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Introduction

Cognitive architectures provide a modeling framework with constraints pre-
venting modelers from creating unrealistic models of human cognitive proc-
esses (Gray, 2007; Gluck, Pew, 2005). One of the most prominent architec-
tures is the ACT-R-architecture {Anderson, 2007). It has a long tradition,
dating back at least to 1983 (Anderson, 1983),

The ACT-R (Atomic Components of Thought-Rational) cognitive architec-
ture (Anderson, 2004; 2007) consists of eight modules: The Visual, Aural,
Manual, Vocal, Declarative, Imaginal, Goal, and Production modules. Obvi-
ously, they perform specific functions: The Visual and Aural modules control
the perceptual input of an ACT-R model, while the Manual and Vocal mod-
ules constitute its action apparatus. The Goal module stores the current goal,
while the Imaginal module represents working memory. The Declarative
module’s purpose is to retrieve facts from long-term memory. All of these
modules interface to the Production module via buffers. A buffer may hold a
single chunk (i.e. fact) at a time. The Production module represents the pro-
cedural memory and matches, selects, and executes production rules, which
compare and manipulate the buffers’ contents. Each action triggered by a
production in a specific module consumes a certain amount of time. A model
based on this architecture is an executable program in the form of production
rules which may be used to determine predict a participant’s performance in
various tasks on trials of various domains, such as algebraic problem solving.

Anderson’s Brain Mapping Hypothesis (Anderson, 2007) maps the activity of
the ACT-R modules onto specific brain regions. Thus, ACT-R implements a
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tooling that enables Blood-Oxygen Level-Dependent (BOLD) signal predi-
cation for these brain regions. However, these regions only cover a very
small volume of the brain, and most studies were conducted using simple
tasks with a limited strategy space.

Research Question

The first research question of our sub-project was to study the robustness of
the Brain Mapping Hypothesis towards a non-algebraic task, a multidimen-
sional strategy space, and programming or modeling errors.

Methods

A trial problem consists of the visual and auditory presentation of a name for
a chemical compound and two structural formulae which were presented to
the left and the right on the screen. The participant has to decide which one of
these matches the compound name (for task details see Anschiitz et al. this
volume). The following constraints are known to the participant (Mébus,
Lenk et al., 2011).

1. The abbreviation for an element is defined by two letters

2. The first letter of the abbreviation is the same as the first letter in the
name of the element.

3. Both letters appear in the element’s name.

4, An element may have a multiplicity from 1 to 4 in the compound. Dis-
tinct three letter words served as numerals to denote the multiplicity:

a. 1/~

b. 2/pli
c. 3/pla
d. 4/plo

5. The position of a numeral is always in front of the owning element in the |
compound name.

6. The central element of the structural formula is always the first in the
compound name.

We used data from 62 children, ages 10 to 13, who took part in the fMRI
experiment (see Ozyurt and Thiel, this volume for details on the fMRI ex-
periment). Each participant underwent a total of 80 trials during two sessions.
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The chemical formula language is usually not known to children of that age
group, Nevertheless, fictitious chemical elements and their abbreviations as
well as numerals were used to prevent carry-over effects. The children were
familiarized with the above constraints by undergoing an extensive instruc-
tion and training phase.

Models

During the task analysis, it became clear that this seemingly simple problem
may be solved by applying a multitude of strategies. For instance, the partici-
pant may constrain him- or herself to study either only the left or the right
structural formula exclusively and subsequently decide whether it matches or
not. Alternatively, the participant could check characteristics on both formu-
lae until a violation of the above constraints is detected for one formula.
Also, some aspects of the trial may be processed multi-threaded as opposed
to single-threaded processing. Still, there is a great degree of freedom for the
ACT-R modeler to implement these strategies. A participant may change the
strategy across trials, or in the worst case, during a single trial.

Out of these considerations, six ACT-R models were implemented. Model
Sla and S1b were multi-threaded and evaluated only one structural formula,
either the left or the right. Model S2 is also multi-threaded, but checks certain
characteristics on both formulae for violations. Along these lines, S3a and
S3b were single-threaded counterparts of Sla and SIb evaluating only one
formula. S4 is single-threaded and again checks both formulae.

Data Aggregation

Individual BOLD curves were extracted for each participant from the regions
defined by Anderson. Each module was mapped onto two regions for each
brain hemisphere. Then, the individual BOLD curves were aggregated. For
this purpose, we constructed a Bayesian Belief Network (BBN), which
allowed us to infer the probability that a specific strategy had been used by a
participant based on the participant’s response time (RT) and characteristics
of the trial (Figure 1). The BBN had been trained prior with ACT-R model
data. These probabilities were used as weights for the aggregation of the
individual BOLD curves, which resulted in a strategy-specific BOLD curve
that was then compared with the BOLD prediction of the corresponding
model.
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We first compared the complete time series of the time series with about
400 data points which showed generally low correlations (M&bus, Lenk et al.,
2010). We then applied the aggregation method from Carter, Anderson et al.
(2008), which allowed us to align the scans from different trials and indi-
viduals onto a template and subsequently aggregate the data. However, we
modified the method by using the probabilities from the BBN as weights in
the aggregation again. Model predictions were likewise aggregated and Pear-
son’s correlation coefficients have been computed for strategy model predic-
tions and strategy-specific BOLD curve aggregations.

