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1 Introduction

The aim of the present work is the development of the theory of Fourier hyperfunctions in one
variable with values in a non-necessarily metrizable locally convex space E and to find neces-
sary and sufficient conditions such that a reasonable theory of E-valued Fourier hyperfunctions
is possible. In particular, it is shown that, if E is an ultrabornological PLS-space, such a theory
exists if and only if E satisfies the so-called property (PA) . It will turn out that the vector-valued
Fourier hyperfunctions can be realized as the sheaf generated by equivalence classes of certain
compactly supported E-valued functionals and interpreted as boundary values of slowly increas-
ing holomorphic functions.
Scalar-valued Fourier hyperfunctions R were introduced by Kawai [28] in 1970. He constructed
them as a flabby sheaf on Dn, where Dn means the radial compactification of Rn, using coho-
mology theory and Hörmander’s L2-estimates [20]. He proved that the global sections are stable
under Fourier transformation F , i.e. F ∶R(Dn)→R(Dn) is an isomorphism. This sheaf is a
generalization of the sheaf B of hyperfunctions on Rn which was developed by Sato [55] (and
[56]); in particular, R∣Rn = B holds. Hyperfunctions emerged as an useful tool in the theory
of partial differential equations (see [33]), in particular, in the solution of the abstract Cauchy
problem. Komatsu developed the theory of Laplace hyperfunctions, a theory of operator val-
ued generalized functions with a suitable Laplace transform, more precisely, for operators in
Banach spaces, and the abstract Cauchy problem was solved by a condition on the resolvent
of the operator which characterized the generators of hyperfunction semigroups (see [34], [35],
[36] and [37]). This theory was improved and extended beyond operators in Banach spaces by
Domański and Langenbruch (see [14], [15]). Since some partial differential equations can be
taken as ordinary vector-valued equations (e.g. [50], [51]), the question arose whether there
was a vector-valued counterpart for the theory of (Fourier) hyperfunctions. Whereas Schwartz
achieved this in the analogous theory of distributions by tensor products [58], one faces a crucial
problem in the development of such a theory of vector-valued, in short, E-valued where E is a
locally convex space, Fourier hyperfunctions, namely, the lack of a natural linear topology on the
scalar-valued (Fourier) hyperfunctions (with the exception of the space of global sections in the
case of Fourier hyperfunctions). Despite of this difficulty, Ion and Kawai [21](1975) developed
a theory of hyperfunctions with values in Fréchet spaces, Ito and Nagamachi [24](1975) a theory
of Fourier hyperfunctions with values in Hilbert spaces, which was used by Mugibayashi and
Nagamachi ([48], [49]) for an axiomatic formulation of quantum field theory in terms of Fourier
hyperfunctions, and Junker [26](1979) a theory of Fourier hyperfunctions with values in Fréchet
spaces. Although Ito tried to extend the theory of Fourier hyperfunctions to non-Fréchet spaces E
([23], [22]), his effort has some mathematical gaps. He only realizes them in form of a presheaf
satisfying the sheaf condition (S1) of Bredon [9, 1.5, p. 5] and then defines the sheaf of general
Fourier hyperfunctions as the associated sheaf (see [9, 1.3, p. 5]). Even worse, it is not certain
whether the restrictiction maps he defines exist for a general locally convex space E, so it is not
even sure if his E-valued Fourier hyperfunctions form a presheaf at all (see Remark 6.3 and the
remarks before it). But their existence can be assured by an additional condition for E, viz. E
has to be strictly admissible which is explained in the forthcoming. As we will see, a reasonable
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theory of E-valued Fourier hyperfunctions is indeed impossible, at least in one variable, for ul-
trabornological PLS-spaces E not satisfying the so-called property (PA) .
Domański and Langenbruch [13](2008) not only overcame these obstacles and developed a the-
ory of vector-valued hyperfunctions beyond the class of Fréchet spaces, but also found natural
limits of this kind of theory. They characterized in a large natural class of locally convex spaces
those spaces for which a reasonable theory of E-valued hyperfunctions exists at all (see [13,
Theorem 8.9, p. 1139]). To be more precise: they state that a reasonable theory of E-valued
hyperfunctions should generate a flabby sheaf with the property that the set of sections supported
by a compact subset K ⊂ Rn should coincide with L(A(K) ,E) , the space of linear continuous
operators from A(K) to E where A(K) denotes the space of germs of real analytic functions on
K. Transferring this condition to the theory of Fourier hyperfunctions, I am convinced that a rea-
sonable theory of E-valued hyperfunctions (in one variable) should produce a flabby sheaf such
that the set of sections supported by a compact subset K ⊂R should coincide with "the space of
E-valued P∗-functionals" L(P∗ (K) ,E) where R is the radial compactification of R and P∗ (K)
the space of rapidly decreasing holomorphic germs near K (see Definition 3.1). If one restricts
such a sheaf to R, the restricted sheaf fulfills the condition of Domański and Langenbruch for a
reasonable theory of E-valued hyperfunctions, since P∗ (K) =A(K) for compact K ⊂R, which is
desirable in the spirit of the property R∣R = B of the scalar-valued case. Furthermore, the global
sections of such a sheaf are stable under Fourier transformation (see Theorem 4.6). This implies
that for those spaces E, for which a reasonable theory of E-valued hyperfunctions is impossible,
a reasonable theory of E-valued Fourier hyperfunctions is impossible as well. A long list of ex-
amples of spaces E for which a reasonable theory of E-valued Fourier hyperfunctions is possible
resp. impossible can be found in Example 5.26 resp. Example 5.27(a).
In the approach of Domański and Langenbruch the existence of an E-valued sheaf of hyperfunc-
tions is deeply connected with the solvability of the E-valued Laplace equation; namely, if the
(n+1)-dimensional Laplace operator

∆n+1∶C∞ (Ω,E)→C∞ (Ω,E)

is surjective for every open set Ω ⊂ Rn+1 where C∞ (Ω,E) is the space of smooth E-valued
functions on Ω, then a reasonable theory of E-valued hyperfunctions on Rn is possible (see [13,
Theorem 6.9, p. 1125]). For E-valued Fourier hyperfunctions in one variable the corresponding
counterpart is the following. A complete locally convex space E is called admissible if the
Cauchy-Riemann operator

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

is surjective for any compact set K ⊂R where C ∶=R+iR and Eexp (C∖K,E) is, roughly speaking,
the space of smooth E-valued slowly increasing functions outside K (see Definition 3.2). E is
called strictly admissible if E is admissible and, in addition,

∂ ∶C∞ (Ω,E)→C∞ (Ω,E)

is surjective for any open set Ω ⊂C. We will prove that E being strictly admissible yields to the
existence of a reasonable theory of E-valued Fourier hyperfunctions in one variable. Hence the
whole Section 5 is dedicated to this problem and culminates in the main theorem of this section,
Theorem 5.25, where all the classes of strictly admissible spaces known so far are collected, in
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particular, ultrabornological PLS-spaces with property (PA) . The main tools of this section are
the splitting theory for Fréchet spaces of Vogt [63] and new results on the splitting theory for
PLS-spaces by Bonet and Domański [8] as well as results on tensor products obtained in Section
3 (see Theorem 3.11).
In correspondence with the scalar-valued case, the E-valued Fourier hyperfunctions are defined
in Section 6 from two different points of view for a strictly admissible space E. On the one hand
as the sheaf generated by equivalence classes of E-valued P∗-functionals, and on the other as the
sheaf of boundary values of the elements of Oexp (U ∖R,E) . This is, to put it roughly, the space
of holomorphic E-valued slowly increasing functions on U outside an open set Ω ⊂R, where U
is an open set in C with U ∩R = Ω (see Definition 6.7). The construction of these sheaves will
benefit from some kind of Köthe duality established in Section 4 (see Theorem 4.1) and it will
turn out that both sheaves are isomorphic (see Theorem 6.11). At the end of the section, it will
turn out, as already mentioned in parts, that, if E is an ultrabornolgical PLS-space, a reasonable
theory of E-valued Fourier hyperfunctions in one variable exists if and only if E satisfies the
property (PA) (see Theorem 6.14).
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2 Notation and preliminaries

By E we will (almost) always denote a complete locally convex space equipped with the system
of semi-norms (pα)

α∈A, where A is a directed set. The only exceptions are Theorem 5.1, the
Lemmas 5.3-5.5, Remark 5.9 and a short remark right after Example 5.12, where E denotes a
fundamental solution.

Basic notations for sets, the spaces R and C
We denote by R the radial compactifaction of R defined as follows. We set R ∶=R∪{±∞} and
equip this space with the topology given by:
A set Ω ⊂R is open iff

• Ω∩R is open in (R, ∣⋅∣) and

• there exists a ∈R such that [a,∞] ⊂Ω, if ∞ ∈Ω, or [−∞,a] ⊂Ω, if −∞ ∈Ω.

Remark that R, equipped with this topology, is a compact space. Furthermore, we define

inf∅ ∶=∞ and sup∅ ∶= −∞

as well as [a,b] ∶=∅ for a, b ∈R, a > b. Moreover, we set −∞+a ∶= −∞ and ∞+a ∶=∞ for a ∈R.
In addition, we define ⌈x⌉ ∶=min{k ∈Z ∣ x ≤ k} for x ∈R.
Further, we define C ∶=R+iR and equip it with the product topology. In particular, this means that
an open set U ⊂C contains∞ or −∞ iff there exist a ∈R and ε >0 such that ([a,∞]+ i]−ε,ε[)⊂U
resp. ([−∞,a]+ i]−ε,ε[) ⊂U.
Let z ∈ C. Then there are x, y ∈ R such that z = x+ iy. We use the usual notation Re(z) ∶= x and
Im(z) ∶= y. In short, we often just use for an element z ∈C the notation z = z1+ iz2 without previ-
ously pointing that out. Furthermore, we also use a notation of mixed-type

z = z1+ iz2 = (z1,z2) = (z1
z2
) ,

hence consider C as the vector space R2 equipped with the usual multiplication. Further, we
denote by ⟨z∣w⟩ the usual scalar product of z, w ∈ R2. We define the distance of two subsets
M0, M1 ⊂C via

d(M0,M1) ∶=
⎧⎪⎪⎨⎪⎪⎩

inf
z∈M0,y∈M1

∣z−y∣, if M0, M1 ≠∅,

∞, if M0 =∅ or M1 =∅.
If M0 is compact and M1 closed such that M0∩M1 =∅, then there exists z0 ∈M0 with d(M0,M1) =
d(z0,M1) , in particular, d(M0,M1) > 0 (see for example [31, 1.4.II. Beispiel, p. 31]).
Moreover, we denote by Dr (z) ∶= {w ∈C ∣ ∣w− z∣ < r} the ball around z ∈C with radius r > 0.
For an universal set (basic set) U we denote the absolute complement of a subset M ⊂ U by
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2 Notation and preliminaries

MC ∶=U ∖M. Further, we denote by #M the number of elements of a set M and for a subset M of
a topological space X the set of inner points of M by M̊, the closure of M by M and the boundary
of M by ∂M.

Spaces of continuous linear operators

By L(E,F) we denote the space of continuous linear operators from X to Y where X and Y are
locally convex spaces. If F = C, we just write E ′ ∶= L(E,C) for the dual space. By Lσ (E,F),
Lc (E,F), Lco (E,F), Lτ (E,F), Le (E,F) and Lb (E,F) we denote the space L(E,F) equipped
with the weak topoplogy, the topology of uniform convergence on precompact subsets of E, the
compact open topology, the Mackey topology, the topology of uniform convergence on equicon-
tinuous subsets of E and the strong topology. Sometimes we also use the symbol σ (E ′,E) for the
weak topology and the symbol λ (E ′,E) for the topology of uniform convergence on precompact
sets on E ′. But, if not otherwise stated, L(E,F) resp. E ′ is always equipped with the strong
topology and we only write Lb (E,F), if we want to emphasize this fact.
Moreover, we often use the notation

⟨T,x⟩ ∶= T (x)
for T ∈ L(E,F) and x ∈ E.
Later, when we are concerned with tensor products, we will use the so-called ε-product which is
defined by EεF ∶= Le (E ′

c,F) for complete locally convex spaces E and F. Remark that E ′
c = E ′

co
if E is complete. This definition of the ε-product coincides with the original one by Schwartz
[58, Définition, p. 18] if E is (quasi-)complete. For the references to the book [25] of Jarchow
in this context, whose definition of the ε-product also differs in general from the one given here,
we remark that they coincide if E is complete by [25, 9.3.7. Theorem, p. 179], which is the case
we are interested in.

Infinetely partial differentiable functions, distributions and
holomorphic functions

Let n ∈ N and U ⊂ Rn be open. By C∞ (U) and C∞ (U,E) we denote the spaces of scalar- and
E-valued infinitely differentiable functions on U. For f ∈C∞ (U,E) we use the usual notation

∂
α f (x) ∶= ∂

α1
1 ⋯∂

αn
n f (x) ∶= ( ∂

∂x1
)

α1

⋯ ( ∂

∂xn
)

αn

f (x)

with α ∈ Nn
0 and denote by ∣α ∣ ∶= α1 +⋯+αn the order of differentiation. Further, we use for

α, β ∈Nn
0 the notation

β ≤ α ∶⇔ ∀ 0 ≤ i ≤ n ∶ βi ≤ αi

and define
(α

β
) ∶= (α1

β1
)⋯(αn

βn
)

if β ≤ α, where the right hand side is defined by ordinary binomial coefficients. We remark that
β ≤α implies ∣β ∣ ≤ ∣α ∣ . This notation is useful when we are concerned with partial derivatives of
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products (Leibniz rule).
The space of infinitely differentiable functions with compact support in U is defined by

C∞
0 (U) ∶=D(U) ∶= limind

K⊂U compact
C∞

0 (K)

where
C∞

0 (K) ∶= { f ∈C∞ (Rn) ∣ f (x) = 0 ∀ x ∉K} .
Every element f of D(U) can be regarded as an element of D(Rn) just by the trivial setting
f ∶= 0 on UC. Moreover, we set for k ∈N0 and f ∈C∞

0 (Rn)

∣∣∣∣ f ∣∣∣∣k ∶= sup
x∈Rn

α∈Nn
0, ∣α ∣≤k

∣∂ α f (x)∣ .

∣∣∣∣⋅∣∣∣∣k is a norm on C∞
0 (Rn) for any k.

The dual D′ (U) ∶= D(U)′ is called the space of distributions on U. The Dirac distribution δ

is defined via δ (ϕ) ∶= ϕ (0) , ϕ ∈ D(Rn) , and for a locally integrable function f ∈ L1
loc (U) we

denote by Tf the regular distribution defined by

Tf (ϕ) ∶= ∫R f (x)ϕ (x)dx, ϕ ∈D(U) .

The partial derivatives of a distribution T ∈D′ (U) are defined by

∂
αT (ϕ) ∶= (−1)∣α ∣T (∂

α
ϕ) , ϕ ∈D(U) .

The convolution T ∗ϕ of a distribution T ∈D′ (Rn) and a test function ϕ ∈D(Rn) is defined by

(T ∗ϕ)(x) ∶= T (ϕ (x− ⋅)) , x ∈Rn.

In particular, we have δ ∗ϕ = ϕ and

(Tf ∗ϕ)(x) = ∫Rn
f (y)ϕ (x−y)dy, x ∈Rn, (2.1)

for f ∈ L1
loc (Rn) and ϕ ∈D(Rn) .

Furthermore, ∂ α (T ∗ϕ) = (∂ αT)∗ϕ = T ∗ (∂ αϕ) is valid for T ∈D′ (Rn) and ϕ ∈D(Rn) . For
more details on the theory of distributions see [18].
Let U ⊂C be open. By O(U) and O(U,E) we denote the spaces of scalar- and E-valued holo-
morphic functions on U.

PLS-spaces, Proj1 and Ext1 functor and splitting of exact
sequences

Let us recall that a locally convex space X is a PLS-space (PLN-space) if X = limprojN∈NXN
where XN are DFS-spaces, i.e. the strong duals of Fréchet-Schwartz spaces (DFN-spaces, i.e.
the strong duals of nuclear Fréchet spaces). XN being a DFS-space is equivalent by [45, The-
orem 25.20, p. 286] to the existence of a sequence of Banach spaces (XN,n)n∈N such that
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XN = limindn∈NXN,n with compact linking maps. For this reason DFS-spaces are also called
LS-spaces. Examples of PLS-spaces are the space of distributions D′ (Ω) and the space of real
analytic functions A(Ω). In particular, every Fréchet-Schwartz space is a PLS-space (for a short
proof see [13, Proof of Proposition 4.3, p. 1113-1114]). For more examples see Example 5.26
and Example 5.27. Further, we recall that a LFS-space is an inductive limit of a sequence of
Fréchet-Schwartz spaces. For more details on PLS-spaces we refer to [11].
We repeat some homological tools, mostly working in the background of the results at the end
of Section 6. The Proj1 functor is defined as follows. Let X ∶= limprojN∈NXN where (XN) is a
sequence of locally convex spaces with a sequence of linking maps iN+1

N ∶XN+1→XN . One defines

Proj1N∈N (XN) ∶= ∏
N∈N

XN/ imσ , σ ∶∏
N∈N

XN →∏
N∈N

XN ,

σ ((xN)) ∶= (iN+1
N xN+1−xN)N∈N .

For reduced spectra of DFS-spaces or Banach spaces, meaning that iN ∶X → XN has a dense range
for every N ∈N, Proj1 depends only on X and not on the spectrum itself. We remark that a PLS-
space X is ultrabornological iff Proj1 X = 0 by [65, Corollary 3.3.10, p. 46].
We have the following relation between the terminology of homological algebra and the theory
of locally convex spaces, which can be found in [53, §4+§9] and [65, Chap. 2+5]. The category
LCS of locally convex spaces resp. the category F of Fréchet spaces consists of (not necessarily
Hausdorff) locally convex spaces resp. Fréchet spaces (over the same scalar field R or C) as
objects and continuous linear maps (operators) as morphisms. So, we use the notation L(X ,Y)
for Hom(X ,Y) , where X and Y are locally convex spaces resp. Fréchet spaces, and the group
structure is given by the usual addition. In the following, letK beLCS orF . An operator f ∶X→Y,
X , Y ∈K, is a monomorphism iff it is injective. An operator f ∶X →Y, where X , Y ∈ LCS (resp.
X , Y ∈ F), is an epimorphism, iff it is surjective (resp. it has dense range). In K every operator
f ∶X →Y has a kernel, namely, the subspace f −1 ({0}) ⊂X equipped with the induced topology, it
has a cokernel, namely, in LCS the quotient space Y / f (X) and in F the quotient space Y / f (X),
equipped with the quotient topology. Accordingly, the subspace f (X) ⊂ Y, equipped with the
induced topology, can be interpreted as the image of f and the quotient space X/ f −1 ({0}) ,
equipped with the quotient topology, as the coimage of f (for F keep in mind that f −1 ({0}) =
f −1 ({0})). Further, the morphism

f̃ ∶X/ f −1 ({0})→ f (X) , [x]↦ f (x) ,

is a bimorphism, i.e. it is a monomorphism as well as an epimorphism. Thus the category K
is semi-abelian. f ∶X → Y is a homomorphism iff it is open onto its range. A space I in K is
called injective iff for every f ∈ L(X ,I) , where X in K, and every monohomomorphism (i.e. a
topological embedding) i∶X →Y, where Y in K, there is an extension f̃ ∈ L(Y,I) of f , i.e. f̃ ○ i = f .
The crucial point is that the category K has many injective objects by [53, Corollary 4.1, p. 23]
resp. [65, Theorem 2.2.1 and a subsequent remark, p. 13-14], i.e. for every object X of K there
exist an injective object I and a monohomomorphism i∶X → I. In particular, this implies that every
object X in K has an injective resolution, i.e. there exists an exact complex

0→ X
i→I0

i0→I1
i1→I2→⋯,
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where Ik are injective objects in K for every k. For a fixed locally convex space (resp. Fréchet
space) E one considers the functor L(E, ⋅) assigning to a locally convex space (resp. Fréchet
space) X the linear space L(E,X) and to an operator T ∶X → Y the linear map T∗∶L(E,X) →
L(E,Y) , f ↦ f ○T. This covariant functor is injective and additive. Since K has many injective
objects, the construction of the right derived functors of L(E, ⋅) is possible and they are denoted
with Extk (E, ⋅) . For any injective resolution of X we have

Extk (E,X) ≅ ker i∗k / im i∗k−1, k ≥ 1,

where i∗k ∶L(X ,Ik)→ L(X ,Ik+1) , i∗ (T) ∶= ik ○T, and Ext0 (E,X) = L(E,X) . Then the following
Theorem (see [53, Proposition 2.1, p. 13] and [53, Proposition 9.1, p. 49] or [65, Theorem 2.1.1,
p. 11-12] and [65, Theorem 5.1.1, p. 77]) is valid:

Theorem. 1) Let E be a locally convex space (resp. Fréchet space) and

0→ X
I→Y

Q→Z→ 0

an exact sequence sequence of locally convex spaces (resp. Fréchet spaces). Then there is an
exact complex

0→ L(E,X) I∗→L(E,Y)Q∗

→L(E,Z)δ
0

→Ext1 (E,X)→ Ext1 (E,Y)→ Ext1 (E,Z)δ
1

→Ext2 (E,X)→⋯

where I∗∶L(E,X)→ L(E,Y) , I∗ (T) ∶= I ○T, and Q∗∶L(E,Y)→ L(E,Z) , Q∗ (T) ∶=Q○T.
2) Let X be a locally convex space (resp. Fréchet space) and

0→ E
i→G

q→F → 0

an exact sequence of locally convex spaces (resp. Fréchet spaces). Then there is an exact complex

0→ L(F,X)
q∗→L(G,X) i∗→L(E,X) δ0→Ext1 (F,X)→ Ext1 (G,X)→ Ext1 (E,X) δ1→Ext2 (F,X)→⋯

where q∗∶L(F,X)→ L(G,X) , q∗ (T) ∶= T ○q, and i∗∶L(G,X)→ L(E,X) , i∗ (T) ∶= T ○ i.

The connection to splitting theory is now as follows. Let E and F be locally convex spaces
(resp. Fréchet spaces). Then the following conditions are equivalent by [65, Proposition 5.1.3, p.
79] resp. [63, 1.8. Theorem, p. 11]:

• Every exact sequence

0→ E
i→G

q→F → 0 (2.2)

splits (i.e. q has a right inverse or, equivalently, i has a left inverse) where G is a locally
convex space (resp. Fréchet space).

• Ext1 (F,E) = 0

Furthermore, we remark that an exact sequence (2.2) is always topologically exact in F , i.e. the
continuous, linear maps i and q are open onto their image due to the open mapping theorem. If
E and F are PLS-spaces and every topologically exact sequence (2.2), where G is a PLS-space,
splits, then this is correspondingly denoted by Ext1PLS (F,E) = 0. Note that this really is a differ-
ence. There is a close relation between the functors Proj1 and Ext1 (for Fréchet spaces) resp.
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2 Notation and preliminaries

Ext1PLS or, more precisely, their vanishing (see for example [63, 1.2 Theorem, p. 9] and [8, The-
orem 3.4, p. 9]). This is only a short summary. For more details see [52], [53], [65], for splitting
theory of Fréchet spaces [63] and for splitting theory of PLS-spaces [8].

For the classical theory of hyperfunctions see [27], [57] or [47]. For the sheaf theory see [9]
or [39]. For the theory of locally convex spaces see [45] or [16]. For the theory of tensor prod-
ucts see [25] or [60].
Since the theory of E-valued hyperfunctions developed by Domański and Langenbruch in [13]
was the initial point of my work, many theorems proven here were obtained by modifying the
proofs of their counterparts in [13]. Thus it is refered to these counterparts in a footnote of the
following kind,

counterpart: [13, Theorem X.Y, p. xy].
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3 Vector-valued functions with
exponential growth conditions

This section is dedicated to some basic topological properties of the spaces already mentioned
in the introduction, the space P∗ (K) of rapidly decreasing holomorphic germs near K, the
space Eexp (C∖K,E) of smooth E-valued slowly increasing functions outside K and the space
Oexp (C∖K,E) of holomorphic E-valued slowly increasing functions outside K where K is a
compact subset of R. In particular, it will turn out that the space P∗ (K) is a DFS-space and that
Eexp (C∖K,C) as well as Oexp (C∖K,C) are nuclear Fréchet spaces. Using the nuclearity, we
obtain a representation of Eexp (C∖K,E) and Oexp (C∖K,E) via tensor products at the end of
this section, namely,

Eexp (C∖K,E) ≅ Eexp (C∖K,C)εE ≅ Eexp (C∖K,C)⊗̂εE ≅ Eexp (C∖K,C)⊗̂πE

and the same for Oexp (C∖K,E) .
Then the results of this section will be used as auxiliary tools in the following sections.
We begin with the definitions of the spaces above. For a compact set K ⊂R and n ∈R, n ≥ 1, we
define the sets

Un (K) ∶= {z ∈C∣ d(z,K∩C) < 1/n}∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∅, if K ⊂R,
]n,∞[+i]−1/n,1/n[ , if∞ ∈K, −∞ ∉K,

]−∞,−n[+i]−1/n,1/n[ , if∞ ∉K, −∞ ∈K,

(]−∞,−n[∪]n,∞[)+ i]−1/n,1/n[ , if∞ ∈K, −∞ ∈K,

Figure 3.1: Un(K) for ±∞ ∈K

and
Sn (K) ∶= (Un (K))

C
∩{z ∈C ∣ ∣Im(z)∣ < n}

where the closure and the complement are taken in C.
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3 Vector-valued functions with exponential growth conditions

Figure 3.2: Sn(K) for ±∞ ∈K

3.1 Definition (rapidly decreasing holomorphic germs). Let K ⊂R be a compact set. The space
of rapidly decreasing holomorphic germs near K is defined as

P∗ (K) ∶= limind
n∈N

On (Un (K))

where

On (Un (K)) ∶= { f ∈O(Un (K))∩C(Un (K)) ∣ ∥ f ∥n ∶= sup
z∈Un(K)

∣ f (z)∣e 1
n ∣Re(z)∣ <∞}

and O(∅) ∶= 0 and the spectral mappings are given by

πn,k∶On (Un (K))→Ok (Uk (K)) , πn,k ( f ) ∶= f ∣Uk(K), n ≤ k.

Recall that E is a complete locally convex space equipped with the system of semi-norms (pα)
α∈A .

3.2 Definition (vector-valued slowly increasing infinitely continuously differentiable resp. holo-
morphic functions). Let K ⊂R be a compact set.

a) For n ∈R, n > 1, we define

Eexp
n (Sn (K) ,E) ∶= { f ∈C∞ (Sn (K) ,E) ∣ ∀α ∈ A, m ∈N0 ∶ ∣ f ∣K,n,m,α <∞}

where
∣ f ∣K,n,m,α ∶= sup

z∈Sn(K)
β∈N2

0, ∣β ∣≤m

pα (∂
β f (z))e−

1
n ∣Re(z)∣.

The space of vector-valued slowly increasing infinitely continuously differentiable func-
tions outside K is defined as

Eexp (C∖K,E) ∶= limproj
n∈N≥2

Eexp
n (Sn (K) ,E)

where the spectral mappings are given by

πn,k∶Eexp
k (Sk (K) ,E)→ Eexp

n (Sn (K) ,E) , πn,k ( f ) ∶= f ∣Sn(K), n ≤ k.

12
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b) For n ∈R, n > 1, we define

Oexp
n (Sn (K) ,E) ∶= { f ∈O(Sn (K) ,E) ∣ ∀α ∈ A ∶ ∣ f ∣K,n,α <∞}

where
∣ f ∣K,n,α ∶= sup

z∈Sn(K)
pα ( f (z))e−

1
n ∣Re(z)∣.

The space of vector-valued slowly increasing holomorphic functions outside K is defined
as

Oexp (C∖K,E) ∶= limproj
n∈N≥2

Oexp
n (Sn (K) ,E)

where the spectral mappings are given by

πn,k∶Oexp
k (Sk (K) ,E)→Oexp

n (Sn (K) ,E) , πn,k ( f ) ∶= f ∣Sn(K), n ≤ k.

If not necessary, the subscript K in the notation of the semi-norms is omitted and in the Banach-
valued, particularly, scalar-valued, case the subscript α as well. The notation for the spaces in
the scalar-valued case is Eexp

n (Sn (K)) ∶= Eexp
n (Sn (K) ,C) , Eexp (C∖K) ∶= Eexp (C∖K,C) as well

as Oexp
n (Sn (K)) ∶=Oexp

n (Sn (K) ,C) and Oexp (C∖K) ∶=Oexp (C∖K,C) .
The mappings πn,k in the Definitions 3.1 and 3.2 are obviously linear and continuous.

Now we take a closer look at the sets Un (K) and Sn (K) .
3.3 Remark. Let K ⊂R be compact and n ∈R, n ≥ 1.

(1) The set Un (K) is open and has finitely many components.

(2) Let K ≠∅ and Z be a component of Un (K) . We define a ∶= minZ∩K and b ∶= maxZ∩K if
existing (in R).

a) If Z is bounded, there exists 0 < R ≤ 1/n such that for all 0 < r ≤ R ∶
{z ∈C∣ d(z,[a,b]) < r} ⊂ Z

b) If Z∩R is bounded from below and unbounded from above and a exists, there exists
0 < R ≤ 1/n such that for all 0 < r ≤ R ∶ {z ∈C∣ d(z,[a,∞[) < r} ⊂ Z

c) If Z∩R is bounded from above and unbounded from below and b exists, there exists
0 < R ≤ 1/n such that for all 0 < r ≤ R ∶ {z ∈C∣ d(z,]−∞,b]) < r} ⊂ Z

d) If Z ∩R is unbounded from below and above, there exists 0 < R ≤ 1/n such that for all
0 < r ≤ R ∶ {z ∈C∣ d(z,R) < r} ⊂ Z

e) If Z∩R is bounded from below and unbounded from above and a does not exist, then
Z =]n,∞[+i]−1/n,1/n[ . If Z ∩R is bounded from above and unbounded from below
and b does not exist, then Z =]−∞,−n[+i]−1/n,1/n[ .

(3) Let q ∈R, q > n > 1, M ⊂ Sn (K) and O a component of MC such that O∩Sn (K)
C
≠∅. Then

O∩Sq (K)
C
≠∅.

(4) Let q ∈R, q > n ≥ 1. Then

d(∂Uq (K) ,∂Un (K)) = 1
n
− 1

q
, q > n ≥ 1, K ≠∅,
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3 Vector-valued functions with exponential growth conditions

and

d(∂Sq (K) ,∂Sn (K)) =
⎧⎪⎪⎨⎪⎪⎩

1
n − 1

q , q > n > 1, K ≠∅,
q−n, q > n > 1, K =∅.

Proof. (1) Consider the case ∞ ∈ K, −∞ ∉ K. Obviously Un (K) is an open set. Let (Zn
i )i∈I

denote the components of Un (K) . Then Un (K) =⊍i∈I Zn
i and by definition of a component

there is j ∈ I such that Zn
j is the only component including ]n,∞[+i]−1/n,1/n[ . Further-

more, there exists m ∈R with ⋃i∈I∖{ j} (Zn
i ∩R) ⊂ [m,n] by assumption. For i ≠ j the length

λ (Zn
i ∩R) of the interval Zi∩R, where λ denotes the Lebesgue measure, is estimated from

below by λ (Zn
i ∩R) ≥ 2/n by definition of Un (K) . Since all Zn

i are pairwise disjoint, this
implies that I has to be finite. The others cases can analogously be proven.

(2) a) Since Z ∩K is closed in R and therefore compact, a and b exist. Hence [a,b] ⊂ Z
by definition of Un (K) and as Z is connected. [a,b] being a compact subset of the
open set Z implies there is ε > 0 such that ([a,b]+ i]−ε,ε[) ⊂ Z by the tube lemma.
The choice of R ∶= min(ε, 1

n) completes the proof by definiton of Un (K) and since
a, b ∈ Z∩K.

b) If Z∩ K∩]−∞,n] ≠∅, then a exists and analogously to a) there exists R > 0 such that
for all 0 < r ≤ R ∶

{z ∈C∣ d(z,[a,n]) < r} ⊂ Z

By definition of Un (K) this brings forth {z ∈C∣ d(z,[a,∞[) < r} ⊂ Z.
If Z ∩ K ∩ ]−∞,n] = ∅ and a exists, the desired R > 0 exists by definition of Un (K)
since n /∈ Z∩ K and Z∩ K is closed in R, thus d(n,Z∩ K) > 0.

c) Analogously to b).

d) By the assumptions Z∩K∩ [−n,n] ≠∅. Analogously to a) there exists R > 0 such that
for all 0 < r ≤ R ∶

{z ∈C∣ d(z,[−n,n]) < r} ⊂ Z

Like in b) and c) this brings forth {z ∈C∣ d(z,R) < r} ⊂ Z.

e) This follows directly by the definition of Un (K) and as Z is a component of Un (K) .

(3) By definition we have Sn (K)
C
=Un (K)⊍{z ∈C ∣ ∣Im(z)∣ > n} and

Sq (K)
C
=Uq (K)⊍{z ∈C ∣ ∣Im(z)∣ > q} . So the components of Sn (K)

C
are

{z ∈C ∣ Im(z) > n} , {z ∈C ∣ Im(z) < −n} and the components of Un (K) . The components

of Sq (K)
C

are {z ∈C ∣ Im(z) > q} , {z ∈C ∣ Im(z) < −q} and the components of Uq (K) . If
O∩Un (K) ≠ ∅, then there is a component Zn of Un (K) such that O∩Zn ≠ ∅. To be more
precise, Zn ⊂ O by virtue of the properties of M and O being a component of MC. If this
component contains a point x ∈ K, then there is a component Zq of Uq (K) which contains
this point as well. Hence we have

x ∈ (Zq∩Zn) ⊂ Zn ⊂O

and O∩Sq (K)
C
≠ ∅. If Zn does not contain a point of K, then it must be an unbounded
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component. So we have

(]q,∞[+i[−1/q,1/q]) ⊂ (]n,∞[+i]−1/n,1/n[) ⊂ Zn

or
(]−∞,−q[+i[−1/q,1/q]) ⊂ (]−∞,−n[+i]−1/n,1/n[) ⊂ Zn.

Thus there is a component Zq of Uq (K) with Zq ∩Zn ≠ ∅ implying O∩Sq (K)
C
≠ ∅ like

above.
If O∩{z ∈C ∣ ∣Im(z)∣ > n} ≠∅, the statement is obvious.

(4) In the following keep in mind that

q−n ≥ 1
n
− 1

q
(3.1)

since qn ≥ 1.

Let K ≠∅. By virtue of (1) we have U j (K) =
k j

⊍
i=1

Z j
i , k j <∞, and thus ∂U j (K) =

k j

⋃
i=1

∂Z j
i for

j ∈ {n,q} with the notations from the proof of (1). By definition every Zq
i is contained in

some Zn
i0
.

If Zn
i0

is bounded, we obtain

d(∂Zq
i ,∂Zn

i0) =
1
n
− 1

q

by definition of U j (K) .
If Zn

i0
is unbounded, w.l.o.g. Zn

i0
∩R is bounded from below and unbounded from above,

we define a ∶= minZn
i0
∩K and a0 ∶= minZq

i ∩K if existing (in R). If a exists, we have the
following cases:
1. case: n ≤ a− 1

n , q ≤ a− 1
q

Then Zn
i0
=]n,∞[+i]−1/n,1/n[ , Zq

i =]q,∞[+i]−1/q,1/q[ and

d(∂Zq
i ,∂Zn

i0) =min(q−n,
1
n
− 1

q
) = 1

n
− 1

q
.

2. case: n ≤ a− 1
n , a− 1

q < q < a
Then Zn

i0
=]n,∞[+i]−1/n,1/n[ , Zq

i =D1/q (a)∪(]q,∞[+i]−1/q,1/q[) and

d(∂Zq
i ,∂Zn

i0) =min(1
n
− 1

q
,a−n− 1

q
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
≥ 1

n−
1
q

) = 1
n
− 1

q
.

3. case: n ≤ a− 1
n , a ≤ q

If a0 exists, we have a ≤ a0. If Zq
i is bounded or unbounded and a0 − 1

q < q < a0 or a0 ≤ q,
then

d(∂Zq
i ,∂Zn

i0) =min(1
n
− 1

q
, a0−n− 1

q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥a−n− 1

q≥
1
n−

1
q

) = 1
n
− 1

q
.
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If q ≤ a0− 1
q or a0 does not exist, then

d(∂Zq
i ,∂Zn

i0) =min(q−n,
1
n
− 1

q
) = 1

n
− 1

q
.

4. case: a− 1
n < n < a, q ≤ a− 1

q
Then Zn

i0
=D1/n (a)∪(]n,∞[+i]−1/n,1/n[) , Zq

i =]q,∞[+i]−1/q,1/q[ , and

d(∂Zq
i ,∂Zn

i0) =min(d(∂Zq
i ∩{z ∈C ∣ Re(z) ≤ q} ,∂Zn

i0 ∩{z ∈C ∣ Re(z) ≤ q}) ,
d(∂Zq

i ∩{z ∈C ∣ Re(z) ≥ q} ,∂Zn
i0 ∩{z ∈C ∣ Re(z) ≥ q})

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

n−
1
q

)

=min(d(q+ i]−1/q,1/q[ ,∂Zn
i0 ∩{z ∈C ∣ Re(z) ≤ q})

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥q−n

,
1
n
− 1

q
)

= 1
n
− 1

q
.

(This case is not possible if q,n ∈N.)
5. case: a− 1

n < n < a, a− 1
q < q < a

Then Zn
i0
=D1/n (a)∪(]n,∞[+i]−1/n,1/n[) , Zq

i =D1/q (a)∪(]q,∞[+i]−1/q,1/q[) and so

d(∂Zq
i ,∂Zn

i0) =min(d(∂Zq
i ∩{z ∈C ∣ Re(z) ≤ a} ,∂Zn

i0 ∩{z ∈C ∣ Re(z) ≤ a}) ,
d(∂Zq

i ∩{z ∈C ∣ Re(z) ≥ a} ,∂Zn
i0 ∩{z ∈C ∣ Re(z) ≥ a})

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

n−
1
q

)

=min(d(∂Zq
i ∩{z ∈C ∣ Re(z) ≤ a} ,∂Zn

i0 ∩{z ∈C ∣ Re(z) ≤ a})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥q−n

,
1
n
− 1

q
)

= 1
n
− 1

q
.

6. case: a− 1
n < n < a ≤ q

We get the same equalities/estimates like in the fifth case by replacing a with a0 or q if a0
does not exist.
7. case: a ≤ n
Then Zn

i0
= {z ∈C ∣ d(z,[a,∞[∩K) < 1/n}∪(]n,∞[+i]−1/n,1/n[) and several different cases

are possible for the structure of Zq
i . But, in all cases, we have

d(∂Zq
i ,∂Zn

i0) =
1
n
− 1

q

due to (3.1).
If a does not exist, we have Zn

i0
=]n,∞[+i]−1/n,1/n[ and Zq

i =]q,∞[+i]−1/q,1/q[ , hence the
same situation like in the first case. Combining these results, we get the first statement of
(4). The second statement of (4) follows by (3.1) and the definitions of the sets involved,
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except for K =∅. In this case it is obvious.

The previous remark will often be useful, amongst others, for the choice of paths of integrals
in Section 4. The next lemma describes the relation between partial and complex derivatives of
higher order of a holomorphic function.

3.4 Lemma. Let U ⊂C be an open set and f ∈O(U) . For z ∈U and α = (α1,α2) ∈N2
0 one has

∂
α f (z) = iα2 f (∣α ∣) (z) (3.2)

where f (∣α ∣) denotes the ∣α ∣-th complex derivative of f .

Proof. This lemma can be proven by induction over ∣α ∣ . For ∣α ∣ = 0 this is obviously true. Now
assume that (3.2) holds for ∣α ∣ = n with n ∈N0. For ∣α ∣ = n+1 one has α = β +γ with β ,γ ∈N2

0 and
∣β ∣ = n and ∣γ ∣ = 1. The assumption and the fact that f ∈O(U) implies f (∣β ∣) ∈O(U) lead to

∂
α f (z) = ∂

γ (∂
β f )(z) =

assumption
iβ2∂

γ ( f (∣β ∣))(z)

=
⎧⎪⎪⎨⎪⎪⎩

iα2∂1 ( f (∣β ∣))(z) , if γ = (1,0)
iβ2∂2 ( f (∣β ∣))(z) , if γ = (0,1)

=
⎧⎪⎪⎨⎪⎪⎩

iα2 f (∣β ∣+1) (z) , if γ = (1,0)
iβ2i f (∣β ∣+1) (z) , if γ = (0,1)

= iα2 f (∣α ∣) (z) .

Let U ⊂ C be open and f ∈O(U,E) . For z ∈U and n ∈ N0 we denote the point evaluation of
complex derivatives with δ

(n)
z f ∶= f (n) (z) and for α ∈N2

0 the point evaluation of partial derivatives

with δ
(α)
z f ∶= ∂ α f (z) .

Next, we prove that P∗ (K) is a DFS-space, which is only mentioned by Kawai ([28, p. 469]).
Part ii) and the hint to use [6] in part iv) of the proof of statement (1) of the following theorem
can be found in the proof of [26, 1.11 Satz, p. 11]. For the sake of completeness and since the
ideas of the proof will be used in the following, a full proof of statement (1) is given here.

3.5 Theorem. Let K ⊂R, K ≠∅, be a compact set.

(1) P∗ (K) is a DFS-space.

(2) The set of point evaluations of complex derivatives {δ
(n)
x0 ∣ x0 ∈K∩R,n ∈N0} is total in

P∗ (K)′b , i.e. span{δ
(n)
x0 ∣ x0 ∈K∩R,n ∈N0} is dense in P∗ (K)′b , if K ⊂R or ∞ ∈K, −∞ ∉K

and ∞ is not an isolated point of K or −∞ ∈ K,∞ ∉ K and −∞ is not an isolated point of
K or ±∞ ∈ K and ∞ and −∞ are not isolated points of K. The same is true for the set of
point evaluations of partial derivatives {δ

(α)
x0 ∣ x0 ∈K ∩R,α ∈N2

0} .

(3) The set of point evaluations {δx0 ∣ x0 ∈K∩R} is total in P∗ (K)′b if K has no isolated points.
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3 Vector-valued functions with exponential growth conditions

Proof. (1) i) ∥⋅∥n is a norm on On (Un (K)) . Next, we show that this space is complete.
Now let ( fk)k∈N be a Cauchy sequence in On (Un (K)) . Let ε > 0 and M ⊂ Un (K)
compact. Then there exists N ∈N such that for all k,m ≥N

ε > ∥ fk− fm∥n = sup
z∈Un(K)

∣ fk (z)− fm (z)∣e 1
n ∣Re(z)∣

≥ sup
z∈Un(K)

∣ fk (z)− fm (z)∣

≥ sup
z∈M

∣ fk (z)− fm (z)∣.

Thus ( fk) is also a Cauchy sequence in CB(Un (K)) ∶={ f ∈C(Un (K)) ∣ f bounded} ,
equipped with the norm

∥ f ∥ ∶= sup
z∈Un(K)

∣ f (z)∣,

as well as in O(Un (K)) , equipped with the topology induced by the semi-norms

pM ( f ) ∶= sup
z∈M

∣ f (z)∣, M ⊂Un (K) compact, (3.3)

and has a limit f resp. F in these spaces since they are complete by [45, 5.16 Beispiele
(3), p. 35] resp. [60, Example II, p. 91]. The functions f and F coincide on Un (K)
because for all z ∈Un (K) and all ε0 > 0 there exists N0 ∈N such that for all k ≥N0

∣ f (z)−F (z)∣ ≤ ∣ f (z)− fk (z)∣+ ∣ fk (z)−F (z)∣ ≤ ∥ f − fk∥+ p{z} ( fk−F) < 2ε0.

Hence f is holomorphic on Un (K) and continuous on the closure. Since every Cauchy
sequence is bounded, there exists C =C(n) ≥ 0 with ∣ fk (z)∣e1/n∣Re(z)∣ ≤C for all z ∈
Un (K) and k ∈ N implying f ∈ On (Un (K)) by pointwise convergence. Using the
pointwise convergence again, we get for all z ∈Un (K) and for all k ≥N

∣ fk (z)− f (z)∣e 1
n ∣Re(z)∣ = lim

m→∞
∣ fk (z)− fm (z)∣e 1

n ∣Re(z)∣ ≤ lim
m→∞

∥ fk− fm∥n < ε

and therefore ∥ fk− f ∥n < ε. This means ( fk)k∈N converges to f inOn (Un (K)) as well,
connoting this space to be a Banach space.

ii) The mappings πn,m∶On (Un (K))→Om (Um (K)) ,n ≤ m, are injective by virtue of the
identity theorem and the definition of sets Un (K) , n ∈N. Thus the considered spec-
trum is an embedding spectrum.

iii) Let M ⊂Un (K) compact. For all f ∈ Bn ∶= {g ∈On (Un (K)) ∣ ∥g∥n ≤ 1} and all z ∈M

∣ f (z)∣ ≤ ∥ f ∥n ≤ 1,

so sup f ∈Bn pM ( f ) ≤ 1. Thus Bn is bounded in O(Un (K)) with respect to the semi-
norms (3.3). As this space is a Fréchet-Montel space by [60, Proposition 34.4, p.
357], Bn is relatively compact and hence relatively sequentially compact by [45, 4.8
Satz, p. 19].

iv) What remains to be shown, is that for all n ∈N there exists m > n such that
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πn,m∶On (Un (K)) → Om (Um (K)) is a compact mapping. Because the considered
spaces are Banach spaces by i), it suffices, due to [45, 4.10 Corollar, p. 20], to
show the existence of m > n such that (πn,m ( fk))k∈N has a convergent subsequence
in Om (Um (K)) for every sequence ( fk)k∈N in Bn. According to [6, Th. (b), p. 67-68]
set m ∶= 2n. Let ε > 0 and choose Q ∶=U2n (K)∩{z ∈C ∣ ∣Re(z)∣ ≤max(0,−2n lnε)} .
Then Q ⊂Un compact and

sup
z∈U2n(K)∖Q

e
1
2n ∣Re(z)∣

e
1
n ∣Re(z)∣

= sup
z∈U2n(K)∖Q

e−
1
2n ∣Re(z)∣ <

choice
ofQ

ε. (3.4)

In addition, we observe that

C(ε) ∶= sup
z∈Q

e
1
2n ∣Re(z)∣ ≤ e

1
2n max(0,−2n lnε) =

⎧⎪⎪⎨⎪⎪⎩

1, ε ≥ 1,
1
ε
, ε < 1.

(3.5)

Now let ( fk)k∈N be a sequence in Bn. By iii) it has a convergent subsequence ( fkl)l∈N
with respect to the semi-norms (3.3). Then there exists N ∈N such that for l, j ≥N

pQ ( fkl − fk j) = sup
z∈Q

∣ fkl (z)− fk j (z)∣ < ε
2 (3.6)

and therefore

∥πn,2n ( fkl)−πn,2n ( fk j)∥2n

≤ sup
z∈Q

∣ fkl (z)− fk j (z)∣e 1
2n ∣Re(z)∣+ sup

z∈U2n(K)∖Q
∣ fkl (z)− fk j (z)∣e 1

2n ∣Re(z)∣

≤C(ε)sup
z∈Q

∣ fkl (z)− fk j (z)∣+ sup
z∈U2n(K)∖Q

∣ fkl (z)− fk j (z)∣e 1
n ∣Re(z)∣ e

1
2n ∣Re(z)∣

e
1
n ∣Re(z)∣

≤
(3.6)

C(ε)ε
2+ sup

z∈U2n(K)∖Q
∣ fkl (z)− fk j (z)∣e 1

n ∣Re(z)∣ sup
z∈U2n(K)∖Q

e−
1
2n ∣Re(z)∣

≤
(3.4)

C(ε)ε
2+ε sup

z∈U2n(K)∖Q
∣ fkl (z)− fk j (z)∣e 1

n ∣Re(z)∣

≤C(ε)ε
2+ε sup

z∈Un(K)
∣ fkl (z)− fk j (z)∣e 1

n ∣Re(z)∣

≤C(ε)ε
2+ε (∥ fkl∥n+∥ fk j∥n

)
≤

fk∈Bn
C(ε)ε

2+2ε

≤
(3.5)

⎧⎪⎪⎨⎪⎪⎩

ε2+2ε, ε ≥ 1,
3ε, ε < 1.

Hence the subsequence (πn,2n ( fkl))l∈N of (πn,2n ( fk))k∈N converges in O2n (U2n (K))
proving the compactness of πn,2n.
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3 Vector-valued functions with exponential growth conditions

(2) We set F ∶= span{δ
(n)
x0 ∣ x0 ∈K∩R,n ∈N0} . δ

(n)
x0 is linear and for k ∈N and f ∈Ok (Uk (K))

∣< δ
(n)
x0 , f >∣ = ∣ f (n) (x0)∣

=
RRRRRRRRRRRR

n!
2πi ∫∂D 1

2k
(x0)

f (z)
(z−x0)n+1 dz

RRRRRRRRRRRR
≤ n!(2k)n max

z∈∂D 1
2k

(x0)
∣ f (z)∣

≤ n!(2k)n max
z∈∂B 1

2k
(x0)

e−
1
k ∣Re(z)∣ sup

z∈Uk(K)
∣ f (z)∣e 1

k ∣Re(z)∣

≤ n!(2k)n ∥ f ∥k .

Hence δ
(n)
x0 is continuous on Ok (Uk (K)) for arbitrary k and so on P∗ (K) implying F ⊂

P∗ (K)′ . As P∗ (K) is a DFS-space, it is reflexive by [45, 25.19 Satz (1), p. 285] which
means that the canonical embedding J∶P∗ (K)→P∗ (K)′′ , f ↦ J ( f ) , defined by
J ( f ) ∶P∗ (K)′ →C, T ↦ T ( f ) , is a topological isomorphism. Hence for the polar set F○

of F one has

F○ = {y ∈P∗ (K)′′ ∣ ∀T ∈ F ∶ y(T) = 0}
≅ { f ∈P∗ (K) ∣ ∀T ∈ F ∶ J ( f )(T) = 0}
= { f ∈P∗ (K) ∣ ∀T ∈ F ∶ T ( f ) = 0} =∶M.

For f ∈M and T ∶= δ
(n)
x0 ∈ F

0 = T ( f ) = f (n) (x0)
is valid. Thus f is identical to zero on a neighbourhood of x0 (by Taylor series expansion)
since n ∈ N0 is arbitrary and f is holomorphic near x0 ∈Un (K) . Due to the assumptions
every component of Un (K) contains a point x0 ∈ K ∩R so f is identical to zero on Un (K)
by the identity theorem. Therefore F○ = {0} and thus F is dense in P∗ (K)′ by the bipolar
theorem. The adjunct is due to (3.2).

(3) The proof is similar to (2). We define F ∶= span{δx0 ∣ x0 ∈K∩R} . Then, like above, for
f ∈ {g ∈P∗ (K) ∣ ∀T ∈ F ∶ T (g) = 0} and T ∶= δx0 ∈ F

0 = T ( f ) = f (x0) .

Due to the assumptions every component Z of Un (K) contains a point x0 ∈K∩R and every
point in Z ∩K ∩R is an accumulation point of this set. So f is identical to zero on Un (K)
by the identity theorem.

The proof of the first part of the next theorem is due to Junker [26, 1.4 Lemma (2), p. 5], but
there for a Fréchet space E and on the level of the projective limit (here, the second part) and we
need results on the level of the projective spectra. The proof of the fourth part can be found in
[26, 1.4 Lemma (1), p. 5], but again for the projective limit. Since we need it as well on the level
of the projective spectrum plus the appearing inequality resp. the idea of the proof will be used
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several times, it is given here.

3.6 Theorem. Let K ⊂R be a compact set.

(1) Let n ∈ R, n > 1. Then Eexp
n (Sn (K) ,E) and Oexp

n (Sn (K) ,E) are complete locally convex
spaces. In particular, they are Fréchet spaces if E is a Fréchet space and the latter is a
Banach space if E is a Banach space.

(2) Eexp (C∖K,E) andOexp (C∖K,E) are complete locally convex spaces. In particular, they
are Fréchet spaces if E is a Fréchet space.

(3) Oexp (C∖K) is a Fréchet-Schwartz space.

(4) (a) Let n ∈N≥2, m ∈N0, α ∈ A and k ∈N, k > n. Then there exists C =C(n,k,m) > 0 such
that

∣ f ∣n,m,α ≤C ∣ f ∣k,α (3.7)

for all f ∈Oexp
k (Sk (K) ,E) .

In particular, we have Oexp
k (Sk (K) ,E) ⊂ Eexp

n (Sn (K) ,E) .

(b) Oexp (C∖K,E) is a topological subspace of Eexp (C∖K,E) .

Proof. (1) Obviously ∣ f ∣n,m,α , m ∈ N0, resp. ∣ f ∣n,α are semi-norms for α ∈ A and the spaces
Eexp

n (Sn (K) ,E) resp. Oexp
n (Sn (K) ,E) equipped with these systems of semi-norms are

locally convex. What remains to be shown, is that they are complete.
i) Let ( fk)k∈N be a Cauchy sequence in Eexp

n (Sn (K) ,E) . The space C∞ (Sn (K) ,E)
equipped with the system of semi-norms

pM,m,α ( f ) ∶= sup
z∈M

β∈N2
0, ∣β ∣≤m

pα (∂
β f (z)) , (3.8)

M ⊂ Sn (K) compact, m ∈ N0 and α ∈ A, is complete by [60, Proposition 44.1, p. 446].
The inclusion Eexp

n (Sn (K) ,E) ↪ C∞ (Sn (K) ,E) is continuous since for all M ⊂ Sn (K)
compact, m ∈N0 and α ∈ A

pM,m,α ( f ) ≤ sup
z∈M

e
1
n ∣Re(z)∣∣ f ∣n,m,α

for all f ∈ Eexp
n (Sn (K) ,E) . Thus ( fk)k∈N is a Cauchy sequence in C∞ (Sn (K) ,E) as well

and has a limit f in this space due to the completeness. Let ε > 0, m ∈ N0, α ∈ A and
z ∈ Sn (K) . As this convergence implies pointwise convergence, there exists N (z) ∈N such
that for all l ≥N (z)

pα (∂
β fl (z)−∂

β f (z)) < ε

2
(3.9)

for all β ∈N2
0, ∣β ∣ ≤m. Furthermore, there exists N0 ∈N such that for all k, l ≥N0

∣ fk− fl ∣n,m,α < ε

2
(3.10)

21



3 Vector-valued functions with exponential growth conditions

by assumption. Hence we get for all k ≥N0 by choosing l ≥max(N (z) ,N0)

pα (∂
β f (z))e−

1
n ∣Re(z)∣− pα (∂

β fk (z))e−
1
n ∣Re(z)∣

≤ pα (∂
β fk (z)−∂

β f (z))e−
1
n ∣Re(z)∣

≤ pα (∂
β fk (z)−∂

β fl (z))e−
1
n ∣Re(z)∣+ pα (∂

β fl (z)−∂
β f (z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

≤ sup
w∈Sn(K)

pα (∂
β fk (w)−∂

β fl (w))e−
1
n ∣Re(w)∣+ pα (∂

β fl (z)−∂
β f (z))

<
(3.9)

sup
w∈Sn(K)

γ∈N2
0, ∣γ ∣≤m

pα (∂
γ fk (w)−∂

γ fl (w))e−
1
n ∣Re(w)∣+ ε

2

= ∣ fk− fl ∣n,m,α +
ε

2
<

(3.10)
ε

for all ∣β ∣ ≤ m and so ∣ fk − f ∣n,m,α < ε as well as ∣ f ∣n,m,α < ε + ∣ fk∣n,m,α for all k ≥ N0. This
means that f ∈ Eexp

n (Sn (K) ,E) and that ( fk)k∈N converges to f in Eexp
n (Sn (K) ,E) as k

tends to ∞.
ii) The completeness of Oexp

n (Sn (K) ,E) can be proven in the same way using the com-
pleteness of the space O(Sn (K) ,E) equipped with the system of semi-norms

pM,α ( f ) ∶= sup
z∈M

pα ( f (z)) , (3.11)

M ⊂ Sn (K) compact and α ∈ A. The remaining endorsement is evident.

