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Introduction

Cognitive architectur€s provide a modeling ftamework with constaints pre-
venting modelers ftom cleating unrealistic models of human cognitive proc-
esses (Cray, 2007; cluck, Pew, 2005). One of the mosr prominen architec-
tures is the AcT-R-architecture (Ande$on, 2007). It has a lons hadition.
dating back at least to 1983 (Anderson, 1983).

The ACT-R (Atomic Components oi Thought-Rational) cognirive archir€c-
ture (Anderson, 2004; 2007) consisrs of eight modutes: The Visual, Aural,
Manual, Vocal, Declarative, Imaginal, coal, and production modules. Obvi-
ously, they perfom specific fimctions: The Visual and Auml modules control
the perceptual input ofar ACT-R model, whil€ the Manual and Vocal mod-
ules constitute its action apparatus. The coal module stores the cufieDt goal,
while the lmaginal module represents working memory. The Declarative
module's purpose is to retdev€ facts from long{em memory. All of these
modules interface to ihe Production module via buffers. A buffer rnav hotd a
single chunl ri.e. fac al a rime. The Producdon modute represenrs ihe pro-
c€dural memory and matches, selects, and executes production rules, which
compare and manipulate the buffers'contents_ Each a.tion triggered by a
production in a specific modul€ consumes a certain aDount of time. A model
based on this architectwe is an executable progmn in the folm of production
mles which may be used to detemine predict a paxticipant's performance in
various tasks on trials ofvarious domains, such as algebraic problem solving.

Ande$on's BIäin Mapping H)?othesis (Anderson, 200?) maps the activily of
the ACT-R modules onto specific brain regions. Thus, ACT-R imptements a
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tooling that enables Blood-Oxygen Level-Dependent (BOLD) sigDal pr€di
cation for these brain regions. However, lhese regions only cover a very

small volume of the bain, and most studies were conducted using simple

tasks with a limited stateg/ space.

Res€rrch Question

The fi.st research question of our sub-project was to study the robustness of
the Brain Mapping Hwothesis towards a non-algebßic task, a multidimetr-
sional strategy space, and programming or modeling errors.

Methods

A tdal problem consists ofthe visual and auditory Fesentation ofa name for
a chemical compound ard two stnrchual formulae which w€re presented to

the left and the right on the screen. The paticipant has to decide which one of
these matches the compomd name (for task details see Anschütz et al. this

volume). The following constrants are knowr to the participant (Möbus,
Lenk et a1.,2011).

1 . Th€ abbr€viation for an element is defined by fivo letters

2. The first letter of the abbr€viation is the same as the fust letter in the

name ofthe elemgnt.

3. Both letters appeax in the element's namo.

4. An element may have a mutiplicity fton I to 4 in the compound. Dis-
tinct three l€tter words s€rved as numerals to denote the multiplicil,:

a. l/
b. 2 /pli
c. 3 /pla
d. 4 /plo

5. The position of a nurneml is always in front of the oli,ting element in the

compound name.

6. The cenhal element of the structural formula is al\'r'ays th€ fi$l in the

cornpomd name.

We used alata lrom 62 chilahen, ages 10 to 13, who took part in the fMRI
experiment (see Öz)'urt and Thiel, this volume for details on the fMRI ex-
periment). Each participanr underwenl a total of 80 fials dudng two sessions.
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The chemical formula language is usually not known to childr€n of that ase
group. Nev€rtheless, fictitious chemical el€ments and their abbr€viations as
well as num€rals wer€ used to pr€vent carry-over effects. The children were
falniliarized srth lhe above constrainls by undergoing an e\rensi\e insnuc-
tion and lraining phase.

Mod€ls

During the task analysis, it becam€ clear that thjs seemingly simple problem
may be solved by applying a moltitude of strategies. For instanc€, the partici-
pant may constrain him- or herselfto study €ither only the left or the right
structural formula exclusively and subsequently d€cide whether it matches or
not. Altematively, the panicipant could check characteristics on both formu-
lae until a violation of the above constraints is detected for one formula.
Also, som€ aspects ofthe trial may be process€d multithreaded as opposed
to single-thr€aded processing. Still. there is a great degree offteedom for the
ACT-R modeler to impl€ment these strategies. A participant may €hange the
strategy across trials, or in the worst case, during a single trial.

