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Zusammenfassung

In einer natürlichen Umgebung ist die Verarbeitung von visuellen Be-
wegungsinformationen oftmals überlebenswichtig. In der Regel beinhalten
visuelle Eindrücke mehr als eine Eigenschaft wie z.B. Lichtintensität, Tex-
tur und Farbe. Daher muss Bewegung auch bei unterschiedlichen Lichtbe-
dingungen zuverlässig erkannt und geschätzt werden, um korrekte Verhal-
tensentscheidungen treffen zu können. Es wird allgemein angenommen, dass
die Bewegungserkennung von Primaten und Menschen in den visuellen Zen-
tren des Gehirns stattfindet. Allerdings konnte für einige Tierarten, wie
z.B. bei Kaninchen, Fisch und Schildkröten gezeigt werden, dass die Bewe-
gungserkennung bereits in der Retina beginnt. Da alle dem Gehirn zur Ver-
fügung stehenden visuellen Informationen von den Ganglienzellen der Retina
stammen, ist anzunehmen, dass Ganglienzellenantworten viele visuelle Merk-
male simultan kodieren. Dennoch ist der zugrunde liegende Kodierungsmech-
anismus in der Retina nicht vollständig bekannt.

Der erste Teil dieser Studie widmet sich der Untersuchung wie Antworten
retinaler Ganglienzellen Bewegungsinformationen unter konstanten Lichtbe-
dingungen kodieren. Hierfür wurden an Retinen von Schildkröten (trachemys
scripta elegans) sowie von Karpfen (cyprinus carpio) extrazelluläre Ableitun-
gen von Ganglienzellen durchgeführt, die mit bewegten Stimuli gereizt wur-
den. Im zweiten Teil dieser Studie wird näher auf den möglichen Mecha-
nismus eingegangen, welcher den Ganglienzellen die Kodierung von Bewe-
gungsinformationen bei variablen Lichtbedingungen erlaubt. Hierfür wurden
die Antworten der Ganglienzellen einer Karpfenretina auf bewegte Stimuli
unter wechselnden Lichtbedingungen verwendet.

Zur Analyse der Ganglienzellantworten wurden in dieser Studie zwei un-
terschiedliche publizierte Metriken verwendet, die speziell zur Analyse von
Aktionspotentialfolgen entwickelt wurden: “Spike Cost-Based Metrics” und
“ISI Metrics”. Die “Spike Cost-Based Metrics” ermöglicht den Vergleich der
Spikerate mit der zeitlichen Struktur der Ganglienzellenantworten auf ver-
schiedenen Zeitskalen als potenzielle Kodierungsstrategien für Bewegungsin-
formation. Die “ISI Metrics” wurde verwendet, um die Bedeutung der zeit-
lichen Struktur für die Kodierung der Bewegungsinformation weiter zu analy-
sieren. Zudem wurde untersucht, ob die Kombination der Aktivität mehrerer
Ganglienzellen die Kodierung der Bewegungsinformation verbessern kann.
Hierfür wurden drei Hypothesen der Kombination von Aktivitäten getestet:
“Pooled Population”, “Labelled Line” und “Functional Group”.
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ii Zusammenfassung

Die Ergebnisse des ersten Teils dieser Studie zeigten, dass die Ganglienzel-
lantworten von Schildkröten und Karpfen die Bewegungsgeschwindigkeit und
deren Veränderung kodieren. Weiter konnte gezeigt werden, dass sowohl die
Spikerate, als auch die zeitliche Struktur der Spikes eine Bedeutung bei der
Kodierung von konstanter Bewegung spielen. Im Gegensatz dazu spielte die
zeitliche Spikestruktur bei der Kodierung von Änderungen der Bewegung eine
größere Rolle als die Spikerate. Die kombinierte Aktivität von Ganglienzellen
verbesserte die Kodierung der Bewegungsinformation, besonders wenn sich
die Geschwindigkeit der Bewegung veränderte. Insbesondere die Hypothesen
“Labelled Line” und “Functional Group”, die zwischen Spikes verschiedener
Neurone unterscheiden, ermöglichten eine effiziente Kodierung.

Im zweiten Teil dieser Studie konnte gezeigt werden, dass die Ganglien-
zellantworten der Karpfenretina gleichzeitig Informationen über Bewegung
und Lichtintensität kodieren. Jedoch reichen die Antworten einer einzelnen
Ganglienzelle nicht aus, um Änderungen dieser beiden Eigenschaften zuver-
lässig schätzen zu können. Die kombinierte Aktivität mehrerer Ganglien-
zellen ermöglichte eine Verbesserung insbesondere der simultanen Kodierung
der Stimuluseigenschaften und deren Änderungen. Auch wenn die Spikerate
sich grundsätzlich als Kodierungsstrategien eignete, gewann die zeitliche Fe-
instruktur der Antworten für die Schätzung von Bewegungsinformationen an
Bedeutung, wenn die Lichtbedingungen sich änderten.

Basierend auf diesen Ergebnissen kann vermutet werden, dass eine Kom-
bination der Spikerate und der zeitlichen Struktur neuronaler Aktivität eine
plausible Kodierungsstrategie für retinale Ganglienzellen darstellt. In der
Literatur finden sich Hinweise auf die Verwendung aller drei der hier unter-
suchten Hypothesen zur Kombination mehrerer Zellantworten im visuellen
und anderen sensorischen Systemen. Somit ist es möglich, dass Karpfen-
und Schildkrötenretinen diese Kodierungsstrategien für die simultane Verar-
beitung von Bewegungsinformationen und anderer visueller Stimuluseigen-
schaften verwenden.



Abstract
In a natural environment, the processing of visual motion information

is crucial for survival tasks. Moreover, natural scenes are generally com-
posed by more than one visual feature. Therefore, in order to ensure correct
behavioural responses, the detection and estimation of motion has to be per-
formed robustly regardless of other information cues, such as light intensity,
texture or colour. It has been proposed that in primates and humans, the
processing of motion information starts in the primary visual cortex of the
brain. However, it also has been found that in other animals, such as rabbit,
turtle and fish, the processing of motion information starts already in the
retina. Since the brain relies on the responses of retinal ganglion cells as its
only source of visual information, these responses should encode several fea-
tures of visual scenes simultaneously. Nevertheless, the coding mechanisms
that the retina could utilise remain elusive.

The first part of this study was dedicated to investigate how the activ-
ity of retinal ganglion cells could encode information about motion features
under constant light intensity conditions. This investigation involved the
extracellular recording of retinal ganglion cell responses to a moving stimu-
lus. For the recordings, turtle (trachemys scripta elegans) and carp (cyprinus
carpio) were used as animal models. The second part of this study further
explored the possible mechanisms that could allow the simultaneous encod-
ing of information about motion features and changing light intensities. For
this task, retinal ganglion cell responses were extracellularly recorded from
one carp retina.

Two spike train metrics were used to analyse the recorded responses of
retinal ganglion cells; spike cost-based metrics and ISI metrics. The spike
cost-based metrics allows testing the spike firing rate of the responses of reti-
nal ganglion cells, as well as different time scales of their temporal structure,
as plausible coding strategies for visual motion. In turn, the ISI metrics
was used as complementary method to test the relevance of the temporal
structure for encoding tasks. Moreover, it was also explored if the combined
activity of cells could enhance the encoded information about visual stimu-
lus features. Here, three joint activity coding hypotheses were tested; Pooled
Population, Labelled Line and Functional Group.

The results obtained for the first part of this study show that the activity
of retinal ganglion cells in turtle and carp retinae encodes information about
motion velocity as well as velocity changes. Moreover, the spike firing rate
and the temporal structure show to be suitable coding strategies for con-
stant motion features. In contrast, the temporal structure gains relevance
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iv Abstract

for the encoding of changing motion features, while the opposite happens
for the spike firing rate. Furthermore, the combined activity of retinal gan-
glion cells allows enhancing the encoded information about motion features,
especially about the ones that involve changes in motion velocity. Addi-
tionally, the hypotheses distinguishing spikes coming from different neurons,
i.e., Labelled Line and Functional Group, show to encode more efficiently
information about motion features.

The results for the second part of this study show that the activity of
single retinal ganglion cells of the carp encodes information about motion
features and light intensities simultaneously. However, this activity performs
poorly for the encoding of individual changes in these two stimulus features.
In turn, the joint activity of retinal ganglion cells allows enhancing the perfor-
mance, especially for the simultaneous encoding of the two stimulus features,
as well as the encoding of their changes. Furthermore, while the spike firing
rate and the temporal structure show to be suitable coding strategies for all
cases, finer time scales of the temporal structure gain relevance for encoding
tasks when changes in light intensity are present.

Based on the results obtained in this study it can be suggested that the
spike firing rate and the temporal structure of neuronal activity are plausible
coding strategies for retinal ganglion cells. Moreover, since the three joint
activity coding hypotheses tested in this study have been reported in different
sensory systems, including the visual system. It is possible that turtle and
fish retinal ganglion cells utilise them for the processing of visual motion and
the simultaneous encoding of stimulus features.
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Chapter 1

Introduction

Everyday situations like walking through crowds, driving a car or playing
soccer, involve the visual detection and estimation of motion. Moreover,
for animals in a natural environment, the detection and estimation of mo-
tion play an important role in many behavioural important functions, such
as camouflage breaking, detecting threatening objects and the perception of
depth. Therefore, in order to enhance the chances of survival, all these func-
tions should be robustly performed regardless of the luminance, shape, color,
and texture of the visual objects. Within this context, it is very likely that all
animals with vision have mechanisms for motion processing. Nevertheless, it
is still not entirely understood how the processing of motion information is
performed by the visual system.

The present study is focused on the first stage of motion detection and
estimation in the visual system; the retina. Here, utilising the turtle (tra-
chemys scripta elegans) and carp (cyprinus carpio) as animal models, it was
investigated how the activity of retinal ganglion cells encode information
about the motion features of a moving stimulus. For both animal species,
the analyses were performed considering the extracellular activity of single
and populations of retinal ganglion cells. Here, it was assessed how relevant
the spike firing rate and the temporal structure of the responses of retinal
ganglion cells are, for the encoding of motion information. Additionally, this
study includes the test of three different hypotheses that deal with the mech-
anisms by which the activity of retinal ganglion cells could jointly encode
information about motion features.

Because the detection and estimation of motion have to be accomplished
under dynamical light conditions, a further aspect of this study tested the
capacity of carp retinal ganglion cells to encode simultaneously, information
about motion features and light intensities.

1



2 CHAPTER 1. INTRODUCTION

The sense of vision in many animal species is the primary source of in-
formation about the outside world. For survival in a natural environment,
many animal species rely on this sense to perform the correct behavioural
task to either escape from a predator, or catch a prey. In humans, vision has
a strong direct influence in mental processes like vection (self-motion percep-
tion) (Prothero et al., 1995) and memory (Leibovic, 1990), and it has been
also indirectly related to mental time travel (Miles et al., 2010). Furthermore,
reflex responses, like the optokinetic nystagmus can be induced by continu-
ous movement of the whole or a part of the visual field (Cohen et al., 1977).
Besides the fundamental role that vision plays in many animal species, the
research interest in this sense, specially in the retina, is also based on the fact
that the gained knowledge can contribute in a great manner to understand
the function of the nervous system (Dowling, 1987).

Although all parts of the eye play an important role in vision, the retina is
the one responsible for the transduction of the time dependent visual image
into electrical signals and the transmission of these signals to the brain. The
retina is a filmy piece of tissue with a thickness of roughly half a millimetre
that lines the back of the eyeball (Kolb, 2003). This tissue develops from
the embryonic forebrain and thus, it is considered to be part of the brain
(Dowling, 1987). All of the visual information from the outside world un-
dergoes an early stage of processing and compression at the retina and then,
it is further transmitted to the brain by ensembles of retinal ganglion cells
in the form of action potentials, which are also known as spikes. Moreover,
it has been proposed that by the processing of the spatio-temporal intensity
changes of the image that has been sensed by the two dimensional array of
photoreceptors, the first stages of visual detection and estimation of motion
are already carried out in this tissue (Dellen and Wessel, 2009).

The only source of information available to the brain about the visual
experience is contained in the spikes arriving from the retinal ganglion cells.
Here, much research has been done in the attempt of understanding how the
retina processes and finally encodes the visual information. This research
covers, among others, the molecules that the different types of retinal cells
use as neurotransmitters, the gap junctions that these cells use to communi-
cate among each other, and the electrical activity that these cells utilise to
process and further transmit the visual information. Within the framework
of the latter research field, the retina offers great experimental advantages to
explore the way in which the activity of retinal ganglion cells could encode
the visual information that they send to the brain. One of these advan-
tages is that the retina is a flat tissue with a layered structure, in which
cells of a certain type are located at defined depths. Additionally, the retina
can be readily stimulated using its natural sensory input, i.e., photorecep-
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tors, and the responses to these stimuli can be registered with relative ease
by extracellular recordings. In this sense, the advances in microelectrode
recording techniques (Meister et al., 1994; Nordhausen et al., 1996; Stoppini
et al., 1997; Borkholder et al., 1997; Nicolelis et al., 1998; Segev et al., 2004),
as well as the processing power of actual computers, have enabled a better
understanding of the functional aspects of the retina.

Since the first experiments to record the neural activity in different animal
species and in different sensory systems succeeded (Adrian and Zotterman,
1926a,b; Adrian and Matthews, 1927, 1928), it has been proposed that sen-
sory information is conveyed in the time varying firing rate of the neuronal
responses. In the case of the retina, there is evidence suggesting that the
temporal structure of the neuronal activity contributes to enhance the infor-
mation that the spike trains carry (Berry et al., 1997; Victor, 1999; Greschner
et al., 2006; Gollisch and Meister, 2008; Cerquera and Freund, 2011). There-
fore, many studies have focused on the characterisation of the responses of
retinal ganglion cells. Nevertheless, this is not a trivial task due to the vari-
ability in the spike firing rate and the spike timing of neuronal responses
to the same stimulus, mostly provoked by extrinsic influences and intrinsic
noise, such as synaptic noise. Several methods have been developed in order
to measure the reproducibility of the properties of neuronal responses to a
repeatedly stimulus and thereby, find which properties of neuronal responses
encode sensory information (Victor and Purpura, 1996; van Rossum, 2001;
Schreiber et al., 2003; Kreuz et al., 2007).

Due to the limited number of axons that form the optic nerve, and the
assumption of parallel information processing in the nervous system, different
hypotheses have been proposed to explain how the activity of retinal ganglion
cells encodes visual stimuli. Here, most of the hypotheses suggest that the
encoding of visual information is carried out by the joint activity of retinal
ganglion cells, rather than by the independent activity of single neurons.
However, the joint activity coding hypotheses are sometimes contradictory
proposing on the one hand, that the ganglion cells are mainly non-redundant
or independent encoders of information (Fernandez et al., 2000; Nirenberg
et al., 2001) and on the other hand, that the activity of these cells is repetitive
and redundant (Puchalla et al., 2005).

The first chapter of this study comprises four sections. Section 1.1 in-
cludes a brief introduction into the architecture of the vertebrate retina.
Here, the stages of visual information flow within the retina are explained by
making a short and general description of the function and interconnections
of the major retinal cell types. Section 1.2 introduces the current hypotheses
about how the features of neuronal activity could serve in the encoding of
visual information. These features include the spike firing rate and the tem-
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poral structure of the activity of single, as well as populations of neurons.
Moreover, this section presents three hypotheses about how the activity of
single neurons could be combined in order to jointly encode sensory informa-
tion. Section 1.3 makes a brief description of the properties of the natural
images that the visual system of animals has to deal with, and their relation
to the function of neurons in the visual system. Finally, Section 1.4 includes
a short review about some stimulus reconstruction methods, and the ap-
proaches followed in this study to test how the activity of retinal ganglion
cells encode different features of visual stimuli.

The second chapter of this study includes three sections, which are de-
voted to the performed experiments and the applied methods to analyse the
acquired data. Section 2.1 describes the extracellular recordings performed
in the isolated retinae of turtles and fish, as well as the stimuli used for
the electrophysiological experiments. Section 2.2 describes the acquired data
and the pre-analysis stages that comprise spike sorting and cell classifica-
tion. Furthermore, this section introduces the rationale behind the construc-
tion of small cell populations to test ensemble coding hypotheses. Finally,
Section 2.3 introduces the analysis methods applied in this study to inves-
tigate how the activity of retinal ganglion cells encodes information about
visual stimuli. Moreover, this section describes the methods used to quantify
the performance of the tested hypotheses for the encoding of visual stimuli
features.

The third chapter contains the results obtained from the analyses of the
activity of single and small populations of retinal ganglion cells. Here, Sec-
tion 3.1 and Section 3.2 are dedicated to the experiment protocols followed in
this study. In turn, both sections include the description of the performance
allowed by the different properties of the responses of retinal ganglion cells
for the encoding of visual information.

While the fourth chapter of this study is dedicated to the discussion of
the obtained results, the last chapter of this study addresses the conclusions
that can be drawn from them.

1.1 Architecture of the Retina

The retina is a thin piece of tissue with a thickness, depending on species,
between 100 µm and 500 µm that lines the inside of the eyeball and is located
at the posterior part of it. The retina owns both, sensory neurons that
perform the transduction of light into electrical signals, and neurons that
form intricate circuits to carry out the first stages in the processing of visual
information. Remarkably, the architecture of the retina is similar for many
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animal species, having the same layer arrangement and the same five principal
cell types. Furthermore, many of the neurotransmitters used in the retina are
the same across many animal species (Meister and Berry II, 1999). However,
depending on the species, the anatomical microcircuitry of the retina shows
some differences. For instance, the diversity of neurons like the horizontal
and amacrine cells decreases in higher mammals, in which more complex
visual processing is thought to be relegated to the neocortex (Schiller, 2010).
In contrast, animal species whose retinae perform more visual information
processing, have specialised retinal regions with cells that fulfil a defined
function, e.g., the detection of fast movements by cells in the visual streak of
turtles (Ammermüller and Kolb, 1996) and rabbits (Barlow and Hill, 1963;
Oyster et al., 1981).

A simplified diagram of the architecture of the retina can be observed in
Figure 1.1. Here, it can be observed that the structure of retina consists of
different distinguishable layers. These layers are called nuclear or plexiform
layers, in function of whether they contain cell bodies (somata) or neuron
processes (i.e., dendrites or axons), respectively. Additionally, the layers are
named outer or inner layers in relation to their distance from the eyeball
centre. In this sense, the outer nuclear layer is where the bodies of the
photoreceptors can be found. Immediately anterior to this layer is the outer
plexiform layer, which contains the neuron processes that make the synaptic
connections between photoreceptors, horizontal and bipolar cells. Moving in
the same direction, the next layer is called the inner nuclear layer. This layer
contains the somata of horizontal, bipolar and amacrine cells in its outer,
center and inner segments, respectively. The inner plexiform layer contains
the neuron processes of bipolar, amacrine and retinal ganglion cells. The
next layer is the ganglion cell layer, which contains the somata of the retinal
ganglion cells. Finally, the most anterior layer of the retina is the nerve fibre
layer, which contains the axons of the retinal ganglion cells.

The first step in the processing of visual information is performed by the
photoreceptors, which are the neurons that transduce the light into changes
in their membrane potential. As mentioned before, the photoreceptors are
located in the outer part of the retina and therefore, light has to pass through
all the layers of the retina before it reaches these cells. After the transduction
process carried out by the photoreceptors, the further processing and trans-
mission of visual information is accomplished by changes in the membrane
potential of the different types of neurons in the retina. Here, the most direct
pathway for the flow of visual information through the retina is constituted
by the photoreceptors, bipolar cells and retinal ganglion cells. Nonetheless,
the processing of visual information that takes place in the retina also in-
cludes longer pathways that involve the interaction of photoreceptors and
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Figure 1.1: Simplified diagram of the architecture of the retina showing the
different type of neurons and their organization in different layers.

bipolar cells with horizontal cells, and the interaction of bipolar and retinal
ganglion cells with amacrine cells. The final stage in the processing of visual
information by the retina is reached at the retinal ganglion cells. Moreover,
these cells are different to the rest of the neuron types in the retina in the
sense that they, and some types of amacrine cells, are the only capable of pro-
ducing action potentials (Dowling, 1987; Zhou and Fain, 1996; Habermann
et al., 2003; Segev et al., 2004). The axons of retinal ganglion cells build the
optical nerve, which in turn conveys all the visual information to the brain
in the form of temporal sequences of action potentials.

The turtle has been one of the animal models used by electrophysiolo-
gists due in part to the ease and stability of its retina in electrophysiological
recordings. Moreover, besides the fact that turtles have good colour vision,
the structure of their retina is characterized by a region of specialized cells
running above the optic nerve called visual streak. The cells in this region
allow the turtle to detect fleeting movements and orient them relative to the
horizon. Therefore, it has been proposed that retinae with this streak struc-
ture can process information about features of image motion and therefore,
perform more vision processing in comparison with retinae with fovea (Kolb,
2003). Other animal models like fish have also been long used to study the
function of the retina. Here, within the framework of this study, turtle and
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fish retinae were used as models in order to gain some insights about the
similarities in the encoding of visual information by the retina across animal
species.

In the following sections, the general location and function of the different
types of retinal cells are briefly described. Additionally, for each of the cell
types, the description addresses shortly the identified cells in turtle an fish
retina.

1.1.1 Photoreceptors

The retina in most vertebrates has at most two types of photoreceptors;
rods and cones. In this sense, the skate retina seems to be an exception
due to the fact that only rods appear to be present in its receptor layer
(Dowling and Ripps, 1970; Ripps and Dowling, 1990; Reuter, 2011). The
rods are responsible for monochromatic vision and are generally used for
dim-light vision. Moreover, these cells usually respond to slow changes in
light fluctuations. In contrast, cones are responsible for chromatic vision and
are used for daylight and bright-coloured vision. Furthermore, these cells
have the ability to respond to rapid light changes.

The outer segments of the photoreceptors are in contact with the pigment
epithelium, which is located at the most posterior side of the retina. One of
the functions of the pigment epithelium is to absorb the incoming photons
and prevent their back reflection into the photoreceptors, avoiding in this
way the blurring of images. Furthermore, the pigment epithelium protects
the photoreceptors from excessive exposure to light radiation.

The outer segments of the photoreceptors contain disks filled with pho-
topigments. Here, depending on the photoreceptor, the photopigments are
comprised by the chromophore 11-cis-retinal and one class of the protein
opsin (Lamb and Pugh Jr., 2004; Lamb et al., 2007). Thereby, in the rods,
this complex is called rhodopsin, whereas in the cones, it is called iodopsin.
Here, the difference in the spectral sensitivity of the cones is determined by
the light wavelengths that their photoreceptor protein opsin is likely to absorb
(Brown and George, 1963, 1964; Marks et al., 1964; Dowling, 1987; Purves
et al., 2001). When light hits one photoreceptor, it provokes a conforma-
tional change of the molecule 11-cis-retinal to all-trans-retinal. In turn, this
change gives rise to a biochemical cascade that is the basis of the transduc-
tion of light into changes in the membrane potential of the photoreceptors.
In order to ensure the further phototransduction, the re-isomerisation of the
all-trans-retinal to 11-cis-retinal has to be undertaken. This process takes
place in the pigment epithelium (Lamb and Pugh Jr., 2004).

Counterintuitively, rods and cones are hyperpolarised when exposed to
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light and depolarised in the dark. When the photoreceptors are depolarised,
their synapses release glutamate and depending on the neurotransmitter re-
ceptors of the postsynaptic cells, they will induce an inhibitory or an excita-
tory response. All photoreceptors make synaptic contacts with horizontal and
bipolar cells at the outer plexiform layer (OPL). Nonetheless, rods and cones
have different pathways for the transmission of visual information. Here, the
rod pathways involve the indirect transmission of visual information through
the connection between rod bipolar and AII amacrine cells (Kolb, 1979, 1997,
2003). This pathway is going to be described in more detail in Section 1.1.4.
Furthermore, the synaptic connections through the rod pathway are more
convergent than for the cone pathway. This higher convergence degree al-
lows the rod pathway to be a better detector of light at the expense of acuity.
In contrast, the the rod pathway provides better acuity at the expense of light
detection.

As mentioned before, turtles have a very good colour vision, which can
be inferred by the fact that they have at least six types of cones that are
sensitive to light in a wide range of wavelengths. The spectral sensitivity
of cones can be inferred from the colour of the oil droplets that they con-
tain (Table 1.1). In contrast, rods in the turtle retina lack these droplets
(Ammermüller and Kolb, 1996; Ammermüller et al., 1998). The cones of the
turtle retina influence the responses of neighbouring cones of opposite spec-
tral type through electrical junctions among each other, i.e., gap junctions.
Here, it has been proposed that the interaction between antagonist and same
spectral cone types might provide a sharpening of the spatial image to a
better resolution than the one provided by the tiling of the photoreceptors
(Ammermüller and Kolb, 1996). Regarding the connections that photore-
ceptors in the turtle retina make with other cells, rods contact only one type
of horizontal cell (H1), whereas cones contact the four types of identified
horizontal cells (H1, H2, H3 and H4)(Table 1.1). In addition, cones in the
turtle retina contact all types of bipolar cells (11 morphologically identified
cells, see Ammermüller and Kolb (1996)), sharing one bipolar cell type (small
bipolar cell) with the rods (Dacheux, 1982).

In the case of fish, it has been found that goldfish and carp own well
developed colour vision. For both species, three types of cones with similar
spectral sensitivities have been found (Marks, 1965; Tomita et al., 1967). The
spectral sensitivities for the different cones in the goldfish and the carp retina
have shown to be between 611 nm and 625 nm for the red-sensitive cones, be-
tween 529 nm and 530 nm for the green-sensitive cones, and between 455 nm
and 462 nm for the blue-sensitive cones. Concerning the further connections
that photoreceptors make in the fish retina, cones contact three types of hor-
izontal cells (H1, H2 and H3), whereas rods contact only one kind of these
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Oil droplet Colour Wavelength Postsynaptic
colour sensitivity horizontal cell

Red Red 620 nm H1
Red and orange Red 630 nm H1 and H4
Red and yellow Red 623 nm H1 and H4

Yellow Green 540 nm H1 and H2
Green/Colourless Blue 460 nm H2 and H3

Colourless Ultraviolet 360 nm H2 and H3

Table 1.1: Cones in the turtle retina. The spectral sensitivity of cones can be
inferred by the oil droplets they contain. The cone types in the turtle retina
make specific postsynaptic contacts with different types of horizontal cells.

cells (rod horizontal cells, see Stell and Lightfoot (1975)). Additionally, cones
contact the two types of bipolar cells identified morphologically in fish (large
M and small C cells). Nonetheless, one of the types of bipolar cells (large M
cells) receives also input from rods (Famiglietti Jr et al., 1977).

1.1.2 Horizontal Cells

The dendrites of horizontal cells invaginate photoreceptors terminals and this
way, receive direct input from these cells. Horizontal cells respond to light
with graded sustained hyperpolarising potentials that have a high degree of
spatial summation. This almost linear spatial summation is due to the direct
electrical coupling of adjacent horizontal cells of the same type via gap junc-
tions. Depending on the animal, retinae could have between one and three
types of horizontal cells; Luminosity cells (L-type), which hyperpolarise for
light in the whole light spectrum and have been found in all of the stud-
ied retinas so far, biphasic Chromatic cells (C-type), which hyperpolarise
for short wavelengths and depolarise for long wavelengths, and triphasic C-
type, which hyperpolarise for monochromatic light from both extremes of the
spectrum and depolarise for wavelengths in the intermediate spectral region
(Svaetichin and MacNichol Jr., 1959; Twig et al., 2003). In addition, hor-
izontal cells can be morphologically classified in external and intermediate
horizontal cells, where external cells are located in layers close to the photore-
ceptors and intermediate cells are located in more anterior layers (Kaneko,
1979).

Horizontal cells receive input from several photoreceptors and are electri-
cally coupled with adjacent homologous horizontal cells. These facts together
explain their wide receptive fields. Furthermore, it is known that horizontal
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cells give negative feedback to cone photoreceptors through the release of
the neurotransmitter GABA (γ-aminobutyric acid). In turn, cones feedfor-
ward the signal further to the bipolar cells they contact. The function of the
horizontal cells is nowadays still not fully understood, but they have shown
to mediate light adaptation. This process regulates the response of the pho-
toreceptors by decreasing their response sensitivity for bright light conditions
and increasing it for dim-light conditions. Less is known about the effects
that the action of horizontal cells have on bipolar cells. Nonetheless, they
appear to be involved in the first stages of image sharpening by adding an
On- or Off-surround signal to Off- or On-bipolar cells, respectively (Kolb,
2003).

Four different morphological types of horizontal cells have been found in
the turtle retina; H1, H2, H3 and H4. From these cells, the H1 cell is the
only one that consist of two morphologically different structures; L1 and L2.
Moreover, rod photoreceptors only make postsynaptic connections with the
L1 structure of this cell. Conversely, cone photoreceptors contact all types
of horizontal cells. The presynaptic connections that the horizontal cells in
the turtle retina make with the cone photoreceptors are listed in Table 1.1.
Regarding the spectral responses of horizontal cells, H1 cells respond to light
in the whole spectrum but nevertheless, exhibit their maximum response for
long wavelengths. In contrast, H2 and H3 cells exhibit biphasic responses
depending on the wavelength of light. Here, depolarisation of both cell types
is produced by red light, whereas hyperpolarisation is provoked by green and
blue light, respectively for the H2 and H3 cells. The responses of H4 cells
still remain not well understood and are often confused with those of H1 cells
(Ammermüller and Kolb, 1996).

In the carp retina, four types of horizontal cells have been identified.
The H1, H2 and H3 horizontal cells are located close to the photoreceptor
layer (external horizontal cells) and contact only cone photoreceptors. The
rod horizontal cells, located more anterior that the external horizontal cells,
contact only rod photoreceptors. H1 and rod horizontal cells have hyperpo-
larising monophasic responses to green, yellow and red light. Nonetheless, H1
cells have their maximum response for red light, whereas rod horizontal cells
have it for green light. H2 cells have a biphasic response, hyperpolarising for
green and yellow light and depolarizing for red light. Finally, H3 cells own
a triphasic response with hyperpolarisation for red light and depolarisation
for green and yellow light (Kaneko and Stuart, 1984).
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1.1.3 Bipolar Cells

The bipolar cells serve as bridge for the flow of visual information from the
photorecetors to the amacrine and retinal ganglion cells. Here, the dendrites
of bipolar cells make synaptic contact at the OPL with the photoreceptors,
from which they receive their input signal with glutamate as neurotransmit-
ter. The transmission of the visual information through parallel channels
begins already at these synapses. In mammals for instance, only one type
of bipolar cell contact rod photoreceptors, whereas as much as eight differ-
ent types of bipolar cell could contact one single cone photoreceptor (Wässle,
2004). At the other extreme of the bipolar cells, their axons contact amacrine
and retinal ganglion cells, using also glutamate as neurotrasmitter for the
further transmission of visual information.

The responses of bipolar cells are graded potentials, whose polarity and
dynamics are defined by the type of glutamate receptors on their dendrites.
In this sense, bipolar cells with excitatory glutamate receptors depolarise in
dark and therefore, activate the Off-pathway, which allows the detection of
dark images against a bright background. In contrast, bipolar cells that have
inhibitory glutamate receptors depolarise with light and this way, activate
the On-pathway, which in turn allows the detection of bright images on a
dark background. As mentioned before, the type of glutamate receptors in
the dendrites of bipolar cells also effects the dynamics of their responses,
allowing that bipolar cells respond either to fast or slow changes of the visual
scene. This decomposition of the temporal aspects of visual information in
different pathways accounts for the claim that the processing of temporal
information of visual scenes starts already at the first synapse in the retina
(DeVries, 2000).

Bipolar cells have receptive fields that are organised in a concentric an-
tagonistic manner. Here, the receptive field centre of the bipolar cells seems
to be produced by the input of the photoreceptors, whereas the surround
appears to be mediated by the indirect action of horizontal cells (Kaneko,
1979). This organisation of the bipolar cells’ receptive fields contributes in
the transmission of information about the contrast of a visual scene.

At least twelve types of bipolar cells have been identified in the turtle
retina. Here, the classification of these cells has been made according to the
stratification patterns of their axons within the five strata of the inner plex-
iform layer (IPL). Furthermore, the responses evoked by the bipolar cells,
either On- or Off-centre, can be sometimes inferred from the type of connec-
tions that they make with photoreptors and their axonal terminations within
the IPL. In this sense, it has been observed that Off-centre bipolar cells have
axons in the two most distal strata of the IPL (B4 and B5), as well as in the
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three most proximal strata (B3, B9 and B10). In contrast, On-centre bipolar
cells have axons exclusively in the three most proximal strata of the IPL
(B1, B2, B6 and B7). Finally, it has been found that all bipolar cells in the
turtle have an antagonistic receptive field organization. Here, the centre and
surround of these receptive fields receive input primarily from red-sensitive
cones and in a less number, from green-sensitive cones (Ammermüller and
Kolb, 1996).

As mentioned before, two morphological types of bipolar cells have been
identified in the fish retina (large M and small C cells). The responses of
these cells can, as in the case of the turtle retina, be inferred by the location
of their axonal terminations within the five strata of the IPL. In this sense,
Off-centre M and C cells have axons in the two most distal strata of the IPL,
whereas On-centre M cells have axons in the two most proximal strata of the
IPL, and C cells have axons only in the most proximal stratum (Famiglietti Jr
et al., 1977).

1.1.4 Amacrine Cells

Back to the studies carried out in the retina by Ramón y Cajal (1892), he
found some cells in the IPL that seemed to lack an axon. Due to this prop-
erty, these cells were named amacrine cells. However, nowadays it is known
that some types of amacrine cells own an axon like process and moreover,
that some of these cells are able to produce action potentials. Based on
morphological studies, many types of amacrine cells have been identified.
Nonetheless, the function that these cells have in the processing of visual
information is still a main research focus.

Amacrine cells act like intermediary cells in the pathway from bipolar
to ganglion cells by making synaptic contacts with both types of retinal
cells within the IPL. In fish (Tachibana and Kaneko, 1988) and rat retina
(Hartveit, 1999), it has been found that between amacrine and bipolar cells,
there are reciprocal contacts that allow the amacrine cells to receive input
from bipolar cells and at the same time, feedback onto them, broadening in
this way the operating range of bipolar cells. In these reciprocal synapses,
it has been proposed that bipolar cells signal amacrine cells using glutamate
as neurotransmitter, whereas the signalling from amacrine to bipolar cells is
done using GABA as neurotransmitter (Dong and Werblin, 1998). Among
the functions of the amarine cells, it has been proposed that for the rod
pathway, the interaction in the IPL of bipolar, amacrine and retinal ganglion
cells works as a mechanism to collect and amplify scattered light for twilight
and night vision (Kolb, 2003). Moreover, it has been found that the under-
lying mechanism for the direction selectivity in the responses of some retinal
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ganglion cells relies in the inhibition action of certain types of amacrine cells
(Taylor and Vaney, 2003). Finally, it has been also proposed that amacrine
cells introduce a temporal domain to the visual information transmitted to
the retinal ganglion cells for the encoding of contrast (Dong and Werblin,
1998).

Based on the diameter of the dendritic extension of amacrine cells, they
have been classified into narrow-field (30-150 µm), small-field (150-300 µm),
medium-field (300-500 µm) and wide-field (<500 µm) amacrine cells (Kolb
et al., 1981). Additionally, amacrine cells have also been classified based on
the location of their dendrites within the strata of the IPL. Here, at least four
different categories have arisen; broadly stratified, bistratified, monostratified
and diffuse amacrine cells. The functional relevance of the stratified patterns
of the amacrine cells lies on the fact that it has been observed that Off-
amacrine cells confine their dendrites to the sublamina a of the IPL (strata
1 and 2), whereas ON-amacrine cells do it for the sublamina b (strata 3, 4
and 5). In contrast, On-Off amacrine cells have shown to have dendrites in
both sublaminae (Kaneko, 1979).

The physiological properties of amacrine cells have allowed the identi-
fication and classification of these cells into different groups. Within the
framework of this study, only some of the representative amacrine cells are
going to be briefly described. The AII amacrine cell is probably the most
studied amacrine cell in the vertebrate retina. Moreover, this amacrine cell
is the most common type in the mammalian retina. In contrast to most of
the amacrine cells, which are GABAergic, AII amacrine cells are glycinergic.
Due to the fact that rod bipolar cells do not have direct synaptic contact with
retinal ganglion cells, these narrow-field (30-70 µm) cells play an important
role in the function of the rod-pathway. Here, AII cells receive input from
rod bipolar cells at the lower sublamina b of the IPL, and they subsequently
signal retinal ganglion cells by different postsynaptic contacts. In this way,
most of the postsynaptic contacts of AII cells are located at the sublamina
a of the IPL, where they make connections with Off-centre cone bipolar and
Off-centre retinal ganglion cells. Additionally, AII cells signal On-centre cone
bipolar cells via gap juntions in the sublamina b of the IPL and these cells
in turn, feedforward On-centre retinal ganglion cells. By the use of both
circuits mentioned before, the AII amacrine cells allow that the rod signal
reaches the On- and OFF-centre retinal ganglion cells (Kolb, 1979, 1997).
Another amacrine cell involved in the rod pathway is the A17 cell. Due to
the wide-field nature of this amacrine cell, it receives inputs from several
thousands of rod bipolar cells. Moreover, A17 cells make reciprocal synapses
with rod bipolar cells and by this mechanism, it is though that they are able
to amplify the rod signal for low light intensities (Kolb, 1997).
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An example of an amacrine cell that contributes to the cone pathway is
the A8 cell. Although these cells receive some input from On-centre bipolar
cells, most of their input comes from Off-centre cone bipolar cells in the
sublaminae a and b of the IPL. A8 cells are glycinergic, have transient Off-
responses and contact Off-centre retinal ganglion cells in the sublamina a of
the IPL (Kolb, 1997).

A special type of amacrine cells are the starburst cells, which name is
derived from their fireworks exploding appearance. Starburst are medium-
field (200-800 µm) amacrine cells that use acetylcholine (ACh) and GABA as
excitatory and inhibitory neurotransmitters, respectively (Vaney and Young,
1988). These cells receive input from Off-centre cone bipolar cells and AII
cells, and are organised in the IPL in a vertically two-cell-mirror-symmetric
arrangement. Here, it has been observed that besides retinal ganglion cells,
this type of amacrine cell is also able to produce action potentials (Bloom-
field, 1992). Furthermore, it has been found that starburst amacrine cells
respond more strongly to images moving away from their soma than to im-
ages moving towards it (Taylor and Vaney, 2003). Because starburst cells are
though to make selective connections with On-Off and On-retinal ganglion
cells in the IPL (Famiglietti, 1987, 1991; Briggman et al., 2011), it has been
proposed that the distinguished responses of starburst cells to a moving im-
age are responsible for the direction selectivity of some retinal ganglion cells
in rabbits and turtles (Kolb, 1997).

In the turtle retina, 45 types of amacrine cells have been found based on
morphological and physiological studies. Based on the responses of amacrine
cells, they have been classified in four groups; On-sustained, Off-sustained,
On-transient and Off-transient. In this sense, some relations between the
morphology and physiology of the amacrine cells have been found. For ex-
ample, both types of sustained amacrine cells seem to be monostratified
cells that follow the general bisublamination rule in the IPL, i.e., Off-cells
are found in the sublamina a, whereas On-cells are found in the sublam-
ina b. Furthermore, monostratified amacrine cells with transient responses
and those with direction selectivity are found in the middle of the IPL. Fi-
nally, the amacrine cells that have been proposed to mediate the direction
selectivity of retinal ganglion cells are the A15, A5, A9 and A6 cells, from
which A15, A5 and A9 are thought to use acetylcholine as neurotransmitter
(Ammermüller and Kolb, 1996).

Based on the responses of amacrine cells in the carp retina, they have
been classified in sustained and On-Off transient amacrine cells. Here, as
in the case of the turtle retina, there are some relationships between their
morphology and physiology. In this sense, it has been found that sustained
amacrine cells are monostritified, whereas the transient amacrine cells are ei-
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ther bistratified or multistratified. Furthermore, sustained On-amacrine cells
are found in the strata 4 of the IPL, they have a high degree of spatial sum-
mation and red light elicits their maximum response. In contrast, although
Off-amacrine cells are rarely found in the carp retina, their dendrites seem
to be confined to the sublamina a of the IPL. Finally, On-Off amacrine cells
have dendrites in both sublaminae (Famiglietti Jr et al., 1977).

1.1.5 Retinal Ganglion Cells

The retinal ganglion cells are the last stage in the processing of visual in-
formation at the retina. These cells collect all the visual information that
has been pre-processed by the vertical (i.e., photoreceptor and bipolar cells)
and horizontal (i.e., horizontal and amacrine cells) pathways in the retina.
Furthermore, the axons of the retinal ganglion cells are organised in bundles
that build the optical nerve, which in turn contacts the brain. In turn, reti-
nal ganglion cells receive their input from bipolar and/or amacrine cells and
subsequently, they transmit the visual information to the brain in the form of
action potentials. In vertebrates, retinal ganglion cells have long been classi-
fied based on their morphology (Ramón y Cajal, 1894). Nonetheless, further
studies on the primate (e.g., Polyak (1941)) and cat retina (e.g., Boycott
and Wässle (1974)) have made it possible to find associations between the
morphology and physiology of these cells.

In the cat retina, as well as in some other vertebrates like monkeys, frogs
and rabbits, it has been found that almost all retinal ganglion cells have re-
ceptive fields that are organised in a concentric manner, having a centre with
light responses of certain polarity, and an antagonistic surround (Kuffler,
1953; Hubel and Wiesel, 1960; Barlow, 1953; Barlow et al., 1964). Moreover,
from the first studies in cat retina, it was found that some cells showed re-
sponses with direction selectivity (Stone and Fabian, 1966). In Enroth-Cugell
and Robson (1966), the authors of the study were able to classify the retinal
ganglion cells of the cat in two different classes based on their responses. In
this sense, X-cells were found to have sustained responses to light stimuli,
whereas Y-cells showed transient responses. Moreover, the same study pro-
posed a Gaussian model for the centre and surround of the retinal ganglion
cells’ receptive fields. Here, it was found that the Gaussians describing the
centre and surround responses of the X-cells summed almost linearly allowing
therefore, the cancellation of them when each half of the receptive field was
stimulated with complementary light intensities. In contrast, Y-cells showed
always responses to the light stimulus independently of its spatial phase.
Therefore, it was proposed that these cells do not sum linearly the signals
coming from the different areas of their receptive fields. Due to this non-
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linear summation, Y-cells are sensitive to small stimulus movements within
and far away from their receptive field centre. Additionally, the signals from
the Y-cells are the first to arrive to the brain and therefore, it is thought
that these cells are involved in turning on visual attention (Wässle, 2004).
Moreover, it has proposed that in vertebrates, Y-cells could be involved in
the processing of motion direction in higher brain areas (Demb et al., 2001).
Further studies (Stone and Hoffman, 1972; Stone and Fukuda, 1974) intro-
duced a new type of retinal ganglion cell; the W-cells. These cells showed
differences with the X- and Y-cells in their conduction velocity and receptive
field properties.

In a study by Boycott and Wässle (1974), the authors classified the retinal
ganglion cells based on the relationship between the size of their dendritic
field and the size of their soma. In this sense, the cells were grouped in four
categories; alpha- (α), beta- (β), gamma- (γ) and delta- (δ) cells, being the
latter class a subtype of the γ-cells. Now it is know that α-cells constitute
approximately 3% of all retinal ganglion cells in the cat and it is thought that
parasol cells in the primate retina are their counterpart. In contrast, β-cells
constitute almost 50% of all retinal ganglion cells in cat and are thought to
be the counterpart of the midget ganglion cells in the primate retina, where
they account for 70% to 80% of all retinal ganglion cells. Because of the
high density and small dendritic field of β-cells, they have been proposed to
account for the acuity system of mammals (Wässle, 2004). In addition to the
morphological classification of the retinal ganglion cells, Boycott and Wässle
(1974) proposed a relationship between the morphological cell classes and
the physiological cell classes described in Enroth-Cugell and Robson (1966).
Thereby, the β-cells were suggested as the counterpart of X-cells, the α-cells
the counterpart of Y-cells and finally, the γ-cells as the counterpart of the
W-cells.

Regarding the distribution of the retinal ganglion cells in the retina, it
has been found in that each type of cell tiles the retina with an overlap
depending on the cell type Wässle (2004). In the mammalian retina, the
dendrites of α-cells have a low overlap, whereas the dendrites of β-cells have
a high overlap. Furthermore, the size of the dendritic field of α- and β-
cells seems to be proportional to their eccentricity (Boycott and Wässle,
1974). Retinal ganglion cells, as in the case of bipolar cells, have different
stratification patterns depending on the polarity of their light responses.
Here, Off-α retinal ganglion cells have dendrite arborations in the sublamina
a of the IPL, whereas On-α cells have them in the sublamina b. Moreover,
direction selective cells have dendrites in both sublaminae (Nelson et al.,
1978; Wässle, 2004). The tiling of the retina by the different types of retinal
ganglion cells, together with their differentiated stratification patterns within
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the IPL, have been proposed to allow the retinal ganglion cells to transmit
different features of the visual environment through parallel pathways (Peichl
and Wässle, 1983; Wässle, 2004).

In the turtle retina, Granda and Fulbrook (1989) classified the retinal
ganglion cells based on their responsiveness to certain features of the visual
stimulus and this way, suggested eight groups of retinal ganglion cells; simple,
On-sustained, annular, wavelength-sensitive, direction selective, bar-shaped,
large field, and velocity. Here, direction selective cells comprised approxi-
mately 40% of the sample of recorded retinal ganglion cells and they were
found to have On-, Off- and On-Off responses. Later studies (Ammermüller
and Kolb, 1995; Ammermüller et al., 1995; Ammermüller and Kolb, 1996)
have found 27 types of ganglion cells based on morphological analyses. Fur-
thermore, as in the case of the amacrine cells, the retinal ganglion cells could
be classified in four physiological groups; On-sustained, Off-sustained, On-
transient and Off-transient retinal ganglion cells. In this sense, monostratified
sustained retinal ganglion cells follow the bisublaminate stratification rule,
whereas monostratified transient cells have their dendrites at stratum 3. In
the turtle, G18, G19, G24, G15, G14a and G20 retinal ganglion cells have
been found to be direction selective. Here, all of these cells have at least one
branch of their dendrites in stratum 1 of the IPL, and they can be mono-
(G18 and G20), bi- or multistratified.

In fish, Off- and On-centre retinal ganglion cells seem to obey the bisub-
lamite stratification rule (Kaneko, 1979). Here, Off-centre retinal ganglion
cells seem to have large cell bodies and have their maximum response to
red light. In contrast, On-centre retinal ganglion cells have small cell bod-
ies and are rarely found (Famiglietti Jr et al., 1977). Moreover, as in other
animal species, it has been found that retinal ganglion cells in fish have
centre-surround antagonistic receptive fields (Kaneko, 1971).

As mentioned before, in contrast to all the neurons in the retina, retinal
ganglion cells and some types of amacrine cells are the only cells capable of
generating action potentials. Here, the spike trains generated by the former
cells are the only source of information about the visual environment for the
brain. Due to the fact that retinal ganglion cells have shown to have selective
responses for certain features of visual scenes, it has been proposed that these
cells decompose the visual image in different parallel neuronal images that
are encoded by different features of the generated spike trains. The following
sections will be dedicated to the introduction of the coding hypotheses based
on the activity of retinal ganglion cells.
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1.2 Neural Coding Strategies

Since the first recordings of neural activity in amphibians and mammals
by Adrian and Zotterman (1926a,b), it was observed that the responses of
stretch receptors in muscles varied their characteristics depending on the
intensity of the applied stimulus. In further studies, Adrian and Matthews
(1927, 1928) were able to record light responses of optical nerve fibres of
the eel. The findings in the optical nerve fibres confirmed the results found
previously in the muscle nerve fibres. Here, the intensity and frequency of
the optical nerve fibres’ activity depend on the magnitude of the applied
stimulus. Moreover, Adrian and Matthews (1927, 1928) also suggested that
the interaction between neurons could account for the transmission of sensory
information.

In a later study by Hartline (1938), the author was able to record the
action potentials of single fibres of the frog’s optical nerve. Here, although
some of the recorded retinal ganglion cells showed similar responses to the
same stimulus, it was observed that not all of them elicited the same number
of action potentials in response to the same stimulus. Moreover, the author
observed that in addition to the variability of the response features among
neurons, the number of action potentials and the temporal structure of the
elicited spike trains changed in the course of the application of the light
stimulus. In this way, based on the properties of the responses of retinal
ganglion cells, Hartline found a relationship between these and the changes
in the light intensity of the stimulus, suggesting in this way, On-, Off- and
On-Off response classes.

Nowadays, much has been learned about how visual sensory information
is processed and transmitted within and out of the retina. In the case of the
latter process, different approaches have been tested to find which features
of the spike trains are important for the transmission of visual information
to the brain. The most common and first approach was to take the number
of spikes within a time-window of a certain width, and relate this spike rate
to the presented stimulus. This approach however, has been suggested to
be unable to account for the encoding of all the features of visual stimuli.
Therefore, in recent years the relevance of the temporal structure of the
spike trains for the encoding of visual information has been assessed. One
argument supporting this approach is that for the fast processing of sensory
information, the time of occurrence of the first spikes after stimulus changes
would convey information in a faster way than the count of spikes in long
time windows. Furthermore, certain types of neurons could act as coincidence
detectors, whose output will depend more on the absolute time of arrival of
input spikes, rather than in the number of incoming spikes within a certain



1.2. NEURAL CODING STRATEGIES 19

period of time. Finally, another argument supporting the relevance of the
temporal structure of spike trains for the encoding of information considers
the interspike time intervals. Here, the effect of a spike in a post-synaptic
neuron can depend significantly on the period of time since the occurrence
of earlier spikes (Victor and Purpura, 1997).

1.2.1 Rate Code

As mentioned before, since the first experiments to record the activity of
neurons succeeded, the rate code hypothesis was proposed as the first ap-
proach to understand how the activity of neurons encodes information about
sensory stimuli. The basic idea behind this hypothesis is that the number of
spikes elicited by a neuron, or a population of neurons in a defined period
of time, would carry information about features of a given stimulus. So far,
three different approaches to average the number of elicited spikes have been
proposed for this coding hypothesis; average of spikes in time, average of
spikes in response to different repetitions of the same stimulus and average
of the spikes elicited by a population of neurons. These approaches are not
mutually exclusive and therefore, depending on the matter subject to study,
they can be combined to calculate the mean firing rate.

Spike average over time

The spike average over time (F) is usually expressed in spikes per second
or Hertz, and it is obtained basically by counting the number of spikes (S)
in a period of time (T) and then, dividing the result by this period of time
(Equation 1.1).

F (T ) =
S(T )

T
(1.1)

In the case of the applied force in Adrian and Zotterman (1926a,b), the
spike average over time proves to account for the transmission of information
about features of constant or low frequency varying stimulus. Nonetheless,
the major drawback of this approach is that for the detection of fast stimulus
changes, usually short presentation times are available to living organisms.
Therefore, there should be a more efficient mechanism to allow the fast detec-
tion and classification of stimulus changes, than averaging spikes over time.
For instance, it has been found that the house fly can perform corrective
flying manoeuvres in response to a visual stimulus within 40 ms (Land and
Collet, 1974). In this direction, humans have shown to be capable of detect-
ing visual stimuli that have been presented for 20 ms (Thorpe et al., 1996).
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Furthermore, neurons in the temporal lobe have showed responses 100 ms
after visual stimulus presentation. Here, the minimum number of synapses
between the photoreceptors and the face selective neurons in the temporal
lobe has been suggested to be ten. Therefore, a maximum of ∼10 ms per
synapse are available to integrate the spike firing rate, making very unlikely
that the neurons use the spike average over time for encoding tasks (Thorpe
and Imbert, 1989).

