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CHAPTER 1

General introduction

Acoustics form the most important medium for human communcation. The introduction

of technics allowing for acoustical communication over long distances and storage of audio

signals had revolutionary effects on human culture. The need for evaluations of systems

that transmit, store or process audio signals exists as long as those systems themselves.

Before the ”digital age”, any kind of signal processing was ”lossy” in the sense that it

inevitably produced alterations of the original signal. In the case of audio signals (including

speech), the most relevant criterion for the assessment of signal alterations and therefore

of the transmission quality is the auditory perception. Unfortunately, the perception is

merely of minor use if the transmission quality of a system needs to be communicated, since

perceptions are subjective and can be described precisely and quantitatively only to a very

limited extent. As a consequence, objective measures roughly accounting for properties

of the auditory system, such as the signal-to-noise ratio (SNR), the (total) harmonic

distortion or the frequency transfer function using logarithmic scales have been established

for this purpose instead. These measures may impart some idea of the perception of some

simple and well known stationary impairments such as additive noise, linear distortions or

non-linear distortions that are due to compressive or expansive characteristics. However,

they clearly fail to describe the perception of audio distortions produced by modern digital

speech and audio coding-decoding algorithms (codecs), which are highly non-linear and

non-stationary. An illustration of the failure of the SNR, for example, is the so-called

”13-dB miracle”; it describes the phenomenon of a noise that is superimposed on an audio

signal and becomes almost inaudible if its tempo-spectrally shape is adapted to that of

the audio signal, even when the SNR declines to just 13 dB (Brandenburg and Sporer,

1992). For this reason, the present work is concerned with the development and evaluation

of computational audio quality measures that overcome the limitations of conventional

measures by incorporating a valid model of auditory perception.

1



2 CHAPTER 1. GENERAL INTRODUCTION

Increasing demands on the transmission of speech over channels of limited bandwidth

and progressing computational power led to the development of lossy digital speech com-

pression schemes, which were introduced in the second half of the 1980s. Efforts on the

development of audio codecs increased considerably at the end of the 1980s, at first to re-

duce the storage consumption of digital audio associated with digital video. (The name of

the ISO1 working group that has created one of the most established audio codecs of these

days, MPEG (Moving Pictures Experts Group), attests to this circumstance.) Later, the

reduction of audio data was exploited to allow for affordable digital home recording using

cheap media with rather small storage capacities (Sony’s MiniDisc, Philips’ DCC - Digi-

tal Compact Cassette). Another great push of the audio codec development was caused

by the demand of audio transmission via channels of restricted bandwidth, primarily the

internet, which extensively spread within the last decade.

Audio compression algorithms are similar in common that they exploit masking prop-

erties of the auditory system. They permit a larger amount of quantization noise, which

is shaped spectrally and temporally to be (ideally) masked by the signal and thus become

inaudible. Coding artifacts produce very complex, time-variant distortions. Those kinds

of distortions lead to impairments of the audio quality, which can only to a very limited

degree be described by conventional quality measures that do not account for properties

of the auditory system in an adequate way. For this reason, subjective listening tests are

still the ”golden standard” for evaluating audio (transmission) quality. Since formal listen-

ing tests are time consuming, expensive and in some cases not applicable (e.g. for online

monitoring), efforts were made to develop new computational methods for the objective

measurement of the perceived audio quality (degradation).

Promising new approaches incorporated psychoacoustic models. Two main concepts

emerged: The masked threshold concept and the concept of comparing internal sound rep-

resentations. The former concept is characterized by employing a psychoacoustic model

to estimate the masking pattern of a given (undistorted) audio signal. The ratio between

the energy of the actual distortion noise and the masking threshold is calculated and in-

tegrated over frequency and time (cf., e.g., Brandenburg, 1987). The second concept uses

an auditory model to transform input and output signals of a considered audio device into

corresponding representations in the perceptual domain, which are assumed to be used by

subjects in their assessment of the audio quality. The internal representations are com-

pared by mathematical means, typically yielding a distance or similarity measure, which
1International Organization for Standardization
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estimates the perceived overall audio quality (difference) (e.g., Beerends and Stemerdink,

1992; Hansen and Kollmeier, 2000).

Early psychoacoustically motivated objective quality measures were mainly applied to

speech codecs (Schroeder et al., 1979; Karjalainen, 1985). The first measure that was

applied to wide-band audio codecs was the Signal-to-Mask Ratio (NMR) introduced by

Brandenburg (1987). In the first half of the 1990s, a number of further objective methods

for the perceptual measurement of speech and audio quality were developed. Most of

them use the concept of comparing internal representations (see, e.g., Paillard et al.,

1992; Beerends and Stemerdink, 1992; Wang et al., 1992; Beerends and Stemerdink, 1994;

Hollier et al., 1994). Apart from this common basic concept, those methods differ regarding

details of the actual realization of the psychophysical transformation and by the measures

calculated from the internal representations: While the difference between original and

test representation directly represents the quality measure in (Beerends and Stemerdink,

1992) and (Paillard et al., 1992), the overall probability of detection is derived from the

representation difference in (Colomes et al., 1995) and (Sporer, 1997). Thiede and Kabot

(1996) use the internal representation to calculate the partial loudness of linear and non-

linear distortions and alterations in the temporal envelope, which are mapped to a final

measure of the overall audio quality.

Although some of the objective quality measurement methods achieved good correla-

tions with subjective ratings of speech quality (e.g. ITU-T, 1996b; Hansen and Kollmeier,

2000), none of the objective audio quality methods proposed as a standard was found to

be sufficiently reliable by an ITU2 committee in 1994. Consequently, a new and improved

method was developed jointly by the seven proponents. The resulting method combines

features of all of the originally proposed methods and includes an artificial neural network

that maps several output variables to a final measure of the overall audio quality. The

new method, called PEAQ (Perceptual Evaluation of Audio Quality), became the ITU

standard for objective measurement of perceived audio quality in 1998 (ITU-R BS.1387,

ITU-R, 1998a).

Due to the combination of different methods (including different auditory models)

and the use of an artificial neural network, PEAQ hardly allows for direct conclusions on

the actual mechanisms involved in human perception of audio quality. Moreover, its high

degree of specialization possibly represents a risk of restricted applicability. For these

reasons, the objective of the present thesis was to develop new, reliable methods for the
2International Telecommunication Union
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objective, perceptual assessment of audio quality, using a psychoacoustically validated

model of auditory perception.

In Chapter 2, a new method for the prediction of the perceived difference of the overall

audio quality between audio signals is proposed. This method represents an expansion of

the speech quality measure qC of Hansen and Kollmeier (2000), who successfully applied

their method to predict subjectively rated speech transmission qualities of mainly low-

bit rate speech codecs. The core of both the original and the expanded method is the

psychoacoustically validated, quantitative model of the ”effective” signal processing in the

auditory system of Dau et al. (1996a, 1997a), following the concept of comparing internal

sound representations. Free model parameters were not altered, but adopted and kept fixed

from psychoacoustical modeling. Apart from replacing the model employed in (Hansen

and Kollmeier, 2000) by a more recent version, which uses a modulation filterbank instead

of a modulation lowpass filter (cf. Dau et al., 1997a), cognitive effects mainly concerning

the relation between time-varying instantaneous and overall audio quality were modeled

additionally. Quality prediction results are presented using a large database of subjectively

rated audio signals. The influence of the modulation processing within the model on the

prediction performance is investigated, as well as the influence of the parameters of the

cognitive model parts. The performance of the presented method is compared with that

of the current ITU standard BS.1387.

Chapter 3 presents a masking experiment that was carried out to measure thresholds

of wide-band audio distortions. This experimental paradigm is proposed as an alternative

method for the subjective evaluation of near-transparent audio codecs. In addition, the

experiment was simulated, by employing the ”complete” auditory models described in

(Dau et al., 1996a, 1997a), i.e., including the final detector stage. (Note, that this stage

was not used for the prediction of audio quality in Chapter 2.) Measured and simulated

data are presented. Again, the influence of the modulation processing modeling on the

prediction accuracy is examined.

The applicability of the audio quality measures presented in Chapter 2 for the assess-

ment of noise reduction schemes for speech is investigated in Chapter 4. For this purpose,

signals and corresponding subjective ratings obtained from experiments carried out for

the evaluation of single and multi-channel noise reduction schemes are used. Based on

the presented results, one of the existing audio quality measures was modified to yield an

optimized measure for either the prediction of the perceived naturalness of speech or the

amount of background noise.



5

An exemplary application of the new audio quality measure is described in Appendix

C: Embedded in the framework of an audio quality test bench, this measure is already

being applied within the priority program ”Fundamentals and Methods for Low-Power

Information Processing (VIVA)” of the Deutsche Forschungsgemeinschaft (DFG) as a tool

for ongoing optimizations of implementations of audio processing algorithms.
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CHAPTER 2

Objective assessment of audio quality

Abstract

A new method for the objective assessment and prediction of the perceived audio quality

is introduced. It represents an expansion of the speech quality measure qC , introduced by

Hansen and Kollmeier (2000). It is based on a psychoacoustically validated, quantitative

model of the ”effective” peripheral auditory processing by Dau et al. (1996a, 1997a). To

evaluate the audio quality of a given distorted signal relative to a corresponding high qual-

ity reference signal, the model is employed to compute ”internal representations” of the

signals, which are partly assimilated in order to account for cognitive aspects. The linear

cross correlation coefficient of the assimilated internal representations represents the new

audio quality measure PSM (Perceptual Similarity Measure). While PSM shows good cor-

relations with subjective quality ratings if different types of audio signals are considered

separately, a better accuracy of signal-independent quality prediction is achieved by another

quality measure, PSMt, represented by the 5%-quantile of the sequence of instantaneous

audio quality PSM(t). The new measures were evaluated using a large database of sub-

jective listening tests that were originally carried out on behalf of the ITU1 and MPEG2

for the evaluation of various low bit-rate audio codecs. The results support the concept of

amplitude modulation processing by a modulation filterbank and suggest a nonlinear rela-

tionship between the perceived instantaneous and overall audio quality. The observed good

performance of PSMt in predicting subjective quality ratings is similar to the ITU standard

BS.1387 (”PEAQ”) for most of the tested data.
1International Telecommunication Union
2Moving Pictures Experts Group
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8 CHAPTER 2. OBJECTIVE ASSESSMENT OF AUDIO QUALITY

2.1 Introduction

In the last decade, efforts were made to develop computational methods for perceptual

assessment of transmission quality of lossy wide-band audio compression techniques as

an alternative to costly listening tests. Many approaches are similar in that they use

a psychoacoustically motivated auditory model which is applied to a pair of reference-

test-signals whose quality difference is to be evaluated (e.g. Beerends and Stemerdink

(1992); Baillard et al. (1992); Colomes et al. (1995)). The simulated auditory processing

transforms the given signals into corresponding ”internal representations”, i.e. that kind

of information that is assumed to be contained in the output of the peripheral auditory

system (in terms of neural activity patterns) and serve higher cognitive stages as input.

These internal representations are then compared by means of a mathematical distance

measure or similarity measure. Ideally, the resulting measure should correspond to the

perceived signal differences, which are regarded as audio quality degradations.

Predicting the perceived quality degradation turned out to be more difficult for general

wide-band audio signals with rather small distortions than for narrow-band speech signals

with greater distortions: Although some objective speech quality schemes performed quite

well whereby one was standardized by the ITU (ITU-T, 1996b), none of the generalized

audio quality measures fulfilled the requirements of the ITU-R in 1994, when proposed

as a standard. Consequently, the seven proponents agreed to jointly develop an improved

measurement method. The resulting new method, called PEAQ (Perceptual Evaluation

of Audio Quality) is a combination and expansion of the best elements of the original

methods. It became ITU standard in 1998 (ITU-R, 1998a, ITU-R BS.1387, ). PEAQ

includes two different ear models and makes use of the masked threshold concept as well

as of a comparison of internal representations. An artificial neural network maps several

output values to a single final quality value. Optimization and training was done using a

set of listening test databases. PEAQ is characterized by a high degree of optimization

and adaptation to a single task. Being a composite of rather simple auditory models,

refined technical approaches and a costly artificial neural network, PEAQ does not likely

represent a realistic, valid model of auditory perception (which the authors do not claim).

However, the main purpose of PEAQ is the perceptual evaluation of audio quality, which

seems to be served quite well for most of the audio items tested so far (Thiede et al., 2000;

Treurniet, 2000).

In contrast, the aim of the present work is two-fold: On the one hand, the perceived

audio quality for any kind of distortion and any kind of audio signal should be predicted
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as well as possible. On the other hand, the core of the method should be formed by

a psychoacoustically validated model of auditory processing, in which the general ap-

plicability should not suffer in consequence of possible adaptation to the present task.

Ideally, necessary modifications should contradict other psychoacoustical findings, rather

yield fruitful contributions to psychoacoustical modeling and understanding principles of

auditory perception.

In this study, the speech quality measurement method of Hansen and Kollmeier (2000)

was expanded in order to predict not only the perceived quality of distorted narrow-band

speech, but of any distorted wide-band audio signal in comparison to the undistorted ref-

erence signal. Hansen and Kollmeier showed that their measure performs on average as

well as the ITU-T standard P.861, but uses an auditory model that has been validated

in a wide variety of psychoacoustical measurements (Münkner, 1993; Dau et al., 1996a,b;

Fassel, 1994; Sander, 1994; Verhey, 1998; Derleth, 1999). Its free parameters were taken

on from psychoacoustical modeling and kept fixed. The final quality measure, qC , is built

by calculating the normalized cross correlation coefficient of the downsampled, spectral

weighted model outputs (internal representations) of the distorted and undistorted (refer-

ence) signal.

The present study applies a modified version of the method described above to the

prediction of the perceived quality degradation of wide-band audio signals distorted by

low bit-rate audio coding-decoding schemes (”codecs”).

In the first part of this chapter, a method for signal-dependent quality measurement is

presented, followed by a presentation of an expanded version for signal-independent quality

measurement in the second part. The methods are evaluated using a large database of

audio signals and corresponding subjective quality ratings. Among other aspects, the

influence of the modulation processing and the relationship between instantaneous and

overall audio quality is examined in particular. The results are presented, compared with

results obtained by the ITU standard BS.1387 and discussed.
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2.2 Subjective audio quality tests

In order to test and optimize the objective audio quality measurement scheme, a database

of subjectively rated audio signals with different types and degrees of quality degradation

was used. It consists of material from listening tests conducted between 1990 and 1995

by the International Telecommunication Union (ITU) and the Moving Pictures Experts

Group (MPEG). The purpose of these listening tests was to assess the transmission

quality of various low-bit rate audio codecs (e.g. ADPCM (ITU-T, 1990), Sony ATRAC

(MiniDisc) (Tsutsui et al., 1996), Dolby AC-2 and AC-3 (Fielder et al., 1996), MPEG-1

Audio Layer 2+3 (ISO/MPEG, 1992)). Six data sets emerged from these listening tests,

including critical audio signals processed by the codecs and corresponding subjective

quality ratings. These data sets are denoted as MPEG90, MPEG91, ITU92DI, ITU92CO,

ITU93 and MPEG95. (See Appendix A for a more detailed description of the data sets.)

The listening tests were carried out in different countries. 19 to 91 ”expert listeners”

participated in these tests. Unlike speech codecs used in telephone communications,

most of the tested wide-band audio codecs produce considerably smaller, sometimes even

imperceptible impairments. Therefore, the subjective assessment of the processed audio

signals was performed according to the ITU-R recommendation BS.1116 (ITU-R, 1997),

which is intended for the assessment of small impairments in audio systems. It describes

a triple stimulus test with a hidden reference: Three signals A, B, and C are presented

to the listener, who is free to switch between these signals. Signal A is known to be the

unprocessed reference signal, whereas signals B and C are the signals processed by the

tested system and once more the reference signal in random order. The listener is asked

to rate the degradation of the ”basic audio quality” of signals B and C relative to signal A

on a continuous five-grade impairment scale defined in ITU-R recommendation BS.562-3

(ITU-R, 1990) (see Figure 2.1).

5.0

4.0

3.0

2.0

1.0

Slightly annoying

Perceptible but not annoying

Imperceptible

Annoying

Very annoying

Figure 2.1: ITU-R five-grade impairment scale.
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The final quality value is given by the difference of the listener’s ratings for signals B

and C, called the Subjective Difference Grade (SDG), defined as

SDG = gradetest signal - gradereference signal.

Unless the listener rates the audio quality degradation of the hidden reference erro-

neously worse than that of the test signal (which sometimes happens), the SDG has a

negative value in the range of -4 (very annoying impairment) to 0 (imperceptible impair-

ment). The SDG values contained in the database described above are mean values over

all listeners.

2.3 Objective audio quality measurement

2.3.1 Signal dependent quality prediction

The basic approach of the presented method for objective audio quality measurement

is to apply an auditory processing model to a given pair of reference and test signals

and take the correlation coefficient of the model outputs as a measure for the perceptual

similarity of the signals. Because of the reference signal’s high fidelity, it is reasonable to

interpret any perceptible deviation from that reference as a degradation of audio quality.

The correlation coefficient therefore serves as an objective audio quality (degradation)

measure.

Preprocessing

Before the reference signal and the test signal are processed by the auditory model, a

possible overall time delay and level difference of the test signal relative to the reference

signal has to be eliminated. These deviations are mostly perceptually irrelevant, but could

affect the objective quality measure considerably.

If the time delay introduced by the distorting system (e.g. a codec) is not known a

priori, it could be estimated by calculating the cross correlation function of the signal

envelopes and taking the time lag of its maximum as a delay estimation. The signals

are then aligned in time by delaying the reference signal by the known or estimated lag.

However, this works only if the system’s delay is not varying in time. Otherwise, time

alignment has to be done block by block. The signals of the given database are already

time aligned.
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Level alignment was done by scaling the test signal with a constant factor that was

chosen to result in equal overall RMS values. As in the case of time alignment, this way

of level alignment will also only work if the system’s overall gain has no long term drifts.

This was the case for the test material used in this study.

The third step of preprocessing consisted in deleting silent signal intervals. Episodes in

the reference signal with levels clearly below hearing threshold (i.e., pauses) were cut out

as well as the corresponding intervals of the test signal. It is reasonable to assume that

silent intervals do not contribute to the listener’s judgement of audio quality as long as

they are not filled with audible noise by the distorting system, which is unlikely for audio

codecs if the distance between the interval’s boundaries and the nearest audible signal

segment is larger than the codec’s frame length (e.g. up to 24 ms in MPEG-1 Layer III

(Brandenburg and Stoll, 1994)). To ensure such a distance and to account for possible

temporal masking effects, pauses were not cut out completely, but shortened to a minimum

length of 200 ms.

Auditory processing

To simulate the transformation of acoustic stimuli into neural activity patterns by the

human ear, a quantitative model of the ”effective” auditory signal processing (Dau et al.,

1997a) is applied to the preprocessed pair of reference and test signal. This rather psy-

choacoustically than physiologically motivated model transforms both incoming signals

into corresponding ”internal representations”, i.e. three-dimensional representations of

time, frequency and modulation-frequency 3.

Figure 2.2 shows a block diagram of the auditory model. The incoming signal is split up

into 33 critical bands by a linear 4th order gammatone filterbank (Patterson et al., 1987),

accounting for the basilar membrane’s bandpass characteristic. Its center frequencies are

equally spaced on an ERB scale (ERB: equivalent rectangular bandwidth), with one filter

per ERB, ranging from 235 Hz to 14500 Hz. Each filter has a bandwidth of one ERB.

Subsequently, each band is processed independently, beginning with half-wave recti-

fication and lowpass filtering at 1 kHz. This roughly simulates the transformation of
3An earlier version of this model used by Hansen and Kollmeier (2000) for speech quality measurement uses

a modulation lowpass filter instead of a modulation filterbank (Dau et al., 1996a). That version was also

applied in this study for comparison. The version used by Hansen and Kollmeier (2000) and also in this

work differs from that described in Dau et al. (1996a) by using a gammatone filterbank instead of Strube’s

basilar membrane model (Strube, 1985). Moreover, only the preprocessing part of the model is used, while

the decision device is omitted.
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max

t
1

t
5

audio signal

internal representation

halfwave rectification

lowpass filtering

absolute threshold

adaptation

modulation filtering

basilar-membrane
filtering

Figure 2.2: Block diagram of the auditory model.

mechanical oscillations to neural firing rates of the inner haircells. This stage essentially

preserves the envelope of the signal for high (> 1 kHz) center frequencies, while preserving

amplitude and phase for lower center frequencies.

To account for the absolute hearing threshold, the minimal value at the input to the

next stage is limited to a lower bound, which depends on the assumed level of the maximum

input.

Effects of temporal masking and adaptation are modeled by the subsequent chain

of five consecutive nonlinear feedback loops (Püschel, 1988). Each loop consists of a

dividing element and a RC-lowpass filter, so that the input is divided by the low-pass

filtered output. Thus, for stationary inputs, the output of each loop equals the square
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root of its input, and the output of the whole chain equals the 32th root of the input,

which approximates a logarithmic compression. Non-stationary inputs are processed less

compressively, depending on the rate of envelope fluctuations: Changes in the input signal

that are very fast compared to the time constants of the lowpass filters (5 ms to 500 ms)

are processed almost linearly. Due to its transformation characteristics, the adaptation

stage contrasts signal amplitude fluctuations: Rapid changes (e.g. on and offsets) are

emphasized, while stationary parts are compressed. The time constants of the feedback

loops cause a kind of ”memory” that enables the model to predict temporal effects in

auditory perception, such as temporal integration and forward masking.

