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Summary

The current thesis is based on three manuscripts of studies that dealt with the question of

how the challenge of a demanding attentional task is mediated by brain networks during

the task and how task demand can impact on functional organization of the brain network

following the task. Further, the third study investigated the role of long-term nicotine

consumption as a potential modulator for intrinsic brain networks. The data basis of all

studies use functional MRI data acquired from healthy human subjects before, during and

following an attentional task.

Within study I we investigated the effects of sustained attention on neural correlates in the

human brain. Subjects performed a 32 minutes lasting vigilance task in the MR scanner

and neural networks involved in sensory processing and arousal were investigated with

respect to long and short periods of vigilance. Neural changes of a long period of vigilance

were revealed by investigation of linear changes in neural activity over the whole task

period (time on task). Widespread brain regions, especially involved in top-down mod-

ulation of attentional processing, were found to decrease in activity with ongoing time

on task. Lowered activity in e.g. the posterior parietal cortex and the inferior frontal

gyrus pointed to reduced top-down modulation of the attentional system towards the end

of the task, which was in line with the behavioural findings of increased reaction times

and reduced attentional performance in the subjects with ongoing time on task. Shorter

periods of vigilance were investigated as a function of increasing time spans between the

target events during the task. Several brain regions, such as the anterior cingulate cortex

and esp. in subcortical regions such as the basal forebrain, the thalamus, the nucleus

accumbens and the ventral tegmental area showed an increase in activity when the time

span between target events was longer. A multivariate partial least squares analysis was

further used to relate this activity pattern to task irrelevant motion processing during the

task. The irrelevant motion processing was evoked by alternately moving and stationary

dots (in cycles of 24 seconds) presented in flanker windows in the periphery which were

instructed to be ignored by the subjects. The multivariate analysis yielded to answer the

question whether the level of activation strength in the regions, which were recruited as

a function of increasing time span between the target events, can predict the activation

strength in regions that process the irrelevant motion information, area MT. The result

allowed segregating these brain regions into to two functionally different networks. One

group of regions, which positively correlated with the activity level in area MT, was at-

tributed to a network involved in mediation of sensory arousal; another group of regions,

which showed a negative correlation to area MT activity, was assigned to a network that

mediates motivation and expectation. In summary, study I revealed different neural net-

works involved in mediating vigilance situations, distinct in aspects of the time period

(long vs. short) and in their functional role for sensory processing.
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Study II extended the scope of study I in two points: First, the effects of attentional de-

mand on brain networks in a time window of 12 minutes following task performance were

investigated. Second, by using resting state activity and a graph analytical approach, the

spatial scale was increased from few, task relevant brain regions to effects on the whole

brain network configuration. Resting state data before and following the vigilance task of

study I was acquired and subjected to graph analysis. Measures of functional connectiv-

ity strength and network measures of global efficiency, clustering and physical distances

between connected brain regions were compared between the particular resting state data

sets. Main finding of study II was that task performance led to long lasting changes in

brain network configuration, reflected by lowered efficiency, shorter communication path

ways (physical distances) and higher clustering values. Further, in the late period of the

resting state data (6-12 minutes post-task) only subjects that showed better performance

within the task, respectively that were more resilient towards the demand of the task,

showed recovery in these network parameters. Especially functional connectivity strength

and clustering values in these subjects began to recover (approaching values as before the

task has started) and showed a correlation with individual performance. These results

demonstrated that intrinsic brain networks can be manipulated by task performance and

that previous task demands can impact brain function for a prolonged time (up to 12 min-

utes). Further, the finding that some network attributes such as efficiency and clustering

show performance related recovery processes point to the use of these graph metrics as

biomarkers for cognitive resilience.

In study III, the same graph analytical approach was used to compare resting state data

(before a task) of a group of non-smokers with a group of smokers. Goal was to iden-

tify whether smoking status, respectively long-term cigarette consumption, is a potential

modulator for intrinsic brain network configuration. An existing theory about a reason of

smoking as a form of self-medication for attentional deficits suggests that intrinsic network

configuration in smokers might show altered – for attentional processes not beneficial –

network attributes. The derived graph metrics were compared with standard test statis-

tics, measures of effect sizes and non-inferiority testing. The results showed that smokers’

brains show no significant differences in network attributes as efficiency, physical distances

or clustering as compared to brains of never smokers. Comparing the measures of effect

sizes and non-inferiority testing further revealed that these attributes were comparable be-

tween smokers and non-smokers and that smokers do not show reduced efficiency or higher

clustering in many brain regions as compared to non-smokers. The findings of study III

confirm that smoking status is unlikely to be a bias for graph analytical investigations of

intrinsic brain activity.
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Zusammenfassung

Die vorliegende Dissertation basiert auf drei Manuskripten von Studien, die sich mit der

Frage beschäftigten, wie die Bewältigung einer Aufmerksamkeitsaufgabe von Netzwerken

des Gehirns während der Aufgabe reguliert wird und wie die Anforderung der Aufgabe die

funktionelle Organisation des Gehirnnetzwerks im Anschluss an die Aufgabe beeinflussen

kann. Desweiteren untersuchte die dritte Studie die Rolle von Langzeit-Nikotinkonsum

als möglichen Einfluss für intrinsische Gehirnnetzwerke. Die Datenbasis für alle Studien

bilden funktionelle MRT Daten, die von gesunden Probanden vor, während und nach einer

Aufmerksamkeitsaufgabe gemessen wurden.

In Studie I haben wir die Auswirkung von konstanter Aufmerksamkeitsleistung auf neu-

ronale Korrelate des menschlichen Gehirns untersucht. Die Probanden absolvierten eine 32

Minuten andauernde Vigilanzaufgabe im MR-Scanner und Gehirnnetzwerke, die an sen-

sorischer Verarbeitung und Arousal beteiligt sind, wurden in Bezug auf lange und kurze

Zeitspannen von Vigilanz untersucht. Neuronale Veränderungen im Hinblick auf eine lange

Zeitspanne von Vigilanz wurden mit linearen Veränderungen im Grad der neuronalen Ak-

tivierung über die Gesamtaufgabendauer erfasst. Mehrere Gehirnregionen, insbesondere

Regionen, welche bei der Top-Down Regulierung von Aufmerksamkeitsprozessen beteiligt

sind, zeigten eine Abnahme in Aktivität mit fortschreitender Aufgabenzeit. Geringere

Aktivität z.B. in lateral-frontalen Regionen und dem inferioren frontalen Gyrus gaben

Hinweise auf eine verringerte Top-Down Regulation am Ende der Aufgabe, was mit den

Befunden aus den Verhaltensdaten übereinstimmte, welche erhöhte Reaktionszeiten und

verschlechterte Aufmerksamkeitsleistung mit fortlaufender Aufgabenzeit wiederspiegelten.

Kurze Zeitspannen von Vigilanz wurden als Funktion der zeitlichen Abstände zwischen den

Zielreizen während der Aufgabe untersucht. Mehrere Hirnareale, insbesondere in subkor-

tikalen Regionen wie dem anterioren Cingulum, dem basalen Vorderhirn, dem Thalamus,

dem Nucleus Accumbens und dem ventralen Tegmentum zeigten eine Zunahme an Ak-

tivität mit längeren zeitlichen Abständen zwischen den Zielreizen. Eine multivariater PLS

Ansatz wurde weiter benutzt, um dieses Aktivitätsmuster mit nicht- aufgabenrelevanter

Bewegungsverarbeitung in Bezug zu setzen. Die nicht-aufgabenrelevante Bewegungsverar-

beitung wurde durch sich im Wechsel bewegende und stillstehende Punkte hervorgerufen,

die in peripheren Bereichen des Gesichtsfeldes der Probanden präsentiert wurden und

die von den Probanden ignoriert werden sollten. Die multivariate Analyse sollte die

Frage beantworten, ob der Grad der Aktivierung der Gehirnregionen, die als Funktion der

zeitlichen Abstände zwischen den Zielreizen rekrutiert wurden, die Aktivierungsstärke im

bewegungssensitiven Areal MT vorhersagen kann. Das Ergebnis erlaubte eine Aufteilung

dieser Gehirnregionen in zwei funktionell unterschiedliche Netzwerke. Eine Gruppe von

Regionen, die positiv mit dem Grad der Aktivierung in Areal MT korrelierten, wurde

einem Netzwerk zugeordnet, das sensorische Erregbarkeit reguliert; eine andere Gruppe
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von Regionen, die eine negative Korrelation mit der Aktivität in Areal MT zeigten, wurde

einem Netzwerk zugeordnet, das Motivation und Erwartungshaltung reguliert. Zusam-

menfassend konnte Studie I verschiedene neuronale Netzwerke identifizieren, die bei der

Regulierung von Vigilanzsituationen beteiligt sind: Verschieden Netzwerke für lange und

kurze Zeitspannen von Vigilanz und ihre unterschiedliche Rolle für sensorische Verar-

beitung.

Studie II erweiterte den Blickwinkel von Studie I in zwei Punkten: Erstens wurde der

Einfluss von fordernder Aufmerksamkeitsleistung auf Gehirnnetzwerke ausgedehnt auf ein

Zeitfenster von 12 Minuten im Anschluss an die Aufgabe untersucht. Zweitens wurde

die räumliche Skala der Betrachtung von wenigen, aufgabenrelevanten Gehirnregionen auf

Einflüsse auf die gesamte Konfiguration des Gehirnnetzwerkes erweitert. Dafür wurden

Daten verwendet, die ohne Aufgabe, im Ruhezustand der Probanden, vor und nach der

Aufgabe erhoben wurden und mit einem graphenanalytischen Ansatz ausgewertet wurden.

Maße für funktionelle Konnektivität und Netzwerkmaße für globale Effizienz, Clustering

und räumlichen Distanzen zwischen verbundenen Gehirnregionen wurden zwischen den

einzelnen Ruhemessungen miteinander verglichen. Der Hauptbefund von Studie II zeigte,

dass das Absolvieren der Aufgabe zu langanhaltenden Veränderungen in der Konfigu-

ration des Gehirnnetzwerks führte, was sich durch verringerte Effizienz, kürzeren Kom-

munikationswegen (räumliche Distanzen) und erhöhten Werten für Clustering äußerte.

Desweiteren zeigten in der späteren Hälfte der Ruhemessungen nach der Aufgabe (6-12

Minuten danach) nur Probanden eine Erholung in diesen Netzwerkparametern, die eine

bessere Leistung innerhalb der Aufgabe erbrachten, beziehungsweise die, die sich robuster

gegenüber der Anforderung der Aufgabe zeigten. Insbesondere der Grad der funktionellen

Konnektivität und die Werte für Clustering fingen an sich bei diesen Probanden zu er-

holen und zeigten eine Korrelation mit den individuellen Leistungen. Diese Ergebnisse

machten deutlich, dass intrinsische Gehirnnetzwerke durch Ausführung einer Aufgabe bee-

influsst werden können und dass vorhergehende Aufgabenanforderungen nachwirkend auf

die Funktion des Gehirns Einfluss nehmen (im gemessenen Zeitraum von 12 Minuten nach

der Aufgabe). Der Zusammenhang zwischen der Erholung einiger Netzwerkattribute wie

Effizienz und Clustering und der Aufgabenleistung der Pobanden weist zudem darauf hin,

dass diese Graphmetriken als Biomarker für kognitive Belastbarkeit dienen können.

In Studie III wurde der gleiche graphenanalytische Ansatz benutzt, um Ruhemessun-

gen einer Gruppe von Nichtrauchern mit einer Gruppe von Rauchern zu vergleichen.

Ziel war es herauszufinden, ob der Status ’Rauchen’, beziehungsweise langfristiger Zi-

garettenkonsum, einen möglichen Einfluss auf die Konfiguration intrinsischer Gehirnnet-

zwerke hat. Basierend auf einer bestehenden Theorie, nach der ein möglicher Grund

für Rauchen eine Form von Selbst-Medikation für bestehende Aufmerksamkeitsdefizite

darstellen könnte, zeigt die intrinsische Netzwerkkonfiguration von Rauchern möglicher-

weise veränderte – für Aufmerksamkeitsverarbeitung nicht vorteilhafte – Netzwerkeigen-
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schaften. Die berechneten Graphmetriken wurden mit Standard-Teststatistik, Maßen für

Effektstärke und Non-Inferiority Testverfahren verglichen. Die Ergebnisse zeigten, dass

die Gehirne von Rauchern im Vergleich zu Nichtrauchern keine signifikant unterscheid-

baren Netzwerkattribute, wie Effizienz, räumlichen Distanzen oder Clustering, aufweisen.

Der Vergleich der Effektgrößen und das Non-Inferiority Testverfahren zeigten weiter auf,

dass diese Attribute vergleichbar zwischen Rauchern und Nichtrauchern waren und dass

Raucher signifikant keine geringere Effizienz oder erhöhtes Clustering in vielen Gehirnre-

gionen aufweisen. Die Befunde von Studie III bestätigen, dass der Status ’Rauchen’ kein

Bias für die graphanlystische Untersuchung intrinsischer Gehirnnetzwerke darstellt.
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Introduction

1.1 Overview

The human brain is a highly flexible and adaptive information processing system that

allows us to interact with our environment and to adjust behaviour to current task de-

mands. However, if a task demand is high, the flexibility and capability of the brain to

adapt is challenged. Limitations of cognitive adjustment to a current task can be observed

behaviourally by declines in task performance. The studies of the current thesis aim to

shed light on neural mechanisms that are involved in adaptive processes of the brain in

order to match task demands and on changes in brain networks that reflect consequences

of demanding tasks. In particular, the current thesis focuses on neural correlates mediat-

ing attentional processing during and neural correlates reflecting long-term influences of

attentional processes after a task has ended.

The following sections of this envelope introduce and provide some background of the

main concepts used in the three studies.

Section 1.3 presents the phenomena of vigilance and attentional effort as investigated

in study I. Section 1.4 briefly reviews findings related to resting state research and the

meaning of intrinsic brain oscillation for human brain function, which are the basis for the

assumptions made in study II. Section 1.5 points out the meaning of nicotine consumption

for brain function and its potential role for self-medication in patients with psychological

disease, which built the motivation for study III. At the end of each of these sections a

short summary and concluding remarks with respect to the according study is given. Sec-

tion 1.6 gives insight into two methods for network analysis on fMRI data: partial least

square analysis and graph theory. One focus of the current theses was also to elaborate

and apply these techniques. Especially the relatively new and promising graph theoretical

approach is presented with more detail.

1.2 Experimental Approach and Aims of the Thesis

Neural data was acquired by means of fMRI which was subjected to different types of

data analyses. The analytic approaches focused on identifying and describing neuronal

networks and were applied to data acquired during presence and absence of a task de-

mand. The main task was a 32 minutes lasting vigilance task. The vigilance task was

used in order to challenge the attentional system of the subjects and to introduce potential
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limitations of their brain’s capability to perform at the same level throughout the whole

task time. Resting state measurements, where subjects lie in the scanner without task,

were performed for 6 minutes before the task and for 12 minutes following the task (see

Figure 1.1).

Goal of study I was to identify brain networks that are involved during the vigilance task

in mediating the task demand and that are related to performance decline. Neuronal

networks were investigated for temporal aspects of vigilance. Networks involved in longer

periods of vigilance over the total time on task and in shorter periods of vigilance, as

present in ’miniature’ vigilance situations immediately before target presentation within

the task, were differentiated. Further, the evoked brain activity of the recruited brain

regions by the main vigilance task was related to task-irrelevant stimulus processing as

evoked by moving dots stimuli presented in flanker windows during the task. A multivari-

ate analysis was used to reveal the functional roles of brain regions involved in vigilance

situations for the processing of task-irrelevant stimuli. The general attributes of vigilance

tasks and potential neuronal key mechanisms involved in compensating for vigilance task

demands are described in sections 1.3 and 1.3.1. The modelling technique used for reveal-

ing the functional role of the identified brain regions in attentional processing, the partial

least squares analysis, is introduced in section 1.6.1.

Figure 1.1: Scheme about the overall design of studies I + II. Sequence of
different conditions in one functional MRI scanning session. A centre task, in which
targets (red crosses, 96 targets in total) were presented with random inter target
intervals to the subjects, was flanked by no-task, open eyes resting state conditions
(central fixation cross only). BOLD Activity in neuronal networks involved in long
and short periods of vigilance were revealed as function of time on task (1) and as
function of time spans (in average 20 seconds) between target events (2). Long term
effects of task demand on intrinsic network configuration were captured by comparison
of graph metrics derived from the resting state periods (3). Changes of graph metrics
between the two resting state periods following the task were additionally analysed
with respect to network recovery (4).
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Study II aimed to give insight into longer-termed neuronal network changes following a

task. The effects of task demand and individual performance on brain network efficiency

were investigated. Functional MRI data acquired in ’no-task’ or resting state conditions

before and following a task were compared by use of a graph analytical approach. Mea-

sures of brain efficiency were analysed with respect to changes immediately following the

task and to recovery processes later in time. An introduction about resting state research

is provided in section 1.4; the measures of brain efficiency and the graph analytical ap-

proach are detailed in section 1.6.2.

Study III dealt with the question if functional brain network efficiency differs between

smokers and non-smokers. Nicotine presence has been shown to alter attentional perfor-

mance and to increase brain network efficiency. Study III investigated if more generally

the status of smoking, in absence of acute nicotine presence, leads to reduced brain net-

work efficiency or if network efficiency is comparable between minimal deprived smokers

and never smokers. An overview about the role of nicotine as modulator for functional

brain networks is given in section 1.5.

In summary, the main questions of the current thesis in particular are:

1. Are there different brain regions involved during the vigilance task in respect to

longer and shorter periods of vigilance? (study I, section 1.3.2)

2. What neuronal networks are involved in mediating attentional effort during the

vigilance task? (study I, section 1.3.2)

3. How does brain efficiency, respectively intrinsic brain states, change following the

demand of the vigilance task? (study II, section 1.4.1)

4. How are changes of brain topology related to individual performance and how does

performance affect the capability for recovery of brain attributes following the task?

(study II, section 1.4.1)

5. Does smoking status impact on topological measures of brain network efficiency and

represent a bias for investigating intrinsic brain function? (study III, section 1.5.1)
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1.3 Vigilance Tasks and Attentional Effort

In study I, a vigilance paradigm was used in order to experimentally induce an increase in

attentional effort. Vigilance tasks describe a category of tasks that are characterized by

prolonged task time, low visual load and rare target events which have to be detected by

the subjects. A common observed phenomenon of such tasks is the ’vigilance decrement’:

decreased performance with increased time-on-task reflected by increased reaction times

and/or missed targets (see e.g. Parasuraman et al., 1998).

Traditionally, vigilance tests were considered to under-stimulate the attentional system

due to their monotonous and repetitious nature (Nachreiner & Hanecke, 1992). With

ongoing time on task subjects tend to mentally disengage from the task and begin day-

dreaming (e.g. Robertson et al., 1997; Manly et al., 1999) which was seen as the main

reason for the vigilance decrement. However, authors of more recent studies challenged this

view of the mindlessness theory of vigilance. For example, Helton and colleagues (2005)

pointed out, that expectations about the time course and likelihood of target appearance

affect performance efficiency in vigilance tasks. Further, it was observed that aspects such

as motivation or aversion to proceed in the task, which emerge during the experimental

progress, decrease and increase the vigilance decrement respectively (Boksem et al., 2005;

Lorist et al., 2005; Boksem et al., 2006). The latter observations suggest that these objec-

tively simple vigilance paradigms are tasks with a high demand for the attentional system

when considering their vulnerability towards individual expectation and motivation.

Consequently, a mechanism that can compensate for the demand of vigilance tasks in

order to maintain performance requires considering both, the effects on sensory process-

ing and the effects on intrinsic motivation. A promising concept of such a mechanism is

attentional effort. In previous studies, attentional effort was only seen as a function of

task difficulty. Effort is needed in order to compensate for task dependent detrimental

influences. Such influences can for example be driven by prolonged time-on-task, the task

load or the density of presented stimuli, the saliency of presented stimuli, the changes in

stimuli features to detect, or the absence and presence of distractors. In earlier literature,

attentional effort was used as a psychological concept that served as explanation for de-

clines in performance with increases in task difficulty (e.g. Kahneman, 1973). However,

the concept of attentional effort was so far only vaguely defined and a relation to neuronal

correlates not illuminated. A renewal and enhancement of the concept of attentional ef-

fort was provided by Sarter et al. in 2006. Sarter and colleagues defined attentional effort

as a cognitive incentive and a complex mechanism of the brain not only in response to

task demands but also in response to subjects’ motivation to perform a task. Beside the

conceptual involvement of motivational aspects in attentional effort, Sarter and colleagues

presented also a neuronal framework for top-down modulation of attentional processing

as mediated by attentional effort (see next section 1.3.1).

14



1
In

tr
o

d
u

ct
io

n

The extension of attentional effort by motivational aspects is based on observations as

e.g. from Pashler (1998), who described that subjects are capable to control their perfor-

mance with different levels of motivation. Or from Tomporowski and Tinsley (1996) who

could show that subjects in a 60 minutes vigilance task performed better when they were

paid for performance as compared to unpaid subjects. Thus, the subjects’ motivation is

important to recover performance or limit performance decline in experimental tasks. If

the expected reward is high, attentional effort serves to optimize goal-directed behavioural

and cognitive processes.

However, literature is sparse in experimental research of investigating the influence of at-

tentional effort on behavioural as well as on neuronal level. There is no standard test

paradigm for measuring increases in attentional effort. One reason is probably given by

the fact that the concept of attentional effort has remained undefined a long time until

the definition of Sarter and colleagues (2006). Another reason might be the high inter-

individual variability of subjects in adjusting the levels of attentional effort in experimental

tasks, as attentional effort is to a bigger part driven by intrinsic motivation.

In the current thesis, attentional effort was seen as a mechanism to compensate for the

demands of the vigilance task and built therefore an important concept to explain the

behavioural and neuronal findings.

1.3.1 Neuronal Mechanisms of Attentional Effort

An important mechanism for stabilization and optimization of attentional processing is

top-down regulation by the anterior attention network (Posner, 1994). Prefrontal and an-

terior cingulate regions (ACC) interact with parietal areas and build the main components

of brain circuits that execute top-down control (Gehring & Knight, 2000; Hopfinger et al.,

2000). Changes of receptive field properties of sensory neurons in cortical and subcortical

regions (Treue & Maunsell, 1999; Corbetta & Shulman, 2002) or suppression of activity

in regions which process irrelevant or competing inputs (Shulman et al., 1997) are known

effects of top-down control.

Whereas top-down mechanisms are able to optimize and recover attentional processing,

they themselves underlie motivational aspects and can act as a function of incentives (Small

et al., 2005). Cortical cholinergic inputs to prefrontal regions play a prominent role in such

top-down mechanisms. Animal studies showed that an increase in effort is accompanied by

an increase in acetylcholine (ACh) efflux in the basal forebrain (BF) in attentional tasks

(Kozak et al., 2006). Prefrontal regions and ACC have contact with dopaminergic regions

such as the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (Carr &

Sesack, 2000). The functional roles of prefrontal/ACC interactions and NAC activation
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are attributed to performance monitoring, conflict detection and processing of critical in-

formation about prediction errors and reward (Robbins & Everitt, 1996; Mesulam et al.,

2001; Berridge, 2004; Botvinick et al., 2004); further midbrain dopaminergic neurons as in

the VTA show activations in relation to reward expectation and prediction (for a review

see Schultz, 2010). Efferents of the NAC and VTA as well as glutamatergic feedback loops

from prefrontal/ACC regions project to the BF, which renders the BF to play a key role

in linking motivational circuits with brain regions involved in top-down modulation of

attentional processing.

