 28, Definition, p. 324], [45, 28.4 Satz, p. 327] and [54, 4.1.1. Lemma, p. 62].

28



Karsten Kruse

3.8 Remark.

1. A direct proof of nuclearity of O¢*P (@ \K ) can be done in a similar, but easier (without
partition of unity), way using the mean value property of holomorphic functions.

2. A different proof of nuclearity can be found in [26, 1.6 Folgerung, p. 7].

3. Since every nuclear space is a Schwartz space by [45, 28.5 Corollar, p. 328], we have
by Theorem 3.6(2) that £¢P (@ K ) and Q&P (@ K ) are Fréchet-Schwartz spaces, so for
the latter one another proof of this property (see Theorem 3.6(3)). Furthermore, they are
Montel spaces by [45, 24.24 Bemerkung (b), p. 267] and [45, 23.23 Satz, p. 253].

For a subset M of a vector space X we denote by I' (M) the absolutely convex hull of M.

3.9 Lemma. Let X be a complete Montel space and (Y, (||| B ) fe B) a locally convex space. Then
L(X{,Y)=L(X!,Y) holds algebraically. In particular, this is true if X is a nuclear Fréchet space.

Proof. LetyeL(X;,Y). For B € B there exists M c X absolutely convex and weakly compact
and C > 0 such that
[ly (£")llg < Csuplx’ (x)] < Csup [’ (x)]
xeM xeM

for all x’ € X'. Since M is weakly compact, it is weakly bounded and hence by the Mackey theorem
bounded with respect to the initial topology of X. So M is relative compact as X is Montel space.
Thus M is compact and precompact as well by [25, 3.5.3. Corollary, p. 65].

On the other hand, let ye L(X/,Y ). For 3 € B there exists M c X precompact and C > 0 such that

Iy )lg < Csuplx’ (x)| <C sup |x'(x))]
xeM xel'(M)

for all x’ € X'. By [25, 6.7.1. Proposition, p. 112] I'(M) is precompact since M is precompact.
Because X is complete and I'(M) is precompact, it follows by [25, 3.5.3. Corollary, p. 65] that
['(M) is compact, in particular, weakly compact. Moreover, this set is absolutely convex due to
[25, 6.2.1. Proposition, p. 102].

Since every nuclear space is a Schwartz space by [45, 28.5 Corollar, p. 328] and every Fréchet
space is barrelled by [45, 23.23 Satz, p. 253], we have that every nuclear Fréchet space is a

Montel space by [45, 24.24 Bemerkung (b), p. 267] connoting the apposition. [

The next aim is to prove that the spaces £¢P (@ \K,E ) and Q&P (@ \K,E ) are topologically
isomorphic to £¢P (@\K ) €E resp. OQ&p (@\ K ) €E. The proof is based on an analysis of the
proofs of an analogous statement for continuous functions on a compact space resp. weighted
continuous functions by Bierstedt [3, 4.4 Lemma, 4.5 Lemma, 4.6 Folgerung, 4.11 Satz, p. 44-
50] and [7, Lemma 5.7, Consequence 5.9, Proposition 5.10, p. 29-32] resp. [4, 4.2 Lemma, 4.3
Folgerung, p. 199-200] and [5, 2.1 Satz, 2.2 Bemerkung, p. 137-138] as well as upon analyzing
the proof of the so-called Grothendieck’s weak-strong principle [17, Chap. II, § 3, n° 3, Lemme
8, Théoreme 13, p. 78-80].
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3 Vector-valued functions with exponential growth conditions

3.10 Lemma. Let K c R be compact.
(1) The sets {52'(13) |zeCNK, B¢ N(Z)} and {62Fﬁ)e‘%|Re(Z)| |ze C\K, B¢ N(z)} are contained in
g (TK).
In addition, {5, |z¢ C~NK} and {516_%“{6(1)' |zeC~ K} are subsets of O¢P (@\K)’.
(2) Let neNyy, meNy and Ay (Sp(K)) = {52([3)67%”{8(2)‘ |z€Sn(K), BeN3, |B Sm}.
Then T (Apm (Sn(K))) is dense in By, ,, with respect to 6 (8‘”‘1’ (@ \ K)’,Eexl’ (@ \ K)) and
A (Eexl’ (@\K),,Sexl’ (@\K)) where By, p, := {feSexP (@\K) | flnm < 1}.

(3) Let n €Ny, and define A" (S, (K)) := {5167%“{6(2)‘ |z€ S, (K)}
Then T'(A"(S,(K))) is dense in BS with respect to G(Oexl’ (@\K),,Oexl’ (@\K)) and
A ((’)exl’ (@\K)’,(’)exl’ (@\K)) where B, := {f € O“P (K) ||f|.<1}.

(4) i) The topology of E¢P (@ K ) eE is given by the system of semi-norms

Guma ()= sup o (u(8P)))e RG] e Ny, meNg, aea,
zeSn(K),
BeNG, Bl<m

ii) and the topology of O¢P (@ K ) eE by

Gna(U) = Sup pq (u(é'z))e_%'Re(Z)‘, neNs), axeA.
2eSn(K)

Proof. (1) LetB e N(Z), zeC\K and f e &P (@\K). Then there exists n € N5, such that
z€S,(K) and

8 ()] et @l<|8P) ()] =[0P £ ()] nRelenlRels)
1 1
<o sup (97 ()| TR =C () 1], gy < 0
T 15, (K), 1Bl
D yens yi<lp)
implying the statement. The other proof is analogous.

(2) We have
Ann (Sn (K))"
= (6P iRl ze5,, (). || <m)
- {fegexp(@\K) |VzeS,(K) VBeNg, |B|<m: |5Z(ﬁ)e—%\Re(z)|(f)| < 1}
- {fegeXp(@\K) |VzeS,(K) VBeN3, |B|<m: laﬁf(z)e—%lRe(ZN < 1}

= {feSexP(@\K) | [ flnm < 1}
= Bum.
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The polar By, ,, is equicontinuous in &7 (E K )/ and thus the topologies

c (Eexf’ (@ \ K)’ ,EXP (@\ K)) and A (6'“1’ (@\ K),,Sexl’ (@\ K)) coincide on By, by
[16, 3.3 Satz, p. 53]. Due to the bipolar theorem we get

)1(5””(@\1(),,6””(@\[()) T (K)))s(sexp(@K)’,gew(@K))

= Ann (S0 (K))™ =By,

L (Anm (S (K))

where the polar sets are taken with respect to the dual system <5 exp (@ K ), ,EXP (@ K ) > .

(3) Analogously to the proof of (2).
(4) 1) By[25,8.4,p. 152, 16.1, p. 344] the system of semi-norms

Gnm,a (1) = sup pg(u(y)), neNsy, meNy, o€A,
YeBym
gives the topology on £¢P (@ K ) eE. As every ue &P (@ K ) €E is continuous on
By, ,,, we may replace By, ,, by a A (5“1’ (C \ K)/ ,EExP (@ \ K))—dense subset. There-

fore, we gain by (2)

Gnm,o (1) = sup Pa(u(y)).
Vel (Anm(Sn(K)))

Let AjeC, BjeNg, ﬁj‘ <m, zj€S,(K), 1<j<k, and Z/;:1|7Lj|§ 1, ke N. Then we
have forueEexP(@\K)eE

pa(”( Zk: 1j5zsﬁj)e_i|Re(Zj)’))
=

_ pa( S A 5Z<jﬁ,->)e—;Re(z_,->\) < 3" 1A (6o HRe)
j=1 -

j=1

k 1
< Z Mj‘ sup p(x(bt(SZ(ﬁ)))e‘E‘Re(Z)| <gnmo(U),
j:] ZGS"(K)a
TﬁeNélﬁISm

thus Gy m,a () < gnm,a (1) . On the other hand we obtain

Gnm,a (1) = sup pa(u(y))> sup  pg(u(y))
YeI'(Anm (Sn(K))) YeAnm(Sn(K))

i Ze.SS’,:l(I;)()7 Pa (Lt (SZ(ﬁ))) e_%|Re(Z)‘ =qnm,o (Lt) .

BeNg, |Bl<m

i1) Analogously to the proof of 1), using (3) instead of (2).
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3 Vector-valued functions with exponential growth conditions

3.11 Theorem. Let K c R be compact. Then we have the following topological isomorphisms:

E?(CNK,E)2E°?(C\K)€E and O“?(C\K,E)z0*?(C\K)eE

Proof. 1. We will prove that the mapping
T:£%P (CNK)€eE » E°P(CNK,E), ur—> uoA,

where B
A:CNK - &P (C\K) ,z+— &,

/
c

is defined by 0, (f) := f(z), is the desired isomorphism.

a) At first, we will show that the mapping T is well-defined and that BT (u) = uo A(B),
where A(B) (z) := SZ(B), is valid for all 8 € N3.
By Lemma 3.10(1) the term uo A(P) is defined for all B € N2. Let u e £4? (C\K) €E
and h e R, h#0, such that Dy, (z)  C\ K. Then we have

T(u)(2)-T (u) (z+hey)  w(8)~u(8ane,) (8= Sine
h - h B

where e, k= 1,2, denote the unit vectors in R2.
We remark that a subset of £¢7 ((C \K ) 1s precompact iff it is relatively compact due

to [45, 4.10 Corollar, p. 20] since £47 (C\ K) is a Fréchet space by Theorem 3.6(2).
Now let f € £&P (@\ K) . Then

0; (f) - 51+hek (f) (ex)
) g (f)‘
80N e (F) e, | /@ =Frhe) -
- Ol gle0 () - |HOLE) gess o)

-0, h—-0.

. 8:—0. e . — /
This means that ZT”’”‘ converges to SZ(ek) in £&P ((C\K )G as h tends to 0 and

in Eexp (@\ K )2 as well due to [16, 10.3.4 Satz, p. 53] since the Fréchet space
gexp (@\K ) is barrelled and by the remark about precompactness above. So we
obtain

9T (1) (2) = lim T (u)(z) - Th(u) (z+he) _ (;ﬂ%@) _ u<5z(ek))

=uo Al (7)

in E with respect to (pg),e4 for all ze C\ K. By induction over || we get that
T (1) eC*®(C\K,E) and that 3BT () =uoAB).
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Furthermore, we get by Lemma 3.10(4)i) for every ne€ Ny, meNpand a € A

1
1T (1) .0 = su(p) Pa(OPT (u) (2) )e n Rl = g, o (1) < 00, (3.21)
ze8q(K), —
BeNG.[Blm  =uoa®) (2)=u(8{)

implying T (u) € £ (@\ K,E) for every u € £¢P (@\ K) €E. Hence the map T is
defined and continuous.

injectivity: Let u e €27 (C\K)éeE and T (u) =0, i.e. uoA(z)=u(8;) =0 for all
ze C\ K. By differentiating we get due to the first part of the proof

wod®) (2) () =0

forall ze CNK and all B ¢ N%. By virtue of Lemma 3.10(3)1) this implies for every
neNsy, meNgand a €A that g, ;.o (#) =0 and hence u = 0.

surjectivity: For f e £¢P (@ \K,E ) define the mapping
upEP (@\K), —=E"”, yrus(y),
where E’* is the algebraic dual of E’, plus

up(v):E'>C, ' =y(e'of),

and e’ o f is defined by (/o f) (z) :=€’(f(z)) forallze C\ K.
Let By = {x€E| po(x) < 1} for o € A. The first step is to prove that the mapping u is
well-defined and that u € L(é’exl’ (@\K) ,(E’*, (pB&)

, . .
. e A)) where E'* is equipped
with the system of semi-norms

prs (x) = sup [x(¢)], e A.
e'eBy,

We clearly have e’o f € C*° (C\K) for ¢’ € E’ and f € £ (@\K,E) and there are
C>0, xxeA, such that

|e’of|n.m = sup |8B€/Of(z)|e_%|Re(Z)| SC|f
/ ZESn(K)7 [
BeNG IBl<m _|e' (2P £(2) )|

<Cpa(9°1(2))

n,m,o

for every n € Ny, and m e Ny. Thus /o f € £ (C\K) and us (y) is defined for any

y e Eexp (@ K )' as well as obviously linear, so the mapping uy is defined.
Let ¢ €A, neNyj and meNy. Forall ze S, (K) and 8 € N2, |B| <m, we have

B f(2) e~ nIRe(2)] 1 1 /] 1
_ 9B £ () e bR ¢ Mlama 1
p“( 21f Mma” 27 @) W fluma 2

n,m,Q n,m,Q
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if |f|,, .o # 0. Under this condition we get

nm,o < 00.

B —5|Re(2)|
sup le"o f, = 2|f|,ma SUP  sup ‘e'(a fl2)e )|£2|f

e’'eBy, e'eBy  zeSq.(K), 2 |f|n,m,a
BeNG,|Bl<m
<1

If | f],, .o = 0, we have
1
P (aﬁf(z)e ,,\Re(z)l) <flyma =0
forall ze S, (K), B € N3, |B| <m, and thus

(28 (0o ) |25, (K), B NG, Bl <m} < B

implying
1
sup |€/°f|n,m =sup  sup |e’(8ﬁf(z)e7|Re(Z)| )| <1.
e'eBy e’eBy  zeSn(K),
BeNG, |Bl<m B

Hence, in both cases, the set Mg := {¢’o f | ¢’ € By} is bounded in £#7 (C\ K). Fur-

thermore, the closure of the absolutely convex hull I' (M) of My, is bounded by [25,
6.7.1. Proposition, p. 112] and absolutely convex by [25, 6.2.1. Proposition, p. 103].
The set I'(My,) is (weakly) compact since it is bounded and closed plus £¢*P (@ K )
a Montel space by Remark 3.8. This and

pee, (ur (y)) = sup [y(e’o f)| = sup [y(x)| < sup [y(x)] (3.22)
e’'eBy, xeMg, xel' (M)

imply that i € L(SW’ (T k). (E", (PBa)aeA))-

The locally convex space (J (E), ( DB, )a EA) , where J denotes the canonical embed-
ding J:E — E'* | is complete since E is complete and for all ® €A, x € E,

pge, (J(x)) = sup ‘J(x) (e’)‘ = po (x) (3.23)
e'eBy ~——
=’ (x)
by [45, 22.14 Satz, p. 237]. Especially, J (E) is closed in E’*. The set {5, |ze C\ K}

is total in £¢P (@\ K ); by the bipolar theorem and thus in £¢P (@\ K ); as well.
Since for all ¢’ € E’

up(8;)(e") =8:(e'o f) =€ (f(2)) =J(f(2))(¢)

and u; is linear and continuous plus J (E) closed, we get more precisely that

ufeL(Eexp (C k)., (J(E), (pB&)aeA)).
Therefore, we obtain by setting (/' ouy) (v) :=J" (ur (y)), ye EP (CNK), for all
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oacA

pa (T our) (») = pes, (J (T our) () = pas, (up () < sup |y(x)]
xel'(Mq)

by (3.23) and (3.22). Hence J- ous e L (€27 (C\K). ,E) =L(£2? (C\K)_ ,E) by
virtue of Lemma 3.9 and so we have J~! ouy e £&P (@ K ) €E. In addition, we gain
forze C\K

T (I oup)(z) = ((J oup)oA) (2) = (ur(8.)) =71 (J(£(2))) = £(2),

thus T (J “loy f) = f proving the surjectivity of 7.

d) continuity of 7-!: Looking at (3.21), we get that the inverse of T is also continuous.

2. The proof for the weighted holomorphic functions is analogous to the one above using
Lemma 3.10(4)ii) instead of Lemma 3.10(4)1).
[

3.12 Corollary. Let K c R be compact. Then we have the following topological ismorphisms:

1.
£P (CNK,E) 2 £4P (CNK)&E = 97 (CNK) &7

01 (F K. )2 0% (B K)o 2 0°0 (B K)

Proof. AsE®P (@ N K) is nuclear by Theorem 3.7, we have £¢P (@ N K) ®E = Exp (@ N K) &E
by [60, Theorem 50.1, p. 511]. Due to the nuclearity £¢7 (@ K ) has the approximation property
by [25, 21.2.2. Corollary, p. 483]. Furthermore, £¢P (@\ K ) and E are complete locally convex
spaces and thus we get £? (C\K)&¢E = £ (C\K)¢€E by [38, §43, 3.(7), p. 243]. The
statement follows then by Theorem 3.11. The same arguments are valid for O¢*? (@ \K,E ) .

3.13 Remark.

(1) Let E be a Fréchet space and F' the nuclear Fréchet space £¢P (@ K ) resp. Q%P (@ K ) .
For f € F and x € E we define f@x:C~K - E, (f®x)(z) := f (z)x. Then we can describe
the statement of the Corollary above in a more concrete manner. The injection

k
X:F®zE—~FEE, ) fi®e~ (y'—>
i=1

k
<y7fl) ®ei)7
=1

1

is continuous by [25, 16.1, p. 344, 16.1.3. Proposition, p. 345] and so it has a unique, con-
tinuous linear extension ¥: F®E — F€&E by [25, 3.4.2. Theorem, p. 61]. This extension is
a topological isomorphism due to the nuclearity of F. By virtue of [17, Chap. I, § 2, n° 1,
Théoréme 1, p. 51] every element f € F&E is the sum of an absolutely convergent series

f=2.2ifi®e
i1
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3 Vector-valued functions with exponential growth conditions

where (A;) € /1 and (f;) and (e;) are null sequences in F resp. E.> Remark that this repre-
sentation is not unique. Now we define the mapping

X0:F&E — FeE, f=5 Lifi®ei (yH Zli(yafi)ei)-
i1

i=1

This mapping is well-defined, i.e. it does not depend on the representation of f and series
appearing on the right hand side converge in E since we have for f € F&,E and ot € A (A
countable)

Pa (X0 () (y Z;I’LII Y, fi)l o (ei) < ZI/IISUPI y,fn)ISUPpa (en)

i=1 neN

for all y € F’. Furthermore, sup, .y po (€x) < 00, as (e,) is a null sequence, and ;%1 |4 < oo,
because (A;) € ;. The set M := { f,, | n € N} is precompact in F by a comment in [60, p. 54],
since (f,,) is a Cauchy sequence in F. So we get that there is a constant C > 0 such that

pa (10 (f) () < ipa (b i) ei) < Csuply ()] < .

This implies that (Zé‘:l Ai (Y, f,-)ei) , is a Cauchy sequence in E and thus convergent by
the completeness of E as well as X (f) € FeE. The independence of the representation

results now from the totality of {SZ(ﬁ) |ze CNK, B € Ng} resp. {6,|z€ C~K} in F/. For
F = &P (C\K) one denotes with |,.n®zPo the continuation of |-, ®z pe and these
semi-norms form a fundamental system of semi-norms of £*P (@ K ) &z E. Then one gets
for f e £&xp (@\ K) & E

(M ®2Pa) (f) = inf{E;Mil \filymPa(€i) | f= Z&ﬁ@ei}
i= i=1

where the infimum runs through all such representations by [61, 6.5 Theorem, p. 65] resp.
[7, Corollary 8.4, p. 54].3 For f = > Aifi ® e; we obtain by Lemma 3.10(4)

qn,m,o (%0 (f))
= sup  pa(20(f)(8))e i@~ sup pa(zxiaﬁmz)ei)e-i'l*e@)
2eSn(K), zeSn(K), i=1
BeNG, |Bl<m BeNG, |Bl<m
<UL sup 9P Fi() e ROl () = 3 IAil| il P (i)
j= ze8:(K), i=1
BeNG, |Bl<m

and, therefore, g, m.a (X0 (f)) < (||nm &zpa ) (f) implying the continuity of . The anal-
ogous result is valid for F = Q&P (@\K ) By the remark about the uniqueness in the

2A similar series representation for the injective tensor product can be found in [3, p. 37] combined with [4, 4.
Bemerkung, 6. Satz, p. 196-197] resp. [7, Proposition 3.23, p. 22-23].
3The proof is based on the one of [54, 7.5.1. Theorem, p. 105].
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beginning we get ¥ = ¥o. Combining this topological isomorphism with the topological
isomorphism 7 of Theorem 3.11, we gain for f = Y 7°; A;fi®e; and ze CN K

(To2) () @) =T () (@) = 10 (£) oAl (2) = 10 (f) (&) = ixiﬁ (@)ei=1().

so (T o)) =id. Hence the topological isomorphism between F&zE and £¢P (@\ K,E )
(resp. QP (@ \K,E )) is nothing else but the identity if E is a Fréchet space.

Junker [26, 1.7 Satz, p. 8-9] gave a proof of Theorem 3.11 resp. Corollary 3.12 in the case
that £ is a Fréchet space which is in some parts similar to the proof given here. But his
proof of surjectivity is less transparent. Moreover, though he proves that 7' (there called k)
is an algebraic isomorphism and hence, using the nuclearity, that there exists an algebraic
isomorphism j:£¢? (C\K)&zE — €7 (C\K,E), he does not explicitly state or prove
how j looks like. But he treats j like the identity in the proof of continuity, which is
confirmed in the first remark here, and then uses the open mapping theorem to get that
J 1is topological. Apart from these inconsistencies, one can not use the open mapping
theorem so easily for the proof of the general statement given here if E is not a Fréchet
space, since one would need, that £¢P (@\K ) eE (resp. Oexp (@\ K ) eE ) is a webbed

space and £¢*P (@ \K,E ) (resp. Qexp (@ \K,E )) ultrabornological. The first condition
is at least fulfilled if E is webbed by Theorem 3.6(2), Theorem 3.7 and [10, Théoréme 4,
p. 79], but, aside from the case that E is a Fréchet space and hence £¢P (@\ K.E ) (resp.
Oep (@ K, E )) as well by Theorem 3.6(2), there are no other cases known (to me), when
the latter condition is fulfilled.
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4 Vector-valued P.-functionals and a
duality theorem

The aim of this section is to prove that the spaces Q%P (@ \K,E ) JO&P (@, E ) and L, (P. (K),E)
are topologically isomorphic for any non-empty compact set K c R and any complete locally
convex space E, i.e. to find a topological isomorphism

H:0%?(C\K,E)|0*?(C,E) > L,(P. (K),E).

For special cases like E = C [28, Theorem 3.2.1, p. 480] and Fréchet spaces E [26, 3.9 Satz,
p. 41] it is already known that these spaces are isomorphic. The approach in this section will
differ from the aforementioned ones and establish a kind of K&the duality between the spaces
Oep (@ \K,E ) |Oexp (@,E ) and L, (P. (K),E) for arbitrary complete locally convex spaces E.
At least in the special case K = [a, ], a € R, and E = C this duality is already known [46, Theo-
rem 3.3, p. 85-86] and serves as initial point of the considerations that follow. From a later point
of view (see Section 6) the isomorphism H just expresses that the E-valued Fourier hyperfunc-
tions defined as boundary values whose support is contained in K coincide with the ones defined
via E-valued P.-functionals with support in K. This section is closed by the definition of the
Fourier transformation on L, (73>+ (@) JE ) .

For f:=[F]e 0“7 (C\K,E)[O*?(C,E) we define H(f):P.(K) — E as follows. For ¢ ¢
P, (K) exists n e N such that ¢ € O, (U, (K)). A component Z of U, (K) fulfills one of the cases
of Remark 3.3 (2) and so for 0 < r < R (in the cases a)-d)) resp. 0 < r < 1/n (in the case e)) we define

{zeC| dist(z,[a,b]) <r},  ifZfulfills a),
{zeC| dist(z,[a,00[) <r}, ifZ fulfills b),

V,(z) = | {2€Cl dist(z,] -0, b)) <1}, ifZ fulfills o),

{zeC| dist(z,R) < r}, if Z fulfills d),
(1/r,oo)><]—r,r[, ifZ:]n,oo[x]—l/ml/n[,
| =00, =1/r[x]-rr[, ifZ=]-o00,-n[x]-1n,1/n[,

where Z fulfills e) in the last two cases. By Remark 3.3 (1) there is k € N with U, (K) = UI;‘:I Z;
where the Z;s denote the components of U, (K') . Now let

Ay (F) (9) = [yKF(cm(z:)dc @.1)

where Yk := Z’J‘-zl Yj and ¥; is the path along the boundary of V;, (Z_ ,-) in (C~ in the positive sense
(counterclockwise). If not necessary, the subscript K in the notation of Hx and the path yx is
omitted.
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1
T2 i y - 73 }l
- 00 1 ¢ E ( 3 K o0 "
ri{ = B }ro n }1"3

Figure 4.1: Path yx for +oo e K

Let F, G € O¢*p (@\K,E) with F — G € O¢P (@,E). Consider the case oo € K, —o0 ¢ K. By the
Cauchy integral theorem and the assumptions we have

[(F-6)(©)9(©)dt- [ (F-G)(©)o(£)dL
Y Yk

where Z; is the unbounded component and Z;, 1 < j < k, are the bounded components of U, (K).
For yo:[-rk, k] = C, % (¢) := x+it, where x > 1/, one has x > 1/, > n and thus ¥ ([-r¢, 7% ]) € Z.
For « € A there are C|, C, >0 such that

pe( [ (F-0)(©0(©)ag)< [ pal(F=G) (xit))lp s in)
< [T eretrcye tinay

= 2C1C2rk€_(l/2n)x
-0

X—> 00

due to the assumptions. Thus again by the Cauchy integral theorem
| F=6)(©o@)ag=0
k
holds. The others cases follow analogously. Hence for f = [F] the definition

Hy (f) () = g (F) (9) = nyF(C)q)(C)dC 4.2)

is independent of the choice of the representative F of f. Again the subscript K in the notation is
omitted, if not necessary.

For a component Z of U, (K) let 0 < r, s <R (in the cases a)-d)) with R of Remark 3.3 (2) resp.
0 < r, 5 <1/n (in the case e)). With the definitions from above consider the case oo € K, —co ¢ K.
By the Cauchy integral theorem

[F@)0©d- [F(Oo(@)at
Y Y
- [ F@o@at- [ F)e@)a @3)
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is valid where 7 := ZIJL] ¥; and ¥; is the path along the boundary of V;; (Z j) in C in the positive
sense. W.l.o.g. s; <ri. Now let m :=2[1/s;]. Then m € Nyp, m > 2n and 1/m < s < ;. < m. For
Yo: [sk, k] = C, Yo (¢2) :=x+it, x> /s, and o € A there are Cy, C; > such that

pa([%mcm(cwc)s[s;"paw(w))|<p<x+ir>|dr

< [ etmrcy e gy

def.m Sk
_ —(]/2;1))6
<C1Cy (re—si)e
def.m

- 0.

X—> 00

Analogously for y;:[-r,—sk] = C, 71 (¢) := x+it, x> /5, one has

vl [ F©0(©)ag) 2 0

and thus the right hand side of (4.3) is equal to zero. Again the others cases follow analogously.
Hence the definition of H (f) (and H (F)) is independent of the choice of r corresponding to a
component Z of U, (K) and thus well-defined on P, (K).

4.1 Theorem. ! For any non-empty compact set K c R the mapping
H:0%?(C\K,E)[0%?(C,E) - Ly(P. (K) ,E)

is a topological isomorphism.

Proof. i) First we have to take a look at the quotient space above. To speak of a topological
isomorphism, one is in need of a reasonable locally convex topology on the quotient space.
We denote by B B B
q: 0P (C \K,E) - QP ((C \K,E)/Oe"p (C,E)
the quotient map and equip the quotient space with usual system of quotient semi-norms
. /\ 1
(| |lv“)leN22,aeA given by

A = inf  |F|j .
|f|l,a Feq‘l(f)| |l,OC

This quotient space, equipped with these semi-norms, is locally convex iff Q%P (@,E ) is

closed in Q%P (@ \K,E ) with respect to the induced topology. This condition is indeed
fulfilled since we will prove at the end of part 1) that

H:0%?(C~K,E) — L, (P«(K) ,E)

is continuous and at the end of part 1i1) that ker (I:I ) = Qep (@,E ) .

We only consider the case oo € K, —oo ¢ K. The proof for the other cases is analogous.
Let fe 07 (C\K,E) /0*? (C,E),neNand ¢ € O, (U, (K)). Then, with the definitions
from before, U, (K) = UIJ‘-:] Z;. For the length of y;,1 < j <k, one has

1(vj)=2(bj-a;+mr;) (4.4)

1counterpart: [13, Theorem 5.2, p. 1119]
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and for the length of y_

2(x—ap)+ 7y,  if Z, fulfills b),
l(')/_)z{ ( k) k k ) (45)

2 (x— l/rk + I’k) , ika fulfills C), Zy =]n, OO[X ]—1/;1, 1/n[,
where x > 1/r, is fixed, ¥~ denotes the part of ¥, with Re () c (—o0,x) and ¥, the part of y;

with Re (%) c [x,00). Set m :=2max; < [1/r;] and w.l.o.g. Z; fulfills b).
Then for any o € A and any F € g~! (f)

pa(H (N (9)) = pa (A (F)(9)) = pa( [ F (O 0()a¢)
skfpa(]yj(o«p(odc)+pa([y_+%F<c><p<c>dC)

7‘7‘\.
—_ =

<2 Uy) swp o pa(FENIQ(OI+1(r)  sup  pa(F(5)le(0)]

Jj=1 erange(7;) Cerange(y-)

+

pa(—fOOF(t+irk)(p(t+irk)dt)+pa(fxOOF(t—irk)(p(t—irk)dt)

@kl
io 2 (bimajmry) sup - pa(F(6))le ()]
=l Cerange (7))

+(2(x-ar)+mr)  sup  pa(F(E))|e(S)]
Lerange(y-)

o [T patF@rin)lpGrinold [ pa(F (t-in))lp i)

k-1
<23 (bj-a;+mr;))  sup  |Fluale],emRe©)
def.m =1 Cerange(yj)

+2@-a)+n)  sup  |Flualel],eln ) Re©)
Cerange(7.)

+2 [ |Flnallol,e s
X

k-1 1
S2|F|m,ocH(P||,,Z:(l?]'—ctj'4-7'L'I’J-) sup e~ IRe()]
def.m st Cerange(}/j)

A|Flnalol, 2(x-a)+mr) sup e mRe)
Cerange(y-)

|
“2Flnalel, [ e Ha

N
:2ne_2ilnx
k-1 |
< (2 Z (bj -aj+ ﬂfrj) +(2(x—ag) +7ry) +4ne_2nx) IF|m.all®],-
j=1



Karsten Kruse

Hence there exists C = C (n,K) >0 with

pa(H(F)(9)) = pa(H(f)(9)) <CIFlnal @], (4.6)

thus H (f) = H(F) € L(O, (U, (K)),E) and therefore H (f) = H(F) e L(P.(K),E) by
[16, 3.6 Satz, p. 117] since n € N is arbitrary. As F € g~! (f) is arbitrary, (4.6) also yields to

Pa(H(f)(9))<C inf |Flual@l,=Clfalol, 4.7
Feq='(f)
forany ne N and ot € A. Now let M c P, (K) be a bounded set. Since the sequence (B,),,
of closed unitballs B, of O, (U, (K)) is a fundamental system of bounded sets in P, (K)
by [45, 25.19 Satz (2), p. 286], there exist n € N and A >0 with M c AB,,. Hence by (4.6)

one gets

sup pa (A (F) (9)) < sup pa(H (F)(9)) = |A|sup po (A (F) (9))

oM QEAB, QeBy
<|AICIF |,
and by (4.7)
sup pa (H(f) (@) < sup po (H(f)(9))=|A|sup pa (H (f)(9))
oM QEABy, QeBy
<|A|C|f |,

proving the continuity of H resp. of H, but in the latter case only if we prove, in addition,
that ker (I:I ) = Qep ((C, E ) (see the remark in the beginning).

