

Experimentelle und theoretische Untersuchungen zu amino- und silylsubstituierten cyclischen Tetrylenen

Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) angenommene Dissertation

von

Patrick Zark

geboren am 3. August 1982 in Bremen.

Oldenburg, Dezember 2012

Die vorliegende Arbeit entstand im Zeitraum von Juli 2008 bis Oktober 2012 unter der Leitung von Herrn Professor Doktor Thomas Müller am Lehrstuhl für Anorganische Chemie am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg.

Gutachter: Prof. Dr. T. Müller

Zweitgutachter: Prof. Dr. R. Beckhaus

Tag der Disputation:20. November 2012

Summary

Compounds with group 14 elements that contain a divalent tetrelatom (Tetrylenes) are well suited starting materials for the synthesis of unsaturated compounds, metal complexes, and cationic species. This work is focused on the investigation of the use of amino- and silvl substituted cyclic tetrylenes (silylenes, germylenes, stannylenes and plumbylenes) for the synthesis of corresponding compounds. In this context, a synthetic approach to the unknown xylyl-substituted N-heterocyclic stannylene 70 was established. Furthermore, it was shown that the redox properties of the N-heterocyclic silvlenes 14, 40, 41 and 45–47 are influenced by their substituents (see: P. Zark, T. Müller, R. West, K. Pravinkumar, J. Y. Becker, Organometallics 2010, 29, 1603). As part of the development of suitable synthetic routes for heavy homologues of allenes or cumulenes, studies on the reactivity of N-aryl-substituted Nheterocyclic silvlenes towards group 14 tetrahalogenides were carried out. In this context two previously unknown cyclic trichloromethyl-diamino-chloro-silanes 103 and 104 were synthesized and fully characterized. Additionally, first attempts to prepare 2-H-2-sila-imidazolium-, and 2-H-2-sila-imidazolidiniumions by treating N-heterocyclic silylenes with Brønstedt Acids are presented. All investigated protonation reactions using diethyl ether as solvent showed that the protonation at the silicon atom is preferred. Interestingly, almost all these reactions led to the formation of the triethyloxonium cation 146. Quantum chemical calculations suggest that 146 is a follow-up product of transient 2-H-2-sila-imidazoliumion 152. Furthermore, the synthesis of a previously unknown tungsten complex 77 with only one N-heterocyclic silvlene is described (see: P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, Journal of Organometallic Chemistry 2010, 695, 398). The classification of ligand properties of the N-heterocyclic silvlene 40 in the spectrochemical series was established with the help of spectroscopic data of this compound.

In the second part of this work theoretical studies on novel group 4 metal complexes **38** and **39** containing silylsubstituted cyclic tetrylenes as complex ligands are presented, which emphasize the double-bond character of the linkage between the group 4 metal and the group 14 element. (in parts already published: H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, *Journal of the American Chemical Society* **2012**, *134*, 10864). In addition, the theoretical investigation of plumbylene **169**, which shows unexpected dimerization in the solid state, highlights that strong bonding between the two plumbylene subunits **169** in this dimer **168** is mostly caused by non-covalent interactions (see: H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, *Journal of the American Chemical Society* **2012**, *134*, 6409).

Kurzzusammenfassung

Verbindungen der Gruppe 14 Elemente, in denen das Tetrelatom zweifach koordiniert und in der Oxidationsstufe +II vorliegt (Tetrylene), eignen sich gut als Ausgangsmaterialien zur Synthese von Mehrfachbindungssysthemen, Metallkomplexen und kationischen Verbindungen. Im Rahmen dieser Arbeit wurde speziell der Einsatz amino- sowie silylsubstituierter, cyclischer Tetrylene (Silylene, Germylene, Stannylene und Plumbylene) zur Darstellung entsprechender niederkoordinierter Verbindungen der Elemente der Gruppe 14 untersucht.

In diesem Zusammenhang wurde ein synthetischer Zugang zu einem bislang unbekannten Xylyl-substituierten N-heterocyclischen Stannylen 70 geschaffen. Außerdem konnte gezeigt werden, dass die Substituenten in den N-heterocyclischen Silylenen 14, 40, 41 und 45-47 Einfluss auf deren Redoxverhalten ausüben (siehe: P. Zark, T. Müller, R. West, K. Pravinkumar, J. Y. Becker, Organometallics 2010, 29, 1603). Im Rahmen der Entwicklung von geeigneten Synthesewegen für schwere Homologe der Allene oder der Cumulene wurden Studien zur Reaktivität von Aryl-substituierten N-heterocyclischen Silylenen gegenüber Tetrahalogeniden der Gruppe 14 Elemente durchgeführt. Dabei gelang es zwei bislang unbekannte cyclische Trichlormethyl-diaminochlorsilane 103 und 104 zu synthetisieren und zu charakterisieren. Versuche zur Darstellung von 2-H-2-Sila-imidazolium- und 2-H-2-Sila-imidazolidiniumionen aus Umsetzungen von N-heterocyclischen Silylenen mit Brønstedtsäuren zeigten, dass die Protonierung der untersuchten Silylene in Donorlösungsmitteln wie Diethylether am zweifachkoordinierten Siliciumatom bevorzugt ist. Aus nahezu allen Protonierungsexperimenten in Diethylether ging das Triethyloxoniumkation146 hervor. Quantenchemische Rechnungen verdeutlichen, dass 146 als Folgeprodukt eines intermediär entstehenden 2-H-2-Silaimidazoliumions 152 angesehen werden kann. Darüber hinaus wird die Darstellung eines bislang unbekannten Wolfram- Komplexes 77 mit nur einem N-heterocyclischen Silylen als Komplexligand beschrieben (siehe: P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, Journal of Organometallic Chemistry 2010, 695, 398). Mit Hilfe spektroskopischer Daten dieser Verbindungen gelang es erstmals die Ligandeneigenschaften der N-heterocyclischen Silylene zu ermitteln und eine Einordnung die spektrochemische Reihe vorzunehmen.

Im zweiten Teil dieser Arbeit werden theoretische Studien zur Bindungssituation in neuartigen Gruppe 4 Metallkomplexen **38** und **39** mit silylsubstituierten cyclischen Tetrylenen als Komplexliganden präsentiert, die den Doppelbindungscharakter der Gruppe 4 Metall und Gruppe 14 Elementbindung verdeutlichen (in Teilen schon veröffentlicht: H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, *Journal of the American Chemical Society* **2012**, *134*, 10864). Darüber hinaus hebt die theoretische Untersuchung des **169** hervor, dass die unerwartete Dimerisierung dieser Verbindung im Festkörper auf starke nicht kovalente Wechselwirkungen zwischen den Plumbylenen **169** zurückzuführen ist (siehe: H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, *Journal of the American Chemical Society* **2012**, *134*, 6409).

Danksagung

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. T. Müller für die interessante Themenstellung, die fürsorgliche Betreuung während dieser Arbeit und die ständige Diskussionsbereitschaft bedanken.

Mein zweiter Dank geht an Herrn Prof. Dr. Beckhaus für die Übernahme des Zweitgutachtens.

Ganz besonders möchte ich allen Kooperationspartnern danken. Durch die gute Zusammenarbeit sind äußerst interessante Fragestellungen aufgekommen, deren Untersuchung immer sehr viel Spaß machte und zu guter Letzt auch zu eindrucksvollen Ergebnissen führte. Herauszustellen ist die Kooperation mit dem Arbeitskreis Marschner und mit Herrn Dr. Henning Arp (Technische Universität Graz, Österreich). Ferner gilt mein Dank allen weiteren Kooperationspartnern: Dem Arbeitskreis Doye und Frau Dr. Insa Prochnow (Universität Oldenburg), dem Arbeitskreis Becker und Herrn Ph. D. K. Pravinkumar (Ben–Gurion Universität, Beer Sheva, Israel), Frau Dr. Sarah Kohls aus dem Arbeitskreis Rullkötter (Universität Oldenburg) und Dr. Daniel Kratzert aus dem Arbeitskreis Stalke (Universität Göttigen).

Darüber hinaus denke ich der analytischen Abteilung: Frau M. Rundshagen, Frau A. Tschirne und Herrn D. Neemeyer für die Durchführung der zum Teil anspruchsvollen NMR-Experimente, Herrn Dipl.- Ing. F. Fabretti für die Messung der Massenspektren, Herrn Dipl. Chem. W. Saak für die Durchführung der Röntgenstrukturanalysen, die zum Teil außerordentliche Probleme mit sich brachten, Herrn Dipl.-Ing. D. Haase und Herrn M.Sc. C. Adler für die Lösung der Einkristallstrukturen.

Mein besonderer Dank gilt der Arbeitsgruppe Müller. Für die fachliche Unterstützung und die geduldige Beantwortung meiner Fragen richte ich meinen Dank an Frau Dr. A. Schäfer. Frau M. Ahrnsen möchte ich für die Bereitstellung von Chemikalien und Herrn R. Schmidt für die Durchführung der gaschromatographischen Untersuchungen danken. Frau Dr. N. Dehnert, Herrn Dipl. Chem. A. Schäfer und Herrn M.Sc. M. Reißmann danke ich für die tolle Arbeitsatmosphäre im gemeinsamen Labor und für jeden wertvollen Ratschlag. Außerdem gilt mein Dank allen weiteren und ehemaligen des Arbeitskreises Müller für die schöne gemeinsame Zeit während meiner Promotion (Frau M.Sc. N. Kordts, Herrn. M.Sc. C. Reinhold, Herrn M.Sc. D. Lutters, Herrn M.Sc. D. Herrn Dr. R. Panisch, Frau Dr. N. Lühmann, Frau Dr. A. Klaer, Frau Dr. C. Gerdes und Frau Dipl. Chem. J. Intemann).

Ganz besonders möchte ich an dieser Stelle allen Studenten danken, die durch ihre Arbeiten im Rahmen von Bachelorarbeiten und Forschungspraktika einen besonderen Beitrag zu dieser Arbeit geleistet haben (Frau. M.Sc. L. Albers, Herrn M.Sc. F. Loose und Herrn B.Sc. C. Lasar).

Darüber hinaus danke ich allen aus dem Fachbereich der Anorganischen Chemie. Herausstellen möchte ich dabei die gute Zusammenarbeit während des gesamten Studiums mit Herrn Dr. O. N. Frey. Meinen beiden Mitbewohner und ehemaligen Mittarbeiten des Arbeitskreises Wickleder, Frau. Dr. K. Rieß und Herrn Dipl. Chem. C. Logemann möchte ich für alle gemeinsamem Tage danken.

Mein ganz besonderer Dank geht an meine Eltern und meine Familie. Ohne ihre unermüdliche Unterstützung wären mein Studium und die Promotion nicht möglich gewesen. Während der Zeit dieser Arbeit hier in Oldenburg sind sehr gute Freundschaften zu Herrn B.A. R. Robra, Herrn Dipl. SoWi. K. U. Pieper und Herrn T. Dobe entstanden. Ihr Erfahrungsschatz aus den chemiefremden wissenschaftlichen Disziplinen half immer Fragestellungen aus einem neuen Blickwinkel zu betrachten.

Mein größter Dank ist an meine Freundin Frau M.Sc. Maren Stumm gerichtet, für den großen Rückhalt, ihre ausdauernde Geduld, ihrer liebevolle Unterstützung vor und während dieser Arbeit.

Abschließend danke ich dem Fonds der Chemischen Industrie FCI der mich finanziell durch das Chemiefonds-Stipendium von Mai 2009 – April 2011 unterstützte (Nr. 183191) und Tarek Huith für den Druck dieser Arbeit.

Inhaltsverzeichnis

1	Einleitung1
1.1	Tetrylene – schwere Homologe der Carbene
1.1.1	Synthesewege zur Darstellung von schweren Tetrylenen
1.1.2	Elektronische Struktur der Tetrylene
1.1.3	Chemische Eigenschaften von schweren Tetrylenen R_2E : (E = Si – Pb) 11
1.1.4	Bindungssituation in Olefin- und Tetrylenübergangsmetallkomplexen
1.2	Tetrylkationen
1.2.1	Silylkationen
2	Motivation und Aufgabenstellung21
3	Arylsubstituierte N-heterocyclische Tetrylene – Synthese und Struktureigenschaften 23
3.1	Arbeiten zur Optimierung des Synthesewegs zur Darstellung N-heterocyclischer Silylene 23
3.2	Einkristallstruktur des 2,6-Di-iso-propylphenyl-substituierten N-heterocyclischen Silylens 25
3.3	Einkristallstrukturen der höheren Homologen des 2,6-Di- <i>iso</i> -propylphenyl-substituierten N-heterocyclischen Silylens
3.4	Einkristallstruktur des 2,6-Dimethylphenyl-substituierten N-heterocyclischen Germylens 31
3.5	Arbeiten zur Optimierung des Synthesewegs zur Darstellung arylsubstituierter N-heterocyclischer Stannylene
3.6	Synthese und Charakterisierung arylsubstituierter α-Aminoaldimine
3.7	Umsetzung des Dipp-substituierten α-Aminoaldimins 53 mit Mebp ₂ Sn: 65
3.8	Umsetzung des Xylyl-substituierten α-Aminoaldimins 67 mit Mebp ₂ Sn: 65
3.9	Vergleich der Bindungssituationen der N-heterocyclischen Tetrylene mit Xylyl- Substituenten an den Stickstoffatomen in Abhängigkeit des Gruppe 14 Elements: Silicium, Germanium und Zinn
4	N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen
4.1	Einfluss der Substituenten auf die Bindungssituation und das Redoxverhalten N- heterocyclischer Silylene
4.2	N-heterocyclische Silylene als Komplexliganden
4.2.1	Pentacarbonylwolframkomplex 77 mit dem Xylyl-substituierten N-heterocyclischen Silylen 40 als Komplexligand
4.2.2	Einordnung des N-heterocyclischen Silylens 40 in die spektrochemische Reihe 55
4.2.3	Versuche zur Synthese von Gruppe 4 Metallkomplexen mit N-heterocyclischen Silylenen als Komplexliganden
4.3	N-heterocyclische Silyene als Ausgangsstoffe für Silene, Disilene und Silaallene

4.3.1	Oxidative Addition – Umsetzungen der N-heterocyclischen Silylene mit Halogeniden der Gruppe 14 Elemente	63
4.3.2	Reaktionen der Silylene 40 mit Germanium- und Zinndichlorid	80
4.3.3	Salzmetathese zum Aufbau von Verbindungen, die als Ausgangsstoff für die Synthese neuartiger niedervalenter Verbindungen der Elemente der Gruppe 14 geeignet sind	85
4.3.4	Reduktionsexperimente	87
4.3.5	Fazit – N-heterocyclische Silyene als Ausgangsstoffe für Silene, Disilene und Silaallene	91
4.4	N-heterocyclische Silylene als Ausgangsstoffe zur Synthese von stickstoffsubstituierten Silylkationen	94
4.4.1	Protonierung von N-heterocyclischen Silylenen als Syntheseweg zur Darstellung von N-heterocyclischen Silylkationen	94
4.4.2	Bildung des cyclischen Diaminoethoxylsilans 144	97
4.4.3	Reaktionsmechanismus	105
4.4.4	Protonierung des Silylens 41 unter Ausschluss von Diethylether	. 111
4.4.5	Hydridabstraktion als Syntheseweg zur Darstellung von N-heterocyclischen Silylkationen.	. 115
4.4.6	Reaktivitätsunterschiede zwischen Silylen 41 und Germylen 54 gegenüber Säuren	120
4.4.7	Fazit	124
5]	Theoretische Studien zur Bindungssituation in neuartigen Tetrylenverbindungen	. 126
5.1	Theoretische Untersuchungen zur Bindungssituation im Bleidimer 168	. 127
5.2	Theoretische Untersuchungen zur Bindungssituation in den Gruppe 4 Metallkomplexen mit schweren Tetrylenen als Liganden	. 134
6 2	Zusammenfassung	. 150
7 I	Experimentalteil	. 158
7.1	Analysemethoden	158
7.1.1	Kernresonanzspektroskopie (NMR)	158
7.1.2	Massenspektrometrie (MS)	160
7.1.3	GC/MS	160
7.1.4	Röntgenstrukturanalyse	161
7.1.5	Infrarot Spektroskopie (IR)	161
7.2	Chemikalien und Ausgangsverbindungen	. 161
7.2.1	Trocknen von Ethanol	. 161
7.2.2	Herstellung von Kaliumgraphit	. 161
7.2.3	Darstellung der Diazabutadiene 49, 50 und 133	162
7.2.4	Darstellung von Di(tertbutyl)-dibromsilan 125	163
7.2.5	Darstellung von Diphenyldichlorsilan, 126	. 163
7.2.6	Darstellung von Dimethyldichlorsilan, 127	. 163

7.2.7	Darstellung von Diethyloxoniumtetrakis(nonafluor-2-(trifluormethyl)-2-propoxyl)- aluminat	164
7.2.8	Darstellung von Trityl-7.8.9.10.11.12-hexabrom-monocarba- <i>closo</i> -dodecaborat	164
7.2.9	Darstellung von Trimethylsilan 160	164
7.2.10	Darstellung von 1,3-Bis(2,6-dimethylphenyl)-1,3-diaza-2-silacyclo- pent-4-en-2-yliden, 40	165
7.2.11	Darstellung von 1,3-Bis(2,6-di- <i>iso</i> -propylphenyl)-1,3-diaza-2-silacyclo- pent-4-en-2-yliden, 41	166
7.2.12	Darstellung von 1,3-Bis(tertbutyl)-1,3-diaza-2-silacyclopent-4-en-2-yliden, 14	166
7.2.13	Darstellung von Tetrabromsilan, SiBr ₄ , 117	167
7.2.14	Darstellung von N,N'-Di-tertbutylethylendiamin, 189	168
7.2.15	Darstellung von 2,2-Dibrom-1,3-di-tertbutyl-1,3-diaza-2-silacyclopentan, 191	169
7.2.16	Darstellung von Di-tertbutyl-1,3-diaza-2-silacyclopentan-2-yliden, 45	170
7.2.17	Darstellung von Diethyloxoniumtetrakis(pentafluorphenyl)borat 144[B(C ₆ F ₅) ₄]	171
7.2.18	Darstellung von Trityl-tetrakis(pentafluorphenyl)borat 29[B(C ₆ F ₅) ₄]	174
7.2.19	Darstellung von Benzenium-7,8,9,10,11,12-hexabrom-monocarba- <i>closo</i> -dodecaborat 158[CB ₁₁ H ₆ Br ₆]	174
7.3	Durchführung einzelner Experimente	176
7.3.1	Darstellung von 1,3-Bis(2,6-di- <i>iso</i> -propylphenyl)-1,3-diaza-2,2-dichlorsila- cyclopent-4-en, 51a	176
7.3.2	Darstellung von 1,3-Bis(2,6-di- <i>iso</i> -propylphenyl)-1,3-diaza-2-germacyclo- pent-4-en-2-yliden, 54	177
7.3.3	Darstellung von 1,3-Bis(2,6-dimethylphenyl)-1,3-diaza-2-germacyclo- pent-4-en-2-yliden, 58	178
7.3.4	Darstellung von <i>N</i> -[2-[(2,6-dimethylphenyl)amino]ethyliden-2,6-dimethyl- benzolamin, 50	179
7.3.5	Darstellung von <i>N</i> -[2-[(2,6-di- <i>iso</i> -propylphenyl)amino]ethyliden-2,6-diisopropyl- benzolamin, 53	181
7.3.6	Umsetzung des Diarylstannylens 65 mit Dipp-substituiertem α-Aminoaldimin 53	182
7.3.7	Umsetzung des Diarylstannylens 65 mit Xylyl-substituiertem α-Aminoaldimin 67	184
7.3.8	Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Titanocen- bis(trimethylsilyl)acetylen, 84	185
7.3.9	Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Titanocen- bis(trimethylsilyl)acetylen, 84	186
7.3.10	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Titanoncendichlorid, 86, unter reduktiven Bedingungen	187
7.3.11	Darstellung eines Silylen - Wolframpentacarbonyl - Komplexes, 77	188
7.3.12	Darstellung von 1,3-Bis(2,6-di- <i>iso</i> -propylphenyl)-1,3-diaza-2-chlor-2-trichlormethyl-2-silacyclopent-4-en, 103	189

7.3.13	Darstellung von 1,3-Bis(2,6-dimethylphenyl)-1,3-diaza-2-chlor-2-trichlormethyl-2- silacyclopent-4-en, 104	190
7.3.14	Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Tetrabrom- kohlenstoff	191
7.3.15	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Tetrabrom- kohlenstoff	192
7.3.16	Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Tetrachlorsilan	193
7.3.17	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Tetrachlorsilan	194
7.3.18	Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 40 mit Tetrabromsilan	195
7.3.19	Darstellung von 1,3-Bis(2,6-diisopropylphenyl)-1,3-diaza-2,2-dibromsila- cyclopent-4-en, 51b	196
7.3.20	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Tetrabromsilan	197
7.3.21	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Germanium(II)chlorid · Dioxan	198
7.3.22	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Zinn(II)chlorid	199
7.3.23	Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Di-(<i>tert</i> butyl)- dibromsilan	200
7.3.24	Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Di(<i>tert</i> butyl)- dibromsilan	202
7.3.25	Umsetzung des <i>tert</i> Butyl-substituierten gesättigten N-heterocyclischen Silylens 45 mit Di-(<i>tert</i> butyl)-dibromsilan	203
7.3.26	Umsetzung des Xylyl-substituierten ungesättigten N-heterocyclischen Silylens 40 mit Diphenyldichlorsilan	204
7.3.27	Umsetzung des Xylyl-substituierten ungesättigten N-heterocyclischen Silylens 40 mit Dimethyldichlorsilan	205
7.3.28	Umsetzung des Xylyl-substituierten ungesättigten N-heterocyclischen Silylens 40 mit Dichlormethan	206
7.3.29	Umsetzung des lithiierten <i>tert</i> Butyl-substituierten Diazabutadiens 133 mit Hexachlordisilan	207
7.3.30	Umsetzung des lithiierten Dipp-substituierten Diazabutadiens 49 mit Hexachlordisilan	208
7.3.31	Umsetzung eines Reaktionsgemischs aus zwei Äquivalenten 41 und Tetrachlorsilan mit Lithiumnaphthalid	209
7.3.32	Reduktion von 103 mit Lithiumnaphthalid	210
7.3.33	Reduktion von 103 mit Kaliumgraphit	212
7.3.34	Darstellung von 1,3-Bis-(di-iso-propylphenyl)-1,3-diaza-2-sila-cyclopent-4-en 163	213
7.3.35	Allgemeine Arbeitsvorschriften zur Protonierung der N-heterocyclischen Silylene der jeweiligen Brønstedt-Säure	214
7.3.36	Umsetzungen der Silylene bei Raumtemperatur mit der jeweiligen Brønstedt-Säure in hoher Konzentration	215

7.3.3	3.37 Umsetzungen der Silylene bei niedrigen Temperaturen mit der jeweiligen Brønstedt- Säure in hoher Konzentration		
7.3.3	8 Umsetzungen der Silylene bei niedrigen Temperaturen mit der jeweiligen Brønstedt- Säure in niedriger Konzentration	219	
7.3.3	9 Darstellung von 1,3-Bis-(di- <i>iso</i> -propylphenyl)-2-ethoxyl-1,3-diaza-2-sila- cyclopent-4-en 145	223	
7.3.4	0 Protonierung des Silylens 41 mit der Säure 144[B(C ₆ H ₅) ₄] - Umsetzung und Analyse bei tiefen Temperaturen	227	
7.3.4	1 Protonierung des Silylens 41 mit 158[CB ₁₁ H ₆ Br ₆]	229	
7.3.4	2 Hydridabstraktion von der Verbindung 163 mit $29[B(C_6F_5)_4]$	230	
8	Kristallographischer Anhang	232	
9	Details für die computerchemischen Berechnungen	240	
9.1	Spezielle computerchemische Details für Abschnitt 3.9	240	
9.2	Spezielle computerchemische Details für Abschnitt 4.13.9	241	
9.3	Spezielle computerchemische Details für Abschnitt 4.2.13.9	241	
9.4	Spezielle computerchemische Details für Abschnitt 4.4.3, 4.4.5 und 4.4.6	242	
9.5	Spezielle computerchemische Details für Abschnitt 5.1	243	
9.6	Spezielle computerchemische Details für Abschnitt 5.2	243	
10	Literaturverzeichnis	247	
11	Abkürzungsverzeichnis	256	
12	Verbindungsverzeichnis	258	
13	Anlagen	267	
13.1	Lebenslauf	267	
13.2	Publikationen	269	
13.3	Auszeichnungen	275	
13.4	Poster	275	
13.5	Vorträge	276	

1 Einleitung

In der Kohlenstoffgruppe der "Tetrele" (der Elemente der Gruppe 14: Kohlenstoff, Silicium, Germanium, Zinn und Blei) ist die Verschiedenheit der einzelnen Glieder dieser chemischen Familie so ausgeprägt wie in keiner weiteren Gruppe des Periodensystems. Das Anfangsglied Kohlenstoff hat in seinen chemischen und physikalischen Eigenschaften kaum noch Ähnlichkeit mit dem Endglied, dem Blei.^[11] In dieser Gruppe nimmt der Kohlenstoff nicht nur einen besonderen Platz ein weil er in seinen Verbindungen Träger des organischen Lebens ist, sondern weil er in der Lage ist außerordentlich stabile Bindungen zu weiteren Kohlenstoffatomen aufzubauen. Auf Grund dieser Eigenschaft ist Kohlenstoff in der Lage große kettenartige Moleküle sowie ausgedehnte Ringsysteme mit unterschiedlichsten funktionellen Gruppen aufzubauen. Im Vergleich zu den schwereren Elementen der Gruppe der Tetrele und zu allen weiteren Elementen des Periodensystems unterschiedt sich Kohlenstoff vor allem in der Art und Weise seiner Bindungen mit anderen Atomen (Einfach, Doppel- oder Dreifachbindung, Bindungslängen und Bindungsstärken dieser Bindungen).^[2] Die hier vorliegende Arbeit soll dazu beitragen die interessanten Unterschiede und bemerkenswerten Gemeinsamkeiten der Chemie der Gruppe 14 Elemente zu ergründen.

1.1 Tetrylene – schwere Homologe der Carbene

Tetrylene sind Verbindungen, in denen ein Gruppe 14 Element nur zwei Substituenten trägt, die über eine Einfachbindung an das Tetrelatom gebunden sind. Bedingt dadurch liegen diese Tetrylenzentren koordinativ sowie elektronisch ungesättigt vor (niedervalent, sechs Valenzelektronen).^[3]

Da die Stabilität der Verbindungen in der Oxidationsstufe +II von Kohlenstoff bis zum Blei zunimmt, sind die Dihalogenide des Zinns SnX_2 und des Bleis PbX_2 (X = F, Cl, Br und I) schon lange bekannt.^[1] Stabile Verbindungen, in denen die leichteren Tetrele Silicium und Germanium als Dihalogenide vorliegen, sind erst in neuerer Zeit zugänglich. In diesen Ver-

bindungen $1 - 3^{[4-8]}$ werden die niederkoordinierten Tetrylenzentren durch geeignete Donorverbindungen wie Dioxan oder N-heterocyclische Carbene stabilisiert.

Die ersten freien, alkylsubstituierten Tetrylene 4 - 6,^[9, 10] die in Lösung stabil sind, wurden vor ungefähr 35 Jahren in der Arbeitsgruppe um Lappert ausgehend von den Dihalogeniden des Germaniums, Zinns und Bleis synthetisiert (vgl.: Schema 1.1).

2 LiCH(SiMe ₃) ₂	+	:MCl ₂	Et_2O	CH(SiMe ₃) ₂ :M
7	M = 0	Ge 8 , Sn 9 , F	M = Ge 4 , Sn 5 , Pb 6	

Schema 1.1. Syntheseweg zur Darstellung von alkylsubstituierten Tetrylenen.^[9, 10]

Bereits seit der zweiten Hälfte des 20. Jahrhunderts wurden Carbene als Intermediate in [1+2]-Cycloadditionsreaktionen^[11] diskutiert und Übergangsmetallcarbenkomplexe fanden als Katalysatoren in C–C-Knüpfungsreaktionen schon ab den 1980er Jahren Anwendung.^[12] Dennoch konnte erst um den Beginn der 1990er Jahre in den Arbeitsgruppen um Arduengo (**11**)^[13] und Bertrand (**12**)^[14, 15] die Existenz stabiler, freier Carbene bestätigt werden. Silylen (**13**) konnte bis zu diesem Zeitpunkt nur mit Hilfe von speziellen Techniken bei einer Temperatur von 77 K in der Kohlenwasserstoffmatrix durch UV-Bestrahlung von cyclischen Polysilanen erzeugt und untersucht werden.^[16]

Im Zuge der Arbeiten von Arduengo und Bertrand wurden viele stabile Carbene isoliert und ihr chemisches Verhalten intensiv studiert.^[17-19] Beeinflusst durch die Fortschritte auf diesem Gebiet gewann die Chemie der schweren Carbenanaloga an Bedeutung. Neben einer ganzen Reihe von aryl-, alkyl, amino- sowie silylsubstituierten acyclischen Tetrylenen wurden vor allem alkyl- und aminosubstituierte cyclische Tetrylene intensiv untersucht.^[20-23] Zur Synthese der cyclischen Tetrylene kamen unterschiedliche Ligandensysteme zum Einsatz. Hierzu zählen die gesättigten Ringsysteme $\mathbf{A} - \mathbf{D}$ und die ungesättigten Ringsysteme $\mathbf{E} - \mathbf{F}$, die unterschiedlichste sterisch anspruchsvolle Alkyl- oder Arylsubstituenten an den Stickstoffatomen der N-Heterocyclen (\mathbf{R}^1) und in einigen Fällen Alkylsubstituenten an den Kohlenstoffatomen des Rings (\mathbf{R}^{2-5}) tragen.^[3, 20]

Abbildung 1.1. Gesättigte und ungesättigte Ringsysteme bekannter cyclischer Tetrylene.

Unter Verwendung des Ligandensystems **E**, konnte in Anlehnung an das Arduengo-Carben das erste N-heterocyclische Silylen, NHSi, $14^{[24]}$ (West und Mitarbeiter) und Stannylen, NHSn, $15^{[25]}$ (Gudat und Mitarbeiter) synthetisiert werden ($R^1 = {}^tBu$, $R^5 = H$). Das erste N-heterocyclische Germylen, NHGe, **15** (Meller und Mitarbeitern) ist zu dem ungesättigten Ringsystem **F** zu zählen ($R^1 = SiMe_3$, $R^5 = H$, X = CH).^[26] Die Darstellung des schwersten N-heterocyclischen Tetrylens, des Plumbylens, NHPb, **16** (Hahn und Mitarbeiter) gelang ebenfalls auf Grundlage des Ringsystems **F** ($R^1 = neo$ -Pentyl, $R^5 = H$, X = CH).^[27]

Neben den Ringsystemen **E** (E = Si,^[24, 28-30] Ge,^[31-34] Sn^[25, 33]) und **F** (E = Si,^[35, 36] Ge,^[26, 34, 36, 37] Sn,^[36] Pb^[27]) konnten auch N-heterocyclische Tetrylene auf der Basis von gesättigten Vier- **A**,^[38] Fünf- **B**^[39-41] und Sechsringen C^[41-43] hergestellt werden. In neuerer Zeit wurden Tetrylene auf der Basis der Ringsysteme **D**^[44-47] (Kira und Mitarbeiter) und **G**^[48, 49] (Driess und Mitarbeiter) etabliert. Durch die Tetrylene mit diesen Substitutionsmustern wurden Verbindungen wie schwere Ketonanaloga,^[50] schwere Homologe von Aldehyden, Carbonsäuren und Ester^[51-55] zuganglich, die zuvor unbekannt waren. Außerdem zeigte sich, dass die Tetrylene des Typs **D** gute Ausgangsverbindungen für die Synthese von schweren Homologen der Allene sind, die zuvor kaum untersucht waren.^[56-58]

Kürzlich konnte in der Arbeitsgruppe um Driess ein cyclisches Silylen **17** synthetisiert werden, in dem das Siliciumzentrum durch zwei phosphorylidische Kohlenstoffsubstituenten stabilisiert ist.

Entsprechende cyclische Tetrylene, in denen das Stickstoffatom gegen ein ylidisches Kohlenstoff ausgetauscht ist, waren bis zu diesem Zeitpunkt unbekannt. Quantenchemische Rechnungen verdeutlichen, dass diese Verbindung aromatische Eigenschaften und eine cyclopentadienid artige elektronische Struktur aufweist.^[59]

Auch auf dem Gebiet der acyclischen Tetrylene konnten in neuester Zeit ebenfalls erhebliche Fortschritte erzielt werden. Es konnten erstmals die Tetrylene **18a-c** synthetisiert werden, die eine direkte Bindung zu einem Borsubstituenten aufweisen. Überaus bemerkenswert ist, dass das entsprechende Silylen **18a** in der Lage ist Diwasserstoff bei 0 °C zu aktivieren. Die Reaktion von Silylenen mit elementarem Wasserstoff war bis zu diesem Zeitpunkt nicht beschrieben.^[60]

Neben den Bor-Stickstoff-substituierten Tetrylenen konnte erstmals ein Silylen **19** synthetisiert werden, dass zwei Schwefelsubstituenten trägt. Diese acyclische Verbindung ist das erste Beispiel für ein Silylen, welches eine direkte Bindung zu Elementen aus der dritten Reihe des Periodensystems aufweist.^[61]

1.1.1 Synthesewege zur Darstellung von schweren Tetrylenen

Die Darstellung der schweren Carbenanaloga (Silylene bis Plumbylene) kann im Allgemeinen ausgehend von vierfachkoordinierten Vorläuferverbindungen in der Oxidationsstufe +IV durch Reduktion **B**, α -Eliminierung **C**, **D** oder photochemische Fragmentierungsreaktionen **E**, **F** realisiert werden. In den Fällen, in denen zweifachkoordinierte Ausgangsverbindungen in der Oxidationsstufe +II zugänglich sind (dies trifft für die Elemente Germanium bis Blei zu), ist es ebenfalls möglich diese durch Substitutions- **A** oder Ligandenaustauschreaktionen **G** in die gewünschten Tetrylene zu überführen.

Abbildung 1.2. Synthesemethoden zur Darstellung von schweren Tetrylenen (E = Si, Ge, Sn, Pb).

Die ersten stabilen, alkylsubstituierten acyclischen Tetrylene **4**, **5**, und **6** wurden über die Methode **A** synthetisiert (vgl.: Schema 1.1).^[9, 10] Ausgehend von den Dihalogeniden des Germaniums, Zinns und Bleis können über diesen Syntheseweg auch N-heterocyclische Germylene, Stannylene bzw. Plumbylene erhalten werden.^[20, 23] N-heterocyclische Silylene sowie cyclische alkylsubstituierte Silylene werden im Allgemeinen durch Reduktion **B** von cyclischen Dihalogensilanen mit geeigneten Reduktionsmitteln wie Alkali- oder Erdalkalimetallen hergestellt (vgl.: Abbildung 1.2).^[20, 22, 30, 62] Die für diese Methode berühmteste Bei-

spielreaktion ist die Synthese des ersten stabilen N-heterocyclischen Silylens **14**, welches durch Reduktion des entsprechenden Dichlordiaminosilans mit Kalium in siedendem THF erhalten werden konnte.^[24] Ein immer noch gängiger Weg zur Darstellung von acyclischen arylsubstituierten Tetrylenen ist die photochemische (in einigen Fällen auch thermisch induzierte) Fragmentierungsreaktion **E**, **F**.^[3, 20, 63] Mit Hilfe der Methode **E** konnte zum Beispiel das Dimethylsilylen **13** durch Bestrahlung eines Cyclohexasilans erzeugt und als erstes Silylen spektroskopisch untersucht werden.^[16] Neben den cyclischen Tetrelverbindungen können aber auch Elementcyclopropane, -propene und norbonadiene für diesen Darstellungsweg als Ausgangssubstanz eingesetzt werden. Eine für die Synthese von N-heterocyclischen Germylenen und Stannylenen intensiv untersuchte Darstellungsmethode ist die Ligandenaustauschreaktion **G** (vgl.: Schema 1.2).^[25, 33, 64-66] Die auf diesem Weg erhaltenen Stannylene **21** sind ausgesprochen thermolabil und zerfallen bereits bei 60 °C in einer intramolekularen Umlagerungsreaktion zu den entsprechenden Diazabutadienen **23** und Zinn. Computerchemische Studien zeigten, dass diese Zerfallsreaktionen durch Diazabutadiene **23** begünstigt werden.^[25, 33]

Schema 1.2. Syntheseweg zur Darstellung von N-heterocyclischen Stannylenen durch Ligandenaustausch bzw. Transaminierung.^[25, 33]

Entsprechend den Arbeiten zur Synthese des donorstabilisierten Dichlorsilylen $3a^{[7]}$ konnten Cui und Mitarbeiter zeigen, dass durch α -Eliminierung (Methode C) von Chlorwasserstoff aus cyclischem Diaminochlorsilan N-heterocyclische Silylene synthetisiert werden können.^[67] Neben der α -Eliminierung (Methode C) von Chlorwasserstoff ist es auch möglich Diwasserstoff durch Einsatz von Frustrierten Lewis Säure Base Paaren, FLPs, wie [NHC \cdot B(C₆F₅)₃]^[68] aus cyclischen Diaminogermanen zu eliminieren (Methode D), wobei das entsprechende N-heterocyclische Germylen gebildet wird.^[69]

1.1.2 Elektronische Struktur der Tetrylene

Im Gegensatz zum Kohlenstoff sind die schweren Gruppe 14 Elemente: Silicium, Germanium, Zinn und Blei weniger gut in der Lage Hybridorbitale auszubilden, da die energetische Stabilität der s-Orbitale im Vergleich zu den p-Orbitalen vom leichten bis zum schweren Homologen zunimmt. Dies führt dazu, dass Verbindungen, in denen Kohlenstoff zweifach koordiniert ist, häufig im Triplett-Grundzustand vorliegen, während bei analogen Verbindungen mit zweifachkoordiniertem Silicium, Germanium, Zinn oder Blei der Singulett-Grundzustand bevorzugt ist. Die beiden Zustände unterscheiden sich vor allem in der Anordnung der Valenzelektronen in den Orbitalen. Der Triplettzustand zeichnet sich durch zwei ungepaarte Elektronen aus, wobei das eine Elektron im p-Orbital und das zweite Elektron im sp²-Hybritorbital lokalisiert ist. In Tetrylenen mit Singulettgrundzustand liegt ein freies Elektronenpaar, dessen Orbital hohen s-Charakter aufweist, neben einem leeren p-Orbital vor (vgl.: Abbildung 1.3, links). Im Allgemeinen ist der Singuletzustand bevorzugt, wenn die Spinpaarungsenergie kleiner ist als der Energieunterschied zwischen Singulett- und Triplettzustand ΔE^{ST} .^[70] In diesem Zusammenhang verdeutlicht Abbildung 1.3 (rechts) die Zunahme des ΔE^{ST} in Abhängigkeit des Tetrelatoms. Im Fall der schweren Homologen des Methylens ist der Singuletzustand bevorzugt, was durch die steigende Stabilität der s-Orbitale im Vergleich zu den p-Orbitalen vom Kohlenstoff bis zum Blei erklärt werden kann.^[71]

Abbildung 1.3. Links: Darstellung des Triplettgrundzustand des Methylen H₂C: sowie des Singulettgrundzustands der schweren Homologen H₂E: (E = Si, Ge, Sn, Pb). Rechts: Quantitative Darstellung des Energieunterschieds zwischen Singulett- und Triplettzustand, Singulettzustand auf 0 kJ mol⁻¹ referenziert. (Absoluter Energieunterschied zwischen Singulett und Triplett-Zustand: E(Triplett) – E(Singulett) = ΔE^{ST} , a) experimentell bestimmt, b) berechnet^[71, 72]).

Der Energieunterschied ΔE^{ST} ist nicht nur von dem Element abhängig sondern auch vom Winkel zwischen den beiden Substituenten des Tetrylens. Das Walsh-Diagramm für Moleküle des allgemeinen Typs AH₂ verdeutlicht die Abhängigkeit des Singulett-Triplett-Energieunterschieds vom Bindungswinkel α (HAH) zwischen den Wasserstoffsubstituenten (vgl.: Abbildung 1.4). Im Fall eines gewinkelten Tetrylens :EH₂ im Singulettgrundzustand, sind die beiden Elektronen des freien Elektronenpaars im 2a₁-Orbital lokalisiert, während das freie p-Orbital am Tetrelatom dem Orbital 1b₁ im Wash-Diagramm zugeordnet werden kann. Bei einem Winkel von $\alpha = 90^{\circ}$ ist das Energieniveau des 2a₁-Orbital am geringsten und der Energieunterschied zwischen dem 1b₁ und dem 2a₁-Orbital, welcher dem Singulett-Triplett Energieunterschied ΔE^{ST} entspricht, am größten. Bei Vergrößerung des Winkles α steigt das Energieniveau des 2a₁-Orbitals und ΔE^{ST} sinkt. Bei einem Winkel von $\alpha = 180^{\circ}$ sind beide Niveaus entartet (π_x - bzw. π_y -Orbital), wodurch der Triplettzustand bevorzugt ist.

Abbildung 1.4. Walsh-Diagramm für eine AH₂ Spezies (anstelle von σ_{π} kann π_{σ} gesetzt werden).^[73]

Die Einführung von elektropositiven oder -negativen Elementen als Substituenten des Tetrylens beeinflusst ebenfalls den Singulett-Triplett Energieunterschied. Elektropositive Substituenten wie Lithium oder Silylgruppen führen zur Verstärkung des p-Charakters des 2a₁-Niveaus, wodurch der Triplettzustand begünstigt wird. Das berühmteste Beispiel in diesem Zusammenhang ist sicherlich das Triplett Silylen **24**.^[63] Die Bevorzugung des Singulett-grundzustands eines zweifachkoordinierten Siliciumatoms, konnte im Fall von **24** durch Einsatz der großen, sterisch anspruchsvollen und elekropositiven Silylreste überwunden werden

(Zusammenspiel aus Vergrößerung des Bindungswinkels α und Verstärkung des p-Charakters des 2a₁-Orbitals).

Im Gegensatz zu den elektropositiven Elementen führt der Einsatz von elektronegativen Elementen als Substituenten der Tetrylene zur Stabilisierung des Singulettzustands. Darüber hinaus beeinflussen Substituenten, die über ein freies Elektronenpaar verfügen (Stickstoff, Sauerstoff, Schwefel oder Phosphor) und in α -Position zum Tetrylenatom stehen den ΔE^{ST} , indem sie den Singulettgrundzustand zusätzlich stabilisieren. Im Fall der Stickstoffsubstituierten acyclischen Tetrylene und in den N-heterocyclischen Tetrylenen ist diese Art der Stabilisierung besonders ausgeprägt.

E = (C), Si, Ge, Sn, Pb

Abbildung 1.5. Qualitative MO-Diagramme: Links: Beschreibung der Heteroallylanionen-Wechselwirkung im N–E–N-Fragment für gesättigte N-heterocyclische Tetrylene und Sickstoff-substituierte acyclische Tetrylene; Rechts: Beschreibung der Wechselwirkung des Heteroallylanionenfragments mit einer zusätzlichen C=C π -Bindung für den Fall von ungesättigten N-heterocyclischen Tetrylenen.^[74]

Hierbei treten die freien Elektronenpaare der Stickstoffatome mit dem leeren p-Orbital des Tetrylenatoms in Wechselwirkung unter der Ausbildung einer π -Bindung (Molekülorbital, MO 1b₁), die sich über das N-E-N-Fragment erstreckt (vgl.: Abbildung 1.5, links). Durch diese Heteroallylanionen-Wechselwirkung wird das leere p-Orbital am Tetrylenatom erheblich

stabilisiert, während gleichzeitig das Energieniveau des entsprechenden antibindenden Orbitals (MO 2b₁) stark angehoben wird. In dieser elektronischen Situation entspricht das nicht bindende π -Orbital (MO 1a₂) dem HOMO und das antibindende π -Orbital (MO 2b₁) dem LUMO. Durch die beschriebene Wechselwirkung wird der Energieunterschied zwischen HOMO und LUMO stark vergrößert, was die geringere Reaktivität dieser Tetrylene im Vergleich zu aryl-substituierten Tetrylenen (in denen eine analoge stabilisierende Wechselwirkung nicht möglich ist) erklärt.

In ungesättigten Fünfring N-Heterocyclen treten zusätzliche Wechselwirkungen zwischen den Molekülorbitalen des Heteroallylanionen-Fragments mit denen einer C=C π -Bindung auf (vgl.: Abbildung 1.5, rechts). Dabei erfahren die Fragment-Molekülorbital, FMO 1b₁ und 1a₂ des Heteroallylanion-Segments eine zusätzliche Stabilisierung unter der Bildung der MOs 1b₁ und 1a₂. Das bei dieser Wechselwirkung entstehende Molekülorbital 2b₁ entspricht in diesen Verbindungen dem HOMO.^[39, 75-77] Das am Tetrylenzentrum lokalisierte freie Elektronenpaar ist im Fall der gesättigten N-heterocyclischen bzw. acyclischen Tetrylene und im Fall der ungesättigten N-heterocyclischen Tetrylene das HOMO-1 (MO 1a₁).^[74]

Mit Hilfe des Carter-Goddard-Malrieu-Trinquier(CGMT)-Modells^[78-80] können über die Größe von ΔE^{ST} Vorhersagen zur Tendenz der Dimerisierung zweier Tetrylene und über die Art der Bindung im Fall einer Dimerisierung getroffen werden (vgl.: Abbildung 1.6).^[71] Entsprechend dem Modell wird ein klassisches Doppelbindungssystem erwartet, wenn die Summe der ΔE^{ST} kleiner ist als die Hälfte der Wechselwirkungsenergie $E_{\sigma+\pi}$ zwischen den Tetrylenzentren.¹ Eine von der Planarität abweichende Molekülstruktur wird erwartet wenn $\Sigma \Delta E^{ST}$ größer als die Hälfte dieser Wechselwirkungsenergie $E_{\sigma+\pi}$ ist.^[79] Außerdem konnte Trinquier zeigen, dass ein Mehrfachbindungssystem, planar oder gewinkelt, nur dann existieren kann, wenn $\Sigma \Delta E^{ST}$ der Tetrylenfragmente kleiner ist als die Wechselwirkungsenergie $E_{\sigma+\pi}$. Für den Fall, dass $\Sigma \Delta E^{ST}$ größer ist als $E_{\sigma+\pi}$ bleibt die Dimerisierung aus oder es werden andere Strukturen bevorzugt (vgl.: Abbildung 1.6).^[71] Neben der Vorhersage über das Dimerisierungsverhalten von Tetrylenen können auch spektroskopische Eigenschaften (NMR, UV-Vis) der Tetrylene mit Hilfe ihrer ΔE^{ST} abgeschätzt werden.^[20, 81]

¹ Carter und Goddard konnten durch computerchemische Berechnungen zeigen, dass die Wechselwirkungsenergie einer doppelten Donor-Akzeptor-Bindung ungefähr halb so groß ist wie die einer klassischen Doppelbindung.

E = C, Si, Ge, Sn, Pb

Abbildung 1.6. Dimerisierungsverhalten von Tetrylenen in Abhängigkeit der Summe, $\Sigma \Delta E^{ST}$, des ΔE^{ST} der einzelnen Tetrylenfragmente und der Wechselwirkungsenergie² $E_{\sigma+\pi}$ der gebildeten σ - und π -Bindung bei der Dimerisierung der Fragmente,^[3, 71] abgeleitet vom CGMT-Modell.

1.1.3 Chemische Eigenschaften von schweren Tetrylenen R₂E: (E = Si – Pb)

Das Reaktionsverhalten der schweren Tetrylene wird durch ihre elektronische Struktur vorgegeben. Bedingt durch das unbesetzte p-Orbital und das freie Elektronenpaar am Tetrylenzentrum können die schweren Carbenanaloga als Lewis-Säure oder als Lewis-Base reagieren. Die Lewis-Acidität des unbesetzten p-Orbitals der Tetrylenzentren wird deutlich durch die Wechselwirkung mit freien Elektronenpaaren von Donoratomen wie Stickstoff, Sauerstoff oder Phosphor herabgesetzt. Entsprechende Carbenanaloga, wie N-heterocyclische Tetrylene, zeigen im Allgemeinen eine geringere Reaktivität als alkyl- und arylsubstituierte Tetrylene, bei denen vergleichbare Wechselwirkungen nicht auftreten (vgl.: Abschnitt 1.1.2, für Beispiele siehe folgenden Absatz).^[20]

² Wechselwirkungsenergie entspricht nach dem CGMT-Modell nahezu der Bindungsdissoziationsenergie BDE.

Abbildung 1.7. Zusammenfassung von Reaktionsbeispielen zur Beschreibung der Reaktivität von Tetrylenen.

Die große Varianz der Reaktivität der schweren Tetrylene lässt sich grob in sieben grundlegende Reaktionen einteilen: Insertion **A**, Oxidation **B**, Reduktion **C**, Reaktion als Lewis-Base (Koordinationsreaktion) **D**, Reaktion als Lewis-Säure **E**, Di- bzw. Trimerisierung **F** und [1 + n] Cycloadditionsreaktion **G** (vgl.: Abbildung 1.7).^[3, 20] Eine der am häufigsten diskutierten Reaktionen der Tetrylene ist die Insertionsreaktion **A**. Bei Reaktionen mit Alkyl-, Aryl- oder Silylhalogeniden (R'X) kommt es zu einer Insertion in die R'–X-Bindung,^[82, 83] während in Reaktionen mit Alkoholen (ROH), Aminen (RNH₂), Aminosilanen (R₃SiNR₂) und Silanen (R₃SiH) eine Insertion in die O–H-, N–H-, Si–N- und Si–H-Bindung beobachtet wird.^[20] Bei Reaktionen mit Silanen wird der Reaktivitätsunterschied der Tetrylene gut ver-

deutlicht. So zeigen donorsubstituierte Tetrylene, wie N-heterocyclische Silylene, im Gegensatz zu aryl-, oder alkylsubstituierten schweren Tetrylenen keine Reaktion gegenüber Silanen. Die Oxidation der Tetrylene mit Chalkogenen **B** führt in den meisten Fällen zur Bildung von Vierringen aus zwei Tetrel- und zwei Chalkogenatomen, die formal gesehen aus einer [2+2]-Cycloadditionsreaktion von zwei schweren Ketonanaloga R₂E=Ch entstehen.^[20] In neuerer Zeit konnten auch schwere Ketonanaloga des Typs $R_2E=Ch$ (Ch = S, Se, Te) isoliert werden. $^{[50, 84-86]}$ Durch Reduktion der Tetrylene C sind die entsprechenden Dianionen zugänglich. In Abhängigkeit des verwendeten Tetrylens sind unterschiedliche Dianionen beschrieben und in einigen Fällen führt eine Reduktion zur Zersetzung der eingesetzten Tetrylene. Die Oligomerisierungsreaktion F und die Cyclisierungsreaktionen G werden häufig bei alkyl- oder arylsubstituierten Tetrylenen beobachtet.^[20] Die Insertions- A, die Cycloadditions- G und die Oligomerisierungsreaktionen F entsprechen formal den Umkehrreaktionen der unter Abschnitt 1.1.1 diskutierten Darstellungsmethoden für Tetrylene. Beispiele für das Lewis-ambiphile Verhalten der Tetrylene sind die Reaktionen **D** und **E**. In Umsetzungen mit Lewis-Basen **E**, wie N-heterocyclischen Carbenen NHC, reagiert das schwere Tetrylen Lewis-sauer und es entsteht eine Donor-Akzeptor-Bindung zwischen dem freien Elektronenpaar des NHCs und p-Orbital des schweren Tetrylens.^[6, 7, 87, 88] Deutlich häufiger sind jedoch Reaktionen, in denen das Tetrylen als Lewis-Base agiert D. In einigen Fällen kann die Bildung von Donor-Akzeptor-Addukten mit Lewis-Säuren wie $B(C_6F_5)_3$ oder SiR_3^+ beobachtet werden.^[89-91] In diesem Zusammenhang ist vor allem der Einsatz der schweren Tetrylene als Liganden in zahlreichen Übergangsmetallkomplexen zu nennen (ausgewählte Beispiele^[92-102]).

1.1.4 Bindungssituation in Olefin- und Tetrylenübergangsmetallkomplexen

Verbindungen, in denen Tetrelatome niedrig koordiniert sind wie in Tetrylenen und in Ditetrelen, können über die niedrigkoordinierten Zentren als Liganden an Übergangsmetalle binden. Für den Fall, dass es sich bei den niedrigkoordinierten Zentren um Kohlenstoffatome handelt, sind die entsprechenden Liganden Carbene oder Olefine.

Bedingt durch die bahnbrechenden Arbeiten von Fischer,^[103, 104] Schrock,^[105, 106] Grubbs^[107] und Chauvin^[108] Ende des letzten Jahrtausends stand die Chemie von Übergangsmetallcarbenkomplexen ganz besonders im Fokus der Forschung und gilt daher heute als gut verstanden.^[18, 109] Auf Grundlage dieser Ergebnisse werden Übergangsmetallcarbenkomplexe allgemein in zwei Klassen eingeteilt: Den Fischer- (25) und den Schrock-Carben-Komplexen (26). Beide Komplexe unterscheiden sich in ihrer Bindung zwischen Übergangsmetall und Carbenkohlenstoffatom (vgl.: Abbildung 1.8). Fischer-Carben-Komplexe, zum Beispiel Verbindung 25, (links: Abbildung 1.8) werden meist mit späten Übergangsmetallen in niedriger Oxidationsstufe gebildet. An das Carbenkohlenstoffatom in diesen Komplexen sind π -Donorsubstituenten wie Heteroatome mit einem freien Elektronenpaar oder Arylgruppen gebunden. Bedingt durch die Donorsubstituenten liegt das Carbenfragment im Singulett-Grundzustand vor. Die Bindung zwischen dem Metall- und dem Kohlenstoffatom besteht aus einer σ-Hinbindung des freien Elektronenpaars des Carbens in ein leeres Orbital am Metallatom und einer π -Rückbindung von einem besetzten d-Orbital des Metallatoms in das leere p-Orbital des Kohlenstoffatoms. Bei Carbenen, die Donorsubstituenten tragen, liegt bereits eine Wechselwirkung zwischen dem leeren p-Orbital und dem freien Elektronenpaar der Donoratome vor. In diesen Fällen fällt die π -Rückbindung zwischen Metall und Carbenfragment entsprechend schwächer aus, da die π -Rückbindung und die Wechselwirkung zwischen dem freien Elektronenpaar des Donors um dasselbe Orbital konkurrieren. In N-heterocyclischen Carbenen ist die Heteroallylwechselwirkung zwischen den freien Elektronenpaaren an den Stickstoffatomen und dem freien p-Orbital des Carbenkohlenstoffatoms so stark ausgeprägt, dass die M-C-Bindung kaum noch Doppelbindungscharakter besitzt. Auf Grundlage der elektronischen Situation der Fischer-Carben-Komplexe lässt sich der elektrophile Charakter des Carbenkohlenstoffatoms in Reaktionen erklären (vgl.: mesomere Grenzstrukturen der Fischer-Carben-Komplexe in Abbildung 1.8).^[110, 111]

Abbildung 1.8. Bindungssituation in Fischer-Carben-Komplexen (links) und Schrock-Carben-Komplexen (rechts), Grenzfallbetrachtung.^[110, 111]

In Schrock-Carben-Komplexen, wie zum Beispiel Verbindung **26** (vgl.: rechts Abbildung 1.8) befindet sich das Metallatom in einer hohen Oxidationsstufe. Sie werden im Allgemeinen mit frühen Übergangsmetallen gebildet. Das Carbenkohlenstoffatom trägt im Gegensatz zu denen in Fischer-Carben-Komplexen keine Heteroatome oder andere π -Donorsubstituenten, sondern nur Alkylgruppen oder Wasserstoffatome. Bedingt durch das Substitutionsmuster liegt das Carbenfragment im Triplettgrundzustand vor und bildet analog zu der Bindungssituation in Olefinen eine Doppelbindung zwischen dem Metallzentrum und dem Kohlenstoffatom aus (eine σ -Bindung und eine π -Bindung, wobei jedes Fragmentorbital ein Elektron zur Bindung beisteuert). Auf Grund der fehlenden Donorsubstituenten am Carbenkohlenstoffatom ist der Doppelbindungscharakter und die M=C-Bindung zwischen Metall- und Carbenkohlenstoffatom

Hervorgerufen durch die höhere Elektronegativität des Carbenkohlenstoffatoms im Vergleich zum Metallzentrum ist der Großteil der Elektronendichte der π -Bindung zwischen Metall- und Kohlenstoffatom am Carben lokalisiert wodurch der nucleophile Charakter des Carbenkohlenstoffatoms erklärt werden kann (vgl.: mesomere Grenzstrukturen der Schrock-Carben-Komplexe in Abbildung 1.8).^{[110, 111], 3}

Die Bindungssituation in Übergangsmetallolefinkomplexen wie in dem Zeise-Salz **28**^[112, 113] wurde durch das von Dewar-Chatt-Duncanson^[110, 114] vorgestellte Modell aufgeklärt. Neben dem Ditetrenaddukt im Zeise-Salz sind noch zwei weitere Grenzfälle für die

³ Die hier dargestellte Erläuterung zu Fischer- und Schrock-Carben-Komplexen ist eine Grenzfallbetrachtung. Die Übergänge zwischen beiden Arten sind fließend.

Bindungssituation in Ditetren- bzw. Bistetrylen-Übergangsmetallkomplexen bekannt (vgl.:Abbildung 1.9).^[110, 111]

Abbildung 1.9. Grenzfallbetrachtung der Bindungssituation in Ditetren/Bistetrylen-Komplexen.^[97, 110, 111]

Nach dem Dewar-Chatt-Duncanson-Modell (links: Abbildung 1.9) wird die Bindung in Olefin(Ditetren)-Übergangsmetallkomplexen durch eine σ -Hinbindung vom Elektronenpaar des bindenden π -Orbitals des Ditetrens in ein leeres Orbital des Metallatoms (mit σ -Symmetrie) und durch eine π -Rückbindung von einem d-Orbital des Metalls in das antibindende π^* -Orbital des Ditetrens beschrieben. Dies entspricht einer 3-Zentren-2-Elektonen, $3c2e^--\sigma$ -Bindung und einer $3c2e^--\pi$ -Bindung. Je stärker in diesen Komplexen die Rückbindung vom Metall ins π^* -Orbital des Ditetrens ausgeprägt ist, desto schwächer wird die π -Bindung im Ditetren. Im Grenzfall, dem Metallacyclopropan (Mitte: Abbildung 1.9), liegt keine π -Bindung zwischen den Tetrelatomen vor und die Tetrelatome bilden jeweils über eine $2c2e^-$ Bindung mit dem Metallatom einen Dreiring aus. Die Bindungssituation in Bistetrylenkomlexen wird in diesem Zusammenhang nur wenig in der Literatur diskutiert (rechts: Abbildung 1.9).^[97] In solchen Komplexen liegt keine Bindung mehr zwischen den Tetrylenen vor, sodass zwei Tetrylenfragmente als einzähnige Liganden an das Übergangsmetallatom gebunden sind. In diesem Fall agieren die Tetrylene mit ihrem freien Elektronenpaar als Donoren (als Lewis-Base) und das Übergangsmetallatom als Akzeptor (als Lewis-Säure) wobei jeweils eine $2c2e^{-}\sigma$ -Bindung zwischen den Tetrylenen und dem Metallatom vorliegt. Zusätzlich zu diesen beiden Bindungen besteht eine Wechselwirkung zwischen einem freien Elektronenpaar am Metallatom mit den leeren p-Orbitalen an den Tetrylenen entsprechend einer $3c2e^{-}\pi$ -Bindung.^[97] Die hier zusammengefassten Bindungsmodifikationen für Olefin/Ditetren, Tetrylen und Bistetrylen-Übergangsmetall-Komplexe bilden die Grundlage für die Diskussion der Bindungssituation in Übergangsmetallkomplexen mit schweren Tetrylenen als Komplexliganden.^[97, 102]

1.2 Tetrylkationen

Neben Tetrylenen bilden die drei- und einfach koordinierten Kationen eine weitere Gruppe unter den niedervalenten Verbindungen der Gruppe 14 Elemente. Dreifach koordinierte Carbokationen (Carbeniumionen) wie das Triphenylcarbeniumion Ph₃C⁺ (Tritylkation) **29** sind schon seit Beginn des 20. Jahrhunderts bekannt.^[115] Es konnte schon sehr früh gezeigt werden, dass diese Verbindungen in organischen Reaktionen als Intermediate eine wichtige Rolle spielen.^[116] Die erste Synthese und Isolierung eines Trialkylcarbeniumions gelang Olah und Mitarbeitern mit Hilfe von Supersäuren in den 60er Jahren des 20. Jahrhunderts.^[117] Beeinflusst durch ihre folgenden bahnbrechenden Arbeiten auf diesem Gebiet^[118, 119] geriet die Chemie niederkoordinierter Kationen der Gruppe 14 Elemente mehr und mehr in den Fokus der Wissenschaft. Dennoch konnten die ersten schweren Tetrylkationen erst rund 100 Jahre nach der Entdeckung der Carbokationen synthetisiert werden.^[120] Im Gegensatz zu den dreifachkoordinierten Tetrylkationen ist die Chemie der monokoordinierten Tetrylkationen nur wenig erforscht. Dies lässt sich auf ihre hohe Reaktivität, bedingt durch den beträchtlichen Elektronenmangel dieser Verbindungen, zurückführen.^[120-125]

1.2.1 Silylkationen

Das nächstschwerere Homologe des Carbeniumions ist das Silyliumion. Silyliumionen **30** sind molekulare kationische Verbindungen, in denen das zentrale positiv geladene Siliciumatom planar von drei Substituenten umgeben ist. Theoretische Arbeiten zeigen, dass Silyliumionen im Vergleich zu analogen Carbeniumionen thermodynamisch stabiler sind.^[120] Die Synthese und Isolierung ist im Gegensatz zu Carbeniumionen jedoch deutlich anspruchsvoller, da Silyliumionen eine höhere Reaktivität zeigen als Carbeniumionen. Diese Eigenschaft lässt sich dadurch erklären, dass die Elektronegativität des Siliciums geringer ist als die des Kohlenstoffatoms. Außerdem ist das kationische Zentrum der Silyliumionen größer als das der Carbeniumionen. Somit ist deren Abschirmung bzw. kinetische Stabilisierung, durch sterisch anspruchsvolle Substituenten schwieriger als im Fall der Carbeniumionen.^[120]

Die Elektrophilie ist so stark ausgeprägt, dass Triflate oder Perchlorate kovalente Bindungen zu den Kationen ausbilden. Aus diesem Grund sind zur Stabilisierung dieser Kationen besondere, wenig nucleophile Anionen^[126] wie das Borat **32** und das Carborat **33** notwendig.^[120] Auch kovalente Wechselwirkungen mit den Lösungsmittelmolekülen können ausgebildet werden. Dies ist vor allen bei sterisch wenig abgeschirmten Silylkationen der Fall. Ein Beispiel hierfür ist das Areniumionen **31**, welches als σ -Komplex zwischen Benzol und einem Silylkation angesehen wird.

Die Synthese von Silyliumionen **30** kann über verschiedene Wege erfolgen (vgl.: Abbildung 1.10). Ein gängiger Darstellungsweg ist der Hydridtransfer **A** von entsprechend substituierten Silanen mit Hilfe von Carbokationen wie dem Tritylkation **29** unter Entstehung eines Alkans als Nebenprodukt.^[120] Die Halogenidtransferreaktion **F** ist eine gängige Reaktion zur Synthese von Carbokationen. Zur Darstellung von Silylkationen kann diese Methode jedoch nur selten eingesetzt werden, da die Si–X-Bindung eine hohe Stabilität aufweist und die entstehenden Silylkationen eine hohe Reaktivität gegenüber den Halogenidabgangsgruppen aufweist. Der Einsatz der Halogenidtransferreaktion zur Darstellung von Silylkationen führt in den

meisten Fällen nur dann zum Erfolg, wenn das entstehende Silylkation durch geeignete Donor-Lösungsmittel wie Pyridin stabilisiert wird.^[120]

In Silanen mit großen, sterisch anspruchsvollen Resten ist die Abgangsgruppe, das Wasserstoffatom oder das Halogen, meist so stark abgeschirmt, dass eine entsprechende Transferreaktion nicht mehr ablaufen kann. In solchen Fällen gelingt die Synthese der Silyliumionen über eine Allylabstraktionsreaktion **B**.^[127] In dieser Reaktion wird durch einen elektrophilen Angriff eines Carbokations mit nachfolgender Abspaltung eines Allylalkans das gewünschte Silylkation erhalten.^[120] Die Triebkraft dieser Reaktionen ist in allen Fällen die Bildung des thermodynamisch stabilsten Kations.

Abbildung 1.10. Synthesemethoden zur Darstellung von Silyliumionen (auf die Abbildung der Anionen wurde aus Gründen der Übersichtlichkeit verzichtet).^[120]

Neben den Abstraktions- bzw. Transferreaktionen führt auch die Addition eines Kations, wie Silylium- oder Carbeniumionen, an das freie Elektronenpaar eines Silylens zur Entstehung dreifach substituierter Silylkationen.^[120] Darüber hinaus werden in neuerer Zeit inter- und intramolekulare Umlagerungsreaktionen von Gruppe 14 Kationen ausgenutzt um gezielt schwer zugängliche Silyliumionen zu synthetisieren.^[128, 129]

Unter Verwendung der Syntheseroute A gelang es Lambert und Mitarbeitern Ende des letzten Jahunderts das erste freie Silyliumion **34** herzustellen und zu isolieren.^[130, 131] In den folgenden Jahren konnte eine ganze Reihe verschieden alkyl- oder arylsubstituierter Silyliumionen dargestellt werden, deren Chemie intensiv untersucht wurde.^[120] Dagegen sind Silylkationen, deren Substituenten über ein Stickstoffatom oder ein Sauerstoffatom an das zentrale Siliciumatom gebunden sind, eher selten. Eine der wenigen Beispiele hierfür sind die kationischen Verbindungen **35**, **36**^[89] und **37**,^[90] welche als schwere Homologe der Imidazolium- bzw. Imidazolidiniumionen angesehen werden können.

2 Motivation und Aufgabenstellung

Ziel dieser Arbeit ist das Potential N-heterocyclischer Tetrylene in der Synthese niederkoordinierter Verbindungen der Gruppe 14 Elemente zu untersuchen. Hierbei steht zunächst die Synthese unterschiedlicher N-heterocyclischer Tetrylene und die Entwicklung von Darstellungsmethoden unbekannter N-heterocyclischer Tetrylene im Vordergrund, damit ein breites Spektrum an Ausgangsverbindungen für die Untersuchungen zur Verfügung steht. Darüber hinaus soll der Einfluss von unterschiedlichen Substituenten ($\mathbf{R}^{\mathbf{x}} = \mathbf{R}^1$, \mathbf{R}^2 , \mathbf{R}^3 und \mathbf{R}^4 , vgl.: Abbildung 2.1) am Ring der N-heterocyclischen Tetrylene auf die Struktur, auf die Bindungsverhältnisse in diesen Verbindungen sowie auf deren Reaktivität studiert werden. Quantenchemische Untersuchungen werden dabei die experimentell erhaltenen Ergebnisse untermauern. Somit soll eine fundierte Grundlange für die folgenden experimentellen Untersuchungen zur Synthese von Verbindungen niederkoordinierter Gruppe 14 Elemente ausgehend von N-heterocyclischen Tetrylenen sichergestellt werden.

Abbildung 2.1. Zusammenfassung der geplanten experimentellen Untersuchungen.

Als Zielverbindungen stehen hierbei Übergangsmetallkomplexe mit N-heterocyclischen Tetrylenen als Komplexliganden, Tetraamino-substituierte schwere Homologe der Allene und Cumulene sowie der Imidazol- bzw. Imidazolidiniumionen im Vordergrund.

Einen weiteren Schwerpunkt dieser Arbeit nehmen theoretische Studien zu Übergangsmetallkomplexen mit Tetrylenen als Komplexliganden ein. In diesem Zusammenhang sollen neben den experimentell erhaltenen Übergangsmetallkomplexen mit N-heterocyclischen Tetrylenen als Liganden auch die kürzlich von der Gruppe um Marschner synthetisierten Gruppe 4 Metallkomplexe **38** und **39**^[132, 133] untersucht werden. Eine Besonderheit der Komplexe **38** und **39** ist, dass sie silylsubstituierte, cyclische Tetrylene als Liganden tragen. Ähnliche Verbindungen mit Gruppe 4 Metallzentren und Tetrylen Liganden sind sehr selten und wenig untersucht. Mit Hilfe der quantenchemischen Rechnungen soll somit ein detaillierter Einblick in die Art und Weise der Bindung zwischen Übergangsmetallatomen und Tetrylenen ermöglicht werden.

3 Arylsubstituierte N-heterocyclische Tetrylene – Synthese und Struktureigenschaften

Im folgenden Kapitel werden die Ergebnisse der Synthese und der Optimierung etablierter Darstellungsverfahren von arylsubstituierten, ungesättigten N-heterocyclischen Tetrylenen (Silylenen, Germylenen und Stannylenen) diskutiert. Diese Ergebnisse ermöglichen einen ausführlichen Vergleich der strukturellen Eigenschaften dieser Verbindungsklasse mit bereits bekannten verwandten Tetrylenen. Zusätzlich geben NMR-spektroskopische Studien der untersuchten Tetrylene einen Einblick in die Bindungssituation.

3.1 Arbeiten zur Optimierung des Synthesewegs zur Darstellung N-heterocyclischer Silylene

Seit Mitte der 1990er Jahren ist der Syntheseweg zur Darstellung von alkylsubstituierten ungesättigten N-heterocyclischen Silylenen,^[24] den schweren Homologen des Arduengo Carbens $11^{[13]}$ bekannt. In den folgenden Jahren führten Weiterentwicklungen des Synthesewegs dazu, dass sowohl gesättigte N-heterocyclische Silylene mit Alkylsubstituenten an den Stickstoffatomen $45 - 48^{[39, 134, 135]}$ als auch ungesättigte N-heterocyclische Silylene mit Alkylgruppen 14,^[24] 43,^[35] $44^{[36]}$ oder Arylgruppen 40,^[30] $41^{[29, 30]}$ und $42^{[29]}$ an den Stickstoffatomen zugänglich geworden sind.^[29, 30, 35, 136] Durch eigene Untersuchungen im Rahmen meiner Diplomarbeit wurde ein erheblicher Beitrag zur Entwicklung eines Synthesewegs zur Darstellung der N-heterocyclischer Silylene mit Arylsubstituenten an den Stickstoffatomen geleistet (40 und 41).^[30]

Die Synthese der N-heterocyclischen Silylene gelingt durch Reduktion von N-heterocyclischen Dihalogensilanen mit geeigneten Reduktionsmitteln wie elementaren Alkalimetallen, Lithiumnaphthalid oder Kaliumgraphit.^[24, 30, 39]

Schema 3.1. Allgemeiner Syntheseweg zur Darstellung N-heterocyclischer Silylene.

Ein zentrales Thema dieser Arbeit war es über geeignete Experimente zu ermitteln, ob die Silylene **40** und **41** als Vorläuferverbindungen zur Synthese niedervalenter Verbindungen eingesetzt werden können. Um entsprechende Untersuchungen durchführen zu können, war es notwendig einen kontinuierlichen Zugang zu den Vorläuferverbindungen der Silylene, den N-heterocyclischen Dihalogensilanen **51a/b** und **52a/b**, im 10 – 20 g Maßstab zu gewährleisten. Über den etablierten Darstellungsweg können diese Verbindungen nur in Ausbeuten von 65 - 75 % erhalten werden (Schema 3.2).^[30] Es bestand somit großes Interesse daran einen Syntheseweg zu entwickeln, aus dem die benötigten Vorläuferverbindungen in nahezu quantitativen Ausbeuten hervorgehen.

Schema 3.2. Syntheseweg zur Darstellung N-heterocyclischer Dihalogensilane.

Inspiriert durch den von Gudat und Mitarbeitern entwickelten Syntheseweg zur Darstellung von N-heterocyclischen Phosphanen^[137] wurde untersucht, ob in einer analogen Vorgehensweise die N-heterocyclischen Dihalogensilane **51a/b** und **52a/b** in höheren Ausbeuten zugänglich sind. Hierfür wurde exemplarisch die Synthese des N-heterocyclischen Dichlorsilans **51a** nach dem in Schema 3.3 zusammengefassten Präparationsschritten durchgeführt. Zunächst wurde das Diazabutadien **49** in THF gelöst und durch Einsatz von elementarem Lithium in die lithiierte Spezies überführt. Das reduzierte Diazabutadien wurde im folgenden Schritt nicht direkt mit dem Tetrachlorsilan umgesetzt, sondern durch Zugabe von Triethylaminhydrochlorid, Et₃NHCl, bei –78 °C in das α -Aminoaldimin **53** überführt. Anschließend wurde durch Zugabe von Tetrachlorsilan, SiCl₄, bei -78 °C das gewünschte N-heterocyclische Dichlorsilan **51a** gebildet. Nach Aufarbeiten der Reaktionslösung konnte abschließend **51a** in einer Ausbeute von 50 % isoliert werden.

Schema 3.3. Präparationsschritte zur Synthese von 51a analog dem Syntheseweg von Gudat.

Die Aufreinigung des Produktes war deutlich ineffizienter im Vergleich zu dem etablierten Darstellungsweg (vgl.:Schema 3.2), da erheblich mehr Salze als Nebenprodukte während der Reaktion anfielen, von denen das Produkt nur schlecht getrennt werden konnte. Die Extraktion des Produkts aus den Salzen mittels einer Extraktionsumkehrfritte verbesserte die Ausbeute nicht, da das N-heterocyclische Dichlorsilan **51a** bei längerem Sieden in *n*-Hexan nicht stabil ist.

Zusammenfassend lässt sich festhalten, dass der von Gudat und Mitarbeiten entwickelte Syntheseweg zur Darstellung von N-heterocyclischen Phosphanen nahezu ohne weitere Anpassung auch für die Synthese von entsprechenden Dichlorsilanen wie **51a** eingesetzt werden kann. Dennoch konnten über diesen Syntheseweg die Ausbeuten im Vergleich zum etablierten Darstellungsweg nicht verbessert werden.

3.2 Einkristallstruktur des 2,6-Di-*iso*-propylphenyl-substituierten N-heterocyclischen Silylens

Verglichen mit der großen Vielzahl an unterschiedlichen Arduengo-Carbenen^[18] sind bis heute nur wenige N-heterocyclische Silylene mit unterschiedlichen Substitutionsmustern bekannt, obwohl der Syntheseweg von N-heterocyclischen Silylenen gut verstanden ist. ^[20] Unter den wenigen Beispielen lassen sich nur vier monocyclische ungesättigte Silylene finden.

Einkristallstrukturdaten dieser Silylene waren lange nicht zugänglich. West und Mitarbeitern gelang es erst sieben Jahre nach der Synthese des ersten Silylens **14** Einkristallstrukturdaten zu veröffentlichen. Dennoch ist die Qualität nicht ausreichend für eine detaillierte Diskussion der Molekülstruktur.^[138] Die N-heterocyclischen Silylene mit Arylgruppen an den Stickstoffatomen wurden erst in neuerer Zeit nahezu zeitgleich von Cui und Müller vorgestellt. Für die Silylene **40**^[30] und **42**^[29] konnten qualitativ gute Einkristallstrukturdaten erhalten werden. Im Fall des Silylens **41** berichten beide unabhängig voneinander von dem Auftreten einer Fehlordnung bei der Kristallisation aus *n*-Hexan.^[29, 30] Obwohl es Cui und Mitarbeitern gelang die Molekülstruktur unter Berücksichtigung der Fehlordnung aufzuklären, waren die erhaltenen Daten für eine umfassende Diskussion der Bindungsverhältnisse der Molekülstruktur nur bedingt zu verwenden.^[30]

Das Silylen **41** kristallisiert aus *n*-Hexan in der monoklinen Raumgruppe C2/c (**A**). In der Kristallstruktur liegt der zentrale Fünfring des Silylens in zwei unterschiedlichen Orientierungen vor. Diese Fehlordnung ist statistisch über den gesamten Kristall verteilt, was zum Auftreten des Inversionszentrums im Mittelpunkt zwischen den zwei Stickstoffatomen des zentralen Fünfrings führt. Bedingt durch die Fehlordnung werden die so ermittelten Bindungslängen im zentralen Ring zwischen Silicium und Stickstoff (d(N,Si)), Stickstoff und Kohlenstoff (d(N,C)) und zwischen Kohlenstoff und Kohlenstoff (d(C,C)) verfälscht.

Abbildung 3.1. Statistische Fehlordnung des Silylens **41** in der Kristallstruktur. Nur der zentrale Fünfring und die *ipso* Kohlenstoffatome der Dipp-Substituenten sind dargestellt. Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %.

Da die beschriebene Fehlordnung der Moleküle im Kristall bei der Kristallisation des Silylens **41** aus *n*-Hexan auftritt, erschien es vielversprechend durch einen Lösungsmittelwechsel das Auftreten der Fehlordnung während der Kristallisation zu unterdrücken. Des Weiteren könnte das Verwenden polarer Lösungsmittel wie THF möglicherweise zum Einbau von Lösungsmittelmolekülen in die Kristallstruktur und somit zu einer Veränderung der Kristallsymmetrie führen. Nach Umkristallisation des Silylens **41** aus THF gelang es geeignete Einkristalle für die Röntgenstrukturanalyse zu gewinnen (**B**). Die Zellparameter der untersuchten Kristalle sind nahezu identisch mit den bereits bekannten Strukturdaten (vgl.: Tabelle 3.1).

Tabelle 3.1. Zellparameter der Kristalle des Silylens **41** aus unterschiedlichen Lösungsmitteln. Längen der kristallographischen Achsen *a*, *b*, *c* der Elementarzelle in Å, Winkel α , β , γ in (°). Zellvolumen in Å³.

Kristallisation von 41	A aus <i>n</i> -Hexan	B aus THF		
Raumgruppe	C2/c	C2		
Kristallsystem	monoklin	monoklin		
Zellparameter		$ \begin{array}{l} a = 20.1180(5) \\ b = 6.47120(10) \\ c = 20.1247(4) \end{array} \beta = 102.6480(10) \\ \end{array} $		
Volumen	2585.7(4)	2556.41(9)		
Ζ	4	4		

Das Silylen **41** kristallisiert aus THF in der Raumgruppe *C*2. In diesem Fall ist die perfekte Fehlordnung des zentralen Fünfrings des Silylens **41** im Kristall aufgehoben. Die Fehlordnung ist deutlich geringer ausgeprägt, wobei die unterschiedlichen Orientierungen des Ringes im Verhältnis von 90 zu 10 zueinander stehen. Obwohl kein THF in den Kristallen enthalten ist, schien dieses das Kristallisationsverhalten des Silylens so zu beeinflussen, dass eine der beiden Orientierungen des zentralen Rings bevorzugt ist und dass es nicht zum Auftreten des Inversionszentrums kommt.

Das grundlegende Strukturmerkmal des Silylenmoleküls ist der nahezu planare, zentrale λ^2 -sila-1,3-diazole Fünfring (Diederwinkel, β , zwischen CCNSi = $-0.5 - 0.1^{\circ}$). Die Di-*iso*-

propylphenyl-Substituenten, Dipp, an den Stickstoffatomen sind nahezu orthogonal zum zentralen Ring angeordnet (Ebenenwinkel, φ , = 83.1 – 83.3°). Die NSi-Bindungen sind, wie für divalente Siliciumspezies erwartet, länger als in vergleichbaren N-heterocyclischen Silanen mit tetravalentem Siliciumatom (d(N,Si(II)) = 177.4 – 176.1 pm, d(N,Si(IV)) = 169 – 174 pm).^[24, 30, 139, 140]

Tabelle 3.2. Experimentelle Strukturdaten der N-heterocyclischen Silylene **14** und **40** – **42**. Bindungslängen, *d* in pm, Bindungswinkel α in (°). Alle Angaben zu chemisch identischen Bindungen sind in Mittelwerten angegeben oder in Klammern separat aufgeführt.

Silylen	<i>d</i> (C,C)	<i>d</i> (C,N)	<i>d</i> (N,Si)	α(N,Si,N)
14	132.0	138.8	174.7	88.1
40	131.8	138.5	174.7	87.6
41 (A)	139.1	140.0 (142.0/137.9)	176.8 (177.4/176.1)	87.5
41 (B)	135.7	139.6 (139.2/140.1)	175.5 (175.9/175.1)	87.2
42	133.9	138.9	174.7	87.5

Die ermittelten mittleren Bindungslängen sind verglichen mit denen bekannter N-heterocyclischer Silylene etwas länger (**41** (**B**): $\Delta d(C,C) = 1.8 - 3.7$ pm, $\Delta d(C,N) = 0.7 - 1.4$ pm, $\Delta d(N,Si) = 0.8$ pm). Die aus **B** erhaltenen Bindungsparameter entsprechen dennoch deutlich besser den Daten von bekannten N-heterocyclischen Silylenen als jenen, die durch die Kristalle von **41** aus *n*-Hexan bestimmt wurden (**A**), (**41** (**A**): $\Delta d(C,C) = 5.2 - 7.3$ pm, $\Delta d(C,N) = 1.1 - 2.5$ pm, $\Delta d(N,Si) = 1.1$ pm).^[29] Des Weiteren sind die Abweichungen der beiden CN- und beiden NSi-Bindungslängen untereinander in **B** deutlich geringer als in **A** (**41** (**B**): $\Delta (d(C1,N1)/d(C2,N2) = 0.9$ pm, $\Delta (d(N1,Si)/d(N2,Si) = 0.8$ pm; **41** (**A**): $\Delta (d(C1,N1)/d(C2,N2) = 2.1$ pm,^[2] $\Delta (d(N1,Si)/d(N2,Si) = 1.3$ pm^[2]). Da diese Parameter durch die Fehlordnung des zentralen Fünfrings am stärksten beeinflusst werden, lässt sich festhalten, dass die Daten aus **B** die Molekülstruktur von **41** im Kristall am besten beschreiben. Somit wird erstmals ein detaillierter Einblick in die Bindungssituation der Molekülstruktur des Dipp-substituierten N-heterocyclischen Silylens **41** ermöglicht.

3.3 Einkristallstrukturen der höheren Homologen des 2,6-Di-*iso*-propylphenylsubstituierten N-heterocyclischen Silylens

Die höheren Homologen des N-heterocyclischen Silylens **41** mit 2,6-Di-*iso*propylphenyl-Substituenten (Dipp) an den Stickstoffatomen, das Germylen **54** (im Arbeitskreis von Jones,^[141] Roesky^[69] und im Arbeitskreis Müller von Schäfer^[32]) und das Stannylen **55** (im Arbeitskreis Weidenbruch von Rembielewski^[142]) sind ebenfalls intensiv studiert worden. Die Synthese von **54** und **55** gelingt durch Umsetzung des lithiierten Diazabutadiens **49** mit Germaniumdichlorid · Dioxan **1** bzw. Zinndichlorid **9**. (Die Präparationsvorschrift für das Germylen **54** ist in Abschnitt 7 zu finden.)

Durch Kristallisation der Verbindungen 54 und 55 aus *n*-Hexan konnten Einkristalle erhalten werden, die für eine Röntgenstrukturanalyse geeignet waren. Beide Verbindungen kristallisieren isotyp in der monoklinen Raumgruppe C2/c, wobei die Moleküle in den Kristallen die gleiche Fehlordnung aufweisen, wie sie im Fall des Silylens 41 beobachtet wurde.

Abbildung 3.3. Statistische Fehlordnung des Germylens **54** (links) und des Stannylens **55** (rechts) im Kristall. Für die Verbindungen sind jeweils nur der zentrale Fünfring und die *ipso* Kohlenstoffatome der Dipp-Substituenten dargestellt. Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %.

Die Bindungslängen und –winkel von **54** und **55** werden durch die Fehlordnung der Moleküle im Kristall deutlich mehr als im Fall des Silylens **41** (**A**) verfälscht. Bedingt durch die vorgegebene Geometrie des planaren Fünfrings und die im Vergleich zur NSi-Bindungslänge längeren NGe- und NSn-Bindungen ($d(N,Si(II)) = 177.4 - 176.1 \text{ pm}^{[24, 30, 139, 140]} < d(N,Ge(II)) = 183.2 - 188 \text{ pm},^{[31, 143]} < d(N,Sn(II)) = 208.4 - 210 \text{ pm}^{[33, 143]}$), kommt es zur Überschneidung der Lageparameter der CC-Bindung und des schweren Gruppe 14 Elements. Die so auftretende Korrelation der Position der Kohlenstoffatome und der schweren Gruppe 14 Elemente beeinflusst die Berechnung der Lage der Kohlenstoffatome des Rings und des schweren Gruppe 14 Elements so extrem, dass eine anisotrope Verfeinerung in diesem Fall nicht möglich ist. Eine detaillierte Diskussion der Bindungsverhältnisse von **54** und **55** kann somit nicht vorgenommen werden. Als grundlegende Eigenschaften der Molekülstrukturen können dennoch der planare Fünfring (**54**: β (GeNCC) = $-5.4 - 4.2^{\circ}$, **55**: β (SnNCC) = $-10.2 - 7.4^{\circ}$) und die orthogonal dazu angeordneten Dipp-Substituenten (**54**: $\varphi = 83.6 - 83.9^{\circ}$, **55**: $\varphi = 82.0 - 83.3^{\circ}$) herausgestellt werden. Eine ähnliche Fehlordnung der Moleküle im Kristall wurde von Russell und Mitarbeitern bei Kristallen des Dipp-substituierten gesättigten N-heterocyclischen Stannylens **56** beschrieben.^[42] Der zentrale, gesättigte Fünfring des Stannylens **56** liegt wie bei **54**, **55** und **41** auf einem Inversionszentrum.

Ein auffälliges Ergebnis aus den Einkristallstrukturanalysen des Germylens **54** und der Stannylene **55** und **56** ist, dass alle Verbindungen isotyp mit nahezu identischen Zellparametern in der monoklinen Raumgruppe C2/c kristallisieren. Unabhängig von der jeweiligen Beschaffenheit des N-heterocyclischen Tetrylens (gesättigt oder ungesättigt) zeigen alle drei Verbindungen dieselbe Fehlordnung im Kristall. Die Dipp-Substituenten an den Stickstoffatomen scheinen im Fall der Fünfring N-Heterocyclen strukturbestimmend zu sein, so dass die Moleküle **41**, **54** – **56** in der gleichen Anordnung im Kristall unter gleicher Kristallsymmetrie C2/c kristallisieren.

3.4 Einkristallstruktur des 2,6-Dimethylphenyl-substituierten N-heterocyclischen Germylens

Seit der ersten Synthese des N-heterocyclischen Germylens **15** von Meller und Mitarbeitern 1989 sind eine ganze Reihe Verbindungen (**54**, **57** – **63**) dieses Typs vorgestellt worden.^[23] Dennoch sind **54** und **57** – **60** die einzigen N-heterocyclischen Germylene, die als Strukturmotiv den zentralen ungesättigten, nicht anellierten Fünfring (λ^2 -germa-1,3-diazol) besitzen. Experimentelle Daten über die Molekülstruktur dieser Gruppe von Germylenen sind nur von Verbindung **54**, **57**, **59** und **60** bekannt.

Im Zuge der Arbeiten zur Darstellung monosubstituierter Germanium(II)-Kationen, den Germyliumylidenen, konnte im Arbeitskreis Müller von Schäfer ein synthetischer Zugang zu dem N-heterocyclischen Germylen 58 mit dem 2,6-Dimethylphenyl-Substituenten (Xylyl) an den Stickstoffatomen entwickelt werden.^[32] Die Präparation verläuft nahezu analog zu der Synthese der Germylene 57 und 63.^[31] Durch Lithiierung des Xylyl-substituieren Diazabutadiens 50 und anschließender Umsetzung mit dem Germaniumdichlorid-1,4-Dioxan Addukt 1 kann das Germylen 58 dargestellt werden. Im Laufe der eigenen Untersuchungen gelang es Kristalle von 58, die für eine Einkristallstrukturanalyse verwendbar waren, durch Umkristallisation von 58 aus *n*-Hexan zu erhalten. Das Germylen kristallisiert isotyp zum analogen Xylyl-substituierten N-heterocyclischen Silylen $40^{[30]}$ triklin in der Raumgruppe P-1. Die grundlegenden Strukturmerkmale des Germylens 58 ähneln sehr denen des analogen N-heterocyclischen Silylens 40 mit Xylyl-Substituenten an den Stickstoffatomen. Der zentrale ungesättigte λ^2 -germa-1,3-diazole Fünfring des Germylens ist nahezu planar (β (CCNGe) = - $0.2 - 1.2^{\circ}$). Die Stickstoffatome im Führing sind planar koordiniert ($\Sigma \alpha$ (N1,2) = 360°). Die Arylgruppen des Germylens 58 sind entgegen den Erwartungen nicht perfekt orthogonal zum zentralen Fünfring angeordnet ($\phi = 64.5 - 80.0^{\circ}$). Dies führt zu einer Verdrehung der Ebenen, die durch die beiden Xylylgruppen aufgespannt werden (Winkel zwischen zwei Ebenen, φ (Ebene-Xylyl(N1) / Ebene-Xylyl(N2)) = 20.3°). Die NGe-Bindungen sind wie für divalente Germaniumspezies erwartet länger als in vergleichbaren N-heterocyclischen Germanen mit tetravalenten Germaniumatomen ($d(N,Ge(II)) = 183.3 - 187.3 \text{ pm}, d(N,Ge(IV)) = 180.2 - 185.0 \text{ pm}^{[26]}$).

Abbildung 3.4. Molekülstruktur des Xylyl-substituierten N-heterocyclischen Germylens **58** im Kristall (Wasserstoffatome sind nicht dargestellt; Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %).

Ein Vergleich der mittleren Bindungslängen des Xylyl-substituierten N-heterocyclischen Germylens 58 mit den experimentellen Daten bekannter N-heterocyclischer Germylene 15, 54, 57 und 59 – 63 zeigt einige Auffälligkeiten. Die NGe-Bindungslänge von 58 ist im Vergleich zu 15, 54, 57 und 59 – 63 die längste (d(N,Ge) = 187.3 pm), weicht aber kaum von den experimentellen Daten bekannter ungesättigter N-heterocyclischer Germylene ab (d(N,Ge) = 185.6 - 186.4 pm). Ein weiteres Extremum ist der CC Abstand im Fünfring von 58. Dieser ist im Vergleich zu 15, 54, 57 und 59 – 63 der kürzeste (d(C,C) = 134.6 pm). Dieser Wert entspricht nahezu genau dem doppelten Kovalenzradius (r) eines Kohlenstoffatoms in einer Doppelbindung (r(C(Einfachbindung)) = 75 pm, r(C(Doppelbindung)) =67 pm).^[144] Dies spricht für einen deutlich ausgeprägten Doppelbindungscharakter zwischen den Kohlenstoffatomen und deutet darauf hin, dass die Wechselwirkungen zwischen der CC-Doppelbindung und dem Heteroallylsystem im Vergleich zu den bekannten N-heterocyclischen Germylenen geringer ausgeprägt ist. Die mittlere CN-Bindungslänge im Fünfring des Germylens 58 (d(C,N) = 138.7) liegt im Bereich der CN-Bindungslängen analoger Germylene 15, 54, 57 und 59 – 63 (d(C,N) = 137.6 - 138.4). Zusammenfassend lässt sich festhalten, dass sich die experimentellen Ergebnisse über die Molekülstruktur des Xylylsubstituierten N-heterocyclischen Germylens gut in die Literaturdaten einordnen lassen.

Verbindung	E =	<i>d</i> (C,C)	<i>d</i> (C,N)	<i>d</i> (N,E)	<i>α</i> (N,E,N)
58	Ge	134.6	138.7	187.3	83.5
15 ^[26]	Ge	k. A.	138.6	186.4	87.2
54 ^{[32]c}	Ge	142.0	152.0	181.1	89.2
57 ^[31]	Ge	136.4	138.4	185.6	84.8
59 ^[33]	Ge	136.8	139.1	186.4	82.8
60 ^[34]	Ge	138.6 ^c	143.7	180.0	87.8
61 ^[34]	Ge	141.9 ^b	139.2	186.4	84.9
62 ^[34]	Ge	142.9 ^b	137.6	186.3	84.6
63 ^[31]	Ge	157.1 ^a	145.9	183.3	88.0
40 ^[30]	Si	131.8	138.5	174.7	87.6

Tabelle 3.3. Experimentelle Strukturdaten der N-heterocyclischen Germylene **15**, **54**, **57** – **63** und des Silylens **40**. Bindungslängen *d* in pm, Bindungswinkel α in (°). Alle Angaben zu chemisch identischen Bindungen sind in Mittelwerten angegeben oder in Klammern extra aufgeführt

a) Fehlordnung der C-Atome (Spiegelebene durch NGeN führt zu einer Fehlordnung der C-Atome des zentralen gesättigten Fünfrings). b) CC-Bindung, die mit anelliertem Benzol bzw. Pyridin geteilt wird. c) Fehlordnung des zentralen Fünfrings: zentraler Fünfring liegt auf dem Inversionszentrum welches von der Kristallsymmetrie vorgegeben ist ($P2_1/c$).

3.5 Arbeiten zur Optimierung des Synthesewegs zur Darstellung arylsubstituierter N-heterocyclischer Stannylene

Die Synthese eines bis heute unbekannten N-heterocyclischen Stannylens mit Xylyl-Substituenten an den Stickstoffatomen und die anschließende Aufklärung der Bindungssituation würden einen detaillierten Vergleich mit den leichteren Homologen ermöglichen. Über die experimentellen Strukturdaten könnte somit der Zusammenhang zwischen der Bindungssituation der cyclischen Tetrylene bei gleichem Grundgerüst in Abhängigkeit des Gruppe 14 Elements ermittelt werden. Ein solcher Vergleich ist mit den Dipp-substituierten N-heterocyclischen Tetrylenen leider nicht möglich, da die experimentellen Strukturdaten auf Grund der beschriebenen Fehlordnung nicht geeignet sind.

Der klassische Syntheseweg zur Darstellung von N-heterocyclischen Stannylenen verläuft über eine Transaminierung, in der das Zinn in der Oxidationstufe (II) von Bis-[bis-(trimethylsilyl)amino]-zinn, [(Me₃Si)₂N]₂Sn: **64** auf den gewünschten Diaminoliganden **20** übertragen wird (vgl.: Schema 3.4).^[25, 33, 64-66] Über diesen Reaktionsweg kann eine Vielzahl unterschiedlicher Stannylene erhalten werden, die sich durch zusätzliche anellierte Ringe am Ligandengrundgerüst auszeichnen.^[20, 65, 66, 145] Dennoch sind bis heute nur wenige Stannylene bekannt, die analog zum Arduengo-Carben **11** nur aus einem ungesättigten Fünfring N-Heterocyclus bestehen.^[25, 33]

Schema 3.4. Transaminierung zur Darstellung N-heterocyclischer Stannylene 21. [25, 33, 64-66]

Der Grund für die Seltenheit dieses Strukturmotivs wurde durch die Arbeiten von Gudat und Mitarbeitern verdeutlicht. Mit Hilfe einer Reihe von Transaminierungsexperimenten zur Synthese arylsubstituierter N-heterocyclischer Stannylene konnte sie zeigen, dass die auf diesem Weg erhaltenen Stannylene ausgesprochen thermolabil sind und bereits bei 60 °C in einer cheletropen Reaktion zu den entsprechenden Diazabutadienen und Zinn zerfallen.^[25, 33]

Schema 3.5. Zerfallsreaktion der N-heterocyclischen Stannylene 21 bei Temperaturen über 60 °C.^[25, 33]

Gestützt auf zusätzliche computerchemische Studien konnte außerdem gezeigt werden, dass die Zerfallsreaktion durch Diazabutadiene **23** begünstigt werden. Dieses würde zu einer Art autokatalytischem Zerfall der Stannylene führen sobald Diazabutadiene in geringen Mengen vorhanden sind.^[25, 33]

Nahezu alle bis dahin durchgeführten Experimente und Berechnungen leiteten sich vom grundlegenden Transaminierungsschritt mit $[(Me_3Si)_2N]_2Sn:$ **64** als Ausgangssubstanz ab (vgl.: Schema 3.4). Im Gegensatz dazu gelang Rembielewski im Arbeitskreis von Weidenburch durch eine Transmetallierung einer Zinn(II)spezies ausgehend von einem Diarylstannylen **65** die Synthese des Dipp-substituierten N-heterocyclischen Stannylens **55** (vgl.: Schema 3.6).^[142] Dabei wird das 2,3,4-Trimethyl-6-*tert*.-butyl-phenyl-, Mebp-substituierte Stannylen **65** mit dem Dipp-substituierten Diazabutadien **49** in THF umgesetzt und zum Sieden erhitzt (ca. 66 °C). Entgegen den Ergebnissen von Gudat und Mitarbeitern zerfällt das entstandene Stannylen nicht und kann in einer moderaten Ausbeute erhalten werden (50 %). In analogen

Synthesen, bei denen die Substituenten des Diazabutadiens variiert wurden, konnte nicht die Bildung eines entsprechenden N-heterocyclischen Stannylens sondern nur die Entstehung von Zerfallsprodukten beobachtet werden.^[142]

Schema 3.6. Synthese des Stannylens 55 durch Transmetallierung.^[142]

Der Reaktionsmechanismus der Transmetallierung ist ungeklärt. Somit bleibt offen wie der 2,3,4-Trimethyl-6-*tert*.-butyl-phenyl, Mebp-Substituent von der Zinn(II)spezies **65** abgespalten wird und als 2,3,4-Trimethyl-6-*tert*.-butyl-benzol, MebpH **66**, aus der Reaktion hervorgeht.^[142]

Auf Grundlagen der Arbeiten von Rembielewski^[142] und Gudat^[25, 33] lässt sich vermuten, dass die Kombination beider Synthesewege ein neuen Zugang zu unbekannten N-heterocyclischen Stannylenen eröffnet.

Es wäre denkbar, dass diese Reaktion bei geringeren Temperaturen als von Gudat und Rembielewski beschrieben ablaufen könnte, da die Abspaltung der Mebp-Substituenten während der Transmetallierung durch die Übertragung der Wasserstoffatome vom α -Aminoaldimin **20** auf den Arylrest begünstigt sein könnte. Des Weiteren tritt bei dieser Reaktionsführung kein Diazabutadien auf. Somit sollte der durch Diazabutadiene initiierte katalysierte Zerfall der N-heterocyclischen Stannylene während der Reaktion ausbleiben.

3.6 Synthese und Charakterisierung arylsubstituierter α-Aminoaldimine

Die für die Studie benötigten arylsubstituierten α -Aminoaldimine **53** und **61** wurden ausgehend von den entsprechenden Diazabutadienen durch Lithiierung und anschließende Umsetzung mit Ethanol erhalten.^[25]

Schema 3.8. Darstellung der N-arylsubstituierten α-Aminoaldimine 53 und 61.

Die Synthese der Dipp- bzw. Xylyl-substituierten α -Aminoaldimine **53** und **67** gelang im 5 – 15 g Maßstab in Ausbeuten von 70 – 90 %. Die Identifizierung erfolgte mittels NMR-Spektroskopie. Erwartungsgemäß zeigten die Atome des Arylsubstituenten am Iminstickstoffatom und die des am Aminstickstoff gebunden Arylsubstituenten unterschiedliche Signale. Durch 2D NMR-Experimente gelang die eindeutige Zuordnung der Signale. Abgesehen von den C-Atomen der Arylsubstituenten, die an die Stickstoffatome gebunden sind, zeigten die Atome des imingebundenen Arylsubstituenten verglichen mit den Atomen der amingebundenen Arylgruppe im ¹H sowie im ¹³C NMR-Spektrum Resonanzen bei höherem Feld.

Verbindung	R =	$\delta^1 H(CH_2)$	δ ¹ H(NCH)	δ ¹³ C(CH ₂)	δ ¹³ C(NCH)	δ ¹⁵ N(NCH ₂)	$\delta^{15}C(NCH)$
53	Dipp	3.77	7.40	52.7	163.3	35.9	327.8
67	Xylyl	3.67	7.18	52.7	163.5	45.5	328.5
68 ^[25]	Mes	3.62	7.22				
69 ^[25]	^t Bu	3.36	7.67				

Tabelle 3.4. NMR-spektroskopische Daten der α-Aminoaldimine 53 und 67 – 69.

Die Signale der CH₂- und NCH-Gruppe des verbrückenden Fragments zwischen den Stickstoffatomen konnten ebenfalls im erwarteten Bereich detektiert werden (Bereich $\delta^{1}H = 2.5 - 4.3$ (CH₂), 6.1 – 7.5 (NCH), $\delta^{13}C = 35 - 70$ (CH₂), 140 – 170 (NCH))^[146] und sind nahezu identisch zu den Signalen analoger aryl- bzw. alkylsubstituierter α-Aminoaldimine ($\delta^{1}H = 3.36 - 3.62$ (CH₂), 7.22 –7.67 (NCH)).^[25] Mit Hilfe eines ¹H¹⁵N HMBC-Spektrum gelang es die chemische Verschiebung der Stickstoffatome sowie die ¹J(NH)-Kopplungskonstanten der Amingruppe zu ermitteln (**67**: $\delta^{15}N = 45.5$ (NH, ¹J(NH) = 77.4 Hz), 328.5 (NCH); **53**: $\delta^{15}N =$ 35.9 (NH, ¹*J*(NH) = 75.8 Hz), 327.8 (NCH)). Die erhaltenen Ergebnisse entsprechen ebenfalls den Daten aus der Literatur ($\delta^{15}N(Amin) = 0 - 90$; $\delta^{15}N(Imin) = 230 - 350$; ¹*J*(NH) Anilin = 78.0 Hz).^[147]

Während der Arbeiten zur Darstellung der arylsubstituierten α -Aminoaldimine gelang es Einkristalle von **53** nach Umkristallisation aus *n*-Hexan zu erhalten, die für eine Röntgenstrukturanalyse eingesetzt werden konnten. Das grundlegende Strukturmerkmal der Moleküle in der Kristallstruktur ist die nahezu planare Anordnung der zentralen α -Aminoaldimin-Einheit (β (N1C1C2N2) = -7.6°), in der die Stickstoffatome zueinander orientiert sind. Orthogonal zu dieser Ebene befinden sich die Dipp-Substituenten (β (DippNC) = -91.3 – -93.5°). Die Bindungslängen in der α -Aminoaldimin-Einheit (Exp.: d(C=N) = 126.3 pm, d(C-C) = 149.1 pm, d(C-N) = 144.5 pm / Lit:^[144] d(C=N) = 127 pm, d(C-C) = 150 pm, d(C-N) = 146 pm) und die pyramidale Konfiguration des Aminstickstoffatoms N2 entsprechen den Erwartungen (α (C2N2C15) = 117.1°, $\Sigma \alpha$ (N2) = 338.1°).

Abbildung 3.5. Molekülstruktur des Dipp-substituierten α-Aminoaldimins **53** im Kristall (Wasserstoffatome der Dipp-Substituenten sind nicht dargestellt; Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %; Fehlordnung der *iso*-Propylgruppe an C4 bedingt durch Rotation um C4C9-Bindung: Besetzungsgrad 80 zu 20 %, C9A (rote Ellipsoiddarstellung), C10A, C11A 80 % Besetzung, 20 % Besetzung nicht abgebildet).

Eine Erklärung für die orthogonale Anordnung der Dipp-Substituenten zur zentralen α -Aminoaldimin-Einheit ist der sterische Anspruch der Dipp-Substituenten. Der wahrscheinlichste Grund für die Z-Konformation des α -Aminoaldimin ist eine Wasserstoffbrückenbindung zwischen dem freien Elektronenpaar am Iminstickstoffatom N1 und dem Wasserstoffatom H2N an N2. Der Abstand zwischen N1 und H2N (d(N1H2N) = 217.5 pm) ist kürzer als die Summe der Van der Waals Radien ($\Sigma r^{w}(H,N) = 300 \text{ pm}$)^[148] und liegt im Bereich von Wasserstoffbrückenbindungen, die zwischen Aminen und Wasser bestimmt wurden ($d(H_2O\cdots H_2N) = 201 - 214 \text{ pm}$).^[149] Die Struktur der Wasserstoffbrückenbindung bzw. der NN-Abstand in **53** besitzt große Ähnlichkeit mit jenen in Protonenschwämmen wie 1,8-Bis(dimethylamino)-naphthalin (**53**: d(N1N2) = 265.1 pm, aromatische Protonenschwämme, verbrückte 2,2'-Bis(dimethylamino)biphenole d(N1N2) = 254.3 - 265.0 pm).^[150]

3.7 Umsetzung des Dipp-substituierten α-Aminoaldimins 53 mit Mebp₂Sn: 65

In den ersten Experimenten dieser Studie wurde die Reaktion des arylsubstituierten Stannylens **65** mit dem Dipp-substituierten α-Aminoaldimin **53** untersucht. Das gewünschte Zielprodukt **55** dieser Synthesen ist bekannt und spektroskopisch gut aufgeklärt.^[142] Somit lässt sich anhand dieser Reaktionen zuverlässig ermitteln, ob die gewünschten Stannylene über den abgewandelten Syntheseweg dargestellt werden können. Für die Experimente wurde **53** zusammen mit **65** in einem Schlenkkolben vorgelegt, in THF gelöst und bei 45 °C gerührt, wobei sich nach ungefähr einer Stunde eine Rotfärbung einstellte. Die Temperatur wurde so gewählt, dass sie deutlich unter der von Gudat beschriebenen Zerfallstemperatur der N-heterocyclischen Stannylene liegt. Nach einer Dauer von 16 Stunden wurde die Reaktion beendet und das Reaktionsgemisch wurde NMR-spektroskopisch untersucht.