In summary, the key mechanism of attentional effort builds an activation of the choliner-

gic input system that contributes to the activation of the anterior attention system and

associated sensory processing (see review of Sarter et al. 2006).

1.3.2 Summary of the Main Findings of Study I

Are there different brain regions involved during the vigilance task in respect to longer and

shorter periods of vigilance?

The vigilance task used in study I successfully induced a vigilance decrement to the sub-

jects as reflected by increased reaction times towards the end of the task. Brain regions

including the inferior frontal, posterior parietal, superior and middle temporal cortices,

and the anterior insula showed decreases in neural activity as a function of time on task.

Involvement of these regions in longer periods of vigilance was in good accordance with

previous studies which investigated time-on-task effects on neural activity. This activa-

tion pattern comprises regions involved in top-down modulation of attentional processing

(see previous section). A decrease in activity over time in those regions points to reduced

top-down optimization of sensory processing was seen as explanation for an increase in

reaction times of the subjects.

In a second step we investigated neural correlates involved in shorter periods of vigilance

as a function of increasing time between targets. The time span until the next target

event appeared in the task, which was unknown to the subjects, was seen as a ’miniature’

vigilance situation. The longer the time span, the longer the subjects had to adjust their

attention and the higher was their expectation about the appearance of the next target.

Brain regions that showed an increase in activity with longer time spans between targets

were a widespread network of regions that involved lateral and medial frontal areas, tem-

poral areas, cuneus and precuneus, right inferior occipital cortex, posterior insular cortices,

the thalamus, nucleus accumbens and basal forebrain.

Main regional differences as to regions involved in longer periods of vigilance were acti-

vations of subcortical regions such as the thalamus, the nucleus accumbens and the basal
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forebrain. The nucleus accumbens and the basal forebrain are key structures for atten-

tional effort (see section above). This activation pattern pointed to enhanced acquisition

of attentional effort and top-down regulation (as also evident in thalamic activations which

is an effector of top-down modulation) in short-term vigilance situations.

What neuronal networks are involved in mediating attentional effort during the vigilance

task?

To answer the question if functional distinguishable brain networks are involved during

performance of a vigilance task, a the multivariate partial least squares approach (PLS,

see section 1.6.1) was used to relate evoked brain activity patterns to task irrelevant mo-

tion processing. Simultaneously to the main centre task of relevant target presentations,

flanker windows with moving dots were presented. The dots alternately moved or stood

still for time periods of 24 seconds. The by the motion evoked activity in the motion

sensitive area MT was functionally and regionally distinct from the brain regions involved

in the processing of the target stimuli. Motion processing in the current paradigm served

as a reference for task independent attentional processing, as it was previously shown that

area MT activity is highly modulated by attention (see e.g. Treue & Maunsell, 1996).

The PLS approach revealed that brain regions involved in shorter periods of vigilance

significantly co-varied with area MT activity. Further, the brain regions were differentiated

according to their weight in which they contributed to the PLS prediction into two different

networks contributing to the mediation of attentional effort. One network was attributed

to arousal processes, as it showed a positive correlation with area MT activity. Regions

such as the thalamus, basal forebrain, posterior cingulate cortex and the supplemental

motor cortex (SMA) were part of this network. The other network, which negatively co-

varied with area MT activity comprised among others regions as the nucleus accumbens

(NAC), the anterior cingulate cortex (ACC) and the pre-SMA. As pointed out above, these

regions are typically found to be involved in processing reward outcome, expectation and

conflicts (or sensory mismatches) and were attributed to reflect parts of a motivational

network.
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1.3.3 Concluding Study I

Study I is one of the first studies that investigated different temporal aspects of vigilance

within one paradigm. Especially aspects of vigilance over shorter time periods, such as

captured in the miniature vigilance situation (time between target presentations), have

not been investigated before to this extent. It is to our knowledge the first study that

showed neural correlates of attentional effort in the human brain with almost all regions

previously described by Sarter et al. (2006). Finally, study I provides insight into the role

of functionally distinguishable brain networks (arousal and motivation), that both mediate

sensory processing in a vigilance task. With these findings study I contributes to a better

understanding of the complexity of neuronal processes in vigilance situations, situations

that were earlier considered as ’mindlessness’ and accomplishable with low demands for

the brain.
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1.4 Resting State and the Default Mode of the Brain

Initial resting state research based on the observation that a defined set of brain regions

when contrasted to passive control conditions showed ’deactivations’ across a wide array of

task conditions (Raichle et al., 1994; Shulman, 1997; Petersen et al., 1998; Raichle, 1998).

These regions comprised posterior cingulate regions and adjacent precuneus, medial frontal

and inferior temporal regions and since were referred to as the default network of the brain.

The default network was found to be consistent across subjects (e.g. Damoiseaux et al.,

2006) and was first considered as regions showing task-induced activity decreases (Shul-

man, 1997; Binder et al., 1999; Mazoyer et al., 2001). However, later studies could show

that the default network regions also show strong temporal coherence and spatially clus-

tered patterns (as derived from connectivity and spatial independent component analyses)

in so called resting state conditions, which may involve baseline conditions with either eyes

open and a presentation of a fixation cross or eyes closed (e.g. Gusnard & Raichle, 2001;

Raichle et al., 2001). Persistent default mode network connectivity was further observed

in sedated subjects and subjects under anesthesia (Buckner & Vincent, 2007; Greicius et

al., 2008). The latter findings put forward the notion of a task independent default mode

of the brain, a brain state founded in spontaneous brain activity, supposed to be important

for reallocation and organization of brain function. The role of the default mode for hu-

man brain function and its characteristics have become a major issue in nowadays resting

state research, often with an extended view from the few default mode network regions to

intrinsic oscillations throughout the whole brain. An interesting fact that fertilizes resting

state research from a biological point of view was provided by calculations of Raichle and

Mintun (2006): 60% to 80% of the brain’s energy budget is used for intrinsic functional ac-

tivity, whereas only 0.5% to 1% of the total energy budget is used for momentary demands

of the environment. This cost-based analysis underlines the relevance of intrinsic states

for human brain function, as cost efficiency is one common principle of any biologically

evolved system.

In fMRI resting state data, strongest patterns of functional connectivity, predominantly

defined as the high correlation of neuronal signal (BOLD-) time courses between two or

more sources (brain regions), were observed in a frequency range below 0.1 Hz (e.g. Cordes

et al., 2001; Wu et al., 2008). To date, the biological basis for this frequency range is not

fully understood. Observed slow fluctuations (<0.1 Hz) in neuronal membrane polariza-

tion (’up and down’ states) correspond in their frequency with the observed BOLD signal

fluctuations (Petersen et al., 2003; Hahn et al., 2006) and could serve as one explanation.

Among possible functions of default mode activity, intrinsic oscillations are discussed to

build a state of ’balance’ between excitatory and inhibitory inputs that are continuously

received by neurons (e.g. Laughlin & Sejnowski, 2003; Haider et al., 2006). This balance

determines the responsiveness of neuronal networks to new, correlated inputs and thereby
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constitutes communication pathways in the brain (Salinas & Sejnowski, 2001). Findings

from e.g. Lim et al. (2010) revealed that RS activity prior to a task can predict task

performance. Further, studies have shown that task performance can change this balance

or communication pathways on functional connectivity level. For example it was shown

that a language (Waites et al., 2005) and a motor task (Duff et al., 2008) can change RS

attributes, and further that learning induced plasticity can affect connectivity patterns in

subsequent RS measurements (Albert et al., 2009; Lewis et al., 2009; Stevens et al., 2010).

These results render RS activity to more than a task independent state. RS activity might

on the one hand contain variables that work as priors and determine the ’brain readiness’

for following task demands, and on the other hand build reflexive states dependent from

the history of the performed tasks. Study II of the current thesis was used to pursue the

latter concept and investigated how task demands change intrinsic functional networks

following a task and how long it takes until a pre-existing balance, defined as the state be-

fore task performance, is recovered. The main method to describe the brain states during

the resting periods was a graph analytical approach (see section 1.6.2).

1.4.1 Summary of the Main Findings of Study II

In study II topological brain measures such as network efficiency and clustering from three

resting state (RS) periods were compared. One RS period was before, two RS periods fol-

lowed the vigilance task from study I. The vigilance task attentionally challenged the

subjects by introducing a significant vigilance decrement (see also study I) and thereby

revealed limitations of the brain for upholding optimized sensory processing towards the

end of the task. The graph analytical approach was used to investigate potentially changes

in the topological measures immediately and later in time following the task demand.

How does brain efficiency, respectively intrinsic brain states, change following the demand

of the vigilance task?

Immediately following the task (0 to 6 Min post-task) intrinsic brain network efficiency

was decreased in all subjects. Further, the connectivity pattern showed an increase in

clustering (cliquishness) and the physical distances between functionally connected brain

regions shifted in favour to more short-distance connections. These changes in comparison

to the network configuration prior to the task were further evident in the second RS period

after the task (6 to 12 Min post-ask). Network attributes such as efficiency and clustering

have previously been associated with the capability of cognitive performance (see section

1.6.2). The change in physical distance distribution may reflect a strategy of the brain

to preserve metabolic costs. In summary the finding shows that intrinsic RS activity has

reflexive attributes and can be modulated by prior task performance. A loss of global
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network efficiency and a reallocation of communication pathways towards local and short-

distance processing strategies were seen as a direct consequence of a challenged brain and

as a biomarker for a brain approaching to cognitive limitations. A further finding was that

these changes persisted for 12 minutes after the task (in both RS periods after the task).

How are changes of brain topology related to individual performance and how does perfor-

mance affect the capability for recovery of brain attributes following the task?

The subjects showed a considerable amount of variability in task performance. Some sub-

jects were able to successfully uphold their performance level (unchanged reaction times

towards the end of the task) whereas others showed strong vigilance decrements. However,

a relation of the individual performance levels to brain attribute changes in the RS period

immediately following the task were not evident. But the change in some attributes in the

post-task phase (change between the two RS periods following the task) was correlated

with the individual performance. Brain networks of subjects with lower vigilance decre-

ment showed recovery in the overall connectivity strengths between brain regions and in

clustering. Even though these attributes did not reach the pre-task level (the values of the

RS period prior to the task) in the latest RS period, this finding points to performance

dependent variables that account for brain network recovery. Subjects that performed

poorer (higher vigilance decrements) did not show recovery effects in network topology.

Reason for this late recovery effects in study II were attributed to neuronal mechanisms of

plasticity and cellular fatigue. Involvement of a different level of attentional effort might

have lead to differently pronounced levels of neuronal plasticity and cellular fatigue, which

induced longer termed changes in topology in subjects that had to invest more attentional

effort in order to accomplish the task (see discussion of study II for details).

1.4.2 Concluding Study II

Long-term effects of task performance on RS activity has gained little interest so far

and further was restricted to analysis on connectivity level. Study II contributed to RS

research in at least two unique points. First, Study II is one of the first studies that

investigated connectivity patterns on the level of the whole brain network and topological

attributes such as network efficiency after task manipulation. It supports earlier ideas

of a default mode of the brain that argued that the default mode of the brain is not

completely task independent and that it plays a role in task post-processing, respectively

in reallocation and reconfiguration of neuronal pathways following a task. Second, study

II renders topological measures as efficiency, clustering and physical distance distribution

between connected brain regions as valuable metrics or biomarkers for investigation of

cognitive states of subjects. The relation to individual performance levels points to an

important role of these metrics for measuring brain flexibility and cognitive capacity.

21



1
In

tr
o

d
u

ct
io

n

1.5 Smoking Status as Modulator for Intrinsic Brain Networks

One motivation that drives resting state research and especially the investigation of brain

topology at rest is their use for clinical research and their potential for diagnosis of ab-

normal brain network configurations. Progress has been made in describing pathological

network configurations in e.g. patients with Alzheimer’s disease, depression, ADHD and

schizophrenia. It was shown that brain networks in patients with Alzheimer’s disease show

generally lowered efficiency and lowered clustering attributes (de Haan et al., 2009; Stam

et al., 2009); patients with depression showed more random network properties as com-

pared to healthy control subjects (Zhang et al., 2011a); ADHD patients showed a decrease

in brain efficiency but an increase in clustering (Wang et al., 2009); and schizophrenia

patients showed more network hubs (brain regions with a large number of connections

to other brain regions) in occipital brain regions and less network hubs in frontal brain

regions as compared to healthy brain networks (Bassett et al., 2008; Lynall et al., 2010;

van den Heuvel et al., 2010).

A side-effect of psychological diseases such as ADHD or schizophrenia is a very high smok-

ing rate. Several studies have shown that the rate of smoking in these patient groups is

two- to four-fold the rate seen in the general population (20-35%) (Lohr & Flynn, 1992;

Pomerleau et al., 1995; Milberger et al., 1997; de Leon & Diaz, 2005). Reasons for the

widespread smoking behavior in these patient groups are not completely understood, but

most lines of investigation suggest that nicotine consumption serves as a form of self-

medication in order to compensate for cognitive and attentional deficits caused by the

disease and/or side effects of antipsychotic medications (for a review Sacco et al., 2004;

Kumari & Postma, 2005). Binding sites of nicotine in the brain are widespread over corti-

cal regions with a predominance in frontal and medial frontal regions as well as in cingulate

and insular regions (Nyback et al., 1989; Stein et al., 1998). Beneficial effects of nicotine

for performance have been reported in various tasks demands in healthy subjects as e.g. in

attentional reorienting (Thiel et al., 2005; Giessing et al., 2006), in stimulus detection and

vigilance paradigms (Koelega, 1993; Bates et al., 1995) or in memory tasks (Foulds et al.,

1996; Rezvani & Levin, 2001). Beneficial effects of nicotine were also observed to improve

performance of healthy and schizophrenic subjects in pre-pulse inhibition tasks, tasks in

which subjects have to process several stimulus sources simultaneously and maintain task

relevant stimuli in their attentional focus (Duncan et al., 2001; Kumari et al., 2001). The

global binding sites of nicotine in the brain together with the positive effects of nicotine

on performance in various, different tasks suggest that nicotine can impact on brain func-

tion on a global level and thus might lead to overall changes in the functional network

configuration of the brain. A more direct line of evidence for global changes of functional

network configuration under nicotine treatment was provided recently by Giessing et al.

(submitted). Nicotine treatment led to higher brain efficiency and lower clustering of

functional resting state networks in healthy subjects; a brain network configuration with
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higher efficiency and lowered clustering has been previously suggested to be beneficial for

task performance (please see chapter 1.6.2 for details).

However, one aspect that has been less investigated so far is the impact of long-term

cigarette consumption on intrinsic network configuration. It was shown, that nicotine

presence, on the one hand, can lead to a rapid desensitisation of nicotinic receptors in the

brain (Freedman et al., 1995). On the other hand it was shown that chronic smoking leads

to increases and up-regulations of nicotinic receptors, suggested as a brain’s response to

receptor desensitisation (Breese et al., 1997). Further it has been reported that smoking

can lead to structural changes in the brain by reducing grey matter density in some brain

regions (Gallinat et al., 2006; Zhang et al., 2011b). These observations suggest that intrin-

sic brain network configurations might also undergo changes due to prolonged cigarette

consumption. If so, findings of changed brain network attributes in patient groups with

high rates of cigarette consumption would be biased by the smoking status, as brain

networks of these groups are most commonly compared with brain networks of healthy,

non-smoking subjects. In study III it was tested if smoking status in subjects without

psychological disease can lead to altered intrinsic brain network configuration.

1.5.1 Summary of the Main Findings of Study III

In study III, topological measures based on RS data from a group of smokers (slightly

deprived, <2h) and a group of never smokers were compared. The same graph analytical

approach as in study II was used in order to calculate measures of network efficiency,

clustering and physical distances between functionally connected brain regions. In a first

step, common null hypothesis significance testing was used to reveal potential differences

in the graph metrics between smokers and non-smokers. As the null hypothesis could not

be rejected by common testing, measures of effect size and non-inferiority testing were

used in a second step in order to examine the two datasets and to explicitly test for a ’null

effect’ for the regional measures of efficiency and clustering.

Does smoking status impact on topological measures of brain network efficiency and rep-

resent a bias for investigating intrinsic brain function?

The results of study III confirmed that resting state topology of smokers and non-smokers

do not differ in the investigated measures. With respect to the previously reported topo-

logical changes in patients with schizophrenia and ADHD in specific brain regions (please

refer to introduction part of study III), findings of study III further corroborate that ef-

ficiency and clustering in these regions are not affected by the smoking status. Based on

these results, the trait of smoking addiction does not state a bias for topological measures

of brain networks.
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1.5.2 Concluding Study III

Study III successfully helped to negate potential confounds evoked by the status of smoking

addiction for research in resting state topology. The results have major relevance in two

aspects: First, the validation of existing studies that previously investigated pathological

brain networks of patients with schizophrenia and ADHD. In these studies typically patient

groups with a high prevalence of smoking were compared to healthy, non-smoking subject

groups. Prior to the findings of study III, the reported findings in these studies could

have possibly not only been attributed to the disease but also to the status of smoking.

Second, smoking subjects can be added to the pool of non-smoking subjects in studies that

investigate resting state topology. Prior to the findings of study III, it remained unclear

if long year smoking introduces changes in topological attributes of functional networks,

esp. as it was recently shown that acute nicotine presence has a significant influence on

these attributes (Giessing et al., under review).
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1.6 Excursi: Two Approaches for Network Analysis of

Functional MRI Data

The studies presented in this thesis are largely based on complex data analyses of fMRI

data. In the following the two major approaches, as the partial least squares analysis and

graph analysis, will be described in more detail.

1.6.1 Partial Least Squares Regression

Classification and Basic Attributes

Multivariate partial least square (PLS) methods are used to analyse the relationship be-

tween measured variables (factors, X) and explaining or predictive variables (responses,

Y). In science, PLS methods were early used and established in the fields of chemistry

as pioneered by Wold and colleagues in the late sixties (Wold, 1969; Wold et al., 1984).

McIntosh and colleagues (1996) firstly introduced these methods to functional imaging

and used them to reveal commonalities between brain activity and behaviour. In compar-

ison to multiple linear regression analyses PLS methods are superior and more efficient

when the number of factors is large (in relation to the sample size, causing the problem of

’over-fitting’), when factors are expected to be collinear, and when relationship between

factors and responses is ill-understood (or there is no clear a priory expectation). All three

conditions were true for the data in study I of the current thesis where the PLS regression

was used to predict area MT activity (responses) from the inter-target interval related

activity pattern based on several thousand voxels (factors).

In general, PLS regression shares the strategy of indirect modelling with related meth-

ods such as principal components regression (PCR) and maximum redundancy analysis

(MRA).

Evoked by the problem of over-fitting, these methods avoid explaining a response space

by a manifest factor space. Instead, their strategy is to extract main components or la-

tent variables that account for most of the variation in the response and/or factor space.

Whereas PCR is based on the spectral decomposition on the factor side (X’X) and MRA

is based on the prediction of the ’responses side’ (Y’Y) the PLS methods seeks to optimize

both (X’Y) and extract latent variables that account for most variance of responses and

predictor variables/factors (for a brief comparison of these methods see Tobias, 1995). For

extraction of the latent variables the iterative NIPALS (non-linear iterative partial least

squares) algorithm was used in study I (Dejong, 1993; Rosipal & Kramer, 2006). Dur-

ing the iteration process linear combinations of X and Y are built that show maximum

covariance for each latent variable, on X as well as on Y side, by determining weights

for each factor in X and response variable in Y. For instance the resulting X weights can

be used for the projection of the factor space into new prediction space with maximum
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covariance between X and Y space. The weights can be used to estimate the ’meaning’ of

each single factor considered in the PLS model for the prediction of the responses. Factors

with high (absolute) weights show a high covariance with the response variables. Further,

the weights are sensible for the direction of the relationship between the factors and the

response variables. The weights of the first latent variable are proportional to the correla-

tion between X and Y. The algebraic sign of the weights attributed to Y and the algebraic

signs of the weights for X give information about a positive or negative correlation of the

factors and the response variables.

Figure 1.2: Principle of PLS Analysis. PLS generates and optimizes weights for
the response space (Y, C) and for the factor space (X, W) so that the prediction space
of X (T = X*W) and of Y (U = Y*C) shows maximal covariance. W correlates with
U, C correlates with T. In case of study I, area MT activity was predicted with help
of the activation level of brain regions that showed an increased activity with longer
time spans between the presented targets.

Validation and Significance Testing

For the validation process of the PLS model and the interpretation of the weights two

further steps are needed.

Model accuracy. The first step is aimed to estimate the accuracy of the extracted latent

variables for the prediction of the response space. This was realized in our study by

use of a randomization test suggested by van der Voet (1994) which is based on the

differences in the mean squared error of prediction (MSEP) of PLS models with different

numbers of latent variables. During this procedure, the number of latent variables in a

PLS model is continuously increased by one (the ’full’ model) and in each step compared

with the previous PLS model, comprising one less latent variable (the ’reduced’ model).

The difference of the MSEP for all comparisons is calculated and tested two-sided with
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a randomization test for the null hypothesis. Rejection of the null hypothesis would

account for a significant contribution of the last added latent variable to the prediction

of the response variable(s). We conducted such model comparisons for a total number of

10 latent variables in the full model with randomization tests of 500 iterations. As the

sample size comprised only 20 subjects in study one, the MSEP was estimated with help of

a leave-out-one-sample (LOO) cross validation approach. In this procedure the responses

of one subject (defined as the test sample) were predicted by the weighted factors of the

other 19 subjects (defined as the train sample). The test sample was rotated in the way

that the sample of each subject was the test sample once. Resulting prediction errors built

the basis for the MSEP differences for each model comparison. In study one, this model

validation process revealed significance for a PLS model with up to three latent variables.

Further addition of latent variables did not improve the model prediction and most of the

response data could be explained by the first latent variable.

Model Validation. The second step after model validation is used in order to test the

reliability of the extracted factor weights over all subjects. Even if the PLS model generally

was able to significantly predict the responses by the weighted factors over the whole

sample size, the factor weights can vary across subjects and a single factor can be weighted

differently for different subjects. Goal of study one was to identify factors that significantly

and homogenously (with the same algebraic sign) contribute to the prediction of the

responses. For that purpose a bootstrap method with 500 iterations was used (Efron,

1994). In each bootstrap iteration process, a new resampled data set is created with the

same sample size and with randomly picked samples out of the real sample set (sampling

with replacement). Resampling allows an estimation of the factor weight distributions

and calculation of Z-scores (relation of each factor weight to the standard deviation of

the estimated distribution) and thus an identification of the reliable (significant) weights

over all subjects. In study I bootstrapping identified different clusters of voxels that either

contributed with a positive or a negative weight to the prediction of area MT activity.