Moreover, we observe the following: Let K c K ¢ R be arbitrary compact sets. For every
F e 07 (C\K;,E) and every ¢ € P, (K)

HK<[F]>=fYKF<z><p(z>dz=[YK F(2) ¢ (2)dz = Hg, ([F])

1

holds by the Cauchy integral theorem implying

Hg

Oexp(@\[(l ,E)/OEXP(@_‘E) = HK] . (48)

(e-0)?
For ze CNK and { € C~{z} define g(z,{) := ¢ i,é) . Then g(z,-) e O(C~{z}). Let zp €
C~ K. Now choose n € N such that
d(20,Un (K) ) = dist 20, Un (K) ) >0 (4.9)

which is possible by the choice of zy and the definition of U, (K). Since (4.9) means that
there exists € > 0 with D¢ (z9) NU, (K) = @, one has d(w, U, (K)) >0 for all we De (z0) .
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With w:=x+iy and { := u+in, where x,y, u,n € R, we get

~Re((w-0)°)
€ 1
lg (w, )], = sup ﬁe,l|Re(<:>\
CeUn(K)
< ;e_th sup g—#2+n2+2x#—2yn+%\u|
d(Wv Un (K)) u+ineUn(K)
< ;e—x2+y2+%|y|+ni2 Supe—u2+|u|(2|x\+%)
d<W7 U, (K)) ueR
= 1 e—x +y +2|y|+ o (|x|+2n) (IXI+ﬁ)(2|x|+%)
d(w, U, (K))
= ;e}l\th +abls 4n < 00, (4.10)
d(w,U,(K))

thus g (w,-) € P. (K). Hence the expression < T,g (w,-) > is defined for T € L(P. (K) ,E)
and so the corresponding function

<T* g>C\K—E, 7-<T,g(z,-)>

For the function (a%g) (z0,"):C~{z0} > C, {~ (a%g) (z0,8), where (a%g) denotes the
complex derivative of g with respect to z, one gets like in (4.10) (with w = z¢)

H( )(zo, sup _(2+;2)e_(10_§)2 oLRe()]
" gelUa(K) (20-¢)
! L+ b+ 35
<2+ enx Y ”y|+4n2

40,0, (K))’

<00,
SO (%g) (z0,-) € P« (K) . Hence the limit

lim <T,g(zo+h,")>-<T,g(z0,") > g(z0+h,)-g(z0,") S
h=0 h TeL(P+(K),E)  h=0 h

=< T,(a%g) (20,°) >

exists meaning < T# g >¢ O (C\K,E).
Then for [ € Ny, define M := {g(z,-)e‘%lRe(z)l F (K)} c O(Uy(K)). By (4.10) and
Remark 3.3(4)

sup [l = sup g (2 e 1RO

2€8;(K)
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< sup ! e%|x|+y b gz —7hd
x+iyeS;(K) dist (x +iy, Uy (K ))

12

+l+—25
1612

—supe 2
7] XxeR

S /|x|

1_
1

2 5
=21€l +1+16[2

< 00 4.11)

holds, hence M is bounded in P, (K) by [45, 25.19 Satz (2), p. 286] again.
Since T € L(P. (K),E), the following is valid by [16, 23.3.6 Satz, p. 117]:

VneNVaeA3C>0: po(T(9))<Clo],, foraleeO,(U,(K))

So for [ € N5, and o € A there is C > 0 such that
1
[<T*>]l << T*8>la= sup pa(<T,g(z-)>)e 117
7€8;(K)

= SUp Pa (< T.8(z,)e TRe(2)] >> = SuPPoc (<T,9>)
ze8)(K)

<CsuP ol ain =

and therefore the mapping
— — 1
Sk:Ly (P+ (K),E) > 0P (C\K,E) |0*?(C,E), Sk (T) := [E <T* g >]
1

is defined and continuous. Further, we observe that P, ( ) is dense in P, (K) for any non-

empty compact set K c R by [28, Theorem 2.2.1, p. 474]. Thus the embedding of P, (K)
into P, (K} ) is continuous and dense, hence defines the embedding of L (P, (K;),E) into
L(P.(K),E) (the density of the first embedding implies the injectivity of the latter one)
for arbitrary compact sets K; c K c R, and we have

Sk(T)=S8k, (T) forallT e L(P.(K1),E) (4.12)
just by the definition of g. Therefore, we will normally omit the subscript K in what follows.

The map S is also called (weighted) Cauchy transformation for obvious reasons (see [46]).

The aim of the next two parts is to show that S is the inverse mapping of H. First, the
injectivity of H : For this it suffices to show So H =id on Q¢ (C \K,E ) JOP ((C,E ) . For
7:=x+iye C\K, x,y e R, choose n € N like in (4.9) and define I':=I"_ -I"; with

Iv:R->C,TL(t):=txip

h | 2+ < p.
where frgl?g%c{rj’l l’l’l(Z)|, } p

Let f:=[F] e Q%P (@\K,E) |OeP (@,E). Consider the case oo € K, —oco ¢ K. Now set
m :=2max {[1/n],p}. For w:[rr,p] = C, 1 (¢) := u+it,u > max{l/n,x}, there is C; >0
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such that
¢ (Z_ 1 2,2 2.2 B
Pa / F () dC / C]em XY T xu= 2yt gy
|z— u—lt|
<Cie” ¥ +y (p }"k) ep +2|y|Pe_M +( +2|x\)|u|
::C2
_ L e eab)
Uu—Xx
- 0.
Uu—>00

Analogously for ¥ [_p7_rk] -C, 04! (t) =utit,u> maX{l/rk7x}7 and P, [_pap] -C,
Y(t):=u—it,u< ming ¢ j<k {aj - r_,-,x} , if Z fulfills b), resp. u <min; ¢ {aj -rj, l/rk,x} , if
7 fulfills e) and Z; =]n, oo[ x] = 1/n,1/n[, one gets

~(z-¢)?
pa(./VF(C)eC—Z dC)ujmov i=1,2,

and hence by the Cauchy integral formula

(=)
F@ =50 o POl [ FOsG0L

27

Notice that the right hand side does not depend on the choice of p in the definition of I" by
the Cauchy integral theorem and considerations like above. Then

G(2)i=< 3=H([F]).8(z) > F (2)

RGO RICORR= Y SHCHIL:

2T 2mi
e LF©eG0a o [ F©sE 0
o [F©g 0

(4.13)

S 2mi Jr

is valid. But the right hand side of (4.13), as a function in z, is holomorphic on

Sy (o) ={zeC||Im(z)| < p} (differentiation under the integral sign), so G is extended to
a function in O (C, E) by the right hand side which shall also be denoted with G.

For [ € Ny, choose m :=2max {p,l}. Then for z € S» () there exists C| > 0 such that

(-0’
mpa(G(z)):pa( JF @ — ; dc)

.32 . \2
e~ (z-t+ip) e~ (z-1=ip)

Z—t—ip

< [ paF@-ip)) dt

dt+[:pa(F(t+ip))

z—t+ip
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o0
< Cle—x2+y2+p2 (Lezyp + Le—Zyp) / en Lr|— +2xzdt
y+pl -7 -

o
o0
<20, 1 o +y2+p2+2|Y|Pf o+ (2Rl g
Pl -
2 (o] 2
<4C, o=+ P2y p+ (5 +) f o (=(za+h))" gy
p=hl° 0
0 2
_ 4C1 —x +y +p +2|y|p+ 2m |x| et dt
- |)’| (2}n+‘x|)
<4c \/— e AT
U
and so
1 2, p2 (11
sup pa (G(x+iy))e” ik < — sup —— " #2lp+ gz =(7 )M
0<[yl<§ T 0<[yl<§ pP- |y|
xeR xeR
4C
< ! e4p 4m supe 21|x|
P\/ﬁ xeR
2
_AG ity
VT
yielding to

Glg 0= sup pa(G(z))e 1lRe)l < max (|Glg 1., sUp po(G(x+iy))e” 1) < co.
268;(@) >1 0<ly|<5
xeR

[SIaS]
~=

Hence G € O¢P (@,E ) and thus

(SoH) () =|< 3l (D" 8> F |7 =[G)+ £~ .

i.e. H isinjective. In particular, this means that ker( ) oep ((C E ) proving the statement
in the beginning of part 1) as well.

What remains to be shown, is the surjectivity of H. For this it suffices to show Ho S =id
on L(P.(K),E). Due to the Hahn-Banach theorem (see for example [45, 22.12 Satz (c),
p. 236]) this is equivalent to the condition that

' (HoS(T))(9)) = (T (¢))

holds for any T € L(P. (K),E), € P.(K) and ¢’ € E'.
Since

¢ (Hos (M) () =¢ (H([ 3 < T*2>]) (9)

= ’(2; ]f<7“g(z,)>>¢(Z)dZ)
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4 Vector-valued P.-functionals and a duality theorem

T 2mi [<e oT,g(z,") > ¢ (z)dz
= (HoS(e'oT))(9)

where one uses Riemann sums and the Cauchy integral theorem for the third equation and
e'oT e P, (K)', it suffices to show the result for E = C.

First let us consider the case K = R. As the set of point evaluations {8y, | xo € R} is total
in P, (@), by Theorem 3.5(3), one has to show that (HoS(Jx,)) (@) =< &,,¢ > for ¢ €
P.(R).

Now we have

(oS (8,))(9) = 557 [ <80,8(2) > 9 (). @.14)

Let us take a closer look at the integral on the right hand side of (4.14). Let m € N5, and
72€8Sm ({x0}). Then

[<8up8 () >y = SUP [< 88 () | mRDI= sup g (z,x0) R
z2eSm({x0}) zeSm({x0})
= sup o+ 200 ] ¢ gy = supe™” 2+l (2ol +5;)

z2€Sm({x0}) |Z_ C| xeR
= memz_xoe (|'x0|+2m) (|X()|+2m)(2|x0|+%) < 00,
thus < 5}%, g > O&p (@ N {xo}) . This means that the path of the integral on the right hand

side of (4.14) can be deformed using the Cauchy integral theorem and one gets for R >0
sufficiently small, so that Dg (xo) c U, (K) for ¢ € 0, (U,(K)),neN,

1

271?1 LDR(XO) < 5x0>g(Z,-) > (P(Z)dz
1

S — ,X d
.faDR(xo)g(z 0) ¢ (z)dz

271

~(z-x0)°
_ L f (),
271:1 aDR(XQ) Z—X0

= ¢ (x0)
=< Oy, @ >

1 f< 0x0, 8 (2,) > @ (2)dz

27i

by the Cauchy integral formula.
Now let K # @ be an arbitrary compact subset of R. Since P, (K)' is embbeded in P, (@)/

and Hg oS 1d Pu(R)" it suffices to show that Hg o Sg = ( foSf) |7> (K)" By (4.12) we

have Sz Sk and by (4.8) H. |Oew CuK)/0en(T) = = Hg. So the theorem is finally

proven.

‘P*(K)' -

O

4.2 Remark. For K like in Theorem 3.5(2) a different proof of part iv) is also possible. As the
set of point evaluations of complex derivatives {SX(O" ) |xoe KNnR,ne No} is total in P, (K)' for K

like in Theorem 3.5 (2), one has to show that (HoS(Sx(:))) () =< 5)5(;1),@ > for ¢ € P, (K).
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Now we have

(Ho5(69))(90) =5 [ <608 > 0 @)z (4.15)

Let us take a closer look at the integral on the right hand side of (4.15). Let me Ny, and z €
Sm({x0}). Then g(z,-) € (’)(DL (xo)). Using the notation g, (&) :=g(z,§) for { € D1 (xp), the
Cauchy inequality yields to

s (x0)| <nt(@m)"  max [g(z.8)
{ed 1(0)

2m

e +y2—[,L2+n2+2x[,L—2yT]

=n!(2m)"  max

§eaD 1 () -¢|°

<n!@m)"™' max e e s 2dlule2bim]
CeaD%(Xo)
m

2,2 2
Sn' (2m n+l max e_x +y +|C‘ +2|C|(|}C|+‘y‘)
¢edD 1 (xo)
2m

2
<l (2m)"! o=+ (g+hol) +2( 55 ol ) (el+Dy)

2
= ! (2m)" ! e(zathol)” g% (5 2bol ) (al+b)

=:Cy
Thus
2,.2
sup  [g" (xo)|e—%lRe<Z>\sco sup e+ (G 2hol) (el
zeSm({xo}) zeSm({x0})
< Cpe + Gt 2ol gup =+ 2k
xeR
::Cl

2 2 2
=C e—x0+2x0 =C) £

and so (z < Sx(: ),g(z,-) >) e 0P (C~{xo}). This means that the path of the integral on the

right hand side of (4.15) can be deformed using the Cauchy integral theorem and one gets for
R > 0 sufficiently small, so that Dg (xo) c U; (K) for ¢ € O; (U;(K)), [ €N,

1

1 n
5w <8 we 0@z [ <6 (0> 0z

_ ()
= — faDR(xo)gz (x0) @ (z)dz.

27

The Laurent series of g(z,-) in § is

g(z.0)= z-§)%!

z- C+Z

J=1 J!
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4 Vector-valued P.-functionals and a duality theorem

and so

n n!
¢ (x0) = —————— +h(z,x)
Z2-X0)

where 4 (-,xg) is an entire function. By the Cauchy integral theorem and the Cauchy integral
formula for derivatives we have

1

L (n)
5 faDR & (x0) ¢ (z)dz

1 n!
I e LR

_ 0@ () e 5
= 27[1 ‘/B\DR(XO) (Z—X())n+] dZ - (p (x()) =< 6}(0 7(p >,

Observe that this kind of proof is not possible if, for example, K = {oo} since a counterpart of
Theorem 3.5(2) is missing.

By [28, Theorem 2.2.1, p. 474] P, (R) is dense in P, (K) for a compact set K c R, K # @. So

for different compact sets K,J c R we may identify elements of L(P» (K),E) and L(Px (J),E)
by means of their restrictions to P. (R) Then the following result defining the support of a
vector-valued P, -functional is valid:

4.3 Proposition. 2 Let K,J c R be compact sets and KnJ + &.
(1) L(P«(K),E)nL(P«(J),E) =L(P«(KnJ),E)

(2) Forany T € L(P.(K),E) there is a minimal compact set J c K such that T € L(P+ (J) ,E).
The set J is called the support of T.

Proof. (1) LetT e L(P+(K),E)nL(P«(J),E). Then
H(T) € (090 (T~ K, E) JO°7 (T, E)) n (0% (T~ 4, E) JO7 (T, E))
=0“?(C~(KnJ),E)[O0? (C,E)
and T € L(P.(KnJ),E) by Theorem 4.1 (and (4.12)). The other inclusion is obvious.

(2) This is clear by Theorem 4.1 since for any f € Q%P (@\ K.E ) there is a minimal J such
that f e 07 (C\J,E).
O

4.4 Remark. Let K c R be a non-empty compact set. Then P, (K) is nuclear and P, (K )1'7 a
nuclear Fréchet-Schwartz space. Furthermore, we have

Ly (P.(K),E) 2P, (K),&zE =P, (K),&E =P, (K),eE.

Proof. By Theorem 4.1 P, (K)), is topologically isomorphic to 0% (@\ K ) |OP (@) This
quotient space is nuclear by [60, Proposition 50.1 (50.4), p. 514] since O¢*? (@ K ) is nuclear by

2counterpart: [13, Proposition 5.3, p. 1121]
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Theorem 3.7 and O (C) a closed subspace. Hence P, (K ); is nuclear as well. It is a Fréchet-
Schwartz space because P, (K) is a DFS-space by Theorem 3.5(1). So due to [60, Proposition
50.6, p. 5231 (P« (K);); is nuclear and, as P, (K) is reflexive, P, (K), too. Since P, (K) is a
DFS-space, in particular reflexive, thus barrelled by [45, 23.22 Satz, p. 253], and complete, plus
E complete as well as P, (K ); complete and nuclear, we obtain

Ly(P.(K),E) 2P, (K),&zE

by [60, Proposition 50.5, p. 522]. The remaining isomorphisms are due to the nuclearity of
P.(K). O]

For a different proof of this statement see [26, 1.11 Satz, p. 11] and [26, 3.9 Satz, p. 41].

For K =R we look at the duality of Theorem 4.1 once again, but from a different point of view.
Let f € Q%P ((C \R,E ) . In the spirit of [40] and [57, Chapitre II, p. 77-97] we assign the bound-
ary value

(R().0)= lim [ (f(x+in)=f(x+it))@(x)dx, peP.(R),
to this function, if existing. Furthermore, we define the upper boundary value by

(R (f).0):=lim [ flr+in)p()dx, @eP.(R),
and the lower boundary value by
(R (f).9)=lim [ f(x-i)o(x)dx, @eP.(R),

if existing.

4.5 Theorem. (1) The boundary values R(f), R* (f) and R~ (f) exist. They are elements of
Ly ('P* (E) ,E) and
R(f)=R"(f)-R (f)=-H(f)
for all fe Q&P (@\@,E) .

(2) The mapping [ f]+ R(f) is a topological isomorphism between
0er (C\R,E) /0P (C,E) and L, (P. (R) ,E).

Proof. (1) Let fe 07 (C~\R,E) and neN. For ¢ >0 we define
RE(N)(9)= [ f(xxir)o(x)dx

for any ¢ € P, (@) Let @ €A and ¢ € O, (Un (@)), n € N. We choose m € N, such that
m>2max (n,t) and % < t. Then we obtain

Poc(R,i(f)((p))S‘/Rpa(f(xiit))|(p(x)|dxg\f]mﬁa ;|<pyn[:e;,|m|,;|x|dx

L ~ ek 't
<26 flnal@ly e dx=dnentif], o 9], <o
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Hence R (f) € L(O, (Un (E)) ,E) for every n € N connoting R¥ (f) € L(P* (@) E).
Now set @ (x) := ¢ (x+it). Then the functions

(o R (1) (9F) = [ fwsit) @ (rain)d (4.16)

are defined for ¢ € 0, (U, (@)), neN, on ]0,1/n[ and constant by the remarks above
Theorem 4.1. Thus the limits lim,oR¥ () (¢;) exist in E for every ¢ € P, (R).
LetaeA,neN, and ¢ € 0, (U, (R)). For 0 <7< - 3, and z € U, (K) we have

eﬁ'Re(Z)‘ S t Sup |(p’ (W)|eﬁ|Re(Z)|
we[z+it,z];

|<p<z>—<p<m>|e3¥"““'@'=U 9 (w)dw
:l:tZ

<t sup 6n max |(p(C)|eSn|Re(Z)|

[wt A vl

S6ne187t sup  max |(p((;')|e3n|Re(€)‘<6n€‘8”2 loll,t
we[zit,z]; |E-w|= 6n

<lel,

by the Cauchy integral formula and the Cauchy inequality where we denote by [z+if,z];
the line segment from z +if to z. Hence we get

1
lo—@(=it)]s, <bnets | o],z (4.17)

Further, we have for 0 <t < % and x e R

(1)
3n

Due to the Cauchy integral theorem we obtain for all 0 <7 < 3]—”

pa (R (1) (9) R (1) (97))
~pa( [ £ i) (p() -9 (r=in) ds)

—pa([f(x:tlt:tl—)( (xii%)—(p(xiitii%))dx)

|f|6n(x||(P (p( :tlt)”:;n[ €6n‘x:‘:lt| 3”|x|dx

1 1
=— plus 6n>->
3n n

=r+ 1>
 3n T 6n

Im(xitiii)
3n

< 12ne@ lt)||3n
e 1

< (72n2¢70 ) L

(4.17)( n“es? @, |flon.q |

—0.

tNO

Since the limits lim; R (f) (¢f*) exist in E for every ¢ € P, (R), this implies that the
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limits (R* (f), @) =lim, o R (f) (¢) exist in E, more precisely,
(R (£).9) = IimR= (£) (9) = HmR? (1) (97).

The space P. (ﬁ) is a DFS-space by Theorem 3.5(1) and hence a Montel space due to [32,
Theorem 67, p. 375]. Thus it is barrelled by [45, 24.24 Bemerkung (a), p. 267] and by the
Banach-Steinhaus theorem we obtain R* (f) € L, (7J (R) E ) Actually we even have that

R (f) converges to R* (f) in L, (77* ( ) ) as t \ 0 by virtue of [16, 10.3.4 Satz, p. 53]

because every bounded set in P, ( ) , being a Montel space, is relatively compact.
Furthermore, we get

(R(1).0)= lim (R} (1)(9) =Ry () (9)) = i () (9)~limR; (/) (9)
= (R" (£),0)~ (R (/). @) =lm (R} (/) (@) ~R; (/) (@)

:1im(fRf(x+it)<p(x+iz)dx-fRf(x-imp(x-iz)dx):-H(f)(<p) (4.18)

t\NO

for every @ € P, ( ) by the definition of A in (4.1) and the remarks above Theorem 4.1. In
particular, this means that R (f) € L, (P (R) E) for every f € Qe ((C \R,E )

(2) By the first part the considered map coincides with —H and the statement follows directly
by Theorem 4.1.
]

In particular, this theorem contains, at least in one variable, [28, Theorem 3.2.9, p. 483-484]
for E = C and [26, Satz 3.13, p. 44] for Fréchet spaces E, where it is stated that the map

R:0°? (TR, E) 07 (T.E) > Ly (P. (R) .E).

defined by
R([fD) (@) =R (f)(@")-R (f)(¢)

for f e Q&P ((C “R,E ) and @ € P, ( ) and fixed ¢ small enough, is an isomorphism. This result
is contained since the functions in (4.16) are constant and due to (4.18).
Finally, we define the Fourier transformation on L, (77*( ) ) By [28, Proposition 3.2.4, p.

483] the Fourier transformation .%: P, ( ) - P, ( ) defined by

F(9)(0)=9(0) = [ oedx, 9c0,(Un(R)),C UL (R),
is a topological isomorphism. For an easy proof see the one of [27, Proposition 8.2.2, p. 376]

which only needs some slight modifications to be applied here. The Fourier transformation on
Ly (’P* ( ) ) is now defined by transposition and we obtain:

4.6 Theorem. The Fourier transformation % :L,, (77* (E) JE ) - Ly (P* (E) JE ) defined by

Fa(T)(9) = (T,7 (9)), TeLy(P.(R),E), peP.(R),

is a topological isomorphism.
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4 Vector-valued P.-functionals and a duality theorem

Proof. LetT el (73* (R) ) and let ((pn) be a sequence in P (R) converging to ¢ € P, (ﬁ) .
Then .% (@,) converges to .% (@) since .% is continuous. By the continuity of 7' we get

Tim 7, (T)(9,) = lim (T..7 (@) = (T, lim 7 (9,)) = (T.7 (9)) = Z4 (T) (9).

So, as %, (T) is obviously linear, we have .%, (T ) € L, (73* (@) JE ) and therefore the map %, is
well-defined and also linear. Next, define

7Ly (P (R).E) > L (P. (R) .E)

by Z,;1(T)(¢) = (T,F ' (¢)) for T € L,(P«(R),E) and ¢ € P, (R). Like above we have
F; (T)eL, (73* (E) JE ), since .# ! is continuous, and thus the map ngd—l is well-defined as
well. Furthermore, the equations

FiNF(1)) (@) =(Fu(T),Z7 (@) =(T.7 (7 (9))) = (T, 0)

and

Za(F,1(1)) (9)=(7,(1),7 (9))=(T.7(F (9))) = (T.9)
hold for every T € L, (’P* ( ) ) and every @ € P, ( ) implying that .%, is an algebraic isomor-
phism. It is also topological since one has for arbitrary & € A and bounded B c P, ( ) that

fpligpa(%(T)(fp))=Suppa((Tﬂ(<P)>)= sup pa ({T, 9))

QeB 9.7 (B)
plus
SUPP(x (,/d ! (T) (‘P)) =Suppo (< - (‘P))) = sup pa({T,9))
@B o Z7-1(B)
are valid for all T € L, (P« (E) E) where the sets .7 (B) and .# ! (B) are bounded due to the
linearity and continuity of .% resp. .# ~! and the boundedness of B. [
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5 Strictly admissible spaces

We recall from the introduction that a complete locally convex space E is called admissible, if
the Cauchy-Riemann operator

9:£P (@\K,E) - EP (@\K,E)

is surjective for any compact set K c R. E is called strictly admissible if E is admissible and if,
in addition, B
d:C* (Q,E) - C* (Q,E)

is surjective for any open set Q c C.
As a first step it is shown that C is admissible. Let n € N5, and denote by Ee%p (S, (K),E) the
n7

topological subspace {f &P (S, (K)) | df = 0} of &7 (S, (K),E). Observe that

O« (@\K,E) = limproj 5:%[) (Sn (K) aE)

neNyy

as topological spaces by Theorem 3.6(4).
We will prove that the spaces of the projective spectrum on the right hand side have some
kind of density property and that for every f e £¢P (C\K JE ) and every n € Ny, there is a

ue &P (S, (K)) such that du = f on S, (K). The combination of these results then yields the
admissibility of C via the Mittag-Leffler procedure. By classical theory of tensor products of
Fréchet spaces as well as splitting theory of Fréchet spaces resp. PLS-spaces further admissible
spaces are obtained and at the end of this section it is proven that the admissible spaces found
so far are already strictly admissible. In addition, a list of concrete examples of locally convex
spaces that are strictly admissible or that are not strictly admissible, from the view of Theorem
6.14, is provided.

We begin with the proof of the already announced density theorem. The underlying idea of
the proof was to analyze a proof of Hormander, [18, Theorem 4.4.5, p. 112], in a comparable
situation for C*°—functions. The proof is split into several parts to enhance comprehensibility
and clarity.

5.1 Theorem. Let K c R be a compact set and k,p,n e R withk>p>n> 1.
Then T, x (E:g’ (Sk (K))) is dense in T, , (E;X(‘;’ (S, (K))) with respect to (||n’m)

mGNo )

In order to gain access to the theory of distributions in this approach, we prove another density
statement first.

5.2 Lemma. Let K c R be a compact set and p,jeR, p> j> 1. Then 7; , (Cgo (Sp (K))) is dense
inmjp (E;;xp (S,, (K))) with respect to (|f|Jm)

mENo ’
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5 Strictly admissible spaces

Proof. Let fe&," (Sp (K)) and € > 0. Choose s,z € R with p >s>¢> j and set

o :ZWO{ZECHRe(ZHSmaX(O J;’_h;g)}

0 - SS(K)m{ze(C | |Re(z)|<max(0, jj’i‘;’g)n}.

Then Q is compact, Qg c Q ¢ S, (K) and

o 7IRe(@)]

sup  “po= sup ¢RI g 5.1)
2€8;(K)~Qo e pIReD ze5;(K) 00 Célfoécoe

Like in the proof of [18, Theorem 1.4.1, p. 25] one can find, by using Remark 3.3(4), ¢ ¢
Cy (Sp (K)), 0< ¢ <1, such that ¢ = 1 near Qy, ¢ =0 near ¢ and

8() 7|OC|
|3°‘<P|£Ca(z) (5.2)
for all o eNg where
[min(-L1). Ko [l Keo
" |min(s-7,1), K=, |min(s-1,1), K=o,

and Cy, > 0 is a constant only depending on «.
Then ¢ f € C° (Sp (K)) and for m e Ny

lof - fljm_ sup |0%(@f)(z)-d%f(z)|e —*\Re(z)l+ sup |aaf(z)|e-;|Re(z)|

201 Qo zeS;(K)NQy
|af<m |ot|<m
a LRe(2) el 1R
< s |3 (%9797 () 1O 2 sup s (e PR
01N Qo ly<a \ Y 268, (K)~ Qo o p|Re@)
|aj<m lat|<m

< sup Z(“) sup 109 Tp()||  sup [P F(2)]e TR |42,
G-Dlafjcmy<a \ Y/ 260170 2€Sp(K)~ 0o ’
(Bl<m

< 0 2 (%)ear()elrr2elsl

6. 2)|a|<m7/<05

:=C(m7€0)
= (C(m,&)+2)|f], €

holds where C (m, &) is independent of € proving the density. [

The next lemma is devoted to a special fundamental solution of the §—operator and its proper-
ties (used already in the proof of Theorem 4.1).
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2

5.3 Lemma. Let K c R be a compact set, g€ R, g> 1, and E:C~ {0} > C, E () := &

Tz "

a) 8TE =4.

b) Let€>0,x¢Sgee (K) and a € N3. Then 0¥ [E (--x)] € 5:%0 (84(K))-

c) Let N c C be a compact set and m € Ny. Then there exists a constant By = By (q,N) such
that

\Te * Wy m < Bullwll, (5.3)
for all y € C° (N) with the convolution from (2.1).
Especially, one gets Tz + y € ;7 (S4(K)).
d) Let p,jjncRwithp>j>n>1.

i) There exists @ € C® (C), 0< @< 1, suchthat ¢ =1 near S, (K) and ¢ =0 near S; (K)C
plus

0% ¢l Séa(g)_m (5.4)

forall o€ Ng where

1_1
j_ ) K= g,
and Cy, > 0 is a constant only depending on o.

ii) Choose @ € C* (C) like in i). Let s,t € R with p>s>t>0 and m € Ny. Then there
exists a constant C1 = Cy (j,n,s,t,m) such that

Te % ()i n < Crlf s jm- (5.5)

forall fe&" (S, (K)) where

flom= s [fB) (9]¢ e
zeS;(K)
BeNG, |Bl<m

and the convolution is defined by the right hand side of (2.1) and we set ¢ f :=0
outside S, (K).
Especially, one gets Tg + (¢f) € £, (S, (K)).

Proof. a) Let ¢ e C° (C) and set Eq(z) := niz plus g(z) = e, Using g€ O (C) and the fact
that 7, is a fundamental solution of the g—operator by [18, (3.1.12), p. 63], one gets

<§TE7(P> = _<TE7§(P> = _(Tang§¢> = _<TE07§(g(p)> = <§TEo7g(p>
=(6,890)=2(0)9(0)=¢(0)=(5,9).
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5 Strictly admissible spaces

b) Since x ¢ Sy.¢ (K), it follows 9% [E (-—x)] € O(S,(K)). Let ze Sy (K) and € NZ. With
ri=2d (8Sq+‘g (K),dS, (K)) > (0 one has by the Cauchy inequality

|
joroBe (1) ) ()| <SP ()

© rlarBl e (zx)l=r

20 of [E (=)

(32) ‘

Lla+pl! re(¢?) _ Lla+Blt g
T e Bl () = 70 OB ¢ () =r
CLIOHBE i) o o
T plo+Bl+1 &= (z=x)|=r

::AO
2
= Ap max e~ (ZT+a—x-r)
te[0,1]
2,2 2, 2 2 2
=Ap max e—4r t7=Artzy +4rtx) +4r t =z +2x121+2rz1 =X =2rx1 —r
te[0,1]
2 +6rfx1 [+3r% 22 +2(3r+x1]) |z
<Age™ 1 el 1)zt

———

§812r2

2 2
SAoelzr e~ +23r+[x1 )z |
——

=A;(B)
and hence

EX [E('_x)“q,m <supA;(B) sup e—z%+2(3r+|x1|)|Z1|e—é|11|

Blem  ze8,(K)
3r+|x \—i)z
< sup Ay (B)el3r il 3) ¢ oo (5.6)
Bl<m

¢) Due to the compactness of N, there exists By > 0 such that |z| < By for all ze N. By definition
of distributional convolution 7g * y € C*° (C) and forxe C, at € N% and € > 0 the following

inequalities hold
0% (Te * y) (x)|

| LE0) "W )| <l [ Gy

1 e_(x_y)2
= 2 Wl f, ||

I () ()’
SE””w””'“'(ng(x) Xy +fN\D£(x) x-y dy

1 o e efrzcos(Zv) 1 2
1 - —(x-y)
< p ””‘lf|||||a| (A /o r rdrdv+ € [N\Dg(x) ¢ |dy

1 2 1 ‘(xz—x2—2(x ~0y2)+31 - 2) )
< — e 2 1=X3=2(xX1y1=%2y2)+Y1 -3
<MWl (2mee™ oL e Y
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1 2 2 p
- 27ree + exzfefyﬁleyl*xld [ 272 )
oo 7Vl (2mees s 2 [ MmO

2B i
<_||||II/||||‘OC| (27586 + 80 x2+2|x2‘BO+Bo Ae_(YI—X1) dyl)

1
T

- Lyl (me , 2Bovm

O\/_ X2+2|x2 ‘BO‘FB() )
E

and hence for fixed € >0

1
Te * Y|, < p- (27’[86

_LiR,
sup e "<y,
xeSy(K)

e, M6q2+2430+35)
€

=ZBI Sl

<Bi||wll,,- (5.7)

d) 1) ¢ exists by the proof of [18, Theorem 1.4.1, p. 25] and Remark 3.3(4).
ii) The proof is similar to the proof of (5.3). Let xe C, o € Né and € > 0. Then we have

| [E0)a2 10 -1
S/|E(y)aa(f(P)(x—y)|€_%|x1_yl|e%|xl_yl|dy
< sup [9%(fg) @l RO [ E@)lelhlay

ze8;(K)

o
< sup |97 sup |oP 3 Re(@) E(y)|eskiila
%(7) sup 070 @I sup [P @Ie RN [ et

Y7/ ze8;(K)

<5<4)y;x( )

|ﬁ\<|06|

g\ lo- 7\ ol
. E sH1Y1
(4) |s,]7|oc\ l—S,(K)' (y)’€ y

1
< G0l jal

1
< —Colflsjo

1
< —Colflyjjal

1
Fubini 7T

< ;CO s, s

1
< —Colfls,jjo

ZCO

e_(x_)’)z
xX-y

o~ (-y)’
X-Yy

g f sl
es + esWld
-/;g(x) y S](K)\Dg(x) y

2cos(2
/2n[se o V)e}\x1+rcog(")|rdrdv+ ! / ’ eslay
S;(K)\Dg(x)

deet tiEHnl) 4 1 f e—(x%—x%—Z(xlyl—x2y2)+y%—y%)+iylldy)
§(K)~De(x)

e_(x_y)

€

2 2 2
< —Glfly; o (275868 +i(e+la)) 4 2 exz/e—y1+2x1y1—x1+iy1|dyl/[ ]ey2—2x2y2dy2)
R )i

] . 2 1 1 2
2n£e£2+i(e+|xl|)+Qex%+2J|x2|+Jzexx1|+4S2/e_(|Y1_(|x1+£X)) dyl)
€ R

Nz

2mee (5.8)

j 2.5 2. 1 1
e+ L(ertal) , WV e2jmles +4Y2+s|x1|) |
€

59



5 Strictly admissible spaces

Thus Tg « (¢ ) € C*(C) and 9% (T * (¢)) (x) = [c E (y) o [(f @) (x—y)]dy (differen-

tiation under the integral sign) as well as for fixed € >0

|TE * ((pf)|t7m
2.1 4j 2421+ 2+ L 11
<|2eef 58+ —_g T 452) sup Co (@) sup 51kl Ifl,
( Sﬁ lot|<m xS (K) S
:IC] SIZ;SS
= Cl |f|s,j7m‘

Especially, one gets Tz * (¢ f) € £,7 (S, (K)) fort =5 = p.
[

The next step is to define different kinds of convolutions and study their relations and properties
which shall be exploited in the proof of the density theorem.

