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Abstract

Mathematical models are frequently used to investigate the dynamics of in-
teracting populations. In these models the biological interactions are usually
described by simple mathematical functions. However, simple functions can
hardly capture the complexity of biological interactions. The use of simple
mathematical functions may therefore result in ecological models of limited va-
lidity. This risk can be avoided if general models are used. In general models
the mathematical functions that describe the interaction between populations
are not specified. As a result a single general model describes a whole class of
similar systems at once.

In this thesis a new approach to the formulation and analysis of general
models is presented. This approach is used to formulate and study models of
general food chains and food webs.

This work illustrates that general models can be analysed in the framework
of local bifurcation theory. In particular the computation of Hopf bifurcations
provides much information about the local and global dynamics of general mod-
els. In order to compute Hopf bifurcations efficiently a special mathematical
technique, the method of resultants, is derived.

Application of the method of resultants and the general modelling approach
reveals a new, general solution to the famous paradox of enrichment. It is shown
that enrichment always destabilizes certain ecological models if the interaction is
described by simple functions. However, a large class of more complex functions
exists which result in more complex model behaviour. If these functions are used
in a model enrichment may have a stabilizing effect. In this way general models
explain why enrichment does not generally lead to instability in experiments.

Another question which is much debated is whether chaotic dynamics is pos-
sible in ecological systems. While chaos is observed in many models it is believed
to vanish if certain biological details are taken into account. The investigation
of general models reveals that chaotic parameter regions generally exist in sys-
tems with more than three trophic levels. This result holds for a large class of
models regardless of the specific details.

The investigation of ecological food webs reveals that a large class of food
webs behaves qualitatively similar to food chains. For many purposes it is
therefore sufficient to model these food webs as food chains. Furthermore, it is
shown that the strong form of the famous competitive-exclusion principle only
occurs because of certain degeneracies that exist in simple ecological models.
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Zusammenfassung

Zur Untersuchung ökologischer Dynamik werden häufig mathematische Modelle
eingesetzt. Viele dieser Modelle beschreiben die Wechselwirkungen zwischen Po-
pulationen von Lebewesen mit sehr einfachen mathematischen Funktionen. Diese
einfachen Funktionen können die Komplexität ökologischer Prozesse jedoch kaum
widerspiegeln. Der Gültigkeitsbereich von Modellen, in denen solche Funktionen
verwendet werden, kann deshalb sehr begrenzt sein. Dieses Problem lässt sich
vermeiden, wenn nicht spezifische sondern allgemeine Modelle betrachtet wer-
den. In allgemeinen Modellen werden die Funktionen, die die Wechelwirkungen
zwischen Populationen beschreiben, nicht spezifiziert. Auf diese Weise kann ein
einzelnes allgemeines Modell eine ganze Klasse von spezifischen Systemen auf
einmal beschreiben.

In dieser Arbeit wird ein neuer Ansatz zur Formulierung und Analyse allge-
meiner Modelle entwickelt. Dieser Ansatz wird dann zur Untersuchung ökologi-
scher Nahrungsketten und Nahrungsnetze eingesetzt.

Diese Arbeit zeigt, dass allgemeine Modelle im Rahmen der lokalen Bifurka-
tionstheorie analysiert werden können. Insbesondere die Berechnung von Hopf-
Bifurkationen erlaubt viele Rückschlüsse auf die lokale und globale Dynamik allge-
meiner Modelle. Im Rahmen der Arbeit wird eine Methode (das Resultantenver-
fahren) vorgestellt, die es erlaubt Hopf-Bifurkationen sehr effizient zu berechnen.

Die Anwendung des Resultantenverfahrens und des allgemeinen Ansatzes
zeigt eine neue Lösung für das ökologische Anreicherungsparadoxon. Es wird
gezeigt, dass eine Anreicherung immer destabilisierend auf ökologische Modelle
wirkt, in denen die Wechselwirkung zwischen Spezies mit einfachen Funktionen
beschrieben wird. Es existiert jedoch eine große Klasse von Funktionen, die zu
komplexerem Verhalten führen. Wenn solche Funktionen verwendet werden, kann
eine Anreicherung stabilisierend auf das System wirken. Auf diese Weise zeigen
allgemeine Modelle, wieso eine Anreicherung in natürlichen Systemen nicht immer
zu einer Destabilisierung führt.

Eine weitere, viel diskututierte Frage ist, ob chaotische Dynamik in ökologi-
schen Systemen auftreten kann. Chaos tritt bereits in sehr einfachen ökologischen
Modellen auf. Es wird jedoch vermutet, dass bestimmte Details der ökologischen
Wechselwirkungen Chaos verhindern können. Die Analyse allgemeiner Modelle
zeigt, dass chaotische Dynamik im Allgemeinen in allen Systemen mit mehr als
drei trophischen Stufen auftritt. Dieses Ergebnis gilt für eine große Klasse von
Modellen, unabhängig davon welche biologischen Details im einzelnen berücksich-
tigt werden.

Die allgemeine Untersuchung von Nahrungsnetzen zeigt, dass sich viele Nah-
rungsnetze äquivalent zu Nahrungsketten verhalten. Für viele Anwendungen ist
es deshalb ausreichend solche Nahrungsnetze als Nahrungsketten zu modellieren.
Des Weiteren zeigt sich, dass das berühmte Konkurrenz-Ausschluss-Prinzip in
seiner starken Form nur auf Grund von gewissen Annahmen gilt, die häufig in
einfachen Modellen gemacht werden.
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Chapter 1

Introduction

But is it feasible to express a complete explanation of predation in
mathematical languages in view of the complexities that can arise?
Any such attempt might well be a very rough approximation with
limited application and, once proposed, might stifle further under-
standing in the face of an apparently inviolate mathematical expla-
nation ...

– C.S. Holling, Ann. Rev. Entomol. 7, 1962.

Our ecological environment is a huge and highly complex system. This
complexity arises in part from the diversity of biological species, but also from
the complexity of every individual organism. On a small scale the individu-
als interact by predation, competition or cooperation. On the larger scale the
microscopic interactions lead to interactions between populations. The popula-
tion dynamics is sometimes stationary but can also be periodic, quasiperiodic
or chaotic. Invasions, population bursts and extinction are frequently observed.
This dynamics is the driving force behind the biological evolution that acts on
an even larger scale. In course of the evolution species emerge and vanish in a
complicated sequence of succession.

Since the human population is growing, and can be expected to grow in the
future, the anthropogenic influence on the environment increases. This influence
can induce major changes in the functioning of an ecosystem and cause the
extinction of many species. The fact, that biological succession has always taken
place illustrates that we can not conserve every single species. But, for ethical
as well as economical reasons, major transitions that involve the destruction
of whole ecosystems have to be avoided. To stop the anthropogenic influence
on the environment altogether is in general impossible and can in many cases
likewise lead to the destruction of an ecosystem. Instead, efficient strategies for
the conservation of ecosystems are needed. In order to implement such strategies
in the face of the complexity of the problem requires a profound understanding
of ecosystem functioning.

1
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In the past many interesting insights have been gained from the investiga-
tion of simple ecological models. In these models many biological details that
contribute to the complexity of nature are neglected. This enables the modeler
to study ecological key processes in an abstract, conceptual way. In this way
simple models can help us to understand the very building blocks of ecological
systems.

The strength of simple models is generality. Simple models do not depend
strongly on specific features of the system under consideration. Consider for in-
stance the work of C.S. Holling. In order to describe predation Holling proposed
four simple mathematical functions. These functions can be used to model pre-
dation between a large range of different species. Models which are based on
these simple functions can therefore describe very different ecological systems.
Say, for instance the feeding of Lynx on Hare and predation among zooplankton.
A more precise model of the interaction of Lynx and Hare could be obtained
if more details of the behavior of the individuals were included in the model.
However, these specific details would make the generalization of the results to
other systems difficult.

While the generality of Holling’s insights is impressive, the lines quoted above
raise some doubts. Holling asks whether it is really possible to derive an simple
mathematical model of the complex process of predation. In fact, every math-
ematical model is based on certain assumptions. An implicit assumption made
in most simple models is that the model describes a generic situation. If this
assumption is true the dynamics of the model do not depend strongly on the
model structure. In this case it is reasonable to assume that biological details
that have been neglected in the model will not effect the predictions qualita-
tively. However, if our model describes a degenerate situation, biological details
can have a dramatic impact on the predictions of the model. Such models are
indeed of “limited application” as Holling puts it. In this light generality is not
only an advantage of simple mathematical models but a necessary requirement.

In this work we formulate and analyze general models of ecological food chains
and food webs. We avoid to describe ecological processes, like predation, by
specific mathematical functions. Instead, general functions are used that are
not restricted to a particular functional form. The general models are applied
to investigate several questions that are related to the stability of ecological
systems.

A question that is hotly debated is whether the dynamics of natural popu-
lations can be chaotic (May 1987, Upadhyay et al. 1998, Cushing et al. 2002).
While chaos has been observed in ecological experiments (Tilman and Wedin
1991, Cushing et al. 1996). the detection of chaos in nature is generally very
difficult (Nychka et al. 1992, Ellner and Turchin 1995, Hanski et al. 1993). In
models chaos is easier to detect and is frequently encountered (Hastings and
Powell 1991). However, it has been pointed out that the chaotic regions seem to
disappear if models are perturbed in a certain way (Ruxton and Rohani 1998,
Fussmann and Heber 2002).
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The existence of chaos is related to the larger diversity-stability debate. This
debate focusses on the effect of species diversity on the stability of a system.
Investigations by May (1973) indicate that the stability of food webs generally
decreases with increasing diversity. In fact, the famous competitive exclusion
principle states that two species which occupy the same ecological niece can not
coexist in a stable steady state (Gause 1934, Armstrong and McGehee 1980).
However, in contrast to the theoretical results the highly diverse systems ob-
served in nature seem to be very stable while simpler systems often exhibit
instability (Odum 1953, Elton 1958, MacArthur 1955). These results indicate
that the stability observed in nature is (at least on the species level) not the sta-
bility of steady states but persistence in a non-stationary state (McCann 2000).
Since the diversity of species on earth is declining the question arises how the
diversity and stability of ecological systems are related.

In aquatic systems eutrophication is considered as a major threat to species
diversity and ecosystem stability (Tilman et al. 2001). In simple ecological
models it is often observed that increasing the supply of nutrients destabilizes the
system and leads to the extinction of species (Huffaker et al. 1963, Rosenzweig
1971, Gilpin 1972). This detrimental effect of increased nutrient availability is
known as the paradox of enrichment. The destabilizing effect of enrichment was
confirmed in experiments by Luckinbill (1974), Tilman and Wedin (1991), Morin
and Lawler (1995) However, in other systems enrichment had no destabilizing
effect (McAllister et al. 1972, McCauley and Murdoch 1990) or even stabilized
the system (Kirk 1998).

In the context of our general models the questions outlined above can be
studied with a high degree of generality. Despite this generality the models can
be analyzed with the tools of dynamical system theory. In this way the appli-
cation of general models enables us to draw very general ecological conclusions.

We start in Chap. 2 with a brief review of central concepts of dynamical
systems theory. The chapter focuses on the different forms of bifurcations that
are encountered in our investigation of ecological models. In particular, we show
that Hopf bifurcations play an important role. Hopf bifurcations are in many
cases responsible for the destabilization of steady states in ecological models.
Furthermore, the interaction between Hopf bifurcations gives rise to bifurcations
of higher codimension which indicate complex dynamics.

For the computation of Hopf bifurcations we use the method of resultants.
This method is described in detail in Chap. 3. We show how resultants can be
applied to the computation of Hopf bifurcations and discuss the advantages of
resultants in comparison to other methods. In this work we apply the method
to compute the bifurcation diagrams on which the majority of our conclusions
is based.

The computation of local bifurcation diagrams can reveal many interesting
insights on the system under consideration. We apply this analysis to general
models of food chains and food webs. A general food chain model is formulated
in Chap. 4. In this model local bifurcations can be computed with a high degree
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of generality. We illustrate this analysis by computing bifurcation diagrams for
food chain of different length. We identify a key parameter for food chain sta-
bility and show that certain bifurcations of higher codimension generically exist
in long food chains. These insights form the foundation for the investigation in
Chap. 5 and Chap. 6.

In Chap. 5 we study the paradox of enrichment. We apply the results of
the general analysis to investigate the effect that enrichment can possibly have
on a specific model. Our analysis reveals that enrichment generally destabi-
lizes models in which predation is described by simple functions. However, in
more complex models that take more biological details into account enrichment
can have a stabilizing effect. We show that more that the stability of steady
states depends very sensitively on the functions that are used in a given model.
In particular simple models of predator-prey interaction may not be sufficient
describe the stability of the natural system correctly.

In Chap. 6 we focus on the existence of chaos in food chains. We show
that certain bifurcations of higher codimension appear in long food chains. The
presence of these bifurcations proves that all long food chains are in general
chaotic in certain parameter regions. We show that these regions survive even
if strong nonlinear mortality terms are considered in the model. Moreover, we
locate some rare bifurcations of even higher codimension that generally appear
in long food chains. The ecological implications of these bifurcations are at
present unclear. However, the bifurcations may serve as examples for future
mathematical analyses which may reveal additional biological insights.

Finally, in Chap. 7 we extend our general approach to food webs. We derive
a general food web model that allows us to compute the local bifurcations of
certain food webs with a high degree of generality. Our investigation reveals that
competitive exclusion is related to a certain type of degeneracy that appears
in some specific models. However, if more biological details are taken into
account coexistence is generally possible. Thereafter, we use our general model
to investigate the dynamics of food webs with different web geometries. We show
that the local dynamics of a large class of food webs is qualitatively identical to
the dynamics of food chains. The results of Chap. 5 and Chap. 6 can therefore
be extended to a large class of food webs.

We summarize the results of this work in Chap. 8 and describe some perspec-
tives for future investigations. In particular we argue that our general approach
can be applied to a large range of problems from different disciplines of science.



Chapter 2

Dynamics and Bifurcations

The purpose of this work is to obtain general insights in the dynamics of ecolog-
ical populations. This is achieved by applying modern methods from dynamical
systems theory.

In this chapter a brief overview over selected topics from the theory of dy-
namical systems is given. The material presented here is elementary and can be
found in most textbooks (Wiggins 1990, Argyris et al. 1994, Glendinning 1994,
Kuznetsov 1995, Arrowsmith and Place 1998, Strogatz 2000, Guckenheimer and
Holmes 2002). In contrast to these, we focus specifically on bifurcations that
appear in the discussion of our ecological models. Most importantly we show
that the Hopf bifurcation plays, for various reasons, a crucial role. In effect,
this chapter outlines the theoretical framework in which the present work fits.
Furthermore, it serves as a motivation for the subsequent chapter which focusses
on the computation of Hopf bifurcations.

We start by reviewing important concepts of dynamical systems theory in
Sec. 2.1. The central notions of complexity and stability are introduced in
Sec. 2.2. Thereafter in Sec. 2.3, we discuss the impact of Hopf bifurcations
and related situations on the stability and dynamical complexity of ecological
models. Finally, some important points are summarized in Sec. 2.4.

2.1 Dynamical Systems - general definitions

In this section we introduce several key concepts of the theory of dynamical
systems. This is done very briefly and without mathematical rigor. The purpose
of this section is to provide a conceptual framework. Important points like the
question of stability and complexity are discussed in more detail below.

Mathematically speaking, a dynamical system can be defined as a set of
prescriptions which determine the time evolution of a set of state variables

5
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(Kuznetsov 1995). The prescriptions will in general depend on a set of (exter-
nal) parameters and in some cases time.

Dynamical systems are used to model experimental observations in many
disciplines of science. In most of these models the prescriptions that govern
the time evolution are formulated either in the language of ordinary differen-
tial equations (ODEs), partial differential equations (PDEs) or discrete time
maps. The resulting equations are in general nonlinear and may be stochastic
or deterministic in nature. If time does not appear explicitly in the equations
the system is called autonomous. In the following we focus on the dynamics of
deterministic, autonomous ODE systems.

The models studied here are dissipative dynamical systems. In such systems
the phase space volume spanned by an ensemble of systems (with different initial
conditions) contracts in average as time passes. In dissipative systems we can
distinguish between long term dynamics which persists even after an arbitrarily
long time and transient dynamics which is only observed while the system ap-
proaches a certain region of phase space on which the long term dynamics takes
place.

Using the methods of qualitative analysis the long term dynamics of a given
system can be studied directly. A central point of these methods is the concept
of invariant sets. A subspace of the phase space is called invariant set, if every
trajectory starting in the subspace stays in the subspace for all time. An invari-
ant set is stable if every trajectory starting close to the set remains close. If the
trajectories stay not only close but actually approach the invariant set as time
passes by, it is called asymptotically stable.

In general the phase space of the system under consideration contains many
invariant sets. In the following we mainly consider the dynamics close to invari-
ant sets which do not contain smaller subsets which are also invariant. These
sets are called minimal invariant or non-wandering sets. Sets which attract all
trajectories from a neighborhood with positive Lebesgue measure are called at-
tractors. Other minimal invariant sets exist which repel neighboring trajectories
(repellors) or are attracting in some directions and repelling in others (saddles).

Depending on the nature of the stable minimal invariant sets the long term
dynamics of any ODE system can be either stationary, periodic, quasiperiodic or
chaotic. Stationary behavior occurs on invariant sets consisting only of a single
point in phase space. Such sets are called steady states, fixed points or equilib-
ria. Periodic behavior is encountered on minimal invariant sets consisting of an
isolated loop in phase space which is called limit cycle. Quasiperiodic dynamics
takes place on invariant tori which can be two- or three-dimensional. Higher di-
mensional tori are rarely observed because of the Ruelle-Takens theorem (Ruelle
and Takens 1971).
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Apart from these “smooth” minimal invariant sets non-smooth sets may be
encountered. The dynamics on these strange sets is usually chaotic. However,
some examples of strange non-chaotic attractors have been found (Grebogi et al.
1984). A safe way to determine the nature of the dynamics on a given attractor
is the computation of Lyapunov exponents which is discussed in Chap. 6.

2.2 Dynamical Complexity and Stability

Two central concept around which this work revolves are complexity and sta-
bility. Both terms are widely used and have different meanings in different
disciplines of science.

Complexity
The term complexity is frequently used to describe the fact that for a given

problem no well established method is applicable (Badii and Politi 1999). More
rigorous measures of complexity have been formulated in the context of sta-
tistical mechanics, information theory and dynamical systems theory. These
measures describe the complexity of temporal, spatio-temporal or spatial pat-
terns.

In the context of ecological systems the term complexity is often used in a
different way. The complexity under consideration here is primarily the com-
plexity of the system itself. Ecological systems are complex because of the
diversity of biological species as well as the complex nature of their interactions.

In this work we will use the term complexity to describe the ecological com-
plexity found in nature as well as the dynamical complexity of models. In the
following, only chaotic dynamics are called complex. Nevertheless we can say
that periodic behavior is more complex than stationary behavior. Quasiperiodic
behavior is more complex than periodic behavior but less complex than chaotic
behavior.

Stability
The term stability is used in ecology to describe the ability of a system

to withstand perturbations (Holling 1973). For instance asymptotic stability
(c.f. Sec. 2.1) indicates resistance to small perturbations of the state variables.
In this work we call a system stable if an asymptotically stable steady state
exists. Asymptotic stability is sometimes quantified in the form of resilience,
which is connected to the return time after a small perturbation. The resistance
to larger perturbation of the state variables can not be measured in terms of
resilience or asymptotic stability, since large perturbations may cause a system
to depart entirely from an asymptotically stable set.

An invariant set to which the systems returns even after arbitrarily large
perturbations is called globally stable. However, globally stable minimal sets
exist only in very few systems.

A much weaker notion is persistence which indicates that the boundary of
the positive cone of the phase space is repelling. In a persistent system species
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will in general survive perturbations of the state variables although the system
will not necessarily return to the same attractor.

Apart from perturbations of state variables we have to consider perturbations
of parameters and the model structure itself. Such perturbations may result in
a transition from one type of dynamical behavior to another one. In ecology
variations of parameters are often considered to be stabilizing if they cause a
transition to less complex dynamics or increase the resilience of the system. In
the following we call the variation of a parameter stabilizing if it can not cause
a steady state to become unstable, but can possibly stabilize a steady state.
Whether a stabilizing variation of a parameter actually causes the stabilization
of a steady state will in general depend on the values of other parameters.

Stability of steady states
Let us consider the stability of steady states more closely. The ecological

models considered in this work are formulated in the language of ODEs. A
general ODE system can be written in the form

Ẋn = fn(X1, . . . , XN , p1, . . . , pM ) n = 1 . . . N, (2.1)

where X1, . . . , XN is a set of variables. The time evolution is determined by the
functions f1, . . . , fN depending on the parameters p1, . . . , pM . Here N denotes
dimension of the phase space while M is the dimension of the parameter space.
The values of the variables in the steady state are denoted by X1

∗, . . . , XN
∗.

In order to decide whether a steady state is stable we have to consider small
perturbations of the state variables. A linearization of the evolution equations
close to the steady state yields the Jacobian matrix. The Jacobian is a real
N ×N matrix with the elements

Jij =
∂Ẋi

∂Xj

∣∣∣∣∣
X=X∗

i, j = 1 . . . N. (2.2)

If all eigenvalues of the Jacobian have non-vanishing real parts the steady state
under consideration is called hyperbolic. A hyperbolic steady-state is asymptot-
ically stable if (and only if) the real parts of all eigenvalues of the Jacobian are
negative. Such states are called stable nodes or stable foci. The term focus is
used if complex eigenvalues are present. If eigenvalues with positive real parts as
well as eigenvalues with negative real parts exist the corresponding steady state
is called a saddle point. Sometimes the term saddle focus is used to indicate
the presence of complex eigenvalues. Steady states in which all eigenvalues have
positive real parts are called unstable nodes or unstable foci.

Transitions in the stability of steady states occur if eigenvalues of the Jaco-
bian cross the imaginary axis in response to the parameter variation.

2.3 Bifurcations in systems of ODEs

Let us now study transitions in the long-term dynamics in a more systematic
way. We consider two systems with slightly different parameter values. In
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general, the two systems will have different but topologically equivalent phase
portraits. However, certain critical parameter values may exist at which the
phase portrait changes in a qualitative way. The points in parameter space at
which this happens are called bifurcation points. Crossing a bifurcation point
in parameter space results in a qualitative transition in phase space. This tran-
sition is called bifurcation.

2.3.1 Properties of Bifurcations

Various types of bifurcations exist. These types differ by the corresponding
topological changes in the phase portrait of the system. Consequently, they
have different effects on ecological dynamics. Before we enter the discussion of
specific types of bifurcations let us introduce some important properties which
many bifurcations share. According to these properties the bifurcations can be
classified and discussed in a more organized way.

Locality
An important property of bifurcations is locality. Mathematically speaking,

a bifurcation is local if the topological changes of the phase portrait originate
from a single point in phase space (Kuznetsov 1995, Arrowsmith and Place
1998). Bifurcations which are not local are called global bifurcations.

According to this definition bifurcations of cycles and tori are always global
bifurcations. However, several bifurcations of cycles and tori can be conveniently
analyzed in a Poincaré map of the system. In this map certain global bifurca-
tions of the ODE system appear as local bifurcations. In this work we refer
to such bifurcations as local bifurcations of cycles and local bifurcation of tori
respectively. The term global bifurcations is only used for bifurcations which
do not correspond to local bifurcations of Poincaré maps.

Genericity
All generic bifurcations of a given type are qualitatively similar to a normal

form for this type of bifurcations. The normal form can be understood as a
simple prototype for a certain type of bifurcation. It captures the qualitative
features of all possible generic bifurcation of the same type.

In order to be generic a bifurcations has to satisfy a finite number of gener-
icity conditions which are formulated as non-equalities. If at least one of the
genericity conditions is violated the bifurcation is degenerate. The behavior of
a degenerate bifurcation will in general differ from the behavior of the normal
form.

It has been argued that only generic bifurcations should occur in nature.
This view is based on the idea that the probability to violate a genericity con-
dition “by chance” is zero. However, in nature certain symmetries which can
enforce degeneracy exist. Even, if no such symmetry is present the system may
evolve into a degenerate state. In ecology this can happen if the degenerate situ-
ation is evolutionary favorable. Nevertheless, we can expect the generic form of
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bifurcations to occur unless some symmetry or mechanism favoring degeneracy
is present.

Codimension
In ecological models the time evolution of state variables often depends on

a large number of parameters. The equations that govern the time evolution
are in general smooth functions of the parameters. Therefore bifurcations do
not exist as isolated points in parameter space, but are in general located on
manifolds consisting entirely of such points.