In the final processing stage, the envelope signal is analyzed by a linear modulation

filterbank. This stage of modulation processing in the auditory system is the most sub-

stantial difference between the two model versions. The modulation filterbank replaces

the 8 Hz lowpass filter of the previous version (Dau et al., 1996a), generalizing the model

to account also for psychoacoustic experiments of amplitude modulation detection (Dau

et al., 1997a,b). Up to 10 Hz center frequency, the filters have a constant bandwidth of 5

Hz; above 10 Hz, they are scaled logarithmically with a constant Q-value of 2, overlapping

at -3 dB. To produce a loss of information for higher center frequencies (> 10 Hz), only

the (Hilbert-) envelopes of the output signals are calculated. In this study, eight filters

with center frequencies up to 129 Hz were used.

The total output of all 33 x 8 channels forms the ”internal representation” of the

audio signal. It is a three-dimensional matrix, which can be interpreted as an activity

pattern in the frequency and modulation frequency domain, varying in time. To reduce

computational effort and storage consumption for subsequent post-processing and analysis

steps, the internal representation is downsampled separately for each modulation channel

to frequencies of about six times the modulation channel’s center frequency.

Postprocessing: modeling cognitive effects

The stages of simulated auditory processing applied so far represent the preprocessing

part of the complete model by Dau et al. (1996a, 1997a), which was originally designed

and optimized to predict detection thresholds from psychoacoustic masking experiments.

Originally, noise is added to the internal representation which is then fed into a decision

device (”optimal detector”). In this study, instead of a detected vs. not-detected decision,

the subjective assessment of perceived similarity/dissimilarity of a pair of audio signals

on a continuous scale has to be predicted. For this purpose, the linear cross correlation
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coefficient of the internal representations of the reference and the test signal is calculated,

following the approach of Hansen and Kollmeier (2000)4. But prior to this step, the

internal representation of the distorted test signal Y = (ytfm)5 is partially equalized to

that of the reference signal X = (xtfm): Elements of Y having smaller absolute values

than the corresponding elements of X are replaced by the mean absolute values of both

elements, thus halving the differences:

ỹtfm =

 (ytfm + xtfm)/2, |ytfm| < |xtfm|

ytfm, |ytfm| ≥ |xtfm|

This approach was adopted from Berger (1998) and is based on a sign-dependent dif-

ference weighting that was first suggested by Beerends (1994) and also successfully applied

by Hauenstein (1997) in speech quality measurement. This approach follows the hypoth-

esis that ”missing” components in a distorted signal are less disturbing than ”additive”

components.

The final cross correlation operation, which yields the quality measure PSM (Per-

ceptual Similarity Measure), is performed separately for each modulation channel6 Each

modulation channel is represented by a two-dimensional sub-matrix (i.e., (xtf )|m=const).

The linear cross correlation coefficient of two N ×M matrices is given by

r =

N,M∑
t,f=1

(xtf − x̄)(ytf − ȳ)√∑
t,f

(xtf − x̄)2
∑
t,f

(ytf − ȳ)2

(With N , M representing the number of time samples and frequency channels,

respectively, and x̄, ȳ denoting mean values.) The correlation coefficients per modulation

channel rm are weighted by the normalized mean squared values of the corresponding

sub-matrices and summed up to the final quality measure:

4Note that the non-uniform band weighting of internal representations suggested by Hansen and Kollmeier

(2000) was not adopted in this work.
5The matrix indices t, fand m refer to time, frequency and modulation frequency.
6This independent processing provides a high computational efficiency since the different sampling frequen-

cies within one internal representation do not have to be matched.
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PSM =
∑
m

wmrm, with wm =

N,M∑
t,f=1

y2
tfm

N,M,L∑
t,f,m=1

y2
tfm

(With L being the number of modulation channels.) PSM is restricted to the interval

[-1, 1], with 1 indicating identity whereas smaller values correspond to larger deviations

of the test signal from the reference signal, implying a degradation of the audio quality.

Limitations in predicting audio quality of stereo signals

The auditory model used in the measurement method described so far is a purely monau-

ral model. It does not take into account any binaural effects. If, for example, a codec

altered only the interaural phase of a stereo signal, the model would predict a perfect

perceptual correlation of the original and the processed signal, if the two channels were

assessed independently. In contrast, a human listener would perceive the altered signal

quite differently from the original one.

Therefore, in a strict sense, this method should only be applied to predict audio quality

degradations of mono signals. However, most of the audio material of the given database

is stereo and was presented dichoticly to the assessing listeners. In those cases, objective

quality assessment was realized by calculating the quality measure PSM for each signal

channel separately and taking the lower PSM value (indicating worse quality) as the final

quality measure. Of course, this does not compensate for the lack of a missing binaural

model component. But at least it accounts for possible differences between left and right

audio channels concerning monaurally detectable quality differences. The influence of the

audio channel weighting was examined. The results will be presented in the following

section.
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2.3.2 Signal dependent audio quality prediction results

The objective audio quality measure PSM was calculated for all test signals (in full length)

of the data base described in Section 2.2. In the following figures, subjective quality

ratings (SDG) of some of these test signals (see below) are plotted as functions of the

corresponding objective quality values PSM7. Each symbol represents a different codec.

Several appearances of the same symbol within one diagram represent different conditions

of that particular codec (e.g. bit rate, cascading). In each panel, the correlation between

subjective and objective quality ratings and thus the performance of the objective quality

measure is quantified by the linear correlation coefficient r and the Spearman rank correla-

tion coefficient rs. The different types of audio signals are indicated by the abbreviations

pit (pitch pipe), spe (speech), bag (bag pipe), col (Ornette Coleman), cas (castanets) and

glo (”glockenspiel”, chimes). (The speech item consists in fact of three different speech

signals that were pooled.) These signals were selected, because they were used in several

listening tests and therefore processed by a larger number of codecs than most of the

other signals. Moreover, the subjective quality ratings of these particular signals cover al-

most the whole range of the subjective rating scale, which is not typical for other signals.

Altogether these signals represent 48 % of the entire database.

Results with the modulation filterbank

The results obtained by the auditory model with a modulation filterbank are shown in

Figure 2.3. All sub-figures exhibit a monotonic relation between subjective and objective

quality ratings. No codec-specific clusters aside the mainstream are observed (except to

some small extend codec f in the bag-pipe panel). Linear correlation coefficients range

from 0.726 to 0.915, rank correlation coefficients from 0.852 to 0.953. The numbers in

brackets state the linear correlation coefficients, if the objective quality values are trans-

formed by the shown regression functions (dashed curves). These fitting functions were

obtained by a numerical optimization procedure, individually applied for each type of

signal. The fitting function is composed of a hyperbola and a linear function:

f(x) =

 max{−4, a
x−b + c} : x < x0

d · x− d : x ≥ x0

(2.1)

7As mentioned in Section 2.2, SDG values are mean values over all listeners. Standard deviations across

listeners are considerably large (0.94 scale units on average), but are not plotted for clarity.
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Two of the five parameters depend on the others, because of the constraint that f(x)

has to be continuously differentiable. Thus, three free parameters are adjusted by the

numerical optimization procedure. The transformed objective quality measure shows good

correlation with the subjective ratings: Linear correlation values range from 0.903 to 0.953.

Fitting the objective data effects linear correlation the most in these cases, where a floor

effect of the subjective ratings at the SDG-scale’s lower end can be observed. (See, e.g.,

glockenspiel and castanets.) This effect, caused by the limited subjective scale, has to be

taken into account.

Note that the abscissae are scaled differently; the mapping function f : PSM 7→ SDG

depends on the signal type: Its slope is higher for signals with rapid envelope fluctuations

such as castanets and glockenspiel compared to those for rather stationary signals such as

pitch pipe and bag pipe.

Results with modulation lowpass

Figure 2.4 shows the results obtained by the auditory model with the modulation lowpass

filter instead of a filterbank. Compared to the preceding results, the overall performance is

poorer: linear correlation coefficients for the transformed data range from 0.765 to 0.946,

rank correlation coefficients from 0.619 to 0.927. The PSM-ranges of signals that do not

contain very rapid amplitude fluctuations (i.e., all except castanets and glockenspiel) are

compressed by factors up to approximately 16 compared to the ranges obtained by the

model with a modulation filterbank (cf. Figure 2.3). One possibility for the reduced range

of PSM values in the modulation-lowpass version are the larger differences between internal

representations of reference and test signals in the high-frequency modulation channels. To

test this hypothesis, the left panel of Figure 2.5 shows mean linear correlations8 between

single modulation channels of internal representations of reference and test signals as a

function of the modulation center frequency. Linear correlation coefficients of all signals

shown in Figure 2.3 except castanets and glockenspiel were used for the calculation of the

mean. Since the quality measure PSM is given by the weighted sum of the correlation

coefficients per modulation channel, the mean associated weights are also shown in the left

panel. They are proportional to the mean squared amplitude of the internal representation

in the corresponding modulation channel and apparently increase for higher modulation

center frequencies. As the examined signals are characterized by rather slow envelope
8Here and in the following, mean correlation values are obtained by averaging the Fishers-Z transformed

correlation coefficients and subsequent inverse transforming of the resulting mean value: 〈r〉 = F−1(〈F (r)〉).
The Fishers-Z transform maps the interval [−1, 1] to [−∞,∞] by the following operation: F (r) = 1

2
ln( 1+r

1−r
).
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Figure 2.3: Audio quality prediction for six different audio signals (pitch pipe, speech, bag pipe,

Ornette Coleman, castanets, glockenspiel). Objective audio qualities were obtained using the

modulation filterbank version of the auditory model.

fluctuations, this might appear paradox at first sight. In fact, the power density in the

modulation frequency domain does decrease for higher modulation frequencies, but this

decrease is overbalanced by the increasing bandwidth of the higher modulation filters.
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Figure 2.4: Audio quality prediction for the same signals as in Figure 2.3, obtained by the auditory

model with a modulation lowpass filter.

Consequently, the PSM values decrease due to the contribution of lower correlation values

from the high modulation channels, which confirms the hypothesis stated above.
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Figure 2.5: Mean correlation coefficients between modulation channels of internal representations

of reference and test signals shown in Figure 2.3 (except castanets and glockenspiel) (left panel)

and associated weights (right panel).

Effect of modulation processing

In order to understand the reason for the superior prediction performance of the auditory

model version using a modulation filterbank compared to the modulation lowpass version,

the influence of the particular way of modulation processing was examined in more detail.

First, the question was addressed how many modulation bandpass filters have to be

contained in the filterbank, i.e. what is the highest modulation frequency accounted for, so

that the best quality prediction performance is obtained? To answer this question, Figure

2.6 presents the dependency of the prediction performance on the highest modulation

center frequency. Again, mean correlation coefficients 〈r〉 and 〈rs〉 are obtained for the

signals shown in Figure 2.3 as a measure of the average prediction accuracy. They vary

non-monotonically with modulation frequency, indicating best prediction performance for

modulation filters up to 10 Hz and 129 Hz center frequency, respectively.

The changes of 〈r〉 and 〈rs〉 as a function of the modulation frequency range are not

striking. However, it should be noted that the prediction performance depends on the

modulation frequency range in a more intricate way than is apparent from the correlation

coefficients alone. To illustrate this, Figure 2.7 shows quality predictions of the signal

Ornette Coleman, resulting from two different ways of modulation processing: The results

on the left hand side were obtained by applying a modulation filterbank with just three

filters (a 2.5 Hz lowpass and two bandpass filters centered around 5 Hz and 10 Hz, re-

spectively), while using eight modulation channels up to 129 Hz center frequency led to
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quality predictions displayed on the right hand side. The correlation measures 〈r〉 and

〈rs〉 suggest almost identical goodness-of-prediction performance in either case. However,

a look at the scatter plots implies that taking more modulation channels into account leads

to superior prediction performance: The data in the left panel reveal vertical clusters in

the higher quality domain, i.e., the ability of the objective quality measure to resolve small

quality differences in that region seems to be reduced. This is not the case if additional

information of higher modulation channels is also analyzed, as the results in the right

panel show.
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Figure 2.6: Quality prediction performance, quantified by the linear correlation coefficient r and

the rank correlation coefficient rs for subjective and predicted quality ratings, as a function of the

highest modulation frequency.

As a second question concerning modulation processing, it was investigated whether

it is necessary to use a bank of bandpass filters instead of a simple lowpass filter, covering

the same frequency range. Figure 2.8 shows the prediction performance for different

cutoff frequencies of the modulation lowpass filter. The two solitary items in the upper

right corner represent the correlation values that result from applying an eight-channel

modulation filterbank covering a frequency range of 160 Hz for comparison. Up to about 30

Hz, the prediction performance is barely influenced by the modulation cutoff frequency,

but decreases considerably above that frequency. In none of the cases the prediction

performance of the modulation filterbank can be achieved.
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Figure 2.7: Quality predictions for signal Ornette Coleman, computed with different modulation

filterbanks. Left: three filters, highest cf = 10 Hz; right: eight filters, highest cf = 129 Hz. Note

the different scalings of the abscissa.
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Figure 2.8: Quality prediction performance as a function of the modulation lowpass cutoff fre-

quency. The two solitary items represent results obtained using a modulation filterbank covering

a range of 160 Hz.

The main reason for decreasing performance above 30 Hz is found to be the missing

ability to distinguish between amplitude modulations and the carrier phase in the low car-

rier frequency - high modulation frequency domain. This is exemplified by the left panel

of Figure 2.9 that shows quality prediction results for speech signals (i.e. three different
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speech samples, spoken by a male English speaker, a male German speaker and a female

German speaker). One of the items (label ”4”) is an obvious outlier: The audio quality

of the corresponding signal (male speech) is very much underestimated by the objective

measure PSM. On the right hand side, a sample time interval of the lowest frequency

channel of that signal’s internal representation is displayed as well as the corresponding

reference signal’s internal representation. Both are oscillating with an average period of

approximately 4.25 ms, which is the inverse of 235 Hz, the center frequency of that partic-

ular frequency channel. Obviously, that channel of the internal representation reflects the

carrier phase. Apparently, reference and test internal representation are opposite phase,

which dramatically decreases the cross correlation and thus the quality measure PSM,

without necessarily impairing the perceived audio quality.
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Figure 2.9: Left panel: Quality predictions for speech signals, obtained with a 160 Hz modulation

lowpass filter. Right panel: sample time interval of the internal representation’s lowest frequency

channel of signal ”4” from the left plot.

This undesired effect can be avoided if only those carrier frequencies are considered

that are clearly higher than the modulation frequency. In case of quality prediction with

the multi-modulation-channel model, the quality measure PSM is therefore computed by

correlating the internal representations of a given pair of audio signals separately for each

modulation channel, while only those frequency channels are considered, in which the

center frequencies are greater than four times the respective modulation center frequency.

In this way, information from lower frequency channels does not get lost completely, but

is just excluded from higher modulation channels. In contrast, this approach can not be

realized the same way in the case of a single modulation lowpass channel. There, either

information from low frequency channels gets lost or low carrier frequencies are fed through

all stages of auditory processing and will be reflected in the internal representation.



2.3. OBJECTIVE AUDIO QUALITY MEASUREMENT 25

Influence of channel weighting for stereo signals

The auditory model used in the presented method is monaural and thus can not account

for binaural effects. The lack of a binaural model component was compensated to some

extent by calculating PSM for each audio channel independently and taking a weighted

sum of the two values to build the final measure:

PSM(final) = α ·min{PSM(left),PSM(right)}+(1−α) ·max{PSM(left),PSM(right)}

The effect of the weighting was further investigated. Figure 2.10 presents the mean9

correlation of subjective and objective quality measures, 〈r〉 and 〈rs〉, as a function of the

weighting factor α.

The results show that the prediction performance is essentially independent of the

weighting factor for the particular sample of audio signals investigated. The mean rank

correlation coefficient, 〈rs〉, indicates a small benefit of taking both audio channels into

account. However, the mean linear correlation coefficient, 〈r〉, does not support this

conclusion. In viewing computational effort, this result suggests that evaluating just one

audio channel of a stereo signal is reasonable, unless the audio channels have considerable

differences.
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Figure 2.10: Quality prediction performance as a function of the audio channel weighting factor

α.

9mean over five different audio signals
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Effects of cognitive postprocessing

As described in Section 2.3.1, differences between internal representations of reference

and test signals are reduced according to their sign. If the difference is defined as

∆IR = |IRtest| − |IRref |, then positive elements of the matrix ∆IR are not altered,

while negative elements are reduced by a factor β < 1. The effect of the choice of β was

further investigated. Figure 2.11 shows the prediction performance as a function of the

weighting factor β.
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Figure 2.11: Quality prediction performance as a function of the difference weighting factor β.

The results show that reducing negative differences improves the prediction perfor-

mance. The actual best choice of the weighting factor β is not indicated by 〈r〉 and

〈rs〉 consistently: while 〈r〉(β) becomes maximal at β = 0.5, 〈rs〉 increases with β rather

asymptotically, suggesting β = 0.7 to be the best choice. However, due to this asymptot-

ically characteristic, the increase of 〈rs〉 for β = 0.5 compared to β = 0 already amounts

to 87% of the maximum increase at β = 0.7, so choosing any β ≥ 0.5 does not affect 〈rs〉

very much. Moreover, a choice of β = 0.5 would be in line with findings of Berger (1998).

Resuming the preceding considerations, a choice of β = 0.5 was finally concluded.
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Prediction of average codec quality

The audibility of signal alterations caused by audio codecs depend not only on the par-

ticular codec but also on the audio signal. Thus, if the overall transmission quality of a

given codec is to be evaluated, it is mandatory to test it using a set of audio signals that

are representative for the intended real world application.

Figure 2.12 documents the ability of the PSM to predict the average transmission

quality of 22 different codecs or codec conditions, respectively. Each circle represents the

mean transmission quality of a different codec (condition), given by the mean value of

quality ratings for a set of six audio signals10. In the right panel, objective quality ratings

were mapped to the subjective quality scale for each signal type individually (using the

transforms shown in Figure 2.3) prior to averaging. This procedure improves the prediction

performance to some extent.
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Figure 2.12: Prediction of the average audio quality of six audio signals processed by different

codecs. Left: mean objective quality measure 〈PSM〉. Right: mean predicted subjective quality

measure 〈SDG’〉, found by mapping PSM7→SDG’ for each signal respectively and then averaging

across signals.

Predicting audio quality of different signals

To emphasize the effect of signal dependency on audio quality prediction, Figures 2.13 and

2.14 show results of quality prediction for different audio signals within the same plot.
10These 132 items (6 signals processed by 22 codecs) represent the corpus of the database MPEG95. (See

appendix A for details about this database.)
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In Figure 2.13, quality ratings for the signals pitch pipe and castanets are depicted11.

The signal dependency is apparent: ratings cluster along separate lines, both originating

from [PSM = 1, SDG = 0], but having different slopes. As mentioned before, signals

with rapid envelope fluctuations (such as castanets) tend to show steeper slopes in the

PSM-SDG-plane than more stationary ones (such as pitch pipe). This yields rather poor

overall correlations between subjective and objective quality measures (in this case: r =

0.739, rs = 0.746), while correlations within each signal are much better (r = 0.93, rs =

0.852 for castanets, r = 0.953, rs = 0.953 for pitch pipe, cf. Figure 2.3).

If all audio times of the database used in this study are taken into account to derive an

”average” mapping function, the overall correlation of subjective and transformed objec-

tive quality ratings improves, but is still not satisfying. Figure 2.14 shows the relationship

between the subjective measure SDG and the objective measure PSM for all 439 audio

items, covering 28 different types of signals (i.e., 28 different reference signals). The overall

correlation is quantified by r = 0.769 and rs = 0.737.

2.3.3 Discussion

The results can be summarized as follows: The relationship between subjective and ob-

jective ratings depends on the type of audio signal used. However, it depends rather little

on the specific lossy audio processing system tested in the present database. This might

indicate that the auditory model weights differences across codec schemes in a similar

way as the average normal hearing listener. However, since most of the tested systems are

perceptual audio codecs, it might also reflect similar distortion characteristics across audio

codecs. Further evaluations using signals with quite different impairments such as linear

distortions, reverberation or additive noise seem to be required to decide this question.

Necessity of spectral weighting?

Hansen and Kollmeier (2000) reported a spectral weighting function that improved the

prediction performance of their measure qC for telephone-band-pass filtered speech. This

”band importance” weighting function shows a flat characteristic up to 1 kHz and increases

with higher center frequencies. It becomes maximal at the highest center frequency (about

3400 Hz), amounting to 10 times its initial value.
11Two of the pitch pipe items with very small PSM values were omitted in order to allow for a better

resolution of the castanets data.
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Figure 2.13: Audio quality prediction for the audio signals pitch pipe and castanets.
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Figure 2.14: Audio quality prediction for all 439 items of the given database.

To account for the higher bandwidth of the high fidelity (reference) audio signals

used in the present study, the peripheral filterbank of the auditory model had to be
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extended accordingly. As a result, the band importance weighting function could not be

adopted directly in the present study. The use of an extended version of the weighting

function obtained by extrapolation did not appear reasonable either. Instead, numerical

optimizations of band weighting functions with different boundary conditions (including

no boundary condition at all) were performed with the aim to maximize the correlation

between subjective and objective quality ratings. Optimizations were also performed in

the modulation frequency domain. No weighting functions could be found that improved

the prediction performance consistently for different data sets, neither in the frequency

domain nor in the modulation frequency domain.

Hansen and Kollmeier (2000) argued that emphasizing high frequency bands yields

better prediction results, mainly because one of the distorting systems under test was

the ”Modulated Noise Reference Unit” (MNRU), that produces speech distortions that

are essentially spectrally flat. In contrast, spectra of distortions produced by most of the

speech codecs are similar to the long term spectrum of speech, so that the distortions are

(partially) masked by the speech. Since the latter spectra are not flat but fall with higher

frequencies, MNRU produces stronger distortions at high frequencies than typical speech

codecs. Without spectral weighting, the quality of subjectively equally rated speech was

estimated higher systematically by the speech quality measure, if the speech was distorted

by MNRU compared to speech that was distorted by speech codecs. Applying a band

weighting function that emphasizes higher frequency bands effects the quality estimates of

the MNRU-distorted speech items more than the codec-distorted items. Consequently, the

quality estimates of the MNRU-distorted speech are shifted more towards smaller values

than the codec-distorted speech, thus shifting the estimates together and improving the

overall correlation. They also mentioned an improvement of the correlation between qC

and subjective quality ratings of the codec-processed speech material (i.e., without MNRU

distorted speech), if the non-uniform weighting is applied. This could indicate a cognitive

effect concerning the importance of the highest frequency bands of band-limited speech

for the perception of speech quality. The latter reason for the observed improvement of

the overall prediction results, however, was classified as secondary by the authors.