Out of these considerations, six ACT-R modeh wer€ irnplement€d. Model
Sla and Slb were multi-threaded and evaluated only on€ structural fomrula,
either the left orthe right. Model 52 is also multi-threaded, but checks certain
characteristics on both formulae for violations. Along thes€ lines, S3a and
S3b were single-threaded counterparts of Sla and Slb evaluäting only one
formula. 54 is single-thrcad€d and again checks both formula€.

Dat8 Aggregation

Individual BOLD curves wer€ €xtracted for each participant fron ahe r€gions
defin€d by Anderson. Each module was mapped onto two regions for each
brain h€misph€re. Then, the individual BOLD cuNes were agsregated. For
this purpose, we constnrcted a Bayesian B€lief Network (BBN), which
allowed us to infer the probability that a sp€cific strategr' had been us€d by a
participant based on the participant's r€sponse time (RT) and characterisrics
ofthe trial (Figure l). The BBN had been traaned prior with ACT-R model
data. These probabilities w€re used as weights for the aggregarion of ihe
individual BOLD curves, which resulled in a strat€gy-specific BOLD curve
that was then compared with the BOLD prediction of rhe corresponding
model.
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We first compared the conplete time series of the lim€ series with about

400 data points which showedgenemlly low correlations (Möbus, Lenk etal.,
2010). We then applied the aggregation method from cartet Andeßon et al.
(2008), which allowed us to align th€ scans from ditlerent triah and indi-
viduals onto a tenplate and subsequently aggregat€ the data. How€ver. we
modified tbe method by using the probabilities from the BBN as weights in
the aggregation again. Model predictions were lik€wis€ aggregated and Pear-

son's coftelation coeficients have been computed for sarategy model predic-

tions and slrategy-specific BOLD curv€ aggregations.

Resulls

These coefficients (Table l) are hish for all modules but the Goal module.

This indicates a faulty assumption in the modeling process. Indeed, all strate-
gies place a single chunk in the Goal buffer aa th€ start ofeach trial and thus
prodrce little activity in this module. Genemlly, most correlation coefficients
were heighl€ned by th€ weightine process. This is especially the case fot lhe
ManMl module, which may b€ easily explained as the RT (triggered by man-
ual aclion) is dre prime indicator for a strategy in the BBN.

Tab.1 Corelation coelfrcients bet*en nodeh BOLD Fedictions rd brain regions in the

len hemisphere for*€ighled (s.) and ünweightd (Uw ) aggregation (Möbus, Lenl et

rl,20ll)

Also, asymmetries can be found in the datä. Most module and region pairs

conelar€ bigher with the left hemisphere (Figure 2), with the notabl€ ex€ep-

tion of tbe Imaginal module, which corr€lates slightly higher wift the right.
The Manüal modu'e con€lates negatively with the right hemisphere. This is
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in accordance with the literature (Mattay ei al., 1998), as the participants re-

sponded with their right hand. No model performs b€st for all module/region
pairs, but gen€rauy the multi-threaded model Sla, Slb, and 52 show the most

accumte BOLD pr€dictions.

+

Fig 2 Corelaioo coeflicients Ior bolh hemispheres On lhe horizooul dis a@ the md"
ule/Esion pans and weielied (w ) vs. unw€ighed (uw.) asgregotion. The venical axis
shovsthe comlolion coclficienl nnging frcn-l lo I

Conclusion

We were able to show that the ACT-R Brain Mapping Hypothesis also holds

in large parts for tasks with multi-dimensional stmt€gy spaces. Howev€r, it
has been shown lhat an ACT-R model which explains behavior do€s not ne€-

€ssarily predict fitting BOLD curves, and thus, due to ACT-R b€ing under-

constrained, the modeler cannot hope to conceive a valid nodel, even if
based on fit to b€havioral data, for BOLD prediction in the first run. Thus, we

suggest four options for our firrther research: First, one could try to simplify
the problem, in order to separate the cognitive fincaions (sucb as transforma-
tion, perception, and goal setting) in time. But this would also nean nissing
out on the opportunity to study the Brain Mapping Hypothesis in relation to
complex problems, and thh is also aheady a prominent approach in prior re-

search by Anderson and oahers.