5.4 Lemma. Let K c R be a compact set and E like in Lemma 5.3. Let k,p, j,n e R with k> p >
/
j> > Vand we (1 (657 (5, (K))) - (Hu),) -

a) For y e Cy° (C) we define

(w1 T, y) = (W, (Te*y) |S,1(K)>-
Then w| Ty € D' (C).
b) Let €>0. For x ¢ Sy, (K) we define
(o2 E) )= (B9 )

. —C
Then w*y E € C*® (S/<+£ (K) ) and for o, € Ng

A (w2 E) (x) = {w, ¢ [E (-=x)]

) 69)

—C
c) Let € >0. For y e C3° (C) with supp W c Sy, (K)  the definitions of convolution above are
consistent, i.e.

(w1 T, W) = (T, ).
d) Choose @ like in Lemma 5.3d), let m € Ny and for f € £, (Sp (K)) we define
(W*(PTEWf) = <W7[TE * ((Pf)] |S,,(K))

Then there exists a constant C = Cy (j,n,m) >0 such that

(W T, F)| < Calf] - (5.10)
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Proof.

b)

Karsten Kruse

a) w1 Ty is defined by Lemma 5.3¢) (¢ = p). Let N c C be compact. Since w is
continuous, there exist By >0 and m € N such that

(w1 T W) = |(w. (T = W) g, 0 )| < B2 1T Wi < BiB2 Ml

<
(5.3),4=n

for all y e C° (N), thus w+1 Tz € D' (C).

w s, E and the right hand side of (5.9) are defined by Lemma 5.3b) (g =k, k> p). For he R,
h+0,and x ¢ Sg,¢ (K) we define

Wi (x):8,(K) = C, w, (x) (v) = E(y—(x+he)))-E(y-x)

h
(170)7 l= 17 T (1)
where ¢; := (0.1),1=2 For 0< |h|<d(9Si.e (K),dS;(K)) =: € one has x+he; ¢ S; (K)
and so E (-— (x+he;)) € £, (S, (K)) by Lemma 5.3b) (¢ = p, k > p). Hence one gets
Wi (x) € £, (S, (K)).
The underlying idea is

(w2 E) (x+hey) - (w E) (x) ) (w E(-—(x+he)))—E(-—x)
h ’ h

o
= (Wa Yn (X) ‘Sn(K)>'

So, if we show, that yj, (x) converges to dy, [E (-—x)] in £, (S, (K)) as h tends to 0, we

get, keeping ||, , <], ,, in mind,

A (w* E)(x) = (w,axl [E(--x)] ‘SH(K))‘

Then the general statement follows by induction over |¢|.
LetyeS,(K) and B € N3. Since

y=x|>d(9Skse (K),0S, (K)) =: €1,
we get 0 ¢ D¢, (y—x). Moreover, & < € by Remark 3.3(4) and so
ly—(x+he;) - (y-x)|=|h| < & < &.

Thus y - (x+he;) € Dy (y—x) € Dgy (y—x) and O ¢ D (y—x). By the mean value theo-

rem there exist §; € [y~ (x+he;),y—x], ¢ Dy (y-x), i =1,2, where [y—(x+he;),y-x];
denotes the line segment from y— (x+ he;) to y—x, such that

L ~(x+he;))- (2P -X
3yﬁwh(X)(y)=( E)(y-( h]i)) (9PE) (y-x)
_1 (<grad(aﬁE1)(§1)|—hel)) =_(919BE1 (Cl))

" h\(grad (9P E,) (&) |- her) AP E> (£)
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5 Strictly admissible spaces

as well as §ji € [§;,y—x]; c Dy (y-x), i=1,2, such that

B
o0 () 0)-0F 0, 18 6] =~ (0 () 98 (-0 6 -

: ((grad(azaﬁEl)(Cn)w—x—Cl)) (5.10)
(grad (0,0PE>) (En) ly—x-6)) '

Then
‘((gf&d(3z3ﬁE1)(Cll)b’—X—C1>)
(grad(9,0PE;) ({22) [y —x— (o)
<|(grad (9,0 E) (§11) ly—x—&1)|+[(grad (9,0P E2) (§22) [y —x— &)
< \grad(&lc?ﬁEl) (Cll)‘ |y—x— C1|+ \grad(&,&ﬁEz) (C22)| |y—x— (:2|
<|n| <|A|

< (|01919PE1 (611)|+[02019PE1 (G11)| +[01910P Ex (62) | +[02910P Ea (60)|) ||
< (|01919PE (§11)|+]02010PE (§11)|+|01010P E (822)| +|02019P E (822)]) |

(;2)2(‘E(|m+2)(C11)|+|E(‘B|+2)(C22)|)|h| ©-12)

is valid. By choosing & < r < €1, one gets due to Cauchy’s integral formula

2
|E(\B|+2)(§..)|:M / EG@ | B2t e
! 2 aD,(y—x) (Z_Cil,)\ﬁ|+3 - (r_80)|ﬁ|+3 le-(y—x)|=r| 7z
2
B e r(Ble)lelte)
7 (r-e0) P13 (& - r) -Gl 7 (r—g0) P13 (&) = ) k-G-)r
=:A0,0
= Ao max e7(2rt+y17x17r)2
" te[0,1]
=Ap o max e‘4’2’2‘4”y1 +Artx +4r =y 20,y +2ry 3] -2rx -1
" re[0,1]
SAojoe_x%+6r|xl|+3r2 e‘)’%+2(3r+‘xl|)|yl‘. (5.13)

2
<Appe'?=:A01(B)

Hence by combining (5.11), (5.12) and (5.13), we have for m € Ny

| -0y, [E (- 4 sup A —+206reha )l =51l
Yy (x) X [ ( x)]‘p,m < |[Sgl|lp 0,1 (B) Zu([)K)e e r | |
<m YyeSp

1 2
<4 sup A, (B) %) py

|Bl<m

. 14
20 (5.14)

This means that yj, (x) converges to dy, [E (-—x)] in £, (S, (K)) and so with respect to
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(

, as well since o < I

”vm)meN p;m’

c¢) 1) For h > 0 small enough we define

Sn(w):Sp(K) > C,  S,(w)(y):= Y E(y-mh)y(mh)h?,
meZ?2

where E (0) y (mh) = E(0)0:= 0. The first part of the proof is to show that S, (y) con-
verges to T * Y in £,7 (S, (K)) as h tends to 0.

2 o 7o C .
Set Oy, :=mh+[0,h]” and let N c Sy, (K) be compact. By the compactness there exists
Ag >0 such that |z] < A for all z€ N. Now we define My := {meZ?|Q,,nN # @}. Due to
this definition we have

—C
OmNSiie(K) #@ (5.15)
for me My,
{meZ*|mheN}cMy (5.16)
and o 5
A A .
. bl 2 s (521 = o 517
for x € Q,, plus
i 2 i 2
#My < 2[7‘)}) 34(7%1) (5.18)

where #My denotes the number of elements of My .
We define dj:[0,€] — Ryg, di (¢) :=d(9Skie (K),9Sky; (K)) . By Remark 3.3(4) we have

1 1
a(r)= T me T8
£-t, K=0,

so dy is continuous on [0, €] as well as strictly monotonically decreasing.
Let0<h< % d(9Sk.e (K),dS;(K)). Then

do(0) = d(dSkse (K),d8c(K))>V2h and di(€)=0
and thus there exist &y, €] €]0, €[, & < €, such that

V2h < dy (1) < di (€9) < d (0)

by the intermediate value theorem. Hence for Q,, with Q,, NS¢ (K) + @ the following is
valid

—C
O € Stre, (K)© € Sy (K) € Si(K)° (5.19)
Therefore, we obtain with &, :=d (8Sk (K),dS, (K))

ly-x|>& forallyeS,(K),xeQp, (5.20)

and for y€ S, (K), x€Qp, meMy, B N3 and r:= %82 we get analogously to the proof of
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5 Strictly admissible spaces

Lemma 5.3b)
!
pyﬁ [E(y—x)]| < LIPR jropia)® oy o€
(5.15),(5.20) 7¢ plBl+1 6= (y-x)|=r
1 |ﬁ| r+p+,§0+80)2 max e—(2rl+y1—X1—V)2
(5.17) 7 rBTE 1€[0,1]
_A,
< Al etn2Grbil < A,y (B)ei+2(rdore)n]
—_—— (5:17)

=A,(B)

while here A, does not depend on |xy|.
Let y e C° (N) and mg € No. Then we have

WO sy 2 B TEC-m)]y (mh) i
< th (B)e y1+2(3r+A0+£)|y1| Z |l//(mh)|

(5 21)7thQm mGMNEK_/
<[llwllly

2
Ag
< 4222411 A y1+2 3r+Ag+e |y1|
S5 2 (30) e vl

= 4(Ao+h) Ay (B)e 1 2CrAvr ey
and therefore

- 2 7 _1
14 (W) ]y <4(A0+h)" sup Az (B)lwlly sup e T+2(redose)bule=sbl

Bl<mo yeSp(K)

S

A3

IN

el e )

bringing forth Sj, (y) € £, (S, (K)) . Further, the following equations hold:

108 (S (W) -E = y) ()]
| Y FE(- mh)]l//(mh)hz faﬁ [E(y-x)] v (x)dx]|

mEMN

~Jon X EO- mh)]w(mh)dx =S ety Jo, OF E(y—x)] (x)dx

Y [ (9PE) (=) y (mh) - (PE) (y-2) w () dx

meMy

> [ [(2PE) (y-mh) - (9PE) (v -x)] w(omh)

meMy m

+[w (mh) -y (x)](IPE) (y-x) dx

(5.21)

(5.22)

(5.23)
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The next steps are similar to the proof of b). By the mean value theorem there exist
X0.i, X1,i € [x,mh]; € Qp, i=1,2, such that

|w<mh>-w<x>,:‘(<grad<w1>(xo,1)|mh_x>)

<4 h-x| <4V2h 5.24
(grad () (x02) [mh —x) Il b - vl 5.24)

and
rad (9P -x1.1)|mh-x
‘(8ﬁE) (y=mh) - (&’BE) (y—x)| ) ‘_ (2§ra3g8ﬁl€3 8—)613 ImZ—xi)
<2(E(|B|+1)(y—x11) E(|ﬁ|+l)(y—x172))|mh—x|

<4\/_hA2 (B)e y1+2 3r+A0+£)|y1| (5.25)
(521)

analogously to (5.12). Thus by combining (5.23), (5.24) and (5.25), one obtains

107 (1 (W) ~Exy) )
< 3 [ avan(Aa(B)e T2 r ey (i) il | (9PE) (=) ) s

mEMN
> 4V2hAy (B) e 2Cr Al (flyly + il ) A (Qn)
. 21) meMy ~—

-2

A
<16V2 h3(7°+1) Ay (B)e 120 Aol (flyy + [yl )

(5.18)

P RY <2llwll
=(AZ+2A0h+h2)h

<32v2 (A3 +240e +€2) A2 (B) vl e V1203 Aoy

A,
and so for mg € Ny

- 2 e _1
15K (W) ~E* . <As sup Ay (B)lwll, sup e12Cr+Aorelblempbily

|Bl<my yeSp(K)
—_—
A
- (3r+fi0+e—i)2
<As|lwll; e ) h
-0 (5.26)

h—0

proving the convergence of S, (y) to Tg * v in &£, (S »(K)) and hence with respect to

( ' n7m0)mQ€N0
i1) The next part of the proof is to show that

as well.

lim > (w*zﬁ)(mh)lll(mh)hzz[C(W*QE) (x) w(x)dx.

h_)OmEMN
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We begin with
3 (weaE) (nh) y () - [ (we2E) () y(x)dx
- > f (wea ) (mh) y () = (w2 E) () y ()
= Z[\:/I fm [(w 2 E) (mh) = (w, E) (x)] y (mh)

+ [y (mh) =y (x)] (w2 E) (x) dx]. (5.27)

Again, by the mean value theorem there exist xq ;, x; ; € [x,mh]; € Oy, i=1,2, such that

\y (mh) -y (x)| = ‘((grad(y/l) (x0,1) |mh—x))

(grad (v2) (x0,2) |mh - x) <4V2hll, (5.28)

and, taking account of (5.19) and b) (¢ =k, € = &),

|(w2E) (mh) = (w2 E) (x)]
=‘(<grac1((w>+zEv)1) x1,1) Imh )‘

(1,
(grad((w*zlf)z)(x )|mh x)
< lerad (v +2),) (10| #lesad (w52 ) (112))) V3

< (PN+de(£1)(())7O(grad((W*2 )1)) pN+Dd(£)(0)0(grad((W*2E)2)))\/§h (5.29)

—Ag

with the usual semi-norms like in (3.8) where we used dj (&) > V2h and X1,;€Qm, meMy,
in the last inequality. Due to (5.27), (5.28) and (5.29) we gain

> (W*QE)(mh)l[/(mh)hz—[c(w*zé)(x)l//(x)dx

meMpy
< 3 (A 20Vl +4V 2V Py 0 (2 ) ) 2
meMpy
o5, (A3 2doe +2) (Ao 21wl +4v 20wl Py 0 (w52 ) )
- 0.
h—0

iii) Merging i) and ii), we get for y € C3° (N)
(W*l TE? W) = <W7 (TE * II/) ‘Sn(K)>i:)}li_1;%<W;Sh (W) |Sn(K)>

_1; L 2
_}g%<w, 3 E( mh)\sn(,()y/(mh)h>

meMN



Karsten Kruse

= i o 2_ v
(5.18) zlff(l)m;wJW’E( mh)‘s,,(z@)‘V(mh)h ii)[C(W*zE)(X)W(X)dx

=(wx2E)(mh)
= <Tw>e2[737 I//) :

d) wx¢y Ty is defined by Lemma 5.3d). Because w is continuous, there exist C; >0 and m € Ny
such that

‘(W*(p TV f)| = ’(W [TE * ((pf)] ‘Sn(K)H SC2|TE * (‘Pf)'n,m
2|f|]m

(55)t ns

]

5.5 Lemma. Let K c R be a compact set and E like in Lemma 5.3. Letk,p,n e R withk>p>n> 1
/
and w e (.5 (657 (5 (K))) - (Hyn) )

Ifw
/ |nn,k(5;jg’<sk<z<)))
tional sense.

=0, then supp (w *1 TE) c S, (K), where the support is meant in the distribu-

Proof. (i) For all y € C° (C) and m € Ny we have

Wlpm = e )|3ﬁ v (2)]e TRl up 0P ()] =l < oo,
z€

|ﬁ|<m \ﬁ|<m

hence l//‘s () € &7 (S (K)) Now we define

wo:C (C) = CF (C), wo (w) =w (Vg )
Then we obtain by the assumptions on w that there exist m € Ny and C > 0 such that
wo (W)= |w (W5, k)| € € Wlon < ClW, 0 < ClIWL,»

and therefore wy € D’ (C) as well as suppwg c Sy, (K).
(ii) Let y e C° (C). Then we get

T e R 0 TR B ot By

5.30) ( (5*‘!"5(1()> (W,WSH(K)>5)—<W0,II/)7

thus §(w *1 TE) = —wg and so g(w *1 TEv) =0on C° (C~suppwy) due to [18, Theorem 2.2.1, p.

41]. Hence, by virtue of the ellipticity of the d-operator, it exists u € O (C \ suppwy) such that
T, =w*1 Ty ( [19, Theorem 11.1.1, p. 61]).

o TN = c
Let € > 0. Then (i) yields to suppwg c S, (K) and therefore we get Si.¢ (K) c (suppwg)~ and
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5 Strictly admissible spaces

[E— C
hence C° (Sk+8 (K) ) cCy ((supp wo) ) . It follows by Lemma 5.4c) that
Tu=wx T =T,
. . - 3
on Cf° (SkJr8 (K) ) implying u = w*, E on g, (K) by Lemma 5.4b). This means that we have
—
for x € Sg.¢ (K) and o € NZ

u(|a|)(x) (w*zE)(‘“D( )

=0
5.3b)

= i729% (W E) (x) =i

32) (59 * <W7 axa [E ( _x)] ‘Sn(K))

. . c .. <
by the assumptions on w. Hence u = 0 in every component O of (suppwy)~ with OnS;,¢ (K) #@
by the identity theorem. Denote by O;, i € I, the components of (supp wo)c and let

—
Iy:= {i el|0inS,(K) + @}. Due to Remark 3.3(3) we get u=0 on

UO,-D(U Oi)nSn(K): = (Uo,-) S, (K) =S, (K) .

iely iely iel
—_———
=(suppwo)©
Since T, =w 1 Ty on C3° ((suppwo)c) , this implies supp (w*; Tg) € S, (K). O

Now we are finally able to prove the density theorem.

Proof of Theorem 5.1. Let e m, (5:;’) (Sk (K))) , the polar set of

7rn7k( EP (8, (K))) C My p (é';xg (S, (K))) . By the Hahn-Banach theorem there exists
we T, (E97 (S, (K))) such that w =W.
n,P( p ( P( ))) ‘ﬂ"-P(S;fg(SP(K)))
Let f ¢ 56%7 (Sp (K)), choose jeR, n< j< p, and ¢ like in Lemma 5.3d) (t = n, s = j). By
2

Lemma 5.2 there exists a sequence (W), Wi € C (S, (K)), such that (), converges to f
with respect to (|| i m)meN and so (51}/1)1 Lo df as well since
’ 0 €

F:EP(Si(K)) » £ (Sj(K))
is continuous. Thus we obtain

(. )Z(W’fsn(m>,21 Jim (o il ) = Jim {2 (8 ¥0) g )

= lim<w,<TE*8y/1)‘Sn(K)>—hm(w*]TE,&y/l) hm(W*lTE,(pal]/l)

5.3a) l—oo >0
= Jim (o (7 < 031 ) = fim o0 . 0v1) 5, < 739 )
=0,
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so w = 0 connoting the statement due to the bipolar theorem. 0

This theorem implies, amongst others, that the initial spectrum of Q%P (@ K ) is in a weak
sense reduced (a projective spectrum is called reduced if its projective limit is dense in all spaces
of the spectrum [16, 26.1.4, p. 143]).

5.6 Corollary. Let K c R be compact and n € Nsy. The space T, ((9‘”‘1’7 (@\K )) is dense in
7.0 (057 (824 (K))) with respect to |-, where

7, OFP (@\K) - O, (S, (K)), T (f) :szn(K)'

Proof. The restriction mappings are omitted during the proof. Due to Theorem 3.11(4) the space
057 (82, (K)) is included in Sex‘" 5 (Sns1 (K)).Let >0 and fy € 057 (82, (K)). For all jeN

there exist f; € Szﬁﬁj (Sns1+) (K)) cOh , (Sns1+j(K)) such that

n+l+j

€
Fi=fitlysjor == Fitl 0 < 7w (5.30)

by Theorem 5.1. Therefore, we obtain for every k € N
k
Sl DSt

€ 1 €
1= 31
+1 2( Zk) 2 (5-3D)

|fi— fol, =

Now let & > 0 and [ € Ns,. Choose [y € N, [y > [, such that 2,(‘)% < &. Similarly we get for all
p>k>ly

‘fp_fk‘l < |fp—fk|lo =

)4 )4
Z il s _Zl|fj—fjfl\10

lo J=k+
P ¢ e(1 1
. < i e i,
‘fj fJ 1|n+171 (5.30) ]:%;—1 2Jj+1 2(2k 2[7)

E < E
< 2k+1 = 2lp+1

b<k<] 1] =k+1
<n+j-1

<&.

exp
n+1+ng

(Sn+l+n() (K)) for all ng € Ny and, since these
spaces are complete by Theorem 3.6(1), it has a limit F,, € O (Sn+1+n0 (K )) These limits

n+1+ng
coincide on their common domain because for every ny,n; € Ng, n; <nj, and € > 0 there exists

N € N such that for all k>N

Hence (fi);sy, is a Cauchy sequence in O

|F’l1 _F’l2|n+1+n1 < |Fn1 _fk|n+l+n1 + |fk—F”2|n+1+n1 < |Fn1 _fk|n+1+n1 + |fk—F”2|n+1+n2
& &

<—4+—=E€.
2 T2

So the limit function f, defined by f := F,, on S,.1.4n, (K) for all ny € Ny, is well defined and
we have f € limproj, .y, On/] (Sn+1+n0 (K)) = Q%P (E\K) by [16, 2.5. Satz, p. 37]. By

n+l+ng
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5 Strictly admissible spaces

definition of f there exists N € N such that for every k > N

€

£ )
_ <|f- +|fr— < =+ k- S 5t5=¢€
|f f0|n |f fk|n |fk f0|nn<n+12 |fk f0|n(5.31)2 2

proving the statement. 0

Since analogons of Theorem 5.1 and Corollary 5.6 for other growth conditions are of some
interest as well, we will make a short digression. The following definition of a weight function is
given by Langenbruch in [41, Definition 2.1, p. 225].

5.7 Definition. A continuous function v:C — [0,00] is called weight function if it fulfills the
following conditions:

a) Forall ze C one has v(z) = v (|Re(2)]).-
b) v:[0,00[— [0, 00[ is strictly monotonic increasing.

¢) One has
In(1+[x])=0(v(x)).

d) There are constants I" > 1 and C > 0 such that for all x>0

v(x+1)<I'v(x)+C.

5.8 Definition. Let K c R be compact and 7:R.; - R, or 7:R.; - R strictly monotonic in-
creasing.

a) ForneR, n> 1, we define the space

Eve(n) (S (K)) :={f € CT (Sp(K)) | VmeNo:|flv,cnm < 0o},

where
V,T,n,m = Sup |aaf (Z)|eT(n)V(Z)7
zeSn(K)
oeNZ, o) <m

f

and the space B
Evr ((C \ K) = 1limproj &y ¢(, (Sn (K))-

neNs,

b) ForneR, n> 1, we define the space

Oy t(n) (Sn (K)) :={f € O (Su (K)) | [flv.2n <00},

where

|f|v,r,n = sup |f (Z)|el’(")v(z)7
7687 (K)

and the space B
Oy (C\K) :=limproj Oy z(n) (Sn (K)).

nEsz
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In both cases the spectral mappings 7, i, < k, are again the restrictions.
Further, we define Evﬂ(n); (Sp(K)) := {f € $V7T(n) (Sp(K))|df = O} )

In particular, v:C — [0,00[, V(z) := |Re(z)|, satisfies the conditions of Definition 5.7 and
7:Rs1 = R, 7(n) := —1/n, is strictly monotonic increasing, so we have
Evrn) (Sn(K)) =& (Sy(K)) and &, :(C\K)=EP(C\K),
Oy z(n) (Sn (K)) = 057 (S4(K)) and Oy (CNK)=0%?(C\K).

Replace in Theorem 3.6(1), the Lemmas 5.2-5.5, Theorem 5.1 and Corollary 5.6 the spaces &,
by &y 1(n)» EZ%’ by &, cmy 3 O0;" by O, 1(n) and O%P by Oy ;. Then we have the following
observations.

5.9 Remark. Let v be a weight function.

1. Theorem 3.6(1) is valid for E = C (the other parts of the theorem as well). Go on like in the
proof of Theorem 3.6(1) and for 7 > 0 replace (3.9) by

9P fi(2) =P £ ()] eV < 2.

2. Lemma 5.2 is valid due to Definition 5.7(a), (b) and (c), implying that v:[0, o[- [0, co] is
bijective and strictly monotonic increasing, with

O :Wn{zec |v(IRe(2)]) SmaX(Qﬁ)}’
0 ::SS(K)ﬂ{ZEC\V(\Re(Z)D <max(0’ﬁ)+l}'

3. Looking at (5.6), we get that Lemma 5.3b) is valid for 7 < 0 since

|0 [E('_x)]lvx,q,m < sup A (B) sup e*Z%+2(3r+|x1|)|Zl|ef(Q)V(\ZlD
|Bl<m 7€84(K) T
< sup Aj ([S)e(3”+|"1|)2 < 00.
|B|<m

For 7 >0 it is valid if there exist D1,D; >0 and 0 < a < 2 such that v (x) < D1x%+ D, for all
x>0. Then we have

2
OF[E ()]l < 5Up A1 (B) sup e172CrbDial - or@via)
e |B|l<m ze84(K)

<T@ (il +02)

< Sup Al (B )er(q)D2 Sup e—Z%+2(3i’+|X] |)|Z1 |+T(q)D1 ‘Zl |ﬂ .
|Blsm z€R

=A;

2
2> 2max (¢(g) D12 (r+ ) "
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5 Strictly admissible spaces

1
for |z1| > [4max (T (g) D1,2 (3r+|x1])) ]2 ™0 =: A3, we get

|axa [E ( _x)]‘vn:,q,m

~21+2Q3r+ 1 e+ (@)D [ [ -2 +2G3r+[x1 et +7(g) Dy [ [ )

< Az( sup e sup e
|z1]<max(A3,1) |z1[>max(A3,1)

2,72 2
<e Zl+zl/zze’zl/2

=:Ay
SAQ(A4+ 1) < 00.

4. Looking at (5.7), we get that Lemma 5.3c¢) is valid for 7 < 0 since

Tz * Wiy cqm <B1 sup e OVYED iyl < By [y,

z€54(K) P

For 7 > 0 modify the inequalities above (5.7) in the following manner
9% (T ) (x)| < supe @Yyl [ |E (v)]e @Oy
zeN X—

where A >0 has to be chosen. Then one sees that the following integrals need to be esti-
mated:

[ 2 / © g eos2) g-2(@)v(i+reos()) grdy and [ 2y = -2tV gy,
0 0 R

Taking a look at (5.8), these integrals must also be estimated for checking the validity of
Lemma 5.3d)ii), there forg=sand A = 1. So let A = 1. If there exist D;,D, >0 and 0 <a <2
such that v (x) < D1x% + D, for all x > 0, then

1 / 2R @V 1@V gy,
2 JR

Il 00
_ fo 2 Ol =e@vibiD g=@vikaD gy, 4 [ Ol @V D@V gy,
2

and
s H —%—f(q)\/(l%”)
> o Ormbal e @)D 7@V gy, < fo| A dyr, 1(q) <0,
° [ F et @rtngy, r(g) >0,
P o) (p
M@ 4 ‘L'(q) 12a+2 T(q)<0
< 2 ’ )
- 2
@e*%”@)(l)ﬂxdﬁm), 7(g) >0.
As

2 a
kil [-r@Di5E, w(9) <0,
8 |t(g)Dilx1l*, t(g)>0,
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for ]
| 2Dy = ] (BT@D1) ™7 7(g) <0,
(87(q)D1)™, 7(q) >0,
we obtain
]

/ 2 01k =T @V T @V (D) gy,
0

by

1 |

—1(q)D x| -l —z(¢)D Pl

4 w(a) 2(Sup|x |<D3 2 e 4 (@D Ed +Sup|x1|>D3 7 e 38 )7 T(Q)<O,
b

@D (supy, oy, BHle @D gupy e fh), 2(g) >0,

a

D
. e-r(q)Dz(%efr(q)Dlﬁ + Di3)’ T(q) < 07
er(q)Dz(%eT(Q)Dng + L%) 7(q) >0,

:Dyg =Dy (sign(7)) < 00, (5.32)

where D4 does not depend on x;. Furthermore, if there exist C;,C; >0 and 0 < b < 2 such
that |[v (y) - v (x)|<C) |y—x|b +C; forall x, y >0, we get

ﬁ = o1l @V D@V Dy,

2

i e OntD @I DGy, 7(g) <0,
f\ e (01— bt )2+ ()| (v(Jxi])- vihiDdy, 1(q)>0,

< [|21| =0 @IV D= Dl gy,
-

© _ieful)le@l(c| ol -t +c
S byl € dyi
2

00 b
_ @l f N o~ C@alel 4

2

<2elt@lcr [T Cel@iat’ g¢
~—uv—J0

SC3(( max e—§2+\f(q)lchb)+ S de)
0s§g(2|f(q)|cl)2%b f(2lf(q)IC1)

b
2_p [o%) 2
< C3(elr(q)lc1(2|r(q)|C1)2 ’ +f e_%dC) =:Cy < 00, (5.33)
N

= 717/2

where C4 does not depend on x;. Under the conditions made on v, (5.32) and (5.33) yield

to
/ e—y%+2|xm\—X%—T(q)v(\ynl)dyl <2(Dy+Cy)e T @V, (5.34)
R
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Now let us turn to the still pending integral and choose € = 1. If v satisfies condition d) of
Definition 5.7 with I" = 1, we gain for 7(g) <0

[Zﬂfler%os(zu)er(q)v(IXﬁrCOS(“)Ddrd,Ll
0 0

SZEefle_T(‘I)V(|X1+r)dr
0

< 2mee F(@V(xil+1)
< e (DC+1 ,=1(q) V() (5.35)

—_————
=Cs

and for 7(g¢) >0

[ZE/IerZCOS(Zu)eT(‘I)V(|x1+rcos(“)|)d"du
0 0

<2me f L@Vl g
0

2meet @M=D) x| >2,
: {271'6, x| <2,
2meT@C+ =@ V() x| >2,
oo (5.36)
27e, x| <2.

IN

Thus, under the conditions made on v, looking at the inequalities above (5.7), we get that
Lemma 5.3c) is valid for 7 >0 by (5.34) and (5.36) because

|TE * W"’:Taq,m

<L supet(9)v() (m sup e"@V(D 1cs+ 4B, (e42+2430+35) (C4+Dy) ) lwll,,

U zeN [x1]<2
<e™(@)V(Bo) <e™(@)V(2)

and analogously, looking at (5.8), we get that Lemma 5.3d)ii) is valid for 7 >0 by (5.34)
and (5.36) since

T (@F)]y 2 m < %CO(W sup " V(D) 4 ¢ sup eF+TIV(n))

lxi|<2 [x1]>2

<1,t<s

4 (et2+2jl+j2) (Ca+Dy) sup (1) +T () v(|x1]) ) 1f], T.5,jm
XIE]R L B

<l,t<s
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as well as for 7 <0 by (5.35) because

T (0 o G sup 77O

XléR

<1,t<s

V7T7s7j7m

+4]~ (et2+2jt+j2) (C4 +D4) sup e(—r(s)+1:(z))v(|x1|) ) |f
x1€R

<I,t<s

where is defined analogously to the definition given in Lemma 5.3d)ii).

|f|v,r,s,j,m

5. Taking a look at (5.14), (5.22) and (5.26), we get that Lemma 5.4 is valid, under the con-
ditions on Vv stated in 4), with the same arguments like in 3), and therefore Lemma 5.5, at
which we have in part (i) for 7 > 0 the inequality

|Wlp.m <supe™ @Y [y,
zeN

for y e C° (N), N c C compact, too.
So by the remark above we get the more general versions of Theorem 5.1 and Corollary 5.6:

5.10 Theorem. Let K c R be compact, k,p,ne R with k> p>n> 1 and v a weight function which
satisfies

(1) condition d) of Definition 5.7 with "= 1.
(2) There exist C;,C, >0 and 0 < a,b <2 such that
V(X)<Cix+Cy and |[v(y)-v(x)|<Cily-x" +C,
forall x, y>0.

Then T, 4 (5v,r(k),§ (Sk (K))) is dense in T, , (5v,r(p),§ (S, (K))) with respect
to (|'|v7f7n7m)meNo'

5.11 Corollary. Let K c R be compact and v like in Theorem 5.10. The space m, (Ov,r (C \K ))

is dense in T, 2, (Ov,r(Zn) (S2n (K))) with respect to for every n € Ny where

|'|V7T7n
70 Oy 1 (@\K) - Ov.,r(n) (Sn(K)), ma (f) = f|5n([()-

5.12 Example. For all 0 < y < 1 the function v, defined by v (x) :=x¥, x > 0, is a weight function
which satisfies the conditions of Theorem 5.10.

Proof. 1Itis a weight function by [41, Example 5.2, p. 238]. It satisfies the conditions of Theorem
5.10 by the mean value theorem with C:=2in (1) and Cy:=1,a:=b:=1and C; :=2 in (2). L]

An idea to extend the results to other weight functions would be to use other fundamental so-
k

—7 —

. . o
lutions like E (z) := %, k even, or E (z) := “5—, ze C~ {0} .
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Now we return to the initial problem, namely, to prove that C is admissible. For applying Hor-
mander’s solution of the weighted g—problem (see [20, Chap. 4]), it is appropriate to consider
L2-(semi-)norms.

Let P be a polynomial in d real variables with complex coefficients, i.e. there are n € Ny, cq € C,

|ot| < m, such that
P({)= ). cal”
aeNg,
lot<n

for all { e RY, where {®:= {®.-.{%. Further, we set (~id)® := (~i)/* 9% and P(D) = P(-id).

5.13 Lemma. Let V c R? be open and P (D) be a hypoelliptic operator. Let {K, |neN} be a
compact exhaustion of V. Then

id:C® (V) >F(V):={feL} (V) |VaeNd:9%P(D) feL; (V)}

loc loc

is a topological isomorphism where the first space is equipped with the system of semi-norms
{pk,m| neN, meNy} defined by

pum(f):= sup [0%f(x)], M cV compact, meNy, (5.37)

xeM
oeNg | at|<m

and the latter with the system
{2y + 5K | N, meNo ) (5.38)

defined for f = [F] by

1
2
£l 20y = 1F | 22gan) = ([M|F|2d7t) and sy (f)=sup [|0“P(D)fl 20

aeNg |al<m
for M cV compact and m € Ny.