The database used in the present study contained neither MNRU-distorted signals nor

band-limited signals. Moreover, only a small fraction of the database consisted of speech

signals. This might be the reason why an improving weighting function could not be found

in the present case.
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Possible reasons for signal dependency

As demonstrated by Figure 2.13 and 2.14, the assessment of audio quality with the ob-

jective quality measure PSM depends on the type of signal. Especially signals that differ

with respect to the rate of envelope fluctuations are rated differently by PSM. Figure 2.13

indicates that the mapping function f :PSM 7→ SDG is steeper for signals with rapid fluc-

tuations (here: castanets) than for rather stationary signals (here: pitch pipe). In other

words: The more rapid the fluctuations, the more the quality is overestimated by PSM.

To investigate possible reasons, Figure 2.15 compares the internal representations of the

audio signals mentioned above on the left hand side. (Only the highest frequency channel

of the highest modulation channel is depicted.)
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Figure 2.15: Left: Sample interval of the internal representations (highest frequency channel,

highest modulation channel) of the signals pitch pipe and castanets. The audio signals had equal

peak levels. Right: Internal representation of the signal castanets and the relative difference

between internal representations of the reference and a test signal.

The effect of contrasting envelope fluctuations by the adaptation loops of the auditory

model becomes very apparent: Although both signals have the same physical peak level,

the maximum of the internal representations of the castanets signal exceeds that of the

pitch pipe signal by a factor of about 20. In the calculation of cross-correlation between

internal representations like that of the castanets, these prominent peaks contribute su-

perproportional with respect to their temporal extent. Possible differences aside these

peaks are therefore weighted much less. This will cause higher overall correlation values,

if differences aside the peaks are greater than within. The right panel of Figure 2.15 shows

that in fact this is the case for the castanets signal distorted by one of the audio codecs.
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The relative difference between the internal representations of reference and test signal

(i.e., ∆IR = |(IRtest - IRref)/IRref|) is smaller within the peaks than outside.

This finding suggests that if the emphasizing characteristic of the auditory model

concerning envelope fluctuations was more moderate, objective quality differences between

stationary and more fluctuating audio signals should decrease.

Alternatively (or additionally), the differences of contribution to the overall quality

measure between internal representation segments with different amplitudes would be

lessened, if the internal representations were not cross-correlated at once, but in short

temporal sections. This would yield a sequence of short-time correlation values that could

be mapped to a single overall value, e.g. by averaging or a different operation. The

contributions of particular segments to the overall value would equalize with a decreasing

length of the correlation interval. However, this effect could possibly be accompanied with

the drawback of the model losing its ability to account for temporal forward masking, if

the interval length falls below 200 ms.

The idea of computing a sequence of short-time correlation values instead of one over-

all correlation coefficient is supported by the consideration of a second possible reason for

signal dependency, which might be found in another cognitive aspect of subjective quality

assessment: the relationship between instantaneous and overall perceived audio quality.

It is known from other fields of psychophysics that this relationship is highly complex.

Human observer tend to rather focus on extreme occurrences in the temporal course of a

considered psychophysic quantity than to integrate over time linearly (Fastl, 1994; Ham-

berg and de Ridder, 1999). Additionally, accounting for memory effects might also be

essential (Hamberg and de Ridder, 1999). Figure 2.16 exemplarily depicts the instanta-

neous objective audio quality as a function of time for the two audio items mentioned

above. The instantaneous audio quality, PSM(t), was obtained in this case by successive

cross correlation of 50 ms frames of the internal representations, so that t = n · 50 ms,

n = 1, 2, .... The overall audio qualities of the depicted items were rated equally by hu-

man listeners. In contrast, temporal mean values of PSM(t), denoted by dashed lines, are

apparently very different (∆ = 0.23). This suggests that either the interval length of short-

time cross-correlation is still too long, or the mean value of PSM(t) is not an appropriate

measure for the perceived overall audio quality, or both. (In fact, PSM and not 〈PSM(t)〉

serves as the objective overall quality measure so far, and PSM and 〈PSM(t)〉 are not

mathematically equivalent. However, both measures are highly correlated (r = 0.96 for

the present database), so the above-mentioned argument concerning 〈PSM(t)〉 also applies

to PSM.)
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The possible qualification of these suggestions for improving the signal-independent

audio quality prediction will be investigated in the second part of this chapter.
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Figure 2.16: Temporal courses of the instantaneous audio quality (solid lines) and corresponding

mean values (dashed lines) for the audio signals castanets (left) and pitch pipe (right). The overall

audio qualities of both signals were rated equally by human listeners.

2.3.4 Signal-independent quality prediction

The method for the objective assessment of audio quality differences introduced so far is

able to predict subjective ratings well, if the type of audio signal is taken into account.

Different types of audio signals may show different relations between subjective and ob-

jective measures, especially if they differ with respect to their degree of stationarity. Two

possible reasons were suggested in Section 2.3.3. In this section, a modified version of the

objective quality assessment method will be presented that accounts for these reasons in

order to achieve independency of audio signal characteristics.

Methodical expansions

The findings reported in Section 2.3.3 suggested that a measure with an improved ability to

predict audio quality signal-independently should be based on the sequence of short-time

correlation values (the instantaneous audio quality), emphasizing low values. For this

purpose, the instantaneous objective audio quality, PSM(t), is computed by successive

cross correlation of 10-ms frames of the internal representations. Subsequently, PSM(t)
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is weighted by the lowpass filtered moving RMS value12 of the internal representation of

the corresponding test signal, in order to account for a slowly varying ”loudness”. From

this weighted time series, the 5%-quantile is extracted and serves as a new measure for

the overall audio quality. This quality measure is called PSMt. In order to be able to

predict the subjective rating according to the SDG scale, PSMt is mapped to an SDG-like

scale by a regression function derived from a numerical fitting procedure. The mapping

function is of the type presented in Equation (2.1) and reads as

ODG(PSMt) =

 max{−4, − 0.22/(PSMt − 0.98)− 4.13} : PSMt < 0.864

16.4 · PSMt − 16.4 : PSMt ≥ 0.864
(2.2)

Following the nomenclature of the subjective scale, the name of the final value was

chosen to be ODG (Objective Difference Grade).

A block diagram of the expanded method is shown in Figure 2.17.

2.3.5 Signal-independent audio quality prediction results

The new quality measure PSMt was calculated for all items of the database described in

Section 2.2. Its applicability to predict the perceived degradation of audio quality, for

individual signals as well as for mixed signals, was tested.

Figure 2.18 shows the prediction results for all 439 audio items contained in the present

database. The linear correlation (r) between PSMt and the subjective ratings (SDG)

amounts to 0.7, rank correlation (rs) to 0.86. Again, the discrepancy between these

correlation measures is due to the ”saturation” effect of the subjective ratings at the

bottom of the limited subjective quality scale. If this is taken into account by mapping

PSMt according to Equation (2.2), the linear correlation of the transformed measure and

the subjective data increases to 0.895. Figure 2.19 shows the prediction results with the

transformed objective quality scale.

Signal-dependent quality prediction with PSMt - comparison with PSM

As shown in Section 2.3.2, good signal-dependent quality prediction is achieved by PSM,

whereas its rather poor performance concerning signal-independent quality prediction led

to the development of the measure PSMt. This new measure is clearly superior to PSM

regarding the prediction performance for mixed types of audio signals. In this section the
12Lowpass filtered by a 1 Hz, 10. order FIR filter; RMS values are computed for 100 ms segments respectively.



2.3. OBJECTIVE AUDIO QUALITY MEASUREMENT 35

Figure 2.17: Block diagram of the expanded method for objective audio quality estimation.

question is addressed whether the prediction performance of PSMt for individual signals

is comparable to the good performance of PSM.
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Figure 2.18: Quality prediction performance of PSMt for all signals.

Results for signal-dependent and -independent quality prediction, expressed as mean

correlation values13, are given in Table 2.1. PSM and PSMt were mapped to ODG values

by either applying individually optimized mapping functions for each signal respectively, or

by using a universal mapping function. (”Universal” with respect to different signals, but

depending on the respective measure.) The new measure PSMt is found to be superior

in both categories, i.e. signal-independent and signal-dependent quality prediction. It

even performs slightly better in the prediction of signal-dependent quality, if the universal

mapping function (Equation (2.2)) is applied for all kinds of signals, compared to PSM

transformed by signal-dependent optimized mapping functions.

separate signals mixed signals

measure indiv. mapping univ. mapping

ODG(PSMt)
0.930 0.920 0.895

0.900 0.900 0.860

ODG(PSM)
0.921 0.902 0.769

0.891 0.891 0.737

Table 2.1: Mean linear correlation and rank correlation (italic) coefficients for transformed quality

measures PSM, PSMt and subjective quality ratings.

13As before, correlation values for separate signals were averaged across six signals.
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Figure 2.19: Quality prediction performance of the mapped parameter PSMt, named ODG, for

all signals.

Prediction performance of alternative parameters extracted from PSM(t)

In order to evaluate the optimum weighting of the instantaneous audio quality PSM(t)

across time, several statistical parameters accentuating low quality values were computed

and analyzed with respect to their applicability to predict the subjective overall audio

quality ratings. These parameters were: the 0.03-, 0.04-, 0.05- , 0.07- ,0.1-, 0.25- and 0.5-

quantiles (denoted as Q0.03, Q0.04,..., respectively), the mean value 〈PSM(t)〉, the mean val-

ues of nonlinear weighted PSM(t), with powers of 1.5 and 2, (in fact, 1−〈[1−PSM(t)]n〉
1
n ,

with n = 1.5, 2 has to be taken, because small values are to be accentuated) and finally

the mean value, the median and the lower quartile of the set of local PSM(t)-minima

(i.e., minima of PSM(t)-intervals with lengths of 0.1 s to 2 s, depending on the respec-

tive time resolution of PSM(t), see below), denoted as 〈{loc.min.}〉, Q0.5{loc.min.} and

Q0.25{loc.min.}, respectively. Moreover, the influence of the time resolution of PSM(t) =

PSM(nτ), n = 1, 2, ..., i.e., the frame length of short time cross-correlation of the internal

representations τ was also examined. For this purpose, τ was varied from 5 ms to 500 ms.

Table 2.2 shows linear and rank correlation coefficients of the listed measures14 with

subjective quality ratings. All measures were fitted to subjective data by nonlinear map-
14To reduce the table size, only τ values up to 100 ms are shown. Correlation values of all measures obtained

with τ > 100 ms are smaller than obtained with τ = 100 ms and decrease continuously for higher τ values.
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ping functions of the type given in Equation (2.1), but with individually optimized pa-

rameters. The results show that the best prediction performance is achieved by taking

either Q0.05, the 5%-quantile of PSM(nτ), with τ = 10 ms (according to the values of lin-

ear correlation), or Q0.25{loc.min.}, the lower quartile of the set of local (1.4 s) minima,

with τ = 25 ms (according to the values of rank correlation). The correlation differences

between these two measures are very small, especially if linear correlations are considered,

indicating a slightly better performance of Q0.25{loc.min.}. Despite this finding, Q0.05 was

chosen to serve as the final measure for overall quality, PSMt, because of its simplicity

and stronger correspondence to similar measures reported in the literature (Fastl, 1994).

The results also indicate that the benefit of using measures based on a time series

of instantaneous audio quality is mainly due to cross-correlating internal representations

only over short time intervals instead of calculating the overall correlation coefficient: The

mean value of the instantaneous audio quality, 〈PSM(t)〉, already shows a considerable

better prediction performance than the overall correlation coefficient PSM (r = 0.870 vs.

r = 0.767). Measures that emphasize lower values of the instantaneous audio quality

additionally improve the prediction accuracy, because they account for (assumed) cogni-

tive aspects of human audio quality assessment. However, this additional improvement

achieved by using such measures is much smaller compared to the former improvement;

for example, if the most successful measure, the 5%-quantile, is applied, the correlation

coefficient further increases from r = 0.870 to r = 0.897. (The Fishers-Z-transformations

of these correlation values yield Z(0.767) = 1.013, Z(0.87) = 1.333 and Z(0.897) = 1.371.)

Alternative approaches to signal-independent audio quality prediction - model

modifications

If the signal dependency of the quality measure PSM is in fact mainly caused by the strong

emphasis of envelope fluctuations by the auditory model as suggested in Section 2.3.3, any

reduction in this effect should decrease objective quality differences between slowly and

rapidly fluctuating audio signals. (Since the enhancement of rapid envelope fluctuations

is a major property of the auditory model being used, any change in this characteristic

would also call for a modification of the auditory model.)

In order to test this hypothesis, two alternative versions of the auditory model were

implemented and tested with respect to their applicibility for signal dependent and

independent audio quality prediction.
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measure τ = 5 ms τ = 10 ms τ = 25 ms τ = 50 ms τ = 100 ms

Q0.03
0.869 0.870 0.867 0.853 0.835

0.839 0.843 0.843 0.833 0.818

Q0.04
0.884 0.884 0.877 0.863 0.854

0.846 0.849 0.847 0.838 0.833

Q0.05
0.894 0.895 0.893 0.880 0.856

0.857 0.860 0.860 0.853 0.837

Q0.07
0.894 0.894 0.890 0.877 0.850

0.851 0.854 0.854 0.847 0.831

Q0.1
0.888 0.889 0.886 0.870 0.847

0.839 0.842 0.844 0.836 0.823

Q0.25
0.859 0.859 0.857 0.848 0.833

0.805 0.808 0.811 0.808 0.799

Q0.5
0.817 0.816 0.813 0.805 0.774

0.761 0.762 0.763 0.761 0.735

Q0.25{loc.min.} 0.877 0.885 0.893 0.894 0.883

0.851 0.862 0.871 0.859 0.851

Q0.5{loc.min.} 0.852 0.867 0.883 0.884 0.857

0.830 0.839 0.850 0.841 0.824

〈{loc.min.}〉 0.872 0.880 0.894 0.891 0.876

0.846 0.858 0.868 0.863 0.846

1− 〈[1− PSM(t)]
3
2 〉

2
3

0.879 0.879 0.874 0.858 0.832

0.835 0.836 0.833 0.823 0.801

1− 〈[1− PSM(t)]2〉
1
2

0.863 0.861 0.852 0.831 0.802

0.822 0.822 0.815 0.800 0.776

〈PSM(t)〉 0.870 0.870 0.868 0.856 0.832

0.819 0.822 0.822 0.816 0.800

PSM
0.769 0.769 0.769 0.769 0.769
0.737 0.737 0.737 0.737 0.737

Table 2.2: Linear correlation and rank correlation (italic) coefficients for parameters extracted

from PSM(t) and subjective quality ratings for all database items, computed for different time

resolutions of PSM(t) = PSM(nτ). (The objective overall quality measure PSM is also shown for

comparison.) Qx: x-quantile; 〈·〉: mean value; {loc.min.}: set of local PSM(t)-minima

The first modification consisted of an additional processing stage subsequent to the

haircell stage, that performs an instantaneous compression of the envelope signal. Figure
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2.20 shows a block diagram of the modified model. Instantaneous compression was realized

by applying the function f(x) = xγ , with 0 < γ < 1.

Figure 2.20: Block diagram of the modified model version 1. An additional stage applying an

instantaneous compression was inserted between the haircell and the adaptation stage.

Figure 2.21 shows the prediction performance as a function of the compression exponent

γ. 〈r〉 and 〈rs〉 denote the mean linear and rank correlation coefficient averaged across

six different types of audio signals (left panel), while r and rs denote the corresponding

correlation values if quality ratings for all types of audio signals are considered together

(right panel). As expected, the overall correlation improves with a reduced contrast of

envelope fluctuations: r and rs increase with decreasing γ, i.e. stronger compression,

unless γ is smaller than 0.1. The maximum prediction performance according to the

linear correlation is achieved for γ = 0.15 (r = 0.893). The course of the rank correlation

coefficient indicates the best performance for γ = 0.1 (rs = 0.893).
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The effect on signal-wise correlation, however, is contrary, but less severe, as shown in

the right panel of Figure 2.21: Here, the prediction performance is best, if no instantaneous

compression at all (γ = 1) is applied.
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Figure 2.21: Quality prediction performance as a function of the exponent of instantaneous com-

pression γ. Left: correlations between subjective and objective ratings for mixed signal types.

Right: mean correlations for separated signal types. (Note the different scalings of the ordinates.)

Compared to the quality measure PSMt presented in Section 2.3.5, PSM obtained

by the presented modified model shows almost equal prediction performance for mixed

signals, if a very small value of 0.15 for the exponent of the additional compression stage

is chosen (〈r〉 = 0.892 vs. r = 0.897). On the other hand, predicting the perceived audio

quality separately for different signal types is worse with this approach than it is for PSMt

(〈r〉 = 0.905 vs. 〈r〉 = 0.930).

With this additional compression, the exponent of the overall compression of the audi-

tory model for stationary input signals amounts to approximately 0.0047 (0.15 introduced

by the additional stage, 1
32 ≈ 0.03 due to the adaptation loops), which does not appear rea-

sonable. Moreover, Derleth et al. (2001) made a similar modification of the present model

by adding a fast-acting compressive adaptation loop subsequent to the haircell stage. They

reduced the number of the original adaptation loops from five to three in order to keep

the overall compression similar for both the modified and original model. Nevertheless,

their modified model failed in predicting modulation-matching experiments, indicating

that such a modification does not improve the prediction performance for psychoacoustic

experiments.
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It is noteworthy that Beerends and Stemerdink (1994) also found an exponent for

loudness compression that is much below the value which is found psychoacoustically

for loudness of stationary sounds (0.001 instead of 0.23), but maximizes the correlation

between subjective and objective speech quality data obtained from their perceptual

speech quality measure (PSQM). The authors explained that ”this compression value

made the PSQM more robust against implosive noises”.

In a second modified model version, an alternative approach to reduce the contrast

between slowly and rapidly fluctuating signal envelopes was realized by limiting the output

of the adaptation loops. This was already proposed by Münkner (1993) in order to improve

the model’s ability to predict the perceived loudness of non-stationary sounds. Münkner

restricted the maximum output of each adaptation loop to ten times the value of its

steady state response by introducing an additional stage with a compressive characteristic

between the divider and the lowpass element (behind the devider, cf. Figure 2.22). This

function reads as

f(x) =

 x, x ≤ M

2C
1+e−2(x−M)/C + M, x > M,

with

C = L(M − T )−M.

T denotes the amplitude of the input signal at threshold, M the maximum amplitude

of the steady state response and L the limit factor (= 10 in (Münkner, 1993)) of the

output (so that f(x) ≤ L ·M). This function has a linear characteristic for input values

within the maximum range for stationary inputs and a sigmoidal characteristic for higher

values15.

The effect of the choice of the limit factor on the quality prediction performance was

analyzed. Figure 2.23 shows the prediction results of the modified model as a function

of the limit factor L. As expected, the overall correlation is improved by the reduced

enhancement of rapid envelope fluctuations due to the limitation (left panel): r and rs

increase with decreasing L unless L is smaller than 2.5.

In contrast, the effect on the signal-wise correlation is reverse (right panel): In this

case, the correlation deteriorates by decreasing L and the best signal-wise prediction per-

formance is achieved with no limiting at all (L = ∞).
15The modified adaptation loops were also adopted by Dau et al. (1997a).
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Figure 2.22: Block diagram of the modified adaptation loop proposed by Münkner (1993).

Compared to the measure PSMt, the quality prediction obtained with PSM using the

second modified model version with L = 2.5 is worse: the linear correlation coefficient

of subjective and objective quality ratings for mixed signals is r = 0.834 compared to

r = 0.895 obtained with PSMt, and for separated signals on average 〈r〉 = 0.896 compared

to 〈r〉 = 0.930.
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Figure 2.23: Quality prediction performance as a function of the limit of the adaptation loop

output. Left: correlations between subjective and objective ratings for mixed signal types. Right:

mean correlations for separated signal types. (Note the different scalings of the ordinates.)

2.3.6 Discussion

Possible limitations of PSMt

The evaluation of internal representations on time scales that are considerably shorter

than time constants associated with temporal forward masking (i.e., about 200 ms) is
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likely to result in a decreased ability to account for this effect. In view of this, it seems

remarkable that the best quality prediction performance is achieved by a measure that is

based on short-time cross-correlations of internal representations using a frame length of

just 10 ms. Apparently, forward masking merely plays a minor role in the audio quality

assessment of everyday audio signals. This might be explained by the fact that most

natural sound sources, including non-electronic musical instruments, have decay times of

at least some 100 ms. Moreover, most audio signals, music in particular, are either recorded

in reverberating environments or reverberated artificially. Thus, sharp offsets are hardly

observed in everyday audio signals, such as those contained in the database used in the

present study. This explanation is also supported by the fact that the most common

artifacts introduced by audio codecs are the so-called pre-echoes, i.e. short bursts of noise

preceding sharp signal onsets, in contrast to ”real” echoes, which are hardly reported. If

this hypothesis is true, PSMt should perform worse if subjective ratings of time reversed

codec-distorted audio signal are to be predicted.

Another potential limitation concerns a possible dependency of PSMt on the kind

of the audio distortion and was already mentioned in Section 2.3.3 in connection with

the audio quality measure PSM: Based on the present database, it can not be concluded

definitely whether the observed rather small dependency on the particular audio codec is

due to a similar weighting of differences across codec schemes by human listeners and the

auditory model, or if it rather reflects similar distortion characteristics of the concerned

audio codecs. Thus, it can not definitely be precluded that different relations between

PSMt and subjective ratings could possibly be found for quite different impairments of

audio signals, such as linear or harmonic distortions, reverberation or additive noise.