This allowed relating brain regions to their role in predicting sensory motion processing

and helped to assign them to conceptual brain networks involved during task-unrelated

sensory processing in the presented task.
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Personal Conclusions and Restrictions of PLS Application

In general the PLS method has the reputation of being very solid and the fact that PLS

modelling optimizes linear weighted combinations of both sides, the response and the

factor side, makes it a powerful and suitable tool for data mining. In case of study I,

PLS regression remarkably supported our findings and allowed an extended interpretation

of the analysed BOLD response patterns. However, especially in case of using BOLD

response patterns as factor and/or response space, the reliability of PLS regression is chal-

lenged. Reason for that is rather built by the applied statistical threshold for describing

fMRI-data than by the PLS method itself. Based on a widely arbitrary choice of a sig-

nificance threshold for describing fMRI response patterns, which is still common in the

fMRI community, the number of factors introduced to the PLS model can vary from a few

hundred, to thousand, to several thousands. This raises the question of which number of

factors (respectively which threshold) should be chosen for PLS modelling of fMRI pat-

terns. If there was a close relationship between responses and factors and PLS modelling

is as solid as supposed to be, the choice of the description threshold for fMRI data should

have minor impact on model accuracy, as key structures (or voxels) remain the same at

each observation threshold, on response as well as on factor side. This is the case because

only the spatial extent of their ’representation’ is changed by different thresholds and not

their relation to each other. This was true in case of study I, as the PLS method revealed

significant relations to area MT activation for fMRI patterns at different thresholds. But

this was not true for another data set (analysed by the author of the current thesis, but

not related to the thesis) in which the choice of the description threshold decided if a PLS

model was significant or not. The latter case calls the PLS method as a ’powerful tool

for data mining’ into question for exploring relationships of fMRI patterns and advises

carefulness for its proper use. It can provide strong support for interpretation of fMRI

response patterns but fails in the opinion of the author as to be a stand-alone approach

for fMRI-data mining that is expected to deliver substantial results. Maybe an extended

cross-validation approach, that takes PLS models based on fMRI-activation maps on dif-

ferent description thresholds into account and compares the PLS predictions for each of

the different data sets, could provide an improvement for the PLS method as a more

unbiased data mining tool when modelling BOLD response patterns.
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1.6.2 Graph Theory

A Graph as Model of the Brain

The human brain consists of 1011 neurons with 104 synaptic connections each which re-

sults in a connectome with a total number of one Quadrillion (1015) cellular connections.

In order to make such a massive and complex network accessible it is inevitably necessary

to reduce the amount of detailed information and to use simplified models of the brain

network. One type of brain network model is provided with modern graph theory. Graph

theory is a mathematical tool to analyse topological attributes of network models, namely

’graphs’. Graphs consist of only two elements: Nodes and edges. Nodes can represent

functional units, information sources or brain regions. Edges represent the direct connec-

tions between them.

Important measures derived from graphs were introduced by Watts and Strogatz (1998)

and base on the path lengths between network nodes. The path length between two nodes

is the number of edges between them (directly neighboured nodes would have a path length

of 1). So, for example, nodes that lie on a large number of paths between other nodes

can be identified as network hubs, important interfaces of the network. On a more global

scale, network efficiency can be represented as the inverse average path lengths between

all pairs of nodes in the network; the more efficient the network, the shorter the average

path lengths. Further, path lengths between neighboured nodes can be used to describe

the clustering of a network; short path lengths in sub graphs with neighboured nodes are

characteristic for networks with high cliquishness and modularity (see formulas of Latora

& Marchiori, 2001; 2003).

One fundamental property that share brain networks in common is small-worldness. Small-

world networks lie in between regular and random networks, but share the benefits of both

configurations (see Figure 1.3). By adding only a few random connections to a regular

network (high clustering but low efficiency), network efficiency is immensely improved

while a high clustering is preserved. This small-word configuration of the brain, a network

configuration with high clustering and high efficiency, was found to be a universal principle

for brain networks across species. So small-worldness was not only shown in human brain

networks (e.g. Stam, 2004; Salvador et al., 2005; Achard et al., 2006), but also in the

anatomical and functional brain networks of the macaque (Hilgetag et al., 2000; Stephan

et al., 2000; Sporns et al., 2004), functional coupling in the rat’s brain (Schwarz et al.,

2008), and also interestingly in the primitive worm brain of C. elegans (Chen & Stein,

2006). Main reason for the evolutionary success for small-world configuration in brains

was supposed to be its cost-efficiency, as axonal wiring is expensive in terms of metabolic

costs and maintenance. So Watts and Strogats (1998) pointed out that with increasing

the number of random connections in a regular network by only 4% the network efficiency

can be increased by 40%.
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Figure 1.3: Small-world network configuration. A. Networks with different
levels of random wiring. Left: Regular networks show a very high local efficiency
with short path lengths between neighboured nodes; but a very low global efficiency
with long path lengths between distant nodes. Right: Random networks show the
opposite attributes: very low local, but very high global efficiency. Middle: By
adding a few random connections to a regular network, the so called small-world
configuration is achieved: Networks that show both, a high local efficiency and –
in comparison to completely regular networks – high global efficiency (figure adopted
from Hamill & Gilbert (2009), JASSS). B. Schematic illustration of the ratio between
global efficiency (path length) and local efficiency (clustering). Brain networks show
small-world properties, characterized by short path lengths (=high global efficiency)
and high clustering.

Findings from graph based models of the brain gained also broad acceptance in the field

of neuroscience because the identified attributes of high integrity (global efficiency) and

clustering map to some of our fundamental ideas of the brain we have. The first idea is

based on the fact that the brain needs to gather and integrate information from different

kind, such as e.g. information from perceptual, attentional, evaluative or memory systems.

Integration of these different kinds of information is necessary for controlled and complex

behaviour. This idea was formerly conceptualized by Baars (1997) and Dehaene (1998)

in ’the global workspace theory of the brain’. Information are stored and made accessible

throughout a highly efficient and integrated network system. The other idea of the brain

is based on the observation that the brain consists of anatomically and functionally dis-

tinguishable brain regions. Information is segregated and split up according to different

features and are further processed in different brain regions. So for example visual infor-

mation is, after it is first processed in the primary visual cortex, sent to different brain

regions that process distinct features such as object shape, category, motion or location.

Thus, the second idea of the brain is a very hierarchically and modular idea of the brain.

Graph theoretical findings of a high integrity and high clustering describe an architecture

of the brain that supports both kinds of processes, integrated and segregated processes,

which renders graphs as models of the brain as a plausible and promising way to access

brain topology.
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Building a Brain Graph

For building a graph, answers to three basic questions are needed: What is the data basis?

What are the nodes? And what are the edges?

Graph theory was adopted from economics, ecology and computer sciences that delivered

the concept and the mathematical framework for graph statistics. Transferred to neuro-

science, graph theory finds growing interest for analysing anatomical networks, such as

derived from grey matter density maps from voxel based morphometry or axonal fibre

bundles from diffusion tensor imaging, and functional networks, as based on EEG, MEG

or fMRI data (for a review see Bullmore & Sporns, 2009). Depending on the data basis,

graphs can have different meanings, their nodes represent different sources and their edges

represent different metrics of connectivity.

The data bases for the analyses in the current studies were BOLD signal time courses

acquired during resting state periods. Resting state brain activity is driven by intrinsic

spontaneous oscillations; in resting state research it has been shown that these oscillations

show strong and robust (across individuals and different analysing methods) functional

coherence patters in a frequency range below 0.1 Hz (see also previous section X). Thus,

the metric of connectivity were the correlation values of the BOLD signal time courses in

this frequency range; high correlation values reflect high functional coupling between the

signal sources. The resulting graphs built on this data basis represent functional network

configurations of the brain at rest. A scheme about the major steps for creating functional

brain graphs is given in Figure 1.4.

Graph theory is to most parts a relativistic analysing method, which means that single,

complex graphs alone are not meaningful. Only the comparison to other graphs of net-

works with known attributes (such as regular or random networks) or the comparison

to graphs based on the same data basis allow interpretations about their characteristics.

Therefore it is essential to use the same number of nodes and the same number of edges

for the graphs that are used for comparison. The number of nodes and the number of

edges are crucial for the most derived graph parameters (as e.g. path lengths and hence

resulting measures of efficiency and clustering).
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The choice of nodes in the current studies was based on randomly generated seed regions.

A parcellated grey matter standard atlas (the AAL-template from the wfu-pickatlas tool-

box for SPM (http://www.nitrc.org/projects/wfu_pickatlas/)) build the template

for all subjects to extract the average BOLD time courses for each of the seed regions

(please find more details about the template in study II). Goal was to investigate func-

tional brain networks, so the restriction to grey matter tissue assured that BOLD signal

sources based on neuronal activity only. The number of about 500 seed regions/nodes was

chosen as a good trade-off between a sufficient number of nodes for a fine-grained cortex

coverage – in order to allow more region-specific assumptions – and a reasonable upper

limit of nodes for preserving computing time. A study from Zalesky et al. (2010) showed

that basic topological attributes, such as network efficiency and clustering, are preserved

across a range of nodes between 100 and 5000.

More complex is the definition of the number of edges used for the graph and the question

of what edges between which nodes to use in the graph. More recent approaches define

the number of edges by different cost levels of a network. The cost level represents the

density of the graph and is defined in the current framework as the number of nodes as

percentage of all possible edges. So for example a graph with N=500 nodes has 124,750

((N*N-1)/2) possible edges; at a cost level of 10% this graph uses 12,475 of all possible

edges. Such a definition helps to control the number of edges and make graphs which

are built at the same cost level comparable. But how many connections are functional

brain networks supposed to have? As brain networks are dynamic, coherence patterns are

shaped spontaneously and the number of sources vary (on biological side as from smaller

to larger neuronal populations as well as on methodical side as based on the choice of

seed regions) this question cannot be answered. Hence, the current strategy is to describe

graphs for functional brain networks on a cost range. Reasonable lower and upper limits

about the number of edges are given by two considerations: The brain is a coherent net-

work in which no brain region operates alone and is not fragmented. This sets the lower

limit of the number of edges to the number that is necessary to at least connect all nodes

to the rest of the network. The upper limit is set by the observation that networks/graphs

above a cost level of 50% show widely random properties. Widely random properties are

unlikely for the human brain, as it supports directed and controlled behaviour. Thus,

the plausible cost range used in the current thesis to describe the attributes of the brain

networks was set between 2.5% and 50% (sampled in 2.5% steps in the lower range and

5% in the higher range).
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For definition of which of all available edges to use at certain cost levels, first a priority

order of the edges in which they should be added to the graph has to be defined. There

is currently no gold standard of how to order the edges, except that the ordering is based

on the correlation values (as captured in the connectivity matrix) and that the graph al-

ways should be fully connected, as fragmented brain networks are not plausible and more

difficult to compare. So the first edges added to the graph are the edges that are needed

to fully connect all the nodes and assure that each node has at least one connection to

the rest of the nodes. The first edges used for each node were the edges with the highest

correlation values between this node and another node. Then further edges according

to the second highest correlation value were added, and so on until the graph was fully

connected. Such a configuration builds the minimum spanning tree (MST) of a network.

So for example, the MST could be built in study II averaged over all subjects at a cost

level of 1.74% (with a small deviation); hence by using the lowest cost level of 2.5% in

study II it was assured that all individual graphs were fully connected. Finally, adding of

further edges to the graph followed the same strategy. For each node further edges were

added according to the height of the correlation values between this node and all others.

This strategy (the k-nearest neighbour graph (k-NNG) growing, with k as the number of

edges per node) assured an equal graph growing and was described by Alexander-Bloch et

al. (2010). In the end, the edges between nodes used in a graph at a certain cost level, are

the percent number of edges with the highest order. Graphs with higher cost levels always

comprise the edges from the graphs at the lower cost values. As a consequence, when

averaging graph parameters over a cost range, as done so in study II and III, connections

or edges with relative higher correlation values gain more weight.
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Figure 1.4: Scheme for creating of the graphs. Step 1: Anatomical subregions
from the AAL standard grey matter brain atlas (SPM toolbox wfu-pickatlas) are further
randomly parcellated in smaller subregions. Result is a template with 500 seed regions that
is used to extract the mean BOLD time series (mean of time courses of all voxels inside each
seed region). The datasets for each RS period analysed in study II and III consisted of 256
functional scans. Scans were prior spatially realigned, slice-time corrected and normalized to
MNI-space. Step 2: The extracted mean time series of each seed region get first corrected for
head motion by only further using the residuals after multiple regression with the six motion
parameters from spatial realignment. Wavelet filtering is then used to access frequency
ranges below 0.1 Hz. The resulting wavelet coefficients are used to determine the functional
coupling between the particular seed regions (correlation values) in this frequency band(s)
and stored in an N by N association matrix with N = number of seed regions. Step 3:
A sorting algorithm is used to determine the order in which edges are added to the graph.
The ordering process bases on the height of the correlation values but further assures that
i) the graph is fully connected and that ii) graph growing is homogeneous (respectively the
degrees of the nodes do not vary much). The order matrix is then used to build adjacency
matrices at different cost levels. Adjacency matrices determine which nodes/brain regions
are treated as functionally connected for the calculation of the graph metrics. The cost
levels determine the number of edges that are used in a graph. E.g. a graph at 5% uses
the 5% of all edges with the highest orders from the order matrix. In studies II and III 15
different cost levels in the range from 2.5% to 50% were investigated. Step 4: Formulas
from Watts & Strogats and Latora & Marchiori are used to calculate the graph metrics
of efficiency and clustering. These values base on the inverse, harmonic mean of the path
lengths between all pair of nodes in the graph (efficiency) or between all pair of nodes in
subgraphs as separately built for all nodes in the graph (clustering). Physical distances base
on the Euclidean distance between connected nodes. These state only three of many graph
metrics that can be potentially derived from graphs, but are the mainly used measures in
studies II and III.
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Graph Parameters and their Meaning for Cognitive Performance

With established graphs many different graph parameters can be computed. Some are

more region specific/based on nodal relations, such as the degree (defined by the number

of edges leaving a node) or the hubness of a node (determined by the number of paths

going through a node), some refer to sub-graphs such as modularity (groupings of more

densely connected nodes which show distinguishable less dense coherence to the rest of

the graph) or clustering (path lengths between neighboured nodes), and finally measures

that relate to the whole network such as efficiency (average path lengths between all pairs

of nodes) and physical distances (Euclidian distances between nodes). Goals of studies II

and III were to capture brain attributes on more global scales, as there were a priory no

regional assumptions.

Two of the graph parameters addressed in the current thesis were global efficiency and av-

erage clustering over all nodes (Figure 1.4); a number of recent studies provided evidence

that both measures are associated with cognitive capacity and attentional performance. It

was shown that scores in intelligence tests (based on performance in various tasks) corre-

lated positively with global efficiency (Li et al., 2009; van den Heuvel et al., 2009). Other

studies revealed that aged subjects show lowered global efficiency and increased clustering

(Gong et al., 2009; Wang et al., 2010) which is a indirect piece of evidence for the relation

of maleficial network configuration and task or cognitive performance, as it is known from

other studies that aged subjects typically show poorer performance in tasks (Berardi et

al., 2001; Gazzaley et al., 2005). Wang et al. (2009) could also identify maleficial network

configuration for attentional performance (lowered global efficiency, increased clustering)

in a patient study with children suffering from attention deficit hyperactivity disorder

(ADHD). In summary, the two graph metrics of nodal efficiency and clustering may rep-

resent a biomarker for cognitive capacity and reflect measures of the brain’s capability to

adjust and adapt behaviour.

A third graph parameter investigated was physical (Euclidian) distances between con-

nected nodes. As different to the measure of efficiency, which is dimensionless and based

on the number of edges between nodes, physical distances describe the lengths of com-

munication pathways between nodes (edges) in physical space. Communication via short

physical pathways was earlier considered as a strategy of the brain to preserve metabolic

costs (Niven & Laughlin, 2008; Kitzbichler et al., 2011). Communication over long dis-

tance fibers affords to maintain more ion channels over wider membrane surface and more

metabolic energy in order to restore and uphold the membrane potential (Laughlin et

al., 1998; Attwell & Laughlin, 2001). So in study II a shift towards more short-distance

communication after the demanding task, more pronounced in subjects with poorer perfor-

mance, was seen as a consequence of the challenged brain that needed to preserve energy

for upholding intrinsic states.
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Conclusions and Restrictions of Graph Theory Application

With extending the view from regionally restricted activation patterns to the whole brain

network and comparing network attributes related generally to cognitive capacity a step

backwards is made in revealing the true mechanisms underlying these changes. The ques-

tion if changes as e.g. in efficiency or clustering underlie global mechanisms and strate-

gies of a challenged (or ’fatigued’) brain or if they are triggered by specialized neural

circuits, responsible for reconfiguration and reallocation of communication pathways, re-

mains unanswered. As pointed out in study II, thalamic regions could fulfil a key role in

functional reorganization of functional networks, but further proof is needed in order to

consolidate this finding.

As a method in progress, graph theoretical techniques to date provide no sufficient em-

pirical support for such kind of more specific analyses esp. with regard to task involved

network modules or network hierarchy. Main reason is the lack of a gold standard of

these methods and hence the missing opportunity to compare graph specific findings with

findings from other studies. As pointed out above, graph theory is a very relativistic tech-

nique; graph parameters are only meaningful in comparison. Progress has to be made in

defining rules about graph building, such as choice of nodes and the way edges should be

ordered when added to a graph. Further, for the investigation of more specific roles of

brain regions or sub-networks for the whole brain network topology, algorithms for iden-

tifying and classification of such sub-graphs or network modules must be elaborated and

normalized.

A further restriction of most graph theoretical studies in the field of fMRI to date is the

restriction to a data basis of resting state measurements and thus the limited access to the

dynamic of brain networks. The brain in a resting state condition is from a perspective

directed functional processing in order to perform a task in a relative ’static’ network

configuration. Low frequency fluctuations below 0.1 Hz, the only range that is reasonable

and accessible by temporally low sampled BOLD time series, are not representative for

fast changes in the range of milliseconds as they would be necessary for successful task

performance. The relation between high frequency and low frequency coherence patterns in

the brain is to date merely understood (as e.g. discussed in Bullmore & Bassett, 2011). As

a consequence, the amount to which graphs built on the correlation basis of functional MRI

time series acquired during a task are affected by task related high frequency correlation

changes is not clear and will probably be a key focus of future work. So far, conclusions

about brain network dynamics can only be made indirectly by use of data from several

resting state periods in an experiment that are separated by manipulative treatments, as

also used in study II.
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1.7 The Future of Brain Network Analysis

Drawing a more complete picture. The brain is a complex and coherent information

processing system. Within the last few years more and more studies have started to

use additional analysis with respect to connectivity measures between brain regions and

brain networks analysis. It has come into awareness that describing single brain regions

involved in experimental task processing might only represent the ’tip of the iceberg’ of

a working brain and that information about more widespread network interactions, ei-

ther in between task involved regions or in subliminal, ’background’ network processes,

might play a key role for the understanding of brain function. The observed increasing

frequency of studies that report measures of brain connectivity and network attributes

will further push forward the development of tools for brain network analysis that will

provide more insight in such network processes. The current thesis contributes with the

application of two techniques that allowed qualitatively different insights into neuronal

networks. The partial least square analysis allows deriving main covariance components

between two sets of active brain regions during task performance and helped to identify

different functional roles of the brain regions for stimulus processing. This multivariate

approach was an elegant way to cope with inter-individual variability and further relate

the many different activity levels captured on small-volume (voxel) level to each other by

circumventing problems of multiple comparison testing and over-fitted models. Partial

least squares analysis can help to understand complex interactions of neuronal activation

patterns such as revealed with fMRI and is valuable for neuroscientists who investigate

neuronal network-network or network-behaviour interactions. Graph analysis gives new

insights into how the brain network is configured and how it assures efficient information

flow. Graph models allow to access many aspects of brain network attributes from the

level of single brain nodes to whole network efficiency and organization. Only global mea-

sures derived with graph theory were focus of the current thesis, but these measures as e.g.

global efficiency and clustering were successfully related to a representation of subjects’

cognitive states and their limitations or resilience towards the challenges of the performed

task. Graph analysis is still a method in development and more studies about new tech-

niques and algorithms for analysing brain graphs are expected in future days. However,

the current graph analytical framework as described in the current thesis can be seen as

a solid start with this technique and a good basis on which future frameworks can build on.
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Graph theory as a diagnostic tool. Graph theory for functional brain data has become

one of the driving forces for the renaissance of resting state research within the last few

years. One major reason is given by the potential for its application in clinical research.

The progresses made in describing pathological brain networks in patients with psycholog-

ical diseases clear the way for using graph metrics as an additional or supportive tool for

diagnosis of psychological diseases. However, future work is necessary to further elaborate

the graph analytical method and to investigate variables that impact or change graph

analytical results, respectively intrinsic brain network configurations. The current thesis

contributed with the investigation of two potential modulators for intrinsic brain states,

task demand and smoking status. Whereas smoking status might only have minor impact

on intrinsic brain states, as based on the findings of the current thesis, task demand was

observed to lead to widespread changes in intrinsic network configuration. Future research

will be needed that evaluates the tolerated dynamic range in which derived network param-

eters are understood as ’normal’ or ’healthy’ and at which point network metrics can be

seen as ’abnormal’ or ’pathological’. Without a better understanding about such dynamic

ranges of network metrics, as also caused by the individual history of tasks performed by

potential patients before brain scanning, a reliable diagnosis is hardly possible.

Exploring complex networks during tasks. Further perspectives of future studies that

work with the graph analytical approach are also given by the current limitations of the

graph theory application, such as the predominant focus on analysis of resting state data

only and the restriction to low frequency bands when based on fMRI data, which is cur-

rently the most frequently used data basis for graph theoretical studies in the field of

neuroscience. In order to get insight into dynamic network configuration changes during

task performance, more knowledge is needed about how task induced high correlations

between task involved brain regions relate to task unrelated ’background’ brain networks

and how to potentially separate these processes (as e.g. discussed in Giessing & Thiel,

2012). As it is a crucial part of brain function to quickly react to demands of the en-

vironment and tasks in order to adjust behaviour, such investigations also have to take

into account dynamic processes in higher frequency ranges. During task performance, the

brain needs to adapt and reconfigure its functional networks in the ranges of milliseconds,

reconfiguration processes that cannot be accessed by temporally poor sampled fMRI data.