Proof. (i) First let us remark the following: id:C* (V) - F (V) means the mapping f
[f]. The derivatives in the definition of F (V) are considered in the distributional sense
and d%P (D) f € L7 (V) means that there exists g € L2 (V) such that d*P (D) Ty = T,.
The definition of the semi-norm ||-|| 2(m) does not depend on the chosen representative.
As usual there will be made no strict difference between an element of leoc (V) and its
representatives resp. the corresponding regular distribution, if not necessary.

(ii) C* (V), equipped with the system of semi-norms (5.37), is a Fréchet space by [25, 2.10 G,
p. 51, 3.6.10 Proposition, p.73]. The space F (V') , equipped with the system of semi-norms
(5.38), is locally convex. Let (fr),y be a Cauchy sequence in F (V). By definition of
F (V) we get that for all 8 € N¢ there exists a sequence (g, B ) ren s 8k, € L2 (V), such that

loc
PP (D) Ty, = Ty, ;- Therefore (see (5.38)), (fi)gery and (gk’ﬁ )keN, B e Ng, are especially

Cauchy sequences in (leoc V), ( I 12(K, )) N) , which is a Fréchet space (use for example
")) ne
[16, 5.17 Lemma, p. 36]), so they have a limit f resp. gg in this space. Since (fi) keny
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converges to f € L2 (V) it follows that (7, ) Loy converges to Ty in D (V) . Hence we get

aﬁP(D)Tfke FP(D)Ty =Ty, = Ty

—00 B g oo

in Dg (V) implying f € F (V') and the convergence of (fi).cy to f in F (V') with respect to
the semi-norms (5.38) as well. Thus this space is complete and so a Fréchet space.

(ii1) 1d is obviously linear and injective. It is continuous since for all n € N and m € Ny we have

1£1 520k <A (Kn) puo (f)?

and there exists C >0, depending on the coefficients and the number of summands of P (D)),
such that

Snm () <CA(Kn) Prdegpem (f)°

for all f € C> (V) where A denotes the Lebesgue measure.

(iv) The next step is to prove that id is surjective. Let f € F (V). Then we have P(D) f ¢
W (V) where

loc

Wi (V):={feLl (V) |VaeNd: 9%feL; (V)}

loc loc

and so P(D) f e C>(V) by the Sobolev embedding theorem [18, Theorem 4.5.13, p.
123]. To be precise, this means that the regular distribution P (D) f has a representative
in C* (V). Due to the hypoellipticity of P(D) we obtain f € C* (V), more precisely, that
f has a representative in C* (V) so id is surjective.

(v) The statement is proven by (i1)-(iv) and the open mapping theorem.

5.14 Corollary. Let 0 < ry <r; <ry and P(D) be a hypoelliptic differential operator. Then we
have:

VmeNgIpeNy, C>0V e NI, |o| <m:
Po, 070(8“f)sC(||f| 20,0 sup  [9PP(D)f )
Oro® £(ea©) ﬁeNg,lﬁlépH l(0,0)

forall feC® (Qor2 (0)) where Q,(0) :=[-r, r]d, r>0.

Proof. Let V= Q,, (0). Then the sets K, := Q, 1 (0), ne N, form a compact exhaustion

n+l/r|

of V and there exists ng = ng (ro,r1) € N such that Q,, (0) ¢ K,,. Since id ":F (V) - C> (V) is
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continuous by Lemma 5.13, there are N € N, p € Ny and C > 0 such that

P01 (0.0(0%F) € kg (1) = Py (107 (D) <C (1L 2y * 5800 (D))

=C|Ifl 2k + sup [0PP(D)f )
(I LT

<c(|r] + sup |oFP(D)f
( 2o, b I, o

for all f€C> (0, (0)). O

Due to this corollary we can switch to types of L2-semi-norms which induce the same topology
on £¢P (C K ) as the sup-semi-norms. Further, we get an useful inequality.

5.15 Lemma. Let K c R be compact.

(1) For n e Ny we define the locally convex space
Cn? (Sn(K)):={feC=(Sn(K)) |YmeNy: rym(f)<oo}

where 1

rn()= s ([0 @F e HReGlaz)

aeN? |af<m

for feC>(S,(K)) and m e Nj.
LetneNyy, P(D) be hypoelliptic and f € C* (S2, (K)) such that ry, o (f) < oo and P (D) f €
C;flp (82, (K)). Then we have f € E;7 (S, (K)). More precisely:

VmeNg3peNo, Co>0: |fl,,, < Colramo (f) +ramp(P(D)f)]

(2) We define the space B
C? (C\K) :=limproj ;" (S, (K))

neNs)

where the spectral mappings are given by
nn,k:czxp (Sk (K)) - C;xp (Sn (K)) » Tn ke (f) = f‘Sn(K)’ n<k.
Then CeP (@ \K ) A (@ K ) as topological vector spaces.

Proof. (1) Letme Ny and « EN(Z), |t| <m. Choose 0 < h < ﬁ and set € := % For j € 72 and
r >0 we define
v 11 Neei 1 0. 712
0. =e|i+(5.3)]* 5@ =g 3 (e -ne-r+ (0.1

and J:={jeZ?|Q(j,e)nS,(K)#@}. For all jeJ it follows, by the choice of h, that
0(j,3¢) c 0(j,5¢) c S, (K) since 3v/2€ = \/2h < 5- <n. Thus f € C® (Q(j,Se)) resp.
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flelj+(3.3)]+-)eC> (Q%E (0))'

Let jeJ. By Corollary 5.14 there exist p € Ny and C > 0, C independent of j, such that
_LRe(-
PQ(j,e),o((ao‘f)e n\Re()l)
Se_Z|Re(j)|+;pQ(j,8),O(aaf)
“alRe(ly (11
—e n|Re(])|+,1pQ£(0)’0(aaf(g[]+(E’E)]+.))

_E N4 E 1
< ce n|Re<J>|+n[ 2)] +)
11

8BP(D)f(£[j+(§,§)]+-)

]+

&[0y )

+ sup
BeNG.|Bl<p

52(Q3e<0))]

f— R n
— CoERe())|+4 l”fHEZ(Q(J%))JF sup H8 P( )f“ﬁZ(Q(J3g))]
ﬁe ()7|ﬁ|<p

:Cei[(/;(jﬁg) If () e n‘Re(mdz) + sup (/;(jﬁg)‘&ﬁP(D)f(z)‘ e n|Re(1)‘dz)

BeN%,

<o fRe Do hRe@IE g <o nRe@I+ 3
e 2 LRe(2)] 4.\3 f B IRe()| 5]
<Cen [ DF e nRe@lgz)? 4 su APP(D)f(z)| e n dz
[( 0(J,3¢) 7@ %f—’l ) ﬁgN%( 0(j,3¢ )‘ D) )‘ )
<e 2R Bl<p
3¢
<Ce'n [rang (f) +ranp (P(D) f)] (5.39)

and so we get

Flows sup 1094 @I = suppg(;ep0((9%)e i)
]67

ZEUjGJQ(j7€)7 5
oeNZ, |ot|<m aeNg, |al<m
< Ce” I:FZnO(f)+r2np(P(D)f)]
5.39) ~Y—~— -
=:Cy

(2) Let feCer (@\ K ) and P (D) := d. Then f satisfies the conditions of (1) for all n € Ns,.
So for all n € N5, and m € Ny there exist p € Ny and Cy > 0 such that

[flum < Co [rzn,o (f)+72mp (§f)] <Co[rano (f) +ranps1 (f)] €2Coran pe1 (f)-

On the other hand let f € £¢*P (@ K ) . For every n e Ny, and m € Ny we have

1
han(f)€ sup  [09F @RI [ dEmIRGaz) <y,
Sn ’

ZES"(K)7
oeNg, [oe|<m

(K)

=:C1<00
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5 Strictly admissible spaces

By now all ingredients that are required to prove the admissibility of C are provided.

5.16 Theorem. Let K c R be compact. Then

5:5“”(@\1() ASEXP(@\K)

is surjective.

Proof.

(i) Let fe 47 (CNK), neN;, and set

1
0n:C—C, ¢,(2):= . ||

Then ¢, is subharmonic on C by [20, Corollary 1.6.6, Theorem 1.6.7, p. 18], particularly,
plurisubharmonic. The set Sy, (K) is open and pseudoconvex since every open set in C is
a domain of holomorphy by [20, Corollary 1.5.3, p. 15] and hence pseudoconvex by [20,
Theorem 4.2.8, p. 88]. For the differential form g := fdz we have dg = 0 in the sense of
differential forms and by Lemma 5.15(2)

2 o= 0n(2) 2
[54,1(1() F @) dz < rano (f)" < o0.

Thus by [20, Theorem 4.4.2, p. 94] there is a solution u,, € leoc (S4n (K)) of Ju,
in the distributional sense such that

Zemon(@) 2)? 2 ~on(2)
[5411(K)|un(z)| e Pz (1+|z| ) dzg/ If () e @dz.

S4n(K)

- f‘s4n(K)

Since 9 is hypoelliptic, it follows that u, € C* (S4, (K)), resp. u, has a representative
which is C*. For all C > 0 exists C; > 0 such that

2In(1+|z*) < Col|+ Cy
for all ze C. So, for Cy := ﬁ exists C; > 0 such that
01 (2)+21n (1+[) < 9u(2) + 1=kl +C1 = [+ € (5.40)
4n 2n
for all z € C. Therefore, we gain
2 _ 2 —LiRe(z)| 1+c1f 2 —Liz-c
25,0 \Un —/ Up(2)| e 2n dz<e u,(z) e 2n dz
o= [l 2) IO
<e]+C1f |I/t (Z)|2e—(Pn(Z)—Zln(l+|z|2)dZ
40 Jsuk) "

-2
< 1+C1/ N 2 ,-¢(2) (1 A )
<el@ | o @P e (14)P) “dz<oo

So the conditions of Lemma 5.15(1) are fulfilled for all n € Ny, implying u, € &7 (S, (K)).

(i1) The next step is to prove the surjectivity of 0:Eexp (@ K ) — £eP (@ K ) via the Mittag-
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that du,, =f|sq(1<)'
Now we inductively construct g, € £°% (S,42 (K)), n € N, such that

n+2
(1) dgn :f|S,,+2(K)’ n>1,
() Ign—8n-1lyp < 77, n22.

For n =1 set g1 := u3. Then we have g; € &7 (S3(K)) and dg = f‘S%(K) by part (i).
Let g, with (1) for n > 1 be given. Since »

9 (tn+3=8n) ‘sz(K) - au”+3|5n+2(K) ~98n -/ Swia(K) ~ 0

f Sn+3 (K) )
n+2

$12(K) (3, (1)

it follows 43— gy € Eei‘; 5 (Syu:+2 (K)) and by Theorem 5.1 there is A, € Sef; 3 (Sp43(K))
n 3 n )

such that {

|3 = &n _hn+1|n+l,n+1 < o+l

exp

Set gni1 = Upy3 —hyy1 €5 (Spe3(K)) . Condition (2) is satisfied by above and condition
(1) as well because

§gn+l = §Mn+3 - 5hn+l = 5”n+3 = f
H_,O_/ (i)

Sn+3 (K) )

Now let € >0, [ € Ny, and m € Ny. Choose Iy € N, Iy > max (I,m), such that 2% < €. For all
p>k>lywe get

p

p
89 =8kl <lgp =8kl 0 = | 20 &i-gi-1| < X2 lei-gi-1l,
Jj=k+1 Io,Jo Jj=k+1
p p 1 1
105‘51' j:%;rl & _gj_l‘j’jé)j:kﬂ 2%
§i<e
20

Hence (g1),smax(1-2,1) 18 @ Cauchy sequence in &7 (S; (K)) for all / € Ny, and, since these

spaces are complete by Theorem 3.6(1), it has a limit function g € £¢*P (@ K ) by the same
arguments like in the proof of Corollary 5.6.
Thus we have for all / € N5,

Hls,x ). 98ls,(x) 40 8l

n>max([-2,1)

and hence the existence of g € £ (K) with dg = f on C~\ K is proven.
O

Moreover, we are already able to show that Fréchet spaces are admissible just by using classical
theory of tensor products of Fréchet spaces.
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5 Strictly admissible spaces

5.17 Theorem. Let K c R be compact and E a Fréchet space. Then
0:£97 (CNK,E) - %P (C\K,E)
is surjective.

Proof. Letge&«P (@ N K,E) . Then g € £&*P (@ N K) &z E due to Remark 3.13(1). The mappings
idg:E — E and 0:£¢P (@ K ) — £¢P (K) are linear, continuous and surjective, the latter one by
Theorem 5.16. Moreover, E and £¢*P (@ K ) are Fréchet spaces, s0 0®y idg: £4P (@ K ) O E —
gexp (@\K) ®rE is surjective by [61, 6.6 Theorem, p. 65], i.e. there is f € £&P (@\K) &FE
such that (§®nid5) (f) = g. Again we have f € £4P (@\K,E) by Remark 3.13(1) and 9 (f) =

(9&ride ) () = . O

In order to obtain further classes of admissible spaces by the splitting theory for Fréchet spaces
of Vogt (see [63]) resp. PLS-spaces by Bonet and Domarski (see [8]), we have to prove that the
space O¢P (@ K ) satisfies (Q) for every compact set K c R. Let us recall that a Fréchet space
F with an increasing fundamental system of semi-norms ({|-||; ),y satisfies (Q) if

1
VpeN3IqeNVkeNIneN,C>0Vr>0: U,cCr'Uy+-U, (5.41)
r

where Uy == {xe F| ||x||, <1}.
By [45, 29.13 Lemma, p. 349] this is equivalent to

*1-0

VpENElquVkENEIO<G<1C>O:||yH;SCHpr ||y||;9, VyeF’, (5.42)

where
Iyl == sup{[y ()| | lx]ly < 1} e Ru{oo}

is the dual norm. In this context we remark:

5.18 Remark. Let F be as above and y € F'. Then the following assertions are equivalent:
(1) [yl <oo
(2) 3C>0: y()|<Clll, VxeF

Proof. (1)=(2): Set C:= ||y||; + 1. Then C € R,( by assumption. Let x € F, x # 0. Then

X *
|ﬂ@hb(——ﬂWMsthM<awh
I

For x = 0 this is obvious.
(2)=(1): Letx € F, ||x||, < 1. Then we get by assumption

)l <Clil, <€

and thus [y[, <C < oo. O
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At first, the (Q)-property will be proven for K = & and then for arbitrary compact sets K c R.
For K = @ a decomposition theorem of Langenbruch, [41, Theorem 2.2, p. 225], will be used
which is stated below for the purpose of more clarity and comprehensibility. With the definition,
analogous to Definition 5.8b),

He (V) —{fe0<m 1l = suply (16 <oo}

for >0 and 7 € R, where V; := {zeC| [Im(z)| <t} and v is a weight function in the sense of
Definition 5.7, the following is valid:

5.19 Theorem. ![41, Theorem 2.2, p. 225] There are T, Ki, K> > 0 such that for any T9 < T< T
there is Cy = Cy (sign (7)) such that for any 0 < 2tg <t <t <t with

Z()Smin|:K1,K2 T_—COTO]
V ©2-CoTo
there is Cy > 1 such that for any r >0 and any f € Hy (V) with || f|| . , < 1 the following holds: there

are f, € O(V,,) and fo € O(Vy,) such that f = fo+ fo on V;, and

[follcyy 1™ and | foq,,, <e”

where c
G:= Klmln[l Il ﬂ].
2f "1 -Coty
With this notation we have 07 (C) = limproj,oyH_1 (Vi) and |, = || _1 L n>1, forvi=

|Re(+)|. To apply this theorem, one has to know the constants involved. In the following, the
notations of [41] are used and it is referred to the corresponding positions resp. conditions for
these constants. We have |

(D)

by [41, Lemma 2.4, (2.15), p. 228] with I"> 1 from Definition 5.7. For v := |Re(-)| every I'> 1 is
possible. By [41, Corollary 2.6, p. 230-231] one has

cos(1/2)
1 _  cos(1)2)
4I'B3 = 64cosh(1)I"

ATB; = HoshDpa oy 7o,
C() =

s<1, 120,

where B3 : 16:)30(5 II}S)F by [41, Lemma 2.4, p. 228-229].2 To get the constants K and K3, one has
to analyze the conditions for 7y in the proof of [41, Theorem 2.2, p. 225]. By the assumptions on

Ty, T and T, and the choice of Cy we obtain
-Cotp>T-Cot21—-7>0 (5.43)

and
T-CoTo>T-Cot=7(1-Cp) >0. (5.44)

'A superfluous constant depending on sign (7o) is omitted.
2 An error in part b) of the Lemma, p. 229, is corrected here such that the term cos (1/2) appears.
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5 Strictly admissible spaces

By choosing D > 0 in the proof of [41, Theorem 2.2, (2.22) pp., p. 232-233] as D := (QTCOC%

D=

T-CoTp B n(i L) T-CoTo < min(i i)r—Coro
(12— Co7p) 21 oI 21 rz—coro(g_.ﬁ%, o) 1 -Gyt

holds where Ty := max (I',I") with T, I'> 1 from the proof. For v :=|Re(:)| all I, I'>1 are
possible. With 6 > 5 t‘) (p. 232) one gets on p. 233, below (2.24), due to the condition

to < Ty —m1n(2,4a213l)
1 1 - 1 - _
min(g,D,l)2min(—,—)mjn(9’f—coro7l)Z_min(t ~to”l: C()”L'071)
2 2 2 7 -Coto 2l 2 "1 -Comp
~—
- L
=T,
. ( 1 1 ) . (l—l‘() T-CoTp )
>min| — min| ——, ———, 1
def. Ty 2 "1 - CoTy

) 1 . (t—19 T-CyTp
= min , min(| —,——,1 | =G
21 2cosh(1)ln (F) 2t "1 -Cy1

::Kl

where a :=1In(I") (at the top of p. 231) and B; := 2cosh (1) by the proof of [41, Lemma 2.3, p.
226-227].3 Looking at the condition fy < T := aZ,;Bl (p. 232), one gets

T = 1 T— C()”L'() 7-CoTp
V2Ta?B; V 2-CoTo 2\/cosh(1)Foln(F) V ©-Coto’

=K>

5.20 Theorem. O=? (C) satisfies (Q).

Proof. a) Let peN. Choose ge N, g > lzciz‘(’fz()l)rz

linear transformation between strips to get the decomposition on the desired strip, desired
in the spirit of Corollary 5.6. Choose T > 0 such that

p- To use the theorem above, one needs a

1 1 1
T < min .
! (4F0p’ 2v/B1TypgqIn(T) "8 max (g,2k)In(T) )
1

Let 7:= —g7 S0 7 <0, and set

T ! and 7 1ma (1: ! )
= - = — X _
0" " 2CopT 272 kT )

to:=2pT and t:=¢T and t;:=2max(q,2k)T.

3The term in the definition of Tj appears in the theorem as the condition 2¢y < ¢.
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By the choice of g and since 7 <0 and 7 >0, we have

1 1 1 1

0 = ~ 35cosn(D) <——=r<—max(r ——)=T2.

2 T 2 2kT
“cos(12) I=pT 9

By the choice of g and the last term in the choice of T we get

128cosh (1)
os (1/2)

Now the last condition for 7y has to be checked. First of all we obtain

0< 219 =4pT < 128pT < 2pT < qT =t <2max(q,2k) T <

4In(T")

T-CoTp N T-CoT S T—Cor_l(l_l) 2C0p( 1) 2p

i 2 = l-—|=—(C-1)
T —-CoTo (5.43), 7 —CoTo 1,70<0 -CoTp  To Co q Co q
(5.44)

2 4cosh (1 2
2p (G4cosh(l) ) 2p (5.45)
q \ cos(1)2) q
>63
and hence
min

K Ko /T—_Cofo]
T -CoTp
. [2p | 1 1 [2p
> min| K{,K> —]zmln , , —
(5.45) [ q 2" 2cosh(1)In(I") "2, /cosh (1) TyIn(T) V ¢

[ 1 1 1 1 2p
=min , min s —
[ZFO 2In(T) (cosh(l) Veosh(1)Ty V ¢ ):|

1 1 1
< <
choice V/eosh(1)Iy \/cosh(T) ~ cosh(1)

of g
1 1 1 2 1 V2
:min[ p] min[ , p :|
200" 2In(T) | /cosh (1) T, 20 /2B TogIn(I")
>2pT—l‘0
choice
of T

b) Letr>0and f € 0P (C) such that | f]_1 < 1. Then it follows that
q7

z€V, qT

12171, =suplr @)l = sup ()l i =7,
——
=:f(2)

where f € O (V;), and thus by Theorem 5.19 there are fj € O (V;,), j=0,2, such that

f=fo+fronV, (5.46)
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and
Cre™ 2 | fol gy = sup 1o (2)[eRIREL= sup |fo () e@nT R
’ zeVy 10/T
= sup | fo(T2)]e R 2 | 5 -t 2 (5.47)
Of(i‘g, To <€ VZP —

=fo(z)

where fye O (Vzp) , as well as

2 |h|,,=su u |72 (2) eRe@) = sup |fo (Tz)[e?!Re)
2.1 iy
. up BT ARl .48
ef.  zeVo ~———
oftr, T _fz(z)

where f; € O (Vo) . Furthermore, for z € V,, /r = V2p the equation
f(2)= f(TZ) = [o (T2)+ 2(T2) = fo(2) + f2(2)
holds, thus f = fo + f> on V;,,. By virtue of Corollary 5.6 the following is valid:

Ve>03fo, oe0(C):d) [fo- ol s, <€
if) Hfz—sz_%?k<£ (5.49)

Now we have to consider two cases. Let € := C1e~¢". For k < p we obtain via (5.49)i)

f=ro+(fo+fo-fo) onVa,
SO .
fatfo-fo=f—-fo=faonVy, (5.50)
where f, € 0P (@) and thus an holomorphic extension of the left hand side on C. Hence
we clearly have f = fo+ f> and

HfOH o< fo- fOH_, PR, S £ Ifoll -1, <&+ 1ol 1 5,
< 2019 (5.51)
(547 T~

as well as

| 72| 'k—” fz TR I Vol I | fo- foH p IRl s e < exlfal 1,

(5.49)i)
(5.50), k<pf0 fo
<Cle e <(Cr+1)e. (5.52)
(5.48) H,]_/ N ,
<
::C3
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Analogously for k > p we obtain via (5.49)ii)

f=h+(fo+fr-fo) onVy,

SO

fo +f2—f2=f—f2 =1f0 OIlep (553)
where fj € O&P (@) and thus an holomorphic extension of the left hand side on C. Hence
we clearly have f = fo+ > and

HfoH,%J, =l f-5 ||_%,p = Hf0+f2—f2H,%7p < Hfz—sz,%J,+ HfoH_%J;
553 fotfo-Fa
2 “Gr _ -G
& Hfz—sz%’,ﬁ 150l 2, oSt HfoH_ﬁ’p(S%Z)Cle r_Ce O (5.54)

as well as

Hsz_H <[ £ —sz_%’,ﬁ |.f2 ||_%,k(5.439)ﬁ)8 gl el Y 5o Cile O +e" <Cse’.  (5.55)

Now set n:=[1/G] and C := C3eéln(C2). Let 7> 0. For 7> 1 there is > 0 such that

F= eGr—ln(Cz) — Cz—leGr

and we have by (5.51) and (5.52) for k< p

)

~t| o=

HfOH,L <Cre 0=
5P

— 1 1 1
Hsz | <C3e" = Ciec ™M) o5 (Gr-In(Q)) - CF5 < C7",
_E’k —_— >1
=C

as well as by (5.54) and (5.55) for k> p

_ 1 . )
”fOH_%J, <% ”sz_%k <CP.

For 0 <7< 1 we have, since g > p,

f—

Hf||_%,p£||f|\_$7q§1<

F

Thus the theorem is proven.
]

The analogous result can be proven for the spaces Oy ¢ (@) of Definition 5.8 using Corollary
5.11 instead of Corollary 5.6 where v is a weight function in the sense of Definition 5.7, at least,
if v satisfies the conditions of Theorem 5.10 (see [59, Satz 2.2.1, Definition 2.2.2, p. 43, Satz
2.2.3, p. 44)).

The next lemma, in particular the main ideas, is due to Langenbruch (oral communication).
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5.21 Lemma. Let K c R be non-empty and compact.

1-6 0
(1) VpeNVg>p¥k>q30<0<1,C>0: |f],<CIfl, " I£I; YV feO,(Uy(K))

(2) P.(K), satisfies (Q).

Proof.

88

(1) Letp<g<kand feO, (Up (K)) . Considering the components of U, (K) we have

to distinguish three different cases.

(a) Let Z, be a bounded component of U, (K). By Remark 3.3(1) there are only finitely

many components Z, of U, (K) with Z, c Z,. For every such component Z, choose
$o € Z;n K, which exists since Z, is bounded. Let Z; be the (unique) component
of Uy (K) which contains . Z, is a proper simply connected subset of C. Thus
there exists a biholomorphic mapping yy:Z, — D (0) with yp({p) = 0 due to the
Riemann mapping theorem (and Mébius transformation). In addition, Z, and D (0)
are Jordan domains (for the definition see [2, 2.8.5. Lemma, p. 193, 1.8.5. Jordan
Curve Theorem, p. 68]) and so there exists a homeomorphism y/:Z_p — D1 (0) such
that l//‘zp =Yy by [2, 2.8.8. Theorem (Caratheodory), p. 195]. Since I//(Z_q) c I/I(Zp) =

D;(0) and v (Z_q) 1s compact, as Z_q is compact and Y continuous, there 1s 0 <r, <1
such that y(Z;) c D,, (0). Moreover, there exists 0 < ry < r, such that D,, (0) c w(Z;)
since 0 € y(Z;), y(Z;) is open by the open mapping theorem and v (Z;) c I//(Zq) .

The function u := f o (y~1) is holomorphic on D; (0) and continuous on D; (0), in
particular, |u| is subharmonic on D; (0) and continuous on D; (0). Setting

M(r):=suplu(z)|,0<r<l,

lz|=r
we obtain by virtue of [2, 4.4.32. Proposition (Hadamard’s Three Circles Theorem),

p. 338]
In (1/r,) In (va/rs)
n (1) InM (ry) + InM (1)

lnM(rq) < (/)

and hence
M(ry) <M () m(1)'°

In(1/rg)

where 0 := ln(l/rZ) . Because O<ri<r <1, we get0< 6 < 1. By the maximum principle

we have

V()= sup (@) nf e S O qup [ (1 @)l )

l2l<ry lel<rq lel<ry
_1 -1 1
> inf ¢~ 1[Re(¥ (Z))‘sup|f(z)|eq|Re(Z)‘
w(Z4)<Dry (0) l2l<rq 27,
=:Cop>0
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as well as

M (r)? M (1)'7°

0 G
= sup [u(2)|”suplu(2)] "~ < (sup e‘i““(‘”"@”) (sup (v <z>)\ei\Re(w“<z>)\)

= ! el<n |z|<ri
1-6 -0
1 -1 X B
suPe_ERe(‘l’ )] SuP|f(lI/_1(z))‘eE‘Re(w )]
‘Z‘Sl |Z|§1
. b 1 1-6
5.0 (Sup i (Z))‘) (Supe—:, (v <z>>‘)
Dy, (0)ew(Z) \lel<rk iZl<1
:;Cl
0 1-6
1
(S“p|f<z>|e'l<'R6(Z)) (Suplf(z)le”Re(Z)|)
ZEZ ZETP

and therefore

6 1-6
supl (2)] s *e < 7L (S‘m|f(z)|e’l‘|Re(Z)|) (sup / <z>|e3"Re(Z))

€24 €7y 2€Zp

Cly 10y ,11-6
SC—OHfHk I£1, (5.56)

(b) Let Z, be an unbounded component of U, (K) , w.1.o.g. the real part of Z, is bounded
from below and unbounded from above. Let § € R such that |§o| > k+ 1. Then we

have D% (&) c ([j,oo[+i[—%, %]) for j e {p,q,k}. Applying Hadamard’s Three Cir-

cles Theorem on u := | f| again, we getM(é) SM(%)GM(%)FG where

g.. nG/E) _in(e)
In(5/4) n(¥p)

and 0 < 0 < 1. Furthermore, the following inequalities are valid: For ze D, (), r>0,

[Re (2)] =0l
r2lol S Rel@) -kl Z{|<:o|—|Re<z>|
implying
-6l <—Re()| < -Gl (5.57)

Like in the first part of the proof we obtain
1

1 _1 1 _1(1 1
M(—) > inf e 1[Re(2)| sup |f(Z)|e’11|Re(Z)|5257e q(;+\Co|) sup |f(z)|e;\Re(z)|
7 kbl e-ls} o7 -Gls}
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and
0 1-6
0 (1 ! LRe(o)
M(—) M(—) <| sup e #ReC@ sup e oV
ko Ap e-Gols e—Gol<§
(D) ()
(557) (557)
0 1-6
sup |f (2)]etReO| | sup | (2)]ere)
=Col<t |z~ Co\<*
Combining these inequalities, we get
sup [ (2)]es/e)
|- Co\<*
0 1-6
Se‘iz % Te+|§0\( (% TB>) sup |f(z)|e£|Re(z)\ sup |f(z)|eP|Re(Z)|
lz=Gol<t |z~ Co|<*
(5.58)
The next step is to prove that
1 6 1-6
__(_+—)go. (5.59)
g \k p

Since p < g, we have g = cp, where ¢ := % > 1, and by definition of 0

1 (9 1—9) k-p_  l-c k-p In(c)
e = 0+ =
g \k p kp -~ cp kp In(¥p)

Hence (5.59) is equivalent to 1 — B L (1) ln( ) <0. Now we take a closer look at the
and g’ (x) >0

c-1
cln(c)’

have g (x) <0 for 0 <x< i Keeping in mind that ¢p = g < k, we gain £ < E and so

taneo(7)¢(7)
-2 m(2)=¢(2) <0
K em(e) \k) 8k )E

which proves (5.59). Merging (5.58) and (5.59), it follows

function g:R.p - R, g(x) =1-x+ 1()lnx Theng (x)=-1+=5

cln(c)x

is equivalent to x < - ( 3 The only zeros of g are x = = < landx=1. As = we

sup |1 (2)] xR
le=Col<
0 1-6
1 6  1-6
<e? | sup [F@IeAR@ | sup | (o)]er®)
l-Gol<} |- Co|<*
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and thus
1
sup  |F@le™@ = sup sup [f(2)]er*e)
s, OeR, [-gl<]
d(z,[k+1/k,00[)<1/q Co>k+1/k
1,610 | 6 R 1-6
<ed TR sup |f(Z)|€k|Re(Z)|) ( sup |f(z)|e?| e(z))
E(C, e(C7
A(e [k oo )<e A(e [k oo )<Vp
Fratsy =
<e L2 1 f I (5.60)

(¢) Let Z, be w.Lo.g. like in part (b) and define Z), := Z,,n (] — 00,k + 1/k[+iR) . By Remark
3.3(1) there are only finitely many components Z, of Uy (K) n (] - oo,k+1/k[+iR)
with Zq C Zp. For every such component Zq choose {j € Zq NR. Let Z; be the (unique)
component of Uy (K) N (] - oo,k + /i[+iR) which contains {y. The rest is analogous
to part (a) and thus there are Co, C; >0and 0< 6 < 1 such that

suplf () edl®e@ < &L ufuk 17157 (5.61)

zEZq

(d) Let us first remark the following: Let B be a set, Boc B, 0< 6y < 0; < 1, h: By - Ry,
g:B—Rypand h< g on By. Then

6, 1-6; 6o 1-69
(suph(Z)) (S;:gg(Z)) S(Suph(Z)) (szggg(Z)) :

ZEBO ZEBO

Now take the minimum of all the 8s which appear in part (a)-(c). There are finitely
many of them and denote this minimum again with 6. Take the maximum of the
1,6 1 0

5t-5 o . . . .
constants C ce? @72 and % which appear in part (a)-(c). There are again finitely

many of them and denote this maximum with C. We apply the remark above on By :=
Ui (K), B:= U, (K), h(z) = |f (2)]etR@) and g(2) = | ()] 7", Then we get
due to (5.56), (5 60) and (5.61)

0 1-6
1Al <A,

so the statement is proven.

(2) Let pe N and choose g > p. Let ke N. If k< p, then we get for an arbitrary 0 < 6 < 1 and all
ye (77 (K);), by definition

*1-0 *1-6

*0
Ivly < S Iyl = v0, Hpr 5 Iyl Ivle

Let k> p. If k < g, we have for an arbitrary 0 < 6 < 1 and all y € (73 (K);,)I by definition

*1-6

*1-6
I¥1g, Hka = Iyl

>(' *9
IYle™ < Iyl Iyl
P
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5 Strictly admissible spaces

Letk>qand ye (P (K);) . If [y[}, = o0, then (5.42) is obviously fulfilled. Let [y], < oo.
As P, (K) is a DFS-space by Theorem 3.5(1), the sets B, := {f € O, (U (K)) | |l f], <1},
n €N, are a fundamental system of bounded sets of P, (K) and hence the semi-norms

Ilxll,, == sup [x ()], xe P (K)',
feBn

form a fundamental system of semi-norms of P, (K ); Furthermore, P, (K) is reflexive
and thus there is an unique f € P, (K) such that J (f) =y where J: P, (K) - P, (K)" denotes
the canonical embedding. Then we obtain by [45, 22.14 Satz, p. 237] foralln > p

Iyla =sup{ by Gl | llxll, < 1} =sup{[x(F)] |xe B} = /14,

—

=AY @)I=()
=inf{r>0| fetB,}

>yl >

where | f||z denotes the Minkowski functional of B,. In particular, this means that
{t>0| fetB,} # @ and thus we have f € O, (U,(K)) as well as

[l =inf{t>0] fetBa} = £,

for all n > p. So by part (1), there are C >0 and 0 < 0 < 1, only depending on p, ¢ and k,

such that o o Lo o
Iyl =11, <ClAL, 71l =Clyl, vl

5.22 Theorem. Let K c R be compact. Then Q%P (@ K ) satisfies (Q).
Proof. By Theorem 4.1 07 (C\K) /O*P (@) is topologically isomorphic to P, (K), . Since

(Q) is a linear-topological invariant by [45, 29.11 Lemma (1), p. 347], 0*? (C~K) /0P (C)
satisfies (Q) due to Lemma 5.21(2). The sequence

0 - 0= (T) 5047 (T K) 307 (T K) j0=? (T) -0
is an exact sequence of Fréchet spaces where i means the inclusion and g the quotient mapping.