(2) This follows by (1) and [16, 2.4 Korollar, p. 36].

(3) This proof follows the ideas of the proof of Theorem 3.5(1). By [32, Remark 6, p. 380] we
have to show that for all n ∈N≥2 exists p > n such that πn,p∶Oexp

p (Sp (K))→Oexp
n (Sn (K))

is a compact mapping. Because the considered spaces are Banach spaces by (1), it suffices
to show the existence of p > n such that (πn,p ( fk))k∈N has a convergent subsequence in
Oexp

p (Sp (K)) for every sequence ( fk)k∈N in Bp where Bp ∶= {g ∈Oexp
p (Sp (K)) ∣ ∣g∣p ≤ 1} .

Choose p ∶= 2n. Let ε > 0 and choose Q ∶= Sn (K)∩ {z ∈C ∣ ∣Re(z)∣ ≤max{0,−2n lnε}} .
Then Q ⊂ S2n (K) compact and

sup
z∈Sn(K)∖Q

e−
1
n ∣Re(z)∣

e−
1
2n ∣Re(z)∣

= sup
z∈Sn(K)∖Q

e−
1
2n ∣Re(z)∣ <

choice
ofQ

ε.

Let M ⊂ S2n (K) be compact and pM like in (3.11). For all f ∈ B2n we have

pM ( f ) ≤ sup
z∈M

e
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶CM,n

∥ f ∥n±
≤1

≤CM,n,

so sup f ∈Bn pM ( f ) ≤CM,n. Thus B2n is bounded in O(S2n (K)) with respect to the semi-
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norms (3.11). As this space is a Fréchet-Montel space, B2n is relatively compact and hence
relatively sequentially compact. The rest of the proof is analogous to part iv) of the proof
of Theorem 3.5(1) using in the last step the completeness of Oexp

n (Sn (K)) by (1).

(4) (a) Choose r ∶= k−n
2nk , K ≠ ∅, resp. r ∶= k−n

2 , K = ∅. By the Cauchy inequality we have for
every f ∈Oexp

k (Sk (K) ,E)

∣ f ∣n,m,α = sup
z∈Sn(K)

β∈N2
0, ∣β ∣≤m

pα( ∂
β f (z)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=

(3.2)
iβ2 f (∣β ∣)(z)

)e−
1
n ∣Re(z)∣

≤ sup
z∈Sn(K)

β∈N2
0, ∣β ∣≤m

∣β ∣!
r∣β ∣ max

∣ζ−z∣=r
pα ( f (ζ))e−

1
n ∣Re(z)∣

≤ e
r
n sup

z∈Sn(K)
β∈N2

0, ∣β ∣≤m

∣β ∣!
r∣β ∣ max

∣ζ−z∣=r
pα ( f (ζ))e−

1
n ∣Re(ζ)∣

≤ e
r
n sup

β∈N2
0, ∣β ∣≤m

∣β ∣!
r∣β ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C

∣ f ∣k,α <∞,

thus Oexp
k (Sk (K) ,E) ⊂ Eexp

n (Sn (K) ,E) .
(b) By part (a) Oexp (C∖K,E) is included in Eexp (C∖K,E) and the induced topology is
not finer than the initial one. On the other hand, for all α ∈ A and n ∈N≥2

∣ f ∣n,α = ∣ f ∣n,0,α

holds for any f ∈Oexp (C∖K,E) which proves the statement.

3.7 Theorem. Let K ⊂R be compact. Then the spaces Eexp (C∖K) andOexp (C∖K) are nuclear.

Proof. Since Oexp (C∖K) is a topological subspace of Eexp (C∖K) by Theorem 3.11(4)(b) and
nuclearity is inherited by topological subspaces of nuclear spaces due to [16, 27.2.1. Satz, p.
155], we only need to show that Eexp (C∖K) is nuclear. The following proof is inspired by a
proof of nuclearity for the space of (non-weighted) C∞-functions in [45, 28.9 Beispiele (1), p.
330].

1. Let n ∈N≥2 and m ∈N0. First of all, we construct a partition of unity. Choose 0 < h < 1
2
√

2n
and set ε ∶= h

2 . For j ∈Z2 and r > 0 we define

Q( j,r) ∶= ε [ j+(1
2
,
1
2
)]+Q r

2
(0) = ε j+ 1

2
(ε − r,ε − r)+ [0,r]2

.

Further, we define J ∶= { j ∈Z2 ∣ Q( j,ε)∩Sn (K) ≠∅} . For all j ∈ J it follows, by the choice
of h, that Q( j,3ε) ⊂ S2n (K) , since 2

√
2ε =

√
2h < 1

2n < n, and that

Sn (K) ⊂⋃
j∈J

Q( j,ε) ⊂⋃
j∈J

Q( j,3ε) ⊂ S2n (K) .
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3 Vector-valued functions with exponential growth conditions

Choose 0 < ε̃ < d(Q( j,ε) ,Q( j,3ε)) = ε (in particular this choice is independent of j). The
set J is countably infinite, i.e. there exists a bijection a∶N→ J, where we write ak ∶= a(k)
for k ∈N. The construction of the partition of unity is now done like in [18, Theorem 1.4.1,
p. 25].

(i) Let vk be the characteristic function of Q(ak,ε)+Dε̃/2 (0) and χ ∈C∞
0 (D1 (0)) a non-

negative function such that ∫ χdx = 1. Then χε̃/4, defined by χε̃/4 (x) ∶= (ε̃/4)−2
χ ( x

ε̃/4
) ,

has its support in the ball Dε̃/4 (0) and ∫ χε̃/4dx = 1, so the convolution

ψk ∶= vk ∗χε̃/4 ∈C∞
0 (Q(ak,ε)+D 3

4 ε̃
(0)) ,

0 ≤ ψk ≤ 1 and ψk = 1 on Q(ak,ε)+Dε̃/4 (0) since 1−ψk = (1−vk)∗χε̃/4 vanishes on
Q(ak,ε)+Dε̃/4 (0).

(ii) By virtue of this construction we get ([18, (1.4.2), p. 25]): For all k ∈N and all α ∈N2
0

there exists a constant Cα > 0 only depending on α, especially not on k, such that

∣∂ α
ψk∣ ≤Cα ( ε̃

4
)
−∣α ∣

.

(iii) Like in the proofs of [18, Theorem 1.4.4, p. 27, Theorem 1.4.10, p. 30] we define

ϕk ∶=ψk (1−ψ1) . . .(1−ψk−1) .

Due to (i) we have suppϕk ⊂ suppψk and ϕk ∈C∞
0 (Q(ak,ε)+D 3

4 ε̃
(0)) .

(iv) For ζ ∈⋃ j∈J Q( j,ε) =⋃k∈NQ(ak,ε) we define M (ζ) ∶= {k ∈N ∣ ζ ∈ suppϕk} . For all
ζ we have M (ζ) ⊂ {k ∈N ∣ ζ ∈ suppψk} and hence #M (ζ) ≤ 9 by the construction
of ψk and the definition of the squares. In other words, all but a finite number of
functions ϕk vanish identically on any compact subset of ⋃ j∈J Q( j,ε) .

(v) We have on ⋃k∈NQ(ak,ε)

(∑
k∈N

ϕk)−1 =
(iii),
(iv)

−∏
k∈N

(1−ψk) =
(i)

0

and thus ∑k∈Nϕk = 1.

2. Let f ∈ Eexp (C∖K) , α ∈N2
0, ∣α ∣ ≤ m, and z ∈ Q(ak,ε) . We have Q(ak,ε) ⊂ Q(ak,3ε) and
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there exist bi, ci, i = 1,2, such that Q(ak,3ε) = [b1,c1]× [b2,c2] . We get (by induction)

∣∂ α (ϕk f )(z)∣ = ∣∂ α (ϕk f )(z1,z2)−∂
α (ϕk f )(b1,z2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=
(iii)

0

∣

= ∣∫
z1

b1
∂
(α1+1,α2) (ϕk f1)(ζ0,z2)dζ0+ i∫

z1

b1
∂
(α1+1,α2) (ϕk f2)(ζ0,z2)dζ0∣

= ∣∫
z1

b1
∂
(α1+1,α2) (ϕk f )(ζ0,z2)dζ0∣

= ∣∫
z1

b1
∫

ζ0

b1
⋯∫

ζm−α1−1

b1
∂
(m+1,α2) (ϕk f )(ζm−α1,z2)dζm−α1 . . .dζ1dζ0∣

≤ ∣z1−b1∣m−α1∫
z1

b1
∣∂ (m+1,α2) (ϕk f )(ζ1,z2)∣dζ1

≤ ∣z1−b1∣m−α1 ∣z1−b2∣m−α2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤(3ε)2m−∣α ∣

∫
z1

b1
∫

z2

b2
∣∂ (m+1,m+1) (ϕk f )(ζ1,ζ2)∣dζ2dζ1

≤
Fubini

(3ε)2m−∣α ∣∫
Q(ak,3ε)

∣∂ (m+1,m+1) (ϕk f )(ζ)∣dζ . (3.12)

Furthermore, we get for all z ∈ Sn (K)

∣∂ α f (z)∣ =
(v)

∣∂ α(∑
k∈N

ϕk f )(z)∣ =
(iv)

∣∑
k∈N

∂
α(ϕk f )(z)∣

≤∑
k∈N

∣∂ α(ϕk f )(z)∣ =
(iv)

∑
k∈M(z)

∣∂ α(ϕk f )(z)∣

≤
(3.12)

(3ε)2m−∣α ∣ ∑
k∈M(z)

∫
Q(ak,3ε)

∣∂ (m+1,m+1) (ϕk f )(ζ)∣dζ . (3.13)

Now we denote by tk ∶= εak +( ε

2 ,
ε

2) the center of the squares Q(ak,ε) and Q(ak,3ε) and
consider the mapping

Φ∶R2→R2, Φ(w) ∶= 3w−2tk.

Then Φ is a C1−diffeomorphism, (DΦ)(w) = (3 0
0 3) as Jacobian matrix and Φ(Q(ak,ε)) =

Q(ak,3ε) . Moreover, we obtain via chain rule for all β ∈N2
0

∂
β (ϕk f )(Φ(w)) = 3−∣β ∣

∂
β (ϕk f ○Φ)(w) . (3.14)

Since
supp(ϕk f ○Φ) ⊂ supp(ϕk ○Φ) ⊂ Q̊(ak,ε) (3.15)

for all k ∈N by (iii) and the definition of Φ, we get for k, l ∈N, k ≠ l,

[supp(ϕk ○Φ)∩ supp(ϕl ○Φ)] ⊂ [Q̊(ak,ε)∩ Q̊(al,ε)] =∅

and thus by (3.14)

supp([∂ β (ϕk f )]○Φ)∩ supp([∂ β (ϕl f )]○Φ) =∅. (3.16)
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3 Vector-valued functions with exponential growth conditions

In addition, we have for z ∈ Sn (K) and all w ∈Q(ak,ε) , k ∈M (z) ,

∣Re(w)∣− ∣Re(z)∣ ≤ ∣Re(w)−Re(z)∣ ≤ 2ε

and so
− 1

n
∣Re(z)∣ ≤ −1

n
∣Re(w)∣+ 2ε

n
. (3.17)

Applying the transformation formula to (3.13), we obtain for all z ∈ Sn (K)

∣∂ α f (z)∣e− 1
n ∣Re(z)∣

= 9(3ε)2m−∣α ∣ ∑
k∈M(z)

∫
Q(ak,ε)

∣∂ (m+1,m+1) (ϕk f )(3w−2tk)∣dwe−
1
n ∣Re(z)∣

≤
(3.17)

9(3ε)2m−∣α ∣ e
2ε

n ∑
k∈M(z)

∫
Q(ak,ε)

∣∂ (m+1,m+1) (ϕk f )(3w−2tk)∣e−
1
n ∣Re(w)∣dw

=
(3.15)

9(3ε)2m−∣α ∣ e
2ε

n ∑
k∈M(z)

∫
S2n(K)

∣∂ (m+1,m+1) (ϕk f )(3w−2tk)∣e−
1
n ∣Re(w)∣dw

=
(iv)

9(3ε)2m−∣α ∣ e
2ε

n ∫
S2n(K)

∑
k∈M(z)

∣∂ (m+1,m+1) (ϕk f )(3w−2tk)∣e−
1
n ∣Re(w)∣dw

≤ 9(3ε)2m−∣α ∣ e
2ε

n ∫
S2n(K)

∑
k∈N

∣∂ (m+1,m+1) (ϕk f )(3w−2tk)∣e−
1
n ∣Re(w)∣dw

=
(3.16)

9(3ε)2m−∣α ∣ e
2ε

n ∫
S2n(K)

∣∑
k∈N

∂
(m+1,m+1) (ϕk f )(3w−2tk)∣e−

1
n ∣Re(w)∣dw

≤ 9max(3ε,1)2m e
2ε

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶D

∫
S2n(K)

∣∑
k∈N

∂
(m+1,m+1) (ϕk f )(3w−2tk)∣e−

1
n ∣Re(w)∣dw.

Therefore, it follows that

∣ f ∣n,m = sup
z∈Sn(K),

α∈N2
0, ∣α ∣≤m

∣∂ α f (z)∣e− 1
n ∣Re(z)∣

≤D∫
S2n(K)

∣∑
k∈N

∂
(m+1,m+1) (ϕk f )(3w−2tk)∣e−

1
n ∣Re(w)∣dw. (3.18)

3. For ζ ∈ S2n (K) set

∆(ζ)[ f ] ∶=∑
k∈N

∂
(m+1,m+1) (ϕk f )(3ζ −2tk)e−

1
2n ∣Re(ζ)∣.

By (3.16) there is at most one k0 ∈ N such that ζ ∈ supp([∂ β (ϕk0 f )]○Φ) . Otherwise we
have ∆(ζ)[ f ] = 0 and choose an arbitrary k0 ∈N. Due to (ii), (iii) and the Leibniz rule, we
also have, with the notation m̃ ∶= (m+1,m+1) , that there exists a constant C > 0, depending
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on m and ε̃ (not on ζ ), such that

∣∂ (m+1,m+1) (ϕk0 f )(3ζ −2tk0)∣

= ∣∑
γ≤m̃

(m̃
γ
)∂

m̃−γ
ϕk0 (3ζ −2tk0)∂

γ f (3ζ −2tk0)∣

≤
⎛
⎝∑γ≤m̃

(m̃
γ
)∣∂ m̃−γ

ϕk0 (3ζ −2tk0)∣
⎞
⎠

sup
w∈Q(ak0 ,3ε),
β∈N2

0, ∣β ∣≤∣m̃∣

∣∂ β f (w)∣

≤C sup
w∈Q(ak0 ,3ε),

β∈N2
0, ∣β ∣≤2(m+1)

∣∂ β f (w)∣.

This implies, keeping ζ ∈Q(ak0,ε) by (3.15) in mind,

∣∆(ζ)[ f ]∣ = ∣∑
k∈N

∂
(m+1,m+1) (ϕk f )(3ζ −2tk)e−

1
2n ∣Re(ζ)∣∣

≤ ∣∂ (m+1,m+1) (ϕk0 f )(3ζ −2tk0)∣e−
1

2n ∣Re(ζ)∣

≤C sup
w∈Q(ak0 ,3ε),

β∈N2
0, ∣β ∣≤2(m+1)

∣∂ β f (w)∣e− 1
2n ∣Re(ζ)∣

≤Ce
ε

n
°
=∶C1

sup
w∈Q(ak0 ,3ε),

β∈N2
0, ∣β ∣≤2(m+1)

∣∂ β f (w)∣e− 1
2n ∣Re(w)∣

≤C1 ∣ f ∣2n,2(m+1) . (3.19)

If we set V ∶= { f ∈ Eexp (C∖K) ∣ ∣ f ∣2n,2(m+1) ≤ 1
C1

} , then V is an absolutely convex neigh-
bourhood of zero in Eexp (K) . We claim that the mapping

∆∶S2n (K)→ Eexp (C∖K)′
σ

is continuous. Let ε0 > 0 and ζ ∈ S2n (K) and w.l.o.g. there is k0 with ζ ∈ supp(ϕk0 f ○Φ) ⊂
Q̊(ak0,ε) (see (3.15)). Then choose 0 < δ1 < d(ζ ,∂Q(ak0,ε)) . For all w ∈ S2n (K) , such
that ∣w−ζ ∣ < δ1, the following is valid for all f ∈ Eexp (C∖K) ∶

∣∆(w)[ f ]−∆(ζ)[ f ]∣
= ∣∂ (m+1,m+1) (ϕk0 f )(3w−2tk0)e−

1
2n ∣Re(w)∣−∂

(m+1,m+1) (ϕk0 f )(3ζ −2tk0)e−
1
2n ∣Re(ζ)∣∣

Since ∂ (m+1,m+1) (ϕk0 f )(3 ⋅ −2tk0)e−
1

2n ∣Re(⋅)∣ is continuous on S2n (K) , there is δ2 = δ2 ( f ) >
0 such that

∣∆(w)[ f ]−∆(ζ)[ f ]∣ < ε0

for all w ∈ S2n (K) with ∣w−ζ ∣ < min(δ1,δ2) =∶ δ0 ( f ) . For a finite set M ⊂ Eexp (C∖K)
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3 Vector-valued functions with exponential growth conditions

define δ ∶=min f ∈M δ0 ( f ) > 0. Then we get for all w ∈ S2n (K) , such that ∣w−ζ ∣ < δ ,

sup
f ∈M

∣∆(w)[ f ]−∆(ζ)[ f ]∣ < ε0

which proves the claim. In addition, we have ∆(S2n (K)) ⊂V ○ by (3.19). Next we set

u∶C(V ○)→C, u(g) ∶=D∫
S2n(K)

g(∆(ζ))e−
1
2n ∣Re(ζ)∣dζ .

Due to the Alaoğlu-Bourbaki theorem V ○ is σ (Eexp (C∖K)′ ,Eexp (C∖K))−compact and
g○∆ is Lebesgue measurable since g and ∆ are continuous. Moreover, u is linear and, if
we equip C(V ○) with the norm

∣∣∣g∣∣∣ ∶= sup
y∈V ○

∣g(y)∣, g ∈C(V ○) ,

continuous as

∣u(g)∣ ≤D∫
S2n(K)

∣g( ∆(ζ)
²
∈V ○

)∣e− 1
2n ∣Re(ζ)∣dζ ≤D∫

S2n(K)
sup
y∈V ○

∣g(y)∣e− 1
2n ∣Re(ζ)∣dζ

=D∫
S2n(K)

e−
1
2n ∣Re(ζ)∣dζ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤4nD∫

∞
−∞ e−

1
2n ∣x∣dx=∶D1<∞

∣∣∣g∣∣∣ ≤D1 ∣∣∣g∣∣∣ .

Hence there exists a (positive) measure µ on (V ○, σ (Eexp (C∖K)′ ,Eexp (C∖K))) and a
Borel measurable function h0∶V ○→C with ∣h0 (y)∣ = 1 for all y ∈V ○ by [45, 13.10 Satz von
Riesz, p. 102], such that

u(g) = ∫
V ○

gh0dµ. (3.20)

4. Altogether, we obtain, keeping in mind that every f ∈ Eexp (C∖K) defines a continuous
(linear) functional J ( f ) ∶V ○→C, y↦ y( f ) , that

∣ f ∣n,m ≤
(3.18)

D∫
S2n(K)

∣∆(ζ)[ f ] ∣e− 1
2n ∣Re(ζ)∣dζ =D∫

S2n(K)
∣J ( f )(∆(ζ))∣e− 1

2n ∣Re(ζ)∣dζ

= u(∣J ( f )∣) =
(3.20)∫V ○

∣J ( f )∣h0dµ = ∫
V ○

∣y( f )∣h0 (y)dµ (y)

= ∣∫
V ○

∣y( f )∣h0 (y)dµ (y)∣ ≤ ∫
V ○

∣y( f )∣ ∣h0 (y)∣
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

=1

dµ (y)

= ∫
V ○

∣y( f )∣dµ (y).

Therefore, Eexp (C∖K) is nuclear by [45, § 28, Definition, p. 324].1

1Usually it is required that the measure µ is a positive Radon measure, see for example [54, 4.1.5. Satz, p. 64]. But
this is not needed due to [45, § 28, Definition, p. 324], [45, 28.4 Satz, p. 327] and [54, 4.1.1. Lemma, p. 62].
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3.8 Remark.

1. A direct proof of nuclearity of Oexp (C∖K) can be done in a similar, but easier (without
partition of unity), way using the mean value property of holomorphic functions.

2. A different proof of nuclearity can be found in [26, 1.6 Folgerung, p. 7].

3. Since every nuclear space is a Schwartz space by [45, 28.5 Corollar, p. 328], we have
by Theorem 3.6(2) that Eexp (C∖K) and Oexp (C∖K) are Fréchet-Schwartz spaces, so for
the latter one another proof of this property (see Theorem 3.6(3)). Furthermore, they are
Montel spaces by [45, 24.24 Bemerkung (b), p. 267] and [45, 23.23 Satz, p. 253].

For a subset M of a vector space X we denote by Γ(M) the absolutely convex hull of M.

3.9 Lemma. Let X be a complete Montel space and (Y,(∣∣∣⋅∣∣∣
β
)

β∈B) a locally convex space. Then
L(X ′

τ ,Y)=L(X ′
c,Y) holds algebraically. In particular, this is true if X is a nuclear Fréchet space.

Proof. Let y ∈ L(X ′
τ ,Y) . For β ∈ B there exists M ⊂ X absolutely convex and weakly compact

and C > 0 such that
∣∣∣y(x′)∣∣∣

β
≤C sup

x∈M
∣x′ (x)∣ ≤C sup

x∈M
∣x′ (x)∣

for all x′ ∈X ′. Since M is weakly compact, it is weakly bounded and hence by the Mackey theorem
bounded with respect to the initial topology of X . So M is relative compact as X is Montel space.
Thus M is compact and precompact as well by [25, 3.5.3. Corollary, p. 65].
On the other hand, let y ∈ L(X ′

c,Y) . For β ∈ B there exists M ⊂ X precompact and C > 0 such that

∣∣∣y(x′)∣∣∣
β
≤C sup

x∈M
∣x′ (x)∣ ≤C sup

x∈Γ(M)
∣x′ (x)∣

for all x′ ∈ X ′. By [25, 6.7.1. Proposition, p. 112] Γ(M) is precompact since M is precompact.
Because X is complete and Γ(M) is precompact, it follows by [25, 3.5.3. Corollary, p. 65] that
Γ(M) is compact, in particular, weakly compact. Moreover, this set is absolutely convex due to
[25, 6.2.1. Proposition, p. 102].
Since every nuclear space is a Schwartz space by [45, 28.5 Corollar, p. 328] and every Fréchet
space is barrelled by [45, 23.23 Satz, p. 253], we have that every nuclear Fréchet space is a
Montel space by [45, 24.24 Bemerkung (b), p. 267] connoting the apposition.

The next aim is to prove that the spaces Eexp (C∖K,E) and Oexp (C∖K,E) are topologically
isomorphic to Eexp (C∖K)εE resp. Oexp (C∖K)εE. The proof is based on an analysis of the
proofs of an analogous statement for continuous functions on a compact space resp. weighted
continuous functions by Bierstedt [3, 4.4 Lemma, 4.5 Lemma, 4.6 Folgerung, 4.11 Satz, p. 44-
50] and [7, Lemma 5.7, Consequence 5.9, Proposition 5.10, p. 29-32] resp. [4, 4.2 Lemma, 4.3
Folgerung, p. 199-200] and [5, 2.1 Satz, 2.2 Bemerkung, p. 137-138] as well as upon analyzing
the proof of the so-called Grothendieck’s weak-strong principle [17, Chap. II, § 3, n° 3, Lemme
8, Théorème 13, p. 78-80].
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3.10 Lemma. Let K ⊂R be compact.

(1) The sets {δ
(β)
z ∣ z ∈C∖K, β ∈N2

0} and {δ
(β)
z e−

1
n ∣Re(z)∣ ∣ z ∈C∖K, β ∈N2

0} are contained in

Eexp (C∖K)′.
In addition, {δz ∣ z ∈C∖K} and {δze−

1
n ∣Re(z)∣ ∣ z ∈C∖K} are subsets of Oexp (C∖K)′ .

(2) Let n ∈N≥2, m ∈N0 and ∆n,m (Sn (K)) ∶= {δ
(β)
z e−

1
n ∣Re(z)∣ ∣ z ∈ Sn (K) , β ∈N2

0, ∣β ∣ ≤m} .
Then Γ(∆n,m (Sn (K))) is dense in B○n,m with respect to σ (Eexp (C∖K)′ ,Eexp (C∖K)) and

λ (Eexp (C∖K)′ ,Eexp (C∖K)) where Bn,m ∶= { f ∈ Eexp (C∖K) ∣ ∣ f ∣n,m ≤ 1} .

(3) Let n ∈N≥2 and define ∆n (Sn (K)) ∶= {δze−
1
n ∣Re(z)∣ ∣ z ∈ Sn (K)} .

Then Γ(∆n (Sn (K))) is dense in B○n with respect to σ (Oexp (C∖K)′ ,Oexp (C∖K)) and

λ (Oexp (C∖K)′ ,Oexp (C∖K)) where Bn ∶= { f ∈Oexp (K) ∣ ∣ f ∣n ≤ 1} .

(4) i) The topology of Eexp (C∖K)εE is given by the system of semi-norms

qn,m,α (u) ∶= sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

pα (u(δ
(β)
z ))e−

1
n ∣Re(z)∣, n ∈N≥2, m ∈N0, α ∈ A,

ii) and the topology of Oexp (C∖K)εE by

qn,α (u) ∶= sup
z∈Sn(K)

pα (u(δz))e−
1
n ∣Re(z)∣, n ∈N≥2, α ∈ A.

Proof. (1) Let β ∈N2
0, z ∈C∖K and f ∈ Eexp (C∖K) . Then there exists n ∈N≥2 such that

z ∈ Sn (K) and

∣δ (β)
z ( f )∣e− 1

n ∣Re(z)∣ ≤ ∣δ (β)
z ( f )∣ = ∣∂ β f (z)∣e− 1

n ∣Re(z)∣e
1
n ∣Re(z)∣

≤ e
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=∶C(z)

sup
x∈Sn(K),

γ∈N2
0, ∣γ ∣≤∣β ∣

∣∂ γ f (x)∣e− 1
n ∣Re(x)∣ =C(z)∣ f ∣n,∣β ∣ <∞

implying the statement. The other proof is analogous.

(2) We have

∆n,m (Sn (K))○

= {δ
(β)
z e−

1
n ∣Re(z)∣ ∣ z ∈ Sn (K) , ∣β ∣ ≤m}

○

= { f ∈ Eexp (C∖K) ∣ ∀z ∈ Sn (K) ∀β ∈N2
0, ∣β ∣ ≤m ∶ ∣δ (β)

z e−
1
n ∣Re(z)∣ ( f )∣ ≤ 1}

= { f ∈ Eexp (C∖K) ∣ ∀z ∈ Sn (K) ∀β ∈N2
0, ∣β ∣ ≤m ∶ ∣∂ β f (z)e−

1
n ∣Re(z)∣∣ ≤ 1}

= { f ∈ Eexp (C∖K) ∣ ∣ f ∣n,m ≤ 1}
= Bn,m.
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The polar B○n,m is equicontinuous in Eexp (C∖K)′ and thus the topologies

σ (Eexp (C∖K)′ ,Eexp (C∖K)) and λ (Eexp (C∖K)′ ,Eexp (C∖K)) coincide on B○n,m by
[16, 3.3 Satz, p. 53]. Due to the bipolar theorem we get

Γ(∆n,m (Sn (K)))
λ(Eexp(C∖K)′,Eexp(C∖K))

= Γ(∆n,m (Sn (K)))
σ(Eexp(C∖K)′,Eexp(C∖K))

= ∆n,m (Sn (K))○○ = B○n,m

where the polar sets are taken with respect to the dual system ⟨Eexp (C∖K)′ ,Eexp (C∖K)⟩ .

(3) Analogously to the proof of (2).

(4) i) By [25, 8.4, p. 152, 16.1, p. 344] the system of semi-norms

q̃n,m,α (u) ∶= sup
y∈B○n,m

pα (u(y)) , n ∈N≥2, m ∈N0, α ∈ A,

gives the topology on Eexp (C∖K)εE. As every u ∈ Eexp (C∖K)εE is continuous on

B○n,m, we may replace B○n,m by a λ (Eexp (C∖K)′ ,Eexp (C∖K))-dense subset. There-
fore, we gain by (2)

q̃n,m,α (u) = sup
y∈Γ(∆n,m(Sn(K)))

pα (u(y)) .

Let λ j ∈C, β j ∈N2
0, ∣β j∣ ≤ m, z j ∈ Sn (K) , 1 ≤ j ≤ k, and ∑k

j=1 ∣λ j∣ ≤ 1, k ∈N. Then we
have for u ∈ Eexp (C∖K)εE

pα(u(
k
∑
j=1

λ jδ
(β j)
z j e−

1
n ∣Re(z j)∣))

= pα(
k
∑
j=1

λ ju(δ
(β j)
z j )e−

1
n ∣Re(z j)∣) ≤

k
∑
j=1

∣λ j∣ pα(u(δ
(β j)
z j ))e−

1
n ∣Re(z j)∣

≤
k
∑
j=1

∣λ j∣

´¹¹¹¹¸¹¹¹¹¹¶
≤1

sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

pα(u(δ
(β)
z ))e−

1
n ∣Re(z)∣ ≤ qn,m,α (u) ,

thus q̃n,m,α (u) ≤ qn,m,α (u) . On the other hand we obtain

q̃n,m,α (u) = sup
y∈Γ(∆n,m(Sn(K)))

pα (u(y)) ≥ sup
y∈∆n,m(Sn(K))

pα (u(y))

= sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

pα (u(δ
(β)
z ))e−

1
n ∣Re(z)∣ = qn,m,α (u) .

ii) Analogously to the proof of i), using (3) instead of (2).
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3.11 Theorem. Let K ⊂R be compact. Then we have the following topological isomorphisms:

Eexp (C∖K,E) ≅ Eexp (C∖K)εE and Oexp (C∖K,E) ≅Oexp (C∖K)εE

Proof. 1. We will prove that the mapping

T ∶Eexp (C∖K)εE → Eexp (C∖K,E) , uz→ u○∆,

where
∆∶C∖K → Eexp (C∖K)′c , zz→ δz,

is defined by δz ( f ) ∶= f (z) , is the desired isomorphism.

a) At first, we will show that the mapping T is well-defined and that ∂ β T (u) = u○∆(β),

where ∆(β) (z) ∶= δ
(β)
z , is valid for all β ∈N2

0.

By Lemma 3.10(1) the term u○∆(β) is defined for all β ∈N2
0. Let u ∈ Eexp (C∖K)εE

and h ∈R, h ≠ 0, such that D∣h∣ (z) ⊂C∖K. Then we have

T (u)(z)−T (u)(z+hek)
h

=
u(δz)−u(δz+hek)

h
= u(

δz−δz+hek

h
)

where ek, k = 1,2, denote the unit vectors in R2.
We remark that a subset of Eexp (C∖K) is precompact iff it is relatively compact due
to [45, 4.10 Corollar, p. 20] since Eexp (C∖K) is a Fréchet space by Theorem 3.6(2).
Now let f ∈ Eexp (C∖K) . Then

∣
δz ( f )−δz+hek ( f )

h
−δ

(ek)
z ( f )∣

= ∣
δz ( f )−δz+hek ( f )

h
−δ

(ek)
z ( f )∣ = ∣ f (z)− f (z+hek)

h
−∂

ek f (z)∣

→ 0, h→ 0.

This means that
δz−δz+hek

h converges to δ
(ek)
z in Eexp (C∖K)′

σ
as h tends to 0 and

in Eexp (C∖K)′c as well due to [16, 10.3.4 Satz, p. 53] since the Fréchet space
Eexp (C∖K) is barrelled and by the remark about precompactness above. So we
obtain

∂
ekT (u)(z) = lim

h→0

T (u)(z)−T (u)(z+hek)
h

= u(lim
h→0

δz−δz+hek

h
) = u(δ

(ek)
z )

= u○∆
(ek) (z)

in E with respect to (pα)
α∈A for all z ∈ C∖K. By induction over ∣β ∣ we get that

T (u) ∈C∞ (C∖K,E) and that ∂ β T (u) = u○∆(β).
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Furthermore, we get by Lemma 3.10(4)i) for every n ∈N≥2, m ∈N0 and α ∈ A

∣T (u)∣n,m,α = sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

pα(∂
β T (u)(z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=u○∆

(β)(z)=u(δ
(β)
z )

)e−
1
n ∣Re(z)∣ = qn,m,α (u) <∞, (3.21)

implying T (u) ∈ Eexp (C∖K,E) for every u ∈ Eexp (C∖K)εE. Hence the map T is
defined and continuous.

b) injectivity: Let u ∈ Eexp (C∖K)εE and T (u) = 0, i.e. u ○∆(z) = u(δz) = 0 for all
z ∈C∖K. By differentiating we get due to the first part of the proof

u○∆
(β) (z) = u(δ

(β)
z ) = 0

for all z ∈C∖K and all β ∈N2
0. By virtue of Lemma 3.10(3)i) this implies for every

n ∈N≥2, m ∈N0 and α ∈ A that qn,m,α (u) = 0 and hence u = 0.

c) surjectivity: For f ∈ Eexp (C∖K,E) define the mapping

u f ∶Eexp (C∖K)′→ E ′∗, y↦ u f (y) ,

where E ′∗ is the algebraic dual of E ′, plus

u f (y) ∶E ′→C, e′↦ y(e′ ○ f ) ,

and e′ ○ f is defined by (e′ ○ f )(z) ∶= e′ ( f (z)) for all z ∈C∖K.
Let Bα ∶= {x ∈ E ∣ pα (x) < 1} for α ∈A. The first step is to prove that the mapping u f is
well-defined and that u f ∈ L(Eexp (C∖K)′

τ
,(E ′∗, (pB○α)α∈A)) where E ′∗ is equipped

with the system of semi-norms

pB○α (x) ∶= sup
e′∈B○α

∣x(e′)∣ , α ∈ A.

We clearly have e′ ○ f ∈C∞ (C∖K) for e′ ∈ E ′ and f ∈ Eexp (C∖K,E) and there are
C > 0, α ∈ A, such that

∣e′ ○ f ∣n,m = sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

∣∂ β e′ ○ f (z)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣e′(∂

β f (z))∣
≤Cpα(∂

β f (z))

e−
1
n ∣Re(z)∣ ≤C ∣ f ∣n,m,α

for every n ∈N≥2 and m ∈N0. Thus e′ ○ f ∈ Eexp (C∖K) and u f (y) is defined for any

y ∈ Eexp (C∖K)′ as well as obviously linear, so the mapping u f is defined.
Let α ∈ A, n ∈N≥2 and m ∈N0. For all z ∈ Sn (K) and β ∈N2

0, ∣β ∣ ≤m, we have

pα

⎛
⎝

∂ β f (z)e−
1
n ∣Re(z)∣

2 ∣ f ∣n,m,α

⎞
⎠
= 1

2 ∣ f ∣n,m,α

pα (∂
β f (z))e−

1
n ∣Re(z)∣ ≤

∣ f ∣n,m,α

2 ∣ f ∣n,m,α

= 1
2
< 1
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3 Vector-valued functions with exponential growth conditions

if ∣ f ∣n,m,α ≠ 0. Under this condition we get

sup
e′∈B○α

∣e′ ○ f ∣n,m = 2 ∣ f ∣n,m,α sup
e′∈B○α

sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

∣e′
⎛
⎝

∂ β f (z)e−
1
n ∣Re(z)∣

2 ∣ f ∣n,m,α

⎞
⎠
∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

≤ 2 ∣ f ∣n,m,α <∞.

If ∣ f ∣n,m,α = 0, we have

pα (∂
β f (z)e−

1
n ∣Re(z)∣) ≤ ∣ f ∣n,m,α = 0

for all z ∈ Sn (K) , β ∈N2
0, ∣β ∣ ≤m, and thus

{∂
β f (z)e−

1
n ∣Re(z)∣ ∣ z ∈ Sn (K) , β ∈N2

0, ∣β ∣ ≤m} ⊂ Bα

implying

sup
e′∈B○α

∣e′ ○ f ∣n,m = sup
e′∈B○α

sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

∣e′(∂
β f (z)e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Bα

)∣ ≤ 1.

Hence, in both cases, the set Mα ∶= {e′ ○ f ∣ e′ ∈ B○α} is bounded in Eexp (C∖K) . Fur-
thermore, the closure of the absolutely convex hull Γ(Mα) of Mα is bounded by [25,
6.7.1. Proposition, p. 112] and absolutely convex by [25, 6.2.1. Proposition, p. 103].
The set Γ(Mα) is (weakly) compact since it is bounded and closed plus Eexp (C∖K)
a Montel space by Remark 3.8. This and

pB○α (u f (y)) = sup
e′∈B○α

∣y(e′ ○ f )∣ = sup
x∈Mα

∣y(x)∣ ≤ sup
x∈Γ(Mα)

∣y(x)∣ (3.22)

imply that u f ∈ L(Eexp (C∖K)′
τ
,(E ′∗, (pB○α)α∈A)) .

The locally convex space (J (E) , (pB○α)α∈A) , where J denotes the canonical embed-
ding J∶E → E ′∗, is complete since E is complete and for all α ∈ A, x ∈ E,

pB○α (J (x)) = sup
e′∈B○α

∣J (x)(e′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=e′(x)

∣ = pα (x) (3.23)

by [45, 22.14 Satz, p. 237]. Especially, J (E) is closed in E ′∗. The set {δz ∣ z ∈C∖K}
is total in Eexp (C∖K)′

σ
by the bipolar theorem and thus in Eexp (C∖K)′

τ
as well.

Since for all e′ ∈ E ′

u f (δz)(e′) = δz (e′ ○ f ) = e′ ( f (z)) = J ( f (z))(e′)

and u f is linear and continuous plus J (E) closed, we get more precisely that
u f ∈ L(Eexp (C∖K)′

τ
,(J (E) , (pB○α)α∈A)) .

Therefore, we obtain by setting (J−1 ○u f )(y) ∶= J−1 (u f (y)) , y ∈ Eexp (C∖K) , for all
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α ∈ A

pα ((J−1 ○u f )(y)) = pB○α (J ((J−1 ○u f )(y))) = pB○α (u f (y)) ≤ sup
x∈Γ(Mα)

∣y(x)∣

by (3.23) and (3.22). Hence J−1 ○u f ∈ L(Eexp (C∖K)′
τ
,E) = L(Eexp (C∖K)′c ,E) by

virtue of Lemma 3.9 and so we have J−1 ○u f ∈ Eexp (C∖K)εE. In addition, we gain
for z ∈C∖K

T (J−1 ○u f )(z) = ((J−1 ○u f )○∆)(z) = J−1 (u f (δz)) = J−1 (J ( f (z))) = f (z),

thus T (J−1 ○u f ) = f proving the surjectivity of T.

d) continuity of T−1 ∶ Looking at (3.21), we get that the inverse of T is also continuous.

2. The proof for the weighted holomorphic functions is analogous to the one above using
Lemma 3.10(4)ii) instead of Lemma 3.10(4)i).

3.12 Corollary. Let K ⊂R be compact. Then we have the following topological ismorphisms:

1.
Eexp (C∖K,E) ≅ Eexp (C∖K)⊗̂εE ≅ Eexp (C∖K)⊗̂πE

2.
Oexp (C∖K,E) ≅Oexp (C∖K)⊗̂εE ≅Oexp (C∖K)⊗̂πE

Proof. As Eexp (C∖K) is nuclear by Theorem 3.7, we have Eexp (C∖K)⊗̂εE ≅Eexp (C∖K)⊗̂πE
by [60, Theorem 50.1, p. 511]. Due to the nuclearity Eexp (C∖K) has the approximation property
by [25, 21.2.2. Corollary, p. 483]. Furthermore, Eexp (C∖K) and E are complete locally convex
spaces and thus we get Eexp (C∖K)⊗̂εE ≅ Eexp (C∖K)εE by [38, §43, 3.(7), p. 243]. The
statement follows then by Theorem 3.11. The same arguments are valid for Oexp (C∖K,E) .

3.13 Remark.

(1) Let E be a Fréchet space and F the nuclear Fréchet space Eexp (C∖K) resp. Oexp (C∖K) .
For f ∈ F and x ∈ E we define f ⊗x∶C∖K → E, ( f ⊗x)(z) ∶= f (z)x. Then we can describe
the statement of the Corollary above in a more concrete manner. The injection

χ ∶F⊗π E → FεE,
k
∑
i=1

fi⊗ei↦ (y↦
k
∑
i=1

⟨y, fi⟩⊗ei) ,

is continuous by [25, 16.1, p. 344, 16.1.3. Proposition, p. 345] and so it has a unique, con-
tinuous linear extension χ̃ ∶F⊗̂πE → FεE by [25, 3.4.2. Theorem, p. 61]. This extension is
a topological isomorphism due to the nuclearity of F. By virtue of [17, Chap. I, § 2, n° 1,
Théorème 1, p. 51] every element f ∈ F⊗̂πE is the sum of an absolutely convergent series

f =
∞
∑
i=1

λi fi⊗ei
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where (λi) ∈ `1 and ( fi) and (ei) are null sequences in F resp. E.2 Remark that this repre-
sentation is not unique. Now we define the mapping

χ0∶F⊗̂πE → FεE, f =
∞
∑
i=1

λi fi⊗ei↦ (y↦
∞
∑
i=1

λi ⟨y, fi⟩ei) .

This mapping is well-defined, i.e. it does not depend on the representation of f and series
appearing on the right hand side converge in E since we have for f ∈ F⊗̂πE and α ∈ A (A
countable)

pα (χ0 ( f )(y)) ≤
∞
∑
i=1

∣λi∣ ∣⟨y, fi⟩∣ pα (ei) ≤
∞
∑
i=1

∣λi∣sup
n∈N

∣⟨y, fn⟩∣sup
n∈N

pα (en)

for all y ∈F ′. Furthermore, supn∈N pα (en) <∞, as (en) is a null sequence, and∑∞
i=1 ∣λi∣ <∞,

because (λi) ∈ `1. The set M ∶= { fn ∣ n ∈N} is precompact in F by a comment in [60, p. 54],
since ( fn) is a Cauchy sequence in F. So we get that there is a constant C > 0 such that

pα (χ0 ( f )(y)) ≤
∞
∑
i=1

pα (λi ⟨y, fi⟩ei) ≤C sup
x∈M

∣y(x)∣ <∞.

This implies that (∑k
i=1 λi ⟨y, fi⟩ei)k is a Cauchy sequence in E and thus convergent by

the completeness of E as well as χ0 ( f ) ∈ FεE. The independence of the representation
results now from the totality of {δ

(β)
z ∣ z ∈C∖K, β ∈N2

0} resp. {δz ∣ z ∈C∖K} in F ′
c . For

F = Eexp (C∖K) one denotes with ∣⋅∣n,m ⊗̂π pα the continuation of ∣⋅∣n,m ⊗π pα and these
semi-norms form a fundamental system of semi-norms of Eexp (C∖K)⊗̂πE. Then one gets
for f ∈ Eexp (C∖K)⊗̂πE

(∣⋅∣n,m ⊗̂π pα)( f ) = inf{
∞
∑
i=1

∣λi∣ ∣ fi∣n,m pα (ei) ∣ f =
∞
∑
i=1

λi fi⊗ei}

where the infimum runs through all such representations by [61, 6.5 Theorem, p. 65] resp.
[7, Corollary 8.4, p. 54].3 For f =∑∞

i=1 λi fi⊗ei we obtain by Lemma 3.10(4)

qn,m,α (χ0 ( f ))

= sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

pα (χ0 ( f )(δ
(β)
z ))e−

1
n ∣Re(z)∣ = sup

z∈Sn(K),
β∈N2

0, ∣β ∣≤m

pα (
∞
∑
i=1

λi∂
β fi (z)ei)e−

1
n ∣Re(z)∣

≤
∞
∑
i=1

∣λi∣ sup
z∈Sn(K),

β∈N2
0, ∣β ∣≤m

∂
β fi (z)e−

1
n ∣Re(z)∣pα (ei) =

∞
∑
i=1

∣λi∣ ∣ fi∣n,m pα (ei)

and, therefore, qn,m,α (χ0 ( f )) ≤ (∣⋅∣n,m ⊗̂π pα)( f ) implying the continuity of χ0. The anal-
ogous result is valid for F = Oexp (C∖K). By the remark about the uniqueness in the

2A similar series representation for the injective tensor product can be found in [3, p. 37] combined with [4, 4.
Bemerkung, 6. Satz, p. 196-197] resp. [7, Proposition 3.23, p. 22-23].

3The proof is based on the one of [54, 7.5.1. Theorem, p. 105].
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beginning we get χ̃ = χ0. Combining this topological isomorphism with the topological
isomorphism T of Theorem 3.11, we gain for f =∑∞

i=1 λi fi⊗ei and z ∈C∖K

(T ○ χ̃)( f )(z) = T (χ0 ( f ))(z) = [χ0 ( f )○∆](z) = χ0 ( f )(δz) =
∞
∑
i=1

λi fi (z)ei = f (z) ,

so (T ○ χ̃) = id . Hence the topological isomorphism between F⊗̂πE and Eexp (C∖K,E)
(resp. Oexp (C∖K,E)) is nothing else but the identity if E is a Fréchet space.

(2) Junker [26, 1.7 Satz, p. 8-9] gave a proof of Theorem 3.11 resp. Corollary 3.12 in the case
that E is a Fréchet space which is in some parts similar to the proof given here. But his
proof of surjectivity is less transparent. Moreover, though he proves that T (there called k)
is an algebraic isomorphism and hence, using the nuclearity, that there exists an algebraic
isomorphism j∶Eexp (C∖K)⊗̂πE → Eexp (C∖K,E) , he does not explicitly state or prove
how j looks like. But he treats j like the identity in the proof of continuity, which is
confirmed in the first remark here, and then uses the open mapping theorem to get that
j is topological. Apart from these inconsistencies, one can not use the open mapping
theorem so easily for the proof of the general statement given here if E is not a Fréchet
space, since one would need, that Eexp (C∖K)εE (resp. Oexp (C∖K)εE) is a webbed
space and Eexp (C∖K,E) (resp. Oexp (C∖K,E)) ultrabornological. The first condition
is at least fulfilled if E is webbed by Theorem 3.6(2), Theorem 3.7 and [10, Théorème 4,
p. 79], but, aside from the case that E is a Fréchet space and hence Eexp (C∖K,E) (resp.
Oexp (C∖K,E)) as well by Theorem 3.6(2), there are no other cases known (to me), when
the latter condition is fulfilled.
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4 Vector-valued P∗-functionals and a
duality theorem

The aim of this section is to prove that the spacesOexp (C∖K,E)/Oexp (C,E) and Lb (P∗ (K) ,E)
are topologically isomorphic for any non-empty compact set K ⊂ R and any complete locally
convex space E, i.e. to find a topological isomorphism

H ∶Oexp (C∖K,E)/Oexp (C,E)→ Lb (P∗ (K) ,E) .

For special cases like E = C [28, Theorem 3.2.1, p. 480] and Fréchet spaces E [26, 3.9 Satz,
p. 41] it is already known that these spaces are isomorphic. The approach in this section will
differ from the aforementioned ones and establish a kind of Köthe duality between the spaces
Oexp (C∖K,E)/Oexp (C,E) and Lb (P∗ (K) ,E) for arbitrary complete locally convex spaces E.
At least in the special case K = [a,∞] , a ∈R, and E =C this duality is already known [46, Theo-
rem 3.3, p. 85-86] and serves as initial point of the considerations that follow. From a later point
of view (see Section 6) the isomorphism H just expresses that the E-valued Fourier hyperfunc-
tions defined as boundary values whose support is contained in K coincide with the ones defined
via E-valued P∗-functionals with support in K. This section is closed by the definition of the
Fourier transformation on Lb (P∗ (R) ,E) .

For f ∶= [F] ∈ Oexp (C∖K,E)/Oexp (C,E) we define H ( f ) ∶P∗ (K) → E as follows. For ϕ ∈
P∗ (K) exists n ∈N such that ϕ ∈On (Un (K)) . A component Z of Un (K) fulfills one of the cases
of Remark 3.3 (2) and so for 0 < r <R (in the cases a)-d)) resp. 0 < r < 1/n (in the case e)) we define

Vr (Z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z ∈C∣ dist(z,[a,b]) < r} , if Z fulfills a),
{z ∈C∣ dist(z,[a,∞[) < r} , if Z fulfills b),
{z ∈C∣ dist(z,]−∞,b]) < r} , if Z fulfills c),
{z ∈C∣ dist(z,R) < r} , if Z fulfills d),
(1/r,∞)× ]−r,r[ , if Z =]n,∞[×]−1/n,1/n[ ,
]−∞,−1/r[×]−r,r[ , if Z =]−∞,−n[×]−1/n,1/n[ ,

where Z fulfills e) in the last two cases. By Remark 3.3 (1) there is k ∈N with Un (K) =⋃k
j=1 Z j

where the Z js denote the components of Un (K) . Now let

H̃K (F)(ϕ) ∶= ∫
γK

F (ζ)ϕ (ζ)dζ (4.1)

where γK ∶=∑k
j=1 γ j and γ j is the path along the boundary of Vr j (Z j) in C in the positive sense

(counterclockwise). If not necessary, the subscript K in the notation of H̃K and the path γK is
omitted.
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4 Vector-valued P∗-functionals and a duality theorem

Figure 4.1: Path γK for ±∞ ∈K

Let F, G ∈Oexp (C∖K,E) with F −G ∈Oexp (C,E) . Consider the case ∞ ∈ K, −∞ ∉ K. By the
Cauchy integral theorem and the assumptions we have

∫
γ

(F −G)(ζ)ϕ (ζ)dζ = ∫
γk
(F −G)(ζ)ϕ (ζ)dζ

where Zk is the unbounded component and Z j,1 ≤ j < k, are the bounded components of Un (K) .
For γ0∶[−rk,rk]→C, γ0 (t) ∶= x+ it, where x > 1/rk, one has x > 1/rk > n and thus γ0 ([−rk,rk]) ⊂ Zk.
For α ∈ A there are C1, C2 > 0 such that

pα (∫
γ0
(F −G)(ζ)ϕ (ζ)dζ) ≤ ∫

rk

−rk
pα ((F −G)(x+ it))∣ϕ (x+ it)∣dt

≤ ∫
rk

−rk
C1e(1/2n)xC2e−(1/n)xdt

= 2C1C2rke−(1/2n)x

→
x→∞

0

due to the assumptions. Thus again by the Cauchy integral theorem

∫
γk
(F −G)(ζ)ϕ (ζ)dζ = 0

holds. The others cases follow analogously. Hence for f = [F] the definition

HK ( f )(ϕ) ∶= H̃K (F)(ϕ) = ∫
γK

F (ζ)ϕ (ζ)dζ (4.2)

is independent of the choice of the representative F of f . Again the subscript K in the notation is
omitted, if not necessary.
For a component Z of Un (K) let 0 < r, s < R (in the cases a)-d)) with R of Remark 3.3 (2) resp.
0 < r, s < 1/n (in the case e)). With the definitions from above consider the case ∞ ∈ K, −∞ ∉ K.
By the Cauchy integral theorem

∫
γ

F (ζ)ϕ (ζ)dζ −∫
γ̃

F (ζ)ϕ (ζ)dζ

= ∫
γk

F (ζ)ϕ (ζ)dζ −∫
γ̃k

F (ζ)ϕ (ζ)dζ (4.3)
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is valid where γ̃ ∶=∑k
j=1 γ̃ j and γ̃ j is the path along the boundary of Vs j (Z j) in C in the positive

sense. W.l.o.g. sk < rk. Now let m ∶= 2⌈1/sk⌉. Then m ∈ N≥2, m > 2n and 1/m < sk < rk < m. For
γ0∶[sk,rk]→C, γ0 (t) ∶= x+ it, x > 1/sk, and α ∈ A there are C1, C2 > such that

pα (∫
γ0

F (ζ)ϕ (ζ)dζ) ≤ ∫
rk

sk
pα (F (x+ it))∣ϕ (x+ it)∣dt

≤
def.m

∫
rk

sk
C1e(1/m)xC2e−(1/n)xdt

≤
def.m

C1C2 (rk− sk)e−(1/2n)x

→
x→∞

0.

Analogously for γ1∶[−rk,−sk]→C, γ1 (t) ∶= x+ it, x > 1/sk, one has

pα (∫
γ1

F (ζ)ϕ (ζ)dζ) →
x→∞

0

and thus the right hand side of (4.3) is equal to zero. Again the others cases follow analogously.
Hence the definition of H ( f ) (and H̃ (F)) is independent of the choice of r corresponding to a
component Z of Un (K) and thus well-defined on P∗ (K) .
4.1 Theorem. 1 For any non-empty compact set K ⊂R the mapping

H ∶Oexp (C∖K,E)/Oexp (C,E)→ Lb (P∗ (K) ,E)

is a topological isomorphism.

Proof. i) First we have to take a look at the quotient space above. To speak of a topological
isomorphism, one is in need of a reasonable locally convex topology on the quotient space.
We denote by

q∶Oexp (C∖K,E)→Oexp (C∖K,E)/Oexp (C,E)
the quotient map and equip the quotient space with usual system of quotient semi-norms
(∣ ⋅ ∣∧l,α)

l∈N≥2,α∈A
given by

∣ f ∣∧l,α ∶= inf
F∈q−1( f )

∣F ∣l,α .

