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Zusammenfassung
Der Aufwand für die Entwicklung eines sicherheitskritischen eingebetteten Systems kann
erheblich reduziert werden, wenn als Ausgangspunkt ein ähnliches System gewählt wird,
das lediglich um zusätzliche Funktionalität ergänzt wird. Dies ist jedoch eine äußerst
anspruchsvolle Aufgabe, da sowohl für die bereits vorhandenen als auch die neuen
Systembestandteile in der Regel komplexe Randbedingungen erfüllt sein müssen, um
deren korrekte Funktionsweise zu gewährleisten. Erschwerend kommt hinzu, dass größere
eingebettete Systeme überwiegend als verteilte Systeme mit mehreren Prozessoren und
einer komplexen Kommunikationsinfrastruktur realisiert sind. Bei der Erweiterung solcher
Systeme ergeben sich hierdurch eine Vielzahl von Entwurfsalternativen, was eine manuelle
Suche nach kostengünstigen Lösungen erschwert oder gänzlich unmöglich macht. Eine
rein automatisierte Suche ist jedoch ebenso wenig erfolgversprechend, da häufig eine
Vielzahl nicht-formaler Rahmenbedingungen zu beachten sind, die teilweise erst während
der Suche nach möglichen Lösungen konkretisiert werden.

In dieser Arbeit wird ein teilautomatisiertes Verfahren zur Optimierung von Hard-
warearchitekturen eingebetteter Systeme vorgestellt, das Entwickler bei der Erweiterung
existierender Systeme um neue Funktionalität in Form von Softwaretasks unterstützt.
Ein zweistufiges Optimierungsverfahren durchsucht den durch Rahmenbedingungen
definierten Entwurfsraum nach gültigen Allokationen der Softwaretasks auf die Hardware-
Architektur. Falls erforderlich können vorhandene Prozessoren durch leistungsfähigere
ersetzt werden oder neue Prozessoren hinzugefügt werden, wobei nach möglichst kosten-
günstigen Hardware-Architekturen gesucht wird.

Das Optimierungsverfahren nutzt den häufig bei größeren eingebetteter Systemen
vorzufindenden hierarchischen Aufbau des Gesamtsystems aus Hardware-Subsystemen aus:
Zunächst werden in einem globalen Optimierungsschritt Vorplatzierungen der zusätzlichen
Softwaretasks auf Subsysteme, basierend auf einer abstrakten Charakterisierung der
benötigten und verfügbaren Rechenkapazität, bestimmt. Dann werden in für jedes
Subsystem separat ausgeführten lokalen Optimierungsschritten die vorplatzierten Tasks
unter Berücksichtigung aller Subsystem-spezifischen Rahmenbedingungen auf Prozessoren
platziert. Softwaretasks, die nicht platziert werden konnten, werden iterativ in zusätzlichen
globalen Optimierungsschritten weiter bearbeitet.

Sowohl für den globalen als auch für den lokalen Optimierungsschritt werden exakte
Optimierungsverfahren vorgestellt. Anschließend werden die Ergebnisse einer umfassenden
Evaluierung auf Basis dreier Benchmarks dargelegt. Im Rahmen dieser Evaluierung
wurden beide Verfahren jeweils mit alternativen Ansätzen verglichen.
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Abstract
The effort for the development of a safety-critical embedded system can be reduced
tremendously if a similar existing system is used as basis which is then extended by
additional functionality. However, this is a very challenging task because in general for
both the already integrated and the new parts of such a system complex constraints have
to be satisfied to guarantee their correct functionality. Furthermore, larger embedded
systems are typically realized as distributed systems with multiple processors connected
by a complex communication infrastructure. This leads to a huge number of design
alternatives suitable for the extension of such a system thus complicating the manual
search for cost-efficient solutions or even rendering it impossible. Searching entirely
automatically is not too promising as well because usually lots of informal requirements
have to be satisfied, some of which are concretized while already searching for possible
solutions.

In this work a semi-automatic approach for the optimization of hardware architectures of
embedded systems is presented that supports developers in extending existing systems by
adding additional functionality implemented as software tasks. The two-tier optimization
process explores the design space defined by constraints for valid allocations of the
software tasks to the hardware architecture. If necessary, existing processors can be
replaced by more powerful ones or additional processors can be integrated while aiming
for a cost-efficient hardware architecture.

The optimization approach exploits that larger embedded systems typically use a
hierarchical structure where the hardware architecture is composed from hardware
subsystems: Firstly, a global (system-wide) optimization step computes pre-allocations
of all additional software tasks onto subsystems based on an abstract characterization
of the required and provided computation capacity. Separately for each subsystem, the
pre-allocated tasks are then allocated to processors by local optimization steps under
consideration of all subsystem-specific constraints. Software tasks that could not be
allocated are handed back to the global tier for being allocated in later iterations.

Exact optimization methods are presented for both the global and the local optimization
steps. Finally, the results of an extensive evaluation based on three benchmarks are
presented. In this evaluation both optimization methods have been compared with
alternative approaches.
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1. Introduction

Most product innovations of the last ten to twenty years for improving our daily life
would not have been possible without the use of modern computer technology. While
in many cases the customers of such products are well aware of the presence of the
computers, for example in smart phones and home entertainment systems, the majority
of computer systems today are used for control and regulation jobs as integral part of
technical systems without ever being noticed by the customers. Such computer systems
are called embedded systems. An embedded system performing tasks which may lead
to injury or death of people if the system fails (for example an anti-lock breaking system)
is called a safety-critical embedded system.

The development of safety-critical embedded systems requires a well-structured devel-
opment process ranging from initial requirements analysis to hardware software co-design
to certification and delivery of the final product. But the product life-cycle management
does not end with the delivery of the product but — as the term suggests — consists of
additional activities such as maintenance, expansion of the original product, etc. spanning
the whole life-cycle of the product. The most famous development process suitable for
the development of safety-critical embedded systems is the V-Model. Developing prod-
ucts using such a rigid process model usually is expensive and time-consuming though
unavoidable for successful certification of safety-critical systems.

Development cost and time can be reduced tremendously if some of the comprehensive
development process steps can be carried out only for parts of the new system instead of
the whole system or if they can be avoided completely. For this reason new products
are often developed based on already existing products thus enabling the re-use of many
parts of the former product during the development process. If done well, effort for
development and testing of those existing parts can be avoided or at least significantly
reduced. As an example, the automotive industry typically re-uses up to 90% of electronic
components of previous car generations. However, the re-use of software components is
only done to a very small extent (∼ 10%, see [Bro06] for reference).

1.1. Contributions of this Work
This PhD thesis contributes an approach for extending safety-critical embedded systems
with the focus on integrating additional functionality implemented as software tasks
and signals representing the data flow between tasks. A modular two-tier Design
Space Exploration (DSE) process is proposed which supports engineers in finding
solutions with cost-minimal modifications of the system’s hardware architecture while
ensuring satisfaction of all specified constraints. Engineers can guide the DSE process by
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1. Introduction

running it iteratively and tighten the explicitly specified constraints based on their expert
knowledge. This semi-automatic user-driven optimization process avoids counter-intuitive
solutions and therefore helps to increase acceptance by engineers.

The approach exploits the hierarchical structure of embedded systems composed of
multiple hardware subsystems by decomposing the optimization problem into two tiers: A
system-wide global analysis pre-allocates new software tasks to subsystems by predicting
and balancing the required and the available computation capacity per subsystem and
additionally considering the communication between tasks on different subsystems. A
subsystem-level local analysis calculates an allocation of the pre-allocated tasks to
ECUs of the subsystem without considering the other subsystems. All tasks which
could not be allocated are returned to the global analysis and pre-allocated again to
other subsystems in the following iteration of the whole process until the DSE process
terminates.

The two-tier optimization process aims for scalability by abstracting from subsystem-
specific details during the global analysis and abstracting from the details of other
subsystems during the local analysis.

This work demonstrates the benefits of this concept by contributing two exact opti-
mization algorithms, one for the global and one for the local analysis. The exact global
analysis approach has been published in [CST11], the exact local analysis approach in
[Tha+10].

The results of an extensive evaluation are presented using multiple benchmarks consist-
ing of DSE problem instances based on an academic example (see [TBW92]), artificially
generated problem instances, and problem instances derived from the results of the case
study ViDAs. The case study is based on the results of a student’s project group with
the same name. The students participating in that project group had the task to create
a driver assistance system.

1.2. Context

This work has been created in the context of the transregional collaborative research
center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,
see [Bec+12]) but was also inspired by many research projects realized at the Institute
for Information Technology OFFIS (see [Anob]).

Figure 1.1 shows the whole process developed in the subproject R2 of AVACS with
a focus on the process steps to be carried out before running the actual design space
exploration as proposed in this work. The upper left side of the process is dedicated to
the extraction of timing-related properties from Matlab Simulink models and present that
information using the formalism of function networks, as proposed in [Bük12]. The right
side describes the necessary steps for generating code directly from the Matlab model
and calculating the execution times for that code. Finally a task network is obtained.

The process step on the lower left named “Design Space Exploration” represents the
task solved in this PhD thesis.
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Figure 1.1. – AVACS, Subproject R2: Task Creation and WCET Analysis

1.3. Overview of Related Work

Many publications have defined different design space exploration problems for the
development of embedded systems in the past and proposed various approaches for
solving them.

However, the specific design space exploration problem presented in this thesis, which
incorporates both the problem of allocating a set of software tasks onto a hardware
architecture and the problem of optimizing that hardware architecture for cost, and the
proposed solution based on exact optimization algorithms exploiting the hierarchical
hardware structure of embedded systems, makes the presented approach unique.

The problem of allocating a set of software tasks onto a hardware architecture is
addressed in many publications but the majority of them assume that the hardware
architecture is not changed (for example [TBW92]). Publications on design space explo-
ration of hardware architectures mainly focus on the hardware level without considering
allocation problems (for example [Sil+11]). Only few publications combine the allocation
problem with a design space exploration of the hardware architecture, one of which is
[Mad+07].

Hierarchical optimization approaches exploiting the hierarchical structures of embedded
systems can be found in some of the works (for example [ARS00]), but in most of them
the hierarchical optimization is not based on exact optimization methods.

In fact, exact optimization methods are rarely applied to design space exploration prob-
lems due to the problem’s huge complexity. In most publications heuristic methods are
favored such as simulated annealing or evolutionary algorithms (for example [Hau+03]).

A detailed discussion of related work can be found in Chapter 7 on page 185.
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1. Introduction

1.4. Outline
The remainder of the thesis is organized as follows. A description of the foundations
of this work is given is given in Chapter 2. Chapter 3 formally defines the problem to
be solved and describes the approach presented in this work. In Chapter 4 an exact
optimization approach for the global analysis problem is described. An approach for the
local analysis problem called Spare-Time/MaxWCET analysis is presented in Chapter 5.
In Chapter 6 first the implementation of the DSE tool Zerg is described, then the results
of the evaluation of the proposed methods in comparison with alternative approaches
is presented. The work is concluded in Chapter 7 with a summary of the findings, a
detailed discussion of related work and remarks on future work.
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2. Foundations

This chapter provides an overview on the research area in which this work is situated.

2.1. Terms and Definitions

This section provides a short overview on embedded systems and introduces some terms
used throughout this thesis. In the context of this work an embedded system is a
hardware architecture providing means for performing computations and internal and
external communication, and software for realizing the systems functions expressed as a
task network. A glossary can be found in the appendix of this work.

2.1.1. Embedded System

In the published scientific literature in the field of computer science there is no generally
accepted or commonly used definition of the term embedded system.

In the context of this work an embedded system is defined as a computer system
integrated in a technical product with the purpose of interacting with the environment of
the product via sensors and actuators in order to perform control and/or regulation tasks.
An embedded system performing tasks which may lead to injury or death of people if the
system fails is called a safety-critical embedded system. An embedded real-time
system has to satisfy hard timing requirements. In a software-intensive embedded
system the functionality is mainly implemented with software.

The focus of this work is on software-intensive safety-critical embedded real-
time systems.

2.1.2. Hardware Architecture

The hardware architecture of an embedded systems usually consists of various different
classes of hardware components. Sensors are used to gather information about the system’s
environment. Processing units such as microprocessors, application-specific integrated
circuits (ASICs), digital signal processors (DSPs), etc. perform computations based on
that information, communicate with each other over communication channels and provide
data to actuators which manipulate the system’s environment. For an excellent overview
on embedded system’s hardware see [Chapter 3 in Mar10, pp. 119–175]. Several websites
such as [Anoa] and [Ano13] provide introduction to the subject and lots of additional
information. In this work ASICs and DSPs are not considered.
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2.1.3. Design Space

The term design space describes the set of valid solutions for a given design task by
specifying constraints.

2.1.4. Design Space Exploration

Design Space Exploration describes the process of searching a given design space
for valid solutions. Usually an objective function is used to define what solutions to
search for.

2.1.5. Hardware Design Space

In this work, the hardware design space is defined by specifying a hardware archi-
tectural pattern (see Section 2.1.6). The hardware architecture is limited to ECUs
and buses and does not incorporate sensors and actuators.

2.1.6. Hardware Architectural Pattern

A hardware architectural pattern determines a set of possible hardware architectures
(the hardware architecture design space) by specifying mandatory and optional hardware
components. A hardware architectural pattern consists of a set of interconnected logical
hardware units and specifies for each of them a set of allowed physical hardware
types. The notion of logical hardware unit is used in this thesis to allow for spec-
ifying interconnection structures without directly including detailed specifications of
the used hardware units. Not all hardware components of typical embedded systems
are represented in this thesis’ system model. The kinds of logical hardware units cur-
rently considered during the optimization process are logical electronic control units
(ECUs) representing processing units and logical buses representing communication
units.

A hardware architectural pattern is instantiated by choosing for each of the mandatory
logical hardware units one of the allowed physical hardware types. Assigning physical
hardware types is not required for optional logical hardware units. Only logical hardware
units to which a physical hardware type has been assigned are part of the instance of the
hardware architectural pattern.

In this thesis, only certain hardware architectural patterns are considered. All patterns
have in common that they contain at least two different hardware subsystems and one
bus called global bus. Each hardware subsystem consists of a set of ECUs connected
via a local bus. Each ECU is part of exactly on hardware subsystem. In each hardware
subsystem exactly one ECU is used as a gateway. Only the gateway ECUs are connected
to both their subsystem-local bus and the global bus. A formal definition is given in
Chapter 3.
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2.1.7. Logical Electronic Control Unit (ECU)

In this work the term Logical ECU is used as part of a hardware architectural pattern
as a placeholder for a computing resource without specifying the actually type of that
resource. In the remainder of this thesis the term ECU is used interchangeable with
logical ECU. An ECU is typed by an ECU-type.

2.1.8. ECU-Type

An ECU-type characterizes all properties of an embedded microprocessor with all
directly connected hardware components such as (external) caches and memory, I/O
ports, communication controllers, etc. This includes which physical microprocessor is
used, which memory hierarchy is used, the size of the memory, how many I/O ports
are available and how they are configured, etc. Most of these parameters like e.g. the
configuration of the cache hierarchy are not directly used during the optimization process.
But they are influencing properties of software tasks running on that type of hardware,
namely their execution times which are determined previously to the optimization phase
by tools such as aiT (see [Wil+08; Abs]). The only property of an ECU-types used
during the design space exploration process is its cost value (e.g. the price of the physical
hardware).

2.1.9. Logical Bus

Analogously to the concept of ECU each Logical bus represents a communication bus
as part of an architectural pattern without further specifying the hardware. In the
remainder of this thesis the term bus is used interchangeable with logical ECU. Each
bus is typed by a bus-type.

2.1.10. Bus-Type

In embedded systems with multiple electronic control units those units usually are inter-
connected via physical links. Such links can be realized as simple as a wire between only
two ECUs for unidirectional or bidirectional communication via standard or proprietary
communication protocols. More complex setups use communication buses. A commu-
nication bus is a communication channel shared by two or more ECUs. Many different
communication protocols exists for communication buses such as Controller Area Net-
work (CAN), FlexRay, Local Interconnect Network (LIN) and Media Oriented Systems
Transport (MOST) in the automotive industry, Avionics Full Duplex Switched Ethernet
(AFDX) in aerospace industry, and ProfiBus and EtherCAT (automation industry), only
to name a few.

In this thesis, the bus-types are used to type logical buses. Two classes of bus types
are considered: A TDMA bus type which uses a time-triggered bus access protocol (e.g.
FlexRay using only the static segment) and a priority-based bus type (e.g. a controller
area network CAN bus). In [Kop98] a comparison of both protocols can be found.
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Each bus type is characterized by the bus type class (TDMA or Priority-based) and its
bandwidth.

2.1.11. Bus Slot
A bus slot represents one time slice of a TDMA-bus where messages can be allocated.

2.1.12. Software Task
The part of an embedded system implemented in software usually consists of a set
of communicating software processes which are running concurrently on a complex
embedded hardware architecture with multiple ECUs connected by communication buses.
In the embedded community such software processes are called software tasks. A precise
definition of the term task is provided by IEEE: A task is “[...] a sequence of instructions
treated as a basic unit of work by the supervisory program of an operating system. [...]”
[IEE90]. In [LY03] a software task is defined as “an independent thread of execution that
can compete with other concurrent tasks for processor execution time.” Software tasks
are derived by iteratively decomposing the system’s functionality into smaller functional
units until a suitable level of granularity has been obtained.

In the context of this work, the term software task is used to refer to a software
artifact which

• realizes one or more specific functions of a system as a sequence of I/O and
computation steps

• is small enough to be realized as one single operating system process which is
regularly scheduled for execution by the scheduler of an operating system

• runs to completion every time it is started (but might be preempted by higher
priority tasks allocated to the same processor)

Furthermore, it is assumed that the implementation of all software tasks follows a
certain schematic: During the execution of a software task first the task’s inputs are
read (optionally), then all computations are done, and finally the task’s output is written
(optionally).

Each software task is assumed to have a non-empty set of functionally equivalent
implementations. An implementation may be optimized for a particular hardware
platform. Binary executables are compiled for all hardware platforms for which a suitable
implementation has been provided by using platform-specific compiler tool chains.

In Figure 2.1 an example of a software task is given. The function Velocity Calculation
is specified as a MatLab/Simulink™ model and source code has been generated directly
from the model using TargetLink™. The result is a generic source code file Source1.
This file is now compiled to binary code for an ECU-type ARM5-NoDSP, which uses
an ARM5 processor but has no on-board DSP. Two different compilers are used, first
the GNU Compiler Collection (GCC), resulting in Binary1,1 and second the compiler
included in the ARM Development Studio-5 (DS-5) resulting in Binary1,2. In the example,
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Function1
“Velocity Calculation”

period: 100
deadline: 80

Source1
Generic code generated
from Matlab/Simulink™
model using TargetLink™

Source2
Hand-written code opti-

mized for ARM7 processors
with onboard-DSP and at
least 10 MByte memory

<Generate>
(TargetLink) <Write Code>

Binary1,1

ARM5-NoDSP
wcet: 50

memreq: 4M

<Compile>
(GCC)

Binary1,2

ARM5-NoDSP
wcet: 45

memreq: 3M

<Compile>
(DS-5)

Binary1,3

ARM5-DSP
wcet: 35

memreq: 4M

<Compile>
(DS-5)

Binary2,1

ARM7-DSP
wcet: 20

memreq: 6M

<Compile>
(GCC)

Binary2,2

ARM7-DSP
wcet: 15

memreq: 5M

<Compile>
(armcc)

Figure 2.1. – Example: Software Task with Source and Binary Code, Annotations of Worst
Case Execution Time and Memory Consumption. The unshaded Binaries
have been selected for Design Space Exploration.

it is assumed that a second ECU-type ARM5-DSP featuring an on-board DSP is not
supported by GCC (or that GCC would not be able to make use of the DSP). Therefore
only a binary Binary1,3 is compiled using the DS-5 compiler with enabled optimizations
for utilizing the DSP.

Additionally, a more expensive ECU-type ARM7-DSP with on-board DSP and 10
MByte of RAM is evaluated. For this hardware platform hand-written source code is
developed. This implementation uses all available hardware features, resulting in source
code Source2. It is compiled using GCC (resulting in Binary2,1) and armcc for optimized
binary code (resulting in Binary2,2).

New Ready

Running Inactive

Admit

Dispatch

Preempt

Finish

Recur

Figure 2.2. – Life-cycle of a Software Task

Whenever multiple software tasks are allocated to the same ECU an (real-time)
operating system is required which schedules the set of task. This work focuses on
preemptive scheduling.

Figure 2.2 shows the states during the life-cycle of a software task that is scheduled
by a (preemptive) scheduler of a real-time operating system. Both the automaton and
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the used terminology are loosely based on the Five-State Model described in [Sta12,
pp. 136-140]. The life of newly created task begins in the New state. In this thesis it is
assumed that all tasks are created during system startup. The task is then admitted
after some time and enters the Ready state. When dispatched by the operating system
scheduler the task enters the Running state. If task is preempted it enters the Ready
state. Dispatching a preempted task resumes its execution. When the task finishes its
execution it enters the Inactive state. After a specified time interval it recurs and enters
the Ready state again. The main differences compared to [Sta12] are that tasks never
block during execution (exclusive access to resources is not considered, which means that
there is no Blocked task state) and that tasks recur after a specific time duration. Each
single recurrence of the same task is called a task occurrence in the following text.

The activation of a task is the event of entering the Ready state after it has been newly
created or after being in the Inactive state. The activation period is the time interval
between two consecutive activations of a software task.

To each task a local deadline can be associated. The local task deadline is an upper
bound for the time interval in which every single occurrences of that task is executed
starting from the point in time where that occurrence initially becomes ready until it
finishes its execution. Specifying local deadlines for software tasks is optional. The
synthesis of local deadlines is part of the design space exploration for all tasks where no
local deadline has been specified yet.

In this work it is assumed that tasks may receive maximal one signal (for details see
Section 3.1.2.2).

While the activation period and the deadline of a software task are independent
from the hardware platform, the worst case execution time (upper bound for the
time required to execute the task without considering preemptions by higher priority
tasks) and the maximal memory consumption depend on how a corresponding binary
implementation performs on the specific hardware platform it has been allocated to.
Both properties depend on the ECU-type which has been chosen for the ECU where the
task is allocated.

The calculation of the WCET and memory consumption is not part of this work but
instead has to be done in a separate analysis step beforehand. During this analysis step the
values are determined separately for each of the ECU-type based on the platform-specific
binary code either by applying measurement tools (e.g. Chronos [Cha+12] or ChronSIM
[INC12] with extension ChronEst) or by using formal analysis tools (e.g. aiT [Abs]).
Neither for the measurement nor for the analysis based approaches it is important
how the binary code was created, as long as all information required for applying the
measurements/analysis is available (which might include code annotations regarding
upper bounds for the number of iterations of loops and similar) including detailed
information about the ECU-type.

Figure2.1 also shows for each binary implementation (fictitious) values for the worst
case execution time (Property name: wcet) and maximal memory consumption (Property
name: memreq) respectively. If for a software task multiple binary executables exist for
an ECU-type, the user has to decide which of them to use during the DSE phase. In
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the figure, the binaries which have not been chosen by the user are shaded. If for a
given software task no binary implementation exists for a given ECU-types than both
its WCET and its memory consumption are assumed to be 0 and a constraint has to be
added prohibiting the allocation of the task to any ECUs typed by that ECU-type (see
Section 3.1.4 on page 38).

2.1.13. Signal

A signal represents the abstract data flow between software tasks without specifying
how the data would be transmitted from the sender task to the receiver tasks.

For example, if the sender and all receiver tasks are residing on the same ECU then the
data flow would be implemented by using internal mechanisms of the operating system
e.g. shared memory. If however at least one receiver task is allocated to a different ECU
then the signal data has to be transmitted on one or more communication buses using a
messages. If a signal has to be transmitted via multiple buses connected via gateway
ECUs, multiple messages are required, one for each bus.

2.1.14. Message

A message is used to transmit data (represented by an abstract signal) via a bus of a
hardware architecture. An allocation of a task network onto a hardware architecture
associates to each signal which has to be transmitted between different ECUs a set of
messages and allocates them to buses. Each message consists of one or more data packets
called data frames, designated to transmit the data flow of a given signal over a bus. The
distinction between messages and frames is due to the bus protocols that require a fixed
or maximum size for each transmitted data packet.

2.1.15. Task Network

In this thesis the software architecture of an embedded system is represented as a task
network consisting of tasks and signals representing data flow between tasks. See
Chapter 3 for details.

2.1.16. Allocation

According to the IEEE standard 610.12-1990, allocation is “(1) The process of dis-
tributing requirements, resources, or other entities among the components of a system or
program. (2) The result of the distribution in (1)” [IEE90].

In the context of this work an allocation is the link between task networks and hardware
architectures. An allocation assigns some or all tasks of a task network to ECUs, each
message to one signal and each message to one bus. Allocations are used for both the
specification of a DSE problem (partial allocation) and as part of solutions for DSE
problems (total allocations).
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Figure 2.3. – Example Matlab Simulink Model (Source: [Bük12])

2.2. Real-Time
This section gives an overview of Matlab Simulink to show how commercial off-the-shelf
modeling tools are applied in an industrial context for specifying real-time systems. Then
it describes the concept of function networks (proposed in [Bük12]) which has been
specifically designed to formally capture the semantics of Matlab Simulink models with
the focus on real-time requirements. Then execution time analysis is introduced and
finally concepts for scheduling and schedulability analysis are explained.

2.2.1. Overview: Matlab Simulink
Matlab Simulink® “is a block diagram environment for multi-domain simulation and
Model-Based Design” [Mat12]. Matlab Simulink is widely used in industry because it
combines a graphical modeling language suitable for modeling differential equations with
a powerful simulation engine and code generators for creating C and C++ source code.
An example Simulink model is shown in Figure 2.3.

On the left side of the example three blocks are specified. The top and the bottom
blocks are step blocks used for modeling step functions (by generating steps between
two specified constant levels at specified times). The block in the center of the left half
provides a constant. The output of the upper block and the constant block are used
as input for an add block. Those three blocks are configured to have the same sample
time of [6, 0] which means that they are running periodically every 6 time units, with
an initial offset of 0 time units. The output of the add block is connected to the input
of a so-called rate transition block. This block translates the sample rate of the three
blocks to a new sample rate of [2, 0] which is then used for the blocks on the upper right
of the diagram. A constant provided by a second constant block is added to the output
of the rate transition block and the result is sent to a monitor block. The lower half of
the example model shows that loops are possible in Matlab, here by using an unit delay
block which provides the result of the previous computation back to the multiplier block
(in the center). All the blocks in the lower half are synchronized to a sample rate of [5, 2].

When simulating with Simulink the order in which the results of blocks are computed
is determined by several rules ensuring that all dependencies between blocks are resolved
properly. It is assumed that the computation of the single blocks does not consume
time, and therefore by definition all computations perfectly fit into whatever sample rate
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has been chosen. Obviously some of these implicit assumptions are not valid anymore
once source code has been generated for the blocks which then has been compiled to
processor-specific machine code which has been distributed to multiple ECUs of an
embedded systems. Of course, executing the corresponding machine code on a processor
consumes time. Running multiple parts of the original Simulink model in parallel may
result in race conditions if not done properly. For example, if in the above example the
code generated for the add block on the upper right side is executed in parallel to the
code for the rate transition block it might read an outdated value because the updated
value is provided not fast enough by the rate transition block.

As a consequence, a semantics-preserving approach for utilizing the commercial code
generators for Simulink models and for allocating the generated software tasks to the
target hardware architecture is required which avoids the pitfalls stemming from the
implicit assumptions used in Matlab Simulink. Such an approach is presented in [Bük12]
where the implicit timing requirements used in Simulink models are made explicit using
the formalism of function networks.

2.2.2. Overview: Function Networks
The notion of function networks has been invented first in [BMS09] to “extend the
expressiveness of classical task networks by functional elements, and a finer differentiation
of data and control flow by using data nodes and specific channels.” [BMS09]. Functions
networks are bridging the semantic gap between industrial high-level modeling tools such
as Matlab Simulink on the one hand and the scientific field of schedulability theory on
the other hand.

For more detailed information about function networks and their properties see [Bük12,
Chapter 3]; for the transition between Matlab Simulink models into function networks
see [Bük12, Chapter 4].

On the way from high-level modeling tools to distributed embedded systems obtaining
function networks is only an intermediate step. As stated before, the generation of source
code and the compilation of that code for one or more ECU-types in order to obtain
machine code can be done in parallel to the extraction of timing requirements. The
commercial tools available for the code generation include Matlab Coder™ (formerly
known as Real-Time Workshop®) and dSpace TargetLink®.

The actual size of the code fragments generated for each of the Simulink blocks can
vary depending on the complexity of the operation to be performed by the blocks. While
the source code required to implement a Simulink add block might consists only of a
single line of code other blocks might require more lines of code. In the end, the code
generation process shall result in software tasks which can then be allocated to ECUs
part of an embedded system where they are executed under the control of embedded
operating systems. But multiple aspects have to be considered when deciding how to
obtain those software tasks from the code generator.

There are two extreme approaches. In the first approach each Simulink block is
translated into a separate software task. Following this approach, a huge number of
software tasks would be created of which the majority would be very small in the sense
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that their execution times on the given ECU-type is very short. Running many small
software tasks on the ECUs would cause huge overhead for the management of those
tasks by the embedded operating system (e.g. due to lots of context switches whenever
tasks are preempted) compared to only a relatively small fraction of the computation
time remaining for performing the software tasks actual purpose.

The other approach is to combine all Simulink blocks (or at least all blocks with the
same sample rate) into one huge software task (or one software task for each of the sample
rates found in the Simulink model). With such a huge software task (or a small number
of large tasks) the advantages of distributing software tasks among multiple ECUs of
embedded hardware architectures could not be used as would be possible with a greater
number of slightly smaller software tasks. Huge software tasks could even restrict the
choice which ECU-types to use for each of the ECUs to the more powerful (and more
expensive) types, because the task’s execution times on less powerful ECU-types would
be too long.

[Bük12, Chapter 5] describes a flexible approach for finding good compromises between
the above extreme approaches.

2.2.3. Execution Time
An important property of software tasks is their execution time. The execution time is
the time required for executing the corresponding binary code of a software task on a
suitable ECU-type. More precisely, a software task can only be allocated to an ECU
with an ECU-type if a binary implementation exists for that ECU-type and both a
lower bound called best-case execution time (BCET) and an upper bound called
worst-case execution time for the execution time of that binary on the ECU-type is
known because those values are required for performing schedulability analysis.

Note that the execution time explicitly does not consider effects caused by other tasks
on the same ECU, such as preemptions.

At first glance, automatically determining best-case and worst-case execution times
of a software task represented by binary code compiled for a given ECU-type might
look simple. But in fact it has proven to be a very complex problem (for source code
implemented using a Turing complete language it is even undecidable, see [Wil+08]).
This is because the (embedded) processors available today use lots of sophisticated
techniques for improving the overall computation performance, for example pipelining,
out-of-order-execution (data-driven execution) and speculative execution, complex mem-
ory hierarchies based on multi-level caches, and specialized machine instructions for
speeding up common computations. While all those techniques today are indispensable
for processor architecture to be commercially successful, they pose serious problems to
timing analysis methods. It is very hard to predict the effects of those techniques on the
execution time of software tasks because a perfect prediction would require complete
knowledge about the internal state of the microprocessor, its caches and so on. An
additional problem is that the execution time of software tasks in general depends on
the inputs presented to the tasks, too. An overview on this research area is given in
[Wil+08]. The paper distinguishes static methods which “do not rely on executing code
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on real hardware or on a simulator” and measurement-based methods which “execute the
task or task parts on the given hardware or a simulator for some set of inputs” [Wil+08,
p. 7]. Static methods have the disadvantage that they require precise processor models
with lots of information about the internal structure of the processors and the memory
hierarchies. Static analysis is capable of providing guaranteed lower/upper bounds by
abstracting the processor and cache internal states. Furthermore, additional annotations
to the source code are required for the analysis tools to determine properties such as
bounds for the number of iterations for loops.

In contrary, measurement-based methods do not require knowledge about the internal
states of the ECUs. The binary code is run on the actual ECU many times with different
inputs provided while the execution time is measured. The lowest and largest measured
values are used to derive lower/upper “bounds” by subtracting a pre-defined safety-margin
from the lowest value (for the lower bound aka best-case execution time) or adding that
safety-margin to the largest value (for the upper bound aka worst case execution time).
The measurement-based method cannot guarantee that the best-case and worst-case
execution times are really safe. Some rare combination of inputs or an unexpected
internal state of the processor might lead to an execution time which is far smaller or
larger than the smallest/largest observed one including the safety margin.

As execution time analysis is not subject of this thesis, it is assumed that the worst-case
execution times of the software tasks of the design space exploration instance are given
for all or a subset of the available ECU-types.

2.2.4. Overview: Scheduling and Schedulability Analysis
Whenever multiple software tasks are allocated to the same ECU scheduling has to
be used to ensure that the ECU is made available to all the software tasks according
to specific rules. The software tasks are said to be scheduled. A software task is
schedulable if its worst case response time is smaller or equal to its deadline. The
worst case response time (WCRT) of a task is the longest possible time duration
measured from the invocation of a software task to the time the task finishes its execution
considering all preemptions by other tasks and the operating system.

Arbitrating the access of multiple ECUs to a common communication bus is in many
aspects similar to the scheduling of microprocessors. According to a set of rules exclusive
access to the communication bus is granted to one of the connected ECUs for a limited
time interval. Many different hardware implementations and bus protocols exists for
different applications. In this thesis two different bus protocols are used: A Time Division
Multiple Access (TDMA) protocol is used for the global bus which interconnects all
hardware subsystems and a priority-based protocol for all local buses residing inside of
those subsystems which interconnect all ECUs part of their subsystem. By using the
TDMA protocol for the global bus a temporal decoupling of the hardware subsystems,
for example release jitter — though not considered in this thesis — is avoided while
communicating between subsystems.

An ECU is schedulable if all software tasks allocated to that ECU are schedulable.
While the technical mechanisms required for arbitrating access to a communication bus
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are different than for ECUs many basic principles are similar. Analogously, a message
allocated to a communication bus is said to be schedulable if its worst case transmission
time is smaller or equal to its deadline. The worst case transmission time of a
message is the longest possible time interval starting from the time at which an instance
of a message has been written to the send queue of the sender task’s ECU to the time
at which this message has been written to the receive buffer of a receiver task’s ECU
(remind that multiple tasks may receive the same message).

A communication bus is schedulable if all its messages are schedulable. Finally, an
embedded system is schedulable if all of its ECU and buses are schedulable. Schedula-
bility analysis is used to test whether or not a given task/message is schedulable. How
the schedulability test is done depends on the actually used scheduling method.

Several different approaches for scheduling exists. Two classes of scheduling approaches
are distinguished: Static scheduling and dynamic scheduling.

In static scheduling the schedule, i.e. the time instances when tasks are dispatched,
is statically configured. One way to achieve this is to combine all software tasks on the
same processor during system design time into one huge software task. While combining
the tasks different activation periods are considered. The resulting huge task is during
runtime (re-)activated periodically by a timer of the operating system, depending on the
actual implementation (see [Tan01, pp. 132]).

The scheduling methods used in this thesis belong to the class of dynamic scheduling
approaches (scheduling decisions are taken at runtime), and can be further classified
as non-preemptive and preemptive scheduling. Non-preemptive scheduling means
that software tasks cannot be preempted by the operating system. Instead, they have to
actively hand control back (cooperative scheduling). In contrary, when using preemptive
scheduling, the operating system can actively preempt a currently running task at any
time. Depending on the purpose and/or configuration of an operating system processor
time is granted to software tasks based on different scheduling algorithms. This works
focuses on preemptive scheduling.

In round-robin scheduling a time interval is pre-defined and one by one the software
tasks are granted access to the processor for that time interval after which they are
preempted and the next task is activated. Round-robin scheduling is probably the best
method for guaranteeing fairness for all scheduled tasks.

Another scheduling method which is especially suitable for real-time systems is earliest
deadline first (EDF) scheduling. Here, deadlines are assigned to all software tasks a
priori. At runtime, the EDF scheduler keeps track of the activation times of all currently
active or blocked tasks and executes the task whose deadline is the next to become due.

A third method on which this work focuses is fixed-priority preemptive scheduling
(FPS). A unique fixed priority is assigned to each task allocated to a given ECU a priori
(at system design time). The scheduler ensures that always from the set of currently
active tasks the one with the highest priority is granted access to the processor. While
EDF scheduling has the advantage of being able to guarantee the deadlines of tasks even
at high processor load, FPS scheduling is still widely used in industrial contexts which
was the key factor for focusing on FPS scheduling in this thesis.
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2.2.5. Fixed-Priority Preemptive Scheduling of ECUs
2.2.5.1. Deadline-Monotonic Priority Assignment

Using fixed-priority preemptive scheduling requires that a priority is assigned to each
software task which is unique in the scope of the ECU where the task is allocated. A
common approach is to assign deadlines rate-monotonic (where rate is a another term
for activation period) such that of each two software tasks allocated to the same ECU
the one with the smaller activation period gets the higher priority. One advantage of
the rate-monotonic priority assignment is that priorities can be already assigned even if
the task deadlines are not known yet. Rate-monotonic assignment of priorities has been
proven to be optimal (under certain premises) if the deadlines of all software tasks are
equal to their periods (see [BW01]).

The approach used in this thesis is to assign task priorities deadline-monotonic.
Analogously to the rate-monotonic approach, of any two tasks allocated to the same
ECU the task with the smaller deadline gets the higher priority. The deadline-monotonic
priority assignment has been proven to be optimal if the following premises are valid:

• the deadlines of all tasks are smaller or equal to their activation periods.

• the worst-case execution times of all tasks are equal to or less than their deadlines

• all tasks are independent from each other (e.g. they do not block each other by
using mutually exclusive resources)

• tasks do not suspend themselves

• there are no scheduling overheads

• tasks do not have a release jitter

The proof of optimality can be found in [BW01, p. 485].

2.2.5.2. Utilization-based Schedulability Tests

One of the earliest and most cited publication in the real-time research community is
[LL73]. The authors provide a sufficient condition for the schedulability of a single ECU
based on the ECU’s utilization under certain premises. Those premises are:

• the activation of all software tasks is strictly periodic,

• the deadline of each software task is identical to its activation period, and

• the tasks are independent from each other.

The original paper also states that the “run-time for each task is constant for that
task and does not vary with time.” [LL73]. This premise can be relaxed to state that the
runtime of each task never exceeds a certain maximal value (worst case execution time).
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The utilization of an ECU with tasks 𝜏1, . . . 𝜏𝑚 is defined as:

𝑈 =
𝑚∑︁
𝑖=1

(𝐶𝑖
𝑇𝑖

)

where 𝐶𝑖 denotes the worst case execution time of a task 𝜏 𝑖 and 𝑇𝑖 the task’s activation
period. Note that these notations and variable names are used as presented in the original
paper for simplicity. In the following chapters, the notations are refined (see Chapter 3)
to better match the requirements of this thesis.

The sufficient schedulability test of Liu and Layland states that if for an ECU with 𝑚
tasks the condition 𝑈 ≤ 𝑚(2

1
𝑚 − 1) holds, then this ECU is schedulable. The authors

also state that the upper bound 𝑚(2
1
𝑚 − 1) ≃ ln 2 ≈ 69% for large values of 𝑚. Of

course, an ECU with a higher utilization than 69% might be schedulable, too (as the
schedulability test is sufficient but not necessary). But then other schedulability tests
have to be applied for proofing the schedulability of that ECU.

The Liu and Layland schedulability test has been revisited in [DG00] where the authors
first show that the original proof is incomplete and then complete and correct that proof.

The definition of software tasks used in this thesis requires that the deadline of each task
is equal to or smaller than the task’s activation period. Therefore the schedulability test
of Liu and Layland is not applicable (because the premise that deadline and periods have
to be equal is violated). However the software module responsible for the construction of
the artificial benchmark used for evaluation (see Section 6.5.2 on page 149) makes use of
this schedulability test to be able to construct feasible benchmark models.

2.2.5.3. Schedulability Analysis for Deadlines less or equal Periods

As stated above, the Liu and Layland schedulability test is not applicable if software
tasks are having deadlines smaller than their activation periods. A schedulability test
for systems where tasks have deadlines equal to or less than their activation periods has
been proposed in [JP86] and (independently) in [Aud90]. Their approach is based on the
concept of critical instance. An example of a critical instance is shown in Figure2.4.
For the task model used throughout this thesis a critical instance on a given ECU is a
(hypothetical) time instant where all tasks allocated to that ECU arrive (become ready
for execution) simultaneously. Obviously, only one of those tasks can be granted access
to the ECU at a time. In this case the task with the highest priority is processed first, as
can be seen in Figure2.4 where task 𝜏1 has the highest priority on the ECU and is served
first. In that figure task 𝜏2 arrives at the same time instant but is directly preempted. It
remains preempted until task 𝜏1 finishes its execution. Then task 𝜏2 is executed until
the higher priority task preempts its execution again. The critical instance describes a
worst case scenario. If all tasks are schedulable in this scenario, they are schedulable in
all other scenarios as well.

Based on the construction of the critical instance, the schedulability test validates
that for every task the worst case response time is smaller than or equal to the task’s
deadline. The worst case response time 𝑟𝑖 of a task 𝜏 𝑖 can be calculated by solving
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Figure 2.4. – Fixed-priority Preemptive Scheduling: Critical Instance

Fixed-point Equation (2.1). Equation (2.2) shows the corresponding schedulability test.
The equations are provided here in the standard notation used in the real-time research
community. In the following chapters the notion is further refined.

𝑟𝑖 = 𝐶𝑖 +
∑︁

𝑗∈hp(𝑖)

⌈︃
𝑟𝑖
𝑇𝑗

⌉︃
𝐶𝑗 , where (2.1)

𝑟𝑖 ≤ 𝐷𝑖 (2.2)

where 𝑟𝑖 denotes the worst case response time of task 𝜏 𝑖, 𝐶𝑖 the worst case execution
time of task 𝜏 𝑖, 𝑇𝑗 the activation period of a (higher-priority) task 𝜏 𝑗 and 𝐷𝑖 the deadline
of task 𝜏 𝑖. In this and the following definitions, the function hp maps the index of every
task to the set of indexes of all tasks allocated to the same ECU with a higher priority.

Computing the worst case response time can be done iteratively by starting with the
worst case execution time of the task under consideration (Equation (2.3)) and using
in all following iterations the result of the previous iteration for calculating the sum
operator on the right-hand side (Equation (2.4)):

𝑟0
𝑖 = 𝐶𝑖 (2.3)

𝑟𝑛+1
𝑖 = 𝐶𝑖 +

∑︁
𝑗∈hp(𝑖)

⌈︃
𝑟𝑛𝑖
𝑇𝑗

⌉︃
𝐶𝑗 (2.4)

Note that the existence of a fixed-point is not guaranteed. As the fixed-point equation
is monotonically increasing the iterative computation of the fixed-point equation will
always terminate with one of the following results: In the first case a fixed-point is found
which is smaller than or equal to the deadline. Formally: Task 𝜏 𝑖 is schedulable if for an
iteration 𝑛 ∈ N it holds that
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𝑟𝑛+1
𝑖 = 𝑟𝑛𝑖 ∧ 𝑟𝑛𝑖 ≤ 𝐷𝑖

Otherwise the task is not schedulable and the calculation is terminated as soon as an
𝑛 ∈ N is reached such that 𝑟𝑛𝑖 exceeds the task’s deadline (𝑟𝑛𝑖 > 𝐷𝑖).

Equation (2.5) presents the fixed-point equation in a different notation more suitable
for understanding first the nature of this fixed-point equation and second the findings
presented in Chapter 5. In this notation the function (𝛾𝑖(𝑥)) defined in Equation (2.5)
equals to the right hand side of Equation (2.1). The fixed-point condition is specified
separately as part of Equation (2.6). Note that 𝛾𝑖 does not compute the minimal
fixed-point.

𝛾𝑖(𝑥) = 𝐶𝑖 +
∑︁

𝑗∈hp(𝑖)

⌈︃
𝑥

𝑇𝑗

⌉︃
𝐶𝑗 (2.5)

The worst case response time (if existent) is the smallest 𝑟𝑖 ∈ N such that

𝛾𝑖(𝑟𝑖) = 𝑟𝑖 ∧ 𝑟𝑖 ≤ 𝐷𝑖 (2.6)

If a worst case response time smaller than or equal to the deadline exists, it equals by
definition to the smallest fixed-point of 𝛾𝑖 (for the definition of smallest fixed-point see
Section A.4 in the appendix). In general, fixed-point equations may have more than one
fixed-point.

Depending on its parameters it is possible that 𝛾𝑖 has no fixed-point, because all
function values are too large, formally: ∀𝑥 ∈ N : 𝛾𝑖(𝑥) > 𝑥). But if there is at least one
fixed-point, the smallest fixed-point can be calculated as in Theorem A.5 on page 191.

2.2.6. Scheduling and Schedulability of TDMA-Based Buses

The mutual exclusive access to pure TDMA-based buses is organized by specifying a time
interval called communication cycle or TDMA round which is further partitioned
into a number of time slots. Some TDMA-based buses such as FlexRay are capable of
providing a mixed-mode where the TDMA round is partitioned into a static segment and
a dynamic segment. The static segment is then again partitioned into time slots while
the dynamic segment is independently arbitrated via a priority-based protocol. Access
to the time slots is arbitrated by specifying maximal one bus participant (connected
ECU at design time which has exclusive access to that slot. There might be bus slots
which are not assigned to any bus participant yet, e.g. as reserve for future extensions.
To each bus participants multiple bus slots can be assigned. In this work, it is assumed
for simplicity that for each message a bus participant has to send, one or more bus
slots (of the set of bus slots assigned to the bus participant) are reserved exclusively.
Schedulability analysis of pure TDMA-based (without a dynamic segment) involves the
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calculation of the worst-case response time of each message. This is done by identifying
for every message the longest time interval its sending gateway has to wait for a bus slot
reserved for that message. Adding the actual time required for transmitting the message
to that time interval gives the worst-case response time of the message.

The analysis and optimization of TDMA buses is out of scope of this thesis due to the
high complexity this would add to the approach. While the schedulability analysis of an
existing configuration could be handled in principle, the calculation of a valid schedule is
known to be NP-hard. An approach for FlexRay has been proposed in [Luk+09]. The
linear program presented in this paper could be integrated in the approach for global
analysis described in Chapter 3 but only at the cost of a huge increase in complexity.

2.2.7. Scheduling and Schedulability of Priority-Based Buses
The focus of this thesis is on priority-based buses such as Controller Area Networks
(CAN). Schedulability analysis for those buses is very similar to schedulability analysis
of ECUs. The main difference for CAN buses is that sending a message on the bus
is non-preemptive. While during the arbitration phase messages with higher priority
are preferred over messages with lower priority thus delaying the transmission of the
lower-priority messages, no higher-priority messages can preempt the actual transmission
of a lower-priority message. This has two consequences: Firstly, during the calculation of
the worst-case response time for a message, the message’s own worst case transmission
time is not part of the fixed-point equation (because preemptions are no longer possible
during the transmission). Secondly, lower-priority message can block higher-priority
messages for a certain amount of time called blocking time. Both effects have been
considered in the response time analysis.

In [TB94], [THW94] and [TBW95] the authors presented their approach for CAN bus
schedulability analysis, which later was revised in [Dav+07]. The worst case response
time for messages on CAN-buses can be calculated with Equation (2.7) which refers to
fixed-point Equation (2.8). Note that in this thesis it is assumed that no release jitter
occurs. Therefore the jitter has been removed from those equations (compare to [Dav+07,
p. 251]).

𝑟𝑖 =𝑤𝑖 + 𝐶𝑖, with (2.7)

𝑤𝑖 =𝐵𝑖 +
∑︁

𝑘∈hp(𝑖)

⌈︂
𝑤𝑖 + 𝜏bit
𝑇𝑘

⌉︂
𝐶𝑘 (2.8)

𝐵𝑖 = max
𝑘∈lep(𝑖)

{𝐶𝑘} (2.9)

𝑟𝑖 ≤ 𝐷𝑖 (2.10)

where
• 𝑟𝑖 is the worst case response time of message 𝑚𝑖,

• 𝑤𝑖 is called the busy period of that message,
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• 𝐶𝑖 is the worst case transmission time of 𝑚𝑖,

• 𝐵𝑖 is the maximal blocking time,

• function hp assigns to each message index the set of indexes of all higher-priority
messages, and

• function lep assigns to each message index the set of indexes of all messages with
lower or equal priorities,

• 𝜏bit the time required for transmitting one bit (required to avoid the trivial but
wrong solution 𝑤𝑖 = 0),

• 𝑇𝑖 is the activation period of message 𝑚𝑖, and

• 𝐷𝑖 is the deadline of message 𝑚𝑖.

Similar to the schedulability test for tasks the busy period 𝑤𝑖 can be calculated
iteratively using Equation (2.11) as starting point and calculating iterations with Equa-
tion (2.12) until either a fixed-point has been found for which the schedulability condition
in Equation (2.13) is satisfied, or if no such 𝑛 ∈ N can be found. In this case the message
is not schedulable.

𝑤0
𝑖 =𝐵𝑖 +

∑︁
𝑘∈hp(𝑖)

⌈︂
𝜏bit
𝑇𝑘

⌉︂
𝐶𝑘 (2.11)

𝑤𝑛+1
𝑖 =𝐵𝑖 +

∑︁
𝑘∈hp(𝑖)

⌈︂
𝑤𝑛𝑖 + 𝜏bit

𝑇𝑘

⌉︂
𝐶𝑘 (2.12)

∃𝑛 ∈ N : 𝑤𝑛+1
𝑖 =𝑤𝑛𝑖 ∧ 𝑤𝑛𝑖 ≤ (𝐷𝑖 − 𝐶𝑖) (2.13)

2.3. Optimization Problems
The problems considered in this thesis are optimization problems. An optimization
problem consists of a number of decision variables, a number of constraints describing
valid valuations of the decision variables and one (sometimes even multiple) objective
functions (also called cost functions) to be either minimized of maximized. A solution for
an optimization problem is valuation of all decision variables satisfying all constraints.
An optimal solution for a single objective problem is a solution having the best possible
value for the objective function. Note that for a given optimization problem there may
be no solution at all. The objective function might also be unbounded which means that
there is no maximum/minimum. While for some optimization problems with multiple
objectives those objectives can be aggregated to form a single objective function, there
exists problems for which it is not possible. For such problems alternative notions for
what an optimal solution is have to be used, e.g. Pareto optimality.
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The formal definition of optimization problem given by Korte and Vygen in [KV10,
p. 384] additionally states that the test whether or not a given solution is a valid solution
(satisfying all constraints) for a given optimization problem must have polynomial-time
complexity. The cost function used in an optimization problem must have polynomial-time
complexity as well.

Of course the complexity of optimization problems can vary. For the simplest class
of problems very efficient (deterministic) exact algorithms exist whose runtime can be
bound by a polynomial in the number of decision variables. They are said to be in the
class of deterministic polynomial-time problems P. However most optimization problems
considered in this work belong to much harder-to-handle problem classes, mainly to the
class of non-deterministic polynomial-time problems NP. For those problems no efficient
exact algorithms are known. But several approaches exist which behave very well on
most instances of real-world problems. On the one hand we have optimal algorithms and
on the other hand heuristics.

One can distinguish between exact and heuristic approaches for solving optimization
problems. Exact algorithms are guaranteed to find the best possible solution, but do
not scale very well with increasing problem sizes for complex optimization problems, e.g.
NP-hard optimization problems. Heuristic algorithms are not guaranteed to find the best
possible solution but are usually significantly faster than exact algorithms.

2.3.1. Exact Optimization Methods
In this work, two different technologies have been applied for encoding the proposed
exact optimization methods. Initially, SAT Modulo Theories solvers have been used. For
the later works, mixed integer linear programming was applied.

2.3.1.1. SAT Modulo Theories (SMT)

SMT solvers combine the strengths of techniques for deciding satisfiability problems (SAT
checking) with techniques specific to a theory module. In this work, a theory module
providing linear arithmetic has been used. SMT solvers can decide whether or not a
given SMT problem is feasible and can provide a solution if existing. Using SMT solvers
for optimization can be done by iteratively running an SMT solver on the same SMT
problem while tightening the constraints and thus performing a binary search. Because
SMT solvers have only been evaluated initially in this work, foundations of SMT are not
further discussed here. For detailed information about SMT in general and the SMT
solver HySAT in particular see [FH07], [Her09] and [Her12].

2.3.1.2. Linear Programming

Linear programming is a technique for solving optimization problems consisting of
real-valued variables and constraints given as linear inequations.