The difference between the dimension of the parameter space and the di-
mension of the manifold on which a certain type of bifurcation occurs is called
codimension of the bifurcation. In other words, the codimension denotes the
number of parameters that have to be varied to find the bifurcation.

For instance, the manifolds on which codimension-1 bifurcations occur are
hyper-surfaces in parameter space. In order to find a bifurcation of codimension-
1 we have to vary one parameter.

If we vary a second parameter to move along a hypersurface of codimension-1
bifurcations a codimension-2 bifurcation may be encountered. This will in gen-
eral be the case if two codimension-1 bifurcations involving the same invariant
set meet or when certain genericity conditions (non-degeneracy conditions) of
a codimension-1 bifurcation are broken. The codimension-2 bifurcations occur
on hyperlines in parameter space. In a codimension-2 bifurcation the properties
of codimension-1 bifurcations change. In this sense codimension-2 bifurcations
are bifurcations of bifurcations. If we follow the codimension-2 bifurcations,
bifurcations of even higher codimension can be found.

In order to observe a bifurcation of codimension-2 in an experiment one
would have to fix one parameter exactly at the bifurcation value while another
parameter is varied. Any bifurcation of codimension-2 or more can therefore
in general not be expected to be observed in a natural system. However,
the investigation of bifurcations of higher codimension is still interesting. The
codimension-2 bifurcations of a given model reveal valuable information about
global dynamics that could otherwise not be obtained with the same degree of
generality (cf. Sec. 2.3.4).

2.3.2 Codimension-1 bifurcations of steady states

Let us now discuss some important codimension-1 bifurcations of steady states.
We have already shown in Sec. 2.2 that transitions in the stability of steady
states occur if eigenvalues of the Jacobian cross the imaginary axis. Since the
eigenvalues change in general smoothly as parameters are varied, they become
non-hyperbolic as the imaginary axis is crossed.

Since the Jacobian is in general a real matrix. Its eigenvalues are real or
form complex conjugate pairs. In the codimension-1 bifurcations only a single
eigenvalue or a single pair of eigenvalues is involved. The local codimension-1
bifurcations of steady states are therefore characterized by the presence of a
zero eigenvalue or a pair of purely imaginary eigenvalues.
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Saddle-Node bifurcation
In general the situation in which a single zero eigenvalue exists corresponds

to a saddle-node bifurcation. This bifurcation is encountered if two branches of
steady states collide in phase space. As the name indicates this type of collision
is often observed between a saddle and a node. However, saddle-node bifurca-
tions involving two saddles are also possible. Other names of this bifurcation
are fold bifurcation, turning point or limit point.

In the generic saddle-node bifurcation the two steady states vanish in the
bifurcation (s. Fig. 2.1). If the system in a steady state which undergoes a
saddle-node bifurcation it will rapidly approach another attractor once the bi-
furcation has occurred. In this case the system can in general not be restored
to the initial state by restoring the initial parameter values. The saddle-node
bifurcation is therefore a sharp bifurcation.

In natural systems sharp bifurcations should be avoided since the state which
is approached after the bifurcation is, as a rule, undesirable (Bazykin 1998).
Moreover, the natural state of an ecological system is in general the result of a
complex sequence of succession of species. It is therefore generally very difficult
if not impossible to return the system to this state.

Figure 2.1: In a generic saddle node bifurcation a stable steady state (solid
line) collides with a saddle (dashed line). In the bifurcation point both states
vanish. Generally, the position of the steady state changes slowly as a parameter
p is changed. However, after sharp bifurcations the system rapidly approaches
another attractor.

Degenerate Saddle-Node Bifurcations
Above we have discussed the generic saddle-node bifurcation. Because of

certain symmetries a degenerate form of the saddle-node bifurcation is often
encountered in ecological models. This form is called transcritical bifurcation
(s. Fig. 2.2). In this type of bifurcation two branches of steady states intersect.
In contrast to the generic saddle-node bifurcation, both steady states survive the
transcritical bifurcation. At the bifurcation point an eigenvalue of the Jacobian
of one of the steady states crosses the imaginary axis becoming positive. At the
same time an eigenvalue of the other steady state crosses the imaginary axis
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becoming negative. The result is an exchange of stability in the direction of the
eigenvectors that correspond to the non-hyperbolic eigenvalues.

Figure 2.2: Transcritical bifurcations are formed at the intersection of two
branches of steady states. In this bifurcation diagram stable steady states are
shown as continuous lines. Saddles appear as dashed lines.

Apart from the transcritical bifurcation other degenerate forms of the saddle-
node bifurcation exist. Among them are the so-called pitchfork bifurcation, in
which two new steady states emerge from an existing one and the three-way
transcritical bifurcation which involves three steady states. Other degenerate
situations exist in which an eigenvalue of the Jacobian becomes zero but no
bifurcation occurs.

We can distinguish between the generic saddle-node bifurcation and the de-
generate forms of this bifurcation by computing the normal form and checking
the genericity conditions. In practice it is often easier to compute the steady
states and their stability at parameter values close to the bifurcation point.

In the main part of this work we study general ecological models. In these
models, steady states can not be computed with the chosen degree of generality.
Although normal form analysis is in principle still possible, it is beyond the
scope of this work. Nevertheless, we are still able to find the points in parameter
space at which zero eigenvalues occur. Furthermore, we can confirm that the
transitions which take place in these points are bifurcations. In the following
we refer to all codimension-1 bifurcations of steady states, which involve a zero
eigenvalue of the Jacobian as general saddle-node bifurcations.

Hopf Bifurcations
Although the general saddle-node bifurcations are of some importance the

Hopf bifurcation (Andronov and Leontović 1939, Hopf 1942) turns out to be
far more interesting. In this bifurcation two complex conjugate eigenvalues of
the Jacobian cross the imaginary axis. The bifurcation is generic if the axis is
crossed at a non-zero velocity.

We can distinguish between supercritical and subcritical Hopf bifurcations.
In the supercritical case a stable limit cycle emerges while the steady state be-
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comes unstable. This corresponds to a transition from stationary to oscillatory
long-term behavior. By contrast, the subcritical Hopf bifurcation involves an
unstable limit cycle which contracts around a stable steady state. At the bi-
furcation point the limit cycle vanishes leaving the steady state unstable. Since
neither limit cycle nor steady state are stable after the bifurcation the system
has to approach some other attractor. In contrast to the supercritical case the
subcritical Hopf bifurcation is a sharp bifurcation.

The Hopf bifurcation is a very prominent bifurcation. It plays an important
role in the dynamics of models from many different disciplines of science. In
ecology the Hopf bifurcation is related to interesting effects like the paradox of
enrichment which is discussed in Chap. 5. Furthermore, the interaction of Hopf
bifurcations with other bifurcations can reveal important insights about global
dynamics of the system under consideration.

Figure 2.3: In the supercritical Hopf bifurcation (left) a steady state becomes
unstable while a stable limit cycle emerges. In the subcritical Hopf bifurcation
(right) the steady state stability is lost while an unstable limit cycle vanishes.

2.3.3 Global bifurcations and chaos

In contrast to periodic behavior, chaos can not be reached directly in a local
codimension-1 bifurcation of steady states. Instead, the transition from station-
ary to chaotic behavior will in general involve several and possibly infinitely
many bifurcations. In this section we discuss some famous examples for se-
quences of bifurcations leading to chaos. In this discussion we focus on the
routes to chaos which turn out to play an important role in our ecological mod-
els. Other famous routes to chaos like Landau chaos (Landau 1944, Hopf 1948),
the period doubling cascade (Feigenbaum 1978) and intermittency (Pomeau and
Manneville 1980) have been omitted.

Ruelle-Takens chaos
In the Ruelle-Takens scenario a limit cycle emerges from a steady state in

a Hopf bifurcation. This limit cycle undergoes a Nĕımark-Sacker bifurcation
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(Nĕımark 1959, Sacker 1965) in which a two-torus emerges. The Nĕımark-Sacker
bifurcation is also called Hopf bifurcation of cycles. Subsequently, another Hopf-
like bifurcation occurs in which a three-torus emerges. The quasiperiodic dy-
namics on a three-torus is in general structurally unstable (Ruelle and Takens
1971). As a result, any small perturbation leads to chaotic dynamics. The rea-
son for this instability is the formation of complex homoclinic and heteroclinic
structures on the surface of the torus. A homoclinic orbit is a trajectory that
approaches the same saddle in both directions of time. Likewise, a heteroclinic
orbit is a closed trajectory that connects two or more saddles.

Shil’nikov chaos
The formation of a homoclinic orbit is called homoclinic bifurcation. Even if

no torus is present, a chaotic attractor can emerge from the homoclinic bifur-
cation (Shil’nikov 1968, 1970). In general limit cycles are formed (or vanish)
in the homoclinic bifurcation. The stability and number of the limit cycles de-
pends on the so-called saddle quantity which is the sum of the real parts of the
smallest positive eigenvalue and the largest negative eigenvalue of the Jacobian.
Homoclinic bifurcations taking place on saddles with negative saddle-quantity
give rise to one stable limit cycle. If the saddle index is positive unstable cycles
emerge. The number of the unstable cycles created in this way depends on the
nature of the saddle. If the bifurcation takes place on a real saddle only one
saddle cycle is created. However, an infinite number of saddle cycles can emerge
from a homoclinic bifurcation on a saddle-focus. These saddle cycles form a
chaotic attractor.

Quasiperiodic chaos
Another scenario leading to the formation of a chaotic attractor is described

by Rand et al. (1982) and Feigenbaum et al. (1982). In this case the chaotic
attractor is formed from a two-torus which folds in several places. As a result,
the smoothness of torus’s surface is lost.

All of the examples discussed above involve the formation of limit cycles. In
many cases these cycles emerge from Hopf bifurcations. Being a local bifurcation
of steady states the Hopf bifurcation is relatively easy to compute. However, the
subsequent bifurcations on the way to chaos are global bifurcations (e.g. ho-
moclinic or heteroclinic bifurcations) or local bifurcations of cycles (e.g. period
doubling bifurcations, Nĕımark-Sacker bifurcations or fold bifurcations of cy-
cles). The analytical computation of global bifurcations is only possible in very
special examples. In principle local bifurcations of cycles and tori can be com-
puted analytically if the corresponding Poincaré maps are known. However, in
order to construct the Poincaré map the ODEs have to be integrated. Ana-
lytically, this is again only possible for very few systems. Therefore, global
bifurcations as well as local bifurcations of cycles and tori have to be computed
numerically in most systems. However, numerical bifurcation analysis can only
be applied to specific models. For the general models studied in this work no
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numerical approaches exist. However, certain insights in the global dynamics
of a given model can be obtained analytically by investigation of codimension-2
bifurcations of steady state.

2.3.4 Codimension-2 bifurcations of steady states

Like codimension-1 bifurcations the codimension-2 bifurcations can be analyzed
by derivation of a suitable normal form. We do not go through the details of this
analysis here, but quote some important results. A more detailed treatment can
be found in (Kuznetsov 1995). In our discussion we focus on the codimension-2
bifurcations which appear in our general population model (s. Chap. 4). Other
codimension-2 bifurcations like the well known cusp bifurcation or the Bautin
bifurcation have been omitted. The most attention is devoted to the double
Hopf bifurcation which turns out to play a crucial role.

Takens-Bogdanov bifurcation
Let us start by considering the Takens-Bogdanov (TB) bifurcation (Takens

1974, Bogdanov 1981). This bifurcation is formed on a hyperline in parameter
space on which a Hopf bifurcation meets a general saddle-node bifurcation. If
we approach the TB bifurcation on the Hopf bifurcation the symmetric, purely
imaginary eigenvalues approach zero. In the TB bifurcation point a double zero
eigenvalue exists. At this point the Hopf bifurcation vanishes (cf. Fig. 2.4).
Beyond the TB bifurcation a hyper surface exists on which we find a symmetric
but purely real pair of eigenvalues. We call such a constellation of eigenvalues
pseudo Hopf situation. In literature the term real Hopf bifurcation is frequently
used. We avoid this term because of possible confusions with the “real” Hopf
bifurcation which is also called imaginary Hopf bifurcation. The pseudo Hopf
situation is technically no bifurcation since no topological changes in the phase
portrait occur. However, it is still of some interest since it can involve a change
of the sign of the saddle-quantity.

Apart from the Hopf bifurcation and pseudo Hopf situation at least one
homoclinic bifurcation emerges from the TB bifurcation. The limit cycle that
emerges from the Hopf bifurcation vanishes in this homoclinic bifurcation.

Since the TB-bifurcation is a codimension-2 bifurcation, it can not be ex-
pected to be observed directly in ecological observations. However, the existence
of a TB bifurcation in a given ecological model proves that a pseudo Hopf bifur-
cation and a homoclinic bifurcation have to exist. For the homoclinic bifurcation
this is particularly interesting since it is generally difficult to compute directly.
In ecological models sudden population bursts can often be observed close to a
homoclinic bifurcation.

Gavrilov-Guckenheimer bifurcation
Let us now consider the case in which we have a zero eigenvalue in addition

to a purely imaginary pair of eigenvalues. This situation is called Gavrilov-
Guckenheimer bifurcation (GG) or zero Hopf bifurcation (Guckenheimer 1981).
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Figure 2.4: A Takens-Bogdanov bifurcation (TB, circle) is formed by the inter-
action of Hopf and Saddle-Node bifurcations. The branch of Hopf bifurcations
ends in the TB bifurcation. A branch of homoclinic bifurcations and a branch
of pseudo Hopf situations emerge from the TB bifurcation.

Like TB bifurcations, GG bifurcations are formed by the interaction of Hopf and
saddle-node bifurcation surfaces. However, the Hopf bifurcation does not vanish
in the GG bifurcation. In comparison to the TB bifurcation the GG bifurcation
is much more complicated and can not be plotted in a single two-parameter
bifurcation diagram. However, it has been shown that an invariant torus exists
close to a generic GG bifurcation. This torus is created in a Nĕımark-Sacker
bifurcation, which emerges from the GG bifurcation. Furthermore, a homoclinic
bifurcation leading to the formation of a chaotic attractor has been shown to
exist under certain conditions.

For our ecological models the presence of a GG bifurcation implies the ex-
istence of regions in parameter space in which quasiperiodic dynamics can be
found. Furthermore we can say, that chaotic dynamics is likely to be found close
to a generic GG bifurcation.

Double Hopf bifurcation
The double Hopf (DH) bifurcation is formed by the interaction of two Hopf

bifurcation. The bifurcation is characterized by the presence of two pairs of
purely imaginary eigenvalues (Gavrilov 1980, Kuznetsov 1997). Like in case
of the GG bifurcation, a branch of Nĕımark-Sacker bifurcations emerges from
the DH bifurcation. The tori that are created in this bifurcation exist only
close to the DH bifurcation. Farther away they undergo global bifurcations and
vanish. Chaotic regions have been shown to emerge from torus decay or through
heteroclinic and homoclinic bifurcations. Other routes to chaos are believed
to exist close to DH bifurcations, but have not been investigated in detail.
Guckenheimer and Holmes (2002) write that “detailed studies will probably
have to await the added stimulus of specific examples in physical applications”.
In this light the computation of double Hopf bifurcations is not only interesting
from a biological, but also from a mathematical point of view.
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Although the routes that lead to the formation of chaos have not been stud-
ied in detail, the generic existence of a chaotic parameter region close to the
double Hopf bifurcation can be proved. For the purpose of illustration we can
loosely describe the situation as follows: In the double Hopf bifurcation four
non-hyperbolic eigenvalues exist. The critical eigenspace on which the dynam-
ics close to the bifurcation takes place is four dimensional. In this eigenspace
three-tori do generally exist from which chaotic regions emerge because of the
Ruelle-Takens theorem. More rigorous mathematical arguments for the exis-
tence of chaotic regions are given by Kuznetsov (1995).

2.4 Hopf bifurcations in ecology

In this chapter we have reviewed several key concepts from dynamical systems
theory. These concepts form the framework for the analysis of ecological dynam-
ics around which this work revolves. The investigations that are presented in the
following are to a large extend based on the computation of Hopf bifurcations.

Hopf bifurcations are often involved in the destabilization of steady states
in ecological models. In this way the Hopf bifurcations are connected to many
interesting ecological effects like the paradox of enrichment which is discussed in
Chap. 5. Furthermore, Hopf bifurcations play a prominent role in the formation
of higher codimension bifurcations. Although these bifurcations can not be ob-
served directly in nature, their presence in models proves the existence of certain
global bifurcations and local bifurcations of cycles. Most importantly the dou-
ble Hopf bifurcation can serve as an indicator of chaotic dynamics. In a similar
way the Gavrilov-Guckenheimer bifurcation indicates that chaotic dynamics is
likely.

In the following the computation of Hopf bifurcations is used to obtain insights
in local and global aspects of ecological dynamics. The method by which this
computation is performed is discussed in the next chapter.
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Chapter 3

Computation of
Hopf bifurcations

In Chap. 2 we have argued that Hopf bifurcations play a very prominent role
in ecological dynamics. In the following chapters we will study many examples
which underline the importance of Hopf bifurcations. The bifurcation diagrams
on which our conclusions are based have been generated by employing the so-
called method of resultants.

In the context of bifurcation theory the method of resultants has been pro-
posed by Guckenheimer et al. (1997). Although the method has in principle
been known for a long time it has rarely been used because of certain numer-
ical disadvantages. Today the method is widely unknown and is absent from
textbooks on bifurcation analysis.

We have reinvented the method of resultants independently and extended
it in several ways. Most importantly, we use the method not in a numerical,
but in an analytical, computer-algebra assisted approach. The method has been
successfully applied to ecological models and to systems from other disciplines
of science. Our results show that, applied in this way, the method of resultants
is a very powerful tool.

In order to draw a wider interest to the method we have discussed it from an
applicants point of view in (Gross and Feudel 2004b). The discussion presented
here follows to a large extend the lines of this paper.

We start by describing several common methods for the computation of Hopf
bifurcations in Sec. 3.1. The method of resultants is introduced in Sec. 3.2.
In particular we derive analytical conditions for Hopf bifurcations and related
situations. Although our main focus is on ODE systems the extension of the
method of resultants to maps is studied briefly in Sec. 3.3. Finally, we discuss
advantages and disadvantages of the method of resultants in comparison to
others methods in Sec. 3.4.

19



20 CHAPTER 3. COMPUTATION OF HOPF BIFURCATIONS

3.1 Computation of Hopf bifurcations

In the past a large number of methods for the computation of Hopf bifurcations
has been proposed. Among them we can distinguish between direct and indirect
methods.

Indirect methods
In a typical indirect method one follows a branch of steady states while a

parameter is varied. The spectrum of the Jacobian is computed at certain
points in parameter space. These points are in general chosen according to
some scheme which approximates the bifurcation point (Broyden 1965). The
parameter value at which the purely imaginary pair that characterizes the Hopf
bifurcation exists is then found by interpolation. Once a bifurcation point has
been found, the manifold on which the bifurcation points are located can be
followed by numerical continuation (Seydel 1991).

A conceptual drawback of indirect methods is that the eigenvalues have to be
computed. In a system of dimension N the Jacobian is a N×N matrix. In order
to compute the eigenvalues of this matrix we have to factorize a polynomial of
order N . Analytically, the factorization of polynomials is in general tedious
for N > 2 and impossible for N > 4. The application of indirect methods
is therefore limited to numerical bifurcation analysis. Nevertheless, indirect
methods are widely used since highly stable algorithms for the computation of
eigenvalues exist. The most common indirect methods are the so-called QR-
factorization for small systems and the Krylov subspace technique for larger
systems (Moore et al. 1990, Chu et al. 1994).

Bordered matrix methods
The efficiency of indirect methods suffers from the fact that they actually

solve a much harder problem. Many eigenvalues at several points of parameter
space are computed while only one pair of eigenvalues at one point of parameter
space is asked for. This inefficiency is avoided in direct methods. In a direct
method a system of equations that can be solved directly for the bifurcation
point is constructed. In many cases this is accomplished by augmenting the
system with additional equations. As a result a bordered matrix is obtained
which contains the original Jacobian as well as additional (border) elements.

Two early bordered matrix methods have been proposed by Kubiček (1979,
1980). In these methods two additional variables are introduced which describe
the purely imaginary eigenvalues.

A major drawback is that the bordered matrix methods are numerically less
stable than indirect methods. To consider the eigenvectors as well as the eigen-
values improves the stability of the method and its efficiency in continuation
problems. In most later methods the system is therefore augmented by condi-
tions describing the eigenvalues as well as the corresponding eigenvectors. As
a result the dimension of the system grows to at least 2N + 1 (Griewank and
Reddien 1983, Roose and Hlavaček 1985, Roose 1985, Holodniok and Kubiček
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1984, Werner 1996).
In practice bordered matrix methods are widely used and are implemented in

most software packages for numerical bifurcation analysis (Doedel and Kernévez
1986, Back et al. 1992, Feudel and Jansen 1992, Kuznetsov and Levitin 1996,
Doedel et al. 1997). From the computational point of view the additional com-
plexity that is introduced by computing the eigenvectors in the bifurcation point
is only a minor drawback. In many cases the knowledge of eigenvectors is desired
anyway for normal form computation or as a starting point for the continuation
of the emerging limit cycle. However, the size and complexity of the bordered
matrices makes them unsuitable for analytical solution.

Classical methods
For analytical computation of Hopf bifurcations the so-called classical meth-

ods are more suitable. The mathematical insights on which these direct methods
are based date back to the 19th century (Clifford 1868, Hurwitz 1895, Stéphanos
1900). An overview of classical methods is given by Fuller (1968).

One of the methods discussed therein is the well-known Routh-Hurwitz cri-
terion. This criterion has been implemented in the software LinLBF (Khibnik
1990).

Two other criteria presented by Fuller (1968) are based on Kronecker prod-
ucts and bialternate products of matrices. The Kronecker product yields a con-
dition which involves a full determinant of size N2. This method is therefore
very difficult to apply.

In comparison the bialternate product method yields smaller, more sparcely
populated matrices. This method has been studied in the context of bifurcation
theory by Fuller (1968), Guckenheimer et al. (1997) and Govaerts (2000). In a
given dynamical system with Jacobian J a center symmetric pair of eigenvalues
exists if |2J ⊗ I| vanishes. In this equation ⊗ denotes the bialternate matrix
product and I is the identity matrix of size N . The determinant is of size
N(N − 1)/2 and consists of elements which are polynomials of up to second
order of the elements of the Jacobian.

For analytical computations the complex structure and the size of the deter-
minant (which still grows as N2) are disadvantageous. A numerical approach
based on the bialternate product has been implemented in the software CON-
TENT (Kuznetsov and Levitin 1996).

3.2 The method of resultants

In the previous section several methods for the computation of Hopf bifurcations
have been discussed. By contrast, this section is devoted to a more detailed
discussion of one specific method. In the following this method is called the
method of resultants.

Our original derivation of the method was not based on resultants. Instead,
it was shown by induction that conditions of a certain form can be used to com-
pute Hopf bifurcations. A closer inspection of these criteria revealed, that the



22 CHAPTER 3. COMPUTATION OF HOPF BIFURCATIONS

conditions can be written in determinant form. This yields Sylvester resultants,
which are explained in detail below. In the discussion presented here we use
the theory of resultants. In this way the conditions for Hopf bifurcations can
be derived in a more direct way.

3.2.1 A testfunction for symmetric eigenvalues

Our first aim is to derive a testfunction that detects situations in which center
symmetric eigenvalues

λa = −λb (3.1)

are present. The eigenvalues λ1, . . . , λN of the Jacobian J are roots of the
Jacobian’s characteristic polynomial

P (λ) = |J − λI| =
N∑

n=0

cnλ
n = 0, (3.2)

where c0, . . . , cN are constant polynomial coefficients. The two center symmetric
eigenvalues λa and λb have to satisfy Eq. (3.1) as well as

P (λa) =
N∑

n=0

cnλa
n = 0, (3.3)

P (λb) =
N∑

n=0

cnλb
n = 0. (3.4)

By applying Eq. (3.1) the second equation can be written as

P (λb) =
N∑

n=0

cn(−1)nλa
n = 0. (3.5)

We form the sum and the difference of Eq. (3.3) and Eq. (3.5). This yields

N∑
n=0

cn(1 + (−1)n)λa
n = 0, (3.6)

N∑
n=0

cn(1 − (−1)n)λa
n = 0. (3.7)

Note that, Eq. (3.6) contains only terms of even order in λa while only odd
orders of λa appear in Eq. (3.7). To remove the odd orders altogether we
assume λa �= 0 and divide Eq. (3.7) by λa. As a result we obtain

N∑
n=1

cn(1 − (−1)n)λa
n−1 = 0. (3.8)
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This equation contains only even orders of λa. The order of the polynomials
can now be reduced by defining

χ := λa
2. (3.9)

The quantity χ is called Hopf number. Using Eq. (3.9) the conditions Eq. (3.6)
and Eq. (3.8) can be written as

N/2∑
n=0

c2nχ
n = 0, (3.10)

N/2∑
n=0

c2n+1χ
n = 0. (3.11)

where N/2 has to be rounded up or down to an integer value as required.