This quotient space, equipped with these semi-norms, is locally convex iff Oexp (C,E) is
closed in Oexp (C∖K,E) with respect to the induced topology. This condition is indeed
fulfilled since we will prove at the end of part i) that

H̃ ∶Oexp (C∖K,E)→ Lb (P∗ (K) ,E)

is continuous and at the end of part iii) that ker(H̃) =Oexp (C,E) .
We only consider the case ∞ ∈ K, −∞ ∉ K. The proof for the other cases is analogous.
Let f ∈Oexp (C∖K,E)/Oexp (C,E) , n ∈N and ϕ ∈On (Un (K)) . Then, with the definitions
from before, Un (K) =⋃k

j=1 Z j. For the length of γ j,1 ≤ j < k, one has

l (γ j) = 2(b j −a j +πr j) (4.4)

1counterpart: [13, Theorem 5.2, p. 1119]
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and for the length of γ−

l (γ−) =
⎧⎪⎪⎨⎪⎪⎩

2(x−ak)+πrk, if Zk fulfills b),
2(x− 1/rk+ rk) , if Zk fulfills e), Zk =]n,∞[×]−1/n,1/n[ ,

(4.5)

where x > 1/rk is fixed, γ− denotes the part of γk with Re(γk) ⊂ (−∞,x) and γ+ the part of γk
with Re(γk) ⊂ [x,∞). Set m ∶= 2max1≤ j≤k ⌈1/r j⌉ and w.l.o.g. Zk fulfills b).
Then for any α ∈ A and any F ∈ q−1 ( f )

pα (H ( f )(ϕ)) = pα (H̃ (F)(ϕ)) = pα (∫
γ

F (ζ)ϕ (ζ)dζ)

≤
k−1
∑
j=1

pα (∫
γ j

F (ζ)ϕ (ζ)dζ)+ pα (∫
γ−+γ+

F (ζ)ϕ (ζ)dζ)

≤
k−1
∑
j=1

l (γ j) sup
ζ∈range(γ j)

pα (F (ζ))∣ϕ (ζ)∣+ l (γ−) sup
ζ∈range(γ−)

pα (F (ζ))∣ϕ (ζ)∣

+ pα (−∫
∞

x
F (t + irk)ϕ (t + irk)dt)+ pα (∫

∞

x
F (t − irk)ϕ (t − irk)dt)

(4.4)=
(4.5)

k−1
∑
j=1

2(b j −a j +πr j) sup
ζ∈range(γ j)

pα (F (ζ))∣ϕ (ζ)∣

+(2(x−ak)+πrk) sup
ζ∈range(γ−)

pα (F (ζ))∣ϕ (ζ)∣

+∫
∞

x
pα (F (t + irk))∣ϕ (t + irk)∣dt +∫

∞

x
pα (F (t − irk))∣ϕ (t − irk)∣dt

≤
def.m

2
k−1
∑
j=1

(b j −a j +πr j) sup
ζ∈range(γ j)

∣F ∣m,α∥ϕ∥ne(
1
m−

1
n)∣Re(ζ)∣

+(2(x−ak)+πrk) sup
ζ∈range(γ−)

∣F ∣m,α∥ϕ∥ne(
1
m−

1
n)∣Re(ζ)∣

+2∫
∞

x
∣F ∣m,α∥ϕ∥ne(

1
m−

1
n)tdt

≤
def.m

2∣F ∣m,α∥ϕ∥n

k−1
∑
j=1

(b j −a j +πr j) sup
ζ∈range(γ j)

e−
1
2n ∣Re(ζ)∣

+ ∣F ∣m,α∥ϕ∥n (2(x−ak)+πrk) sup
ζ∈range(γ−)

e−
1

2n ∣Re(ζ)∣

+2∣F ∣m,α∥ϕ∥n∫
∞

x
e−

1
2n tdt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2ne−

1
2n x

≤
⎛
⎝

2
k−1
∑
j=1

(b j −a j +πr j)+(2(x−ak)+πrk)+4ne−
1
2n x⎞

⎠
∣F ∣m,α∥ϕ∥n.
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Hence there exists C =C(n,K) > 0 with

pα (H̃ (F)(ϕ)) = pα (H ( f )(ϕ)) ≤C∣F ∣m,α∥ϕ∥n, (4.6)

thus H ( f ) = H̃ (F) ∈ L(On (Un (K)) ,E) and therefore H ( f ) = H̃ (F) ∈ L(P∗ (K) ,E) by
[16, 3.6 Satz, p. 117] since n ∈N is arbitrary. As F ∈ q−1 ( f ) is arbitrary, (4.6) also yields to

pα (H ( f )(ϕ)) ≤C inf
F∈q−1( f )

∣F ∣m,α∥ϕ∥n =C∣ f ∣∧m,α∥ϕ∥n (4.7)

for any n ∈N and α ∈A. Now let M ⊂P∗ (K) be a bounded set. Since the sequence (Bn)n∈N
of closed unitballs Bn of On (Un (K)) is a fundamental system of bounded sets in P∗ (K)
by [45, 25.19 Satz (2), p. 286], there exist n ∈N and λ > 0 with M ⊂ λBn. Hence by (4.6)
one gets

sup
ϕ∈M

pα (H̃ (F)(ϕ)) ≤ sup
ϕ∈λBn

pα (H̃ (F)(ϕ)) = ∣λ ∣ sup
ϕ∈Bn

pα (H̃ (F)(ϕ))

≤ ∣λ ∣C∣F ∣m,α

and by (4.7)

sup
ϕ∈M

pα (H ( f )(ϕ)) ≤ sup
ϕ∈λBn

pα (H ( f )(ϕ)) = ∣λ ∣ sup
ϕ∈Bn

pα (H ( f )(ϕ))

≤ ∣λ ∣C∣ f ∣∧m,α

proving the continuity of H̃ resp. of H, but in the latter case only if we prove, in addition,
that ker(H̃) =Oexp (C,E) (see the remark in the beginning).
Moreover, we observe the following: Let K1 ⊂ K ⊂R be arbitrary compact sets. For every
F ∈Oexp (C∖K1,E) and every ϕ ∈P∗ (K)

HK ([F]) = ∫
γK

F (z)ϕ (z)dz = ∫
γK1

F (z)ϕ (z)dz =HK1 ([F])

holds by the Cauchy integral theorem implying

HK ∣Oexp(C∖K1,E)/Oexp(C,E) =HK1 . (4.8)

ii) For z ∈C∖K and ζ ∈C∖{z} define g(z,ζ) ∶= e−(z−ζ)2

z−ζ
. Then g(z, ⋅) ∈O(C∖{z}) . Let z0 ∈

C∖K. Now choose n ∈N such that

d(z0,Un (K)) = dist(z0,Un (K)) > 0 (4.9)

which is possible by the choice of z0 and the definition of Un (K) . Since (4.9) means that
there exists ε > 0 with Dε (z0)∩Un (K) =∅, one has d(w,Un (K)) > 0 for all w ∈Dε (z0) .

43



4 Vector-valued P∗-functionals and a duality theorem

With w ∶= x+ iy and ζ ∶= µ + iη , where x,y,µ,η ∈R, we get

∥g(w, ⋅)∥n = sup
ζ∈Un(K)

e−Re((w−ζ)2)

∣w−ζ ∣ e
1
n ∣Re(ζ)∣

≤ 1

d(w,Un (K))
e−x2+y2

sup
µ+iη∈Un(K)

e−µ
2+η

2+2xµ−2yη+ 1
n ∣µ ∣

≤ 1

d(w,Un (K))
e−x2+y2+ 2

n ∣y∣+
1

n2 sup
µ∈R

e−µ
2+∣µ ∣(2∣x∣+ 1

n)

= 1

d(w,Un (K))
e−x2+y2+ 2

n ∣y∣+
1

n2 e−(∣x∣+
1

2n)
2+(∣x∣+ 1

2n)(2∣x∣+ 1
n)

= 1

d(w,Un (K))
e

1
n ∣x∣+y2+ 2

n ∣y∣+
5

4n2 <∞, (4.10)

thus g(w, ⋅) ∈ P∗ (K) . Hence the expression < T,g(w, ⋅) > is defined for T ∈ L(P∗ (K) ,E)
and so the corresponding function

< T #,g >∶C∖K → E, z↦< T,g(z, ⋅) > .

For the function ( ∂

∂ zg)(z0, ⋅) ∶C∖ {z0}→ C, ζ ↦ ( ∂

∂ zg)(z0,ζ) , where ( ∂

∂ zg) denotes the
complex derivative of g with respect to z, one gets like in (4.10) (with w = z0)

∥( ∂

∂ z
g)(z0, ⋅)∥

n
= sup

ζ∈Un(K)

RRRRRRRRRRR
−
⎛
⎝

2+ 1

(z0−ζ)2

⎞
⎠

e−(z0−ζ)2
RRRRRRRRRRR
e

1
n ∣Re(ζ)∣

≤
⎛
⎜⎜
⎝

2+ 1

d(z0,Un (K))
2

⎞
⎟⎟
⎠

e
1
n ∣x∣+y2+ 2

n ∣y∣+
5

4n2

<∞,

so ( ∂

∂ zg)(z0, ⋅) ∈P∗ (K) . Hence the limit

lim
h→0

< T,g(z0+h, ⋅) > − < T,g(z0, ⋅) >
h

=
T∈L(P∗(K),E)

< T, lim
h→0

g(z0+h, ⋅)−g(z0, ⋅)
h

>

=< T,( ∂

∂ z
g)(z0, ⋅) >

exists meaning < T #,g >∈O(C∖K,E) .
Then for l ∈ N≥2 define M ∶= {g(z, ⋅)e−

1
l ∣Re(z)∣ ∣ z ∈ Sl (K)} ⊂ O(U2l (K)) . By (4.10) and

Remark 3.3(4)

sup
ϕ∈M

∥ϕ∥2l = sup
z∈Sl(K)

∥g(z, ⋅)∥2le
− 1

l ∣Re(z)∣
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≤ sup
x+iy∈Sl(K)

1

dist(x+ iy,U2l (K))
e

1
2l ∣x∣+y2+ 1

l ∣y∣+
5

16l2
− 1

l ∣x∣

≤ el2+1+ 5
16l2

1
l − 1

2l

sup
x∈R

e−
1
2l ∣x∣

= 2lel2+1+ 5
16l2

<∞ (4.11)

holds, hence M is bounded in P∗ (K) by [45, 25.19 Satz (2), p. 286] again.
Since T ∈ L(P∗ (K) ,E) , the following is valid by [16, 23.3.6 Satz, p. 117]:

∀ n ∈N ∀ α ∈ A ∃C > 0 ∶ pα (T (ϕ)) ≤C∥ϕ∥n,α for all ϕ ∈On (Un (K))

So for l ∈N≥2 and α ∈ A there is C > 0 such that

∣[< T #,g >]∣∧l,α ≤ ∣ < T #,g > ∣l,α = sup
z∈Sl(K)

pα (< T,g(z, ⋅) >)e−
1
l ∣Re(z)∣

= sup
z∈Sl(K)

pα (< T,g(z, ⋅)e−
1
l ∣Re(z)∣ >) = sup

ϕ∈M
pα (< T,ϕ >)

≤C sup
ϕ∈M

∥ϕ∥2l <
(4.11)

∞

and therefore the mapping

SK ∶Lb (P∗ (K) ,E)→Oexp (C∖K,E)/Oexp (C,E) , SK (T) ∶= [ 1
2πi

< T #,g >]

is defined and continuous. Further, we observe that P∗ (R) is dense in P∗ (K) for any non-
empty compact set K ⊂R by [28, Theorem 2.2.1, p. 474]. Thus the embedding of P∗ (K)
into P∗ (K1) is continuous and dense, hence defines the embedding of L(P∗ (K1) ,E) into
L(P∗ (K) ,E) (the density of the first embedding implies the injectivity of the latter one)
for arbitrary compact sets K1 ⊂K ⊂R, and we have

SK (T) = SK1 (T) for all T ∈ L(P∗ (K1) ,E) (4.12)

just by the definition of g. Therefore, we will normally omit the subscript K in what follows.
The map S is also called (weighted) Cauchy transformation for obvious reasons (see [46]).

iii) The aim of the next two parts is to show that S is the inverse mapping of H. First, the
injectivity of H ∶ For this it suffices to show S○H = id on Oexp (C∖K,E)/Oexp (C,E) . For
z ∶= x+ iy ∈C∖K, x,y ∈R, choose n ∈N like in (4.9) and define Γ ∶= Γ−−Γ+ with

Γ±∶R→C, Γ± (t) ∶= t ± ip

where max
1≤ j≤k

{r j, ∣Im(z)∣,2} < p.

Let f ∶= [F] ∈ Oexp (C∖K,E)/Oexp (C,E) . Consider the case ∞ ∈ K, −∞ ∉ K. Now set
m ∶= 2max{⌈1/rk⌉, p}. For γ0∶[rk, p] → C, γ0 (t) ∶= u+ it, u > max{1/rk,x} , there is C1 > 0
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such that

pα

⎛
⎝∫γ0

F (ζ) e−(z−ζ)2

ζ − z
dζ

⎞
⎠
≤ ∫

p

rk
C1e

1
m u 1

∣z−u− it ∣e
−x2+y2−u2+t2+2xu−2ytdt

≤C1e−x2+y2 (p− rk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶C2

1
u−x

ep2+2∣y∣pe−u2+( 1
m+2∣x∣)∣u∣

=C2
1

u−x
e−u2+( 1

m+2∣x∣)∣u∣

→
u→∞

0.

Analogously for γ1∶[−p,−rk]→C, γ1 (t) ∶= u+ it, u >max{1/rk,x} , and γ2∶[−p, p]→C,
γ2 (t) ∶= u− it, u <min1≤ j≤k {a j − r j,x} , if Zk fulfills b), resp. u <min1≤ j<k {a j − r j,1/rk,x} , if
Zk fulfills e) and Zk =]n,∞[×]− 1/n,1/n[, one gets

pα

⎛
⎝∫γi

F (ζ) e−(z−ζ)2

ζ − z
dζ

⎞
⎠
→

u→∞
0, i = 1,2,

and hence by the Cauchy integral formula

F (z) = 1
2πi ∫Γ−γ

F (ζ) e−(z−ζ)2

ζ − z
dζ = − 1

2πi ∫Γ−γ

F (ζ)g(z,ζ)dζ .

Notice that the right hand side does not depend on the choice of p in the definition of Γ by
the Cauchy integral theorem and considerations like above. Then

G(z) ∶ =< 1
2πi

H ([F]) ,g(z, ⋅) > −F (z)

= 1
2πi

<H ([F]) ,g(z, ⋅) > + 1
2πi ∫Γ−γ

F (ζ)g(z,ζ)dζ

= 1
2πi ∫γ

F (ζ)g(z,ζ)dζ + 1
2πi ∫Γ−γ

F (ζ)g(z,ζ)dζ

= 1
2πi ∫Γ

F (ζ)g(z,ζ)dζ

= 1
2πi ∫Γ

F (ζ) e−(z−ζ)2

z−ζ
dζ (4.13)

is valid. But the right hand side of (4.13), as a function in z, is holomorphic on
Sp (∅) = {z ∈C ∣ ∣Im(z)∣ < p} (differentiation under the integral sign), so G is extended to
a function in O(C,E) by the right hand side which shall also be denoted with G.
For l ∈N≥2 choose m ∶= 2max{p, l} . Then for z ∈ S p

2
(∅) there exists C1 > 0 such that

2π pα (G(z)) = pα

⎛
⎝∫Γ

F (ζ) e−(z−ζ)2

z−ζ
dζ

⎞
⎠

≤ ∫
∞

−∞
pα (F (t − ip))

RRRRRRRRRRR

e−(z−t+ip)2

z− t + ip

RRRRRRRRRRR
dt +∫

∞

−∞
pα (F (t + ip))

RRRRRRRRRRR

e−(z−t−ip)2

z− t − ip

RRRRRRRRRRR
dt
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≤C1e−x2+y2+p2 ( 1
∣y+ p∣e

2yp+ 1
∣y− p∣e

−2yp)∫
∞

−∞
e

1
m ∣t∣−t2+2xtdt

≤ 2C1
1

p− ∣y∣e
−x2+y2+p2+2∣y∣p∫

∞

−∞
e−t2+( 1

m+2∣x∣)∣t∣dt

≤ 4C1
1

p− ∣y∣e
−x2+y2+p2+2∣y∣p+( 1

2m+∣x∣)
2

∫
∞

0
e−(t−( 1

2m+∣x∣))
2

dt

= 4C1
1

p− ∣y∣e
−x2+y2+p2+2∣y∣p+( 1

2m+∣x∣)
2

(∫
∞

0
e−t2

dt +∫
0

−( 1
2m+∣x∣)

e−t2
dt)

≤ 4C1
√

π
1

p− ∣y∣e
y2+p2+2∣y∣p+ 1

4m2 +
1
m ∣x∣

and so

sup
0≤∣y∣≤ p

2
x∈R

pα (G(x+ iy))e−
1
l ∣x∣ ≤ 2C1√

π
sup

0≤∣y∣≤ p
2

x∈R

1
p− ∣y∣e

y2+p2+2∣y∣p+ 1
4m2 −(

1
l −

1
m)∣x∣

≤ 4C1

p
√

π
e

9
4 p2+ 1

4m2 sup
x∈R

e−
1
2l ∣x∣

= 4C1

p
√

π
e

9
4 p2+ 1

4m2

yielding to

∣G∣∅,l,α = sup
z∈Sl(∅)

pα (G(z))e−
1
l ∣Re(z)∣ ≤

p
2≥

1
l

max(∣G∣K,l,α , sup
0≤∣y∣≤ p

2
x∈R

pα (G(x+ iy))e−
1
l ∣x∣) <∞.

Hence G ∈Oexp (C,E) and thus

(S○H)( f ) = [< 1
2πi

H ( f )#
,g > −F]+ f = [G]+ f = f ,

i.e. H is injective. In particular, this means that ker(H̃)=Oexp (C,E) proving the statement
in the beginning of part i) as well.

iv) What remains to be shown, is the surjectivity of H. For this it suffices to show H ○S = id
on L(P∗ (K) ,E) . Due to the Hahn-Banach theorem (see for example [45, 22.12 Satz (c),
p. 236]) this is equivalent to the condition that

e′ ((H ○S(T))(ϕ)) = e′ (T (ϕ))

holds for any T ∈ L(P∗ (K) ,E) , ϕ ∈P∗ (K) and e′ ∈ E ′.
Since

e′ ((H ○S(T))(ϕ)) = e′(H ([ 1
2πi

< T #,g >])(ϕ))

= e′( 1
2πi ∫γ

< T,g(z, ⋅) > ϕ (z)dz)
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4 Vector-valued P∗-functionals and a duality theorem

= 1
2πi ∫γ

< e′ ○T,g(z, ⋅) > ϕ (z)dz

= (H ○S(e′ ○T))(ϕ)

where one uses Riemann sums and the Cauchy integral theorem for the third equation and
e′ ○T ∈P∗ (K)′ , it suffices to show the result for E =C.
First let us consider the case K = R. As the set of point evaluations {δx0 ∣ x0 ∈R} is total
in P∗ (R)′ by Theorem 3.5(3), one has to show that (H ○S(δx0))(ϕ) =< δx0,ϕ > for ϕ ∈
P∗ (R) .
Now we have

(H ○S(δx0))(ϕ) = 1
2πi ∫γ

< δx0,g(z, ⋅) > ϕ (z)dz. (4.14)

Let us take a closer look at the integral on the right hand side of (4.14). Let m ∈N≥2 and
z ∈ Sm ({x0}) . Then

∣< δx0,g(z, ⋅) >∣{x0},m = sup
z∈Sm({x0})

∣< δx0,g(z, ⋅) >∣e− 1
m ∣Re(z)∣ = sup

z∈Sm({x0})
∣g(z,x0)∣e−

1
m ∣Re(z)∣

= sup
z∈Sm({x0})

1
∣z−ζ ∣e

−x2+y2−x2
0+2xx0− 1

m ∣x∣ ≤mem2−x2
0 sup

x∈R
e−x2+∣x∣(2∣x0∣+ 1

m)

=mem2−x2
0e−(∣x0∣+ 1

2m)2+(∣x0∣+ 1
2m)(2∣x0∣+ 1

m) <∞,

thus < δ #
x0
,g >∈Oexp (C∖{x0}) . This means that the path of the integral on the right hand

side of (4.14) can be deformed using the Cauchy integral theorem and one gets for R > 0
sufficiently small, so that DR (x0) ⊂Un (K) for ϕ ∈On (Un (K)) , n ∈N,

1
2πi ∫γ

< δx0,g(z, ⋅) > ϕ (z)dz = 1
2πi ∫∂DR(x0)

< δx0,g(z, ⋅) > ϕ (z)dz

= 1
2πi ∫∂DR(x0)

g(z,x0)ϕ (z)dz

= 1
2πi ∫∂DR(x0)

e−(z−x0)2
ϕ (z)

z−x0
dz

= ϕ (x0)
=< δx0 ,ϕ >

by the Cauchy integral formula.
Now let K ≠∅ be an arbitrary compact subset of R. Since P∗ (K)′ is embbeded in P∗ (R)′

and HR ○SR = idP∗(R)′ , it suffices to show that HK ○SK = (HR ○SR)∣P∗(K)′. By (4.12) we

have SR∣P∗(K)′ = SK and by (4.8) HR∣Oexp(C∖K)/Oexp(C) = HK. So the theorem is finally
proven.

4.2 Remark. For K like in Theorem 3.5(2) a different proof of part iv) is also possible. As the
set of point evaluations of complex derivatives {δ

(n)
x0 ∣ x0 ∈K ∩R,n ∈N0} is total in P∗ (K)′ for K

like in Theorem 3.5 (2), one has to show that (H ○S(δ
(n)
x0 ))(ϕ) =< δ

(n)
x0 ,ϕ > for ϕ ∈P∗ (K) .
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Now we have
(H ○S(δ

(n)
x0 ))(ϕ) = 1

2πi ∫γ

< δ
(n)
x0 ,g(z, ⋅) > ϕ (z)dz. (4.15)

Let us take a closer look at the integral on the right hand side of (4.15). Let m ∈ N≥2 and z ∈
Sm ({x0}) . Then g(z, ⋅) ∈O(D 1

m
(x0)) . Using the notation gz (ζ) ∶= g(z,ζ) for ζ ∈ D 1

m
(x0) , the

Cauchy inequality yields to

∣g(n)
z (x0)∣ ≤ n!(2m)n max

ζ∈∂D 1
2m

(x0)
∣g(z,ζ)∣

= n!(2m)n max
ζ∈∂D 1

2m
(x0)

1
∣z−ζ ∣e

−x2+y2−µ
2+η

2+2xµ−2yη

≤ n!(2m)n+1 max
ζ∈∂D 1

2m
(x0)

e−x2+y2+µ
2+η

2+2∣x∣∣µ ∣+2∣y∣∣η ∣

≤ n!(2m)n+1 max
ζ∈∂D 1

2m
(x0)

e−x2+y2+∣ζ ∣2+2∣ζ ∣(∣x∣+∣y∣)

≤ n!(2m)n+1 e−x2+y2+( 1
2m+∣x0∣)

2+2( 1
2m+∣x0∣)(∣x∣+∣y∣)

= n!(2m)n+1 e(
1

2m+∣x0∣)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C0

e−x2+y2+( 1
m+2∣x0∣)(∣x∣+∣y∣).

Thus

sup
z∈Sm({x0})

∣g(n)
z (x0)∣e−

1
m ∣Re(z)∣ ≤C0 sup

z∈Sm({x0})
e−x2+y2+( 1

m+2∣x0∣)(∣x∣+∣y∣)− 1
m ∣x∣

≤C0em2+( 1
m+2∣x0∣)m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C1

sup
x∈R

e−x2+2∣x0∣∣x∣

=C1e−x2
0+2x2

0 =C1ex2
0

and so (z↦< δ
(n)
x0 ,g(z, ⋅) >) ∈ Oexp (C∖{x0}) . This means that the path of the integral on the

right hand side of (4.15) can be deformed using the Cauchy integral theorem and one gets for
R > 0 sufficiently small, so that DR (x0) ⊂Ul (K) for ϕ ∈Ol (Ul (K)) , l ∈N,

1
2πi ∫γ

< δ
(n)
x0 ,g(z, ⋅) > ϕ (z)dz = 1

2πi ∫∂DR(x0)
< δ

(n)
x0 ,g(z, ⋅) > ϕ (z)dz

= 1
2πi ∫∂DR(x0)

g(n)
z (x0)ϕ (z)dz.

The Laurent series of g(z, ⋅) in ζ is

g(z,ζ) = 1
z−ζ

+
∞
∑
j=1

(−1) j

j!
(z−ζ)2 j−1
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4 Vector-valued P∗-functionals and a duality theorem

and so
g(n)

z (x0) =
n!

(z−x0)n+1 +h(z,x0)

where h(⋅,x0) is an entire function. By the Cauchy integral theorem and the Cauchy integral
formula for derivatives we have

1
2πi ∫∂DR(x0)

g(n)
z (x0)ϕ (z)dz

= 1
2πi ∫∂DR(x0)

( n!

(z−x0)n+1 +h(z,x0))ϕ (z)dz

= n!
2πi ∫∂DR(x0)

ϕ (z)
(z−x0)n+1 dz = ϕ

(n) (x0) =< δ
(n)
x0 ,ϕ > .

Observe that this kind of proof is not possible if, for example, K = {∞} since a counterpart of
Theorem 3.5(2) is missing.

By [28, Theorem 2.2.1, p. 474] P∗ (R) is dense in P∗ (K) for a compact set K ⊂R, K ≠∅. So
for different compact sets K,J ⊂R we may identify elements of L(P∗ (K) ,E) and L(P∗ (J) ,E)
by means of their restrictions to P∗ (R) . Then the following result defining the support of a
vector-valued P∗-functional is valid:

4.3 Proposition. 2 Let K,J ⊂R be compact sets and K∩J ≠∅.

(1) L(P∗ (K) ,E)∩L(P∗ (J) ,E) = L(P∗ (K∩J) ,E)

(2) For any T ∈ L(P∗ (K) ,E) there is a minimal compact set J ⊂K such that T ∈ L(P∗ (J) ,E) .
The set J is called the support of T.

Proof. (1) Let T ∈ L(P∗ (K) ,E)∩L(P∗ (J) ,E) . Then

H−1 (T) ∈ (Oexp (C∖K,E)/Oexp (C,E))∩(Oexp (C∖J,E)/Oexp (C,E))
=Oexp (C∖(K∩J) ,E)/Oexp (C,E)

and T ∈ L(P∗ (K∩J) ,E) by Theorem 4.1 (and (4.12)). The other inclusion is obvious.

(2) This is clear by Theorem 4.1 since for any f ∈Oexp (C∖K,E) there is a minimal J such
that f ∈Oexp (C∖J,E) .

4.4 Remark. Let K ⊂ R be a non-empty compact set. Then P∗ (K) is nuclear and P∗ (K)′b a
nuclear Fréchet-Schwartz space. Furthermore, we have

Lb (P∗ (K) ,E) ≅P∗ (K)′b ⊗̂πE ≅P∗ (K)′b ⊗̂εE ≅P∗ (K)′b εE.

Proof. By Theorem 4.1 P∗ (K)′b is topologically isomorphic to Oexp (C∖K)/Oexp (C) . This
quotient space is nuclear by [60, Proposition 50.1 (50.4), p. 514] sinceOexp (C∖K) is nuclear by

2counterpart: [13, Proposition 5.3, p. 1121]
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Theorem 3.7 and Oexp (C) a closed subspace. Hence P∗ (K)′b is nuclear as well. It is a Fréchet-
Schwartz space because P∗ (K) is a DFS-space by Theorem 3.5(1). So due to [60, Proposition
50.6, p. 523] (P∗ (K)′b)

′
b is nuclear and, as P∗ (K) is reflexive, P∗ (K) , too. Since P∗ (K) is a

DFS-space, in particular reflexive, thus barrelled by [45, 23.22 Satz, p. 253], and complete, plus
E complete as well as P∗ (K)′b complete and nuclear, we obtain

Lb (P∗ (K) ,E) ≅P∗ (K)′b ⊗̂πE

by [60, Proposition 50.5, p. 522]. The remaining isomorphisms are due to the nuclearity of
P∗ (K) .

For a different proof of this statement see [26, 1.11 Satz, p. 11] and [26, 3.9 Satz, p. 41].

For K =R we look at the duality of Theorem 4.1 once again, but from a different point of view.
Let f ∈Oexp (C∖R,E) . In the spirit of [40] and [57, Chapitre II, p. 77-97] we assign the bound-
ary value

⟨R( f ) ,ϕ⟩ ∶= lim
t, t′↘0

∫R ( f (x+ it)− f (x+ it′))ϕ (x)dx, ϕ ∈P∗ (R) ,

to this function, if existing. Furthermore, we define the upper boundary value by

⟨R+ ( f ) ,ϕ⟩ ∶= lim
t↘0∫R f (x+ it)ϕ (x)dx, ϕ ∈P∗ (R) ,

and the lower boundary value by

⟨R− ( f ) ,ϕ⟩ ∶= lim
t↘0∫R f (x− it)ϕ (x)dx, ϕ ∈P∗ (R) ,

if existing.

4.5 Theorem. (1) The boundary values R( f ) , R+ ( f ) and R− ( f ) exist. They are elements of
Lb (P∗ (R) ,E) and

R( f ) = R+ ( f )−R− ( f ) = −H̃ ( f )
for all f ∈Oexp (C∖R,E) .

(2) The mapping [ f ]↦ R( f ) is a topological isomorphism between
Oexp (C∖R,E)/Oexp (C,E) and Lb (P∗ (R) ,E) .

Proof. (1) Let f ∈Oexp (C∖R,E) and n ∈N. For t > 0 we define

R±t ( f )(ϕ) ∶= ∫R f (x± it)ϕ (x)dx

for any ϕ ∈ P∗ (R) . Let α ∈ A and ϕ ∈On (Un (R)) , n ∈ N. We choose m ∈ N≥2 such that
m > 2max(n,t) and 1

m < t. Then we obtain

pα (R±t ( f )(ϕ)) ≤ ∫R pα ( f (x± it))∣ϕ (x)∣dx ≤ ∣ f ∣m,α ∥ϕ∥n∫
∞

−∞
e

1
m ∣x±it∣− 1

n ∣x∣dx

≤ 2e
1
2n t ∣ f ∣m,α ∥ϕ∥n∫

∞

0
e−

1
2n ∣x∣dx = 4ne

1
2n t ∣ f ∣m,α ∥ϕ∥n <∞.
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4 Vector-valued P∗-functionals and a duality theorem

Hence R±t ( f ) ∈ L(On (Un (R)) ,E) for every n ∈N connoting R±t ( f ) ∈ L(P∗ (R) ,E) .
Now set ϕ±

t (x) ∶= ϕ (x± it) . Then the functions

t ↦ R±t ( f )(ϕ
±
t ) = ∫R f (x± it)ϕ (x± it)dx (4.16)

are defined for ϕ ∈ On (Un (R)) , n ∈ N, on ]0,1/n[ and constant by the remarks above
Theorem 4.1. Thus the limits limt↘0 R±t ( f )(ϕ±

t ) exist in E for every ϕ ∈P∗ (R) .
Let α ∈ A, n ∈N, and ϕ ∈On (Un (R)) . For 0 < t < 1

3n and z ∈U3n (K) we have

∣ϕ (z)−ϕ (z± it)∣e 1
3n ∣Re(z)∣ = ∣∫[z±it,z]L

ϕ
′ (w)dw∣e 1

3n ∣Re(z)∣ ≤ t sup
w∈[z±it,z]L

∣ϕ ′ (w)∣e 1
3n ∣Re(z)∣

≤ t sup
w∈[z±it,z]L

6n max
∣ζ−w∣= 1

6n

∣ϕ (ζ)∣e 1
3n ∣Re(z)∣

≤ 6ne
1

18n2 t sup
w∈[z±it,z]L

max
∣ζ−w∣= 1

6n

∣ϕ (ζ)∣e 1
3n ∣Re(ζ)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∥ϕ∥n

≤ 6ne
1

18n2 ∥ϕ∥n t

by the Cauchy integral formula and the Cauchy inequality where we denote by [z± it,z]L
the line segment from z± it to z. Hence we get

∥ϕ −ϕ (⋅ ± it)∥3n ≤ 6ne
1

18n2 ∥ϕ∥n t. (4.17)

Further, we have for 0 < t < 1
3n and x ∈R

∣Im(x± i
1

3n
)∣ = 1

3n
plus 6n > 1

n
> ∣Im(x± t ± i

1
3n

)∣ = t + 1
3n

> 1
6n

.

Due to the Cauchy integral theorem we obtain for all 0 < t < 1
3n

pα (R±t ( f )(ϕ)−R±t ( f )(ϕ
±
t ))

= pα (∫R f (x± it)(ϕ (x)−ϕ (x± it))dx)

= pα (∫R f (x± it ± i
1

3n
)(ϕ (x± i

1
3n

)−ϕ (x± it ± i
1

3n
))dx)

≤ ∣ f ∣6n,α ∥ϕ −ϕ (⋅ ± it)∥3n∫
∞

−∞
e

1
6n ∣x±it∣− 1

3n ∣x∣dx

≤ 12ne
1
6n t ∣ f ∣6n,α ∥ϕ −ϕ (⋅ ± it)∥3n

≤
(4.17)

(72n2e
1

18n2 ∥ϕ∥n ∣ f ∣6n,α)e
1
6n tt

→
t↘0

0.

Since the limits limt↘0 R±t ( f )(ϕ±
t ) exist in E for every ϕ ∈ P∗ (R) , this implies that the
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limits ⟨R± ( f ) ,ϕ⟩ = limt↘0 R±t ( f )(ϕ) exist in E, more precisely,

⟨R± ( f ) ,ϕ⟩ = lim
t↘0

R±t ( f )(ϕ) = lim
t↘0

R±t ( f )(ϕ
±
t ) .

The space P∗ (R) is a DFS-space by Theorem 3.5(1) and hence a Montel space due to [32,
Theorem 6´, p. 375]. Thus it is barrelled by [45, 24.24 Bemerkung (a), p. 267] and by the
Banach-Steinhaus theorem we obtain R± ( f ) ∈ Lb (P∗ (R) ,E) . Actually we even have that
R±t ( f ) converges to R± ( f ) in Lb (P∗ (R) ,E) as t ↘ 0 by virtue of [16, 10.3.4 Satz, p. 53]
because every bounded set in P∗ (R) , being a Montel space, is relatively compact.
Furthermore, we get

⟨R( f ) ,ϕ⟩ = lim
t, t′↘0

(R+t ( f )(ϕ)−R−t′ ( f )(ϕ)) = lim
t↘0

R+t ( f )(ϕ)− lim
t↘0

R−t ( f )(ϕ)

= ⟨R+ ( f ) ,ϕ⟩− ⟨R− ( f ) ,ϕ⟩ = lim
t↘0

(R+t ( f )(ϕ
+
t )−R−t ( f )(ϕ

−
t ))

= lim
t↘0

(∫R f (x+ it)ϕ (x+ it)dx−∫R f (x− it)ϕ (x− it)dx) = −H̃ ( f )(ϕ) (4.18)

for every ϕ ∈P∗ (R) by the definition of H̃ in (4.1) and the remarks above Theorem 4.1. In
particular, this means that R( f ) ∈ Lb (P∗ (R) ,E) for every f ∈Oexp (C∖R,E) .

(2) By the first part the considered map coincides with −H and the statement follows directly
by Theorem 4.1.

In particular, this theorem contains, at least in one variable, [28, Theorem 3.2.9, p. 483-484]
for E =C and [26, Satz 3.13, p. 44] for Fréchet spaces E, where it is stated that the map

R̃∶Oexp (C∖R,E)/Oexp (C,E)→ Lb (P∗ (R) ,E) ,

defined by
R̃([ f ])(ϕ) ∶= R+t ( f )(ϕ

+
t )−R−t ( f )(ϕ

−
t )

for f ∈Oexp (C∖R,E) and ϕ ∈ P∗ (R) and fixed t small enough, is an isomorphism. This result
is contained since the functions in (4.16) are constant and due to (4.18).
Finally, we define the Fourier transformation on Lb (P∗ (R) ,E) . By [28, Proposition 3.2.4, p.
483] the Fourier transformation F ∶P∗ (R)→P∗ (R) defined by

F (ϕ)(ζ) ∶= ϕ̂ (ζ) ∶= ∫Rϕ (x)eixζ dx, ϕ ∈On (Un (R)) ,ζ ∈Un (R) ,

is a topological isomorphism. For an easy proof see the one of [27, Proposition 8.2.2, p. 376]
which only needs some slight modifications to be applied here. The Fourier transformation on
Lb (P∗ (R) ,E) is now defined by transposition and we obtain:

4.6 Theorem. The Fourier transformation Fd ∶Lb (P∗ (R) ,E)→ Lb (P∗ (R) ,E) defined by

Fd (T)(ϕ) ∶= ⟨T,F (ϕ)⟩ , T ∈ Lb (P∗ (R) ,E) , ϕ ∈P∗ (R) ,

is a topological isomorphism.
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4 Vector-valued P∗-functionals and a duality theorem

Proof. Let T ∈ Lb (P∗ (R) ,E) and let (ϕn) be a sequence in P∗ (R) converging to ϕ ∈ P∗ (R) .
Then F (ϕn) converges to F (ϕ) since F is continuous. By the continuity of T we get

lim
n→∞

Fd (T)(ϕn) = lim
n→∞

⟨T,F (ϕn)⟩ = ⟨T, lim
n→∞

F (ϕn)⟩ = ⟨T,F (ϕ)⟩ =Fd (T)(ϕ) .

So, as Fd (T) is obviously linear, we have Fd (T) ∈ Lb (P∗ (R) ,E) and therefore the map Fd is
well-defined and also linear. Next, define

F−1
d ∶Lb (P∗ (R) ,E)→ Lb (P∗ (R) ,E)

by F−1
d (T)(ϕ) ∶= ⟨T,F−1 (ϕ)⟩ for T ∈ Lb (P∗ (R) ,E) and ϕ ∈ P∗ (R) . Like above we have

F−1
d (T) ∈ Lb (P∗ (R) ,E) , since F−1 is continuous, and thus the map F−1

d is well-defined as
well. Furthermore, the equations

F−1
d (Fd (T))(ϕ) = ⟨Fd (T) ,F−1 (ϕ)⟩ = ⟨T,F (F−1 (ϕ))⟩ = ⟨T,ϕ⟩

and
Fd (F−1

d (T))(ϕ) = ⟨F−1
d (T) ,F (ϕ)⟩ = ⟨T,F−1 (F (ϕ))⟩ = ⟨T,ϕ⟩

hold for every T ∈ Lb (P∗ (R) ,E) and every ϕ ∈P∗ (R) implying that Fd is an algebraic isomor-
phism. It is also topological since one has for arbitrary α ∈ A and bounded B ⊂P∗ (R) that

sup
ϕ∈B

pα (Fd (T)(ϕ)) = sup
ϕ∈B

pα (⟨T,F (ϕ)⟩) = sup
ϕ∈F(B)

pα (⟨T,ϕ⟩)

plus
sup
ϕ∈B

pα (F−1
d (T)(ϕ)) = sup

ϕ∈B
pα (⟨T,F−1 (ϕ)⟩) = sup

ϕ∈F−1(B)
pα (⟨T,ϕ⟩)

are valid for all T ∈ Lb (P∗ (R) ,E) where the sets F (B) and F−1 (B) are bounded due to the
linearity and continuity of F resp. F−1 and the boundedness of B.
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5 Strictly admissible spaces

We recall from the introduction that a complete locally convex space E is called admissible, if
the Cauchy-Riemann operator

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

is surjective for any compact set K ⊂R. E is called strictly admissible if E is admissible and if,
in addition,

∂ ∶C∞ (Ω,E)→C∞ (Ω,E)
is surjective for any open set Ω ⊂C.
As a first step it is shown that C is admissible. Let n ∈ N≥2 and denote by Eexp

n,∂
(Sn (K) ,E) the

topological subspace { f ∈ Eexp
n (Sn (K)) ∣ ∂ f = 0} of Eexp

n (Sn (K) ,E) . Observe that

Oexp (C∖K,E) = limproj
n∈N≥2

Eexp
n,∂

(Sn (K) ,E)

as topological spaces by Theorem 3.6(4).
We will prove that the spaces of the projective spectrum on the right hand side have some

kind of density property and that for every f ∈ Eexp (C∖K,E) and every n ∈ N≥2 there is a
u ∈ Eexp

n (Sn (K)) such that ∂u = f on Sn (K) . The combination of these results then yields the
admissibility of C via the Mittag-Leffler procedure. By classical theory of tensor products of
Fréchet spaces as well as splitting theory of Fréchet spaces resp. PLS-spaces further admissible
spaces are obtained and at the end of this section it is proven that the admissible spaces found
so far are already strictly admissible. In addition, a list of concrete examples of locally convex
spaces that are strictly admissible or that are not strictly admissible, from the view of Theorem
6.14, is provided.

We begin with the proof of the already announced density theorem. The underlying idea of
the proof was to analyze a proof of Hörmander, [18, Theorem 4.4.5, p. 112], in a comparable
situation for C∞−functions. The proof is split into several parts to enhance comprehensibility
and clarity.

5.1 Theorem. Let K ⊂R be a compact set and k, p,n ∈R with k > p > n > 1.

Then πn,k (Eexp
k,∂

(Sk (K))) is dense in πn,p(Eexp
p,∂

(Sp (K))) with respect to (∣⋅∣n,m)
m∈N0

.

In order to gain access to the theory of distributions in this approach, we prove another density
statement first.

5.2 Lemma. Let K ⊂R be a compact set and p, j ∈R, p > j > 1. Then π j,p (C∞
0 (Sp (K))) is dense

in π j,p (Eexp
p (Sp (K))) with respect to (∣ f ∣ j,m)m∈N0

.
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5 Strictly admissible spaces

Proof. Let f ∈ Eexp
p (Sp (K)) and ε > 0. Choose s,t ∈R with p > s > t > j and set

Q0 ∶= St (K)∩{z ∈C ∣ ∣Re(z)∣ ≤max(0,
jp lnε

j− p
)} ,

Q1 ∶= Ss (K)∩{z ∈C ∣ ∣Re(z)∣ <max(0,
jp lnε

j− p
)+1} .

Then Q0 is compact, Q0 ⊂Q1 ⊂ Sp (K) and

sup
z∈S j(K)∖Q0

e−
1
j ∣Re(z)∣

e−
1
p ∣Re(z)∣

= sup
z∈S j(K)∖Q0

e
j−p
jp ∣Re(z)∣ <

choice
ofQ0

ε. (5.1)

Like in the proof of [18, Theorem 1.4.1, p. 25] one can find, by using Remark 3.3(4), ϕ ∈
C∞

0 (Sp (K)) , 0 ≤ ϕ ≤ 1, such that ϕ ≡ 1 near Q0, ϕ ≡ 0 near QC
1 and

∣∂ α
ϕ ∣ ≤Cα (ε0

4
)
−∣α ∣

(5.2)

for all α ∈N2
0 where

ε0 ∶=
⎧⎪⎪⎨⎪⎪⎩

min(1
t − 1

s ,1) , K ≠∅,
min(s− t,1) , K =∅,

=
⎧⎪⎪⎨⎪⎪⎩

1
t − 1

s , K ≠∅,
min(s− t,1) , K =∅,

and Cα > 0 is a constant only depending on α.
Then ϕ f ∈C∞

0 (Sp (K)) and for m ∈N0

∣ϕ f − f ∣ j,m ≤ sup
z∈Q1∖Q0
∣α ∣≤m

∣∂ α (ϕ f )(z)−∂
α f (z)∣e−

1
j ∣Re(z)∣+ sup

z∈S j(K)∖Q1
∣α ∣≤m

∣∂ α f (z)∣e−
1
j ∣Re(z)∣

≤ sup
z∈Q1∖Q0
∣α ∣≤m

∣∑
γ≤α

(α

γ
)∂

α−γ
ϕ (z)∂

γ f (z)∣e−
1
j ∣Re(z)∣+2 sup

z∈Sp(K)∖Q0
∣α ∣≤m

∣∂ α f (z)∣e−
1
p ∣Re(z)∣ e

− 1
j ∣Re(z)∣

e−
1
p ∣Re(z)∣

≤
(5.1)

sup
∣α ∣≤m

∑
γ≤α

(α

γ
) sup

z∈Q1∖Q0

∣∂ α−γ
ϕ (z)∣

⎛
⎜⎜⎜
⎝

sup
z∈Sp(K)∖Q0

∣β ∣≤m

∣∂ β f (z)∣e−
1
j ∣Re(z)∣

⎞
⎟⎟⎟
⎠
+2ε ∣ f ∣p,m

≤
(5.2)

sup
∣α ∣≤m

∑
γ≤α

(α

γ
)Cα−γ (

ε0

4
)
−∣α−γ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=C(m,ε0)

ε ∣ f ∣p,m+2ε ∣ f ∣p,m

= (C(m,ε0)+2)∣ f ∣p,m ε

holds where C(m,ε0) is independent of ε proving the density.

The next lemma is devoted to a special fundamental solution of the ∂ -operator and its proper-
ties (used already in the proof of Theorem 4.1).
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5.3 Lemma. Let K ⊂R be a compact set, q ∈R, q > 1, and E ∶C∖{0}→C, E (z) ∶= e−z2

πz .

a) ∂TE = δ .

b) Let ε > 0, x ∉ Sq+ε (K) and α ∈N2
0. Then ∂ α

x [E (⋅ −x)] ∈ Eexp
q,∂

(Sq (K)) .

c) Let N ⊂ C be a compact set and m ∈ N0. Then there exists a constant B1 = B1 (q,N) such
that

∣TE ∗ψ ∣q,m ≤ B1 ∣∣∣∣ψ ∣∣∣∣m (5.3)

for all ψ ∈C∞
0 (N) with the convolution from (2.1).

Especially, one gets TE ∗ψ ∈ Eexp
q (Sq (K)) .

d) Let p, j,n ∈R with p > j > n > 1.

i) There exists ϕ ∈C∞ (C) , 0≤ϕ ≤ 1, such that ϕ ≡ 1 near Sn (K) and ϕ ≡ 0 near S j (K)C

plus

∣∂ α
ϕ ∣ ≤ C̃α ( ε̃

4
)
−∣α ∣

(5.4)

for all α ∈N2
0 where

ε̃ ∶=
⎧⎪⎪⎨⎪⎪⎩

1
n − 1

j , K ≠∅,
j−n, K =∅,

and C̃α > 0 is a constant only depending on α.

ii) Choose ϕ ∈ C∞ (C) like in i). Let s,t ∈ R with p ≥ s ≥ t > 0 and m ∈ N0. Then there
exists a constant C1 =C1 ( j,n,s,t,m) such that

∣TE ∗(ϕ f )∣t,m ≤C1 ∣ f ∣s, j,m . (5.5)

for all f ∈ Eexp
p (Sp (K)) where

∣ f ∣s, j,m ∶= sup
z∈S j(K)

β∈N2
0, ∣β ∣≤m

∣ f (β) (z)∣e− 1
s ∣Re(z)∣

and the convolution is defined by the right hand side of (2.1) and we set ϕ f ∶= 0
outside Sp (K) .
Especially, one gets TE ∗(ϕ f ) ∈ Eexp

p (Sp (K)) .

Proof. a) Let ϕ ∈ C∞
0 (C) and set E0 (z) ∶= 1

πz plus g(z) ∶= e−z2
. Using g ∈O(C) and the fact

that TE0 is a fundamental solution of the ∂ -operator by [18, (3.1.12), p. 63], one gets

⟨∂TE ,ϕ⟩ = −⟨TE ,∂ϕ⟩ = −⟨TE0,g∂ϕ⟩ = −⟨TE0,∂ (gϕ)⟩ = ⟨∂TE0,gϕ⟩
= ⟨δ ,gϕ⟩ = g(0)ϕ (0) = ϕ (0) = ⟨δ ,ϕ⟩ .
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5 Strictly admissible spaces

b) Since x ∉ Sq+ε (K), it follows ∂ α
x [E (⋅ −x)] ∈O(Sq (K)) . Let z ∈ Sq (K) and β ∈ N2

0. With
r ∶= 1

2 d(∂Sq+ε (K) ,∂Sq (K)) > 0 one has by the Cauchy inequality

∣∂ β
z ∂

α
x [E (z−x)]∣ =

(3.2)
∣iα2+β2 (−1)∣α ∣E(∣α+β ∣) (z−x)∣ ≤ ∣α +β ∣!

r∣α+β ∣ max
∣ζ−(z−x)∣=r

∣E (ζ)∣

≤ 1
π

∣α +β ∣!
r∣α+β ∣+1

max
∣ζ−(z−x)∣=r

e−Re(ζ
2) = 1

π

∣α +β ∣!
r∣α+β ∣+1

max
∣ζ−(z−x)∣=r

e−ζ
2
1+ζ

2
2

≤ 1
π

∣α +β ∣!
r∣α+β ∣+1

e(r+k+∣x2∣)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A0

max
∣ζ−(z−x)∣=r

e−ζ
2
1

= A0 max
t∈[0,1]

e−(2rt+z1−x1−r)2

= A0 max
t∈[0,1]

e−4r2t2−4rtz1+4rtx1+4r2t−z2
1+2x1z1+2rz1−x2

1−2rx1−r2

≤ A0 e−x2
1+6r∣x1∣+3r2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤e12r2

e−z2
1+2(3r+∣x1∣)∣z1∣

≤ A0e12r2

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=∶A1(β)

e−z2
1+2(3r+∣x1∣)∣z1∣

and hence

∣∂ α
x [E (⋅ −x)]∣q,m ≤ sup

∣β ∣≤m
A1 (β) sup

z∈Sq(K)
e−z2

1+2(3r+∣x1∣)∣z1∣e−
1
q ∣z1∣

≤ sup
∣β ∣≤m

A1 (β)e(3r+∣x1∣− 1
2q)

2

<∞. (5.6)

c) Due to the compactness of N, there exists B0 > 0 such that ∣z∣ ≤B0 for all z ∈N. By definition
of distributional convolution TE ∗ψ ∈C∞ (C) and for x ∈C, α ∈N2

0 and ε > 0 the following
inequalities hold

∣∂ α (TE ∗ψ)(x)∣

= ∣∫CE (y)(∂
α

ψ)(x−y)dy∣ ≤ ∣∣∣∣ψ ∣∣∣∣∣α ∣∫x−N
∣E (y)∣dy

= 1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣∫N

RRRRRRRRRRR

e−(x−y)2

x−y

RRRRRRRRRRR
dy

≤ 1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣

⎛
⎝∫Dε(x)

RRRRRRRRRRR

e−(x−y)2

x−y

RRRRRRRRRRR
dy+∫

N∖Dε(x)

RRRRRRRRRRR

e−(x−y)2

x−y

RRRRRRRRRRR
dy

⎞
⎠

≤ 1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣

⎛
⎝∫

2π

0
∫

ε

0

e−r2 cos(2ν)

r
rdrdν + 1

ε
∫

N∖Dε(x)
∣e−(x−y)2

∣dy
⎞
⎠

≤ 1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣(2πεeε

2 + 1
ε
∫

N∖Dε(x)
e−(x2

1−x2
2−2(x1y1−x2y2)+y2

1−y2
2)dy)
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≤
Fubini

1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣(2πεeε

2 + 1
ε

ex2
2∫R e−y2

1+2x1y1−x2
1dy1∫[−B0,B0]

ey2
2−2x2y2dy2)

≤ 1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣(2πεeε

2 + 2B0

ε
ex2

2+2∣x2∣B0+B2
0∫R e−(y1−x1)2

dy1)

= 1
π
∣∣∣∣ψ ∣∣∣∣∣α ∣(2πεeε

2 + 2B0
√

π

ε
ex2

2+2∣x2∣B0+B2
0)

and hence for fixed ε > 0

∣TE ∗ψ ∣q,m ≤ 1
π
(2πεeε

2 + 2B0
√

π

ε
eq2+2qB0+B2

0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶B1

sup
x∈Sq(K)

e−
1
q ∣Re(x)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

∣∣∣∣ψ ∣∣∣∣m

≤ B1 ∣∣∣∣ψ ∣∣∣∣m . (5.7)

d) i) ϕ exists by the proof of [18, Theorem 1.4.1, p. 25] and Remark 3.3(4).
ii) The proof is similar to the proof of (5.3). Let x ∈C, α ∈N2

0 and ε > 0. Then we have

∣∫CE (y)∂
α
x [( f ϕ)(x−y)]dy∣

≤ ∫C ∣E (y)∂
α ( f ϕ)(x−y)∣e− 1

s ∣x1−y1∣e
1
s ∣x1−y1∣dy

≤ sup
z∈S j(K)

∣∂ α ( f ϕ)(z)∣e− 1
s ∣Re(z)∣∫

x−S j(K)
∣E (y)∣e 1

s ∣x1−y1∣dy

≤ ∑
γ≤α

(α

γ
) sup

z∈S j(K)
∣∂ α−γ

ϕ (z)∣( sup
z∈S j(K)
∣β ∣≤∣α ∣

∣∂ β f (z)∣e− 1
s ∣Re(z)∣)∫

x−S j(K)
∣E (y)∣e 1

s ∣x1−y1∣dy

≤
(5.4)

∑
γ≤α

(α

γ
)C̃α−γ (

ε̃

4
)
−∣α−γ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C0

∣ f ∣s, j,∣α ∣∫x−S j(K)
∣E (y)∣e 1

s ∣x1−y1∣dy

≤ 1
π

C0 ∣ f ∣s, j,∣α ∣
⎛
⎝∫Dε(x)

RRRRRRRRRRR

e−(x−y)2

x−y

RRRRRRRRRRR
e

1
s ∣y1∣dy+∫

S j(K)∖Dε(x)

RRRRRRRRRRR

e−(x−y)2

x−y

RRRRRRRRRRR
e

1
s ∣y1∣dy

⎞
⎠

≤ 1
π

C0 ∣ f ∣s, j,∣α ∣
⎛
⎝∫

2π

0
∫

ε

0

e−r2 cos(2ν)

r
e

1
s ∣x1+rcos(ν)∣rdrdν + 1

ε
∫

S j(K)∖Dε(x)
∣e−(x−y)2

∣e 1
s ∣y1∣dy

⎞
⎠

≤ 1
π

C0 ∣ f ∣s, j,∣α ∣(2πεeε
2+ 1

s (ε+∣x1∣)+ 1
ε
∫

S j(K)∖Dε(x)
e−(x2

1−x2
2−2(x1y1−x2y2)+y2

1−y2
2)+ 1

s ∣y1∣dy)

≤
Fubini

1
π

C0 ∣ f ∣s, j,∣α ∣(2πεeε
2+ 1

s (ε+∣x1∣)+ 1
ε

ex2
2∫R e−y2

1+2x1y1−x2
1+ 1

s ∣y1∣dy1∫[− j, j]
ey2

2−2x2y2dy2)

≤ 1
π

C0 ∣ f ∣s, j,∣α ∣(2πεeε
2+ 1

s (ε+∣x1∣)+ 2 j
ε

ex2
2+2 j∣x2∣+ j2e

1
s ∣x1∣+ 1

4s2 ∫R e−(∣y1∣−(∣x1∣+ 1
2s))

2

dy1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2

√
π

)

≤ 1
π

C0 ∣ f ∣s, j,∣α ∣(2πεeε
2+ 1

s (ε+∣x1∣)+ 4 j
√

π

ε
ex2

2+2 j∣x2∣+ j2+ 1
4s2 +

1
s ∣x1∣) . (5.8)
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Thus TE ∗(ϕ f ) ∈ C∞ (C) and ∂ α (TE ∗(ϕ f ))(x) = ∫CE (y)∂ α
x [( f ϕ)(x−y)]dy (differen-

tiation under the integral sign) as well as for fixed ε > 0

∣TE ∗(ϕ f )∣t,m

≤ (2εeε
2+ 1

s ε + 4 j
ε
√

π
et2+2 jt+ j2+ 1

4s2 )
⎛
⎝

sup
∣α ∣≤m

C0 (α)
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C1

⎛
⎝

sup
x∈St(K)

e(
1
s−

1
t )∣x1∣⎞

⎠
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1, t≤s

∣ f ∣s, j,m

=C1 ∣ f ∣s, j,m .