Oep (@) satisfies (Q) by Theorem 5.20 and Q%P (@ K ) JOep (@) as well, thus QP (@\ K )
by [64, 1.7. Lemma, p. 230], too. O

The next lemma provides some useful relations between spaces of operators.

5.23 Lemma.

(1) Let X be a complete, reflexive locally convex space and (Y, (||||,),y) @ Fréchet space.
Then Ly, (Xl;,Yb’) ~ L (Y, (Xb’);) (2L, (Y,X)) via taking adjoints.

(2) Let X be a complete Montel space. Then L, (Xl;,E ) ~ X€eE, where the topological isomor-
phism is the identity mapping.
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(1) a) Consider the mapping

b)

)Ly (X5, Y5) > Ly (Y (X;),)» us

defined by u (y) (x') :=u (x’) (v) foryeY and x’ € X'.
Let yeY. Since u € L(X ! ) and {y} is bounded in Y, there is a bounded set B c X
and a constant C > 0 such that

fu(y) ()] =lu(x") (y)] < Csup ' (%))

for all x’ € X’. Thus ‘u(y) € (Xl;)/.
The canonical embedding J:Y — (Yb’ ); is a topological isomorphism between Y and

J(Y) by [45, 25.10 Corollar, p. 280] because Y is a Fréchet space. For a bounded set
M c X we have

S}Elﬂlzltu(y) ()= sup Ju(x) (¥)] = sup (7 (v),u ()]

The next step is to prove that u (M) is bounded in Y;. Let N c Y bounded. Since
uel (X LY/ ) there is again a bounded set B c X and a constant C > 0 such that

sup suplu(x') (¥)] < C sup sup ¥’ (x)| < oo,
x'eM yeN x'eM xeB

where the last estimate is due to the boundedness of M c X,. By the remark about the
canonical embedding there are n € N and Cy > 0 such that

sup ['u(y) (x')[ = sup [(J(¥),y" ) <Collyll,
x'eM y'eu(M)

sofuce L(Y, (Xl;);) and the mapping ’ (-) is well-defined.
injectivity: Let u, ve L(X LY/ ) with “u ='v. This is equivalent to
u(x) () ="u(y) (=) ="v(y) (=) =v (") (v)
for all y e Y and all x’ € X'. This implies u (x") = v(x') for all x’ € X', hence u = v.
surjectivity: Consider the mapping
' ():Ly (Y, (X,;);) - Ly (XL,Y)), ur"u,

defined by ‘u (x") (y) :=u(y) (") forx’ e X’ and ye Y.
Let x’ € X'. Since u € L,, (Y, (Xé);) and {x'} is bounded in X', there are n € N and a
constant C > 0 such that

fu(x") ()] = lu(y) D) < ClIyl,

forall yeY. Thus ‘u(x') eY'.
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Let B c Y bounded. The reflexivity of X implies that for every u(y), y € B, there is

a unique x, € X such that Jo(xy) = u(y) where Jo:X — (Xl;); denotes the canonical
embedding. Then we get

supl‘u(x') (v)| = suplu(y) ()| = sup|{Jo (xy) ,x')| = sup [’ (xy ).
yeB yeB yeB yeB

We claim that D := {xy |ye B} is a bounded set in X. Let N c X be finite. Then the set
M :={'u(x") |[x" e N} cY'is finite. The set B is weakly bounded since it is bounded.
We have

supsup [’ (xy )| = supsup ['u (x') ()| = sup sup |/ ()| < oo,
yeB x'eN yeB x'eN yeB y'eM

where the last estimate follows from the fact that B is weakly bounded. Thus D is
weakly bounded and by the Mackey theorem bounded in X. Therefore, we obtain

SUP|IM(X') ()] = sup|x’ (xy)| = sup|x’ (x))|
yeB yeB xeD
for all x’ € X’ connoting ‘u € L (Xl;, Yb’) .
Let uce L(Y, (Xz;);)' Then we have ‘u €L, (X’ Y/ ) In addition, for all y € Y and all
x'eX’
Y('u) () (&) ="u (x") (v) = u (y) (x)
is valid and so * (“u) (y) =u(y) for all y € Y proving the surjectivity.
d) continuity: Let M c Y and B c X, be bounded sets. Then

supsup|'u (y) (x')| = supsup|u () )l = supsup|u ) )

yeM x'eB yeM x'eB x'eByeM
=supsupl’ ("u) (x) ()]
x'eByeM

holds forall ue L (X LY/ ) Therefore, ? (-) and its inverse are continuous.

The adjunct in brackets follows by the reflexivity of X, since the mapping

S:L, (Y, (XI;);) — Ly (Y,X),

defined by S(u) () :=Jy! (u(y)) for ueL, (Y, (Xl;);) and y €Y, is a topological isomor-
phism.

(2) LetT ¢ L(XI;,E) . For a € A there are a bounded set B c X and C > 0 such that

pa (T (x')) <Csupl'(x) <Csuglx €3]

for every x’ € X’. The set B is compact, since B is bounded and X a Montel space, and thus
precompact by [25, 3.5.3. Corollary, p. 65]. Hence we gain T € L(X/,E).

Let M c X' be equicontinuous. Due to [25, 8.5.1. Theorem (a), p. 156] M is bounded in
X, . Therefore,

id:Ly, (X},E) > L, (X/,E) =X¢€E
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is continuous.
Let T e L(X!,E). For o € A there are a precompact set B c X and C > 0 such that

pa (T (x')) SC?EJEIX’ (x)]

for every x’ € X’. By [60, Chap. 14, Corollary 1, p. 137] B is bounded in X since it is
precompact and so we get T € L (X[;,E ) .

Let M be a bounded set in X;. Then M is equicontinuous by virtue of [60, Theorem 33.2, p.
349], as X, being a Montel space, is barreled by [45, 24.24 Bemerkung (a), p. 267]. Thus

id:L. (X,E) ~ L, (X.,E)

1S continuous.
O]

Now we use the results obtained so far and splitting theory to enlarge our collection of admis-
sible spaces. We recall that a Fréchet space (F, (||l;) ) has (DN) by [45, Chap. 29, Definition,
p. 338] if:

IpeNVkeNIneN,C>0VxeF: |xlf <Clll, I,

A PLS-space X = limprojy.yXy, where Xy = limind,,ey (XN,m |||H‘Nn) are DFS-spaces, has (PA),
if:

VNIMYKInYmVn>03kCro>0Vr>rVx eX):

*

1
e W)

e ol <c (e o

where ||-||* denotes the dual norm of ||-|| [8, Section 4, (24), p. 577].

5.24 Theorem. Let K c R be compact. If E := F) where F is a Fréchet space satisfying (DN) or
E is an ultrabornological PLS-space satisfying (PA) , then

9:£4P (@\K,E) - E4P (@\K,E)

is surjective.

Proof. The sequence

0 - O%P (@\K) _i)gexp (@\K) zgexp (@\K) -0 (5.62)

where i means the inclusion, is an exact sequence of Fréchet spaces by Theorem 5.16 and hence
topologically exact as well. Denote by Jy: O¢P (@ K ) - Qexp (@ K )” and J;:£¢P (@ K ) -
gexp (@ K )" the canonical embeddings which are topological isomorphisms since O¢*? (@ K )
and £¢P (@ \K ) are reflexive. Then the exactness of (5.62) implies that

1" i 1194

007 (T k)" Seer (T k) Moo (TK) 0 569
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5 Strictly admissible spaces

where ig :=JypoioJy Land 9 :=J ogojl‘ I is an exact topological sequence. Topological as the
bidual of a Fréchet space is again a Fréchet space by [45, 25.10 Corollar, p. 280].
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* Let E := F,) where F is a Fréchet space with (DN). Then Ext! (F, 0o (C\ K)”) =0 by

[63, 5.1. Theorem, p. 186] since O¢P (@\K ) satisfies (Q) due to Theorem 5.22 and

therefore O (@\ K )" as well. Combined with the exactness of (5.63) this implies that
the sequence

0—>L<F,(’)ex1’(@\K)”)@;L(F,Eexp(@\l()")al L(F.e47 (T K)") >0

is exact by [53, Proposition 2.1, p. 13-14] where ij (B) := ig o B and 5: (D) :=9; oD for
BelL (F, oep (@ \ K)") and DelL (F, gexp (@ N K)”> . In particular, we obtain that

IL(F,E97(CnK)") > L(F.e%7 (T K)") (5.64)

is surjective. Via Theorem 3.11 and Lemma 5.23 (X = £¢P (@\K ) and Y = F') we have,
with the notation used there, the isomorphism

yi=To! (L(F.E?(CNK)") > £ (TAK,E), w(u) =[To' ()] (u) ='ucA,
and the inverse

_ -1 - ex,
L= () (N=[OeT (=" (I ous), fe&(KE),
where J:E — E"' is the canonical embedding.
Letge&? (CNK,E). Then y~! (g) EL(F, Eep (@\K)”) and by the surjectivity of (5.64)
there is u EL(F,SexP (@\K)") such that giu: v (g). Sowe get y(u) &P (@\K,E).

Now we want to show that dy («) = g is valid. Consider the equation

‘u(é;)-'u 2+hey, ¢ 0;— 6z+ek 0, — 52+ek
[ () u( ”](x): I CR e

forxeF,ze C\K, h#0 and e, denoting the unit vectors in R2. Since every bounded set in
gexp ((C K ) , being a Montel space by Remark 3.8, is relatively compact, we get like in the

first part of the proof of Theorem 3.11 98 (y (1)) (z) :fu(éz(ﬁ)) for B € N3 by virtue of [16,
10.3.4 Satz, p. 53] and hence 9 (v (1)) (z) = fu(g&) where 98, (f) := 6. (gf) = df(z) for
feSexP(@\K). So for all xe F and ze C\ K we have

I (W (W) () (x) ="u(8,) (x) =u(x) (98.) = (98,47 (u(x))) = (8, 077" (u(x)))
:<[Jlo§oJ1_1](u(x)) 5):((510u)(x),5z)=<(§’{u) (x),SZ>

=y (g) (%) (8:) =" (V" oug) (x) (8,) = (J T oug) (8.) (x)
=g(2) (x).
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For the last equation see the end of the proof of part 1)c) of Theorem 3.11.
Thus d (v (u)) (z) = g(z) for every z € C \ K which proves the surjectivity.

Let E be an ultrabornological PLS-space satisfying (PA) . Since O¢? (@ K ) is a Fréchet-
Schwartz space, its strong dual O¢*? (@ K ), is a DFS-space (also called LS-space). By [8,

Theorem 4.1, p. 577] we obtain Ext}; ((’)exP (@ \ K)/ ,E) =0 as the bidual O (@ N K)”

satisfies (Q) and E is a PLS-space satisfying (PA). Moreover, we have Proj' E = 0 due
to [65, Corollary 3.3.10, p. 46] because E is an ultrabornological PLS-space. Then the
exactness of the sequence (5.63), [8, Theorem 3.4, p. 567] and [8, Lemma 3.3, p. 567]

(in the lemma condition (c) is fulfilled, since O¢P (@ K )’ is the strong dual of a nuclear

Fréchet space, and one chooses H = 0¢? (C\K )” and F = G = £« (T~ K)”), imply that
the sequence

0-L(E', 0% (T K)") 55 (E". &7 (T~ K)")i‘L (E".€%7 (T K)") >0
is exact. The mappings i; and 5: are defined like in the first part. Especially, we get that
duL(E' e (T K)") > L(E",£2? (T K)") (5.65)

is surjective.
By [13, Remark 4.4, p. 1114] we have L, (Eexl’ (@\K)’,E”) = (E’,S"XP (E\ K)H) via

taking adjoints, since £¢P (@\K ), being a Fréchet-Schwartz space, is a PLS-space and
hence its strong dual a LFS-space, which is regular by [65, Corollary 6.7, p. 114], and E is
an ultrabornological PLS-space. In addition, the mapping

S:L, (gexP (@\K)/,E") =L (Eexl’ (@\K)/,E)7

defined by S(u) (y) :=J7 ' (u(y)) for ueL, (8”‘1’ (C~ K)/ ,E”) and y € £47 (C K)/, is
a topological isomorphism because E is reflexive by [11, Theorem 3.2, p. 58]. Due to
Theorem 3.11 and Lemma 5.23(2) we obtain the isomorphism

yi=ToJ o (.):L(E’,gexl’ (@\K)") ~ £ (CNK,E),
W (u)=[ToJ o' ()] (u) =" o uoA,
with the inverse
Y ()= (Todo () (F)=['()odoT '] (f) =" (JoI " ous) ="u

forfegexP(@\K,E).

Let g € €27 (C\K,E). Then y~'(g) € L(E’,Eexl’ (@\K)”) and by the surjectivity of
(5.65) there exists u € L(E’,Sexl’ (@\K)") such that gfu =y 1(g). So we have v (u) €
Egexp (@ \K,E ) . The last step is to show that §l//(u) =g is valid. Like in the first part we
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gain for ze CNK
I(w (W) (@) =7 ['u(95)]

and for xe E’/

u(98.) (x) = u(x) (98.) = w" (2) (x) (8) = "ug (x) (8.) = 8. (xo2) = x(2(2))
=7 (2(2)) (%)

Thus we have ‘u (531) =J(g(z)) and therefore @ (y (1)) (z) =g (z) for all ze C\ K.

]
Now let us consider the non-weighted case, i.e. the question for which locally convex spaces

E is
0:C*(U,E) - C*(U,E) (5.66)
surjective for every open set U c C. By [20, Theorem 1.4.4, p. 12] this is fulfilled for E = C.
Furthermore, O (U) and C* (U), both equipped with the topology of uniform convergence on

compact subsets (of all partial derivatives for the latter one), are nuclear Fréchet spaces by [45,
5.18 Beipiele (3)+(4), p. 38, 28.9 Beispiele (1)+(4), p. 330-331] and one has

OWU,E)2zO(U)eEzO(U)&:E=O(U)&zE

plus
CY(U,E)=2C®(U)eE=C®(U)®cE=C>(U)&zE

by [25, 16.7.5 Corollary, p. 366] resp. [60, Theorem 44.1, p. 449] for any complete locally con-
vex space E. Like in Theorem 5.17 this implies that the d—operator in (5.66) is surjective if E is a
Fréchet space. If E := F;/ where F is a Fréchet space satisfying (DN) or E is an ultrabornological
PLS-space satisfying (PA), this holds due to [62, 2.6 Theorem and remarks in the beginning]
resp. [13, Corollary 3.9, p.1112] as well.

Summarizing this remark, Theorem 5.17 and Theorem 5.24, we obtain:

5.25 Theorem. The following spaces E are strictly admissible:
» Fréchet spaces
* E:=F) where F is a Fréchet space satisfying (DN).
e Ultrabornological PLS-spaces satisfying (PA)

We will now provide examples of ultrabornological PLS-spaces satisfying (PA) and examples
of such spaces which do not have (PA) as well as examples of LFS-space not being strictly ad-
missible. These examples are directly taken from [13, Corollary 4.8, p. 1116] and [13, Corollary
4.9, p. 1117].

5.26 Example. The following spaces are ultrabornological PLS-spaces with property (PA), in
particular, strictly admissible:

* an arbitrary Fréchet-Schwartz space;

* the strong dual of a power series space of inifinite type AL, (&);
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* a PLS-type power series space A, (¢, ) whenever s = oo or A, (o, B) is a Fréchet space;

* the strong dual of any space of holomorphic functions O (U )' , where U is a Stein manifold
with the strong Liouville property (for instance, for U = C");

* the space of germs of holomorphic functions O (K) where K is a completely pluripolar
compact subset of a Stein manifold (for instance K consists of one point);

* the space of tempered distributions S’ and the space of Fourier ultra-hyperfunctions P, ;

* the space of distributions D’ (U) and ultradistributions of Beurling type Déw) (U) for any
open set U c R";

« the weighted distribution spaces (K {pM})" of Gelfand and Shilov if the weight M satisfies

supM (x+y) <Cinf M (x+y) if xe R".
vt i<t

* the kernel of any linear partial differential operator with constant coefficients in D’ (U) or
in Dzw) (U) when U c R" is open and convex;

* the space L, (X,Y) where X has (DN), Y has () and both are nuclear Fréchet spaces. In
particular, L, (A (@), Ao (B)) if both spaces are nuclear.

5.27 Example.

(a) The following ultrabornological PLS-spaces do not have (PA) :
» the strong dual of power series space of finite type Aj ()

* the space of ultradifferentiable functions of Roumieu type £y (U), where @ is a
non-quasianalytic weight and U c R” is an arbitrary open set;

* the strong dual of any space of holomorphic functions O (U )' where U 1is a Stein
manifold which does not have the strong Liouville property (for instance, U = D" the
polydisc, U =B, the unit ball etc.);

* the space of germs of holomorphic functions O (K) where K is compact and not
completely pluripolar (for instance, K = D" orK = B,);

* the space of distributions (or ultradistributions) with compact support £’ (U)
(or 5(’(0) (U)) for U c R” open;
* the space of real analytic functions .4 (U) for any open set U c R”".
(b) For the following LFS-spaces E the map (5.66) is not surjective and thus E not strictly
admissible:
* the space of test functions D (U);

* the spaces of test functions for ultradistributions D) (U), the space of ultradistribu-
tions of Roumieu type with comp. support £ Ew} (U), where m is a non-quasianalytic

weight, U c R" is an arbitrary open set;

« the strong dual A (U )), for an arbitrary open set U c R".
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In Theorem 6.11 we will see that a reasonable theory of E—valued Fourier hyperfunctions is
possible if E is strictly admissible. This raises the question if the condition of E being strictly
admissible is also necessary for a reasonable theory of E—valued Fourier hyperfunctions. At
least for ultrabornological PLS-spaces E the answer will be given by Theorem 6.14, namely,
a reasonable theory of E—valued Fourier hyperfunctions is possible, if and only if E is strictly
admissible, and E is strictly admissible, if and only if £ has (PA). In particular, for all spaces
in Example 5.26 a theory of that kind is possible whereas for the spaces in Example 5.27(a) no
construction of a reasonable sheaf of E—valued Fourier hyperfunctions exists. For the spaces in
Example 5.27(b) this question is still open.
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6 The duality method

In this section we construct E-valued Fourier hyperfunctions in one variable as the sheaf gener-
ated by equivalence classes of compactly supported P.-functionals. This construction relies on
the Kothe duality proven in Section 4 (see Theorem 4.1) and the method is sometimes called du-
ality method (see [22] and [13]). Furthermore, a description of E-valued Fourier hyperfunctions
as boundary values of slowly increasing holomorphic functions is provided and finally the neces-
sity of the conditions that were used for the construction of vector-valued Fourier hyperfunctions
will be examined.

6.1 Definition. For an open set Q c R, Q # &, and a locally convex space E we define the space
of E-valued Fourier hyperfunctions on Q by

R(QE):=L(P.(Q),E)/L(P«(9Q),E)

plus R (2,E) :=0.

For T ¢ L(P+(Q),E) we denote by [T] the corresponding element of R (Q,E). If the set Q
is equipped with an index, then we sometimes do the same with the corresponding equivalence
class, to distinguish between different classes. Further, we use the notation R (Q) :=R (Q,C).
We observe that
L(P.(2),E)=L(0,E)=0

by Definition 3.2 and hence R (RE ) =L (73* (E) E ) (rnore precisely, we identify L (73* (@) JE )
and {{T} | T eL(P«(R),E)}).
For Q # R there is no reasonable locally convex topology on R (Q,E) by [26, 3.10 Bemerkung,
p. 41-42] (Using the bipolar theorem, the reflexivity, the Hahn-Banach theorem and the identity
theorem, one sees that P, (dQ)’ is dense in P, (ﬁ);. Then Remark 4.4 and [25, 16.2.5 Proposi-
tion (a), p. 349] imply the statement.).

Let us first take a look at the scalar case. Let ©; c R be open. We claim that the addition

+3,P* (ﬁ] AN Q)’ X 'P* (ﬁ)’ d 'P* (51 )’, (T] s Tz) (=4 T] + TQ,
is surjective for any open Q c ;. Remark that the spaces appearing above are Fréchet spaces by

Theorem 3.5(1). The first step is to determine the dual map

/

VP (@) > (P (@i Q) <P (2))

1

of +. We denote by Jy: P. (ﬁl) - P, (51)", J1: P (51 \ Q) - P, (ﬁl \ Q) and J: P, (5) -

P (ﬁ)” the canonical embeddings which are topological isomorphisms due to reflexivity by
Theorem 3.5(1). Further, it is easily seen that the linear map

1"

P, (@1 Q)" <P, (Q) ~ (P (@12 Q) xP. (@)
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6 The duality method

defined by

D (y1,2) (T1,T2) = y1 (T1) +y2(T2), (y1,72) € P (L1~ Q)” xP.(Q)",
(11,13 € (P2 (@12 Q) P (@))

is an isomorphism. Let y € P, (Q; )”. Then there is an unique element f; € P, (Q;) such that
y=Jo(fo). For +'(y) there are fj € P. (ﬁl N Q) and f> € P, (ﬁ) such that

+'(y) =@ (1 (f1),12(f2))-

So for arbitrary (71,73) € P- (51 N Q)l x Py (ﬁ)/ we have on the one hand

+' (V) (T1, 1) = Do (fo) (T1 +T2) =T1 (fo) + T2 (fo)

and on the other

@ (J1 (/1) ()T, T2) =0 (/1) (T1) + 12 (f2) (T2) = Th (1) + T2 (f2)
thus
Ti (fo-fi)+ T2 (fo-f2)=0
implying f = fo‘gl\g and f, = fo|§ by the Hahn-Banach theorem since 77 and 75 are arbitrary.

. ‘ﬁ] \Q and fo‘ﬁ
P. (Q) via embedding. Hence we can interpret the dual map of + as

Here we used the notation fj for fy regarded as an element of P, (51 \ Q) resp.

+:P, (51) - P, (51 \Q) x P, (5), fr <f|§]\g,f|§).

This map is injective by the identity theorem. Let (+'(f,)),y be a sequence converging in

P. (ﬁl N Q) x P, (5) with respect to the product topology. Then it follows that f"‘ﬁl o converges

in P, (51 \ Q) as well as f, a in P, (ﬁ) and their limits coincide on there common domain.
Hence there is a well-defined function f € P, (51) such that

Jim + () = (Jim Sl 2 Jim Fl) = (100 Fla) =+ ()

n— oo

connoting that +’ has closed range. By [45, 26.3 Satz vom abgeschlossenen Wertebereich, p.
290] this means that + has closed range and R (+) = ker (+')° where we used the notation R (+)
for the range of +. Therefore, we obtain

R(+) =R(#) =R(+)° = (ker (+)°) = {0}° = P (@)’

by the bipolar theorem and as +’ is injective proving the surjectivity of +.
The surjectivtiy of + is equivalent to the surjectivity of the canonical map

EP.(Q) [P, (9Q) - P(Q1) /P« (21~ Q) .

I is injective by Proposition 4.3(1) (more detailed in the following Lemma) and hence an al-
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gebraic isomorphism due to the surjectivity of +. So restrictions and a sheaf structure may be
defined on Rgq, = {Rq | Q c Q open} like in Definition 6.4. It is not known whether the corre-
sponding mapping / in the vector-valued case is always an isomorphism (see Remark 6.3 as well
as the remarks before it). But this holds if we additionally assume that

9:£P (@\K,E) - P (@\K,E)

is surjective for any compact set K c R, i.e. that E is admissible. Let us turn to the already
indicated statement:

6.2 Lemma. ! Let E be admissible, Q@ c Q; c R be open and Q5 + @. Then the canonical mapping
EL(P.(Q2),E)[L(P.(9€2),E) - L(P«(Q1),E) /L(P« (QQ2),E),
[T],~[T]

is an algebraic isomorphism.

Proof.  This mapping is well-defined, in particular, independent of the choice of the representa-
tive since P, (€] ) is continuously and densely embedded in P, (£;) (see the remark right above
Proposition 4.3) and thus the embedding of L (73* (52) JE ) into L (73* (ﬁl) JE ) is defined as well
as the mapping of L (P, (99,),E) into L(Px (Q; ~ ), E) in this manner.

If R c )y, then Q, = Q; = R and therefore Q; ~ Q, = Q5 ~ Q, = dQ,. Hence the statement is ob-

viously true. Now let R ¢ Q5.
Let T € L(P.(Q),E) with [T] = 0. Then we get by Proposition 4.3(1)

T e L(P«(Q2),E)nL(Px(Q Q) ,E) = L(P. (20 (Q1\Q)) ,E) =L (P« (0Q) ,E)

and thus [T'], = 0 implying the injectivity of 1.
The surjectivity of / is equivalent to the surjectivity of the mapping

IpL(P. (Q13Q2),E) xL(Pi(Q2),E) = L(Pu(Q1),E), (T1,T2) = T1 + .
By Theorem 4.1 the surjectivity of Iy is equivalent to the surjectivity of

1:0 (T (B~ 2, E) 047 (T,E) x 07 (T8, E) J0° (T, E)
097 (T @1, E) JO7 (T,E).
(fl?fz) '_>f1 +f27

and thus to the surjectivity of
L:0%P (C\ (Q1\Q,),E)xO%? (C\Q,E) » O%P(C\QLL,E), (f1.f2) » fi+ Lo
The proof is now done in several steps beginning with the construction of a cut-off function.

— — —C —C
(i) If oo ¢ Qy or —oo ¢ Q5 then there is x; € R such that [xp,00] c Q, resp. [—o0,x1] c Q,

. —=C = o 7
since Q, c R is open. If oo € Q; or —oo € Q,, then there is X; € R such that [, c0] c Q)

1counterpart: [13, Lemma 6.2, p. 1122]
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6 The duality method

resp. [—o0,%] c Qy, since €, is open, and thus [%y,o0] C (ﬁl \.Q.z)c resp. [—o0,%] c
(ﬁl N Qz)c. We define the sets

(R\Qz)u([x0+2,oo[><[—1,1]),oer_1Aoo¢Q_2/\(—oo¢Q_1v—oer_2),
(RN Q)u(]-00,x1 2] x [-1,1]), —00 € Q1 A—00 ¢ Qy A (00 ¢ Qi Voo eQy),
0 (RNQp) u(]-o00,x1 —2]Uu[xg+2,00[) x[~1,1], £00 € Q1 A+00 ¢ Qp,
RNQ,, else,

and

(Rﬁﬁz)u([fowLZ,oo[x [-1,1]), o0 GQZ/\(—oo ¢Q_1v—oo¢Q2),
(Rﬂﬁz)u(]—oo,il =2]x[-1,1]), -0 EQQ/\(oo ¢ Q) Voo ¢§22),
(RNQy)u(]-o00,% —2]U[fg+2,00[) x [-1,1], 200 € Qy,

RNQy, else.

If we number the appearing cases in the definition of Fy from above to below by 1A, ...,
4A and in the definition of F| by 1B, ..., 4B, then we have as possible combinations:

Table 6.1: Combinations

1A | 2A | 3A | 4A
IB| x | vV | x | V legend:
2B | vV | x x | vV |V - possible
3B | x X x | v | x - impossible
4B | v |V | vV |V

The sets Fy and F; are non-empty and closed in R2, pnR=R\Q,, F{nR = Q,nR and
FynFy =9dQ;nR. By [18, Theorem 1.4.10, p. 30, Corollary 1.4.11, p. 31] there exists

Qe C”((FOOFI)C) =C>®(dQy;nR), 0<¢@ <1, such that =0 on Vy and ¢ =1 on V;
where V;, V| c R? are open and

VoDF()\(F()ﬁFl)=F()\3Q23(R\§2) and Vi o Fi~ (FonF)) =F1\ 9 > (Rn,).

81-2 , 0, 0k ) B

Figure 6.1: case: 00 € Q, —00 € Qy, 00 ¢ Q)
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Furthermore,

O (2) (31 ey < [y SO
0®) () (3, 3%) | < CK [y |y ‘dl'“dk (6.1)

for all ze R2Z\ 9 and all y' e R2, 1 <i<k, ke Ny, where ¢(%) denotes the differential of
order k of @, C >0 is a constant independent of z, y’, and k,

d(z) ==max{d(z,Fy),d(z,F1)} = max(min |z—x| ,min|z—x])
xeky xeF

and (d,),y is an arbitrary decreasing sequence with Y2 d, = 1, e.g. dy:= (1/2)". We
observe that

2 2
o (2) Ol =3 ail...aik(p(z)ylll...yi = Y 9%(2) 3 yl!l...yi
1=l =1 |(X|:k7 i1, 0k
oeN3 #ij|ij=1}=ay,
#{ij | ijZZ}ZOQ

with the notation y’ = (y’1 ,yé) . In particular, we have for 8 = (f1,) € N%

oer=e o) () i) (1)

no.=f; no.z,Bz
and so as a special case of (6.1)
d(z)_ml
079 (2)] Q- (6.2)

for all ze RZ\ 0Q,.

Let us take a closer look at the right hand side of this inequality. For z € R\ 0Q, there is
zi € Fy such that d (z,F;) = |z—zi|, i =1, 2, since Fy and Fj are closed. Let n € N5,. We claim
that

1
d(z)>— forallzeS,(dQ,;).
n

LetzeS,(dQ;).
1. case: 79, z1 €R
Let us assume that d(z) < 1. The definition of the set S, (9Q,) implies z; ¢ 9Q, nR. Thus
we get by definition of the sets F; that zo € (R \OQZ) and 77 € (]R nﬁz), in particular, zg # 71

W.Lo.g. 20 < z1. Then Op :=]z0,21 [N(R~ Q) and O =]z0,21 ["(RNQy,) are disjoint, open
sets in R. Assume that there is no Z € dQ, N R with zg < Z < z;. Due to this assumption we
obtain . .

00 U] 01 =]Z0,Zl [ﬁ [(R N Q.z) U O(Rﬂﬁz)] :]Zo,zl [

=R\0Q,

and hence, as ]zg,z1[ is connected, ]zg,z1[c Op or Jzo,z1[c Oy. If ]z,21[c Op, we get z; ¢
(RNQ;), and if ]z9,21[c Oy, we have zg ¢ (R <), which s a contradiction. So there must
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be a 7€ dQy NR with zg < Z < zy. The convexity of Dy, (z) implies Z €]z0,z1[c Dy(;) (2),
but then the following is valid

1 1
— <|z=Z < max{lz~zo|, |-z} =d(z) <~

which is again a contradiction.

2. case: (z0¢R, z1 €eR) or (z0€R, z1 ¢ R)

We only consider the first case above, the latter one is analogous. If so, these assumptions
can not occur in the cases (4A,YB), Y=1,--- 4.

In the cases (1A,2B) and (1A,4B) we have z; < xg and Re(zg) > xo + 2. Therefore, we get

|21 =Re (20)[ > [xo = (x0 +2)[ = 2.
In the cases (2A,1B) and (2A,4B) we have z; > x; and Re(z9) < x; —2. Therefore, we get
|21 =Re (20)] > [x1 = (x1 =2)[ = 2.

In the case (3A,4B) we have x; < z; < xp and Re(zg) <x1 -2 or Re(z9) > xo +2. We gain
like above |z; —Re(zg)| > 2.

If |z—z0| < 1, we obtain by the estimates above

d(z) 2|z-z1| 2 [Re(z~z1)| =|Re(z) ~z1] > |z1 ~Re(z0)| — [Re (20) —~Re (2)]

—
S|z—zo|<%

1 1 1
>!z1—Re(zo)|‘Zz2—22;.

3.case:z;¢R,i=1,2
These assumptions can only occur in the cases (1A,2B) and (1B,2A). If |z — zo| < rlﬂ we have
in the case (1A,2B)

1
RC(Z])SX|—2<)'5] < Xp <XO+2——SR6(Z)
n

and thus get
1
d(2) 2 [z-z1[ > |Re(z) ~Re (z1)| 22> ~
and in the case (1B,2A)

1
Re(z1)2i0+2>i0 > X1 >X1—2+—ZRC(Z)
n

plus d(z) >2> 1 as well.
Hence the claim is proven and via (6.2) we obtain

nlBl
dy-djg,

|8/3qo(z)\ <Al (6.3)

forall zeS,(dQ,).
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(i) Let feO#P (@ \Qi,E ) . Due to the choice of ¢ the function §(q) f) may be regarded as

an element of C* (R2\ 9Q,,E) by C*-continuation via @ (¢ ) := 0 on R\ dQ,. Further-
more,
0, zeVouVy,

0N {(%) (). else

is valid.
Letne Ny, me Ny and o € A. First we observe the following. For v, B € N(Z) with y< 8 and

IB| <m we have || < |B| <m and (’j) (ﬁ:)(ﬁj)sﬁl!ﬁz!s (m1)? as well as

max ([B - y+(1,0)|,[B-y+ (0, D)) <[(Bi + 1, B2+ 1)| = [B[ +2 <m +2.