Consistent attributes of neuronal signals over different frequency bands, such as the self-

similarity or fractal properties of neuronal signals, and mathematical frameworks in order

to reveal common attributes of brain network communication at different frequency scales

have been elucidated (Bullmore et al., 2009; Meunier et al., 2010), however, it is subject

to future studies to adopt these approaches and to show how brain networks or modules

are dynamically shaped in response to task demands.
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Research highlights

• Different brain networks involved in short-term and long-term aspects of vigilance

• Processing of motion distractors functionally related to short-term network

• Short-term network can be functionally segregated into two components

• Motivation and arousal components of short-term network mediate distractor pro-

cessing
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2.1 Abstract

The ability to sustain attention over prolonged periods of time is called vigilance. Vig-

ilance is a fundamental component of attention which impacts on performance in many

situations. We here investigate whether similar neural mechanisms are responsible for vig-

ilant attention over long and short durations of time and whether neural activity in brain

regions sensitive to vigilant attention is related to processing irrelevant information. Brain

activity was measured by means of functional magnetic resonance imaging (fMRI) in a

32 Min visual vigilance task with varying inter-target intervals and irrelevant peripheral

motion stimuli. Changes in neural activity were analysed as a function of time on task to

capture long-term aspects of vigilance and as a function of time between target stimuli to

capture short-term aspects of vigilance. Several brain regions including the inferior frontal,

posterior parietal, superior and middle temporal cortices and the anterior insular showed

decreases in neural activity as a function of time on task. In contrast, increasing inter-

target intervals resulted in increased neural activity in a widespread network of regions

involving lateral and medial frontal areas, temporal areas, cuneus and precuneus, inferior

occipital cortex (right), posterior insular cortices, the thalamus, nucleus accumbens and

basal forebrain. A partial least square analysis revealed that neural activity in this latter

network co-varied with neural activity related to processing irrelevant motion stimuli. Our

results provide neural evidence that two separate mechanisms are responsible for sustain-

ing attention over long and short durations. We show that only brain areas involved in

sustaining attention over short durations of time are related to processing irrelevant stim-

uli and suggest that these areas can be segregated into two functionally different networks,

one possibly involved in motivation, the other in arousal.
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2.2 Introduction

The capability to sustain attention over prolonged periods of time is called vigilance. Vig-

ilance is crucial in many work environments such as airport security controls or vehicle

operations where humans have to continuously monitor and react to rare signals while

ignoring irrelevant stimuli. A variety of experimental tasks have been designed to study

vigilance over prolonged periods of time. These range from the classic vigilance tasks with

rare, highly salient signals (e.g. Dinges and Powell, 1985; Mackworth, 1948) on the one

hand to more difficult tasks with high event rates, low signal saliency and high memory

load on the other side (e.g. Helton et al., 2010; Smit et al., 2004). The common finding in

these tasks is a decline in detection rate and an increase in reaction time with time on task.

Despite these common findings it is still unclear what the underlying reasons for these

effects are and under which task conditions a vigilance decrement can be observed. Vig-

ilance decrements can often be found after 15 minutes of task performance, but in tasks

with high cognitive demands they can occur much faster (Parasuraman et al., 1998). Pos-

ner and Boies (1971) pointed out, that short- and long-term situations both involve the

ability to increase readiness and proposed that phasic increases in alertness following a

warning cue may be considered as a ’miniature vigilance situation’. Yet, there are hardly

any studies which explicitly addressed the question whether similar mechanisms underlie

vigilance decrements over the range of several seconds as opposed to several minutes.

On the basis of patient and neuroimaging studies it has been postulated that a right lat-

eralised fronto-parietal network contributes to sustained attention (for review see Posner

and Petersen, 1990). To investigate brain regions involved in vigilance different approaches

have been used. Many neuroimaging studies focussed on brain regions involved in task

performance per se (e.g. Coull et al., 1998; Sturm et al., 2004) or described brain regions

associated with slow as opposed to fast reaction times (Drummond et al., 2005). Only

few studies investigated changes in neural activity over time which paralleled the vigilance

decrement behaviourally. Studies analysing changes in neural activity as a function of time

on task reported mainly decreases in neural activity in several brain regions including the

right inferior parietal cortex, the right dorsolateral prefrontal cortex, the thalamus and

the posterior cingulate cortex (Coull et al., 1998; Lim et al., 2010; Paus et al., 1997).

However, the functional meaning of these results is still a matter of debate. It has been

hypothesised that these changes in neural activity reflect a decrease in arousal and a shift

from controlled to automatic processing (Coull et al., 1998; Paus et al., 1997).
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Behaviourally, there is some evidence that false alarms to irrelevant stimuli increase with

time on task (e. g. Boksem et al., 2005). Neurally it has been shown that processing

of irrelevant stimuli is modulated by varying attentional load. Rees and colleagues asked

subjects to perform a linguistic task with low or high load while ignoring irrelevant visual

motion in the periphery. They found that processing irrelevant motion was decreased in

the motion sensitive area MT if the processing load of the primary task engages full atten-

tion (Rees et al., 1997). Thus, if brain regions that are related to vigilance decrement over

short or long durations reflect a decrease in attentional control as suggested previously,

neural activity in this network should impact on processing irrelevant stimuli in motion

sensitive area MT.

We here aimed to answer the question whether vigilance decrements over long and short

durations activate similar brain networks and might therefore also reflect similar func-

tional processes. We assumed that both, short-term and long-term aspects of vigilance

involve a shift from controlled to automatic processing modulating neural activity related

to processing of distractors. We used functional magnetic resonance imaging (fMRI) and

a monotonous visual vigilance task with rare signals and irrelevant visual motion. The

display was composed of a central target and peripheral motion stimuli. Time between

two consecutive target stimuli varied unpredictably. We analysed vigilance decrements as

a function of time on task and as a function of time between consecutive target stimuli

(inter-target intervals). To investigate whether time dependent changes in neural activity

predict the level of processing task-irrelevant visual motion we used a multivariate partial

least square (PLS) regression approach.
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2.3 Material and Methods

2.3.1 Subjects

Twenty healthy, right-handed subjects (11 female, 9 male; mean age = 27.0 years, range

= 24 to 39 years) participated in the experiment. The study was approved by the ethics

committee of the German Psychological Association and subjects signed written informed

consent. Subjects received a monetary compensation for participation.

2.3.2 Experimental Design and Stimuli

Subjects performed a 32 Min visual vigilance task with irrelevant visual motion stimuli.

The baseline display consisted of a central black fixation cross and two flanker windows

(6◦ wide and 7◦ 12′ eccentric in each visual field). Each window contained five dark grey

dots (diameter 36′) on a light grey background (see Figure 2.1). The target stimulus was

a colour change of the fixation cross from black to red for 300 ms. In total 96 targets were

presented in 32 minutes. The targets were equally distributed over the experiment by

presenting three target stimuli per minute. The intervals between the target stimuli were

randomized within each minute and not predictable for the subjects (the hazard function

was flat over a wide range of inter-target intervals (see supplementary Figure 2.7)), mean

inter-target interval = 20 seconds, which is comparable to previous work (Coull et al.,

1998). The smallest possible inter-target interval was set to 3 seconds. Thus, the duration

of the inter-target intervals used in our experiment was slightly longer than the duration

of inter-target intervals usually used in the psychomotor vigilance task (PVT) (Dinges

and Powell, 1985; Drummond et al., 2005) which is between 2 to 10 seconds and slightly

shorter than the inter-target intervals used in the Mackworth’s Clock-Test (Mackworth,

1969; Mackworth, 1948) where 12 targets are presented in 20 minutes. Motion stimuli

were presented in the two flanker windows. In these windows, five dots randomly moved

with low speed (motion on phase) or were hold constant (motion off phase) (dot-speed

5◦ 52′ 10′′ visual angle per second). Both phases alternated every 24 seconds. A similar

amount of target stimuli was presented during both phases. Subjects were instructed to

report the colour change of the fixation cross by pressing a response button as fast as

possible and to ignore dot movement. For response time acquisition an MRI-compatible

optical response keypad (”LUMItouch”, Photon Control Inc., Burnaby, BC, Canada) was

used. Stimulus presentation was programmed with the Psychophysics Toolbox Version 3

(http://psychtoolbox.org/) for Matlab (The MathWorks, Inc.).
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Figure 2.1: Illustration of experimental paradigm. Subjects were instructed
to detect a colour change of the central fixation cross from black to red (here indi-
cated as a bold fixation cross). Three target stimuli per minute were presented with
randomized inter-target intervals. Motion stimuli were presented in two flanker win-
dows. Each window contained dark grey dots on a light grey background (here both
illustrated in white). Dot motion on and off phases alternated every 24 seconds.

2.3.3 Analysis of Behavioural Data

In order to analyse reaction times (RTs) as a function of time on task and inter-target inter-

val, a linear mixed-effects (LMER) model was applied. Calculations were conducted with

the software packages ’lme4’ and ’languageR’ (Baayen, 2008; Baayen et al., 2008; Pinheiro

and Bates, 2000) of the statistics software R (see http://www.r-project.org/). The

model was fitted using restricted maximum likelihood (REML) estimation. Note, that

there is currently an intensive debate on how to estimate the correct degrees of freedom

of denominators in F ratios in context of mixed effects models (see Baayen et al., 2008

for further information). Therefore, Markov chain Monte Carlo (MCMC) samples for the

posterior distribution of the parameters in the fitted mixed-effects model were used to

estimate the models’ significance (Baayen et al., 2008). The MCMC sampling was carried

out with 10,000 samples to estimate the p-values. Reaction times over 1500 ms and missed

targets were defined as outliers and excluded.
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Reaction times were modelled by the fixed effect factors ’time on task’, ’motion phase’

and ’inter-target interval’ and their respective interactions. In addition, for each subject a

random intercept term was added into both models. A modified Stanford Sleepiness Scale

(SSS, the seven point scale of the original SSS was extended to a 10 point scale) was used

prior and after the experiment to capture subjective vigilance decrements. Individual test

scores were compared using a two-tailed t-test.

2.3.4 fMRI Data Acquisition

Functional and structural images were acquired on a 1.5 Tesla MRI-scanner (Siemens

MAGNETOM Sonata, Siemens AG, Erlangen, Germany). Functional images were ob-

tained using a multislice T2*-weighted gradient echo planar imaging method (EPI). Each

volume consisted of 17 axial slices (voxel size 3x3 mm, 4 mm slice thickness, slice gap

40%, FoV = 200 x 200 mm2, TR = 1,500 ms, TE = 50 ms 90◦ flip angle). During each

experiment, 1280 whole brain scans (32 Min) were acquired. Additionally resting state

measurements were obtained prior (6 Min 24 sec) and after (12 Min 48 sec) the experiment

(data not presented). Structural T1-weighted images were obtained after the experiment,

using magnetization frequency pulse and rapid gradient-echo (MP RAGE) sampling (1

mm isotropic, 176 slices, FoV = 256 x 256 mm2, TR = 2,130 ms, TE = 3.93 ms and 15◦

flip angle).

2.3.5 fMRI Data Processing and Univariate Analysis

FMRI data were analysed using SPM5 (FIL, Wellcome Trust Centre for Neuroimaging,

UCL, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). Functional images were spa-

tially realigned and unwarped to compensate for subjects’ head movements during the

experiment. Slice-time correction was used for temporal realignment to the middle slice of

the volumes. After coregistration of the structural and functional images, the structural

T1-image was segmented into grey and white matter tissue maps and registered to the

tissue probability maps of SPM5 which are spatially normalised to standard stereotaxic

MNI space (Montreal Neurological Institute, Quebec, Canada). The resulting parameters

of this registration were then used to normalise the functional images to MNI space. Fi-

nally, the functional images were spatially smoothed with a three-dimensional isotropic

Gaussian filter of 8 mm full-width-at-half-maximum to compensate for interindividual

anatomical variability.
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FMRI data were statistically analysed in a two-level random effects analyses. At first

level, seven regressors (three ’main’ regressors modelling the average signal increase dur-

ing events and four parametric regressors) went into the design matrix. Two of the ’main’

regressors coded for detected target stimuli during either ’motion on’ (regressor i) or ’mo-

tion off’ phases (regressor iv). These two ’main’ regressors were each expanded by two

parametric regressors that modelled signal increases or decreases linearly related to time

on task (parametric regressors ii and v) and the time lag related to each previous target

presentation (parametric regressors iii and vi). These parametric regressors model changes

of BOLD signal as a function of time on task or inter-target interval over and above the

changes elicited by the target presentations per se. The last regressor (vii) coded for

missed targets in both motion phases and had no parametric expansion. All regressors

were modelled as stick functions convolved with a canonical hemodynamic response func-

tion. Data were high-pass filtered at 1/128 Hz to account for non-physiologically induced

slow noise drifts. An AR(1) model was used to correct for temporal autocorrelation over

scans.

At first level, four contrasts were computed for each subject and were tested for significance

on the second level with one-sample-t-tests: The first contrast captured the difference be-

tween target processing during ’motion on’ and ’motion off’ phases, i.e. the effect of

processing irrelevant visual motion at the points of time when correctly identified target

stimuli appeared (for simplicity we refer to this contrast as ’motion’). The second con-

trast reflected the effect of task performance, i.e. target detection during motion on and

motion off phases (’task performance’). The third contrast modelled signal decreases and

increases linearly related to the time on task, i.e. the parametric regressors that weighted

the events of the ’main’ regressors with respect to time on task (’time on task’). The

fourth contrast captured signal decreases and increases linearly related to the time lag be-

tween target presentations, i.e. the parametric regressors that weighted the events of the

’main’ regressors with respect to inter-target interval (’inter-target interval’). Additional

contrasts were used to test for the effect of motion phase on neural activity related to

’time on task’ and ’inter-target intervals’. At group level, the significance threshold used

for all statistical analyses was p<0.01 FDR corrected (one-tailed, cluster extent threshold

of k≥40 voxels) (Genovese et al., 2001). The only exception was the main effect of task

which is reported at p<0.00001 FDR corrected.

53



2
S

tu
d

y
I

2.3.6 Multivariate Partial Least Square Regression Analysis

Overview. Partial Least Square (PLS) regression is a multivariate data analysis method

which basically predicts one set of data from another set of data. PLS analyses have

been introduced to the analysis of neuroimaging data by McIntosh et al. (1996) and have

since been applied to a variety of questions, such as the prediction of behavioural data

from brain activity (for review see Krishnan et al., 2010). Here we used a PLS regression

approach to answer the question whether we can predict neural activity in area MT from

neural activity in the network related to time on task effects and/or effects of inter-target

interval. From a methodological perspective, PLS regression is a multivariate analysis

that predicts multiple correlated response variables Y (here: neural activity in area MT)

with multiple highly correlated predictor variables X (here: neural activity related to time

on task and inter-target interval) by extracting latent factors. Thereby, PLS regression

balances two objectives. It seeks for factors or linear combinations of X and Y that explain

both, a high amount of variation in the predictor and response variable. Other statistical

multivariate approaches like e.g. principal component regression optimize only for one of

both criteria. Assuming that factors in the predictor space that are well sampled should

provide a good prediction also for new observations, PLS factors can be expected as ro-

bust and predictive. The PLS analysis was performed in three steps: i) The model was

established and the latent factors were extracted. ii) The prediction accuracy of the model

was tested and iii) it was screened for predictor variables with reliable contribution to the

model.

Model Definition. Two PLS models were defined, one to test whether neural activity

related to time on task effects can predict neural activity in area MT, the other to test

whether neural activity related to effects of inter-target intervals can predict neural activ-

ity in area MT. To define a predictor matrix X of the model, we isolated ’time on task’-

and ’inter-target interval’-related networks respectively from the random effects analysis

over all subjects (group-level, p≤0.01, FDR corrected, k≥40, see above) and used these as

a mask to extract the mean ’time on task’- and ’inter-target interval’-related networks in

each subject and voxel. Data were then entered into the predictor matrix X where each

row coded for one subject and each column for the contrast estimate of one voxel. By using

contrast or beta images, we averaged over the time dimension. This was done to reduce

error variance and the dimensionality of the dataset (compare Caplan et al., 2006). To

establish the response data matrix Y (the same in both models), spherical regions around

the activation peaks in the areas MT (both hemispheres) of the motion-related activation

of the random effects analysis on group level served as mask. These masks were used to

extract the mean motion-related activation (i.e. the mean of the contrast estimates of all

voxels within each sphere) of each subject. The radius of the sphere was set to 8 mm in

order to match the size of the smoothing kernel. Each row of the response data matrix
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Y represented one subject and the two columns coded for the mean contrast estimates

over voxels in both areas MT (one column for each hemisphere). Both, predictor (X) and

response matrices (Y) were mean centred and scaled to unity. To assure independence

of the extracted activations of the two time contrasts from the motion-related network,

voxels that were found active in both of the compared networks were removed. In a second

step latent factors were extracted by building linear combinations of X and Y that show

maximum covariance (using the algorithms of de Jong (1993), Rosipal and Kramer (2006)

as implemented in the Statistics Toolbox of Matlab,Version R2008b).

Prediction Accuracy. The significance and prediction accuracy of the extracted latent

factors were tested with a leave-out-one-sample (LOO) cross validation approach in com-

bination with the randomization test of van der Voet (1994). The test of van der Voet

(1994) compares the capabilities of different models to predict responses by comparing

the residuals of the cross-validation procedure. The model comparison starts with a ’null

model’ in which Y is predicted by the means of Y (the left and right MT activations)

assuming that the variables in X have no predictive value. It adds then stepwise latent

factors and compares each model with the previous ’reduced’ model. To explain the pre-

dictive power of the models we computed the root mean PRESS for each latent factor

(MPRESS, mean predicted residual sum of squares) (Cook and Weisberg, 1982; Wold et

al., 1984).

Screening for Reliable Predictor Variables. While the cross validation approach de-

scribed above tests whether the extracted latent factors significantly predict MT activa-

tion a bootstrapping approach was used for each significant latent factor to identify those

voxels that reliably contribute to the prediction. The bootstrapping approach identifies

voxels with high and consistent voxel weights in all subjects. By sampling different subsets

of subjects, we estimated for each voxel the bootstrap distribution of each X weight of the

linear combination using 500 iterations. Assuming that this distribution follows a Gaus-

sian distribution Z-scores were thresholded on a significance level of p≤0.05, two-tailed

(this procedure was already described by Giessing et al. 2007).
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2.4 Results

2.4.1 Behavioural Data

On average, the rate of misses was low (mean=1.95, STD=±0.94) reflecting the unde-

manding nature of the task. Statistical analysis of behavioural data therefore focussed on

reaction times. We found a significant increase of the RTs as a function of time on task

(t=2.71, MCMC sampling test p≤0.05). RTs were increased by 10.44% at the end of the

task, reflecting a raw RT increase of 39.84 ms (see Figure 2.2 A). Similarly, the subjec-

tive ratings in the Stanford Sleepiness Scale after the experiment indicated a decrease in

alertness (p≤0.001, mean increase=2.23, STD=±1.25).

Figure 2.2: Behavioural data. A. Reaction times as a function of time on task.
Each dot represents the mean over the median RT of each of the 20 subjects (all
values binned to minutes of task time). Solid line represents result of regression over
all median values (see text). The regression predicts an RT increase of 39.84 ms after
32 minutes of task time. B. Median RTs as a function of inter-target interval during
motion was on. C. Median RTs as a function of inter-target interval during motion
was off. RTs were binned to inter- target intervals of 3 seconds (for illustration only).
Solid lines represent result of LME regression (post hoc analysis, see text).
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The reaction time analysis as a function of inter-target interval revealed no significant

main effect, but a significant interaction of inter-target interval and motion phase (t=2.22,

MCMC sampling test p≤0.05). To explore this interaction, data were split up according

to the motion phase (i.e. motion on vs. motion off). Using two mixed effects models

the effects of inter-target interval on RTs were calculated separately for both conditions.

Significant effects of inter-target interval were only found when visual motion was off and

evident as increased RTs when targets were far apart in time (t=3.90, MCMC sampling

test p≤0.01) (Figure 2.2 C). This effect was not present during periods of visual motion

(motion on phases) (Figure 2.2 B). Note that the inter-target intervals were not equally

distributed throughout the experiment. This was especially the case for longer inter-target

intervals (longer than 40 seconds) and accounts for the larger variance of reaction times

at these intervals as there were fewer target presentations. There was neither a significant

interaction of ’time on task’ and ’inter-target interval’ nor a significant interaction of ’time

on task’ and ’motion phase’.

2.4.2 fMRI Data

Task Performance. Detecting unpredictable targets in a classic vigilance task with rare,

highly salient target stimuli increased neural activity in a widespread network comprising

bilaterally the middle frontal gyri, the supplementary and pre-supplementary motor area

(SMA and pre-SMA, medial), the left precentral gyrus (sensorimotor areas), the left cal-

carine gyrus (BA17), the superior temporal gyri, bilaterally, the cuneus, the precuneus,

the supramarginal gyri and bilaterally inferior occipital cortices. Further activations were

found bilaterally in the anterior insular cortices, the anterior and posterior cingulate cor-

tex (ACC and PCC) and in subcortical structures such as the striatum, thalamus and

brainstem. Activations are depicted in Figure 2.3 A (a detailed list is included in Table

2.1).
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Figure 2.3: Neural activity related to task performance (A), time on task
(B), and inter-target interval (C). Note that brain areas depicted in B show a lin-
ear decrease, while brain areas in C show a linear increase. All contrasts superimposed
on a single subject rendering (left and middle column, SPM5 template) and on a nor-
malised mean T1-image of the 20 subjects (right column). ACC=anterior cingulate
cortex; BF=basal forebrain; NAC=nucleus accumbens; OFC=orbito frontal cortex;
PCC=posterior cingulate cortex; SMA=supplementary motor cortex; tha=thalamus;
VTA=ventral tegmental area.
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Table 2.1: List of peak voxel activations comparing different task condi-
tions.

region of peak activation left hemisphere right hemisphere

MNI coord. Peak Z MNI coord. Peak Z

x y z x y z

task performance (<0.00001, FDR corrected, k≥40)

frontal cortex L/R middle frontal gyrus -28 44 22 6.19 32 42 20 6.88

supplementary motor area -6 -8 58 7.18

pre-supplementary motor area -6 2 48 6.95

L/R precentral gyrus (BA6) -54 2 32 6.38 48 -2 44 5.84

L precentral gyrus (sensorimotor) -44 -24 50 6.39

parietal cortex L/R precuneus -8 -50 54 6.33 10 -50 52 6.12

L/R cuneus -14 -70 32 5.98 10 -76 24 5.79

L/R supramarginal gyrus -56 -40 26 6.49 54 -24 30 6.35

occipital cortex L/R inferior occipital cortex -42 -70 -6 6.52 38 -88 -4 6.32

L calcarine gyrus (BA17/V1) -14 -66 8 5.84

temporal cortex L/R superior temporal gyrus -32 -20 0 6.36 38 -18 -2 6.27

allocortex L/R anterior insular cortex -32 22 8 7.22 34 20 8 7.13

anterior cingulate cortex 6 14 44 7.00

posterior cingulate cortex 8 -22 36 5.97

subcortical L/R thalamus -14 -24 8 6.28 16 -18 4 6.16

L/R striatum (putamen) -14 6 0 6.09 12 4 2 6.15

brainstem 6 -24 -6 7.27

time on task related decrease (p≤0.01, FDR corrected, k≥40)

frontal cortex L/R inferior frontal gyrus -42 30 -6 4.71 54 30 10 4.13

supplementary motor area 4 -24 58 4.49

L supplementary motor area -20 -8 60 4.19

parietal cortex L/R inferior parietal cortex -58 -16 32 4.32 54 -26 40 3.93

occipital cortex R inferior occipital cortex (BA19/V3) 48 -58 -8 4.29

temporal cortex L/R superior temporal gyrus -56 -42 16 3.83 60 -18 -4 5.74

L/R middle temporal gyrus -48 -60 4 4.94 62 -46 16 4.64

allocortex L/R anterior insular cortex -32 20 -8 4.92 28 16 -10 4.85

inter-target interval related increase (p≤0.01, FDR corrected, k≥40)

frontal cortex R medial frontal gyrus 30 42 16 4.11

R middle frontal gyrus 36 10 30 4.25

orbito frontal cortex 8 34 -16 4.27

supplementary motor area 6 -2 58 4.37

pre-supplementary motor area 6 8 48 3.88

L/R precentral cortex -46 -16 54 4.53 42 -12 62 4.89

parietal cortex R cuneus 20 -80 46 4.1

L precuneus -10 -60 38 3.99

occipital cortex R inferior occipital cortex 38 -88 -2 4.64

R superior occipital lobe (BA31) 24 -70 18 4.34

L middle occipital cortex (BA19/V3) -46 -80 8 4.34

temporal cortex L/R superior temporal gyrus -52 -32 18 4.56 52 -24 -4 3.65

R heschl gyrus 40 -28 16 4.7

R inferior temporal gyrus 46 -54 -12 4.75

L fusiform gyrus -16 -36 -16 4.24

allocortex L/R posterior insular cortex -32 8 12 3.91 40 -4 -6 4.22

anterior cingulate cortex -6 14 34 4.58

posterior cingulate cortex 12 -20 36 4.39

subcortical basal forebrain -6 22 -10 4.28

L/R nucleus accumbens -6 -2 -6 5.17 6 -2 -6 4.03

L/R ventral tegmental area -4 -22 -8 4.12 12 -22 -6 3.98

R thalamus 12 -14 14 3.67

motion > no motion (p≤0.01, FDR corrected, k≥40)

frontal cortex L supplementary motor area -32 -4 50 4.75

parietal cortex L/R superior parietal cortex -22 -56 52 4.65 20 -56 62 4.04

occipital cortex L/R middle occcipital cortex -22 -80 36 4.47 30 -78 36 5.82

L/R lingual gyrus -20 -74 -6 4.31 16 -76 -6 4.71

temporal cortex L/R area MT -42 -72 10 7.78 48 -68 2 6.28
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Effects of Time on Task. In contrast to the rather unspecific analysis above this para-

metric analysis isolates brain regions showing further increases or decreases in neural

activity as a function of time on task. Significant decreases in neural activity were found

bilaterally in cortical regions such as the inferior frontal gyri, the lateral somatosensory

cortices, the superior and middle temporal gyri, the anterior insular cortices, the SMA

and the right inferior occipital cortex (Fig. 2.3 B and Table 2.1). There was no brain area

showing increases in neural activity as a function of time on task. Further, no brain area

showed significant activation when comparing time on task effects between motion on and

motion off phases.