Spike average over trials

The spike average over several repetitions (K ) of the same stimulus (also
known as Peri-Stimulus-Time histogram or PSTH) is obtained by calculating
a histogram of the spike frequency elicited by a neuron, where the total period
(T) of stimulus presentation is divided in time bins (∆t). The results for
each bin are then divided by the length of the time bins and the number of
repetitions, see Equation 1.2.

F (t) =
1

∆t

S(t; t+ ∆t)

K
(1.2)

The PSTH allows the investigator to get some insight about the time
variations of neural responses to a stimulus. Nevertheless, this form of coding
sensory information is rather unlikely to occur in nature due to the fact that
living organisms usually do not have a second chance for the detection of,
e.g., a threatening condition.

Population spike average

The last approach for the rate code is to average the spikes across a popu-
lation of neurons. The rationale behind this approach is that many neurons
elicit similar responses to the same stimulus and additionally, make further
synapses with defined populations of neurons, e.g., the M and P ganglion
cells in primate, which project into the magnocellular and parvocellular lay-
ers of the geniculate, respectively. In this sense, it has been proposed that
to overcome the rather irregular spiking pattern of single neurons for the
transmission of neural information, the activity of an homologous neuron
population would be able to vary fast enough to follow fast changes of stimu-
lus conditions (Knight, 1972; van Vreeswijk and Sompolinsky, 1996; Gerstner,
2000). The mean firing rate of a population of N cells can be calculated by
counting the spikes (SPop) that this population of neurons fire in the time
t + ∆t, and dividing the result by the number of neurons N and the time



1.2. NEURAL CODING STRATEGIES 21

interval ∆t, see Equation 1.3.

F (t) =
1

∆t

SPop(t; t+ ∆t)

N
(1.3)

One drawback of this approach is that real neurons have always a certain
degree of heterogeneity. For instance, it has been observed that each type
of retinal ganglion cells tiles the retina. Here, although some overlap is
observed in the receptive fields of retinal ganglion cells from same type, no
sharing of the same receptive field for two cells of the same time will occur
(Wässle, 2004). Therefore, for certain tasks such as the detection of small
moving objects, the spatial summation over a population of cells could be
counterproductive for spatial resolution.

1.2.2 Temporal Code

Additional to the spike firing rate of neurons, it has also been proposed
that the encoding of additional sensory information could be achieved by the
temporal structure of neuronal responses. Here, it has been suggested that
temporal patterns in neuronal activity are highly specific symbols. In turn,
these symbols would encode information by selectively eliciting the response
of neurons that are able to decode them (Strehler and Lestienne, 1986). The
proposal of a temporal code mechanism can be traced back to the time when
Hartline (1938) recorded the responses of retinal ganglion cells of frogs to
a light stimulus. Here, the author observed that the responses of distinct
retinal ganglion cells exhibited different temporal patterns to the same stim-
ulus. Moreover, Hartline (1938) observed that even the responses of the same
retinal ganglion cell exhibited temporal differences in the course of the stim-
ulus presentation. Thereby, the temporal structure of neuronal responses has
shown to play a role in the encoding of different sensory information. In cats
for instance, cortical neurons seem to use the temporal spike patterns of sin-
gle cells to perform sound localisation (Middlebrooks et al., 1994), whereas
in humans, it has been found that the relative timing of the first spikes of
an ensemble of primary sensory neurons carries information about features
of tactile stimuli (Johansson and Birznieks, 2004).

Different studies have reported that responses of retinal ganglion cells
in turtles, salamanders, rabbits, cats and primates exhibit precise temporal
patterns with small time variations across repetitions of the same stimulus
(Greschner et al., 2006; Berry et al., 1997; Kara et al., 2000; Uzzell and
Chichilnisky, 2004; Gollisch and Meister, 2008). These observations suggest
on one hand, that the temporal structure of neuronal responses could be
a consequence of the stimulus dynamics. However, on the other hand, the
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temporal structure could also arise as a consequence of the intrinsic properties
of the neurons (e.g., stimulus selectivity, refractory period). In this direction,
the finding of precise temporal patterns in retinal ganglion cell responses do
not necessarily imply that these neurons utilise a temporal code to encode
visual information. Nevertheless, based on the observations made in other
sensory systems, it is plausible that the visual system also makes use of
a temporal code mechanism. With this in mind, the role of the temporal
structure of neuronal responses for the encoding of sensory stimuli has been
mainly analysed considering the following three aspects; latency, interspike
time interval and spike timing.

Latency

Latency can be generally defined as the time difference between two events.
However, when considered as a neural coding mechanism, this difference in
time can be regarded as an absolute or a relative latency. Absolute latency
is defined as the time delay between stimulus onset and the first spike of the
elicited neuronal responses. In contrast, relative latency can be described as
the time difference between e.g., the responses of a population of neurons and
the first spike of the elicited neuronal responses (Kretschmer et al., 2012).
Moreover, the relative latency can also be the time difference between the
first elicited spikes from two neurons (Thomson and Kristan, 2006; Gollisch
and Meister, 2008). First spike latency has been proposed by Thorpe (1990),
amongst others, as a mechanism to encode sensory stimulus information.
This proposal is based on the fact that living organisms often need to detect
stimuli or perform corrective motor actions in time periods comprising only
a few milliseconds. Because in these short time periods neurons would not
be able to fire many spikes, it has been proposed that the time of arrival of
the first elicited spike should carry sensory information.

It has been found that the absolute spike latency conveys information
about the location of sound sources in the auditory system of e.g., guinea
pigs (Zohar et al., 2011). Moreover, it has been found that in bats, the
absolute spike latency is a more plausible strategy than spike firing rate for
echolocation (Fontaine and Peremans, 2009). In this direction, (Sestokas
et al., 1991) found that the responses of X- and Y-cells in the retina, as well
as in the lateral geniculate nucleus of cats show variable absolute latencies
depending on the stimulus spatial frequency and contrast. Furthermore,
years later (Gawne et al., 1996) found similar results in the responses of
cortical neurons of monkeys to changes in stimulus contrast. Therefore, it
has been suggested that the visual system could also use the absolute latency
as coding mechanism.
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The proposal of absolute latency as coding mechanism appears to be
plausible if the time of stimulus onset is available to the nervous system.
However, the nervous system has no direct access to this information. To cope
with this problem, some studies have suggested different mechanism that
could be used by the nervous system as reference points for response latency.
For instance, this is the case of the theta rhythm of the electroencephalograms
of freely moving rats. Here, the place cells in the hippocampus have shown to
fire spikes at phases of the theta rhythm that were correlated with the spatial
location of the animal (O’Keefe and Recce, 1993). In the primary cortex of
cats, Eggermont (1998) found that local field potentials could be used as
reference point for the relative latency in order to encode information about
sound azimuth. Furthermore, in rabbits it has been found that the activity
of several ganglion cell types are suppressed during a saccade (Roska and
Werblin, 2003). These findings support the concept of a snapshot mechanisms
in the visual system, in which the suppression of activity of certain cells could
work as a reset to mark the beginning of the transmission of new visual
information (Gollisch, 2009).

Additionally, it has been proposed that the relative latency could be deter-
mined based on the response onset of populations of neurons (Levick, 1973).
However, the definition of the response onset is not straightforward and thus,
several approaches have been developed to cope with this problem. For in-
stance, one of the developed methods consist of a cumulative sum technique
based on PSTH (Ellaway, 1978). Here, a complement to this technique by
second order differences to identify the onset and offset of stimuli has been
proposed by Falzett et al. (1985). Furthermore, Berényi et al. (2007) has
proposed a double sliding-window technique, which involves the statistical
comparisons between the probes contained in the sliding windows to detect
stimulus onsets. Thereby, using modelled responses of neurons of the audi-
tory system of cats, Chase and Young (2007) assessed the efficiency of the
absolute and relative latency as coding mechanism. The authors found that
the relative latency encoded slightly more information about sound location
than the absolute latency. Here, the Chase and Young (2007) defined the
relative latency with respect to stimuli onsets based on the activity of pseu-
dopopulations of neurons. Additional studies in the turtle and archer fish
retina have found found that information about velocity changes Cerquera
et al. (2008) and the velocity Cerquera and Freund (2011); Kretschmer et al.
(2012) of a moving pattern of dots is encoded by the relative latency of the
responses of retinal ganglion cells.

The time delay between the first spikes of different neurons has also been
tested as relative latency coding strategy. Here, Thomson and Kristan (2006)
have found that based on the relative latency between the responses of pairs
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of P cells in the leech, these cells can encode and decode information about
touch location. Additional evidence for the same information encoding mech-
anism has been found in the auditory cortex of ferrets (Bizley et al., 2010).
Here, the authors found that the relative latency across neurons in a popula-
tion encoded information about the periodicity of auditory stimuli. Moreover,
in the salamander retina, Gollisch and Meister (2008) have found that the
relative latency in the responses of certain retinal ganglion cells encodes the
spatial structure of briefly presented stimulus. Here, the authors found that
this coding mechanism was robust to fluctuations in the absolute latency and
was not affected by stimulus contrast.

Thorpe (1990) proposed an additional encoding mechanism that makes
use of the firing sequence of the first spikes of neurons from a population.
Here, the author suggested that this encoding mechanism could be used
to allow the recognition of visual stimuli in shorts periods of time. In a
subsequent study, Thorpe et al. (2001) named this mechanism the rank order
code and provided, based on simulations, some evidence about the far greater
efficiency of this mechanism for the encoding of information in comparison
to the rate code. Some experimental evidence supporting this hypothesis
has already been provided by (Johansson and Birznieks, 2004). Here, the
authors found that in humans, the sequence of firing of the first spikes of
an ensemble of primary sensory neurons carries information about features
of tactile stimuli. Moreover, analysing the activity of M/T cells in frogs,
(Junek et al., 2010) found that the first spike sequence of a population of
M/T cells encode information about odour identity and concentration in a
more reliable way than the spike firing rate.

Interspike time interval

The interspike time interval is defined as the time between two spikes. This
temporal structure of spike trains has also been proposed to be involved in the
encoding and transmission of sensory information. The proposal of interspike
time intervals as an efficient encoding mechanism for sensory information
dates back to the work of Lorente de Nó (1939), where based on his studies
of the anatomical connectivity of the brain, he suggested that messages with
different informational content could be transmitted by the time differences
of spikes. Years later, Perkel et al. (1967) revisited the statistical techniques
available at that time for the analysis of interspike time intervals of single
spike trains. Furthermore, Strehler (1969) suggested that some synapses in
neurons have a spatial configuration which would enable them to recognise
certain presynaptic spike patterns allowing in this way, spatial summation in
the postsynaptic neuron for the further generation of spikes. In this sense,
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Strehler (1969) proposed at least two coordinated time intervals, which he
called triplets, as the simplest spike patterns. For the definition of triplets, it
was not necessary that the interspike time intervals were consecutive. With
this in mind, Strehler (1969) proposed that triplets served as a multiplexing
mechanism. In turn, this mechanism would allow the transmission of several
‘pulse-train-coded’ symbols by a single axon in several time scales, where
different triplets would be specific for different stimuli (refer to Lestienne
and Strehler (1988) for a summary of this hypothesis).

Some evidence to support the interspike time interval coding hypothesis
arrived years later, when Larson et al. (1986) found that some neurotransmit-
ter receptors are sensitive to interspike time interval patterns. Furthermore,
in Strehler and Lestienne (1986) and Lestienne and Strehler (1987), the au-
thors found triplets that were stimulus specific in the recorded activity of
visual cortex cells of the rhesus monkey. Here, the authors also found that
these triplets could be decoded in later stages by spatial summation. Ad-
ditional evidence was obtained years later by Abeles and Prut (1996). In
this study the authors analysed the responses of frontal cortex neurons of
monkeys when the animals were performing localisation and problem solving
tasks. Here, Abeles and Prut (1996) found that there were some temporal
patterns in the responses that consisted of three spikes. Furthermore, these
patterns conveyed more specific information than all the spikes of a single
unit.

The interspike time intervals have been suggested to provide an estimate
of the spike firing rate (Kreuz et al., 2007). In this context, based on extra-
cellular recorings of turtle retinal ganglion cells, Cerquera et al. (2008) and
Cerquera and Freund (2011) tested if additional to the latency, the following
interspike time intervals carried information about the motion velocity and
velocity changes of a dot pattern. Although in these studies the authors found
that the first spike latency, relative to response onset, encodes information
about motion features of the pattern, a slight but significant enhancement of
information is allowed by the following two interspike time intervals.

Spike timing

The precision with which spikes from a presynaptic neuron arrive to a post-
synaptic neuron has also been proposed as a neural coding strategy (MacKay
and McCulloch, 1952). Here, overlaps between the definitions of latency, in-
terspike time interval and spike timing could arise. Nonetheless, spike timing
is different to latency in the sense that it can consider more than one spike
from the spike train. In contrast, the interspike time intervals distinguish
them selves from the spike timing in the sense that spike trains could have
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similar interspike time intervals that nonetheless, occur at different times. In
this sense, one objection to the proposal of spike timing as a coding mecha-
nism is the need for the precise measurement of spike arrival times (Bialek
et al., 1991).

Based on the study of moderate complex synaptic circuits, MacKay and
McCulloch (1952) have long proposed the hypothesis that the time precision
with which a neuron fires spikes in response to stimuli is a more efficient
mechanism to encode sensory information than the firing rate alone. Fur-
thermore, MacKay and McCulloch (1952) proposed that neurons act as coin-
cidence detectors, where only spikes with time intervals shorter than 0.15 ms
would allow spatial summation in a postsynaptic neuron. In following years,
some evidence supporting this hypothesis arose from models of brain cells.
Thereby, Abeles (1982) tested the influence of synchronous and asynchronous
presynaptic spikes for the generation of spikes in postsynaptic cells using a
model of a cortical neuron. The author confirmed the hypothesis proposed
by MacKay and McCulloch (1952) tha cortical neurons would act mainly as
coincidence detectors rather than integrators. Therefore, Abeles (1982) pro-
posed the temporal structure of the neural activity, and not the firing rate,
as the appropriate encoding mechanism for higher cortical functions. More-
over, in a later study based on a model of a pyramidal neuron, Softky (1995)
stated that some neurons could utilise fine temporal scales of presynaptic
spike patterns to modulate their activity and in turn, transfer information in
a more efficient way than a rate code could allow.

Some experimental evidence for the relevance of spike timing in the en-
coding and transmission of neuronal information arrived with the studies
by Richmond et al. (1987, 1990). In these studies, the authors applied the
principal component analysis to examine the responses of primary visual, as
well as inferior temporal cortex neurons of monkeys to visual stimuli. Rich-
mond et al. (1987, 1990) found that besides the firing rate of the responses,
the temporal structure of the responses of neurons carried information about
visual stimulus. Moreover, in a later study by Middlebrooks et al. (1994),
they found that single auditory neurons in the cat encode information about
the approximate location of sounds by the temporal timing of spikes. More
recently, Reyes (2003) tested the transmission of neural information in a mul-
tilayer feedforward network of neurons in an in vitro slice preparation. In his
study, he found that the firing rate was represented by a classical rate code
in the initial layers, but switched to a synchrony-based code in the deeper
layers suggesting thus, that spike synchrony was involved in propagating in
a stable manner the rate signals to subsequent layers.

The synchronised and coordinated activity of neurons has also been pro-
posed as information processing mechanism for different sensory systems
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(Bair, 1999; Meister and Berry II, 1999; Shlens et al., 2009). For instance, it
has been suggested that the synchronised activity of visual cortical neurons
would serve to bind the distributed neuronal activity into unique representa-
tions (Engel et al., 1992). Furthermore, Middlebrooks et al. (1994) suggested
that in the auditory cortex of cats, the coordinated activity of a population
of neurons would allow the precise location of sound sources. Some experi-
mental evidence supporting the role of the temporal structure of the activity
of neurons for the encoding of information was found by Aronov et al. (2003)
in the primate cortex of monkeys. In this study, the authors found that the
temporal structure of pairs of neurons carried information about the spatial
phase of a stationary visual stimulus.

1.2.3 Relevant Time Scale

From Sections 1.2.1 and 1.2.2, it can be observed that several hypotheses re-
garding either a rate code or a temporal code have been proposed to explain
how sensory information is encoded, transmitted and processed by the activ-
ity of neurons. Furthermore, based on experimental data, all of the mentioned
hypotheses have been found suitable to perform these tasks. Nevertheless,
it is still not clear which properties of sensory information are encoded by
which features of the neuronal activity.

The approach followed by Theunissen and Miller (1995) to explore sug-
gested coding strategies, consisted on first proposing a definition for the rate
and temporal codes, based on the properties of the information to be encoded
by these mechanisms. The authors stated that the stimulus features to be
encoded defined the parameters that are involved in the rate and temporal
codes, like for instance, the length of the encoding window. Theunissen and
Miller (1995) suggested that the length of the encoding window should be
long enough to allow good acuity, and short enough to decrease the reac-
tion time. Additionally, in order to fulfil the Nyquist theorem, the length
of the encoding window should correspond to at least the double of the fre-
quency of the stimulus properties that are going to be encoded. With this
in mind, Theunissen and Miller (1995) stated that if information about a
constant stimulus parameter is conveyed by the number of fired spikes, or if
the frequency components of a stimulus signal are correlated with the same
or lower frequency patterns of spike firing, then a rate code is involved in
the information encoding process. In contrast, if higher-order moments of
the neuronal responses are involved in the encoding of constant stimulus or
dynamic stimulus features, then a temporal code is the encoding mechanism.
Based on these definitions and on several studies in the mammalian visual
system, Theunissen and Miller (1995) suggested that a significant amount
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of information is encoded in the temporal spike patterns of populations of
neurons, and that the nature of the encoded information by these patterns
is different from that encoded by the spike firing rate.

Around the same time, Shadlen and Newsome (1994) on the rate code
side, and Softky and Koch (1993) on the temporal code side, held one note-
worthy discussion about which coding strategy is the most suitable for en-
coding neuronal information. Based on recordings on the V1 and MT area of
awake monkeys, and on compartmental models that tried to explain the vari-
ability of the recorded neuronal responses (Softky and Koch, 1993; Softky,
1994, 1995), the authors alleged that the variability in the responses of the
recorded cortical neurons could only be reproduced by the models, if a strong
synchronization of the synaptic inputs was given. Conversely, the variability
of the responses was absent for modelled neurons that temporally integrated
their synaptic inputs. In turn, Shadlen and Newsome (1994) proposed a
balanced inhibition-excitation integrate-and-fire model. In their study, the
authors found that integrate-and-fire models that lacked the inhibition con-
sideration were unable to reproduce the variability observed in the responses
of cortical neurons. However, once inhibition was added to the model, the
variability in the responses of the modelled neurons was similar to that of the
recorded cortical neurons. Finally, although Shadlen and Newsome (1995)
offered evidence to support their proposal about a noisy and redundant rate
code in the cortex, they also admitted that albeit missing evidence, the ef-
ficient temporal code proposed by Softky and Koch (1993) could also be
suitable. This idea was reinforced by a review from Ferster and Spruston
(1995), which pointed out the possibility that in hippocampal place cells, a
temporal code could be simultaneously superimposed on a rate code. On
this line of investigation, newer studies have provided some evidence to the
claim that both encoding mechanism are present in the cortex. For instance,
Nicolelis et al. (1998) found that populations of broadly tuned neurons lo-
cated in different areas of the somatosensory cortex of monkeys could encode
the location of tactile stimulus by using simultaneously a firing rate and a
temporal code. Moreover, Reyes (2003) found that for in vivo slide prepara-
tions of rat’s cortex, the synchrony did not encode temporally precise inputs,
but instead, it ensured that rate signals propagated in a stable manner across
cortex layers.

The possibility that different coding strategies serve to encode different
sensory information was addressed by Gautrais and Thorpe (1998). In this
study the authors pointed out the relevance and convenience for the nervous
system to use the spike firing rate as encoding mechanism for specific sit-
uations, specially for stimuli with constant or slow changing features. For
example, information about the force that has to be developed by a muscle
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can be encoded by a rate code, which would allow, through the number of
fired spikes, the regulation of neurotransmitter release. However, Gautrais
and Thorpe (1998) also proposed that for fast changing stimuli or when the
processing of information has to be performed rapidly, other coding strate-
gies, like the temporal code, could be better suited. Furthermore, in the
review by Oram et al. (2002), the authors suggest that neuronal activity
could encode different features of a given stimulus using different temporal
resolutions. As first, they suggested that information of the overall stimulus
class could be encoded by the spike firing rate over time windows of several
milliseconds. Moreover, they proposed that details of the stimulus could be
encoded by intermediate time scales of the neuronal responses and finally,
that information about, e.g., the degree of attention to a presented stimulus
could be encoded by fine time scales. In the case of the retina, although the
spike firing rate of the activity of retinal ganglion cells convey information
about visual stimuli, it has been suggested that the temporal structure of the
responses would allow to enhance the encoding of visual information (Berry
et al., 1997; Meister and Berry II, 1999; Van Rullen and Thorpe, 2001; Jacobs
et al., 2009).

1.2.4 Joint Activity Coding Hypotheses

The question of how the visual information about the environment is encoded
by the joint activity of retinal ganglion cells is still an ongoing debate. For
instance, it has been proposed that the correct interpretation of spike firing
synchrony of neighbouring retinal ganglion cells by the brain would allow a
higher spatial resolution of the visual scene (Meister and Berry II, 1999).
Here, the joint activity of neurons would allow the encoding of information
of one stimulus feature. Nonetheless, different time scales of the individual
responses of the neurons in the population could encode different features of
a stimulus (Theunissen and Miller, 1995; Gautrais and Thorpe, 1998; Oram
et al., 2002). Thereby, it has been proposed on one hand, that retinal gan-
glion cells are non-redundant or mostly independent encoders of information
(Fernandez et al., 2000; Nirenberg et al., 2001) and on the other hand, that
the activity of retinal ganglion cells is repetitive and redundant (Puchalla
et al., 2005).

In this direction, it has been found that the joint activity of neurons allows
to encode more sensory information, than the activity of single neurons. For
instance, Warland et al. (1997) tested if the activity of small populations of
retinal ganglion cells in the salamander retina could encode the light intensity
of a stimulus. In their study, it was found that only when cells with different
response properties were considered, i.e., On- and Off-cells, the estimation
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of light intensity allowed by the population of neurons was better than the
one yielded by the activity of single cells. Furthermore, they observed that
the information encoded by the joint activity of one On- and one Off-cell
was equivalent to the sum of the information encoded by the activity of
each individual cell. Hence, this finding suggested that the retinal ganglion
cells encoded independently information about different stimulus properties.
Similar results were found by Aronov et al. (2003) when the authors analysed
the responses of pairs of neurons in the V1 area of monkeys. Here, they found
that the combined activity of similar cells slightly enhanced the encoded
information about the spatial phase of a stationary visual stimulus. However,
the combined activity of cells with different response properties yielded a
lower redundancy index.

Based on the responses of turtle retinal ganglion cells, Fernandez et al.
(2000) tested if the spike firing rate, latency and first interspike time interval
carried information about the wavelength and light intensity of a stimulus.
They found that the estimation of wavelength and light intensity based on
the activity of a population of cells outperformed the estimation allowed
by the activity of single retinal ganglion cells. Moreover, a later study by
Greschner et al. (2006) tested if the activity of small populations of turtle
retinal ganglion cells encoded information about light intensity changes. For
the analysis, the authors considered different features of the transients period
of the retinal ganglion cell responses, e.g., spike count, latency and second
interspike time interval. Greschner et al. (2006) found that although all of
the considered cells were of the On-Off type, the estimation performance
increased for larger population sizes.

In this direction, besides testing the relevance of the spike firing rate and
the temporal structure of neuronal responses for the encoding of information
about features of visual stimuli, one of the aims of this study is also to test if
the joint activity of retinal ganglion cells would enhance information encod-
ing. Therefore, three different joint activity coding hypotheses were tested;
Pooled Population, Labelled Line and Functional Group (see Figure 2.6).

Pooled Population

From the first integrate-and-fire model proposed by Lapicque (1907), it was
suggested that the membrane of a neuron integrates its synaptic inputs to-
wards a threshold and once this threshold is reached, the neuron will generate
an action potential and reset the membrane potential. For this mechanism
and considering the number of interconnections among neurons, it is possible
that the dendrites of single neurons pool the responses of many individual
neurons to further transmit sensory information by the generation of action
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potentials. This is the rationale behind the Pooled Population hypothesis.
Here, it is assumed that all the activity of neurons in a population have
equal weight and thus, the knowledge of the neuron of origin of each spike
is irrelevant for the encoding of sensory information. This hypothesis was
first proposed by Adrian and Zotterman (1926a). In this study, the authors
stated that due to the irregular interspike time intervals of single neuron
activity, an instantaneous estimate of spike rate can only emerge from the
pooled responses of many individual neurons. Although the assumption of
equally weighted activity may appear unrealistic, it has shown to be help-
ful to explore the fast propagation of fire rates in layered networks of noisy
neurons (van Rossum and Turrigiano, 2002).

Labelled Line

Since the times of the proposal of a ‘law of specific nerve energies’ made by
Müller (1826), it was investigated how the information about different sen-
sory inputs allow the perception of different sensations. This idea evolved into
the proposal of a Labelled Line coding, with which it was tried to explain the
perception of different stimulus properties within each sense, e.g., in vision,
the perception of different colours of light. The Labelled Line coding states
that different parts of a sensory area are sensitive to defined stimulus prop-
erties and that in turn, the nature of perception is defined by the pathway
over which the sensory information is carried. This coding mechanism was
explored by von Helmholtz (1863) in his ‘place theory of pitchperception’
hypothesis. Here, the author suggested that the location of the maximum
vibration of the basilar membrane in the cochlea, defined the group of audi-
tory nerve fibres that were maximally excited and this in turn, determined
the subjective pitch. Evidence to support the Labelled Line coding strategy
was found in the late XIX century in the skin surface, where different spots
showed to be selectively sensitive to either pain, touch, cool and warm (for a
Review see Norrsell et al. (1999)). Nevertheless, it was not until years later
that the hypothesis of Helmholtz was confirmed by von Békésy and Wever
(1960).

In contrast to the Pooled Population hypothesis, the Labelled Line hy-
pothesis proposes that the knowledge of the neuron of origin of each spike
is relevant for stimulus encoding. Here, based on the selective responses of
neurons, their differentiated activity would allow to encode in parallel dif-
ferent stimulus properties. In this direction, (Buck, 2004) have found that
different odourants are detected by the combined activity of odour receptors.
However, the activity of each odour receptor serves as individual component
for the encoding of these odourants. Based on the same principles as in the
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olfactory system, the Labelled Line hypothesis has been also proposed for
the encoding of information about taste (Lemon and Katz, 2007). Moreover,
the Labelled Line coding can be found in the retina of humans and mon-
keys. Here, in the fovea region, the midget cell pathway involve one-to-one
connections between cone photoreceptors and midget bipolar cells, as well
as between midget bipolar cells and midget retinal ganglion cells (Wässle,
2004).

Functional Group

The last hypothesis explored in this study, Functional Group, is a combina-
tion of both previous hypotheses. This hypothesis states that for the encod-
ing of stimulus features, the knowledge about the type of cell that fires each
spike, rather than the exact neuron, has a high relevance. The rationale be-
hind this hypothesis is that some neurons elicit similar responses to the same
stimulus properties and additionally, they make further selective synapses
with the same populations of neurons. Thus, (Gerstner and Kistler, 2002)
have proposed that under this hypothesis, the proportion of active neurons in
the presynaptic population would be the relevant feature for the processing
of neural information. Furthermore, it has been suggested that the combined
activity of a population of homologous neurons could be able to follow fast
changes of stimulus conditions (Knight, 1972; van Vreeswijk and Sompolin-
sky, 1996; Gerstner, 2000).

It seems plausible that the Functional Group coding can be used by the
visual system. This suggestion is supported by the fact that the visual infor-
mation that the retina sends to the brain is decomposed in parallel pathways
(Warland et al., 1997; Schiller, 2010). One example of these pathways are the
M and P ganglion cells in primate, which project into the magnocellular and
parvocellular layers of the geniculate. Additionally, it has been found that
cells with similar physiological functions are organised in vertical columns
in the primary visual cortex of cats and monkeys (Hubel and Wiesel, 1962,
1977). Furthermore, along the processing stages in cortical areas of mam-
mals, ith has been found that there is extensive interaction across different
functional areas (Engel et al., 1992; Singer and Gray, 1995).

Population Coding and Ensemble Coding

Sections 1.2.1 and 1.2.2 revisited some of the hypotheses on how sensory in-
formation can be encoded by the spike firing rate and the temporal structure
of neuronal activity. These two response properties are not only confined to



1.2. NEURAL CODING STRATEGIES 33

the activity of single neurons, but can also be extended to the activity of pop-
ulations of neurons. Therefore, Theunissen and Miller (1995) and Lestienne
(2001) proposed two rigorous definitions to describe how the joint activity of
neurons could encode sensory information; population coding and ensemble
coding.

Lestienne (2001) defined the population coding as a mechanism where
the encoding of information is based on the spike firing rate of a population
of neurons. Here, each neuron contributes to the population in the propor-
tion of its spike firing rate. In contrast, Theunissen and Miller (1995) and
Lestienne (2001) defined the ensemble coding as a mechanism that involves
the temporal coordination of the activity of a population of neurons for the
encoding of information.

An example of population coding is the population spike average (Sec-
tion 1.2.1). Here, it has been suggested that the activity of several neurons
with similar functions can be integrated by a postsynaptic neuron. In turn,
the relevant feature for the processing of neural information would be the
proportion of active neurons in the presynaptic population (Gerstner and
Kistler, 2002). An additional possible mechanism for the encoding of infor-
mation based in a population spike average considers neurons with distinct
response properties for the same stimulus features. Here, instead of simply
pooling the activity of the neurons, a weighted sum of their spike firing rate
is performed (population vector coding). This mechanism has been found
to encode information about arm position in the motor cortex neurons of
monkeys (Georgopoulos et al., 1986).

Ensemble coding has been suggested as a mechanism with which neurons
in a population could encode information in a synergistic way. This sugges-
tion is supported on the proposal that the temporal patterns of the activity
of single neurons are highly specific symbols (Strehler and Lestienne, 1986).
Therefore, Theunissen and Miller (1995) have suggested that the activity of
a population of neurons would allow to encode more information due to the
increase of possible coding symbols. Nonetheless, the amount and efficiency
of the encoded information by these symbols could be limited by the fol-
lowing factors: 1) The possibility that different symbols could encode the
same stimulus, 2) Symbols could occur too seldom to be characterised and
3) The postsynaptic neural decoder may not be able to extract the encoded
information from these symbols.
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1.3 Natural Visual Scenes

As can be noticed from the preceding section, much research has been fo-
cused on understanding how the activity of single and population of neurons
encodes visual stimuli. However, so far it has not been mentioned which kind
of information the visual system of animals has to deal with. Natural visual
scenes vary depending on the environment and thus, have different statis-
tics. Nevertheless, natural visual images from different environments also
show common characteristics. For instance, natural visual images are not
Gaussian (Dong and Atick, 1995b) and although they appear to be random,
they often show structures with high redundancy (Simoncelli and Olshausen,
2001). Considering that it has been long suggested that the environment
influences the function of sensory neurons through evolutionary and develop-
mental processes (Simoncelli and Olshausen, 2001), it would not be pointless
to have a good comprehension of the kind of information that natural visual
scenes contain, in order to obtain a better understanding of the function of
the visual system.

Natural visual scenes are composed by several spatio-temporal features
like, e.g., colour, contrast, luminance, motion, etc. Moreover, many of the
features that compose natural visual scenes have to be encoded and pro-
cessed simultaneously by the visual system of animals, since this information
could be crucial for survival tasks. Therefore, the activity of neurons in the
visual system should contain all the information about the relevant features
of visual scenes. Nevertheless, not all animals have the same needs for sur-
vival, and what for one animal species could seem threatening, for another
animal species could be regarded as appetizing. Based on these facts, Barlow
(1961) proposed that the function of sensory systems of animals was tuned by
their environment, and that the sensory systems should have something like
a password mechanism to allow relevant features for survival to be encoded
in a faster way.

As mentioned earlier, natural visual scenes have been found to be statis-
tically redundant, showing strong spatial and temporal correlations. In this
context, Attneave (1954) suggested that in visual scenes, much information
is concentrated along the edges, where abrupt colour changes are frequently
found. Moreover, he suggested that further non-redundant information could
be found in edges that abruptly change their direction. In a latter study by
Kersten (1987), the author measured the content of information in individ-
ual pixels of natural images and found that redundancy ranged from 46%
to 74%, for images of foliage and human faces, respectively. Furthermore,
Field (1987) analysed the spatial correlations in natural images by calcu-
lating the amplitude spectrum of them. He found that in the spectrum of
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natural scenes, lower spatial frequencies have the highest amplitudes, and
that the spectrum could be characterised by 1/f2, where f corresponds to
the spatial frequency. In a later study, Ruderman (1994) quantified the spa-
tial correlations in natural images of foliage. Here, the author found that
pixels contained information about the features of the neighbouring pixels
and moreover, that the information decayed exponentially with the distance.
Additional to the spatial correlations, features of natural visual images like,
e.g., intensity, do not change randomly over time and thus, natural scenes are
though to be also highly correlated in time. Dong and Atick (1995b) studied
the spatial and temporal correlations of natural scenes. They found that in
general, the spatial and temporal spectra depended on each other and were
only independent in the regime of high temporal and low spatial frequen-
cies. In the context of the spatio-temporal correlations of natural images
and due to the fact that the responses of neurons have certain constrains for
the transmission of sensory information, Attneave (1954) and Barlow (1961)
proposed that one of the functions of sensory neurons would be to recode the
information of the input signals to decrease their redundancy and this way,
extract the relevant information from them.

Some experimental evidence supporting the hypothesis that the environ-
ment shapes the function of visual systems of animals has already been found.
For instance Laughlin (1981) found that the probability distribution of con-
trasts in the natural environment of flies match the one of the response-
contrast function of the large monopolar cell of the animal and suggested
thus, that matching the input-output function of neurons with the expected
distribution of the incoming signals could be a strategy to maximize the ca-
pacity of neurons to transmit information. Moreover, in a later study by
Srinivasan et al. (1982), the authors found that first-order interneurons of
the fly show similar inhibition surrounds to the ones required to suppress
spatial correlations in natural visual scenes. In this direction, Atick and
Redlich (1992) found that kernels that relate the responses to light of X- and
P-pathway retinal ganglion cells in cats and monkeys, respectively, perform
a spatial decorrelation, i.e., whitening of natural images and suggested addi-
tionally, that this whitening could be useful to compress the photoreceptor
input signal. Regarding colour vision, Ruderman et al. (1998) found that
in foliage scenes, information about illumination changes, and opponencies
of blue-yellow and red-green are uncorrelated. Therefore, information about
these features can be represented by a three dimensional space. Interestingly,
these three dimensions are also found in the responses of cones in humans.
Based on these observations, it has been suggested that in order to reduce
the redundancy in natural visual scenes, the retina spatially decorrelates the
incoming signals. Nonetheless, temporal correlations of natural images are
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still present in the activity of retinal ganglion cells. Thus, Dong and Atick
(1995a) suggested that the temporal decorrelation of the incoming signals
could be performed in the lateral geniculate nucleus. Here, based on the
statistics of natural visual scenes, the authors calculated the spatio-temporal
receptive fields that could achieve the temporal decorrelation of the signals.
The results of this study pointed out that these receptive fields remarkably
matched the lagged and nonlagged responses of lateral geniculate neurons.

So far, the study of the visual system has been carried out making use
of rather simple stimuli like, e.g., bars, grating or spots. This research ap-
proach is explained by the fact that simple stimuli, as well as the responses
of neurons to them, are easy to control and characterise. Nonetheless, be-
cause these stimuli do not resemble the natural environment that the visual
system has to deal with, it is sometimes difficult to draw conclusions from
the characterisation of the responses of neurons to these stimuli. Therefore,
it would be desirable to use of natural stimuli to characterise the responses
of neurons. However, these stimuli are more difficult to control and charac-
terise. Therefore, the knowledge about the statistics of natural scenes could
be useful to design stimuli that remain simple but nevertheless, still resemble
the characteristics of natural images to further characterise the function of
the visual system.

1.4 Stimulus Reconstruction

In the pursuit of understanding how the neural information is encoded and
transmitted by the activity of neurons, several approaches have been sug-
gested (Rieke et al., 1999). For instance, one approach is to create models
that reproduce the neuronal responses observed in in vitro or in vivo experi-
ments (Lapicque, 1907; Hodgkin and Huxley, 1952; Berry II et al., 1999; Thiel
et al., 2006; Baccus et al., 2008). Here, hypothetical mechanisms necessary
for the encoding of neural information can be tested.

Additional approaches test certain properties of neuronal responses indi-
vidually, e.g., spike firing rate, temporal patterns, latency, autocorrelations,
etc. Here, one approach involves the characterisation of the neuronal re-
sponses based on these properties (Gawne et al., 1996; Berry II et al., 1999;
Greschner et al., 2002; Arkadir et al., 2004). Moreover, based on the informa-
tion theory, the amount of information conveyed by these response properties
can be assessed (Borst and Theunissen, 1999). Nonetheless, this approach
does not provide further details about the kind of information that is con-
veyed by the neural activity (Lewen et al., 2001). Here, the mutual informa-
tion measure becomes helpful to cope with this problem. This approach has
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been utilised to measure the amount of conveyed information about visual
stimulus by the activity of retinal ganglion cells of turtle (Ferrandez et al.,
2002) and guinea pigs (Koch et al., 2004), as well as to asses the performance
for texture discrimination allowed by the rat whisker pathway (Arabzadeh
et al., 2006). However, in order to take advantage of the mutual informa-
tion approach, the reconstruction or estimation of sensory stimuli has to be
previously undertaken.

Several methods to reconstruct sensory stimuli based on neuronal re-
sponses have been developed. Here, depending on the research interest, these
methods can additionally offer information about the features of neuronal
activity that carry sensory information. For instance, artificial neuronal net-
works have been used to control a robotic arm based on the activity of motor
cortex neurons of rats (Chapin et al., 1999). Moreover, applying this method
it has been possible to reconstruct visual stimuli based on the activity of
complex cells in the primary visual cortex of monkeys (Kjaer et al., 1994), or
retinal ganglion cells (Warland et al., 1997; Ferrández et al., 1999; Greschner
et al., 2002). Nevertheless, although this method allows to measure the
amount of information conveyed by the activity of neuron populations, it is
hard to draw conclusions about which features of the population activity are
the ones responsible of encoding sensory information (Abbott, 1994).

An additional method for stimulus reconstruction makes use of non-linear
filters with linear decoding algorithms. This approach has shown to be able
reconstruct visual stimulus in a fast way based on the activity of H1 cells
of the fly (Bialek et al., 1991), as well as responses of retinal ganglion cells
of salamander (Warland et al., 1997) and turtle (Wilke et al., 2001). The
attractiveness of this method lies in its simplicity. However, its drawback
lies on the difficulty to find a filter that ensures a good performance in the
estimation of several stimulus properties. Moreover, the chosen filters need to
be robust when the interaction among neurons is considered (Warland et al.,
1997). Other linear approaches make use of weighted vector summation
(Georgopoulos et al., 1986) or adjust parameters for a defined estimation
task. However, the drawback of these models is that they only serve to
perform the estimation of certain stimulus features, e.g., the motion speed of
a visual stimulus (Chichilnisky and Kalmar, 2003; Frechette et al., 2005), or
the position of a robotic arm (Carmena et al., 2003), but fail to generalise to
other stimulus features.

Another approach is the Linear Discriminant Analysis. Here, different
properties of neuronal responses can be fed to the analysis to test their rele-
vance in the encoding of sensory information. This analysis has been applied
successfully to test the relevance of the spike firing rate, latency, spike time
intervals, and temporal patterns of the responses of turtle retinal ganglion
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cells, for the encoding of information about light intensities and wavelengths
(Fernandez et al., 2000), instantaneous changes in light intensity (Greschner
et al., 2006), or motion features (Cerquera et al., 2008; Cerquera and Freund,
2011).

A further approach for stimulus reconstruction relies on the Bayes’ rule.
Here, based on the prior probability distribution of the stimuli P (s), the
conditional probability, i.e., likelihood, P (r|s), that a neuronal response was
elicited by a stimulus, and the probability distribution of the neuronal re-
sponses P (r), it is possible to find P (s|r), which is the probability of each
stimulus given a neuronal response. As with the Linear Discriminant Anal-
ysis, this approach allows to test individual properties of neuronal responses
for the reconstruction of stimuli. Here, the approach has been tested in dif-
ferent sensory systems. For instance, it has been applied to estimate the
position of rats based on the activity of their hippocampal place cells (Zhang
et al., 1998), as well as in the motor system of monkeys, where the prediction
of movement was done based on the activity of neurons in the supplementary
motor area (Averbeck and Lee, 2003). In the visual system, this method has
been applied to estimate different features of visual stimuli based on responses
of retinal ganglion cells of archer fish (Segev et al., 2007), turtle (Thiel et al.,
2007), mouse (Jacobs et al., 2009) and monkey (Pillow et al., 2005). The
Bayesian framework for stimulus reconstruction has proven to be robust and
has a low computational cost, making it suitable for on-line reconstruction
tasks, like in brain computer interfaces (Shenoy and Rao, 2004).

The drawback of methods like the Linear Discriminant Analysis and the
one based on the Bayes’ rule, lies on the fact that sometimes it is difficult
to identify the properties of neuronal activity that should serve as input for
the analysis. Therefore, other approaches analyse the raw neuronal activity
to find which properties are relevant for stimulus encoding. Here, some of
these approaches are based on the assumption that neuronal responses evoked
by a repeatedly presented stimulus should show less dissimilarities among
them, than responses elicited by different stimuli. Thereby, the stimulus
reconstruction is done based on the pairwise similarities or dissimilarities of
spike trains. Section 2.3.3 presents a detailed explanation of how the stimulus
reconstruction is carried on by using this assumption. In this context, several
methods or metrics have been developed to assess the similarity between
spike trains in terms of distance (Victor and Purpura, 1996; van Rossum,
2001; Hunter and Milton, 2003; Aronov, 2003; Schreiber et al., 2003; Kreuz
et al., 2007). Within the scope of this study, two approaches were applied to
the responses of retinal ganglion cells to estimate different features of visual
stimuli; Spike cost-based metrics (Victor and Purpura, 1996; Aronov, 2003),
and the ISI metrics (Kreuz et al., 2007).
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The spike cost-based metrics approach allows to test the relevance of the
spike firing rate and different time scales of the temporal structure of neu-
ronal responses for the encoding of neural information. Furthermore, due to
its binless nature, it respects the hybrid topology of the spike trains allowing
in turn, a robust estimation of the relevance of neuronal response features
for stimulus encoding (Victor, 2002). This method is described in detail in
Section 2.3.1. The spike cost-based metrics has been applied to study differ-
ent sensory systems in various animal species. Examples of the applications
include the gustatory sensory system of rats (Di Lorenzo and Victor, 2003;
Di Lorenzo et al., 2009), the auditory system of grasshoppers (Machens et al.,
2003) and cats (Chase and Young, 2006, 2007, 2008) and the somatosensory
system of humans (Saal et al., 2009). In the visual system, the spike cost-
based metrics has allowed to distinguish which properties of the activity of
single neurons in the primary visual cortex (Victor and Purpura, 1998; Reich
et al., 2001a; Mechler et al., 1998, 2002), and the MT area (Sachsa et al.,
2011) of monkeys are relevant for the encoding of visual stimuli features.
Furthermore, this method has also been applied to study the visual system
of flies (Grewe et al., 2003) and to validate models that reproduce the re-
sponses of retinal ganglion cells of salamander to light stimuli (Pillow et al.,
2005). The spike cost-based metrics has the ability to test the relevance of
the spike firing rate, as well as different time scales of the temporal structure
of neuronal activity, for the encoding of information. In turn, this ability
represent the main advantage of this method because the individual test of
time scales allows to discard or keep them according to their relevance for en-
coding tasks (Samonds and Bonds, 2005). However, the interpretation of the
relevant time scales is not straightforward. Here, it has been suggested that
for spike trains that include different time scales (i.e., regular and transient
or bursting spiking), the role of the relevant time scales for the encoding of
visual information could be misinterpreted (Kreuz et al., 2007; Paiva et al.,
2010; Chicharro et al., 2011).

An extension of the spike cost-based metrics, the multi-unit metrics, was
developed by Aronov (2003). This extension allows to test different joint
activity coding hypotheses (see pages 29-32). This method is explained in
detail in page 57. The multi-unit metrics has been applied in monkeys to
study how the joint activity of pairs of neurons in the V1 area encodes features
of visual stimuli (Aronov et al., 2003). Here, the method allowed to test
how important it is to distinguish the spikes coming from each neuron for
information encoding tasks. The results in (Aronov et al., 2003) show that
when no distinction between the spikes was made (i.e., Pooled Population),
the joint activity of neurons encode more information than the activity of
single cells. Moreover, the distinction of spikes coming from different neurons
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(i.e., Labelled Line) can enhance the conveyed information, especially if the
cells show different activity tuning for the same stimulus. Within the scope
of this study, the multi-unit metrics have been used as an extension of the
spike cost-based metrics and the ISI metrics to test the three joint activity
coding hypotheses proposed in Section 1.2.4.

The ISI metrics is a method that has been developed to assess the syn-
chrony between pairs of spike trains. Here, the ISI metrics assesses the
synchrony (i.e., similarity) between a pair of spike trains based on the tem-
poral integration of the ratio between their spike time intervals. Section 2.3.2
describes the method in detail. This method has been mainly applied to val-
idate or characterise the behaviour of neuronal models (Dodla and Wilson,
2009; Ying and Qi-Shao, 2010; Ying et al., 2010) but also, to measure the
variability of ampullary receptor responses of weakly electric fish (Engelmann
et al., 2010), and neurons of the entorhinal cortex of rats (Haas et al., 2010).
In contrast to the spike cost-based metrics, the ISI metrics is a self adaptive
analysis method that identifies automatically the time scales that are rele-
vant for stimulus encoding. Moreover, the ISI metrics finds the relevant time
scales even if changes in the temporal structure within the same spike train
occur (Kreuz et al., 2007). These abilities of the ISI metrics are important be-
cause it has been proposed that responses elicited by the same neuron could
encode different features of sensory information by using different time scales
(Oram et al., 2002). Therefore, the ISI metrics allows to test the relevance of
the temporal structure of neuronal responses for encoding tasks. However,
this method provides no additional information about which are the relevant
time scales for encoding tasks. Furthermore, the ISI metrics shows some
drawbacks for spike trains with phase lags and additionally, this metrics is
not able to recognize when a pure spike rate code is relevant for stimulus
encoding. In this study, the spike cost-based metrics and the ISI metrics
were applied as complementary methods. By doing so, it was thought that
the advantages of one of the metrics could help to cope with the limitations
of the complementary metrics for the study of the retinal code.



Chapter 2

Materials and Methods

As exposed in the previous chapter, the retina is comprised by different types
of neurons that play a specific role in the early stages of visual information
processing. At the final stage in the retina, the processed information is sent
to the brain in the form of action potentials that are generated by the retinal
ganglion cells. The aim of this study is to gain some insight into the strategies
that the retinal ganglion cells use to encode the visual information that they
send to the brain. In this context, the retina offers two major advantages to
achieve this goal. First, it can be relatively easy stimulated and the output
of this system can be known by performing electrophysiological experiments.
Second, the flatness of the retina, as well as its layered structure, and the
fact that the retinal ganglion cells are located at the innermost layer of this
tissue, facilitate the extracellular recording of the responses of these cells
to a visual stimulus. Additionally, although much has been learned about
how visual information is encoded in the activity of single retinal ganglion
cells, the development in the past two decades of new techniques, that allow
the simultaneous recording of several neurons using planar (e.g., Nordhausen
et al. (1996); Nicolelis et al. (1998)) and three dimensional (e.g., Meister
et al. (1994); Stoppini et al. (1997); Borkholder et al. (1997); Segev et al.
(2004)) multi-electrode arrays, have open the possibility to explore how the
encoding and processing of neuronal information can be done by the activity
of populations of neurons.

In order to investigate how the activity of retinal ganglion cells encodes
information about visual stimuli, extracellular recordings of the responses of
these cells to visual stimuli were performed in isolated retinae of turtle and
fish using a multi-electrode array. The acquired data consisted of sequences
of action potentials which were fired in response to the visual stimuli. In
this sense, the approach in this study was to test the performance in the
estimation of the applied stimulus based on the responses of retinal ganglion
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cells. In turn, the stimulus estimation was performed by applying two anal-
ysis methods that consider different features of neuronal activity, and the
obtained results were evaluated.

The following sections describe the utilised experimental set-up and stim-
uli, as well as the data acquired from the experiments. Additionally, the
pre-processing stages of the data, as well as the analysis methods are going
to be exposed.

2.1 Experiment

The data analysed in this study was originated from electrophysiological ex-
periments in isolated turtle and fish retinae. The protocol for all of the
experiments in the turtle (n = 3) and for most of the ones performed in the
fish (n = 5) was previously described in Thiel et al. (2007). This protocol
involved the stimulation of the retinae by a moving pattern of dots. Ad-
ditionally, a different protocol that involved the same moving stimulus and
changes in the light intensity with which the pattern was projected onto the
retina was used only in the fish (n = 1) retina. Figure 2.1 shows a simplified
diagram of the experimental set-up used for this study.

2.1.1 Preparation and Recordings

The recordings of extracellular activity of retinal ganglion cells were per-
formed in isolated retinae of turtle (trachemys scripta elegans) and carp
(cyprinus carpio). First, animals were killed according to the University
of Oldenburg Ethical Committee and ECC rules (86/609/ECC). Posteriorly,
eyes were enucleated and then, in the case of the turtle, the retina was dis-
sected with the pigment epithelium attached to it. In contrast, for recordings
using carp as animal model, the pigment epithelium was removed from the
retina. The dissected retina was in turn placed over a thin layer of agarose
and fixed to it using micro filter paper. The agarose layer with the fixed
retina was then placed on a transparent surface. This arrangement allowed
to project a visual stimulus onto the retina through the transparent surface
and at the same time, place a multi-electrode array on top of the retina to
register the extracellular activity of retinal ganglion cells (see Figure 2.1).

The register of the responses of retinal ganglion cells was performed using
a three dimensional 10 x 10 multi-electrode array (Utah Array, BlackRock
Microsystems, Salt Lake City, Utah, USA) that was placed from the photore-
ceptor side into the ganglion cell layer of the isolated retina. The electrodes
in this array were arranged in a matrix form with a minimal separation of
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Figure 2.1: Simplified diagram of the experimental set-up used to record
the extracellular activity of retinal ganglion cells of turtle and fish retinae.
The pattern of dots (bottom right) was projected on to the retina trough
optic devices and its motion was created by a miniature mirror system. A
multi-electrode array was placed onto the retina to register the extracellular
activity of retinal ganglion cells. The acquired data was stored in a personal
computer.