Die NMR-Spektren zeigten den vollständigen Umsatz des eingesetzten Diarylstannylens **65**. Anhand der ¹H NMR-Spektren des Reaktionsgemisches konnte das gewünschte Dippsubstituierte N-heterocyclische Stannylen **55**, das bei der Transmetallierung erwartete Nebenprodukt 3,4,5-Trimethyl-1-*tert*.-butyl-benzol **66** und nicht umgesetztes α -Aminoaldimin **53** in einem Verhältnis von 1 zu 12 zu 8 identifiziert werden. Die große Anzahl der Signale im ¹³C NMR-Spektrum lässt jedoch vermuten, dass zusätzlich weiter nicht identifizierte Produkte entstanden sind. Im ¹¹⁹Sn NMR-Spektrum wurde neben dem charakteristischen Signal des N-heterocyclischen Stannylens (δ^{119} Sn = 262 ppm)^[142] kein weiteres Signal beobachtet. Dies verdeutlicht, dass es generell möglich ist N-heterocyclische Stannylene über den abgewandelten Syntheseweg zu erhalten. Eine anschließende Trennung des Stoffgemischs durch Kristallisation gelang nicht, da der Anteil des Stannylens im Gemisch zu gering war. Somit blieb die Bestimmung der isolierten Ausbeute an **55** offen.

3.8 Umsetzung des Xylyl-substituierten α-Aminoaldimins 67 mit Mebp₂Sn: 65

Obwohl es über den abgewandelten Syntheseweg nicht gelang **55** nach der Darstellung zu isolieren, erschien es dennoch vielversprechend auf dem gleichen Weg das gewünschte Xylyl-substituierte N-heterocyclische Stannylen **70** zu erhalten. Analog zu den vorherigen Experimenten wurde das Diarylstannylen **65** zusammen mit dem Xylyl-substituierten α -Aminoaldimin **67** in THF bei 45 °C gerührt. Nach 16 Stunden wurde der Reaktionsfortschritt überprüft.

Schema 3.10. Ergebnisse aus der Umsetzung des Diarylstannylens 65 mit 67.

Die betreffenden NMR-Ergebnisse zeigten neben der beginnenden Bildung des Produkts weiteres nicht umgesetztes Diarylstannylen (δ^{119} Sn (**70**) = 252 ppm, δ^{119} Sn (65) = 1257 ppm^[142]). Der vollständige Umsatz von **65** konnte nach einer Reaktionszeit von 8 Tagen beobachtet werden. Die NMR-spektroskopische Untersuchung des Reaktionsgemisches zeigte die Bildung des gewünschten Xylyl-substituierten N-heterocyclischen Stannylens **70** neben dem erwarteten Nebenprodukt **66** im Verhältnis 1 zu 2. Die spektroskopischen Ergebnisse zeigten zusätzlich, dass nur geringe Mengen an nicht identifizierten Produkten während der Reaktion entstanden sind.

Trotz des vorhandenen Reaktionsgemisches gelang es charakteristische NMR-Daten für das Xylyl-substituierte N-heterocyclische Stannylen **70** zu ermitteln. Die erhaltenen Daten

sind nahezu identisch zu den Literaturdaten ungesättigter, arylsubstituierter N-heterocyclischer Stannylene (vgl.: Tabelle 3.5). Die Resonanz der Wasserstoffatome des zentralen Fünfrings (δ^{1} H(NC<u>H</u>) = 6.90) liegt im erwarteten Bereich (δ^{1} H = 6.88 – 7.05). Die Signale der Stickstoffatome (δ^{15} N = 244) und des Zinnatoms (δ^{119} Sn = 254) weichen nur um 1 – 5 ppm von denen analoger Stannylene ab (δ^{15} N = 245, δ^{119} Sn = 259 – 260). Eine Diskussion der ¹³C NMR-Ergebnisse konnte nicht durchgeführt werden. Auf Grund der großen Anzahl an Signalen, hervorgerufen durch das Produktgemisch, war eine eindeutige Zuordnung der Signale im ¹³C NMR-Spektrum nicht möglich.

Tabelle 3.5. Zusammenfassung charakteristischer NMR-Daten unterschiedlich substituierter N-heterocyclischer Stannylene. Chemische Verschiebung in [ppm]. ¹⁵N Verschiebungen sind gegen NH_{3 (fl.)} angegeben ($\delta^{15}N(NH_3) = 0$). Angaben aus der Literatur sind entsprechend umgerechnet ($\delta^{15}N(MeNO_2)$ = -380.0 ppm gegen NH₃). R^N entspricht den Substituenten am Stickstoffatom des N-Heterocyclus, R^C den Substituenten am Kohlenstoffatom im zentralen Fünfring.^[147]

Verbindung	R^{N}, R^{C}	δ ¹ Η (NC <u>H</u>)	δ ¹³ C (N <u>C</u> H)	δ ¹⁵ N (<u>N</u> CH)	δ ¹¹⁹ Sn
55 ^[33, 142, 151]	Dipp, H	7.05	126.9	n. a.	260
56 ^[42]	Dipp, H ₂	-	-	n. a.	366
70 ^b	Xylyl, H	6.90	n. i. ^a	244	254
71 ^[25]	Mes, H	6.88	128.7	245	259
72 ^{b[33]}	Dipp, Me	-	n. a.	n. a.	256
73 ^[25]	^t Bu, H	7.44	125.5	268	237

a) Aufgrund des vorliegenden Reaktionsgemischs konnte keine eindeutige Zuordnung der Signale des ¹³C{¹H} NMR vorgenommen werden. b) Nur spektroskopische Daten vorhanden.

Die Trennung des Produktgemisches durch Kristallisation erschien zunächst vielversprechend, da der Anteil des gewünschten Stannylens **70** deutlich größer war als in den vorherigen Versuchen zur Synthese von **55**. (In den betreffenden ¹H NMR und ¹³C{¹H} NMR Spektren konnten nur wenige Signale mit schwacher Intensität nicht den Produkten zugeordnet werden).

Alle unternommenen Kristallisationsversuche des Gemisches aus **70** und **66** aus Benzol, *n*-Hexan bzw. Diethylether führten nicht zur gewünschten Trennung des Produktgemisches, da nach Wechsel des Lösungsmittels, unabhängig von seiner Natur, nach drei Tagen bei -20 °C die Zersetzung des Stannylens einsetzte. Die Lagerung der Kristallisationsansätze bei Raumtemperatur beschleunigte die Zersetzungsreaktion, sodass sie schon innerhalb eines Tages abgeschlossen war. Bei der Zersetzung wurde ein Farbwechsel der zuvor tiefrot gefärbten Lösung zu blassgelb beobachtet. Neben der eintretenden Gelbfärbung, die sich auf das entstandene Xylyl-substituierte Diazabutadien **67** zurückführen lässt, fällt elementares Zinn aus der Lösung aus. Auf Grund der Probleme bei der Isolierung des Stannylens **70** konnte keine Ausbeute bestimmt werden.

Ein ähnliches Verhalten wurde bereits von Gudat und Mitarbeitern am Beispeil des Stannylens **72** beschrieben. Nach erfolgreicher Synthese konnte **72** nur im kleinen Maßstab in NMR-Proben nachgewiesen werden, während die Aufarbeitung und die Kristallisation von **72** ebenfalls nicht zum gewünschten Erfolg führte. Gudat und Mitarbeiter begründeten dieses Verhalten durch die enorme Thermolabilität dieser Stannylene.^[33]

Die erhaltenen Ergebnisse verdeutlichen, dass der abgewandelte Syntheseweg einen Zugang zu ungesättigten, arylsubstituierten N-heterocyclischen Stannylenen bietet. Dennoch treten ähnliche Schwierigkeiten wie bei den etablierten Synthesewegen auf: Aufreinigungsprobleme, hohe Thermolabilität der Stannylene, sowie ihre Empfindlichkeit gegen Feuchtigkeit und Luft. Abgesehen davon bleibt zu betonen, dass es möglich war, das bis heute unbekannte Stannylen **70** zu synthetisieren und durch NMR-Experimente zu charakterisieren.

3.9 Vergleich der Bindungssituationen der N-heterocyclischen Tetrylene mit Xylyl-Substituenten an den Stickstoffatomen in Abhängigkeit des Gruppe 14 Elements: Silicium, Germanium und Zinn

Da die Isolierung und Kristallisation des Xylyl-substituierten N-heterocyclischen Stannylens nicht möglich war, konnte ein detaillierter Vergleich der Bindungssituation der Tetrylene 40, 58 und 70 auf Grundlage experimenteller Strukturdaten nicht vorgenommen werden. Mit Hilfe der Ergebnisse aus den NMR-Experimenten war es dennoch möglich die Bindungssituation detailliert zu diskutieren. Bei gleichbleibendem Grundgerüst der N-heterocyclischen Tetrylene lässt sich eine Abhängigkeit der chemischen Verschiebung der Stickstoffatome vom Gruppe 14 Element, Silicium bis Zinn, beobachten. Die Resonanz der Stickstoffatome im Fall des Silylens 40 wurde bei einer chemischen Verschiebung von 189.5 ppm beobachtet (vgl.: Tabelle 3.6). Dieser Wert liegt nahezu exakt zwischen der chemischen Verschiebung des Amin- und Imin-Stickstoffatoms des entsprechenden α -Aminoaldimins 67 ($\delta^{15}N = 45.5$ (-NH-), 328.5 (-N=C)). Bei dem analogen Germylen 58 und Stannylen 70 wurden die Signale der Stickstoffatome bei tieferem Feld beobachtet, sie nähern sich also der Verschiebung des Imin-Stickstoffatoms in 67 an ($\delta^{15}N = 189.5$ (40), 220.8 (58), 244 (70) 328.5 (-N=C in 67)). Anhand der NMR Daten lässt sich vermuten, dass der CN-Doppelbindungscharakter im zentralen Fünfring bei gleichen Substituenten am Stickstoffatom vom Silylen bis hin zum Stannylen zunimmt und somit das Strukturmotiv II ausgehend vom Silylen bis hin zum Stannylen an Bedeutung gewinnt.

Mit Hilfe zusätzlicher computerchemischer Berechnungen wurde überprüft, ob über die chemischen Verschiebungen der Stickstoffatome eine direkte Aussage über den Bindungsgrad zwischen den Stickstoff- und Kohlenstoffatomen getroffen werden kann. Hierzu wurden alle Molekülstrukturen der betreffenden Tetrylene ohne Berücksichtigung von Solventeffekten frei optimiert und die NMR Daten berechnet. Die Molekülstrukturen der Verbindungen **40** und **58** stimmen gut mit den experimentellen Strukturdaten überein. Die maximale Abwei-

chung zwischen berechneten und experimentellen Daten beträgt 3%. Die berechneten NMRchemischen Verschiebungen der Stickstoffatome liegen 40 - 60 ppm über den experimentellen Werten. Dennoch stimmt die experimentell bestimmte Abfolge der Signale, sowie ihr Abstand zueinander, qualitativ gut mit den errechneten Daten überein (vgl.: Tabelle 3.6). Auf dieser Grundlage lassen sich die computerchemischen Daten gut für die Diskussion der Bindungssituation verwenden.

Tabelle 3.6. Zusammenfassung experimentell bestimmter *d*(exp) und berechneter *d*(calc) Bindungslängen [pm] sowie ¹⁵N chemische Verschiebungen von **40**, **58**, **67** und **70**. Die Berechnungen der Strukturen und der Wiberg Bond Indizes (WBI) erfolgte auf B3LYP/H,C,N: 6-311+G(d,p), E: def2-TZVP -Niveau. Die ¹⁵N NMR Verschiebungen in ppm wurden auf GIAO B3LYP/H,C,N,Si,Ge: 6-311G(2d,p), Sn:TZVPall//B3LYP/H,C,N: 6-311+G(d,p), E: def2-TZVP Niveau berechnet. Alle ¹⁵N Verschiebungen sind gegen NH_{3 (fl.)} angegeben(δ^{15} N(NH₃) = 0).

	E=	CC-Bindung		NC-Bindung		EN-Bindung			δ ¹⁵ N			
		<i>d</i> (exp)	d(calc)	WBI	d(exp)	d(calc)	WBI	<i>d</i> (exp)	d(calc)	WBI	Exp	Calc
67 ^a	-		150.3	-		145.3 ^b	-	-	_	-	45.5 [°]	81.6
40 ^[30]	Si	131.8	135.3	1.66	138.5	139.5	1.11	174.7	177.1	0.74	189.5	245.3
58	Ge	134.6	135.9	1.62	138.7	138.4	1.14	187.3	189.8	0.72	220.8	280.4
70 ^[142]	Sn	—	136.5	1.58	_	137.8	1.18	-	210.8	0.66	244.0	296.3
67 ^a	-		150.3			126.5 ^d		_	-	-	328.5 ^e	382.4

a) Angegebene Daten beziehen sich auf das thermodynamisch stabilste Konformer (N-Atome sind zueinander orientiert). b) NC-Bindungslänge zwischen CH₂- und NH-Einheit (NC-Einfachbindung). c) $\delta^{15}N$ (–NH–CH₂–). d) NC-Bindungslänge zwischen CH- und N-Einheit (NC-Doppelbindung). e) $\delta^{15}N$ (–N=CH–).

Die berechneten Strukturen des zentralen Fünfrings der N-heterocyclischen Tetrylene 40, 58 und 70 sind, abgesehen von der Bindungslänge zwischen Stickstoff und dem entsprechenden Gruppe 14 Element, sehr ähnlich. Der größte Unterschied wurde erwartungsgemäß für die CC- und CN-Bindungen des Silylens 40 und des Stannylens 70 vorhergesagt. (Differenz der entsprechenden Bindungslängen von 40 und 70 $\Delta d(CC) = 1.2$ pm, $\Delta d(CN) =$ 1.7 pm). Die Kohlenstoffatomabstände sind dabei nur wenig größer als die berechnete Doppelbindungslänge im Ethenmolekül (d(CC) = 132.9 pm). Entsprechend dieser Ergebnisse sind die ermittelten Wiberg Bond Indices, WBIs, welche als Maß für den Bindungsgrad zwischen zwei Atomen angesehen werden können, für die CC-Bindung ebenfalls annähernd identisch (WBI = 1.66 - 1.58) und liegen zwischen den berechneten Werten einer CC-Einfach bzw. Doppelbindung (WBI (C–C) = $1.05 \text{ C}_2\text{H}_6$, D_{3d} ; WBI (C=C) = $2.05 \text{ C}_2\text{H}_4$, D_{2h} , vgl.: Tabelle 3.7). Die berechneten CN-Bindungsabstände von **40**, **58** und **70** sind ebenfalls sehr ähnlich. Sie entsprechen nahezu dem Mittelwert einer NC-Einfach- bzw. Doppelbindungslänge (d(N-C) = 146.6 pm; d(N=C) = 126.7 pm), wobei die ermittelten WBI für die CN-Bindungen (WBI = 1.11 - 1.18) nur gering von dem Wert einer NC-Einfachbindung der Modellverbindung Methylamin abweichen (WBI (N–C) = 1.03). Der Vergleich der errechneten CC-Bindungslängen und WBIs für die CC-Bindung der Tetrylene deutet auf das Vorliegen einer CC-Doppelbindung mit erniedrigtem Doppelbindungscharakter hin. Die CN-Bindungen hingegen werden als kurze CN-Einfachbindung mit wenig Doppelbindungscharakter beschrieben. Dieses entspricht einer Struktur der Tetrylene, die zwischen Typ I und II einzuordnen ist (vgl.: Schema 3.12).

Tabelle 3.7. Zusammenfassung von berechneten Bindungslängen, *d*, [pm] und Wiberg Bond Indices, (WBI) der entsprechenden Bindung von Modellmolekülen zum Vergleich der Bindungseigenschaften in N-heterocyclischen Tetrylenen. (Berechnungen auf B3LYP/H,C,N: 6-311+G(d,p) E: def2-TZVP-Niveau.)

Verbindung	E =	d(C–E)	WBI
H ₃ C–NH ₂	N	146.6	1.03
H ₂ C=NH	N	126.7	2.03
H ₃ C–CH ₃	С	153.1 ^a	1.05
$H_2C=CH_2$	С	132.9 ^b	2.05

Obwohl die strukturellen Unterschiede des Ligandengerüsts der N-heterocyclischen Tetrylene nur gering sind, kann eine Abhängigkeit der CC- bzw. CN-Bindungslänge vom Gruppe 14 Element des Tetrylens festgestellt werden. Die CC Abstände nehmen vom Silylen bis zum Stannylen innerhalb der Gruppe 14 zu (d(CC) = 135.3 - 136.5 pm), während die CN-Bindungslängen vom Silylen zum Stannylen abnehmen (d(NC) = 139.5 - 137.8 pm). Die WBIs zeigen eine ähnliche Tendenz: Der Bindungsgrad der CC-Bindung im N-Heterocyclus nimmt vom Silylen bis zum Stannylen ab, während der CN-Bindungsgrad zunimmt. Dieses entspricht den von Tuononen in einer theoretischen Arbeit über die elektronische Struktur von Gruppe 13 – 16 Imidazolderivaten vorhergesagten Tendenzen: Der Doppelbindungscharakter der CN-Bindung nimmt mit steigender Gruppe (13 – 16) und Periode (2 – 5) zu, während die Doppelbindungseigenschaften der CC-Bindung im N-Heterocyclus abnehmen.^[152]

Ein direkter Zusammenhang zwischen dem Bindungsgrad des Stickstoff- und Kohlenstoffatoms im zentralen Fünfring mit der ¹⁵N NMR chemischen Verschiebung kann nicht gefunden werden. Die großen Verschiebungsunterschiede der ¹⁵N NMR Signale lassen sich nicht mit den geringen strukturellen Änderungen der CN-Bindung in Abhängigkeit des Gruppe 14 Elements erklären. Eine mögliche Begründung ist, dass die elektronische Umgebung der Stickstoffatome, die durch die verschiedenen Gruppe 14 Elemente stark beeinflusst ist, eine viel größere Wirkung auf die Resonanzfrequenz der Stickstoffatome im NMR-Experiment hat, als die geringen Änderungen der Molekülstrukturen der N-heterocyclischen Tetrylene.

4 N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Ein zentrales Thema dieser Arbeit war es über geeignete Experimente zu ermitteln, ob N-heterocyclische Tetrylene als Vorläuferverbindungen zur Synthese neuartiger niedervalenter Verbindungen der Gruppe 14 Elemente mit ungewöhnlichen Bindungssituationen eingesetzt werden können.

Zunächst erschien es wichtig festzustellen welche N-heterocyclischen Tetrylene für die Untersuchungen geeignet sind. Ein wesentliches Kriterium hierbei ist, dass die Ausgangsmaterialien in großen Ausbeuten zugänglich sein sollten. Ein weiteres Kriterium ist, dass die Ausgangsverbindungen und die Produkte aus ihren Reaktionen gut spektroskopisch zu untersuchen sind. Somit kann eine Abhängigkeit von der Kristallisation der erhaltenen Produkte und der anschließenden Einkristallröntgenstrukturanalyse ausgeschlossen werden. Eine für diese Ansprüche gute analytische Methode ist die Heterokern NMR-Spektroskopie. Da die ⁷³Ge NMR-Spektroskopie auf Grund der Eigenschaften des ⁷³Ge-Kern (geringe Empfindlichkeit, hohes Quadropolmoment, hoher Kernspin 9/2 und geringe natürliche Häufigkeit) außerordentlich schwierig ist, und da aus den Ergebnissen des vorherigen Kapitels bekannt war, dass die N-heterocyclischen Stannylene nur in geringen Ausbeuten zugänglich sind und dass ihre Isolierung als Reinstoff kompliziert ist, wurde der Fokus der Untersuchungen auf die N-heterocyclischen Silylene gelegt.

4.1 Einfluss der Substituenten auf die Bindungssituation und das Redoxverhalten N-heterocyclischer Silylene

(Die unter diesem Abschnitt 4.1 vorgestellten Forschungsergebnisse wurden bereits während der Promotion im Rahmen eines Artikels mit dem Titel: *Electrochemistry and MO Computations of Saturated and Unsaturated N-Heterocyclic Silylenes*, in *Organo-metallics* **2010**, *29*, 1603 veröffentlicht)^[74]

Der Syntheseweg zur Darstellung N-heterocyclischer Silylene mit Arylsubstituenten an den Stickstoffatomen **40** und **41** und deren Reaktivität wurden bereits im Rahmen der Diplomarbeit untersucht.^[30]

Um die Bindungseigenschaften und das Redoxverhalten von **40** und **41** noch detaillierter kennen zu lernen und um diese mit bekannten gesättigten bzw. ungesättigten N-heterocyclischen Silylenen mit unterschiedlichen Substitutionsmustern an den Stickstoff- und Kohlenstoffatomen des Fünfrings zu vergleichen, wurde das Redoxverhalten der Silylene **14**, **40**, **41**, **45** – **47** anhand von Cyclovoltammetrie (CV) untersucht.⁴ Die Oxidation der Silylene **14**, **40**, **41**, **45** – **47** zum Radikalkation konnte im Bereich von 0.45 bis 0.68 V beobachtet werden. Alle Silylene zeigten irreversibles Redoxverhaltenen, da die Reduktion zur Ausgangsspezies nach der Oxidation nicht möglich war. Die Reduktion der neutralen Silylene zum Radikalanion im CV-Experiment gelang ebenfalls nicht.

Tabelle 4.1. Zusammenfassung der CV-Daten der Silylene 14, 40, 41, 45 – 47. Peakpotential (*E*p) in V.

Verbindung	<i>E</i> p (Oxidation)
14	0.50
40	0.60
41	0.68
45	0.55 (0.05) ^a
46	0.50
47	0.45

a) Oxidationspotential des Tetramers von 75.

Im Fall des Silylens **45** trat eine Auffälligkeit bei der CV-Messung auf. Zu Beginn der CV-Messung von **45** kann der Oxidationspeak des Tetramers des Silylens **45** bei 0.05 V beobachtet werden. Dies entspricht dem bekannten Verhalten von **45**. Es tetramerisiert im Festkörper zum roten Disilen **75**. In Lösung zerfällt das Disilen dagegen schnell zum monomeren, farblosen Silylen **45**.^[153, 154] Der entsprechende Oxidationspeak von **45** konnte einige Minuten nach Entfärbung der roten Probelösung, ebenfalls im CV bei 0.55 V, detektiert werden.

⁴ Die elektrochemischen Untersuchen sind im Rahmen einer Kooperation mit Prof James Y. Becker an der Ben– Gurion Universität, Beer Sheva, Israel von Kendrekar Pravinkumar durchgeführt worden.

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Schema 4.1. Monomer, Dimer und Tetramer des Silylens 45 im Gleichgewicht.

In der Reihe der gesättigten Silylene fiel das Oxidationspotential von **45** über **46** nach **47**. Es ist wahrscheinlich, dass der Verlauf des Oxidationspotentials mit dem sterischen Anspruch und der Stärke des +I-Effekts des Substituenten am Kohlenstoffatom des zentralen Fünfrings korreliert. Im Fall der ungesättigten N-heterocyclischen Silylene **14**, **40** und **41** wurde ebenfalls eine Abhängigkeit der Oxidationspotentiale von den Substituenten an den Stickstoffatomen des zentralen Heterocyclus beobachtet. Hierbei gelang die Oxidation des *N-tert.*-Butyl-substituierten Silylens **14** bei niedrigerem Potential als bei den *N*-aryl-substituierten Silylene **40** und **41**.

Tabelle 4.2. Zusammenfassung der Energien der Frontorbitale [eV] sowie berechnete Ionisierungspotentiale ($I_P(vert)$, $I_P(ad)$)^a [eV] und Elektronenaffinitäten ($E_P(vert)$, $E_P(ad)$)^b [eV] der Silylene **14**, **40**, **41**, **45** – **47** auf B3LYP/6-311+G(d,p)// B3LYP/6-311+G(d,p) Niveau.

Verbindung	<i>E</i> (HOMO)	<i>E</i> (LUMO)	I _P (vert)	E _A (vert)	I _P (ad)	I _A (ad)
14	-5.17	-0.69	6.99	0.74	6.70	0.63
40	-5.51	-1.08	7.19	0.25	6.88	0.05
41	-5.56	-1.11	7.11	0.16	6.81	0.02
45	-5.64	-0.78	7.29	0.65	7.13	0.48
46	-5.57	-0.75	7.14	0.69	7.01	0.50
47	-5.52	-0.79	7.04	0.58	6.87	0.26
45 [°]	-5.37	-0.41	7.09	1.35	6.93	0.96
74 ^c	-4.62	-1.32	6.10	0.19	5.77	-0.15
75 °	-4.15	-1.33	5.34	-0.15	4.89	-0.63

a) $I_P = E(\text{Radikalkation}) - E(\text{neutral})$. b) $E_A = E(\text{Radikalanion}) - E(\text{neutral})$ (je positiver der Wert der E_A . desto geringer die Elektronenaffinität). c) Berechnungen auf B3LYP/6-31G(d,p)// B3LYP/6-31G(d,p) Niveau zum Vergleich.^[155]

Zum Verständnis des Hintergrunds der unterschiedlichen Oxidationspotentiale der Silylene **14**, **40**, **41**, **45** – **47** wurden quantenchemische Rechnungen durchgeführt. Hierzu wurden die Molekülstrukturen aller Silylene unter Verwendung des Dichtefunktionals $B3LYP^{[156, 157]}$ mit dem Basissatz 6-311+G(d,p)^[158-160] in der Gasphase frei optimiert (neutral). Die während der CV auftretende oxidierte bzw. reduzierte Spezies entspricht dem jeweiligen Radikalkation bzw. dem Radikalanion. Die Energien der Radikalkationen und -anionen wurden auf Grundlage der Molekülstruktur der entsprechenden Silylene bestimmt (vertikal). In diesem Fall wird davon ausgegangen, dass sich die Struktur der Silylene während der Elektronenabstraktion (Oxidation) bzw. -übertragung (Reduktion) nicht ändert. Um eine mögliche Änderung während der Oxidation bzw. Reduktion zu berücksichtigen, wurden die Radikalkationen und -anionen ebenfalls in der Gasphase frei optimiert und deren absolute Energie bestimmt (adiabatisch). Auf Grundlage der berechneten vertikalen und adiabatischen Energien der Radikalkationen bzw. -anionen lassen sich theoretische Werte der benötigten Energien für die Oxidation bzw. Reduktion der Silylene **14**, **40**, **41**, **45** – **47** in der Gasphase berechnen und mit den experimentellen Peakpotentialen vergleichen (vgl.: Tabelle 4.2).

Die Berechnungen zeigten im Fall der gesättigten N-heterocyclischen Silylene, dass für die Oxidation von **47** weniger Energie aufgewendet werden muss als für **46**, wobei für die Oxidation des Silylens **45** am meisten Energie benötigt wird (**45** > **46** > **47**). Dieser Verlauf der berechneten Ionisierungsenergien ergab sich sowohl aus den Daten der vertikal berechneten Potentiale als auch aus den Daten der adiabatisch bestimmten absoluten Energien. Des Weiteren stimmt er qualitativ mit der Abfolge der experimentell bestimmten Oxidationspotentiale überein. Im Fall der ungesättigten N-heterocyclischen Silylene korrelieren die Resultate aus den Rechnungen nicht mit den Ergebnissen der Experimente. Es lässt sich festhalten, dass die Berechnungen übereinstimmend mit dem Experiment das niedrigste Oxidationspotential für das Silylen **14** voraussagten. Dennoch stimmte die qualitative Abfolge der vertikal oder adiabatisch berechneten Oxidationspotentiale nicht mit der experimentell ermittelten Abfolge von *I*_P überein.

Um den Unterschied zwischen den berechneten und experimentellen Daten zu verstehen, wurde das verwendete theoretische System weiter vereinfacht. In erster Näherung, unter Vernachlässigung von Solvatisierungs-, Oberflächen- und kinetischen Effekten, entspricht das Oxidationspotential einer Verbindung der energetischen Lage des höchsten besetzten Molekülorbitals (HOMO), während das Energieniveau des niedrigsten unbesetzten Molekülorbitals (LUMO) dem Reduktionspotential zugeordnet werden kann.

49

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Abbildung 4.1. Qualitatives MO-Diagramm der π -Wechselwirkungen in gesättigten und ungesättigten N-heterocyclischen Silylenen. Links: MO-Abfolge des Heteroallylanion analogen NSiN-Fragments von Silylen **45** – **47**. Die Wechselwirkung der Orbitale des NSiN-Elements mit der CC-Doppelbindung (Rechts) ergibt das MO Diagramm der ungesättigten N-heterocyclischen Silylene **14**, **40** und **41** (Mitte), (vereinfachte Darstellung auf Grundlage molekularer $C_{2\nu}$ Symmetrie).

Die Berechnungen der Molekülorbitale (MO) ergaben folgende Ergebnisse: Die Frontorbitale aller in diesem Zusammenhang betrachteten Silylene 14, 40, 41, 45 - 47 sind π -Orbitale, die orthogonal der NSiN-Ebene aufgespannt sind. Das freie Elektronenpaar am Siliciumatom entspricht in allen Fällen dem HOMO-1 Orbital, welches orthogonal zum π -System des HOMO angeordnet ist. Die berechneten Frontorbitalniveaus sind qualitativ in deutlich besserer Übereinstimmung mit den experimentellen CV-Daten als die theoretisch bestimmten Werte für $I_{\rm P}$ und $E_{\rm A}$. In der Gruppe der gesättigten N-heterocyclischen Silylene stimmt die Reihenfolge der Energie die für die Oxidation der Silylene 45 – 47 benötigt wird mit der Reihenfolge der energetischen Lage der HOMOs überein (47 > 46 > 45). Außerdem sagen die Berechnungen voraus, dass die alkylsubstituierten Silylene 46 und 47 auf Grund des +I-Effekts der Substituenten leichter zu oxidieren sind als 45 ohne Substituenten an der Ethylidene-Brücke des N-Heterocyclus (höhere energetische Lage des HOMO von 46 und 47 im Vergleich zu 45).⁵ Ein weiteres Ergebnis aus der Analyse der Frontorbitale ist, dass die Wechselwirkung der π -Bindung des heteroallyl-Teils (NSiN) mit der Doppelbindung in den ungesättigten Silylenen 14, 40 und 41 zur Destabilisierung des HOMO und des LUMO führt. Im direkten Vergleich des gesättigten 45 mit dem ungesättigten 14 N-heterocyclischen Silylens mit *tert*.-Butyl-Substituenten an den Stickstoffatomen liegt das HOMO von 14 höher als

⁵ Für eine detailliertere Diskussion siehe Computional Results in der bereits veröffentlichten Arbeit: *Organometallics* **2010**, *29*, 1603.

das HOMO von **45**. Dies erklärt die experimentell bestimmte Oxidationsfolge (**14** leichter oxidierbar als **45**).⁵ Der Vergleich der Ergebnisse aus der MO-Betrachtung der ungesättigten N-heterocyclischen Silylene **14**, **40** und **41** mit den experimentellen CV-Daten zeigt ebenfalls den gleichen Trend für die Lage der Energieniveaus der HOMOs der Silylene (**14** > **40** > **41**) und für deren Oxidationspotentiale (**14** > **40** > **41**). Die Ergebnisse der quantenchemischen Untersuchungen deuten an, dass die Abfolge der HOMOs und der Oxidationspotentiale aus dem –I-Effekt der Arylsubstituenten resultiert.⁵ Eine entsprechende Korrelation zwischen der Abfolge der HOMO-Energien und der Oxidationspotentiale aller sechs Silylene konnte nicht gefunden werden. Ein möglicher Grund dafür ist, dass die durchgeführten Rechnungen keine kinetischen Effekte der elektrochemischen Reaktionen berücksichtigen (Übergang der Elektronen von Elektrode in Lösung und von Lösung zum Molekül, sowie Diffusionsverhalten der Silylene und der korrespondierenden Radikalkationen und -anionen),^[161] obwohl es denkbar ist, dass sich ungesättigte und gesättigte N-heterocyclische Silylene in diesen Prozessen unterschiedlich verhalten.

Die hier vorgestellten theoretischen und experimentellen Ergebnisse sind im Einklang mit denen einer älteren Studie, die die Redoxeigenschaften von *N-tert.*-Butyl-substituierten N-heterocyclischen Carbenen, Silylenen und Germylenen vergleicht.^[155] Auffällig ist jedoch, dass in der vorliegenden Experimentreihe keine Reduktion der Silylene zu den entsprechenden Radikalanionen im CV beobachtet werden konnte, obwohl in der älteren Studie von der Reduktion berichtet wurde^[155] und bekannt ist, dass das gesättigte N-heterocyclische Silylen **45** chemisch mit Natrium-Kalium-Legierungen reduziert werden kann (Das ungesättigte Pendant **14** zu **45** zerfällt bei Reduktion zum entsprechenden Diazabutadien und Silicium).^[162] Dennoch stellt diese Studie die Abhängigkeit des Redoxverhaltens sowie der Lage der Frontorbitale der untersuchten Silylene von den Substituenten an Stickstoffatom am N-Heterocyclus (Aryl- oder Alkylsubstituent) und von der elektronischen Struktur des zentralen Fünfrings (gesättigt oder ungesättigt) heraus.

4.2 N-heterocyclische Silylene als Komplexliganden

N-heterocyclische Silylene sind auf Grund ihrer elektronischen Struktur isolobal zu Phosphanen. Die Lewis-basischen Eigenschaften, die die N-heterocyclischen Silylene durch das freie Elektronenpaar erhalten, ermöglichen somit den Einsatz der Silylene als Komplexliganden. 4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Entsprechende Übergangsmetallkomplexe, in denen N-heterocyclische Silylene als Komplexliganden vorliegen, sind von den Übergangsmetallen der der Gruppe 6 und 8 – 11 bekannt und wurden intensiv untersucht.^[88] Ziel der in den folgenden Abschnitten diskutierten Untersuchungen war es zu klären, ob es generell möglich ist die N-heterocyclischen Silylene mit Arylsubstituenten an den Stickstoffatomen **40** und **41** als Komplexliganden einzusetzen. Des Weiteren sollte ermittelt werden, ob durch das veränderte Substitutionsmuster der Silylene Komplexe mit frühen Übergangsmetallen zugänglich sind.

4.2.1 Pentacarbonylwolframkomplex 77 mit dem Xylyl-substituierten N-heterocyclischen Silylen 40 als Komplexligand

(Die in diesem Abschnitt 4.2.1 vorgestellten Ergebnisse konnten bereits während der Promotion im Rahmen eines Artikels mit dem Titel: *Synthesis and reactivity of N-aryl substituted N-heterocyclic silylenes*, in *Journal of Organometallic Chemistry* **2010**, *695*, 398 veröffentlicht werden.)^[30]

Um zu ermitteln, ob es generell möglich ist die Aryl-substituierten N-heterocyclischen Silylene **40** und **41** als Ligand in Übergangsmetallkomplexen einzusetzen, wurden Reaktionen der Silylene **40** und **41** mit Wolframhexacarbonyl, W(CO)₆, untersucht. Für die Experimente wurde Wolframhexacarbonyl gewählt, da bekannt war, dass Gruppe 6 Metalle gut geeignet sind um Komplexe aus N-heterocyclischen Silylenen und Übergangsmetallen zu synthetisieren.^[100] Zunächst wurden Umsetzungen des Xylyl-substituierten N-heterocyclischen Silylens **40** mit W(CO)₆ bei gleichem stöchiometrischem Verhältnis untersucht. Hierzu wurden beide Edukte gelöst in THF zusammengegeben und mit einer Quecksilberdampflampe bestrahlt. Die nachfolgende spektroskopische Analyse der Reaktionslösungen zeigte, dass ein reproduzierbares Gemisch aus Disilylen-Wolframtetracarbonylkomplex **78**, Monosilylen-Wolframpentacarbonylkomplex **77** und nicht abreagiertem Wolframhexacarbonyl **76** erhalten wurde (δ^{29} Si = 109.1 (W(CO)₅(**40**)), 111.7 (W(CO)₄(**40**)₂), δ^{13} C = 191.1 (CO, W(CO)₆), 193.7 (CO^{cis}, W(CO)₅(**40**)), 196.5 (CO, W(CO)₄(**40**)₂), 196.6 (CO^{trans}, W(CO)₅(**40**))).^[28, 30]

Schema 4.2. Umsetzung des Xylyl substituierten N-heterocyclischen Silylens 40 mit Wolframhexacarbonyl 76.

Durch gezielte Herstellung des Wolframpentacarbonyl-THF-Komplexes **79**^[163] und anschließende Umsetzung mit dem Silylen **40** konnte nach Kristallisation ausschließlich der Monosilylen-Wolframpentacarbonylkomplex **77** in einer Ausbeute von 47 % erhalten werden. Der Vorteil dieser Synthese ist, dass kein Produktgemisch entsteht. Außerdem konnte somit ein präparativer Zugang zu bislang unbekannten Monosilylen-Gruppe-6-pentacarbonyl-Komplexen geschaffen werden. Die Charakterisierung des W(CO)₅(**40**)-Komplexes **77** gelang über NMR-Spektroskopie und Einkristallröntgenstrukturanalyse. Das ¹H NMR-Spektrum von **77** entsprach den Erwartungen. Die Lage der Signale der Carbonylgruppen im ¹³C NMR-Spektrum (δ^{13} C = 193.7 (CO^{*cis*}), 196.6 (CO^{*trans*}))⁶ und des ²⁹Si NMR-Signals von **77** (δ^{29} Si = 109.1) ist vergleichbar mit denen des Tetracarbonylwolframkomplexes *trans*-W(CO)₄(**14**)₂ (δ^{13} C = 204 – 206, δ^{29} Si = 97.8).^[100]

Verglichen mit bekannten Silylenwolframkomplexen, die Resonanzen für die Siliciumatome im ²⁹Si NMR-Spektrum im Bereich von 380.9 – 97.8 ppm zeigen, ^[56, 59-62] wurde das ²⁹Si NMR-Signal von **77** (δ^{29} Si = 109.1) eher an der Hochfeldgrenze des für diese Komplexe bekannten Bereichs detektiert. Der große Wert der ²⁹Si¹⁸³W-Kopplungskonstante (¹*J*(SiW) = 163 Hz) bestätigte die direkte Bindung des Silylens an das Wolframatom. Allerdings konnte nicht direkt von der Größe der Kopplungskonstanten auf den Bindungsgrad zwischen Silicium und Wolfram geschlossen werden, da nur wenig über die Größe der ¹*J*(SiW)-Kopplungskonstanten bekannt ist.

⁶ Die Zuordnung der ¹³C NMR Signale zu den entsprechenden Kohlenstoffatomen der *trans-* bzw. *cis-*ständigen Carbonylgruppen erfolgte über die Intensität der Signale im ¹³C NMR-Spektrum. Das Kohlenstoffatom der *cis* zum Silylen ständigen Carbonylgruppe wurde dem Signal mitt der höchsten Intensität zugeordnet. Diese Zuordnung war möglich, da der Kern-Overhauser-Effekt, NOE-Effekt, für die Carbonylgruppen auf Grund der großen Entfernung von Protonen nahezu vernachlässigbar ist.

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Schema 4.3. Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit W(CO)₅(THF) 79.

Die Einkristallstrukturdaten von 77 unterstützten die spektroskopischen Ergebnisse und ermöglichten einen detaillierten Einblick in die strukturellen Eigenschaften des W(CO)₅(40)-Komplexes. Die Verbindung 77 kristallisiert orthorhombisch in der Raumgruppe Cmcm. Die Moleküle sind in der Kristallstruktur so angeordnet, dass der planare Fünfring des N-heterocyclischen Silvens in einer Spiegelebene zusammen mit zwei von den cis-ständigen Carbonylgruppen des Komplexes 77 liegt. Die beiden weiteren cis-ständigen Carbonylgruppen befinden sich in der zweiten Spiegelebene, die orthogonal zur ersten angeordnet ist, und stehen damit senkrecht auf der Ebene des Fünfrings des Silvlens. Die Achse entlang Si-W-CO^{trans} ist hierbei auf der Wyckoffposition 4c (m2m) lokalisiert, in der sich die beiden Spiegelebenen schneiden. Das Xylyl-substituierte N-heterocyclische Silylen spannt in diesem Komplex einen Tollmanwinkel von 123.7° auf. Die Bindungslängen und -winkel des λ^2 -Diazasilolrings weichen kaum von denen des freien Silylens **40** ab (vgl.: Tabelle 3.2). Als einzige Auffälligkeiten sind die leicht verlängerte CC-Doppelbindung und leicht verkürzte NSi-Bindungen des Fünfrings im Komplex verglichen mit den analogen Bindung im freien Silylen zu nennen (d(C,C) = 131.8 pm (Silylen 40), 138.2 pm (Komplex 77), d(N,Si) = 174.7pm (Silylen 40), 171.8 pm (Komplex 77)). Die SiW-Bindung ist (d(Si,W) = 245.62(16) pm) kurz im Vergleich zu dem typischen Bereich für SiW-Bindungslängen (d(Si,W) = 238.9 - 1000 $(270.8 \text{ pm})^{[30]}$ und entspricht der von W(CO)₅(14)₂ (d(Si,W) = 247.1 pm). Im Vergleich zu weiteren Wolframkomplexen mit nicht N-heterocyclisch stabilisierten Silylenen als Ligand ist sie aber deutlich länger (d(Si,W) = 235 pm,^[164] 238.5 pm^[165]). Die CO-Bindungslängen der *cis*-ständigen Carbonylgruppen (d(CO) = 114.18(62) pm, 113.97(62) pm) sind nahezu identisch zu der Bindungslänge der Carbonylgruppen in W(CO)₆ (d(CO) = 113.8 pm^[166]), während die CO-Bindungslänge der trans zum N-heterocyclischen Silylen ständigen Carbonylgruppe kürzer ist (d(CO) = 109.90(72) pm). Die entsprechende trans W–CO-Bindung ist die längste im Komplex ($d(W-CO^{trans}) = 207.75(58)$ pm, $d(W-CO^{cis}) = 204.32(51)$ pm).

Abbildung 4.2. Molekülstruktur des Wolframpentacarbonyl-Silylen-Komplexes **77** im Kristall. Wasserstoffatome sind nicht dargestellt. Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %. Ausgewählte Bindungslängen und -winkel: d(Si1W1) = 245.6 pm, d(Si1N1) = 171.8 pm, d(C1N1) = 138.6 pm, d(C1C1) = 138.2 pm, $\alpha(N1Si1N1) = 90.3^{\circ}$.

4.2.2 Einordnung des N-heterocyclischen Silylens 40 in die spektrochemische Reihe

Ein weiterer Vorteil des Monosilylen-Wolframpentacarbonyl-Komplexes ergibt sich durch die *trans* zum Silylen ständige Carbonylgruppe. Sie bietet als spektroskopische Sonde die Möglichkeit die Ligandeneigenschaften des Silylens über IR- und NMR-Methoden zu bestimmen. In den ¹³C NMR-Experimenten gelang es die ¹³C¹⁸³W-Kopplungskonstante, ¹*J*(CW), zu ermitteln. In Abhängigkeit der Größe der Kopplungskonstanten zwischen dem Wolframatom und dem Kohlenstoffatom der *trans* zum Silylen ständigen Carbonylgruppe sollte die π -Wechselwirkung zwischen diesen beiden Zentren bestimmbar sein. Bei einer starken π -Wechselwirkung zwischen dem Wolfram- und dem Kohlenstoffatom der *trans* ständigen Carbonylgruppe sollte die π -Wechselwirkung zwischen diesen beiden Zentren bestimmbar sein. Bei einer starken π -Wechselwirkung zwischen dem Wolfram- und dem Kohlenstoffatom der *trans* ständigen Carbonylgruppe von **77** ist der Wert der ¹*J*(CW)-Kopplungskonstante größer als der für die *cis*-ständige Carbonylgruppe (¹*J*(W–CO^{*trans*)) = 144.3 Hz, ¹*J*(W–CO^{*cis*}) = 120.8 Hz). Außerdem ist er größer als die ¹*J*(W–CO^{*trans*)-Kopplungskonstante von Wolframpentacarbonylcarbenkomplexen mit N-hetero-cyclischen Carbenen als Komplexligand, W(CO)₅(**80**) (¹*J*(W–CO^{*trans*)) = 131.8 Hz) und größer als der von Wolframpentacarbonylvinyliden mit Verbindung **81** - **83** als Komplexligand,}}}

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

 $W(CO)_5(83)$ (¹*J*(W–CO^{*trans*}) = 102.5 Hz) (vgl.: Tabelle 4.3). Durch Vergleich dieser Daten mit denen von 77 ließ sich die stärkste Rückbindung des Wolframmetallzentrums zum Kohlenstoffatom der *trans* ständigen Carbonylgruppe für den $W(CO)_5(40)$ Komplex ermitteln. Somit sollte die Rückbindung vom Wolfram- zum Siliciumatom des Silylens entsprechend schwächer ausfallen.

L	$\delta^{13}C$ (CO ^{trans})	$^{1}J(W-CO^{trans})$	δ ¹³ C (CO ^{<i>cis</i>})	¹ J(W–CO ^{cis})
40	196.6	144.3	193.7	120.8
80 ^[167]	201.3	131.8	198.4	124.5
81 ^[167]	203.7	129.4	198.6	127.0
CO ^[167]	191.0	124.5	191.0	124.5
82 ^[167]	203.2	117.2	197.0	129.4
83 ^[167]	215.0	102.5	198.1	127.0

Tabelle 4.3. Zusammenfassung ausgewählter ¹³C NMR Verschiebungen δ [ppm] und ¹*J*(W–CO)-Kopplungskonstanten [Hz].

Im IR Spektrum von W(CO)₅(**40**) werden zwei Banden mit schwacher (ws) und eine mit starker (is) Intensität im für Carbonylgruppen typischen Bereich beobachtet ($\tilde{\nu} = 2069$ cm⁻¹ (ws), 2011 cm⁻¹ (ws) und 1980 cm⁻¹ (is)). Dies entspricht der Anzahl an Banden, die durch computerchemische Berechnungen vorhergesagt wurden. Auf Grundlage des berechneten IR-Spektrums konnte die Bande mit der niedrigsten Wellenzahl der Valenzschwingung der *trans*-ständigen Carbonylgruppe, v_{as}(CO), zugeordnet werden.⁷ Sie entspricht der Wellenzahl von *trans*-ständigen Carbonylgruppen in Wolframpentacarbonylkomplexen mit Phosphanen oder Phosphorsäureestern als Komplexligand ($\tilde{\nu} = 1942 - 1965$ cm⁻¹).^[168]

Mit Hilfe der Daten aus den NMR-Experimenten können dem Xylyl-substituierten N-heterocyclischen Silylen **40** als Komplexligand starke σ -Donor und schwache π -Akzeptor Eigenschaften zugeordnet werden. Außerdem zeigen die Ergebnisse aus der IR-spektroskopischen Untersuchung, dass die Ligandeneigenschaften mit denen von Phosphanen und Phosphorsäureestern zu vergleichen sind. Somit lässt sich das Silylen wie folgt in die

⁷ Berechnungen des W(CO)₅(**40**) auf B3LYP/W: SDD, H,C,N,O,Si: 6-311G(d,p)// B3LYP/W: SDD, H,C,N,O,Si: 6-311G(d,p) Niveau.

spektrochemische Reihe einordnen: (Halogenide \approx S-Liganden < O-Liganden < N-Liganden < Silylen als Komplexligand- \approx P-Liganden \approx Carbenliganden < CO/NO⁺) (vgl.: Abbildung 4.3).

σ-Donoren und starke π-Donoren schwache π-Donoren I^{-} , Br^{-} , $S^{2^{-}}$, SCN, CI^{-} , NO_{3}^{-} , F^{-} , OH^{-} , $C_{2}O_{4}^{2^{-}}$

reine σ -Donoren H₂O, ⁻NCS, NCCH₃, NH₃, en

σ-Donoren und schwache π-Akzeptoren starke π-Akzeptoren bipy, phen, NO₂⁻, ⁻CN, PR₃, CO, NO⁺

Halogenide \approx S-Liganden < O-Liganden < N-Liganden < P- \approx Carbenliganden < CO/NO⁺ schwache Liganden = π-Donoren starke Liganden = π-Akzeptoren

Abbildung 4.3. Spektrochemische Reihe.^[169]

Dies entspricht den Erwartungen: Unter Berücksichtigung der Frontorbitale der Silylene (vgl. Abschnitt 4.1) besitzt das Silylen die nukleophilen, σ -Donor Eigenschaften auf Grund des freien Elektronenpaars am Siliciumatom (HOMO-1). Die schwachen π -Akzeptor Eigenschaften resultieren aus der Konjugation des freien p-Orbitals am Silicium (HOMO, 2b₁-Orbital) mit den freien Elektronenpaaren der Stickstoffatome im Diazasilolring. Somit steht dieses Orbital für eine π -Bindung mit dem Wolframatom nicht zur Verfügung. Es wäre dennoch denkbar, dass eine π -Wechselwirkung zwischen dem Wolfram- und Siliciumatom über das antibindende Orbital der Heteroallylbindung des Silylens, dem 3b₁-Orbital, eintritt, was zu einer Verlängerung der NSi-Bindung im Fünfring des Silylens im Vergleich zum freien Silylen führen würde. Dies entspricht nicht den Daten der Einkristallstrukturanalyse von **40** und **77**. Es wird im Gegenteil eine kürzere NSi-Bindung in Verbindung **77** als in **40** beobachtet (d(N,Si) = 174.7 pm (Silylen **40**), 171.8 pm (Komplex **77**)), was die schwachen π -Akzeptor Eigenschaften unterstreicht.

Bei der Diskussion der Bindungslängen zwischen Wolfram- und Kohlenstoffatom der Carbonylgruppen und dem CO-Bindungsabstand der Carbonylgruppen ist noch eine weitere Schlussfolgerung hinsichtlich der Einordnung des Silylens in die spektrochemische Reihe möglich. Die Einkristallstrukturanalyse zeigt, dass die CO^{trans}-Bindung die kürzeste Carbonylbindung im Komplex ist, während die W-CO^{*trans*}-Bindung den längsten Wolfram-Kohlenstoff-Abstand im Komplex aufweist ($d(CO^{cis}) = 114.18(62)$ pm, 113.97(62) pm; $d(CO^{trans}) = 109.90(72)$ pm, $d(W-CO^{trans}) = 207.75(58)$, $d(W-CO^{cis}) = 204.32(51)$ pm). Diese Beobachtungen sprechen für eine π -Wechselwirkung zwischen dem Wolfram- und dem Siliciumatom, womit dem Silylen π -Akzeptor Eigenschaften zugeordnet würden. Dennoch sind die Ergebnisse aus den spektroskopischen Untersuchungen deutlich höher zu gewichten, da geringe Veränderungen in der Bindungssituation und in den Energieniveaus der Molekülorbitale von Verbindungen häufig große Auswirkungen auf ihre spektroskopisch messbaren Größen wie NMR chemische Verschiebung δ , und Valenzschwingungen, $\tilde{\nu}$ ausüben, während kaum Effekte auf die Struktur der Verbindungen zu beobachten sind (vgl.: Abschnitt 3.9).^[170]

4.2.3 Versuche zur Synthese von Gruppe 4 Metallkomplexen mit N-heterocyclischen Silylenen als Komplexliganden

Da durch die vorherigen Experimente die generelle Verwendung der arylsubstituierten N-heterocyclischen Silylene als Komplexligand gezeigt werden konnte, erschien es vielversprechend die Silylene als Ligand für frühe Übergangsmetallkomplexe einzusetzen. Bei Umsetzungen des Silylens **41** mit dem Titanocen-bis(trimethylsilyl)acetylen-komplex **84** konnten keine Hinweise auf die Bildung von Titan-Silylenkomplexen gefunden werden, obwohl unabhängig von der Stöchiometrie der Reaktion (**41** zu **84**: 1:1, 2:1) freies Bis(trimethylsilyl)acetylen in der Reaktionsmischung nachgewiesen wurde. Außerdem zeigten die Experimente, dass jeweils nur ein Äquivalent Silylen mit dem Komplex reagiert, da bei entsprechendem Überschuss das Silylen unverändert aus der Reaktion hervorging.

Eine weitere gängige Methode zur Darstellung von Titanocenkomplexen ist die Erzeugung des Titanocenfragments während der Reaktion durch Reduktion in Gegenwart des gewünschten Liganden, der an das Titanzentrum koordiniert werden soll.^[171] In einer analogen
Reaktion von Titanocendichlorid **86** mit Silylen **40** und Magnesium konnte kein spektroskopisches Indiz gefunden werden, das für die Bildung von Titanocen-Silylenkomplexen sprechen würde, obwohl ein Farbumschlag der Reaktionslösung zu Beginn der Experimente auf eine Umsetzung der Reaktanten hinwies.

Schema 4.5. Umsetzung des Silylens 40 mit Titanocendichlorid 86 unter reduktiven Bedingungen.

Ein weiter Zugang zu reaktiven Titanspezies bieten Titan-Stickstoff-Komplexe, die im Arbeitskreis Beckhaus etabliert sind. Ein Vorteil dieser Verbindungen ist, dass sie sehr leicht Distickstoff während einer Reaktion abgeben. Somit können unter sehr milden Bedingungen Ligandenaustauschreaktionen durchgeführt werden. In den von Oslage durchgeführten Experimenten mit unterschiedlichen Titan-Stickstoffkomplexen **87** und dem Silylen **41** in Toluol oder THF unter Verwendung verschiedener stöchiometrischer Verhältnisse der eingesetzten Edukte konnten nur Produktgemische erhalten werden. Die NMR-spektroskopischen Ergebnisse deuten auf die Bildung von paramagnetischen Substanzen hin, die nicht weiter identifiziert werden konnten.^[172]

Schema 4.6. Umsetzung des Silylens 41 mit dem Titan-Stickstoffkomplex 87.

Weder durch Ligandenaustauschreaktionen ausgehend von Titanocen-bis(trimethylsilyl)acetylen **84** noch durch Generierung von Titanocenfragmenten während der Reaktion durch Reduktion war es möglich Titan-Silylen-Komplexe herzustellen. Auch durch Verwendung der reaktiveren Titan-Stickstoff-Komplexe **87** gelang es nicht die gewünschten Komplexe zu erhalten. Da über die gängigen Analysemethoden kaum Informationen über die Reaktionen der Silylene mit den Titankomplexen zugänglich waren, wurde dieses Projektthema nicht weiter verfolgt.

4.3 N-heterocyclische Silylene als Ausgangsstoffe für Silene, Disilene und Silaallene

Inspiriert durch die Arbeiten von Kira und Mitarbeitern zur Synthese des Trisilaallens **89**^[56] sowie durch die Arbeiten von Robinson über eine Verbindung **90** mit einer donorstabilisierten SiSi-Doppelbindung mit Silicium in der formalen Oxidationsstufe 0 $(Si(0)=Si(0))^{[173]}$ stellte sich die Frage, ob es möglich ist vergleichbare Verbindungen ausgehend von N-heterocyclischen Silylenen herzustellen.

Sollte der Syntheseweg von Kira auf die Chemie der N-heterocyclischen Silylene übertragbar sein, könnte ein präparativer Zugang zu Tri- und Disilaallenen **91** geschaffen werden, die an den terminalen Siliciumatomen Stickstoffsubstituenten tragen. Des Weiteren könnte nach Analogie zu Robinson eine Verbindung mit einer SiSi-Doppelbindung mit Silicium in der Oxidationsstufe 0 (Si(0)=Si(0)), die durch N-heterocyclische Silylene stabilisiert ist, zugäng-lich werden.

Schema 4.7. Retrosynthetische Vorstellungen zur Synthese von niedervalenten, donorstabilisierten Verbindungen mit Gruppe 14 Elementen in der formalen Oxidationsstufe 0 und ihren Ausgangsverbindungen.

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Ein genereller Syntheseweg zu Darstellung solcher niedervalenten Siliciumverbindungen verläuft über die Reduktion von geeigneten Halogenverbindungen des Typs **93** bzw. **94**. Somit rückt zunächst die Darstellung dieser Vorläuferverbindungen des Typs **93** und **94** im Rahmen dieses Projekts in den Vordergrund (vgl.:Schema 4.7).

Verbindungen des Typs **94** können als donorstabilisierte Carbenanaloga betrachtet werden. In Anlehnung an die Strategie hochreaktive Verbindungen der p-Blockelemente, die einen Elektronenmangel aufweisen, durch N-heterocyclische Carbene zu stabilisieren,^[4, 5, 87, 173-181] lässt sich vermuten, dass N-heterocyclische Silylene, bedingt durch ihre Donoreigenschaften, ebenfalls niedervalente Verbindungen der Gruppe 14 Elemente stabilisieren könnten. Somit ist es denkbar Verbindungen des Typs **94** durch Umsetzung von N-heterocyclischen Silylenen mit entsprechenden Gruppe 14 Dihalogeniden zu erhalten. In neuerer Zeit konnten erstmals donorstabilisierte Dihalogensilylene dargestellt werden. Ihre Synthese gelingt durch Umsetzung von N-heterocyclischen Carbenen mit Tetrabromsilan, SiBr₄, bzw. Trichlorsilan, HSiCl₃, und anschließende Reduktion.^[6, 7] Entsprechend diesem Syntheseweg wäre es denkbar die Verbindungen **94** ebenfalls durch Reduktion von Addukten aus einem N-heterocyclischem Sily-len und den Tetrahalogensilanen **96** zu erhalten.

Verbindungen des Typs **93** und **100** lassen sich als Produkte einer formalen oxidativen Addition von Tetrahalogenen der Gruppe 14 Elemente bzw. Dihalogene der Gruppe 14 Elemente beschreiben (vgl.: Schema 4.7 und 4.8). Durch zahlreiche Studien, die sich mit der oxidativen Addition von Halogenalkanen an Silylenen befassten, war es möglich den Mechanismus dieser Reaktion aufzuklären.^[82, 83, 182-184] Auf Grundlage dieser Kenntnisse erscheint es vielversprechend Verbindungen des Typs **93** und **100** durch Umsetzung von Silylenen mit Halogensilanen **101** zu synthetisieren. Des Weiteren ist es denkbar, dass Verbindungen des Typs **93** und **100** aus entsprechenden lithiierten Diaminen **98** durch Umsetzung mit Halogensilanen **97** in einer Salzmetathesereaktion synthetisiert werden können.

Beide Reaktionswege, die oxidative Addition und die Salzmetathese, ermöglichen außerdem die Synthese von Verbindungen des Typs **100**. Diese Verbindungen sind ebenfalls von großem Interesse, da sie durch Reduktion zu bislang unbekannten Silenen oder Disilenen **102** mit zwei Stickstoffsubstituenten an einem Siliciumatom überführt werden könnten (vgl.: Schema 4.8).

Schema 4.8. Retrosynthetischer Weg zur Darstellung von Disilenen oder Silenen mit Stickstoffsubstituenten an einem Siliciumatom.

4.3.1 Oxidative Addition – Umsetzungen der N-heterocyclischen Silylene mit Halogeniden der Gruppe 14 Elemente

Das Ziel der im folgenden Abschnitt diskutierten Studie bestand darin durch formale oxidative Addition von Halogeniden der Gruppe 14 in der Oxidationsstufe IV an die Silylene **40** und **41** Verbindungen des Typs **93** und **100** zu synthetisieren. Diese könnten entsprechend Schema 4.7 als Ausgangsstoff für die Darstellung von niedervalenten Verbindungen des Typ **93** und **100** eingesetzt werden. Die hierzu durchgeführten Experimente liefen alle nach einem einheitlichen Muster ab. Zunächst wurde das entsprechende Silylen vorgelegt, in *n*-Hexan gelöst und anschließend mit Tetrachlor- bzw. Tetrabromkohlenstoff (CCl₄, CBr₄) oder Tetrachlor- bzw. Tetrabromsilan (SiCl₄, SiBr₄) versetzt.

Schema 4.9. Experimente zur Ermittlung der Reaktivität der arylsubstituierten N-heterocyclischen Silylene gegenüber Halogeniden der Gruppe 14 in der Oxidationsstufe IV.

4.3.1.1 Temperaturabhängigkeit der Reaktion der Silylene 40 und 41 mit Tetrahalogeniden der Gruppe 14 Elemente

Die ersten Experimente wurden, analog zu den im Experimentalteil aufgeführten Versuchsbedingungen, mit den Tetrahalogenen der Gruppe 14 Elemente bei Raumtemperatur durchgeführt. Unabhängig vom Tetrahalogen wurde in allen Experimenten mit Silylen **40** die Bildung eines Produktgemisches beobachtet, wobei keine der Verbindungen im Gemisch über NMR-Experimente identifiziert werden konnte. Im Fall des Silylens **41**, mit den sterisch etwas anspruchsvolleren Dipp-Substituenten an den Stickstoffatomen, kam es bei Reaktionen bei Raumtemperatur in den meisten Fällen ebenfalls zur Bildung eines Produktgemisches. In einigen Versuchen bei Raumtemperatur wurde jedoch keine Reaktion zwischen **41** und dem Tetrahalogenid des Gruppe 14 Elements beobachtet. Ein anschließendes Erwärmen der Reaktionslösung zum Starten der Reaktion führte ebenfalls zur Bildung von Produktgemischen. Die NMR-Spektren aller Produktgemische lassen vermuten, dass die gewählten Reaktionsbedingungen zur Zersetzung der Silylene **40** und **41** geführt haben.

Schema 4.10. Umsetzung der arylsubstituierten N-heterocyclischen Silylene **40** und **41** mit Tetrahalogeniden der Gruppe 14 Elemente bei Raumtemperatur.

Daher wurden alle weiteren Experimente bei niedrigeren Temperaturen durchgeführt. Hierzu wurden die Tetrahalogenide der Gruppe 14 Elemente gelöst in *n*-Hexan bei -78 °C zum Silylen getropft.

4.3.1.2 Umsetzungen der Silylene mit Tetrachlorkohlenstoff

Im Gegensatz zur Entstehung eines Produktgemisches in Reaktionen der Silylene 40 und 41 mit CCl_4 105 bei Raumtemperatur, wurden bei -78 °C und anschließender Erwärmung der Reaktionsmischung auf Raumtemperatur die Produkte 103 bzw. 104 entsprechend einer formalen oxidativen Addition in Ausbeuten von 20 – 44 % gebildet.

Schema 4.11. Umsetzung der arylsubstituierten N-heterocyclischen Silylene **40** und **41** mit Tetrachlorkohlenstoff bei –78 °C und anschließender Erwärmung auf Raumtemperatur.

In diesen Reaktionen insertiert das zweifach koordinierte Siliciumatom der Silylene formal in eine C–Cl-Bindung. Auffällig ist jedoch, dass die Bildung von 1:1 Addukten in analogen Reaktionen mit Tetrachlorkohlenstoff ausgehend von anderen N-heterocyclischen Silylenen bis jetzt noch nicht beschrieben wurde. In Reaktionen des gesättigten sowie des ungesättigten N-heterocyclischen Silylens **14** und **45** mit CCl₄ werden ausschließlich 1:2 Addukte (ein Molekül CCl₄ und zwei Moleküle des Silylens) des Typs **106** in Ausbeuten von über 90 % erhalten (vgl.: Abschnitt 4.3.1.5).^[182, 185]

Schema 4.12. Umsetzung der tert.-Butyl-substituierten N-heterocyclischen Silylene 14 und 45 mit Tetrachlorkohlenstoff.

Die Charakterisierung der Verbindungen **103** und **104** erfolgte mittels NMR-Spektroskopie und Einkristallröntgendiffraktometrie. Das auffälligste Ergebnis der NMR-spektroskopischen Untersuchungen ist die eingeschränkte Rotation der Arylsubstituenten um die C^{ipso} N-Bindung bei Messtemperatur T = 32 °C. Diese Eigenschaft machte sich darin bemerkbar, dass die Wasserstoff- sowie die Kohlenstoffatome an den Positionen 2, 3, 6, 7 und 8 im ¹H NMR- und ¹³C NMR-Spektrum jeweils zwei Signale zeigten. Die für N-Heterocyclen charakteristische NMR chemische Verschiebung der Ringwasserstoff- und Kohlenstoffatome von **103** (δ^{1} H = 5.73, δ^{13} C = 120.8) und **104** (δ^{1} H = 5.47, δ^{13} C = 119.2) lagen im Bereich der Resonanzen von entsprechenden Atomen vergleichbarer Verbindungen (δ^{1} H = 5.51 – 5.79,

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

 $\delta^{13}C = 112.7 - 125.1$).^[30, 140, 182] Die ¹³C NMR-Signale der CCl₃-Gruppe von **103** und **104** ($\delta^{13}C = 89.9$ bzw. 89.6) lagen im erwarteten Bereich für Trichlormethylgruppen ($\delta^{13}C = 75.3 - 96.1$).^[182, 186] Die nahezu identische NMR chemische Verschiebung dieser Kohlenstoffatome weist auf die sehr ähnliche chemische und magnetische Umgebung der Kohlenstoffatome hin.

Tabelle 4.4. Zusammenfassung charakteristischer NMR-Daten der Verbindungen **103** und **104** im Vergleich mit Daten literaturbekannter Verbindungen.

Verbindung	R	$\delta^{1}H$ (NCH)	δ ¹³ C (NCH)	δ ¹³ C (CCl ₃)	δ ²⁹ Si (SiXCCl ₃)	$\delta^{15}N$
51a ^[30]	Dipp	5.73	125.1	_	-38.2	82.4
52a ^[30]	Xylyl	5.51	118.5	-	-41.0	n. a.
103	Dipp	5.73	120.8	89.9	-37.4	73.1
104	Xylyl	5.47	119.2	89.6	-38.8	75.8
106b ^[182]	^t Bu	5.79, 5.75	116.0, 115.3	75.3	-35.3, -35.5	n. a.
106a ^[182]	^t Bu	-	-	93.1	-25.5, -26.7	n. a.
107 ^[140]	^t Bu	5.75	112.7	-	-40.1	n. a.
CCI ₄ ^[186]	_	-	-	96.1	-	_
H ₃ C–CCl ₃ ^[186]	-	-	-	95.3	-	_

Die NMR chemische Verschiebungen der Signale in den ¹⁵N NMR-Spektren (δ^{15} N = 73.1 **103**, 75.8 **104**) wurden im Vergleich zu denen der Diaminodihalogensilane **51a** und **52b**, (δ^{15} N = 82.4, 90.1,)^[30] bei tieferem Feld beobachtet und liegen im Bereich für dreifach substituierte Stickstoffatome (δ^{15} N(Amin) = 0 – 90).^[147] Die Resonanzen der Siliciumatome von **51a** und **103** in den ²⁹Si NMR-Spektren sind so ähnlich, dass die Bildung von **51a** auf Grundlage der ²⁹Si NMR-Spektren bei der Umsetzung von **41** mit CCl₄ nicht auszuschließen war. Erst die NMR-spektroskopische Untersuchung eines Gemisches aus **51a** und **103** ermöglichte die eindeutige Zuordnung (δ^{29} Si = -38.2 **51a**^[30] –37.4 **103**,). Die Verbindungen **52a** und **104** unterscheiden sich deutlicher in ihren ²⁹Si NMR chemischen Verschiebungen (δ^{29} Si = -41.0 **52a**^[30]

-38.8 **104**). Die ermittelten chemischen Verschiebungen der Siliciumatome aller hier diskutierten Verbindungen liegen im erwarteten Bereich für Diaminosilane (δ^{29} Si = 0 bis -50).^[187]

Abbildung 4.4. Molekülstruktur von **103** im Kristall (Wasserstoffatome sind nicht dargestellt; Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %).

Abbildung 4.5. Molekülstruktur von **104** im Kristall (Wasserstoffatome sind nicht dargestellt; Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %).

Durch Kristallisation von **103** und **104** aus *n*-Hexan bei -20 °C gelang es Einkristalle für die Röntgendiffraktometrie zu erhalten. Die Verbindung **103** kristallisiert monoklin in der Raumgruppe $P2_1/n$ mit vier Molekülen in der Elementarzelle. Alle Moleküle besetzen allgemeine Positionen in der Elementarzelle. Die analoge Verbindung **104** mit Xylyl-Substituenten an den Stickstoffatomen kristallisiert orthorhombisch in der Raumgruppe *Pnma* mit vier Molekülen in der Elementarzelle. Die Moleküle sind in der Elementarzelle so angeordnet, dass die Atome Cl3, C10, Si1 und Cl1 auf einer Spiegelebene liegen. Dieses führt zu einer perfekt

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

antiperiplanaren Anordnung der Chloratome Cl₃C-SiClNN-Einheit in der $(\beta(Cl3,C10,Si1,Cl1) = 180.0^{\circ})$. Die Moleküle von **103** zeigen eine ähnliche Anordnung der entsprechenden Atome (β (Cl4,C27,Si1,Cl1) = 173.3°). In beiden Molekülen sind die Kohlenstoffatome und Siliciumatome der Cl₃C-SiClNN-Einheit nahezu tetraedrisch von ihren Substituenten umgeben (103: Tetraederwinkel, $\tau(CCl_3) = 108.2 - 112.1^\circ$, $\tau(SiCINN) = 94.9 - 108.2 - 112.1^\circ$ 118.4°; **104**: $\tau(CCl_3) = 108.2 - 111.8^\circ$, $\tau(SiClNN) = 95.0 - 118.2^\circ)$. Der zentrale Fünfring ist in beiden Molekülen planar (103: β (SiNCC) = -4.1 - 4.0°, 104: β (SiNCC) = -2.5 - 2.5°), wobei die Arylsubstituenten an den Stickstoffatomen sowie die ClSiCl₃-Einheit Ebenen aufspannen, die orthogonal zur Ebene der Führinge angeordnet sind (103: Ebenenwinkel, $\varphi =$ $78.0 - 86.9^\circ$, **104**: $\varphi = 88.2 - 90.0^\circ$). Des Weiteren fällt auf, dass die Arylsubstituenten der CCl₃-Gruppe auf Grund ihres sterischen Anspruchs ausweichen. Dies äußert sich in einer leichten Pyramidalisierung beider Stickstoffatome in 104 (Winkel θ zwischen Ebene (Si1,N1,C1) und Bindung (N2,C2), $\theta(Si1,N1,C1 / N2,C2) = 167.9^{\circ})$, während in **103** nur ein Stickstoffatom pyramidalisiert ist (103: $\theta(Si1,N2,C2 / N2,C15) = 160.9^{\circ}, \theta(Si1,N1,C1 / N2,C15) = 160.9^{\circ}, \theta(Si1,N1,C15) = 160.9^{\circ}, \theta(Si1,N1,C15) = 160.9^{\circ}, \theta(Si1,N1,C15) = 160.9^{\circ}, \theta(Si1,N1,C15) = 160.9^{\circ}, \theta(Si1$ N1,C3 = 175.7°). Die Si–Cl- und die Si–CCl₃-Bindungslängen von **103** und **104** entsprechen Literaturdaten von ähnlichen Verbindungen wie 106a^[182] und 106b^[185] und stimmen mit den erwarteten Längen für eine Si-Cl- bzw. eine Si-C-Bindung überein (d(Si-Cl) = 202 pm, $d(\text{Si-C}) = 191 \text{ pm}, \text{ vgl.: Tabelle 4.5.}^{[144]}$

Zusammenfassend lässt sich festhalten, dass die Bindungslängen und -winkel von **103** und **104** nahezu gleich sind (maximale Abweichung der Bindungslängen: 2 pm, und der Bindungswinkel: 1°). Wie bereits die Ergebnisse der NMR-spektroskopischen Untersuchungen zeigten, sind die Verbindungen **103** und **104** sehr ähnlich zu den entsprechenden N-heterocyclischen Dihalogensilanen **51a** und **52a**. Dies konnte durch die Ergebnisse der Einkristallstrukturanalyse bestätigt werden. **103** und **104** besitzen im Vergleich zu den entsprechenden N-heterocyclischen Dihalogensilanen **51a** und **52a** nahezu identische Bindungsparameter.

Verbindung	<i>d</i> (C,C)	<i>d</i> (C,N)	<i>d</i> (N,Si)	d(Si,X)	d(Si,C)	α(N,Si,N)	$\alpha(X^1,Si,X^2)$
51a ^[139]	132.8	141.6	170.2	203.6 ^c	-	94.3	103.0 ^c
52b ^[30]	133.4	142.2	171.4	222.8 ^d	-	93.7	101.2 ^d
103	133.8	142.5	171.1	203.9 ^c	192.3	94.9	100.7 ^e
104	133.7	142.4	171.1	204.8 ^c	190.3	95.0	99.7 ^e
106a ^[182]	152.5 ^a 152.4 ^b	146.7 ^a 147.7 ^b	171.6 ^a 171.0 ^b	211.6	202.6	96.3 ^a 96.6 ^b	106.6 ^f 108.8 ^g
106b ^[185]	130.9 ^a 132.9 ^b	141.9 ^a 140.3 ^b	172.8 ^a 174.0 ^b	210.3	193.7	93.6 ^a 93.1 ^b	110.1 ^f 110.8 ^g

Tabelle 4.5. Experimentelle Strukturdaten der Verbindungen **103** und **104** im Vergleich mit Daten literaturbekannter Verbindungen. Bindungslängen, *d* in pm, Bindungswinkel α in (°). Alle Angaben zu chemisch identischen Bindungen sind in Mittelwerten angegeben.

a) Bindungen im Fünfring mit CI substituiertem Si-Atom b) Bindungen im Fünfring mit CHCl₂ Substituenten am Si-Atom c) $X = X^1$, $X^2 = CI$, d) $X = X^1$, $X^2 = Br$, e) $X^1 = CI$, $X^2 = CCl_3$, f) $X^1 = CI$, $X^2 = Si-CHCl_2$, g) $X^1 = CHCl_2$, $X^2 = Si-CI$.

4.3.1.3 Umsetzungen der Silylene 40 und 41 mit Tetrabromkohlenstoff

Für die Experimente mit Tetrabromkohlenstoff, CBr_4 **108**, wurde zunächst das Silylen **40** verwendet. Bei der Umsetzung des Silylens **40** mit fünffachem Überschuss an CBr_4 bei –78 °C und anschließender Erwärmung des Reaktionsgemisches auf Raumtemperatur wurde eine zweifache Bromierung des Silylens **40** und nicht die erwartete formale oxidative Addition von CBr_4 an das Silylen beobachtet.

Schema 4.13. Umsetzung des Silylens **40** mit CBr_4 bei –78 °C und anschließender Erwärmung auf Raumtemperatur.

Das entstandene N-heterocyclische Dibromsilan **52b** konnte in einer Ausbeute von 74 % isoliert werden. Die Charakterisierung von **52b** gelang mittels NMR Spektroskopie, wobei die erhaltenen Daten der Literatur entsprachen.^[30] Durch zusätzliche GC/MS Untersuchungen des Reaktionsgemisches wurde Bromoform, HCBr₃ **109**, als weiteres Produkt dieser Reaktion identifiziert. Die GC/MS Untersuchungen zeigen außerdem, dass neben nur geringen Spuren von Verunreinigungen Bromoform die einzige Komponente in der Reaktionslösung ist.⁸ Die Entstehung von Bromoform weist auf einen radikalischen Mechanismus zur Bildung von **52b** hin. Weitere Produkte, die für einen radikalischen Ablauf der Reaktion sprechen würden, konnten nicht nachgewiesen werden (vgl. 4.3.1.5).⁸ Unter den gewählten Reaktionsbedingungen konnte die Bildung des gewünschten 1:1 Addukts in Analogie zu Verbindung **104** nicht beobachtet werden.

In der Umsetzung des Silylens **41** mit äquimolaren Mengen an CBr₄ **108** bei Raumtemperatur fand zunächst keine Reaktion statt. Die anschließende Erwärmung der Reaktionsmischung auf 69 °C über 48 Stunden führte zur Bildung eines nicht identifizierbaren Produktgemisches unter Zersetzung des Silylens.

Schema 4.14. Umsetzung des Silylens **41** mit CBr_4 **108** bei Raumtemperatur und anschließender Erwärmung auf 69 °C.

Vergleichbare Studien über die Reaktion von N-heterocyclischen Silylenen mit Tetrabromkohlenstoff sind bis jetzt noch nicht bekannt. Im Gegensatz dazu sind jedoch Arbeiten über die Reaktivität N-heterocyclischer Silylene gegenüber Alkyl- oder Arylbromiden durchgeführt worden. Die Ergebnisse dieser Arbeiten zeigten, dass nicht nur die formale Insertion des zweifachkoordinierten Siliciumatoms der Silylene in die C–Br-Bindung eintritt, sondern zusätzlich auch Insertionen in neu gebildete Si–Br-Bindungen beobachtet wurden. Dies führte in entsprechenden Reaktionen der *tert*.-Butyl-substituierten N-heterocyclischen Silylene **14** und **45** zur Bildung von 1:1 Addukten **110** oder zur Entstehung von Produktgemischen aus 1:1 und 1:2 Addukten,^[182, 185] während bei der Reaktion des Silylens **43** mit Dibrommethan sogar das 1:4 Addukt **112** beobachtet wurde.^[82] In keinem Fall wurde von einer Dibromierung des entsprechenden Silylens berichtet. Dennoch erscheint die beobachtete Dibromierung des Silylens **40** unter Berücksichtigung eines radikalischen Reaktionsmechanismus nicht unerwartet (vgl.: 4.3.1.5).

⁸ Leicht flüchtige Substanzen konnten aus technischen Gründen bei der GC/MS Analyse nicht detektiert werden. Außerdem konnte **52b** auf Grund der hohen Empfindlichkeit gegenüber Luft und Feuchtigkeit ebenfalls nicht durch GC/MS Methoden nachgewiesen werden. Durch NMR-Proben des Reaktionsgemisches konnten ebenfalls keine weiteren Substanzen nachgewiesen werden, die als Hinweis für das Ablaufen eines radikalischen Mechanismus gedeutet wurden.

Schema 4.15. Zusammenfassung der Studien über die Reaktivität von **14**, **43** und **45** gegenüber Alkyl- bzw. Arylbromiden.

4.3.1.4 Umsetzung der Silylene 40 und 41 mit Tetrachlor- und Tetrabromsilan

In den Reaktionen der Silylene **40** und **41** mit Tetrachlor- und Tetrabromsilan wurde der Unterschied zwischen **40** und **41** am deutlichsten.

Das sterisch weniger abgeschirmte Silylen **40** wurde in Umsetzungen mit den Tetrahalogensilanen bei –78 °C und anschließender Erwärmung auf Raumtemperatur in die entsprechenden N-heterocyclischen Dihalogensilane **52a** und **52b** überführt. Die entstandenen Verbindungen **52a** und **52b** konnten nach Umkristallisation in Ausbeuten von 27 – 50 % isoliert werden. Ihre Charakterisierung gelang mittels NMR-Spektroskopie, wobei die erhaltenen Daten denen der Literatur entsprachen.^[30]

Das Silylen 41 zeigte in Umsetzungen mit Tetrachlor- 116 und Tetrabromsilan 117 ein anderes Verhalten. In einer Reaktion mit Tetrachlorsilan bei –78 °C und anschließender Er-

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

wärmung auf Raumtemperatur wurde ein Produktgemisch aus mehreren Verbindungen erhalten. Die von vorherigen Untersuchungen bekannte Zersetzung des Silylens bei Raumtemperatur bzw. bei Erhitzen auf 69 °C ist in diesem Fall nicht eingetreten. In dem ²⁹Si NMR-Spektrum des Reaktionsgemisches werden vier Signale beobachtet (δ^{29} Si = 75.9, -31.7, -37.6, -41.7).

Schema 4.17. Umsetzung des Silylens **41** mit Tetrachlorsilan bei –78 °C und anschließender Erwärmung des Reaktionsgemisches auf Raumtemperatur.

Verbindung	δ ²⁹ Si		
51a ^[30]	-38.2		
52a ^[30]	-41.0		
106b ^[182]	-35.5, ^a -35.3 ^a		
107 ^[24]	-40.1		
118 ^[83]	–17.3 (Si3), –14.2, ^a –2.8 ^a		
119 ^[83]	-20.1 (Si2), -4.4 (Si2)		
120 ^[83]	-14.2 (Si1, Si3), -10.0 (Si2)		
a) keine eindeutige Zuordnung			

Tabelle 4.6. 29 Si-NMR-Daten ausgewählter

Verbindungen.

Das Signal bei 75.9 ppm zeigte, dass nicht umgesetztes Silylen im Reaktionsgemisch vorhanden war. Die weiteren Signale waren denen von **51a** (δ^{29} Si = -38.4) und **106b** (δ^{29} Si = -35.5, -35.3)^[182] sehr ähnlich und könnten somit als Hinweis für eine formale oxidative Addition des Tetrachlorsilans an das Silylen neben der Dichlorierung des Silylens interpretiert werden. Auffällig ist jedoch, dass die Signale der Siliciumatome des Produktgemisches im Vergleich mit denen von Verbindungen des Typs **118**, **119** und **120**, die in Umsetzungen des Silylens **43** mit SiCl₄ entstehen, bei höherem Feld beobachtet wurden (vgl.: Tabelle 4.6).^[83] Eine genaue Identifizierung der einzelnen Produkte im Gemisch konnte auf Grund der vielen Signale in den ¹H und ¹³C NMR-Spektren nicht vorgenommen werden. Eine Trennung der verschiedenen Produkte durch fraktionierte Kristallisation aus *n*-Hexan blieb erfolglos. Weitere Analysen des Reaktionsgemisches mittels GC/MS- oder EI-MS-Methoden waren auf Grund der hohen Reaktivität der gebildeten Verbindungen gegenüber Luft und Feuchtigkeit nicht möglich.

Schema 4.18. Umsetzung des Dipp-substituierten N-heterocyclischen Silylens **41** mit Tetrabromsilan bei –78 °C und anschließender Erwärmung auf Raumtemperatur.

Gegenüber SiBr₄ zeigte das Silylen **41** jedoch ein zu **40** analoges Reaktionsverhalten. Es wurde ebenfalls die zweifache Bromierung des Silylens beobachtet, wobei die Verbindung **51b** in einer Ausbeute von 56 % dargestellt werden konnte. Die eindeutige Charakterisierung von **51b** gelang durch dessen Synthese über einen unabhängigen Weg und durch anschließenden Vergleich der NMR Daten.

Schema 4.19. Synthese von **51b** über einen unabhängigen Syntheseweg, analog der Vorgehensweise zur Darstellung von **52b**.^[30]

51b konnte über einen zweiten Syntheseweg durch Umsetzung des lithiierten Dippsubstituierten Diazabutadiens **49** mit SiBr₄ in einer Ausbeute von 46 % erhalten werden. Die Synthese verlief analog zur Darstellung von **52b**.^[30] Die ¹H und ¹³C NMR-Daten entsprachen denen von **51a** (**51b**: δ^{1} H(NCH) = 5.79, δ^{13} C(NCH) = 120.7, **51a**: δ^{1} H(NCH) = 5.73, δ^{13} C(NCH) = 125.1). Das Signal von **51b** im ²⁹Si NMR Spektrum (δ^{29} Si = -59.3) wurde im Vergleich zu **52b** bei höherem Feld (δ^{29} Si = -41.0) beobachtet und lag damit im erwarteten Bereich für Verbindungen mit vierfach koordinierten Siliciumatomen (δ^{29} Si = 20 bis -80).^[187] Zusätzliche massenspektrometrische Untersuchungen konnten die Ergebnisse aus den NMR-Daten bestätigen und somit die eindeutige Charakterisierung von **51b** sicherstellen.

Schema 4.20. Zusammenfassung der Ergebnisse der Reaktion von 43 mit SiCl₄ und SiBr₄.^[83]

In der Literatur ist bis heute nur wenig über Reaktionen von N-heterocyclischen Silylenen mit Tetrahalogenen des Siliciums bekannt. In Reaktionen des Silylens **43** mit Tetrahalogenen des Siliciums werden ebenfalls Produktgemische beobachtet. Im Fall der Umsetzung von **43** mit SiBr₄ entsteht analog zu den Ergebnissen aus den Versuchen von **40** und **41** als Hauptprodukt das entsprechende N-heterocyclische Dibromsilan **124**. Eine zweifache Chlorierung des Silylens **43** in einer Reaktion mit SiCl₄ ist nicht beschrieben, stattdessen wird die Bildung des 1:2 Addukts **118** beobachtet (vgl.: Schema 4.20). Bemerkenswert ist zusätzlich, dass das 1:2 Addukt durch Arbeiten mit hochverdünnten Lösungen der Reaktionspartner gezielt hergestellt werden kann und dass sie durch Erwärmen auf 100 °C in **120** umgelagert werden können.^[83] Entsprechende Reaktionsbedingungen führen im Fall von **40** und **41** zur Zersetzung der Silylene unter Bildung eines Produktgemisches. Die Reaktivitätsunterschiede zwischen **43** und den arylsubstituierten N-heterocyclischen Silylenen **40** und **41** lassen sich auf die verschiedenen Substituenten zurückführen. Besonders auffällig ist, dass **43** im Vergleich zu **40** und **41** in Umsetzungen mit Tetrahalogeniden des Siliciums deutlich stabiler ist. Möglicherweise erlaubt die höhere Stabilität gegenüber Zersetzung bei hohen Temperaturen die Bildung von 1:1 sowie 1:2 Addukten, während bei –78 °C die zweifache Halogenierung der Silylene bevorzugt ist. Wie die Ergebnisse aus den Umsetzungen der Silylene **40** und **41** mit den Tetrahalogeniden des Kohlenstoffs deuten auch die in diesem Abschnitt diskutierten Ergebnisse auf einen radikalischen Reaktionsmechanismus hin.

4.3.1.5 Mechanistische Betrachtungen der Reaktionen der Silylene 40 und 41 mit Tetrahalogenen von Kohlenstoff und Silicium

Der Mechanismus der Reaktionen der N-heterocyclischen Silylene mit Halogenalkanen und –silanen war lange Gegenstand der Forschung. Neben den Vorschlägen zum Ablauf einer halophilen Reaktion, welche von einem schwachen Donor-Akzeptor Komplex aus Silylen und Halogenalkan ausging ((1) Schema 4.21.),^[185] oder einer Insertion der Silylene in die Halogen-Kohlenstoff-Bindung ((2) Schema 4.21.),^[188] wurde ein radikalischer Mechanismus diskutiert (Schema 4.22).^[184]

Schema 4.21. Vorgeschlagene Mechanismen für die Reaktion der Silylene mit Halogenalkanen.

In computerchemischen Untersuchungen wurden hohe Aktivierungsbarrieren für die oxidative Addition und für den halophilen Reaktionsmechanismus vorhergesagt.^[188, 189] Dies stimmt nicht mit den beobachteten schnellen Reaktionen der Silylene mit Halogenalkanen bei Raumtemperatur überein. Des Weiteren kann das Auftreten von Nebenprodukten, wie zum Beispiel 1,1,2,2-Tetrachlorethan, HCl₂C–CCl₂H, in einer Reaktion von **14** mit Hexachlorethan, Cl₃C–CCl₃, nicht anhand der halophilen Mechanismen erklärt werden.^[182] Im Gegensatz dazu konnte McKee in einer umfangreichen theoretischen Arbeit zeigen, dass die experimentellen Ergebnisse durch einen radikalischen Mechanismus erklärt werden können

(Schema 4.22).^[184] Einen experimentellen Beweis für den radikalischen Mechanismus lieferte die Studie zur Untersuchung der Reaktivität des Silylens **43** gegenüber 1-Brom-1-cyclopropyl-methan.^[82]

Initiierung:

(NN)Si: + XER₃ \longrightarrow (NN)Si. X + ER₃ (1)

Propagation:

$$R_{3}E^{\prime} + :Si(NN) \longrightarrow (NN)Si^{\prime} ER_{3}$$
⁽²⁾

(NN)Si $\stackrel{\text{ER}_3}{\cdot}$ + XER₃ \longrightarrow (NN)Si $\stackrel{\text{ER}_3}{\times}$ + $\stackrel{\text{\cdot}}{\cdot}$ ER₃ (3)

$$(NN)Si \stackrel{\text{ER}_{3}}{\cdot} + :Si(NN) \xrightarrow{\text{KR}_{3}} (NN)Si \stackrel{\text{KR}_{3}}{\cdot} :Si(NN) \xrightarrow{\text{KR}_{3}} (NN) \xrightarrow{\text{KR}_{3}} (N) \xrightarrow{\text{KR}_{3}} (NN) \xrightarrow{\text{KR}_{3}} (N) \xrightarrow{\text{$$

Schema 4.22. Radikalischer Mechanismus der Reaktion der Silylene mit Halogenalkanen.

Für den Fall (NN)Si: = $(N^{H}N^{H})Si$; E = C, X = Halogen und R = H entspricht die Abbildung dem vorgeschlagenem Mechanismus auf Grundlage der theoretischen Studien.^[184] Für den Fall (NN)Si: **40**, **41**, X = CI, R = CI und E = C bzw Si entspricht diese Abbildung einem vorgeschlagen Reaktionsmechanismus für die Reaktion von **40** und **41** mit Tetrachlorkohlenstoff bzw. Tetrachlorsilan.

Die erhaltenen Ergebnisse aus den Umsetzungen der Silylene **40** und **41** mit CCl₄ lassen sich anhand des allgemein anerkannten radikalischen Mechanismus von McKee erklären. Entsprechend den in Schema 4.22 ((NN)Si: = **40** bzw. **41**) zusammengefassten Reaktionsschritten sollten die Silylene **40** bzw. **41** in der Startreaktion (1) mit CCl₄ zum Diaminochlorsilylradikal umgesetzt werden. Das dabei entstehende Trichlormethylradikal kann dann die Kettenreaktion einleiten indem es mit einem weiteren Silylen reagiert (2). Das dabei entstehende Diamino-(trichlormethyl)silylradikal ist im folgenden Schritt in der Lage ein Chloratom von CCl₄ zu abstrahieren, wobei das Produkt **103** bzw. **104** gebildet wird und ein weiteres Trichlormethylradikal entsteht (3). Dieses ermöglicht den erneuten Ablauf der Kettenreaktion.

Anhand dieses Reaktionsmechanismus lässt sich auch die Entstehung eines Produktgemisches erklären wie es in der Umsetzung von Silylen **41** mit SiCl₄ beobachtet wurde. Für alle Propagationsschritte des Mechanismus wurden von McKee sehr ähnliche Aktivierungsbarrieren vorhergesagt. Auf dieser Grundlage wäre es ebenso denkbar, dass ein aus dem Schritt (1) hervorgehendes Diaminochlorsilylradikal bei einer Umsetzung von **41** mit SiCl₄ zunächst mit einem weiteren Silylen reagiert um im folgenden Schritt ein Chloratom von SiCl₄ zu abstrahieren (4). Da die Aktivierungsbarrieren für die Propagationsschritte (3) und (4) in den von McKee untersuchten Modellreaktionen sehr ähnlich sind ($\Delta G_{298K}^{\ddagger}(3) = 64.9 - 89.6 \text{ kJ mol}^{-1}$; $\Delta G_{298K}^{\ddagger}(4) = 73.7 - 92.9 \text{ kJ mol}^{-1}$),^[184] wäre es denkbar, dass in der Umsetzung von **41** und SiCl₄ beide Reaktionswege nebeneinander ablaufen, was die Bildung eines Produktgemisches aus 1:1 und 1:2 Addukten erklären könnte.

Schema 4.23. Vorgeschlagener radikalischer Mechanismus zur Erklärung der Dihalogenierung der Silylene **40** und **41** ((NN)Si: = **40**, **41** E = C, Si, X = Cl, Br).

Für die zweifache Halogenierung, die in den Reaktionen des Silylens **40** mit CBr₄, SiCl₄ und SiBr₄, sowie in der Reaktion des Silylens **41** mit SiBr₄ beobachtet wurde, lässt sich ebenfalls ein radikalischer Mechanismus formulieren (Schema 4.23). Entsprechend den theoretischen Berechnungen lässt sich vermuten, dass der Start der radikalischen Reaktion identisch zu dem von McKee vorgeschlagenem Mechanismus verläuft (1). Anschließend könnte das gebildete Diaminohalogensilylradikal (NN)Si'–X mit dem Tetrahalogenid EX₄ reagieren und das N-heterocyclische Dihalogensilan (NN)SiX₂ (**51b**, **52a** bzw. **52b**) würde unter der Bildung eines weiteren Trihalogenmethyl- bzw. -silylradikals, 'EX₃, entstehen (2). Unter der Annahme, dass das Gleichgewicht dieser Reaktion auf der Seite der Produkte liegt, da EX₄ in den durchgeführten Experimenten im starken Überschuss vorliegt, sollte diese Reaktion im Gegensatz zu den Propagationsschritten des literaturbekannten Mechanismus (Schema 4.22) bevorzugt sein. Außerdem ist es wahrscheinlich, dass die im doppelten Äquivalent zum eingesetzten Silylen entstehenden 'EX₃-Radikale bedingt durch die hohe Verdünnung der Reaktanten mit den Lösungsmittelmolekülen des n-Hexans reagieren, wobei Trihalogenmethan bzw. –silan, HEX₃, und n-Hexylradikale entstehen würden. Der Nachweis von Bromoform in der Reaktion von **40** mit CBr₄ unterstützt diese Theorie.

In den Experimenten konnten keine Hinweise für den Verbleib der *n*-Hexylradikale gefunden werden. Dennoch ist von Umsetzungen des Silylens **14** mit Iodbenzol in verschiedenen Lösungsmitteln wie Alkanen, Ethern und Aminen bekannt, dass statt einer erwarteten formalen oxidativen Addition des Iodbenzols an das Silylen **14** Reaktionen mit dem Lösungsmittel analog zu Schritt (3) und (4) bevorzugt sind.^[190]

> (NN)Si: + C_6H_5-X (NN)Si: = 14 X = Br, I R = Alkyl von Alkanen, Ethern und Aminen

Schema 4.24. C–H-Bindungsaktivierung von Alkanen, Ethern und Aminen durch Silylene (NN)Si: unter Verbrauch von Halogenalkanen.

Diejenigen Reaktionsschritte, die zu einer zweifachen Halogenierung der Silylene führen, stehen in Konkurrenz zu den einzelnen Schritten des Mechanismus, die in der Bildung der 1:1 Addukte **103** und **104** resultierten (Schema 4.22). In der theoretischen Arbeit zur Klärung des Mechanismus wird herausgestellt, dass, abgesehen von der Startreaktion, die Aktivierungsbarrieren und die Thermodynamik für alle folgenden radikalischen Reaktionen sehr ähnlich sind. Die Bevorzugung der unterschiedlichen Reaktionswege wird auf statistische Effekte wie Stöchiometrie und Konzentration der Reaktanten im Reaktionsraum sowie auf sterische Einflüsse der verschiedenen Substituenten der Silylene zurückgeführt.^[184] Auf dieser Grundlage lässt sich ebenfalls das abweichende Reaktionsverhalten der arylsubstituierten N-heterocyclischen Silylene **40** und **41** im Vergleich zu **14**, **43** und **45** sowie das Reaktionsverhalten von **40** und **41** untereinander erklären.

4.3.1.6 Umsetzungen der Silylene 40 und 41 mit Alkyl- und Aryldihalogensilanen

Die literaturbekannten Studien zur Reaktivität von **14**, **43** und **45** gegenüber Halogenalkanen verdeutlichen, dass die Reaktionen mit Mono- bzw. Dihalogenalkanen erheblich selektiver verlaufen als Umsetzungen mit Tetrahalogenen des Kohlenstoffs oder des Siliciums. Unter Verwendung verschiedener Dihalogenalkane können 1:1 sowie 1:2 Addukte aus der formalen oxidativen Addition des Dihalogenalkans an das Silylen in hohen Ausbeuten von bis zu 98 % gezielt synthetisiert werden.^[83, 182] Es erschien somit vielversprechend durch Einsatz von Dialkyl- bzw. Diaryldihalogensilanen in Umsetzungen mit den Silylenen **40** und **41** einen selektiven Zugang zu Produkten des Typs **100** zu erhalten. Entsprechende Verbindungen wären für weiterführende Reduktionsexperimente zur Darstellung von Diaryldiaminodisilenen von großem Interesse.

In den Versuchen zur Synthese von **100** ausgehend von den N-heterocyclischen Silylenen **40** und **41** kamen Dihalogensilane mit unterschiedlich großen Substituenten am Siliciumatom, wie *tert*.-Butyl, Phenyl und Methyl, zum Einsatz (vgl.: Tabelle 4.7). Dies ermöglichte zusätzlich den sterischen Einfluss dieser Substituenten auf das Reaktionsverhalten der Dihalogensilane in Umsetzungen mit den Silylenen zu untersuchen.

Schema 4.25. Reaktionen zur Untersuchung der Reaktivität von 40 und 41 gegenüber Dihalogensilanen 125 – 127 und Dichlormethan 128.

In Umsetzungen der Silylene **40** und **41** mit Di-*tert*.-butyldibromsilan, ^{*t*}Bu₂SiBr₂ **125**, und **40** mit Diphenyldichlorsilan, Ph₂SiCl₂ **126**, wurden bei –78 °C und anschließender Erwärmung auf Raumtemperatur keine Reaktionen beobachtet. Nach Erhitzen der Umsetzungen von **40** und **41** mit ^{*t*}Bu₂SiBr₂ bis 69 °C oder Bestrahlung mit einer Quecksilberdampflampe konnten in den Reaktionsmischungen neben ^{*t*}Bu₂SiBr₂ nur geringe Mengen nicht identifizierbarer Produkte beobachtet werden. Bei Verwendung von Ph₂SiCl₂ **126** trat auch nach Erhitzten auf 111 °C keine Reaktion mit **40** ein, sodass beide Edukte ohne Veränderung aus der Umsetzung hervorgingen.

Silylen	Dihalogen	Lösungsmittel	Reaktionsbedingungen	Ergebnis
41	^t Bu ₂ SiBr ₂	<i>n</i> -Hexan	1) –78 °C – RT, 2) 69°C	keine Reaktion nur ^t Bu ₂ SiBr ₂ nachweisbar
40	^t Bu ₂ SiBr ₂	<i>n</i> -Hexan	1) –78 °C – RT, 2) 69 °C 3) h · v (Hg-Dampflampe)	keine Reaktion nur ^t Bu ₂ SiBr ₂ nachweisbar
40	Ph_2SiCl_2	Toluol	1) RT 2) 111 °C	keine Reaktion keine Reaktion
40	Me_2SiCl_2	<i>n</i> -Hexan	–78 °C – RT	Produktgemisch
40	CH_2CI_2	<i>n</i> -Hexan	–78 °C – RT	Produktgemisch
45	^t Bu ₂ SiBr ₂	<i>n</i> -Hexan	RT	keine Reaktion

Tabelle 4.7. Zusammenfassung der Reaktionsbedingungen und der beobachteten Ergebnisse bei den Umsetzungen der Silylene 40, 41 und 45 mit Diaryl- bzw. Dialkyldihalogensilanen und Dichlormethan.

Die höhere Reaktionsbereitschaft von ^tBu₂SiBr₂ im Vergleich zu Ph₂SiCl₂ lässt sich auf die niedrigere Bindungsstärke der Si-Br-Bindung im Vergleich zur Si-Cl-Bindung zurückführen $(BDE(Si-Cl) = 406 \text{ kJ mol}^{-1}, BDE(Si-Br) = 368 \text{ kJ mol}^{-1})$.^[191] Ein Wechsel zu dem gesättigten N-heterocyclischen Silylen 45, welches in vielen Fällen als reaktiver im Vergleich zu den ungesättigten N-heterocyclischen Silvlenen 14, 40, 41 und 43 eingeordnet wird, sollte aufklären ob eine Verbindung analog zu **100** durch Umsatz mit ^{*t*}Bu₂SiBr₂ **125** erhalten werden kann. Auch in diesem Experiment konnte keine Reaktion beobachtet werden. Auf Grund der großen, sterisch anspruchsvollen Substituenten der Silylene (Xylyl, Dipp und ^tBu) und der Silane (¹Bu 125 und Phenyl 126) scheint der Start der radikalischen Reaktion gehemmt. Mit kleineren Molekülen, wie Dimethyldichlorsilan, Me₂SiCl₂ 127, und Dichlormethan, H₂CCl₂ 128, reagierte 40 bei -78 °C und anschließender Erwärmung auf Raumtemperatur unter der Bildung eines Produktgemisches. In den ¹³C NMR-Spektren beider Reaktionen wurden viele Signale in Bereichen der Resonanzen von 40 und 104 beobachtet. Dies könnte ein Hinweis auf die Entstehung einer Vielzahl von unterschiedlichen Addukten (1:1, 1:2, 1:3...) sein. Die zahlreichen Signale in den ²⁹Si NMR-Spektren unterstützen diese Vermutung. Die erhaltenen Ergebnisse deuten darauf hin, dass die Synthese von Verbindungen des Typs 100 durch die hier untersuchten Reaktionen nicht möglich ist.

4.3.2 Reaktionen der Silylene 40 mit Germanium- und Zinndichlorid

Das Ziel der im folgenden Abschnitt beschriebenen Versuche bestand darin zu ermitteln, ob die N-heterocyclischen Silylene **40** und **41** analog zu den N-heterocyclischen Carbenen als Donor zur Stabilisierung von Gruppe 14 Dihalogeniden eingesetzt werden können (vgl.: Schema 4.26). Die auf diesem Weg erhaltenen Verbindungen **94** könnten als Ausgangsstoff für die Darstellung von niedervalenten Verbindungen des Typs **91** und **92** eingesetzt werden.

Schema 4.26. Zusammenfassung der untersuchten Reaktionen zur Synthese des Silylen stabilisierten Germaniumdichlorids bzw. Zinndichlorids.

Für die Experimente wurde zunächst das Silylen **40** verwendet. Die Umsetzungen des Silylens mit Germaniumdichlorid · Dioxan, GeCl₂ · C₄H₈O₂ **1**, bzw. Zinndichlorid SnCl₂ verliefen analog zu den Versuchen, in denen die Tetrahalogenide zum Einsatz kamen. Auf Grund der niedrigeren Löslichkeit der Dihalogenide des Germaniums und des Zinns in unpolaren Lösungsmitteln wurde statt *n*-Hexan THF als Lösungsmittel eingesetzt.

In der Reaktion des Silylens **40** mit fünffachem Überschuss an GeCl₂ · C₄H₈O₂ **1** bei -78 °C und anschließender Erwärmung des Reaktionsgemisches auf Raumtemperatur wurde neben geringen Mengen an Nebenprodukten die zweifache Chlorierung des Silylens beobachtet. Die Ausbeute von **52a** in dieser Reaktion konnte nicht bestimmt werden, da überschüssiges GeCl₂ · C₄H₈O₂ **1** nicht abgetrennt werden konnte. Die Charakterisierung von **52a** gelang mittels NMR-Spektroskopie, wobei die erhaltenen Daten der Literatur entsprechen.^[30]

Schema 4.27. Umsetzung des Silylens **40** mit GeCl₂ \cdot C₄H₈O₂ **1** bei –78 °C und anschließender Erwärmung des Reaktionsgemisches auf Raumtemperatur.

Die gesammelten NMR-Daten gaben ebenfalls Hinweise auf die Nebenprodukte dieser Reaktion. Neben dem von **52a** beobachteten Signal im ²⁹Si NMR trat ein weiteres bei –47.6 ppm auf. Dies entspricht der chemische Verschiebung der Spiroverbindung **129** (δ^{29} Si = –48.1).^[30] Die ¹H und ¹³C NMR-Daten gaben jedoch keinen weiteren Hinweis auf die Bildung von **129** in der Reaktion. Neben den hier diskutierten NMR-Signalen wurden weitere intensitätsschwache Signale im ¹H und ¹³C NMR-Spektrum beobachtet, die auf zusätzliche nicht identifizierte Nebenprodukte zurückzuführen sind.