Effects of Inter-Target Intervals. In contrast to the decreases in neural activity found

above, increases in neural activity were found when analysing parametric changes in neu-

ral activity as a function of inter-target interval. Frontal cortical regions whose activity

increased with increasing inter-target intervals were localised to the right middle frontal

gyrus, the orbitofrontal cortex and the precentral cortices (motor areas) bilaterally. Fur-

ther cortical activations were found bilaterally in the superior temporal gyri, the right

inferior temporal gyrus, the right Heschl gyrus and the left fusiform gyrus. Smaller ac-

tivation clusters were evident in the right cuneus, the left precuneus, the right inferior

occipital cortex, the right superior occipital lobe, the left middle occipital cortex and the

posterior insular cortices bilaterally. Increased neural activity was found in several me-

dial structures such as the supplementary and pre-supplementary motor area (SMA and

pre-SMA) and the anterior and posterior cingulate cortices (ACC and PCC). Increases in

subcortical neural activity with increasing inter-target intervals was found in the nucleus

accumbens bilaterally, the ventral tegmental area, the right thalamus and the basal fore-

brain. Activations are depicted in Figure 2.3 C and listed in Table 2.1. There was no brain

area showing decreases in neural activity as a function of inter-target interval. Further, no

brain area showed significant activation when comparing effects of inter-target intervals

between motion on and motion off phases.

To answer the question, whether neural activity related to increases in inter-target intervals

is further modulated by time on task, a second post hoc analysis was performed. In that

model we separately coded motion on and off phases and linear effects of inter-target

intervals in four different time periods covering the time of the entire experiment. This

analysis revealed no significant effects of time on task on neural activity related to inter-

target intervals.
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Effects of Irrelevant Motion. Motion-related activity was present in areas MT, the

middle occipital cortices, and the superior parietal cortices in both hemispheres. Smaller

activation clusters were found in the lingual gyri and the left SMA (see Figure 2.4 and

Table 2.1).

Figure 2.4: Motion-related activity (display threshold p≤0.01, FDR corrected,
k≥40). Spherical regions around the group-level peak-voxel activations in the areas
MT (r=8 mm, white circles) were used as mask to extract mean beta values in areas
MT on single subject level for the PLS analysis.

Predicting Processing of Irrelevant Motion by Neural Activity in Networks Related

to Time on Task and Inter-Target Interval. We used two PLS analyses to investigate

whether the changes in neural activity in the networks shown above (Fig. 2.3 B and C)

are able to predict motion-related activity in area MT. In other words, we investigated

whether these time dependent neural changes have a functional impact on processing be-

haviourally irrelevant distractors. In our first PLS analysis, where we related decreases

in neural activity as a function of time on task to neural activity in area MT, we found

no evidence that such decreases predict motion-related neural activity. In contrast, the

second PLS analysis revealed that increases in neural activity as a function of inter-target

interval was able to predict motion-related activity in area MT. This suggests that the

latter network has a functional impact on processing distractors. The results of the LOO

cross validation approach and the randomization test of van der Voet (1994) showed that

the first three latent factors of the PLS analysis were significant (first factor p≤0.002;

second factor p≤0.04; third factor p≤0.03) and were able to explain most of the variance

in the MT activations (see Figure 2.5 A). Put more intuitively, each of these latent factors

reflects a network of brain regions which is able to explain variance in neural activity in

area MT. In order to show the direction of the correlation between X and Y scores (the

weighted sums of X and Y) and the goodness of model fit we plotted these scores for the

first latent factor in Figure 2.5 B. To get further information which brain regions reliably

contribute to the prediction of neural MT activations we further focussed on interpreting

the weights of X.

61



2
S

tu
d

y
I

Figure 2.5: Goodness of fit of the PLS model. A. Mean predicted error sum of
squares (MPRESS) of PLS models with one up to ten latent factors considered. Most
of the variance in MT activity can be explained by the first three factors. B. First
latent factor of PLS analysis: Correlation of the scores of the ’inter-target interval’-
related network and area MT activity for each of the 20 subjects.

To identify those voxels of the network that robustly contribute over all subjects to the

latent factors of the PLS analysis we used a bootstrap approach. This approach revealed

significant voxel weights only for the first latent factor. For the second and third latent

factor no discrete voxels turned out to be reliable over subjects. Therefore, only the first

latent factor will be described further.

The first latent factor predicts the average of the MT activations bilaterally (y weights

for the first factor MT left=3.33 and MT right=3.9). Thereby some brain regions cor-

relate negatively and some positively with the averaged MT activations which results in

positive and negative weights in the linear combination of X. A positive weight would

indicate that increased brain activity in this area predicts increased activity in area MT;

a negative weight would indicate that increased activity in this area predicts decreased

activity in area MT. Thus, different weights reflect areas of the network with functionally

distinct contributions (see Figure 2.6 and Table 2.2). Brain regions such as the ACC, the

left pre-SMA, the nucleus accumbens (bilateral), the left lateral SMA, the left precentral

cortex (motor area), the left insular cortex and the right precuneus are negatively weighted

which implies that high neural activity in these regions predicts low activity in area MT.

On the other hand, regions such as the basal forebrain, the right thalamus, the PCC, the

right middle frontal gyrus, right precentral cortex (motor area), middle temporal gyrus

(bilateral) and medial right SMA were positively weighted which implies that high neural

activity in these regions predicts high neural activity in area MT. Thus our PLS analysis

suggests for one that neural activity increases with increasing inter-target intervals impact

on processing distractors and are composed of two functionally different networks.
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Figure 2.6: Brain regions of ’inter-target interval’-related network contributing reli-
ably over all subjects to the prediction of area MT activity. A. Regions with positive
Z-scores (green) predict an increase of MT activity; regions with negative Z-scores
(blue) predict a decrease of MT activity. B. Regions superimposed on a MNI- nor-
malized mean T1-image of the 20 subjects for medial view and superimposed on a
rendered, MNI-normalized single subject T1-image for the lateral views. Abbrevia-
tions of medial view see Figure 2.3.

Table 2.2: PLS analysis: List of peak voxels of clusters that contribute significantly
to the prediction of the PLS model over all subjects.

region of peak voxel left hemisphere right hemisphere

MNI coord. Peak Z MNI coord. Peak Z

x y z x y z

negative weights: predicting low area MT activity (p≤0.05, k≥10)

frontal cortex L lateral supplementary motor area -50 -2 36 -2.64

L pre-supplementary motor area -10 4 44 -2.52

L primary motor area -44 -14 48 -2.1

parietal cortex R precuneus 16 78 36 -2.45

allocortex L/R anterior cingulate cortex -4 20 32 -2.5 4 22 34 -2.39

L posterior insular cortex -44 -18 6 -2.64

subcortical L/R nucleus accumbens -4 0 -4 -2.42 6 0 -6 -2.43

positive weights: predicting high area MT activity (p≤0.05, k≥10)

frontal cortex R basal forebrain 16 24 -12 2.64

R supplementary motor area 8 8 48 2.46

R primary motor area 50 -18 52 2.38

R middle frontal gyrus 38 10 34 2.56

parietal cortex L postcentral cortex -40 -34 52 2.52

allocortex R posterior cingulate cortex 10 -20 32 2.58

temporal cortex R middle temporal gyrus 40 -4 -14 2.59

L middle temporal gyrus -58 -8 -16 2.58

subcortical R thalamus 8 -10 14 2.58
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2.5 Discussion

The main finding of this fMRI study is that different brain regions and mechanisms under-

lie short-term and long-term aspects of vigilance. Short-term aspects, which were gauged

by analysing neural activity related to increasing inter-target intervals were evident as in-

creases in neural activity in a widespread network of regions involving lateral and medial

frontal areas, temporal areas, cuneus and precuneus, inferior occipital cortex (right), poste-

rior insular cortices, the thalamus, nucleus accumbens and basal forebrain. Neural activity

in these brain regions co-varied with neural activity related to processing irrelevant motion

stimuli and can be further subdivided into two functionally distinct networks. Long-term

aspects, which were gauged by analysing neural activity related to increasing time on task,

were evident as decreases of neural activity in inferior frontal, posterior parietal, superior

and middle temporal cortices and the anterior insular cortices. Neural activity in these

brain regions did not impact neural activity related to processing irrelevant motion stimuli.

2.5.1 Behavioural Data

Vigilance decrements were evident as a function of time on task and to a weaker extent as

a function of inter-target interval. The increase in reaction times as a function of time on

task and the increased ratings of sleepiness after task performance are in line with prior

vigilance studies demonstrating an overall performance decline and increased fatigue ex-

perience over time (Langner et al., 2010b; Lim et al., 2010; Paus et al., 1997). Increasing

the inter-target intervals had a significant impact on reaction times, however only when

motion was absent. It may be speculated that the monotony of the vigilance task was

further increased when no motion was present, making it harder to sustain attention until

the (unpredictable) appearance of the next target. This would be in line with findings

from vigilance tasks where a decline in performance increased with increased monotony

and ’monotony-induced’ stress-level (e.g. Thackray, 1981).

2.5.2 Brain Regions Active During Task Performance

Our main effect of task performance revealed several brain regions, such as the dorsolateral

prefrontal cortex, ACC, pre-SMA, SMA and PCC and thalamus previously found to be in-

volved in vigilance and sustained attention (e.g. Coull et al., 1996; Lim et al., 2010; Sturm

et al., 2004, Paus et al., 1997, Posner and Petersen, 1990). For example, bilateral increases

in neural activity in middle frontal cortex were also found by Lim and colleagues (2010)

in the psychomotor vigilance task. Additionally Lim and colleagues (2010) described that

pre-task resting state measurements suggest that neural activity in this region is predictive

of a vigilance decline.
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2.5.3 Different Brain Networks Related to Long-Term vs. Short-Term

Aspects of Vigilance

Our results demonstrate that the network of regions showing short-term effects of vigilance

(reflected by increased neural activity with increasing inter-target intervals) was different

from the network related to long-term effects of vigilance (reflected by decreased neural

activity as a function of time on task), providing neural evidence that two separate mech-

anisms are responsible for sustaining attention over seconds as compared to sustaining

attention over minutes. Research in sleep deprived subjects also supports the idea that

two separate mechanisms are responsible for sustaining attention over minutes as usually

measured in vigilance tasks as compared to sustaining attention over seconds in between

two rare signals. While the first process was shown to be degraded by sleep deprivation,

the latter was not affected by the manipulation (Tucker et al., 2009). A recent study by

Langner and colleagues (2010a) also points to a dissociation between cue induced phasic

alertness and vigilance over prolonged periods of time. While decrements in reaction times

were seen with time on task, phasic alertness was not decreased with time on task (see

however Rueckert and Levy (1996) who argue for similar mechanisms).

Several of the brain areas showing activity decreases during target detection as a function

of time on task such as the inferior frontal, the posterior parietal and the superior temporal

cortex were previously shown to exhibit time-dependent decreased tonic activity as mea-

sured with positron emission tomography and arterial spin labelling (Lim et al., 2010; Paus

et al., 1997). Our results on long-term aspects of vigilance are thus in good accordance

with studies investigating effects of time on task. Compared to other studies (Coull et al.,

1998; Lim et al., 2010; Paus et al., 1997) our decreases in frontal activity were however

restricted to inferior parts of the frontal cortex. Note that our decrease of neural activity

in posterior parietal cortex is located in a region which has recently been shown to con-

tribute to vigilance decrements in spatial attention tasks if lesioned (Malhotra et al., 2009).

In contrast to the effects of time on task which were evident as decreased neural activity,

the short-term effects of increasing inter-target intervals yielded increases in neural activity

in a different network of brain regions, including lateral and medial frontal areas such as

the right middle frontal gyurs, the SMA, pre-SMA and the ACC, temporal areas, cuneus

and precuneus, posterior insular cortices, and subcortical regions such as the thalamus,

nucleus accumbens and basal forebrain.

Neural activity related to varying inter-stimulus intervals in vigilance tasks has not been

investigated before. There are however some studies which focused on neural mecha-

nisms of preparation over variable time intervals. It has been shown that brain regions

sensitive to a variable fore-period are located bilaterally in the middle frontal gyrus and

in the anterior and posterior cingulate cortex which resembles some of the activations
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found here (Vallesi et al., 2009). Note however that the intervals in variable fore-period

tasks are usually much shorter than the average inter-target intervals in the task used here.

Several of the subcortcial regions, such as the ventral tegmental area, the nucleus accum-

bens and the thalamus which showed a main effect of task performance yielded further

increases in neural activity as a function of increasing inter-target interval. One region

showing increased neural activity as a function of inter-target interval was the basal fore-

brain. The activation encompassed the septum (Ch1-Ch2), the horizontal limb of the

diagonal band (Ch3) and the sublenticular part of the basal forebrain (Ch4) (Zaborszky

et al., 2008). These findings are in line with experiments in rats that showed increased

prefrontal acetylcholine (ACh) release during performance of attentional tasks in general

(Himmelheber et al., 2001; Passetti et al., 2000) or with increasing attentional demand

(Himmelheber et al., 2001).

Our results indicate that target processing is modulated by different, independent pro-

cesses that either emerge during shorter time scales (’inter-target intervals’) or longer

time scales (’time on task’). Note, that the neural activity we report here is the modula-

tion of target processing as a function of ’time on task’ or preceding inter-target interval

rather than neural activity emerging over the entire experiment or neural activity emerg-

ing during two target stimuli. Nevertheless these long and short term processes may differ.

Cognitive fatigue and more emotional and motivational aspects of fatigue like boredom,

aversion to go on in the task or enhanced daydreaming which continuously accumulates

with time on task could be responsible for long-term modulation of target processing (e.g.

Pattyn et al, 2008). In contrast, the short-term process may be related to increasing ex-

pectations of the subjects about target appearance or increasing effort to focus attention

with increasing inter-target intervals. Some of these processes may reset after target pre-

sentation.

Potential Confounds. It is known that time series of fMRI data acquired over a long

scan duration are affected by low frequency drifts attributed to scanner instabilities. This

is especially critical for fMRI studies that rely on the investigation of long-term processes

in the brain whose frequencies potentially overlap with these noise components (frequen-

cies below 0.015 Hz, see Smith et al., 2002). To test this possible confound we performed

a frequency analysis of the parametric regressors capturing ’time on task’ related brain

activations which underlines that most parts of the modelled frequencies lie above poten-

tial low frequency drifts. A power spectrum of the modelled frequencies can be found in

supplementary Figure 2.8.
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Eye Movement. Some of the brain regions, such as the frontal eye fields, the right dor-

solateral prefrontal cortex, and in the left inferior parietal lobule/precuneus which showed

increased activity with increasing inter-target interval were previously also found to be

related to eye movements. Even though volunteers performed a central task (detection

of changes in the fixation cross) it cannot be excluded that eye movements to motion

distractors in the periphery may increase with increasing target interval. We therefore

performed an additional analysis comparing effects of inter-target intervals during ’mo-

tion on’ and ’motion off’ phases. This analysis did not reveal any differential activations,

arguing against a contribution of eye movements. Further, neural activity in these areas

did not significantly contribute to the PLS prediction of area MT activation.

2.5.4 Impact of Vigilance-Related Networks on Processing Irrelevant Motion

Previously it was suggested that a reduction of neural activity in fronto-parietal areas

reflects a shift from controlled to automatic processing. We therefore tested by means

of a PLS regression approach whether neural activity in brain areas related to time on

task effects can predict the processing of task irrelevant motion and found no evidence

for such an association. No latent variable extracted by the PLS analysis could reliably

explain covariance of the data between the time on task activations and the level of area

MT activation.

In contrast, the increase in neural activity related to increasing inter-target intervals was

able to reliably predict area MT activation. Furthermore, the PLS analysis revealed a

separation of the network into areas that either contribute with positive or with negative

weights to this prediction. Regions such as the ACC, pre-SMA and dopaminergic subcor-

tical nuclei (ventral tegmental area and nucleus accumbens) predicted decreases in area

MT activity while areas such as the basal forebrain, thalamus, orbitofrontal cortex, PCC

and SMA predicted increases in area MT activity. Given the data by Rees et al. (1997)

which suggests that processing irrelevant motion in area MT is decreased if the primary

task engages full attention, we suggest that ACC, pre-SMA and dopaminergic subcortical

nuclei may support directing and reallocating attention towards task relevant stimuli (e.g.

Small et al., 2003; Weissman et al., 2005). In contrast, the second network may represent

the action of cholinergic and noradrenergic neurotransmitter systems which have often

been shown to increase signal-to-noise ratio in sensory processing regions (Hasselmo et al.,

1997). The positive correlation of these regions to neural activity in area MT suggests a

possible contribution to a compensating network that increases processing in sensory and

motor areas.
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Several areas within these two functionally segregated networks have previously been dis-

cussed in relation to the concept of attentional effort. According to Sarter et al. (2006)

attentional effort is a construct at the interface of motivation, attention and arousal. Puta-

tive core components of the network mediating attentional effort are the ACC, prefrontal

cortex, the ventral tegmental area, the nucleus accumbens and the cholinergic basal fore-

brain. While the ACC and dopaminergic subcortical structures which are reciprocally

connected (Carr et al., 1999; Carr and Sesack, 2000) indicate performance decline, the

cholinergic basal forebrain is suggested to trigger activity in the anterior attention system

in medial prefrontal cortex and optimizes processing in sensory cortical regions. Choliner-

gic lesions in rats thus resulted in a decrease of overall responsiveness of medial prefrontal

neurons during performance of a sustained attention task (Gill et al., 2000). Challenging

attentional situations such as drug induced impairments of performance were shown to

increase medial prefrontal cortical ACh release providing evidence for an involvement of

ACh in situations that require attentional effort (Kozak et al., 2006). Put in the concept

of attentional effort, the segregated networks revealed by our PLS analysis might reflect

motivational and arousal components of a network, that is recruited when time between

targets increases.

2.6 Conclusion

We here show that different brain regions and mechanisms underlie sustaining attention

over minutes as opposed to seconds. The two processes thus represent different aspects

of the intensity dimension of attention and should clearly be separated in future studies.

Sustaining attention in between two targets involves increased neural activity in several

brain regions previously discussed in relation to the concept of attentional effort. We

suggest that these brain regions can be functionally segregated into two components. One

may be involved in motivation, consisting of the anterior cingulate cortex, pre-SMA and

nucleus accumbens. The other may represent an arousal-regulating component encompass-

ing the basal forebrain, thalamus, orbitofrontal cortex, posterior parietal cortex and SMA.
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2.7 Supplemental Material

Figure 2.7: Probability Distribution and Hazard Function of target pre-
sentations during the vigilance task.

Figure 2.8: Frequency spectrum of parametric time modulation. High pass
filter cut-off is highlighted in red (0.0078 Hz). Potential scanner drifts due to pro-
longed acquisition of fMRI-data are supposed to lie below 0.015 Hz (see Smith et al.,
2002). Biggest part of the modulated frequencies from the used parametric weight-
ing for the ’time on task’ related activations in the current study lie above these
frequencies.
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3.1 Abstract

Individuals differ in their cognitive resilience. Less resilient people demonstrate a greater

tendency to vigilance decrements during sustained attention. We hypothesized that a

period of sustained attention would be followed by prolonged changes in organization of

’resting state’ brain networks; and that individual differences in cognitive resilience could

be related to differences in post-task network reorganization. For each of 20 healthy volun-

teers, we measured topological and spatial properties of brain networks derived from func-

tional MRI data recorded for 6 Min 24 sec before, and for 12 Min 48 sec after performance

of an attentional task lasting 32 Min. Cognitive resilience was quantified for each individ-

ual as the rate of increase in response latency as a linear function of the series of attentional

trials. On average, functional networks measured immediately post-task demonstrated sig-

nificant and prolonged changes in organization compared to pre-task networks with higher

connectivity strength, more clustering, less efficiency, and shorter distance connections.

Individual differences in cognitive resilience were significantly correlated with differences

in the degree of recovery of some network parameters. Changes in network measures were

still present in less resilient individuals in the second half of the post-task period (i.e. 6-

12 Min after task completion) while resilient individuals already demonstrated significant

reductions of functional connectivity and clustering towards pre-task levels. We conclude

that sustained attentional task performance has prolonged, ’hang-over’ effects on the or-

ganization of post-task resting-state brain networks; and that more cognitively resilient

individuals demonstrate faster rates of network recovery following a period of attentional

effort.
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3.2 Introduction

Many daily activities require the maintenance of attention over periods of time. Pro-

longed attentional effort has been shown to cause deterioration of behavioural perfor-

mance, demonstrating the limitations of the brain as an information processing system

(Parasuraman et al., 1998; Helton & Warm, 2008; Warm et al., 2008). Performance decline

comprises slowing of signal detection and information processing, behavioural changes of-

ten described as vigilance decrements (Parasuraman et al., 1998). In contrast, individuals

whose performance declines less rapidly as a function of time on task can be described

as cognitively resilient. In real life, humans recover from vigilance decrements during rest

periods (e.g. between working shifts) with low cognitive demands. However, it remains

an open question how the effects of sustained attention might be reflected in changes in

organization of resting state networks measured immediately after task performance. It is

also not known if individual differences in cognitive resilience are related to differences in

post-task network reorganization.