400 µm. Here, due to the electrode separation, the probability that two
neighbouring electrodes register the activity of the same cell is very low.
The output of the array was connected to a pre-amplifier and this in turn,
to the Bionic 100 channel neural signal acquisition system (Cyberkinetics,
Foxborough, Massachusetts, USA) in the case of the turtle experiments, and
to the Cerebus system (BlackRock Microsystems) in the case of the fish ex-
periments. Both systems were utilised to amplify, threshold and store the
extracellular activity of the retinal ganglion cells for posterior offline analysis.

In order to be able to register the activity of retinal ganglion cells, the
retinae were superfused continuously with a Ringer solution during the entire
duration of the experiment. The solution used for the turtle retina comprised
120 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM glucose
and 22 mM NaHCO3. In turn, the solution for the carp retina consisted of
102 mM NaCl, 2.6 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM glucose and
28 mM NaHCO3. In both cases, the solution was bubbled with 95% O2-
5% CO2 to keep the solution at a pH of 7.4.



44 CHAPTER 2. MATERIALS AND METHODS

2.1.2 Stimuli

The stimulus used in all of the experiments consisted of a pattern of squares
that when projected onto the retina, moved along one of its axes. The squares
of the projected pattern were 200 µm x 200 µm. Furthermore, their position
was set by randomly shifting it relative to the position they would have if they
were arranged on a regular lattice with a vertical and horizontal separation
of 200 µm. Here, for the shifted squares, a minimal separation of 80 µm was
kept between squares. The shift in the squares’ position was to avoid the
artificial firing synchronisation of retinal ganglion cells (Thiel et al., 2007).
A section of the pattern of squares used on the experiments is shown in
Figure 2.1.

Motion experiment

For the experiments in the turtle retina, the moving pattern consisted of
dark squares on a bright background, whereas for the experiments with fish
retina, the squares were bright on a dark background. As mentioned earlier,
this protocol was utilised in n = 3 experiments carried out with turtle retina,
and in n = 5 experiments performed with fish retina. Here, the experimental
protocol only involved the motion of the pattern of squares.

The motion of the pattern of squares was achieved by a X-Y miniature
mirror system (Datrouik, Rastede, Germany), which in turn was controlled
by a personal computer. For this protocol, the pattern of squares was pro-
jected onto the retina with a constant light intensity and moved along one
axis for 500 ms with a constant velocity. After this period, the velocity
changed instantaneously to remain constant for another 500 ms and so on.
Nine different velocities were used for this protocol. The velocities were ob-
tained by combining two motion directions with four different speeds between
0.625 mm/s and 2.5 mm/s, with increments of 0.625 mm/s. Here, negative
and positive velocities were defined by two opposite directions. Additionally,
the absence of movement, i.e., 0 mm/s, was also considered as a velocity for
this protocol. The sequence of velocities was created by combining all of
the possible values in a pseudo-random way, ensuring that all velocities and
transitions between velocities had the same occurrence frequency. In this
sense, in a full sequence each velocity value was presented 80 times to the
retina allowing in this way, that each of the 72 possible transitions between
velocities appeared 10 times per sequence. Finally, depending on the condi-
tions of the experiment, the sequence was presented to the retinae between
eight and ten times. A fragment of the temporal sequence of the stimulus
for this protocol can be observed on the top of Figure 2.3.
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Light-motion experiment

An additional protocol was used for an experiment on the fish retina (n = 1).
This protocol added changes in the light intensity with which the pattern of
squares was projected onto the retina. Here, the velocity and light intensity
of the projected stimulus were abruptly changed every second in an alternate
way. This procedure yielded periods of 500 ms of constant velocity and light
intensity. Five different velocities and four different light intensities were
used for stimulation. Velocities were obtained by combining two different
motion directions with speeds of 1.25 mm/s and 2.5 mm/s. Additionally, the
absence of movement was also considered. Negative and positive velocities
corresponded to motion in opposite directions. In turn, the projected light
intensities onto the retina were 0.63 µW/cm2, 2.08 µW/cm2, 7.21 µW/cm2

and 26.18 µW/cm2. The sequence of combinations of the four constant light
intensities and five velocities was created by concatenating all the 20 possible
combinations in a pseudo-random way, ensuring that all combinations had
the same occurrence frequency. In a full stimulus sequence, each of the 20
light intensity and velocity combinations was presented 96 times to the retina.
Finally, the sequence was presented to the retina eight times. A segment of
the temporal sequence of the stimulus that was presented to the retina for
this protocol is shown in Figure 2.4.

2.2 Pre-analysis of the data

The aim of this study is to analyse how the activity of single and small
populations of retinal ganglion cells encodes features of visual stimuli. To
achieve this goal, the extracellular activity of the neurons was registered by
a recording system that continuously sampled each of the electrodes in the
array with a rate of 30 kHz. In turn, the detection of action potentials
from the extracellular activity was done by manually setting a threshold for
each of the electrodes. Nonetheless, depending on the experiment conditions,
fluctuations in the extracellular activity that lack the classic form of an action
potential can cross the threshold and could be wrongly regarded as spikes.
Moreover, in extracellular recordings it is common that an electrode registers
the activity of more than one neuron at a time. For these reasons, a pre-
processing stage for the recorded activity by each electrode comprised the
separation of spurious spikes from the real ones, as well as the grouping of
the spikes corresponding to each of the registered cells. Additionally, the
pre-processing of the data in this study involved the classification of retinal
ganglion cells based in their responses to the applied motion stimulus.



46 CHAPTER 2. MATERIALS AND METHODS

2.2.1 Spike Sorting

Spike sorting refers to the process of differentiating action potentials from
background ‘noise’ in recorded extracellular activity. Additionally, for the
electrodes in the array that were able to register the activity of retinal gan-
glion cells, this process also includes the discrimination of spikes originated
by one neuron, from others evoked by neighbouring neurons.

The rationale behind spike sorting is that if an electrode registers the ac-
tivity of more than one neuron, it would be possible to distinguish the activity
of each neuron based on the waveforms of the evoked spikes. Here, within
the framework of this study, spike sorting was performed on the recorded ex-
tracellular data using a commercial software (Offline Sorter V 2.8.8, Plexon
Inc., Dallas, Texas, USA) that combines the Principal Component Analysis
of the waveforms of the recorded action potentials, with an Expectation-
Maximisation T-Distribution clustering method. Using these techniques, the
software can perform spike sorting in an automatic manner for the differ-
ent electrodes. The results after the automatic spike sorting consist in the
creation of different so called units, which correspond to putative different
neurons from which the electrodes have registered activity (see Figure 2.2).

For this study, the first step for spike sorting consisted of an automatic
procedure for each of the electrodes in the array. After the automatic spike
sorting, the results were controlled for each of the electrodes. The control
consisted of a visual inspection of the created units in order to assure that no
over classification was made, and that the waveforms of the obtained units
possessed the shape of an action potential. Here, it is worth mentioning that
due to the minimal distance between electrodes of 400 µm, the probability
that two electrodes registered the activity of the same cell was rather low.
The responses of retinal ganglion cells obtained after spike sorting for both
experimental protocols can be observed in the lower sections of Figures 2.3
and 2.4. For the motion experiment, Table 2.1 displays the number of identi-
fied units after spike sorting, for each of the experiments performed utilising
turtle (n = 3) and fish (n = 5) retina.

2.2.2 Cell Classification

For both experimental protocols used in this study, it was analysed how the
activity of retinal ganglion cells encode information about motion features
of a moving stimulus. Here, the recorded responses of some retinal ganglion
cells showed to tune their firing rate depending on the speed and direction of
movement of the pattern of squares. Therefore, for the motion experiment
protocol, additional to the pre-processing stage of spike sorting, retinal gan-



2.2. PRE-ANALYSIS OF THE DATA 47

Raw recording Unit a Unit b

Figure 2.2: Registered extracellular activity by an electrode (raw recording).
After spike sorting, two units were created. Unit a contains waveforms that
were classified as noise and artefacts and hence, was not considered for further
analysis. Unit b contains waveforms with a classical action potential shape.

glion cells were classified according to the tuning of their responses. This
classification grouped the retinal ganglion cells in three categories; Left- and
Right-direction selective cells (Left-DSC and Right-DSC, respectively), and
symmetrically tuned Non-direction selective cells (Non-DSC).

The classification of retinal ganglion cells was performed based on the
spike firing rate probability distributions of their responses to the different
velocities of the moving stimulus. In turn, these probability distributions
were obtained considering the 500 ms periods for which a constant velocity
was presented to the retinae (Figure 2.5b). Here, in the case of the motion ex-
periment protocol, four pairs of distributions originated from velocities with
the same speed and opposite direction were obtained. Thereby, as first step
for the cell classification, a two-sample Kolmogorov-Smirnov test was applied
to each of the distribution pairs. If a cell showed significant differences for
more than two distribution pairs (p ≤ 0.005), it was considered as direction
selective cell. In turn, the cell was grouped in the direction class for which
the mean firing rate of the distributions showed to be maximum. Here, cells
that showed to have preferred directions corresponding to negative veloci-
ties were classified as Left-DSC. Conversely, the opposite criterion applied
for Right-DSC. A further analysis was performed for cells whose firing rate
distributions did not allow to classify them as direction selective cells. This
analysis comprised the comparison of the firing rate distributions over the
different speeds. Here, if the analysed cells showed significant differences
across more than two speeds (p ≤ 0.005), they were classified as Non-DSC.
In contrast, if the cells did not show significant differences, they were not
considered for further analysis.

For the motion experiment protocol, the percentage of cells that were
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Figure 2.3: Segment of 10 s from the motion experiment. Time course of
the different velocities with which the pattern of squares was moving (top).
Responses, after spike sorting, of 47 and 45 cells recorded from experiments
in the turtle and carp retina, respectively (middle and bottom).

grouped in a defined class varied among experiments and animal species. In
the case of the experiments with turtle retinae (n = 3), the percentage of cells
that tuned their activity to different speeds was between 70 % and 79.2 %.
These cells include direction and non-direction selective cells. In turn, the
percentage of cells that were direction selective was between 40.4 % and 50 %
(upper section in Figure 2.5a).

For experiments conducted with carp retinae (n = 5), the percentage
of cells that tuned their activity to the different speeds, including direction
and non-direction selective cells, was between 16.9 % and 43.3 %. Here, the
percentage of direction selective cells was between 4.3 % and 23.3 % (lower
section in Figure 2.5a). For each of the experiments carried out in turtle
and fish retina, the number of cells that were classified in each of the three
categories, and hence considered for further analyses, is shown in Table 2.1.
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Animal Registered
electrodes

Recorded
units

Left-
DSC

Non-
DSC

Right-
DSC

Turtle
(n = 3)

99 40 8 8 12

99 53 13 17 12

99 47 11 14 8

Fish
(n = 5)

95 77 9 2 2

96 45 3 9 2

96 30 6 6 1

96 23 1 5 0

96 61 2 4 4

Table 2.1: For the experiments carried out in this study, most of the elec-
trodes in the 10 x 10 array registered extracellular activity. After spike sort-
ing, the activity of retinal ganglion cells was identified for a reduced number
of electrodes. In turn, only some of the identified cells showed tuned activity
to the different speeds of the experiment protocol.

2.2.3 Selection of Cells

Additional to the classification of the retinal ganglion cells in the three classes
described in Section 2.2.2, for the Motion Experiment protocol, a preliminary
analysis was performed to select the cells that were used to test the three joint
activity coding hypotheses introduced in pages 30-32. Thereby, the selection
of cells was based on their performance for the estimation of motion velocity.
The assessment of the estimation performance is going to be addressed in
detail in Section 2.3.4.

More in detail, in the case of the turtle experiments, a preliminary anal-
ysis by applying spike-cost based metrics to estimate the motion velocity
was performed. In turn, this preliminary analysis was carried out for all of
the retinal ganglion cells that could be classified either into Left-, Right-, or
Non-DSC. Furthermore, the analysis considered the responses of these cells
within the 500 ms interval. In this sense, cells that allowed estimation perfor-
mances similar to chance level were not further considered. Here, depending
on the number of remaining available retinal ganglion cells for each of the
experiments, a number between six and nine cells from each of the three cell
classes were selected (see Table 2.2).

In the case of the fish experiments, due to the limited number of cells
that could be classified either into Left-, Right- or Non-DSC, the maximum
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Animal Recorded
units

Selected
cells

Left-
DSC

Non-
DSC

Right-
DSC

Turtle
(n = 3)

40 25 8 6 9

53 21 8 6 7

47 20 8 6 6

Fish
(n = 5)

77 6 2 2 2

45 6 2 2 2

30 6 2 3 1

23 6 1 5 0

61 6 2 2 2

Table 2.2: Number of selected cells for each of the experiments carried out
in this study.

number of selected cells from each class was two. Nevertheless, as mentioned
before, there were some experiments for which the number of cells of a defined
class was either zero or one (see Table 2.2).

2.2.4 Combination of Neuronal Activity

As mentioned in Section 1.2.4 (pages pages 30-32), three joint activity coding
hypotheses were tested in this study; Pooled Population, Labelled Line and
Functional Group. Here, for each of the tested hypotheses, the activity of the
retinal ganglion cells was combined in a specific way to build small popula-
tions. In order to build the populations, cells belonging to each of the three
groups, i.e., Left-, Right- or Non-DSC (see Section 2.2.2) were considered.
Moreover, the populations were built with an equal number of cells from each
of the three cell classes. For instance, in the case of the turtle experiments,
populations of size n = 6 comprised two Left-, two Right- and two Non-DSC
cells. However, these considerations were not always fulfilled for the fish ex-
periments. This situation was due to the fact that for these experiments,
certain functional classes of RGC were either absent or rarely found (see
lower section of Figure 2.5a). Additionally, the reduced number of recorded
RGC in fish did not allow the test of the Functional Group hypothesis.

The idea behind the Pooled Population hypothesis is that for the encoding
of sensory information, the knowledge about the neuron of origin of each spike
is irrelevant (page 30). Therefore, to test this hypothesis, the spike trains
of the considered retinal ganglion cells were pooled into a single spike train,
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and no further distinctions were made (Aronov et al., 2003).
In contrast, the Labelled Line hypothesis considers that the knowledge

about the exact neuron of origin of each spike is relevant for the encoding of
stimulus information. Here, it is proposed that information is first encoded
by the activity of single retinal ganglion cells on independent channels and
then, the information coming from each channel is integrated (page 31).
Thus, in terms of the metric methods applied in this study (Section 2.3),
the distance matrices for the responses of each of the cells comprising the
populations have to be first calculated, and then these matrices have to be
summed (Aronov et al., 2003).

The Functional Group hypothesis is a combination of both previous hy-
potheses. In this sense, this hypothesis proposes that for the encoding of
stimulus features, the knowledge about the type of cell that fires each spike,
rather than the exact neuron, has a high relevance. Thereby, for this hypoth-
esis it is suggested that the information about the features of visual stimulus
is first encoded by the integrated activity of retinal ganglion cells of the same
class on independent pathways and then, the information coming from the
different pathways is integrated (page 32). Therefore, in terms of the analy-
ses carried out in this study, the responses of retinal ganglion cells belonging
to the same class were first pooled together. Then, the distance matrices
for the responses of each of the cell classes were calculated and finally, the
matrices were summed together. Figure 2.6 shows a simplified diagram that
points out the three principles with which the activity of RGC was combined.

Regarding the test of the different joint activity coding hypotheses, ten
populations of sizes n = {6, 9, 12, 15 and 18} were built for each of the
experiments in turtle retina. Here, the populations were built considering
the same number of cells from each of the three classes. For each of the
built populations, the procedure involved the random draw of the necessary
number of cells from the group of selected cells.

In the case of the experiments in fish retina, due to the fact that only
few cells were selected, five populations of six cells were analysed. Here,
each of the populations corresponded to each of the analysed experiments.
As mentioned before, for two of the experiments in fish retina, it was not
possible to build the populations with the same number of RGC of each
class.
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Figure 2.4: Segment of 10 s from the light-motion experiment. Time course of
the different projection light intensities and velocities with which the pattern
of squares was moving (top). Responses, after spike sorting, of 114 cells
recorded from an experiment in the carp retina (bottom).
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Figure 2.5: Classification of retinal ganglion cells of turtle (top) and carp
(bottom) based on the tuning of their responses to different velocities. a) Per-
centage of identified motion and direction selective cells for each of the per-
formed experiments. b) Firing rate probability distributions of individual
cells, which were classified as Left-DSC or Non-DSC. Each box plot cor-
responds to each of the velocities utilised in the experiment protocol. For
the cells shown, the central mark within the box plots depicts the median,
whereas the edges of the box plots refer to the 25th and 75th percentiles of
the spike firing rate. In turn, whiskers extend to the most extreme spike
firing rates which are not considered outliers. Finally, the circles depict the
mean firing rate.
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Cell Label

Labelled Line

Pooled Population

Functional Group

Left-DSC

Right-DSC

Non-DSC

Figure 2.6: Diagram to illustrate how the activity of different neurons was
combined to test different joint activity coding hypotheses. For each hypoth-
esis, the knowledge about the cell that originated the neuronal activity has
a different relevance for stimulus encoding. For the Pooled Population hy-
pothesis, this knowledge has no relevance. For the Labelled Line hypothesis,
the knowledge of the exact neuron of origin is relevant. For the Functional
Group hypothesis, the knowledge of the cell type of origin is relevant.
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2.3 Analysis methods

To analyse how the activity of retinal ganglion cells encodes information
about visual stimuli, the approach followed in this study was to test if the
features of the presented stimulus could be estimated based on the responses
of these cells. Here, the basic assumption for the estimation of stimulus fea-
tures, is that neuronal responses elicited by a repeatedly presented stimulus
would show more similarity among them, than responses elicited by different
stimuli. Therefore, this assumption allows to infer that it would be possible
to estimate the stimulus features that were presented to the sensory system,
based on the similarities and dissimilarities between the elicited responses.
Nevertheless, due to the variability in the spike count and spike time precision
of the neuronal responses, the measure of similarity or dissimilarity between
spike trains is not a trivial task. Consequently, several spike train dissimi-
larity measures have been developed (for a review see Paiva et al. (2010)).
Within the framework of this study, two different methods were applied to
the recorded data in order to assess the similarity of pairs of spike trains;
spike cost-based metrics (Victor and Purpura, 1996; Aronov, 2003) and ISI
metrics (Kreuz et al., 2007).

Once the pairwise similarity of spike trains was calculated, the spike
trains were assigned to the stimulus class that elicited responses to which
they showed the highest similarity. In turn, the assignment was done ap-
plying a clustering method suggested by Victor and Purpura (1996). After
the clustering procedure, the performance on the estimation of the different
stimulus features was assessed by either calculating the percentage of correct
estimations or the estimation normalised error.

2.3.1 Spike Cost-Based Metrics

Spike train cost-based metrics (Victor and Purpura, 1996) is a binless analysis
method that allows to test the relevance of spike train features, i.e., spike
firing rate and temporal structure, for the encoding of neural information.
Here, the binless nature of this method respects the hybrid topology of spike
trains. This topology refers to the discrete character of spike trains, which
should have an integer number of spikes, and at the same time, to their
continuous character, which points out the fact that spikes are elicited on a
continuous time line.

To achieve its goal, spike train cost-based metrics assesses the difference
between pairs of spike trains in terms of distance. This distance is calculated
in a rigorous way by comparing the spike firing rate or the temporal structure
of pairs of spike trains. In this sense, the method states that the features that
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are relevant for stimulus encoding are the ones that minimize the distance
between neuronal responses evoked by the same stimulus and at the same
time, maximize the distance between responses elicited by different stimuli.

The analysis by this method was carried out using the Spike Train Anal-
ysis Toolkit, which is available at http://neuroanalysis.org/, and was devel-
oped by the laboratory of neuroinformatics of the Weil Medical College of
the Cornell University. In turn, this toolbox was run in MATLAB V R2008a
(The Mathworks Inc., Natick, Massachusetts, USA).

Single-unit metrics

Single-unit metrics considers only spike trains of single neurons for the anal-
ysis and is thus, the simplest application of spike train cost-based metrics.
Here, the method quantifies the dissimilarity between a pair of spike trains
by finding the minimal cost to transform a given spike train into another one.
In turn, this transformation cost is considered as the distance between both
spike trains. The transformation of spike trains is done based on three basic
operations (Figure 2.7a):

• Inserting a spike, which has a cost = 1.

• Deleting a spike, which has a cost = 1.

• Shifting a spike in time, which has a cost = q∆t

The first two basic operations assure that any given spike train can be
transformed into another, whereas the third basic operation confers spike
timing sensitivity to the method by means of the parameter q. Hence, by
setting different values for the parameter q, which units are s−1, the temporal
structure of neuronal responses can be tested for distinct time scales.

The robustness of this method relies on the fact that the distance between
two spike trains is defined as the sum of the individual costs for the minimal
number of necessary transformation operations. To express this formally,
the minimal transformation pathway for a pair of spike trains Sa and Sb,
with spikes times denoted by {a1, a2, ..., am} and {b1, b2, ..., bn}, can be
obtained by applying the recursive algorithm shown in Equation 2.1. Here,
Dspike
i,j refers to the distance between spike trains Sa and Sb for their first i

and j spikes, respectively.

Dspike
i,j = min{Dspike

i−1,j + 1, Dspike
i,j−1 + 1, Dspike

i−1,j−1 + q|ai − bj|} (2.1)

This algorithm should be regarded as a two dimensional m x n spread-
sheet (for the particular case of spike trains Sa and Sb), where the first row
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corresponds to Dspike
0,j = j, and the first column to Dspike

i,0 = i. These first
row and column represent the minimal path between a spike train with no
spikes, and another one with i or j spikes, respectively. For these cases, the
minimal path is the difference in the number of spikes. In turn, the three
terms under the minimum argument of Equation 2.1 start to be meaningful
for spike trains with at least one spike. Here, the first two terms correspond
to the cost of adding one spike to either of the spike trains, whereas the
third term refers to the time shift of the spike. Because the history of the
transformation operations has to be followed in order to find the minimal
path, the calculation of the entries for the remaining cells of the spreadsheet
involve the values contained in the cells immediately on the left and above
the one of interest, which in turn correspond to the first and second term of
Equation 2.1, respectively. Finally, to find the minimal pathway for q > 0,
the cost of shifting a spike in time should be less than deleting the spike
and inserting it in the proper time location. Expressed more formally, | ai -
bj | < 2/q. This last consideration is allowed by the insertion of the third
term in Equation 2.1. Following this algorithm, the cell of the spreadsheet in
the m row and the n column corresponds to the distance between spike trains
Sa and Sb, for all of their spikes. This distance is denoted by Dspike[q ](Sa,Sb).

Due to the fact that the cost of shifting a spike in time is proportional
to the value of the parameter q and thus, 1/q defines how far a spike can be
shifted in time without increasing the distance between a pair of spike trains
substantially, single-unit metrics offers the possibility to test the relevance of
different time scales of the temporal structure of neuronal responses for the
encoding of stimulus information. In general terms, this method states that
precise time scales are relevant for the encoding of stimulus, provided that
distances between spike trains elicited by the same stimulus are minimised
for great q values and at the same time, distances for spike trains evoked by
different stimuli are maximised. Conversely, if these results are obtained for
small q values, then coarser time scales are relevant for stimulus encoding. A
special case for this method occurs for q = 0 s−1. Here, because there is no
cost in shifting a spike in time, the minimal transformation cost is obtained
by the difference in the number of elicited spikes between the considered pair
of spike trains and thus, the firing rate is regarded as encoding mechanism
(Figure 2.7b). For this study, single-unit metrics were applied considering
q = { 0, 1, 2, 4,..., 128 s−1 }.

Multi-unit metrics

As already commented in Section 1.2.4, there are some hypotheses that sug-
gest that sensory information could be encoded and processed by the activity
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Figure 2.7: Single-unit metrics. a) Minimal transformation pathway illus-
trating the three possible basic operations of deletion, insertion and time
shift of a spike. b) An insight into how the parameter q is used to test the
relevance of spike trains properties for the encoding of stimulus features.

of populations of neurons, rather than by the activity of individual cells. In
this context, it has been found that additional to the classical On-, Off- or
On-Off responses, some retinal ganglion cells tune their activity in response
to certain features of a moving stimulus, e.g., motion direction and/or speed.
Therefore, one of the aims of this study was to test if the combined activity
of such retinal ganglion cells encodes information about features of moving
visual stimuli in a complementary way. To test this hypothesis, an extension
of the single-unit metrics method, proposed by Aronov (2003), was applied
on the responses of small populations of retinal ganglion cells. Multi-unit
metrics, besides testing the relevance of the spike firing rate and the tempo-
ral structure of neuronal responses, tests if the knowledge about the cell of
origin of each spike is relevant for the encoding of stimulus information.

As first step for the analysis, multi-unit metrics assigns labels to spikes
according to their cell of origin and then, pools all spikes into a single spike
train. Like the single-unit metrics, this method assesses the distance between
a pair of spike trains based on the basic operations of inserting, deleting, or
shifting spikes in time. Nevertheless, this method introduces an additional
new parameter to find the shortest transformation path between two spike
trains. This parameter, which is denoted as k and has no units, refers to the
cost of changing the label of a spike, i.e., cell of origin (Figure 2.8a). The
parameter k can have values 0 ≤ k ≤ 2. Here, based on the different possible
values of k, the method evaluates the importance of knowing the cell of
origin of each spike for stimulus encoding. In this sense, for the case in which
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k = 0, there is no cost in changing the spike label and therefore, all spikes are
considered as been originated by the same cell. In contrast, for k = 2 the cost
of re-labelling a spike is the same as deleting and inserting a new spike and
thus, each spike will keep always its original label. With this in mind, multi-
unit metrics states that the knowledge about the cell of origin of each spike
for stimulus encoding will not be relevant, if distances between spike trains
provoked by the same stimulus are minimised for k = 0 at the same time
that distances between spike trains from different stimulus are maximised.
In contrast, if such results are obtained for k = 2, the knowledge of the cell
of origin of each spike will be relevant for stimulus encoding (Figure 2.8b).

In this study, multi-unit metrics was applied to analyse data sets of up to
18 cells with all possible combinations of the q parameter values used in the
single-unit metrics, and values of k = { 0, 2 }. Here, the cell populations were
built considering retinal ganglion cells of each of the three classes found by
the analysis of the cells’ spike firing probability distributions, i.e., Left- and
Right- DSC and Non-DSC (see Section 2.2.2). The procedure to calculate the
distances between spike trains for the two values of k used in this study was as
follows. For the case in which k = 0, the responses of the retinal ganglion cells
that were considered to build the population were pooled into a single spike
train and then, the minimal transformation pathway was found applying
the recursive algorithm used for the single-unit metrics (Equation 2.1). In
contrast, in the case of k = 2, the pairwise distance between spike trains of
a population was equivalent to the sum of the individual pairwise distances
of cells comprising the population (Aronov et al., 2003).

The decision to perform the analysis with values of k = { 0, 2 } was
based on three major considerations. The first was the ease to interpret the
results obtained with these values, in contrast to values within this range.
The second consideration was that with these values, the multi-unit metrics
can be easily extended to spike train metrics other than the spike cost-based
metrics, i.e., ISI metrics. Finally, the third consideration was concerned with
the time needed to calculate the pairwise distances. Here, in the case of the
spike cost-based metrics, the time needed for k = 0 is proportional to N2,
where N is the number of spikes in the spike trains. For k = 2, the total
time needed is proportional to

∑L
l=1N(l)2, where L is the number of neurons

(Labelled Line) or neuron classes (Functional Group). In contrast, for values
of k between these extremes, the time needed is NL+1 (Aronov et al., 2003).

2.3.2 ISI Metrics

In this study, an additional approach to estimate the dissimilarity between
pairs of spike trains, in terms of the distance between them, was used to test
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Figure 2.8: Multi-unit metrics. a) Minimal transformation pathway for a
pair of spike trains elicited by two neurons to illustrate, additional to the
three possible basic operations used in the single-unit metrics, the additional
operation of label change. b) The additional parameter k tests the relevance
of the knowledge of the neuron of origin of each spike for the encoding of
information about stimulus properties.

how the activity of retinal ganglion cells encode visual information. The ISI
metrics approach is based on the ratio between the interspike time intervals
(ISI) of the analysed spike trains (see Figure 2.9). Here, the ISI are regarded
as an instantaneous estimation of the spike firing rate and by this means,
the method tests if the temporal structure of the spike firing rate of neuronal
responses encodes sensory information. Furthermore, the ISI metrics uses
no binning of the spike trains and therefore, it has a high time resolution
that preserves the exact time stamps of single spikes. Thereby, allowing the
visualisation of the relative timing of a pair of spike trains. Finally, the ISI
metrics is parameter free and self adaptive, so no optimisation is necessary
(Kreuz et al., 2007).

For the ISI metrics, the first step to obtain the distance between two
spike trains is to calculate the instantaneous ISI of both spike trains (middle
section of Figure 2.9). Here, for the spike train Sa = { a1, a2, ..., am }, the
ISI is assigned to each time instant t based on Equation 2.2.

SISIa (t) = arg min{ai|ai > t} − arg max{ai|ai < t}, a1 < t < am (2.2)

Once the time resolved ISI sequences S ISIa (t) and S ISIb (t) are obtained,
the ratio between these two series, I (t), has to be calculated based on Equa-
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Figure 2.9: ISI metrics. Pairwise distance between similar (left) and dis-
similar (right) spike trains. Instantaneous interspike intervals for the spike
trains (middle). The integral in time of the interspike interval ratio defines
the distance between spike trains.

tion 2.3.

I(t) =

{
SISI
a (t)

SISI
b (t)

− 1 if SISIa (t) ≤ SISIb (t)

−(
SISI
b (t)

SISI
a (t)

− 1) else
(2.3)

The ratio obtained by Equation 2.3 is normalised. In this sense, it be-
comes zero in case of iso-frequent behaviour, and approaches -1 if S ISIb (t)
is infinitely greater as S ISIa (t). Conversely, it approaches 1 if the opposite
happens (lower section of Figure 2.9).

Finally, the pairwise distance, DISI(Sa,Sb), between spike trains Sa and
Sb is obtained by integrating in time the absolute value of the ISI ratio, as
illustrated in Equation 2.4 (area inside the curves in the lower section of
Figure 2.9).

DISI(Sa, Sb) =

∫ T

t=0

|I(t)|dt (2.4)

The ISI metrics was applied to analyse the responses of individual and
small populations of retinal ganglion cells that were recorded by performing
the motion experiment protocol in turtle retinae. Here, as in the case of
the spike cost-based metrics, the analyses involving the activity of small
populations of retinal ganglion cells tested the relevance of the knowledge of
the neuron of origin of each spike for the encoding of information about visual
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stimulus, i.e., k = { 0, 2 }. These analyses were carried out as described in
the previous section.

2.3.3 Stimulus-Dependent Clustering

So far, the different methods to quantify the dissimilarity between pairs of
spike trains from single and small populations of retinal ganglion cells have
been described. Nevertheless, in order to quantify the extent to which dis-
tances between individual responses of retinal ganglion cells depend on the
stimuli, the clustering approach proposed in Victor and Purpura (1996) to
assign responses to stimulus classes was utilised in this study. The proposed
clustering method works in an unsupervised way, makes no further assump-
tions and uses only the spike train pairwise distances for the classification of
the responses. Here, the latter two properties of the clustering method are
the strongest arguments why this method was utilised in this study. For the
case of spike cost-based metrics, this is because two parameters (i.e., q and
k) were used to test different features of the responses of retinal ganglion
cells and therefore, it was desired to trace the effect of these parameters on
the encoding of information about features of visual stimuli. On the other
hand, if the classification results obtained with the spike cost-based metrics
and the ISI metrics are to be compared, the results should be obtained using
the same clustering methods.

For spike cost-based metrics and ISI metrics, the pairwise distance for
all spike trains Sβ,α, was obtained. Here, β refers to the spike train label
(1 ≥ β ≥ n, for n spike trains), and α to the stimulus class (1 ≥ α ≥ c, for c
stimulus classes) that provoked the response. In turn, all pairwise distances
between spike trains were organised in a n x n distance matrix (see left
section of Figure 2.10).

In order to perform the stimulus-dependent clustering, the mean distance
of each spike train to the spike trains elicited by each stimulus class has to
be calculated. This mean distance is denoted as d̂(Sα), and can be obtained
as illustrated in Equation 2.5. Here, for the calculation of d̂(Sα), the spike
train under study (S ) is excluded from the responses (S’ ) considered for each
stimulus class.

d̂(Sα) = [〈(D(S, S ′))zS′ elicited by α〉]1/z (2.5)

After all distance averages between the spike train S, and all other spike
trains S’ elicited by the different c stimulus classes are obtained, the spike
train S will be assigned to the stimulus class γ for which the average distance
d̂(Sγ) is the minimum of all average distances d̂(Sc). In this concern, 〈 〉 in
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Equation 2.5, refers to the distance average across spike trains generated by
the stimulus class α. Moreover, the distances in Equation 2.5 are averaged
following a power transformation by means of the exponent z. Here, negative
values of z will bias the average to the shortest distance between S and the
responses provoked by α and therefore, will assign the spike train S, to the
stimulus class with the closest match. Conversely, for large positive values
of z, the spike train S will be assigned to the stimulus class for which the
distance to the furthest outlier is minimized. For this study, z = 1 was used.

In the case that more than one stimulus class show the minimum average
distance, the spike train would be assigned to all of these stimulus classes.
Therefore, the occurrence frequency f in which a spike train is assigned to a
certain stimulus class will be inversely proportional to the number of classes
p to which this spike train is assigned, i.e., f = 1/p. This consideration is
important because in order to keep track of how spike trains were assigned
to stimulus classes, the occurrence frequency f serves as the input for a c x c
confusion matrix. This matrix will begin with all of its cells having a value
of zero and then, each time a spike train elicited by a stimulus class α is
assigned to a stimulus class γ, the occurrence frequency f will be added to
the value contained in the cell (γ,α) of the c x c matrix (confusion matrix in
Figure 2.10).

2.3.4 Performance Assessment

In order to quantify the degree in which the responses of retinal ganglion cells
allow the estimation of the visual stimulus that evoked them, the estimation
performance yielded by the analysis methods used in this study had to be
assessed. This assessment was achieved by two different measures; the correct
estimation percentage and the estimation mean absolute error.

Correct estimation percentage

The correct estimation percentage (Equation 2.6) was chosen as performance
measure because it allows to compare easily the estimation performance of
different analysis methods, coding strategies and joint activity coding hy-
potheses. Furthermore, its calculation is fast and the results can also be
easily interpreted.

For Equation 2.6, γ is the stimulus class to which a response Sβ, evoked by
stimulus class α, was assigned. Additionally, δ represents the delta function,
where δ(0) = 1, and 0 otherwise. In this sense, the calculation of the correct
estimation percentage was done considering the n responses for all visual
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Figure 2.10: Stimulus-dependent clustering. Distance matrix whose entries
correspond to the calculated pairwise distance between n = 6 spike trains
elicited by c = 3 stimulus classes (left). Confusion matrix whose entries
correspond to the normalised occurrence frequency in which a spike train
elicited by the α stimulus class (actual stimulus) is assigned to a γ stimulus
class (estimated stimulus). Each spike train is assigned to the stimulus class
γ for which the mean distance across spike trains d̂(Sγ) (white numbers inside
the distance matrix) has its minimum.

stimulus features recorded in the experiments.

Ec(n) =
100

n

n∑
β=1

δ(γ(Sβ)− α(Sβ)) (2.6)

In this study, different features, i.e., stimulus classes, of the visual stimu-
lus presented to the retinae were estimated based on the responses of retinal
ganglion cells. Here, the estimated features depended on the experiment pro-
tocol that was used. For instance, the motion experiment protocol involved
the estimation of the motion velocity and the motion direction of the moving
stimulus, as well as the instantaneous velocity changes. On the other hand,
for the light-motion experiment protocol, the intensity of the projection light
and the instantaneous changes in light intensity were estimated, additional
to the motion stimulus features.

One of the drawbacks of the correct estimation percentage measure is
that small deviations in the estimation of the stimulus features have the
same influence in the percentage of correct estimations as large deviations.
Additionally, because velocity is described as a speed in a given direction,
the sole estimation of the stimulus motion velocity would not be sufficient to
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gain knowledge about the type of information that is encoded in the activity
of retinal ganglion cells. Therefore, the assessment of the performance in the
estimation of motion direction, in the case of the estimation of motion fea-
tures, is necessary to understand better which kind of information is encoded
in the activity of retinal ganglion cells. In this sense, for the assessment of
the estimation performance for motion direction (Equation 2.7), slight modi-
fications to Equation 2.6 were necessary due to the fact that for the different
velocities values used in both protocols, only three motion directions were
possible; -1 and 1 for negative and positive velocities, respectively, and 0 for
absence of movement (see Equation 2.8).

Ed(n) =
100

n

n∑
β=1

δ(sign(γ(Sβ))− sign(α(Sβ))) (2.7)

with

sign(a) =


1 a > 0
0 a = 0
−1 a < 0

(2.8)

Estimation mean absolute error

Because of the drawback of the correct estimation percentage measure com-
mented in the last paragraph, an additional measure that is more sensitive to
error magnitudes was also utilised in this study. In this sense, the mean ab-
solute error in the estimation of the visual stimulus features allows to obtain
a better insight into the nature of the information encoded by the activity of
retinal ganglion cells. In the case of the estimation of motion velocity, this
measure is useful to understand the degree of the deviations in the estimation
of motion speed, which in contrast to velocity, is a unsigned scalar quantity.
Nonetheless, the calculation of the estimation mean absolute error can be
also applied to the estimation of light intensities.

The calculation of the mean absolute error in the estimation of stimulus
features was normalised to chance level (i.e., the expected error when the
actual stimulus feature is compared with values drawn in a random manner)
and was obtained using Equation 2.9.

Ee(n) =
1

chance

1

n

n∑
β=1

‖γ(Sβ)| − |α(Sβ)‖ (2.9)
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with

chance =
1

c2

c∑
υ,υ′=1

‖α(υ)| − |α(υ′)‖ (2.10)

In Equation 2.9, the mean absolute error is calculated for all the n re-
sponses recorded in the performed experiments. Furthermore, the chance
level was obtained considering all the c stimulus classes, e.g, velocity values
in the case of motion features, of the experimental protocols.

Maximum performance index

For the motion experiment protocol, an additional analysis was carried out
based on the results yielded by the activity of single RGC. Thereby, because
the spike cost-based metrics allows to assess individually the relevance of
different time scales by means of the parameter q (see Section 2.3.1), it was
tested if the time scales involved in the encoding of a certain motion feature
vary depending on the value of this feature.

The analysis consisted in calculating first, how often a stimulus value c
was correctly estimated for a given time scale q (Correct Estimation Index).
In turn, this index was normalised by dividing it by the number of repeti-
tions nc for which each of the stimulus values was presented to the retinae
(Equation 2.11).

EC(c) =
1

nc

nc∑
β=1

δ(γ(Sβ)− c)) (2.11)

For Equation 2.11, EC(c) is the Normalised Correct Estimation Index for
the stimulus class c. Here, γ is the stimulus class to which a response Sβ,
evoked by stimulus class c, was assigned and additionally, δ represents the
delta function, where δ(0) = 1, and 0 otherwise.

The next step in the analysis calculated how often a stimulus value c′
was incorrectly estimated as corresponding to the stimulus class c (Incorrect
Estimation Index). This index was normalised by dividing it between the
number of repetitions nc′ for which the stimulus values, not belonging to
stimulus class c, were presented to the retinae (Equation 2.12).

EI(c) =
1

nc′

nc′∑
β=1

δ(γ(Sβ)− c)) (2.12)

The Normalised Incorrect Estimation Index EI(c) was used as a penalty
factor for the analysis. Hence, it was subtracted from one. In turn, the
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value obtained after the subtraction was multiplied by the Correct Estima-
tion Index to obtain Ep(c), which is a compensated version of the Correct
Estimation Index (Equation 2.13).

Ep(c) = [1− EI(c)] · EC(c) (2.13)

In this sense, in the case that for a certain time scale q a stimulus value
is often correctly estimated but nevertheless, an overestimation of the same
stimulus value is present, the Correct Estimation Index will decay propor-
tional to the occurrence frequency of this overestimation.

Based on the obtained values of Ep(c) for each of the stimulus classes, it
was calculated how often a certain value of q allowed the maximum estimation
performance across the set Q of tested time scales (O(c, q) in Equation 2.14).

O(c, q)q∈Q =

q∑
δ(Ep(c, q)− arg max(Ep(c,Q))) (2.14)

Finally, the Maximum Performance Index was obtained by calculating
the O(c, q) for all the analysed RGC and in turn, normalising the results by
dividing them by the number of analysed cells nRGC (Equation 2.15).

F (c, q) =
1

nRGC

x=nRGC∑
x=1

O(c, q, x) (2.15)

Significance of the results

For the characterisation of data or the performance of significance tests, the
mean is often the statistic utilised. However, in order for the mean to give
useful information about the data, the normality condition should be fulfilled.
Here, it is often the case that some uncertainties arise when trying to fulfil
this condition. In order to cope with this problem, the median has been
proposed as a statistic capable of providing as much information about the
data as the mean. Thereby, the median of a population, as in the case of
the mean, has a unique value. Furthermore, it can be calculated far more
quickly. However, the primary advantage of the median over the mean is that
the information that can be obtained from its value is robust, regardless of
the probability distribution of the data (Crowe, 1933; Savur, 1937). In this
study, no assumptions were made regarding the probability distributions of
the obtained results. Therefore, it appeared meaningful to use the median
for the graphical representation of the data.

In this direction, the Wilcoxon sum-rank-test was utilised to assess the
significance of the results (Wilcoxon, 1945). This significance test has proved
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to have a similar power as the t-test for situations where the condition of nor-
mally distributed data is fulfilled. However, when this condition is violated,
the Wilcoxon sum-rank test has proved to offer larger power advantages, es-
pecially for high skewed distributions (Bridge and Sawilowsky, 1999). The
Wilcoxon sum-rank test is a non-parametric statistical paired difference test.
In turn, it compares pairwise samples from independent observations in or-
der to assess if one of the samples tend to have larger values (Hollander and
Wolfe, 1999).

The assumptions of the Wilcoxon sum-rank test are:

• that the two samples are randomly and independently drawn.

• that the dependent variable is intrinsically continuous and capable of
producing measures carried out to the nth decimal place.

• that the measures within the two samples have the properties of an
ordinal scale of measurement.

The Wilcoxon sum-rank-test was tested to assess the significance in the
difference across coding strategies and joint activity coding hypotheses, as
well as to test if the results were significantly better than those expected by
chance. For the test, the distributions of both samples are equal under the
null hypothesis. This means that it is equally likely that an observation from
sample A exceeds an observation from sample B, or that the opposite occurs.
The test was run using the function wilcox.test in R version 2.15.0 (The R
Foundation for Statistical Computing, Vienna, Austria).



Chapter 3

Results

3.1 Motion Experiment

This study aims to assess the relevance of different properties of retinal
ganglion cell (RGC) activity for the encoding of information about fea-
tures of moving visual stimuli. Therefore, the activity of RGC from tur-
tle (traquemys scripta elegans) and carp (cyprinus carpio) retinae was
recorded extracellularly. The approach involved the estimation of the mo-
tion velocity and the instantaneous velocity changes of a moving pattern of
squares based on the responses of single and populations of RGC.

In Section 2.2.2, it has been shown that some of the recorded RGC tune
their activity to different motion speeds. Moreover, some direction selective
cells (DSC) were also found (Figure 2.5). Figure 3.1 shows the responses
of a turtle RGC that showed a symmetrical tuning of its activity to the
stimulus velocities (Non-DSC). Here, the depicted responses were elicited by
five different instantaneous velocity changes. In turn, each velocity change
involves a previous and a post velocity. In the case of Figure 3.1, the veloc-
ity changes are the result of five different previous velocities and a common
post velocity. From the raster plots and the peristimulus time histograms
(PSTH) (Figure 3.1b and c, respectively) it can be observed that although
the velocity after the instantaneous stimulus changes is the same, the re-
sponses of the Non-DSC show differences. More precisely, with the excep-
tion of the ‘Speed down′ condition (first column to the left in Figure 3.1),
the raster plots and the PSTH show larger activity fluctuations within the
first milliseconds after the instantaneous velocity changes, than the fluctu-
ations observed for the responses’ late period. This observation points out
that the information carried by the activity of RGC is dynamically chang-
ing over time, and that different time intervals within the responses carry

69



70 CHAPTER 3. RESULTS

different information about the stimulus. Moreover, based on the probabil-
ity distributions of the spike count and the interspike time intervals (ISI), it
could be possible to discriminate some of the velocity transitions (Figure 3.1d
and e). Here, the probability distributions are measured over the 100 rep-
etitions and considering the entire 500 ms interval of stimulus presentation
(see page 44). Furthermore, although the ‘Speed up′ and ‘Direction change′

conditions show similar spike count probability distributions, the ISI distri-
butions show differences that could allow to discriminate both transitions.
Conversely, the ‘Speed up′ and ‘Speed up direction change′ conditions show
similar ISI probability distributions, but nevertheless their spike count dis-
tributions show great differences. This characterisation suggests that the
encoding of information about motion features is not only carried out by one
feature of the responses of RGC. Here, the spike count probability distribu-
tion points out the relevance of the number of fired spikes for the encoding of
stimulus information, whereas the ISI probability distribution indicates the
importance of one feature of the temporal structure of the responses of RGC.

As mentioned in Section 2.1.2, the stimulus used in the Motion Experi-
ment protocol was a pattern of squares that moved with a constant velocity
for 500 ms. After this period, the velocity was abruptly changed and held
constant for another 500 ms and so on. Nine different motion velocities were
involved in this experiment protocol. Thereby, in order to explore which kind
of information is carried in distinct time intervals within the 500 ms periods,
the results in this section were obtained by analysing the responses of RGC
within three time intervals. These time intervals were the whole 500 ms, the
first 200 ms after the instantaneous velocity change, and the last 200 ms be-
fore the next velocity change. In turn, these time intervals correspond to the
transient activity (first 200 ms interval), the sustained activity (last 200 ms
interval), and a mixture of both activities (500 ms interval). Moreover, the re-
sults shown in this section were obtained considering the activity of single, as
well as populations of RGC of different sizes (6 ≤ n ≤ 18). To build the RGC
populations, members corresponding to at least two of the groups obtained
by classifying the cells based on their spike firing probability distributions,
i.e., Left-, Right- or Non-DSC, were considered (see Section 2.2.2). Further-
more, three hypotheses regarding the way the activity of RGC is combined,
i.e., Pooled Population, Labelled Line and Functional Group, were tested in
order to assess the influence of these three combination procedures in the
encoding of motion stimulus features (see Section 2.2.4).

The rationale behind the analyses performed in this study considered
the assumption that responses of RGC to a certain stimulus should show
some similarity as long as the stimulus remains the same and in turn, show
differences as soon as the stimulus is changed. Therefore, the spike cost-
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Figure 3.1: Characterisation of the responses of a turtle Non-DSC to a mov-
ing pattern of squares. a) The stimulus consisted of instantaneous velocity
changes with a common post velocity. b) Raster plot of the responses of the
Non-DSC for each of the trials. c) PSTH with a time resolution of 1 ms. The
spike rate has been averaged across trials and smoothed with a rectangular
sliding window of 10 ms. d) Spike count probability measured over all the 100
presentations, and considering periods of 500 ms and bins of 1 spike. e) In-
terspike time interval probability measured over all the 100 presentations,
and considering periods of 500 ms and bins of 50 ms.
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based metrics and the ISI metrics were applied to the responses of single,
and populations of RGC to assess the similarity or difference between RGC
responses evoked by the same and different stimulus features.

In the particular case of the spike cost-based metrics, the assessment of the
similarity between RGC responses is performed by means of the parameter
q (see Section 2.3.1). Thereby, the different values assigned to this parame-
ter allow to explore the relevance of the spike firing rate and different time
scales of the temporal structure of RGC responses, for the encoding of visual
information. In the following paragraphs, some of the times the description
of the results is going to be made based in a rough classification of the tested
time scales. Hence, time scales in the range between 8 ms ≤ 1/q ≤ 31 ms
are referred to as fine time scales, whereas the ones in the range between
62 ms ≤ 1/q ≤ 250 ms, are called medium time scales. Finally, coarse time
scales are the ones falling in the range between 500 ms ≤ 1/q ≤ 1000 ms.

3.1.1 Single Cell Coding

This section describes the estimation results for the motion features of the
moving pattern of squares obtained based on the activity of single RGC. Here,
the representation of the estimation results obtained by the spike cost-based
metrics and the ISI metrics, was done making the following considerations:

• In addition to the RGC responses obtained for the entire 500 ms inter-
val of stimulus presentation, the activity during the transient period
(first 200 ms) and the sustained period (last 200 ms) were analysed
separately.

• For each of the three time intervals, the figures display the results
obtained by different time scales for the spike cost-based metrics (right),
and the results obtained for the ISI metrics (left).

• The depicted results correspond to the cells that were selected by the
procedure described in Section 2.2.3.

• The results are individually represented for each of the three cell classes
in which the cells were grouped, i.e., Left-, Right- and Non-DSC.

• For each of the cell classes, the estimation results allowed by the con-
sidered RGC of all experiments were pooled together. The procedure
to assess the estimation performance is described in Section 2.3.4.

• With the exception of the post velocity, post direction and post speed
(pages 90-95), the markers in the graphs correspond to the median,
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whereas the error bars depict the minimal and maximal estimation
performances across all considered RGC from all experiments.

• For the post velocity, post direction and post speed, the markers in
the graphs correspond to the median of the estimation performance,
while the error bars depict the median of the estimation performance
differences between the post motion features and the motion features
alone.

• The Wilcoxon sum-rank-test, considering different values of α (α > p),
was applied to assess the significance of the results (see page 67).

Velocity

For both animal species, the maximum median in the estimation performance
for the motion velocity was obtained for the 500 ms interval. Here, the time
scale 1/q =∞ led to estimation performances that reached 28.5% and 23.5%
for single turtle and fish RGC, respectively.

For the spike cost-based metrics, the estimation performance for the mo-
tion velocity, obtained based on the activity of single RGC from both animal
species, was qualitatively similar for the three analysed time intervals and
the three tested RGC classes. Thereby, fine time scales led generally to esti-
mation results that were close to the ones expected by chance, i.e., 11.11%.
Nonetheless, estimation performance improved for coarser time scales, i.e.,
larger 1/q values. Thus, coarse time scales yielded generally the maximum
estimation performances. Quantitatively, better estimation results were ob-
tained when the 500 ms interval was considered for the analysis. Furthermore,
the velocity estimation performances were quantitatively similar for the first
and last 200 ms intervals (Figure 3.2).

In the case of single turtle RGC, the estimation performance for motion
velocity appeared to reach a plateau at medium time scales. Moreover, the
estimation performance allowed by medium and coarser time scales was sig-
nificantly above chance level (p < 0.005). In contrast, the plateaus in the
estimation performance for single fish RGC were less evident. Furthermore,
only coarse time scales of the activity within the 500 ms and the first 200 ms
intervals led to estimation results significantly above chance level for all cell
classes (p < 0.01 and p < 0.05, respectively).