Das Ergebnis der Reaktion von **40** mit einem Überschuss an GeCl₂ · C₄H₈O₂ **1** ließe sich durch eine Redoxreaktion erklären. Hierbei würde das Siliciumatom des Silylens in der Oxidationsstufe II (Si(II)) durch zweifache Chlorierung oxidiert und in **52a** (Si(IV)) überführt, während das Germanium(II)chlorid zu elementarem Germanium(0) reduziert würde. Der hier vorgeschlagene Reaktionsablauf konnte jedoch nicht verifiziert werden, da die Bildung von elementarem Germanium nicht beobachtet wurde. Analoge Reaktionen von N-heterocyclischen Silylenen mit GeCl₂ · C₄H₈O₂ **1** sind bis jetzt nicht untersucht. Dennoch ist ein ähnliches Reaktionsverhalten von **14** in Umsetzungen mit Bleidichlorid bekannt.^[192]

In der Reaktion des Silylens **40** mit fünffachem Überschuss an Zinndichlorid, SnCl₂ **9**, bei -78 °C und anschließender Erwärmung auf Raumtemperatur wurde unter der Entstehung von elementarem Zinn die Bildung eines Gemisches aus zwei Produkten beobachtet.

Schema 4.28. Umsetzung des Silylens **40** mit $SnCl_2$ **9** bei –78 °C und anschließender Erwärmung auf Raumtemperatur.

Massenspektrometrische Untersuchungen des isolierten Gemisches nach Abtrennen des elementaren Zinns zeigten ein Signal bei m/z = 556 und 964. Das Signal bei m/z = 556 konnte der Verbindung **129** zugeordnet werden. Durch die Übereinstimmung der gemessenen Signalverteilung für m/z = 556 und des berechneten Isotopenmusters für **129** konnte diese Zuordnung bestätigt werden (Exp. m/z (%): 556 (100), 557 (46), 558 (15); Calc. m/z (%) 556.3 (100), 557.3 (39), 558.3 (10)). Das Signal bei m/z = 964 deutet auf eine Verbindung hin, die aus jeweils zwei Silylenen **40** und zwei SnCl₂-Einheiten entstanden ist. Das gemessene Isotopenverhältnis stimmt mit dem berechneten Signalverhältnis für die angenommene Verbindung **130** überein (Exp. *m/z* (%): 962 (60), 964 (100), 966 (50); Calc. *m/z* (%) 962.0 (78), 964.0 (100), 966.0 (67)).

Die NMR-spektroskopischen Untersuchungen der Reaktionslösung nach Abtrennen des Zinns bestätigten ebenfalls die Entstehung von **129**. Im ¹H NMR wurden Signale schwacher Intensität mit $\delta^1 H = 2.08$, 5.38 und 6.67 beobachtet, welche den literaturbekannten chemischen Verschiebungen von 129 entsprechen.^[30] Das ²⁹Si NMR-Spektrum deutete durch ein Signal mit δ^{29} Si = -47.5 (Lit.: δ^{29} Si = -48.1)^[30] ebenfalls auf die Anwesenheit der Spiro-Verbindung **129** hin. Zusätzlich zum Signal von **129** wurden zwei weitere Signale im ²⁹Si NMR-Spektrum beobachtet, deren chemische Verschiebung auf die vierfache Koordination der Siliciumatome hinwies (δ^{29} Si = -27.9, -66.7). Im ¹¹⁹Sn NMR-Experiment konnte nur ein breites Signal mit δ^{119} Sn = -125 ppm detektiert werden. Durch zusätzliche NMR-Experimente ließ sich ausschließen, dass das gemessene Signal SnCl₂ oder während der Reaktion entstandenem, Zinntetrachlorid, SnCl₄, zuzuordnen ist (SnCl₂: δ^{119} Sn(C₆D₆/THF) = -210.7; SnCl₄: δ^{119} Sn(C₆D₆) = -148.9). Unter Berücksichtigung der zusätzlichen Messungen lässt sich festhalten, dass eine vierfache Koordination des Zinnatoms im erhaltenen Produkt wahrscheinlicher ist als eine zweifache Koordination. Auf Grundlage der Ergebnisse aus der Massenspektrometrie sowie der ²⁹Si und ¹¹⁹Sn NMR-Daten kann Verbindung 130 als sinnvolles Produkt der Reaktion von 41 mit SnCl₂ formuliert werden.

Eine Bestätigung für eine direkte Bindung eines Silicium- an ein Zinnatom konnte auf Grundlage der NMR-Spektren nicht erfolgen, da bedingt durch das schlechte Signal-Rausch-Verhältnis keine entsprechenden Kopplungen in den ²⁹Si NMR- und ¹¹⁹Sn NMR-Spektren gefunden werden konnten. Die Bildung von **130** konnte auf Grundlage der intensitätsstarken Signale im ¹H und ¹³C NMR- Spektrum ebenfalls nicht bestätigt werden. Da die Kristallisation des Produkts nicht gelang, war es nicht möglich die Molekülstruktur der entstandenen Verbindung durch Einkristallröntgendiffraktometrie aufzuklären. Die Strukturaufklärung für die Verbindung mit m/z = 964, die aus zwei Molekülen Silylen **40** und zwei Einheiten SnCl₂ aufgebaut sein sollte, bleibt somit offen. Im Gegensatz zu den intensiv studierten Reaktionen der N-heterocyclischen Carbene mit Dihalogeniden der Gruppe 14 Elemente EX₂^[5, 87, 177] ist nur wenig über das Reaktionsverhalten N-heterocyclischer Silylene gegenüber EX₂ beschrieben. Es ist bekannt, dass Silylen **14** keine Reaktion mit dem *tert*.-Butyl-substituierten N-heterocyclischen Carben **131** und dem analogen Germylenen **57** eingeht.^[192] Eine Umsetzung mit SnCl₂ **9** führt zur Bildung der licht- und wärmeempfindlichen Verbindung **132**. Sowohl bei der Thermolyse als auch bei der Photolyse von **132** wird die Bildung von Produktgemischen und die Entstehung von elementarem Zinn beobachtet.^[192]

Schema 4.29. Umsetzung von 14 mit SnCl₂.

Hinweise zur Entstehung einer zu **132** analogen Verbindung bei der Reaktion von **40** und SnCl₂ wurden nicht erhalten. Dennoch ist anzunehmen, dass die Verbindung, die bei der Umsetzung von **40** mit SnCl₂ **9** entstanden ist, ähnliche Eigenschaften wie **132** aufweist. Da das Reaktionsgemisch dieser Umsetzung bei Tageslicht und Raumtemperatur aufgearbeitet wurde, kann eine nachträgliche Zersetzung des Produktes unter Entstehung von elementarem Zinn nicht ausgeschlossen werden.

Diese Tatsache würde erklären, warum durch die NMR-Spektroskopie nur Hinweise für die Entstehung von 130 gefunden werden konnten, während mit der deutlich empfindlicheren Massenspektrometrie die Verbindung 130 detektiert werden konnte. Weitere Experimente in der Kälte und unter Ausschluss von Licht wurden auf Grund der präparativ aufwendigen Durchführungen nicht unternommen. Die erhaltenen Ergebnisse deuten darauf hin, dass die

Synthese von Verbindungen des Typs **94** über den hier untersuchen Reaktionsweg nicht möglich ist.

4.3.3 Salzmetathese zum Aufbau von Verbindungen, die als Ausgangsstoff für die Synthese neuartiger niedervalenter Verbindungen der Elemente der Gruppe 14 geeignet sind

Da die Umsetzungen der Silylene **40** und **41** mit Tetrahalogensilanen nicht zu den gewünschten 1:1 Addukten **93** führten, wurden Experimente untersucht, in denen die Zielverbindungen direkt aus einer Salzmetathesereaktion eines lithiierten Diazabutadiens mit einem Hexahalogendisilan hervorgehen könnten.

Schema 4.31. Möglicher Reaktionsweg zur Darstellung von 1:1 Addukten durch Satzmetathese.

Für die Experimente wurden die Diazabutadiene **49** und **133** eingesetzt. Die Lithiierung der Verbindungen wurde analog der Synthese der N-heterocyclischen Dihalogensilane durchgeführt.^[30] Als perhalogeniertes Silan kam frisch destilliertes Hexachlordisilan, Si₂Cl₆, zum Einsatz, welches bei –40 °C zu dem vorbereiteten, lithiierten Diazabutadien gegeben wurde. Die Aufarbeitung der Reaktionslösungen verlief ebenfalls analog der Darstellung von **52b** bzw. **51a**. Im Fall der Umsetzung mit **133** wurde Überraschenderweise neben geringen Mengen an weiteren Produkten das N-heterocyclische Dichlorsilan als Hauptprodukt erhalten. Durch Kristallisation aus *n*-Hexan gelang es **107** von den übrigen Nebenprodukten zu trennen und in einer Ausbeute von 35 % zu isolieren. Die Charakterisierung von **107** gelang mittels NMR Spektroskopie und Massenspektrometrie, wobei die gesammelten Daten denen der Literatur entsprachen.^[140]

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Schema 4.32. Ergebnis aus der Umsetzung des lithiierten Diazabutadiens 133 mit Hexachlordisilan.

Bei der Umsetzung mit **49** wurde die Entstehung vieler Produkte beobachtet. Durch Vergleich der NMR-Daten mit der Literatur gelang es das N-heterocyclische Dichlorsilan **51a** und nicht umgesetztes Edukt **49** im Produktgemisch zu identifizieren.^[30] Die beiden Verbindungen liegen im Verhältnis von 1:1 nach der Reaktion vor. Im ²⁹Si NMR-Spektrum wurden zusätzlich zum Signal von **51a** 13 weitere Signale im Bereich von –18.9 bis –39.8 ppm detektiert, die die Bildung eines Produktgemisches unterstreichen.

Die Bildung von **51a** und **107** lässt vermuten, dass während der Reaktionen SiCl₄ vorhanden war. Da das eingesetzte Si₂Cl₆ aber frisch destilliert war und die Reinheit mittels NMR überprüft wurde, muss das SiCl₄ während der Reaktion entstanden sein. Aus älteren Studien ist bekannt, dass perchlorierte Disilane, katalysiert durch Amine und Ammoniumsalze, in einer Disproportionierungsreaktion zu perchlorierten Polysilanen und SiCl₄ reagieren (vgl.: Schema 4.34).^[193-195] Dementsprechend könnte das Si₂Cl₆ in den untersuchten Experimenten katalysiert durch die lithiierten Diazabutadiene schnell zu SiCl₄ umgesetzt worden sein, sodass es für eine Salzmetathesereaktion nicht mehr zur Verfügung stand. Stattdessen reagiert das in großen Mengen anfallende SiCl₄ in der bekannten Salzmetathesereaktion mit dem lithiierten Diazabutadien unter Entstehung des N-heterocyclischen Dichlorsilans. Ein direkter spektroskopischer Hinweis auf die Entstehung von perchlorierten Polysilanen konnte nicht gefunden werden. Dennoch ist die große Anzahl an Signalen im ²⁹Si NMR-Spektrum

aus der Reaktion von **49** mit Si₂Cl₆ im Bereich von -18.9 bis -39.8 ppm als Hinweis auf das Vorliegen unterschiedlicher perchlorierter Polysilane während der Reaktion zu werten.

Disproportionierung

 $4 \operatorname{Cl}_{3}\operatorname{Si}-\operatorname{Si}\operatorname{Cl}_{3} \xrightarrow{\text{Amine}} \operatorname{Si}_{5}\operatorname{Cl}_{12} + 3 \operatorname{Si}\operatorname{Cl}_{4}$ $5 \operatorname{Cl}_{3}\operatorname{Si}-\operatorname{Si}\operatorname{Cl}_{3} \xrightarrow{\text{Amine}} \operatorname{Si}_{6}\operatorname{Cl}_{14} + 4 \operatorname{Si}\operatorname{Cl}_{4}$

Schema 4.34. Disproportionierung von Hexachlordisilan unter katalytischem Einfluss von Aminen.^[193-195]

Die hier erhaltenen Ergebnisse lassen vermuten, dass bevorzugt die N-heterocyclischen Dichlorsilane und nicht die erwünschten 1:1 Addukte als Hauptprodukt aus den Reaktionen der lithiierten Diazabutadiene mit Si₂Cl₆ hervorgehen. Aus diesem Grund wurden weitere Umsetzungen unter Verwendung von Diazabutadienen mit anderen Substituenten am Stickstoffatom nicht untersucht.

4.3.4 Reduktionsexperimente

Aus den zuvor beschriebenen Versuchen zur formalen oxidativen Addition (4.3.1), zur Darstellung von Silylen stabilisierten Dihalogeniden der Gruppe 14 Elemente **94** (4.3.2) und zur Synthese der 1:1 Addukte **93** durch Salzmetathesereaktionen (4.3.3) gingen **103** und **104** als potentielle Edukte hervor, die für weitere Reduktionsexperimente zur Darstellung von niedervalenten Siliciumverbindungen eingesetzt werden können.

Schema 4.35. Möglicher Reaktionsweg zur Synthese niedervalenter, donorstabilisierter Verbindungen der Gruppe 14 Elemente ausgehend von 103 und 104.

Für die Reduktionsexperimente wurde **103** verwendet. Der Vorteil von **103** gegenüber **104** ergibt sich durch die Dipp-Substituenten an den Stickstoffatomen. Dadurch ist im Vergleich zu **104** die Löslichkeit von **103** in *n*-Hexan und THF höher, die Stabilität des N-Heterocyclus gegenüber einem Zerfall in Reaktionen ist höher und die Substituenten könnten eine potenziell entstehende niedervalente Spezies besser gegen Folgereaktionen abschirmen. Als 4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Reduktionsmittel kamen unterschiedliche Äquivalente Lithiumnaphthalid, LiNp, oder Kaliumgraphit, KC₈, zum Einsatz. Für die Versuche mit Lithiumnaphthalid wurde eine LiNp-Lösung in THF mit einer Konzentration von 0.2 molL⁻¹ frisch hergestellt und bei –80 °C langsam zur der Lösung aus **103** in THF gegeben. Bei der Zugabe von zwei Äquivalenten an LiNp kam es zu einer Rotfärbung der Reaktionslösung, während bei vier Reduktionsäquivalenten eine Schwarzfärbung beobachtet wurde. In einem Zeitraum von 16 Stunden wurden die Reaktionsmischungen langsam auf Raumtemperatur erwärmt und anschließend aufgearbeitet.

Schema 4.36. Durchgeführte Reduktionsversuche mit **103** und Lithiumnaphthalid, LiNp, mit unterschiedlichen stöchiometrischen Verhältnissen.

Im Fall des Reduktionsversuchs mit KC_8 wurde bei Raumtemperatur zu einer Suspension aus THF und vier Äquivalenten frisch hergestelltem KC_8 eine Lösung von **103** in THF gegeben. Nach 16-stündigem Rühren war die bronzene Farbe des KC_8 nicht mehr zu erkennen und die Reaktionsmischung wurde aufgearbeitet.

Schema 4.37. Durchgeführte Reduktionsversuche mit 103 und Kaliumgraphit, KC8.

Die NMR-Daten zeigten in allen Fällen, dass ein Produktgemisch entstanden ist. Die Trennung der Gemische durch Kristallisation gelang nicht. In dem Experiment, in dem vier Äquivalente LiNp zum Einsatz kamen, konnte **49** als eines der Produkte durch Vergleich mit Literaturdaten^[30] identifiziert werden, was für den Zerfall des N-Heterocyclus spricht. Analoge Reaktionen sind von den ungesättigten N-heterocyclischen Silylenen **14**, **40** und **41** unter Reduktionsbedingungen bekannt.^[74, 162]

Vergleichsdaten, die zur Identifizierung von einem möglicherweise entstandenen 1,3-Disilaallen oder 1,4-Disilacumulen nötig wären, sind bis jetzt nicht bekannt. Ein dem 1,3-Disilaallen ähnliches 1-Silaallen konnte von West und Mitarbeitern synthetisiert werden. Die NMR chemische Verschiebung des Siliciumatoms beträgt δ^{29} Si = +48.4 und das Kohlenstoffatom in zentraler Position zeigt eine Signal bei δ^{13} C = +225.7.^[196] Analoge Verbindungen mit Kohlenstoffatomen in der formalen Oxidationsstufe 0, wie zum Beispiel klassische Allene und Cumulene, zeigen Resonanzen im Bereich von δ^{13} C = 170 – 220 ppm.^[197] In Carbodiphosphoranen, in denen der Platz des ersten und des dritten Kohlenstoffatoms eines Allens durch ein Phosphan eingenommen wird, liegt das ¹³C NMR Signal des zentralen Kohlenstoffatoms bei einer chemischen Verschiebung von 19 – 21 ppm.^[198] Von Carbodiphosphoranen sind ebenfalls nur wenige ¹³C NMR-Daten bekannt, da nur Verbindungen, die keine CH₂-Gruppe am Phosphoratom tragen, repräsentativ sind.^{[199],9} In den ¹³C NMR-Spektren der untersuchten Reaktionen sind keine Signale in den entsprechenden Bereichen beobachtet worden, die auf die Entstehung von allen- bzw. cumulenartigen Verbindungen schließen lassen. Die ²⁹Si NMR-Daten der Spektren sind in Tabelle 4.8 zusammengefasst. Unabhängig vom Reduktionsmittel und von der eingesetzten Stöchiometrie wurde ein Signal bei –50 ppm beobachtet. Dies ist ein Hinweis darauf, dass in allen Fällen die gleiche jedoch nicht eindeutig charakterisierte Verbindung als Hauptprodukt aus den Reaktionen hervor gegangen ist.

Experiment	δ ²⁹ Si	relative Intensitäten
103 + 2 Äq. LiNp	-50.2, -61.5	3.5 : 1
103 + 4 Äq. LiNp	-35.5, -37.3, -49.9	1 : 1 : 2.5
103 + 4 Äq. KC ₈	-49.9	-

Tabelle 4.8. Zusammenfassung der ²⁹Si NMR-Daten aus den Reduktionsexperimenten.

Da aus den Reaktivitätsstudien der Silylene **40** und **41** gegenüber Tetrahalogensilanen keine Verbindungen hervorgingen, die analog zu **103** bzw. **104** sind, standen keine weiteren Vorläuferverbindungen für die Synthese von Trisilaallenen bzw. Tetrasilacumulenen über den hier diskutieren Reduktionsweg zur Verfügung.

In Anlehnung an die Arbeiten von Filippou zur Darstellung des Carben stabilisierten Dibromsilylens **3b**, welches durch Reduktion von SiBr₄ mit KC₈ in Anwesenheit des N-heterocyclischen Carbens **136** erhalten werden kann, erschien es vielversprechend ein Reaktionsgemisch aus zwei Äquvalenten **41** und einem Äquivalent SiCl₄ direkt mit einer entsprechend höheren Menge an Reduktionsäquivalenten umzusetzen.^[6]

⁹ In den übrigen Fällen tritt eine Umlagerung des Carbodiphosphoran unter Tautomerie in ein entsprechendes 2-Phosphabutadien auf.

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Schema 4.38. Darstellung des donorstabilisierten Dibromsilylens durch Reduktion von SiBr₄ mit Kaliumgraphit, KC₈, in Anwesenheit des Carbens **136**.

Für dieses Experiment wurde zunächst **41** zusammen mit SiCl₄ im Verhältnis 2:1 in *n*-Hexan zur Reaktion gebracht. Anschließend wurde das Lösungsmittel auf THF gewechselt und die erhaltene Lösung zu einer Suspension aus vier Reduktionsäquivalenten Lithiumnaphthalid, LiNp, in THF gegeben.

Schema 4.39. Ergebnisse aus der Reduktion des Gemisches aus zwei Äquivalenten **41** und einem Äquivalent SiCl₄ mit vier Reduktionsäquivalenten LiNp.

Die NMR-spektroskopische Untersuchung des Feststoffes nach klassischem Aufarbeiten des Reaktionsgemisches zeigte die Entstehung eines Produktgemisches. Als Hauptprodukt konnte das N-heterocyclische Dichlorsilan **51a** durch Vergleich mit Literaturdaten^[30] identifiziert werden. Dieses Ergebnis ist unerwartet, da unter den reduktiven Bedingungen **51a** in das Silylen **41**, analog zur Darstellung von **41**, überführt werden sollte. Obwohl ein solches Reaktionsverhalten auf Grundlage von experimentellen Untersuchungen bis jetzt nicht erklärt werden kann, wird es dennoch in ähnlichen Reaktionen beobachtet. Entsprechende Ergebnisse werden zum Beispiel bei der Reduktion eines 1:1 Addukts **138** aus Silylenen **139** und Tetrachlorgerman erhalten (vgl.: Schema 4.40).^[200] Im ²⁹Si NMR-Spektrum der untersuchten Reaktion wurden neben dem Signal von **51a** (δ^{29} Si(**51a**) = -38.3) noch sechs weitere detektiert (δ^{29} Si = -31.5, -35.5, -37.3, -48.8, -49.9). Sie liegen alle in einem Verschiebungsbereich von Siliciumatomen in diaminosubstituierten Silanen (δ^{29} Si = 0 – -50) bzw. vierfach koordinierten Siliciumatomen (δ^{29} Si = 20 – -80).^[187] Im Bereich oberhalb von 120 ppm konnten keine

Signale, die auf die Entstehung eines Silaallens $(150 \text{ ppm} - 240 \text{ ppm})^{[56, 58]}$ oder andere niederkoordinierter Siliciumverbindungen hindeuten, detektiert werden.

Schema 4.40. Reduktion des 1:1 Addukts 138 aus Silylen 139 und Tetrachlorgerman mit KC8. [200]

Das Auftreten der Produktgemische in den untersuchten Reduktionsexperimenten sowie die Bildung des N-heterocyclischen Dichlorsilans unter reduktiven Bedingungen ist wahrscheinlich auf komplexe, bislang noch unbekannte Redoxprozesse zurückzuführen. Des Weiteren verdeutlichen die Reduktionsexperimente, dass auf dem gewählten Syntheseweg, analog zu den Untersuchungen in den Arbeitskreisen von Kira,^[56, 58] Robinson^[173] und Filippou,^[6] schwere Homologe des Allens mit Stickstoffsubstituenten an den terminalen Atomen oder andere niedervalente Siliciumverbindungen nicht ausgehend von N-heterocyclischen Silylenen nicht dargestellt werden können.

4.3.5 Fazit – N-heterocyclische Silylene als Ausgangsstoffe für Silene, Disilene und Silaallene

Durch die hier präsentierten Studien konnte das Reaktionsverhalten der N-heterocyclischen Silylene **40** und **41** mit Arylsubstituenten an den Stickstoffatomen gegenüber den Tetrahalogeniden der Gruppe 14 Elemente aufgeklärt werden. Als wichtigstes Resultat ist herauszustellen, dass alle erhaltenen Ergebnisse für einen radikalischen Verlauf der Reaktionen sprechen. Während der Untersuchungen ist es außerdem gelungen einen Darstellungsweg für die N-heterocyclischen Chlor-(trichlormethyl-)silane **103** und **104** zu entwickeln. Des Weiteren konnte gezeigt werden, dass die reaktiveren Tetrahalogene der Gruppe 14 Elemente (CBr₄, SiCl₄ und SiBr₄) für die Halogenierung der N-heterocyclischen Silylene **40** und **41** eingesetzt werden können (vgl.: Schema 4.41). 4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

 $EX_4 = CBr_4$, $SiCl_4$, $SiBr_4$; $EX_2 = GeCl_2$

Schema 4.41. Reaktionsverhalten der Silylene **40** und **41** gegenüber Tetrahalogenen der Gruppe 14 Elemente und Germaniumdichlorid.

Ein ebenfalls bemerkenswertes Ergebnis ist, dass die Silylene **40** und **41** keine Reaktion mit Dihalogensilanen eingehen, die *tert.*-Butyl- oder Phenyl-Substituenten tragen. Die völlige Unterdrückung der radikalischen Reaktion ist wahrscheinlich auf sterische Effekte der Substituenten an den Silylenen und an den Dihalogensilanen zurückzuführen (vgl.: Schema 4.42).

Schema 4.42. Reaktionsverhalten der Silylene 40 und 41 gegenüber Diaryl- bzw. Dialkyldihalogensilanen.

Die Ergebnisse aus den Reaktionen der Silylene **40** und **41** mit Tetrahalogenen der Gruppe 14 Elemente, mit Diaryl- bzw. Dialkyldihalogensilanen und Dichloriden der Gruppe 14 Elemente sind weitestgehend mit dem Reaktionsverhalten bekannter N-heterocyclischer Silylene vergleichbar.

Da aus der formalen oxidativen Addition von Tetra- bzw. Dihalogensilanen und Diarylbzw. Dialkyldihalogensilanen keine 1:1 Addukte hervorgegangen sind, standen für Reduktionsversuche nur **103** und **104** zur Verfügung. Die Ergebnisse aus den Reduktionsexperimenten lassen vermuten, dass die Darstellung von schweren Homologen der Alkene, der Allene sowie der Cumulene ausgehend von N-heterocyclischen Silylenen über den hier gewählten Syntheseweg wahrscheinlich nicht möglich ist (vgl.: Schema 4.43).

Schema 4.43. Zusammenfassung der Ergebnisse zur Synthese von Silenen, Silaallenen und Silacumulenen ausgehend von **40** und **41**.

4.4 N-heterocyclische Silylene als Ausgangsstoffe zur Synthese von stickstoffsubstituierten Silylkationen

Die Synthese von monokoordinierten Kationen der Gruppe 14 Elemente in der Oxidationsstufe II ist seit dem Beginn des neuen Jahrtausends im Fokus der Forschung. Wie bereits im Abschnitt 0 vorgestellt ist nur wenig über diese Substanzklasse bekannt. Inspiriert durch die Forschungsergebnisse von Müller und Mitarbeitern zur Synthese des donorstabilisierten monokoordinierten Germanium(II)kations, dem Germyliumyliden **141**,^[124] und die Arbeiten von Driess und Mitarbeitern über das niedervalente zweifach koordinierte Silylkation **142**,^[122] stellte sich die Frage, ob die ungesättigten N-heterocyclischen Silylene **14**, **40** und **41** als Ausgangsmaterial zur Synthese von Silicium(II)kationen, Silyliumylidenen, eingesetzt werden können.

Schema 4.44. Synthese der niedervalenten Silylkationen 141 und 142 durch Protonierung des entsprechenden Tetrylens 54 und 143.

4.4.1 Protonierung von N-heterocyclischen Silylenen als Syntheseweg zur Darstellung von N-heterocyclischen Silylkationen

Da die niedervalenten Kationen 141 und 142 beide durch Protonierung des entsprechenden Tetrylens 54 bzw. 143 durch die Brønstedt-Säure $[H(OEt_2)_2]^+$ 144 mit dem Anion $[B(C_6F_5)_4]^-$ zugänglich sind, wurde zunächst untersucht, ob analog ausgehend von 14, 40 und 41 vergleichbare Verbindungen wie 141 dargestellt werden können.

Schema 4.45. Protonierung der Silylene **14**, **40** und **41** mit der Brønstedt-Säure **144** bei verschiedenen Anionen $[B(C_6F_5)_4]$ und $[Al(OC(CF_3)_3)_4]$.

Für die Experimente kam die Brønstedt-Säure $[H(OEt_2)_2]^+$ **144** mit unterschiedlichen Anionen $[B(C_6F_5)_4]^-$ und $[Al(OC(CF_3)_3)_4]^-$ zum Einsatz. In allen Versuchen wurde die Säure vorgelegt, in dem entsprechenden Lösungsmittel gelöst und bei unterschiedlichen Temperaturen mit dem jeweiligen gelösten Silylen versetzt. Es wurde darauf geachtet, dass das Silylen in allen Umsetzungen langsam zur Säure gegeben wurde um eine Folgereaktion des aus dem Silylen entstehenden Kations mit überschüssigem Silylen zu verhindern. Die Experimente wurden mit unterschiedlichen Konzentrationen der Säure bei verschiedenen Temperaturen durchgeführt. In den Versuchen bei niedrigeren Temperaturen wurde das Reaktionsgemisch nach der Zugabe des Silylens langsam auf Raumtemperatur erwärmt. Entsprechend der Löslichkeit der Säuren und der gewählten Reaktionstemperatur kamen Benzol, THF, und Diethylether als Lösungsmittel zum Einsatz. Alle Reaktionsbedingungen und charakteristische NMR-Daten der durchgeführten Experimente sind in Tabelle 4.9 zusammengefasst.

Als Resultat aller Versuche lässt sich festhalten, dass in jedem Experiment Produktgemische erhalten wurden. Die Umsetzungen, in denen die Säure 144 in hoher Konzentration c $= 0.5 \text{ molL}^{-1}$ eingesetzt wurde, führten im Vergleich zu Experimenten, bei denen die Säure in niedrigerer Konzentration $c = 0.010 - 0.125 \text{ mol}\text{L}^{-1}$ vorgelegt und mit dem entsprechenden Silvlen versetzt wurde, zu einem breiteren Produktspektrum ($c = 0.5 \text{ molL}^{-1}$: 6 – 10 Signale im ²⁹Si NMR-Spektrum; $c = 0.010 - 0.125 \text{ mol}\text{L}^{-1}$: 3 – 4). Im Verlauf der durchgeführten Experimente stellte sich heraus, dass die Produktvielfalt bei den Experimenten ausgehend von Silvlen 41 geringer ausfiel als bei 14 und 40, weshalb alle späteren Untersuchungen (ab Versuchsreihe 6) an Silylen **41** durchgeführt wurden. Die Signale in den ²⁹Si NMR-Spektren der $(\delta^{29}Si$ untersuchten wurden in dem Bereich beobachtet = Reaktionen -8.3 - 84.4), in dem vierfach koordinierte Siliciumatome detektiert werden ($\delta^{29}Si = 20 - 60.4$) -80).^[187] Nahezu alle beobachteten ²⁹Si NMR-Signale zeigten in protonengekoppelten ²⁹Si NMR-INEPT-Experimenten eine Aufspaltung zu einem Dublett mit ungewöhnlich großen Kopplungskonstanten ${}^{1}J(Si,H) = 270 - 329$ Hz. Im Allgemeinen werden ${}^{1}J(Si,H)$ -Kopplungskonstanten im Bereich von 180 – 200 Hz für Aryl- bzw Alkyl substituierte Silane des Typs R_nSiH_{4-n} (n = 1 – 3) ermittelt.^[187] Kopplungskonstanten, die größer sind, werden in den meisten Fällen bei Silanen beobachtet, die durch elektronegative Gruppen substituiert sind (Beispiele: EtO₃SiH: ¹*J*(Si,H) = 287 Hz, F₃SiH: ¹*J*(Si,H) = 388 Hz).^[187, 201] Auf Grundlage der ermittelten ¹*J*(Si,H)-Kopplungskonstanten lässt sich vermuten, dass die Siliciumatome in den erhaltenen Verbindungen in Fragmenten des Typs –(RO–SiH)_x–O– oder –(R₂N–SiH)_x–O-gebunden sind, welche aus Polysiloxanen, Siloxanan und Aminosiloxanen bekannt sind.

Tabelle 4.9. Zusammenfassung der durchgeführten Experimente zur Protonierung der Silylene **14**, **40** und **41** mit der Brønstedt-Säure **144**. Lösungsmittelmengen für die Säure und das Silylen sind in Klammern in mL angegeben (Säure/Silylen), Temperatur *T* in °C. Die NMR chemischen Verschiebungen sind in ppm aufgeführt, die zugehörigen ${}^{1}J(Si,H)$ -Kopplungskonstanten sind in Hz und in runden Klammern angegeben. In den Experimenten in denen es möglich war die Intensität der ²⁹Si NMR-Signale zu bestimmen, ist diese in eckigen Klammer angegeben.

Nr.	Säure	Silylen	Lösungsmittel	Т	δ ²⁹ Si
1	144 [B(C ₆ F ₅) ₄]	40	C ₆ D ₆ (1/1)	25	–12.1, –18.2, –18.5, –28.3, –71.9, –84.6 ¹
2	144 $[B(C_6F_5)_4]$	41	C ₆ D ₆ (1/1)	25	–19.9, –21.5, –34.8 (311), –81.1 (329)
3	144 [B(C ₆ F ₅) ₄]	41	D ₈ -THF (1/1)	-20	-19.3, –21.6, –37.7, –49.8, –75.8, –79.3 (326)
4	144 [B(C ₆ F ₅) ₄]	14	Et ₂ O (1/1) C ₆ D ₆ (NMR)	-70	Über 10 Signale
5	144 [B(C ₆ F ₅) ₄]	14	C ₆ D ₆ (4/4)	5	-8.3 [3.5], -15.6 [3.0], -30.4 (317)[2.7], -32.0 (316)[10.0], -34.9 (316)[2.7], -40.5 [1.0], -42.1 [1.0], -43.5 [1.4]
6	144 [B(C ₆ F ₅) ₄]	41	C ₆ D ₆ (4/4)	5	–31.0 (304)[1.0], –32.6 (312)[0.9], –38.8 [0.1]
7	144 [B(C ₆ F ₅) ₄]	41	Et ₂ O (25/4) C ₆ D ₆ (NMR)	-40	–31.0 (304)[18.5], –33.0 (309)[2.7], –38.8 [1.0], –81.1 [5.5]
8	144 $[B(C_6F_5)_4]$	41	Et ₂ O (25/4) C ₆ D ₅ CI (NMR)	-40	-31.0 (304)[2.0], -31.8 (318)[1.0], -33.6 [2.0], -38.8 (270)[10.0]
9	144 [Al(OC(CF ₃) ₃) ₄]	41	Et ₂ O (50/10)	-90	-33.6 (318)[1.0], -38.8 (270)[1.0]

1) Bei diesem Versuch wurde kein protonengekoppeltes ²⁹Si INEPT-NMR durchgeführt.

Ein auffälliges Ergebnis aus den Versuchsreihen ist, dass die Bildung des Großteils an Produkten unterdrückt werden konnte wenn die Säure stark verdünnt eingesetzt und zusätzlich bei tiefen Temperaturen gearbeitet wurde. In diesen Versuchen (6 – 8) wurde unabhängig von der eingesetzten Säure und des Lösungsmittels die Bildung von zwei Hauptprodukten mit einer ²⁹Si NMR chemischen Verschiebung von $\delta^{29}Si = -31.0$ und -38.8 beobachtet.

4.4.2 Bildung des cyclischen Diaminoethoxylsilans 144

Bei der Umsetzung der Säure **144**[B(C₆F₅)₄] in der Konzentration c = 0.02 molL⁻¹ gelöst in Diethylether mit dem Silylen **41** bei –40 °C und anschließender Verwendung des NMR-Lösungsmittels D₅-Chlorbenzol gelang es die Verbindung mit δ^{29} Si = –38.8 als Hauptprodukt neben geringen Verunreinigungen zu erhalten. Diese Verbindung konnte anhand der NMR-Spektren eindeutig als Diaminoethoxylsilan **145** identifiziert werden. Aus den NMR-Probelösungen konnten nach einer Lagerung der Lösungen bei –20 °C Einkristalle erhalten werden. Durch die Einkristallstrukturanalyse dieser Kristalle konnte die entstandene Verbindung als Triethyloxoniumsalz **146**[B(C₆F₅)₄] identifiziert werden. (siehe Abschnitt 4.4.2.1).

n.i.P. = nicht identifizierbare Produkte

Schema 4.46. Umsetzung der Brønstedt-Säure 144 mit dem Silylen 41.

Das ¹H NMR-Spektrum der untersuchten Probe ist in Abbildung 4.6 dargestellt. Auffällig ist, dass die Protonen der Methylgruppen der Dipp-Substituenten (CH(C<u>H</u>₃)₂) vier Signale ergeben, die jeweils zu einem Dublett mit einer Kopplungskonstante von 7.0 Hz aufspalteten (δ^{1} H = 1.21, 1.31, 1.32, 1.39), wobei die entsprechenden Protonen der *iso*-Propylgruppe (C<u>H</u>(CH₃)₂) ebenfalls zwei Septetts mit gleicher Kopplungskonstante zeigten (δ^{1} H = 3.58, 3.85). Dies weist darauf hin, dass die freie Drehbarkeit der Arylsubstituenten im Molekül bei der gewählten Messtemperatur eingeschränkt ist. Die beiden weiteren für diese Verbindung charakteristischen Signale sind die des Protons am Siliciumatom und der Protonen an den Kohlenstoffatomen des Heterocyclus (δ^{1} H = 5.72 (Si<u>H</u>), 5.81 (NC<u>H</u>)). Die ¹H NMR Signale der Ringprotonen wurden im Vergleich zu **41** bei etwas tieferem Feld detektiert (δ^{1} H = 5.7 (NC<u>H</u>)). Ein ähnliches Verhalten wurde für das Proton am Siliciumatom beobachtet, welches

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

im Vergleich zu Alkyl, bzw. Arylsilanen ($\delta^{1}H = 3.16 (i-Pr_{3}SiH) - 5.23 (Ph_{3}SiH)$)^[202] ebenfalls eine Resonanz bei tieferem Feld zeigte. Die Signale der Methylengruppe des Ethoxy-Substituenten am Siliciumatom fielen mit einem der Signalsätze der Protonen der *iso*-Propylgruppen zusammen. Die ¹H NMR chemische Verschiebung der CH₂- und CH₃-Gruppe des Ethoxy-Substituenten ($\delta^{1}H = 0.94 (CH_{3})$, 3.58 (CH₂)) entspricht den Erwartungen ($\delta^{1}H(C_{6}D_{5}Cl) = 1.10 (CH_{3}, Et_{2}O)$, 1.06 (CH₃, EtOH), 3.31 (CH₂, Et₂O), 3.51 (CH₂, EtOH)).^[203] Die eindeutige Zuordnung der Signale gelang durch ein ¹H¹³C HMBC Experiment, in welchem eine Korrelation des Protonsignals der SiH-Gruppe mit den Kohlenstoffatomen der CH₂- und CH₃-Gruppe des Ethoxysubstituenten detektiert wurden.

Abbildung 4.6. ¹H NMR-Spektrum (in D₅-Chlorbenzol) der Umsetzung von **144**[$B(C_6F_5)_4$] mit Silylen **41**, die mit * gekennzeichneten Signale sind Diethylether zuzuordnen.

Die direkte Bindung der Ethoxygruppe und eines Wasserstoffatoms an das Siliciumatom konnte durch ein protonengekoppeltes ²⁹Si INEPT NMR-Spektrum und durch die zusätzliche Simulation^[204] des Spektrums bestätigt werden (Abbildung 4.7). Das Spektrum zeigt für das ²⁹Si NMR-Signal der Verbindung **145** (δ^{29} Si = 38.8) ein kompliziertes Aufspaltungsmuster. Zunächst ist das Signal zu einem Dublett mit einer Kopplungskonstante von ¹*J*(Si,H) = 271 Hz aufgespalten. Der große Wert der Kopplungskonstante unterstreicht die direkte Bindung des Protons an das Siliciumatom, außerdem liegt er im Bereich von Silanen, deren Siliciumatome von elektronegativen Atomen umgeben sind (Beispiele: EtO₃SiH: ¹J(Si,H) = 287 Hz, F₃SiH: ¹J(Si,H) = 388 Hz).^[187, 201] Die zusätzliche Aufspaltung in ein Triplett von Tripletts mit ³J(Si,H) = 7.0 und 4.3 Hz verdeutlicht, dass das Siliciumatom mit den Protonen des Rings und mit den Protonen der Methylengruppe des Ethoxy-Substituenten eine Kopplung eingeht. Durch Vergleichen mit Literaturdaten lässt sich die Kopplung ³J(Si,H) = 4.3 Hz der Kopplung zwischen dem Siliciumatom und den Protonen der Methylengruppe zuordnen (³J(Si,H) = 4.13 Hz (Me₃SiOC<u>H₃</u>)).^[205]

Abbildung 4.7. ²⁹Si{¹H} NMR-Spektrum (unten) sowie ²⁹Si INEPT NMR-Spektrum (oben) (in D₅-Chlorbenzol) der Umsetzung von **144**[B(C₆F₅)₄] mit Silylen **41**. Gemessene Spektren sind in blau dargestellt, der Ausschnitt für die Simulation^[204] des Tripletts von Tripletts in schwarz.

Die ²⁹Si chemische Verschiebung von **145** liegt mit δ^{29} Si = -38.8 zwischen den Signalen der Siliciumatome von **147** und **148**, welche die bis heute einzigen Beispiele für cyclische Diaminoethoxylsilane sind (δ^{29} Si = -31.2 (**147**),^[35] -44.9 (**148**)^[140]). Da von diesen Verbindungen keine ¹*J*(Si,H)-Kopplungskonstante bekannt sind, bleibt der Vergleich mit der ermittelten Kopplungskonstante von **145** aus. Die Signale im ¹³C NMR-Spektrum entsprachen den

Erwartungen. Das Signal der Kohlenstoffatome im N-Heterocyclus sowie die Signale der Methylengruppe des Ethoxy-Substituenten weichen kaum von der NMR chemischen Verschiebung entsprechender Kohlenstoffatome in vergleichbaren Verbindungen ab (vgl.: Tabelle 4.10). Die Resonanz der Stickstoffatome von **145** im ¹⁵N HMBC-Spektrum ($\delta^{15}N = 79.2$) ist ebenfalls sehr ähnlich zu vergleichbaren N-heterocyclischen Verbindungen, in denen das Siliciumatom vierfach koordiniert ist ($\delta^{15}N = 82.4$ (**51a**),^[30] 73.1 (**103**), 75.8 (**104**)).

Tabelle 4.10. Zusammenfassung charakteristischer NMR-Daten von **145** im Vergleich mit analogen bekannten Verbindungen.

Verbindung	δ ¹ H(NCH)	δ ¹ H(CH ₂)	δ ¹ H(SiH)	δ ¹³ C(NCH)	δ ¹³ C(CH ₂)	δ ²⁹ Si	δ ¹⁵ N
41 ^[30]	6.48	-	-	125.4	-	75.9	183.9
51a ^[30]	5.73	_	-	125.1	_	-38.2	82.4
145	5.81	3.58	5.72	119.0	58.5	-38.8	79.2
147 ^[35]	-	3.45	5.60	-	54.9	-31.2	n. a.
148 ^[140]	5.81	3.64	5.72	112.0	57.1	-44.9	n. a.

Zusätzlich zu der direkten NMR-spektroskopischen Charakterisierung konnte die Entstehung von 145 in der Umsetzung der Brønstedt-Säure 144 $[B(C_6F_5)_4]$ mit dem Silylen 41 durch die Synthese von 145 auf einem unabhängigen Weg bestätigt werden. Aus Untersuchungen, die während der Arbeiten zur Diplomarbeit durchgeführt wurden, war bekannt, dass in Reaktionen des Silylens 41 mit Ethanol die Bildung eines Produktgemisches aus 145 und 149 beobachtet wird.^[30]

Schema 4.47. Umsetzung des Silylens 41 mit Ethanol.

Die Identifizierung der Verbindungen gelang zum damaligen Zeitpunkt mit Hilfe von GC/MS Experimenten. Eine genaue Zuordnung der Signale aus den NMR-Spektren gelang auf Grund des entstandenen Gemisches nicht. Ein Vergleich der Spektren der Reaktion des Silylens **41** mit Ethanol mit den Ergebnissen aus der Umsetzung der Säure **144**[B(C₆F₅)₄] mit dem Silylen verdeutlicht, dass in beiden Reaktionen auf unterschiedlichem Weg die gleiche Substanz erhalten wurde. Eine Gegenüberstellung charakteristischer NMR-Daten findet sich in Tabelle 4.11. Unter Berücksichtigung des Einflusses des Lösungsmittels auf die NMR chemische Verschiebung sind die beobachteten Signale für **145** aus den unterschiedlichen Experimenten nahezu identisch. Darüber hinaus ist herauszustellen, dass in beiden Experimenten, im Rahmen der Messgenauigkeit, der gleiche Wert für die ¹J(Si,H) Kopplungskonstante ermittelt wurde, was die Entstehung von **145** bestätigt.

Tabelle 4.11. Zusammenfassung charakteristischer NMR-Daten von **145** der Umsetzung der Brønstedt-Säure **144**[$B(C_6F_5)_4$] und **41** und der Umsetzung von **41** mit Ethanol. NMR chemische Verschiebungen sind in ppm und Kopplungskonstanten in Hz angegeben.

Experiment	δ ¹ H(NCH)	δ ¹ H(CH ₂)	δ ¹ H(SiH)	δ ¹³ C(NCH)	δ ¹³ C(CH ₂)	δ ²⁹ Si	¹ <i>J</i> (Si,H)
144[B(C ₆ F ₅) ₄] + 41 ¹	5.81	3.58	5.72	119.0	58.5	-38.8	271
41 + EtOH ²	5.79	n. a.	5.71	119.0	58.6	-38.6	270
1) Messung in DChlorbenzol. 2) Messung in DBenzol							

Messung in D₅-Chlorbenzol, 2) Messung in D₆-Benzol

n.i.P. = nicht identifizierbare Produkte

Schema 4.48. Umsetzung der Brønstedt-Säure 144[Al(OC(CF₃)₃)₄] mit Silylen 41.

Anhand der ²⁹Si NMR-Signale der durchgeführten Umsetzungen der Säure 144[B(C₆F₅)₄] in niedriger Konzentration mit dem Silylen 41 wird deutlich, dass die Verbindung 145 aus nahezu allen Reaktionen dieser Versuchsreihe (6 – 9) als Hauptprodukt hervorgeht (vgl.: Tabelle 4.9). Auch bei einem Wechsel des Anions zur Verbindung 144[Al(OC(CF₃)₃)₄] konnte unter den gleichen Reaktionsbedingungen 145 als Hauptprodukt beobachtet werden. Die erhaltenen ¹H, ¹³C, ¹⁵N und ²⁹Si NMR-Spektren aus diesem Versuch zeigten neben Signalen, die auf die Bildung von Nebenprodukten zurückzuführen sind, Signale die identisch zu denen von 145 aus der Reaktion von 144[B(C₆F₅)₄] mit 41 sind.

4.4.2.1 Ergebnisse aus den Kristallisationsversuchen der Protonierungsexperimente

Aus den NMR-Probelösungen der Versuchsreihen 7 – 9 konnten nach einer Lagerung der Lösungen bei -20 °C Einkristalle erhalten werden, die für die Einkristallstrukturanalyse geeignet waren. Die Zellparameter der Kristalle sind in Tabelle 4.12 zusammengefasst. Hierbei fällt auf, dass die Zellparameter der Kristalle aus den Umsetzungen mit der Säure **144** sehr ähnlich sind, was vermuten lässt, dass es sich bei den untersuchten Kristallen um die gleiche Verbindung handelt.

Tabelle 4.12. Zellparameter der Kristalle aus den Versuchsreihen 7 – 9. Längen der kristallographischen Achsen *a*, *b*, *c* der Elementarzelle in Å, Winkel α , β , γ in (°), Zellvolumen in Å³.

Versuchsreihe	7	8	9
Umsetzung	144[B(C ₆ F ₅) ₄] + 41	144 [B(C ₆ F ₅) ₄] + 41	144[Al(OC(CF ₃) ₃) ₄] + 41
Lösungsmittel ¹	C_6D_6	C_6D_5CI	Et ₂ O
Raumgruppe	P2 ₁ 2 ₁ 2 ₁	<i>P</i> 2 ₁ 2 ₁ 2 ₁	
Kristallsystem	orthorhombisch	orthorhombisch	tetragonal
Zellparameter	a = 17.2913(6) b = 18.7175(6) c = 19.9374(7)	a = 17.3835(6) b = 18.7087(6) c = 19.7752(8)	a = 15.0305 b = 15.0304 c = 20.5151
Volumen	6452.7(4)	6431.3[4]	4634.610

1) Lösungsmittel aus dem die Kristalle erhalten wurden.

Des Weiteren zeigten alle drei Einkristalle bei der Röntgendiffraktometrie ein ähnliches Phänomen in Bezug auf ihre Beugungseigenschaften. Oberhalb von einem 20 Winkel von 50° konnten keine Reflexe detektiert werden. Dies deutete schon während der Messung auf eine besonders stark ausgeprägte Fehlordnung der Atome bzw. Moleküle in den Kristallen hin. Die Fehlordnung war im Fall der untersuchten Einkristalle aus der Versuchsreihe 7 und 9 so stark ausgeprägt, dass die Strukturen zunächst nicht aufgeklärt werden konnten.

Aus der NMR-Probenlösung der Versuchsreihe 8 konnten aus Chlorbenzol Einkristalle erhalten werden, die für die Röntgenstrukturanalyse verwendbar waren. Die Struktur dieser Kristalle konnte weder durch direkte Methoden noch durch automatische Peterson Methoden gelöst werden. Eine manuelle Analyse der Petersonfunktion zeigte jedoch kleine Maxima, die dem Chloratom des Lösungsmittels zugeordnet wurden. Durch eine anschließende Phasenerweiterung konnte die Struktur gelöst werden. Die Strukturlösung ergab, dass es sich bei den Kristallen um das Triethyloxonium-tetrakis-(pentafluorphenyl)-borat Salz **146**[B(C₆F₅)₄] handelt. Die Verbindung kristallisiert orthorhombisch in der chiralen Raumgruppe $P2_12_12_1$ mit zwei Ionenpaaren pro Elementarzelle.

Abbildung 4.8. Molekülstrukturen der Kationen und Anionen von **146**[$B(C_6F_5)_4$] im Kristall (Das zweite Ionenpaar in der Elementarzelle sowie die Wasserstoffatome sind für eine übersichtliche Abbildung nicht dargestellt; Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %, Die Position der rot markierten Kohlenstoffatome konnten auf Grund der starken Fehlordnung der Kationen im Kristall nicht nur isotrop verfeinert werden).

Der kürzeste Abstand zwischen Kationen und Anionen ist der Abstand zwischen den Wasserstoffatomen des Triethyloxoniumkations und den Fluoratomen des Anions. Dieser ist mit 240 pm kleiner als die Summe der Van-der-Waals-Radien von Wasserstoff und Fluor $\Sigma r^{W}(H,F) = 290 \text{ pm},^{[148]}$ was für das Vorliegen schwacher Wechselwirkungen zwischen den Ionen spricht. Die Lage der Anionen- und der Lösungsmittelmoleküle ist definiert und die Bindungsparameter entsprechen den Erwartungen. Die Kationenmoleküle hingegen sind stark fehlgeordnet. Pro Kationenposition liegen mindestens drei Fehlordnungen mit unterschiedlich starker Besetzung vor. Bei den Fehlordnungen bleibt die Lage der Sauerstoffatome der Triethyloxoniumkationen **146** nahezu gleich, während die Ethylgruppe bedingt durch ihre freie Drehbarkeit um die Sauerstoff-Kohlenstoffbindung mindestens drei verschiedene Konformationen einnimmt. Die beobachtete Fehlordnung der Kationen entspricht der des Triethyloxoniumhexafluorophosphats **146**[PF₆].^[206]

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Im Folgenden sollen nur die Bindungsparameter des Kationen mit der höchsten Besetzung diskutiert werden (50% Besetzung für das in Abbildung 4.8 dargestellte Triethyloxoniumkation), da die vorliegende Fehlordnung die Bindungslängen und -winkel aller weiteren Kationenmoleküle stark verfälscht. Die mittleren Kohlenstoff-Kohlenstoff- (d(C-C)) sowie die mittleren Kohlenstoff-Sauerstoffbindungslängen (d(C–O)) des Triethyloxoniumkations im Kristall sind vergleichbar mit denen des Triethyloxoniumhexafluorophosphats **146**[PF₆] (vgl.: Tabelle 4.13).^[206] Der mittlere Sauerstoff-Kohlenstoff-Abstand ist mit d(O-C) = 151.1 pm länger als die Summe ihrer Kovalenzradien für eine Einfachbindung ($\Sigma r^{k}(O-C) = 138 \text{ pm}$)^[144] und eher mit einer Einfachbindung zwischen Stickstoff und Kohlenstoff vergleichbar ($\Sigma r^{k}(O-$ C) = 146 pm).^[144] Dies entspricht den Erwartungen, da das Triethyloxoniumkation isoelektronisch zu Aminen ist. Die mittleren C–C–O- und C–O–C-Bindungswinkel (α (CCO), α (OCO)) des Kations in 146[B(C_6F_5)₄] sind ebenfalls sehr ähnlich zu denen des Kations in 146[PF₆], weichen im Einzelnen jedoch stark vom erwarteten Tetraederwinkel ab ($\tau = 109.5^{\circ}$, Aufweitung der Bindungswinkel um bis zu 24°, vgl.: Tabelle 4.13). Die starke Abweichung der Bindungslängen und -winkel untereinander lässt sich auf die besonders ausgeprägte Fehlordnung der Kationen im Kristall zurückführen.

Tabelle 4.13. Vergleich ausgewählter Bindungsparameter der Kationen der Triethyloxoniumsalze **146**[B(C₆F₅)₄] und **146**[PF₆] mit der entsprechenden Summe der Kovalenzradien $\Sigma r^{k}(E,E)$ der betreffenden Bindung. Bindungslängen *d* sind in pm, Winkel α in [°] und entsprechende Mittelwerte der Bindungslängen und –winkel sind in Klammern angegeben.

Verbindung	E=	d(E–C)	d(C–C)	α(ECC)	α(CEC)
146 $[B(C_6F_5)_4]^1$	0	147.3 – 155.3 (151.1)	139.6 – 149.6 (143.8)	109.1 – 113.8 (112.1)	96.5 – 133.2 (113.7)
146[PF ₆] ^[206]	0	147.9 – 150.9 (149.9)	143.6 –160.1 (150.1)	109.4 – 115.5 (112.7)	103.8 – 110.9 (107.6)
$\Sigma r^{k}(E,C)^{[34]}$	0	138	150	-	-
$\Sigma r^{k}(E,C)^{[34]}$	Ν	146	150	_	_

1) Bindungsparameter des Triethyloxoniummoleküls mit der höchsten Besetzung im Kristall (50%).

Mit Hilfe der Strukturparameter der Kristalle aus der Versuchsreihe 8 war es anschließend möglich eine Lösung für die Kristallstrukturen der Versuchsreihe 7 und 9 anzufertigen. In beiden Fällen handelt es sich um das Salz des Triethyloxoniumkations (im Fall von 7 mit dem Anion Tetrakis-(pentafluorphenyl)-borat $[B(C_6F_5)_4]^-$, im Fall von 9 mit dem Anion Tetrakis-(perfluor-*tert*.butoxyl)-aluminat), $[Al(OC(CF_3)_3)_4]^-$.

Im Vergleich zu den Kristallen aus Versuchsreihe 8 ist die Fehlordnung der Triethyloxoniumionen **146** in den Kristallen aus Versuchsreihe 7 noch stärker ausgeprägt. In den Kristallen aus Versuchsreihe 9 sind sogar die Anionen und die Lösungsmittelmoleküle extrem stark fehlgeordnet. In beiden Fällen sind die Fehlordnungen so stark ausgeprägt, dass eine Diskussion der Bindungsparameter der Moleküle in den Kristallen nicht möglich ist. Dennoch konnte die Entstehung der Triethyloxoniumsalze in den untersuchten Umsetzungen 7 - 9 anhand der erhaltenen Strukturlösung bestätigt werden.

Die Ergebnisse aus der Röntgenstrukturanalyse konnten durch die NMR-spektroskopische Untersuchung der Kristalle verifiziert werden. Die gemessenen NMR chemischen Verschiebungen im ¹H NMR-Spektrum der in D₁-Chloroform gelösten Kristalle stimmen mit den Literaturdaten für das Triethyloxoniumtetrafluoroborat Et₃O⁺ BF₄⁻ überein (δ^1 H(CDCl₃) = 1.56 (t, 9H, C<u>H</u>₃, ³*J*(H,H) = 7.2 Hz), 4.57 (q, 6H, C<u>H</u>₂, ³*J*(H,H) = 7.2 Hz)).^{[207], 10} Entsprechende vom Et₃O⁺ hervorgerufen Signale konnten bei der NMR-spektroskopischen Untersuchung der Reaktionsgemische aus den Versuchsreihen 1 – 9 nicht beobachtet werden. Es bleibt jedoch zu betonen, dass die Lagerung der Reaktionsgemische aus den Versuchsreihen 7 – 9 zur Bildung der Triethyloxoniumsalze führte. Anhand dieser Ergebnisse ist nicht auszuschließen, dass die Triethyloxoniumsalze erst nach längerer Lagerung der Reaktionsgemische entstehen, da keine entsprechenden Signale in den NMR-Spektren der untersuchten Reaktion zu finden waren.

4.4.3 Reaktionsmechanismus

Die analytischen Ergebnisse aus den Umsetzungen der Brønstedt-Säure 144 in niedriger Konzentration mit dem Silylen 41 verdeutlichen, dass das cyclische Diaminoethoxylsilan 145 und das Triethyloxoniumsalz 146 als Produkte aus den Reaktionen hervorgehen.

Unter der Annahme, dass das Triethyloxoniumsalz **146** $[B(C_6F_5)_4]/[Al(OC(CF_3)_3)_4]$ während der Reaktion gebildet wird, obwohl dessen eindeutiger Nachweis nur nach Lagerung der Reaktionsmischungen erfolgte, können zwei verschiedene Reaktionswege für die Entstehung der Produkte **145** und **146** vorgeschlagen werden.

 $^{^{10}}$ Vergleichsdaten sind in der τ -Skala angegeben (SiMe₄ = 10 ppm).

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Schema 4.49. Ergebnisse aus den Umsetzungen der Brønstedt-Säure **144** in niedriger Konzentration mit dem Silylen **41**.

Der entscheidende Schritt für den ersten Reaktionsablauf ist ein vorgelagertes Gleichgewicht wie es in Gleichung (1) von Schema 4.50 dargestellt ist. In der Gleichgewichtsreaktion würde ein Ethylkation von der Säure **144** auf ein Diethermolekül **150** übertragen werden, wobei das Triethyloxoniumkation **146** und Ethanol **151** entstehen würde. Das Ethanol könnte in einem weiteren Reaktionsschritt mit dem Silylen **41** unter einer oxidativen Addition in Verbindung **145** überführt werden (Gleichung (2), Schema 4.50). Somit würde das entstandene Ethanol aus dem Gleichgewicht entzogen und das Gleichgewicht auf die Seite der Produkte verlagert, was die Bildung des Et₃O⁺-Kations begünstigen würde.

Schema 4.50. Vorgeschlagener Reaktionsweg zur Entstehung von **145** und **146** aus der Brønstedt-Säure **144** in einer Reaktion mit dem Silylen **41** unter der Annahme einer vorgelagerten Gleichgewichtsreaktion. Die angegebenen thermodynamischen Daten wurden durch computerchemische Rechnungen ermittelt (B3LYP/6-311+G(d,p)).

Über die hier vorausgesetzte Gleichgewichtsreaktion (1) ist bis heute nichts bekannt. Mit Hilfe computerchemischer Berechnungen konnte der thermodynamische Verlauf dieser Reaktion für die Gasphase ermittelt werden (B3LYP/6-311+G(d,p)).¹¹ Die Hinreaktion, in der Triethyl-

¹¹ Eine detaillierte Beschreibung der Berechnung befindet sich im Anhang. Abschnitt 9: Details für die computerchemischen Berechnungen.

oxoniumkationen **146** und Ethanol **151** gebildet werden, ist endergonisch (freie Reaktionsenthalpie bei Standardbedingungen: $\Delta G^{298} = 41$ kJ mol⁻¹, Reaktionsenthalpie am absoluten Nullpunkt: $\Delta E = 88$ kJ mol⁻¹) und für die entsprechende Gleichgewichtskonstante, *K*, wird ein Wert von $K = 6.2 \cdot 10^{-8}$ vorausgesagt. Somit sollte das Gleichgewicht nahezu komplett auf der Seite der Edukte liegen. Obwohl die anschließende Folgereaktion, die oxidative Addition des Ethanols an das Silylen **41**, nach den Berechnungen exergonisch ($\Delta G^{298} = -81$ kJ mol⁻¹, $\Delta E - 127$ kJ mol⁻¹) ist, steht auf Grund der Lage des Gleichgewichts kaum Ethanol für diese Reaktion zur Verfügung. Da die Umsetzungen der Säuren mit dem Silylen innerhalb von einer Stunde bei -40 °C zur Bildung der Verbindung **145** führt und unter diesen Bedingungen die Reaktionen des vorgelagerten Gleichgewichts noch mehr gehemmt wären als unter Standardbedingungen, erscheint der unter Schema 4.50 postulierte Mechanismus als eher unwahrscheinlich.

Schema 4.51. Vorgeschlagener Reaktionsweg zur Entstehung von **145** und **146** durch das Kation **144**[$B(C_6F_5)_4$] der Brønstedt-Säure in einer Reaktion mit dem Silylen **41** unter der Annahme, dass das Silylen im ersten Reaktionsschritt durch die Säure protoniert wird. Die angegebenen thermodynamischen Daten wurden durch computerchemische Rechnungen ermittelt (B3LYP/6-311+G(d,p)).

Eine weitere mögliche Reaktionsabfolge, die die Bildung von 145 und 146 durch die Umsetzung der Säure 144 mit dem Silylen 41 erklären würde, ist in Schema 4.51 dargestellt. Die grundlegende Annahme dieses Mechanismus ist, dass im ersten Reaktionsschritt (Gleichung 1) das Silylen 41 durch die Säure 144 protoniert wird, wobei intermediär das 2-Silaimidazoliumkation entstehen würde, welches durch zusätzliche Koordination von einem Diethylethermolekül stabilisiert wäre, 152 (Gleichung (1), Schema 4.51). Über die Eigenschaften eines 2-Silaimidazoliumkationen-Ether-Addukts ist bis heute nichts bekannt. Die einzigen vergleichbaren Verbindungen sind Silaimidazoliumkationen, welche Trialkylsilyl-Substituenten am Siliciumatom des N-Heterocyclus tragen. Solche Verbindungen sind durch die Umsetzung der Silylene **14, 40, 41** und **45** mit einer Lewis-Säure wie Silylkationen (statt der hier verwendeten Brønstedt-Säure) zugänglich und zeigen Zersetzungsreaktionen in etherischen Lösungsmitteln.^[89] Im folgenden Schritt würde eine Übertragung eines Ethylkations vom Diethylether, der an das Silylkation koordiniert ist, auf ein weiteres Diethylethermolekül zur Bildung des Triethyloxoniumkations **146** und Verbindung **145** führen (Gleichung (2) Schema 4.51).

Mit Hilfe computerchemischer Rechnungen konnte dennoch ein Einblick in den thermodynamischen Verlauf der einzelnen Teilschritte des in Schema 4.51 vorgeschlagenen Reaktionsmechanismus gewonnen werden (Solventseffekte wurden nicht berücksichtigt). Beide Reaktionsschritte verlaufen auf Grundlage der berechneten Daten exergonisch bei Standardbedingungen (Protonierung (1): $\Delta G^{298} = -29$ kJ mol⁻¹, $\Delta E = -45$ kJ mol⁻¹, Umlagerung (2): $\Delta G^{298} = -11$ kJ mol⁻¹, $\Delta E = -6$ kJ mol⁻¹). Durch Vergleich der thermodynamischen Daten der Reaktionen von Gleichung 1 in Schema 4.50 und Gleichung 2 in Schema 4.51 wird deutlich, dass die Übertragung eines Ethylkations aus dem intermediären Silaimidazoliumkation-Diethylether-Addukt **152** auf ein Diethylethermolekül günstiger ist als eine entsprechende Reaktion ausgehend von [H(Et₂O)₂]⁺ **144** (Differenz der Energien der Umlagerungsreaktionen aus Schema 4.50 und Schema 4.51: $\Delta\Delta G(4.50/4.51) = 52$ kJ mol⁻¹, $\Delta\Delta E(4.50/4.51) = 82$ kJ mol⁻¹). Eine solche Übertragungsreaktion ist von den einzelnen Reaktionsschritten des Zersetzungsmechanismus von Trialkylsilylkationen in Diethylether bekannt (vgl.: Schema 4.52).^[208]

Ein ähnliches Reaktionsverhalten ist auch von Organoquecksilberkationen in Diethylether bekannt. Nach dem vorgeschlagenen Reaktionsmechanismus von Bochmann und Mitarbeitern können durch Umsetzung von Diphenylquecksilber **152** mit der Brønstedt-Säure **144**[$H_2N\{B(C_6F_5)_3\}_2$] unter Abspaltung von Benzol die durch Diethylether komplexierten Phenylquecksilberkationen **154** intermediär entstehen. Diese reagieren im folgenden Schritt analog einer elektrophilen Etherspaltung zur Organoquecksilberverbindung **155**, wobei das Triethyloxoniumkation **146** gebildet wird (vgl.: Schema 4.53).^[209]

 $C_{6}H_{5}-Hg-C_{6}H_{5} + [H(Et_{2}O)_{2}]^{+} A^{-} \longrightarrow C_{6}H_{5}-Hg \leftarrow OEt_{2}^{-} + A^{-}$ $153 \qquad 144 \qquad 154$ $C_{6}H_{5}-Hg \leftarrow OEt_{2}^{-} + A^{-} + Et_{2}O \longrightarrow C_{6}H_{5}-Hg-OEt + Et_{3}O^{-} + A^{-}$ $154 \qquad 155 \qquad 146$ $A^{-} = [H_{2}N\{B(C_{6}F_{5})_{3}\}_{2}]^{-}$

Schema 4.53. Elektrophile Etherspaltung durch Phenylquecksilberkationen.^[209]

Unter Berücksichtigung der experimentellen Bedingungen, der errechneten thermodynamischen Daten und gestützt auf bereits bekannte Reaktionen ist die Bildung von 145 und 146 über ein intermediär vorliegendes Silylkation-Diethylether-Addukt sehr wahrscheinlich.

Auf Grundlage dieses Reaktionsmechanismus wurden Tieftemperatur-NMR-Experimente durchgeführt, um das postulierte 2-Silaimidazolium-Diethylether-Addukt **152** während der Reaktion nachzuweisen. Dafür wurde die Säure **144**[B(C₆F₅)₄] analog den vorherigen Untersuchungen stark verdünnt und mit dem Silylen **41** bei –40 °C umgesetzt. Alle weiteren Aufarbeitungsschritte wurden bei –30 °C durchgeführt. Im direkten Anschluss wurden von einer Probe der untersuchten Reaktion NMR-Spektren bei –30 °C aufgenommen. Abschließend wurde dieselbe Probe in einem Zeitraum von 24 Stunden auf Raumtemperatur erwärmt und erneut NMR-spektroskopisch untersucht. Die Ergebnisse sind in Tabelle 4.14 gegenübergestellt.

Tabelle 4.14. Gegenüberstellung der ²⁹Si NMR-Daten der Umsetzung der Säure **144** mit **41** bei –40 °C und anschließender NMR-spektroskopischer Untersuchung bei –30°C und der NMR-Daten die in einer weiteren Messung bei Raumtemperatur gesammelt wurden. Die Temperatur ist in °C angegeben. Die NMR chemischen Verschiebungen sind in ppm aufgeführt, die zugehörigen ¹*J*(Si,H)-Kopplungskonstanten sind in Hz und in runden Klammern und die Intensitäten der ²⁹Si-Signale sind in eckigen Klammern angegeben. D₅-Chlorbenzol wurde als NMR-Lösungsmittel verwendet.

Experiment	Temperatur	δ ²⁹ Si
144 + 41	-30	-21.5 [3.0], -21.7 [2.6], -24.7 (336)[24.0], -32.2 (323)[1.0], -38.1 [4.1], -38.8 (270)[3.5], -78.3 (330)[48.0]
144 + 41	25	–31.2 (310), –37.4 (315 Hz) ¹

1) Es sind nur Daten aus dem ²⁹Si INEPT NMR vorhanden.

Die ²⁹Si NMR-Daten der Tieftemperaturmessung deuten auf das Vorliegen eines komplexen Reaktionsgemisches in der Probenlösung hin. Das aufgenommene ¹H und ¹³C NMR-

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Spektrum war auf Grund der vielen Signale, hervorgerufen durch das vorliegende Gemisch, nicht für die Charakterisierung der einzelnen Verbindungen verwendbar. Mit Hilfe von computerchemischen Rechnungen konnte die ²⁹Si NMR chemische Verschiebung des gesuchten 2-Silaimidazoliumkation-Diethylether-Addukts vorausgesagt werden (δ^{29} Si = -28.4).¹² Im ²⁹Si NMR-Experiment wurden fünf Signale im Bereich von δ^{29} Si = -21.5 – - 38.1 beobachtet, deren chemische Verschiebungen sehr nah am berechneten Wert für das Addukt **152** lagen. Ein eindeutiger Nachweis des Addukts **152** auf Grundlage der wenigen aussagekräftigen NMR-Daten war nicht möglich. Dennoch verdeutlichen die erhaltenen NMR-Daten, dass in der untersuchten Reaktion schon nach einer Reaktionszeit von 90 Minuten bei –40 °C **145** neben weiteren Produkten entstanden ist (vgl.: Tabelle 4.14).

Nach Erwärmen der NMR-Probe auf Raumtemperatur und einer anschließenden NMRspektroskopischen Untersuchung konnten nur noch zwei Signale im ²⁹Si INEPT NMR detektiert werden (δ^{29} Si = -31.2, -37.4). Unter den Signalen die nicht mehr beobachtet wurden, war auch das für **145** charakteristische Signal δ^{29} Si = -38.8. Dies verdeutlicht, dass unter den sauren Bedingungen in der NMR-Probenlösung die bei tiefen Temperaturen erhaltenen Produkte eine Folgereaktion nach Erwärmung auf Raumtemperatur eingehen. Anhand der ¹H und ¹³C NMR-Spektren gelang es nicht eines der Produkte aus diesem Gemisch zu charakterisieren. Eine gängige Methode zur Charakterisierung von Salzen mit Silylkationen, die möglicherweise bei der vorliegenden Reaktion entstanden sein könnten, ist ihre Derivatisierung mit Tri-(*n*-butyl)-stannan unter Bildung der entsprechenden Silane. Die so erhaltenen Silane können im Gegensatz zu den Salzen auch über GC/MS Methoden Charakterisiert werden. Entsprechende Versuche mit dem bei Raumtemperatur entstandenen Gemisch konnten jedoch ebenfalls nicht zur Aufklärung der Reaktionsprodukte beitragen.

Ein weiteres Ergebnis dieser Umsetzung ist die Entstehung des Triethyloxoniumsalzes 146. Die Identifizierung gelang durch eine röntgendiffraktometrische Untersuchung der durch Lagerung des Produktgemisches bei –20 °C erhaltenen Kristalle. Zusätzlich unterstützten die Daten aus der NMR-spektroskopischen Untersuchung der Kristalle die Entstehung von 146.^[207]

Da mit Hilfe des Tieftemperaturexperiments das 2-Silaimidazoliumkation-Diethylether-Addukt **152** nicht nachgewiesen werden konnte, bleibt die direkte Bestätigung des vorgeschlagenen Reaktionsmechanismus (Schema 4.51) offen. Dennoch spricht die schnelle Entstehung von **145** bei –30 °C und der Nachweis des Triethyloxoniumsalzes **146** als Produkt

¹² (GIAO B3LYP/6-311+G(2d,p)//B3LYP/6-311+G(d,p))

dieser Umsetzung für den postulierten Reaktionsablauf und für die intermediäre Entstehung eines Silaimidazoliumkation-Diethylether-Addukts **152**.

4.4.4 Protonierung des Silylens 41 unter Ausschluss von Diethylether

Auf Grundlage der bisher erhaltenen Ergebnisse aus den Protonierungsexperimenten des Silylens **41** lässt sich annehmen, dass die Protonierung am Siliciumatom und nicht wie beim entsprechenden Germylen **54** an einem der Kohlenstoffatome des N-heterocyclischen Grundgerüstes erfolgt.^[124] Des Weiteren lässt sich annehmen, dass ein Silaimidazoliumkation in Anwesenheit von etherischen Lösungsmitteln nicht stabil ist und sich nach dem unter Schema 4.51 diskutierten Reaktionsmechanismus zersetzt.

Schema 4.54. Unterschiedliches Reaktionsverhalten der Tetrylene 41 und 54 gegenüber 144.

Um einen Zugang zu dem bisher unbekannten Silaimidazoliumkation zu erhalten war es naheliegend die Reaktion unter Ausschluss von etherischen Lösungsmitteln zu untersuchen. Zusätzlich zu weiteren Studien über die chemischen Eigenschaften und analytischen Charakteristika des Kations, könnte nach erfolgreicher Darstellung des Kations **157** durch Zugabe von Diethylether der vorgeschlagene Reaktionsmechanismus entsprechend Schema 4.55 bestätigt werden.

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Schema 4.55. Postulierte Reaktionsabfolge zur Verifizierung des unter Abschnitt 4.4.3 vorgeschlagenen Reaktionsmechanismus.

Eine für solche Experimente geeignete Brønstedt-Säure ist das Benzeniumsalz $[C_6H_7][CB_{11}H_6Br_6]$, **158** $[CB_{11}H_6Br_6]$. Die Synthese dieses Salzes gelang entsprechend der von Reed beschriebenen Methode durch Darstellung des Trimethylsilylareniumcarborat 159[CB₁₁H₆Br₆] und anschließende Umsetzung mit Chlorwasserstoff (vgl.: Schema 4.56).^[210] Hierbei kam das wenig nucleophile Carboranatanion als Gegenion zur Säure zum Einsatz. Eine analoge Darstellung des **Benzeniumsalzes** mit dem Tetrakis-[pentafluorphenyl-]boratanion als Gegenion gelang nicht, da bei Umsetzung des Trimethylsilylareniumsalzes 159[B(C₆F₅)₄] mit Chlorwasserstoff die Zersetzung des Boratanions beobachtet wurde.

Schema 4.56. Darstellung des Benzeniumcarboranatsalzes 158[CB₁₁H₆Br₆] nach Reed.^[210]

Für das Experiment zur Protonierung des Silylens **41** wurde die frisch präparierte Säure **158** in 10 mL Benzol suspendiert und das in 5 mL Benzol gelöste Silylen **41** bei Raumtemperatur langsam zur Suspension gegeben. Eine NMR-spektroskopische Untersuchung der Reaktionslösung konnte nicht vorgenommen werden, da die Löslichkeit der nach der Reaktion erhaltenen Substanz in Benzol außerordentlich gering war. Bedingt durch das schlechte Lösungsverhalten war es möglich Einkristalle aus der Reaktionsmischung zu erhalten, die für die Röntgenstrukturanalyse geeignet waren. Die Strukturlösung ergab, dass während der Reaktion das einfach protonierte α -Aminoaldiminkation **162** entstand (vgl.: Schema 4.57).

n.i.P. = nicht identifizierbare Nebenprodukte

Schema 4.57. Ergebnisse aus der Umsetzung des Benzeniumcarborats 158[CB₁₁H₆Br₆] mit dem Silylen 41.

Das Salz **162**[CB₁₁H₆Br₆] kristallisiert im monoklinen Kristallsystem in der Raumgruppe $P2_1/n$. In den Kristallen liegen Anionen und Kationen nahezu getrennt voneinander vor. Der kürzeste Abstand zwischen den Ionen liegt mit 288.1 pm zwischen einem Bromatom des Anions und dem Wasserstoffatom, welches an der Methylengruppe der C2-Einheit zwischen den Stickstoffatomen gebunden ist. Der Abstand ist kleiner als die Summe der Van-der-Waals-Radien von Wasserstoff und Brom $\Sigma r^{W}(H,Br) = 330 \text{ pm},^{[148]}$ was für das Vorliegen schwacher Wechselwirkungen zwischen den Ionen spricht. Die Bindungsparameter des Anions entsprechen den Erwartungen. Das grundlegende Strukturmerkmal des Kations im Kristall ist die nahezu planare Anordnung der zentralen Einheit aus den Stickstoffatomen N1 und N2 sowie den Kohlenstoffatomen C2 und C3 (β (N1C2C3N2) = 14.9°), in der die Stickstoffatome zueinander orientiert sind. Des Weiteren zeichnet sich das Kation durch zwei verschieden gebundene Stickstoffatome aus. Das Stickstoffatom N1 ist tetraedrisch (Tetraederwinkel τ $= 104.3 - 116.4^{\circ}$) von zwei Wasserstoffatomen und zwei Kohlenstoffatomen umgeben. Die Bindung zwischen dem Dipp-Substituenten und dem Stickstoffatom N1 liegt bedingt durch die tetraedrische Umgebung des Stickstoffatoms nicht in der Ebene der zentralen Einheit des Moleküls (β (C16N1N2C3) = -146.7°). Das Stickstoffatom N2 trägt zwei Kohlenstoffsubstituenten.

4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Abbildung 4.9. Molekülstruktur von **162**[CB₁₁H₆Br₆] im Kristall (Wasserstoffatome des Carboratanions und der Dipp-Substituenten sind nicht dargestellt; Ellipsoiddarstellung mit einer Wahrscheinlichkeit von 50 %, Die Position der Wasserstoffatome an N1, N2, C2 und C3 sind isotrop berechnet).

Die Bindung zwischen N2 und dem an das Stickstoffatom gebundenen Dipp-Substituenten liegt in der Ebene der zentralen Einheit des Kations (β (C16N1N2C3) = -179.4°), während die Ebene, die von den Kohlenstoffatomen des Dipp-Substituenten aufgespannt wird, leicht verdreht zur zentralen Ebene angeordnet ist (β (DippN2C3) = -56.8°). Die Bindungslängen in der zentralen Einheit sind abgesehen von der Bindung zwischen dem vierfachkoordinierten Stickstoffatom N1 und dem Methylen-Kohlenstoffatom C2 nahezu identisch zu den entsprechenden Atomabständen des α -Aminoaldimins **53** (vgl.: Tabelle 4.15). Dies deutet darauf hin, dass im Kation **162** zwischen N2 und C3 eine Doppelbindung und zwischen C2 und C3 eine Einfachbindung vorliegt (vgl.: Abschnitt 3.6). Die Bindungslängen zwischen dem Stickstoffatom N1 und den Kohlenstoffatomen C2 und C16 entsprechen denen von Ammoniumionen sekundärer Amine (d(N–C) = 149. 7 pm).^[211]

Tabelle 4.15. Vergleich ausgewählter Bindungsparameter von **53** und **162** mit der entsprechenden Summe der Kovalenzradien $\Sigma r^{k}(E,E)$ bzw. der Summe der Van-der-Waals Radien $\Sigma r^{w}(E,E)$ der betreffenden Bindung. Bindungslängen sind in pm angegeben.

Verbindung	d(N=C)	<i>d</i> (N–C)	d(C–C)	<i>d</i> (NH⋯N)	<i>d</i> (N⋯N)
53	126.3	144.5	149.1	217.5	265.1
162	126.7	149.4	150.2	199.1	259.4
$\Sigma r^{k}(E,E)^{[34]}$	127	146	150	103	142
$\Sigma r^{w}(E,E)^{[148]}$				300	

Die Z-Konformation des zentralen Elements des Kations resultiert wie im Fall des α -Aminoaldimins **53** aus der Wasserstoffbrückenbindung zwischen dem freien Elektronenpaar am Iminstickstoffatom N2 und dem Wasserstoffatom H1A an N1 (d(N1H1A…N2) = 199.1 pm < $\Sigma r^{w}(H,N) = 300 \text{ pm}$).^[148]

Eine Erklärung für die Entstehung von 162 in der Umsetzung des Benzeniumsalzes $158[CB_{11}H_6Br_6]$ mit dem Silylen 41 konnte bis zu diesem Zeitpunkt nicht gefunden werden, da auf Grund der Eigenschaften des erhaltenen Reaktionsgemisches keine weiteren Analysemethoden zur Identifizierung von Nebenprodukten angewendet werden konnten. Da das gewünschte 2-Silaimidazoliumsalz $157[CB_{11}H_6Br_6]$ auf diesem Weg nicht erhalten werden konnte, blieben weitere Derivatisierungsversuche zur Verifizierung des vorgeschlagenen Zerfallsmechanismus eines Silaimidazoliumkations 152 in Diethylether offen. Als abschließendes Ergebnis dieser Versuchsreihe bleibt jedoch festzuhalten, dass 162 als Zerfallsprodukt aus dem Silylen 41 in der Reaktion mit der Brønstedt-Säure 158[CB_{11}H_6Br_6] unter Ausschluss von Diethylether hervorgeht.

4.4.5 Hydridabstraktion als Syntheseweg zur Darstellung von N-heterocyclischen Silylkationen

Da die Synthese eines 2-Silaimidazoliumkations **157** durch Protonierung des Silylens **41** unter Ausschluss von Diethylether nicht zum Erfolg führte, wurde untersucht, ob eine Hydridabstraktionsreaktion einen möglichen Zugang zum Kation **157** bietet. Die für diese Untersuchung notwendigen Vorläuferverbindungen können durch reduktive Hydrierung von N-heterocyclischen Diaminodichlorsilanen hergestellt werden.^[212] Im Fokus lag dabei die Synthese der Verbindung **163**, um den Vergleich mit den bisher erhaltenen Ergebnissen aus den Protonierungsexperimenten zu gewährleisten.

Schema 4.58. Möglicher Syntheseweg zur Darstellung des 2-Silaimidazoliumkations durch Hydridabstraktion ausgehend vom N-heterocyclischen Diaminosilan **163**.

4.4.5.1 Darstellung des N-heterocyclischen Diaminosilans 163

Schema 4.59. Darstellungsweg des N-heterocyclischen Diaminosilans 163.

Die für die Synthese des N-heterocyclischen Diaminosilans **163** benötigte Vorläuferverbindung **51a** wurde entsprechend der Literatur hergestellt.^[30] Durch Umsetzung einer Lithiumalanat-Suspension in THF mit dem in THF gelösten **51a** konnte das gewünschte Diaminosilan **163** nach Umkristallisation aus *n*-Hexan in einer Ausbeute von 65 % erhalten werden.

Die Charakterisierung von **163** gelang mittels NMR-Spektroskopie, Massenspektrometrie und hochauflösender Massenspektrometrie. Die gesammelten ¹H ¹³C-NMR-Daten entsprechen den Erwartungen und sind mit denen von **51a** vergleichbar. Alle für **163** charakteristischen NMR-Signale sind in Tabelle 4.16 zusammengefasst. Ihre eindeutige Zuordnung gelang über 2D NMR-Experimente.

00	,					
Verbindung	δ^{1} H(SiH ₂)	$\delta^{1}H(NCH)$	$\delta^{13}C(NCH)$	δ^{29} Si(SiH ₂)	¹ J(SiH)	$\delta^{15}N$
163	5.97	5.74	120.5	-27.4	232.7	58.8
164 ^[154]	6.00	5.65	113.4	n. a.	222.8 ¹	n. a.
165 ^[212]	5.67	-	-	-15.3	230	n. a.
51a ^[30]	-	5.73	125.1	-38.2	-	82.4
41 ^[30]	_	6.48	125.4	75.9		183.9

Tabelle 4.16. Zusammenfassung charakteristischer NMR-Daten von **163** im Vergleich mit analogen bekannten Verbindungen (NMR chemische Verschiebungen sind in ppm und Kopplungskonstanten in Hz angegeben).

1) Die ¹J(SiH)-Kopplungskonstante wurde anhand des ¹H NMR-Spektrums bestimmt.

Das ¹H und das ¹³C NMR-Signal der Methingruppe im N-Heterocyclus von 163 wurden in einem Bereich beobachtet, der dem analoger N-heterocyclischer Verbindungen entspricht, in denen das Siliciumatom vierfach koordiniert ist. Im Vergleich zu den entsprechenden Signalen der nahezu identischen Verbindung 164, die statt Dipp- tert.-Butyl-Substituenten an den Stickstoffatomen trägt, werden sie bei tieferem Feld detektiert (δ^{1} H(NCH) = 5.74 **163**, 5.65 $164^{[154]} \delta^{13}C(NCH) = 120.5 \ 163, 113.4 \ 164^{[154]}$). Die NMR chemische Verschiebung der Wasserstoffatome am zentralen Siliciumatom von 163 ist sehr ähnlich zu der von 164 und wurde im Vergleich zu 165 ebenfalls bei tieferem Feld beobachtet (δ^{1} H(SiH₂) = 5.97 163, 6.00 164,^[154] 5.67 165^[212]). Das entsprechende ²⁹Si NMR-Signal liegt im Bereich, der für vierfachsubstituierte Siliciumatome zu erwarten ist (δ^{29} Si = 20 - -80^[187]) und weicht kaum von der chemischen Verschiebung ähnlicher N-heterocyclischer Silane ab. Die direkte Bindung der Wasserstoffatome an das Siliciumatom konnte durch ein protonengekoppeltes ²⁹Si INEPT NMR-Spektrum bestätigt werden. Das Spektrum zeigte wie erwartet ein Triplett δ^{29} Si = -27.4 mit einer großen Kopplungskonstante, deren Wert nur wenig von der entsprechenden Kopplungskonstante von Verbindung 164 abweicht (${}^{1}J(SiH) = 232.7$ Hz 163, 222.8 Hz 164^[154]). Die einzelnen Signale des Tripletts spalten jeweils selbst zu einem Triplett mit einer Kopplungskonstante von ${}^{3}J(SiH) = 6.6$ Hz auf, die einer Kopplung zwischen dem Siliciumatom und den Wasserstoffatomen an den Methinkohlenstoffatomen im N-Heterocyclus zuzuordnen ist. Zusätzliche massenspektrometrische Analysen bestätigten die Ergebnisse aus den spektroskopischen Untersuchungen, sodass 163 eindeutig charakterisiert werden konnte.

4.4.5.2 Ergebnisse aus Experimenten zur Hydridabstraktion von 163

Für die Hydridabstraktionsexperimente kam das Triphenylmethyl-tetrakis-(pentafluorpenhyl-)boratsalz, Trityl(**29**)[B(C_6F_5)_4], zum Einsatz. In allen durchgeführten Versuchen wurde es vorgelegt und in Benzol suspendiert. Zu dieser Suspension wurde bei Raumtemperatur eine Lösung von **163** in Benzol gegeben und die erhaltene Reaktionsmischung wurde eine Stunde gerührt. Abschließend wurde das Reaktionsgemisch nach Wechsel des Lösungsmittels zu D_6 -Benzol NMR-spektroskopisch untersucht.

Schema 4.60. Versuche zur Synthese des 2-Silaimidazoliumsalzes durch Hydridabstraktion ausgehend von **163** unter Verwendung von **29**[$B(C_6F_5)_4$].

Die erhaltenen NMR-Spektren zeigten, dass bei der untersuchten Reaktion Produktgemische entstanden sind. Entsprechende Signale, die auf das Vorliegen von nicht umgesetztem **163** hindeuteten, wurden nicht beobachtet. Auf Grund des breiten Produktspektrums konnten ¹H und ¹³C NMR-Spektren nicht für die Charakterisierung der entstandenen Verbindungen verwendet werden. Im ²⁹Si{¹H} NMR-Spektrum des Gemisches wurden acht Signale detektiert, von denen vier in einem zusätzlichen protonengekoppelten ²⁹Si INEPT NMR-Experiment zu einem Duplett mit einer sehr großen ¹*J*(SiH)-Kopplungskonstante von 312 – 375 Hz aufspalteten (δ^{29} Si (Integral) = 36.9 (10Si), 7.0 (1.0Si), -7.5 (0.9Si), -14.7 (19.5Si, SiH, ¹*J*(Si,H) = 357 Hz), -15.4 (38.0Si, SiH, ¹*J*(Si,H) = 357 Hz), -26.1 (6.5Si), -31.5 (19.4Si, SiH, ¹*J*(Si,H) = 312 Hz), -42.7 (5.9Si, SiH, ¹*J*(Si,H) = 319 Hz). Kopplungskonstanten mit so großen Werten sind nur von Silanen bekannt, in denen drei stark elektronegative Substituenten wie Fluor, Chlor, Brom, Sauerstoff oder Stickstoff direkt an das Siliciumatom gebunden sind (Bereich der ¹*J*(SiH)-Kopplungskonstante für entsprechende Verbindungen von 287 Hz ((EtO)₃SiH) bis 388 Hz (F₃SiH)).^[187] Anhand der Integrale der ²⁹Si Signale konnte das Signal bei δ^{29} Si = -15.4 dem Hauptprodukt zugeordnet werden.

Mit Hilfe von computerchemischen Rechnungen konnte die ²⁹Si NMR chemische Verschiebung und die ¹*J*(SiH)-Kopplungskonstante des gesuchten 2-Silaimidazoliumkations **157** vorausgesagt werden (GIAO B3LYP/6-311+G(2d,p)//B3LYP/6-311+G(d,p): δ^{29} Si = 33.1, ¹*J*(SiH) = 240.3 Hz). Das Signal mit der dritthöchsten Intensität im ²⁹Si NMR-Spektrum zeigte eine ähnliche NMR chemische Verschiebung δ^{29} Si = 36.9. Da alle weiteren analytischen Daten auf Grund des vorliegenden Produktgemisches nicht für die Charakterisierung der Verbindungen geeignet waren, ist die Ähnlichkeit der berechneten NMR chemischen Verschiebung von **157** mit dem detektierten Signal bei δ^{29} Si = 36.9 nur als Indiz für die Entstehung eines solchen Kations in den untersuchten Hydridabstraktionsreaktionen zu werten. Zusätzliche Derivatisierungsversuche mit Tri-*n*-Butylstannan und anschließende GC/MS-Untersuchungen führten ebenfalls nicht zur Identifizierung der einzelnen Verbindungen im Produktgemisch.

Die hier diskutierten Ergebnisse konnten in einem weiteren Versuch exakt reproduziert werden. Da auf dem hier beschriebenen Weg das gewünschte Salz des Silaimidazoliumions **157** nicht erhalten und somit eine anschließende Folgereaktion mit Diethylether nicht untersucht werden konnte, lag es nahe Hydridabstraktionsversuche in Diethylether zu untersuchen um einen Vergleich mit Ergebnissen aus den Protonierungsversuchen in Diethylether zu ermöglichen.

Gleiche Zersetzungsprodukte ?

Wenn bei den Reaktionen in beiden Fällen das durch Diethylether koordinierte Silaimidazoliumkation **152** intermediär entsteht, sollten die möglichen Zersetzungsprodukte identisch sein. Die hierfür durchgeführte Hydridabstraktionsreaktion, ausgehend von **163** unter Verwendung von **29**[B(C_6F_5)₄], wurde analog zu den Protonierungsexperimenten bei -40 °C mit einer entsprechend hohen Menge an Diethylether durchgeführt, um zu gewährleisten, dass in beiden Reaktionen vergleichbare Bedingungen vorlagen. Die NMR-spektroskopische Untersuchung der Hydridabstraktionsreaktion verdeutlichte, dass auch in dieser Reaktion ein Produktgemisch entstanden ist. Das erhaltene Produktspektrum war erheblich breiter als bei der analogen Reaktion in Benzol. Außerdem konnten weder Übereinstimmungen in den NMR-Spektren der Hydridabstraktionen in Diethylether und Benzol noch mit den NMR-Spektren aus den Protonierungsversuchen gefunden werden. Somit bleibt die

Schema 4.61. Zusammenfassung der Versuchsergebnisse aus der Protonierung des Silylens **41** mit der Säure **144** und der Hydridabstraktionsreaktion ausgehend von **163** unter Verwendung von **29**[$B(C_6F_5)_4$].

Bestätigung für die intermediäre Entstehung eines 2-Silaimidazoliumkations **157** in der Hydridabstraktion und die Verifizierung des vorgeschlagenen Zersetzungsmechanismus eines durch Diethylether koordinierten Silaimidazoliumkations **152** (= **157** \cdot Et₂O) entsprechend Schema 4.51 (Seite 107) offen.

4.4.6 Reaktivitätsunterschiede zwischen Silylen 41 und Germylen 54 gegenüber Säuren

Schema 4.62. Gegenüberstellung des Reaktionsverhaltens des Silylens **41** und des Germylens **54** mit der Säure **144** bei gleichen Reaktionsbedingungen.

Die Ergebnisse aus den Protonierungsversuchen der Silylene **14, 40** und **41** mit der Säure **144** in Anwesenheit von Diethylether deuten darauf hin, dass unter gewählten Reaktionsbedingungen die Protonierung am Siliciumatom stattfindet. Im Gegensatz zu dieser Reaktionsweise wird unter den gleichen Reaktionsbedingungen das zu **41** analoge Germylen **54** an einem der beiden Kohlenstoffatome des N-Heterocyclus protoniert, wobei das donorstabilisierte Germyliumyliden **141** entsteht.^[124]

Auf Grundlage dieser experimentellen Ergebnisse lässt sich vermuten, dass die Tetrylene **41** und **54** unterschiedliche basische Eigenschaften aufweisen und dass das Reaktionsverhalten von **41** gegenüber den eingesetzten Brønstedt-Säuren möglicherweise zusätzlich vom Lösungsmittel abhängig ist. Um einen detaillierten Einblick in das Reaktionsverhalten der Tetrylene gegenüber den Brønstedt-Säuren $H(Et_2O)_2^+$ **144** und $H(C_6H_6)^+$ **158** zu erhalten wurden zusätzliche computerchemische Untersuchungen durchgeführt. Zunächst wurden die Protonenaffinitäten der beiden Tetrylene ohne Einfluss von Lösungsmitteln für die Gasphase, entsprechend den Reaktionsgleichungen von Schema 4.63 berechnet.

Schema 4.63. Berechnete Reaktionen zur Ermittlung der Protonenaffinität der unterschiedlichen basischen Zentren in Tetrylenen 41 und 54.

Tabelle 4.17. Zusammenfassung der berechneten Protonenaffinitäten der unterschiedlich basischen Zentren der Tetrylene **41** und **54** in Abhängigkeit der verwendeten Brønstedt-Säure (B3LYP/6-311+G(d,p)). **A** entspricht der Protonierung am Silicium- bzw. Germaniumatom, **B** entspricht der Protonierung am Kohlenstoffatom des N-Heterocyclus. Energien der Protonierungsreaktionen sind in $kJ mol^{-1}$ angegeben.

Reaktion	Α		I	В
	ΔΕ	ΔG^{298}	ΔE	ΔG^{298}
41 + $[H(Et_2O)_2]^+$	27	-29	-6	-52
41 + $[H(C_6H_6)]^+$	-147	-146	-177	-170
54 + $[H(Et_2O)_2]^+$	52	-7	-16	-70
54 + $[H(C_6H_6)]^+$	-122	-125	-189	-187

Eine Protonierung am Siliciumatom bzw. Germaniumatom führt zu einem Imidazoliumion der Struktur **A** während das Produkt einer Protonierung am Kohlenstoffatom des N-Heterocyclus analog der Struktur **B** ist. Ohne Berücksichtigung von Lösungsmitteleffekten sagen die Berechnungen unabhängig vom Tetrylen **41** und **54** und unabhängig von der eingesetzten Brønstedt-Säure voraus, dass eine Protonierung am Kohlenstoffatom des N-Heterocyclus bevorzugt ist (vgl.: Tabelle 4.17). Im Fall des Silylens **41** ist die Protonierung am Kohlenstoffatom um $\Delta(\Delta G^{298}(\mathbf{A})/\Delta G^{298}(\mathbf{B})) = 24$ kJ mol¹ bevorzugter als am Siliciumatom. Die Bevorzugung ist im Fall einer analogen Protonierung des Germylens noch deutlicher ($\Delta(\Delta G^{298}(\mathbf{A})/\Delta G^{298}(\mathbf{B})) = 63$ kJ mol⁻¹). Dies entspricht den Berechnungen von Müller und Mitarbeiten, die im Fall des Germaniums vorausgesagt haben, dass das Germyliumyliden **B** (E = Ge) um 67 kJ mol⁻¹ stabiler ist als ein Diaminogermylkation **A** (E = Ge). Diese Bevorzugung wird darauf zurückgeführt, dass die Bildung einer C–H-Bindung exothermer ist als einer entsprechenden Ge–H-Bindung.^[124] Auf dieser Grundlage lässt sich ebenfalls erklären, dass die Bevorzugung einer C-Protonierung im Fall des Silylens **41** im Vergleich zum Germylen **54** geringer ausfällt (Bindungsdissoziationsenergie: BDE(C-H) in CH₄ 438 kJ mol⁻¹, BDE(Si-H) in SiH₄ 379 kJ mol⁻¹, Ge–H in $BDE(GeH_4)$ 346 kJ mol⁻¹).^[213]

Die errechneten Protonenaffinitäten sind nur im Fall der Protonierungsreaktionen des Germylens mit dem experimentell beobachteten Reaktionsverhalten in Übereinstimmung. Das unterschiedliche Reaktionsverhalten des Silylens **41** gegenüber $[H(Et_2O)_2]$ + **144** und $[H(C_6H_6)]^+$ **158** kann nicht mit den errechneten Protonenaffinitäten erklärt werden, was darauf hindeutet, dass die Reaktion des Silylens **41** mit den jeweiligen Säuren durch das Lösungsmittel beeinflusst ist.

Um diesen Einfluss zu bestimmen wurden die Protonenaffinitäten für den Fall berechnet, dass die entstehenden Kationen durch ein Lösungsmittelmolekül koordiniert sind (vgl.: Schema 4.64). Die Berechnungen wurden entsprechend der Reaktionsgleichungen in Schema 4.64 durchgeführt (vgl.: Tabelle 4.18). Zusätzliche Einflüsse der Lösungsmittel wie Dipolmomente und die Größe der Lösungsmittelmoleküle, die durch SCRF-Rechnungen^[214] bestimmt werden können, wurden nicht berücksichtigt.

Schema 4.64. Berechnete Reaktionen zur Ermittlung der Protonenaffinität der unterschiedlichen basischen Zentren in Tetrylenen **41** und **54** unter der Berücksichtigung, dass bei den Reaktionen Lösungsmittelkomplexe der Kationen entstehen können. (^aIm Fall der Berechnungen der Protonierungsreaktion mit $[H(Et_2O)_2]^+$ ist das zweite Diethermolekül nicht an das Kation koordiniert.)

Im Fall des Silylens **41** sind die beiden unterschiedlichen Protonierungsreaktionen thermodynamisch sehr ähnlich. Unter Verwendung von $[H(Et_2O)_2]^+$ **144** ist die Protonierung am Siliciumatom leicht bevorzug ($\Delta(\Delta G^{298}(\mathbf{A})/\Delta G^{298}(\mathbf{B})) = -5 \text{ kJ mol}^{-1}$), während mit $[H(C_6H_6)]^+$ **158** eine Protonierung am Kohlenstoffatom begünstigt ist ($\Delta(\Delta G^{298}(\mathbf{A})/\Delta G^{298}(\mathbf{B}))$ $= -65 \text{ kJ mol}^{-1}$). Für den Fall des Germylens **54** können keine nennenswerten Unterschiede zu den Vorhersagen ohne Einflüsse der Lösungsmittelmoleküle bestimmt werden. Somit bleibt die Protonierung am Kohlenstoffatom des N-Heterocyclus thermodynamisch günstiger als eine entsprechende Reaktion am Germaniumzentrum.

Tabelle 4.18. Zusammenfassung der berechneten Protonenaffinitäten der unterschiedlich basischen Zentren der Tetrylene **41** und **54** in Abhängigkeit der verwendeten Brønstedt-Säure unter Berücksichtigung, dass die entstehenden Kationen durch Lösungsmittel komplexiert sein können (B3LYP/ 6-311+G(d,p)). **A** entspricht der Protonierung am Silicium- bzw. Germaniumatom, **B** entspricht der Protonierung am Kohlenstoffatom des N-Heterocyclus. Die Energien der Protonierungsreaktionen sind in kJ mol⁻¹ angegeben.

Reaktion	Α		В	
	ΔΕ	ΔG^{298}	ΔE	ΔG^{298}
41 + $[H(Et_2O)_2]^+$	-45	-29	-12	-24
41 + $[H(C_6H_6)]^+$	-176	-124	-184	-145
54 + $[H(Et_2O)_2]^+$	34	24	-29	-41
54 + $[H(C_6H_6)]^+$	-136	-103	-202	-156

Eine mögliche Erklärung dafür, dass die Protonierung am Siliciumatom begünstigt ist wenn $[H(Et2O)_2]^+$ **144** zum Einsatz kommt, ist ein Zusammenspiel aus zwei Effekten: Der Stabilität der während der Protonierungsreaktion (s.o.) neu geknüpften E–H Bindung (C–H, Si–H oder Ge–H) und der Stärke der Bindung zwischen Lösungsmittelmolekül und Tetrylkation. Bei Betrachtung der Bindungsenergien zwischen Lösungsmittelmolekül (Et₂O) und Tetrylkation fällt auf, dass die Bindungsdissoziationsenergie im Fall des Diethylether-2-Silaimidazolium-Kationen-Addukts **A** (**157(Et₂O) = 152**) am größten ist (Bindungsdissoziationsenergie, BDE = 72 kJ mol⁻¹). Der Anteil der Energie, die durch Koordinierung des Diethylethers an das 2-Silaimidazolium frei würde, kompensiert den Anteil an Energie, der bei der Bildung einer Si–H-Bindung weniger frei würde als bei der Bildung einer C–H-Bindung (BDE (C–H) = 438 kJ mol⁻¹, BDE (Et₂O/**157(Et₂O)**) + BDE (Si–H) = 72 + 379 kJ mol⁻¹ = 451 kJ mol⁻¹). In allen anderen Fällen fällt der Wert der *BDE* für die Komplexierung des Lösungsmittelmoleküls an das Tetrylkation deutlich niedriger aus (BDE = 8 - 29 kJ mol⁻¹) und eine entsprechende Kompensation ist nicht mehr gegeben, womit die Protonierung am Kohlenstoffatom auch unter Berücksichtigung von Lösungsmitteleinflüssen begünstigt bleibt. 4. N-Heterocyclische Silylene als Ausgangsstoffe für neuartige niedervalente Siliciumverbindungen mit ungewöhnlichen Bindungssituationen

Tabelle 4.19. Zusammenfassung der berechneten Bindungsdissoziationsenergien der Kationen-Lösungsmittel-Addukte (B3LYP/6-311+G(d,p)). **A** entspricht der Protonierung am Silicium- bzw. Germaniumatom, **B** entspricht der Protonierung am Kohlenstoffatom des N-Heterocyclus. *BDE* sind in kJ mol⁻¹ angegeben.

Kationenstruktur	E =	BDE (Et ₂ O-Addukt)	BDE (C ₆ H ₆ -Addukt)
Α	Si	72	29
В	Si	10	8
Α	Ge	17	12
В	Ge	14	13

Die Ergebnisse aus den Rechnungen unter Berücksichtigung der Bildung von Lösungsmittel-Tetrylkation-Addukten entsprechen den experimentellen Ergebnissen. Die Reaktivitätsunterschiede zwischen dem Germylen **54** und dem Silylen **41** lassen sich mit Hilfe der Rechnungen auf die unterschiedlichen Lösungsmittel zurückführen. Des Weiteren lässt sich auf Grundlage der Ergebnisse vermuten, dass in Protonierungsreaktionen N-heterocyclischer Silylene in Donorlösungsmitteln wie Ethern die Bildung von 2-Silaimidazoliumkationen **A** am wahrscheinlichsten ist, während Silyliumylidene **B** ausgehend von Silylenen eher durch Verwendung von wenig polaren Lösungsmitteln wie C₆H₆ zugänglich sein sollten.

4.4.7 Fazit

Durch die hier untersuchten Protonierungsreaktionen war es nicht möglich ein Silyliumyliden 167 ausgehend vom Silylen 41 analog des beschriebenen Darstellungsweg eines Germyliumylidens 141 aus dem Germylen 54 zu erhalten.

Die Protonierungsexperimente in Anwesenheit von Diethylether stellten heraus, dass die Protonierung des Silylens **41** im Gegensatz zum Germylen **54** nicht am Kohlenstoffatom des N-Heterocyclus sondern am Siliciumzentrum stattfindet. Aus den Experimenten mit der eingesetzten Säure **144** gingen unabhängig vom Gegenion $[B(C_6F_5)_4]^-$ oder $[Al(OC(CF_3)_3)_4]^-$ der Säure die Verbindung **145** und das Triethyloxoniumkation **146** hervor.

Schema 4.66. Ergebnis aus den Reaktionen des Silylens 41 mit der Säure 144.

Mit Hilfe theoretischer Studien wurde gezeigt, dass diese Verbindungen analog eines literaturbekannten Reaktionswegs^[208] als Zersetzungsprodukte aus einem intermediär auftretenden durch Diethylether koordinierten 2-Silaimidazoliumion **152** entstehen können. Eine unabhängige Synthese eines solchen 2-Silaimidazoliumsalzes **152** durch eine Hydridabstraktionsreaktion ausgehend von dem N-heterocyclischen Diaminosilan **163** führte nicht zum Erfolg.

Schema 4.67. Untersuchter Darstellungsweg zur Synthese eines 2-Silaimidazoliumkations durch Hydridabstraktion ausgehend von dem N-heterocyclischen Diaminosilan **163**.

Abschließende computerchemische Untersuchungen zum Vergleich der Reaktivitäten des Silylens **41** und des Germylens **54** verdeutlichten den Einfluss des Lösungsmittels auf das Reaktionsverhalten der Tetrylene. In Diethylether ist eine Protonierung am Siliciumatom des Silylens bevorzugt, während in der Reaktion des Silylens **41** mit der Säure **158** unter Ausschluss von Diethylether in Benzol die Protonierung am Kohlenstoffatom des N-Heterocyclus begünstigt ist. Im Fall des Germylens **54** ist unabhängig von der verwendeten Brønstedt-Säure $H(Et_2O)_2^+$ **144** oder $H(C_6H_6)^+$ **158** die Protonierung am Kohlenstoffatom bevorzugt.