Define the set S(n) := S, (0Qy) ~ (VyuV}). By applying the Leibniz rule, we obtain

’a ((Pf) |8Qz,n,m,a
_ 1
= sup  pa(9P9(9f) () e iR
ZGS"(892)7
BeNG, |Bl<m
S(mA )’ (352)i72f(|7|) (2)
_ /—/‘
< sup > (ﬁ) |8ﬁ‘7’8(p(z)| pa(an(Z))e—%\Re(z)l
2€Sn ()N (Vo) y<p VY
ﬁeN(z), |Bl<m S%‘Bﬁfﬁ(l’o)(p(z)‘

+%‘8ﬁ77’+(0’1)(p(z)‘

<(m)* Y sup [970(2)]  sup  pa(fUPD (2))eiReC)]

ly|<m+22€S(n) zeS(n),
BeNG, |B|<m

=C(f)
n|7|

di--djy

<(mh*c(r) Y

63 yl<m+2

» [max (C,1)]"™*?
di-dmpio

<(m!)

c(f) Y (6.4)

|Yl<m+2

where we used the properties of (dy,), , which imply 0 <d, < 1, in the last estimate.
Now we have to take a closer look at C(f). We decompose the set S(n) in the following
manner:

S(n) = [S(n)m{ze@| [Im (2)| > %}]U[S(n)\{zem [m (z)]> %}]

CSZn(ﬁl ) =M
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S(n)\ M

M & e T, (060) A

Figure 6.2: case: +oo €Q, —00 ey, 00 ¢y

Due to the Cauchy inequality we get like in the proof of (3.7) of Theorem 3.11(4) for
1(1_ 1
ri=3(2 %)

C(f)s swp pa(fI80 (@) ROs sup  po(fID (2) eI

“Sn(). perd, 1<
BeNg, |Bl<m 0, IF=m
, ! -4
ser Sup %lflgl,sn,m sup  pa(fUPD (2) JeralReC). (65)
BN, Bl<m ” ; §5A|4;%\<
eNp, |p|<m
::CO 0

Let us turn our attention to the set M. First we observe that

RC[V()UVlU U Dl/n(x)]::V.
" xedQnR
SR\ 0Q,

V cR? is open as the union of open sets and so we get by definition of the set M

A_/ICRZVCC(Rz\R). (6.6)
If co ¢ Q1 or —co ¢ Q, then there is a € R or b € R such that [a,o0] c ﬁf c (09Q)° resp.
[-o0,b] C ﬁf = (BQZ)C since ﬁlc c R is open. If so, we have

1 11

Ja+— 00 x] =~ =[ € $,(Q1) € $1 (992) (6.7)
o Ip 5 11
]—oo,b—;[x]—;,;[cSn(Ql)CS,,(QQZ) (6.8)

by definition of the sets S, (-) and thus

el o ()

n n

CSn(ﬁl) :lM()(a)
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or

M:Mn:(]_w’b_l[u]ﬁl,w[)x]_lg[-

n n nn
<Sn(€1)
[ 1 1 I 1,]
UM\_(]—oo,b—r—l[u]aJrZ,oo[)x]—;,r—l[ .
=:My(a,b)

By virtue of the definition of the set S (n) and (6.7) we have Re (z) <a+ 1 for all ze My (a)
resp. by (6.8) Re(z) > b- 1 for all ze My (b) resp. by (6.7) and (6.8) b—% <Re(z) < a+%
for all ze€ My (a,b).

We claim that M is bounded or M c (Sn (51 ) uMO) where M), defined as above, is bounded.
As [Im(z)| < 1/2n for every z € M resp. z € My, it suffices to prove that there is C; > 0 such
that [Re (z)| < C; for every z € M resp. z € My. The assumption Q; c Q; and the choice of
the sets Fp and F; ensure the existence of C; which can be read off the following chart.

Table 6.2: Bounds for the real part of M resp. My

base case | l.subcase | 2.subcase | Cj=max(-)
+00 € d \ \ \ |-n|, n
—OOE.QQ |)Z1—2|,I’l
0063Q2, —OO¢892 — —00 €§1 |X1—2|,l’l
oo £k oo 0 b-1], n

00 € Q) |-n|, |%o+2]

00%89.2, —OOEa.Qz — 00651 |—n|, |X()+2|
00 ¢ £y 0o ¢ Q I-n|, |a+1

+00 € X1 -2, [%o+2]

—OOE.Q.l x1—2, )E()+2

00 €Qp, —00 ¢ —o0 ¢ O “b—%“, ||fo+2|’

oo € Q) X1 -2/, |xo+2

+00 ¢ JQ 00 ¢ L, —00 € L2y oogéﬁi ||)E11—2||’, |‘cf+%‘|

+00 € Qg e =2, xo+2|

_ 00 €eQy, -0 ¢ Q) | [b-1], [x+2|

:|:00¢.Qz oo,éﬁl,—ooeﬁl |X1—2|, ‘a+}l‘

coot@i | o4 s ]

Hence M or M) is compact and we have by (6.6), since f € Q%P (@\ Q JE ) implies the
continuity of f(B)) on R2\RR for all § € N3,

sup  pa(fUPD (2))e R < sup  pa(fUD (2) )emalRe@ < oo
ZeM, €M,
BeNG: Blem e, |Blsm
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or, since Myc M,

Sup pa(f(lﬁ‘) (Z) )e—%|Re(z)\
zeM

BeNG, |Bl<m

< sup pa(F () RO qup  p(£UBD (2) )erHREE)
<Sn(Qu), zeM,
BeNG, |Bl<m BeNZ, |Bl<m

:‘f‘ﬁl J,m,o

SC2|f|§1.2noc+ sup Pa(fﬂm)(z))e_%'Re(Z)‘<oo
o zeM,

BeNG, |Bl<m

where C; > 0 is a constant existing by the proof of Theorem 3.6(4). Thus C (f) < oo by (6.5)
and therefore |8 (of) |aQZ7n7m7a

5((pf) € gerp (@ N QQz,E) . As E is admissible, there is g € £4P (@ N an,E) such that

< oo for all n € N3y, me Ny and & € A by (6.4) connoting

dg=0(ef). (6.9)

(iii) We set f1:=(1-¢) f+g and f> := ¢ f —g. It remains to be proven that
f1 €027 (C\ (Qi\Q2),E) and f> € 0¢P (C\Qy,E). The proof is quite similar to part
(ii). fi is defined on C~ (51 \ Qz) (by setting (1-¢) f:=0 on Q) and can be regarded as
an element of O ((C \ (ﬁl N Qz) ,E) due to (6.9).

Let ne Ny, and set S(n) =S, (Ql N Qz) \ V. Remark that S, (ﬁl N Qz) cS,(dQ;) and

S(n) = [S(n)m{ze(C| Im (2)| > %}]U[S(n)\{ze(ﬂ |Irn(z)|>2—1n}].

cSon (ﬁl ) =M

S(n) \ M

S

ol | A LEY N [ Yal=2lIn )

i1 -2 / .5 Q3 b O -\ T, (91 \92)"E

Figure 6.3: case: 00 € Q, —00 € Qy, 00 ¢ Q)
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For ot € A we have by the choice of ¢
_1
filgapma= WP Pa(fi(z))e R

2€8,(Q1 Q)

< sup pa(g(2)e ®Ole sup  pa((1-9)f(2))e e
2€Sp(9Q2) zeSn(ﬁl \Qz)

= |g|8QZ 1,00

1
=Igly, mow+ SUP |1-@ (2)| pa(f () e nReG)

2€8(n) ———
<1

<lelyaymoat sup pal(f(2) )e iR 1 sup po (£ (2) e 3 Re)
2682, (1) M

:|f|§l 2n,a

_1
= l¢lo0,n00+ flg 2na * SupPa(f (2) JemFeC. (6.10)
z€

Again we have to take a closer look at the set M. First we observe that

RnQic[ Vi v U  Dy)]=V.

SRAQ, X€ (51 \QZ)OR

V cR2 is open and so we get by definition of the set M
McVe=vCc(R\G).

Once again we define the sets M ana_logously to part (i1) and replace in (6.7) and (6.8) the
inclusion S, (Ql) cS,(dQ) by S, (Ql) cS, (Ql N Qz) . The rest of the proof is analogous
to part (ii) where we have as corresponding chart:

Table 6.3: Bounds for the real part of M resp. M

base case ‘ subcase | €1 =max ()
+00 €§I\Q2 ‘ ‘ |—n|,n
Q Q —00 €l %1 -2, n
0 €Ny, —00 ¢ QN —oogﬁﬁ? ||b1—l| ’
Q 9 00 € -n|, |Fo+2
00 ¢ Q1N Qy, —00 e QN oo¢§i ||_n|| |a0+l|
? n
+00 € () %1 -2], %o +2]
100 ¢ QN Q) ~00 £ Q, 00 | [b-3|, [fo+2|
1 oo ¢ Qp, —o0 € Q) ‘f1—2|’|a+%
I T

Since f € 07 (C\Qy,E) and so f is continuous on R?\ Q;, we obtain again

sup pa(f (2) )e Re@) < oo,
zeM
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6 The duality method

Thus we get |f |§1\szn7a < oo for every ne Ny, and o € A by (6.10) implying f; €
0e? (C\ (Qi Q) ,E).

f> is defined on C\ Q; (by setting ¢@f :=0 on Q; \Q)) and can be regarded as an ele-
ment of (’)((C \ﬁz,E) due to (6.9). Let n e Nyy. We set S(n) =S, (52) \ Vo and remark that
Sn(Q2) €8, (992) as well as

S(n) = [S(n)m{ze(C| Im (2)] > zl—n}]u[S(n)\{ze(C| |1m(z)|>i}].

2n
S, (Q1) =M
\
S(n)\ M
} n
- ool{ . v : i . - d ! , io0 I
Un(€2) B 7/ i i A oA 0. 6 A T0+2
M : ' -

Figure 6.4: case: +oo €Qy, —00 ey, 00 ¢y

For o € A we have by the choice of ¢
1
folg,na= sup palfa(z))e nReE)
ZESn(.Qz)

< swp pa(g(@)e O sup pa(pf(e))en el
2€5n(9<0) 2€5,(92)

=|g|aQ2,n,o,a

_1
=1glaa,mo.at SUp 19 (2)| palf(z))e

ZES(H)R/—’
<1

IRe(2)]

< |g‘8927n,0,a + Sup pq (f (2) )eﬁ‘Re(Z)' + suppa(f (2) )e*ﬂRe(Z)\
ZESzn(ﬁl) ZEM

:|f|§l 2n,0

_1
= lglog, n0.a+ g, 200 sUPPa(f (2) )N (6.11)
ZE

Again we have to take a closer look at the set M and observe that

Re[ Vo v U Dl/n(x)]::V.

;\,_/7 xeﬁsz
SRNQ»

112



Karsten Kruse

V cR? is open and so we get by definition of the set M
McvC=yCc (RZ\R).

Define the sets M analogously to part (ii) and replace in (6.7) and (6.8) the inclusion S, (ﬁl) c

Sy (0Q) by S, (ﬁl) cS, (ﬁz) . The rest of the proof is analogous to part (ii)) where we have as
corresponding chart:

Table 6.4: Bounds for the real part of M resp. My

base case \ subcase | Cp=max()
:tOOEﬁZ ‘ ‘ |—l’l|,l’l
— — —OOEﬁl |x1—2|,7’l
Qp, —0¢Q =
2efh meE | 4y, -1l n
— = 00 € Q) |-nl, |xo +2|
Qy, —00 e —
00 ¢ L)y, —00 €Ly 00 ¢ Q |—n\,|a+%
+00 Eﬁ] |X1 —2‘, ‘X0+2|
_ o, _ e _1
100 ¢ O 00691, oo¢91 |b n|,|x0+]2|
00 ¢ Qp, —00€Qy | [x1-2[, |a+,
:toogéﬁl ‘b—l‘,|a+l

Again we gain

SuPPa(f(Z))e—%lRe(z)\ < oo
zeM

and thus get |f2|§2 no < oo forevery neN,; and o € A by (6.11) implying f> € O (@ N ﬁz,E) .
Obviously fi + f» = f which completes the proof due to part (i).

]

Ito (see [23, remarks above Proposition 3.2, p. 15]) states that Lemma 6.2 is always valid if £
is complete, but he does not prove that / is surjective. Nevertheless, he states as an open problem
(see [23, Problem A, p. 17]) if for two compact sets K|, K> c R the mapping

L:L(P. (K1),E)xL(P. (K2),E) > L(P:« (K1 UK3) ,E),
given by L(T1,T») := T - T, is surjective.
6.3 Remark. 2 Let Q) c Q; c R be open. Then the following assertions are equivalent:

1. The canonical mapping
LEL(P.(Q2),E) [L(P. (9€2),E) > L(P«(Q1),E) /L(P« (Q1 Q) ,E)
is an algebraic isomorphism.
2. The mapping

L:L(P«(Qi Q) ,E)xL(P«(Q),E) » L(P.(Q1) ,E)

2counterpart: [13, Remark 6.3, p. 1123]
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6 The duality method

is surjective.

Proof. 1 is obviously surjective if and only if L is surjective. Moreover, [ is always linear and
injective by Proposition 4.3(1). 0

Using Lemma 6.2, we can define restrictions on R (Q,E), if E is admissible, as follows:

6.4 Definition. Let E be admissible. For open sets Q, c Q; c R, Q, + @, we denote by
¢:L(P.(Q1),E) /L(P+(9€1),E) » L(P+(Q1),E) [L(P. (Q1 Q) ,E)

the canonical quotient map.
We define the restriction mappings via Lemma 6.2 by

Ro, 0 R (Q,E) = R(22.E), Ra, 0, ((T1) = (T, = I (a([T1)).
and for an open set Q; c R

Ro, 5 R(Q1,E) > R(B,E), Rg, »([T]) =[T] |® :=0.

6.5 Lemma. ° Let E be admissible and Q c R be open.

The spaces Rg (E) :={R(w,E) | @ c Qopen}, equipped with the restrictions of Definition 6.4,
form a presheaf on Q satisfying the condition (S1) (see [9, 1.5, p. 5]):

For every family of open sets {a)j cQlje J} with @ :=Uje; ®; holds: If [T] e R (@, E) such that
Ro.w; ([T])=0forall jeJ, then [T]=0.

Proof. (i) We clearly have Ry ¢ = idR(&E). Let w3 c @y c w; c @ be open. We have to
show that R, o, © R0, = Rw,,w; 15 valid. This is obvious if one of the sets is empty,
so let them all be non-empty. Let T € L(P.(®,),E). Let Ty € L(P.(®@3),E) be a repre-
sentative of Ry, o, ([T'];), let T1 € L(P.(®@2),E) be a representative of Ry, «, ([T];) and
T» € L(P.(®3),E) arepresentative of Ry, w, °Reyw, ([T];) =Rawy,a; ([T1],) - By definition
of the restrictions the following is true:

(@) To-T e L(P«(0) \ @3),E)
(b) T -T € L(P.(® ~ »),E)
(¢) Th—Ti e L(P.(®2~ 3),E)

We first observe that
To-T, e L(P«(®3),E). (6.12)

It remains to be shown that Ty — 75 € L(P.(d®3),E) . The equality
TO_T2 = (T()—T)+(T—T1)+(T1—T2)
holds on P (K) and the right hand side is an element of

L(P. (@1~ 03) NP (01 N ) NP (@2~ 03),E) = L(Px(@1 \ 3),E)

=P (@) 03)

3counterpart: [13, Lemma 6.5, p. 1124]
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by (a) - (¢) and as @3 c @, c ®;. So due to the remark above Proposition 4.3 Ty — 75 can
be regarded as an element of L(P.(®;\ ®3),E) as well and thus we get by Proposition
4.3(1) and (6.12)

To-Tr e L(P«(®3),E)nL(P.(@1~w3),E) =L(P.(@3n (0~ m3)),E)
=L(P«(dm3),E).

(ii) Let T be like in (S1) and j € J. Then for a representative 7; of Ry o, ([T]) it holds T; €
L(P.(dw;),E), since Ro.w; ([T])=0,and T -Tj e L(P.(®~ ®;),E) by definition of the
restriction. Again the equality

T=(T-T))+T,

holds on P, (@) and the right hand side is an element of

L(P(@~ 0)) nP.(00;),E) =L(P.(0~ »),E)

:Px- (5\ a)j)

By the same argument as in part (i) we can regard 7 as an element of L(P* (0N wj),E )
and get
suppT c @\ ®;

where the support is meant in the sense of Proposition 4.3(2). Since this is valid for all
j €J, we obtain
suppT c (o Nwj=0\|Joj=0~0=00
JjeJ JjeJ

and thus 7 e L(P.(d®w),E),i.e. [T]=0.
]

For the special case Q =R we use the notation R (E) := R (E) . We will see that the presheaf
Ra (E), which satisfies (S1), is already a sheaf, so satisfies, in addition, the sheaf condition ($2)
(see [9, 1.5, p. 6]) if we assume that E is not only admissible, but strictly admissible. The next
statement will turn out to be an useful tool in this context.

6.6 Proposition. Let X be a topological space, ((] ,Rg) a presheaf and (.7: ,R” ) a sheaf on X.
Let h:G — F be a homomorphism of presheaves such that ho:G (Q) - F (Q) is an isomorphism
for every open set Q c X. Then (Q,Rg) is a sheaf (and h an isomorphism of sheaves).

Proof. First we remark the following. h:G — F is a homomorphism of presheaves, i.e. the
diagram

G(Q) 2 F(Q)
Rgglj jRgg,

Q(Ql)h—gl>7‘"(91)

commutes for open sets Q; c Q c X. Let f € F(Q). Since hg and hg, are isomorphisms by
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6 The duality method

assumption, one has

e (Flo, ) =hat (ha (g ()]a, ) = et (hey (ha! (D, )) = e (N,

since A is a homomorphism of presheaves which means that the diagram

-1

G(Q) 22— F(Q)
Rg, Qll legl
G(Q1) <h,—17:(91)

Q

commutes as well, so A~ is homomorphism of presheaves.
(S1):Let {Qj | je J} be a familiy of open subsets of X and Q:= Uy ;. Let f € G (Q) such that

f‘Qj=0f0rallje].Thenhg(f)€7:(9) and

hg(f)‘ hg(f\g) ho(0)=0

for all j e J due to the assumption and since 4 is a homomorphism of presheaves. As F is a sheaf,
hence satisifies (S1), we obtain &g (f) = 0. Due to the injectivity of hg we get f = 0.
(852) : Let (Q ) and Q be like above. Let fj € g( ) such that ff‘Qijk = fk‘ﬁjﬂﬂk for all

eJ
Jkeld. Thenhg( ) ( )and

ha, (£;) ‘Qijk ~he, (fi) ‘angk =hon, (fj‘anQk) ~ho,ng, (fk‘gjnﬂk) =0

for all j,k € J by the assumption and since 4 is a homomorphism of presheaves. As F is a sheaf,
hence satisifies (S2), there exists G € G (Q) such that G‘ o = ho, ( fj) for every j € J. Now we
J

define F := h! (G) € F (). By virtue of the remark in the beginning we gain

Flo, =1 (6)]g, =1a) (6o, ) =il (ho, (1) = £
for all jeJ.

Therefore, G is a sheaf and thus /4 an isomorphism of sheaves. L]

We will use this proposition to show that R (E) satisfies the condition (S2) and is further-
more a flabby sheaf if E is strictly admissible. For this purpose we introduce a boundary value
representation of R (E) in the following way: Let Q c R, Q # &, be an open set and we define

UQ):= {U\Uc@open, Umﬁzﬂ}.

Now we define, similar to Definition 3.2, spaces of vector-valued slowly increasing holomorphic
functions on U \R resp. U for U eU (Q).

e If —co e Q or co € Q, we define

0P (U\R,E) :=limproj 0" (S, (U) ,E)

n—oo
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where
O"($n(U),E):={f OS5, (U),E) [VaeA: ||fllys po <00}, neNs,
with 1
Il o= sup pa(f(2))e nReE)
2€8,(U)
and
Un{zeC|L<Im(z)|<n, Re(z)>-n,d(z,0UnC) >} —00fQ 00eQ,
Sa(U)=4Un{zeC|L<|Im(z)|<n, Re(z) <n,d(z,0UNC)> 1} -00eQ 00¢Q,
Un{zeC|i<[m(z)[<n, d(z,0UnC)> 1}, +00 € Q.
3 r ] Bt . 1,
= o i ; 4 1
Figure 6.5: S, (U) for oo € Q, —oc0 ¢ Q
o If oo ¢ Q, we define
0*?(UNR,E):=0((U~R)nC,E).
o If —o0 € Q or 0o € Q, we define
O%? (U,E) :=limproj O"(T,(U) ,E)
where
On(Tn(U) 7E) = {fE O(TH(U) 7E) | VaeA: |||fmU,n,a < 00}7 ne NZZa
with 1
1Al = s pa(f(2))e R
zeTh(U)
and

Un{zeC|[Im(z)|<n,Re(z) >-n,d(z,0UNC) >} —00¢Q 00eQ,

T,(U):={Un{zeC||Im(z)| <n, Re(z) <n, d(z,0UNC) > 1}
Un{zeC|Im(z)|<n,d(z,0UnC)> 1},

—0€Q 00 Q
+00 € Q.

Y
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6 The duality method

o If oo ¢ Q, we define
O“?(U,E)=0(UnC,E).

We remark that QP (U “R,E ) and O“? (U,E) are complete locally convex spaces by an anal-
ogous proof to the one of Theorem 3.6, if —oo € Q or oo € Q. If +oo ¢ Q. then this is obviously
valid for the corresponding spaces as well if equipped with the topology of uniform convergence
on compact subsets. Moreover, if U = C, so Q = R, then the definition of Q%P (@\RE ) and

Oep (@,E ) in the just introduced sense coincides with the one in the sense of Definition 3.2 (and
therefore the spaces have the same symbol).

6.7 Definition. For an open set Q c R, Q # @, and U € U (Q) we define the space of boundary
values by B
bv(Q,E) = 0P (U\R,E) /O*? (U,E)

plus bv(2,E) :=0.

6.8 Lemma. # The definition of bv(Q,E) is independent of the choice of U €U (), if E is
admissible.

Proof. LetU, U, el (Q),wlo.g U;:= (@\E) uQ. Then U c U;. The canonical mapping
J:0%P (U \R,E) JO%P (U,E) - 0P (UR,E) JOP (U,E), [f] = [f\(U\R)mC],

is well-defined since O (U,,E) c 0% (U,E).
Let f € 0P (U; \R,E) with [ 1| (U\R)mc] =0, ie. f| (UT)nc € 0P (U,E). Then
fe0%? ((U\R)uU,E) =0%? (U},E)

and therefore [ f] = 0 connoting the injectivity of J.
The proof of surjectivity resembles the one of Lemma 6.2, but it is sometimes necessary to use
two cut-off functions.

(i) If 0o ¢ © or —oco ¢ Q, then there is x; € R such that [xg,c0] c Q' resp. [~oo,x;]c @ since

ﬁc cRis open. If oo € Q or —oo € Q, then there are X; € R and & > 0 such that [, 0] c Q
resp. [—o0,%1] c Q and [%p, 00| x [—€p, €] c U resp. [—o00, X | x[—€1,€] cU since Q is open

4counterpart: [13, Lemma 6.7, p. 1124]
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and U €U (Q). We define the sets

(UCNR?)u(]-o00,x; 2] xR), —00 ¢ Q, 00 €dQ,
(UCORZ)U(]—OO,)Q—2]XR)U[RX(R\]—%7%[)], —0 ¢ Q, c0eQ,
(UCnR2)u ([xg+2,00[xR), 00 ¢ Q, —00€dQ,
(UCNR2)u ([xq+2,00[xR)u []Rax(]R\]-T1 a0], 0¢Q, —ceQ,
Fy:={ (UCORZ)U[]R (R\] min(f.€1) min(eo.€1) [)] +00 €Q,
UCnR2, +00 € 0Q,
(UCORZ)U[]RX(R\] % %[)], 0 €Q, —00€dQ,
(UCORZ)U[RX(R\] %1 %[)], —00€Q, 00 €0dQ,
(UCNRZ)u(]-o00,x; —2]u[xg+2,00[) xR, +00 ¢ Q,
and
(RnQ)u(]-o0,51-2]x[-%,4]), —0€Q, 00 ¢Q,
o (RNQ)u([fp+2,00[ [—%,%]), 0eQ, —00¢Q,
b (RHQ)U(] 00, X1 -2]u [~0+2,oo[)><[—mm(io’el),min(io’s')], +00 €Q,
RNQ, +00 ¢ Q.

If we number the appearing cases in the definition of Fy from above to below by 1A,
, 9A and in the definition of F; by 1B, ..., 4B, then we have the following possible
combinations:

Table 6.5: Combinations

1A | 2A | 3A | 4A | 5A | 6A | TA | 8A | 9A
1B | x X x v X X X v X legend:
2B | x | vV | x X X x | v | x x |V - possible
3B | x X X x v X x X x | x - impossible
4B | vV X v X X v X x v

The sets Fy and Fj are closed in R2, F; + @ and Fyn F; = dQnR. Fyis empty iff UCnR2 = &
and +oo € Q. This implies U€ c {+o0} xR, thus R? c U and so Q = R. If Fy # @, then by

[18, Theorem 1.4.10, p. 30, Corollary 1.4.11, p. 31] there exists ¢g € C*> ((F()ﬂFl)C> =

C>® (R2\9Q), 0< @y < 1, such that ¢y =0 on Vy and @y = 1 on V| where Vy, Vi c R? are
open and B
Voo FoN (FonF) =Fy~dQ > (R\.Q)

and
VioF \(FoﬂFl) =F NJQ D (ROQ)

as well as

B pd@ P
0P o (z)| <C 7 d\m (6.13)

for all ze R?\ dQ and all B € N3 where C, d and (dj,),, are like in part (i) of the proof of
Lemma 6.2. If Fy = @, we set Vg := @, V; :=R? and ¢y := 1 on V.
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wl@

Figure 6.6: case (7A,2B): 0o € Q, —00 € dQ

Furthermore, we define the sets Ky := {(x,y) e R? ly< ekl v y> 2e‘|x|} and
Ky ={(x,y) eR?| —e M <y <eh} as well as

KOU[RZOX(R\]_272D]7 —OOEHQ, OO¢8Q,
Fy={Kou[Repx (R\]-2,2[)], -0 ¢dQ, co€dQ,
K07 +00 € QQ,

plus

KiUu(Ryox[-1,1]), —oc0€dQ, co¢dQ,
FI = KIU(Rgox[—l,l]), —OO¢8Q, OOE&Q,
K], +00 € dQ.

The sets Fy and £ are non-empty and closed in R? and FynF; = @. Like above there is
@ eC ((Fomﬁl)c) =C> (R%),0< @ <1, such that ¢; =0 on Wy and ¢; = 1 on W| where
Wo, Wi c R? are open and

Wy 2 Fy ~ (FOOF'I) =F
and

Wi s Fi~ (FonFy) = F

as well as y "
~p1d(z)
98¢ ()] < S (6.14)
dy--djg,
for all z€R? and all B € N2, where C, d and (dy,),,y are like above. If +o0 ¢ dQ, we set
Wy =@, Wi :=R? and ¢@; := 1 on W;.
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Figure 6.7: case (7A,2B): 00 € Q, —00 € dQ

Again we take a closer look at the right hand side of (6.13) resp. (6.14) and claim

(a)
B:= inf d(z)>0,
e5n(9Q)
(b) -
D:= inf d(z)>0.
268,(0Q)

(a) case: co € Q, —00 ¢ Q, i.e. (2A,2B)
(1) ForzeS, (dQ) with Re (z) < x; —2 we have
d(z) =max(d(z,Fp),d(z,F1)) =d(z,F) > 2—% >1
and with Re (z) > %o +2

z €k,
d(z)><min($2,2), z¢FK,z¢A,
min(7,2), zely,

:min(@ﬂ).
8

(2) For z€S,(9Q) with Re(z) <X and [Im(z)| > 1 we get

&
4>

g:l\)l

d(z)>d(z,F) 2min(2,%) = l

n

(6.15)

(6.16)

(3) By Remark 3.3(1) the set U, (dQ) has finitely many components Z;, so there exists k €
N with U, (dQ2) = U’J‘.:IZj. Since +o0o ¢ dQ, all Z; are bounded. Let aj :=minZ;ndQ
and bj:= maxZ;ndQ. W.lo.g. aj<aj,. for 1 < j<k (otherwise renumber). We
observe that by = max ¢ b; < Xp. Due to Remark 3.3(2) thereis 0 <r; < 1/n such that
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{ze(C| d(z, [aj,bj]) grj} cZjforall 1< j<k.
Let z€ S, (9Q) such that x; -2 <Re(z) < b and |Im(z)| < L.
* If aj < bj, we therefore obtain for z with a; <Re(z) <b;

d(z)>d(z,F1) >rj.

If k > 2, consider z with b; <Re(z) <ajy; for 1 < j<k-1.1fd(z) < 2, we have
with Ny := {weC| [Im(w)| > 5=} and Ny := {we C | d (dQNR) < 5-}

d(Z,Fl) =d(Z,F1 \Nl) :d(z,([bj,aj+1]m§) \Nl)

and
d(Z7F0) :d(Z7F0\ (NOUNI))

1 1
:d(Z,(Foﬁ{WEC|bj—ESRG(W)Saj+1+ﬂ})\(N0UN1)).

=Ko, j

Ko,j and K| ; are bounded and closed sets in R?, thus compact, and disjoint.
Hence ¢ := d(Ko,j,KLj) >0 yielding to

c
d(z) = d(z,Ki;)>-2>0
(e) = max d(2.Kij) 2 5>

for all 1 < j<k-1. Combining these results, we obtain

. . .ocj 1
d(z) >min( min r;, min —=,—|>0
1<j<k 7 1<j<k-1 2 " 2n

for z€ S, (dQ) with |[Im(z)| < 1/n and a; <Re(z) < by.

* Consider z with Re(z) <a;. Then
1
d(z) 2d(z,F1) =|z~ai1]> "

1s valid.

Let z€ S, (9Q) such that by <Re(z) <% +2. If d(z) < 5-, we get with
N, := {weC| Re (w) >)E0+2+ﬁ} and
N;:= {we(C| Im (w)|>n+5- vRe(w) <bk—ﬁ}

d(z,Fi) =d(z,F (D%n () UM, ) )

:d(z,{weFl | Re(w) > by}~ (Dﬁ (bk)UNz))

R,
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as well as
d(Z,F()) :d(Z,F() N <D3L (bk) UN, UN3>).

—Ro

Ky and K; are compact and disjoint. Thus we have ¢ :=d (KO,KI) > (0 implying

co
d(z):ler?(?i(}d( K)>=>0.

(4) Merging (1)-(3), we gain

£ 1 C_J 1) C_O)
zeS,lllggQ)d(Z)>mm(1 mm( 8’ 2),n,mln(11£1}£1kr] 1<IJn<1k 1272 2 70

The proof of the other eight cases can be done quite analogously keeping the definition of
U, (d€) in mind and that, if —oco € dQ or co € dQ, we have for z€ S, (dQ) withRe(z) < -n
resp. Re(z) >n

1
d(z)2d(z,F1)> .
(b) We only consider the case —oo € dQ and oo ¢ Q. The proof for the other two cases is similar.
(1) For zeS,(dQ) with Re(z) > 1 we have

15 ZEFO?
(z) max( ( FO),d(z,Fl))z min(%,l), z¢ Fo, 7¢ FY,
min(1,1), zeF,

1
5
(2) Let z€ S, (9Q) such that 0 <Re(z) < 1. If d(z) < 5, then
d(z,Fp)=d(z,Fo~ (NouNy)) and d(z,F)=d(z,Fi \Ny)
whereNozz{we(CHIm(w)>n+2n}andN1 {WEClRC(W)<—%VRC(W)>1+%}.

The sets Fo~ (NouN;) and Fj \ N; are compact and disjoint, thus we gain cg :=
d(Fo SN (NguNy), Fi s Nl) >0 and therefore

(3) LetzeS,(dQ) with Re(z) <0.If d(z) < 5-, then
d(Z,F()):d(Z,FO\(N()UNz)) and d(Z,Fl)Zd(Z,Fl\Nz)

with Ny from part (2) and
Ny = {w eC| (|Im(w)| <3 ARe(w)<-n- ﬁ) vRe (w) > %}
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The sets Fy~ (NgUN,) and Fj \ N, are compact and disjoint, so we obtain cj :=
d(Fo N (NguM,) , Fy \N2) >0 and hence d(z) > 3 >0.