Results

These coefficients (Table 1) are high for all modules but the Goal module.
This indicates a faulty assumption in the modeling process. Indeed, all strate-
gies place a single chunk in the Goal buffer at the start of each trial and thus
produce little activity in this module. Generally, most correlation coefficients
were heightened by the weighting process. This is especially the case for the
Manual module, which may be easily explained as the RT (triggered by man-
ual action) is the prime indicator for a strategy in the BBN.

Tab.l Correlation coefficients between models® BOLD predictions and brain regions in the
left hemisphere for weighted (w.) and unweighted (Uw.)} aggregation (Mabus, Lenk et
al., 2011)

Production  Imaginal Goal Decarative  Visual Aural Manual

Ur. w Uw. w Uw. w Uw. w Uw. w. Uw w Uw w

Sla 0585 0992 0838 0892 -917 -950 0938 0966 0888 0827 0917 0916 0733 0840
Sth 0983 0990 0838 0890 -917 -931 0934 0966 0888 084 0917 0919 0740 0856
81 0977 0974 0838 0861 -917 -930 0934 0941 0981 0982 0917 0930 0600 0663
$3a 0894 0883 0870 0876 -917 -914 0477 0858 0862 084 0918 0924 0302 0331
53 0891 0836 0870 0873 -917 -912 0871 0833 0863 0856 0918 0923 0205 0345
84 0829 0831 0870 082 -917 -837 0825 0% 0500 0480 0918 0896 0074 0320

Also, asymmetries can be found in the data. Most module and region pairs
correlate higher with the left hemisphere (Figure 2), with the notable excep-
tion of the Imaginal module, which correlates slightly higher with the right.
The Manual module correlates negatively with the right hemisphere. This is
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in accordance with the literature (Mattay et al., 1998), as the participants re-
sponded with their right hand. No model performs best for all module/region
pairs, but generally the multi-threaded model S1a, S1b, and S2 show the most
accurate BOLD predictions.
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Fig.2 Correlation coefficients for both hemispheres. On the horizontal axis are the mod-
ule/region pairs and weighted (w.) vs. unweighted (uw.) aggregation. The vertical axis
shows the correlation coefficient ranging from -1 to 1

Conclusion

We were able to show that the ACT-R Brain Mapping Hypothesis also holds
in large parts for tasks with multi-dimensional strategy spaces. However, it
has been shown that an ACT-R model which explains behavior does not nec-
essarily predict fitting BOLD curves, and thus, due to ACT-R being under-
constrained, the modeler cannot hope to conceive a valid model, even if
based on fit to behavioral data, for BOLD prediction in the first run. Thus, we
suggest four options for our further research: First, one could try to simplify
the problem, in order to separate the cognitive functions (such as transforma-
tion, perception, and goal setting) in time. But this would also mean missing
out on the opportunity to study the Brain Mapping Hypothesis in relation to
complex problems, and this is also already a prominent approach in prior re-
search by Anderson and others.

Second, one could try to tune the parameters of ACT-R’s BOLD prediction
tooling (Anderson et al., 2008). This is an interesting approach as these seem
to affect shape and magnitude of the predicted BOLD curves greatly.
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The third approach is to find alternative Regions-of-Interest (ROIs) in an
independent data set since the current ACT-R Brain Mapping Hypothesis
covers only a small fraction of the brain. This could be done for example by
Independent Component Analysis (ICA) (McKeown et al., 1998; Friston,
Biichel, 2007). Such approach would enable to identify feedback-related
brain regions and to incorporate these in to the model. Finally, the modeling
itself may be questioned. We implemented only six ACT-R models, but
many more are conceivable. Indeed, the goal setting strategy has to be
refined, which is clearly shown by our results.

The models we presented here may be called first-pass models (Carter et al,
2008). Our second-pass models will incorporate the findings from the fMRI
analysis, and should, along with Bayesian strategy classification, provide
better insight on how to handle ACT-R’s BOLD prediction capabilities
within multidimensional strategy spaces.

Furthermore, we had to realize that at the present moment it is not within the
state of the modeling art to generate an ACT-R model of a human student
with motivational states as curiosity, happiness, or frustration. This is due to
the fact that the granularity of process descriptions that ACT-R requires and
that educational psychologists are willing to provide differs widely.
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