Especially, one gets TE ∗(ϕ f ) ∈ Eexp
p (Sp (K)) for t = s = p.

The next step is to define different kinds of convolutions and study their relations and properties
which shall be exploited in the proof of the density theorem.

5.4 Lemma. Let K ⊂R be a compact set and E like in Lemma 5.3. Let k, p, j,n ∈R with k > p >
j > n > 1 and w ∈ (πn,p (Eexp

p (Sp (K))) ,(∣⋅∣n,m)
m∈N0

)
′
.

a) For ψ ∈C∞
0 (C) we define

⟨w∗1 TĚ ,ψ⟩ ∶= ⟨w,(TE ∗ψ)∣Sn(K)⟩ .

Then w∗1 TĚ ∈D′ (C) .

b) Let ε > 0. For x ∉ Sk+ε (K) we define

(w∗2 Ě)(x) ∶= ⟨w,E (⋅ −x)∣Sn(K)⟩ .

Then w∗2 Ě ∈C∞(Sk+ε (K)
C
) and for α ∈N2

0

∂
α
x (w∗2 Ě)(x) = ⟨w,∂ α

x [E (⋅ −x)] ∣Sn(K)⟩ . (5.9)

c) Let ε > 0. For ψ ∈C∞
0 (C) with suppψ ⊂ Sk+ε (K)

C
the definitions of convolution above are

consistent, i.e.
⟨w∗1 TĚ ,ψ⟩ = ⟨Tw∗2Ě ,ψ⟩ .

d) Choose ϕ like in Lemma 5.3d), let m ∈N0 and for f ∈ Eexp
p (Sp (K)) we define

⟨w∗ϕ TĚ , f ⟩ ∶= ⟨w,[TE ∗(ϕ f )] ∣Sn(K)⟩ .

Then there exists a constant C2 =C2 ( j,n,m) > 0 such that

∣⟨w∗ϕ TĚ , f ⟩∣ ≤C2 ∣ f ∣ j,m . (5.10)
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Proof. a) w∗1 TĚ is defined by Lemma 5.3c) (q = p). Let N ⊂ C be compact. Since w is
continuous, there exist B2 > 0 and m ∈N0 such that

∣⟨w∗1 TĚ ,ψ⟩∣ = ∣⟨w,(TE ∗ψ)∣Sn(K)⟩∣ ≤ B2 ∥TE ∗ψ∥n,m ≤
(5.3),q=n

B1B2 ∣∣∣∣ψ ∣∣∣∣m

for all ψ ∈C∞
0 (N) , thus w∗1 TĚ ∈D′ (C) .

b) w∗2 Ě and the right hand side of (5.9) are defined by Lemma 5.3b) (q = k, k > p). For h ∈R,
h ≠ 0, and x ∉ Sk+ε (K) we define

ψh (x) ∶Sp (K)→C, ψh (x)(y) ∶= E (y−(x+hel))−E (y−x)
h

where el ∶=
⎧⎪⎪⎨⎪⎪⎩

(1,0) , l = 1,
(0,1) , l = 2.

For 0< ∣h∣<d(∂Sk+ε (K) ,∂Sk (K))=∶ ε0 one has x+hel ∉Sk (K)

and so E (⋅ −(x+hel)) ∈ Eexp
p (Sp (K)) by Lemma 5.3b) (q = p, k > p). Hence one gets

ψh (x) ∈ Eexp
p (Sp (K)) .

The underlying idea is

(w∗2 Ě)(x+hel)−(w∗2 Ě)(x)
h

= ⟨w,
E (⋅ −(x+hel))−E (⋅ −x)

h
∣
Sn(K)

⟩

= ⟨w,ψh (x)∣Sn(K)⟩ .

So, if we show, that ψh (x) converges to ∂xl [E (⋅ −x)] in Eexp
p (Sp (K)) as h tends to 0, we

get, keeping ∣⋅∣n,m ≤ ∣⋅∣p,m in mind,

∂l (w∗2 Ě)(x) = ⟨w,∂xl [E (⋅ −x)] ∣Sn(K)⟩ .

Then the general statement follows by induction over ∣α ∣ .
Let y ∈ Sp (K) and β ∈N2

0. Since

∣y−x∣ > d(∂Sk+ε (K) ,∂Sp (K)) =∶ ε1,

we get 0 ∉Dε1 (y−x) . Moreover, ε0 < ε1 by Remark 3.3(4) and so

∣y−(x+hel)−(y−x)∣ = ∣h∣ < ε0 < ε1.

Thus y− (x+hel) ∈ D∣h∣ (y−x) ⊂ Dε0 (y−x) and 0 ∉ D∣h∣ (y−x). By the mean value theo-
rem there exist ζi ∈ [y−(x+hel) ,y−x]L ⊂ D∣h∣ (y−x), i = 1,2, where [y−(x+hel) ,y−x]L
denotes the line segment from y−(x+hel) to y−x, such that

∂
β
y ψh (x)(y) =

(∂ β E)(y−(x+hel))−(∂ β E)(y−x)
h

= 1
h
(⟨grad(∂ β E1)(ζ1)∣−hel⟩
⟨grad(∂ β E2)(ζ2)∣−hel⟩

) = −(∂l∂
β E1 (ζ1)

∂l∂
β E2 (ζ2)

)
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as well as ζii ∈ [ζi,y−x]L ⊂D∣h∣ (y−x), i = 1,2, such that

∂
β
y ψh (x)(y)−∂

β
y ∂xl [E (y−x)] = −(∂l∂

β E1 (ζ1)
∂l∂

β E2 (ζ2)
)−∂

β (−∂lE)(y−x)

= (⟨grad(∂l∂
β E1)(ζ11)∣y−x−ζ1⟩

⟨grad(∂l∂
β E2)(ζ22)∣y−x−ζ2⟩

) . (5.11)

Then

∣(⟨grad(∂l∂
β E1)(ζ11)∣y−x−ζ1⟩

⟨grad(∂l∂
β E2)(ζ22)∣y−x−ζ2⟩

)∣

≤ ∣⟨grad(∂l∂
β E1)(ζ11)∣y−x−ζ1⟩∣+ ∣⟨grad(∂l∂

β E2)(ζ22)∣y−x−ζ2⟩∣
≤ ∣grad(∂l∂

β E1)(ζ11)∣ ∣y−x−ζ1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤∣h∣

+ ∣grad(∂l∂
β E2)(ζ22)∣ ∣y−x−ζ2∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∣h∣

≤ (∣∂1∂l∂
β E1 (ζ11)∣+ ∣∂2∂l∂

β E1 (ζ11)∣+ ∣∂1∂l∂
β E2 (ζ22)∣+ ∣∂2∂l∂

β E2 (ζ22)∣) ∣h∣
≤ (∣∂1∂l∂

β E (ζ11)∣+ ∣∂2∂l∂
β E (ζ11)∣+ ∣∂1∂l∂

β E (ζ22)∣+ ∣∂2∂l∂
β E (ζ22)∣) ∣h∣

=
(3.2)

2(∣E(∣β ∣+2) (ζ11)∣+ ∣E(∣β ∣+2) (ζ22)∣) ∣h∣ (5.12)

is valid. By choosing ε0 < r < ε1, one gets due to Cauchy’s integral formula

∣E(∣β ∣+2) (ζii)∣ =
(∣β ∣+2)!

2π

RRRRRRRRRRR
∫

∂Dr(y−x)

E (z)
(z−ζii)∣β ∣+3

dz
RRRRRRRRRRR
≤ r(∣β ∣+2)!

(r−ε0)∣β ∣+3
max

∣z−(y−x)∣=r

RRRRRRRRRRR

e−z2

πz

RRRRRRRRRRR

≤ r(∣β ∣+2)!

π (r−ε0)∣β ∣+3 (ε1− r)
max

∣z−(y−x)∣=r
e−z2

1+z2
2 ≤ r(∣β ∣+2)!e(r+p+∣x2∣)2

π (r−ε0)∣β ∣+3 (ε1− r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶A0,0

max
∣z−(y−x)∣=r

e−z2
1

= A0,0 max
t∈[0,1]

e−(2rt+y1−x1−r)2

= A0,0 max
t∈[0,1]

e−4r2t2−4rty1+4rtx1+4r2t−y2
1+2x1y1+2ry1−x2

1−2rx1−r2

≤ A0,0e−x2
1+6r∣x1∣+3r2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤A0,0e12r2=∶A0,1(β)

e−y2
1+2(3r+∣x1∣)∣y1∣. (5.13)

Hence by combining (5.11), (5.12) and (5.13), we have for m ∈N0

∣ψh (x)−∂xl [E (⋅ −x)]∣p,m ≤ 4 sup
∣β ∣≤m

A0,1 (β) sup
y∈Sp(K)

e−y2
1+2(3r+∣x1∣)∣y1∣e−

1
p ∣y1∣∣h∣

≤ 4 sup
∣β ∣≤m

A0,1 (β)e(3r+∣x1∣− 1
2p)

2

∣h∣

→
h→0

0. (5.14)

This means that ψh (x) converges to ∂xl [E (⋅ −x)] in Eexp
p (Sp (K)) and so with respect to
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(∣⋅∣n,m)
m∈N0

as well since ∣⋅∣n,m ≤ ∣⋅∣p,m .

c) i) For h > 0 small enough we define

Sh (ψ) ∶Sp (K)→C, Sh (ψ)(y) ∶= ∑
m∈Z2

E (y−mh)ψ (mh)h2,

where E (0)ψ (mh) = E (0)0 ∶= 0. The first part of the proof is to show that Sh (ψ) con-
verges to TE ∗ψ in Eexp

p (Sp (K)) as h tends to 0.

Set Qm ∶= mh+ [0,h]2 and let N ⊂ Sk+ε (K)
C

be compact. By the compactness there exists
Ã0 > 0 such that ∣z∣ ≤ Ã0 for all z ∈ N. Now we define MN ∶= {m ∈Z2 ∣ Qm∩N ≠∅} . Due to
this definition we have

Qm∩Sk+ε (K)
C
≠∅ (5.15)

for m ∈MN ,
{m ∈Z2 ∣ mh ∈N} ⊂MN (5.16)

and

∣x1∣ , ∣x2∣ ≤ ⌈ Ã0

h
⌉h ≤ ( Ã0

h
+1)h = Ã0+h (5.17)

for x ∈Qm plus

#MN ≤ (2⌈ Ã0

h
⌉)

2

≤ 4( Ã0

h
+1)

2

(5.18)

where #MN denotes the number of elements of MN .
We define dk∶[0,ε]→R≥0, dk (t) ∶= d(∂Sk+ε (K) ,∂Sk+t (K)) . By Remark 3.3(4) we have

dk (t) =
⎧⎪⎪⎨⎪⎪⎩

1
k+t − 1

k+ε
, K ≠∅,

ε − t, K =∅,

so dk is continuous on [0,ε] as well as strictly monotonically decreasing.
Let 0 < h < 1√

2
d(∂Sk+ε (K) ,∂Sk (K)) . Then

d0 (0) = d(∂Sk+ε (K) ,∂Sk (K)) >
√

2h and dk (ε) = 0

and thus there exist ε0,ε1 ∈]0,ε[,ε0 < ε1, such that
√

2h < dk (ε1) < dk (ε0) < dk (0)

by the intermediate value theorem. Hence for Qm with Qm∩Sk+ε (K)
C
≠∅ the following is

valid
Qm ⊂ Sk+ε1 (K)C ⊂ Sk+ε0 (K)

C
⊂ Sk (K)C

. (5.19)

Therefore, we obtain with ε2 ∶= d(∂Sk (K) ,∂Sp (K))

∣y−x∣ > ε2 for all y ∈ Sp (K) , x ∈Qm, (5.20)

and for y ∈ Sp (K) , x ∈ Qm, m ∈ MN , β ∈N2
0 and r ∶= 1

2ε2 we get analogously to the proof of
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Lemma 5.3b)

∣∂ β
y [E (y−x)]∣ ≤

(5.15),(5.20)

1
π

∣β ∣!
r∣β ∣+1

e(r+p+∣x2∣)2
max

∣ζ−(y−x)∣=r
e−ζ

2
1

≤
(5.17)

1
π

∣β ∣!
r∣β ∣+1

e(r+p+Ã0+ε0)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Ã1

max
t∈[0,1]

e−(2rt+y1−x1−r)2

≤ Ã1e12r2

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=∶Ã2(β)

e−y2
1+2(3r+∣x1∣)∣y1∣ ≤

(5.17)
Ã2 (β)e−y2

1+2(3r+Ã0+ε)∣y1∣, (5.21)

while here Ã2 does not depend on ∣x2∣ .
Let ψ ∈C∞

0 (N) and m0 ∈N0. Then we have

∣∂ β
y Sh (ψ)(y)∣ =

(5.16),(5.18)
∑

m∈MN

∂
β
y [E (y−mh)]ψ (mh)h2

≤
(5.21),mh∈Qm

h2Ã2 (β)e−y2
1+2(3r+Ã0+ε)∣y1∣ ∑

m∈MN

∣ψ (mh)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∣∣∣∣ψ ∣∣∣∣0

≤
(5.18)

4h2( Ã0

h
+1)

2

Ã2 (β)e−y2
1+2(3r+Ã0+ε)∣y1∣ ∣∣∣∣ψ ∣∣∣∣0

= 4(Ã0+h)2
Ã2 (β)e−y2

1+2(3r+Ã0+ε)∣y1∣ ∣∣∣∣ψ ∣∣∣∣0

and therefore

∣Sh (ψ)∣p,m0
≤ 4(Ã0+h)2

sup
∣β ∣≤m0

Ã2 (β)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Ã3

∣∣∣∣ψ ∣∣∣∣0 sup
y∈Sp(K)

e−y2
1+2(3r+Ã0+ε)∣y1∣e−

1
p ∣y1∣

≤ Ã3e(3r+Ã0+ε− 1
2p)

2

∣∣∣∣ψ ∣∣∣∣0 (5.22)

bringing forth Sh (ψ) ∈ Eexp
p (Sp (K)) . Further, the following equations hold:

∣∂ β (Sh (ψ)−E ∗ψ)(y)∣

= ∣ ∑
m∈MN

∂
β
y [E (y−mh)]ψ (mh)h2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∫Qm ∂

β
y [E(y−mh)]ψ(mh)dx

− ∫C∂
β
y [E (y−x)]ψ (x)dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑m∈MN ∫Qm ∂

β
y [E(y−x)]ψ(x)dx

∣

= ∣ ∑
m∈MN

∫
Qm

(∂
β E)(y−mh)ψ (mh)−(∂

β E)(y−x)ψ (x)dx∣

= ∣ ∑
m∈MN

∫
Qm

[(∂
β E)(y−mh)−(∂

β E)(y−x)]ψ (mh)

+ [ψ (mh)−ψ (x)](∂
β E)(y−x)dx∣ (5.23)
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The next steps are similar to the proof of b). By the mean value theorem there exist
x0,i, x1,i ∈ [x,mh]L ⊂Qm, i = 1,2, such that

∣ψ (mh)−ψ (x)∣ = ∣(⟨grad(ψ1)(x0,1)∣mh−x⟩
⟨grad(ψ2)(x0,2)∣mh−x⟩)∣ ≤ 4 ∣∣∣∣ψ ∣∣∣∣1 ∣mh−x∣ ≤ 4

√
2h ∣∣∣∣ψ ∣∣∣∣1 (5.24)

and

∣(∂
β E)(y−mh)−(∂

β E)(y−x)∣ = ∣−(⟨grad(∂ β E1)(y−x1,1)∣mh−x⟩
⟨grad(∂ β E2)(y−x1,2)∣mh−x⟩)∣

≤ 2(E(∣β ∣+1) (y−x1,1)+E(∣β ∣+1) (y−x1,2))∣mh−x∣

≤
(5.21)

4
√

2hÃ2 (β)e−y2
1+2(3r+Ã0+ε)∣y1∣ (5.25)

analogously to (5.12). Thus by combining (5.23), (5.24) and (5.25), one obtains

∣∂ β (Sh (ψ)−E ∗ψ)(y)∣

≤ ∑
m∈MN

∫
Qm

4
√

2h(Ã2 (β)e−y2
1+2(3r+Ã0+ε)∣y1∣ ∣ψ (mh)∣+ ∣∣∣∣ψ ∣∣∣∣1 ∣(∂

β E)(y−x)∣)dx

≤
(5.21)

∑
m∈MN

4
√

2hÃ2 (β)e−y2
1+2(3r+Ã0+ε)∣y1∣ (∣∣∣ψ ∣∣∣0+ ∣∣∣∣ψ ∣∣∣∣1)λ (Qm)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=h2

≤
(5.18)

16
√

2 h3( Ã0

h
+1)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(Ã2

0+2Ã0h+h2)h

Ã2 (β)e−y2
1+2(3r+Ã0+ε)∣y1∣ (∣∣∣∣ψ ∣∣∣∣0+ ∣∣∣∣ψ ∣∣∣∣1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2∣∣∣∣ψ ∣∣∣∣1

≤ 32
√

2(Ã2
0+2Ã0ε +ε

2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Ã4

hÃ2 (β)∣∣∣∣ψ ∣∣∣∣1 e−y2
1+2(3r+Ã0+ε)∣y1∣

and so for m0 ∈N0

∣Sh (ψ)−E ∗ψ ∣p,m0
≤ Ã4 sup

∣β ∣≤m0

Ã2 (β)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Ã5

∣∣∣∣ψ ∣∣∣∣1 sup
y∈Sp(K)

e−y2
1+2(3r+Ã0+ε)∣y1∣e−

1
p ∣y1∣h

≤ Ã5 ∣∣∣∣ψ ∣∣∣∣1 e(3r+Ã0+ε− 1
2p)

2

h
→

h→0
0 (5.26)

proving the convergence of Sh (ψ) to TE ∗ψ in Eexp
p (Sp (K)) and hence with respect to

(∣⋅∣n,m0
)

m0∈N0
as well.

ii) The next part of the proof is to show that

lim
h→0

∑
m∈MN

(w∗2 Ě)(mh)ψ (mh)h2 = ∫C (w∗2 Ě)(x)ψ (x)dx.
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We begin with

∣ ∑
m∈MN

(w∗2 Ě)(mh)ψ (mh)h2−∫C (w∗2 Ě)(x)ψ (x)dx∣

= ∣ ∑
m∈MN

∫
Qm

(w∗2 Ě)(mh)ψ (mh)−(w∗2 Ě)(x)ψ (x)dx∣

= ∣ ∑
m∈MN

∫
Qm

[(w∗2 Ě)(mh)−(w∗2 Ě)(x)]ψ (mh)

+ [ψ (mh)−ψ (x)](w∗2 Ě)(x)dx∣. (5.27)

Again, by the mean value theorem there exist x0,i, x1,i ∈ [x,mh]L ⊂Qm, i = 1,2, such that

∣ψ (mh)−ψ (x)∣ = ∣(⟨grad(ψ1)(x0,1)∣mh−x⟩
⟨grad(ψ2)(x0,2)∣mh−x⟩)∣ ≤ 4

√
2h ∣∣∣∣ψ ∣∣∣∣1 (5.28)

and, taking account of (5.19) and b) (q = k,ε = ε0),

∣(w∗2 Ě)(mh)−(w∗2 Ě)(x)∣

= ∣(⟨grad((w∗2 Ě)1)(x1,1)∣mh−x⟩
⟨grad((w∗2 Ě)2)(x1,2)∣mh−x⟩)∣

≤ (∣grad((w∗2 Ě)1)(x1,1)∣+ ∣grad((w∗2 Ě)2)(x1,2)∣)
√

2h

≤ (pN+Ddk(ε1)
(0),0 (grad((w∗2 Ě)1))+ pN+Ddk(ε1)

(0),0 (grad((w∗2 Ě)2)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Ã6

√
2h (5.29)

with the usual semi-norms like in (3.8) where we used dk (ε1) >
√

2h and x1,i ∈Qm, m ∈MN ,
in the last inequality. Due to (5.27), (5.28) and (5.29) we gain

∣ ∑
m∈MN

(w∗2 Ě)(mh)ψ (mh)h2−∫C (w∗2 Ě)(x)ψ (x)dx∣

≤ ∑
m∈MN

(Ã6
√

2h ∣∣∣∣ψ ∣∣∣∣0+4
√

2h ∣∣∣∣ψ ∣∣∣∣1 pN+Ddk(ε1)
(0),0 (w∗2 Ě))h2

≤
(5.18)

(Ã2
0+2Ã0ε +ε

2)(Ã6
√

2 ∣∣∣∣ψ ∣∣∣∣0+4
√

2 ∣∣∣∣ψ ∣∣∣∣1 pN+Ddk(ε1)
(0),0 (w∗2 Ě))h

→
h→0

0.

iii) Merging i) and ii), we get for ψ ∈C∞
0 (N)

⟨w∗1 TĚ ,ψ⟩ = ⟨w,(TE ∗ψ)∣Sn(K)⟩=i) lim
h→0

⟨w,Sh (ψ)∣Sn(K)⟩

= lim
h→0

⟨w, ∑
m∈MN

E (⋅ −mh)∣Sn(K)ψ (mh)h2⟩
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=
(5.18)

lim
h→0

∑
m∈MN

⟨w,E (⋅ −mh)∣Sn(K)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(w∗2Ě)(mh)

ψ (mh)h2=
ii)∫C

(w∗2 Ě)(x)ψ (x)dx

= ⟨Tw∗2Ě ,ψ⟩ .

d) w∗ϕ TĚ is defined by Lemma 5.3d). Because w is continuous, there exist C2 > 0 and m ∈N0
such that

∣⟨w∗ϕ TĚ , f ⟩∣ = ∣⟨w,[TE ∗(ϕ f )] ∣Sn(K)⟩∣ ≤C2 ∣TE ∗(ϕ f )∣n,m
≤

(5.5),t=n,s= j
C1C2 ∣ f ∣ j,m .

5.5 Lemma. Let K ⊂R be a compact set and E like in Lemma 5.3. Let k, p,n ∈R with k > p > n > 1

and w ∈ (πn,p (Eexp
p (Sp (K))) ,(∣⋅∣n,m)

m∈N0
)
′
.

If w∣
πn,k(E

exp
k,∂

(Sk(K)))
= 0, then supp(w∗1 TĚ) ⊂ Sn (K), where the support is meant in the distribu-

tional sense.

Proof. (i) For all ψ ∈C∞
0 (C) and m ∈N0 we have

∣ψ ∣p,m = sup
z∈Sp(K)
∣β ∣≤m

∣∂ β
ψ (z)∣e−

1
p ∣Re(z)∣ ≤ sup

z∈C
∣β ∣≤m

∣∂ β
ψ (z)∣ = ∣∣∣∣ψ ∣∣∣∣m <∞,

hence ψ ∣Sp(K) ∈ E
exp
p (Sp (K)) . Now we define

w0∶C∞
0 (C)→C∞

0 (C) , w0 (ψ) ∶=w(ψ ∣Sn(K)) .

Then we obtain by the assumptions on w that there exist m ∈N0 and C > 0 such that

∣w0 (ψ)∣ = ∣w(ψ ∣Sn(K))∣ ≤C ∣ψ ∣n,m ≤C ∣ψ ∣p,m ≤C ∣∣∣∣ψ ∣∣∣∣m ,

and therefore w0 ∈D′ (C) as well as suppw0 ⊂ Sn (K).
(ii) Let ψ ∈C∞

0 (C) . Then we get

⟨∂ (w∗1 TĚ) ,ψ⟩ =
5.4a)

⟨w∗1 TĚ ,−∂ψ⟩ = −⟨w,(TE ∗∂ψ)∣Sn(K)⟩ = −⟨w,(∂TE ∗ψ)∣Sn(K)⟩

=
5.3a)

−⟨w,(δ ∗ψ)∣Sn(K)⟩ = −⟨w,ψ ∣Sn(K)⟩ =(i)
− ⟨w0,ψ⟩ ,

thus ∂ (w∗1 TĚ) = −w0 and so ∂ (w∗1 TĚ) = 0 on C∞
0 (C∖ suppw0) due to [18, Theorem 2.2.1, p.

41]. Hence, by virtue of the ellipticity of the ∂ -operator, it exists u ∈O(C∖ suppw0) such that
Tu =w∗1 TĚ ( [19, Theorem 11.1.1, p. 61]).

Let ε > 0. Then (i) yields to suppw0 ⊂ Sn (K) and therefore we get Sk+ε (K)
C
⊂ (suppw0)C and
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hence C∞
0 (Sk+ε (K)

C
) ⊂C∞

0 ((suppw0)C) . It follows by Lemma 5.4c) that

Tu =w∗1 TĚ = Tw∗2Ě

on C∞
0 (Sk+ε (K)

C
) implying u =w∗2 Ě on Sk+ε (K)

C
by Lemma 5.4b). This means that we have

for x ∈ Sk+ε (K)
C

and α ∈N2
0

u(∣α ∣) (x) = (w∗2 Ě)(∣α ∣) (x) =
(3.2)

i−α2∂
α (w∗2 Ě)(x) =

(5.9)
i−α2 ⟨w,∂ α

x [E (⋅ −x)] ∣Sn(K)⟩

=
5.3b)

0

by the assumptions on w. Hence u= 0 in every component O of (suppw0)C with O∩Sk+ε (K)
C
≠∅

by the identity theorem. Denote by Oi, i ∈ I, the components of (suppw0)C and let

I0 ∶= {i ∈ I ∣ Oi∩Sn (K)
C
≠∅} . Due to Remark 3.3(3) we get u = 0 on

⋃
i∈I0

Oi ⊃ (⋃
i∈I0

Oi)∩Sn (K)
C
= (⋃

i∈I
Oi)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=(suppw0)C

∩Sn (K)
C
= Sn (K)

C
.

Since Tu =w∗1 TĚ on C∞
0 ((suppw0)C) , this implies supp(w∗1 TĚ) ⊂ Sn (K).

Now we are finally able to prove the density theorem.

Proof of Theorem 5.1. Let w̃ ∈ πn,k (Eexp
k,∂

(Sk (K)))
○
, the polar set of

πn,k (Eexp
k,∂

(Sk (K))) ⊂ πn,p(Eexp
p,∂

(Sp (K))) . By the Hahn-Banach theorem there exists

w ∈ πn,p (Eexp
p (Sp (K)))′ such that w∣

πn,p(Eexp
p,∂

(Sp(K)))
= w̃.

Let f ∈ Eexp
p,∂

(Sp (K)) , choose j ∈ R, n < j < p, and ϕ like in Lemma 5.3d) (t = n, s = j). By

Lemma 5.2 there exists a sequence (ψl)l∈N , ψl ∈ C∞
0 (Sp (K)) , such that (ψl)l∈N converges to f

with respect to (∣⋅∣ j,m)
m∈N0

and so (∂ψl)l∈N
to ∂ f as well since

∂ ∶Eexp
j (S j (K))→ Eexp

j (S j (K))

is continuous. Thus we obtain

⟨w̃, f ∣Sn(K)⟩ = ⟨w, f ∣Sn(K)⟩ =
n< j

lim
l→∞

⟨w,ψl ∣Sn(K)⟩ = lim
l→∞

⟨w,(δ ∗ψl)∣Sn(K)⟩

=
5.3a)

lim
l→∞

⟨w,(TE ∗∂ψl)∣Sn(K)⟩ = lim
l→∞

⟨w∗1 TĚ ,∂ψl⟩ =
5.5

lim
l→∞

⟨w∗1 TĚ ,ϕ∂ψl⟩

= lim
l→∞

⟨w,(TE ∗ϕ∂ψl)∣Sn(K)⟩ = lim
l→∞

⟨w∗ϕ TĚ ,∂ψl⟩ =
(5.10)

⟨w∗ϕ TĚ ,∂ f ⟩

= 0,
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so w̃ = 0 connoting the statement due to the bipolar theorem.

This theorem implies, amongst others, that the initial spectrum of Oexp (C∖K) is in a weak
sense reduced (a projective spectrum is called reduced if its projective limit is dense in all spaces
of the spectrum [16, 26.1.4, p. 143]).

5.6 Corollary. Let K ⊂ R be compact and n ∈ N≥2. The space πn (Oexp (C∖K)) is dense in
πn,2n (Oexp

2n (S2n (K))) with respect to ∣⋅∣n where

πn∶Oexp (C∖K)→Oexp
n (Sn (K)) , πn ( f ) ∶= f ∣Sn(K).

Proof. The restriction mappings are omitted during the proof. Due to Theorem 3.11(4) the space
Oexp

2n (S2n (K)) is included in Eexp
n+1,∂

(Sn+1 (K)) . Let ε > 0 and f0 ∈Oexp
2n (S2n (K)) . For all j ∈ N

there exist f j ∈ Eexp
n+1+ j,∂

(Sn+1+ j (K)) ⊂Oexp
n+1+ j (Sn+1+ j (K)) such that

∣ f j − f j−1∣n+ j−1 = ∣ f j − f j−1∣n+ j−1,0 <
ε

2 j+1 (5.30)

by Theorem 5.1. Therefore, we obtain for every k ∈N

∣ fk− f0∣n =
RRRRRRRRRRR

k
∑
j=1

f j − f j−1

RRRRRRRRRRRn
≤

k
∑
j=1

∣ f j − f j−1∣n ≤
k
∑
j=1

∣ f j − f j−1∣n+ j−1

≤
(5.30)

k
∑
j=1

ε

2 j+1 =
ε

2
(1− 1

2k ) <
ε

2
. (5.31)

Now let ε0 > 0 and l ∈ N≥2. Choose l0 ∈ N, l0 ≥ l, such that ε

2l0+1 < ε0. Similarly we get for all
p ≥ k ≥ l0

∣ fp− fk∣l ≤ ∣ fp− fk∣l0 =
RRRRRRRRRRR

p

∑
j=k+1

f j − f j−1

RRRRRRRRRRRl0
≤

p

∑
j=k+1

∣ f j − f j−1∣l0

≤
l0≤k≤ j−1
<n+ j−1

p

∑
j=k+1

∣ f j − f j−1∣n+ j−1 ≤
(5.30)

p

∑
j=k+1

ε

2 j+1 =
ε

2
( 1

2k −
1
2p)

< ε

2k+1 ≤
ε

2l0+1 < ε0.

Hence ( fk)k≥n0
is a Cauchy sequence in Oexp

n+1+n0
(Sn+1+n0 (K)) for all n0 ∈ N0 and, since these

spaces are complete by Theorem 3.6(1), it has a limit Fn0 ∈O
exp
n+1+n0

(Sn+1+n0 (K)) . These limits
coincide on their common domain because for every n1,n2 ∈N0, n1 < n2, and ε1 > 0 there exists
N ∈N such that for all k ≥N

∣Fn1 −Fn2 ∣n+1+n1
≤ ∣Fn1 − fk∣n+1+n1

+ ∣ fk−Fn2 ∣n+1+n1
≤ ∣Fn1 − fk∣n+1+n1

+ ∣ fk−Fn2 ∣n+1+n2

< ε1

2
+ ε1

2
= ε1.

So the limit function f , defined by f ∶= Fn0 on Sn+1+n0 (K) for all n0 ∈ N0, is well defined and
we have f ∈ limprojn0∈N0

Oexp
n+1+n0

(Sn+1+n0 (K)) = Oexp (C∖K) by [16, 2.5. Satz, p. 37]. By
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definition of f there exists N ∈N such that for every k ≥N

∣ f − f0∣n ≤ ∣ f − fk∣n+ ∣ fk− f0∣n <
n<n+1

ε

2
+ ∣ fk− f0∣n ≤

(5.31)

ε

2
+ ε

2
= ε

proving the statement.

Since analogons of Theorem 5.1 and Corollary 5.6 for other growth conditions are of some
interest as well, we will make a short digression. The following definition of a weight function is
given by Langenbruch in [41, Definition 2.1, p. 225].

5.7 Definition. A continuous function ν ∶C→ [0,∞[ is called weight function if it fulfills the
following conditions:

a) For all z ∈C one has ν (z) = ν (∣Re(z)∣) .

b) ν ∶[0,∞[→ [0,∞[ is strictly monotonic increasing.

c) One has
ln(1+ ∣x∣) = o(ν (x)) .

d) There are constants Γ > 1 and C > 0 such that for all x ≥ 0

ν (x+1) ≤ Γν (x)+C.

5.8 Definition. Let K ⊂ R be compact and τ ∶R>1 → R>0 or τ ∶R>1 → R<0 strictly monotonic in-
creasing.

a) For n ∈R, n > 1, we define the space

Eν ,τ(n) (Sn (K)) ∶= { f ∈C∞ (Sn (K)) ∣ ∀m ∈N0 ∶ ∣ f ∣ν ,τ,n,m <∞},

where
∣ f ∣ν ,τ,n,m ∶= sup

z∈Sn(K)
α∈N2

0, ∣α ∣≤m

∣∂ α f (z)∣eτ(n)ν(z),

and the space
Eν ,τ (C∖K) ∶= limproj

n∈N≥2

Eν ,τ(n) (Sn (K)) .

b) For n ∈R, n > 1, we define the space

Oν ,τ(n) (Sn (K)) ∶= { f ∈O(Sn (K)) ∣ ∣ f ∣ν ,τ,n <∞},

where
∣ f ∣ν ,τ,n ∶= sup

z∈Sn(K)
∣ f (z)∣eτ(n)ν(z),

and the space
Oν ,τ (C∖K) ∶= limproj

n∈N≥2

Oν ,τ(n) (Sn (K)) .

70



Karsten Kruse

In both cases the spectral mappings πn,k,n ≤ k, are again the restrictions.
Further, we define E

ν ,τ(n),∂ (Sn (K)) ∶= { f ∈ Eν ,τ(n) (Sn (K)) ∣ ∂ f = 0} .

In particular, ν ∶C→ [0,∞[, ν (z) ∶= ∣Re(z)∣ , satisfies the conditions of Definition 5.7 and
τ ∶R>1→R,τ (n) ∶= −1/n, is strictly monotonic increasing, so we have

Eν ,τ(n) (Sn (K)) = Eexp
n (Sn (K)) and Eν ,τ (C∖K) = Eexp (C∖K) ,

Oν ,τ(n) (Sn (K)) =Oexp
n (Sn (K)) and Oν ,τ (C∖K) =Oexp (C∖K) .

Replace in Theorem 3.6(1), the Lemmas 5.2-5.5, Theorem 5.1 and Corollary 5.6 the spaces Eexp
n

by Eν ,τ(n), Eexp
n,∂

by E
ν ,τ(n),∂ , O

exp
n by Oν ,τ(n) and Oexp by Oν ,τ . Then we have the following

observations.

5.9 Remark. Let ν be a weight function.

1. Theorem 3.6(1) is valid for E =C (the other parts of the theorem as well). Go on like in the
proof of Theorem 3.6(1) and for τ > 0 replace (3.9) by

∣∂ β fl (z)−∂
β f (z)∣eτ(n)ν(z) < ε

2
.

2. Lemma 5.2 is valid due to Definition 5.7(a), (b) and (c), implying that ν ∶[0,∞[→ [0,∞[ is
bijective and strictly monotonic increasing, with

Q0 ∶= St (K)∩{z ∈C ∣ ν (∣Re(z)∣) ≤max(0,
lnε

τ ( j)−τ (p))} ,

Q1 ∶= Ss (K)∩{z ∈C ∣ ν (∣Re(z)∣) <max(0,
lnε

τ ( j)−τ (p))+1} .

3. Looking at (5.6), we get that Lemma 5.3b) is valid for τ < 0 since

∣∂ α
x [E (⋅ −x)]∣

ν ,τ,q,m ≤ sup
∣β ∣≤m

A1 (β) sup
z∈Sq(K)

e−z2
1+2(3r+∣x1∣)∣z1∣ eτ(q)ν(∣z1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

≤ sup
∣β ∣≤m

A1 (β)e(3r+∣x1∣)2
<∞.

For τ > 0 it is valid if there exist D1,D2 > 0 and 0 < a < 2 such that ν (x) ≤D1xa+D2 for all
x ≥ 0. Then we have

∣∂ α
x [E (⋅ −x)]∣

ν ,τ,q,m ≤ sup
∣β ∣≤m

A1 (β) sup
z∈Sq(K)

e−z2
1+2(3r+∣x1∣)∣z1∣ eτ(q)ν(∣z1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤eτ(q)(D1∣z1∣

a+D2)

≤ sup
∣β ∣≤m

A1 (β)eτ(q)D2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A2

sup
z1∈R

e−z2
1+2(3r+∣x1∣)∣z1∣+τ(q)D1∣z1∣a.

As
z2

1
2
> 2max(τ (q)D1,2(3r+ ∣x1∣)) ∣z1∣max(1,a)
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for ∣z1∣ > [4max(τ (q)D1,2(3r+ ∣x1∣))]
1

2−max(1,a) =∶ A3, we get

∣∂ α
x [E (⋅ −x)]∣

ν ,τ,q,m

≤ A2( sup
∣z1∣≤max(A3,1)

e−z2
1+2(3r+∣x1∣)∣z1∣+τ(q)D1∣z1∣a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A4

+ sup
∣z1∣>max(A3,1)

e−z2
1+2(3r+∣x1∣)∣z1∣+τ(q)D1∣z1∣a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤e−z2

1+
z2
1/2=e−z2

1/2

)

≤ A2(A4+1) <∞.

4. Looking at (5.7), we get that Lemma 5.3c) is valid for τ < 0 since

∣TE ∗ψ ∣
ν ,τ,q,m ≤ B1 sup

z∈Sq(K)
eτ(q)ν(∣z1∣)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

∣∣∣∣ψ ∣∣∣∣m ≤ B1 ∣∣∣∣ψ ∣∣∣∣m .

For τ > 0 modify the inequalities above (5.7) in the following manner

∣∂ α (TE ∗ψ)(x)∣ ≤ sup
z∈N

eλτ(q)ν(z) ∣∣∣∣ψ ∣∣∣∣∣α ∣∫x−N
∣E (y)∣e−λτ(q)ν(x−y)dy

where λ > 0 has to be chosen. Then one sees that the following integrals need to be esti-
mated:

∫
2π

0
∫

ε

0
e−r2 cos(2µ)e−λτ(q)ν(∣x1+rcos(µ)∣)drdµ and ∫R e−y2

1+2∣x1y1∣−x2
1−λτ(q)ν(∣y1∣)dy1

Taking a look at (5.8), these integrals must also be estimated for checking the validity of
Lemma 5.3d)ii), there for q = s and λ = 1. So let λ = 1. If there exist D1,D2 > 0 and 0 < a < 2
such that ν (x) ≤D1xa+D2 for all x ≥ 0, then

1
2 ∫R e−y2

1+2∣x1y1∣−x2
1−τ(q)ν(∣y1∣)eτ(q)ν(∣x1∣)dy1

= ∫
∣x1∣

2

0
e−(y1−∣x1∣)2−τ(q)ν(∣y1∣)eτ(q)ν(∣x1∣)dy1+∫

∞
∣x1∣

2

e−(y1−∣x1∣)2−τ(q)ν(∣y1∣)eτ(q)ν(∣x1∣)dy1

and

∫
∣x1∣

2

0
e−(y1−∣x1∣)2−τ(q)ν(∣y1∣)eτ(q)ν(∣x1∣)dy1 ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
∣x1∣

2
0 e−

∣x1∣
2

4 −τ(q)ν( ∣x1∣
2 )dy1, τ (q) < 0,

∫
∣x1∣

2
0 e−

∣x1∣
2

4 +τ(q)ν(∣x1∣)dy1, τ (q) > 0,

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣x1∣
2 e

− ∣x1∣
2

4 −τ(q)(D1
∣x1∣

a

2a +D2)
, τ (q) < 0,

∣x1∣
2 e−

∣x1∣
2

4 +τ(q)(D1∣x1∣a+D2), τ (q) > 0.

As
∣x1∣2

8
≥
⎧⎪⎪⎨⎪⎪⎩

−τ (q)D1
∣x1∣a
2a , τ (q) < 0,

τ (q)D1∣x1∣a, τ (q) > 0,
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for

∣x1∣ ≥D3 ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−8τ (q)D1
1
2a )

1
2−a , τ (q) < 0,

(8τ (q)D1)
1

2−a , τ (q) > 0,

we obtain

∫
∣x1∣

2

0
e−(y1−∣x1∣)2−τ(q)ν(∣y1∣)eτ(q)ν(∣x1∣)dy1

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−τ(q)D2(sup∣x1∣≤D3

∣x1∣
2 e−

∣x1∣
2

4 −τ(q)D1
∣x1∣

a

2a + sup∣x1∣≥D3

∣x1∣
2 e−

∣x1∣
2

8 ), τ (q) < 0,

eτ(q)D2(sup∣x1∣≤D3

∣x1∣
2 e−

∣x1∣
2

4 +τ(q)D1∣x1∣a + sup∣x1∣≥D3

∣x1∣
2 e−

∣x1∣
2

8 ), τ (q) > 0,

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−τ(q)D2(D3
2 e−τ(q)D1

Da
3

2a + 4
D3

), τ (q) < 0,
eτ(q)D2(D3

2 eτ(q)D1Da
3 + 4

D3
), τ (q) > 0,

=∶D4 =D4 (sign(τ)) <∞, (5.32)

where D4 does not depend on x1. Furthermore, if there exist C1,C2 > 0 and 0 < b < 2 such
that ∣ν (y)−ν (x)∣ ≤C1 ∣y−x∣b+C2 for all x, y ≥ 0, we get

∫
∞
∣x1∣

2

e−(y1−∣x1∣)2−τ(q)ν(∣y1∣)eτ(q)ν(∣x1∣)dy1

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
∞
∣x1∣

2
e−(y1−∣x1∣)2+∣τ(q)∣(ν(∣y1∣)−ν(∣x1∣))dy1, τ (q) < 0,

∫
∞
∣x1∣

2
e−(y1−∣x1∣)2+∣τ(q)∣(ν(∣x1∣)−ν(∣y1∣))dy1, τ (q) > 0,

≤ ∫
∞
∣x1∣

2

e−(y1−∣x1∣)2+∣τ(q)∣∣ν(∣y1∣)−ν(∣x1∣)∣dy1

≤ ∫
∞
∣x1∣

2

e−(y1−∣x1∣)2+∣τ(q)∣(C1∣
=y1«
∣y1∣ −∣x1∣∣

b
+C2)dy1

= e∣τ(q)∣C2∫
∞

− ∣x1∣
2

e−ζ
2+∣τ(q)∣C1∣ζ ∣

b

dζ

≤ 2e∣τ(q)∣C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=C3

∫
∞

0
e−ζ

2+∣τ(q)∣C1ζ
b
dζ

≤C3(( max
0≤ζ≤(2∣τ(q)∣C1)

1
2−b

e−ζ
2+∣τ(q)∣C1ζ

b)+∫
∞

(2∣τ(q)∣C1)
1

2−b e−
ζ

2

2 dζ)

≤C3(e∣τ(q)∣C1(2∣τ(q)∣C1)
b

2−b

+∫
∞

0
e−

ζ
2

2 dζ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=
√

π/2

) =∶C4 <∞, (5.33)

where C4 does not depend on x1. Under the conditions made on ν , (5.32) and (5.33) yield
to

∫R e−y2
1+2∣x1y1∣−x2

1−τ(q)ν(∣y1∣)dy1 ≤ 2(D4+C4)e−τ(q)ν(∣x1∣). (5.34)
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Now let us turn to the still pending integral and choose ε = 1. If ν satisfies condition d) of
Definition 5.7 with Γ = 1, we gain for τ (q) < 0

∫
2π

0
∫

1

0
e−r2 cos(2µ)e−τ(q)ν(∣x1+rcos(µ)∣)drdµ

≤ 2πe∫
1

0
e−τ(q)ν(∣x1∣+r)dr

≤ 2πee−τ(q)ν(∣x1∣+1)

≤ 2πe−τ(q)C+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶C5

e−τ(q)ν(∣x1∣) (5.35)

and for τ (q) > 0

∫
2π

0
∫

1

0
e−r2 cos(2µ)e−τ(q)ν(∣x1+rcos(µ)∣)drdµ

≤ 2πe∫
1

0
e−τ(q)ν(∣∣x1∣−r∣)dr

≤
⎧⎪⎪⎨⎪⎪⎩

2πee−τ(q)ν(∣x1∣−1), ∣x1∣ ≥ 2,
2πe, ∣x1∣ < 2,

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2πeτ(q)C+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶C6

e−τ(q)ν(∣x1∣), ∣x1∣ ≥ 2,

2πe, ∣x1∣ < 2.
(5.36)

Thus, under the conditions made on ν , looking at the inequalities above (5.7), we get that
Lemma 5.3c) is valid for τ > 0 by (5.34) and (5.36) because

∣TE ∗ψ ∣
ν ,τ,q,m

≤ 1
π

sup
z∈N

eτ(q)ν(z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤eτ(q)ν(B0)

(2πe sup
∣x1∣≤2

eτ(q)ν(∣x1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤eτ(q)ν(2)

+C6+4B0(eq2+2qB0+B2
0)(C4+D4))∣∣∣∣ψ ∣∣∣∣m

and analogously, looking at (5.8), we get that Lemma 5.3d)ii) is valid for τ > 0 by (5.34)
and (5.36) since

∣TE ∗(ϕ f )∣
ν ,τ,t,m ≤ 1

π
C0(2πe sup

∣x1∣≤2
eτ(t)ν(∣x1∣)+C6 sup

∣x1∣>2
e(−τ(s)+τ(t))ν(∣x1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1, t≤s

+4 j(et2+2 jt+ j2)(C4+D4) sup
x1∈R

e(−τ(s)+τ(t))ν(∣x1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1, t≤s

)∣ f ∣
ν ,τ,s, j,m
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as well as for τ < 0 by (5.35) because

∣TE ∗(ϕ f )∣
ν ,τ,t,m ≤ 1

π
C0(C5 sup

x1∈R
e(−τ(s)+τ(t))ν(∣x1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1, t≤s

+4 j(et2+2 jt+ j2)(C4+D4) sup
x1∈R

e(−τ(s)+τ(t))ν(∣x1∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1, t≤s

)∣ f ∣
ν ,τ,s, j,m

where ∣ f ∣
ν ,τ,s, j,m is defined analogously to the definition given in Lemma 5.3d)ii).

5. Taking a look at (5.14), (5.22) and (5.26), we get that Lemma 5.4 is valid, under the con-
ditions on ν stated in 4), with the same arguments like in 3), and therefore Lemma 5.5, at
which we have in part (i) for τ > 0 the inequality

∣ψ ∣p,m ≤ sup
z∈N

eτ(p)ν(z) ∣∣∣∣ψ ∣∣∣∣m

for ψ ∈C∞
0 (N) , N ⊂C compact, too.

So by the remark above we get the more general versions of Theorem 5.1 and Corollary 5.6:

5.10 Theorem. Let K ⊂R be compact, k, p,n ∈R with k > p > n > 1 and ν a weight function which
satisfies

(1) condition d) of Definition 5.7 with Γ = 1.

(2) There exist C1,C2 > 0 and 0 < a,b < 2 such that

ν (x) ≤C1xa+C2 and ∣ν (y)−ν (x)∣ ≤C1 ∣y−x∣b+C2

for all x, y ≥ 0.

Then πn,k (Eν ,τ(k),∂ (Sk (K))) is dense in πn,p(Eν ,τ(p),∂ (Sp (K))) with respect

to (∣⋅∣
ν ,τ,n,m)

m∈N0
.

5.11 Corollary. Let K ⊂R be compact and ν like in Theorem 5.10. The space πn (Oν ,τ (C∖K))
is dense in πn,2n (Oν ,τ(2n) (S2n (K))) with respect to ∣⋅∣

ν ,τ,n for every n ∈N≥2 where

πn∶Oν ,τ (C∖K)→Oν ,τ(n) (Sn (K)) , πn ( f ) ∶= f ∣Sn(K).

5.12 Example. For all 0 < γ ≤ 1 the function ν , defined by ν (x) ∶= xγ , x ≥ 0, is a weight function
which satisfies the conditions of Theorem 5.10.

Proof. It is a weight function by [41, Example 5.2, p. 238]. It satisfies the conditions of Theorem
5.10 by the mean value theorem with C ∶= 2 in (1) and C1 ∶= 1, a ∶= b ∶= 1 and C2 ∶= 2 in (2).

An idea to extend the results to other weight functions would be to use other fundamental so-

lutions like E (z) ∶= e−zk

πz , k even, or E (z) ∶= e−ez+1

πz , z ∈C∖{0} .
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Now we return to the initial problem, namely, to prove that C is admissible. For applying Hör-
mander’s solution of the weighted ∂ -problem (see [20, Chap. 4]), it is appropriate to consider
L2-(semi-)norms.
Let P be a polynomial in d real variables with complex coefficients, i.e. there are n ∈N0, cα ∈C,
∣α ∣ ≤ n, such that

P(ζ) = ∑
α∈Nd

0 ,
∣α ∣≤n

cαζ
α

for all ζ ∈Rd, where ζ α ∶= ζ
α1
1 ⋯ζ

αd
d . Further, we set (−i∂)α ∶= (−i)∣α ∣

∂ α and P(D) ∶= P(−i∂) .

5.13 Lemma. Let V ⊂ Rd be open and P(D) be a hypoelliptic operator. Let {Kn ∣ n ∈N} be a
compact exhaustion of V. Then

id∶C∞ (V)→ F (V) ∶= { f ∈ L2
loc (V) ∣ ∀α ∈Nd

0 ∶ ∂ αP(D) f ∈ L2
loc (V)}

is a topological isomorphism where the first space is equipped with the system of semi-norms
{pKn,m ∣ n ∈N, m ∈N0} defined by

pM,m ( f ) ∶= sup
x∈M

α∈Nd
0 ,∣α ∣≤m

∣∂ α f (x)∣ , M ⊂V compact, m ∈N0, (5.37)

and the latter with the system

{∥⋅∥L2(Kn)+ sKn,m ∣ n ∈N, m ∈N0} (5.38)

defined for f = [F] by

∥ f ∥L2(M) ∶= ∥F∥L2(M) ∶= (∫
M
∣F ∣2 dλ)

1
2

and sM,m ( f ) ∶= sup
α∈Nd

0 ,∣α ∣≤m
∥∂

αP(D) f ∥L2(M)

for M ⊂V compact and m ∈N0.

Proof. (i) First let us remark the following: id∶C∞ (V) → F (V) means the mapping f ↦
[ f ] . The derivatives in the definition of F (V) are considered in the distributional sense
and ∂ αP(D) f ∈ L2

loc (V) means that there exists g ∈ L2
loc (V) such that ∂ αP(D)Tf = Tg.

The definition of the semi-norm ∥⋅∥L2(M) does not depend on the chosen representative.
As usual there will be made no strict difference between an element of L2

loc (V) and its
representatives resp. the corresponding regular distribution, if not necessary.

(ii) C∞ (V) , equipped with the system of semi-norms (5.37), is a Fréchet space by [25, 2.10 G,
p. 51, 3.6.10 Proposition, p.73]. The space F (V) , equipped with the system of semi-norms
(5.38), is locally convex. Let ( fk)k∈N be a Cauchy sequence in F (V) . By definition of
F (V) we get that for all β ∈Nd

0 there exists a sequence (gk,β)k∈N , gk,β ∈ L2
loc (V) , such that

∂ β P(D)Tfk = Tgk,β . Therefore (see (5.38)), ( fk)k∈N and (gk,β)k∈N , β ∈ Nd
0, are especially

Cauchy sequences in (L2
loc (V) ,(∥⋅∥L2(Kn))n∈N

) , which is a Fréchet space (use for example
[16, 5.17 Lemma, p. 36]), so they have a limit f resp. gβ in this space. Since ( fk)k∈N
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converges to f ∈ L2
loc (V) , it follows that (Tfk)k∈N converges to Tf in D′σ (V) . Hence we get

∂
β P(D)Tf ←

k→∞
∂

β P(D)Tfk = Tgk,β
→

k→∞
Tgβ

in D′σ (V) implying f ∈ F (V) and the convergence of ( fk)k∈N to f in F (V) with respect to
the semi-norms (5.38) as well. Thus this space is complete and so a Fréchet space.

(iii) id is obviously linear and injective. It is continuous since for all n ∈N and m ∈N0 we have

∥ f ∥2
L2(Kn) ≤ λ (Kn) pn,0 ( f )2

and there exists C > 0, depending on the coefficients and the number of summands of P(D) ,
such that

sn,m ( f )2 ≤Cλ (Kn) pn,degP+m ( f )2

for all f ∈C∞ (V) where λ denotes the Lebesgue measure.

(iv) The next step is to prove that id is surjective. Let f ∈ F (V) . Then we have P(D) f ∈
W∞

loc (V) where

W∞
loc (V) ∶= { f ∈ L2

loc (V) ∣ ∀ α ∈Nd
0 ∶ ∂

α f ∈ L2
loc (V)}

and so P(D) f ∈ C∞ (V) by the Sobolev embedding theorem [18, Theorem 4.5.13, p.
123]. To be precise, this means that the regular distribution P(D) f has a representative
in C∞ (V) . Due to the hypoellipticity of P(D) we obtain f ∈ C∞ (V) , more precisely, that
f has a representative in C∞ (V) , so id is surjective.