(4) By combining these results, we have

. 11
inf d(z)zmin(—,—,@ C—l)>0.
268, (9Q) 2'2n

(ii) Let f € 07 (U\R,E). By the choice of ¢ and ¢; the function 9 (@190f) may be re-

garded as an element of C* (R2\ 9Q, E) by C*-continuation via d (¢; @y f) := 0 on
[(U€nR?)UR]\ dQ. Moreover, with the definition

Vi= (VouWo)u (VinWy),

the equation
0, Z€V,

5((PI(P0f)(Z):{[<§¢1)(Pof+<§¢0)(p1f](z), else,

is valid.

The next step is similar to (6.4). Let n € Ny, me Ny and a € A. We define the set S(n) :=
Sp(9Q)\V and Gy :=#{yeN2 | |y| <m}.

If ;#1,i=1,2, on R2, we obtain by applying the Leibniz rule twice

|a ((P] (POf) |8Q,n,m,oc
= sup  pa (P9 (grouf) (2) ) eI
268, (0Q),
BeNG, |Bl<m
<m)* sup Y [F7[(901) o0+ (Fg0) | (@) sup  pa(fIFD (2) )ernlRe)
z€S(n), y<B ze8(n),
BeNG, |Bl<m BeNG, |Bl<m
=C(f)
<my'c() s Y Y [07(9¢1) ()P e (2) + 97 (Ign) (2) 9P (2)
zeS(n), y<Br<B-y
BeNG, |Bl<m
<m)*C(f) Y Y. sup 9791 (2)] sup|d gy (2)|+ sup |97y ()| sup|dP e ()]
ly|<m|t|<m+2 zeS(n) ze8(n), zeS(n) 7€8(n),
VeN3, [v]<m VeN3, [v|<m
317 ~[v]
< (mH)*c.c(f) S Cl7l sup d(z) ~ supC'“‘&
(613 joms2 zes(n) AU dig] zes(n),  divdy)
©.14) veN3, [v|<m
I =0 y-1ol
+C|T| Sup & Supé'”‘&

eS(n) A1 djg) zes(n),  d1+dy)
veN, |v|<m
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[max(C,C’,l)]m+2

< (m)*Cp —C(f) ). D7 I® sup BVl B1l sup DIV, (6.17)
((%1156)) (dl"‘dm+2) |T|<m+2 veNé, veNé,
' |v|<m |v|<m

If o # 1 and @; = 1 on R2, then

max (C,1)]"™*

17
di-dy.r C(f) Z B,

lyl<m+2

< (2L

20Qnm,a (6.13),
(6.15)

9 (91000)|

and if @9 =1 and ¢; # 1 on R2 then

< (m!)2 [max (C‘, 1)]m+2

AQnm,a (6.14), di---dms2
(6.16)

c() > b

|YI<m+2

9 (91001)

Now we have to take a closer look at C (f) . First of all we remark that
[(UCUR)nR?] = ([(U°nR?)u(RNQ)]\ Q) u(dQNR)
c [(V()UW())U(Vl ﬂWl)U U D, (x)
xedQMR "
=Vu U D (X) =W.
xedQNR "

W is an open set in R? as the union of open sets and we get

S(n) =[8,(0Q)\V]cWC=WC c [(U\R)nR?]. (6.18)

In the following we will prove that either S () is already bounded or that there are k € N,
and My c S (n) bounded plus M c S (U) such that

S(n) c (MyuM;).

As [Im (z)| < 1/n for every z € S (n), it suffices to prove that there is C| > 0 such that [Re (z)| <
C) for every z€ S (n) resp. z € Mj.

1. case: +oo ¢ dQ

1.1. case: +00 ¢ Q. i.e. (9A,4B).

The set S (n) is bounded, since for all z€ S(n):

IRe ()| < max (|x1 -2, |xo +2)

1.2. case: (c0€Q, —00 ¢ Q) or (c0 ¢ Q, —c0eQ) or oo € Q. i.e. (2A,2B) or (4A,1B) or
(5A,3B).
We define

{zeC|Re(z) >%+2}, 0€eQ, —0¢Q
M:={{zeC|Re(z) <x -2}, 0 ¢Q, —c0eQ,
{zeC|Re(z)>%+2 v Re(z) <X -2}, zo0eQ,
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6 The duality method

and decompose the set S(n) as follows

S(n)=[S(n)~M]Ju[S(n)nM].

::MO :ZM]

M is bounded because

max (|x; —2|,|%o+2|), o0eQ, —0¢Q,
|Re (z)| < {max (| -2|,|x0+2]), o0¢Q, —c0eQ,
max (%] —2|,|%p+2|), +o0eQ,

for every z € Mp. Let & := min (&, € ) and

- lmin(z,ﬂ,ﬁ) :min(l,ﬁ), i=0,1,2,
2 2'4 8

and choose k € N with k > max (n,£;) and + 7 < 8 ,1=0,1,2, in the corresponding cases plus,
in addition,

-k <Xg,ifooeQ, —co¢ Q resp. k>Xj,ifoo¢Q, —oc0eQ.

1 . (1 ei) ) ( & ) ) ( 38,)
—<min{—,—|<min{1,—-r])<min(1,—
k n 8 4 8

is valid and thus for all z € M,

Then

D (z)
c{weC|d(w,M;)<r}
([~0+2—r,oo[x[—%—r,820+r]) {weC||Im(w)| <% r} 0€eQ —00¢Q
ci(l-oo,x1-2+r]x[-F-rF+r])\ {we(C||Im(w)| L1}, 00¢Q, —00eQ,
((]—oo,i1—2+r]u[)fo+2 roo[)x[—j—r,ezz+r]) {w|]Im(w)\<4 r},ioer,
<[~0+l,oo[><[—5% SE]) weC| Im(w)] < @ 00 €Q, —00 ¢ Q,
c 4 (1-o0,81 - 1]x [ 3,3 )« {weC||Im(w)|<— 00 ¢Q, —00€Q,
(1= 00,8 - 1ufo+ 1,00[) x [ -3, %] ) {we Cl Im(w)| < §}, +e0cQ,
cS;(U)c (UNR)nR2, (6.19)

Due to the Cauchy inequality we get like in Theorem 3.6(4)

sup  pa(fUBD () ) HIReC2)

€My,
BeNG. Bl<m
<ei sup Bl sup max pa(f(C) )e #Re(0)
BeNZ, |B|<m 1Bl zeMy |§—2l=r
— Ao
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<Ay sup pa(f(C))e tRe(Q)
§eSk(U)

=AollA iy k-

2. case: (00 € dQ, —oo ¢ Q) or (00 ¢ IQ, —00 € Q)
2.1. case: (c0€dQ, —00 e Q) or (00 €Q, —00 €dQ), i.e. (8A,1B) or (7A,2B).
We define the set

_J{zeC|Re(z) <X -2}, 00€dQ, ~00€Q,
" {z€C|Re(2) >Fp+2}, 0eQ, —0edQ,

and decompose S (n) in the same way like before, i.e.

|“|
T
—In(2n)

Figure 6.8: case (7A,2B): 0o € Q, —c0 € dQ

We observe that the inequality 1/n > 2¢71l is equivalent to In(2n) < |x| for all x € R. Hence
M, is bounded, since

max (|%¥; —2|,n,In(2n)), 00 €0Q, —00€Q,

R <
e {max<|—n|,|—1n<2n>|,|x0+2|>, 0 €Q, ~00 €30,

for all z € My. Using the same r and k like in case 1.2 (only for i =0, 1), we get again by the
Cauchy inequality

1
sup  pa(fUPD (2))e iR < Ao [l £llye .o
zeMy,

BeNg, |Bl<m

in the corresponding cases where Ay is defined like before.
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6 The duality method

2.2. case: (00 € 9Q, —00 ¢ Q) or (00 ¢ Q, —00 € IQ), i.e. (1A4B) or (3A4B).
The observation of the previous case yields to the boundedness of S(n) since

max (|x; —2|,n,In(2n)), 00 €9Q, —00 ¢ Q,

R —
| e(Z)| < {max(|—n|,|—1n(21’l)|,|x0+2|)’ 00¢Q7 —00 E&Q,

for every ze S(n).
3. case: +o0 € dQ, i.e. (6A,4B) or ¢y =1.
In both cases the set S(n) is bounded because for all z € S(n)

|Re (z)| < max (|-n|,|-In(2n)|,In(2n),n) = max (n,In(2n)).

So in all cases it follows either that S(n) c [(U \ R)] NR2 is compact and

c(f< sup  pa(fI)(2))e Rl < oo
zeS(n),
BeNG, |Bl<m

or that there are M c [(U N E)] NR? compact and k € N, such that

c(N< sup palfIP)@))e ROl A flly g q < o0
zeMo,

BeNG, |Bl<m

by (6.18) and since f € O¢P (U \RE ), in particular, that all (complex) derivatives are
continuous on (U \E) NnIR2. Due to (6.17) (and the two subsequent inequalities) this im-

plies that |§((p1(p0f)‘(9Q < oo for all neNsy, meNg and o € A and thus 9 (@ @y f) €
LI, 0 .
gexp (@ N 8Q,E) . As E is admissible, there exists g € £P ((C N 8Q,E) such that

g =0 (P190f). (6.20)

We set F := @@y f —g. The next step is to show that F' € Q%P (@\ﬁ,E ), in particular,
F e O&p (U1 \R,E) since Q%P (@\ﬁ,E) c Q&P (U1 \E,E) ,and that f-F e O*? (U ,E).

F is defined on C\ Q (by setting ¢;¢pf :=0 on [(UC Uﬁ) \ BQ] N(C) and can be regarded
as an element of O (C\ Q,E) due to (6.20).
LetneNsyy. Weset V:=VyuW, S(n) =S, (ﬁ) \V and remark that S, (ﬁ) cS,(dQ). For
o € A we have by the choice of @;, i=1,2,

Flg,a= sup pa(F(z))e iR
Y zeSn(ﬁ)
< sup pa(g(2))e ROl sup po(@rof (z) )e n R
2€Sp(dQ) zGSn(ﬁ)

~~

:|g|ag,n,o,a

1
=Iglyan0.a* SUP [(@100) (2)|pa(f (2))e nReC
&S () ———"
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<lelyanoat sup pa(f(z))e nReEL. 6.21)

zeS(n)
First we observe that

(UCUR)nCc[Vou U Dyju(x)]=W.
xeQNR

W c C is open and so we get by definition of the set S (n)
S(n) cWC=wCc(U\R)nC.

Again we claim that the set S () is bounded or that there are M, c S (n) bounded and k € N5,
and M) c Sy (U) such that S (n) = MyuM,. For the boundedness we just have to prove that
there is C; > 0 such that |Re (z)| < C; for every z € S(n) resp. z € My. At first we consider
the cases where S (n) is bounded. This occurs if +oo ¢ Q or oo € dQ or 0o € IQ, —c0 ¢ Q
or —oo € dQ, oo ¢ Q. We get by definition of V, resp. V;

x1—2,x0+2], :I:OO¢§,
min (-n,-1n(2n)),max (n,In(2n))], +oo0€dQ,
x1-2,max (n,In(2n))], 00 €dQ, —0 ¢ Q,

[
Re(z) € %
[min(-n,-1n(2n)),x0+2], 00 €0Q, 00 ¢ Q,

for all z € S (n) implying the boundedness. Therefore, S(n) c (U \R)nC is compact.
If 0o € Q or —oo € Q, we choose k € N such that k > n and

lk<e&f2<k,ifooeQ, resp. lk<efa<k, if —coeQ,

plus, in addition, —k < Xy +2, if co € Q, —00 ¢ Q. resp. k> X -2, if —o00 € Q, oo ¢ Q. Then
we decompose the set S (n) as follows

§(n) = [S(M) Sk (U)]V[S(n)n S (U)].

n

,,'
g
1 2T
+H "{,; ;

— lnl( 2n)

Figure 6.9: case (7A,2B): 0o € Q, —c0 € dQ
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6 The duality method

Obviously M; c S (U) and M c S(n) c (U~R)nC. Consider the case oo € Q and —oo €
dQ. By the choice of V) we have

Mo = [S(n)~ S (U)] < (S, (@)~ Vo) {ze C| Im(2)| < %} 6.22)
and by the choice of W, and since —co € dQ
Mo c (S, (Q)\Wy) c {ze C| Re(z) >min(-n,~In(2n))}. (6.23)
Let z€ S(n) with [Im(z)| < 2 and Re (z) > %)+ 2. Then

& &

ze ([)Eo+2,oo[>< [_?E]) ¢ ([0, 00[x [0, €]) c U

and therefore )
d(z,dUnC) 2min(2,%) > 7

by the choice of k. Furthermore,

I 1
k>n>[Im(z)|>—->—
n k

as [Xp, 0] c Q and due to the choice of k. In addition, Re(z) > %y+2 > —k and z € U by the
choice of k and since z € S(n) c U. Hence we obtain z € S; (U) . So it follows by (6.22)

My=[S(n)\S;(U)]c{zeC|Re(z) <Xp+2}

and due to (6.23) we gain the claim with C} := max (n,In(2n),|% +2|) . For the still pending
cases the proof can be done analogously and we only note the constant

max (n,In(2n),|%; -2|), o0edQ, -0eQ,

Crie max (|x; -2|,|%0+2|), 0eQ, —0¢Q,
P ) max (F -2, v+ 2]), 00 £Q, —coeQ,
max (|%] -2|,[% +2|), +00 € Q.

By the same arguments as in part (ii) we get sup g, pa(f (2) )e’ﬂRe(Z)‘ < oo and by (6.21)
that F € Q%P (@\ﬁ,E) .

(iv) f—F is defined on U nC (by the setting in the beginning of part (iii)) and can be regarded

130

as an element of O(UnNC,E) due to (6.20). If +oo ¢ Q, then we already have f—F €
0P (U,E) just by definition. So let co € Q or —oco € Q. Let n € Nyp. We set V:=VnW,
and T (n) :=T,(U)\V. With

{zeC|Re(z) 2n}, ©0edQ,
_J{zeC|Re(z) <-n}, -00edQ,
" |{zeC|Re(z)|2n}, +o00edQ,

a, +00 ¢ 0Q,
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we have

[Un(8Q)u{ze(C| Im (2)| Zn}] c [RU{ZEC\ Im(z)|>n}u

and thus

UJ D (x)] =R

xedUNC "

T,(U) c[(UnC)\R] < (C\ [0, (0Q) u{zeC| [Im(2)| 2 n} |} = 5., (99)..

(6.24)
For ot € A we have by the choice of ¢;, i=1,2,

If~Fllyna= sup pa([(1-0100) f+g](z) e nRe@)
zeTn(U)

< sup pa(g(2))e ®@le sup po((1-@ign) f(2) )e s
2€5n(9Q) €T (U)
Z‘gbﬂ,n,o.tx
1

= lglogn0,0+ sup [1-(@190) ()| pa(f(z) )e n RG]

el (n) >—————m—m—

e <1
<lelyanoat sup pa(f(2))e nREL (6.25)

zeT (n)

Let & := min (&), &;) . We choose k € N such that

min(%,‘z—z), +00 € Q)
—<{min(1, %) c0eQ —0¢Q,
k : 1 €]

mm(;,z), 00 ¢ Q, —00 €.

First we observe that

(USUR)nCc[Vu |J Dy(x)]=Ww.
xeUCnC

The set W c C is open and thus we get by definition of the set 7' (n)

T(n>=Tn<U)\V=[Tn(U>\( U Dl/n(x))]\VcWC

xeUCNC

=T, (U)
and so

T(n)\Sk(U)cT(n)cﬁchc(U\E)m(C.

Then we can decompose the set 7 (n) in the following manner

(6.26)

T (n) = [T (m)\Se (U)]V[T (n) 0 St (U)].

=:M

=M,
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I e 7S 1 E‘i‘x}%”

Figure 6.10: case (7A,2B): co € Q, —00 € dQ

We claim that the set M is bounded. Again we just have to prove that there is C; > 0 such
that [Re(z)| < C) for every z € M. By the choice of k and the definition of V; and W; (for
the cases that —oo € dQ or oo € dQ keep in mind that !/k < 1) we have

[X1-2,%+2], +00 € Q,
[-n,max (0,%+2)], o0€Q, —00€dQ,
Re(z) €< [-n,%)+2], 0€eQ, —0¢Q,
[mln(O f1-2),n], -—c0eQ, c0€edQ,
[X1-2,n], —0€Q, —00 ¢ Q.

for every z € My proving the claim. Therefore, M is compact and by (6.26) we get M, c
(U \]R) NC. Then

sup pa(f(2))e 1RO < sup pa(f (2) )e 1RO+ sup pa(f (2) Je sk

ZET(}’!) ZEM() &M,
< suppa(f(z) )e n‘Re(Z)|+|f|U* < 00
ZEMQ

for all n € N5, and & € A since f € O¢P (U \RE). Hence we obtain by (6.25) that f—F €
O«r(U,E).

So we have found F € 097 (C\ Q,E) c O¢? (U; \ R, E) such that [F| UR m(c] [f] prov-
ing the surjectivity of J. For arbitrary U, Uy € U () we have, with U] from the proof,
O“? (UNR,E) 0P (U,E) 2 O%? (U1 \R,E) |O*? (U, ,E)
~ 0P (Uy\R,E) |O*P (Uy,E)

algebraically, connoting the general statement.
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6.9 Remark. The same result is still valid if we modify the spaces involved in the following way:
Let U c C be open and —oo € U or oo € U. We say that U is even-tempered if it satisfies one of the
following conditions:

()
VneNINeNVze(UnC)N | Dl(x):|Im(z)]>l (6.27)
xe(dUAR) " N
(b)
VneN: (USnC)s | Di(x)=2 (6.28)
xe(QUNR) "

We replace in the definition of the spaces the set U (Q) by

U(Q) = {U|U cCopen, UnR=0Q}, +00 ¢ Q,
" |{U|U cCopen and even-tempered, UnR=Q}, -c0eQ Vv o0,

and in the definition of || ]|/« ,, o the set S, (U) by

Uﬂ{ze(C|%<|Im(z)|<n,Re(z)>—n}, —00 ¢ Q00 €Q
sn(U)=qUn{zeC|L<|Im(z)|<n,Re(z)<n}, -o00eQ 00fQ,
Um{zeC|%<|Im(z)|<n}, +00 €Q,

plus in the definition of ||f]|, ,, o, the set 7, (U) by

Un{zeC|[Im(z)|<n, Re(z) >-n, d(z,0UnR)>1} —c0¢Q 00eQ,
ta(U):={Un{zeC||Im(z)|<n, Re(z) <n,d(z,0UNR) > 1} —c0eQ 00¢Q,
Un{zeC||Im(z)|<n, d(z,0UnR) > 1}, +00 € Q.

Now we take a look at the proof and the positions which are in need of a modification.

e part (i): If —oo € Q or oo € Q, then the set U; from the beginning of the proof is even-
tempered since it fulfills (6.28).

* part (ii): In (6.19) we have D, (z) c s; (U) c (U ~R) nR? as well.

e part (iii): We claim that the set S(n) is bounded or there are My c S(n) bounded and
M, c s, (U) such that S (n) = MyuM,. We define the set

{zeC|Re(z)>-n, [Im(2)[>1}, (c0eQnr-00edQ)Vv(c0eQnr-00¢Q),
M := {Z€C| Re(z) <n, |Im(Z)|>%}, (ooe&Q.A—oer)v(ooe.Q/\oo¢§),
{zeC| |Im(z)[> 1}, +00 €Q,

and decompose the set S (n) in these cases as follows

S(n)=[S(n)\M]u[S(n)nM].

=:My =M
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6 The duality method

Then
Mic[Un(Mu{zeC||Im(z)|<n})]=s,(U)

and Mo c S(n) c [(U~R)NC]. So we just have to prove that there is C; > 0 such that
|Re(z)| < Cy for every z €S (n) resp. z € Mp. This constant is noted in the following chart:

Table 6.6: Bounds for the real part of S (n) resp. My

base case | subcase \ Cy =max(-)
0 €Q, —0co€dQ |-n|, |-1In(2n)|, n
toocD 00 €dQ —c0eQ |-n|, In(2n), n
o +00 € Q |-n|, |-In(2n)|, In(2n), n
+00 € Q) |—n|,n

_ — 00 e |X1—2‘, n
00 €€, 00 £ Q) 00 €90 k1 -2|, In(2n), n

_ — —00€eQ |-nl, |xo+2]
R0 w90 | fal, (), o+

00§ Q| | e 2|, [xo +2

e part (iv): Define t (n) :=t, (U) \ V and replace in the definition of R the set U,.yync D1 (x)
by Uyegunr D1 (x). Then we have in (6.24)

tn(U) = [(UnC)~R].

Furthermore, we choose k € N such that

min(%,i—z), +00 € Q),
1< min(l @) 0eQ —00¢Q)
k— n' 4 ) ) I
: 1 €&
m1n(5,z), 00 ¢ Q, —00eQ,

and, in addition,
—k<Xp+2,ifo0eQ, —c0 ¢ Q, resp. k>X—-2,ifoo¢Q —ooel

plus k> N, if U satifies condition (6.27). Then we remark that
—= 1
(UeuR)ncc[vofeeC|m@I> 1fo U Diu@]=w
k xedUNR

by the choice of k and since U is even-tempered. The set W c C is open and thus we get by
the definition of the set ¢ (n)

t(n)m{ze(C||Im|§%}cW=ch(U\@)m(C. (6.29)

134



Karsten Kruse

We define the sets

{zeC|Re(z) >%+2, Re(z) <X -2}, +ooeQ,
{zeC|Re(z) >max (0,5 +2)}, 00 €Q, —00€dQ,
No:={{zeC|Re(z)>Fp+2}, 0€eQ, —0¢Q,
{zeC|Re(z) <min(0,%;-2)}, 00 €dQ, —00 €Q,
{zeC|Re(z) <% -2}, 0 ¢Q, —0eQ,
and
{zeC|x-2<Re(z) <F+2, [Im(z)|> 1}, +00 €Q,
{zeC| -k<Re(z) <max(0,%+2), Im(2)|> 1}, o0€eQ, —0edQ,
Ny :=5 {ze(C| —k<Re(z) <Xy+2, |Im(z)|>%}, 0eQ, —00¢Q,
{zeC|min(0,% -2) <Re(z) <k, |Im(z)|> 1}, 0€dQ, -c0eQ,
{zeC|x-2<Re(2) <k, |Im(z)|>%}, 00 ¢Q, —00eQ,
and
{zeC|i1—2§Re(z)SJZo+2, |Im(z)|g%}, +00 € Q,
{zeC| -k<Re(z) <max(0,%+2), Im(2)[< 1}, o0€eQ, —00edQ,
Ny = {ze(C| —k<Re(z)<Xp+2, |Im(z)|§%}, 0€eQ, —0¢Q,
{zeC| min(0,% -2) <Re(z) <k, [Im(z)[< 1}, 00 € JQ, —c0 € Q,
{zeC|x-2<Re(2) <k, Im(z)| < 1}, 00 ¢ Q, —coeQ.

Then we can decompose the set 7 (n) in the following manner

t(n)= Cj(t(n) nN;).
le‘»—’z:Ml‘

By the choice of £ we have
1
M; c {zeUmC |2 <l (2) <k} c s (U)

for i=0,1. The set Mp is obviously bounded in C, therefore, M, compact, and by (6.29)
we get M, c (U \R) NC. Then

sup pa(f(2) )e™rReC)

zel(n)

< sup pal£(2))e RO+ sup pa(f () e HRO
zeMyuUM, M,

_1
Z€M2

for all n e N5y and x € A.
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By virtue of Lemma 6.8 we may define restrictions in bv (Q, E) in the following manner:

6.10 Definition. Let E be admissible and Q, Q) c R, Qi cQ, be open. For Q # & let [f] €
bv(Q,E) = (’)e"P(U \R,E) JOP (U,E) where U e (Q). Setting U :=Un(Q xR), we may
define the restriction map by

Roo, ([f]) =[]y, = [f\(Ul \R)”C] e 0P (U1 \R,E) JOP (U1,E) = bv(Q1,E).
In addition, we define for an open set Q c R
Rogibv(9,E) = bv(2,E), Rao ([f]) = [f]], 0.

We denote the space {bv (QE) |Qc Ropen} by bv(E).
6.11 Theorem. ° Let E be strictly admissible.

a) bv(E), equipped with the restrictions from Definition 6.10, is a sheaf on R.

b) bv(E) is flabby.

¢) bv(E) is isomorphic to R (E); in particular, R (E) is a sheaf.

Proof. a) (i) For Q c R open the mapping Rq o can be regarded as idy,, (o ) by Lemma 6.8.
Let Q3cQycQ cR be open. We have to prove that R, o, °Rg, o, = Ro, o, holds.
This is obviously true if one of the sets is empty, so let them all be non-empty. Let [ f] €
bv(Q1,E) = 047 (U \R,E) |O®? (Uy,E) where Uy €U (). With Uy := Uy n (€, xR)
and
Us:=U;n (9.3 XR) = [Ul N (.Qz XR)] N (.Q.3 XR)Q :Q Un (.Q3 XR) (630)
3 2

C

we get

R, 0, °Ra, 0, ([f]) =Ra, 0, ([f‘(Uz\Rnc)]) Uicts [fl(U3\R)nC] (630)1391 o ([f])-

(ii) (S1) : Let {Qj cR| jeJ} be a family of open sets and € := ;s €2;.

Let [f]ebv(Q,E) = Oe"P(U \RE) JOP (U E), where U e U (Q), such that
Raq;([f])=0forall jeJ. The assumption Ro o, ([f]) =0 is equivalent to
feQexr (Uj,E) for every jeJ where U;:=Un (Qj XR). Thus we obtain

fe Oexp( [U \K] quUJQj,E) =P ([U \E] UQ7E)UE;(Q)(’)exp (U,E)

and hence [f] =0.
(iii) ($2) : Let (Q;) , , and © be like in part (ii).
Let [fj] €bv(Q;,E) =027 (U;\R,E) JO*? (U},E), where U; €U (Q;), such that

5counterpart: [13, Theorem 6.9, p. 1125]
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[fj] ‘Qmﬂk = /%] ‘Qjﬂﬂk' Hence we have

gic+= filyw,num)0e = Hliw,nv) ggec €O (Uin U E)

plus gk = —gxj as well as g jx + g + g1, =0 on U;nUpn U, by easy calculation.

If +o0 ¢ Q and thus +oo ¢ Q;, then exactly like in [20, Theorem 1.4.5, p. 13], where
one uses that E is strictly admissible instead of [20, Theorem 1.4.4, p. 12], there are
gjcO (Uj N C,E) such that g jx = g — g on U;jnU; N C (here the adjunct strictly is needed).
The setting F); := f; +g; defines a function F € O ((U \E) m(C,E) = Q&P (U \RE) since

Fi-Fe=fi+gj-fi—8=fi—fc+t8i—8=0
—_—— ——
=8 jk =—8jk

on U;jnU;nC such that

[F] ‘Qj - [F|(Uj\R)mC] - [fj|(Uj\R)m<c] + [gj‘(yj\R)m@] = [fj] forany jeJ.

Now let —oco € Q or 0o € Q, i.e. there exists j € J such that —co € Q; or co € Q;. We only
consider the case that there are jo, ji € J such that —co € Q;; and oo € Q; . For the other two
cases the proof is analogous. Then there are xp, x; € R and &y, € >0 such that [-o0,xp] x
[—-€0,&0] cUj, and [x1,00] x[—€1,€1] cUj,. Now let x:= max (|xo|, |x1|) and &€ :=min (&, €;).
We define the sets

C
€ € € e
Go=(1-eox- 10 SE0) . Mol a2
as well as .
G = (]x+1>°°[x]_§a§[) , Hp:= [x+2,oo[x[—§,§].

By the proof of [18, Theorem 1.4.1, p. 25] there are @; € C* (R2), i = 0,1, such that
0<@;<1and @; =0 near G; plus ¢; = 1 near H; as well as |8[5(p,-| < Ciﬁé‘w for all B € N(Z)
where & := 1 min(§,1) and Cip>0.

----------- =0 .
ams & Ujo ............ ST UJl
il i
—~— {
ey ¢ PP i
{i{x &= r —L 00
i Q =z { i @ |

Figure 6.11: case: —00 € Q, 00 € Q,
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~~~~~~~~~ G m=0 Ui,
1 1
E
£
15 = 2
- [ 1 | p=1}i
| i } z .

Figure 6.12: case: —0o € Q;/, 00 € Q;,

Due to the first case there is F EO((U \@) mC,E) such that [F'| |Q,HR: [fj] ‘QﬂR
J J

j €J. By the proof of Lemma 6.8 there exists F ¢ 07 (C\ Q,E) with F~-FeO(UNC,E).
Thus we obtain

for every

fi=F= (fj-F) + (F-F) €O(U;nC,E) (6.31)
N—— N——
cO(U;nC,E) €O(UNC.E)

for all jeJ. So by the choice of ¢; we can regard 9 (¢o(fj,—F)+¢i(fj, -F)) as an
element of C* (]RZ,E) (set ¢; (fji —F) =0 outside Uj,). Let ne€ Nyp, me Ny and o € A.
Then we obtain by applying the Leibniz rule and the choice of ¢; like in (6.4) resp. (6.17)

(e (fi-F)+ o (Fa-F)|,
= swp pa (9P (@ (£~ F)+ 1 (£~ F)) (2)) eI

ZES”(®)7
BeNZ, |Bl<m

1

<)’y sup  3313F(991) ()| pa (7 (£~ F) (2)) e n R

iZOZESn(Q)\(GiUHi)v Yéﬁ

BeNG, |Bl<m
25 = (8D !
< (m!) swp (07| swp (- F) P (@)
i=0 |y|<m+2 2€Sa ()~ (GiUH;) 268 (@)~ (GiUH;),
BeNG, [Bl<m
<C; &I
::Ci*
<(m)’(Ci+Cy) S (CoytCry)EM. (6.32)
[Ylsm+2

Now we have to take a closer look at C;. By the choice of the sets G; and H;

Sn (@)~ (Gou Ho)
c{zeC||Im(z)| <2, -x-2<Re(z) <—x—1}u{zeC| /4 <|Im(z)| < /2, Re(z) < —x-2}

::NO ::MO
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and
c{zeC||Im(z)|<¢/2, x+1<Re(z) <x+2}u{zeC|e/a<|Im(z)| <€/2, Re(z) >x+2}
=N =M
is valid.
e N B Pt
‘f -------------- e e et 5
Sk(Ujo) i
H ; 11
.................. T :' —'Hr-"'\ A}E
|—— i Y . 1y §<
....... Q’ ‘_I L *’1 = -,,_,,_,,Q‘],,_"‘}>7’
o4 f 1 Nl ............... . .
Figure 6.13: case: —c0 € Q ), 00 € Q},
The sets N; are clearly bounded and Ny c Uj, as well as Ny c U}, This implies
- =\ UBD ~LIRe(2)| .
sup  pal(fi-F)" " (z))e <o00,i=0,1, (6.33)
ZeNiy
BeNG, |Blsm

by (6.31). If we set
I . €€ . €
r:=—min(2,—-, — :mln(l,—
2 2°4 8
and choose k € N with k > max (n, €) and % < & plus —k <x, if oo ¢ Q) resp. —oco ¢ Q; , then
D:(2) c Sk (U;,) €Sk (), i=0,1,

holds for all z € M; like in (6.19). Due to the Cauchy inequality we get like in Theorem
3.6(4) fori=0,1

sup (£, F) @))e @<t (I

Zth
2
ﬁEN07 |ﬁ‘§m

U et \F|Q7k’a) <oo  (6.34)

where Ag := en SUPgeN?, |Bl<m % So we get C;" < o0, i=1,2, by (6.33) and (6.34) which im-
plies 5((1)0 (fio—F)+o1(f;, —F)) e €27 (C,E) by virtue of (6.32). Since E is admissible,

there is g € £&P (C,E ) such that

3g=§((po(fj0—F)+(p1(fjl—F)). (6.35)
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Set G:= ¢y (fj,—F)+¢1(fj, -F)-g. Then G ¢ O (C,E) by (6.35) and for all n € N, and
o €A we have

1
Gliccoyma<y  sup  pal(@i(fi-F)(2)etROls sup pg(g(z))e s
i=0z eSn({:too})\G 2eSn(2)
:|g|®,n,a
1
s Z sup Pa ((fji _F) (Z))e_ﬂRe(Z)' + |g|®,n,a' (6.36)

i=02€Sn ({00} )\G;

Furthermore, if we choose k € N such that k > n and % < min(l, %) plus —k<x+1,if co ¢ Q
resp. —oo ¢ Q. , then [S, ({xo0})\G;] c [M,-uSk(Uji)], i=0,1, where

, n<x+1,
{zeC|-n<Re(z) <—x-1,[Im(z)| <1}, n>x+1,i=0,
{zeC|x+1<Re(z) <n, [Im(z)|< 1}, n>x+1,i=1,

is a compact subset of U;, nC.

T
w1 = 0 1 2
. £
-l T — g
1 b 1. £} aD, "
. A i
........ s
..................................... J
Figure 6.14: case: —c0 € Q ), 00€Q; , n>x+1,i=1
In addition, S (U ) c Sk (Q) and hence, keeping (6.31) in mind,
sup  pa((f5-F) (@) e iR
zeSn({:too})\Gi
< Zsuppa ((fi-F)@)e™Ols sup pa((f;)(2))e R
i=02€M; zeSk(Uj)

:‘fji|U’f,k,(x
Ji

+2 sup pa(F(2))e »[Re(2)]
ZESk(Q)

:’F’ﬁn,a
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1 1
< Z‘F‘ﬁn (X+Z|fji U* ka+ZSUPPa((fj,-—F) (Z))e—%lRe(z)\ < 00.
=0 T j=02eM;

So we gain G € 07 (C\ {xo0},E) by (6.36).
Now we define the function F* := F + G. Then we have

F*=F+GeO“(C\Q,E)c 0O“? (U\R,E).