There has been recent progress to describe the human brain as a complex network of in-

terconnected processing nodes (Bullmore & Sporns, 2009; Sporns, 2011). Based on graph

analytical approaches, previous studies documented that variations of functional network

integration and the topological efficiency of information transfer are correlated with be-

havioural performance (Li et al., 2009; van den Heuvel et al., 2009). Studies investigating

effects of ageing documented that older people show poorer attentional performance (Be-

rardi et al., 2001; Gazzaley et al., 2005), and less integrated brain networks with higher

clustering and network cliquishness (Gong et al., 2009; Wang et al., 2010). Similar results

were shown for ADHD children (Wang et al., 2009) and patients with Alzheimer’s disease

(Sanz-Arigita et al., 2010).

Previous studies documented the flexibility of the brain network topology (Kitzbichler et

al., 2011). It was shown that the integration of brain networks dynamically varied with

different levels of task difficulty. However, there is also support for the principle that the

flexibility of the brain is limited and that the processing of demanding tasks has long-

lasting impact on neural activations and brain networks, possibly reducing the brain’s

capacity to adapt to new task demands. Duff et al. (2008) and Waites et al. (2005)

compared resting state (RS) fMRI data before and after task performance and reported

changes in functional connectivity directly following task performance. Further studies

have shown that task induced learning can modulate subsequent RS activity in specific

task relevant networks (Albert et al., 2009; Lewis et al., 2009; Stevens et al., 2010). Re-

sults of Barnes et al. (2009) revealed that endogenous neural oscillations in local brain

regions change after a demanding task and need more than 400 sec to begin to recover.

Thus, there are hints that task performance can modulate ’resting state’ dynamics and

networks in post-task fMRI data.
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We acquired fMRI data during RS periods before and after a vigilance task and used a

graph analytical approach to investigate long-lasting changes in functional brain topology

induced by sustained attention. We assumed that (i) prolonged attentional performance

leads to less integrated networks with more clustered brain regions and a change from

long-distance to short-distance connections. Furthermore, we expected that (ii) altered

network attributes would recover slowly after task processing and that (iii) there would

be a relation between network recovery and individual task performance.
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3.3 Material and Methods

3.3.1 Subjects

Twenty healthy, right-handed subjects (11 female, 9 male; mean age = 27.0 years, range

= 24 to 39 years) participated in the experiment.

The study was approved by the ethics committee of the German Psychological Association

(http://www.dgps.de/, PI: Christiane Thiel, registration number: CT05022008DGPS)

and subjects signed written informed consent.

3.3.2 Experimental Design

Each scanning session was divided into different time periods in which either RS or task-

related BOLD activations were measured (see Figure 3.1). There were two RS blocks

with 256 and 512 scans before and after task performance, respectively. For data analysis,

the second RS block was divided into two halves so that in total three RS periods were

measured with 256 scans each (equivalent to 6 Min 24 sec). During RS data acquisition

subjects were instructed to fixate a black fixation cross that was presented in the centre

of a light grey background.

Figure 3.1: Experiment design. Top: Order of the resting state (RS) and task
periods (with the number of acquired whole brain scans). Bottom: Scheme of the
vigilance task during the task period. Participants were instructed to detect a red
fixation cross (here depicted in bold).
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3.3.3 Vigilance Task

During the task period, subjects performed a visual vigilance task in which a display with

a central black fixation cross (the same as used during the RS condition) and two addi-

tional flanker windows were presented (Figure 3.1). Subjects were instructed to detect

a colour change of the central fixation cross from black to red for 300 ms by pressing a

response button as fast as possible. In total 96 targets were presented in 32 Min. The

targets were equally distributed over the experiment by presenting three target stimuli per

minute (with random inter-stimulus intervals within each minute). In the flanker windows,

five dots randomly moved with low speed or were kept still. Both phases alternated every

24 s. Subjects were instructed to ignore the flanker windows. The fMRI data recorded

during task processing were published previously (Breckel et al., 2011).

3.3.4 Analysis of the Behavioural Data

The individual vigilance decrement of each subject was estimated by the slope of a robust

linear regression analysis with the individual response latencies or reaction times (RTs) as

dependent variable and the series of attentional trial numbers as independent variable. In

contrast to standard linear regression analysis in which each data point has equal influence

on the least square curve fit, robust regression analysis uses a bisquare weighting function

so that data points further apart from the expected line get reduced weight. Robust fits

are less affected by outliers (Holland & Welsch, 1977).

The Stanford Sleepiness Scale (SSS; Hoddes et al., 1972) was administered before and

after the fMRI experiment (outside the scanner) to measure subjective feelings of fatigue

on a 10-point scale. Individual SSS scores were compared (before vs. after the fMRI

experiment) using two-tailed paired t-tests.

3.3.5 FMRI Data Acquisition

Functional and structural images were acquired on a 1.5 Tesla MRI scanner (Siemens

MAGNETOM Sonata, Siemens AG, Erlangen, Germany). Functional images were ob-

tained using multislice T2*-weighted gradient echo planar imaging (EPI). Each volume

consisted of 17 axial slices (voxel size of 3x3 mm, 4 mm in slice thickness, slice gap of 1.6

mm, field of view (FoV) = 200 x 200 mm2, relaxation time (TR) = 1500 ms, echo time

(TE) = 50 ms and 90◦ flip angle). EPI data were continuously measured with the same

sequence in all RS and task periods. Structural T1-weighted images were obtained after

the fMRI experiment, using magnetization frequency pulse and rapid gradient-echo (MP

RAGE) sampling: 1 mm isotropic voxels, 176 slices, FoV = 256 x 256 mm2, TR = 2130

ms, TE = 3.93 ms and 15◦ flip angle.
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3.3.6 fMRI Data Processing and Time-Series Analysis

The time series of each voxel was corrected for head motion and slice timing offsets us-

ing SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The functional images were spa-

tially normalized to standard stereotaxic MNI space (Montreal Neurological Institute;

http://www.mni.mcgill.ca/) and regionally parcellated using a template image com-

prising 442 cortical and subcortical brain regions to estimate the mean fMRI time series

for each region for each participant during each RS period (Fornito et al., 2010; Zalesky

et al., 2011). To reduce motion effects motion parameters of the spatial realignment were

regressed out from the mean time series. Previous studies documented the behavioural

relevance of graph metrics based on fMRI signal oscillations in the frequency range just

below 0.1 Hz (Achard et al., 2006; Damoiseaux et al., 2006; van den Heuvel et al., 2009).

Therefore, each regional time series was band-pass filtered (wavelet scale 3: 0.042 - 0.083

Hz) using the maximum overlap discrete wavelet transform (MODWT; Percival, 2006).

For each pair of nodes the wavelet correlation was estimated, resulting in a 442 by 442

association matrix for each subject and RS period. The global strength of connectivity

was computed as the mean of each association matrix.

3.3.7 Topological Metrics of Brain Graphs

Binary graphs of different connection densities were constructed based on the associa-

tion matrix. A thresholding algorithm starting with the minimum spanning tree (MST)

was used to ensure that each node was connected with at least one other node even at

the sparsest connection density. Following the MST the algorithm adds the highest cor-

relations of each node in an iterative way (see Alexander-Bloch et al., 2010 for further

information). Graphs at 15 different costs levels were constructed for each subject and RS

period in the range of 2.5% - 50%, with smaller sampling intervals in the lower cost range.

The connection density defines the number of edges in a graph expressed as a ratio to the

maximum possible number of edges (N*(N-1)/2 = 97,461). For the statistical analyses

topological measures were calculated for each cost level separately and averaged over the

entire cost range (see below).

Based on these adjacency matrices we calculated the central graph theoretical measures of

global, nodal and local efficiency following the formulas of Latora and Marchiori (Latora

& Marchiori, 2001; 2003). These metrics base on the minimum path lengths between con-

nected nodes. The nodal efficiency of a particular node is inversely related to the mean

minimum path length between this node and the rest of the network. In contrast, global

efficiency is an estimate for the efficiency of an entire network, and is the mean over the

nodal efficiencies. Thus networks with high global efficiency have highly integrated orga-

nization, characterized by short minimum path length between any pair of regional nodes.

79

http://www.fil.ion.ucl.ac.uk/spm/
http://www.mni.mcgill.ca/


3
S

tu
d

y
II

Local efficiency is closely related to the clustering coefficient (Watts & Strogatz, 1998),

and reflects the network’s capacity for information transfer between the nearest neigh-

bours of a particular node. This can be averaged to get an estimate of local efficiency for

the graph as a whole. Thus networks that have a cliquish organization, characterized by

many connections between the nearest neighbours of any given node, will have high local

efficiency or clustering. To avoid terminological confusion with global and nodal efficiency,

we will refer to this metric here as a measure of clustering.

3.3.8 Physical Distances

The physical distances were based on the Euclidean distances between the centers of

coordinates (MNI-space) of all functionally connected brain seed regions. The averaged

physical distances of all nodes built the measure of mean distances. Further, the number of

connections/edges in each of several distance bins in the histogram of connection distances

was counted (in bin intervals of 5 mm steps, starting with the minimal distance of 3 mm)

at the cost level of 50%. Differences between the numbers of edges within each bin at

different RS periods were tested with two-sided paired t-tests (Bonferroni corrected).

3.3.9 Statistical Analysis of Network Metrics

For each network metric a linear mixed-effects model (Pinheiro & Bates, 2000) was used to

test for significant main effects of the RS period (three levels) and of behavioural perfor-

mance (individual vigilance decrements as continuous factor, see analysis of behavioural

data) and the interaction between both factors. The network metrics global efficiency,

clustering, and mean distances were averaged over the a-priori-defined cost range in order

to generalize the results across cost level. In contrast to the normal analyses of vari-

ance, linear mixed-effects models can handle data with unequal variances. Thus, before

significance testing, variances of data between RS periods were compared and significant

in-homogeneities of variances were explicitly modelled within the data analysis.

Pair-wise differences between RS periods were tested post-hoc by two-sided one-sample

t-tests. Pearson’s correlations were used to test whether participants with higher or lower

vigilance decrements show differential changes in network metrics. To simplify this anal-

ysis, we also divided the participants into the two subgroups of ’attentionally impaired’

(subjects with a significant vigilance decrement, n = 10) and ’attentionally resilient’ sub-

jects (subjects with no significant vigilance decrement, n = 10, see Results: behavioural

data) and compared both groups with two-sample t-tests.
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To control type 1 error in the context of the multiple comparisons entailed by analysis of

nodal efficiency and clustering, we used p≤0.0025 (1/N) as the threshold for significance,

so that less than one false positive test is expected for each whole brain analysis of nodal

network properties.

In separate analyses we investigated whether our results were influenced by head motions.

Therefore, we calculated the scan-to-scan displacement as suggested by van Dijk et al.

(2012) and included them as further covariate in the linear mixed-effects models (see also

Power et al., 2011).

81



3
S

tu
d

y
II

3.4 Results

3.4.1 Behavioural Data

Subjects generally performed the task well and showed low rates of misses (mean = 1.95,

STD = ± 0.94). Therefore the analysis of the behavioural data focused on reaction times

(RT) only. Reaction times showed a significant vigilance decrement over all subjects (re-

gression on median RTs; r = 0.48, p ≤ 0.001, Figure 3.2 A); median RT increased by 33.98

ms at the end of the experiment. A two tailed t-test over the individual regression slopes

(robust fit prediction) as a measure of cognitive resilience of each subject confirmed this

result (t(19)=4.41, p<0.001).

Figure 3.2: Vigilance decrements in attentional task. (A) Median reaction
times of all 20 subjects for each of the 96 target presentations during the task are
shown. Solid line = robust fit regression showed a significant RT increase/vigilance
decrement. (B) On the individual level, participants showed a large variability in their
change in RTs during task performance. For each subject, the individual robust fits for
the RTs were used to estimate the RT change at the end of the task. For illustration we
divided the participants into a group with significant RT increase (red, referred to as
’attentional impaired’ subjects) and without a significant RT increase (blue, referred
to as ’attentional resilient’ subjects). However, to test the correlation between network
parameters and behavioural performance without loss of information, the individual
RTs increases were used and tested for a linear relationship.

However, response latency data also showed high between-subject variability. Ten partic-

ipants demonstrated a significant vigilance decrement (prolongation of response time for

target stimuli presented later in the series); whereas the other ten participants had no

significant change in response time to targets over the course of the task (Figure 3.2 B).

We refer to these sub-groups as the ’attentionally impaired’ and ’attentionally resilient’

groups, respectively.
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The ratings in the Stanford Sleepiness Scale before and after the experiment showed that

after task performance participants felt more fatigued (t(19)=7.89, p≤0.001, mean in-

crease=2.23, STD=±1.25). There was no correlation between individual RT decrements

and sleepiness ratings.

3.4.2 Network Metrics

Pre-Test: Variance Homogeneity

Since pre-tests showed that the variances of clustering and physical distances differed be-

tween RS periods (p<0.01, likelihood ratio tests comparing models with fixed vs. variable

variances; see Pinheiro and Bates, 2000), we modelled unequal variances for both of these

variables in the following data analysis. For connectivity strength and global efficiency we

found no significant differences between variances.

Functional Connectivity Strength

Overall data analysis. For network connectivity strength the overall linear mixed-effects

model revealed significant main effects for the factors RS period and performance (vigi-

lance decrement) as well as a significant interaction between both factors (Table 3.1). In

other words, connectivity strength significantly differed between RS periods and changes

in network connectivity between RS periods were significantly correlated with the indi-

vidual performance. These effects remained significant when controlled for linear effects

of motion displacements (p≤0.05).

Table 3.1: Linear mixed-effects models

Response Factor Statistics

Connectivity

Strength

Resting State (RS) F(2,36) = 5.80, p ≤ 0.01

Performance F(1,18) = 8.46, p ≤ 0.01

Interaction RS*Performance F(2,36) = 4.32, p ≤ 0.05

Global Efficiency

RS F(2,36) = 15.8, p < .0001

Performance F(1,18) = 0.1, p = 0.74

Interaction RS*Perf. F(2,36) = 1.6, p = 0.22

Clustering

RS F(2,36) = 8.35, p ≤ 0.01

Performance F(1,18) = 2.59, p = 0.13

Interaction RS*Perf. F(2,36) = 6.18, p ≤ 0.01

Physical

Distances

RS F(2,36) = 22.42, p ≤ 0.001

Performance F(1,18) = 0.24, p = 0.63

Interaction RS*Perf. F(2,36) = 1.82, p = 0.17
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Mean Comparisons. Post-hoc analysis showed that connectivity strength increased sig-

nificantly after task performance (RS1 vs. RS2; Table 3.2, Figure 3.3 A). There was no

significant change in global connectivity strength within the post-task phase, i.e., between

RS2 and RS3 (which were not separated by task performance), connectivity strength was

still increased in RS3 in comparison to RS1. Note however the significant difference be-

tween resilient and impaired subjects in RS3.

Correlation with Behaviour. The individual vigilance decrements did not significantly

correlate with the changes in connectivity strength following task performance (RS1 vs.

RS2). However, we found a significant correlation between the individual decrements and

changes in connectivity strength during the post-task phase (RS2 vs. RS3; Table 3.2 and

Figure 3.4 A). Subjects with higher cognitive resilience showed larger decreases in global

connectivity strength from RS2 to RS3 in the direction of pre-task values. If participants

were divided into two sub-groups of cognitive resilient vs. cognitive impaired subjects the

data analysis revealed similar results: Both subgroups revealed a significant difference in

connectivity strength between RS2 and RS3 (Table 3.2, Figure 3.3 A): Thereby, attention-

ally resilient participants showed stronger decreases in global connectivity strength during

the post-task phase (RS2 to RS3) than attentionally impaired subjects.

Efficiency and Clustering

Overall Data Analysis. For global efficiency and clustering the overall linear mixed-effects

model revealed significant main effects for the factor RS period. For clustering there was

also a significant interaction effect between the factors RS period and performance (Table

3.1). To put differently, global efficiency and clustering significantly differed between RS

periods and changes in clustering between RS periods were correlated with the individual

behavioural performance. Both, main effects of RS period for global efficiency and clus-

tering and the interaction between RS period and performance for clustering remained

stable (main effects p≤0.05, interaction p≤0.08) when controlled for linear effects of mo-

tion displacements.
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Table 3.2: Post-hoc testing for resting state changes and relation to performance

Measure Task (RS1-RS2) Post-task (RS2-RS3) RS1-RS3

Connectivity

Strength

Changea T=-2.69, p<0.02 T=-0.41, p=0.69 T=-2.27, p<0.04

Correlation with

performanceb
R=-0.16, p=0.50 R=-0.62, p<0.01 R=-0.47, p<0.05

(group differencec) (T=-0.16, p=0.87) (T=-3.12, p<0.01) (T=-1.66, p=0.12)

Global

Efficiency

Change T=3.85, p<0.01 T=1.28, p=0.22 T=-5.09, p<0.01

Correlation with

performance

R=0.18, p=0.44 R=0.24, p=0.32 R=0.39, p=0.09

(group difference) (T=0.82, p=0.43) (T=0.05, p=0.96) (T=0.89, p=0.38)

Clustering

Change T=-3.66, p<0.01 T=-0.64, p=0.53 T=-3.79, p<0.01

Correlation with

performance

R=-0.08, p=0.75 R=-0.63, p<0.01 R=-0.38, p=0.10

(group difference) (T=-0.16, p=0.88) (T=-2.23, p<0.05) (T=-1.17, p=0.26)

Physical

Distances

Change T=5.41, p<0.001 T=0.74, p=0.46 T=4.49, p<0.001

Correlation with

performance

R=0.30, p=0.20 R=0.16, p=0. 49 R=0.36, p=0.12

(group difference) (T=0.18, p=0.86) (T=0.05, p=0.96) (T=0.18, p=0.86)

a Change between resting states, paired t-tests, df = 19.
b Differences between resting states correlated with individual vigilance decrements.
c Group comparison between attentionally impaired and resilient subjects, two-sample t-tests, df = 18.

Mean Comparisons. Post-hoc testing showed that both graph metrics changed signifi-

cantly after task performance from RS1 to RS2: global efficiency decreased (Table 3.2,

Figure 3.3 B) and clustering increased after task performance (Figure 3.3 C). In other

words, performance of a sustained attention task led to less integrated networks with

more clustered brain regions. An additional analysis, that investigated the data at each

cost level separately, revealed that these effects were more pronounced in the low cost

range (in the range from 2.5% to 20%; see supplemental Figures 3.8 A and 3.8 B). The

differences during the post-task phase (between RS2 and RS3) were not significant for

either of the topological metrics, but differences in network integration were still present

in the last RS period from 6 to 12 minutes (RS3) compared to pre-task levels. Global

efficiency was decreased and clustering was increased in RS3 in comparison to RS1.
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Figure 3.3: Changes in connectivity strength, topology and physical dis-
tances over resting state fMRI periods. (A) Global connectivity strength in-
creased significantly after task performance (RS1 to RS2) and stayed increased during
the post-task phase (RS2 to RS3) for the whole group (black, with SEM). Attention-
ally resilient subjects (blue) began to recover during the post-task phase, whereas at-
tentionally impaired subjects (red) showed further increases in connectivity strength
until the end of the experiment. (B) Global efficiency was significantly decreased after
task performance. No significant changes were observed during the post-task phase.
(C) Mean clustering significantly increased after task performance and was further
increased during the post-task phase (black). Similar to the changes in connectivity
strength, attentionally resilient subjects (blue) began to recover towards pre-task lev-
els of clustering during the post-task phase, attentionally impaired subjects showed
no changes towards the pre-task values. (D) Mean physical distances between con-
nected nodes were significantly reduced after task performance. Changes during the
post-task phase were not significant. (E) Distance distribution of edges before and
after the task. Grey areas show distance ranges with significant changes after task
performance averaged over the entire group. After task processing there were more
short range connections and less long edges. Attentionally impaired subjects (red)
showed a more pronounced shift in distance distribution than attentionally resilient
subjects (blue).
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Correlation with Behaviour. The correlation analysis revealed that changes in mean clus-

tering during the post-task phase were significantly correlated with individual vigilance

decrements (Figure 3.3 C and Figure 3.4 C; Table 3.2). An analysis with separated cost

levels revealed that the correlations of individual vigilance decrements with the post-task

clustering changes (RS2 to RS3) were significant at all cost-levels (supplemental Figure 3.8

B). More behaviourally resilient subjects showed decreases in clustering from RS2 to RS3

in the direction of the pre-task values. The two sub-groups showed significant differences

in the change of clustering during the post-task phase. Attentionally resilient participants

showed stronger decreases in clustering from RS2 to RS3 than attentionally impaired sub-

jects.

We found no significant correlation between cognitive resilience and changes in global effi-

ciency (Figure 3.4 B), or between resilience and changes in mean clustering between RS1

and RS2.

Figure 3.4: Correlations of functional network organization and cognitive
resilience. (A) Changes in global connectivity strength during the post-task phase
(RS3-RS2) significantly correlated with task performance. Subjects with smaller vig-
ilance decrements began to recover and showed a decrease in connectivity strength
whereas subjects with larger vigilance decrements showed increases in connectivity
strength. (B) Global efficiency showed no relation to individual task performance in
the post-task phase. (C) Changes in clustering during the post-task phase showed
a significant correlation with individual performance. Subjects with larger vigilance
decrements showed smaller recovery effects or even further increases in clustering.
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Effects on Nodal Level. We also investigated the effects of rest period on topological

metrics at the level of nodes or brain regions. As shown in Figure 3.5 we found major

increases in clustering after task processing (from RS1 to RS2) in areas including the pri-

mary visual cortex the superior temporal gyri, the superior frontal gyri, the cuneus/medial

parietal cortex, the left primary sensory cortex, the left lingual gyrus, the basal forebrain,

and the anterior cingulate cortex.

Again, individual performance showed regional correlations with changes at nodal level

only during the post-task phase (i.e. between RS2 and RS3). Regions that correlated with

individual performance were localized in the left and right thalamus, right supramarginal

gyrus, right precuneus, right amygdala, left insular cortex and right middle occipital cor-

tex (see supplemental Figures 3.10 and 3.11 for an analysis of nodal effects as a function

of cost level).

Physical Distances

Overall Data Analysis. The overall analysis of physical distances revealed neither a sig-

nificant effect of performance and nor a significant interaction between performance and

RS period. However, physical distances significantly changed with RS periods (Table 3.1)

and this effect also remained significant when controlled for linear effects of motion dis-

placements (p≤0.05).

Mean Comparisons. The mean physical distance of functional connections decreased

significantly after task performance from RS1 to RS2 (Table 3.2 and Figure 3.3 D), but

showed no significant change during the post-task period. Mean physical distance was

still significantly reduced in the last RS period in comparison to RS1. An analysis with

separated cost levels revealed that changes in mean distances following task processing

were significant over the entire cost range (RS1 to RS2) (see supplemental Figure 3.8 C).