Comparison of PSMt and PEAQ

In this section the audio quality prediction obtained by the presented measure PSMt is

compared with the ITU-R standard BS.1387 for ”perceptual evaluation of audio quality”

(PEAQ) (ITU-R, 1998a).

PEAQ was already introduced in Section 2.1. It ”combines concepts and output vari-

ables of most previously known measurement methods of this nature” (Thiede et al., 2000),

namely: DIX (Thiede and Kabot, 1996), NMR (Herre et al., 1992), OASE (Sporer, 1997),

PAQM (Beerends and Stemerdink, 1992), PERCEVAL (Paillard et al., 1992; Treurniet,

1998, 1996), POM (Colomes et al., 1995), and Toolbox (unpublished). PEAQ makes use

of the masked threshold concept as well of the comparison of internal representations. It
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computes measures of nonlinear distortions, linear distortions, harmonic structure, dis-

tance to masked treshold, and changes in modulation. These parameters are mapped by

an artificial neural network to a single overall measure, the distortion index (DI). The DI

is linearly related to the estimated perceived basic audio quality, which is denoted as ODG

(objective difference grade). The optimization and training of PEAQ was done using a set

of listening tests databases, including the six databases that constitute the database used

in this study.

A valid comparison of PSMt and PEAQ would require a database that was not used

to develop, optimize or train any of the methods before, neither as a whole nor parts of

it. Unfortunately, such a database is not available to the author.

There is one particular database, denoted as DB3 (ITU-R, 1998b), that was not used

to optimize the PSM nor the PSMt measure. Although some (32 out of 84) of its items

(i.e. signal/distortion combinations) were not available to the authors of PEAQ during

the calibration phase either, all of the signals as well as all of the distorting systems have

been used before in different combinations. In contrast, not all kinds of distortions and

only 8 of the overall 26 signals contained in DB3 were also contained in the database used

for the optimization of PSM and PSMt.

Figure 2.24 shows the results of quality predictions for the database DB3. In the upper

panel, quality predictions by the PEAQ-ODG measure is depicted whereas the lower panel

shows the results obtained from the PSMt-ODG measure (transformed PSMt). Addition-

ally, Figure 2.25 compares the prediction performance for all available test items, i.e. in

the case of PEAQ: all training items plus database DB3 and one validation database16

(CRC97). In the case of PSMt: all ”training” items plus database DB3.

The comparisons exhibit a clear superior performance of PEAQ regarding database

DB3, and a comparable performance if all databases are considered together. (For the

latter case, no quantitative measures of the prediction performances were stated in (Thiede

et al., 1998), (Thiede et al., 2000) and (ITU-R, 1998a).) The reason for the rather poor

performance of PSMt regarding database DB3 is not clear. This database seems to be more

crucial for objective audio quality measures than others. This assumption is supported

by the fact that DB3 was originally composed with the intention to serve as a validation

database for PEAQ. But after a first performance test of PEAQ using this database, 52

of the overall 84 items were distributed to the authors of PEAQ for further calibration.
16This database, that was especially composed for the validation of PEAQ, contains eight signals of which

seven were already contained in former training data sets (Soulodre et al., 1998).
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As mentioned before, these 52 items contained all kinds of signals and distortions (in

different combinations, though) that were contained in the remaining part of DB3. The

results shown in Figure 2.24 were obtained using the complete database DB3, including

the training data. This might be one reason for the considerable superior performance of

PEAQ regarding this particular database.
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Figure 2.24: Comparison of quality prediction results for database DB3. Upper panel: PEAQ

(taken from Thiede et al. (1998)). Lower panel: mapped PSMt.
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Figure 2.25: Comparison of quality prediction results for all items. Upper panel: PEAQ (taken

from Thiede et al. (1998)). Lower panel: mapped PSMt.
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2.4 Summary and conclusions

A new measure for the prediction of the perceived quality difference between audio signals

was introduced. It is based on an psychoacoustically validated auditory model by Dau

et al. (1997a) and represents an expansion of the speech quality measurement method

of Hansen and Kollmeier (2000). The new method is able to predict very small as well

as severe quality degradations for different types of audio signals and audio codecs. The

predicted audio qualities show good correlations with subjective quality ratings for most

of the applied test material. The capability of the presented method seems comparable to

that of the ITU recommendation BS.1387 for objective measurements of perceived audio

quality (”PEAQ”). However, in comparison to PEAQ, because of its use of a psychoacous-

tically validated auditory model without a special adaptation to the data to be modeled,

the presented method better allows for conclusions about actual mechanisms of human

perception of audio quality. Moreover, it gives rise to the assumption that it might have

a higher ability to generalize and thus being applicable to unknown distortions, audio

material and possibly even somewhat different tasks.

The development and investigation of the presented method revealed some aspects of

audio quality assessment, from which the following conclusions may be drawn:

• The use of a bank of modulation bandpass filters instead of a modulation lowpass

filter improves the prediction performances, especially if very small quality differ-

ences are to be resolved. Extending the bandwidth of a single modulation filter to

higher modulation frequencies alone is not sufficient.

• For optimum performance of the measure, frequency bands have to be weighted

equally. This contrasts to the findings of Hansen and Kollmeier (2000), who used a

similar measure for a limited frequency range to predict speech transmission quality.

• Envelope fluctuations seem to be overemphasized by the adaptation loops of the

original auditory model. This characteristic led to an overestimation of quality for

rapidly fluctuating portions of audio signals. This overestimation can be counter-

acted by compressing or limiting the amplitude of the adaptation loops output, or

by short-time cross-correlation of the model outputs and averaging, instead of com-

puting one overall correlation coefficient.

• The temporal course of the instantaneous audio quality and its relationship to the

perceived overall audio quality has to be taken into account. Emphasizing episodes of
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particularly low instantaneous quality improves the prediction of the overall quality.

This high weighting of low-quality signal portions corresponds well with human

behaviour.



CHAPTER 3

Detection of audio distortions

Abstract

This chapter presents a new psychophysical method for the perceptual evaluation of lossy

audio processing systems such as low bit-rate audio codecs. This method uses the alter-

native forced-choice procedure, well established for the psychoacoustical measurement of

masked thresholds, for the detection of audio distortions. It focuses on the detectability

of signal alterations produced by a lossy processing, thus investigating the transparency of

the system under test. The new method was applied to audio signals that were processed

by three lossy audio processing schemes, including two low bit-rate audio codecs. The

measured distortion detection thresholds differed largely depending on the respective audio

signal and processing scheme.

For the simulation of the psychoacoustical experiment, two versions of the model of

auditory processing of Dau et al. (1996a, 1997a) were employed. The predicted thresholds

show high correlations with the measured data for both of the model versions (r = 0.9,

0.8) whereby predictions obtained with the modulation filterbank model (Dau et al., 1997a)

show distinct deviations from the experimental data in a few cases, leading to a somewhat

smaller overall correlation compared to the modulation lowpass filter model (Dau et al.,

1996a).

It is concluded that the proposed new subjective method is suitable for the evaluation of

the transparency of lossy audio codecs and that the auditory model of Dau et al. (1996a)

is capable of predicting detection thresholds of audio distortions with sufficient accuracy

and thus represents a tool for the objective evaluation of audio codecs.

51
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3.1 Introduction

To date, the evaluation of transmission quality of lossy audio processing systems is usually

realized by performing either subjective listening tests or applying computational meth-

ods that try to predict results from listening tests, as presented in the previous chapter.

Standard listening tests, as described in ITU-R recommendations BS.562-3 (ITU-R, 1990)

and BS.1116, for example, (ITU-R, 1997) aim at assessing the perceived audio quality

(difference) on categorical scales that cover a range from ”excellent” to ”bad” quality

(or from ”imperceptible” to ”very annoying” quality degradation). The output values of

computational methods are typically scaled accordingly. However, as efficiency of and

demands on new audio codecs have been continuously increasing over the past few years,

the aim of an evaluation tends to turn away from addressing the question of how much the

perceived quality of a processed audio signal is affected by a codec towards the question if

quality is affected at all, i.e. the ”transparency” of a codec is mainly considered. In ITU-R

BS.1116, the corresponding category of transparency is only a singular point at the top

end of the continuous quality scale. Using this scale, it is hardly possible to interpret the

mean quality value over subjects in terms of the detectability of a difference in the signal.

For such a purpose, another kind of experimental paradigm is needed.

In the present chapter, an alternative method for the subjective assessment of audio

codecs is proposed. With this method, the procedure of determining masked thresholds by

an adaptive, 3-AFC (”alternative forced choice”) psychacoustical measurement is applied.

”Perceptual” audio codecs such as MPEG Layer-3 (”MP3”) (ISO/MPEG, 1992) make use

of the masked threshold concept by ”shaping” the quantization noise, i.e. distributing it

in such a way, that it is (ideally) masked by the signal. The question whether distortions

introduced by a codec are audible or not is equivalent to the question whether the level

of distortions is above or below the masked threshold. In terms of masking, the (original)

signal serves as the masker, whereas distortions are the maskee. By comparing the level of

distortions with the psychoacoustically measured masked threshold for a given signal and

codec, not only can conclusions about the (un-)detectability of the distortions be drawn,

but also about the ”distance” to the detection threshold. This distance may serve as

another measure for the transmission quality of audio processing systems.

A second focus of the present study is the quantitative simulation of the experimental

results for the detection of the distortions described above. The applicability of the signal

processing model by Dau et al. (1996a, 1997a) is examined for this task. The model has

been shown to be particularly suitable for the quantitative prediction of masked thresholds
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in simultaneous as well as nonsimultaneous conditions (see, e.g., Dau et al. (1996b)).

The use of an ”optimal detector” as a decision device enables the model to mimic a

human listener in a psychoacoustical measurement1. However, primarily artificial signals

with relatively simple spectral and temporal properties have been considered so far, such

as tones in a bandpass noise masker. In contrast, the signals and distortions usually

encountered in audio coding that are investigated here are more complex. It is therefore

not clear if the model can account for the results of such an experiment. A successful

accomplishment of this task would not only yield a useful method for the computational

evaluation of audio processing schemes, but would also represent another validation of the

model.

In this chapter, the new method for the subjective evaluation of lossy audio processing

schemes is presented in detail. Results of a psychoacoustical measurement with every-

day audio signals, distorted by different audio codecs, are presented and discussed. The

simulated results for the same signals and codecs are compared to the experimental data.

1The method for predicting perceived audio quality differences presented in the previous chapter only uses

the ”preprocessing” stages of the model; the decision device is replaced by the operation of cross correlating

the internal representations of test and reference signal.
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3.2 Method

3.2.1 Stimuli and apparatus

Six audio signals were subjected to three types of lossy audio processing schemes. The

audio signals were: 1) a 3.8 s excerpt of Bizet’s ”Carmen”, presented at an average (peak)

level2 of 62 (76) dB SPL; 2) 2.5 s of ”glockenspiel” (chimes), presented at 55 (66) dB

SPL; 3) 3 s of castanets, presented at 54 (78) dB SPL; 4) 4.1 s of German, male speech,

presented at 60 (74) dB SPL; 5) 3.7 s of bass guitar, presented at 66 (80) dB SPL; 6)

2.8 s of German, female speech, presented at 60 (72) dB SPL. Distorted test signals were

obtained by applying the following signal processing schemes: a) MPEG-1 audio layer III

(”MP3”) (ISO/MPEG, 1992), b) Windows Media Audio 8 (”WMA”) (Microsoft, 2003), c)

Modulated Noise Reference Unit (MNRU) (ITU-T, 1996a) 3. Thus, overall, 18 test signals

were investigated. The distortion was ”isolated” by taking the difference of the original

signal and the processed signal after compensating for the processing delay of the coding

scheme:

Dist = Proc−Orig

A particular test signal (Test) was generated by multiplying the distortion (Dist) with a

constant factor (c) and adding it to the original signal (Orig):

Test = Orig + c ·Dist

With c = 1, the test signal is equal to the processed signal, i.e. the output signal

of the audio codec. Other values of c change the signal-to-distortion ratio according to

∆SNR = −20 · log(c) dB.4 Masked thresholds of audio distortions will be expressed by

the parameter ∆SNR.

All reference audio signals were taken from collections of audio material that were

composed on behalf of the Moving Pictures Experts Group (MPEG, an ISO sub-group),

and the International Telecommunication Union (ITU) respectively, for the evaluation of

low-bit-rate audio codecs (ISO/MPEG, 1990, 1991; Meares and Kim, 1995; ITU-R, 1992,

1993). The audio material consists of A/D converted recordings, sampled at 48 kHz, 16

bit, and provided as mono or stereo Windows-PCM-wave files. Excerpts of these audio
2Levels were adjusted subjectively in order to equate subjective loudness.
3The MNRU modulates the input signal x(t) according to y(t) = x(t) · (1 + m · n(t)), where n(t) is a white

noise with unity variance and m is the modulation depth.
4The signal-to-distortion ratio is denoted as SNR, because the distortions are essentially quantization noise.
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samples were digitally rescaled, transformed to analog by a 24-bit D/A converter (SEKD

2496), amplified by a headphone amplifier (Beringer ”Powerplay”) and presented dioticly

via headphones (Sennheiser HD580) in a soundproof booth (IAC-1600).

3.2.2 Procedure and subjects

The aim of the psychoacoustical experiments was to determine how much the signal-

and codec-specific distortions had to be attenuated (or amplified), just to be masked

by the signal. These masked thresholds were measured using an adaptive three-interval

forced choice (3IFC) procedure. A trial consisted of three intervals separated by 0.5 s of

silence. Two of the intervals contained the original signal (Orig), one the distorted test

signal (Test), in random order. The subject’s task was to identify the interval containing

the distorted signal. Visual feedback was provided during the measurement. During a

threshold run, the level of the distortions was varied according to an 1-up 2-down algorithm

(Levitt, 1971), which converges at a level corresponding to 70.7 percent correct answer

probability. The experiment was split up into two parts. The first part (”experiment

A”) served as a pilot experiment in order to check whether the experimental setup was

appropriate. The signals 1) to 4) were used. The initial step size of the adaptive procedure

of level adjustment was 4 dB and was reduced to 2 dB after the first two reversals. Because

of the relatively long signal duration (up to 4 s), this step size was not further reduced

during the remainder of the run, and only two more reversals were used to obtain the

threshold estimate by taking the mean ∆SNR value at these reversals. In experiment B,

the number of reversals used for threshold estimation was increased to four, to increase

accuracy of the threshold estimate. Signals 5), 6) and again 1) and 3) were used. The

latter signals were used in both experiments in order to check whether the different number

of reversals and a possible training effect lead to systematic threshold differences.

Eight male and two female normal-hearing subjects participated in this study. They

were aged between 25 and 39 years and had some experience in psychoacoustic measure-

ments.

3.2.3 Simulations

The simulations were performed using the auditory model of Dau et al. (1996a, 1997a).

The structure of the model is depicted in Figure 3.1. The model combines several stages of

preprocessing with an ”optimal detector” as a decision device. First, the incoming signal

is processed by a linear gammatone filterbank (Patterson et al., 1987) that simulates the
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bandpass characteristic of the basilar membrane. The output of each bandpass filter

is halfwave rectified and lowpass filtered at 1 kHz, which approximates the envelope of

the signal for higher center frequencies. To simulate effects of temporal adaptation, a

subsequent chain of five nonlinear feedback loops transforms the signal depending on

its rate of fluctuation. The overall effect of the five consecutive loops is to compress

stationary signals with an approximately logarithmic characteristic, while transmitting

fast fluctuations almost linearly. Within each loop, the input is divided by the lowpass-

filtered fed back output. For stationary signals, this represents a square root operation.

The five loops differ with respect to the time constants of the lowpass filter. The final

preprocessing stage differs between the two model versions in Dau et al. (1996a) and Dau

et al. (1997a): the 8 Hz modulation lowpass filter used in the earlier version was replaced

by a modulation filterbank in the more recent version, which generalizes the model such

that it also accounts for psychoacoustic experiments of amplitude modulation detection

(Dau et al., 1997a,b). An ”internal” noise of constant variance is added to the output of

each modulation filter to model limitations of resolution. These filter outputs form the

”internal representation” of the corresponding input signal. The internal representation

is subjected to a decision device (realized as an ”optimal detector”), where it is compared

with a stored representation of the signal to be detected (template). The comparison is

performed by calculating the cross correlation between the two patterns, which can be

interpreted as a ”matched filtering” process (Dau et al., 1996a).

The simulations presented in the present study were performed using both model

versions mentioned above (modulation lowpass vs. modulation filterbank). 33 critical

bands in the range from 235 Hz to 14.5 kHz and 8 modulation channels up to 129 Hz (in

the modulation filterbank model version) were applied. These settings were adopted from

the model configuration used for the prediction of audio quality (cf. previous chapter).

Because the value of the variance of the internal noise depends on the overall number

of channels, this parameter was adjusted once for each model version to optimize the

prediction accuracy for the present experiment. Varying the variance essentially results

in a constant threshold shift for all signals (which does not affect the correlation between

measured and simulated data). In this study, the variance was adjusted to bring about

equal mean values of measured and simulated thresholds. Apart from this adjustment, no

alterations of any other model parameters were made, if not stated explicitly.
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Figure 3.1: Block diagram of the psychoacoustic model as described in Dau et al. (1997a)
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3.3 Results

3.3.1 Experimental data

Figure 3.2 shows measured thresholds as mean values and standard deviations over 10

subjects (open symbols) together with corresponding simulated thresholds (filled symbols).

Results of experiment A are shown in the upper panel and results of experiment B are

represented in the lower panel. The ordinate indicates the SNR-difference at threshold,

i.e., the scaling factor applied to the distortions (expressed as 10· log(c), in dB) that leads

to 70.7% correct decision. Positive ∆SNR values mean that the distortions introduced

by the audio codec must be attenuated in order to become inaudible, whereas negative

∆SNR values imply transparency of the codec5. The higher the threshold, the worse the

transmission quality of the audio codec or the more sensitive the ear is. The abscissa shows

the different audio signals. Each audio signal was processed by two audio codecs (MP3,

WMA) and the MNRU, which is indicated by corresponding symbols (circle, triangle and

square, respectively). The correlation between measured and simulated data is quantified

by the linear correlation coefficient r.

The measured thresholds show large variations across signal types and codecs, espe-

cially for castanets and male speech signals (cf. upper panel): while the signals processed

by MP3 are indistinguishable from the original for all subjects, distortions introduced

by WMA are clearly audible. In contrast, both audio codecs perform similarly for the

audio items Carmen and glockenspiel, where quality degradations due to the codecs are,

on average, undetectable. In experiment B, two of the signals of the previous experiment

(glockenspiel, male speech) were replaced by bass, female speech, while detection thresholds

for the remaining signals (Carmen, castanets) were measured again. The results are shown

in the lower panel of 3.2. All thresholds for the repeated conditions are shifted towards

larger values by 2 to 6 dB, while, on average, the standard deviations decrease. The appli-

cation of the audio codecs to the new audio signals bass and female speech lead to audible

signal alterations in each case, all thresholds are above 0 dB. A striking difference to the

results of experiment A appears in the case of speech, while codec MP3 is transparent

when applied to male speech in experiment A, its effects on female speech in experiment B

are clearly detectable. The difference between the detection thresholds amounts to 18.5 dB

in this case. In contrast, detection thresholds for distortions introduced by codec WMA

are very similar in both experiments.
5In the case of the Modulated Noise Reference Unit (MNRU), ∆SNR = 0 dB corresponds to q = 35 dB,

whereby the MNRU-parameter q and the modulation depth m are related by q = −20·log(m).
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3.3.2 Simulations using a modulation lowpass

The results of the simulations show good agreement with the measured data: In experiment

A, 10 out of 12 simulated threshold lie within the inter-individual standard deviation of

the measured thresholds, which are distributed over a wide dynamic range of 24 dB. This

results in a high linear correlation value of r = 0.90. Because of the smaller inter-individual

standard deviations in experiment B, less simulated data points lie within the standard

deviation of the data in this case. However, the linear correlation is even slightly higher

(r = 0.91) than in experiment A.
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Figure 3.2: Measured (open symbols) and simulated (filled symbols) masked thresholds of dis-

tortions introduced by two audio codecs (MP3, WMA) and by amplitude modulation with noise

(MNRU) for different audio signals. Thresholds are quantified by signal-to-noise ratio differences

(∆SNR), i.e. the amount of distortion attenuation. Simulated data were obtained with the model

using the modulation lowpass approach.
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An illustration of the advantage of perceptual coding algorithms like MP3 and WMA

in terms of signal-to-noise ratio (SNR) is given in Figure 3.3. It shows the absolute ratios

of signal-to-(quantization-)noise energy at detection thresholds as measured in experiment

B. Except for the WMA-processed castanets, SNRs at threshold are markedly smaller for

the perceptual coders MP3 and WMA than for MNRU (14 - 24 dB) and do not differ

from each other by more than 4 dB. A consistent rank order of MP3 and WMA cannot be

observed in the present study. However, the threshold for the castanets coded by WMA

is particularly high compared to those coded by MP3 and even exceeding the threshold

obtained with MNRU. As pointed out earlier, MP3 performs clearly transparent in this

case, whereas WMA introduces distinct perceptible distortions 6.
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Figure 3.3: Signal-to-(quantization-)noise ratios at threshold for audio signals used in experiment

B.