The last step is to prove that F* has the desired property, i.e. [F*]
If jeJ with 00 ¢ Q;, then

Q [fj] for any jeJ.

fi-F*=(fj-F)-GeO(U;nC,E)

by (6.31) and since O¢? (C\ {00} ,E) c O(C,E). Thus we have [F*] o = [fj].
J
Let j € J such that —co € Q; or co € Q;. Then we have forn € N, and o € A

‘fj_F* Uj,n,ot
= sup pa((F5-F-@(fi-F) -1 (f5,-F)+g) (2)) e nlReC)
()
1
<> sup  pa((fi-fi) (Z))e_%“{e(z)| + sup pqlg (Z))e—%\Re(Z)I
i=0zeT,(U;)nH; 2€8,(2)
:‘g‘z,n,a
s pa((fi-F-oo(fiy-F)-o1 (£, - F)) (@) e @ (637)
zeTy(U;)~ (HouH,)
where we used 7, (U;) ¢ S, () plus
H() c Gl and H1 c G(). (638)

Moreover, the following estimate holds

sup pa((fi-F-o0(fi—F) -1 (i, ~F))(2))e xR
2eT(Uj)N (HouH )

< sup pa((fi~F)(2)) e nlRe
zeT,(U;)~ (HouH,)

1
+> sup pa((f5i-F)(2)) e lRe(@) (6.39)
i=0zeT, (U; ) (H;UG;)

by the triangular inequality, (6.38) and the properties of ¢;. Choose k € N such that k >
max (n, %) and % < £ and, in addition, -k <x+1, if co ¢ Q;; resp. —oo ¢ Q; . Remark that

Tn(Uj) \(H;uG;) c {E][—oo,—x—l] [—%,%]) N (]—OO,—x—2
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6 The duality method

CSk(Uji)UMl', i=0,1,

with
o {zeC|—x—2<Re(z)<—x—1,|Im(z)|$%}, i=0,
" {zeClx+1<Re(z) <x+2, [Im(z)| < 1}, i=1,
by the choice of k.
i,

Figure 6.15: casei=1: c0 € Qj, —00 ¢ Qj, 00€Qj, 00 ¢ Q)

The sets M;, i = 0,1, are obviously bounded and M; c (U A C) . Further, we define the set
M, :=[T,(Uj)~ (HouHy) |~ S (U))

which is bounded, since M> c {ze€ C| —x-2 <Re(z) <x+2, [Im(z)| < 1/k} due to the choice
of k, and one has M, c T,,(U;) < (U;nC).

w=lm

(5,09 (o UL )| N 5,07

Figure 6.16: case: 00 € Qj, —00 ¢ Q;, ~00 € Qi , 00 € Q)
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These results yield to

sup  pa((fj,-F)(z))enRe@
2T (U (HiUGy)

<|fi vrkat IFlg 4o+ SUP P (£~ F) (2)) Rl < oo
i ZEM,‘
fori=0,1 and
sup pa((fi-F) (2)) e nRe@)
zeT,(U;)~ (HouH, )
<|f; Ut ka |F|§7k,a +sup p ((f;-F) (Z))e_ﬂRe(Z)' <o

ZEM2

by triangular inequality and (6.31). Thus the right hand side of (6.39) is bounded from
above.

Let us turn to the still pending estimates in (6.37), so we have to take a look at the sets
T,(U;)nH;,i=0,1.

Figure 6.17: case: 0o € Q;, —00 ¢ Q;, 00 ¢, —00€Qj 00€Q; —00¢ Q)

Choose k € N such that k>n and § <min(1,5) and, in addition, —k <x+ 1, if oo ¢ Q;; resp.
—00¢Q; . LetzeH;, i=0,1, with Im(z)| <k. Then ze U}, and

Re(z) <—x—-1<k, ifi=0,00¢Q;, resp. Re(z)>x+1>-k, ifi=1, -0 ¢Q;,

by the choice of k as well as

d(z,0U;nC) Zmin(l,g) >%

implying z € Tj (Uji)' Since k > n, we have T, (Uj) c Ty (Uj) and thus (Tn (Uj)mH,-) c
[Tk (Uj)mTk(Uji)]. Now let z € T}, (UJ-) N T (Uji)' Then ze U;nUj, and |Im(z)| < k. Since

143



b)

144

6 The duality method

a(Uijji)m(Cis closed, there is zoea(UjﬂUjl.)m(C with
d(z,0(UjnU;,)nC) =|z-z).

Moreover,
[0(U;nU;)nC]c (dU;nC)u(dU;;nC)

and thus we obtain

d(Zya(Uijji)ﬁ(C):|Z—ZQ|Z{ d(Z,aUJ‘F‘IC)7 ZOEanﬁCa }>%

d(Z,aniﬂ(C), z20€dU;;nC,
If +o0 ¢ Q;nQj, we have in addition —k < Re(z) < k. Therefore, T} (U;) n T (Uj,) is

bounded and the closure a subset of U;nU;;nC, if +o00 ¢ Q;nQ;;, and
[T (U/)n T (U},) ] c Tk (UjnU},) , if —00 € QN Qj, or 00 € Q;n Q. This yields to

sup o ((f=13) (2)) e 1)

ZETn(Uj)ﬁH,‘
LR,
[ sy 5) @) RO, o000,
‘fj’ _fji UnUj, k.a else,
< 00

since fj— fj € O%P (Uj mUji7E) ,1f Q;nQ ;. # @, by assumption (or U;nUj; = @). Combin-
ing the results obtained, we have |f,~ —F*‘U' g < oo forallneNy) and o € A by (6.37) and
N ]

thus f;-F* € Oex”(Uj,E)7 ie. [F~] |Qj - [fj]'

Let [f] e bv(Q,E) = 0P (U\R,E) /O%? (U,E) where U €U (Q) and Q c R open. By
virtue of the proof of Lemma 6.8 there exists a function

Fe0?(C\Q,E) c 0P (C\R,E) such that f—F € O%? (U,E). Hence [F] e bv(R,E)
is an extension of [f] to R.

For an open set Q c R, Q # &, one has the following (algebraic) isomorphisms

R(QE)=L(P.(Q),E)/L(P.(9Q),E) 2 0“7 (C\Q,E) |O*P (C~ IQ,E)
= 0% ((QxR)\R,E) JO“? (QxR,E) = bv(Q,E).

The first isomorphism is due to Theorem 4.1 and given by the map
Go:L(P.(Q),E)/L(P+(9Q),E) - 0P (C\Q,E) JO*P (C\IQ,E),
11 (7], [Flg-H2 (1),

where H is the isomorphism from Theorem 4.1 and we denote by [-] the equivalence classes
in L(P.(Q),E)/L(P.(9Q),E), with [-]_ the ones in

02P (C\Q,E) |07 (C~ 9Q,E) and with [-] the ones in 07 (C\ Q,E) /0? (C,E).
well-defined: Let Ty, T € L(P* (ﬁ) ,E) with [Tp] = [T1], i.e. To—-Ty € L(P.(dQ),E).
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Then
Hg (To-Ti) =Hy4, (To-T1)

by (4.8) and

=H, (Ty-T)) € 0P (C~ 0Q,E) /0P (C,E)

holds. Thus Ty—Tj e 097 (C~0Q,E) , i.e. [Ty-T;]_=0.

On the other hand, let T € L(’P* (ﬁ) ,E) and Ty, T} € O«P (@\Q,E) such that [~0]§
[Ty ]5 = Hél (T). Then Ty - Ty € 047 (C,E) c 0= (C~ 9Q,E) and hence [T T;]_=0.
injectivity: Let T € L(P* (ﬁ) ,E) with G (T) = [T]N =0. Then T € Q&P (@\ aQ,E) an
thus

d
HZ'(T) =[T]5e 0P (C~0Q,E) |0 (C,E).
Therefore, we get
T = Hg (HZ (T)) = Haq (H5' (T)) e L(P. (99) ,E)

by (4.8)andso [T]=0. B
surjectivity: Let Ty € O¢P (C \ Q,E) . Then we have Hg ( [To]ﬁ) eL (73* (Q) ,E) by Theo-
rem 4.1. Then we define T := Hﬁ([To]ﬁ) and get

Hél (T)= Hél (Hz([Tlg)) = [Tl

by Theorem 4.1 again. This means that G ([T]) = [T0]
The second isomorphism is defined by the map

Jo:0%P? (CNQ,E) JO“P (CN9Q,E) —» O“? ((QxR)\R,E) JO“P (QxR,E),
[f]N = |:f|((Q><R)\R)m(C:|Q'

This map is well-defined since 07 (C\ dQ,E) c 07 (QxR,E).
injectivity: Let f € 0P (C\Q,E) with Jo ([f].) =0, i.e. feO%P(QxR,E). Then it
follows that f € O (C~ dQ,E). Further, the estimate

Floonas sup pa(f@)e @ sup  po(f(2))ea®@ (6.40)
2€50(Q) 2€8n(9Q)\Su(Q)

:‘f‘ﬁ,ma

holds for all n € N5, and o € A.

145



146

6 The duality method

Let us examine the set S, (9Q) \ S, (). We have for ze S, (9Q)\ S, (Q)

Re(z) €

[mindQNR, maxdQnR],
7n]7

[-n
]-o00,n],
[-n,
R

Y

9
oo,

[-n,maxdQNR],

] =00, maxdQNR],
[mindQNR,n],
[MindQNR, oo,

:l:oo¢§,
+00 € 0Q,
—00€Q, 0€dQ,
—00€0dQ, 00 €Q,
+00 € Q,
—00€dQ, 0 ¢Q,
—0€eQ, 0 ¢Q,
—00 ¢ Q, 00 €9dQ,
—00 ¢ Q, 0 eQ,

and |Im(z)| < 1. Furthermore, we observe that W := U,cgqnr D 1 (x) is open and

$u(9Q)~ 5, (Q) = ([$2(9Q) 8, (@) |\ W) e WE =W cCr oQ.

(6.41)

So, if +oo ¢ Q. then S, (dQ)\ S, (ﬁ) is a compact subset of C\ dQ. Due to (6.40) and
since f € O(CNJQ,E), we get |f|50, o < o° in this case.

Let —oo € Q or oo € Q. Then there are x; éR, i=0,1, such that [-o00,xp] c Qresp. [x],00] c Q.
Choose k € N such that k£ > n and, in addition,

k> xg, if —c0€Q, 00¢Q,

resp.

—k<xy, if —00¢Q, c0€Q.

Then we obtain for z € [Sn Q)N S, (ﬁ)] NT (QxR) =M

IRe (z)| <

max (|xo[,n),

max (Jx1],n)

maX(|x0| ) |x1|)7

max (|xg|,|max dQNR|)
max ([mindQnR|, |x;]),

—00€Q, 00 €dQ,
—00€dQ, 00 e,
+o00 €Q),
—00€eQ, 00 ¢Q,
—00 ¢ Q, 0 eQ,

by the choice of k and as dQ c QC. Hence M is bounded, thus M compact, and M c
(C\0Q) by (6.41). Therefore, we gain

pa(f (Z))e—ﬁlRe(Z)l

sup
268, (0Q)\ S (5)
< sup pa(f(2)e TR@lsuppg (£ (2)) Rl < oo
ZETk(QXR) ZEM
=|f|ng,k,a

since f € 0P (QxR,E) and f e O(C\JQ,E). By (6.40) we have |f|yq , o < oo in this
case as well and thus f € Q¢ (@ NIQE ) proving the injectivity of Jg.
surjectivity: Let [f]q € 0P ((QxR)\R,E) /O*? (QxR,E) . By the proof of Lemma 6.8
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there is F € 097 (C\ Q,E) such that f—F € 097 (QxR,E), ie. Jo ([F].) = [f]q-
The last step is to prove that these isomorphisms, which we denote by hq :=Jg 0 Gg, are
compatible with the respective restrictions, i.e. for open sets ; c Q c R the diagram

R(Q,E) —2+ by (Q,E)

R(QI;E)h_QrbV(Ql,E)

commutes. Let 7 € L (P* (ﬁ) E ) . Choose a representative Tp of RZ%Ql ([T]) . By definition
of the restriction B ’
To-T eL(P:(Q\Q),E) (6.42)

is valid. Let Ty be a representative of Hg (Ty) . Then we have

(ha, oR& o, ) ([T]) =ha, ([To],) = Ja, ©Ga, ([To]) = [TO‘((QIXR)\R)NC:IQ :

On the other hand, let T be a representative of Hg (T). Then we get

b _pb i _
(RQ‘jQI OhQ) ([T]) _RQ‘)791 (|:T|((.Q><R)\]R)O(C:|Q) - [T‘((QIXR)\R)OC]QI ’
Further,
[To-Tlg=Hg' (To-T) =Hg , (To-T) e 0" (T (@~ Q1) E) /O? (C,.E)
by (6.42) and (4.8). Therefore, Ty—T € 0P (C\ (Q\Q),E) c 0P (Q; xR,E) which
implies (hgl oRg.Q] ) ([T]) = (Ré’{gl OhQ) ([T]). By virtue of Proposition 6.6 it follows

that R (E) is a sheaf which is isomorphic to bv (E).
[

Immediately we get the following corollary.

6.12 Corollary. © Let E be strictly admissible, Q c R open. The spaces {R(w,E) | ® c Q open},
equipped with the restrictions of Definition 6.4, form a flabby sheaf.

Corollary 6.12 provides an answer to a problem stated by Ito, at least for E-valued Fourier hy-
perfunctions in one variable (see [23, Problem B, p. 18]).

Now we want to describe the sections with support in a given compact set K c R. We recall the
definition of the support of a section of a sheaf. Let X be a topological space, (}" R ) a sheaf
on X and f € F(X) a section of a sheaf. Then the support of f, denoted by suppr f or shortly
supp f, is the complement of the largest open subset of X on which =0, i.e.

suppf=( U V)C

Vezs

Scounterpart: [13, Corollary 6.10, p. 1126]
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6 The duality method

where Z; := {V |V c X open, f ‘V = 0} (condition (S1) is used in this definition). This directly
yields to the following description of the support of an element of bv(Q,E) for an open set
Q c R and a strictly admissible space E :

Let f = [F]e 02’ (U\R,E) [O? (U,E), where U €U (Q), and ©; c Q be open. If —co € Q or
oo € ), we define the set

5, (U.Qy) = {zeUmC| d(z(@nR)~ Q1) >+, d(z,0UNC) > L, [Im(2)| <n}
n n

C, +00 €Q),
Ni{zeC|Re(z)>-n}, o00eQ, —co¢Q,
{zeC|Re(z)<n}, o0¢Q, —coeQ,

(J-oco,—n]u[n, oo} +i[—5, 3], oo,

n’n
NN o0t 01, o,
[l’l,oo[+i|:—rll,,ll:|, 00 ¢ Qy, —00 Q)
, +00 €Q,

for n e Ns,.
If —0o € Q or oo € Q, then f‘Ql =( is equivalent to

(a) F can be extended to a holomorphic function on [(UNR)uQ;|nC if £o0 ¢ Q;.

(b) F can be extended to a holomorphic function on [(U N @) U Ql] NnC and

Flyo ma= sup  pal(F(2)e Re@ <o (6.43)
T zesa(U)

for every ne€ Nyp and o € A if —oco € Q1 or oo € Q1.

We remark that (6.43) is valid in (a) as well.
If +o00 ¢ Q, then f ‘ o= 0 is equivalent to statement (a).
Observing that

[((UNR)uZ;|nC=[(U~R)u(Qxsuppf)]nC=(U~suppf)nC,
since U €U (Q), and
(QnR)\Z;=Qnsupp fnR = (dQusupp f) NR,

we get F € O ((U ~suppf)nC,E) and, if —oo € Q) or oo € Qy, in addition,

1
|F|U.Zf,n,oc = Sup Pa (F (Z))e_Z‘Re(ZN < 00
o ZGSn(U,Zf)

for every n € Ny and o € A where we have
d(z,(QNR)\ Q) =d(z,(dQuUsupp f) NR)

in the definition of S, (U,Zf) .
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Now let K c Q be compact and set
bvg (QE):={febv(Q,E) | suppfcK}
plus for U eU (Q)
O“P(UNK,E):={feO((UNK)NC,E) |[YneNssVaeA: |Flyqknq<o},
if —co € Q or oo € Q, resp.
OP(UNK,E):=0O((U~K)nC,E),

if £o0 ¢ Q.
Due to the considerations above and Lemma 6.8 we gain the following description of bvg (Q,E).

6.13 Lemma. Let E be strictly admissible, Q c R be open and K c Q compact. For any U €U (Q)
we have the (algebraic) isomorphism:

bvg (QE)zO“P(UNK,E)|O%P (U,E)
In particular, we have
bvg (R,E) 2 07 (C\K)/O? (C,E) 2 L(P. (K) ,E).
Proof. Using Lemma 6.8, we represent bv(Q,E) by 07 (U\R,E)/O®? (U,E). Then the
identity-mapping
id:{f: [F]eOP (U \RE)/O“”(U,E) | suppch} - O“P(U~NK,E)]O%P(U,E),
[F]-[F],

is (well-)defined and surjective by the considerations above and obviously injective.

Now let Q:= R, set Q; := R\ K and choose U := C. We claim that the definition of the space
Oep (@ \K,E ) in the sense above and in the sense of Definition 3.2 coincide (and therefore the
spaces have the same symbol). Let n € N5,. Then

d(z,(QnR) Q) =d(z,(IRUK)nR) =d(z,KnR)

and {
d(z,&Uﬂ(C)zd(z,@):oo>Z

holds for z € C. Further,

+00 ¢ RNK +o0 e K

—00 ¢ RNK ) ) -0 eK
— is equivalent to

o ¢ RNK 0eK

+00 e RNK +oo ¢ K
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6 The duality method

and hence we obtain S, (@,@ K ) =S, (K). Thus the claim is proven. Therefore,
bvg (R,E) 2 0“7 (C\K,E)|O“? (C,E) 2 L(P« (K),E)

holds by Theorem 4.1 which proves the endorsement. [

Remark that this isomorphism induces a reasonable locally convex topology on bvg (RE ) since
L(P.(K),E) has such a topology.

As already mentioned, I am convinced that a reasonable theory of E-valued Fourier hyper-

functions (in one variable) should produce a flabby sheaf F on R such that the set of sec-
tions supported by a compact subset K c R should coincide, in the sense of being isomor-
phic, with L(P, (K),E) since the restricted sheaf F |R then satisfies the conditions of Domanski
and Langenbruch for a reasonable theory of E-valued hyperfunctions. In addition, the map
ff:]—‘(@) - ]:(R), defined by .# :=J"10.7,0J, where J:]—’(R) — L(P* (ﬁ) ,E) is an isomor-
phism existing by assumption and .%, the Fourier transformation of Theorem 4.6, can be regarded
as Fourier transformation on the space of global sections and is an isomorphism.
If E is strictly admissible, the sheaves bv(E) and R (E) satisfy this condition for a reasonable
theory of E-valued Fourier hyperfunctions by Theorem 6.11 and Lemma 6.13 (For R (E) remark
that sheaf isomorphisms preserve supports, so the definition of a support in Proposition 4.3(2)
was well-chosen.). The next theorem confirms that the sufficient condition of E being strictly
admissible is also necessary for a reasonable theory of E-valued Fourier hyperfunctions in one
variable if E is an ultrabornological PLS-space and describes further equivalent sufficient and
necessary conditions.

6.14 Theorem. 7 Let E be an ultrabornological PLS-space. Then the following assertions are
equivalent:

(a) There is a flabby sheaf F on some open set & + Q. c R such that

Fr (Q):={T e F(Q) | supp£(T) cK}
*L(P.(K),E) forany compactK c Q.

(b) There is a flabby sheaf F on R such that

.7:1((@) D= {T e}"(@) | supp £ (T) cK}
~L(P.(K),E) forany compactK cR.

(c) E is strictly admissible.

(d) P(D):C*(U,E) - C>(U,E) is surjective for some (any) elliptic operator P(D) and
some (any) open set U c R" and some (any) n € N;.

(e) E has (PA).

Proof. (e) <> (d):[13, Corollary 4.1, p. 1113] resp. [13, Corollary 3.9, p. 1112]
(e) = (c) : Theorem 5.25
(¢) = (b): Theorem 6.11 and Lemma 6.13

7counterpart: [13, Theorem 8.9, p. 1139]
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(b) = (a) : Obvious with Q :=R. B
(a) = (e) : Let there be a flabby sheaf F on an open set & + Q c R such that

Tk (Q) =A{T e F(Q) | suppx (T) c K}
*L(P.(K),E) forany compactK c Q.

Then the restriction F ‘ ong Of F to QnRis a flabby sheaf as well such that

(Floor) ¢ (@NR) = {T e F|, 5 (QNR) | Supp (T)cK}

QNR

~L(A(K),E) forany compactK c (QnR)

since P, (K) = A(K) for every compact set K c R. By virtue of [13, Theorem 8.9, p. 1139] this

implies that E has (PA).

]
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7 Summary and outlook

We have seen that a reasonable theory of E-valued Fourier hyperfunctions in one variable exists
for a complete locally convex space E if E is strictly admissible, i.e. if the Cauchy-Riemann

operator . . o
0:E4P ((C\K,E) - 4P ((C\K,E)

is surjective for any compact set K c R and, in addition,
0:C*® (Q,E) -~ C* (Q,E)

is surjective for any open set  c C. At first this problem was solved for E = C by combining
Hormander’s solution of the weighted d-problem and the Mittag-Leffler procedure (Theorem
5.16). By virtue of representations of £ (@\K JE ) and Q%P (@\K JE ) as tensor products
(Theorem 3.11) the corresponding result is also valid for Fréchet spaces E (Theorem 5.17 resp.
Junker, [26]). In order to extend this result beyond the class of Fréchet spaces by the splitting
theory of Vogt and the one of Bonet and Domanski, it was necessary to prove that the space
Qexp (@ K ) satisfies the condition (Q) for any compact set K c R. For K = & this was done by
using a decomposition result of Langenbruch (Theorem 5.20) and in combination with a duality
established between the spaces Q%7 (@\ K ) | OP (@) and P, (K), (Theorem 4.1) the general
result was obtained (Theorem 5.22). Due to the condition of E being strictly admissible, the
theory of vector-valued Fourier hyperfunctions (in one variable) could be extended far beyond
the class of Fréchet spaces and they are realized on the one hand as the sheaf generated by equiv-
alence classes of compactly supported E-valued P.-functionals and on the other as boundary
values of E-valued slowly increasing holomorphic functions (Theorem 5.24 and Theorem 6.11).
Furthermore, natural limits of this kind of theory were found in the class of ultrabornological
PLS-spaces, namely, if E is an ultrabornological PLS-space, a reasonable theory of E-valued
Fourier hyperfunctions in one variable is possible if and only if E satisfies (PA) (Theorem 6.14).
For many classical spaces in analysis it is well-known whether they have (PA) or not, in particu-
lar every Fréchet-Schwartz space has (PA) (Example 5.26 and Example 5.27).

Obviously the question arises if such a theory is also possible in several variables. By the re-
sults of Junker (see [26, Section 3, p. 32-46]) we know that a reasonable theory of Fréchet-
valued Fourier hyperfunctions in several variables exists. Domarski and Langenbruch could con-
struct an E-valued sheaf of hyperfunctions in d variables under the assumption that the (d +1)-
dimensional Laplace operator

AdJrl:C00 ('Q‘7E) -»C (QvE)

is surjective for every open set Q c R4+!. Perhaps it is possible to create a reasonable theory of
E-valued Fourier hyperfunctions in d variables if we additionally assume that

Age: €7 ((DgxR)NKE) » E7P ((Dg xR) N K, E)
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7 Summary and outlook (eng/ger)

is surjective for any compact set K c D; where Dy is the radial compactification of R? and, if we
write points € R4*! as { = (x,y) e R xR,

£ (Dyx R) N K,E)
={feC®([(DyxR)NK]nR™ E) |VoeA neN, meNy: ryma(f)<oo}

where (pg) ,e4 1S @ fundamental system of semi-norms on E and

Tnm,a (f):= sup Pa (aﬁf(xa)’))e_%lx|
(x,y)eRn (K)NR!
BeNG™!, [Bl<m

plus
. 1
Rn(K) = {(x7y) € (Dd XR) \K| |y| <nand \})rellf;p ((xay) 7W) > Z}
where p denotes the canonical metric on Dy x R. Following [13], let

EXT ((DaxR)NKLE) i= {f € €77 ((DaxR)NK,E) |Af =0, £ (x,3) = £ (x-0)}

denote the E-valued slowly increasing harmonic functions outside K which are even with respect
to the last variable and
P.(K):= limgld O (U, (K))
ne

denote the rapidly decreasing holomorphic germs near K where

O (U, (K)) = {fe(’)(Un(K)m(Cd)mC(Un(K)m(cd) £, o= sup |f(z)|e%|Re(z)|<oo}
zeUn (K)nCH

with {
Uy (K) = {zeDded| inf py (z,w) <—}
weK n

where p,; denotes the canonical metric on Dy x R4, Further, let

Pa(K) = limind Py (Vi (K))
ne

where
Pa(Va (K)) = {£ €C (Va (R) nRTT) [Af =0, f (x.3) = f (2,-), I/l < 0}
with |
IfL= sup [f(xy)ent
(x,)eVi (K)nRA+1
and

Vi (K) :={(x,y)eDd><R| vivlellt;p((x,y),w)<%},

denote the rapidly decreasing harmonic germs near K which are even with respect to the last
variable.
In order to gain counterparts of [13, Lemma 5.1, p. 1118] (see also [12, Proposition 2.3, p. 44]),
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Karsten Kruse

[13, Theorem 5.3, p. 1119] resp. Theorem 4.1 (see also [1, Satz 2, p. 376]), one faces the open
problems:

7.1 Problem. Let K c D? be compact and E a complete locally convex space.
(a) Are P, (K) and P, (K) topologically isomorphic?
(b) Are £ ((DgxR)NK,E) [EXT (DyxR,E) and L, (P4 (K) ,E) topologically isomorphic?

One difficulty in answering the second question is that it still lacks in a fundamental solution
of Ay, with the right growth conditions.
A different idea would be to represent Fourier hyperfunctions as boundary values of solutions of
the heat equation (see [29], [42], [43], [44] and [30]).

155






Zusammenfassung und Ausblick

Wie gesehen, ist eine verniinftige Theorie E-wertiger Fourier Hyperfunktionen moéglich, wenn E
streng zuldssig (strictly admissible) ist, d.h. wenn der Cauchy-Riemann Operator

9:£P (@\K,E) - EP (@\K,E)
fiir jede kompakte Menge K c R surjektiv ist und auBerdem
0:C® (Q,E) -~ C® (Q,E)

fir jede offene Menge Q c C surjektiv ist. Im ersten Schritt wurde dieses Problem fiir den
skalarwertigen Fall gelost, indem Hormanders Losung des gewichteten d-Problems mit dem
Mittag-Leffler Verfahren kombiniert wurde (Theorem 5.16). Dank der Darstellung der Rdume
gexr (@\K JE ) und QP (@\K JE ) mittels Tensorprodukten (Theorem 3.11) gilt das entspre-
chende Resultat auch fiir Fréchet-Raume E (Theorem 5.17 bzw. Junker, [26]). Um es durch die
Splitting-Theorie von Vogt bzw. die von Bonet und Domanski iiber die Klasse der Fréchet-Riume
hinaus auszuweiten, war es notwendig zu zeigen, dass der Raum Q%P (@\ K ) die Eigenschaft

(Q) fiir jede kompakte Menge K c R besitzt. Im Fall K = @ wurde dazu ein Zerlegungsresultat
von Langenbruch verwendet (Theorem 5.20) und durch die Kombination mit einer zwischen den
Riaumen 047 (C\K) /0= (C) und P (K),, bewiesenen Dualitit (Theorem 4.1) erhielt man die
allgemeine Aussage (Theorem 5.22). Vermoge der Bedingung der strengen Zuléssigkeit von E
konnte somit die Theorie der vektorwertigen Fourier Hyperfunktionen (in einer Variablen) weit
iiber die Klasse der Fréchet-Riume hinaus erweitert werden und sie werden einerseits als von
Aquivalenzklassen E-wertiger P, -Funktionale mit kompaktem Triiger erzeugte Garbe dargestellt
und andererseits als Randwerte E-wertiger langsam wachsender holomorpher Funktionen (Theo-
rem 5.24 and Theorem 6.11). Desweiteren wurden natiirliche Grenzen dieser Art von Theorie in
der Klasse der ultrabornolgischen PLS-Raume gefunden, nimlich, wenn E ein ultrabornologi-
scher PLS-Raum ist, dann ist eine verniinftige Theorie E-wertiger Fourier Hyperfunktionen in
einer Variablen genau dann moglich, wenn E die Eigenschaft (PA) hat (Theorem 6.14). Fiir viele
Standardrdume der Analysis ist bekannt, ob sie (PA) haben oder nicht, insbesondere hat jeder
Fréchet-Schwartz Raum (PA) (Example 5.26 and Example 5.27).

Offensichtlich stellt sich die Frage, ob eine solche Theorie auch in mehreren Variablen moglich
ist. Aufgrund der Ergebnisse von Junker (siehe [26, Kapitel 3, S. 32-46]) wissen wir, dass eine
verniinftige Theorie Fréchet-wertiger Fourier Hyperfunktionen auch in mehreren Variablen mog-
lich ist. Domanski und Langenbruch gelang es, eine E-wertige Garbe von Hyperfunktionen in d
Variablen unter der Annahme, dass der (d + 1)-dimensionale Laplace Operator

AdJrl:C00 ('Q‘7E) -»C* (QvE)

fiir jede offene Menge Q c R4+! surjektiv ist, zu konstruieren. Vielleicht ist es moglich, eine
sinnvolle Theorie E-wertiger Fourier Hyperfunktionen in d Variablen zu erschaffen, wenn wir
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zusitzlich annehmen, dass
Ad+l:gexp((Dd XR) \K7E) - gexp((Dd XR) \K7E)

fiir jede kompakte Menge K c D, surjektiv ist, wobei D, die radiale Kompaktifizierung von R?
bezeichne und, wenn wir Punkte § € R4*! schreiben als { = (x,y) e R xR,

EXP ((DgxR)NK,E)
={feC®([(DgxR)NK]nR™VE) |VoeA neN, meNy: ryma(f)<oo},

wobei (pa) 44 €in Fundamentalsystem von Halbnormen auf E sei, und

T'nm,a (f):= sup Pa (aﬁf(xa)’))e_%lx|
(x,y)€Rn (K)NRI!
BeNg*!, |Bl<m
sowie
Ru(K) 1= { (v.3) € (D xR) ~K | | < nand infp (), w) >,

wobei p die kanonische Metrik auf D, x R bezeichne. Dem Vorgehen in [13] folgend, bezeichne
gzxp ((Dd XR) \KvE) = {f e EXP ((Dd XR) \K7E) |Af: 07 f(xay) = f(xv_y)}

die E-wertigen langsam wachsenden harmonischen Funktionen auflerhalb von K, welche gerade
beziiglich der letzten Variablen sind, und

P.(K):=limind O (U, (K))
neN
seien die schnell fallenden holomorphen Keime nahe K, wobei

O U (K)) = {f €O (Uu(K)nC)nC(Up(K)nC!) || f,= sup  |f(2)]ere < oo}
zeUy (K)NC4

mit .
U,(K):= {zEDd xR?| inf py (z,w) < —}
weK n
sei und p, die kanonische Metrik auf D; x R¥ bezeichne. Weiter bezeichne

Pa(K) = limind Py (V,, (K))

wobei
Pa(Va (K)) = {f €C® (Va (K)NR™) [AF =0, £ (x,) = f (), If1l, < 00}
mit |
|||f|||n = sup |f (_x,y) |eﬁ|x‘
(x,y)eVa(K)NRI+1
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und .
V, (K) :={<x,y>eDde| inf p ((x.y).w) —}

den Raum der schnell fallenden harmonischen Keime nahe K, welche gerade beziiglich der letzen
Variablen sind.

Beim Versuch Gegenstiicke zu [13, Lemma 5.1, S. 1118] (siehe auch [12, Proposition 2.3, S.
441), [13, Theorem 5.3, S. 1119] bzw. Theorem 4.1 (siehe auch [1, Satz 2, S. 376]) zu gewinnen,
wird man mit folgendem offenen Problem konfrontiert:

7.2 Problem. Sei K c D? kompakt und E ein vollstindiger lokal konvexer Raum.
(a) Sind P, (K) und P, (K) topologisch isomorph?
(b) Sind &7 ((DyxR)NK,E) [EXT (DyxR,E) und Ly, (Pa (K) ,E) topologisch isomorph?

Eine Schwierigkeit in der Beantwortung der zweiten Frage liegt darin, dass es momentan noch
an einer Fundamentallosung von A, mit den richtigen Wachstumseigenschaften mangelt.
Eine andere Idee wire es, Fourier Hyperfunktionen als Randwerte von Losungen der Wirmelei-
tungsgleichung darzustellen (siehe [29], [42], [43], [44] und [30]).
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