In [KV10, p. 49] the linear programming problem is defined as follows: A linear-
programming instance is defined by specifying a matrix 𝐴 ∈ R𝑚×𝑛 and column vectors
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𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛. The task is to find a column vector 𝑥 ∈ R𝑛 such that 𝐴𝑥 ≤ 𝑏 and 𝑐𝑥 is
maximum, decide that {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} is empty, or decide that for all 𝛼 ∈ R there is
an 𝑥 ∈ R𝑛 with 𝐴𝑥 ≤ 𝑏 and 𝑐𝑥 > 𝛼.

Linear programming has been developed in the early 1940s by Leonid Vitalyevich Kan-
torovich but kept secret until first published by George Bernard Dantzig in 1947. Dantzig
invented the Simplex algorithm which is still one of the most powerful approaches for
solving linear programs and is implemented in all free and commercial linear-programming
solvers used in this thesis (see [Dan63]). Simplex is not a polynomial-time algorithm
for solving linear programs. While Simplex works pretty well for most real-world prob-
lems there exist problems for which the algorithm degrades. In 1979 Leonid Khachiyan
proposed his Ellipsoid method and proofed that linear-programming problems can be
solved in polynomial-time (see [Kha79]). However the practical relevance of the Ellipsoid
method is negligible. The interior-point method (also called barrier methods) proposed by
Narendra Karmarkar in 1984 has been shown to have polynomial-time, too (see [Kar84]).
The interior-point algorithm is the most important alternative to Simplex and is also
implemented by all free and commercial linear-programming solvers used in this thesis.

All free variables in a linear program have to be reals. In an integer program all
variables 𝑥 are required to be integers. In a mixed integer linear program (MILP)
only some 𝑥𝑖 are required to be integers while others are reals.

The following example demonstrates how mixed integer linear programming is used in
the following chapters.

A factory has one machine which can produce one product out of two different product
types each hour. A product of the first type requires 23 hours of production time and
can be sold for € 10000. A product of the second type requires 42 hours of production
and can be sold for € 15000. The machine is available for maximal 200 hours per month.
Furthermore it is a requirement to produce at least one product of each type per month.
What is the ideal mix of products for maximizing the total profit?

Encoding the example results in the following model:

maximize 10000𝑥1 + 15000𝑥2 (2.14)
subject to:
23𝑥1 + 42𝑥2 ≤ 200 (2.15)
𝑥𝑖 ≥ 1 ∀𝑥𝑖 ∈ {𝑥1, 𝑥2} (2.16)
𝑥1, 𝑥2 ∈ N (2.17)

In Equation (2.17) two variables are declared, both natural numbers (and therefore
integers). 𝑥1 represents the number of products to produce of the first product type, 𝑥2
the number of products to produce of the second product type. In the following chapters,
all variables declared in this manner are free variables for which the linear-programming
solver has to find a valid valuation. Note that in this example all free variables are
integers which means that the formulation is an integer program. Each free variable
corresponds to exactly one column in the matrix 𝐴 (see above).
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Each of the following constraints corresponds to one row in the matrix 𝐴. Equa-
tion (2.14) specifies the objective function which in this case is the sum of the number
of products to be produced of each product type multiplied with the respective price.
Equation (2.15) expresses the constraint that only a maximal 200 hours of production
are available per month. In Equation (2.16) the constraint that at least one product
has to be produced for each of the product types. This constraint has been added to
the example to show how to describe many similar rows in a short hand notation by
specifying on the right side of the equation that such a row has to be added to the linear
program for each 𝑥𝑖.

A formulation of the example as a MathProg model can be found in the appendix
in Section B.1 on page 193. Solving the example with a linear-programming solver (or
by hand) gives the result that the maximal profit is € 80000 per month which can be
achieved by producing 5 products of type 1 and 2 products of type 2 per month.
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3. Problem Definition and Two-Tier
Optimization Approach

This chapter provides a formal definition of the system model used throughout the
remainder of this thesis and describes the two-tier optimization approach capable of
solving the characterized problem first published in [Bük+11a] and [Bük+11b].

3.1. Formal System Model
In this section the hardware and the software design spaces are formally defined, followed
by the definitions of a DSE problem, including constraint type classes. A formal definition
of a system configuration for a given DSE problem is completed by several predicates
formalizing constraints for the validity of configurations regarding the communication
structure.

3.1.1. Formalization: Hardware Design Space
The hardware design space is defined by specifying a hardware architectural pattern (see
Definition 3.2 on page 30). Before introducing the hardware design space notion, the
concepts ECU, ECU-type, bus, bus-type, and the concept of a hardware architecture
tree are formally defined.

3.1.1.1. Formalization: Logical ECU and ECUType

A (logical) ECU represents a computing resource in an architectural pattern (see also
Section 2.1.7 on page 7). It has no further properties but can be typed by an ECU-type
(see also Section 2.1.8 on page 7). The universe of ECU-types is denoted by E⋆. The
universe of ECUs is denoted by E⋆.

The size of the available memory (in kilobytes) of ECU-types is denoted by function

mem: E⋆ → N

and their hardware costs by
cost : E⋆ → N

For each ECU a set of allowed ECU-types is specified as part of the specification of
the hardware architectural pattern (see Definition 3.2) thus restricting the choice during
the optimization process to only those types. If the special ECU-type ⊥ is assigned to
an ECU then that ECU is not instantiated when creating an instance of the hardware
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architectural pattern. As a consequence, no software tasks may be allocated to that
ECU. The hardware cost for ECU-type ⊥ is defined as cost(⊥):=0 and the memory size
as mem(⊥):=0.

3.1.1.2. Formalization: Logical Bus and Bus Type

A (logical) bus represents a communication component in a hardware architectural
pattern (see also Section 2.1.9 on page 7). A bus itself has no further attributes but can
be typed by a bus-type (see also Section 2.1.10 on page 7).

The universe of bus types is denoted by B⋆. The universe of buses is denoted by B⋆.
The bus class of bus types is denoted by function

class : B⋆ → {PB, TB}

where PB stands for priority-based and TB stands for TDMA-based. The bandwidth in
bytes per second is denoted by function

bandwidth : B⋆ → N

Additionally, a TDMA bus type consists of a list of bus slots. The set of all bus slots
is denoted by Slots⋆. The finite ordered set of bus slots for each bus is defined by function

slots : B⋆ → 𝒫(Slots⋆)

The bus slot function is defined such that for each priority-based bus the set of assigned
bus slots is empty and such that every bus slot belongs only to one bus (bus slots are
never shared by multiple buses). Each bus slot has a defined bus slot length. The bus
slot length (in seconds) of a given bus slot slot is denoted by

length : Slots⋆ → N

The interconnection structure of an architectural pattern is specified as a hardware
architecture tree. For reference, a definition of a “tree” can be found in [KV10, p. 7]:
“Let G be some undirected graph. G is called connected if there is a 𝑣-𝑤-path for all
𝑣, 𝑤 ∈ V(𝐺) [. . . ]. An undirected graph without a circuit (as a subgraph) is called a
forest. A connected forest is a tree.” See [KV10] for details.

Definition 3.1 (Hardware Architecture Tree)
A hardware architecture tree is a tree

𝐺hw =
(︁
E ∪̇B,Edgeshw

)︁
with set of vertices E ∪̇B and set of edges Edgeshw where

• E ⊂ E⋆ is a finite set of ECUs

• B ⊂ B⋆ is a finite set of buses
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• Edgeshw ⊆ {{𝑒, 𝑏} | 𝑒 ∈ E , 𝑏 ∈ B} is a set of undirected edges

• each ECU vertex has a degree of either 1 or 2, formally

∀e ∈ E : deg(e) ∈ {1, 2}

where function deg maps to each vertex the number of connected edges

• each bus vertex has at least a degree of 2, formally

∀b ∈ B : deg(𝑏) ≥ 2

• there exists one “global” bus bglobal ∈ B to which every ECU with degree 2 is
connected 2

The universe of hardware architecture trees is denoted by 𝐺hw⋆. Note that the definition
of the edge set implies that every hardware architecture tree is a bipartite graph with
respect to its ECU set E and bus set B.

Figure 3.1. – Example: Hardware Architecture Tree

In Figure 3.1 a typical hardware architecture tree is shown. The large arrow-like vertices
represent logical buses and the box-like vertices logical ECUs. Edges are represented by
small black double headed arrows.

Let 𝐺hw be a hardware architecture tree with global bus bglobal. Then every tree in the
forest obtained by removing vertex bglobal from 𝐺hw is called a hardware subsystem.
The set of subsystems of a hardware architecture tree 𝐺hw is denoted by subsysset(𝐺hw).
For convenience the function subsys(𝐺hw, v) maps a given vertex (either an ECU or a
bus except for the global bus) to the subsystem it is allocated to.

The function
ecus : 𝐺hw⋆ → 𝒫(E⋆)
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is defined such that it maps any given hardware architecture tree to the set of ECUs it
contains. The function

buses : 𝐺hw⋆ → 𝒫(B⋆)

is defined such that it maps any given hardware architecture tree to the set of buses it
contains.

It is required that the bus type used for the global bus connecting all hardware
subsystems is TDMA-based (class is TB, e.g. FlexRay). Subsystems usually contain more
than one ECU. A special case is supported where a subsystem contains no local bus and
exactly one ECU which is directly connected to the global bus. One assumption of this
work is that an existing embedded system is extended by adding new functionality. For
the communication of the existing software functions over the global bus it is necessary
to preserve the structure of the TDMA cycle, defined by the number, order and size of
the bus slots. Therefore it is assumed here that the set of global bus slots slots(bglobal)
is fixedly defined and remains unchanged during the optimization.

Following from Definition 3.1, all subsystems with more than one ECU contain exactly
one local bus; each bus except for the global bus is part of exactly one subsystem. For
simplicity, each local bus is required to use a priority-based bus type (class is PB, e.g.
CAN).

Each ECU belongs to exactly one subsystem and is connected to the subsystem’s local
bus. In each subsystem the ECU which is connected to both the local and the global
bus has the role of a gateway ECU. Gateway ECUs can be used for task allocation
like every ECU in the system. But only software tasks directly allocated to a gateway
ECU can directly send messages on the global bus. For software tasks not allocated to a
gateway ECU, a relay service is used on the gateway ECU of their subsystem. Buses in
subsystems are in the following also called (subsystem-) local buses.

The following definition formalizes the notion of hardware architecture used as input
for the optimization process.

Definition 3.2 (Hardware Architectural Pattern)
A hardware architectural pattern is a tuple

hw = (𝐺hw,E,B, allowedE , allowedB, slotsavail)

consisting of

• a hardware architecture tree 𝐺hw =
(︀
E ∪̇B,Edgeshw)︀

• a finite set of ECU-types E ⊂ E⋆

• a finite set of bus types B ⊂ B⋆

• a function assigning the set of allowed ECU-types to each ECU:

allowedE : ecus(𝐺hw)→ 𝒫(E)
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• a function assigning the set of allowed bus types to each bus:

allowedB : buses(𝐺hw)→ 𝒫(B)

• a finite set of available bus slots on the global bus bglobal

slotsavail ⊆ slots(bglobal) 2

Note that by excluding certain bus slots of the global bus from the subset of available
bus slots slotsavail on can ensure that those bus slots will not be used in any of the
solutions of the optimization process. Those slots can thus be reserved, e.g. for extensions
of the resulting system in the future.

Subsystem1 Subsystem1

Subsys1

<none>

ECU1

<ARM7-C1>

ECU2

<ARM5-C2>

ECU3

<PPC-C1>

ECU4

<CAN-C1>

Bus1

Subsys2

<none>

ECU5

<PPC-C1>

ECU6

<ARM7-C2>

ECU7

<none>

ECU8

<CAN-C2>

Bus2

<FlexRay>

GlobalBus

Figure 3.2. – Example Hardware Architectural Pattern (including initial ECU-type Func-
tion)

Figure 3.2 shows an example of a hardware architecture tree. Two hardware subsystems
are connected via one global bus GlobalBus which is of type FlexRay. The global bus
consists of eleven bus slots of which three are unavailable for messages. The global bus is
connected to the gateway ECU of each of the subsystems. Each subsystem consists of
four ECUs connected via one local bus. Note that two different bus types are used for
the local buses, namely CAN-C1 and CAN-C2. Both are priority-based buses but their
respective bandwidth might differ. In the current configuration not every ECU is actually
typed by one of the ECU-types, namely ECU1, ECU5 and ECU8 are typed by ⊥ (written
as <none>) and will therefore not be instantiated when hardware architectural pattern
is instantiating. All other ECUs are typed by existing ECU-types, among them two
different configurations based on ARM7 processors ARM7-C1 and ARM7-C2. Physical
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links between buses and ECUs are represented by the edges, where a solid line means
that the link would be instantiated while a dashed line means that this link will not be
instantiated. A link is instantiated only if the corresponding ECU is also instantiated.

3.1.2. Formalization: Task Network
3.1.2.1. Formalization: Software Task

In the context of this thesis a software task (denoted by 𝜏) represents a functionality
which is implemented by providing a source code implementation for one or multiple
ECU-types which then is compiled specifically for this type (see also Section 2.1.12 on
page 8). Software tasks appear as parts of a task network.

The universe of software tasks is denoted by 𝒯 ⋆. The following task properties are
explicitly used during the optimization process: The period is denoted by function

periodtask : 𝒯 ⋆ → N

A local deadline is denoted by function

deadlinetask : 𝒯 ⋆ → N ∪ {∞}

where deadlinetask(𝜏) =∞ means that no deadline is specified for task 𝜏 (yet). The
specification of a deadline is mandatory if a task is not part of task chain with an
end-to-end deadline which could be used to synthesize a local deadline. Note that this
local deadline is a property of the task in contrary to synthesized local deadlines for tasks
which are calculated as part of a solution for a specific problem instance. Two limitations
apply currently: Firstly, it is required that the deadline of each task is smaller or equal
to its activation period. Secondly, it is required that only binary implementations are
selected whose worst case execution time is smaller or equal to the task’s activation
period.

The universe of binary executables is denoted by Bin⋆. Each binary might be executable
on several different ECU-types, depending on the instruction set of the used processors.
For each ECU-type where a binary executable is executable, the worst case execution
time and the maximal memory consumption could be determined.

The WCET of binaries on given ECU-types is denoted by partial function

wcetBin⋆

: Bin⋆ × E⋆9N

and the memory consumption by partial function

memreqBin⋆

: Bin⋆ × E⋆9N

3.1.2.2. Formalization: Signal

Data flow between software tasks is modeled explicitly using the concept of signal (see
also Section 2.1.13 on page 11). While in general data flow between tasks could induce
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control flow as well, e.g. if a task is activated by the reception of a signal, this is not
supported in this thesis. In this thesis it is assumed that each signal has exactly one
sender task which is the source of the data flow and one or more receiver tasks which
are the targets of the data flow.

The universe of signals is denoted by S⋆. The size in bytes of the data flow is denote
by

bytes : S⋆ → N

A signal inherits the activation period of its sender task. The (inherited) activation
period is denoted by

periodsig : S⋆ → N

A deadline can be specified optionally, denoted by

deadlinesignal : S⋆ → N ∪ {∞}

where deadlinesignal(𝑠) =∞ means that no deadline has been specified for signal 𝑠. The
specification of a deadline is mandatory if a signal is not part of task chain with an
end-to-end deadline which could be used to synthesize a signal deadline. Note that this
local deadline is a property of the signal in contrary to synthesized local deadlines for
signals which are calculated as part of a solution for a specific problem instance.

For any given bus type b the worst case transmission time (WCTT) of any signal
𝑠 specified in seconds, is defined by function

wctt(𝑠, b):=
⌈︂ bytes(𝑠)

bandwidth(b)

⌉︂
The ceiling function is used to ensure that the transmission time is always a natural
number.

3.1.2.3. Formalization: Message

A message is used whenever a signal has to be sent over a bus between multiple ECU
(see also Section 2.1.14 on page 11). The universe of messages is denoted by M ⋆.

Each message is allocated to exactly one bus either with a fixed priority (for CAN
buses) or to one or more bus slots (for TDMA buses).

Each message belongs to exactly one signal. The relation is established as part of an
allocation (see Definition 3.6 on page 38). The activation period of a given message 𝑚 is
derived from its signal 𝑠 and denoted by periodmsg(𝑚).

For any given bus type b the worst case transmission time (WCTT) (unit: seconds)
of any message 𝑚 is equal to the

wctt(𝑚, b):=wctt(𝑠, b)

where 𝑠 is the signal to which the message 𝑚 belongs.
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Each message optionally has a message deadline denoted as

deadlinemsg : M ⋆ → N ∪ {∞}

A value of deadlinemsg() =∞ means that no deadline has been specified for message 𝑚.
Note that this local deadline is a property of the message in contrary to synthesized local
deadlines for messages which are specified as part of a solution for a specific problem
instance. If no deadline has been specified initially than an artificial deadline has to be
synthesized during the optimization process for newly created messages.

The following example demonstrates the different situations with respect to signals
and messages which might occur when allocating software tasks to ECUs. Let 𝜏1, 𝜏2 ∈
𝒯 ⋆, 𝜏1 ̸= 𝜏2 be tasks and 𝑠1 ∈ 𝑆 be a signal sent by task 𝜏1 and received only by 𝜏2 (not
by any other task).

In the simplest case both tasks are allocated to the same ECU. Then the signal can be
“sent” using operating system specific mechanisms, e.g. by writing the signal’s data into
a shared memory location and notifying the receiver task.

A more complex case occurs if the tasks are allocated to different ECUs in the same
hardware subsystem. Then the signal has to be transmitted over the subsystem-local
bus (which has to be priority-based in this thesis). A message is associated to the
signal. The message’s deadline is used to determine the message priority (following the
deadline-monotonic paradigm). Assuming that the priority-based bus is a CAN-bus, a
unique CAN object identifier (which is used to identify a message and for arbitration on
CAN buses) is created for the message based on its priority and the priority of the other
messages on that bus.

In another even more complex scenario the tasks are allocated to different ECUs which
are in different hardware subsystems. In this scenario it is required to send a message
over the global bus. The message is associated to the signal and assigned to one or more
bus slots on the global bus. If the sender task is allocated to the gateway ECU of its
subsystem, no additional steps are required in there. If it is allocated to a non-gateway
ECU, a message on the local bus is required. This message is associated to the signal
(in addition to the already associated message on the global bus). The message relay
service of the subsystem gateway ECU is configured accordingly. For simplicity it is
assumed that this service is implemented as part of the operating system on the gateway
ECUs and has a negligible execution time (one which is very small compared to the usual
execution times of tasks). For the receiver task the procedure is analogical. If the receiver
task is allocated to the gateway ECU no additional actions are required. Otherwise a
message on the local bus is necessary and a relay task on the gateway ECU.

Model for signal/message transmission Each task can send signals at the end of its
execution. Each signal is sent using an operating system call which

• puts the signal in a shared memory location and notifies the local receiver tasks (if
there are receiver tasks on the same ECU)
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• encodes the corresponding message for the global or local bus and adds it to the
transceivers send queue (if there is there are receiver tasks on different ECU)

If an ECU receives a message, it is copied to a buffer and all receiver tasks on that
ECU are informed. However as in the context of this work all tasks are activated strictly
periodically, the receiver tasks are not run immediately. At their next regular activation
they receive the message by fetching it from the input buffer. Therefore a receiver task
might read a message after it has been received by the ECU with a time delay potentially
as large as the task’s period, e.g. if a message is entering the receive buffer immediately
after a task has (unsuccessfully) checked that buffer for new messages. In this case the
message is read by the next occurrence of that task causing a message receive delay of a
whole task period.

For each task all the execution delays due to operating system calls for receiving and
sending messages are subsumed in the task’s worst case execution time.

Software tasks and signals together form a forest of directed graphs. In this work it is
mandatory that all of these directed task/signal graphs are cycle-free and therefore form
trees called task trees (see Figure 3.3 for an example).

Definition 3.3 (Task Tree)
A task tree is a directed tree

𝐺sw = (𝒯 ∪̇ 𝑆,Edgessw)

with a finite set of vertices 𝒯 ∪̇ 𝑆 and a finite set of edges Edgessw with the following
properties:

• 𝒯 ⊂ 𝒯 ⋆ is a finite set of tasks

• 𝑆 ⊂ S⋆ is a finite set of signals

• Edgessw ⊆ (𝒯 × 𝑆) ∪ (𝑆 × 𝒯 ) is a set of directed edges

• the root vertex (denoted by 𝜏 root) is a task

• every leaf vertex is a task 2

Note that the way the edge set of a task tree is defined, implies that every task tree is
bipartite with respect to its task set and its signal set. Note furthermore that since a
task tree is a tree in the mathematical sense, the in-degree of the root vertex is 0 and
the in-degree of every other vertex is 1. The universe of task trees is denoted by TREE⋆.

For a given task tree tree ∈ TREE⋆ the set of all paths of a given task tree which start
at the root vertex and and end at one of its leaf vertices is denoted by

paths(tree):=
{︁

(𝑣i , 𝑣j) | 𝑣i , 𝑣j ∈ vertices(tree)

∧ deg−(𝑣i) = 0

∧ deg+(𝑣j) = 0
}︁
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where deg−(𝑣) denotes the in-degree of a vertex 𝑣 of a directed tree (the number of
incoming edges) and deg+(𝑣) the out-degree (the number of outgoing edges). Remark:
For referring to an existing path of a task tree it is sufficient to specify the first and the
last vertex due to the tree properties.

The function “paths” may also be applied on a set of task trees Trees in which case it
is defined to be the union of all the maximal paths of task trees in the set, formally:

paths(Trees):=
⋃︁

tree∈Trees
paths(tree)

The formal definition of task network as used in the context of this thesis is given in
Definition 3.4 (see also Section 2.1.15 on page 11).

Definition 3.4 (Task Network)
A task network is a tuple

tn = (Trees, choiceexec, deadlinee2e)

consisting of

• a finite set of pairwise disjoint task trees Trees

• for E being the finite set of all ECUs in Trees, a partial function for choosing for
each task one binary executable for some of the ECU-types:

choiceexec : 𝒯 × E⋆9Bin⋆

• a (partial) function for assigning end-to-end deadlines to some of the paths appearing
in the set of task trees:

deadlinee2e : paths(Trees)9N 2

The universe of task networks is denoted by TN ⋆. The set of tasks of a given task
network tn is denoted by tasks(tn) or simply 𝒯 if the corresponding task network is
unambiguous. Analogously, the set of signals is denoted by signals(tn) or simply 𝑆.

Two functions are defined for convenience. For any given task network tn with task
set 𝒯 , signal set 𝑆 and edge set Edgessw function

sender : TN ⋆ × S⋆ → 𝒯 ⋆ , with

sender(tn, 𝑠):=
{︃
𝜏 , if 𝑠 ∈ 𝑆 ∧ ∃𝜏 ∈ 𝒯 such that (𝑠, 𝜏) ∈ Edgessw

⊥, otherwise
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maps the sender task to each signal and function

recv : TN ⋆ × S⋆ → 𝒫(𝒯 ⋆)
recv(tn, 𝑠):= {𝜏 | 𝜏 ∈ 𝒯 , (𝜏 , 𝑠) ∈ Edgessw}

maps to each signal the set of its receiver tasks.
Depending on the used optimization algorithms, certain restrictions on the acceptable

input models are necessary. One restriction used throughout this work is that the
activation periods for every task and every signal in the same task tree have to be equal,
formally: Let tree be a task tree with set of ECUs E and set of signals 𝑆. tree is called
equal-period if the activation periods of all tasks and signals are equal, formally:

∃𝑝 ∈ N : ∀e ∈ E : periodtask(e) = 𝑝 ∧ ∀𝑠 ∈ 𝑆 : periodsig(𝑠) = 𝑝

If for a task, signal or message the local deadline is missing, a deadline synthesis step
is required. In such a step the end-to-end deadlines are split up into local deadlines for
all path members which do not already have a local deadline assigned. During deadline
synthesis the available fraction of the overall time budget (the time which is not already
consumed by local deadlines of elements along the path) of each end-to-end deadline is
distributed among the tasks/signals without a local deadline.

𝑠2 𝜏3

𝜏1 𝑠1 𝜏2 𝜏4

𝑠3 𝜏5

𝜏6 𝑠6 𝜏7

Figure 3.3. – Example Task Network with two Task Trees (5 Tasks/3 Signals and 2 Tasks/1
Signals, respectively)

3.1.3. ECU Type Function and Allocation

ECU-types are assigned to ECU by specifying an ECU-type function:

Definition 3.5 (ECU Type Function)
Let

hw = (𝐺hw,E,B, allowedE , allowedB, slotsavail)

be an architectural pattern with set of ECUs E . An ECU-type function assigns a type to
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each ECU, formally:
type: E → E ∪ {⊥} 2

where E is the set of ECUs as specified in the hardware architecture tree 𝐺hw.
The concept of allocation unites the allocation decisions for tasks, signals and messages

in one tuple (see also Section 2.1.16 on page 11).
Definition 3.6 (Allocation)
Let tn be a task network consisting of the finite set of tasks 𝒯 , the finite set of signals 𝑆.
Let 𝑀 denote a finite set of messages. Let hw be an architectural pattern consisting of
the finite set of ECUs E and the finite set of buses B. An allocation is a tuple

𝒜 = (taskalloc,msg,msgalloc)

consisting of

• a (partial or total) function for allocating tasks to ECUs

taskalloc : 𝒯9E

• a (total) function for allocating a (possibly empty) set of messages to each signal

msg: 𝑆 → 𝒫(𝑀)

• a (total) function for allocating each message to one bus

msgalloc : 𝑀 → B 2

An allocation is called a partial allocation if some tasks are not allocated to ECUs
and/or some signals which have to be sent over one or more buses due to the allocation
of their sender/receiver tasks do not have message on these buses yet. Note that it is
required that all messages which are relevant for the current DSE problem are allocated
to buses (the message allocation function is a total function). If it is still undecided
whether or not a given signal has to be transmitted via a bus or not, then that signal
must have no message assigned (the set of assigned messages is empty). Whenever a
message is assigned to a signal that message has to be allocated to a bus.

Figure 3.4 shows an allocation of tasks to ECUs and an ECU-type function. Signal 𝑠6
is transmitted locally only (inside of one ECU). To all other signals one or more messages
are assigned, which are allocated to buses of the hardware architecture. Message 𝑚3,2 is
transmitted on the global bus where it has been assigned to multiple bus slots.

3.1.4. Constraints
It is possible to specify constraints restricting the solution space.

Constraints are used to restrict how tasks may be allocated. For a set of tasks, it can
be specified that all of the tasks have to be allocated to the same ECU, or in contrary that
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Subsystem1 Subsystem1

Subsys1

<none>

ECU1

<ARM7-C1>

ECU2

<ARM5-C2>

ECU3

<PPC-C1>

ECU4

<CAN-C1>

Bus1

Subsys2

<none>

ECU5

<PPC-C1>

ECU6

<ARM7-C1>

ECU7

<none>

ECU8

<CAN-C1>

Bus2

<FlexRay>

GlobalBus

𝑚3.2𝑚3.2 𝑚3.2

𝑠2 𝜏3

𝜏1 𝑠1 𝜏2 𝜏4

𝑠3 𝜏5

𝜏6 𝑠6 𝜏7

𝑚1

𝑚2

𝑚3.2𝑚3.1 𝑚3.3

Figure 3.4. – Example Allocation

all of them have to be allocated to different ECUs. Such constraint types are necessary,
if e.g. safety considerations require certain redundancy concepts to be applied.

Note that all constraints are formulated problem specific. That means they relate to a
specific task network and a specific hardware architectural pattern. For simplicity it is
assumed in the next paragraphs that such a specific problem has been defined and that
all used sets (e.g. the set of ECUs E) belong to that problem specification.

3.1.4.1. Constraint-Type: Allowed ECUs per Task

For some tasks it might be necessary to restrict to which ECUs they may be allocated,
e.g. if a task reads a certain sensor value of a sensor connected to a specific ECU.

Definition 3.7 (Allowed-ECUs-per-Task Constraint)
Let 𝒯 be the set of tasks of a given task network and E the set of ECUs of a given
hardware architectural pattern. A function

𝜓ECUs : 𝒯 → 𝒫(E)

specifies for each task the set of ECUs to which the task may be allocated. A (partial)
task allocation function taskalloc of a given allocation 𝒜 satisfies such a constraint if

∀𝜏 ∈ dom(taskalloc) : taskalloc(𝜏) ∈ 𝜓ECUs(𝜏) 2
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3.1.4.2. Constraint-Type: Allowed ECU Types per Task

For some tasks it might be necessary to restrict to which ECU-types they may be
allocated.
Definition 3.8 (Allowed-ECU-Types-per-Task Constraint)
Let 𝒯 be the set of tasks of a given task network and E the set of ECU-types of a given
hardware architectural pattern. A function

𝜓types : 𝒯 → 𝒫(E)

specifies for each task the set of ECU-types on which the task may be allocated. A (partial)
task allocation function taskalloc and an ECU-type function type satisfy such a constraint
if

∀𝜏 ∈ dom(taskalloc) : type(taskalloc(𝜏)) ∈ 𝜓types(𝜏) 2

This constraint is also used in cases where no information is available regarding the
WCET or memory consumption for a task on an ECU-type. In this thesis it is assumed
that in this case the respective ECU-type is not part of the set of allowed ECU-types
specified for that task.

3.1.4.3. Constraint Type: Never on same ECU

Especially for establishing redundancy requirements, e.g. due to safety considerations,
this constraint type can be used to specify a set of tasks of which every task has to be
allocated to a separate ECU.

Definition 3.9 (Never-On-Same-ECU Constraint)
Let 𝒯 be the set of tasks of a given task network. Then this constraint is defined by
specifying a finite set

𝜓never ⊆ 𝒫(𝒯 )
∀𝑋 ∈ 𝜓never : |𝑋| ≥ 2

where each element is a set of tasks of which every task has to be allocated to separate
ECU. For a given allocation 𝒜, a (partial) task allocation function taskalloc satisfies
such a constraint if

∀𝑋 ∈ 𝜓never, ∀𝜏 𝑖, 𝜏 𝑗 ∈ (𝑋 ∩ dom(taskalloc)) , 𝜏 𝑖 ̸= 𝜏 𝑗 :
taskalloc(𝜏 𝑖) ̸= taskalloc(𝜏 𝑗) 2

3.1.4.4. Constraint Type: Always on same ECU

Sometimes it can be helpful to force a set of tasks to be allocated onto the same ECU.
The following constraint type can be used for specifying sets of tasks which always must
be allocated to the same ECU.
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Definition 3.10 (Constraint Type: Always-On-Same-ECU)
Let 𝒯 be the set of tasks of a given task network. Then this constraint is defined by
specifying a finite set

𝜓always ⊆ 𝒫(𝒯 )
∀𝑋 ∈ 𝜓always : |𝑋| ≥ 2

where each element is a set of tasks which must be allocated to the same ECU. For a
given allocation 𝒜, a given (partial) task allocation function taskalloc satisfies such a
constraint if

∀𝑋 ∈ 𝜓always : ∃e ∈ E such that
∀𝜏 ∈ (𝑋 ∩ dom(taskalloc)) : taskalloc(𝜏) = e 2

Note that the satisfaction condition explicitly ignores tasks which have not been
allocated yet. Otherwise an initial incomplete allocation could possibly violate the
constraints which is undesirable during the optimization process.

3.1.4.5. Constraint Type: Allowed Subsystems

It may also be required to specify for some tasks a set of allowed subsystems.
Definition 3.11 (Constraint Type: Allowed-Subsystems)
Let 𝒯 be the set of tasks of a given task network, 𝐺hw a hardware architecture graph
consisting of a set of hardware subsystems Sub. Then this constraint is defined by
specifying a function

𝜓allowedSubsys : 𝒯 → 𝒫(Sub)

where to each task a set of allowed subsystems is assigned. For a given allocation 𝒜, a
given (partial) task allocation function taskalloc satisfies such a constraint if

∀𝜏 ∈ dom(taskalloc) :

taskalloc(𝜏) ∈
{︁

e | e ∈ E : subsys(𝐺hw, e) ∈ 𝜓allowedSubsys(𝜏)
}︁

2

3.1.4.6. Constraint Type: Always in Same Subsystem

Sometimes it can be helpful to force a set of tasks to be allocated onto the same hardware
subsystems. The following constraint type can be used for that.
Definition 3.12 (Constraint Type: Always-In-Same-Subsystem)
Let 𝒯 be the set of tasks of a given task network, 𝐺hw a hardware architecture graph
consisting of a set of hardware subsystems Sub. Then this constraint is defined by
specifying a finite set

𝜓sameSubsys ⊆ 𝒫(𝒯 )
∀𝑋 ∈ 𝜓sameSubsys : |𝑋| ≥ 2
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where each element is a set of tasks which must be allocated to the same subsystem.
The (partial) task allocation function taskalloc of a given allocation 𝒜 satisfies such a
constraint if

∀𝑋 ∈ 𝜓always : ∃sub ∈ subsysset(𝐺hw) such that
∀𝜏 ∈ (𝑋 ∩ dom(taskalloc)) : subsys(𝐺hw, taskalloc(𝜏)) = sub 2

3.1.4.7. Constraint Type: Never in Same Subsystem

Sometimes it can be helpful to forbid that certain tasks are allocated to the same hardware
subsystem. The following constraint type can be used for that.

Definition 3.13 (Constraint Type: Never-In-Same-Subsystem)
Let 𝒯 be the set of tasks of a given task network, 𝐺hw a hardware architecture graph
consisting of a set of hardware subsystems Sub. Then this constraint is defined by
specifying a finite set

𝜓diffSubsys ⊆ 𝒫(𝒯 ) with
∀𝑋 ∈ 𝜓diffSubsys : |𝑋| ≥ 2

where each element is a set of tasks with the following semantics: All tasks have to
be allocated in such a way that every two (unequal) tasks are on different subsystems.
E.g. for a set of three tasks three different subsystems are required, one for each task.
The (partial) task allocation function taskalloc of a given allocation 𝒜 satisfies such a
constraint if

∀𝑋 ∈ 𝜓always :
∀𝜏 𝑖, 𝜏 𝑗 ∈ (𝑋 ∩ dom(taskalloc)) , 𝜏 𝑖 ̸= 𝜏 𝑗 :
subsys(𝐺hw, taskalloc(𝜏 𝑖)) ̸= subsys(𝐺hw, taskalloc(𝜏 𝑗)) 2

3.1.4.8. Constraint Type: Always on Bus

Some signals might be required to be allocated to one or more buses (global or local).
The following constraint type allows one to specify for each bus the set of signals which
always must be allocated to that bus.

Definition 3.14 (Constraint Type: Always-on-Bus)
Let 𝑆 ⊂ S⋆ be the finite set of signals of a given task network and B ⊂ B⋆ be the finite
set of buses of a given hardware architectural pattern. Then this constraint is defined by
specifying a function

𝜓onBus : B → 𝒫(𝑆)

where each bus is mapped to the set of signals which must be allocated onto it in any case.
For a given allocation 𝒜 with a given signal to message allocation function msg and a
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corresponding message allocation function msgalloc satisfy such a constraint if

∀b ∈ B,∀𝑠 ∈ 𝜓onBus(b) : ∃𝑚 ∈ msg(𝑠) with msgalloc(𝑚) = b 2

All supported constraint types are combined to form a constraint specification.

Definition 3.15 (Constraint Specification)
A constraint specification is a tuple

constr = (𝜓ECUs, 𝜓types, 𝜓never.𝜓always, 𝜓allowedSubsys, 𝜓sameSubsys, 𝜓diffSubsys, 𝜓onBus)

where

• function 𝜓ECUs specifies the allowed ECUs for each task

• function 𝜓types specified the allowed ECU-types for each task

• the finite set 𝜓never specifies tasks which may never be allocated to the same ECU

• the finite set 𝜓always specifies tasks which always have to be allocated to the same
ECU

• function 𝜓allowedSubsys specifies for each task the set of allowed subsystems

• the finite set 𝜓sameSubsys specifies sets of tasks which always must be allocated to
the same subsystem

• the finite set 𝜓diffSubsys specifies sets of tasks which must never be allocated to the
same subsystem

• function 𝜓onBus specifies for each bus a set of signals which must be allocated via
messages to that bus in any case 2

3.1.5. DSE Problem
The term design space exploration problem is used in this thesis to describe one
problem instance.

Definition 3.16 (DSE Problem)
A design space exploration (DSE) problem is a tuple

p = (tn, hw, allocinitial, constr)

where

• tn is a task network

• hw is a hardware architectural pattern
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• allocinitial is an initial (partial) allocation

• constr is a constraint tuple.

Initially all constraints must be satisfied. 2

Let
p = (tn, hw, allocinitial, constr)

be a DSE problem with a task network

tn =
(︁
Trees, choiceexec, deadlinee2e

)︁
with 𝒯 being the finite set of tasks.
The following two derived functions map one value for the worst case execution time

(resp. memory consumption) to each task for each of the ECU-types:

∀𝜏 ∈ 𝒯 , ∀t ∈ E⋆ :

wcetp(𝜏 , t):=
{︃

wcetBin⋆(choiceexec(𝜏 , t), t), if choiceexec(𝜏 , t) is defined
0, otherwise

memreqp(𝜏 , t):=
{︃

memreqBin⋆(choiceexec(𝜏 , t), t), if choiceexec(𝜏 , t) is defined
0, otherwise

Note that the value of WCET function wcetBin⋆(choiceexec(𝜏 , t), t) is mapped to 0
if no information about the worst case execution time exists. This is done to make
the handling with this function easier in the following chapters. It is required to add
additional constraints for guaranteeing that a task is never allocated to an ECU which
has been assigned an ECU-type for which no worst case execution time is known for that
task.

3.1.6. Configuration and Solution
The optimization process can modify different aspects of the model which has to be
optimized. Firstly, it can choose the used ECU-type for each ECU which directly affects
the optimization objective which is defined as the sum of ECU-type costs.

Secondly all initially unallocated software tasks have to be allocated to an ECU.
Finally — depending on the allocation of the tasks —for some of the signals representing
the communication between software tasks message have to be created which are then
allocated to communication buses.

In this thesis a configuration denotes one intermediate or final solution of a given
DSE Problem.
Definition 3.17 (Configuration)
Let p = (tn, hw, allocinitial, constr) be a DSE problem with task network

tn = (Trees, choiceexec, deadlinee2e)
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and hardware architectural pattern

hw = (𝐺hw,E,B, allowedE , allowedB, slotsavail)

A configuration for DSE problem p is a tuple

conf = (type,𝒜,deadlinetask,deadlinesignal,deadlinemsg)

where

• type is an ECU-type function

• 𝒜 = (taskalloc,msg,msgalloc) is an allocation

• (partial) function deadlinetask assigns local deadlines to tasks (Definition 3.4)

• (partial) function deadlinesignal assigns local deadlines to signals (Definition 3.4)

• (partial) function deadlinemsg assigns local deadlines to messages (Definition 3.4)2

The function
subsys𝒯 : (𝒫⋆ × CONF⋆ × 𝒯 ⋆)9𝑆⋆

maps each for a given DSE problem every task allocated by a given configuration to
the subsystem it has been allocated to.

Not every configuration is valid with respect to the implementability of the system.
Several requirements have to be satisfied which are mentioned in the definition of validity
of configurations (see Definition 3.18 on page 50).

In order to formalize the conditions under which a configuration satisfies all implicit
requirements regarding the communication via signals/messages, two predicates are
defined.

3.1.6.1. Message Predicates

For the definition of the following predicates let p be a DSE problem and conf a
configuration for that problem.

Messages required for any two tasks Let 𝜏1, 𝜏2 ∈ 𝒯 , 𝜏1 ̸= 𝜏2 be tasks and 𝑠1 be signal
sent from 𝜏1 to 𝜏2. The allocation of the tasks determines how many messages are
required for implementing the data flow. The following cases are to be distinguished:

1. 𝜏1 and 𝜏2 are allocated to the same ECU: No message is required

2. 𝜏1 and 𝜏2 are allocated to different ECUs located in the same subsystem: One
message on the local bus of that subsystem is required

3. 𝜏1 is on the gateway ECU of a subsystem sub1 and 𝜏2 is on the gateway ECU of a
subsystem sub2 and sub1 ̸= sub2: Only one message on the global bus is required
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4. 𝜏1 is not on the gateway ECU of a subsystem sub1 and 𝜏2 is on the gateway ECU
of a subsystem sub2 and sub1 ̸= sub2: One message on the global bus and one
message on the local bus of subsystem sub1 are required

5. 𝜏1 is on the gateway ECU of a subsystem sub1 and 𝜏2 is not on the gateway ECU
of a subsystem sub2 and sub1 ̸= sub2: One message on the global bus and one
message on the local bus of subsystem sub2 are required

6. 𝜏1 is not on the gateway ECU of a subsystem sub1 and 𝜏2 is not on the gateway
ECU of a subsystem sub2 and sub1 ̸= sub2: One message on the global bus and one
message on each of the local buses of subsystem sub1 and sub2 are required.

Task Same Subsystem Different Subsystems

Allocation Same ECU Different
ECUs Sender Task on GW Receiver Task on GW

Yes No Yes No

Global bus – – X X X X

Bus in subsystem
of sender task

– X – X

Bus in subsystem
of receiver task

– X – X

Table 3.1. – Message Requirements for Tasks

Based on these considerations, appropriate predicates have been formulated.

Global Message A given signal must have a message on the global bus

a) if the user specified a constraint to enforce this, or

b) if the user specified a constraint to enforce that signal to be allocated to a local bus
in a subsystem different from the sender task’s subsystem, or

c) if at least one receiver task is allocated to a different subsystem than the sender task

These conditions are formalized in predicate needsGlobal which evaluates to true for a
signal iff a corresponding message is required on the global bus. Let p be a DSE problem,
conf a configuration for that DSE problem as defined above, 𝑠 be a signal used in that
DSE problem.

A given configuration conf for a DSE problem p with an allocation 𝒜 complies to the
global message condition iff

∀𝑠 ∈ 𝑆 : (needsGlobal(p, conf , 𝑠) = true) ⇔
∃𝑚 ∈ msg𝒜(𝑠) : msgalloc𝒜(𝑚) = bglobal

where msg𝒜 is the signal allocation function of the configuration conf and bglobal is the
global bus. The predicate needsGlobal(p, conf , 𝑠) is defined as follows:
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needsGlobal(p, conf , 𝑠) := (3.1)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

true, if 𝑠 ∈ 𝜓onBus(bglobal)
true, or if ∃b ∈ B with subsys(𝐺hw, b) ̸= sub𝜏send ∧ 𝑠 ∈ 𝜓onBus(b)
true, or if ∃𝜏recv ∈ recv(tn, 𝑠) : subsys𝒯 (p, conf , 𝜏recv) ̸=

sub𝜏send

false, otherwise

where 𝐺hw is a given hardware architecture graph, 𝜏recv denotes a receiver task, 𝜏send

the sender task, and sub𝜏send denotes the subsystem of the ECU to which the sender task
is allocated (assuming that the task is allocated).

Let 𝑆 denote the set of signals of a given DSE problem p and a given configuration
conf for that problem. Using the (partial) allocation which is part of the configuration,
this set can be divided into three disjoint partitions:

𝑆 = 𝑆
always
conf ∪̇ 𝑆never

conf ∪̇ 𝑆
maybe
conf

The set of signals for which a message has to be allocated onto the global bus in any
case, as required by the predicate in Definition (3.1) is defined as:

𝑆
always
conf := {𝑠 | 𝑠 ∈ 𝑆 : needsGlobal(p, conf , 𝑠) = true} (3.2)

The set of signals where for each signal sender task and all receiver tasks are already
allocated in such a way that no message on the global bus is required (all tasks are inside
of the same subsystem) is defined as:

𝑆never
conf :=

{︀
𝑠 | 𝑠 ∈ 𝑆 : needsGlobal(p, conf , 𝑠) = false ∧ (3.3)

sender(tn, 𝑠) ∈ dom(taskalloc) ∧
recv(tn, 𝑠) ⊆ dom(taskalloc)

All the signals not belonging to one of the aforementioned partitions are in the set of
signals for which no definitive decision has been taken yet. For them there is no need to
acquire a global message for the given partial configuration. But that need may arise
during the following analysis steps, e.g. if the sender task or at least of the receiver tasks
of a signal is currently unallocated and is then allocated to a different subsystem than
the other tasks sending/receiving that signal. This set is defined as:

𝑆
maybe
conf :=𝑆∖

(︁
𝑆

always
conf ∪ 𝑆never

conf

)︁
(3.4)

Local Message In Subsystem A signal must correspond to a message in a given
subsystem sub (but only if that subsystem has a local bus)
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a) by request of the user, or

b) if the sender and at least one receiver are on different ECUs in that subsystem

c) if there is a global message for that signal and either the sender task or one receiver
tasks are on a non-gateway ECU in subsystem sub

The conditions explicitly exclude the situation where there is a message on the global
bus such that all tasks involved in either receiving or sending the signal in the given
subsystem are on gateway ECUs. In this special case the tasks have direct access to the
global bus and no communication on the subsystem-local bus is required.

The conditions can be formalized as follows with p being a DSE problem, conf a
configuration with allocation 𝒜, 𝑠 a signal contained in the set of signals of the DSE
problem and a subsystem sub of the DSE problem:

needsLocal(p, conf , 𝑠, sub) := (3.5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if 𝑠 ∈ 𝜓onBus(bsub)
true, or if ∃𝜏 ∈ (recv(tn, 𝑠) ∪ {sender(tn, 𝑠)}) :

sub𝜏 = sub ∧ ¬isGw(e𝜏 ) ∧
needsGlobal(p, conf , 𝑠) = true

true, or if ∃𝜏 recv ∈ recv(tn, 𝑠) :
subsys𝒯 (p, conf , 𝜏 send) = subsys𝒯 (p, conf , 𝜏 recv) ∧
taskalloc(𝜏 send) ̸= taskalloc(𝜏 recv)

false, otherwise

where bsub is the local bus in subsystem sub, 𝜏 send is the (unique) sender task of signal 𝑠,
and e𝜏 denotes the ECU to which the task 𝜏 is allocated without loss of generality.

A given configuration conf with allocation 𝒜 complies to the local message condition
iff

∀𝑠 ∈ 𝑆, ∀sub ∈ Sub : (needsLocal(p, conf , 𝑠, sub) = true) ⇔
∃𝑚 ∈ msg𝒜(𝑠) : msgalloc𝒜(𝑚) = bsub

where bsub is the local bus of subsystem sub.

3.1.6.2. Messages Between Two Tasks

Each signal can be received by multiple tasks. Therefore, while a whole set of messages
might be associated to a given signal, only a subset of them might be required to transmit
the data from the signal’s sender task to one of its receiver tasks.

For example, one receiver of a given signal might be allocated to the same ECU as the
sender and therefore does not require any message. But another receiver of the same
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signal might be allocated to a different ECU inside of the same subsystem. For this
second task, a message on the subsystem-local bus is required.

Let p = (tn, hw, allocinitial, constr) be a DSE problem with set of tasks 𝒯 , set of
signals 𝑆 and set of messages 𝑀 . Let furthermore be

conf = (type,𝒜, deadlinetask
conf , deadlinesignal

conf , deadlinemsg
conf )

be a configuration for that problem with allocation 𝒜 = (taskalloc,msg𝒜,msgalloc𝒜).
Let 𝐺hw be the corresponding architecture graph of the hardware architectural pattern.

Let 𝜏send
𝑠 ∈ 𝒯 be a task sending signal 𝑠 ∈ 𝑆 and 𝜏recv ∈ 𝒯 a task receiving that

signal. For better readability of the following function, some abbreviations are used for
substituting the respective functions. Let

• esend:=taskalloc(𝜏send
𝑠 ) be that ECU to which task 𝜏send

𝑠 is allocated.

• subsend:=subsys(𝐺hw, esend) the subsystem of ECU esend

• bsend ∈ B be the local bus connected to esend

• erecv:=taskalloc𝐺hw(𝜏recv) be the ECU to which task 𝜏recv is allocated.

• brecv be the local bus connected to ECU erecv

• subrecv be the subsystem containing ECU erecv and bus brecv

Then the set of messages involved in transmitting that signal from the sender task to
the receiver task is defined as:

reqmsgt2t(conf , 𝜏send
𝑠 , 𝜏recv, 𝑠):= {𝑚 | 𝑚 ∈ msg𝒜(𝑠) such that (3.6)(︁

msgalloc𝒜(𝑚) = bsend ∧ subsend = subrecv ∧ esend ̸= erecv
)︁

(3.7)

∨
(︁
msgalloc𝒜(𝑚) = bglobal ∧ subsend ̸= subrecv

)︁
(3.8)

∨
(︁
msgalloc𝒜(𝑚) = bsend ∧ subsend ̸= subrecv ∧ ¬isGw(esend)

)︁
(3.9)

∨
(︁
msgalloc𝒜(𝑚) = brecv ∧ subsend ̸= subrecv ∧ ¬isGw(erecv)

)︁}︁
(3.10)

In the above equation the term (3.7) covers the situation where sender and receiver
tasks are in the same subsystem but on different ECUs. The term (3.8) covers the global
message required whenever the tasks are in different subsystems. Finally, the terms
(3.9) and (3.10) handle messages required on the local bus in the sender resp. receiver
subsystem.

3.1.6.3. Classification of Configurations

Configurations for DSE problems can be further classified.
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Definition 3.18 (Valid Configuration)
A configuration conf for a given DSE problem p with

conf = (type, , deadlinetask
𝒜 , deadlinesignal, deadlinemsg)

and allocation function
𝒜 = (taskalloc,msg,msgalloc)

is called valid if the following conditions are satisfied:
1. no tasks must be allocated to ECUs with ECU-type ⊥, formally:

∀e ∈ ran(taskalloc) : type(e) ̸= ⊥

2. All constraints have to be satisfied

3. for every allocated task/signal/message a local deadline is available (either initially
specified or synthesized during the optimization process).

4. for each end-to-end deadline the sum of the (possibly synthesized) local deadlines
of all the corresponding elements of the respective task tree is not larger than the
end-to-end-deadline (local deadlines are sound with respect to end-to-end deadlines)

5. for any two communicating tasks which are allocated on different ECUs one or more
messages are associated to the corresponding signal and allocated to the appropriate
buses depending on the location of the two ECUs in the hardware architecture 2

Definition 3.19 (Complete Configuration)
A configuration conf is complete if

• it is valid according to Definition 3.18

• each task of the task network is allocated to an ECU 2

Definition 3.20 (Schedulable Configuration)
A configuration conf is called schedulable if

1. Each allocated task is schedulable, according to the schedulability analysis of tasks
(see Section 2.2.5.3 on page 18)

2. All allocated messages on local buses are schedulable, according to the schedulability
analysis of signals on CAN buses (see Section 2.7 on page 21)

3. All message allocated to the global bus have been allocated to at least as many bus
slots as minimal required. 2

Note that the last condition is weaker than the other schedulability conditions. This is
because in this work the (NP-hard) problem of finding valid schedules on TDMA-buses
could not be addressed.
Definition 3.21 (Solution)
A solution for a DSE problem is a complete and schedulable configuration. 2
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3.1.7. Optimization Objective
In this thesis the only optimization objective used is the sum of hardware costs, which
has to be minimized.
Definition 3.22 (Optimization Objective: Minimal Hardware Cost)
For a DSE problem p with a hardware architecture hw and a configuration conf for that
DSE problem, the sum of hardware costs is defined as

costall(conf ):=
∑︁
e∈E

cost(type(e))

where E is the set of ECUs of the corresponding hardware architectural pattern and type
is the ECU-type function specified as part of the configuration. 2

With the formalization of the optimization objective it is now possible to compare the
quality of solutions.

The quality of a given solution is defined to be the value resulting from the chosen
optimization objective. If the objective is to minimize (maximize) the objective function,
a solution Sol1 is better than (worse than) a Sol2 if the cost 𝑐1 of Sol1 are less than the
cost 𝑐2 of Sol2. A solution for a DSE problem is optimal if there exists no better solution
with respect to the chosen optimization objective.

3.2. Semi-Automatic Design Space Exploration
The mathematically model presented so far is specifically designed for enabling the
decoupling the hardware subsystems of the whole embedded system from each other
thus facilitating a divide-and-conquer strategy for optimization. This section contains an
informal introduction to the different approaches developed as part of this PhD thesis.

Figure 3.5a depicts the DSE optimization process as seen by the user. First, the user
specifies the existing system including all information already known about it. This
includes the existing task network, the hardware architecture including a set of allowed
ECU-types for each of the ECUs, a feasible allocation of some of the software tasks to
ECUs, and an allocation of signals to messages and messages to buses, as far as the
communication structure is already fixed.