(v) The statement is proven by (ii)-(iv) and the open mapping theorem.

5.14 Corollary. Let 0 < r0 < r1 < r2 and P(D) be a hypoelliptic differential operator. Then we
have:

∀m ∈N0 ∃ p ∈N0, C > 0 ∀ α ∈Nd
0, ∣α ∣ ≤m ∶

pQr0(0),0 (∂
α f ) ≤C

⎛
⎝
∥ f ∥L2(Qr1(0))+ sup

β∈Nd
0 ,∣β ∣≤p

∥∂
β P(D) f ∥L2(Qr1(0))

⎞
⎠

for all f ∈C∞ (Q̊r2 (0)) where Qr (0) ∶= [−r,r]d
, r > 0.

Proof. Let V ∶= Q̊r1 (0) . Then the sets Kn ∶= Qr1− 1
n+1/r1

(0) , n ∈ N, form a compact exhaustion

of V and there exists n0 = n0 (r0,r1) ∈ N such that Qr0 (0) ⊂ Kn0. Since id−1∶F (V)→ C∞ (V) is

77



5 Strictly admissible spaces

continuous by Lemma 5.13, there are N ∈N, p ∈N0 and C > 0 such that

pQr0(0),0 (∂
α f ) ≤ pKn0 ,m ( f ) = pKn0 ,m (id−1 ([ f ])) ≤C(∥[ f ]∥L2(KN)+ sKN ,p ([ f ]))

=C
⎛
⎝
∥ f ∥L2(KN)+ sup

β∈Nd
0 ,∣β ∣≤p

∥∂
β P(D) f ∥L2(KN)

⎞
⎠

≤C
⎛
⎝
∥ f ∥L2(Qr1(0))+ sup

β∈Nd
0 ,∣β ∣≤p

∥∂
β P(D) f ∥L2(Qr1(0))

⎞
⎠

for all f ∈C∞ (Q̊r2 (0)) .

Due to this corollary we can switch to types of L2-semi-norms which induce the same topology
on Eexp (C∖K) as the sup-semi-norms. Further, we get an useful inequality.

5.15 Lemma. Let K ⊂R be compact.

(1) For n ∈N≥2 we define the locally convex space

Cexp
n (Sn (K)) ∶= { f ∈C∞ (Sn (K)) ∣ ∀m ∈N0 ∶ rn,m ( f ) <∞}

where

rn,m ( f ) ∶= sup
α∈N2

0,∣α ∣≤m
(∫

Sn(K)
∣∂ α f (z)∣2 e−

1
n ∣Re(z)∣dz)

1
2

for f ∈C∞ (Sn (K)) and m ∈N0.
Let n ∈N≥2, P(D) be hypoelliptic and f ∈C∞ (S2n (K)) such that r2n,0 ( f )<∞ and P(D) f ∈
Cexp

2n (S2n (K)) . Then we have f ∈ Eexp
n (Sn (K)) . More precisely:

∀m ∈N0 ∃ p ∈N0, C0 > 0 ∶ ∣ f ∣n,m ≤C0 [r2n,0 ( f )+ r2n,p (P(D) f )]

(2) We define the space
Cexp (C∖K) ∶= limproj

n∈N≥2

Cexp
n (Sn (K))

where the spectral mappings are given by

πn,k∶Cexp
k (Sk (K))→ Cexp

n (Sn (K)) , πn,k ( f ) ∶= f ∣Sn(K), n ≤ k.

Then Cexp (C∖K) = Eexp (C∖K) as topological vector spaces.

Proof. (1) Let m ∈N0 and α ∈N2
0, ∣α ∣ ≤ m. Choose 0 < h < 1

2
√

2n
and set ε ∶= h

3 . For j ∈ Z2 and
r > 0 we define

Q( j,r) ∶= ε [ j+(1
2
,
1
2
)]+Q r

2
(0) = ε j+ 1

2
(ε − r,ε − r)+ [0,r]2

and J ∶= { j ∈Z2 ∣ Q( j,ε)∩Sn (K) ≠∅} . For all j ∈ J it follows, by the choice of h, that
Q( j,3ε) ⊂ Q̊( j,5ε) ⊂ S2n (K) since 3

√
2ε =

√
2h < 1

2n < n. Thus f ∈ C∞ (Q̊( j,5ε)) resp.
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f (ε [ j+(1
2 ,

1
2)]+ ⋅) ∈C∞(Q̊ 5ε

2
(0)) .

Let j ∈ J. By Corollary 5.14 there exist p ∈N0 and C > 0, C independent of j, such that

pQ( j,ε),0((∂
α f )e−

1
n ∣Re(⋅)∣)

≤ e−
ε

n ∣Re( j)∣+ ε

n pQ( j,ε),0 (∂
α f )

= e−
ε

n ∣Re( j)∣+ ε

n pQ ε
2
(0),0(∂

α f (ε [ j+(1
2
,
1
2
)]+ ⋅))

≤
5.14

Ce−
ε

n ∣Re( j)∣+ ε

n [∥ f (ε[ j+(1
2
,
1
2
)]+ ⋅)∥

L2(Q 3ε
2
(0))

+ sup
β∈N2

0,∣β ∣≤p
∥∂

β P(D) f (ε[ j+(1
2
,
1
2
)]+ ⋅)∥

L2(Q 3ε
2
(0))

]

=Ce−
ε

n ∣Re( j)∣+ ε

n [∥ f ∥L2(Q( j,3ε))+ sup
β∈N2

0,∣β ∣≤p
∥∂

β P(D) f ∥L2(Q( j,3ε))]

=Ce
ε

n [(∫
Q( j,3ε)

∣ f (z)∣2 e−
2ε

n ∣Re( j)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤e−
ε
n ∣Re( j)∣≤e−

1
n ∣Re(z)∣+ 4ε

n

dz)
1
2 + sup

β∈N2
0,

∣β ∣≤p

(∫
Q( j,3ε)

∣∂ β P(D) f (z)∣2 e−
2ε

n ∣Re( j)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤e−

1
n ∣Re(z)∣+ 4ε

n

dz)
1
2 ]

≤Ce
3ε

n [(∫
Q( j,3ε)

∣ f (z)∣2 e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤e−

1
2n ∣Re(z)∣

dz)
1
2 + sup

β∈N2
0,

∣β ∣≤p

(∫
Q( j,3ε)

∣∂ β P(D) f (z)∣2 e−
1
n ∣Re(z)∣dz)

1
2 ]

≤Ce
3ε

n [r2n,0 ( f )+ r2n,p (P(D) f )] (5.39)

and so we get

∣ f ∣n,m ≤ sup
z∈⋃ j∈J Q( j,ε),
α∈N2

0, ∣α ∣≤m

∣∂ α f (z)∣e− 1
n ∣Re(z)∣ = sup

j∈J,
α∈N2

0, ∣α ∣≤m

pQ( j,ε),0((∂
α f )e−

1
n ∣Re(⋅)∣)

≤
(5.39)

Ce
3ε

n
±
=∶C0

[r2n,0 ( f )+ r2n,p (P(D) f )] .

(2) Let f ∈ Cexp (C∖K) and P(D) ∶= ∂ . Then f satisfies the conditions of (1) for all n ∈ N≥2.
So for all n ∈N≥2 and m ∈N0 there exist p ∈N0 and C0 > 0 such that

∣ f ∣n,m ≤C0 [r2n,0 ( f )+ r2n,p(∂ f )] ≤C0 [r2n,0 ( f )+ r2n,p+1 ( f )] ≤ 2C0r2n,p+1 ( f ) .

On the other hand let f ∈ Eexp (C∖K) . For every n ∈N≥2 and m ∈N0 we have

rn,m ( f ) ≤ sup
z∈Sn(K),

α∈N2
0, ∣α ∣≤m

∣∂ α f (z)∣e− 1
4n ∣Re(z)∣(∫

Sn(K)
e(

1
2n−

1
n)∣Re(z)∣dz)

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C1<∞

≤C1 ∣ f ∣4n,m .
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By now all ingredients that are required to prove the admissibility of C are provided.

5.16 Theorem. Let K ⊂R be compact. Then

∂ ∶Eexp (C∖K)→ Eexp (C∖K)

is surjective.

Proof. (i) Let f ∈ Eexp (C∖K) , n ∈N≥2 and set

ϕn∶C→C, ϕn (z) ∶= 1
4n

∣z∣ .

Then ϕn is subharmonic on C by [20, Corollary 1.6.6, Theorem 1.6.7, p. 18], particularly,
plurisubharmonic. The set S4n (K) is open and pseudoconvex since every open set in C is
a domain of holomorphy by [20, Corollary 1.5.3, p. 15] and hence pseudoconvex by [20,
Theorem 4.2.8, p. 88]. For the differential form g ∶= f dz̄ we have ∂g = 0 in the sense of
differential forms and by Lemma 5.15(2)

∫
S4n(K)

∣ f (z)∣2 e−ϕn(z)dz ≤ r4n,0 ( f )2 <∞.

Thus by [20, Theorem 4.4.2, p. 94] there is a solution un ∈ L2
loc (S4n (K)) of ∂un = f ∣S4n(K)

in the distributional sense such that

∫
S4n(K)

∣un (z)∣2 e−ϕn(z)(1+ ∣z∣2)
−2

dz ≤ ∫
S4n(K)

∣ f (z)∣2 e−ϕn(z)dz.

Since ∂ is hypoelliptic, it follows that un ∈ C∞ (S4n (K)) , resp. un has a representative
which is C∞. For all C0 > 0 exists C1 > 0 such that

2ln(1+ ∣z∣2) ≤C0∣z∣+C1

for all z ∈C. So, for C0 ∶= 1
4n exists C1 > 0 such that

ϕn (z)+2ln(1+ ∣z∣2) ≤ ϕn (z)+ 1
4n

∣z∣+C1 =
1

2n
∣z∣+C1 (5.40)

for all z ∈C. Therefore, we gain

r2n,0 (un)2 = ∫
S2n(K)

∣un (z)∣2 e−
1
2n ∣Re(z)∣dz ≤ e1+C1∫

S2n(K)
∣un (z)∣2 e−

1
2n ∣z∣−C1dz

≤
(5.40)

e1+C1∫
S2n(K)

∣un (z)∣2 e−ϕn(z)−2ln(1+∣z∣2)dz

≤ e1+C1∫
S4n(K)

∣un (z)∣2 e−ϕn(z)(1+ ∣z∣2)
−2

dz <∞.

So the conditions of Lemma 5.15(1) are fulfilled for all n ∈N≥2 implying un ∈ Eexp
n (Sn (K)) .

(ii) The next step is to prove the surjectivity of ∂ ∶Eexp (C∖K)→ Eexp (C∖K) via the Mittag-
Leffler procedure. Due to (i) we have for every q ∈N≥2 a function uq ∈ Eexp

q (Sq (K)) such
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that ∂uq = f ∣Sq(K).

Now we inductively construct gn ∈ Eexp
n+2 (Sn+2 (K)) , n ∈N, such that

(1) ∂gn = f ∣Sn+2(K), n ≥ 1,

(2) ∣gn−gn−1∣n,n ≤ 1
2n , n ≥ 2.

For n = 1 set g1 ∶= u3. Then we have g1 ∈ Eexp
3 (S3 (K)) and ∂g1 = f ∣S3(K) by part (i).

Let gn with (1) for n ≥ 1 be given. Since

∂ (un+3−gn)∣Sn+2(K) = ∂un+3∣Sn+2(K)−∂gn∣Sn+2(K) =
(i),(1)

f ∣Sn+3(K)∣
Sn+2(K)

− f ∣Sn+2(K) = 0,

it follows un+3−gn ∈ Eexp
n+2,∂

(Sn+2 (K)) and by Theorem 5.1 there is hn+1 ∈ Eexp
n+3,∂

(Sn+3 (K))
such that

∣un+3−gn−hn+1∣n+1,n+1 ≤
1

2n+1 .

Set gn+1 ∶= un+3−hn+1 ∈ Eexp
n+3 (Sn+3 (K)) . Condition (2) is satisfied by above and condition

(1) as well because

∂gn+1 = ∂un+3− ∂hn+1²
=0

= ∂un+3 =
(i)

f ∣Sn+3(K).

Now let ε > 0, l ∈N≥2 and m ∈N0. Choose l0 ∈N, l0 ≥ max(l,m) , such that 1
2l0

< ε. For all
p ≥ k ≥ l0 we get

∣gp−gk∣l,m ≤ ∣gp−gk∣l0,l0 =
RRRRRRRRRRR

p

∑
j=k+1

g j −g j−1

RRRRRRRRRRRl0,l0
≤

p

∑
j=k+1

∣g j −g j−1∣l0,l0

≤
l0≤k≤ j

p

∑
j=k+1

∣g j −g j−1∣ j, j ≤(2)

p

∑
j=k+1

1
2 j <

1
2k

≤ 1
2l0

< ε.

Hence (gn)n≥max(l−2,1) is a Cauchy sequence in Eexp
l (Sl (K)) for all l ∈N≥2 and, since these

spaces are complete by Theorem 3.6(1), it has a limit function g ∈ Eexp (C∖K) by the same
arguments like in the proof of Corollary 5.6.
Thus we have for all l ∈N≥2

f ∣Sl(K) =
(1),

n≥max(l−2,1)

∂gn∣Sl(K) →n→∞
∂g∣Sl(K)

and hence the existence of g ∈ Eexp (K) with ∂g = f on C∖K is proven.

Moreover, we are already able to show that Fréchet spaces are admissible just by using classical
theory of tensor products of Fréchet spaces.
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5.17 Theorem. Let K ⊂R be compact and E a Fréchet space. Then

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

is surjective.

Proof. Let g ∈ Eexp (C∖K,E) . Then g ∈ Eexp (C∖K)⊗̂πE due to Remark 3.13(1). The mappings
idE ∶E → E and ∂ ∶Eexp (C∖K)→ Eexp (K) are linear, continuous and surjective, the latter one by
Theorem 5.16. Moreover, E and Eexp (C∖K) are Fréchet spaces, so ∂ ⊗̂π idE ∶Eexp (C∖K)⊗̂πE→
Eexp (C∖K)⊗̂πE is surjective by [61, 6.6 Theorem, p. 65], i.e. there is f ∈ Eexp (C∖K)⊗̂πE

such that (∂ ⊗̂π idE)( f ) = g. Again we have f ∈ Eexp (C∖K,E) by Remark 3.13(1) and ∂ ( f ) =
(∂ ⊗̂π idE)( f ) = g.

In order to obtain further classes of admissible spaces by the splitting theory for Fréchet spaces
of Vogt (see [63]) resp. PLS-spaces by Bonet and Domański (see [8]), we have to prove that the
space Oexp (C∖K) satisfies (Ω) for every compact set K ⊂R. Let us recall that a Fréchet space
F with an increasing fundamental system of semi-norms (∣∣∣⋅∣∣∣k)k∈N satisfies (Ω) if

∀ p ∈N ∃ q ∈N ∀ k ∈N ∃ n ∈N,C > 0 ∀ r > 0 ∶ Uq ⊂CrnUk+
1
r

Up (5.41)

where Uk ∶= {x ∈ F ∣ ∣∣∣x∣∣∣k ≤ 1} .
By [45, 29.13 Lemma, p. 349] this is equivalent to

∀ p ∈N ∃ q ∈N ∀ k ∈N ∃ 0 < θ < 1 C > 0 ∶ ∥y∥∗q ≤C∥y∥∗p
1−θ∥y∥∗k

θ
, ∀y ∈ F ′, (5.42)

where
∥y∥∗k ∶= sup{∣y(x)∣ ∣ ∣∣∣x∣∣∣k ≤ 1} ∈R∪{∞}

is the dual norm. In this context we remark:

5.18 Remark. Let F be as above and y ∈ F ′. Then the following assertions are equivalent:

(1) ∥y∥∗k <∞

(2) ∃C > 0 ∶ ∣y(x)∣ ≤C ∣∣∣x∣∣∣k ∀ x ∈ F

Proof. (1)⇒(2): Set C ∶= ∥y∥∗k +1. Then C ∈R>0 by assumption. Let x ∈ F, x ≠ 0. Then

∣y(x)∣ = ∣y( x
∣∣∣x∣∣∣k

)∣ ∣∣∣x∣∣∣k ≤ ∥y∥∗k ∣∣∣x∣∣∣k <C ∣∣∣x∣∣∣k .

For x = 0 this is obvious.
(2)⇒(1): Let x ∈ F, ∣∣∣x∣∣∣k ≤ 1. Then we get by assumption

∣y(x)∣ ≤C ∣∣∣x∣∣∣k ≤C

and thus ∥y∥∗k ≤C <∞.
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At first, the (Ω)-property will be proven for K =∅ and then for arbitrary compact sets K ⊂R.
For K = ∅ a decomposition theorem of Langenbruch, [41, Theorem 2.2, p. 225], will be used
which is stated below for the purpose of more clarity and comprehensibility. With the definition,
analogous to Definition 5.8b),

Hτ (Vt) ∶= { f ∈O(Vt) ∣ ∥ f ∥
τ,t ∶= sup

z∈Vt

∣ f (z)∣eτν(z) <∞}

for t > 0 and τ ∈ R, where Vt ∶= {z ∈C ∣ ∣Im(z)∣ < t} and ν is a weight function in the sense of
Definition 5.7, the following is valid:

5.19 Theorem. 1[41, Theorem 2.2, p. 225] There are t̃, K1, K2 > 0 such that for any τ0 < τ < τ2
there is C0 =C0 (sign(τ)) such that for any 0 < 2t0 < t < t2 < t̃ with

t0 ≤min
⎡⎢⎢⎢⎢⎣
K1,K2

√
τ −C0τ0

τ2−C0τ0

⎤⎥⎥⎥⎥⎦

there is C1 ≥ 1 such that for any r ≥ 0 and any f ∈Hτ (Vt) with ∥ f ∥
τ,t ≤ 1 the following holds: there

are f2 ∈O(Vt2) and f0 ∈O(Vt0) such that f = f0+ f2 on Vt0 and

∥ f0∥C0τ0,t0 ≤C1e−Gr and ∥ f2∥τ2,t2 ≤ er

where
G ∶=K1 min[1,

t − t0
2t̃

,
τ −C0τ0

τ2−C0τ0
] .

With this notation we have Oexp (C) = limprojn∈NH− 1
n
(Vn) and ∣⋅∣n = ∥⋅∥− 1

n ,n
, n > 1, for ν ∶=

∣Re(⋅)∣. To apply this theorem, one has to know the constants involved. In the following, the
notations of [41] are used and it is referred to the corresponding positions resp. conditions for
these constants. We have

t̃ ∶= 1
4ln(Γ)

by [41, Lemma 2.4, (2.15), p. 228] with Γ > 1 from Definition 5.7. For ν ∶= ∣Re(⋅)∣ every Γ > 1 is
possible. By [41, Corollary 2.6, p. 230-231] one has

C0 ∶=
⎧⎪⎪⎨⎪⎪⎩

4ΓB3 = 64cosh(1)
cos(1/2) Γ2 > 1, τ < 0,

1
4ΓB3

= cos(1/2)
64cosh(1)Γ2 < 1, τ ≥ 0,

where B3 ∶= 16cosh(1)
cos(1/2) Γ by [41, Lemma 2.4, p. 228-229].2 To get the constants K1 and K2, one has

to analyze the conditions for t0 in the proof of [41, Theorem 2.2, p. 225]. By the assumptions on
τ0, τ and τ2 and the choice of C0 we obtain

τ2−C0τ0 > τ2−C0τ ≥ τ2−τ > 0 (5.43)

and
τ −C0τ0 > τ −C0τ = τ (1−C0) > 0. (5.44)

1A superfluous constant depending on sign(τ0) is omitted.
2An error in part b) of the Lemma, p. 229, is corrected here such that the term cos(1/2) appears.
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By choosing D > 0 in the proof of [41, Theorem 2.2, (2.22) pp., p. 232-233] as D ∶= τ−C0τ0
(τ2−C0τ0)2Γ0

,

D = τ −C0τ0

(τ2−C0τ0)2Γ0
=min( 1

2Γ̃
,

1
2Γ̂

) τ −C0τ0

τ2−C0τ0
≤

(5.43),
(5.44)

min( 1
2Γ̃

,
1

2Γ̂
) τ −C0τ0

τ2−C0τ

holds where Γ0 ∶= max(Γ̃, Γ̂) with Γ̃, Γ̂ > 1 from the proof. For ν ∶= ∣Re(⋅)∣ all Γ̃, Γ̂ > 1 are
possible. With θ ≥ t−t0

2t̃ (p. 232) one gets on p. 233, below (2.24), due to the condition

t0 ≤ T0 ∶=min( t
2 ,

1
4a2B1t̃ ),

min(θ

2
,D,1) ≥min(1

2
,

1
2Γ0

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1
2Γ0

min(θ ,
τ −C0τ0

τ2−C0τ0
,1) ≥ 1

2Γ0
min(t − t0

2t̃
,

τ −C0τ0

τ2−C0τ0
,1)

≥
def. T0

min( 1
2Γ0

,
1

4a2B1t̃
)min(t − t0

2t̃
,

τ −C0τ0

τ2−C0τ0
,1)

=min( 1
2Γ0

,
1

2cosh(1) ln(Γ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶K1

min(t − t0
2t̃

,
τ −C0τ0

τ2−C0τ0
,1) =∶G

where a ∶= ln(Γ) (at the top of p. 231) and B1 ∶= 2cosh(1) by the proof of [41, Lemma 2.3, p.
226-227].3 Looking at the condition t0 ≤ T1 ∶=

√
D

a2B1
(p. 232), one gets

T1 =
1√

2Γ0a2B1

√
τ −C0τ0

τ2−C0τ0
= 1

2
√

cosh(1)Γ0 ln(Γ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶K2

√
τ −C0τ0

τ2−C0τ0
.

5.20 Theorem. Oexp (C) satisfies (Ω) .

Proof. a) Let p ∈N. Choose q ∈N, q > 128cosh(1)
cos(1/2) Γ2 p. To use the theorem above, one needs a

linear transformation between strips to get the decomposition on the desired strip, desired
in the spirit of Corollary 5.6. Choose T > 0 such that

T <min( 1
4Γ0 p

,
1

2
√

B1Γ0 pq ln(Γ)
,

1
8max(q,2k) ln(Γ)) .

Let τ ∶= − 1
qT , so τ < 0, and set

τ0 ∶= −
1

2C0 pT
and τ2 ∶=

1
2

max(τ,− 1
2kT

) ,

t0 ∶= 2pT and t ∶= qT and t2 ∶= 2max(q,2k)T.

3The term t
2 in the definition of T0 appears in the theorem as the condition 2t0 < t.
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By the choice of q and since τ < 0 and T > 0, we have

τ0 = −
1

128cosh(1)
cos(1/2) Γ2 pT

< − 1
qT

= τ < 1
2

max(τ,− 1
2kT

) = τ2.

By the choice of q and the last term in the choice of T we get

0 < 2t0 = 4pT < 128pT < 128cosh(1)
cos(1/2) Γ

2 pT < qT = t < 2max(q,2k)T < 1
4ln(Γ) = t̃.

Now the last condition for t0 has to be checked. First of all we obtain

τ −C0τ0

τ2−C0τ0
≥

(5.43),
(5.44)

τ −C0τ

τ2−C0τ0
≥

τ2,τ0<0

τ −C0τ

−C0τ0
= τ

τ0
(1− 1

C0
) = 2C0 p

q
(1− 1

C0
) = 2p

q
(C0−1)

= 2p
q

(64cosh(1)
cos(1/2) −1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥63

> 2p
q

(5.45)

and hence

min
⎡⎢⎢⎢⎢⎣
K1,K2

√
τ −C0τ0

τ2−C0τ0

⎤⎥⎥⎥⎥⎦

≥
(5.45)

min
⎡⎢⎢⎢⎣
K1,K2

√
2p
q

⎤⎥⎥⎥⎦
=min

⎡⎢⎢⎢⎢⎣

1
2Γ0

,
1

2cosh(1) ln(Γ) ,
1

2
√

cosh(1)Γ0 ln(Γ)

√
2p
q

⎤⎥⎥⎥⎥⎦

=min[ 1
2Γ0

,
1

2ln(Γ) min( 1
cosh(1) ,

1√
cosh(1)Γ0

√
2p
q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤

choice
of q

1√
cosh(1)Γ0

1√
cosh(1)

≤ 1
cosh(1)

)]

=min[ 1
2Γ0

,
1

2ln(Γ)
1√

cosh(1)Γ0

√
2p
q

] =min[ 1
2Γ0

,

√
2p√

2B1Γ0q ln(Γ)
]

>
choice
of T

2pT = t0.

b) Let r ≥ 0 and f ∈Oexp (C) such that ∥ f ∥− 1
q ,q

≤ 1. Then it follows that

1 ≥ ∥ f ∥− 1
q ,q

= sup
z∈Vq

∣ f (z)∣e−
1
q ∣Re(z)∣ = sup

z∈VqT

∣ f ( z
T
)

´¹¹¹¹¸¹¹¹¹¹¶
=∶ f̃ (z)

∣e−
1

qT ∣Re(z)∣ = ∥ f̃ ∥
τ,t ,

where f̃ ∈O(Vt) , and thus by Theorem 5.19 there are f̃ j ∈O(Vt j) , j = 0,2, such that

f̃ = f̃0+ f̃2 on Vt0 (5.46)
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and

C1e−Gr ≥ ∥ f̃0∥C0τ0,t0
= sup

z∈Vt0

∣ f̃0 (z)∣eC0τ0∣Re(z)∣ = sup
z∈Vt0/T

∣ f̃0 (T z)∣eC0τ0T ∣Re(z)∣

=
def.

of t0, τ0

sup
z∈V2p

∣ f̃0 (T z)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=∶ f0(z)

∣e−
1

2p ∣Re(z)∣ = ∥ f0∥− 1
2p ,2p , (5.47)

where f0 ∈O(V2p) , as well as

er ≥ ∥ f̃2∥τ2,t2
= sup

z∈Vt2

∣ f̃2 (z)∣eτ2∣Re(z)∣ = sup
z∈Vt2/T

∣ f̃2 (T z)∣eτ2T ∣Re(z)∣

≥
def.

of t2, τ2

sup
z∈V2k

∣ f̃2 (T z)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=∶ f2(z)

∣e− 1
2k ∣Re(z)∣ = ∥ f2∥− 1

2k ,2k , (5.48)

where f2 ∈O(V2k) . Furthermore, for z ∈Vt0/T =V2p the equation

f (z) = f̃ (T z) =
(5.46)

f̃0 (T z)+ f̃2 (T z) = f0 (z)+ f2 (z)

holds, thus f = f0+ f2 on V2p. By virtue of Corollary 5.6 the following is valid:

∀ ε > 0 ∃ f̂0, f̂2 ∈Oexp (C) ∶ i) ∥ f̂0− f0∥− 1
p ,p

< ε

ii) ∥ f̂2− f2∥− 1
k ,k

< ε (5.49)

Now we have to consider two cases. Let ε ∶=C1e−Gr. For k ≤ p we obtain via (5.49)i)

f = f̂0+( f2+ f0− f̂0) on V2p,

so
f2+ f0− f̂0 = f − f̂0 =∶ f̄2 on V2p (5.50)

where f̄2 ∈Oexp (C) and thus an holomorphic extension of the left hand side on C. Hence
we clearly have f = f̂0+ f̄2 and

∥ f̂0∥− 1
p ,p

≤ ∥ f̂0− f0∥− 1
p ,p

+∥ f0∥− 1
p ,p

≤
(5.49)i)

ε +∥ f0∥− 1
p ,p

≤ ε +∥ f0∥− 1
2p ,2p

≤
(5.47)

2C1°
=∶C2

e−Gr (5.51)

as well as

∥ f̄2∥− 1
k ,k

≤ ∥ f̄2− f2
´¹¹¹¹¸¹¹¹¹¹¶
=

(5.50),k≤p
f0− f̂0

∥− 1
k ,k
+∥ f2∥− 1

k ,k
≤ ∥ f0− f̂0∥− 1

p ,p
+∥ f2∥− 1

2k ,2k ≤
(5.49)i)

ε +∥ f2∥− 1
2k ,k

≤
(5.48)

C1 e−Gr
±
≤1

+er ≤ (C1+1)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=∶C3

er. (5.52)
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Analogously for k > p we obtain via (5.49)ii)

f = f̂2+( f0+ f2− f̂2) on V2p,

so
f0+ f2− f̂2 = f − f̂2 =∶ f̄0 on V2p (5.53)

where f̄0 ∈Oexp (C) and thus an holomorphic extension of the left hand side on C. Hence
we clearly have f = f̄0+ f̂2 and

∥ f̄0∥− 1
p ,p

= ∥ f − f̂2
²

=
(5.53)

f0+ f2− f̂2

∥− 1
p ,p

= ∥ f0+ f2− f̂2∥− 1
p ,p

≤ ∥ f2− f̂2∥− 1
p ,p

+∥ f0∥− 1
p ,p

≤
k>p

∥ f2− f̂2∥− 1
k ,k
+∥ f0∥− 1

2p ,2p ≤
(5.49)ii)

ε +∥ f0∥− 1
2p ,p

≤
(5.47)

2C1e−Gr =C2e−Gr (5.54)

as well as

∥ f̂2∥− 1
k ,k

≤ ∥ f̂2− f2∥− 1
k ,k
+∥ f2∥− 1

k ,k
≤

(5.49)ii)
ε +∥ f2∥− 1

2k ,2k ≤
(5.48)

C1e−Gr +er ≤C3er. (5.55)

c) Now set n ∶= ⌈1/G⌉ and C ∶=C3e
1
G ln(C2). Let r̃ > 0. For r̃ ≥ 1 there is r ≥ 0 such that

r̃ = eGr−ln(C2) =C−1
2 eGr

and we have by (5.51) and (5.52) for k ≤ p

∥ f̂0∥− 1
p ,p

≤C2e−Gr = 1
r̃
,

∥ f̄2∥− 1
k ,k

≤C3er =C3e
1
G ln(C2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=C

e
1
G(Gr−ln(C2)) =Cr̃

1
G ≤

r̃≥1
Cr̃n,

as well as by (5.54) and (5.55) for k > p

∥ f̄0∥− 1
p ,p

≤ 1
r̃
, ∥ f̂2∥− 1

k ,k
≤Cr̃n.

For 0 < r̃ < 1 we have, since q ≥ p,

∥ f ∥− 1
p ,p

≤ ∥ f ∥− 1
q ,q

≤ 1 < 1
r̃
.

Thus the theorem is proven.

The analogous result can be proven for the spaces Oν ,τ (C) of Definition 5.8 using Corollary
5.11 instead of Corollary 5.6 where ν is a weight function in the sense of Definition 5.7, at least,
if ν satisfies the conditions of Theorem 5.10 (see [59, Satz 2.2.1, Definition 2.2.2, p. 43, Satz
2.2.3, p. 44]).
The next lemma, in particular the main ideas, is due to Langenbruch (oral communication).
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5.21 Lemma. Let K ⊂R be non-empty and compact.

(1) ∀ p ∈N ∀ q > p ∀ k > q ∃ 0 < θ < 1, C > 0 ∶ ∥ f ∥q ≤C∥ f ∥1−θ

p ∥ f ∥θ

k ∀ f ∈Op (Up (K))

(2) P∗ (K)′b satisfies (Ω) .

Proof. (1) Let p < q < k and f ∈Op (Up (K)) . Considering the components of Up (K) we have
to distinguish three different cases.

(a) Let Zp be a bounded component of Up (K) . By Remark 3.3(1) there are only finitely
many components Zq of Uq (K) with Zq ⊂ Zp. For every such component Zq choose
ζ0 ∈ Zq ∩K, which exists since Zq is bounded. Let Zk be the (unique) component
of Uk (K) which contains ζ0. Zp is a proper simply connected subset of C. Thus
there exists a biholomorphic mapping ψ0∶Zp → D1 (0) with ψ0 (ζ0) = 0 due to the
Riemann mapping theorem (and Möbius transformation). In addition, Zp and D1 (0)
are Jordan domains (for the definition see [2, 2.8.5. Lemma, p. 193, 1.8.5. Jordan
Curve Theorem, p. 68]) and so there exists a homeomorphism ψ ∶Zp → D1 (0) such
that ψ ∣Zp

=ψ0 by [2, 2.8.8. Theorem (Caratheodory), p. 195]. Since ψ (Zq)⊂ψ (Zp)=
D1 (0) and ψ (Zq) is compact, as Zq is compact and ψ continuous, there is 0 < rq < 1
such that ψ (Zq) ⊂Drq (0). Moreover, there exists 0 < rk < rq such that Drk (0) ⊂ψ (Zk)
since 0 ∈ ψ (Zk) , ψ (Zk) is open by the open mapping theorem and ψ (Zk) ⊂ ψ (Zq) .
The function u ∶= f ○ (ψ−1) is holomorphic on D1 (0) and continuous on D1 (0), in
particular, ∣u∣ is subharmonic on D1 (0) and continuous on D1 (0). Setting

M (r) ∶= sup
∣z∣=r

∣u(z)∣ , 0 < r ≤ 1,

we obtain by virtue of [2, 4.4.32. Proposition (Hadamard’s Three Circles Theorem),
p. 338]

lnM (rq) ≤
ln(1/rq)
ln(1/rk)

lnM (rk)+
ln(rq/rk)
ln(1/rk)

lnM (1)

and hence
M (rq) ≤M (rk)θ M (1)1−θ

where θ ∶= ln(1/rq)
ln(1/rk)

. Because 0 < rk < rq < 1, we get 0 < θ < 1. By the maximum principle
we have

M (rq) = sup
∣z∣≤rq

∣u(z)∣ ≥ inf
∣z∣≤rq

e−
1
q ∣Re(ψ

−1(z))∣ sup
∣z∣≤rq

∣ f (ψ
−1 (z))∣e

1
q ∣Re(ψ

−1(z))∣

≥
ψ(Zq)⊂Drq(0)

inf
∣z∣≤rq

e−
1
q ∣Re(ψ

−1(z))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C0>0

sup
z∈Zq

∣ f (z)∣e
1
q ∣Re(z)∣
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as well as

M (rk)θ M (1)1−θ

= sup
∣z∣≤rk

∣u(z)∣θ sup
∣z∣≤1

∣u(z)∣1−θ ≤
⎛
⎝

sup
∣z∣≤rk

e−
1
k ∣Re(ψ

−1(z))∣⎞
⎠

θ

⎛
⎝

sup
∣z∣≤rk

∣ f (ψ
−1 (z))∣e

1
k ∣Re(ψ

−1(z))∣⎞
⎠

θ

⎛
⎝

sup
∣z∣≤1

e−
1
p ∣Re(ψ

−1(z))∣⎞
⎠

1−θ

⎛
⎝

sup
∣z∣≤1

∣ f (ψ
−1 (z))∣e

1
p ∣Re(ψ

−1(z))∣⎞
⎠

1−θ

≤
Drk(0)⊂ψ(Zk)

⎛
⎝

sup
∣z∣≤rk

e−
1
q ∣Re(ψ

−1(z))∣⎞
⎠

θ

⎛
⎝

sup
∣z∣≤1

e−
1
p ∣Re(ψ

−1(z))∣⎞
⎠

1−θ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C1

⎛
⎝

sup
z∈Zk

∣ f (z)∣e 1
k ∣Re(z)∣⎞

⎠

θ

⎛
⎝

sup
z∈Zp

∣ f (z)∣e
1
p ∣Re(z)∣⎞

⎠

1−θ

and therefore

sup
z∈Zq

∣ f (z)∣e
1
q ∣Re(z)∣ ≤ C1

C0

⎛
⎝

sup
z∈Zk

∣ f (z)∣e 1
k ∣Re(z)∣⎞

⎠

θ

⎛
⎝

sup
z∈Zp

∣ f (z)∣e
1
p ∣Re(z)∣⎞

⎠

1−θ

≤ C1

C0
∥ f ∥θ

k ∥ f ∥1−θ

p . (5.56)

(b) Let Zp be an unbounded component of Up (K) , w.l.o.g. the real part of Zp is bounded
from below and unbounded from above. Let ζ0 ∈ R such that ∣ζ0∣ ≥ k+ 1

k . Then we
have D 1

j
(ζ0) ⊂ ([ j,∞[+i[−1

j ,
1
j ]) for j ∈ {p,q,k} . Applying Hadamard’s Three Cir-

cles Theorem on u ∶= ∣ f ∣ again, we get M(1
q) ≤M (1

k)
θ

M( 1
p)

1−θ

where

θ ∶=
ln( 1

p/1
q)

ln( 1
p/1

k)
= ln(q/p)

ln(k/p)

and 0 < θ < 1. Furthermore, the following inequalities are valid: For z ∈Dr (ζ0) , r > 0,

r ≥ ∣z−ζ0∣ ≥
ζ0∈R

∣Re(z)−ζ0∣ ≥
⎧⎪⎪⎨⎪⎪⎩

∣Re(z)∣− ∣ζ0∣
∣ζ0∣− ∣Re(z)∣

implying
− r− ∣ζ0∣ ≤ − ∣Re(z)∣ ≤ r− ∣ζ0∣ . (5.57)

Like in the first part of the proof we obtain

M(1
q
) ≥ inf

∣z−ζ0∣≤ 1
q

e−
1
q ∣Re(z)∣ sup

∣z−ζ0∣≤ 1
q

∣ f (z)∣e
1
q ∣Re(z)∣ ≥

(5.57)
e−

1
q(

1
q+∣ζ0∣) sup

∣z−ζ0∣≤ 1
q

∣ f (z)∣e
1
q ∣Re(z)∣
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and

M(1
k
)

θ

M(1
p
)

1−θ

≤
⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

k

e−
1
k ∣Re(z)∣

⎞
⎟
⎠

θ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤

(5.57)
(e

1
k (

1
k −∣ζ0∣))

θ

⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

p

e−
1
p ∣Re(z)∣

⎞
⎟
⎠

1−θ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤

(5.57)
(e

1
p (

1
p−∣ζ0∣))

1−θ

⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

k

∣ f (z)∣e 1
k ∣Re(z)∣

⎞
⎟
⎠

θ

⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

p

∣ f (z)∣e
1
p ∣Re(z)∣

⎞
⎟
⎠

1−θ

.

Combining these inequalities, we get

sup
∣z−ζ0∣≤ 1

q

∣ f (z)∣e
1
q ∣Re(z)∣

≤ e
1

q2 +
θ

k2 +
1−θ

p2 +∣ζ0∣( 1
q−(

θ

k +
1−θ

p ))⎛⎜
⎝

sup
∣z−ζ0∣≤ 1

k

∣ f (z)∣e 1
k ∣Re(z)∣

⎞
⎟
⎠

θ

⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

p

∣ f (z)∣e
1
p ∣Re(z)∣

⎞
⎟
⎠

1−θ

.

(5.58)

The next step is to prove that

1
q
−(θ

k
+ 1−θ

p
) ≤ 0. (5.59)

Since p < q, we have q = cp, where c ∶= q
p > 1, and by definition of θ

1
q
−(θ

k
+ 1−θ

p
) = k− p

kp
θ + 1−c

cp
= k− p

kp
ln(c)

ln(k/p) +
1−c
cp

.

Hence (5.59) is equivalent to 1− p
k + c−1

c ln(c) ln( p
k ) ≤ 0. Now we take a closer look at the

function g∶R>0→R, g(x) ∶= 1−x+ c−1
c ln(c) lnx. Then g′ (x) = −1+ c−1

c ln(c)x and g′ (x) ≥ 0

is equivalent to x ≤ c−1
c ln(c) . The only zeros of g are x = 1

c < 1 and x = 1. As 1
c ≤ c−1

c ln(c) , we

have g(x) ≤ 0 for 0 < x ≤ 1
c . Keeping in mind that cp = q < k, we gain p

k < 1
c and so

1− p
k
+ c−1

c ln(c) ln( p
k
) = g( p

k
) ≤ 0

which proves (5.59). Merging (5.58) and (5.59), it follows

sup
∣z−ζ0∣≤ 1

q

∣ f (z)∣e
1
q ∣Re(z)∣

≤ e
1

q2 +
θ

k2 +
1−θ

p2
⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

k

∣ f (z)∣e 1
k ∣Re(z)∣

⎞
⎟
⎠

θ

⎛
⎜
⎝

sup
∣z−ζ0∣≤ 1

p

∣ f (z)∣e
1
p ∣Re(z)∣

⎞
⎟
⎠

1−θ
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and thus

sup
z∈C,

d(z,[k+1/k,∞[)≤1/q

∣ f (z)∣e
1
q ∣Re(z)∣ = sup

ζ0∈R,
ζ0≥k+1/k

sup
∣z−ζ0∣≤ 1

q

∣ f (z)∣e
1
q ∣Re(z)∣

≤ e
1

q2 +
θ

k2 +
1−θ

p2 ( sup
z∈C,

d(z,[k+1/k,∞[)≤1/k

∣ f (z)∣e 1
k ∣Re(z)∣)

θ

( sup
z∈C,

d(z,[k+1/k,∞[)≤1/p

∣ f (z)∣e
1
p ∣Re(z)∣)

1−θ

≤ e
1

q2 +
θ

k2 +
1−θ

p2 ∥ f ∥θ

k ∥ f ∥1−θ

p . (5.60)

(c) Let Zp be w.l.o.g. like in part (b) and define Z̃p ∶=Zp∩(]−∞,k+ 1/k[+iR) . By Remark
3.3(1) there are only finitely many components Z̃q of Uq (K)∩ (]−∞,k+ 1/k[+iR)
with Z̃q ⊂ Z̃p. For every such component Z̃q choose ζ0 ∈ Z̃q∩R. Let Z̃k be the (unique)
component of Uk (K)∩ (]−∞,k+ 1/k[+iR) which contains ζ0. The rest is analogous
to part (a) and thus there are C̃0, C̃1 > 0 and 0 < θ < 1 such that

sup
z∈Z̃q

∣ f (z)∣e
1
q ∣Re(z)∣ ≤ C̃1

C̃0
∥ f ∥θ

k ∥ f ∥1−θ

p . (5.61)

(d) Let us first remark the following: Let B be a set, B0 ⊂ B, 0 < θ0 < θ1 < 1, h∶B0→R≥0,
g∶B→R≥0 and h ≤ g on B0. Then

(sup
z∈B0

h(z))
θ1

(sup
z∈B

g(z))
1−θ1

≤ (sup
z∈B0

h(z))
θ0

(sup
z∈B

g(z))
1−θ0

.

Now take the minimum of all the θs which appear in part (a)-(c). There are finitely
many of them and denote this minimum again with θ . Take the maximum of the

constants C1
C0
, e

1
q2 +

θ

k2 +
1−θ

p2 and C̃1
C̃0

which appear in part (a)-(c). There are again finitely
many of them and denote this maximum with C. We apply the remark above on B0 ∶=
Uk (K), B ∶=Up (K), h(z) ∶= ∣ f (z)∣e 1

k ∣Re(z)∣ and g(z) ∶= ∣ f (z)∣e
1
p ∣Re(z)∣. Then we get

due to (5.56), (5.60) and (5.61)

∥ f ∥q ≤C∥ f ∥θ

k ∥ f ∥1−θ

p ,

so the statement is proven.

(2) Let p ∈N and choose q > p. Let k ∈N. If k ≤ p, then we get for an arbitrary 0 < θ < 1 and all
y ∈ (P (K)′b)

′
by definition

∥y∥∗q ≤
p<q

∥y∥∗p = ∥y∥∗p
1−θ∥y∥∗p

θ ≤
k≤p

∥y∥∗p
1−θ∥y∥∗k

θ
.

Let k > p. If k ≤ q, we have for an arbitrary 0 < θ < 1 and all y ∈ (P (K)′b)
′

by definition

∥y∥∗q ≤
k≤q

∥y∥∗k = ∥y∥∗k
1−θ∥y∥∗k

θ ≤
p<k

∥y∥∗p
1−θ∥y∥∗k

θ
.
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Let k > q and y ∈ (P (K)′b)
′
. If ∥y∥∗p =∞, then (5.42) is obviously fulfilled. Let ∥y∥∗p <∞.

As P∗ (K) is a DFS-space by Theorem 3.5(1), the sets Bn ∶= { f ∈On (Un (K)) ∣ ∥ f ∥n ≤ 1} ,
n ∈N, are a fundamental system of bounded sets of P∗ (K) and hence the semi-norms

∣∣∣x∣∣∣n ∶= sup
f ∈Bn

∣x( f )∣ , x ∈P∗ (K)′ ,

form a fundamental system of semi-norms of P∗ (K)′b . Furthermore, P∗ (K) is reflexive
and thus there is an unique f ∈P∗ (K) such that J ( f )= y where J∶P∗ (K)→P∗ (K)′′ denotes
the canonical embedding. Then we obtain by [45, 22.14 Satz, p. 237] for all n ≥ p

∞ > ∥y∥∗p ≥
p≤n

∥y∥∗n = sup{ ∣y(x)∣
²

=∣J( f )(x)∣=∣x( f )∣

∣ ∣∣∣x∣∣∣n ≤ 1} = sup{∣x( f )∣ ∣ x ∈ B○n} = ∥ f ∥Bn

= inf{t > 0 ∣ f ∈ tBn}

where ∥ f ∥Bn
denotes the Minkowski functional of Bn. In particular, this means that

{t > 0 ∣ f ∈ tBn} ≠∅ and thus we have f ∈On (Un (K)) as well as

∥y∥∗n = inf{t > 0 ∣ f ∈ tBn} = ∥ f ∥n

for all n ≥ p. So by part (1), there are C > 0 and 0 < θ < 1, only depending on p, q and k,
such that

∥y∥∗q = ∥ f ∥q ≤C∥ f ∥1−θ

p ∥ f ∥θ

k =C∥y∥∗p
1−θ∥y∥∗k

θ
.

5.22 Theorem. Let K ⊂R be compact. Then Oexp (C∖K) satisfies (Ω) .

Proof. By Theorem 4.1 Oexp (C∖K)/Oexp (C) is topologically isomorphic to P∗ (K)′b . Since
(Ω) is a linear-topological invariant by [45, 29.11 Lemma (1), p. 347], Oexp (C∖K)/Oexp (C)
satisfies (Ω) due to Lemma 5.21(2). The sequence

0→Oexp (C) i→Oexp (C∖K) q→Oexp (C∖K)/Oexp (C)→ 0

is an exact sequence of Fréchet spaces where i means the inclusion and q the quotient mapping.
Oexp (C) satisfies (Ω) by Theorem 5.20 and Oexp (C∖K)/Oexp (C) as well, thus Oexp (C∖K)
by [64, 1.7. Lemma, p. 230], too.

The next lemma provides some useful relations between spaces of operators.

5.23 Lemma.

(1) Let X be a complete, reflexive locally convex space and (Y,(∣∣∣⋅∣∣∣n)n∈N) a Fréchet space.

Then Lb (X ′
b,Y

′
b) ≅ Lb(Y,(X ′

b)
′
b)(≅ Lb (Y,X)) via taking adjoints.

(2) Let X be a complete Montel space. Then Lb (X ′
b,E) ≅ XεE, where the topological isomor-

phism is the identity mapping.
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Proof. (1) a) Consider the mapping

t (⋅)∶Lb (X ′
b,Y

′
b)→ Lb(Y,(X ′

b)
′
b) , u↦ tu,

defined by tu(y)(x′) ∶= u(x′)(y) for y ∈Y and x′ ∈ X ′.
Let y ∈ Y. Since u ∈ L(X ′

b,Y
′
b) and {y} is bounded in Y, there is a bounded set B ⊂ X

and a constant C > 0 such that

∣tu(y)(x′)∣ = ∣u(x′)(y)∣ ≤C sup
x∈B

∣x′ (x)∣

for all x′ ∈ X ′. Thus tu(y) ∈ (X ′
b)
′
.

The canonical embedding J∶Y → (Y ′
b)
′
b is a topological isomorphism between Y and

J (Y) by [45, 25.10 Corollar, p. 280] because Y is a Fréchet space. For a bounded set
M ⊂ X ′

b we have

sup
x′∈M

∣tu(y)(x′)∣ = sup
x′∈M

∣u(x′)(y)∣ = sup
x′∈M

∣⟨J (y) ,u(x′)⟩∣ .

The next step is to prove that u(M) is bounded in Y ′
b. Let N ⊂ Y bounded. Since

u ∈ L(X ′
b,Y

′
b) , there is again a bounded set B ⊂ X and a constant C > 0 such that

sup
x′∈M

sup
y∈N

∣u(x′)(y)∣ ≤C sup
x′∈M

sup
x∈B

∣x′ (x)∣ <∞,

where the last estimate is due to the boundedness of M ⊂ X ′
b. By the remark about the

canonical embedding there are n ∈N and C0 > 0 such that

sup
x′∈M

∣tu(y)(x′)∣ = sup
y′∈u(M)

∣⟨J (y) ,y′⟩∣ ≤C0 ∣∣∣y∣∣∣n ,

so tu ∈ L(Y,(X ′
b)
′
b) and the mapping t (⋅) is well-defined.

b) injectivity: Let u, v ∈ L(X ′
b,Y

′
b) with tu = tv. This is equivalent to

u(x′)(y) = tu(y)(x′) = tv(y)(x′) = v(x′)(y)

for all y ∈Y and all x′ ∈ X ′. This implies u(x′) = v(x′) for all x′ ∈ X ′, hence u = v.

c) surjectivity: Consider the mapping

t (⋅)∶Lb(Y,(X ′
b)
′
b)→ Lb (X ′

b,Y
′
b) , u↦ tu,

defined by tu(x′)(y) ∶= u(y)(x′) for x′ ∈ X ′ and y ∈Y.
Let x′ ∈ X ′. Since u ∈ Lb(Y,(X ′

b)
′
b) and {x′} is bounded in X ′, there are n ∈ N and a

constant C > 0 such that

∣tu(x′)(y)∣ = ∣u(y)(x′)∣ ≤C ∣∣∣y∣∣∣n

for all y ∈Y. Thus tu(x′) ∈Y ′.
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5 Strictly admissible spaces

Let B ⊂ Y bounded. The reflexivity of X implies that for every u(y) , y ∈ B, there is
a unique xy ∈ X such that J0 (xy) = u(y) where J0∶X → (X ′

b)
′
b denotes the canonical

embedding. Then we get

sup
y∈B

∣tu(x′)(y)∣ = sup
y∈B

∣u(y)(x′)∣ = sup
y∈B

∣⟨J0 (xy) ,x′⟩∣ = sup
y∈B

∣x′ (xy)∣ .

We claim that D ∶= {xy ∣ y ∈ B} is a bounded set in X . Let N ⊂X ′ be finite. Then the set
M ∶= {tu(x′) ∣ x′ ∈N} ⊂Y ′ is finite. The set B is weakly bounded since it is bounded.
We have

sup
y∈B

sup
x′∈N

∣x′ (xy)∣ = sup
y∈B

sup
x′∈N

∣tu(x′)(y)∣ = sup
y∈B

sup
y′∈M

∣y′ (y)∣ <∞,

where the last estimate follows from the fact that B is weakly bounded. Thus D is
weakly bounded and by the Mackey theorem bounded in X . Therefore, we obtain

sup
y∈B

∣tu(x′)(y)∣ = sup
y∈B

∣x′ (xy)∣ = sup
x∈D

∣x′ (x)∣

for all x′ ∈ X ′ connoting tu ∈ L(X ′
b,Y

′
b) .

Let u ∈ L(Y,(X ′
b)
′
b) . Then we have tu ∈ Lb (X ′

b,Y
′
b). In addition, for all y ∈ Y and all

x′ ∈ X ′
t (tu)(y)(x′) = tu(x′)(y) = u(y)(x′)

is valid and so t (tu)(y) = u(y) for all y ∈Y proving the surjectivity.

d) continuity: Let M ⊂Y and B ⊂ X ′
b be bounded sets. Then

sup
y∈M

sup
x′∈B

∣tu(y)(x′)∣ = sup
y∈M

sup
x′∈B

∣u(x′)(y)∣ = sup
x′∈B

sup
y∈M

∣u(x′)(y)∣

= sup
x′∈B

sup
y∈M

∣t (tu)(x′)(y)∣

holds for all u ∈ L(X ′
b,Y

′
b) . Therefore, t (⋅) and its inverse are continuous.

The adjunct in brackets follows by the reflexivity of X , since the mapping

S∶Lb(Y,(X ′
b)
′
b)→ Lb (Y,X) ,

defined by S(u)(y) ∶= J−1
0 (u(y)) for u ∈ Lb(Y,(X ′

b)
′
b) and y ∈ Y, is a topological isomor-

phism.

(2) Let T ∈ L(X ′
b,E) . For α ∈ A there are a bounded set B ⊂ X and C > 0 such that

pα (T (x′)) ≤C sup
x∈B

∣x′ (x)∣ ≤C sup
x∈B

∣x′ (x)∣

for every x′ ∈ X ′. The set B is compact, since B is bounded and X a Montel space, and thus
precompact by [25, 3.5.3. Corollary, p. 65]. Hence we gain T ∈ L(X ′

c,E) .
Let M ⊂ X ′ be equicontinuous. Due to [25, 8.5.1. Theorem (a), p. 156] M is bounded in
X ′

b. Therefore,
id∶Lb (X ′

b,E)→ Le (X ′
c,E) = XεE
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is continuous.
Let T ∈ L(X ′

c,E) . For α ∈ A there are a precompact set B ⊂ X and C > 0 such that

pα (T (x′)) ≤C sup
x∈B

∣x′ (x)∣

for every x′ ∈ X ′. By [60, Chap. 14, Corollary 1, p. 137] B is bounded in X since it is
precompact and so we get T ∈ L(X ′

b,E) .
Let M be a bounded set in X ′

b. Then M is equicontinuous by virtue of [60, Theorem 33.2, p.
349], as X , being a Montel space, is barreled by [45, 24.24 Bemerkung (a), p. 267]. Thus

id∶Le (X ′
c,E)→ Lb (X ′

b,E)

is continuous.

Now we use the results obtained so far and splitting theory to enlarge our collection of admis-
sible spaces. We recall that a Fréchet space (F,(∣∣∣⋅∣∣∣k)k∈N) has (DN) by [45, Chap. 29, Definition,
p. 338] if:

∃ p ∈N ∀k ∈N ∃ n ∈N,C > 0 ∀ x ∈ F ∶ ∣∣∣x∣∣∣2k ≤C ∣∣∣x∣∣∣p ∣∣∣x∣∣∣n
A PLS-space X = limprojN∈NXN , where XN = limindn∈N (XN,n, ∣∣∣⋅∣∣∣N,n) are DFS-spaces, has (PA),
if:

∀N ∃M ∀K ∃ n ∀m ∀ η > 0 ∃ k,C,r0 > 0 ∀ r > r0 ∀ x′ ∈ X ′
N ∶

∣∣∣x′ ○ iMN ∣∣∣∗M,m ≤C(rη ∣∣∣x′ ○ iKN ∣∣∣∗K,k+
1
r
∣∣∣x′∣∣∣∗N,n)

where ∣∣∣⋅∣∣∣∗ denotes the dual norm of ∣∣∣⋅∣∣∣ [8, Section 4, (24), p. 577].