Second, one could try to tune the parameters ofACT-R's BOLD prediction

tooling (Anderson et al., 2008). This is an interesting approach as these seem

to affect shape and magnitud€ ofthe predicted BOLD curves Sreatly.
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The third approach is to find altemative Regions-of-Interest (ROIS) in an
ind€pendent data set since the current ACT-R Brain Mapping HlTothesis
covers only a small fiaction ofthe brain. This could be done for example by
Independ€nt Component Analysis (ICA) (McKeown er al., 1998; Friston,
Büchel, 2007). Such approach would enable to identify feedba.k-related
bain regions and to incoryorate th€se in to the model. Finally, the nodeling
itself may be $restioned. We implemented only six ACT-R models, but
many mor€ are conceivable. Indeed, the goal setting stsategy has to be
r€fined, which is clearly shown by our results.

The models we presented here may be called first-pass models (Cart€r et al,
2008). Our second-pass models will incorporate the findings fton the fi\,fRI
analysjs, and should, along with Bayesian strategy classification, Fovide
better, insight on how to hande ACT-R'S BOLD prediction capabiliries
within multidimensional strategy spaces.

Furthermore, we had to rcalize that at the Fesent moment ia is not within the
state of the modeling art to generate an ACT-R model of a human student
with motivational states as curiosity, happiness, o. fiustration. This is du€ to
the fact that the granularity ofprocess descriptions that ACT-R requires and
that educational psychologists are willing to provide diff€ß wid€ly.
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The cognitive Neurosciences, with the rapidly grcwing field of brain imaging

in particular, have geneEted a wealth of findinge that bear an interesting

potential for the field of Learning and lnstruction. Notably, the plactical

use of neuros.ientific data for education has been proven to be modest at

present 3nd conjoint effort i5 needed to integnie ne!roscientifc frnding, in

educational theory. The curreni reader, as the result of an international and

interd isciplinary workshop at the lnstitute for Advanced Study in Delmenhorst'

aims to provide an insight into the wide div€rsiiy of the Educational

Neurosciences. lt combines recent empirical frndinSs from researchers highly

interested in an interdisciplinary exchange at the intersection ofthe coSnitiv€

Neurosci€nces, Educational Research, änd cognitive Modeling The inclusion

of ihe cognitive Modeling rerearch constitutes a fruitful widening of ihe
field, prcviding väluable tools for reptesenting and testing cognitive models

rclevänt for both {he tdu.alional sciences and the Cognitive Neurosciences.

Ergebnisse der Kognitiven Neurowissenschaften, insbesondere der

funktionellen Bildgebung de5 Gehirns, haben Erkenntnisre hervorgebra.ht,

die ein interessante, Potenzial für die Lehr und Lernfoß.hung bergen

Der praktische Nutzen dieser Erkenntnisse ist jedoch gegenwärtig eher

begrenrt und für die lntegGtion neurowissenschaftlicher Befunde in die

pädagogische Theorie und Praxis bedarf e5 gemeinsamer Anstrengungen

mehrercr Disziplinen. vorliegendes Buch, dat aus einem internationalen Lrnd

interdisziplinären WorkrhoP am Hanse-wissenschäftskolleg in Delmenhorst

hervorgegangen ist, Sibt einen Einbl;ck in die Brcite und Vi€lfalt des

Forschu.gsfelde5'Neurowirsenschaften und LehF und Lernforschung'

Es vereint neuere empirische Sefunde von Wissenrchaftlerinnen und

Wissenschaftlern, diean einem interdisziplinären AustauschanderSchnittstelle

zwischen Kognitiven Neürowissenschaften, Lehr und Lelnfortchung und

Kognitiver Mode!lierung interelsiert sind Die Einbeziehung der Kognitiven

Modellierung stellt eine fruchtbarc Erweiterung des Forschungsfeldes dar

Modellierungsansät2e können werivolle lnstrumente für die Repräsentation

und Testung kognitiver Modelle bercitrtellen, die sowohl für die Lehr und

Lernforschung äls auch für die Kognitiven Neurowirrenschäften rclevant sind.
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