Using the symmetry condition Eq. (3.1) we have managed to split the char-
acteristic polynomial into two polynomials of half order. By doing so, we have
simplified the computation of center symmetric eigenvalues considerably. In-
stead of having to factorize a polynomial of order N , we can now check for the
existence of common roots of two polynomials of the order N/2. In contrast, to
explicit analytical factorization, which is only possible for polynomials of order
N ≤ 4, common roots of two polynomials can in general be computed regardless
of the order of the polynomials.

Two polynomials have a common root if their resultant vanishes (Gelfand
et al. 1994). Using the Sylvester formula, the resultant R of the polynomials
Eq. (3.10) and Eq. (3.11) can be written as a Hurwitz determinant of size (N −
1) × (N − 1). This yields

R :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c0 0 0 . . . 0 0
c3 c2 c1 c0 . . . 0 0
...

...
...

...
. . .

...
...

cN cN−1 cN−2 cN−3 . . . c1 c0
0 0 cN cN−1 . . . c3 c2
...

...
...

...
. . .

...
...

0 0 0 0 . . . cN cN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.12)

where we have for the sake of simplicity assumed that N is odd.

The resultant can be constructed by following a simple algorithm: Take a
determinant of size (N − 1) × (N − 1). Fill the first element of the first row
with c1. If the first element of a given row is cn the first element of the next
row is cn+2. If an element is cn the next element in the same row is cn−1. Use
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these rules to fill the whole determinant. Finally, set all coefficients that do
not appear in the characteristic polynomial (e.g. c−1) to zero. For instance the
resultant for N = 6 is

R =

∣∣∣∣∣∣∣∣∣∣

c1 c0 0 0 0
c3 c2 c1 c0 0
c5 c4 c3 c2 c1
0 c6 c5 c4 c3
0 0 0 c6 c5

∣∣∣∣∣∣∣∣∣∣
. (3.13)

In comparison to the bialternate product the Sylvester resultant yields a much
smaller determinant. This advantage is gained at the cost of having more com-
plex terms (in this case the polynomial coefficients) as elements of the determi-
nant. Using other forms of resultants like for example the Bezout resultant or
the Companion matrix the size of the determinant can be decreased further at
the cost of having even more complex entries.

3.2.2 Bifurcations involving symmetric eigenvalues

In Sec. 3.2.1 we have shown that resultants can be used as a testfunction for
center symmetric eigenvalue pairs. Let us now assume that the resultant R van-
ishes. It is a major advantage of the method of resultants that the corresponding
Hopf number χ can in general also be calculated.

A major advantage of the method of resultants is that the Hopf number can
be computed from subresultants. These subrersultants can be constructed by
following a simple algorithm: For systems with N > 3, delete the last two
columns and the last row of the matrix in R (cf. Eq. (3.12)). This yields a
(N − 3)× (N − 2) matrix A. Now we obtain the (N − 3)× (N − 3) matrix B by
deleting an arbitrary row j (say, 1) of A. Form the another (N − 3) × (N − 3)
matrix C by deleting the row j+1 of the matrix A. The Hopf number can now
in general be written as a quotient of determinants

χ = −|B|
|C| . (3.14)

We consider the example N = 6 again which yields (for j = 1)

χ = −

∣∣∣∣∣∣
c1 c0 0
c5 c4 c3
0 c6 c5

∣∣∣∣∣∣∣∣∣∣∣∣
c3 c2 c1
c5 c4 c3
0 c6 c5

∣∣∣∣∣∣
. (3.15)

For systems with N = 3 or N = 2 the Hopf number is simply

χ = −c0
c2
. (3.16)
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Once the Hopf number has been found we can compute the center symmetric
eigenvalues

λa,b = ±√
χ. (3.17)

Based on the value of the Hopf number we can distinguish four different situa-
tions, which are discussed in more detail below.

Hopf bifurcation
Assume that the resultant R vanishes in a given steady state. If the Hopf

number χ is negative, a purely imaginary pair of eigenvalues exists. We can say
that a point in parameter space p∗ is a Hopf bifurcation point if and only if

R(p∗) = 0,
χ(p∗) < 0. (3.18)

The Hopf bifurcation is generic if the eigenvalues cross the imaginary axis with
nonzero velocity. This is the case if

∂R(p)
∂p

∣∣∣∣
p=p∗

�= 0. (3.19)

Takens-Bogdanov bifurcation
If the resultant as well as the Hopf number vanish in a given bifurcation

we have a double zero eigenvalue. This case corresponds to a codimension-2
Takens-Bogdanov bifurcation.

At first glance it seems strange that the method of resultants works in this
case since we had to divide by λa to obtain Eq. (3.8). A closer inspection of
the equations reveals the following: If λa vanishes the conditions Eqs. (3.3),
(3.4) are not strictly equivalent to Eqs. (3.10), (3.11). A single zero eigenvalue
solves the conditions Eqs. (3.3), (3.4), but not the conditions Eqs. (3.10), (3.11).
However, multiple zero eigenvalues, solve Eq. (3.3), (3.4) as well as Eq. (3.10),
(3.11). The method of resultants can therefore be used to compute Takens-
Bogdanov bifurcations, but not saddle-node bifurcations.

Pseudo Hopf situation
Let us now consider a steady state in which the resultant vanishes, but the

Hopf number is positive. In this case the Jacobian has two purely real, center
symmetric eigenvalues. This is the case in the pseudo Hopf situation that we
have described in Chap. 2.

Complex Hopf situations
We have said that the Hopf number that corresponds to a center symmetric

eigenvalue pair can in general be found by computing the quotient of certain
sub resultants. However, this approach is doomed to fail if more than one
center symmetric pair of eigenvalues exists. In this case the numerator and
the denominator of the quotient in Eq. (3.9) vanish and the Hopf number χ is
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undetermined. We refer to the situations in which this is the case collectively
as complex Hopf situations.

Complex Hopf situations are in general of higher codimension. We can
therefore expect that the Hopf number can be computed anywhere except on
certain hyperlines in parameter space.

One can think of several types of complex Hopf situations. The most impor-
tant one is the double Hopf bifurcation, which has been discussed in Sec. 2.3.4.
Other complex Hopf situations include for instance the Hopf bifurcation on a
1:1-resonant saddle or the codimension-3 Takens-Bogdanov-Hopf bifurcation in
which two zero and two purely imaginary eigenvalues exist.

Hopf Number Eigenvalues (EVs) Bif. situation

negative 2 purely imaginary EVs Hopf bifurcation
positive 2 symmetric real EVs pseudo Hopf situation
zero double zero EV Takens-Bogdanov bif.
undetermined more than 2 symmetric EVs more complex situation

(e.g. double Hopf bif.)

Table 3.1: Four different situations in which the resultant vanishes.

3.3 Extension to Hopf bifurcations in maps

In this chapter we have focused on the computation of Hopf bifurcations in
systems of ODEs However, resultants can be used to compute other bifurcations
in a similar way.

The extention of the method of resultants to Hopf bifurcations in maps is
particularly interesting. In ecology maps turn up as models of populations
with non-overlapping generations (May 1976) or as Poincaré maps of differential
equation systems.

In systems of maps fixed points can be defined analogously to steady states
in ODEs. In a given fixed point a Hopf bifurcation occurs if a pair of complex
conjugate eigenvalues crosses a unit circle around the origin of complex plane.
The bifurcation is characterized by the presence of a pair of eigenvalues with

λaλb = λaλa
† = 1. (3.20)

This condition is analogous to the symmetry condition Eq. (3.1). By applying
it in a similar way we obtain a system of coupled polynomials

N∑
n=0

cnλa
n = 0, (3.21)

N∑
n=0

cnλa
N−n = 0. (3.22)
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These conditions are analogous to Eqs. (3.3), (3.4). Note however, that in
Eq. (3.22) the order of characteristic polynomial coefficients is reversed, while
in Eq. (3.4) the signs of the odd terms had been inverted.

We can use resultants immediately to locate the common roots of Eqs. (3.21),
(3.22). Alternatively, some further transformations can be used to reduce the
order of the polynomials to N/2. For maps this reduction is more complicated
than the one we have applied for the ODE system. Since it is of no importance
for the analysis of the ecological models discussed in this work, we omit the
details of the calculations here. The application of resultants in map systems
will be discussed in detail in (Gross and Feudel 2004a).

3.4 Advantages of resultants

Several methods for the computation of Hopf bifurcations have been discussed
in this chapter. Generally speaking, we can distinguish three classes of methods:
indirect methods, bordered matrix methods and classical methods.

The indirect methods are in a certain way the most straight forward ap-
proach. They can only be used for numerical computations, but have the ad-
vantage of high numerical stability.

In practice, bordered matrix methods are used more frequently. Although
they are only locally convergent they have been shown to be more efficient
than the indirect methods. This is in particular true if continuation of Hopf
bifurcations is desired.

Classical methods exploit the symmetry of the imaginary eigenvalue pair.
They are rarely used in numerical bifurcation analysis, although some methods
based on classical approaches have been implemented. For analytical bifurcation
analysis classical methods are in general advantageous since they do not generate
unwanted information (e.g. additional eigenvalues, eigenvectors).

A historical point of view
Classical methods have been widely used for stability analysis before comput-

ers became available. However, the first numerical algorithms for the compu-
tation of Hopf bifurcations that were implemented on computers were mostly
indirect methods. Later advances in computer hardware, programming lan-
guages and numerical analysis made the efficient implementation of bordered
matrix methods possible. The availability of computers and bifurcation soft-
ware stimulated a rapid development of dynamical systems theory. Because
of the success of indirect and bordered matrix methods, the classical methods,
which are more difficult to implement on computers have long been neglected.
However, during the last years powerful computer algebra packages like Maple
and Mathematica have become available. In the framework of computer alge-
bra the classical methods can be implemented easily. For instance, the bialter-
nate matrix product as well as Sylvester and Bezout resultants are included in
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Maple’s LinearAlgebra library. In the light of these new developments it is time
to reconsider the classical methods.

Advantages of classical methods
Using classical methods testfunctions for the existence of center symmetric

eigenvalues can be derived. In small and intermediate systems these testfunc-
tions can often be solved analytically. This yields explicit expressions for bi-
furcation surfaces, which are otherwise difficult to obtain. If a testfunction can
not be solved explicitly, its roots can be computed numerically. In Gucken-
heimer and Myers (1996) the numerical evaluation of testfunctions found by
using Bezout resultants was found to be more efficient than the widely used
bordered matrix method of Griewank and Reddien (1983). Another advantage
of the classical methods is their analytical nature which is advantageous for
the application in efficient continuation schemes, the calculation of normal form
coefficients and the extention to bifurcations of higher codimension.

Comparison between resultants and the bialternate product
Among the classical methods the bialternate product has recently received

much attention (Govaerts 2000). In comparison to the Sylvester resultant the
bialternate product is easier to implement in numerical codes. Furthermore,
the bialternate product method avoids the computation of coefficients of the
characteristic polynomial, which is known to be numerically unstable. However,
for our computer algebra based approach these numerical advantages are not
of importance, since the implementation is easy and the coefficients are not
calculated numerically, but analytically.

The main difficulty that has to be overcome in computer algebra based
bifurcation analysis is the growing complexity of the solutions. Although the
complexity of the final solution (e.g. the bifurcation surface) should not depend
on the method, the complexity of intermediate solutions does vary. Here the
Sylvester resultant has an advantage. The computation can be carried out in
two steps: computation of the coefficients and computation of the resultant. For
the Sylvester resultant both steps involve the computation of a determinant of
size N or N−1. That means, the complexity is balanced between the two steps.
This is an advantage since simplifications and substitutions can be made after
the first step. By contrast, the first step is simpler for the bialternate product
method while the second is much more complex because of the large size of the
determinant.

Another advantage of the Sylvester resultant is the simple structure of the
determinant. In comparison the structure of the bialternate product matrix is
much more complicated. The smaller size and simpler structure is advantageous
for analytical proofs.

Finally, the fact that the Hopf number can be easily computed from subresul-
tants is a great advantage. A similar procedure employing bialternate products
has not been discovered so far.



Chapter 4

A model for general
food chains

In this chapter we formulate the general food chain model on which the ma-
jority of our ecological conclusions are based. Instead of trying to describe a
specific food chain we aim to gain general insights in the functioning of ecolog-
ical systems as such. Despite its generality, the model can be analyzed with
tools of local bifurcation theory. In this way the model enables us to study the
local dynamics of ecological systems in a very general way. Although we present
some results, the emphases of this chapter is on the formulation of the model.
The advantages of the general approach will become apparent in the subsequent
chapters. In Chap. 5 we apply the general model to formulate a possible solution
for the famous paradox of enrichment. In Chap. 6 the general model is used to
prove that chaotic dynamics generally occur in long food chains.

We motivate our general treatment of food chains with a brief review of
specific food chain models in Sec. 4.1. The general model is formulated in
Sec. 4.2. Most importantly the model is normalized in a way that enables us to
compute the local bifurcations. In order to illustrate this analysis bifurcation
diagrams for food chains of different length are computed in Sec. 4.3. The results
of this chapter are summarized in Sec. 4.4.

4.1 Strength and weakness of specific models

The central task one faces in mathematical modeling is to describe the pro-
cesses observed in nature in the language of mathematics. To this end most
mathematical models employ specific functional forms. These functions are fit-
ted to observations by tuning a number of parameters. However, because of
the complexity of ecological systems every function that is proposed to model a
given process can only be an approximation of reality. The conclusions that are
drawn from a specific model are therefore based on an implicit assumption. We
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have to assume that the behavior of the model does not depend strongly on the
exact functional forms that are used in modeling. Otherwise the dynamics of
the natural system may differ qualitatively from the dynamics of the model. In
the present work we show that this danger is very real in models of ecological
food chains.

A food chain is a simple trophic system in which the species are arranged
into different levels. In a classical food chain every trophic level is occupied by
a only one species. However, many food chain models are studied which describe
more complex systems. In this case all species that populate the same trophic
level are described by a single state variable. For instance the phytoplankton-
zooplankton food chain proposed by Steele and Henderson (1992) consists of
two state variables which denote the total abundances of phytoplankton an
zooplankton respectively.

A food chain model has to describe the interactions of species among each
other and with the environment. Examples of interactions with the environment
are the uptake of nutrients or accidental death because. These interaction are
modeled in the form of growth and mortality terms. Among each other the
species in the food chain interact primarily by predation. This interaction is
described in models by the so-called response functions.

In the past many different food chain models have been studied. The first
model of ecological food chains was proposed independently by Lotka (1925) and
Volterra (1926). By applying the law of mass action, known from chemistry,
Lotka and Volterra derived a very simple mathematical description of predation.
The simplicity of the model enabled Lotka and Volterra to obtain an analytical
solution and to make testable predictions. However, in the early experiments
by Gause (1934) it became apparent that the Lotka-Volterra model offers only
a very rough description of nature.

Better models of food chains can be derived by taking additional biological
details into account. For instance by considering that the predator needs a
finite time for “handling” the prey after capture the so-called Monod function
can be obtained. This function was proposed independently by Michaelis and
Menten (1913) in the context of biochemistry, by Monod (1949) in the context
of microbiology and by Holling (1959) in the context of entomology. The Monod
function offers a better description of predation than the simpler function used
in the Lotka-Volterra model. However, many aspects of the complex nature
of predation are still not considered. By taking further biological details into
account a large number of “realistic” models may be obtained. Among others the
transition of prey to invulnerable states (Abrams and Walters 1996), interference
of predators (DeAngelis et al. 1975) and the effect of hunger on the predator
(Ivlev 1961) have been considered in literature.

In view of the large number of different mathematical descriptions of preda-
tion that may be derived experimental confirmation or rejection of specific re-
sponse functions would be desirable. However, experimentally it is only possible
to distinguish between broad classes of functions. For instance the dependence
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of predation on prey abundance that can be observed in nature can be classified
into three or four distinct types (Holling 1961). These Holling types, which
will be discussed in more detail in Chap. 5, are classes of qualitatively different
forms of predator-prey interaction. While it is in general possible to distinguish
different Holling types in experiments (Verity 1991), it is extremely difficult to
reject one of two functions of the same Holling type (Mullin et al. 1974).

Since direct experimental evidence that points toward a specific mathemat-
ical formulation of predation is in general not available it seems reasonable to
use the simplest function that agrees with the experiments. Simple models are
advantageous for analytical and numerical analysis. Furthermore, the available
amount of experimental data is often not sufficient to fit the larger number of
parameters found in more complex functions. Consequently, it is not surprising
that the majority of ecological models considered today are still based on very
simple mathematical functions.

Despite their advantages simple mathematical models should be treated with
caution. Think of the implicit assumption which we have mentioned at the
beginning of this section. Whenever we model a given interaction by a specific
mathematical function we risk to end up with a system that does not describe the
generic behavior observed in nature. In other words, we may have overlooked
some aspect of biological reality that has an important impact on the model.
Conclusions on the dynamics that are based on specific models may therefore
have very limited range of validity. Even if the same behavior is predicted by
several specific models, other models may exist which make radically different
predictions. In fact, we show in Chap. 5 that the stability of steady states
depends very sensitively on the shape of the response function. In Chap. 6 we
show that certain degeneracies arise in models in which the mortality terms are
exactly linear. Furthermore, we prove in Chap. 7 that competing predators can
coexist in a stationary state if intraspecific competition between predators is
taken into account. By contrast, such a coexistence is impossible in simpler
models.

In oder to avoid the degeneracies and uncertainties that arise in specific
models we follow a different approach. In this chapter we formulate and analyze
a general food chain model that does not rely on specific functional forms. In the
subsequent chapters we apply this model to check whether results from specific
models hold in the general context.

4.2 Formulation of a general food chain model

In the past the global stability and persistence of general models has been
studied by Saunders and Bazin (1974), Gard (1980), Freedman and So (1985)
and others. But, the investigation of local bifurcations has, to our knowledge,
not been addressed in a general context. In this section we present an approach
for the investigation of the local stability of steady states in a general food chain
model.
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4.2.1 The general model

Let us consider a simple, general food chain of N trophic levels. In a sim-
ple food chain there is exactly one model species on every trophic level. This
model species represents either a single species or a group of similar species
(e.g. say, phytoplankton). We number the model species from the primary pro-
ducer (species 1) to the top-predator (species N). The size of the population of
species n is denoted by the variable Xn. Depending on the system under con-
sideration Xn can stand for abundance, biomass density or any other variable
that quantifies the size of the population. In the following we use these terms
equivalently.

The dynamics of the food chain can be described by a set of N ordinary
differential equations. We assume that each species feeds only on the species
on the immediately lower trophic level. The biomass loss of species n due to
predation by species n+1 is described by a general function Fn(Xn,Xn+1). We
take into account that only a fraction ηn+1 of the consumed prey biomass can
be transformed into predator biomass.

Apart from predation other terms have to appear in the model. The primary
producer grows by feeding on nutrients which are not modeled explicitly. We
assume that the primary production can be described by a function S(X1).
Primary producer mortality (apart from predation) can also be included in
S(X1). The biomass loss of other species is modeled in form of mortality terms
Mn(Xn). These terms represent biomass loss due to natural death, maintenence
costs, diseases or predation by predators which are not modeled explicitly. For
the top predator we call the mortality term D(XN ) (instead of MN (XN )) to
indicate that it plays a different role in the dynamics of the model. Taking these
factors into account we obtain the ODE system

Ẋ1 = S(X1) − F1(X1,X2),
Ẋn = ηnFn−1(Xn−1,Xn) − Fn(Xn,Xn+1) −Mn(Xn),
ẊN = ηNFN−1(XN−1,XN ) −D(XN ),

(4.1)

where n runs from 2 to N − 1.

4.2.2 Normalization of the model

So far we have formulated a general food chain model. Let us now study the
stability of steady states in this model. In general, one would start this analysis
by computing the abundances in the steady state. However, this is not possible
with the chosen degree of generality. In fact, we can not even compute the
number of steady states. We avoid this difficulty by assuming that a positive, but
not necessarily stable, steady state X1

∗, . . . , XN
∗ exists. We define normalized

variables
xn :=

Xn

Xn
∗ for n = 1, . . . , N. (4.2)
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and normalized biomass flows

fn(xn, xn+1) :=
Fn(Xn

∗xn,Xn+1
∗xn+1)

Fn(Xn
∗,Xn+1

∗)
for n = 1, . . . , N − 1 (4.3)

s(x1) :=
S(X1

∗x1)
S(X1

∗)
, (4.4)

d(xN ) :=
D(XN

∗xN )
D(XN

∗)
. (4.5)

The biomass can be normalized in this way since it is generally reasonable to
assume that they do not vanish in the steady state. By contrast, we have to be
more careful in the normalization of the mortality terms. We define

mn(xn) :=
{
Mn(Xn

∗xn)/Mn(Xn
∗) for Mn(Xn

∗) �= 0
0 for Mn(X) = 0 for all X (4.6)

This definition allows us to consider systems in which the mortality is neglected
“by design”. In both cases we can use the normalized variables and flows to
write Eq. (4.1) as

ẋ1X1
∗ = s(x1)S(X1

∗) − f1(x1, x2)F1(X1
∗,X2

∗),
ẋnXn

∗ = ηnfn−1(xn−1, xn)Fn−1(Xn−1
∗,Xn

∗)
−fn(xn, xn+1)Fn(XN

∗,Xn+1
∗) −mn(xn)Mn(X∗

n),
ẋNXN

∗ = ηNfN−1(xN−1, xN )FN−1(XN−1
∗,XN

∗)
−d(xN )D(XN

∗).

(4.7)

for n = 2, . . . , N − 1. Let us consider the system in the normalized steady state

x1
∗ = . . . = xN

∗ = 1. (4.8)

By applying the definitions of the normalized biomass flows we find

fn(xn
∗, xn+1

∗) = 1 for n = 1, . . . , N − 1 (4.9)

s(x1
∗) = d(xN

∗) = 1, (4.10)

and

mn(xn
∗) =

{
1 for Mn(Xn

∗) �= 0
0 for Mn(X) = 0 for all X (4.11)

By applying these relations to Eq. (4.7) we obtain

S(X1
∗)

X1
∗ =

F1(X1
∗,X2

∗)
X1

∗ =: α1 (4.12)

ηnFn−1(Xn−1
∗,Xn

∗)
Xn

∗ =
Fn(Xn

∗,Xn+1
∗)

Xn
∗ +

Mn(X∗
n)

Xn
∗ =: αn (4.13)

ηNFN−1(XN−1
∗,XN

∗)
XN

∗ =
D(XN

∗)
XN

∗ =: αN . (4.14)

Since only constants appear, these equations hold even if the system is not in
the steady state.
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In this work the parameters α1, . . . , αN and other parameters defined below
are called general parameters. We use this name to indicate, that these param-
eters describe general properties of ecological systems.

By applying the definition of α1 to Eq. (4.7) we can simplify the differential
equation of the primary producer to

ẋ1 = α1 (s(x1) − f1(x1, x2)) . (4.15)

Likewise, applying the definition of αN to the differential equation for the top-
predator yields

ẋN = αN (fN−1(xN−1, xN ) − d(xN )) . (4.16)

In order to simplify the other differential equations in a similar way we define
additional general parameters

bn :=
1
αn

Fn(Xn
∗,Xn+1

∗)
Xn

∗ . (4.17)

Comparing Eq. (4.17) to the second line of the definition of αn reveals

1 − bn =
1
αn

Mn(X∗
n)

Xn
∗ . (4.18)

In terms of the parameters bn and αn we can write

ẋn = αn (fn−1(xn−1, xn) − bnfn(xn, xn+1) − (1 − bn)mn(xn)) . (4.19)

The normalization presented in this section is a crucial step in the analysis
of the model. By means of the normalization we have managed to rewrite the
model in such a way that the unknown steady state does not appear explicitly
anymore. Although the general parameters depend in general on the unknown
steady state we show in Sec. 4.2.4 that they can be interpreted biologically.