3.3.3 Simulations using a modulation filterbank

In order to examine the effect of the modulation processing stage of the auditory model on

the simulated thresholds, the modulation lowpass filter was replaced by a linear bank of

bandpass filters as described in 3.2.3, which represents a more recent version of the auditory
6Note that both audio codecs were operating at only 48 kbit/s on mono audio signals.
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model (Dau et al., 1997a)7. Figure 3.4 shows measured data together with simulated

data obtained with this model version. The deviations between measured and simulated

thresholds are larger than those observed in the previous simulation (cf. Figure 3.2). Linear

correlation deteriorates from 0.90 to 0.80. This deterioration is mainly caused by large

discrepancies in a few different conditions (most notably: WMA-processed castanets, MP3-

processed bass). In general, the predicted thresholds of those audio signals that have sharp

onsets (leading to the excitation of a broad range of modulation frequencies) and that

were processed by perceptual audio codecs are increased in most cases. The decreased

thresholds for some signals distorted by noise modulation, relative to those obtained with

the modulation lowpass (cf. Figure 3.2), are likely due to the process of adjusting the

variance of the internal noise for the purpose of aligning simulated and measured data

(cf. Section 3.2.3). Thus, this decrease does not necessarily indicate a loss of sensitivity of

this model version.

3.4 Summary and discussion

The purpose of this study was two-fold: First, a new method for subjective evaluation of

transmission quality of lossy audio processing systems was presented. Second, the ability

of an auditory model to predict detection thresholds of audio distortions was examined.

The basic approach of the proposed new method was inspired by the common masked

threshold concept of perceptual audio codecs. The basic idea of this concept is to re-

duce the average resolution of amplitude quantization of audio samples, thus permitting a

higher overall level of quantization noise, whereby this noise is spectro-temporally shaped

in such a way that it is (ideally) masked by the signal and therefore imperceptible. Hence,

it appears reasonable to consider the task of detecting distortions within an audio signal as

a masking experiment, where the undistorted original signal represents the masker while

the introduced distortions (e.g. quantization noise) represent the maskee. The presented

method ”isolates” the distortions by simply subtracting the original signal from the dis-

torted signal. Considered as the maskee, the difference signal is scaled independently and

added back to the original (the ”masker”) again to generate particular test signals. This

allows for the determination of masked thresholds using well established psychoacoustical

standard procedures, which has the advantage of being much more sensitive to small vari-
7In fact, the model version applied in the present study differs slightly from that described in Dau et al.

(1997a). Dau’s modification of the adaptation stage in 1997 was not adopted. Instead, the version of the

adaptation stage described in Dau et al. (1996a) was used.
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Figure 3.4: As Figure 3.2 but with simulated thresholds obtained using a model version with

modulation filterbank.

ations in the signal due to the coding scheme than a category rating procedure. However,

this method is only applicable if a simple difference between original and coded signal
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yields a reasonable estimate of the quantization noise. This may become difficult if the

codec group delay is frequency- or time-dependent.

The results of the experiment presented in Section 3.3.2 support the masked threshold

concept of perceptual audio codecs: SNRs at detection thresholds are generally markedly

smaller for the audio codecs MP3 and WMA than for noise modulation (cf. Figure 3.3).

While detection thresholds were found to be similar for the two audio codecs for most

audio signals and no consistent rank order could be observed, castanets turned out to be

problematic for the WMA codec: The SNR at threshold for this signal/codec combination

was found to be even slightly higher than for castanets distorted by the Modulated Noise

Reference Unit. The poorer performance obtained with WMA in this case is caused by

”pre-echoes”, i.e. brief (few ms) bursts of noise preceding sharp signal onsets. This can

easily be confirmed by inspecting the waveform of the distorted signal (s. Figure 3.5). A

possible reason for this malfunction is the use of too long analysis frames in the encoder,

so that rapid transitions in the signal are not taken into account appropriately 8.
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Figure 3.5: Cutout of the audio signal castanets: left panel: original, middle panel: processed

by audio codec MP3, right panel: processed by audio codec WMA. The latter reveals a distinct

”pre-echo”.

The comparison of experiment A and B shows that ∆SNR values at threshold for

repeatedly used signals increased consistently (i.e. subjects became more sensitive), while

inter-individual deviations decreased on average. Both findings might be due to training
8Because Windows Media Audio (WMA) is a commercial product of Microsoft and publications of its design

are not known to the author, it can only be speculated about this point.
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effects (experiment A was conducted before experiment B) as well as to the extended

adaptive measurement procedure (two more reversals were added).

3.4.1 Influence of modulation processing on simulations

As shown in Section 3.3.2, the auditory model is able to account for detection thresholds

if a modulation lowpass filter with a cutoff frequency of 8 Hz is used at the output of the

adaptation stage (Dau et al., 1996a). If a modulation filterbank stage is used instead of

the lowpass filter (Dau et al., 1997a), the agreement with the experimental data decreases

somewhat. In order to better understand the role of amplitude modulation processing for

the predictions investigated here, additional simulations were carried out. In one model

version, the cutoff frequency of the modulation lowpass filter was varied, while in another

model version, the number of modulation bandpass filters was varied. The accuracy of the

predicted thresholds was determined as a function of the lowpass cutoff frequency and the

center frequency of the highest modulation filter, respectively, as shown in Figures 3.6 and

3.7. In Figure 3.7, the number of modulation channels ranges from one (in the leftmost

condition) to eight (in the right most condition). In the left panels of the two figures, the

root mean squared differences between measured and simulated thresholds (”RMS error”)

is given on the ordinate. The right panels show the corresponding linear correlation

coefficient between experimental data and simulation. In the case of the modulation

lowpass (Figure 3.6), the results indicate best prediction performance at a cutoff frequency

around 7 Hz. This is compatible with findings of Dau et al. (1996a), who determined an

optimal value of 8 Hz using data of simultaneous and forward masking experiments. For

the modulation filterbank (Figure 3.7), the prediction error is smallest if only the two

lowest channels are considered, consisting of a lowpass filter with a cutoff frequency of 2.5

Hz and a bandpass filter centered at 5 Hz (bandwidth = 5 Hz). In this case, prediction

performance corresponds to that of the model version using the modulation lowpass. The

use of additional higher frequency channels hardly affects the model performance as long as

center frequencies up to only about 30 Hz are used. Also, if filters with center frequencies

higher than 30 Hz are taken into account, model performance further decreases.

How can these findings be explained? In the case of the modulation lowpass filter, a

cutoff frequency much larger than 8 Hz would not account for effects of temporal integra-

tion of signal information (e.g. Green, 1985; Moore et al., 1988), and thus a deterioration

of the model performance with increasing cutoff frequency is not unexpected. However, in

the case of the modulation filterbank, the increasing deviation of the simulated data from
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Figure 3.6: Prediction performance of the auditory model with a modulation lowpass filter as a

function of lowpass cutoff frequency. Left: root of mean squared differences between simulated

and measured thresholds. Right: linear correlation coefficient for the same data.
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Figure 3.7: As Figure 3.6, but for simulated thresholds obtained from the auditory model with

modulation filterbank as a function of the center frequency of the uppermost filter.

the measured data with an increasing number of modulation channels was not expected.

Dau and coworkers could show that the modulation filterbank model is able to account for

a larger number of psychacoustical data than the earlier (lowpass filter) version, without

contradicting findings that were already explained by the original model. The modulation

filterbank model might be considered as a generalization of the original model. Indeed,

when applied to predict the perceived audio quality, the modulation filterbank model per-
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forms better than the lowpass approach, as shown in the previous chapter. Thus, a general

overestimation of information contained in higher modulation channels is most likely not

the reason for the relatively weak performance of the model in the present task.

It has been reported that the pronounced overshoot of the adaptation loops in response

to signal onsets may cause discrepancies between simulated and measured thresholds in

specific conditions, and therefore a limitation of the amount of the overshoot response

was suggested (Münkner, 1993; Dau et al., 1996b) (see also previous chapter). Overshoots

produced by the adaptation loops are damped by the subsequent modulation filtering

stage, whereby the damping depends on the cutoff frequency i.e. the bandwidth of the filter.

(A larger bandwidth leads to less damping.) The observed decreasing correspondence

between measured and simulated data with increasing modulation cutoff frequency in

Figures 3.6 and 3.7 might therefore be due to the strong overshoot by the adaptation

loops. This hypothesis is supported by the fact that simulated thresholds are shifted

upwards most strongly for signals containing distinct onsets like castanets, glockenspiel

and bass,9 when processed by perceptual audio codecs (cf. Figure 3.4). For these signals,

pre-echoes, which are a typical artifact of perceptual audio codecs, are more likely to

appear than for the other signals. Pre-echoes reduce the sharpness of signal onsets and

thus the amount of overshoots considerably. As a consequence, the detectability of signal

differences due to pre-echoes is overestimated by the model, where the effect is larger the

stronger the overshoots are.

If the decreased accuracy for higher modulation frequencies is in fact caused by too

strong of an overshoot at the output of the adaptation loops, then limiting the output of

that stage should counteract this effect and reduce the discrepancy between measured and

simulated data. For this purpose, a modified version of the adaptation loops, proposed

by Münkner (1993) and adopted by Dau et al. (1997a), was applied. The modification

is realized by a compressive element10 between the divider and the lowpass element such

that the maximum output of each adaptation loop is restricted to λ times the value of its

steady state response. (In Münkner (1993) and Dau et al. (1997a) λ was set to ten, which

was motivated by physiological findings of Westermann and Smith (1984).) Figure 3.8

shows simulation accuracy obtained with the modified adaptation loops as a function of

the value of the limiting factor λ. As in the previous figures, the left panel shows the RMS
9The bass signal used in this study stemmed from an electric bass guitar played in ”slap style”, which

produces sharp onsets.
10The characteristic of this element is linear for input values within the maximum range for stationary signals

and sigmoidal for higher values.



68 CHAPTER 3. DETECTION OF AUDIO DISTORTIONS

of the prediction error while the linear correlation coefficient is displayed in the right panel.

The results show an improvement of the performance if a limitation is applied11. However,

the observed effect is rather small (about 1 dB decrease of error-RMS in experiment A, 1.6

dB in experiment B at best) and not consistent for λ < 2.5. While the best performance

is achieved at λ=3.5 in experiment A, the error diminishes continuously with decreasing

λ over the entire range tested (λmin=1.25). Prediction errors in these cases still exceed

those obtained with the modulation lowpass model version by about 1 - 1.5 dB. Moreover,

limitation factors of such small values do not seem reasonable.
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Figure 3.8: Prediction performance of the auditory model with modulation filterbank and modified

adaptation loops as a function of the limit factor λ.

In concluding the preceding considerations, the somewhat worse correspondence of

measured and simulated data obtained with the modulation filterbank model can at least,

to some extent, be explained by too strong of an overshoot of the adaptation loops at

signal onsets.

Another possible reason for the remaining discrepancies might be the simplifying model

assumption that information is processed independently in the different frequency chan-

nels. For many natural stimuli such as, e.g. speech, neural activity in different frequency

channels is correlated and can therefore not be assumed to be processed as independent in-

formation. The maskers and maskees used in the present study were all broadband. If the

neural activity in different frequency channels of stimuli are correlated with each other,
11Improvements are observed only in association with the modulation filterbank. In case of the modulation

lowpass filter, using the modified adaptation loops leads to poorer performance.
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but information is processed independently across the channels and finally ”optimally”

combined by the model, the overall information contained in the stimuli is overestimated.

The overestimation increases with increased proportion of correlated channels, degree of

correlation and amplitude of the correlated channels. The present results show the largest

deviations of simulated data from measured data for those signals that contain sharp on-

sets in the reference condition (i.e. undistorted signal ≡ masker) and pre-echoes preceeding

those onsets (and thus smoothing them) in the corresponding test condition (i.e. distorted

signal ≡ masker + maskee). Sharp onsets are broadband and therefore represented in all

channels, which thereby become correlated. Moreover, as the bandwidth of the modulation

bandpass filter increases with increasing center frequency, the onsets are represented by

larger amplitudes in higher modulation channels. Differences between the internal repre-

sentations of the reference and the test signals are therefore correlated across channels and

represented by increasing amplitudes with increasing modulation center frequency. As a

consequence, the information provided by these differences and thus detection thresholds

could possibly be overestimated by the modulation filterbank model. However, in order to

better understand the role of across-channel correlation of excitation (or neural activity)

on predicted detection thresholds in the framework of the processing model used here, fur-

ther studies with well defined and probably more basic spectro-temporal characteristics

are needed. This, however, is beyond the scope of the present study.
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3.5 Conclusions

• The determination of detection thresholds for audio distortions produced by lossy

audio codecs represents a possibility to derive quantitative, statistical conclusions

about the transparency of audio codecs, which is becoming the decisive criterion for

the evaluation of present and future audio codecs.

• The model of auditory signal processing proposed by Dau et al. (1996a) is capable

of quantitatively predicting masked thresholds of distortions in audio signals. This

result was not clear in advance since very complex and broadband stimuli were

used in the present study and the model has previously been tested primarily in

rather simple conditions with well defined and mostly narrowband conditions. Hence,

the model can be employed for the objective evaluation of lossy audio processing

algorithms or transmission systems that are demanded to be transparent.

• Using a modulation filterbank stage as proposed by Dau et al. (1997a) essentially

yields satisfying threshold predictions as well, although this model version performs

not quite as well as the modulation lowpass filter model. Discrepancies between sim-

ulated and measured data are restricted to a few cases and can partly be explained by

a too strong overshoot at the output of the adaptation loops and possibly by the lack

of the model to account for across-channel processes. Both of these characteristics

become more severe with an increasing number of channels of the modulation pro-

cessing stage. Thus, limiting the output of the adaptation loops appears reasonable

and across-channel processes should be accounted for in future model versions.



CHAPTER 4

Assessment of noise reduction schemes

Abstract

The applicability of computational audio quality measures for the assessment of single-

channel and multi-channel noise reduction schemes is examined in this chapter. The speech

quality measure qC of Hansen and Kollmeier (2000), the audio quality measures introduced

in Chapter 2 and a modified variant of these measures were employed to predict subjec-

tive ratings of the quality of noisy speech signals that were processed by noise reduction

schemes. The signals and corresponding subjective ratings were taken from experiments

carried out by Marzinzik (2000) and Tontch (2002). The results show dependencies of the

prediction performance of the quality measures on the quality aspect (overall preference,

speech naturalness, amount of background noise), the group of subjects (normal hearing vs.

hearing impaired) and the presence of artifacts. In each condition, at least one of the audio

quality measures showed good correlation with the subjective data, but none of the measures

performed well in all conditions. The findings suggest that a perceptual evaluation of noise

reduction schemes can be achieved using a set of four variants of the presented audio qual-

ity measures in order to account for different conditions regarding subjects, quality aspects

and artifacts.

4.1 Introduction

Objective methods for the assessment of speech or audio quality are generally intended for

predicting the perceived quality of a given test signal relative to a reference signal. Usually,

the reference is assumed to be of desired audio quality, whereas any audible differences

between the reference and test signal are interpreted as quality impairments of the test

signal. The main application of those methods is the assessment of the transmission quality

of lossy audio processing systems, such as low-bit rate speech and audio coding-decoding

71
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algorithms (codecs) used for data reduction. Hence, the transmission quality of a codec is

directly related to the perceptual similarity of processed and unprocessed signals, where

perfect performance is achieved if input and output signals become indistinguishable. In

contrast, the purpose of speech enhancement algorithms is to modify noisy speech signals

in order to improve the speech intelligibility. In this case, the unprocessed signal is not

of desired audio quality and audible changes introduced by the processing are intended.

Hence, the approach for employing a computational, perceptual distance (or similarity)

measure has to be modified in order to become applicable for that specific task. For this

purpose, a triple of audio signals is demanded: apart from the noisy input signal and the

processed signal, the ”clean” speech signal (i.e. speech without noise) has to be provided

that serves as a reference, representing the desired quality. The performance of the speech

enhancement system is then described by the quality difference between unprocessed and

processed signals with respect to the clean speech reference.

One apparent problem for both subjective and objective evaluation of speech enhance-

ment systems is the trade-off between the amount of noise reduction (desired effect) and

audible speech distortions (undesired effect). (Distortions are not restricted to the speech

but can also produce annoying unnatural background noise. This can degrade the per-

ceived overall signal quality as well, even if the level of noise is reduced.)

These effects are mostly positively correlated and have contrary consequences for the

perceptual distance between the processed, noisy speech and the clean speech reference.

The correspondence between objective and subjective quality ratings will depend on the

subjective weighting of these effects, which itself is influenced by the particular instructions

given to the subject. Marzinzik (2000), for example, found different subjective ratings of

noise reduction algorithms in paired comparison tests depending on whether subjects were

asked to indicate the respective item they ”liked more” or the one that ”showed less back-

ground noise”. In contrast, a single objective measure can only account for one subjective

dimension, and it is not clear a priori which dimension this will be. Although this prob-

lem has been pointed out before repeatedly (Gustafson et al., 1996; Hansen and Pellom,

1998), and a lot of studies applied objective quality measures to the evaluation of speech

enhancement algorithms, there are hardly any publications concerning the validation of

objective quality measures applied for this particular task using subjective results. For

this reason, Marzinzik and Kollmeier (2000) examined the applicability of several objective

speech quality measures for predicting the results of listening tests concerning monaural

noise reduction schemes. One of the objective measures examined was the speech quality

measure qC proposed by Hansen and Kollmeier (2000). While this measure showed good
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correspondence with subjective ratings of the noise reduction, it failed to predict the per-

ceived naturalness of the processed speech and the overall preference of the subjects. In

the present study, different modified versions and expansions of this measure, as presented

in chapter 2, were applied to the data of Marzinzik and Kollmeier (2000) with the aim to

successfully predict the subjective ratings in all of the mentioned categories. Additionally,

another quality measure, especially adapted to the prediction of the speech naturalness

and the amount of background noise, was developed an applied as well. This new measure

and the quality prediction results are presented in the first part of this chapter.

The second part of this chapter is concerned with another validation of the audio

quality measures mentioned above. In this case, the noise reduction effect obtained with

different multi-channel beamformers used in automobiles was evaluated by Tontch (2002).

The objective quality measures were employed to predict subjective assessments of these

beamformers, which were obtained from a paired comparison test.
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4.2 Experiment I: assessment of single-channel algorithms

In 2000, Marzinzik and Kollmeier presented an evaluation of single-channel noise reduction

algorithms based on the concept of Ephraim and Malah (1984). Algorithms were evaluated

subjectively as well as by several objective quality measures, including the speech quality

measure qC of Hansen and Kollmeier (2000) (for details see Marzinzik, 2000). This section

presents results obtained by the original measure qC and a number of new measures derived

from qC as introduced in Chapter 2.

4.2.1 Test signals

The target speech signal was a German sentence of approximately 4 s duration, taken

from a re-recording of local radio newscasts, spoken by a professional male newscaster in

a broadcasting studio. Test signals were generated by adding two kinds of background

noise at two different signal-to-noise ratios (SNR): cafeteria noise and drilling machine

noise at -5 dB and 5 dB SNR, respectively. These four noisy speech signals were subjected

to three noise reduction schemes that consisted of combinations of algorithms proposed

by Ephraim and Malah (1984, 1985) and a speech pause detection method introduced by

Marzinzik (2000). Including the unprocessed signals, this gave a total number of 12 test

signals.

4.2.2 Subjective measurement

Six normal hearing subjects and six subjects with moderate hearing losses participated in a

paired comparison experiment. The experiment was divided into four blocks, one per noise

condition. In each block, all of the noise reduction algorithms (including no processing)

where compared to each other regarding three different criteria: overall preference, speech

naturalness and amount of background noise. Test signals were presented diotically via

headphones in a sound-attenuating booth. The results of each paired comparison test

block were mapped onto a difference scale by fitting a Bradley-Terry model to the data

(Bradley and Terry, 1952). Since paired comparisons can only yield relative ratings, the

offset of the Bradley-Terry (difference) scale values represents a free parameter. The value

of this parameter was chosen to result in a scale value of zero for the unprocessed signal

in each noise condition. Thus, the results of the different measurement blocks became

comparable. Moreover, the Bradley-Terry scaling allows to apply Pearson’s correlation
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coefficient to quantify the correspondence with other measurements. (See (Marzinzik,

2000) for details.)

4.2.3 Objective measurements

The objective speech quality measure qC of Hansen and Kollmeier (2000) as well as several

modified versions and expansions of this parameter (cf. Chapter 2) were applied to the

same test signals used in the subjective experiment. The particular versions are denoted

and characterized as follows:

• QM1: speech quality measure qC according to Hansen and Kollmeier (2000), i.e.,

center frequencies (CF) of the gammatone filterbank ranging from 350 to 3800 Hz

(adapted to telephone band), 8 Hz modulation lowpass filter, downsampling by non-

overlapping averaging across 20 ms segments, ”band importance weighting” empha-

sizing high frequencies.

• QM1B: as QM1, but with additional Beerends-Berger assimilation (BBA) of the

internal representations (see below).

• QM2: the Perceptual Similarity Measure (PSM) introduced in Section 2.3.1 of

Chapter 2, i.e. gammatone-filterbank bandwidth according to the actual bandwidth

of the input signals (here: 8 kHz), 8 Hz modulation lowpass filter, downsampling

to 100 Hz by applying an anti-aliasing filter (40 Hz FIR lowpass) and subsequent

resampling, no frequency weighting.

• QM2B: as QM2, but with BBA (cf. QM1B).

• QM3: as QM2, but using a modulation filterbank instead of the lowpass filter (eight

channels, highest CF = 129 Hz), downsampling according to the CF of the respective

modulation channel.

• QM3B: as QM3, but with BBA.

• QM4: audio quality parameter PSMt as described in Section 2.3.4 of Chapter 2,

i.e. 5%-quantile of the ”loudness”-weighted time series of instantaneous audio quality,

PSM(t).

• QM4B: as QM4, but with BBA.

• QM5: as QM3, but with additional adaptive channel weighting (see below).

