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Abstract. Situation Awareness (SA) is defined as the perception of elements in 

the environment within a volume of time and space, the comprehension of their 

meaning, and the projection of their status in the near future [1]. Lacking SA or 

having inadequate SA has been identified as one of the primary factors in 

accidents attributed to human error [2].  In this paper we present a probabilistic 

machine-learning-based approach for the real-time prediction of the focus of 

attention and deficits of SA using a Bayesian driver model as a driving monitor. 

This Bayesian driving monitor generates expectations conditional on the actions 

of the driver which are treated as evidence in the Bayesian driver model. 
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1 Introduction 

Driver‟s behavior should be regarded as an instance of Cognition in the Wild [3]. Its 

study is not possible in highly controlled laboratory experiments but only in natural 

(real or simulated) traffic scenarios. A natural scenario includes all hazards even 

where they are rare events. Because of their clinical cleanness most simulated traffic 

scenarios are lacking this kind of naturalness. They are not ecological valid with 

respect to experiments and cues: the external validity of simulation experiments is 

doubtful. This is especially important when studying SA. Scenarios without hazards 

or with a biased set of hazards cause biased theoretical hypotheses and empirical 

results. In this paper we assume, that all SA-studies which will be planned according 

to our proposals are ecological valid. Unfortunately, this was not the case for the 

simulated driving studies discussed here.  
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2   Early Models of Looking and Driving 

There is a wealth of reported eye movement strategies and relevant perceptional cues 

which are sometimes contradictory or ambiguous [4, ch.7]. 

When driving on empty straight roads two cues are required for proper lane 

maintenance: the location relative to the lane edges at some preview distance and the 

splay angles (Fig. 1) that the lane edges make with the driver‟s heading [5, 6].  

 

 

Fig. 1. Steering corrections in the UK (right-hand-drive car in the left lane) as a function of 

heading (bold arrow), splay angles, and location (displacement) at preview distance (horizontal 

dotted line; adapted from [4, p.118]). Splay angles in reality differ from those in Fig. 1. 

Only one corrective rotation is needed to reduce the risky situation 1.b to the 

normal position 1.a or from 1.c to 1.a. Two corrections are necessary to reduce 1.d to 

1.b and then to 1.a or to reduce 1.e to 1.c and then to 1.a.  

Changing lanes involves a three-stage maneuver: a turn out-of-lane (1.a1.c), a 

period of oblique travel, and then a counterturn (1.c1.a) in the new lane [4]. The 

quality of the maneuver was reported to improve when a slower vehicle ahead was the 

reason for the lane change and could be used as an inertial cue for perception [7]. 

Steering around (gentle) bends is more complicated, because splay angles change 

with distance and during the drive. The gaze sampling strategy assumes that drivers 

choose a point on the future path at a constant preview distance and uses the 

horizontal eccentricity of this point to adjust steering [4, 8, and 9]. The steering wheel 

angle is a function of the path curvature, which can be estimated by the angle between 

gaze direction (to a preview point P at a distance D) and heading. According to flow-

field theory the driver samples cues in the form of flow lines from various parts of the 

view field [4, 8 - 10].  

Winding country roads require anticipatory estimates of the future curvature from 

road features or flow lines. Land & Lee [11] found that drivers spend much time 

looking at the tangent point of the upcoming bend. This is the moving point on the 
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inside where the driver‟s gaze line is tangential to the road edge. It is nearly stationary 

in the flow field when the curvature is constant. Similar findings in favor of this 

strategy were reported [12 - 15]. Other studies favor the hypothesis that it is not the 

tangent point but the future path that is viewed more frequently [16 - 18]. Either way, 

the steering angle seems to be a function of the gaze angle with a time lag of ca. 0.8 

sec [4, Fig. 7.5b]. This seems to be a planned delay to enhance the anticipatory 

horizon of the driver. When the course is not too demanding there are off-road 

glances between 0.5 and 1 sec [19] which provide evidence for lateral control with 

peripheral [20] or ambient [21] vision. 

Computational models of steering behavior have been engineered since 1978 [22]. 