4.2.3 Stability of steady states

The previous section has shown that the normalized model can be written as

ẋ1 = α1 (s(x1) − f1(x1, x2)) ,
ẋn = αn (fn−1(xn−1, xn) − bnfn(xn, xn+1) − (1 − bn)mn(xn), )
ẋN = αN (fN−1(xN−1, xN ) − d(xN )) .

(4.20)

Let us now return to the question of local asymptotic stability. The stability
of the normalized steady state is in general determined by the Jacobian in the
steady state. In our food chain model only certain terms appear in the Jacobian.
We define the general parameters

φ :=
∂s(x1)
∂x1

∣∣∣∣
x=x∗

, (4.21)
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p :=
∂d(xN )
∂xN

∣∣∣∣
x=x∗

. (4.22)

γn :=
∂fn(xn, xn+1)

∂xn

∣∣∣∣
x=x∗

for n = 1 . . . , N − 1 (4.23)

ψn :=
∂fn(xn, xn+1)

∂xn+1

∣∣∣∣
x=x∗

for n = 1 . . . , N − 1 (4.24)

µn :=
∂mn(xn)
∂xn

∣∣∣∣
x=x∗

for n = 2 . . . , N − 1 (4.25)

Using these parameters the Jacobian in the normalized steady state can be
written as

J =

⎛
⎜⎜⎜⎜⎝

α1

α2

. . .

αN−1

αN

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

(φ− γ1) −ψ1

γ1 (ψ1 − ω2) −b2ψ2

. . .
. . .

. . .

γN−2 (ψN−2 − ωN−1) −bN−1ψN−1

γN−1 (ψN−1 − p)

⎞
⎟⎟⎟⎟⎠ .

where vanishing elements have been omitted and ωn := bnγn + (1 − bn)µn.

Note that we can write the Jacobian in a given steady state entirely in terms of
the general parameters. The general parameters provide all the information that
is required to compute the local bifurcations of the steady state under consid-
eration. However, based on the Jacobian alone we can not distinguish between
sub-critical and super-critical Hopf bifurcations or between generic saddle-node
bifurcations and transcritical bifurcations since this would require additional in-
formation on the normal form coefficients. In order to include this information
in the general model additional general parameters would have to be defined.
Although this would certainly be rewarding it is beyond the scope of the present
work.

4.2.4 Parameters and simplifications

So far we have used mathematics to rewrite and simplify the model. Most impor-
tantly, the unknown steady state does no longer appear explicitly in the model
equations. This advantage has been gained by introducing a number of general
parameters. Let us now study these parameters in more detail and consider
further simplifications based on biological reasoning. The discussion presented
here although outlines the range in which ecologically reasonable values of the
parameters lie.
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Timescales α1, . . . , αN and relative timescale r
From the way in which the parameters α1, . . . , αN appear in Eq. (4.20) it

can be seen that they denote characteristic timescales of the species. One of
these parameters, say α1 can always be set to one by renormalizing the time
coordinates. After the normalization the other parameters α2, . . . , αN denote
the relative length of the characteristic timescales.

In most food chains found in nature an allometric slowing down has been
observed (Yodzis and Innes 1992, Hendriks 1999). That means, the ratio r =
αn/αn+1 is independent of the tropic level n. We can model this universal
relationship by assuming

αn = rn−1. (4.26)

In general the characteristic timescale of a predator will be longer than the
timescale of its prey. In this work we consider the rang 0 < r < 1. In the
singular perturbation limit r = 0 the timescales are completely separated. By
contrast, r = 1 indicates that the characteristic timescales of predator and prey
are identical.

Nutrient availability φ
The parameter φ is related to the supply of nutrients. According to Eq. (4.21)

φ = 1 means that the primary production is proportional to the abundance of
the primary producer. This is typically the case if nutrients are abundant.
However, if nutrients are scarce the primary production is not limited by the
number of primary producers, but by the available nutrients. In an extreme
case the primary production may remain unchanged if we increase the number
of primary producers. This corresponds to φ = 0.

Predator sensitivity γ1, . . . , γN−1,Γ
The parameters γ1, . . . , γN−1 describe the sensitivity of the predators on the

availability of prey. If prey Xn is abundant the value of γn will in general
approach zero. If prey is scarce the value of γn is larger. A typical case is
γn = 1, which indicates that predation is proportional to the prey density.
Interestingly, the value of γn depends strongly on the feeding strategy employed
by the predator. This relationship is studied in detail in Chap. 5.

In the following we visualize our results in the form of bifurcation diagrams.
In these diagrams we can only vary up to three parameters at a time. In order
to reduce the number of parameters we assume

γ1 = . . . = γN−1 =: Γ. (4.27)

The conclusions presented here do not depend on this assumption in a criti-
cal way. The bifurcation diagrams can look slightly different if the values of
γ1, . . . , γN−1 are changed independently. However, small variations in these pa-
rameters do not alter our results qualitatively. Only if γ1, . . . , γN−1 are chosen
very differently some new bifurcations can appear. This is illustrated in Chap. 6.
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Predator interference ψ1, . . . , ψN−1

The parameters ψ1, . . . , ψN−1 describe the dependence of the predation on
the predator abundance. In many food chains it is reasonable to assume that
the individuals of a species of predators do not interfere. Consequently, the pre-
dation term is proportional to the numbers of predators and the corresponding
parameter ψn is one. However, in other food chains intraspecific competition
between predators can be observed. This is in general the case if other resources
than prey are limiting.

Exponent of closure p
The most important mortality term in the model is the so-called closure

term d(xN ). The related parameter p is called the exponent of closure. The
value of this parameter depends on the cause of the mortality. Let us, for
instance assume, that mortality occurs mainly because of aging and natural
death of individuals. In this case the mortality is roughly proportional to the
biomass density and the exponent of closure is one (cf. Eq. 4.21). By contrast
most diseases inflict a biomass loss which is proportional to the square of the
population density. If such a disease is the main cause for top-predator mortality
the exponent of closure is two. If multiple causes for mortality exist the exponent
of closure is in general between one and two. The impact of the exponent of
closure on the dynamics of the food chain is studied in Chap. 6.

Mortality exponents µ2, . . . , µN−1 and branching ratios b2, . . . , bN−1

The parameters µ2, . . . , µN−1 are very similar to the exponent of closure.
These parameters likewise describe the dependence of the mortality of corre-
sponding species on their biomass density. We will therefore call them mortality
exponents. Unless noted otherwise we assume that these parameters are one.
This choice corresponds to linear mortality terms.

The remaining parameters b2, . . . , bN−1 will be called branching ratios. They
characterize the branching of the biomass flow. The parameter bn indicates
the portion of the biomass loss of species n that occurs because of predation
(cf. Eqs. (4.12), (4.13), (4.14), (4.17)). If the mortality Mn(Xn) of species n is
much larger than the predation biomass loss Fn(Xn,Xn+1) the parameter bn is
close to zero. By contrast bn = 1 indicates that the loss of biomass occurs only
because of predation.

In most of our investigations we neglect all mortality terms apart from the
closure term and set b2 = . . . = bN−1 = 1. We show in Chap. 6 that this
assumption is not critical.

4.3 Bifurcations in general food chains

In this section we investigate the impact of the parameters r, Γ and φ on the
dynamics of food chains. The main purpose of this analysis is to illustrate the
general approach. However, we are able to draw some general conclusions which
provide a basis for the subsequent chapters. In the following we focus on food
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chains of length two to six. Longer food chains are extremely rare. The most
attention will be devoted to food chains of length three or four since they are
more frequent than longer food chains, but more interesting than food chains
of just two levels.

Let us consider the local dynamics of simple food chains. For these first
investigations we assume linear top predator mortality (p = 1), and absence
of intraspecific competition in predator populations (ψ1 = . . . = ψN−1 = 1).
Furthermore we set γ1 = . . . = γN−1 = Γ and neglect the mortality of all
species except the top predator (b2 = . . . = bN−1 = 1). Finally, we assume that
the timescales exhibit an allometric slowing-down αn = rn−1.

Local bifurcations of the di-trophic food chain
For the purpose of illustration we start by considering the di-trophic (that is,

two level) food chain. The Jacobian of this food chain can be written as

J =
(

1 0
0 r

)
×
(

(φ− Γ) −1
Γ 0

)
. (4.28)

From the Jacobian the general saddle-node and Hopf bifurcations of the nor-
malized steady state can be computed. For the general saddle-node bifurcations
we demand

0 = |J| = rΓ, (4.29)

which yields only the trivial solutions r = 0 and Γ = 0.
In two dimensional systems Hopf bifurcations can be found by explicit cal-

culation of the eigenvalues. Let us nevertheless apply the method of resultants.
By computing the resultant (cf. Eq. (3.12)) we obtain the condition

Γ = φ (4.30)

Computation of the Hopf number according to Eq. (3.16) yields

χ = −rΓ. (4.31)

Since the Hopf number is negative for r > 0 and φ > 0, Eq. (4.30) describes
a Hopf bifurcation surface. At r = 0 or φ = 0 the Hopf bifurcation ends in a
Takens-Bogdanov bifurcation.

A three-parameter bifurcation diagram for the di-trophic food chain is shown
Fig. 4.1. Let us introduce this uncommon type of diagram by discussing Fig. 4.1
in detail.

The three parameter axes of the bifurcation diagram span a three dimen-
sional space. Every point in this space corresponds to a class of specific systems
with the respective values of Γ, r and φ. In the diagram the Hopf bifurcation
appears as a red surface while the trivial surfaces that correspond to general
saddle-node bifurcations are not shown. The Hopf bifurcation surface divides
the space into two volumes in which the dynamics is qualitatively different. By
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numerical computation of the eigenvalues of the Jacobian in one arbitrary point
we can check that the normalized steady state is stable in the upper volume.
If we start in the upper volume and vary the values of parameters the steady
state remains stable until the Hopf bifurcation surface is crossed. In the entire
lower volume the normalized steady state is unstable.

Figure 4.1: Bifurcation diagram of a general di-trophic food chain. The stability
of the normalized steady state depends on the predators sensitivity to prey
density Γ, the relative timescale of the predator dynamics r and the availability
of nutrients φ. If parameters are changed a Hopf bifurcation (red surface) can
be crossed. The steady state is stable above the Hopf bifurcation and unstable
below.

Apart from the local bifurcations of steady states, local bifurcation of cycles
as well as global bifurcations can exist. With the chosen degree of generality
these bifurcations can not be computed or plotted in the diagram. In the case
of the di-trophic food chain we can guess that a homoclinic bifurcation emerges
from the Takens-Bogdanov bifurcation.

Local bifurcations of the tri-trophic food chain
In the literature many examples of tri-trophic (three level) food chains have

been studied (Boer et al. 1998, De Feo and Rinaldi 1998, Edwards and Bees
2001). In the context of the general model the local bifurcations of general tri-
trophic food chains can be computed. Like in case of the di-trophic chain we
find trivial bifurcation surfaces at r = 0 and Γ = 0. Such surfaces exist in all
ecological models considered here. In the following we will not mention these
surfaces explicitly unless they play a role in the formation of higher codimension
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Figure 4.2: Local Bifurcations of tri-trophic (top left), four-trophic (top right),
five-trophic (bottom left) and six trophic (bottom right) food chains respectively.
The parameter space is spanned by predator sensitivity Γ, nutrient supply φ and
timescale separation r. As the length of the chains is increased more Hopf bifur-
cation surfaces (red, green, yellow) appear. A general saddle-node bifurcation
surface (blue) is only present for food chains of odd length.

bifurcations.
Apart from the trivial surfaces we find a non-trivial surface of Hopf bi-

furcations and a non-trivial surface of general saddle-node bifurcations. The
bifurcation surfaces are shown in the top-left diagram of Fig. 4.2. In this work
general saddle-node bifurcation surfaces are always shown in blue. All other
colors correspond to surfaces of Hopf bifurcations.

The two bifurcation surfaces shown in the diagram divide the parameter
space into three volumes. In this diagram and all following ones, the normalized
steady state is always stable in the top-most volume of parameter space and
unstable everywhere else. The normalized steady state of the tri-trophic food
chain is therefore stable above the Hopf bifurcation and unstable below.

Like in the di-trophic case local bifurcations of higher codimension are only
formed at the boundary of the parameter space shown. The Hopf bifurcation
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surface ends in a Takens-Bogdanov bifurcation at (φ = 1,Γ = 1) and in a
degenerate Takens-Bogdanov-like bifurcation of codimension-3 at (r = 0,Γ =
φ). Although a detailed analysis of these degenerate bifurcations has not been
carried out their presence indicates that a homoclinic bifurcation is likely to
exist.

Local bifurcations of four-, five- and six-trophic food chains
A bifurcation diagram of a general four-trophic food chain is shown as the

top-right diagram of Fig. 4.2. In this food chain we have two non-trivial bifur-
cation surfaces that correspond to Hopf bifurcations. At the intersection of the
two Hopf bifurcation surfaces a codimension-2 double Hopf bifurcation line is
formed.

In the bifurcation diagram of the general five-trophic food chain (bottom-
left in Fig. 4.2) we find two Hopf bifurcation surfaces and a general saddle-
node bifurcation surface. Again, a line of double Hopf bifurcations is formed
at the intersection of the two Hopf bifurcation surfaces. In addition a line of
Gavrilov-Guckenheimer bifurcations exists at the intersection of the yellow Hopf
bifurcation surface with the general saddle-node bifurcation surface (blue). This
bifurcation line lies below the red Hopf bifurcation surface and is therefore not
visible in the diagram.

The bottom-right diagram of Fig. 4.2 shows a bifurcation diagram for general
six trophic food chains. In the six-trophic case three Hopf bifurcation surfaces
exist. Double Hopf bifurcations are formed on three lines in which two of the
bifurcation surfaces intersect. Of these double Hopf bifurcation lines two are
visible in the diagram. The third double Hopf bifurcation line is formed at the
intersection of the red and the green bifurcation surface and is located below
the yellow bifurcation surface.

Note, that the formation of double Hopf bifurcations indicates that chaotic
parameter regions generally exist in the food chains under consideration. This
result holds independently of the functional form of the interactions.

Local bifurcations in longer food chains
Food chains of more than six trophic levels are very rare in nature. Neverthe-

less it is instructive to formulate some general insights that hold independently
of food chain length. We show in Chap. 7 that many of these insights also apply
to food webs of similar complexity.

In our brief discussion we have already noted that the normalized steady
state is always stable in the top-most volume of parameter space. In other
words, this means that high values of Γ have a stabilizing effect on steady
states. If the parameter Γ is decreased below a critical value bifurcations occur
in which the steady state becomes unstable. In the examples considered so far
this primary loss of stability occurs always in a Hopf bifurcation. However, as we
will see in Chap. 7 a destabilization in a general saddle-node bifurcation is also
possible. Under the assumptions made above a general saddle-node bifurcation
is present in all food chains of odd length. The number of Hopf bifurcation
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surfaces that exist in food chains of length N is in general N/2 (rounded down).
In addition trivial bifurcation surfaces exist at r = 0 and Γ = 0.

Bifurcations of higher codimension are formed by the interaction of Hopf
bifurcation surfaces among themselves or with general saddle-node bifurcation
surfaces. In short food chains (N ≤ 3) local bifurcations of higher codimen-
sion only occur at the boundary of the considered parameter space. The trivial
bifurcation surfaces on which they are formed are likely to be degenerate. Nev-
ertheless, the fact that the Hopf bifurcation ends at these surfaces suggests that
another bifurcation in which a limit cycle vanishes is in general present.

In longer food chains (N > 3) local non-trivial bifurcations of codimension-
2 are formed. In the examples considered so far we have observed Gavrilov-
Guckenheimer and double Hopf bifurcations. However, Takens-Bogdanov bifur-
cations can also occur if other parameters are varied. For our investigations
in Chap. 6 the double Hopf bifurcations are particularly important. Note that
these bifurcations exist in all food chains of four or more trophic levels.

4.4 Summary

In this chapter a general food chain model has been proposed. In the formulation
of this model we have avoided to restrict the ecological processes to specific
functional forms. Instead, the process were described by general functions which
were not specified. Despite the generality of the model we were able to compute
local bifurcation diagrams. The primary purpose of these investigations was to
prove that such an analysis can be performed in the first place. Nevertheless,
we have already made two important observations.

Our investigations have revealed that the effect of the predator-prey interac-
tion on the stability can can be measured in terms of the parameter Γ. The
bifurcation diagrams show that high values of Γ always have a stabilizing effect
on the food chain. This insight is used in the next chapter to study the effect
of enrichment on the stability.

Furthermore we have seen that double Hopf bifurcations appear in all food
chains of four or more trophic levels. This proves that chaotic parameter regions
generically exist in long food chains. We discuss this result in more detail in
Chap. 6.



Chapter 5

The Paradox of Enrichment

In this chapter we study the famous paradox of enrichment. This paradox
revolves around the destabilization of ecological systems as a response to an
increased supply of nutrients. In our discussion of the paradox we follow the
approach outlined in the previous chapter. The applications of the general
model reveals that the paradox of enrichment may be caused by assumptions
that are regularly made in specific models. In this way our treatment of the
paradox of enrichment serves as an illustration and motivation for the general
approach.

We start with a brief review of the paradox of enrichment in Sec. 5.1. There-
after the general model is applied in Sec. 5.2. We identify the sensitivity to prey
density as a key parameter for the stability of the enriched system. In Sec. 5.3
this parameter is computed for a number of specific response functions. Our
analysis reveals that enrichment has always a destabilizing effect on these func-
tions. However, in Sec. 5.4 we propose a realistic function which behaves in a
qualitatively different way. A sufficient condition that indicates this alternative
behavior in response functions is derived in Sec. 5.5. Finally in Sec. 5.6, we
discuss the implications of our result in the context of ecological modeling.

5.1 The classical paradox of enrichment

Many ecological systems provide important resources. It is therefore often tried
to increase the amount of these resources that can be harvested from a given
system. Intuitively one would think, that this can be achieved by enriching the
system, that is by increasing the amount of available nutrients. Although this is
in many cases successful, it was noted by Huffaker et al. (1963) that enrichment
can destabilize ecological systems. In a systematic study Rosenzweig (1971)
showed that the destabilizing effect of enrichment can be observed in many eco-
logical models. Generally, increasing the amount of available nutrients increases
the average abundance of species, but at the same time destabilizes steady states

43
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(Rosenzweig 1977, 1995, May 1987, Gilpin 1972, Abrams and Roth 1994). While
the species should in principle be able to survive in a non-stationary state, it is
often observed that oscillations grow rapidly until extinction occurs (Cunning-
ham and Nisbet 1983, Pascual and Caswell 1997).

Rosenzweig called the observed behavior “Paradox of Enrichment” to indicate
that a beneficial influence (enrichment) can have a detrimental and therefore
paradoxical effect (extinction). However, from a dynamical point of view this
situation is not too paradoxical. Increasing the amount of nutrients relaxes the
nutrient limitation of the primary producer and increases the amount of prey
available to predators. As a result a Hopf bifurcation occurs. If this bifurcation
is supercritical stable oscillations may be observed for some time. But as the
system is enriched further subsequent bifurcations can occur. In fact, we have
shown in Chap. 4 that a homoclinic bifurcation is likely. Therefore we can
expect that stable oscillations can only be observed in a very limited parameter
intervall.

While the dynamics of Rosenzweig’s paradox have been well understood an-
other question has become apparent. Over the years there have been only very
few successful attempts to demonstrate the paradox of enrichment in experi-
ments (Luckinbill 1974, Tilman and Wedin 1991, Morin and Lawler 1995). In
other cases enrichment did not destabilize the system (McAllister et al. 1972,
McCauley and Murdoch 1990) or had a stabilizing effect (Kirk 1998).

In order to explain the disagreement between theory and experiment several
modifications of the simple models have been proposed. For instance the exis-
tence of invulnerable individuals in the prey population (Abrams and Walters
1996), self-limitation of predator growth (DeAngelis et al. 1975, Kirk 1998),
nonlinear mortality of the predator (Bazykin 1974) and spatial heterogeneity
(Jansen 1995) have been considered.

We propose a different solution to the paradox of enrichment. In this chapter
we study how the destabilizing effect of enrichment arises in simple ecological
models and show how this source of instability can be avoided.

5.2 Effects of Enrichment

Let us consider the effects of enrichment in the context of our general food chain
model. Since enrichment increases the abundance of species it effects most of
the general parameters at least slightly. Destabilization occurs if the parameters
change in such a way that a Hopf bifurcation surface is crossed. In Sec. 5.1 we
have identified the nutrient availability φ and the predator’s sensitivity to prey
γ1, . . . , γN−1 (or Γ) as key parameters for the paradox of enrichment. In Chap. 6
we show that the effect of enrichment on other parameters is in general weakly
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stabilizing. Since our primary aim is to understand the cause of instability we
do not consider the impact of enrichment on these parameters here.

In the following we focus on the sensitivity parameters γ1, . . . , γN−1. Essen-
tially the same analysis can be applied for the nutrient availability φ. How-
ever, by studying the sensitivity parameters additional insights on the impact
of predator response functions can be gained.

Figure 5.1: Bifurcation diagram of a tri-trophic food chain. The parameter γ1

denotes the sensitivity of the first predator to the abundance of the primary
producer while γ2 is the sensitivity of the top predator to the first predator.
The parameter φ denotes the availability of nutrients. The normalized steady
state is stable above the Hopf bifurcation (red surface) and unstable below. The
blue surface corresponds to a general saddle-node bifurcation. Enrichment can
destabilize the food chain by increasing φ or decreasing γ1 or γ2.

In the previous chapter we have assumed that the sensitivity of predation to
prey abundance is similar on all levels of the food chain. That is, γ1 = . . . =
γN−1 = Γ. The analysis presented in that chapter confirmed that increasing Γ
has a stabilizing effect on general food chains. This result does in general extend
to the individual parameters γ1, . . . , γN−1. Consider for instance the bifurcation
diagrams of the tri-trophic food chain shown in Fig. 5.1. The sensitivity of
the two predators to the abundance of their prey in the chain is described by
parameters γ1 and γ2. These parameters and the availability of nutrients φ span
a three dimensional parameter space. The normalized steady state is stable in
the top-most volume of the parameter space and unstable everywhere else. The
diagram shows that the steady state of the tri-tropic food chain can be stabilized
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by increasing γ1. Likewise, increasing γ2 has a stabilizing effect since it decreases
the critical value of γ1 at which the Hopf bifurcation (red surface) occurs.

Although small regions exist in which other behavior is observed we can say
that an effect which increases one of the parameters γ1, . . . , γN−1 is generally
stabilizing. On the other hand an effect which decreases one of these parameters
is generally destabilizing.

5.3 Specific response functions

In order to determine whether enrichment is stabilizing or destabilizing the
food chain we have to ask whether it is increasing or decreasing the value of the
parameters γ1, . . . , γN−1.

In many ecological models it is assumed that the function Fn(Xn,Xn+1) can
be separated into a prey dependent part Gn(Xn) and a predator dependent part
En(Xn+1) so that

Fn(Xn,Xn+1) = Gn(Xn)En(Xn+1) (5.1)

The function Gn(Xn) is called predator functional response or predator response
function. By applying Eqs. (4.21 - 4.25) we obtain

γn =
∂

∂xn

Fn(Xn
∗xn,Xn+1

∗xn+1)
Fn(Xn

∗,Xn+1
∗)

∣∣∣∣
xn=1

=
Xn

∗

Gn(Xn
∗)

∂

∂Xn
Gn(Xn)

∣∣∣∣
Xn=Xn

∗
.

(5.2)
In the past several different response functions have been proposed. In this
section we discuss several commonly used response functions and compute the
corresponding values of γn. In these computations we drop the index n for the
sake of simplicity.

According to the classification of Holling (1959) the first type of predator
responses observed in nature are linear functions. The most simple response
function that is commonly used in ecological literature is the Lotka-Volterra
response

GLV(X) = AX, (5.3)

where A is a constant factor. We apply Eq. (5.2) and obtain

γLV = 1. (5.4)

If the Lotka-Volterra function is used in a given model enrichment has no effect
on the corresponding parameters γ. However, the Lotka-Volterra model assumes
that the amount of prey that is consumed by a single predator is proportional to
the prey density. This assumption is reasonable if prey is scarce, but it is clearly
unrealistic for high prey densities. The Lotka-Volterra function is therefore not
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well suited to describe the effects of enrichment. In order to avoid this problem
the rectilinear response

GRL(X) =
{
AX for X ≤ K
AK for X > K

(5.5)

has been proposed. In this function the predator becomes saturated when the
prey density exceeds a certain level K. We can write the corresponding prey
sensitivity γRL as a function of the dimensionless parameter

χ =
X∗

K
. (5.6)

This yields

γRL(χ) =
{

1 for χ < 1
0 for χ > 1 (5.7)

In this function a very strong form of the paradox of enrichment appears. As
soon as the prey density reaches the saturation threshold the sensitivity drops
discontinuously from 1 (very stable) to 0 (very unstable).