Then the set of new software tasks which have to be allocated to the hardware
architecture is specified. The approach explicitly supports to incrementally allocate
subsets of the new software tasks one by one, thus reducing the design space handled
in each iteration in order to gain a significant speedup. The drawback of using such
an incremental approach is, that even exact optimization methods will produce only
suboptimal solutions, due to the missing knowledge about the subsets of new tasks
handled in later iterations. The quality of such solutions can be increased by choosing
the incremental subsets of the new tasks wisely. By minimizing the dependencies between
tasks of different subsets the additional communication in each incremental steps is kept
minimal. This in turn reduces the negative effects of previous allocation decisions on the
current DSE problem.
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Figure 3.5. – DSE Processes

The next step for the user is to specify parameters for the DSE process including which
methods should be used. Each method can have one or more parameters, such as which
backend solvers to use, time-outs for the optimization phase, etc. After choosing those
parameters the DSE analysis is started. The result of the DSE analysis step is either a
feasible result model, or an error condition. Error conditions include, for example the
occurrence of time-out, that no feasible solution could be found, or that the analysis
implementation encountered an exception (e.g. caused by the violation of preconditions
in the input model, numerical problems in the back-end solvers, or — in some rare cases

— programming bugs in the analysis method’s implementation.
While it is clear that the user has to take action if no result has been returned, even

the result of a successful optimization might not be sufficient from the point of view of
the user. Insufficient solutions can be the result of erroneous input, missing constraints,
or inadequate parameters for the analysis methods. Some additional constraints even
may not be expressible directly for a given analysis approach (e.g. some complex alloca-
tion constraints) but could instead be incorporated by iteratively specifying additional
constraints with other constraint types.

In all cases it is up to the user to decide how to proceed, for example by changing
some parameters for the DSE optimization phase or by redefining the (sub)set of new
tasks to be allocated. Modifying the models or DSE parameters is a manually job for the
user, thus explaining the “semi-automatic” nature of this work mentioned prominently in
the thesis’ title. From an academic point of view, a fully automated DSE process which
always finds optimal results might probably be the “Holy Grail”. But it can be expected
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that from a practical point of view a highly configurable user-driven optimization process
is much more likely to be accepted in an industrial context, where “the user” usually is a
professional engineer with years of work experience.

3.2.1. Two-Tier Optimization Approach
The two-tier optimization approach presented in this thesis is based on the observation
that by restricting the hardware architecture class as stated before a separation of
concerns can be achieved which considerably reduces the complexity of the optimization
problem. Separation of concerns in this context means that by choosing appropriate
levels of abstraction many details of the involved optimization problem can be hidden.
Two levels of abstractions are used in the following.

The global analysis is responsible for managing the spare capacity on the global bus
connecting subsystems while abstracting from many subsystem internals. The global
analysis calculates a so-called pre-allocation which assigns all unallocated tasks to
subsystems while taking account of the communication via the global bus. Subsystems
are abstractly represented as resources for performing computations. The approach
presented in Chapter 4 explicitly represents for each subsystem the groups of ECUs of
same ECU-type.

A pre-allocation is used as input for the local analysis which is performed separately
for each subsystem. Contrary to the global analysis the local analysis explicitly incor-
porates all details known about the subsystem which is optimized and ignores most
information about the global communication and the other subsystems.

Global Analysis
Multiple Subsystems

Global Bus

Local Analysis
One Subsystem

Local Bus

Pre-Allocation

Subsystem Allocation
+ Odd Set

Figure 3.6. – Global and Local Analysis

As depicted in Figure 3.6, global and local analyses are running iteratively starting
with the global analysis. The pre-allocation calculated in the first and each successive
iteration of the global analysis is then used as input for the local analysis which is
performed sequentially for each of the subsystems. In each of the local analysis steps the
chosen local optimization method tries to allocate all pre-allocated tasks to ECUs of the
subsystem including local communication, such that a cost-limit specified by the global
analysis for the hardware architecture of the subsystem is satisfied. The cost limit must
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not be less than the cost for the hardware subsystem used as input for the local analysis.
Depending on its implementation, the local analysis module might additionally try to
minimize the hardware cost.

The result of a local analysis step for a given subsystem is a feasible allocation which
might allocate some of the pre-allocated tasks to ECUs of the subsystem. Tasks that
have been pre-allocated to the subsystems, but could not be allocated form the so-called
odd set which is returned to the global analysis.

Figure 3.5b depicts the analysis process. Note that the “Error” state should not
be reachable as long as the local analysis is implemented correctly and the particular
preconditions of the chosen local analysis method are satisfied.

The following chapters describe in detail a global analysis approach (see Chapter 4)
and a local analysis approach (see Chapter 5). Each of the two chapters contains a
short overview on the features of the proposed approaches in comparison with those
of alternative approaches. In Chapter 6 an evaluation of all described approaches is
presented. For this the different methods developed are tested with the help of a set of
benchmarks. The main indicators used for comparing the results are the runtime of the
particular methods and the quality of their results, simply measured by calculating the
costs of the resulting hardware architectures.
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In this chapter, the concept of global analysis is introduced and an approach for global
analysis formulated as mathematical model is proposed. As depicted in Figure 4.1 the
global analysis represents the upper tier of the two-tier optimization approach described
in this thesis. The key concept behind the global analysis is the use of abstraction
to improve the performance and — even more important — the scalability of the
optimization approach. The hardware architecture model proposed in the preceding
chapter has already been defined considering those general objectives.

Global Analysis
Multiple Subsystems

Global Bus

Local Analysis
One Subsystem

Local Bus

Pre-Allocation

Subsystem Allocation
+ Odd Set

Figure 4.1. – Optimization Process Cycle: Global Analysis

Firstly, the hierarchical definition of the hardware architecture class is used to separate
concerns: The global analysis is responsible for distributing functionality among the
available hardware subsystems, while abstracting from the details of the single subsystems.
The local analysis has full knowledge about the hardware subsystem to be analyzed
including all parts of the task network already allocated to ECUs and buses inside
of that subsystem, while abstracting from most details about other subsystems and
communication on the global bus.

Secondly, while in a final solution of the whole optimization process the whole task
network has to be schedulable (see 2.2.5.3 for the definition of schedulability) which can
be interpreted as a capacity measure for real-time, a simplified notion of real-time capacity
is used during global analysis. Here, the total utilization of every single ECU caused by
tasks allocated to that ECU is required not to exceed a given maximal utilization which
naturally is smaller or equal to 100%. It is left up to the local analysis to obtain solutions
satisfying the (tighter) constraints posed by the requirement of full schedulability. The
approach presented in the following sections has been published in [CST11].
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4.1. Global Analysis with ECU-Type Bins

The goal of the DSE optimization is to find a cost-efficient hardware architecture and an
allocation of all unallocated software tasks to ECUs such that all user-supplied constraints
(e.g. that two tasks must not be allocated to the same ECU) and inherent constraints (e.g.
all ECUs must be schedulable) are satisfied. The ECU-types of ECUs can be modified to
gain additional capacity which increases the hardware cost of the hardware architecture.

The global analysis is not directly responsible for allocating tasks to ECUs but calculates
only a pre-allocation of all unallocated tasks to hardware subsystems. Of course, a
good prediction of the available capacity for each of the subsystems is required to find
good pre-allocations. Underestimating the available capacity for a subsystem potentially
wastes already existing capacity while overestimating the available capacity leads to huge
odd sets containing all tasks that could not be allocated by the local analysis step.

Some important properties of a task depend on the ECU-types of the ECU the task
has been allocated to, namely its worst case execution time and its memory consumption.
One hypothesis of this work is, that pre-allocating tasks to subsystems as a whole without
considering the ECU-types used for the subsystem’s ECUs does not facilitate a very
accurate estimation of the capacity required by those tasks on the one hand and the
capacity provided by the subsystems on the other hand. This could of course be solved
by allocating tasks not to subsystems but directly to ECUs. This would, however, be
contradictory to the two-tier approach where the local analysis is responsible for actually
allocating tasks to ECUs and would heavily increase the complexity of the optimization.
An intermediate approach between these two extreme approaches would be advisable.

The approach presented in this chapter is based on the observation that for determining
the properties of software tasks only the ECU-types to which they are allocated have to
be known. It is not important to know to which ECUs the tasks actually are allocated.
Therefore in addition to pre-allocating each initially unallocated task to one subsystem as
a whole, an ECU-type is chosen for the task as well. For calculating the hardware cost, all
ECUs with the same ECU-type are grouped to-so called ECU-type Bins separately for
each subsystem. The capacity of an ECU-type Bin of a specific subsystem is calculated
by multiplying the number of ECUs in the group with the upper bound for the utilization
per ECU as specified by the user (e.g. 100%).

Figure 4.2 shows an example of a pre-allocation based on ECU-type Bins. Subsystem 1
contains two ECU-type Bins, one with one ECU of type ARM5-C2 the other with
two ECUs of type ARM7-C1. The remaining empty ECU socket is not considered.
Subsystem 2 contains only one ECU-type Bin of type ARM7-C1 with two ECUs. Tasks
are not directly allocated to ECUs but are pre-allocated to the ECU-type Bins of a
specific subsystem. Using the pre-allocation, their worst case execution times can be
determined and the utilization they would cause on the ECU-type Bin is calculated.

In Figure 4.3 the whole process behind the global analysis approach is depicted. All
sub-activities in the Optimization activity are running in parallel. If the process is
successful, local analysis runs can be started, one for each hardware subsystem.

In the following sections a formal definition of the informal described approach is given.
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Subsystem1 Subsystem1

Subsys1

<CAN-C1>

Bus1
ARM5-C2

ARM7-C1

<none>

ECU1

<ARM7-C1>

ECU2

<ARM5-C2>

ECU3

<ARM7-C1>

ECU4

Subsys2

<CAN-C1>

Bus2
ARM7-C1

<ARM7-C1>

ECU5

<none>

ECU6

<ARM7-C1>

ECU7

<none>

ECU8

<FlexRay>

GlobalBus

𝑚3.2𝑚3.2 𝑚3.2

𝑠2 𝜏3

𝜏1 𝑠1 𝜏2 𝜏4

𝑠3 𝜏5

𝜏6 𝑠6 𝜏7

𝑚1

𝑚2

𝑚3.2𝑚3.1 𝑚3.3

Figure 4.2. – Example Pre-Allocation
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Figure 4.3. – Global Analysis Process
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4.2. System Model
The mathematical model defined in Chapter 3 is the basis for the global analysis approach
presented in this chapter. It is extended by a few additional concepts which are specific
to the chosen approach. The terminology invented in the next sections frequently refers
to properties of a given DSE problem p. Additionally, an initial (user-specified) or
intermediate (created during the optimization phase) configuration conf is defined. All
mathematical elements which are not newly invented in this chapter are taken from either
the given DSE problem p or the configuration conf without further qualification, e.g.
wherever the set of ECUs E is used in this chapter, the set of ECUs defined in the DSE
problem p is meant.

Let p be a DSE problem without loss of generality with

p = (tn, hw, allocinitial, constr)

consisting of a task network

tn = (Trees, choiceexec, deadlinee2e)

and a hardware architectural pattern

hw = (𝐺hw,E,B, allowedE , allowedB, slotsavail)

The initial (user-specified) or intermediate (created during the optimization phase)
configuration is defined as

conf = (type,𝒜,deadlinetask,deadlinesignal,deadlinemsg)

with allocation
𝒜 = (taskalloc,msg,msgalloc)

and constraint specification

constr = (𝜓ECUs, 𝜓types, 𝜓never.𝜓always, 𝜓allowedSubsys, 𝜓sameSubsys, 𝜓diffSubsys, 𝜓onBus)

Let 𝒯 unalloc
conf denote the set of unallocated tasks according to configuration conf .

4.2.1. Global Analysis Problem and Pre-Allocation

Each global optimization step is defined by a global analysis problem:

Definition 4.1 (Global Analysis Problem)
A global analysis problem is a tuple pglob = (p, conf , utilmax) consisting of

• a DSE problem p

• a (initial or intermediate) configuration conf
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• a variable utilmax ∈ N defined by the user for limiting the maximal utilization
available per ECU 2

In the first iteration of the optimization process the global analysis problem consists of
an initial DSE problem as defined in the last chapter, a configuration identical to the
initial configuration specified for that DSE problem and a valuation for the maximal
utilization of ECUs given by the user. For a given DSE problem

pinit = (tn, hw, allocinitial, constr)

and a upper limit for the maximal acceptable utilization on every ECU utilmax ∈ N, the
initial global analysis problem is defined as

pglob
0 = (pinit , conf , utilmax) with

conf = (type, allocinitial, deadlinetask,

deadlinesignal
conf , deadlinemsg

conf )

During the optimization process the concept of pre-allocation is used to describe in-
termediate partial solutions used as the input for the local analysis steps. A pre-allocation
is a preliminary allocation of tasks to subsystems without a full schedulability check.
All subsystem ECUs with the same ECU-type form an ECU-type bin specific to that
subsystem. The computation and memory capacity of all ECUs in an ECU-types bin is
subsumed to form a virtual ECU-type bin capacity.

Instead of allocating tasks to ECUs of a subsystem each task is allocated to a subsystem
and an ECU-type bin. As all platform-specific properties of software tasks are specified
relative to ECU-types, choosing an ECU-type bin for a task effectively determines
those properties. This has the advantage to significantly reduce the number of possible
allocations, compared to allocating tasks directly to ECUs.

In addition to pre-allocating tasks, the global analysis approach chooses ECU-types
for ECUs, which determines the size of the individual ECU-type bins and the global
hardware cost, too.

Definition 4.2 (Pre-Allocation)
For the given DSE problem p a pre-allocation is a tuple

conf pre = (conf , tasksubsys, tasktype, type)

consisting of

• a valid configuration conf

• a function for pre-allocating unallocated tasks to subsystems

tasksubsys : 𝒯 unalloc
conf → Sub
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• a function for pre-allocating unallocated tasks to ECU-types

tasktype: 𝒯 unalloc
conf → E

• an ECU-type function type
where 𝒯 unalloc

conf denotes the set of unallocated tasks according to configuration conf . 2

4.2.2. Limitations of the Current Approach
Currently the exploration of the hardware architecture design space is limited to finding
ECU-types for ECUs. The pre-defined types of buses remain unchanged. Therefore it
is assumed that for each DSE problem which has to be solved by using the two-tier
approach defined in this thesis, for the global and each local bus the respective set of
allowed bus types contains exactly one element (which of course does not mean that
all buses have to have the same bus type). Furthermore, the global bus has to use a
TDMA-based bus type and every local bus a priority-based bus type, see Chapter 3.

Let p denote the DSE problem of the global analysis problem pglob. For simplification,
all bus slots of the global TMDA-based bus bglobal are required to have the same
predefined length denoted as sizeglobal

pglob . The length is defined as part of the specification
of the global analysis problem. It is required that the predefined length is large enough
to hold any message. The sequence of all bus slots is called a TDMA round. The length
of the TDMA round on the global bus in seconds is defined as

𝜆TDMA
p :=

⃒⃒⃒
slots(bglobal)

⃒⃒⃒
sizeglobal

pglob

Assuming that all bus slots are large enough to hold any message, a check whether or not
a given message fits into a given bus slot is not required during the optimization process.

4.2.3. Measuring Capacity
The constraints in this section describe the inherent limitations of the used hardware
elements, such as computation capacity and available memory for ECUs, and the number
of available slots on the global bus. The number of ECUs with a given ECU-type t ∈ E⋆
on a subsystem sub ∈ 𝑆⋆ is calculated by function

typecount: CONF⋆ × 𝑆⋆ × E⋆ → N
typecount(conf , sub, t):= |Esub,t | with

Esub,t :=
{︁

e | e ∈ E ∧ subsys(𝐺hw, e) = sub ∧ type(e) = t
}︁

The allocation of tasks to ECUs must not exceed the available computation capacity.
The following constraints ensure that the load imposed by the additional tasks remains
below the ECU capacity limit. Let 𝒯 denote the set of tasks of the DSE problem p.

The (worst case) utilization caused by a given task is as usually defined as the worst
case execution time divided by the period (see Section 2.2.5.2 on page 17).
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In this chapter, the utilization induced by a task 𝜏 allocated to an ECU with ECU-type
is defined as:

util(p, 𝜏 , t):=

⎧⎨⎩
wcetp(𝜏 ,t)

periodtask(𝜏) if 𝜏 ∈ 𝒯 ∧ choiceexec(𝜏 , t) is defined
undef otherwise

with 𝒯 being the set of tasks and E being the set of ECUs.
Note that the WCET function wcet is also based on the binary choice function choiceexec

of the DSE problem because that function is required to obtain unique WCET values for
each task with respect to each ECU-type, see Definition 3.17 (page 44) for details.

The already allocated tasks are causing a base load on the ECUs to which they are
allocated, for both the ECU’s computation and its memory capacity. The utilization
base load for a given ECU e is calculated by subsuming the utilization requirements of
all tasks allocated to that ECU. As the utilization requirement of a task depends on its
WCET for the chosen ECU-type, the base load depends on the ECU-type, formally:

ubl(conf , e, t):=
∑︁
𝜏∈𝒯e

util(p, 𝜏 , t) with

𝒯e =
{︁
𝜏 | 𝜏 ∈ dom(taskalloc) ∧ taskalloc(𝜏) = e ∧

util(p, 𝜏 , t) ̸= undef
}︁

Note that 𝒯e denotes the set of tasks allocated to ECU e.
The utilization base load of the ECU-type bin for a given ECU-type t in a subsystem

sub is defined as follows:

ublSub,E(conf , sub, t):=
∑︁

e∈Esub,t

ubl(conf , e, t) with

Esub,t :=
{︁

e | e ∈ E ∧ subsys(𝐺hw, e) = sub ∧ type(e) = t
}︁

where 𝐺hw is the architecture tree of DSE problem p with the set of ECUs E .
The memory base load is calculated similarly:

mbl(conf , e, t):=
∑︁
𝜏∈𝒯e

memreqp(𝜏 , t) with

𝒯e:=
{︁
𝜏 | 𝜏 ∈ dom(taskalloc) ∧

taskalloc(𝜏) = e ∧ memreqp(𝜏 , t) is defined
}︁

The memory base load of a given ECU-type t on a subsystem sub is defined as:
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mblSub,E(conf , sub, t):=
∑︁

e∈Esub,t

mbl(conf , e, t) with

Esub,t =
{︁

e | e ∈ E ∧ subsys(𝐺hw, e) = sub ∧ type(e) = t
}︁

for the architecture tree 𝐺hw.

4.2.3.1. Utilization Constraints

One parameter for our optimization algorithm is the maximal available utilization on one
ECU-type, defined as utilmax ∈ [0, 1]. In theory, each ECU can be utilized up to 100%.
From [LL73] we know that for fixed-priority preemptive systems with strictly periodically
tasks (deadlines equal to periods) there is no guarantee for schedulability if the ECU
utilization is above approximately 69%.

The maximal available utilization on each subsystem per ECU-type depends on the
number of ECUs to which that ECU-type has been assigned. Let

conf pre
p =

(︁
conf , tasksubsysconf pre

p
, tasktypeconf pre

p
, typeconf pre

p

)︁
be a pre-allocation. The available utilization per ECU is calculated by subtracting the
utilization already used by allocated tasks from the maximal acceptable utilization:

utilavailE,E(conf , e, t):= max {0, utilmax − ubl(conf , e, t)}

where 𝒯e,conf denotes the set of tasks allocated to ECU e by configuration conf .
The available utilization in subsystem sub for ECU-type t is determined by the number

of ECUs in the subsystem with the given ECU-type multiplied by the user-defined
maximal allowed utilization. The base load of the ECUs is subtracted from that value.
Formally:

utilavailSub,E(conf pre
p , sub, t):=

typecount(conf pre
p , sub, t) · utilmax − ubl(conf , sub, t)

This accumulated maximal available utilization limits the number of tasks which can
be deployed to each ECU-type per subsystem. The utilization requirement of all tasks
allocated to a subsystem sub with respect to an ECU-type t is:

utilreqSub,E(conf pre
p , sub, t):=

∑︁
𝜏∈𝒯 presub,t

util(p, 𝜏 , t) with
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𝒯 presub, t:=
{︁
𝜏 | 𝜏 ∈ 𝒯 unalloc

conf pre
p
∧

tasksubsysconf pre
p

(𝜏) = sub ∧ tasktypeconf pre
p

(𝜏) = t
}︁

The optimization process has to guarantee that the required utilization per subsystem
is not larger than the available utilization:

∀sub ∈ Sub,∀t ∈ E : (4.1)
utilavailSub,E(conf pre

p , sub, t) ≥ utilreqSub,E(conf pre
p , sub, t)

with Sub being the set of subsystems and E being the set of ECU-types being used in
DSE problem p.

4.2.3.2. Memory Constraints

Memory constraints are handled analogously to utilization constraints.
The available memory on any ECU is calculated by taking the memory provided by the

ECU’s ECU-type and subtracting the amount of memory already used by tasks allocated
to that ECU, formally:

memavailE,E(conf , e, t):= max {0,mem(t)−mbl(conf , e, t)}

The accumulated maximal available memory for any given subsystem sub and ECU-type
t is defined as:

memavailSub,E(conf pre
p , sub, t):=

typecount(conf pre
p , sub, t) ·mem(t)−mbl(conf pre

p , sub, t)

The memory required by all tasks on subsystem sub and ECU-type t is defined as:

memreqSub,E(conf pre
p , sub, t):=

∑︁
𝜏∈𝒯 presub,t

memreqp(𝜏 , t)

𝒯 presub, t:=
{︁
𝜏 | 𝜏 ∈ 𝒯 unalloc

conf ∧ tasksubsysconf pre
p

(𝜏) = sub∧

tasktypeconf pre
p

(𝜏) = t
}︁

Hence, every pre-allocation has to satisfy the requirement that enough memory is
available on each subsystem for all ECU-type bins:

∀sub ∈ Sub, ∀t ∈ E : (4.2)
memavailSub,E(conf pre

p , sub, t) ≥ memreqSub,E(conf pre
p , sub, t)
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4.2.3.3. Global Bus Utilization

In this thesis a necessary but not sufficient condition is used to characterize the capacity
of the global bus. The condition ensures that to each message on the global bus a
sufficient number of bus slots is allocated.

First a predicate is defined which evaluates to true whenever a given signal has to be
allocated on the global bus (similar to the predicates specified in the previous chapter):

needsGlobalGA(pglob, conf pre
p , 𝑠):=

⎧⎪⎪⎨⎪⎪⎩
true if needsGlobal(p, conf , 𝑠) = true
true or if |Sub𝑠| ≥ 2
false otherwise

(4.3)

where Sub𝑠 is for any signal 𝑠 the set of subsystems where at least one of the sender or
receiver tasks is allocated either by the configuration specified for the global analysis or
by the pre-allocation

In this thesis the signal period is by definition equal to the period of its sender task.
For a signal 𝑠 with sender task 𝜏 the number of required bus slots for its message on the
global bus is defined as:

slotsreq(p, 𝑠):=

⎧⎨⎩
⌈︁

periodtask(𝜏)
𝜆TDMA

p

⌉︁
if needsGlobalGA(pglob, conf pre

p , 𝑠) = true

0 Otherwise

As described in the last chapter in Section 3.1.6.1, there exists a subset of signals for
which it is already known that they must be allocated to the global bus. For another
subset it is known those signals will never be allocated to the global bus. Only signals
for which no decision has been taken (because that decision depends on tasks not yet
allocated by the given configuration) have to be considered during the global analysis
optimization process.

The signals which must be allocated to the global bus consume bus slots, thus reducing
the number of available bus slots on the global bus.

Let 𝑆always
conf denote the set of signals which must have a message on the global bus.

The total number of available bus slots on that bus is reduced by the number of bus slots
required by signals in that set, formally:

slotsremain
conf :=

⃒⃒⃒
slotsavail

p

⃒⃒⃒
−

∑︁
𝑠∈𝑆always

conf

slotsreq(p, 𝑠) (4.4)

where slotsavail
p is the set of available bus slots on the global bus as specified in the

DSE problem. Note that in the DSE problem some bus slots of the global bus might be
excluded from the set of available slots.

A valid pre-allocation may not use more bus slots than are available on the global bus:
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∑︁
𝑠∈𝑆

slotsreq(conf pre
p , 𝑠) ≤ slotsremain

conf (4.5)

Note that the actual slot assignment for messages on the global bus is not determined
by this analysis approach. The problem of finding a feasible schedule on a time-triggered
bus itself is a complicated optimization problem, see e.g. [Luk+09] where an approach
for calculating valid schedules for the static segment of a FlexRay bus is presented.

4.2.4. Constraints for Task Allocation

Most of the user-defined constraints defined in Section 3.1.4 have to be considered in the
global analysis. Some other constraints cannot be considered directly, but have to be
handled by the local analysis.

If allowed/forbidden subsystems are specified for some or all tasks, these constraints
can be handled directly by limiting the pre-allocation of those tasks to the respective
subsystems. In contrary constraints specifying that a set of tasks has to be allocated to
the same ECU cannot be analyzed by the global analysis.

But for that kind of constraint derived constraints can be formulated stating that
those tasks must be allocated to the same subsystem (otherwise the local analysis would
obviously not be able to satisfy that constraint). Constraints forbidding certain tasks to
be allocated to the same ECU can be handled by the global analysis only in very special
cases, e.g. if all ECUs of a subsystem are forbidden for a given task, then that subsystem
can be added to the lists of forbidden subsystem for that tasks. In all other cases those
constraint types are used solely during the local optimization phase.

The same is true for all constraints enforcing that a given signal has to be allocated
to a given local bus, as local buses are not considered in the global analysis process.
Table 4.1 gives an overview on the constraint types defined in the last chapter, and how
and where they can/could be incorporated in the two-tier optimization approach.

Constraint Type Global Analysis Local Analysis
Allowed ECUs per Task ∘ ∙
Allowed ECU Types per Task ∙ ∙
Never on same ECU ∘ ∙
Always on same ECU ∘ ∙
Allowed ECUs ∘ ∙
Forbidden ECUs ∘ ∙
Allowed Subsystems ∙ –
Forbidden Subsystems ∙ –
Always on Bus ∘ (only global bus) ∘ (only local bus)

Table 4.1. – Support for Constraint Types on different Levels: (∙) fully supported, (∘)
partially supported, (–) unsupported

65



4. Global Analysis

4.2.5. Approaches for Deadline Synthesis
The problem formalization given in Chapter 3 explicitly allows the specification of tasks
and signals which initially do not have local deadlines, as long as they are subject to at
least one end-to-end deadline. Such an end-to-end deadline can then be used to synthesize
local deadlines during the optimization process. Note that multiple end-to-end-deadlines
may be effective for a task/signal due to the definition of such end-to-end-deadlines on
paths of task trees.

Synthesizing local deadlines for tasks and signals is a very complex process with many
implications on both the system and the subsystem level. For example, choosing a small
deadline for a task/signal will lead to a higher priority compared to the other tasks/signals
in a subsystem, which in turn influences the chances to find a feasible allocation for that
task/signal during the subsystem-local analysis. But all other tasks and signals in the
same subsystem will potentially be influenced by this decision, and potentially rendering
them unschedulable. If a large deadline is chosen for a task/signal, then it will get a
low priority instead. The task/signal will then influence only a small number of other
tasks/signals, but in turn is influenced by many higher priority task/signals, which makes
it harder to allocate that task/signal successfully. On a global analysis scope based on
utilization, it is not possible to deduce optimal local deadlines due to the lack of detailed
information.

Based on these considerations and the fact that deadline synthesis is a smaller subtask
of this PhD thesis, a basic heuristic approach for deadline synthesis is presented and
implemented. The approach aims for achieving synthesized deadlines which are considered
likely to ease the subsystem-local analyses. The approach synthesizes deadlines for tasks
and signals for which no initial local deadline has been specified, while leaving all
initially specified deadlines untouched. It retains the priorities of all allocated tasks and
messages on their respective ECUs and buses, and ensures that they comply with the
deadline-monotonic priority assignment paradigm.

The following steps are used to perform the deadline synthesis:

1. Perform a schedulability analysis for all already allocated tasks and signals/messages

2. For all tasks without fixed deadlines: determine upper and lower bounds for their
local deadlines. Those bounds can also be symbolic in the sense that they depend
on other still undefined local deadlines.

3. For all ECUs which are considered full: change all synthesized deadlines to the
lowest possible values which still allow each task to finish its execution without
violating its particular local deadline. Initially defined local deadlines are not
changed.

4. for all signals estimate the required local deadlines

5. Estimate how much slack is available for each of the end-to-end deadlines considering
all already known local deadlines and the estimates for the synthesized local signal
deadlines
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6. Calculate a target local deadline for each task without a user-defined local deadline
by equally distributing the slack among all tasks

7. Calculate the difference of that hypothetical optimal local deadline and the synthe-
sized local deadline and sum up the positive differences (where the synthesized local
deadline is smaller than the hypothetical value) as part of the objective function

Note that there might be different definitions of what it means if an ECU is full. The
simplest definition is to mark an ECU as being full if none of the still unallocated tasks
can be allocated to that ECU no matter what ECU-type is used. An alternative is to
define a minimal required remaining utilization and mark all ECUs as being full which
remaining utilization is smaller than that threshold.

Note that by adding the positive difference to the objective function to be minimized,
those differences are minimized, too. This way it can be ensured, that the available slack
of the end-to-end-deadlines is equally distributed among the task/signals.

The following paragraphs explain in detail how the single steps can be defined.

Deadline Bounds for Unallocated Software Tasks For an unallocated task without a
user-defined local deadline only few information is already usable. One reliable property
is the activation period which does not change during the whole optimization process.
The effective worst case execution time is unknown until the task is allocated to an ECU
which has a defined ECU-type.

While the local analysis is responsible for this final allocation decision, the global
analysis pre-allocates each task to a subsystem and an ECU-type. Even though the local
analysis may allocate a task to an ECU with a different ECU-type, the pre-allocation is
useful because it allows a prediction of the effective worst case execution time.

Let wceteff
𝜏 denote the effective worst case execution time of an unallocated task 𝜏 as

determined by the pre-allocation. The synthesized deadline 𝑑𝜏 has to be larger or equal to
the effective worst case execution time otherwise that task would not be schedulable. In
the same time the synthesized deadline has to be smaller or equal to the task’s activation
period as stated by the premises of this thesis. This leaves us with the following bounds:

𝑑𝜏 ∈ N such that
wceteff

𝜏 ≤ 𝑑𝜏 ≤ periodtask(𝜏)

Deadline Bounds for Allocated Software Tasks For every already allocated task, lots
of useful information is available, namely its activation period, its current (synthesized)
local deadline (e.g. stemming from a previous global/local analysis iteration) and its
worst case execution time, determined by the currently chosen ECU-type of the ECU
the task is allocated to. Even better, the worst case response time of the task has been
calculated via schedulability analysis.

Let 𝜏 be a task allocated to an ECU e with synthesized local deadline 𝑑𝜏 .
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In case there are additional tasks allocated to the same ECU, let 𝜏higher denote the
task having the next higher priority than 𝜏 (if such a task exists), and let denote 𝜏lower

the task having the next lower priority than 𝜏 (if such a task exists). Let 𝑟𝜏 denote the
calculated worst case response time of task 𝜏 and periodtask(𝜏) its activation period (as
defined in Chapter 3).

For ensuring the schedulability of 𝜏 while in the same time retaining all the current
task priorities on the ECU in compliance with the deadline-monotonic priority assignment
paradigm, changes to the synthesized deadline can only be done in a very limited fashion.

On the one side the updated synthesized deadline has to be larger or equal to the
worst case response time (otherwise the task would be unschedulable). Additionally, it
has to be larger or equal to the deadline 𝑑𝜏higher of the task which has the next higher
priority on that ECU (but only if 𝜏 has not the highest priority itself). This lower bound
prohibits changes to task priorities in order to keep the allocation compliant with the
deadline-monotonic paradigm.

On the other side, the updated synthesized deadline has to be smaller or equal to the
tasks period (due to the requirement to use only tasks whose local deadlines are smaller
or equal to their period). Additionally, it has to be smaller than the deadline of the task
with the next lower priority (if such a task exists on the ECU), which is itself required to
retain the current task priorities. The synthesized deadline 𝑑′

𝜏 therefore has to satisfy
the following condition:

𝑑′
𝜏 ∈ N such that

max(𝑟𝜏 , 𝑑𝜏higher) ≤𝑑′
𝜏 ≤ min(periodtask(𝜏), 𝑑𝜏lower)

Tightening Bounds on ECUs marked as full For every task without an initially defined
local deadline that is allocated to an ECU marked as full, the following procedure is
used to tighten the local deadlines: First the local deadline for the highest priority task
is changed to the lower bound. Then the bounds are recalculated and the procedure
proceeds with the task with the next lower priority.

Deadline Synthesis for Signals The synthesis of local deadlines for signals is even more
complicated than the synthesis of task deadlines. The reason for this is that while local
task deadlines influence only exactly one ECU, local signal deadlines influence either a
whole subsystem if the signal has to be allocated to a local bus, or even the whole system
if it is allocated to the global bus.

If for example the deadline for a signal’s message allocated to the priority-based local
bus of any subsystem is tightened too much, this message can block the whole local bus
even if it is the only message allocated to that bus, and even if the message itself causes
only a very low utilization on the bus. This has to do with the fact that the message
transmission over priority-based buses considered, cannot be preempted, not even by
higher priority message. If now only one message is allocated to such a bus, then no
blocking by lower priority messages has to be taken in consideration during schedulability
analysis. If the synthesized deadline is set/changed to be equal to the calculated worst
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case response time of the message, not a single additional message can be allocated to
that bus. Messages with a higher priority cannot be allocated to the bus, because there
simply is no slack available for preemptions by higher priority messages. In the same time
even messages with lower priority could not be allocated. They would impose a blocking
time on the already allocated message which would increase the worst case transmission
time of this message such that it exceeds the deadline.

On the global TDMA-based bus, decreasing the deadline of any message allocated to
one or more slots will increase the number of required bus slots.

For the above reasons a simplified method for synthesizing local signal/message dead-
lines is chosen in this thesis. To each message that does not have an initially specified
deadline, a local deadline equal to the activation period of the corresponding signal is
assigned. For every signal, the following situations can be distinguished:

• The signal is transmitted only locally. Than the local deadline can be 0

• The sender task and at least one receiver tasks are allocated to different ECUs in
the same subsystem. In this case only one message on the local bus is required and
the signal’s deadline can be set to its activation period.

• The sender task is allocated to a gateway ECU and one or more receiver tasks are
allocated to gateway ECUs of different subsystems. Than only one message on the
global bus is required, which is similar to the previous case

• A sender task is allocated to any non-gateway ECU and at least one receiver task
is allocated to a different subsystem. Than at least two messages are required, one
on local bus of the sender task’s subsystem and one on the global bus

• One additional message is required if the receiver tasks is also allocated to a
non-gateway ECU

As a result a signal’s deadline is defined as a multiple of the signal’s activation period
where the allocation of the sender and receiver tasks determines the correct factor between
0 and 3 is used.

However as the global analysis does not allocate tasks to ECUs directly and therefore
does not know whether or not a transmission on any of the subsystem local buses is
required, the above cases can be condensed to only two cases relevant for global analysis:
For each signal for which at least one sender/receiver task is still unallocated the local
deadline is synthesized depending on the choice whether or not it has to be transmitted on
the global bus. If the signal is not transmitted on the global bus (all the sender/receiver
tasks are allocated and/or pre-allocated to the same subsystem), its synthesized deadline
is set to its activation period, otherwise it is set to its activation period multiplied by 3.

4.2.5.1. Synthesizing Target Deadlines

A simple heuristic is used to equally distribute the calculated remaining fraction of each
end-to-end deadline among the particular affected tasks for which no fixed local deadline
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has been specified. For each task a (hypothetical) target deadline is estimated based
on the task parameters, the size of the remaining slackness in the deadline and the
total number of participating tasks involved in the end-to-end deadline. This value is
hypothetical in the sense that during the global analysis the real remaining slackness
of any end-to-end deadline might be smaller than estimated. The target deadlines may
then be too large to be achieved during the optimization process. Therefore the target
values are not formulated as constraints of the optimization problem but instead are
incorporated into the objective function. The analysis back-end is driven to choosing
synthesized deadlines which are close to the target deadlines by adding a penalty to
the optimization objective. That penalty is proportional to the difference between the
synthesized deadlines and the estimated target deadline.

Using this construction the distribution of the available end-to-end deadline slack is
somewhat balanced between the involved tasks. Solutions are avoided where e.g. all the
slackness of an end-to-end deadline is used in only one task’s local deadline while all
other tasks affected by that end-to-end deadline do not get a share of that slack.

First the remaining part of the end-to-end deadline is estimated. For the given
configuration and one of the given end-to-end deadlines 𝑑 let 𝒯𝑑 be the set involved tasks
with

𝒯𝑑:=𝒯 defined
𝑑 ∪̇ 𝒯 alloc

𝑑 ∪̇ 𝒯 unalloc
𝑑

where 𝒯 defined
𝑑 is the set subset of tasks with initially defined deadlines, 𝒯 alloc

𝑑 is the
subset of allocated tasks without such a deadline and 𝒯 unalloc

𝑑 is the subset of unallocated
tasks also without such a deadline.

Let furthermore 𝑆𝑑 be the set of signals which are affected by the end-to-end deadline
with

𝑆𝑑:=𝑆defined
𝑑 ∪̇𝑆undef

𝑑

where 𝑆defined
𝑑 is that subset of signals for which a local deadline has been initially

defined, and 𝑆undef
𝑑 is the set of signals without such a local deadline.

The remaining fraction of the end-to-end deadline 𝑑 is calculated by subtracting all
already known local deadlines:

𝑑remain
𝑑 :=𝑑−

∑︁
𝜏∈𝒯 defined

𝑑

deadlinetask(𝜏)−
∑︁

𝑠∈𝑆defined
𝑑

deadlinesignal(𝑠)

This remaining fraction is then used for synthesizing local deadlines for all tasks and
signals affected by that end-to-end deadline which do not have initial local deadline. The
signal’s deadline is synthesized to be the equal to the period , if it is known already that
the signal will not be transmitted on the global bus. Otherwise the signal’s deadline is
synthesized to be activation period multiplied by three (see above). Let 𝑑remain,signal

𝑑

denote the fraction of the remaining slack assigned to the signal. Then the remaining
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fraction available for the tasks is defined as:

𝑑remain,task
𝑑 :=𝑑remain

𝑑 − 𝑑remain,signal
𝑑

For each of the tasks without initial deadlines multiple end-to-end deadlines might
apply in parallel, depending on their location in their task trees (e.g. the root node is by
definition affected by every end-to-end deadline defined for the tree). Let 𝐷e2e

𝜏 denote
the set of all end-to-end deadlines which are affecting task 𝜏 . The target deadline for
that task is then defined as follows:

𝑑target
𝜏 := min

{︃
periodtask(𝜏),wcetmax

𝜏 + min
{︃

𝑑remain,task
𝑑⃒⃒

𝒯 alloc
𝑑 ∪ 𝒯 unalloc

𝑑

⃒⃒ ⃒⃒⃒⃒
⃒ 𝑑 ∈ 𝐷e2e

𝜏

}︃}︃

where wcetmax
𝜏 denotes the maximal worst case execution time defined for 𝜏 for the set

of ECU-types used in the current DSE problem. In the above equation this maximal
worst case execution time has been chosen, such that synthesized task deadlines are
always greater than the greatest WCET. The minimal slack divided by the number of
tasks to which that slack has to be distributed is then added to the maximal WCET,
considering all end-to-end deadlines which are relevant for task 𝜏 . Because the resulting
sum might very well exceed the tasks period, the minimum of the result and the task’s
period is used to define the hypothetical optimal task deadline.

4.2.6. Optimization Objective: Minimize Target Deadline Differences

Based on the defined target deadlines for tasks for which a local deadline has to be
synthesized, a secondary optimization can be formulated for minimizing the differences
between the synthesized deadlines and the target deadlines.

penaltydeadsynth:=
∑︁

𝑑∈deadlinee2e

∑︁
𝜏∈𝒯 alloc

𝑑
∪𝒯 unalloc

𝑑

max
{︀
0, 𝑑target

𝜏 − 𝑑𝜏
}︀

where 𝑑target
𝜏 is the target deadline of task 𝜏 and 𝑑𝜏 is the deadline synthesized during

the global optimization phase. Note that intentionally only deadlines that are too small
are penalized (by using the min operator).

4.2.7. Optimization Objective: Minimize Number of Used Bus Slots

penaltyslot:=
∑︁
𝑠∈𝑀

slotsreq(conf pre
p , 𝑠)
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4.2.8. Optimization Objective: Minimize Hardware Cost

For a given pre-allocation

conf pre
p =

(︁
conf , tasksubsysconf pre

p
, tasktypeconf pre

p
, typeconf pre

p

)︁
the total cost are defined as follows:

costall(conf pre
p ):=

∑︁
e∈E

cost(type(e))

The optimization objective is to find a pre-allocation that satisfies all constraints and
has minimal overall cost. As stated in the cost function, the cost only depend on the
choice of the ECU-types. The other components of a configuration restrict the solution
space. For more expensive ECU-types, it can be expected that tasks have lower WCETs,
which reduces their utilization on those ECU-types. On such ECU-types, more tasks
can be deployed, which could allow the optimization process to leave one or more ECUs
empty, which in turn reduces the overall cost. A second advantage of more expensive
ECU-types is that they usually provide more memory, which is also required for allocating
more tasks to them.

Note that in industrial applications, software tasks may use optimized code for certain
ECU-types, which would make those types the preferable choice. Our approach can
handle this situation well, because for each task the input models contain a separate
WCET for each ECU-type.

4.2.9. Secondary Optimization Objectives

Several optional optimization objectives could be useful for certain problem instances.
However, as no multi objective optimization is used in this thesis, secondary optimization
objectives have to be incorporated into the main objective function. This can be done via
penalty functions where decreasing the quality of a solution with respect to a secondary
objective leads to an increased (if the optimization objective has to be minimized) penalty
added to the objective value.

4.2.10. Approaches for Guaranteeing Termination

Several means are applied for guaranteeing the termination of the global analysis opti-
mization.

4.2.10.1. Tabu List

If a task could not be allocated to a subsystem in any of the global iterations (which
means that the task was contained in the odd set for that subsystem after the local
analysis) that subsystem is added to the tabu list of that task. The global analysis
is not allowed to pre-allocate a task to one the subsystems contained in that task’s
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tabu list. Tabu lists are realized by temporarily adding the forbidden subsystems to the
task-specific sets of forbidden subsystem specified by the user.

Of course, if the tabu list handling is too strict, this might lead to situations where
DSE problems are reported to be infeasible spuriously. For example if a task could not
be allocated to a subsystem because of very tight restrictions for the maximal hardware
cost in one global iteration, it might very well be possible to allocate that task to that
subsystem in one of the succeeding global iterations if the cost constraints are relaxed.

Currently, situations like that are avoided by resetting the tabu list several times before
giving up. For this, the global iterations are organized in rounds where for each round
different strategies apply. Each round consists of maximal 𝑛 global analysis iterations
(where 𝑛 is the number of subsystems). In the first round, the global analysis calculates
tight cost constraints for the subsystem-specific local analyses. The tabu lists are growing
as described above. They are reseted only if an infeasible constellation is detected, e.g. if
for a task the only subsystem which not in the tabu list is forbidden due to user-specified
constraints. If no complete solution can be found in the first 𝑛 iterations the tabu lists of
all still unallocated tasks are reseted. In the following 𝑛 global iterations they are used
again as described. But this time all cost restrictions are relaxed yet not fully disabled.
Again the tabu lists are reseted if no solution can be found during these iterations. In the
last round no cost restrictions are applied at all, and the tabu lists are enabled again. If
still no solution can be found the global analysis gives up reporting “Problem infeasible”.

If the backend reports during one of the rounds that the MILP problem is infeasible,
the next round is started immediately and all relaxations take effect.

4.2.11. Complexity Considerations
Some consideration about the complexity of the problem are advisable:

Theorem 4.3
The global analysis decision problem described in this thesis is NP-hard. 2

Proof The bin packing problem (BPP) which is known to be NP-hard (a compact proof
of this property can be found in [KV10]) can be polynomial-time reduced to our problem
formulation.

First, we assume to have only exactly one ECU-type with cost 1 and with enough
memory such that the whole set of tasks could be allocated to a single ECU. Furthermore,
we assume that this ECU-type allows a utilization of up to 100% by choosing utilmax = 1.
Next, we restrict each subsystem to contain exactly one ECU, which can either be typed
by that ECU-type or remain untyped. We choose the global bus to be powerful enough
to handle any possible message communication load.

Now each bin of the BPP corresponds to one ECU and each item to one task. By
choosing the size of the available memory of the ECU-type large enough to hold the
whole task set, only the constraints for the maximal utilization are still effective. They
correspond directly to the size constraints of the BPP bins. �
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Theorem 4.4
The global analysis optimization problem described in this thesis is an NP-hard optimiza-
tion problem. 2

Proof Minimizing the number of required bins in BPP is an NP-hard optimization
problem. The same reduction as already presented in the proof of Theorem 4.3 is used.
Each ECU to which ECU-type has been assigned gets the cost 1 (as assigned to the
ECU-type), all other ECUs cost 0. Then minimizing the hardware cost effectively means
minimizing the number of ECUs used. �

4.3. Optimizing with HySAT
Encoding the mathematical equations given in section 4.2 for the SMT solver HySAT is
straightforward. Background information about HySAT can be found in [Her10].

4.3.1. Encoding the Problem

For each of the sets used, unique identifiers are assigned to all its elements (e.g. each
ECU in E gets a unique sequential number). Functions are then encoded in one of the
following ways (element identifiers are used where applicable):

1. If a function is part of the user input, (e.g. the function which assigns ECUs to
subsystems), a constant for each element of its domain is used, e.g.
define PROC0ToSubsystem=1;
which means that ECU e0 belongs to subsystem sub1

2. Non-boolean functions which are part of the pre-allocation are modeled as integer
variables, e.g. for the function assigning ECU-types to ECUs (see Section 4.2.8),
the following variable is declared
int [0,3] PROC0ToType;
which allows any ECU-type {t0, t1, t2, t3} to be assigned to ECU e0

3. Boolean functions which are part of the pre-allocation are encoded as one boolean
variable for each element of the function’s domain, e.g. for the boolean function
which models whether or not a message has to be on the bus (see Section 3.1.4.8),
variables are defined, such as
boole message0HasToBeOnBus;

The HySAT definitions and variables are then used in several HySAT expressions:

1. Limitations for the values a function can get, e.g. if only ECU-type t0 or t1 are
acceptable as the type of ECU e0 (see Definition 3.17), the following expression
would be generated:
(PROC0ToType = 0) or (PROC0ToType = 1);
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2. Implications are used to describe the dependencies between decision variables and
intermediate variables, e.g. the cost of choosing ECU-type t0 for ECU e0 can be
encoded like this:
(PROC0ToType=0) -> (PROC0Cost=19);

3. Linear (integer) expressions are used to formulate e.g. the objective function:
Cost = (PROC0Cost) + (PROC1Cost)

4.4. Optimization based on Linear Programming

4.4.1. Helpful Definitions

For a given DSE problem p with set of ECUs E and a configuration conf with task
allocation function taskallocconf , the set of empty (aka unused) ECUs is defined as:

Eempty
conf :=E∖dom(taskallocconf )

The set of ECUs onto which at least one task is allocated is defined as:

ENotEmpty
conf :=dom(taskallocconf )

4.4.2. Encoding the Problem

In the following subsections the complete encoding of the global analysis approach as
mixed integer linear program is given. First all constraints are specified, then the objective
function with its different parts is described.

4.4.2.1. ECU Types

∑︁
t∈E

𝑥
type
e,t ≤ 1 ∀e ∈ E (4.6)

∑︁
t∈E

𝑥
type
e,t ≥ 0 ∀e ∈ Eempty

conf (4.7)

∑︁
t∈E

𝑥
type
e,t ≥ 1 ∀e ∈ ENotEmpty

conf (4.8)

𝑥
type
e,t ∈ {0, 1} e ∈ E , t ∈ E (4.9)

The binary variable 𝑥
type
e,t is 1 if ECU-type t is assigned to ECU e, 0 otherwise.

Equation (4.6) make sure that maximal one ECU-type is chosen per ECU. Equation (4.7)
ensures that to all non-empty ECUs an ECU-type is assigned, while Equation (4.8) allows
empty ECUs to have no ECU-type.
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4.4.2.2. Task Allocation

∑︁
sub∈Sub

𝑦
subsys
𝜏 ,sub = 1 ∀𝜏 ∈ 𝒯 unalloc

conf (4.10)

∑︁
t∈E

𝑦
type
𝜏 ,t = 1 ∀𝜏 ∈ 𝒯 unalloc

conf (4.11)

𝑦
subsys
𝜏 ,sub ∈ {0, 1} 𝜏 ∈ 𝒯 unalloc

conf , sub ∈ Sub (4.12)

𝑦
type
𝜏 ,t ∈ {0, 1} 𝜏 ∈ 𝒯 unalloc

conf , t ∈ E (4.13)

The binary variable 𝑦subsys
𝜏 ,sub is 1 if task 𝜏 is allocated to subsystem sub, 0 otherwise.

Analogously the binary variable 𝑦type
𝜏 ,t is 1 if task 𝜏 is assigned ECU-type t, 0 otherwise.

By Equation (4.10) it is enforced that every unallocated task is allocated to exactly
one subsystem and by Equation (4.11) that exactly one ECU-type is chosen for each
unallocated task.

4.4.2.3. Constraints for Task Allocation

Let

constr = (𝜓ECUs, 𝜓types, 𝜓never.𝜓always, 𝜓allowedSubsys, 𝜓sameSubsys, 𝜓diffSubsys, 𝜓onBus)

denote the constraint specification tuple of DSE problem p. As stated before, the
constraints specifying the sets of allowed ECUs per task cannot be encoded due to
the chosen level of abstraction of the global analysis approach. The same is true for
constraints enforcing tasks not to be on the same ECU.

∑︁
t∈𝜓types(𝜏)

𝑦
type
𝜏 ,t = 1 𝜏 ∈ 𝒯 unalloc

conf (4.14)

∑︁
sub∈𝜓allowedSubsys(𝜏)

𝑦
subsys
𝜏 ,sub = 1 𝜏 ∈ 𝒯 unalloc

conf (4.15)

∑︁
𝜏∈𝑋

𝑦
subsys
𝜏 ,sub ≤ 1 ∀𝑋 ∈ 𝜓diffSubsys, sub ∈ Sub (4.16)

𝑦
subsys
𝜏 ,sub · (|𝑋| − 1)−

∑︁
𝜏∈𝑋∖{𝜏0}

𝑦
subsys
𝜏 ,sub = 0 ∀sub ∈ Sub,

∀𝑋 = {𝜏0, . . . , 𝜏𝑛} ∈ 𝜓sameSubsys (4.17)

Enforced by Equation (4.14), for each unallocated task exactly one ECU-type contained
in the set of allowed ECU-types is chosen. In combination with the constraints applied
for the ECU-type choice for unallocated tasks this constraint excludes all ECU-types
not contained in the set of allowed types from being chosen. In a similar manner, the
Equation (4.15) enforces each unallocated tasks to be allocated to one of the allowed
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subsystems specified for that task. In Equation (4.16) it is encoded that of each set of
tasks which must not be allocated to the same subsystem, maximal one task is allocated
to each of the subsystems. The case that certain tasks always have to be allocated to
the same subsystem is handled by Equation (4.17). This equation is satisfied if either no
task of such a set is allocated to a given subsystem or all of them.

4.4.2.4. Utilization

𝑧𝜏 ,sub,t ≥
𝑦

subsys
𝜏 ,sub + 𝑦

type
𝜏 ,t − 1 ∀𝜏 ∈ 𝒯 unalloc

conf , sub ∈ Sub, t ∈ E (4.18)
𝑧𝜏 ,sub,t ≤

𝑦
subsys
𝜏 ,sub − 𝑦

type
𝜏 ,t + 1 ∀𝜏 ∈ 𝒯 unalloc

conf , sub ∈ Sub, t ∈ E (4.19)
𝑧𝜏 ,sub,t ≤

𝑦
type
𝜏 ,t − 𝑦

subsys
𝜏 ,sub + 1 ∀𝜏 ∈ 𝒯 unalloc

conf , sub ∈ Sub, t ∈ E (4.20)∑︁
e∈Esub

utilavailE,E(conf , e, t)𝑥type
e,t −∑︁

𝜏∈𝒯 unalloc
conf

util(p, 𝜏 , t) · 𝑧𝜏 ,sub,t ≥ 0 ∀sub ∈ Sub, t ∈ E (4.21)

𝑧𝜏 ,sub,t ∈ {0, 1} ∀sub ∈ Sub, t ∈ E (4.22)

The binary variable 𝑧𝜏 ,sub,t is 1 if a task 𝜏 is allocated to subsystem sub and to ECU-type
t (without loss of generality), 0 otherwise, as encoded by Equations (4.18)–(4.22).

4.4.2.5. Memory

The handling of the memory constraints for ECUs is very similar to that of task utilization
requirements.