When applying the ISI metrics on the activity of turtle and fish RGC,
the median of the estimation performances across time intervals was similar
for each of the tested cell classes. In turn, for both 200 ms intervals, the
estimation results obtained for the ISI metrics were quantitatively similar to
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those obtained by the optimal time scales for the spike cost-based metrics.
These results were not obtained for the 500 ms interval, which showed a ten-
dency to yield lower estimation performances for the ISI metrics (Figure 3.2).
Nonetheless, for the three tested cell classes and the three analysed time in-
tervals, the activity of turtle and fish RGC yielded estimation results that
were significantly above chance level (p < 0.005 and p < 0.01, respectively).
The maximum estimation results for the motion velocity, obtained for both
of the applied metrics, are summarised in the table in page 257, which can
be found in the appendix of this study.

In order to gain more knowledge about the kind of information that is
encoded in the activity of RGC, the estimation of velocity was further de-
composed into the estimation of motion direction and speed.

Direction

The activity of single turtle RGC within the 500 ms interval led to the max-
imum median in the estimation performance for the motion direction. Here,
the time scale 1/q = 1000 ms led to estimation performances that reached
50.7%. In contrast, the ISI metrics led to the maximum estimation results
for single fish RGC. In turn, these results reached 46.8% for the last 200 ms
interval.

In the case spike cost-based metrics, the estimation performance for the
motion direction was qualitatively similar for the three tested RGC classes
and the three analysed time intervals. Thereby, fine time scales of the activity
of RGC from both animal species led generally to estimation results clearly
below chance level, i.e., 40.74%. As in the case of the motion velocity, coarser
time scales allowed the improvement of the estimation performance, which
showed to reach a plateau at medium time scales. Nevertheless, the estima-
tion performance for medium and coarser time scales remained close to that
expected by chance (Figure 3.3). The much lower than chance estimation
performance yielded by fine time scales can be explained by the overestima-
tion of the absence of movement for all velocities. This phenomenon is going
to be analysed more in detail in the following paragraphs and in Section 4.2.

In the particular case of single turtle RGC, the median of the estima-
tion performance was below chance level for all the tested time scales of the
three cell classes in both 200 ms intervals. However, coarse time scales of
the activity of DSC within the 500 ms interval, led to estimation results for
the motion direction that were significantly above chance level (p < 0.005).
In contrast, for the three tested classes of fish RGC, the estimation perfor-
mance for motion direction was not significantly above chance level for any
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Figure 3.2: Estimation performance for the motion velocity of the moving
stimulus. The estimation was carried out by applying spike cost-based met-
rics and ISI metrics on the activity of the selected RGC from all experiments
within the three tested time intervals. Markers indicate the median, whereas
error bars represent the range between maximum and minimum estimation
performance. a) Turtle retinae: Three experiments; n = 22 Left-DSC, n = 18
Non-DSC and n = 22 Right-DSC. b) Fish retinae: Five experiments; n = 9
Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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of the three analysed time intervals.
For the ISI metrics, the estimation performance for the motion direction

was similar across the three analysed time intervals for each of the tested cell
classes. Thereby, the estimation results allowed by the three tested cell classes
of both animal species were close to chance level (Figure 3.3). However,
in the case of turtle RGC, the results obtained based on the activity of
Left-DSC were significantly better than those expected by chance for the
three analysed intervals (p < 0.05). The maximum estimation results for the
motion direction, obtained for both of the applied metrics, are summarised
in the table in page 258.

Speed

For both animal species, the lowest median in the estimation error for the
motion speed was obtained for the 500 ms interval. Here, the time scale
1/q =∞ led to normalised absolute errors that reached 0.6 and 0.7 for single
turtle and fish RGC, respectively.

Although for the spike cost-based metrics, the absolute normalised esti-
mation error for the motion speed showed quantitative and qualitative dif-
ferences for both animal species, some common aspects were observed. In
this sense, for the three analysed time intervals, fine time scales of the ac-
tivity of all the tested RGC classes generally led to estimation errors much
worse than those expected by chance. However, as in the case of the motion
velocity and direction, coarser time scales led to estimation error reductions
(Figure 3.4). The overestimation of the absence of movement yielded by fine
time scales can explain, as in the case of motion direction, their much higher
than chance estimation errors for the motion speed.

For most of the analysed turtle RGC, a plateau in the motion speed es-
timation performance was reached at 1/q ≥ 500 ms for the 500 ms interval.
Moreover, coarse time scales of the activity of the three tested RGC classes
within this time interval yielded estimation errors significantly below chance
level (p < 0.005). In contrast, for both 200 ms intervals, the plateau in the
estimation performance was already observed for time scales 1/q ≥ 125 ms.
However, for these time scales, only the activity of Left- and Non-DSC within
the first 200 ms interval led to estimation errors significantly below chance
level (p < 0.005). In the case of fish RGC, coarse time scales generally led
to lower estimation errors for the motion speed than fine time scales. How-
ever, estimation errors significantly below chance level were only observed
for coarse time scales of the activity of Left-DSC within the 500 ms interval
(p < 0.05).

Regarding the estimation errors for the motion speed obtained for the
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Figure 3.3: Estimation performance for the motion direction of the moving
stimulus. The estimation was carried out by applying spike cost-based met-
rics and ISI metrics on the activity of the selected RGC from all experiments
within the three tested time intervals. Markers indicate the median, whereas
error bars represent the range between maximum and minimum estimation
performance. a) Turtle retinae: Three experiments; n = 22 Left-DSC, n = 18
Non-DSC and n = 22 Right-DSC. b) Fish retinae: Five experiments; n = 9
Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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ISI metrics, some differences were observed across both animal species.
Here, for the three tested turtle RGC classes, the median of the absolute
error in the estimation of the motion speed was lower than that expected by
chance for three analysed time intervals. However, only the activity of Left-
DSC and Non-DSC showed a significant difference (p < 0.05). In contrast,
for the fish RGC, only the activity of Left-DSC within the three analysed
time intervals led to estimation errors whose median was below the chance
level. However, these results were only significant for the last 200 ms interval
(p < 0.05). The lowest estimation errors for the motion speed, obtained for
both of the applied metrics, are summarised in the table in page 259.

Analysis of estimation errors

A more detailed representation of the estimation of all motion velocities, ob-
tained by applying the spike cost-based metrics and the ISI metrics on the
activity of a turtle Left- and a Non-DSC, can be observed in Figure 3.5.
Here, the analysis was carried out considering the activity within the 500 ms
interval. Thereby, in the case of the spike cost-based metrics, the time scale
1/q = 250 ms was the one that allowed the best velocity estimation results
for both cells. For the shown matrices, a perfect estimation of the motion ve-
locities would draw a black diagonal on the matrix cells where the estimated
and actual velocities coincide, and leave all other matrix entries blanc. In
this sense, for both of the applied metrics, it can be observed that for the
Left- and Non-DSC, the estimation performance was almost perfect for the
absence of movement. Moreover, faster velocities were better estimated than
slower ones. In contrast, the matrices of both cell classes show that slow
velocities were often misclassified as absence of movement. This effect ex-
plains the worse than chance estimation performance for motion direction
and speed described in pages 74- 76. Comparing both cell classes, two mir-
rored diagonals can be observed in the case of the Non-DSC. This finding
indicates that additional to the assignment of speed values adjacent to the
actual speed, errors in the estimation of velocities are due to the confusion
in the motion direction. On the other hand, for the Left-DSC, the dark diag-
onal is clear only for velocities in the preferred direction, whereas velocities
in the anti-preferred direction are mostly estimated as absence of movement.
Furthermore, as in the case of the Non-DSC, errors in the estimation of ve-
locities in the preferred direction for DSC are also due to the assignment of
adjacent speed values.

In the case of the results obtained for the spike cost-based metrics, the
time scales that allowed the maximum estimation performance for the dif-
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Figure 3.4: Absolute normalised estimation error for the motion speed of the
moving stimulus. The estimation was carried out by applying spike cost-
based metrics and ISI metrics on the activity of the selected RGC from all
experiments within the three tested time intervals. Markers indicate the
median, whereas error bars represent the range between maximum and min-
imum estimation performance. a) Turtle retinae: Three experiments; n = 22
Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae: Five
experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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Figure 3.5: Distribution of the estimation performance for the nine motion
velocities, obtained by applying the spike cost-based metrics and the ISI met-
rics on the activity of single turtle RGC within the 500 ms interval. In the
case of the spike cost-based metrics, the time scale 1/q = 250 ms allowed
best estimation results for both of the displayed cells. In all cases, errors
due to the assignment of adjacent velocities are observable. a) The activity
of a Left-DSC allows better performance for velocities in the preferred direc-
tion but fails in the estimation of velocities in the anti-preferred direction.
b) The activity of Non-DSC allows a good estimation of speed but fails in
the estimation of the motion direction.
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ferent motion velocities, directions and speeds, were variable across cells.
Figure 3.6 shows the histograms of the normalised occurrence frequency with
which a time scale allowed the maximum estimation performance for a certain
value of the motion velocity, direction and speed for the turtle experiments
(i.e., maximum performance index). In turn, these histograms were calcu-
lated based on the estimation result obtained for all the tested RGC of the
three analysed turtle experiments (n =62). The procedure to compute the
histograms is described in page 66.

For the 500 ms interval, time scales 1/q ≥ 62 ms allowed frequently
the maximum estimation performance for all the velocities and speeds (Fig-
ure 3.6a and c). Nevertheless, besides the absence of movement, which was
clearly best encoded by coarse time scales, there was not a clear tendency for
either time scale to be relevant for the encoding of certain velocity or speed
values. In contrast, for both of the 200 ms intervals, time scales 1/q ≥ 125 ms
allowed frequently the estimation of the fastest velocities and speeds, as well
as the absence of movement, whereas for the rest of the velocities and speed
values, time scales 31 ms ≤ 1/q ≤ 125 ms showed a tendency to allow
frequently the maximum estimation performances.

In the case of the motion direction, for the 500 ms interval, time scales
1/q ≥ 250 ms allowed frequently the maximum estimation performances for
the different directions, whereas for both 200 ms intervals, these results were
obtained for time scales 1/q ≥ 62 ms (Figure 3.6b).

Velocity changes

For the motion experiment protocol, additional to the estimation of the nine
different velocities, it was also tested if the activity of single RGC carries
information about the instantaneous velocity changes. Here, the correct esti-
mation of each of the possible velocity changes requires the right estimation of
the velocities present before and after the instantaneous transitions. Because
the motion experiment protocol included nine different velocities, there was
a total of 72 possible instantaneous velocity changes. In turn, this number
of possible transitions leads to a low chance level, i.e., 1/72.

For both animal species, the maximum median in the estimation perfor-
mance for the instantaneous velocity changes was obtained for the 500 ms
interval. Here, the ISI metrics led to estimation performances that reached
10.1% and 6.7% for single turtle and fish RGC, respectively.

For the spike cost-based metrics, the estimation results for the instanta-
neous velocity changes showed some common aspects for both animal species.
For instance, for each of the three analysed time intervals, similar estimation
results were obtained for the three tested RGC classes. Moreover, medium
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Figure 3.6: Histograms of the normalised occurrence frequency with which
the tested time scales (1/q) allowed the maximum estimation performance
for a defined value of a stimulus motion feature. The histograms correspond
to the activity of all the tested turtle RGC (n =62) within the three analysed
time intervals. a) For each of the nine possible velocity values (bottom) and
across all velocities (top). b) For each of the three possible direction values
(bottom) and across all directions (top). c) For each of the five possible
speeds values (bottom) and across all speeds (top).
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time scales of the activity within the 500 ms interval led to the highest esti-
mation performances. In contrast, the last 200 ms interval yielded the lowest
estimation results for all time scales (Figure 3.7).

In the case of single turtle RGC, their activity within the three analysed
time intervals led to estimation results significantly above chance level, i.e.,
1.39% (p < 0.005). However, the 500 ms and the first 200 ms intervals led
to better estimation results, for which time scales 31 ms ≤ 1/q ≤ 125 ms
showed a tendency to be optimal for the encoding of information about the
instantaneous velocity changes. In the case of the three tested fish RGC
classes, although the activity within the first 200 ms led to rather poor esti-
mation results, these were significantly above chance level for the time scale
1/q = 125 ms (p < 0.05). Moreover, for the 500 ms interval, this time scale
also led to the optimal estimation performance, which was in turn signifi-
cantly better than chance (p < 0.01).

For the three analysed time intervals, the results obtained by applying
the ISI metrics on the activity of the three tested classes of turtle and
fish RGC led to estimation results significantly above chance level (p < 0.005
and p < 0.01, respectively). Nonetheless, the estimation results for the 500 ms
and the first 200 ms intervals were better than those obtained for the last
200 ms interval. Moreover, for these two time intervals, these results were
quantitatively similar to those yielded by the optimal scales for the spike
cost-based metrics, particularly for the turtle RGC. The maximum estima-
tion results for the instantaneous velocity changes, obtained for both of the
applied metrics, are summarised in the table in page 260.

Due to the fact that the estimation of the previous and post velocities is
inherent to the estimation of the instantaneous velocity changes, the estima-
tion of these velocities was analysed separately in order to explore more in
detail the information that is encoded in the activity of single RGC. More-
over, the estimation of the previous and post velocities was further decom-
posed in order to test if the activity of single RGC carries information about
their motion direction and speed.

Previous velocity

For both animal species, the maximum median in the estimation performance
for the previous velocity was obtained for the 500 ms interval. Here, the ISI
metrics led to estimation performances that reached 20.4% and 19.1% for
single turtle and fish RGC, respectively.

Generally, for the spike cost-based metrics, the activity of single RGC
within the last 200 ms interval led to estimation results close to those ex-
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Figure 3.7: Estimation performance for the instantaneous velocity changes
of the moving stimulus. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the activity of the selected RGC from
all experiments within the three tested time intervals. Markers indicate the
median, whereas error bars represent the range between maximum and min-
imum estimation performance. a) Turtle retinae: Three experiments; n = 22
Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae: Five
experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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pected by chance. Here, the previous stimulus was already absent for 300 ms.
In contrast, and particularly for time scales 1/q geq 31 ms, the activity of
RGC within the 500 ms and the first 200 ms intervals allowed estimation
results whose median was above chance level (Figure 3.8). Furthermore, for
these time intervals, the estimation performance allowed by the optimal time
scales was significantly above chance level for the three tested classes of turtle
and fish RGC (p < 0.005 and p < 0.01, respectively).

In contrast, the ISI metrics led to estimation performances significantly
above chance level for the three analysed time intervals and the three tested
classes of turtle and fish RGC (p < 0.005 and p < 0.01, respectively). Here,
the activity within the 500 ms and the first 200 ms intervals showed a ten-
dency to allow better estimation results, which were in turn, quantitatively
similar to those yielded by the optimal time scales for the spike cost-based
metrics. The maximum estimation results for the previous motion velocity,
obtained for both of the applied metrics, are summarised in the table in
page 263.

Previous direction

For both animal species, the maximum median in the estimation performance
for the previous direction was obtained for the 500 ms interval. Here, the
ISI metrics led to estimation performances that reached 49.9% and 47.9% for
single turtle and fish RGC, respectively.

The analysis of the responses of single RGC from both animal species
with the spike cost-based metrics led to estimation results close to those
expected by chance. Moreover, these was observed for all of the tested time
scales of the activity within the three analysed time intervals (Figure 3.9).
However, for the 500 ms and the first 200 ms intervals, and particularly for
fine time scales, the estimation results obtained for the three classes of turtle
and fish RGC were slightly, but significantly above chance level (p < 0.005
and p < 0.01, respectively).

In the case of the ISI metrics, the estimation performance for the three
analysed time intervals and the three tested RGC classes from both animal
species was quantitatively similar to that obtained by the spike cost-based
metrics. Thereby, the 500 ms and the 200 ms intervals allowed estimation
performances slightly, but significantly above chance level for the three tested
classes of turtle and fish RGC (p < 0.005 and p < 0.05, respectively). The
maximum estimation results for the previous motion direction, obtained for
both of the applied metrics, are summarised in the table in page 263.
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Figure 3.8: Estimation performance for the motion velocity of the moving
stimulus before the instantaneous velocity changes. The estimation was car-
ried out by applying spike cost-based metrics and ISI metrics on the activity
of the selected RGC from all experiments within the three tested time inter-
vals. Markers indicate the median, whereas error bars represent the range
between maximum and minimum estimation performance. a) Turtle retinae:
Three experiments; n = 22 Left-DSC, n = 18 Non-DSC and n = 22 Right-
DSC. b) Fish retinae: Five experiments; n = 9 Left-DSC, n = 14 Non-DSC
and n = 7 Right-DSC.
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Figure 3.9: Estimation performance for the motion direction of the moving
stimulus before the instantaneous velocity changes. The estimation was car-
ried out by applying spike cost-based metrics and ISI metrics on the activity
of the selected RGC from all experiments within the three tested time inter-
vals. Markers indicate the median, whereas error bars represent the range
between maximum and minimum estimation performance. a) Turtle retinae:
Three experiments; n = 22 Left-DSC, n = 18 Non-DSC and n = 22 Right-
DSC. b) Fish retinae: Five experiments; n = 9 Left-DSC, n = 14 Non-DSC
and n = 7 Right-DSC.
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Previous speed

The activity of single turtle RGC within the first 200 ms interval led to the
lowest median in the estimation errors for the previous speed. Here, the ISI
metrics led to normalised absolute errors that reached 0.79. In contrast, the
time scale 1/q = 62 ms led to the lowest estimation errors for single fish
RGC. In turn, these errors reached 0.81 for the 500 ms interval.

The estimation errors for the previous motion speed, obtained by analysing
the activity of single RGC from both animal species with the spike cost-
based metrics, were similar to those expected by chance for the three anal-
ysed time intervals. However, the estimation results showed a tendency to
be better for the 500 ms and the first 200 ms intervals (Figure 3.10). Here,
in the case of the three tested classes of turtle RGC, the activity within
these two time intervals yielded estimation errors significantly below chance
level for medium time scales (p < 0.005). In contrast, for the three tested
classes of fish RGC, these time scales led to significantly lower than chance
estimation errors only for the 500 ms interval (p < 0.05).

For the ISI metrics, the activity of RGC within the 500 ms and the
first 200 ms intervals generally led to lower estimation errors than the ones
yielded by the last 200 ms interval. Moreover, for the 500 ms and the first
200 ms intervals, the estimation errors were significantly below chance level
for the three tested turtle RGC classes (p < 0.005). These results were not
found for fish RGC, for which only the activity of Left- and Non-DSC led
to significantly lower than chance estimation errors (p < 0.05). The lowest
estimation errors for the previous motion speed, obtained for both of the
applied metrics, are summarised in the table in page 263.

Analysis of estimation errors

Figure 3.11 shows the distribution of the estimation performances for the
nine previous motion velocities yielded by both of the applied metrics. Here,
the analyses were performed considering the 500 ms interval and the same
cells presented in Figure 3.11. In the case of the spike cost-based metrics,
the time scale 1/q = 62 ms allowed the best estimation results for both cells.
In this sense, Figure 3.11 shows clear differences in the kind of information
that is gained by the analyses carried on by both of the applied metrics. For
the spike cost-based metrics, the estimation results yielded by the activity of
the Left-DSC show an overestimation of the the fast motion velocities in the
anti-preferred direction, whereas in the case of the activity of the Non-DSC,
the overestimation is mostly for the absence of movement. In turn, the results
obtained by applying the ISI metrics on the activity of both cell classes show
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Figure 3.10: Absolute normalised error in the estimation of the motion speed
of the moving stimulus before the instantaneous velocity changes. The esti-
mation was carried out by applying spike cost-based metrics and ISI metrics
on the activity of the selected RGC from all experiments within the three
tested time intervals. Markers indicate the median, whereas error bars rep-
resent the range between maximum and minimum estimation performance.
a) Turtle retinae: Three experiments; n = 22 Left-DSC, n = 18 Non-DSC
and n = 22 Right-DSC. b) Fish retinae: Five experiments; n = 9 Left-DSC,
n = 14 Non-DSC and n = 7 Right-DSC.
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a qualitative improvement compared to the ones obtained for the spike cost-
based metrics. Here, for the activity of the Left-DSC, the results obtained
for the ISI metrics show a lower overestimation of the velocities in the anti-
preferred direction and additionally, an improvement in the estimation of the
velocities in the preferred direction. Moreover, the results for the Non-DSC
show a lower overestimation of the absence of movement and an improvement
in the estimation of the motion speed.

Figure 3.12 shows the histograms of the normalised occurrence frequency
with which a time scale allowed the maximum estimation performance for a
certain value of each of the previous motion features. As in Figure 3.6, these
histograms reflect the results obtained by analysing the activity of all the
tested turtle RGC (n =62) with the spike cost-based metrics. Here, it can
be observed that medium and fine time scales are relevant for the encoding
of this information. More specifically, for the 500 ms interval, the estimation
performance for all motion velocity, speed and direction values, reached fre-
quently its maximum for time scales 62 ms ≤ 1/q ≤ 250 ms. Conversely,
for both 200 ms intervals, the maximum estimation performances for these
motion features was frequently allowed by time scales 8 ms ≤ 1/q ≤ 125 ms
(Figure 3.12).

Previous sections presented the results obtained for the estimation of the
motion features of the moving stimulus without considering the stimulus
history, i.e., without considering the previous motion velocity (pages 73-76).
Therefore, in order to test if the information about the stimulus history would
lead to better results, the motion features after the instantaneous velocity
changes were estimated making this consideration. This additional analysis
is motivated by the responses of RGC to different instantaneous velocity
changes with a common posterior motion velocity (e.g., Figure 3.1). Here,
for each of the velocity transitions, the transient period of the responses
showed a similar temporal structure, which in turn showed some variability
across velocity transitions. Therefore, it appears that the actual stimulus
and the stimulus history have a strong influence in the temporal structure
of the temporal structure of the transient period of RGC responses. In the
next paragraphs, the motion features that were estimated considering the
stimulus history are going to be referred with the prefix post.

Post velocity

Figure 3.13 shows the estimation performance for the post motion velocity, as
well as the difference in the estimation performance when the stimulus history
was not considered. Here, for both of the applied metrics, the estimation
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Figure 3.11: Distribution of the estimation performance for the nine motion
velocities before the instantaneous velocity changes, obtained by applying the
spike cost-based metrics and the ISI metrics on the activity of single turtle
RGC within the 500 ms interval. In the case of the spike cost-based metrics,
the time scale 1/q = 62 ms allowed best estimation results for both of the
displayed cells. In all cases, errors due to the assignment of adjacent velocities
are observable. a) The activity of a Left-DSC allows better performance for
velocities in the preferred direction but fails in the estimation of velocities
in the anti-preferred direction. b) The activity of Non-DSC allows a good
estimation of speed but fails in the estimation of the motion direction.
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Figure 3.12: Histograms of the normalised occurrence frequency with which
the tested time scales (1/q) allowed the maximum estimation performance for
a defined value of a stimulus motion feature. The histograms correspond to
the activity of all the tested turtle RGC (n =62) within the three analysed
time intervals. a) For each of the nine possible previous velocity values
(bottom) and across all previous velocities (top). b) For each of the three
possible previous direction values (bottom) and across all previous directions
(top). c) For each of the five possible previous speeds values (bottom) and
across all previous speeds (top).
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differences were obtained individually for each of the tested RGC from both
animal species. The maximum median in the estimation performance for the
post velocity was yielded by the activity of RGC within the 500 ms interval
for both animal species. Here, the time scale 1/q = 250 ms led to estimation
performances that reached 29.9% and 22.5% for single turtle and fish RGC,
respectively.

In the case of the spike cost-based metrics, medium and fine time scales
of the activity of the three tested classes of turtle RGC allowed a significant
improvement in the estimation performance for the post motion velocity
(p < 0.005). Moreover, this improvement led to estimation performances
significantly better than those expected by chance for the three analysed time
intervals (p < 0.005). In contrast, for the three tested classes of fish RGC,
a significant estimation improvement was only observed for medium time
scales of the activity within the 500 ms interval (p < 0.05).

Coarse time scales of the activity within the three analysed time intervals
generally allowed similar estimation results for the motion velocity within
and without the context of a stimulus transition. Thereby, for both ani-
mal species, coarse and medium time scales of the activity within the three
analysed time intervals yielded better estimation results for the post motion
velocity. In turn, these results were significantly above chance level for turtle
and fish RGC (p < 0.005 and p < 0.01, respectively).

For the ISI metrics, the estimation results for the post motion velocity
were not significantly different to those obtained for the estimation of velocity
alone. Therefore, for the three tested time intervals, the estimation results for
the post motion velocity were significantly above chance level for turtle and
fish RGC (p < 0.005 and p < 0.01, respectively). The maximum estimation
results for the post motion velocity, obtained for both of the applied metrics,
are summarised in the table in page 264.

Post direction

For both animal species, the maximum median in the estimation performance
for the post direction was obtained for the 500 ms interval. Here, the time
scale 1/q = 500 ms led to estimation performances up to 50% for single turtle
RGC. In turn, the time scale 1/q = ∞ led to estimation results up to 51.8%
for single fish RGC.

For the spike cost-based metrics, medium and fine scales of the activity
within the 500 ms and the first 200 ms intervals led to a significant improve-
ment in the estimation of the post motion direction, compared to estimations
not considering the stimulus history (p < 0.05). These results were obtained
for the three tested RGC classes from both animal species (Figure 3.14).



94 CHAPTER 3. RESULTS

Post velocitya

b

Inf 500 125 31 8

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

ISI ISI Inf 500 125 31 8 Inf 500 125 31 8

Time scale [ms] Time scale [ms] 

ISI%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Inf 500 125 31 8

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

ISI ISI Inf 500 125 31 8 Inf 500 125 31 8

Time scale [ms] Time scale [ms] 

ISI%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Left-DSC
Non-DSC
Right-DSC
Chance level

Left-DSC
Non-DSC
Right-DSC
Chance level

Figure 3.13: Estimation performance for the motion velocity of the moving
stimulus after the instantaneous velocity changes. The estimation was carried
out by applying spike cost-based metrics and ISI metrics on the activity of
the selected RGC from all experiments within the three tested time intervals.
Markers indicate the median of the estimation performance, whereas error
bars represent the median of the differences in the estimation performance
considering and disregarding the stimulus history. Downward bars indicate
better estimation performance when the stimulus history is considered, while
the opposite is true for upward bars. a) Turtle retinae: Three experiments;
n = 22 Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae:
Five experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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Nevertheless, in the case of turtle RGC, only coarse time scales of the ac-
tivity of DSC within the 500 ms interval yielded estimation performances
significantly above chance level (p < 0.005). In contrast, for fish RGC,
estimation results significantly above chance level were only yielded by the
activity of Left-DSC within the 500 ms interval (p < 0.05).

Applying the ISI metrics on the activity of RGC within the three anal-
ysed time intervals did not lead to significant differences in the estimation
performance in favour of the post motion direction. These results were ob-
tained for the three tested RGC classes of both animal species. Therefore,
for turtle and fish RGC, the estimation performance for the post motion
direction was not significantly above chance level. The maximum estima-
tion results for the post motion direction, obtained for both of the applied
metrics, are summarised in the table in page 265.

Post speed

For both animal species, the lowest median in the estimation errors for
the post speed was obtained for the 500 ms interval. Here, the time scale
1/q = 1000 ms led to normalised absolute errors that reached 0.57 for single
turtle RGC. In turn, the time scale 1/q = 250 ms led to estimation errors
down to 0.66 for single fish RGC.

For the spike cost-based metrics, the reduction in the estimation errors
for the post motion speed was generally allowed by medium and fine time
scales of the activity of RGC within the three analysed time intervals (Fig-
ure 3.14). In turn, these reductions were significant for the three tested
classes of turtle RGC (p < 0.005), whereas for fish RGC, significant reduc-
tions were only found for Left- and Non-DSC (p < 0.05). Moreover, for the
500 ms and the first 200 ms intervals, coarse and medium time scales of the
activity of these cells led to estimation errors for the post motion speed that
were significantly below chance level (p < 0.005 and p < 0.05 for turtle and
fish, respectively).

For the ISI metrics, there were no significant differences between the
obtained estimation errors for the post motion speed and speed alone. More-
over, these results were obtained for the activity of the three tested RGC
classes of both animal species within the three analysed time intervals (Fig-
ure 3.14). Therefore, the activity of turtle Left- and Non-DSC was the only
one that allowed estimation errors significantly below chance level for the
three analysed time intervals (p < 0.05). In contrast, for fish RGC, only
the activity of Left-DSC led to estimation errors significantly below chance
level for the three analysed time intervals (p < 0.05). The lowest estimation
errors for the post motion speed, obtained for both of the applied metrics,
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Figure 3.14: Estimation performance for the motion direction of the moving
stimulus after the instantaneous velocity changes. The estimation was carried
out by applying spike cost-based metrics and ISI metrics on the activity of
the selected RGC from all experiments within the three tested time intervals.
Markers indicate the median of the estimation performance, whereas error
bars represent the median of the differences in the estimation performance
considering and disregarding the stimulus history. Downward bars indicate
better estimation performance when the stimulus history is considered, while
the opposite is true for upward bars. a) Turtle retinae: Three experiments;
n = 22 Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae:
Five experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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are summarised in the table in page 266.

Analysis of estimation errors

The distribution of the estimation performances for the nine post motion
velocities, obtained for both of the applied metrics, is shown in Figure 3.16.
Here, the analyses were done considering the activity within the 500 ms in-
terval from the same cells depicted in Figure 3.5 and 3.11. Comparing the
estimation results for the motion velocities without considering the stimu-
lus history (Figure 3.5), it can be observed that the results yielded by the
spike cost-based metrics for the optimal time scales, show a reduction in
the overestimation of the absence of movement (Figure 3.16). Moreover, for
both of the displayed cells, there was an improvement in the estimation of
slower motion velocities. On the other hand, in the case of the estimation
results obtained for the ISI metrics, although the overestimation of the ab-
sence of movement for both cells was similar compared to the one obtained
by disregarding the stimulus history, there was a slight improvement in the
estimation of slower velocities.

For the spike cost-based metrics, the time scales that allowed the maxi-
mum performance for the estimation of the post motion features were variable
across cells (Figure 3.17). In this sense, for the 500 ms interval, time scales
1/q ≥ 250 ms allowed frequently the maximum estimation performances for
the fastest velocity and speed, as well as for the absence of movement. Fur-
thermore, for the same time interval, the maximum estimation performance
for the rest of the motion velocities and speeds was frequently allowed for
time scales 62 ms ≤ 1/q ≤ 250 ms, and 1/q = ∞. For the first 200 ms
interval, time scales 16 ms ≤ 1/q ≤ 250 ms allowed frequently the maxi-
mum estimation performance for all velocities and speeds. Furthermore, for
this time scale range, finer time scales showed to gain relevance for decreas-
ing velocities and speed values. For the two fastest speeds, the time scale
1/q = ∞ also allowed frequently the maximum estimation performance.
In the case of the last 200 ms interval, the time scale 1/q = ∞ allowed
frequently the maximum estimation performance for the fastest velocities
and speeds, whereas the range between 31 ms ≤ 1/q ≤ 125 ms did it for
the rest of the velocities. Finally, for the absence of movement, time scales
1/q ≥ 125 ms allowed frequently maximum estimation performances for
both 200 ms intervals.

In the case of the post motion direction, time scales 1/q ≥ 125 ms of the
activity within the 500 ms interval frequently led to the maximum estimation
performances for the different directions. In turn, for the first 200 ms inter-
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Figure 3.15: Absolute normalised estimation for the motion speed of the
moving stimulus after the instantaneous velocity changes. The estimation
was carried out by applying spike cost-based metrics and ISI metrics on the
activity of the selected RGC from all experiments within the three tested
time intervals. Markers indicate the median of the estimation performance,
whereas error bars represent the median of the differences in the estimation
performance considering and disregarding the stimulus history. Upward bars
indicate lower estimation errors when the stimulus history is considered, while
the opposite is true for downward bars. a) Turtle retinae: Three experiments;
n = 22 Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae:
Five experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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Figure 3.16: Distribution of the estimation performance for the nine motion
velocities after the instantaneous velocity changes, obtained by applying the
spike cost-based metrics and the ISI metrics on the activity of single turtle
RGC within the 500 ms interval. In the case of the spike cost-based metrics,
the time scales 1/q = 125 ms and 1/q = 250 ms allowed best estimation
results for the Left-DSC and Non-DSC, respectively. In all cases, errors due
to the assignment of adjacent velocities are observable. a) The activity of
a Left-DSC allows better performance for velocities in the preferred direc-
tion but fails in the estimation of velocities in the anti-preferred direction.
b) The activity of Non-DSC allows a good estimation of speed but fails in
the estimation of the motion direction.
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val, the maximum estimation performance for the different motion directions
was frequently allowed by time scales 1/q ≥ 31 ms, whereas for the last
200 ms interval, maximum estimation performance was found for time scales
1/q ≥ 62 ms (Figure 3.17b).

Discrimination of motion feature changes

The results described in the previous sections indicate that based on the ac-
tivity of some RGC, it is possible to estimate the motion velocity, and even
the instantaneous velocity changes of a moving stimulus with a performance
better than that expected by chance. However, this study also aimed at in-
vestigating if the activity of single RGC carries information about changes
in the motion features of a moving stimulus. Thereby, because the instanta-
neous changes in motion velocity involve the change of at least one motion
feature, it was tested if based on the activity of single RGC, it could be
possible to discriminate the possible changes in the motion speed, motion
direction, and the combination of changes in both features. Here, due to the
design of the motion experiment protocol, the possible changes in the motion
features can be individually divided by the following criteria:

Speed changes

• Increase in the motion speed regardless of the motion direction (fre-
quency 32/72).

• Decrease in the motion speed regardless of the motion direction (fre-
quency 32/72).

• No change in the motion speed, which implies the change of motion
direction (frequency 8/72).

Direction changes

• Change in the motion direction regardless of the motion speed (fre-
quency 32/72).

• Motion onset or motion arrest (frequency 16/72).

• No change in the motion direction, which implies the change of motion
speed (frequency 24/72).
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Figure 3.17: Histograms of the normalised occurrence frequency with which
the tested time scales allowed the maximum estimation performance for a
defined value of a stimulus motion feature. The histograms correspond to
the activity of all the tested turtle RGC (n =62) within the three analysed
time intervals. a) For each of the nine possible post velocity values (bottom)
and across all post velocities (top). b) For each of the three possible post
direction values (bottom) and across all post directions (top). c) For each
of the five possible post speeds values (bottom) and across all post speeds
(top).
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Combined speed and direction changes

• Increase in the motion speed combined with change in the motion di-
rection (frequency 12/72).

• Increase in the motion speed combined with no change in the motion
direction (frequency 12/72).

• Increase in the motion speed by motion onset (frequency 8/72).

• Decrease in the motion speed combined with change in the motion
direction (frequency 12/72).

• Decrease in the motion speed combined with no change in the motion
direction (frequency 12/72).

• Decrease in the motion speed by motion arrest (frequency 8/72).

• No change in the motion speed, which implies the change of motion
direction (frequency 8/72).

Speed changes

For both animal species, the maximum median in the estimation performance
for the three possible changes in motion speed was obtained for the 500 ms
interval. Here, the time scale 1/q = 1000 ms led to estimation performances
that reached 62.6% for single turtle RGC. In turn, the ISI metrics led to
estimation results up to 60.8% for single fish RGC.

The estimation results yielded by the spike cost-based metrics showed
a tendency to be better for the 500 ms and the first 200 ms intervals (Fig-
ure 3.18). In turn, these results were found for the activity of the three tested
classes of RGC from both animal species. Furthermore, for these two time
intervals, coarse and medium time scales of the activity of turtle RGC led to
estimation results significantly above chance level, i.e., 40.74% (p < 0.005).
Although the estimation results for both animal species showed qualitative
similarities, only medium and coarse time scales of the activity of fish RGC
within the 500 ms interval allowed estimation results significantly above
chance level (p < 0.01).

For the three analysed time intervals and both animal species, the esti-
mation results obtained for the ISI metrics were quantitatively similar to
the ones obtained by the spike cost-based metrics for the optimal time scales.
Thus, the activity of RGC within the 500 ms and the first 200 ms intervals
showed a slight tendency to allow better estimation results (Figure 3.18).
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In the case of the three tested classes of turtle RGC, their activity within
the three analysed time intervals led to estimation results significantly above
chance level (p < 0.005). However, for fish RGC, estimation performances
significantly above chance level for the three analysed time intervals were only
yielded by the activity of Left- and Non-DSC (p < 0.05). The maximum es-
timation results for the possible changes in the motion speed, obtained for
both of the applied metrics, are summarised in the table in page 267

Direction changes

For both animal species, the maximum median in the estimation perfor-
mance for the three possible changes in motion direction was obtained for
the 500 ms interval. Here, the time scale 1/q = 250 ms led to estimation per-
formances that reached 42.6% for single turtle RGC. In turn, the time scale
1/q = 1000 ms led to estimation results up to 48.6% for single fish RGC.

With the exception of the activity of fish Left-DSC, the estimation per-
formance obtained for the spike cost-based metrics was close to chance level,
i.e., 35.8%. In turn, these results were found for the activity of single RGC
of both animal species within the three analysed time intervals (Figure 3.19).
However, for the three tested classes of turtle RGC, medium time scales of
the activity within the 500 ms and the first 200 ms intervals allowed a slightly,
but significantly better than chance estimation performance (p < 0.05). In
contrast, for fish RGC, estimation results significantly above chance level
for these two time intervals were only allowed by medium time scales of the
activity of Left-DSC (p < 0.05).

The estimation results obtained for the ISI metrics showed quantitative
similarities with the ones yielded by the optimal time scales for the spike
cost-based metrics. However, only the activity of turtle DSC within the
500 ms and the first 200 ms intervals led to estimation performances that
were slightly, but significantly above chance level (p < 0.05). In contrast, for
the three analysed time intervals, the activity of the three tested classes of
fish RGC classes did not led to estimation results significantly above chance
level. The maximum estimation results for the possible changes in the motion
direction, obtained for both of the applied metrics, are summarised in the
table in page 268.

Combined speed and direction changes

For both animal species, the maximum median in the estimation performance
for the seven possible combined changes in the motion speed and direction
was obtained for the 500 ms interval. Here, the time scale 1/q = 250 ms
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Figure 3.18: Estimation performance for the changes in the motion speed
of the moving stimulus. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the activity of the selected RGC from
all experiments within the three tested time intervals. Markers indicate the
median, whereas error bars represent the range between maximum and min-
imum estimation performance. a) Turtle retinae: Three experiments; n = 22
Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae: Five
experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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Figure 3.19: Estimation performance for the changes in the motion direction
of the moving stimulus. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the activity of the selected RGC from
all experiments within the three tested time intervals. Markers indicate the
median, whereas error bars represent the range between maximum and min-
imum estimation performance. a) Turtle retinae: Three experiments; n = 22
Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC. b) Fish retinae: Five
experiments; n = 9 Left-DSC, n = 14 Non-DSC and n = 7 Right-DSC.
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led to estimation performances that reached 27.2% for single turtle RGC. In
turn, the time scale 1/q = 125 ms led to estimation results up to 28.3% for
single fish RGC.

For the spike cost-based metrics, the estimation results for the seven pos-
sible combined changes in the motion speed and direction showed a tendency
to be better for the 500 ms and the first 200 ms intervals. Moreover, for these
two time intervals, medium time scales of the activity of RGC from both an-
imal species appeared to be optimal for the encoding of information about
the changes in motion features (Figure 3.20). Here, these time scales led to
estimation results significantly above chance level, i.e., 14.8%, for turtle and
fish RGC (p < 0.005 and p < 0.05, respectively).

The analysis by ISI metrics led to quantitatively similar estimation re-
sults as the ones obtained by the optimal time scales for the spike cost-based
metrics. Therefore, for both animal species, the activity of RGC within the
the 500 ms and the 200 ms intervals led estimation results which were bet-
ter than the ones obtained for the last 200 ms interval. Moreover, for both
animal species, the estimation results obtained for these two time intervals
showed quantitative similarities for each of the tested classes of RGC. For
the three tested classes of turtle and fish RGC, the estimation performance
was significantly above chance level for the three analysed time intervals
(p < 0.005 and p < 0.05, respectively). The maximum estimation results for
the possible combined changes in the motion speed and direction, obtained
for both of the applied metrics, are summarised in the table in page 269.

3.1.2 Joint Activity Coding

As mentioned in Section 1.2.4, there is some evidence supporting the con-
jecture that the combined activity of RGC encodes information about vi-
sual stimulus in a more efficient way than the activity of individual cells.
Therefore, a further analysis in this study involved the estimation of motion
features of a moving stimulus based on the activity of small populations of
RGC. Here, in the case of the turtle experiments, three different joint activity
coding hypothesis were tested; Pooled Population, Labelled Line and Func-
tional Group (see Section 1.2.4). However, in the case of the fish experiments,
due to the limited number of RGC recorded, only two joint activity coding
hypotheses were tested; Pooled Population and Labelled Line. Thereby, Sec-
tion 2.2.4 describes the procedure to combine the activity of RGC for each
of the tested joint activity coding hypotheses.

Within the framework of multi-unit metrics, values of k = 0 correspond
to the Pooled Population hypothesis. Here, all spikes are considered to be
originated by the same neuron and thus, it is suggested that information
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Figure 3.20: Estimation performance for the combined changes in the motion
speed and direction of the moving stimulus. The estimation was carried out
by applying spike cost-based metrics and ISI metrics on the activity of the
selected RGC from all experiments within the three tested time intervals.
Markers indicate the median, whereas error bars represent the range between
maximum and minimum estimation performance. a) Turtle retinae: Three
experiments; n = 22 Left-DSC, n = 18 Non-DSC and n = 22 Right-DSC.
b) Fish retinae: Five experiments; n = 9 Left-DSC, n = 14 Non-DSC and
n = 7 Right-DSC.
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about the neuron of origin of each spike is irrelevant for the encoding of
motion features. In contrast, for k = 2, information about the neuron of
origin of each spike, either the exact neuron itself (Labelled Line hypothesis),
or the neuron class (Functional Group hypothesis), is regarded as relevant
for the encoding of motion features because the activity of each cell (or cell
class) is considered to be independent and not interchangeable. For the
spike cost-based metrics, an algorithm developed by Aronov (2003) allows
to test values of 0 < k < 2. Here, it would be assumed that spikes from
different neurons are similar if their occurrence in time is sufficiently close.
Nevertheless, due to the computational cost of the analysis for these values
and the rather unclear interpretation of the results, the analyses shown in
this section consider only values of k = {0, 2}.

For the multi-unit metrics analysis, a maximum of six cells of each class,
i.e., Right-DSC, Left-DSC or Non-DSC, were considered to build the RGC
ensembles. In turn, these cells were selected based on their velocity estima-
tion performance (see Section 2.2.3). Furthermore, it has to be mentioned
that the populations were built considering cells belonging to the same ex-
periment. Thereby, for each of the turtle experiments (n =3), ten ensembles
of sizes 3 ≤ n ≤ 18 were built, whereas for each of the fish experiments
(n =5), only one ensemble of size n = 6 was possible. With these ensembles,
it was tested if the size of a RGC population has an effect on the encoding of
information about motion. Moreover, because the populations consisted of
the same number of RGC from each class, it was also explored if the combi-
nation of the activity of different RGC classes has an effect on the encoding
of this information.

In this section, the results obtained for each of the tested hypotheses are
shown separately. Thereby, for the representation of the estimation perfor-
mance the following considerations were made:

• In addition to the RGC responses obtained for the entire 500 ms interval
of stimulus presentation, the activity during the transient phase (first
200 ms) and the sustained phase (last 200 ms) were analysed separately.

• For each of the time intervals, figures display the results obtained by
different time scales for the spike cost-based metrics (right), and the
results obtained for the ISI metrics (left).

• The results correspond to populations that were built with the cells
that were selected by the procedure described in Section 2.2.3.

• For each of the tested hypothesis, the results are individually repre-
sented for each of tested population sizes.
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• For each of the population sizes, the estimation results allowed by the
considered populations of all experiments were pooled together.

• With the exception of the post velocity, post direction and post speed
(pages 142-155), the markers in the graphs correspond to the median,
whereas the error bars depict the minimal and maximal estimation
performances across all the populations of the same size from all ex-
periments.

• For the post velocity, post direction and post speed, the markers in
the graphs correspond to the median of the estimation performance,
while the error bars depict the median of the estimation performance
differences between the post motion features and the motion features
alone.

• The Wilcoxon sum-rank-test, considering different values of α (α > p),
was applied to assess the significance of the results (see page 67).

Velocity

For both of the applied metrics and under the three tested joint activity cod-
ing hypotheses, the combined activity of RGC led to estimation performances
for the motion velocity, that clearly surpassed the ones yielded by the activ-
ity of single RGC. Moreover, the estimation performance generally improved
with larger populations of turtle RGC. However, this improvement became
smaller for population sizes n ≥ 15, being in some cases almost negligible.
Generally, the 500 ms interval yielded the highest estimation performances,
whereas both 200 ms intervals led frequently to similar estimation results.
For the spike cost-based metrics, coarse time scales generally led to better
estimation results for the the three tested joint activity coding hypotheses.
In turn, the estimation of the motion velocity was qualitatively similar for
both animal species under the Pooled Population hypothesis as well as under
the Labelled Line hypothesis. For both animal species, the maximum median
in the estimation performance was yielded by the time scale 1/q = ∞ of the
500 ms interval. Here, the estimation performances under the Functional
Group hypothesis reached 64.2% for turtle RGC. In turn, for fish RGC, the
estimation results under the Labelled Line hypothesis reached 28.1%.

Pooled Population

For the spike cost-based metrics, fine time scales of the combined activity
of RGC under the Pooled Population hypothesis generally led to poor es-
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timation performances. However, the estimation performance improved for
coarser time scales and appeared to reach a plateau for medium time scales.
These results were observed for the three analysed time intervals and both
animal species, but were more evident for turtle RGC (Figure 3.21). Fur-
thermore, for all the tested population sizes, medium and coarse time scales
of the activity of turtle and fish RGC led to estimation results significantly
above chance level (p < 0.005 and p < 0.05, respectively). Although there
was a tendency for larger turtle RGC populations to yield better estimation
results, this improvement was almost negligible for populations n > 12.

For the 500 ms and the first 200 ms intervals, the estimation results
obtained for the ISI metrics were quantitatively similar to those yielded by
the optimal time scales for the spike cost-based metrics. In contrast, the last
200 ms interval led to lower estimation results for the ISI metrics. Moreover,
for this time interval, the improvement in the estimation performance for
larger turtle RGC populations was almost negligible. Nevertheless, for the
three analysed time intervals, the estimation results for the motion velocity
were significantly above change level for all the tested turtle and fish RGC
populations (p < 0.005 and p < 0.05, respectively).

For both animal species, the 500 ms interval led to the maximum median
in the estimation performance under the Pooled Population hypothesis. Here,
the ISI metrics yielded estimation performances that reached 46.9% and 26%
for turtle and fish RGC, respectively.

Labelled Line

For the spike cost-based metrics, the estimation performance for the mo-
tion velocity showed qualitative similarities for the activity of single RGC
and populations built under the Labelled Line hypothesis. Thereby, under
this hypothesis, the estimation performance yielded by fine time scales was
close to that expected by chance. However, coarser time scales led to esti-
mation performance improvement, which was in turn greater for fine time
scales. Here, for all the tested RGC populations and the three analysed time
intervals, the time scale 1/q = ∞ appeared to be optimal for the encoding
of information about the motion velocity (Figure 3.22). Coarse and medium
time scales of the combined activity of turtle and fish RGC led to estima-
tion performances that were significantly above chance level (p < 0.005 and
p < 0.05, respectively). Here, although for the three analysed time intervals
there was a tendency for larger turtle RGC populations to yield better esti-
mation results, this improvement was more evident for the 500 ms interval.

For each of the tested RGC populations and in contrast to the spike cost-
based metrics, the analysis with the ISI metrics led to estimation results
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Figure 3.21: Estimation performance under the Pooled Population hypoth-
esis, for the motion velocity of the moving stimulus. The estimation was
carried out by applying spike cost-based metrics and ISI metrics on the com-
bined activity of RGC within the three tested time intervals. Markers indi-
cate the median, whereas error bars represent the range between maximum
and minimum estimation performance. a) Turtle retinae, three experiments;
n = 10 populations from each experiment and for each tested population size.
b) Fish retinae five experiments; n = 1 population from each experiment.
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that showed less variability across the three analysed time intervals. Thereby,
for both animal species, the estimation results yielded by the ISI metrics
clearly surpassed the ones obtained by the optimal time scales for the spike
cost-based metrics for both 200 ms intervals. However, the opposite was
found for the the 500 ms interval. Although the activity of larger turtle RGC
populations led to better estimation results, these were significantly above
change level for all the tested turtle and fish RGC populations (p < 0.005
and p < 0.05, respectively).

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Labelled Line hypothesis. Here, the time
scale 1/q = ∞ yielded estimation performances that reached 60.2%.

Functional Group

As mentioned before, due to the limited number of recorded RGC from the
fish experiments, the Functional Group hypothesis was only tested for the
turtle experiments. In this sense, for the three analysed time intervals, the
estimation performance obtained for the spike cost-based metrics was close
to that expected by chance for the time scale 1/q = 8 ms. Nonetheless,
for all the tested population sizes, the estimation performance improved to
values significantly above chance level for time scales 1/q ≤ 31 ms (p < 0.005).
Furthermore, the estimation performance reached its maximum for 1/q =∞.
In comparison to the other two tested hypotheses, the improvement in the
estimation performance for larger turtle RGC populations was more evident
for the Functional Group hypothesis (Figure 3.23).

For the ISI metrics, the activity of all the tested RGC populations led to
estimation performances significantly above chance level for the three anal-
ysed time intervals (p < 0.005). Moreover, although for the three time inter-
vals, the estimation performance improved for larger turtle RGC populations,
this improvement was more evident for the 500 ms interval. The maximum
estimation results for the motion velocity, obtained for both of the applied
metrics under the three tested hypotheses, are summarised in the table in
page 270.

For the three tested joint activity coding hypotheses, and as in the case of
the activity of single RGC, the estimation of the stimulus motion velocity was
further decomposed into the estimation of its motion direction and speed.