5 Theoretische Studien zur Bindungssituation in neuartigen Tetrylenverbindungen

Seit der ersten Synthese der schweren Carbenanaloga, des Germylens $[(Me_3Si)_2CH]_2Ge:$ $4^{[10]}$ und des Stannylens $[(Me_3Si)_2CH]_2Sn:$ 5,^[9, 10] vor ungefähr 35 Jahren ist die Chemie der schweren Tetrylene Gegenstand der aktuellen Forschung. Mittlerweile sind ihre Eigenschaften und ihr zum Teil unterschiedliches chemisches Verhalten im Vergleich zu den leichten Homologen, den Carbenen, gut verstanden (vgl.: Einleitung).^[20] Im Laufe der Untersuchung für die vorliegende Arbeit wurde jedoch neben den bereits in Abschnitt 4 vorgestellten Substanzen von einigen neuen Verbindungen der schweren Homologen der Carbene mit interessanten Eigenschaften berichtet.^[6, 7, 59-61, 84]

Eines dieser Beispiele ist das von Marschner und Mitarbeiten synthetisierte Dimer aus zwei cyclischen Disilylplumbylenen **168**, welches durch Umsetzung eines Plumbylen-Phosphan-Addukts **170** mit Tris-(pentafluorphenyl)-boran **171** zugänglich ist (vgl.: Schema 5.1).^[215]

Schema 5.1. Darstellung des Plumbylendimers **168** und dessen Dissoziationsverhalten in Lösung. Die auffällige Besonderheit dieses Plumbylens ist, dass es im Festkörper Dimere bildet. Dies ist von vergleichbaren Verbindungen nicht bekannt. Im Allgemeinen verringert sich die Tendenz der Tetrylene Dimere im Festkörper zu bilden von Silylen bis hin zum Plumbylen, was auf die steigende Größe des Singulett-Triplett Energieunterschieds der Tetrylene zurückgeführt wird.^[20] Inspiriert durch diese interessanten experimentellen Ergebnisse wurde die Aufklärung der Bindungssituation in **168** unter Verwendung computerchemischer Methoden ebenfalls zum Ziel dieser Arbeit.

Ein weiteres Beispiel für neue Verbindungen der schweren Homologen der Carbene sind die in jüngster Zeit von Marschner und Mitarbeitern vorgestellten Gruppe 4 Metallkomplexe, die Germylene, Stannylene bzw. Plumbylene als Liganden tragen. Wie die unter Abschnitt 4.2.3 vorgestellten Untersuchen verdeutlichen, ist die Synthese solcher Komplexverbindungen kompliziert. Dies wird unterstrichen durch die Tatsache, dass Komplexe mit einer Blei-Gruppe 4 Metallbindung bis zur Darstellung von **38g–i**, und **39c** unbekannt waren. Den Autoren gelang es zwei verschiedene Typen von Gruppe 4 Tetrylenkomplexen zu synthetisieren. Die Komplexe **38a–i** sind aus einem Cyclopentadienylmetallocenfragment aufgebaut, wobei an das Gruppe 4 Metallzentrum je ein Germylen,^[132] Stannylen bzw. Plumbylen^[133] und ein Triethylphosphanligand koordiniert ist. In den Verbindungen **39a–c** ist der Phosphanligand gegen ein weiteres Tetrylen ausgetauscht.^[133]

Da bis heute wenig über die Bindungssituation von Komplexen eines Gruppe 4 Metalls mit schweren Tetrylenen bekannt ist, rückten theoretische Studien zu diesem Thema ebenfalls in den Fokus dieser Forschungsarbeit.

5.1 Theoretische Untersuchungen zur Bindungssituation im Bleidimer 168

(Die in diesem Abschnitt 5.1 vorgestellten Ergebnisse konnten bereits während der Promotion im Rahmen eines Artikels mit dem Titel: *Dispersion Energy Enforced Dimerization of a Cyclic Disilylated Plumbylene*, im *Journal of the American Chemical Society* **2012**, *134*, 6409 veröffentlicht werden.)^[215]

Auf Grundlage des heutigen Forschungsstands und des Wissens über zweifachkoordinierte Bleiverbindungen mit dem Bleiatom in der Oxidationsstufe II erscheint die Dimerisierung des Plumbylens **169**^[215] im Festkörper zunächst ungewöhnlich. Ein Vergleich mit der Verbindung [(Me₃Si)₃Si]₂Pb: **172**^[216] und dem leichteren Homologen [(Me₃Si)₃Si]₂Sn: **173**,^[216] welche analog zu **169** Silyl-Substituenten am zweifach koordinierten Gruppe 14 Element tragen, zeigt, dass die Tendenz der Tetrylene Dimere im Festkörper zu bilden von den leichteren Tetrylenen bis hin zu den schweren Tetrylenen abnimmt. Während beide Verbindungen in Lösung als Monomer vorliegen, dimerisiert nur das Stannylen **173** im Festkörper und das Plumbylen **172** kristallisiert als Monomer aus.^[216] Das Ausbilden einer Bindung zwischen den zwei Carbenanaloga ist stark abhängig vom Energieunterschied des Singulett und Triplett Zustandes, $\Delta E^{\text{ST},13}$ Bei kleinen ΔE^{ST} oder gar negativen ΔE^{ST} ($E^{\text{T}} < E^{\text{S}}$: Triplettzustand stabiler als Singulettzustand, vgl. Einleitung 1.1.2), wie im Fall der Carbene, ist die Ausbildung einer Doppelbindung (einer σ - und einer π -Bindung) unter Entstehung von Alkenen bevorzugt. Bei großen ΔE^{ST} hingegen, wie bei Stannylenen, ist die Tendenz Dimere zu bilden deutlich geringer ausgeprägt. In den Fällen, in denen Dimerisierung in der festen Phase eintritt, wie zum Beispiel bei [(Me₃Si)₂CH]₂Sn=Sn[CH(SiMe₃)₂]₂^[217] liegt keine Doppelbindung im klassischen Sinn sondern eine doppelte Donor-Akzeptor Wechselwirkung vor (vgl.: Einleitung).^[2]

Um das Phänomen der Dimerisierung von **169** im Festkörper aufzuklären wurden theoretische Studien durchgeführt. Hierfür wurde auf Grundlage der experimentellen Strukturparameter die Struktur des Dimers **168** und des Monomers **169** unter Vernachlässigung von Lösungsmitteleffekten mit dem M06-2X-Funktional^[218] optimiert, wobei die Bleiatome durch das Stuttgart Dresden Pseudopotential SSD^[219] und die restlichen Atome durch den Pople Basisastz 6-31G(d)^[158-160] beschrieben wurden (im weiteren durch M06-2X/A abgekürzt). Die von den Rechnungen vorhergesagte Molekülstruktur des Dimers **168** stimmt qualitativ gut mit den Daten aus der Einkristallstrukturanalyse überein (vgl.: Abbildung 5.1).

Abbildung 5.1. Vergleich der experimentellen (schwarz) und der berechneten Strukturdaten (rot) der zentralen Molekülstruktur von **168** und Zusammenfassung der berechneten Strukturdaten von **169**. Bindungswinkel α und Pyramidalisierungswinkel ϑ sind in [°] (*kursiv*), Bindungslängen, *d*, sind in pm angegeben (R = SiMe₃).

Des Weiteren sagen die computerchemischen Untersuchungen für das Monomer **169** eine Halb-Sessel-Konformation des Plumbacyclopentasilanrings mit einem endocyclischen SiPbSi-Winkel von $\alpha = 90.5^{\circ}$ und einer mittleren Pb(II)Si(IV)-Bindung von d = 275.1 pm voraus. Verglichen mit bekannten Pb(II)Si(IV)-Bindungen sind die für **169** berechneten Bindungslängen um 4 – 5 pm länger.^[143] Es ist bekannt, dass elektropositive Substituenten wie Silylsubstituenten am zweifachkoordinierten Gruppe 14 Element den ΔE^{ST} verringern.^[71] Gleiches konnte auch für den ΔE^{ST} von **169** im Vergleich mit Plumbylen PbH₂ als Modell-

¹³ $\Delta E^{ST} = E(Triplett) - E(Singulett)$

verbindung ermittelt werden ($\Delta E^{ST}(PbH_2) = 215.4 \text{ kJ mol}^{-1}$, $\Delta E^{ST}(169) = 145.4 \text{ kJ mol}^{-1}$ M06-2X/A). Interessant ist jedoch, dass der ΔE^{ST} von 169 gegenüber dem berechneten Wert von 172 größer ist (ΔE^{ST} (172) = 128.9 kJ mol⁻¹ M06-2X/A), was sich durch den erzwungenermaßen kleinen SiPbSi-Winkel im cyclischen Plumbylen 169 erklären lässt. Auf dieser Grundlage lässt sich annehmen, dass 169 wie 172 als Monomer in der festen Phase vorliegt, was den experimentellen Beobachtungen aber widerspricht.

Abbildung 5.2. a) Schematische Darstellung der Donor-Akzeptor-Bindung im Plumbylendimer **168**. Links: Abbildung mit Blick auf die Ebene, die von Si(9)Pb(2)Si(12) aufgespannt wird. Rechts: Abbildung der Pb–Pb-Wechselwirkung nach einer Rotation von 90° um die Pb–Pb-Bindung. b) Darstellung des HOMO (links) und des LUMO (rechts) von Dimer **168** (95% der Aufenthaltswahrscheinlichkeit der Elektronen im entsprechenden Orbital sind von der dargestellten Oderfläche der Orbitale umschlossen. Bleiatome sind dunkelgrau, Siliciumatome hellgrün und Kohlenstoffatome hellgrau dargestellt, Wasserstoffatome sind nicht abgebildet).

Eine detaillierte Betrachtung der berechneten Struktur von **168** zeigt entsprechend zu den experimentellen Daten zwei unterschiedlich koordinierte Bleiatome in **168**. Anhand der Daten lässt sich vermuten, dass zwischen den beiden Bleiatomen nur eine einfache Donor-Akzeptor-Wechselwirkung vorliegt. Das verzerrt trigonal planar (Pyramidalisierungswinkel $\vartheta = 14.8^{\circ}$) koordinierte Bleiatom Pb(2) entspricht dabei dem Donor und das stark pyramidalisierte Bleiatom Pb(1) dem Akzeptor ($\vartheta = 74.4^{\circ}$) (vgl.: Abbildung 5.1 und 5.2). Der Blei-Blei

Abstand in dieser Donor-Akzeptor-Bindung ist länger als die Summe der Kovalenzradien einer Blei-Blei-Einfachbindung ($d(Pb(1)Pb(2)) = 309.9 \text{ pm}, \Sigma r^{k}(PbPb) = 288 \text{ pm}^{[144]}$). Bedingt durch die Verdrillung der zwei Ebenen, die durch die Bleiatome und ihre Silylsubstituenten aufgespannt werden, ist die Ausbildung einer zweiten Donor-Akzeptor-Bindung, wie sie von Dienen der Gruppe 14 Elemente bekannt ist, nicht möglich (Winkel zwischen den Ebenen, $\varphi(Si(1)Pb(1)Si(4)/Si(9)Pb(2)Si(12)) = 74.5^{\circ}$, vgl.: Abbildung 5.2 a)). Als Konsequenz dieser relativen Anordnung der Plumbyleneinheiten resultiert ein freies, stereochemisch aktives Elektronenpaar an Bleiatom Pb(1) von hohem s-Charakter (sp^{0.13}) und ein leeres p-Orbital (sp^{∞}) an Bleiatom Pb(2), welche dem HOMO bzw. dem LUMO des Plumbylendimers entsprechen (vgl.: Abbildung 5.2 b)). Die hier beschriebene Bindungssituation ist vergleichbar mit der eines Pb₂-Fragments im Cyclotriplumban (Tep_2Pb)₃ (Tep = 2,4,6-Triethylphenyl) 174, in dem jedes Bleiatom der Akzeptor des Elektronenpaars des einen benachbarten Bleiatoms und der Donor für das zweite Bleiatom ist.^[220] Auf Grundlage dieser Ergebnisse lässt sich vermuten, dass die Bindung zwischen den beiden Bleiatomen in 168 im Vergleich zu Diplumbenen mit einer doppelten Donor-Akzeptor-Bindung schwächer ist und eher der Bindungssituation vom Cyclotriplumban 174 entspricht.

Zusätzliche NBO Analysen^[221] bestätigten diese Annahme.¹⁴ Entsprechend der Donor-Akzeptor-Bindung zwischen den beiden Bleiatomen Pb(1) und Pb(2) wird durch die NBO Analyse ein Ladungstransfer von 0.24 a. u. vom Donor Pb(2) zum Akzeptor Pb(1) in **168** vorhergesagt. Der berechnete WBI dieser Pb–Pb-Bindung fällt im Vergleich zu denen in den Modellverbindung Pb₂H₆ und Pb₂H₄ kleiner aus (vgl.: Tabelle 5.1). Dies ist als Hinweis auf eine niedrigere Bindungsordnung in **168** als in den Modellverbindungen Pb₂H₆ und Pb₂H₄ zu deuten und entspricht den Ergebnissen, die aus der Analyse der berechneten Struktur von **168** abgeleitet wurden.

Verbindung	Punktgruppe	<i>d</i> (PbPb)	WBI(PbPb)
168	<i>C</i> ₁	309.9	0.70
Pb ₂ H ₆	D _{3d}	288.8	0.88
Pb_2H_4	C_{2h}	290.9	0.87

Tabelle 5.1. Vergleich der berechneten Bindungslängen der Blei-Blei-Bindung von **168** und der entsprechenden WBIs mit denen von Modelverbindungen (Bindungslängen, d, in pm).

Ein weiteres Ergebnis der NBO Analyse ist, dass die Pb–Pb-Bindung durch eine negative Hyperkonjugation zwischen dem freien Elektronenpaar an Pb(1) und dem σ^* -Orbital der

¹⁴ Computerchemische Details für die NBO Analyse sind dem Zusatzmaterial der Veröffentlichung zu entnehmen.
Pb(2)–Si(9)-Bindung unterstützt wird. Bedingt durch diese Wechselwirkung ist der Winkel zwischen Pb(1), Pb(2) und Si(9) stark vergrößert (α (Pb(1)Pb(2)Si(9)) = 155.4°) und die Pb(2)–Si(9)-Bindungslänge ist im Vergleich zu der von Pb(2)–Si(12) um 4.2 pm länger (d(Pb(2)–Si(9)) = 276.6 pm, d(Pb(2)–Si(12)) = 272.4 pm), was ebenfalls durch den Unterschied der entsprechenden WBIs unterstrichen wird (WBI(Pb(2)Si(9)) = 0.64, WBI(Pb(2)Si(9)) = 0.71).^[215]

Abbildung 5.3. Darstellung der negativen Hyperkonjugation in 168 mit Hilfe der Lewis-Schreibweise.¹⁵

Die berechnete Bindungsenergie zwischen den beiden Plumbylenen in 168 weicht deutlich von den Ergebnissen aller vorherigen theoretischen Untersuchungen ab. Die für das Dimer ermittelte Bindungsdissoziationsenergie, BDE,¹⁶ der Pb-Pb-Bindung beträgt 110.8 $kJ mol^{-1}$ und ist damit deutlich größer als die der Modellverbindung Pb_2H_4 (BDE(Pb_2H_4) = 62.4 kJ mol⁻¹). Auf Grundlage der NBO Analyse, der berechneten WBIs und der Ergebnisse aus den berechneten ΔE^{ST} des Monomers 169 ist dieses Ergebnis völlig unerwartet. Somit lässt sich vermuten, dass die Donor-Akzeptor-Bindung nicht der Grund für die beobachtete Dimerisierung der beiden Plumbylene in 168 ist. Eine detaillierte Betrachtung der Coulomb-Wechselwirkung, die durch den Ladungstransfer von 0.24 a.u. zwischen dem Donor Pb(2) und dem Akzeptor Pb(1) hervorgerufen wird, verdeutlicht, dass zwischen den beiden Bleiatomen anziehende elektrostatische Wechselwirkungen vorliegen, woraus ein Coulomb-Potential $E_{\rm C} = -25.8 \text{ kJ mol}^{-1}$ resultiert.¹⁷ Die $BDE^{\rm C}$, die für die Überwindung der elektrostatischen Anziehung der beiden Plumbylene aufgebracht werden muss ($BDE^{C} = -E_{C} = 25.8$ kJ mol⁻¹), nimmt eher einen geringen Teil (25%) an der gesamten *BDE* von **169** ein. Da die Beiträge aller bis hierher diskutierten Wechselwirkungen an der BDE von 168 eher gering sind, lässt sich vermuten, dass sich der Hauptteil der BDE auf Dispersionswechselwirkungen zwischen den großen, polarisierbaren Silylsubstituenten des Plumbylenmonomers 169 zurückzuführen ist. Dass sterisch anspruchsvolle Substituenten einen erheblichen Einfluss auf die *BDE* ausüben, wurde schon am Beispiel des Disilans ^tBu₃Si–Si^tBu₃ beobachtet, welches

¹⁵ Eine detaillierte Beschreibung der negativen Hyperkonjugation ist in der Veröffentlichung zu finden.^[215]

 $^{^{16}}BDE = 2E^{\text{tot}}(169) - E^{\text{tot}}(168)$

¹⁷ Für die Berechnung des Coulomb-Potentials wurden der Pb–Pb-Abstand von 309.9 pm und die Ladung von 0.24 a.u. mit unterschiedlichem Vorzeichen zu Grunde gelegt.

trotz einer sehr langen Si-Si-Bindung eine hohe thermodynamische Stabilität aufweist.^[222-224] In neuerer Zeit wird der Einfluss der Dispersionswechselwirkungen auf die Stabilität metallorganischer Komplexe^[225] und organischer Moleküle mit großem C-C-Bindungsabstand^{[226,} ^{227]} mehr und mehr diskutiert. In diesem Zusammenhang wurden computerchemische Methoden etabliert um den Einfluss von Dispersionswechselwirkungen auf die Stabilität verschiedener Verbindungen zu ermitteln.^[225-227] Von dem hier verwendeten M06-2X Dichtefunktional ist bekannt, dass es im Vergleich zu den gängigen Dichtefunktionalen nicht kovalente Van-der-Waals Wechselwirkungen gut beschreibt,^[218] während das oft verwendete B3LYP Dichtefunktional entsprechende Wechselwirkungen nahezu vernachlässigt.^[218] Mit Hilfe der Differenz aus den BDE, die über M06-2X und B3LYP berechnet wurden, sollte somit der Anteil an nicht kovalenten Wechselwirkungen in **168** abgeschätzt werden können.^[225-227] Entsprechende Berechnungen sagen für die Modellverbindung Pb₂H₄ eine ähnliche *BDE* voraus $BDE^{B3LYP}(Pb_2H_4) = 62.4 \text{ kJ mol}^{-1}, B3LYP/A//M06-2X/A$ (M06-2X/A//M06-2X/A $BDE(Pb_2H_4) = 54.4 \text{ kJ mol}^{-1}$). Wie erwartet zeigt sich, dass der Anteil der Dispersionswechselwirkungen an der Pb-Pb-Bindung sehr gering ist ($\Delta(BDE/BDE^{B3LYP}) = 8 \text{ kJ mol}^{-1}$). Im Gegensatz dazu sind diese Wechselwirkungen entscheidend für die Stärke der Bindung zwischen beiden Plumbylen 169 in 168, da entsprechend der Berechnung auf B3LYP-Niveau die Spaltung des Dimers 168 in zwei Monomere sogar thermodynamisch bevorzugt wäre (M06- $2X/A/M06-2X/A BDE(168) = 110.8 \text{ kJ mol}^{-1}, B3LYP/A/M06-2X/A BDE^{B3LYP}(168) = -1.0$ kJ mol⁻¹). Eine zusätzliche freie Optimierung des Plumbylendimers 168 auf B3LYP/A-Niveau unterstreicht dieses Ergebnis. Der Pb(1)-Pb(2)-Abstand ist in dieser Struktur 19.7 pm länger als der experimentell ermittelte, während der Wert für die BDE, der auf Grundlage der optimierten Strukturen von 168 und 169 auf B3LYP-Niveau erhalten wurde, im Vergleich zur Berechnung auf M06-2X Niveau deutlich geringer ausfällt (B3LYP/A//B3LYP/A BDE (168) $= 26.5 \text{ kJ mol}^{-1}$).

Ausgehend von der großen *BDE* des Plumbylendimers erscheint dessen Dissoziation in Lösung zunächst nicht plausibel. Entsprechende computerchemische Rechnungen, die den Einfluss von Lösungsmitteln berücksichtigen (SCRF-Rechnungen),^[214] zeigten, dass die Dissoziation von **168** in Lösung auf entropische Effekte und Einflüsse des Lösungsmittels zurückgeführt werden können.¹⁸

¹⁸ Eine detaillierte Beschreibung für die Berechnung des Dissoziationsverhaltens von **168** ist in den Supporting Information der Veröffentlichung zu finden.

Zusätzlich zu der Bestimmung des Einflusses der Dispersionswechselwirkungen auf die Größe der BDE wurde untersucht warum 168 in der hier beschriebenen Konformation vorliegt und nicht die gewöhnliche trans-bent Konformation bevorzugt ist. Hierfür wurde die Geometrie des zu 168 analogen Diplumbens 175 optimiert. In der Struktur liegen beide Bleiatome pyramidalisiert ($9 = 52.2^{\circ}$ und 36.9°) mit einem Abstand von 298.2 pm vor. Wie zu erwarten sind die Bleiatome über eine doppelte Donor-Akzeptor-Bindung miteinander verknüpft. Die BDE der Pb-Pb-Bindung im Diplumben 175 ist nur wenig kleiner als im Plumbylendimer 168 $(M06-2X/A)/M06-2X/A BDE(168) = 110.8 \text{ kJ mol}^{-1}, M06-2X/A)/M06-2X/A BDE(175) =$ 76.4 kJ mol⁻¹). Ein Vergleich der *BDE* des Diplumbens **175** und des Plumbylendimers **168**, die auf B3LYP/A//M06-2X/A-Niveau berechnet wurden (Dispersionswechselwirkungen sind annähernd unberücksichtigt), zeigt, dass beide Verbindungen nahezu die gleiche Stabilität gegenüber Dissoziation aufweisen. Besonders auffällig ist, dass 175 sogar geringfügig stabiler ist als **168** (0.5 kJ mol⁻¹). Diese Modellrechnung verdeutlicht, dass die Dispersionswechselwirkungen und das damit verbundene Zusammenspiel zwischen abstoßenden und anziehenden Kräften der großen Substituenten der Plumbylene 169 für die ungewöhnliche Konformation des Plumbylendimers 168 ausschlaggebend sind.

Zusammenfassend lässt sich festhalten, dass die besonders starke Bindung der zwei Plumbylenmonomere **169** im Dimer **167** im Wesentlichen durch die anziehenden van-der-Waals-Wechselwirkungen der Substituenten bestimmt ist, während die einfache Donor-Akzeptor-Bindung zwischen den Bleiatomen in **168** nur wenig zur Stärke der Bindung beiträgt.

5.2 Theoretische Untersuchungen zur Bindungssituation in den Gruppe 4 Metallkomplexen mit schweren Tetrylenen als Liganden

(Ein Teil der Ergebnisse aus diesem Abschnitt 5.2 wurden bereits während der Promotion im Rahmen eines Artikels mit dem Titel: *Coordination Chemistry of Cyclic Disilylated Stannylenes and Plumbylenes to Groupe 4 Metallocenes*, im Journal of the American Chemical Society **2012**, 134, 10864 veröffentlicht.)^[133]

Bis zum heutigen Zeitpunkt sind Metallkomplexe der frühen Übergangsmetalle, insbesondere der Gruppe 4 Metalle Titan, Zirconium und Hafnium, die schwere Carbenanaloga wie Silylene, Germylene, Stannylene und Plumbylene als Liganden tragen, sehr selten. Zu den wenigen Beispielen solcher Verbindungen zählen die Zirconocen-Stannylen-Komplexe **176**,^[97, 98] **177**,^[99] und der Hafnocen-Silylen-Komplex **178**.^[102]

Verbindungen mit einer Gruppe 4 Metall-Bleibindung waren bis zu den von Marschner und Mitarbeitern synthetisierten Komplexen **38d–f** und **39c** unbekannt. Analog des Darstellungswegs für die Gruppe 4 Metall-Plumbylen-Komplexe konnte auch ein Zugang zu den entsprechenden Verbindungen **38a–c** und **38g–i**, **39a** und **39b**, die Germylene bzw. Stannylene als Liganden tragen, geschaffen werden (vgl.: Schema 5.2 und 5.3).^[132, 133]

Schema 5.2. Darstellung der Mono(germylen), -(stannylen) bzw. –(plumbylen) Gruppe 4 Metallkomplexe 38.

Die Synthese der Mono-Tetrylen Gruppe 4 Metallkomplexe gelingt durch Umsetzung des entsprechenden Metallocendichlorids mit den Tetrylen-Phosphan-Addukten **170**,^[215] **179**,^[132] oder **180**^[228] unter reduktiven Bedingungen. In Analogie dazu können die Bis(tetrylen) Gruppe 4 Metallkomplexe in einer Reaktion des Distannens **181** bzw. des Plumbylendimers **168** mit dem entsprechenden Metallocendichlorid unter reduktiven Bedingungen hergestellt werden. Die Synthesen entsprechender Bis(germylen)-Komplexe sowie die Darstellungen von Mono oder Bis(silylen)-Komplexen sind bis heute noch nicht gelungen.

Schema 5.3. Darstellung der Bis(stannylen) bzw. -(plumbylen) Gruppe 4 Metallkomplexe 39a-c.

Um einen tieferen Einblick in die Bindungssituation der Gruppe 4 Tetrylenkomplexe **38a–i** und **39a–c** zu erhalten wurden computerchemische Studien durchgeführt. Im Zuge dieser Arbeiten wurden nicht nur die experimentell zugänglichen Verbindungen **38a–i** und **39a–c** sondern auch die bislang unbekannten analogen Gruppe 4 Mono- und Bis(silylen)komplexe, die Bis(germylen)komplexe und die freien Tetrylene theoretisch untersucht. Dies ermöglichte eine ausführliche Diskussion der Bindungssituation in Abhängigkeit der Gruppe 4 Elemente und der Tetrylene.

Da die Ergebnisse des Abschnitts 5.1 zeigen, dass die Struktur, die Bindungseigenschaften und die Stabilität von Verbindungen mit großen Substituenten stark von den Einflüssen nicht kovalenter Wechselwirkungen geprägt sein können, wurden alle Strukturen der in diesem Abschnitt diskutierten Verbindungen ebenfalls mit dem M06-2X-Funktional,^[218] unter Vernachlässigung von Lösungsmitteleffekten, optimiert. Die Gruppe 4 Atome (Ti, Zr, Hf) sowie die zentralen niederkoordinierten Gruppe 14 Elemente der Tetrylene (Si:, Ge:, Sn:, Pb:) wurden durch die SSD Basissätze^[219] beschrieben, während für alle weiteren Atome (H, C, Si, P) der Pople Basissatz 6-31G(d)^[158-160] verwendet wurde (analog den Berechnungen aus Abschnitt 5.1, im Folgenden ebenfalls als M06-2X/A beschrieben).

Die von den Rechnungen vorhergesagten Molekülstrukturen stimmen qualitativ gut mit den Daten aus den Einkristallstrukturanalysen überein (vgl.: Tabelle 5.2). Entsprechend der bereits diskutierten berechneten Struktur des Plumbylenmonomers bzw. des freien Plumbylens **169** sagen die Berechnungen für die übrigen Tetrylene **182** – **184** eine Halb-Sessel-Konformation des Fünfrings voraus, indem das zweifach koordinierte Gruppe 14 Element, E¹, zusammen mit seinen beiden benachbarten Silylsubstituenten eine Ebene aufspannt. Die mittleren Abstände zwischen E¹ und den Silylsubstituenten, $d(E^1-Si)$, nehmen wie erwartet von Silicium bis Blei zu ($d(E^1-Si) = 238.6 - 275.1 \text{ pm}$), während die Bindungswinkel, $\alpha(Si-E^1-Si)$ vom Silylen **182** bis zum Plumbylen **169** abnehmen ($\alpha(Si-E^1-Si) = 96.3 - 90.5^\circ$). Für den Fall des Plumbylens **169** und des Stannylens **184** liegen die Längen der Bindung zwischen dem schweren Gruppe 14 Element und den Siliciumatom der Silylsubstituenten im Bereich der entsprechenden Bindungslängen analoger disilylsubstituierter Stannylene (**184**: $d(Sn^{II}-Si^{IV}) =$ 267.4 pm, $d(Sn^{II}-Si^{IV}) = 264 - 271 \text{ pm}^{[143]}$) bzw. Plumbylene (**169**: $d(Pb^{II}-Si^{IV}) = 275.1 \text{ pm}$, $d(Pb^{II}-Si^{IV}) = 270 - 271 \text{ pm}$).

Verbindung	E^1 – M – E^2	<i>d</i> (M–E ¹)	d(E ¹ -Si)	$\alpha(E^1-M-E^2)$	α(Si–E ¹ –Si)
38j	Si–Ti–P	(243.4)	(243.3)	(92.3)	(102.4)
38k	Si–Zr–P	(257.1)	(240.7)	(93.4)	(103.5)
381	Si–Hf–P	(257.2)	(240.4)	(94.1)	(103.8)
38a	Ge–Ti–P	253.6 (249.2)	247.1 (251.3)	90.9 (91.0)	101.4 (100.3)
38b	Ge–Zr–P	263.2 (261.8)	247.7 (249.0)	91.8 (93.3)	101.8 (101.6)
38c	Ge–Hf–P	260.0 (262.0)	245.7 (248.3)	92.1 (93.3)	101.8 (102.0)
38d	Sn–Ti–P	269.4 (265.3)	264.7 (267.5)	89.5 (91.1)	99.1 (98.3)
38e	Sn–Zr–P	279.4 (278.0)	263.6 (265.9)	90.8 (92.0)	99.3 (98.8)
38f	Sn–Hf–P	275.9 (278.3)	262.4 (265.2)	90.5 (92.0)	99.4 (99.1)
38g	Pb–Ti–P	272.7 (275.4)	271.1 (274.1)	89.2 (90.6)	97.8 (95.9)
38h	Pb–Zr–P	282.1 (284.3)	270.8 (272.4)	90.1 (92.2)	98.0 (97.5)
38i	Pb–Hf–P	279.3 (284.2)	269.7 (271.7)	90.1 (92.2)	98.2 (97.2)
39d	Si–Ti–Si	(249.1)	(244.1)	(90.5)	(100.4)
39e	Si–Zr–Si	(264.0)	(242.2)	(92.6)	(101.9)
39f	Si–Hf–Si	(264.2)	(241.9)	(92.9)	(102.2)
39g	Ge–Ti–Ge	(254.2)	(251.2)	(90.5)	(99.7)
39h	Ge–Zr–Ge	(268.2)	(249.6)	(92.6)	(100.3)
39i	Ge–Hf–Ge	(268.3)	(249.4)	(92.3)	(100.4)
39a	Sn–Ti–Sn	271.4 (269.3)	264.8 (267.1)	89.0 (86.1)	98.4 (97.6)
39j	Sn–Zr–Sn	(285.3)	(267.3)	(90.1)	(97.6)
39b ^a	Sn–Hf–Sn	(286.1)	(267.1)	(90.2)	(97.7)
39k	Pb–Ti–Pb	(280.0)	(274.6)	(87.5)	(95.9)
391	Pb–Zr–Pb	(291.6)	(273.8)	(89.1)	(96.5)
39c^a	Pb–Hf–Pb	(291.6)	(273.5)	(88.7)	(96.6)
182	$E^1 = Si$		(238.6)		(96.3)
183	$E^1 = Ge$		(248.0)		(93.5)
184	$E^1 = Sn$		(267.4)		(91.7)
169	$E^1 = Pb$		(275.1)		(90.5)

Tabelle 5.2. Ausgewählte berechnete und experimentelle Strukturparameter der Mono(tetrylen) bzw. Bis(tetrylen) Gruppe 4 Metall-Komplexe, sowie die berechneten Strukturdaten der freien Tetrylene (berechnete Daten in Klammern (M06-2X/A), Bindungslängen *d* in [pm], Bindungswinkel α in [°]).

a) Die Qualität der Einkristallstrukturdaten ist zu niedrig um Bindungsparameter zu diskutierten.

Die Berechnungen für das das Silylen **182** und Germylen **183** sagen für die Bindungslänge zwischen dem zweifachkoordinierten Atom und den direkten Nachbarn einen Wert von **182**: $d(\text{Si}^{\text{II}}-\text{Si}^{\text{IV}}) = 238.6 \text{ pm}$ und **183**: $d(\text{Ge}^{\text{II}}-\text{Si}^{\text{IV}}) = 248.0 \text{ voraus}$. Entsprechend den Erwartungen sind diese Bindungen länger als analoge Einfachbindungen, in denen das Gruppe 14 Element vierfachkoordiniert in der Oxidationsstufe IV vorliegt¹⁹ ($d(Si^{IV}-Si^{IV}) = 232$ pm, $d(Ge^{IV}-Ge^{IV}) = 242 \text{ pm}$).^[144] Da bis zum jetzigen Zeitpunkt keine disilylsubstituierten Germylene und Silylene bekannt sind, können die berechneten Daten nicht mit experimentellen Werten verglichen werden. Die Tetrylenliganden in den Mono- bzw. Bis(tetrylen) Gruppe 4 Metallocenkomplexen zeigen große strukturelle Ähnlichkeit zu den freien Tetrylenen. Die von den Berechnungen der freien Tetrylene bekannte Halb-Sessel-Konformation wird auch für die Tetrylene als Liganden in den Komplexen 38 und 39 vorhergesagt, so dass das Tetrylen in einer lokalen C₂ Molekülsymmetrie im Komplex vorliegt und die zentralen Atome der Gruppe 14 Elemente trigonal planar koordiniert sind (Summe der Bindungswinkel α , $\Sigma \alpha(E^1) = 358$ - 360°). Die einzige auffällige Veränderung an den Strukturen der Tetrylene als Komplexliganden verglichen mit denen der freien Tetrylene ist die Vergrößerung des Bindungswinkels zwischen dem niedervalenten Gruppe 14 Element und den benachbarten Siliciumatomen der Silylsubstituenten, α (Si–E¹–Si) um 4.1 – 8.3°. Wie erwartet wird für die berechneten Bindungslängen der Bindung zwischen dem Gruppe 4 Metall und dem Gruppe 14 Element ein Trend in Abhängigkeit des Metallatoms und des Tetrels vorhergesagt. Die Bindungslängen nehmen bei gleichem Gruppe 14 Element E^1 vom Titan bis zum Hafnium zu (E^1 -Ti < E^1 -Zr ~ E^{1} –Hf). Ein ähnlicher Trend wird auch in der Reihe von Silicium bis Blei bei gleichem Gruppe 4 Metall beobachtet (M-Si < M-Ge < M-Sn < M-Pb). Sowohl die berechneten als auch alle experimentell bestimmten M-E¹-Bindngslängen sind kürzer als die Summe der Kovalenzradien für entsprechende M–E¹-Einfachbindungen und in allen Fällen länger als die einer $\sigma^2 \pi^2$ M=E-Doppelbindung (vgl. Tabelle 5.3). In Übereinstimmung mit den experimentellen Strukturdaten sind die Tetrylene in den berechneten Strukturen der Mono(tetrylen)komplexe **38** nahezu rechtwinklig zur zentralen E^1 –M–P Ebene (Ebene aus den Metall-, Element- und Phosphoratomen) angeordnet (Winkel zwischen den beiden Ebenen E¹–M–P und Si–E¹–Si, φ $= 82 - 88^{\circ}$). In den berechneten Strukturen der Bis(tetrylen)komplexe **39** sind die Tetrylene etwas verdreht zur zentralen Ebene angeordnet ($\phi = 65 - 83^{\circ}$). Auf Grundlage dieser Anordnung lässt sich vermuten, dass eine π -Rückbindung vom Gruppe 4 Metall über ein d-Orbital in das unbesetzte p-Orbital des Tetrelatoms in den Mono- und Bis(tetrylen)komplexen möglich ist.

¹⁹ Der Anteil des, im Vergleich zu den p-Orbitalen näher am Atomkern lokalisierten, s-Orbitals an der Bindung zwischen dem Gruppe 14 Atom und seinen Substituenten ist im Fall eines vierfach koordinierten Gruppe 14 Atoms größer als im Fall eines zweifach koordinierten Gruppe 14 Atoms. Daraus ergibt sich, dass eine entsprechende Bindung zu den Substituenten bei vierfachkoordinierten Gruppe 14 Atomen kürzer ist als bei zweifach koordinierten.

Zusätzliche NBO Analysen^[221] weisen ebenfalls auf einen Doppelbindungscharakter der $M-E^1$ -Bindung in den Mono- und Bis(tetrylen)komplexen hin.²⁰ Alle berechneten WBIs^{[229],21} für die $M-E^1$ -Bindungen in **38** und **39** sind wesentlich größer als entsprechende $M-E^1$ -Bindungen von ähnlichen Metallocenditetryl(IV)komplexen, in denen das Gruppe 14 Element in der Oxidationsstufe IV vorliegt (vgl. Tabelle 5.3). Wie erwartet steigt der WBI bei gleichem Gruppe 4 Metall vom Blei bis zum Germanium an, während mit Hilfe der WBIs für die Germylen- und Silylenkomplexe ein nahezu gleicher Bindungsgrad für die $M-E^1$ -Bindung vorhergesagt wird (WBI: $M-Pb < M-Sn < M-Ge \sim M-Si$). Ein ähnlicher Trend wird auch in der Reihe von Titan bis Hafnium bei gleichem Gruppe 4 Metall beobachtet (WBI: $Ti-E^1 < Zr-E^1 \le Hf-E^1$). Ein weiteres Ergebnis der NBO Analyse ist, dass der Bindungsgrad der M- E^1 -Bindung der Mono(tetrylen)komplexe **38** in allen Fällen größer ist als der der Bis(tetrylen)komplexe **39** (vgl.: Tabelle 5.3).

Tabelle 5.3. Berechnete Bindungslängen der Gruppe 4 Metall und Gruppe 14 Element Bindungen der Mono(tetrylen)- bzw. Bis(tetrylen)komplexe im Vergleich mit der Summe der Kovalenzradien entsprechender Einfach- bzw. Doppelbindungen, sowie der Vergleich der WBIs der E¹–M-Bindung der Komplexe **38** und **39** mit denen von Metallocenditetryl(IV)komplexen Cp₂M(EMe₃)₂ (NBO Analysen: (M06-2X/def2-TZVP (M,E¹), 6-31G(d) (Si,C,H,P)//M06-2X/A), Bindungslängen *d* in [pm], WBIs *kursiv*).

E ¹ –M	d(M–E ¹) / <i>WBI</i> 38	d(M–E ¹) / <i>WBI</i> 39	$\Sigma r^{k}(M-E^{1})^{[144]}$	$\Sigma r^{k}(M=E^{1})^{[144]}$	WBI (M–E ^(IV)) Cp ₂ M(EMe ₃) ₂
Si–Ti	243.4 / 1.56	249.1 / 1.23	252	224	0.86
Si–Zr	257.1 / 1.66	264.0 / 1.29	270	234	0.92
Si–Hf	257.2 / 1.64	264.2 / 1.27	268	235	0.91
Ge–Ti	249.2 / 1.54	254.2 / 1.26	257	228	0.83
Ge–Zr	261.8 / 1.66	268.2 / 1.30	275	238	0.92
Ge–Hf	262.0 / 1.64	268.3 / 1.28	273	239	0.92
Sn–Ti	265.3 / 1.23	269.3 / 1.07	276	247	0.83
Sn–Zr	278.0 / 1.52	285.3 / 1.19	294	257	0.93
Sn–Hf	278.3 / 1.58	286.1 / 1.22	292	258	0.94
Pb–Ti	275.4 / 1.07	280.0 / 0.93	280	252	0.79
Pb–Zr	284.3 / 1.38	291.6 / 1.15	298	262	0.91
Pb–Hf	284.2 / 1.44	291.6 / 1.15	296	263	0.92

²⁰ Computerchemische Details für die NBO Analyse sind dem Zusatzmaterial der Veröffentlichung zu entnehmen.

²¹ Der Wiberg Bond Index, WBI, ist ein Maß für die Bindungsordung zwischen zwei Atomen. Für eine detaillierte Erklärung siehe Abschnitt 9.

Verbindung	$E^1 - M - E^2$	$BDE (M-E^1)$	BDE^{B3LYP} (M–E ¹)	BDE^{nk} (M–E ¹)
38j	Si–Ti–P	209	95	114
38k	Si–Zr–P	311	188	123
381	Si–Hf–P	337	213	124
38a	Ge–Ti–P	177	80	97
38b	Ge–Zr–P	276	174	102
38c	Ge–Hf–P	300	194	126
38d	Sn–Ti–P	151	70	81
38e	Sn–Zr–P	249	162	87
38f	Sn–Hf–P	270	180	90
38g	Pb–Ti–P	118	58	60
38h	Pb–Zr–P	215	145	70
38i	Pb–Hf–P	234	161	73
39d	Si–Ti–Si	193	68	125
39e	Si–Zr–Si	261	137	124
39f	Si–Hf–Si	281	157	124
39g	Ge–Ti–Ge	169	60	109
39h	Ge–Zr–Ge	237	129	108
39i	Ge–Hf–Ge	255	147	108
39a	Sn-Ti-Sn	153	60	93
39j	Sn-Zr-Sn	222	133	89
39b	Sn–Hf–Sn	239	151	87
39k	Pb–Ti–Pb	120	47	83
391	Pb–Zr–Pb	193	116	77
39c	Pb–Hf–Pb	209	132	77

Tabelle 5.4. Berechnete Bindungsdissoziationsenergien, *BDE*^a, der Gruppe 4 Metall und Gruppe 14 Element Bindung in Mono(tetrylen) bzw. Bis(tetrylen)komplexen **38** und **39**.^a

a) Die *BDE* der M–E¹-Bindungen wurden auf M06-2X Niveau berechnet (M06-2X/A//M06-2X/A). Zur Ermittlung des Anteils an nicht kovalenten Wechselwirkungen, BDE^{nk} , ($BDE^{nk} = BDE - BDE^{B3LYP}$) an der *BDE* wurden zusätzlich die Bindungsenergien mit Hilfe des B3LYP Funktionals berechnet (B3LYP/A//M06-2X/A).²²

Die mit Hilfe der theoretischen Untersuchungen bestimmten Bindungsdissoziationsenergien, *BDE*, für die M–E¹-Bindungen folgen nahezu den gleichen Trends (vgl.:Tabelle 5.4). Bei gleichem Tetrylen sind die *BDE* der Titankomplexe in allen Fällen kleiner als die der Zirkoniumkomplexe (im Fall der Mono(tetrylen)komplexe um ca. 100 kJ mol⁻¹, im Fall der Bis(tetrylen)komplexe um ca. 70 kJ mol⁻¹), während die M–E¹-Bindung in den Hafniumkomplexen nur geringfügig stabiler ist als die der Zirkoniumkomplexe (in beiden Fällen, Mono-

²² Computerchemische Details für die Berechnungen der Bindungsdissoziationsenergien sind dem Zusatzmaterial der Veröffentlichung zu entnehmen.

38 bzw. Bis(tetrylen)komplexe **39**, nahezu 20 kJ mol⁻¹). Wie erwartet sagen die Berechnungen für die M–Si-Bindungen in den bislang unbekannten Mono(silylen)- **38j–1** und Bis(silylen)komplexen **39d–f** im Vergleich zu den Komplexen mit den schwereren Tetrylen Homologen die stärkste Bindung voraus. Entsprechend den Ergebnissen der NBO Analyse wird für die *BDE* der M–E¹-Bindung in den Mono(tetrylen)komplexen die gleiche Abhängigkeit vom Gruppe 14 Element beobachtet (*BDE*: M–Si > M–Ge > M–Sn > M–Pb).

Die detaillierte Untersuchung der *BDE* der M–E¹-Bindung der Bis(tetrylen)komplexe zeigt einige Auffälligkeiten. Mit Hilfe der Rechnungen wird zwar wie erwartet die niedrigste BDE für die Plumbylenkomplexe **39c**, **39k** und **39l** vorhergesagt. Entgegen den Erwartungen sind jedoch die M-E¹-Bindungsstärken der übrigen Tetrylenkomplexe **39a und 39b** sowie **39d–j** sehr ähnlich (*BDE*: M–Si \geq M–Sn \geq M–Ge > M–Pb). Außerdem verdeutlicht der Vergleich der BDE der Mono(tetrylen)- und der Bis(tetrylen)komplexe, dass die Mono(tetrylen)titan- 38a, 38d, 38g und 38j und Bis(tetrylen)titankomplexe 39a, 39d, 39g und **39**k ähnlich starke Bindungen aufweisen, während die mittlere BDE der Bis(tetrylen)zirkonium- und hafniumkomplexe um 22 –56 kJ mol⁻¹ geringer ist als die der entsprechenden Mono(tetrylen)komplexe.

Durch die Ergebnisse aus den Untersuchungen der Bindungssituation des Diplumbylens 168 (Abschnitt 5.1) konnte eindrucksvoll gezeigt werden, dass nicht kovalente Wechselwirkungen einen erheblichen Beitrag zur Stabilität und Struktur von Verbindungen beitragen können. Da die in diesem Abschnitt diskutierten Metallocen(tetrylen)komplexe 38 und 39 sowie die freien Tetrylene 169 und 182 – 184 große, polarisierbare Silylsubstituenen tragen, lag es nahe den Einfluss der Dispersionswechselwirkungen auf die BDE der einzelnen Komplexe genauer zu studieren. Analog der in Abschnitt 5.1 verwendeten Methode gelang es den Anteil der nicht kovalenten Wechselwirkungen *BDE*^{nk} abzuschätzen. Dieser ergibt sich als Differenz zwischen der BDE, die mit Hilfe des M06-2X Funktionals bestimmt wurde, und der BDE^{B3LYP} aus Berechnungen auf B3LYP/A//M06-2X/A-Niveau. Alle hierfür berechneten BDE sind in Tabelle 5.4 zusammengefasst. Auch für den Fall der Metallocen-mono- bzw. bis(tetrylen)komplexe sagen die Berechnungen voraus, dass die Dispersionswechselwirkungen einen bedeutenden Anteil zur Größe der BDE der M-E¹-Bindungen beitragen. Eine Analyse der berechneten Daten für die BDE verdeutlicht, dass der Anteil nicht kovalenter Wechselwirkungen an der M– E^1 -Bindung in den Titanocenkomplexen um 15 – 29 % größer ist als in den entsprechenden Zirkonocen- und Hafnocenkomplexen (Anteil der Dispersionswechselwirkungen an der M– E^1 -Bindung: Ti– E^1 : 51 – 69%; Zr– E^1 , Hf– E^1 : 31 – 48%). Außerdem zeigen die Rechnungen, dass der Anteil der Dispersionswechselwirkungen an der *BDE* bei gleichem Tetrylen und unterschiedlichen Gruppe 4 Metallzentren nahezu identisch ist (\pm 6 bis 18 kJ mol⁻¹). Dies entspricht den Erwartungen, da der Großteil der nicht kovalenten Wechselwirkungen von der Struktur und der Polarisierbarkeit der Tetrylene abhängig ist und weniger durch die Struktur des Metallocens beeinflusst wird.

Zusätzlich zur NBO Analyse und den Berechnungen über die *BDE* der Mono- und Bis(tetrylen)komplexe konnte durch eine detaillierte Untersuchung der Molekülorbitale, MO, Einblick in die Bindungssituation dieser Metallocenkomplexe gewonnen werden. Die Bindung zwischen Zirkonium und Zinn im Mono(stannylen)komplex **38e** kann mit Hilfe des MO-Diagramms aus Abbildung 5.4 erklärt werden. Die in diesem Diagramm dargestellten Orbitalwechselwirkungen und Abfolgen der MOs entsprechen qualitativ der Bindungssituation in allen untersuchten Mono(tetrylen)komplexen **38**. Alle für die Zr–Sn-Bindung relevanten MOs sind in Abbildung 5.5 dargestellt.

Abbildung 5.4. Wechselwirkungen der Frontorbitale des Stannylen- und des Zirkonocenphosphanfragments (abgeleitet von der optimierten Struktur von **38e** auf M06-2X/A-Niveau). Die MO-Diagramme aller weiteren Mono(tetrylen)komplexe stimmen qualitativ mit dem hier dargestellten überein.

In Analogie zu Übergangsmetallcarbenkomplexen wird die Bindung zwischen dem Metall- und dem niederkoordinierten Tetrelatom aus einer σ -Bindung des sp_z-Orbitals des Gruppe 14 Elements und des d_z2-Orbitals, sowie einer π -Rückbindung vom d_{xz}-Orbitals des Metalls in das leere p_x-Orbital des Stannylens aufgebaut. Auf Grundlage eines störungstheoretischen Ansatzes lässt sich die Stärke der π -Rückbindung über die Größe der energetischen Stabilisierung bzw. Destabilisierung des d_{xz}-Orbitals des Metallocens und p_x-Orbitals des Tetrylens relativ zu den MOs der π -Bindung des Komplexes (π (HOMO), π^* (LUMO)) abschätzen. Hierbei entspricht $\Delta E(d_{xz}/\pi)$ dem Betrag an Energie um den das Fragmentorbital des Metallocens durch Ausbilden der π -Bindung stabilisiert wird, während $\Delta E(\pi^*/p_x)$ dem Betrag entspricht um den das p_x-Orbital des Tetrylens energetisch angehoben wird. Je größer die entsprechenden Energiedifferenzen ausfallen, desto stärker ist die Wechselwirkung zwischen den betreffenden Frontorbitalen und damit die Stärke der dadurch gebildeten π -Bindung einzuschätzen.

Abbildung 5.5. Berechnete Orbitaldiagramme des Mono(stannylen)zirkonocenkomplexes **38e** (abgeleitet von der optimierten Struktur von **38e** in *C*₁ Symmetrie auf M06-2X/A-Niveau, 95% der Aufenthaltswahrscheinlichkeit der Elektronen im entsprechenden Orbital sind von der dargestellten Oberfläche der Orbitale umschlossen). a) σ (Zr-Sn)-Bindung (HOMO–1). b) π -(Zr–Sn)-Bindung (HOMO). c) π^* (Zr–Sn)-Bindung (LUMO). d) σ^* (Zr–Sn)-Bindung (LUMO+2) (Zr: hellblau, Sn: grüngrau, Si: blaugrau, C: grau). Die dargestellten Orbitaldiagramme entsprechen denen analoger Bindungen aller Mono(tetrylen)komplexe.

Eine detaillierte Analyse dieser Energiedifferenzen (vgl.: Tabelle 5.5) zeigt, dass sie für alle Mono(tetrylen)komplexe bei gleichem Tetrylen von Titan bis zum Hafnium ansteigen $(\Delta E(d_{xz}/\pi) \text{ und } \Delta E(\pi^*/p_x): \text{Ti}-\text{E}^1 < \text{Zr}-\text{E}^1 < \text{Hf}-\text{E}^1)$. Auf Grundlage dieser Annahme ist die

π-Rückbindung vom Metall- zum Tetrelatom (d_{xz} → p_x) im Fall der Titankomplexe **38a**, **38d**, **38g** und **38j** am geringsten und im Fall der Hafniumkomplexe **38c**, **38f**, **38i** und **38l** am stärksten ausgeprägt. Die Berechnungen zeigen, dass die Größe der energetischen Absenkung des π-Orbitals, bedingt durch die Wechselwirkungen der Fragmentorbitale des Metallocens und des Tetrylens, bei gleichem Gruppe 4 Metall zwar von den unterschiedlichen Tetrelen abhängig ist aber dennoch eher gering ausfällt (0.06 – 0.19 eV, $\Delta E(d_{xz}/\pi)$: M–Si > M–Ge > M–Sn > M–Pb).

Tabelle 5.5. Berechnete Orbitalenergiedifferenzen ΔE in [eV] und experimentell bestimmte bzw. berechnete NMR chemische Verschiebungen in [ppm] der Mono(tetrylen)komplexe **38** (berechnete chemische Verschiebung in Klammern).^a

Verbindung	E^1 –M– E^2	$\Delta E (d_{xz}/\pi)^{b}$	$\Delta E(p_x/\pi^*)^b$	$\Delta E^{\text{para b}}$	$\delta^{iso} E^1$
38j	Si–Ti–P	0.40	1.23	5.67	(516) ^c
38k	Si–Zr–P	0.76	1.37	5.69	(381) ^c
381	Si–Hf–P	0.86	1.52	5.82	(300) ^c
38a	Ge–Ti–P	0.39	1.13	5.23	-
38b	Ge–Zr–P	0.72	1.33	5.66	-
38c	Ge–Hf–P	0.80	1.47	5.78	_
38d	Sn–Ti–P	0.28	1.21	5.20	1635 ^d
38e	Sn–Zr–P	0.61	1.43	5.45	1263 ^d
38f	Sn–Hf–P	0.67	1.47	5.57	1080 ^d
38g	Pb–Ti–P	0.34	0.96	5.04	5299 ^e
38h	Pb–Zr–P	0.62	1.25	5.40	4165 ^e
38i	Pb–Hf–P	0.67	1.40	5.83	3462 ^e

a) Computerchemische Details für die Berechnung der NMR chemischen Verschiebungen sind dem Abschnitt 9.5 zu entnehmen. b) für die Definition vgl.: Abbildung 5.4. c) Berechnete δ^{29} Si NMR Daten. d) Experimentelle δ^{119} Sn NMR Daten. e) Experimentelle δ^{207} Pb NMR Daten.

Ein weiteres Ergebnis dieser Analyse ist, dass die Destabilisierung des p_x -Orbitals des Tetrylens deutlich ausgeprägter ist als die Stabilisierung des d_{xz} -Orbitals des Metallocenfragments ($\Delta E(\pi^*/p_x)$ ist um 0.6 – 0.93 eV größer als $\Delta E(d_{xz}/\pi)$). Zusätzlich fällt auf, dass die Destabilisierung bei gleichem Gruppe 4 Metall im Fall der Plumbylenkomplexe am geringsten ausfällt, während für die Metallocenkomplexe mit den leichteren Tetrylen Homologen nahezu gleiche Werte für $\Delta E(\pi^*/p_x)$ bestimmt wurden ($\Delta E(\pi^*/p_x)$: M–Si ~ M–Ge ~ M–Sn > M-Pb). Die Berechnungen lassen also vermuten, dass die π -Rückbindung vom Metall- zum Tetrelatom in der Reihe der Tetrylene für den Fall der Mono(plumbylen)komplexe **38g–i** am geringsten ausgeprägt ist und dass π -Rückbindungen bei gleichem Gruppe 4 Metall in den Mono(silylen)-, (germylen) und (stannylen)komplexen nahezu gleich stark einzuschätzen sind. Auf Grundlage der Analyse der Frontorbitale der Mono(tetrylen)komplexe gelang es einen Zusammenhang zwischen dem Doppelbindungscharakter der M–E¹-Bindung und der NMR chemischen Verschiebung der niederkoordinierten Gruppe 14 Elemente in den Komplexen abzuleiten. Es ist bekannt, dass die Signale von Carbenen im ¹³C NMR-Spektrum eine charakteristische starke Tieffeldverschiebung aufweisen. Dies erklärt sich durch den ausgeprägten paramagnetischen Einfluss des freien Elektronenpaars im sp_z-Orbital des zweifachkoordinierten Kohlenstoffatoms, welcher, induziert durch das von außen angelegte Magnetfeld, durch die Wechselwirkung des sp_z-Orbitals und des orthogonal dazu angeordneten, leeren p_x-Orbitals hervorgerufen wird. Die Ausprägung des paramagnetischen Einfluss auf die NMR chemische Verschiebung des untersuchten Kerns ist stärker je geringer der Energieunterschied ΔE^{para} der beteiligten magnetisch aktiven Orbitale ist.^[81]

Ein analoger Zusammenhang konnte auch für den Fall der Mono(tetrylen)komplexe 38 gefunden werden. In diesen Komplexen wird das sp_z-Orbital des Tetrylens in das bindende σ-Orbital des Komplexes (HOMO-1) überführt, während das px-Orbital des Tetrylens zusammen mit Orbitalen des Metallzentrums das π^* -Orbital (LUMO) des Komplexes bildet. Die NMR chemische Verschiebung der Tetrele in der M-E¹-Bindung sollte entsprechend dieser Annahme erheblich durch den Energieunterschied zwischen dem HOMO-1 und dem LUMO in den Mono(tetrylen)komplexen ΔE^{para} beeinflusst sein. Die detaillierte Analyse der Energieniveaus der Frontorbitale der Mono(tetrylen)komplexe zeigt, dass die energetische Lage des σ -Orbitals in allen Mono(tetrylen)komplexen bei gleichem Tetrylen nahezu konstant ist ($E(\sigma)$ = -6.39 bis -6.04eV), während das Energieniveau der π^* -Bindung entscheidend durch die unterschiedlich stark ausgeprägte π -Rückbindung beeinflusst wird ($E(\pi^*) = -0.43$ bis -1.00 eV). Die daraus resultierenden Werte für ΔE^{para} sind in Tabelle 5.5 zusammengefasst. Hierbei fällt auf, dass der Wert von ΔE^{para} mit der Stärke der Rückbindung und damit auch mit dem Doppelbindungscharakter der M-E¹-Bindung steigt. Somit lässt sich mit Hilfe der NMR chemischen Verschiebung der Tetrelatome in der M-E1-Bindung der Mono(tetrylen)komplexe eine direkte Aussage über den Grad und die Eigenschaften dieser Bindung treffen. Bei einem höheren Doppelbindungscharakter steigt der Wert für ΔE^{para} , was dazu führt, dass das Signal des Tetrels bei höherem Feld beobachtet wird. Eine Auftragung der reziproken Werte für ΔE^{para} in Abhängig der experimentell bestimmten Werte von δ^{119} Sn der Mono(stannylen)komplexe **38d–f** und von δ^{207} Pb der Mono(plumbylen)komplexe **38g–i** verdeutlicht diesen Zusammenhang (vgl.: Abbildung 5.6).

Da die Mono(silylen)komplexe **38j–l** bis zum jetzigen Zeitpunkt unbekannt sind und somit keine experimentellen Daten über ihre ²⁹Si NMR chemische Verschiebung existieren, wurden zusätzlich computerchemische Untersuchungen zur Berechnung der ²⁹Si NMR chemischen Verschiebung durchgeführt. Hierbei sollte überprüft werden, ob der für die Mono(stannylen)- und (plumbylen)komplexe ermittelte Zusammenhang zwischen NMR chemischer Verschiebung und Doppelbindungscharakter auch auf die Mono(silylen)komplexe übertragen werden könnte. Eine entsprechende graphische Analyse bestätigt diesen Zusammenhang.

Abbildung 5.6. Graphische Auftragung der berechneten $\bar{\delta}^{29}$ Si $(\clubsuit)^{23}$ sowie der experimentell bestimmten $\bar{\delta}^{119}$ Sn (\blacksquare) und $\bar{\delta}^{209}$ Pb (\blacktriangle) NMR chemischen Verschiebungen gegen $1/\Delta E^{\text{para}}$ der Mono(silylen)-, **38j–I**, Mono(stannylen)- **38d–f**, und Mono(plumbylen)komplexe **38g–i**.

Die Rechnungen sagen für die Hf–Si-Bindung einen stark ausgeprägten Doppelbindungscharakter mit einer NMR chemischen Verschiebung des Siliciumatoms δ^{29} Si von 300 ppm voraus, während für die Ti–Si Bindung ein deutlich geringerer Doppelbindungscharakter mit einem entsprechend tieffeldverschobenen Signal bestimmt wurde δ^{29} Si = 516 (vgl. Abbildung 5.6 und Tabelle 5.5). Eine analoge Untersuchung der Mono(germylen)komplexe wurde

²³ Details zur Berechnung der ²⁹Si NMR chemischen Verschiebungen der Mono(silylen)komplexe **38j–l** sind dem Abschnitt 9.5 zu entnehmen.

nicht vorgenommen, da auf Grund der Schwierigkeiten bei der ⁷³Ge NMR-Spektroskopie keine NMR Daten für die Mono- und Bis(germylen)komplexe zugänglich sind.^[132]

Durch eine detaillierte Analyse der Frontorbitale der Bis(tetrylen)komplexe **39** gelang es ebenfalls die Bindungssituation zwischen dem Gruppe 4 Metall und dem Gruppe 14 Element aufzuklären. In einer früheren Arbeit konnten Piers und Mitarbeiter einen grundlegenden Beitrag zur Aufklärung der Bindungssituation in ihrem Bis(stannylen)zirconocenkomplex **176** leisten.^[97] Im Einklang mit dieser Arbeit zeigen die hier präsentierten computerchemischen Untersuchungen, dass die Bindung zwischen dem Gruppe 4 Metall und dem niederkoordinierten Tetrel in der Oxidationsstufe II in den Komplexen **39** mit Hilfe von Mehrzentrenbindungen erklärt werden kann. Das MO-Diagramm des Bis(stannylen)zirconocenkomplexes **39j** ist in Abbildung 5.7 dargestellt. Qualitativ entspricht dieses MO-Schema denen aller untersuchten Bis(tetrylen)komplexe **39**.

Abbildung 5.7. Wechselwirkungen der Frontorbitale des Bis(stannylen)- und des Zirkonocenfragments (abgeleitet von der geometrieoptimierten Struktur von **39j** in C_2 Symmetrie auf M06-2X/A-Niveau). Die MO-Diagramme aller Bis(tetrylen)komplexe **39** stimmen qualitativ mit dem hier dargestellten überein.

Die Analyse der Frontorbitale der Bis(tetrylen)komplexe verdeutlicht, dass die Bindungsverhältnisse in der zentralen ME¹(II)₂-Einheit mit einem Zusammenspiel aus zwei σ -Bindungen und einer π -Bindung zu erklären ist, wobei die entsprechenden MOs über die drei an der Bindung beteiligten Atome delokalisiert sind. Darstellungen für die entsprechenden MOs sind in Abbildung 5.8 zusammengefasst. Mit Hilfe einer drei Zentren zwei Elektronen π -Bindung, 3c2e⁻ π -Bindung, lässt sich der geringere M–E¹-Bindungsgrad in den Bis(tetrylen)komplexen im Vergleich zu den Mono(tetrylen)komplexen erklären (**38**: WBI (M–E¹) = 1.07 – 1.66, **39**: WBI (M–E¹) = 0.93 – 1.30, vgl.: Tabelle 5.3). Auf Grundlage der Ausdehnung des π -Orbitals (vgl.: Abbildung 5.8 c)) lässt sich vermuten, dass zwischen den niederkoordinierten Gruppe 4 Elementen, E¹, der Tetrylenliganden eine Bindungsbeziehung besteht.

Tabelle 5.6. Berechnete Abstände der niederkoordinierten Gruppe 14 Elemente in Bis(tetrylen)komplexen, $MCp_2E^1(II)_2$ (M = Ti, Zr, Hf) **39** in [pm] und der WBI (in Klammern) der entsprechenden Bindung auf Grundlage der optimierten Strukturen im Vergleich mit den Bindungslängen und WBIs der Modellverbindung $E_2(SiH_3)_6$ (E= Si, Ge, Sn, Pb, in D_{3d} Symmetrie) mit einer E–E-Einfachbindung und den entsprechenden Summen der Kovalenz- ($\Sigma r^k(E^1-E^1)$) bzw. Van der Waals Radien $\Sigma r^w(E^1-E^1)$ in [pm].

$E^1 \cdots E^1$	$TiCp_2(E^1(II)_2)$	$ZrCp_2(E^1(II)_2)$	$HfCp_2(E^1(II)_2)$	$E_2(SiH_3)_6$	$\Sigma r^{k}(E^{1}-E^{1})$	$\Sigma r^{w}(E^{1}-E^{1})$
Si…Si	353.7 (0.24)	381.6 (0.24)	383.0 (0.27)	238.3 (0.97)	232 ^[144]	420 ^[230]
Ge…Ge	361.0 (0.19)	387.8 (0.21)	387.8 (0.25)	250.2 (0.94)	242 ^[144]	422 ^[230]
Sn…Sn	367.6 (0.22)	403.8 (0.20)	405.3 (0.23)	283.7 (0.91)	280 ^[144]	434 ^[230]
Pb…Pb	387.3 (0.15)	409.1 (0.16)	407.7 (0.20)	293.5 (0.84)	288 ^[144]	404 ^[230]

Abbildung 5.8. Berechnete Orbitaldiagramme des Bis(stannylen)zirkonocenkomplexes **39j** (abgeleitet von der optimierten Struktur von **39j** in *C*₂ Symmetrie auf M06-2X/A-Niveau, 95% der Aufenthalts-wahrscheinlichkeit der Elektronen im entsprechenden Orbital sind von der dargestellten Oberfläche der Orbitale umschlossen). a) 1a-Orbital: $\sigma(E^1ME^1)$ -Bindung (HOMO–4); b) 1b-Orbital: $\sigma(E^1ME^1)$ -Bindung (HOMO–1); c) 2a-Orbital: $\pi(E^1ME^1)$ -Bindung (HOMO); d) 2b-Orbital: nicht bindendes (nb) $\pi^{nb}(E^1ME^1)$ -Orbital (LUMO); (Zr: hellblau, Sn: grüngrau, Si: blaugrau, C: grau). Die Dargestellten Orbitaldiagramme entsprechen denen analoger Bindungen aller Bis(tetrylen)komplexe **39**.

Die Abstände zwischen den Tetrelen E¹, $d(E^1-E^1)$, sind in allen der Bis(tetrylen)komplexe größer als die Summe der Kovalenzradien einer Einfachbindung, $\Sigma r^k(E^1-E^1)$, und in nahezu allen Fällen kleiner als die Summe der Van der Waals Radien $\Sigma r^w(E^1-E^1)$. Dies spricht für eine Wechselwirkung zwischen den Tetrelatomen (im Fall des Bis(plumbylen)zirconcen- und -hafnocenkomplexes ist der Abstand zwischen den Bleiatomen nur wenig größer als die Summe der Van der Waals Radien, vgl.: Tabelle 5.6). Die NBO Analysen auf Grundlage der geometrieoptimierten Strukturen der Bis(tetrylen)komplexe sagen WBIs größer 0 für die Wechselwirkung zwischen den Tetrelatomen $E^1 \cdots E^1$ voraus. Ein Vergleich der WBIs mit denen von Modellverbindungen $E_2(SiH_3)_6$ (E = Si, Ge, Sn, Pb) mit einer E–E-Einfachbindung, die auf dem gleichen theoretischen Niveau berechnet wurden, zeigt, dass die $E^1 \cdots E^1$ Wechselwirkung in den Bis(tetrylen)komplexen ungefähr einem Viertel des Bindungsgrads der Einfachbindungen in den Modellverbindungen entspricht.

6 Zusammenfassung

Im Rahmen der Untersuchungen zur Verbesserung und Entwicklung von neuen Darstellungswegen von N-heterocyclischen Tetrylenen gelang es das bislang unbekannte Xylylsubstituierte N-heterocyclische Stannylen **70** über eine Transmetallierungsreaktion (vgl.: Schema 6.1) zu synthetisieren und zu charakterisieren.

Vorherige Arbeiten zeigten, dass Temperaturen über 60 °C und die Verwendung von Diazabutadienen zur Synthese des gewünschten N-heterocyclischen Stannylens schnell zu dessen Zersetzung führen.^[25, 33] Die Synthese von **70** gelingt im Gegensatz zu den bekannten Darstellungsmethoden schon bei einer Reaktionstemperatur von 45 °C ohne Verwendung von Diazabutadienen als Ausgangsverbindungen. Dennoch zeigten weitere Experimente, dass die Verbindung **70** analog zu den bekannten arylsubstituierten N-heterocyclischen Stannylenen^[25, 33] außerordentlich instabil ist und nach einem Lösungsmittelwechsel innerhalb von drei Tagen in einer intramolekularen Umlagerung zu **50** und Zinn zerfällt (vgl.: Abschnitt 3.5 - 3.8).

Neben der Synthese des Stannylens **70** konnte außerdem die Molekülstruktur des Dippsubstituierten N-heterocyclischen Silylens **41** durch Einkristallröntgendiffraktrometrie detailliert aufzuklären werden. Die gewonnenen Erkenntnisse über die Molekülstruktur von **41** verdeutlichen dessen Ähnlichkeit zu bereits bekannten, ungesättigten N-heterocyclischen Silylenen 14,^[24] 40^[28, 30] und 42^[29] (vgl.: Abschnit 3.2). Mit Hilfe der Strukturdaten von 41 und des analogen Germylens 54^[32] und Stannylens 55^[142] konnte gezeigt werden, dass die Dipp-Substituenten bei der Kristallisation dieser Verbindungen sehr starken Einfluss auf deren Kristallstruktur ausüben. Dieses äußerte sich darin, dass alle Verbindungen mit entsprechenden Substituenten am N-heterocyclischen Fünfring isotyp mit nahezu gleichen Parametern kristallisieren (vgl.: Abschnitt 3.3).

Neben dem Einfluss der Substituenten auf das Kristallisationsverhalten von N-heterocyclischen Tetrylenen konnte auch ihr Einfluss auf das Oxidations- und Reduktionsverhalten im Fall der N-heterocyclischen Silylene 14, 40, 41 und 45 – 47 ermittelt werden. In einer Kooperationsarbeit mit der Arbeitsgruppe von James Y. Becker der Ben-Gurion Universität (Beer Sheva, Israel) von Kendrekar Pravinkumar wurden cyclovoltammetrische Untersuchungen an den unterschiedlich substituierten N-heterocyclischen Silylenen 14, 40, 41 und 45 – 47 durchgeführt. Die im Rahmen dieser Arbeit erhaltenen theoretischen Ergebnisse stehen im Einklang mit den experimentellen Ergebnissen und denen einer älteren Studie, die die Redoxeigenschaften von N-tert.-Butyl-substituierten N-heterocyclischen Carbenen, Silylenen und Germylenen vergleicht^[155] (vgl.: Abschnitt 4.1). Die wichtigste Erkenntnis der theoretischen Untersuchungen ist, dass sich das Redoxverhalten dieser Silylene von der elektronischen Struktur der unterschiedlich substituierten Fünfringe ableiten lässt. In diesem Zusammenhang konnte gezeigt werden, dass die Silylene mit Alkylsubstituenten an der Ethylenbrücke 46 und 47 leichter zu oxidieren sind als 45. Dieses lässt sich auf den +I-Effekt der Alkylgruppen zurückführen. Ein ähnlicher Zusammenhang konnte auch bei den ungesättigten N-heterocyclischen Silylenen gefunden werden. In diesem Fall erklärt der -I-Effekt der Arylgruppen an den Stickstoffatomen des N-Heterocyclus das höhere Oxidationspotential von 40 und 41 im Vergleich zu 14 (vgl.: Abschnitt 4.1).

Ein weiteres Hauptziel dieser Arbeit war es das Potenzial N-heterocyclischer Tetrylene in der Synthese niederkoordinierter Verbindungen der Gruppe 14 Elemente zu untersuchen. Als Zielverbindungen standen dabei schwere Homologe der Allene und Cumulene, Gruppe 14 Element-Imidazolium- bzw. Imidazolidiniumkationen und Übergangsmetallkomplexe der Tetrylene im Vordergrund. In diesem Zusammenhang wurde der Fokus der experimentellen Studien auf N-heterocyclische Silylene als Ausgangsverbindungen gelegt (vgl.: Abschnitt 4). Während der Arbeiten zur Synthese von schweren Homologen der Allene und Cumulene ausgehend von N-heterocyclischen Silylenen wurde zunächst die Reaktivität der Silylene gegenüber Tetrahalogeniden der Gruppe 14 Elemente EX_4 untersucht. In früheren Studien konnte bereits gezeigt werden, dass entsprechende Verbindungen, die aus einer formalen oxidativen Addition von EX_4 an ein Silylen hervorgehen, als Ausgangsverbindungen zur Darstellung von Allenen mit schweren Gruppe 14 Elementen gut geeignet sind (vgl.: Abschnitt 4.3, Schema 4.7).^[56]


```
EX_4 = CBr_4, SiCl_4, SiBr_4
```

Schema 6.2. Reaktionsverhalten der Silylene 40 und 41 gegenüber Tetrahalogenen der Gruppe 14 Elemente.

Während dieser Untersuchungen gelang es einen Darstellungsweg für die N-heterocyclischen Chlor-(trichlormethyl)silane **103** und **104** zu entwickeln. Des Weiteren konnte gezeigt werden, dass die reaktiveren Tetrahalogene der Gruppe 14 Elemente (CBr₄, SiCl₄ und SiBr₄) für die Halogenierung der N-heterocyclischen Silylene **40** und **41** eingesetzt werden können (vgl.: Schema 6.2). Als wichtigstes Resultat dieser Experimente ist festzuhalten, dass alle erhaltenen Ergebnisse für einen radikalischen Reaktionsverlauf in den Umsetzungen der N-heterocyclischen Silylene mit den Tetrahalogeniden der Gruppe 14 Elemente sprechen (vgl.: Abschnitt 4.3.1). Durch die anschließenden Reduktionsexperimente ausgehend von Verbindung **103** und **104** konnte kein Zugang zu Amino-substituierten schweren Homologen der Allene und Cumulene geschaffen werden.

Neben den Versuchen zur Synthese von Mehrfachbindungssystemen wurde untersucht ob schwere Homologe der Imidazol- bzw. Imidazolidiniumionen ausgehend von N-heterocyclischen Silylenen erhalten werden können. Bedingt durch vorhergehende Arbeiten im Arbeitskreis Müller^[89] zu 2-Silyl-substituierten 2-Silaimidazol- **35** und 2-Silaimidazolidiniumkationen **36** stand hier die Synthese von entsprechenden Kationen im Vordergrund, die nur einen Wasserstoffsubstituenten am Siliciumatom tragen (**185** und **186**). Diese Verbindungen gelten als die einfachsten Analoga der Imidazol- und Imidazolidiniumionen und waren bislang unbekannt.

In diesem Zusammenhang wurden Reaktionen der Silylene **14**, **40**, **41** und **45** mit den Brønstedt-Säuren $H(Et_2O)_2^+$ **144** und $H(C_6H_6)^+$ **158** unter Verwendung unterschiedlicher Anionen und verschiedener Lösungsmittel untersucht. Aus nahezu allen Experimenten gingen komplexe Produktgemische hervor. Ein dennoch bemerkenswertes Ergebnis ist, dass ein Großteil der hierbei entstandenen Verbindungen über eine direkte Silicium-Wasserstoff Bindung verfügt. Dies wurde durch Protonen gekoppelte ²⁹Si NMR-Experimente an den Produktgemischen bestätigt (vgl.: Abschnitt 4.4). Darüber hinaus konnte in Reaktionen des Silylens **41** mit der Säure **144**, unabhängig vom Gegenion [B(C₆F₅)₄]⁻ oder [Al(OC(CF₃)₃)₄]⁻ der Säure, die Bildung von Verbindung **145** und des Triethyloxoniumkations **146** beobachtet werden (vgl.: Schema 6.3). Beide Verbindungen konnten im Rahmen dieser Studie umfassend charakterisiert werden. Mit Hilfe theoretischer Studien wurde außerdem gezeigt, dass diese Verbindungen analog eines literaturbekannten Reaktionswegs^[208] als Zersetzungsprodukte aus einem intermediär auftretenden durch Diethylether koordinierten 2-Silaimidazoliumion **152** entstehen können (vgl.: Abschnitt 4.4.3).

Schema 6.3. Ergebnis aus den Reaktionen des Silylens 41 mit der Säure 144.

Zur Bestätigung dieser Annahme wurden Experimente durchgeführt in denen Verbindung **152** auf einem unabhängigen Weg entstehen könnte. In diesem Zusammenhang wurde ein Syntheseweg zur Darstellung des cyclischen diamino-substituierten Silans **163** entwickelt (vgl.: Schema 6.4). In anschließenden Hydridabstraktionsexperimenten ausgehend von **163** gelang es jedoch nicht **152** nachzuweisen. Dennoch können die Ergebnisse aus den Protonierungsexperimenten als die ersten experimentellen Hinweise für die Entstehung des 2-H-Silaimidazoliumions angesehen werden.

Schema 6.4. Darstellung des cyclischen diamino-substituierten Silans 163.

Durch zusätzliche theoretische Studien konnte aufgeklärt werden warum die Protonierung der Silylene nicht wie im Fall analoger Germylene am ungesättigten Kohlenstoffatom des zentralen Fünfrings bevorzugt ist.^[124] Die Ergebnisse der quantenchemischen Rechnungen zeigten, dass die in den Reaktionen verwendeten Lösungsmittel einen deutlichen Einfluss auf das Reaktionsverhalten des Silylens **41** ausüben. Bei der Verwendung von Diethylether als Lösungsmittel ist eine Protonierung am Siliciumatom des Silylens bevorzugt, während in der Reaktion des Silylens **41** mit der Säure $H(C_6H_6)^+$ **158** unter Ausschluss von Diethylether in Benzol die Protonierung am Kohlenstoffatom des N-Heterocyclus begünstigt ist (vgl.: Abschnitt 4.4.6). Die Rechnungen zeigten außerdem, dass die Protonierung eines analogen Germylens **54** unabhängig von der verwendeten Brønstedt-Säure $H(Et_2O)_2^+$ **144** oder $H(C_6H_6)^+$ **158** am Kohlenstoffatom bevorzugt ist, was im Einklang mit einer bereits bekannten experimentellen Untersuchung steht (vgl.: Schema 6.5).^[124]

Schema 6.5. Mit Hilfe von quantenchemischen Rechnungen vorhergesagtes Reaktionsverhalten des Silylens **41** und des Germylens **54** gegenüber den Brønstedt-Säuren $H(Et_2O)_2^+$ **144** und $H(C_6H_6)^+$ **158**.

Im Rahmen von experimentellen Arbeiten über die Übergangsmetallkomplexe mit N-heterocyclischen Silylenen als Komplexliganden gelang es einen Syntheseweg für die Darstellung eines Silylen-Wolframpentacarbonylkomplexes **77** zu entwickeln. Dieser Komplex zeichnet sich dadurch aus, dass nur eine Carbonylgruppe durch ein N-heterocyclisches Silylen ausgetauscht ist (vgl.: Schema 6.6). Entsprechende monosubstituierte Verbindungen waren zuvor unbekannt (vgl.: Abschnitt 4.2.1).

Schema 6.6. Syntheseweg zur Darstellung des Wolframpentacarbonylkomplexes **77** mit dem Xylylsubstituierten N-heterocyclischen Silylen **40** als Komplexligand.

Eine weitere Besonderheit dieser Verbindung ist der *trans* zum N-heterocyclischen Silylen **40** ständige Carbonylligand. Dieser ist eine hervorragende Sonde um die Ligandeneigenschaften des Silylens in dem Komplex **77** zu ermitteln. Mit Hilfe von spektroskopischen Untersuchungen (NMR und IR) konnten **40** starke σ -Donor und schwache π -Akzeptor Eigenschaften zugeordnet werden. Diese Ergebnisse erlaubten erstmals die Einordnung eines N-heterocyclischen Silylens in die spektrochemische Reihe, wobei die Ligandeneigenschaften von **40** mit denen N-heterocyclischer Carbene und Phosphane vergleichbar sind (vgl.: Abschnitt 4.2.2).

Neben der experimentellen Studie über Übergangsmetallkomplexe mit N-heterocyclischen Silylenen als Komplexligand nahmen theoretische Untersuchungen von Übergangsmetallkomplexen, die silylsubstituierte cyclische Tetrylene als Liganden tragen, einen weiteren Schwerpunkt dieser Arbeit ein. In diesem Zusammenhang wurden die kürzlich von der Gruppe um Marschner synthetisierten Metallkomplexe der Gruppe 4 Elemente (Titan, Zirkonium und Hafnium) untersucht, welche durch Germylene, Stannylene oder Plumbylene koordiniert sind.^[132, 133] Die durchgeführte theoretische Studie wurde über die experimentellen Ergebnisse hinaus auf entsprechende Komplexverbindungen ausgeweitet, in denen silylsubstituierte cyclische Silylene als Komplexliganden an das Gruppe 4 Metall gebunden sind.

Das wichtigste Ergebnis der theoretischen Analyse der Komplexe 38 und 39 ist, dass die Bindungen zwischen dem Gruppe 14 Element des Tetrylens und dem Gruppe 4 Metallzentrum, M-E(II), in den Mono(tetrylen)- 38 und in den Bis(tetrylen)komplexen 39 einen ausgeprägten Doppelbindungscharakter aufweisen. Im Fall der Mono(tetrylen)komplexe lässt sich die M-E-Bindung als eine klassische σ -Donor und π -Akzeptor Bindung beschreiben. Die Stärke dieser Bindung nimmt dabei von den Titankomplexen 38a, 38d, 38g und 38j bis zu den Hafniumkomplexen 38c, 38f, 38i und 38l zu, während sie bei gleichem Gruppe 4 Metallzentrum von Silicium bis zum Blei abnimmt. Die Bindungsanalysen konnten ebenfalls zeigen, dass mit Hilfe der NMR chemischen Verschiebung der Tetrele(II) in den Komplexen 38 eine direkte Aussage über die Ausprägung des Doppelbindungscharakters der M-E(II)-Bindungen in diesen Komplexen getroffen werden kann. Die berechneten Bindungsdissoziationsenergien und Wiberg Bond Indices verdeutlichen, dass die M-E(II)-Bindung im Fall der Bis(tetrylen)komplexe 39 schwächer ist als in den entsprechenden Mono(tetrylen)komplexen **38.** Die schwächere M-E(II)-Bindung lässt sich dadurch erklären, dass zwei π -Akzeptorbindungen um das gleiche Elektronenpaar des entsprechenden d-Orbitals am Gruppe 4 Metallzentrum konkurrieren. Diese Bindungssituation kann am besten durch eine $2e^{-3}z-\pi$ -Bindung beschrieben werden. Alle hier durchgeführten quantenchemischen Untersuchungen wurden mit Hilfe des M06-2X Funktionals durchgeführt. Der Vorteil dieses Funktionals ist, dass nicht kovalente Wechselwirkungen bei den Rechnungen berücksichtigt werden. Somit konnte erstmals der Einfluss von Dispersionswechselwirkungen, bedingt durch die Anziehung und Abstoßung der großen Substituenten in den Komplexen 38 und 39, auf die M-E(II)-Bindungsstärke abgeschätzt werden. Es ist bemerkenswert, dass der Anteil der nicht kovalenten Wechselwirkungen an der Bindungsstärke der M-E(II)-Bindung ein Drittel in den Zirkonium- und Hafniumkomplexen (Zr-E(II), Hf-E(II): 31 - 48%) und mehr als die Hälfte in den Titankomplexen (Ti–E(II): 51 – 69%) ausmacht (vgl.: Abschnitt 5.2).

Die Tetrylenquellen für die Synthese der hier theoretisch untersuchten Gruppe-4-Germylen-, Stannylen- und Plumbylenkomplexe sind die entsprechenden Phosphanstabilisierten Tetrylene **179**, **180** und **170**. In der Gruppe um Marscher konnte außerdem ausgehend von Verbindung **170** das Plumbylen **169** synthetisiert werden (vgl.: Schema 6.7).^[215] Die auffällige Besonderheit dieses Plumbylens ist, dass es im Festkörper Dimere bildet. Auf Grundlage des heutigen Forschungsstands und des Wissens über zweifachkoordinierte Bleiverbindungen mit dem Bleiatom in der Oxidationsstufe II erscheint die Dimerisierung des Plumbylens **169**^[215] im Festkörper äußerst ungewöhnlich. Inspiriert durch diese ungewöhnliche Bindungssituation rückten theoretische Studien über das Plumbylendimer ebenfalls in den Fokus dieser Arbeit.

Schema 6.7. Syntheseweg zur Darstellung des Plumbylendimers **168** und dessen Monomerisierung in Lösung.^[215]

Die Ergebnisse dieser Untersuchungen zeigten, dass zwischen den beiden Plumbylenen in 168 eine einfache Donor-Akzeptor-Wechselwirkung vorliegt. Bedingt durch die Verdrillung der Plumbyleneinheiten in 168 kann keine doppelte Donor-Akzeptor-Wechselwirkung, wie sie von Diplumbenen bekannt ist, aufgebaut werden. Die spezielle Molekülstruktur des Dimers führt dazu, dass ein freies Elektronenpaar am pyramidalisierten Bleiatom (HOMO) und ein leeres p-Orbital (LUMO) am zweiten Bleiatom vorliegen. Natural Bond Orbital, NBO, Analysen sowie Rechnungen zur Bestimmung des Singulett-Triplett Energieunterschieds ΔE^{ST} des Monomers **169** und der große Abstand der Bleiatome im Dimer **168** lassen zunächst eine schwache Bindung zwischen den Bleiatomen vermuten. Berechnungen zur Bestimmung der Bindungsdissoziationsenergie von 168 sagen jedoch eine starke Bindung zwischen den Plumbyleneinheiten voraus. Das bemerkenswerteste Ergebnis dieser theoretischen Untersuchungen ist, dass die besonders starke Bindung zwischen den zwei Plumbylenmonomeren 169 im Dimer 168 im Wesentlichen durch die anziehenden Van-der-Waals-Wechselwirkungen der Substituenten bestimmt ist, während die einfache Donor-Akzeptor-Bindung zwischen den Bleiatomen in 168 nur wenig zur Stärke der Bindung beiträgt (vgl.: Abschnitt 5.1).

7 Experimentalteil

Alle Synthesen und Reaktionsversuche wurden, soweit nicht anders angegeben, unter Inertbedingungen nach der Schlenktechnik durchgeführt. Hierzu wurden alle Glasgeräte vor der Verwendung im Trockenschrank bei 140°C aufbewahrt, heiß aufgebaut, evakuiert und mit Schutzgas (Argon 5.0) gespült. Die benötigten Lösungsmittel: THF, n-Hexan, n-Pentan, Benzol und Toluol wurden unter Inertbedingungen über Natrium, alle chlorierten Lösungsmittel über Calciumhydrid getrocknet und vor der Verwendung frisch destilliert. D1-Chloroform und D₅-Chlorbenzol wurden über Molsieb 4 Å getrocknet. Alle weiteren deuterierten Lösungsmittel wurden entsprechend des nicht deuterierten Lösungsmittels getrocknet und ebenfalls über Molsieb gelagert. Die für die Protonierungsversuche verwendeten Lösungsmittel: Diethylether, Toluol und Benzol wurden über Natriumkaliumlegierung getrocknet und bei Gebrauch auf die Proben kondensiert. Trimethylsilan sowie die Säure $144[B(C_6F_5)_4]$ wurden bei -20 °C gelagert. Tetrachlorsilan und Tetrabromsilan wurden in Ampullen gelagert und vor der Verwendung entgast. Tetrabromkohlenstoff, CBr₄, **186** wurde vor der Verwendung frisch sublimiert und NMR-spektroskopisch auf Reinheit überprüft ($\delta^{13}C = -28.0$). Die Konzentration des verwendeten n-Butyllithiums wurde vor Gebrauch anhand doppelter Titration nach Gilman bestimmt.^[231] Germaniumdichlorid Dioxanaddukt,^[232] Zinndichorid, das diarylsubstituierte Stannylen 65^[142] und die verwendeten Titanocenkomplexe^[233] 84 und 86 waren im Arbeitskreis vorhanden und wurden entsprechend der angegebenen Literatur synthetisiert. Alle in dieser Arbeit verwendeten Silylene, das Diarylstannylen 65 sowie die Säure 144[B(C₆F₅)₄] wurden vor Versuchsbeginn in einer Handschuhbox unter einer 5.0 Stickstoffatmosphäre abgewogen und in die verwendeten Kolben abgefüllt. Alle nicht weiter aufgeführten Chemikalien wurden über gängige Chemikalienlieferanten erworben und ohne weitere Aufarbeitung eingesetzt.

7.1 Analysemethoden

7.1.1 Kernresonanzspektroskopie (NMR)

Die NMR-Spektren wurden an einem Bruker DPX 300 und an einem Bruker DPX 500 Spektrometer aufgenommen. Zur Referenzierung der erhaltenen ¹H und ¹³C NMR-Spektren dienten Restprotonensignale bzw. Kohlenstoffsignale der verwendeten deuterierten Lösungsmittel. Die Referenzierung aller nicht in der Tabelle 7.1 aufgeführten deuterierten Lösungsmittel wurden entsprechend der Literatur vorgenommen.^[203] Die Referenzierung der ¹¹B, ¹⁵N, ²⁹Si und ¹¹⁹Sn NMR-Spektren erfolgte über die in Tabelle 7.2 aufgeführten externen Standards. Für die Angabe der NMR-Spektroskopie-Daten wurden die gängigen Abkürzungen verwendet: s - Singulett, d - Dublett, t - Triplett, q Quartett, quin. - Quintett, sept. Septett, ..., m - Multiplett. Die verwendete Messfrequenz ist direkt den Angaben in den jeweiligen Charakterisierungsabschnitten zu entnehmen. Zur Identifizierung bekannter Verbindungen wurden Literaturdaten herangezogen. Die eindeutige Zuordnung der NMR-Signale der neuen Verbindungen erfolgte über DEPT-Spektren sowie über die zweidimensionalen Experimente ¹H¹H COSY, ¹H¹³C HMQC und ¹H¹³C HMBC. Zur Bestimmung der ²⁹Si NMR-Signale wurden ¹H-entkoppelte (²⁹Si{¹H}) inverse-gated Experimente durchgeführt, sowie gekoppelte INEPT-Spektren mit Pulsparametern aufgenommen, die für die entsprechende Verbindung optimiert waren. Alle ¹⁵N NMR chemischen Verschiebungen wurden indirekt in einem ¹H¹⁵N HMBC Experiment bestimmt, wobei eine Wasserstoff-Stickstoff-Kopplungkonstante, ³*J*(N,H) = 10 Hz angenommen wurde. Alle übrigen Heterokerne wurden ¹H-entkoppelt über klassische Pulssequenzen vermessen.

	Lösungsmittel	NMR chemische Verschiebung
¹ H NMR	CHCI ₃	δ = 7.24
	C_6D_5H	δ = 7.20
	C ₆ D ₇ H	δ = 2.03 (CD ₂ H)
¹³ C NMR	CHCI ₃	δ = 77.0
	C_6D_5H	δ = 128.0
	C_6D_7H	δ = 20.4 (CD ₂ H)

Tabelle 7.1. NMR-chemische Verschiebungen zur Referenzierung der NMR-Spektren.

Tabelle 7.2. Verwendete externe Standards zur Referenzierung von Heterokern NMR-Spektren.

Kern	Externer Standard	Entsprechende Skala
¹¹ B	$\delta(BF_3\cdotEt_2O)=0$	$\delta(BF_3\cdotEt_2O)=0$
¹⁹ F	$\delta(CCI_3F) = 0$	$\delta(CCI_3F) = 0$
¹⁵ N	$\delta(Me_2NCHO) = 112.7$	$\delta(NH_3) = 0^1$
²⁹ Si	$\delta(Me_2SiHCI) = 11.1$	$\delta(SiMe_4) = 0$
¹¹⁹ Sn	$\delta(SnMe_4) = 0$	$\delta(SnMe_4) = 0$

 $^{1}(\delta(MeNO_{2}) = -380.0 \text{ gegen NH}_{3})$

7.1.2 Massenspektrometrie (MS)

Alle Massenspektren wurden an einem *Finnigan-MAT95* Massenspektrometer aufgenommen. Zur Ionisierung der zu untersuchenden Verbindungen wurde die Elektronenstoß-(EI) und die chemische Ionisierungsmethode (CI) eingesetzt. Die chemische Ionisierung wurde mit *iso*-Butan durchgeführt. Alle Analyseproben für die Massenspektrometrie wurden unter Inertbedingungen in GC-Röhrchen abgefüllt, die bis zur Analyse in Schlenkrohren aufbewahrt wurden. Zur Charakterisierung sind ausschließlich Signale angegeben, die den entsprechenden Verbindungen eindeutig zugeordnet werden konnten und charakteristisch für diese Verbindungen sind.

7.1.3 GC/MS

Für die GC/MS-Untersuchungen wurde ein Gerät der Firma Thermo verwendet. Die gaschromatographische Trennung erfolgte über eine DB5-Säule mit einer Länge von 25 m und einem Innendurchmesser von 0.2 mm. Zur Detektion diente das Massenspektrometer DSQ mit einer Elektronenstoßionisationsquelle. Die angegebenen Peakflächen des Gaschromatogramms sind relativ zur Gesamtfläche angegeben und die Peaktintensitäten des MS beziehen sich prozentual auf den höchsten Peak.

	Parameter	Einstellung
MS	Source Temp.	240 °C
	Scan Rate	1991.1
	Polarity	Positiv
GC-Injektor	Base Temp.	280 °C
	Mode	Splitt
	Split Flow	20 mL min^{-1}
	Splitless Time	1.00 min
GC-Ofen	Initial Temp.	60 °C
	Initial Time	2.00 min
	Number of Ramps	1
	Rate	10 °C min ⁻¹
	Final Temp.	280 °C
	Hold Time	10 min
	Mass Transfer Line	250 °C

Tabelle 7.3. Geräteparameter der verwendeten GC/MS Methode.

7.1.4 Röntgenstrukturanalyse

Die Röntgenstrukturanalyse erfolgte an einem STOE-IPDS und an einem Bruker Apex 2-Einkristalldiffraktometer mit Mo-K α -Strahlung bei einer Temperatur von T = 153 K. Die anschließende Ermittlung der Struktur wurde mit Direkten Methoden mit dem Programm SHELXS-97^[234] durchgeführt und mit SHELXL-97^[234] verfeinert. Die Molekülstruktur wurde mit dem Programm DIAMOND dargestellt. Alle Kristalldaten, sowie Angaben zu den Messungen und Strukturlösungen, befinden sich im Anhang.

7.1.5 Infrarot Spektroskopie (IR)

Die IR-Spektren wurden mit dem Gerät: Vector 22 der Firma Bruker aufgenommen.

7.2 Chemikalien und Ausgangsverbindungen

7.2.1 Trocknen von Ethanol

Entsprechend der Literatur^[235] wurden 500 mL absolutes Ethanol zusammen mit 3.5 g Natrium und 13.75 g Phthalsäurediethylester in einem mit Intensivkühler ausgestatteten Rundkolben für eine Stunde bis zum Sieden erhitzt. Anschließend wurde das Ethanol über eine kurze Kolonne destilliert und über Molsieb 3 Å gelagert.

7.2.2 Herstellung von Kaliumgraphit

Entsprechend der Literatur^[236] wurden 342.1 mg (28.5 mmol) Graphit in einem 50 mL Schlenkkolben vorgelegt, entgast und bei 120°C im Hochvakuum getrocknet. Anschließend wurden 139.2 mg (3.5 mmol) Kalium zugegeben und das Gemenge wurde unter starkem Rühren solange bei ca. 100 °C erhitzt bis kein Kalium mehr zu erkennen war und das gesamte Graphit zum bronzefarbenen Kaliumgraphit abreagiert war. Bis zur Verwendung wurde das Kaliumgraphit in der Handschuhbox unter Stickstoffatmosphäre gelagert.

7.2.3 Darstellung der Diazabutadiene 49, 50 und 133

Alle Diazabutadiene **49**, **50** und **133** wurden analog Literatur,^[237-239] unabhängig von den Substituenten an den Stickstoffatomen, ausgehend von Glyoxal durch Umsetzung mit den entsprechend substituierten Aminen präpariert.

R = Dipp **49**, Xylyl **50**, ^{*t*}Bu **133**

Charakterisierung:

49 (R = Dipp):

<u>¹H NMR</u> (500.133 MHz, 300 K, C₆D₆): δ = 1.21 (d, 24H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.3 Hz), 3.16 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 7.3 Hz), 7.12 – 7.18 (m, 6H, C₆<u>H</u>₃), 8.22 (s, 2H, NC<u>H</u>).

 $\frac{{}^{13}C{}^{1}H}{(m-\underline{C}_{6}H_{3}), 125.5 (p-\underline{C}_{6}H_{3}), 136.9 (o-\underline{C}_{6}H_{3}), 148.9 (ipso-\underline{C}_{6}H_{3}), 163.4 (N\underline{C}H).}$

<u>¹H¹⁵N HMBC</u> (50.661 MHz, 305.0 K, C₆D₆): $\delta^{15}N = 371.4$ (<u>N</u>CH).

50 (R = Xylyl):

<u>¹H NMR</u> (400 MHz, 297 K, CDCl₃): δ = 2.19 (s, 12H, C<u>H</u>₃), 6.93 (t, 2H, *p*-C₆<u>H</u>₃, ³*J*(H,H) = 7.7 Hz), 7.07 (d, 4H, *m*-C₆<u>H</u>₃, ³*J*(H,H) = 7.6 Hz), 8.13 (s, 2H, NC<u>H</u>).^[240]

 $\frac{{}^{13}C{}^{1}H}{(\underline{C}_{6}H_{3}), 163.2 (N\underline{C}H)}.$ (100.56 MHz, 297 K, CDCl₃): $\delta = 18.2 (\underline{C}H_{3}), 125.5, 126.5, 128.9, 148.4 (\underline{C}_{6}H_{3}), 163.2 (N\underline{C}H).$

133 (^{*t*}Bu):

¹<u>H NMR</u> (300.132 MHz, 298 K, CDCl₃): δ = 1.19 (s, 18H, *t*-Bu), 7.87 (s, 2H, NC<u>H</u>).

 $\frac{{}^{13}C{}^{1}H}{(N\underline{C}H)}$ (125.706 MHz, 303 K, CDCl₃): $\delta = 29.4$ (C($\underline{C}H_3$)₃), 58.2 (\underline{C} (CH₃)₃), 157.9 (N $\underline{C}H$).

7.2.4 Darstellung von Di(tert.-butyl)-dibromsilan 125

Das Di(tert.-butyl)-dibromsilan wurde wie in der Literatur^[241] beschrieben hergestellt. Die Charakterisierung erfolgte durch NMR-Spektroskopie.

Charakterisierung:

<u>¹H NMR</u> (499.873 MHz, 303 K, C₆D₆): $\delta = 1.10$ (s, 18H, C(CH₃)₃, ¹J(C,H) = 127.3 Hz).

 $\frac{1^{3}C{}^{1}H}{NMR}$ (125.706 MHz, 303 K, C₆D₆): $\delta = 26.0$ (C(CH₃)₃), 27.2 (C(CH₃)₃).

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.362 MHz, 300 K, C₆D₆): $\delta = 45.4$.

7.2.5 Darstellung von Diphenyldichlorsilan, 126

Das im Arbeitskreis vorhandene Diphenyldichlorsilan wurde vor der Verwendung frisch destilliert ($\delta^{1}H = 7.47 \ (m-C_{6}H_{5}), 7.51 \ (p-C_{6}H_{5}), 7.74 \ (o-C_{6}H_{5}), ^{[186]} \delta^{13}C = 128.3 \ (m-C_{6}H_{5}), 131.7 \ (p-C_{6}H_{5}), 132.2 \ (ipso-C_{6}H_{5}), 134.1 \ (o-C_{6}H_{5}); ^{[186]} \delta^{29}Si = 6.3$).^[242]

7.2.6 Darstellung von Dimethyldichlorsilan, 127

Das im Arbeitskreis vorhandene Dimethyldichlorsilan wurde von gängigen Chemikalienanbietern bezogen und vor der Verwendung frisch destilliert ($\delta^{1}H = 0.74$, $\delta^{13}C = 4.2$, $\delta^{29}Si = 29.7$).^[243]

7.2.7 Darstellung von Diethyloxoniumtetrakis(nonafluor-2-(trifluormethyl)-2propoxyl)aluminat

Die Brønstedt-Säure **144**[Al(OC(CF₃)₃)₄] mit dem Tetrakis-perfluor-*tert*.-butoxylaluminatanion wurde freundlicherweise vom Arbeitskreis Krossing (Universität Freiburg) zur Verfügung gestellt.^[126]

7.2.8 Darstellung von Trityl-7,8,9,10,11,12-hexabrom-monocarba-*closo*-dodecaborat

Die im Arbeitskreis vorhandene Verbindung $29[CB_{11}H_6Br_6]$ wurde in drei Stufen nach der Literatur^[244-246] hergestellt.

7.2.9 Darstellung von Trimethylsilan 160

Trimethylsilan wurde entsprechend der Literatur durch Hydrierung von Trimethylchlorsilan mit Lithiumalanat hergestellt.^[247]

Charakterisierung:

 $\frac{{}^{1}\text{H NMR}}{119.4 \text{ Hz}}, 4.16 \text{ (dec., 1H, SiH, }{}^{3}J(\text{H,H}) = 3.7 \text{ Hz}, {}^{1}J(\text{C,H}) = 3.7 \text{ Hz}, {}^{1}J(\text{C,H}) = 3.7 \text{ Hz}, {}^{1}J(\text{C,H}) = 3.7 \text{ Hz}, {}^{1}J(\text{Si,H}) = 183.3 \text{ Hz}).$

 $\frac{^{13}C{^{1}H}}{NMR}$ (125.706 MHz, 303 K, C₆D₆): $\delta = -2.7$ (<u>C</u>H₃, ^{1}J (Si,C) = 50.8 Hz).

 $\frac{29}{14}$ Si{¹H} NMR (99.362 MHz, 300 K, C₆D₆): $\delta = -16.6$ (SiH, ¹J(Si,C) = 50.8 Hz).

 $\frac{^{29}\text{Si NMR}}{^{27}\text{Si NMR}} (99.362 \text{ MHz}, 300 \text{ K}, \text{C}_6\text{D}_6): \delta = -16.6 \text{ (d dec., } \underline{\text{Si}}\text{H}, \, {}^{1}J(\text{Si},\text{H}) = 183.3 \text{ Hz}, \, {}^{2}J(\text{Si},\text{H}) = 7.2 \text{ Hz}).$

7.2.10 Darstellung von 1,3-Bis(2,6-dimethylphenyl)-1,3-diaza-2-silacyclopent-4en-2-yliden, 40

Das Xylyl-substituierte ungesättigte N-heterocyclische Silylen **41** wurde entsprechend der Literatur^[30] hergestellt und NMR-spektroskopisch charakterisiert.

Charakterisierung:

<u>¹H NMR</u> (500.133 MHz, 300 K, C₆D₆): δ = 2.27 (s, 12H, C<u>H</u>₃), 6.27 (s, 2H, NC<u>H</u>), 7.07 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{128.6 (m-\underline{C}_{6}H_{3}), 135.2 (o-\underline{C}_{6}H_{3}), 142.8 (ipso-C_{6}H_{3}), 124.1 (N\underline{C}H), 126.7 (p-\underline{C}_{6}H_{3}), 128.6 (m-\underline{C}_{6}H_{3}), 135.2 (o-\underline{C}_{6}H_{3}), 142.8 (ipso-C_{6}H_{3}).$

 $\frac{15}{16}$ N{¹H} NMR (50.683 MHz, 300 K, C₆D₆): $\delta = 189.5$.

 $\frac{29}{14}$ Si{ 1 H} NMR (99.362 MHz, 300 K, C₆D₆): δ = 76.5.

7.2.11 Darstellung von 1,3-Bis(2,6-di-*iso*-propylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-yliden, 41

Das Dipp-substituierte ungesättigte N-heterocyclische Silylen **41** wurde entsprechend der Literatur^[30] hergestellt und NMR-spektroskopisch charakterisiert.

Charakterisierung:

<u>¹H NMR</u> (500.133 MHz, 300 K, C₆D₆): δ = 1.22 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 6.7 Hz), 1.30 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 6.7 Hz), 3.29 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 6.7 Hz), 6.48 (s, 2H, NC<u>H</u>), 7.11 – 7.27 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{(CH_3)_2}, 123.7 \text{ (}m-\underline{C}_6H_3\text{)}, 125.4 \text{ (NCH)}, 127.8 \text{ (}p-\underline{C}_6H_3\text{)}, 139.3 \text{ (ipso-}\underline{C}_6H_3\text{)}, 146.0 \text{ (}o-\underline{C}_6H_3\text{)}.$

 $\frac{15}{16}$ N{¹H} NMR (50.678 MHz, 300 K, C₆D₆): δ = 183.9.

²⁹Si{¹H} NMR (99.362 MHz, 300 K, C₆D₆): δ = 75.9.