∑︁
e∈Esub

memavailE,E(conf , e, t)𝑥type
e,t −∑︁

𝜏∈𝒯 unalloc
conf

memreqp(𝜏 , t) · 𝑧𝜏 ,sub,t ≥ 0 ∀sub ∈ Sub, t ∈ E (4.23)

Equation (4.23) ensures, that enough memory is available in each subsystem and each
ECU-type bin.

4.4.2.6. Global Communication

Encoding the constraints for global communication is slightly more complicated as
many different cases have to be handled. Fortunately based on the formalization in

77



4. Global Analysis

Section 4.2.3.3 it is sufficient to focus on those signals where it is still undecided whether
or not they have to be sent over the global bus.

Let 𝑆maybe
conf be the set of signals for which it is still undecided whether or not they must

have messages on the global bus. A given signal 𝑠 ∈ 𝑆maybe
conf has to be transmitted over

the global bus without loss of generality, iff

1. the sender task and at least one receiver task are pre-allocated to different subsys-
tems

2. its sender task is already allocated to a subsystem and one the receiver tasks is
pre-allocated to a different subsystem

3. one receiver task is already allocated to a subsystem and the sender task is pre-
allocated to a different subsystem

While the first case is obvious, the other two cases stem from the decision not to
include already allocated tasks into the MILP encoding directly. The knowledge about
already allocated tasks which are involved in the sending/receiving of signal 𝑠 is therefore
included into the MILP model by directly encoding the cases as MILP formulas, such as
“if the sender task or one receive tasks of signal 𝑠 is allocated to a different subsystem
than subsystem sub1, the signal has to be transmitted over the global bus”.

Let therefore
𝒯 recv

tn,𝑠 :=recv(tn, 𝑠)

denote the set of tasks for a given task network tn receiving signal 𝑠 and

𝒯 unalloc,recv
conf ,𝑠 :=𝒯tn , 𝑠 ∩ 𝒯 unalloc

conf

the set of unallocated receiver tasks of signal 𝑠 where tn is the task network of DSE
problem p. Furthermore let

𝒯 unalloc
conf ,𝑠 :=

(︁
𝒯tn , 𝑠 ∪ {𝜏send

tn 𝑠}
)︁
∩ 𝒯 unalloc

conf

be the set of all unallocated tasks sending or receiving signal 𝑠.
Firstly, new binary variables are introduced, one for each undecided signal:

𝑏𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝑆maybe
conf (4.24)

If for a signal 𝑠 the corresponding variable 𝑏𝑠 = 1, then that signal has to be allocated
onto the global bus, otherwise it must not be allocated to the global bus.

Two cases have to be distinguished: Let 𝑆none
conf ⊆ 𝑆

maybe
conf be the subset of signals where

the sender and all receiver tasks are still unallocated. For all those signals the following
constraints are added to the problem:
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⃒⃒⃒
𝒯 unalloc,recv

conf ,𝑠

⃒⃒⃒
· 𝑏𝑠 ≥

⃒⃒⃒
𝒯 unalloc,recv

conf ,𝑠

⃒⃒⃒
· 𝑦subsys
𝜏send

𝑠 ,sub−∑︁
∀𝜏∈𝒯 unalloc,recv

conf ,𝑠

𝑦
subsys
𝜏 ,sub ∀𝑠 ∈ 𝑆none

conf ,∀sub ∈ Sub (4.25)

𝑏𝑠 ≤ 1 +
⃒⃒⃒
𝒯 unalloc,recv

conf ,𝑠

⃒⃒⃒
− ∀sub ∈ Sub

𝑦
subsys
𝜏send

𝑠 ,sub −
∑︁

𝜏∈𝒯 unalloc,recv
conf ,𝑠

𝑦
subsys
𝜏 ,sub ∀𝑠 ∈ 𝑆none

conf (4.26)

Equation (4.25) forces 𝑏𝑠 to 1 if there is at least one receiver task is in a different
subsystem than the sender task. In this case the right hand side would be larger than 0
for the subsystem where the sender task is pre-allocated to (and at least one receiver
task is not). Equation (4.26) forces 𝑏𝑠 to 0 exactly if there is one subsystem where the
sender and all receiver tasks are allocated (only then the right hand side evaluates to 0).

Let 𝑆some
conf ⊆ 𝑆

maybe
conf be the subset of signals which sender task and/or some receiver

tasks are allocated to a subsystem denoted by subused
𝑠 .

⃒⃒⃒
𝒯 unalloc

conf ,𝑠

⃒⃒⃒
· 𝑏𝑠 ≥

∑︁
sub∈Sub∖

{︀
subused

𝑠

}︀ ∑︁
𝜏∈𝒯 unalloc

conf ,𝑠

𝑦
subsys
𝜏 ,sub ∀𝑠 ∈ 𝑆some

conf (4.27)

⃒⃒⃒
𝒯 unalloc

conf ,𝑠

⃒⃒⃒
· 𝑏𝑠 ≤

∑︁
sub∈Sub∖

{︀
subused

𝑠

}︀ ∑︁
𝜏∈𝒯 unalloc

conf ,𝑠

𝑦
subsys
𝜏 ,sub + ∀𝑠 ∈ 𝑆some

conf

⃒⃒⃒
𝒯 unalloc

conf ,𝑠

⃒⃒⃒
− 1 (4.28)

Equation (4.27) forces 𝑏𝑠 to 1 if at least task (receiver or sender) is in a different
subsystem than subused

𝑠 . Equation (4.28) forces the value to be 0 if no other subsystem
is used by any of the tasks (receiver or sender).

Based on the decision whether or not a signal has to have a message on the global bus
the main constraint for the global bus capacity can be formulated:

slotsremain
conf ≥

∑︁
𝑠∈𝑆maybe

conf

𝑏𝑠 · slotsreq(p, 𝑠) (4.29)

The sum of all bus slots required for every signal for which the pre-allocation has
decided that that signal has to have a message on the global bus, has to be smaller or
equal to the number of still available bus slots on the global bus.

4.4.2.7. Deadline Synthesis

Several cases have to be handled separately for each end-to-end deadline and depending
on whether or not the considered task is already allocated to an ECU.
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Allocated Tasks Let 𝒯 alloc denote the set of tasks which are allocated by the current
configuration but do not have initial deadlines. For task 𝜏 ∈ 𝒯 alloc bounds for the
synthesized deadline have to be established. The deadline of 𝜏 is denoted by 𝑑synth

𝜏 in
this section.

In any case, the synthesized deadline has to be equal or larger than the chosen WCET,
determined by the chosen ECU-type for that ECU and smaller or equal to the task’s
period:

𝑑synth
𝜏 + (1− 𝑥type

e,t ) · periodtask(𝜏) ≥ wcetp(𝜏 , t) ∀t ∈ E (4.30)
𝑑synth
𝜏 ≤ periodtask(𝜏) (4.31)

where e denotes the ECU where 𝜏 is allocated. Note that in Equation (4.30) the task’s
period is on the left hand side added for every ECU-type which has not been chosen for
the ECU thus trivially satisfying the equation (as all WCETs are smaller or equal to the
activation period).

If there is a task with a higher priority on the same ECU — denoted by 𝜏hp — than the
deadline of this task — denoted by 𝑑𝜏hp — is the lower bound. The following additional
constraint is added:

𝑑synth
𝜏 ≥ 𝑑𝜏hp (4.32)

Note that while specifying the actual input for the MIP solver, one has to distinguish
the case where 𝑑𝜏hp is fixed (in this case a constant is used), and the case where it is
synthesized as well (in this case there is a variable for that deadline which has to be used
in the constraint specification).

If there is a task with a lower priority on the same ECU — denoted by 𝜏lp — then
its deadline — denoted by 𝑑𝜏lp — is the upper bound for 𝑑synth

𝜏 . If the deadline of the
lower priority task is synthesized, than no constraint has to be added because than the
relation between the two deadlines is specified when 𝜏lp is handled (see above case). If
the deadline is fixed, the following constraint is added:

𝑑synth
𝜏 ≤ 𝑑𝜏lp (4.33)

Unallocated Tasks Let 𝒯 unalloc denote the set of tasks which are unallocated in the
current configuration and do not have initial deadlines. For task 𝜏 ∈ 𝒯 unalloc bounds for
the synthesized deadline have to be established. The deadline of 𝜏 is denoted by 𝑑synth

𝜏

in this section.
The bounds for unallocated tasks are calculated very similar to those of allocated tasks

with the obvious differences that no higher or lower priority tasks have to be considered.
Additionally the WCET is determined for unallocated tasks based on their pre-allocation.
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𝑑synth
𝜏 + (1− 𝑦type

𝜏 ,t ) · periodtask(𝜏) ≥ wcetp(𝜏 , t) ∀t ∈ E (4.34)
𝑑synth
𝜏 ≤ periodtask(𝜏) (4.35)

Signals Let 𝑆undef denote the set of all signals without fixed deadlines for the given
DSE problem. For any signal 𝑠 let 𝑑synth

𝑠 denote its synthesized signal.
Again, several cases have to be distinguished: For every signal which is already allocated

the global bus, the deadline is set to its period multiplied by three. For every signal
which is known to be subsystem-local, the deadline is set to the signal’s period. For every
signal which is local to one ECU the deadline is set to 0. It remains the set of signals
which might be on the global bus 𝑆maybe. The following constraints are added:

𝑑synth
𝑠 = periodsig(𝑠) + 2 · 𝑏𝑠 · periodsig(𝑠) ∀𝑠 ∈ 𝑆maybe

conf (4.36)

Each signal has at least a synthesized deadline equal to its period. In case it has to be
allocated to the global bus, the period multiplied by two is added.

Enforcing End-to-end Deadlines Let (again) denote 𝒯 undef
𝑑 the set of all tasks without

fixed deadlines affected by end-to-end deadline 𝑑. Furthermore let 𝑆undef
𝑑 denote the set

of signals without a fixed deadline affected by the end-to-end deadline.

𝑑remain
𝑑 ≥

∑︁
𝜏∈𝒯 undef

𝑑

𝑑synth
𝜏 +

∑︁
𝑠∈𝑆undef

𝑑

𝑑synth
𝑠 ∀𝑑 ∈ dom(deadlinee2e) (4.37)

where 𝑑remain
𝑑 denotes the remaining fraction of the end-to-end deadline (not consumed

by already fixed local deadlines) as in Equation (4.2.5.1) on page 70.

Task Penalty Variables For each task without a fixed deadline a target deadline can be
calculated as defined in Section 4.2.5.1 on page 69 before running the MIP optimization.
For each of those tasks a penalty variable 𝑝td

𝜏 is defined:

𝑝td
𝜏 ≥ 𝑑target

𝜏 − 𝑑synth
𝜏 ∀𝜏 ∈ 𝒯 undef (4.38)

𝑝td
𝜏 ∈ N ∀𝜏 ∈ 𝒯 undef (4.39)

Note that Equation (4.38) gives only a lower bound for penalty variables. An upper
bound is not required because the variables appear in the objective function. As the
objective function is minimized, each penalty variable is assigned the smallest possible
value anyway.
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4.4.2.8. Optimization Objective

The objective function is the sum of one or more of the following sub-objectives. The
sum is minimized by the MILP solver using the standard Simplex method and a branch
and bound method for integer variables. The minimization of the total hardware cost
defined as the sum of the used ECU-types is seen as the primary objective which is
mandatory. Other objectives are optional, e.g. if the minimization of the number of used
bus slots on the global bus is not required, this part of the objective function can simply
be deactivated. The additional cost introduced by secondary objectives are also called
penalties.

To achieve a ranking between the parts of the objective function which prioritizes
the primary objective over the secondary objectives, a constant offset is added to the
cost specified for each single ECU-types. This offset is an upper bound for the sum of
all penalties of secondary objectives. Thus solutions with lower hardware cost always
supersede solutions with higher hardware cost but lower global bus usage.

Penalties used in Deadline Synthesis ∑︁
𝜏∈𝒯 undef

𝑝td
𝜏 (4.40)

In Equation (4.40) the sum of all penalties caused by tasks having a too small syn-
thesized deadline compared to their target deadline is calculated. An approximating
upper bound for the sum of these penalties can be calculated as the sum of all activation
periods of all affected tasks.

Minimal Number of Bus Slots ∑︁
𝑠∈𝑆maybe

conf

𝑏𝑠 · slotsreq(p, 𝑠) (4.41)

In Equation (4.41) the sum of the number of required bus slots for each signal which
is allocated to the bus due to the pre-allocation (not a-priori) is calculated. An upper
bound for the sum of these penalties is simply the number of still available bus slots on
the global bus.

Minimal Hardware Cost This is the primary objective function. Offset 𝑐 represents the
upper bound for all penalties by secondary objectives as stated above. It is added to the
cost of each ECU-type thus ensuring that the primary objective dominates the secondary
ones.

∑︁
e∈E

∑︁
t∈E

(𝑐+ cost(t))𝑥type
e,t (4.42)

82



4.5. Other Approaches

In Equation (4.42) the sum of the costs (including the offset mentioned above) for each
ECU-type used in the pre-allocation is calculated.

4.5. Other Approaches
Currently there exists only one alternative approach for the global analysis problem.

4.5.1. Global Analysis via Graph Partitioning: The KL Approach

The alternative global analysis approach described in this section is based on graph
partitioning. An overview and a comparison of the performance of that algorithm with
other graph partitioning algorithms is published in [Bük+11a], [Bük+11b] and will be
published in [Bük12], too.

The Kernighan-Lin Algorithm [KL70] has been combined with concepts taken from
[Dut93] and further extended to support multiple partitions. The resulting algorithm is
called KL+. Each hardware subsystem is represented by one partition containing software
task nodes of the task network. Each partition initially contains all tasks allocated to
its corresponding subsystem. All allocated tasks must remain in their partitions. The
algorithm iteratively assigns/reassigns each unallocated task to one of the partitions
until the minimal cut for the task network (graph) has been found. In contrary to the
classical KL algorithm the objective function is not the sum of the weight of the edges
(here: signals) but the sum of the costs for allocating the tasks to the partitions.

The cost for allocating a task to a partition is based on the communication cost and
the capacity required by the task in conjunction with the remaining capacity on the
corresponding hardware subsystem. The communication cost is calculated by looking
at the communication between tasks and the allocation of those tasks: intra-partition
communication (tasks are in the same partition) is for free, inter-partition communication
is expensive (tasks are in different partitions) because the global bus has to be used for
that. The way two tasks are communicating with each other can be characterized even
more detailed by expressing how frequently the communication occurs and how much
data is transferred. The capacity required for allocating a task onto an ECU depends on
the type of that ECU. This information is not available to the KL+ algorithm because
all modifications to the hardware architecture are solely realized on the local analysis tier
and — in contrary to the global analysis approach presented in this thesis — KL+ does
not use a detailed prediction of the ECU-types the task might be running on. Instead,
the algorithm determines separately for each hardware subsystem the best ECU-type
available for that subsystem (constraints might forbid certain types per subsystem) and
calculates the required capacity of all task on that subsystem (in that partition) assuming
that the task will run on an ECU with that ECU-type.

Due to that abstraction of the real capacity (available and required) the approach often
underestimates the available capacity and therefore provides very tight hardware cost
limits to the subsystem-specific local analysis steps. But this is very well acceptable and
even desired because it will prevent that the local analysis invests huge amounts of money
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on hardware modifications just to be able to allocate all the task pre-allocated to the
respective subsystem. In an ideal global analysis run, all tasks would be allocated during
the first iteration already. If this is impossible due to the tight cost restrictions, some
tasks will remain unallocated after the first global iteration and are then pre-allocated
to other subsystems during the second iteration, while in the same time the capacity
calculations are revised and the cost restrictions are relaxed if necessary.

The KL approach is completed by an algorithm for calculating deadlines for tasks and
signals from end-to-end deadlines and a heuristic for calculating static schedules for the
global bus. For the evaluation in Chapter 6 a simplified heuristic has been implemented
which does not calculate complete schedules but only estimates the minimal number of
required bus slots for all messages on the global bus and checks this value against the
number of still available bus slots. This simplified heuristic is used during the experiments
to ensure that all approaches under evaluation solve the same problem. If using the
original heuristic the KL approach would be handicapped (because it would calculate
more detailed solutions than all the other approaches).
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5. Local Analysis
All the approaches for global analysis described in chapter 4 use the quite abstract notion
of utilization for characterizing the computation capacity provided by ECUs or even
by whole subsystems. Moreover, local buses contained in the hardware subsystems are
not considered during the global analysis at all. Handling those details intentionally is
delegated to the subsystem-specific local analysis steps. The local analysis approaches are
required to work on a sufficiently detailed level of abstraction such that they can guarantee
the correctness of their local results with respect to all explicitly specified constraints and
all implicit constraints such as schedulability of all ECUs in the subsystem. As depicted
in Figure 5.1 the local analysis represents the lower tier of the two-tier optimization
approach described in this thesis.

Global Analysis
Multiple Subsystems

Global Bus

Local Analysis
One Subsystem

Local Bus

Pre-Allocation

Subsystem Allocation
+ Odd Set

Figure 5.1. – Optimization Process Cycle: Local Analysis

A great advantage of the two-tier optimization approach is that the same global analysis
approach can use different local analysis approaches depending on the technical realization
in the target system. One local analysis approach might for example provide support for
ECUs using time-triggered schedulers, a second local analysis approach might provide
support for classical fixed-priority preemptive schedulers, and a third approach might
incorporate the concepts of the other two by providing support for arbitrary combining
ECUs with time-slice-based or FPS schedulers in one subsystem. Currently there is
only support for homogeneous subsystems where all ECUs are FPS-scheduled and one
priority-based subsystem-local bus (using CAN) exists.

This chapter first provides an informal definition of the local analysis problem, followed
by a mathematical definition of the “interface” between the global and the local analysis.
Then the local analysis problem is formally defined and finally features of the existing
different local analysis approaches are compared. The emphasis of this chapter is on the
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description of the spare-time and MaxWCET approach for local analysis which has been
developed as part of this thesis.

5.1. Problem Definition
The local analysis is responsible for optimizing one subsystem without considering any of
the other subsystems. Therefore the local analysis works only with those ECUs which
are part of that subsystem and with the subsystem-local communication bus.

At the beginning of each local analysis run a set of (currently unallocated) tasks
which have been pre-allocated to the subsystem to be optimized is provided by the
global analysis. Furthermore, a set of constraints (including an upper bound for the
hardware cost of the subsystem) and the current global partial allocation of tasks and
signals is provided (containing those tasks/signals which have been allocated initially or
during earlier optimization steps). Note that each local analysis run has access to all
information about the other subsystems. But this information is only used to assess the
communication constraints, e.g. if a pre-allocated task sends a signal to a task allocated
or pre-allocated to a different subsystem, allocating that task to the subsystem to be
optimized implies that one or more messages on the global bus (and potentially on the
local bus) are required.

The goal of the local analysis is to find a solution where as many pre-allocated tasks
are allocated to the subsystem’s ECUs as possible while in the same time assure that the
hardware cost caused by the necessary hardware modifications (if any) are not exceeding
the specified cost limit. Some approaches are even able to minimize these hardware cost.

The objective functions of all local analysis approaches have in common that pre-
allocated tasks are only left unallocated if they cannot be allocated even when using the
most expensive hardware configuration for the respective subsystem (while still satisfying
the specified cost limit). Without this important property, the local analysis approaches
would frequently leave software tasks unallocated in order to minimize the subsystem’s
hardware cost. Of course, this is not desired.

The result of every local analysis step is a feasible allocation of tasks to ECUs, an
assignment of messages to signals, and an allocation of messages to the subsystem-local
bus. In this context “feasible” means that all subsystem ECUs and the local bus are
schedulable, that the memory consumption does not exceed the available memory, that
all signals sent between ECUs of the subsystem have corresponding messages on the local
bus and that all user-specified constraints are satisfied.

It is required that the allocation of all tasks and message to the subsystem’s ECUs and
its local bus as provided by the global analysis is not changed during the local analysis
but solely extended (e.g. an already allocated task has to remain on its ECU, but a
pre-allocated tasks can be allocated to any ECU of the respective subsystem). Currently
this requirement does not allow backtracking in the sense that an already allocated task
is removed from its ECU. Backtracking in this two-tier approach currently means that
tasks which could not be allocated to a subsystem form the so-called odd set and are
handed back to the global analysis for re-allocation. Another requirement is that the
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cost limit specified for the local hardware subsystem is not exceeded. Changes to other
subsystems are strictly prohibited.

Several different algorithms have been developed for the local analysis optimization.
All of them support at least the properties informally described in the last paragraphs.
In the following sections a formal definition of the local analysis problem is provided
starting with the interface between the global and the local analysis.

5.1.1. The Interface Between Global and Local Analysis
This section first introduces the formal definition of the local analysis problem. Then a
subsystem-local view on the whole system is defined.

Definition 5.1 (Local Analysis Problem)
Let conf be a valid (see Definition 3.18) and schedulable (see Definition 3.20) configuration
for a DSE problem p. A local analysis problem for a subsystem sub contained in the
hardware architectural pattern of the DSE problem is defined as

psub = (conf , 𝒯 pre, costmax, penalty)

where

• 𝒯 pre ⊆ 𝒯 is a set of currently unallocated tasks which have been pre-allocated to
the subsystem by the global analysis

• costmax is an upper bound on the hardware architecture cost given by the global
analysis.

• Function
penalty : 𝒯 pre → N

assigns a penalty cost to each of the pre-allocated tasks which incurs if the task
remains unallocated after the local analysis step.

It is required that the current configuration given as input to the local analysis is a
valid subsystem-local solution which does not exceed the specified cost limit. Therefore the
trivial solution for a local analysis problem — which is to provide the unchanged input as
result to the global analysis — is a valid solution for every local analysis problem. 2

For describing the interface of the local analysis step a local view on the global problem
and on solution candidates is required. In the following, definitions specific to local
analysis are derived from the definitions for the overall DSE problem by projection on
one subsystem.

Definition 5.2 (Hardware Subsystem Projection)
For a given architecture graph 𝐺hw =

(︀
E ∪̇B,Edgeshw)︀

(see Definition 3.2) the set of local
ECUs Esub for a given subsystem sub contained in the architecture graph is defined as

Esub:=
{︁

e | e ∈ E ∧ subsys(𝐺hw, e) = sub
}︁
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where subsys is the subsystem allocation function.
The set of local buses is defined as follows:

Bsub:=
{︁

b | b ∈ B ∧ subsys(𝐺hw, b) = sub
}︁

where subsys is the subsystem allocation function.
A well-formed hardware architecture has only maximal one local bus bsub per subsystem.

The existence of a local bus is mandatory for all subsystems with more than one ECUs.
If a local bus exists in a given subsystem sub, it is denoted by bsub with

bsub ∈ B is the (only) local bus of subsystem sub
:⇐⇒ subsys(𝐺hw, b) = sub ∧

∀b ∈ B : (subsys(𝐺hw, b) = sub)⇒ (b = bsub) 2

Definition 5.3 (Subsystem Task Set)
For a given local analysis problem

psub = (conf , 𝒯 pre, costmax, penalty)

the set of subsystem tasks is defined as

𝒯sub:=𝒯 pre
sub ∪ {𝜏 | 𝜏 ∈ dom(taskallocconf ) ∧ taskallocconf (𝜏) ∈ Esub}

where 𝒯 pre
sub is the set of tasks pre-allocated to the subsystem, taskallocconf is the current

intermediate task allocation function and Esub is the set of ECUs in subsystem sub. 2

Definition 5.4 (Subsystem Signal Set)
For a local analysis problem psub with task set 𝒯sub the set of subsystem signals is defined
as

𝑆sub:= {𝑠 | sender(tn, 𝑠) ∈ 𝒯sub ∨ recv(tn, 𝑠) ⊆ 𝒯sub}

where 𝒯sub is the subsystem task set and sender and recv are the sender and receiver
functions, respectively. 2

Note that the subsystem signal set definition hides exactly those signals which are sent
exclusively between tasks allocated or pre-allocated to other subsystems.

Definition 5.5 (Subsystem Configuration)
For any subsystem sub and a local analysis problem

psub = (conf , 𝒯 pre, costmax, penalty)

a subsystem configuration is defined as

conf p,sub =
(︁
typesub,𝒜

subsys
sub , 𝒯 odd

sub

)︁
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where typesub assigns ECU-types to some or all ECUs contained in the subsystem.
𝒜subsys

sub is an allocation of tasks, signals and messages as defined in Definition 3.6 but
limited to hardware elements of the current subsystem. Note that an allocation resulting
from a particular local analysis step contains all tasks, signals and message that have
already been allocated to the subsystem prior to that local analysis step and additional
tasks from the set of tasks 𝒯sub which have been pre-allocated to the subsystem and their
signals and potential new messages as long as they are required.

The set 𝒯 odd
sub (called odd set) contains all pre-allocated tasks which could not be

allocated during the local analysis step, formally:

𝒯 odd
sub := 𝒯sub ∖ dom(taskallocsub)

where taskalloc𝒜subsys
sub

is the allocation of tasks onto subsystem ECUs result from the local
analysis step. 2

Definition 5.6 (Subsystem Cost Function)
The subsystem cost function is equal to the global one given in Definition 3.22 with the
only difference that the set of ECUs is limited to the subsystem.

cost(conf p,sub):=
∑︁

e∈Esub

cost(typesub(e))

for a given subsystem sub and a subsystem configuration conf p,sub. 2

Definition 5.7 (Subsystem Solution)
A subsystem solution is a schedulable subsystem configuration. As local analysis steps are
usually intermediate steps towards a global solution the subsystem solution is not required
to be complete in the sense that all pre-allocated tasks in 𝒯sub have to be allocated during
the local analysis step. 2

5.2. Spare-Time and MaxWCET Analysis
The spare-time/MaxWCET analysis solves the Local Analysis Problem as defined in
Section 5.1. In addition to satisfying the constraint that the subsystem hardware cost
must be less than or equal to the specified cost limit, the spare-time/MaxWCET approach
is capable of minimizing the subsystem hardware cost.

5.2.1. The Concept of Spare-Time/MaxWCET Analysis
Additional tasks which have been pre-allocated to a subsystem and the messages which
might be required for their signals can be allocated to the subsystem only if there is
enough free “computation capacity” and communication bandwidth. If there is not
enough computation capacity for one or more of the pre-allocated tasks, it might be
necessary to extend the system by modifying the ECU-types of ECUs, which might or
might not already have an ECU-type assigned. Alternatively some or all of those tasks
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may also be put in the odd set and remain unallocated. If a signal does not fit onto the
local bus, modifying the hardware currently is no option. Instead, the sender task and/or
the receiver tasks of that signal have to be allocated onto the hardware architecture
such that no local communication is required. This might even require to leave them
unallocated thus handing them back to the global analysis by adding them to the odd
set. The computation capacity of ECUs and the bandwidth of the local bus are shared
among all tasks/signals allocated to them.

Many modeling concepts used in Chapter 4 (“Global Analysis”) can be adapted to fit
the local analysis problem, e.g. the cost function and the assignment of ECU-types to
ECUs. But one important concept is still missing: A notion of “capacity” regarding the
schedulability of FPS-scheduled ECUs and CAN buses which facilitates the definition of
a simple but sufficient schedulability test.

The spare-time/MaxWCET approach presented in this chapter provides simple and
sufficient schedulability tests for FPS-scheduled ECUs with strictly periodic tasks and
for CAN buses with strictly periodic signals/messages. Local deadlines are mandatory
for all tasks and signals/messages. The deadlines have to be less than or equal to the
periods of the tasks/signals.

The approach is based on the following observations. The characterization of remaining
capacity has to cover two effects. Firstly, inserting a new task/signal with a higher
priority than some existing tasks/signals on the same ECU will disturb those already allo-
cated tasks/signals. When performing the schedulability analysis for each lower-priority
task/signal, the additional interruptions caused by adding the new tasks/signals have to
be considered.

Secondly, the additionally allocated tasks/signals are themselves interrupted by any
previously allocated task/signals with higher priority on the same ECU/bus. Of course
the worst case response time of those additionally allocated tasks/signals may not exceed
their deadlines, too.

The first problem is tackled by spare-time Analysis. The spare-time characterizes
the remaining computation capacity remaining on a given ECU for a given priority
such that all previously allocated tasks/signals remain schedulable. The second problem
is tackled MaxWCET Analysis. The MaxWCET value characterizes how much
capacity is still available with respect to multiple specific combinations of task parameters
(deadline, period, etc.). This enables the speculative pre-calculation of MaxWCET values
without knowing yet which tasks/messages will be allocated to which ECUs/to the local
bus in the following analysis phase.

The combination of spare-time and MaxWCET allows to predict whether or not a set (or
subset) of currently unallocated tasks/message can be allocated to a hardware subsystem
such that all tasks/messages are schedulable without performing the schedulability
described in Chapter 2, Section 2.2.5.3 on page 18.

Figure5.2 depicts the process used for applying spare-time/MaxWCET analysis. An
initial schedulability test ensures the precondition that the initial configuration is schedu-
lable. Then spare-time values are calculated followed by a calculation of MaxWCET
values. Based on the pre-calculations the optimization process is performed.
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Schedulability analysis

Calculate Spare-Times

Calculate MaxWCETs

Optimization

Result
“Time-out”

Result
“Success”

Result
“Error”

[Schedulable]
[Not schedulable]

[Success]
[Error]

[Success]
[Error]

[No Time-out]

[Time-out]

[Success]
[Error]

Figure 5.2. – Spare-Time/MaxWCET Local Analysis Process
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5.2.2. Limitations and Preconditions of the Approach

There are some limitations of the current Spare-Time/MaxWCET approach. The notion
of limitation is used to describe which invariant properties of the DSE problems are
mandatory to be able to use the proposed approach. Example: The periods of tasks and
signals remain unchanged during the whole optimization process.

Additional, DSE local analysis problems have to satisfy some preconditions for the
spare-time / MaxWCET approach to be applicable on them. The notion of precon-
dition is used to describe which variable properties the DSE problems and DSE local
analysis problems must have to be compatible to the proposed methods. Examples:
Not all local deadlines of tasks must be known initially. But it is a precondition of the
spare-time/MaxWCET local analysis that all still missing local deadlines are synthesized
by the global analysis step before running the spare-time/MaxWCET local analysis.

5.2.2.1. Limitation: Relay Tasks

If in a given task network two tasks communicate with each other via a signal, then
their allocation to the hardware architecture has to guarantee that this communication
is technically realizable. Now imagine that the first task is allocated to a non-gateway
ECU of one hardware subsystem and the other task is allocated to a different subsystem.
In this case using only one message for that signal is impossible because the signal has
to be sent at least over the local bus of the subsystem where the first task is allocated
and over the global bus. At least two messages are required. But what happens on the
gateway ECU of the first task’s subsystem? One possible solution is to use a relay task
on the gateway ECU which relays that signal by (assuming the first task is the signal’s
sender) reacting on the corresponding message on the subsystem-local bus by sending the
corresponding message on the global bus. Both the activation period and the deadline
of such a relay task depend on the properties of the sender/receiver tasks and on the
properties of the messages as well.

In this work I assume for simplicity, that signals/message are relayed not by special
relay tasks but by the operating system on the gateway ECUs, transparently for the
regular software tasks allocated to those gateway ECUs.

Originally, the idea was to explicitly model relay tasks running on each of the gateway
ECUs with variable periods. Those periods would have to be adjusted during the
optimization phase to the smallest possible period of all tasks which make use of the
relay service. Unfortunately this concept has some serious implications: All local analysis
approaches require that each hardware subsystem is schedulable initially. This includes
the gateway ECUs with the relay tasks and additional tasks allocated to them. If a new
task with a period smaller than all periods of the tasks already using the relay task is
allocated to a subsystem, the period of the relay task would be reduced to that task’s
period. But reducing the period of the relay task might render tasks on the gateway
ECU unschedulable which violates the local analysis precondition that the subsystem is
schedulable. Therefore this concept has been dropped.
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5.2.2.2. Limitation/Precondition: Deadlines Less or Equal Periods

For each task in the system the deadline has to be smaller or equal to its period. Also for
each signal and each message the deadline has to be smaller than the period. Allowing
deadlines larger than periods would lead to problems like overlapping instances of the
same tasks/message which currently cannot be handled by the proposed approach.

5.2.2.3. Limitation: Strictly Periodic Activation of Tasks and Signals/Messages

Currently there is no support for release jitter in the approach. Supporting release
jitter would require a holistic schedulability analysis (involving the whole system) which
contradicts the concept of using pre-calculated spare-time / MaxWCET values which
model the remaining capacity of each ECU and the local bus independently from other
ECUs in the hardware subsystem.

Release jitter occurs if a task arrives (is able to run) but is not immediately released
(placed in the set of runnable tasks by the operating system). Release jitter usually
propagates along event-triggered task chains. Holistic schedulability analysis is required
for handling systems with release jitter. Holistic schedulability analysis is used to calculate
a fixed-point for the whole system because the ECUs cannot be analyzed independently
from each other anymore. See [Tin96] for details.

5.2.2.4. Limitation/Precondition: Deadline Monotonic Priorities

For the Spare-Time/MaxWCET approach it is required, that the priorities of all tasks
and messages are assigned following the deadline-monotonic paradigm (see also Sec-
tion 2.2.5.1).

Furthermore, it is assumed that a total order on the set of tasks is given by the user
by specifying a predicate:

prio> : 𝒯 × 𝒯 → {false, true} (5.1)

For any two tasks 𝜏 𝑖, 𝜏 𝑗 ∈ 𝒯 the predicate evaluating to true (prio>(𝜏 𝑖, 𝜏 𝑗) = true)
implies that 𝜏 𝑖 gets a higher priority than 𝜏 𝑗 , but only if both tasks are allocated to the
same ECU. The following properties have to hold for that predicate:

∀𝜏1, 𝜏2 ∈ 𝒯 :
(︁
deadlinetask

conf (𝜏1) < deadlinetask
conf (𝜏2)

)︁
⇒

prio>(𝜏1, 𝜏2) = true (5.2)
∀𝜏 ∈ 𝒯 : prio>(𝜏 , 𝜏) = false (5.3)

∀𝜏1, 𝜏2 ∈ 𝒯 : prio>(𝜏1, 𝜏2) = true⇒ prio>(𝜏2, 𝜏1) = false (5.4)
∀𝜏1, 𝜏2 ∈ 𝒯 , 𝜏1 ̸= 𝜏2 : prio>(𝜏1, 𝜏2) = true ∨ prio>(𝜏2, 𝜏1) = true (5.5)

Equation (5.2) requires that for every two tasks with different deadlines the task with
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the lower deadline gets the higher priority. Equation (5.3) enforces the relation to be
irreflexive and Equation (5.4) requires it to be asymmetric. Equation (5.5) states that if
two tasks have equal deadlines than one of them has to be assigned a higher priority than
the other. It is required to know the set of signals 𝑆alloc already allocated via messages
to the local bus and the set of signals which might be allocated during the optimization
step 𝑆 before running the spare-time and MaxWCET pre-analysis steps. The reason is
that because a higher priority message might be blocked by a lower priority message,
upper bounds for those blocking times have to be calculated during the pre-analysis. As
for tasks it is required to establish a total order with respect to the signal priorities for
the set of signals 𝑆 = 𝑆alloc∪̇𝑆:

prio> : 𝑆 × 𝑆 → {true, false} (5.6)

Similar to the handling of priorities of tasks, if for any two signals 𝑠𝑖, 𝑠𝑗 ∈ 𝑆 the
predicate evaluates to true (prio>(𝑠𝑖, 𝑠𝑗) = true) then the message 𝑚𝑖 corresponding
to 𝑠𝑖 would get a higher priority if allocated to the same (local) bus as message 𝑚𝑗

corresponding to signal 𝑠𝑗 . This additional implies that the deadline of 𝑚 has to be
smaller or equal to the deadline of message 𝑚𝑗 because all priorities of local buses are
defined deadline-monotonic.

A valid predicate definition has to satisfy the following properties:

∀𝑠1, 𝑠2 ∈ 𝑆 :
(︁
deadlinesignal

conf (𝑠1) < deadlinesignal
conf (𝑠2)

)︁
⇒

prio>(𝑠1, 𝑠2) = true (5.7)
∀𝑠 ∈ 𝑆 : prio>(𝑠, 𝑠) = false (5.8)

∀𝑠1, 𝑠2 ∈ 𝑆 : prio>(𝑠1, 𝑠2) = true⇒ prio>(𝑠2, 𝑠1) = false (5.9)
∀𝑠1, 𝑠2 ∈ 𝑆, 𝑠1 ̸= 𝑠2 : prio>(𝑠1, 𝑠2) = true ∨ prio>(𝑠2, 𝑠1) = true (5.10)

In the following both predicates (for tasks and for signals) are assumed to be given.

5.2.3. Analysis of Electronic Control Units

First, the theory behind Spare-Time and MaxWCET analysis is presented with the focus
on tasks and ECUs. In the next section the concepts are extended to signals/messages
on CAN buses.

In the rest of this chapter the following notations are used without loss of generality:
Let p be a DSE problem and conf a valid and feasible but incomplete configuration for
that DSE problem with allocation 𝒜. Furthermore let

psub = (conf , 𝒯 pre, costmax, penalty)

be the local analysis problem to be analyzed.
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5.2.3.1. Task Spare-Time Analysis

The spare-time is a notion for characterizing the remaining capacity of an ECU. Whenever
a new task is allocated to an ECU with higher priority than an allocated task, that new
task will cause additional preemptions for the allocated task. Therefore the worst case
response time (WCRT) of the allocated task is calculated using fixed-point Equation (2.1)
increases. The response time of the allocated tasks must not exceed that task’s deadline,
but it can be increased as long as it remains equal to or less than the task’s deadline.

Let 𝜏 𝑖 be a schedulable task allocated to an ECU e with ECU-type t. The maximum
extent to which that task may be delayed during its execution by preemptions caused by
additional tasks with higher priority on the same ECU without exceeding its deadline is
called its Spare-Time s𝜏 𝑖,t . Stated more formally, the Spare-Time is the greatest natural
number for which there exists a fixed-point 𝑟𝑖 for Equation (5.11) which is less than or
equal to the task’s deadline deadlinetask

conf (𝜏 𝑖).

Definition 5.8 (Task Spare-Time)
Let p be a DSE Problem and psub a local analysis problem as defined above. Let t be
an ECU-type and e an ECU contained in the hardware architectural pattern of p. The
spare-time s𝜏 𝑖,t of a task 𝜏 𝑖 already allocated to that ECU is defined as

s𝜏 𝑖,t ∈ N is the greatest natural number such that
∃𝑟𝑖 ∈N : 𝛾psub,𝜏 𝑖,t(𝑟𝑖) = 𝑟𝑖 ∧ 𝑟𝑖 ≤ deadlinetask

conf (𝜏 𝑖) with
𝛾psub,𝜏 𝑖,t(𝑥) =wcetp(𝜏 𝑖, t) + s𝜏 𝑖,t+∑︁

𝜏 𝑗∈hp𝒜(𝜏 𝑖)

⌈︃
𝑥

periodtask(𝜏 𝑗)

⌉︃
wcetp(𝜏 𝑗 , t) (5.11)

where hp denotes the function which for the given allocation assigns to any given task 𝜏
the set of all tasks which are allocated to the same ECU with a higher priority than 𝜏 .2

Note that the existence of a Spare-Time s𝜏 𝑖,t ∈ N follows from the precondition that
all allocated tasks are schedulable.

Definition 5.9 (Family of Task Spare-Time Fixed-Point Equations)
By replacing the variable s𝜏 𝑖,t in Equation (5.11) by a parameter 𝑧 ∈ {0, . . . , s𝜏 𝑖,t} a
family of functions 𝛾𝑧psub,𝜏 𝑖,t is defined with:

𝛾𝑧psub,𝜏 𝑖,t(𝑥) = wcetp(𝜏 𝑖, t) + 𝑧 +
∑︁

𝜏 𝑗∈hp𝒜(𝜏 𝑖)

⌈︃
𝑥

periodtask(𝜏 𝑗)

⌉︃
wcetp(𝜏 𝑗 , t) (5.12)

In the following it is shown that for every such function 𝛾𝑧psub,𝜏 𝑖,t a fixed-point exists.
But first a sufficient condition for the existence of fixed-points in general is given in
Lemma (5.10).
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Lemma 5.10 (Sufficient Condition for the Existence of a Fixed-Point)
Let 𝑓 : N → N be a monotonically increasing function. If for given 𝑥, 𝑦 ∈ N, 𝑥 < 𝑦
holds that 𝑓(𝑥) > 𝑥 and 𝑓(𝑦) < 𝑦, then it follows that 𝑥 + 1 < 𝑦 and there exists an
intermediate value 𝑧 ∈ N, 𝑥 < 𝑧 < 𝑦 which is a fixed-point of 𝑓 (namely 𝑓(𝑧) = 𝑧).

Proof The statement 𝑥+ 1 < 𝑦 holds because 𝑓 is a monotonically increasing function
defined on the natural numbers. Assume there exists no fixed-point of 𝑓 between 𝑥 and 𝑦,
formally ∀𝑘 ∈ N, 𝑥 < 𝑘 < 𝑦 : 𝑓(𝑘) ̸= 𝑘. Then there has to exist a value 𝑛 ∈ N, 𝑥 < 𝑛 < 𝑦
such that 𝑓(𝑛) > 𝑛∧ 𝑓(𝑛+ 1) < (𝑛+ 1) holds. As both the domain and the range of 𝑓 is
N, it follows that 𝑓(𝑛) ≥ (𝑛 + 1) and 𝑓(𝑛 + 1) ≤ 𝑛. This contradicts the prerequisite
that 𝑓 is a monotonically increasing function. �

Using that lemma the existence of a fixed-point for all members of the family of
functions 𝛾𝑧psub,𝜏 𝑖,t is shown.

Theorem 5.11 (Fixed-Points in Task Spare-Time Functions)
Let 𝜏 𝑖 be a schedulable task allocated to an ECU e with Spare-Time s𝜏 𝑖,t. Let 𝛾𝑧psub,𝜏 𝑖,t
with 𝑤 ∈ {0, . . . , s𝜏 𝑖,t} be the family of fixed-point functions as defined above. Then for
function 𝛾𝑤psub,𝜏 𝑖,t there exists a fixed-point 𝑟𝑤𝑖 ∈ N with 𝑟𝑤𝑖 ≤ deadlinetask

conf (𝜏 𝑖). 2

Proof The existence of a fixed-point 𝑟0
𝑖 for function 𝛾0

psub,𝜏 𝑖,t follows from the precondi-
tion that task 𝜏 𝑖 is schedulable. The existence of a fixed-point 𝑟s𝜏𝑖,t

𝑖 for function 𝛾s𝜏𝑖,t
psub,𝜏 𝑖,t

follows directly from the definition of spare-time, see Equation (5.11).
Without loss of generality, let 𝛾𝑤psub,𝜏 𝑖,t be a function of the family of spare-time

functions of task 𝜏 𝑖 with 0 < 𝑤 < s𝜏 𝑖,t . Because of 𝑤 > 0 we know that 𝛾𝑤psub,𝜏 𝑖,t(𝑟
0
𝑖 ) > 𝑟0

𝑖 .
Furthermore we know that 𝛾𝑤psub,𝜏 𝑖,t(𝑟

s𝜏𝑖,t
𝑖 ) < 𝑟

s𝜏𝑖,t
𝑖 because of 𝑤 < s𝜏 𝑖,t . Then the

existence of a fixed-point 𝑟𝑤𝑖 for 𝛾𝑤psub,𝜏 𝑖,t follows from Lemma (5.10). �

The notion of spare-time is used to formulate a sufficient condition expressing under
which circumstances tasks that are already allocated to a given ECU remain schedulable if
additional tasks are allocated to the same ECU with higher priorities. A formal definition
of the sufficient condition is given in Theorem 5.12

Theorem 5.12 (Task Spare-Time Schedulability Condition)
Let 𝜏 𝑖 be a schedulable task allocated by allocation 𝒜 to an ECU e with ECU type t and
let s𝜏 𝑖,t be the spare-time of that task. Let 𝒯 new be a set of tasks which shall be allocated
to the same ECU with higher priorities than 𝜏 𝑖. Task 𝜏 𝑖 remains schedulable after those
new tasks have been allocated if the following condition holds:

s𝜏 𝑖,t ≥
∑︁

𝜏∈𝒯 new

⌈︃
deadlinetask

conf (𝜏 𝑖)
periodtask(𝜏)

⌉︃
wcetp(𝜏 , t) (5.13)
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Proof 𝜏 𝑖 is schedulable if its worst case response time is smaller or equal to its deadline,
formally 𝑟𝑖 ≤ deadlinetask

conf (𝜏 𝑖). As stated in Equation (2.1) (page 19) the duration of all
preemptions for task 𝜏 𝑖 caused by a set of higher priority tasks is defined by

∑︁
𝜏∈𝒯 new

⌈︃
𝑟𝑖

periodtask(𝜏)

⌉︃
wcetp(𝜏 , t)

where 𝑟𝑖 is the (known) worst case response time of 𝜏 𝑖. An upper bound for the duration
of preemptions can be found by substituting the response time 𝑟𝑖 with the deadline
deadlinetask

conf (𝜏 𝑖) resulting in the term

∑︁
𝜏∈𝒯 new

⌈︃
deadlinetask

conf (𝜏 𝑖)
periodtask(𝜏)

⌉︃
wcetp(𝜏 , t)

Let 𝑦 denote that upper bound (as defined above) and 𝑥 ∈ {0, . . . , 𝑦} the real additional
preemption duration as would be calculated by the original fixed-point equation. For
every 𝑤 ∈ N, 0 ≤ 𝑤 ≤ 𝑦 the family of fixed-point functions for 𝜏 𝑖 contains a function
𝛾𝑤psub,𝜏 𝑖,t . Due to the precondition that task 𝜏 𝑖 is schedulable if no additional tasks are
allocated to the ECU it follows from Theorem 5.11 that there exists a fixed-point 𝑟𝑤𝑖 for
function 𝛾𝑤psub,𝜏 𝑖,t with 𝑟𝑤𝑖 ≤ deadlinetask

conf (𝜏 𝑖). Thus task 𝜏 𝑖 remains schedulable. �

Note that by using an upper bound for the preemption duration caused by the
additionally allocated tasks with higher priorities the calculation of the exact number of
preemptions is avoided. This calculation would require to solve the original fixed-point
equation during the optimization process for each task allocation onto each of the ECU for
the respective currently chosen ECU-types. Using the spare-time approach the decision
whether or not a set of additional tasks can be allocated without harming a given already
allocated task is simplified by using the pre-calculated spare-time values.

The downside of using an upper bound for the preemption duration is a slightly loss of
precision. For example, if an allocated task has a very small worst case response time
far less than its deadline than using that large deadline instead of the small worst case
response time for determining the number of preemptions will result in a significantly
too large value. As a consequence some sets of allocated tasks would be rejected by the
test proposed in Theorem (5.13) although they would fit on the given ECU as could be
shown by performing a full schedulability analysis.

So far only one allocated task has been considered with one or more additional tasks
to be allocated. Of course, usually there are multiple tasks allocated to each ECU.
Theorem 5.13 defines a schedulability test for all the initially allocated tasks on an ECU,
which simply tests the schedulability condition specified in Theorem (5.13) for all those
tasks.

Theorem 5.13 (ECU Spare-Time Schedulability Condition)
Let 𝒯 alloc be a set of schedulable tasks already allocated to a given ECU e with ECU-type
t. A set of tasks 𝒯 new can be additionally allocated to that ECU without rendering any of
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the already allocated tasks unschedulable if the condition given in Theorem 5.12 holds for
every already allocated task. 2

Proof Follows directly from Theorem 5.12 and the fact that the schedulability of each
task on a given ECU does only depend on the activation periods and worst case execution
times of the other tasks on the same ECU with a higher priority but not on whether or
not they themselves are schedulable. �

5.2.3.2. Task MaxWCET Analysis

Spare-Time analysis only allows to decide whether or not a set of additional tasks can be
allocated to an ECU without rendering the already allocated tasks unschedulable. It is
not suitable for deciding whether or not the additionally allocated tasks will satisfy their
deadlines if being allocated to that ECU.

The MaxWCET analysis has been developed to fill this gap. The rationale behind
MaxWCET analysis is to determine generic parameters which allow to decide whether
or not a set of additional tasks can be allocated to an ECU such that all of them are
schedulable. Those parameters are generic in the sense that it is not required to already
know the actual set of additional tasks for determining the parameters. Instead, it is
sufficient to know some basic information about the task set, namely a set of pseudo
deadlines which abstract from the actual task deadlines.
Definition 5.14 (Pseudo Deadline Set)
The pseudo deadline set for a given set of tasks/signals is defined as the set of all
task/signal deadlines. 2

The pseudo deadline set is especially useful if many of the unallocated tasks have the
same deadline. In this case the huge multiset of deadlines (with multiple identical values)
can be expressed with a very small set of pseudo deadlines. The MaxWCET values have
to be calculated only for that small set of pseudo deadlines which saves a lot of effort.

Definition 5.15 (Task MaxWCET)
Let e be an ECU, t an ECU-type and �̂� a pseudo deadline. The corresponding MaxWCET
value is denoted by m�̂�,e,t and defined as follows:

m�̂�,e,t ∈ N is the greatest natural number such that

∃𝑟 ∈ N : 𝛿psub,�̂�,e,t(𝑟) = 𝑟 ∧ 𝑟 ≤ �̂� with

𝛿psub,�̂�,e,t(𝑥):=m�̂�,e,t +
∑︁

𝜏∈𝒯e ∧
deadlinetask

conf (𝜏)≤�̂�

⌈︃
𝑥

periodtask(𝜏)

⌉︃
wcetp(𝜏 , t) (5.14)

where 𝒯e is the set of tasks already allocated by 𝒜 to ECU e. 2

The right side of the fixed-point equation calculates the sum of all preemption durations
caused by all tasks already allocated to an ECU e that have a deadline smaller or equal to
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the chosen pseudo deadline. All tasks with a larger deadline would have a lower priority
in the final allocation to the ECU and therefore would not preempt any of the additional
allocated task with a deadline equal or less than the pseudo deadline.

One “corner case” is already handled properly in the definition of MaxWCET but
nevertheless should be mentioned explicitly. For each additional task which would be
allocated with a priority higher than all of the already allocated tasks on an ECU (due to
its smaller deadline), the corresponding MaxWCET value is equal to its pseudo deadline.
This is because such tasks would solely be preempted by other additionally allocated
tasks with an even higher priority but never by any of the already allocated tasks.

Again, a family of fixed-point equations can be defined.
Definition 5.16 (Family of Task MaxWCET Fixed-Point Equations)
For the local analysis problem psub specified above with the given allocation 𝒜, an ECU
e part of the subsystem hardware architecture, an ECU-type t and a pseudo deadline �̂�,
with MaxWCET m�̂�,e,t let

𝛿𝑧psub,�̂�,e,t
(𝑥):=𝑧 +

∑︁
𝜏∈𝒯e ∧

deadlinetask
conf (𝜏)≤�̂�

⌈︃
𝑥

periodtask(𝜏)

⌉︃
wcetp(𝜏 , t)

be the family of MaxWCET fixed-point equations with 𝑧 ∈ N, 0 ≤ 𝑧 ≤ m�̂�,e,t. 2

A fixed-point exists for each of the functions that belong to a given MaxWCET
Function Family. The proof for this statement is very similar to the one for the existence
of fixed-points in all functions of a given spare-time function family.
Theorem 5.17 (Fixed-Points in Task MaxWCET Functions)
For a given allocation 𝒜, a pseudo deadline �̂�, an ECU e and an ECU-type t let m�̂�,e,t
denote the MaxWCET value defined as above.

Let 𝛿𝑧psub,�̂�,e,t
with 𝑧 ∈ {0, . . . ,m�̂�,e,t} be the corresponding family of fixed-point functions.

Then for every member of that family 𝛿𝑤psub,�̂�,e,t
with 𝑤 ∈ {0, . . . ,m�̂�,e,t} there exists a

fixed-point 𝑟𝑤 ∈ N with 𝑟𝑤 ≤ �̂�. 2

Proof The existence of a fixed-point 𝑟0 = 0 for function 𝛿0
psub,�̂�,e,t

directly follows from

the definition of that function. The existence of a fixed-point 𝑟m�̂�,e,t for function 𝛿
m�̂�,e,t
psub,�̂�,e,t

follows directly from the definition of MaxWCET (see Definition 5.15).
Without loss of generality, let 𝛿𝑤psub,�̂�,e,t

be a function of the family of MaxWCET
functions with 0 < 𝑤 < m�̂�,e,t . Because of 𝑤 > 0 we know that 𝛿𝑤psub,�̂�,e,t

(𝑟0) > 𝑟0.
Furthermore we know that 𝛿𝑤psub,�̂�,e,t

(𝑟m�̂�,e,t ) < 𝑟m�̂�,e,t because of 𝑤 < m�̂�,e,t . Then the
existence of a fixed-point 𝑟𝑤 for 𝛿𝑤psub,�̂�,e,t

follows from Lemma (5.10). �

Theorem 5.18 (Task MaxWCET Schedulability Condition)
Let 𝒯e be the set of allocated tasks on ECU e and 𝒯 new

e ⊆ 𝒯 pre be the subset of the
pre-allocated tasks which shall be allocated to that ECU. Let 𝜏 𝑖 ∈ 𝒯 new

e be an unallocated
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task with deadline deadlinetask
conf (𝜏 𝑖). Let D̂ be the set of pseudo deadlines derived from the

set of pre-allocated tasks and �̂� ∈ D̂, �̂� = deadlinetask
conf (𝜏 𝑖) be the relevant pseudo deadline

for 𝜏 𝑖. Let m�̂�,e,t be the corresponding MaxWCET value for ECU-type t as specified in
Definition 5.15.