At a cost level of 50% the distribution of physical distances between brain nodes sig-

nificantly changed after task processing. After task processing, there were more nodes

functionally connected in the short distance range from 8 to 53 mm and fewer nodes

connected in the long distance range from 78 to 108 mm (Figure 3.3 E). An additional

analysis revealed that this shift towards shorter distances after task processing was also

significant at each of the investigated cost levels (see supplemental Figure 3.8). We found

no significant changes in the distance distribution during the post-task phase following

task processing (from RS2 to RS3).
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Figure 3.5: Changes in nodal network clustering over resting state fMRI
periods. Top: Clustering changed over the three resting state fMRI periods. Follow-
ing task performance all brain regions show higher clustering or cliquishness. Bottom
left: Significantly different changes in clustering at nodal level (yellow) were evident
among others in visual cortex and basal forebrain; brain areas involved in the pro-
cessing of visual sustained attention tasks. Bottom right: Significant changes in
clustering in the post-task phase that were related to vigilance decline were found
among others in the thalamus (red).
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3.5 Discussion

Our results revealed that an attentionally demanding task has strong impact on functional

brain network topology even 12 minutes after task performance. Attentional task perfor-

mance is followed by less efficient, more fragmented, and more clustered brain networks

with less long-distance and more short-distance connections. As a second major finding,

we could show that late changes in network topology (more than six minutes after the task)

were correlated with individual differences in cognitive resilience during task performance.

Attentionally resilient participants showed a larger reduction of network clustering and

disintegration, i.e., a greater degree of recovery towards pre-task network topology during

the post-task period.

3.5.1 Task Performance Affects Network Synchronization in the Low

Frequency Range

Effects of changed RS connectivity in a lower frequency range (<0.1 Hz) subsequently to

task performance were previously reported after motor (Duff et al. 2008) and language

tasks (Waites et al. 2005). Furthermore, previous studies showed that motor learning

(Albert et al., 2009) and perceptual learning (Lewis et al., 2009; Stevens et al., 2010) lead

to long-lasting changes in functional connectivity and a modulation of region specific plas-

ticity. Effects of task performance on functional brain network topology instead of simpler

correlation measures have previously been described by Kitzbichler et al. (2011). They

analysed high frequency magnetoencephalography data (MEG) and analysed functional

networks during performance of a working memory task at various levels of difficulty. The

more difficult versions of the task were associated with increased global efficiency and

increased connection distance, reduced clustering and reduced modularity. The findings

reported here confirm and extend these findings. Our data show that task performance

has long-lasting effects on functional brain network topology that are based on oscillation

in a much lower frequency range (∼0.1 Hz).

3.5.2 Task Performance Has Long-Lasting Effects on Network Topology

Long-lasting effects after task performance on RS oscillations have been infrequently re-

ported in studies to date. One study by Barnes et al. (2009) could show that endogenous

oscillations in different brain regions stay altered for more than 15 minutes after task per-

formance. In contrast to Barnes et al. (2009), who investigated isolated time series, our

study investigated the functional topology of the whole brain network and showed that

effects on functional network topology persist over a long time period. The two RS periods

after task processing covered a time window of more than 12 minutes and functional con-

nectivity, global efficiency and clustering were still changed in RS3 (6-12 Min post-task).
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On nodal level, effects of increased clustering were, among others, evident bilaterally in

the visual cortices, the superior temporal cortices and the basal forebrain (Figure 3.5,

bottom left). Many brain regions in which we found differences in clustering after task

performance were also significantly activated during the task period, between RS1 and RS2

(compare Breckel et al., 2011; a list of overlapping regions is given in supplemental Table

3.3). Some of these regions including the visual and superior temporal cortices also showed

increases in clustering after a visual attention task within a different data set (Giessing

et al., unpublished data). These regions have been previously discussed in the context of

visual processing and visual spatial attention (e.g. Corbetta & Shulman, 2002) and the

observed changes in clustering in these regions probably reflect more general reconfigura-

tion processes following visual attention tasks. More specific related to attentional effort,

we found increased clustering after task processing within the basal forebrain. During

task performance the activation within this brain region increased with higher cognitive

demands due to prolonged time intervals between target stimuli (Breckel et al., 2011). The

cholinergic basal forebrain is a crucial part of the attentional effort network as proposed by

Sarter (2006) and is suggested to trigger activity in the anterior attention system in medial

prefrontal cortex and to optimize processing in sensory cortical regions. Animal evidence

indicates that attentional effort increases ACh release in medial prefrontal cortex (Kozak

et al., 2006). In summary, our data suggest that task specific recruitment of brain regions

can produce region-specific hang-over effects in brain topology after task performance.

3.5.3 Behavioural Performance and Functional Brain Networks

Our behavioural data support the claim that - averaged over all subjects - participants

showed longer reaction times at the end of the vigilance task and that these behavioural

effects were accompanied by reduced brain network integration. Previous studies support

an association between brain topology and task performance. Subjects with higher scores

in intelligence tests (based on performance in various tasks) showed shorter path lengths

and higher global efficiency values in brain network topology (Li et al., 2009; van den

Heuvel et al., 2009). Further, recent studies investigating ageing effects found age-related

changes in network topology and showed that aged subjects have decreased global effi-

ciency and increased clustering (Gong et al., 2009; Wang et al., 2010). From previous

behavioural studies it is known that aged subjects show poorer performance in attentional

tasks (Berardi et al., 2001; Gazzaley et al., 2005). A more direct piece of evidence for the

correlation of network topology and attentional task performance is given by a study from

Wang et al. (2009). Wang et al. (2009) compared the brain network topology of chil-

dren with attention deficit hyperactivity disorder (ADHD) and healthy children. Children

with the attentional deficit syndrome showed lowered global efficiency and significantly

increased clustering in their brain topology. In summary, previous group and correlation
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studies suggest that higher task performance is related to higher network integration. Our

study revealed that this effect can also be manipulated experimentally by a challenging

attentional task: task-induced decrements in vigilance were associated with less integrated

brain networks.

3.5.4 Network Recovery and Task Performance: Behaviourally Impaired

Subjects Recover Later

Behaviourally there was a large individual variability in the extent of performance decline

during task performance. These behavioural individual differences did not predict task

induced changes in network topology following the end of the task (i.e. RS1 vs. RS2), but

were highly correlated with changes in topology in the post-task or recovery phase (RS2

and RS3).

Only few studies have investigated recovery effects after tasks on endogenous dynamics

so far. Barnes et al. (2009) compared changes in endogenous oscillations on a longer

time scale after a task with different workloads. They found workload dependent recovery

effects in endogenous oscillations; a low load condition led to a faster and earlier recovery

(about 400 s post-task) of the fractal properties of the BOLD time series. In our study

we did not vary the workload, but the variability of performance between subjects indi-

cated that the same task demand could introduce large differences in individual cognitive

resilience. Brain networks in subjects with high vigilance decrements further continued

to show increased global connectivity strength and mean clustering in the RS3 period. In

contrast, brain networks in subjects with low or no vigilance decrement revealed a pattern

of connectivity which resembled that prior to task performance. Although the acquired

RS time window of 12 minutes post-task was not long enough for a full restoration of

all network metrics our study is the first which shows demand-related recovery effects on

functional network topology.

On nodal level, significant correlations or recovery effects in clustering were only observed

in the post-task phase (RS2 to RS3) and among others evident in the thalamus, a key

structure of the arousal system (Paus et al., 1997; Portas et al., 1998). Attentionally

impaired subjects showed further increases of clustering in this region, whereas resilient

subjects showed decreases of clustering. At a less conservative level of significance (p<0.05,

uncorrected) our results also reveal an overlap between brain regions that show an effect

of task processing (RS1 to RS2) and a performance-related change in the post-task phase

(RS2 to RS3). This overlap was evident in visual cortices and superior temporal gyri.
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However, the performance-related change of network topology in the thalamus was only

evident in the post-task period. These differential effects might be related to the long- and

short-lasting cognitive processes elicited by the sustained attention task (Breckel et al.,

2011). During task processing participants had to detect an infrequent colour change of a

simple visual stimulus during a time period of more than 30 minutes. Even though there

are several factors that affect performance declines during periods of tonic alertness (Oken

et al., 2006), previous studies support the idea that the attention system interacts with

arousal level (Portas et al, 1998). All subjects might have ’used’ the same brain networks

for attentional processing, but subjects who performed the task in a less efficient way

probably showed larger reductions of arousal following task performance. These differ-

ences in arousal between subjects may increase after a longer time period of resting state

(resting state period 2 and 3) in which participants have to refrain from falling asleep. It

is a common finding in psychology that inter-individual differences are more evident in

’weak’ task conditions in which less cues provide behavioural psychological pressure and

that are more ambiguously structured to engage a certain behavior (Mischel, 1973).

3.5.5 Biological Explanations for Long-Lasting Effects of Task Performance

Previous studies have shown that learning-induced plasticity can have a long-lasting im-

pact on subsequent RS periods (Lewis 2009, Albert et al. 2009, Stevens et. al. 2010)

and might therefore be responsible for the task-induced changes in functional connectivity

and network topology observed after our sustained attention task. Animal data suggest

that prolonged effort in attention tasks increases the release of acetylcholine (ACh) in

prefrontal brain regions resulting in a top-down adjustment of sensory processes (Sarter

et al. 2006). ACh induced plasticity can last several minutes even though ACh concentra-

tion has reached baseline level again (for a review see Rasmusson, 2000). Hence, changes

in resting state connectivity after performance of a sustained attention task may be the

consequence of prior task-induced ACh release.

On molecular level metabolic costs may account for long-lasting effects of task perfor-

mance. Mental tasks are accompanied by an increased level of glycolysis in the brain (Fox

et al., 1988; Blomqvist et al., 1994). Raised level of glycolysis can last up to 40 min-

utes after termination of task performance (Madsen et al., 1995) and prolonged aerobic

glycolysis can cause imbalance in cell metabolism (e.g. proton and lactate accumulation;

Newsholme et al., 1992). Our data revealed that the distribution of the physical distance

between functionally connected nodes was shifted in favour of shorter distances after task

performance. Neuronal transmission over shorter physical distances was earlier described

as one strategy of the brain in order to preserve metabolic costs (Niven & Laughlin, 2008).
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3.5.6 Methodological Considerations

Head Motion. There is evidence that head motion can influence measures of network

topology and connection distances (Dijk et al., 2012; Power et al., 2012). Therefore, we

used previously described measures to test for possible confounding effects (Power et al.,

2012). We found that there were only few movement-related frame-wise displacements

>0.5 mm in our data and ’scrubbing’ the time series to eliminate frames of data that

might be affected by head movement did not change the strength of functional connec-

tivity between regions separated by short or long connection distances (see supplemental

material 2).

Brain Parcellation. It has been demonstrated that the analysis of brain networks can

be sensitive to the choice of parcellation template used to delineate nodes (Hayasaka &

Laurienti, 2010; Zalesky et al., 2010; Wig et al., 2011). In this study, a relatively common

parcellation template with minimal variation in nodal volume was used, thus minimizing

the variation in signal-to-noise across nodes.

Corrections for Physiological Noise. There is an ongoing discussion whether BOLD sig-

nal time series should be corrected for signal changes in white matter and cerebrospinal

fluid (Yarkoni et al., 2009; Jo et al., 2010; Iacovella & Hasson, 2011). However, additional

analyses in which we corrected for possible physiological noise effects revealed the same

or stronger effects of task performance on the functional connectivity strength and cor-

relations with the individual vigilance decrements which suggest that our results are not

biased by physiological noise (see supplemental material 4).

Eyes Open vs. Eyes Closed RS Conditions. Studies which compared RS periods with

eyes open and eyes closed found differences in low frequency BOLD fluctuations and con-

nectivity measures within visual brain areas (Raichle et al., 2001; Zou et al., 2009). In the

current study we instructed subjects to keep their eyes open in order to have similar visual

stimulation during the task and resting state conditions (see also Raichle et al. 2001, p.

680).

3.5.7 Implications of Long-Lasting Changes in Network Topology Following

Tasks

In many studies investigating neural correlates of task-related processing (e.g., in fMRI,

PET or ERP studies) spontaneous signal fluctuations were only considered as noise fac-

tor. Over the last years this perspective has changed, since previous studies have shown
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that, for example, spontaneous blood oxygen level dependent (BOLD) signal fluctuations

contribute to the prediction of variability in behavioural performance within and between

subjects (Hampson et al., 2006; Fox & Raichle, 2007; Lim et al., 2010; Mennes et al.,

2011). In computational neuroscience, previous results revealed that the complex network

architecture of brains rapidly changes to meet the requirements of specific task demands

(Bassett et al., 2009; Kitzbichler et al., 2011). As first study, our results show that task

performance has also reflexive effects and leads to long-lasting changes in endogenous

brain networks after task performance. Our data show that these long-lasting effects on

brain network topology are correlated with behavioural measures of cognitive resilience in

a prior sustained attentional task. Future studies, with several task and RS periods within

one fMRI scanning session, might also show that individual differences in network recovery

can be used to predict differences in behavioural performance within following task periods.

In real world, economical reasons often force researchers to present several tasks within

one fMRI scanning or MEG session, neglecting or underestimating changes in functional

brain networks resulting from a previous task. Our data indicate that 12 minutes of rest

period between each task are not enough to fully recover functional brain networks from

previous task processing. Our data strongly encourage to take into account ’hang-over’

effects on the organization of post-task brain networks that possibly interact with the

processing of new tasks. These ’hang-over’ effects introduce a specific brain state, which

will impact on subsequent neural processing and behavioural performance. In future, the

individual capability of brain network recovery might be an additional measure to obtain

cognitive resilience of patients and to detect early symptoms of potential neurological dis-

orders. Our data support that the recovery of network topology is a biomarker of cognitive

resilience that significantly contributes to the understanding of inter-subject differences in

the recovery from cognitive demands.
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3.7 Supplemental Material

SUPPLEMENTAL MATERIAL 1

Region1 Center of gravity2

BOLD Contrast 1: Target events > all (implicit base-

line) (FDR corrected, p≤10−5, k≥40)

Seed regions in which a significant change in clustering after task

processing (RS1/RS2)3 overlapped with task activation

R Superior Frontal Cortex / Premotor (BA6) 15 16 56

L Superior Frontal Cortex (BA9) -24 30 34

R Rolandic Operculum (BA13) 43 -7 20

L Superior Temporal (BA 38) -52 3 -11

L Superior Temporal / Insula -40 -8 -9

L Postcentral / Sensorimotor Area -54 -18 43

R Area 17 (Calcarine sulcus) 26 -64 5

L Area 17 (Calcarine sulcus) -15 -76 11

L Area 18 (Lingual gyrus) -13 -48 -6

R Cuneus 7 -73 22

R Middle Occipital gyrus 26 -87 5

R Thalamus 21 -15 16

Seed regions showing a significant correlation3 of clustering

change in the post-task period (RS2/RS3) with the vigilance

decrement that overlapped with task activation

R Supramarginal Sulcus (IPC) 60 -32 36

L Insula -34 9 3

R Thalamus 2 -19 6

L Thalamus -18 -22 14

BOLD Contrast 2: Target events weighted with time

between targets (ISI) as measure of vigilance (FDR cor-

rected, p≤0.001, k≥40)

Seed regions in which a significant change in clustering after task

processing (RS1/RS2)3 overlapped with task activation

Basal forebrain / ACC 0 26 -3

R Orbito frontal cortex (BA10) 18 44 2

L Postcentral / Sensorimotor Area -54 -18 43

L Area 18 (Lingual gyrus) -13 -48 -6

R Middle Occipital gyrus 26 -87 5

Table 3.3: Seed regions that overlap with task BOLD activity during the
task. (1) Seed regions that overlap with at least with 20% of their volume with Task
BOLD activity. (2) MNI-coordinate of the center of the seed regions. (3) Changes /
Correlations that survived a corrected threshold of p≤1/442.
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SUPPLEMENTAL MATERIAL 2: ANALYSES OF SUSPECT MOTION-

CORRUPTED FRAMES

We have analyzed all datasets presented in this paper fully for motion-related effects.

In accordance with Power et al.(2012) we have computed a number of metrics to iden-

tify suspect motion-corrupted frames of data and scrubbed these frames from our datasets

to determine whether this confers any additional benefit. We have computed the following:

1. Frame-wise Displacement (FD, in mm) - this is the sum of the absolute derivatives

of the six motion parameters (as described in Power et al., 2012). Rotational pa-

rameters were converted to displacements by computing the arc length displacement

at the surface of a sphere of radius 50 mm.

2. The DVARS (in %x10) on the time series used for graph analysis. This was computed

as the root mean square on the voxel-wise derivatives of percent signal change. This

was expressed as %x10 as in Power et al. (2012).

3. The number of suspect frames that would be censored by the Power et al. (2012)

’scrubbing’ methodology. Suspect frames were identified by having either FD>0.5

mm or DVARS>0.5%. These thresholds were identical to those used in Power et al.

(2012).

4. A parallel set of times series for all datasets where the suspect frames in 3) were

’scrubbed’ and temporally concatenated in accordance with Power et al. (2012).

Frames were ’scrubbed’ after confound regression and temporal wavelet filtering

(Carp, 2011).

5. The relationship between ∆R caused by motion scrubbing (simply the ’scrubbed’

correlation matrix minus the ’unscrubbed’ correlation matrix) and the Euclidean

distance between pairwise correlations of regional time series. We first computed

this at a single-subject level, and subsequently averaged ∆R values across subjects

for the group-level analysis, as described by Power et al. (2012).

6. The r2 coefficient of determination for each group-level scatter plot between ∆R and

Euclidean distance. This was computed using the following formula:

R2 = 1−
∑

(yi−fi)2
(n−1)·(yi−ȳ)2

where fi is the linear fit of the scatter plot and n is the total number of pairwise

∆R values.

First, we calculated the number of suspect frames of data that would be removed from

the regional time series by ’scrubbing’. We found that only 23/60 (38%) of datasets would
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need more than one frame ’scrubbed’. Of these datasets, 9/30 are in the ’Attentionally

Resilient’ condition, and 14/30 are in the ’Attentionally Impaired’ condition. The total

number of frames that would need to be removed from each dataset are shown in Table 3.4.

Next, we compared the percentage of suspect frames (as a percentage of the total number

of frames in each dataset), as a measure of the amount of motion in our datasets, across

the two conditions, and across the different resting state scans (Figure 3.6). There is no

notable difference in motion between the two conditions (’Attentionally Resilient’ and ’At-

tentionally Impaired’), and whilst there is a slight increase in head movement through the

resting state scans (as one would expect), this is not restricted to one group. In addition,

this slight increase in movement across resting state scans appears to have no distance-

dependent impact on correlation between regional time series (Figure 3.7). To test this last

point, we assessed whether there are any distance-dependent biases in correlation strength

between regional time series in our data. For this, we scrubbed all datasets and computed

the ∆R (which is the ’scrubbed’ minus ’unscrubbed’ correlation matrices). These values

were plotted against the Euclidean distance between pairwise combinations of time series.

We observed no differential effects of correlation strength at long versus short distances,

which suggests that ’scrubbing’ provides no additional benefit to our data (Figure 3.7).

To complement this assertion, we computed the r2 coefficient of determination for each

group analysed in this way. The fraction of variance explained by linear fits for our data is

negligible (see Figure 3.7) compared to values presented in Power et al., 2012 (r2=0.18),

confirming our conclusion that there is no relationship between movement-related changes

in pairwise correlations between regional time series and distance in our data.

Table 3.4: Number of suspect frames per dataset that would need to be ’scrubbed’
from the time series using the criteria outlined in Power et al. (2012) (FD>0.5 mm
or DVARS>0.5 %). The total number of frames of data in each dataset is 256.

Attentionally Impaired Attentionally Resilient

SUBJECT Rest 1 Rest 2 Rest 3 SUBJECT Rest 1 Rest 2 Rest 3

1 1 5 9 3 0 0 0

2 0 0 0 4 1 1 0

5 1 0 1 6 1 4 1

8 1 4 1 7 50 24 44

9 0 2 7 11 0 0 0

10 3 21 29 15 2 3 0

12 1 15 12 16 0 0 0

13 7 56 55 17 0 0 0

14 0 0 0 18 2 7 15

20 0 0 5 19 0 0 0
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Figure 3.6: Histograms representing the percentage of motion-affected
frames in each dataset. Frames are identified using thresholds defined in Power
et al., 2012 (frames where FD>0.5 mm or DVARS>0.5%; see METHODS). The
histograms labelled ’Resting state scan’ combine datasets from both conditions (’At-
tentionally Resilient’ and ’Attentionally Impaired’), and similarly, histograms for the
two conditions combine datasets from all resting state scans undertaken by subjects
in those conditions.
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Figure 3.7: Scatter plots showing the impact of time frame ’scrubbing’ on the rela-
tionship between Euclidean distance between regions and ∆R. ∆R is the difference in
pairwise correlations before and after scrubbing, and is calculated by subtracting the
’unscrubbed’ correlation matrix from the ’scrubbed’ correlation matrix. Each scatter
plot was fitted to a moving average line by binning every 100 points (sorted as a
function of Euclidean distance) and calculating the average ∆R value for this set of
distances. The r2 values (coefficient of determination) for the relationship between
Euclidean distance and ∆R were calculated for each scatter plot and noted alongside
the plot (also see METHODS).
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SUPPLEMENTAL MATERIAL 3:

GRAPH METRICS AS FUNCTION OF CONNECTION DENSITY

A. Global efficiency change over cost lev-
els. Solid lines: Changes of global efficiency
from RS1 to RS2 were more pronounced in lower
cost ranges. The mean change of both groups
(gray) was significant (p<0.05) in the range from
2.5% to 20%. At no cost level a significant group
difference (between blue and red) was found.
Dashed lines: Changes of global efficiency from
RS2 tor RS3 were not significant at any cost
level. Impaired vs. resilient subjects did not
show significant differences.

B. Clustering change over cost levels.
Solid lines: A significant change of cluster-
ing following task processing (RS1 to RS2) was
found at all cost levels (more pronounced at
lower cost levels). No group differences (blue vs.
red) were found. Dashed lines: In the post-
task phase (RS2 to RS3) no significant mean
effect (gray) was found at any cost level. Sig-
nificant differences between groups were found
in a cost range from 15% to 50% (p<0.05, green
range; see however below the correlation analy-
sis).

C. Correlation of individual vigilance
decrements with post-task change (RS3-
RS2) in clustering. The correlations of indi-
vidual vigilance decrements with post-task clus-
tering changes (RS2 to RS3) were significant at
all cost-levels. Significance level first decreased
due to the higher number of edges within the
graph and became stable at 20 percent of costs.

D. Mean physical distance changes over
cost levels. Solid lines: Mean distance sig-
nificantly changed over all cost levels following
task processing (RS1 to RS2), but was more
pronounced in lower cost levels. No difference
between the groups was found to be signifi-
cant.Dashed lines. In the post-task phase (RS2
to RS3) no significant change or difference be-
tween groups was found at any cost level.

Figure 3.8: Graph metrics over cost levels.
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Figure 3.9: Physical distance distribution changes over task (binned num-
ber of edges RS2-RS1). Differences in the distribution of physical distances were
numerically higher in the high cost range since within the high cost range more con-
nections were compared between conditions (left panel). However, the shift towards
shorter distances after task processing was prominent at all cost levels. After task
processing the number of short distances significantly increased and longer distances
significantly decreased independent from the investigated cost range (right panel, sig-
nificant bins with p≤0.01).

Figure 3.10: Changes in nodal clustering following task processing (RS1
vs. RS2) separated for cost levels. Effects of task processing on clustering were
analyzed as a function of cost level. Within those brain regions discussed within
the main text (visual areas, medial prefrontal region/basal forebrain (mPF/BF), and
superior temporal gyrus) effects on nodal clustering were mainly driven by differences
between graphs within the low-cost-range with lower connection densities. Graphs
within the low cost range have on average higher correlations values and are less
influenced by noisy connections.