Direction

For both of the applied metrics and under the three tested joint activity
coding hypotheses, the combined activity of RGC, in comparison to the ac-
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Figure 3.22: Estimation performance under the Labelled Line hypothesis, for
the motion velocity of the moving stimulus. The estimation was carried out
by applying spike cost-based metrics and ISI metrics on the combined activity
of RGC within the three tested time intervals. Markers indicate the median,
whereas error bars represent the range between maximum and minimum
estimation performance. a) Turtle retinae, three experiments; n = 10 pop-
ulations from each experiment and for each tested population size. b) Fish
retinae five experiments; n = 1 population from each experiment.
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Figure 3.23: Estimation performance under the Functional Group hypothesis,
for the motion velocity of the moving stimulus. The estimation was carried
out by applying spike cost-based metrics and ISI metrics on the combined ac-
tivity of turtle RGC within the three tested time intervals. Markers indicate
the median, whereas error bars represent the range between maximum and
minimum estimation performance. Three experiments; n = 10 populations
from each experiment and for each tested population size.

tivity of single RGC, generally improved the estimation performance for the
motion direction. Moreover, the activity of RGC within the 500 ms interval
led to the maximum estimation performances. Nevertheless, in contrast to
the estimation of the motion velocity, larger turtle RGC populations did not
always lead to performance improvements. For the spike cost-based metrics,
fine time scales generally led to estimation performances below chance level.
These poor estimation performances were due to the over estimation of the
absence of movement. However, coarser time scales improved the estimation
performance, which in turn reached frequently its maximum for coarse time
scales. The estimation of motion direction was quantitatively similar for both
animal species under the Pooled Population hypothesis as well as under the
Labelled Line hypothesis. For both animal species, the maximum median in
the estimation performance was yielded by the time scale 1/q = ∞ of the
500 ms interval. Here, the estimation performances under the Functional
Group hypothesis reached 86% for turtle RGC. In turn, for fish RGC, the
estimation results under the Labelled Line hypothesis reached 54.4%.
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Pooled Population

For the spike cost-based metrics, the estimation performance for the mo-
tion direction was generally close or below chance level for the time scale
1/q = 8 ms (Figure 3.24). Nonetheless, for the three analysed time intervals,
medium and coarse time scales of the activity of turtle RGC led to estima-
tion performances significantly above chance level (p < 0.005). Moreover, for
the 500 ms and the first 200 ms intervals, larger populations of turtle RGC
led to the improvement in the estimation performance for fine time scales.
However, for these two time intervals, the improvement was absent for coarse
time scales. In contrast, for last 200 ms interval, the activity of larger popu-
lation sizes allowed better estimation results for all time scales. In the case
of the combined activity of fish RGC, only coarse time scales within the
500 ms interval allowed estimation results significantly above chance level
(p < 0.05).

With the exception of the last 200 ms interval for turtle RGC, and the
first 200 ms interval for fish RGC, the estimation results obtained for the
ISI metrics were quantitatively similar to the ones yielded by the optimal
time scales for the spike cost-based metrics. Moreover, for each of the anal-
ysed time intervals, the estimation performance for the motion direction was
similar across all the tested sizes of turtle RGC populations. Thereby, for
three analysed time intervals, the activity of all the tested populations of
turtle RGC led to estimation performances significantly above chance level
(p < 0.005). In turn, although the median of the estimation performance for
the three analysed time intervals was above chance level, only the combined
activity of fish RGC within the 500 ms and the first 200 ms intervals allowed
estimation results significantly above chance level (p < 0.05).

For both animal species, the 500 ms interval led to the maximum me-
dian in the estimation performance under the Pooled Population hypothesis.
Here, the ISI metrics yielded estimation performances that reached 65.7%
and 50.5% for turtle and fish RGC, respectively.

Labelled Line

For the spike cost-based metrics, the estimation performance for the motion
direction under the Labelled Line hypothesis, showed qualitative similarities
with the one yielded by the activity of single RGC. Thereby, for the three
analysed time intervals, time scales 1/q ≤ 62 ms led to estimation perfor-
mances much worse than those expected by chance. However, the estimation
performance improved with coarser time scales and reached its maximum
for time scales 1/q = ∞ (Figure 3.25). For each of the three analysed time
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Figure 3.24: Estimation performance under the Pooled Population hypoth-
esis, for the motion direction of the moving stimulus. The estimation was
carried out by applying spike cost-based metrics and ISI metrics on the com-
bined activity of RGC within the three tested time intervals. Markers indi-
cate the median, whereas error bars represent the range between maximum
and minimum estimation performance. a) Turtle retinae, three experiments;
n = 10 populations from each experiment and for each tested population size.
b) Fish retinae five experiments; n = 1 population from each experiment.
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intervals, similar estimation results were observed across all the tested sizes
of turtle RGC populations. Here, coarse time scales of their activity led
to estimation results significantly above chance level for the three analysed
time intervals (p < 0.005). In contrast, for fish RGC, coarse time scales
led estimation results significantly above chance level only for the 500 ms
interval (p < 0.05).

Comparing the results obtained for both of the applied metrics, the
ISI metrics led to estimation performances that were similar across the
three analysed time intervals. Here, and in particular for the turtle RGC, the
estimation results for both 200 ms intervals were better for the ISI metrics,
whereas for the 500 ms interval, the opposite was observed. Furthermore, all
the tested sizes of turtle RGC populations led to similar estimation perfor-
mances, which were in turn significantly above chance level (p < 0.005). In
contrast, although the combined activity of fish RGC led to estimation re-
sults whose median was above chance level, this difference was not significant
for any of the three analysed time intervals.

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Labelled Line hypothesis. Here, the time
scale 1/q = ∞ yielded estimation performances that reached 79%.

Functional Group

For the spike cost-based metrics, the estimation performance for the mo-
tion direction was generally below chance level for time scales 1/q ≤ 16 ms.
However, for the three analysed time intervals, the activity of larger popu-
lations of turtle RGC allowed better estimation performance, which in turn
reached its maximum for coarse time scales (Figure 3.26). Furthermore, for
these time scales, the estimation performance for the motion direction was
significantly above chance level (p < 0.005).

Comparing the results obtained for both of the applied metrics, the
ISI metrics showed a tendency to allow better estimation performance for
the first 200 ms interval. Furthermore, for the three analysed time intervals,
the improvement in the estimation performance for larger turtle RGC popu-
lations was less evident for the ISI metrics (Figure 3.26). Nevertheless, for all
of the tested population sizes, the estimation performance was significantly
above chance level and for the three analysed time intervals (p < 0.005). The
maximum estimation results for the motion direction, obtained by both of
the applied metrics under the three tested hypotheses, are summarised in the
table in page 271.
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Figure 3.25: Estimation performance under the Labelled Line hypothesis, for
the motion direction of the moving stimulus. The estimation was carried out
by applying spike cost-based metrics and ISI metrics on the combined activity
of RGC within the three tested time intervals. Markers indicate the median,
whereas error bars represent the range between maximum and minimum
estimation performance. a) Turtle retinae, three experiments; n = 10 pop-
ulations from each experiment and for each tested population size. b) Fish
retinae five experiments; n = 1 population from each experiment.
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Figure 3.26: Estimation performance under the Functional Group hypothesis,
for the motion direction of the moving stimulus. The estimation was carried
out by applying spike cost-based metrics and ISI metrics on the combined ac-
tivity of turtle RGC within the three tested time intervals. Markers indicate
the median, whereas error bars represent the range between maximum and
minimum estimation performance. Three experiments; n = 10 populations
from each experiment and for each tested population size.

Speed

For the three analysed time intervals, the combined activity of RGC yielded
lower estimation errors for the motion speed than the activity of single RGC.
Here, the 500 ms interval generally led to the lowest estimation errors. Al-
though the estimation errors showed a tendency to decrease for larger pop-
ulations of turtle RGC, it was frequently observed that this reduction was
almost negligible for population sizes n ≥ 12. In turn, these results were
obtained for both of the applied metrics and under the three tested joint
activity coding hypotheses. For the spike cost-based metrics, fine time scales
generally led to higher than chance estimation errors. In turn, these errors
were provoked by the overestimation of the absence of movement. Neverthe-
less, coarser time scales led to the reduction of the estimation error, which
frequently reached its minimum for coarse time scales. Qualitatively similar
estimation errors for the motion speed were obtained for both animal species
under the Pooled Population hypothesis as well as under the Labelled Line
hypothesis. For both animal species, the lowest median in the estimation er-
ror was obtained for the 500 ms interval. Here, under the Functional Group
hypothesis, the ISI metrics led to normalised absolute errors that reached
0.21 for turtle RGC. In turn, for fish RGC, the time scale 1/q = ∞ under
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the Labelled Line hypothesis led to estimation errors that reached 0.66.

Pooled Population

Generally, for the spike cost-based metrics, the reduction in the estimation
errors for the motion speed appeared to reach a plateau for medium time
scales (Figure 3.27). This observation was more evident for turtle RGC, for
which the activity of larger population sizes led to lower estimation errors,
especially for both 200 ms intervals. Nonetheless, for the 500 ms and the
first 200 ms intervals, the reduction of the estimation errors for population
sizes n ≥ 12 was almost negligible. For the three analysed time intervals,
medium and coarse time scales of the activity of all the tested sizes of turtle
RGC populations yielded estimation errors significantly below chance level
(p < 0.005). However, for fish RGC, coarse time scales led to significantly
lower than chance estimation errors only for the 500 ms and the last 200 ms
intervals (p < 0.05).

For the ISI metrics, the activity within the 500 ms intervals generally
led to quantitative similar estimation errors as the ones obtained by the op-
timal time scales for the spike cost-based metrics. In contrast, for the last
200 ms interval, the errors obtained for the ISI metrics were slightly greater,
especially for larger turtle RGC populations. However, for the three analysed
time intervals, the error in the estimation of the motion speed was signifi-
cantly below chance level for all the tested turtle and fish RGC populations
(p < 0.005 and p < 0.05, respectively).

For both animal species, the 500 ms interval led to the lowest median in
the estimation error under the Pooled Population hypothesis. Here, the time
scale 1/q =∞ yielded estimation errors that reached 0.24 and 0.67 for turtle
and fish RGC, respectively.

Labelled Line

For the spike cost-based metrics, the activity of single RGC and popula-
tions built under the Labelled Line hypothesis led to qualitatively similar
estimation errors. Thereby, the error in the estimation of the motion speed
was much worse than that expected by chance for time scales 1/q ≤ 31 ms,
and appeared to reach its minimum at 1/q = ∞ (Figure 3.28). In the case
of turtle RGC, the estimation errors across the different tested population
sizes did not show significant differences. Thus, for the optimal time scales,
the estimation errors for turtle RGC were significantly below chance level for
the three analysed time intervals (p < 0.005). In contrast, for fish RGC,
coarse time scales led to estimation errors significantly below chance level
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Figure 3.27: Absolute normalised estimation error under the Pooled Popula-
tion hypothesis, for the motion speed of the moving stimulus. The estimation
was carried out by applying spike cost-based metrics and ISI metrics on the
combined activity of RGC within the three tested time intervals. Markers in-
dicate the median, whereas error bars represent the range between maximum
and minimum estimation performance. a) Turtle retinae, three experiments;
n = 10 populations from each experiment and for each tested population size.
b) Fish retinae five experiments; n = 1 population from each experiment.
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only for the 500 ms interval (p < 0.05).
Comparing the results obtained for both of the applied metrics, the

ISI metrics generally led to lower estimation errors for both 200 ms inter-
val. In contrast, the opposite was observed for the 500 ms interval. For the
combined activity of turtle RGC, the estimation error was similar across the
three analysed time intervals, as well as across all the tested population sizes.
Here, the estimation error was significantly below chance level (p < 0.005).
Although the median of the estimation error was below chance level for the
combined activity of fish RGC, this difference was not significant for any of
the three analysed time intervals.

For turtle RGC, the 500 ms interval led to the lowest median in the
estimation error under the Labelled Line hypothesis. Here, the time scale
1/q = ∞ yielded estimation errors that reached 0.28.

Functional Group

For the spike cost-based metrics, the error in the estimation of the motion
speed showed quantitative similarities for coarse time scales. Nonetheless, it
appeared to reach its minimum at 1/q = ∞. Although larger turtle RGC
populations led to lower speed estimation errors for the three analysed time
intervals, this finding was more evident for the last 200 ms interval (Fig-
ure 3.29). For the three analysed time intervals, medium and coarse time
scales of the activity of all of the tested population sizes, led to significant
lower than chance estimation errors (p < 0.005).

Comparing the results obtained for both of the applied metrics, the
ISI metrics yielded lower estimation errors for the first 200 ms interval,
whereas for the 500 ms and the last 200 ms intervals, the estimation errors
were quantitatively similar to those yielded by the optimal time scales for the
spike cost-based metrics. Moreover, for population sizes n ≥ 12, the reduc-
tion in the estimation error was almost negligible. For all of the tested sizes of
turtle RGC populations, the estimation error was significantly below chance
level for the three analysed time intervals (p < 0.005). The lowest estimation
errors for the motion speed, obtained for both of the applied metrics under
the three tested hypotheses, are summarised in the table in page 272.

Velocity changes

For the instantaneous velocity changes, the combined activity of RGC gen-
erally led to better estimation performances than the activity of single RGC.
Moreover, larger populations of turtle RGC improved the estimation per-
formance. In turn, this improvement was greater for the 500 ms and the
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Figure 3.28: Absolute normalised estimation error under the Labelled Line
hypothesis, for the motion speed of the moving stimulus. The estimation
was carried out by applying spike cost-based metrics and ISI metrics on the
combined activity of RGC within the three tested time intervals. Markers in-
dicate the median, whereas error bars represent the range between maximum
and minimum estimation performance. a) Turtle retinae, three experiments;
n = 10 populations from each experiment and for each tested population size.
b) Fish retinae five experiments; n = 1 population from each experiment.
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Figure 3.29: Absolute normalised estimation error under the Functional
Group hypothesis, for the motion speed of the moving stimulus. The estima-
tion was carried out by applying spike cost-based metrics and ISI metrics on
the combined activity of turtle RGC within the three tested time intervals.
Markers indicate the median, whereas error bars represent the range be-
tween maximum and minimum estimation performance. Three experiments;
n = 10 populations from each experiment and for each tested population
size.
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first 200 ms intervals. Here, although these two time intervals yielded high
estimation performances, the results obtained for the 500 ms interval were
generally the highest. Conversely, the last 200 ms interval led generally to
poor estimation performances. These results were obtained for both of the
applied metrics and under the three tested joint activity coding hypotheses.
For the spike cost-based metrics, the time scales that were optimal for the es-
timation of the instantaneous velocity changes varied across the three tested
hypothesis. However, although the time scale 1/q = ∞ showed to encode
information about these changes, it did not lead to the highest estimation
performances. Qualitatively similar estimation results for the instantaneous
changes in motion velocity were obtained for both animal species under the
Pooled Population hypothesis as well as under the Labelled Line hypothesis.
For both animal species, the maximum median in the estimation performance
was obtained for the 500 ms interval. Here, under the Functional Group hy-
pothesis, the ISI metrics led to estimation performances that reached 41.6%
for turtle RGC. In turn, for fish RGC, the estimation results under the La-
belled Line hypothesis reached 9.1% for the time scale 1/q = 250 ms.

Pooled Population

For the spike cost-based metrics, fine time scales of the activity within the
500 ms and the 200 ms intervals generally led to the highest estimation per-
formances (Figure 3.30). Moreover, for these two time intervals, medium and
fine time scales led to greater improvements in the estimation performance
by larger populations of turtle RGC. However, for the three analysed time
intervals, all the tested populations of turtle and fish RGC led to estimation
results significantly above chance level (p < 0.005 and p < 0.05, respectively).

For the three analysed time intervals, the estimation results obtained for
the ISI metrics were quantitatively similar to those yielded by the opti-
mal time scales for the spike cost-based metrics. In turn, these results were
obtained for all of the tested populations sizes from both animal species.
Therefore, for the three analysed time intervals, the activity of all the tested
populations of turtle and fish RGC led to estimation performances signifi-
cantly above chance level (p < 0.005 and p < 0.05, respectively).

For both animal species, the 500 ms interval led to the maximum median
in the estimation performance under the Pooled Population hypothesis. Here,
the ISI metrics yielded estimation performances that reached 28.8% and 8.7%
for turtle and fish RGC, respectively.
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Figure 3.30: Estimation performance under the Pooled Population hypothe-
sis, for the instantaneous changes of the motion velocity of the moving stimu-
lus. The estimation was carried out by applying spike cost-based metrics and
ISI metrics on the combined activity of RGC within the three tested time in-
tervals. Markers indicate the median, whereas error bars represent the range
between maximum and minimum estimation performance. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.



3.1. MOTION EXPERIMENT 127

Labelled Line

For the spike cost-based metrics, fine time scales of the activity within the
three analysed time intervals generally led to estimation performances similar
to those expected by chance. However, coarser time scales improved the
estimation performance, which in turn, appeared to reach its maximum for
time scales 125 ms ≤ 1/q ≤ 500 ms. This improvement was greater for the
500 ms and the first 200 ms intervals (Figure 3.31). Moreover, for these two
time intervals, medium and coarse time scales led to the largest improvements
in the estimation performance for larger turtle RGC populations. However,
for the three analysed time intervals, the estimation performance yielded by
the optimal time scales was significantly above chance level for all the tested
populations of turtle and fish RGC (p < 0.005 and p < 0.05, respectively).

The analysis with the ISI metrics, particularly for turtle RGC, led to
estimation performances that clearly surpassed the ones yielded by the op-
timal time scales for the spike cost-based metrics. Moreover, for each of the
tested sizes of turtle RGC populations, the estimation results obtained for
the 500 ms and the first 200 ms intervals were quantitatively similar. Here,
for all the tested population of turtle and fish RGC, the estimation results
were significantly above chance level for the three analysed time intervals
(p < 0.005 and p < 0.05, respectively).

For turtle RGC, the first 200 ms interval led to the maximum median in
the estimation performance under the Labelled Line hypothesis. Here, the
ISI metrics yielded estimation performances that reached 41.2%.

Functional Group

For the spike cost-based metrics, the time scale 1/q = 8 ms led to the
lowest estimation performances for turtle RGC. Nevertheless, coarser time
scales improved the estimation performance. Thereby, for the 500 ms and
the first 200 ms intervals, time scales 31 ms ≤ 1/q ≤ 125 ms yielded the
highest estimation performances. Moreover, these time scales yielded the
largest improvements in the estimation performance for larger populations
of turtle RGC (Figure 3.32). For all the tested populations of turtle RGC,
the estimation results obtained for the optimal time scales were significantly
above chance level for the three analysed time intervals (p < 0.005).

For the ISI metrics, the estimation results obtained for the 500 ms and
first 200 ms intervals clearly outperformed the ones yielded by the optimal
time scales for the spike cost-based metrics. However, for the last 200 ms
interval, the estimation performance was qualitatively similar. Therefore,
for the three analysed time intervals, the combined activity of all the tested
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Figure 3.31: Estimation performance under the Labelled Line hypothesis,
for the instantaneous changes of the motion velocity of the moving stimulus.
The estimation was carried out by applying spike cost-based metrics and
ISI metrics on the combined activity of RGC within the three tested time
intervals. Markers indicate the median, whereas error bars represent the
range between maximum and minimum estimation performance. a) Turtle
retinae, three experiments; n = 10 populations from each experiment and
for each tested population size. b) Fish retinae five experiments; n = 1
population from each experiment.
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Figure 3.32: Estimation performance under the Functional Group hypothesis,
for the instantaneous changes of the motion velocity of the moving stimulus.
The estimation was carried out by applying spike cost-based metrics and
ISI metrics on the combined activity of turtle RGC within the three tested
time intervals. Markers indicate the median, whereas error bars represent
the range between maximum and minimum estimation performance. Three
experiments; n = 10 populations from each experiment and for each tested
population size.

populations of turtle RGC led to estimation performances significantly above
chance (p < 0.005). The maximum estimation results for the instantaneous
velocity changes obtained for the both of the applied metrics and under the
three tested hypotheses, are summarised in the table in page 273.

Previous velocity

Although the activity of RGC populations from both animal species led to
better estimation results for the previous motion velocity, the improvement
was more evident for turtle RGC. Here, although high estimation results
were obtained for the 500 ms and the first 200 ms intervals, there was a
slight tendency for the 500 ms interval to yield better estimation results.
Moreover, for these time intervals, the estimation results improved for larger
populations of turtle RGC. In contrast, the last 200 ms interval, for which
the previous stimulus was already absent for 300 ms, led generally to es-
timation results similar to those expected by chance. These results were
obtained for both of the applied metrics and under the three tested joint
activity coding hypotheses. For the spike cost-based metrics, the time scales
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that yielded the maximum estimation performances varied across the tested
hypotheses. Moreover, these optimal time scales generally led to the greatest
improvements in the estimation performance for larger populations of turtle
RGC. Here, the Pooled Population hypothesis, as well as the Labelled Line
hypothesis, led to qualitatively similar estimation performances for both an-
imal species. Moreover, the ISI metrics led to the maximum median in the
estimation performance for turtle and fish RGC. In turn, for the first 200 ms
interval, the estimation performances under the Labelled Line hypothesis
reached 49.3% for turtle RGC. In contrast, for fish RGC, the estimation re-
sults under the Pooled Population hypothesis reached 19.9% for the 500 ms
interval.

Pooled Population

For the spike cost-based metrics, the time scales 16 ms ≤ 1/q ≤ 31 ms
and 62 ms ≤ 1/q ≤ 125 ms, respectively, appeared to led to the optimal
estimation results for turtle and fish RGC (Figure 3.33). In turn, these
results were significantly above chance level (p < 0.005 and p < 0.05, for
turtle and fish, respectively).

Generally, the estimation results obtained for the ISI metrics were quan-
titatively similar to those obtained by the optimal time scales for the spike
cost-based metrics. However, small populations of turtle RGC led to slightly
better estimation results for the ISI metrics. Therefore, for the 500 ms and
the first 200 ms intervals, the combined activity of turtle and fish RGC led
to estimation results significantly above chance level (p < 0.005 and p < 0.05,
respectively).

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Pooled Population hypothesis. Here, the
ISI metrics yielded estimation performances that reached 36.5%.

Labelled Line

Generally, the estimation performance for the spike cost-based metrics was
close to chance level for fine time scales. Nonetheless, the performance im-
proved for coarser time scales and showed a tendency to reach its maximum
for time scales 125 ms ≤ 1/q ≤ 250 ms. Moreover, these time scales allowed
the maximum estimation performances for the 500 ms and the first 200 ms
intervals, which were in turn significantly above chance level for turtle and
fish RGC (p < 0.005 and p < 0.05, respectively).

For all of the tested turtle RGC populations, the estimation performance
obtained for the ISI metrics clearly outperformed the one yielded by the
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Figure 3.33: Estimation performance under the Pooled Population hypoth-
esis, for the motion velocity of the moving stimulus before the instanta-
neous velocity changes. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the combined activity of RGC within
the three tested time intervals. Markers indicate the median, whereas error
bars represent the range between maximum and minimum estimation per-
formance. a) Turtle retinae, three experiments; n = 10 populations from
each experiment and for each tested population size. b) Fish retinae five
experiments; n = 1 population from each experiment.



132 CHAPTER 3. RESULTS

optimal time scales for the spike cost-based metrics. In turn, these results
were obtained for the three analysed time intervals. Furthermore, the 500 ms
and the first 200 ms intervals led to similar estimation results for each of the
tested turtle RGC populations. In contrast, for the fish RGC, the estimation
results for both of the applied metrics were quantitatively similar. Therefore,
for all the tested turtle and fish RGC populations, the estimation results were
significantly above chance level (p < 0.005 and p < 0.05, respectively).

For fish RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Labelled Line hypothesis. Here, the time
scale 1/q = 250 ms yielded estimation performances that reached 20.8%.

Functional Group

For the spike cost-based metrics, the time scale 1/q = 8 ms generally led to
estimation results close to those expected by chance. Nevertheless, for the
500 ms and the first 200 ms intervals, the time scales 31 ms ≤ 1/q ≤ 125 ms
allowed the improvement in the estimation performance, which in turn led to
the highest estimation results for the previous motion velocity (Figure 3.35).
Moreover, the estimation performances yielded by these time scales were
significantly above chance level (p < 0.005).

For the ISI metrics, the estimation results for the 500 ms interval and
especially for the first 200 ms one, showed a tendency to exceed the ones
yielded by the optimal time scales for the spike cost-based metrics. There-
fore, for these two time intervals, all of the tested populations of turtle RGC
led to estimation performances significantly above chance level (p < 0.005).
The maximum estimation results for the previous motion velocity, obtained
for both of the applied metrics under the three tested hypotheses, are sum-
marised in the table in page 274.

Previous direction

In comparison to the activity of single RGC, the estimation performance for
the previous direction clearly improved for the combined activity of RGC.
Moreover, the improvement was greater for the 500 ms and the first 200 ms
intervals, which generally showed similar estimation performances. For these
two time intervals, larger populations of turtle RGC led generally to estima-
tion performance improvements. In contrast, for the last 200 ms interval,
the estimation performance was generally close to that expected by chance.
These results were obtained for both of the applied metrics and under the
three tested joint activity coding hypotheses. For the spike cost-based met-
rics, the time scales that led to the maximum estimation performances var-
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Figure 3.34: Estimation performance under the Labelled Line hypothesis, for
the motion velocity of the moving stimulus before the instantaneous velocity
changes. The estimation was carried out by applying spike cost-based metrics
and ISI metrics on the combined activity of RGC within the three tested time
intervals. Markers indicate the median, whereas error bars represent the
range between maximum and minimum estimation performance. a) Turtle
retinae, three experiments; n = 10 populations from each experiment and
for each tested population size. b) Fish retinae five experiments; n = 1
population from each experiment.
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Figure 3.35: Estimation performance under the Functional Group hypothe-
sis, for the motion velocity of the moving stimulus before the instantaneous
velocity changes. The estimation was carried out by applying spike cost-
based metrics and ISI metrics on the combined activity of turtle RGC within
the three tested time intervals. Markers indicate the median, whereas error
bars represent the range between maximum and minimum estimation perfor-
mance. Three experiments; n = 10 populations from each experiment and
for each tested population size.
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ied across the tested hypotheses. Here, these optimal time scales also led to
greater improvements in the estimation performance for larger populations
of turtle RGC. For the previous direction, qualitatively similar estimation
results were obtained for both animal species under the Pooled Population
hypothesis as well as under the Labelled Line hypothesis. For both animal
species, the maximum median in the estimation performance was yielded by
the ISI metrics for the 500 ms interval. Here, the estimation performances
under the Functional Group hypothesis reached 73.4% for turtle RGC. In
turn, for fish RGC, the estimation results under the Pooled Population hy-
pothesis reached 52.7%.

Pooled Population

For the spike cost-based metrics, the time scales 16 ms ≤ 1/q ≤ 62 ms
appeared to be optimal for the encoding of information about the previous
motion direction(Figure 3.36). In turn, for these two time intervals, the
estimation results yielded by the optimal time scales were significantly above
chance level for turtle and fish RGC (p < 0.005 and p < 0.05, respectively).

Generally, the estimation results obtained for the ISI metrics were quan-
titatively similar to those obtained by the optimal time scales for the spike
cost-based metrics. However, small populations of turtle RGC led to slightly
better results for the ISI metrics. These results can be explained by the fact
that for all three analysed time intervals, all the tested turtle RGC popula-
tions yielded similar estimation performances. Thereby, for 500 ms and the
first 200 ms intervals, the estimation results for all the tested populations
of turtle RGC were significantly above chance level (p < 0.005). In turn,
although the median of the estimation performance for the 500 ms and the
first 200 ms intervals was above chance level, only the activity of fish RGC
within the first 200 ms interval led to estimation performances significantly
above chance level (p < 0.05).

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Pooled Population hypothesis. Here, the
ISI metrics yielded estimation performances that reached 62.8%.

Labelled Line

For the spike cost-based metrics, fine time scales generally led to estimation
results close to those expected by chance. Nevertheless, for the 500 ms and
the first 200 ms intervals, the time scales 62 ms ≤ 1/q ≤ 125 ms appeared
to be optimal for the encoding of information about the previous direction
(Figure 3.37). Thereby, for these two time intervals, the estimation results
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Figure 3.36: Estimation performance under the Pooled Population hypoth-
esis, for the motion direction of the moving stimulus before the instanta-
neous velocity changes. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the combined activity of RGC within
the three tested time intervals. Markers indicate the median, whereas error
bars represent the range between maximum and minimum estimation per-
formance. a) Turtle retinae, three experiments; n = 10 populations from
each experiment and for each tested population size. b) Fish retinae five
experiments; n = 1 population from each experiment.
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were significantly above chance level for all of the tested turtle and fish RGC
populations (p < 0.005 and p < 0.05, respectively).

For the ISI metrics, the combined activity of turtle RGC led to estima-
tion results that showed a tendency to exceed the ones yielded by the opti-
mal time scales for the spike cost-based metrics. In contrast for fish RGC,
the estimation results obtained for both of the applied metrics was similar.
Thereby, and particularly for the 500 ms and the first 200 ms intervals, the
estimation results for all the tested populations of turtle and fish RGC were
significantly above chance level (p < 0.005 and p < 0.05, respectively).

For turtle RGC, the first 200 ms interval led to the maximum median in
the estimation performance under the Labelled Line hypothesis. Here, the
ISI metrics yielded estimation performances that reached 72%. In contrast,
for fish RGC, the maximum estimation results were yielded by the time scale
1/q = 250 ms of the 500 ms interval. Here, these results reached 52.6%.

Functional Group

For the spike cost-based metrics, the time scales 31 ms ≤ 1/q ≤ 125 ms
within the 500 ms and the first 200 ms intervals, showed a tendency to be
optimal for the encoding of information about the previous motion direction
(Figure 3.38). Moreover, for these two time intervals, the estimation result
yielded by these time scales were significantly above chance level for all of
the tested population of turtle RGC (p < 0.005).

For the ISI metrics, and especially for small populations of turtle RGC,
the obtained estimation results showed a tendency to exceed the ones yielded
by the optimal time scales for the spike-cost based metrics. In turn, these
results were obtained for the 500 ms and the first 200 ms intervals. Therefore,
for these two time intervals, the estimation results yielded by all the tested
populations of turtle RGC were significantly above chance level (p < 0.005).
The maximum estimation results for the previous motion direction, obtained
for both of the applied metrics under the three tested hypotheses, are sum-
marised in the table in page 275.

Previous speed

In comparison to the activity of single RGC, and particularly for the 500 ms
and the first 200 ms intervals, the combined activity of RGC clearly reduced
the errors in the estimation of the previous motion speed. Here, the 500 ms
interval generally led to the lowest estimation errors. Moreover, for the time
intervals that led to the lower estimation errors, these errors showed to de-
crease for larger populations of turtle RGC. These results were obtained for
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Figure 3.37: Estimation performance under the Labelled Line hypothesis, for
the motion direction of the moving stimulus before the instantaneous velocity
changes. The estimation was carried out by applying spike cost-based metrics
and ISI metrics on the combined activity of RGC within the three tested time
intervals. Markers indicate the median, whereas error bars represent the
range between maximum and minimum estimation performance. a) Turtle
retinae, three experiments; n = 10 populations from each experiment and
for each tested population size. b) Fish retinae five experiments; n = 1
population from each experiment.
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Figure 3.38: Estimation performance under the Functional Group hypothe-
sis, for the motion direction of the moving stimulus before the instantaneous
velocity changes. The estimation was carried out by applying spike cost-
based metrics and ISI metrics on the combined activity of turtle RGC within
the three tested time intervals. Markers indicate the median, whereas error
bars represent the range between maximum and minimum estimation perfor-
mance. Three experiments; n = 10 populations from each experiment and
for each tested population size.
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both of the applied metrics and under the three tested joint activity coding
hypotheses. For the spike cost-based metrics, the time scales that led to the
lowest estimation errors varied across the tested hypotheses. Furthermore,
these optimal time scales also led to greater reductions in the estimation
errors for larger populations of turtle RGC. Here, the Pooled Population hy-
pothesis, as well as under the Labelled Line hypothesis, led to qualitative
similar estimation errors for both animal species. For both animal species,
the ISI metrics led to the lowest median in the estimation error. Here, for
turtle RGC, the normalised absolute errors under the Functional Group hy-
pothesis, reached 0.44 for the first 200 ms interval. In turn, for fish RGC,
the estimation errors under the Labelled Line hypothesis reached 0.72 for the
500 ms interval.

Pooled Population

For the spike cost-based metrics, the time scales 16 ms ≤ 1/q ≤ 62 ms
within the 500 ms and first 200 ms intervals, appeared to be optimal for the
encoding of information about the previous motion speed (Figure 3.39). Here,
for the optimal time scales within these two time intervals, the estimation
errors were significantly below chance level for all the tested turtle RGC
populations (p < 0.005). In contrast, for the fish RGC, the optimal time
scales led to errors significantly below chance level only for the 500 ms interval
(p < 0.05).

For the 500 ms and first 200 ms intervals, the analysis with the ISI metrics
showed a tendency to yield lower estimation errors than the optimal time
scales for the spike cost-based metrics. Furthermore, for these two time in-
tervals, the estimation errors were similar for each of the tested population
sizes. Thereby, for the time intervals that led to the lower estimation errors,
these were significantly below chance level for all the tested populations of
turtle and fish RGC (p < 0.005 and p < 0.05, respectively).

For both animal species, the 500 ms interval led to the lowest median in
the estimation error under the Pooled Population hypothesis. Here, the ISI
metrics yielded estimation errors that reached 0.52 and 0.78 for turtle and
fish RGC, respectively.

Labelled Line

For the spike cost-based metrics, fine time scales generally led to estimation
errors close to those expected by chance. However, and particularly for turtle
RGC, time scales 125 ms ≤ 1/q ≤ 250 ms led to the lowest estimation errors
for the 500 ms and the first 200 ms intervals (Figure 3.40). Furthermore,
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Figure 3.39: Absolute normalised estimation error under the Pooled Popu-
lation hypothesis, for the motion speed of the moving stimulus before the
instantaneous velocity changes. The estimation was carried out by applying
spike cost-based metrics and ISI metrics on the combined activity of RGC
within the three tested time intervals. Markers indicate the median, whereas
error bars represent the range between maximum and minimum estimation
performance. a) Turtle retinae, three experiments; n = 10 populations from
each experiment and for each tested population size. b) Fish retinae five
experiments; n = 1 population from each experiment.
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for these two time intervals, the estimation errors were significantly below
chance level for all the tested populations of turtle and fish RGC (p < 0.005
and p < 0.05, respectively).

In the case of turtle RGC, the estimation errors obtained for the ISI met-
rics were generally lower than the ones yielded by the optimal time scales
for the spike cost-based metrics. Moreover, for each of the tested turtle RGC
populations, the estimation errors across the 500 ms and the first 200 ms in-
terval were quantitatively similar. In contrast, for fish RGC, the estimation
errors obtained for the ISI metrics were not lower than the ones yielded by
the optimal time scales for the spike cost-based metrics. Furthermore, for fish
RGC, the 500 ms interval showed a tendency to lead to the lowest estimation
errors. Thereby, for the intervals that yielded the lowest estimation errors,
these were significantly below chance level for all the tested populations of
turtle and fish RGC (p < 0.005 and p < 0.05, respectively).

For turtle RGC, the first 200 ms interval led to the lowest median in the
estimation error under the Labelled Line hypothesis. Here, the ISI metrics
yielded estimation errors that reached 0.46.

Functional Group

For the spike cost-based metrics, the time scales 31 ms ≤ 1/q ≤ 125 ms
led to the lowest estimation errors for the the 500 ms and the first 200 ms
intervals (Figure 3.41). Here, the estimation errors were significantly below
chance level for all the tested populations of turtle RGC (p < 0.005).

For the ISI metrics, the estimation errors for each of the tested popula-
tions of turtle RGC were quantitatively similar for the 500 ms and the first
200 ms intervals. Moreover, these errors were lower than the ones yielded by
the optimal time scales for the spike cost-based metrics. Therefore, for these
two time intervals, the estimation errors were significantly below chance level
for all of the tested turtle RGC populations (p < 0.005). The lowest estima-
tion errors for the previous motion speed, obtained for both of the applied
metrics under the three tested hypotheses, are summarised in the table in
page 276.

Post velocity

For the estimation of the post velocity, i.e., considering the stimulus his-
tory, the combined activity of RGC generally led to better results than the
ones yielded by the activity of single RGC. Here, in the case of turtle RGC,
larger populations frequently led to better estimation results. Although the
highest estimation performances were often found for the 500 ms interval,
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Figure 3.40: Absolute normalised estimation error under the Labelled Line
hypothesis, for the motion speed of the moving stimulus before the instan-
taneous velocity changes. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the combined activity of RGC within
the three tested time intervals. Markers indicate the median, whereas error
bars represent the range between maximum and minimum estimation per-
formance. a) Turtle retinae, three experiments; n = 10 populations from
each experiment and for each tested population size. b) Fish retinae five
experiments; n = 1 population from each experiment.
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Figure 3.41: Absolute normalised estimation error under the Functional
Group hypothesis, for the motion speed of the moving stimulus before the
instantaneous velocity changes. The estimation was carried out by applying
spike cost-based metrics and ISI metrics on the combined activity of turtle
RGC within the three tested time intervals. Markers indicate the median,
whereas error bars represent the range between maximum and minimum es-
timation performance. Three experiments; n = 10 populations from each
experiment and for each tested population size.
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the first 200 ms interval also allowed high estimation performances. These
results were obtained for both of the applied metrics and under the three
tested joint activity coding hypotheses. The difference in the estimation
performance for the post velocity and the velocity alone, i.e., without consid-
ering the stimulus history, was more evident for the spike cost-based metrics.
Here, the 500 ms and the first 200 ms intervals led to the largest estimation
differences. Moreover, the time scales that led to the highest post velocity
estimation performances, and the greater estimation improvements for larger
turtle RGC populations, varied across the tested populations. Nevertheless,
these time scales were frequently not the ones that yielded the larger esti-
mation differences for the post velocity and the velocity alone. Qualitative
similar estimation results were obtained for both animal species under the
Pooled Population hypothesis as well as under the Labelled Line hypothesis.
For both animal species, the maximum median in the estimation performance
was obtained for the 500 ms interval. Here, for turtle RGC, the estimation
performances under the Functional Group hypothesis reached 64.2% for the
time scale 1/q = 250 ms. In turn, for fish RGC, the estimation results under
the Labelled Line hypothesis reached 29.2% for the time scale 1/q = 1000 ms.

Pooled Population

For the spike cost-based metrics and especially for the 500 ms and the first
200 ms intervals, the highest estimation performance for the post velocity
was yielded by time scales 31 ms ≤ 1/q ≤ 125 ms, which in turn, also led
to large estimation differences between the post velocity and the velocity
alone (Figure 3.42). Moreover, for turtle and fish RGC populations, these
differences in the estimation performance were significant (p < 0.005 and
p < 0.05, respectively). Together, these observations point out the increase in
the relevance of fine and medium time scales for the encoding of information
about the motion velocity when the stimulus history is considered. For the
three analysed time intervals, the estimation results for the post motion
velocity were significantly above chance level for all of the tested turtle and
fish RGC populations (p < 0.005 and p < 0.05, respectively).

Generally, the estimation results obtained for the ISI metrics showed
quantitative similarities with the ones yielded by the optimal time scales for
the spike cost-based metrics. Therefore, for all the tested populations of
turtle and fish RGC, the estimation results were significantly above chance
level for the three analysed time intervals (p < 0.005 and p < 0.05, respec-
tively). Moreover, the difference in the estimation performance for the post
velocity and the velocity alone was only significant for populations of turtle
RGC within the 500 ms and the first 200 ms intervals (p < 0.005).
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For both animal species, the 500 ms interval led to the maximum me-
dian in the estimation performance under the Pooled Population hypothesis.
Here, the ISI metrics yielded estimation performances that reached 52.5%
and 28.1% for turtle and fish RGC, respectively.

Labelled Line

For the spike cost-based metrics, the greatest differences in the estimation
performance for the post motion velocity and the velocity alone were gen-
erally yielded by the time scales 62 ms ≤ 1/q ≤ 125 ms. However, the
time scale 1/q = ∞ led to the best estimation performances for the post
motion velocity (Figure 3.43). Here, for the three analysed time intervals,
the largest differences in the estimation performance for both velocities were
significant for all the tested populations of turtle and fish RGC (p < 0.005
and p < 0.05, respectively). Moreover, for the optimal time scales, the esti-
mation performance for the post velocity was significantly above chance level
for the tested populations of turtle and fish RGC (p < 0.005 and p < 0.05,
respectively).

For the ISI metrics, the estimation results for the 500 ms and the first
200 ms intervals were qualitatively similar for each of the tested RGC popu-
lations. Moreover, in comparison to the results yielded by the optimal time
scales for the spike cost-based metrics, the ISI metrics generally yielded better
estimation results for both 200 ms intervals, whereas for the 500 ms interval,
the opposite happened (Figure 3.43). Thereby, for all the tested populations
of turtle and fish RGC, the estimation performance for the post velocity
was significantly above chance level for the three analysed time intervals
(p < 0.005 and p < 0.05, respectively). Furthermore, the differences in the
estimation performance for both velocities were frequently almost negligible.

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Labelled Line hypothesis. Here, the time
scale 1/q = ∞ yielded estimation performances that reached 67.4%.

Functional Group

For the spike cost-based metrics, the differences in the estimation perfor-
mance for both velocities were generally larger for medium and fine time
scales. Here, and especially for the 500 ms and the first 200 ms intervals,
time scales 16 ms ≤ 1/q ≤ 62 ms yielded the greatest differences, which in
turn were significant (p < 0.005). However, for these two time intervals, only
medium time scales led to the highest estimation results for the post velocity.
This finding points out the increase in the relevance of medium time scales
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Figure 3.42: Estimation performance under the Pooled Population hypothe-
sis, for the motion velocity of the moving stimulus after the instantaneous ve-
locity changes. The estimation was carried out by applying spike cost-based
metrics and ISI metrics on the combined activity of RGC within the three
tested time intervals. Markers indicate the median of the estimation per-
formance, whereas error bars represent the median of the differences in the
estimation performance considering and disregarding the stimulus history.
Downward bars indicate better estimation performance when the stimulus
history is considered, while the opposite is true for upward bars. a) Turtle
retinae, three experiments; n = 10 populations from each experiment and
for each tested population size. b) Fish retinae five experiments; n = 1
population from each experiment.
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Figure 3.43: Estimation performance under the Labelled Line hypothesis, for
the motion velocity of the moving stimulus after the instantaneous velocity
changes. The estimation was carried out by applying spike cost-based metrics
and ISI metrics on the combined activity of RGC within the three tested
time intervals. Markers indicate the median of the estimation performance,
whereas error bars represent the median of the differences in the estimation
performance considering and disregarding the stimulus history. Downward
bars indicate better estimation performance when the stimulus history is
considered, while the opposite is true for upward bars. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.
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Figure 3.44: Estimation performance under the Functional Group hypothe-
sis, for the motion velocity of the moving stimulus after the instantaneous
velocity changes. The estimation was carried out by applying spike cost-
based metrics and ISI metrics on the combined activity of RGC within the
three tested time intervals. Markers indicate the median of the estimation
performance, whereas error bars represent the median of the differences in
the estimation performance considering and disregarding the stimulus his-
tory. Downward bars indicate better estimation performance when the stim-
ulus history is considered, while the opposite is true for upward bars. Three
experiments; n = 10 populations from each experiment and for each tested
population size.

for the encoding of information about the motion velocity when the stimulus
history is considered. For the three analysed time intervals, the estimation
performance for the post velocity was significantly above chance level for all
the tested populations of turtle RGC (p < 0.005).

For the first 200 ms interval, the results obtained for the ISI metrics gen-
erally exceeded those yielded by the optimal time scales for spike cost-based
metrics. In contrast, for the 500 ms and the last 200 ms intervals, similar
estimation performances were frequently found for both of the applied met-
rics. Therefore, for all the tested populations of turtle RGC, the estimation
performance for the post velocity was significantly above chance level for the
three analysed time intervals (p < 0.005). Moreover, the differences in the
estimation performance between the two velocities were significant for the
500 ms and the first 200 ms intervals (p < 0.005). The maximum estimation
results for the post motion velocity, obtained for both of the applied metrics
under the three tested hypotheses, are summarised in the table in page 277.
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Post direction

Generally, the estimation performance for the post direction was qualita-
tively similar to the one for the direction alone. Nevertheless, and especially
for the spike cost-based metrics, the estimation of the post direction showed
a tendency to yield better results. The combined activity of RGC led to
better results for the estimation of the post direction than the ones yielded
by the activity of single RGC. These results were found for the each corre-
sponding joint activity coding hypotheses in both animal species. For both
animal species, the maximum median in the estimation performance was
for the 500 ms interval. Here, for turtle RGC, the estimation performances
under the Functional Group hypothesis reached 88.3% for the time scale
1/q = 1000 ms. In turn, for fish RGC, the estimation results under the
Labelled Line hypothesis reached 59.3% for the time scale 1/q = ∞.

Pooled Population

For the spike cost-based metrics, the greatest differences between the esti-
mation of the post direction and the direction alone were observed for the
500 ms and the first 200 ms intervals. Here, these difference increased for
finer time scales and were significant for turtle and fish RGC (p < 0.005 and
p < 0.05, respectively). However, for these two time intervals, the maximum
estimation performances for the post direction were frequently yielded by
medium time scales (Figure 3.45). For three analysed time intervals, the es-
timation of the post direction, was significantly better than chance for all the
tested turtle RGC populations (p < 0.005). However, for the tested popula-
tions of fish RGC, although the median of the estimation performance for
the three analysed time intervals was above chance level, this difference was
only significant for coarse time scales within the 500 ms interval (p < 0.05).

For ISI metrics, the estimation of the post direction and the direction
alone showed slight differences. Nonetheless, these differences were significant
for turtle and fish RGC (p < 0.005 and p < 0.05, respectively). Therefore,
for the three analysed time intervals, the estimation performance for the post
direction was significantly above chance level for all the tested populations
of turtle and fish RGC (p < 0.005 and p < 0.05, respectively).

For both animal species, the 500 ms interval led to the maximum median
in the estimation performance under the Pooled Population hypothesis. Here,
the ISI metrics yielded estimation performances that reached 68.4% for turtle
RGC. In turn, for fish RGC, the time scale 1/q = 250 ms led to estimation
results that reached 52.2%.
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Figure 3.45: Estimation performance under the Pooled Population hypothe-
sis, for the motion direction of the moving stimulus after the instantaneous
velocity changes. The estimation was carried out by applying spike cost-
based metrics and ISI metrics on the combined activity of RGC within the
three tested time intervals. Markers indicate the median of the estimation
performance, whereas error bars represent the median of the differences in the
estimation performance considering and disregarding the stimulus history.
Downward bars indicate better estimation performance when the stimulus
history is considered, while the opposite is true for upward bars. a) Turtle
retinae, three experiments; n = 10 populations from each experiment and
for each tested population size. b) Fish retinae five experiments; n = 1
population from each experiment.
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Labelled Line

For spike cost-based metrics, the greater differences in the estimation per-
formance for the post direction and direction alone were observed for medium
and coarse time scales. Moreover, these differences were found for the three
analysed time intervals and were significant for all the tested populations of
turtle and fish RGC (p < 0.005 and p < 0.05, respectively). Nevertheless,
as in the case of the direction alone, the time scale 1/q = ∞ led to the
highest estimation results for the post direction for all cases (Figure 3.46).
Thereby, the estimation results for the post direction for this time scale, and
the three analysed time intervals, were significantly above chance level for all
the tested turtle RGC populations (p < 0.005). However, for populations of
fish RGC, this time scale led to significant results only for the 500 ms and
the first 200 ms intervals (p < 0.05).

Generally, for the ISI metrics, the estimation results for the post direc-
tion and direction alone were similar for the tested populations of turtle RGC.
Therefore, these results were significantly above chance level for the three
three analysed time intervals (p < 0.005). In contrast, for populations of
fish RGC, the estimation of the post direction led generally to significantly
better results (p < 0.05). Nonetheless, these results were significantly above
chance level for the two 200 ms intervals (p < 0.05).

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Labelled Line hypothesis. Here, the time
scale 1/q = ∞ yielded estimation performances that reached 83.4%.

Functional Group

For the spike cost-based metrics, the greatest differences between the es-
timation performances for the post direction and the direction alone were
generally yielded by fine time scales. Here, although these differences were
significant (p < 0.005), coarse and medium time scales led to the maximum
estimation performances for the post direction (Figure 3.47). In turn, for all
the tested populations of turtle RGC, these performances were significantly
above chance level (p < 0.005).

In the case of the ISI metrics, for all the tested turtle RGC populations,
the estimation results for the post direction were similar to those for the
direction alone. Thereby, for the three analysed time intervals, the estima-
tion performance for the post direction was significantly above chance level
(p < 0.005). The maximum estimation results for the post motion direction,
obtained for both of the applied metrics under the three tested hypotheses,
are summarised in the table in page 278.
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Figure 3.46: Estimation performance under the Labelled Line hypothesis, for
the motion direction of the moving stimulus after the instantaneous velocity
changes. The estimation was carried out by applying spike cost-based metrics
and ISI metrics on the combined activity of RGC within the three tested
time intervals. Markers indicate the median of the estimation performance,
whereas error bars represent the median of the differences in the estimation
performance considering and disregarding the stimulus history. Downward
bars indicate better estimation performance when the stimulus history is
considered, while the opposite is true for upward bars. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.
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Figure 3.47: Estimation performance under the Functional Group hypothe-
sis, for the motion direction of the moving stimulus after the instantaneous
velocity changes. The estimation was carried out by applying spike cost-
based metrics and ISI metrics on the combined activity of RGC within the
three tested time intervals. Markers indicate the median of the estimation
performance, whereas error bars represent the median of the differences in
the estimation performance considering and disregarding the stimulus his-
tory. Downward bars indicate better estimation performance when the stim-
ulus history is considered, while the opposite is true for upward bars. Three
experiments; n = 10 populations from each experiment and for each tested
population size.
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Post speed

For the post speed, the combined activity of RGC generally led to lower es-
timation errors than the ones yielded by the activity of single RGC. Further-
more, the lowest estimation errors were frequently obtained for the 500 ms
interval. In turn, comparing the estimation results for the post speed and
the speed alone, almost no differences were found for the ISI metrics. These
results were obtained for both animal species under the Pooled Population
hypothesis as well as under the Labelled Line hypothesis. However, for the
spike cost-based metrics, the estimation errors for the post speed were gen-
erally lower. Here, the Labelled Line hypothesis led to qualitatively similar
estimation errors for the post speed and the speed alone. Nevertheless, al-
though some similarities were found for the other two hypotheses, it was
observed that fine and medium time scales gained relevance for the encoding
of information about the post speed, especially for the 500 ms and the first
200 ms intervals. For both animal species, the lowest median in the estima-
tion error was obtained for the 500 ms interval. Here, under the Functional
Group hypothesis, the ISI metrics led to normalised absolute errors that
reached 0.17 for turtle RGC. In turn, for fish RGC, the time scale 1/q = ∞
under the Labelled Line hypothesis led to estimation errors that reached 0.6.

Pooled Population

For the spike cost-based metrics, the largest differences between the estima-
tion performance for the post speed and the speed alone were observed for
fine time scales within the 500 ms and the first 200 ms intervals (Figure 3.48).
Furthermore, for all the tested turtle and fish RGC populations, these dif-
ferences were significant (p < 0.005 and p < 0.05, respectively). In turn, the
maximum estimation performance for these two time intervals was generally
yielded by time scales 31 ms ≤ 1/q ≤ 125 ms. This finding points out that
when the stimulus history is considered, these time scales gain relevance for
the encoding of information about the post speed. Thereby, for the three
analysed time intervals, all the tested populations of turtle and fish RGC
populations led to estimation errors for the post motion speed, that were
significantly below chance level (p < 0.005 and p < 0.05, respectively).

As mentioned at the beginning of this section, the estimation results
obtained for the ISI metrics were similar for the post speed and the speed
alone. Thereby, all the tested turtle and fish RGC populations yielded
estimation errors significantly below chance level for the three analysed time
intervals (p < 0.005 and p < 0.05, respectively).

For both animal species, the 500 ms interval led to the lowest median in
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the estimation error under the Pooled Population hypothesis. Here, the ISI
metrics yielded estimation errors that reached 0.22 and 0.61 for turtle and
fish RGC, respectively.