If all tasks in 𝒯 new
e would be allocated to ECU e with ECU-type t then task 𝜏 𝑖 is

guaranteed to be schedulable if the following condition holds:

m�̂�,e,t ≥ wcetp(𝜏 𝑖, t) +
∑︁

𝜏∈𝒯 new
e ∧

prio>(𝜏 ,𝜏 𝑖)=true

⌈︃
�̂�

periodtask(𝜏)

⌉︃
wcetp(𝜏 , t)

where the additionally allocated task 𝜏 𝑖 is only preempted by those additionally allocated
tasks which would have a higher priority on ECU ECU (all tasks 𝜏 ∈ 𝒯 new

e where
prio>(𝜏 , 𝜏 𝑖) = true). 2

Proof The proof is analog to that of Theorem 5.12. 𝜏 𝑖 is schedulable if its worst case
response time is smaller or equal to its deadline, formally 𝑟𝑖 ≤ deadlinetask

conf (𝜏 𝑖). As stated
in Equation (2.1) (see Page 19) the duration of all preemptions for task 𝜏 𝑖 caused by the
set of higher priority tasks can be calculated by

∑︁
𝜏∈𝒯 new

e ∧
prio>(𝜏 ,𝜏 𝑖)=true

⌈︃
𝑟

periodtask(𝜏)

⌉︃
wcetp(𝜏 , t)

where 𝑟 is the (known) worst case response time of 𝜏 𝑖. An upper bound for the duration
of preemptions can be found by substituting the response time 𝑟𝑖 with the deadline
deadlinetask

conf (𝜏 𝑖) resulting in the term

∑︁
𝜏∈𝒯 new

e ∧
prio>(𝜏 ,𝜏 𝑖)=true

⌈︃
�̂�

periodtask(𝜏)

⌉︃
wcetp(𝜏 , t)

Let 𝑦 denote that upper bound (as defined above) and 𝑤 ∈ {0, . . . , 𝑦} the real preemption
duration as would be calculated by the original fixed-point equation caused by all other
additional tasks which would have a higher priority on the same ECU. For every possible
value 0 ≤ 𝑤 ≤ 𝑦 the family of fixed-point functions for 𝜏 𝑖 contains a function 𝛿𝑤psub,𝜏 𝑖,t . It
follows from Theorem 5.17 that there exists a fixed-point 𝑟𝑤𝑖 for function 𝛿𝑤psub,𝜏 𝑖,t with
𝑟𝑤𝑖 ≤ �̂�. Thus task 𝜏 𝑖 would be schedulable. �

Theorem 5.19 (ECU MaxWCET Schedulability Condition)
Let 𝒯 alloc be a set of schedulable tasks already allocated to a given ECU e with ECU-type
t. A set of tasks 𝒯 new can be additionally allocated to that ECU such that all 𝜏 ∈ 𝒯 new

are schedulable if the MaxWCET Schedulability condition specified in Theorem 5.18 holds
for every of those tasks. 2
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Proof Follows directly from Theorem 5.18 and the fact that the schedulability of each
task on a given ECU does only depend on the activation periods and worst case execution
times of the other tasks on the same ECU with a higher priority but not on whether or
not they themselves are schedulable. �

5.2.4. Combining Spare-Time and MaxWCET Analysis

When combining the notions of spare-time and MaxWCET a sufficient condition is
available which — if evaluated to true — guarantees that a given ECU will remain
schedulable if a given set of additional tasks is allocated to that ECU, see Theorem 5.20.

Theorem 5.20 (spare-time and MaxWCET Schedulability Condition)
Let 𝒯 alloc be a set of schedulable tasks already allocated to a given ECU e with ECU-type
t. A set of tasks 𝒯 new can be additionally allocated to that ECU such that all tasks
(already allocated and additionally allocated) and therefore the whole ECU are schedulable,
if both the conditions specified in Theorem 5.13 (schedulability of all already allocated
tasks as guaranteed by the spare-time condition) and Theorem 5.19 (schedulability of all
additionally allocated tasks as guaranteed by the MaxWCET condition). 2

Proof Follows directly from the proofs of Theorems 5.13 and 5.19. �

An important property of both the spare-time and MaxWCET schedulability conditions
are that they can easily be expressed via linear equations. Details how to exploit this
property can be found in Section 5.4.

5.2.5. Analysis of Communication Media: Controller Area Network

This thesis focuses on priority-based communication for local communication buses. The
proposed Spare-Time/MaxWCET approach can be applied with little extensions to
priority-based communication buses. This work uses Controller Area Network (CAN)
buses.

The theory behind the schedulability analysis of ECUs with fixed-priority preemptive
scheduling and of communication buses with the priority-based CAN protocol is strongly
related. The well-known fixed-point equations (see Equation (2.1) on page 19) can be
applied to both of them, when considering one important difference: Once the transmission
of a message on a CAN bus has been started it cannot be preempted. Only during the
arbitration phase it is decided which of the active messages is sent on the bus. This is
always the active message with the highest priority. But if such a message arrives (is
activated) while a lower-priority message is being transmitted, the transmission of the
higher-priority message cannot start immediately but is delayed until the next arbitration
phase is reached. The lower-priority message blocks the higher-priority message. The
blocking time for a message is defined as the maximal time any lower-priority message
can delay its transmission. In Section 2.7 (on page 21) it is shown how blocking times
have been incorporated in the classical schedulability analysis.
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As the transmission of a message cannot be interrupted, the transmission time is not
included in the fixed-point part of the worst case response time equation (see Section 2.7
(on page 21).

Let psub be a local analysis problem for a subsystem sub with allocation 𝒜 and local
bus b with bus type b. A message 𝑚𝑖 associated to a signal 𝑠𝑖 which is allocated to the
local bus b is schedulable if its worst case response time 𝑟𝑖 is smaller or equal to its
deadline deadlinemsg

conf (𝑚𝑖):

𝑟𝑖 = wctt(𝑠𝑖, b) + 𝜔𝑖, with (5.15)

𝜔𝑖 = block𝑖 +
∑︁
𝑠𝑗∈𝑆b:

prio>(𝑠𝑗 ,𝑠𝑖)

⌈︃
𝜔𝑖 + 1

periodmsg(𝑠𝑗)

⌉︃
wctt(𝑠𝑗 , b), and (5.16)

block𝑖:= max
𝑠𝑗∈𝑆b:
𝑠𝑖=𝑠𝑗 ∨

prio>(𝑠𝑖,𝑠𝑗)

{wctt(𝑠𝑗 , b)}

where 𝑆b denotes the set of signals allocated to the local bus b via messages and wctt(𝑠𝑗 , b)
the worst case transmission time of a signal 𝑠𝑖 if sent on a bus with bus type b via
message 𝑚𝑖. Signal 𝑠𝑖 is schedulable on bus b if:

𝑟𝑖 ≤deadlinemsg
conf (𝑚𝑖) (5.17)

where 𝑚𝑖 is the message associated to signal 𝑠𝑖.
In Equations (5.15) the worst case transmission time (WCRT) is given by 𝑟𝑖, the

worst case response time by 𝑟𝑖 and the busy period (see e.g. [Dav+07] for definition)
by 𝜔𝑖. The busy period for any signal 𝑠 on the local bus b is defined as fixed-point
equation (see Equation (5.16)) which due to the uninterruptible nature of CAN signal
transmission includes interruptions caused by signal 𝑠 itself. This is realized by summing
the interruptions caused by signals with higher or equal priority. To avoid the problem
that for a signal with blocking time equal to zero an empty busy period (with a duration of
0) would be a valid solution for the fixed-point equation, the smallest possible transmission
time (which is 1) is added to the busy period variable during the calculation of the number
of preemptions. block𝑖 is the maximal blocking time for signal 𝑠𝑖 caused by lower-priority
signals or by a prior invocation of signal 𝑠𝑖. Finally Equation (5.17) specifies the condition
under which signal 𝑠𝑖 is schedulable.

5.2.5.1. Signal Spare-Time Analysis

Equations (5.15) and (5.16) can be modified to include the necessary Spare-Time variable.
This is accomplished by replace the fixed-point equation used to calculate the busy period
by a new function Θ.
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Definition 5.21 (Signal spare-time)
Let p be a DSE Problem and psub a local analysis problem as defined above. Let b be a
bus contained in the hardware architectural pattern of p with bus type b. Let 𝑆b be the set
of signals allocated via messages to the local bus b and 𝑆new the set of signals which are
currently not allocated to that bus but might get allocated during the local analysis step.
The spare-time s𝑠𝑖,b of a signal 𝑠𝑖 allocated to that bus using a message 𝑚𝑖 is defined as:

s𝑠𝑖,b ∈ N is the greatest natural number such that
∃𝑟𝑖 ∈ N : 𝜃psub,𝑠𝑖,b(𝑟𝑖) = 𝑟𝑖 ∧

(𝑟𝑖 + wctt(𝑠𝑖, b)) ≤ deadlinemsg
conf (𝑚𝑖) (5.18)

where

𝜃psub,𝑠𝑖,b(𝑥):=blockub
psub(𝑠𝑖) + s𝑠𝑖,b+ (5.19)⌈︃

𝑥+ 1
periodsig(𝑠𝑗)

⌉︃
wctt(𝑠𝑗 , b)

blockub
psub(𝑠𝑖):= max{wctt(𝑠𝑗 , b) | 𝑠𝑗 ∈ 𝑆b ∪ 𝑆new :

𝑠𝑖 = 𝑠𝑗 ∨ prio>(𝑠𝑖, 𝑠𝑗)} 2

For simplicity, in the above equations most of the notations are defined with references
to signals not to the corresponding messages, e.g. the spare-time is defined for a signal
on a given bus (which is unambiguous because each signal corresponds to maximal
one message per bus). There is one exception: The deadlines for signals sent over a
subsystem-local bus are defined via their corresponding messages.

While calculating spare-time values, it is not known yet which of the unallocated
signals will be allocated to the local bus during the following optimization step. Therefore
the definition of spare-time for signals uses an upper bound for the blocking time which
considers for each signal not only the worst case transmission times for all the already
allocated signals with lower priority but additionally all unallocated signals. This may
lead to a blocking time which is too large. But using too large blocking times is a safe
over-approximation which does not invalidate the spare-time results.

As for the spare-time, a family of signal spare-time fixed-point equations is defined:

Definition 5.22 (Family of Signal Spare-Time Fixed-Point Equations)
Let p be a DSE Problem and psub a local analysis problem for a subsystem sub. Let 𝑠𝑖 be
a signal with corresponding schedulable message 𝑚𝑖 which is allocated to the local bus
b of the subsystem. By replacing the variable s𝑠𝑖,b in Equation (5.19) by a parameter
𝑧 ∈ {0, . . . , s𝑠𝑖,b} a family of functions 𝜃𝑧psub,𝑠𝑖,b(𝑥) is defined by:

𝜃𝑧psub,𝑠𝑖,b(𝑥):=blockub
psub(𝑠𝑖) + 𝑧+∑︁

𝑠𝑗∈𝑆b:
prio>(𝑠𝑗 ,𝑠𝑖)

⌈︃
𝑥+ 1

periodsig(𝑠𝑗)

⌉︃
wctt(𝑠𝑗 , b) 2
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In Theorem 5.23, the existence of a fixed-point for each function included in that family
is proven.
Theorem 5.23 (Fixed-Points in Signal Spare-Time Functions)
Let 𝑠𝑖 be a schedulable signal allocated to a local bus via message 𝑚𝑖, and s𝑠𝑖,b be the
corresponding Spare-Time. Let 𝜃𝑧psub,𝑠𝑖,b(𝑥) with 𝑧 ∈ {0, . . . , s𝑠𝑖,b} be the family of signal
fixed-point functions as defined above. Then for every function of that family there exists
a fixed-point 𝑟𝑧𝑖 ∈ N with

𝑟𝑧𝑖 ≤ deadlinemsg
conf (𝑚𝑖)− wctt(𝑠𝑖, b)

2

Proof The existence of a fixed-point 𝑟0
𝑖 for function 𝜃0

psub,𝑠𝑖,b follows from the precondi-
tion that the message 𝑚𝑖 is schedulable. The existence of a fixed-point 𝑟s𝑠𝑖,b

𝑖 for function

𝜃
𝑟
s𝑠𝑖,b
𝑖

psub,𝑠𝑖,b follows directly from the definition of signal spare-time (see Equation (5.19)).
Without loss of generality, let 𝜃𝑤psub,𝑠𝑖,b be a function of the family of spare-time functions
of signal 𝑠𝑖 with 0 < 𝑤 < s𝑠𝑖,b. Because of 𝑤 > 0 we know that 𝜃𝑤psub,𝑠𝑖,b(𝑟0

𝑖 ) > 𝑟0
𝑖 . Fur-

thermore we know that 𝜃𝑤psub,𝑠𝑖,b(𝑟s𝑠𝑖,b
𝑖 ) < 𝑟

s𝑠𝑖,b
𝑖 because of 𝑤 < s𝑠𝑖,b. Then the existence

of a fixed-point 𝑟𝑤𝑖 for 𝜃𝑤psub,𝑠𝑖,b follows from Lemma (5.10). �

The busy periods calculated for signals do not include the signals own worst case
transmission times. As a consequence that transmission time has to be subtracted from
the deadline while calculating the fixed-point (see Definition 5.21). This is the most
important difference in fixed-point Spare-Time function family for signals defined in
Theorem 5.23 compared to its equivalent for tasks.
Theorem 5.24 (Signal Spare-Time Schedulability Condition)
Let p be a DSE Problem and psub a local analysis problem as defined above. Let b be a
bus contained in the hardware architectural pattern of p with type b. Let 𝑆b be the set of
signals already allocated via messages to the local bus b and 𝑆new be the set of unallocated
signals. s𝑠𝑖,b be the spare-time of a schedulable signal 𝑠𝑖 ∈ 𝑆b already allocated to that
bus.

A signal 𝑠𝑖 allocated to the local bus via message 𝑚𝑖 remains schedulable even if all
signals in 𝑆new are allocated to the same bus, as long as the following condition holds:

s𝑠𝑖,b ≥
∑︁

𝑠𝑗∈𝑆new

prio>(𝑠𝑗 ,𝑠𝑖)

⌈︃
deadlinemsg

conf (𝑚𝑖)
periodsig(𝑠𝑗)

⌉︃
wctt(𝑠𝑗 , b)

where 𝑚𝑖 is the message on the local bus b that corresponds to signal 𝑠𝑖. 2

Proof This proof is similar to the proof for Theorem 5.12 (page 96) for tasks. Due
to the precondition that the messages 𝑚𝑖 is schedulable, a family of signal Spare-Time
functions exists as defined above. As long as the additional preemptions (during the
CAN arbitration phase) by additional signals with higher priority is smaller or equal to
the calculated Spare-Time, there exists a corresponding function in the family of signal
Spare-Time functions which has a fixed-point according to Theorem 5.23. �
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5.2.5.2. Signal MaxWCET Analysis

Similar to its equivalent for tasks, the MaxWCET analysis for signals uses a set of pseudo
deadlines. As the unallocated signals are not represented by a message on the local bus yet,
their deadlines are approximated to be equal to their activation periods when determining
the set of pseudo deadlines. Unlike the MaxWCET values for tasks the MaxWCET
values for signals do not depend on any bus type but only on the local bus itself (in the
scope of a local analysis problem whose subsystem contains that bus). Referring only to
the bus is sufficient because one limitation of the DSE approach presented in this work is
that the type of buses remains unmodified during the whole optimization phase.

In contrary to the signal spare-time where the original mathematically formulation for
schedulability as in Equation (5.17) can be used, a simple over-approximation is required
for the signal MaxWCET analysis. As explained before, in the original equations the
worst case transmission time of the signal under evaluation is not part of the fixed-point
equation itself. This is because a transmission, once started, cannot be preempted.
Therefore the fixed-point equation only subsumes the durations of the preemptions
occurring during the arbitration phase before the actual transmission is started.

The over-approximation required to adapt the MaxWCET analysis as formulated
for tasks in order to make it applicable to signals on CAN buses is to assume that
the transmission could be preempted. This implies that the worst case transmission
time of the signal is added to the fixed-point equation as shown in Definition 5.25.
This modification of the original mathematical formulation is necessary because it
avoids to distinguish between the worst case transmission time of the signal under
evaluation and the preemption caused for that signal by other additionally allocated
signals. Those preemptions could lead to an increase of the busy period, while the worst
case transmission time of the signal under evaluation could not, if using the original
mathematical formulation.
Definition 5.25 (Signal MaxWCET)
Let p be a DSE Problem and psub a local analysis problem as defined above. Let b be a bus
with type b, 𝑆b is the set of signals already allocated to bus b, and �̂� a pseudo deadline.
The corresponding MaxWCET value is denoted by m�̂�,b and defined as follows:

m�̂�,b ∈ N is the greatest natural number such that

∃𝑟 ∈ N : 𝜅psub,�̂�,b(𝑟) = 𝑟 ∧ 𝑟 ≤ �̂� with

𝜅psub,�̂�,b(𝑥):=blockub
psub(�̂�) + m�̂�,b +

∑︁
𝑠∈𝑆b ∧

deadlinemsg
conf (𝑚)≤�̂�

⌈︃
𝑥+ 1

periodsig(𝑠)

⌉︃
wctt(𝑠, b) (5.20)

blockub
psub(�̂�):= max{wctt(𝑠, b) | 𝑠 ∈ 𝑆b ∪ 𝑆new ∧ �̂� ≤ 𝑑𝑠} and (5.21)

𝑑𝑠:=
{︃

deadlinemsg
conf (𝑚) 𝑠 ∈ 𝑆b

periodsig(𝑠) otherwise
(5.22)

where 𝑚 denotes the corresponding message for 𝑠. 2
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Note that for signals which are not yet allocated to the local bus via a message no
local deadline for that bus has been synthesized yet. Therefore, the above definition uses
the signal’s period for deciding whether or not an unallocated signal has to be considered
for calculating the blocking time of another signal.

With the over-approximated model, an increase in either the worst case transmission
time of the signal under evaluation or the preemption duration could potentially have the
same effect: an increasing busy period. The modification is a safe over-approximation:
if a fixed-point smaller than or equal to the deadline can be found with the modified
fixed-point equation then there exists a fixed-point for the original fixed-point equation as
well which is smaller than the one for the modified equation minus the MaxWCET value.
This fixed-point for the original equation satisfy the condition stated in Equation (5.17).

The family of MaxWCET fixed-point functions for signals is defined as follows:

Definition 5.26 (Family of Signal MaxWCET Fixed-Point Equations)
Let p be a DSE Problem and psub a local analysis problem as defined above. Let 𝑆b denote
the set of signals already allocated to the local bus b, �̂� a pseudo deadline, and 𝑆new a set
of unallocated signals.

By replacing the variable m�̂�,b in Equation (5.20) by a parameter 𝑧 ∈ {0, . . . ,m�̂�,b} a
family of functions 𝜅𝑧psub,�̂�,b

(𝑥) is defined with:

𝜅𝑧psub,�̂�,b
(𝑥):=blockub

psub(�̂�) + 𝑧+∑︁
𝑠∈𝑆b ∧

deadlinemsg
conf (𝑚)≤�̂�

⌈︃
𝑥+ 1

periodsig(𝑠)

⌉︃
wctt(𝑠, b)

where blockub
psub(�̂�) is defined as in Definition 5.25 and 𝑚 denotes the message correspond-

ing to signal 𝑠. 2

Again, it can be shown that a fixed-point exists for every function in the family of
signal MaxWCET functions.

Theorem 5.27 (Fixed-Points in Signal MaxWCET Functions)
For a pseudo deadline �̂�, and a local bus with type b let m�̂�,b denote the MaxWCET value
defined as above.

Let 𝜅𝑧psub,�̂�,b
with 𝑧 ∈ {0, . . . ,m�̂�,b} be the corresponding family of fixed-point functions.

Then for every member of that family there exists a fixed-point 𝑟𝑧 ∈ N with 𝑟𝑧 ≤ �̂�. 2

Proof The existence of a fixed-point 𝑟0 for function 𝜅0
psub,�̂�,b

follows from the precondition
that the bus is schedulable if left unchanged. The existence of a fixed-point 𝑟m�̂�,b

for function 𝜅𝑟
m

�̂�,b

psub,�̂�,b
follows directly from the definition of the signal MaxWCET (see

Definition 5.25). Without loss of generality, let 𝜅𝑤psub,�̂�,b
be a function of the family of

MaxWCET functions with 0 < 𝑤 < m�̂�,b. Because of 𝑤 > 0 we know that 𝜅𝑤psub,�̂�,b
(𝑟0) >
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𝑟0. Furthermore we know that 𝜅𝑤psub,�̂�,b
(𝑟m�̂�,b) < 𝑟m�̂�,b because of 𝑤 < m�̂�,b. Then the

existence of a fixed-point 𝑟𝑤 for 𝜅𝑤psub,�̂�,b
follows from Lemma (5.10). �

Theorem 5.28 (Signal MaxWCET Schedulability Condition)
For a given local analysis problem psub with local bus b with bus type b let �̂� be a pseudo
deadline and m�̂�,b the corresponding MaxWCET as defined above. Let 𝑆b denote the set
of signals which are already allocated to the local bus via messages.

A set of unallocated signals 𝑆new can be additionally allocated to that bus such that an
unallocated signal 𝑠𝑖 ∈ 𝑆new which deadline is equal to the pseudo deadline is schedulable,
if the following condition holds:

m�̂�,b ≥ wcttp(𝑠𝑖, b) +
∑︁

𝑠∈𝑆new ∧
prio>(𝑠,𝑠𝑖)

⌈︃
�̂�

periodsig(𝑠)

⌉︃
wcttp(𝑠, b) 2

Proof The proof is analog to that of Theorem 5.18. 𝑠𝑖 is schedulable if the corresponding
message 𝑚𝑖 on the local bus is schedulable. That message is schedulable if its worst
case response time is smaller or equal to its deadline, formally 𝑟𝑖 ≤ deadlinemsg

conf (𝑚𝑖). As
stated in Equation (2.1) (see Page 19) the duration of all preemptions for message 𝑚𝑖

caused by a set of higher priority messages can be calculated as:

∑︁
𝑠∈𝑆new ∧

prio>(𝑠,𝑠𝑖)

⌈︃
𝑟𝑖

periodsig(𝑠)

⌉︃
wcttp(𝑠, b)

where 𝑟𝑖 is the (known) worst case response time of 𝑚𝑖. An upper bound for the duration
of preemptions can be found by substituting the response time 𝑟𝑖 with the pseudo deadline
resulting in the term ∑︁

𝑠∈𝑆new ∧
prio>(𝑠,𝑠𝑖)

⌈︃
�̂�

periodsig(𝑠)

⌉︃
wcttp(𝑠, b)

Let 𝑦 denote that upper bound (as defined above) and 𝑤 ∈ {0, . . . , 𝑦} the real preemption
duration as would be calculated by the original fixed-point equation caused by all other
additional messages which would have a higher priority on the same local bus. For every
possible value 0 ≤ 𝑤 ≤ 𝑦 the family of fixed-point functions for 𝑠𝑖 contains a function
𝜅𝑤psub,�̂�,b

. It follows from Theorem 5.27 that there exists a fixed-point 𝑟𝑤𝑖 for that function
with 𝑟𝑤𝑖 + wcttp(𝑠𝑖, b) ≤ �̂�. Thus signal 𝑠𝑖 would be schedulable. �

Theorem 5.29 (Signal spare-time/MaxWCET Schedulability)
Let psub be a given local analysis problem for a subsystem sub with local bus b and bus
type b. Let 𝑆b denote the set of signals which are already allocated to the local bus via
messages.
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A set of unallocated signals 𝑆new can be additionally allocated to that bus such that all
allocated signals remain schedulable and all additionally allocated signals are schedulable
as well, if the spare-time condition specified in Theorem 5.24 holds for all allocated signals
in 𝑆b and the MaxWCET condition specified in Theorem 5.28 holds for all unallocated
signals in 𝑆new. 2

Proof Follows directly from the referenced theorems and the fact that the schedulability
is evaluated independently for each signal. �

5.3. Calculating Spare-Time and MaxWCET
The calculation of both spare-time and MaxWCET values for each task has to be done
separately for each ECU in the hardware subsystem for each applicable ECU-type. In
the following subsections t denotes an ECU-type without loss of generality.

The spare-time s𝜏 𝑖,t for a task 𝜏 𝑖 allocated to an ECU e can be determined by iteratively
calculating the fixed-point equation for increasing candidate spare-time values starting
with 0 until a value is reached for which 𝜏 𝑖 is not schedulable anymore. Then the
spare-time is the last value for which that task still has been schedulable.

5.3.1. Task Spare-Time: Brute-Force Approach
Algorithm 1 implements a brute-force approach in the sense that in each iteration the
candidate spare-time value is increased only by 1.

The algorithm begins by initializing the spare-time variables with 0 (Line 2) and
running the classical schedulability test in the inner loop (Lines 4–13). In case a worst
case response time 𝑟𝑖 smaller or equal to the task’s deadline 𝑑𝑖 is found, the spare-time
variable is increased by 1 and the response time analysis is restarted. If no valid response
time is found, the last spare-time for which the schedulability analysis succeeded is
returned (see Line 11).

5.3.2. Sophisticated Approach
Compared to the previous algorithm this more sophisticated approach is able to skip many
intermediate spare-time candidates which have only a minor effect on the fixed-point
equation without rendering the task unschedulable.

The first part of Algorithm 2 is identical to its brute-force counter-part. In the second
part, instead of increasing the spare-time variable used in the next iteration by 1, it is
initialized with the largest remaining amount of time (Line 13). Obviously the Spare-Time
can never be larger than the difference of the deadline and the response time calculated
so far. Then the algorithm iterates over all higher priority tasks and calculates the largest
Spare-Time value at which each of the ceiling functions will remain stable (no increase).
The minimum of those values is the spare-time where the whole fixed-point equation
is still in balance. The calculated spare-time is valid, but not necessarily the largest
possible spare-time. If the spare-time value equals to the best known value the algorithm
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Algorithm 1 spare-time: Brute-force Algorithm
1: function CalcSpareTimeOfTask(𝒜, 𝜏 𝑖)
2: s𝜏 𝑖,t ← 0; s′

𝜏 𝑖,t ← 0
3: 𝑟𝑖 ← 0
4: while 𝑟𝑖 ≤ 𝑑𝑖 do ◁ Outer loop: Handle spare-time variable s𝜏 𝑖,t
5: 𝑟𝑖 ← 0; 𝑟′

𝑖 ← (wcetp(𝜏 𝑖, t) + s
′
𝜏 𝑖,t)

6: while 𝑟𝑖 < 𝑟′
𝑖 do ◁ Inner loop: Calculate fixed-point equation

7: 𝑟𝑖 ← 𝑟′
𝑖; 𝑟′

𝑖 ← (wcetp(𝜏 𝑖, t) + s
′
𝜏 𝑖,t)

8: for 𝜏 𝑗 ∈ prio>(𝜏 𝑖, e) do
9: 𝑟′

𝑖 ←
(︁
𝑟′
𝑖 +

⌈︁
𝑟𝑖

periodtask(𝜏 𝑗)

⌉︁
wcetp(𝜏 𝑗 , t)

)︁
10: end for
11: if 𝑟′

𝑖 > 𝑑𝑖 then return s𝜏 𝑖,t ◁ Return last working spare-time
12: end if
13: end while
14: s𝜏 𝑖,t ← s

′
𝜏 𝑖,t ; s

′
𝜏 𝑖,t ← (s′

𝜏 𝑖,t + 1) ◁ Increase spare-time variable
15: end while
16: end function

terminates by returning that value. Otherwise the algorithm saves that value and restarts
the iteration with the found spare-time value increased by 1 (thus destabilizing the ceiling
function).

5.3.3. Task MaxWCET

The algorithm for calculating task MaxWCET values for pseudo deadlines is very similar
to the sophisticated algorithm for the calculation of spare-time values presented above.
Please refer to the implementation for details.

5.3.4. Signal Spare-Time and MaxWCET

The algorithms for calculating signal spare-time and MaxWCET values for pseudo
deadlines are also very similar to the sophisticated algorithm presented above. Please
refer to the implementation for details.

5.4. Spare-Time and MaxWCET: Encoding and Optimization

In this section all formulas are referring to exactly one subsystem sub. Therefore I skip
the subsystem qualification of some sets such as the set of tasks contained in a subsystem
or pre-allocated to that subsystem 𝒯sub and write 𝒯 instead. The following list defines
the meaning of the additionally symbols used in the next sections. All other symbols
retain their specific meaning. tn denotes the task network of the DSE problem p.
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Algorithm 2 Task spare-time: Sophisticated Algorithm
1: function CalcSpareTimeOfTask(𝒜, 𝜏 𝑖)
2: s𝜏 𝑖,t ← 0; s′

𝜏 𝑖,t ← 0
3: 𝑟𝑖 ← 0
4: while 𝑟𝑖 ≤ 𝑑𝑖 do
5: 𝑟𝑖 ← 0; 𝑟′

𝑖 ← (wcetp(𝜏 𝑖, t) + s
′
𝜏 𝑖,t)

6: while 𝑟𝑖 < 𝑟′
𝑖 do

7: 𝑟𝑖 ← 𝑟′
𝑖; 𝑟′

𝑖 ← (wcetp(𝜏 𝑖, t) + s
′
𝜏 𝑖,t)

8: for 𝜏 𝑗 ∈ prio>(𝜏 𝑖, e) do
9: 𝑟′

𝑖 ←
(︁
𝑟′
𝑖 +

⌈︁
𝑟𝑖

periodtask(𝜏 𝑗)

⌉︁
wcetp(𝜏 𝑗 , t)

)︁
10: end for
11: if 𝑟′

𝑖 > 𝑑𝑖 then return s𝜏 𝑖,t
12: end if
13: end while
14: s𝜏 𝑖,t = s

′
𝜏 𝑖,t ◁ Save spare-time value

15: s
′
𝜏 𝑖,t ← (𝑑𝑖 − 𝑟′

𝑖) ◁ Initialize with largest possible value
16: for 𝜏 𝑗 ∈ prio>(𝜏 𝑖, t) do
17: s

′
𝜏 𝑖,t ← min

(︁
s

′
𝜏 𝑖,t ,

(︁⌈︁
𝑟′

𝑖

periodtask(𝜏 𝑗)

⌉︁
periodtask(𝜏 𝑗)− 1− wcetp(𝜏 𝑖, t)

)︁)︁
18: end for
19: if s𝜏 𝑖,t = s

′
𝜏 𝑖,t then return s𝜏 𝑖,t

20: end if
21: end while
22: end function

Symbol Explanation
𝒯 alloc Set of all allocated tasks in this subsystem
𝒯 pre Set of pre-allocated tasks
𝒯 ⊇ 𝒯 pre∪̇𝒯 alloc Set of all tasks in the whole system
𝑆 Set of unallocated signals sent or received by tasks in 𝒯
𝑆alloc Set of already allocated signals send or received by tasks in 𝒯
𝑆 ⊇ 𝑆∪̇𝑆alloc Set of all signals sent or received by tasks in 𝒯
𝑆user ⊆ 𝑆 Set of signals which are forced to be allocated to the local bus

during the analysis

Table 5.1. – Symbols used for the encoding of the Spare-Time/MaxWCET Analysis
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5.4.1. Objective Function

Minimize
∑︁
e∈E

∑︁
t∈E

cost(t)𝑥e,t +
∑︁

𝜏∈𝒯 pre

penalty(𝜏)𝑦𝜏 (5.23)

𝑥e,t ∈ {0, 1} e ∈ E , t ∈ E (5.24)
𝑦𝜏 ∈ {0, 1} 𝜏 ∈ 𝒯 (5.25)

The following free variables are defined: 𝑥e,t = 1 means that ECU-type t is assigned
to ECU e (defined in Equation (5.24)). 𝑦𝜏 = 1 means that task 𝜏 is in part of the odd
set (defined in Equation (5.25)). For simplicity such variables exists not only for all
unallocated tasks but also for all already allocated tasks for which the value is always 0.

The objective function in Equation (5.23) minimizes the sum of the total hardware cost
and the penalty cost. The total hardware cost is defined to be the sum of the individual
costs for each ECU. By choosing a certain ECU-type for an ECU the cost associated to
that ECU-type incur. A value of 𝑥e,t = 1 means that for ECU e the ECU-type t has
been chosen. The function cost(t) yields the cost for that ECU-type.

5.4.2. Assignment of ECU-Types and Task Allocation

∑︁
e∈E

∑︁
t∈E

cost(t)𝑥e,t ≤ costmax
sub (5.26)

∑︁
t∈E

𝑥e,t ≤ 1 ∀e ∈ E (5.27)

𝑥e,t = 0 ∀e ∈ E , t ∈ E∖allowedE(e) (5.28)
𝑦𝜏 ,e = 1 ∀𝜏 ∈ 𝒯 alloc, e = taskalloc𝒜(𝜏) (5.29)
𝑦𝜏 ,e = 0 ∀𝜏 ∈ 𝒯 alloc, e ∈ E , e ̸= taskalloc𝒜(𝜏) (5.30)

𝑦𝜏 +
∑︁
e∈E

𝑦𝜏 ,e = 1 ∀𝜏 ∈ 𝒯 (5.31)

𝑦𝜏 = 1 ∀𝜏 ∈ 𝒯 ∖
(︁
𝒯 pre∪̇𝒯 alloc

)︁
(5.32)

𝑒𝜏1,𝜏2 + 1 ≥ 𝑦𝜏1,e + 𝑦𝜏2,e ∀e ∈ E , 𝜏1, 𝜏2 ∈ 𝒯 (5.33)
𝑒𝜏1,𝜏2 ≤ 1 + 𝑦𝜏1,e − 𝑦𝜏2,e ∀e ∈ E , 𝜏1, 𝜏2 ∈ 𝒯 (5.34)
𝑒𝜏1,𝜏2 ≤ 1 + 𝑦𝜏2,e − 𝑦𝜏1,e ∀e ∈ E , 𝜏1, 𝜏2 ∈ 𝒯 (5.35)
𝑒𝜏1,𝜏2 ≤ 2− 𝑦𝜏1 − 𝑦𝜏2 ∀𝜏1, 𝜏2 ∈ 𝒯 (5.36)∑︁

𝜏∈𝒯
𝑦𝜏 ,e −

∑︁
t∈E

𝑥e,t |𝒯 | ≤ 0 ∀e ∈ E (5.37)

𝑦𝜏 ,e ∈ {0, 1} 𝜏 ∈ 𝒯 , e ∈ E (5.38)
𝑒𝜏 𝑖,𝜏 𝑗 ∈ {0, 1} 𝜏 𝑖, 𝜏 𝑗 ∈ 𝒯 (5.39)

The following free variables are defined: 𝑦𝜏 ,e = 1 means that task 𝜏 is allocated to
ECU e (defined in Equation (5.38)). 𝑒𝜏 𝑖,𝜏 𝑗 = 1 means that both tasks 𝜏 𝑖, 𝜏 𝑗 are allocated
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to the same ECU (defined in Equation (5.39)).
The local analysis has to satisfy the cost limit costmax

sub . This is enforced by Equa-
tion (5.26). Equation (5.27) enforces that maximal one ECU-type is assigned to each
of the ECUs and Equation (5.28) disallows every ECU-type which is not in the set of
allowed types for the ECU. All tasks which are already allocated to ECUs have to remain
there, formalized by Equations (5.29) and (5.30).

Equation (5.31) states that each task may be allocated to maximal one ECU and
forces the “penalty switch” 𝑦𝜏 to 1 if task 𝜏 is not allocated to any ECU. Equation (5.32)
handles a special case: The task set 𝒯 also contains all tasks that have been pre-allocated
to other subsystems. The equation enforces that they are never allocated to ECUs of this
subsystems. Equations (5.33)–(5.36) define for each pair of tasks 𝜏1, 𝜏2 a variable 𝑒𝜏1,𝜏2

which is 1 exactly if both tasks are allocated to the same ECU. Note that Equation (5.36)
handles the special case that both tasks are not allocated to any ECU in which case the
binary variable is forced to be 0. Equation (5.37) requires that an ECU must have an
ECU-type in order to allocate tasks to it (note: the size of the set of tasks |𝒯 | is used as
“big M” here).

5.4.3. Tasks: Effective Worst Case Execution Time
The effective WCET for each allocated task depends on the ECU-type chosen for the
ECU it is allocated to. For each of the pre-allocated tasks it is determined as specified
in Equations (5.40)–(5.42). Note that tasks get an effective WCET of 0 for all ECUs
they are not allocated to (Equation (5.42)). The corresponding variables are defined
in Equation (5.43). The inequations use an upper bound for the task’s WCET with is
defined as stated in Equation (5.44).

wceteff
𝜏 ,e + (1− 𝑦𝜏 ,e)wcetub

𝜏 ≥
∑︁
t∈E

wcetp(𝜏 , t)𝑥e,t ∀𝜏 ∈ 𝒯 , e ∈ E (5.40)

wceteff
𝜏 ,e ≤

∑︁
t∈E

wcetp(𝜏 , t)𝑥e,t ∀𝜏 ∈ 𝒯 , e ∈ E (5.41)

wceteff
𝜏 ,e ≤ wcetub

𝜏 𝑦𝜏 ,e ∀𝜏 ∈ 𝒯 , e ∈ E (5.42)
wceteff

𝜏 ,e ∈ N 𝜏 ∈ 𝒯 , e ∈ E (5.43)
wcetub

𝜏 := max
t∈E
{wcetp(𝜏 , t)} 𝜏 ∈ 𝒯 (5.44)

5.4.4. Tasks: Spare-Time
Spare-time calculation is used to ensure, that none of the already allocated tasks on
an ECU exceeds its deadline if new tasks with higher priorities are allocated. Due to
the a-priori defined total order of task with respect to their priorities (defined by prio>,
see (5.1)) the (relative) priority of a task newly allocated to an ECU is defined. Let for
example tasks 𝜏1, 𝜏2 be allocated to the same ECU. An additional task 𝜏 𝑖 with a deadline
deadlinetask

𝒜 (𝜏1) < deadlinetask
𝒜 (𝜏 𝑖) < deadlinetask

𝒜 (𝜏2) would get a higher priority than
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task 𝜏2 but a lower priority than task 𝜏1 if allocated to that ECU. Obviously the absolute
priority of 𝜏 𝑖 depends on the whole set of allocated tasks on that ECU and can easily be
calculated after the optimization step.

s𝜏 ,t + (1− 𝑥e,t)sub
𝜏 ,t ≥ ∀𝜏 ∈ 𝒯 alloc, t ∈ E,∑︁

𝜏 ′∈𝒯 pre

prio>(𝜏 ′,𝜏)

⌈︃
deadlinetask

𝒜 (𝜏)
periodtask(𝜏 ′)

⌉︃
wceteff

𝜏 ′,e e:=taskalloc𝒜(𝜏) (5.45)

In Equation (5.45) the spare-time condition is formulated with linear equations. For
each ECU-type and each allocated task, s𝜏 ,t denotes the pre-calculated spare-time value.
Obviously, only the spare-time for the currently chosen ECU-type for the ECU where a
task is allocated is relevant. On the left side of the inequation a constant larger than
the maximal possible sum of preemption duration, as calculated on the right side of
the equation, is added for every ECU-type which has NOT been chosen for the ECU
where task 𝜏 has been allocated. This constant ensures that the inequations is inherently
satisfied for all the ECU-types which have not been chosen (and therefore have to be
ignored). Those constants are defined as in Equation (5.46):

sub
𝜏 ,t :=

∑︁
𝜏 ′∈𝒯 pre

prio>(𝜏 ′,𝜏)

⌈︃
deadlinetask

𝒜 (𝜏)
periodtask(𝜏 ′)

⌉︃
wcetp(𝜏 ′, t) ∀𝜏 ∈ 𝒯 alloc, t ∈ E (5.46)

On the right hand side of Equation (5.45) the sum of the capacity requirements of
the pre-allocated tasks is calculated. The capacity requirement of a pre-allocated task
𝜏 ′ is relevant only if that task would have a higher priority than the allocated task 𝜏 .
Therefore only those pre-allocated tasks are considered where prio>(𝜏 , 𝜏 ′) is true.

Note that the number of preemptions of task 𝜏 by pre-allocated task 𝜏 ′ during the
maximal allowed runtime of 𝜏 is constant due to the over-approximation based on the
allocated task’s deadline deadlinetask

𝒜 (𝜏) instead of the actual worst case response time:⌈︃
deadlinetask

𝒜 (𝜏)
periodtask(𝜏 ′)

⌉︃

The only free variable on the right side is the effective WCET of the pre-allocated tasks.
The effective WCET of a task is only greater than 0 for the ECUs the task is allocated
to.

5.4.5. Tasks: MaxWCET

MaxWCET values for tasks specify for a given pseudo deadline and a given ECU how
much capacity would be available for preemptions by other pre-allocated tasks with
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higher priority. The calculation depends on their WCETs which is determined by the
chosen ECU-types of the ECU they are allocated on.

m�̂�,e,t + (1− 𝑥e,t)mub
𝜏 ,t + (1− 𝑦𝜏 ,e)mub

𝜏 ,t ≥ ∀𝜏 ∈ 𝒯 pre, t ∈ E, e ∈ E ,

wceteff
𝜏 ,e +

∑︁
𝜏 ′∈𝒯 pre

prio>(𝜏 ′,𝜏)

⌈︃
�̂�𝜏

periodtask(𝜏 ′)

⌉︃
wceteff

𝜏 ′,e �̂�𝜏 = deadlinetask
𝒜 (𝜏) (5.47)

MaxWCET values have been pre-calculated for each of the pseudo deadlines, each of
the ECUs and each ECU-type. Those values appear as m�̂�,e,t (for a pseudo deadline �̂�, an
ECU e and an ECU-type t) on the left hand side of Equation (5.47). The inequation is
made vacuously satisfied by adding an upper bound for the required MaxWCET values
mub
𝜏 ,t if a different ECU-type has been chosen for the ECU (left hand side: second term)

or if the task 𝜏 has not been allocated to ECU e. On the right hand side of the equation
the own WCET of task 𝜏 appears as first term. A second term is added to the first one
which holds the number of preemptions potentially caused by the all other unallocated
tasks which would have a higher priority on the same ECU multiplied by their respective
effective worst case execution time. Again, the number of preemptions is a constant
because the deadline of task 𝜏 is used for calculating them instead of the worst case
response time as in the original fixed-point equation (see Equation (2.1)).

The upper bound constants are defined as in Equation (5.48).

mub
𝜏 ,t :=wcetp(𝜏 , t)+∑︁
𝜏 ′∈𝒯 pre

prio>(𝜏 ′,𝜏)

⌈︃
deadlinetask

𝒜 (𝜏)
periodtask(𝜏 ′)

⌉︃
wcetp(𝜏 ′, t) ∀𝜏 ∈ 𝒯 pre, t ∈ E (5.48)

5.4.6. Tasks: Memory

mem(t) + (1− 𝑥e,t)memub(t) ≥
∑︁
𝜏∈𝒯

memreqp(𝜏 , t)𝑦𝜏 ,e ∀e ∈ E , t ∈ E (5.49)

In Equation (5.49) the memory constraints for ECUs are formulated. For every ECU
the available memory of every ECU-type mem(t) has to be greater than or equal to the
sum of the memory required by all tasks on that ECU. An upper bound for the sum of
the maximal required memory memub(t) is added to the size of available memory (left
hand side of the equation) for all the ECU-types which have not been chosen for the
ECU. On the right side the sum of required memory size is calculated, but only for those
tasks which are actually allocated to the ECU (factor 𝑦𝜏 ,e is 0 otherwise). The term
memreqp(𝜏 , t) represents the constant memory requirement of a task 𝜏 if allocated to an
ECU-type t. The upper bound is defined in Equation (5.50):
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memub(t):=
∑︁
𝜏∈𝒯

memreqp(𝜏 , t) ∀t ∈ E (5.50)

5.4.7. Task Allocation Constraints
For a given constraint specification tuple of DSE problem p

constr = (𝜓ECUs, 𝜓types, 𝜓never.𝜓always, 𝜓allowedSubsys, 𝜓sameSubsys, 𝜓diffSubsys, 𝜓onBus)

the allocation constraints defined in Section 3.1.4 on page 38 are encoded as follows:

t𝜏 ,t ≥ 𝑥e,t + 𝑦𝜏 ,e − 1 ∀𝜏 ∈ 𝒯 , e ∈ E , t ∈ E (5.51)
t𝜏 ,t ≤ 𝑥e,t + (1− 𝑦𝜏 ,e) ∀𝜏 ∈ 𝒯 , e ∈ E , t ∈ E (5.52)∑︁
t∈E∖𝜓types(𝜏)

t𝜏 ,t = 0 𝜏 ∈ 𝒯 unalloc
conf (5.53)

∑︁
𝜏∈𝑋

∑︁
e∈E

𝑦𝜏 ,e ≤ 1 ∀𝑋 ∈ 𝜓diffSubsys (5.54)

𝑦𝜏0 · (|𝑋| − 1)−
∑︁

𝜏∈𝑋∖{𝜏0}
𝑦𝜏 = 0 ∀𝑋 = {𝜏0, . . . , 𝜏𝑛} ∈ 𝜓sameSubsys (5.55)

∑︁
e∈E∖𝜓ECUs(𝜏)

𝑦𝜏 ,e = 0 ∀𝜏 ∈ 𝒯 pre (5.56)

𝑦𝜏0,e · (|𝑋| − 1)−∑︁
𝜏∈𝑋∖{𝜏0}

𝑦𝜏 ,e = 0 ∀e ∈ E , 𝑋 = {𝜏0, . . . , 𝜏𝑛} ∈ 𝜓always (5.57)

∑︁
𝜏∈𝑋

𝑦𝜏 ,e ≤ 1 ∀e ∈ E , 𝑋 ∈ 𝜓never (5.58)

t𝜏 ,t ∈ {0, 1} ∀𝜏 ∈ 𝒯 , t ∈ E (5.59)

New auxiliary variables are defined in Equation (5.59) for every task/ECU-type
which equal to 1 if a task 𝜏 is assigned to an ECU of the current subsystem for which
the ECU-type t has been chosen, otherwise 0. This is formalized by Equation (5.51)
which forces the value to 1 if the task is allocated to an ECU with the ECU-type and
Equation (5.52) which forces the variable to 0 otherwise.

Based on these auxiliary variables, Equation (5.53) states that tasks must not be
allocated to an ECU to which an ECU-types has been assigned, which is forbidden for
that task. Equation (5.54) encodes that for each of the sets of tasks which must not be
allocated to the same subsystem maximal one task per set is allocated to an ECU in
the current subsystem. The counterpart of this constraint is encoded in Equation (5.55)
which states that for each set of task which must be allocated to the same subsystem
either all of the contained tasks or none of them are in the oddset. Equation (5.56)
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enforces that tasks are never allocated to ECUs which are forbidden for them by the
respective constraint. The Equation (5.57) implements the constraint enforcing that
specified sets of tasks are always allocated to the same ECU: for each ECU in the current
subsystem either all tasks in the set must be allocated to that ECU or none. Finally
Equation (5.58) encodes — similar to the subsystem constraints above — that of each
specified sets of tasks which must not be allocated to the same ECU maximal one task is
allocated to each of the ECUs.

5.4.8. Signals
Signals are represented as messages on local communication buses only if the transmission
of a signal is required due to the distributed allocation of the sender and receiver
tasks. In this section some properties which are actually properties of a message are
used by referring to the corresponding signal for simplicity. For example the worst
case transmission time of a signal 𝑠 on the local bus actually refers to the worst case
transmission time of the message 𝑚 which corresponds to that signal. This is possible
due to the precondition that exactly one local bus exists in the subsystems to be analyzed
and that every signal corresponds to maximal one message per local bus.

𝑒𝜏1,𝜏2 + 1 ≥ 𝑦𝜏1,e + 𝑦𝜏2,e ∀𝜏1, 𝜏2 ∈ 𝒯 , e ∈ E∖{egw} (5.60)
𝑒𝜏1,𝜏2 ≤ 1 + 𝑦𝜏1,e − 𝑦𝜏2,e ∀𝜏1, 𝜏2 ∈ 𝒯 , e ∈ E∖{egw} (5.61)
𝑒𝜏1,𝜏2 ≤ 1 + 𝑦𝜏2,e − 𝑦𝜏1,e ∀𝜏1, 𝜏2 ∈ 𝒯 , e ∈ E∖{egw} (5.62)
𝑒𝜏1,𝜏2 ≤

∑︁
e∈E∖egw

(𝑦𝜏2,e + 𝑦𝜏1,e) ∀𝜏1, 𝜏2 ∈ 𝒯 (5.63)

𝑔𝜏 +
∑︁

e∈E∖{egw}
𝑦𝜏 ,e = 1 ∀𝜏 ∈ 𝒯 (5.64)

𝑔𝜏1,𝜏2 ≥ 𝑔𝜏1 + 𝑔𝜏2 − 1 ∀𝜏1, 𝜏2 ∈ 𝒯 (5.65)
𝑔𝜏1,𝜏2 ≤ 𝑔𝜏1 ∀𝜏1, 𝜏2 ∈ 𝒯 (5.66)
𝑔𝜏1,𝜏2 ≤ 𝑔𝜏2 ∀𝜏1, 𝜏2 ∈ 𝒯 (5.67)
𝑒𝜏1,𝜏2 ∈ {0, 1} 𝜏1, 𝜏2 ∈ 𝒯 (5.68)
𝑔𝜏 ∈ {0, 1} 𝜏 ∈ 𝒯 (5.69)
𝑔𝜏 𝑖,𝜏 𝑗 ∈ {0, 1} 𝜏 𝑖, 𝜏 𝑗 ∈ 𝒯 (5.70)

Some additional free variables are defined: 𝑒𝜏1,𝜏2 = 1 means that both tasks 𝜏1, 𝜏1 are
allocated to an ECU of the current subsystem which is not the gateway ECU (defined
in Equation (5.68)). 𝑔𝜏 means that task 𝜏 is either on the gateway ECU or in another
subsystem (defined in Equation (5.69)). These variables are complemented by variables
of the form 𝑔𝜏 𝑖,𝜏 𝑗 which — if set to 1 — mean that both tasks 𝜏 𝑖, 𝜏 𝑗 are either on the
gateway or in another subsystem but not necessarily on the same resource (defined in
Equation (5.70)).

For encoding the conditions under which a signal must have a corresponding message
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on the subsystem local bus as formalized in Predicate (3.5) (page 48), it is necessary
to know whether or not two given tasks (e.g. 𝜏 𝑖, 𝜏 𝑗 are allocated to the same non-
gateway subsystem ECU. If this is the case then the variable 𝑒𝜏1,𝜏2 = 1 as formalized in
Equations (5.60)–(5.63). The predicate itself is encoded in Equations (5.71)–(5.73).

Equation (5.64) ensures that variable 𝑔𝜏 equals to 1 if task 𝜏 (without loss of generality)
is not allocated to any of the non-gateway ECUs of the current subsystem, otherwise that
variable is forced to be 0. Equations (5.65) –(5.67) define a derived variable which is 1
exactly if two tasks are both allocated to either the gateway ECU or to other subsystems.

ℎ𝑠 − ℎuser
𝑠,b ≥ 0 ∀𝑠 ∈ 𝑆 (5.71)

ℎ𝑠 + 𝑔𝜏send,𝜏recv + 𝑒𝜏send,𝜏recv ≥ 1 ∀𝑠 ∈ 𝑆, 𝜏recv ∈ recv(tn, 𝑠),
𝜏send:=sender(tn, 𝑠) (5.72)

ℎ𝑠 ≤ ℎuser
𝑠,b + |𝑋|− ∀𝑠 ∈ 𝑆, 𝜏send:=sender(tn, 𝑠),∑︁

𝜏∈𝑋

(︀
𝑒𝜏send,𝜏 + 𝑔𝜏send,𝜏

)︀
𝑋:=recv(tn, 𝑠) (5.73)

ℎ𝑠 ∈ {0, 1} 𝑠 ∈ 𝑆 (5.74)

First a set of new binary variables stating whether or not a signal has to be allocated
via a message to the local bus is defined in Equation (5.74) (a value of 1 means that the
signal has to be allocated).