• QM5B: as QM5, but with BBA.
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Beerends-Berger assimilation (BBA)

The BBA consists of a modification of the internal representation of the test signal (in

this case: noisy speech), by partly assimilating it to the internal representation of the

reference signal (here: clean speech). In the original approach proposed by Beerends

(1994) and adopted in the ITU-T standard P.861 (ITU-T, 1996b), the mean squared

weighted difference between internal representations served as a quality measure, where

negative differences were weighted less than positive differences. (This approach follows

the hypothesis that ”missing” components in a distorted signal are less disturbing than

”additive” components.) Berger (1998) found that a weighting factor of 0.5 maximizes

the correlation between subjective quality ratings and mean squared differences between

internal representations for most of the databases examined. Another quality measure

developed by Berger is based on the correlation between internal representations, following

the approach of Hansen and Kollmeier (2000). In this case, the internal representation of

the test signal T (t, f) (as a function of time t and frequency band f) was assimilated to

the reference R(t, f) in an asymmetrical way:

T (t, f) 7→ T̃ (t, f) = R(t, f)− α(R(t, f)− T (t, f))

with

α =

 0.5, |T (t, f)| < |R(t, f)|

1, |T (t, f)| ≥ |R(t, f)|

Again, a weighting factor of α = 0.5 for |T (t, f)| < |R(t, f)| was empirically found to

be optimal1. This approach was adopted in the present study.

The quality measure QM5(B)

The new quality measure QM5(B) is a variant of the measure PSM (denoted as QM3(B))

presented in Chapter 2 2, but additionally applies a task-dependent weighting of the

frequency and modulation frequency channels. The weighting functions are based on the

assumption of different strategies of subjects assessing either the amount of background

noise or the naturalness of speech. If the noise is to be assessed, subjects might focus on

those frequency bands that exhibit high noise-to-speech-energy ratios, so that they can

concentrate better on the noise. In case of broadband noise, this essentially applies to
1An optimal choice of α = 0.5 was also found in Section 2.3.2 of Chapter 2.
2In fact, QM3B corresponds to PSM as defined in Chapter 2, while QM3 corresponds to a variant of PSM

without BBA.
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higher frequency bands. If, in contrast, the naturalness of speech is to be rated, subjects

are rather likely to focus on those frequency bands containing most of the speech energy,

i.e. frequencies up to about 5 kHz. It seems reasonable that these assumed strategies are

not restricted to the frequency domain, but also apply to the modulation frequency and

time domain.

To test this hypothesis, the audio quality measure PSM was expanded by an adaptive

channel weighting of the internal representations and applied to the experimental data.

The characteristics of the weighting functions depend on the specific task: If the natural-

ness of speech is to be assessed, a fixed lowpass characteristic is chosen. In the frequency

domain, channels with center frequencies up to about 5300 Hz are equally weighted, while

weights for higher channels are set to zero. In the modulation frequency domain, only

the lowest three channels are taken into account; the weights of the 2.5 Hz modulation

lowpass channel and of the 5 Hz modulation bandpass channel are set to one, the weight

of the third channel with a center frequency of 10 Hz is set to 0.5. Instead, if the amount

of background noise is to be assessed, the channel weights are set to the inverse of the

signal-to-noise ratio, multiplied by the RMS of the noise in the corresponding channel:

w(f) =RMS2
noise(f)/RMSspeech(f).

Rescaling of the objective quality ratings

As in the subjective scaling, objective qualities of the unprocessed noisy signals were set to

zero by subtracting the objective quality value of the respective unprocessed signal from

all quality values for each noise condition. The procedure for comparing subjective and

objective quality ratings is outlined in Figure 4.1.

4.2.4 Results

Correlations between measured and predicted results for all categories and objective mea-

sures are given in Table 4.1 for hearing impaired and normal hearing subjects. Figures

4.2, 4.3 and 4.4 show subjective versus objective data for each category obtained from

hearing impaired subjects and the respective objective measure that shows the best cor-

relation. As reported by Marzinzik and Kollmeier (2000), the speech quality measure qC

of Hansen and Kollmeier (≡ QM1) correlates very well with measured data of hearing

impaired subjects concerning the category ”noise reduction” (upper panel), while yielding

only poor results in the other categories (cf. Table 4.1). The dependency of the category

is opposite for the parameter QM1B: Emerged from QM1 by applying the BBA addition-



78 CHAPTER 4. ASSESSMENT OF NOISE REDUCTION SCHEMES

Figure 4.1: Block diagram for comparing subjective and objective quality assessments of noise

reduction algorithms. Subjective quality ratings of noisy speech signals processed by different

noise reduction schemes (including no processing) are obtained by a paired comparison test with

subsequent Bradley-Terry (BT) scaling of the results (lower left corner of the diagram). Objective

quality assessments are obtained by correlating the internal representations (= outputs of the model

of auditory perception, ”PEMO”) of clean and noisy speech. The quality of the unprocessed signal

serves as a reference and is arbitrarily set to zero within BT scaling, which is accounted in objective

assessment by subtracting the corresponding quality value from each quality rating.

ally, this measure shows best prediction performance of all parameters in the categories

”speech naturalness” (cf. Figure 4.3) and ”overall preference” (cf. Figure 4.4), but only

fair correlation with subjective data concerning ”noise reduction”. Marked improvements

of prediction accuracy in the former categories can be observed for all parameters except

QM4 (≡ PSMt), if BBA is applied.

Correlations of objective parameters with subjective data obtained from normal hear-

ing subjects show similar behaviour concerning ”noise suppression” and ”overall prefer-

ence”, but very different characteristics in the category of ”naturalness”. Measured and

computed ratings on the latter category are positively correlated for hearing impaired sub-

jects, but negatively correlated for normal hearing subjects. This is caused by converse

subjective ratings of the speech items which contain drilling machine noise. The natural-

ness of the speech contained in these items was rated higher by hearing impaired subjects
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if processed by noise reduction algorithms than if unprocessed (see Figure 4.3), whereas

normal hearing subjects had a converse impression (see Figure 4.5). Marzinzik concluded

that the normal hearing subjects seemed to be able to disregard the background noise in

any noise condition and selectively listen to the speech, whereas hearing impaired sub-

jects stated that the ”presence of background noise was percieved as beeing ’unnatural’”

(Marzinzik, 2000).

Best correlation values of objective quality measures with normal hearing’s ratings

(especially linear correlation values) are generally not as high as in the case of hearing

impaired subjects and show a less distinct ranking in the category ”noise suppression”.

According to the rank correlation, the best prediction of subjective data in this category is

achieved by QM3 (instead of QM1 for hearing impaired subjects). In contrast the overall

preference is still predicted best using the objective parameter QM1B. The best corre-

spondence between subjectively and objectively rated speech naturalness is achieved by

QM5 (instead of QM1B for hearing impaired subjects). Another difference between the

groups of subjects observed in the categories speech naturalness and overall preference is

a reversal of the the rank order of parameters using or not using the BBA, i.e. applying

the BBA decreases correlations with ratings of normal hearing subjects. Quality param-

eters based on PSMt (QM4 and QM4B) generally show very poor correspondence with

subjective data for all subjects, which will be discussed in Section 4.4.

The correlation coefficients obtained from QM5 and QM5B support the assumption of

different strategies applied in the subjective assessment of speech naturalness and back-

ground noise. Compared to the results obtained with QM3 (which corresponds to QM5

without channel weighting)and QM3B, correlation coefficients are markedly higher in most

cases, except for the speech naturalness rated by hearing impaired listeners, which is likely

due to their already mentioned different understanding of speech naturalness. QM5 is the

most successful of all measures in predicting the perceived noise suppression (according

to linear correlation) and speech naturalness for normal hearing subjects. It also approx-

imates the very good performance of the measure QM1 in the case of noise suppression

rated by hearing impaired subjects. (The observed deterioration of correlation from QM3

to QM5 in the case of noise suppression rated by normal hearing subjects, associated with

a reverse order of correlations regarding BBA, represents an exception from the general

trend, which remains unclear.)
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Figure 4.2: Quality prediction results of experiment I. Subjective assessments are plotted versus

objective audio quality measures. Subjective measures were obtained by Bradley-Terry (BT) scal-

ing of paired comparison test data. Signals were rated according to the amount of suppression

of background noise. BT-scale values of unprocessed signals (”UN”) were arbitrarily set to zero.

The objective measure was obtained according to Figure 4.1, which reasons the ”∆”-prefix of the

objective quality measure, denoting a difference value. Numbers indicate different noise reduction

algorithms, symbols represent the kind and amount of background noise: cafeteria and drilling

noise at -5 and 5 dB SNR, respectively. r and rs denote linear and rank correlation coefficients,

respectively.
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Figure 4.3: As Figure 4.2, but for quality criterion ”speech naturalness” and different objective

quality measure (∆QM1 with BBA).
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Figure 4.4: As Figure 4.3, but for quality criterion ”overall preference”.
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Figure 4.5: Ratings of the speech naturalness obtained from normal hearing subjects and corre-

sponding predictions obtained by differences of the quality parameter QM5(nat).
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hearing impaired normal hearing

measure suppression naturalness overall suppression naturalness overall

∆QM1
0.918 0.462 0.694 0.722 -0.444 0.361

0.988 0.385 0.509 0.885 -0.615 0.350

∆QM1B
0.788 0.904 0.965 0.749 -0.240 0.833

0.582 0.941 0.976 0.550 -0.124 0.918

∆QM2
0.439 0.231 0.331 0.512 -0.876 0.034

0.794 0.365 0.300 0.868 -0.932 0.312

∆QM2B
0.662 0.825 0.853 0.609 -0.420 0.741

0.835 0.797 0.815 0.797 -0.553 0.744

∆QM3
0.645 0.434 0.564 0.696 -0.772 0.242

0.900 0.538 0.518 0.959 -0.826 0.503

∆QM3B
0.725 0.765 0.829 0.752 -0.664 0.625

0.841 0.776 0.747 0.853 -0.632 0.735

∆QM4
0.288 0.424 0.419 0.297 -0.621 0.302

0.585 0.279 0.124 0.615 -0.721 0.253

∆QM4B
0.731 0.047 0.310 0.563 -0.109 -0.107

0.750 -0.088 0.088 0.665 -0.403 -0.115

∆QM5(sup)
0.887 0.291 0.570 0.654 -0.411 0.128

0.950 0.256 0.415 0.835 -0.591 0.221

∆QM5B(sup)
0.807 0.738 0.856 0.808 -0.567 0.589

0.938 0.574 0.579 0.947 -0.750 0.544

∆QM5(nat)
0.378 0.238 0.307 0.449 -0.935 0.046

0.741 0.256 0.179 0.791 -0.944 0.197

∆QM5B(nat)
0.644 0.790 0.817 0.639 -0.597 0.674

0.826 0.765 0.782 0.788 -0.579 0.712

Table 4.1: Linear correlation and rank correlation (italic) between predicted and measured data

obtained from hearing impaired and normal hearing subjects. Three categories were rated: noise

reduction, speech naturalness and overall preference. The highest correlation values per category

are emphasized (bold face). ∆QM5(sup) and ∆QM5(nat) denote the quality measure ∆QM5

with channel weighting adapted to the prediction of noise suppression and speech naturalness,

respectively.
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Influence of the BBA

The quality parameters based on the speech quality parameter qC of Hansen and Kollmeier

(2000) (i.e. ∆QM1, ∆QM1B) show the highest correlations with quality ratings of the hear-

ing impaired subjects in all categories. Applying the BBA to the internal representation

of the test signal leads to considerable differences of the prediction accuracy. Whether

it improves or deteriorates the prediction depends on the category: While it worsens the

correlation between measured and predicted quality ratings concerning ”noise suppres-

sion”, much better correspondence is achieved in the categories ”speech naturalness” and

”overall preference” (cf. Table 4.1). The reason for this contrary effect are the different

subjective ratings of the processed (i.e., noise reduced) speech-plus-cafeteria-noise items

relative to the unprocessed items in different categories on the one hand. Figure 4.2 shows

that the processed speech-plus-cafeteria-noise items are subjectively rated higher than the

unprocessed signals concerning ”noise suppression”, i.e. they are assigned positive BT-

scale values. In contrast, these items are assigned negative BT-scale values in the other

categories (see Figures 4.3 and 4.4). On the other hand, the objective quality differences

∆QM1 of these signals are affected much more by the BBA than those containing drilling

machine noise. (Compare Figure 4.2 (without BBA) with Figure 4.3 (with BBA).)

Apparently, the magnitude of the BBA bias on the quality measures is related to

certain signal properties. Possible relevant signal properties will be discussed in Section

4.4.

Comparison with further measures

In (Marzinzik, 2000; Marzinzik and Kollmeier, 2000), the capability of a number of objec-

tive speech quality measures for the assessment of noise reduction algorithms was inves-

tigated. The following measures were applied to the same signals and subjective ratings

as used in this study: The speech quality measure qC
3 (Hansen and Kollmeier, 2000) (de-

noted as PMF in the Marzinzik study), the Perceptual Speech Quality Measure PSQM

(Beerends and Stemerdink, 1994), the Itakura-Saito Distortion IS (Itakura and Saito,

1979), the Log-Likelihood Ratio LLR (Itakura, 1975), the Log-Area Ratio LAR (Quack-

enbush et al., 1988), the Segmental Signal-to-Noise Ratio SSNR (Quackenbush et al., 1988)

and the Weighted Spectral Slope WSS (Klatt, 1982).
3This quality measure was also applied in the present study (QM1), although a slightly different implemen-

tation was used.
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In comparing the results obtained in the present study, the linear correlation coeffi-

cients between ratings of the hearing impaired subjects and the stated objective quality

measures are reprinted from (Marzinzik, 2000) in Table 4.2. The comparison shows that

the best correlations are achieved by the quality measure ∆QM1(B) in the categories

”noise suppression” and ”overall preference”, whereas the Log-Area Ratio (LAR) shows

the highest linear correlation with the subjective ratings of the speech naturalness.

subjective criterion

objective noise speech overall

measure suppression naturalness preference

qC 0.90 0.43 0.67

PSQM 0.65 0.85 0.87

SSNR 0.71 0.68 0.77

LAR 0.48 0.92 0.87

LLR 0.56 0.88 0.86

IS -0.50 -0.06 -0.21

WSS 0.28 0.78 0.68

Table 4.2: Linear correlation coefficients between objective speech quality measures and mean

quality ratings of hearing impaired subjects as reported in (Marzinzik, 2000).

4.3 Experiment II: assessment of multi-channel algorithms

The second set of subjective data that were predicted by objective audio quality measures

originates from a subjective evaluation of speech enhancement systems used in automo-

biles. Tontch (2002) examined the speech enhancement by spatial filtering using different

arrangements of microphone arrays in the cabin. In this section, the results of objective

assessments of these speech enhancement schemes are compared with the corresponding

subjective data presented in (Tontch, 2002).

4.3.1 Test signals

Two target speech signals were used: A German sentence of 2 s duration, read by a male

and female speaker in an anechoic chamber. The target signals were played back in the

cabin of a mid-size automobile via head and torso simulator (HEAD Acoustics) at three

different speeds: 100, 130 and 160 km/h. The superposition of speech and automobile
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noise was recorded by using different microphone arrays. The multi-channel recordings

were processed by delay-and-sum beamforming algorithms yielding a single-channel output

signal with enhanced speech. Eight different variants of beamformers were implemented.

Including the unprocessed signal (i.e. single microphone recording), nine test signals per

speed and target speech were generated. While the female target speech signal was used

in each speed condition (≡ noise condition), the male speech was only used in the 100

km/h condition. This gave a total number of 4× 9 = 36 test signals.

4.3.2 Subjective measurement

The experiment was carried out by the Hörzentrum Oldenburg. 10 normal hearing subjects

participated in a paired comparison experiment. The experiment was divided into four

blocks, one per noise (speed) condition and target signal. In each block, all of the beam-

forming algorithms (including no processing) where compared to each other regarding

the overall preference. Test signals were presented dioticly via headphones in a sound-

attenuating booth. Bradley-Terry scaling was applied to the results of each paired com-

parison test block.

4.3.3 Objective measurements

All of the objective quality measures described in Section 4.2 were applied to all test

signals. Additionally, two rather simple measures, the signal-to-noise ratio (SNR) and

the segmental SNR (segSNR)4, were applied as well. These alternative measures were

selected, because the background (car) noise in experiment II was of the same type in

each condition and rather stationary. Moreover, noise reduction was achieved using multi-

channel beamformers, which generally produce merely mild artifacts (comb filter effects),

compared to those typically occurring if single channel algorithms are applied (”musical

noise”). Thus, one could assume that the overall preference of human listeners is mainly

determined by the (segmental) SNR and should therefore be predictable by this measure.

4.3.4 Results

Correlations between measured and predicted results for all objective measures are given

in Table 4.3. It shows that subjective quality ratings according to the overall preference are

predicted best by the objective audio quality measure ∆QM2. In contrast to experiment I,
4The segmental SNR is the mean SNR (in dB) over short (20 ms in the present study) segments.
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the prediction performance deteriorates if the BBA is applied. The quality measure ∆QM5

does not yield the highest correlation with subjective ratings, because it was especially

designed to predict the perceived speech naturalness or the amount of background noise.

In contrast, the subjective quality criterion applied in this experiment was the overall

preference. It is noteworthy that if a channel weighting adapted to the prediction of

speech naturalness is applied (i.e., ∆QM5(nat)), the prediction accuracy of the overall

preference concerning all beamformers except beamformers 3 and 4 is higher than that

obtained with a channel weighting optimized for the assessment of background noise (i.e.,

∆QM5(sup)). This contradicts the above stated assumption that the overall preference

might essentially be determined by the perceived amount of background noise.

The results also show that the overall SNR and the segmental SNR do in fact correlate

with the subjective ratings of the overall preference. However, the observed correlations are

considerably smaller than those obtained by the psychoacoustical quality measure QM2.

This finding emphasizes the advantage of psychoacoustically motivated computational

measures, if perceived acoustical qualities are to be described or predicted by technical

means, even in the case of assumed rather simple conditions.

Figure 4.6 shows subjective versus objective data obtained with QM2. Signals

processed by two of the eight tested beamformers (denoted as number 3 and 4 in Figure

4.6) were rated worse by the subjects than the unprocessed signals (”UN”). This was due

to an artifact of the corresponding beamforming algorithm: Its automatic source-locating

procedure estimated wrong, discontinuous speaker positions during speech segments

of low energy. As a consequence, the SNR did not improve and the processed signals

contained discontinuities which were clearly audible and very annoying, especially at

higher car speeds and/or male target speech. The annoyance in those cases was mostly

underestimated by the objective quality measure. For comparison, Table 4.3 also shows

correlation values if signals containing artifacts were discarded.
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Figure 4.6: Quality prediction results of experiment II. Signals were rated according to the over-

all preference. Symbols refer to car speed and speaker, numbers indicate different beamforming

algorithms. ”UN” denotes unprocessed signals, whose quality values were arbitrarily set to zero.
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measure all beamformers BMF 3, 4 excluded

∆QM1
0.881 0.897

0.893 0.877

∆QM1B
0.720 0.849

0.744 0.828

∆QM2
0.903 0.927

0.930 0.926

∆QM2B
0.826 0.904

0.876 0.891

∆QM3
0.884 0.770

0.853 0.697

∆QM3B
0.857 0.773

0.837 0.694

∆QM4
0.825 0.657

0.775 0.530

∆QM4B
0.782 0.527

0.734 0.431

∆QM5(sup)
0.892 0.801

0.861 0.726

∆QM5B(sup)
0.870 0.818

0.844 0.714

∆QM5(nat)
0.882 0.907

0.894 0.908

∆QM5B(nat)
0.782 0.905

0.854 0.905

SNR
0.711 0.650
0.680 0.492

segSNR
0.603 0.715

0.610 0.625

Table 4.3: Linear correlation and rank correlation (italic) coefficients for predicted and measured

quality ratings. The highest correlation values are emphasized (bold face). The right column

shows correlation values obtained if signals processed by beamformers 3 and 4 are discarded.
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4.4 Discussion

The results of experiment I and II show that an optimal prediction of the perceived quality

can not be achieved by a single audio quality measure, if different subjective quality crite-

rions or groups of subjects (normal hearing or hearing impaired) are considered. Moreover,

the presence or absence of artifacts does also affect the correlation between subjective and

objective assessments. However, at least one measure can be found in each condition that

achieves good correspondence with the subjective ratings.

As far as normal hearing subjects are considered, the quality measure QM5 is most

suitable to predict the perceived naturalness of speech or the amount of background noise,

depending on the selected mode (i.e., channel weighting function) of this measure.

If the overall preference is to be predicted instead, best results are achieved without

channel weighting. Which of the quality measures QM1, QM2 or QM3 is the most adequate

for this task in general can not be finally concluded from the somewhat inconsistent results

obtained from the two presented experiments.

QM4, representing the audio quality measure PSMt (cf. Chapter 2), generally corre-

sponds poorly with subjective data. This may be explained by the fact that this measure

was especially designed for the prediction of small audio quality differences, focusing on

the largest short-time perceptual differences between test and reference signals. Due to the

presence of continuous background noise in the present test signals, very large short-time

perceptual deviations from the clean speech reference can occur for any test signal. Thus,

the approach of the quality measure PSMt does not seem appropriate for the present task.

In the case of hearing impaired subjects, the quality measure QM1 (QM1B, respec-

tively) shows the highest correlations with subjective ratings in all categories, while only

the overall preference is predicted best by this measure if normal hearing subjects are

considered. Possible reasons for this finding will be discussed in Section 4.4.2.

Applying the Beerends-Berger-assimilation (BBA) to the internal representations im-

proves the prediction performance in the presence of artifacts introduced by the noise

reduction schemes. This might be explained by the trade-off between the degree of noise

reduction and the annoyance of artifacts, which are typically positively correlated. The

BBA appears to model this trade-off. The effect of the BBA on the quality estimates will

be investigated in more detail in the following section.
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4.4.1 Factors influencing the BBA bias on the quality estimates

The results of experiment I and experiment II show that the effect of the BBA on the

quality prediction performance varies with respect to the signal, the quality aspect and

the objective measure. In order to understand the basic underlying mechanisms, this

section investigates the relation between the bias of the BBA on the objective quality

estimates and signal properties.