5.24 Theorem. Let K ⊂R be compact. If E ∶= F ′
b where F is a Fréchet space satisfying (DN) or

E is an ultrabornological PLS-space satisfying (PA) , then

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

is surjective.

Proof. The sequence

0→Oexp (C∖K) i→Eexp (C∖K) ∂→Eexp (C∖K)→ 0 (5.62)

where i means the inclusion, is an exact sequence of Fréchet spaces by Theorem 5.16 and hence
topologically exact as well. Denote by J0∶Oexp (C∖K)→Oexp (C∖K)′′ and J1∶Eexp (C∖K)→
Eexp (C∖K)′′ the canonical embeddings which are topological isomorphisms since Oexp (C∖K)
and Eexp (C∖K) are reflexive. Then the exactness of (5.62) implies that

0→Oexp (C∖K)′′ i0→Eexp (C∖K)′′ ∂ 1→Eexp (C∖K)′′→ 0, (5.63)
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5 Strictly admissible spaces

where i0 ∶= J0 ○ i○J−1
0 and ∂ 1 ∶= J1 ○∂ ○J−1

1 , is an exact topological sequence. Topological as the
bidual of a Fréchet space is again a Fréchet space by [45, 25.10 Corollar, p. 280].

• Let E ∶= F ′
b where F is a Fréchet space with (DN) . Then Ext1(F,Oexp (C∖K)′′) = 0 by

[63, 5.1. Theorem, p. 186] since Oexp (C∖K) satisfies (Ω) due to Theorem 5.22 and

therefore Oexp (C∖K)′′ as well. Combined with the exactness of (5.63) this implies that
the sequence

0→ L(F,Oexp (C∖K)′′)
i∗0→L(F,Eexp (C∖K)′′)∂

∗
1→L(F,Eexp (C∖K)′′)→ 0

is exact by [53, Proposition 2.1, p. 13-14] where i∗0 (B) ∶= i0 ○B and ∂
∗
1 (D) ∶= ∂ 1 ○D for

B ∈ L(F,Oexp (C∖K)′′) and D ∈ L(F,Eexp (C∖K)′′) . In particular, we obtain that

∂
∗
1 ∶L(F,Eexp (C∖K)′′)→ L(F,Eexp (C∖K)′′) (5.64)

is surjective. Via Theorem 3.11 and Lemma 5.23 (X = Eexp (C∖K) and Y = F) we have,
with the notation used there, the isomorphism

ψ ∶= T ○ t (⋅)∶L(F,Eexp (C∖K)′′)→ Eexp (C∖K,E) , ψ (u) = [T ○ t (⋅)](u) = tu○∆,

and the inverse

ψ
−1 ( f ) = (T ○ t (⋅))−1 ( f ) = [t (⋅)○T−1]( f ) = t (J−1 ○u f ), f ∈ Eexp (K,E) ,

where J∶E → E ′′ is the canonical embedding.
Let g ∈Eexp (C∖K,E) . Then ψ−1 (g) ∈L(F,Eexp (C∖K)′′) and by the surjectivity of (5.64)

there is u ∈L(F,Eexp (C∖K)′′) such that ∂
∗
1u =ψ−1 (g) . So we get ψ (u) ∈ Eexp (C∖K,E) .

Now we want to show that ∂ψ (u) = g is valid. Consider the equation

⎡⎢⎢⎢⎢⎣

tu(δz)− tu(δz+hek)
h

⎤⎥⎥⎥⎥⎦
(x) = tu(

δz−δz+hek

h
)(x) = u(x)(

δz−δz+hek

h
)

for x ∈ F, z ∈C∖K, h ≠ 0 and ek denoting the unit vectors in R2. Since every bounded set in
Eexp (C∖K) , being a Montel space by Remark 3.8, is relatively compact, we get like in the

first part of the proof of Theorem 3.11 ∂ β (ψ (u))(z)= tu(δ
(β)
z ) for β ∈N2

0 by virtue of [16,

10.3.4 Satz, p. 53] and hence ∂ (ψ (u))(z) = tu(∂δz) where ∂δz ( f ) ∶= δz(∂ f ) = ∂ f (z) for

f ∈ Eexp (C∖K) . So for all x ∈ F and z ∈C∖K we have

∂ (ψ (u))(z)(x) = tu(∂δz)(x) = u(x)(∂δz) = ⟨∂δz,J−1
1 (u(x))⟩ = ⟨δz,∂J−1

1 (u(x))⟩

= ⟨[J1 ○∂ ○J−1
1 ](u(x)) ,δz⟩ = ⟨(∂ 1 ○u)(x) ,δz⟩ = ⟨(∂

∗
1u)(x) ,δz⟩

=ψ
−1 (g)(x)(δz) = t (J−1 ○ug)(x)(δz) = (J−1 ○ug)(δz)(x)

= g(z)(x) .
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For the last equation see the end of the proof of part 1)c) of Theorem 3.11.
Thus ∂ (ψ (u))(z) = g(z) for every z ∈C∖K which proves the surjectivity.

• Let E be an ultrabornological PLS-space satisfying (PA) . Since Oexp (C∖K) is a Fréchet-

Schwartz space, its strong dualOexp (C∖K)′ is a DFS-space (also called LS-space). By [8,

Theorem 4.1, p. 577] we obtain Ext1PLS(Oexp (C∖K)′ ,E) = 0 as the bidual Oexp (C∖K)′′

satisfies (Ω) and E is a PLS-space satisfying (PA) . Moreover, we have Proj1 E = 0 due
to [65, Corollary 3.3.10, p. 46] because E is an ultrabornological PLS-space. Then the
exactness of the sequence (5.63), [8, Theorem 3.4, p. 567] and [8, Lemma 3.3, p. 567]
(in the lemma condition (c) is fulfilled, since Oexp (C∖K)′ is the strong dual of a nuclear

Fréchet space, and one chooses H =Oexp (C∖K)′′ and F = G = Eexp (C∖K)′′), imply that
the sequence

0→ L(E ′,Oexp (C∖K)′′)
i∗0→L(E ′,Eexp (C∖K)′′)∂

∗
1→L(E ′,Eexp (C∖K)′′)→ 0

is exact. The mappings i∗0 and ∂
∗
1 are defined like in the first part. Especially, we get that

∂
∗
1 ∶L(E ′,Eexp (C∖K)′′)→ L(E ′,Eexp (C∖K)′′) (5.65)

is surjective.
By [13, Remark 4.4, p. 1114] we have Lb(Eexp (C∖K)′ ,E ′′) ≅ Lb(E ′,Eexp (C∖K)′′) via

taking adjoints, since Eexp (C∖K) , being a Fréchet-Schwartz space, is a PLS-space and
hence its strong dual a LFS-space, which is regular by [65, Corollary 6.7, p. 114], and E is
an ultrabornological PLS-space. In addition, the mapping

S∶Lb(Eexp (C∖K)′ ,E ′′)→ Lb(Eexp (C∖K)′ ,E) ,

defined by S(u)(y) ∶= J−1 (u(y)) for u ∈ Lb(Eexp (C∖K)′ ,E ′′) and y ∈ Eexp (C∖K)′ , is
a topological isomorphism because E is reflexive by [11, Theorem 3.2, p. 58]. Due to
Theorem 3.11 and Lemma 5.23(2) we obtain the isomorphism

ψ ∶= T ○J−1 ○ t (⋅)∶L(E ′,Eexp (C∖K)′′)→ Eexp (C∖K,E) ,
ψ (u) = [T ○J−1 ○ t (⋅)](u) = J−1 ○ tu○∆,

with the inverse

ψ
−1 ( f ) = (T ○J ○ t (⋅))−1 ( f ) = [t (⋅)○J ○T−1]( f ) = t (J ○J−1 ○u f ) = tu f

for f ∈ Eexp (C∖K,E) .
Let g ∈ Eexp (C∖K,E) . Then ψ−1 (g) ∈ L(E ′,Eexp (C∖K)′′) and by the surjectivity of

(5.65) there exists u ∈ L(E ′,Eexp (C∖K)′′) such that ∂
∗
1u = ψ−1 (g) . So we have ψ (u) ∈

Eexp (C∖K,E) . The last step is to show that ∂ψ (u) = g is valid. Like in the first part we
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gain for z ∈C∖K
∂ (ψ (u))(z) = J−1 [tu(∂δz)]

and for x ∈ E ′

tu(∂δz)(x) = u(x)(∂δz) =ψ
−1 (g)(x)(δz) = tug (x)(δz) = δz (x○g) = x(g(z))

= J (g(z))(x) .

Thus we have tu(∂δz) = J (g(z)) and therefore ∂ (ψ (u))(z) = g(z) for all z ∈C∖K.

Now let us consider the non-weighted case, i.e. the question for which locally convex spaces
E is

∂ ∶C∞ (U,E)→C∞ (U,E) (5.66)

surjective for every open set U ⊂ C. By [20, Theorem 1.4.4, p. 12] this is fulfilled for E = C.
Furthermore, O(U) and C∞ (U) , both equipped with the topology of uniform convergence on
compact subsets (of all partial derivatives for the latter one), are nuclear Fréchet spaces by [45,
5.18 Beipiele (3)+(4), p. 38, 28.9 Beispiele (1)+(4), p. 330-331] and one has

O(U,E) ≅O(U)εE ≅O(U)⊗̂εE ≅O(U)⊗̂πE

plus
C∞ (U,E) ≅C∞ (U)εE ≅C∞ (U)⊗̂εE ≅C∞ (U)⊗̂πE

by [25, 16.7.5 Corollary, p. 366] resp. [60, Theorem 44.1, p. 449] for any complete locally con-
vex space E. Like in Theorem 5.17 this implies that the ∂−operator in (5.66) is surjective if E is a
Fréchet space. If E ∶= F ′

b where F is a Fréchet space satisfying (DN) or E is an ultrabornological
PLS-space satisfying (PA) , this holds due to [62, 2.6 Theorem and remarks in the beginning]
resp. [13, Corollary 3.9, p.1112] as well.
Summarizing this remark, Theorem 5.17 and Theorem 5.24, we obtain:

5.25 Theorem. The following spaces E are strictly admissible:

• Fréchet spaces

• E ∶= F ′
b where F is a Fréchet space satisfying (DN) .

• Ultrabornological PLS-spaces satisfying (PA)

We will now provide examples of ultrabornological PLS-spaces satisfying (PA) and examples
of such spaces which do not have (PA) as well as examples of LFS-space not being strictly ad-
missible. These examples are directly taken from [13, Corollary 4.8, p. 1116] and [13, Corollary
4.9, p. 1117].

5.26 Example. The following spaces are ultrabornological PLS-spaces with property (PA) , in
particular, strictly admissible:

• an arbitrary Fréchet-Schwartz space;

• the strong dual of a power series space of inifinite type Λ′
∞ (α) ;
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• a PLS-type power series space Λr,s (α,β) whenever s =∞ or Λr,s (α,β) is a Fréchet space;

• the strong dual of any space of holomorphic functionsO(U)′ , where U is a Stein manifold
with the strong Liouville property (for instance, for U =Cn);

• the space of germs of holomorphic functions O(K) where K is a completely pluripolar
compact subset of a Stein manifold (for instance K consists of one point);

• the space of tempered distributions S ′ and the space of Fourier ultra-hyperfunctions P ′∗∗;

• the space of distributions D′ (U) and ultradistributions of Beurling type D′(ω) (U) for any
open set U ⊂Rn;

• the weighted distribution spaces (K {pM})′ of Gelfand and Shilov if the weight M satisfies

sup
∣y∣≤1

M (x+y) ≤C inf
∣y∣≤1

M (x+y) if x ∈Rn.

• the kernel of any linear partial differential operator with constant coefficients in D′ (U) or
in D′(ω) (U) when U ⊂Rn is open and convex;

• the space Lb (X ,Y) where X has (DN) , Y has (Ω) and both are nuclear Fréchet spaces. In
particular, Lb (Λ∞ (α) ,Λ∞ (β)) if both spaces are nuclear.

5.27 Example.

(a) The following ultrabornological PLS-spaces do not have (PA) ∶
• the strong dual of power series space of finite type Λ′

0 (α) ;

• the space of ultradifferentiable functions of Roumieu type E{ω} (U) , where ω is a
non-quasianalytic weight and U ⊂Rn is an arbitrary open set;

• the strong dual of any space of holomorphic functions O(U)′ where U is a Stein
manifold which does not have the strong Liouville property (for instance, U =Dn the
polydisc, U =Bn the unit ball etc.);

• the space of germs of holomorphic functions O(K) where K is compact and not
completely pluripolar (for instance, K =Dn

or K =Bn);

• the space of distributions (or ultradistributions) with compact support E ′ (U)
(or E ′(ω) (U)) for U ⊂Rn open;

• the space of real analytic functions A(U) for any open set U ⊂Rn.

(b) For the following LFS-spaces E the map (5.66) is not surjective and thus E not strictly
admissible:

• the space of test functions D(U) ;

• the spaces of test functions for ultradistributions D(ω) (U) , the space of ultradistribu-
tions of Roumieu type with comp. support E ′{ω} (U) , where ω is a non-quasianalytic
weight, U ⊂Rn is an arbitrary open set;

• the strong dual A(U)′b for an arbitrary open set U ⊂Rn.
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In Theorem 6.11 we will see that a reasonable theory of E−valued Fourier hyperfunctions is
possible if E is strictly admissible. This raises the question if the condition of E being strictly
admissible is also necessary for a reasonable theory of E−valued Fourier hyperfunctions. At
least for ultrabornological PLS-spaces E the answer will be given by Theorem 6.14, namely,
a reasonable theory of E−valued Fourier hyperfunctions is possible, if and only if E is strictly
admissible, and E is strictly admissible, if and only if E has (PA) . In particular, for all spaces
in Example 5.26 a theory of that kind is possible whereas for the spaces in Example 5.27(a) no
construction of a reasonable sheaf of E−valued Fourier hyperfunctions exists. For the spaces in
Example 5.27(b) this question is still open.
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In this section we construct E-valued Fourier hyperfunctions in one variable as the sheaf gener-
ated by equivalence classes of compactly supported P∗-functionals. This construction relies on
the Köthe duality proven in Section 4 (see Theorem 4.1) and the method is sometimes called du-
ality method (see [22] and [13]). Furthermore, a description of E-valued Fourier hyperfunctions
as boundary values of slowly increasing holomorphic functions is provided and finally the neces-
sity of the conditions that were used for the construction of vector-valued Fourier hyperfunctions
will be examined.

6.1 Definition. For an open set Ω ⊂R, Ω ≠∅, and a locally convex space E we define the space
of E-valued Fourier hyperfunctions on Ω by

R(Ω,E) ∶= L(P∗ (Ω) ,E)/L(P∗ (∂Ω) ,E)

plus R(∅,E) ∶= 0.

For T ∈ L(P∗ (Ω) ,E) we denote by [T ] the corresponding element of R(Ω,E) . If the set Ω

is equipped with an index, then we sometimes do the same with the corresponding equivalence
class, to distinguish between different classes. Further, we use the notation R(Ω) ∶=R(Ω,C) .
We observe that

L(P∗ (∅) ,E) = L(0,E) = 0

by Definition 3.2 and henceR(R,E) = L(P∗ (R) ,E) (more precisely, we identify L(P∗ (R) ,E)
and {{T} ∣ T ∈ L(P∗ (R) ,E)}).
For Ω ≠R there is no reasonable locally convex topology on R(Ω,E) by [26, 3.10 Bemerkung,
p. 41-42] (Using the bipolar theorem, the reflexivity, the Hahn-Banach theorem and the identity
theorem, one sees that P∗ (∂Ω)′ is dense in P∗ (Ω)′b . Then Remark 4.4 and [25, 16.2.5 Proposi-
tion (a), p. 349] imply the statement.).

Let us first take a look at the scalar case. Let Ω1 ⊂R be open. We claim that the addition

+∶P∗ (Ω1∖Ω)′×P∗ (Ω)′→P∗ (Ω1)
′
, (T1,T2)↦ T1+T2,

is surjective for any open Ω ⊂Ω1. Remark that the spaces appearing above are Fréchet spaces by
Theorem 3.5(1). The first step is to determine the dual map

+′∶P∗ (Ω1)
′′→ (P∗ (Ω1∖Ω)′×P∗ (Ω)′)

′

of +. We denote by J0∶P∗ (Ω1)→ P∗ (Ω1)
′′
, J1∶P∗ (Ω1∖Ω)→ P∗ (Ω1∖Ω)′′ and J2∶P∗ (Ω)→

P∗ (Ω)′′ the canonical embeddings which are topological isomorphisms due to reflexivity by
Theorem 3.5(1). Further, it is easily seen that the linear map

Φ∶P∗ (Ω1∖Ω)′′×P∗ (Ω)′′→ (P∗ (Ω1∖Ω)′×P∗ (Ω)′)
′
,
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defined by

Φ(y1,y2)(T1,T2) ∶= y1 (T1)+y2 (T2) , (y1,y2) ∈P∗ (Ω1∖Ω)′′×P∗ (Ω)′′ ,

(T1,T2) ∈ (P∗ (Ω1∖Ω)′×P∗ (Ω)′)
′
,

is an isomorphism. Let y ∈ P∗ (Ω1)
′′
. Then there is an unique element f0 ∈ P∗ (Ω1) such that

y = J0 ( f0). For +′ (y) there are f1 ∈P∗ (Ω1∖Ω) and f2 ∈P∗ (Ω) such that

+′ (y) =Φ(J1 ( f1) ,J2 ( f2)) .

So for arbitrary (T1,T2) ∈P∗ (Ω1∖Ω)′×P∗ (Ω)′ we have on the one hand

+′ (y)(T1,T2) = J0 ( f0)(T1+T2) = T1 ( f0)+T2 ( f0)

and on the other

Φ(J1 ( f1) ,J2 ( f2))(T1,T2) = J1 ( f1)(T1)+J2 ( f2)(T2) = T1 ( f1)+T2 ( f2) ,

thus
T1 ( f0− f1)+T2 ( f0− f2) = 0

implying f1 = f0∣Ω1∖Ω
and f2 = f0∣Ω by the Hahn-Banach theorem since T1 and T2 are arbitrary.

Here we used the notation f0∣Ω1∖Ω
and f0∣Ω for f0 regarded as an element of P∗ (Ω1∖Ω) resp.

P∗ (Ω) via embedding. Hence we can interpret the dual map of + as

+′∶P∗ (Ω1)→P∗ (Ω1∖Ω)×P∗ (Ω) , f ↦ ( f ∣
Ω1∖Ω

, f ∣
Ω
) .

This map is injective by the identity theorem. Let (+′ ( fn))n∈N be a sequence converging in
P∗ (Ω1∖Ω)×P∗ (Ω) with respect to the product topology. Then it follows that fn∣Ω1∖Ω

converges

in P∗ (Ω1∖Ω) as well as fn∣Ω in P∗ (Ω) and their limits coincide on there common domain.
Hence there is a well-defined function f ∈P∗ (Ω1) such that

lim
n→∞

+′ ( fn) = ( lim
n→∞

fn∣Ω1∖Ω
, lim
n→∞

fn∣Ω) = ( f ∣
Ω1∖Ω

, f ∣
Ω
) = +′ ( f )

connoting that +′ has closed range. By [45, 26.3 Satz vom abgeschlossenen Wertebereich, p.
290] this means that + has closed range and R(+) = ker(+′)○ where we used the notation R(+)
for the range of +. Therefore, we obtain

R(+) = R(+) = R(+)○○ = (ker(+′)○)○○ = {0}○ =P∗ (Ω1)
′

by the bipolar theorem and as +′ is injective proving the surjectivity of +.
The surjectivtiy of + is equivalent to the surjectivity of the canonical map

I∶P∗(Ω)′/P∗ (∂Ω)′→P∗(Ω1)′/P∗ (Ω1∖Ω)′ .

I is injective by Proposition 4.3(1) (more detailed in the following Lemma) and hence an al-
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gebraic isomorphism due to the surjectivity of +. So restrictions and a sheaf structure may be
defined on RΩ1 ∶= {RΩ ∣ Ω ⊂Ω1 open} like in Definition 6.4. It is not known whether the corre-
sponding mapping I in the vector-valued case is always an isomorphism (see Remark 6.3 as well
as the remarks before it). But this holds if we additionally assume that

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

is surjective for any compact set K ⊂ R, i.e. that E is admissible. Let us turn to the already
indicated statement:

6.2 Lemma. 1 Let E be admissible, Ω2 ⊂Ω1 ⊂R be open and Ω2 ≠∅. Then the canonical mapping

I∶L(P∗(Ω2),E)/L(P∗ (∂Ω2) ,E)→ L(P∗(Ω1),E)/L(P∗ (Ω1∖Ω2) ,E) ,
[T ]2↦ [T ]

is an algebraic isomorphism.

Proof. This mapping is well-defined, in particular, independent of the choice of the representa-
tive since P∗(Ω1) is continuously and densely embedded in P∗(Ω2) (see the remark right above
Proposition 4.3) and thus the embedding of L(P∗ (Ω2) ,E) into L(P∗ (Ω1) ,E) is defined as well
as the mapping of L(P∗ (∂Ω2) ,E) into L(P∗ (Ω1∖Ω2) ,E) in this manner.
If R ⊂ Ω2, then Ω2 = Ω1 =R and therefore Ω1∖Ω2 = Ω2∖Ω2 = ∂Ω2. Hence the statement is ob-
viously true. Now let R /⊂Ω2.
Let T ∈ L(P∗(Ω2),E) with [T ] = 0. Then we get by Proposition 4.3(1)

T ∈ L(P∗(Ω2),E)∩L(P∗ (Ω1∖Ω2) ,E) = L(P∗ (Ω2∩(Ω1∖Ω2)) ,E) = L(P∗ (∂Ω2) ,E)

and thus [T ]2 = 0 implying the injectivity of I.
The surjectivity of I is equivalent to the surjectivity of the mapping

I0∶L(P∗ (Ω1∖Ω2) ,E)×L(P∗(Ω2),E)→ L(P∗(Ω1),E) , (T1,T2)↦ T1+T2.

By Theorem 4.1 the surjectivity of I0 is equivalent to the surjectivity of

I1∶Oexp (C∖(Ω1∖Ω2) ,E)/Oexp (C,E) × Oexp (C∖Ω2,E)/Oexp (C,E)
→Oexp (C∖Ω1,E)/Oexp (C,E) ,

( f1, f2)↦ f1+ f2,

and thus to the surjectivity of

I2∶Oexp (C∖(Ω1∖Ω2) ,E)×Oexp (C∖Ω2,E)→Oexp (C∖Ω1,E) , ( f1, f2)↦ f1+ f2.

The proof is now done in several steps beginning with the construction of a cut-off function.

(i) If ∞ ∉ Ω2 or −∞ ∉ Ω2, then there is xi ∈ R such that [x0,∞] ⊂ Ω
C
2 resp. [−∞,x1] ⊂ Ω

C
2

since Ω
C
2 ⊂ R is open. If ∞ ∈ Ω2 or −∞ ∈ Ω2, then there is x̃i ∈ R such that [x̃0,∞] ⊂ Ω2

1counterpart: [13, Lemma 6.2, p. 1122]
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resp. [−∞, x̃1] ⊂ Ω2, since Ω2 is open, and thus [x̃0,∞] ⊂ (Ω1∖Ω2)
C

resp. [−∞, x̃1] ⊂
(Ω1∖Ω2)

C
. We define the sets

F0 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(R∖Ω2)∪([x0+2,∞[×[−1,1]) , ∞ ∈Ω1∧∞ ∉Ω2∧(−∞ ∉Ω1∨−∞ ∈Ω2) ,
(R∖Ω2)∪(]−∞,x1−2]× [−1,1]) , −∞ ∈Ω1∧−∞ ∉Ω2∧(∞ ∉Ω1∨∞ ∈Ω2) ,
(R∖Ω2)∪(]−∞,x1−2]∪ [x0+2,∞[)× [−1,1] , ±∞ ∈Ω1∧±∞ ∉Ω2,

R∖Ω2, else,

and

F1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(R∩Ω2)∪([x̃0+2,∞[×[−1,1]) , ∞ ∈Ω2∧(−∞ ∉Ω1∨−∞ ∉Ω2) ,
(R∩Ω2)∪(]−∞, x̃1−2]× [−1,1]) , −∞ ∈Ω2∧(∞ ∉Ω1∨∞ ∉Ω2) ,
(R∩Ω2)∪(]−∞, x̃1−2]∪ [x̃0+2,∞[)× [−1,1] , ±∞ ∈Ω2,

R∩Ω2, else.

If we number the appearing cases in the definition of F0 from above to below by 1A, . . . ,
4A and in the definition of F1 by 1B, . . . , 4B, then we have as possible combinations:

Table 6.1: Combinations
1A 2A 3A 4A

1B × ✓ × ✓ legend:
2B ✓ × × ✓ ✓ – possible
3B × × × ✓ × – impossible
4B ✓ ✓ ✓ ✓

The sets F0 and F1 are non-empty and closed in R2, F0∩R =R∖Ω2, F1∩R = Ω2∩R and
F0 ∩F1 = ∂Ω2 ∩R. By [18, Theorem 1.4.10, p. 30, Corollary 1.4.11, p. 31] there exists
ϕ ∈ C∞((F0∩F1)C) = C∞ (∂Ω2∩R) , 0 ≤ ϕ ≤ 1, such that ϕ = 0 on V0 and ϕ = 1 on V1

where V0, V1 ⊂R2 are open and

V0 ⊃ F0∖(F0∩F1) = F0∖∂Ω2 ⊃ (R∖Ω2) and V1 ⊃ F1∖(F0∩F1) = F1∖∂Ω2 ⊃ (R∩Ω2) .

Figure 6.1: case: ±∞ ∈Ω1, −∞ ∈Ω2,∞ ∉Ω2
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Furthermore,

∣ϕ(k) (z)(y1,⋯,yk)∣ ≤Ck ∣y1∣⋯ ∣yk∣ d(z)−k

d1⋯dk
(6.1)

for all z ∈R2∖∂Ω2 and all yi ∈R2, 1 ≤ i ≤ k, k ∈N0, where ϕ(k) denotes the differential of
order k of ϕ, C > 0 is a constant independent of z, yi, and k,

d(z) ∶=max{d(z,F0) ,d(z,F1)} =max(min
x∈F0

∣z−x∣ ,min
x∈F1

∣z−x∣)

and (dn)n∈N is an arbitrary decreasing sequence with ∑∞
n=1 dn = 1, e.g. dn ∶= (1/2)n

. We
observe that

ϕ
(k) (z)(y1,⋯,yk) =

2
∑
i1=1

⋯
2
∑
ik=1

∂i1⋯∂ikϕ (z)y1
i1⋯yk

ik = ∑
∣α ∣=k,
α∈N2

0

∂
α

ϕ (z) ∑
i1,⋯,ik,

#{i j ∣ i j=1}=α1,

#{i j ∣ i j=2}=α2

y1
i1⋯yk

ik

with the notation yi = (yi
1,y

i
2) . In particular, we have for β = (β1,β2) ∈N2

0

∂
β

ϕ (z) = ϕ
(∣β ∣) (z)((1

0) ,⋯,(1
0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
no.=β1

,(0
1) ,⋯,(0

1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

no.=β2

)

and so as a special case of (6.1)

∣∂ β
ϕ (z)∣ ≤C∣β ∣d(z)−∣β ∣

d1⋯d∣β ∣
(6.2)

for all z ∈R2∖∂Ω2.
Let us take a closer look at the right hand side of this inequality. For z ∈R2∖∂Ω2 there is
zi ∈ Fi such that d(z,Fi) = ∣z− zi∣ , i = 1, 2, since F0 and F1 are closed. Let n ∈N≥2. We claim
that

d(z) ≥ 1
n

for all z ∈ Sn (∂Ω2) .

Let z ∈ Sn (∂Ω2) .
1. case: z0, z1 ∈R
Let us assume that d(z) < 1

n . The definition of the set Sn (∂Ω2) implies zi ∉ ∂Ω2∩R. Thus

we get by definition of the sets Fi that z0 ∈ ˚(R∖Ω2) and z1 ∈ ˚(R∩Ω2), in particular, z0 ≠ z1.

W.l.o.g. z0 < z1. Then O0 ∶=]z0,z1[∩ ˚(R∖Ω2) and O1 ∶=]z0,z1[∩ ˚(R∩Ω2) are disjoint, open
sets in R. Assume that there is no z̃ ∈ ∂Ω2∩R with z0 < z̃ < z1. Due to this assumption we
obtain

O0⊍O1 =]z0,z1[∩[ ˚(R∖Ω2)∪∩ ˚(R∩Ω2)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=R∖∂Ω2

=]z0,z1[

and hence, as ]z0,z1[ is connected, ]z0,z1[⊂ O0 or ]z0,z1[⊂ O1. If ]z0,z1[⊂ O0, we get z1 ∉
˚(R∩Ω2), and if ]z0,z1[⊂O1, we have z0 ∉ ˚(R∖Ω2), which is a contradiction. So there must
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be a z̃ ∈ ∂Ω2 ∩R with z0 < z̃ < z1. The convexity of Dd(z) (z) implies z̃ ∈]z0,z1[⊂ Dd(z) (z) ,
but then the following is valid

1
n
< ∣z− z̃∣ ≤max{∣z− z0∣ , ∣z− z1∣} = d(z) < 1

n

which is again a contradiction.
2. case: (z0 ∉R, z1 ∈R) or (z0 ∈R, z1 ∉R)
We only consider the first case above, the latter one is analogous. If so, these assumptions
can not occur in the cases (4A,YB), Y=1,⋯,4.
In the cases (1A,2B) and (1A,4B) we have z1 < x0 and Re(z0) ≥ x0+2. Therefore, we get

∣z1−Re(z0)∣ ≥ ∣x0−(x0+2)∣ = 2.

In the cases (2A,1B) and (2A,4B) we have z1 > x1 and Re(z0) ≤ x1−2. Therefore, we get

∣z1−Re(z0)∣ ≥ ∣x1−(x1−2)∣ = 2.

In the case (3A,4B) we have x1 < z1 < x0 and Re(z0) ≤ x1 −2 or Re(z0) ≥ x0 +2. We gain
like above ∣z1−Re(z0)∣ ≥ 2.
If ∣z− z0∣ < 1

n , we obtain by the estimates above

d(z) ≥ ∣z− z1∣ ≥ ∣Re(z− z1)∣ = ∣Re(z)− z1∣ ≥ ∣z1−Re(z0)∣− ∣Re(z0)−Re(z)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤∣z−z0∣< 1
n

> ∣z1−Re(z0)∣−
1
n
≥ 2− 1

n
≥ 1

n
.

3. case: zi ∉R, i = 1,2
These assumptions can only occur in the cases (1A,2B) and (1B,2A). If ∣z− z0∣ < 1

n , we have
in the case (1A,2B)

Re(z1) ≤ x̃1−2 < x̃1 < x0 < x0+2− 1
n
≤Re(z)

and thus get

d(z) ≥ ∣z− z1∣ ≥ ∣Re(z)−Re(z1)∣ ≥ 2 > 1
n

and in the case (1B,2A)

Re(z1) ≥ x̃0+2 > x̃0 > x1 > x1−2+ 1
n
≥Re(z)

plus d(z) ≥ 2 > 1
n as well.

Hence the claim is proven and via (6.2) we obtain

∣∂ β
ϕ (z)∣ ≤C∣β ∣ n∣β ∣

d1⋯d∣β ∣
(6.3)

for all z ∈ Sn (∂Ω2) .
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(ii) Let f ∈Oexp (C∖Ω1,E) . Due to the choice of ϕ the function ∂ (ϕ f ) may be regarded as
an element of C∞ (R2∖∂Ω2,E) by C∞-continuation via ∂ (ϕ f ) ∶= 0 on R∖∂Ω2. Further-
more,

∂ (ϕ f )(z) =
⎧⎪⎪⎨⎪⎪⎩

0, z ∈V0∪V1,

(∂ϕ)(z) f (z) , else,

is valid.
Let n ∈N≥2, m ∈N0 and α ∈ A. First we observe the following. For γ, β ∈N2

0 with γ ≤ β and

∣β ∣ ≤m we have ∣γ ∣ ≤ ∣β ∣ ≤m and (β

γ
) = (β1

γ1
)(β2

γ2
) ≤ β1!β2! ≤ (m!)2 as well as

max(∣β −γ +(1,0)∣ , ∣β −γ +(0,1)∣) ≤ ∣(β1+1,β2+1)∣ = ∣β ∣+2 ≤m+2.

Define the set S(n) ∶= Sn (∂Ω2)∖(V0∪V1) . By applying the Leibniz rule, we obtain

∣∂ (ϕ f )∣
∂Ω2,n,m,α

= sup
z∈Sn(∂Ω2),
β∈N2

0, ∣β ∣≤m

pα (∂
β

∂ (ϕ f )(z))e−
1
n ∣Re(z)∣

≤ sup
z∈Sn(∂Ω2)∖(V0∪V1),

β∈N2
0, ∣β ∣≤m

∑
γ≤β

≤(m!)2

¬
(β

γ
) ∣∂ β−γ

∂ϕ (z)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ 1
2 ∣∂

β−γ+(1,0)
ϕ(z)∣

+ 1
2 ∣∂

β−γ+(0,1)
ϕ(z)∣

pα(

(3.2)= iγ2 f (∣γ ∣)(z)
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
∂

γ f (z))e−
1
n ∣Re(z)∣

≤ (m!)2 ∑
∣γ ∣≤m+2

sup
z∈S(n)

∣∂ γ
ϕ (z)∣ sup

z∈S(n),
β∈N2

0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C( f )

≤
(6.3)

(m!)2C( f ) ∑
∣γ ∣≤m+2

C∣γ ∣ n∣γ ∣

d1⋯d∣γ ∣

≤ (m!)2 [max(C,1)]m+2

d1⋯dm+2
C( f ) ∑

∣γ ∣≤m+2
n∣γ ∣ (6.4)

where we used the properties of (dn)n , which imply 0 < dn < 1, in the last estimate.
Now we have to take a closer look at C( f ) . We decompose the set S(n) in the following
manner:

S(n) = [S(n)∩{z ∈C ∣ ∣Im(z)∣ > 1
2n

}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊂S2n(Ω1)

∪[S(n)∖{z ∈C ∣ ∣Im(z)∣ > 1
2n

}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M
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Figure 6.2: case: ±∞ ∈Ω1, −∞ ∈Ω2,∞ ∉Ω2

Due to the Cauchy inequality we get like in the proof of (3.7) of Theorem 3.11(4) for
r ∶= 1

2 ( 1
2n − 1

3n)

C( f ) ≤ sup
z∈S2n(Ω1),

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣+ sup

z∈M,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

≤ e
r
n sup

β∈N2
0, ∣β ∣≤m

∣β ∣!
r∣β ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C0

∣ f ∣
Ω1,3n,α + sup

z∈M,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣. (6.5)

Let us turn our attention to the set M. First we observe that

R ⊂ [V0∪V1´¹¹¹¹¹¸¹¹¹¹¹¹¶
⊃R∖∂Ω2

∪ ⋃
x∈∂Ω2∩R

D1/n (x)] =∶V.

V ⊂R2 is open as the union of open sets and so we get by definition of the set M

M ⊂VC =VC ⊂ (R2∖R) . (6.6)

If ∞ ∉ Ω1 or −∞ ∉ Ω1, then there is a ∈ R or b ∈ R such that [a,∞] ⊂ Ω
C
1 ⊂ (∂Ω2)C resp.

[−∞,b] ⊂Ω
C
1 ⊂ (∂Ω2)C since Ω

C
1 ⊂R is open. If so, we have

]a+ 1
n
,∞[× ]− 1

n
,
1
n
[ ⊂ Sn (Ω1) ⊂ Sn (∂Ω2) (6.7)

or
]−∞,b− 1

n
[× ]− 1

n
,
1
n
[ ⊂ Sn (Ω1) ⊂ Sn (∂Ω2) (6.8)

by definition of the sets Sn (⋅) and thus

M = [M∩(]a+ 1
n
,∞[× ]− 1

n
,
1
n
[)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊂Sn(Ω1)

∪[M∖(]a+ 1
n
,∞[× ]− 1

n
,
1
n
[)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M0(a)

,
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M = [M∩(]−∞,b− 1
n
[× ]− 1

n
,
1
n
[)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊂Sn(Ω1)

∪[M∖(]−∞,b− 1
n
[× ]− 1

n
,
1
n
[)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M0(b)

or

M =M∩[(]−∞,b− 1
n
[∪ ]a+ 1

n
,∞[)× ]− 1

n
,
1
n
[]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊂Sn(Ω1)

∪M∖[(]−∞,b− 1
n
[∪ ]a+ 1

n
,∞[)× ]− 1

n
,
1
n
[]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M0(a,b)

.

By virtue of the definition of the set S(n) and (6.7) we have Re(z) ≤ a+ 1
n for all z ∈M0 (a)

resp. by (6.8) Re(z) ≥ b− 1
n for all z ∈ M0 (b) resp. by (6.7) and (6.8) b− 1

n ≤ Re(z) ≤ a+ 1
n

for all z ∈M0 (a,b) .
We claim that M is bounded or M ⊂ (Sn (Ω1)∪M0) where M0, defined as above, is bounded.
As ∣Im(z)∣ ≤ 1/2n for every z ∈ M resp. z ∈ M0, it suffices to prove that there is C1 > 0 such
that ∣Re(z)∣ ≤C1 for every z ∈ M resp. z ∈ M0. The assumption Ω2 ⊂ Ω1 and the choice of
the sets F0 and F1 ensure the existence of C1 which can be read off the following chart.

Table 6.2: Bounds for the real part of M resp. M0

base case 1. subcase 2. subcase C1 =max(⋅)
±∞ ∈ ∂Ω2 ∣−n∣ , n

∞ ∈ ∂Ω2, −∞ ∉ ∂Ω2

−∞ ∈Ω2 ∣x̃1−2∣ , n
−∞ ∈Ω1 ∣x1−2∣ , n−∞ ∉Ω2 −∞ ∉Ω1 ∣b− 1

n ∣ , n

∞ ∉ ∂Ω2, −∞ ∈ ∂Ω2

∞ ∈Ω2 ∣−n∣ , ∣x̃0+2∣
∞ ∈Ω1 ∣−n∣ , ∣x0+2∣∞ ∉Ω2 ∞ ∉Ω1 ∣−n∣ , ∣a+ 1

n ∣

±∞ ∉ ∂Ω2

±∞ ∈Ω2 ∣x̃1−2∣ , ∣x̃0+2∣
−∞ ∈Ω1 ∣x1−2∣ , ∣x̃0+2∣∞ ∈Ω2, −∞ ∉Ω2 −∞ ∉Ω1 ∣b− 1

n ∣ , ∣x̃0+2∣
∞ ∈Ω1 ∣x̃1−2∣ , ∣x0+2∣∞ ∉Ω2, −∞ ∈Ω2 ∞ ∉Ω1 ∣x̃1−2∣ , ∣a+ 1

n ∣
±∞ ∈Ω1 ∣x1−2∣ , ∣x0+2∣

∞ ∈Ω1, −∞ ∉Ω1 ∣b− 1
n ∣ , ∣x0+2∣

∞ ∉Ω1, −∞ ∈Ω1 ∣x1−2∣ , ∣a+ 1
n ∣

±∞ ∉Ω2

±∞ ∉Ω1 ∣b− 1
n ∣ , ∣a+ 1

n ∣

Hence M or M0 is compact and we have by (6.6), since f ∈Oexp (C∖Ω1,E) implies the
continuity of f (∣β ∣) on R2∖R for all β ∈N2

0,

sup
z∈M,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣ ≤ sup

z∈M,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣ <∞
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or, since M0 ⊂M,

sup
z∈M,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

≤ sup
z∈Sn(Ω1),

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ f ∣

Ω1,n,m,α

+ sup
z∈M0,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

≤C2 ∣ f ∣Ω1,2n,α + sup
z∈M0,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣ <∞

where C2 > 0 is a constant existing by the proof of Theorem 3.6(4). Thus C( f ) <∞ by (6.5)
and therefore ∣∂ (ϕ f )∣

∂Ω2,n,m,α
<∞ for all n ∈N≥2, m ∈N0 and α ∈ A by (6.4) connoting

∂ (ϕ f ) ∈ Eexp (C∖∂Ω2,E) . As E is admissible, there is g ∈ Eexp (C∖∂Ω2,E) such that

∂g = ∂ (ϕ f ) . (6.9)

(iii) We set f1 ∶= (1−ϕ) f +g and f2 ∶= ϕ f −g. It remains to be proven that
f1 ∈Oexp (C∖(Ω1∖Ω2) ,E) and f2 ∈Oexp (C∖Ω2,E) . The proof is quite similar to part
(ii). f1 is defined on C∖(Ω1∖Ω2) (by setting (1−ϕ) f ∶= 0 on Ω2) and can be regarded as
an element of O(C∖(Ω1∖Ω2) ,E) due to (6.9).
Let n ∈N≥2 and set S(n) ∶= Sn (Ω1∖Ω2)∖V1. Remark that Sn (Ω1∖Ω2) ⊂ Sn (∂Ω2) and

S(n) = [S(n)∩{z ∈C ∣ ∣Im(z)∣ > 1
2n

}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊂S2n(Ω1)

∪[S(n)∖{z ∈C ∣ ∣Im(z)∣ > 1
2n

}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M

.

Figure 6.3: case: ±∞ ∈Ω1, −∞ ∈Ω2,∞ ∉Ω2
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For α ∈ A we have by the choice of ϕ

∣ f1∣Ω1∖Ω2,n,α
= sup

z∈Sn(Ω1∖Ω2)
pα( f1 (z))e−

1
n ∣Re(z)∣

≤ sup
z∈Sn(∂Ω2)

pα(g(z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣g∣

∂Ω2,n,0,α

+ sup
z∈Sn(Ω1∖Ω2)

pα((1−ϕ) f (z))e−
1
n ∣Re(z)∣

= ∣g∣
∂Ω2,n,0,α + sup

z∈S(n)
∣1−ϕ (z)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

pα( f (z))e−
1
n ∣Re(z)∣

≤ ∣g∣
∂Ω2,n,0,α + sup

z∈S2n(Ω1)
pα( f (z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ f ∣

Ω1,2n,α

+sup
z∈M

pα( f (z))e−
1
n ∣Re(z)∣

= ∣g∣
∂Ω2,n,0,α + ∣ f ∣

Ω1,2n,α + sup
z∈M

pα( f (z))e−
1
n ∣Re(z)∣. (6.10)

Again we have to take a closer look at the set M. First we observe that

R∩Ω1 ⊂ [ V1®
⊃R∩Ω2

∪ ⋃
x∈(Ω1∖Ω2)∩R

D1/n (x)] =∶V.

V ⊂R2 is open and so we get by definition of the set M

M ⊂VC =VC ⊂ (R2∖Ω1) .

Once again we define the sets M0 analogously to part (ii) and replace in (6.7) and (6.8) the
inclusion Sn (Ω1) ⊂ Sn (∂Ω2) by Sn (Ω1) ⊂ Sn (Ω1∖Ω2) . The rest of the proof is analogous
to part (ii) where we have as corresponding chart:

Table 6.3: Bounds for the real part of M resp. M0

base case subcase C1 =max(⋅)
±∞ ∈Ω1∖Ω2 ∣−n∣ , n

∞ ∈Ω1∖Ω2, −∞ ∉Ω1∖Ω2
−∞ ∈Ω2 ∣x̃1−2∣ , n
−∞ ∉Ω1 ∣b− 1

n ∣ , n

∞ ∉Ω1∖Ω2, −∞ ∈Ω1∖Ω2
∞ ∈Ω2 ∣−n∣ , ∣x̃0+2∣
∞ ∉Ω1 ∣−n∣ , ∣a+ 1

n ∣

±∞ ∉Ω1∖Ω2

±∞ ∈Ω2 ∣x̃1−2∣ , ∣x̃0+2∣
−∞ ∉Ω1, ∞ ∈Ω2 ∣b− 1

n ∣ , ∣x̃0+2∣
∞ ∉Ω1, −∞ ∈Ω2 ∣x̃1−2∣ , ∣a+ 1

n ∣
±∞ ∉Ω1 ∣b− 1

n ∣ , ∣a+ 1
n ∣

Since f ∈Oexp (C∖Ω1,E) and so f is continuous on R2∖Ω1, we obtain again

sup
z∈M

pα( f (z))e−
1
n ∣Re(z)∣ <∞.
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Thus we get ∣ f1∣Ω1∖Ω2,n,α
< ∞ for every n ∈ N≥2 and α ∈ A by (6.10) implying f1 ∈

Oexp (C∖(Ω1∖Ω2) ,E) .
f2 is defined on C ∖Ω2 (by setting ϕ f ∶= 0 on Ω1 ∖Ω2) and can be regarded as an ele-
ment of O(C∖Ω2,E) due to (6.9). Let n ∈ N≥2. We set S(n) ∶= Sn (Ω2)∖V0 and remark that
Sn (Ω2) ⊂ Sn (∂Ω2) as well as

S(n) = [S(n)∩{z ∈C ∣ ∣Im(z)∣ > 1
2n

}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊂S2n(Ω1)

∪[S(n)∖{z ∈C ∣ ∣Im(z)∣ > 1
2n

}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M

.

Figure 6.4: case: ±∞ ∈Ω1, −∞ ∈Ω2,∞ ∉Ω2

For α ∈ A we have by the choice of ϕ

∣ f2∣Ω2,n,α
= sup

z∈Sn(Ω2)
pα( f2 (z))e−

1
n ∣Re(z)∣

≤ sup
z∈Sn(∂Ω2)

pα(g(z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣g∣

∂Ω2,n,0,α

+ sup
z∈Sn(Ω2)

pα(ϕ f (z))e−
1
n ∣Re(z)∣

= ∣g∣
∂Ω2,n,0,α + sup

z∈S(n)
∣ϕ (z)∣
²

≤1

pα( f (z))e−
1
n ∣Re(z)∣

≤ ∣g∣
∂Ω2,n,0,α + sup

z∈S2n(Ω1)
pα( f (z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ f ∣

Ω1,2n,α

+sup
z∈M

pα( f (z))e−
1
n ∣Re(z)∣

= ∣g∣
∂Ω2,n,0,α + ∣ f ∣

Ω1,2n,α + sup
z∈M

pα( f (z))e−
1
n ∣Re(z)∣. (6.11)

Again we have to take a closer look at the set M and observe that

R ⊂ [ V0®
⊃R∖Ω2

∪ ⋃
x∈Ω2∩R

D1/n (x)] =∶V.
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V ⊂R2 is open and so we get by definition of the set M

M ⊂VC =VC ⊂ (R2∖R) .

Define the sets M0 analogously to part (ii) and replace in (6.7) and (6.8) the inclusion Sn (Ω1) ⊂
Sn (∂Ω2) by Sn (Ω1) ⊂ Sn (Ω2) . The rest of the proof is analogous to part (ii) where we have as
corresponding chart:

Table 6.4: Bounds for the real part of M resp. M0

base case subcase C1 =max(⋅)
±∞ ∈Ω2 ∣−n∣ , n

∞ ∈Ω2, −∞ ∉Ω2
−∞ ∈Ω1 ∣x1−2∣ , n
−∞ ∉Ω1 ∣b− 1

n ∣ , n

∞ ∉Ω2, −∞ ∈Ω2
∞ ∈Ω1 ∣−n∣ , ∣x0+2∣
∞ ∉Ω1 ∣−n∣ , ∣a+ 1

n ∣

±∞ ∉Ω2

±∞ ∈Ω1 ∣x1−2∣ , ∣x0+2∣
∞ ∈Ω1, −∞ ∉Ω1 ∣b− 1

n ∣ , ∣x0+2∣
∞ ∉Ω1, −∞ ∈Ω1 ∣x1−2∣ , ∣a+ 1

n ∣
±∞ ∉Ω1 ∣b− 1

n ∣ , ∣a+ 1
n ∣

Again we gain
sup
z∈M

pα( f (z))e−
1
n ∣Re(z)∣ <∞

and thus get ∣ f2∣Ω2,n,α
<∞ for every n ∈N≥2 and α ∈ A by (6.11) implying f2 ∈Oexp (C∖Ω2,E) .

Obviously f1+ f2 = f which completes the proof due to part (i).

Ito (see [23, remarks above Proposition 3.2, p. 15]) states that Lemma 6.2 is always valid if E
is complete, but he does not prove that I is surjective. Nevertheless, he states as an open problem
(see [23, Problem A, p. 17]) if for two compact sets K1, K2 ⊂R the mapping

L ∶L(P∗ (K1) ,E)×L(P∗ (K2) ,E)→ L(P∗ (K1∪K2) ,E) ,

given by L(T1,T2) ∶= T1−T2, is surjective.

6.3 Remark. 2 Let Ω2 ⊂Ω1 ⊂R be open. Then the following assertions are equivalent:

1. The canonical mapping

I∶L(P∗(Ω2),E)/L(P∗ (∂Ω2) ,E)→ L(P∗(Ω1),E)/L(P∗ (Ω1∖Ω2) ,E)

is an algebraic isomorphism.

2. The mapping

L ∶L(P∗ (Ω1∖Ω2) ,E)×L(P∗ (Ω2) ,E)→ L(P∗ (Ω1) ,E)
2counterpart: [13, Remark 6.3, p. 1123]
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is surjective.

Proof. I is obviously surjective if and only if L is surjective. Moreover, I is always linear and
injective by Proposition 4.3(1).

Using Lemma 6.2, we can define restrictions on R(Ω,E) , if E is admissible, as follows:

6.4 Definition. Let E be admissible. For open sets Ω2 ⊂Ω1 ⊂R, Ω2 ≠∅, we denote by

q∶L(P∗(Ω1),E)/L(P∗ (∂Ω1) ,E)→ L(P∗(Ω1),E)/L(P∗ (Ω1∖Ω2) ,E)

the canonical quotient map.
We define the restriction mappings via Lemma 6.2 by

RΩ1,Ω2 ∶R(Ω1,E)→R(Ω2,E) , RΩ1,Ω2 ([T ]) ∶= [T ] ∣
Ω2
∶= I−1 (q([T ])) ,

and for an open set Ω1 ⊂R

RΩ1,∅∶R(Ω1,E)→R(∅,E) , RΩ1,∅ ([T ]) ∶= [T ] ∣∅ ∶= 0.

6.5 Lemma. 3 Let E be admissible and Ω ⊂R be open.
The spaces RΩ (E) ∶= {R(ω,E) ∣ ω ⊂Ω open} , equipped with the restrictions of Definition 6.4,
form a presheaf on Ω satisfying the condition (S1) (see [9, 1.5, p. 5]):
For every family of open sets {ω j ⊂Ω ∣ j ∈ J} with ω ∶=⋃ j∈J ω j holds: If [T ] ∈R(ω,E) such that
Rω,ω j ([T ]) = 0 for all j ∈ J, then [T ] = 0.

Proof. (i) We clearly have Rω,ω = idR(ω,E) . Let ω3 ⊂ ω2 ⊂ ω1 ⊂ ω be open. We have to
show that Rω2,ω3 ○Rω1,ω2 = Rω1,ω3 is valid. This is obvious if one of the sets is empty,
so let them all be non-empty. Let T ∈ L(P∗(ω1),E) . Let T0 ∈ L(P∗(ω3),E) be a repre-
sentative of Rω1,ω3 ([T ]1) , let T1 ∈ L(P∗(ω2),E) be a representative of Rω1,ω2 ([T ]1) and
T2 ∈ L(P∗(ω3),E) a representative of Rω2,ω3 ○Rω1,ω2 ([T ]1) =Rω2,ω3 ([T1]2) . By definition
of the restrictions the following is true:

(a) T0−T ∈ L(P∗(ω1∖ω3),E)
(b) T1−T ∈ L(P∗(ω1∖ω2),E)
(c) T2−T1 ∈ L(P∗(ω2∖ω3),E)

We first observe that
T0−T2 ∈ L(P∗(ω3),E) . (6.12)

It remains to be shown that T0−T2 ∈ L(P∗(∂ω3),E) . The equality

T0−T2 = (T0−T)+(T −T1)+(T1−T2)

holds on P∗ (R) and the right hand side is an element of

L(P∗(ω1∖ω3)∩P∗(ω1∖ω2)∩P∗(ω2∖ω3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=P∗(ω1∖ω3)

,E) = L(P∗(ω1∖ω3),E)

3counterpart: [13, Lemma 6.5, p. 1124]
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by (a)− (c) and as ω3 ⊂ ω2 ⊂ ω1. So due to the remark above Proposition 4.3 T0 −T2 can
be regarded as an element of L(P∗(ω1∖ω3),E) as well and thus we get by Proposition
4.3(1) and (6.12)

T0−T2 ∈ L(P∗(ω3),E)∩L(P∗(ω1∖ω3),E) = L(P∗(ω3∩(ω1∖ω3)),E)
= L(P∗(∂ω3),E) .

(ii) Let T be like in (S1) and j ∈ J. Then for a representative Tj of Rω,ω j ([T ]) it holds Tj ∈
L(P∗(∂ω j),E) , since Rω,ω j ([T ]) = 0, and T −Tj ∈ L(P∗(ω ∖ω j),E) by definition of the
restriction. Again the equality

T = (T −Tj)+Tj

holds on P∗ (R) and the right hand side is an element of

L(P∗(ω ∖ω j)∩P∗(∂ω j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=P∗(ω∖ω j)

,E) = L(P∗(ω ∖ω j),E)

By the same argument as in part (i) we can regard T as an element of L(P∗(ω ∖ω j),E)
and get

suppT ⊂ω ∖ω j

where the support is meant in the sense of Proposition 4.3(2). Since this is valid for all
j ∈ J, we obtain

suppT ⊂⋂
j∈J

ω ∖ω j =ω ∖⋃
j∈J

ω j =ω ∖ω = ∂ω

and thus T ∈ L(P∗(∂ω),E) , i.e. [T ] = 0.

For the special case Ω =R we use the notation R(E) ∶=RR (E) . We will see that the presheaf
RΩ (E) , which satisfies (S1) , is already a sheaf, so satisfies, in addition, the sheaf condition (S2)
(see [9, 1.5, p. 6]) if we assume that E is not only admissible, but strictly admissible. The next
statement will turn out to be an useful tool in this context.

6.6 Proposition. Let X be a topological space, (G,RG) a presheaf and (F ,RF) a sheaf on X .
Let h∶G →F be a homomorphism of presheaves such that hΩ∶G (Ω)→F (Ω) is an isomorphism
for every open set Ω ⊂ X . Then (G,RG) is a sheaf (and h an isomorphism of sheaves).