One could argue that the sudden destabilization of the rectilinear response is
only caused by its piecewise definition. A more realistic description of predator
saturation is offered by the response functions of Holling type II. These functions
are described as curvilinear responses by Holling. They start out linearly, but
smoothly approach some saturation value as the density of prey increases. The
most prominent Holling type II response is the Monod function

GHD(X) =
AX

K +X
, (5.8)

which is also known as Michaelis-Menten equation (Michaelis and Menten 1913)
or Holling’s disk1 equation (Holling 1959). The Monod function is a very promi-
nent function that is used in a large number of ecological models. Nevertheless
other response functions of Holling type II have been proposed. An example is
the function

GIV(X) = A(1 − exp(−X/K)), (5.9)

which has been derived by Ivlev (1961). Although the GIV(X) and GHD(X) are
different the graphs of the two functions are very similar (cf. Tab. 5.1). Likewise
the corresponding sensitivity function

γHD(χ) =
1

1 + χ
, (5.10)

γIV(χ) =
χ

exp(χ) − 1
(5.11)

1 In some of Holling’s experiments the predators were blindfolded students which hunted
for sandpaper disks in an otherwise empty room.
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behave in a similar way. For vanishing prey density the sensitivity is one. As the
prey density is increased the sensitivity decreases monotonously. In the limit
of high prey density the sensitivity approaches zero for both functions. This
proves that enrichment has always a destabilizing effect on these functions.

It has often been remarked that type III response functions are in general
more stable than the functions of type II. Let us therefore investigate the effect
of enrichment on these functions. The most common type III function is

GH3(X) =
AX2

K2 +X2
. (5.12)

This function is sometimes called vertebrate functional response, since it was
proposed by Holling to describe vertebrates. However, it has been shown that it
descreibes the behavior of many invertebrates as well (Hassel 1978). In contrast
to the Holling type II functions type III functions have a sigmoid shape. Sigmoid
response are observed if predators become less effective if prey densities are low.
Alternatively, it has been argued that the success probability for attacks can
suffer from a lack of practice at low prey densities. The corresponding sensitivity
function

γH3(χ) =
2

1 + χ2
(5.13)

is two for vanishing prey density and therefore very stable. However, the sen-
sitivity decreases monotonously with increasing prey density. At high prey
densities γH3(χ) even drops below γHD(χ). This shows that enrichment has a
strong destabilizing effect if simoid responses are used in a given model.

Another function that is sometimes used to describe sigmoid predator re-
sponse is the multiple saturation function

GMS(X) =
M∏

m=1

AX

X +Km
. (5.14)

This response function is a product of M Monod functions. Because of the
derivative in Eq. (5.2) the corresponding sensitivity function

γMS(χ1, . . . , χM ) =
M∑

m=1

1
1 + χm

(5.15)

is a sum of the Monod sensitivities. Although the sensitivity of the multiple
saturation function is always higher than that of the individual Monod func-
tions it cannot escape the destabilizing effect of enrichment. As prey density is
increased the sensitivity decreases monotonously and approaches zero for high
prey densities.
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0.5 1.0 X

0.5

1.0
G(X)

0.5 1.0 χ

1.0

2.0
γ(χ)

Function G(X) γ(χ) Legend

Rectilinear
AX for X ≤ K
AK for X > K

1 for χ < 1
0 for χ > 1

Monod AX
K +X

1
1 + χ

Sigmoid AX2

K2 +X2
2

1 + χ2

Ivlev A(1 − exp(−X/K)) χ
exp(χ) − 1

Multiple Saturation
∏M

m=1
AX

X +Km

∑M
m=1

1
1 + χm

Holling IV AX
K1K2 +K2X +X2

1 − χ1χ2
1 + χ1 + χ1χ2

Table 5.1: The common response functions G(X) correspond to monotonously
decreasing stability functions γ(χ), where χ = X∗/K and χm = X∗/Km. The
plots show the functions for A = 1, M = 2 and K = K1 = K2 = 1.
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Let us finally consider an example in which the sensitivity does not vanish in
the limit of high prey density. Consider for instance the so-called Holling type
IV function

GH4(X) =
AX

K1K2 +K2X +X2
(5.16)

In contrast to the response functions discussed so far this function describes a
system in which exceedingly high prey density is detrimental for the predator.
At low prey densities the functional response increases with increasing prey
density. However, at a certain density a maximum is reached. If the prey density
is increased further the functional response decreases again. Such behavior can
occur if the prey employs some collective defense against the predator. The
corresponding sensitivity function

γH4(χ1, χ2) =
1 − χ1χ2

1 + χ1 + χ1χ2
(5.17)

depends on two parameters χ1 = X∗/K1 and χ2 = X∗/K2. For very low prey
densities the sensitivity is close to one. As the prey abundance is increased the
sensitivity function decreases monotonously. As the response function reaches
the maximum the sensitivity becomes zero. At higher prey densities the sensi-
tivity is negative. This means that the predators will consume less prey if more
prey is available. Food chains with group defense in the prey population are
therefore in general rapidly destabilized by enrichment.

Apart from the Lotka-Volterra response all response functions we have consid-
ered so far behave in a qualitatively similar way. The corresponding sensitivity
functions decrease monotonously with increasing prey density. We can identify
this destabilizing effect as a major cause of the paradox of enrichment. In the
light of these findings it is not surprising that ecological models based on these
functions are generally destabilized by enrichment. However, the fact that all
prominent response functions behave in a certain way does not imply that the
same has to be true for all other response functions.

5.4 A solution to the paradox

Let us now ask whether a response function exists on which enrichment has a
stabilizing effect. We have to consider that γ(χ) depends on the slope of G(X).
Consequently, γ(χ) has to vanish if G(X) approaches some non-zero saturation
value. Since realistic response functions should in general take predator satura-
tion into account the paradox of enrichment seems to be inevitable. Once the
prey concentration is so high that the predator is saturated its sensitivity to
prey abundance has to approach zero. However, this does not imply that the
stability has to decrease monotonously. As the abundance of prey is increased
the system may pass through several maxima and minima of stability.

Let us for example consider an imaginary species of predators. These preda-
tors hunt by employing either one of two strategies. We assume that the first
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strategy can be described by a Holling type II response function

GS1(X) =
AX

K +X
. (5.18)

while the second strategy follows a Holling type III response

GS2(X) =
AX2

K2 +X2
. (5.19)

We can now write the effective response function GEff(X) as a weighted sum of
GS1(X) and GS2(X). Assuming that the predators are more likely to employ
the more advantageous strategy we choose GS1(X)/GS2(X) as the weight for
the first strategy and GS2(X)/GS1(X) as the weight for the second strategy.
This yields

GEff(X) =
GS1(X)
GS2(X)GS1(X) + GS2(X)

GS1(X)GS2(X)
GS1(X)
GS2(X) + GS2(X)

GS1(X)

(5.20)

Compared to the response functions discussed so far GEff(X) is relatively com-
plex. Nevertheless it still describes biologically simple behavior. The upper
diagram in Fig. 5.2 shows a comparison between GEff(X) and GS1(X). At low
prey densities strategy one is clearly advantageous. Almost all predators are
therefore employing strategy one and GEff(X) is nearly identical to GS1(X).
But as the prey density is increased some predators start to employ strategy
two. Since this is still a disadvantage the function GEff(X) drops a little bit
below GS1(X). However, as the abundance of prey is increased further, strategy
two becomes more advantageous and GEff(X) rises a little above GS1(X). De-
spite these minor differences the two response functions shown in the diagram
look very similar. To distinguish these functions in an experiment would be
extremely difficult.

Let us compute the sensitivity function that corresponds to Eq. (5.20). Ap-
plication of Eq. (5.2) yields

γEff(χ) =
1+5χ2−2χ3+24χ4+22χ5+66χ6+78χ7+93χ8+58χ9+33χ10+4χ11+2χ12

(2χ2+χ+1)(χ4+χ3+2χ2−χ+1)(2χ4+2χ3+3χ2+1)(χ+1)(χ2+1)
(5.21)

This function has been plotted in the lower diagram of Fig. 5.2. A comparison
with the sensitivity γS1(χ) that corresponds to strategy one reveals the following:
At low prey densities the functions are very similar. But, as some predators
start to employ strategy two γEff(χ) falls below the sensitivity of γS1(χ). It is
interesting to note that in this region GEff(X) is less stable than both strategy
one and strategy two. However, as the prey density is increased further γEff(χ)
starts to increase again while γS1(χ) continues to decrease monotonously.

The example shows that the sensitivity depends strongly on the functional
form of the predator-prey interaction. Although the two functions GEff(X) and



52 CHAPTER 5. THE PARADOX OF ENRICHMENT

0.5 1.0 X0.0

0.5

G(X)

0.5 1.0 χ0.5

1.0
γ(χ)

Figure 5.2: Comparison between the Monod function (dashed line) and the
more complex functional response proposed in Eq. (5.20) (continuous line). Both
response functions look very similar (upper diagram). However, they correspond
to qualitatively different sensitivity functions (lower diagram). For the Monod
function enrichment is always destabilizing since it decreases the sensitivity. By
contrast, a large interval exists in which enrichment increases the stability of
the more complex response.

GS1(X) look very similar the corresponding functions γEff(χ) and γS1(χ) are
qualitatively different. Enrichment can not have a stabilizing effect on the sim-
ple response functions considered in Sec. 5.3. However, for the more complex
response function proposed in Eq. (5.20) a large interval exists in which en-
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richment increases the sensitivity and is therefore stabilizing. This shows that
possible solutions to the paradox of enrichment can be found if more biological
details are considered in thederivation of the response functions.

5.5 A condition for non-monotonic stability

So far we have only shown that a response function can be constructed for which
enrichment can have a stabilizing effect. As a next step it is reasonable to ask if
this response function is only a single pathological example or a representative
of a large class of functions. We answer this question by deriving a sufficient
condition which indicates an increasing sensitivity in a certain parameter range.

We define

S(X∗) :=
∂

∂X
G(X)

∣∣∣∣
X=X∗

, (5.22)

R(X∗) :=
G(X∗)
X∗ , (5.23)

which allows us to write Eq. (5.2) as

γ(X∗) :=
S(X∗)
R(X∗)

. (5.24)

Note that S(X∗) is the slope of G(X) in X∗ while R(X∗) is the average slope
of G(X) between zero and X∗.

Let us now consider the diagram in Fig. 5.3. The diagram shows the graph
of GEff(X). Furthermore, a line has been drawn in the diagram that touches
the GEff(X) in two points which we call X1 and X2. The existence of such a
common tangent proves that the slope of GEff(X) is identical in the two points.
In other words this means

S(X1) = S(X2). (5.25)

At the same time the fact that the common tangent intersects the positive y-
axis proves that the average slope in the left point X1 is larger than in the right
point X2 and therefore

R(X1) > R(X2). (5.26)

Assuming R(X2) > 0 and S(X1) = S(X2) > 0 we obtain

γ(X1) =
S(X1)
R(X1)

<
S(X1)
R(X2)

= γ(X2), (5.27)

This proves that the sensitivity increases in average between X1 andX2. We can
say, that the existence of the common tangent intersecting the positive y-axis
implies that enrichment can have stabilizing effect on the response function.
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Figure 5.3: An illustration of the common tangent criterion. The dashed line
in the diagram touches the graph of the response function Eq. (5.20) in two
points (circled) and intersects the positive y-axis. The fact that such a common
tangent exists proves that the stability of the response increases between the
two points.

Although the common-tangent codition is only a sufficient condition it proves
that enrichment has a stabilizing effect on a large class of response functions.
Besides the switching of feeding strategies discussed above, one can think of
many other forms of adaptation to prey density (Abrams and Roth 1994, Hassel
1978). Details of the predator-prey interaction may alter the response function
only slightly but they can have a strong impact on the sensitivity of the response
and therefore on the stability of the system.

5.6 The problem in the paradox

In this chapter we have proposed a solution for the paradox of enrichment. We
have shown that the sensitivity of predator-prey interactions depends strongly
on the shape of the response function. As a result biological details of predator-
prey interaction can have a significant impact on the stability of the system. The
commonly used response functions take only few biological details into account
and model them with very simple mathematical functions. For these functions
the sensitivity decreases monotonously as the prey density is increased. There-
fore enrichment has a destabilizing effect on systems in which these functions
are used. By contrast, more complex functions which take additional biological
details into account are likely to have an increasing sensitivity in certain pa-
rameter ranges. These functions can therefore explain the stabilizing effect of
enrichment that has been observed in experiments.
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Our results show that minor changes in the response function can alter its
sensitivity. Consequently, predators can escape the paradox of enrichment by
adapting to prey density in certain ways. Since the paradox of enrichment
is very disadvantageous from an evolutionary point of view it would not be
surprising to find that the feeding behavior of many species has been optimized
for stability as well as for predation rate. In this light it appears only natural
that the paradox of enrichment has only rarely been observed in nature.

While the arguments presented above provide a solution to the paradox of
enrichment they give rise to a deeper, more profound problem. The paradox
of enrichment shows that the simple commonly used interaction functions may
not predict the stability of steady states correctly. Of course, simplicity is
desirable in models as long as it is consistent with experimental measurements.
Simple response functions are widely used since no direct empirical evidence
is available that would allow to reject these functions. However, the fact that
natural systems are often not destabilized by enrichment, provides this evidence
in an indirect way.

The experimental verification of response function is in general based on the
measurement of abundances. Since the abundance of species is not very sen-
sitive to the shape of the response function simple functions are sufficient to
predict steady state abundances with good accuracy. By contrast, the stability
of the system can depend strongly on the response. In this light it seems advis-
able to verify response functions by measuring the stability of a system under
consideration as it has been done in the experiments by Fussmann et al. (2000).

From the theoretical point of view it would be highly desirable to derive
criteria which allow the researcher to decide which types of effects can possibly
have an impact on the stability of the system under consideration and should
therefore be considered in models. Such criteria may be based on insights gained
in the investigation of general models.

In the context of this work the results on the paradox of enrichment serve as
a motivation as well as an illustration of the general approach. In this chapter
many results have been obtained by considering specific interaction functions.
However, our analysis as such was based on a result of the general model: the
fact that the impact of the predator-prey interaction on the stability can be
measured in terms of γ. The identification of general parameters has an enabled
us to compare different functions that are used in specific models. This was
possible since we did not make any assumptions on the response functions in
the general model.

Our results demonstrate that qualitatively different types of behavior may
be possible despite the fact that a large number of specific models behave in
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a similar way. These findings underline the need to verify conclusions from
specific models in a general context.



Chapter 6

Chaos in general
food chains

The previous chapter has shown that specific models may behave in a certain
way while other realistic models exhibit a different kind of behavior. A very
interesting and much debated question is whether chaos exists in nature. While
chaos is found in some models it seems to be absent from others. In this chapter
we use our general food chain model to investigate whether chaotic regions exist
generically in long food chains. In particular we focus on the question whether
stabilizing influences like strong, nonlinear mortality may prevent the formation
of chaotic regions. In Chap. 7 we show that these results can be extended to a
large class of food webs.

We start with a brief review of experimental and theoretical evidence for chaos
in ecological systems. The computation of Lyapunov exponents - a numerical
technique for the detection of chaotic dynamics - is introduced in Sec. 6.2.
Our conclusions on the existence of chaos in general models are based on the
computation of double Hopf bifurcations. However, we use the computation
of Lyapunov exponents to illustrate our results in a specific example. These
investigations are presented in Sec. 6.3. Finally, we summarize the results in
Sec. 6.4.

In effect this chapter follows the lines of the (Gross et al. 2004). However,
some additional material is presented in the second half of the chapter. In
particular we show two examples for degenerate double Hopf bifurcations.

6.1 Chaos in ecology

In the investigation of chaos, examples from ecology have always played an im-
portant role. For instance May (1974, 1976) showed that very simple ecological

57
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models can exhibit chaotic dynamics. While these examples have inspired many
advances in dynamical systems theory the question whether chaos exists in na-
ture is still debated (May 1987, Upadhyay et al. 1998, Rai and Schaffer 2001,
Cushing et al. 2002).

In experiments chaos is generally difficult to detect because of the presence of
observational noise (Nychka et al. 1992, Ellner and Turchin 1995). Nevertheless,
chaos has been found for instance in the dynamics of perennial grasses (Tilman
and Wedin 1991), flour beetles (Cushing et al. 1996) and boreal rodents (Hanski
et al. 1993). Many other systems seem to be in critical states at the edge of
chaos (Turchin and Ellner 2000).

From the theoretical point of view population dynamics should be chaotic if
chaos is in principle possible in a given system and proves to be advantageous
in the evolutionary context. Regarding the effect of chaos on the evolutionary
fitness of species two main lines of reasoning exist. On the one hand it is argued
that the seemingly random behavior that characterizes chaos can eventually
cause the extinction of species Lande (1993). On the other hand, it has been
proved that chaotic fluctuations are desirable in a spatially extended environ-
ment (Solé and Gamarra 1998, Petrovskii et al. 2004, Allen et al. 1993). Such
fluctuations increase the chance that populations survive periods of detrimen-
tal conditions in isolated patches. Starting from these patches the surrounding
area can be repopulated once the conditions improve. By contrast, a popula-
tion with stationary or periodical dynamics is more likely to go extinct in the
whole region. Following this line of reasoning chaotic dynamics can increase
the chances of species survival. Consequently, it is reasonable to expect that
ecological systems could evolve towards chaotic regions in parameter space if
such regions exist.

While chaotic attractors have been found in many models (Hastings and Pow-
ell 1991, Boer et al. 1998) they seem to be absent from others (Steele and Hen-
derson 1992, Ruxton and Rohani 1998). In particular it has been argued that
chaotic regions may not exist in many ecological systems because of the strong
damping effect of mortality on the dynamics. For instance it has been claimed
by Steele and Henderson (1992) that quadratic mortality of the top predator
prevents chaotic, quasiperiodic and even periodic dynamics in a plankton model.
Although this was proved to be wrong by Edwards and Yool (2000) the question
whether chaos exits generally in ecological systems remains open. It was shown
by Ruxton and Rohani (1998) that chaotic regions exist in certain models, but
disappear if the model structure is perturbed in a certain way. In fact, it has
often been postulated that chaos would disappear if sufficient biological detail
would be taken into account (Fussmann and Heber 2002, Kondoh 2003). How-
ever, from a dynamical systems point of view one would expect that increasing
the complexity of the model is likely to increase the complexity of the dynamics
as well (May 1973).
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In a certain sense the question for the existence of chaos in nature is very
similar to our investigation of the paradox of enrichment. In both cases the
question is whether results from specific models describe the generic situation
found in nature. In the following we use the general approach to show that
chaotic parameter regions generically exist in long food chains. This result re-
mains valid regardless of the functional form of the interactions. In particular
we show that chaotic regions exist even if strong nonlinear mortality is consid-
ered in the model. Only in degenerate systems like Lotka-Volterra food chains
the formation of chaotic regions can be avoided.

6.2 Detection of chaos in models

On a chaotic attractor the phase-space distance between trajectories with nearly
identical initial conditions increases exponentially for a certain time. This di-
vergence of neighboring trajectories is one of the main characteristics of chaos.
We can measure the rate of divergence by computing the corresponding Lya-
punov exponents (Guckenheimer and Holmes 2002 and others). For a given
attractor in an N -dimensional system N Lyapunov exponents exist. These ex-
ponents describe the growth of small perturbations along the stable and unstable
directions. Negative Lyapunov exponents indicate that small perturbations dis-
appear in time. Positive Lyapunov exponents correspond to exponential growth
of small perturbations.

If the system is in an asymptotically stable steady state all Lyapunov expo-
nents are negative. On all other attractors found in systems of ODEs at least
one Lyapunov exponent is zero. The zero Lyapunov exponent has to exist since
the distance between two points on the same trajectory can in average neither
increase nor decrease. For instance on a stable limit cycle the Lyapunov ex-
ponent that corresponds to perturbations in the direction of the cycle is zero;
all other Lyapunov exponents are negative. They indicate that neighboring
trajectories approach the cycle. On a two-torus two zero Lyapunov exponents
which correspond to the two dimensional surface of the torus exist. Likewise,
the dynamics on a three torus is characterized by three zero Lyapunov expo-
nents. Chaotic dynamics can be observed on attractors on which at least one
Lyapunov exponent is positive.

We can determine the dynamics on a given attractor by counting the number
of negative, positive and zero Lyapunov exponents. In a specific system the
numerical computation of Lyapunov exponents is in principle always possible.
However, in practice the numerical convergence may be very slow. Despite the
difficulties that can arise, the computation of Lyapunov exponents is frequently
used. In Sec. 6.3.4 we apply this technique to investigate the dynamics of a
specific model.
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In our general model Lyapunov exponents can not be computed numerically.
Although we have been able to compute the Jacobian in the normalized steady
state the Jacobian on other attractors can not be obtained in the same way.
Generally speaking, the attempt to find the chaotic attractor directly in the
general model faces a principal difficulty. Our general food chain model has
been constructed in such a way that it accommodates all the information that
is necessary to determine the dynamics in the neighborhood of the normalized
steady state. However, the model does not contain sufficient information on the
global dynamics to investigate whether a chaotic attractor might exist elsewhere.
However, it is possible to prove the existence of chaotic dynamics in the general
model indirectly. In the indirect approach we deduce the existence of chaos
from local bifurcations of higher codimension. In Chap. 2 we have argued that
chaotic dynamics has to exist close to a double Hopf bifurcation. Thus, their
existence can be considered as a strong indicator of chaos in food chain models.

In our three-parameter bifurcation diagrams the double Hopf bifurcations oc-
cur on lines consisting entirely of such bifurcation points. Since chaotic dynamics
generically exist close to every single bifurcation point the chaotic parameter
region extends along the double Hopf bifurcation line.

6.3 Chaos in food chains with mortality

The bifurcation diagrams shown in Chap. 4 (cf. Fig. 4.2) have revealed that
double Hopf bifurcations exist in general food chains of four or more trophic
levels. Therefore chaos generically exists in these food chains. In the bifurcation
diagrams we have assumed that the mortality of the top predator is linear and
that the biomass loss of the other species arises only because of predation. Let
us now investigate whether the chaotic regions survive if additional nonlinear
mortality terms are taken into account.

6.3.1 Causes of mortality

In this work we use the term mortality to denote any form of biomass loss
except predation by explicitly modeled predators. The effect of mortality on
model behavior depends in general on the functional form of the mortality terms.
Let us therefore start our discussion of mortality by considering some specific
mortality terms.

In many ecological populations mortality arises because of natural aging and
death of individuals. Since this natural mortality effects every individual sepa-
rately the total loss rate is proportional to the size of the population. We can
write the corresponding mortality term as

Mn(Xn) = AXn, (6.1)
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where A is a constant. The same reasoning can be applied to other causes
of mortality as well. For example, in a dangerous environment the number
of accidental death can be assumed to be proportional to the abundance of
a species. In certain models the state variables denote not the abundance or
density of species but the energy available to them (DeAngelis 1992). In this
case linear loss terms are often used to model maintenence costs. These losses
can be treated as linear mortality terms although they are not directly related
to the death of individuals.

The reasoning which leads to the linear mortality terms is based on the law of
mass action. This law states that the effect of a process that involves only one
individual should be proportional to the total number of individuals. However,
not every cause of mortality effects individuals separately. For instance the
transmission of a disease has to involve at least two individuals. Consequently,
most diseases inflict a biomass loss that is roughly proportional to the square
of the population density. This corresponds to a mortality term of the form

Mn(Xn) = AXn
2. (6.2)

An interesting situation arises if a mortality term is used to model the effect
of predators that are not part of the food chain. To model predators in this
way is reasonable if their abundance can be assumed to be constant or at least
independent of the state variables. This is in general true for predators that
feed on many different species. The effect of such predators on the food chain
depends on their feeding strategy. For instance Edwards and Bees (2001) show
that predation by marine filtration feeders can be modeled by a linear mortality
term while a quadratic mortality term is more appropriate for ambush feeders.
In other ecological models the effect of implicitly modeled predators is described
by more complex functions. For instance Ludwig et al. (1978) model the effect
of predation on spruce budworm populations by

Mn(Xn) =
AX2

K2 +X2
(6.3)

where A and K are constant parameters.