Donges‟ model uses feedback and feed-forward or anticipatory information from near 

and distant parts of the road. There is empirical evidence for this particular 

combination of information [23, 24]. The two-point control model of steering [25] 

rests on the same combination. The change of the steering wheel angle is a function of 

the change of the angles between heading and two preview points (near and far point) 

and of the angle between heading and the near point.  

To summarize, there is universal agreement that fluent driving on winding roads 

requires visual information from both near and distant road regions. The near region 

involves feedback from the angular position and velocity of the lane boundaries. 

There is, however, less agreement about which features in the far road region are 

necessary or sufficient to provide prospective feed-forward information (Mars, 2008) 

[4, p.129]. During natural driving, the gaze may be intermittently directed to the 

(tangent point) TP and the road ahead as a way to determine the future path and keep 

steering smooth at the same time [14]. 

Other scenarios like braking, overtaking, entering highways, driving in cities, 

multitasking, etc. provide and require different cues and other more interleaved visual 

strategies. These are at the moment only rudimentary understood or formalized. So 

we developed a nearly assumption-free modeling strategy which rests on machine-

learning, data mining, stochastic models. One of the few assumptions is that relevant 

percepts or cues could be learnt on-the-fly by stochastic structure-learning techniques. 

3   Hierarchical Modular Bayesian Autonomous Driver Models 

In our earlier research [26-28] we developed a Bayesian Autonomous Driver (BAD) 

model based on Dynamic Bayesian Networks proposed in [29] (Fig. 2).  

The model assumed that one single model is sufficient to generate actions for 

longitudinal and lateral control in an arbitrary virtual course. Now, we have a more 

sophisticated view of human competence. We assume and model skill hierarchies 

(Fig. 3) of human drivers with a new hierarchical modular probabilistic architecture 

[30, 31] (Fig. 4). According to our skill hierarchy (Fig. 3) the maneuver Overtaking is 

partitioned into the three behaviors PassOut, PassCar, and PassIn. If we had reused 

Land & Tatler‟s proposal of partitioning the ChangeLane maneuver we would get a 

partition of seven behaviors for the Overtaking maneuver. 
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Fig. 2. Reactive Bayesian Autonomous Driver (BAD) model based on a 2-time-sliced dynamic 

Bayesian network  

 

Fig. 3. Skill hierarchy of a driver with partitioning the overtaking maneuver into the three 

behaviors PassOut, PassCar, and PassIn 
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Fig. 4. Implementation of the skill Maneuverj by the assemblage of a Bayesian Gating Model 

Gj and submodels Bj and Ajk with BIC-relevant peephole percepts P 

4   Learning Relevant Percepts in Hierarchical Modular Bayesian 

Autonomous Driver Models 

Our BAD models are able to drive autonomously in the TORCS simulation 

environment on a virtual country road - including passing or overtaking maneuvers - 

without opposing traffic (Fig. 5). They rest on the assumption that there is 

considerable uncertainty about the relevant percepts in natural driving maneuvers. So 

the relevant percepts have to be identified during the modeling process.  

To model the driver‟s ambient and foveal vision channels [21] we used 205 

different time-independent (estimates of speed, distance and angle) and time-

dependent percepts (TDP). TDPs are percepts similar but not identical to Lee‟s time-

to-x (tau) measures [32-34]. TDP-percepts (e.g. SLA-angles in Fig. 6 and SCA-angles 

in Fig. 7) are defined on points of reference or preview in the scenario. One point of 

reference is the current position; the points of preview are located in the future course 

and will be reached by the driver in a certain amount of time depending on the speed 

of his vehicle. A more detailed description of the variables is given in [31]. This set of 

variables proved to be informative for lateral and longitudinal control by machine-

learning standards. 

Single time-dependent angles tended to over-anticipate the upcoming course of the 

road when approaching sharp curves (e.g. hairpins) with high speed [26]. Fanning out 

distance sensors from the driver to the street boundaries [28] solved the problem of 
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over-anticipation but were too restrictive and not able to anticipate the course of the 

road in curves. Now we use sets of time-dependent and –independent angles to 

encode the vision field of the driver and to avoid the problem of over-anticipating. 