7.2.12 Darstellung von 1,3-Bis(*tert*.-butyl)-1,3-diaza-2-silacyclopent-4-en-2yliden, 14

Das *tert.*-Butyl-substituierte ungesättigte N-heterocyclische Silylen **14** wurde analog dem Silylen **41** entsprechend der Literatur^[30] hergestellt. Zur Isolierung wurde das Silylen bei 80 °C und 0.1 mbar sublimiert und anschließend NMR-spektroskopisch charakterisiert.
Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{1}\text{C}^{1}\text{H}} (499.870 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.40 \text{ (s, 18H, C}(\text{C}\text{H}_{3})_{3}, 6.74 \text{ (s, 2H, NC}\text{H}).$ $\frac{^{13}\text{C}^{1}\text{H}}{^{1}\text{MR}} (125.692 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 33.1 (\text{C}(\text{C}\text{H}_{3})_{3}), 54.1 (\text{C}(\text{C}\text{H}_{3})_{3}), 120.0 \text{ (NC}\text{H}).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.362 MHz, 300 K, C₆D₆): δ = 78.3

7.2.13 Darstellung von Tetrabromsilan, SiBr₄, 117

Durchführung:

Die Darstellung wurde in abgewandelter Form nach Literatur durchgeführt.^[8] In einem ca. 80 cm langen Glasrohr mit einem Durchmesser von 5 cm wurden 95.5 g (0.99 mol) Calciumsilicid gleichmäßig zusammen mit Glaswolle als Trägermaterial innerhalb der Reaktionszone des Glasrohres verteilt. Das gefüllte Glasrohr mit vorangehender Dosiervorrichtung und 1 L Schlenkkolben wurde so in den Röhrenofen gebracht, dass die Reaktionszone des Glasrohres im Zentrum des Ofens lag. Der gesamte Aufbau wurde mit einem kleinen Gefälle hin zum Schlenkkolben ausgerichtet. Alle Schliffverbindungen wurden mit Teflonmanschetten zusammengesetzt. Der Gasauslass am 1 L Schlenkkolben mündete in eine mit konzentrierter Schwefelsäure gefüllte Gaswaschflasche.

Abbildung 7.1. Schematische Darstellung der Reaktionsapparatur.

Nach dem Ausheizen der Apparatur über 72 Stunden unter Inertgasatmosphäre (N_2) bei 120 °C, wurde der Röhrenofen auf 280 °C vorgeheizt. Der 500 mL Runkolben an der Dosier-

vorrichtung wurde mit 651.8 g (4.08 mol) Brom gefüllt. Der N₂-Strom wurde mit Brom beladen und so durch das Glasrohr geleitet, dass eine Gasblase pro Sekunde durch die Gaswaschflasche entwich. Anschließend wurde die Ofentemperatur auf 310 °C erhöht. Nach einer Reaktionszeit von 24 Stunden konnte bereits ein wenig klares Kondensat in der mit Eiswasser gekühlten Vorlage aufgefangen werden. Nach einer Reaktionszeit von 72 Stunden wurde der mit Brom gefüllte Kolben auf 30 - 35 °C erwärmt und die Reaktion weitere 24 Stunden fortgeführt. Anschließend wurde der mit Brom gefüllte Kolben entfernt und der Ofen über 72 Stunden auf Raumtemperatur abgekühlt. Das zum kleinen Teil noch im Reaktionsrohr verbliebene Produkt Tetrabromsilan, sowie das feste Nebenprodukt Hexabromdisilan, wurden mit Hilfe des Heißluftföns in die Vorlage überführt. Abschließend wurde das mit Brom verunreinigte Produkt vom Hexabromdisilan durch Kältedestillation getrennt und ein Teil des Broms wurde bei Normaldruck durch Destillation vom Tetrabromsilan getrennt. Restliches im Produkt verbliebenes Brom wurde mit Kupferpulver ausgefällt und das Produkt konnte nach abschließender Destillation als klare, leicht gelbliche Flüssigkeit erhalten (67 °C, 39 mbar) werden. Zur Aufbewahrung wurde das Tetrabromsilan, 117, in Ampullen überführt, welche unter Vakuum abgeschmolzen wurden.

Ausbeute: $303.49 \text{ g} (0.87 \text{ mol}) \equiv 44 \% \text{ d. Th.}$

Charakterisierung:

Kp = 67 °C bei 39 mbar.

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.305 MHz, 303 K, C₆D₆): $\delta = -90.4$.

7.2.14 Darstellung von N,N'-Di-tert.-butylethylendiamin, 189

Durchführung:

Die Darstellung von N,N'-Di-*tert*.-butylethylendiamin, **189** erfolgte in abgewandelter Form entsprechend Literatur.^[248] In einem 500 mL Dreihalskolben, ausgestattet mit Rückflusskühler und Gaseinleitung wurden 16.77 g (99.66 mmol) 1,4-Di-*tert*.-butyl-1,4-diazabuta-1,3-dien **133** in 200 mL absolutem Methanol suspendiert und 9.05 g (239.2 mmol) Natriumborhydrid in kleinen Portionen langsam zugegeben. Anschließend wurde die Reaktionsmischung 2 Stunden bei Raumtemperatur gerührt und zusätzlich 1 Stunde bis zum Sieden erhitzt. Nach Abkühlen der Reaktionsmischung wurden 250 mL Wasser und 25.1 g (627.9 mmol) Natriumhydroxid zugegeben. Die wässrige Reaktionslösung wurde dreimal mit jeweils 150 mL Diethylether extrahiert und die vereinigten organischen Phasen über Kaliumhydroxid getrocknet. Nach fraktionierter Destillation (60 °C, 7.7 mbar) wurde das Produkt als farblose Flüssigkeit erhalten.

Ausbeute: 11.04 g (64.8 mmol) \equiv 65.0 % d. Th.

Charakterisierung:

 $Kp = 60 \degree C$ bei 7.7 mbar.

¹<u>H NMR</u> (499.873 MHz, 303 K, C₆D₆): $\delta = 0.73$ (s, 2H, NH), 1.01 (s, 18H, C(C<u>H</u>₃)₃), 2.54 (s, 4H, NC<u>H</u>₂).

 $\frac{^{13}C{^{1}H} NMR}{(125.706 \text{ MHz}, 303 \text{ K}, C_6D_6): \delta} = 29.4 (C(\underline{CH}_3)_3), 43.6 (N\underline{CH}_2), 49.8 (\underline{C}(CH_3)_3).$

7.2.15 Darstellung von 2,2-Dibrom-1,3-di-*tert*.-butyl-1,3-diaza-2-silacyclopentan, 191

Durchführung:

Die Darstellung von **191** erfolgte in abgewandelter Form entsprechend Literatur.^[39, 249] In einem 500 mL Dreihalskolben, ausgestattet mit Rückflusskühler und Gaseinleitung, wurden 11.04 g (65 mmol) N,N'-Di-*tert*.-butylethylendiamin, **189**, zusammen mit 35 mL (25.7 g, 254 mmol) Triethylamin, **190**, vorgelegt, in 300 mL n-Hexan gelöst und auf 0 °C abgekühlt. Anschließend wurden unter Rühren 8.1 mL (22.6 g, 65 mmol) Siliciumtetrabromid, **117**, langsam zur Lösung getropft. Nach abgeschlossener Zugabe wurde die Reaktionsmischung zunächst 1 Stunde bei Raumtemperatur gerührt und anschließend 4 Stunden bis zum Sieden erhitzt. Zur Aufarbeitung wurden die bei der Reaktion entstandenen Ammoniumsalze durch Filtration über eine Fritte (Porengröße 4) von der Lösung abgetrennt und zusätzlich dreimal mit jeweils 50 mL n-Hexan gewaschen Die n-Hexanlösung wurde über eine Kältedestillation bis zur Trockene eingeengt. Abschließend konnte das Produkt durch Sublimation im Hochvakuum bei 94 °C und $2.4 \cdot 10^{-1}$ mbar als gelber Feststoff erhalten werden.

Ausbeute: 18.26 g (51.27 mmol) \equiv 79 % d. Th.

Charakterisierung:

Fp = 93 °C.

¹<u>H NMR</u> (300.132 MHz, 297 K, C₆D₆): $\delta = 1.24$ (s, 18H, C(C<u>H</u>₃)₃), 2.70 (s, 4H, NC<u>H</u>₂).

 $\frac{^{13}C{^{1}H} NMR}{(125.706 MHz, 297 K, C_6D_6): \delta = 29.2 (C(\underline{C}H_3)_3), 42.1 (N\underline{C}H_2), 52.4 (\underline{C}(CH_3)_3).$

 $\frac{29}{1}$ Si{¹H} NMR (99.305 MHz, 294 K, C₆D₆): $\delta = -60.1$.

7.2.16 Darstellung von Di-tert.-butyl-1,3-diaza-2-silacyclopentan-2-yliden, 45

Durchführung:

Die Darstellung von Di-*tert.*-butyl-1,3-diaza-2-silacyclopentan-2-yliden, **45** erfolgte in abgewandelter Form entsprechend Literatur. ^[39, 249] In einem Dreihalskolben, ausgestattet mit Stopfen und Gaseinlass, wurden 769 mg (6 mmol) Naphthalin vorgelegt, entgast und in 70 mL THF gelöst. Im Inertgasstrom bei 0 °C wurden 409 mg (58.9 mmol) kleingeschnittenes Lithium zur Lösung gegeben. Nach ca. 5 min. Rühren trat die Grünfärbung des Lithiumnaphthalids ein. Anschließend wurden 9.590 g **191** gelöst in 80 mL THF über einen Tropftrichter unter Rühren bei 0 °C langsam zur Reaktionslösung getropft. Bei der Zugabe entfärbte sich das Lithiumnaphthalid, wobei die Reaktionslösung zunehmend die vom Tetramer **75** bekannte rote Farbe annahm. Nach Ende der Zugabe wurde das THF über eine Kältedestillation entfernt und der Rückstand wurde im Hochvakuum getrocknet. Anschließend wurde der Rückstand erneut in ca. 100 mL *n*-Hexan aufgenommen und die bei der Reaktion entstandenen Salze wurden durch Filtration über eine Fritte (Porengröße 4) abgetrennt. Das Filtrat wurde

über eine Kältedestillation bis zur Trockene eingeengt. Abschließend wurde das Produkt durch Sublimation aus dem Rückstand bei 145 °C und $1.8 \cdot 10^{-2}$ mbar als farbloser Feststoff gewonnen (Vorlage mit N_{2(fl.)} gekühlt). Nach wenigen Minuten Lagerung bei Raumtemperatur wandelt sich das farblose Silylen **45** in das rote Tetramer 75 um. In Lösung zerfällt das Tetramer sehr schnell wieder zum monomeren Silylen **45**, somit wurde in den NMR-Experimenten auch nur das monomere Silylen **45** beobachtet.

Ausbeute: 4245 mg (21.4 mmol) \equiv 80 % d. Th.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C_6D_6): $\delta = 1.32$ (s, 18H, $C(CH_3)_3$), 3.20 (s, 4H, NCH₂).

 $\frac{^{13}C{^{1}H} NMR}{(125.706 MHz, 305 K, C_6D_6): \delta} = 31.7 (C(\underline{C}H_3)_3), 45.5 (N\underline{C}H_2), 52.5 (\underline{C}(CH_3)_3).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.309 MHz, 305 K, C₆D₆): $\delta = 118.7$.

<u>¹H¹⁵N HMBC</u> (50.661 MHz, 305 K, C₆D₆): $\delta^{15}N = 143.0$ (<u>N</u>CH₂).

7.2.17 Darstellung von Diethyloxoniumtetrakis(pentafluorphenyl)borat $144[B(C_6F_5)_4]$

Die Synthese von Diethyloxoniumtetrakis(pentafluorphenyl)borat wurde analog der Literatur durchgeführt.^[250]

Darstellung von Lithiumtetrakis(pentafluorophenyl)borat Li[$B(C_6F_5)_4$]:

Durchführung:

In einem 2L Schlenkkolben wurde eine Lösung von 35.30 g (142.92 mmol) Brompentafluorobenzol in 600 mL *n*-Pentan auf -80 °C bis -90 °C gekühlt und unter Rühren tropfenweise mit 77.86 mL (124.28 mmol) *n*-Butyllithiumlösung (1.6 molL⁻¹in *n*-Hexan) innerhalb von 45 min versetzt. Nach der Zugabe wurde die Reaktionslösung noch eine weitere Stunde bei -90 - -80 °C gerührt. Anschließend wurden 3.64 g (31.1 mmol) Bortrichlorid, gelöst in 40 mL *n*-Hexan, innerhalb von 15 Minuten über einen Tropftrichter zugetropft. Die erhaltene Reaktionsmischung wurde eine weitere Stunde bei -70 °C bis -60 °C gerührt und anschließend unter Rühren langsam auf Raumtemperatur RT erwärmt. Das Lösungsmittel wurde durch Dekantieren von den Lithiumsalzen abgetrennt. Abschließend wurden die Salze zweimal mit je 300 mL *n*-Pentan gewaschen und im Hochvakuum getrocknet. Das Produkt konnte zusammen mit drei Äquvalenten Lithiumchlorid in Form eines hellbraunen Feststoffes isoliert werden. Das Lithiumsalzgemisch wurde ohne weitere Charakterisierung für die Synthese von Diethyloxoniumtetrakis(pentafluorphenyl)borat **144**[B(C₆F₅)₄] verwendet.

Ausbeute: 20.98 g (25.8 mmol) \equiv 83 % d. Th. (M = 813.15 gmol⁻¹, Li[B(C₆F₅)₄]+3LiCl)

Darstellung von Diethyloxonium-tetrakis(pentafluorphenyl)-borat $144[B(C_6F_5)_4]$

Li[B(C₆F₅)₄] + 3 LiCl $\xrightarrow{HCl_{(g)}}$ [H(OEt₂)₂][B(C₆F₅)₄] + 4 LiCl 144

Durchführung:

Die für die Darstellung von **144**[B(C₆F₅)₄] verwendete Apparatur wurde entsprechend Abbildung 7.2 aufgebaut, unter Hochvakuum ausgeheizt und bis zum Blasenzähler mit Argon gefüllt. 16.36 g (20.12 mmol) des Lithiumsalzgemisches Li[B(C₆F₅)₄]+3LiCl wurden in 200 mL frisch getrocknetem Diethylether suspendiert und in den Tropftrichter überführt. Anschließend wurde die Apparatur evakuiert und der 2L Dreihalskolben wurde mit trockenem Chlorwasserstoff, HCl_(g), (Einleitung durch konzentrierte Schwefelsäure) auf Atmosphärendruck 1024 hPa gefüllt (bei eigestelltem Atmosphärendruck in der Apparatur entweicht HCl_(g) über den Blasenzähler).

Abbildung 7.2. Schematische Darstellung der Reaktionsapparatur.

Wichtig war hierbei, dass ein Tropftrichter ohne Druckausgleichsrohr verwendet wurde, da sonst das $HCl_{(g)}$ schon im Tropftrichter mit dem $Li[B(C_6F_5)_4]$ reagieren würde. Nach dem Belüften mit $HCl_{(g)}$ wurden die Hähne zum Bläsenzähler und zu den Waschflaschen geschlossen, um ein Eindringen von Sauerstoff und Feuchtigkeit beim Abkühlen des Kolbens zu verhindern. Der Kolben wurde auf -30 °C abgekühlt und die Suspension aus $Li[B(C_6F_5)_4]+3LiCl$ in Diethylether wurde bei –30 °C unter starkem Rühren langsam in den mit HCl(g) gefüllten 2L Kolben getropft. Hierbei entstand ein Unterdruck in der Apparatur. Anschließend wurde die Reaktionsmischung zwei weitere Stunden bei –30 °C gerührt, mit Argon belüftet um Überschüssiges $HCl_{(g)}$ zu entfernen und langsam auf Raumtemperatur erwärmt. Abschließend wurde das Reaktionsgemisch bis zur Trockene eingeengt, in Dichlormethan aufgenommen und über eine Fritte (Porengröße 4) filtriert. Das erhaltene Filtrat wurde über eine Kältedestillation bis zur beginnenden Kristallisation des Produkts **144**[B(C₆F₅)₄] eingeengt und zur vollständigen Kristallisation bei -40 °C gelagert. Das Produkt konnte in Form kleiner, farbloser Nadeln erhalten werden.

Ausbeute: $13.28 \text{ g} (16.0 \text{ mmol}) \equiv 80 \% \text{ d. Th.}$

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{3}J_{\text{C,H}} = 7.2 \text{ Hz}, \text{ C}\underline{\text{H}}_{2}), 15.41 \text{ (brs, 1H, } [(\text{Et}_{2}\text{O})_{2}\underline{\text{H}}]^{+}).$

 $\frac{{}^{13}C{}^{1}H}{(m, ipso-\underline{C}_{6}F_{5}), 137.1 (d, {}^{1}J_{C,F} = 247.6 \text{ Hz}, m-\underline{C}_{6}F_{5}), 138.9 (d, {}^{1}J_{C,F} = 244.6 \text{ Hz}, p-C_{6}F_{5}), 149.1 (d, {}^{1}J_{C,F} = 240.6 \text{ Hz}, o-C6F5).$

 $\frac{^{19}\text{F}\{^{1}\text{H}\}\text{ NMR}}{^{-163.3}} (470.348 \text{ MHz}, 305.1 \text{ K}, \text{ C}_6\text{D}_6): \delta = -167.4 \text{ (t, } 2\text{F}, \ ^{3}J_{\text{F},\text{F}} = 16.1 \text{ Hz}, \ m\text{-C}_6\overline{\text{F}}_5), -163.3 \text{ (t, } 1\text{F}, \ ^{3}J_{\text{F},\text{F}} = 20.4 \text{ Hz}, \ p\text{-C}_6\overline{\text{F}}_5), -132.5 \text{ (brs, } 2\text{F}, \ o\text{-C}_6\overline{\text{F}}_5).$

 $\frac{11}{10}$ B{¹H} NMR (160.378 MHz, 305.0 K, C₆D₆): $\delta = -16.1$.

Die gesammelten NMR-Daten entsprechen denen der Literatur.^[250]

7.2.18 Darstellung von Trityl-tetrakis(pentafluorphenyl)borat 29[B(C₆F₅)₄]

Die Darstellung des Trityl-tetrakis(pentafluorphenyl)borat **29**[B(C₆F₅)₄] wurde entsprechend der Literatur^[251, 252] durchgeführt. Das für die Synthese benötigte Li[B(C₆F₅)₄] Salz wurde analog der Vorgehensweise in 7.2.17 hergestellt.

7.2.19 Darstellung von Benzenium-7,8,9,10,11,12-hexabrom-monocarba-*closo*dodecaborat 158[CB₁₁H₆Br₆]

Durchführung:

Die Synthese von $[H(C_6H_6)][CB_{11}H_6Br_6]$ wurde analog der von Reed beschriebenen Methode durchgeführt.^[210]

Hierfür wurden 80 mg (0.095 mmol) **29**[CB₁₁H₆Br₆] in einem 100 mL Zweihalsschlenkkolben mit Gaseinlass vorgelegt, entgast und in 10 mL Benzol suspendiert. Anschließend wurden ca. 2 mL (1.3 g, 17.1 mmol) Trimethylsilan **160** auf die Probe kondensiert (Me₃SiH wurde über Calciumhydrid gelagert). Nach der Zugabe wurde die Reaktionsmischung eine Stunde bei Raumtemperatur gerührt, anschließend bis zur Trockene eingeengt und 15 Minuten im Hochvakuum getrocknet. Im nächsten Schritt wurde der Rückstand mit 10 mL frisch zum Rückstand kondensiertem *n*-Pentan gewaschen und wieder in 10 mL Benzol (frisch auf die Probe kondensiert) gelöst. Die erhaltene Suspension wurde mit Hilfe eines N₂-Kältebads eingefroren, entgast und mit Chlorwasserstoff, der zum Trocknen zunächst durch konzentrierte Schwefelsäure geleitet wurde, belüftet. Die Suspension wurde nach der Zugabe von $HCl_{(g)}$ für 30 Minuten stark gerührt. Abschließend wurde die Reaktionsmischung bis zur Trockene eingeengt, im Hochvakuum getrocknet und der erhaltene Feststoff wurde mit 1 mL D₆-Benzol gewaschen. Für weitere Reaktionen wurde das Produkt wieder in 1 mL D₆-Benzol gelöst.²⁴

Charakterisierung:

Die Verbindungen wurden ohne weitere Charakterisierung für nachfolgende Reaktionen eingesetzt, wobei von einem kompletten Reaktionsumsatz ausgegangen wurde.

²⁴ Die Synthese eines Benzenium-tetrakis(pentafluorphenyl)borat $[H(C_6H_6)][B(C_6F_5)_4]$ analog der Darstellung von $[H(C_6H_6)][BC_{11}H_6Br_6]$ gelingt nicht, da das Anion $[B(C_6F_5)_4]^-$ unter den gegebenen Reaktionsbedingungen nicht stabil ist.

7.3 Durchführung einzelner Experimente

7.3.1 Darstellung von 1,3-Bis(2,6-di-*iso*-propylphenyl)-1,3-diaza-2,2-dichlorsilacyclopent-4-en, 51a

Durchführung:

Die Synthese wurde analog der Literatur durchgeführt.^[137] Hierfür wurden in einem 500 mL Dreihalskolben, ausgestattet mit Stopfen und Magnetrührkern, 20 g (53.11 mmol) des Diazabutadiens 49 vorgelegt, entgast und anschließend in 200 mL THF gelöst. Unter Kühlung auf 0 °C wurden 774 mg (111.53 mmol) kleingeschnittenes Lithium im Argon Gegenstrom zugegeben und bei langsamem Erwärmen auf Raumtemperatur 16 Stunden gerührt. Überschüssiges Lithium wurde mit einer Pinzette entfernt. Anschließend wurde die Reaktionslösung auf -78 °C abgekühlt und mit 15.4 g (111.18 mmol) frisch getrocknetem Triethylaminhydrochlorid umgesetzt. Nach langsamem Erwärmen auf Raumtemperatur wurde die Reaktionslösung noch eine weitere Stunde gerührt und dann anschließend wieder auf -78 °C abgekühlt. 30 mL (ca. 265 mmol) Tetrachlorsilan wurden über eine Spritze zur Reaktionlösung gegeben. Die Reaktionslösung wurde 16 Stunden gerührt. Zur Aufarbeitung wurde das THF vollständig über eine Kältedestillation entfernt, die Rückstände in ca. 300 mL *n*-Hexan aufgenommen und über eine Fritte (Porengroße 4) filtriert. Das Filtrat wurde bis zur beginnenden Kristallisation eingeengt und zur vollständigen Kristallisation bei -4 °C einige Stunden gelagert. Abschließend wurde das kristalline Produkt durch Dekantieren von der Mutterlauge getrennt und im Hochvakuum getrocknet.

Ausbeute: $12.65 \text{ g} (26.49 \text{ mmol}) \equiv 50 \% \text{ d. Th.}$

Charakterisierung:^[30]

<u>¹H NMR</u> (500.133 MHz, 300 K, C₆D₆): δ = 1.20 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 6.8 Hz), 1.36 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 6.8 Hz), 3.69 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 6.8 Hz), 5.73 (s, 2H, NC<u>H</u>), 7.13 – 7.22 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{(CH_3)_2}, 119.9 \text{ (CH)}, 124.5 \text{ (CH)}, 128.4 \text{ (CH)}, 135.3 \text{ (C}^{q}), 148.5 \text{ (C}^{q}).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.362 MHz, 300 K, C₆D₆): $\delta = -38.2$.

7.3.2 Darstellung von 1,3-Bis(2,6-di-*iso*-propylphenyl)-1,3-diaza-2-germacyclopent-4-en-2-yliden, 54

Durchführung:

Die Synthese wurde analog der Literatur durchgeführt.^[32] Hierfür wurden in einem 100 mL Dreihalskolben, ausgestattet mit Stopfen und Magnetrührkern, 3.25 g (8.6 mmol) des Bis(2,6-di-*iso*-propylphenyl)-1,4-diazabutadiens **49** vorgelegt, entgast und anschließend in 50 mL THF gelöst. Bei Raumtemperatur wurden 130 mg (18.6 mmol) kleingeschnittenes Lithium im Argon Gegenstrom zugegeben und bei Raumtemperatur 16 Stunden gerührt. Überschüssiges Lithium wurde mit einer Pinzette entfernt. Anschließend wurde die Reaktionslösung auf 0 °C abgekühlt und mit einer Lösung aus 2 g (8.6 mmol) GeCl₂ · 1,4-Dioxan **1** in 20 mL THF in einem Zeitraum von 15 min. versetzt. Die Kühlung wurde entfernt und die Reaktionslösung noch eine weitere Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das THF vollständig über eine Fritte (Porengroße 4) filtriert. Das Filtrat wurde bis zur beginnenden Kristallisation eingeengt und zur vollständigen Kristallisation bei -30 °C einige Stunden gelagert. Abschließend wurde das kristalline Produkt durch Dekantieren von der Mutterlauge getrennt und im Hochvakuum getrocknet. Umkristallisieren des Produktes aus

n-Hexan lieferte hell gelbe Kristalle die für die Röntgendiffraktometrie verwendet werden konnten.

Ausbeute: 2.4 g (5.3 mmol) \equiv 62 % d. Th.

Charakterisierung:

Fp = 134 – 136 °C.

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (300.132 \text{ MHz}, 300 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.27 \text{ (d, 12H, CH}(\text{C}\underline{\text{H}}_{3})_{2}, {}^{3}J(\text{H},\text{H}) = 6.8 \text{ Hz}), 1.30 \text{ (d, 12H, CH}(\text{C}\underline{\text{H}}_{3})_{2}, {}^{3}J(\text{H},\text{H}) = 6.8 \text{ Hz}), 3.29 \text{ (sept., 4H, C}\underline{\text{H}}(\text{CH}_{3})_{2}, {}^{3}J(\text{H},\text{H}) = 6.8 \text{ Hz}), 6.80 \text{ (s, 2H, NC}\underline{\text{H}}), 7.23 \text{ (m, 6H, C}_{6}\underline{\text{H}}_{3}).$

 $\frac{{}^{13}C{}^{1}H}{(CH_3)_2}, 123.6 \text{ (NCH)}, 126.6 \text{ (}p-\underline{C}_6H_3\text{)}, 127.4 \text{ (}m-\underline{C}_6H_3\text{)}, 134.3 \text{ (}o-\underline{C}_6H_3\text{)}, 147.9 \text{ (}ipso-\underline{C}_6H_3\text{)}.$

<u>MS (EI, 70 eV)</u> m/z (%): 450 (63.44) [M^+], 333 (100) [$C_{23}H_{29}N_2^+$].

<u>HRMS (EI, 70 eV)</u>: berechnet 450.2090 [${}^{12}C_{26}{}^{1}H_{36}{}^{14}N_{2}{}^{74}$ Ge], gefunden 450.2089.

7.3.3 Darstellung von 1,3-Bis(2,6-dimethylphenyl)-1,3-diaza-2-germacyclopent-4-en-2-yliden, 58

Durchführung:

Die Synthese wurde analog der Literatur durchgeführt.^[32] Hierfür wurden in einem 1000 mL Dreihalskolben, ausgestattet mit Stopfen und Magnetrührkern, 5.12 g (19.4 mmol) des Bis(2,6-di-*iso*-propylphenyl)-1,4-diazabutadiens **50** vorgelegt, entgast und anschließend in 500 mL THF gelöst. Bei Raumtemperatur wurden 130 mg (18.6 mmol) kleingeschnittenes Lithium im Argon-Gegenstrom zugegeben und bei Raumtemperatur 16 Stunden gerührt. Überschüssiges Lithium wurde mit einer Pinzette entfernt. Anschließend wurde die Reaktionslösung auf –30 °C abgekühlt und eine Lösung aus 4.5 g (19.4 mmol) GeCl₂ · 1,4-Dioxan **1** in 50 mL THF wurde schnell zugegeben. Die Kühlung wurde entfernt und die Reaktionslö-

sung noch eine weitere Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das THF vollständig über eine Kältedestillation entfernt, die Rückstände in ca. 150 mL *n*-Hexan aufgenommen und über eine Fritte (Porengroße 4) filtriert. Das Filtrat wurde bis zur beginnenden Kristallisation eingeengt und zur vollständigen Kristallisation bei -30 °C einige Stunden gelagert. Abschließend wurde das kristalline Produkt durch Dekantieren von der Mutterlauge getrennt und im Hochvakuum getrocknet. Umkristallisieren des Produktes aus *n*-Hexan lieferte braun-gelbe Kristalle, die für die Röntgendiffraktometrie verwendet werden konnten.

Ausbeute: $5.5 \text{ g} (16.3 \text{ mmol}) \equiv 84 \% \text{ d. Th.}$

Charakterisierung:

<u>¹H NMR</u> (500.133 MHz, 300 K, C₆D₆): δ = 2.26 (s, 12H, C<u>H</u>₃), 6.55 (s, 2H, NC<u>H</u>), 7.23 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{128.5} \text{ (m-C_6H_3), 134.3 (o-C_6H_3), 145.3 (ipso-C_6H_3).} \delta = 18.4 \text{ (CH_3), 125.2 (NCH), 126.2 (m-C_6H_3), 128.5 (p-C_6H_3), 134.3 (o-C_6H_3), 145.3 (ipso-C_6H_3).}$

 $^{1}H^{15}N$ HMBC (50.661 MHz, 305.0 K, C₆D₆): $\delta^{15}N = 220.8$ (<u>N</u>CH).

<u>MS (EI, 70 eV)</u> m/z (%): 338 (100) [M^+], 204 (22) [$C_8H_6N_2Ge^+$].

<u>HRMS (EI, 70 eV)</u>: m/z berechnet 338.0838 [${}^{12}C_{18}{}^{1}H_{20}{}^{14}N_{2}{}^{74}$ Ge], m/z gefunden 338.0839.

7.3.4 Darstellung von *N*-[2-[(2,6-dimethylphenyl)amino]ethyliden-2,6dimethyl-benzolamin, 50

Darstellung:

Die Synthese wurde analog der Literatur durchgeführt.^[25] Hierfür wurden in einem 1000 mL Dreihalskolben, ausgestattet mit Stopfen, Magnetrührkern und Tropftrichter, 18.5 g (70 mmol) des Bis(2,6-dimethylphenyl)-1,4-diazabutadiens 50 vorgelegt, entgast und anschließend in 400 mL THF gelöst. Bei Raumtemperatur wurden 1.02 g (147 mmol) kleingeschnittenes Lithium im Argon-Gegenstrom zugegeben und 16 Stunden gerührt. Überschüssiges Lithium wurde mit einer Pinzette entfernt. Die tiefrote Reaktionslösung wurde in einen 500 mL Tropftrichter überführt. Der Dreihalskolben wurde mit ca. 50 mL THF erneut gefüllt und mit einem zweiten Tropftrichter, gefüllt mit 8.2 mL Ethanol (absolut), ausgestattet. Die Reaktionslosung wurde gleichzeitig zusammen mit dem Ethanol unter Rühren in das THF getropft. Die Tropfgeschwindigkeiten wurden so eingestellt, dass die Reaktionslösung und das Ethanol nach Ende der Zugabe gleichzeitig aufgebraucht waren. Die neue Reaktionsmischung wurde eine weitere Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das THF vollständig über eine Kältedestillation entfernt, die Rückstände in ca. 300 mL n-Hexan aufgenommen und über eine Fritte (Porengroße 4) filtriert. Das Filtrat wurde vollständig über eine Kältedestillation eingeengt. Durch Umkristallisieren des leicht verunreinigten Rohprodukts aus *n*-Hexan konnten 14.4 g des gelben kristallinen Xylyl-substituierten α -Aminoaldimin 67 erhalten werden.

Ausbeute: 14.4 g (54.1 mmol) \equiv 77 % d. Th.

Charakterisierung:

¹<u>H NMR</u> (500.133 MHz, 297.6 K, C₆D₆): $\delta = 2.04$ (s, 6H, H12), 2.31 (s, 6H, H7), 3.64 (m, 2H, H2), 4.91 (t, 1H, N<u>H</u>), 6.90 – 6.97 (m, 2H, *p*-H6, H11), 7.00 – 70.4 (m, 4H, H5, H10), 7.18 (m, 1H, H1).

 $\frac{{}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR}}{(125.772 \text{ MHz}, 297.6 \text{ K}, \text{C}_6\text{D}_6): \delta} = 18.0 \text{ (C12)}, 18.8 \text{ (C7)}, 52.7 \text{ (C2)}, 121.0 \text{ (C6)}, 123.5 \text{ (C11)}, 126.5 \text{ (C4)}, 127.7 \text{ (C9)}, 127.8 \text{ (C5)}, 128.6 \text{ (C10)}, 146.3 \text{ (C6)}, 150.0 \text{ (C8)}, 163.5 \text{ (C1)}.$

 $\frac{{}^{1}\text{H}^{15}\text{N HMBC}}{(50.661 \text{ MHz}, 305.0 \text{ K}, \text{ C}_{6}\text{D}_{6}): \delta^{15}\text{N} = 45.5 \text{ (NH, }{}^{1}J(\text{N},\text{H}) = -77.4 \text{ Hz}), 328.5 \text{ (NCH)}.$

<u>MS (EI, 70 eV)</u> m/z (%): 266.2 (17) $[M^+]$, 146.1 (13) $[C_{10}H_{12}N^+]$, 134.1 (46) $[C_9H_{12}N^+]$.

<u>HRMS (EI, 70 eV)</u>: m/z berechnet 266.1783 [${}^{12}C_{18}{}^{1}H_{22}{}^{14}N_2$], m/z gefunden 266.1779.

7.3.5 Darstellung von *N*-[2-[(2,6-di-*iso*-propylphenyl)amino]ethyliden-2,6-diisopropyl-benzolamin, 53

Darstellung:

Die Synthese wurde analog der Literatur durchgeführt.^[25] Hierfür wurden in einem 250 mL Zweihalsschlenkkolben, ausgestattet mit Stopfen, Magnetrührkern und Tropftrichter, 5 g (13.3 mmol) des Bis(2,6-di-iso-propylphenyl)-1,4-diazabutadiens 49 vorgelegt, entgast und anschließend in 50 mL THF gelöst. Bei Raumtemperatur wurden 193 mg (27.9 mmol) kleingeschnittenes Lithium im Argon-Gegenstrom zugegeben und 16 Stunden gerührt. Überschüssiges Lithium wurde mit einer Pinzette entfernt. Die tiefrote Reaktionslösung wurde in den Tropftrichter überführt. Der Schlenkkolben wurde mit ca. 50 mL THF erneut gefüllt und mit einem zweiten Tropftrichter, gefüllt mit 1.55 mL Ethanol (absolut) in 10 mL THF gelöst, ausgestattet. Die Reaktionslosung wurde gleichzeitig zusammen mit dem Ethanol/THF-Gemisch unter Rühren in das THF getropft. Die Tropfgeschwindigkeiten wurden so eingestellt, dass die Reaktionslösung und das Ethanol nach Ende der Zugabe gleichzeitig aufgebraucht waren. Bei Zusammengabe der Reaktionslösung und des Ethanols wechselt die Färbung von rot zu gelb. Die neue Reaktionsmischung wurde eine weitere Stunde bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das THF vollständig über eine Kältedestillation entfernt, die Rückstände in ca. 100 mL n-Hexan aufgenommen und über eine Fritte (Porengroße 4) filtriert. Das Filtrat wurde vollständig über eine Kältedestillation eingeengt. Es konnten 4.61 g des Dipp-substituierten α-Aminoaldimin 53 als gelber Feststoff isoliert werden. Durch Umkristallisation aus n-Hexan konnten Einkristalle erhalten werden, die für eine Einkristallstrukturanalyse geeignet waren.

Ausbeute: 4.61 g (12.17 mmol) \equiv 92 % d. Th.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{3}}(499.873 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.16 \text{ (d, 12H, H14, }^{3}J(\text{H},\text{H}) = 7.2 \text{ Hz}), 1.25 \text{ (d, 12H, H8, }^{3}J(\text{H},\text{H}) = 7.2 \text{ Hz}), 3.03 \text{ (sept., 2H, H13, }^{3}J(\text{H},\text{H}) = 7.2 \text{ Hz}), 3.50 \text{ (sept., 2H, H7, }^{3}J(\text{H},\text{H}) = 7.2 \text{ Hz}), 3.77 \text{ (d, 2H, H2, }^{3}J(\text{H},\text{H}) = 5.1 \text{ Hz}), 4.83 \text{ (t, 1H, NH, }^{3}J(\text{H},\text{H}) = 5.1 \text{ Hz})$ 7.11 (m, 6H, H5, H6, H11, H12), 7.40 (s, 1H, H1).

 $\frac{{}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR}}{(125.706 \text{ MHz}, 305 \text{ K}, \text{C}_6\text{D}_6): \delta} = 23.7 \text{ (C14)}, 24.3 \text{ (C8)}, 28.2 \text{ (C13)}, 28.3 \text{ (C7)}, 52.7 \text{ (C2)}, 123.4 \text{ (C11)}, 124.0 \text{ (C5)}, 124.2 \text{ (C12)}, 124.8 \text{ (C6)}, 136.7 \text{ (C10)}, 142.3 \text{ (C4)}, 144.3 \text{ (C3)}, 148.9 \text{ (C9)}, 163.3 \text{ (C1)}.$

 $\frac{{}^{1}\text{H}{}^{15}\text{N HMBC}}{(\text{50.661 MHz}, 304.9 \text{ K}, \text{ C}_{6}\text{D}_{6}): \delta^{15}\text{N} = 35.9 (\underline{\text{N}}\text{H}, {}^{1}J(\text{N},\text{H}) = -75.8 \text{ Hz}), 327.8 (\underline{\text{N}}\text{CH}).$

<u>MS (EI, 70 eV)</u> m/z (%): 378.3 (100) $[M^+]$, 321.2 (8) $[M^+ - {}^iPr]$, 202.1 (6) $[C_{14}H_{20}N^+]$, 190.1 (63) $[C_{13}H_{20}N^+]$, 174.1 (27) $[C_{11}H_{14}N^+]$, 160.1 (21) $[C_{10}H_{12}N^+]$, 146.1 (17) $[C_{10}H_{12}N^+]$, 132.1 (13) $[C_9H_{10}N^+]$.

<u>HRMS (EI, 70 eV)</u>: m/z berechnet 378.3035 [${}^{12}C_{26}{}^{1}H_{38}{}^{14}N_2$], m/z gefunden 378.3031.

7.3.6 Umsetzung des Diarylstannylens 65 mit Dipp-substituiertem α-Aminoaldimin 53

Durchführung:

In einem 50 mL Schlenkkolben, ausgestattet mit Magnetrührkern und Stopfen, wurden 235 mg (0.5 mmol) des Diarylstannylens **65** zusammen mit 147 mg (0.5 mmol) des Dippsubstituierten α -Aminoaldimins **53** vorgelegt und in ca. 5 – 7 mL THF gelöst. Die Reaktionsmischung wurde 16 Stunden bei 45 °C (± 1 °C) gerührt. Anschließen wurde das Reakti-

onsgemisch vollständig eingeengt und in D_8 -Toluol (frisch auf die Probe kondensiert) gelöst. Die erhaltene Lösung wurde in ein Schliff-NMR-Röhrchen überführt und NMRspektroskopisch untersucht.

Spektroskopische Ergebnisse:

Neben weiteren nicht identifizierten Nebenprodukten lag ein Stoffgemisch aus MebpH 66, α-Aminoaldimin 53 und dem Stannylen 56 im Verhältnis 12 zu 8 zu 1 vor. Die Zuordnung der Signale des ¹H NMR Spektrums erfolgte über einen Vergleich mit Literaturangaben und Spektren des Edukts. Die Zuordnung der Signale des ¹³C NMR-Spektrums konnte auf Grund des vorliegenden Stoffgemisches nicht vorgenommen werden. Das Diarylstannylen konnte nach der Reaktion spektroskopisch nicht mehr nachgewiesen werden.

- Dipp-substituiertes N-heterocyclisches Stannylen 56:^[142]
 ¹<u>H NMR</u> (499.873 MHz, 305 K, D₈-Toluol): δ = 1.21; 1.22 (zwei überlappende Dubletts, 24H, CH(C<u>H</u>₃)₂, ³J(H,H) = 6.9 Hz), 3.30 (zwei überlappende sept., 4H, C<u>H</u>(CH₃)₂, ³J(H,H) = 6.9 Hz), 7.04 (s, 2H, NC<u>H</u>). 7.06 7.14 (m, C₆<u>H</u>₃).²⁵
 ¹¹⁹Sn{¹H} NMR (186.451 MHz, 305 K, d₈-Toluol): δ = 262.
- Dipp-substituiertes α-Aminoaldimin 53:
 ¹<u>H NMR</u> (499.873 MHz, 305 K, D₈-Toluol): δ = 1.16 (d, 12H, CH(C<u>H</u>₃)₂, ³J(H,H) = 7.2 Hz), 1.25 (d, 12H, CH(C<u>H</u>₃)₂, ³J(H,H) = 7.2 Hz), 3.03 (sept., 2H, C<u>H</u>(CH₃)₂, 3.50 (sept., 2H, C<u>H</u>(CH₃)₂, ³J(H,H) = 7.2 Hz), 3.78 (d, 1H, NC<u>H</u>₂, ³J(H,H) = 5.1 Hz), 4.77 (t, 1H, N<u>H</u>, ³J(H,H) = 5.1 Hz), 7.00 7.14 (m, C₆<u>H</u>₃),²⁵ 7.40 (s, 1H, NC<u>H</u>).
- 1-*tert*.-Butyl-3,4,5-trimethyl-benzol, MebpH, **65**:^[253]
 <u>¹H NMR</u> (499.873 MHz, 305 K, D₈-Toluol): δ = 1.30 (s, 9H, C(C<u>H</u>₃)₃), 1.98 (s, 3H, C<u>H</u>₃), 2.16 (s, 6H, C<u>H</u>₃), 7.11 (s, Aryl<u>H</u>).

²⁵ Aufgrund überlappender Signale kann kein Integral angegeben werden.

7.3.7 Umsetzung des Diarylstannylens 65 mit Xylyl-substituiertem α-Aminoaldimin 67

Durchführung:

In einem 50 mL Schlenkkolben, ausgestattet mit Magnetrührkern und Stopfen, wurden 727 mg (1.55 mmol) des Diarylstannylens **65** zusammen mit 412 mg (1.55 mmol) des Xylylsubstituierten α -Aminoaldimins **67** vorgelegt und in ca. 20 mL THF gelöst. Die Reaktionsmischung wurde zunächst 16 Stunden bei 45 °C (± 1 °C) gerührt. Nach dieser Zeit wurde eine NMR-Probe von dem Reaktionsgemisch angefertigt und vermessen (Reaktion nicht beendet, Diarylstannylen noch nachweisbar: δ^{119} Sn = 1342). Nach insgesamt einer Woche Rühren bei 45 °C wurde das Reaktionsgemisch komplett eingeengt. Ein Teil des Feststoffs wurde für eine NMR-spektroskopische Untersuchung in D₆-Benzol (frisch auf die Probe kondensiert) gelöst. Die erhaltene Lösung wurde in ein Schliff-NMR-Röhrchen überführt und NMRspektroskopisch untersucht. Mit dem übrigen Feststoff wurden Kristallisationsversuche aus Benzol, *n*-Hexan und Diethylether durchgeführt. In allen Fällen trat nach einer Aufbewahrung bei –20 °C innerhalb von ca. einem Tag die Zersetzung des Produktes ein (elementares Zinn wurde abgeschieden).

Spektroskopische Ergebnisse:

Neben weiteren nicht identifizierten Nebenprodukten lag ein Stoffgemisch aus MebpH 66 und dem Stannylen 70 im Verhältnis 2 zu 1. Die Zuordnung der Signale im ¹H NMR Spektrum erfolgte durch Integration der Signale im ¹H NMR-Spektrum und durch ¹H¹⁵N HMBC-Spektren. Die Zuordnung der Signale des ¹³C NMR-Spektrums konnte auf Grund des vorliegenden Stoffgemisches nicht vorgenommen werden.

- Xylyl-substituiertes N-heterocyclisches Stannylen 70: ¹<u>H NMR</u> (499.873 MHz, 300 K, C₆D₆): δ = 2.08 (s, 12H, C<u>H</u>₃), 6.87 (s, 2H, NC<u>H</u>), 6.90 - 7.06 (m, 6H, C₆<u>H</u>₃). ¹<u>H¹⁵N HMBC</u> (50.661 MHz, 300 K, C₆D₆): δ = 244.0. ¹¹⁹Sn{¹H} NMR (186.451 MHz, 300 K, C₆D₆): δ = 254.
- 1-*tert*.-Butyl-3,4,5-trimethyl-benzol, MebpH, 66:^[253]
 ¹<u>H NMR</u> (499.873 MHz, 300 K, C₆D₆): δ = 1.35 (s, 9H, C(C<u>H</u>₃)₃), 2.02 (s, 3H, C<u>H</u>₃), 2.21 (s, 6H, C<u>H</u>₃), 7.13 (s, 2H, C₆<u>H</u>₂).

7.3.8 Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Titanocen-bis(trimethylsilyl)acetylen, 84

Durchführung:

In einem 25 mL Schlenkolben wurden 86 mg (0.247 mmol) des Titankomplexes **84** zusammen mit 100 mg (0.247 mmol) des Silylens **41** vorgelegt und anschließend in D₆-Benzol gelöst. Die Reaktionslösung wurde bei Raumtemperatur ca. 16 Stunden gerührt und die Reaktionsmischung wurde NMR-spektroskopisch untersucht. Abschließend wurde das Benzol durch Kältedestillation entfernt und der Rückstand aus *n*-Hexan umkristallisiert. Wiederholte Umkristallisationsversuche führten zu keinem Trennergebnis. Es wurde stets ein schwarzer amorpher Feststoff isoliert.

Spektroskopische Ergebnisse:

Die NMR-Ergebnisse deuteten darauf hin, dass nur freies, nicht komplexiertes Bis(trimethylsilyl)acetylen und ein Cyclopentadienderivat (komplexiert oder frei) im Reaktionsgemisch vorlagen. Signale, die dem Silylen zugeordnet werden können, wurden bei keinem der durchgeführten NMR-Experimente gefunden. 1 <u>H NMR</u> (500.133 MHz, 305 K, C₆D₆): δ = 0.14 (Si(C<u>H</u>₃)₃, Bis(trimethylsilyl)acetylen), 0.77 – 0.90 (m), 1.02 (d), 1.15 – 1.34 (m), 1.45 (d), 1.58 (d), 3.26 (sept. C<u>H</u>(CH₃)₂, **41**), 3.40 (sept.), 3.64 (sept.), 3.99 (sept.), 4.21 (s), 5.56 – 5.93 (m), 6.12 – 6.29 (m), 6.40 (s), 6.48 (m), 7.06 – 7.26 (m).

 $\frac{1^{3}C{^{1}H}}{NMR}$ (125.706 MHz, 305 K, C₆D₆): $\delta = -0.06$ (Si(<u>C</u>H₃)₃, Bis(trimethylsilyl)-acetylen), 1.35, 22.7 - 29.2 (viele schwache Signale), 84.7, 114.1 (C=C, Bis(trimethylsilyl)-acetylen), 126.0, 132.6.

 $\frac{29}{\text{Si}}$ Si $\{^{1}\text{H}\}$ NMR (125.706 MHz, 305 K, C₆D₆): $\delta = -19.5$ (SiMe₃, Bis(trimethylsilyl)acetylen).

7.3.9 Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit der doppelten Menge Titanocen-bis(trimethylsilyl)acetylen, 84

Durchführung:

In einem 25 mL Schlenkkolben wurden 86 mg (0.247 mmol) des Titankomplexes **84** zusammen mit 200 mg (0.495 mmol) des Silylens **41** vorgelegt und anschließend in D_6 -Benzol gelöst. Die Reaktionslösung wurde bei Raumtemperatur ca. 16 Stunden gerührt und die Reaktionsmischung wurde NMR spektroskopisch untersucht. Abschließend wurde das Benzol durch Kältedestillation entfernt und der Rückstand aus *n*-Hexan umkristallisiert. Wiederholte Umkristallisationsversuche führten zu keinem Trennergebnis. Es wurde stets ein schwarzer amorpher Feststoff isoliert.

Spektroskopische Ergebnisse:

Die NMR-Ergebnisse deuteten darauf hin, dass freies, nicht komplexiertes Bis(trimethylsilyl)acetylen im Reaktionsgemisch vorlag. Außerdem waren Signale in den Spektren zu finden, die bestätigen, dass ebenfalls Silylen in der Reaktionslösung vorhanden war. ¹<u>H NMR</u> (500.133 MHz, 305 K, C₆D₆): $\delta = 0.14$ (Si(C<u>H</u>₃)₃, Bis(trimethylsilyl)acetylen), 0.77 – 0.90 (m), 1.02 (d), 1.19 (d, C<u>H</u>₃, **41**), 1.27 (d, C<u>H</u>₃, **41**), 1.33 (d), 1.45 (d), 1.58 (d), 3.26 (sept. C<u>H</u>(CH₃)₂, **41**), 3.40 (sept.), 3.64 (sept.), 3.99 (sept.), 4.21 (s), 5.56 – 5.93 (m), 6.12 – 6.29 (m), 6.45 (s, NC<u>H</u>, **41**), 7.06 – 7.26 (m).

 $\frac{13}{C}$ [¹H] NMR (125.706 MHz, 305 K, C₆D₆): δ = −0.03 (Si(<u>C</u>H₃)₃, Bis(trimethylsilyl)acetylen), 1.4, 24.2 (<u>C</u>H₃, **41**), 25.6 (<u>C</u>H₃, **41**), 28.8 (<u>C</u>H(CH₃)₂, **41**), 22.7 – 29.2 (viele schwache Signale), 84.7, 114.2 (C≡C, Bis(trimethylsilyl)acetylen), 123.7 (<u>C</u>H^{ar}, **41**), 125.5 (N<u>C</u>H, **41**), 126.0, 127.8 (CH^{ar}, **41**), 134.0, 139.3 (CH^{ar}, **41**), 141.5 – 143.0 (viele schwache Signale), 146.0 (CH^{ar}, **41**), 146.2 – 148.4 (viele schwache Signale).

 $\frac{29}{\text{Si}}$ (125.706 MHz, 305 K, C₆D₆): $\delta = 75.9$ (Si:, 41), -19.5 (SiMe₃, Bis(trimethylsilyl)acetylen).

7.3.10 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Titanoncendichlorid, 86, unter reduktiven Bedingungen

Durchführung:

In einem 50 mL Schlenkolben wurden 362 mg (1.46 mmol) des Titanocendichlorids **86** zusammen mit 852 mg (2.91 mmol) des Silylenes **40** vorgelegt und anschließend in THF gelöst. Hierbei trat sofort eine Grünfärbung des Reaktionsgemisches ein. Die Reaktionslösung wurde bei Raumtemperatur ca. 16 Stunden gerührt und die Reaktionsmischung wurde NMR spektroskopisch untersucht. Abschließend wurde das THF durch Kältedestillation entfernt, der Rückstand in 25 mL *n*-Hexan gelöst und die Lösung über eine Fritte (Porengroße 4) filtriert. Das goldgelbe, in hoher Konzentration schwarze, Filtrat wurde bis auf die Hälfte eingeengt und bei –20 °C zur Kristallisation gelagert. Durch wiederholtes Umkristallisieren konnte in allen Fällen nur amorpher schwarzer Feststoff erhalten werden.

Spektroskopische Ergebnisse:

Obwohl hoch konzentrierte Probelösungen für die NMR-Spektroskopie verwendet wurden (stark schwarz gefärbte Lösung) zeigten die NMR-Spektren nur breite Signale des NMR Lösungsmittels D_6 -Benzol. Dieses Ergebnis deutet auf die Bildung eines paramagnetischen Produkts hin. Eine weitere Identifizierung war nicht möglich.

7.3.11 Darstellung eines Silylen - Wolframpentacarbonyl - Komplexes, 77

Durchführung:

Die Synthese wurde analog der Literatur durchgeführt.^[30] Hierfür wurde zunächst der Wolframpentacarbonyl-THF-Komplex **79** entsprechend der Literatur hergestellt, indem 1.203 g (3.42 mmol) W(CO)₆ in THF gelöst und mit UV-Licht bestrahlt wurden.^[163] Anschließend wurden 1 g (3.42 mmol) des Silylens **40** gelöst in 50 mL THF zum W(CO)₅(THF) - Komplex zugegeben und 16 Stunden bei Raumtemperatur gerührt. Abschließend wurde das Reaktionsgemisch bis zur Trockene eingeengt und zweimal aus *n*-Hexan umkristallisiert. Bei Lagerung der *n*-Hexanlösungen bei –20 °C können tief violette Einkristalle des Silylen-Wolframpentacarbonylkomplexes **77** erhalten werden, die für die Röntgenstrukturanalyse geeignet waren. Nach vollständiger Kristallisation konnten 948 mg (1.6 mmol) **77** isoliert werden.

Ausbeute: 948 mg $(1.6 \text{ mmol}) \equiv 47 \% \text{ d. Th.}$

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 2.26 (s, 12H, C<u>H</u>₃), 6.07 (s, 2H, NC<u>H</u>), 7.03 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{128.2 (m-\underline{C}_{6}H_{3}), 135.6 (o-\underline{C}_{6}H_{3}), 139.6 (ipso-\underline{C}_{6}H_{3}), 193.7 (CO^{cis}, {}^{1}J(C,W) = 120.8 Hz), 196.6 (CO^{trans}, {}^{1}J(C,W) = 144.3 Hz).$

 $\frac{15}{16}$ N{¹H} NMR (50.651, 305 K, C₆D₆): $\delta = 170.9$.

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{1}\text{MR}}$ (99.311, 305 K, C₆D₆): δ = 109.1 (^{1}J (Si,W) = 163.6 Hz).

<u>MS (CI, *iso*-Butan)</u> m/z (%): 616.1 (100) $[M^+]$, 560.2 (22) $[M^+-2CO]$, 532.2 (20) $[M^+-3CO]$, 266.3 (16) $[C_{18}H_{22}N_2^+]$.

<u>HRMS (CI, *iso*-Butan)</u>: m/z berechnet 617.0730 [${}^{12}C_{23}{}^{1}H_{21}{}^{14}N_{2}{}^{16}O_{5}{}^{28}Si^{184}W$], m/z gefunden 617.0710.

<u>IR (Nujol)</u> $\tilde{\nu} = 2069 \text{ cm}^{-1}$, 2011 cm⁻¹, 1980 cm⁻¹.

7.3.12 Darstellung von 1,3-Bis(2,6-di-*iso*-propylphenyl)-1,3-diaza-2-chlor-2-trichlormethyl-2-silacyclopent-4-en, 103

Durchführung:

In einem 250 mL Schlenkkolben wurden 3 g (7.41 mmol) des Silylens **41** vorgelegt und in 100 mL *n*-Hexan gelöst. Anschließend wurde die Lösung auf -78 °C abgekühlt und mit einer Lösung aus 2.13 mL (3.4 g, 22.23 mmol) Tetrachlorkohlenstoff, CCl₄, und 10 mL *n*-Hexan versetzt (c = 2.20 molL⁻¹). Die Reaktionslösung wurde 16 Stunden gerührt und während dieser Zeit langsam auf Raumtemperatur erwärmt. Anschließend wurde die Reaktionslösung bis zur beginnenden Kristallisation über eine Kältedestillation eingeengt und zur vollständigen Kristallisation bei -20 °C gelagert. Nach Dekantieren konnten Einkristalle isoliert werden, die für die Einkristallstrukturanalyse verwendbar waren.

Ausbeute: 845 mg (1.51 mmol) kristalline Ausbeute \equiv 20 % d. Th.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (499.873 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.21 \text{ (d, 6H, H8}^{\circ}, {}^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}), 1.25 \text{ (d, 6H, H8}^{\circ}, {}^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}), 1.25 \text{ (d, 6H, H8}^{\circ}, {}^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}), 1.47 \text{ (d, 6H, H7}, {}^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}), 3.65 \text{ (sept., 2H, H6}, {}^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}), 4.03 \text{ (sept., 2H, H6}^{\circ}, {}^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}), 5.76 \text{ (s, 2H, H1)} 7.17 - 7.25 \text{ (m, 6H, H4, H4}^{\circ}, \text{H5}).$

 $\frac{^{13}C{^{1}H} NMR}{^{28.2}(C6^{\circ}), 29.0(C6), 89.9(C9), 120.8(C1), 124.4(C4^{\circ}), 124.5(C4), 128.5(C5), 131.9(C2), 148.2(C3), 148.4(C3^{\circ}).$

 $^{1}H^{15}N$ HMBC (50.661 MHz, 305 K, C₆D₆): $\delta^{15}N = 73.1$.

²⁹Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -37.4$.

<u>MS (CI, *iso*-Butan)</u> m/z (%): 615.3 (3) $[M^++C_4H_9]$, 558.2 (63) $[M^+]$, 523.3 (100) $[M^+-CI]$. <u>HRMS (CI, *iso*-Butan)</u>: m/z berechnet 556.1402 $[{}^{12}C_{27}{}^{1}H_{36}{}^{14}N_2{}^{28}Si{}^{35}Cl_4]$, m/z gefunden 556.1403.

7.3.13 Darstellung von 1,3-Bis(2,6-dimethylphenyl)-1,3-diaza-2-chlor-2-trichlormethyl-2-silacyclopent-4-en, 104

Durchführung:

In einem 500 mL Schlenkkolben wurden 2.003 g (6.85 mmol) des Silylens **40** in 200 mL *n*-Hexan gelöst und auf -78 °C abgekühlt. Über einen Tropftrichter wurden 7.00 mL (11.16 g, 73.5 mmol) Tetrachlorkohlenstoff, CCl₄, gelöst in 70 mL *n*-Hexan (c = 1.05 molL⁻¹) tropfenweise zur gekühlten Lösung gegeben. Die Reaktionslösung wurde 16 Stunden gerührt und während dieser Zeit langsam auf Raumtemperatur erwärmt. Um die während der Reaktion einen Feststoffe von der Reaktionslösung zu trennen, wurde die Lösung über eine

Fritte (Porengroße 4) filtriert. Anschließend wurde das Filtrat über eine Kältedestillation auf ein Volumen von ca. 50 mL eingeengt und bei –20 °C bis zur vollständigen Kristallisation gelagert. Nach Dekantieren konnten Einkristalle isoliert werden, die für die Einkristallstrukturanalyse verwendbar waren.

Ausbeute: 1.333 mg (2.99 mmol) kristalline Ausbeute \equiv 44 % d. Th.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 2.50 (s, 6H, H6/6[']), 2.53 (s, 6H, H6/6[']), 5.47 (s, 2H, H1), 7.01 (m, 6H, H4/4['], H5).

 $\frac{^{13}C{^{1}H} \text{ NMR}}{(125.436 \text{ MHz}, 305 \text{ K}, C_6D_6): \delta} = 19.4 (C6/6'), 19.9 (C6/6'), 89.6 (C7), 119.2 (C1), 127.3 (C5), 129.12 (C4/4'), 129.13 (C4/4'), 137.5 (C3/3'), 137.9 (C3/3'), 139.7 (C2).$

¹<u>H¹⁵N HMBC</u> (50.662 MHz, 305 K, C₆D₆): δ^{15} N = 75.8.

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.305 MHz, 305 K, C₆D₆): $\delta = -38.8$.

<u>MS (CI, *iso*-Butan)</u> m/z (%): 446.2 (47) $[M^+]$, 409.2 (59) $[M^+-C1]$, 362.2 (100) $[C_{18}H_{20}Cl_2N_2Si^+]$, 122.2 (100) $[C_8H_{12}N^+]$.

<u>HRMS (EI, 70 eV)</u>: berechnet 444.0150 [${}^{12}C_{19}{}^{1}H_{20}{}^{14}N_{2}{}^{28}Si^{35}Cl_{4}$], gefunden 444.0162.

7.3.14 Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Tetrabromkohlenstoff

Durchführung:

In einem 250 mL Dreihalskolben, ausgestattet mit Gaseinlass, Magnetrührkern und Krümmer, wurden 500 mg des Silylens **41** (1.23 mmol) in 100 mL *n*-Hexan gelöst. In einem weiteren Schlenkkolben (100 mL) wurden 409.7 mg (1.23 mmol) Tetrabromkohlenstoff vorgelegt, entgast und in 50 mL *n*-Hexan gelöst. Anschließend wurde die Tetrabromkohlenstofflösung bei Raumtemperatur über den Krümmer der Silylenlösung zugefügt und 2 Stunden bei Raumtemperatur gerührt. Die NMR-spektroskopische Untersuchung einer Probe des Reaktionsgemisches zeigte keinen Umsatz der Edukte. Anschließend wurde das Reaktionsgemische 48 Stunden bis zum Sieden erhitzt und der Reaktionsfortschritt wurde mit NMR-Spektroskopie ermittelt.

Spektroskopische Ergebnisse:

Im abschließenden ¹³C NMR-Spektrum waren neben vielen kleinen Signalen mit sehr schwacher Intensität (nahe dem Grundrauschen) keine Signale außer denen des Lösungsmittels zu erkennen. Im dazugehörigen ²⁹Si NMR-Spktrum konnten ebenfalls keine Signale beobachtet werden. Das ¹H NMR der Probe nach 48 stündigem Erhitzen deutete auf Grund der vielen breiten und intensiven Signale auf eine völlige Zersetzung des Silylens und auf die Bildung weiterer nicht identifizierter Produkte hin.

Charakterisierung:

¹<u>H NMR</u> (500.133 MHz, 305 K, C₆D₆): $\delta = 0.75 - 1.63$ (m), 1.39 (s), 3.06 - 4.11 (m), 5.30 (s), 5.37 (s), 5.47 (s), 5.54 (s), 5.59 (s), 5.60 (s), 5.63 - 5.85 (m), 6.84 - 7.26 (m).

 $\frac{{}^{13}\text{C}\{{}^{1}\text{H}\}\text{ NMR}}{125.436} \text{ MHz}, 305 \text{ K}, \text{ C}_6\text{D}_6\text{)}: \delta = 22.2 - 34.8, 42.0, 113.5, 120.1 - 126.1, 134.2, 139.6, 143.1, 148.0.$

7.3.15 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Tetrabromkohlenstoff

Durchführung:

In einem 100 mL Schlenkkolben wurden 298 mg des Silylens **40** (1.02 mmol) vorgelegt und in 30 mL *n*-Hexan gelöst. In einem weiteren Schlenkkolben (100 mL) wurden 1720 mg (5.19 mmol) frisch sublimierten Tetrabromkohlenstoffs (55 °C, $2.3 \cdot 10^{-2}$ mbar) in 10 mL *n*-Hexan gelöst. Die Tetrabromkohlenstofflösung wurde langsam zur Silylenlösung getropft wobei sich eine intensive Braunfärbung einstellte. Das Reaktionsgemisch wurde unter Rühren langsam in einem Zeitraum von 16 Stunden auf Raumtemperatur erwärmt. Die während der Reaktion entstandenen Feststoffe wurden durch Dekantieren von der Reaktionslösung getrennt. Die Reaktionslösung wurde mit GC/MS untersucht. Anschließend wurde sie auf ein Volumen von ca. 10 mL über eine Kältedestillation eingeengt und der dabei entstehende Feststoff isoliert. Abschließend wurden die vereinigten Feststoffe im Hochvakuum getrocknet.

Ausbeute: $341 \text{ mg} (0.75 \text{ mmol}) \equiv 74 \% \text{ d. Th.}$

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 2.49 (s, 12H, C<u>H</u>₃), 5.54 (s, 2H, NC<u>H</u>), 7.01 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{\underline{C}_{6}H_{3}}, 125.706 \text{ MHz}, 305 \text{ K}, C_{6}D_{6}: \delta = 19.5 (\underline{C}H_{3}), 119.5 (p-\underline{C}_{6}H_{3}), 127.4 (m-\underline{C}_{6}H_{3}), 137.7 (ipso-\underline{C}_{6}H_{3}), 138.3 (o-\underline{C}_{6}H_{3}).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.305 MHz, 305 K, C₆D₆): $\delta = -64.8$.

<u>GC/MS</u> (Reaktionslösung) rt: 4.06 min m/z (%): 171 (50) $[{}^{1}H^{12}C^{79}Br_{2}^{+}]$, 173 (100) $[{}^{1}H^{12}C^{79}Br^{81}Br^{+}]$, 175 (45) $[{}^{1}H^{12}C^{81}Br_{2}^{+}]$, 250 (30) $[{}^{1}H^{12}C^{79}Br_{3}^{+}]$, 252 (91) $[{}^{1}H^{12}C^{79}Br_{2}^{81}Br^{+}]$, 254 (100) $[{}^{1}H^{12}C^{79}Br^{81}Br_{2}^{+}]$, 256 (34) $[{}^{1}H^{12}C^{81}Br_{3}^{+}]$.

<u>Berechnet HCBr₂</u> m/z (%): 170.8 (51) [¹H¹²C⁷⁹Br₂⁺], 172.8 (100) [¹H¹²C⁷⁹Br⁸¹Br⁺], 174.8 (49) [¹H¹²C⁸¹Br₂⁺]. <u>Berechnet HCBr₃</u> m/z (%): 249.8 (34) [¹H¹²C⁷⁹Br₃⁺], 251.8 (100) [¹H¹²C⁷⁹Br₂⁸¹Br⁺], 253.8 (97) [¹H¹²C⁷⁹Br⁸¹Br₂⁺], 256 (32) [¹H¹²C⁸¹Br₃⁺].

7.3.16 Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Tetrachlorsilan

Durchführung:

In einem 250 mL Schlenkkolben wurde 1 g des Silylens **41** (2.47 mmol) vorgelegt und in 125 mL *n*-Hexan gelöst. Anschließend wurde bei –78 °C eine Lösung von 283 μ L (420 mg, 2.47 mmol) Tetrachlorsilan, SiCl₄, in 20 mL *n*-Hexan langsam zur Silylenlösung getropft. Das Reaktionsgemisch wurde unter Rühren in einem Zeitraum von 16 Stunden langsam auf Raumtemperatur erwärmt. Die erhaltene Reaktionslösung wurde NMR-spektrokopisch untersucht. Abschließend wurde die Reaktionslösung über eine Kältedestillation eingeengt und der Rückstand dreimal aus *n*-Hexan umkristallisiert. Eine Trennung des Produktgemisches gelang auch durch Umkristallisation nicht.

Spektroskopische Ergebnisse:

Die chemische Verschiebung und die Aufspaltung der Signale in den ¹H, ¹³C und ²⁹Si NMR-Spektren deuteten auf die Bildung eines Gemisches aus dem 1:1 und dem 1:2 Addukt aus Silylen und Tetrachlorsilan hin. Anhand des ¹H NMR-Spektrum ließen sich diese Verbindungen als Hauptprodukte identifizieren. Neben weiteren Produkten konnte nicht umgesetztes Silylen mit Hilfe des ²⁹Si NMR Spektrums nachgewiesen werden.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 1.22 (d, is), 1.27 (d, is), 1.30 (d, is), 1.33 (d, is), 1.45 (s, is), 3.09 (sept., ws), 3.20 (sept., ws), 3.47 (sept., is), 3.57 (sept., ws), 3.86 (sept., is), 5.62 (s, ws), 5.77 (s, ws), 5.78 (s, is), 5.84 (s, ws), 5.92 (s, ws), 6.04 (s, ws), 6.48 (s, is), 6.51 (s, is), 7.13 – 7.27 (m).

 $\frac{{}^{13}C{}^{1}H}{18} NMR (125.706 MHz, 305 K, C_6D_6): \delta = 23.0 (ws), 23.7 (ws), 24.1 (is), 24.3 (ws), 24.5 (is), 25.2 (is), 25.6 (is), 27.2 (ws), 28.4 (is), 28.8 (is), 31.9 (ws), 119.0 (ws), 119.3 - 119.6 (ws), 119.8 (is), 123.4 (ws), 123.7 (ws), 123.9 (ws), 124.0 (is), 124.1 - 124.4 (ws), 124.7 (is), 126.0 (is), 136.5 (is), 137.7 (ws), 142.4 (ws), 146.1 (ws), 147.7 (is), 148.0 - 148.4 (ws), 148.7 (is).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\} \text{ NMR}}{^{1}\text{M}} (99.305 \text{ MHz}, 305 \text{ K}, \text{C}_6\text{D}_6): \delta = 75.9 \text{ (Si}, \textbf{41}), -31.7, -37.6, -41.7.$

7.3.17 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Tetrachlorsilan

Durchführung:

In einem 100 mL Schlenkkolben wurden 303 mg (1.04 mmol) des Silylens **40** in 30 mL *n*-Hexan gelöst und auf –78 °C abgekühlt. Anschließend wurde bei –78 °C eine Lösung von 0.90 mL (1.335 mg, 7.86 mmol) Tetrachlorsilan, SiCl₄, in 10 mL *n*-Hexan langsam zur Silylenlösung getropft. Das Reaktionsgemisch wurde unter Rühren in einem Zeitraum von 16 Stunden langsam auf Raumtemperatur erwärmt. Die während der Reaktion entstandenen Feststoffe wurden durch Dekantieren von der Reaktionslösung getrennt und die Reaktionslösung wurde auf ein Volumen von ca. 10 mL über eine Kältedestillation eingeengt. Der dabei entstehende Feststoff wurde isoliert und im Hochvakuum getrocknet.

Ausbeute: 190 mg $(0.52 \text{ mmol}) \equiv 50 \% \text{ d. Th.}$

Charakterisierung:

<u>¹H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 2.46 (s, 12H, C<u>H</u>₃), 5.50 (s, 2H, NC<u>H</u>), 7.00 (m, 6H, C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{129.0 (m-\underline{C}_{6}H_{3}), 137.7 (o-\underline{C}_{6}H_{3}), 138.4 (ipso-\underline{C}_{6}H_{3}), 118.6 (N\underline{C}H), 127.4 (p-\underline{C}_{6}H_{3}), 129.0 (m-\underline{C}_{6}H_{3}), 137.7 (o-\underline{C}_{6}H_{3}), 138.4 (ipso-\underline{C}_{6}H_{3}).$

7.3.18 Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 40 mit Tetrabromsilan

Durchführung:

In einem 250 mL Schlenkkolben wurden 1 g (2.47 mmol) des Silylens **41** vorgelegt, in 100 mL *n*-Hexan gelöst und auf –78 °C abgekühlt. Anschließend wurden 306 μ L (0.858 mg, 2.47 mmol) Tetrabromsilan, SiBr₄, gelöst in 25 mL *n*-Hexan langsam zur Silylenlösung getropft. Die Reaktionslösung wurde 16 Stunden gerührt und während dieser Zeit langsam auf Raumtemperatur erwärmt. Anschließend wurde die Reaktionslösung bis zur beginnenden Kristallisation über eine Kältedestillation eingeengt und zur vollständigen Kristallisation bei -20 °C gelagert. Nach Dekantieren konnte ein farbloser Feststoff isoliert werden, der im Hochvakuum getrocknet wurde.

Ausbeute: 781 mg (1.38 mmol) \equiv 56 % d. Th.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (499.873 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.22 \text{ (d, 12H, H-7, }^{3}J(\text{H,H}) = 6.9 \text{ Hz}), 1.41 \text{ (d, 12H, H-7', }^{3}J(\text{H,H}) = 6.9 \text{ Hz}), 3.75 \text{ (sept., 2H, H-6, }^{3}J(\text{H,H}) = 6.9 \text{ Hz}), 5.79 \text{ (s, 2H, H-1)}, 7.18 \text{ (m, 4H, H-4)}, 7.24 \text{ (m, 2H, H-5)}.$

 $\frac{^{13}C{^{1}H} NMR}{125.706 MHz}$ (125.706 MHz, 305 K, C₆D₆): $\delta = 24.0$ (C-7/7[°]), 26.2 (C-7/7[°]), 28.8 (C-6), 120.6 (C-1), 124.6 (C-5), 128.5 (C-4), 135.3 (C-3), 148.5 (C-3).

²⁹Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -59.3$.

7.3.19 Darstellung von 1,3-Bis(2,6-diisopropylphenyl)-1,3-diaza-2,2-dibromsilacyclopent-4-en, 51b

Durchführung:

In einem 250 mL Dreihalskolben, ausgestattet mit Magnetrührkern, Gaseinlass und Krümmer, wurden 3.34 g (8.9 mmol) des Diazabutadiens **49** vorgelegt, entgast und anschließend in 110 mL THF gelöst. Die Lösung wurde auf 0 °C abgekühlt und im Argon-Gegenstrom wurden 0.13 g (18.7 mmol) gut gesäubertes, kleingeschnittenes Lithium zugegeben. Das Eisbad wurde entfernt und das Reaktionsgemisch wurde langsam in einem Zeitraum von 16 Stunden unter Rühren auf Raumtemperatur erwärmt. Die entstandene tiefrote Reaktionslösung wurde erneut auf –40 °C gekühlt. Anschließend wurden 1.1 mL (8.9 mmol) Siliciumtetrabromid, SiBr₄, schnell über den Krümmer der Reaktionslösung zugefügt. Nach der Zugabe wurde das Kältebad sofort entfernt und die Reaktionslösung wurde in einem Zeitraum von einer Stunde langsam auf Raumtemperatur erwärmt. Zur Aufarbeitung wurde das Lösungsmittel über eine Kältedestillation entfernt, der Rückstand im Hochvakuum getrocknet und erneut in 250 mL *n*-Hexan gelöst. Die nicht löslichen Salze wurden durch Filtration über eine Fritte (Porengröße 4) von der Lösung getrennt. Anschließend wurde das Filtrat bis zur beginnenden Kristallisation des Produkts über eine Kältedestillation eingeengt. Durch fraktionierte Kristallisation bei –20 °C konnte das Produkt erhalten werden.

Ausbeute: 2.29 g (4.06 mmol) \equiv 46% d. Th.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (499.873 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.21 \text{ (d, 12H, H-7, }^{3}J(\text{H,H}) = 7.0 \text{ Hz}), 1.40 \text{ (d, 12H, H-7', }^{3}J(\text{H,H}) = 7.0 \text{ Hz}), 3.75 \text{ (sept., 2H, H-6, }^{3}J(\text{H,H}) = 7.0 \text{ Hz}), 5.79 \text{ (s, 2H, H-1)}, 7.18 \text{ (m, 4H, H-4)}, 7.24 \text{ (m, 2H, H-5)}.$

 $\frac{^{13}\text{C}\{^{1}\text{H}\}\text{ NMR}}{125.706 \text{ MHz}, 305 \text{ K}, \text{ C}_{6}\text{D}_{6}\text{)}: \delta = 24.0 \text{ (C-7/7')}, 26.2 \text{ (C-7/7')}, 28.8 \text{ (C-6)}, 120.7 \text{ (C-1)}, 124.6 \text{ (C-5)}, 128.5 \text{ (C-4)}, 135.4 \text{ (C-3)}, 148.5 \text{ (C-3)}.$

²⁹Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -59.3$.

7.3.20 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Tetrabromsilan

Durchführung:

In einem 100 mL Schlenkkolben wurden 308 mg (1.05 mmol) des Silylens **40** vorgelegt, in 30 mL *n*-Hexan gelöst und auf -78 °C abgekühlt. Anschließend wurden 1.00 mL (8.05 mmol) Tetrabromsilan, SiBr₄, gelöst in 10 mL *n*-Hexan zur Silylenlösung getropft. Das Reaktionsgemisch wurde unter Rühren in einem Zeitraum von 16 Stunden langsam auf Raumtemperatur erwärmt. Der während der Reaktion entstandene Feststoff wurde durch Dekantieren von der Reaktionslösung getrennt und die Reaktionslösung wurde über eine Kältedestillation bis zur beginnenden Kristallisation des Produktes eingeengt und bei -20 °C zur vollständigen Kristallisation des Produktes gelagert. Anschließend wurde der ausgefallene Feststoff von der Mutterlauge getrennt und die vereinigten Feststoffe wurden im Hochvakuum getrocknet.

Ausbeute: $126 \text{ mg} (0.28 \text{ mmol}) \equiv 27 \% \text{ d. Th.}$

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): $\delta = 2.50$ (s, 12H, H-6), 5.53 (s, 2H, H-1), 7.01 (m, 4H, H-4, H-5).

 $\frac{{}^{13}\text{C}\{{}^{1}\text{H}\}\text{ NMR}}{(125.706 \text{ MHz}, 305 \text{ K}, \text{C}_6\text{D}_6): \delta} = 19.5 \text{ (C-6)}, 119.5 \text{ (C-1)}, 127.4 \text{ (C-5)}, 129.1 \text{ (C-4)}, 137.7 \text{ (C-3)}, 138.3 \text{ (C-3)}.$

²⁹Si{¹H}-NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -64.8$.

7.3.21 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Germanium(II)chlorid · Dioxan

Durchführung:

In einem 50 mL Schlenkkolben wurden 301 mg (1.03 mmol) des Silylens **40** vorgelegt, in 10 mL THF gelöst und auf -78 °C abgekühlt. Zu dieser Lösung wurden 1200 mg (5.18 mmol) Germanium(II)chlorid · Dioxan gelöst in 10 mL THF getropft. Das Reaktionsgemisch wurde unter Rühren in einem Zeitraum von 16 Stunden langsam auf Raumtemperatur erwärmt. Anschließend wurde die Reaktionslösung über eine Kältedestillation bis zur Trockene eingeengt, der erhalte Rückstand im Hochvakuum getrocknet und NMR-spektroskopisch untersucht. Nachfolgendes Umkristallisieren aus *n*-Hexan führte nicht zur Trennung des entstandenen Produkts von nicht umgesetztem Germanium(II)dichlorid · Dioxan, somit konnte keine Ausbeute bestimmt werden.

Spektroskopische Ergebnisse:

Die chemische Verschiebung und die Aufspaltung der Signale in den ¹H, ¹³C und ²⁹Si NMR-Spektren deuteten auf die Bildung der literaturbekannten Verbindung **52a** hin. Des Weiteren ließ sich anhand der Signale im ²⁹Si NMR-Spektrum vermuten, dass die Spiroverbindung **129** entstanden ist.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): $\delta = 2.13$ (s, 6H, nicht zugeordnet), 2.38 (s, 12H, C<u>H₃</u>), 5.51 (s, 2H, NC<u>H</u>), 7.00 (m, 4H, C₆<u>H₃</u>).

 $\frac{{}^{13}C{}^{1}H}{129.0 (m-\underline{C}_{6}H_{3}), 137.6 (o-\underline{C}_{6}H_{3}), 138.1 (ipso-\underline{C}_{6}H_{3}), 118.5 (N\underline{C}H), 127.4 (p-\underline{C}_{6}H_{3}), 129.0 (m-\underline{C}_{6}H_{3}), 137.6 (o-\underline{C}_{6}H_{3}), 138.1 (ipso-\underline{C}_{6}H_{3}).$

²⁹Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -41.2$ (SiCl₂), -47.6 (ws, Si(NN)₂, **129**).

7.3.22 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Zinn(II)chlorid

Durchführung:

In einem 50 mL Schlenkkolben wurden 304 mg (1.04 mmol) des Silylens **40** vorgelegt, in 10 mL THF gelöst und auf –78 °C abgekühlt. Unter Rühren wurden zu dieser Lösung über eine Spritze 1000 mg (5.27 mmol) Zinn(II)chlorid, gelöst in 5 mL THF, getropft. Das Reaktionsgemisch färbte sich bei der Zugabe dunkelbraun und nach 50 min tiefschwarz. Das Reaktionsgemisch wurde unter Rühren in einem Zeitraum von 16 Stunden langsam auf Raumtemperatur erwärmt. Nach 16 Stunden Reaktionszeit lag eine orange gefärbte Lösung vor, die über eine Kältedestillation bis zur Trockene eingeengt wurde. Der erhaltene Feststoff wurde viermal mit jeweils 2 mL Benzol extrahiert (Abtrennen des überschüssigen Zinndichlorids). Die vereinigten Extrakte wurden über eine Kältedestillation bis zur Trockene eingeengt und der Rückstand wurde aus Toluol umkristallisiert. Der nach der Kristallisation erhaltene Feststoff wurde NMR-spektroskopisch und massenspektrometrisch untersucht.

Spektroskopische Ergebnisse:

Die chemische Verschiebung und die Aufspaltung der Signale in den ¹H, ¹³C und ²⁹Si NMR-Spektren deuteten auf die Bildung der Spiroverbindung **129** hin. Des Weiteren ließ sich anhand der Signale im ¹¹⁹Sn NMR-Spektrum und der Ergebnisse aus der Massenspektrometrie vermuten, dass ein Verbindung **130**, die aus zwei Silylenen und zwei SnCl₂- Einheiten aufgebaut sein muss, entstanden ist (vgl.: Abschnitt 4.3.1). Aufgrund des vorliegenden nicht trennbaren Gemisches konnte keine Ausbeute ermittelt werden.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 303 K, C₆D₆): δ = 1.61 (s, 6H), 2.08 (s, 2H), 2.48 (s, 12H), 5.38 (s), ²⁶ 5.53 (s, 2H), 6.97 (m), ²⁶ 7.06 (m, 4H).

 $\frac{{}^{13}C{}^{1}H}{(CH), 126.5 (CH), 128.6 (CH), 137.3 (C^q), 140.3 (C^q), 168.5 (C^q). (CH), 21.4 (CH₃/CH), 117.0 (CH), 126.5 (CH), 128.6 (CH), 137.3 (C^q), 140.3 (C^q), 168.5 (C^q). (CH), 21.4 (CH₃/CH), 21.4 (CH_{3$}

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.305 MHz, 303 K, C₆D₆): $\delta = -27.9, -47.5$ (Si(NN)₂, **129**), -66.7.

¹¹⁹Sn{¹H} NMR (186.405 MHz, 303 K, C₆D₆): $\delta = -125$ (sehr breites Signal).

 $\underline{\text{MS (EI, 70 eV)}} \ m/z \ (\%): 556 \ (100) \ [{}^{12}\text{C}_{36}{}^{1}\text{H}_{40}{}^{14}\text{N}_{4}{}^{28}\text{Si}], 557 \ (46) \ [{}^{12}\text{C}_{36}{}^{1}\text{H}_{40}{}^{14}\text{N}_{4}{}^{28}\text{Si} + 1], 558 \ (15) \ [{}^{12}\text{C}_{36}{}^{1}\text{H}_{40}{}^{14}\text{N}_{4}{}^{28}\text{Si} + 2], \ 962 \ (60) \ [{}^{12}\text{C}_{36}{}^{1}\text{H}_{40}{}^{35}\text{Cl}_{4}{}^{14}\text{N}_{4}{}^{28}\text{Si}_{2}{}^{120}\text{Sn}_{2} - 2], \ 964 \ (100) \ [{}^{12}\text{C}_{36}{}^{1}\text{H}_{40}{}^{35}\text{Cl}_{4}{}^{14}\text{N}_{4}{}^{28}\text{Si}_{2}{}^{120}\text{Sn}_{2} - 2], \ 964 \ (100) \ [{}^{12}\text{C}_{36}{}^{1}\text{H}_{40}{}^{35}\text{Cl}_{4}{}^{14}\text{N}_{4}{}^{28}\text{Si}_{2}{}^{120}\text{Sn}_{2} + 2].$

Berechnet **129** m/z (%): 556.3 (100) [${}^{12}C_{36}{}^{1}H_{40}{}^{14}N_{4}{}^{28}Si$], 557.3 (39) [${}^{12}C_{36}{}^{1}H_{40}{}^{14}N_{4}{}^{28}Si + 1$], 558.3 (10) [${}^{12}C_{36}{}^{1}H_{40}{}^{14}N_{4}{}^{28}Si + 2$]. Berechnet **130** m/z (%): 962.0 (78) [${}^{12}C_{36}{}^{1}H_{40}{}^{35}Cl_{4}{}^{14}N_{4}{}^{28}Si_{2}{}^{120}Sn_{2} - 2$], 964 (100) [${}^{12}C_{36}{}^{1}H_{40}{}^{35}Cl_{4}{}^{14}N_{4}{}^{28}Si_{2}{}^{120}Sn_{2}$], 966 (67) [${}^{12}C_{36}{}^{1}H_{40}{}^{35}Cl_{4}{}^{14}N_{4}{}^{28}Si_{2}{}^{120}Sn_{2} + 2$].

7.3.23 Umsetzung des Dipp-substituierten N-heterocyclischen Silylens 41 mit Di-(*tert.*-butyl)-dibromsilan

Durchführung:

In einem 250 mL Schlenkkolben wurden 898.3 mg (2.22 mmol) des Silylens **41** vorgelegt, in 100 mL *n*-Hexan gelöst und auf -78 °C abgekühlt. Anschließend wurden in der Kälte 672 mg (2.22 mmol) des Di-(*tert*.-butyl)-dibromsilans gelöst in 20 mL *n*-Hexan langsam zur Silylenlösung getropft. Die Reaktionslösung wurde 1 Stunde bei -78 °C gerührt und anschließend in einem Zeitraum von 16 Stunden langsam unter Rühren auf Raumtemperatur erwärmt.

²⁶ Aufgrund überlappender Signale kann kein Integral angegeben werden.

Über NMR-Spektroskopie der Reaktionslösung wurde ermittelt, dass noch keine Reaktion abgelaufen war. Nach vier weiteren Tagen Rühren bei Raumtemperatur konnte ebenfalls kein Reaktionsumsatz beobachtet werden. Anschließend wurde die Reaktionslösung 12 Stunden bis zum Sieden erhitzt, wobei sich ein unlöslicher Feststoff bildete. Abschließend wurde die Reaktionslösung NMR-spektroskopisch untersucht.

Spektroskopische Ergebnisse:

Durch die abschließende NMR-spektroskopische Untersuchung der Reaktionslösung konnte nur Di-(*tert*.-butyl)-dibromsilan nachgewiesen werden. Die NMR-Spektren zeigten keine Signale, die Reaktionsprodukten von **41** zugeordnet werden konnten. Die drastischen Reaktionsbedigungen führten wahrscheinlich zur Zersetzung des Silylens und zur Bildung von unlöslichen Zerfallsprodukten.

Charakterisierung:

NMR-spektroskopische Ergebnisse bevor die Reaktionslösung 12 Stunden zum Sieden erhitzt wurde:

¹<u>H NMR</u> (499.873 MHz, 303 K, C₆D₆): $\delta = 1.10$ (s, 18H, C(C<u>H</u>₃)₃, **125**), 1.26 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.2 Hz, **41**), 1.33 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.2 Hz, **41**), 3.32 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 7.2 Hz, **41**), 6.51 (s, 2H, NC<u>H</u>, **41**), 7.13 – 7.31 (m, 6H, C₆H₃, **41**).

 $\frac{{}^{13}C{}^{1}H}{NMR} (125.706 \text{ MHz}, 303 \text{ K}, C_6D_6): \delta = 24.4 (CH(\underline{C}H_3)_2, 41), 25.6 (CH(\underline{C}H_3)_2, 41), 25.9 (C(CH_3)_3, 125), 27.2 (C(\underline{C}H_3)_3, 125), 28.7 (\underline{C}H(CH_3)_2, 41), 123.7 (m-\underline{C}_6H_3, 41), 125.4 (N\underline{C}H, 41), 127.8 (p-\underline{C}_6H_3, 41), 139.3 ($ *ipso-* $\underline{C}_6H_3, 41), 146.1 (o-\underline{C}_6H_3, 41).$

²⁹Si{¹H} NMR (99.305 MHz, 303 K, C₆D₆): $\delta = 45.4$ (**125**), 76.1(**41**).

NMR-spektroskopische Ergebnisse nachdem die Reaktionslösung 12 Stunden bis zum Sieden erhitzt wurde:

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (499.873 \text{ MHz}, 303 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.10 \text{ (s, 18H, C}(\text{C}\text{H}_{3})_{3}, {}^{1}J(\text{C},\text{H}) = 127.3 \text{ Hz}, 125).$ $\frac{^{13}\text{C}\{^{1}\text{H}\}}{^{1}\text{NMR}} (125.706 \text{ MHz}, 303 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 26.0 (\underline{\text{C}}(\text{C}\text{H}_{3})_{3}), 27.2 (\underline{\text{C}}(\underline{\text{C}}\text{H}_{3})_{3}, 125).$ $^{29}\text{Si}\{^{1}\text{H}\} \text{ NMR} (99.362 \text{ MHz}, 300 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 45.4 (125).$

7.3.24 Umsetzung des Xylyl-substituierten N-heterocyclischen Silylens 40 mit Di(*tert.*-butyl)-dibromsilan

Durchführung:

In einem 250 mL Schlenkkolben wurden 691.1 mg (2.36 mmol) des Silylens **40** vorgelegt, in 100 mL *n*-Hexan gelöst und auf –78 °C abgekühlt. Anschließend wurden in der Kälte 714 mg (2.36 mmol) des Di-(*tert.*-butyl)-dibromsilans gelöst in 20 mL *n*-Hexan langsam zur Silylenlösung getropft. Die Reaktionslösung wurde 1 Stunde bei –78 °C gerührt und anschließend in einem Zeitraum von 16 Stunden langsam unter Rühren auf Raumtemperatur erwärmt. Eine NMR spektroskopische Untersuchung der Reaktionslösung zeigte, dass noch keine Reaktion abgelaufen war. Anschließend wurde die Reaktionslösung 12 Stunden bis zum Sieden erhitzt. Auch nach Erwärmen konnte keine Reaktion beobachtet werden (NMR Kontrolle). Abschließend wurde die Reaktionslösung 4 Stunden mit einer Quecksilberdampflampe bestrahlt, bis zur Trockene eingeengt und der Rückstand NMR-spektroskopisch untersucht.

Spektroskopische Ergebnisse:

Durch die abschließende NMR-spektroskopische Untersuchung der Reaktionslösung konnte nur Di-(*tert*.-butyl)-dibromsilan nachgewiesen werden. Da keine weiteren Signale im ¹H NMR-Spektrum detektiert wurden und die Verbindung mittels ²⁹Si NMR-Spektrum eindeutig identifiziert werden konnte, wurde kein zusätzliches ¹³C NMR-Experiment durchgeführt.

Charakterisierung:

NMR-spektroskopische Ergebnisse nachdem die Reaktionslösung 4 Stunden mit einer Quecksilberdampflampe bestrahlt wurde:

¹<u>H NMR</u> (499.873 MHz, 303 K, C_6D_6): $\delta = 1.10$ (s, 18H, $C(CH_3)_3$, **125**).

²⁹Si{¹H} NMR (99.305 MHz, 303 K, C₆D₆): δ = 45.4 (**125**).
7.3.25 Umsetzung des *tert.*-Butyl-substituierten gesättigten N-heterocyclischen Silylens 45 mit Di-(*tert.*-butyl)-dibromsilan

Durchführung:

In einem 250 mL Schlenkkolben wurden 548 mg (0.69 mmol) des Tetramers **75** des Silylens **45** zusammen mit 834 mg (2.76 mmol) Di(*tert.*-butyl)-dibromsilan vorgelegt und in 150 mL *n*-Hexan gelöst. Anschließend wurde die Reaktionslösung bei Raumtemperatur 16 Stunden gerührt und über eine Kältedestillation bis zur Trockene eingeengt. Abschließend wurde der Rückstand in C_6D_6 gelöst und NMR spektroskopisch untersucht.

Spektroskopische Ergebnisse:

Die NMR-Spektren zeigten, dass unter den gewählten Bedingungen keine Reaktion ablief. Beide Edukte konnten in der NMR-Probe nebeneinander nachgewiesen werden.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 303 K, C₆D₆): $\delta = 1.10$ (s, 18H, C(C<u>H</u>₃)₃, **125**), 1.31 (s, 18H, C(C<u>H</u>₃)₃, **45**), 3.20 (s, 2H, NC<u>H</u>₂, **45**).

 $\frac{{}^{13}C{}^{1}H}{31.7 (C(\underline{CH}_3)_3, 45), 45.5 (N\underline{CH}_2, 45), 52.5 (\underline{C}(CH_3)_3, 45), 27.2 (C(\underline{CH}_3)_3, 125), 31.7 (C(\underline{CH}_3)_3, 45), 45.5 (N\underline{CH}_2, 45), 52.5 (\underline{C}(CH_3)_3, 45).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.305 MHz, 303 K, C₆D₆): δ = 45.4 (**125**), 118.6 (**45**).

7.3.26 Umsetzung des Xylyl-substituierten ungesättigten N-heterocyclischen Silylens 40 mit Diphenyldichlorsilan

Durchführung:

In einem 10 mL Schlenkrohr wurden 0.2 mL (242 mg, 0.95 mmol) Diphenyldichlorsilan, **126** vorgelegt. Unter Rühren bei Raumtemperatur wurden 92.6 mg (0.31 mmol) des Silylens **40** gelöst in 0.8 mL D₈-Toluol langsam zur Dichlorsilanlösung getropft. Die Reaktionsmischung wurde 12 Stunden bei Raumtemperatur gerührt. Die anschließende Reaktionskontrolle mittels NMR-Spektroskopie zeigte das unveränderte Vorliegen der Edukte in der Reaktionsmischung. Anschließend wurde die Probe in einen 25 mL Schlenkkolben überführt, mit 10 mL Toluol verdünnt und 16 Stunden bis zum Sieden erhitzt. Abschließen wurde die Reaktionslösung bis zur Trockene eingeengt und der Rückstand für NMR-spektroskopische Untersuchungen in D₈-Toluol gelöst.

Spektroskopische Ergebnisse:

Die Ergebnisse der NMR-spektroskopischen Untersuchungen waren für beide Proben identisch. Es konnte kein Reaktionsumsatz festgestellt werden.

Charakterisierung:

¹<u>H NMR</u> (500.133 MHz, 300 K, D₈-Toluol): δ = 2.27 (s, 12H, C<u>H</u>₃, **40**), 6.27 (s, 2H, NC<u>H</u>, **40**), 7.07 (m, 6H, C₆<u>H</u>₃, **40**), 7.47 (*m*-C₆<u>H</u>₅, **126**), 7.51 (*p*-C₆<u>H</u>₅, **126**), 7.74 (*o*-C₆<u>H</u>₅, **126**).

 $\frac{{}^{13}C{}^{1}H}{126.5} \text{ NMR} (125.772 \text{ MHz}, 300 \text{ K}, D_8\text{-Toluol}): \delta = 18.5 (\underline{C}H_3, 40), 124.1 (N\underline{C}H, 40), 126.5 (p-\underline{C}_6H_3, 40), 128.6 (m-\underline{C}_6H_3, 40), 128.5 (m-\underline{C}_6\underline{H}_5, 126), 131.7 (p-\underline{C}_6\underline{H}_5, 126), 132.2 (ipso-\underline{C}_6\underline{H}_5, 126), 134.5 (o-\underline{C}_6\underline{H}_5, 126), 135.0 (o-\underline{C}_6H_3, 40), 142.7 (ipso-\underline{C}_6H_3, 40).$

²⁹Si{¹H} NMR (99.362 MHz, 300 K, D₈-Toluol): $\delta = 6.0$ (**126**), 76.5 (**40**).

7.3.27 Umsetzung des Xylyl-substituierten ungesättigten N-heterocyclischen Silylens 40 mit Dimethyldichlorsilan

Durchführung:

In einem 250 mL Schlenkkolben wurden 487 mg (1.67 mmol) des Silylens **40** vorgelegt und in 100 mL *n*-Hexan gelöst. Unter Rühren bei –78 °C wurde 1 mL (1070 mg, 8.3 mmol) Dimethyldichlorsilan, **127**, gelöst in 5 mL *n*-Hexan langsam zur Silylenlösung gegeben. In einem Zeitraum von 24 Stunden, wurde die Reaktionslösung unter Rühren langsam auf Raumtemperatur erwärmt und anschließend über eine Kältedestillation bis zur Trockene eingeengt. Der erhaltene Rückstand wurde aus Toluol umkristallisiert.

Spektroskopische Ergebnisse:

Die NMR-Ergebnisse zeigten, dass während der Reaktion unter den hier gewählten Reaktionsparametern ein Gemisch aus vielen Produkten entstanden ist. Es gelang nicht eines der Produkte zu identifizieren. Das ¹³C NMR-Spektrum dieser Reaktion konnte auf Grund der großen Anzahl an Signalen nicht zu interpretieren werden.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{5.30 - 5.60} \text{ (m)}, 5.65 \text{ (s)}, 5.73 - 5.82 \text{ (m)}, 6.32 \text{ (s)}, 6.50 - 7.02 \text{ (m)}.$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}} (99.362 \text{ MHz}, 300 \text{ K}, \text{C}_6\text{D}_6): \delta = -17.1, -21.9, -39.2, -47.5, -54.8, -55.5.$

7.3.28 Umsetzung des Xylyl-substituierten ungesättigten N-heterocyclischen Silylens 40 mit Dichlormethan

Durchführung:

In einem 250 mL Schlenkkolben wurden 526 mg (1.80 mmol) des Silylens **40** vorgelegt und in 150 mL *n*-Hexan gelöst. Unter Rühren bei –78 °C wurden 0.5 mL (152 mg, 1.80 mmol) Dichlormethan, **128**, gelöst in 20 mL n-Hexan langsam zur Silylenlösung gegeben. In einem Zeitraum von 24 Stunden wurde die Reaktionslösung langsam auf Raumtemperatur erwärmt und anschließend über eine Kältedestillation bis zur Trockene eingeengt. Der erhaltene Rückstand wurde aus Toluol umkristallisiert.

Spektroskopische Ergebnisse:

Die NMR Ergebnisse zeigten, dass während der Reaktion unter den hier gewählten Reaktionsparametern ein Gemisch aus vielen Produkten entstanden ist. Es gelang nicht eines der Produkte zu identifizieren. Das ¹³C NMR-Spektrum dieser Reaktion konnte auf Grund der großen Anzahl an Signalen nicht interpretiert werden.

Charakterisierung:

<u>¹H NMR</u> (499.873 MHz, 300 K, C₆D₆): δ = 0.88 – 0.95 (m), 1.46 (s), 1.67 –2.72 (m), 5.39 – 5.64 (m), 5.76 (s), 6.77 – 7.14 (m).

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}\text{ NMR}}{-57.8, -70.2, -70.9}$ (99.362 MHz, 300 K, C₆D₆): $\delta = -17.0, -21.8, -36.4, -39.1, -40.0, -41.2, -57.8, -70.2, -70.9$

7.3.29 Umsetzung des lithiierten *tert.*-Butyl-substituierten Diazabutadiens 133 mit Hexachlordisilan

Durchführung:

In einem 250 mL Dreihalskolben, ausgestattet mit Stopfen und Magnetrührkern, wurden 977.7 mg (5.81 mmol) des Diazabutadiens **133** vorgelegt, entgast und anschließend in 75 mL THF gelöst. Nachdem die Reaktionsmischung auf 0 °C abgekühlt war, wurden 84.7 mg (12.2 mmol) kleingeschnittenes Lithium im Argon-Gegenstrom zugegeben und bei langsamem Erwärmen auf Raumtemperatur 16 Stunden gerührt. Überschüssiges Lithium wurde mit einer Pinzette entfernt. Anschließend wurde die Reaktionslösung auf –40 °C abgekühlt und mit 1 mL (1562 mg, 5.81 mmol) Hexachlordisilan versetzt (Farbwechsel von Tiefrot zu Orange). Nach der Zugabe wurde die Kühlung sofort entfernt und die Reaktionslösung wurde weitere 12 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das THF vollständig über eine Kältedestillation entfernt, die Rückstände in ca. 300 mL *n*-Hexan aufgenommen und über eine Fritte (Porengroße 4) filtriert. Das Filtrat wurde bis zur beginnenden Kristallisation eingeengt und zur vollständigen Kristallisation bei -4 °C einige Stunden gelagert. Abschließend wurde das kristalline Produkt durch Dekantieren von der Mutterlauge getrennt und im Hochvakuum getrocknet. Durch erneutes Umkristallisieren aus *n*-Hexan konnten Kristalle für die Einkristallröntgendiffraktometrie gewonnen werden.

Ausbeute: 527.9 mg $(2.0 \text{ mmol}) \equiv 35 \% \text{ d. Th.}$

Spektroskopische Ergebnisse:

Die NMR-Daten stimmen mit denen der Literatur von **107** überein.^[140] Die Molekülstruktur wurde ebenfalls durch Einkristallröntgendiffraktometrie bestimmt. Die Ergebnisse entsprechen denen der Literatur.^[254]

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C_6D_6): $\delta = 1.29$ (s, 18H, $C(CH_3)_3$), 5.79 (s, 2H, NC<u>H</u>).

 $\frac{{}^{13}C{}^{1}H}{(N\underline{C}H)}$ (125.706 MHz, 305 K, C₆D₆): δ = 30.3 (C($\underline{C}H_3$)₃), 52.6 ($\underline{C}H(CH_3)_3$), 112.6 (N $\underline{C}H$).

 29 Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -40.2$.

<u>MS (EI, 70 eV)</u> m/z (%): 266.1 (21) $[M^+]$, 210.0 (7) $[C_6H_{12}N_2Cl_2Si^+]$, 153.1 (100) $[C_9H_{18}N_2^+]$.

7.3.30 Umsetzung des lithiierten Dipp-substituierten Diazabutadiens 49 mit Hexachlordisilan

Durchführung:

Alle Präparationsschritte wurden analog der Umsetzung des lithiierten *tert.*-Butylsubstituierten Diazabutadiens **133** mit Hexachlordisilan durchgeführt. Für den Versuch wurden 2187 mg (5.81 mmol) des Diazabutadiens **49**, 84.7 mg (12.2 mmol) Lithium, 1 mL (1562 mg, 5.81 mmol) Hexachlordisilan und 75 mL THF verwendet. Die abschließende Kristallisation des Produktes gelang jedoch nicht.

Spektroskopische Ergebnisse:

Durch Vergleich mit den Literaturdaten konnten **49** und **51a** im Verhältnis 1:1 identifiziert werden.^[30] Da das vorliegende Produktgemisch noch weitere Produkte enthielt (insgesamt 13 Signale im ²⁹Si-NMR Spektrum), blieb die Bestimmung der Ausbeute von **51a** offen.

Charakterisierung:

<u>¹H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 1.20 (d, 24H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 6.9 Hz, **49**), 1.21 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.2 Hz, **51a**), 1.36 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.2 Hz, **51a**), 3.13 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 6.8 Hz, **49**), 3.69 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 7.2 Hz, **19**), 5.73 (s, 2H, NC<u>H</u>, **51a**), 7.13 – 7.22 (m, C₆<u>H</u>₃, **49**, **51a**), ²⁷ 8.20 (s, 2H NC<u>H</u>, **49**). $\frac{1^{3}C\{^{1}H\}}{(125.706)}$ MHz, 305 K, C₆D₆): $\delta = 23.4$ (CH(<u>C</u>H₃)₂, **49**), 24.0 (n.i.), (24.5 (CH(<u>C</u>H₃)₂, **51a**), 24.9 (CH(<u>C</u>H₃)₂, **51a**), 25.8 (n. i.), 26.0 (n.i.), 28.5 (<u>C</u>H(CH₃)₂, **49**), 28.6 (<u>C</u>H(CH₃)₂, **51a**), 118.6 (CH, **51a**), 123.6 (*m*-<u>C</u>₆H₃, **49**), 124.5 (n.i.), 124.8 (n.i.), 125.1 (CH, **51a**), 125.5 (*p*-<u>C</u>₆H₃, **49**), 128.4 (n.i.), 128.9 (n.i.), 129.4 (CH, **51a**), 134.3 (C^q, **51a**), 135.3 (n.i.), 136.9 (*o*-<u>C</u>₆H₃, **49**), 147.9 (C^q, **51a**), 148.5 (n.i.), 148.9 (*ipso*-<u>C</u>₆H₃, **49**), 163.4 (N<u>C</u>H, **49**).

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{-31.6}, -32.7, -33.0, -33.6, -34.8, -38.3} \text{ (51a)}, -39.8.$

7.3.31 Umsetzung eines Reaktionsgemischs aus zwei Äquivalenten 41 und Tetrachlorsilan mit Lithiumnaphthalid

Durchführung:

Zunächst wurden 1000 mg (2.5 mmol) des Silylens **41** in einem 100 mL Schlenkkolben vorgelegt, in 50 mL *n*-Hexan gelöst und auf –78 °C abgekühlt. Anschließend wurden 140 µL (210 mg, 1.24 mmol) Tetrachlorsilan, SiCl₄, zur Lösung gegeben. Die Reaktionslösung wurde 16 Stunden gerührt und während dieser Zeit langsam auf Raumtemperatur erwärmt. Anschließend wurde die Reaktionslösung über eine Kältedestillation bis zur Trockene eingeengt. Im zweiten Schritt wurden 13.8 mg (10.8 mmol) Naphthalin in einem 250 mL Schlenkkolben vorgelegt, entgast und in 50 mL THF gelöst. Danach wurde diese Lösung mit 37.8 mg (5.5 mmol) kleingeschnittenem Lithium versetzt und bis zum Auftreten der Grünfärbung des Lithiumnaphthalids gerührt. Der aus dem ersten Reaktionsschritt erhaltene Feststoff wurde in 50 mL THF gelöst und langsam bei Raumtemperatur zur Lithiumnaphthalidlösung gegeben.

²⁷ Aufgrund überlappender Signale kann kein Integral angegeben werden.

Nach 16-stündigem Rühren wurde die Reaktionsmischung über eine Kältedestillation bis zur Trockene eingeengt, der erhaltene Feststoff im Hochvakuum getrocknet und wieder in *n*-Hexan gelöst. Abschließend wurden die in der Reaktion entstandenen Salze durch Filtration über eine Fritte (Porengröße 4) von der Lösung getrennt und das Filtrat bis zur Trockene eingeengt. Kristalle für eine Einkristallröntgendiffraktometrie konnten nicht erhalten werden, da Kristallisationsversuche aus *n*-Hexan und Toluol scheiterten.