102



3
S

tu
d

y
II

Figure 3.11: Changes in nodal clustering in the post-task phase (RS2 vs.
RS3) plotted over costs and its correlation with performance. Over all sub-
jects, the thalamus (left panel) did not show any significant changes in clustering
during the post-task phase. However, changes in clustering were opposite for resilient
and impaired subjects with stronger differences in the low cost range (middle panel).
This result was also supported by correlation analysis: the individual vigilance decre-
ments and the change in clustering in the post-task period correlated over a wide cost
range and correlation values tended to be higher for the low cost range (right panel).
Graphs within the low cost range have on average higher correlations values and are
less influenced by noisy connections.
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SUPPLEMENTAL MATERIAL 4: ANALYSES RELATED TO ADDITIONAL

CSF/WM REGRESSION OF BOLD TIME SERIES

Two methods for BOLD time series pre-processing were compared and analysed with re-

gard to potential confounds for the comparisons between the three RS periods and the

two performance groups. Connectivity matrices were calculated on the basis of two sets

of low-frequency wavelet filtered BOLD time series:

For the first set the mean BOLD time series were corrected for motion by regressing out

the six motion parameters as derived from the spatial realignment step during BOLD

image pre-processing (the approach as used in the manuscript). Following this correction

the time series were wavelet filtered.

For the second set the mean BOLD time series were also corrected by signal changes in the

cerebro spinal fluid (CSF) and in the white matter (WM). CSF and WM signal changes

were extracted and averaged from voxel time courses of spherical ROIs with 7 voxels each.

We averaged over three ROIs in the CSF (anterior medial and posterior left and right in

the ventricles; MNI = [4 11 9; -24 -45 9; 27 -44 9]) and four regions in the WM (anterior

and posterior part in the corpus callosum and left and right lateral white matter areas;

MNI = [-2 -36 13; 1 24 1; 26 -34 31; -25 -34 30]).

Figure 3.12: Global connectivity strength averaged over whole group and
separated for both performance groups. If time series are corrected for CSF-
and WM- signal changes global connectivity strengths decreased (right panel) in com-
parison to the global connectivity strengths with motion correction only (left panel).
However, the pattern of results revealed the same in both analyses and the CSF- and
WM-signal corrected data showed slightly increased statistical effects (see table 3.5.
below).
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Table 3.5: Linear mixed-effects models

Response Factor Statistics

Connectivity Strength Resting State (RS) F(2,36) = 5.80, p ≤ 0.01

(motion corrected) Performance F(1,18) = 8.46, p ≤ 0.01

Interaction RS*Performance F(2,36) = 4.32, p ≤ 0.05

Connectivity Strength Resting State (RS) F(2,36) = 6,95, p ≤ 0.01

(motion/CSF/WM Performance F(1,18) = 9.55, p ≤ 0.01

signal corrected) Interaction RS*Performance F(2,36) = 4,69, p ≤ 0.05

Table 3.6: Post-hoc testing for connectivity strength changes and relation to perfor-
mance

Measure Task (RS1-RS2) Post-task (RS2-RS3) RS1-RS3

Connectivity

Strength

(motion

corrected)

Change1 T=-2.69, p<0.02 T=-0.41, p=0.69 T=-2.27, p<0.04

Correlation with

performance2
R=-0.16, p=0.50 R=-0.62, p<0.01 R=-0.47, p<0.05

(group difference3) (T=-0.16, p=0.87) (T=-3.12, p<0.01) (T=-1.66, p=0.12)

Connectivity

Strength

(motion

/CSF/WM

corrected)

Change T=-2.93, p<0.01 T=-0.48, p=0.64 T=-2.42, p<0.03

Correlation with

performance

R=-0.22, p=0.35 R=-0.62, p<0.01 R=-0.49, p<0.03

(group difference) (T=-0.24, p=0.82) (T=-4,11, p<0.001) (T=-1.92, p=0.07)

1 Change between resting states, paired t-tests, df = 19.
2 Differences between resting states correlated with individual vigilance decrements.
3 comparison between attentionally impaired and resilient subjects, two-sample t-tests, df = 18.
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Figure 3.13: Similarity of the correlation values (Fisher’s z-transformed)
derived with both correction methods. Values based on time series with motion
regression only (x-axes) versus values based on time series with motion, CSF and WM
regression (y-axes). The fitted regression lines (green) show a small shift to higher
correlation values when only motion regression was used in time series preprocessing.
This change is very homogeneous across the three RS periods and also across the two
performance groups. However, except for this offset the distribution of correlation
values did not change systematically.
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4.1 Abstract

Recently there has been a growing interest to investigate changes in functional brain net-

work connectivity and topology in psychiatric disease such as schizophrenia and ADHD.

In both patient groups smoking rates are high and there are currently no investigations on

how smoking status changes brain network topology. Previous results suggest that acute

nicotine consumptions change the integration of functional brain networks (Giessing et

al., under review). To investigate long-lasting effects of nicotine consumption the func-

tional brain network topology of 18 minimally deprived healthy smokers and 17 healthy

non-smokers were compared during a resting state condition. Graph theoretical metrics

(global efficiency and mean clustering) which has been shown to be affected by acute

nicotine administration were compared between groups. Our results showed that smok-

ing status did not show a significant change in functional network integration. Additional

mathematical methods were used to statistically test the non-inferiority of functional brain

network topologies of smokers. These analyses confirmed the similarity of overall brain

networks topology and of global efficiency in regions which have previously been associ-

ated with craving behaviour and nicotine addiction such as the anterior cingulate cortex,

the posterior cingulate cortex, left prefrontal cortex, and insula. We concluded that the

integration of functional brain networks is not altered in minimally deprived smokers.
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4.2 Introduction

Graph theoretical analysis of functional connectivity MRI data is a versatile tool to de-

scribe the complex organization of brain networks (Bullmore & Sporns, 2009). The metrics

derived from graph theory can be used to quantify the efficiency of information processing

in the human brain. Efficiency measures have been shown to vary interindividually in

the healthy population as a function of age (Hagmann et al., 2010) or intelligence (Li et

al., 2009; van den Heuvel et al., 2009). In the field of clinical research, progress has been

made in describing pathological brain networks by comparing healthy subjects with patient

groups (for a review see Guye et al., 2010). Neuropsychiatric disorders such as schizophre-

nia and ADHD, which have been related to dysfunctional connectivity (Fornito et al.,

2010; Konrad & Eickhoff, 2010), have been investigated with graph analytical approaches

in several studies. These studies provide evidence for changes in brain network topology

reflecting a reduction in the efficiency of information transfer (Bassett et al., 2008; Wang

et al., 2009; Lynall et al., 2010). One confounding factor when comparing patients with

schizophrenia and ADHD with healthy control subjects is however the high prevalence of

smokers in both patient groups (Milberger et al., 1997; de Leon & Diaz, 2005). There are

currently no studies addressing the issue whether chronic cigarette smoking affects brain

network topology.

Prior studies suggest that chronic smoking is associated with prefrontal grey matter dam-

age (Brody et al., 2004; Gallinat et al., 2006; Zhang et al., 2011b) and reduced white

matter integrity (Gons et al., 2011; Zhang et al., 2011a) which may impact on measures of

functional connectivity. Only few studies compared differences in functional connectivity

between smokers and non-smokers. These studies used seed based connectivity approaches

and focussed on few brain regions, such as the frontal cortex and insula which are asso-

ciated with craving or neural activity related to smoking cues (e.g. see Zhang et al 2011,

Wang et al. 2007). The data by Zhang et al. (2011) supports the view that functional

connectivity between these brain regions in the resting state is related to phasic increases

in neural activity to smoking cues. Whether chronic cigarette smoking impacts on con-

nectivity in the whole network or reduces the efficiency of information transfer could not

be answered with these analyses. The current study compared neural activity in smokers

and non-smokers in the resting state by means of graph analysis to investigate whether

chronic cigarette smoking impacts on brain network topology and should be accounted for

when comparing network topology in groups of subjects that differ in terms of smoking

prevalence.
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As graph analytical measures we analysed the network’s ’efficiency’ and ’clustering’. The

networks’ efficiency tends to be large in highly integrated networks with high capacity for

parallel information transfer; in contrast clustering reflects the cliquishness or modularity

of brain networks. Previous results (Giessing et al., submitted) showed that in minimally

deprived smokers both measures of network topology directly changed following nicotine

administration. Therefore it is reasonable to assume that network efficiency and clustering

would also be sensitive towards possible effects of long-lasting nicotine consumption like

in cigarette smokers.

Our data showed non-significant differences between network topologies of smokers and

non-smokers. To further corroborate this finding we compared the effect sizes of both

groups and statistically tested the derived graph metrics for non-inferiority. Effect size

analyses and non-inferiority testing are so far rarely used in the field of neuroscience, but

can be used to explicitly test the equivalence of two distributions or treatments instead

of just keeping the null hypothesis of no significant differences. In our case we used these

methods to demonstrate that smokers show no deterioration of network parameters.
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4.3 Methods

4.3.1 Subjects

Eighteen smokers (7 females; mean age = 27.6 years, range = 19 to 38 years) and 17

never smokers (9 females; mean age = 25.6 years, range = 24 to 30 years) participated in

the experiment. Exclusion criteria were age below 18 or above 40 years, left handedness,

psychiatric or neurological disease and intake of any medication apart from contraceptives.

Inclusion criteria for smokers were a history of smoking for at least 2 years with a min-

imum of 5 cigarettes per day. All non smokers were never smokers. Smokers smoked on

average 16.3 ± 2.02 cigarettes per day and had an average of 9.17 ± 2.4 pack years. The

Fagerström questionnaire indicated a mild degree of nicotine dependence (3.47 ± 0.55).

Subjects were allowed to smoke their last cigarette 2 hrs before the start of the experiment.

The study was approved by the ethics committee of the German Psychological Association

and subjects signed written informed consent.

4.3.2 Resting State fMRI Data Acquisition

Images were acquired on a 1.5 Tesla MRI scanner (Siemens MAGNETOM Sonata, Siemens

AG, Erlangen, Germany). Functional images were obtained using multislice T2*-weighted

gradient echo planar imaging (EPI). Each volume consisted of 17 axial slices (voxel size

of 3x3 mm, 4 mm in slice thickness, slice gap of 1.6 mm, field of view (FoV) = 200 x 200

mm2, relaxation time (TR) = 1500 ms, echo time (TE) = 50 ms and 90◦ flip angle). 256

volumes were acquired (total duration 6 min 24 s) and subjects were instructed to keep

the eye open and fixate on a black fixation cross presented on a light grey background.

A structural T1-weighted image was obtained after the fMRI experiment, using magne-

tization frequency pulse and rapid gradient-echo (MP RAGE) sampling: 1 mm isotropic

voxels, 176 slices, FoV = 256 x 256 mm2, TR = 2130 ms, TE = 3.93 ms and 15◦ flip angle.

4.3.3 fMRI Data Processing and Time-Series Analysis

Functional images were spatially realigned according to head motion and spatially nor-

malized to standard stereotaxic MNI space (Montreal Neurological Institute; http://www.

mni.mcgill.ca/) by using the SPM8 software package (http://www.fil.ion.ucl.ac.

uk/spm/). A regionally parcellated MNI template comprising 456 cortical and subcortical

brain regions was used to estimate the mean fMRI time series for each region for each par-

ticipant (Fornito et al., 2010; Zalesky et al., 2010). In order to minimize motion related

signal changes the mean time series were motion detrended with a multiple regression ap-

proach by using the estimated motion parameters from the spatial realignment. Previous

studies documented the behavioural relevance of graph metrics based on fMRI signal oscil-

lations in the frequency range below 0.1 Hz (Achard et al., 2006; Damoiseaux et al., 2006).
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Therefore, each regional time series was band-pass filtered by using the maximum overlap

discrete wavelet transform (MODWT; Percival, 2006). Two wavelet scales (respectively

two frequency ranges, 0.083 0.167 Hz and 0.042 0.083 Hz) were further analysed. For

each pair of regions (nodes) the wavelet correlation was estimated, resulting in a 456 by

456 association matrix for each subject and scale. Resulting association matrices were

used to derive graph metrics for smokers and non-smokers.

4.3.4 Topological Metrics of Brain Graphs

Binary graphs of arbitrary connection densities were constructed for both frequency ranges

by thresholding the association matrices to create adjacency matrices. A thresholding

algorithm based on the minimum spanning tree was used to ensure that each node was

connected with at least one other node even at the sparsest connection density (Alexander-

Bloch et al., 2010). Graphs at 15 different connection densities (i.e. topological costs) were

constructed for each subject and RS period in the range of 2.5% - 50%, with smaller sam-

pling intervals in the lower cost range. The connection density defines the number of edges

in a graph expressed as a ratio to the maximum possible number of edges (N*(N-1)/2 =

103,740). Based on these adjacency matrices we calculated the central graph theoretical

measures of efficiency and clustering following the formulas of Watts & Strogatz (1998)

and Latora & Marchiory (Wellek & Michaelis, 1991; 2003; Hentschke & Stuttgen, 2011).

Both metrics are bases on path lengths between connected nodes. Nodal efficiency is in-

versely related to the mean path lengths between a particular node and all other nodes of

the network. In other words, mean nodal efficiency estimates the capacity of a network for

parallel information transfer. In contrast, local efficiency or clustering, measures the ca-

pacity for parallel information transfer in the immediate neighbourhood of each node. The

measure is inversely related to the mean path lengths between in the nearest-neighbour

graph of a certain node, the sub-graph which build by the directly connected nodes to

the particular node. Thus networks that have a cliquish organization, characterized by

many connections between the nearest neighbours of any given node, will have high local

efficiency or clustering. Further, we investigated the mean physical distance between con-

nected brain regions, which based on the averaged Euclidean distances in mm of all edges

in a graph.
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4.3.5 Statistical Testing, Differential Effect Sizes and Non-Inferiority Testing

In a first step, measures of connectivity strength, graph metrics and physical distances

of smokers and non-smokers were compared by use of common null hypothesis signifi-

cance testing (NHST) using two-sample t-tests. Measures of connectivity strength were

compared between smokers and non smokers: i) mean connectivity strength (based on

the averaged association matrices) and ii) connectivity strengths for different distance

bins (correlation strengths between brain regions with different physical distances in 5

mm steps). An investigation of correlation strengths as function of regional distances

was done in order to screen if the overall level of correlation strengths is homogeneous in

both groups across regional distances. Distance specific changes are often correlated with

changes in topological metrics like clustering and efficiency and could be a first hint for

changes in network topology (Alexander-Bloch et al., 2012). The three graph metrical

measures which were compared between smokers and non-smokers were nodal efficiency,

clustering and physical distance. The measures were tested when averaged over the whole

investigated cost range (2.5-50%) and separately for each of the 15 different cost levels.

Since one cannot establish the absence of an effect with classical statistical inference we

used in a second step a non-inferiority testing approach to test the hypothesis that net-

work topology is not less efficient in our group of smokers as compared to our non-smokers.

In short, non-inferiority testing in our study tests the null hypothesis whether the ’true’

inferiority of smokers is located within a tolerance range so that both groups differ not

more than by a neglectable small amount. For this purpose the magnitude of the differ-

ence between groups is expressed in terms of a measure of effect size and their confidence

intervals are estimated (see e.g. Wellek & Michaelis, 1991; Hentschke & Stuttgen, 2011).

We estimated the effect sizes of nodal efficiency and clustering of each node (brain region)

in smokers and non-smokers. Hedges’ g (Hedges, 1981) was used to express the difference

in effect sizes between the two populations in standard deviations (STD). For all differ-

ential effect sizes, the approximate confidence intervals of 95% for one sided hypothesis

testing were calculated for providing the margins of the expected errors for our sample

size (formulas see e.g. Nakagawa & Cuthill, 2007).

As necessary in testing for non-inferiority, a tolerance threshold for the differential effect

sizes was defined. This tolerance threshold defines how large the difference in effect size

between two samples (as smokers and non-smokers in the current study) has to be in order

to reject the equivalence assumption. The tolerance threshold for the metrics of nodal

efficiency and clustering was set to ±0.5 STD. The hypotheses, we regionally (nodally)

tested for, were i) that smokers showed no lower efficiency and ii) no higher clustering as

compared to non-smokers.
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4.4 Results

4.4.1 Connectivity Strength

Differences in connectivity strength between the group of smokers and the group of non-

smokers were statistically not significant. This was the case at both investigated frequency

ranges and both, for the global mean of connectivity strength as averaged over all con-

nections and for the mean connectivity strength within each physical distance bin. Value

distributions of smokers and non-smokers were very similar, as shown in the descriptive

Figure 4.1.

Figure 4.1: Distribution of connectivity strengths. Smokers and non-smokers
showed no differences of connectivity strength with respect to global correlation values
(left) and as a function of physical distances between the nodes (right). Connectiv-
ity strengths got lower when connections had a longer physical (Euclidean) distance
(right), which was homogeneously the case for both, smokers and non-smokers (box-
plots with a center mark for the median, box edges at the 25th and 75th percentiles,
whiskers at 5th and 95th percentiles and marks above and below as ’outliers’ of the
distribution.)
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4.4.2 Graph Metrics

No statistical differences were found for the investigated graph metrics of clustering, effi-

ciency and physical distances for both frequency ranges. This was the case for the averaged

values over the whole cost range as well as for the metrics derived from the graphs at the

15 different cost levels (graph densities). The distributions of these metrics were similar

between smokers and non-smokers (see descriptive Figure 4.2).

Figure 4.2: Distributions of graph metrics over different cost levels. Smokers
showed similar distributions in the investigated graph metrics as compared to non-
smokers for graphs at all 15 cost levels (graph densities). For each cost level mean
centred values are shown as boxplots with a center mark for the median, box edges at
the 25th and 75th percentiles, whiskers at 5th and 95th percentiles and marks above
and below indicating ’outliers’ of the distribution.
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Figure 4.3: Differential effect sizes and non-inferiority test results. Top: Hedgesg
differential effect sizes of smokers and non-smokers ([smokers] [non-smokers]) for all
nodes with confidence intervals (sorted according to the effect sizes; network metrics
averaged over costs). Nodes with a confidence interval that comprised zero were sta-
tistically not different (p>0.05, green area). Non-inferiority testing with a tolerance
threshold of 0.5 standard deviation proved that in many brain regions the functional
network integration of smokers were not decreased by long-lasting nicotine consump-
tion. Yellow nodes showed the significant null effect of no reduced efficiency (left) or
no higher clustering (right) in smokers in comparison to non-smokers. Bottom: Mea-
sures of efficiency and clustering in smoker brains were not different from non-smoker
brains over wide cortical and subcortical regions (regions that were statistically non-
differentiable in both frequency ranges are coloured in green; regions that showed
non-inferiority in both frequency ranges are coloured in yellow). A significant null ef-
fect that nicotine consumption did not reduce efficiency (left, yellow) was e.g. present
in prefrontal regions. Further, a significant null effect showed that clustering (right,
yellow) was not higher in regions as the cingulate and frontal cortex and medial tem-
poral gyrus. All of these regions were earlier described to show significant differences
in these network parameters in schizophrenia patients (Bassett et al., 2008).

In a second step we compared the network efficiency and clustering of smokers and non-

smokers within each brain region or node (Figure 4.3, top). These analyses revealed

that within many brain regions the network efficiency and clustering of smokers and non-

smokers was statistically not differentiable (see Figure 4.3, green areas).
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In a third step we used the more conservative approach of non-inferiority testing. This

approach showed for a number of brain regions that smokers as compared to non-smokers

had no deterioration of network integration (e.g. no reduction in efficiency or no increase

in clustering; see Figure 3, top, yellow areas). In other words, these are the brain areas

showing a significant ’null effect’. For generalization across both low frequency ranges,

only regions that showed non-inferiority in both frequency ranges are further described

(Figure 4.3, bottom, yellow areas). Brain regions showing no reduced efficiency in smokers

were widespread over the brain; comprising medial frontal and occipital regions, parietal

cortices and lateral prefrontal regions with a slight dominance of the left hemisphere and

thalamic regions. Brain regions showing no higher clustering in smokers as compared to

non-smokers were extended in lateral and medial frontal regions (also with a subliminal left

lateralization), medial occipital cortices, lateral parietal cortices and left thalamic regions.
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4.5 Discussion

In summary, our study shows that resting state topology in our group of smokers is

statistically not differentiable from non-smokers in network parameters which have been

previously shown to be sensitive for acute nicotine administration. Smokers show a similar

functional network efficiency and clustering, two central measures of functional network

integration, even in brain regions that were previously associated with structural changes

or differences in task-related neural activity in smokers (Brody et al., 2002; Lee et al.,

2005; Van Rensburg et al., 2009).

Earlier studies which described differences in network topology in schizophrenia patients

as compared to healthy subjects reported less efficiently wired and abnormally clustered

network attributes in schizophrenia patients (Bassett et al., 2008, Lynall et al., 2009).

Common findings were regionally reduced efficiency and network integration in prefrontal

and temporal regions (see also van den Heuvel et al., 2010). Further, graph theoretical

findings revealed reduced global efficiency (prolonged path lengths between functionally

connected brain nodes) in ADHD patients as compared to healthy control groups and an

increased clustering (Wang et al. 2009, Konrad & Eickhoff 2012).

Even though the prevalence of smoking differs significantly between these patient popula-

tions and healthy controls (Lohr & Flynn, 1992; Pomerleau et al., 1995; Milberger et al.,

1997; de Leon & Diaz, 2005), the role of smoking status has not been addressed in these

studies. Standard approaches of null hypothesis testing revealed no significant differences

in network metrics between smokers and non-smokers in our study. To corroborate these

findings, we performed to additional analyses. The analyses of differential effect sizes con-

firmed the absence of differences in network efficiency and clustering in widespread brain

areas in smoker brains as compared to non-smoker brains. Testing for non-inferiority

revealed that in smoker’s brains nodal efficiency is not lowered in brain regions such as

medial frontal and lateral prefrontal areas as well as that clustering is not higher in e.g.

the anterior cingulate cortex, dorsolateral prefrontal cortices, tempo-parietal junction and

medial occipital regions. Based on our findings, the reported topological differences in

these regions in schizophrenia or ADHD patients as compared to healthy subjects (see

above) seem to be unbiased by the trait of smoking.

Comparisons of effect sizes and testing for non-inferiority are often used techniques in med-

ical research in order to e.g. test if new treatments for patients yielded an improvement

for negative symptoms. In neuroscience these approaches benefit from growing interest

but are still rarely in use to date, as most study designs focus on revealing differences

between subject groups or task conditions (see e.g. Hentschke & Stttgen 2011). We here

demonstrate its use for analysis of similarity of brain networks in different subject groups.
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In summary, our study provides evidence that, at least in healthy controls, smoking sta-

tus is not related to changes in network topology. We therefore suggest that differences

in smoking status are unlikely to contribute to changes in network topology observed in

schizophrenic patients and patients with ADHD. Note however, that our sample group

of smokers consisted of relatively weak smokers as compared to observed cigarette con-

sumption behaviour in schizophrenia and ADHD patients (see e.g. Pormleau et al., 2002,

Fagerström score in ADHD patients = 6.7; or see de Leon, 1997, number of cigarettes per

day in schizophrenia patients = 26).
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Erklärung zur selbständigen Verfassung der Arbeit und der verwendeten Hil-

fsmittel
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