Proof. First we remark the following. h∶G → F is a homomorphism of presheaves, i.e. the
diagram

G (Ω) hΩ //

RG
Ω,Ω1 ��

F (Ω)
RFΩ,Ω1��

G (Ω1) hΩ1

// F (Ω1)

commutes for open sets Ω1 ⊂ Ω ⊂ X . Let f ∈ F (Ω) . Since hΩ and hΩ1 are isomorphisms by
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assumption, one has

h−1
Ω1

( f ∣
Ω1

) = h−1
Ω1

(hΩ (h−1
Ω

( f ))∣
Ω1

) = h−1
Ω1

(hΩ1 (h−1
Ω

( f )∣
Ω1

)) = h−1
Ω

( f )∣
Ω1

since h is a homomorphism of presheaves which means that the diagram

G (Ω)
RG

Ω,Ω1 ��

F (Ω)h−1
Ωoo

RFΩ,Ω1��
G (Ω1) F (Ω1)

h−1
Ω1

oo

commutes as well, so h−1 is homomorphism of presheaves.
(S1) ∶ Let {Ω j ∣ j ∈ J} be a familiy of open subsets of X and Ω ∶=⋃ j∈J Ω j. Let f ∈ G (Ω) such that
f ∣

Ω j
= 0 for all j ∈ J. Then hΩ ( f ) ∈F (Ω) and

hΩ ( f )∣
Ω j

= hΩ( f ∣
Ω j

) = hΩ (0) = 0

for all j ∈ J due to the assumption and since h is a homomorphism of presheaves. As F is a sheaf,
hence satisifies (S1) , we obtain hΩ ( f ) = 0. Due to the injectivity of hΩ we get f = 0.
(S2) ∶ Let (Ω j) j∈J and Ω be like above. Let f j ∈ G (Ω j) such that f j∣Ω j∩Ωk

= fk∣Ω j∩Ωk
for all

j,k ∈ J. Then hΩ j ( f j) ∈F (Ω j) and

hΩ j ( f j)∣Ω j∩Ωk
−hΩk ( fk)∣Ω j∩Ωk

= hΩ j∩Ωk ( f j∣Ω j∩Ωk
)−hΩ j∩Ωk ( fk∣Ω j∩Ωk

) = 0

for all j,k ∈ J by the assumption and since h is a homomorphism of presheaves. As F is a sheaf,
hence satisifies (S2) , there exists G ∈ G (Ω) such that G∣

Ω j
= hΩ j ( f j) for every j ∈ J. Now we

define F ∶= h−1
Ω

(G) ∈F (Ω) . By virtue of the remark in the beginning we gain

F ∣
Ω j

= h−1
Ω

(G)∣
Ω j

= h−1
Ω j

(G∣
Ω j

) = h−1
Ω j

(hΩ j ( f j)) = f j

for all j ∈ J.
Therefore, G is a sheaf and thus h an isomorphism of sheaves.

We will use this proposition to show that R(E) satisfies the condition (S2) and is further-
more a flabby sheaf if E is strictly admissible. For this purpose we introduce a boundary value
representation of R(E) in the following way: Let Ω ⊂R, Ω ≠∅, be an open set and we define

U (Ω) ∶= {U ∣U ⊂C open, U ∩R =Ω} .

Now we define, similar to Definition 3.2, spaces of vector-valued slowly increasing holomorphic
functions on U ∖R resp. U for U ∈ U (Ω) .

• If −∞ ∈Ω or ∞ ∈Ω, we define

Oexp (U ∖R,E) ∶= limproj
n→∞

On (Sn (U) ,E)
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where

On (Sn (U) ,E) ∶= { f ∈O(Sn (U) ,E) ∣ ∀α ∈ A ∶ ∣∣∣ f ∣∣∣U∗,n,α <∞}, n ∈N≥2,

with
∣∣∣ f ∣∣∣U∗,n,α ∶= sup

z∈Sn(U)
pα ( f (z))e−

1
n ∣Re(z)∣

and

Sn (U) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U ∩{z ∈C ∣ 1
n < ∣Im(z)∣ < n, Re(z) > −n, d(z,∂U ∩C) > 1

n} , −∞ /∈Ω,∞ ∈Ω,

U ∩{z ∈C ∣ 1
n < ∣Im(z)∣ < n, Re(z) < n, d(z,∂U ∩C) > 1

n} , −∞ ∈Ω,∞ /∈Ω,

U ∩{z ∈C ∣ 1
n < ∣Im(z)∣ < n, d(z,∂U ∩C) > 1

n} , ±∞ ∈Ω.

Figure 6.5: Sn(U) for ∞ ∈Ω, −∞ ∉Ω

• If ±∞ /∈Ω, we define

Oexp (U ∖R,E) ∶=O((U ∖R)∩C,E) .

• If −∞ ∈Ω or ∞ ∈Ω, we define

Oexp (U,E) ∶= limproj
n→∞

On (Tn (U) ,E)

where

On (Tn (U) ,E) ∶= { f ∈O(Tn (U) ,E) ∣ ∀ α ∈ A ∶ ∣∣∣ f ∣∣∣U,n,α <∞}, n ∈N≥2,

with
∣∣∣ f ∣∣∣U,n,α ∶= sup

z∈Tn(U)
pα ( f (z))e−

1
n ∣Re(z)∣

and

Tn (U) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U ∩{z ∈C ∣ ∣Im(z)∣ < n, Re(z) > −n, d(z,∂U ∩C) > 1
n} , −∞ /∈Ω,∞ ∈Ω,

U ∩{z ∈C ∣ ∣Im(z)∣ < n, Re(z) < n, d(z,∂U ∩C) > 1
n} , −∞ ∈Ω,∞ /∈Ω,

U ∩{z ∈C ∣ ∣Im(z)∣ < n, d(z,∂U ∩C) > 1
n} , ±∞ ∈Ω.
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• If ±∞ /∈Ω, we define
Oexp (U,E) ∶=O(U ∩C,E) .

We remark that Oexp (U ∖R,E) and Oexp (U,E) are complete locally convex spaces by an anal-
ogous proof to the one of Theorem 3.6, if −∞ ∈ Ω or ∞ ∈ Ω. If ±∞ ∉ Ω, then this is obviously
valid for the corresponding spaces as well if equipped with the topology of uniform convergence
on compact subsets. Moreover, if U = C, so Ω = R, then the definition of Oexp (C∖R,E) and
Oexp (C,E) in the just introduced sense coincides with the one in the sense of Definition 3.2 (and
therefore the spaces have the same symbol).

6.7 Definition. For an open set Ω ⊂ R, Ω ≠ ∅, and U ∈ U (Ω) we define the space of boundary
values by

bv(Ω,E) ∶=Oexp (U ∖R,E)/Oexp (U,E)
plus bv(∅,E) ∶= 0.

6.8 Lemma. 4 The definition of bv(Ω,E) is independent of the choice of U ∈ U (Ω) , if E is
admissible.

Proof. Let U, U1 ∈ U (Ω) , w.l.o.g. U1 ∶= (C∖R)∪Ω. Then U ⊂U1. The canonical mapping

J∶Oexp (U1∖R,E)/Oexp (U1,E)→Oexp (U ∖R,E)/Oexp (U,E) , [ f ]↦ [ f ∣(U∖R)∩C] ,

is well-defined since Oexp (U1,E) ⊂Oexp (U,E) .
Let f ∈Oexp (U1∖R,E) with [ f ∣(U∖R)∩C] = 0, i.e. f ∣(U∖R)∩C ∈Oexp (U,E) . Then

f ∈Oexp ((U1∖R)∪U,E) =Oexp (U1,E)

and therefore [ f ] = 0 connoting the injectivity of J.
The proof of surjectivity resembles the one of Lemma 6.2, but it is sometimes necessary to use
two cut-off functions.

(i) If ∞ ∉ Ω or −∞ ∉ Ω, then there is xi ∈R such that [x0,∞] ⊂ Ω
C

resp. [−∞,x1] ⊂ Ω
C

since
Ω

C ⊂R is open. If ∞ ∈ Ω or −∞ ∈ Ω, then there are x̃i ∈R and εi > 0 such that [x̃0,∞] ⊂ Ω

resp. [−∞, x̃1] ⊂Ω and [x̃0,∞]×[−ε0,ε0] ⊂U resp. [−∞, x̃1]×[−ε1,ε1] ⊂U since Ω is open

4counterpart: [13, Lemma 6.7, p. 1124]
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and U ∈ U (Ω) . We define the sets

F0 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(UC ∩R2)∪(]−∞,x1−2]×R) , −∞ ∉Ω, ∞ ∈ ∂Ω,

(UC ∩R2)∪(]−∞,x1−2]×R)∪ [R×(R∖ ]− ε0
2 ,

ε0
2 [)] , −∞ ∉Ω, ∞ ∈Ω,

(UC ∩R2)∪([x0+2,∞[×R) , ∞ ∉Ω, −∞ ∈ ∂Ω,

(UC ∩R2)∪([x0+2,∞[×R)∪ [R×(R∖ ]− ε1
2 ,

ε1
2 [)] , ∞ ∉Ω, −∞ ∈Ω,

(UC ∩R2)∪[R×(R∖ ]− min(ε0,ε1)
2 ,

min(ε0,ε1)
2 [)] , ±∞ ∈Ω,

UC ∩R2, ±∞ ∈ ∂Ω,

(UC ∩R2)∪ [R×(R∖ ]− ε0
2 ,

ε0
2 [)] , ∞ ∈Ω, −∞ ∈ ∂Ω,

(UC ∩R2)∪ [R×(R∖ ]− ε1
2 ,

ε1
2 [)] , −∞ ∈Ω, ∞ ∈ ∂Ω,

(UC ∩R2)∪(]−∞,x1−2]∪ [x0+2,∞[)×R, ±∞ ∉Ω,

and

F1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R∩Ω)∪(]−∞, x̃1−2]× [− ε1
4 ,

ε1
4 ]) , −∞ ∈Ω, ∞ ∉Ω,

(R∩Ω)∪([x̃0+2,∞[×[− ε0
4 ,

ε0
4 ]) , ∞ ∈Ω, −∞ ∉Ω,

(R∩Ω)∪(]−∞, x̃1−2]∪ [x̃0+2,∞[)×[−min(ε0,ε1)
4 ,

min(ε0,ε1)
4 ] , ±∞ ∈Ω,

R∩Ω, ±∞ ∉Ω.

If we number the appearing cases in the definition of F0 from above to below by 1A,
. . . , 9A and in the definition of F1 by 1B, . . . , 4B, then we have the following possible
combinations:

Table 6.5: Combinations

1A 2A 3A 4A 5A 6A 7A 8A 9A
1B × × × ✓ × × × ✓ × legend:
2B × ✓ × × × × ✓ × × ✓ – possible
3B × × × × ✓ × × × × × – impossible
4B ✓ × ✓ × × ✓ × × ✓

The sets F0 and F1 are closed in R2, F1 ≠∅ and F0∩F1 = ∂Ω∩R. F0 is empty iff UC∩R2 =∅
and ±∞ ∈ ∂Ω. This implies UC ⊂ {±∞}×R, thus R2 ⊂U and so Ω =R. If F0 ≠∅, then by
[18, Theorem 1.4.10, p. 30, Corollary 1.4.11, p. 31] there exists ϕ0 ∈ C∞((F0∩F1)C) =
C∞ (R2∖∂Ω) , 0 ≤ ϕ0 ≤ 1, such that ϕ0 = 0 on V0 and ϕ0 = 1 on V1 where V0, V1 ⊂R2 are
open and

V0 ⊃ F0∖(F0∩F1) = F0∖∂Ω ⊃ (R∖Ω)
and

V1 ⊃ F1∖(F0∩F1) = F1∖∂Ω ⊃ (R∩Ω)
as well as

∣∂ β
ϕ0 (z)∣ ≤C∣β ∣d(z)−∣β ∣

d1⋯d∣β ∣
(6.13)

for all z ∈R2∖∂Ω and all β ∈N2
0 where C, d and (dn)n∈N are like in part (i) of the proof of

Lemma 6.2. If F0 =∅, we set V0 ∶=∅, V1 ∶=R2 and ϕ0 ∶= 1 on V1.
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Figure 6.6: case (7A,2B): ∞ ∈Ω, −∞ ∈ ∂Ω

Furthermore, we define the sets K0 ∶= {(x,y) ∈R2 ∣ y ≤ −2e−∣x∣ ∨ y ≥ 2e−∣x∣} and
K1 ∶= {(x,y) ∈R2 ∣ −e−∣x∣ ≤ y ≤ e−∣x∣} as well as

F̃0 ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K0∪ [R≥0×(R∖]−2,2[)] , −∞ ∈ ∂Ω, ∞ ∉ ∂Ω,

K0∪ [R≤0×(R∖]−2,2[)] , −∞ ∉ ∂Ω, ∞ ∈ ∂Ω,

K0, ±∞ ∈ ∂Ω,

plus

F̃1 ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K1∪(R≥0× [−1,1]) , −∞ ∈ ∂Ω, ∞ ∉ ∂Ω,

K1∪(R≤0× [−1,1]) , −∞ ∉ ∂Ω, ∞ ∈ ∂Ω,

K1, ±∞ ∈ ∂Ω.

The sets F̃0 and F̃1 are non-empty and closed in R2 and F̃0 ∩ F̃1 = ∅. Like above there is
ϕ1 ∈C∞((F̃0∩ F̃1)

C) =C∞ (R2) , 0 ≤ϕ1 ≤ 1, such that ϕ1 = 0 on W0 and ϕ1 = 1 on W1 where
W0, W1 ⊂R2 are open and

W0 ⊃ F̃0∖(F̃0∩ F̃1) = F̃0

and
W1 ⊃ F̃1∖(F̃0∩ F̃1) = F̃1

as well as

∣∂ β
ϕ1 (z)∣ ≤ C̃∣β ∣ d̃(z)−∣β ∣

d1⋯d∣β ∣
(6.14)

for all z ∈ R2 and all β ∈ N2
0, where C̃, d̃ and (dn)n∈N are like above. If ±∞ ∉ ∂Ω, we set

W0 ∶=∅, W1 ∶=R2 and ϕ1 ∶= 1 on W1.
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Figure 6.7: case (7A,2B): ∞ ∈Ω, −∞ ∈ ∂Ω

Again we take a closer look at the right hand side of (6.13) resp. (6.14) and claim

(a)
B ∶= inf

z∈Sn(∂Ω)
d(z) > 0, (6.15)

(b)
D ∶= inf

z∈Sn(∂Ω)
d̃(z) > 0. (6.16)

(a) case: ∞ ∈Ω, −∞ ∉Ω, i.e. (2A,2B)

(1) For z ∈ Sn (∂Ω) with Re(z) ≤ x1−2 we have

d(z) =max(d(z,F0) ,d(z,F1)) = d(z,F1) ≥ 2− 1
n
≥ 1

and with Re(z) ≥ x̃0+2

d(z) ≥
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε0
4 , z ∈ F0,

min(1
2

ε0
4 ,2) , z ∉ F0, z ∉ F1,

min( ε0
4 ,2) , z ∈ F1,

=min(ε0

8
,2) .

(2) For z ∈ Sn (∂Ω) with Re(z) ≤ x̃0 and ∣Im(z)∣ ≥ 1
n we get

d(z) ≥ d(z,F1) ≥min(2,
1
n
) = 1

n
.

(3) By Remark 3.3(1) the set Un (∂Ω) has finitely many components Z j, so there exists k ∈
N with Un (∂Ω) =⋃k

j=1 Z j. Since ±∞ ∉ ∂Ω, all Z j are bounded. Let a j ∶=minZ j ∩∂Ω

and b j ∶= maxZ j ∩ ∂Ω. W.l.o.g. a j < a j+1 for 1 ≤ j ≤ k (otherwise renumber). We
observe that bk =max1≤ j≤k b j < x̃0. Due to Remark 3.3(2) there is 0 < r j < 1/n such that
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{z ∈C ∣ d(z,[a j,b j]) ≤ r j} ⊂ Z j for all 1 ≤ j ≤ k.
Let z ∈ Sn (∂Ω) such that x1−2 <Re(z) < bk and ∣Im(z)∣ < 1

n .

• If a j < b j, we therefore obtain for z with a j <Re(z) < b j

d(z) ≥ d(z,F1) ≥ r j.

If k ≥ 2, consider z with b j < Re(z) < a j+1 for 1 ≤ j ≤ k−1. If d(z) ≤ 1
2n , we have

with N0 ∶= {w ∈C ∣ ∣Im(w)∣ > 3
2n} and N1 ∶= {w ∈C ∣ d(∂Ω∩R) < 1

3n}

d(z,F1) = d(z,F1∖N1) = d(z,([b j,a j+1]∩Ω)∖N1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶K1, j

)

and

d(z,F0) = d(z,F0∖(N0∪N1))

= d(z,(F0∩{w ∈C ∣ b j −
1

2n
≤Re(w) ≤ a j+1+

1
2n

})∖(N0∪N1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶K0, j

).

K0, j and K1, j are bounded and closed sets in R2, thus compact, and disjoint.
Hence c j ∶= d(K0, j,K1, j) > 0 yielding to

d(z) = max
i∈{0,1}

d(z,Ki, j) ≥
c j

2
> 0

for all 1 ≤ j ≤ k−1. Combining these results, we obtain

d(z) ≥min( min
1≤ j≤k

r j, min
1≤ j≤k−1

c j

2
,

1
2n

) > 0

for z ∈ Sn (∂Ω) with ∣Im(z)∣ ≤ 1/n and a1 <Re(z) < bk.

• Consider z with Re(z) < a1. Then

d(z) ≥ d(z,F1) = ∣z−a1∣ >
1
n

is valid.

Let z ∈ Sn (∂Ω) such that bk ≤Re(z) < x̃0+2. If d(z) ≤ 1
2n , we get with

N2 ∶= {w ∈C ∣ Re(w) > x̃0+2+ 1
2n} and

N3 ∶= {w ∈C ∣ ∣Im(w)∣ > n+ 1
2n ∨Re(w) < bk− 1

2n}

d(z,F1) = d(z,F1∖(D 1
3n
(bk)∪N2))

= d(z,{w ∈ F1 ∣ Re(w) ≥ bk}∖(D 1
3n
(bk)∪N2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶K̃1

)
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as well as

d(z,F0) = d(z,F0∖(D 1
3n
(bk)∪N2∪N3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶K̃0

).

K̃0 and K̃1 are compact and disjoint. Thus we have c0 ∶= d(K̃0,K̃1) > 0 implying

d(z) = max
i∈{0,1}

d(z,K̃i) ≥
c0

2
> 0.

(4) Merging (1)-(3), we gain

inf
z∈Sn(∂Ω)

d(z) ≥min(1,min(ε0

8
,2) , 1

n
,min( min

1≤ j≤k
r j, min

1≤ j≤k−1

c j

2
,

1
2n

) , c0

2
) > 0.

The proof of the other eight cases can be done quite analogously keeping the definition of
Un (∂Ω) in mind and that, if −∞ ∈ ∂Ω or ∞ ∈ ∂Ω, we have for z ∈ Sn (∂Ω) with Re(z) ≤ −n
resp. Re(z) ≥ n

d(z) ≥ d(z,F1) ≥
1
n
.

(b) We only consider the case −∞ ∈ ∂Ω and ∞ ∉Ω. The proof for the other two cases is similar.

(1) For z ∈ Sn (∂Ω) with Re(z) ≥ 1 we have

d̃(z) =max(d(z, F̃0) ,d(z, F̃1)) ≥
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, z ∈ F̃0,

min(1
2 ,1) , z ∉ F0, z ∉ F1,

min(1,1) , z ∈ F1,

= 1
2
.

(2) Let z ∈ Sn (∂Ω) such that 0 ≤Re(z) < 1. If d̃(z) ≤ 1
2n , then

d(z, F̃0) = d(z, F̃0∖(N0∪N1)) and d(z, F̃1) = d(z, F̃1∖N1)

where N0 ∶= {w ∈C∣ ∣Im(w)∣ > n+ 1
2n} and N1 ∶= {w ∈C∣Re(w) < −1

n ∨Re(w) > 1+ 1
n} .

The sets F̃0 ∖ (N0∪N1) and F̃1 ∖N1 are compact and disjoint, thus we gain c0 ∶=
d(F̃0∖(N0∪N1) , F̃1∖N1) > 0 and therefore

d̃(z) ≥ c0

2
> 0.

(3) Let z ∈ Sn (∂Ω) with Re(z) < 0. If d̃(z) ≤ 1
2n , then

d(z, F̃0) = d(z, F̃0∖(N0∪N2)) and d(z, F̃1) = d(z, F̃1∖N2)

with N0 from part (2) and
N2 ∶= {w ∈C ∣ (∣Im(w)∣ < 1

3n ∧Re(w) < −n− 1
2n)∨Re(w) > 1

n} .
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The sets F̃0 ∖ (N0∪N2) and F̃1 ∖N2 are compact and disjoint, so we obtain c1 ∶=
d(F̃0∖(N0∪N2) , F̃1∖N2) > 0 and hence d̃(z) ≥ c1

2 > 0.

(4) By combining these results, we have

inf
z∈Sn(∂Ω)

d̃(z) ≥min(1
2
,

1
2n

,
c0

2
,
c1

2
) > 0.

(ii) Let f ∈ Oexp (U ∖R,E) . By the choice of ϕ0 and ϕ1 the function ∂ (ϕ1ϕ0 f ) may be re-
garded as an element of C∞ (R2∖∂Ω,E) by C∞-continuation via ∂ (ϕ1ϕ0 f ) ∶= 0 on
[(UC ∩R2)∪R]∖∂Ω. Moreover, with the definition

V ∶= (V0∪W0)∪(V1∩W1) ,

the equation

∂ (ϕ1ϕ0 f )(z) =
⎧⎪⎪⎨⎪⎪⎩

0, z ∈V,

[(∂ϕ1)ϕ0 f +(∂ϕ0)ϕ1 f ](z) , else,

is valid.
The next step is similar to (6.4). Let n ∈N≥2, m ∈N0 and α ∈ A. We define the set S(n) ∶=
Sn (∂Ω)∖V and Cm ∶= #{γ ∈N2

0 ∣ ∣γ ∣ ≤m} .
If ϕi /≡ 1, i = 1,2, on R2, we obtain by applying the Leibniz rule twice

∣∂ (ϕ1ϕ0 f )∣
∂Ω,n,m,α

= sup
z∈Sn(∂Ω),

β∈N2
0, ∣β ∣≤m

pα (∂
β

∂ (ϕ1ϕ0 f )(z))e−
1
n ∣Re(z)∣

≤ (m!)2 sup
z∈S(n),

β∈N2
0, ∣β ∣≤m

∑
γ≤β

∣∂ β−γ [(∂ϕ1)ϕ0+(∂ϕ0)ϕ1](z)∣ sup
z∈S(n),

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C( f )

≤ (m!)4C( f ) sup
z∈S(n),

β∈N2
0, ∣β ∣≤m

∑
γ≤β

∑
τ≤β−γ

∣∂ τ (∂ϕ1)(z)∂
β−γ−τ

ϕ0 (z)+∂
τ (∂ϕ0)(z)∂

β−γ−τ
ϕ1 (z)∣

≤ (m!)4C( f ) ∑
∣γ ∣≤m

∑
∣τ ∣≤m+2

sup
z∈S(n)

∣∂ τ
ϕ1 (z)∣ sup

z∈S(n),
υ∈N2

0, ∣υ ∣≤m

∣∂ υ
ϕ0 (z)∣+ sup

z∈S(n)
∣∂ τ

ϕ0 (z)∣ sup
z∈S(n),

υ∈N2
0, ∣υ ∣≤m

∣∂ υ
ϕ1 (z)∣

≤
(6.13),
(6.14)

(m!)4CmC( f ) ∑
∣τ ∣≤m+2

C̃∣τ ∣ sup
z∈S(n)

d̃(z)−∣τ ∣

d1⋯d∣τ ∣
sup

z∈S(n),
υ∈N2

0, ∣υ ∣≤m

C∣υ ∣d(z)−∣υ ∣

d1⋯d∣υ ∣

+C∣τ ∣ sup
z∈S(n)

d(z)−∣τ ∣

d1⋯d∣τ ∣
sup

z∈S(n),
υ∈N2

0, ∣υ ∣≤m

C̃∣υ ∣ d̃(z)−∣υ ∣

d1⋯d∣υ ∣
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≤
(6.15),
(6.16)

(m!)4Cm
[max(C,C̃,1)]m+2

(d1⋯dm+2)2 C( f ) ∑
∣τ ∣≤m+2

D−∣τ ∣ sup
υ∈N2

0,
∣υ ∣≤m

B−∣υ ∣+B−∣τ ∣ sup
υ∈N2

0,
∣υ ∣≤m

D−∣υ ∣. (6.17)

If ϕ0 /≡ 1 and ϕ1 ≡ 1 on R2, then

∣∂ (ϕ1ϕ0 f )∣
∂Ω,n,m,α

≤
(6.13),
(6.15)

(m!)2 [max(C,1)]m+2

d1⋯dm+2
C( f ) ∑

∣γ ∣≤m+2
B−∣γ ∣,

and if ϕ0 ≡ 1 and ϕ1 /≡ 1 on R2, then

∣∂ (ϕ1ϕ0 f )∣
∂Ω,n,m,α

≤
(6.14),
(6.16)

(m!)2 [max(C̃,1)]m+2

d1⋯dm+2
C( f ) ∑

∣γ ∣≤m+2
D−∣γ ∣.

Now we have to take a closer look at C( f ) . First of all we remark that

[(UC ∪R)∩R2] = ([(UC ∩R2)∪(R∩Ω)]∖∂Ω)∪(∂Ω∩R)

⊂ [(V0∪W0)∪(V1∩W1)∪ ⋃
x∈∂Ω∩R

D 1
n
(x)]

=V ∪ ⋃
x∈∂Ω∩R

D 1
n
(x) =∶W.

W is an open set in R2 as the union of open sets and we get

S(n) = [Sn (∂Ω)∖V ] ⊂WC =WC ⊂ [(U ∖R)∩R2] . (6.18)

In the following we will prove that either S(n) is already bounded or that there are k ∈N≥2
and M0 ⊂ S(n) bounded plus M1 ⊂ Sk (U) such that

S(n) ⊂ (M0∪M1) .

As ∣Im(z)∣ ≤ 1/n for every z ∈ S(n) , it suffices to prove that there is C1 > 0 such that ∣Re(z)∣ ≤
C1 for every z ∈ S(n) resp. z ∈M0.
1. case: ±∞ ∉ ∂Ω

1.1. case: ±∞ ∉Ω, i.e. (9A,4B).
The set S(n) is bounded, since for all z ∈ S(n) ∶

∣Re(z)∣ ≤max(∣x1−2∣ , ∣x0+2∣)

1.2. case: (∞ ∈Ω, −∞ ∉Ω) or (∞ ∉Ω, −∞ ∈Ω) or ±∞ ∈ Ω, i.e. (2A,2B) or (4A,1B) or
(5A,3B).
We define

M ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{z ∈C ∣ Re(z) > x̃0+2} , ∞ ∈Ω, −∞ ∉Ω,

{z ∈C ∣ Re(z) < x̃1−2} , ∞ ∉Ω, −∞ ∈Ω,

{z ∈C ∣ Re(z) > x̃0+2 ∨ Re(z) < x̃1−2} , ±∞ ∈Ω,
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6 The duality method

and decompose the set S(n) as follows

S(n) = [S(n)∖M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M0

∪[S(n)∩M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M1

.

M0 is bounded because

∣Re(z)∣ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max(∣x1−2∣ , ∣x̃0+2∣) , ∞ ∈Ω, −∞ ∉Ω,

max(∣x̃1−2∣ , ∣x0+2∣) , ∞ ∉Ω, −∞ ∈Ω,

max(∣x̃1−2∣ , ∣x̃0+2∣) , ±∞ ∈Ω,

for every z ∈M0. Let ε2 ∶=min(ε0,ε1) and

r ∶= 1
2

min(2,
εi

2
,
εi

4
) =min(1,

εi

8
) , i = 0,1,2,

and choose k ∈N with k >max(n,εi) and 1
k <

εi
8 , i = 0,1,2, in the corresponding cases plus,

in addition,

−k < x̃0, if∞ ∈Ω, −∞ ∉Ω, resp. k > x̃1, if∞ ∉Ω, −∞ ∈Ω.

Then
1
k
<min(1

n
,
εi

8
) ≤min(1,

εi

4
− r) ≤min(1,

3εi

8
)

is valid and thus for all z ∈M1

Dr (z)
⊂ {w ∈C ∣ d(w,M1) ≤ r}

⊂
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

([x̃0+2− r,∞[×[− ε0
2 − r, ε0

2 + r])∖{w ∈C ∣ ∣Im(w)∣ < ε0
4 − r} , ∞ ∈Ω, −∞ ∉Ω,

(]−∞, x̃1−2+ r]× [− ε1
2 − r, ε1

2 + r])∖{w ∈C ∣ ∣Im(w)∣ < ε1
4 − r} , ∞ ∉Ω, −∞ ∈Ω,

((]−∞, x̃1−2+ r]∪ [x̃0+2− r,∞[)× [− ε2
2 − r, ε2

2 + r])∖{w ∣ ∣Im(w)∣ < ε2
4 − r} , ±∞ ∈Ω,

⊂

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

([x̃0+1,∞[×[−5ε0
8 , 5ε0

8 ])∖{w ∈C ∣ ∣Im(w)∣ < ε0
8 } , ∞ ∈Ω, −∞ ∉Ω,

(]−∞, x̃1−1]×[−5ε1
8 , 5ε1

8 ])∖{w ∈C ∣ ∣Im(w)∣ < ε1
8 } , ∞ ∉Ω, −∞ ∈Ω,

((]−∞, x̃1−1]∪ [x̃0+1,∞[)×[−5ε2
8 , 5ε2

8 ])∖{w ∈C ∣ ∣Im(w)∣ < ε2
8 } , ±∞ ∈Ω,

⊂ Sk (U) ⊂ (U ∖R)∩R2. (6.19)

Due to the Cauchy inequality we get like in Theorem 3.6(4)

sup
z∈M1,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣

≤ e
r
n sup

β∈N2
0, ∣β ∣≤m

∣β ∣!
r∣β ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A0

sup
z∈M1

max
∣ζ−z∣=r

pα( f (ζ))e−
1
n ∣Re(ζ)∣
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≤ A0 sup
ζ∈Sk(U)

pα( f (ζ))e−
1
k ∣Re(ζ)∣

= A0 ∣∣∣ f ∣∣∣U∗,k,α .

2. case: (∞ ∈ ∂Ω, −∞ ∉ ∂Ω) or (∞ ∉ ∂Ω, −∞ ∈ ∂Ω)
2.1. case: (∞ ∈ ∂Ω, −∞ ∈Ω) or (∞ ∈Ω, −∞ ∈ ∂Ω), i.e. (8A,1B) or (7A,2B).
We define the set

M ∶=
⎧⎪⎪⎨⎪⎪⎩

{z ∈C ∣ Re(z) < x̃1−2} , ∞ ∈ ∂Ω, −∞ ∈Ω,

{z ∈C ∣ Re(z) > x̃0+2} , ∞ ∈Ω, −∞ ∈ ∂Ω,

and decompose S(n) in the same way like before, i.e.

S(n) = [S(n)∖M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M0

∪[S(n)∩M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M1

.

Figure 6.8: case (7A,2B): ∞ ∈Ω, −∞ ∈ ∂Ω

We observe that the inequality 1/n ≥ 2e−∣x∣ is equivalent to ln(2n) ≤ ∣x∣ for all x ∈R. Hence
M0 is bounded, since

∣Re(z)∣ ≤
⎧⎪⎪⎨⎪⎪⎩

max(∣x̃1−2∣ ,n, ln(2n)) , ∞ ∈ ∂Ω, −∞ ∈Ω,

max(∣−n∣ , ∣− ln(2n)∣ , ∣x̃0+2∣) , ∞ ∈Ω, −∞ ∈ ∂Ω,

for all z ∈M0. Using the same r and k like in case 1.2 (only for i = 0,1), we get again by the
Cauchy inequality

sup
z∈M1,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣ ≤ A0 ∣∣∣ f ∣∣∣U∗,k,α

in the corresponding cases where A0 is defined like before.

127



6 The duality method

2.2. case: (∞ ∈ ∂Ω, −∞ ∉Ω) or (∞ ∉Ω, −∞ ∈ ∂Ω), i.e. (1A,4B) or (3A,4B).
The observation of the previous case yields to the boundedness of S(n) since

∣Re(z)∣ ≤
⎧⎪⎪⎨⎪⎪⎩

max(∣x1−2∣ ,n, ln(2n)) , ∞ ∈ ∂Ω, −∞ ∉Ω,

max(∣−n∣ , ∣− ln(2n)∣ , ∣x0+2∣) , ∞ ∉Ω, −∞ ∈ ∂Ω,

for every z ∈ S(n) .
3. case: ±∞ ∈ ∂Ω, i.e. (6A,4B) or ϕ0 ≡ 1.
In both cases the set S(n) is bounded because for all z ∈ S(n)

∣Re(z)∣ ≤max(∣−n∣ , ∣− ln(2n)∣ , ln(2n) ,n) =max(n, ln(2n)) .

So in all cases it follows either that S(n) ⊂ [(U ∖R)]∩R2 is compact and

C( f ) ≤ sup
z∈S(n),

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣ <∞

or that there are M0 ⊂ [(U ∖R)]∩R2 compact and k ∈N≥2 such that

C( f ) ≤ sup
z∈M0,

β∈N2
0, ∣β ∣≤m

pα( f (∣β ∣) (z))e−
1
n ∣Re(z)∣+A0 ∣∣∣ f ∣∣∣U∗,k,α <∞

by (6.18) and since f ∈ Oexp (U ∖R,E) , in particular, that all (complex) derivatives are
continuous on (U ∖R)∩R2. Due to (6.17) (and the two subsequent inequalities) this im-

plies that ∣∂ (ϕ1ϕ0 f )∣
∂Ω,n,m,α

<∞ for all n ∈N≥2, m ∈N0 and α ∈ A and thus ∂ (ϕ1ϕ0 f ) ∈
Eexp (C∖∂Ω,E) . As E is admissible, there exists g ∈ Eexp (C∖∂Ω,E) such that

∂g = ∂ (ϕ1ϕ0 f ) . (6.20)

(iii) We set F ∶= ϕ1ϕ0 f − g. The next step is to show that F ∈ Oexp (C∖Ω,E) , in particular,
F ∈Oexp (U1∖R,E) sinceOexp (C∖Ω,E) ⊂Oexp (U1∖R,E) , and that f −F ∈Oexp (U,E) .
F is defined on C∖Ω (by setting ϕ1ϕ0 f ∶= 0 on [(UC ∪Ω)∖∂Ω]∩C) and can be regarded
as an element of O(C∖Ω,E) due to (6.20).
Let n ∈N≥2. We set V ∶=V0∪W0, S(n) ∶= Sn (Ω)∖V and remark that Sn (Ω) ⊂ Sn (∂Ω) . For
α ∈ A we have by the choice of ϕi, i = 1,2,

∣F ∣
Ω,n,α = sup

z∈Sn(Ω)
pα(F (z))e−

1
n ∣Re(z)∣

≤ sup
z∈Sn(∂Ω)

pα(g(z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣g∣

∂Ω,n,0,α

+ sup
z∈Sn(Ω)

pα(ϕ1ϕ0 f (z))e−
1
n ∣Re(z)∣

= ∣g∣
∂Ω,n,0,α + sup

z∈S(n)
∣(ϕ1ϕ0)(z)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

pα( f (z))e−
1
n ∣Re(z)∣
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≤ ∣g∣
∂Ω,n,0,α + sup

z∈S(n)
pα( f (z))e−

1
n ∣Re(z)∣. (6.21)

First we observe that

(UC ∪R)∩C ⊂ [V0∪ ⋃
x∈Ω∩R

D1/n (x)] =∶W.

W ⊂C is open and so we get by definition of the set S(n)

S(n) ⊂WC =WC ⊂ (U ∖R)∩C.

Again we claim that the set S(n) is bounded or that there are M0 ⊂S(n) bounded and k ∈N≥2
and M1 ⊂ Sk (U) such that S(n) =M0∪M1. For the boundedness we just have to prove that
there is C1 > 0 such that ∣Re(z)∣ ≤C1 for every z ∈ S(n) resp. z ∈ M0. At first we consider
the cases where S(n) is bounded. This occurs if ±∞ ∉ Ω or ±∞ ∈ ∂Ω or ∞ ∈ ∂Ω, −∞ ∉ Ω

or −∞ ∈ ∂Ω, ∞ ∉Ω. We get by definition of V0 resp. V1

Re(z) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[x1−2,x0+2] , ±∞ ∉Ω,

[min(−n,− ln(2n)) ,max(n, ln(2n))] , ±∞ ∈ ∂Ω,

[x1−2,max(n, ln(2n))] , ∞ ∈ ∂Ω, −∞ ∉Ω,

[min(−n,− ln(2n)) ,x0+2] , −∞ ∈ ∂Ω, ∞ ∉Ω,

for all z ∈ S(n) implying the boundedness. Therefore, S(n) ⊂ (U ∖R)∩C is compact.
If ∞ ∈Ω or −∞ ∈Ω, we choose k ∈N such that k ≥ n and

1/k < ε0/2 < k, if∞ ∈Ω, resp. 1/k < ε1/2 < k, if −∞ ∈Ω,

plus, in addition, −k < x̃0 +2, if ∞ ∈ Ω, −∞ ∉ Ω, resp. k > x̃1 −2, if −∞ ∈ Ω, ∞ ∉ Ω. Then
we decompose the set S(n) as follows

S(n) = [S(n)∖Sk (U)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M0

∪[S(n)∩Sk (U)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M1

.

Figure 6.9: case (7A,2B): ∞ ∈Ω, −∞ ∈ ∂Ω
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Obviously M1 ⊂ Sk (U) and M0 ⊂ S(n) ⊂ (U ∖R)∩C. Consider the case ∞ ∈ Ω and −∞ ∈
∂Ω. By the choice of V0 we have

M0 = [S(n)∖Sk (U)] ⊂ (Sn (Ω)∖V0) ⊂ {z ∈C ∣ ∣Im(z)∣ < ε0

2
} (6.22)

and by the choice of W0 and since −∞ ∈ ∂Ω

M0 ⊂ (Sn (Ω)∖W0) ⊂ {z ∈C ∣ Re(z) >min(−n,− ln(2n))} . (6.23)

Let z ∈ S(n) with ∣Im(z)∣ < ε0
2 and Re(z) ≥ x̃0+2. Then

z ∈ ([x̃0+2,∞[×[−ε0

2
,
ε0

2
]) ⊂ ([x̃0,∞[×[−ε0,ε0]) ⊂U

and therefore
d(z,∂U ∩C) ≥min(2,

ε0

2
) > 1

k
by the choice of k. Furthermore,

k > n > ∣Im(z)∣ > 1
n
> 1

k

as [x̃0,∞] ⊂ Ω and due to the choice of k. In addition, Re(z) ≥ x̃0+2 > −k and z ∈U by the
choice of k and since z ∈ S(n) ⊂U. Hence we obtain z ∈ Sk (U) . So it follows by (6.22)

M0 = [S(n)∖Sk (U)] ⊂ {z ∈C ∣ Re(z) < x̃0+2}

and due to (6.23) we gain the claim with C1 ∶=max(n, ln(2n) , ∣x̃0+2∣) . For the still pending
cases the proof can be done analogously and we only note the constant

C1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max(n, ln(2n) , ∣x̃1−2∣) , ∞ ∈ ∂Ω, −∞ ∈Ω,

max(∣x1−2∣ , ∣x̃0+2∣) , ∞ ∈Ω, −∞ ∉Ω,

max(∣x̃1−2∣ , ∣x0+2∣) , ∞ ∉Ω, −∞ ∈Ω,

max(∣x̃1−2∣ , ∣x̃0+2∣) , ±∞ ∈Ω.

By the same arguments as in part (ii) we get supz∈S(n) pα( f (z))e−
1
n ∣Re(z)∣ <∞ and by (6.21)

that F ∈Oexp (C∖Ω,E) .

(iv) f −F is defined on U ∩C (by the setting in the beginning of part (iii)) and can be regarded
as an element of O(U ∩C,E) due to (6.20). If ±∞ ∉ Ω, then we already have f −F ∈
Oexp (U,E) just by definition. So let ∞ ∈ Ω or −∞ ∈ Ω. Let n ∈ N≥2. We set V ∶=V1 ∩W1
and T (n) ∶= Tn (U)∖V. With

R ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{z ∈C ∣ Re(z) ≥ n} , ∞ ∈ ∂Ω,

{z ∈C ∣ Re(z) ≤ −n} , −∞ ∈ ∂Ω,

{z ∈C ∣ ∣Re(z)∣ ≥ n} , ±∞ ∈ ∂Ω,

∅, ±∞ ∉ ∂Ω,
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we have

[Un (∂Ω)∪{z ∈C ∣ ∣Im(z)∣ ≥ n}] ⊂ [R∪{z ∈C ∣ ∣Im(z)∣ ≥ n}∪ ⋃
x∈∂U∩C

D 1
n
(x)] =∶ R̃

and thus

Tn (U) ⊂ [(U ∩C)∖ R̃] ⊂ (C∖[Un (∂Ω)∪{z ∈C ∣ ∣Im(z)∣ ≥ n}]) = Sn (∂Ω) . (6.24)

For α ∈ A we have by the choice of ϕi, i = 1,2,

∣∣∣ f −F ∣∣∣U,n,α = sup
z∈Tn(U)

pα([(1−ϕ1ϕ0) f +g](z))e−
1
n ∣Re(z)∣

≤ sup
z∈Sn(∂Ω)

pα(g(z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣g∣

∂Ω,n,0,α

+ sup
z∈Tn(U)

pα((1−ϕ1ϕ0) f (z))e−
1
n ∣Re(z)∣

= ∣g∣
∂Ω,n,0,α + sup

z∈T(n)
∣1−(ϕ1ϕ0)(z)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

pα( f (z))e−
1
n ∣Re(z)∣

≤ ∣g∣
∂Ω,n,0,α + sup

z∈T(n)
pα( f (z))e−

1
n ∣Re(z)∣. (6.25)

Let ε2 ∶=min(ε0,ε1) . We choose k ∈N such that

1
k
<
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min(1
n ,

ε2
4 ) , ±∞ ∈Ω,

min(1
n ,

ε0
4 ) , ∞ ∈Ω, −∞ ∉Ω,

min(1
n ,

ε1
4 ) , ∞ ∉Ω, −∞ ∈Ω.

First we observe that

(UC ∪R)∩C ⊂ [V ∪ ⋃
x∈UC∩C

D1/n (x)] =∶W.

The set W ⊂C is open and thus we get by definition of the set T (n)

T (n) = Tn (U)∖V = [Tn (U)∖( ⋃
x∈UC∩C

D1/n (x))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Tn(U)

∖V ⊂WC

and so
T (n)∖Sk (U) ⊂ T (n) ⊂WC =WC ⊂ (U ∖R)∩C. (6.26)

Then we can decompose the set T (n) in the following manner

T (n) = [T (n)∖Sk (U)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M0

∪[T (n)∩Sk (U)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M1

.
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6 The duality method

Figure 6.10: case (7A,2B): ∞ ∈Ω, −∞ ∈ ∂Ω

We claim that the set M0 is bounded. Again we just have to prove that there is C1 > 0 such
that ∣Re(z)∣ ≤C1 for every z ∈ M0. By the choice of k and the definition of V1 and W1 (for
the cases that −∞ ∈ ∂Ω or ∞ ∈ ∂Ω keep in mind that 1/k < 1) we have

Re(z) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x̃1−2, x̃0+2] , ±∞ ∈Ω,

[−n,max(0, x̃0+2)] , ∞ ∈Ω, −∞ ∈ ∂Ω,

[−n, x̃0+2] , ∞ ∈Ω, −∞ ∉Ω,

[min(0, x̃1−2) ,n] , −∞ ∈Ω, ∞ ∈ ∂Ω,

[x̃1−2,n] , −∞ ∈Ω, −∞ ∉Ω,

for every z ∈ M0 proving the claim. Therefore, M0 is compact and by (6.26) we get M0 ⊂
(U ∖R)∩C. Then

sup
z∈T(n)

pα( f (z))e−
1
n ∣Re(z)∣ ≤ sup

z∈M0

pα( f (z))e−
1
n ∣Re(z)∣+ sup

z∈M1

pα( f (z))e−
1
n ∣Re(z)∣

≤ sup
z∈M0

pα( f (z))e−
1
n ∣Re(z)∣+ ∣ f ∣U∗,k,α <∞

for all n ∈N≥2 and α ∈ A since f ∈Oexp (U ∖R,E) . Hence we obtain by (6.25) that f −F ∈
Oexp (U,E) .
So we have found F ∈Oexp (C∖Ω,E)⊂Oexp (U1∖R,E) such that [F ∣(U∖R)∩C]= [ f ] prov-

ing the surjectivity of J. For arbitrary U, U0 ∈ U (Ω) we have, with U1 from the proof,

Oexp (U ∖R,E)/Oexp (U,E) ≅Oexp (U1∖R,E)/Oexp (U1,E)
≅Oexp (U0∖R,E)/Oexp (U0,E)

algebraically, connoting the general statement.
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6.9 Remark. The same result is still valid if we modify the spaces involved in the following way:
Let U ⊂C be open and −∞ ∈U or ∞ ∈U. We say that U is even-tempered if it satisfies one of the
following conditions:

(a)

∀ n ∈N ∃N ∈N ∀ z ∈ (UC ∩C)∖ ⋃
x∈(∂U∩R)

D 1
n
(x) ∶ ∣Im(z)∣ > 1

N
(6.27)

(b)
∀ n ∈N ∶ (UC ∩C)∖ ⋃

x∈(∂U∩R)
D 1

n
(x) =∅ (6.28)

We replace in the definition of the spaces the set U (Ω) by

U(Ω) ∶=
⎧⎪⎪⎨⎪⎪⎩

{U ∣U ⊂C open, U ∩R =Ω} , ±∞ ∉Ω,

{U ∣U ⊂C open and even-tempered, U ∩R =Ω} , −∞ ∈Ω ∨ ∞ ∈Ω,

and in the definition of ∣∣∣ f ∣∣∣U∗,n,α the set Sn (U) by

sn (U) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U ∩{z ∈C ∣ 1
n < ∣Im(z)∣ < n, Re(z) > −n} , −∞ /∈Ω,∞ ∈Ω,

U ∩{z ∈C ∣ 1
n < ∣Im(z)∣ < n, Re(z) < n} , −∞ ∈Ω,∞ /∈Ω,

U ∩{z ∈C ∣ 1
n < ∣Im(z)∣ < n} , ±∞ ∈Ω,

plus in the definition of ∣∣∣ f ∣∣∣U,n,α the set Tn (U) by

tn (U) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U ∩{z ∈C ∣ ∣Im(z)∣ < n, Re(z) > −n, d(z,∂U ∩R) > 1
n} , −∞ /∈Ω,∞ ∈Ω,

U ∩{z ∈C ∣ ∣Im(z)∣ < n, Re(z) < n, d(z,∂U ∩R) > 1
n} , −∞ ∈Ω,∞ /∈Ω,

U ∩{z ∈C ∣ ∣Im(z)∣ < n, d(z,∂U ∩R) > 1
n} , ±∞ ∈Ω.

Now we take a look at the proof and the positions which are in need of a modification.

• part (i): If −∞ ∈ Ω or ∞ ∈ Ω, then the set U1 from the beginning of the proof is even-
tempered since it fulfills (6.28).

• part (ii): In (6.19) we have Dr (z) ⊂ sk (U) ⊂ (U ∖R)∩R2 as well.

• part (iii): We claim that the set S(n) is bounded or there are M0 ⊂ S(n) bounded and
M1 ⊂ sn (U) such that S(n) =M0∪M1. We define the set

M ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{z ∈C ∣ Re(z) > −n, ∣Im(z)∣ > 1
n} , (∞ ∈Ω∧−∞ ∈ ∂Ω)∨(∞ ∈Ω∧−∞ ∉Ω) ,

{z ∈C ∣ Re(z) < n, ∣Im(z)∣ > 1
n} , (∞ ∈ ∂Ω∧−∞ ∈Ω)∨(∞ ∈Ω∧∞ ∉Ω) ,

{z ∈C ∣ ∣Im(z)∣ > 1
n} , ±∞ ∈Ω,

and decompose the set S(n) in these cases as follows

S(n) = [S(n)∖M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M0

∪[S(n)∩M]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M1

.
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Then
M1 ⊂ [U ∩(M∪{z ∈C ∣ ∣Im(z)∣ < n})] = sn (U)

and M0 ⊂ S(n) ⊂ [(U ∖R)∩C] . So we just have to prove that there is C1 > 0 such that
∣Re(z)∣ ≤C1 for every z ∈ S(n) resp. z ∈M0. This constant is noted in the following chart:

Table 6.6: Bounds for the real part of S(n) resp. M0

base case subcase C1 =max(⋅)

±∞ ∈Ω

∞ ∈Ω, −∞ ∈ ∂Ω ∣−n∣ , ∣− ln(2n)∣ , n
∞ ∈ ∂Ω −∞ ∈Ω ∣−n∣ , ln(2n) , n

±∞ ∈Ω ∣−n∣ , ∣− ln(2n)∣ , ln(2n) , n
±∞ ∈Ω ∣−n∣ ,n

∞ ∈Ω, −∞ ∉Ω
∞ ∈Ω ∣x1−2∣ , n
∞ ∈ ∂Ω ∣x1−2∣ , ln(2n) , n

∞ ∉Ω, −∞ ∈Ω
−∞ ∈Ω ∣−n∣ , ∣x0+2∣
−∞ ∈ ∂Ω ∣−n∣ , ∣− ln(2n)∣ , ∣x0+2∣

±∞ ∉Ω ∣x1−2∣ , ∣x0+2∣

• part (iv): Define t (n) ∶= tn (U)∖V and replace in the definition of R̃ the set ⋃x∈∂U∩CD 1
n
(x)

by ⋃x∈∂U∩RD 1
n
(x). Then we have in (6.24)

tn (U) = [(U ∩C)∖ R̃] .

Furthermore, we choose k ∈N such that

1
k
≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min(1
n ,

ε2
4 ) , ±∞ ∈Ω,

min(1
n ,

ε0
4 ) , ∞ ∈Ω, −∞ ∉Ω,

min(1
n ,

ε1
4 ) , ∞ ∉Ω, −∞ ∈Ω,

and, in addition,

−k < x̃0+2, if∞ ∈Ω, −∞ ∉Ω, resp. k > x̃1−2, if∞ ∉Ω, −∞ ∈Ω,

plus k >N, if U satifies condition (6.27). Then we remark that

(UC ∪R)∩C ⊂ [V ∪{z ∈C ∣ ∣Im(z)∣ > 1
k
}∪ ⋃

x∈∂U∩R
D1/n (x)] =∶W

by the choice of k and since U is even-tempered. The set W ⊂C is open and thus we get by
the definition of the set t (n)

t (n)∩{z ∈C ∣ ∣Im∣ ≤ 1
k
} ⊂WC =WC ⊂ (U ∖R)∩C. (6.29)
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We define the sets

N0 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z ∈C ∣ Re(z) > x̃0+2, Re(z) < x̃1−2} , ±∞ ∈Ω,

{z ∈C ∣ Re(z) >max(0, x̃0+2)} , ∞ ∈Ω, −∞ ∈ ∂Ω,

{z ∈C ∣ Re(z) > x̃0+2} , ∞ ∈Ω, −∞ ∉Ω,

{z ∈C ∣ Re(z) <min(0, x̃1−2)} , ∞ ∈ ∂Ω, −∞ ∈Ω,

{z ∈C ∣ Re(z) < x̃1−2} , ∞ ∉Ω, −∞ ∈Ω,

and

N1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z ∈C ∣ x̃1−2 ≤Re(z) ≤ x̃0+2, ∣Im(z)∣ > 1
k} , ±∞ ∈Ω,

{z ∈C ∣ −k <Re(z) ≤max(0, x̃0+2) , ∣Im(z)∣ > 1
k} , ∞ ∈Ω, −∞ ∈ ∂Ω,

{z ∈C ∣ −k <Re(z) ≤ x̃0+2, ∣Im(z)∣ > 1
k} , ∞ ∈Ω, −∞ ∉Ω,

{z ∈C ∣ min(0, x̃1−2) ≤Re(z) < k, ∣Im(z)∣ > 1
k} , ∞ ∈ ∂Ω, −∞ ∈Ω,

{z ∈C ∣ x̃1−2 ≤Re(z) < k, ∣Im(z)∣ > 1
k} , ∞ ∉Ω, −∞ ∈Ω,

and

N2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z ∈C ∣ x̃1−2 ≤Re(z) ≤ x̃0+2, ∣Im(z)∣ ≤ 1
k} , ±∞ ∈Ω,

{z ∈C ∣ −k <Re(z) ≤max(0, x̃0+2) , ∣Im(z)∣ ≤ 1
k} , ∞ ∈Ω, −∞ ∈ ∂Ω,

{z ∈C ∣ −k <Re(z) ≤ x̃0+2, ∣Im(z)∣ ≤ 1
k} , ∞ ∈Ω, −∞ ∉Ω,

{z ∈C ∣ min(0, x̃1−2) ≤Re(z) < k, ∣Im(z)∣ ≤ 1
k} , ∞ ∈ ∂Ω, −∞ ∈Ω,

{z ∈C ∣ x̃1−2 ≤Re(z) < k, ∣Im(z)∣ ≤ 1
k} , ∞ ∉Ω, −∞ ∈Ω.

Then we can decompose the set t (n) in the following manner

t (n) =
2
⋃
i=0

(t (n)∩Ni)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Mi

.

By the choice of k we have

Mi ⊂ {z ∈U ∩C ∣ 1
k
< ∣Im(z)∣ < k} ⊂ sk (U)

for i = 0,1. The set M2 is obviously bounded in C, therefore, M2 compact, and by (6.29)
we get M2 ⊂ (U ∖R)∩C. Then

sup
z∈t(n)

pα( f (z))e−
1
n ∣Re(z)∣

≤ sup
z∈M0∪M1

pα( f (z))e−
1
n ∣Re(z)∣+ sup

z∈M2

pα( f (z))e−
1
n ∣Re(z)∣

≤ ∣ f ∣U∗,k,α + sup
z∈M2

pα( f (z))e−
1
n ∣Re(z)∣ <∞

for all n ∈N≥2 and α ∈ A.
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By virtue of Lemma 6.8 we may define restrictions in bv(Ω,E) in the following manner:

6.10 Definition. Let E be admissible and Ω, Ω1 ⊂ R, Ω1 ⊂ Ω, be open. For Ω1 ≠ ∅ let [ f ] ∈
bv(Ω,E) =Oexp (U ∖R,E)/Oexp (U,E) where U ∈ U (Ω) . Setting U1 ∶=U ∩ (Ω1×R) , we may
define the restriction map by

RΩ,Ω1 ([ f ]) ∶= [ f ] ∣
Ω1
∶= [ f ∣(U1∖R)∩C] ∈O

exp (U1∖R,E)/Oexp (U1,E) = bv(Ω1,E) .