Spektroskopische Ergebnisse:

Das ¹H und ¹³C NMR-Spektrum deutete auf die Bildung von **51a** hin. Das ²⁹Si NMR-Spektrum ließ vermuten, dass neben **51a** weitere Produkte entstanden sind (6 Signale). Außerdem konnten keine Signale bei tiefem Feld beobachtet werden (δ^{29} Si > 100).

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): δ = 1.20 (d, 12H, ³*J*(H,H) = 6.9 Hz, CH(C<u>H</u>₃)₂), 1.36 (d, 12H, ³*J*(H,H) = 6.9 Hz, CH(C<u>H</u>₃)₂), 3.67 (sept., 4H, ³*J*(H,H) = 6.9 Hz, C<u>H</u>(CH₃)₂), 5.75 (s, 2H, NC<u>H</u>,), 7.13 – 7.22 (m, C₆<u>H</u>₃).

 $\frac{^{13}C{^{1}H} NMR}{(125.706 MHz, 305 K, C_6D_6): \delta = 24.0 (CH(CH_3)_2), 26.1 (CH(CH_3)_2), 28.6 (CH(CH_3)_2), 119.9 (NCH), 124.5 (CH), 126.0 (CH), 128.2 (CH), 135.2 (C^q), 148.4 (C^q).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\} \text{ NMR}}{-49.9}$ (99.305 MHz, 305 K, C₆D₆): $\delta = -31.5$, -35.5, -37.3, -38.3 (**51a**), -48.8, -49.9.

7.3.32 Reduktion von 103 mit Lithiumnaphthalid

Allgemeine Durchführung:

Zunächst wurde eine Lithiumnaphthalid-THF-Lösung mit einer Konzentration von 0.2 molL⁻¹ hergestellt. Hierfür wurden 2560 mg Naphthalin in einem 250 mL Schlenkkolben vorgelegt, entgast und in 100 mL THF gelöst. Anschließend wurden 138.8 mg kleingeschnittenes Lithium im Schutzgasstrom zur Lösung gegeben. Die Lösung wurde so lange gerührt bis das komplette Lithium abreagiert war.

Für das Reduktionsexperiment wurden 279.2 mg (0.5 mmol) **103** in einem 100 mL Schlenkkolben vorgelegt und in 50 mL THF gelöst. Bei –80 °C wurde über eine Spritze die 0.2 M Lithiumnaphthalidlösung langsam zugegeben. In einem Zeitraum von 16 Stunden wurde das Reaktionsgemisch unter Rühren langsam auf Raumtemperatur erwärmt. Nach dem Entfernen des Lösungsmittels über eine Kältedestillation wurde der erhaltene Rückstand in *n*-Hexan aufgenommen und über eine Fritte (Porengröße 4) filtriert. Anschließend wurde das Filtrat bis zur Trockene eingeengt und zum Entfernen von weiterem Naphthalin 150 min im Hochvakuum auf 40 °C erhitzt. Abschließend wurde der erhaltene Feststoff aus *n*-Hexan umkristallisiert.

7.3.32.1 Experiment mit zwei Reduktionsäquivalenten

6 mL der Lithiumnaphthalidlösung wurden verwendet. 314 mg eines Feststoffes konnten nach Umkristallisieren erhalten werden. Bedingt durch das vorliegende Produktgemisch konnte keine Ausbeute ermittelt werden.

Spektroskopische Ergebnisse:

Das ¹H und das ¹³C NMR-Spektrum deuteten auf die Entstehung eines Produktgemisches hin. Es konnte kein Signal im ¹³C NMR-Spektrum mit einer chemischen Verschiebung kleiner 0 ppm und größer 170 ppm beobachtet werden.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{1}\text{H NMR}} (499.873 \text{ MHz}, 305 \text{ K}, \text{C}_{6}\text{D}_{6}): \delta = 1.19 \text{ (d, } J(\text{H},\text{H}) = 6.9 \text{ Hz}),^{28} 1.21 \text{ (d, } J(\text{H},\text{H}) = 6.9 \text{ Hz}),^{28} 1.25 \text{ (d, } J(\text{H},\text{H}) = 6.8 \text{ Hz}),^{28} 1.27 \text{ (d, } J(\text{H},\text{H}) = 6.8 \text{ Hz}),^{28} 1.35 \text{ (d, } J(\text{H},\text{H}) = 6.9 \text{ Hz}),^{28} 1.38 \text{ (d, } J(\text{H},\text{H}) = 6.9 \text{ Hz}),^{28} 2.71 \text{ (sept., 1H, } J(\text{H},\text{H}) = 6.8 \text{ Hz}), 3.15 \text{ (sept., 3H, } J(\text{H},\text{H}) = 6.9 \text{ Hz}), 3.43 \text{ (sept., 4H, } J(\text{H},\text{H}) = 6.9), 3.89 \text{ (sept., 5H, } J(\text{H},\text{H}) = 6.9 \text{ Hz}), 5.40 \text{ (s, 1H)}, 5.65 \text{ (s, 2H)}, 7.01 - 7.25 \text{ (m)}.$

 $\frac{^{13}C{^{1}H} NMR}{125.706 MHz}, 305 K, C_6D_6): \delta = 22.6, 23.4, 23.4, 24.3, 25.6, 26.3, 28.2, 28.5, 28.6, 57.9, 118.9, 123.1, 123.9, 124.1, 125.5, 123.0, 127.5, 134.0, 136.9, 137.9, 147.8, 147.9, 163.4.$

²⁹Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -50.2, -61.5$.

²⁸ Aufgrund überlappender Signale kann kein Integral angegeben werden.

7.3.32.2 Experiment mit vier Reduktionsäquivalenten

12 mL der Lithiumnaphthalidlösung wurden verwendet. 328 mg eines Feststoffes konnten nach Umkristallisieren erhalten werden. Bedingt durch das vorliegende Produktgemisch konnte keine Ausbeute ermittelt werden.

Spektroskopische Ergebnisse:

Das ¹H und das ¹³C NMR-Spektrum deuteten auf die Entstehung eines Produktgemisches hin, wobei **49** als eines der Produkte identifiziert werden konnte. Die Integrale der ¹H NMR-Signale konnten auf Grund der schwachen Intensität und der Überlappung der Signale nicht integriert werden. Es wurden keine Signale im ¹³C NMR-Spektrum mit einer chemischen Verschiebung kleiner als 0 ppm und größer als 170 ppm beobachtet.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{3}\text{I}(\text{H},\text{H})} = 7.0 \text{ Hz}, 49, 3.37 - 3.91 \text{ (m)}, 5.75 \text{ (s)}, 5.79 \text{ (s)} 5.84 \text{ (s)}, 6.93 - 7.28 \text{ (m)}, 8.23 \text{ (s, 49)}.$

 $\frac{1^{3}C{^{1}H} NMR}{125.771}$ MHz, 300 K, C₆D₆): $\delta = 22.4$, 23.4 (**49**), 23.6 – 28.3 (viele Signale mit schwacher Intensität), 28.5 (**49**), 28.8 – 30.2 (viele Signale mit schwacher Intensität), 118.9 – 119.3 (viele Signale mit schwacher Intensität), 123.1, 123.6 (**49**), 123.7 – 124.9 (viele Signale mit schwacher Intensität), 125.5 (**49**), 126.0, 132.3, 134.0, 136.9 (**49**), 148.9 (**49**), 163.4 (**49**).

²⁹Si{¹H} NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -35.5, -37.3, -49.9$.

7.3.33 Reduktion von 103 mit Kaliumgraphit

Durchführung:

Zunächst wurden 3.8 mmol Kaliumgraphit, KC_8 , entsprechend Abschnitt 7.2.2 hergestellt. Für das Reduktionsexperiment wurden 484 mg (0.9 mmol) **103** in einem 100 mL Schlenkkolben vorgelegt und in 50 mL THF gelöst. Bei Raumtemperatur wurde die Lösung langsam über einen Teflonschlauch zum Kaliumgraphit gegeben und anschließend 16 Stunden bei Raumtemperatur gerührt. Nach Abschluss der Reaktion war die bronzene Färbung des Kaliumgraphits nicht mehr zu erkennen. Das entstandene Graphit wurde über eine Fritte (Porengröße 4) von der Lösung abgetrennt und das Filtrat wurde über eine Kältedestillation bis zur Trockene eingeengt. Der erhaltene Rückstand wurde erneut in *n*-Hexan aufgenommen und über eine Fritte (Porengröße 4) filtriert. Abschließend wurde das Filtrat bis zur Trockene eingeengt und der gesamte erhaltene Feststoff NMR-spektroskopisch untersucht.

Spektroskopische Ergebnisse:

Obwohl der gesamte Feststoff für die NMR Probe verwendet wurde, war die Konzentration der Probe sehr gering. Das ¹H NMR-Spektrum zeigte viele breite Signale mit sehr schwacher Intensität im Bereich der Signale von **49**. Das ¹³C NMR-Spektrum konnte auf Grund der vielen Signale mit schwacher Intensität nicht für die Charakterisierung verwendet werden.

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₆): $\delta = 0.91 - 1.52$ (m), 1.57 (s), 3.61 (s), 6.93 - 7.37 (m).

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.305 MHz, 305 K, C₆D₆): $\delta = -49.9$.

7.3.34 Darstellung von 1,3-Bis-(di-*iso*-propylphenyl)-1,3-diaza-2-sila-cyclopent-4-en 163

Durchführung:

In einem 250 mL Dreihalskolben, ausgestattet mit Intensivkühler und Gaseinlass, wurden 281 mg (7.42 mmol) frisches Lithiumalanat vorgelegt und mit 50 mL THF vermischt. Anschließend wurde die Mischung so lange unter Rückfluss zum Sieden erhitzt bis das Lithiumalanat gleichmäßig suspendiert war. Nach Abkühlen der Lösung auf Raumtemperatur wurden 6.42 g (13.5 mmol) des Diaminodichlorsilans **51a** gelöst in 50 mL THF langsam unter Rühren der Suspension zugefügt. Die Reaktionsmischung wurde drei Stunden bei Raumtemperatur gerührt und anschließend bis zur Trockene eingeengt. Der erhaltene Rückstand wurde in 100 mL *n*-Hexan aufgenommen und über eine Umkehrfritte (Porengröße 4) filtriert. Das Filtrat wurde bis zur beginnenden Kristallisation des Produkts über eine Kältedestillation eingeengt und zur vollständigen Kristallisation über Nacht bei –20 °C gelagert. Abschließend wurde das Produkt von der Mutterlauge durch Dekantieren abgetrennt und im Hochvakuum getrocknet.

Ausbeute: $3.571 \text{ g} (8.78 \text{ mmol}) \equiv 65 \% \text{ d}$. Th.

Charakterisierung:

<u>¹H NMR</u> (499.873, 305 K, C₆D₆): δ = 1.29 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.0 Hz), 1.30 (d, 12H, CH(C<u>H</u>₃)₂, ³*J*(H,H) = 7.0 Hz), 3.68 (sept., 4H, C<u>H</u>(CH₃)₂, ³*J*(H,H) = 7.0 Hz), 5.74 (s, 2H, NC<u>H</u>), 5.97 (s, 2H, Si<u>H</u>), 7.18 (d, 4H, *m*-C₆<u>H</u>₃), 7.24 (t, 2H, p-C₆<u>H</u>₃).

 $\frac{{}^{13}C{}^{1}H}{(CH_3)_2}, 120.5 \text{ (NCH)}, 124.2 \text{ (}m-\underline{C}_6H_3\text{)}, 127.4 \text{ (}p-\underline{C}_6H_3\text{)}, 138.2 \text{ (}ipso-\underline{C}_6H_3\text{)}, 148.4 \text{ (}o-\underline{C}_6H_3\text{)}.$

 15 N HMBC (50.662, 305 K, C₆D₆): δ = 58.8.

²⁹Si{¹H} NMR (99.305, 305 K, C₆D₆): $\delta = -27.4$.

²⁹Si NMR INEPT (99.305, 305 K, C₆D₆): $\delta = -27.4$ (tt, SiH, ¹*J*(Si,H) = 232.7 Hz, ³*J*(Si,H) = 6.6 Hz).

<u>MS (EI, 70 eV)</u> m/z (%): 406.6 (100) [M^+], 218.1 (27) [$C_{13}H_{20}NSi^+$].

<u>HRMS (EI, 70 eV)</u>: m/z berechnet 406.2804 [${}^{12}C_{26}{}^{1}H_{38}{}^{14}N_{2}{}^{28}Si$], m/z gefunden 406.2794.

7.3.35 Allgemeine Arbeitsvorschriften zur Protonierung der N-heterocyclischen Silylene mit der jeweiligen Brønstedt-Säure

7.3.35.1 Allgemeine Arbeitsvorschrift 1, AAV1

Das N-heterocyclische Silylen und die für das Experiment verwendete Brønstedt-Säure wurden in Schlenkrohren vorgelegt, entgast und jeweils in 1 mL des deuterierten Lösungsmittels gelöst. Bei Raumtemperatur wurde das gelöste Silylen sehr langsam über einen Teflonschlauch zur gelösten Brønstedt-Säure gegeben. Anschließend wurde das Reaktionsgemisch eine Stunde gerührt und die erhaltene Reaktionsmischung wurde NMR-spektroskopisch untersucht.

7.3.35.2 Allgemeine Arbeitsvorschrift 2, AAV2

Das N-heterocyclische Silylen und die für das Experiment verwendete Brønstedt-Säure wurden in Schlenkrohren vorgelegt, entgast und jeweils in der angegebenen Menge des Lösungsmittels gelöst und auf die angegebene Temperatur abgekühlt. Anschließend wurde das gelöste Silylen sehr langsam über einen Teflonschlauch zur gelösten Brønstedt-Säure zugegeben. Anschließend wurde das Reaktionsgemisch eine Stunde bei der angegebenen Temperatur gerührt und die erhaltene Reaktionsmischung über eine Kältedestillation bis zur Trockene eingeengt. Für die NMR-spektroskopische Untersuchung wurde der Rückstand wieder in deuteriertem Lösungsmittel aufgenommen.

7.3.36 Umsetzungen der Silylene bei Raumtemperatur mit der jeweiligen Brønstedt-Säure in hoher Konzentration

7.3.36.1 Protonierung des Silylens 40 mit 144[B(C₆F₅)₄]

Durchführung:

Die Durchführung erfolgt nach **AAV 1** mit 226.89 mg (0.77 mmol) des Silylens **40** und 640.15 mg (0.77 mmol) der Säure **144**[B(C₆F₅)₄] in je 1 mL C₆D₆. Sofort nach der Zusammengabe der beiden Substanzen bildeten sich zwei Phasen aus. Die untere ionische Phase war rotbraun und die obere farblos. Für die NMR-spektroskopische Untersuchung wurde die obere nicht-ionische Phase abgetrennt und die ionische Phase in ein NMR-Röhrchen überführt.

Spektroskopische Ergebnisse:

Auf Grundlage der ¹H MMR-Daten lässt sich vermuten, dass bei dieser Reaktion ein Produktgemisch aus drei Verbindungen entstanden ist. Die Signalsätze stehen zueinander im

Verhältnis \mathbf{a} : \mathbf{b} : \mathbf{c} = 2:6:1. Die Signale von \mathbf{c} deuten darauf hin, dass es sich bei dieser Verbindung um protoniertes Diazabutadien **50** handelt.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{3}J(\text{H},\text{H})} = 7.0 \text{ Hz}, \mathbf{a}), 2.17 \text{ (s, 6H, c)}, 2.19 \text{ (s, 6H, c)}, 3.46 \text{ (q, 30H, }^{3}J(\text{H},\text{H}) = 7.0 \text{ Hz}, \mathbf{a}), 1.15 \text{ (t, 45H}}$ (q, 10H, a), 6.93 – 7.43 (m), 7.52 (s, 4H, c), 8.10 (s, 2H, c).

 $\frac{{}^{13}C{}^{1}H}{124.3-125.8} \text{ (m, } ipso-\underline{C}_{6}F_{5}), 129,5, 130.2, 130.6, 137.1 \text{ (d, } {}^{1}J(C,F) = 247 \text{ Hz}, m-\underline{C}_{6}F_{5}), 138.9 \text{ (d, } {}^{1}J(C,F) = 244 \text{ Hz}, p-C_{6}F_{5}), 149.1 \text{ (d, } {}^{1}J(C,F) = 240.6 \text{ Hz}, o-C_{6}F_{5}).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{-105.2.}}$ NMR (99.305 MHz, 305 K, C₆D₆): $\delta = -12.1, -18.2, -18.5, -28.3, -71.9, -84.6, -105.2.$

7.3.36.2 Protonierung des Silylens 41 mit 144[B(C₆F₅)₄]

Durchführung:

Die Durchführung erfolgt nach **AAV 1** mit 166.06 mg (0.41 mmol) des Silylens **41** und 380.19 mg (0.45 mmol) der Säure **144**[B(C_6F_5)_4] in je 1 mL C_6D_6 . Sofort nach der Zusammengabe des Silylens bildeten sich zwei Phasen aus. Die untere ionische Phase war tiefrot und die obere farblos. Für die NMR-spektroskopische Untersuchung wurde die obere nicht ionische Phase abgetrennt und die ionische Phase in ein NMR-Röhrchen überführt.

Spektroskopische Ergebnisse:

Auf Grund der großen Anzahl an Signalen in den ¹H und ¹³C NMR-Spektren konnten diese für die Charakterisierung nicht verwendet werden. Anhand der ²⁹Si NMR-Spektren gelang es nicht eines der Produkte im entstandenen Produktgemisch zu identifizieren.

Charakterisierung:

²⁹Si{¹H} NMR (99.317 MHz, 297 K, C₆D₆): $\delta = -19.1, -21.5, -34.8, -81.1$.

²⁹Si NMR INEPT (99.310 MHz, 297 K, C₆D₆): $\delta = -34.8$ (d, SiH, ¹J(Si,H) = 311.6 Hz), -81.1 (d, SiH, ¹J(Si,H) = 328.6 Hz).

¹⁵N{¹H} HMBC (50.661 MHz, 305 K, C₆D₆): δ = 42.3, 238.7, 265.5, 321.9.

7.3.37 Umsetzungen der Silylene bei niedrigen Temperaturen mit der jeweiligen Brønstedt-Säure in hoher Konzentration

7.3.37.1 Protonierung des Silylens 41 mit 144[B(C₆F₅)₄]

41

Durchführung:

Die Durchführung erfolgte nach AAV 2 mit 202.33 mg (0.50 mmol) des Silylens 41 und 414.56 mg (0.50 mmol) der Säure 144[B(C_6F_5)_4] in je 1 mL D₈-THF bei –20 °C. Es resultierte eine rotbraun gefärbte, hochviskose Reaktionslösung, die ohne weitere Aufarbeitungsschritte NMR-spektroskopisch untersucht wurde.

Spektroskopische Ergebnisse:

Auf Grundlage der ¹H NMR Daten lässt sich vermuten, dass das protonierte Diazabutadien **162** als Produkt dieser Reaktion neben weiteren Produkten entstanden ist. Des Weiteren kann ein Signalsatz **a** beobachtet der einer Ethylgruppe entspricht. Die ¹³C NMR-Spektren konnten auf Grund der hohen Anzahl an Signalen nicht für die Charakterisierung verwendet werden.

Charakterisierung:

¹<u>H NMR</u> (499.870 MHz, 305 K, D₈-THF): δ = 1.11 (t, 21H, ³*J*(H,H) = 7.0 Hz, **a**), 1.28 (m, 24H), 1.72 (s, 0.4H), 1.77 (s, 0.7H), 3.38 (q, 14H, ³*J*(H,H) = 7.0 Hz, **a**), 7.10 – 7.60 (m, 6H), 7.83 (s, 0.3H), 9.02 (s, 0.4H), 9.18 (s, 0.4H).

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{-81.8}, -88.6}$ (99.310 MHz, 305 K, D₈-THF): $\delta = -19.3, -21.6, -37.7, -49.8, -75.8, -79.3, -81.8, -88.6$

²⁹Si NMR INEPT (99.310 MHz, 305 K, D₈-THF): $\delta = -79.3$ (d, SiH, ¹J(Si,H) = 326.1 Hz).

7.3.37.2 Protonierung des Silylens 14 mit 144[B(C₆F₅)₄]

1

Durchführung:

Die Durchführung erfolgte nach AAV 2 mit 94.86 mg (0.48 mmol) des Silylens 14 und 400.29 mg (0.48 mmol) der Säure 144[B(C_6F_5)_4] in je 1 mL Diethylether bei –20 °C. Es resultierte eine rotbraun gefärbte Reaktionslösung. In einem Zeitraum von einer Stunde wurde das Reaktionsgemisch langsam auf Raumtemperatur erwärmt und anschließend bis zur Trockene eingeengt. Der Rückstand wurde für die NMR-spektroskopische Untersuchung in D₆-Benzol gelöst.

Spektroskopische Ergebnisse:

Die ¹H, ¹³C und ²⁹Si NMR-Spektren konnten auf Grund der großen Anzahl an Signalen nicht für die Charakterisierung verwendet werden. Dennoch verdeutlichten die Spektren, dass während der Reaktion ein breites Spektrum an Produkten entstanden ist.

7.3.38 Umsetzungen der Silylene bei niedrigen Temperaturen mit der jeweiligen Brønstedt-Säure in niedriger Konzentration

7.3.38.1 Protonierung des Silylens 14 mit 144[B(C₆F₅)₄]

Durchführung:

Die Durchführung erfolgte nach AAV 2 mit 104.30 mg (0.53 mmol) des Silylens 14 und 440.37 mg (0.53 mmol) der Säure 144[B(C_6F_5)_4] in je 4 mL Benzol bei 5 °C. Sofort nach der Zusammengabe des Silylens bildeten sich zwei Phasen aus. In einem Zeitraum von einer Stunde wurde die Reaktionslösung langsam auf Raumtemperatur erwärmt und anschließend bis zur Trockene eingeengt. Der erhaltene Rückstand wurde wieder in 1 mL D₆-Benzol suspendiert und die ionische Phase wurde für die NMR-spektroskopische Untersuchung in ein NMR-Röhrchen überführt.

Spektroskopische Ergebnisse:

Die ¹H, ¹³C und ²⁹Si NMR-Daten zeigen, dass ein Produktgemisch entstanden ist, wobei es sich bei einigen der Produkte um Verbindungen mit einer Si–H Bindung handelt. Das Produkt mit δ^{29} Si = -32.0 ist das Hauptprodukt der Reaktion.

Charakterisierung:

 $\frac{^{1}\text{H NMR}}{^{3}J(\text{C},\text{H})} = 6.0 \text{ Hz}, 2.98 \text{ (q, (CH_3CH_2)_2O, } {^{3}J(\text{C},\text{H})} = 6.0 \text{ Hz}, 3.22 \text{ (s, SiH)}, 3.45 \text{ (s, SiH)}, 4.86 \text{ (s, SiH)}, 3.30 - 4.01 \text{ (m, CH)}, 5.09 - 5.65 \text{ (m, 1H, CH)}, 5.41 \text{ (s, SiH)}.$

 $\frac{{}^{13}C{}^{1}H}{18} NMR (125.758 MHz, 297 K, C_6D_6): \delta = 3.8 (s, (CH_3CH_2)_2O), 26.9 (s, C(CH_3)_3), 27.7 (s, C(CH_3)_3), 27.9 (s, C(CH_3)_3), 27.9 (s, C(CH_3)_3), 28.2 (s, C(CH_3)_3), 28.5 (s, C(CH_3)_3), 28.6 (s, C(CH_3)_3), 28.8 (s, C(CH_3)_3), 29.1 (s, C(CH_3)_3), 29.5 (s, C(CH_3)_3), 29.6 (s, C(CH_3)_3), 30.0 (s, C(CH_3)_3), 30.1 (s, C(CH_3)_3), 30.2 (s, C(CH_3)_3), 60.1 (s, C(CH_3)_3), 60.4 (s, C(CH_3)_3), 63.5 (s, C(CH_3)_3), 64.1 (s, C(CH_3)_3), 66.2 (s, (CH_3CH_2)_2O), 110.9 (CH_2), 112.1 (CH_2), 124.4 - 125.6 (m,$ *ipso* $-C_6F_5), 137.1 (d, {}^{1}J(C,F) = 247 Hz,$ *m* $-C_6F_5), 138.9 (d, {}^{1}J(C,F) = 244 Hz,$ *p* $-C_6F_5), 149.1 (d, {}^{1}J(C,F) = 240.6 Hz,$ *o* $-C_6F_5).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{-32.0}(10.0\text{Si}), -34.9(2.7\text{Si}), -40.5(1.0\text{Si}), -42.1(1.0\text{Si}), -43.5(1.4\text{Si}), -30.4(2.7\text{Si}), -30.4(2.7\text{Si}), -32.0(10.0\text{Si}), -34.9(2.7\text{Si}), -40.5(1.0\text{Si}), -42.1(1.0\text{Si}), -43.5(1.4\text{Si}).}$

²⁹Si NMR INEPT (99.362 MHz, 297 K, C₆D₆): $\delta = -30.4$ (d, SiH, ¹J(Si,H) = 316.7 Hz), -31.9 (d, SiH, ¹J(Si,H) = 315.7 Hz), -34.9 (d, SiH, ¹J(Si,H) = 315.7 Hz).

7.3.38.2 Protonierung des Silylens 41 mit 144[B(C₆F₅)₄]

Durchführung:²⁹

Die Durchführung erfolgt nach AAV 2 mit 210.15 mg (0.52 mmol) des Silylens 41 und 430.78 mg (0.52 mmol) der Säure 144[B(C_6F_5)_4] in je 4 mL Benzol bei 5 °C. Sofort nach der Zusammengabe des Silylens bildeten sich zwei Phasen aus. In einem Zeitraum von einer Stunde wurde die Reaktionslösung langsam auf Raumtemperatur erwärmt und anschließend bis zur Trockene eingeengt. Der erhaltene Rückstand wurde wieder in 1 mL D₆-Benzol suspendiert und die ionische Phase wurde für die NMR-spektroskopische in Untersuchung ein NMR-Röhrchen überführt.

Spektroskopische Ergebnisse:

Das ¹H NMR konnte auf Grund der breiten Signale nicht für die Charakterisierung verwendet werden. Im ¹³C NMR konnte ein auffälliges Signalmuster beobachtet werden: Abge-

²⁹ Die Ergebnisse dieser Umsetzung sind exakt reproduzierbar, wenn die Säure $144[B(C_6F_5)_4]$ zuvor in 45 mL und das Silylen **41** in 5 mL Benzol gelöst wurden.

sehen von den Signalen, die Ethylgruppen und C_6F_5 -Gruppen zugeordnet werden können, ergeben alle weiteren Signale einen doppelten Signalsatz.

Charakterisierung:

¹³C{¹H} NMR (125.706 MHz, 305 K, C₆D₆): δ = 9.2 (CH₃), 11.0 (CH₃), 13.8 (CH₃), 17.3 (CH₃), 22.6 (CH₃), 23.0 (CH₃), 23.6 (CH₃), 23.9 (CH₃), 24.1 (CH₃), 24.3 (CH₃), 24.4 (CH₃), 24.6 (CH₃), 24.8 (CH₃), 24.9 (CH₂), 25.2 (CH₃), 27.0 (CH₃), 28.6 (CH), 28.7 (CH), 29.0 (CH), 29.1 (CH), 29.6 (CH), 29.9 (CH), 59.5 (CH₂), 59.9 (CH₂), 62.8 (CH₂), 63.0 (CH₂), 66.1 (CH₂), 83.1 (CH₂), 124.4 – 125.6 (m, *ipso*-<u>C₆F₅), 125.0 (CH), 125.1 (CH), 125.5 (CH), 126.0 (CH), 126.4 (CH), 129.7 (CH), 130.0 (C^q), 130.8 (C^q), 131.5 (C^q), 131.8 (C^q), 132.1 (CH), 132.3 (CH), 137.1 (d, ¹*J*(C,F) = 247 Hz, *m*-<u>C₆F₅), 138.9 (d, ¹*J*(C,F) = 244 Hz, *p*-C₆F₅), 141.5 (C^q), 141.5 (C^q), 142.4 (C^q), 142.7 (C^q), 147.1 (C^q), 147.2 (C^q), 148.5 (C^q), 149.1 (d, ¹*J*(C,F) = 240.6 Hz, *o*-C₆F₅), 190.4 (CH), 207.5(C^q).</u></u>

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{1}\text{MMR}} (99.310 \text{ MHz}, 305 \text{ K}, \text{C}_6\text{D}_6): \delta = -31.0 (1.0\text{Si}), -32.6 (0.88\text{Si}), -38.8 (0.07\text{Si}, 145).$

²⁹Si NMR INEPT (99.362 MHz, 305 K, C₆D₆): $\delta = -31.0$ (d, SiH, ¹J(Si,H) = 303.9 Hz), -32.6 (d, SiH, ¹J(Si,H) = 312.1 Hz).

7.3.38.3 Protonierung des Silylens 41 mit 144[B(C₆F₅)₄]

Durchführung:³⁰

Die Durchführung erfolgt nach AAV 2 mit 197 mg (0.49 mmol) des Silylens 41 und 404 mg (0.49 mmol) der Säure 144[B(C_6F_5)_4], wobei das Silylen in 4 mL und die Säure in 25 mL Diethylether gelöst wurden. Bei –40 °C wurde das Silylen langsam zur Säure gegeben. In einem Zeitraum von einer Stunde wurde die Reaktionslösung langsam unter Rühren auf Raumtemperatur erwärmt und anschließend bis zur Trockene eingeengt. Der erhaltene Rück-

³⁰ Die Ergebnisse dieser Umsetzung sind exakt reproduzierbar, wenn die Säure **144**[B(C_6F_5)_4] zuvor in 45 mL und das Silylen **41** in 5 mL Diethylether gelöst wurden.

stand wurde in 1 mL D₆-Benzol suspendiert und die ionische Phase wurde für die NMRspektroskopische Untersuchung in ein NMR-Röhrchen überführt. Aus der NMR-Probenlösung konnten nach 24 Stunden Lagerung bei -20 °C Einkristalle für die Röntgenstrukturanalyse gewonnen werden.

Spektroskopische Ergebnisse:

Das ¹H NMR konnte auf Grund der vielen Signale nicht für die Charakterisierung verwendet werden. Im ¹³C NMR-Spektrum werden nahezu die gleichen Signale beobachtet wie im ¹³C Spektrum der analogen Umsetzung des Silylens **41** mit der Säure **144**[B(C₆F₅)₄] in Benzol (vgl.: 7.3.38.2). Mit Hilfe der Strukturparameter der Kristalle aus der Versuch 7.3.39 war es möglich eine Lösung für die Kristallstrukturen der in diesem Versuch erhaltenen Kristalle anzufertigen. Die Lösung ergab, dass es sich bei den Kristallen um das Salz des Triethyloxoniumkations mit dem Anion Tetrakis-(pentafluorphenyl)-borat [B(C₆F₅)₄]⁻ handelt.

Charakterisierung:

¹³C{¹H} NMR (125.706 MHz, 305 K, C₆D₆): δ = 9.2 (CH₃), 11.0 (CH₃), 14.3 (CH₃, Et₂O), 17.3 (CH₃), 23.5 (CH₃), 23.6 (CH₃), 23.7 (CH₃), 23.8 (CH₃), 23.9 (CH₃), 24.0 (CH₃), 24.4 (CH₃), 24.6 (CH₃), 25.1 (CH₃), 27.0 (CH₂), 28.7 (CH), 28.9 (CH), 29.1 (CH), 29.6 (CH), 59.9 (CH₂), 62.8 (CH₂), 66.0 (CH₂, Et₂O), 83.1 (CH₂), 124.4 – 125.6 (m, *ipso*- \underline{C}_6F_5), 124.2 (CH), 124.4 (CH), 124.7 (CH), 125.0 (CH), 125.4 (CH), 126.0 (CH), 126.4 (CH), 126.5 (CH), 128.5 (CH), 129.7 (CH), 131.5 (C^q), 132.2 (C^q), 137.1 (d, ¹*J*(C,F) = 247 Hz, *m*- \underline{C}_6F_5), 138.9 (d, ¹*J*(C,F) = 244 Hz, *p*- \underline{C}_6F_5), 141.8 (C^q), 142.7 (C^q), 148.2 (C^q), 148.2 (C^q), 149.1 (d, ¹*J*(C,F) = 240.6 Hz, *o*- \underline{C}_6F_5), 181.0 (CH), 190.3 (CH), 207.5(C^q).

¹<u>H¹⁵N HMBC</u> (50.651 MHz, 300 K, C₆D₆): δ = 223.5.

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{1}\text{MR}} (99.305 \text{ MHz}, 305 \text{ K}, \text{C}_6\text{D}_6): \delta = -31.0 (18.5\text{Si}), -33.0 (2.7\text{Si}), -38.8 (1.0\text{Si}, 145), -81.1 (5.5\text{Si}).$

²⁹Si NMR INEPT (99.362 MHz, 305 K, C₆D₆): $\delta = -31.0$ (dm, SiH, ¹J(Si,H) = 303 Hz), -33.0 (dm, SiH, ¹J(Si,H) = 309 Hz).

<u>Zellparameter</u> **146**[B(C₆F₅)₄] (Versuchsreihe 7): orthorhombisch, a = 17.2913(6) Å, b = 18.7175(6) Å, c = 19.9374 Å.

7.3.39 Darstellung von 1,3-Bis-(di-*iso*-propylphenyl)-2-ethoxyl-1,3-diaza-2-silacyclopent-4-en 145

Durchführung:

In einem 100 mL Schlenkspitzkolben mit Gaseinlass wurden 276 mg (0.33 mmol) der Säure **144**[B(C₆F₅)₄] vorgelegt, entgast und in 30 mL Diethylether gelöst. In einem zweiten Schlenkkolben wurden 135 mg (0.33 mmol) des Silylens **41** vorgelegt, entgast und in 5 mL Diethylether gelöst. Für die Reaktion wurde die Lösung der Säure auf –40 °C abgekühlt und 15 Minuten bei dieser Temperatur gerührt. Anschließend wurde das gelöste Silylen bei –40 °C über einen Teflonschlauch zur Säure gegeben. In einem Zeitraum von 30 Minuten wurde die Reaktionslösung langsam auf –20 °C erwärmt und dann ohne weitere Kühlung innerhalb von 30 Minuten auf Raumtemperatur erwärmt. Direkt im Anschluss wurde der Diethylether über eine Kältedestillation entfernt. Der erhaltene Rückstand wurde im Hochvakuum getrocknet und abschließend für die NMR-spektroskopische Untersuchung in D₅-Chlorbenzol gelöst. Aus der NMR-Probenlösung konnten nach einer Lagerung der Probe bei -20 °C Einkristalle erhalten werden, die für die Einkristallstrukturanalyse verwendbar waren.

Spektroskopische Ergebnisse:

Neben dem Signal des Hauptprodukts **145**, konnten im ²⁹Si NMR-Spektrum zwei weitere Signale beobachtet werden. Im ¹H und ¹³C NMR-Spektrum konnten außer den Signalen des Hauptprodukts und Diethylether, Et₂O, keine weiteren Produkte detektiert werden. Die Charakterisierung des Triethyloxoniumsalzes gelang durch Einkristallstrukturanalyse (es fällt als Hauptprodukt bei der Kristallisation an, Kristalle von **145** konnten nicht erhalten werden).

Charakterisierung:

¹<u>H NMR</u> (499.873 MHz, 300 K, C₆D₅Cl): $\delta = 0.94$ (t, 3H, CH₂CH₃, ³*J*(H,H) = 7.0 Hz), 1.10 (t, 6H, CH₃, Et₂O, ³*J*(H,H) = 7.0 Hz), 1.21 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz), 1.31 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz), 1.32 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 6.7 Hz), 1.39 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz), 3.36 (q, 4H, CH₂, Et₂O, ³*J*(H,H) = 7.0 Hz), 3.58 (m (sept./q), 4H, CH₂CH₃, CH(CH₃)₂), 3.85 (sept., 2H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz), 5.72 (s, 1H, SiH, ¹*J*(Si,H) = 270 Hz), 5.81 (s, 2H, NCH), 7.12 – 7.27 (m, 6H, C₆H₃).

 $\frac{^{13}C\{^{1}H\}}{^{13}C\{^{1}H\}} NMR} (125.692 \text{ MHz}, 300 \text{ K}, C_6D_5Cl): \delta = 15.0 (\underline{C}H_3, Et_2O), 18.3 (CH_2\underline{C}H_3), 24.0 (CH(\underline{C}H_3)_2), 24.2 (CH(\underline{C}H_3)_2), 25.1 (CH(\underline{C}H_3)_2), 25.5 (CH(\underline{C}H_3)_2), 28.0 (\underline{C}H(CH_3)_2), 28.4 (\underline{C}H(CH_3)_2), 58.5 (\underline{C}H_2CH_3), 65.9 (\underline{C}H_2, Et_2O), 119.0 (N\underline{C}H), 123.8 (m-\underline{C}_6H_3), 124.0 (m-\underline{C}_6H_3), 127.2 (p-\underline{C}_6H_3), 136.7 (d, {}^{1}J(C,F) = 247 \text{ Hz}, m-\underline{C}_6F_5), 138.1 (ipso-\underline{C}_6H_3), 138.7 (d, {}^{1}J(C,F) = 244 \text{ Hz}, p-\underline{C}_6F_5), 147.8 (o-\underline{C}_6H_3), 148.5 (o-\underline{C}_6H_3), 148.9 (d, {}^{1}J(C,F) = 240.6 \text{ Hz}, o-\underline{C}_6F_5).$

¹<u>H¹⁵N HMBC</u> (50.661 MHz, 300 K, C₆D₅Cl): δ = 79.2.

 $\frac{^{19}\text{F}\{^{1}\text{H}\} \text{ NMR}}{(470.296 \text{ MHz}, 300 \text{ K}, \text{C}_6\text{D}_5\text{Cl}): \delta = -131.9 (o-\text{C}_6\underline{\text{F}}_5), -162.8 (p-\text{C}_6\underline{\text{F}}_5), -166.6 (m-\text{C}_6\underline{\text{F}}_5).$

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{^{-38.8}}$ (99.310 MHz, 300 K, C₆D₅Cl): $\delta = -31.0$ (2.0Si), -31.8 (1.0Si), -33.6 (2.0Si), -38.8 (10Si, <u>Si</u>H, **145**).

 $\frac{^{29}\text{Si NMR INEPT}}{J(\text{Si},\text{H})} = 4.7 \text{ Hz}, -31.8 \text{ (dt, } \underline{\text{Si}\text{H}}, \, {}^{1}J(\text{Si},\text{H}) = 317.8 \text{ Hz}, \, {}^{3}J(\text{Si},\text{H}) = 6.8 \text{ Hz}), -38.8 \text{ (dtt, } \underline{\text{Si}\text{H}}, \, {}^{1}J(\text{Si},\text{H}) = 317.8 \text{ Hz}, \, {}^{3}J(\text{Si},\text{H}) = 6.8 \text{ Hz}), -38.8 \text{ (dtt, } \underline{\text{Si}\text{H}}, \, {}^{1}J(\text{Si},\text{H}) = 271.0 \text{ Hz}, \, {}^{3}J(\text{Si},\text{H}) = 7.0 \text{ Hz}, \, {}^{3}J(\text{Si},\text{H}) = 4.3 \text{ Hz}).$

<u>Zellparameter 146[B(C₆F₅₎₄] (Versuchsreihe 8)</u>: Orthorhombisch, $P2_12_12_1$, a = 17.3835(6) Å, b = 18.7087(8) Å, c = 19.7752(8) Å.

7.3.39.1 Protonierung des Silylens 41 mit 144[Al(OC(CF₃)₃)₄]

Durchführung:

Die Durchführung erfolgt nach AAV 2 mit 202.30 mg (0.50 mmol) des Silylens 41 und 558.03 mg (0.50 mmol) der Säure 144[Al(OC(CF₃)₃)₄], wobei das Silylen in 10 mL und die Säure in 50 mL Diethylether gelöst wurden. Bei -90 °C wurde das Silylen langsam zur Säure gegeben. In einem Zeitraum von einer Stunde wurde die Reaktionslösung langsam unter Rühren auf Raumtemperatur erwärmt.

Experiment I: Für die anschließende NMR-spektroskopische Untersuchung wurde die Reaktionsmischung bis auf ein Volumen von 2 mL eingeengt. 1 mL der Lösung wurde in ein NMR-Probenrohr überführt. Zusätzlich wurde eine geschlossene Kapillare gefüllt mit D_6 -Aceton ins Probenrohr gegeben.³¹ Die Lagerung der restlichen Lösung bei -20 °C führte innerhalt von 24 Stunden zu Einkristallen, die für die Einkristallstrukturanalyse verwendet werden konnten.

Experiment II: Nach analoger Umsetzung der Säure $144[Al(OC(CF_3)_3)_4]$ mit dem Silylen 41 wurde die Reaktionsmischung abschließend bis zur Trockene eingeengt, im Hochvakuum getrocknet und in D₅-Chlorbenzol für die NMR-spektroskopische Untersuchung gelöst.

Spektroskopische Ergebnisse von I:

Da die NMR-Probe in nicht deuteriertem Ether abgegeben werden musste, konnte das ¹H und das ¹³C NMR-Spektrum nicht für die Charakterisierung verwendet werden. Auf Grundlage der gesammelten Daten bei der Röntgenstrukturanalyse, gelang es nicht die Struktur aufzuklären.

 $^{^{31}}$ Die NMR-Probe konnte nicht in D₆-Benzol präpariert werden, da die ionische Phase in Benzol gelartig erstarrte.

Charakterisierung von I:

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR INEPT}}$ (99.305 MHz, 305 K, Et₂O/D₆-Aceton): $\delta = -38.8$.

²⁹Si NMR INEPT (99.305 MHz, 305 K, Et₂O/D₆-Aceton): $\delta = -38.8$ (dm, <u>Si</u>H, ¹*J*(Si,H) = 270 Hz).

<u>Zellparameter:</u> Tetragonal, a = 15.0304 Å, b = 15.0304, c = 20.5151.

Spektroskopische Ergebnisse von II:

Die NMR Daten zeigen, dass ein Produktgemisch entstanden ist. **145** konnte als eines der Hauptprodukte im Gemisch identifiziert werden.

Charakterisierung von II:

¹<u>H NMR</u> (499.873 MHz, 305 K, C₆D₅Cl): δ = 0.94 (t, 3H, CH₂CH₃, ³*J*(H,H) = 7.0 Hz, **145**), 1.15 (t, 9H, ³*J*(H,H) = 7.0 Hz), 1.21 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz, **145**), 1.26 (d, 5H, CH₃, ³*J*(H,H) = 7.2 Hz), 1.31 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz, **145**), 1.32 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz, **145**), 1.38 (d, 6H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz, **145**), 1.62 – 1.69 (m, 5H), 3.04 – 3.11 (m, 4H), 3.26 – 3.25 (m, 2H), 3.43 (q, 4H, ³*J*(H,H) = 7.0 Hz), 3.58 (m (sept./q), 4H, CH₂CH₃, CH(CH₃)₂, **145**), 3.85 (sept., 2H, CH(CH₃)₂, ³*J*(H,H) = 7.0 Hz, **145**), 5.72 (s, 1H, SiH, **145**), 5.75 (d, 1H, ³*J*(H,H) = 3.7 Hz), 5.79 (d, 1H, ³*J*(H,H) = 3.7 Hz), 6.60 (s, 1H), 5.81 (s, 2H, NCH), 7.12 – 7.27 (m, 15H, C₆H₃).

¹³C{¹H} NMR (125.706 MHz, 300 K, C₆D₅Cl): δ = 14.7 (CH₃), 18.3 (CH₂CH₃, **145**), 22.1 (CH₃), 23.0 (CH₃), 23.3 (CH₃), 24.0 (CH(CH₃)₂, **145**), 24.2 (CH(CH₃)₂, **145**), 25.1 (CH(CH₃)₂, **145**), 24.4 (CH₃), 25.5 (CH(CH₃)₂, **145**), 26.2 (CH₃), 26.4 (CH₃), 26.8 (CH₃), 27.4 (CH₃), 28.0 (CH(CH₃)₂, **145**), 28.4 (CH(CH₃)₂, **145**), 28.6 (CH), 28.7 (CH), 29.1 (CH), 29.9 (CH), 55.9 (CH₂), 57.8 (CH), 58.5 (CH₂CH₃, **145**), 65.4 (CH₂), 118.9 (NCH, **145**), 120.7 (CH), 120.8 (CH), 122.1 (CH), 123.1 (CH), 123.2 (CH), 123.4 (CH), 123.5 (CH), 123.6 (CH), 123.8 (m-C₆H₃, **145**), 124.0 (m-C₆H₃, **145**), 124.7 (CH), 125.1 (CH), 125.4 (CH), 127.0 (CH), 127.2 (p-C₆H₃, **145**), 127.7 (CH), 138.1 (C^q), 139.1 (C^q), 140.0 (C^q), 140.2 (C^q), 141.2 (C^q), 141.7 (C^q), 145.8 (C^q), 145.9 (C^q), 146.9 (C^q), 147.0 (C^q), 147.8 (o-C₆H₃, **145**), 148.5 (o-C₆H₃, **145**).

 $^{1}H^{15}N$ HMBC (50.661 MHz, 300 K, C₆D₅Cl): δ = 52.8, 79.2 (**145**), 89.9, 183.4.

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{\text{NMR}}$ (99.310 MHz, 300 K, C₆D₅Cl): $\delta = -33.6$ (1 SiH), -38.8 (1Si, SiH, 145).

 $\frac{^{29}\text{Si NMR INEPT}}{J(\text{Si},\text{H}) = 6.8 \text{ Hz}}, -38.8 \text{ (dm, } \underline{\text{Si}}\text{H}, \, ^{1}J(\text{Si},\text{H}) = 271.0 \text{ Hz}, \, \mathbf{145}).$

7.3.40 Protonierung des Silylens 41 mit der Säure 144[B(C₆H₅)₄] - Umsetzung und Analyse bei tiefen Temperaturen

Durchführung:

In einem 100 mL Schlenkspitzkolben mit Gaseinlass wurden 445 mg (0.54 mmol) der Säure **144**[B(C₆H₅)₄] vorgelegt, entgast und in 30 mL Diethylether gelöst. In einem zweiten Schlenkkolben wurden 217 mg (0.54 mmol) des Silylens **41** vorgelegt, entgast und in 7 mL Diethylether gelöst. Für die Reaktion wurden beide Lösungen auf –40 °C abgekühlt und 15 Minuten bei dieser Temperatur gerührt. Anschließend wurde das gelöste Silylen bei –40 °C über einen Teflonschlauch zur Säure gegeben. Die resultierende Reaktionsmischung wurde 90 Minuten bei –40 °C gerührt und anschließend über eine Kältedestillation mit einer Sumpftemperatur von –40 °C bis zur Trockene eingeengt. Auf den Rückstand wurde ca. 1 mL D₅-Chlorbenzol kondensiert. Die Lösung wurde in ein vorgekühltes NMR-Probenrohr überführt und die Probe wurde bis zur Messung bei –50 °C gelagert. Die NMR-spektroskopische Untersuchung wurde bei –30 °C durchgeführt. Anschließend wurde die Probe in einem Zeitraum von 24 Stunden auf Raumtemperatur erwärmt und erneut NMR-spektroskopisch untersucht. Nach Lagerung der Probe für einen Tag bei –20 °C konnten Einkristalle erhalten werden, die für die Röntgenstrukturanalyse verwendbar waren.

Spektroskopische Ergebnisse:

Tieftemperatur Messung: Das ¹H und das ¹³C NMR-Spektrum konnten auf Grund der breiten Signale nicht für die Charakterisierung verwendet werden. **Messung bei Raumtemperatur**: Das ¹H und das ¹³C NMR-Spektrum konnten ebenfalls auf Grund der vielen Signale nicht zur Charakterisierung verwendet werden. **Charakterisierung der Kristalle**: Die gesammelten NMR-Daten entsprechen denen von Et₃O⁺.^[207]

Charakterisierung: Experiment bei -30 °C

 $\frac{^{29}\text{Si}\{^{1}\text{H}\}}{(24.0\text{Si}), -32.2} (1.0\text{Si}), -38.1 (4.1\text{Si}), -38.8 (3.5\text{Si} 145), -78.3 (48.0\text{Si}).$

 $\frac{^{29}\text{Si NMR INEPT}}{^{(1)}} (99.305 \text{ MHz}, 243 \text{ K}, \text{C}_6\text{D}_5\text{Cl}): \delta = -24.7 \text{ (d, SiH, } {}^{1}J(\text{H},\text{H}) = 336 \text{ Hz}), -32.2 \text{ (d, SiH, } {}^{1}J(\text{H},\text{H}) = 323 \text{ Hz}), -38.1 \text{ (d, SiH, } {}^{1}J(\text{H},\text{H}) = 274 \text{ Hz}), -38.8 \text{ (d, SiH, } {}^{1}J(\text{H},\text{H}) = 270 \text{ Hz}), -78.3 \text{ (d, SiH, } {}^{1}J(\text{H},\text{H}) = 330 \text{ Hz}).$

 $\frac{^{19}\text{F}\{^{1}\text{H}\} \text{ NMR}}{(470.296 \text{ MHz}, 243 \text{ K}, \text{C}_6\text{D}_5\text{Cl}): \delta = -132.3 (o-\text{C}_6\text{E}_5), -162.4 (p-\text{C}_6\text{E}_5), -166.3 (m-\text{C}_6\text{E}_5).$

¹¹B{¹H} NMR (160.377 MHz, 243 K, C₆D₅Cl): $\delta = -17.1 ([\underline{B}(C_6F_5)_4]^-).$

Charakterisierung: Experiment bei Raumtemperatur

²⁹Si NMR INEPT (99.305 MHz, 305 K, CDCl₃): $\delta = -31.2$ (d, SiH, ¹*J*(H,H) = 310 Hz), -37.4 (d, SiH, ¹*J*(H,H) = 315 Hz).

Charakterisierung: Kristalle

<u>¹H NMR</u> (499.873 MHz, 305 K, CDCl₃): δ = 1.56 (t, 9H, C<u>H</u>₃, ³*J*(H,H) = 7.2 Hz), 4.57 (q, 6H, C<u>H</u>₂, ³*J*(H,H) = 7.2 Hz).

<u>Zellparameter 146[B(C₆F₅)₄]:</u> Orthorhombisch, $P2_12_12_1$, a = 17.3835(6) Å, b = 18.7087(8) Å, c = 19.7752(8) Å.

7.3.41 Protonierung des Silylens 41 mit 158[CB₁₁H₆Br₆]

Durchführung:

In einem Schlenkrohr wurden 66 mg (0.09 mmol) der zuvor frisch präparierten Säure $158[CB_{11}H_6Br_6]$ vorgelegt und in 10 mL Benzol suspendiert. Zu dieser Suspension wurden 32 mg (0.08 mmol) **41** gelöst in 5 mL Benzol gegeben. Die erhaltene Reaktionsmischung wurde eine Stunde bei Raumtemperatur gerührt und anschließend bis auf ein Volumen von 3 mL eingeengt. Nach Lagerung der Mischung bei Raumtemperatur über einen Zeitraum von drei Tagen konnten Kristalle erhalten werden, die für die Einkristallstrukturanalyse zu verwenden waren. Eine NMR-spektroskopische Untersuchung wurde nicht durchgeführt, da zu wenig Substanz zur Verfügung stand und die Löslichkeit dieser Substanz in Benzol außerordentlich gering ist.

Charakterisierung:

Mittels Einkristallstrukturanalyse gelang es das protonierte Diazabutadien **162** zu identifizieren. Es fällt als Hauptprodukt bei der Kristallisation an.

<u>Zellparameter</u>: Monoklin a = 165.4088(5) Å, b = 11.7807(3) Å, c = 22.0210(7) Å, $\beta = 91.5300(10)^{\circ}$.

Durchführung:

In einem Schlenkrohr mit Gaseinlass wurden 203.34 mg (0.50 mmol) der Verbindung 163 in 2 mL Benzol gelöst. In einem zweiten Schlenkrohr wurden 461.18 mg (0.50mmol) des Salzes 29[B(C_6F_5)₄] vorgelegt, entgast und in 2 mL Benzol suspendiert. Anschließend wurde die Lösung von 163 langsam bei Raumtemperatur zur Suspension über einen Teflonschlauch gegeben. Die Reaktionsmischung wurde eine Stunde gerührt und anschließend bis zur Trockene eingeengt. Der erhaltene Rückstand wurde zweimal mit je 2 mL Benzol gewaschen und abschließend für die NMR-spektroskopische Untersuchung in D₆-Benzol wieder aufgenommen.

Spektroskopische Ergebnisse:³²

Das ¹H NMR Spektrum konnte auf Grund der breiten Signale nicht für die Charakterisierung verwendet werden. Das ¹³C und das ²⁹Si NMR-Spektrum weisen auf die Entstehung eines Produktgemisches hin (acht Signale im ²⁹Si{¹H} NMR- Spektrum).

Charakterisierung:

¹³C{¹H} NMR (125.706 MHz, 305 K, C₆D₆): δ = 22.1 (CH₃), 22.2 (CH₃), 22.5 (CH₃), 22.7 (CH₃), 22.8 (CH₃), 23.2 (CH₃), 23.6 (CH₃), 23.9 (CH₃), 24.2 (CH₃), 24.4 (CH₃), 24.5 (CH₃), 24.6 (CH₃), 24.8 (CH₃), 25.0 (CH₂), 25.1 (CH₃), 25.3 (CH₃), 28.6 (CH), 28.8 (CH), 29.0 (CH), 29.2 (CH), 29.4 (CH), 29.5 (CH), 29.8 (CH), 30.3 (CH), 57.3 (CH), 60.6 (CH₂), 77.5 (CH₂), 124.6-126.2 (m, *ispo*-<u>C</u>₆F₅), 124.4 (CH), 124.6 (CH), 124.9 (CH), 125.4 (CH), 125.5 (CH), 125.6 (CH), 125.8 (CH), 126.5 (CH), 129.8 (CH), 130.1 (CH), 130.5 (CH), 130.7 (CH), 132.8 (CH), 135.1 (C^q), 135.4 (C^q), 137.3 (d, ¹*J*(C,F) = 246 Hz, *p*-<u>C</u>₆F₅), 138.9 (C^q), 139.3 (d, ¹*J*(C,F) = 246 Hz, *m*-<u>C</u>₆F₅), 141.2 (C^q), 142.0 (CH), 142.5 (C^q), 143.0 (CH), 144.0 (C^q), 144.4 (C^q), 146.5 (C^q), 148.6 (C^q), 149.0 (d, ¹*J*(C,F) = 240 Hz, *o*-<u>C</u>₆F₅), 192.5 (CH), 210.3 (CH).

³² Bei der Präparation bei –5 °C und direkter anschließender NMR-spektroskopischer Untersuchung konnten die gleichen Ergebnisse erhalten werden. Eine analoge Durchführung bei –40 °C unter Verwendung von Diethylether als Lösungsmittel führte zu einem noch breiteren Produktspektrum.

 $\frac{^{29}\text{Si}\{^{1}\text{H}\} \text{ NMR}}{(19.305 \text{ MHz}, 305\text{K}, \text{C}_6\text{D}_6): \delta} = 36.9 (10.0\text{Si}), 7.0 (1.0\text{Si}), -7.5 (0.9\text{Si}), -14.7 (19.5\text{Si}), -15.4 (38.0\text{Si}), -26.1 (6.5), -31.5 (19.4\text{Si}), -42.7 (5.9\text{Si}).$

 $\frac{^{29}\text{Si NMR INEPT}}{(\text{SiH}, ^{1}J(\text{Si},\text{H}) = 357 \text{ Hz}), -31.5 \text{ (SiH}, ^{1}J(\text{Si},\text{H}) = 312 \text{ Hz}), -42.7 \text{ (SiH}, ^{1}J(\text{Si},\text{H}) = 319 \text{ Hz}).$

8 Kristallographischer Anhang

Parameter	Daten	
Identification code	$SiN_2C_2H_2(C_{12}H_{17})_2$	
Empirical formula	$C_{26}H_{36}N_2Si$	
Formula weight	404.66	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2	
Unit cell dimensions	<i>a</i> = 20.1180(5) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 6.47120(10) Å	$\beta = 102.6480(10)^{\circ}$
	c = 20.1247(4) Å	$\gamma = 90^{\circ}$
Volume	2556.41(9) Å ³	
Ζ	4	
Density (calculated)	1.051 Mg/m ³	
Absorption coefficient	0.105 mm ⁻¹	
<i>F</i> (000)	880	
Crystal size	0.84 · 0.49 · 0.29 mm ³	
heta range for data collection	2.51 – 36.25°	
Index ranges	$-33 \le h \le 33, -10 \le k \le 10, -33 \le l \le 26$	
Reflections collected	38483	
Independent reflections	12252 [<i>R</i> (int) = 0.0249]	
Observed reflections	10267 [<i>l</i> >2σ(<i>l</i>)]	
Completeness θ = 36.25°	99.4 %	
Absorption correction	Numerical	
Max. and min. transmission	0.9702 and 0.9172	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12252 / 1 / 338	
Goodness-of-fit on F ²	1.055	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0434, \ wR_2 = 0.1098$	
R indices (all data)	$R_1 = 0.0565, \ wR_2 = 0.1187$	
Absolute structure parameter	0.42(6)	
Largest diff. peak and hole	0.482 and –0.174 e.Å [–]	3

Tabelle 8.1. Kristalldaten des Dipp-substituierten N-heterocyclischen Silylens 41.

Parameter Daten Identification code $GeN_2C_2H_2(C_{12}H_{17})_2$ **Empirical formula** $C_{26}H_{36}GeN_2$ 449.16 Formula weight Temperature 153(2) K 0.71073 Å Wavelength Monoclinic Crystal system C2/cSpace group *a* = 20.1498(16) Å $\alpha = 90^{\circ}$ Unit cell dimensions *b* = 6.4674(3) Å $\beta = 102.860(9)^{\circ}$ *c* = 20.0586(16) Å $y = 90^{\circ}$ Volume 2548.4(3) Å³ Ζ 4 Density (calculated) 1.171 Mg/m³ Absorption coefficient 1.215 mm⁻¹ 952 F(000) Crystal size 1.00 · 0.38 · 0.34 mm³ θ range for data collection 2.59 - 26.13° $-24 \le h \le 24, -7 \le k \le 7, -24 \le l \le 24$ Index ranges **Reflections collected** 11709 Independent reflections 2394 [*R*(int) = 0.0394] **Observed reflections** 2222 [*I*>2σ(*I*)] Completeness $\theta = 26.13^{\circ}$ 94.5 % Absorption correction Numerical 0.6828 and 0.3763 Max. and min. transmission Refinement method Full-matrix least-squares on F^2 2394 / 0 / 133 Data / restraints / parameters 1.370 Goodness-of-fit on F² Final R indices $[l>2\sigma(l)]$ $R_1 = 0.1253, wR_2 = 0.2741$ $R_1 = 0.1304, wR_2 = 0.2759$ R indices (all data) Largest diff. peak and hole 0.710 and –1.775 e.Å $^{-3}$

Tabelle 8.2. Kristalldaten des Dipp-substituierten N-heterocyclischen Germylens^[32] 54.

Tabelle 8.3. Kristalldaten des Xvlvl-substituierten N-heterocyclischen Germy	/lens 58 . ^[255]
Tabelle 0.0. Rhstallaaten des Xylyr Substituierten N heterobyelischen Gening	

Parameter	Daten	
Identification code	GeN ₂ C ₂ H ₂ (C ₈ H ₉) ₂	
Empirical formula	$C_{18}H_{20}GeN_2$	
Formula weight	336.95	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	<i>a</i> = 8.1914(7) Å	$\alpha=69.759(4)^\circ$
	<i>b</i> = 10.4869(8) Å	$\beta=74.842(4)^\circ$
	<i>c</i> = 11.0129(8) Å	$\gamma = 67.204^{\circ}$
Volume	809.35(11) Å ³	
Ζ	2	
Density (calculated)	1.383 Mg/m ³	
Absorption coefficient	1.888 mm ⁻¹	
<i>F</i> (000)	348	
Crystal size	$0.25 \cdot 0.20 \cdot 0.18 \text{ mm}^3$	
θ range for data collection	1.99 – 30.30°	
Index ranges	–11 ≤ <i>h</i> ≤ 11, –14 ≤ <i>k</i> ≤ 14, –15 ≤ <i>l</i> ≤ 15	
Reflections collected	9340	
Independent reflections	4816 [<i>R</i> (int) = 0.0383]	
Completeness $\theta = 30.30^{\circ}$	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7156 and 0.5795	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4816 / 0 / 194	
Goodness-of-fit on F ²	1.055	
Final R indices [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	$R_1 = 0.0402, \ wR_2 = 0.0943$	
R indices (all data)	$R_1 = 0.0526, \ wR_2 = 0.0979$	
Largest diff. peak and hole	0.749 and –0.675 e.Å-3	3

Tabelle 8.4. Kristalldaten des Dipp-substituierten α -Aminoaldimins 53.

Parameter	Daten	
Identification code	$N_2C_2H_4(C_{12}H_{17})_2$	
Empirical formula	$C_{26}H_{38}N_2$	
Formula weight	378.58	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	<i>a</i> = 5.8064(2) Å	$\alpha = 90^{\circ}$
	b = 22.6498(7) Å	$\beta = 92.9060(10)^{\circ}$
	<i>c</i> = 18.1656(6) Å	$\gamma = 90^{\circ}$
Volume	2385.95(14) Å ³	
Z	4	
Density (calculated)	1.054 Mg/m ³	
Absorption coefficient	0.061 mm ⁻¹	
<i>F</i> (000)	832	
Crystal size	$0.49 \cdot 0.32 \cdot 0.35 \text{ mm}^3$	
heta range for data collection	3.49 – 30.08°	
Index ranges	$-8 \le h \le 8, -31 \le k \le 31, -25 \le l \le 25$	
Reflections collected	44811	
Independent reflections	6817 [<i>R</i> (int) = 0.0794]	
Observed reflections	4595 [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	
Completeness θ = 26.13°	97.3 %	
Absorption correction	Numerical	
Max. and min. transmission	0.9852 and 0.9712	
Refinement method	Full-matrix least-squares on P ²	
Data / restraints / parameters	6817 / 0 / 275	
Goodness-of-fit on F ²	1.017	
Final R indices $[l > 2\sigma(l)]$	$R_1 = 0.0618, \ wR_2 = 0.1437$	
R indices (all data)	$R_1 = 0.0976, \ wR_2 = 0.1632$	
Largest diff. peak and hole	0.266 and –0.240 e.Å ⁻³	

Tabelle 8.5. Kristalldater	des Wolfrompentacarbo	onyl-Silylen-Komplexes 77
----------------------------	-----------------------	---------------------------

Parameter	Daten	
Identification code	$W(CO)_5Si(N_2C_2H_4(C_8H_3))$	9)2
Empirical formula	$C_{23}H_{20}N_2O_5SiW$	
Formula weight	616.35	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Cmcm	
Unit cell dimensions	<i>a</i> = 9.7086(5) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 14.3926(5) Å	$\beta = 90^{\circ}$
	<i>c</i> = 17.1781(5) Å	$\gamma = 90^{\circ}$
Volume	2400.40(16) Å ³	
Ζ	4	
Density (calculated)	1.706 Mg/m ³	
Absorption coefficient	4.897 mm ^{−1}	
<i>F</i> (000)	1200	
Crystal size	$0.50 \cdot 0.26 \cdot 0.13 \text{ mm}^3$	
heta range for data collection	2.53 – 28.21°	
Index ranges	$-12 \le h \le 12, -19 \le k \le 19, -21 \le l \le 21$	
Reflections collected	18725	
Independent reflections	1585 [<i>R</i> (int) = 0.0784]	
Observed reflections	1470 [<i>l</i> >2σ(<i>l</i>)]	
Completeness θ = 26.13°	97.6 %	
Absorption correction	Numerical	
Max. and min. transmission	0.5685 and 0.1933	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1585 / 0 / 93	
Goodness-of-fit on F ²	1.042	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0199, \ wR_2 = 0.0473$	
R indices (all data)	$R_1 = 0.0221, \ wR_2 = 0.0478$	
Largest diff. peak and hole	3.477 and –0.690 e.Å∹	3

Parameter	Daten	
Identification code	2 [(C ₂ H ₅) ₃ O][B(C ₆ F ₅) ₄] (C ₆ H₅Cl
Empirical formula	$C_{66}H_{35}B_2CIF_{40}O_2$	
Formula weight	1677.01	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	<i>a</i> = 17.3835(6) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 18.7087(8) Å	$\beta = 90^{\circ}$
	<i>c</i> = 19.7752(8) Å	$\gamma = 90^{\circ}$
Volume	6431.3 Å ³	
Ζ	4	
Density (calculated)	1.732 Mg/m ³	
Absorption coefficient	0.224 mm ⁻¹	
<i>F</i> (000)	3336	
Crystal size	0.36 · 0.19 · 0.18 mm ³	
heta range for data collection	3.00 – 30.02°	
Index ranges	$-24 \le h \le 22, -26 \le k \le 26, -27 \le l \le 27$	
Reflections collected	123755	
Independent reflections	18719 [<i>R</i> (int) = 0.0682]	
Observed reflections	12249 [<i>l</i> >2σ(<i>l</i>)]	
Completeness θ = 26.13°	99.7 %	
Absorption correction	Numerical	
Max. and min. transmission	0.9613 and 0.9234	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	18719 / 0 / 1067	
Goodness-of-fit on F ²	1.026	
Final R indices [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	$R_1 = 0.0458, \ wR_2 = 0.0$	689
R indices (all data)	$R_1 = 0.0991, \ wR_2 = 0.0$	815
Absolute structure parameter	0.05(6)	
Largest diff. peak and hole	0.484 and -0.289 e.Å-3	3

Tabelle 8.7. Kristalldaten des	Triethyloxonium-tetrakis-[pentaflourphenyl]-borats aus	Versuchsreihe 7
146 $[B(C_6F_5)_4].$		

Parameter	Daten		
Identification code	pzla16_0m		
Empirical formula	$C_{66}H_{36}B_2CIF_{40}O_2$		
Formula weight	1642.57		
Temperature	153(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁		
Unit cell dimensions	<i>a</i> = 17.2913(6) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 18.7175(6) Å	$\beta = 90^{\circ}$	
	<i>c</i> = 19.9374(7) Å	$\gamma = 90^{\circ}$	
Volume	6452.7(4) Å ³		
Ζ	4		
Density (calculated)	1.691 Mg/m ³		
Absorption coefficient	0.181 mm ⁻¹		
<i>F</i> (000)	3272		
Crystal size	0.63 · 0.19 · 0.05 mm ³		
heta range for data collection	2.60 – 30.14°		
Index ranges	$-24 \le h \le 23, -26 \le k \le 26, -28 \le l \le 28$		
Reflections collected	110880		
Independent reflections	18875 [<i>R</i> (int) = 0.0649]		
Completeness θ = 26.13°	99.0 %		
Absorption correction	Numerical		
Max. and min. transmission	0.9910 and 0.8951		
Refinement method	Full-matrix least-squares on P ²		
Data / restraints / parameters	18875 / 0 / 1012		
Goodness-of-fit on F ²	1.025		
Final R indices [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	$R_1 = 0.0433, \ wR_2 = 0.0$	796	
R indices (all data)	$R_1 = 0.0981, wR_2 = 0.0$	984	
Absolute structure parameter	0.2(3)		
Largest diff. peak and hole	0.284 and –0.377 e.Å∹	3	
Parameter	Daten		
-----------------------------------	--	-------------------------------	--
Identification code	$C_{30}H_{48}B_{11}Br_6N_2$		
Empirical formula	$C_{26}H_{37}N_2^+ CB_{11}H_6Br_6^- \cdot \frac{1}{2}C_6H_6$		
Formula weight	1035.07		
Temperature	153(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>P</i> 2 ₁ /n		
Unit cell dimensions	<i>a</i> = 16.4088(5) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 11.7807(5) Å	$\beta = 91.5300(10)^{\circ}$	
	c = 22.0210(7) Å	γ= 90°	
Volume	4255.3 Å ³		
Ζ	4		
Density (calculated)	1.616 Mg/m ³		
Absorption coefficient	5.686 mm ⁻¹		
<i>F</i> (000)	2028		
Crystal size	$0.46 \cdot 0.28 \cdot 0.17 \text{ mm}^3$		
heta range for data collection	2.80 – 30.95°		
Index ranges	$-23 \le h \le 23, -16 \le k \le 17, -31 \le l \le 31$		
Reflections collected	115966		
Independent reflections	13455 [<i>R</i> (int) = 0.0312]]	
Observed reflections	10277 [<i>l</i> >2σ(<i>l</i>)]		
Completeness θ = 26.13°	99.6 %		
Absorption correction	Numerical		
Max. and min. transmission	0.4449 and 0.1778		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	13455 / 0 / 512		
Goodness-of-fit on F ²	1.010		
Final R indices $[l>2\sigma(l)]$	$R_1 = 0.0272, \ wR_2 = 0.0000$	541	
R indices (all data)	$R_1 = 0.0488, \ wR_2 = 0.0$	616	
Largest diff. peak and hole	0.758 and –0.457 e.Å∹	3	

Tabelle 8.8. Kristalldaten des einfach protonierten Dipp-substituierten α -Aminoaldimins **162**[CB₁₁H₆Br₆].

9 Details für die computerchemischen Berechnungen

Alle Geometrieoptimierungen und Natural Bond Orbital^[221] (NBO) Analysen wurden sofern nicht anders angegeben mit dem Gaussian09 Programmpacket^[256] durchgeführt. Alle stationären Punkte der geometrieoptimierten Strukturen wurden durch zusätzliche Frequenzanalysen verifiziert. Die berechneten Energien der optimierten Strukturen in den Tabellen zu den jeweiligen Abschnitten zusammengefasst. Die entsprechenden xyz-Koordinaten sind in dem Begleitmaterial auf der beiliegenden CD-Rom zu finden. Alle Abbildungen von Orbitalen wurden mit dem Programm ChemCraft^[257] 1.6 und einer Aufenthaltswahrscheinlichkeit von 0.05 Elektronen pro Volumenelement berechnet. Die grafischen Darstellungen der Orbitale wurden mit GaussView 5.0 angefertigt.^[258]

Die Berechnungen zu Ermittlung der Wiberg Bond Indices, WBI, wurden im Rahmen der NBO Analyse analog der von Wigand beschriebenen Methode durchgeführt.^[229] Hierbei ergibt sich der WBI aus der Summe der Quadrate der nicht diagonalen Elemente der Dichte-Matrix in der NAO Basis (Natural Atomic Orbitals) von den zwei betrachteten Atomen (auf der Basis von Atomorbitalen). Eine ausführliche theoretische Erklärung zur NBO Analyse und zu Ermittlung der WBIs ist dem NBO Programm-Handbuch zu entnehmen.^[259, 260] Für den entsprechenden mathematischen Hintergrund sei auf die Literatur verwiesen.^[261]

9.1 Spezielle computerchemische Details für Abschnitt 3.9

Die Berechnungen der Strukturen und der Wiberg Bond Indizes (WBI) auf Grundlage der NBO Analyse erfolgten auf B3LYP-Niveau. Als Basissatz für die Geometrieoptimierungen wurde für die Atome: Wasserstoff, Kohlenstoff und Stickstoff der Pople Basissatz 6-311+G(d,p)^[158-160] verwendet. Das Silicium-, Germanium- und das Zinnatom wurden dabei durch die def2-TZVP Basissätze von Ahlrichs und Wigand^[262] und das entsprechende effektive Kernpotenzial (ECP) beschrieben. Die NBO Analysen erfolgten auf Grundlage der optimierten Geometrien als Single-Point Rechnungen auf gleichem Nieveau und gleichem Basissatz (B3LYP/H,C,N: 6-311+G(d,p), E: def2-TZVP/B3LYP/H,C,N: 6-311+G(d,p), E: def2-TZVP)). Alle Nuclear-Magnetic-Shielding-Tensoren wurden mittels Single-Point Rechnungen durch die GIAO-Methode^[263] auf B3LYP-Niveau berechnet. Wassersoff, Kohlenstoff, Stickstoff, Silicium und Germanium wurden durch den Basissatz 6-311G(2d,p) beschrieben. Für das Zinnatom wurde der Allelektronen-Basissatz TZVPall von Ahlrichs und Wigand^[264] verwendet (GIAO B3LYP/H,C,N,Si,Ge: 6-311G(2d,p), Sn:TZVPall//B3LYP/H,C,N:

6-311+G(d,p), E: def2-TZVP). Die isotropen ¹⁵N NMR chemischen Verschiebungen δ^{15} N wurden, mit Hilfe der Tensoren von σ^{15} N(NH₃) bestimmt, welche zuvor auf dem gleichen Niveau berechnet wurden (δ^{15} N(NH₃) = 0).

Tabelle 9.1. Berechnete absolute Energien E^{tot}, freie Reaktionsenthalpien G²⁹⁸ bei 298 K, Null-Punkt-Schwingungsenergien (ZPE) und Anzahl und Größe der imaginären Schwingungen NImag der in diesem Abschnitt diskutierten Verbindungen.

Verbindung	E ^{tot}	G ²⁹⁸	ZPE	NImag
(Fullkigluppe)	[a.u.]	[a.u.]		
40 (<i>C</i> ₁)	-1097.23110	-1096.94477	883.210	0
58 (<i>C</i> ₁)	-2884.76693	-2884.48343	879.704	0
67 (<i>C</i> ₁)	-808.87765	-808.57056	938.007	0
70 (<i>C</i> ₁)	-1022.09559	-1021.81462	876.815	0
NH ₃ (<i>C</i> _{3<i>v</i>})	-56.58264	-56.56644	89.857	0
$\mathbf{H_{3}C-NH_{2}}\left(C_{s}\right)$	-95.89384	-95.85296	167.544	0
$H_2C=NH(C_s)$	-94.66242	-94.64456	104.432	0
$\mathbf{H_{3}C-CH_{3}}\left(D_{3d}\right)$	-79.85654	-79.80367	195.077	0
$\mathbf{H_{2}C=CH_{2}}\left(D_{2h}\right)$	-78.61551	-78.58560	133.329	0

9.2 Spezielle computerchemische Details für Abschnitt 4.13.9

Alle Details, die die computerchemischen Rechnungen für diesen Abschnitt betreffen, sind aus dem Supporting Material der Veröffentlichung zu entnehmen: *Electrochemistry and MO Computations of Saturated and Unsaturated N-Heterocyclic Silylenes*, in *Organometal- lics* **2010**, *29*, 1603.^[74]

9.3 Spezielle computerchemische Details für Abschnitt 4.2.13.9

Die Berechnung der Struktur von W(CO)₅(**40**) erfolgte auf B3LYP-Niveau, wobei die Wasserstoff-, Kohlenststoff-, Stickstoff-, Sauerstoff- und Siliciumatome durch den 6-311G(d,p) Basissatz beschrieben wurden, während für das Wolframatom das quasirelativistische Stuttgart Dresden Pseudo-Potential SDD^[219] verwendet wurde. Die anschließende Frequenzanalyse wurde auf demselben Niveau durchgeführt (B3LYP/W: SDD, H,C,N,O,Si: 6-311G(d,p)// B3LYP/W: SDD, H,C,N,O,Si: 6-311G(d,p)). *Tabelle 9.2.* Berechnete absolute Energien E^{tot}, freie Reaktionsenthalpien G²⁹⁸ bei 298 K, Null-Punkt-Schwingungsenergien (ZPE) und Anzahl und Größe der imaginären Schwingungen NImag der in diesem Abschnitt diskutierten Verbindungen.

Verbindung	E ^{tot}	G ²⁹⁸	ZPE	NImag
(Punktgruppe)	[a.u.]	[a.u.]	[kJ mol ⁻¹]	[cm ⁻¹]
W(CO) ₅ (40) (C _{2v})	-1731.30848	-1730.99733	996.240	0

9.4 Spezielle computerchemische Details für Abschnitt 4.4.3, 4.4.5 und 4.4.6

Die Berechnungen der Strukturen erfolgten auf B3LYP-Niveau. Als Basissatz für die Geometrieoptierungen wurde für alle Atome 6-311+G(d,p) verwendet.^[158-160] Der thermodynamische Verlauf der Reaktionen wurde entsprechend der untersuchten Reaktionen berechnet. Die Gleichgewichtskonstante, *K*, wurde mit Hilfe der van't Hoff Gleichung berechnet.^[265, 266]

$$K = e^{-\frac{\Delta G^{298}}{RT}}$$

Die Protonenaffinitäten wurden entsprechend der Reaktionsgleichung im jeweiligen Abschnitt berechnet. Die Bindungsenergien zwischen den Lösungsmittelmolekülen und Kationen entsprechen der Differenz aus der Energie des jeweiligen Kationen-Lösungsmittel-Addukts und der Summe der Energien der freien Moleküle (Kationen und Lösungsmittelmoleküle). Alle Nuclear-Magnetic-Shielding-Tensoren wurden mittels Single-Point Rechnungen durch die GIAO-Methode^[263] auf B3LYP-Niveau mit dem Basissatz 6-311+G(2d,p) berechnet. Die isotropen ²⁹Si NMR chemischen Verschiebungen δ^{29} Si, wurden, wurden mit Hilfe der Tensoren von σ^{29} Si(SiMe₄) bestimmt, welche zuvor auf dem gleichen Niveau berechnet wurden (δ^{29} Si(SiMe₄) = 0).

Tabelle 9.3. Berechnete absolute Energien E^{tot} , freie Reaktionsenthalpien G^{298} bei 298 K, Null-Punkt-Schwingungsenergien (*ZPE*) und Anzahl und Größe der imaginären Schwingungen NImag der in diesem Abschnitt diskutierten Verbindungen.

Verbindung	$E^{\rm tot}$	G ²⁹⁸	ZPE	NImag
(Punktgruppe)	[a.u.]	[a.u.]	[kJ mol ⁻¹]	[cm ⁻¹]
[Et ₂ O–H–OEt ₂] ⁺ 144 (C ₁)	-467.83934	-467.59759	748.832	0
Et ₂ O 150 (<i>C</i> ₁)	-233.73660	-233.63088	356.728	0
Et ₃ O ⁺ 146 (<i>C</i> ₁)	-312.71082	-312.54098	538.699	0
EtOH 151 (<i>C</i> ₁)	-155.09506	-155.04094	208.912	0
41 (<i>C</i> ₁)	-1411.80905	-1411.31181	1475.742	0
145 (<i>C</i> ₁)	-1566.95264	-1566.3837	1683.949	0
157 (<i>C</i> ₁)	-1412.16492	-1411.65988	1498.083	0

	tot	200		
Verbindung	E	$G^{_{290}}$	ZPE	NImag
(Punktgruppe)	[a.u.]	[a.u.]	[kJ mol ⁻¹]	[cm ⁻¹]
157 (Et ₂ O) (C ₁)	-1645.92904	-1645.28959	1867.740	0
157 (C ₆ H ₆) (C ₁)	-1644.48713	-1643.88742	1766.885	0
167 (<i>C</i> ₁)	-1412.17608	-1411.66890	1506.537	0
167 (Et ₂ O) (C ₁)	-1645.91642	-1645.28783	1864.920	0
167 (C_6H_6) (C_1)	-1644.49022	-1643.89549	1770.356	0
166 (<i>C</i> _s)	-3199.65545	-3199.15366	1493.828	0
166 (Et ₂ O) (C ₁)	-3433.39866	-3432.77160	1854.610	0
166 (C_6H_6) (C_1)	-3431.97187	-3431.38180	1758.224	0
141 (<i>C</i> ₁)	-3199.68096	-3199.17764	1503.262	0
141 (Et ₂ O) (C ₁)	-3433.42276	-3432.79607	1862.283	0
$141(C_6H_6)(C_1)$	-3431.99727	-3431.40201	1768.499	0
54 (<i>C</i> ₁)	-3199.30892	-3198.81391	1472.622	0
$C_{6}H_{6}(D_{6h})$	-232.31124	-232.23623	262.941	0
$[H(C_6H_6)]^+$ 158 ($C_{2\nu}$)	-232.61119	-232.52856	288.928	0
SiMe ₄ (<i>T_d</i>)	-449.27209	-449.15552	385.350	0

9.5 Spezielle computerchemische Details für Abschnitt 5.1

Alle computerchemischen Details für Abschnitt 5.1 sind dem Supporting Material der Veröffentlichung zu entnehmen: *Dispersion Energy Enforced Dimerization of a Cyclic Disilylated Plumbylene*, im Journal of the American Chemical Society **2012**, *134*, 6409.^[215]

9.6 Spezielle computerchemische Details für Abschnitt 5.2

Alle Geometrieoptimierungen wurden unter Verwendung des M06-2X-Funktionals^[218] durchgeführt, wobei die Gruppe 4 Metalle (Ti, Zr und Hf) sowie die zentralen Gruppe 14 Elemente (E^1 = Si, Ge, Sn und Pb) mit Hilfe des quasirelativistischen Stuttgart Dresden pseudo Potential SDD^[219] beschrieben wurden. In dem Fall, in dem das Siliciumatom bzw. das Germaniumatom eine zentrale Position in den berechneten Verbindungen einnahm, wurde diese Ebenfalls mit dem SDD-Basissaz beschrieben um einen Vergleich mit den Untersuchungen zu den Verbindungen mit Zinn und Blei zu ermöglichen. Siliciumatome, die in der Peripherie der berechneten Strukturen gebunden sind, wurden wie alle weiteren Atome mit Hilfe des Pople-Basissatz 6-31G(d)^[158-160] beschrieben (M06-2X/Ti, Zr, Hf, Sn, Pb, zentrales Si, Ge: SDD, H, C, P, Si 6-31G(d) = M06-2X/A). Die NBO Analysen wurden auf Grundlage der geometrieoptimierten Strukturen mit Hilfe des M06-2X-Funktionals in Verbindung mit dem def2-TZVP-Basisatz von Ahlrichs und Wigand^[262] für die Gruppe 4 Metallatome, Blei-, Zinn-, Germanium- und die zentralen Siliciumatomen sowie die entsprechenden effektiven Kernpotentialen ECP durchgeführt, um möglichst exakte Berechnungen für die Bindungssituation zu gewährleisten.

Die Bindungsdissoziationsenergien, *BDE*, ergeben sich als Differenz der totalen Energie, E^{tot} , der geometrieoptimierten Komplexe und der Summe der E^{tot} ihrer geometrieoptimierten Fragmente, wobei alle Verbindungen im Singulett Grundzustand berechnet wurden. Im Fall der Mono(tetrylen)komplexe entsprechen die Fragmente den Tetrylenen **169**, **182–184** und den Phosphan-substituierten Gruppe 4 Metallocenen. Die mittlere *BDE* der Bis(tetrylen)komplexe wurde analog als Differenz von E^{tot} der Bis(tetrylen)komplexe und der Summe der E^{tot} des entsprechenden Gruppe 4 Metallocens (im Singulett Grundzustand), sowie der zwei Tetrylene dividiert durch zwei berechnet. Der Anteil der nicht kovalenten Wechselwirkungen (*BDE*^{nk}) an der *BDE* wurde als Differenz der *BDE*, die auf M06-2X/A-Niveau berechnet wurde, und der *BDE*^{B3LYP}, die aus B3LYP-Rechnungen^[156, 157, 267, 268] auf Grundlage der geometrieoptimierten Strukturen auf M06-2X-Niveau mit dem gleichen Basissatz erhalten wurden, ermittelt.

Für die Darstellung der MO-Diagramme der Mono(tetrylen)komplexe **38** wurden die Energien der MOs der geometrieoptimierten Fragmente verwendet: Cp_2MPEt_3 (M = Ti, Zr, Hf), **169**, **182–184**. Die MO-Diagramme der Bis(tetrylen)komplexe wurden mit Hilfe der Orbitalenergien des Metallocenfragments (im Singulett Grundzustand) und den Energien der Orbitale der Tetrylene konstruiert. In diesem Fall wurden die benötigten Orbitalenergien mittels Single-Point-Rechnungen auf Grundlage der Struktur der Fragmente in ihren Komplexen berechnet.

Alle Nuclear-Magnetic-Shielding-Tensoren wurden mittels Single-Point Rechnungen durch die GIAO-Methode^[263] auf B3LYP-Niveau berechnet. Wassersoff, Kohlenstoff und Silicium wurden durch den Basissatz 6-311G(2d,p) beschrieben. Für Gruppe 4 Metallatome (Ti, Zr und Hf) wurde der def2-TZVPall Basissatz von Ahlrichs und Wigand^[264] verwendet (GIAO B3LYP/H,C,Si: 6-311G+(2d,p), Ti,Zr,Hf:def2-TZVP//M06-2X/A). Die isotropen ²⁹Si NMR chemischen Verschiebungen, δ^{29} Si, wurden mit Hilfe der Tensoren von σ^{29} Si(SiMe₄) = 0).

Die xyz-Koordinaten und Energien der Verbindungen die Zinn- bzw. Bleiatome enthalten sind dem Supporting Material der Veröffentlichung zu entnehmen: *Coordiantion Chemistry of Cyclic Disilylated Stannylenes and Plumbylenes to Group 4 Metallocenes* in *Journal of the American Chemical Society* **2012**, *134*, 10864.^[133] Die berechneten Energien aller in

Patrick Zark

diesem Abschnitt diskutierten Verbindungen sind in Tabelle 9.4 zusammengefasst. Die xyz-Koordinaten der Silylen- und Germylenkomplexe sowie der entsprechenden Vergleichsverbindungen sind im Begleitmaterial auf der beiliegenden CD-Rom zu finden.

Tabelle 9.4. Berechnete absolute Energien E^{tot} , Null-Punkt-Schwingungsenergien (*ZPE*) und Anzahl und Größe der imaginären Schwingungen (NImag) (M06-2X/A), Single-Point-Rechnungen auf B3LYP/A//M06-2X/A-Niveau zur Bestimmung von $E^{B3LYP tot}$ sowie WBIs der M–E¹-Bindungen (WBI E¹-E¹-Bindungen in Klammern).

	1 0	tot			DOI VD tot		
Verbindung	$E^{1}-M-E^{2}$	<i>E</i> ^{tot}		NImag		WBI	
(Punktgruppe)		[a.u.]	[kJ mol]	[cm ']	[a.u.]		
38j (<i>C</i> ₁)	Si–Ti–P	-4267.64304	2606.803	0	-4268.70301	1.56	
38k (<i>C</i> ₁)	Si–Zr–P	-4256.39055	2598.447	0	-4257.46327	1.66	
38I (<i>C</i> ₁)	Si–Hf–P	-4257.35640	2598.227	0	-4258.42101	1.64	
38a (<i>C</i> ₁)	Ge–Ti–P	-3981.99959	2603.085	0	-3983.05319	1.54	
38b (<i>C</i> ₁)	Ge–Zr–P	-3970.74590	2595.188	0	-3971.81384	1.66	
38c (<i>C</i> ₁)	Ge–Hf–P	-3971.71079	2596.657	0	-3972.76978	1.64	
38d (<i>C</i> ₁)	Sn–Ti–P	-3981.57757	2594.975	0	-3982.63878	1.23	
38e (<i>C</i> ₁)	Sn–Zr–P	-3970.32314	2591.057	0	-3971.39838	1.52	
38f (C ₁)	Sn–Hf–P	-3971.28703	2589.731	0	-3972.35384	1.58	
38g (<i>C</i> ₁)	Pb–Ti–P	-3981.62807	2595.141	0	-3982.69142	1.07	
38h (<i>C</i> ₁)	Pb–Zr–P	-3970.37345	2589.917	0	-3971.44929	1.38	
38i (C ₁)	Pb–Hf–P	-3971.33668	2588.598	0	-3972.40380	1.44	
39d (<i>C</i> ₂)	Si–Ti–Si	-6932.33009	3693.373	0	-6933.88425	1.23 (0.24)	
39e (<i>C</i> ₂)	Si–Zr–Si	-6921.07356	3684.387	0	-6922.64445	1.29 (0.24)	
39f (C ₁)	Si–Hf–Si	-6922.04098	3673.642	0	-6923.60382	1.27 (0.27)	
39g (<i>C</i> ₂)	Ge–Ti–Ge	-6361.04894	3684.390	0	-6362.59033	1.26 (0.19)	
39h (<i>C</i> ₂)	Ge–Zr–Ge	-6349.79224	3678.345	0	-6351.35083	1.30 (0.21)	
39i (<i>C</i> ₁)	Ge–Hf–Ge	-6349.92139	3663.175	0	-6351.48972	1.28 (0.25)	
39a (<i>C</i> ₂)	Sn–Ti–Sn	-6360.21205	3672.702	0	-6361.76886	1.07 (0.19)	
39j (<i>C</i> ₂)	Sn-Zr-Sn	-6348.95642	3663.102	0	-6350.53209	1.19 (0.20)	
39b (<i>C</i> ₂)	Sn–Hf–Sn	-6349.92139	3663.175	0	-6351.48972	1.22 (0.23)	
39k (C_2)	Pb–Ti–Pb	-6360.31328	3661.841	0	-6361.87352	0.93 (0.15)	
39I (<i>C</i> ₂)	Pb–Zr–Pb	-6349.06050	3657.954	0	-6350.63371	1.15 (0.16)	
39c (<i>C</i> ₂)	Pb–Hf–Pb	-6350.02466	3658.473	0	-6351.59002	1.15 (0.20)	
182 (<i>C</i> ₂)	$E^1 = Si$	-3243.50989	1600.975	0	-3244.21388	-	
183 (<i>C</i> ₂)	$E^1 = Ge$	-2957.87849	1599.495	0	-2958.56988	_	
184 (<i>C</i> ₂)	$E^1 = Sn$	-2957.46623	1600.013	0	-2958.15900	-	
169 (<i>C</i> ₁)	$E^1 = Pb$	-2957.52931	1601.354	0	-2958.21623	_	
Cp ₂ Ti ¹ A (C ₁)	M = Ti	-1024.05373	982.370	0	-1024.45300	-	
$Cp_2Zr^1A(C_1)$	M = Zr	-1012.76226	977.556	0	-1013.17784	_	

Verbindung	E^1 –M– E^2	E^{tot}	ZPE	NImag	E ^{B3LYP tot} WBI	
(Punktgruppe)		[a.u.]	[kJ mol ⁻¹]	[cm ⁻¹]	[a.u.]	
$Cp_2Hf^{1}A(C_1)$	M = Hf	-1013.71811	975.325	0	-1014.12618	-
$Cp_{2}Ti-PEt_{3}$ (C_{1})	Ti–P	-1024.05373	982.370	0	-1024.45300	-
$Cp_2Zr-PEt_3(C_1)$	Zr–P	-1012.76226	977.556	0	-1013.17784	-
$Cp_2Hf-PEt_3$ (C_1)	Hf–P	-1013.71811	975.325	0	-1014.12618	-
$Cp_2Ti(SiMe_3)_2$ (C_s)	Si–Ti–Si	-1263.47387	1051.361	0	-	0.86
$Cp_2Zr(SiMe_3)_2$ (C_1)	Si–Zr–Si	-1252.21336	1040.762	0	-	0.92
$Cp_2Hf(SiMe_3)_2(C_1)$	Si–Hf–Si	-1253.18461	1039.944	0	-	0.91
$Cp_2Ti(GeMe_3)_2 (C_1)$	Ge–Ti–Ge	-692.128489	1038.365	0	_	0.83
$Cp_2Zr(GeMe_3)_2$ (C_1)	Ge–Zr–Ge	-680.867131	1032.498	0	-	0.92
$Cp_2Hf(GeMe_3)_2$ (C_1)	Ge–Hf–Ge	-681.83803	1030.806	0	-	0.92
$Cp_2Ti(SnMe_3)_2 (C_1)$	Sn–Ti–Sn	-691.26030	1027.499	0	-	0.83
$Cp_2Zr(SnMe_3)_2$ (C_1)	Sn–Zr–Sn	-679.99444	1023.714	0	_	0.93
$Cp_2Hf(SnMe_3)_2(C_1)$	Sn–Hf–Sn	-680.96387	1021.218	0	-	0.94
$Cp_2Ti(PbMe_3)_2 (C_1)$	Pb–Ti–Pb	-691.28485	1025.416	0	-	0.79
$Cp_2Zr(PbMe_3)_2(C_1)$	Pb–Zr–Pb	-680.02461	1019.965	0	-	0.91
$Cp_2Hf(PbMe_3)_2$ (C_1)	Pb–Hf–Pb	-680.98993	1018.874	0	-	0.92
SiMe ₄ (<i>T_d</i>)		-449.27209	385.350	0	-	-

10 Literaturverzeichnis

- [1] N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 102., stark umgearbeitete und verbesserte Auflage, Walter de Gruyter, Berlin, New York **2007**, 861*ff*.
- [2] H. Grützmacher, T. F. Fässler, *Chem. Eur. J.* **2000**, *6*, 2317.
- [3] D. Gudat, in *Riedel: Moderne Anorganische Chemie, Vol. 4* (Ed.: H.-J. Meyer), de Gruyter, Tübingen **2012**, 80*ff*.
- [4] P. A. Rupar, V. N. Staroverov, P. J. Ragogna, K. M. Baines, J. Am. Chem. Soc. 2007, 129, 15138.
- [5] P. A. Rupar, V. N. Staroverov, K. M. Baines, *Science* **2008**, *322*, 1360.
- [6] A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. 2009, 121, 5797.
- [7] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, *Angew. Chem.* 2009, *121*, 5793.
- [8] P. W. Schenk, F. Huber, M. Schmeisser, *Handbuch der Präparativen Anorganischen Chemie, Vol.* 2, 3. Auflage, Ferdinand Enke Verlag, Stuttgart **1978**, 723.
- [9] M. F. Lappert, P. J. Davidson, J. Chem. Soc., Chem. Commun. 1973, 317.
- [10] P. J. Davidson, D. H. Harris, M. F. Lappert, J. Chem. Soc., Dalton Trans. 1976, 2268.
- [11] W. Kirmse, Angew. Chem. Int. Ed. 1965, 4, 1.
- [12] M. Brookhart, W. B. Studabaker, Chem. Rev. 1987, 87, 411.
- [13] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
- [14] A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. **1988**, 110, 6463.
- [15] A. Igau, A. Baceiredo, G. Trinquier, G. Bertrand, Angew. Chem. 1989, 101, 617.
- [16] T. J. Drahnak, J. Michl, R. West, J. Am. Chem. Soc. 1979, 101, 5427.
- [17] D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, *Chem. Rev.* **2000**, *100*, 39.
- [18] F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008, 120, 3166.
- [19] M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354.
- [20] Y. Mizuhata, T. Sasamori, N. Tokitoh, *Chem. Rev.* **2009**, *109*, 3479 und darin zitierte Literatur.
- [21] T. Müller, in *Comprehensive Heterocyclic Chemistry III, Vol. 6* (Ed.: A. R. Katritzky), Elsevier, Amsterdam, Bosten, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Syndey, Tokyo 2008, Three or Four Heteroatoms Including At Least One Silicon, 655.
- [22] M. Haaf, T. A. Schmedake, R. West, Acc. Chem. Res 2000, 33, 704.
- [23] O. Kühl, Coord. Chem. Rev. 2004, 248, 411.
- [24] M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691.
- [25] D. Gudat, T. Gans-Eichler, M. Nieger, Angew. Chem. 2002, 114, 1966.
- [26] J. Pfeiffer, W. Maringgele, M. Noltemeyer, A. Meller, Chem. Ber. 1989, 122, 245.
- [27] F. E. Hahn, D. Heitmann, P. T., Eur. J. Inorg. Chem. 2008, 1039.
- [28] P. Zark, Diplomarbeit, Carl von Ossietzky Universität (Oldenburg) 2008.
- [29] L. Kong, J. Zhang, H. Song, C. Cui, *Dalton Trans.* 2009, 5444.
- [30] P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, *J. Organomet. Chem.* **2010**, *695*, 398.
- [31] W. A. Herrmann, M. Denk, J. Behm, W. Scherer, F. R. Klingan, H. Bock, B. Solouki, M. Wagner, Angew. Chem. 1992, 104, 1489.
- [32] unveröffentlichte Arbeiten: A. Schäfer, Universität Oldenburg 2008.
- [33] T. Gans-Eichler, D. Gudat, K. Nättinen, M. Nieger, *Chem. Eur. J.* 2006, *12*, 1162.
- [34] O. Kühl, P. Lönnecke, J. Heinicke, *Polyhedron* **2001**, *20*, 2215.

- [35] B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Blaser, J. Chem. Soc., Chem. Commun. 1995, 1931.
- [36] J. Heinicke, A. Oprea, M. K. Kindermann, T. Karpati, L. Nyulászi, T. Veszprémi, *Chem. Eur. J.* **1998**, *4*, 541.
- [37] I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, N. M. Khvoinova, A. Y. Baurin, S. Dechert, M. Hummert, H. Schumann, *Organometallics* **2004**, *23*, 3714.
- [38] M. Veith, E. Werle, R. Lisowsky, R. Köppe, H. Schnöckel, *Chem. Ber.* **1992**, *125*, 1375.
- [39] R. West, M. Denk, *Pure Appl. Chem.* **1996**, *68*, 785.
- [40] A. Schäfer, W. Saak, M. Weidenbruch, Z. anorg. allg. Chem. 1998, 624, 1405.
- [41] J. P. H. Charmant, M. F. Haddow, F. E. Hahn, D. Heitmann, R. Frohlich, S. M. Mansell, C. A. Russell, D. F. Wass, *Dalton Trans.* **2008**, 6055.
- [42] S. M. Mansell, C. A. Russell, D. F. Wass, *Inorg. Chem.* 2008, 47, 11367.
- [43] S. Kobayashi, S. Iwata, M. Hiraishi, J. Am. Chem. Soc. 1994, 116, 6047.
- [44] M. Kira, S. Ishida, T. Iwamoto, R. Yauchibara, H. Sakurai, J. Organomet. Chem. 2001, 636, 144.
- [45] M. Kira, S. Ishida, T. Iwamoto, *Chem. Rec.* **2004**, *4*, 243.
- [46] M. Kira, J. Organomet. Chem. 2004, 689, 4475.
- [47] M. Kira, T. Iwamoto, S. Ishida, Bull. Chem. Soc. Jpn. 2007, 80, 258.
- [48] M. Driess, S. Yao, M. Brym, C. vanWullen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628.
- [49] M. Driess, S. Yao, M. Brym, C. van Wüllen, Angew. Chem. 2006, 118, 4455.
- [50] T. Iwamoto, K. Sato, S. Ishida, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2006, 128, 16914.
- [51] S. Nagendran, H. W. Roesky, Organometallics 2008, 27, 457.
- [52] A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab, D. Stalke, J. Am. Chem. Soc. 2009, 131, 1288.
- [53] S. Yao, M. Brym, C. van Wüllen, M. Driess, Angew. Chem. Int. Ed. 2007, 46, 4159.
- [54] S. Yao, Y. Xiong, M. Brym, M. Driess, J. Am. Chem. Soc. 2007, 129, 7268.
- [55] A. Mitra, Joseph P. Wojcik, D. Lecoanet, T. Müller, R. West, Angew. Chem. 2009, 121, 4130.
- [56] S. Ishida, T. Iwamoto, C. Kabuto, M. Kira, *Nature* **2003**, *421*, 725.
- [57] T. Iwamoto, T. Abe, C. Kabuto, M. Kira, *Chem. Commun.* 2005, 5190.
- [58] T. Iwamoto, H. Masuda, C. Kabuto, M. Kira, Organometallics 2005, 24, 197.
- [59] M. Asay, S. Inoue, M. Driess, Angew. Chem. 2012, 123, 9763.
- [60] A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, *J. Am. Chem. Soc.* **2012**, *134*, 6500.
- [61] B. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504.
- [62] M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722.
- [63] A. Sekiguchi, T. Tanaka, M. Ichinohe, K. Akiyama, S. Tero-Kubota, J. Am. Chem. Soc. 2003, 125, 4962.
- [64] J. V. Dickschat, S. Urban, T. Pape, F. Glorius, F. E. Hahn, *Dalton Trans.* 2010, 39.
- [65] F. E. Hahn, L. Wittenbecher, D. Le Van, A. V. Zabula, *Inorg. Chem.* 2007, 46, 7662.
- [66] H. Braunschweig, B. Gehrhus, P. B. Hitchcock, M. F. Lappert, *Z. anorg. allg. Chem.* **1995**, *621*, 1922.
- [67] H. Cui, Y. Shao, X. Li, L. Kong, C. Cui, Organometallics 2009, 28, 5191.
- [68] D. Holschumacher, T. Bannenberg, Cristian G. Hrib, Peter G. Jones, M. Tamm, *Angew. Chem.* **2008**, *120*, 7538.
- [69] J. Anukul, G. Tavcar, H. W. Roesky, C. Schulzke, *Dalton Trans.* 2010, 39.

- [70] P. P. Gaspar, M. Xiao, D. H. Pae, D. J. Berger, T. Haile, T. Chen, D. Lei, W. R. Winchester, P. Jiang, J. Organomet. Chem. 2002, 646, 68.
- [71] M. Driess, H. Grützmacher, Angew. Chem. 1996, 108, 900.
- [72] K. Balasubramanian, J. Chem. Phys. 1988, 89, 5731.
- [73] N. Wiberg, in *Lehrbuch der Anorganischen Chemie*, 102., stark umgearbeitete und verbesserte Auflage, Walter de Gruyter, Berlin, New York **2007**, 357.
- [74] P. Zark, T. Müller, R. West, K. Pravinkumar, J. Y. Becker, *Organometallics* **2010**, *29*, 1603.
- [75] C. Heinemann, T. Müller, Y. Apeloig, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 2023.
- [76] A. J. Arduengo, H. V. R. Dias, R. L. Harlow, M. Kline, *J. Am. Chem. Soc.* **1992**, *114*, 5530.
- [77] J. F. Lehmann, S. G. Urquhart, L. E. Ennis, A. P. Hitchcock, K. Hatano, S. Gupta, M. K. Denk, *Organometallics* 1999, *18*, 1862.
- [78] E. A. Carter, W. A. Goddard, *The Journal of Physical Chemistry* **1986**, *90*, 998.
- [79] G. Trinquier, J. P. Malrieu, J. Am. Chem. Soc. 1987, 109, 5303.
- [80] J. P. Malrieu, G. Trinquier, J. Am. Chem. Soc. 1989, 111, 5916.
- [81] T. Müller, J. Organomet. Chem. 2003, 686, 251.
- [82] M. Delawar, B. Gehrhus, P. B. Hitchcock, *Dalton Trans.* 2005, 2945.
- [83] B. Gehrhus, P. B. Hitchcock, H. Jansen, J. Organomet. Chem. 2006, 691, 811.
- [84] L. Li, T. Fukawa, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, *Nat. Chem.* **2012**, *4*, 361.
- [85] T. Matsumoto, N. Tokitoh, R. Okazaki, J. Am. Chem. Soc. 1999, 121, 8811.
- [86] N. Tokitoh, T. Sadahiro, K. Hatano, T. Sasaki, N. Takeda, R. Okazaki, *Chem. Lett.* **2002**, *31*, 34.
- [87] P. A. Rupar, M. C. Jennings, K. M. Baines, *Organometallics* 2008, 27, 5043.
- [88] T. Müller, in *Comprehansive Heterocyclic Chemistry III, Vol. 6* (Eds.: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier, Amsterdam, Bosten, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Syndey, Tokyo 2008, 6.16, 655.
- [89] A. Schäfer, A. Schäfer, T. Müller, *Dalton Trans.* **2010**, *39*, 9296.
- [90] S. Ishida, T. Nishinaga, R. West, K. Komatsu, Chem. Commun. 2005, 778.
- [91] N. Metzler, M. Denk, Chem. Commun. 1996, 2657.
- [92] M. Hirotsu, T. Nunokawa, K. Ueno, Organometallics 2006, 25, 1554.
- [93] H. Handwerker, C. Leis, R. Probst, P. Bissinger, A. Grohmann, P. Kiprof, E. Herdtweck, J. Bluemel, N. Auner, C. Zybill, *Organometallics* **1993**, *12*, 2162.
- [94] K. Takanashi, V. Y. Lee, T. Yokoyama, A. Sekiguchi, J. Am. Chem. Soc. 2009, 131, 916.
- [95] P. G. Hayes, R. Waterman, P. B. Glaser, T. D. Tilley, *Organometallics* **2009**, *28*, 5082.
- [96] C. Watanabe, Y. Inagawa, T. Iwamoto, M. Kira, Dalton Trans. 2010, 39, 9414.
- [97] W. E. Piers, R. M. Whittal, G. Ferguson, J. F. Gallagher, R. D. J. Froese, H. J. Stronks, P. H. Krygsman, *Organometallics* **1992**, *11*, 4015.
- [98] R. M. Whittal, G. Ferguson, J. F. Gallagher, W. E. Piers, *J. Am. Chem. Soc.* **1991**, *113*, 9867.
- [99] Z. Padelková, H. Vankátová, I. Císarová, M. S. Nechaev, T. A. Zevaco, O. Walter, A. Ruzicka, *Organometallics* **2009**, *28*, 2629.
- [100] T. A. Schmedake, M. Haaf, B. J. Paradise, A. J. Millevolte, D. R. Powell, R. West, J. Organomet. Chem. 2001, 636, 17.