The derivation of mortality terms that relate to predation is very similar to
the derivation of response functions. In particular it faces the same difficul-
ties and uncertainties that we have discussed in the context of the paradox of
enrichment. However, even for mortality terms that do not correspond to pre-
dation similar uncertainties exist. For instance natural mortality is not entirely
independent of other processes like predation. Although a linear mortality term
may describe natural mortality very accurately we have to keep in mind that
it is nevertheless only an approximation. It has been shown by Edwards and
Bees (2001) that linear mortality terms describe a degenerate situation. In this
case any small deviation from linearity may cause the transition to qualitatively
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different dynamics. These insights demonstrate that it is desirable to investi-
gate the impact of mortality in general models that are not based on specific
functional forms.

6.3.2 Mortality in the general model

In the general food chain model mortality appears in the form of the gen-
eral mortality terms M2(X2), . . . ,MN−1(XN−1) and the closure term D(XN ).
Our investigations in Chap. 4 revealed that the impact of these functions on
the stability of steady state can be measured in terms of the branching ratios
b2, . . . , bN−1 and the mortality exponents µ2, . . . µN−1, p. The branching ratios
describe the relative strength of the mortality while the mortality exponents
relate to the nonlinearity of the corresponding mortality term.

Let us compute the general parameters for some specific functional forms.
Linear and quadratic mortality can be studied simultaneously by considering
the mononomial mortality term

M(X) = AXz (6.4)

with a constant exponent z. In this equation the index n has been dropped for
the sake of simplicity. By applying Eq. (4.6) we obtain the normalized mortality
term

m(x) = xz. (6.5)
In the normalization the constant A has vanished. This is reasonable since A
determines only the magnitude of the mortality. It therefore effects b but not
µ. According to Eq. (4.25) we compute the mortality exponent

µ =
∂

∂x
m(x)

∣∣∣∣
x=x∗

= z. (6.6)

For mononomial mortalities the mortality exponent is identical to the exponent
of the corresponding mortality term. Likewise, the exponent of closure p is the
exponent of the closure term D(XN ).

Mortality exponents that correspond to more involved mortality terms can be
computed in the same way. This yields in general mortality exponents between
one and two. Lower or higher mortality exponents only occur in special situa-
tions. For instance lower mortality exponents can occur if species are protected
by laws that allow the harvesting of a fixed amount of biomass per year.

Among the mortality exponents the exponent of closure p has received the
most attention in ecological literature (Edwards and Bees 2001). Unlike the
other mortality exponents the exponent of closure describes the only cause of
biomass loss for the top-predator. The mortality terms of the other species
“compete” with the biomass losses that occur because of predation. Since pre-
dation is in many food chains more important than mortality the impact of the
mortality exponents µ2, . . . , µN−1 is relatively weak. However the impact of the
exponent of closure can be quite strong.
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The effect of the exponent of closure on the dynamics is particularly interest-
ing since the exponent of closure may depend strongly on the environment. For
instance it has been shown by Rothschild and Osborn (1988) that the mortal-
ity of zooplankton is very sensitive to the turbulence of the surrounding water.
Ambush feeders that feed on the top predator of a nutrient-phytoplankton-
zooplankton food chain become less efficient as the turbulence is increased. At
the same time the efficiency of filtration feeders and the number of accidental
deaths caused by strong shear forces increases. Accidental death and predation
by predation feeders correspond to an exponent of closure of one while predation
by ambush feeders corresponds to an exponent of closure of two. The effective
exponent of closure is therefore low (≈ 1) if the turbulence is high and high
(≈ 2) if the turbulence is low. In this way the exponent of closure provides an
important link between physics and biology.

6.3.3 Chaos in general food chains

The effect of the exponent of closure on the local bifurcations is shown in Fig. 6.1.
The figure consists of four bifurcation diagrams that correspond to food chains
of three, four, five and six trophic levels. In the diagrams the relative length
of timescales r, the predator’s sensitivity to prey density Γ and the exponent
of closure p have been varied. The availability of nutrients φ has been set to
0.5. This value corresponds to a moderate nutrient level. Furthermore, we have
assumed that the predators do not interfere (ψ2 = . . . = ψN−1 = 1) and that
predation is the only cause of biomass loss for all species except the top-predator
(b2 = . . . = bN−1 = 1).

The surfaces in the diagram correspond to general saddle-node bifurcation
surfaces (blue) and Hopf bifurcation surfaces (red, green, yellow). These bifur-
cations divide the parameter space into volumes of qualitatively different local
dynamics. The normalized steady state is stable in the top-most volume of the
bifurcation diagram and unstable everywhere else.

In Chap. 4 we have computed similar diagrams for food chains with linear
closure (cf. Fig. 4.2). In that chapter we have observed that N/2 Hopf bifur-
cation surfaces exist in general N -trophic food chains. Figure 6.1 shows that
these Hopf bifurcations extend to nonlinear closure.

In addition to the Hopf bifurcation surfaces a general saddle-node bifurcation
surface is present in all diagrams. The bifurcation surface enters the positive
parameter cone exactly at p = 1. This behavior provides further evidence for the
degeneracy of food chains with linear closure, which has been noted by (Edwards
and Bees 2001). In food chains of odd length the general saddle-node surface
extends to high exponents of closure and leaves the diagram at p = 2. However,
in food chains of even length the surface folds back towards low exponents of
closure and leaves the diagram at p = 1. The different shape of the bifurcation
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Figure 6.1: Bifurcation diagrams of food chains of length three (top left), four
(top right), five (bottom left), six (bottom right). The dynamics around the
steady state depends on the predator’s sensitivity to prey density Γ, the ex-
ponent of closure p and the relative length of prey timescales r. The surfaces
correspond to general saddle-node bifurcations (blue) and Hopf bifurcations
(red, yellow, green). Local codimension-2 bifurcations are formed on the lines
in which the codimension-1 bifurcation surfaces meet or intersect each other.
Chaotic dynamics does in general occur near the double Hopf bifurcation lines
that are formed at the intersection of two Hopf bifurcation surfaces.

surfaces explains the apparent absence of general saddle-node bifurcations in
food chains of even length which we have observed in Fig. 4.2.

Bifurcations of codimension two are located on the lines in which the codi-
mension-1 surfaces meet or intersect. A line of Takens-Bogdanov bifurcations
is formed in the food chains of even length as the red Hopf bifurcation surface
ends on the general saddle-node bifurcation surface. In the food chains of length
five and six a line of Gavrilov-Guckenheimer bifurcations is located at the inter-
section of the green bifurcation surface and the general saddle-node bifurcation.
Double Hopf bifurcations are formed at the intersection of two Hopf bifurcation
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surfaces. In the four-trophic and five-trophic food chains a line of double Hopf
bifurcations is located at the intersection of the red and green Hopf bifurcation
surfaces. In the six-trophic food chain three double Hopf bifurcation lines are
formed by the pairwise intersection of the three Hopf bifurcation surfaces. In
longer food chains even more Hopf bifurcation surfaces exist. Consequently, we
can expect that more double Hopf bifurcation lines are formed.

The presence of double Hopf bifurcations proves that chaotic parameter re-
gions generically exist in food chains of four or more trophic levels. Moreover,
the double Hopf bifurcation lines extend to high exponents of closure. This
proves that high exponents of closure can not prevent chaos in long food chains.

The existence of chaos is the central result around which this chapter revolves.
Nevertheless, some further observations regarding the stability of steady states
can be made. We consider the critical value of Γ at which the top-most Hopf
bifurcation is encountered for given values of r and p. The bifurcation dia-
grams show that the critical value of Γ decreases as the exponent of closure is
increased. This shows that high exponents of closure have a stabilizing effect
on the normalized steady state, although they will not generally prevent chaos.

Our analysis suggest that it is misleading to assume that parameter variations
that have a stabilizing effect on steady states should also prevent chaos. Con-
sider for instance the effect of r on the food chain. Intuitively one could think
that a large separation of timescales should stabilize the system. However, the
bifurcation diagrams show that this is not the case. The highest stability is often
found at intermediate values of r. Let us for example consider the bifurcation
diagram of the four-trophic food chain at a fixed value of p. The “most stable”
choice of r is found in the point at which the double Hopf bifurcation occurs. At
this value of r the critical Γ at which the destabilization occurs has the lowest
possible value. However, once this critical value is crossed the dynamics become
almost immediately chaotic since we are passing directly through the double
Hopf bifurcation.

6.3.4 A specific example

So far we have shown that chaotic parameter regions generally exist in long
food chains. Let us now consider a specific example in order to illustrate the
emergence of chaos from the double Hopf bifurcation.

We consider a four-trophic food chain and assume logistic growth of the pri-
mary producer. The predator-prey interaction is assumed to be of Monod type.
Furthermore we assume that predators do not interfere and that all mortality
terms except the closure term can be neglected. This yields the ODE system

Ẋ1 = A0(C −X1)X1 − A1X1X2

K1 +X1
, (6.7)
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Ẋ2 =
B1X1X2

K1 +X1
− A2X2X3

K2 +X2
, (6.8)

Ẋ3 =
B2X2X3

K2 +X2
− A3X3X4

K3 +X3
, (6.9)

Ẋ4 =
B3X3X4

K3 +X3
−MX4

p, (6.10)

where A0, A1, A2, A3, B1, B2, B3, C, K1,K2,K3 and M are constant parame-
ters. In the investigation of food chains observed one would normally choose the
values of these parameters based on experimental measurements or theoretical
reasoning. However, in this chapter our aim is to illustrate our general results in
an arbitrary model. It is therefore reasonable to choose the parameters in such
a way that the comparison to the general model becomes as simple as possible.
We set

A0 = 1/(C − 1), (6.11)

An = rn−1(Kn + 1) for n = 1 . . . 3, (6.12)

Bn = rn(Kn + 1) for n = 1 . . . 3, (6.13)

M = r3, (6.14)

K1 = K2 = K3 = K. (6.15)

For this choice of parameters X1
∗ = . . . = X4

∗ = 1 is a steady state. This saves
us the effort of the normalization. The parameter r and p denote the relative
timescale separation and the exponent of closure as in the general model. We
consider r = 0.3, which is realistic for many food chains observed in nature
(Hendriks 1999). Furthermore, we assume C = 3 which corresponds to φ = 0.5
in the general model. The relationship between the half saturation parameter
K and the predator sensitivity Γ can be written as

Γ =
K

K + 1
. (6.16)

In this equation we have used the results on the Monod function from Sec. 5.3.
A comparison of results from the general and the specific model is shown in

Fig. 6.2. The upper diagram in the figure shows local bifurcations that have
been computed analytically in the general model. In the two parameter diagram
the Hopf bifurcation surfaces appear as bifurcation lines. At the intersection
of the two lines a double Hopf bifurcation point is formed. The existence of a
chaotic region close to the double Hopf bifurcation is illustrated in the lower
diagram. This diagram has been obtained by the numerical computation of
Lyapunov exponents in the specific model (Shimada and Nagashima 1979).

The quasiperiodic route to chaos can be observed in the left part of Fig. 6.2.
The dynamics is stationary for high values of Γ. At the Hopf bifurcation line
a stable limit cycle emerges. In the white region shown in the diagram the
dynamics is periodic. At lower values of Γ the attractor evolves first into a two
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torus (medium grey region) and then a three-torus (light grey region). Finally
the three-torus decays and a chaotic attractor is formed (black region).

Right of the double Hopf bifurcation the transition to chaos is much faster.
We observe chaotic dynamics almost immediately after the Hopf bifurcation in
which the steady state becomes unstable. It is possible that the chaotic region
extends a little bit above the Hopf bifurcation. In this case the chaotic attractor
would coexist with the steady state in some part of the region that is marked
as stationary. We can not determine the nature of the transition to chaos with
certainty. However, simulations in this region suggest the Shil’nikov route to
chaos.

From the biological point of view the almost direct transition from stationary
to chaotic dynamics is interesting. It has been shown by Petrovskii et al. (2004)
that the formation of an chaotic attractor can prevent the large oscillations that
are usually observed in enriched ecological models. In this way the transition
to chaos can reduce the risk of extinction. In our example large oscillations
are encountered at lower values of Γ. In this region phase lockings appear
and the dynamics becomes periodic. In the minimum of these oscillations the
abundance of the primary producer drops about 10 orders of magnitude below
the equilibrium value. Extinction is therefore very likely in this region. In
comparison, very low abundances are less pronounced and less frequent on the
chaotic attractor.

Very close to the double Hopf bifurcation and for high exponents of closure
regions exist in which all Lyapunov exponents are very small (dark grey). In
these regions the numerical computation of the Lyapunov exponents converges
very slowly. We can not determine the dynamics in this region which certainty.
In this region the distance between neighboring trajectories will either increase
or decrease very slowly. The existence of this region may explain why many
systems observed in nature appear to be at the edge of chaos.

6.3.5 Additional mortality terms

The investigation of the general model and the specific example have revealed
that chaotic parameter regions generally exist at high exponents of closure.
However, in these investigations we have assumed that all other mortality terms
can be neglected. Let us now study the impact of these additional mortality
terms on food chains.

Let us consider a four trophic food chain with quadratic closure (p = 2).
We study the case in which all other mortality terms are linear (µ2 = µ3 = 1).
The strength of the additional mortality terms is determined by the parameters
b2 and b3. These parameters denote the portion of the total biomass loss that
occurs because of predation. For the sake of simplicity we assume

b2 = b3 := B. (6.17)

The bifurcation diagram for the four-trophic food chain shown in Fig. 6.1 cor-
responds to B = 1. In this case the entire biomass loss of species two and three
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Hopf Bifurcation

Hopf Bifurcation

Double Hopf
Bifurcation

Figure 6.2: Comparison between results from the general and specific models.
The axes of both diagrams are spanned by the predator’s sensitivity to prey Γ
and the exponent of closure p. Top: Local bifurcations in the general model. We
find two lines of Hopf bifurcations which intersect in a double Hopf bifurcation
point. Bottom: Dynamics in a specific model. Depending on the values of the
parameters the attractor is a steady state (pattern), limit cycle (white), two
torus (medium grey), three torus (light grey) or chaotic attractor (black). In
the dark grey region all Lyapunov exponents are very small.
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Figure 6.3: Bifurcation diagram of a four-trophic food chain with additional
mortality terms for quadratic closure and moderate nutrient limitation. The
parameters Γ and r denote the predators sensitivity to prey density and the
relative length of timescales respectively. The parameter B is the portion of
the biomass loss of species two and three that occurs because of predation.
The diagram shows two Hopf bifurcation surfaces (red, green) and a general
saddle-node bifurcation surface (blue). The normalized steady state is stable
above the Hopf bifurcations and unstable below. Increasing the mortality terms
(decreasing B) has a stabilizing effect on the stability of the food chain, but can
not prevent the chaotic dynamics.

occurs because of predation. By contrast, B ≈ 0 would mean that almost the
entire biomass loss occurs because of the mortality terms.

In the bifurcation diagram in Fig. 6.3 the value of B has been varied. The
surfaces in the diagram correspond to the two Hopf bifurcation surfaces and
the general saddle-node bifurcation surface that have been shown in Fig. 6.1.
Increasing the strength of the mortality (that is decreasing B) decreases the
critical value of Γ at which the Hopf bifurcations occur. This stabilizing effect
of mortality can be understood if one considers that high mortality weakens the
interactions in the food chain.

As the strength of the mortality is increased the double Hopf bifurcation
is shifted towards lower values of r. The double Hopf bifurcation line ends at
B = 0. At this value of B both Hopf bifurcation surfaces vanish in Takens-
Bogdanov bifurcation lines. The fact, that the double Hopf bifurcation line
survives up to B = 0 this proves that chaos exists generically even in food
chains with very strong mortality.
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6.3.6 A degenerate double Hopf bifurcation

While the existence of chaos close to generic Hopf bifurcations has been proved
many details on the transition to chaos remain uncertain (Kuznetsov 1995).
Even less is known about degenerate double Hopf bifurcations. Since a degen-
erate double Hopf bifurcation is a codimension-three point very few examples
from applications are known. In this section and the following we use our three
parameter bifurcation diagrams to locate two examples of degenerate double
Hopf bifurcations in general food chains.

Figure 6.4: Bifurcation diagrams for a four-trophic food chain with p = 1 (left)
and p = 1.01 (right). The steady state under consideration is stable above
the Hopf bifurcation surfaces (red, green). For high values of the mortality
exponents µ2 and µ3 the Hopf bifurcations occur at lower values of the predator’s
sensitivity to prey density Γ. This shows that high mortality exponents have
a stabilizing effect on the food chain. At the intersection of the two Hopf
bifurcation surfaces a double Hopf bifurcation is formed. For p = 1 the two
double Hopf bifurcations cross in a degenerate double Hopf bifurcation point.
However, this crossing is avoided for p �= 1.

We investigate the local dynamics of four-trophic food chains with linear top-
predator mortality (p = 1) and relatively strong mortality terms for the other
predators (b2 = b3 = 1/2). The mortality exponents µ2, µ3 that correspond to
these mortality terms are assumed to be identical. A bifurcation diagram for
this food chain is shown as the left diagram in Fig. 6.4. The surfaces that appear
in the diagram are the two Hopf bifurcation surfaces from Fig. 6.1. The general
saddle node bifurcation surface would be located at Γ = 0 and is not shown.
The diagram reveals that the Hopf bifurcation surfaces intersect in two double
Hopf bifurcation lines. An intersection of the bifurcation lines occurs in the
center of the diagram. At the intersection the double Hopf bifurcations become
degenerate. Note that even in the degenerate double Hopf bifurcation only two
pairs of non-hyperbolic eigenvalues exist. Additional non-hyperbolic eigenvalues
can only appear if more than two bifurcation surfaces intersect. The degenerate
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double Hopf bifurcation considered here is characterized by a lack of uniqueness
of the bifurcation lines. We can guess that this degeneracy is caused by the
violation of a transversality condition. A closer investigation would require the
explicit computation of normal form coefficients in a specific example.

The crossing of the bifurcation lines can be avoided by making the closure
term slightly nonlinear. The right diagram in Fig. 6.4 is almost identical to the
one shown in Fig. 6.4. However, we have increased the exponent of closure from
p = 1 to p = 1.01. As a result the degenerate double Hopf bifurcation point has
vanished.

Degeneracies that only appear in isolated points do not effect our conclusions.
While the implications of the degenerate double Hopf bifurcations are unclear
we can still deduce the existence of a chaotic region from the neighboring generic
double Hopf bifurcations. At present we can not draw any ecological conclusions
from the presence of the degenerate double Hopf bifurcation. However, the
degenerate bifurcation point computed here can serve as an example for future
mathematical investigations. In these investigations further insights can be
gained that may enable us to formulate further conclusions on the dynamics of
general ecological models.

6.3.7 Whitney umbrellas in food chains

Other examples of degenerate double Hopf bifurcations are found in the points
in which a line of double Hopf bifurcations ends. In Sec. 6.3.5 we have already
noted that this occurs if one of the Hopf bifurcation surfaces vanishes in a
Takens-Bogdanov bifurcation. Let us now discuss a bifurcation in which the
double Hopf bifurcation line ends despite the fact that both Hopf bifurcation
surfaces survive. The bifurcation diagrams shown in Fig. 6.5 corresponds to
a four-trophic food chain with linear closure (p = 1). We consider moderate
nutrient limitation (φ = 0.5) and neglect the mortality terms for species two
and three (b2 = b3 = 1). In contrast to the cases considered so far we vary
the sensitivity of the second predator γ2 independently of γ1 = γ3. Small
variations in γ2 do not alter the bifurcation diagrams qualitatively. However,
in the parameter range in which γ2 is very low and γ1 and γ3 is very high a
second line of double Hopf bifurcations is formed. As soon as the value of γ2 is
increased beyond a critical value the double Hopf bifurcation line ends in a 1:1-
resonant double Hopf bifurcation. In this codimension-3 point the two purely
imaginary eigenvalue pairs of the double Hopf bifurcation are exactly identical.
The topological shape of the Hopf bifurcation surfaces close to the 1:1-resonant
double Hopf point is known as a Whitney umbrella.

The 1:1-resonant double Hopf bifurcation illustrates that the double Hopf
bifurcation line may disappear as parameters are varied. However, in the inves-
tigation of food chains we find these bifurcations only in the parameter range
where r and certain sensitivity parameters are large while other sensitivity pa-
rameters are very small. The 1:1-resonant double Hopf points mark the end
of double Hopf bifurcation lines which only exist in this parameter range. By
contrast, the double Hopf bifurcation line on which our ecological conclusions
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Figure 6.5: Bifurcation diagram of a four-trophic food chain. The diagrams
show Hopf bifurcation surfaces which intersect in two double Hopf bifurcation
lines. One of these lines ends in a 1:1-resonant double Hopf bifurcation. The
parameters γ1, γ2 and γ3 describe the sensitivity of the predators to prey density
while r denotes the relative length of the characteristic timescale of a predator
compared to its prey. In the two lower diagrams the bifurcation surfaces are
shown from different perspectives. The upper diagram shows the area around
the 1:1-resonant double Hopf bifurcation in more detail.
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are based is not effected. Small timescale separation as well as very low and
very high sensitivity is rarely encountered in nature. The 1:1-resonant double
Hopf bifurcation shown in Fig. 6.5 will probably not effect the dynamics of food
chains found in nature. Nevertheless, it can serve as an example for mathemat-
ical investigations. Although it is in principle known that bifurcation surfaces
can form Whitney umbrellas, examples for this type of behavior are very rare
(Govaerts et al. 1997).

6.4 Mortality and Chaos in Food Chains

In this chapter we have shown that chaotic parameter regions generally exist
in food chains of length four or more. This result holds independently of the
specific functional form of the interactions and is therefore valid for a large
class of different food chains. In particular, chaotic regions survive even in food
chains with strong, nonlinear mortality terms.

Our results indicate that long food chains found in nature should be chaotic
if chaotic dynamics are advantageous from an evolutionary point of view. In
nature only few long food chains which consist of individual species have been
observed. However, our results also apply to food chains in which the model
variables represent groups of species, like in the models of Steele and Henderson
(1992).

Despite the generic existence of chaos our analysis confirms that high ex-
ponents of closure and strong mortality have in general a stabilizing effect on
steady states. In fact, there seems to be little relationship between the stabil-
ity of steady states and the complexity of the dynamics that is observed after
steady state stability has been lost. In this light it is misleading to call an effect
stabilizing only because it causes a transition to less complex dynamics.
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Chapter 7

Extension to Food Webs

In the previous chapters we have shown that general models can be used to
study ecological questions with a high degree of generality. However, so far
we have only been able to consider the dynamics of food chains in the general
framework. In this chapter we extend the general approach to food webs.

Extensive investigations in the dynamics of food webs are beyond the scope
of this work. Nevertheless, we discuss the extension of the general approach
to food webs to illustrate the potential for future investigations. The emphasis
of this chapter is therefore mainly on the actual derivation of the general food
web model. The model is applied to study the competitive exclusion principle.
In particular, we show that competitive exclusion can in general be avoided if
nonlinear mortality terms or predator interference is taken into account. Our
investigations on the dynamics of different food webs reveal that the local bi-
furcation diagrams of a large number of food webs are qualitatively similar to
the bifurcation diagrams of food chains. The results that have been obtained in
the previous chapters will therfore hold in a large class of food webs.

We start in Sec. 7.1 with a brief introduction that motivates our treatment
of food chains. The derivation of the general food web model is presented
in Sec. 7.2. Based on the results from this model we study the competitive
exclusion principle in Sec. 7.3. The impact of different food web geometries is
studied in Sec. 7.4. Some future extensions of the general food web model are
outlined in Sec. 7.5. Finally we summarize this chapter briefly in Sec. 7.6.

7.1 Diversity and stability in food webs

While food chains have been extensively studied in models (Steele and Hender-
son 1992, Boer et al. 1998) and laboratory experiments (Kirk 1998, Fussmann
et al. 2000) true food chains are rarely observed in nature. Instead, species
interact in complex trophic networks, which are called food webs.

75
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However, theoretical as well as experimental evidence indicates that the
behavior of food webs should differ from the one observed in food chains. Theo-
retical investigations by May (1973) show that more complex ecological models
exhibit in general more complex dynamics. Very diverse ecological systems in
which a large number of species coexist should therefore exhibit very complex
dynamics. However, in nature the opposite seems to be the case (Odum 1953,
Elton 1958, MacArthur 1955). Diverse systems like the rainforest ecosystem
seem to reside in a very stable steady state. But, simple systems like agricul-
tural monocultures are prone to outbreaks of pests which frequently exhibit
chaotic dynamics.