The BBA assimilates internal representations (IR) by replacing elements of the test IR

that are smaller than corresponding elements of the reference IR by the mean value of both

elements, thus halving the former differences. For a given correlation between the original

test and reference IR, the effect of the assimilation on the correlation increases with larger

differences. In the extreme case of an all-zero test IR for example, the assimilation would

result in a perfect correlation, i.e., QMB = 1. Therefore, the bias of the BBA on the quality

measures should be directly related to the ratio of the test and reference IR magnitudes.

To test this assumption, Figure 4.7 shows the BBA bias in terms of differences between

Fishers-Z transformed correlation values before and after applying the BBA to test signals

(left panel) and to the test IR of experiment I (right panel). The test signals were generated

by adding normal distributed noise to a sine wave, while the latter served as the reference

signal. A range of magnitude ratios was realized by different scalings of the test signals.

Additionally, the SNR was varied in order to obtain different correlation values. The results

displayed in Figure 4.7 confirm the assumed positive correlation between magnitude ratio

and BBA bias. The influence of the correlation between test and reference signal before the

BBA on the bias is indicated by the two curves in the left panel, which represent very high

and very low correlations between reference and test signals. (Average correlation values

of 1−10−6 are represented by the dashed line, mean correlations of 0.28 by the solid line.)

Intermediate correlations would be represented between these lines, which converge with

an increased magnitude ratio. In the right panel, the BBA bias on the quality measure

QM2 applied to the speech signals of experiment I is plotted versus the magnitude ratios

of the corresponding IR. The bias is given by F (QM2B) − F (QM2) (with F denoting

the Fishers-Z transform). Signals and noise reduction schemes are indicated by the same

symbols and numbers as before (cf. Figures 4.2 - 4.4). Obviously, the unprocessed signals

containing cafeteria noise (circles and crosses in Figure 4.7) are much more affected by

the BBA than the corresponding noise-reduced signals. In contrast, unprocessed signals

with drilling-machine noise are affected similarly to processed signals. This reflects the

observed marked shifts of the ∆QM1 (=QM1(noise reduced)-QM1(unprocessed)) values of
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the cafeteria-noise items toward negative values, whereas the drilling-machine-noise items

are hardly affected (compare Figure 4.2 with 4.4)5.
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Figure 4.7: Relation between the bias of the BBA on the correlation between signals and the

average magnitude ratio of these signals. The results shown on the left hand side were obtained

using sine waves with additive gaussian noise. The internal representations of the noisy speech

signals used in experiment I yielded the results shown in the right panel. The BBA bias is expressed

in terms of differences between Fishers-Z transforms of correlation coefficients (QM2, respectively)

for pairs of signals before and after the BBA. The two curves shown in the left panel indicate

the influence of the correlation between signals before the BBA. The dashed line corresponds to

a high correlation coefficient (r = 1 − 10−6), whereas low correlations (r = 0.28 on average) are

represented by a solid line. Digits indicate different noise reduction algorithms, ”UN” denotes

unprocessed signals. (Note the different scaling of the axes.)

The reason why IR differences between clean speech and speech plus noise are larger in

the case of cafeteria noise than for drilling machine noise is found in the different spectral

distributions of these noises. While the power spectrum of the cafeteria noise is similar to

the long-term spectrum of speech, the spectrum of the drill noise shows a rather highpass

characteristic (see left panel of Figure 4.8). Thus, the SNR in the frequency channels that

carry most of the speech energy is worse if cafeteria noise is added than if drill noise is

added at the same overall SNR. Consequently, the IR of the speech-plus-drill-noise signal

reflects the speech stronger than the IR of the speech-plus-cafeteria-noise signal. This is

shown in the right panel of Figure 4.8, where sample intervals of the IR (averaged across

frequency channels) of these signals are compared with that of clean speech. (The overall

SNR of the speech-plus-noise signals is -5 dB in each case.) The average IR magnitude of
5Shifts towards smaller values are also observed using ∆QM2 and ∆QM3, but less distinct.
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the signal containing cafeteria noise is smaller and less correlated with the reference IR

than in the case of the signal containing drill noise. As a result, the correlation between

the IR of the former signal and the reference and thus the quality measure will be affected

stronger by the BBA. Therefore, the assumed relation between the BBA bias and IR

ratios can be concluded.
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Figure 4.8: Left panel: Power spectra of the cafeteria noise and the drilling machine noise used in

experiment I. Right panel: sample interval of internal representations, averaged across frequency

channels, of clean speech (dash-dotted line), speech plus drilling machine noise at -5 dB SNR (thick

gray line) and speech plus cafeteria noise at -5 dB SNR (solid black line).

In experiment II, the best prediction of the overall preference was achieved with the

parameter QM2. In contrast to experiment I, the BBA does not improve but even some-

what deteriorates correlations between measured and computed ratings in this experiment,

because its effect on those signals that were subjectively rated worse than the unprocessed

reference is reverse with respect to those of experiment I (see Figure 4.9). The negatively

rated signals were produced by two beamforming algorithms (beamformers 3 and 4), which

did not reduce background noise but produced annoying discontinuities due to the erratic

behaviour of the inter-channel delays determined by a malfunctioning automatic speaker

localization procedure. All of those signals were rated worse by the subjects than if un-

processed and also worse by the objective audio quality parameter QM2 in most cases

(cf. Figure 4.6). In this case, the BBA decreases the absolute quality differences (i.e.,

|∆QM2B| < |∆QM2|) for most of the items, as shown in Figure 4.9. The degradation of

the overall correlation due to the BBA in experiment II is caused by sign reversals and also
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by increasing quality differences of some of the negatively rated signals with very small

∆QM2 values.
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Figure 4.9: Effect of additional BBA on the predicted overall preference in experiment II. The

quality estimates obtained with ∆QM2 (i.e., without BBA) are indicated by gray symbols, while

black symbols and digits represent ∆QM2B values. (The digits indicate different beamformers.)

Most of the quality estimates are shifted towards smaller absolute values, if the BBA is applied.

Note that some of the negatively rated signals deviate from this trend, which causes a degradation

of the overall correlation.

4.4.2 Differences between quality measures

Several variants of audio quality measures were investigated with regard to the perceptual

assessment of noise reduction schemes. These variants were derived from the objective

speech quality qC of Hansen and Kollmeier and introduced in Chapter 2. A set of different

measures were used, because it has been reported in the literature that the qualities of noise

reduction schemes are usually subjectively rated differently, if different subjective quality

criterions are applied (e.g. Marzinzik and Kollmeier, 2000). Thus, predicting different

quality categories requires different measures.

The objective measures investigated in this study were selected with respect to differ-

ent assumed target properties: The speech quality measure QM1 (≡ qC) and the more

generalized audio quality measures QM3B (≡PSM) and QM4B (≡PSMt) have been shown
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to be suitable for the prediction of perceived overall quality differences between speech

and audio signals, respectively (Hansen and Kollmeier, 2000, and Chapter 2 of this thesis).

Therefore, these measures might also be qualified to predict the subjective overall prefer-

ence. QM2(B) was also tested, because it represents a kind of intermediate speech/audio

quality measure; while it uses the same bandwidth of the peripheral filterbank as PSM

and PSMt, amplitude modulations are processed by a modulation lowpass filter instead

of a modulation filterbank. qC applies a modulation lowpass filter as well, but uses a pe-

ripheral filterbank of restricted bandwidth (adapted to telephone band). Quality measure

QM5 was especially designed to estimate the perceived naturalness of speech, or, alterna-

tively, the amount of background noise, depending on the selected operation mode of this

measure.

As expected, the results reveal differences in the predictive ability of the employed

quality measures across quality criterions, but also across subjects, experiments and con-

cerning the influence of the BBA. In the following, the question of possible reasons for the

observed differences is addressed.

Relation between QM1 and hearing impaired subjects

In experiment I, measure QM1(B) shows the highest correlations with quality ratings of the

hearing impaired subjects in all categories, whereas only the overall preference is predicted

best by QM1B in the case of normal hearing subjects. Two possible reasons for this are

to be considered: 1) the limited bandwidth of the peripheral filterbank used in measure

QM1, 2) the non-uniform frequency weighting applied in QM1 (see Figure 4.10).

Measure QM1 represents the speech quality measure qC of Hansen and Kollmeier

(2000), originally optimized for the prediction of the quality of distorted telephone-band

speech. For this purpose, a gammatone filterbank is used that covers the frequency range of

the telephone band, ranging from 320 Hz to 4 kHz. The median hearing loss of the hearing

impaired subjects that participated in experiment I exceeds 60 dB HL at frequencies

greater than 4 kHz (up to nearly 80 dB at 8 kHz), which was partially compensated by

a third-octave band equalization (range of ± 16 dB in each band), following the half-gain

rule (cf. Marzinzik, 2000). The bandwidth of the used test signals was 8 kHz. Thus,

the quality measure QM1 does not account for frequencies higher than 4 kHz and might

thus roughly account for the reduced sensitivity of the subjects in the high frequency

range. If the reduced bandwidth of QM1 compared to QM2 would be the only reason for

the superior prediction performance of this measure for hearing impaired subjects, then
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Figure 4.10: Band weighting characteristic of QM1.

disabling the frequency weighting in QM1 should not deteriorate the correlation with the

subjective data. In particular, the performance of QM1−w (i.e. QM1 without frequency

weighting) should still beat the performance of QM2. However, this can not be confirmed

by the data. Table 4.4 shows correlation values for quality measures QM1, with and

without frequency weighting, and QM2. The stated correlation coefficients obtained with

QM1 deteriorate markedly, if the frequency weighting is disabled, becoming smaller than

the corresponding values obtained with QM2.

Thus, it can be concluded that the reduced bandwidth can not be the only or major

reason for the superior performance of QM1. In contrast, the frequency weighting seems

to play an important role in the prediction of ratings of hearing impaired subjects. Hear-

ing impaired subjects possibly put more weight on those of the intact frequency bands

neighboring lost frequencies regions. In case of a high-frequency hearing loss (which was

characteristic for the hearing impaired subjects that participated in experiment I), this

applies to the frequency bands emphasized by the quality measure QM1.

Predicting the overall preference of normal hearing subjects

The fact that the overall preference of the normal hearing subjects is predicted best by

QM1B (although not as good as in the case of the hearing impaired subjects) is explained

by the similar ratings of the normal hearing compared to the hearing impaired subjects in

this category, preferring unprocessed speech with cafeteria noise to the processed versions



4.4. DISCUSSION 97

hearing impaired normal hearing

measure suppression naturalness overall suppression naturalness overall

∆QM1
0.918 0.462 0.694 0.722 -0.444 0.361

0.988 0.385 0.509 0.885 -0.615 0.350

∆QM1−w
0.408 0.153 0.259 0.445 -0.902 -0.049

0.744 0.171 0.153 0.759 -0.924 0.100

∆QM2
0.439 0.231 0.331 0.512 -0.876 0.034

0.794 0.365 0.300 0.868 -0.932 0.312

Table 4.4: Correlations between predicted and measured data obtained with quality measure QM1

without band importance weighting (bold face) compared to the original QM1 and QM2.

and vice versa for speech mixed with drilling machine noise. As a result, negative BT-scale

values were assigned to the processed speech-plus-cafeteria-noise items and positive to the

remaining. The required corresponding negative objective quality measure differences

∆QM are only obtained if the BBA is applied. (See Appendix D, Figure D.1.) Moreover,

the effect of the BBA shifting the quality estimates towards negative values is restricted to

those signals containing cafeteria noise and continuously weakens for parameters QM2B,

QM3B and QM4B, in the sense that just some of the items in question are assigned negative

quality values. (This is also shown and explained in Appendix D.) Hence, the prediction

performance of these measures deteriorates.

In experiment II, the prediction performance of the quality measures ∆QM3(B) and

∆QM4(B) is lower than that of ∆QM2(B), because the perceptually most relevant dif-

ferences between unprocessed and noise-reduced speech signals primarily occur in the

modulation frequency band of speech (i.e. around 4 Hz). As QM3 and QM4 are based on

an auditory model version that also accounts for considerably higher modulation frequen-

cies, it appears that taking additional information from this higher modulation frequency

range into account likely impairs the prediction accuracy, because the importance of this

information is overestimated.

4.4.3 Is there a task-dependent weighting of channels?

The frequency weighting introduced by Hansen and Kollmeier (2000) as ”band importance

weighting”, strongly emphasizes the uppermost frequency bands of the used peripheral fil-

terbank with restricted bandwidth (see Figure 4.10). Interestingly, it also improves the

prediction accuracy for the ratings of normal hearing subjects concerning the amount of

background noise, while it deteriorates the performance in the category of speech natural-
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ness (cf. Table 4.4). This finding might indicate a task-dependent weighting of channels

and inspired the development of a modified quality measure that was especially adapted to

the prediction of speech naturalness and background noise. This measure was introduced

in Section 4.2 as QM5 and represents a straight-forward realization of employing an adap-

tive channel weighting. Assuming that subjects focus on the frequency and modulation

frequency bands that carry most of the speech energy if they are assessing the natural-

ness of speech, the new measure puts high weights on these channels. If, in contrast, the

amount of interfering background noise is to be estimated, it appears reasonable to listen

into channels where the noise is least ”disturbed” by interfering speech, so one can concen-

trate better on the noise. This approach is implemented in the quality measure QM5 by

weighting each channel with the product of the noise-to-speech ratio and the noise energy

in that band.

The comparatively high predictive ability obtained with this measure presented in

Section 4.2.4 (Table 4.1) supports the assumption of different, task-dependent weightings

of auditory channels.

4.4.4 Outlook: Further possible extensions of current quality measures

The results presented in this study revealed strengths and weaknesses of the 10 investigated

variants of objective quality measures in predicting the different quality categories, sub-

jects and noise/artifact conditions. Although promising results could already be achieved,

further work is required to validate and possibly further improve the current quality mea-

sures. Two main approaches should be followed:

a) The ”data driven approach”: More independent data should be gathered, i.e. fur-

ther subjective measurements should be carried out to validate the measures that were

optimized with respect to a certain data set by using different, independent data sets.

b) The ”model driven approach”: New measures should be developed or existing mea-

sures should be modified to become even stronger related to models of human perception.

For example:

• Apart from the reduction of the noise and the distortion of the speech, the distortion

of the noise due to processing artifacts, which might also influence the subjective

overall preference, has not been taken explicitly into account yet. One could think of

a combined measure, ”symmetrically” treating the speech naturalness, the changes

of the noise quality and the amount of the noise reduction.
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• The use of alternative perceptual reference situations: If possible changes of the

quality of the background noise needs to be assessed as well, it appears reasonable to

replace the clean speech target by a speech signal with original noise at an increased

SNR.

• Special adaptations of the measures/models to hearing impaired listeners. Apart

from accounting for known different properties of the impaired auditory system,

such as attenuations or losses of certain frequency ranges and reduced dynamic

compression, there are indications of different internal weightings of frequency bands

by hearing impaired listeners, which should be further investigated and accounted

for by new quality measures for hearing impaired subjects.
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4.5 Summary and conclusion

The capability of speech and audio quality measures for the perceptual evaluation of noise

reduction schemes for speech was examined in the present study. Because of the sparse

underlying experimental database available, this work rather serves as a pilot study to

derive first hypotheses. The following conclusions drawn from the results of the present

study represent such first hypotheses, which need to be tested by further experimental

data.

The findings of the presented experiments indicate that no single audio quality mea-

sure is able to properly predict subjective quality ratings for all conditions and subjects.

Instead, a set of several variants are required, accounting for different criterions applied to

the evaluation of noise reductions schemes and also for different groups of subjects (normal

hearing vs. hearing impaired). With such a set of quality measures, good correspondences

between subjective and computed assessments of noise reduction schemes were achieved in

each condition. If the naturalness of speech is to be assessed, the quality measure should

focus on those frequencies and modulation frequencies that contain most of the speech

energy. If the amount of the perceived noise (reduction) needs to be predicted instead,

channels with rather low speech-to-noise ratios should be emphasized. This concept is

realized by the modified audio quality measure QM5, which represents the measure PSM

(without BBA) introduced in Chapter 2 of the present work, expanded by an adaptive

channel weighting of the internal representations.

If the overall preference is chosen as quality criterion, a well-founded recommendation

of the most appropriate measure can hardly be made in face of the somewhat inconsistent

results obtained from the few experimental data available so far. The quality measure

QM2 appears to be potentially suitable for this task. If there are speech distortions due to

artifacts of the noise reduction scheme, the application of BBA in the quality measurement

appears to model the trade-off between noise reduction and speech naturalness. Hence, a

higher correlation with subjective ratings seems to be found for measure QM2(B) only in

those conditions where speech distortions occur in addition to the noise reduction.

Subjective quality ratings of hearing impaired subjects were predicted best by the

quality measure QM1 (i.e. the speech quality measure qC of Hansen and Kollmeier (2000)),

at least partly caused by the non-uniform weighting of frequency bands applied within

this measure. This is somewhat surprising, since this measure was originally adapted to

telephone-band filtered speech but not to hearing impaired listeners. Further evaluations

are required to check whether features of this quality measure possibly account for special
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properties of hearing impaired listeners. Moreover, the application of modified quality

measures specially designed to properly account for impairments of the auditory system

seems promising.

Future work should be invested to validate the presented quality measures using in-

dependent data, but also to develop further extensions of the current quality measures in

order to become even stronger related to models of human perception.
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CHAPTER 5

Summary and conclusions

In this thesis, the applicability of the auditory processing model of Dau et al. (1997a)

for the purpose of audio quality prediction was shown. In Chapter 2, a novel method

for the objective, perceptual assessment of quality differences between audio signals was

introduced. It represents an expansion of the speech quality measure qC of Hansen and

Kollmeier (2000), who successfully applied their method to predict the transmission qual-

ity of low bit rate telephone speech codecs. The basic approach was adopted in the present

work: The auditory model of Dau et al. (1996a, 1997a, respectively) is employed to trans-

form a pair of reference and test signals into corresponding internal representations. The

linear cross-correlation coefficient of these internal representations serves as a measure for

the perceptual similarity between test and reference signals, which is interpreted as the per-

ceived audio quality of the test signal relative to the quality of reference signal. However,

the extension of the method from narrow-band speech to any kind of broad-band audio

signal and from clearly audible to just perceptible distortions required some methodical

modifications and expansions: The bandwidth of the peripheral filterbank was extended

and the modulation lowpass filter was replaced by a modulation filterbank (cf. Dau et al.,

1997a). Apart from these modifications concerning the modeling of the auditory signal

processing, the original method was expanded by further stages that model more cognitive

aspects of audio quality perception. In fact, the ”band importance weights” applied in the

speech quality measure qC likely model a cognitive aspect as well. However, the necessity

of a non-uniform frequency weighting could not be confirmed by the results of the present

work. Instead, it was found that a sign-dependent weighting of differences between inter-

nal representations of test and reference signals somewhat improves the accuracy of the

quality prediction. The most substantial expansion of the method, however, is represented

by the modeling of the relation between instantaneous and overall audio quality. This was

realized by computing a sequence of short-time cross correlation coefficients, weighting

this sequence by the moving average of the internal representation of the test signal and

finally calculating the 5%-quantile of the weighted sequence. Without accounting for this

103
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relation, good correlations between measured and predicted audio qualities could only be

obtained if different signal types were considered separately.

The new method was developed and tested using a large database of subjectively rated

audio signals. The results showed that the performance of the presented method and of

the ITU standard BS.1387 (”PEAQ”) are on average comparable. However, comparisons

using the given database are not quite equatable, because PEAQ uses an artificial neural

network that was trained using this database. Apart from the restricted applicability for

different tasks, another drawback of using a neural network (from a modelers point of

view) is its ”black box” nature, which makes it difficult to draw conclusions and learn

about the actual mechanisms involved in human perception of audio quality. This fact

constitutes a major advantage of the presented new method over the ITU standard.

While only the ”preprocessing” part of the auditory model described in (Dau et al.,

1997a) was used for the computation of the audio quality measure PSMt, Chapter 3

describes the application of the entire model, including the final detector stage, for the

prediction of detection thresholds of audio distortions. The simulated data showed a

good correlation with the measured data, which were obtained applying an experimental

setup well established for ”classical” masking experiments. Because of the use of complex,

broadband stimuli, such good prediction performance could not be expected a priori, since

the model does not account for across channel processing. However, the somewhat worse

prediction accuracy of the modulation filterbank model compared to the lowpass version

indicates that across-channel processes do play a role and should therefore be considered

in future model versions.

The measurement of detection thresholds of audio distortions represents an alterna-

tive approach to evaluate the transmission quality of near transparent audio processing

schemes.

In the final chapter of this thesis, the capability of several variants of the audio quality

measures presented in Chapter 2 for the perceptual evaluation of noise reduction schemes

for speech was investigated. Subjective data obtained from measurements carried out

by Marzinzik (2000) and the Hörzentrum Oldenburg on behalf of K. Tontch (published in

Tontch, 2002) were compared with corresponding objective data obtained with the quality

measures. Since the subjective assessments differed with regard to the considered quality

aspect (speech naturalness, amount of background noise, overall preference) and group of
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subjects (normal hearing, hearing impaired), no single objective measure was sufficient to

predict all of the subjective ratings. However, at least one of the tested quality measure

variants could be found in each condition that showed good correlation with the measured

data.

Based on these findings, a new quality measure was derived that is especially adapted

to the prediction of the speech naturalness and the amount of noise. This measure essen-

tially corresponds to the quality measure PSM presented in Chapter 2, but additionally

applies a task-dependent band weighting: If the naturalness of the speech is to be evalu-

ated, those frequency and modulation frequency bands are weighted stronger that contain

considerable portions of the speech energy. If the amount of the perceived noise (reduction)

is to be predicted instead, bands with rather low speech-to-noise ratios are emphasized.