- [101] A. G. Avent, B. Gehrhus, P. B. Hitchcock, M. F. Lappert, H. Maciejewski, J. Organomet. Chem. 2003, 686, 321.
- [102] N. Nakata, T. Fujita, A. Sekiguchi, J. Am. Chem. Soc. 2006, 128, 16024.
- [103] E. O. Fischer, Angew. Chem. 1974, 86, 651.
- [104] K. H. Dötz, J. Stendel, Chem. Rev. 2009, 109, 3227.
- [105] R. R. Schrock, Angew. Chem. 2006, 118, 3832.
- [106] R. R. Schrock, Chem. Rev. 2009, 109, 3211.
- [107] R. H. Grubbs, Angew. Chem. 2006, 118, 3845.
- [108] Y. Chauvin, Angew. Chem. 2006, 118, 3824.
- [109] A. Fürstner, Angew. Chem. 2000, 112, 3140.
- [110] C. Janiak, in *Riedel: Moderne Anorganische Chemie, Vol. 4* (Ed.: H.-J. Meyer), de Gruyter, Tübingen **2012**, 591ff.
- [111] N. Wiberg, in *Lehrbuch der Anorganischen Chemie*, 102., stark umgearbeitete und verbesserte Auflage, Walter de Gruyter, Berlin, New York **2007**, 1823ff.
- [112] W. C. Zeise, Ann. Phys. 1831, 97, 497.
- [113] R. A. Love, T. F. Koetzle, G. J. B. Williams, L. C. Andrews, R. Bau, *Inorg. Chem.* 1975, 14, 2653.
- [114] J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939.
- [115] J. F. Norris, Am. Chem. J. 1901, 25, 117.
- [116] H. Meerwein, Justus Liebigs Ann. Chem. 1914, 405, 129.
- [117] G. A. Olah, E. B. Baker, J. C. Evans, W. S. Tolgyesi, J. S. McIntyre, I. J. Bastien, J. Am. Chem. Soc. 1964, 86, 1360.
- [118] G. A. Olah, J. Org. Chem. 2001, 66, 5943.
- [119] G. A. Olah, Angew. Chem. 1995, 107, 1519.
- [120] T. Müller, in *Advances in Organometallic Chemistry, Vol. 53* (Eds.: R. West, A. F. Hill), Elsevier in Academic Press, Heidelberg **2005**, 155.
- [121] P. Jutzi, A. Mix, B. Rummel, W. W. Schoeller, B. Neumann, H. G. Stammler, *Science* **2004**, *305*, 849.
- [122] M. Driess, S. Yao, M. Brym, C. van Wüllen, Angew. Chem. 2006, 118, 6882.
- [123] S. Hino, M. Brynda, A. D. Phillips, P. P. Power, Angew. Chem. 2004, 116, 2709.
- [124] A. Schäfer, W. Saak, D. Haase, T. Müller, Chem. Eur. J. 2009, 15, 3945.
- [125] P. P. Gaspar, in *Organosilicon Chemistry VI, Vol. 1* (Eds.: N. Auner, J. Weis), Wiley-VCH, Weinheim **2005**, 1, 10.
- [126] I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116.
- [127] J. B. Lambert, Y. Zhao, H. Wu, W. C. Tse, B. Kuhlmann, J. Am. Chem. Soc. 1999, 121, 5001.
- [128] A. Schäfer, M. Reißmann, A. Schäfer, W. Saak, D. Haase, T. Müller, Angew. Chem. 2011, 123, 12845.
- [129] H. Wagner, J. Baumgartner, T. Müller, C. Marschner, J. Am. Chem. Soc. 2009, 131, 5022.
- [130] J. B. Lambert, Y. Zhao, Angew. Chem. 1997, 109, 389.
- [131] K.-C. Kim, C. A. Reed, D. W. Elliott, L. J. Mueller, F. Tham, L. Lin, J. B. Lambert, *Science* 2002, 297, 825.
- [132] J. Hlina, J. Baumgartner, C. Marschner, P. Zark, T. Müller, *unpublished work* 2012.
- [133] H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, J. Am. Chem. Soc. 2012, 134, 10864.
- [134] W. Li, N. J. Hill, A. C. Tomasik, G. Bikzhanova, R. West, Organometallics 2006, 25, 3802.
- [135] A. C. Tomasik, A. Mitra, R. West, Organometallics 2009, 28, 378.
- [136] B. Gehrhus, M. F. Lappert, J. Organomet. Chem. 2001, 617, 209.

- [137] S. Burck, D. Gudat, M. Nieger, W. W. DuMont, J. Am. Chem. Soc. 2006, 128, 3946.
- [138] D. F. Moser, I. A. Guzei, R. West, *Main Group Met. Chem.* 2001, 24, 811.
- [139] H. H. Karsch, P. A. Schlüter, F. Bienlein, M. Herker, E. Witt, A. Sladek, M. Heckel, *Z. anorg. allg. Chem.* **1998**, *624*, 295.
- [140] M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. 1998, 120, 12714.
- [141] R. J. Baker, C. Jones, D. P. Mills, G. A. Pierce, M. Waugh, *Inorg. Chim. Acta* 2008, *361*, 427.
- [142] J. Rembielewski, Carl von Ossietzky (Oldenburg) **2006**.
- [143] K. W. Klinkhammer, in *The Chemistry of Germanium, Tin and Lead Compouds, Vol.* 2 (Ed.: Z. Rappoport), Wiley, Chichester **2002**, 4, 283.
- [144] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770.
- [145] J. V. Dickschat, S. Urban, T. Pape, F. Glorius, F. E. Hahn, *Dalton Trans.* **2010**, *39*, 11519.
- [146] M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie*,6. Auflage, Thieme, Stuttgart, New York 2002, 107.
- [147] S. Berger, S. Braun, H.-O. Kolinowski, *NMR-Spektroskopie von Nichtmetallen, Vol.* 2, Georg Thieme Verlag, Stuttgart, New York **1992**, 2.
- [148] N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 101. Auflage, Walter de Gruyter, Berlin, New York **1995**, 1839*ff*.
- [149] T. Steiner, Angew. Chem. 2002, 114, 50.
- [150] R. W. Alder, Chem. Rev. 1989, 89, 1215.
- [151] S. Burck, D. Gudat, K. Nättinen, M. Nieger, M. Niemeyer, D. Schmid, Eur. J. Inorg. Chem. 2007, 2007, 5112.
- [152] H. M. Tuononen, R. Roesler, J. L. Dutton, P. J. Ragogna, *Inorg. Chem.* 2007, 46, 10693.
- [153] T. A. Schmedake, M. Haaf, Y. Apeloig, T. Müller, S. Bukalov, R. West, J. Am. Chem. Soc. 1999, 121, 9479.
- [154] M. Denk, J. C. Green, N. Metzler, M. Wagner, J. Chem. Soc., Dalton Trans. 1994, 2405.
- [155] A. Dhiman, T. Müller, R. West, J. Y. Becker, Organometallics 2004, 23, 5689.
- [156] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098.
- [157] D. A. Becke, J. Chem. Phys. 1993, 98, 5612.
- [158] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
- [159] P. C. Hariharan, J. A. Pople, *Theor. Chem. Acc.* **1973**, 28, 213.
- [160] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [161] C. H. Hamann, W. Vielstich, *Elektrochemie, Vol. 4*, Wiley-VCH, Weinheim **2005**, 162ff, 296*ff*.
- [162] R. West, T. A. Schmedake, M. Haaf, J. Backer, T. Müller, Chem. Lett. 2001, 30, 68.
- [163] H.-L. Krauss, in *Synthetic Methods of Organometallic and Inorganic Chemistry, Vol. 1* (Eds.: W. A. Herrmann, A. Salzer), Thieme Verlag, Stuttgart, New York **1996**, 118.
- [164] B. V. Mork, T. D. Tilley, J. Am. Chem. Soc. 2001, 123, 9702.
- [165] K. Ueno, S. Asami, N. Watanabe, H. Ogino, Organometallics 2002, 21, 1326.
- [166] F.-W. Grevels, J. Jacke, W. E. Klotzbücher, F. Mark, V. Skibbe, K. Schaffner, K. Angermund, C. Krüger, C. W. Lehmann, S. Özkar, *Organometallics* **1999**, *18*, 3278.
- [167] F. H. Köhler, H. J. Kalder, E. O. Fischer, J. Organomet. Chem. 1976, 113, 11.
- [168] M. F. Guns, E. G. Claeys, G. P. Van Der Kelen, J. Mol. Struct. 1979, 53, 45.
- [169] C. Janiak, in Moderne Anorganische Chemie, Vol. 3 (Ed.: E. Riedel), de Gruyter, Berlin 2007, 381.
- [170] T. Müller, D. Margraf, Y. Syha, J. Am. Chem. Soc. 2005, 127, 10852.

- [171] U. Rosenthal, V. V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, Organometallics 2003, 22, 884.
- [172] A. Oslage, Carl von Ossietzky Universität (Oldenburg) 2010.
- [173] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. von R. Schleyer, G. H. Robinson, *Science* 2008, 321, 1069.
- [174] S. Inoue, M. Driess, Angew. Chem. Int. Ed. 2011, 50, 5614.
- [175] S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, *Angew. Chem.* **2011**, *123*, 8504.
- [176] R. S. Ghadwal, H. W. Roesky, C. Schulzke, M. Granitzka, *Organometallics* **2010**, *29*, 6329.
- [177] P. A. Rupar, M. C. Jennings, P. J. Ragogna, K. M. Baines, Organometallics 2007, 26, 4109.
- [178] Y. Gao, J. Zhang, H. Hu, C. Cui, Organometallics 2010, 29, 3063.
- [179] Y. Xiong, S. Yao, M. Driess, J. Am. Chem. Soc. 2009, 131, 7562.
- [180] Y. Wang, Y. Xie, P. Wei, R. B. King, I. I. I. H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2008, 130, 14970.
- [181] Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, *J. Am. Chem. Soc.* 2007, *129*, 12412.
- [182] D. F. Moser, A. Naka, I. A. Guzei, T. Müller, R. West, J. Am. Chem. Soc. 2005, 127, 14730.
- [183] N. J. Hill, R. West, J. Organomet. Chem. 2004, 689, 4165.
- [184] H. Joo, M. L. McKee, The Journal of Physical Chemistry A 2005, 109, 3728.
- [185] D. F. Moser, T. Bosse, J. Olson, J. L. Moser, I. A. Guzei, R. West, J. Am. Chem. Soc. 2002, 124, 4186.
- [186] *SDBSWeb*, National Institute of Advanced Industrial Science and Technology, <u>http://riodb01.ibase.aist.go.jp/sdbs/</u> (9. April 2012).
- [187] H. C. Marsmann, in NMR Basic Principles and Progress, Vol. 17 (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer Verlag, Heidelberg 1981.
- [188] M.-D. Su, J. Am. Chem. Soc. 2003, 125, 1714.
- [189] M.-D. Su, Chemical Physics Letters 2003, 374, 385.
- [190] R. H. Walker, K. A. Miller, S. L. Scott, Z. T. Cygan, J. M. Bartolin, J. W. Kampf, M. M. Banaszak Holl, *Organometallics* 2009, 28, 2744.
- [191] in Handbook of chemistry and physics, Vol. 84 (Ed.: D. R. Lide), CRC Press 2003-2004.
- [192] M. K. Denk, K. Hatano, A. J. Lough, Eur. J. Inorg. Chem. 1998, 1067.
- [193] R. Richter, N. Schulze, G. Roewer, J. Albrecht, J. prakt. Chem. 1997, 339, 145.
- [194] R. F. Trandell, G. Urry, J. inorg. nucl. Chem. 1978, 40, 1305.
- [195] G. D. Cooper, A. R. Gilbert, J. Am. Chem. Soc. 1960, 82, 5042.
- [196] G. E. Miracle, J. L. Ball, D. R. Powell, R. West, J. Am. Chem. Soc. 1993, 115, 11598.
- [197] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 7. Auflage, Thieme, Stuttgart, New York 2005, 205ff.
- [198] S. Marrot, T. Kato, H. Gornitzka, A. Baceiredo, Angew. Chem. 2006, 118, 2660.
- [199] H. Schmidbaur, U. Deschler, Chem. Ber. 1981, 114, 2491.
- [200] M. Kira, T. Iwamoto, S. Ishida, H. Masuda, T. Abe, C. Kabuto, J. Am. Chem. Soc. **2009**, 131, 17135.
- [201] H. A. Bent, Chem. Rev. 1961, 61, 275.
- [202] J. John, E. Gravel, A. Hagège, H. Li, T. Gacoin, E. Doris, *Angew. Chem. Int. Ed.* **2011**, *50*, 7533.
- [203] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176.

- [204] P. H. M. Budzelaar, gNMR (NMR Simulation Program) 5.0.6.0, Ivory Soft, 2006.
- [205] B. K. Hunter, L. W. Reeves, *Can. J. Chem.* **1968**, *46*, 1399.
- [206] M. I. Watkins, W. M. Ip, G. A. Olah, R. Bau, J. Am. Chem. Soc. 1982, 104, 2365.
- [207] R. J. Kern, J. Org. Chem. 1968, 33, 388.
- [208] M. Kira, T. Hino, H. Sakurai, J. Am. Chem. Soc. 1992, 114, 6697.
- [209] Y. Sarazin, J. A. Wright, M. Bochmann, J. Organomet. Chem. 2006, 691, 5680.
- [210] C. A. Reed, K.-C. Kim, E. S. Stoyanov, D. Stasko, F. S. Tham, L. J. Mueller, P. D. W. Boyd, J. Am. Chem. Soc. 2003, 125, 1796.
- [211] M. Bujak, Acta Crystallogr., Sect. C 2010, 66, m101.
- [212] P. Blakeman, B. Gehrhus, J. C. Green, J. Heinicke, M. F. Lappert, M. Kindermann, T. Veszpremi, J. Chem. Soc., Dalton Trans. 1996, 1475.
- [213] H. Basch, T. Hoz, in *The chemistry of organic germanium tin and lead compounds*, *Vol. 1* (Eds.: S. Patai, Z. Pappoport), John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore **1995**, 1, 1.
- [214] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
- [215] H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller, J. Am. Chem. Soc. 2012, 134, 6409.
- [216] K. W. Klinkhammer, W. Schwarz, Angew. Chem. 1995, 107, 1448.
- [217] D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland, B. E. R. Schilling, *J. Chem. Soc., Dalton Trans.* **1986**, 2387.
- [218] Y. Zhao, D. Truhlar, *Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)* **2008**, *120*, 215.
- [219] A. Berger, M. Dolg, W. Küchle, H. Stoll, H. Preuß, *Molecular Physics* 1993, 80, 1431.
- [220] F. Stabenow, W. Saak, H. Marsmann, M. Weidenbruch, J. Am. Chem. Soc. 2003, 125, 10172.
- [221] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1,
- [222] N. Wiberg, H. Schuster, A. Simon, K. Peters, Angew. Chem. 1986, 98, 100.
- [223] S. L. Masters (née Hinchley), D. A. Grassie, H. E. Robertson, M. Holbling, K. Hassler, *Chem. Commun.* **2007**, 2618.
- [224] H. Bock, B. Solouki, in *The Chemistry of Organic Silicon Compounds, Vol. 3* (Eds.: Y. Apeloig, Z. Rappoport), Wiley, Chichester 2001, 187.
- [225] N. Sieffert, M. Bühl, Inorg. Chem. 2009, 48, 4622.
- [226] P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, *Nature* 2011, 477, 308.
- [227] S. Grimme, P. R. Schreiner, Angew. Chem. 2011, 123, 12849.
- [228] H. Arp, J. Baumgartner, C. Marschner, T. Müller, J. Am. Chem. Soc. 2011, 133, 5632.
- [229] K. B. Wiberg, *Tetrahedron* **1968**, *24*, 1083.
- [230] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, *The Journal of Physical Chemistry A* 2009, 113, 5806.
- [231] H. Gilman, F. K. Cartledge, J. Organomet. Chem. 1964, 2, 447.
- [232] T. Fjeldberg, A. Haaland, B. E. R. Schilling, M. F. Lappert, A. J. Thorne, J. Chem. Soc., Dalton Trans. 1986, 1551.
- [233] V. V. Burlakov, A. V. Polyakov, A. I. Yanovsky, Y. T. Struchkov, V. B. Shur, M. E. Vol'pin, U. Rosenthal, H. Görls, J. Organomet. Chem. 1994, 476, 197.
- [234] G. M. Sheldrick, SHELXS und SHELXL Georg-August-Universität, Göttingen, 1997.
- [235] Autorengemeinschaft, Organikum, 22. Auflage, Wiley-VCH, Dresden 2004, 750-751.
- [236] J. M. Lalancette, G. Rollin, P. Dumas, Can. J. Chem. 1972, 50, 3058.
- [237] L. Hintermann, Beilstein J. Org. Chem. 2007, 3.

- [238] L. Jafarpour, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. 2000, 606, 49.
- [239] J. M. Klerks, D. J. Stufkens, G. Van Koten, K. Vrieze, J. Organomet. Chem. 1979, 181, 271.
- [240] H. Türkmen, B. Cetinkaya, J. Organomet. Chem. 2006, 691, 3749.
- [241] K. Hassler, M. Weidenbruch, J. Organomet. Chem. 1994, 465, 137.
- [242] N. Auner, R. Probst, F. Hahn, E. Herdtweck, J. Organomet. Chem. 1993, 459, 25.
- [243] S. Berger, W. Bock, G. Frenking, V. Jonas, F. Mueller, J. Am. Chem. Soc. 1995, 117, 3820.
- [244] A. Franken, B. T. King, J. Rudolph, P. Rao, B. C. Noll, J. Michl, *Collect. Czech. Chem. Commun.* **2001**, *66*, 1238.
- [245] G. B. Dunks, K. P. Ordonez, Inorg. Chem. 1978, 17, 1514.
- [246] T. Jelínek, J. Plešek, S. Heřmánek, B. Štíbr, Collect. Czech. Chem. Commun. 1986, 51, 819.
- [247] M. Lehmann, A. Schulz, A. Villinger, Angew. Chem. 2009, 121, 7580.
- [248] Autorengemeinschaft, *Organikum*, 21., neu bearbeitete und erweiterte. Auflage, Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto **2000**, 568 572.
- [249] M. Haaf, T. A. Schmedake, B. J. Paradise, R. West, Can. J. Chem. 2000, 78, 1526.
- [250] P. Jutzi, C. Müller, A. Stammler, H.-G. Stammler, Organometallics 2000, 19, 1442.
- [251] A. G. Massey, A. J. Park, J. Organomet. Chem. 1964, 2, 245.
- [252] J. C. W. Chien, W. M. Tsai, M. D. Rausch, J. Am. Chem. Soc. 1991, 113, 8570.
- [253] M. Tashiro, T. Yamato, J. Chem. Soc., Perkin Trans. 1 1979.
- [254] J. S. Becker, R. J. Staples, R. G. Gordon, Cryst. Res. Technol. 2004, 39, 85.
- [255] Kooperation: D. Kratzert, D. Stalke, Universität Göttingen 2010.
- [256] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, G. D. J. Fox, *Gaussian 09 Revision B. 01*, Gaussian, Inc., Wallingford **2010**.
- [257] G. D. Zhurko, *Chemcraft 1.6 Build 348*, <u>www.chemcraftprog.com</u>, 2011.
- [258] R. D. Dennington II, T. A. Kieth, J. M. Millam, *GaussView 5.0.8*, Gaussian, Inc., Wallington, USA, 2008.
- [259] F. Weinhold, NBO 4.0 Programm Manual Madison, Wisconsin, 1996.
- [260] F. Weinhold, in *Encyclopedia of Computational Chemistry, Vol. 3* (Ed.: P. v. R. Schleyer), John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto **1997**, 1792.
- [261] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
- [262] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [263] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497.
- [264] R. Ahlrichs, K. May, *Physical Chemistry Chemical Physics* 2000, 2, 943.

- [265] P. W. Atkins, J. De Paula, *Physikalische Chemie, Vol. 4. vollständig überarbeitete Auflage*, Wiley-VCH, Weinheim **2006**, 237.
- [266] J. H. v. t. Hoff, *Studien zur chemischen Dynamik (Études de dynamique chimique, 1984) Vol. 1*, Akademische Verlagsgesellschaft Geest & Portig, Leipzig **1985**, 220.
- [267] B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 1993, 98, 5612.
- [268] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785.

11 Abkürzungsverzeichnis

3c2e ⁻	Drei-Zentren-zwei-Elektronen-Bindung
α	Winkel
β	Diederwinkel
Δ	Differenz
δ	NMR chemische Verschiebung
ν	Frequenz
$\tilde{\nu}$	Wellenzahl
Σ	Summe
θ	Winkel zwischen Ebene und Bindung
τ	Tetraederwinkel
φ	Winkel zwischen zwei Ebenen
Åd	Adamantyl
ad.	adiabatisch
Äq.	Äquivalent
a. u.	englisch: atomic units, deutsch: atomare Einheit
BDE	Bindungsdissoziationsenergie
BDE^{nk}	Anteil der nicht kovalenten Wechselwirkungen an der BDE
Bipy	2,2'-Bipyridin
^t Bu	tertButyl
bzw.	beziehungsweise
С	Konzentration
calc.	berechnet
COSY	correlation spectroscopy
Ср	Cyclopentadienylanion als Komplexligand
d	Dublett
d	Bindungslänge
d. Th.	der Theorie
DEPT	Distortionless Enhancement by Polarization Transfer
Dipp	2,6-Di- <i>iso</i> -propylphenyl
E	Energie, entspricht der Enthalpie am Absoluten Nullpunkt
E_{A}	Elektronenaffinität
En	Ethylendiamin
E_{P}	Peakpotential
$\Delta E^{\rm ST}$	Singlett Triplett Energieunterschied ($\Delta E^{ST} = E(Triplett) - E(Singulett))$
Et	Ethyl
exp.	experimentell
FMO	Fragment-Molekülorbital
Fp	Schmelzpunkt
G	freie Reaktionsenthalpie
GC	Gaschromatographie
h	Planck'sche Konstante
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Coherence
HOMO	englisch: highest occupied molecular orbital,
	deutsch: höchstes besetztes Molekülorbital
INEPT	Insensitive Nuclei Enhanced by Polarization Transfer
I _P	Ionisierungspotential
^{<i>i</i>} Pr	iso-Propyl

IR	Infrarotspektroskopie
is	englisch: intensive signal deutsch: intensives Signal
J	Kopplungskonstante
K	Gleichgewichtskonstante
Kn	Siedepunkt
Lit	aus der Literatur bekannt
LUMO	englisch: lowest unoccupied molecular orbital
Lenie	<i>deutsch:</i> niedrigstes unbesetztes Molekülorbital
m	Multiplett
Me	Methyl
Mebp	2.3.4-Trimethyl-5- <i>tert</i> butyl-phenyl
Mes	2.4.6-Trimethylphenyl
min	Minuten
MO	Molekülorbital
MS	Massenspektrometrie
m/z	Masse pro Ladung
n. a.	nicht angegeben
n. b.	nicht beobachtet
n. i.	nicht eindeutig identifiziert
n.i.P.	nicht identifizierbare Produkte
NBO	Natural Bond Orbital
NImag	Anzahl imaginärer Schwingungen
NMR	Kernresonanzspektroskopie
NOE-Effekt	englisch: nuclear Overhauser effect, deutsch: Kern-Overhauser Effekt
Np	Naphthalin ($C_{10}H_8$)
Ph	Phenyl
Phen	1,10-Phenantrolin
ppm	Parts per million
q	Quartett
quin.	Quintett
Ŕ	$Gaskonstante 8.314 JK^{-1}mol^{-1}$
rt	englisch: retention time, deutsch: Retentionszeit
RT	Raumtemperatur
r^{k}	Kovalenzradius
r^{w}	Van-der-Waals-Radius
S	Singulett
sept.	Septett
t	Triplett
Т	Temperatur
THF	Tetrahydrofuran
TMS	Tetramethylsilan
vert.	vertikal
WBI	Wiberg Bond Index
WS	<i>englisch:</i> weak signal, <i>deutsch:</i> schwaches Signal (is : ws = 10 : 1)
Xylyl	2,6-Dimethylphenyl

12 Verbindungsverzeichnis

Me ₃ Si _\ _SiMe ₃ Cp	
Me ₂ Si ^{Si} F=M ^C Cp	
Me ₂ Si_Si	
Me ₃ Si [∕] SiMe ₃ PEt ₃	

38

E = Si, Ge, Sn, Pb M = Ti, Zr, Hf

M\E	Si	Ge Sn		Pb
Ti	j	а	d	g
Zr	k	b	e	h
Hf	I	с	f	i

E = Si, Ge, Sn, Pb
M = Ti, Zr, Hf

M \ E Si Ge Sn Pb				
Ti	d	g	а	k
Zr	e	h	j	
Hf	f	i	b	с

N Si: N Aryl

Aryl

Aryl = Xylyl **40** Aryl = Dipp **41** Aryl = Mes **42**

X = CH **43** X = N **44** $R^{1} = R^{2} = R^{3} = H$ $R^{1} = R^{3} = Me, R^{2} = H$ $R^{1} = R^{3} = H, R^{2} = tBu$ $R^{1} = R^{3} = H, R^{2} = Me$

Aryl = Dipp 103, Xylyl 104

Patrick Zark

13 Anlagen

13.1 Lebenslauf

Geburtstag:03. August 1982Geburtsort:BremenFamilienstand:ledigSchulausbildung:Image: Construct on the state of the state	Name:	Patrick Zark
Geburtsort:BremenFamilienstand:ledigSchulausbildurg:Image: Schulausbildurg:1989 – 1993Grundschule Hüttenbusch1993 – 1995Orientierungsstufe Worpswede1995 – 1999Sekundarstufe I des Gymnasiums Lilienthal1999 – 2002Sekundarstufe I des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: AbiturZivildienst:Image: Schulausbildurg:2002 – 2003Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Eachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten:Mai 2008 – April 2009Mai 2011 – September 2012Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Geburtstag:	03. August 1982
Familienstand:ledigSchulausbildung:1989 – 1993Grundschule Hüttenbusch1993 – 1995Orientierungsstufe Worpswede1995 – 1999Sekundarstufe I des Gymnasiums Lilienthal1995 – 2002Sekundarstufe I des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: AbiturZivildienst:Evangelisches Jugendheim Falkenberg, Lilienthal2002 – 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung:Juli 2003 – Juni 2008April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Eachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Hilfskraft am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Geburtsort:	Bremen
Schulausbildung:1989 – 1993Grundschule Hüttenbusch1993 – 1995Orientierungsstufe Worpswede1995 – 1999Sekundarstufe I des Gymnasiums Lilienthal1999 – 2002Sekundarstufe II des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: AbiturZivildienst:2002 – 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung:April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewandte te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Familienstand:	ledig
1989 – 1993Grundschule Hüttenbusch1993 – 1995Orientierungsstufe Worpswede1995 – 1999Sekundarstufe I des Gymnasiums Lilienthal1999 – 2002Sekundarstufe II des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: AbiturZivildienst:2002 – 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung:April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten:Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewandte te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Schulausbildung:	
1993 – 1995Orientierungsstufe Worpswede1995 – 1999Sekundarstufe I des Gymnasiums Lilienthal1999 – 2002Sekundarstufe II des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: Abitur Zivildienst: Evangelisches Jugendheim Falkenberg, Lilienthal2002 – 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung:Image: Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten:Mai 2008 – April 2009Mai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewandte c Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	1989 – 1993	Grundschule Hüttenbusch
1995 – 1999Sekundarstufe I des Gymnasiums Lilienthal1999 – 2002Sekundarstufe II des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: AbiturZivildienst:2002 – 20032002 – 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung: April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewandte te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	1993 – 1995	Orientierungsstufe Worpswede
 1999 – 2002 Sekundarstufe II des Gymnasiums Lilienthal, Leistungskurse im Fach Chemie und Biologie, Abschluss: Abitur Zivildienst: 2002 – 2003 Evangelisches Jugendheim Falkenberg, Lilienthal Hochschulausbildung: April 2003 – Juni 2008 Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-Chemiker Juli 2008 – April 2013 Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. Müller Berufliche Tätigkeiten: Mai 2008 – April 2009 Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller Mai 2011 – September 2012 Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller 	1995 – 1999	Sekundarstufe I des Gymnasiums Lilienthal
Leistungskurse im Fach Chemie und Biologie, Abschluss: AbiturZivildienst: 2002 - 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung: April 2003 - Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 - April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 - April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	1999 - 2002	Sekundarstufe II des Gymnasiums Lilienthal,
Abschluss: AbiturZivildienst:2002 - 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung:April 2003 - Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 - April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 - April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 - September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		Leistungskurse im Fach Chemie und Biologie,
Zivildienst:2002 - 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung:April 2003 - Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 - April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 - April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 - September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewandte te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		Abschluss: Abitur
2002 – 2003Evangelisches Jugendheim Falkenberg, LilienthalHochschulausbildung: April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Zivildienst:	
Hochschulausbildung:April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	2002 - 2003	Evangelisches Jugendheim Falkenberg, Lilienthal
April 2003 – Juni 2008Carl von Ossietzky Universität Oldenburg, Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewandte c Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Hochschulausbildung:	
Diplomstudiengang Chemie Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	April 2003 – Juni 2008	Carl von Ossietzky Universität Oldenburg,
Abschluss: Diplom-ChemikerJuli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		Diplomstudiengang Chemie
Juli 2008 – April 2013Carl von Ossietzky Universität Oldenburg, Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		Abschluss: Diplom-Chemiker
 Promotionsstudiengang Chemie Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. Müller Berufliche Tätigkeiten: Mai 2008 – April 2009 Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller Mai 2011 – September 2012 Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller 	Juli 2008 – April 2013	Carl von Ossietzky Universität Oldenburg,
Fachrichtung: Anorganische Chemie Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten: Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	I	Promotionsstudiengang Chemie
Doktorvater: Prof. Dr. T. MüllerBerufliche Tätigkeiten:Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		Fachrichtung: Anorganische Chemie
Berufliche Tätigkeiten:Mai 2008 – April 2009Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. MüllerMai 2011 – September 2012Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		Doktorvater: Prof. Dr. T. Müller
 Mai 2008 – April 2009 Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller Mai 2011 – September 2012 Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller 	Berufliche Tätigkeiten:	
 Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller Mai 2011 – September 2012 Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller 	Mai 2008 – April 2009	Wissenschaftliche Hilfskraft am Institut für Reine und Angewandte
 kreis von Prof. Dr. T. Müller Mai 2011 – September 2012 Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller 	1	Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits-
Mai 2011 – September 2012 Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand- te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller		kreis von Prof. Dr. T. Müller
te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits- kreis von Prof. Dr. T. Müller	Mai 2011 – September 2012	Wissenschaftlicher Mitarbeiter am Institut für Reine und Angewand-
kreis von Prof. Dr. T. Müller	-	te Chemie der Carl von Ossietzky Universität Oldenburg im Arbeits-
		kreis von Prof. Dr. T. Müller
Stipendien:	Stipendien:	
Mai 2009 – April 2011 Promotionsstipendium vom Fonds der Chemischen Industrie	Mai 2009 – April 2011	Promotionsstipendium vom Fonds der Chemischen Industrie

Hiermit versichere ich, dass die von mir vorgelegte Dissertation selbständig verfasst, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit, einschließlich Tabellen, Daten und Abbildungen, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht wurden. In der Promotionszeit sind die im Folgenden genannten Veröffentlichungen publiziert worden. Die Publikationen 1, 2, 5 und 7 sind dabei aus dieser Dissertation hervorgegangen. Die Dissertation hat weder zu Teilen noch in Gänze einer anderen wissenschaftlichen Hochschule zur Begutachtung in einem Promotionsverfahren vorgelegen.

Patrick Zark

Oldenburg, 24. September 2012

13.2 Publikationen³³

P. Zark, T. Müller, R. West, K. Pravinkumar, J. Y. Becker
 Electrochemistry and MO Computations of Saturated and Unsaturated
 N-Heterocyclic Silylenes

Organometallics 2010, 29, 1603.

Abstract:

The results of electrochemical investigations by cyclic voltammetry and density functional computations of new saturated (2, 3) and unsaturated N-heterocyclic silylenes (5, 6) are described and compared with the previously known N-heterocyclic silylenes (1, 4). Good correlations have been found between experimental oxidation potentials of saturated 1-3 and unsaturated 4-6 with those of density functional calculations of the electronic properties of these divalent silicon derivatives.

http://pubs.acs.org/doi/abs/10.1021/om901037j?prevSearch=%255BContrib%253A%2 Bzark%255D&searchHistoryKey

³³ Die Nummerierung der Verbindungen in diesem Abschnitt sind den Nummerierungen der Einzelnen Publikationen angepasst.

P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller
 Synthesis and Reactivity of N-Aryl Substituted N-Heterocyclic Silylenes
 J. Organomet. Chem. 2010, 695, 398.

Abstract:

The synthesis of two *N*-aryl substituted 2-silaimidazolidenes **9a**, **b** by metalreduction of the appropriate silicon(IV) heterocycles is reported. Structural as well as spectroscopic data obtained for the *N*-aryl substituted *N*-heterocyclic silylenes (NHSi) are very close to those obtained previously for their *N*-alkyl substituted counterparts. NHSis **9a**, **b** are used as starting materials for the synthesis of a series of dichalcogenadisiletanes **19–24** and for of a mono silylene tungsten complex **29**. The reactivity studies revealed only marginally differences between the *N*-aryl substituted NHSis **9a**, **b** and previously described *N*-alkyl substituted silylenes.

http://www.sciencedirect.com/science/article/pii/S0022328X0900713X

(3) I. Prochnow, P. Zark, T. Müller, S. Doye

The Mechanism of the Titanium-Catalyzed Hydroaminoalkylation of Alkenes Angew. Chem. Int. Ed. 2012, 50, 6401.

zero-order rate dependence on aminoalkene concentratio kinetic isotope effect $k_{\rm H}/k_{\rm D}$ = 7.3

Abstract:

Kinetic studies on the intramolecular titanium-catalyzed hydroaminoalkylation of alkenes (see scheme) are consistent with theoretical results and lead to the conclusion that the rate-determining step of the catalytic cycle is the C–H activation at the α -position to the nitrogen atom. The reaction has a high activation energy and involves a moderately ordered transition state.

http://onlinelibrary.wiley.com/doi/10.1002/anie.201101239/abstract

S. Kohls, B. M. Scholz-Böttcher, J. Teske, P. Zark, J. Rullkötter
 Cardiac glycosides from Yellow Oleander (Thevetia peruviana) seeds
 Phytochemistry 2012, 75, 114.

Abstract:

Thevetia cardiac glycosides can lead to intoxication, thus they are important indicators for forensic and pharmacologic surveys. Six thevetia cardiac glycosides, including two with unknown structures, were isolated from the seeds of the Yellow Oleander (Thevetia peruviana (Pers.) K. Shum., Apocynaceae). LC-ESI⁺-MS(/MS) analysis under high-resolution conditions used as a qualitative survey of the primary glycosides did not lead to fragmentation of the aglycones. Acid hydrolysis of the polar and non-volatile thevetia glycosides under severe conditions yielded the aglycones of the thevetia glycosides and made them amenable to GC-MS analysis. Comparison of mass spectral fragmentation patterns of the aglycones, as well as high-resolution mass spectrometric and NMR data of four of the primary thevetia glycosides including the two unknowns, revealed the structures of the complete set of six thevetia glycosides. The identified compounds are termed theyetin C and acetyltheyetin C and differ by an 18,20-oxido-20,22dihydro functionality from the vetin B and acetyl the vetin B, respectively. The absence of an unsaturated lactone ring renders the glycosides cardio-inactive. The procedures developed in this study and the sets of analytical data obtained will be useful for screening and structure assessment of other, particularly polar, cardiac glycosides.

http://www.sciencedirect.com/science/article/pii/S0031942211005061

H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller
 Dispersion Energy Enforced Dimerization of a Cyclic Disilylated Plumbylene
 J. Am. Chem. Soc. 2012, 134, 6409.

Abstract:

By reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with PbBr₂ in the presence of triethylphosphine a base adduct of a cyclic disilylated plumbylene could be obtained. Phosphine abstraction with $B(C_6F_5)_3$ led to formation of a base-free plumbylene dimer, which features an unexpected single donor-acceptor PbPb bond. The results of density functional computations at the M06-2X and B3LYP level of theory indicate that the dominating interactions which hold the plumbylene subunits together and which define its actual molecular structure are attracting van der Waals forces between the two large and polarizable plumbylene subunits.

http://pubs.acs.org/doi/abs/10.1021/ja300654t?prevSearch=%255BContrib%253A%2Bz ark%255D&searchHistoryKey (6) H. Arp, M. Zirngast, C. Marschner, J. Baumgartner, K. Rasmussen, P. Zark, and T. Müller

Synthesis of Oligosilanyl Compounds of Group 4 Metallocenes with the Oxidation State +3

Organometallics 2012, 31, 4309.

Abstract:

Recently, we showed that titanocene silyls are much more stable with Ti in the oxidation state +3. The current study demonstrates that analogous Zr and Hf compounds can also be obtained by reaction of a suitable metalate precursor with an oligosilanyl dianion. As the obtained complexes formally possess a d¹ electron configuration, they were investigated using EPR spectroscopy. The corresponding spectra indicate that the compounds can be considered to also exhibit some cyclosilanyl radical anion character. In order to understand the strong preference of disilylated titan(IV)ocenes for reductive elimination, a theoretical study of the thermodynamics of these reactions was conducted, revealing that this behavior is essentially caused by the weak Si–Ti(IV) bond.

http://pubs.acs.org/doi/abs/10.1021/om3001873?prevSearch=zark&searchHistoryKey

H. Arp, J. Baumgartner, C. Marschner, P. Zark, T. Müller,
 Coordiantion Chemistry of Cyclic Disilylated Stannylenes and Plumbylenes to
 Group 4 Metallocenes

J. Am. Chem. Soc. 2012, 134, 10864.

Abstract:

Reduction of group 4 metallocene dichlorides with magnesium in the presence of cyclic disilylated stannylene or plumbylene phosphine adducts yielded the respective metallocene tetrylene phosphine complexes. Under the same conditions the use of the respective dimerized stannylene or plumbylene gave metallocene ditetrylene complexes. A computational analysis of these reactions revealed for all investigated compounds multiple-bonded character for the M–E(II) linkage, which can be rationalized in the case of the monotetrylene complex with the classical σ -donor/ π -acceptor interaction. The strength of the M–E(II) bond increases descending group 4 and decreases going from Sn to its heavier congener Pb. The weakness of the Ti–E(II) bonds is caused by the significantly reduced ability of the titanium atom for d–p π -back-bonding.

http://pubs.acs.org/doi/abs/10.1021/ja301547x?prevSearch=zark&searchHistoryKey
13.3 Auszeichnungen

- (3) Posterpreis auf dem 16. Internationalen Symposium f
 ür Silicium Chemie Titel des Posters: *Investigation on N-Heterocyclic Silyl Cations* 14. – 18. August 2011, Hamilton, Ontario, Kanada
- (2) Promotionsstipendium vom Fonds der Chemischen Industrie/FCI Mai 2009 – April 2011
- (1) GDCh Auszeichnung für herausragende Studienleistungen im Fach Chemie Dezember 2008, Oldenburg

13.4 Poster

- Patrick Zark, Thomas Müller
 Investigation on N-Heterocyclic Silyl Cations
 GDCh Wissenschaftsforum 2011, Bremen
- Patrick Zark, Insa Prochnow, Sven Doye, Thomas Müller
 The Mechanism of Hydroaminoalkylation Reaction of Alkenes a Theoretical Investigation IDW/Post-ISOS 2011, Niagara, Ontario, Canada
- Patrick Zark, Thomas Müller
 Investigation on N-Heterocyclic Silyl Cations
 16. Internationale Silicium Symposium für Silicium Chemie (ISOS XVI) 2011, Hamilton, Ontario, Kanada (Posterpreis).
- Patrick Zark, Annemarie Schäfer, Thomas Müller
 The Use of N-Heterocyclic Silylenes and Germylenes in the Synthesis of Cations Small Differences between Silylenes and Germylenes
 15. Konferenz für Anorganische Chemiste - Wöhlertagung 2010, Freiburg i. Br..
- Patrick Zark, Florian Loose, Annemarie Schäfer, Thomas Müller Synthesis and Reaktivity of N Aryl Substituted N-Heterocyclic Silylenes – Their Remarkable Synthetic Potential
 Europäische Organosilicium Tage 2009, Wien, Österreich.

13.5 Vorträge

- (3) FCI Stipendiaten Treffen Patrick Zark, Thomas Müller N-Arylsubstituierte N-heterocyclische Silylene und ihr Potential in der Synthese niedervalenter Organosiliciumverbindungen
 9. Oktober 2009 Oldenburg.
- (2) Tag der Chemie (zur Auszeichnung des GDCh für herausragende Leistungen im Studienfach Chemie)
 Patrick Zark, Annemarie Schäfer, Thomas Müller
 Synthese und Reaktivität N-arylsubstituierter N-heterocyclischer Silylene,
 4. Dezember 2008, Oldenburg.

Norddeutsches Doktoranden Kolloquium, NDDK Patrick Zark, Annemarie Schäfer, Thomas Müller Synthese und Reaktivität N-arylsubstituierter N-heterocyclischer Silylene 11. September 2008, Braunschweig.

XYZ-Koordinaten der berechneten Strukturen nach Kapitel sortiert.

Abschnitt 3.9

Xylyl HN Xylyl = Xylyl' 67: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -808.87765 a.u.

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z
1	6	0	-0.910013	-0.240656	-0.523063
2	1	0	-1.292282	-0.596819	-1.489159
3	1	0	-1.185458	-1.017431	0.208977
4	6	0	0.589840	-0.229369	-0.622182
5	1	0	1.045132	-1.158915	-0.989924
6	6	0	-2.598492	1.169531	0.643843
7	6	0	-3.811562	0.561441	0.252051
8	6	0	-2.548899	1.948829	1.823818
9	6	0	-4.929847	0.690693	1.080233
10	6	0	-3.696286	2.067225	2.608319
11	6	0	-4.882491	1.430445	2.256068
12	1	0	-5.860622	0.222305	0.776180
13	1	0	-3.651404	2.661083	3.515671
14	1	0	-5.762856	1.525083	2.881240
15	6	0	2.695526	0.758313	-0.419871
16	6	0	3.468689	0.229732	0.630332
17	6	0	3.297059	1.358080	-1.542150
18	6	0	4.860748	0.287655	0.521281
19	6	0	4.691371	1.388040	-1.611178
20	6	0	5.473875	0.855444	-0.590822
21	1	0	5.467151	-0.115179	1.325987
22	1	0	5.164942	1.843125	-2.4/4969
23	1	0	6.555245	0.892288	-0.65/256
24	/	0	-1.446923	1.060945	-0.164306
25	1	0	-0.68/839	1.664615	0.126128
20		0	1.2/9323	0.150050	-0.312323
27	0	0	-3.948/3/	-0.152858	-1.0/2221
20	1	0	-3.519760	-1 1500//	-1.060753
29	1	0	-5.002594	-1.139944	-1 337900
31	1 6	0	-1 278142	2 653270	2 236785
32	1	0	-1.270142	1 959076	2.230703
33	1	0	-0 975884	3 /17328	1 510886
34	1	0	-1 414083	3 154752	3 196346
35	6	0	2 818392	-0 366021	1 856362
36	1	0	2.010392	0.306514	2 272165
37	1	0	2 315769	-1 313608	1 637685
38	1	0	3.564471	-0.560827	2.628805
39	6	0	2.451164	1,954440	-2.639705
40	1	Ő	1.909265	1.185285	-3.199863
41	1	õ	1.698101	2.634666	-2.231792
42	1	Ũ	3.070849	2.507114	-3.348172

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

6

1

1

1

6

1

1

1

6

1

1

1

6

1

1

1

Center Atomic Atomic Coordinates (Angstroms) Х Y Number Number Туре 7. _____ _____ _____ _____ _____ 0 0.000001 -0.000002 -1.081017 0 -1.218119 -0.000001 0.205709 0 1.218119 -0.000012 0.205711 0 -0.676696 -0.000055 1.491012 0 0.676693 0.000017 1.491013 0 -1.318570 -0.000084 2.360386 0 1.318565 0.000034 2.360389 0 -2.645576 0.000003 0.031892 14 1 2 7 7 3 4 6 5 6 6 1 7 0.000034 0.000003 1 -2.645576 8 6 0 0.031892 -1.226233 -0.050863 9 6 0 -3.330073 10 6 0 -4.717858 -1.203592 -0.218904 0 -0.000011 -5.409472 -0.303091 11 6 1.203578 -4.717874 0 -4./1,01 12 6 -0.218879 13 6 0 1.226232 -0.050840 0 -5.257220 -2.142685 14 1 -0.283137 -6.486048 -5.257250 2.645576 3.330066 -0.000017 2.142665 15 1 0 -0.432729 0 -0.283090 16 1 0 -0.000004 17 6 0.031897 18 6 0 1.226237 -0.050837 4.717851 1.203608 -0.218877 19 6 0 5.409472 0 0.000032 20 6 -0.303082 -1.203562 21 6 0 4./1/881 3.330096 4.717881 -0.218890 -1.226228 2.142705 0.000046 22 0 -0.050853 6 23 1 0 5.257208 -0.283095 6.486049 -0.432719 24 1 0 -2.142645 5.257263 2.595907 25 1 0 -0.283115

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

2.595907 1.974426

-2.595851

-1.930877

-1.974433

-3.302465

2.595836 1.930867 1.974412 3.302445

-2.595892

-1.974412

3.302545

-2.542600

-2.604658

-2.682309

-3.374239

-2.542587

-2.682229

-2.604674

-3.374248

2.542586

2.682239

3.374250

2.542599 2.604639

-1.930984 2.682316 -0.825668 -3.302525 3.374241 0.047650

2.604653

0.031849

0.928755

-0.825706

0.047605

0.031822

-0.825691

0.047483

0.031866

0.928812

0.047547

0.031883

0.928792

-0.825649

0.928770

40: (B3LYP/H,C,N: 6-311+G(d,p),Si: def2-TZVP), C₁, E^{tot} = -1097.23110 a.u.

xylyl **58**: (B3LYP/H,C,N: 6-311+G(d,p), Ge: def2-TZVP), C₁, E^{tot} = -2884.76693 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	7	0	1.260181	-0.000007	0.298036
2	7	0	-1.260180	0.000011	0.298039
3	6	0	0.679571	0.000017	1.553950
4	6	0	-0.679568	0.000018	1.553952
5	1	0	1.298418	0.000025	2.441380
6	1	0	-1.298413	0.000030	2.441382
7	6	0	2.688296	-0.000003	0.169431
8	6	0	3.376933	1.226120	0.103689
9	6	0	4.768375	1.203314	-0.029812
10	6	0	5.462368	0.000006	-0.097207
11	6	0	4.768374	-1.203306	-0.029909
12	6	0	3.376931	-1.226121	0.103591
13	1	0	5.309201	2.142545	-0.079435
14	1	0	6.541855	0.000010	-0.199732
15	1	0	5.309199	-2.142533	-0.079603
16	6	0	-2.688296	0.00007	0.169436
17	6	0	-3.376933	-1.226117	0.103713
18	6	0	-4.768376	-1.203312	-0.029787
19	6	0	-5.462368	-0.000005	-0.097199
20	6	0	-4.768374	1.203308	-0.029920
21	6	0	-3.376931	1.226124	0.103578
22	1	0	-5.309202	-2.142544	-0.079395
23	1	0	-6.541855	-0.000010	-0.199724
24	1	0	-5.309198	2.142534	-0.079627
25	6	0	-2.641992	2.543146	0.169564
26	1	0	-1.993793	2.602104	1.047405
27	1	0	-2.002809	2.688101	-0.706604
28	1	0	-3.348809	3.373879	0.209673
29	6	0	2.641994	2.543135	0.169801
30	1	0	2.002625	2.688066	-0.706235
31	1	0	1.993974	2.602100	1.047776
32	1	0	3.348808	3.373876	0.209756
33	6	0	-2.641994	-2.543131	0.169844
34	1	0	-2.002647	-2.688087	-0.706203
35	1	0	-1.993954	-2.602073	1.047805
36	1	0	-3.348809	-3.373870	0.209838
37	6	0	2.641994	-2.543143	0.169599
38	1	0	1.993803	-2.602089	1.047447
39	1	0	2.002803	-2.688109	-0.706562
40	1	0	3.348811	-3.373875	0.209712
41	32	0	-0.000001	-0.000014	-1.121859

¹xylyl 70: (B3LYP/H,C,N: 6-311+G(d,p), Sn: def2-TZVP), C₁, E^{tot} = -1022.09559 a.u.

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Χ	¥	Z
1	7	0	-1.322780	-0.000024	0.030387
2	7	0	1.322782	-0.000005	0.030390
- 3	6	0	-0.682483	-0.000041	1.250358
4	6	0	0.682483	-0.000031	1.250359
5	1	0	-1.267882	-0.000056	2.162302
6	1	0	1.267880	-0.000034	2.162305
7	6	0	-2.753946	-0.000047	-0.002075
8	6	0	-3.449117	-1.225609	-0.023237
9	6	0	-4.846068	-1.202792	-0.071568
10	6	0	-5.543818	-0.000088	-0.097793
11	6	0	-4.846099	1.202635	-0.071689
12	6	0	-3.449148	1.225493	-0.023360
13	1	0	-5.388750	-2.142306	-0.085166
14	1	0	-6.627541	-0.000104	-0.133985
15	1	0	-5.388805	2.142134	-0.085378
16	6	0	2.753948	0.000039	-0.002070
17	6	0	3.449102	1.225611	-0.023215
18	6	0	4.846054	1.202813	-0.071546
19	6	0	5.543820	0.000120	-0.097787
20	6	0	4.846118	-1.202614	-0.071699
21	6	0	3.449167	-1.225492	-0.023371
22	1	0	5.388722	2.142335	-0.085131
23	1	0	6.627543	0.000151	-0.133979
24	1	0	5.388836	-2.142105	-0.085399
25	6	0	2.714489	-2.544091	0.004582
26	1	0	2.010813	-2.598219	0.838788
27	1	0	2.133088	-2.698518	-0.909648
28	1	0	3.419164	-3.372667	0.096183
29	6	0	-2.714388	-2.544175	0.004878
30	1	0	-2.132708	-2.698540	-0.909184
31	1	0	-2.010950	-2.598301	0.839287
32	1	0	-3.419049	-3.372788	0.096252
33	6	0	2.714354	2.544166	0.004915
34	1	0	2.132706	2.698552	-0.909163
35	1	0	2.010886	2.598256	0.839301
36	1	0	3.419001	3.372785	0.096340
37	6	0	-2.714452	2.544082	0.004613
38	1	0	-2.010791	2.598194	0.838832
39	1	0	-2.133031	2.698506	-0.909605
40	1	0	-3.419116	3.372667	0.096206
41	50	0	0.00003	-0.000009	-1.611389

NH₃: (B3LYP/6-311+G(d,p)), C_{3v} , E^{tot} = -56.58264 a.u.

Number Numbe	er Type	Х	v	R
				<u>ک</u>
1 7	0	0.000000	0.000000	0.108838
2 1	0	0.00000	0.947539	-0.253955
3 1	0	-0.820593	-0.473769	-0.253955
4 1	0	0.820593	-0.473769	-0.253955

H_3C-NH_2 : (B3LYP/6-311+G(d,p)), C_s, E^{tot} = -95.89384 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.048462	0.707792	0.000000
2	1	0	0.589106	1.066687	0.879373
3	1	0	0.589106	1.066687	-0.879373
4	1	0	-0.947773	1.175221	0.00000
5	7	0	0.048462	-0.758217	0.00000
6	1	0	-0.430223	-1.123915	0.816133
7	1	0	-0.430223	-1.123915	-0.816133

H_2C-NH : (B3LYP/6-311+G(d,p)), C_s, E^{tot} = -94.66242 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.056147	0.584422	0.000000
2	1	0	1.011850	1.111581	0.000000
3	1	0	-0.842589	1.212199	0.000000
4	7	0	0.056147	-0.682830	0.000000
5	1	0	-0.899175	-1.050498	0.00000

H₃C–CH₃: (B3LYP/6-311+G(d,p)), D_{3d}, E^{tot} = -79.85654 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.765447
2	1	0	0.00000	1.018733	1.163771
3	1	0	0.882249	-0.509367	1.163771
4	1	0	-0.882249	-0.509367	1.163771
5	6	0	0.00000	0.00000	-0.765447
6	1	0	-0.882249	0.509367	-1.163771
7	1	0	0.00000	-1.018733	-1.163771
8	1	0	0.882249	0.509367	-1.163771

H_2C-CH_2 : (B3LYP/6-311+G(d,p)), D_{2h}, E^{tot} = -78.61551 a.u.

Center Atomic		Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.664389
2	1	0	0.00000	0.922841	1.235170
3	1	0	0.00000	-0.922841	1.235170
4	6	0	0.00000	0.00000	-0.664389
5	1	0	0.00000	-0.922841	-1.235170
6	1	0	0.00000	0.922841	-1.235170

Abschnitt 4.2.1

W(CO)5(40): (B3LYP/W:SDD	, H,C,N,O,Si: 6-311G(d,p)),	D _{2h} , E ^{tot} = -1731.30848 a.u.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms) X Y Z		
1	 7/		0 00000		1 735635
2	14	0	0.000000	0.000000	-0 792753
3	6	0	0 000000	0 000000	3 780983
4	8	0	0 000000	0 000000	4 928925
5	6	0	0.000000	2.074632	1.780226
6	8	0	0.000000	3.217552	1.858230
7	6	0	-2.072983	0.000000	1.721275
8	8	0	-3.220255	0.000000	1.714388
9	6	0	0.000000	-2.074632	1.780226
10	8	0	0.00000	-3.217552	1.858230
11	6	0	2.072983	0.000000	1.721275
12	8	0	3.220255	0.000000	1.714388
13	7	0	0.00000	1.230654	-2.038408
14	7	0	0.00000	-1.230654	-2.038408
15	6	0	0.00000	0.675157	-3.323743
16	6	0	0.00000	-0.675157	-3.323743
17	1	0	0.00000	1.320023	-4.189457
18	1	0	0.00000	-1.320023	-4.189457
19	6	0	0.00000	2.661509	-1.875495
20	6	0	0.00000	-2.661509	-1.875495
21	6	0	1.227062	3.343451	-1.805970
22	6	0	-1.227062	-3.343451	-1.805970
23	6	0	-1.227062	3.343451	-1.805970
24	6	0	1.227062	-3.343451	-1.805970
25	6	0	2.542244	2.606946	-1.882050
26	6	0	-2.542244	2.606946	-1.882050
27	6	0	-2.542244	-2.606946	-1.882050
28	6	0	2.542244	-2.606946	-1.882050
29	1	0	-2.599718	1.967649	-2.766650
30	1	0	-2.691300	1.961974	-1.011007
31	1	0	-3.373965	3.312144	-1.917302
32	1	0	2.599718	1.967649	-2.766650
33	1	0	2.691300	1.961974	-1.011007
34	1	0	3.373965	3.312144	-1.917302
35	1	0	2.599/18	-1.96/649	-2.766650
36	1	0	2.691300	-1.9619/4	-1.011007
37	1	0	3.3/3965	-3.312144	-1.91/302
30	1	0	-2.599/18	-1.96/649	-2.766650
39	1	0	-2.091300	-1.961974	-1.011007
40	1 G	0	-3.3/3965	-3.312144 5.400171	-1.91/302
41	6	0	-1 203631	J.4231/1 / 732322	-1.556499
42	6	0	1 203631	4.732322	-1.656499
43	6	0	0 000000	-5 423171	-1 580077
45	6	0	1 203631	-1 732322	-1 656/99
46	6	0	-1 203631	-4 732322	-1 656499
47	1	0	0 000000	6 500865	-1 461963
48	1	0	-2.142273	5.272582	-1.598762
49	1	õ	2.142273	5.272582	-1.598762
50	1	õ	0.000000	-6.500865	-1.461963
51	- 1	Ő	2.142273	-5.272582	-1.598762
52	1	0	-2.142273	-5.272582	-1.598762
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

Abschnitt 4.4.3, 4.4.5 und 4.4.6

Center	Atomic	Atomic	 Coor	(Anc	(stroms)
Number	Number	Туре	X	Y	Z
1	 6	 0	1.303055	-1.572069	1.868450
2	1	0	0.297825	-1.968923	1.703553
3	1	0	1.888707	-2.367531	2.334584
4	1	0	1.252844	-0.739466	2.573283
5	6	0	1.975971	-1.159881	0.576233
6	1	0	2.993154	-0.808192	0.763574
7	1	0	2.022406	-1.986584	-0.140174
8	6	0	1.931821	0.497233	-1.215563
9	1	0	2.965959	0.687039	-0.919173
10	1	0	1.930762	-0.266171	-2.000067
11	6	0	1.254959	1.773457	-1.668335
12	1	0	1.274437	2.531884	-0.883499
13	1	0	1.796264	2.169883	-2.530473
14	1	0	0.221256	1.605114	-1.977157
15	1	0	-0.112282	-0.020761	-0.009134
16	8	0	1.254009	-0.053709	-0.042395
17	8	0	-1.202048	0.073443	0.007904
18	6	0	-1.734321	0.668059	1.261592
19	1	0	-1.554290	-0.049120	2.065121
20	1	0	-2.806562	0.760379	1.092020
21	6	0	-1.084278	2.008346	1.511777
22	1	0	-1.517307	2.432560	2.421064
23	1	0	-0.007844	1.918123	1.664806
24	1	0	-1.276508	2.700885	0.690938
25	6	0	-1.918894	-1.128369	-0.480506
26	1	0	-1.781619	-1.919787	0.260086
27	1	0	-2.968789	-0.838417	-0.505460
28	6	0	-1.409196	-1.510867	-1.850797
29	1	0	-1.545076	-0.698263	-2.566221
30	1	0	-0.358391	-1.806415	-1.832666
31	1	0	-1.985180	-2.369886	-2.203207

[Et₂O–H–OEt₂]⁺ 144: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -467.83934 a.u.

Et₂O 150: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -233.73660 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-2.566982	-0.955681	0.047358
2	1	0	-2.190327	-1.981192	0.044045
3	1	0	-2.187556	-0.448017	-0.842507
4	1	0	-3.658524	-0.987847	-0.011678
5	6	0	-2.128079	-0.228950	1.305518
6	1	0	-2.518059	0.800911	1.313889
7	1	0	-2.520881	-0.734367	2.201636
8	6	0	-0.189900	0.454260	2.493564
9	1	0	-0.553776	-0.040996	3.407393
10	1	0	-0.550819	1.494365	2.519790
11	6	0	1.326266	0.416765	2.433761
12	1	0	1.688417	0.918373	1.533324
13	1	0	1.753491	0.919995	3.305668
14	1	0	1.685465	-0.614897	2.419712
15	8	0	-0.709489	-0.206107	1.349536

Et₃O⁺ 146: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -312.71082 a.u.

Center	Atomic	Atomic	c Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.124750	-1.049432	-0.833221
2	1	0	0.807167	-1.530531	-1.133373
3	1	0	0.036034	-0.573739	0.138512
4	1	0	-0.896117	-1.809464	-0.699124
5	6	0	-0.528103	0.026488	-1.810450
6	1	0	-1.469236	0.518899	-1.563825
7	1	0	0.248641	0.776950	-1.939717
8	6	0	-0.089019	0.204847	-4.325259
9	1	0	0.937921	0.346981	-3.993634
10	1	0	-0.091423	-0.499904	-5.152561
11	6	0	-0.802700	1.498896	-4.636665
12	1	0	-0.822130	2.181286	-3.784974
13	1	0	-0.246744	1.993463	-5.438306
14	1	0	-1.819883	1.342862	-4.999159
15	8	0	-0.708331	-0.568167	-3.187902
16	6	0	-2.059693	-1.191793	-3.430711
17	1	0	-2.317670	-1.611541	-2.461520
18	1	0	-2.741278	-0.374660	-3.668350
19	6	0	-1.987605	-2.256025	-4.497308
20	1	0	-2.958840	-2.758310	-4.521501
21	1	0	-1.811556	-1.852746	-5.495121
22	1	0	-1.229449	-3.005571	-4.264484

EtOH 151: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -155.09506 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	8	0	-0.739809	-0.539920	-3.302009
2	6	0	-1.541268	-1.723062	-3.235371
3	1	0	-1.004630	-2.519294	-2.701549
4	1	0	-2.474119	-1.523359	-2.690545
5	6	0	-1.848935	-2.161991	-4.654708
6	1	0	-2.462399	-3.067237	-4.649495
7	1	0	-2.391661	-1.378521	-5.188874
8	1	0	-0.925555	-2.372173	-5.199683
9	1	0	-0.536650	-0.248614	-2.408249

$V_{\text{Dipp}}^{(n)}$ **41**: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -1411.80905 a.u.

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	дуре	X	¥	Z
1	14	0	-0.000001	-0.000025	-1.084056
2	7	0	1.221926	0.000009	0.219188
3	6	0	-1.221928	0.000002	0.219187
5	6	0	-0.677869	0.000034	1.499635
6	1	0	1.317637	0.000059	2.370316
7	1	0	-1.317640	0.000052	2.370315
8	6	0	2.651770	0.000008	0.047646
9 10	6	0	3.338685 4 723229	1 201828	-0.231680
11	6	0	5.412916	0.000001	-0.330948
12	6	0	4.723222	-1.201820	-0.231681
13	6	0	3.338678	-1.230099	-0.038070
14 15	1	0	5.269406	2.135415	-0.306583
16	1	0	5.269391	-2.135413	-0.306585
17	6	0	-2.651774	-0.000006	0.047653
18	6	0	-3.338674	-1.230116	-0.038077
19	6	0	-4.723220	-1.201843	-0.231677
20	6	0	-4.723241	-0.000023	-0.231640
22	6	0	-3.338695	1.230097	-0.038046
23	1	0	-5.269385	-2.135436	-0.306594
24	1	0	-6.486689	-0.000030	-0.483418
25	1 6	0	-5.269423	2.135391	-0.30652/
20	1	0	1.572239	2.372544	0.275247
28	6	0	2.624306	-2.573371	0.067851
29	1	0	1.572199	-2.372515	0.275107
30	6	0	2.690727	3.354505	-1.258262
31 32	1	0	2.263896 2.132138	2.//531/ 4 292106	-2.080932
33	1	0	3.722512	3.603185	-1.524148
34	6	0	3.163905	3.421052	1.235208
35	1	0	2.585448	4.344757	1.331219
36 37	1	0	3.097273	2.880214	2.182769
38	6	0	3.163745	-3.420875	1.235436
39	1	0	3.096948	-2.879923	2.182919
40	1	0	2.585307	-4.344590	1.331472
41	1	0	4.210275	-3.700910	1.083712
43	1	0	2.264206	-2.775573	-2.080919
44	1	0	3.722736	-3.603381	-1.523820
45	1	0	2.132315	-4.292242	-1.177777
46	6	0	-2.624333	2.573377	0.067856
47	⊥ 6	0	-1.5/2240	2.372533 3.420960	1 235345
49	1	0	-2.585408	4.344674	1.331362
50	1	0	-4.210363	3.701002	1.083529
51	1	0	-3.097129	2.880069	2.182868
52 53	6	0	-2.690858	3.354569	-1.258165
54	1	0	-2.264085	2.775435	-2.080904
55	1	0	-3.722662	3.603263	-1.523959
56	6	0	-2.624286	-2.573385	0.067794
57	1	0	-1.572206	-2.372524	0.275191
50 59	о 1	0	-3.097166	-2.880185	2.182772
60	1	õ	-4.210320	-3.701115	1.083347
61	1	0	-2.585352	-4.344733	1.331224
62	6	0	-2.690739	-3.354514	-1.258268
63 64	1	U	-3./22529 -2.26394/	-3.603211 -2 775331	-1.524114
65	1	0	-2.132137	-4.292107	-1.177988

C_{Dipp}^{i} **145**: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -1566.95264 a.u.

Contor	7+omia	7+omia	Coord		
Number	Number	Type	X	Y	5CIOMS) 7
1	7	0	1.212165	0.204049	-0.519059
2	7	0	-1.290254	0.160768	-0.490267
3	6	0	0.616824	0.196160	-1.806474
4	6	0	-0.727454	0.171881	-1.790813
5	1	0	1.245787	0.200605	-2.683198
6	1	0	-1.376636	0.153094	-2.652750
/	6	0	2.639536	0.21142/	-0.3/0//1
o Q	6	0	J. 303021 A 751781	-0.990230	-0.343246
10	6	0	5.415690	0.228117	-0.062639
11	6	Õ	4.694701	1.409712	0.051529
12	6	0	3.305382	1.429730	-0.108030
13	1	0	5.322521	-1.876968	-0.439688
14	1	0	6.493364	0.233714	0.060119
15	1	0	5.220973	2.335105	0.258167
16	6	0	-2.712026	0.131145	-0.301296
17	6	0	-3.410671	1.340673	-0.086424
10	6	0	-4./93303	1.285264	0.115925
20	6	0	-4 781249	-1 104616	-0 138141
20	6	0	-3 397454	-1 104524	-0 338383
22	1	0	-5.344585	2.203483	0.286036
23	1	0	-6.549506	0.053880	0.250379
24	1	0	-5.322947	-2.043894	-0.162872
25	6	0	2.681815	-2.322343	-0.820255
26	1	0	1.605310	-2.150696	-0.811334
27	6	0	2.564411	2.759636	-0.016681
28	1	0	1.506337	2.556680	-0.187591
29	6	0	2.980182	-3.398734	0.238589
30 21	1	0	2.695982	-3.056082	1.235321
30	1	0	2.415240	-3 665746	0.019733
33	6	0	3.061702	-2.819596	-2.228541
34	1	0	2.526660	-3.744604	-2.464211
35	1	0	2.810534	-2.080779	-2.993765
36	1	0	4.133994	-3.025197	-2.302744
37	6	0	3.020189	3.736721	-1.117310
38	1	0	2.891853	3.299810	-2.110872
39	1	0	2.433128	4.659232	-1.074361
40	1 G	0	4.0/40//	4.008013	-1.004621
41	1	0	2.039143	2 727204	2 160917
43	1	0	3.739449	3.651708	1.603919
44	1	0	2.114709	4.323366	1.431659
45	6	0	-2.680249	-2.423864	-0.603169
46	1	0	-1.613960	-2.210164	-0.677044
47	6	0	-3.122336	-3.043670	-1.942767
48	1	0	-2.560853	-3.961396	-2.142701
49	1	0	-4.186507	-3.298559	-1.934455
5U 51	1	0	-2.951007	-2.355/81	-2.//4008
52	1	0	-2.287200	-4 332884	0.351000
53	1	0	-2.525420	-2.999003	1.498423
54	1	0	-3.914128	-3.717094	0.670424
55	6	0	-2.709558	2.694988	-0.088081
56	1	0	-1.650320	2.513812	-0.275761
57	6	0	-3.223564	3.597024	-1.226377
58	1	0	-3.110774	3.109832	-2.198182
59	1	0	-4.281157	3.845948	-1.097437
60	1	0	-2.661824	4.535788	-1.251230
10 23	ю 1	0	-2.020000 -3.860777	3.4UJ188 3.6/0629	1 5120/0
63	⊥ 1	0	-2.432614	2.784951	2.081170
64	1	0	-2.269602	4.345849	1.263748
65	14	0	-0.022203	0.119989	0.710558
66	1	0	-0.057909	1.240643	1.682577
67	8	0	0.052194	-1.232783	1.663568
68	6	0	-0.159802	-1.301731	3.079412

Center Atomic Atomic Coordinates (Angstroms) Atomic Number Number Type Х Y 7. _____ 0 0 1.287424 0.004184 -0.595975 -1.239716 0.117743 -0.546962 1 7 7 2 0 -1.239710 0.117770 0 0.665980 -0.165621 0 -0.673225 -0.098307 0 1.282969 -0.324950 0 -1.328302 -0.186788 -0.2000 3 6 -1.863745 4 -1.840515 6 -2.733578 5 1 -0.186788 0.100600 6 1 -2.690347 2.725666 3.495311 4.881305 5.488971 7 -0.474107 6 -1.083251 8 6 -0.405079 9 -0.956387 -0.276826 6 0.292250 10 6 -0.219237 1.443104 4.718184 3.327780 -0.309601 11 6 12 6 1.377778 -0.450838 5.497919 13 1 -1.845740 -0.227349 6.565596 5.205759 0.366786 2.410665 14 0 -0.117741 1 -0.28617415 0 1 -2.665239 16 6 0 0.316112 -0.375291 17 6 0 -3.138262 1.563993 0.093094 -4.510515 1.703759 18 6 0 0.327947 19 6 0 -5.399251 0.672151 0.066259 -0.522212 6 -4.926626 0 -0.461283 20 6 0 -0.732669 2.648273 21 -3.564661 -0.694290 22 1 0 -4.890839 0.698320 0.805349 23 1 0 -6.459218 0.248892 -5.632815 -1.308164 -0.700245 1 0 24 2.876483 1.798418 25 6 0 -2.473265 -0.521706 -2.370628 -0.371877 26 1 0 2.674165 2.418306 27 6 0 2.539980 -0.615450 1.483055 1 28 0 -0.7178503.406245 3.337545 2.838575 6 0 -3.458677 29 0.536436 30 1 0 -3.051831 1.549544 31 1 0 -4.392688 0.501371 32 0 4.454027 -3.715718 1 0.364534 3.087498 -3.054288 33 6 0 -1.935513 34 1 0 2.606796 -4.032634 -2.024124 2.671662 4.152214 -2.403330 35 1 0 -2.707311 -3.183059 -2.148223 36 1 0 3.408962 2.770573 37 0 2.942817 -1.909455 6 38 1 0 2.813196 -2.786590 2.326081 3.987690 2.679772 39 0 4.301394 -2.045428 1 40 1 0 3.728648 -1.879927 3.600427 41 6 0 0.607167 2.363188 3.713099 2.066881 3.106105 3.927888 1 42 0 1.530264 43 1 0 0.747288 4.496376 0.476662 44 1 0 45 6 0 -3.140756 -2.050545 -1.345901 1 -2.126942 46 0 -2.051514 -1.299732 -2.071391 47 6 0 -3.535523 -2.838620 -3.167299 -2.981478 48 1 0 -3.319756 -4.622569 -2.048402 -2.950606 49 1 0 -1.213700 -3.135794 50 1 0 -3.383894-3.724739 -3.293526 -0.646584 51 6 0 52 1 0 -3.301729 -4.202127 -1.083279 53 1 0 -3.517668 -3.303563 0.425903 1 54 -4.808643 -3.353477 -0.767362 0 2.789692 -2.249130 55 6 0 0.293386 56 1 0 -1.228088 2.524092 0.012238 57 -2.664783 3.936271 -0.650361 6 0 3.612537 58 1 0 -2.658078 -1.693686 -3.667592 59 1 0 4.304345 -0.420076 4.777033 60 1 0 -1.972895 -0.550214 -2.228938 3.265621 61 6 0 1.757813 0 -3.217131 3.604742 2.078737 62 1 2.470271 0 -1.919836 2.442715 63 1 64 1 0 -1.538452 4.104762 1.878613 0.059214 0.164982 0.227732 65 14 0 0.576657 66 1 0 1.306349 1.551984 1.855346

-0.038522 -1.135138

8

67

0

152 (= 157(Et₂O): (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -1645.92904 a.u.

68	6	0	0 966945	-1 365388	2 946605
00	1	0	0.000040	1.000000	2.010000
69	Ţ	0	0.3//292	-1.64/506	3.810950
70	1	0	1.557197	-2.217422	2.609804
71	6	0	1.832738	-0.162637	3.240465
72	1	0	2.528707	-0.464719	4.028457
73	1	0	2.437184	0.145227	2.384340
74	1	0	1.257713	0.684996	3.613590
75	6	0	-1.040964	-2.241563	1.767381
76	1	0	-1.384444	-2.224624	0.737420
77	1	0	-0.478635	-3.159596	1.940222
78	6	0	-2.166993	-2.034185	2.756084
79	1	0	-2.851140	-2.883642	2.685579
80	1	0	-1.813354	-1.989261	3.787839
81	1	0	-2.732880	-1.129208	2.529273

D_{ipp} **157**: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -1412.16492 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ү	Ζ
1	7	0	-0.018360	0.244411	1.250295
2	7	0	-0.018360	0.244411	-1.250295
3	6	0	-0.193151	1.481822	0.689471
5	1	0	-0.365054	2.343272	1.318167
6	1	0	-0.365054	2.343272	-1.318167
7	6	0	0.001866	0.043308	2.694530
8	6	0	1.257687	-0.051648	3.326035
9 10	6	0	1.259429	-0.253546	4.709067 5.424728
11	6	0	-1.148317	-0.252623	4.771700
12	6	0	-1.219950	-0.047757	3.390694
13	1	0	2.204406	-0.328834	5.233150
14	1	0	0.101098	-0.512891	6.496597
16	1	0	-2.004304	0.043308	-2 694530
17	6	0	-1.219950	-0.047757	-3.390694
18	6	0	-1.148317	-0.252623	-4.771700
19	6	0	0.073427	-0.355318	-5.424728
20	6	0	1.259429	-0.253546	-4.709067
21	1	0	-2.064364	-0.333116	-5.344098
23	1	0	0.101098	-0.512891	-6.496597
24	1	0	2.204406	-0.328834	-5.233150
25	6	0	2.583805	0.075195	2.582608
26	1 6	0	2.370076	0.239795	1.523253
28	1	0	-2.437102	0.239764	1.652121
29	6	0	3.419756	-1.214773	2.686618
30	1	0	2.869277	-2.085470	2.319056
31	1	0	4.337545	-1.120164	2.100389
32	1 6	0	3.709082 3.387822	-1.422148	3./19/31
34	1	0	4.302003	1.405666	2.478827
35	1	0	2.811044	2.220776	2.973480
36	1	0	3.680503	1.193560	4.115846
37	6	0	-3.408556	1.232210	3.269864
38 39	1	0	-2.8/0289	2.1/86/0	3.1/3841 2 725589
40	1	0	-3.649555	1.094384	4.326686
41	6	0	-3.368955	-1.271130	2.839049
42	1	0	-2.808126	-2.112878	2.422856
43	1	0	-3.592282	-1.508539	3.881984
44	1 6	0	2.583805	0.075195	-2.582608
46	1	0	2.370076	0.239795	-1.523253
47	6	0	3.387822	1.297253	-3.068128
48	1	0	4.302003	1.405666	-2.478827
49	1	0	3.680503	1.193560	-4.115846
51	6	0	3.419756	-1.214773	-2.686618
52	1	0	4.337545	-1.120164	-2.100389
53	1	0	2.869277	-2.085470	-2.319056
54	1	0	3.709082	-1.422148	-3.719731
55 56	6	0	-2.586221	0.051126	-2./18/52
57	6	0	-3.408556	1.232210	-3.269864
58	1	0	-2.870289	2.178670	-3.173841
59	1	0	-3.649555	1.094384	-4.326686
60 61	1	0	-4.352217	1.321234	-2.725589
62	1	0	-3.592282	-1.508539	-3.881984
63	1	Ő	-2.808126	-2.112878	-2.422856
64	1	0	-4.320082	-1.199604	-2.304982
65	14	0	-0.079415	-0.952837	0.000000
бб 	I	U U	U.813230	-2.118430	0.000000

Coordinates	(Angstroms)
Х Ү	Z
1823 1.0918	323 1.091823
0000 0.0000	0.000000
1823 -1.0918	323 1.091823
1823 1.0918	323 -1.091823
1823 -1.0918	323 -1.091823
8558 1.7376	513 1.737613
7613 0.4885	558 1.737613
7613 1.7376	613 0.488558
7613 -1.7376	613 -0.488558
8558 -1.7376	513 -1.737613
7613 -0.4885	558 -1.737613
8558 -1.7376	513 1.737613
7613 -0.4885	558 1.737613
7613 -1.7376	613 0.488558
7613 1.7376	513 -0.488558
8558 1.7376	513 -1.737613
7613 0.4885	558 -1.737613
	X Y 1.0918 0000 0.0000 1823 -1.0918 1823 -1.0918 1823 -1.0918 1823 -1.0918 1823 -1.0918 8558 1.7376 7613 0.4885 7613 -1.7376 8558 -1.7376 7613 -0.4885 7613 -0.4885 7613 -1.7376 7613 1.7376 7613 1.7376 7613 -0.4885 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -0.4885 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376 7613 -1.7376

SiMe₄: (B3LYP/6-311+G(d,p)), T_d, E^{tot} = -1412.16492 a.u.

$\begin{bmatrix} N & + & C_6 H_6 \\ N & + & C_6 H_6 \\ Dipp & & \\ 1527(C_6H_6): (B3LYP/6-311+G(d,p)), C_1, E^{tot} = -1644.48713 a.u.$

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) 7
		- 1			
1	7	0	1.302689	0.011949	-0.765351
2	7	0	-1.204807	0.022526	-0.806527
3	6	0	0.746669	-0.328995	-2.002867
4	6	0	-0.608722	-0.320818	-2.025471
5	1	0	1.393306	-0.597643	-2.823079
6	1	0	-1.230987	-0.581419	-2.866843
7	6	0	2.738477	0.072090	-0.565014
8	6	0	3.480329	-1.128005	-0.494302
9	6	0	4.858762	-1.023219	-0.288743
10	6	0	5.478185	0.213591	-0.157788
11	6	0	4.728901	1.378678	-0.246840
12	6	0	3.347465	1.340428	-0.460640
13	1	0	5.458820	-1.923392	-0.232436
14	1	0	6.548635	0.268513	0.003185
15	1	0	5.226943	2.337140	-0.162263
16	6	0	-2.645583	0.063916	-0.649413
17	6	0	-3.273362	1.323032	-0.545268
18	6	0	-4.660293	1.341810	-0.366400
19	6	0	-5.397026	0.166574	-0.311116
20	6	0	-4.758946	-1.060843	-0.443239
21	6	0	-3.374516	-1.146349	-0.615240
22	1	0	-5.172396	2.293076	-0.284621
23	1	0	-6.471934	0.206220	-0.177659
24	1	0	-5.349179	-1.968882	-0.416360
25	6	0	2.855674	-2.509937	-0.670484
26	1	0	1.768472	-2.398871	-0.650597
27	6	0	2.585250	2.653919	-0.610540
2.8	1	0	1,535209	2,420454	-0.801494
2.9	6	0	3,235540	-3.484393	0.459925
30	1	0	3.002609	-3.077017	1,446932
31	1	0	2.691089	-4.425290	0.344539
32	1	0	4.301216	-3.723964	0.448567
33	-	0	3,231542	-3.114584	-2.039376
34	1	0	2.732796	-4.076929	-2.182928
35	1	0	2 948090	-2 459896	-2 866778
36	1	0	4 309428	-3 282846	-2 109270
37	- 6	0	3 084242	3 455340	-1 829178
38	1	0	3 016294	2 867615	-2 747805
39	1	0	2.482235	4.358678	-1.958680
40	1	ũ	4 124896	3 766113	-1 707265
41	6	0	2 646556	3 505483	0 671592
42	1	n n	2.040000	2 959481	1 53925/
43	1	0	3 670627	3 811339	0 900270
44	1	Õ	2 050643	4 414457	0 552957

45	6	0	-2.730710	-2.519389	-0.797121
46	1	0	-1.645424	-2.397550	-0.754903
47	6	0	-3.072979	-3.107984	-2.181859
48	1	0	-2.558612	-4.061296	-2.330063
49	1	0	-4.146948	-3.289510	-2.274753
50	1	0	-2.782889	-2.437267	-2.993975
51	6	0	-3.120633	-3.515654	0.311082
52	1	0	-2.574987	-4.453920	0.180357
53	1	0	-2.895519	-3.131220	1.309142
54	1	0	-4.185881	-3.755946	0.285202
55	6	0	-2.524745	2.647092	-0.668724
56	1	0	-1.465454	2.428121	-0.821450
57	6	0	-2.992190	3.438048	-1.906757
58	1	0	-2.884958	2.848546	-2.820479
59	1	0	-4.040619	3.734723	-1.821401
60	1	0	-2.398228	4.348990	-2.018719
61	6	0	-2.643178	3.501062	0.607530
62	1	0	-3.678635	3.793199	0.799981
63	1	0	-2.282887	2.963174	1.489101
64	1	0	-2.056648	4.418157	0.506541
65	14	0	0.031222	0.198194	0.378682
66	1	0	0.060168	1.249959	1.394142
67	6	0	-0.148439	0.684410	4.161865
68	6	0	-1.493080	-0.801538	2.811784
69	6	0	1.003427	-0.031449	3.824808
70	1	0	-0.077576	1.534372	4.830734
71	6	0	-0.331922	-1.502714	2.437910
72	1	0	-2.460129	-1.113024	2.436203
73	6	0	0.914629	-1.130164	2.975567
74	1	0	1.962542	0.258753	4.236999
75	1	0	-0.414029	-2.402625	1.838490
76	1	0	1.801395	-1.701635	2.731079
77	6	0	-1.394624	0.294832	3.664111
78	1	0	-2.286983	0.837392	3.952990

$\begin{array}{c} \text{Dipp} \\ \text{H}_2 \text{C}_N \\ \text{Dipp} \\ \textbf{167}: (B3LYP/6-311+G(d,p)), \text{ C}_1, \text{ E}^{\text{tot}} = -1412.17608 \text{ a.u.} \end{array}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Center Number	Atomic Number	Atomic Type	Coord X	linates (Angs Y	stroms) Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	 1 4	0	0.087811	-0.003368	-1.102012
3 7 0 1.216560 0.000802 0.19954 4 6 0 -0.77234 0.000540 0.148164 5 1 0 -1.405146 0.00556 2.367040 7 6 0 -2.356017 -1.240966 -0.02253 8 6 0 -4.73558 -1.207455 -0.321401 10 6 0 -4.73558 -1.202848 -0.321404 11 6 0 -3.35604 1.23848 -0.066538 12 1 0 -5.278153 -2.137765 -0.429494 13 1 0 -6.227653 -0.001144 0.024992 16 6 0 3.338716 1.236629 -0.060012 17 6 0 3.338718 1.234195 -0.04752 18 6 0 -2.632274 -2.578467 0.024752 19 6 0 -2.632857 -2.787467 0.024752 <t< td=""><td>2</td><td>7</td><td>0</td><td>-1.268723</td><td>-0.000437</td><td>0.296356</td></t<>	2	7	0	-1.268723	-0.000437	0.296356
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	7	0	1.216560	0.000802	0.199594
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	0	-0.772334	0.003207	1.481694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1 6	0	-2 706635	-0 000961	2.367040
8 6 0 -4.733558 -1.207425 -0.321719 9 6 0 -4.736135 1.202848 -0.321404 11 6 0 -3.358604 1.238248 -0.0321404 12 1 0 -5.278153 -2.137765 -0.429494 13 1 0 -6.485793 -0.003420 -0.434712 14 1 0 -5.282652 2.132535 -0.419474 15 6 0 2.383716 1.23629 -0.050112 16 6 0 3.38718 1.204576 -0.247525 18 6 0 4.723469 1.204576 -0.242503 20 6 0 3.339778 -1.234195 -0.364134 21 1 0 5.273736 -2.2132632 -0.315433 24 6 0 -2.338356 -3.26017 -0.248104 25 1 0 -1.558664 2.393459 0.019773 <t< td=""><td>7</td><td>6</td><td>0</td><td>-3.356017</td><td>-1.240986</td><td>-0.092530</td></t<>	7	6	0	-3.356017	-1.240986	-0.092530
9 6 0 -5.417341 -0.002716 -0.434712 10 6 0 -3.35604 1.238348 -0.086538 12 1 0 -5.278153 -2.137765 -0.42944 13 1 0 -5.27652 2.132355 -0.419474 15 6 0 2.62038 0.001104 0.024992 16 6 0 3.338716 1.236629 -0.600112 17 6 0 4.723469 1.204576 -0.247525 18 6 0 5.271944 2.135586 -0.247525 21 1 0 6.446488 0.01649 -0.434511 22 1 0 6.472493 -1.234195 -0.054752 23 1 0 -2.73736 -2.132632 -0.055657 23 1 0 -1.553287 -2.393459 0.019773 26 6 0 -2.333700 -4.427509 -1.01987	8	6	0	-4.733558	-1.207425	-0.327179
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	-5.417341	-0.002716	-0.434712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 11	6	0	-4.736135	1.202848	-0.321404
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1	0	-5.278153	-2.137765	-0.429494
	13	1	0	-6.485793	-0.003420	-0.615411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1	0	-5.282652	2.132535	-0.419474
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	2.662038	0.001104	0.024992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	6	0	3.338/10 4 723469	1.236629	-0.247525
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	0	5.411021	0.001497	-0.340145
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	4.724493	-1.201764	-0.242503
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	0	3.339778	-1.234195	-0.054752
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	5.271944	2.135586	-0.324511
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	0.484088 5 273736	-2 132632	-0.315643
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	-2.632274	-2.579467	0.028104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	-1.553287	-2.392365	0.005657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	6	0	-2.638055	2.578150	0.038492
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	-1.558664	2.393459	0.019773
2510 -2.333700 -4.427509 -1.071987 3110 -3.986076 -3.829188 -1.161927 3260 -2.946185 -3.260717 1.37521 3310 -2.391796 -4.198028 1.468775 3410 -2.685459 -2.624514 2.226270 3510 -4.011289 -3.49227 1.456415 3660 -2.98604 3.257655 1.384910 3710 -2.700006 2.621215 2.236419 3810 -2.406337 4.195922 1.481423 3910 -4.024411 3.487324 1.462230 4060 -2.942021 3.519561 -1.141218 4110 -2.716878 3.047949 -2.100766 4210 -3.990629 3.824936 -1.56003 4310 -2.340349 4.28154 -1.058750 4460 2.632038 -2.583179 0.037444 4510 1.581179 -2.401937 0.280755 4710 2.627531 -4.387188 1.253517 4810 4.243386 -3.751240 0.958876 5510 2.621857 -2.724347 -1.247386 5210 2.6228776 2.585438 0.026357 5510 1.578853 2.404351 <	28 29	6	0	-2.938356	-3.520613	-1.1511/1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	-2.333700	-4.427509	-1.071987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1	0	-3.986076	-3.829188	-1.161927
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	6	0	-2.946185	-3.260717	1.375221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1	0	-2.391796	-4.198028	1.468775
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	0	-2.685459	-2.624514	2.226270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	0	-2.958604	3.257655	1.384910
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0	-2.700006	2.621215	2.236419
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1	0	-2.406337	4.195922	1.481423
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	0	-4.024411	3.487324	1.462230
11 1 0 2.11000 3.824936 -1.156003 42 10 -2.340349 4.428154 -1.058750 44 60 2.632038 -2.583179 0.037444 45 10 1.581179 -2.401937 0.280755 46 60 3.208431 -3.465678 1.161153 47 10 2.627531 -4.387188 1.253517 48 10 4.243358 -3.751240 0.958878 49 10 3.191290 -2.953675 2.127160 50 60 2.661148 -3.323045 -1.314511 51 10 2.112513 -4.266497 -1.247386 52 10 2.213657 -2.724347 -2.112880 53 10 3.685986 -3.555461 -1.614712 54 60 2.629876 2.585438 0.026357 55 10 1.578853 2.404351 0.269049 56 60 3.204391 3.472410 1.147493 57 10 3.186629 2.963837 2.115304 58 10 4.239328 3.757997 0.945292 59 10 2.622720 4.393819 1.232977 60 60 2.660006 3.320308 -1.328285 61 10 2.662076 2.718298 -2.124909 63 10 <td>40 41</td> <td>6</td> <td>0</td> <td>-2.942021</td> <td>3.519561 3 047949</td> <td>-1.141218</td>	40 41	6	0	-2.942021	3.519561 3 047949	-1.141218
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	-3.990629	3.824936	-1.156003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	-2.340349	4.428154	-1.058750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	6	0	2.632038	-2.583179	0.037444
46 6 0 3.208431 -3.465678 1.161133 47 10 2.627531 -4.387188 1.253517 48 10 4.243358 -3.751240 0.958878 49 10 3.191290 -2.953675 2.127160 50 60 2.661148 -3.323045 -1.314511 51 10 2.112513 -4.266497 -1.247386 52 10 2.213657 -2.724347 -2.112880 53 10 3.685986 -3.555461 -1.614712 54 60 2.629876 2.585438 0.26357 55 10 1.578853 2.404351 0.269049 56 60 3.204391 3.472410 1.147493 57 10 3.186629 2.963837 2.115304 58 10 4.239328 3.757997 0.945292 59 10 2.622720 4.393819 1.235977 60 60 2.660006 3.320308 -1.328285 61 10 3.685007 3.552385 -1.628178 62 10 2.110581 4.263582 -1.265298 64 60 0.705206 0.004072 1.561414 65 10 1.047188 -0.871388 2.133169 66 10 1.047198 0.882678 2.128729	45	1	0	1.581179	-2.401937	0.280755
4810 4.243358 -3.751240 0.958878 49 10 3.191290 -2.953675 2.127160 50 60 2.661148 -3.323045 -1.314511 51 10 2.112513 -4.266497 -1.247386 52 10 2.213657 -2.724347 -2.112880 53 10 3.685986 -3.555461 -1.614712 54 60 2.629876 2.585438 0.026357 55 10 1.578853 2.404351 0.269049 56 60 3.20391 3.472410 1.147493 57 10 3.186629 2.963837 2.115304 58 10 4.239328 3.757997 0.945292 59 10 2.622720 4.393819 1.235977 60 60 2.2110581 4.263582 -1.628178 61 10 3.685007 3.552385 -1.628178 61 10 2.2110581 4.263582 -1.265298 64 60 0.705206 0.004072 1.561414 65 10 1.047188 -0.871388 2.133169 66 10 1.047198 0.882678 2.128729	40	0	0	2 627531	-3.405078 -4 387188	1 253517
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	1	0	4.243358	-3.751240	0.958878
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1	0	3.191290	-2.953675	2.127160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	6	0	2.661148	-3.323045	-1.314511
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	0	2.112513	-4.266497	-1.247386
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52 53	1	0	2.213657 3.685986	-2./2434/	-2.112880
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	6	0	2.629876	2.585438	0.026357
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0	1.578853	2.404351	0.269049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	6	0	3.204391	3.472410	1.147493
55 1 0 4.239328 3.757997 0.945292 59 1 0 2.622720 4.393819 1.235977 60 6 0 2.660006 3.320308 -1.328285 61 1 0 3.685007 3.552385 -1.628178 62 1 0 2.110581 4.263582 -1.24909 63 1 0 2.110581 4.263582 -1.265298 64 6 0 0.705206 0.004072 1.561414 65 1 0 1.047880 -0.871388 2.133169 66 1 0 1.047198 0.882678 2.128729	57	1	0	3.186629	2.963837	2.115304
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 59	⊥ 1	0	4.239328 2.622720	3./3/99/ 4.393819	1.235977
	60	6	Õ	2.660006	3.320308	-1.328285
62102.2138662.718298-2.12490963102.1105814.263582-1.26529864600.7052060.0040721.56141465101.047880-0.8713882.13316966101.0471980.8826782.128729	61	1	0	3.685007	3.552385	-1.628178
63 1 0 2.110581 4.263582 -1.265298 64 6 0 0.705206 0.004072 1.561414 65 1 0 1.047880 -0.871388 2.133169 66 1 0 1.047198 0.882678 2.128729	62	1	0	2.213866	2.718298	-2.124909
64 6 0 0.705206 0.004072 1.561414 65 1 0 1.047880 -0.871388 2.133169 66 1 0 1.047198 0.882678 2.128729	63	1	0	2.110581	4.263582	-1.265298
66 1 0 1.047198 0.882678 2.128729	65	6 1	0	U./USZU6 1 047880	-0 871388	1.361414 2 133169
	66	1 1	Õ	1.047198	0.882678	2.128729

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
		··	0 07075	0 070741	
1	7	0	-1 714757	-0.978741	-0.891/92
2	6	0	-0.090887	-0.403030	-1 67/373
Д	1	0	0.310110	-2 327627	-2 425307
5	6	0	2 125449	-1 105531	-0 924695
6	6	0	2 723226	-2 278759	-0 425242
7	6	Ő	4,119368	-2.347096	-0.485857
8	6	0	4.873437	-1.303328	-1.003734
9	6	0	4.249959	-0.149080	-1.465330
10	6	Ő	2.861164	-0.015332	-1.429311
11	1	0	4.622444	-3.232163	-0.115677
12	1	0	5.953315	-1.385464	-1.042919
13	1	0	4.853589	0.657297	-1.861757
14	6	0	-3.077302	-0.126643	-0.045844
15	6	0	-3.709713	0.938244	-0.722274
16	6	0	-5.013521	1.266500	-0.340653
17	6	0	-5.666862	0.569495	0.667305
18	6	0	-5.027574	-0.480485	1.313507
19	6	0	-3.725781	-0.858426	0.972214
20	1	0	-5.524482	2.082679	-0.837495
21	1	0	-6.676714	0.844224	0.949024
22	1	0	-5.549542	-1.015742	2.097622
23	6	0	1.946296	-3.441771	0.187677
24	1	0	0.886383	-3.175645	0.227206
25	6	0	2.188327	1.233336	-1.991276
26	1	0	1.174026	1.293272	-1.574559
27	6	0	2.382978	-3.711925	1.640831
28	1	0	2.292006	-2.816302	2.260168
29	1	0	1./61045	-4.495815	2.080636
30	1 C	0	3.420836	-4.048/44	1.692279
22	0	0	2.003/30	-4.710770	-0.070174
32	1	0	1 720070	-1 552926	-1 605054
31	1	0	3 098609	-5.063259	-1.095954
35	6	0	2 040096	1 128025	-3 522528
36	1	0	1 487277	0 232291	-3 821634
37	1	Ő	1.513990	2.000458	-3.918425
38	1	0	3.021696	1.080582	-4.001511
39	6	0	2.894881	2.536456	-1.585630
40	1	0	2.986270	2.618361	-0.500410
41	1	0	3.891289	2.612673	-2.027317
42	1	0	2.319831	3.393648	-1.945220
43	6	0	-3.067337	-2.016960	1.716208
44	1	0	-2.113529	-2.237095	1.228437
45	6	0	-3.910805	-3.304353	1.652295
46	1	0	-3.371492	-4.132456	2.119955
47	1	0	-4.859498	-3.192829	2.182438
48	1	0	-4.140364	-3.586102	0.621074
49	6	0	-2.752363	-1.636095	3.176148
50	1	0	-2.240891	-2.457677	3.685162
51	1	0	-2.114848	-0.749332	3.234316
52	1	0	-3.667866	-1.418273	3.732181
53	6	0	-3.036184	1.740146	-1.832552
54	1	0	-2.042167	1.318040	-2.004259
55	6	0	-3.809283	1.639393	-3.161769
56	1	0	-3.951388	0.599874	-3.470768
57	1	0	-4.799300	2.095438	-3.085145
58	1	0	-3.268312	2.160008	-3.956555
59	6	0	-2.832258	3.211675	-1.423077
60	1	0	-3./88132	3.712798	-1.251814
61	1	0	-2.246576	3.295861	-0.503778
62	1	0	-2.308762	3.758082	-2.212387
63	6	0	-1.544272	-1.440670	-1.492875
64	1	0	-2.036864	-2.399759	-1.273031
65	1	0	-1.987370	-1.087658	-2.436093
66	14	U	-0.310190	0.147283	0.368518
6/	X	0	/ . 448335	/ 964/49	7.74066

68	6	0	2.194402	4.358420	2.394547
69	1	0	2.063699	4.592748	3.460715
70	1	0	3.059839	4.935005	2.035958
71	6	0	0.945744	4.727811	1.615623
72	1	0	0.736375	5.795018	1.724680
73	1	0	1.072185	4.512990	0.551595
74	1	0	0.081460	4.170443	1.985059
75	6	0	3.573432	2.523505	2.995043
76	1	0	4.482140	3.029508	2.636578
77	1	0	3.440581	2.799167	4.051049
78	6	0	3.707881	1.018554	2.855183
79	1	0	4.574067	0.664094	3.419987
80	1	0	2.818099	0.516107	3.243020
81	1	0	3.842478	0.734021	1.808620

$\begin{array}{c} \underset{H_{2}C_{N}}{\overset{N}{\underset{Dipp}{F}}} \\ \textbf{H}_{2}C_{N} \\ \end{array} \\ \textbf{Si} \\ \textbf{Bipp} \\ \textbf{167(C_{6}H_{6})} \\ \vdots \ (B3LYP/6-311+G(d,p)), \ C_{1}, \ \textbf{E}^{tot} = -1644.490221 \ a.u. \end{array}$

Contor		7+omia	Coord	lipatos (Apg	strome)
Number	Number	Type	X COOLC	v v	SCIONS) Z
1	7	0	1.313868	0.099762	-0.875091
2	7	0	-1.166956	0.191569	-1.074047
3	6	0	-0.620882	0.137965	-2.235900
4	1	0	-1.214605	0.129294	-3.147888
5	6	0	2.750988	0.053176	-0.651760
6	6	0	3.391978	-1.202345	-0.578280
7	6	0	4.770340	-1.215497	-0.347282
8	6	0	5.488011	-0.035836	-0.198352
9	6	0	4.838472	1.188412	-0.286261
10	6	0	3.462295	1.265258	-0.519532
11	1	0	5.290167	-2.163920	-0.280846
12	1	0	6.555960	-0.0/0643	-0.016//0
13	l	0	5.411146	2.101107	-0.1/2515
14	6	0	-2.609575	1 410024	-0.891/22
16	6	0	-3.204303	1 410034	-0.4/3391
17	6	0	-5 340620	0 259403	-0.502195
18	6	0	-4.719438	-0.919688	-0.904174
19	6	Ő	-3.335086	-0.986217	-1.097699
2.0	1	0	-5.089818	2.320363	0.001785
21	1	0	-6.415102	0.283147	-0.378441
22	1	0	-5.318374	-1.809425	-1.055938
23	6	0	2.654185	-2.528601	-0.739185
24	1	0	1.598824	-2.311364	-0.924699
25	6	0	2.800157	2.637273	-0.611728
26	1	0	1.753731	2.491907	-0.893619
27	6	0	2.716397	-3.373537	0.547618
28	1	0	2.309541	-2.828397	1.403061
29	1	0	2.142100	-4.296048	0.425669
30	1	0	3.744367	-3.654080	0.790237
31	6	0	3.176529	-3.328257	-1.948833
32	1	0	2.58/155	-4.238865	-2.086512
31	1	0	3.125291 A 2170AA	-2.745985	-2.8/3344
35	1	0	3 441734	3 516769	-1.701916
36	1	0	3 438758	3 019506	-2 675705
37	1	0	2.894589	4.458347	-1.798829
38	1	Ő	4.478493	3.764553	-1.462290
39	6	0	2.806458	3.356349	0.751426
40	1	0	2.310444	2.761306	1.523278
41	1	0	3.827284	3.549824	1.090753
42	1	0	2.292645	4.318949	0.679199
43	6	0	-2.700369	-2.317351	-1.494000
44	1	0	-1.613772	-2.196965	-1.512519
45	6	0	-3.135714	-2.752692	-2.906999
46	1	0	-2.63/899	-3.684021	-3.189013
4 /	1	0	-4.213665	-2.925886	-2.953199
48	1 6	0	-2.894//8	-1.990817	-3.660022
49 50	1	0	-2.999133	-3.420007	-0.439971
51	1	0	-2 675372	-3 126302	0.541467
52	1	0	-4.066046	-3.650081	-0.413171
53	6	0	-2.397889	2.692386	-0.293939
54	1	0	-1.353970	2.414165	-0.099573
55	6	0	-2.409711	3.531671	-1.587760
56	1	0	-2.030113	2.969446	-2.446154
57	1	0	-3.427297	3.848972	-1.830340
58	1	0	-1.795480	4.428207	-1.470766
59	6	0	-2.850952	3.532011	0.910943
60	1	0	-3.845326	3.958351	0.759815
61	1	0	-2.870273	2.939149	1.828048
62	1	0	-2.162976	4.367616	1.060553
63	14	0	0.142414	0.178470	0.394877
64	6	U	0.633123	0.042801	4.358456
60	6	U	-1./41903 0.752062	-0.049488	3 000000
00	0	U	0./32902	-1.29/002	2.392390

67	1	0	1.506381	0.594522	4.688036
68	6	0	-1.622499	-1.390232	3.554156
69	1	0	-2.714991	0.429072	3.913828
70	6	0	-0.374777	-2.014832	3.589424
71	1	0	1.719043	-1.787867	4.041448
72	1	0	-2.503585	-1.952725	3.265301
73	1	0	-0.285393	-3.063602	3.327968
74	6	0	-0.614278	0.666820	4.323144
75	1	0	-0.709765	1.703471	4.626494
76	6	0	0.857548	0.087960	-2.255750
77	1	0	1.194044	-0.809468	-2.795934
78	1	0	1.248310	0.943059	-2.827984

Dipp G_{e}^{N} G_{e}^{H} D_{ipp} **166**: (B3LYP/6-311+G(d,p)), C_s, E^{tot} = -3199.65545 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	7	0	0.024543	0.292839	1.292853
2	7	0	0.024543	0.292839	-1.292853
3 4	6	0	-0.240867	1.431430	-0 720171
5	1	0	-0.465554	2.321655	1.299102
6	1	0	-0.465554	2.321655	-1.299102
7	6	0	0.012804	0.151320	2.738912
8	6	0	1.256172	0.068839	3.397316
10	6	0	0.028891	-0.151262	5.482049
11	6	0	-1.178827	-0.077579	4.800282
12	6	0	-1.224781	0.074468	3.411377
13	1	0	2.163724	-0.131093	5.331280
14	1	0	-2.106335	-0.142128	5.355969
16	6	0	0.012804	0.151320	-2.738912
17	6	0	-1.224781	0.074468	-3.411377
18	6	0	-1.178827	-0.077579	-4.800282
19	6	0	0.028891	-0.151262	-5.482049
20	6	0	1.256172	0.068839	-3.397316
22	1	0	-2.106335	-0.142128	-5.355969
23	1	0	0.034642	-0.266158	-6.559585
24	1	0	2.163724	-0.131093	-5.331280
25 26	6	0	2.595341 2.401503	0.181459	2.6/5016
27	6	0	-2.579792	0.130356	2.709957
28	1	0	-2.414501	0.160431	1.629447
29	6	0	3.465772	-1.071292	2.885528
30 31	1	0	2.950/18	-1.979467	2.561628
32	1	0	3.736445	-1.200794	3.936252
33	6	0	3.350470	1.458820	3.093082
34	1	0	4.277300	1.553798	2.521424
35	1	0	2.751151	2.356850	2.920544
30	6	0	-3.357841	1.406136	3.088371
38	1	0	-2.788136	2.312579	2.864876
39	1	0	-4.301222	1.452969	2.538241
40	1	0	-3.595203	1.424112	4.154908
41	0	0	-2 884287	-2.040099	2.989080
43	1	0	-3.675870	-1.217913	4.047215
44	1	0	-4.354106	-1.093807	2.425253
45	6	0	2.595341	0.181459	-2.675016
46 47	1	0	2.401503	U.261521 1 458820	-1.602/89
48	1	0	4.277300	1.553798	-2.521424
49	1	0	3.616032	1.437128	-4.152954
50	1	0	2.751151	2.356850	-2.920544
51 52	6	0	3.465/72	-1.071292	-2.885528
53	1	0	2.950718	-1.979467	-2.561628
54	1	0	3.736445	-1.200794	-3.936252
55	6	0	-2.579792	0.130356	-2.709957
56	1	0	-2.414501	0.160431	-1.629447
58	1	0	-2.788136	2.312579	-2.864876
59	1	0	-3.595203	1.424112	-4.154908
60	1	0	-4.301222	1.452969	-2.538241
61	6	0	-3.418431	-1.131617	-2.989080
63	⊥ 1	0	-2.884287	-1.21/913 -2.040099	-4.04/215
64	1	õ	-4.354106	-1.093807	-2.425253
65	1	0	1.522368	-1.525964	0.00000
66	32	0	-0.018835	-1.241689	0.00000

Dipp N H + Ge Dipp OEt₂ **166(Et₂O)**: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -3433.39866 a.u.