The striking difference between the diversity-stability relationship observed
in models and the diversity-stability relationship observed in nature is known as
the diversity-stability debate (McCann 2000). It has been pointed out that the
solution to this debate lies in part in the fact that different types of stability are
considered. The stability observed in nature is not the asymptotic stability that
we have considered so far but stability in the sense of persistence (cf. Chap. 2).
Nevertheless, the question how natural systems can be very diverse and very
persistent at the same time remains open.

Several investigations indicate that the key to persistence lies in the food web
geometry. For instance it has been shown by Yodzis (1981) that realistic food
webs tend to be more stable than randomly generated ones. Furthermore, it has
been shown by McCann et al. (1998) that a high number of weak interactions
has a stabilizing effect on the food web.

An explanation for the apparent stability of food webs is provided by the
so-called insurance hypothesis. According to this hypothesis the stability of
natural food webs is caused by their redundancy (Yachi and Loreau 1999). This
redundancy appears since many species occupy essentially the same ecological
niche. It is argued that within an ecological niche the fluctuations of one species
can be compensated by others. In this way the build-up of large fluctuations can
possibly be avoided. In other words it is claimed that the coexistence of species
in the same ecological niche stabilizes the ecological systems. However, on the
other hand the competitive-exclusion principle says that stable coexistence of
different species in the same steady state is impossible Gause (1934).

Despite the competitive exclusion principle the coexistence of similar species
in non-stationary states is observed in many ecosystems. In fact, it has been
shown by (Ebenhöh 1988, Armstrong and McGehee 1980 and others) that the
coexistence of an arbitrary number of similar species in a non-stationary state
is possible.

In summary we can say that the dynamics of natural food webs seem to reside
in very persistent non-stationary states. In order to get a better understanding
of how such a state is formed investigations with general models are desirable.
However, the extension of our general model to food webs faces two difficulties.
The competitive exclusion principle which seems to prohibit the existence of
positive steady states in certain food webs. Even if steady states exist they may
not be of ecological importance since the natural system is in a non-stationary
state. In the following we address both of these difficulties. In Sec. 7.3 we
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show that positive steady states generally exist despite the competitive-exclusion
principle. Thereafter we show in Sec. 7.4 that a large class of food web models
behave like food chains. In these models the steady state may be of ecological
importance. Furthermore this result allows us to extend our conclusions on the
generic existence of chaos to a large class of ecological models. In this way the
analysis of steady states allows us to draw conclusions on the non-stationary
dynamics.

7.2 A model for general food webs

In the derivation of the general food web model we follow essentially the same
approach that we have applied for food chains. We formulate a system of ordi-
nary differential equations which describes the dynamics of a general food web.
In the second step the abundance and biomass flows in the steady state under
consideration are normalized to one. Finally, we compute the Jacobian in the
steady state and illustrate the general food web model with a simple example.

7.2.1 Formulation of the Model

Let us consider a general food web of N species. In analogy to the food chain
model we denote the abundances of the species by X1, . . . , XN . The time evo-
lution of the abundances is determined by a system of N ordinary differential
equations. We can write these equations symbolically as

Ẋn = prodn − mortn + gainn − lossn, (7.1)

In this chapter the indices n, m and i will always run from 1 to N . The four
terms on the right hand side of this equation correspond to primary production,
mortality, biomass gains by predation and biomass losses because of predation
(in this order). In the following we study these terms in more detail.

Production and mortality
In Eq. (7.1) we have included primary production terms in the differential

equations of all species. This has been done since we do not want to define
the number of primary producers in the model a priori. Instead, the primary
production is modeled by a general function. We write

prodn = Sn(X) (7.2)

The function Sn(X) will in general vanish if n is not a primary producer. Like-
wise we can define the general mortality term

mortn = Dn(X) (7.3)

Note that the mortality and the primary production of species n do not only
depend on Xn but on the vector

X = (X1, . . . , XN ). (7.4)
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In this work we do not consider systems in which the mortality or primary pro-
duction of one species depends on the abundance of another species. However,
we include this possibility in the model as a basis for future investigations. Pri-
mary production terms that depend on different species arise for instance if two
primary producers compete for an implicitly modeled nutrient. Another exam-
ple is encountered in systems in which the primary producer recycles biomass
that is lost by the other species in the food web. In this case the primary pro-
duction depends in general on all losses and therefore on the abundances of all
species.

Biomass gain through predation
The modeling of predation in food webs is more complex than the modeling of

predation in food chains. In particular the situation in which a predator species
feeds on more than one prey species gives rise to additional difficulties. In gen-
eral it is not reasonable to consider the predation on different prey species as
independent processes. Even if the predator feeds indiscriminately and simul-
taneously on the competing prey species the presence of one prey species effects
the predation on the others. Let us illustrate this point in a simple example.

We consider a predator that feeds on two species 1 and 2. We assume that
the predator can hunt for both prey species simultaneously. After a certain
time the predator captures an individual of one of the prey species, say species
1. Assume that our predator needs some time to handle the prey after capture.
During this time he can not hunt for further prey. That means the time in
which the predator can hunt for species 2 is reduced as well. In this way species
2 benefits from the predator saturation caused by the presence of species 1.

The example shows that competing prey species interact indirectly by chang-
ing the saturation of their predator. The predation on multiple prey species can
therefore not be described by separate response functions. Instead, one response
function has to be used that depends on the abundance of all prey species. Sev-
eral specific response functions that have been proposed for this purpose are
discussed by Gentleman et al. (2003).

In our general food web model we avoid to restrict the predator-prey inter-
action to a specific functional form. However, we assume that the predator does
not actively search for specific prey, but indiscriminately consumes all prey it
can capture. This behavior is known as passive switching. In case of passive
switching the amount of prey consumed by the predator species n depends only
on the abundance Xn of the predators and the total amount of available prey.
We denote the available prey by

Hn :=
N∑

i=1

wi,nXi. (7.5)

The constant parameters w1,n, . . . , wN,n that appear in the equation describe
the preference of the predator n to the respective prey species. The preference
depends on a large number of biological details like for instance the success
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probability for attacks of species n on species i. If the predator can not consume
a given prey species at all the corresponding preference parameter vanishes.

Technically H1, . . . , HN are auxiliary variables. Such variables are intro-
duced to write the model equations in a more concise way. Although we omit
the argument X, we have to keep in mind that the auxiliary variables represent
functions of the state variables. Therefore partial derivatives of the auxiliary
variable with respect to the state variables do not vanish.

In terms of Xn and Hn the total amount of prey consumed by the predator n
can be written as a general function Fn(Hn,Xn). These functions are analogous
to the general response functions in the food chain model. Note however, that
the numbering of the functions has changed.

The function Fn(Hn,Xn) denotes the biomass that is consumed by species n.
However, only a fraction ηn of the consumed biomass is converted into predator
biomass. This yields

gainn = ηnFn(Hn,Xn) (7.6)

Biomass loss because of predation
Let us now study the biomass loss of species n that arises because of predation.

We start by considering the predation by a predator species i. Based on the
results of the previous section we can write the total biomass consumed by that
species as Fi(Hi,Xi). We introduce a new auxiliary variable Qn,i. This variable
denotes the portion of the prey of species i that consists of individuals of species
n. By applying Eq. (7.5) we can write

Qn,i :=
wn,iXn

Hi
(7.7)

Note that Hi vanishes if species i is a primary producer. The definition Eq. (7.7)
and several others below should therefore be interpreted in the sense of Eq. (4.6).

Since species n contributes a portion Qn,i to the available prey of species i
it is reasonable to assume that it contributes the same portion to the amount of
captured prey. We can therefore write the loss of species n that occurs because
of predation by species i as Qn,iFi(Hi,Xi). In order to determine the total
biomass loss of species n we sum over all potential predators. This yields the
term

lossn =
N∑

i=1

Qn,iFi(Hi,Xi). (7.8)

The normalized model
Let us summarize the results of this section. By applying Eq. (7.2), Eq. (7.3),

Eq. (7.6) and Eq. (7.8) we can write Eq. (7.1) as

Ẋn = Sn(X) −Dn(X) + ηnFn(Hn,Xn) −
N∑

i=1

Qn,iFi(Hi,Xi). (7.9)
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7.2.2 Normalization

In order to analyze the local bifurcations of the general food web model we have
to normalize the model. Like case of the food web model we assume that a
positive steady state

X∗ = (X1
∗, . . . , XN

∗) (7.10)

exists. This enables us to define normalized state variables

xn :=
Xn

Xn
∗ . (7.11)

Furthermore, we denote the auxiliary variables in the steady state by

Hn
∗ := Hn(X∗), (7.12)

ξn,i := Qn,i(X∗). (7.13)

We can now define the normalized auxiliary variables

hn :=
Hn

Hn
∗ , (7.14)

qm,n :=
Qm,n

ξm,n
. (7.15)

and the normalized functions

sn(x) :=
Sn(X)
Sn(X∗)

, (7.16)

dn(x) :=
Dn(X)
Dn(X∗)

, (7.17)

fn(hn, xn) :=
Fn(Hn,Xn)
Fn(Hn

∗,Xn
∗)
. (7.18)

The last of these definitions is not trivial since we have defined fn as a function
of hn while Fn was a function of Hn. Nevertheless, it is always possible to define
fn in this way.

In order to derive a normalized ODE system we apply the definitions given
above to rewrite Eq. (7.9). This yields

ẋnXn
∗ = s(x)S(X∗) + ηnfn(hn, xn)Fn(Hn

∗,Xn
∗)

−dn(x)Dn(X∗) −
N∑

i=1

qn,iξn,ifi(hi, xi)Fi(Hi
∗,Xi

∗).
(7.19)

Let us now consider this equation in the steady state x1
∗ = . . . = xn

∗ = 1. By
applying the corresponding definitions we can confirm that

hn
∗ = qm,n

∗ = 1, (7.20)
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sn(x∗) = dn(x∗) = fn(h∗n, xn
∗) = 1. (7.21)

This allows us to write Eq. (7.19) as

αn :=
S(X∗)
Xn

∗ +
ηnFn(Hn

∗,Xn
∗)

Xn
∗ =

Dn(X∗)
Xn

∗ +
N∑

i=1

ξn,iFi(Hi
∗,Xi

∗)
Xn

∗ . (7.22)

Since only constants appear in Eq. (7.22) the equals sign holds even if the
system is not in the normalized steady state. The left hand side of the equals
sign describes the different forms of biomass gain while the right hand side
describes the forms of biomass loss. We can interpret the parameter αn that
has been defined in Eq. (7.22) as the biomass production rate per unit biomass.
On the other hand it also denotes the loss rate per unit biomass of species n.
Like in Chap. 4 it is therefore reasonable to consider αn as a characteristic
timescale of species n. In addition to the characteristic timescales we define
general parameters that characterize the branching of the biomass flow in the
food web. We write

an :=
1
αn

ηnFn(Hn
∗,Xn

∗)
Xn

∗ , (7.23)

bn,i :=
1
αn

Qn,iFi(Hi
∗,Xi

∗)
Xn

∗ , (7.24)

ãn := 1 − a =
1
αn

S(X∗)
Xn

∗ , (7.25)

b̃n := 1 −
N∑

i=1

bn,i =
1
αn

Dn(X∗)
Xn

∗ . (7.26)

The predation ratio an of species n denotes the portion of the total biomass
production of species n that is gained by predation. If species n is primary
producer this parameter vanishes. By contrast, for predators the predation
ratio is in general 1. The parameters bn,1, . . . , bn,N of species n are similar to
the branching ratios that have been defined in Chap. 4. The parameter bn,i

indicates the total portion of the biomass loss of species n that arises because of
predation by species i. The remaining portion b̃n of the biomass loss of species
n is caused by mortality.

In terms of the normalized variables the ODE system can be written as

ẋn = αn

(
ãns(x) + anfn(hn, xn) − b̃ndn(x) −

N∑
i=1

bn,iqn,ifi(hi, xi)

)
. (7.27)

7.2.3 Stability of steady states

The next step in our analysis is the computation of the system’s Jacobian. We
proceed in two steps. In the first step we define additional general parameters in
analogy to the food chain model. In the second step we compute the derivatives
that appear in the Jacobian and identify the general parameters in these terms.
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Definition of additional general parameters
We start by considering the primary production. The limitation of the pri-

mary producers by the nutrient supply can be described by the general param-
eters

φn,m :=
∂

∂xm
sn(x)

∣∣∣∣
x=x∗

. (7.28)

The diagonal parameters φ1,1, . . . φN,N can be interpreted in the same way as
the parameter φ in the general food chain model. For instance the parameter
φn,n denotes the nutrient availability to the primary producer n. Since the
food web consists of N species which have to be treated as potential primary
producers, N such parameters exist.

In addition there are non-diagonal parameters φm,n with n �= m. These
parameters vanish unless the the primary production of species n depends on
the abundance of species m. A very similar situation is encountered for the
mortality terms. We define the general parameters

µn,m :=
∂

∂xm
dn(x)

∣∣∣∣
x=x∗

, (7.29)

Again, the diagonal parameters correspond to the mortality exponents that have
been defined in the food chain model. Non-diagonal parameters appear if the
mortality of a given species depends on the abundance of other species.

Let us now consider predation. In the food chain model the parameters
γ1, . . . , γN−1 denoted the sensitivity of predators to the abundance of their prey.
In order to define similar parameters in the food web model we have to consider
the sensitivity of a predator n to the amount of available prey, that is hn. We
define

γn :=
∂

∂hn
fn(hn, xn)

∣∣∣∣
x=x∗

. (7.30)

In this equation a derivative with respect to hn appears. Such derivatives do
not turn up directly in the systems Jacobian. However, since hn is an auxiliary
variable we can write

∂

∂xm
fn(hn, xn)

∣∣∣∣
x=x∗

=
(

∂

∂hn
fn(hn, xn)

)(
∂

∂xm
hn

)∣∣∣∣
x=x∗

. (7.31)

where m �= n. The parameter γn appears as the first factor on the right hand
side of Eq. (7.31). By applying Eq. (7.14), Eq. (7.5) and Eq. (7.13) we can write
the second factor as

∂

∂xm

Hn

Hn
∗

∣∣∣∣
x=x∗

=
wm,nXm

∗

H∗
n

= ξm,n. (7.32)

The parameter ξm,n can be interpreted as the portion of the total prey of species
n that is contributed by species m. For instance, if species m is the only prey
of species n the value of ξm,n is one. Using ξm,n and γn we can write Eq. (7.31)
as

∂

∂xm
fn(hn, xn)

∣∣∣∣
x=x∗

= γnξm,n for m �= n. (7.33)
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The corresponding equation for m = n is

∂

∂xn
fn(hn, xn)

∣∣∣∣
x=x∗

=
∂

∂xn
fn(hn

∗, xn)
∣∣∣∣
x=x∗

+ γnξn,n, (7.34)

where we have used that fn(hn
∗, xn

∗) = 1. Eq. (7.34) describes the sensitivity
of the feeding rate of a species n on its own abundance. In the food chain model
we have interpreted the corresponding term as a measure of the competition
within the predator population (cf. Sec. 4.2.4). However, in Eq. (7.34) only the
first term on the right hand side describes intraspecific competition. By contrast
the second term arises because of intraspecific predation, that is cannibalism.
In order to keep our interpretation of the parameters consistent with the food
chain model we measure the intraspecific competition in terms of the parameters

ψn :=
∂

∂xn
fn(hn, xn)

∣∣∣∣
x=x∗

− γnξn,n, (7.35)

Computation of the Jacobian
Let us now investigate how these parameters appear in the Jacobian of the

food web model. We start by considering the term

∂

∂xm
Qn,i

∣∣∣∣
x=x∗

=
∂

∂xm

wn,iXn
∗xn∑N

j=1 wj,iXj
∗xj

∣∣∣∣∣
x=x∗

(7.36)

Explicit calculation of the derivatives reveals

∂

∂xm
Qn,i

∣∣∣∣
x=x∗

=
wn,iXn

∗∑N
j=1 wj,iXj

∗ − wn,iXn
∗

(
∑N

j=1 wj,iXj
∗)

2wm,iXm
∗ (7.37)

for m = n and

∂

∂xm
Qn,i

∣∣∣∣
x=x∗

= − wn,iXn
∗

(
∑N

j=1 wj,iXj
∗)

2wm,iXm
∗ (7.38)

for m �= n. We apply Eq. (7.13) to write this equation in the form

∂

∂xm
Qn,i

∣∣∣∣
x=x∗

=
{
ξn,i − ξn,iξm,i for n = m
−ξn,iξm,i for n �= m

(7.39)

This result enables us to write

∂

∂xm
qn,i

∣∣∣∣
x=x∗

=
1
ξn,i

∂

∂xm
Qn,i

∣∣∣∣
x=x∗

=
{

1 − ξm,i for n = m
−ξm,i for n �= m

(7.40)

In a similar way we use Eq. (7.35), Eq. (7.13) and Eq. (7.30) to obtain

∂

∂xm
fi(hi, xi)

∣∣∣∣
x=x∗

=
{
ψi + γiξm,i for i = m
γiξm,i for i �= m

(7.41)
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Having completed these preparations we can now consider the derivatives of
the sum in Eq. (7.27). For m �= n we obtain

∂

∂xm

(
N∑

i=1

bn,iqn,ifi(hi, xi)

)
x=x∗

=
∂

∂xm

⎛
⎝bn,mqn,mfm(hm, xm) +

∑
i�=m

bn,iqn,ifi(hi, xi)

⎞
⎠

x=x∗

= bn,m(ψm + γmξm,m − ξm,m) +
∑
i�=m

bn,i(γiξm,i − ξm,i)

= bn,mψm +
N∑

i=1

bn,i(γi − 1)ξm,i. (7.42)

Analogously we find for m = n

∂

∂xm

(
N∑

i=1

bn,iqn,ifi

)
x=x∗

= bn,mψm +
N∑

i=1

bn,i(1 + (γi − 1)ξm,i). (7.43)

By applying Eq. (7.28), Eq. (7.29), Eq. (7.31), Eq. (7.42) and Eq. (7.43) we can
write the diagonal elements of the Jacobian as

Jn,n = αn(ãnφn,n + an(ψn + γnξn,n) − b̃nµn,n)

−αnbn,nψn − αn

N∑
i=1

bn,i(1 + (γi − 1)ξn,i))
(7.44)

and the non-diagonal elements as

Jn,m = αn(ãnφm,n + an(γnξm,n) − b̃nµm,n)

−αnbn,mψm − αn

N∑
i=1

bn,i(γi − 1)ξm,i
(7.45)

where m �= n. Although Eq. (7.44) and Eq. (7.45) look quite complex they
simplify the computation of general Jacobians considerably. Using symbolic
algebra software like Maple it is possible to obtain the Jacobian for a general
food web with the desired web geometry within minutes.

7.3 The competitive exclusion principle

In the derivation of the general food chain model we have assumed that positive
steady states generally exist. While this assumption is reasonable for food
chains it seems to be problematic in certain food webs. One could argue that
the competitive exclusion principle generally prohibits steady states in which
two or more species occupy the same position in the food web. In this section
we show that this is not the case.
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7.3.1 Competitive exclusion in specific models

Let us start with an example in which positive steady states do not exist. Con-
sider the simple food web which is described by the equations

Ẋ1 = S(X1) −X2G(X1) −X3G(X1), (7.46)

Ẋ2 = X2G(X1) −M2X2, (7.47)

Ẋ3 = X3G(X1) −M3X3. (7.48)

In this system the species 2 and 3 feed on species 1. The predator species feed
in a similar way but have different mortality rates M2, M3. We have assumed
that the predation is prey dependent. That is, the predator abundance enters
linearly in the predation rates.

Let us now try to compute the species’ abundances in the steady state. We
start by considering Eq. (7.47). Since we seek positive solutions we can write

G(X1
∗) = M2. (7.49)

However, in the same way Eq. (7.48) yields

G(X1
∗) = M3. (7.50)

Therefore it is in general impossible to solve Eq. (7.49) and Eq. (7.50) simulta-
neously. Even if the response functions of the two predators are different we end
up with two equations which determine one variable. Mathematically speaking,
the system is overdetermined. In general such a system can not be solved and
hence a positive steady state does in general not exist.

The example considered above would pose a serious problem for our model
if it described the generic situation found in nature. However, the absence of a
positive steady state in the example is caused by a degeneracy in the structure
of the model. This degeneracy disappears if the model is perturbed slightly. Let
us for instance assume that the mortality of the predators is slightly nonlinear.
Instead of Eq. (7.47) and Eq. (7.48) we write

Ẋ2 = X2G(X1) −M2X2
p, (7.51)

Ẋ3 = X3G(X1) −M3X3
p. (7.52)

The equations that correspond to Eq. (7.49) and Eq. (7.50) now read

G(X1
∗) = M2X

∗
2

p−1, (7.53)

G(X1
∗) = M3X

∗
3

p−1. (7.54)

For p �= 1 these equations are not overdetermined. Therefore solutions generally
exist. We can write the ratio of the predator abundances in the steady state as

X2
∗

X3
∗ =

(
M3

M2

) 1
p−1

. (7.55)
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Note that the ratio X2
∗/X3

∗ is positive for p > 1 as well as for p < 1. Therefore,
a steady state in which both predators have positive abundances exists if p �= 1.

In the case p = 1 the degeneracy arises since both predation terms and both
mortality terms are assumed to be exactly proportional to the abundance of the
predators. This degeneracy vanishes if one of the four terms is at least slightly
nonlinear. In the previous chapter we have shown that a number of different
effects can cause nonlinearities in the mortality rates. Nonlinear predation rates
appear in models if the intraspecific interference between predators or other
forms of social interaction is taken into account. Although such interactions
may be very subtle (say, by chance two predators attack the same prey) they
will in general introduce a small nonlinearity in the predator dependence of
predation rates.

This does not imply that coexistence is always possible. The positive steady
state can still become unstable or vanish in bifurcations. However, the fact
that a positive steady states generally exist proves that general models can be
applied.

7.3.2 Competitive exclusion in general models

Let us consider the effect of competitive exclusion on general food webs. In
analogy to the example studied above we compute the general Jacobian of a
system in which two predator species feed on one prey species. This yields

J =

⎛
⎝ φ1,1 − b1,2γ2 − b1,3γ3 −b1,2ψ2 −b1,3ψ3

α2γ2 α2(ψ2 − µ2,2) 0
α3γ3 0 α3(ψ3 − µ3,3)

⎞
⎠ . (7.56)

If we assume linear predator mortality (µ2,2 = 1, µ3,3 = 1) and absence of
predator interference (ψ2 = 1, ψ3 = 1) the Jacobian becomes

J =

⎛
⎝ φ1,1 − b1,2γ2 − b1,3γ3 −b1,2 −b1,3

α2γ2 0 0
α3γ3 0 0

⎞
⎠ . (7.57)

In the Jacobian the third column can be obtained by multiplying the second
column by b1,3/b1,2. Matrices in which one column (or row) is a linear combi-
nation of other columns (or rows) are singular. Such matrices always have at
least one vanishing eigenvalue. The system that is described by the Eq. (7.57)
appears to be in a general saddle-node bifurcation regardless of the remaining
parameters in the Jacobian. However, if the system’s structure is perturbed
slightly, say, by taking nonlinear mortalities into account, the system leaves the
bifurcation. Therefore any small perturbation can cause the transition to qual-
itatively different long term dynamics. Systems for which this is the case are
structurally unstable.

To consider structurally unstable models can be reasonable if symmetries
exist that enforce this type instability. However, in case of food webs we have
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shown that the degeneracy of the system is caused by assumptions made in the
model and not by symmetries of the natural system.

In the degenerate situation no positive steady state exists, therefore a central
assumption that has been made in the derivation of the general model is wrong.
Nevertheless, the general food web model predicts the saddle-node bifurcation
that characterizes the degenerate situation correctly. Although this point needs
further consideration we can understand this prediction if we take into account
that the model remains valid arbitrarily close to the bifurcation. Therfore, in the
limit the bifurcation in which the model breaks down may be reached. However,
a more careful mathematical investigation of this limit is certainly desirable.

By computing the general Jacobians for different food web geometries one
can confirm that degeneracies arise if a number of species interact with exactly
the same predator and prey species. In this case the degeneracy described above
will generally appears if the number of these species is larger than the sum of
their common predator and prey species. However, these degeneracies can be
avoided if either nonlinear mortality terms or the interference of predators is
taken into account.

To justify the use of linear terms it is often argued that these terms are
actually a first order Taylor approximation of the nonlinear terms observed
in nature (May 1973). However, the degeneracy related to the competitive
exclusion principle shows that the first order approximation is often not sufficient
to describe the dynamics of natural systems correctly.