Labelled Line

For the spike cost-based metrics, time scales 31 ms ≤ 1/q ≤ 62 ms led to the
greatest differences between the estimation performance for the post speed
and the speed alone. For the three analysed time intervals, these differences
were significant for all the tested turtle RGC populations p < 0.005). In
contrast, for the fish RGC populations, these differences were significant
only for the 500 ms and the first 200 ms intervals (p < 0.05). In turn, the
time scale 1/q = ∞ generally yielded the lowest estimation errors for the
post motion speed (Figure 3.49). Here, for all the tested turtle RGC popula-
tions, these errors were significantly below chance level for the three analysed
time intervals (p < 0.005). Conversely, for the fish RGC populations, signif-
icant results were only found for the 500 ms and the first 200 ms intervals
(p < 0.05).

For the ISI metrics, the estimation errors for the post motion speed
and the speed alone were similar for all cases. Thereby, for all the tested
turtle RGC populations, the estimation errors for the post motion speed
was significantly below chance level for the three analysed time intervals
(p < 0.005). Although for the three analysed time intervals the median of
the estimation errors for the post speed was below chance level, this difference
was not significant for the populations of fish RGC.

For turtle RGC, the 500 ms interval led to the lowest median in the
estimation error under the Labelled Line hypothesis. Here, the time scale
1/q = ∞ yielded estimation errors that reached 0.22.

Functional Group

For spike cost-based metrics, although fine time scales generally led to the
greatest differences in the estimation performance for the post speed and
speed alone, these differences were greater for the 500 ms and the first 200 ms
intervals (Figure 3.50). Moreover, in all cases, these differences were signif-
icant (p < 0.005). Nevertheless, for the turtle RGC, medium time scales of
their activity within the 500 ms and the first 200 ms intervals gained rele-
vance with increasing population sizes. Furthermore, for the largest turtle
RGC populations, these time scales generally led to the lowest estimation
errors for the post speed. Thereby, the estimation error for the post mo-
tion speed, yielded by the combined activity of turtle RGC, was significantly
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Figure 3.48: Absolute normalised estimation under the Pooled Population
hypothesis, for the motion speed of the moving stimulus after the instanta-
neous velocity changes. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the combined activity of RGC within
the three tested time intervals. Markers indicate the median of the estima-
tion performance, whereas error bars represent the median of the differences
in the estimation performance considering and disregarding the stimulus his-
tory. Upward bars indicate lower estimation errors when the stimulus history
is considered, while the opposite is true for downward bars. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.
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Figure 3.49: Absolute normalised estimation under the Labelled Line hy-
pothesis, for the motion speed of the moving stimulus after the instanta-
neous velocity changes. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the combined activity of RGC within
the three tested time intervals. Markers indicate the median of the estima-
tion performance, whereas error bars represent the median of the differences
in the estimation performance considering and disregarding the stimulus his-
tory. Upward bars indicate lower estimation errors when the stimulus history
is considered, while the opposite is true for downward bars. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.
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Figure 3.50: Absolute normalised estimation under the Functional Group
hypothesis, for the motion speed of the moving stimulus after the instanta-
neous velocity changes. The estimation was carried out by applying spike
cost-based metrics and ISI metrics on the combined activity of RGC within
the three tested time intervals. Markers indicate the median of the estimation
performance, whereas error bars represent the median of the differences in the
estimation performance considering and disregarding the stimulus history.
Upward bars indicate lower estimation errors when the stimulus history is
considered, while the opposite is true for downward bars. Three experiments;
n = 10 populations from each experiment and for each tested population size.

above chance level for the three analysed time intervals (p < 0.005).
For the ISI metrics, the errors in the estimation of the post speed and the

speed alone were generally similar for all the tested turtle RGC populations.
Therefore, for all the tested turtle RGC populations, the estimation errors
for the post motion speed were significantly below chance level for the three
analysed time intervals (p < 0.005). The lowest estimation errors for the
post motion speed, obtained for both of the applied metrics under the three
tested hypotheses, are summarised in the table in page 279.

Speed changes

For the estimation of the three possible changes in motion speed, the com-
bined activity of RGC generally led to better estimation performances than
the activity of single RGC. Moreover, in the case of turtle RGC, larger pop-
ulations frequently improved the estimation performance, especially for the
500 ms and the first 200 ms intervals, for which the estimation results were
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also the highest. Moreover, these two time intervals led frequently to similar
estimation results. In contrast, the last 200 ms interval led generally to poor
estimation performances. These results were obtained for both of the applied
metrics and under the three tested joint activity coding hypotheses. For the
spike cost-based metrics, the time scales that were optimal for the estimation
of the instantaneous velocity changes varied across the three tested hypoth-
esis. Furthermore, these time scales not always yielded the largest improve-
ments for larger turtle RGC populations. Qualitatively similar estimation
results were obtained for both animal species under the Pooled Population
hypothesis as well as under the Labelled Line hypothesis. For turtle RGC,
the maximum median in the estimation performance was yielded by the time
scale 1/q = 16 ms of the first 200 ms interval. Here, the estimation per-
formances under the Pooled Population hypothesis reached 84%. In turn,
for fish RGC, the maximum median in the estimation results was yielded by
the time scale 1/q = 500 ms of the 500 ms interval. Here, the estimation
performances under the Labelled Line hypothesis reached 64.8%.

Pooled Population

Generally, for the spike cost-based metrics, the time scale 1/q = ∞ showed
to encode information about the changes in motion speed. Nonetheless, the
estimation performance for the 500 ms and the first 200 ms intervals was
generally the highest for time scales 8 ms ≤ 1/q ≤ 31 ms. Moreover, in the
case of the turtle RGC, these time scales led to the largest improvements
for larger populations (Figure 3.51). In turn, the estimation result yielded
by these time scales within the 500 ms and the first 200 ms intervals, were
significantly above chance level for all the tested populations of turtle and
fish RGC (p < 0.005 and p < 0.005, respectively).

For the ISI metrics, and especially for the 500 ms and the first 200 ms in-
tervals, the estimation performance obtained for all the tested populations of
RGC was quantitatively similar to the one yielded by the optimal time scales
for the spike cost-based metrics. Thereby, for these two time intervals, the
estimation performance for all the tested turtle and fish RGC populations
was significantly above chance level (p < 0.005 and p < 0.05, respectively).

For fish RGC, the 500 ms interval led the maximum median in the esti-
mation performance under the Pooled Population hypothesis. Here, the time
scale 1/q = 125 ms yielded estimation performances that reached 64.7%.
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Figure 3.51: Estimation performance under the Pooled Population hypothe-
sis, for the changes in the motion speed of the moving stimulus. The estima-
tion was carried out by applying spike cost-based metrics and ISI metrics on
the combined activity of RGC within the three tested time intervals. Mark-
ers indicate the median, whereas error bars represent the range between
maximum and minimum estimation performance. a) Turtle retinae, three
experiments; n = 10 populations from each experiment and for each tested
population size. b) Fish retinae five experiments; n = 1 population from
each experiment.
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Labelled Line

For the spike cost-based metrics, fine time scales led generally for estimation
results close to those expected by chance, whereas the highest estimation
performances were yielded by medium and coarse time scales. Moreover,
in the case of the turtle RGC, all of the tested population sizes yielded
similar estimation results for each of the analysed time intervals (Figure 3.52).
Thereby, for the optimal time scales, and especially for the 500 ms and the
first 200 ms intervals, the estimation performance was significantly above
chance level for all the tested populations of turtle RGC (p < 0.005). In turn,
for the tested fish RGC populations, coarse time scales led to estimation
performances whose median was above chance level for the three analysed
time intervals. However, this difference was significant only for the 500 ms
and the last 200 ms intervals (p < 0.05).

For all the tested turtle RGC populations, and in the particular case of
the 500 ms and the first 200 ms intervals, the estimation results obtained for
the ISI metrics were quantitatively similar to those yielded by the optimal
time scales for the spike cost-based metrics. Thus, these results were signifi-
cantly above chance level for these two time intervals (p < 0.005). Moreover,
the estimation results were also significantly above chance level for the tested
fish RGC populations (p < 0.05). Nevertheless, these results were not as
good as the maximum estimation results obtained for the spike cost-based
metrics.

For turtle RGC, the first 200 ms interval led to the maximum median in
the estimation performance under the Labelled Line hypothesis. Here, the
ISI metrics yielded estimation performances that reached 80.2%.

Functional Group

For the spike cost-based metrics, the time scale 1/q = ∞ generally led to
good estimation results for the changes in motion speed. However, for the
500 ms and first 200 ms intervals, time scales 31 ms ≤ 1/q ≤ 62 ms led to
the highest estimation results. Moreover, for time scales 1/q ≤ 125 ms, the
estimation performance improved with increasing sizes of the populations of
turtle RGC (Figure 3.53). In this sense, for all the tested populations of
turtle RGC, the estimation performance was significantly above chance level
for the three analysed time intervals (p < 0.005)

Generally, in the case of the estimation results obtained for the ISI met-
rics, these were quantitatively similar to those yielded by the optimal time
scales for the spike cost-based metrics. Therefore, the estimation perfor-
mance for all the tested populations of turtle RGC was significantly above
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Figure 3.52: Estimation performance under the Labelled Line hypothesis,
for the changes in the motion speed of the moving stimulus. The estimation
was carried out by applying spike cost-based metrics and ISI metrics on the
combined activity of RGC within the three tested time intervals. Markers in-
dicate the median, whereas error bars represent the range between maximum
and minimum estimation performance. a) Turtle retinae, three experiments;
n = 10 populations from each experiment and for each tested population size.
b) Fish retinae five experiments; n = 1 population from each experiment.
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Figure 3.53: Estimation performance under the Functional Group hypothe-
sis, for the changes in the motion speed of the moving stimulus. The estima-
tion was carried out by applying spike cost-based metrics and ISI metrics on
the combined activity of turtle RGC within the three tested time intervals.
Markers indicate the median, whereas error bars represent the range be-
tween maximum and minimum estimation performance. Three experiments;
n = 10 populations from each experiment and for each tested population
size.

chance level for the three analysed time intervals (p < 0.005). The maximum
estimation results for the changes in motion speed, obtained for both of the
applied metrics under the three tested hypotheses, are summarised in the
table in page 280.

The 500 ms interval led to the maximum median in the estimation per-
formance under the Functional hypothesis. Here, the ISI metrics yielded
estimation performances that reached 83.8%.

Direction changes

The estimation performance for the three possible changes in motion direc-
tion, allowed by the combined activity of RGC, generally showed qualitative
similarities with the performance for the changes in motion speed. Neverthe-
less, and especially in the case of the results obtained for the spike cost-based
metrics, some differences were also observed. For instance, fine time scales
led some of the times to estimation results worse than those expected by
chance. Furthermore, the differences in the estimation performance across
the tested sizes of turtle RGC populations was slightly larger. Here, for
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the three tested joint activity coding hypothesis, these differences were the
largest for the time scales that led to the highest estimation performances.
For both animal species, the maximum median in the estimation performance
was obtained under the Pooled Population hypothesis for the 500 ms inter-
val. Here, the ISI metrics led estimation performances that reached 75.9%
and 55.% for turtle and fish RGC, respectively.

Pooled Population

For the spike cost-based metrics, and in the particular case of turtle RGC,
time scales 31 ms ≤ 1/q ≤ 62 ms led to the highest estimation performances
for the 500 ms and the first 200 ms intervals. In contrast, for fish RGC
populations, time scales 31 ms ≤ 1/q ≤ 250 ms led to the highest estimation
results for these two time intervals (Figure 3.54). Thereby, for the optimal
time scales within the 500 ms and the first 200 ms intervals, the estimation
performance was significantly above chance level for all the tested turtle and
fish RGC populations (p < 0.005 and p < 0.05, respectively).

For the 500 ms and the first 200 ms intervals, the estimation results
obtained for the ISI metrics generally exceeded the ones yielded by the
optimal time scales for the spike cost-based metrics. Thus, for these two
time intervals, the estimation results yielded by all the tested populations of
turtle and fish RGC were significantly above chance level (p < 0.005 and
p < 0.05, respectively).

Labelled Line

For the spike cost-based metrics, fine time scales generally led to estimation
performances below chance level. However, time scales 1/q ≥ 125 ms led
to the highest estimation results, particularly for the 500 ms and the first
200 ms intervals (Figure 3.55). In this sense, for the optimal time scales
within the 500 ms and the first 200 ms intervals, the estimation results were
significantly above chance level for all the tested populations of turtle and
fish RGC (p < 0.005 and p < 0.05, respectively).

For the ISI metrics, the results obtained for both 200 ms intervals
showed generally a tendency to exceed the ones yielded by the optimal time
scales for the spike cost-based metrics. In contrast, for the 500 ms interval,
the results obtained for both of the applied metrics were quantitatively sim-
ilar. Therefore, for all the tested populations of turtle and fish RGC, the
estimation performance was significantly above chance level (p < 0.005 and
p < 0.05, respectively).

For turtle RGC, the first 200 ms interval led to the maximum median in



166 CHAPTER 3. RESULTS

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

Time scale [ms] Time scale [ms] 

%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

a

b

Inf 500 125 31 8ISI ISI Inf 500 125 31 8 Inf 500 125 31 8ISI

Direction changes (Pooled Population)

6 Cells
12 Cells
18 Cells
Chance level

Chance level
6 Cells

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

Time scale [ms] Time scale [ms] 

%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

Inf 500 125 31 8ISI ISI Inf 500 125 31 8 Inf 500 125 31 8ISI

Figure 3.54: Estimation performance under the Pooled Population hypoth-
esis, for the changes in the motion direction of the moving stimulus. The
estimation was carried out by applying spike cost-based metrics and ISI met-
rics on the combined activity of RGC within the three tested time intervals.
Markers indicate the median, whereas error bars represent the range be-
tween maximum and minimum estimation performance. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.
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the estimation performance under the Labelled Line hypothesis. Here, the
ISI metrics yielded estimation performances that reached 63.1%. In turn,
for fish RGC, the 500 ms interval led to the maximum median in the esti-
mation performance. Here, the time scale 1/q = 250 ms yielded estimation
performances that reached 51.7%.

Functional Group

For the spike cost-based metrics the time scale 1/q = 8 ms led frequently to
estimation performances below chance level. Nonetheless, coarser time scales
led to better estimation results. Here, in the particular case of the 500 ms and
the first 200 ms intervals, the estimation performance reached its maximum
for time scales 31 ms ≤ 1/q ≤ 125 ms (Figure 3.56). Moreover, the optimal
time scales within these two time intervals led to estimation performances
significantly above chance level for all the tested populations of turtle RGC
(p < 0.005).

For the 500 ms and the first 200 ms intervals, the estimation performance
obtained for the ISI metrics was qualitatively similar to that obtained for
the spike cost-based metrics. Nonetheless, it showed a tendency to exceed the
estimation performance yielded by the optimal time scales for the spike cost-
based metrics. Thus, for these two time intervals, the estimation performance
was significantly above chance level for all the tested populations of turtle
RGC (p < 0.005). The maximum estimation results for the changes in motion
direction, obtained for both of the applied metrics under the three tested
hypotheses, are summarised in the table in page 281.

The first 200 ms interval led to the maximum median in the estimation
performance under the Functional hypothesis. Here, the ISI metrics yielded
estimation performances that reached 75.8%.

Speed and direction changes

For the combined activity of RGC, the estimation performance for the seven
possible combinations of changes in the motion speed and direction showed
more qualitative similarities with the estimation performance for the changes
in motion direction, than with the one for the changes in motion speed. For
instance, in the case of the spike cost-based metrics, the time scales that led
to the highest estimation performances also yielded the greater differences
across the tested population sizes of turtle RGC. Furthermore, fine time
scales led some of the times to estimation results below chance level. For both
animal species, he ISI metrics led to the maximum median in the estimation
performance. Here, for turtle RGC, the estimation performances under the
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Figure 3.55: Estimation performance under the Labelled Line hypothesis, for
the changes in the motion direction of the moving stimulus. The estimation
was carried out by applying spike cost-based metrics and ISI metrics on the
combined activity of RGC within the three tested time intervals. Markers in-
dicate the median, whereas error bars represent the range between maximum
and minimum estimation performance. a) Turtle retinae, three experiments;
n = 10 populations from each experiment and for each tested population size.
b) Fish retinae five experiments; n = 1 population from each experiment.
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Figure 3.56: Estimation performance under the Functional Group hypoth-
esis, for the changes in the motion direction of the moving stimulus. The
estimation was carried out by applying spike cost-based metrics and ISI met-
rics on the combined activity of turtle RGC within the three tested time
intervals. Markers indicate the median, whereas error bars represent the
range between maximum and minimum estimation performance. Three ex-
periments; n = 10 populations from each experiment and for each tested
population size.
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Functional Group hypothesis reached 65.1% for the first 200 ms interval.
In contrast, for fish RGC, the estimation performances under the Pooled
Population hypothesis reached 36.7% for the 500 ms interval.

Pooled Population

For the spike cost-based metrics, and particularly for turtle RGC popu-
lations, the estimation performance for the 500 ms and the first 200 ms
intervals was the highest for time scales 16 ms ≤ 1/q ≤ 62 ms. In con-
trast, for these two time intervals, coarse and medium time scales led to the
maximum median of the estimation performances for fish RGC populations
(Figure 3.57). Thereby, the optimal time scales within the 500 ms and the
first 200 ms interval led to estimation results significantly above chance level
for all the tested populations of turtle and fish RGC (p < 0.005 and p < 0.05,
respectively).

For the 500 ms and the first 200 ms intervals, the estimation results
obtained for the ISI metrics generally exceeded the ones yielded by the
optimal time scales for the spike cost-based metrics. Therefore, for these
two time intervals, all the tested populations of turtle and fish RGC led to
estimation results significantly above chance level (p < 0.005 and p < 0.05,
respectively).

For turtle RGC, the 500 ms interval led to the maximum median in the
estimation performance under the Pooled Population hypothesis. Here, the
ISI metrics yielded estimation performances that reached 63.3%.

Labelled Line

For the spike cost-based metrics, the estimation performance yielded by
fine time scales was generally below chance level. However, and especially
for the 500 ms and the first 200 ms intervals, coarser time scales led to the
improvement in the estimation performance, which in turn appeared to reach
its maximum for time scales 1/q ≥ 125 ms (Figure 3.58). Thereby, for all
the tested populations of turtle and fish RGC, the estimation results were
significantly above chance level (p < 0.005 and p < 0.05, respectively).

For the ISI metrics, the estimation results obtained for the 500 ms inter-
val were similar to those yielded by the optimal time scales for the spike cost-
based metrics. However, for both 200 ms intervals, the ISI metrics showed a
tendency to allow better estimation performances. Hence, and particularly
for the 500 ms and the first 200 ms intervals, the estimation performance was
significantly above chance level for all the tested populations of turtle and
fish RGC (p < 0.005 and p < 0.05, respectively).
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Figure 3.57: Estimation performance under the Pooled Population hypothe-
sis, for the combined changes in the motion speed and direction of the moving
stimulus. The estimation was carried out by applying spike cost-based met-
rics and ISI metrics on the combined activity of RGC within the three tested
time intervals. Markers indicate the median, whereas error bars represent
the range between maximum and minimum estimation performance. a) Tur-
tle retinae, three experiments; n = 10 populations from each experiment
and for each tested population size. b) Fish retinae five experiments; n = 1
population from each experiment.
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For turtle RGC, the first 200 ms interval led to the maximum median in
the estimation performance under the Labelled Line hypothesis. Here, the
ISI metrics yielded estimation performances that reached 53.7%. In turn,
for fish RGC, the 500 ms interval led to the maximum median in the esti-
mation performance. Here, the time scale 1/q = 500 ms yielded estimation
performances that reached 33.1%.

Functional Group

Generally, for the spike cost-based metrics, the time scale 1/q = 8 ms led
to the poorest estimation performances. However, these performances im-
proved for coarser time scales. Here, especially for the 500 ms and the first
200 ms intervals, the time scales 31 ms ≤ 1/q ≤ 125 ms led to the highest
estimation results (Figure 3.59). In turn, these time scales led to estimation
performances significantly above chance level for all of the tested populations
of turtle RGC (p < 0.005).

For the ISI metrics and particularly for the 500 ms and the first 200 ms
intervals, the estimation results generally exceeded the ones yielded by the op-
timal time scales for the spike cost-based metrics. Thus, for all the tested tur-
tle RGC populations, the estimation results were significantly above chance
level (p < 0.005). The maximum estimation results for the combined changes
in the motion speed and direction, obtained for both of the applied metrics
under the three tested hypotheses, are summarised in the table in page 282.
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Figure 3.58: Estimation performance under the Labelled Line hypothesis, for
the combined changes in the motion speed and direction of the moving stimu-
lus. The estimation was carried out by applying spike cost-based metrics and
ISI metrics on the combined activity of RGC within the three tested time in-
tervals. Markers indicate the median, whereas error bars represent the range
between maximum and minimum estimation performance. a) Turtle retinae,
three experiments; n = 10 populations from each experiment and for each
tested population size. b) Fish retinae five experiments; n = 1 population
from each experiment.
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Figure 3.59: Estimation performance under the Functional Group hypothe-
sis, for the combined changes in the motion speed and direction of the moving
stimulus. The estimation was carried out by applying spike cost-based met-
rics and ISI metrics on the combined activity of turtle RGC within the three
tested time intervals. Markers indicate the median, whereas error bars rep-
resent the range between maximum and minimum estimation performance.
Three experiments; n = 10 populations from each experiment and for each
tested population size.
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3.2 Light-Motion Experiment

In a natural environment, the detection and estimation of motion have to
be accomplished under dynamical light conditions. Therefore, an additional
study explored how the activity of RGC encodes simultaneously, informa-
tion about the light intensity and motion features of a visual stimulus. This
study involved the design of a Light-Motion experiment protocol to record
the responses of RGC to different light intensities and motion velocities. A
detailed description of this experiment protocol can be found in Section 2.1.2.
Briefly, the Light-Motion experiment protocol considered as visual stimulus
the moving pattern of squares that was used in the Motion Experiment proto-
col. Furthermore, the protocol included different light intensities with which
the pattern of squares was projected onto the retina. Four different light
intensities and five different motion velocities comprised the experiment pro-
tocol. Here, the light intensity and motion velocity were instantaneously
changed in periods of 500 ms in an alternate way.

For the Light-Motion experiment protocol, the activity of RGC from one
retina of carp (cyprinus carpio) was recorded. After spike sorting, 114 RGC
were identified (see Figure 2.4). Moreover, based on the visual inspection of
the spike rate probability distributions of the recorded RGC, it was found
that several RGC tuned their activity to the different light intensities and
motion velocities of the stimulus. Here, the number of cells whose responses
showed light intensity sensitivity, clearly exceeded the number of cells that
exhibited motion sensitive responses. Figure 3.60 shows the spike firing rate
probability distributions of the responses of a fish RGC to different light
intensities under constant motion velocities (Figure 3.60a), and the proba-
bility distributions of the same RGC to different velocities under constant
background luminance (Figure 3.60b). Here, it can be observed that the
response properties of the depicted fish RGC depend on the combination of
both stimulus features in a non-linear way.

A further characterisation of the responses of the fish RGC, can be ob-
served in Figure 3.61. Here, the responses to the instantaneous changes of one
of the visual stimulus features are represented. Thereby, the first two columns
to the left in Figure 3.61 depict changes in the light intensity with which the
pattern of squares is projected onto the retina. Here, for the stimulus transi-
tions presented in these columns, the motion velocity of the pattern of squares
was kept constant. Conversely, the last two columns depict changes in the
motion velocity with a constant background luminance. For the changes in
light intensity, the raster plots show a strong transient in the activity within
the first milliseconds after the stimulus transition (Figure 3.61b). These tran-
sients are captured in the large activity peaks after the stimulus transition
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Figure 3.60: Firing rate probability distributions of one of the recorded fish
RGC. Each box plot corresponds to each of the light intensities or veloc-
ities utilised in the experiment protocol. For the cell shown, the central
mark within the box plots depicts the median, whereas the edges of the box
plots refer to the 25th and 75th percentiles of the spike firing rate. In turn,
whiskers extend to the most extreme spike firing rates which are not consid-
ered outliers. Finally, the circles depict the mean firing rate. a) Probability
distributions for different light intensities under constant motion velocities.
b) Probability distributions for different motion velocities under constant
background light intensities.
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depicted by the PSTH (Figure 3.61c). Nevertheless, although the change in
light intensity is the same for both cases, the motion velocities of the moving
stimulus yield different ‘background’ or ‘baseline’ activity. These differences
can be observed in the late period of the responses depicted by the raster
plots and the PSTH as well as in the shift of the spike count probability
distribution (Figure 3.61d). In contrast, for identical motion velocity tran-
sitions with different background luminance, the responses of the fish RGC
showed clearer differences (two right-most columns in Figure 3.61b and c).
Here, the transients in the activity of the RGC were only evident for the
brightest intensity of the projection light, whereas for the darkest intensity,
the activity of the RGC remained relatively constant for the period in which
the stimulus was presented. This phenomenon is captured by the difference
in the probability distribution of the ISI (Figure 3.61d). Furthermore, it can
be observed that the transients in the activity evoked by motion velocity
changes for all background light intensities were weaker and slower than the
ones evoked by changes in light intensity regardless of the motion velocity of
the pattern of squares.

The characterisations shown in Figures 3.60 and 3.61, suggest that the
activity of single fish RGC could in fact encode information about different
stimulus features simultaneously. In this sense, by inspecting the spike rate
probability distributions for light intensities and motion velocity of the de-
picted RGC, it can be observed that the strength of the responses to the
different light intensities and motion velocities, is affected by the background
motion and luminance conditions, respectively (Figure 3.60). Moreover, for
the stimulus transitions shown in Figure 3.61, changes in light intensity pro-
voke fast and strong transients in the activity of RGC, but have little effect
in the sustained activity. In contrast, changes in the motion velocity pro-
voke slower and weaker transients in the activity of RGC. However, constant
motion velocities appear to have some effect in the sustained activity of RGC.

In order to explore more in detail the findings described in the previous
paragraph, the activity of the recorded fish RGC was analysed using the spike
cost-based metrics to estimate different features of the visual stimulus. Here,
as in the case of the Motion Experiment protocol, the analysis was carried
out within three time intervals; the 500 ms with constant stimulus features,
the first 200 ms after the instantaneous change of a stimulus feature, and the
last 200 ms before the next feature change. Furthermore, the results shown
in this section were obtained considering the activity of single, as well as
one population of n = 18 RGC. Here, the RGC considered for the analysis
and therefore, to build the population, were selected by the visual inspection
of the probability distribution of their spike firing rate to the different light
projection intensities and motion velocities, e.g., Figure 3.60. Thereby, the
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RGC that showed clear differences in their spike firing rate for the different
intensity and velocity values were considered for the analysis. Furthermore,
for this experimental protocol, two joint activity coding hypotheses were
tested; Pooled Population and Labelled Line.

The results described in this section should allow to gain more knowledge
about which features of the responses of RGC are relevant for the encoding
of visual information. Thereby, within the framework of the spike cost-based
metrics, the parameter q allowed the assessment of the relevance of the spike
firing rate and different time scales of the temporal structure of RGC re-
sponses (see Section 2.3.1). Hence, in the following paragraphs, some of the
times the description of the results is going to be made based in a rough clas-
sification of the time scales. Like before, the time scales in the range between
8 ms ≤ 1/q ≤ 31 ms are going to be referred to as fine time scales, whereas
the ones in the range between 62 ms ≤ 1/q ≤ 250 ms, are going to be referred
to as medium time scales. Finally, coarse time scales will be the ones falling
in the range between 500 ms ≤ 1/q ≤ ∞. Furthermore, the representation
of the estimation results obtained by the spike cost-based metrics was done
making the following considerations:

• In addition to the RGC responses obtained for the entire 500 ms interval
of stimulus presentation, the activity during the transient phase (first
200 ms) and the sustained phase (last 200 ms) were analysed separately.

• In the case of the activity of single RGC, the depicted results correspond
to the cells that were selected by the visual inspection of their spike
firing rate probability distributions, i.e., n = 18.

• In the case of the activity of populations of RGC, the depicted results
correspond to the population built with the selected cells.

• The results are individually represented for each of the three stimulus
conditions considered for the analysis; changes in the light intensity
with constant motion velocity, changes in the motion velocity with
constant light intensity, and changes in the light intensity or motion
velocity.

• For each of the three conditions considered, the estimation results al-
lowed by the activity of the considered single RGC were pooled to-
gether. The procedure to assess the estimation performance is de-
scribed in Section 2.3.4.
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• The markers in the graphs correspond to the median, whereas the error
bars depict the minimal and maximal estimation performances across
the considered single RGC.

• The Wilcoxon sum-rank-test, considering different values of α (α > p),
was applied to assess the significance of the results (see page 67).

3.2.1 Constant Features

This section describes the results in the estimation of the possible projection
light intensities and motion velocities of the visual stimulus utilised in this
protocol. Here, the described results refer to the estimation of each individual
feature and the combination of both features. Here, three conditions were
considered for the estimation task; a) Changes in the light intensity with
constant motion velocity. b) Changes in the motion velocity with constant
light intensity. c) Changes in the light intensity or motion velocity.

Light intensity

Figure 3.62 shows the results obtained for the estimation of the four possible
light intensities. Here, it can be observed that for the three analysed time
intervals and the three tested stimulus conditions, the two tested joint activ-
ity coding hypotheses led to estimation results which were better than the
median of the estimation performance yielded by the activity of single RGC.
Moreover, the time scales that led to the highest estimation performances
were different for single RGC and the two tested joint activity population
hypothesis. Generally, the estimation performance was better for the 500 ms
interval. Furthermore, for the 500 ms and the first 200 ms interval, the es-
timation performance showed quantitative and qualitative differences across
the three tested stimulus conditions. Here, better results in the estimation of
the light intensity were obtained in the context of light intensity changes. In
contrast, for the last 200 ms interval, the estimation performance was similar
across the three tested stimulus conditions.

With the exception of the time scales 1/q = 8 ms, which generally led
to estimation results close to those expected by chance, the estimation re-
sults yielded by the activity of single RGC were significantly above chance
level, i.e., 25 % (p ≤ 0.005). Here, time scales 1/q > 16 ms improved the
estimation performance, which frequently appeared to reach a plateau for
time scales 1/q ≥ 125 ms. Exceptions to this finding were observed for the
500 ms and the first 200 ms intervals in the context of light intensity changes.
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Here, medium time scales showed a tendency to led to the highest estima-
tion results. Furthermore, within the context of light intensity changes, the
maximum median in the estimation performance reached 46.7 %, and it was
found for the 500 ms interval.

Generally, qualitative similarities were observed between the estimation
performance obtained under the Pooled Population hypothesis, and the best
estimation performance yielded by a single RGC (upper limit of the error
bars in Figure 3.62). Therefore, for this hypothesis, better estimation results
were frequently observed for coarse and medium time scales. However, the
maximum estimation performance for this hypothesis was yielded by the
time scale 1/q = 8 ms within the context of light intensity changes, reaching
70.8 % for the first 200 ms interval.

Under the Labelled Line hypothesis, the time scale 1/q = 8 ms led gen-
erally to estimation performances close to chance level. Moreover, for the
time scales 1/q ≤ 62 ms, the estimation performance obtained under this
hypothesis was worse than the best estimation performance yielded by a sin-
gle RGC (upper limit of the error bars in Figure 3.62). Nevertheless, for
this hypothesis, coarser time scales improved the estimation performance,
which frequently reached its maximum for the time scale 1/q =∞. For this
time scale, the estimation performance allowed by the Labelled Line hypoth-
esis frequently exceeded the best estimation performance yielded by a single
RGC. However, the highest estimation performance for this hypothesis was
yielded by the time scale 1/q = 31 ms within the context of light intensity
changes, reaching 69.7 % for the first 200 ms interval.

Velocity

Figure 3.63 shows the results obtained for the estimation of the five possi-
ble motion velocities. Here, it can be observed that for the three analysed
time intervals and the three tested stimulus conditions, the estimation results
obtained under the two tested joint activity coding hypotheses were better
than the median of the estimation performance yielded by the activity of
single RGC. Moreover, the time scales that led to the highest estimation
performances were different for single RGC and the two tested joint activity
coding hypotheses. Generally, the 500 ms interval led to the highest estima-
tion performances. Moreover, for the 500 ms and the first 200 ms intervals,
the estimation performance for the motion velocity was better when changes
in this stimulus feature were present. In contrast, for the other two stimu-
lus conditions involving changes in light intensity, the estimation of motion
velocity, particularly for the first 200 ms interval, was impaired. This ef-
fect was not observed for the last 200 ms interval, for which the estimation
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Figure 3.62: Estimation performance for the projection light intensity of the
moving stimulus. The estimation was carried out by applying spike cost-
based metrics on the activity of RGC within the three tested time intervals.
In the case of the estimation allowed by the activity of single RGC, markers
indicate the median, whereas error bars represent the range between max-
imum and minimum estimation performance. Three conditions were con-
sidered for the estimation; a) Changes in the light intensity with constant
motion velocity. b) Changes in the motion velocity with constant light in-
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performance was similar across the three tested stimulus conditions.
With the exception of the time scales 1/q = 8 ms, the estimation results

yielded by the activity of single RGC were significantly above chance level,
i.e., 20 % (p ≤ 0.005). Generally, the estimation performance reached a
plateau for time scales 1/q ≥ 125 ms. Furthermore, for the 500 ms interval
and within the context of motion velocity changes, the time scale 1/q =∞ led
to the highest median in the estimation performance, which reached 28.9 %.
Additionally, under this stimulus condition, it was also found that for time
scales 1/q ≥ 125 ms within the 500 ms and the last 200 ms intervals, the
best estimation performance yielded by a single RGC exceeded the estimation
performance obtained under the two tested joint activity coding hypothesis.

In the context of motion velocity changes, the estimation performance un-
der the Pooled Population hypothesis was very stable performance across the
tested time scales. Here, while the time scale 1/q = 8 ms showed a tendency
to lead to the lowest estimation performances, the range 31 ms ≤ 1/q ≤ 62 ms
appeared to be optimal for the encoding of information about motion veloc-
ity, allowing estimation performances up to 34.7 % for the 500 ms interval.

Under the Labelled Line hypothesis, time scales 1/q ≤ 31 ms led to es-
timation performances that were generally worse than the best estimation
performance yielded by a single RGC. Nevertheless, the estimation perfor-
mance for the Labelled Line hypothesis improved with coarser time scales.
Furthermore, within the context of motion velocity changes, the time scale
1/q =∞ led to the highest estimation performances, which reached up to
35.6 % for the 500 ms interval.

Light intensity and velocity

The estimation results for the 20 possible combinations of light intensities and
motion velocities are shown in Figure 3.64. Here, it can be observed that for
the three analysed time intervals and the three tested stimulus conditions,
the estimation results obtained for the two joint activity coding hypothe-
ses generally outperformed the estimation performance yielded by all of the
single RGC. Moreover, the results show clear differences between the best
estimation performance yielded by a single RGC and the estimation results
obtained for the combined activity of RG. Here, the time scales that led to the
highest estimation performances were different for single RGC and the two
tested hypotheses. Generally, the highest estimation results were obtained
for the 500 ms interval. Furthermore, for the 500 ms and the first 200 ms
intervals, changes in only one stimulus feature led to higher estimation re-
sults. Moreover, comparing the estimation performance obtained within the
context of changes in one stimulus feature for these two time intervals, it
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Figure 3.63: Estimation performance for the motion velocity of the mov-
ing stimulus. The estimation was carried out by applying spike cost-based
metrics on the activity of RGC within the three tested time intervals. In the
case of the estimation allowed by the activity of single RGC, markers indicate
the median, whereas error bars represent the range between maximum and
minimum estimation performance. Three conditions were considered for the
estimation; a) Changes in the light intensity with constant motion velocity.
b) Changes in the motion velocity with constant light intensity. c) Changes
in the light intensity or motion velocity.
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was observed that finer time scales led frequently to better estimation re-
sults when light intensity changes were present. In contrast, the estimation
performance was similar across the three tested stimulus conditions for the
last 200 ms interval.

With the exception of the time scales 1/q ≤ 16 ms, which led generally to
estimation results close to those expected by chance, the estimation results
obtained for single RGC were significantly above chance level, i.e., 5 %
(p≤ 0.005). For the 500 ms and the first 200 ms intervals and when changes in
only one stimulus feature were present, the estimation performance appeared
to reach its maximum for medium time scales. Moreover, for these stimulus
conditions, medium time scales led to the maximum in the median of the
estimation performance, which was between 12 % and 13.4 % for the 500 ms
interval.

Under the Pooled Population hypothesis and within the context of light
intensity changes, fine time scales led generally to the highest estimation
performances for the 500 ms and the first 200 ms intervals. In contrast,
when motion velocity changes were present, time scales 31 ms ≤ 1/q ≤ 62 ms
of these two time intervals appeared to be optimal for the estimation task.
The maximum estimation performances were obtained for the 500 ms interval
when changes in one stimulus feature occurred. Here, the optimal time scales
yielded results that ranged between 28.9 % and 30.7 %.

Under the Labelled Line hypothesis, time scales 1/q ≤ 31 ms led to the
lowest estimation performances. Nevertheless, the estimation performance
for the this hypothesis improved with coarser time scales. Here, for the
500 ms and the first 200 ms intervals, medium time scales led generally to
the highest estimation performances within the context of light intensity
changes. In contrast, within the context of motion velocity changes, coarse
time scales led generally to the highest estimation results for these two time
intervals. Thereby, the highest estimation performance was obtained for the
500 ms interval when changes in one stimulus feature were present. Here, the
estimation performance yielded by the optimal time scales ranged between
33.5.9 % and 38.6 %.

3.2.2 Features Changes

This section describes the estimation results for the instantaneous changes in
the projection light intensity and the motion velocity of the visual stimulus
utilised in this protocol. Additionally, the results described in this section
include the estimation performance for all the possible instantaneous changes
of the stimulus features. Finally, it was tested if based on the activity of
fish RGC, it could be possible to discriminate between changes in the light



186 CHAPTER 3. RESULTS

Light intensity and velocitya

b

c

Inf 500 125 31 8

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

Time scale [ms] Time scale [ms] 

%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

Inf 500 125 31 8 Inf 500 125 31 8

Inf 500 125 31 8

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

Time scale [ms] Time scale [ms] 

%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

Inf 500 125 31 8 Inf 500 125 31 8

Inf 500 125 31 8

Time scale [ms] 

0-200 ms 0-500 ms 300-500 ms

Time scale [ms] Time scale [ms] 

%
 C

o
rr

ec
t 

es
ti

m
at

io
n

s 

Inf 500 125 31 8 Inf 500 125 31 8
0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Chance level
Single cell
Labelled Line
Pooled Pop.

Chance level
Single cell
Labelled Line
Pooled Pop.

Chance level
Single cell
Labelled Line
Pooled Pop.

Changes in light intensity

Changes in motion velocity

Changes in velocity or intensity

Figure 3.64: Estimation performance for the projection light intensity and
the motion velocity of the moving stimulus. The estimation was carried out
by applying spike cost-based metrics on the activity of RGC within the three
tested time intervals. In the case of the estimation allowed by the activity
of single RGC, markers indicate the median, whereas error bars represent
the range between maximum and minimum estimation performance. Three
conditions were considered for the estimation; a) Changes in the light inten-
sity with constant motion velocity. b) Changes in the motion velocity with
constant light intensity. c) Changes in the light intensity or motion velocity.
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intensity and changes in the motion velocity of the presented stimulus.

Light intensity changes

Due to the fact that for the Light-Motion experiment protocol four different
light intensities were utilised, 12 instantaneous changes of light intensity are
possible. However, because five different motion velocities were included in
the experiment protocol, there are 60 possible combinations of light intensity
changes and background motion velocity. Thereby, the results described
below comprise the estimation of the light intensity changes under constant
motion velocities.

Figure 3.65 shows the estimation results for the combinations of light
intensity changes and constant background motion velocity. Here, it can be
observed that generally, the estimation results obtained for the two tested
joint activity coding hypotheses surpassed the ones yielded by the activity of
single RGC. Moreover, the 500 ms and the first 200 ms intervals led to much
higher estimation performances in comparison to the last 200 ms interval.

For single RGC, the maximum median in the estimation performance
was obtained for time scales 31 ms ≤ 1/q ≤ 62 ms within the 500 ms and
the first 200 ms intervals, reaching up to 6.9 % for the 500 ms interval.
Moreover, excepting the time scales 1/q ≤ 16 ms of the last 200 ms interval,
the estimation results yielded by the activity of single RGC were significantly
above chance level, i.e., 1.66% (p ≤ 0.005).

Under the Pooled Population hypothesis, the time scale 1/q = ∞ led to
the lowest estimation results. However, finer time scales within the 500 ms
and the first 200 ms intervals improved the estimation performance, which
appeared to be optimal for time scales 16 ms ≤ 1/q ≤ 31 ms. Here, the
maximum estimation results reached up to 29.3% for the 500 ms interval.
In contrast, under the Labelled Line hypothesis, fine time scales led gener-
ally to low estimation results, which nonetheless improved for coarser time
scales. Here, for the 500 ms and the first 200 ms intervals, time scales
125 ms ≤ 1/q ≤ 250 ms were optimal for the estimation task, allowing results
up to 31.4% for the 500 ms interval.

Velocity changes

Because five different velocities were utilised in this experiment protocol, 20
different instantaneous velocity changes are possible. Nevertheless, due to the
fact that the experiment protocol considered four different projection light
intensities, the estimation procedure considered 80 possible combinations of
instantaneous velocity changes and background luminance. In this sense, the
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Figure 3.65: Estimation performance for the changes in projection light in-
tensity of the moving stimulus. The estimation was carried out by applying
spike cost-based metrics on the activity of RGC within the three tested time
intervals. In the case of the estimation allowed by the activity of single RGC,
markers indicate the median, whereas error bars represent the range between
maximum and minimum estimation performance.

results described below refer to the estimation of the velocity changes under
constant background light intensities.

In Figure 3.66 the estimation results for the combination of instantaneous
velocity changes and constant background light intensity are shown. Here,
it can be observed that generally, the estimation results obtained for the
two tested joint activity coding hypotheses exceeded the ones yielded by the
activity of single RGC. Moreover, the estimation performances for the 500 ms
and the first 200 ms intervals were much better than the ones yielded by the
last 200 ms interval.

Although the activity of single RGC allowed poor estimation results for
the three analysed time intervals, with the exception of time scales 1/q ≤ 31 ms
within the last 200 ms interval, these results were significantly above chance
level, i.e., 1.25%, (p ≤ 0.005). In turn, the time scale 1/q = 125 ms within
the 500 ms led to the maximum median in the estimation performance, which
reached 4.3%.

Under the Pooled Population hypothesis, the lowest estimation results
were yielded by the time scale 1/q =∞. Nevertheless, finer time scales within
the 500 ms and the first 200 ms intervals improved the estimation perfor-
mance, which appeared to be optimal for time scales 16 ms ≤ 1/q ≤ 31 ms.
Here, the maximum estimation results reached 19.4% for the 500 ms interval.
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Figure 3.66: Estimation performance for the changes in motion velocity of
the moving stimulus. The estimation was carried out by applying spike cost-
based metrics on the activity of RGC within the three tested time intervals.
In the case of the estimation allowed by the activity of single RGC, markers
indicate the median, whereas error bars represent the range between maxi-
mum and minimum estimation performance.

In contrast, under the Labelled Line hypothesis, fine time scales led gener-
ally to the lowest estimation results, which nonetheless improved for coarser
time scales. Here, for the 500 ms and the first 200 ms intervals, time scales
125 ms ≤ 1/q ≤ 250 ms were optimal for the estimation task, allowing results
up to 20% for the 500 ms interval.

Light intensity/velocity changes

As mentioned before, for the Light-Motion experiment protocol, there were 60
possible instantaneous light intensity changes and 80 possible instantaneous
motion velocity changes. Therefore, the total number of possible changes of
the stimulus features was 140. Thereby, the results obtained for the estima-
tion of these instantaneous changes are described below.

Figure 3.67 shows the estimation results for the instantaneous velocity
and light intensity changes. Here, it can be observed that as in the case of
the estimation of the instantaneous changes of one of the stimulus features,
the estimation results obtained for the two tested joint activity coding hy-
potheses exceeded the ones yielded by the activity of single RGC. Moreover,
the estimation performances for the 500 ms and the first 200 ms intervals
were much better than the ones yielded by the last 200 ms interval.
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Figure 3.67: Estimation performance for the changes in projection light in-
tensity or motion velocity of the moving stimulus. The estimation was carried
out by applying spike cost-based metrics on the activity of RGC within the
three tested time intervals. In the case of the estimation allowed by the activ-
ity of single RGC, markers indicate the median, whereas error bars represent
the range between maximum and minimum estimation performance.

Although the activity of single RGC allowed poor estimation results for
the three analysed time intervals, with the exception of time scales 1/q ≤ 16 ms
within the last 200 ms interval, these results were significantly above chance
level, i.e., 0.71%, (p ≤ 0.005). Here, the time scale 1/q = 62 ms within the
500 ms led to the maximum median in the estimation performance, which
reached 3.9%.

Under the Pooled Population hypothesis, the lowest estimation results
were yielded by the time scale 1/q =∞. Nonetheless, for the the 500 ms and
the first 200 ms intervals, finer time scales improved the estimation perfor-
mance, which appeared to be optimal for time scales 16 ms ≤ 1/q ≤ 31 ms.
Here, the maximum estimation results reached 22.7% for the 500 ms inter-
val. In contrast, under the Labelled Line hypothesis, fine time scales led
generally to low estimation results, which nonetheless improved for coarser
time scales. Here, for the 500 ms and the first 200 ms intervals, time scales
125 ms ≤ 1/q ≤ 250 ms were optimal for the estimation task, yielding results
up to 23.9% for the 500 ms interval.
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Feature change discrimination

Finally, because this experiment protocol involved alternate changes in the
intensity of the projection light and the motion velocity of the moving stim-
ulus, it was tested if the information encoded in the activity of fish RGC is
enough to allow the discrimination of the stimulus feature that changed.

Figure 3.68 shows the results for the discrimination of the stimulus feature
that has changed. Here, it can be observed that for the 500 ms and the first
200 ms intervals, the estimation results obtained for the two tested joint
activity coding hypotheses clearly exceeded the ones yielded by the activity
of single RGC. Moreover, the estimation performances for these two time
intervals were quantitatively similar and much better than the ones yielded
by the last 200 ms interval, for which the estimation results were close to
those expected by chance.

With the of the last 200 ms interval, the activity of single RGC led
to estimation results that were significantly above chance level, i.e., 50%,
(p ≤ 0.005). Moreover, medium time scales within the 500 ms and the first
200 ms intervals appeared to be optimal for the discrimination task. Here,
the time scale 1/q = 125 ms within the 500 ms led to the maximum median
in the estimation performance, which reached 69.7%.

Under the Pooled Population hypothesis, the lowest estimation results
were yielded by the time scale 1/q =∞. However, for the the 500 ms and the
first 200 ms intervals, finer time scales improved the estimation performance,
which appeared to be optimal for the time scale 1/q = 16 ms. Here, the max-
imum estimation results reached 91.4% for the 500 ms interval. In contrast,
under the Labelled Line hypothesis, fine time scales led generally to low esti-
mation results, which nevertheless improved for coarser time scales. Here, for
the 500 ms and the first 200 ms intervals, time scales 62 ms ≤ 1/q ≤ 125 ms
were optimal for the discrimination task, yielding performances up to 92.8%
for the 500 ms interval.
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Figure 3.68: Estimation performance for the stimulus feature that changed.
The estimation was carried out by applying spike cost-based metrics on the
activity of RGC within the three tested time intervals. In the case of the es-
timation allowed by the activity of single RGC, markers indicate the median,
whereas error bars represent the range between maximum and minimum es-
timation performance.



Chapter 4

Discussion

The present study was dedicated to explore how the information about mo-
tion features of a visual stimulus is encoded by the activity of retinal gan-
glion cells (RGC). Therefore, the responses of RGC to a moving stimulus
were recorded extracellularly using a multi-electrode array. The recordings
were performed on two animal species; turtle (traquemys scripta elegans)
and carp (cyprinus carpio).

For both animal species and under constant luminance conditions, it was
found that the responses of single RGC carry information about the motion
features of a moving stimulus. Moreover, it was observed that the encoded
information was enhanced by the combined activity of RGC. These results
were more evident for the analyses carried out in the turtle retina. Addition-
ally, it has been found that for the encoding of information about motion
features, the spike firing rate of the responses of RGC, as well as their tem-
poral structure, are plausible coding strategies. Furthermore, for the activity
of single RGC, as well as for the three tested joint activity coding hypotheses,
it was observed that the relevance of the spike firing rate and the temporal
structure for encoding tasks show some differences. In turn, these differ-
ences were more evident for combined activity of RGC. Nevertheless, the
spike firing rate appears to be more involved in the encoding of motion fea-
tures under constant stimulus conditions, e.g., constant velocities, whereas
the temporal structure of the responses allows to enhance the encoding of
information under dynamic conditions, e.g., instantaneous velocity changes.

An additional study within the scope of this study aimed to explore how
the activity of RGC could simultaneously encode information about the lu-
minance and motion features of a visual stimulus. For this study, the activity
of RGC from a carp retina was analysed. Here, it was found that the activity
of several of the recorded RGC tuned their activity to both stimulus features.
Furthermore, the degree in which the activity of the RGC is modulated by

193
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a stimulus feature is affected by the complementary stimulus feature in a
non-linear way. A deeper analysis allowed to explore the role of the spike
firing rate and the temporal structure of the responses of RGC. The obtained
results show that for the activity of single RGC and small cell populations,
both response properties carry information about luminance and motion fea-
tures. However, for the encoding of these two stimulus features, the relevance
of the spike firing rate and the temporal structure of the responses of RGC
showed some differences. Here, when changes of light intensity were present,
finer time scales improved the estimation results for either stimulus feature,
particularly for the time intervals containing the transient activity period.
Furthermore, it was found that the activity of small RGC populations is
more efficient than the activity of single RGC, especially for the simultane-
ous encoding of luminance and motion features, as well as stimulus feature
changes.

4.1 Spike Train Metrics
Two analysis methods were employed in this study to explore the relevance of
the spike firing rate and the temporal structure of the responses of RGC for
the encoding of information about different features of visual stimuli. Here,
the spike cost-based metrics and the ISI metrics offer a formal mathematical
framework to assess the similarity between pairs of spike trains. Thereby,
the quantification of the similarity or dissimilarity between spike trains has
proved to be an important tool for decoding strategies that in turn, are used
to estimate the stimuli that have evoked these spike trains. Moreover, based
on the obtained estimation results, it is possible to gain insights into the role
of neuronal response properties for the encoding of visual information (refer
to Victor (2005) for a review).

The spike cost-based metrics is a time scale parametric method. Here, by
means of the parameter q, it is possible to explore the relevance of the spike
firing rate, as well as different time scales for the encoding of information
(section 2.3.1). Thereby, by comparing the information retrieved by each
value of q, the spike cost-based metrics assesses the role of individual time
scales, i.e., 1/q, as a possible component of the neural code. Therefore, the
primary advantage of the spike cost-based metrics is that it allows to narrow
down the possible time scales that can be involved in the encoding task
(Samonds and Bonds, 2005).