In addition, we define for an open set Ω ⊂R

RΩ,∅∶bv(Ω,E)→ bv(∅,E) , RΩ,∅ ([ f ]) ∶= [ f ] ∣∅ ∶= 0.

We denote the space {bv(Ω,E) ∣ Ω ⊂R open} by bv(E) .

6.11 Theorem. 5 Let E be strictly admissible.

a) bv(E) , equipped with the restrictions from Definition 6.10, is a sheaf on R.

b) bv(E) is flabby.

c) bv(E) is isomorphic to R(E) ; in particular, R(E) is a sheaf.

Proof. a) (i) For Ω ⊂R open the mapping RΩ,Ω can be regarded as idbv(Ω,E) by Lemma 6.8.
Let Ω3 ⊂ Ω2 ⊂ Ω1 ⊂ R be open. We have to prove that RΩ2,Ω3 ○RΩ1,Ω2 = RΩ1,Ω3 holds.
This is obviously true if one of the sets is empty, so let them all be non-empty. Let [ f ] ∈
bv(Ω1,E) = Oexp (U1∖R,E)/Oexp (U1,E) where U1 ∈ U (Ω1) . With U2 ∶=U1 ∩ (Ω2×R)
and

U3 ∶=U2∩(Ω3×R) = [U1∩(Ω2×R)]∩(Ω3×R) =
Ω3⊂Ω2

U1∩(Ω3×R) (6.30)

we get

RΩ2,Ω3 ○RΩ1,Ω2 ([ f ]) = RΩ2,Ω3 ([ f ∣(U2∖R∩C)]) =
U3⊂U2

[ f ∣(U3∖R)∩C] =
(6.30)

RΩ1,Ω3 ([ f ]) .

(ii) (S1) ∶ Let {Ω j ⊂R ∣ j ∈ J} be a family of open sets and Ω ∶=⋃ j∈J Ω j.

Let [ f ] ∈ bv(Ω,E) =Oexp (U ∖R,E)/Oexp (U,E) , where U ∈ U (Ω) , such that
RΩ,Ω j ([ f ]) = 0 for all j ∈ J. The assumption RΩ,Ω j ([ f ]) = 0 is equivalent to
f ∈Oexp (U j,E) for every j ∈ J where U j ∶=U ∩(Ω j ×R) . Thus we obtain

f ∈Oexp([U ∖R]∪⋃
j∈J

Ω j,E) =Oexp ([U ∖R]∪Ω,E) =
U∈U(Ω)

Oexp (U,E)

and hence [ f ] = 0.
(iii) (S2) ∶ Let (Ω j) j∈J and Ω be like in part (ii).

Let [ f j] ∈ bv(Ω j,E) =Oexp (U j ∖R,E)/Oexp (U j,E) , where U j ∈ U (Ω j) , such that

5counterpart: [13, Theorem 6.9, p. 1125]
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[ f j] ∣Ω j∩Ωk
= [ fk] ∣Ω j∩Ωk

. Hence we have

g jk ∶= f j∣[(U j∩Uk)∖R]∩C− fk∣[(U j∩Uk)∖R]∩C ∈Oexp (U j ∩Uk,E)

plus g jk = −gk j as well as g jk+gkl +gl j = 0 on U j ∩Uk∩Ul by easy calculation.
If ±∞ ∉ Ω and thus ±∞ ∉ Ω j, then exactly like in [20, Theorem 1.4.5, p. 13], where
one uses that E is strictly admissible instead of [20, Theorem 1.4.4, p. 12], there are
g j ∈O(U j ∩C,E) such that g jk = gk−g j on U j∩Uk∩C (here the adjunct strictly is needed).
The setting Fj ∶= f j +g j defines a function F ∈O((U ∖R)∩C,E) =Oexp (U ∖R,E) since

Fj −Fk = f j +g j − fk−gk = f j − fk
²
=g jk

+g j −gk
´¹¹¹¹¸¹¹¹¹¶
=−g jk

= 0

on U j ∩Uk∩C such that

[F] ∣
Ω j

= [F ∣(U j∖R)∩C] = [ f j∣(U j∖R)∩C]+[g j∣(U j∖R)∩C] = [ f j] for any j ∈ J.

Now let −∞ ∈ Ω or ∞ ∈ Ω, i.e. there exists j ∈ J such that −∞ ∈ Ω j or ∞ ∈ Ω j. We only
consider the case that there are j0, j1 ∈ J such that −∞ ∈Ω j0 and ∞ ∈Ω j1 . For the other two
cases the proof is analogous. Then there are x0, x1 ∈R and ε0, ε1 > 0 such that [−∞,x0]×
[−ε0,ε0]⊂U j0 and [x1,∞]×[−ε1,ε1]⊂U j1. Now let x ∶=max(∣x0∣ , ∣x1∣) and ε ∶=min(ε0,ε1) .
We define the sets

G0 ∶= (]−∞,−x−1[×]− ε

2
,
ε

2
[)

C
, H0 ∶=]−∞,−x−2]×[−ε

4
,
ε

4
]

as well as

G1 ∶= (]x+1,∞[×]− ε

2
,
ε

2
[)

C
, H1 ∶= [x+2,∞[×[−ε

4
,
ε

4
] .

By the proof of [18, Theorem 1.4.1, p. 25] there are ϕi ∈ C∞ (R2) , i = 0,1, such that
0 ≤ ϕi ≤ 1 and ϕi = 0 near Gi plus ϕi = 1 near Hi as well as ∣∂ β ϕi∣ ≤Ci,β ε̃−∣β ∣ for all β ∈N2

0
where ε̃ ∶= 1

4 min( ε

4 ,1) and Ci,β > 0.

Figure 6.11: case: −∞ ∈Ω j0,∞ ∈Ω j1
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Figure 6.12: case: −∞ ∈Ω j0,∞ ∈Ω j1

Due to the first case there is F ∈O((U ∖R)∩C,E) such that [F] ∣
Ω j∩R

= [ f j] ∣Ω j∩R
for every

j ∈ J. By the proof of Lemma 6.8 there exists F̃ ∈Oexp (C∖Ω,E) with F−F̃ ∈O(U ∩C,E) .
Thus we obtain

f j − F̃ = ( f j −F)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∈O(U j∩C,E)

+ (F − F̃)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈O(U∩C,E)

∈O(U j ∩C,E) (6.31)

for all j ∈ J. So by the choice of ϕi we can regard ∂ (ϕ0 ( f j0 − F̃)+ϕ1 ( f j1 − F̃)) as an
element of C∞ (R2,E) (set ϕi ( f ji − F̃) ∶= 0 outside U ji). Let n ∈ N≥2, m ∈ N0 and α ∈ A.
Then we obtain by applying the Leibniz rule and the choice of ϕi like in (6.4) resp. (6.17)

∣∂ (ϕ0 ( f j0 − F̃)+ϕ1 ( f j1 − F̃))∣
∅,n,m,α

= sup
z∈Sn(∅),

β∈N2
0, ∣β ∣≤m

pα (∂
β

∂ (ϕ0 ( f j0 − F̃)+ϕ1 ( f j1 − F̃))(z))e−
1
n ∣Re(z)∣

≤ (m!)2
1
∑
i=0

sup
z∈Sn(∅)∖(Gi∪Hi),

β∈N2
0, ∣β ∣≤m

∑
γ≤β

∣∂ β−γ (∂ϕi)(z)∣ pα (∂
γ ( f ji − F̃)(z))e−

1
n ∣Re(z)∣

≤ (m!)2
1
∑
i=0

∑
∣γ ∣≤m+2

sup
z∈Sn(∅)∖(Gi∪Hi)

∣∂ γ
ϕi (z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤Ci,γ ε̃−∣γ ∣

sup
z∈Sn(∅)∖(Gi∪Hi),

β∈N2
0, ∣β ∣≤m

pα (( f ji − F̃)(∣β ∣) (z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶C∗i

≤ (m!)2 (C∗
0 +C∗

1 ) ∑
∣γ ∣≤m+2

(C0,γ +C1,γ) ε̃
−∣γ ∣. (6.32)

Now we have to take a closer look at C∗
i . By the choice of the sets Gi and Hi

Sn (∅)∖(G0∪H0)
⊂ {z ∈C ∣ ∣Im(z)∣ ≤ ε/2, −x−2 ≤Re(z) < −x−1}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶N0

∪{z ∈C ∣ ε/4 < ∣Im(z)∣ < ε/2, Re(z) < −x−2}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M0
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and

Sn (∅)∖(G1∪H1)
⊂ {z ∈C ∣ ∣Im(z)∣ ≤ ε/2, x+1 <Re(z) ≤ x+2}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶N1

∪{z ∈C ∣ ε/4 < ∣Im(z)∣ < ε/2, Re(z) > x+2}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M1

is valid.

Figure 6.13: case: −∞ ∈Ω j0,∞ ∈Ω j1

The sets Ni are clearly bounded and N0 ⊂U j0 as well as N1 ⊂U j1. This implies

sup
z∈Ni,

β∈N2
0, ∣β ∣≤m

pα (( f ji − F̃)(∣β ∣) (z))e−
1
n ∣Re(z)∣ <∞, i = 0,1, (6.33)

by (6.31). If we set

r ∶= 1
2

min(2,
ε

2
,
ε

4
) =min(1,

ε

8
)

and choose k ∈N with k >max(n,ε) and 1
k < ε

8 plus −k < x, if ∞ ∉Ω j0 resp. −∞ ∉Ω j1, then

Dr (z) ⊂ Sk (U ji) ⊂ Sk (Ω) , i = 0,1,

holds for all z ∈ Mi like in (6.19). Due to the Cauchy inequality we get like in Theorem
3.6(4) for i = 0,1

sup
z∈Mi,

β∈N2
0, ∣β ∣≤m

pα (( f ji − F̃)(∣β ∣) (z))e−
1
n ∣Re(z)∣ ≤ A0(∣∣∣ f ji ∣∣∣U∗

ji
,k,α + ∣F̃ ∣

Ω,k,α) <∞ (6.34)

where A0 ∶= e
r
n sup

β∈N2
0, ∣β ∣≤m

∣β ∣!
r∣β ∣ . So we get C∗

i <∞, i = 1,2, by (6.33) and (6.34) which im-

plies ∂ (ϕ0 ( f j0 − F̃)+ϕ1 ( f j1 − F̃)) ∈ Eexp (C,E) by virtue of (6.32). Since E is admissible,
there is g ∈ Eexp (C,E) such that

∂g = ∂ (ϕ0 ( f j0 − F̃)+ϕ1 ( f j1 − F̃)) . (6.35)
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Set G ∶= ϕ0 ( f j0 − F̃)+ϕ1 ( f j1 − F̃)−g. Then G ∈O(C,E) by (6.35) and for all n ∈N≥2 and
α ∈ A we have

∣G∣{±∞},n,α ≤
1
∑
i=0

sup
z∈Sn({±∞})∖Gi

pα (ϕi ( f ji − F̃)(z))e−
1
n ∣Re(z)∣+ sup

z∈Sn(∅)
pα (g(z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣g∣∅,n,α

≤
1
∑
i=0

sup
z∈Sn({±∞})∖Gi

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣+ ∣g∣∅,n,α . (6.36)

Furthermore, if we choose k ∈N such that k > n and 1
k <min(1, ε

2) plus −k < x+1, if ∞ ∉Ω j0
resp. −∞ ∉Ω j1, then [Sn ({±∞})∖Gi] ⊂ [Mi∪Sk (U ji)] , i = 0,1, where

Mi ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅, n ≤ x+1,
{z ∈C ∣ −n ≤Re(z) ≤ −x−1, ∣Im(z)∣ ≤ 1

n} , n > x+1, i = 0,
{z ∈C ∣ x+1 ≤Re(z) ≤ n, ∣Im(z)∣ ≤ 1

n} , n > x+1, i = 1,

is a compact subset of U ji ∩C.

Figure 6.14: case: −∞ ∈Ω j0,∞ ∈Ω j1, n > x+1, i = 1

In addition, Sk (U ji) ⊂ Sk (Ω) and hence, keeping (6.31) in mind,

sup
z∈Sn({±∞})∖Gi

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣

≤
1
∑
i=0

sup
z∈Mi

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣+ sup

z∈Sk(U ji)
pα (( f ji)(z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ f ji ∣U∗ji ,k,α

+2 sup
z∈Sk(Ω)

pα (F̃ (z))e−
1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣F̃ ∣

Ω,n,α
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≤ 2 ∣F̃ ∣
Ω,n,α +

1
∑
i=0

∣ f ji ∣U∗
ji
,k,α +

1
∑
i=0

sup
z∈Mi

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣ <∞.

So we gain G ∈Oexp (C∖{±∞} ,E) by (6.36).
Now we define the function F∗ ∶= F̃ +G. Then we have

F∗ = F̃ +G ∈Oexp (C∖Ω,E) ⊂Oexp (U ∖R,E) .

The last step is to prove that F∗ has the desired property, i.e. [F∗] ∣
Ω j

= [ f j] for any j ∈ J.
If j ∈ J with ±∞ ∉Ω j, then

f j −F∗ = ( f j − F̃)−G ∈O(U j ∩C,E)

by (6.31) and since Oexp (C∖{±∞} ,E) ⊂O(C,E) . Thus we have [F∗] ∣
Ω j

= [ f j] .
Let j ∈ J such that −∞ ∈Ω j or ∞ ∈Ω j. Then we have for n ∈N≥2 and α ∈ A

∣ f j −F∗∣U j,n,α

= sup
z∈Tn(U j)

pα (( f j − F̃ −ϕ0 ( f j0 − F̃)−ϕ1 ( f j1 − F̃)+g)(z))e−
1
n ∣Re(z)∣

≤
1
∑
i=0

sup
z∈Tn(U j)∩Hi

pα (( f j − f ji)(z))e−
1
n ∣Re(z)∣+ sup

z∈Sn(∅)
pα (g(z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣g∣∅,n,α

+ sup
z∈Tn(U j)∖(H0∪H1)

pα (( f j − F̃ −ϕ0 ( f j0 − F̃)−ϕ1 ( f j1 − F̃))(z))e−
1
n ∣Re(z)∣ (6.37)

where we used Tn (U j) ⊂ Sn (∅) plus

H0 ⊂G1 and H1 ⊂G0. (6.38)

Moreover, the following estimate holds

sup
z∈Tn(U j)∖(H0∪H1)

pα (( f j − F̃ −ϕ0 ( f j0 − F̃)−ϕ1 ( f j1 − F̃))(z))e−
1
n ∣Re(z)∣

≤ sup
z∈Tn(U j)∖(H0∪H1)

pα (( f j − F̃)(z))e−
1
n ∣Re(z)∣

+
1
∑
i=0

sup
z∈Tn(U j)∖(Hi∪Gi)

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣ (6.39)

by the triangular inequality, (6.38) and the properties of ϕi. Choose k ∈ N such that k >
max(n, ε

2) and 1
k < ε

4 and, in addition, −k < x+1, if ∞ ∉Ω j0 resp. −∞ ∉Ω j1. Remark that

Tn (U j)∖(Hi∪Gi) ⊂
⎧⎪⎪⎨⎪⎪⎩

(]−∞,−x−1]× [− ε

2 ,
ε

2])∖(]−∞,−x−2]× [− ε

4 ,
ε

4]) , i = 0,
([x+1,∞[×[− ε

2 ,
ε

2])∖([x+2,∞[×[− ε

4 ,
ε

4]) , i = 1,
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⊂ Sk (U ji)∪Mi, i = 0,1,

with

Mi ∶=
⎧⎪⎪⎨⎪⎪⎩

{z ∈C ∣ −x−2 <Re(z) < −x−1, ∣Im(z)∣ ≤ 1
k} , i = 0,

{z ∈C ∣ x+1 <Re(z) < x+2, ∣Im(z)∣ ≤ 1
k} , i = 1,

by the choice of k.

Figure 6.15: case i = 1: ∞ ∈Ω j, −∞ ∉Ω j,∞ ∈Ω j1, −∞ ∉Ω j1

The sets Mi, i = 0,1, are obviously bounded and Mi ⊂ (U ji ∩C) . Further, we define the set

M2 ∶= [Tn (U j)∖(H0∪H1)]∖Sk (U j)

which is bounded, since M2 ⊂{z ∈C ∣ −x−2 <Re(z) < x+2, ∣Im(z)∣ ≤ 1/k} due to the choice
of k, and one has M2 ⊂ Tn (U j) ⊂ (U j ∩C) .

Figure 6.16: case: ∞ ∈Ω j, −∞ ∉Ω j, −∞ ∈Ω j0,∞ ∈Ω j1
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These results yield to

sup
z∈Tn(U j)∖(Hi∪Gi)

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣

≤ ∣ f ji ∣U∗
ji
,k,α + ∣F̃ ∣

Ω,k,α + sup
z∈Mi

pα (( f ji − F̃)(z))e−
1
n ∣Re(z)∣ <∞

for i = 0,1 and

sup
z∈Tn(U j)∖(H0∪H1)

pα (( f j − F̃)(z))e−
1
n ∣Re(z)∣

≤ ∣ f j∣U∗
j ,k,α

+ ∣F̃ ∣
Ω,k,α + sup

z∈M2

pα (( f j − F̃)(z))e−
1
n ∣Re(z)∣ <∞

by triangular inequality and (6.31). Thus the right hand side of (6.39) is bounded from
above.
Let us turn to the still pending estimates in (6.37), so we have to take a look at the sets
Tn (U j)∩Hi, i = 0,1.

Figure 6.17: case: ∞ ∈Ω j, −∞ ∉Ω j,∞ ∉Ω j0, −∞ ∈Ω j0 ,∞ ∈Ω j1, −∞ ∉Ω j1

Choose k ∈N such that k > n and 1
k <min(1, ε

2) and, in addition, −k < x+1, if ∞ ∉Ω j0 resp.
−∞ ∉Ω j1 . Let z ∈Hi, i = 0,1, with ∣Im(z)∣ < k. Then z ∈U ji and

Re(z) ≤ −x−1 < k, if i = 0, ∞ ∉Ω j0, resp. Re(z) ≥ x+1 > −k, if i = 1, −∞ ∉Ω j1,

by the choice of k as well as

d(z,∂U ji ∩C) ≥min(1,
ε

2
) > 1

k

implying z ∈ Tk (U ji) . Since k > n, we have Tn (U j) ⊂ Tk (U j) and thus (Tn (U j)∩Hi) ⊂
[Tk (U j)∩Tk (U ji)] . Now let z ∈ Tk (U j)∩Tk (U ji) . Then z ∈U j ∩U ji and ∣Im(z)∣ < k. Since
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6 The duality method

∂ (U j ∩U ji)∩C is closed, there is z0 ∈ ∂ (U j ∩U ji)∩C with

d(z,∂ (U j ∩U ji)∩C) = ∣z− z0∣ .

Moreover,
[∂ (U j ∩U ji)∩C] ⊂ (∂U j ∩C)∪(∂U ji ∩C)

and thus we obtain

d(z,∂ (U j ∩U ji)∩C) = ∣z− z0∣ ≥ { d(z,∂U j ∩C) , z0 ∈ ∂U j ∩C,
d(z,∂U ji ∩C) , z0 ∈ ∂U ji ∩C,

} > 1
k
.

If ±∞ ∉ Ω j ∩Ω ji, we have in addition −k < Re(z) < k. Therefore, Tk (U j) ∩ Tk (U ji) is
bounded and the closure a subset of U j ∩U ji ∩C, if ±∞ ∉Ω j ∩Ω ji, and
[Tk (U j)∩Tk (U ji)] ⊂ Tk (U j ∩U ji) , if −∞ ∈Ω j ∩Ω ji or ∞ ∈Ω j ∩Ω ji. This yields to

sup
z∈Tn(U j)∩Hi

pα (( f j − f ji)(z))e−
1
n ∣Re(z)∣

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup
z∈Tk(U j)∩Tk(U ji)

pα (( f j − f ji)(z))e−
1
k ∣Re(z)∣, ±∞ ∉Ω j ∩Ω ji,

∣ f j − f ji ∣U j∩U ji ,k,α
, else,

<∞

since f j− f ji ∈Oexp (U j ∩U ji,E) , if Ω j∩Ω ji ≠∅, by assumption (or U j∩U ji =∅). Combin-
ing the results obtained, we have ∣ f j −F∗∣U j,n,α

<∞ for all n ∈N≥2 and α ∈ A by (6.37) and

thus f j −F∗ ∈Oexp (U j,E) , i.e. [F∗] ∣
Ω j

= [ f j] .

b) Let [ f ] ∈ bv(Ω,E) =Oexp (U ∖R,E)/Oexp (U,E) where U ∈ U (Ω) and Ω ⊂ R open. By
virtue of the proof of Lemma 6.8 there exists a function
F ∈Oexp (C∖Ω,E) ⊂Oexp (C∖R,E) such that f −F ∈Oexp (U,E) . Hence [F] ∈ bv(R,E)
is an extension of [ f ] to R.

c) For an open set Ω ⊂R, Ω ≠∅, one has the following (algebraic) isomorphisms

R(Ω,E) = L(P∗ (Ω) ,E)/L(P∗ (∂Ω) ,E) ≅Oexp (C∖Ω,E)/Oexp (C∖∂Ω,E)
≅Oexp ((Ω×R)∖R,E)/Oexp (Ω×R,E) = bv(Ω,E) .

The first isomorphism is due to Theorem 4.1 and given by the map

GΩ∶L(P∗ (Ω) ,E)/L(P∗ (∂Ω) ,E)→Oexp (C∖Ω,E)/Oexp (C∖∂Ω,E) ,
[T ]↦ [T̃ ]∼ , [T̃ ]

Ω
=H−1

Ω
(T) ,

where H is the isomorphism from Theorem 4.1 and we denote by [⋅] the equivalence classes
in L(P∗ (Ω) ,E)/L(P∗ (∂Ω) ,E) , with [⋅]∼ the ones in
Oexp (C∖Ω,E)/Oexp (C∖∂Ω,E) and with [⋅]

Ω
the ones in Oexp (C∖Ω,E)/Oexp (C,E) .

well-defined: Let T0,T1 ∈ L(P∗ (Ω) ,E) with [T0] = [T1] , i.e. T0 −T1 ∈ L(P∗ (∂Ω) ,E) .
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Then
H−1

Ω
(T0−T1) =H−1

∂Ω
(T0−T1)

by (4.8) and

[T̃0− T̃1]Ω
= [T̃0]Ω

− [T̃1]Ω
=H−1

Ω
(T0)−H−1

Ω
(T1) =H−1

Ω
(T0−T1)

=H−1
∂Ω

(T0−T1) ∈Oexp (C∖∂Ω,E)/Oexp (C,E)

holds. Thus T̃0− T̃1 ∈Oexp (C∖∂Ω,E) , i.e. [T̃0− T̃1]∼ = 0.
On the other hand, let T ∈ L(P∗ (Ω) ,E) and T̃0, T̃1 ∈ Oexp (C∖Ω,E) such that [T̃0]Ω

=
[T̃1]Ω

=H−1
Ω

(T) . Then T̃0− T̃1 ∈Oexp (C,E) ⊂Oexp (C∖∂Ω,E) and hence [T̃0− T̃1]∼ = 0.

injectivity: Let T ∈ L(P∗ (Ω) ,E) with GΩ (T) = [T̃ ]∼ = 0. Then T̃ ∈Oexp (C∖∂Ω,E) and
thus

H−1
Ω

(T) = [T̃ ]
Ω
∈Oexp (C∖∂Ω,E)/Oexp (C,E) .

Therefore, we get

T =H
Ω
(H−1

Ω
(T)) =H∂Ω(H−1

Ω
(T)) ∈ L(P∗ (∂Ω) ,E)

by (4.8) and so [T ] = 0.
surjectivity: Let T0 ∈Oexp (C∖Ω,E) . Then we have H

Ω
([T0]Ω

) ∈ L(P∗ (Ω) ,E) by Theo-
rem 4.1. Then we define T ∶=H

Ω
([T0]Ω

) and get

H−1
Ω

(T) =H−1
Ω

(H
Ω
([T0]Ω

)) = [T0]Ω

by Theorem 4.1 again. This means that GΩ ([T ]) = [T0]∼ .
The second isomorphism is defined by the map

JΩ∶Oexp (C∖Ω,E)/Oexp (C∖∂Ω,E)→Oexp ((Ω×R)∖R,E)/Oexp (Ω×R,E) ,

[ f ]∼↦ [ f ∣((Ω×R)∖R)∩C]
Ω

.

This map is well-defined since Oexp (C∖∂Ω,E) ⊂Oexp (Ω×R,E) .
injectivity: Let f ∈ Oexp (C∖Ω,E) with JΩ ([ f ]∼) = 0, i.e. f ∈ Oexp (Ω×R,E) . Then it
follows that f ∈O(C∖∂Ω,E) . Further, the estimate

∣ f ∣
∂Ω,n,α ≤ sup

z∈Sn(Ω)
pα ( f (z))e−

1
n ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ f ∣

Ω,n,α

+ sup
z∈Sn(∂Ω)∖Sn(Ω)

pα ( f (z))e−
1
n ∣Re(z)∣ (6.40)

holds for all n ∈N≥2 and α ∈ A.
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Let us examine the set Sn (∂Ω)∖Sn (Ω) . We have for z ∈ Sn (∂Ω)∖Sn (Ω)

Re(z) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[min∂Ω∩R,max∂Ω∩R] , ±∞ ∉Ω,

[−n,n] , ±∞ ∈ ∂Ω,

]−∞,n], −∞ ∈Ω, ∞ ∈ ∂Ω,

[−n,∞[, −∞ ∈ ∂Ω, ∞ ∈Ω,

R, ±∞ ∈Ω,

[−n,max∂Ω∩R] , −∞ ∈ ∂Ω, ∞ ∉Ω,

]−∞,max∂Ω∩R], −∞ ∈Ω, ∞ ∉Ω,

[min∂Ω∩R,n] , −∞ ∉Ω, ∞ ∈ ∂Ω,

[min∂Ω∩R,∞[, −∞ ∉Ω, ∞ ∈Ω,

and ∣Im(z)∣ ≤ 1
n . Furthermore, we observe that W ∶=⋃x∈∂Ω∩RD 1

n
(x) is open and

Sn (∂Ω)∖Sn (Ω) = ([Sn (∂Ω)∖Sn (Ω)]∖W) ⊂WC =WC ⊂C∖∂Ω. (6.41)

So, if ±∞ ∉ Ω, then Sn (∂Ω)∖Sn (Ω) is a compact subset of C∖ ∂Ω. Due to (6.40) and
since f ∈O(C∖∂Ω,E) , we get ∣ f ∣

∂Ω,n,α <∞ in this case.
Let −∞ ∈Ω or∞ ∈Ω. Then there are xi ∈R, i=0,1, such that [−∞,x0]⊂Ω resp. [x1,∞]⊂Ω.
Choose k ∈N such that k > n and, in addition,

k > x0, if −∞ ∈Ω, ∞ ∉Ω, resp. −k < x1, if −∞ ∉Ω, ∞ ∈Ω.

Then we obtain for z ∈ [Sn (∂Ω)∖Sn (Ω)]∖Tk (Ω×R) =∶M

∣Re(z)∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(∣x0∣ ,n) , −∞ ∈Ω, ∞ ∈ ∂Ω,

max(∣x1∣ ,n) , −∞ ∈ ∂Ω, ∞ ∈Ω,

max(∣x0∣ , ∣x1∣) , ±∞ ∈Ω,

max(∣x0∣ , ∣max∂Ω∩R∣) −∞ ∈Ω, ∞ ∉Ω,

max(∣min∂Ω∩R∣ , ∣x1∣) , −∞ ∉Ω, ∞ ∈Ω,

by the choice of k and as ∂Ω ⊂ ΩC. Hence M is bounded, thus M compact, and M ⊂
(C∖∂Ω) by (6.41). Therefore, we gain

sup
z∈Sn(∂Ω)∖Sn(Ω)

pα ( f (z))e−
1
n ∣Re(z)∣

≤ sup
z∈Tk(Ω×R)

pα ( f (z))e−
1
k ∣Re(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∣ f ∣

Ω×R,k,α

+sup
z∈M

pα ( f (z))e−
1
n ∣Re(z)∣ <∞

since f ∈Oexp (Ω×R,E) and f ∈O(C∖∂Ω,E) . By (6.40) we have ∣ f ∣
∂Ω,n,α <∞ in this

case as well and thus f ∈Oexp (C∖∂Ω,E) proving the injectivity of JΩ.

surjectivity: Let [ f ]
Ω
∈Oexp ((Ω×R)∖R,E)/Oexp (Ω×R,E) . By the proof of Lemma 6.8
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there is F ∈Oexp (C∖Ω,E) such that f −F ∈Oexp (Ω×R,E) , i.e. JΩ ([F]∼) = [ f ]
Ω
.

The last step is to prove that these isomorphisms, which we denote by hΩ ∶= JΩ ○GΩ, are
compatible with the respective restrictions, i.e. for open sets Ω1 ⊂Ω ⊂R the diagram

R(Ω,E) hΩ //

RRΩ,Ω1 ��

bv(Ω,E)
Rbv

Ω,Ω1��
R(Ω1,E)

hΩ1

// bv(Ω1,E)

commutes. Let T ∈L(P∗ (Ω) ,E) . Choose a representative T0 of RR
Ω,Ω1

([T ]) . By definition
of the restriction

T0−T ∈ L(P∗ (Ω∖Ω1) ,E) (6.42)

is valid. Let T̃0 be a representative of H−1
Ω

(T0) . Then we have

(hΩ1 ○RR
Ω,Ω1

)([T ]) = hΩ1 ([T0]1) = JΩ1 ○GΩ1 ([T0]1) = [T̃0∣((Ω1×R)∖R)∩C]
Ω1

.

On the other hand, let T̃ be a representative of H−1
Ω

(T) . Then we get

(Rbv
Ω,Ω1

○hΩ)([T ]) = Rbv
Ω,Ω1

([T̃ ∣((Ω×R)∖R)∩C]
Ω

) = [T̃ ∣((Ω1×R)∖R)∩C]
Ω1

.

Further,

[T̃0− T̃ ]
Ω
=H−1

Ω
(T0−T) =H−1

Ω∖Ω1
(T0−T) ∈Oexp (C∖(Ω∖Ω1) ,E)/Oexp (C,E)

by (6.42) and (4.8). Therefore, T̃0 − T̃ ∈Oexp (C∖(Ω∖Ω1) ,E) ⊂Oexp (Ω1×R,E) which

implies (hΩ1 ○RR
Ω,Ω1

)([T ]) = (Rbv
Ω,Ω1

○hΩ)([T ]) . By virtue of Proposition 6.6 it follows
that R(E) is a sheaf which is isomorphic to bv(E) .

Immediately we get the following corollary.

6.12 Corollary. 6 Let E be strictly admissible, Ω ⊂R open. The spaces {R(ω,E) ∣ ω ⊂Ω open} ,
equipped with the restrictions of Definition 6.4, form a flabby sheaf.

Corollary 6.12 provides an answer to a problem stated by Ito, at least for E-valued Fourier hy-
perfunctions in one variable (see [23, Problem B, p. 18]).

Now we want to describe the sections with support in a given compact set K ⊂R. We recall the
definition of the support of a section of a sheaf. Let X be a topological space, (F ,RF) a sheaf
on X and f ∈ F (X) a section of a sheaf. Then the support of f , denoted by suppF f or shortly
supp f , is the complement of the largest open subset of X on which f = 0, i.e.

supp f = ( ⋃
V∈Z f

V)C

6counterpart: [13, Corollary 6.10, p. 1126]
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where Z f ∶= {V ∣V ⊂ X open, f ∣V = 0} (condition (S1) is used in this definition). This directly
yields to the following description of the support of an element of bv(Ω,E) for an open set
Ω ⊂R and a strictly admissible space E ∶
Let f = [F] ∈Oexp (U ∖R,E)/Oexp (U,E) , where U ∈ U (Ω) , and Ω1 ⊂ Ω be open. If −∞ ∈ Ω or
∞ ∈Ω, we define the set

Sn (U,Ω1) ∶= {z ∈U ∩C ∣ d(z,(Ω∩R)∖Ω1) >
1
n
, d(z,∂U ∩C) > 1

n
, ∣Im(z)∣ < n}

∩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C, ±∞ ∈Ω,

{z ∈C ∣ Re(z) > −n} , ∞ ∈Ω, −∞ ∉Ω,

{z ∈C ∣ Re(z) < n} , ∞ ∉Ω, −∞ ∈Ω,

∖

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(]−∞,−n]∪ [n,∞[)+ i[−1
n ,

1
n] , ±∞ ∉Ω1,

]−∞,−n]+ i[−1
n ,

1
n] , −∞ ∉Ω1, ∞ ∈Ω1,

[n,∞[+i[−1
n ,

1
n] , ∞ ∉Ω1, −∞ ∈Ω1,

∅, ±∞ ∈Ω1,

for n ∈N≥2.
If −∞ ∈Ω or ∞ ∈Ω, then f ∣

Ω1
= 0 is equivalent to

(a) F can be extended to a holomorphic function on [(U ∖R)∪Ω1]∩C if ±∞ ∉Ω1.

(b) F can be extended to a holomorphic function on [(U ∖R)∪Ω1]∩C and

∣F ∣U,Ω1,n,α ∶= sup
z∈Sn(U,Ω1)

pα (F (z))e−
1
n ∣Re(z)∣ <∞ (6.43)

for every n ∈N≥2 and α ∈ A if −∞ ∈Ω1 or ∞ ∈Ω1.

We remark that (6.43) is valid in (a) as well.
If ±∞ ∉Ω, then f ∣

Ω1
= 0 is equivalent to statement (a).

Observing that

[(U ∖R)∪Z f ]∩C = [(U ∖R)∪(Ω∖ supp f )]∩C = (U ∖ supp f )∩C,

since U ∈ U (Ω) , and

(Ω∩R)∖Z f =Ω∩ supp f ∩R = (∂Ω∪ supp f )∩R,

we get F ∈O((U ∖ supp f )∩C,E) and, if −∞ ∈Ω1 or ∞ ∈Ω1, in addition,

∣F ∣U,Z f ,n,α = sup
z∈Sn(U,Z f )

pα (F (z))e−
1
n ∣Re(z)∣ <∞

for every n ∈N≥2 and α ∈ A where we have

d(z,(Ω∩R)∖Ω1) = d(z,(∂Ω∪ supp f )∩R)

in the definition of Sn (U,Z f ) .
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Now let K ⊂Ω be compact and set

bvK (Ω,E) ∶= { f ∈ bv(Ω,E) ∣ supp f ⊂K}

plus for U ∈ U (Ω)

Oexp (U ∖K,E) ∶= { f ∈O((U ∖K)∩C,E) ∣ ∀ n ∈N≥2 ∀ α ∈ A ∶ ∣F ∣U,Ω∖K,n,α <∞} ,

if −∞ ∈Ω or ∞ ∈Ω, resp.

Oexp (U ∖K,E) ∶=O((U ∖K)∩C,E) ,

if ±∞ ∉Ω.
Due to the considerations above and Lemma 6.8 we gain the following description of bvK (Ω,E) .

6.13 Lemma. Let E be strictly admissible, Ω ⊂R be open and K ⊂Ω compact. For any U ∈U (Ω)
we have the (algebraic) isomorphism:

bvK (Ω,E) ≅Oexp (U ∖K,E)/Oexp (U,E)

In particular, we have

bvK (R,E) ≅Oexp (C∖K)/Oexp (C,E) ≅ L(P∗ (K) ,E) .

Proof. Using Lemma 6.8, we represent bv(Ω,E) by Oexp (U ∖R,E)/Oexp (U,E) . Then the
identity-mapping

id∶{ f = [F] ∈Oexp (U ∖R,E)/Oexp (U,E) ∣ supp f ⊂K}→Oexp (U ∖K,E)/Oexp (U,E) ,
[F]→ [F] ,

is (well-)defined and surjective by the considerations above and obviously injective.
Now let Ω ∶= R, set Ω1 ∶= R∖K and choose U ∶= C. We claim that the definition of the space
Oexp (C∖K,E) in the sense above and in the sense of Definition 3.2 coincide (and therefore the
spaces have the same symbol). Let n ∈N≥2. Then

d(z,(Ω∩R)∖Ω1) = d(z,(∂R∪K)∩R) = d(z,K∩R)

and
d(z,∂U ∩C) = d(z,∅) =∞ > 1

n
holds for z ∈C. Further,

±∞ ∉R∖K

−∞ ∉R∖K

∞ ∉R∖K

±∞ ∈R∖K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

±∞ ∈K
−∞ ∈K
∞ ∈K

±∞ ∉K
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6 The duality method

and hence we obtain Sn (C,R∖K) = Sn (K) . Thus the claim is proven. Therefore,

bvK (R,E) ≅Oexp (C∖K,E)/Oexp (C,E) ≅ L(P∗ (K) ,E)

holds by Theorem 4.1 which proves the endorsement.

Remark that this isomorphism induces a reasonable locally convex topology on bvK (R,E) since
L(P∗ (K) ,E) has such a topology.

As already mentioned, I am convinced that a reasonable theory of E-valued Fourier hyper-
functions (in one variable) should produce a flabby sheaf F on R such that the set of sec-
tions supported by a compact subset K ⊂ R should coincide, in the sense of being isomor-
phic, with L(P∗ (K) ,E) since the restricted sheaf F ∣R then satisfies the conditions of Domański
and Langenbruch for a reasonable theory of E-valued hyperfunctions. In addition, the map
F ∶F (R)→F (R) , defined by F ∶= J−1 ○Fd ○J, where J∶F (R)→ L(P∗ (R) ,E) is an isomor-
phism existing by assumption and Fd the Fourier transformation of Theorem 4.6, can be regarded
as Fourier transformation on the space of global sections and is an isomorphism.
If E is strictly admissible, the sheaves bv(E) and R(E) satisfy this condition for a reasonable
theory of E-valued Fourier hyperfunctions by Theorem 6.11 and Lemma 6.13 (ForR(E) remark
that sheaf isomorphisms preserve supports, so the definition of a support in Proposition 4.3(2)
was well-chosen.). The next theorem confirms that the sufficient condition of E being strictly
admissible is also necessary for a reasonable theory of E-valued Fourier hyperfunctions in one
variable if E is an ultrabornological PLS-space and describes further equivalent sufficient and
necessary conditions.

6.14 Theorem. 7 Let E be an ultrabornological PLS-space. Then the following assertions are
equivalent:

(a) There is a flabby sheaf F on some open set ∅ ≠Ω ⊂R such that

FK (Ω) ∶ = {T ∈F (Ω) ∣ suppF (T) ⊂K}
≅ L(P∗ (K) ,E) for any compact K ⊂Ω.

(b) There is a flabby sheaf F on R such that

FK (R) ∶ = {T ∈F (R) ∣ suppF (T) ⊂K}
≅ L(P∗ (K) ,E) for any compact K ⊂R.

(c) E is strictly admissible.

(d) P(D) ∶C∞ (U,E) → C∞ (U,E) is surjective for some (any) elliptic operator P(D) and
some (any) open set U ⊂Rn and some (any) n ∈N≥2.

(e) E has (PA) .

Proof. (e)⇔ (d) ∶ [13, Corollary 4.1, p. 1113] resp. [13, Corollary 3.9, p. 1112]
(e)⇒ (c) ∶ Theorem 5.25
(c)⇒ (b) ∶ Theorem 6.11 and Lemma 6.13

7counterpart: [13, Theorem 8.9, p. 1139]

150



Karsten Kruse

(b)⇒ (a) ∶ Obvious with Ω ∶=R.
(a)⇒ (e) ∶ Let there be a flabby sheaf F on an open set ∅ ≠Ω ⊂R such that

FK (Ω) = {T ∈F (Ω) ∣ suppF (T) ⊂K}
≅ L(P∗ (K) ,E) for any compact K ⊂Ω.

Then the restriction F ∣
Ω∩R of F to Ω∩R is a flabby sheaf as well such that

(F ∣
Ω∩R)K

(Ω∩R) = {T ∈F ∣
Ω∩R (Ω∩R) ∣ supp

F ∣
Ω∩R

(T) ⊂K}

≅ L(A(K) ,E) for any compact K ⊂ (Ω∩R)

since P∗ (K) =A(K) for every compact set K ⊂R. By virtue of [13, Theorem 8.9, p. 1139] this
implies that E has (PA) .
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7 Summary and outlook

We have seen that a reasonable theory of E-valued Fourier hyperfunctions in one variable exists
for a complete locally convex space E if E is strictly admissible, i.e. if the Cauchy-Riemann
operator

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

is surjective for any compact set K ⊂R and, in addition,

∂ ∶C∞ (Ω,E)→C∞ (Ω,E)

is surjective for any open set Ω ⊂ C. At first this problem was solved for E = C by combining
Hörmander’s solution of the weighted ∂ -problem and the Mittag-Leffler procedure (Theorem
5.16). By virtue of representations of Eexp (C∖K,E) and Oexp (C∖K,E) as tensor products
(Theorem 3.11) the corresponding result is also valid for Fréchet spaces E (Theorem 5.17 resp.
Junker, [26]). In order to extend this result beyond the class of Fréchet spaces by the splitting
theory of Vogt and the one of Bonet and Domański, it was necessary to prove that the space
Oexp (C∖K) satisfies the condition (Ω) for any compact set K ⊂R. For K =∅ this was done by
using a decomposition result of Langenbruch (Theorem 5.20) and in combination with a duality
established between the spaces Oexp (C∖K)/Oexp (C) and P∗ (K)′b (Theorem 4.1) the general
result was obtained (Theorem 5.22). Due to the condition of E being strictly admissible, the
theory of vector-valued Fourier hyperfunctions (in one variable) could be extended far beyond
the class of Fréchet spaces and they are realized on the one hand as the sheaf generated by equiv-
alence classes of compactly supported E-valued P∗-functionals and on the other as boundary
values of E-valued slowly increasing holomorphic functions (Theorem 5.24 and Theorem 6.11).
Furthermore, natural limits of this kind of theory were found in the class of ultrabornological
PLS-spaces, namely, if E is an ultrabornological PLS-space, a reasonable theory of E-valued
Fourier hyperfunctions in one variable is possible if and only if E satisfies (PA) (Theorem 6.14).
For many classical spaces in analysis it is well-known whether they have (PA) or not, in particu-
lar every Fréchet-Schwartz space has (PA) (Example 5.26 and Example 5.27).
Obviously the question arises if such a theory is also possible in several variables. By the re-
sults of Junker (see [26, Section 3, p. 32-46]) we know that a reasonable theory of Fréchet-
valued Fourier hyperfunctions in several variables exists. Domański and Langenbruch could con-
struct an E-valued sheaf of hyperfunctions in d variables under the assumption that the (d+1)-
dimensional Laplace operator

∆d+1∶C∞ (Ω,E)→C∞ (Ω,E)

is surjective for every open set Ω ⊂Rd+1. Perhaps it is possible to create a reasonable theory of
E-valued Fourier hyperfunctions in d variables if we additionally assume that

∆d+1∶Eexp ((Dd ×R)∖K,E)→ Eexp ((Dd ×R)∖K,E)
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7 Summary and outlook (eng/ger)

is surjective for any compact set K ⊂Dd where Dd is the radial compactification of Rd and, if we
write points ζ ∈Rd+1 as ζ = (x,y) ∈Rd ×R,

Eexp ((Dd ×R)∖K,E)
∶= { f ∈C∞ ([(Dd ×R)∖K]∩Rd+1,E) ∣ ∀ α ∈ A, n ∈N, m ∈N0 ∶ rn,m,α ( f ) <∞}

where (pα)
α∈A is a fundamental system of semi-norms on E and

rn,m,α ( f ) ∶= sup
(x,y)∈Rn(K)∩Rd+1,

β∈Nd+1
0 , ∣β ∣≤m

pα (∂
β f (x,y))e−

1
n ∣x∣

plus

Rn (K) ∶= {(x,y) ∈ (Dd ×R)∖K ∣ ∣y∣ < n and inf
w∈K

ρ ((x,y) ,w) > 1
n
}

where ρ denotes the canonical metric on Dd ×R. Following [13], let

Ẽexp
∆

((Dd ×R)∖K,E) ∶= { f ∈ Eexp ((Dd ×R)∖K,E) ∣ ∆ f = 0, f (x,y) = f (x,−y)}

denote the E-valued slowly increasing harmonic functions outside K which are even with respect
to the last variable and

P∗ (K) ∶= limind
n∈N

O(Un (K))

denote the rapidly decreasing holomorphic germs near K where

O(Un (K)) ∶= { f ∈O(Un (K)∩Cd)∩C(Un (K)∩Cd) ∣ ∥ f ∥n ∶= sup
z∈Un(K)∩Cd

∣ f (z)∣e 1
n ∣Re(z)∣ <∞}

with
Un (K) ∶= {z ∈Dd ×Rd ∣ inf

w∈K
ρd (z,w) < 1

n
}

where ρd denotes the canonical metric on Dd ×Rd. Further, let

P̃∆ (K) ∶= limind
n∈N

P̃∆ (Vn (K)) ,

where

P̃∆ (Vn (K)) ∶= { f ∈C∞ (Vn (K)∩Rd+1) ∣ ∆ f = 0, f (x,y) = f (x,−y) , ∣∣∣ f ∣∣∣n <∞}

with
∣∣∣ f ∣∣∣n ∶= sup

(x,y)∈Vn(K)∩Rd+1

∣ f (x,y)∣e 1
n ∣x∣

and
Vn (K) ∶= {(x,y) ∈Dd ×R ∣ inf

w∈K
ρ ((x,y) ,w) < 1

n
} ,

denote the rapidly decreasing harmonic germs near K which are even with respect to the last
variable.
In order to gain counterparts of [13, Lemma 5.1, p. 1118] (see also [12, Proposition 2.3, p. 44]),

154



Karsten Kruse

[13, Theorem 5.3, p. 1119] resp. Theorem 4.1 (see also [1, Satz 2, p. 376]), one faces the open
problems:

7.1 Problem. Let K ⊂Dd be compact and E a complete locally convex space.

(a) Are P∗ (K) and P̃∆ (K) topologically isomorphic?

(b) Are Ẽexp
∆

((Dd ×R)∖K,E)/Ẽexp
∆

(Dd ×R,E) and Lb (P̃∆ (K) ,E) topologically isomorphic?

One difficulty in answering the second question is that it still lacks in a fundamental solution
of ∆d+1 with the right growth conditions.
A different idea would be to represent Fourier hyperfunctions as boundary values of solutions of
the heat equation (see [29], [42], [43], [44] and [30]).
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Zusammenfassung und Ausblick

Wie gesehen, ist eine vernünftige Theorie E-wertiger Fourier Hyperfunktionen möglich, wenn E
streng zulässig (strictly admissible) ist, d.h. wenn der Cauchy-Riemann Operator

∂ ∶Eexp (C∖K,E)→ Eexp (C∖K,E)

für jede kompakte Menge K ⊂R surjektiv ist und außerdem

∂ ∶C∞ (Ω,E)→C∞ (Ω,E)

für jede offene Menge Ω ⊂ C surjektiv ist. Im ersten Schritt wurde dieses Problem für den
skalarwertigen Fall gelöst, indem Hörmanders Lösung des gewichteten ∂ -Problems mit dem
Mittag-Leffler Verfahren kombiniert wurde (Theorem 5.16). Dank der Darstellung der Räume
Eexp (C∖K,E) und Oexp (C∖K,E) mittels Tensorprodukten (Theorem 3.11) gilt das entspre-
chende Resultat auch für Fréchet-Räume E (Theorem 5.17 bzw. Junker, [26]). Um es durch die
Splitting-Theorie von Vogt bzw. die von Bonet und Domański über die Klasse der Fréchet-Räume
hinaus auszuweiten, war es notwendig zu zeigen, dass der Raum Oexp (C∖K) die Eigenschaft
(Ω) für jede kompakte Menge K ⊂ R besitzt. Im Fall K = ∅ wurde dazu ein Zerlegungsresultat
von Langenbruch verwendet (Theorem 5.20) und durch die Kombination mit einer zwischen den
RäumenOexp (C∖K)/Oexp (C) und P∗ (K)′b bewiesenen Dualität (Theorem 4.1) erhielt man die
allgemeine Aussage (Theorem 5.22). Vermöge der Bedingung der strengen Zulässigkeit von E
konnte somit die Theorie der vektorwertigen Fourier Hyperfunktionen (in einer Variablen) weit
über die Klasse der Fréchet-Räume hinaus erweitert werden und sie werden einerseits als von
Äquivalenzklassen E-wertiger P∗-Funktionale mit kompaktem Träger erzeugte Garbe dargestellt
und andererseits als Randwerte E-wertiger langsam wachsender holomorpher Funktionen (Theo-
rem 5.24 and Theorem 6.11). Desweiteren wurden natürliche Grenzen dieser Art von Theorie in
der Klasse der ultrabornolgischen PLS-Räume gefunden, nämlich, wenn E ein ultrabornologi-
scher PLS-Raum ist, dann ist eine vernünftige Theorie E-wertiger Fourier Hyperfunktionen in
einer Variablen genau dann möglich, wenn E die Eigenschaft (PA) hat (Theorem 6.14). Für viele
Standardräume der Analysis ist bekannt, ob sie (PA) haben oder nicht, insbesondere hat jeder
Fréchet-Schwartz Raum (PA) (Example 5.26 and Example 5.27).
Offensichtlich stellt sich die Frage, ob eine solche Theorie auch in mehreren Variablen möglich
ist. Aufgrund der Ergebnisse von Junker (siehe [26, Kapitel 3, S. 32-46]) wissen wir, dass eine
vernünftige Theorie Fréchet-wertiger Fourier Hyperfunktionen auch in mehreren Variablen mög-
lich ist. Domański und Langenbruch gelang es, eine E-wertige Garbe von Hyperfunktionen in d
Variablen unter der Annahme, dass der (d+1)-dimensionale Laplace Operator

∆d+1∶C∞ (Ω,E)→C∞ (Ω,E)

für jede offene Menge Ω ⊂ Rd+1 surjektiv ist, zu konstruieren. Vielleicht ist es möglich, eine
sinnvolle Theorie E-wertiger Fourier Hyperfunktionen in d Variablen zu erschaffen, wenn wir
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zusätzlich annehmen, dass

∆d+1∶Eexp ((Dd ×R)∖K,E)→ Eexp ((Dd ×R)∖K,E)

für jede kompakte Menge K ⊂ Dd surjektiv ist, wobei Dd die radiale Kompaktifizierung von Rd

bezeichne und, wenn wir Punkte ζ ∈Rd+1 schreiben als ζ = (x,y) ∈Rd ×R,

Eexp ((Dd ×R)∖K,E)
∶= { f ∈C∞ ([(Dd ×R)∖K]∩Rd+1,E) ∣ ∀ α ∈ A, n ∈N, m ∈N0 ∶ rn,m,α ( f ) <∞} ,

wobei (pα)
α∈A ein Fundamentalsystem von Halbnormen auf E sei, und

rn,m,α ( f ) ∶= sup
(x,y)∈Rn(K)∩Rd+1,

β∈Nd+1
0 , ∣β ∣≤m

pα (∂
β f (x,y))e−

1
n ∣x∣

sowie
Rn (K) ∶= {(x,y) ∈ (Dd ×R)∖K ∣ ∣y∣ < n and inf

w∈K
ρ ((x,y) ,w) > 1

n
},

wobei ρ die kanonische Metrik auf Dd ×R bezeichne. Dem Vorgehen in [13] folgend, bezeichne

Ẽexp
∆

((Dd ×R)∖K,E) ∶= { f ∈ Eexp ((Dd ×R)∖K,E) ∣ ∆ f = 0, f (x,y) = f (x,−y)}

die E-wertigen langsam wachsenden harmonischen Funktionen außerhalb von K, welche gerade
bezüglich der letzten Variablen sind, und

P∗ (K) ∶= limind
n∈N

O(Un (K))

seien die schnell fallenden holomorphen Keime nahe K, wobei

O(Un (K)) ∶= { f ∈O(Un (K)∩Cd)∩C(Un (K)∩Cd) ∣ ∥ f ∥n ∶= sup
z∈Un(K)∩Cd

∣ f (z)∣e 1
n ∣Re(z)∣ <∞}

mit
Un (K) ∶= {z ∈Dd ×Rd ∣ inf

w∈K
ρd (z,w) < 1

n
}

sei und ρd die kanonische Metrik auf Dd ×Rd bezeichne. Weiter bezeichne

P̃∆ (K) ∶= limind
n∈N

P̃∆ (Vn (K)) ,

wobei

P̃∆ (Vn (K)) ∶= { f ∈C∞ (Vn (K)∩Rd+1) ∣ ∆ f = 0, f (x,y) = f (x,−y) , ∣∣∣ f ∣∣∣n <∞}

mit
∣∣∣ f ∣∣∣n ∶= sup

(x,y)∈Vn(K)∩Rd+1

∣ f (x,y)∣e 1
n ∣x∣
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und
Vn (K) ∶= {(x,y) ∈Dd ×R ∣ inf

w∈K
ρ ((x,y) ,w) < 1

n
} ,

den Raum der schnell fallenden harmonischen Keime nahe K, welche gerade bezüglich der letzen
Variablen sind.
Beim Versuch Gegenstücke zu [13, Lemma 5.1, S. 1118] (siehe auch [12, Proposition 2.3, S.
44]), [13, Theorem 5.3, S. 1119] bzw. Theorem 4.1 (siehe auch [1, Satz 2, S. 376]) zu gewinnen,
wird man mit folgendem offenen Problem konfrontiert:

7.2 Problem. Sei K ⊂Dd kompakt und E ein vollständiger lokal konvexer Raum.

(a) Sind P∗ (K) und P̃∆ (K) topologisch isomorph?

(b) Sind Ẽexp
∆

((Dd ×R)∖K,E)/Ẽexp
∆

(Dd ×R,E) und Lb (P̃∆ (K) ,E) topologisch isomorph?

Eine Schwierigkeit in der Beantwortung der zweiten Frage liegt darin, dass es momentan noch
an einer Fundamentallösung von ∆d+1 mit den richtigen Wachstumseigenschaften mangelt.
Eine andere Idee wäre es, Fourier Hyperfunktionen als Randwerte von Lösungen der Wärmelei-
tungsgleichung darzustellen (siehe [29], [42], [43], [44] und [30]).
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w∗2 Ě, 60
w∗ϕ TĚ , 60
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[12] P. Domański and M. Langenbruch. Coherent analytic sets and composition of real analytic
functions. J. Reine Angew. Math., (582):41–59, 2005. 154, 159
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