We can say that the mortality terms as well as the predation terms should
in general be at least slightly nonlinear in the predator abundance. As a result
positive steady states are generally present. Since the system is no longer degen-
erate the positive steady state will generally survive subsequent perturbations
of the model. For example the positive steady state is present in models in
which minor differences between the response functions of the predators exist.

7.4 First results on food webs

Our discussion of the competitive exclusion principle has shown that positive
steady states generally exist in food webs. The general food web model allows
us to study the stability of these steady states with a high degree of generality.
In this section we illustrate this analysis by computing bifurcation diagrams
for different food webs. The investigations presented in this section are still of
preliminary nature. In particular the investigation of the complex food webs
described below are still in a very early stage. Nevertheless, we present some
results to illustrate the perspectives for future investigations.

7.4.1 Simple food webs

Let us start by considering the simple food web in which two species of predators
feed on the same prey species. The general Jacobian for this type of food web
has already been obtained in Eq. (7.56). The corresponding bifurcation diagram
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is shown as the top left diagram in Fig. 7.1. In the bifurcation diagram we have
assumed allometric timescales (α1 = 1, α2 = r, α3 = r), moderate nutrient
supply (φ = 0.5) and similar sensitivity to prey abundance (Γ := γ2 = γ3).
The biomass flow branches symmetrically (b1,2 = b1,3 = 0.5). The interference
of predators is neglected (ψ2 = 1,ψ3 = 1). Consequently, we have to take
nonlinear mortalities into account to avoid competitive exclusion. For the sake of
simplicity we assume that the mortality exponent of both predators is identical
this mortality exponent is denoted by p.

Figure 7.1: Bifurcation diagrams for simple food webs. The four bifurcation
diagrams correspond to four food webs with different web geometries. The
geometry under consideration is indicated symbolically in the top right corner
of the diagrams. Although the geometries differ the two diagrams in the top row
and the two diagrams in the bottom row are identical. In the diagrams Γ denotes
the sensitivity of all predators to the density of their prey. The parameter p is
the exponent of closure and r denotes the relative length of the prey timescales
compared to the predator.
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Figure 7.2: If similar parameters are considered the bifurcation diagrams of
many food webs are identical to the bifurcation diagrams of a simple food chain
with the same number of trophic levels. In this figure we indicate this identity
by the ‘equals’ sign. The food webs are shown symbolically. Circles represent
species while arrows indicate the biomass flow.

In the bifurcation diagram the positive steady state is stable in the top-
most volume of the parameter space. If the sensitivity to prey Γ is decreased
destabilization occurs either in a Hopf bifurcation (red surface) or in a general
saddle-node bifurcation (blue surface). This saddle-node bifurcation surface
is not the one that is related to the degeneracy described above. Since the
degeneracy appears at p = 1 the corresponding bifurcation surface fills the
p = 1 plane. In the figure this surface is not shown.

Let us compare the system to a simple di-trophic food chain. A bifurcation
diagram for the food chain is shown as the top right diagram in Fig. 7.1. Both
diagrams look very similar. In fact, we can use the method of resultants to
prove that the Hopf bifurcation is in both diagrams located at

Γ = r(1 − p) +
1
2
. (7.58)

Likewise, we find the general saddle-node bifurcation is in both diagrams at

Γ =
p− 1
2p

. (7.59)

This proves that the two bifurcation diagrams in the top half of Fig. 7.1 are
exactly identical. We can say that in terms of local asymptotic stability the
system of with two competing predators behaves exactly like the food chain.

Under the assumptions made above the identity of bifurcation diagrams
is observed in many examples For instance the bifurcation diagrams in the
lower half of Fig. 7.1 are identical to the bifurcation diagram of the simple
four-trophic food chain shown in Chap. 6. Further examples for which this
web-chain identity has been checked are shown symbolically in Fig. 7.2. We
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Figure 7.3: Local bifurcations of competing species with different general pa-
rameters. The diagram shows the Hopf bifurcation (red surface) and the gen-
eral saddle node bifurcation (blue surface) that arise in a food web in which two
predator species compete for one prey species. In contrast to the diagram shown
in Fig. 7.1 the general parameters that describe the two competing species are
chosen differently (α1 = 1, α2 = r, α3 = 1.05r, b1,2 = 0.45, b1,3 = 0.55, µ2,2 = p,
µ3,3 = 0.95p, γ2 = 0.95Γ, γ3 = Γ). As a result the bifurcation surfaces move
slightly. However the bifurcation diagram remains qualitatively identical.

can summarize the results of these investigations as a general rule: Identical
bifurcation diagrams are encountered if a number of species which are described
by identical general parameters occupy the same place in the food web. The
local bifurcation diagram in which such species exist is identical to the diagram
in which all species in one place are treated as one species.

In order to arrive at the general rule we have assumed that the general pa-
rameters that describe these species are exactly identical. While it is reasonable
to assume that species that occupy the same place in a food web are described
by similar values of the general parameters these parameters are in general not
exactly identical. One could therefore suspect that the identity that appears in
the examples is caused by yet another type of degeneracy. However, this is not
the case. The general rule stated above can be extended to the case in which
two species are not described by identical but by similar values of the parame-
ters. Even if the parameter values are not exactly correct the local bifurcation
diagrams of the full and the simplified system are qualitatively similar. In this
light it appears reasonable to model food webs of similar species as food chains.
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Let us illustrate this point by an example. Figure 7.3 shows another bifur-
cation diagram of the system in which two predator species feed on one prey
species. However, this time all parameters that describe the competing preda-
tors have been chosen differently (s. figure legend). As a result the bifurcation
surfaces in the diagram have moved slightly. However, the the number of the
bifurcation surfaces and the shape of the individual surfaces remains unchanged.
Although the bifurcation diagram is not exactly identical to the ones shown in
Fig. 7.2 it is qualitatively the same. Qualitative differences arise only if very
different species are considered.

The observed web-chain identity implies that our results on the dynamics of
food chains will also hold for a large class of food webs. Whether the equivalence
of food webs and food chains can be extended to global features of the dynamics
remains to be seen. However, the fact that the higher codimension bifurcations
are predicted correctly is promising.

7.4.2 Complex food webs

So far we have shown that similar species that occupy the same position in a
food web can be treated as one species. However more complicated situations
can arise if two different species occupy the same position in a food web.

Let us illustrate this point in a simple example. We consider a system
in which two competing predator species feed on a single prey species. Both
predator species are consumed by a top predator. In our model the prey species
is species 1, the competing predators are species 2 and 3 and the top-predator
is species 4. We assume that both predators are similar, but species 3 has some
defense against the top predator that makes individuals of that species less likely
to be consumed. If the defense is very weak the biomass loss of species 3 occurs
mainly because of predation by the top-predator. In this case biomass loss
because of mortality can be neglected. This situation corresponds to b3,4 = 1
and b̃3 = 0. However, if the defense is very strong the biomass loss because of
predation by the top predator can be neglected since almost all biomass loss
occurs because of other mortality terms. In this case the general parameters
are b3,4 = 0 and b̃3 = 1. This illustrates that the parameter b3,4 measures the
strength of the trophic link between species 3 and the top predator. The top-
predator is assumed to feed equally on species 2 and 3 if the defense of species
3 is weak. However, it feeds almost exclusively on species 2 if the defense of
species 3 is strong. This is expressed by the relations

ξ3,4 =
b3,4

2
, (7.60)

ξ2,4 = 1 − b3,4

2
. (7.61)

Furthermore we assume linear mortality terms (µ3,3 = 1, µ4,4 = 1). and mod-
erate nutrient supply (φ1,1 = 0.5). The timescales in the model are chosen
in accordance to the usual allometric relation (α1 = 1, α2 = r, α3 = r,
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Figure 7.4: Bifurcation diagram of a food web with competing predators. In
the diagram Hopf bifurcation surfaces (red, yellow) and a general saddle-node
bifurcation surface (blue) appear. In addition to predator’s sensitivity to prey
density Γ and the relative length of timescales r the effect of the parameter b3,4

is shown. This parameter measures the strength of the trophic link between
one of the competing predators and the top-predator. For b3,4 = 1 the two
competing predators are very similar. In this case the bifurcation diagram is
qualitatively similar to a three-trophic foodchain. However, as b3, 4 is decreased
the difference between the competing species grows and a additional Hopf bifur-
cation appears. As a result a double Hopf bifurcation is formed which indicates
complex dynamics.

α4 = r2). The sensitivity to prey density is assumed to be Γ for all preda-
tors (γ2 = γ3 = γ4 =: Γ).

The effect of different values of b3,4 on the local bifurcations is shown in
Fig. 7.4. Let us start by considering the region in which the defense of species
3 is weak and b3,4 is close to one. In this case the species are sufficiently similar
to apply the general rule from the previous section. This rule predicts that
the dynamics of the food web is qualitatively similar to the tri-trophic food
chain. This is confirmed by the bifurcation diagram. For high values of b3,4 one
general saddle-node bifurcation surface (blue) and one Hopf bifurcation surface
(red) appears in the diagram as one would expect in a tri-trophic food chain.
However, as the parameter b3,4 is decreased the difference between species 2
and 3 grows. At a certain point the species become too different to treat the
system as a food chain. At low values of b3,4 the general saddle-node bifurcation
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surface disappears. Instead, we now find a second Hopf bifurcation surface
(yellow). At the intersection of the Hopf bifurcation surfaces a double Hopf
bifurcation is formed. In this region the bifurcation surfaces of the food web
are roughly similar to the one that we have computed for the four-trophic food
chain. However, the surfaces never become identical to the ones of the four-
trophic chain.

Our results illustrate that it is reasonable to distinguish between simple
and complex food webs. We call a food web simple if it can be modeled by an
effective food chain with the same numbers of trophic levels. By contrast, this is
not possible in complex food webs. While simple food webs behave qualitatively
similar to the corresponding food chain complex food webs generally exhibit
more complex behavior.

Bifurcation diagrams for two other examples of complex food webs are shown
in Fig. 7.5. Both diagrams correspond to systems with three trophic levels. In
tri-trophic food chains and simple three level food webs we would expect to
find one Hopf bifurcation surface and one general saddle-node bifurcation sur-
face. However, in complex food webs additional bifurcation surfaces appear. In
both of the bifurcation diagrams two Hopf bifurcation surfaces and two gen-
eral saddle-node bifurcation surfaces exist. As a result of the higher number
of bifurcation surfaces double Hopf and Takens-Bogdanov bifurcations appear
in both diagrams. Moreover, a Gavrilov-Guckenheimer bifurcation appears in
the left diagram. The presence of these bifurcations shows that the dynamics
of complex food webs is indeed more complex than the dynamics of simple food
webs.

Both examples in Fig. 7.5 are tri-trophic systems which consist of five species.
In the bifurcation diagrams the number and shape of the bifurcation surfaces in
the diagrams is similar. But, certain differences exist. For instance a Gavrilov-
Guckenheimer bifurcation appears only in the left bifurcation diagram. This
demonstrates that the bifurcation structure of complex food webs is not de-
termined by the number of species or trophic levels. Nevertheless, it may be
possible to find general rules that predict the number of bifurcation surfaces in
complex food webs. However, such an attempt exceeds the scope of the present
work.

In general we can say that complex food webs contain at least as many
bifurcation surfaces as the corresponding food chain with the same number of
species. In many cases the number of bifurcation surfaces is higher. As a result
many bifurcations of higher codimension are formed. These bifurcation lines
indicate the presence of complex dynamics. Moreover, the topmost volume of
parameter space becomes in many cases very small, so that the steady state is
only stable in a small parameter region.

7.4.3 Stability despite complexity?

So far we have considered food webs which consist of a relatively small number of
species. By contrast, the food webs observed in nature are far more complex. It
can be argued that not every species in the natural food web needs to be modeled
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Figure 7.5: Local bifurcation diagrams for complex food webs. The two di-
agrams show the local bifurcations of two complex food webs. The surfaces
correspond to Hopf bifurcations (red, green) and general saddle-node bifurca-
tions (blue). In these diagrams more bifurcation surfaces appear than in simple
food chains with the same number of levels. As a result the dynamics is generally
more complex and the region in which the steady state is stable is smaller.

to describe the dynamics of natural systems. In fact, we can probably model
many species together by applying the general rule which has been identified
in Sec. 7.4.1. But, the fact that many weak trophic links exist in natural food
webs (McCann et al. 1998) indicates that many species are too different to be
grouped together.

Let us speculate on the way in which natural ecosystems could work. The
theoretical results suggest that most complex ecological systems reside in a
non-stationary state in which many species coexist. While the high degree of
redundancy should make the system very persistent we can expect that the
dynamics remains highly complex. However, an inherent feature of complexity
is the appearance of emergent variables (Badii and Politi 1999). In contrast
to the microscopic state variables the emergent variables often exhibit very
simple dynamics. Consider for instance a volume of gas at rest. The individual
gas atoms follow chaotic trajectories. However, the system as a whole can be
described by emergent variables like pressure and temperature which behave in
a much simpler fashion. This can explain the apparent stationarity of complex
ecological systems. While the abundance of individual species may fluctuate in
these systems emergent variables appear that exhibit simple dynamics.

In summary we can say that the stability of natural ecological systems arises
probably from the interplay of a large number of different species. Since the
complexity of these systems is an important inherent feature any model that
attempts to describe such a system accurately has to be very complex as well.
However, an accurate description may in many cases not be necessary. For
many applications it is sufficient to consider models that describe the dynamics
of emergent variables.
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In fact, many ecological models have been formulated that describe the eco-
logical dynamics not on the species level but on an emergent level. An example
of such a model is the nutrient-phytoplankton-zooplankton food chain proposed
by Steele and Henderson (1992). Other models describe the dynamics of func-
tional groups in the plankton food web (Ebenhöh 1996). Such functional groups
can be considered as emergent variables. In this sense the emergent dynamics
of very complex ecological systems may be described by simple food chains or
food webs.

In Chap. 4 we have shown that large uncertainties exist which make it diffi-
cult to describe the interaction of species with mathematical functions. In par-
ticular our investigation of the paradox of enrichment has revealed that models
which rely on very simple mathematical functions may produce not reflect cer-
tain stability properties observed in the natural system. The attempt to derive
a model that describes the dynamics of emergent variables is even more diffi-
cult. As a result most models apply the same simple mathematical functions
that are used in models of interacting species. However, the mechanistic rea-
soning on which these functions are based may be inappropriate for emergent
variables. In this light investigations with general models that do not rely on
specific functional forms are desirable. The general food web model presented
in this chapter provides a framework in which such investigations can be carried
out.

7.5 Future investigations

In the investigations presented in this chapter we have focused on the impact of
certain food web geometries on the dynamics. However, the general food web
model can be used to study many other ecological questions with a high degree
of generality. In this section we describe some ecological effects which can be
studied in the present model or require only minor modifications.

Although we have studied different food web geometries there are certain
important aspects of natural food webs which we have not considered so far.
For instance cannibalism is already included in the model but has not been
studied in this work. Another important feature that appears in many ecological
systems is oligotrophy. In the examples presented here we have only considered
predators which feed on prey species which are on the trophic level below their
own. However, in nature oligotrophic predators which feed on prey species
from different trophic levels are often observed. Like cannibalism oligotrophy
is already possible in the general food web model but has not been considered
here.

In order to consider other effects the interpretation of the variables has to be
changed slightly. For instance we can include nutrients explicitly in the model
by interpreting one model species as a nutrient concentration. As a result the
corresponding parameter φn,n can no longer be interpreted as a measure of
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nutrient availability. Instead, this parameter is now related to the inflow of
nutrients into the system. Consequently, the dynamics at negative values of
this parameter have to be studied.

A more profound reinterpretation of variables allows us to model the tran-
sition of individuals between different states. Think for instance of a species
that occurs in two different spatial patches. In the general food web model we
can describe the dynamics of such a species with two model species. While one
model species is used to denote the population density in one location the other
model species denotes the population density in the other location. The emi-
gration of individuals from a given patch can be modeled as a mortality term
mn(X) while the immigration should be modeled with the general production
term sn(X). In a similar way other transitions can be modeled. For instance
we can study the effect of a disease on a given species by using three model
species to denote the number of susceptible, infected and recovered individuals.
Other examples which can be treated similarly include the transition between
different age classes or the transition between an active and an inactive state.

While explicit treatment of nutrients and the transition between different
states only require a reinterpretation of certain variables other effects make mi-
nor extensions of the model necessary. For instance we have assumed that the
efficency of biomass conversion η1, . . . , ηN and the timescales α1, . . . , αN are
constant. However, in principle such an assumption is not necessary in the
derivation of the model. For instance we can assume that these parameters de-
pend algebraically on the state variables. In this case the normalization can still
be performed in a very similar way. However, in the course of this normalization
additional general parameters will appear. A particularly interesting extension
is to consider the prey preferences that depend algebraically the state variables.
This extension would enable us to study predators that actively switch between
different prey species.

Likewise, additional interactions can be taken into account. For instance we
can consider predation terms that do not only depend on the abundance of
predator and prey but also on other species. This would allow us to consider
the effect of interspecific interference on the dynamics of the food web.

The most complex extensions of the model are those which involve the in-
troduction of additional state variables. Such variables can be used to describe
internal states of the species. This may be necessary to consider the effects of
adaptation or evolution in the general model. Likewise the internal states may
be used to denote the energy reserves of the species in addition to abundance.
Additional state variables that are introduced for this purpose have to be nor-
malized for the general analysis. However, the normalization procedure that
we have applied for the species abundances can in spirit be extended to other
variables as well.
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7.6 Summary

In this chapter we have shown that positive steady states generally exist in food
webs. The competitive exclusion principle does only prevent the existence of
positive steady states in degenerate food webs in which the predator interference
as well as the nonlinearity of the mortality terms is neglected.

The general food web model enables us to compute the stability of such states
with a high degree of generality. The application of this model has revealed
that a large class of food webs behaves qualitatively similar to food chains.
The results that have been obtained in the previous chapters can therefore be
extended to a large class of food webs. This result indicates that redundancy
alone is not sufficient to stabilize the dynamics of simple food webs.

However, other food webs exist which exhibit more complex dynamics. These
complex food webs consist of species that are too different to treat the system
as a food chain. These food webs are in general characterized by complex
dynamics.

The apparent stability of the food chains observed in nature can be explained
with the appearance of emergent variables. These emergent variables can exhibit
simple dynamics although the dynamics on the species level is complex.

Finally, we have shown that the general food web model can be applied to
study a number of interesting ecological effects that have so far not been inves-
tigated with this level of generality.
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Chapter 8

Conclusions

In this work we have formulated general models of ecological food webs and
food chains. These models have enabled us to investigate ecological questions
with a high degree of generality. We have studied the effect of enrichment on
the local stability of steady states. Thereafter we have focussed on the question
whether chaos generally exists in food webs. Finally, we have studied the effect
of food web geometry on the local dynamics. Let us now discuss the results of
this work and describe some perspectives for future investigations.

General models as a modeling approach
The idea behind the general models is to obtain a model with a high degree

of generality by including only a very small amount of information. We have
shown that models with this degree of generality can still be analyzed with the
tools of local bifurcation theory. But, unlike specific models they can not be
used to compute trajectories. As a result the predictions of general models can
not be verified by the comparison to experimental data. However, there is in
general little need to verify the model since the results depend only on very
few assumptions. If verification is desired the bifurcations in the general model
can be compared to the bifurcations in a specific model that the general model
describes. This illustrates that general models do not predict the behavior of a
particular system, but the behavior of a class of specific models.

Degeneracies in specific models
The investigation of the paradox of enrichment has revealed that models that

are based on simple mathematical functions may not reflect certain dynamical
properties observed in nature. Enrichment has always a destabilizing effect if
the simple, commonly used response functions are employed in a given model.
However, if more complex functions are used enrichment can have a stabilizing
effect. We have shown that a large class of functions exists that exhibit this
alternate type of behavior. In particular some of these functions are very simi-
lar to commonly used response functions. They can be derived from reasonable

99
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biological assumptions. This means that biological species may escape the para-
dox of enrichment by adapting their behavior slightly. However, it also means
that many simple models may not describe the stability of ecological systems
correctly.

Our results on the paradox of enrichment are a strong motivation for the use
of our general models. In these models we avoid to describe ecological processes
by specific functions. This enables us to use general models to investigate the
generality of conclusions from specific models. This analysis can reveal existence
of the different types of model behavior as we have seen for the paradox of
enrichment.

In some cases the general analysis shows that some type of behavior disap-
pears if a specific model is perturbed slightly. For instance we have shown that
such a degeneracy is related to the competitive exclusion principle. Despite this
principle stable coexistence of competing species is generally possible if nonlin-
ear mortality terms or interference of predators is taken into account. If both
effects are neglected certain food web models become structurally unstable. In
such a model any minor biological detail that is taken into account will cause
the transition to qualitatively different long term behavior. It is therefore un-
likely that degenerate, structural unstable models describe the generic dynamics
observed in nature.

The fact that degeneracies can appear in specific models does not imply that
such models should not be used. Specific models have provided many important
insights and will continue to do so in the future. However, general hypotheses
that are based on the investigation of specific models should be verified in a
general context.

The abstract point of view
Our general models describe the local dynamics in terms of general param-

eters. The identification of these parameters is in itself an advantage. Our
investigation of the paradox of enrichment has mainly focused on specific mod-
els. However, this analysis was based on the observation that the destabilizing
effect of a enrichment is measured by the parameter Γ. In this way the iden-
tification of Γ in the general model has enabled us to compare the effects of
enrichment in specific models.

In general we can say that the general parameters provide a natural co-
ordinate system in which specific models can be compared. For instance the
bifurcation diagrams shown in Chap. 7 have revealed that the local dynamics in
certain food webs is qualitatively the same as the local dynamics in food chains.
This web-chain identity would be much harder to spot if the bifurcations were
not plotted in the general parameter space.

The observed web-chain identity has already enabled us to extend our results
on food chain dynamics to a large class of food webs. Future investigations may
reveal additional rules that determine the number of bifurcation surfaces in food
webs. These general rules may in the long run evolve into a qualitative theory
of food webs that helps to solve the complexity-stability question.
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Linking ecology to bifurcation theory
The high degree of generality that characterizes the general models enables

us to use results from bifurcation theory in a very general way. For instance
we have used mathematical results on double Hopf bifurcations to prove that
long food chains and many food webs generally exhibit chaotic dynamics in
certain parameter regions. The chaotic regions survive even if strong nonlinear
mortality terms are considered in the model.

Other bifurcations have similar implications. The Takens-Bogdanov bifur-
cation generally indicates the presence of a homoclinic bifurcations. Likewise,
the Gavrilov-Guckenheimer bifurcation generally gives rise to quasiperiodic dy-
namics.

In the framework of the general model we can use results from bifurcation
theory to draw ecological conclusions with a high degree of generality. At the
same time the investigation of general ecological models provides new examples
for mathematical investigations. For instance, our investigations in Chap. 6 have
revealed that 1:1-resonant double Hopf bifurcations occur in the general food
chain model. The ecological implication of this bifurcations are still unclear.
However, they may be revealed in future mathematical investigations.

We can say that general models can bridge the gap between bifurcation
theory and theoretical ecology. The investigations of general ecological mod-
els yields examples of higher-codimension bifurcations that appear in a whole
class of ecological models. In return, the mathematical investigation of these
bifurcations can reveal new ecological insights.

The method of resultants that we have used for the computation of Hopf
bifurcations fits nicely in this mathematical background. The bifurcation dia-
grams that are shown in this work underline that the method of resultants is a
powerful technique for the efficient computation of bifurcation surfaces. The ap-
plication of this method in conjunction with computer algebra systems enables
us to compute the bifurcation surfaces in an analytical way. Since no numerical
calculations are needed the method can be applied in analytical proofs. In con-
junction with general models the method can therefore be used to prove general
ecological insights mathematically.

Future investigations
Since the genereal models depend on few assumptions their application is

advantages in areas where large uncertainties exist and experimental measure-
ments are difficult. In ecology these uncertainties arise from the complexity of
the individual organisms and from the complexity of the system as a whole.
We have already argued that the general food web model can be extended to
investigate a large number of interesting ecological questions. However, other
areas of science exist where similar or even greater uncertainties and difficulties
exist. In these areas the application of general models is desirable. For instance
general models could be used to study conceptual models from climate research,
models of genetic networks or even models of social systems with a high degree
of generality.
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In this light general models can be regarded as a general modeling approach
that can reveal interesting insights in many disciplines of science.
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