The modified measure achieved high correlations with the subjective data in the stated

categories.

The question of the best measure for predicting the overall preference could not be

answered consistently by the results obtained so far. Further experiments are required to

conclude that question.

Finally, the presented results suggested that subjective quality ratings obtained from

hearing impaired subjects should be predicted using a quality measure that is adapted to

account for special properties of the impaired auditory system.

In conclusion, this thesis provides a theoretical framework for the perceptual evalua-

tion of audio processing systems that is based on practical applications. In addition, it

demonstrates the wide applicability and validity of the used auditory processing model:

This model does not only explain effects of signal detection at threshold successfully, but

also provides a perceptual representation of acoustic stimuli that appears to be a suitable

input for modeling higher processes in auditory perception.

A further application in the field of audio quality assessment, for example, could be the

identification and measurement of certain qualities of audio impairments in addition to the

one-dimensional impairment of the overall audio quality (such as roughness, fluctuation,

sharpness or other psychophysical attributes). However, this extension would require a

better knowledge and model of human perception and interpretation of acoustical infor-

mation than currently available. Even though this thesis has provided some progress in

this area, more work will have to be invested.
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APPENDIX A

Description of the database

The database used for the development of the audio quality measures presented in this work

consists of six data sets that evolved from listening tests performed for the evaluation of

various low-bit rate audio codecs. An additional data set (DB3), which was was especially

created for the validation of the ITU standard BS.1387, was set aside until the end of

the development phase and finally applied for validation and comparison with the ITU

standard BS.1387. The data sets consist of audio files1 and corresponding subjective

ratings averaged across listeners and will be summarized briefly in the following.

A.1 Data set name: MPEG90

This data set evolved from a listening test described in (ISO/MPEG, 1990).

The audio reference material consists of ten stereo sequences: bass guitar, bass synth,

castanets, Tracy Chapman, Ornette Coleman, glockenspiel (chimes), fireworks, English

male speech and trumpet (Haydn).

The reference signals were processed by two codecs (MUSICAM (Stoll and Dehéry,

1990) and ADPCM (ITU-T, 1990)) at three bit rates (64, 96 and 128 kbit/s/channel),

yielding 50 test signals (only five reference signals were processed at the lowest bit rate).

While only five subjects rated the audio quality degradation in the test condition with

the lowest bit rate, 59 to 70 subjects participated in the remaining test conditions of this

listening test.2

1The lengths of the audio fragments contained in these files are in the range from 10 to 32 s; the average

length is 23 s.
2The subjects that participated in all of the listening tests described in this appendix were characterized as

”expert listeners” (ITU-R, 1998a).
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A.2 Data set name: MPEG91

This data set evolved from a listening test described in (ISO/MPEG, 1991).

The audio reference material consists of ten stereo sequences: accordion/triangle, elec-

tric bass guitar, Carmen, Ornette Coleman, George Duke, glockenspiel, English male

speech, percussion, tambourine and Suzanne Vega.

The reference signals were processed by six codecs (MPEG layer 1-3 (ISO/MPEG,

1992), MUSICAM (Stoll and Dehéry, 1990), ASPEC (Brandenburg et al., 1991) and

NICAM (ETSI, 1998)) at three bit rates (64, 96 and 128 kbit/s/channel), yielding 105

test signals. (Some of the codecs only operated at the highest bit rate and not all of the

reference signals were processed by each codec condition.)

Depending on the test condition, 40 to 91 subjects participated in this listening test.

A.3 Data set name: MPEG95

This data set evolved from a listening test described in (Meares and Kim, 1995).

The audio reference material consists of six mono sequences: bag pipe, castanets,

glockenspiel, harpsichord, pitch pipe and English female speech.

The reference signals were processed by 22 encoding variations of six audio codecs

provided by AT&T, Fraunhofer, Sony, GCL, RAI/Alcatel and Philips, yielding 132 test

signals.

63 subjects participated in this listening test.

A.4 Data set name: ITU92DI

This data set evolved from a listening test described in (ITU-R, 1992).

The audio reference material consists of twelve stereo sequences: Asa Jinder, electric

bass guitar, castanets, Ornette Coleman, Dalarnas Spelmarsforbund (Swedish Folk), Dire

Straits, Ravel (”Feria”), harpsichord, triangels and Stravinsky (”Wind Octet”).

The reference signals were processed by five codecs (MPEG layer 2 + 3 (ISO/MPEG,

1992), Dolby AC-2 (Fielder et al., 1996), AWARE and NHK ) at 120 kbit/s/channel,

yielding 60 test signals.

23 subjects participated in this listening test.
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A.5 Data set name: ITU92CO

This data set evolved from a listening test described in (ITU-R, 1992).

The audio reference material consists of ten stereo sequences: Asa Jinder, electric bass

guitar, castanets, Ornette Coleman, Dalarnas Spelmarsforbund (Swedish Folk), harpsi-

chord, triangels and Stravinsky (”Wind Octet”).

The reference signals were processed by six codecs (MPEG layer 2 + 3 (ISO/MPEG,

1992), Dolby AC-2 (Fielder et al., 1996), Dolby Low-Delay, AWARE and AT&T DSQ

5TR620) at 180 kbit/s/channel, yielding 60 test signals. Each item was processed by the

same codec three times in tandem.

19 subjects participated in this listening test.

A.6 Data set name: ITU93

This data set evolved from a listening test described in (ITU-R, 1993).

The audio reference material consists of seven stereo sequences: Asa Jinder, bagpipe,

bass clarinet, castanets, harpsichord, German male speech and violin.

The reference signals were processed by different tandem code configurations of MPEG

layer 2 (ISO/MPEG, 1992) at 256 and 192 kbit/s/channel, yielding 42 test signals.

33 subjects participated in this listening test.

A.7 Data set name: ITU92CO

This data set evolved from a listening test described in (ITU-R, 1992).

The audio reference material consists of ten stereo sequences: Asa Jinder, electric bass

guitar, castanets, Ornette Coleman, Dalarnas Spelmarsforbund (Swedish Folk), harpsi-

chord, triangels and Stravinsky (”Wind Octet”).

The reference signals were processed by six codecs (MPEG layer 2 + 3 (ISO/MPEG,

1992), Dolby AC-2 (Fielder et al., 1996), Dolby Low-Delay, AWARE and AT&T DSQ

5TR620) at 180 kbit/s/channel, yielding 60 test signals. Each item was processed by the

same codec three times in tandem.

19 subjects participated in this listening test.
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A.8 Data set name: DB3

This data set evolved from three listening tests described in (ITU-R, 1998a).

The audio reference material consists of 27 stereo sequences: bagpipe, castanets, clar-

inet, claves, drum, English and German female speech, English and German male speech,

flute, glockenspiel, harpsichord (2×), kettle drum, marimba, piano, pitch pipe, Ry Cooder,

saxophone, snare, soprano, strings, Suzanne Vega , tambourine, triangle, trumpet, tuba

and xylophone.

The reference signals were processed by six codecs (ATRAC (MiniDisc) (Tsutsui et al.,

1996), MPEG layer 2 + 3 (ISO/MPEG, 1992), Dolby AC-2 + AC-3 (Fielder et al., 1996)

and MPEG AAC (Bosi et al., 1997)) alone and in tandem (including cascadings of differ-

ent codecs) at bit rates from 128 to 256 kbit/s/2 channels, and by adding quantization

distortions, harmonic distortions and additive noise. A selection of 84 test signals in total

were used in the listening tests. (39 to 44 items were used per listening test.)

28 to 33 subjects participated in the listening tests.
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Quality prediction results per data set

The following figures show the quality prediction results for the six data sets that constitute

the overall database used in the present work. In addition, the results obtained with the

data set DB3 that were used for the comparison with the ITU standard BS.1387 are

shown as well. In each figure, subjective quality ratings (mean over subjects) in terms of

the Subjective Difference Grade (SDG) are plotted versus corresponding objective quality

ratings obtained with the audio quality measure aqct for various test items (audio signal

fragments impaired by lossy audio codecs). Audio codecs are discriminated by different

colors, while the types of the audio signals are indicated by different symbols. (Because of

the very large number of types of audio signals and distortions in data set DB3, the items

of this data set were not broke down by different symbols and colors.) The symbols are

explained in the legends using the following abbreviations: acc = accordion, bag = bag

pipe, bas = electric bass guitar, car = Carmen, cas = castanets, cha = Tracy Chapman, cla

= clarinet, col = Ornette Coleman, dal = Dalarnas Spelmarsforbund, dir = Dire Straits,

duk = George Duke, fir = fireworks, glo = glockenspiel, har = harpsichord, jin = Asa

Jinder, per = percussion, pit = pitch pipe, rav = Ravel (”Feira”), spe = speech, str =

Stravinsky (”Wind Octet”), syn = bass synth, tam = tambourine, tri = triangle, tru =

trumpet (Haydn), veg = Suzanne Vega, vio = violin. The linear and rank correlation

coefficients (r, rs) are stated in the upper left corner of each figure. The bracketed values

correspond to linear correlation coefficients that are obtained if the objective ratings are

transformed by the regression functions indicated by the dashed lines.
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Figure B.1: Quality prediction results for data set MPEG90.
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Figure B.2: Quality prediction results for data set MPEG91.
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Figure B.3: Quality prediction results for data set MPEG95.
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Figure B.4: Quality prediction results for data set ITU92CO.
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Figure B.5: Quality prediction results for data set ITU92DI.
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Figure B.6: Quality prediction results for data set ITU93.
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APPENDIX C

Application of PSMt for the optimization of

audio processing algorithms

The objective audio quality measure PSMt presented in this thesis is especially qualified

to serve as a tool for the optimization of audio processing algorithms. This appendix

exemplarily describes an actual application of PSMt for this purpose.

One of the projects that is supported by the priority program ”Fundamentals and

Methods for Low-Power Information Processing (VIVA)” of the Deutsche Forschungsge-

meinschaft (DFG) is the PRO-DASP project (Power Reduction for Digital Audio Signal

Processing1). This project deals with low power optimized design of algorithms and archi-

tectures for audio and speech signal processing. One way to reduce the power consumption

of a signal processing hardware is to reduce its computational accuracy, thus producing

losses of the processed signal. In order to trade the power consumption with the quality

impairment due to the lossy processing, an audio quality test bench embedding the audio

quality measures PSM and PSMt is utilized within this project (cf. Damaschke et al.,

2002). Using this test bench, parameters influencing both power consumption and audio

quality are adjusted to produce ”acceptable” quality impairments of the processed audio

signal. In terms of the transformed objective quality measure ODG (Objective Differ-

ence Grade), ”acceptable” corresponds to quality impairments that are not worse than

”perceptible, but not annoying”, i.e. ODG ≥ -1.

To give an example, Figure C.1 shows the estimated audio quality degradations of

several test signals that were processed by a fixed-point implementation of an audio pro-

cessing algorithm (Voss and Mertsching, 2002). The quality degradation is given in terms

of the ODG as a function of the word length in bits.

1See http://getwww.uni-paderborn.de/research/prodasp
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Figure C.1: Estimated quality impairments introduced by a fixed-point implementation of an

audio processing algorithm for different word lengths and audio signals. The objective quality

of ODG = -1 is indicated by the dashed line and corresponds to a perceived impairment of the

”basic audio quality” that is ”perceptible, but not annoying”. (cas = castanets, glo = glockenspiel

(chimes), col = Ornette Coleman, spe = speech, har = harpsichord.)



APPENDIX D

Bias of the Beerends-Berger-assimilation on

different quality measures and signals

In Chapter 4 of this thesis, two experiments dealing with the prediction of subjective

quality assessments of noise reduction schemes were presented. The results of the first

experiment showed that the prediction of the overall preference improves, if the Beerends-

Berger-assimilation1 (BBA) is additionally applied. The degree of the improvement due

to the BBA was found to differ between different audio quality measures.

In this appendix, possible reasons for the observed improvement and for the dependence

on the quality measure are investigated.

At first, the effect of the BBA on the quality estimates obtained with different

quality measures is demonstrated. Figure D.1 shows subjective vs. objective quality

assessments of several single-channel noise reduction algorithms concerning the overall

preference. The subjective ratings were obtained from normal hearing subjects, while

the objective quality estimates stem from three different kinds of quality parameters

(QM1, QM2, QM3)2. Each row of panels represents another kind of quality measure.

The panels in the left column of Figure D.1 show quality prediction results without

BBA, the right column with BBA. Applying the BBA shifts the quality estimates

of the speech items containing cafeteria noise towards negative values more than the

remaining items. If BBA is applied to the ∆QM1 measure (uppermost row), all items

that were subjectively rated negative (i.e., the noise reduced speech was rated worse

than the unprocessed version) are shifted from positive to negative ∆QM1 values, thus

improving the overall correlation. The effect of the BBA on the quality estimates of

the speech-plus-cafeteria-noise items continuously weakens for parameters QM2B, QM3B

and QM4B, in the sense that less of the items in question are assigned negative qual-
1See Chapter 2, Section 2.3.1, or Chapter 4, Section 4.2.3 for a description of the Beerends-Berger-

assimilation.
2See Chapter 4, Section 4.2.3, for a description of these quality measures.
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ity values. Consequently, the improvement of the overall correlation due to BBA decreases.

The reason why the bias of the BBA on the quality estimates levels off for parameters

QM2B, QM3B and QM4B is found in the dependency of this effect on the frequency and

modulation frequency in the case of speech enhancement. Those channels, where noise

reduction leads to significant SNR improvements, will show greater speech-like amplitude

modulations than before processing so that the magnitude of the internal representation

will increase here. On the other hand, the improvement of the correlation with the clean

speech reference achieved by the BBA becomes smaller with increasing magnitude of the

test signal’s internal representation. This is why the quality measure of the unprocessed,

noisy speech signal is increased more by the BBA than that of the processed, noise-reduced

speech signal (cf. Chapter 4, Section 4.4.1). To evaluate the effect of noise reduction on the

magnitude of the internal representation for different frequencies and modulation frequen-

cies, Figure D.2 shows the mean ratio of the absolute amplitudes after and before BBA

(〈|IRB|/|IR|〉) for noise-reduced and unprocessed noisy speech signals as functions of mod-

ulation frequency (upper left panel) and frequency (upper right panel). The ratios were

averaged across all signals containing cafeteria noise and across frequency or modulation

frequency, depending on which parameter represented the variable. The lower panels of

Figure D.2 show mean correlations between Beerends-Berger-assimilated IR of the noisy

signals (unprocessed and processed) with that of clean speech.
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Figure D.1: Effect of the BBA on different quality measures. Measured quality ratings obtained

from normal hearing subjects concerning the overall preference of noisy speech signals are plotted

versus corresponding objective quality estimates obtained with quality measure QM1 (upper row),

QM2 (middle row) and QM3 (lower row). The panels in the left (right) hand side show the results

obtained without (with) BBA. The speech signals were mixed with cafeteria noise (circles and

crosses) or drilling machine noise (triangles and x-marks) at -5 dB or 5 dB SNR.
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Figure D.2: Upper panels: Mean magnitude ratios of internal representations after and before

BBA (〈|IRB|/|IR|〉) for noise-reduced and unprocessed noisy speech signals as functions of the

modulation frequency (left) and frequency (right). Lower panels: Mean linear correlations between

single channels of Beerends-Berger-assimilated IR of clean speech and unprocessed noisy speech

(solid curves) and noise-reduced speech (dash-dotted curves), respectively, as functions of the

modulation frequency (left) and frequency (right).
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As expected, the magnitude ratios and correlation differences are related in such a way

that large magnitude ratios (i.e. the average magnitude of the internal representation of

the noise-reduced speech signal is considerably higher than that of the unprocessed signal)

are associated with higher correlation coefficients for the unprocessed signal if BBA is

applied. This leads to negative quality differences ∆QMB. The highest magnitude ratios

are observed for modulation frequencies around 5 Hz, which approximately correspond

to the frequency of maximum amplitude modulation of speech. Thus it appears that

those quality parameters are effected stronger by the BBA that focus on this modulation

frequency region. This is the case for the measures QM1B and QM2B, which employ

versions of the auditory model that use a modulation lowpass filter with a cutoff frequency

of 8 Hz (Dau et al., 1996a). Instead, the quality measures QM3B and QM4B are based on a

model version that uses a modulation filterbank according to Dau et al. (1997a), accounting

for modulation frequencies up to about 160 Hz (in the present study). As shown in the

lower left panel of Figure D.2, correlations between single modulation channels of internal

representations of clean speech and speech plus cafeteria noise are higher, if the noisy signal

is unprocessed and the modulation center frequency does not exceed 28 Hz. (The lowest

indicated modulation frequency of 2.5 Hz corresponds to the cutoff frequency of a lowpass

filter. In this channel, the processed signal shows a higher correlation.) Consequently,

the quality measure differences ∆QM3B and ∆QM4B are less effected by the BBA than

∆QM1B and ∆QM2B.

The reason why ∆QM2B is less affected by the BBA than ∆QM1B is found in its

dependency on frequency, as indicated in the right panels of Figure D.2: The highest

magnitude ratios and thus higher correlation values for the unprocessed signal are ob-

served for frequencies higher than about 20 ERB (≈ 1750 Hz). In contrast, lower corre-

lations are assigned to the unprocessed signal if frequency bands below 15 ERB (= 924

Hz) are considered. Because the parameter QM1 represents the speech quality measure

qC of Hansen and Kollmeier (2000), higher frequencies are emphasized (cf. Chapter 4,

Figure 4.10). Thus, the overall correlation (which builds the speech quality measure) is

dominated by the very frequency region that reveals the largest positive differences be-

tween correlation values of unprocessed and processed speech signals. As a consequence,

the parameter ∆QM1B is affected more by the BBA than ∆QM2B. This increases the

correlation between subjective and objective ratings and thereby apparently overbalances

the inappropriate bandwidth of the peripheral filterbank used in QM1B, which is in fact

too small to properly account for broad-band audio signals and normal hearing subjects.
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The latter might reason the markedly smaller correlation value for ∆QM1B in the case of

normal hearing subjects compared to hearing impaired subjects.



Bibliography

Baillard, P., Mabilleau, B., Morisette, S., Soumagne, J., 1992. PERCEVAL: Perceptual

evaluation of the quality of audio signals. J. Audio Eng. Soc. 40(1): 21–31. 8

Beerends, J. G., 1994. Modelling cognitive effects that play a role in the perception of

speech quality. Workshop ’Speech quality assessment’ at Ruhr-Universität Bochum. 15,

76

Beerends, J. G., Stemerdink, J. A., 1992. A perceptual audio quality measure based on a

psychoacoustic sound perception. J. Audio Eng. Soc. 40(12): 963–978. 3, 8, 44

Beerends, J. G., Stemerdink, J. A., 1994. A perceptual speech quality measure based on

a psychoacoustic sound perception. J. Audio Eng. Soc. 42(3): 115–123. 3, 42, 84

Berger, J., 1998. Instrumentelle Verfahren zur Sprachqualitätsschätzung - Modelle audi-

tiver Tests. Shaker ISBN 3-8265-4091-3. 15, 26, 76

Bosi, M., Brandenburg, K., Quackenbush, S., Fielder, L., Akagiri, K., Fuchs, H., Dietz, M.,

Herre, J., Davidson, G., Oikawa, Y., 1997. ISO/IEC MPEG-2 advanced audio coding.

J. Audio Eng. Soc. 45(10): 789 – 814. 110

Bradley, R. A., Terry, M. E., 1952. Rank analysis of incomplete block designs, I. The

method of paired comparisons. Biometrika 39: 324–345. 74

Brandenburg, K., 1987. Evaluation of quality for audio encoding at low bit rates. presented

at the 82th convention of the Audio Engineering Society; J. Audio Eng. Soc. (Abstracts),

Preprint 2433. 2, 3

Brandenburg, K., Herre, J., Johnston, J. D., Mahieux, Y., Schroeder, E. F., 1991. ASPEC:

adaptive spectral entropy coding of high quality music signals. presented at the 90th

convention of the Audio Engineering Society; J. Audio Eng. Soc. (Abstracts), Preprint

3011 A-4. 108

125



126 BIBLIOGRAPHY

Brandenburg, K., Sporer, T., 1992. NMR and Masking Flag: Evaluation of Quality Using

Perceptual Criteria. In: Proc. of the AES 11th International Conference (Portland,

Oregon, USA), pages 169 – 179. 1

Brandenburg, K., Stoll, G., 1994. ISO-MPEG-1 Audio: A generic standard for coding of

high-quality digital audio. J. Audio Eng. Soc. 42(10): 780–792. 12

Colomes, C., Lever, M., Dehery, Y. F., 1995. A perceptual model applied to audio bit-rate

reduction. J. Audio Eng. Soc. 43(1): 233–240. 3, 8, 44

Damaschke, J., Huber, R., Hohmann, V., Kollmeier, B., 2002. PRO-DASP: An audio qual-

ity testbench for optimizing low-power chip designs of speech processing algorithms. In:

Müller, D., Kretzschmar, C., Siegmund, R., eds., 3. Kolloquium des Schwerpunktpro-

gramms der Deutschen Forschungsgemeinschaft - VIVA - Grundlagen und Verfahren ver-

lustarmer Informationsverarbeitung, pages 50 – 54. TU Chemnitz, ISBN 3-00-008995-0,

Chemnitz. 117

Dau, T., Kollmeier, B., Kohlrausch, A., 1997a. Modeling auditory processing of amplitude

modulation: I. Modulation Detection and masking with narrowband carriers. J. Acoust.

Soc. Am. 102(5): 2892–2905. 4, 7, 12, 14, 42, 49, 51, 52, 55, 56, 57, 62, 65, 67, 70, 103,

104, 123

Dau, T., Kollmeier, B., Kohlrausch, A., 1997b. Modeling auditory processing of amplitude

modulation: II. Spectral and temporal integration. J. Acoust. Soc. Am. 102(5): 2906–

2919. 14, 56
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