However, the interpretation of the time scales that are optimal for the
encoding of neural information is not always straightforward (Paiva et al.,
2010; Chicharro et al., 2011). Here, in the case of decoding tasks, it has been
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observed that the time scales that allow the highest stimulus estimation
performances are the result of a non-trivial interplay of the different sources
of information contained in the spike trains. Thus, the optimal time scales
could be interpreted as a balance between different response properties that
allow best stimulus estimation performances, e.g., spike firing rate, spike
timing, and interspike time intervals (Samonds and Bonds, 2005; Chicharro
et al., 2011). For instance, in studies in gustatory cells of rat (Di Lorenzo
and Victor, 2003) and V1 visual cells of macaques (Victor and Purpura,
1998), the authors have found that finer time scales maximised the retrieved
information about the applied stimulus when the transient period of the
neuronal responses was analysed. In contrast, when the sustained period
was included in the analysis, coarser time scales began to gain relevance.

Thereby, the interpretation of the optimal time scales for two different
scenarios has been addressed in studies that involved analyses with the spike
cost-based metrics. The first scenario is when successive time scales, com-
prising the spike firing rate and the temporal structure lead to the highest
estimation performances. Here, it is not easy to identify which, the spike
firing rate or the temporal structure, has more relevance for information en-
coding tasks. For this situation, Samonds and Bonds (2005) and Roussin
et al. (2008) have suggested that besides the spike firing rate, patterns in the
temporal structure or modulations of the spike firing rate could be relevant
for the encoding of neuronal information. The second scenario is when the
range of the optimal time scales does not include the spike firing rate. Here,
Huetz et al. (2006) have proposed that for stimulus estimation, the finer time
scales in the range indicate the precision at which regularities in the spike
trains occur. This proposal agrees in some degree with the earlier hypothesis
of Reich et al. (2001b), which suggested that the temporal precision limit for
sensory information encoding is given by the time scale that allows half of the
best estimation performance for decoding tasks. Additionally, Huetz et al.
(2006) suggested that the coarser time scales in the range indicate the length
of the time window that is necessary for stimulus estimation. In turn, it has
been suggested that this time window performs an estimation of the spike
firing rate (Paiva et al., 2010). An additional scenario would be when the
spike firing rate led to the maximum estimation performances. Therefore,
it can be suggested, under the analysis of the spike cost-based metrics, that
this coding mechanism predominates over the remained tested time scales
(Chicharro et al., 2011). However, this situation not necessarily rules out
the suitability of a coding mechanism based in the temporal structure of the
responses, as observed in some of the results obtained under the Labelled
Line hypothesis (see discussion in page 206).

Within the framework of this study, the time scales that have been tested
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by means of the spike cost-based metrics were grouped in three classes;
fine time scales (8 ms ≤ 1/q ≤ 31 ms), medium time scales (62 ms ≤ 1/q
≤ 250 ms) and coarse time scales (500 ms ≤ 1/q ≤ 1000 ms). Generally, the
results are discussed making reference to a range of time scales that showed
to be relevant for the encoding of stimulus features. Moreover, in order to
test if the spike firing rate or the temporal structure of the responses predom-
inate as neuronal coding strategy, the comparison of the estimation results
obtained for both of the applied metrics is discussed.

The ISI metrics, in contrast to the spike cost-based metrics, is a param-
eter free method that has been proposed as a complementary tool to assess
spike train synchrony (Kreuz et al., 2007). Thereby, for the measurement
of the synchrony between two spike trains, i.e., similarity, the ISI metrics
utilise the interspike time interval (ISI) as the basic element of comparison.
Here, based on the ISIs, the ratio of the instantaneous firing rates is eval-
uated (section 2.3.2). The ISI metrics has been mostly applied to measure
the variability across spike trains generated by neuronal models (Dodla and
Wilson, 2009; Ying and Qi-Shao, 2010; Ying et al., 2010; Du et al., 2010),
as well as spike trains recorded from neurons in the ampullary receptors of
weakly electric fish (Engelmann et al., 2010), neurons of the entorhinal cor-
tex of rats (Haas et al., 2010) and neurons in the mechanosensory lateral line
of goldfish (Goulet et al., 2012). Furthermore, based on simulated neuronal
responses, Kreuz et al. (2007) tested the performance of the ISI metrics for
clustering tasks, and compared it with the one yielded by the optimal time
scales for the spike cost-based metrics. The authors found similar estimation
performances and proposed that the main advantage of the ISI metrics it
that is self-adaptive. Therefore, if for instance, regular spiking and bursting
occurs in the same spike train, the ISI metrics will have the ability to identify
automatically the optimal time scales for clustering tasks and adjust them
continuously during each response trace. In this sense, the ISI metrics allows
to test the general relevance of the temporal structure of spike trains for the
encoding of neuronal information. Nevertheless, it does not provide further
details on the time scales that are relevant for the encoding task.

The multi-unit metrics approach followed in this study is the one pro-
posed in Aronov et al. (2003) and Aronov (2003). Here, by means of the
parameter k, it is tested how important it is for the encoding of neuronal in-
formation, to distinguish spikes that are fired by different neurons. Thereby,
the extreme values that k could adopt allow to test directly two joint activity
coding hypotheses; Pooled Population (k = 0), and Labelled Line (k = 2)
(see page 57). The multi-unit metrics has been applied to analyse the joint
activity of simple and complex neurons from the V1 area of macaque mon-
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keys Aronov et al. (2003). In this study, the authors found that the joint
activity of two simple cells with different phase tuning encoded more infor-
mation about spatial phase when the spikes coming from each of the neurons
were totally (k = 2) or partially (0 < k < 2) distinguished. Moreover, these
results were also obtained for a pair of complex cells. In contrast, for a pair
of simple cells with similar phase tuning, the distinction of spikes did not
show to be relevant. However, the joint activity of all cell pairs allowed to
encode more information than the individual activity of each cell. Thereby,
the results presented in the study suggest that the joint activity of neurons
could in fact encode more efficiently neuronal information, especially if the
neurons exhibit different tuning for the same stimulus. Nonetheless, the ef-
ficiency of the encoding task depends on the weighted combination of this
activity, i.e., k. Besides the Pooled Population and the Labelled Line hy-
potheses, an additional hypothesis has been introduced in this study; the
Functional Group hypothesis. This hypothesis suggests that it is not im-
portant to distinguish spikes coming from different individual neurons, but
rather, to distinguish spikes coming from different neuron classes (k =0 across
neurons of the same class and k =2 across cell classes).

4.2 Motion Experiment

The first part of this study involved the analysis of responses of turtle and fish
RGC to a moving stimulus under constant luminance conditions. In turn,
the experiment protocol consisted in a pseudo-random sequence of 500 ms
periods, for which the stimulus moved with a constant motion velocity (refer
to section 2.1.2 for more details).

As first step, the responses of single RGC were analysed with the spike
cost-based metrics and the ISI metrics to investigate if they encode informa-
tion about the motion features of the moving stimulus. The next step in-
volved the analysis of the activity of small populations of RGC (6 ≤ n ≤ 18).
Here, the focus of the analysis was to test three different joint activity cod-
ing hypotheses, which differed in how the activity of RGC was combined.
Thereby, for the experiments performed in the turtle retina, three different
hypotheses were tested; Pooled Population, Labelled Line and Functional
Group. However, in the case of fish, the number of recorded cells allowed the
test of only the first two hypotheses. If not stated otherwise, the discussion
in the following paragraphs refers to the results obtained for the RGC of
both animal species. Moreover, the analysed time intervals are going to be
addressed as containing solely the transient activity period (first 200 ms),
solely the sustained activity period (last 200 ms), or both periods (500 ms).
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4.2.1 General Findings

For the activity of single RGC, as well as for the three tested joint activity
coding hypotheses, the activity within the three tested time intervals allowed
the estimation of constant motion features. Here, while the time interval con-
taining the transient and the sustained activity periods led generally to the
highest estimation results, the time intervals containing either the transient
or the sustained activity period, led to similar estimation performances. Fur-
thermore, for the estimation of the motion features before the instantaneous
velocity changes, as well as the discrimination of the changes in the motion
features, the time intervals that contained the transient period activity were
the only ones that allowed good performances. Here, the time intervals con-
taining solely the transient activity period or including also the sustained
period, led to similar performances for these cases. In contrast, while the
time intervals containing the transient activity period were the ones that
yielded good estimation performances for the instantaneous velocity changes,
the estimation performance for these changes was further improved by the
sustained activity.

Generally, for the spike cost-based metrics, fine time scales led to estima-
tion results for the motion direction and speed that were much worse than
those expected by chance. This effect can be explained on the one hand, by
the design of the experiment protocol. Here, the absence of movement occurs
less frequently than the movement in either direction or with either speed.
Therefore, a bias in the estimation of the absence of movement will lead to
estimation performances lower than those expected by chance for these two
motion features.

On the other hand, the overestimation of the absence of movement is
provoked by the procedure with which the spike cost-based metrics calculates
the similarity between two spike trains. Here, for two spike trains Sa and Sb
with few or no coincident spikes, the distance obtained for decreasing 1/q will
increase monotonically until the limit nSa + nSb

, with n being the number of
spikes for each spike train. Therefore, because the high spike time precision
of the responses of RGC appears to have no relevance for the encoding of
constant motion features, for spike trains evoked by the same stimulus motion
feature and with similar number of spikes, the cost of shifting a spike in time
for high q values is greater than deleting and inserting a spike in the correct
time position. In turn, the minimal cost for relocating each spike in the
correct time position for the transformation of the spike trains equals two.
In contrast, because spike trains evoked by either motion stimulus feature
generally contain more spikes than spike trains evoked by the absence of
movement, the transformation procedure will involve only the deletion or
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insertion of spikes. This situation leads to a lower total transformation cost,
i.e., distance, which in turn provokes the overestimation of the absence of
movement for all motion velocities for fine time scales.

Moreover, regarding the estimation results yielded by the spike cost-based
metrics for the motion direction and speed before and after the instantaneous
velocity changes, it is necessary to discuss more in detail why fine time scales
led to close to chance level estimation performance for the previous motion
features, and to worse than chance estimation performance for the post mo-
tion features. This effect is in part explained by the fact that the estimation
of instantaneous velocity changes involved the correct estimation of the pre-
vious and post motion features. Moreover, this estimation was performed
based on RGC responses that correspond to the time interval where the post
motion features were present. Therefore, a bias to estimate the post motion
features will arise. In turn, if there is an overestimation of the absence of
movement for the post velocity, the estimated previous velocity will always
be different to velocity zero. Here, a bias in the estimation of a movement
with either direction or speed, will lead to estimation performances close to
those expected by chance.

As in the case of the activity of single RGC, the worse than chance esti-
mation performance for the motion direction and speed is due to the overesti-
mation of the absence of movement. Here, the overestimation present at the
single cell level is preserved at a population level because under the Labelled
Line hypothesis, the activity of the RGC that comprise the populations is
regarded individually. Therefore, for a population of RGC, the sum of the
distance matrices of the individual RGC will enhance in a weighted form the
pairwise distances of the spike trains. Here, the weight will increase for larger
distances.

4.2.2 Single Cell Coding

The estimation results obtained by analysing the responses of RGC with
spike cost-based metrics and ISI metrics, suggest that the spike firing rate,
as well as the temporal structure of the responses of single cells, encode infor-
mation about all the analysed motion features. Nevertheless, the relevance
of these two response properties for the encoding of information depends on
the nature of the motion feature as well as on the analysed response time
interval.

For the encoding of information about constant motion features, i.e.,
the ones that remained constant for the 500 ms intervals, the spike firing
rate and the temporal structure showed to be suitable coding strategies for
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single RGC. This affirmation is based on the estimation results obtained for
the spike cost-based metrics, which were similar for medium and coarse time
scales, as well as for the time scale 1/q =∞, i.e., spike firing rate. Moreover,
additional evidence for the relevance of the temporal structure was yielded
by the results allowed by the ISI metrics, which were often similar to those
yielded by the optimal time scales for the spike cost-based metrics (pages 73-
76).

In this context, while the temporal structure of the responses of single
RGC has shown to be relevant in the encoding of information about constant
motion features, due to the low estimation results yielded by fine time scales
for the spike-cost based metrics, it appears that a high precision of the spike
occurrence is not relevant for encoding. Moreover, comparing the estimation
results obtained for both of the applied metrics, the spike cost-based metrics
led to greater differences in the estimation performance between the long and
the two short time intervals. This finding indicates that for the encoding of
stimulus information based on a spike firing rate strategy, longer time win-
dows are necessary for the integration of the firing rate. Nevertheless, because
this response property did not led to perfect estimation performances, it can
be asserted that it does not account for the encoding of all the information
about constant motion features.

A deeper analysis showed that the estimation results for the motion di-
rection yielded by the activity of turtle direction selective cells (DSC), were
only significant for coarse time scales within the 500 ms interval (pages 74).
Moreover, as in the case of the estimation of motion speed, there was not a
clear tendency for a cell class to yield the highest estimation performance for
the motion direction.

For DSC, the significance of the direction estimation observed only for
coarse time scales and the 500 ms interval, can be in part explained by the
fact that the classification of the RGC was based on their spike firing rate
probability distributions. In turn, these distributions were calculated con-
sidering the 500 ms interval (Section 2.2.2). Moreover, it was also observed
that not all the cells that were classified as DSC showed a strong tuning of
their responses.

Further errors in the estimation of motion direction and speed by DSC are
provoked by the fact that for the preferred direction, DSC tune their activity
to the different speed values, whereas for the anti-preferred direction, they
remain most of the time silent as in the case of the absence of movement.
The similarities between the responses of DSC to the absence of movement
and movements in the anti-preferred direction lead to an overestimation of
the absence of movement and therefore, to errors in the estimation of the
stimulus motion direction and speed.



4.2. MOTION EXPERIMENT 201

On the other hand, while Non-DSC show some tuning of their activity to
the different speeds, they fire relative few spikes in response to slow speeds.
Therefore, the responses to slow speed exhibit similarities to those elicited by
the absence of movement, provoking thus an overestimation of the absence
of movement and therefore, errors in the speed estimation. Furthermore,
the tuning of the activity of Non-DSC is independent of the direction of
movement and this in turn, provokes additional errors in the estimation of
motion direction.

As mentioned before, the estimation results for the instantaneous velocity
changes were better for the time intervals containing the transient activity
period. In turn, these results made evident that for the encoding of informa-
tion about velocity changes, the temporal structure of single RGC responses
has a higher relevance than the spike firing rate. This affirmation is based
on the one hand, on the results obtained for the spike cost-based metrics,
which were significantly above chance level for the spike firing. However,
these results were surpassed by the ones obtained for medium and fine time
scales. On the other hand, the ISI metrics led also to estimation results
better than the ones allowed by the spike firing rate (page 81). Based on
these observations and because the time intervals containing the transient
activity period led to the highest estimation results, it can be suggested that
the information about velocity changes is encoded in the spike firing rate of
this period, but especially, in its temporal structure.

Because for the correct estimation of the instantaneous velocity changes,
the motion features before and after the transitions have to be rightly es-
timated, the estimation results for the previous motion features, i.e., the
features before the instantaneous velocity changes, stressed the relevance of
the temporal structure of the transient activity period for the encoding of
information about velocity changes. Here, for the spike cost-based metrics,
the highest estimation performances for the previous motion velocity were
yielded by medium time scales of the time intervals containing the transient
activity period. Furthermore, for these time intervals, the ISI metrics led
to estimation results that were similar to those yielded by the optimal time
scales for the spike cost-based metrics ((pages 83-88)). Thus, based on these
observations, it can be suggested that temporal structure of the transient
activity period carries information about the stimulus history. Furthermore,
the close to chance estimation performance for the motion features previous
to the instantaneous velocity changes for all time intervals, especially for
sustained activity, accounts for most of the errors in the estimation of the
instantaneous velocity changes.

Although the spike firing rate showed to be the relevant coding mechanism
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for the post motion features, i.e., the features after the instantaneous veloc-
ity changes considering the stimulus history, the obtained estimation results
showed that the temporal structure of the transient activity period gained
relevance for the encoding of information about these features. Here, in com-
parison to the results obtaining without considering the stimulus history, the
estimation yielded by medium time scales for the spike cost-based metrics
showed a slight but significant tendency to allow better performances for post
the motion features. In contrast, the ISI metrics did not led to significant
differences in these estimation results ((pages 90-95)). These findings indi-
cate that some of the information about the post motion features is available
in the temporal structure of the activity transient when the stimulus history
is considered.

Moreover, the superior performance yielded by fine and medium time
scales of the transient activity period for the estimation of the instantaneous
velocity changes, can be explained by the combined effects provoked by these
time scales. On the one hand, the better estimation performance for the
previous motion features and on the other hand, the improvement in the
estimation performance for the post motion features.

In this study it was also tested if the activity of single RGC carries in-
formation about changes of motion features of a moving stimulus that could
have more relevance for survival tasks. For instance, the information about
these changes would allow the animal to detect either a change in the motion
direction, or a change in the motion speed, or the combined changes of both
motion features of a prey or a predator.

The obtained results for the discrimination of motion feature changes
indicated that the transient activity period encodes most of this information.
This affirmation is based on the close to chance estimation performances
yielded by the sustained activity, as well as the similar estimation results
observed for the time intervals containing the transient activity period. Here,
for the spike cost-based metrics, coarse and medium time scales led to better
performances for the discrimination of motion feature changes. Moreover,
because the ISI metrics led to similar discrimination results as the one yielded
by the optimal time scales for the spike cost-based metrics, it can be suggested
that the information about the changes in the motion features of the moving
stimulus is encoded by both, the spike firing rate and the temporal structure
the activity transient period (pages 102-103).

Regarding the spike cost-based metrics, and as closing remark for this
section, it has to be mentioned that the time scales that led to the max-
imum estimation results varied across the RGC analysed and displayed in
this study as well as across the motion features of the moving stimulus (see
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Figures 3.6, 3.12 and 3.17). This finding points out that although certain
time scales are relevant for the encoding of specific motion features, RGC use
different time scales to encode information about the same motion feature.
In turn, this point is going to gain relevance when discussing the difference
in the estimation results for the motion features obtained for both of the
applied metrics under the Labelled Line hypothesis.

4.2.3 Joint Activity Coding

In comparison to the activity of single RGC, the combined activity of small
population of RGC (6 ≤ n ≤ 18) showed to improve the estimation perfor-
mance for the motion features of a moving stimulus. In turn, this improve-
ment was greater for larger population sizes. As in the case of the activity
of single RGC, the relevance of the spike firing rate and the temporal struc-
ture was defined by the nature of the motion features that were encoded.
Moreover, the variability in the relevance of these response properties was
observed across the three tested joint activity coding hypotheses. However,
the results obtained for the spike cost-based metrics and the ISI metrics show
that the spike firing rate, as well as the temporal structure of the combined
activity of RGC, carry information about all the analysed motion features.

Pooled Population hypothesis

The activity of populations of RGC was first analysed under the Pooled Pop-
ulation hypothesis. Here, the hypothesis makes the assumption that for the
encoding of information about motion features of a moving stimulus, the
information about the neuron of origin of each spike has a low relevance.
Therefore, like in an integrate-and-fire model, a post-synaptic neuron is as-
sumed to drive its membrane potential towards threshold by integrating at
its dendrites the responses of many pre-synaptic individual neurons in a not
weighted form. Thereby, the Pooled Population hypothesis proposes that the
encoding of information about motion features is carried out by integrating
the activity of several single RGC in one spike train. Here, the information
would be encoded by the spike firing rate and the temporal structure.

The results obtained for the estimation of constant motion features indi-
cate that the spike firing rate and the temporal structure are suitable coding
strategies. However, the temporal structure appears to have more relevance
for the time intervals that include the transient activity period, especially for
larger population sizes. Here, for the spike cost-based metrics the spike firing
rate and coarse time scales showed to encode most of the information about
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the motion features. However, for increasing population sizes, there was a
tendency for medium time scales to enhance the information, especially for
motion velocity and motion direction. Here, this effect of the medium time
scales appeared to be only present for the intervals containing the transient
activity period, since it was not present for the sustained activity. Addition-
ally, for the time intervals containing the transient period, the estimation
results for the ISI metrics were similar to those yielded by the optimal time
scales for the spike cost-based metrics, whereas for the sustained activity,
the spike firing rate led to the higher estimation results. Moreover, while the
estimation results for the constant motion features improved with increas-
ing population sizes, the performance showed to reach a saturation point for
larger population sizes, which suggests that the estimation improvement was
not linearly related to the size of the populations (pages 109-120).

The estimation performances for the instantaneous velocity changes in-
dicate that the spike firing rate of the transient activity period encodes some
information about these changes. Nevertheless, most of this information is
encoded by the temporal structure of this activity period. These affirmations
are based on the one hand, on the results obtained for the spike cost-based
metrics. Here, the spike firing rate allowed results that were significantly
above chance level for the three analysed time intervals. However, a clear en-
hancement in the information about these instantaneous changes was yielded
by fine and medium time scales of the activity of increasing population sizes,
especially for the time intervals including the transient activity period. On
the other hand, the estimation results obtained for the ISI metrics were
similar to those yielded by the optimal time scales for the spike-cost based
metrics. Furthermore, for the two time intervals containing the transient
activity period, it was found that their differences in estimation performance
were more evident for their temporal structure. Thus, it can be suggested
that the temporal structure of the sustained activity enhances the informa-
tion encoded by the transient activity period. Nevertheless, based on the
low estimation results found for the interval containing solely the sustained
activity, it seems that this activity alone fails to encode information about
the instantaneous velocity changes. For the time intervals containing the
transient activity period, it appeared that the limit in the estimation perfor-
mance for the instantaneous velocity changes was not reached for the largest
population sizes analysed in this study, i.e., n = 18, therefore, it can be sug-
gested that even larger population sizes would further improve the estimation
results (page 125).

As in the case of the single RGC, the estimation results for the previous
motion features pointed out that the information about the stimulus history



4.2. MOTION EXPERIMENT 205

is only present in the transient activity period, where its temporal structure
encodes most of this information. Here, similar estimation performances
were obtained for the time intervals containing the transient activity period.
Moreover, for these time intervals, the estimation results yielded by coarse
time scales for the spike cost-based metrics were significantly better than
those expected by chance. However, medium and especially fine time scales
allowed a clear improvement in the estimation performance, which further
increased for larger population sizes. In turn, the similar estimation results
obtained for the ISI metrics and the optimal time scales for the spike cost-
based metrics stress the relevance of the temporal structure of the transient
activity period for the encoding of information about the stimulus history.
Furthermore, the improvement in the estimation performance for increasing
population sizes for the time intervals containing the transient activity pe-
riod, as well as the close to chance estimation performances found for the
sustained activity, account for the estimation results obtained for the instan-
taneous velocity changes (pages 130-140).

For the estimation of the post motion features, the spike firing rate ap-
pears to be the relevant coding mechanism. However, the temporal structure
of transient activity showed to enhance the information encoded by the spike
firing rate. Here, for the spike cost-based metrics and in comparison to the
results obtained without considering the stimulus history, similar estimation
results were obtained for coarse time scales. However, the estimation per-
formance for the post motion velocity and post motion direction was clearly
improved by fine and medium time scales of the time intervals containing
the transient activity period. Moreover, the improvement in the estimation
performance was also found for the ISI metrics, especially for the activity
of turtle RGC. Here, because the sustained activity led to similar estima-
tion result for the motion features considering and disregarding the stimulus
history, it can be suggested that the information about the post motion fea-
tures is mostly encoded by the spike firing rate of the combined transient
and sustained activity periods. In contrast, the temporal structure of the
transient activity period appears to be modulated by the stimulus history
(pages 145-155).

The results obtained for the discrimination of motion feature changes
indicated that the transient activity period encodes most of this information.
Here, fine and medium time scales of this period appear to be relevant for the
discrimination task. For the spike cost-based metrics, fine and medium time
scales of the time intervals containing the transient activity period led to the
highest discrimination performances, which in turn, improved for larger turtle
RGC populations. Furthermore, the estimation results obtained for the ISI



206 CHAPTER 4. DISCUSSION

metrics were similar to those yielded by the optimal time scales for the spike
cost-based metrics. Additionally, because similar estimation performances
were obtained for the time intervals containing the transient activity period,
it can be suggested that the sustained activity does not contribute for the
discrimination of motion feature changes (pages 160-170).

Labelled Line hypothesis

In contrast to the Pooled Population hypothesis, the Labelled Line hypothe-
sis proposes that the information about motion features of a moving stimulus
is not encoded by the integrated activity of single RGC, but rather by their
differentiated combined activity. Here, the information about the neuron of
origin of each spike is always available. Thus, this hypothesis proposes that
additionally to the spike firing rate and the temporal structure of the com-
bined responses of RGC, the knowledge about the cell of origin of neuronal
activity is relevant for the encoding of information about motion features.
More precisely, under the Labelled Line hypothesis, it is considered that for
the encoding of information about motion features, this information is first
encoded by the activity of single RGC on independent channels and then,
the information coming from each channel is integrated. In terms of the met-
ric methods applied in this study, the Labelled Line hypothesis involves the
calculation of the distance matrices for the responses of each of the cells com-
prising the populations and then, the sum of these matrices (Aronov et al.,
2003).

Based on the estimation results for the constant motion features, it can
be suggested on the one hand, that the spike firing rate of the transient ac-
tivity carries more information about these features, than the spike firing
rate of the sustained activity. However, the individual contribution by the
optimal time scales of the transient and sustained activity from each of the
RGC building the populations, allows to enhance the encoded information.
On the other hand, the spike firing rate appears to be the relevant coding
mechanism for the combination of the transient and sustained activity pe-
riods. Here, for the spike cost-based metrics, the estimation performance
showed qualitative similarities to the one obtained based on the activity of
single RGC. Consequently, the spike firing rate and coarse time scales yielded
the best estimation results, whereas fine time scales led to the lowest estima-
tion results. In the case of the ISI metrics, the estimation performances for
time intervals containing solely the transient or the sustained activity period
surpassed the ones yielded by the optimal time scales for the spike cost-based
metrics. In contrast, for the time interval containing both the transient and
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the sustained activity periods the opposite happened (pages 110-120).
A possible explanation for the better estimation performance obtained for

the ISI metrics for time intervals containing solely the transient or the sus-
tained activity period could be given by the histograms shown in Figure 3.6.
There, it can be observed that the time scales that encode information about
the features of a moving stimulus, show variations across the values of the
motion features as well as across the RGC analysed in this study. There-
fore, the spike cost-based metrics will fail to find the optimal time scale if
greater variations across RGC are present. Conversely, if the temporal struc-
ture of the activity of RGC is relevant for the encoding of motion features,
the ISI metrics would find automatically the optimal time scale for each of
the RGC that build the analysed population. However, if the spike firing
rate has a higher relevance for the encoding of motion features, which is the
case of time interval containing both the transient and the sustained activity
periods, then the ISI metrics will fail to register this phenomenon.

Moreover, it was observed that for the spike cost-based metrics, the length
of the time interval considered for the analysis has a greater influence on the
estimation performance than the size of the population, especially for the
spike firing rate and coarse time scales. Therefore, it can be suggested the
integration of the spike firing rate by longer periods, rather than larger pop-
ulation sizes, allows the enhancement of encoded information about constant
motion features.

The estimation results for the instantaneous velocity changes pointed
out, that the transient activity encoded the information about these changes.
Here, the temporal structure appeared to be the relevant coding mechanism.
However, the spike firing rate was also a suitable coding mechanisms. Here,
for this response property, the encoded information was enhanced for larger
integration windows. Moreover, it was found that the temporal structure of
the sustained activity does not contribute to enhance the encoded informa-
tion. Here, for the spike cost-based metrics, the spike firing rate led to high
estimation performances for the time intervals containing the transient ac-
tivity period. In turn, these performances further improved for coarse time
scales. Moreover, the time interval containing both the transient and the
sustained activity period, led to better estimation results. In contrast, for
the ISI metrics, the time intervals containing the transient activity period
led to similar estimation results, which in turn clearly outperformed the ones
yielded by the optimal time scales for the the spike cost-based metrics. More-
over, for both of the applied metrics and in contrast to the constant motion
features, the obtained results showed a tendency to improve with increasing
population sizes (pages 127).
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The estimation performance for the previous motion features suggested
that the temporal structure of the transient activity encoded most of the in-
formation about the stimulus history. This is because for both of the applied
metrics, the time interval containing the transient activity led to similar es-
timation results. Here, although for the spike cost-based metrics the spike
firing rate led to high estimation performances, medium time scales yielded
the maximum results. Moreover, these results were clearly outperformed by
the ones obtained for the ISI metrics (pages 130-140).

Based on the estimation results obtained for the post motion features,
it can be suggested that when the stimulus history is considered, the spike
firing rate and the temporal structure of the transient activity allow to en-
hance the information about these features. This affirmation is based on the
finding that these two response properties are modulated by the stimulus
history. Here, for the spike cost-based metrics and in comparison to the re-
sults obtained without considering the stimulus history, medium time scales
yielded the greatest improvements in favour of the post motion features for
all the analysed time intervals. In contrast, for the ISI metrics, the estimation
improvement was only present for the time intervals containing the transient
activity period (pages 146-156).

The results for the discrimination of motion feature changes suggested
that the temporal structure of the transient activity encodes most of this in-
formation, and that the sustained activity does not contribute to enhance the
encoded information. This affirmation is based on the similar discrimination
results obtained for the time intervals containing the transient activity pe-
riod, as well as the poor results yielded by the sustained activity for both of
the applied metrics. Here, for the spike cost-based metrics, the spike firing
rate but also coarse time scales of the time intervals containing the transient
activity period led to the highest discrimination performances. Moreover,
the results obtained for the ISI metrics were similar to those obtained for the
optimal time scales for the spike cost-based metrics (pages 162-170).

As a closing remark for the Labelled Line hypothesis, it has to be stressed
that the improvement in the estimation performance with increasing popula-
tion sizes was more evident for the instantaneous changes of motion velocity,
the motion features before the instantaneous changes, and to a lesser degree
for the changes of motion features.

Functional Group hypothesis

The last of the tested hypothesis about how the combined activity of RGC
could encode information about a moving stimulus was the Functional Group
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hypothesis. However, due to the limited number of recorded fish RGC, this
hypothesis could only be tested for the activity of turtle RGC. The Functional
Group hypothesis is a combination of the Pooled Population hypothesis and
the Labelled Line hypothesis. Here, it is assumed that the information about
the motion features of a moving stimulus is first encoded by the integrated
activity of RGC of the same class on independent pathways and then, the
information coming from the different pathways is integrated. In this sense,
the Functional Group hypothesis states that for the encoding of motion fea-
tures, besides the spike firing rate and the temporal structure of the responses
of RGC, it is relevant to know to which class belongs the neuron that fired
each spike. In terms of the analysis carried out in this study, the responses
of RGC belonging to the same class were first pooled together. Then, the
distance matrices for the responses of each of the cell classes were calculated
and finally, the matrices were summed together.

The results obtained for the estimation of constant motion features sug-
gested that the spike firing rate and the temporal structure are suitable cod-
ing strategies. Here, larger population sizes and longer time windows allow
to enhance the encoded information about these features. Furthermore, for
the transient activity, the temporal structure appears to have more relevance
than the spike firing rate. For the spike cost-based metrics, the spike firing
rate as well as medium and coarse time scales led to the maximum estima-
tion performances. Moreover, qualitatively similar estimation results were
obtained for all of the tested population sizes. Here, in contrast to the other
two tested hypotheses, there was a clear improvement in the estimation per-
formance with increasing population sizes. This improvement was also ob-
served for the estimation results yielded by the ISI metrics. Furthermore,
for the transient activity, the results obtained for the ISI metrics exceeded
the ones yielded by the optimal time scales for the spike cost-based metrics
(pages 112-122).

The estimation performance for the instantaneous velocity changes sug-
gest that the temporal structure of the transient activity has a higher rele-
vance than the spike firing rate for the encoding of information about these
changes. Here, it appears that larger population sizes allow the enhancement
of the encoded information. These suggestions are based in part on the simi-
lar estimation results obtained for the time intervals containing the transient
activity period. Moreover, although for spike cost-based metrics the spike
firing rate led to high estimation results, medium time scales yielded the
maximum performances, which in turn, improved with increasing population
sizes. However, these results were surpassed by the ones obtained for the ISI
metrics (page 127).
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For the previous motion features the obtained results indicate that the
temporal structure of the transient activity carries more information about
the stimulus history than the spike firing rate. Furthermore, larger pop-
ulations allow to enhance this information. These affirmation is based on
the similar estimation results obtained for the time intervals containing the
transient activity period. Here, the spike firing rate led to high estimation re-
sults for spike cost-based metrics: However, the maximum performances were
yielded by medium time scales. Furthermore, the results obtained for the ISI
metrics exceeded the ones yielded by the optimal time scales for the spike
cost-based metrics. Additionally, due to the fact that the sustained activity
led to estimation performances close to chance level, it can be suggested that
the information about the stimulus history is absent in this activity period
(pages 132-142).

For the estimation of the post motion features, the spike firing rate
appears to have a high relevance. Nevertheless, medium time scales of the
transient activity showed to enhance the information encoded by the spike
firing rate. For the spike cost-based metrics, and in comparison to the results
obtained without considering the stimulus history, fine and medium time
scales of the time intervals that contained the transient activity period, led
to improvements in the estimation performance for post motion features.
Here, the estimation results yielded by medium time scales were similar to
those obtained for the ISI metrics (pages 146-156).

The results for the discrimination of motion feature changes, indi-
cated that this information is mostly encoded in the temporal structure of
the transient activity. This affirmation is supported on the fact that for both
of the applied metrics, similar estimation results were obtained for the time
intervals containing the transient activity period. Here, although the spike
firing rate led to discrimination performances that were significantly above
chancel for the spike cost-based metrics, these performances were improved
for finer time scales, especially for increasing population sizes. Moreover, the
estimation results obtained for the ISI metrics were generally better than
the ones yielded by the optimal time scales for the spike cost-based metrics.
Additionally, because the sustained activity led to poor estimation results
for both of the applied metrics, it can be also suggested that the informa-
tion about motion feature changes is almost absent in this activity period
(pages 162-172).
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4.2.4 Coding Strategies

In the previous sections, based on the results obtained for the estimation of
the different motion features, it was discussed whether the spike firing rate or
the temporal structure of RGC responses encodes information about a mov-
ing stimulus. This discussion was done individually for the activity of single
RGC as well as for the three tested joint activity coding hypotheses. How-
ever, in order to offer a more comprehensive overview, this section discusses
the comparison of the tested coding strategies, i.e., spike firing rate vs. tem-
poral structure (Figure 4.1), as well as the explored coding hypotheses, i.e.,
single cell coding, Pooled Population, Labelled Line and Functional Group
Figure 4.2. Here, in order to simplify the discussion, only the comparison
for the motion velocity, the instantaneous velocity changes and the changes
in motion features is going to be addressed. These motion features comprise
respectively, the estimation of constant stimulus conditions, the estimation of
instantaneous changes in stimulus conditions and the discrimination of mo-
tion feature changes. Although qualitative similarities were found for both
of the analysed animal species, the figures in this section correspond to the
results obtained for the turtle experiments.

Figure 4.1 shows the comparison of the coding strategies for the single cell
coding and the three tested joint activity coding hypotheses. The compar-
ison was done by calculating the ratio between the estimation performance
allowed by the temporal structure of the responses of RGC and the spike
firing rate. Thereby, as a first step for the spike cost-based metrics, the max-
imum estimation performances for fine, medium and coarse time scales were
determined. Then, these values were divided by the estimation performance
yielded by the spike firing rate. Furthermore, the comparison also included
the ratio for the estimation performances yielded by the ISI metrics. In this
sense, ratios equal to one indicate similar estimation performances for the
spike firing rate and the temporal structure of RGC responses. Conversely,
ratios above and below one indicate better estimation performances yielded
either by the temporal structure or the spike firing rate, respectively.

In turn, Figure 4.2 shows the comparison of the tested joint activity cod-
ing hypotheses. Here, for each of the three hypotheses, the plots correspond
to the median estimation performance allowed by population sizes n = 18.
Additionally, the median of the estimation performance allowed by the ac-
tivity of all the analysed single cells (n = 62) is plotted as reference.



212 CHAPTER 4. DISCUSSION

Constant motion features

Generally, for the spike cost-based metrics, the temporal structure of RGC
responses, as well as the spike firing rate, showed to be equally suitable to
encode information about constant motion features (Figure 4.1a). Thereby,
for the activity of single RGC, medium and coarse time scales yielded sim-
ilar estimation results as the spike firing rate. In turn, these results were
also found for the Pooled Population and the Functional Group hypotheses.
Nevertheless, in the case of the Labelled Line hypothesis, only coarse time
scales led to estimation results similar to those obtained for the spike firing
rate.

In the case of the ISI metrics, the spike firing rate and the temporal
structure of RGC responses showed to have the same relevance for single cells,
as well as for two of the tested joint activity coding hypotheses; the Pooled
Population and the Functional Group. In contrast, great ratios in favour of
the ISI metrics were observed under the Labelled Line hypothesis for both
200 ms intervals. Because these results were not observed for the other joint
activity coding hypotheses, it can be suggested that for the transient and
sustained periods of RGC responses, the information about motion features
is present in different time scales of the activity of single RGC. Thus, by
utilising simultaneously different time scales, the differentiated activity of
RGC would be able to encode more information.

Based on these observations, it can be suggested that the spike firing rate
and the temporal structure of RGC responses encode information about con-
stant motion features. Nevertheless, the way in which RGC interact has an
effect in the relevance of these two responses properties for the encoding task.
Here, in the case of the spike firing rate, the Functional Group hypothesis
appears to utilise this coding strategy more efficiently, where longer integra-
tion time windows allow to enhance the encoded information. In contrast,
the results allowed by the ISI metrics show that the temporal structure of
the activity of RGC populations is more efficiently utilised by the Functional
Group and the Labelled Line hypotheses. However, under the Labelled Line
hypothesis, longer integration time windows do not enhance the encoded in-
formation as they do under the Functional Group hypothesis (Figure 4.2a).

All together, the findings described in the previous paragraph indicate
that under the Functional Group hypothesis, the integration of the activity
of RGC of the same class has a positive effect on the encoding of information
about the motion velocity of a stimulus by the spike firing rate. In turn,
this positive effect would allow to encode information in shorter time win-
dows, which explains in part the better estimation results obtained under the
Functional Group hypothesis for both 200 ms intervals. Additionally, and in
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contrast to the Pooled Population hypothesis, the knowledge of the class to
which the cells that fire spikes belongs prevents the loss of information about
motion direction. Therefore, it can be proposed that for the spike firing rate,
the integrated activity of RGC, either belonging to the same class or not, con-
tributes to enhance the encoded information about the magnitude of motion
features, i.e., motion speed, while the knowledge of the class to which the cell
that fires spikes belong contributes to encode information about qualitative
motion features, i.e., motion direction.

Changing motion features

In the case of the estimation of the instantaneous velocity changes and the
discrimination of motion feature changes, the temporal structure of the re-
sponses of RGC generally allowed better results than the spike firing rate
(Figure 4.1b and c). Moreover, the improvement in the estimation results
was more evident for the activity within the 500 ms and the first 200 ms
intervals, for which the greatest ratios in favour of the temporal structure
were found for both of the applied metrics.

More in detail, for the spike cost-based metrics, finer time scales gained
relevance for the encoding of information about changing motion features
with increasing activity integration. Thus, for the Pooled Population hy-
pothesis, for which the activity of the RGC is pooled together, fine time
scales are more relevant than medium or coarse time scales. In contrast, for
the Labelled Line hypothesis, the activity of RGC is regarded independently
and therefore, coarse time scales have more relevance than medium and fine
time scales.

Comparing the ratios yielded by the ISI metrics and the optimal time
scales for the spike cost-based metrics, it was observed that the difference in
ratios in favour to the ISI metrics decreased with increasing activity integra-
tion. This effect could be explained by the fact that for the ISI metrics, the
optimal time scales are individually obtained for each of the analysed single
or group of RGC. In turn, these observations offer additional evidence to sug-
gest that information about motion features, especially about instantaneous
changes, is encoded simultaneously by different time scales of the activity of
single or small groups of RGC.

For the three tested joint activity coding hypotheses, the temporal struc-
ture of RGC activity shows to encode most of the information about changes
in motion features. However, the increase of information about the origin of
the spikes, either the exact cell or the cell class, enhanced the relevance of the
spike firing rate for the encoding this information. Moreover, the efficiency in
the encoding of information about motion feature changes varies across the
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three tested joint activity coding hypotheses. Here, these variations depend
on the nature of the information to be encoded.

Based on the estimation results obtained for the instantaneous velocity
changes by the spike cost-based metrics, medium time scales of the activity
of RGC under the Functional Group hypothesis appeared to be optimal for
the estimation of these changes. This finding was more evident for the 500 ms
and the first 200 ms intervals, which in turn, yielded the highest estimation
performances. Nevertheless, the results obtained for the ISI metrics pointed
out the fact that the temporal structure of the activity of RGC under the
Labelled Line hypothesis allows a more efficient encoding of this information
(Figure 4.2b). Moreover, in contrast to the Functional Group hypothesis,
for which the estimation performance improved with longer integration time
windows, the estimation results yielded by the activity of RGC under the
Labelled Line hypothesis were not significantly different for the 500 ms and
the first 200 ms interval. These observations suggest that for the optimal
time scales, all the available information about the instantaneous velocity
changes is encoded in the temporal structure of the transient period of the
differentiated activity of RGC. Here, the knowledge about the origin of each
spike, either the exact cell or just the type, seems to play a relevant role in
the encoding task.

In contrast, for the discrimination of motion feature changes, the re-
sults obtained for the spike cost-based metrics show that fine time scales of
the activity of RGC under the Pooled Population hypothesis allow signifi-
cantly better results than the optimal time scales for the other two tested
hypotheses (p ≤ 0.005). These results were found for the 500 ms and the
first 200 ms intervals, which in turn yielded the best discrimination perfor-
mance for the three tested joint activity coding hypotheses. Furthermore, for
these two time intervals, the Functional Group and the Pooled Population
hypotheses yielded the best estimation results for the ISI metrics. Here, for
the Pooled Population hypothesis, the results obtained for the ISI metrics
were similar to the ones allowed by the optimal time scales for the spike
cost-based metrics (Figure 4.2c). This finding indicates that in contrast to
the instantaneous velocity changes, the integration of RGC activity allows
the temporal structure to encode more efficiently information about sudden
changes in the motion features, where the knowledge of the cell of origin of
each spike has a low relevance for the encoding task. Moreover, the temporal
structure of the transient period of the integrated activity appears to encode
most of this information.
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Figure 4.1: Ratio of the estimation performance yielded by the temporal
structure of RGC responses and their spike firing rate. The ratio was cal-
culated for fine, medium and coarse time scales, as well as for the results
obtained by the ISI metrics. Ratios equal one indicate equal estimation
performance for the temporal structure and the spike firing rate. Ratios
above and below one indicate better estimation performance for the temporal
structure or the spike firing rate, respectively. Markers indicate the median,
whereas error bars represent the range between maximum and minimum esti-
mation performance ratios. a) Estimation of motion velocity. b) Estimation
of instantaneous velocity changes. c) Estimation of changes in the motion
features.
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Figure 4.2: Comparison of the median estimation performance for the motion
features of the moving stimulus. The estimation was carried out by applying
spike cost-based metrics and ISI metrics on the activity of turtle RGC within
the three tested time intervals. For both metrics, the estimation allowed
by the activity of single RGC is plotted as reference. For the three tested
hypotheses, the results correspond to the ones allowed by RGC populations
n = 18. Star symbols at the top of the plots indicate significant differences
between the hypothesis that allowed maximum estimation performance and
the other two hypotheses (p < 0.005). In the legend P.P.: Pooled Population,
L.L.: Labelled Line and F.G.: Functional Group a) Estimation of motion
velocity. b) Estimation of instantaneous velocity changes. c) Estimation of
changes in the motion features.
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4.3 Light-Motion Experiment

The second part of this study tested if the activity of fish RGC encodes
simultaneously information about the motion features of a moving stimulus
and its background luminance. Thus, the experiment protocol comprised a
pseudo-random sequence for which the motion velocity and the luminance
were kept constant for periods of 500 ms. At the end of these periods, one
of the stimulus features was instantaneously changed (refer to section 2.1.2
for more details).

For this study, the responses of RGC from one fish retina were analysed
with the spike cost-based metrics in order to explore if the spike firing rate
or the temporal structure of their responses carried information about the
motion features and the light intensities. Here, the activity of single RGC,
as well as two joint activity coding hypotheses were tested, i.e., Pooled Pop-
ulation and Labelled Line. Moreover, the hypotheses were tested on one
population built with n = 18 RGC.

4.3.1 Constant Features

For the constant light intensities and motion velocities of the moving stimu-
lus, it was observed that information about these features was present in the
activity within the three tested time intervals. Furthermore, comparing the
estimation performances for both stimulus features, it was observed that gen-
erally, the estimation of light intensities was more robust. This affirmation is
based on the estimation results allowed for the first 200 ms interval for both
stimulus features. Here, it was observed that changes in the complemen-
tary stimulus feature had a stronger influence on the estimation of motion
velocities than on the estimation of light intensities. In turn, this influence
provoked that the estimation of the motion velocity was strongly impaired
by the light intensity changes. Moreover, it was found that for the encoding
of information about motion features in the transient period, the relevance
of the spike firing rate, as well as the temporal structure, is determined by
the stimulus history. Here, it was observed that when changes in light in-
tensity occurred, the temporal structure gained relevance for the encoding of
information about motion features. In contrast, when changes in the motion
velocity were present, the spike firing rate led to the maximum estimation
performances. Therefore, it can be suggested that the temporal structure of
the transient period could be utilised as a cue to estimate which stimulus
features has changed. The combined activity of RGC led to estimation per-
formances for the light intensity and the motion velocity that surpassed the
median estimation performance found for single RGC. Moreover, for both
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of the tested hypotheses, the estimation results for each of the stimulus fea-
tures were qualitatively similar. However, when the two stimulus features
were simultaneously estimated, the combined activity of RGC led to results
that clearly outperformed the ones obtained for single RGC. These results
suggest that although the activity of single RGC encode information about
single stimulus features, it fails to encode simultaneously information about
additional features. Here, this deficit is coped by the combined activity of
RGC.

Single cell coding

For the three analysed time intervals, the spike firing rate of the activity of
single RGC showed to encode information about the light intensity and the
motion velocities. Furthermore, the spike firing rate showed also to be suit-
able for the simultaneous encoding of these two stimulus features. However,
for the 500 ms and the first 200 ms intervals, and especially when changes
in the light intensity were present, medium time scales showed a tendency
to improve the estimation performances. Therefore, it can be suggested that
most of the information about constant stimulus features is encoded by the
spike firing rate of the transient and sustained periods of the activity of sin-
gle RGC. Moreover, for the encoding of information about motion features,
longer integration windows allow the enhancement of the encoded informa-
tion. However, the temporal structure of the transient period could be used
as a cue to estimate which stimulus feature has changed.

Joint activity coding

For the Pooled Population hypothesis, the spike firing rate of the sustained
activity showed to encode information about the light intensities and the
motion velocities. Moreover, it also showed to be suitable for the simulta-
neous encoding of both stimulus features. However, for the time intervals
that included the transient period, the temporal structure showed to gain
relevance, especially for the encoding of information about motion velocity
and the simultaneous encoding of both stimulus features. Therefore, it can
be suggested that information about the light intensity is robustly encoded in
the firing rate of the combined activity of RGC under the Pooled Population
hypothesis. However, in the transient period, the encoding of information
about the motion features and the simultaneous encoding of both stimulus
features, is more efficient for the temporal structure. Here, fine time scales
appear to be more relevant when light intensity changes occur. In turn, when
motion velocity changes occur, medium time scales gain relevance.
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For the Labelled Line hypothesis, the spike firing rate showed to encode
robustly the information about the light intensities and the motion velocities.
Moreover, it also showed to be suitable for the simultaneous encoding of both
stimulus features. Here, for the time intervals including the sustained activity
period, the spike firing rate of the differentiated activity of RGC, showed to
be the most efficient strategy for the simultaneous encoding of both stimulus
features. However, when changes in the light intensity occurred, medium
time scales of the temporal structure of the transient period, encoded more
efficiently the information about the motion features and also allowed a better
performance in the simultaneous encoding of both stimulus features.

4.3.2 Changing Features

For each of the three analysed time intervals, the estimation results across
the changes in stimulus features were qualitatively similar for the activity of
single RGC, as well as for each of the tested joint activity coding hypotheses.
Thereby, it appears that the combined activity of RGC allows to encode more
information about the instantaneous changes in the stimulus features, than
the activity of single RGC. Furthermore, it can be proposed that most of the
information about the instantaneous changes in light intensity and motion
velocity is present in the transient period of the responses of RGC. This af-
firmation is based on the fact that for the activity of single RGC and the
two tested joint activity coding hypotheses, better estimation results were
obtained for the 500 ms and the first 200 ms intervals. Here, for these two
time intervals, the estimation performance reached its maximum for fine and
medium time scales. While the time intervals that included the transient
period led to the highest estimation results, the interval containing only the
sustained period led to the poorest estimation performances. Therefore, it
can be suggested that the temporal structure of the transient period encodes
information about both, the stimulus history and the stimulus features after
the instantaneous changes. In contrast, the information about the instan-
taneous changes in the stimulus features is almost absent in the sustained
period. Nevertheless, the spike firing rate of the sustained period seems to
encode information about the post stimulus features, which in turn repre-
sents additional information about the stimulus changes to the one encoded
by the transient period.

Single cell coding

Aside from the last 200 ms interval, the spike firing rate of the activity of
single RGC showed to encode information about the instantaneous changes
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in the stimulus features. However, for the 500 ms and the first 200 ms
intervals, fine and medium time scales of the temporal structure enhanced
the encoded information. Thus, it can be suggested that for the activity of
single RGC, the spike firing rate of the transient period encodes information
about the stimulus changes. However, the temporal structure of this period
has a higher relevance for the encoding task.

Joint activity coding

For the Pooled Population hypothesis, the spike firing rate of the responses
within the 500 ms and the first 200 ms intervals, showed to have a low
relevance for the encoding of information about changes in the stimulus fea-
tures. In contrast, fine time scales of these responses showed to be the ones
involved in the encoding task. Therefore, it can be proposed that under this
hypothesis, the available information about changes in the stimulus features
is encoded in the temporal structure of the transient period.

For the Labelled Line hypothesis, the spike firing rate showed to have a
high relevance for the encoding of information about changes in the stimulus
features. Moreover, the information about stimulus changes showed to be
almost absent in the fine time scales of the combined activity of RGC under
this hypothesis. Nevertheless, and particularly for the 500 ms and the first
200 ms intervals, medium time scales were optimal for the encoding of this
information. Thus, it can be proposed that under this hypothesis, the spike
firing rate of the transient period carries much of the information about stim-
ulus changes but nonetheless, the information is enhanced by the temporal
structure of this period.

4.3.3 Feature Change Discrimination

For the single RGC as well as for the two tested joint activity coding hypothe-
ses, it was found that the transient period of the neuronal responses carries
information that allows to discriminate which stimulus feature has changed.
Moreover, the sustained period does not contribute for the encoding of addi-
tional information. These claims are supported on the fact that the highest
estimation performances for the discrimination of changes in the stimulus
features, were yielded by the 500 ms and the first 200 ms intervals. Here,
these two time intervals led to similar estimation results for single RGC and
each of the two tested joint activity coding hypotheses. Furthermore, the last
200 ms interval led to estimation results that were close to those expected by
chance. The relevance of the spike firing rate and the temporal structure for
the discrimination of stimulus features changes showed differences between
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the single RGC and the two tested joint activity coding hypotheses. How-
ever, in all cases, the temporal structure appears to encode more efficiently
information about the stimulus feature that has changed.