Then the Predicate (3.5) is encoded: Equation (5.71) states that a signal always has a
message on the local bus if required by the user (by setting ℎuser

𝑠,b = 1 for a signal 𝑠 and a
bus b). Equation (5.72) enforces the signal to be on the bus if the sender task and one
receiver task are not on the same ECU (right hand side) and not both on the gateway,
unallocated or in other subsystems (left hand side). The case where a signal must not be
allocated to the local bus is formalized in Equation (5.73). Variable ℎ𝑠 has to be 0 if the
user does not force the signal 𝑠 onto the local bus and the number of receiver tasks is
equal to the number of sender task/receiver task combinations where both the sender
and the receiver task are either on the same non-gateway ECU in the subsystem, or any
combination of: Both are unallocated, or on the gateway ECU, or in another subsystem.

5.4.9. Signals: Spare-Time
As seen in the last sections the handling of signals/messages on CAN buses is very similar
to that of tasks on FPS-scheduled ECUs. The approach described in Section 5.2.5.1 is
encoded via MILP in the next paragraphs.

Note that 𝑚 denotes the message corresponding to signal 𝑠. For every signal in the
set of signals allocated to the local bus 𝑆alloc a spare-time value has been calculated
a-priori. As the transmission of a message on the bus cannot be interrupted and may
block the transmission of higher priority messages for a certain duration, all spare-time
values consider an upper bound for the blocking time already (see Section 5.2.5.1 for
details).
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Let b denote the bus type of the current subsystem’s local bus.

s𝑠,b ≥
∑︁
𝑠′∈𝑆

prio>(𝑠′,𝑠)

⌈︃
deadlinemsg

conf (𝑚)
periodsig(𝑠′)

⌉︃
wcttp(𝑠′, b)ℎ𝑠′ ∀𝑠 ∈ 𝑆alloc (5.75)

Equation (5.75) enforces for every signal already allocated to the local bus that its
spare-time (on the left hand side of the inequation) is larger or equal to the preemption
durations of all signals which are additionally allocated to the bus. On the right side of
the inequation the sum of all preemption durations is calculated. For this calculation
only those signals are relevant that are included in the set of pre-allocated signals 𝑆 for
the subsystem. Inside of the sum operator only those pre-allocated signals are considered
which would have a higher priority than the currently evaluated allocated signal (where
prio>(𝑠′, 𝑠) = 1). For each pre-allocated signal 𝑠′ the number of preemptions it would
cause on the allocated signal is over-approximated by multiplying the ceiling of the
deadline of the allocated signal divided by the period of the pre-allocated signal with
the (constant) worst case transmission time of the pre-allocated signal and the auxiliary
binary variable ℎ𝑠′ . This variable is set to 1 by the solver only if that signal has to be
allocated to the local bus as implied by the allocation of its sender and receiver tasks.

5.4.10. Signals: MaxWCET

m�̂�,b + mub
𝑠 (1− ℎ𝑠) ≥ wcttp(𝑠, b)+∑︁

𝑠′∈𝑆
prio>(𝑠′,𝑠)

⌈︃
�̂�

periodsig(𝑠′)

⌉︃
wcttp(𝑠′, b)ℎ𝑠′ ∀𝑠 ∈ 𝑆, �̂� = periodsig(𝑠) (5.76)

Equation (5.76) expresses that the pre-calculated MaxWCET value for every signal
which has been allocated during the optimization process to the bus has to be larger than
its worst case transmission time wcttp(𝑠, b) and the sum of the preemption durations.
On the left hand side of the equation an upper bound is used to vacuously satisfy the
inequation whenever a signal is not allocated to the local bus. Note the use of the signal’s
period instead of its (not yet known) deadline. This is a safe over-approximation as all
deadlines are required to be smaller or equal to the periods. The upper bound is defined
as in Equation (5.77):

mub
𝑠 :=wcttp(𝑠, b)+∑︁

𝑠′∈𝑆
prio>(𝑠′,𝑠)

⌈︃
�̂�

periodsig(𝑠′)

⌉︃
wcttp(𝑠′, b) ∀𝑠 ∈ 𝑆, �̂� = periodsig(𝑠) (5.77)
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This formula is very similar to the right side of Equation (5.76) with the difference
that it is assumed that all lower-priority signals are allocated to the local bus which
results in the largest value the right hand side of Equation (5.76) could possibly take.

5.5. Alternative Approaches
5.5.1. “Eis” (Eisenbrand) Approach
This approach is named (in this thesis) after one of the authors of [Eis+06], where a
concept to model the fixed-point equation for schedulability analysis on ECUs with
fixed-priority preemptive schedulers is proposed. This approach has been reimplemented
for this thesis. For this reimplementation, many MILP formulations presented in the
previous section have been reused with only little changes or none at all, e.g. the task
allocation constraints, the inequations for describing whether or not a signal has to be
allocated to the local bus, etc. Of course, the equations for spare-time and MaxWCET
analysis have not been reused. In [Eis+06], the fixed-point equation is represented directly
by calculating for each task and each signal lower and upper bounds for the response
times as part of the optimization process. It is left up to the MILP solver to choose the
actual response times satisfying those bounds.

5.5.2. JoSe: Column Generation Approach
This approach has been published in [ANT11]. It is based on linear programming and
uses the same notion for computation capacity as the previous one (the “Eisenbrand”
constraints) but aims for improving scalability by utilizing the well-known technique of
column generation. The column generation approach starts with a small set of variables
(columns) and solves a so called master problem first. This problem does not care for the
actual schedulability of ECUs and the local bus directly, but only allocates tasks to ECUs
and signals to the local bus if required. The check for schedulability is left to the so
called pricing problems, which are solved separately for each ECU and for the local bus.
The result of a pricing problem might indicate that certain variables (e.g. representing
the allocation of a task to a certain ECU which are not yet represented in the master
problem would lead reduce the total cost. If this happens, those variables are added to
the master problem. Please refer to the aforementioned publication for more details.

5.5.3. RTSAT: SMT Solver with Scheduling Theory
The third alternative approach for the local analysis problem has been published in
[Met+06]. This approach is based on Satisfiability Modulo Theories (SMT) with a
theory module specialized on performing schedulability analysis of ECUs scheduled by
fixed-priority preemptive schedulers. Unfortunately the available version of the tool
“rtsat” was not working reliable enough to be considered for the evaluation of the local
analysis approaches (see Chapter 6). Please refer to the aforementioned publication for
details.
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5.6. Comparison of Approaches for Local Analysis
Table 5.2 provides an overview on the tools implementing the presented local analysis
approaches and the set of features supported by them. Note that “Stm” refers to the
implementation of the spare-time and MaxWCET approach presented in this thesis.

Feature / Approach “Stm” “Eis” “JoSe” “RTSAT”
Minimize hardware cost ∙ ∙ ∙ –
Limit hardware cost ∙ ∙ ∙ ∙
Allowed ECUs per Task ∙ ∙ ∙ –
Allowed ECU Types per Task ∙ ∙ ∙ –
Never on same ECU ∙ ∙ ∙ –
Always on same ECU ∙ ∙ ∙ –
Allowed ECUs ∙ ∙ ∙ –
Forbidden ECUs ∙ ∙ ∙ –
Signal always on local bus ∙ ∙ ∙ –

Other Features
One WCET per ECUType ∙ ∙ ∙ ∙

Table 5.2. – Features of Modules for Local Analysis
(∙) fully supported, (∘) partially supported, (–) unsupported

It can be seen that all tools except for the “RTSAT” tool have an identical set of
supported features. This is because in contrary to the “RTSAT” tool all the other tools
are under active development which makes it possible to add missing features quickly. In
Chapter 6 more detailed information is presented about the technical realization of the
“Stm” and “Eis” local analysis modules.
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This chapter describes the software implementation of the methods proposed in the
previous chapters, compares them with the alternative approaches based on a set of
benchmarks and then discusses the results using empirical methods.

For each of the methods proposed in this thesis several properties like runtime and
solution quality in terms of the costs of the solutions are evaluated for all of the benchmark
models. The benchmarks consist of models derived by modifying examples found in
academic publications, models generated randomly following different rules for creation of
quasi-realistic application, and a set of models based on a full-featured control application
developed by students of the University of Oldenburg as part of their collegiate working
group.

6.1. Implementation
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Figure 6.1. – Zerg Software Architec-
ture

The approaches presented in the preceding chapters
have been implemented as part of the thesis in an
integrated tool named Zerg.

Figure 6.1 shows the software architecture of Zerg.
The black arrows depict interfaces between Zerg
modules and external software applications. Zerg
consists of a set of meta-models based on a common
core (not shown in the figure, contains amongst
others an implementation of a hierarchical graph), a
light-weight process engine with several modules for
reading/writing (XML) file formats, and interface
layers to multiple SMT and MILP solvers. The
whole software is written in C++ and makes use of
the QT framework (version 4.x). Additionally, some
analysis modules for local analysis are using GLPK
(see [Mak10]) and are implemented in the modeling
language MathProg which is a subset of the AMPL
modeling language (see [LLC12]). Statistics on the
source code are shown in Table 6.1.

Currently Zerg supports two different meta-
models: The DSE meta-model is used for the specification of task networks, hardware
architectures and mappings between both. The function network meta-model is — as
the name suggests — for specifying function networks (see 2.2.2). Both meta-models are
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Language Code Metric Value

C++ Number of Classes1 185
Lines of Code (non-blank, non-comment)1 92383
Comment lines1 15130

MathProg Lines of Code (non-blank, non-comment)2 3346
Comment lines3 1990

Table 6.1. – Zerg Source Code Statistics (on September 4, 2012)
1 Measured by using cccc, see http://cccc.sourceforge.net
2 Measured by ’grep −v −e "^[[:space:]]∗#.∗$" −e "^[[: space :]]∗ $" −e "^[[: space :]]∗/\∗" ∗.glpk| wc −l’
3 Measured by ’grep −e "^[[: space:]]∗#.∗$" −e "^[[: space :]]∗/\∗" ∗.glpk| wc −l’

based on the implementation of hierarchical graphs contained in the common core of
Zerg.

The process engine allows the user to freely define the order of execution of one or
more instances of the provided process modules and to set appropriate parameters for
each process module. The available process modules are categorized into I/O modules
for reading and writing of model files, analysis modules (e.g. for schedulability analysis)
and synthesis modules (e.g. for the generation of artificial benchmark models). In a
typical scenario first some files are read, e.g. a task network, a hardware architecture
and a mapping between both, then some analyses are performed, and finally the result is
written to a set of files. The analysis and synthesis modules that have been created and
used for this thesis are described in detail in Section 6.2.

Some analysis modules make use of external backends, e.g. open-source and commercial
MILP solvers.

6.1.1. External Backends

The following sections describe some details concerning the choice and integration of the
backend solvers used in Zerg.

6.1.1.1. Satisfiability Modulo Theories Solver

Two Satisfiability Modulo Theories (SMT) solvers have been evaluated for this thesis:
HySAT (see [Her12]) and Yices (see [Tea12]). Yices was initially seen as an alternative to
HySAT but has been dropped due to its rather complex file syntax. In contrary, HySAT
has the huge advantage that its source code is available, because it has been developed
at the University of Oldenburg. Some required but initially missing features could be
implemented leading to a reentrant fork of the original HySAT.

6.1.1.2. MILP Solver

Several MILP solver backends are used in Zerg, namely the GNU Linear Programming
Kit, ILOG CPLEX and Gurobi.
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GNU Linear Programming Kit (GLPK) The GNU Linear Programming Kit (GLPK)
was the first tool considered as alternative to the SMT-based approaches. GLPK is
open source software and was therefore available on all platforms under consideration:
Linux and Windows (XP or higher). The Linux distributions Debian ([Deb]) and Ubuntu
([Can]) both directly provide binary archives which made this MILP solver the first choice.
The API is easy to use and especially the supported MathProg language is a great plus.

Note that GLPK has been integrated into Zerg using two different APIs: First, the API
provided by GLPK itself has been used. This is accomplished by linking GLPK directly
to the Zerg binary. Second, by linking the COIN-OR Osi API (see next section) to Zerg
automatically made GLPK available through this generic API as well. Here, GLPK is
dynamically linked to Zerg indirectly through the COIN-OR Osi library along with all
the other MILP solvers supported by COIN-OR Osi. This has the great advantage that
Zerg may even detect that the GLPK library is unavailable for some reason (e.g. because
Zerg has been shipped to an industrial user who uses one of the commercial MILP solvers
exclusively).

COIN-OR Osi The COIN-OR (COmputational INfrastructure for Operations Research)
project is dedicated to providing open-source software for operations research. COIN-OR
subprojects provide a number of stand-alone optimization tools and also interfaces to
third-party products for the analysis of deterministic linear and non-linear problems,
stochastic problems, non-differentiable problems, and more.

The software developed as part of this thesis makes use of the COIN-OR Osi (Open
Solver Interface) subproject which provides a standard interface for a number of open-
source and commercial-grade optimization products. For this thesis, the commercial
solvers CPLEX and Gurobi and the open-source solver GLPK have been used. All the
named solvers have been evaluated for this thesis. For this thesis, the official release of
COIN-OR Osi has been extended by implementing some missing features.

6.2. Experimental Setup

The experimental evaluation aims at providing reliable data concerning the quality and
efficiency of the approaches proposed as part of this thesis in comparison to some of the
alternative approaches. Naturally, whether or not a given tool can be evaluated depends
on several factors, such as the functionality it provides, the usability of its API (if any),
its availability, and its reliability.

6.2.1. Hardware and Software

All experiments have been carried out on the same multi-core server. Some details about
the hardware configuration can be found in Table C.1 (page 195), details about the
installed software are given in Table C.2 (page 195).
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6.2.2. Analysis Modules
A set of modules is available for validating the models used as input for the analysis
modules to be evaluated and also the computed solutions. The Zerg analysis modules
used for the experimental evaluation can be categorized as follows.

DSESchedulingAnalysis performs a (non-holistic) schedulability analysis for all the
FPS-scheduled ECUs and all local priority-based buses

DSEMemoryAnalysis is responsible for validating that there is enough RAM available on
each ECU for all the software tasks allocated to it.

DSEConsistencyAnalysis validates the correctness of the allocation, mainly that signals
are always allocated to local buses and the global bus correctly if this is required
according to the allocation of their sender/receiver tasks.

Statistical data is collected by two modules:

DSEGreatComparator is responsible for the global evaluation. It collects data of the
global analysis runs.

DSELocalAnalysisEvaluation is responsible for the local evaluation. It collects data
of local analysis runs.

Both modules accept a list of analysis modules to be run as input together with
parameters to be used for those modules. During the evaluation process the global
evaluation module sequentially executes all specified modules. The local evaluation
module is run by the global analysis modules each time they start a local analysis run.
The local evaluation module then executes one or more local analysis modules.

However, all global analysis modules expect to get exactly one local analysis result
after the local analysis has finished, not multiple ones. For this reason a so-called local
analysis reference module is defined for the local analysis evaluation module. All
local analysis runs are evaluated as usual but only the result of the local analysis reference
module is handed back to the calling global analysis module. Of course, running multiple
local analysis modules skews the timing measurement of the global analysis which does
not know that multiple local analysis modules are to be run and compared. The global
analysis evaluation module takes care of this bias by keeping track of all the time intervals
the local analysis evaluation has spent on other modules than the local reference module.
Those time intervals are later subtracted from the total runtime of the global analysis
module under evaluation. Each global/local analysis result is tested for schedulability,
feasibility of the memory constraints and consistency of the allocation after the respective
analysis module finished its execution.

The powerful statistics software R (see [Ano12]) has been used to examine the result
data, further aggregate the results and produce the numerous figures and tables presented
in the following sections.

The analysis modules and their characteristics are described in detail in the following
sections. Table 6.2 compares the features of the different global analysis modules.
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Approach / Feature Global MILP-based Analysis Kernighan-Lin MILP+Column
Generation

HySAT MILP

Objectives

Minimize HW-Cost ∙ ∙ ∙ ∙
Minimize Number of Global
Bus Slots

∘ ∘ ∙ ∙

Constraints

Allowed ECU Types per Task ∙ ∙ ∘ ∙
Never on same ECU L L L ∙
Always on same ECU ∘ ∘ ∘ ∙
Allowed ECUs ∘ ∘ ∘ ∙
Forbidden ECUs L L ∘ ∙
Allowed Subsystems ∙ ∙ ∙ ∙
Forbidden Subsystems ∙ ∙ ∙ ∙
Signal always on global bus ∙ ∙ ∙ ∙

Table 6.2. – Features of Modules for Global Analysis / Analysis of Complete Models
(∙) fully supported, (∘) partially supported, (L) realizable only by local analy-
sis,(–) unsupported

The table shows that all global analysis modules that are based on the two-tier
optimization approach described in this thesis are unable to handle certain constraint
types (marked as L). A good example is the constraint type “Allowed ECUs” which
allows to define a set of ECUs for each task in order to enforce that the task is allocated
only to one of them. All global analysis modules based on the two-tier approach do not
allocate tasks to ECUs directly, but rather pre-allocate them to subsystems. Obviously
these analysis modules cannot fulfill such a constraint because the actual allocation of
tasks to ECUs is left to the local analysis. Nevertheless, derived information can be used
on the global tier.

6.2.2.1. Overall Analysis Module

There is only one module in this category. Its purpose is to optimally solve the DSE
problem as described in Chapter 3 without dividing the overall problem into subproblems
following the two-tier optimization approach described in this thesis.

“MZ”: Overall Analysis based on MILP with Column Generation This analysis mod-
ule has been developed at the University of Mainz as part of the collaboration in the
Transregional Collaborative Research Center 14 AVACS (see [Bec+12]). It takes as input
a task network, a hardware architectural pattern, a partial allocation, and (optionally)
constraints regarding the allocation and the choice of ECU-types for the ECUs contained
in the hardware architectural pattern. The analysis module either returns a complete
allocation or exits unsuccessfully if the DSE problem is infeasible, a time-out occurred, or
an error condition has been identified. The implementation is based on a formulation of
the whole DSE optimization problem as MILP problem and additionally uses a technique
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called column generation, which exploits — similar to the two-tier optimization approach
proposed in this work — that different levels of granularity are introduced by the notion
of subsystem. The module is capable of both calculating complete schedules for the global
bus and using a simplification which only ensures that the minimal required number of
bus slots is available per allocated message. The details of this approach are described in
[Alt+12].
The Zerg module name is DSEOverallAnalysisMainz

6.2.2.2. Global Analysis Modules

This set of analysis modules is based on the two-tier optimization concept as described in
this thesis. Each analysis module realizes either the global analysis approach presented
in this work or the concurring approach presented in [Bük+11a].

“LP_∗”: Global Analysis with ECU Type Bins based on MILP (“LP_GRB”: Gurobi,
“LP_CPX”: CPlex, “LP_GLP”: GLPK) This analysis module takes as input a task
network, a hardware architectural pattern, a partial allocation, and (optionally) con-
straints regarding the allocation and the choice of ECU-types for the ECUs contained in
the hardware architectural pattern. The details of this approach are described in Chap-
ter 4. The analysis module either returns a complete allocation or exits unsuccessfully
if the DSE problem is infeasible, a time-out occurred, or an error condition has been
identified. This implementation is based on problem formulation as MILP problem. One
of the parameters defines which local analysis module to use. The use of the COIN-OR
Osi abstraction layers enables the use of all MILP solver backends currently supported
by COIN-OR Osi without changing the Zerg module. The number of used global bus
slots can be minimized, but this implementation is not capable of calculating complete
feasible schedules for the global bus.
The Zerg module name is DSEGlobalAnalysisMILP.

“HS”: Global Analysis with ECU Type Bins based on HySAT This analysis module
takes as input a task network, a hardware architectural pattern, a partial allocation,
and (optionally) constraints regarding the allocation and the choice of ECU-types for
the ECUs contained in the hardware architectural pattern. The details of this approach
are described in Chapter 4. The analysis module either returns a complete allocation or
exits unsuccessfully if the DSE problem is infeasible, a time-out occurred, or an error
condition has been identified. This implementation is based on a problem formulation as
SMT problem with “linear arithmetic” theory module. One of the parameters defines
which module for performing the local analysis for each subsystem is used.
The Zerg module name is DSEGlobalAnalysisHysat.

“KL”: Global Analysis based on a Kernighan-Lin partitioning algorithm The module
takes as input a task network, a hardware architectural pattern, a partial allocation,
and (optionally) constraints regarding the allocation and the choice of ECU-types for
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the ECUs contained in the hardware architectural pattern. The details of this approach
are described in Chapter 4. The analysis module either returns a complete allocation or
exits unsuccessfully if the DSE problem is infeasible, a time-out occurred, or an error
condition has been identified. Unfortunately, the current implementation does not provide
information to the global evaluation module about whether it exited due to an error
condition or because it was unable to find a solution.
The Zerg module name is DSEGlobalAnalysis.

6.2.2.3. Local Analysis Modules

Currently, there are four different local analysis modules, namely the Spare-Time /
MaxWCET module presented in this work, the module based on the “Eis” constraints
(see [Eis+06]), the tool “JoSe” (a local analysis module based on column generation
written at the University of Mainz) and RTSAT. In this thesis only two of them could be
compared: The Spare-Time/MaxWCET module and the Eisenbrand module. The JoSe
module has not been evaluated in this thesis because a previous evaluation in [Tha+10]
has shown that for small local analysis problems the applied column generation approach
is not beneficial due to the overhead costs. The RTSAT module could not be evaluated
because it does not support many of the evaluated features.

“Stm”: Spare-Time/MaxWCET with GLPK+Gurobi This tool uses a pre-analysis
step for characterizing the available capacity on ECUs with fixed-priority preemptive
schedulers using the notion of spare-time and MaxWCET values. Using this abstraction,
the problem of finding task/message allocations with minimal hardware modification cost
is reduced to a combinatorial optimization problem. The current implementation uses
GLPK for creating the MILP model but the commercial solver Gurobi for solving the
model. Note that the runtime measured for this analysis module contains all the times
used for the individual steps starting from the pre-analysis to the call to the Gurobi
backend (if used) to the preparation of the result model (also including all file I/O
operations).
The Zerg module name is DSEMaxWCETSparetimeGLPK

“Eis”: “Eisenbrand” Constraints with GLPK+Gurobi The MILP formulation of this
local analysis module is similar to the one for the Spare-Time/MaxWCET analysis
module. However, there is no need to distinguish allocated tasks and un-allocated tasks.
Allocated tasks are just a special case where the tasks are forced to be allocated onto a
specific ECU while in general tasks may be allocated to one ECU out of a set of ECUs.
As a result of this unification the MILP constraints are simpler. The real-time “capacity”
of ECUs is characterized using the constraints published in [Eis+06]. Similar to the “Stm”
local analysis module the commercial MILP solver Gurobi is used to actually solve the
MILP.
The Zerg module name isDSEEisenbrandAnalysis
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6.2.3. Parameters for the Optimization Process

6.2.3.1. Restrictions on usable CPU Cores during Optimization

The optimization backends that are used in some of the global and local analysis modules
— namely Gurobi and CPlex — support the use of multiple processor cores during the
optimization phase. Both are capable of automatically distributing the MILP optimization
to multiple threads, each running on a different CPU core. However, the benefit of this
distributed computation heavily depends on the structure of the problem to be solved.
Both backends provide switches to restrict the number of available cores. For each of the
benchmarks, experiments have been carried out with different settings for these switches
with the purpose of achieving data on the usefulness of optimization using multiple CPU
cores. The respective results are presented in the sections below separately for each of
the benchmarks.

If not stated otherwise, the following defaults apply to the data presented in this
chapter: For comparing different analysis methods using graphical means, only those
results are selected where the number of CPU cores made available to both the global
and the local analysis has been restricted to a number larger than one. E.g. for the
benchmark “TindellScaled” one half of the optimization runs of the global and the local
analysis modules have been restricted to either use maximal 12 cores and the other half
to use maximal one core.

The global analysis module “KL” does not support multi-threading. This raises the
question of how to make its results comparable to the results computed by other modules
which uses more than one thread. A “fair” approach for comparing the results could be
to restrict all those modules to use maximal one CPU core as well. I decided against this
because of the industrial-oriented nature of this thesis: An engineer would most certainly
enable the use of multiple CPU cores for all analysis modules wherever this is supported.

Note that while the global analysis modules “KL” and “HS” do not have multi-core
support itself, they still can take advantage from multiple CPU cores because the used
local analysis module can benefit from running on a multiple cores, too.

6.3. Metrics Suitable for Characterizing Benchmarks

6.3.1. Model Size

The size of a model in the sense of how large the design space of the resulting combinatorial
solutions is results from the following properties: Number of tasks (total), number of
unallocated tasks, number of signals, number of ECU-types, number of ECUs, and
number of subsystems.

Some indicators may be derived from other properties, e.g. the fraction of unallocated
tasks. The size of a model in the sense of how hard it is to find optimal solutions cannot
be characterized as easy as in the previous definition, because this metric depends on the
actual analysis methods (global and local ones) and their respective strategy for finding
optimal solutions.
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6.3.2. Execution Time Partial Order on ECU Type Set
Every task has a calculated or estimated WCET for one or more processor types suitable
for being used in the system’s hardware architecture. Imagine the case that with respect
to the WCETs of a given set of tasks 𝒯 there exist a partial-order ≤𝑓 (faster as) defined
on the set of available processor types E, formally

t1 ≤𝑓 t2 :⇐⇒ ∀𝜏 ∈ 𝒯 : wcet(𝜏 , t1)) ≤ wcet(𝜏 , t2) for t1, t2 ∈ E

where wcet(𝜏 , t) is the worst case execution time of a task 𝜏 measured for an ECU-type
t. Note that the function used for the worst case execution time is extended with a
reference to a given DSE problem later on.

The existence of such a partial order for a particular problem would allow to define
modifications like Replace an existing processor type by a faster processor type.

6.3.3. Constant Linear Speed-Up Factors
Assuming that for a given DSE problem there exists an execution time partial order
on the ECU-type as defined in the previous section, an even stronger property can be
formulated. In the following, DSE problems are called WCET-proportional if for
each two different ECU-types there exists a constant speed-up factor stemming from a
proportional relation between the WCETs of all software tasks in the DSE problem for
those two types. Furthermore, the speed-up factors may be aligned with the costs of the
ECU-types, such that for every two different ECU-types the more expensive one has the
lower WCETs for all tasks contained in the model. DSE problems for which no speed-up
factors can be found are called WCET non-proportional.

Example: In Subset 1 of the benchmark set “TindellScaled” presented in Section 6.5.1
for every given task of the model its WCET for ECU-type ECUType0 is exactly twice its
WCET for the ECU-type ECUType1. Even more, the speed-up factors are also conforming
to the intuition that more expensive ECU-types is faster than the cheaper one.

6.4. Hypotheses
All of the following hypotheses compare the “KL” global analysis module with the
global analysis approach “LP_∗” proposed in this thesis, separately for each of its
(solver-specific) incarnations “LP_GRB”, “LP_CPX” and “LP_GLP”. The evaluation
of the hypotheses is done by first assessing them separately for each benchmark and then
aggregating the findings in the summary at the end of this chapter.

It is important to mention that the hypotheses specified in this thesis are not assessed
with the goal of generalizing the findings in mind. Generalization would require a sample
of benchmark models that is representative for all embedded systems for which a design
space exploration as defined in this thesis is carried out. Given the availability of such
a representative sample, statistical hypothesis tests such as the t-test (parametric test,
applicable only if the test statistic follows the Student’s t distribution) or the Wilcoxon
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rank-sum test (non-parametric test, no assumption about the distribution of the data)
could be used to assess the hypotheses. Whenever a null hypothesis (stating that the
sample data does NOT provide strong evidence supporting the assumed relationship)
has to be rejected the alternative hypothesis (stating that the sample data supports the
assumed relationship) is likely to be true (with a given probability of error).

In this thesis a representative sample was not available and — given the huge hetero-
geneous field of embedded systems development — such a sample quite probably does
not exist. For this reason no statistical hypothesis tests have been used.

6.4.1. Global Analysis Modules: Comparing Hardware Cost and Runtime
Hypothesis 𝐻1𝑎

𝐴 : The majority of “LP_∗” solutions have lower or equal hardware
costs than “KL” For a given DSE problem the costs of the solutions calculated with
“KL” are compared directly to the costs of the solutions calculated with each of the
“LP_∗” modules. The corresponding null hypothesis 𝐻1𝑎

0 states that solutions calculated
with “LP_∗” have higher hardware costs than solutions calculated with “KL”.

Hypothesis 𝐻1𝑏
𝐴 : The majority of “LP_∗” solutions have costs similar to the “KL”

solutions (depending on a given threshold) For a given DSE problem the cost of the
“KL” solution is similar to the costs of each of the “LP_∗” solutions in the sense that the
difference is smaller than a pre-defined threshold. This threshold can be any arbitrary
value. In the following, two thresholds are evaluated: the cost of the cheapest and the
cost of the most expensive ECU-type used in the benchmark DSE problem.

This hypothesis is supposed to be more helpful than the first one for the reason that
the global analysis modules cannot directly control the cost values because the actual
choice of ECU-types for each of the ECUs is done in the local analyses.

The corresponding null hypothesis 𝐻1𝑏
0 states that the majority of “KL” solutions have

lower costs for the given threshold.
Note that this hypothesis is only evaluated if useful thresholds can be found (for some

of the benchmarks this is not the case).

Hypothesis 𝐻2
𝐴: “LP_∗” finds the majority of solutions in less time than “KL” This

hypothesis is evaluated based on the runtime measured in wall clock time because this is
what the user will notice. Only those cases are considered where the analysis module found
a complete and feasible result within the specified time limit (if any). The corresponding
null hypothesis 𝐻2

0 states that the runtime of “KL” is equal to or less than the runtime
of “LP_∗”.

6.4.2. Local Analysis Modules: Comparing Hardware Cost and Runtime
Hypothesis 𝐻3

𝐴: The majority of solutions found by “Stm” have lower or equal
hardware costs than those found by “Eis” The corresponding null hypothesis 𝐻3

0
states that the costs of the solutions found by “Eis” are less than the costs of the solutions
found by “Stm” in most of the cases.
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Hypothesis 𝐻4
𝐴: “Stm” finds the majority of solutions in less time than “Eis” Again,

this hypothesis is evaluated based on the runtime measured in wall clock time. Only
those cases are considered where both analysis modules found complete and feasible
solutions within the specified time limit (if any). The corresponding null hypothesis 𝐻4

0
states that the runtime of “Eis” is equal to or less than the runtime of “Stm” in most of
the cases.

6.4.3. Single vs. Multi-Core
Hypothesis 𝐻5

𝐴: The use of multiple CPU cores reduces the runtimes of multi-core-
enabled global analysis modules This hypothesis is also evaluated based on wall clock
time. The corresponding null hypothesis 𝐻5

0 states that the runtimes of multi-core
enabled global analysis modules are not smaller if multiple threads are allowed.

6.5. Benchmarks
6.5.1. Benchmark “TindellScaled”
The first benchmark named “TindellScaled” is based on an example in [TBW92]. The
original model contains 43 tasks with eight ECUs. Based on that original model the set
of benchmark models has been designed. Figure D.2 (in the appendix) shows the task
network of the smallest models contained in this benchmark.

The hardware architectural pattern has been extended to contain three subsystems, two
subsystems with three ECUs and one with two ECUs (see Figure D.1 in the appendix).
One ECU in each subsystem is defined as the gateway between the global time-slot based
bus (FlexRay) and the subsystem-local bus. Each ECU in a subsystem is connected
to the subsystem-local bus. Four ECU-types with different cost and memory capacity
are defined (see Table D.1 in the appendix). Each ECU can be typed by each of the
ECU-types. Two bus types are defined, one for the global bus (time-slot based) and one
priority-based (CAN-type) which is used by each of the local buses. There are 25 bus
slots on the global bus.

The task network is still very similar to the original task network, with the following
changes: Some signals contained in the original task network have been deleted to make
the models compliant to the current limitation of both local analysis modules that
each task may receive maximal one signal. Worst case execution times and memory
consumption have been defined for each of the tasks for each of the ECU-types defined in
the architectural pattern. There are two versions of the task network which are identically
except for the chosen worst case execution times and memory consumptions.

All models of Set 1 are “WCET proportional”, e.g. there exists a set of speed-up factors
defining the relation between all used ECU-types with respect to their computational
power. The WCEts of all tasks are defined such that they conform to those speed-up
factors. All models of Set 2 are “WCET non-proportional”, in the sense that for them
the WCETs have been redefined such that linear speed-up factors for pairs of ECU-types
effectively do not exist.
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The original allocation of tasks to ECUs has mainly been preserved. In the original
model some unallocated tasks may only be allocated to specific sets of ECUs. The global
and local analysis modules implementing the approaches presented in this thesis are
powerful enough to handle such constraints, but some of the other analysis modules
cannot handle them. Therefore, those constraints have not been considered for this
benchmark.

During preparation of the two model sets the approach proposed in this thesis has
already been applied to find some complete and schedulable allocations for smallest
models contained in Set 1 and Set 2 respectively. With those feasible solutions at hand,
for both models three separate variants have been generated simply by unallocating some
of the tasks again, resulting in one model with 14% unallocated asks, one with 20%,
and one with 37% in each of the two sets. The tasks to be unallocated have been chosen
carefully such that a reduction of the communication load (number of required bus slots)
on the global bus can be achieved additionally.

At this point six hand-crafted benchmark models were available, three in each set. In
the next step, each of those models has been scaled by a constant factor between 2 and
18. Scaling is done by duplicating every element of the hardware architectural pattern
and the task network with the exception of the hardware types (ECU-types and bus
types) and the global bus. Duplicating in this context means to create a copy of the
entity (e.g. a task) which has a new object identity (e.g. task name) but is identically to
the original object in all other aspects. Duplicating the hardware architectural pattern is
done on the level of subsystem: While duplicating a given subsystem all its ECUs are
also duplicated and associated to the subsystem copy. The global bus requires special
care, as it is the only shared element in the whole hardware architecture. In the copy of
each subsystem the ECU that is the copy of the original gateway ECU is connected to
both the global and the local bus and used as gateway for that new subsystem.

As stated in Chapter 4, the minimal number of required bus slots for the transmission
of a given signal on the global bus is defined as:

⌈︁
𝑑
𝑥

⌉︁
where 𝑑 denotes the signal’s deadline

and 𝑥 denotes the length of the TDMA round on the global bus. By duplicating each
bus slot on the global bus the length of the TDMA increases and so does the number of
required bus slots for each signal on the global bus. That dependency can be solved (if
a solution exists) by using a fixed-point iteration for calculating the required number
of bus slots: First, as many copies of each bus slots as required by the scaling factor
are created. Then the first iteration is started by recalculating the number of bus slots
for each signal on the global bus. The new sum of required bus slots is then used for
recalculating the number of required slots but only if the number of required bus slots has
increased since the last iteration. It may happen during this process that no fixed-point
can be found. In this case the model cannot be scaled by the given factor (and not by any
larger factor, too). The fixed-point calculation used for scaling gives up after a certain
number of iterations. According to the way the scaled models are constructed, there are
three dimensions of variety:

1. The distinction between models with ECU-type speed-up factors and those without.
Set 1 contains all models with speed-up factors. Set 2 contains all other models.
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2. The total number of tasks, varying from 43 to 774 (18 times larger than the original
model).

3. The percentage of unallocated tasks, one of 14%, 20%, or 37%

Not all possible combinations along the above mentioned dimensions of variety are
part of the benchmark. The combination of a large scaling factor and a small number of
unallocated tasks leads to situations where no fixed point for number of bus slots on the
global bus can be found. In such cases the messages initially allocated to the global bus
already need more capacity than available.

All analysis modules under evaluation have been run with a time limit of 60 minutes.
As the analysis module “MZ” never succeeded for larger benchmarks (with more than 86
tasks), it has been disabled purposely for all large models.

The overall analysis approach (“MZ”) and all the global analysis methods except for
the SMT approach based on HySAT (“HS”) have been evaluated based on the benchmark
“TindellScaled”. The “HS” global analysis module has not been evaluated at all because
it became clear during the first experiments that this module finished successfully for
only a few very small models (with up to 86 tasks, up to 14% unallocated tasks). For
all larger models “HS” timed out without finding any useful result.

6.5.1.1. Results: Global Analysis

This benchmark “TindellScaled” consists of 68 models. Each analysis module has been
evaluated twice on each of the input models: The first time the number of processor
cores available to the analysis backend has been restricted to 12, the second time that
limit was lowered to 1. Note that currently only the “MZ” approach and the “LP_∗”
formulation presented in this paper are capable of using parallel optimization on multiple
processor cores, the latter one only if used in conjunction with either Gurobi or CPlex,
but not GLPK. However, while the “HS” and “KL” approaches are not meant to be
parallelized on multiple cores, they can still benefit if used in combination with either the
Spare-Time/MaxWCET local analysis approach presented in this thesis or the Eisenbrand
approach as long as Gurobi is used during the (local) optimization phase. In the following
figures of this section the results are presented grouped by the sets (either Set 1 or Set 2)
and the number of unallocated tasks. Only those results are shown in the figures where
12 cores have been available.

A table with all global results for this benchmark can be found in the appendix (see
Section D.1.1). In the following, the result data is presented in aggregated form suitable
for studying the hypothesis formulated earlier in this chapter.

Table 6.3 shows general information about the results for this benchmark. The first
column contains the names of all global analysis modules under evaluation and the overall
analysis “MZ”. The next columns contain the number of analysis runs for each of the
analysis modules which have been successful, encountered a time-out, returned incomplete
results (e.g. one or more tasks remained unallocated) or experienced some kind of error
during their execution. An analysis run is classified as Successful if the analysis module
returned a valid result within the specified time limit. The validity of each results is

133



6. Implementation and Evaluation

verified by running a schedulability analysis and a consistency check which for example
checks for unallocated tasks, missing messages, etc. An analysis run is classified as
Timeout if the analysis module encountered a time-out condition. An analysis run is
classified as Incomplete if the analysis module finished within in the specified time limit
but the solution is not complete, for example tasks are still unallocated or messages are
missing. An analysis run is classified as Error if the analysis module encountered an
error condition and notified the evaluator module about this, or if the analysis module
threw an exception.

For the “KL” analysis module the evaluator module was unable to distinguish between
results where an incomplete solution was returned due to a programming bug and results
where the underlying algorithm gave up because it was unable to find a valid solution.
Therefore all results where at least one task remained unallocated calculated by this
analysis module have been categorized as Incomplete. The last column shows the total
number of analysis runs per module. As mentioned before, the overall analysis has been
used only on small models which explains the small number of total analysis runs for
that module.

Global Module Successful Timeout Incomplete Error Total

KL 58 41 37 0 136
LP_GRB 52 84 0 0 136
LP_CPX 38 88 10 0 136
LP_GLP 22 76 0 0 98
MZ 10 0 6 0 16
Total 180 289 53 0 522

Table 6.3. – Benchmark “TindellScaled”: General Information

As most important metrics the costs of the resulting solutions and the runtime (wall
clock) for all analysis runs where the number of available CPU cores has been limited to
12 is depicted in Figure 6.2 for Set 1 (benchmarks with speed-up factors) and Figure 6.3
for Set 2 (benchmarks with no speed-up factors). Both figures consists of two rows
of charts. The upper row contains charts visualizing the runtime (wall clock) starting
with 14% percent unallocated tasks, to 20%, and finally to 37%. In the second row the
corresponding result costs are depicted respectively. The x and y axes have been aligned
to allow a quick comparison of the results.

The results show that for the given benchmark the “KL” analysis module scales better
than “LP_∗” with increasing number of tasks with respect to the runtime. This is the
expected when comparing a (good) heuristic method and an optimal method such as
MILP. Rather unexpected however was the fact, that “KL” performs slightly better in
many cases with respect to the achieved cost, too.

One reason is that this benchmark is beneficial for “KL”: In all cases a solution can be
found which is very close to the initial hardware cost of the DSE problem. The initial
cost is a lower bound for the resulting cost because according to the definition of a DSE
Problem the initial cost have to be minimal. Allocating all unallocated software tasks
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causes more load on the involved ECUs which can lead to additional cost but never to
reduced cost. The initial cost have been visualized by adding a dashed line to the cost
charts in Figure 6.2 and Figure 6.3. “KL” is implemented such that it almost always
underestimates the required cost forcing the local analysis module to choose very tight
solutions. This works especially well for DSE problems where solutions exist which
require only minimal additional hardware cost. Even if the capacity estimation of the
“LP_∗” approach is more accurate than the one used in “KL”, this would not lead to
better results than those calculated by “KL”, because the results of “KL” are optimal in
most cases. This has been shown for those benchmark models where the “MZ” approach
successfully calculated a result. The costs of solutions calculated by the “MZ” global
analysis module are a lower bound1 for the achievable cost due to the concept of the
“MZ” approach. By looking at those results in Figures 6.2 and 6.3 where the “MZ” global
module was able to find a solution, it can be seen, that the “KL” costs are identically
to the “MZ” costs. In those cases an optimal solution has been found by “KL” (and
there exist no better solution). It can be concluded that the models contained in the
benchmark “TindellScaled” are beneficial for “KL” to the disadvantage of the “LP_∗”
global analysis modules.

1“MZ” calculates optimal solutions but in doing so ignores all communication on local buses. Therefore
the resulting cost are possibly less than the minimal cost achievable when additionally considering
local communication.
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Method Comparing Cost 𝛿 = |costKL − cost|
Less than KL Equal Greater than KL 𝛿 ≤ 11 11 < 𝛿 ≤ 37 37 < 𝛿

LP_GRB 6 22 18 36 10 0
LP_CPX 4 22 10 34 2 0
LP_GLP 2 16 4 22 0 0

Table 6.4. – Hypotheses 1a and 1b: Cost of Successful Runs (“TindellScaled”)

Carefully examining the data revealed that the “LP_∗” methods found in almost
all cases solutions very similar to those found by “KL”. Table 6.4 separately compares
“LP_GRB”, “LP_CPX” and “LP_GLP” with “KL”. Only those results are counted
where both methods to be compared have successfully produced a valid (complete and
feasible) solution. Adding the first three columns in a row gives the number of comparable
results for the compared global analysis methods. Obviously the “LP_GRB” analysis
module with its backend Gurobi calculated far more results comparable to “KL” than
the other modules.

It can be seen that in many cases “KL” produces results with slightly lower costs
compared to the results produced by each of the different “LP_∗” backends (which
implement the approach proposed in this thesis). However, in most cases the absolute
difference between the hardware costs is lower than the cost of the cheapest ECU-type
(11). In almost all cases it is lower than the cost of the most expensive ECU-type (37).
The cost charts presented as part of Figure 6.2 and Figure 6.3 make this result visible: In
most cases the difference of the 𝑦-position between points indicating the resulting costs
calculated by different analysis modules for a given model can barely be spotted at all.

Following from these findings, a decision about Hypothesis 1 with respect to the
benchmark “TindellScaled” can be taken: The null hypothesis 𝐻1𝑎

0 can be rejected for
all “LP_∗” analysis modules but only because in most of the cases the resulting costs
are equal. It can be stated that the “LP_∗” approach in most cases produces results
with equal or lower costs (though lower costs are rarely achieved). Note however, that
the hypothesis stating that solutions created by “KL” in most of the cases have lower or
equal costs would be accepted, too, by rejecting the corresponding null hypothesis, with
a higher significance due the large number of cases where “KL” has produced cases with
lower costs.

The null hypothesis 𝐻1𝑏
0 can also be rejected for both threshold values evaluated (see

table 6.4). It can be concluded that for most of the cases the difference between the costs
of solutions created by “KL” are very close to those created by “LP_∗”.

Table 6.5 compares the runtimes as measured for all “LP_∗” global modules of all
successful runs with those for the “KL” module. The smallest number of comparable
solutions has been found for “LP_GLP” (using the open-source backend GLPK). For
those results “KL” clearly is the winner: There are only few cases where “LP_GLP” had
a lower runtime than “KL”. As expected both commercial backends used in “LP_GRB”
and “LP_CPX” produce better results. At first glance it might look like “LP_CPX” has
the best results. But the total number of models which have been successfully analyzed
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Method Comparing Runtime 𝛿 = |runtimeKL − runtime|
Less than KL Equal Greater than KL 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

LP_GRB 17 6 23 29 7 10
LP_CPX 19 7 10 31 2 3
LP_GLP 2 6 14 12 3 7

Table 6.5. – Hypothesis 2: Comparing the Runtime (Wall Clock) of Successful Runs (“Tin-
dellScaled”)

with that module is significantly lower than for “LP_GRB”. This means that there are
many models for which “LP_CPX” could not find any result inside of the specified time
limit of 60 minutes.

Based on those observations it is not possible to reject the null hypothesis 𝐻2
0 which

means that it cannot be shown based on the presented data that “LP_∗” finds the
majority of solutions in less time than “KL”.

6.5.1.2. Results: Local Analysis

Table 6.6 shows an overview of the local analysis results measured while analyzing the
benchmark “TindellScaled”. All global analysis modules except “MZ” delegate the detailed
subsystem analysis to one of the local analysis modules. Therefore, a huge amount of
data has been produced while evaluating the benchmark. Each local measurement results
from one run of a local analysis module. Note that during the optimization phase it
is likely that two or more local analysis modules have been ran with exactly the same
parameters on the same local DSE problem. These “redundant” (in the sense that the
inputs for the local optimization have been identical) results could not be avoided without
monitoring all model details which would have caused a large bias with respect to the
runtime. Therefore, this special kind of redundancy has been accepted as unavoidable
effect.

Module Successful Error Total

Eis 47867 17 47884
Stm 47882 2 47884
Total 95749 19 95768

Table 6.6. – Benchmark “TindellScaled”: General Information about Local Analysis Results

The sheer number of records requires a different approach for visualization. Figure 6.4
shows two figures each with two boxplots comparing the runtimes (wall clock) of all local
analysis runs carried out for analyzing the benchmark “TindellScaled”. Figure 6.4a shows
all results, and in Figure 6.4b the right one truncates the 𝑦-axis at 10s thus hiding most
of the outliers (dots above the boxes).

In these boxplots (and all the following ones), the lower “hinge” or “end” of the box
corresponds to the first quartile (25th percentile, 25% of the data records have lower
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Figure 6.4. – Benchmark “TindellScaled”: Overview of Local Analysis Results

values) of the analyzed data (with respect to the chosen 𝑦-axis) and the upper “hinge”
to the third quartile (75th percentiles, 25% of the data records have greater values),
respectively. The horizontal line inside of the boxes marks the median. The distance
between the lower and upper hinge (measured by the chosen variable on the 𝑦-axis) is
called the interquartile range (IRQ). The lower whisker (vertical line) starts at the lower
hinge of the box and extends down to the lowest measured value within 1.5 ⋆ IRQ of that
hinge. The upper whisker starts at the upper hinge of the box and extends up to the
largest measured value within 1.5 ⋆ IRQ of that hinge. Every measured result below or
above the respective whisker can be considered an outlier.

Module Runtime (Wall Clock) [s] Cost
Mean Median Std. Dev. Mean Median Std. Dev.

Eis 3.85 3.00 3.27 35.65 38.00 4.86
Stm 2.86 2.00 2.50 35.65 38.00 4.88

Table 6.7. – Benchmark “TindellScaled”: Statistical Summary of Local Analysis Results

Table 6.7 shows median, mean and standard deviation of the runtime (wall clock) and
costs separately for both local analysis modules “Stm” and “Eis”. Of course, without
further classifying the input models the explanatory power of the table and the boxplots
is limited. But it can be seen that the proposed “Stm” approach significantly outperforms
the referenced “Eis” approach and additionally is more stable considering the outliers
measured for the runtime (wall clock). It has been expected that any improvements
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of the analysis runtime of the “Stm” approach compared to the “Eis” approach would
come at the expense of a worse quality of the results produced by “Stm”, namely slightly
higher hardware costs. However, Table 6.7 shows that the mean of the hardware costs
of all the local results computed by the “Stm” approach is identical (!) to the mean of
the hardware costs found by the “Eis” approach on the same set of models. It can be
concluded that for the benchmark “TindellScaled” the proposed “Stm” local analysis
approach is on average about one third faster than the “Eis” approach while producing
results of identical quality. This conclusion is especially astonishing given the fact that
the “Stm” approach is affected by a loss of precision caused by applying the abstractions
required for the Spare-time/MaxWCET formalism.

The presentation of the local analysis results for this benchmark is completed by
showing the runtime (wall clock) of the respective local analysis modules plotted against
the number of tasks, the number of unallocated tasks and the number of available ECUs.
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Figure 6.5. – Benchmark “TindellScaled”: Runtime (Wall Clock) of Local Analysis Modules
plotted against Number of local ECUs

Figure 6.5 shows that the number of subsystem-local ECUs varies only between two
and three. This is caused by the method used for constructing the benchmark’s models:
The subsystems contained in those small models used as templates for the upscaling
process have simply been copied leaving their internal structure unchanged.

The benchmark “Generated” (described in Section 6.5.2) contains models with larger
subsystems and is therefore more useful for evaluating the influence of the number of
subsystem-local ECUs on the runtime of the optimization phase.

In Figure 6.6 the runtime is plotted against the total number of tasks handled by the
respective local analysis module. Figure 6.7 the runtime is plotted against the number of
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Figure 6.6. – Benchmark “TindellScaled”: Runtime (Wall Clock) of Local Analysis Modules
plotted against Number of Tasks
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Figure 6.7. – Benchmark “TindellScaled”: Runtime (Wall Clock) of Local Analysis Modules
plotted against Number of unallocated Tasks
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unallocated tasks. It can be seen that — as expected — the performance of both local
analysis modules is excellent for very small models. But the figures also show that there
is no strong correlation between the runtime and the total number of tasks on the one
hand, and the runtime and the number of unallocated tasks on the other hand.

Correlation (Stm) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks 0.18 0.35 0.23 0.43
Unallocated Tasks 0.20 0.38 0.25 0.44
Tasks * Unallocated 0.13 0.28 0.20 0.38
Unallocated Tasks * ECUs 0.20 0.38 0.25 0.44

Table 6.8. – Benchmark “TindellScaled”: Analysis of Correlations: Local Module “Stm”

Correlation (Eis) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks 0.13 0.28 0.20 0.38
Unallocated Tasks 0.15 0.30 0.21 0.39
Tasks * Unallocated 0.07 0.19 0.16 0.31
Unallocated Tasks * ECUs 0.15 0.30 0.22 0.39

Table 6.9. – Benchmark “TindellScaled”: Analysis of Correlations: Local Module “Eis”

Tables 6.8 and 6.9 show the calculated correlations 2 for the local analysis module “Stm”
and “Eis”, respectively. Three variables have been considered: The total number of tasks
(for the respective subsystem), the number of unallocated tasks, and an additional variable
holding the result of the multiplication of the aforementioned variables. The correlation
of these variables with the wall clock runtime and the CPU runtime (which could be
much larger than the wall clock time whenever multiple cores are used extensively) has
been calculated.

The concept of correlation between two variables in a data set relies on the assumption
that both variables are increasing linearly. However, it is more likely that the runtime
(both wall clock and CPU) increases exponentially. Therefore the correlation is not
only tested for the directly measured runtimes (called “Linear” in the table headers),
but also for additional variables derived by calculating the natural logarithm of the
measured values (called “Logarithmic” in the table headers). A value of 0 would indicate
no correlation at all, a value of 1 would indicate a perfect correlation, and a value of −1
would indicate a perfect negative correlation (one variable would always decrease linearly
while the other increases and vice versa).

The tables illustrate that in general the correlations are rather small. For the “Stm”
analysis approach the correlations are a little bit stronger than for the “Eis” approach.
But considering the low overall correlations it can be concluded that the analyzed
model-specific independent variables only have a low impact on the runtime.

2All correlation tests in this thesis use the Pearson product-moment correlation coefficient.
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The complexity of both local analysis approaches and the huge influence of the used
MILP backend renders the chance of finding strong correlations between single variables
quite improbable.

Method Comparing Cost 𝛿 = |costEis − cost|
Less than Eis Equal Greater than Eis 𝛿 ≤ 11 11 < 𝛿 ≤ 37 37 < 𝛿

Stm 0 47859 6 47860 5 0

Table 6.10. – Hypothesis 3: Comparing Local Cost of Successful Runs (“TindellScaled”)

Table 6.10 compares the costs of the results computed using the “Stm” approach with
those of the “Eis” approach. The table shows that in the benchmark “TindellScaled”
the “Eis” approach had a better result (one with lower cost) for only six results out of
47859. For five of those six solutions the difference between the costs was smaller than
the cost for the cheapest ECU-type (11). In all cases that difference was smaller than
the cost of the most expensive ECU-type. Based on these results the null hypothesis 𝐻3

0
can be rejected in favor to the alternative hypothesis 𝐻3

𝐴 (“The majority of solutions
found using “Stm” have lower or equal hardware costs than those found by “Eis””).