In a training phase we selected percepts relevant for the actions steer and de-

/acceleration with a step-wise structure-learning technique using the Bayesian 

Information Criterion (BIC). We assume – as said before  - that the training phase is 

ecological valid with respect to all hazards. For each skill in the hierarchy the 

procedure selected a minimal set of relevant („peephole’) percepts PAjk and PBj (Fig. 4, 

6, 7). In total, 41 of the 205 percepts were identified as relevant for Action and 

Behavior-Classification models [31].  

 

 

Fig. 5. Experimental setup with TORCS course, variables of interest, and data classification 

5   Predicting the Focus of Attention and Deficits in Situation 

Awareness with the Bayesian Driver Model as a Driving Monitor 

After the training phase the BAD model could be used as a multi-purpose driving 

monitor.  

First, it could be used to check whether the drive can be considered „normal‟ or 

„abnormal‟ according to the standards of a correct selected action model (Fig. 4, 6). 

This could be checked by computing the likelihood of the drive. The selection of 

action models is done by the Behavior Classification model (Fig. 4, 7) and its 

peephole percepts (e.g. NCA and SLA0.2s in Fig. 7). 
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Fig. 6. Action-model PassOut (one speed-, two distance-, and time-based peephole percepts) 

 

Fig. 7. Behavior-Classification-model Overtaking with one distance-based and one time-based 

peephole percept 
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Second, predictions of the focus of attention can be obtained. Because the Behavior 

and the Action-model (Fig. 4) are conceptualized and validated as efficient Bayesian 

classifier models we are able to predict the relevance or adequacy of percepts on the 

basis of the driver actions by asking the questions P(Percepts | Actions). In the case of 

driving the questions are of course reversed in direction to P(Actions | Percepts). 

Third, predictions of deficits in situation awareness can be obtained during the 

same monitoring process. There are two alternatives in SA deficit prediction. In the 

first case we predict that in certain behaviors or maneuvers some percepts are not 

relevant in the view of the action model (question marks in Figures 6-9). We expect 

that we can introduce hazards (e.g. vehicles or pedestrians appearing on the ?-marked 

sides of the car) which will not be noticed by the driver.  

 

Fig. 8. Inadequate percept-action mapping behavior according PassOut-Action model 

 

Fig. 9. Adequate percept-action mapping behavior according PassOut-Action model 

In the second case the prediction of deficits in SA rests on an abnormality or 

likelihood check of the driver behavior according to the standards of the selected 

action model. It is assumed that drivers sometimes choose actions not adequate for the 

scenario. This could be due to the fact that they substitute real-world percepts by 

mental assumptions or anticipations. E.g. if we assume that the driver chooses the 
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same speed in Figure 6 and 8 we infer with the help of the driver model, that the 

relevant percepts are identical. 

But in Figure 8 the relevant percepts SLA are inadequate for the chosen behavior 

because they are shaded by the bus. The driver is driving too fast according to the 

standards of the PassOut-Action model. An adequate percept-action mapping 

according to the PassOut-Action model is depicted in Figure 9. A preference for 

slower driving guarantees that the relevant time-dependent percepts are not “out of 

sight”. Further empirical studies could reveal the necessity of a new 

PassOutSchoolbus-Action model with a new percept-action mapping (Figure 9).  

5   Summary 

The BAD MoB model could be used as a monitor of the driver‟s behavior. First, it 

could be used to compute the likelihood of the actual driving behavior under the 

assumption of a correct selected action model. Second, it could be used to predict the 

focus of attention on the basis of driver actions by answering the questions P(Percepts 

| Actions). Third, it could be used to predict deficits in SA. Behavior and actions 

which seem to be unlikely in the view of the scenario-relevant valid action model are 

indicators of reduced SA. At the same time the abducted BIC-relevant percepts 

should be checked whether they could be really observed in the driving situation. If 

not then this gives a hint that the driving behavior is inadequate for the situation. 

Furthermore the abducted nonrelevant percepts give hints where hazards could 

intrude the local vicinity of the vehicle unnoticed from the situational attention system 

of the driver.  
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