Single cell coding

For the activity of single RGC, the spike firing rate of the transient period
allows the discrimination of stimulus feature changes. Nevertheless, medium
time scales contribute to the improvement in the discrimination performance.
Thus, it can be proposed that information about which stimulus feature has
changed is more efficiently encoded in the temporal structure of the transient
period.

Joint activity coding

For the Pooled Population hypothesis, the spike firing rate of the transient
period showed to have a low relevance for the discrimination of stimulus
feature changes. In contrast, fine time scales within this period showed to
be the ones involved in the discrimination task. Thus, it can be suggested
that under this hypothesis, the discrimination of stimulus feature changes is
mediated by a high precision temporal structure of the transient period.

For the Labelled Line hypothesis, the spike firing rate showed to have
a high relevance for discrimination of stimulus feature changes. However,
medium time scales of the transient period were optimal for the discrimi-
nation task. Therefore, it can be proposed that under this hypothesis, the
spike firing rate of the transient period allows the discrimination of stimulus
feature changes but nevertheless, the task is more efficiently mediated by the
temporal structure of this period.

4.4 Behavioural Implications

In primates, it has been suggested that the processing of visual motion starts
in the primary visual cortex (Blake et al., 2003). Here, models have been
developed to estimate motion features, e.g., direction, based on the activity
of ensembles of RGC (Chichilnisky and Kalmar, 2003). Moreover, it has
been found that is not until the MT area of primates, where some neurons
tune their spike firing rate to the motion speed of an image (Lisberger and
Movshon, 1999). Here, it has been suggested that pooling the activity of
these cells could allow to encode information about motion acceleration (Cao
et al., 2004). In contrast, the responses of some RGC in other animal species
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like rabbits, cats, turtles and fish, have proved to encode information about
motion features like direction (Barlow and Hill, 1963; Barlow et al., 1964;
Ammermüller and Kolb, 1996; Tsvilling et al., 2012), velocity (Oyster et al.,
1972; Ariel and Adolph, 1985) and accelerations (Thiel et al., 2007). In this
sense, the results obtained in this study are in accordance with these previous
studies. Therefore, for the animal species examined, i.e., turtle and carp, it
has been shown that visual motion processing occurs already in the retina.
In turn, this finding has implications in the velocity with which the visual
stimulus is processed. For instance, in the archer fish, it has been proposed
that their fast responses for hunting manoeuvres are mediated by the retinal
identification of motion direction (Tsvilling et al., 2012).

4.4.1 Relevance of Visual Motion Processing

For many animal species, the information delivered by the visual system
about their environment has a great influence on their behaviour. Accord-
ingly, the detection and estimation of motion features of natural visual scenes
allow to gain information about their environment and in turn, perform the
adequate correction tasks if necessary (Hengstenberg et al., 1986; Lisberger
and Movshon, 1999; Berry II et al., 1999; Thiel et al., 2007), enhancing in
this way, the animal’s chance of survival. Thereby, the processing of motion
information by the visual system is necessary for the detection and location of
external moving objects and the estimation of self motion-parameters (Dellen
and Wessel, 2009; Dellen et al., 2010). Here, the estimation of the motion
velocities plays an important role in pursuit eye movements, which allow
to keep the visual image in the foveal region of the retina (Yamasaki and
Wurtz, 1991). Moreover, self-motion generates patterns of optic flow, which
in turn, induce the perception of motion of the whole visual field. There-
fore, these optic flow patterns have to be analysed by the visual system to
allow compensation that ensures optimal visual acuity and velocity discrim-
ination (Laughlin, 1999; Crowder et al., 2003). Additionally, the detection
of changes in motion features of external objects have a great relevance for
survival. Here, the estimation of changes in motion trajectory or velocity
play an important role in avoiding collisions, catching a prey or escaping
from a predator, breaking camouflage, or detecting threats (Laughlin, 1999;
Thiel et al., 2007; Dellen and Wessel, 2009). Based on these facts, it can be
observed that the visual motion processing is a complex task. Nevertheless,
the results obtained in this study show that the primary stages for visual
motion processing are already undertaken in the retina of turtle and carp.

An additional aspect that has to be considered in visual motion process-
ing is that scenes of natural environments generally include several visual
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features such as luminance, wavelength, texture and shape. Nevertheless, in
order to ensure correct behaviour, a robust estimation of motion features has
to be performed independently of other visual attributes, e.g., luminance.
This mechanism for independent coding of motion features has already been
observed in the avian tectum (Dellen and Wessel, 2009). However, in the case
of the carp, the results obtained in this study suggest that this independent
coding takes place already in the retina.

4.4.2 Relevant Time Scales

It has been proposed that in the visual system, the spike firing rate and dif-
ferent time scales of neuronal responses could carry information that allow
to distinguish stimulus features (Oram et al., 2002). Moreover, it could be
possible that individual spike trains encode information about several stim-
ulus features in a temporally multiplexed fashion. Here, the relevance of the
time scales for encoding tasks would be dependent on the stimulus features
(Victor and Purpura, 2010). Evidence to support these claims have been
found in the responses of neurons in the primary visual cortex of monkeys
and cats (Richmond et al., 1987; Optican and Richmond, 1987; Tovee et al.,
1993; Samonds et al., 2003; Samonds and Bonds, 2004)

Visual motion can be defined as spatio-temporal changes of light intensity
of an image (Dellen and Wessel, 2009), where the motion velocity describes
the rate or frequency in which these changes take place. Since it has been ob-
served that the visual system responds mainly to changes (Greschner et al.,
2002), in this study it was not surprising to find that after a transient period,
the responses often showed stronger sustained activity to constant velocities
than to constant light intensities. Moreover, one of the findings in this study
was that for scenarios with constant stimulus conditions, e.g., constant light
intensity or constant motion velocity, the spike firing rate, as well as the
temporal structure of RGC responses, encodes information that allows the
estimation of the stimulus features. In contrast, once changes in the stimulus
conditions were involved, the temporal structure of the responses, especially
in the transient period, gained relevance for the estimation of the stimulus
changes. In this context, it has been proposed that for the visual tracking of
a moving stimulus, the size of time scales that are relevant for motion estima-
tion are bound to the speed required for behavioural responses (Theunissen
and Miller, 1995; Gautrais and Thorpe, 1998).

In this study, the spike firing rate has proved to encode information about
constant stimulus features. Nonetheless, this coding strategy may be too slow
to ensure correct behaviour for survival tasks. Here, the temporal structure
of the responses could help to cope with this problem. According to Oram
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et al. (2002), Samonds and Bonds (2005) and Roussin et al. (2008), besides
the spike firing rate, temporal patterns in the neuronal responses could be
involved in the encoding of information about stimulus features. Moreover,
these patterns could have a structure, which cannot be anticipated from the
spike firing rate, e.g., latency or ISI. Despite the possibility that these tempo-
ral patterns may not provide additional information, their temporal structure
could be utilised by simple synaptic mechanisms to decode information in a
more efficient way than a spike firing rate code would allow (Victor, 2000).
In the case of the results obtained for the spike cost-based metrics in this
study, the time scales within the range that led to the highest estimation
performances should be regarded as averages across the entire response (Vic-
tor and Purpura, 2010; Chicharro et al., 2011). Here, these time scales could
be interpreted as the time window necessary to update the estimation of the
response properties that contain information about a stimulus feature (Paiva
et al., 2010), or the spike firing precision of the responses that allow the
maximum discrimination across stimulus features (Reich et al., 2001b; Huetz
et al., 2006).

In agreement with the proposal that the spike firing rate as coding strat-
egy may be too slow to process sensory information (Gautrais and Thorpe,
1998; Van Rullen et al., 2005), the spike firing rate lost relevance for the
encoding of information about stimulus changes. Here, medium and fine
time scales showed to be optimal for the encoding of this information. Fur-
thermore, for changes in the motion velocity and light intensity, it was not
observed that different time scales were involved in the information encoding
tasks for each of the stimulus features. However, it was observed that for the
estimation of the stimulus features after a stimulus change, fine time scales
gained relevance when changes in the light intensity occurred, whereas for
changes in motion velocity this effect was observed for medium time scales.
Therefore, as proposed by Victor and Purpura (1998) and Oram et al. (2002)
for the visual system, it could be possible that different time scales of RGC
activity encode simultaneously different stimulus features.

Thiel et al. (2007) have found that in turtle retina, the decoding of motion
velocity and accelerations can be achieved by updating the instantaneous fir-
ing rate of a population of RGC with a time window of ∼86 ms (i.e., medium
time scale). The approach followed by Thiel et al. (2007) cannot be directly
compared with the analysis in this study. However, there are similarities
with the Labelled Line hypothesis tested here. For instance, in both stud-
ies, the activity of each single RGC contributed individually to the encoding
of information by the population. However, in the approach of Thiel et al.
(2007), the instantaneous firing rate was the response property suggested to
encode information. In contrast, for the spike cost-based metrics, the spike
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timing, an estimation of the spike firing rate, or both response properties
could be involved in the encoding tasks (Huetz et al., 2006; Paiva et al.,
2010). Furthermore, in the study by Thiel et al. (2007), the calculation of
the time scale was not done individually for constant motion velocities and
velocity changes. Despite these differences, the optimal time scale found by
Thiel et al. (2007) falls in the range of the relevant time scales found for the
Labelled Line hypothesis in this study.

The absolute latency, i.e., the time difference between the stimulus onset
and the first spike, is an additional coding strategy that was not directly
tested in this study. Here, this response property was indirectly tested by
analysing the transient period of the RGC responses. Cerquera and Fre-
und (2011) tested this response property together with the two following ISI
in populations of turtle RGC. Here, the authors assessed the performance
of these response properties for the estimation of motion velocities and in-
stantaneous velocity changes. They found that the absolute latency alone
encoded enough information to allow the estimation of the motion velocity
and the velocity changes. Thus, it is possible that fine time scales encode
information about motion features. Here, this suggestion is supported on
the fact that the latency is associated with the firing events after a stimulus
onset, i.e., stimulus change, and these firing events have been found to be
highly precise in time (Berry et al., 1997).

An aspect that has to be addressed is the fact that information about
the stimulus history is present in the temporal structure of the transient
period. Here, it not suggested that this observation implies that the RGC
have a memory mechanism. Instead, this finding could be explained by
the fact that RGC respond mainly to stimulus changes (Greschner et al.,
2002), where the stimulus history plays an important role in shaping the
transient period of the responses. This effect has been observed since the
first recordings of RGC responses to changes in light intensity (Hartline,
1938). Here, the transient burst of On- and Off-cell responses after light
intensity changes is in part defined by the stimulus history (Berry et al.,
1997; Greschner et al., 2006). Moreover, as observed for the estimation of
the motion features considering the stimulus history, the temporal structure
of the transient activity allowed to improve the estimation performances. In
this direction, it has been suggested that the temporal correlation of spikes
enhances the encoded information about visual stimulus (Jacobs et al., 2009).
In the case of the turtle retina, it has been found that the activity of RGC
encode information about motion acceleration (Thiel et al., 2007). Here, the
encoding of this information would not be possible if information about the
stimulus history, as well as the present stimulus, were not present in the
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temporal structure of the transient period. Moreover, as closing remark for
this section, it is worth stressing that the results for the post motion features
in this study did not considered the a priori knowledge of the previous motion
features. However, it is very probable that by making this consideration, the
performance in the estimation for the post motion features would increase
significantly.

4.4.3 Ensemble and Population Coding

The discussion in the previous paragraphs addressed the general findings in
this study regarding the relevance of time scales. Nonetheless, additionally to
the stimulus features, the relevance of the spike firing rate and the temporal
structure was also related with the way in which the activity of RGC was
combined. Moreover, the time scales that showed to be relevant for the
encoding of stimulus features varied across the three tested coding hypotheses
for joint activity.

According to the definition of population and ensemble coding proposed
by Theunissen and Miller (1995) and Lestienne (2001), the Pooled Population
hypothesis appears to fit in the definition of population coding, where each
neuron in the population contributes with its firing rate for the encoding task.
Here, this affirmation is more evident for the encoding of information about
constant motion features. Furthermore, although the temporal structure
showed to be more relevant than the spike firing rate for the estimation of
stimulus changes, the temporal structure of each cell does not contribute
to the encoding task. This affirmation is supported on the fact that for
the Pooled Population hypothesis, there is no distinction across the spikes
coming from each of the neurons comprising the population. Therefore, the
temporal structure in the activity of the population is a product of the spike
firing rate from each neuron.

In contrast, the Labelled Line hypothesis seems to fit into the defini-
tion of ensemble coding. Here, although for constant motion features the
spike firing rate led to the highest estimation results for the spike cost-based
metrics, these results were outperformed by the ones obtained for the ISI
metrics. Here, these results were particularly found for the time intervals
containing only the transient or the sustained activity period. Thereby, the
results obtained for the ISI metrics indicate that for the encoding of infor-
mation about stimulus features, different time scales are utilised by each of
the neurons building the population and most importantly, that the tempo-
ral structure of each neuron contributes to the encoding task. These results
are more evident for the encoding of information about stimulus changes,
where for both of the applied metrics, the highest estimation performances
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were yielded by the temporal structure of the time intervals containing the
transient period.

The Functional Group hypothesis lies between the definitions of popula-
tion coding and ensemble coding because the temporal structure of each cell
group building the population, i.e., cell class, contributes for the encoding of
information of constant stimulus features as well as stimulus changes. Never-
theless, the temporal structure of each group is, as in the case of the Pooled
Population hypothesis, the result of the spike firing rate contributions from
each of the neurons building these groups.

Based on the results obtained for the three tested joint activity coding
hypothesis, it seems that all of them are suited to encode information about
the features of a visual stimulus. Moreover, it could be possible that the
three proposed joint activity coding strategies are utilised by the visual sys-
tem. For instance, in the direction of this study, it has been proposed that for
the detection of stimulus onsets, the information from a large population of
neurons should be pooled together (Pooled Population hypothesis) (Knight,
1972; van Vreeswijk and Sompolinsky, 1996; Gerstner, 2000). However, after
the stimulus onset, i.e., stimulus change, coding strategies involving specific
responses of single cells could be optimal for the estimation of the stimulus
features (Labelled Line hypothesis). The combination of these two strate-
gies has been proposed for cat’s lateral geniculate neurons and fish’s retinal
ganglion cells (Wörgötter et al., 1999; Vasserman et al., 2010). Furthermore,
coding strategies similar to the Pooled Population and the Labelled Line are
found within the retina. Here, the rod system exhibits a greater degree of
cell interconnection convergence in comparison to the cone system. Thereby,
the pathway from rods to amacrine cells involve that several rods contact
one rod bipolar cell and in turn, that several rod bipolar cells contact a given
amacrine cell. This convergence (Pooled Population) makes the rod system a
better detector of light at the expense of acuity. In contrast, and particularly
in the fovea region, the one to one connection between cones, bipolar cells
and RGC (Labelled Line) accounts for the high visual acuity at the expense
of light sensitivity (Purves et al., 2001).

The proposals by Wörgötter et al. (1999) and Vasserman et al. (2010)
are in accordance with the findings in this study. Here, it has been observed
that the Pooled Population hypothesis, and to a lesser degree the Functional
Group hypothesis, led to the highest performances for the discrimination
of changes in the stimulus features. Nevertheless, the best estimation re-
sults for the stimulus features were yielded by the Labelled Line hypothesis,
followed closely by the Functional group hypothesis. Again, as in the the
definitions proposed by Theunissen and Miller (1995) and Lestienne (2001),
the Pooled Population hypothesis and the Labelled Line hypothesis lie on
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the extremes. Nevertheless, the Functional Group hypothesis shows to meet
a compromise between both joint activity coding strategies. Here, it is also
plausible that this strategy is utilised by the visual system. For instance, it
has been found that at early stages of visual processing in mammals, cor-
tical areas are retinotopically organized, where cells with similar functional
properties are grouped together into functional streams. Moreover, it has
also been observed that along the processing stages, there is a extensive in-
teraction across these functional areas (Engel et al., 1992; Singer and Gray,
1995). Similar observations have been reported for the encoding of tactile
stimulus in different cortical areas of primates (Nicolelis et al., 1998). In this
direction, it has been found that for DSC in the turtle, there is a direct con-
nection pathway to the the basal optic nucleus, which is the primary nucleus
of the turtle accessory optic system (Rosenberg and Ariel, 1991).

The correlated activity of RGC is a suitable ensemble coding mechanism
that was not tested in this study. The main reason for this is the multi
electrode array utilised for the recordings of the extracellular activity for this
study. Here, due to the distance between electrodes, it was very unlikely that
the activity of neighbouring cells was registered. Nevertheless, correlations
in the activity of neighbouring retinal ganglion cells have been reported in
cats and monkeys (Mastronarde, 1989; Shlens et al., 2009). In turn, these
correlations, appear to reflect the interaction of the neighbouring cells, and
rather than introducing redundancy, it has been proposed that they provide
additional sensory information to the visual circuits in the brain (Bair, 1999;
Meister and Berry II, 1999; Pillow et al., 2008).

An important advantage of the ensemble coding over the population cod-
ing lies on the proposal that neurons could encode information about different
stimulus features utilising different time scales. Here, the temporal patterns
of the activity of single cells could be used as symbols. Therefore, if the
temporal structure of single cells contributes individually to the encoding
of information, more symbols will be available to encode different stimulus
features for the ensemble coding (Theunissen and Miller, 1995; Victor and
Purpura, 1998). In turn, this coding mechanism will help to minimise the
number of necessary neurons for encoding tasks (Oram et al., 2002). In this
direction, Kjaer et al. (1994) found that single complex cells from the V1 area
of monkeys are not specialized for encoding information about one stimulus
feature, but instead, they encode simultaneously information about different
stimulus features. Moreover, they found that the joint activity of several
cells allowed to enhance the encoded information about a single stimulus
feature. Similar results were obtained in this study for both experimental
protocols. Here, single neurons encoded information about a single stimulus
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feature such as motion velocity or light intensity. However, the joint activity
of the analysed RGC enhanced significantly the information about motion
velocity or light intensity and particularly, the simultaneous encoding of both
stimulus features.

In the last two sections of this chapter, the relevance of the information
encoding mechanism tested in this study were discussed. In summary, based
on the results obtained in this study and due to the integrative properties of
the brain in space and time, as well as the chemical properties such as facili-
tation and depression (Samonds and Bonds, 2005), the spike firing rate, the
latency, the interspike time interval and the spike timing, appear to be plau-
sible coding strategies for retinal ganglion cells. Moreover, these response
features could convey information about different aspects of a visual scene,
enhancing in this way, the encoding efficiency. This assumption is reinforced
by the fact that neurons are not specialised in conveying only one stimulus
feature, but rather, they encode simultaneously information about several
aspects of sensory stimuli Kjaer et al. (1994). In this direction, retinal gan-
glion cells could use a multiplexing mechanism based in different time scales
to encode simultaneously these features. Here, the increasing complexity of
the stimulus features to encode, would require the combination of encoding
symbols from several retinal ganglion cells. In this sense, the three tested
joint activity coding hypotheses tested in this study have been reported in
different sensory systems including the visual system. Therefore, it is possi-
ble that turtle and fish retinal ganglion cells utilise these three joint activity
coding strategies for the processing of visual motion and the simultaneous
encoding of stimulus features. For instance, while a similar coding mecha-
nism as the Pooled Population hypothesis could serve for the fast detection
of changes in stimulus features, finer details of the stimulus could be encoded
by a Labelled Line or Functional Group similar mechanism.
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Chapter 5

Conclusions

Based on the results in this study, it can be stated that for turtle and carp,
the processing of visual motion starts already in the retina. Moreover, the ac-
tivity of carp retinal ganglion cells simultaneously encode information about
about motion features and light intensities. The spike firing rate and the dif-
ferent time scales of the temporal structure of retinal ganglion cell responses
encode information about constant motion features. However, the temporal
structure gains relevance as coding mechanism when changes in the stimulus
conditions are present. The combined activity of retinal ganglion cells allows
to enhance the efficiency of visual information encoding. In turn, different
interactions of the activity of retinal ganglion cells can for instance, allow to
make fast discriminations of stimulus features changes or to obtain detailed
information about a visual scene.

All together, it seems that while retinal ganglion cells are not specialised
to encode one stimulus feature, they make use of different symbols, i.e.,
mechanisms, for the simultaneous encoding of several stimulus features. Fur-
thermore, the efficiency of these symbols is boosted by the joint activity of
these cells.
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Appendix

Time Animal Metrics Left-DSC Non-DSC Right-DSCinterval

0-200 ms

Turtle
Cost- 23% 19.8% 19.2%
based 1/q=∞ 1/q=125ms 1/q=∞

ISI 24.6% 20.8% 18.6%

Fish
Cost- 17.3% 14.1% 14%
based 1/q=∞ 1/q=1000ms 1/q=∞

ISI 17.8% 14.7% 13.7%

0-500 ms

Turtle
Cost- 28.5% 23.8% 23%
based 1/q=∞ 1/q=∞ 1/q=∞

ISI 26.4% 24.3% 19.3%

Fish
Cost- 23.5% 17.1% 15.8%
based 1/q=∞ 1/q=500ms 1/q=∞

ISI 19.1% 14.6% 13.3%

300-500 ms

Turtle
Cost- 21.3% 19.3% 18%
based 1/q=500ms 1/q=∞ 1/q=125ms

ISI 24.5% 22.2% 18.3%

Fish
Cost- 19.5% 15.3% 14.2%
based 1/q=1000ms 1/q=250ms 1/q=250ms

ISI 19.9% 14.3% 13.7%

Table 5.1: Highest median of estimation results for the motion velocity of
the moving stimulus, obtained by applying spike cost-based metrics and ISI
metrics on the activity of single RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 39.1% 38.7% 39.2%
based 1/q= 250ms 1/q= 250ms 1/q=∞

ISI 42.8% 37.7% 40.5%

Fish
Cost- 45.9% 41% 46.5%
based 1/q= 125ms 1/q= 125ms 1/q=125ms

ISI 45.6% 36% 33.6%

0-500 ms

Turtle
Cost- 48.2% 44.2% 50.7%
based 1/q=1000ms 1/q=∞ 1/q=1000ms

ISI 45.3% 41.7% 41%

Fish
Cost- 42.7% 34.7% 42.1%
based 1/q=∞ 1/q=500ms 1/q=1000ms

ISI 45.9% 34.9% 35.5%

300-500 ms

Turtle
Cost- 37.3% 32.3% 35.9%
based 1/q=∞ 1/q=∞ 1/q=250ms

ISI 44.9% 40.5% 41.6%

Fish
Cost- 43.9% 25.8% 29.7%
based 1/q=250ms 1/q=∞ 1/q=∞

ISI 46.8% 36.3% 37.7%

Table 5.2: Highest median of estimation results for the motion direction of
the moving stimulus, obtained by applying spike cost-based metrics and ISI
metrics on the activity of single RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 0.82 0.82 0.91
based 1/q=500ms 1/q=∞ 1/q=∞

ISI 0.87 0.87 0.95

Fish
Cost- 1.01 1.01 0.9
based 1/q=∞ 1/q=125ms 1/q=125ms

ISI 0.96 1.01 1.14

0-500 ms

Turtle
Cost- 0.65 0.6 0.84
based 1/q=∞ 1/q=∞ 1/q=∞

ISI 0.81 0.73 0.93

Fish
Cost- 0.7 1.03 1.09
based 1/q=∞ 1/q=1000ms 1/q=500ms

ISI 0.82 1.01 1.12

300-500 ms

Turtle
Cost- 1.03 0.92 1.04
based 1/q=1000ms 1/q=∞ 1/q=∞

ISI 0.87 0.81 0.91

Fish
Cost- % % %
based 1/q=125ms 1/q=250ms 1/q=∞

ISI 0.72 1.02 1.08

Table 5.3: Lowest median of absolute normalised estimation errors for the
motion speed of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of single RGC within the three tested
time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 5.5% 5.4% 4.5%
based 1/q=62ms 1/q=62ms 1/q=31ms

ISI 8.1% 6.8% 5.5%

Fish
Cost- 3.5% 2.5% 2.3%
based 1/q=125ms 1/q=62ms 1/q=125ms

ISI 5.6% 2.3% 2.6%

0-500 ms

Turtle
Cost- 7.3% 6.8% 5.1%
based 1/q=125ms 1/q=125ms 1/q=125ms

ISI 10.1% 7.3% 5.4%

Fish
Cost- 5.9% 3.3% 4.4%
based 1/q=125ms 1/q=125ms 1/q=125ms

ISI 6.7% 2.9% 2.9%

300-500 ms

Turtle
Cost- 3.9% 3.4% 2.9%
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 5.9% 5.3% 4.1%

Fish
Cost- 3.5% 2.2% 2%
based 1/q=62ms 1/q=250ms 1/q=125ms

ISI 4.6% 2.2% 2.8%

Table 5.4: Highest median of estimation results for the instantaneous veloc-
ity changes of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of single RGC within the three tested
time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 15.3% 15.3% 14.9%
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 18.4% 17.9% 16.8%

Fish
Cost- 18.2% 13.9% 13.5%
based 1/q=31ms 1/q=31ms 1/q=62ms

ISI 16.2% 13.1% 12.8%

0-500 ms

Turtle
Cost- 16% 15.9% 15%
based 1/q=62ms 1/q=125ms 1/q=125ms

ISI 20.4% 18.4% 17.3%

Fish
Cost- 18.2% 14.2% 14.1%
based 1/q=250ms 1/q=125ms 1/q=125ms

ISI 19% 13.3% 13.7%

300-500 ms

Turtle
Cost- 12.6% 12.2% 12.2%
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 15.7% 14.9% 14.3%

Fish
Cost- 12.4% 12.2% 12.2%
based 1/q=62ms 1/q=∞ 1/q=250ms

ISI 14% 12.9% 12.8%

Table 5.5: Highest median of estimation results for the motion velocity of
the moving stimulus before the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of single
RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 46.4% 45.2% 46.5%
based 1/q=31ms 1/q=31ms 1/q=31ms

ISI 49.6% 46.8% 48.5%

Fish
Cost- 45.6% 44.5% 44.5%
based 1/q=62ms 1/q=16ms 1/q=31ms

ISI 47.1% 44.8% 45.6%

0-500 ms

Turtle
Cost- 47.1% 44.7% 46.8%
based 1/q=31ms 1/q=31ms 1/q=31ms

ISI 49.9% 46.2% 47.8%

Fish
Cost- 45.6% 45% 44.5%
based 1/q=32ms 1/q=32ms 1/q=16ms

ISI 47.8% 45.7% 44.9%

300-500 ms

Turtle
Cost- 45% 44.4% 43.9%
based 1/q=∞ 1/q=8ms 1/q=8ms

ISI 45.5% 42.6% 45.8%

Fish
Cost- 44.4% 44.3% 44.2%
based 1/q=8ms 1/q=16ms 1/q=16ms

ISI 42.4% 43.7% 44.6%

Table 5.6: Highest median of estimation results for the motion direction of
the moving stimulus before the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of single
RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 0.9 0.85 0.84
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 0.79 0.79 0.92

Fish
Cost- 0.84 0.88 0.9
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 0.84 0.95 0.99

0-500 ms

Turtle
Cost- 0.94 0.84 0.92
based 1/q=62ms 1/q=125ms 1/q=250ms

ISI 0.81 0.8 0.92

Fish
Cost- 0.81 0.96 0.87
based 1/q=62ms 1/q=31ms 1/q=62ms

ISI 0.83 0.94 0.95

300-500 ms

Turtle
Cost- 0.95 0.95 0.96
based 1/q=1000ms 1/q=500ms 1/q=8ms

ISI 0.9 0.91 0.98

Fish
Cost- 0.89 1.02 0.91
based 1/q=1000ms 1/q=500ms 1/q=31ms

ISI 0.91 0.98 0.99

Table 5.7: Lowest median of absolute normalised estimation errors for
the motion speed of the moving stimulus before the instantaneous veloc-
ity changes, obtained by applying spike cost-based metrics and ISI metrics
on the activity of single RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 23% 19.7% 18.4%
based 1/q=125ms 1/q=62ms 1/q=62ms

ISI 25.3% 22.4% 18.9%

Fish
Cost- 15% 13.6% 12.9%
based 1/q=250ms 1/q=m32s 1/q=32ms

ISI 19% 14.3% 13.6%

0-500 ms

Turtle
Cost- 29.9% 25.5% 23.3%
based 1/q=250ms 1/q=125ms 1/q=500ms

ISI 27.7% 24.5% 18.7%

Fish
Cost- 22.4% 17% 17.1%
based 1/q=250ms 1/q=250ms 1/q=125ms

ISI 19.7% 14.8% 13.6%

300-500 ms

Turtle
Cost- 22.3% 20.6% 18%
based 1/q=125ms 1/q=62ms 1/q=125ms

ISI 24.3% 22.4% 18%

Fish
Cost- 19.3% 14.9% 14.1%
based 1/q=∞ 1/q=125ms 1/q=500ms

ISI 19.9% 14% 13.3%

Table 5.8: Highest median of estimation results for the motion velocity of
the moving stimulus after the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of single
RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 43% 39.5% 42.6%
based 1/q=125ms 1/q=62ms 1/q=500ms

ISI 45.6% 38.2% 40.3%

Fish
Cost- 45.5% 42.8% 45.9%
based 1/q=125ms 1/q=1000ms 1/q=125ms

ISI 45.6% 36.8% 35.9%

0-500 ms

Turtle
Cost- 50% 45% 47%
based 1/q=500ms 1/q=250ms 1/q=250ms

ISI 43.2% 40% 40.4%

Fish
Cost- 51.8% 41.1% 40.6%
based 1/q=∞ 1/q=∞ 1/q=∞

ISI 45.7% 39.6% 39.5%

300-500 ms

Turtle
Cost- 42.8% 36.8% 37.8%
based 1/q=∞ 1/q=125ms 1/q=∞

ISI 43.4% 38.7% 40%

Fish
Cost- 45.1% 28.6% 31.7%
based 1/q=250ms 1/q=500ms 1/q=∞

ISI 46.3% 39.7% 37.1%

Table 5.9: Highest median of estimation results for the motion direction of
the moving stimulus after the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of single
RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 0.74 0.74 0.89
based 1/q=500ms 1/q=∞ 1/q=125ms

ISI 0.86 0.81 0.96

Fish
Cost- 0.8 0.95 0.91
based 1/q=250ms 1/q=125ms 1/q=125ms

ISI 0.83 1.05 1.05

0-500 ms

Turtle
Cost- 0.68 0.57 0.81
based 1/q=250ms 1/q=1000ms 1/q=∞

ISI 0.84 0.75 0.93

Fish
Cost- 0.66 0.92 1.03
based 1/q=250ms 1/q=1000ms 1/q=1000ms

ISI 0.72 0.98 1.04

300-500 ms

Turtle
Cost- 0.92 0.9 1.06
based 1/q=250ms 1/q=125ms 1/q=125ms

ISI 0.86 0.78 0.95

Fish
Cost- 0.7 1.12 1.16
based 1/q=∞ 1/q=∞ 1/q=62ms

ISI 0.75 0.99 1.09

Table 5.10: Lowest median of absolute normalised estimation errors for the
motion speed of the moving stimulus after the instantaneous velocity changes,
obtained by applying spike cost-based metrics and ISI metrics on the activity
of single RGC within the three tested time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 60.8% 61.3% 56.3%
based 1/q=250ms 1/q=250ms 1/q=125ms

ISI 53.8% 58.8% 50.8%

Fish
Cost- 56.6% 46.5% 45.7%
based 1/q=62ms 1/q=125ms 1/q=∞

ISI 53% 46% 44.2%

0-500 ms

Turtle
Cost- 56.8% 62.6% 56.8%
based 1/q=125ms 1/q=1000ms 1/q=500ms

ISI 54.5% 59.1% 51.6%

Fish
Cost- 60.8% 54.4% 48.8%
based 1/q=62ms 1/q=∞ 1/q=500ms

ISI 60.8% 46.3% 44.2%

300-500 ms

Turtle
Cost- 50.5% 51.9% 47.7%
based 1/q=62ms 1/q=500ms 1/q=250ms

ISI 53% 56.6% 48.3%

Fish
Cost- 52.7% 47.2% 44.4%
based 1/q=31ms 1/q=1000ms 1/q=500ms

ISI 47% 47.6% 45%

Table 5.11: Highest median of estimation results for the changes in the mo-
tion speed of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of single RGC within the three tested
time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 40.5% 40.8% 38%
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 41.3% 38.6% 38.6%

Fish
Cost- 47.1% 40% 36.8%
based 1/q=125ms 1/q=31ms 1/q=62ms

ISI 41.44% 33.5% 32%

0-500 ms

Turtle
Cost- 42.6% 40.7% 40.3%
based 1/q=250ms 1/q=125ms 1/q=250ms

ISI 41.3% 38.8% 38.6%

Fish
Cost- 48.6% 36.8% 34.3%
based 1/q=1000ms 1/q=250ms 1/q=1000ms

ISI 46.7% 37% 33%

300-500 ms

Turtle
Cost- 36.2% 35.6% 33.7%
based 1/q=∞ 1/q=250ms 1/q=500ms

ISI 35% 34.5% 35.7%

Fish
Cost- % % %
based 1/q=125ms 1/q=∞ 1/q=1000ms

ISI 40.5% 33.7% 30.9%

Table 5.12: Highest median of estimation results for the changes in the mo-
tion direction of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of single RGC within the three tested
time intervals.
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Stimulus Time Metrics Left-DSC Non-DSC Right-DSCfeature interval

0-200 ms

Turtle
Cost- 24.8% 25.6% 22.8%
based 1/q=31ms 1/q=31ms 1/q=62ms

ISI 25.3% 25.3% 21.9%

Fish
Cost- 21.8% 18.7% 18%
based 1/q=62ms 1/q=62ms 1/q=62ms

ISI 23.3% 17.3% 16%

0-500 ms

Turtle
Cost- 26.4% 27.2% 24.4%
based 1/q=125ms 1/q=250ms 1/q=500ms

ISI 25.6% 25.6% 20.5%

Fish
Cost- 28.3% 20.2% 18.7%
based 1/q=125ms 1/q=250ms 1/q=125ms

ISI 24.7% 17.8% 16.2%

300-500 ms

Turtle
Cost- 19.4% 18.7% 17.2%
based 1/q=125ms 1/q=62ms 1/q=∞

ISI 21% 22.6% 19%

Fish
Cost- % % %
based 1/q=250ms 1/q=1000ms 1/q=500ms

ISI 22.4% 17.2% 16.3%

Table 5.13: Highest median of estimation results for the combined changes in
the motion speed and direction of the moving stimulus, obtained by applying
spike cost-based metrics and ISI metrics on the activity of single RGC within
the three tested time intervals.
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Time Animal Metrics Pooled Labelled Functional
interval Population Line Group

0-200 ms

Turtle

Cost-
based

33.8% 38.2% 43.4%
1/q=250ms 1/q=∞ 1/q=1000ms

n=18 n=18 n=18

ISI 36.1% 51.5% 50.6%
n=18 n=18 n=15

Fish

Cost-
based

18.1% 18%
1/q=∞ 1/q=∞
n=6 n=6

ISI 21.6% 21.3%
n=6 n=6

0-500 ms

Turtle

Cost-
based

46.8% 60.3% 64.2%
1/q=125ms 1/q=∞ 1/q=∞

n=18 n=18 n=18

ISI 46.8% 54.6% 62.1%
n=18 n=18 n=15

Fish

Cost-
based

25.3% 28.1%
1/q=250ms 1/q=∞

n=6 n=6

ISI 26% 23.4%
n=6 n=6

300-500 ms

Turtle

Cost-
based

36.8% 34% 48.9%
1/q=1000ms 1/q=∞ 1/q=∞

n= n= n=

ISI 31.3% 51.4% 46.7%
n=15 n=18 n=15

Fish

Cost-
based

21.4% 23.7%
1/q=250ms 1/q=∞

n=6 n=6

ISI 20.2% 22.9%
n=6 n=6

Table 5.14: Highest median of estimation results for the motion velocity of
the moving stimulus, obtained by applying spike cost-based metrics and ISI
metrics on the activity of populations of RGC within the three tested time
intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

53.% 58.2% 68.9%
1/q=64ms 1/q=∞ 1/q=∞

n=15 n=15 n=18

ISI 58.1% 63% 73.9%
n=9 n=18 n=15

Fish

Cost-
based

37.1% 43%
1/q=∞ 1/q=∞
n=6 n=6

ISI 46.8% 42.7%
n=6 n=6

0-500 ms

Turtle

Cost-
based

65% 79% 86%
1/q=125ms 1/q=∞ 1/q=∞

n=15 n=15 n=15

ISI 65.7% 63.2% 81.4%
n=15 n=15 n=15

Fish

Cost-
based

49.4% 54.4%
1/q=500ms 1/q=∞

n=6 n=6

ISI 50.5% 48.6%
n=6 n=6

300-500 ms

Turtle

Cost-
based

63% 51.7% 76.2%
1/q=125ms 1/q=∞ 1/q=∞

n=15 n=15 n=15

ISI 58.4% 62.4% 74%
n=15 n=15 n=15

Fish

Cost-
based

46.3% 39.4%
1/q=∞ 1/q=∞
n=6 n=6

ISI 46% 46%
n=6 n=6

Table 5.15: Highest median of estimation results for the motion direction of
the moving stimulus, obtained by applying spike cost-based metrics and ISI
metrics on the activity of populations of RGC within the three tested time
intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

0.36 0.54 0.39
1/q=∞ 1/q=∞ 1/q=∞
n=18 n=18 n=18

ISI 0.37 0.39 0.3
n=18 n=18 n=18

Fish

Cost-
based

0.88 0.88
1/q=∞ 1/q=∞
n=6 n=6

ISI 0.81 0.85
n=6 n=6

0-500 ms

Turtle

Cost-
based

0.24 0.28 0.22
1/q=∞ 1/q=∞ 1/q=∞
n=18 n=18 n=18

ISI 0.26 0.39 0.21
n=18 n=18 n=18

Fish

Cost-
based

0.67 0.66
1/q=∞ 1/q=∞
n=6 n=6

ISI 0.7 0.76
n=6 n=6

300-500 ms

Turtle

Cost-
based

0.37 0.72 0.33
1/q=∞ 1/q=∞ 1/q=∞
n=18 n=18 n=18

ISI 0.46 0.43 0.32
n=18 n=18 n=18

Fish

Cost-
based

0.83 0.93
1/q=∞ 1/q=∞
n=6 n=6

ISI 0.87 0.82
n=6 n=6

Table 5.16: Lowest median of absolute normalised estimation errors for the
motion speed of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of populations of RGC within the
three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

21.5% 19% 26.6%
1/q=31ms 1/q=125ms 1/q=62ms

n=18 n=15 n=18

ISI 22.3% 41.2% 35.9%
n=18 n=18 n=18

Fish

Cost-
based

4.5% 5.2%
1/q=31ms 1/q=125ms

n=6 n=6

ISI 6.2% 6.8%
n=6 n=6

0-500 ms

Turtle

Cost-
based

28.5% 31.2% 35%
1/q=31ms 1/q=500ms 1/q=62ms

n=18 n=18 n=18

ISI 28.8% 41.1% 41.6%
n=18 n=18 n=18

Fish

Cost-
based

6.9% 9.1%
1/q=62ms 1/q=125

n=6 n=6

ISI 8.7% 8.4%
n=6 n=6

300-500 ms

Turtle

Cost-
based

8.1% 11.4% 12.5%
1/q=31ms 1/q=1000ms 1/q=62ms

n=6 n=18 n=12

ISI 6% 27.9% 13.5%
n=18 n=18 n=18

Fish

Cost-
based

3.9% 5.2%
1/q=62ms 1/q=500ms

n=6 n=6

ISI 3.3% 7%
n=6 n=6

Table 5.17: Highest median of estimation results for the instantaneous ve-
locity changes of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of populations of RGC within the
three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

29.6% 30.4% 34%
1/q=16ms 1/q=125ms 1/q=31ms

n=18 n=18 n=18

ISI 31.8% 49.3% 45.4%
n=18 n=18 n=18

Fish

Cost-
based

18.4% 18.7%
1/q=125ms 1/q=250ms

n=6 n=6

ISI 19.9% 17.5%
n=6 n=6

0-500 ms

Turtle

Cost-
based

34.8% 36.9% 40.4%
1/q=31ms 1/q=125ms 1/q=62ms

n=18 n=18 n=18

ISI 36.5% 48.1% 48.2%
n=18 n=18 n=18

Fish

Cost-
based

20.1% 20.8%
1/q=125ms 1/q=250ms

n=6 n=6

ISI 21.3% 20.4%
n=6 n=6

300-500 ms

Turtle

Cost-
based

14.8% 18.7% 18.4%
1/q=31ms 1/q=1000ms 1/q=62ms

n=18 n=18 n=18

ISI 13.9% 35.4% 20.8%
n=6 n=18 n=6

Fish

Cost-
based

13.1% 13.9%
1/q=31ms 1/q=∞

n=6 n=6

ISI 11.9% 17.1%
n=6 n=6

Table 5.18: Highest median of estimation results for the motion velocity of
the moving stimulus before the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of popula-
tions of RGC within the three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

56.3% 61.6% 66.5%
1/q=16ms 1/q=125ms 1/q=31ms

n=18 n=15 n=18

ISI 59% 72% 72.4%
n=15 n=18 n=18

Fish

Cost-
based

46.7% 48.6%
1/q=16ms 1/q=125ms

n=6 n=6

ISI 51.7% 49.4%
n=6 n=6

0-500 ms

Turtle

Cost-
based

59.5% 64.6% 68.7%
1/q=31ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 62.8% 71.2% 73.4%
n=18 n=18 n=18

Fish

Cost-
based

49.8% 52.6%
1/q=31ms 1/q=125ms

n=6 n=6

ISI 52.7% 51%
n=6 n=6

300-500 ms

Turtle

Cost-
based

44.2% 50.4% 46.6%
1/q=125ms 1/q=125ms 1/q=16ms

n=9 n=18 n=18

ISI 42% 62.2% 48%
n=6 n=18 n=6

Fish

Cost-
based

44.6% 46.4%
1/q=125ms 1/q=500ms

n=6 n=6

ISI 37.9% 47%
n=6 n=6

Table 5.19: Highest median of estimation results for the motion direction of
the moving stimulus before the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of popula-
tions of RGC within the three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

0.66 0.68 0.66
1/q=16ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 0.54 0.45 0.44
n=18 n=18 n=18

Fish

Cost-
based

0.82 0.77
1/q=16ms 1/q=125ms

n=6 n=6

ISI 0.78 0.83
n=6 n=6

0-500 ms

Turtle

Cost-
based

0.57 0.62 0.58
1/q=31ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 0.52 0.49 0.44
n=18 n=18 n=18

Fish

Cost-
based

0.79 0.73
1/q=62ms 1/q=250ms

n=6 n=6

ISI 0.78 0.72
n=6 n=6

300-500 ms

Turtle

Cost-
based

0.92 0.8 0.86
1/q=8ms 1/q=8ms 1/q=8ms
n=18 n=18 n=18

ISI 0.93 0.64 0.85
n=6 n=18 n=6

Fish

Cost-
based

0.94 0.83
1/q=16ms 1/q=8ms

n=6 n=6

ISI 0.95 0.79
n=6 n=6

Table 5.20: Lowest median of absolute normalised estimation errors for
the motion speed of the moving stimulus before the instantaneous veloc-
ity changes, obtained by applying spike cost-based metrics and ISI metrics
on the activity of populations of RGC within the three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

39.6% 42.5% 48.5%
1/q=31ms 1/q=∞ 1/q=125ms

n=18 n=18 n=18

ISI 40.4% 55.5% 46.4%
n=18 n=18 n=18

Fish

Cost-
based

17.3% 17.6%
1/q=31ms 1/q=250ms

n=6 n=6

ISI 22.1% 22.7%
n=6 n=6

0-500 ms

Turtle

Cost-
based

50.6% 67.4% 69.1%
1/q=62ms 1/q=∞ 1/q=250ms

n=18 n=18 n=18

ISI 52.5% 57% 68.5%
n=18 n=18 n=18

Fish

Cost-
based

26.1% 29.2%
1/q=125ms 1/q=1000ms

n=6 n=6

ISI 28.1% 24.7%
n=6 n=6

300-500 ms

Turtle

Cost-
based

37.3% 39.4% 50.3%
1/q=62ms 1/q=∞ 1/q=500ms

n=18 n=18 n=18

ISI 30.9% 50.2% 46.4%
n=18 n=18 n=15

Fish

Cost-
based

21.6% 25.3%
1/q=62ms 1/q=∞

n=6 n=6

ISI 19.7% 23.8%
n=6 n=6

Table 5.21: Highest median of estimation results for the motion velocity of
the moving stimulus after the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of popula-
tions of RGC within the three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

58.3% 64.6% 72.2%
1/q=62ms 1/q=∞ 1/q=500ms

n=18 n=15 n=15

ISI 59.9% 63.4% 76%
n=18 n=18 n=18

Fish

Cost-
based

45.6% 48.3%
1/q=500ms 1/q=500ms

n=6 n=6

ISI 48.3% 45.9%
n=6 n=6

0-500 ms

Turtle

Cost-
based

67.8% 83.4% 88.3%
1/q=125ms 1/q=∞ 1/q=1000ms

n=15 n=18 n=15

ISI 68.4% 62.7% 82.7%
n=15 n=18 n=18

Fish

Cost-
based

52.2% 59.3%
1/q=250ms 1/q=∞

n=6 n=6

ISI 50.9% 50.1%
n=6 n=6

300-500 ms

Turtle

Cost-
based

63.3% 58.1% 78.6%
1/q=500ms 1/q=∞ 1/q=∞

n=18 n=12 n=15

ISI 58.1% 60% 73.6%
n=15 n=15 n=15

Fish

Cost-
based

45.8% 44.2%
1/q=250ms 1/q=∞

n=6 n=6

ISI 46% 49.6%
n=6 n=6

Table 5.22: Highest median of estimation results for the motion direction of
the moving stimulus after the instantaneous velocity changes, obtained by
applying spike cost-based metrics and ISI metrics on the activity of popula-
tions of RGC within the three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

0.33 0.46 0.34
1/q=62ms 1/q=∞ 1/q=125ms

n=18 n=18 n=18

ISI 0.32 0.39 0.26
n=18 n=18 n=18

Fish

Cost-
based

0.72 0.74
1/q=62ms 1/q=500ms

n=6 n=6

ISI 0.74 0.78
n=6 n=6

0-500 ms

Turtle

Cost-
based

22.2 21.8 17.5
1/q=62ms 1/q=∞ 1/q=250ms

n=18 n=18 n=18

ISI 0.22 0.41 0.17
n=18 n=18 n=18

Fish

Cost-
based

0.65 0.6
1/q=1000ms 1/q=∞

n=6 n=6

ISI 0.61 0.72
n=6 n=6

300-500 ms

Turtle

Cost-
based

0.37 .6 0.32
1/q=125ms 1/q=∞ 1/q=∞

n=18 n=18 n=18

ISI 0.47 0.49 0.31
n=18 n=18 n=18

Fish

Cost-
based

0.76 0.81
1/q=∞ 1/q=∞
n=6 n=6

ISI 0.77 0.74
n=6 n=6

Table 5.23: Lowest median of absolute normalised estimation errors for the
motion speed of the moving stimulus after the instantaneous velocity changes,
obtained by applying spike cost-based metrics and ISI metrics on the activity
of populations of RGC within the three tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

84% 75.6% 81.3%
1/q=16ms 1/q=125ms 1/q=31ms

n=18 n=18 n=18

ISI 82% 80.1% 83.2%
n=18 n=18 n=18

Fish

Cost-
based

56.8% 55.2%
1/q=62ms 1/q=250ms

n=6 n=6

ISI 57.7% 56.3%
n=6 n=6

0-500 ms

Turtle

Cost-
based

83.6% 77.4% 81.6%
1/q=31ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 81.7% 78.9% 83.8%
n=18 n=18 n=18

Fish

Cost-
based

64.7% 64.8%
1/q=125ms 1/q=500ms

n=6 n=6

ISI 63.4% 57.3%
n=6 n=6

300-500 ms

Turtle

Cost-
based

61.3% 59.8% 60.8%
1/q=31ms 1/q=∞ 1/q=62ms

n=18 n=18 n=18

ISI 58.6% 73.5% 65.8%
n=6 n=18 n=6

Fish

Cost-
based

51.5% 56.3%
1/q=250ms 1/q=∞

n=6 n=6

ISI 53% 59%
n=6 n=6

Table 5.24: Highest median of estimation results for the changes of motion
speed of the moving stimulus, obtained by applying spike cost-based metrics
and ISI metrics on the activity of populations of RGC within the three tested
time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

68.5% 54.5% 64%
1/q=31ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 74.3% 63.1% 75.8%
n=18 n=18 n=18

Fish

Cost-
based

46.9% 47.3%
1/q=31ms 1/q=62ms

n=6 n=6

ISI 54.5% 46.6%
n=6 n=6

0-500 ms

Turtle

Cost-
based

71% 61% 68%
1/q=31ms 1/q=500ms 1/q=62ms

n=18 n=18 n=18

ISI 75.9% 61% 74.6%
n=18 n=18 n=18

Fish

Cost-
based

52.9% 51.7%
1/q=250ms 1/q=250ms

n=6 n=6

ISI 55.5% 48.4%
n=6 n=6

300-500 ms

Turtle

Cost-
based

46.9% 41.5% 47.3%
1/q=∞ 1/q=∞ 1/q=1000ms
n=15 n=18 n=18

ISI 43.2% 50% 44.9%
n=9 n=18 n=18

Fish

Cost-
based

42.5% 41.1%
1/q=125ms 1/q=∞

n=6 n=6

ISI 35.8% 47.6%
n=6 n=6

Table 5.25: Highest median of estimation results for the changes of motion
direction of the moving stimulus, obtained by applying spike cost-based met-
rics and ISI metrics on the activity of populations of RGC within the three
tested time intervals.
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Stimulus Time Metrics Pooled Labelled Functional
feature interval Population Line Group

0-200 ms

Turtle

Cost-
based

58% 42.9% 52.5%
1/q=31ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 62.9% 53.7% 65.2%
n=18 n=18 n=18

Fish

Cost-
based

24.4% 25.1%
1/q=250ms 1/q=125ms

n=6 n=6

ISI 31.4% 27.4%
n=6 n=6

0-500 ms

Turtle

Cost-
based

60.9% 50.1% 57.4%
1/q=31ms 1/q=250ms 1/q=62ms

n=18 n=18 n=18

ISI 63.4% 50.9% 63.7%
n=18 n=18 n=18

Fish

Cost-
based

33.2% 33.1%
1/q=250ms 1/q=500ms

n=6 n=6

ISI 36.7% 29.2%
n=6 n=6

300-500 ms

Turtle

Cost-
based

28.9% 26.5% 31.7%
1/q=125ms 1/q=∞ 1/q=125ms

n=18 n=18 n=18

ISI 26.7% 39% 32.9%
n=15 n=18 n=18

Fish

Cost-
based

22.3% 24.6%
1/q=125ms 1/q=∞

n=6 n=6

ISI 24.6% 25.7%
n=6 n=6

Table 5.26: Highest median of estimation results for the combined changes of
motion speed of the moving stimulus, obtained by applying spike cost-based
metrics and ISI metrics on the activity of populations of RGC within the
three tested time intervals.
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