Method Comparing Runtime 𝛿 = |runtimeEis − runtime|
Less than Eis Equal Greater than Eis 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

Stm 28406 15718 3741 47309 554 2

Table 6.11. – Hypothesis 4: Comparing Local Runtime of Successful Runs (“TindellScaled”)

In the same manner the runtimes of the local analysis modules are compared in
Table 6.11. According to the presented data the runtime of the “Eis” module was
identically to the corresponding runtime of the “Stm” module (15718 cases), in some
cases it was even lower (3741 cases). But in the majority of cases the runtimes of “Stm”
were lower (28406 cases). Due to the small size of most of the local DSE problems the
difference in the runtimes between “Stm” and “Eis” was less or equal to 10 seconds. But
regardless of that, based on the data, the null hypothesis 𝐻4

0 can be rejected in favor of
the 𝐻4

𝐴 (“Stm” finds the majority of solutions in less time than “Eis”).

6.5.1.3. Single Core vs. Multi Core

As a side effect of evaluating this benchmark (and the following benchmarks) a huge
amount of data has been collected about the usefulness of multiple CPU cores for those
global and local analyses with multi-core support. All DSE problems of the benchmark
“TindellScaled” have been analyzed twice, the first time with a restriction to maximal 12
CPU cores and the second time with a restriction to exactly one CPU core. Note that
some global analysis modules (“HS”, “MZ” and “LP_GLP”) have not been executed for
those DSE problems whenever it was obvious that they would not succeed (because they
already failed for all smaller instances starting from a certain model size).
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The results of the most powerful global analysis modules are shown in the following
figures, namely “KL”, “LP_GRB” and “LP_CPX”. While “KL” itself is not able to use
more than one CPU core, its local analysis backend (“Stm”) was able to use multiple
cores (because of using Gurobi for solving the local DSE problems).

In Figure 6.8 the results for “KL” are depicted. The upper (black) part of the bars
(sometimes barely visible for “KL”) represents the duration spent computing the global
analysis. The lower (green) part of the bars show the total amount of time spent in the
local analysis module. The left part of each of the figures shows the results where only
one CPU core has been allowed. The right side shows those results where maximal 12
CPU cores were available to the global and local analysis modules. It can be seen that
“KL” does not take advantage of multiple cores in most cases: For some DSE problems
the time used for the local analyses was a little bit shorter, but sometimes it is even
larger. The runtimes of “KL” itself are already very low compared to the fraction of the
local analysis. According to the data for this benchmark it currently does not make sense
to consider a parallelized implementation of “KL”.

But why does the local analysis not take advantage of using multiple CPU cores? The
reason for this effect might be the small size of the subsystem-local DSE problems. For
small local DSE problems the overhead of creating the MILP data structures is very
large compared to the actual MILP optimization process. The huge number of individual
local analysis steps (one for each subsystem in each global analysis iteration) multiplied
by the short runtimes of the local analysis module results in the huge fraction of the
computation time required for the local analysis part. Parallelization using multiple
CPU cores inside of each local analysis runs would most likely not reduce the already
small runtimes significantly. But the data measured for this thesis is not sufficient to
evaluate the influence of using parallelization in the local analysis separately from the
global analysis.

Figure 6.9 shows the results of the “LP_GRB” global analysis module (which uses
Gurobi as its backend) and Figure 6.10 shows the results of the “LP_CPX” analysis
(which is based on CPlex). It can be seen that the computation time for the global
analysis based on MILP grows exponentially with the size of the DSE problem (here the
number of tasks has been chosen as metric for the problem size).

Gurobi takes advantage of multiple CPU cores in most of the cases. But the achieved
computation speed-up is significantly lower than the speed-up factor one might have
expected when making available 12 cores instead of only 1 core. Instead, the speed-up is
approximately 2 which is still a very good result considering the fact that the necessary
parallelization is provided automatically by Gurobi without requiring any special measures
while preparing the MILP problem formulation.

For CPlex, in some cases the use of multiple threads even led to a longer computation
time.

It can be concluded that for this benchmark the use of multiple CPU threads during
the optimization phase is beneficial for the global analysis modules “LP_GRB” and
“LP_CPX” which directly support parallelization through their respective backends.
Despite of the mixed picture, the null hypothesis 𝐻5

0 can be rejected in favor of the
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Figure 6.8. – Benchmark “TindellScaled”: Multi-core vs. Single-Core (“KL”)
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Figure 6.9. – Benchmark “TindellScaled”: Multi-core vs. Single-Core (“LP_GRB”)
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Figure 6.10. – Benchmark “TindellScaled”: Multi-core vs. Single-Core (“LP_CPX”)
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alternative hypothesis 𝐻5
𝐴 (“The use of multiple CPU cores reduces the runtimes of

multi-core enabled global analysis modules”) due to the significant speed-up of the
multi-core enabled global analysis modules. For the other global analysis modules the
null hypothesis can either not be rejected (“LP_GLP” or has not been analyzed due
to the very small number of results produced by the respective analysis module “MZ”,
“HS”, and “MZ”).

6.5.2. Benchmark “Generated”
The benchmark “Generated” is a set of completely artificial DSE problems which have
been generated randomly by a special synthesis module integrated into Zerg. The
synthesis module supports a huge amount of parameters such as “minimal number of
tasks”, “maximal number of tasks”, “minimal number of ECU types”, “maximal number
of ECU types”. During the synthesis process the actual number of tasks, number of
ECU types, etc. are determined by randomly choosing a value inside of the specified
intervals. Then the corresponding artifacts are created, e.g. tasks, signals, subsystems,
ECUs, ECU-types, buses and bus types. Other parameters describe the intervals for
choosing the artifact’s properties such as task period and WCETs. A task network
and a hardware architecture are constructed which comply with the limitations for task
networks and hardware architectures described in this thesis. All tasks are allocated to
the ECUs of the system. Messages are created where necessary. Of course, the algorithm
for finding a valid allocation of the tasks has to consider the communication between
them to avoid situations where too high communication loads are generated on the global
bus or the local buses. As the optimization approach requires the initial system to be
feasible, the synthesis has to take care to fulfill all requirements regarding schedulability,
memory limitations, communication restrictions, and so on. After a complete feasible
system (with all tasks allocated) has been generated successfully, some of the tasks
are removed from their respective ECU and the corresponding messages are removed
where possible/necessary. The result of a successful synthesis process is an artificial DSE
problem where some tasks are initially allocated and other tasks are not yet allocated for
which a solution exists.

During the development of the synthesis module it became more and more clear that
two highly contradictory requirements have to be met: On the one hand, the constructed
DSE problems have to be feasible, but on the other hand, they should pose a real
challenge to the optimization approaches under evaluation. Generating feasible DSE
problems taken alone already is a complicated task due to all the involved constraints.
Constructing challenging DSE problems requires even more sophisticated algorithms
because DSE problems are challenging only if they are close to being infeasible. These
situation led to a very complex implementation of the synthesis module (3108 lines of
code). It has been decided to prioritize the goal of constructing feasible DSE problems.
Therefore, all models contained in the benchmark “Generated” are huge, but not too
challenging for the analysis modules. Similar to the benchmark “TindellScaled”, most
of the models in this benchmark can be solved without additional hardware costs (by
using only the initially available hardware architecture without modifying it). As stated
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before, the global analysis module “KL” works especially well if used on DSE problems
where only little or even no changes at all of the hardware architecture are required in
order to find solutions.

In Table 6.12 some details about the models contained in this benchmark are provided.

#Tasks 𝑥 Unallocated Tasks [%]
𝑥 < 10% 10% ≤ 𝑥 < 30% 30% ≤ 𝑥 < 50% 50% ≤ 𝑥 < 70% Total

100 188 140 130 12 470
200 2 198 10 6 216
300 0 10 4 4 18
Total 190 348 144 22 704

Table 6.12. – Benchmark “Generated”: Number of Models with total Number of Tasks
(Rows) of which 𝑥 Percent are Unallocated (Columns)

The benchmark contains 352 models. All models consists of either 100, 200 or 300
tasks. Between 10% and of 70% of these tasks are unallocated.

6.5.2.1. Results: Global Analysis

This benchmark consists of 352 models. Table 6.13 provides an overview of the results of
the global analysis for this benchmark. Not all available global analysis modules have
been used for this benchmark. Namely “LP_GLP” was not used, because based on the
previous results, it was clear that its backend GLPK would hardly be able to solve any
of the provided DSE problems in reasonable time. The “MZ” module has been used only
for smaller models. The global modules “KL”, “LP_GRB” and “LP_CPX” have been
ran 704 times each, the “MZ” module only 240 times.

The results of all global analysis modules except for “MZ” are very good, considering
the size of the models. For unknown reasons the “MZ” module failed to compute valid
solutions for all 240 DSE problems.

Global Module Successful Timeout Incomplete Error Total

KL 597 66 41 0 704
LP_GRB 556 77 71 0 704
LP_CPX 568 71 65 0 704
MZ 0 0 240 0 240
Total 1721 214 417 0 2352

Table 6.13. – Benchmark “Generated”: General Information

Figure 6.11 compares the runtimes of all successful global analysis runs. The boxplot
on the left side shows all runs and the boxplot on the right side only those results with a
runtime smaller or equal to 100s. The medians of both “LP_GRB” and “LP_CPX” are
slightly lower than the median of the “KL” module. The box for “KL” is slightly larger
and its upper end is located at a larger runtime value than the upper ends of both the
box for “LP_GRB” and “LP_CPX”.
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Figure 6.11. – Benchmark “Generated”, Comparing Runtimes

Module Runtime (Wall Clock) [s] Cost
Mean Median Std. Dev. Mean Median Std. Dev.

KL 98.24 20.00 286.53 2386.33 2318.00 745.99
LP_CPX 195.28 18.50 566.82 2386.33 2318.00 745.99
LP_GRB 190.31 16.50 628.04 2386.33 2318.00 745.99

Table 6.14. – Benchmark “Generated”: Summary of Global Results (Where All Modules
found a Solution)
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Table 6.14 provides the median, mean and standard deviation of the results of the
global analysis modules limited to those benchmark models for which all global analysis
modules found a solution (which avoids bias).

Method Comparing Cost
Less than KL Equal Greater than KL

LP_GRB 0 523 0
LP_CPX 0 535 0

Table 6.15. – Hypothesis 1: Comparing Cost of Successful Runs (“Generated”)

Based on the data for this benchmark shown in Table 6.15 both the null hypothesis
𝐻1𝑎

0 and the null hypothesis 𝐻1𝑏
0 can be rejected favoring the alternative hypotheses

𝐻1𝑎
𝐴 (“The majority of “LP_∗” solutions have lower or equal hardware costs than “KL”)

and 𝐻1𝑏
𝐴 (“The majority of “LP_∗” solutions have similar costs than the “KL” solutions

(depending on a given threshold)”).

Method Comparing Runtime 𝛿 = |runtime𝐾𝐿 − runtime|
Less than KL Equal Greater than KL 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

LP_GRB 286 32 205 283 104 136
LP_CPX 225 38 272 279 98 158

Table 6.16. – Hypothesis 2: Comparing Runtime (Wall Clock) of Successful Runs (“Gener-
ated”)

Regarding the runtimes the picture is not that clear. Table 6.16 shows that the analysis
module “LP_GRB” (with backend Gurobi) in most of the cases had a shorter runtime
than “KL” which allows us to reject the null hypothesis 𝐻2

0 favoring the alternative
hypothesis 𝐻2

𝐴 (““LP_GRB” finds the majority of solutions in less time than “KL””).
However, global module “LP_CPX” (with backend CPlex) has been slower than “KL” in
around 272 of 535 comparable cases. Based on this result, the null hypothesis 𝐻2

0 cannot
be rejected for “LP_CPX”.

6.5.2.2. Results: Local Analysis

The results of the local analyses for this benchmark are more interesting than the local
results of the other benchmark due to the greater variability of the models. The hardware
architectures of the subsystems had between 11 and 35 ECUs and therefore are much
larger than the subsystems found in e.g. the benchmark “TindellScaled”. This allows a
more detailed evaluation of the strengths and weaknesses of the local analysis modules.

Table 6.17 shows an overview of the results. Even though still a large number of local
analysis runs have been evaluated, the total number of analysis runs is much smaller
than for the benchmark “TindellScaled”. The reason for the small number of runs is
that the hardware architectures of the global DSE problems consists of only a small
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Local Module Successful Error Total

Eis 5883 298 6181
Stm 5957 224 6181
Total 11840 522 12362

Table 6.17. – Benchmark “Generated”: General Information about Local Analysis Results

number of subsystem which are significantly larger than the subsystems used e.g. in the
benchmark “TindellScaled”. The table also reveals that both local analysis modules failed
to calculate valid results in approximately 5% of all cases. I assume that this is caused
by corner cases contained in the generated models which are not handled appropriately
by the respective local analysis module. As most of the results are valid and the time
situation for this thesis is too tight no further action has been taken to identify these
corner cases. Note that the validity of all local analysis runs marked as “successful” in
the table is proven because of the automatic checks for integrity performed after each
local analysis run.
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Figure 6.12. – Benchmark “Generated”: Overview of Local Analysis Results

An overview comparing the runtimes of both approaches is depicted in Figure 6.12 via
boxplots. In this and all following figures only those local analysis cases are compared
where both modules calculated a valid solution. The boxplot on the left side (Figure 6.12a)
shows the runtimes (wall clock) of all analysis runs. The runtimes vary between 0 and
approximately 7000 seconds but most of the runs with large runtimes can be considered
outliers. The plot on the right side (Figure 6.12b) shows the same results but limiting
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Module Runtime (Wall Clock) [s] Cost
Mean Median Std. Dev. Mean Median Std. Dev.

Eis 123.26 31.00 512.07 549.86 542.00 151.94
Stm 51.45 3.00 274.19 549.86 542.00 151.94

Table 6.18. – Benchmark “Generated”: Statistical Summary of Local Analysis Results

the 𝑦-axis to values between 0 and 150 seconds thus hiding most of the outliers. The
figure shows clearly that “Stm” was faster than “Eis” in most of the cases; the box
corresponding to the results of “Stm” does not even overlap with the one for “Eis”. These
findings are substantiated by the results shown in Table 6.18. The median of the “Eis”
results is ten times greater than the median of the “Stm” results with respect to the
runtime. Again the question is what the price for this great speed-up with respect to the
quality of the solutions (measured in cost) is. The table gives an answer to this question
as well: the median of the calculated costs of “Stm” is identical to that of “Eis”. In
other words: a speed-up of factor 10 can be achieved using the Spare-Time/MaxWCET
approach without loss of quality.

Method Comparing Cost 𝛿 = |costEis − cost|
Less than Eis Equal Greater than Eis 𝛿 ≤ 11 11 < 𝛿 ≤ 37 37 < 𝛿

Stm 0 5762 0 5762 0 0

Table 6.19. – Hypothesis 3: Comparing Local Cost of Successful Runs (“Generated”)

Method Comparing Runtime 𝛿 = |runtimeEis − runtime|
Less than Eis Equal Greater than Eis 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

Stm 5338 59 365 1279 3110 1373

Table 6.20. – Hypothesis 4: Comparing Local Runtime of Successful Runs (“Generated”)

Tables 6.19 and 6.20 contain the data required to find an answer for Hypothesis 3 and 4.
Because of the identical median of the calculated costs, null hypothesis 𝐻3

0 can be rejected
in favor of the alternative hypothesis 𝐻3

𝐴 (“The majority of solutions found using “Stm”
have lower or equal hardware costs than those found by “Eis””). Regarding the runtimes,
as shown in to Table 6.20 “Eis” has been faster than “Stm” for only approximately 5% of
the local DSE problems contained in this benchmark. For 1% of the models both analysis
modules had identical runtimes and for 94% the runtimes of “Stm” have been shorter.
Based on these results the null hypothesis 𝐻4

0 can be rejected favoring the alternative
hypothesis 𝐻4

𝐴 (““Stm” finds the majority of solutions in less time than “Eis””).
In Figures 6.13, 6.14 and 6.15 the results are categorized by the number of local

ECUs, the total number of tasks (system-wide) and the number of unallocated tasks
(pre-allocated to the respective subsystem).
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Figure 6.13. – Benchmark “Generated”: Runtime (Wall Clock) of Local Analysis Modules
plotted against Number of local ECUs
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Figure 6.14. – Benchmark “Generated”: Runtime (Wall Clock) of Local Analysis Modules
plotted against Number of Tasks
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Figure 6.15. – Benchmark “Generated”: Runtime (Wall Clock) of Local Analysis Modules
plotted against Number of unallocated Tasks

Obviously, increasing the total number of tasks increases the runtime of the local
analyses because the number of tasks to be allocated to each subsystem increases, too.
Figure 6.14 further shows that the runtime of “Stm” increases significantly slower with
increasing number of tasks than the runtime of “Eis”. The number of locally available
ECUs is another important factor influencing the runtime as can be seen in Figure 6.13.
The number of unallocated tasks, however, does not seem to be correlated with the
runtime (see Figure 6.15).

Correlation (Stm) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks 0.00 0.11 0.01 0.15
Unallocated Tasks 0.16 0.36 0.09 0.35
Tasks * Unallocated Tasks 0.08 0.23 0.05 0.25
Unallocated Tasks * ECUs 0.15 0.37 0.10 0.37

Table 6.21. – Benchmark “Generated”: Analysis of Correlations: Local Module “Stm”

Tables 6.21 and 6.22 show for each local analysis module the correlation between the
different factors number of tasks (total), number of unallocated tasks (local), number of
tasks multiplied with the number of unallocated tasks, and number of tasks multiplied
with the number of local ECUs, each in relation with the runtime. The different notions
of runtime used are wall clock and CPU time. For both of them the measured values are
used directly (“linear”) and additionally the result of calculating the natural logarithm
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Correlation (Eis) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks 0.03 0.27 0.03 0.31
Unallocated Tasks 0.12 0.37 0.08 0.35
Tasks * Unallocated Tasks 0.07 0.32 0.05 0.33
Unallocated Tasks * ECUs 0.14 0.49 0.10 0.47

Table 6.22. – Benchmark “Generated”: Analysis of Correlations: Local Module “Eis”

of the values is used. The found correlations are a little bit stronger than those found for
the benchmark “TindellScaled”. For both local analysis modules the strongest correlation
is between the number of unallocated tasks multiplied by the number of ECUs with the
logarithm of the runtimes, both wall clock and CPU. But even the strongest correlation
found is less than 0.5. This substantiates the hypothesis that there exists no simple
dependence from one or two properties of the used models to the runtime of the local
analysis modules.

6.5.2.3. Single Core vs. Multi Core

Figure 6.16 compares for each of the global analysis modules “KL”, “LP_GRB” and
“LP_CPX” the runtimes of all models where both analysis runs — the first one limited
to 12 CPU cores and the second one limited to one CPU core — successful found a
solution. The results are grouped by the total number of tasks (100, 200, or 300). As
each of these groups contains several individual results, boxplots are used to aggregate
the runtimes per group. On the left side, all results including all outliers are depicted
while on the right side the 𝑦-axes have been limited such that the boxplots and their
whiskers completely fit into the chosen ranges.

Surprisingly, the presented results show that in general it does not pay off to use the
built-in multi-threading capabilities of the multi-core-enabled MILP solvers Gurobi and
CPlex for this benchmark. Furthermore the results indicate that the mean runtimes of
the analysis runs where up to 12 CPU cores have been available are significant greater
than the mean runtimes for those analysis runs where only one core has been used.

Based on the presented results it is not possible to reject null hypothesis 𝐻5
0 for any of

the global analysis methods “KL”, “LP_GRB” or “LP_CPX”.
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Figure 6.16. – Benchmark “Generated”: Single-Core vs. Multi-Core
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6.5.3. Benchmark “ViDAs”
The third benchmark with the name “ViDAs” is based on the results of a project group of
the same name which was one of the master courses given at the University of Oldenburg
in 2009/2010. The eight participating students had been given the task to develop a
driver assistance system capable of automatically joining a two-lane motorway by using
sensors to identify a sufficiently large gap between the cars driving on the right lane.
The assistance system has been successfully implemented for a hardware system used
for building a set of (identical) model cars. More information can be found in the final
report [Bao+10b] and on the project group’s website [Bao+10a].

The driver assistance system was partially developed using Matlab Simulink®. The
timing information has been extracted from the Matlab model using the approaches
presented in [Bük12]. Real-Time Workshop® (recently renamed Matlab Coder™) was
used to generate source code. The task creation as presented in [Bük12] was then used to
partition the software into multiple software tasks. During that step, 10 unique solutions
have been created, each with different numbers and sizes of software tasks. A common
set of ECU-types has been defined for all solutions. For each of the software tasks timing
analysis was applied to determine worst case execution times assuming that each software
task is executable on every ECU type (based on binary executables compiled specifically
for the respective target ECU type).

For the benchmark “ViDAs” used in my work four representatives have been chosen
out of the 10 available solutions. The ViDAs driver assistance system is considered to
be an extension of an existing system. Therefore, all software tasks stemming from the
ViDAs project are considered to be unallocated initially. The existing system is the same
as for the benchmark “TindellScaled”, which means that the hardware architectures are
identical and that the same allocated software tasks of the benchmark “TindellScaled”
are used in the benchmark “ViDAs” as well and are allocated to the same ECUs as in
the benchmark “TindellScaled” (see Section 6.5.1 for details).

The (unallocated) tasks found by the task creation process could not be used directly in
this benchmark. As of today the local analysis approach still requires that task networks
have a tree-like structure; the tasks created by the task creation process violate that
limitation. They have been changed manually by removing some signals in a way that
they form a tree-like structure.

Each of the four models has been used as a template for creating a set of models by
scaling the respective initial model in the same way as for the benchmark “TindellScaled”.
Those sets Set 1, Set 2, Set 3 and Set 4 constitute the benchmark “ViDAsOriginal”.

During the evaluation it became obvious that the other benchmarks are not ideal
for demonstrating the strength of the the global analysis approach proposed in this
thesis. The reason for this is that all unallocated software tasks contained in each of
the benchmark models of the “TindellScaled”, “Generated” and the “ViDAsOriginal”
benchmarks can be allocate with only minimal additional hardware costs, as can be seen
by the lower bound marker (dashed line) in Figures 6.2, 6.3 (benchmark “TindellScaled”)
and Figures 6.17–6.20. This is a result of the initial utilization of all ECUs being too low
to be considered a challenge to the optimization approaches.
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As a consequence, I decided to modify the original ViDAs system such that significant
additional hardware cost are required in order to allocate all tasks onto the hardware
architecture. First, the costs of the ECU types have been changed (see Table 6.23), then
the worst case execution times of all allocated and unallocated software tasks have been
increased.

The four modified models have been used as templates for creating four sets which
together constitute the benchmark “ViDAsExpensive”.

ECU Type Cost Memory
ViDAsOriginal ViDAsExpensive

leon3_LRU_middle_cache 38 32 30000
leon3_no_cache 28 28 20000
arm7_standard 18 22 15000
arm7_fastmem 14 25 10000

Table 6.23. – Benchmark “ViDAs”: ECU Type Cost

6.5.3.1. Results: Global Analysis

ViDAsOriginal Table 6.24 shows general information about the results for this bench-
mark. This benchmark consists of 120 models. As for the other benchmarks, the overall
analysis “MZ” has been used only on smaller models which explains the small number of
total analysis runs for that module.

The data shows that only a small number of models could be analyzed successfully.
This indicates that the benchmark models are significantly harder to solve than those
of the previous benchmarks. The global analysis module “KL” clearly is the winner
with respect to scalability: 38 out of 240 analysis runs have been successful. Both
“LP_∗” modules have been significantly less successful, with 26 (“LP_GRB”) and 21
(“LP_CPX”) successful analysis runs, respectively. The “MZ” was unable to solve any of
the examples successfully, probably because of a bug in the implementation.

The Figures 6.17 to 6.20 depict for each of the four sets the data measured for the
global analysis modules “MZ”, “LP_GRB” and “LP_CPX”. In each figure the runtimes
are depicted in the left chart while the costs of the computed solutions are depicted
in the figures on the right side. For Set 1 the “KL” does obviously scale much better
with increasing number of tasks. For models with 135 tasks and above none of the other
modules could find a solution at all. The same trend can be seen in the results for
Set 2, however not that clearly. Interestingly, “KL” was unable to find solutions for the
largest models contained in Set 3 and Set 4, respectively. In Set 3 only “LP_GRB” (with
backend Gurobi) found a solution for the model with 148 tasks. In Set 4 a solution for
the model with 99 tasks could only be found by “LP_CPX” (with backend CPlex).

The charts depicting the costs of the solutions show that all global modules under
evaluation found solutions of similar quality.
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Global Module Successful Timeout Incomplete Error Total

KL 38 202 0 0 240
LP_GRB 26 214 0 0 240
LP_CPX 21 217 2 0 240
MZ 0 0 16 0 16
Total 85 633 18 0 736

Table 6.24. – Benchmark “ViDAsOriginal”: General Information/Global Analysis
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Figure 6.17. – Benchmark “ViDAsOriginal”: Global Analysis, Set 1. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.
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Figure 6.18. – Benchmark “ViDAsOriginal”: Global Analysis, Set 2. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.
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Figure 6.19. – Benchmark “ViDAsOriginal”: Global Analysis, Set 3. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.
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Figure 6.20. – Benchmark “ViDAsOriginal”: Global Analysis, Set 4. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.

Method Comparing Cost 𝛿 = |costKL − cost|
Less than KL Equal Greater than KL 𝛿 ≤ 14 14 < 𝛿 ≤ 38 38 < 𝛿

LP_GRB 7 10 7 24 0 0
LP_CPX 9 5 6 20 0 0

Table 6.25. – Hypothesis 1: Comparing Cost of Successful Runs (“VidasOriginal”)
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The charts depicting the costs of the solutions (on the right side) show that all global
modules under evaluation found solutions of similar quality (cost). In Table 6.25 the
required data for discussing Hypothesis 1 is presented. Each row in the table is calculated
based on only those DSE problems where both the “KL” module and the module named
in the first column found a valid solution. The table confirms that the calculated costs are
very similar for all the global analysis modules. The absolute cost difference is in all cases
less than the cost of the cheapest ECU type. The table also shows that in fact “LP_GRB”
is on a par with “KL” with respect to the resulting costs: Each analysis module found
in 7 cases a slightly better solution than the other one; in 10 cases the solutions had
equal costs. At the first glance the results for “LP_CPX” are even better, but one has
to consider the smaller number of comparable results as well (only 20 compared to 24
for “KL” vs. “LP_GRB”). Based on the data the null hypotheses 𝐻1𝑎

0 and 𝐻1𝑏
0 can be

rejected for this benchmark in favor of the alternative hypotheses 𝐻1𝑎
𝐴 (“The majority of

“LP_∗” solutions have lower or equal hardware costs than “KL”) and 𝐻1𝑏
𝐴 (“The majority

of “LP_∗” solutions have similar costs than the “KL” solutions (depending on a given
threshold)”).

The data presented in Table 6.26 regarding the runtime of the “LP_∗” modules
compared to “KL” does not allow to reject the null hypothesis 𝐻2

0 . It is absolutely clear
that the “LP_∗” modules have a greater runtime in most of the cases, even though the
measured runtimes are still relatively close to each other.

Method Comparing Runtime 𝛿 = |runtimeKL − runtime|
Less than KL Equal Greater than KL 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

LP_GRB 0 2 22 12 8 4
LP_CPX 0 2 18 12 4 4

Table 6.26. – Hypothesis 2: Comparing Runtime (Wall Clock) of Successful Runs (“Vida-
sOriginal”)

ViDAsExpensive Compared to the original ViDAs benchmark models the modified
expensive variants are much harder to solve as can be seen in Table 6.27. This benchmark
consists of 40 models. Most of the analysis runs hit the time limit of 60 minutes. Later in
this section the multi-core evaluation (Section 6.5.3.3) shows that in the case of the “KL”
global analysis module the local analysis modules is responsible for the huge runtime.
The runtime of the local analysis is huge for the “LP_∗” global modules as well, but
here the runtime for the global analysis is very huge, too. The results of all successful
analysis runs are depicted in Figures 6.21–6.24.

All global analysis modules have been able to successfully solve only half that many
models in Set 1 of the benchmark “ViDAsExpensive” than in the benchmark “ViDAsO-
riginal” (see Figure 6.21). The larger WCETs of the tasks contained in the expensive
variants of the original models reduces the remaining capacity on the ECUs and in the
same time leads to a larger amount of capacity required by the unallocated tasks. The
figure on the right shows that the costs of the found solutions are much greater compared
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to the results calculated for the original set (see Figure 6.17). The distance between the
initial costs and the costs of the solutions is larger because more modifications of the
hardware architecture are required to successfully allocate the whole task network. The
fact that the costs of the ECU-type have been redefined for the expensive models such
that they are very close to each other (in contrary to the costs of the ECU-types in the
original set, see Table 6.23) further complicates the DSE problems due to the increased
number of possible hardware configuration with similar total costs which have to be
considered during the optimization phase.

The Set 2 in this benchmark seems to be significantly easier to solve for “KL” but
surprisingly much harder for the other approaches, see Figure 6.18. Only “KL” and
“LP_GRB” found solutions for models in Set 3 (“ViDAsExpensive”); “KL” scales slightly
better (Figure 6.19). All three methods found solutions for the smallest model in Set 4.
The solutions of both “LP_GRB” and “LP_CPX” had lower costs than the solution
calculated by “KL”. The next larger DSE problem could by successfully solved only by
“LP_GRB”.

Global Module Successful Timeout Incomplete Error Total

KL 26 54 0 0 80
LP_GRB 10 70 0 0 80
LP_CPX 6 70 4 0 80
MZ 0 0 16 0 16
Total 42 194 20 0 256

Table 6.27. – Benchmark “ViDAsExpensive”: General Information about Global Analysis
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Figure 6.21. – Benchmark “ViDAsExpensive”: Global Analysis, Set 1. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.

A textual comparison of the results of all global analysis modules regarding the cost is
given in Table 6.28. The data shows that both “LP_GRB” and “LP_CPX” calculate
solutions with smaller costs in most of the cases. The differences of their calculated costs
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Figure 6.22. – Benchmark “ViDAsExpensive”: Global Analysis, Set 2. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.
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Figure 6.23. – Benchmark “ViDAsExpensive”: Global Analysis, Set 3. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.

Method Comparing Cost 𝛿 = |costKL − cost|
Less than KL Equal Greater than KL 𝛿 ≤ 22 22 < 𝛿 ≤ 32 32 < 𝛿

LP_GRB 7 0 2 7 2 0
LP_CPX 5 0 1 5 1 0

Table 6.28. – Hypothesis 1: Comparing Cost of Successful Runs (“VidasExpensive”)
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Figure 6.24. – Benchmark “ViDAsExpensive”: Global Analysis, Set 4. The dashed line
marks the initial hardware cost. Note that for better readability some points
have been slightly shifted along the x-axis.

to the costs of the solutions computed by “KL” are in all cases not smaller or equal
to the cost of the most expensive ECU-type (which costs 32). Because the number of
comparable analysis runs is very small (e.g. only one third of the solutions found by
“KL” could be compared to “LP_GRB”), I decided not to evaluate Hypothesis 1a and
Hypothesis 1b (“The costs of the solutions are better”/“The costs are similar”). Rejecting
the corresponding null hypotheses based on this small data set would be highly arguable.

Method Comparing Runtime 𝛿 = |runtimeKL − runtime|
Less than KL Equal Greater than KL 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

LP_GRB 1 1 7 5 1 3
LP_CPX 1 1 4 4 1 1

Table 6.29. – Hypothesis 2: Comparing Runtime (Wall Clock) of Successful Runs (“Vidas-
Expensive”)

The comparison of the runtimes is shown in Table 6.29. Of course the number of
comparable results is the same as for the costs. But additionally the data clearly does
not allow to reject the null hypothesis 𝐻2

0 (“LP_∗” is at least as fast as “KL”). The “KL”
heuristic is faster for most of the models found in benchmark “ViDAsExpensive” and/or
has a better chance to find solutions.

6.5.3.2. Results: Local Analysis

For the benchmark “ViDAsOriginal” the local analysis module “Eis” encountered an
error during nearly every second analysis run, as can be seen in Table 6.30. Nevertheless
half of the analyzed models have been processed successfully and the computed solutions
passed the post-checks validating their consistency. The results for the benchmark
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“ViDAsExpensive” are much better: An error condition was triggered only in about 5%
of the analysis runs.

Module Successful Error Total

Eis 882 702 1584
Stm 1582 2 1584
Total 2464 704 3168

Table 6.30. – Benchmark “ViDAsOriginal”: General Information about Local Analysis
Results

ViDAsOriginal The comparable data measured for all successful analysis runs is depicted
in Figure 6.25. The left chart shows all results. It can be seen that the “Eis” local
analysis module produced lots of outliers varying between 20s up to 4000s. The “Stm”
approach behaves much better with only a few outliers very close to 20s. The right chart
shows only the relevant parts of the boxplots. The median of the “Stm” approach is at a
significantly lower level (approximately at the lower end of the box of the “Eis” results)
than the median of the “Eis” approach. The absolute values for the medians are given
in Table 6.31. Here, the huge standard deviation calculated for the measured runtimes
of the “Eis” analysis runs stands out. Again, the mean of the costs of the computed
solutions is slightly better for the “Eis” approach than for the “Stm” approach, but the
cost medians are identical. In statistics, an important property of the notion of median
is its robustness against outliers compared to the notion of mean. A lower mean of the
costs of the solutions calculated by “Eis” compared to the “Stm” but identical median
values might result from the outliers in the data set. The larger standard deviation of
the “Eis” results supports this presumption.

The box of the “Stm” results starts at a lower 𝑦-value than the box of the “Eis” results
and its height is much smaller. Most of the runtimes measured when using the “Stm”
local analysis module on the benchmark “VidasOriginal” are significantly lower than the
runtimes measured when using the “Eis” local analysis module.

Module Runtime (Wall Clock) [s] Cost
Mean Median Std. Dev. Mean Median Std. Dev.

Eis 582.95 5.00 1658.53 28.53 32.00 9.38
Stm 20.81 3.00 101.50 31.67 32.00 3.61

Table 6.31. – Benchmark “ViDAsOriginal”: Statistical Summary of Local Analysis Results

A chart where the number of ECUs is plotted against the runtime is not included in
this work, because it contained exactly one category with six ECUs and despite of that
is identical to Figure 6.25.

Table 6.34 compares the resulting costs of solutions calculated by “Stm” and “Eis”. In
only 1% of all analysis runs (total number: 8) the costs of the “Eis” solutions have been
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Figure 6.25. – Benchmark “ViDAsOriginal”: Overview of Local Analysis Results

Correlation (Stm) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks 0.61 0.73 0.65 0.74
Unallocated Tasks 0.58 0.68 0.62 0.70
Tasks * Unallocated 0.47 0.58 0.51 0.60
Unallocated Tasks * ECUs 0.58 0.68 0.62 0.70

Table 6.32. – Benchmark “ViDAsOriginal”: Analysis of Correlations: Local Module “Stm”

Correlation (Eis) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks 0.73 0.83 0.77 0.85
Unallocated Tasks 0.70 0.78 0.73 0.80
Tasks * Unallocated 0.61 0.68 0.65 0.70
Unallocated Tasks * ECUs 0.70 0.78 0.73 0.80

Table 6.33. – Benchmark “ViDAsOriginal”: Analysis of Correlations: Local Module “Eis”

Method Comparing Cost 𝛿 = |costEis − cost|
Less than Eis Equal Greater than Eis 𝛿 ≤ 11 11 < 𝛿 ≤ 37 37 < 𝛿

Stm 0 874 8 882 0 0

Table 6.34. – Hypothesis 3: Comparing Local Cost of Successful Runs (“ViDAsOriginal”)

168



6.5. Benchmarks

Method Comparing Runtime 𝛿 = |runtimeEis − runtime|
Less than Eis Equal Greater than Eis 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

Stm 706 161 15 723 34 125

Table 6.35. – Hypothesis 4: Comparing Local Runtime of Successful Runs (“ViDAsOrigi-
nal”)

less than the costs of corresponding “Stm” solutions. In all cases the cost difference was
smaller or equal to the cost for the cheapest ECU-type (which is 11). Therefore, null
hypothesis 𝐻3

0 can be rejected in favor of the alternative hypothesis 𝐻3
𝐴 (“The majority

of solutions found using “Stm” have lower or equal hardware costs than those found by
“Eis”). The situation for the runtime is quite definite, too. Table 6.35 shows that “Stm”
has been faster in 80% of all cases and as fast as “Eis” in 18% of all cases. This allows us
to reject null hypothesis 𝐻4

0 in favor of 𝐻4
𝐴 (“Stm” finds the majority of solutions in less

time than “Eis”).

ViDAsExpensive The models contained in the benchmark “ViDAsExpensive” did not
trigger the bug present in the implementation of the “Eis” approach as frequently as
in the previous benchmark. Table 6.36 still reports some errors for the local analysis
module “Eis”, but only in 262 (approximately 4%) of all analyzed cases. In 12 cases the
local analysis module “Stm” encountered an error, too. An overview of the runtimes is
depicted in Figure 6.26. Compared to “Eis” the local analysis module “Stm” is faster in
general. The median of the runtime of the “Stm” analysis runs is at the same height as
the lower end of the boxplot representing the “Eis” results. The number of outliers is
considerably smaller for the “Stm” results than for the “Eis” results. Table 6.37 provides
the textual data measured for this benchmark for both local analysis modules. In this
benchmark even the mean cost of the solutions calculated by the two analysis modules
are almost identical. The table also shows the means and medians of the runtimes of
“Stm” and “Eis”. According to both of them, “Stm” is faster than “Eis” in most cases.

Module Successful Error Total

Eis 5555 262 5817
Stm 5805 12 5817
Total 11360 274 11634

Table 6.36. – Benchmark “ViDAsExpensive”: General Information about Local Analysis
Results

Based on the data in Table 6.38 the null hypothesis 𝐻3
0 can be rejected favoring 𝐻3

𝐴

(“The majority of solutions found using “Stm” have lower or equal hardware costs than
those found by “Eis”). Null hypothesis 𝐻4

0 can also be rejected, based on the data
presented in Table 6.39, in favor of Hypothesis 𝐻4

𝐴 (“Stm” finds the majority of solutions
in less time than “Eis”).
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Figure 6.26. – Benchmark “ViDAsExpensive”: Overview of Local Analysis Results

Module Runtime (Wall Clock) [s] Cost
Mean Median Std. Dev. Mean Median Std. Dev.

Eis 66.36 5.00 638.15 59.79 56.00 10.94
Stm 20.83 4.00 318.85 59.70 56.00 10.62

Table 6.37. – Benchmark “ViDAsExpensive”: Statistical Summary of Local Analysis Re-
sults

Method Comparing Cost 𝛿 = |costEis − cost|
Less than Eis Equal Greater than Eis 𝛿 ≤ 22 22 < 𝛿 ≤ 32 32 < 𝛿

Stm 1092 4345 117 5554 0 0

Table 6.38. – Hypothesis 3: Comparing Local Cost of Successful Runs (“ViDAsExpensive”)

Method Comparing Runtime 𝛿 = |runtimeEis − runtime|
Less than Eis Equal Greater than Eis 𝛿 ≤ 10 10 < 𝛿 ≤ 60 60 < 𝛿

Stm 4633 798 123 5518 19 17

Table 6.39. – Hypothesis 4: Comparing Local Runtime of Successful Runs (“ViDAsExpen-
sive”)
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Correlation (Stm) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks −0.02 0.69 −0.04 0.61
Unallocated Tasks −0.02 0.71 −0.04 0.63
Tasks * Unallocated −0.02 0.65 −0.04 0.58
Unallocated Tasks * ECUs −0.02 0.71 −0.04 0.63

Table 6.40. – Benchmark “ViDAsExpensive”: Analysis of Correlations: Local Module
“Stm”

Correlation (Eis) Runtime (Wall Clock) Runtime (CPU)
Linear Logarithmic Linear Logarithmic

Number of Tasks −0.02 0.53 −0.03 0.39
Unallocated Tasks −0.02 0.54 −0.03 0.41
Tasks * Unallocated −0.03 0.49 −0.03 0.36
Unallocated Tasks * ECUs −0.02 0.54 −0.03 0.41

Table 6.41. – Benchmark “ViDAsExpensive”: Analysis of Correlations: Local Module “Eis”

6.5.3.3. Single Core vs. Multi Core

Again all DSE problems in both benchmarks “ViDAsOriginal” and “ViDAsExpensive”
have been analyzed by each of the global analysis modules “KL”, “LP_GRB” and
“LP_CPX” twice, the first time with a restriction of the analysis software to use maximal
12 CPU cores and the second time with a restriction to use only one core. The results
are described below, separately for each benchmark.

ViDAsOriginal The results for “KL” are shown in Figure 6.27. The global analysis
module “KL” was responsible for only a small fraction of the total computation time
while most of the computation time was spent on the local analysis backend. In some
cases the use of 12 cores brought a small improvement of the runtimes. But there are
more cases where the use of multiple cores slowed down the analysis process. Surprisingly,
“KL” found no solutions at all for some larger models contained in Set 1 and Set 3 when
using multiple cores. As “KL” itself does not use more than one core, the local analysis
is likely to be responsible for this effect by causing timeouts due to an increased runtime
when running with multiple threads.

For the global analysis module “LP_GRB” the situation looks better. For all models,
using multiple cores led to better results with respect to the computation time. There are
no surprises, where e.g. the use of multiple cores led to complete failures to find a solution.
The huge runtime of the global analysis compared to the already very time-consuming
local analysis limits the usefulness of the current implementation. The null hypothesis
𝐻5

0 cannot be rejected for “KL”. For analysis module “LP_GRB” the null hypothesis
𝐻5

0 can be rejected in favor of the alternative hypothesis 𝐻5
𝐴 (“The use of multiple CPU

cores reduces the runtimes of multi-core-enabled global analysis modules”).

171



6. Implementation and Evaluation

Max. 1 Core(s) Max. 12 Core(s)

0

50

100

150

200

27 54 81 10
8

13
5

16
2

18
9

21
6

24
3

27
0

29
7

27 54 81 10
8

13
5

16
2

18
9

21
6

24
3

27
0

29
7

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]

Fraction
Global
Local

VidasOriginal (KL): Set 1
Max. 1 Core(s) Max. 12 Core(s)

0

10

20

30 60 90 12
0

30 60 90 12
0

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]

Fraction
Global
Local

VidasOriginal (KL): Set 2

Max. 1 Core(s) Max. 12 Core(s)

0

10

20

30

40

33 66 99 13
2

33 66 99 13
2

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]

Fraction
Global
Local

VidasOriginal (KL): Set 3
Max. 1 Core(s) Max. 12 Core(s)

0

5

10

37 74 11
1

37 74 11
1

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]

Fraction
Global
Local

VidasOriginal (KL): Set 4

Figure 6.27. – Benchmark “ViDAsOriginal”: Multi-core vs. Single-Core, (“KL”)
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Figure 6.28. – Benchmark “ViDAsOriginal”: Multi-core vs. Single-Core (“LP_GRB”)
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Except for the model with 60 tasks contained in Set 2 the use of multiple cores was
beneficial for the module “LP_CPX”, too. For analysis module “LP_CPX” the null
hypothesis 𝐻5

0 can be rejected in favor of the alternative hypothesis 𝐻5
𝐴 (“The use of

multiple CPU cores reduces the runtimes of multi-core-enabled global analysis modules”).
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Figure 6.29. – Benchmark “ViDAsOriginal”: Multi-core vs. Single-Core (“LP_CPX”)

ViDAsExpensive The situation for the benchmark “VidasExpensive” regarding multi-
threading is by far the most complicated one in this thesis. Even the powerful “KL”
heuristic could not find solutions for any model larger than the simplest one contained in
Set 4, as shown in Figure 6.30. In two cases the use of multiple cores was beneficial: for
the model with 81 tasks in Set 1 and for model with 180 tasks contained in Set 2. For all
other cases no effect was visible or the analysis even failed to find solutions when using
more than one core. Therefore the null hypothesis 𝐻5

0 cannot be rejected for “KL”.
Figure 6.31 shows again that except for the model with 54 tasks in Set 1 the global

analysis module “𝐿𝑃_𝐺𝑅𝐵′′ is quite graceful with respect to single core vs. multi core.
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Figure 6.30. – Benchmark “ViDAsExpensive”: Multi-core vs. Single-Core (“KL”)
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But even with 12 available cores no solutions could be found for larger models. The small
sample size does not allow the rejection of null hypothesis 𝐻5

0 for “LP_GRB”.
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Figure 6.31. – Benchmark “ViDAsExpensive”: Multi-core vs. Single-Core (“LP_GRB”)

The situation is similar for “LP_CPX” as can be seen in Figure 6.32. Note that
there is no figure for benchmark “ViDAsExpensive”, Set 3 for the global analysis module
“LP_CPX” simply because there is no model in that set for which that analysis module
found a solution for both analysis runs (with 12 cores and with one core). Therefore,
no comparable results exist for that module in Set 3. While the results look promising
when looking at the fact that in the few comparable cases the multi-core runs have been
faster than the single-core runs, the small sample size does not allow the rejection of null
hypothesis 𝐻5

0 for “LP_CPX”.

176



6.5. Benchmarks

Max. 1 Core(s) Max. 12 Core(s)

0

1000

2000

3000

27 54 27 54

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]

Fraction
Global
Local

VidasExpensive (LP_CPX): Set 1
Max. 1 Core(s) Max. 12 Core(s)

0

10

20

30 30

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]
Fraction

Global
Local

VidasExpensive (LP_CPX): Set 2

Max. 12 Core(s)

0

5

10

37

Number of Tasks

Ru
nt

im
e

(W
al

lC
lo

ck
)

[s]

Fraction
Global
Local

VidasExpensive (LP_CPX): Set 4

Figure 6.32. – Benchmark “ViDAsExpensive”: Multi-core vs. Single-Core (“LP_CPX”)
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6.6. Summary
6.6.1. Summary: Global Analysis
In Table 6.42 some statistics of all analyzed global models are given. In total 3866 global
analysis runs have been performed on 540 different models. The “KL” approach was
the most successful global analysis module with 719 successfully optimized models. The
least successful analysis method was “MZ”. This was, however, expected as “MZ” is an
exact optimizing method designed to find optimal solutions for DSE problems which
inevitably leads to very long runtimes for NP-hard problems. The “LP_∗” methods using
commercial backends (“LP_GRB” and “LP_CPX”) come close to the results of “KL”.
The global analysis module “LP_GLP” using the open-source backend GLPK cannot
compete with them, but still provides an impressive performance given the fact that it is
freely available and developed and maintained by only one programmer.

Module Successful Timeout Incomplete Error Total

KL 719 363 78 0 1160
LP_GRB 644 445 71 0 1160
LP_CPX 633 446 81 0 1160
LP_GLP 22 76 0 0 98
MZ 10 0 278 0 288
Total 2028 1330 508 0 3866

Table 6.42. – Global Analysis: General Information

Benchmark / Method “LP_GRB” “LP_CPX” “LP_GLP”

TindellScaled X X X
Generated X X
ViDAsOriginal X X
ViDAsExpensive – –

Null Hypotheses Rejected 3 / 4 3 / 4 1 / 4

Table 6.43. – Summary: Null Hypothesis 𝐻1𝑎
0 (“Cost greater than “KL””)

(X) Null Hypothesis Rejected, (–) Null Hypothesis not Rejected, (Empty)
Not Tested

The results for the global null hypotheses 𝐻1𝑎
0 and 𝐻1𝑏

0 found for all benchmarks are
given in Tables 6.43 and 6.44. For “LP_GRB” and “LP_CPX” in three of four cases the
null hypotheses could be rejected. The hardware costs of the solutions found by these
analysis modules have been equal (in most cases) or even better (in a few cases) than
the costs of the solutions found by “KL”. For “LP_GLP” the null hypotheses could be
rejected only for one of the benchmarks.

With respect to the runtime of the “LP_∗” methods, the picture looks different.
Table 6.45 shows that only for the analysis module “LP_GRB” used on the benchmark
“Generated” the measured runtimes have been equal or less than the one of “KL”. This
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Benchmark / Method “LP_GRB” “LP_CPX” “LP_GLP”

TindellScaled X X X
Generated X X
ViDAsOriginal X X
ViDAsExpensive – –

Null Hypotheses Rejected 3 / 4 3 / 4 1 / 4

Table 6.44. – Summary: Null Hypothesis 𝐻1𝑏
0 (“Cost not similar to “KL””)

(X) Null Hypothesis Rejected, (–) Null Hypothesis not Rejected, (Empty)
Not Tested

Benchmark / Method “LP_GRB” “LP_CPX” “LP_GLP”

TindellScaled – – –
Generated X –
ViDAsOriginal – –
ViDAsExpensive – –

Null Hypotheses Rejected 1 / 4 0 / 4 0 / 4

Table 6.45. – Summary: Null Hypothesis 𝐻2
0 (“Runtime of “KL” is equal to or less”)

(X) Null Hypothesis Rejected, (–) Null Hypothesis not Rejected, (Empty)
Not Tested

also has been expected because (similar to the “MZ” analysis module) the “LP_∗”
approach is based on optimal optimization techniques which can hardly compete with
heuristics when comparing the runtimes.

The result for the global analysis is that in terms of performance and scalability the
approach presented in this thesis cannot compete with the “KL” approach. In terms
of the quality of the calculated solutions the global analysis approach presented in this
thesis in many cases can provide similar results. But there is still potential to further
improve the approach to increase the quality especially when it comes to backtracking
whenever one or more tasks could not be allocated by the local analysis (this has been
observed while running the evaluation).

6.6.2. Summary: Local Analysis
A huge amount of data has been measured for the local analysis modules “Eis” and “Stm”.
In total 122932 local analysis runs have been analyzed with 29367 models (however
it cannot be guaranteed that each analyzed model is unique). Both analysis modules
successfully analyzed most of the local DSE problems, see Table 6.46.

Tables 6.47 and 6.48 aggregate the results of analyzing Hypothesis 3 and 4. Both
corresponding null hypotheses have been rejected for all benchmarks. Therefore, the
Spare-Time/MaxWCET approach “Stm” has been shown to calculate results with a
significantly reduced runtime (up to factor 10) and hardware costs which are almost
always equal to the costs of solutions calculated by the “Eis” local analysis module.
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Module Successful Error Total

Eis 60187 1279 61466
Stm 61226 240 61466
Total 121413 1519 122932

Table 6.46. – Local Analysis: General Information

Benchmark / Method “Eis”

TindellScaled X
Generated X
ViDAsOriginal X
ViDAsExpensive X

Null Hypotheses Rejected 4 / 4

Table 6.47. – Summary: Null Hypotheses 𝐻3
0 (“Cost larger than “Eis””)

(X) Null Hypothesis Rejected, (–) Null Hypothesis not Rejected, (Empty)
Not Tested

Benchmark / Method “Eis”

TindellScaled X
Generated X
ViDAsOriginal X
ViDAsExpensive X

Null Hypotheses Rejected 4 / 4

Table 6.48. – Summary: Null Hypotheses 𝐻4
0 : (“Runtime of “Eis” is equal to or less”)

(X) Null Hypothesis Rejected, (–) Null Hypothesis not Rejected, (Empty)
Not Tested
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6.6.3. Summary: Multi-Core vs. Single Core
As all global analysis runs (and the corresponding local analyses runs) have been executed
twice — the first time with maximal 12 CPU cores, the second time with maximal one
CPU core — a large amount of data has been recorded. The analysis of Hypothesis 5
shows that “KL” did not experience a significant speed-up for any of the benchmarks
when the local analysis module it executed had access to more than one CPU core. For
“LP_GRB” and “LP_CPX” a significant speed-up could be shown for two of three
benchmarks respectively.

Benchmark / Method “KL” “LP_GRB” “LP_CPX” “LP_GLP”
TindellScaled – X X –
Generated – – –
ViDAsOriginal – X X
ViDAsExpensive – – –

Null Hypotheses Rejected 0 / 4 2 / 4 2 / 4 0 / 4

Table 6.49. – Summary: Null Hypothesis 𝐻5
0 (“Use of multiple CPU cores does not reduce

runtimes of multi-core enabled global analysis modules”)
(X) Null Hypothesis Rejected, (–) Null Hypothesis not Rejected, (Empty)
Not Tested
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7.1. Summary

In this thesis, an optimization method for extending a safety-critical embedded real-time
system with additional functionalities implemented as software tasks while minimizing
the cost arising from modifications to the hardware architecture is presented. The
approach consists of a two-tier optimization which exploits the hierarchical structure of
the hardware architectures typically used in embedded systems by iteratively performing
coarse-grained optimization steps on the system level called global analysis followed by
fine-grained analysis steps separately for each hardware subsystem called local analysis.
For both the global and the local analysis exact optimization methods are presented
based on mixed integer linear programming.

For a given DSE problem, the global analysis assigns ECU-types to ECUs such that
the total hardware architecture cost are minimal, groups for each hardware subsystem
all ECUs of the same ECU-type to so-called ECU-types groups, finds a pre-allocation of
all unallocated software tasks onto those groups using the notion of utilization to ensure
that enough capacity is available, and synthesizes local deadlines where necessary. The
proposed algorithm is based on mixed integer linear programming.

Then separately for each hardware subsystem the local analysis is executed for the
calculated pre-allocation and with a limit for the hardware cost of that subsystem. The
local analysis approach presented in this work introduces the concepts of spare-times
and MaxWCET for characterizing the available computation capacity on FPS-scheduled
ECUs and CAN buses with strict periodic tasks/messages without release jitter such
that the allocation problem is reduced to a variant of the bin-packing problem without
the need to perform a schedulability analysis for each ECU. Tasks which have been
pre-allocated to a subsystem but could not be allocated during a local analysis run are
returned to the global analysis as part of a so-called odd set. The global analysis is
then responsible for pre-allocating those tasks again to other subsystems or to the same
subsystem but with an increased cost limit. The proposed Spare-Time/MaxWCET is
not only capable of guaranteeing that the hardware cost limit is not exceeded, but also of
minimizing the required hardware cost as part of the optimization objective. This feature
can further reduce the total hardware cost in situations where the cost limit specified by
the global analysis is too lax.

An extensive evaluation of the concepts presented in this work has been carried out
where the proposed approach is compared to multiple alternative approaches. The results
show that the MILP-based global analysis could in many cases provide solutions of similar
quality (measured by the total hardware cost) compared to the alternative heuristic
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approach based on the Kernighan-Lin algorithm. But (as expected) the runtimes of
the exact MILP-based approach are huge compared to the heuristic “KL” algorithm.
While small examples could successful be solved with the open-source MILP-backend
GLPK, intermediate-size examples could only be solved with the (expensive) commercial
MILP-solvers. The “KL” algorithm proved to be much faster in general than the
MILP-based approach but could also solve “only” approximately 62% of the benchmark
models without hitting the time limit compared to 55% successfully solved benchmark
models using the MILP-based approach (with the commercial MILP-backend “Gurobi”).
The comparison of the heuristic “KL” approach with the exact MILP-based approach in
this work provides the first quantitative confirmed statements about the “KL” approach
regarding the quality of the solutions (measured in hardware cost) and the runtime of the
analysis for a sufficiently large set of small, medium-sized and large benchmark models.
Therefore, the results presented in this thesis provide valuable data useful for extending
and improving the heuristic global analysis approach in the future with the ability to
perform further evaluation runs on demand. Additionally, the MILP-based approach
has the advantage of being easily expandable thus boosting the quick implementation of
new features. However, in a productive environment the “KL” global analysis should be
favored over the MILP-based approach proposed in this thesis to avoid huge runtimes.

The evaluation clearly shows that the proposed Spare-Time/MaxWCET approach for
local analysis has significantly better runtimes (it is 1.5 and 10 times faster) than the
alternative approach while guaranteeing nearly identical quality (measured by subsys-
tem hardware cost). The effect of slightly more expensive solutions (greater hardware
costs) due to the abstraction used in the Spare-Time/MaxWCET approach was sig-
nificantly smaller than expected: During the evaluation only a very small number of
cases have been observed where the hardware costs of the solution calculated by the
Spare-Time/MaxWCET approach has been greater than the costs of the solution found
by the alternative approach. As for the global analysis approach, using a commercial
MILP-solver as backend is highly recommended, at least for larger instances. During
the evaluation, a significant lower variance of the measured analysis runtimes has been
observed for the Spare-Time/MaxWCET approach compared to the alternative approach.
The drawback of the proposed approach is that release jitter cannot be handled (because
tasks and messages could be allocated independently anymore). But release jitter is not
supported by the alternative approaches as well, for the same reason.

The evaluation also showed that the built-in automatic multi-threading support of the
commercial MILP-solvers was not beneficial for the design space exploration problem
defined in this thesis. Explicit measures for parallelizing the optimization process could
overcome this, as implicitly enabled by the design of the proposed two-tier optimization
approach where the decoupled local analysis steps can be run simultaneously.

Finally, the comparison of the presented two-tier optimization approach with an exact
optimization approach for the whole system (“DSEOverallAnalysisMainz”) shows that
the two-tier approach is able to solve significant larger DSE problem instances. This
comes at the cost that despite both the global and the local analysis approaches are
based on exact algorithms, due to the way both are combined in this work the calculated
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solutions are not guaranteed to be optimal. The proposed approach is a trade-off between
a pure exact algorithm and a pure heuristic algorithm. The modular design based on
two tiers — the global and the local tier — has a good potential to fit for academic
DSE problem as well as for industrial-sized problems because different modules can be
combined as required for the particular model size.

7.2. Discussion of Related Work
Most publications related to this work describe optimization approaches focusing either on
other levels of abstraction (for example the optimization of digital hardware components)
or solve only a subset of the problems incorporated in the approach presented in this thesis.
The tools and case studies presented in those publications are in general not publicly
available which makes the comparison difficult. Even in cases where the full benchmark
models are described detailed enough, the quickly evolving computer hardware market
makes any measurements of e.g. runtime taken more than a few years ago obsolete.

Therefore the discussion of related work in the next subsections compares only the
provided features of the approaches and tools as presented in those publications. The
individual publications are classified into four categories: publications which describe
general approaches for design space exploration without explicitly targeting safety-critical
embedded real-time systems (see Section 7.2.1), publications which solve the problem
of allocating task networks to hardware architectures (see Section 7.2.2), publications
which focus on the design space exploration on the hardware level (see Section 7.2.3), and
finally publications presenting approaches for design space exploration which combine the
allocation problem with the hardware modification/extension problem (see Section 7.2.4,
and thus are very similar to the approach presented here.

7.2.1. General Frameworks for Design Space Exploration

The main contributions of [Kue06] are a new method for performance evaluation of
embedded systems, a user-controlled evolutionary algorithm for performing design space
exploration and a corresponding implementation named EXPO. The evolutionary ap-
proach is demonstrated using the example of a hardware architecture consisting of a
communication bus and one or more packet processors to which a given software applica-
tion shall be allocated. While the proposed evolutionary approach is general enough to
be used not only for calculating optimal allocations of the software but also for extending
and optimizing the hardware architecture itself, this is not done as part of thesis. That
approach is solely based on heuristic methods, in contrary to the concepts presented in
this PhD thesis.

A design space exploration method called Pareto-Front Arithmetics is proposed in
[HT03]. The method is explicitly designed for being applied hierarchically, similar to
the approach presented in this thesis. An extended presentation of this work has
been published in [Hau+03]. The case study presented in both publication consists of an
MPEG4 encoder to be realized with optimal cost, power consumption and flexibility of the
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design. For the case study, a fixed hardware architecture has been used, but it should be
possible to extend the approach to support more complex hardware architectural patterns.
In contrary to this thesis the approach is based solely on a (heuristic) evolutionary
optimization algorithm.

The previous publications refer to [ARS00] where the idea of exploiting the hierarchical
structure of large systems is promoted and a Pareto optimization approach is defined
which can efficiently handle such systems. The approach is applied to perform a design
space exploration for finding optimal configuration parameters for an embedded hardware
system for example for the used memory hierarchy. Multiple modules (“Walkers”) are
specified which evaluate special aspects of the hardware architecture. But there is no
explicit support for explicit hard real-time systems as in this thesis. However, the paper
supports the presumption of this thesis that it is beneficial to exploit the hierarchical
structures found in (larger) embedded system.

7.2.2. Restriction to Allocation Problem
The following publications have in common that they solve the problem of allocating a
given software application to a given hardware architecture often combined with finding
additional parameters for configuring the ECUs (e.g. settings for the schedulers) and
buses. In all publications the hardware architecture is not modified.

An early publication on the allocation of a task network of hard real-time tasks onto
a fixed hardware architecture such that all tasks are schedulable has been published in
[Tin96]. Their example task network consists of 43 tasks, the hardware architecture is
composed of eight ECUs connected by a token-ring bus. The proposed algorithm is based
on simulated annealing. This publication is especially interesting for this thesis because
it is one of the rare papers where the complete model used for the case study is unveiled.
Consequently, this example has been used in this thesis as a basis for creating most of the
benchmarks (see Chapter 6 on page 121). In the paper, modifications to the hardware
architecture are not allowed, and it is assumed that all ECUs have the same ECU-type.

In [HRE06] a design space exploration process based on a genetic algorithm is described.
The approach calculates Pareto-optimal solutions for an arbitrary number of system
configuration parameters such as task priorities, power consumption, buffer sizes, etc.
The underlying hardware architecture is not subject to change.

In [Pop+04], Pop et al. proposed a very promising approach with many commonalities
to this thesis. Their approach aims for extended an existing software application with
new functionalities. The hardware architecture remains unchanged, but the existing
application can be modified inducing modification cost (for example because tasks have
to be reimplemented). The approach aims for allocating all new tasks while minimizing
those modification cost. The proposed algorithm is a heuristic method.

The same authors describe in [Pop+06; Pop+08] a strategy for design optimization
capable of allocating software tasks to processors of a given hardware architecture,
choosing/modifying their scheduling configurations and scheduling policies (FPS and
EDF), and determining valid bus configurations. The approach aims for calculating
feasible solutions but leaves the hardware architecture untouched.
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In [PEP06; Erb06] the authors present the framework SESAME for system-level
performance evaluation based on Kahn process networks. He uses that framework to
perform a multi-objective design space exploration for finding optimal allocations of the
application software to a fixed hardware architecture. As case study a Motion-JPEG
encoder application is used which does not have hard deadlines. Some extensions towards
real-time systems with hard timing requirements are proposed but still based on a
simulating annealing heuristic and without modifying the target hardware.

Another approach for solving allocation problems has been presented in [Zhu+10].
Based on the Metropolis framework a combination of linear programming and heuristic
algorithms is used to initially allocate tasks, assign signals to messages, allocate the
message to buses and choose appropriate priorities for tasks and messages. The tasks
might then be re-allocated initiating another iteration of the optimization process. The
hardware architecture remains unmodified in the whole process.

The earlier publication [Zen+06] is also based on the Metropolis framework. It provides
lots of details of the factors to consider during design space exploration in the automotive
domain — mainly concerning CAN buses — but does not explain how to actually perform
the design space exploration in a systematic way.

An approach which is similar to our global analysis has been proposed in [AS00]. The
authors describe an algorithm which combines tasks into task clusters and processors
into processor clusters using a 𝑘-way cut heuristic. Their approach assumes that there is
only one processor type. It does not minimize the number of processors or the hardware
architecture cost. Tasks are grouped by their period (assuming that the number of
different periods is small for most embedded systems). The communication load between
task clusters is minimized. The heuristic is approximating.

In [EB10] the authors discuss algorithms for initial and maintenance task allocation
and evaluate those using generated scenarios. Their approach is based on simulated
annealing and does not modify the hardware architecture.

7.2.3. Design Space Exploration for Hardware Design
The concept of DSE is also used on other levels of abstraction, for example on the
hardware level where design space exploration is applied to determine good architectural
parameters while designing new hardware components (processors, system-on-chips, etc.).

In [GR00] a design space exploration approach is presented for optimizing digital circuit
designs on a high abstraction level. The result of the optimization process is then used
as input for high-level synthesis. Optimization objectives are the area required for the
digital circuits and their power consumption which clearly differs from the goals of this
thesis.

A newer project is the MULTICUBE project, aiming for “an efficient and automatic
exploration of parallel embedded architectures in terms of several design parameters such
as available parallelism (e.g. number of cores, processor issue width), cache-subsystem
(e.g. cache size and associativity) and Network-on-Chip (NoC) related parameters (e.g.,
channel buffer size)”, see [Sil+11]. Similar to the approach presented in this thesis the user
(namely an “exploration architect” together with a “use case and simulator provider”)
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drives the optimization process by providing appropriate DSE strategies and parameters,
assessing the (intermediate) results and reconfiguring the DSE process until a good
solution has been found. The project focuses on the hardware level and specifically on
many-core architectures where lots of different parameters are considered during the
optimization phase. The goals for that project are quite different compared to this thesis
which does not aim for designing new hardware components but on extending large
distributed systems by integrating additional components as required to allocate new
software tasks.

7.2.4. DSE of Allocation and Hardware Architecture

The publications mentioned in this section solve the optimization problem of allocating
a software application onto a hardware architecture while simultaneously exploring
the hardware design space described by a specified set of allowed modifications to the
hardware architecture.

The author of [Dor+08] present an exact branch-and-bound search algorithm for finding
allocations of tasks onto a set of identical ECUs using the minimal number of required
ECU. The approach does only handle periodic tasks without considering communication
between tasks. The possibilities for defining the hardware design space are quite limited
compared to the approach presented in this thesis.

In [Mad+07] the authors distinguish between the allocation of software tasks to a
fixed hardware architecture and the allocation to a flexible hardware architecture where
the types and/or numbers of ECUs can be modified. They address both cases using
formalisms for describing task networks and hardware architectures which are close to
the ones proposed in this thesis. A genetic algorithm based on the PISA framework
[Ble+03] is used for the design space exploration process which can modify the types of
ECUs and buses, add/remove ECUs to/from the hardware architecture, and (re-)allocate
tasks which includes finding static schedules by utilizing a basic list scheduling algorithm.
In contrary to that approach, the approach proposed in this thesis distinguishes between
a global and a local optimization tier which allows the use of exact and more detailed
optimization methods (with support for FPS scheduled ECUs and a subsystem-local
CAN bus) on the local tier (see Chapter 5 on page 85). On the other hand a strength
of the approach presented in [Mad+07] is the support for multi-objective optimization
based on the PISA framework. Due to the differences between that approach and the
one proposed in this thesis it is not possible to predict which of the approaches would
perform better for a given problem instance (assuming that such an instance is fully
supported by both approaches).

7.3. Future Work
This section names some of the remaining open questions requiring further investigation.

Firstly, some limitations have been described for the proposed optimization algorithms
of which at least some could be overcome in the future. These limitations include the
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focus on strictly periodic tasks where support for more complex activation patterns
should be considered. Another limitation is the lack of support for release jitter. Release
jitter could potentially be handled as part of the local analysis approach by calculat-
ing over-approximations of the (input) jitter for each task and each signal/message
and considering this data for the Spare-Time/MaxWCET pre-analysis. The focus on
FPS-scheduled ECUs can be expanded to other scheduling methods for ECUs including
time-triggered and hierarchical scheduling methods. The already existing heuristic for
calculating feasible schedules for the global bus could be incorporated in the MILP-based
global analysis. Alternatively an existing MILP-based approach for schedule synthesis
such as the one presented in [Zen+11] could be added to the global analysis formulation.

Secondly, a few technical improvements may help to extend the scalability of the
analysis tools. This includes a re-implementation of the Zerg modules used for Spare-
Time/MaxWCET local analysis, which is work in progress already. The re-implementation
will be based on the Coin-OR Osi abstraction layer (as is the global analysis module) and
will thus make the analysis module more independent from specific MILP-backends. The
abstraction layer itself could be extended to allow to interrupt the optimization phase at
specific states, e.g. whenever an integral solution has been found. This would help to
decrease the excessive runtimes for large models, of course at the cost of the quality of
the found solutions.

Finally, the methods presented in this thesis can be tested and further extended and
improved in industrial-focused research projects. This is scheduled already for the project
SPES_XT (see [Böh] for the project’s website).
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A. Mathematical Foundations

A.1. Fixed-point equations
This section presents some of the basic mathematical foundations used in this paper as
invented by Alfred Tarski in [Tar55]. Note that this section does not contain any new
findings but is included as a help for the reader to better understand the underlying
concepts.
Definition A.1 (Lattice)
A lattice is a partially ordered set where every two elements of this set have a supremum
and an infimum. A lattice ⟨𝐴,≤⟩ is called complete if for every subset 𝐵 ⊆ 𝐴 a supremum
and infimum exists. 2

Remark A.2 (Natural Numbers Lattice)
The natural numbers with the usual partial order relation ≤ constitute a lattice which is
not complete. 2

Definition A.3 (Fixed-point)
For any function 𝑓 a value 𝑥 out of the domain of 𝑓 is a fixed-point if and only if
𝑓(𝑥) = 𝑥. 2

There may exist multiple fixed-points for a given function. Especially for real-time
schedulability we are interested in the lowest fixed-point.
Definition A.4 (Lowest (Greatest) Fixed-point)
Let 𝐿 be a lattice with ordering function ≤ and 𝑓 : 𝐿 → 𝐿 be a function with at least
one fixed-point. Let 𝐹𝑓 be the set of all fixed-points of function 𝑓 . Obviously, the lowest
value in 𝐹𝑓 (according to ≤) is the lowest fixed-point of 𝑓 and the largest value is the
largest fixed-point of 𝑓 . 2

Theorem A.5 (Lowest Fixed-point of a monotonically increasing function)
Let ℒ = ⟨𝐴,≤⟩ be a lattice with lowest element 0 ∈ 𝐴. Let 𝑓 : 𝐴→ 𝐴 be a monotonically
increasing function with at least one fixed-point in 𝐴. The lowest fixed-point 𝑙𝑚𝑖𝑛 of 𝑓 is
then 𝑙𝑚𝑖𝑛 = 𝑙𝑖𝑚𝑛→∞𝑓

𝑛(0).

Proof There is no fixed-point 𝑙 = 𝑙𝑖𝑚𝑛→∞𝑓
𝑛(0) with 𝑙 < 𝑙𝑚𝑖𝑛, because 𝑙𝑚𝑖𝑛 is already

the lowest fixed-point of 𝑓 .
𝑙 also cannot be larger than the lowest fixed-point because 𝑓 is monotonically increasing.

Therefore for every 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≤ 𝑏 it holds 𝑓(𝑎) ≤ 𝑓(𝑏). With 0 ≤ 𝑙𝑚𝑖𝑛 for every
𝑛 ∈ N it holds that 𝑓𝑛(0) ≤ 𝑓𝑛(𝑙𝑚𝑖𝑛) = 𝑙𝑚𝑖𝑛.

It follows that 𝑙𝑚𝑖𝑛 = 𝑙𝑖𝑚𝑛→∞𝑓
𝑛(0). �
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B. Examples

B.1. MILP Example encoded with MathProg
The following MathProg model implements the example linear program found in Sec-
tion 2.3.1.2 on page 23.

Listing B.1 – MILP Example Model
1 # For t e s t i n g t h i s example p l e a s e i n s t a l l the GNU Linear Programming Kit (

h t t p :// www.gnu.org/ so f tware / g l p k /)
2 # Run : " g l p s o l −−math production.mod "
3
4 # Two cons tant s f o r s p e c i f y i n g the p r i c e o f product type 1 and product type

2 , r e s p e c t i v e l y .
5 param p r i c e 1 := 10000 ;
6 param p r i c e 2 := 15000 ;
7
8 # Two cons tant s f o r s p e c i f y i n g the product ion time in hours f o r each product

type
9 param time1 := 23 ;

10 param time2 := 42 ;
11
12 # Two f r e e i n t e g e r v a r i a b l e s r e p r e s e n t i n g the number o f products to produce

f o r each product type
13 var x1 , integer , >=0;
14 var x2 , integer , >=0;
15
16 # Constraint : Only maximal 200 hours o f product ion time are a v a i l a b l e per

month
17 s . t . maxTime : x1∗ time1 + x2∗ time2 <= 200 ;
18
19 # Two c o n s t r a i n t s p e c i f y i n g t h a t at l e a t s one product o f each type has to be

produced
20 s . t . minOneProduct1 : x1 >= 1 ;
21 s . t . minOneProduct2 : x2 >= 1 ;
22
23 # The o p t i m i z a t i o n o b j e c t i v e i s to maximize the t o t a l p r o f i t
24 maximize maxprice : x1∗ p r i c e 1 + x2∗ p r i c e 2 ;
25
26 # S t a r t s o l v i n g the problem
27 solve ;
28
29 # The next l i n e s p r i n t the r e s u l t ( i f any )
30 printf "Number o f products o f type 1 : %d\n" , x1 ;
31 printf "Number o f products o f type 2 : %d\n" , x2 ;
32 printf " P r o f i t per month : %d\n" , x1∗ p r i c e 1+x2∗ p r i c e 2 ;
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C. Hardware/Software Configuration for
Evaluation

The following tables provide details on the hardware (Table C.1) and software (Table C.2)
used for performing the evaluation described in Chapter 6.

Processor Model AMD Opteron™ Processor 6282 SE
Number of Processors 4
Cores per Processor 16
Total number of Cores 64
Memory 512 GB

Table C.1. – Evaluation Server: Hardware Configuration

Tool/Library Version License Vendor

libc 2.11 LGPL Open Source
Qt 4.6.3 LGPL Open Source
GNU Scientific Library 1.14 GPL Open Source
GNU Linear Programming Kit 4.43 GPL v3 Open Source
HySAT HySAT-0.8.5-reentrant Proprietary University of Oldenburg
Coin-OR Osi 1.6.0 EPL v1.0 Open Source
Gurobi Optimizer 5.0.0 Proprietary Gurobi Optimization, Inc.
IBM ILOG CPLEX Optimiza-
tion Studio V12.4

12.4 Proprietary IBM

Table C.2. – Evaluation Server: Software Configuration
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D. Additional Benchmark Information
In this section of the appendix that part of the data measured during the evaluation is
presented which is considered too comprehensive to be printed in Chapter 6 directly.

D.1. Benchmark “TindellScaled”
This section

Figure D.1 shows the hardware architecture of the smallest models contained in the
benchmark. The corresponding task network is depicted in Figure D.2. Details on the
properties of the available ECU-types are given in Table D.1.

SubSystem0 SubSystem1 SubSystem2

ECU7 ECU6ECU5 ECU4 ECU3ECU2 ECU1 ECU0

Bus2Bus0 Bus1

GlobalBus

Figure D.1. – Benchmark “TindellScaled”: Schematic Drawing Hardware of the Architec-
ture of the Smallest Model

Name Cost Memory [kByte]
ECUType0 19 10000
ECUType1 37 12000
ECUType2 11 7000
ECUType3 21 10000

Table D.1. – Benchmark “TindellScaled”: ECU Types
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D.1. Benchmark “TindellScaled”

In Table D.2 the models contained in this benchmark are classified according to the
total number of tasks and the fraction of unallocated tasks. For some combinations there
are no models contained in the benchmark.

#Tasks 𝑥 Unallocated Tasks [%]
𝑥 ≈ 14 𝑥 ≈ 20 𝑥 ≈ 37

43 X X X
86 X X X
129 X X X
172 X X X
215 X X X
258 X X X
301 X X X
344 – – X
387 – – X
430 – – X
473 – – X
516 – – X
559 – – X
602 – – X
645 – – X
688 – – X
731 – – X
774 – – X
817 – – X
860 – – X

Table D.2. – Benchmark “TindellScaled”: Combinations of Parameters in the Benchmark
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D. Additional Benchmark Information

D.1.1. Results of Benchmark “TindellScaled”

Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

TindellScaled_1, Set 1, 43 Tasks, 6 Unallocated Tasks (14%), 3 Subsystems, 8 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 6 34 0/2 0/2 125

LP_GRB X 5 35 0/1 0/1 125

LP_CPX X 6 35 0/1 0/1 125

LP_GLP X 5 35 1/2 1/2 125

MZ X 0 16 11/11 9/9 125

TindellScaled_1, Set 1, 43 Tasks, 6 Unallocated Tasks (14%), 3 Subsystems, 8 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 6 34 0/2 0/2 125

LP_GRB X 5 35 0/1 1/2 125

LP_CPX X 6 35 1/2 1/2 125

LP_GLP X 5 35 1/2 1/2 125

MZ X 0 16 12/12 9/9 125

TindellScaled_1, Set 2, 43 Tasks, 6 Unallocated Tasks (14%), 3 Subsystems, 8 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 8 35 0/2 0/2 125

LP_GRB X 7 35 1/2 1/2 125

LP_CPX X 7 35 1/2 0/2 125

LP_GLP X 5 35 1/2 1/2 125

MZ X 0 15 10/10 7/7 125

TindellScaled_1, Set 2, 43 Tasks, 6 Unallocated Tasks (14%), 3 Subsystems, 8 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 8 35 0/2 0/2 125

LP_GRB X 7 35 0/2 0/2 125

LP_CPX X 7 35 0/2 0/2 125

LP_GLP X 5 35 1/2 1/2 125

MZ X 0 15 9/9 7/7 125

TindellScaled_1, Set 1, 43 Tasks, 9 Unallocated Tasks (21%), 3 Subsystems, 8 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 10 34 0/3 0/3 125

LP_GRB X 7 36 0/2 0/2 125

LP_CPX X 7 36 0/2 0/2 125

LP_GLP X 7 34 0/2 0/2 125
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D.1. Benchmark “TindellScaled”

Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

MZ X 0 19 291/291 117/117 125

TindellScaled_1, Set 1, 43 Tasks, 9 Unallocated Tasks (21%), 3 Subsystems, 8 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 10 34 0/3 0/3 125

LP_GRB X 7 36 0/2 0/2 125

LP_CPX X 7 36 0/2 0/2 125

LP_GLP X 7 34 0/2 0/2 125

MZ X 0 19 314/314 102/102 125

TindellScaled_1, Set 2, 43 Tasks, 9 Unallocated Tasks (21%), 3 Subsystems, 8 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 8 36 0/2 0/2 125

LP_GRB X 7 36 0/2 0/2 125

LP_CPX X 6 35 0/2 0/2 125

LP_GLP X 7 36 0/2 0/2 125

MZ Inc 0 0 –/– –/– –

TindellScaled_1, Set 2, 43 Tasks, 9 Unallocated Tasks (21%), 3 Subsystems, 8 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 8 36 0/2 0/2 125

LP_GRB X 7 36 0/2 0/2 125

LP_CPX X 6 35 0/2 0/2 125

LP_GLP X 7 36 0/2 0/2 125

MZ Inc 0 0 –/– –/– –

TindellOriginal_1, Set 1, 43 Tasks, 16 Unallocated Tasks (38%), 3 Subsystems, 8 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 21 37 0/4 0/4 125

LP_GRB X 8 42 0/3 0/3 143

LP_CPX X 9 40 1/4 1/4 133

LP_GLP X 8 43 6/9 6/9 125

MZ Inc 0 0 –/– –/– –

TindellOriginal_1, Set 1, 43 Tasks, 16 Unallocated Tasks (38%), 3 Subsystems, 8 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 21 37 0/4 1/5 125

LP_GRB X 8 41 2/5 0/3 125

LP_CPX X 9 43 1/4 0/3 133

LP_GLP X 8 43 6/9 6/9 125

MZ Inc 0 0 –/– –/– –

TindellScaled_1, Set 2, 43 Tasks, 16 Unallocated Tasks (38%), 3 Subsystems, 8 ECUs, WCET Regularity 1%,
max. 1 Core(s)
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D. Additional Benchmark Information

Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

KL X 23 39 0/5 0/5 143

LP_GRB X 11 39 0/3 0/3 133

LP_CPX X 7 40 0/3 0/3 125

LP_GLP X 11 39 4/7 4/7 133

MZ Inc 0 0 –/– –/– –

TindellScaled_1, Set 2, 43 Tasks, 16 Unallocated Tasks (38%), 3 Subsystems, 8 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 23 39 0/5 0/5 143

LP_GRB X 11 39 2/5 0/3 133

LP_CPX X 7 39 0/3 0/3 125

LP_GLP X 11 39 5/8 4/7 133

MZ Inc 0 0 –/– –/– –

TindellScaled_2, Set 1, 86 Tasks, 12 Unallocated Tasks (14%), 6 Subsystems, 16 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 21 41 0/5 0/5 250

LP_GRB X 17 44 1/5 1/5 250

LP_CPX X 17 44 0/4 0/4 250

LP_GLP X 14 45 60/64 60/64 250

MZ X 0 6 358/358 45/45 239

TindellScaled_2, Set 1, 86 Tasks, 12 Unallocated Tasks (14%), 6 Subsystems, 16 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 21 41 0/5 0/5 250

LP_GRB X 14 45 5/9 2/7 250

LP_CPX X 17 44 3/7 2/9 250

LP_GLP X 14 45 67/71 71/75 250

MZ X 0 6 372/372 47/47 239

TindellScaled_2, Set 2, 86 Tasks, 12 Unallocated Tasks (14%), 6 Subsystems, 16 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 26 42 1/6 1/6 250

LP_GRB X 16 45 1/4 1/4 250

LP_CPX X 16 46 1/4 1/4 250

LP_GLP X 18 45 70/74 72/77 250

MZ X 0 3 529/529 111/111 239

TindellScaled_2, Set 2, 86 Tasks, 12 Unallocated Tasks (14%), 6 Subsystems, 16 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 26 42 0/6 0/6 250
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Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

LP_GRB X 16 45 8/13 3/9 250

LP_CPX X 16 46 4/8 2/7 250

LP_GLP X 18 45 74/78 78/82 250

MZ X 0 3 530/530 108/108 239

TindellScaled_2, Set 1, 86 Tasks, 18 Unallocated Tasks (21%), 6 Subsystems, 16 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 31 40 0/7 0/7 250

LP_GRB X 18 46 2/6 2/6 250

LP_CPX X 18 46 0/4 0/4 250

LP_GLP X 19 43 37/41 37/41 258

MZ Time 0 0 –/– –/– –

TindellScaled_2, Set 1, 86 Tasks, 18 Unallocated Tasks (21%), 6 Subsystems, 16 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 31 40 0/7 0/7 250

LP_GRB X 19 43 5/9 1/6 258

LP_CPX X 18 46 2/7 1/7 250

LP_GLP X 19 43 43/48 53/58 258

MZ Time 0 0 –/– –/– –

TindellScaled_2, Set 2, 86 Tasks, 18 Unallocated Tasks (21%), 6 Subsystems, 16 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 34 44 0/7 0/7 250

LP_GRB X 19 47 1/5 1/5 250

LP_CPX X 20 47 2/6 2/6 258

LP_GLP X 17 46 211/215 229/233 250

MZ Time 0 0 –/– –/– –

TindellScaled_2, Set 2, 86 Tasks, 18 Unallocated Tasks (21%), 6 Subsystems, 16 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 34 44 0/7 0/7 250

LP_GRB X 19 47 5/9 2/6 250

LP_CPX X 20 47 2/7 1/6 258

LP_GLP X 17 46 200/204 201/205 250

MZ Time 0 0 –/– –/– –

TindellOriginal_2, Set 1, 86 Tasks, 32 Unallocated Tasks (38%), 6 Subsystems, 16 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 50 44 1/14 1/14 261

LP_GRB X 28 57 33/42 33/42 296

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –
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Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

TindellOriginal_2, Set 1, 86 Tasks, 32 Unallocated Tasks (38%), 6 Subsystems, 16 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 50 44 1/14 1/14 261

LP_GRB X 34 56 258/267 23/32 268

LP_CPX X 22 60 17/25 5/13 268

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_2, Set 2, 86 Tasks, 32 Unallocated Tasks (38%), 6 Subsystems, 16 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 75 49 0/18 0/18 275

LP_GRB X 25 54 26/33 26/33 258

LP_CPX X 27 54 8/15 8/15 268

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_2, Set 2, 86 Tasks, 32 Unallocated Tasks (38%), 6 Subsystems, 16 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 75 49 0/18 0/18 275

LP_GRB X 25 53 84/92 9/17 258

LP_CPX X 26 54 22/32 7/15 268

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 1, 129 Tasks, 18 Unallocated Tasks (14%), 9 Subsystems, 24 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 39 31 1/12 0/12 375

LP_GRB X 32 36 33/40 33/40 383

LP_CPX X 30 32 10/18 11/19 375

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 1, 129 Tasks, 18 Unallocated Tasks (14%), 9 Subsystems, 24 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 39 31 0/12 0/12 375

LP_GRB X 31 36 116/124 12/20 383

LP_CPX X 33 32 16/24 4/13 375

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 2, 129 Tasks, 18 Unallocated Tasks (14%), 9 Subsystems, 24 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 60 29 0/13 1/14 375

LP_GRB X 38 34 5/12 5/12 375

LP_CPX Inc 0 0 –/– –/– –
LP_GLP X 32 33 1402/1409 1420/1428 383

MZ Time 0 0 –/– –/– –
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TindellScaled_3, Set 2, 129 Tasks, 18 Unallocated Tasks (14%), 9 Subsystems, 24 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 60 29 1/14 1/14 375

LP_GRB X 38 34 45/52 6/13 375

LP_CPX X 39 34 23/30 4/12 375

LP_GLP X 32 33 1389/1397 1389/1397 383

MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 1, 129 Tasks, 27 Unallocated Tasks (21%), 9 Subsystems, 24 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 60 22 1/16 1/16 375

LP_GRB X 35 31 17/25 17/25 401

LP_CPX X 34 37 4/12 4/12 375

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 1, 129 Tasks, 27 Unallocated Tasks (21%), 9 Subsystems, 24 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 60 22 1/16 1/16 375

LP_GRB X 35 35 111/120 11/20 375

LP_CPX X 33 37 19/27 5/13 375

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 2, 129 Tasks, 27 Unallocated Tasks (21%), 9 Subsystems, 24 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL X 64 29 1/16 1/16 375

LP_GRB X 33 35 4/11 4/11 375

LP_CPX X 36 34 4/12 4/12 375

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 2, 129 Tasks, 27 Unallocated Tasks (21%), 9 Subsystems, 24 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL X 64 29 1/16 1/16 375

LP_GRB X 33 35 31/39 5/13 375

LP_CPX X 37 34 13/22 4/13 375

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_3, Set 1, 129 Tasks, 48 Unallocated Tasks (38%), 9 Subsystems, 24 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 103 32 2/54 6/143 404

LP_GRB X 70 63 1363/1388 1382/1408 411

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –
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TindellOriginal_3, Set 1, 129 Tasks, 48 Unallocated Tasks (38%), 9 Subsystems, 24 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 103 32 4/72 8/161 404

LP_GRB X 58 65 14832/14894 2032/2119 429

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 2, 129 Tasks, 48 Unallocated Tasks (38%), 9 Subsystems, 24 ECUs, WCET Regularity 1%,
max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB X 49 46 100/115 108/125 383

LP_CPX X 47 52 1836/1851 1839/1855 386

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_3, Set 2, 129 Tasks, 48 Unallocated Tasks (38%), 9 Subsystems, 24 ECUs, WCET Regularity 1%,
max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB X 51 49 1272/1289 110/126 386

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 1, 172 Tasks, 24 Unallocated Tasks (14%), 12 Subsystems, 32 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 57 29 1/19 0/19 507

LP_GRB X 55 38 53/65 53/65 500

LP_CPX X 53 36 21/35 28/45 508

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 1, 172 Tasks, 24 Unallocated Tasks (14%), 12 Subsystems, 32 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 57 29 1/19 0/19 507

LP_GRB X 54 36 191/203 21/33 500

LP_CPX X 55 36 41/56 9/24 508

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 2, 172 Tasks, 24 Unallocated Tasks (14%), 12 Subsystems, 32 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 89 32 1/24 1/24 489

LP_GRB X 61 37 141/154 153/169 500

LP_CPX X 63 36 92/105 93/106 500

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 2, 172 Tasks, 24 Unallocated Tasks (14%), 12 Subsystems, 32 ECUs, WCET Regularity
1%, max. 12 Core(s)
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KL X 89 32 1/25 1/26 489

LP_GRB X 60 37 934/947 82/95 500

LP_CPX X 61 36 278/292 37/51 500

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 1, 172 Tasks, 36 Unallocated Tasks (21%), 12 Subsystems, 32 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 86 21 2/35 1/35 489

LP_GRB X 58 37 623/636 643/656 508

LP_CPX X 60 35 98/111 98/111 500

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 1, 172 Tasks, 36 Unallocated Tasks (21%), 12 Subsystems, 32 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 86 21 2/37 2/38 489

LP_GRB X 58 33 1321/1334 114/127 516

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 2, 172 Tasks, 36 Unallocated Tasks (21%), 12 Subsystems, 32 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 92 31 1/25 1/25 489

LP_GRB X 57 34 36/51 40/58 500

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 2, 172 Tasks, 36 Unallocated Tasks (21%), 12 Subsystems, 32 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 92 31 1/25 1/25 489

LP_GRB X 56 35 151/165 17/31 500

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_4, Set 1, 172 Tasks, 64 Unallocated Tasks (38%), 12 Subsystems, 32 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_4, Set 1, 172 Tasks, 64 Unallocated Tasks (38%), 12 Subsystems, 32 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –
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TindellScaled_4, Set 2, 172 Tasks, 64 Unallocated Tasks (38%), 12 Subsystems, 32 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB X 79 55 950/974 955/979 508

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_4, Set 2, 172 Tasks, 64 Unallocated Tasks (38%), 12 Subsystems, 32 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 1, 215 Tasks, 30 Unallocated Tasks (14%), 15 Subsystems, 40 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB X 76 24 1693/1711 1694/1712 633

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 1, 215 Tasks, 30 Unallocated Tasks (14%), 15 Subsystems, 40 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB X 75 23 8054/8171 700/822 625

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 2, 215 Tasks, 30 Unallocated Tasks (14%), 15 Subsystems, 40 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 147 12 3/88 3/89 625

LP_GRB X 80 18 333/351 333/351 641

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 2, 215 Tasks, 30 Unallocated Tasks (14%), 15 Subsystems, 40 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 147 12 4/94 3/95 625

LP_GRB X 81 23 1551/1582 140/172 625

LP_CPX X 112 25 4352/4403 629/681 625

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 1, 215 Tasks, 45 Unallocated Tasks (21%), 15 Subsystems, 40 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX X 83 17 677/718 677/718 641

LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –
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TindellScaled_5, Set 1, 215 Tasks, 45 Unallocated Tasks (21%), 15 Subsystems, 40 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB X 82 25 1546/1595 140/190 625

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 2, 215 Tasks, 45 Unallocated Tasks (21%), 15 Subsystems, 40 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 143 17 5/253 7/356 614

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 2, 215 Tasks, 45 Unallocated Tasks (21%), 15 Subsystems, 40 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 143 17 8/310 8/355 614

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_5, Set 1, 215 Tasks, 80 Unallocated Tasks (38%), 15 Subsystems, 40 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL X 224 10 11/501 12/560 622

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_5, Set 1, 215 Tasks, 80 Unallocated Tasks (38%), 15 Subsystems, 40 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 224 10 12/549 12/608 622

LP_GRB Time 0 0 –/– –/– –
LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 2, 215 Tasks, 80 Unallocated Tasks (38%), 15 Subsystems, 40 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_5, Set 2, 215 Tasks, 80 Unallocated Tasks (38%), 15 Subsystems, 40 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 1, 258 Tasks, 36 Unallocated Tasks (14%), 18 Subsystems, 48 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
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LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 1, 258 Tasks, 36 Unallocated Tasks (14%), 18 Subsystems, 48 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 2, 258 Tasks, 36 Unallocated Tasks (14%), 18 Subsystems, 48 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 213 41 6/281 7/290 739

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 2, 258 Tasks, 36 Unallocated Tasks (14%), 18 Subsystems, 48 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 213 41 4/227 4/232 739

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 1, 258 Tasks, 54 Unallocated Tasks (21%), 18 Subsystems, 48 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 1, 258 Tasks, 54 Unallocated Tasks (21%), 18 Subsystems, 48 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 2, 258 Tasks, 54 Unallocated Tasks (21%), 18 Subsystems, 48 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 240 22 7/325 7/342 739

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 2, 258 Tasks, 54 Unallocated Tasks (21%), 18 Subsystems, 48 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 240 22 9/370 9/382 739

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_6, Set 1, 258 Tasks, 96 Unallocated Tasks (38%), 18 Subsystems, 48 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)
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KL X 316 4 14/212 28/528 768

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_6, Set 1, 258 Tasks, 96 Unallocated Tasks (38%), 18 Subsystems, 48 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL X 316 4 13/254 29/534 768

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 2, 258 Tasks, 96 Unallocated Tasks (38%), 18 Subsystems, 48 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_6, Set 2, 258 Tasks, 96 Unallocated Tasks (38%), 18 Subsystems, 48 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 1, 301 Tasks, 42 Unallocated Tasks (14%), 21 Subsystems, 56 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 1, 301 Tasks, 42 Unallocated Tasks (14%), 21 Subsystems, 56 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 2, 301 Tasks, 42 Unallocated Tasks (14%), 21 Subsystems, 56 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 271 109 15/331 15/363 864

LP_GRB X 143 153 2521/2575 2522/2576 883

LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 2, 301 Tasks, 42 Unallocated Tasks (14%), 21 Subsystems, 56 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 271 109 17/313 18/320 864

LP_GRB X 151 167 9262/9390 941/1090 875

LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
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MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 1, 301 Tasks, 63 Unallocated Tasks (21%), 21 Subsystems, 56 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 1, 301 Tasks, 63 Unallocated Tasks (21%), 21 Subsystems, 56 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Inc 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 2, 301 Tasks, 63 Unallocated Tasks (21%), 21 Subsystems, 56 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL X 305 25 10/359 10/369 864

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 2, 301 Tasks, 63 Unallocated Tasks (21%), 21 Subsystems, 56 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL X 305 25 7/294 8/298 864

LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_7, Set 1, 301 Tasks, 112 Unallocated Tasks (38%), 21 Subsystems, 56 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_7, Set 1, 301 Tasks, 112 Unallocated Tasks (38%), 21 Subsystems, 56 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 2, 301 Tasks, 112 Unallocated Tasks (38%), 21 Subsystems, 56 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_7, Set 2, 301 Tasks, 112 Unallocated Tasks (38%), 21 Subsystems, 56 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –

212



D.1. Benchmark “TindellScaled”

Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

MZ Time 0 0 –/– –/– –

TindellOriginal_8, Set 1, 344 Tasks, 128 Unallocated Tasks (38%), 24 Subsystems, 64 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_8, Set 1, 344 Tasks, 128 Unallocated Tasks (38%), 24 Subsystems, 64 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_8, Set 2, 344 Tasks, 128 Unallocated Tasks (38%), 24 Subsystems, 64 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_8, Set 2, 344 Tasks, 128 Unallocated Tasks (38%), 24 Subsystems, 64 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_9, Set 1, 387 Tasks, 144 Unallocated Tasks (38%), 27 Subsystems, 72 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_9, Set 1, 387 Tasks, 144 Unallocated Tasks (38%), 27 Subsystems, 72 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_9, Set 2, 387 Tasks, 144 Unallocated Tasks (38%), 27 Subsystems, 72 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_9, Set 2, 387 Tasks, 144 Unallocated Tasks (38%), 27 Subsystems, 72 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –
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TindellOriginal_10, Set 1, 430 Tasks, 160 Unallocated Tasks (38%), 30 Subsystems, 80 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_10, Set 1, 430 Tasks, 160 Unallocated Tasks (38%), 30 Subsystems, 80 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_10, Set 2, 430 Tasks, 160 Unallocated Tasks (38%), 30 Subsystems, 80 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_10, Set 2, 430 Tasks, 160 Unallocated Tasks (38%), 30 Subsystems, 80 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_11, Set 1, 473 Tasks, 176 Unallocated Tasks (38%), 33 Subsystems, 88 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_11, Set 1, 473 Tasks, 176 Unallocated Tasks (38%), 33 Subsystems, 88 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_11, Set 2, 473 Tasks, 176 Unallocated Tasks (38%), 33 Subsystems, 88 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_11, Set 2, 473 Tasks, 176 Unallocated Tasks (38%), 33 Subsystems, 88 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_12, Set 1, 516 Tasks, 192 Unallocated Tasks (38%), 36 Subsystems, 96 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)
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KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_12, Set 1, 516 Tasks, 192 Unallocated Tasks (38%), 36 Subsystems, 96 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_12, Set 2, 516 Tasks, 192 Unallocated Tasks (38%), 36 Subsystems, 96 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_12, Set 2, 516 Tasks, 192 Unallocated Tasks (38%), 36 Subsystems, 96 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_13, Set 1, 559 Tasks, 208 Unallocated Tasks (38%), 39 Subsystems, 104 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_13, Set 1, 559 Tasks, 208 Unallocated Tasks (38%), 39 Subsystems, 104 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_13, Set 2, 559 Tasks, 208 Unallocated Tasks (38%), 39 Subsystems, 104 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_13, Set 2, 559 Tasks, 208 Unallocated Tasks (38%), 39 Subsystems, 104 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_14, Set 1, 602 Tasks, 224 Unallocated Tasks (38%), 42 Subsystems, 112 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
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LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_14, Set 1, 602 Tasks, 224 Unallocated Tasks (38%), 42 Subsystems, 112 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_14, Set 2, 602 Tasks, 224 Unallocated Tasks (38%), 42 Subsystems, 112 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_14, Set 2, 602 Tasks, 224 Unallocated Tasks (38%), 42 Subsystems, 112 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_15, Set 1, 645 Tasks, 240 Unallocated Tasks (38%), 45 Subsystems, 120 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_15, Set 1, 645 Tasks, 240 Unallocated Tasks (38%), 45 Subsystems, 120 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_15, Set 2, 645 Tasks, 240 Unallocated Tasks (38%), 45 Subsystems, 120 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_15, Set 2, 645 Tasks, 240 Unallocated Tasks (38%), 45 Subsystems, 120 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_16, Set 1, 688 Tasks, 256 Unallocated Tasks (38%), 48 Subsystems, 128 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
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MZ Time 0 0 –/– –/– –

TindellOriginal_16, Set 1, 688 Tasks, 256 Unallocated Tasks (38%), 48 Subsystems, 128 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_16, Set 2, 688 Tasks, 256 Unallocated Tasks (38%), 48 Subsystems, 128 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Inc 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_16, Set 2, 688 Tasks, 256 Unallocated Tasks (38%), 48 Subsystems, 128 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_17, Set 1, 731 Tasks, 272 Unallocated Tasks (38%), 51 Subsystems, 136 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_17, Set 1, 731 Tasks, 272 Unallocated Tasks (38%), 51 Subsystems, 136 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_17, Set 2, 731 Tasks, 272 Unallocated Tasks (38%), 51 Subsystems, 136 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_17, Set 2, 731 Tasks, 272 Unallocated Tasks (38%), 51 Subsystems, 136 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_18, Set 1, 774 Tasks, 288 Unallocated Tasks (38%), 54 Subsystems, 144 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

217



D. Additional Benchmark Information

Analysis Mod-
ule

Result Local
Runs

Free
Global
Bus Slots

Global /
Total CPU
Runtime [s]
J Better

Global /
Total
Wall-Clock
Runtime [s]
J Better

Total Cost

J Better

TindellOriginal_18, Set 1, 774 Tasks, 288 Unallocated Tasks (38%), 54 Subsystems, 144 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_18, Set 2, 774 Tasks, 288 Unallocated Tasks (38%), 54 Subsystems, 144 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_18, Set 2, 774 Tasks, 288 Unallocated Tasks (38%), 54 Subsystems, 144 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_19, Set 1, 817 Tasks, 304 Unallocated Tasks (38%), 57 Subsystems, 152 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_19, Set 1, 817 Tasks, 304 Unallocated Tasks (38%), 57 Subsystems, 152 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_19, Set 2, 817 Tasks, 304 Unallocated Tasks (38%), 57 Subsystems, 152 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_19, Set 2, 817 Tasks, 304 Unallocated Tasks (38%), 57 Subsystems, 152 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_20, Set 1, 860 Tasks, 320 Unallocated Tasks (38%), 60 Subsystems, 160 ECUs, WCET Regularity
0.807979%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellOriginal_20, Set 1, 860 Tasks, 320 Unallocated Tasks (38%), 60 Subsystems, 160 ECUs, WCET Regularity
0.807979%, max. 12 Core(s)
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KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_20, Set 2, 860 Tasks, 320 Unallocated Tasks (38%), 60 Subsystems, 160 ECUs, WCET Regularity
1%, max. 1 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –

TindellScaled_20, Set 2, 860 Tasks, 320 Unallocated Tasks (38%), 60 Subsystems, 160 ECUs, WCET Regularity
1%, max. 12 Core(s)

KL Time 0 0 –/– –/– –
LP_GRB Time 0 0 –/– –/– –
LP_CPX Time 0 0 –/– –/– –
LP_GLP Time 0 0 –/– –/– –
MZ Time 0 0 –/– –/– –
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Glossary

Glossary
Allocation

Defines how a Task Network is allocated onto a Hardware Architecture. 38

Bus Slot
A bus slot represents one time slice of a TDMA-bus where messages can be allocated.
8

Bus-Type
A bus type describes all properties of a hardware communication bus. It is used to
type a bus. 7, 28

Controller Area Network (CAN)
Controller Area Network. 7, 33

Design Space Exploration (DSE)
Design Space Exploration refers to the process of exploring the solution space of
possible hardware/software architectures subject to problem specific constraints
usually with an optimization objective (e.g. minimize cost). 1, 2, 43

Digital Signal Processor (DSP)
Digital Signal Processor. 8, 9

ECU-Type
Specification of the type of an ECU containing all relevant information like processor
type, size and type of memory including caches, I/O ports, etc. 7, 27

Fixed-Priority Preemptive Scheduling (FPS)
Fixed-Priority Preemptive Scheduling is an approach for scheduling tasks on (single-
core) processors where a fixed priority is assigned to each task a-priori with the
consequence that during execution of a task with higher priority all tasks with
lower priority which are ready for execution or already executed are preempted. 16

FlexRay
A field bus specifically developed for automotive applications based on the TDMA
bus access protocol. 7, 30

GNU Compiler Collection (GCC)
GNU Compiler Collection: An open source collection of compilers for various
programming languages and target platforms. 8

GNU Linear Programming Kit (GLPK)
The GNU Linear Programming Kit is an open source solver for mixed integer linear
programming (MILP) problems. 184
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Glossary

Hardware Architectural Pattern
A hardware architectural pattern determines a set of possible hardware architectures
(the hardware architecture design space) by specifying mandatory and optional
hardware components. 6

Hardware Architecture
All hardware components of an embedded systems. 5

Hardware Design Space
The hardware design space of a given optimization problem is defined by specifying
an hardware architectural pattern. 6, 27

Linear Programming
Linear Programming is an optimization technique for the efficient minimization/-
maximization of a given objective function whose free variables (only reals) are
subject to constraints specified as linear inequations. 24

Logical Bus
A logical bus represents a communication bus in a hardware architectural pattern.
A logical bus is typed by a bus-type. 7, 28

Logical Electronic Control Unit (ECU)
Electronic Control Units (ECU) are used in embedded systems and consist of a
microprocessor together with memory, I/O ports, etc. In this thesis the term ECU
is used to name an element of a hardware architectural pattern where an electronic
control unit of a specific ECU-type could be inserted. 7, 13–16, 18, 20, 27

MaxWCET
Characterization of available capacity for additional tasks/signals on priority-sched-
uled ECUs/buses. Ensures that as long as MaxWCET capacity is not exceeded
none of the newly allocated tasks/signals on the resource will miss its deadline. 90

Message
In this work, messages are used to transmit signals over communication buses. 11,
33

Mixed Integer (Linear) Programming (MILP)
Mixed Integer (Linear) Programming is based on linear programming but additional
allows some or all free variables to be integers instead of reals. 24

Satisfiabiliy Modulo Theories (SMT)
Satisfiabiliy Modulo Theories is a research area where classical satisfiability solving
methods are extended using a theory module, e.g. for handling linear constraints.
See e.g. [Mis] for current activities on that subject. 23
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Glossary

Signal
In this work, signals abstractly represent data flow between tasks. 11, 32

Software Task
Abstract representation of a specified functionality implemented in a programming
language and the binary code for one or more execution platform derived by
compiling the source code. May be the receiver of one signal and may be the sender
of one or more signals. Is characterized by properties like activation period, local
hard deadline and worst case execution times for each of the execution platforms. 8

Spare-Time
Characterization of available capacity for additional tasks/signals on priority-sched-
uled ECUs/buses. Ensures that as long as Spare-Time capacity is not exceeded no
existing tasks/signals on the resource will miss its deadline. 90

Task Network
A task network is a directed graph consisting of vertices which are either software
tasks or signals. 11, 36

Time Division Multiple Access (TDMA)
Time Division Multiple Access is a method for organizing the communication of
multiple devices over a shared physical communication channel. 7, 28, 30, 33

Worst Case Execution Time (WCET)
The Worst Case Execution Time (WCET) of a software task on a specified execution
platform is a safe upper bound for the maximal time required for the isolated
execution of the platform-specific binary code derived by compilation of the source
code of the software task on that platform. 10, 11, 32, 40

Worst Case Response Time (WCRT)
The Worst Case Response Time (WCRT) of a software task is a safe upper bound
on the time after the arrival (activation) of any instance task until its completion
considering all possible delays which might be e.g. caused by the presence of other
tasks on the same processor scheduled by a specified scheduling policy. 15
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