Contor	Dtomic	Δtomic	Coord	linatos (Anar	strome)
Number	Number	Type	X	Y	Z
1	7	0	0.984292	0.373330	-0.950234
2	7	0	-1.593711	0.391851	-0.662608
3	6	0	0.279163	0.546256	-2.033616
4	6	0	-1.147453	0.529526	-1.880621
5	1	0	0./530/0	0.669128	-3.002548
7	I 6	0	2 437702	0.399030	-1 012713
8	6	0	3.133839	-0.800720	-1.285167
9	6	0	4.529927	-0.723986	-1.324898
10	6	0	5.195501	0.475478	-1.110129
11	6	0	4.476316	1.635634	-0.848726
12	6	0	3.080690	1.626583	-0.787880
13	1	0	5.103298	-1.619089	-1.533406
14	1	0	6.278018	0.507951	-1.150431
15	Ĺ	0	2.008089	2.566119	-0.692611
17	6	0	-3 632145	1 313997	-0.398488
18	6	0	-4.996670	1.183099	0.585033
19	6	0	-5.709193	0.064347	0.172052
20	6	0	-5.067699	-0.953120	-0.522282
21	6	0	-3.705649	-0.883356	-0.827844
22	1	0	-5.511009	1.973507	1.118143
23	1	0	-6.767509	-0.014916	0.391538
24	1	0	-5.635202	-1.822883	-0.830430
25	6	0	2.447372	-2.136018	-1.557515
26	Ĺ	0	2 216120	-2.010938	-1.405194
28	1	0	2.310139	2.920117	-0.316223
2.9	6	0	2.910596	-3.229742	-0.577475
30	1	0	2.753734	-2.923414	0.459145
31	1	0	2.351523	-4.152975	-0.751726
32	1	0	3.971152	-3.460290	-0.704623
33	6	0	2.650571	-2.580037	-3.019831
34	1	0	2.114243	-3.513215	-3.211733
35	1	0	2.287726	-1.828288	-3.726369
36	Ĺ	0	3./0/153	-2./5356/	-3.2389/5
38	1	0	1 876887	3 256357	-2 680336
39	1	0	1.716166	4.699475	-1.668507
40	1	0	3.317674	4.093164	-2.105543
41	6	0	2.858044	3.728811	0.645017
42	1	0	2.875310	3.128688	1.557307
43	1	0	3.871067	4.096413	0.464849
44	1	0	2.224942	4.601550	0.824404
45	6	0	-3.052519	-2.051096	-1.564091
40	1 6	0	-1.976031	-1.870762	-1.625/44
48	1	0	-3.070980	-2.987102	-3.531453
49	1	0	-4.651545	-2.391916	-3.018982
50	1	0	-3.429333	-1.254007	-3.577692
51	6	0	-3.228470	-3.377327	-0.799290
52	1	0	-2.683512	-4.178261	-1.305828
53	1	0	-2.850997	-3.301977	0.223281
54	1	0	-4.277728	-3.677050	-0.747104
55	6	0	-2.898851	2.5/9555	0.752352
50 57	L E	0	-1.003214 -3 162652	∠.48/498 3 825020	0.431/65 0.040061
58	0 1	0	-3,424024	3.718107	-1.047201
59	1	0	-4.503241	4.010058	0.318438
60	1	õ	-2.884321	4.711102	0.314907
61	6	0	-2.922056	2.756762	2.281654
62	1	0	-3.940063	2.894919	2.654715
63	1	0	-2.495905	1.890320	2.794305
64	1	0	-2.343590	3.638826	2.568817
65	1	U	-0.010588	1.074805	1.439298
60 67	х б	0	1.433USL 2.485331	-1.410182 -0.984553	2.708312
U /	0	0	- · · · · · · · · · · · · · · · · · · ·		

68	1	0	2.109438	-0.915180	4.612510
69	1	0	3.286818	-1.735127	3.570969
70	6	0	3.004140	0.362223	3.123731
71	1	0	3.821097	0.686403	3.773246
72	1	0	3.384644	0.306436	2.101173
73	1	0	2.218163	1.120047	3.169805
74	6	0	0.925808	-2.725244	3.008632
75	1	0	0.365871	-3.026583	2.119872
76	1	0	1.769626	-3.418285	3.119150
77	6	0	0.023817	-2.772061	4.236435
78	1	0	-0.385331	-3.779786	4.351125
79	1	0	0.561253	-2.531371	5.155796
80	1	0	-0.812216	-2.075609	4.133091
81	32	0	-0.128814	-0.246456	0.614360

Dipp C₆H₆ **166(C₆H₆)**: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -3431.97187 a.u.

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	туре	X	¥ 	Z
1	7	0	-1.278867	0.535424	-0.832597
2	7	0	1.300738	0.527782	-0.823958
3	6	0	-0.699402	1.287443	-1.732355
4	6 1	0	-1 276085	1 900779	-2 416813
6	1	0	1.317027	1.892126	-2.409007
7	6	0	-2.725050	0.506432	-0.701272
8	6	0	-3.382200	1.577389	-0.060551
9	6	0	-4.772679	1.487675	0.055274
10	6	0	-3.4/23/3	-0 641692	-0.440816
12	6	0	-3.404293	-0.618553	-1.210752
13	1	0	-5.316118	2.288566	0.541997
14	1	0	-6.550949	0.354324	-0.341321
15	1 6	0	-5.353008	-1.482448	-1.460369
17	6	0	3.420199	-0.639421	-1.195327
18	6	0	4.808641	-0.673159	-1.044328
19	6	0	5.490906	0.355953	-0.407645
20	6	0	4.795727	1.450288	0.090247
21	6	0	3.406629	1.550398 -1.516000	-0.033450
2.3	1	0	6.568333	0.306553	-0.301856
24	1	0	5.341817	2.244648	0.584645
25	6	0	-2.664172	2.798331	0.508994
26	1	0	-1.586930	2.663152	0.381405
27	6	0	-2.6995/6	-1.753449	-1.94/618
29	6	0	-2.911657	2.951323	2.022045
30	1	0	-2.614684	2.052575	2.568209
31	1	0	-2.336023	3.793655	2.414539
32	1	0	-3.964997	3.142699	2.240131
33 34	6	0	-3.054/35 -2 495905	4.083/18 4.938721	-0.246/86
35	1	0	-2.850420	4.003427	-1.318038
36	1	0	-4.118983	4.303461	-0.132360
37	6	0	-3.070119	-1.754457	-3.444244
38	1	0	-2.840243	-0.796271	-3.918268
39 40	⊥ 1	0	-2.516611	-2.5355559	-3.588939
41	6	0	-2.982671	-3.123734	-1.305962
42	1	0	-2.701511	-3.135634	-0.250023
43	1	0	-4.039784	-3.391777	-1.374410
44	1	0	-2.413476	-3.903616	-1.818639
46	1	0	1.616293	2.647271	0.400001
47	6	0	3.101148	4.060949	-0.202239
48	1	0	2.544495	4.916915	0.188209
49	1	0	4.165687	4.272217	-0.075174
50	1	0	2.907198	3.990426 2 910324	-1.276098
52	1	0	2.356347	3.755025	2.449951
53	1	0	2.616052	2.009888	2.591145
54	1	0	3.980397	3.088943	2.285807
55	6	0	2.711662	-1.766660	-1.940220
50 57	⊥ 6	0	1.035240	-1.590295	-1.882674
58	ĩ	õ	2.876119	-0.807323	-3.907940
59	1	0	4.159192	-1.970293	-3.570845
60	1	0	2.537321	-2.543536	-3.967450
61	б 1	0	2.978264	-3.140309	-1.298602
0∠ 63	⊥ 1	0	2.689385	-3.151221	-0.244702
64	1	õ	2.406260	-3.914648	-1.816530
65	32	0	0.004719	-0.105122	0.559647
66	1	0	0.003900	-1.623583	0.199522
6/	6	U	-1.4.3.3905	-2.142031	3.065435

68 6 69 6 70 1	0	-0.936455 -2.504509	-3.509151 -1.621504 -2.890308	2.669975 3.732007 2.979144
73 6 74 1 75 1 76 1 77 6 78 1	0 0 0 0 0	0.443169 -1.620290 2.393373 0.828703 -0.552884	-1.444622 -0.900559 -2.261896 -0.586125 -3.685989	2.274207 3.867310 4.166026 3.459121 4.405872 2.535105 2.033475

Dipp H₂C_N Ge: Dipp **141**: (B3LYP/6-311+G(d,p)), C₁, E^{tot} = -3199.68096 a.u.

Center Number	Atomic Number	Atomic Type	Coo: X	rdinates (Ano Y	gstroms) Z
1	7	0	-1.318583	-0.000005	0.346021
2	1	0	L.250292	0.001013	0.255/89
3	6	0	-0./8/110	0.003260	1.512163
4	1 G	0	-1.399277	0.005425	2.413339
5	6	0	-2./38/29	-0.000433	0.141023
7	6	0	-3.414303	-1 206383	-0 176597
, 8	6	0	-5.485061	-0.001970	-0.265438
9	6	0	-4.800224	1.203196	-0.171453
10	6	0	-3.416710	1.238274	0.025009
11	1	0	-5.345446	-2.136888	-0.262560
12	1	0	-6.558225	-0.002588	-0.415617
13	1	0	-5.349150	2.133126	-0.253626
14	6	0	2.696388	0.001139	0.129937
15	6	0	3.378195	1.236077	0.063716
10	6	0	4.767457	1.204098	-0.086287
10	6	0	5.45/52/	1 201012	-0.160333
19	6	0	3 378772	-1 233770	0.069018
20	1	0	5.317967	2.135159	-0.148105
21	1	0	6.534830	0.001134	-0.278685
22	1	0	5.318930	-2.132881	-0.139087
23	6	0	-2.688689	-2.578814	0.120549
24	1	0	-1.610829	-2.390883	0.073762
25	6	0	-2.693534	2.578486	0.129962
26	1	0	-1.615234	2.392704	0.086592
27	6	0	-3.023822	-3.517732	-1.052666
28	1	0	-2.827566	-3.043319	-2.017383
29	1	0	-2.418705	-4.425/23	-0.990224
30	1	0	-4.0/1936	-3.82484/	-1.039139
32	1	0	-2.970177	-4 200833	1 551290
33	1	0	-2.688417	-2.628572	2.318491
34	1	0	-4.033009	-3.494937	1.579850
35	6	0	-2.981064	3.261323	1.482118
36	1	0	-2.701361	2.626438	2.327890
37	1	0	-2.426440	4.199742	1.562961
38	1	0	-4.044596	3.491433	1.585208
39	6	0	-3.026615	3.517654	-1.043720
40	1	0	-2.825305	3.044686	-2.008111
41	1	0	-4.0/5651	3.821/54	-1.034026
42	1	0	-2.424232	-2 582212	-0.978079
44	1	0	1 613625	-2 399549	0 368874
45	6	0	3.223214	-3.475099	1.266406
46	1	0	2.635765	-4.393782	1.344873
47	1	0	4.259258	-3.765745	1.077417
48	1	0	3.194531	-2.968601	2.234889
49	6	0	2.716922	-3.311960	-1.216041
50	1	0	2.166864	-4.255667	-1.165909
51	1	0	2.283026	-2.706999	-2.017860
52	1	0	3.746267	-3.541653	-1.502649
53	6	0	2.000348	2.384366	0.129749
55	1	0	3 220280	3 /81270	1 253271
56	1	0	3 190245	2 977947	2 223374
57	1	0	4.256583	3.771393	1.064872
58	1	0	2.632599	4.400133	1.327867
59	6	0	2.717700	3.309765	-1.229412
60	1	0	3.747381	3.538913	-1.515234
61	1	0	2.285220	2.701936	-2.029811
62	1	0	2.167211	4.253419	-1.183267
63	6	0	0.692669	0.004046	1.595348
64	1	0	1.022210	-0.869804	2.179038
65	1	0	1.021602	0.880923	2.174811
00	32	0	0.101940	-0.00301/	-1.1/1813

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
		туре	~		
1	7	0	-0.954581	0.565003	-0.905983
2	7	0	1.577282	0.240558	-0.529407
3 4	6	0	-0.2/133/	0.690291	-1.982965
5	6	0	-2.399231	0.709342	-0.894215
6	6	0	-2.931549	1.900629	-0.361797
7	6	0	-4.320980	2.035206	-0.363744
8	6	0	-5.140706	1.025610	-0.856552
10	6	0	-4.584878	-0.146011	-1.351267
11	1	0	-4.770325	2.941562	0.021992
12	1	0	-6.216908	1.152778	-0.850158
13	1	0	-5.237431	-0.927349	-1.721595
14	6	0	2.996756	0.152541	-0.242368
15	6	0	3.681205	-1.060342	-0.483391
16 17	6	0	5.046620 5.714982	-1.109689	-0.190859
18	6	0	5.027368	1.176819	0.550933
19	6	0	3.663673	1.291835	0.264301
20	1	0	5.595966	-2.027034	-0.365605
21	1	0	6.772922	-0.072265	0.553470
22	1	0	5.561291	2.030644	0.950787
23	6	0	-2.045696	3.039/42	0.13541/
24	6	0	-2.641042	-1.657038	-1,916286
26	1	0	-1.558256	-1.663014	-1.766108
27	6	0	-2.561135	3.688415	1.430729
28	1	0	-2.729791	2.945837	2.213960
29	1	0	-1.831230	4.413141	1.799982
30	1	0	-3.496874	4.228924	1.270873
32	1	0	-1 178098	4.090201	-0.623113
33	1	0	-1.417716	3.666335	-1.877838
34	1	0	-2.800161	4.554841	-1.241139
35	6	0	-2.894523	-1.802154	-3.429726
36	1	0	-2.471547	-0.968028	-3.996953
3/	1	0	-2.449284	-2./2/818	-3.803678
39	6	0	-3.197418	-2.867600	-1.142755
40	1	0	-2.999154	-2.775659	-0.072569
41	1	0	-4.275954	-2.973115	-1.282333
42	1	0	-2.730222	-3.788460	-1.502268
43	6	0	2.971109	2.630667	0.506696
44	1 6	0	1.956513	2.565900	0.104309
46	1	0	3.098368	4.712077	-0.113006
47	1	0	4.673273	3.970391	0.154277
48	1	0	3.760811	3.582090	-1.304269
49	6	0	2.848823	2.938697	2.011957
50	1	0	2.316999	3.881091	2.170070
51	1	0	2.310419	2.149868	2.545967
53	6	0	3.000299	-2.298295	-1.059166
54	1	0	1.922977	-2.112202	-1.077128
55	6	0	3.457116	-2.566247	-2.508161
56	1	0	3.294000	-1.701497	-3.158117
57	1	0	4.524150	-2.800313	-2.545685
58 59	1 6	0	2.915314 3 227028	-3.416854 -3.546854	-2.930926 -0 186281
60	1	0	4.274684	-3.849774	-0.179494
61	1	Ő	2.922261	-3.373412	0.848656
62	1	0	2.645114	-4.388495	-0.574424
63	6	0	1.198172	0.529003	-1.899530
64	1	0	1.675681	1.451036	-2.267858
65 66	1	U	1.515539 -1 710204	-0.260197	-2.598139
67	6	0	-1.367957	-3.621801	2.569879
68	1	Ũ	-1.127101	-3.828583	3.621731

69	1	0	-2.227884	-4.251170	2.299671
70	6	0	-0.177034	-3.932985	1.685225
71	1	0	0.099509	-4.985844	1.780877
72	1	0	-0.407992	-3.739172	0.634227
73	1	0	0.687330	-3.330660	1.975160
74	6	0	-2.792310	-1.867751	3.287697
75	1	0	-3.681148	-2.469809	3.051292
76	1	0	-2.514718	-2.085174	4.328253
77	6	0	-3.087947	-0.390648	3.115161
78	1	0	-3.911750	-0.097128	3.770724
79	1	0	-2.215599	0.212888	3.379096
80	1	0	-3.377879	-0.165814	2.085921
81	32	0	0.255683	0.129663	0.752959

Contor		7+omia	Coord	lipatos (Apg	
Number	Number	Type	X	Y	5 CI OIIIS) 7
1	7	0	1.309096	0.019946	-0.881908
2	7	0	-1.262387	0.074120	-1.045048
3	6	0	-0.698473	-0.105101	-2.181516
4	1	0	-1.283698	-0.225117	-3.092820
5	6	0	2.750965	-0.004828	-0.731683
6	6	0	3.40/034	-1.24/526	-0.584/86
/	6	0	4./94908	-1.238165	-0.421186
9	6	0	4 849837	1 162013	-0.403299
10	6	0	3.463848	1.215046	-0.735650
11	1	0	5.323727	-2.176691	-0.304124
12	1	0	6.587241	-0.065459	-0.271242
13	1	0	5.420743	2.082854	-0.549718
14	6	0	-2.702711	0.079616	-0.886140
15	6	0	-3.328445	1.310308	-0.604649
16	6	0	-4.715999	1.301931	-0.450136
17	6	0	-5.444576	0.122385	-0.552605
18	6	0	-4.795740	-1.078158	-0.806652
19	6	0	-3.408250	-1.13/363	-0.9/5804
20	1	0	-5.230199	2.230875	-0.232432
22	1	0	-5 376278	-1 990377	-0.432100
23	6	0	2 671187	-2 584776	-0 603095
24	1	Ő	1.603342	-2.382120	-0.719798
25	6	0	2.788655	2.571855	-0.915417
26	1	0	1.738915	2.396587	-1.165967
27	6	0	2.837109	-3.347831	0.724677
28	1	0	2.494544	-2.749697	1.572889
29	1	0	2.259479	-4.276197	0.705856
30	1	0	3.881399	-3.613459	0.906347
31	6	0	3.108333	-3.457918	-1.795868
32	1	0	2.516327	-4.3/0332	-2 749514
37	1	0	1 159265	-2.934404	-2.740314
35	6	0	3.399124	3.376240	-2.078847
36	1	Ő	3.384239	2.808309	-3.012849
37	1	0	2.837237	4.301211	-2.234114
38	1	0	4.436494	3.654538	-1.878453
39	6	0	2.815503	3.389753	0.390768
40	1	0	2.339629	2.850786	1.215463
41	1	0	3.841480	3.612453	0.695239
42		0	2.293412	4.341641	0.259322
43	0	0	-2.747221	-2.490720	-1 240087
45	- 6	0	-3 150673	-3 068022	-2 599742
46	1	0	-2.634899	-4.014263	-2.783102
47	1	0	-4.225249	-3.261386	-2.646199
48	1	0	-2.907503	-2.384095	-3.417855
49	6	0	-3.049797	-3.493424	-0.098586
50	1	0	-2.504185	-4.425614	-0.266381
51	1	0	-2.754713	-3.096565	0.875955
52	1	0	-4.113013	-3.739671	-0.051058
53	6 1	0	-2.558599	2.626013	-0.533822
55	1	0	-2 728045	2.394003	-1 837667
56	1	0	-2 408025	2 859907	-2 713432
57	1	0	-3.775178	3.705797	-1.990114
58	1	0	-2.141393	4.353220	-1.799442
59	6	0	-2.935344	3.471759	0.694255
60	1	0	-3.965304	3.831424	0.639297
61	1	0	-2.826341	2.902452	1.620448
62	1	0	-2.288845	4.350819	0.756005
63	32	0	0.135689	0.266360	0.520890
64	6	U	U.816998	0.462928	4.210663
60	6	0	U 080530	-0 886021	3.090443 3 293729
67	1	0	1.678140	1.064892	4,478002
0,	-	0	T. 0, 01 10	1.001002	1.1,0002

68	6	0	-1.407510	-1.099401	3.573054
69	1	0	-2.562688	0.685591	3.910345
70	6	0	-0.131721	-1.667900	3.573961
71	1	0	1.968634	-1.331652	3.919133
72	1	0	-2.274666	-1.711753	3.352022
73	1	0	-0.007591	-2.722945	3.355690
74	6	0	-0.458096	1.030523	4.208702
75	1	0	-0.586308	2.074007	4.473668
76	6	0	0.782294	-0.144984	-2.223320
77	1	0	1.104863	-1.092781	-2.681571
78	1	0	1.142300	0.642472	-2.904741

54: (B3LYP/6-311+G(d,p)), C_1 , $E^{tot} = -3199.30892$ a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	7	0	1.260618	0.000003	0.272882
2	7	0	-1.260619	0.00004	0.272877
3	6	0	0.680641	0.000010	1.526113
4	6	0	-0.68064/	0.000012	1.52611U 2.413527
5	1	0	-1.299007	0.000013	2.413527
7	6	0	2.690990	-0.000001	0.142028
8	6	0	3.381785	1.229947	0.072371
9	6	0	4.770454	1.201602	-0.088224
10	6	0	5.462788	-0.000011	-0.170960
12	6	0	4.770447 3.381778	-1.201620	-0.088209
13	1	0	5.318301	2.135371	-0.149334
14	1	0	6.539945	-0.000015	-0.297224
15	1	0	5.318289	-2.135392	-0.149309
16	6	0	-2.690991	0.000003	0.142018
18	6	0	-3.381/84	-1 201607	-0.088225
19	6	0	-5.462788	0.000005	-0.170980
20	6	0	-4.770448	1.201615	-0.088244
21	6	0	-3.381780	1.229955	0.072357
22	1	0	-5.318298	-2.135377	-0.149325
23	1	0	-6.539944 -5 318292	2 135386	-0.29/248
25	6	0	2.665348	2.573147	0.163417
26	1	0	1.607361	2.371073	0.336784
27	6	0	2.665333	-2.573149	0.163447
28	1	0	1.607346	-2.371066	0.336806
29	6	0	2.773952	3.362647	-1.154792
31	1	0	2.212216	4.299410	-1.087455
32	1	0	3.813471	3.613614	-1.386050
33	6	0	3.169101	3.413348	1.352044
34	1	0	2.587626	4.336298	1.437064
35	1	0	3.074090	2.865753	2.293217
30 37	1	0	4.219709 3 169075	-3 413336	1 352088
38	1	0	3.074061	-2.865728	2.293253
39	1	0	2.587594	-4.336282	1.437117
40	1	0	4.219682	-3.694394	1.233680
41	6	0	2.773939	-3.362668	-1.154751
42	1	0	2.3/5204	-2./8844/	-1.395052
44	1	0	2.212197	-4.299427	-1.087402
45	6	0	-2.665336	2.573151	0.163402
46	1	0	-1.607350	2.371071	0.336769
47	6	0	-3.169085	3.413356	1.352027
48	1	0	-2.58/605	4.336303	1 233609
50	1	0	-3.074076	2.865762	2.293201
51	6	0	-2.773936	3.362650	-1.154809
52	1	0	-2.212195	4.299410	-1.087472
53	1	0	-2.375197	2.788416	-1.995099
54	L	0	-3.813453	3.613622 -2 573145	-1.386067
56	1	0	-1.607359	-2.371068	0.336809
57	6	õ	-3.169101	-3.413329	1.352079
58	1	0	-3.074092	-2.865721	2.293245
59	1	0	-4.219709	-3.694382	1.233662
60 C1	1	0	-2.587626	-4.336278	1.437113
0⊥ 62	6 1	0	-2.1/3945 -3.813462	-3.302004 -3.613635	-1.386013
63	1	õ	-2.375201	-2.788446	-1.995055
64	1	0	-2.212208	-4.299426	-1.087403
65	32	0	0.000002	-0.000006	-1.157092

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.207485	0.697142	0.000000
2	6	0	0.00000	1.394284	0.00000
3	6	0	-1.207485	0.697142	0.00000
4	6	0	-1.207485	-0.697142	0.00000
5	6	0	0.00000	-1.394284	0.00000
6	6	0	1.207485	-0.697142	0.00000
7	1	0	2.146499	1.239282	0.00000
8	1	0	0.00000	2.478563	0.00000
9	1	0	-2.146499	1.239282	0.00000
10	1	0	-2.146499	-1.239282	0.00000
11	1	0	0.00000	-2.478563	0.00000
12	1	0	2.146499	-1.239282	0.000000

C_6H_6 : (B3LYP/6-311+G(d,p)), D_{6h}, E^{tot} = -232.31124 a.u.

$[H(C_6H_6)]^*$ **158**: (B3LYP/6-311+G(d,p)), C_{2v}, E^{tot} = -232.31124 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.000000	-1.253175	-0.617637
2	6	0	0.00000	-1.239095	0.750929
3	6	0	0.00000	0.00000	1.424029
4	6	0	0.00000	1.239095	0.750929
5	6	0	0.00000	1.253175	-0.617637
6	1	0	0.00000	-2.189347	-1.166078
7	1	0	0.00000	-2.160431	1.319884
8	1	0	0.00000	0.00000	2.510009
9	1	0	0.00000	2.160431	1.319884
10	1	0	0.00000	2.189347	-1.166078
11	6	0	0.00000	0.00000	-1.384445
12	1	0	0.849300	0.00000	-2.095407
13	1	0	-0.849300	0.000000	-2.095407

Abschnitt 5.2

 $\begin{array}{c} {}^{\text{PEt}_{3}}_{\text{Cp}_{2}\text{Ti}} \overset{\text{R}}{\underset{\text{Si}^{-\text{Si}}}{\overset{\text{Si}}{\underset{\text{Me}_{2}}}}}_{\text{Ne}_{2}} \\ {}^{\text{R}_{-}\text{Si}}_{\text{Ne}_{3}} \\ {}^{\text{R}_{-}\text{Si}}_{\text{Me}_{2}} \\ {}^{\text{R}_{-}\text{Si}}_{\text{Me}_{3}} \\ \mathbf{38j} (M06\text{-}2X/A), C_{1}, E^{\text{tot}} = -4267.64304 \text{ a.u.} \end{array}$

$ \begin{array}{c c} \text{Lenter} & \text{Atomic} & \text{Coordinates} & (\text{Coordinates}) \\ \hline \text{Number} & \text{Number} & \text{Type} & X & Y & Z \\ \hline \\ 1 & 2 & 0 & -2.233843 & -1.024183 & -1.175394 \\ 2 & 15 & 0 & -3.391531 & -0.829878 & 1.154657 \\ 3 & 14 & 0 & 2.576442 & 2.096423 & 1.186710 \\ 5 & 14 & 0 & 2.576442 & 2.096423 & 1.186710 \\ 5 & 14 & 0 & 1.030168 & -1.403301 & 0.164330 \\ 7 & 14 & 0 & 1.030168 & -1.403301 & 0.164330 \\ 7 & 14 & 0 & 2.72974 & 3.687100 & 1.118935 \\ 9 & 14 & 0 & -0.729074 & 3.687100 & 1.118935 \\ 9 & 14 & 0 & 2.729769 & -2.832982 & -1.543083 \\ 10 & 14 & 0 & 2.729769 & -2.832982 & -1.543083 \\ 10 & 14 & 0 & -2.660612 & 2.156487 \\ 11 & 6 & 0 & -3.220383 & -3.15209 & -1.645577 \\ 12 & 1 & 0 & -4.284641 & -3.245722 & -1.823577 \\ 13 & 6 & 0 & -2.69945 & -3.300266 & -0.401483 \\ 14 & 1 & 0 & -3.048622 & -3.570830 & -0.531877 \\ 15 & 6 & 0 & -0.494622 & -3.570830 & -0.531877 \\ 15 & 6 & 0 & -0.970343 & -2.837773 & -1.971273 \\ 18 & 1 & 0 & -0.01805 & -2.787243 & -3.674177 \\ 21 & 6 & 0 & -2.225412 & -2.891768 & -2.6474751 \\ 19 & 6 & 0 & -2.2254241 & -0.52787 & -4.203285 \\ 23 & 6 & 0 & -2.400404 & -0.038658 & -3.310317 \\ 22 & 1 & 0 & -2.2604044 & -0.038658 & -3.310317 \\ 22 & 1 & 0 & -2.420355 & -2.748233 & -3.674177 \\ 22 & 1 & 0 & -2.225412 & -0.85572 & -2.529119 \\ 24 & 1 & 0 & -0.88633 & 1.227377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.439444 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.43944 \\ 26 & 1 & 0 & -2.400474 & 1.272377 & -1.43944 \\ 33 & 1 & 0 & -4.60122 & 0.73266 & -3.302506 \\ 31 & 0 & -5.074718 & -1.611242 & -3.03585 \\ 25 & 6 & 0 & -3.61517 & 0.807288 & -1.268608 \\ 34 & 1 & 0 & -3.62263 & -1.774666 & -3.392637 \\ 37 & 1 & 0 & -2.608492 & -1.402792 & -3.63393 \\ 46 & 1 & 0 & -3.62263 & -1.774666 & 3.392607 \\ 57 & 1 & 0 & -2.60333 & -1.666331 & .166633 & .307576 \\ 58 & 1 & 0 & -7.$	~ .					
Name 1 2 0 -2.23383 -1.024183 -1.175394 1 22 0 -2.233843 -1.024183 -1.175394 2 15 0 -3.391531 -0.829878 1.184657 3 14 0 0.586224 2.133884 -0.096117 4 14 0 3.633951 0.207382 0.325189 6 14 0 1.038579 3.174678 -2.179765 8 14 0 -2.720769 -2.832982 -1.53083 10 14 0 2.720769 -2.832982 -1.83527 13 6 0 -3.220383 -3.158209 -1.645877 14 1 0 -3.046622 -3.570830 0.531877 15 6 0 -1.187467 -3.02628 -0.587762 16 1 0 -0.18076 -2.670123 -2.44752 16 0 -2.20341 -0.586572 -2.259919	Center	Atomic	Atomic	Coord	unates (Ang v	stroms) 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					±	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	22	0	-2.233843	-1.024183	-1.175394
3 14 0 0.586224 2.13884 -0.096117 5 14 0 3.633951 0.207382 0.325189 6 14 0 1.038579 3.174678 -2.179765 8 14 0 -0.729074 -2.670769 -2.832982 -1.533083 10 14 0 2.091440 -2.660612 2.164897 11 6 0 -3.22033 -3.158209 -1.645577 12 1 0 -4.284641 -3.245722 -1.823527 13 6 0 -2.569945 -3.309026 -0.41483 14 1 0 -3.046622 -3.145677 0.175988 16 1 0 -0.618076 -2.670123 -2.447631 19 6 -2.223412 -0.528284 -2.617423 21 6 -2.600404 -0.038688 -3.310317 12 6 -2.426390 1.967214 -0.664040 23	2	15	0	-3.391531	-0.829878	1.154657
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	14	0	0.586224	2.133884	-0.096117
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	14	0	2.576442	2.096423	1.186710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	14	0	3.633951	0.207382	0.325189
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	14	0	1.930168	-1.403301	0.164330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7	14	0	1.038579	3.174678	-2.179765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	14	0	-0.729074	3.68/100	1.118935
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	14	0	2.720709	-2.652962	2 156487
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6	0	-3 220383	-3 158209	-1 645577
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1	0	-4.284641	-3.245722	-1.823527
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6	0	-2.569945	-3.309026	-0.401483
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1	0	-3.048622	-3.570830	0.531877
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	-1.187467	-3.092628	-0.587862
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1	0	-0.424362	-3.145677	0.175998
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	6	0	-0.970343	-2.837773	-1.971273
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1	0	-0.018076	-2.670123	-2.447631
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	-2.225412	-2.891768	-2.617629
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-2.400335	-2.748233	-3.674177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	0	-2.600404	-0.038658	-3.310317
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22		0	-2.232441	-0.524/8/	-4.203285
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	0	0	-1.8/4219	1 250320	-2.529019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	-2 700474	1 272377	-1 439444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	-2.424590	1.967214	-0.660400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	6	0	-3.946338	0.607228	-1.581916
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	0	-4.810232	0.721195	-0.944815
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	6	0	-3.879382	-0.211245	-2.725147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	-4.658466	-0.872902	-3.082506
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	6	0	-5.074718	-1.611242	1.353836
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	-4.932849	-2.689608	1.213984
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1	0	-5.400192	-1.473564	2.391584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	6	0	-6.148390	-1.108960	0.392255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1	0	-6.33//6L	-0.03/648	0.526954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	-5 85/170	-1 273334	-0 6/9321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	6	0	-3.681517	0.897788	1.760303
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	0	-2.684051	1.350299	1.819838
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	-4.209003	1.440666	0.969443
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	6	0	-4.430942	1.050227	3.082598
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	-5.465469	0.702306	3.000198
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	-4.460481	2.103232	3.380400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	-3.952271	0.491752	3.893244
4610 -3.362263 $-1.7/4666$ 3.398207 47 10 -2.266329 -2.620694 2.314896 48 60 -1.408717 -0.867730 3.236889 49 10 -0.636877 -0.673076 2.483226 50 10 -0.958101 -1.456984 4.042147 51 10 -1.719700 0.092430 3.661543 52 60 2.130204 1.932043 3.027570 53 10 3.012648 1.668636 3.621696 54 10 1.369053 1.161669 3.187870 55 10 1.738129 2.880205 3.412147 56 60 3.265031 4.544946 1.219636 58 10 4.267655 3.625512 0.092160 59 10 4.531169 3.471721 1.834948 60 60 4.198221 0.751002 -1.413306 61 10 4.377042 1.609649 -1.342379 62 10 3.35842 1.049645 -2.019925 63 10 4.723883 -0.044732 -1.950988 64 60 5.189380 -0.330593 1.282084	45	6	0	-2.588831	-1.624079	2.635393
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	-3.362263	-1.774666	3.398207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 /	1 C	0	-2.200329	-2.620694	2.314896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	-0 636877	-0.673076	2 483226
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0	-0 958101	-1 456984	4 042147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	0	-1.719700	0.092430	3.661543
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	6	0	2.130204	1.932043	3.027570
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	1	0	3.012648	1.668636	3.621696
55 1 0 1.738129 2.880205 3.412147 56 6 0 3.762344 3.583164 1.060774 57 1 0 3.265031 4.544946 1.219636 58 1 0 4.267655 3.625512 0.092160 59 1 0 4.531169 3.471721 1.834948 60 6 0 4.198221 0.751002 -1.413306 61 1 0 4.877042 1.609649 -1.342379 62 1 0 3.35842 1.049645 -2.019925 63 1 0 4.723883 -0.044732 -1.950988 64 6 0 5.189380 -0.330593 1.282084	54	1	0	1.369053	1.161669	3.187870
56 6 0 3.762344 3.583164 1.060774 57 1 0 3.265031 4.544946 1.219636 58 1 0 4.267655 3.625512 0.092160 59 1 0 4.531169 3.471721 1.834948 60 6 0 4.198221 0.751002 -1.413306 61 1 0 4.877042 1.609649 -1.342379 62 1 0 3.35842 1.049645 -2.019925 63 1 0 4.723883 -0.044732 -1.950988 64 6 0 5.189380 -0.330593 1.282084	55	1	0	1.738129	2.880205	3.412147
57 1 0 3.265031 4.544946 1.219636 58 1 0 4.267655 3.625512 0.092160 59 1 0 4.531169 3.471721 1.834948 60 6 0 4.198221 0.751002 -1.413306 61 1 0 4.877042 1.609649 -1.342379 62 1 0 3.335842 1.049645 -2.019925 63 1 0 4.723883 -0.044732 -1.950988 64 6 0 5.189380 -0.330593 1.282084	56	6	0	3.762344	3.583164	1.060774
58 1 0 4.267655 3.625512 0.092160 59 1 0 4.531169 3.471721 1.834948 60 6 0 4.198221 0.751002 -1.413306 61 1 0 4.877042 1.609649 -1.342379 62 1 0 3.335842 1.049645 -2.019925 63 1 0 4.723883 -0.044732 -1.950988 64 6 0 5.189380 -0.330593 1.282084	57	1	0	3.265031	4.544946	1.219636
59 1 0 4.531169 3.471721 1.834948 60 6 0 4.198221 0.751002 -1.413306 61 1 0 4.877042 1.609649 -1.342379 62 1 0 3.335842 1.049645 -2.019925 63 1 0 4.723883 -0.044732 -1.950988 64 6 0 5.189380 -0.330593 1.282084	58	1	0	4.267655	3.625512	0.092160
	59	1	0	4.531169	3.471721	1.834948
61 1 0 4.877042 1.609649 -1.342379 62 1 0 3.335842 1.049645 -2.019925 63 1 0 4.723883 -0.044732 -1.950988 64 6 0 5.189380 -0.330593 1.282084	60	6	U	4.198221	0./51002	-1.413306
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60 60	1	U	4.0//U42 3 335010	1.009649	-1.3423/9
64 6 0 5.189380 -0.330593 1.282084	02 63	⊥ 1	0	J.JJJ042 4 723883	-0 044732	-2.019923
	64	6	Ő	5.189380	-0.330593	1.282084
65	1	0	5.666519	-1.195812	0.808979	
-----	----------	---	----------------------	-----------	-----------	
66	1	0	4.968758	-0.591910	2.321850	
67	1	0	5.916685	0.489626	1.291354	
68	6	0	-1.070132	3.137160	2.915148	
69	1	0	-2.117003	3.327882	3.180201	
70	1	0	-0.444429	3.699749	3.615945	
71	1	0	-0.865952	2.074848	3.077618	
72	6	0	-2.412449	4.232098	0.418810	
73	1	0	-2.692037	5.164842	0.924550	
74	1	0	-3.203664	3.504259	0.624614	
75	1	0	-2.400379	4.423423	-0.657516	
76	6	0	0.322867	5.265433	1.212239	
77	1	0	0.642936	5.607200	0.221370	
78	1	0	1.221979	5.097901	1.815097	
79	1	0	-0.246220	6.076925	1.681276	
80	6	0	-0.420203	4.278751	-2.681498	
81	1	0	-0.243738	4.704004	-3.676760	
82	1	0	-0.542153	5.112229	-1.980286	
83	1	0	-1.364126	3.723222	-2.712558	
84	6	0	1.339368	1.910357	-3.580574	
85	1	0	1.284863	0.871084	-3.234815	
86	1	0	2.332609	2.059554	-4.018301	
87	1	0	0.603285	2.035829	-4.383035	
88	6	0	2.568507	4.290426	-2.111603	
89	1	0	3.483186	3.692352	-2.040741	
90	1	0	2.549027	4.978804	-1.260712	
91	1	0	2.626940	4.884732	-3.031569	
92	6	0	2.238072	-1.574745	3.701272	
93	1	0	2.457717	-2.206285	4.570792	
94	1	0	1.322694	-1.016199	3.913736	
95	1	0	3.051174	-0.848611	3.600382	
96	6	0	0.656409	-3.870086	2.432035	
97	1	0	0.591057	-4.611267	1.627652	
98	1	0	-0.306439	-3.353605	2.497764	
99	1	0	0.810928	-4.410209	3.373896	
100	6	0	3,664113	-3.721223	2.116695	
101	1	0	3.763449	-4.254597	3.070074	
102	1	0	4.564663	-3.114616	1.976312	
103	1	0	3.631555	-4.470108	1.318937	
104	6	0	2.005090	-4.590073	-1,484619	
105	1	0	2.433640	-5.183966	-2.301467	
106	1	0	0.916528	-4.630557	-1.570690	
107	1	0	2.284614	-5.079261	-0.544288	
108	- 6	0	4.597067	-3.067380	-1.366012	
109	1	0	4 862696	-3 558959	-0 425290	
110	1	0	5 141405	-2 119384	-1 414567	
111	1	0	4 957593	-3 699929	-2 186825	
112	÷	n	2 455985	-2 056203	-3 256786	
113	1	0	2 644737	-2 792742	-4 046935	
114	± 1	0	2.011/20	-1 229255	-3 396164	
115	⊥ 1	0	J.101409 1 451656	-1 6/5930	-3 201036	
116	⊥ 1 ∕	0	-0 1100/0	-0 180130	-U 3UN803	
±±0	±4		U.119940	0.109130	0.004000	

			~ ~ ~	· · · · · · · · · · · · · · · · · · ·	
Center	Atomic	Atomic	Coord	linates (Ang:	stroms)
Number	Number	Туре	X	Y	Z
		·		0 777110	1 000205
1	40	0	-2.2/8369	-0.///119	-1.060365
2	10	0	-3.430679	-0.3/4986	1.390/23
3	14	0	0.993000	2.095478	-0.118085
4	14	0	3.004/40	1.880206	1.108114
5	14	0	3.8388/9	-0.141362	0.292570
6	14	0	1.955380	-1.546908	0.215/91
/	14	0	1.4/3309	3.016072	-2.244957
8	14	0	-0.128174	3.//5106	1.116335
10	14	0	2.489323	-3.086/85	-1.48/228
10	14	0	1.902/92	-2.784124	2.21/060
10	1	0	-3.379033	-2.936003	-1.244074
12	Ĺ	0	-4.000307	2 160202	-1.100092
1.0	1	0	-2.000427	-3.100203	-0.101/30
14	1	0	-2.900307	-3.343330	-0 662107
16	1	0	-1.303909	-3.143300	-0.002197
17	6	0	-1 431846	-2 930952	-2 064513
18	1	0	-0 587/12	-2 885247	-2 738318
10	6	0	-2 800113	-2 824300	-2 /21830
20	1	0	-3 187352	-2 672351	-3 420714
21	6	0	-2 706055	0 266274	-3 316487
22	1	0	-2 466358	-0 314772	-4 197852
22	6	0	-1 821038	1 139855	-2 639296
24	1	0	-0 804367	1 356799	-2 926621
25	6	0	-2 522001	1 697174	-1 536378
26	1	0	-2 111588	2 400755	-0.826300
20	6	Ő	-3.848878	1.187719	-1.559869
2.8	1	0	-4.651598	1,451844	-0.886182
29	6	0	-3.959374	0.298275	-2.650671
30	1	0	-4.842696	-0.263944	-2.929015
31	6	0	-5.186816	-0.966783	1.571896
32	1	0	-5.146955	-2.056964	1.447590
33	1	0	-5.528224	-0.782439	2.597614
34	6	0	-6.164105	-0.362584	0.566904
35	1	0	-6.247294	0.723021	0.694362
36	1	0	-7.163983	-0.786604	0.696867
37	1	0	-5.842556	-0.557921	-0.461485
38	6	0	-3.509739	1.407099	1.895215
39	1	0	-2.465952	1.743914	1.913571
40	1	0	-3.98/535	1.956164	1.0//216
41	6	0	-4.208848	1./19980	3.215930
42	1	0	-3.269042	1.449115	3.185550
43	1	0	-4.149120	2.792300	3.42/102
44	L C	0	-3.740330	1 175200	2 02/472
45	1	0	-2.750021	-1.121042	3 701929
40	1	0	-2 601990	-2 237908	2 695194
4.8	6	0	-1 429774	-0 578308	3 439242
49	1	Ő	-0.680905	-0.515039	2.640631
50	1	0	-1 024622	-1 200506	4 243631
51	1	0	-1 584367	0 428954	3 839710
52	6	Ő	2.610519	1.781858	2,965627
53	1	0	3.486812	1,440665	3.528961
54	1	0	1.788774	1.085197	3.159683
55	1	0	2.322688	2.763820	3.356820
56	6	0	4.327020	3.240216	0.910077
57	1	0	3.929248	4.248886	1.058528
58	1	0	4.798557	3.209585	-0.075670
59	1	0	5.109001	3.075233	1.661148
60	6	0	4.442874	0.274664	-1.468227
61	1	0	5.214321	1.053569	-1.433372
62	1	0	3.608074	0.652078	-2.070745
63	1	0	4.867068	-0.588538	-1.990997
64	6	0	5.297158	-0.852934	1.285858
65	1	0	5.682470	-1.767139	0.821233
66	1	U	4.99381U	-1.098232	∠.309458

67	1	0	6.117561	-0.128583	1.339631
68	6	0	-0.506867	3.220608	2.903185
69	1	0	-1.518309	3.526345	3.197591
70	1	0	0.194419	3.676130	3.609716
71	1	0	-0.429070	2.135333	3.019510
72	6	0	-1.750731	4.517650	0.452225
73	1	0	-1.937883	5.445045	1.008072
74	1	0	-2.611719	3.862690	0.621675
75	1	0	-1 715253	4 767529	-0 611871
76	÷	0	1 090498	5 226881	1 222447
70	1	0	1 440835	5 543431	0 233219
78	1	0	1 969132	4 947727	1 813641
79	1	0	0 621193	6 091010	1 707344
80	6	0	0.021199	1 261557	-2 7//799
81	1	0	0.131205	4.626640	-3 761071
82	1	0	0.136349	5 129539	-2 075168
02	1	0	-0 974935	3 020132	-2 727601
0.0	L 6	0	1 503/12	1 672933	-2.727001
04	1	0	1 202501	1.072033	2 221420
00	1	0	2 620562	1 506600	-3.221430
00	1	0	2.020303	1 016660	-3.900/34
87	Ĺ	0	0.951582	1.910000	-4.450222
88	0	0	3.111291	3.908239	-2.207708
89	1	0	3.9616/4	3.283618	-2.183/50
90	1	0	3.182/64	4.695424	-1.452366
91	1 C	0	3.208410	4.508046	-3.21/4/6
92	6	0	2.163619	-1./19251	3./6133/
93	1	0	2.219902	-2.3645/3	4.646663
94	1	0	1.340/23	-1.014/06	3.912//3
95	1 C	0	3.090151	-1.138165	3./09861
96	6	0	0.24//99	-3.688080	2.444/38
97	1	0	0.136449	-4.521//4	1./42263
98	1	0	-0.589590	-2.998631	2.286529
99	1	0	0.170820	-4.092684	3.461088
100	6	0	3.272628	-4.095286	2.213474
101	1	0	3.266527	-4.646341	3.161571
102	1	0	4.261883	-3.639930	2.095738
103	1	0	3.138542	-4.821468	1.404445
104	6	0	1.579873	-4.753030	-1.399484
105	1	0	2.117990	-5.479772	-2.020262
106	1	0	0.547143	-4.711419	-1.753981
107	1	0	1.564161	-5.143852	-0.375158
108	6	0	4.326118	-3.548702	-1.342415
109	1	0	4.529520	-4.074709	-0.403832
110	1	0	4.984528	-2.676223	-1.385186
111	1	0	4.602237	-4.217549	-2.166820
112	6	0	2.226477	-2.307152	-3.195469
113	1	0	2.332710	-3.055090	-3.990216
114	1	0	2.969346	-1.520949	-3.370558
115	1	0	1.239042	-1.840667	-3.284036
116	14	0	0.068925	-0.132334	-0.232131

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	72	0	-2.197275	-0.564958	-0.907762
2	10	0	-3.249543	-0.125355	1.5/8214 _0 117088
4	14	0	3.379255	1.719638	0.984176
5	14	0	3.983441	-0.377829	0.168567
6	14	0	2.000926	-1.633182	0.230477
7	14	0	1.707383	2.985737	-2.264754
8	14	0	0.367980	3.784907	1.208400
9 10	14	0	2.349107	-3.246896	-1.456461 2.263211
11		0	-3.658440	-2.632810	-1.137775
12	1	0	-4.736148	-2.526034	-1.119929
13	6	0	-2.826633	-2.909855	-0.023081
14	1	0	-3.163529	-3.065423	0.993690
15	6	0	-1.488428	-2.980655	-0.470840
16	1	0	-0.617766	-3.170790	0.141144
1 / 1 0	6	0	-1.485394	-2./0800/	-1.8/6850
19	1 6	0	-2 827459	-2.564120	-2.285989
20	1	Ő	-3.163716	-2.388681	-3.299103
21	6	0	-2.678339	0.502068	-3.137835
22	1	0	-2.512244	-0.087908	-4.029913
23	6	0	-1.714999	1.325110	-2.505113
24	1	0	-0.703605	1.486876	-2.842627
25	6	0	-2.329339	1.919747	-1.370501
26	1	0	-1.84//66	2.600812	-0.68310/
28	1	0	-4.431647	1.790381	-0.614045
29	6	Ő	-3.893209	0.598660	-2.409570
30	1	0	-4.817948	0.084778	-2.642745
31	6	0	-5.032546	-0.607777	1.814573
32	1	0	-5.071757	-1.697005	1.684167
33	1	0	-5.312485	-0.408424	2.855713
34	6	0	-6.014665	0.066340	0.860245
35	1	0	-7 034779	-0 280231	1 050091
37	1	0	-5.770299	-0.157265	-0.183592
38	6	0	-3.197570	1.644353	2.118539
39	1	0	-2.132736	1.907154	2.123289
40	1	0	-3.652768	2.247360	1.325927
41	6	0	-3.848647	1.962395	3.462899
42	1	0	-4.929111	1./8/192	3.439801 3.716912
43	1	0	-3.426057	1.359722	4.272920
45	6	0	-2.548058	-1.009637	3.055957
46	1	0	-3.294951	-0.951371	3.857181
47	1	0	-2.465782	-2.067429	2.784304
48	6	0	-1.202580	-0.486692	3.549608
49	1	0	-0.478152	-0.433409	2.728288
50	1	0	-0.801/26	-1.151328	4.3ZISI4 3.00//17
52	6	0	3.130705	1.721734	2.870353
53	1	õ	4.007514	1.294269	3.370752
54	1	0	2.253133	1.139134	3.165500
55	1	0	3.001625	2.744341	3.241847
56	6	0	4.781582	2.966638	0.648578
57	1	0	4.471743	4.003893	0.813133
58 50	1	U	5.168438 5.606090	∠.890913 2 751711	-0.3/0961
59	± 6	0	4,474168	-0.028839	-1.640096
61	1	Ő	5.314615	0.674419	-1.681907
62	1	0	3.626787	0.422513	-2.170231
63	1	0	4.764877	-0.931913	-2.185997
64	6	0	5.454519	-1.192274	1.061386
65	1	0	5.706849	-2.156097	0.605564
66	T	U	5.228204	-1.369279	2.118288

67	1	0	6.341899	-0.551383	1.009786
68	6	0	0.056053	3.190557	2.993848
69	1	0	-0.880391	3.608564	3.383835
70	1	0	0.864087	3.503502	3.662238
71	1	0	-0.006398	2.098863	3.047014
72	6	0	-1.248994	4.628704	0.660123
73	1	0	-1.345721	5.555812	1.239193
74	1	0	-2.132639	4.020295	0.878855
75	1	0	-1.269482	4.893940	-0.400866
76	6	0	1.658632	5.175537	1.270586
77	1	0	1.924759	5.523750	0.265588
78	1	0	2.578041	4.835946	1.759377
79	1	0	1.276914	6.035292	1.833999
80	6	0	0.409752	4.315293	-2.656534
81	1	0	0.566608	4.703356	-3.670297
82	1	0	0.502123	5.157951	-1.961116
83	1	0	-0.617434	3.939554	-2.595429
84	6	0	1.659532	1.655278	-3.632296
85	1	0	1.318052	0.683694	-3.254727
86	1	0	2.658606	1.510328	-4.057661
87	1	0	0.995225	1.957743	-4.450660
88	6	0	3.389299	3.848157	-2.398893
89	1	0	4.204431	3.117125	-2.402252
90	1	0	3.567467	4.547851	-1.576024
91	1	0	3.438953	4.408437	-3.340400
92	6	0	2.353680	-1.701633	3.750508
93	1	0	2.393827	-2.303595	4.666589
94	1	0	1.591935	-0.928547	3.888485
95	1	0	3.319029	-1.196834	3.636461
96	6	0	0.295779	-3.641848	2.582165
97	1	0	0.117791	-4.470376	1.886982
98	1	0	-0.520855	-2.920767	2.467119
99	1	0	0.254969	-4.044289	3.601511
100	6	0	3.278852	-4.188609	2.257036
101	1	0	3.279777	-4.705723	3.224213
102	1	0	4.284817	-3.789342	2.089042
103	1	0	3.079208	-4.935057	1.480507
104	6	0	1.341248	-4.848199	-1.276292
105	1	0	1./354/2	-5.590861	-1.9808/3
106	1	0	0.2/3509	-4./32554	-1.4/6213
107	1 C	0	1.449352	-5.264988	-0.26/943
108	6	0	4.155320	-3.833817	-1.39/49/
109	1	0	4.383949	-4.320/39	-0.443539
110	1	0	4.80/844	-3.014519	-1.532553
110	Ĺ	0	4.331086	-4.303184	-2.195822
110 110	0 1	0	2.030340	-2.40193/ _3 25500/	-3.100942
111	1	0	2 000147	-3.233080	-3.934303
115	1	0	2.3U914/ 1 173076	-1.000009 -1.005350	-3.400440
116	⊥ 1 ⁄l	0	1.1/JZ/0 0 210086	-0 079569	-0 172603
	± 7				

~ .					
Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	22	0	-2.347203	-0.974984	-1.167527
2	15	0	-3.422335	-0.765357	1.195564
3	32	0	-0.151242	-0.190764	-0.288135
4	14	0	0.676110	2.177541	-0.083483
5	14	0	2.690856	2.067926	1.144861
6	14	0	3.691568	0.145304	0.279876
7	14	0 0	1 969580	-1 449772	0 174644
,	11	0	1 005570	3 170307	_2 100603
9	14	0	_0 599/01	3 736064	1 170196
10	14	0	-0.309491	2.005250	1 544500
10	14	0	2.009521	-2.905259	-1.544528
11	14	0	2.123591	-2.706996	2.162426
12	6	0	-3.381888	-3.072771	-1.6/6908
13	1	0	-4.444037	-3.125948	-1.877989
14	6	0	-2.764678	-3.252656	-0.421103
15	1	0	-3.272654	-3.505235	0.499312
16	6	0	-1.371483	-3.075638	-0.575426
17	1	0	-0.625361	-3.159203	0.203400
18	6	0	-1.114539	-2.817103	-1.951944
19	1	0	-0.145562	-2.690038	-2.408016
20	6	0	-2.357710	-2.823841	-2.624707
21	1	0 0	-2 504908	-2 669494	-3 683891
22	6	0	-2 744583	0 043678	-3 2802091
22	1	0	2.744000	0.045070	4 102140
23	L	0	-2.442292	-0.450061	-4.193149
24	6	0	-1.940491	0.923099	-2.523204
25	1	0	-0.950377	1.255098	-2.789744
26	6	0	-2.704937	1.342548	-1.398526
27	1	0	-2.366527	2.023017	-0.630549
28	6	0	-3.987952	0.743494	-1.496885
29	1	0	-4.819263	0.895227	-0.825155
30	6	0	-4.007311	-0.068712	-2.646127
31	1	0	-4.833223	-0.685766	-2.976990
32	6	0	-5.132388	-1.464374	1.459426
33	1	0	-5.050121	-2.548805	1.318857
34	1	0	-5 413333	-1 310373	2 508022
35	-	0	-6 213780	_0 909711	0 535619
35	1	0	6 244902	0.160711	0.555015
20	1	0	-0.344092	1 205001	0.074070
37	1	0	-1.1/133/	-1.385091	0.741952
38	L	0	-5.967738	-1.088933	-0.516163
39	6	0	-3.601868	0.963016	1.842223
40	1	0	-2.579452	1.358700	1.888497
41	1	0	-4.114109	1.551701	1.074384
42	6	0	-4.318107	1.128479	3.181464
43	1	0	-5.380026	0.876748	3.099788
44	1	0	-4.251865	2.167211	3.520507
45	1	0	-3.883721	0.497184	3.963324
46	6	0	-2.589928	-1.625317	2.624439
47	1	0	-3.346655	-1.808765	3.396794
48	1	0	-2.274836	-2.606704	2.251379
49	6	0	-1.394771	-0.902127	3.239981
50	1	0	-0.623987	-0.690759	2.489399
51	1	0 0	-0 942037	-1 525010	4 018330
52	1	0	-1 699001	0 046492	3 701370
52	Ĺ	0	-1.000001	1 002020	2.001379
55	0	0	2.200720	1.903230	2.994209
54	1	0	3.109983	1.01/301	3.36/446
55	1	0	1.507291	1.14/559	3.166143
56	1	0	1.91/029	2.856523	3.393670
57	6	0	3.903236	3.530571	0.995963
58	1	0	3.422295	4.498776	1.167215
59	1	0	4.385415	3.567188	0.015306
60	1	0	4.688101	3.407441	1.751938
61	6	0	4.243662	0.653793	-1.473710
62	1	0	4.933608	1.504878	-1.419845
63	1	0	3.381041	0.956145	-2.078452
64	1	0	4.756115	-0.155621	-2.004021
6.5	- 6	0	5.249067	-0.406769	1.225274
66	1	0	5.709415	-1.281128	0.751884

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
6810 5.98360 0.402757 1.225543 69 60 -0.918455 3.141367 2.295433 70 10 -1.952721 3.3654208 3.662807 71 10 -0.259780 3.654208 3.662807 72 10 -0.753074 2.066489 3.07717 73 60 -2.274604 4.297810 0.489644 74 10 -2.269300 4.498785 -0.585017 76 10 -2.269030 4.498785 -0.585017 76 10 -2.269030 4.498785 -0.585017 76 10 -1.390148 5.106103 1.828137 81 00.774523 5.672148 0.301947 79 10 -0.351758 4.305327 -2.668916 81 60 -0.351758 4.305327 -2.668916 82 10 -0.189291 4.720795 -3.676248 82 10 -1.339118 1.88955 -3.579166 84 10 -1.339118 1.88955 -3.579166 85 60 1.333918 1.88955 -3.579166 86 10 2.250499 0.855844 -3.222895 87 10 2.265634 4.253727 -2.169707 90 10 2.265634 4.253727 -2.169707 91 10 2.265	67	1	0	5.031983	-0.660851	2.267828
6960 -0.918455 3.141367 2.95437 7010 -1.952721 3.362011 3.244604 7110 -0.753074 2.066489 3.662802 7210 -0.753074 2.066489 3.07117 7360 -2.74604 4.297810 0.488644 7410 -2.549890 5.226106 1.005684 7510 -2.269030 4.498785 -0.585015 7610 -2.269030 4.498785 -0.585015 7760 0.476843 5.302154 1.289734 7810 -7.74823 5.67248 0.301947 7910 1.390148 5.106103 1.862113 8010 -0.0351758 4.305327 -2.668918 8160 -0.351758 4.305327 -2.676236 8210 -1.305911 3.766382 -2.676236 8310 -1.335185 2.001756 -4.032117 8410 -1.335175 2.030920 -4.372957 8560 2.533217 -2.168772 9010 2.625049 -1.627655 3.79166 9110 2.625049 -1.627655 3.79257 9360 2.253187 -2.07724 4.586756 9510 1.361645 -1.040713 3.900536	68	1	0	5.988360	0.402757	1.225554
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	6	0	-0.918455	3.141367	2.954337
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	1	0	-1.952721	3.362011	3.244604
7210 -0.753074 2.066489 3.077175 73 60 -2.274604 4.297810 0.48964 74 10 -2.549890 5.226106 1.005684 75 10 -3.065260 3.568598 0.693275 76 10 -2.269030 4.498785 -0.585019 77 60 0.476843 5.302154 1.228733 78 10 0.774523 5.672148 0.301994 79 10 1.390148 5.106103 1.862113 80 10 -0.714223 6.103638 1.799066 81 60 -0.351758 4.305327 -2.668916 83 10 -0.443756 5.145157 -1.970833 84 10 -1.339918 1.889505 -3.579166 86 10 1.250299 0.855844 -3.222895 87 10 2.352185 2.001756 -4.0321175 88 10 0.551375 2.030920 -4.372957 89 60 2.655634 4.253727 -2.169770 90 10 2.672696 4.950795 -1.226025 92 10 2.7531375 2.02772 4.586756 95 10 1.361645 -1.040713 3.900533 96 10 2.265019 -1.627655 3.712507 94 10	71	1	0	-0.259780	3.654208	3.662802
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	1	0	-0.753074	2.066489	3.077179
7410 -2.549990 5.226106 1.005624 75 10 -3.065260 3.568598 0.69327 76 10 -2.269030 4.498785 -0.585015 77 60 0.476843 5.302154 1.289733 78 10 0.774523 5.672148 0.301994 79 10 1.390148 5.106103 1.862113 80 10 -0.071423 6.103638 1.799066 81 60 -0.351758 4.305327 -2.668916 82 10 -0.443756 5.145157 -1.970833 84 10 -1.305911 3.766382 -2.676236 85 60 1.2321378 2.001756 -4.032117 86 10 2.25185 2.001756 -4.032117 88 10 0.591375 2.030920 -4.372957 89 60 2.655634 4.253727 -2.169776 90 10 3.553910 3.629778 -2.109706 91 10 2.465049 -1.627655 3.712507 94 10 2.265049 -1.627655 3.712507 94 10 2.265049 -1.627655 3.712507 94 10 2.265019 -1.627655 3.712507 94 10 2.265791 -4.6218071 1.600055 99 10 <td>73</td> <td>6</td> <td>0</td> <td>-2.274604</td> <td>4.297810</td> <td>0.489644</td>	73	6	0	-2.274604	4.297810	0.489644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	1	0	-2.549890	5.226106	1.005684
7610 -2.269030 4.49875 -0.585015 77 60 0.476843 5.302154 1.289734 78 10 0.774523 5.672148 0.301994 79 10 1.390148 5.106103 1.862113 80 10 -0.071423 6.103638 1.799066 81 60 -0.351758 4.305327 -2.668916 82 10 -0.489291 4.720795 -3.670616 83 10 -0.443756 5.145157 -1.970833 84 10 -1.305911 3.766382 -2.676233 85 60 1.333918 1.889505 -3.579166 86 10 2.25185 2.001756 -4.03217 86 10 2.25185 2.001756 -4.03217 88 10 0.591375 2.030920 -4.372957 89 60 2.65634 4.253727 -2.169770 91 10 2.672696 4.950795 -1.326025 92 10 2.713122 4.835686 -3.097596 93 60 2.265049 -1.627655 3.712507 94 10 2.438978 -2.267724 4.586756 95 10 3.103768 -0.927813 3.638066 97 60 0.673698 -3.901499 2.421827 98 10	75	1	0	-3.065260	3.568598	0.693275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	1	0	-2.269030	4.498785	-0.585019
7810 0.774523 5.672148 0.301994 79 10 1.390148 5.106103 1.862113 80 10 -0.071423 6.103638 1.799066 81 60 -0.351758 4.305327 -2.668916 82 10 -0.189291 4.720795 -3.670616 83 10 -0.443756 5.145157 -1.970836 84 10 -1.305911 3.766382 -2.676236 86 10 1.250299 0.855844 -3.222895 87 10 2.325185 2.001756 -4.032117 88 10 0.591375 2.030920 -4.372957 89 60 2.655634 4.25377 -2.169770 90 10 3.553910 3.629778 -2.109706 91 10 2.672696 4.950795 -1.326025 92 10 2.45049 -1.627655 3.712507 94 10 2.465049 -1.627655 3.712507 94 10 2.265019 -1.627655 3.712507 94 10 2.265017 4.586756 95 10 1.361645 -1.040713 3.900538 96 10 0.592105 -4.621807 1.60055 99 10 -0.281138 -3.783056 2.120965 100 10 0.85738 <	77	6	0	0.476843	5.302154	1.289734
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	0.774523	5.672148	0.301994
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	1	0	1.390148	5.106103	1.862113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	1	0	-0.071423	6.103638	1.799066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	6	0	-0.351758	4.305327	-2.668918
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	1	0	-0.189291	4.720795	-3.670618
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	1	0	-0.443756	5.145157	-1.970830
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	1	0	-1.305911	3.766382	-2.676236
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	6	0	1.333918	1.889505	-3.579166
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	1	0	1.250299	0.855844	-3.222895
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	1	0	2.325185	2.001756	-4.032117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	1	0	0.591375	2.030920	-4.372957
9010 3.553910 3.629778 -2.109706 91 10 2.672696 4.950795 -1.326025 92 10 2.713122 4.835686 -3.097596 93 60 2.265049 -1.627655 3.712507 94 10 2.438978 -2.267072 4.586756 95 10 1.361645 -1.040713 3.900536 96 10 3.103768 -0.927813 3.638060 97 60 0.673698 -3.901499 2.421827 98 10 0.592105 -4.621807 1.600055 99 10 -0.281138 -3.373192 2.509774 100 10 0.827691 -4.467429 3.348641 101 60 3.685338 -3.783056 2.120965 102 10 3.787913 -4.314032 3.075304 103 10 4.590995 -3.186985 1.968456 104 10 3.636242 -4.534408 1.326136 105 60 1.878989 -4.627379 -1.442762 106 10 2.208917 -5.135320 -0.528812 109 60 4.539963 -3.203861 -1.424336 109 60 4.817719 -3.688850 -0.484235 110 10 4.857046 -3.858658 -2.246071 113 <td< td=""><td>89</td><td>6</td><td>0</td><td>2.655634</td><td>4.253727</td><td>-2.169770</td></td<>	89	6	0	2.655634	4.253727	-2.169770
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	1	0	3.553910	3.629778	-2.109708
92102.7131224.835686 -3.097598 93602.265049 -1.627655 3.712507 94102.438978 -2.267072 4.586756 9510 1.361645 -1.040713 3.900538 9610 3.103768 -0.927813 3.6380676 9760 0.673698 -3.901499 2.421827 9810 0.592105 -4.621807 1.600055 9910 -0.281138 -3.373192 2.509774 10010 0.827691 -4.467429 3.348641 10160 3.685338 -3.783056 2.120965 10210 3.787913 -4.314032 3.075304 10310 4.590995 -3.186985 1.968456 10410 3.63242 -4.534408 1.326135 10560 1.878989 -4.627379 -1.442762 10610 2.206178 -5.237734 -2.293333 10710 0.786099 -4.610576 -1.438743 10810 2.208917 -5.135320 -0.528813 10960 4.539963 -3.203861 -1.424936 11010 4.857046 -3.858658 -2.246071 11360 2.374075 -2.126353 -3.251413 11410 2.547356 -2.86	91	1	0	2.672696	4.950795	-1.326025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	1	0	2.713122	4.835686	-3.097598
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	6	0	2.265049	-1.627655	3.712507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	1	0	2.438978	-2.267072	4.586756
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	1	0	1.361645	-1.040713	3.900538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	1	0	3.103768	-0.927813	3.638060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	6	0	0.673698	-3.901499	2.421827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	1	0	0.592105	-4.621807	1.600055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	1	0	-0.281138	-3.373192	2.509774
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	1	0	0.827691	-4.467429	3.348641
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	6	0	3.685338	-3.783056	2.120965
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	1	0	3.787913	-4.314032	3.075304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103	1	0	4.590995	-3.186985	1.968456
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	1	0	3.636242	-4.534408	1.326139
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	6	0	1.878989	-4.627379	-1.442762
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	1	0	2.206178	-5.237734	-2.293333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	1	0	0.786099	-4.610576	-1.438743
109 6 0 4.539963 -3.203861 -1.424936 110 1 0 4.817719 -3.688850 -0.484235 111 1 0 5.110812 -2.273539 -1.503171 112 1 0 4.857046 -3.888658 -2.246071 113 6 0 2.374075 -2.126353 -3.251413 114 1 0 2.547356 -2.861886 -4.045986 115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	108	1	0	2.208917	-5.135320	-0.528819
110 1 0 4.817719 -3.688850 -0.484235 111 1 0 5.110812 -2.273539 -1.503171 112 1 0 4.857046 -3.858658 -2.246071 113 6 0 2.374075 -2.126353 -3.251413 114 1 0 2.547356 -2.861886 -4.045986 115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	109	6	0	4.539963	-3.203861	-1.424936
111 1 0 5.110812 -2.273539 -1.503171 112 1 0 4.857046 -3.858658 -2.246071 113 6 0 2.374075 -2.126353 -3.251413 114 1 0 2.547356 -2.861886 -4.045986 115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	110	1	0	4.817719	-3.688850	-0.484235
112 1 0 4.857046 -3.858658 -2.246071 113 6 0 2.374075 -2.126353 -3.251413 114 1 0 2.547356 -2.861886 -4.045986 115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	111	1	0	5.110812	-2.273539	-1.503171
113 6 0 2.374075 -2.126353 -3.251413 114 1 0 2.547356 -2.861886 -4.045986 115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	112	1	0	4.857046	-3.858658	-2.246071
114 1 0 2.547356 -2.861886 -4.045986 115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	113	6	0	2.374075	-2.126353	-3.251413
115 1 0 3.077903 -1.299987 -3.402231 116 1 0 1.367416 -1.715304 -3.380148	114	1	0	2.547356	-2.861886	-4.045986
116 1 0 1.367416 -1.715304 -3.380148	115	1	0	3.077903	-1.299987	-3.402231
	116	1	0	1.367416	-1.715304	-3.380148

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	40	0	-2.383180	-0.691430	-1.072164
2	15	0	-3.477002	-0.369332	1.417083
3	32	0	0.035954	-0.1186/8	-0.251244
4	14	0	1.099784	2.134061	-0.096698
5	14	0	3.1/00/6	1.825168	1.00/128
6	14	0	3.869370	-0.23/502	0.1/4814
7	14	0	1.966126	-1.616051	0.197331
8	14	0	1.459235	3.119359	-2.218847
9	14	0	0.048284	3./32490	1.285363
10	14	0	2.409682	-3.200642	-1.48///5
10	14	0	1.902285	-2.792976	2.229030
12	0	0	-3.695494	-2.829474	-1.4/5088
13		0	-4.//2/30	-2.//4143	-1.5/20/4
14	0	0	-2.9/0832	-3.0/8015	-0.281055
15	Ĺ	0	-3.413093	-3.204203	0.091919
17	1	0	-1.394030	-3.240104	-0.301097
10	L C	0	1 450196	-3.240104	1 070205
10	1	0	-1.430180	-2.040027	-2 520750
20	1 6	0	-2.750040	-2.695107	-2.525750
20	1	0	-2.750040	-2.52/016	-2.525007
21	1	0	-2.903013	-2.324910	-3.000377
22	1	0	-2 652270	-0 102620	-/ 183037
2.5	1	0	-1 923612	1 27/810	-2 591/05
25	1	0	-0 916657	1 494562	-2 910612
26	6	0	-2 577451	1 805649	-1 445898
27	1	0	-2.133036	2.483175	-0.729923
28	6	0	-3.915441	1.325402	-1.445625
29	1	0	-4.687685	1.579953	-0.733504
30	6	0	-4.080081	0.478865	-2.564162
31	1	0	-4.983870	-0.052935	-2.835882
32	6	0	-5.248287	-0.908821	1.623468
33	1	0	-5.260957	-1.991408	1.445116
34	1	0	-5.543596	-0.761538	2.669425
35	6	0	-6.236728	-0.219253	0.686804
36	1	0	-6.256457	0.864161	0.852331
37	1	0	-7.250657	-0.595347	0.851651
38	1	0	-5.976385	-0.397022	-0.361970
39	6	0	-3.492189	1.375517	2.036164
40	1	0	-2.436484	1.666362	2.097720
41	1	0	-3.927648	2.000108	1.248873
42	6	0	-4.207785	1.623735	3.362586
43	1	0	-5.28/455	1.469227	3.2/1641
44	1	0	-4.04//96	2.656064	3.6889/1
45		0	-3.839483	0.964937	4.155590
40	1	0	-2.747003	-1 301/05	2.033000
47	1	0	-2 555706	-2 31070/	2 103001
40	1 6	0	-2.555790	-2.319794	2.495004
49 50	1	0	-0.714674	-0.550208	2 663790
51	1	0	-1 051102	-1 385596	1 191270
52	1	0	-1 663256	0 253611	3 9292/5
53	6	0	2 932247	1 804016	2 895185
54	1	0	3 826802	1 399547	3 383397
55	1	0	2 075092	1 197127	3 199895
56	1	0	2.780160	2.821429	3,272965
57	6	0	4.527154	3.125999	0.688412
58	1	0	4.178648	4.147718	0.872883
59	1	õ	4.911056	3.082932	-0.333979
60	- 1	Õ	5.363376	2.929689	1.370469
61	6	0	4.355527	0.144924	-1.628389
62	1	0	5.153980	0.895880	-1.663723
63	1	0	3.487896	0.545790	-2.166995
64	1	0	4.704823	-0.739356	-2.171242
65	6	0	5.375768	-0.962358	1.083830
66	1	0	5.688989	-1.913495	0.639731

67	1	0	5.150655	-1.141521	2.140877
68	1	0	6.224012	-0.270093	1.033575
69	6	0	-0.261550	3.022471	3.027156
70	1	0	-1.191450	3.423871	3.448999
71	1	0	0.553359	3.276357	3.711655
72	1	0	-0.340381	1.930009	3.005275
73	6	0	-1.606756	4.492672	0.735968
74	1	0	-1.785238	5.382493	1.352857
75	1	0	-2.447345	3.811572	0.903542
76	1	0	-1.621377	4.803732	-0.312477
77	6	0	1.259579	5.184979	1.436570
78	1	0	1.502144	5.602673	0.452189
79	1	0	2.198063	4.865239	1.902289
80	1	0	0.835735	5.989205	2.049487
81	6	0	0.086059	4.377765	-2.579750
82	1	0	0.212550	4.794581	-3.586159
83	1	0	0.133426	5.209605	-1.866935
84	1	0	-0.916093	3.939590	-2.519520
85	6	0	1.494281	1.818227	-3.614201
86	1	0	1.145927	0.834381	-3.277337
87	1	0	2.515158	1.692842	-3.991137
88	1	0	0.868356	2.130552	-4.458746
89	6	0	3.093339	4.071707	-2.324341
90	1	0	3.945026	3.383418	-2.339768
91	1	0	3.231043	4.759443	-1.483671
92	1	0	3.118598	4.655913	-3.252106
93	6	0	2.215653	-1.655845	3.721545
94	1	0	2.249684	-2.248265	4.643974
95	1	0	1.406760	-0.924990	3.820248
96	1	0	3.156134	-1.099400	3.644212
97	6	0	0.344872	-3.747028	2.503747
98	1	0	0.213940	-4.541540	1.760507
99	1	0	-0.519817	-3.077789	2.442238
100	1	0	0.342160	-4.212967	3.496671
101	6	0	3.363014	-4.071088	2.255211
102	1	0	3.393632	-4.574734	3.229075
103	1	0	4.339609	-3.605361	2.086816
104	1	0	3.220464	-4.839873	1.488069
105	6	0	1.459413	-4.835364	-1.319581
106	1	0	1.797292	-5.525594	-2.102538
107	1	0	0.374695	-4.734809	-1.407982
108	1	0	1.674956	-5.307078	-0.353715
109	6	0	4.239632	-3.704859	-1.416900
110	1	0	4.484670	-4.184847	-0.463600
111	1	0	4.911096	-2.849591	-1.542325
112	1	0	4.457153	-4.421616	-2.218247
113	6	0	2.100922	-2.436933	-3.199614
114	1	0	2.001485	-3.210622	-3.970187
115	1	0	2.941799	-1.791940	-3.477563
116	1	0	1.201643	-1.811403	-3.214619

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	15	0	-2.291340	-0.558785	-0.914528
3	32	0	0.182119	-0.082652	-0.193477
4	14	0	1.328456	2.122752	-0.107665
5	14	0	3.430399	1.753654	0.918794
6	14	0	4.005085	-0.347612	0.086519
7	14	0	2.057869	-1.653623	0.209666
9	14	0	0.397564	3.770414	1.303376
10	14	0	2.384182	-3.278927	-1.467609
11	14	0	2.118242	-2.807679	2.253245
12	6	0	-3.705075	-2.624942	-1.332409
13	1	0	-4.774469	-2.515848	-1.463372
14	6	0	-3.0368/3	-2.889814	-0.113310
16	6	0	-1.645929	-2.960111	-0.369719
17	1	0	-0.867219	-3.149436	0.357642
18	6	0	-1.449078	-2.762538	-1.766086
19	1	0	-0.506217	-2.813021	-2.289472
20	6	0	-2.722834	-2.556505	-2.355864
21	6	0	-2.860168	-2.393303	-3.088896
23	1	0	-2.760656	0.003424	-4.005825
24	6	0	-1.845304	1.355949	-2.489214
25	1	0	-0.853295	1.516772	-2.882347
26	6	0	-2.388433	1.938108	-1.310258
27	L 6	0	-1.85/828 -3 744699	2.596470	-0.635814
2.9	1	0	-4.450188	1.836742	-0.448718
30	6	0	-4.033744	0.675374	-2.295873
31	1	0	-4.983040	0.193629	-2.495418
32	6	0	-5.048009	-0.624662	1.916434
33	1	0	-5.143892	-1./0351/	1.742600
35	1	0	-6 046814	0 130823	1 043824
36	1	0	-5.979800	1.213176	1.203549
37	1	0	-7.071282	-0.172449	1.278652
38	1	0	-5.871209	-0.067030	-0.018761
39	6	0	-3.148385	1.543274	2.244613
40	1	0	-2.076800	2 203276	2.238633
42	6	0	-3.787176	1.811248	3.606575
43	1	0	-4.877121	1.718037	3.566261
44	1	0	-3.554351	2.828500	3.936201
45	1	0	-3.419208	1.122278	4.373744
46	6	0	-2.502620	-1.18/609	2.984185
48	1	0	-2.352504	-2.198156	2.586494
49	6	0	-1.186682	-0.643361	3.534350
50	1	0	-0.458056	-0.500185	2.728242
51	1	0	-0.762204	-1.346028	4.258385
52	1	0	-1.327590	0.316333	4.042261
54	1	0	3.200772 4 172247	1 352279	2.013173
55	1	0	2.410082	1.192516	3.164788
56	1	0	3.158275	2.799214	3.182245
57	6	0	4.828385	2.989220	0.527028
58	1	0	4.536184	4.027260	0.718342
59 60	⊥ 1	0	5.16/300 5 682972	2.922663 2 758/08	-U.SU9995 1 17/670
61	6	0	4.409097	-0.001573	-1.744316
62	1	0	5.227498	0.723320	-1.829848
63	1	0	3.528174	0.419968	-2.243920
64	1	0	4.701867	-0.904375	-2.290022
65 66	6 1	0	5.536741 5 770260	-1.117894	0.913687 0 471249
00	1	0	し・エリンムログ	と・レクレンログ	U.J/1240

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
6810 6.406936 -0.463273 0.788213 7010 -0.779865 3.505562 3.50768 7110 0.971219 3.360271 3.72244 7210 0.056128 2.000355 3.072333 7360 -1.251120 4.584881 0.813483 7410 -1.272990 5.485411 1.428644 7510 -2.109645 3.936939 1.017670 7610 -1.233902 4.888515 -0.236466 7760 1.657736 5.186518 1.391537 7810 1.289182 6.001187 2.2026147 8160 0.296498 4.388253 -2.569566 8210 0.410372 4.803616 -3.236666 8310 0.394366 5.215140 -1.856295 8410 -0.718970 3.986719 -2.4833656 8560 1.556756 1.771698 -3.639622 8610 1.183028 0.804016 -3.228666 8710 2.554770 1.603724 -4.457697 8810 0.90825 2.108926 -4.457697 9010 3.490997 4.654580 -1.597866 9110 3.2966498 3.966440 -2.428600 9210 3.295633 -4.545890	67	1	0	5.379755	-1.264586	1.987894
69600.1364893.022333.067427010-0.7798653.5055623.5076671100.9712193.3602713.7224472100.0551282.003553.072337360-1.2511204.5848110.8134837410-1.3729905.4854111.4286447510-2.1096453.9369391.017677610-1.2339024.88515-0.23646277601.6577365.1865181.3915378101.8611205.5998440.38657379102.6093834.8394551.80810380100.2964984.388253-2.56956482100.4103724.803616-3.57809483100.3943665.215140-1.8562928410-0.7189703.966719-2.46336385601.5567561.71698-3.63962586101.830280.804016-3.22836687102.5547701.603724-4.45769490103.3102554.546493-3.46367791103.2964983.968440-2.42860192103.3102554.546493-3.36037493602.956761-2.8230514.646971941 <td< td=""><td>68</td><td>1</td><td>0</td><td>6.406936</td><td>-0.463273</td><td>0.788213</td></td<>	68	1	0	6.406936	-0.463273	0.788213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	6	0	0.136489	3.092933	3.067428
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	1	0	-0.779865	3.505562	3.507687
7210 0.056128 2.000355 3.072331 73 60 -1.251120 4.584881 0.813487 74 10 -1.372990 5.485411 1.428644 75 10 -2.109645 3.936939 1.017677 76 10 -1.293902 4.888515 -0.236462 77 60 1.657736 5.188518 1.391533 78 10 1.861120 5.599984 0.396573 79 10 2.609383 4.839455 1.808103 80 10 1.289182 6.00187 2.026147 81 60 0.294498 4.388253 -2.569566 82 10 0.410372 4.803616 -3.57809 83 10 0.394366 5.215140 -1.856292 84 10 -0.718970 3.986719 -2.483365 85 60 1.556756 1.771698 -3.639622 86 10 1.183028 0.804016 -3.228366 87 10 2.554770 1.603724 -4.45769 99 60 3.296498 3.968440 -2.428601 90 10 4.528731 -3.60374 93 60 2.462902 -1.655115 3.715606 97 60 0.555611 -2.232051 4.646971 98 10 0.557639 -3	71	1	0	0.971219	3.360271	3.722446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	1	0	0.056128	2.000355	3.072331
7410 -1.37290 5.485411 1.428644 75 10 -2.109645 3.936393 1.017670 76 10 -1.293902 4.888515 -0.236462 77 60 1.657736 5.186518 1.391532 78 10 1.861120 5.599984 0.396573 79 10 2.609334 4.839455 1.808103 80 10 1.289182 6.001187 2.026144 81 60 0.996498 4.388253 -2.569564 82 10 0.410372 4.803516 -3.578099 83 10 0.394366 5.215140 -1.856292 84 10 -0.718970 3.986719 -2.483350 85 60 1.556756 1.771698 -3.293666 87 10 2.554770 1.603724 -4.05877 88 10 0.908825 2.108926 -4.457696 90 10 4.119865 3.247670 -2.428601 91 10 3.409997 4.564580 -1.597880 92 10 3.310255 4.564580 -1.597880 94 10 2.515611 -2.232051 4.666971 95 10 1.638127 -0.895976 3.832563 96 10 3.496332 -4.110712 2.236122 97 60	73	6	0	-1.251120	4.584881	0.813489
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	1	0	-1.372990	5.485411	1.428644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	1	0	-2.109645	3.936939	1.017670
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	1	0	-1.293902	4.888515	-0.236462
7810 1.861120 5.599984 0.396573 79 10 2.609383 4.839455 1.808102 80 10 1.289182 6.001187 2.026144 81 60 0.296498 4.388253 -2.569564 82 10 0.410372 4.803616 -3.578094 83 10 0.394366 5.215140 -1.856292 84 10 -0.718970 3.986719 -2.483356 85 60 1.556756 1.771698 -3.639622 86 10 1.83028 0.804016 -3.283666 87 10 2.554770 1.603724 -4.457696 89 60 3.296498 3.968440 -2.428601 90 10 4.119865 3.247670 -2.463694 91 10 3.490997 4.654580 -1.597860 92 10 3.10255 4.546493 -3.360374 93 60 2.462902 -1.655115 3.715606 94 10 2.515611 -2.232051 4.646977 93 60 0.553801 -4.528731 1.873852 96 10 0.553801 -4.528731 1.873852 99 10 0.553801 -4.213262 3.6022578 100 10 0.553801 -4.213262 3.6022578 101 60	77	6	0	1.657736	5.186518	1.391532
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	1.861120	5.599984	0.396573
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	1	0	2.609383	4.839455	1.808103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	1	0	1.289182	6.001187	2.026147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	6	0	0.296498	4.388253	-2.569564
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	1	0	0.410372	4.803616	-3.578096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	1	0	0.394366	5.215140	-1.856292
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	1	0	-0.718970	3.986719	-2.483350
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	6	0	1.556756	1.771698	-3.639625
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	1	0	1.183028	0.804016	-3.283668
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	1	0	2.554770	1.603724	-4.058777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	1	0	0.908825	2.108926	-4.457696
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	6	0	3.296498	3.968440	-2.428601
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	1	0	4.119865	3.247670	-2.469696
9210 3.310255 4.546493 -3.360374 9360 2.462902 -1.655115 3.715608 9410 2.515611 -2.232051 4.646971 9510 1.683127 -0.895976 3.832561 9610 3.417128 -1.131604 3.589567 9760 0.505662 -3.740251 2.613883 9810 0.327831 -4.528731 1.873852 9910 -0.355093 -3.064039 2.605787 10010 0.553801 -4.213262 3.602255 10160 3.496532 -4.110712 2.236125 10210 3.562435 -4.598921 3.216085 10310 4.472742 -3.666377 2.016092 10410 3.305649 -4.889295 1.489575 10560 1.377404 -4.867181 -1.2058962 10610 1.557808 -5.556840 -2.039767 10710 0.298973 -4.706094 -1.130892 10810 1.704866 -5.371141 -0.289021 10960 4.194877 -3.851897 -1.476744 11010 4.886847 -3.029804 -1.685537 11210 4.337915 -4.614189 -2.252295 11360 2.028177 <	91	1	0	3.490997	4.654580	-1.597880
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	1	0	3.310255	4.546493	-3.360374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	6	0	2.462902	-1.655115	3.715608
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	1	0	2.515611	-2.232051	4.646971
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	1	0	1.683127	-0.895976	3.832561
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	1	0	3.417128	-1.131604	3.589567
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	6	0	0.505662	-3.740251	2.613883
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	1	0	0.327831	-4.528731	1.873852
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	1	0	-0.355093	-3.064039	2.605787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	1	0	0.553801	-4.213262	3.602259
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	6	0	3.496532	-4.110712	2.236129
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102	1	0	3.562435	-4.598921	3.216089
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103	1	0	4.472742	-3.666377	2.016093
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	1	0	3.305649	-4.889295	1.489573
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	6	0	1.377404	-4.867181	-1.205890
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106	1	0	1.557808	-5.556840	-2.039767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	1	0	0.298973	-4.706094	-1.130891
109 6 0 4.194877 -3.851897 -1.476744 110 1 0 4.481422 -4.293723 -0.516676 111 1 0 4.886847 -3.029804 -1.685537 112 1 0 4.337915 -4.614189 -2.252295 113 6 0 2.028177 -2.544054 -3.183236 114 1 0 1.901229 -3.332449 -3.934633 115 1 0 2.867774 -1.908855 -3.189436	108	1	0	1.704886	-5.371141	-0.289021
110 1 0 4.481422 -4.293723 -0.516676 111 1 0 4.886847 -3.029804 -1.685537 112 1 0 4.337915 -4.614189 -2.252295 113 6 0 2.028177 -2.544054 -3.183236 114 1 0 1.901229 -3.332449 -3.934631 115 1 0 2.867774 -1.913791 -3.496912 116 1 0 1.135673 -1.908855 -3.189436	109	6	0	4.194877	-3.851897	-1.476744
111 1 0 4.886847 -3.029804 -1.685537 112 1 0 4.337915 -4.614189 -2.252295 113 6 0 2.028177 -2.544054 -3.183236 114 1 0 1.901229 -3.332449 -3.934631 115 1 0 2.867774 -1.913791 -3.496912 116 1 0 1.135673 -1.908855 -3.189436	110	1	0	4.481422	-4.293723	-0.516676
112 1 0 4.337915 -4.614189 -2.252295 113 6 0 2.028177 -2.544054 -3.183238 114 1 0 1.901229 -3.332449 -3.934631 115 1 0 2.867774 -1.913791 -3.496912 116 1 0 1.135673 -1.908855 -3.189438	111	1	0	4.886847	-3.029804	-1.685537
113 6 0 2.028177 -2.544054 -3.183238 114 1 0 1.901229 -3.332449 -3.934631 115 1 0 2.867774 -1.913791 -3.496912 116 1 0 1.135673 -1.908855 -3.189438	112	1	0	4.337915	-4.614189	-2.252295
114 1 0 1.901229 -3.332449 -3.934631 115 1 0 2.867774 -1.913791 -3.496912 116 1 0 1.135673 -1.908855 -3.189438	113	6	0	2.028177	-2.544054	-3.183238
115 1 0 2.867774 -1.913791 -3.496912 116 1 0 1.135673 -1.908855 -3.189438	114	1	0	1.901229	-3.332449	-3.934631
116 1 0 1.135673 -1.908855 -3.189438	115	1	0	2.867774	-1.913791	-3.496912
	116	1	0	1.135673	-1.908855	-3.189438

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
			0 000000	0 000000	2 200524
2	14	0	1.867402	2.692226	-0.726295
3	14	0	1.275990	4.806146	-1.575130
4	14	0	-1.060135	4.794803	-1.731023
5	14	0	-1.697081	3.483067	0.132920
6	14	0	4.012907	3.063647	0.224601
7	14	0	2.236804	1.339795	-2.627077
8	14	0	-4.059105	3.2550/4	0.052660
10	14	0	-1.34/808	4.85/396	2.062232
11	1	0	-2.202533	2.164232	2.484307
12	6	Ő	-1.543144	0.658407	3.979756
13	1	0	-1.226116	1.272363	4.812488
14	6	0	-1.531832	-0.757905	3.933456
15	1	0	-1.206380	-1.420028	4.724412
16	6	0	-2.023750	-1.162189	2.671808
1 / 1 0		0	-2.180961	-2.181585	2.35/462
19	1	0	-2.515550	0.010848	0 910863
2.0	6	0	1.766295	6.189462	-0.358973
21	1	0	2.854169	6.311362	-0.316628
22	1	0	1.414635	5.979434	0.656145
23	1	0	1.338073	7.148721	-0.674691
24	6	0	2.129596	5.235662	-3.223409
25	1	0	3.216005	5.300165	-3.099593
26	1	0	1.775973	6.212056	-3.574840
27	1 6	0	1.9241/5	4.504433	-4.010124
20	1	0	-2.749072	4.215090	-3.479808
30	1	0	-1.470401	2.985409	-3.451175
31	1	0	-1.174967	4.557359	-4.213413
32	6	0	-1.679666	6.597354	-1.739589
33	1	0	-1.503488	7.012554	-2.739290
34	1	0	-1.148756	7.223253	-1.019141
35	1	0	-2.750283	6.676405	-1.528723
30	6	0	4.031936	4.110695	2 016627
38	1	0	3 647226	3 595736	2.010027
39	1	0	3.470204	5.041727	1.682789
40	6	0	5.013118	1.487529	0.552809
41	1	0	4.847227	0.720562	-0.213437
42	1	0	4.756822	1.055164	1.524894
43	1	0	6.082867	1.727112	0.560369
44	6	0	4.992810	4.112191	-1.018272
45	1	0	4.532859	5.095515	-1.15/899
40	1	0	5 999808	2.04J4J0 4.275210	-0 614122
48	6	0	2.114715	-0.483236	-2.152453
49	1	0	2.509761	-1.115329	-2.957155
50	1	0	1.071367	-0.766423	-1.974135
51	1	0	2.670306	-0.717696	-1.238828
52	6	0	3.961463	1.617000	-3.362128
53	1	0	4.074705	2.629726	-3.763634
54	1	0	4.110833	0.910421	-4.187521
55 56	1 6	U	4./3/859 0 007070	1 601500	-2.029335 -1 036533
50 57	1	0	0.927355	2.643056	-4.363463
58	1	0	-0.007490	1.269598	-3.759733
59	1	Ő	1.313999	0.999578	-4.897723
60	6	0	-4.778946	2.469451	-1.516177
61	1	0	-5.819645	2.803039	-1.611696
62	1	0	-4.783933	1.376269	-1.480273
63	1	0	-4.242623	2.773096	-2.420213
64	6	0	-4.679524	5.051236	0.026963

65	1	0	5 757760	E 070047	0 226521
05	1	0	-5.757709	5.070047	0.220321
66	1	0	-4.518891	5.495177	-0.961397
67	1	0	-4.189276	5.691836	0.767581
68	6	0	-4.887945	2.386105	1.515119
<u> </u>	1	0	4 600602	2.000100	2 402100
69	1	U	-4.599502	2.805407	2.483189
70	1	0	-4.670861	1.314572	1.534688
71	1	0	-5.973205	2,506049	1,405122
72	6	0	0 203221	1 301560	2 015301
12	0	0	0.205221	4.594500	2.913391
73	1	0	0.523353	5.118338	3.703800
74	1	0	1.125874	4.362736	2.213415
75	1	0	0 199510	3 400052	3 371747
75	Ĩ	0	1 200707	5.400052	1 601074
/6	6	0	-1.322/9/	6./162//	1.6918/4
77	1	0	-2.232710	7.041449	1.177096
78	1	0	-0 467144	7 018705	1 083160
70	1	0	1.000570	7.010703	1.000100
19	1	0	-1.2635/8	1.25/314	2.644404
80	6	0	-2.704166	4.676673	3.383490
81	1	0	-2.469535	5.373547	4,197997
0.0	- 1	0	2 772404	2 (75254	2 010500
82	1	0	-2.112494	3.0/3334	3.819388
83	1	0	-3.693600	4.945593	2.998269
84	6	0	2.032624	-1.132856	2.746461
05	e e	õ	1 542144	0 659407	2 070756
05	0	0	1.343144	-0.030407	3.9/9/30
86	6	0	1.531832	0.757905	3.933456
87	6	0	2.023750	1.162189	2.671808
8.8	6	0	2 315350	-0 010846	1 025181
00	0	0	2.515550	0.010040	1.923101
89	14	0	-1.867402	-2.692226	-0.726295
90	14	0	1.697081	-3.483067	0.132920
Q 1	1	0	2 202533	-2 164232	2 484307
21	1	0	2.202333	2.104252	2.404307
92	1	0	1.226116	-1.272363	4.812488
93	1	0	1.206380	1.420028	4.724412
94	1	0	2 180961	2 181585	2 357462
21	1	0	2.100901	2.101305	2.007402
95	1	0	2.6935/1	-0.043495	0.910863
96	14	0	-1.275990	-4.806146	-1.575130
97	14	0	-4.012907	-3.063647	0.224601
0.0	14	0	2 22604	1 220705	0.00000
90	14	0	-2.230004	-1.339/93	-2.02/0//
99	14	0	1.060135	-4.794803	-1.731023
100	14	0	4.059105	-3.255074	0.052660
101	1 /	0	1 247000	1 057206	2 062222
TOT	14	0	1.34/000	-4.03/390	2.002232
102	6	0	4.778946	-2.469451	-1.516177
103	6	0	4.679524	-5.051236	0.026963
104	6	0	1 887915	-2 386105	1 515110
101	0	0	4.007945	2.300103	1.515115
105	6	0	-0.283221	-4.394568	2.915391
106	6	0	1.322797	-6.716277	1.691874
107	6	0	2 704166	-4 676673	3 383490
100	0	0	2.704100	4.050073	2.272170
108	6	0	1.009918	-4.0560//	-3.3/31/9
109	6	0	1.679666	-6.597354	-1.739589
110	1	0	5.819645	-2.803039	-1.611696
111	- 1	0	4 702022	1 27/2000	1 400070
1 1 I	1	0	4.703933	-1.3/0209	-1.4002/3
112	1	0	4.242623	-2.773096	-2.420213
113	1	0	4.599502	-2.805407	2.483189
111	-	0	4 670961	_1 31/572	1 53/600
114	1	0	4.070801	-1.514572	1.334000
115	1	0	5.973205	-2.506049	1.405122
116	1	0	5.757769	-5.070047	0.226521
117	1	0	4 518891	-5 495177	-0 961397
110	1	0	1.010091	5.199177	0.707501
118	T	0	4.189276	-2.091830	0./6/581
119	1	0	2.469535	-5.373547	4.197997
120	1	0	2.772494	-3.675354	3.819588
101	- 1	õ	2 (02(00	4 045503	2 000200
ΤΖΤ	T	0	3.693600	-4.945595	2.998209
122	1	0	2.232710	-7.041449	1.177096
123	1	0	0.467144	-7.018705	1.083160
104	- 1	0	1 202570	7 057014	2 644404
124	1	0	1.203578	-7.257514	2.644404
125	1	0	-0.523353	-5.118338	3.703800
126	1	0	-1.125874	-4.362736	2.213415
107	1	0	0 100510	2 400052	2 271747
127	1	0	-0.199510	-3.400052	3.3/1/4/
128	1	0	1.503488	-7.012554	-2.739290
129	1	0	1.148756	-7.223253	-1.019141
130	1	Ο	2 750283	-6.676405	-1.528723
101	± 1	0	2.100200	0.070400	1.020123
131	Ţ	U	2.749072	-4.215090	-3.4/9808
132	1	0	1.470401	-2.985409	-3.451175
133	1	Ω	1 174967	-4 557350	-4 213413
100	±	0	1 7 6 6 9 9 7		
⊥34	б	U	-1./06295	-0.189462	-0.358973
135	6	0	-2.129596	-5.235662	-3.223409
136	1	0	-3.216005	-5.300165	-3.099593
100	± 1	0	_1 775070	-6 010050	_3 57/0/0
13/	1	U	-1.1/29/3	0.212U30	-3.5/4840
138	1	0	-1.924175	-4.504433	-4.010124
139	1	0	-2.854169	-6.311362	-0.316628
110	- 1	0	-1 /1/635	-5 979/3/	0 656145
140	1	Û	-1.414033		0.030143
141	1	0	-1.338073	-/.148721	-0.674691
142	6	0	-2 114715	0 483236	-2 152453

143	6	0	-3.961463	-1.617000	-3.362128
144	6	0	-0.997070	-1.601599	-4.036532
145	1	0	-0.927355	-2.643056	-4.363463
146	1	0	0.007490	-1.269598	-3.759733
147	1	0	-1.313999	-0.999578	-4.897723
148	1	0	-2.509761	1.115329	-2.957155
149	1	0	-1.071367	0.766423	-1.974135
150	1	0	-2.670306	0.717696	-1.238828
151	1	0	-4.074705	-2.629726	-3.763634
152	1	0	-4.110833	-0.910421	-4.187521
153	1	0	-4.757859	-1.447953	-2.629335
154	6	0	-4.031936	-4.110695	1.808518
155	6	0	-5.013118	-1.487529	0.552809
156	6	0	-4.992810	-4.112191	-1.018272
157	1	0	-4.847227	-0.720562	-0.213437
158	1	0	-4.756822	-1.055164	1.524894
159	1	0	-6.082867	-1.727112	0.560369
160	1	0	-5.074895	-4.380903	2.016627
161	1	0	-3.647226	-3.595736	2.692938
162	1	0	-3.470204	-5.041727	1.682789
163	1	0	-4.532859	-5.095515	-1.157899
164	1	0	-5.097762	-3.645450	-2.000403
165	1	0	-5.999808	-4.275210	-0.614122
166	14	0	0.00000	1.768416	0.535901
167	14	0	0.00000	-1.768416	0.535901

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	X	Y	Ζ
				0 000000	
1 2	40	0	1.873906	2.801302	-0.790328
3	14	0	1.269315	4.896654	-1.671190
4	14	0	-1.067268	4.873044	-1.822284
5	14	0	-1.707647	3.583842	0.053460
6	14	0	4.018954	3.1/9/81	0.153888
8	14	0	-4.065400	3.324495	-0.068529
9	14	0	-1.385090	4.942769	1.994729
10	6	0	-2.216598	1.123576	2.745948
11	1	0	-2.386994	2.141196	2.428862
12	6	0	-1./10938	0.709032	3.999205
13	1 6	0	-1.681211	-0.711443	4.012591
15	1	0	-1.352345	-1.334776	4.834475
16	6	0	-2.172911	-1.173873	2.767246
17	1	0	-2.286149	-2.207701	2.476952
18	6	0	-2.484692	-0.036618	1.973903
20	1	0	-2.854892	-0.054518 6 296671	-0 466690
21	1	0	2.825824	6.439792	-0.424059
22	1	0	1.392604	6.081610	0.549115
23	1	0	1.292875	7.246209	-0.784626
24	6	0	2.104905	5.309275	-3.332717
25	1	0	3.1916/3 1 737824	5.38/152	-3.220424
27	1	0	1.899671	4.559951	-4.102964
28	6	0	-1.677667	4.079490	-3.438061
29	1	0	-2.750938	4.262393	-3.562502
30	1	0	-1.507670	3.000239	-3.458453
31	1	0	-1.162382	4.522817	-4.298324
33	1	0	-1.394371	7.102962	-2.848028
34	1	0	-1.240212	7.291382	-1.095606
35	1	0	-2.771179	6.748325	-1.795615
36	6	0	4.035309	4.238437	1.728536
37	1	0	5.077428	4.503550	1.946812
30	1	0	3.634229	5.739212 5.171640	2.014384
40	6	0	5.051071	1.618635	0.464362
41	1	0	4.866809	0.840492	-0.286505
42	1	0	4.849897	1.191872	1.451521
43	1	0	6.115453	1.877880	0.420177
44	6	0	4.972155 4 498544	4.231167 5 207194	-1.252609
46	1	0	5.070729	3.754932	-2.086426
47	1	0	5.982114	4.410244	-0.718020
48	6	0	2.137451	-0.418238	-2.137463
49	1	0	2.508483	-1.065398	-2.941871
5U 51	1	0	2 711864	-0.688856	-1.92/668
52	6	0	3.950778	1.679703	-3.417443
53	1	0	4.046422	2.687028	-3.836946
54	1	0	4.097691	0.961176	-4.232813
55	1	0	4.758911	1.532547	-2.692865
56 57	6	0	0.969368	1.618521	-4.040190
58	⊥ 1	0	-0.025646	1.288183	-3.727482
59	1	Õ	1.265507	0.999844	-4.896805
60	6	0	-4.753352	2.524808	-1.644843
61	1	0	-5.787477	2.869599	-1.768885
62	1	0	-4.773648	1.432619	-1.586678
64	⊥ 6	0	-4.687758	2.004052 5.119663	-2.542930

65	1	0	-5 771236	5 139/05	0 055745
05	1	0	-3.771230	J.13040J	0.033743
66	1	0	-4.498676	5.563626	-1.096310
67	1	0	-4.218598	5.761650	0.640120
68	6	0	-4.937644	2.455869	1.370516
<u> </u>	1	0	1.557011	2.100000	2 250121
69	1	0	-4.6//809	2.86/046	2.350121
70	1	0	-4.734484	1.380922	1.391016
71	1	0	-6.017630	2.587731	1,226445
72	-	0	0 235031	1 100310	2 970610
12	8	0	0.233031	4.499349	2.0/9019
73	1	0	0.442310	5.227758	3.673328
74	1	0	1.095921	4.481004	2.199806
75	1	0	0 156585	3 503869	3 335263
75	±	0	0.150505	5.505005	1 600165
/6	6	0	-1.366688	6.801040	1.620165
77	1	0	-2.276851	7.119881	1.101556
78	1	0	-0 510368	7 102549	1 011211
70	1	0	1 211074	7.102313	1.011211
19	1	0	-1.3112/4	1.3480/9	2.569468
80	6	0	-2.762580	4.744403	3.290201
81	1	0	-2.556140	5.445968	4.108343
0.0	1	0	2 010540	2 742210	2 726204
02	1	0	=2.019340	3./42210	3.120304
83	1	0	-3.749666	4.994232	2.886567
84	6	0	2,216598	-1.123576	2.745948
05	e e	õ	1 710020	0 700022	2 000205
05	0	0	1./10938	-0.709032	3.999203
86	6	0	1.681211	0.711443	4.012591
87	6	0	2.172911	1.173873	2.767246
8.8	6	0	2 181692	0 036618	1 973903
00	0	0	2.404092	0.050010	1.973903
89	14	0	-1.873906	-2.801302	-0.790328
90	14	0	1.707647	-3.583842	0.053460
Q 1	1	0	2 386991	-2 1/1196	2 128862
21	1	0	2.300334	2.141150	2.420002
92	1	0	1.405549	-1.360850	4.808390
93	1	0	1.352345	1.334776	4.834475
94	1	0	2 286149	2 207701	2 476952
21	±	0	2.200149	2.207701	2.470332
95	1	0	2.854892	0.054518	0.956420
96	14	0	-1.269315	-4.896654	-1.671190
97	14	0	-4.018954	-3.179781	0.153888
0.0	1 4	õ	2 240142	1 205421	0.200000
98	14	0	-2.240142	-1.393421	-2.652559
99	14	0	1.067268	-4.873044	-1.822284
100	14	0	4.065400	-3.324495	-0.068529
101	14	0	1 205000	1 012760	1 004720
TOT	14	0	1.303090	-4.942/09	1.994/29
102	6	0	4.753352	-2.524808	-1.644843
103	6	0	4.687758	-5.119663	-0.112919
104	6	0	1 937611	-2 155869	1 370516
101	0	0	4.957044	2.400000	1.570510
105	6	0	-0.235031	-4.499349	2.8/9619
106	6	0	1.366688	-6.801040	1.620165
107	6	0	2 762580	-4 744403	3 290201
100	0	0	1 07707	4.070400	2 420001
108	6	0	1.6//66/	-4.0/9490	-3.438061
109	6	0	1.682704	-6.674109	-1.880365
110	1	0	5.787477	-2.869599	-1.768885
111	1	0	4 772640	1 422010	1 500000
1 1 I	T	0	4.//3040	-1.432019	-1.3000/0
112	1	0	4.195019	-2.804052	-2.542930
113	1	0	4.677809	-2.867046	2.350121
111	- 1	0	1 731101	_1 390022	1 301016
117	1	0	1.754404	1.500522	1.00000
115	1	0	6.017630	-2.587731	1.226445
116	1	0	5.771236	-5.138405	0.055745
117	1	0	4 498676	-5 563626	-1 096310
110	1	0	4.910500	5.303020	1.000010
118	1	0	4.218598	-5./61650	0.640120
119	1	0	2.556140	-5.445968	4.108343
120	1	0	2.819540	-3.742210	3.726384
101	1	0	2 740000	4 004020	0.000507
ΤΖΤ	1	0	3./49000	-4.994232	2.886367
122	1	0	2.276851	-7.119881	1.101556
123	1	0	0.510368	-7.102549	1.011211
104	1	0	1 211074	7 240070	2 5 6 4 6 9
124	1	0	1.3112/4	-7.348079	2.369468
125	1	0	-0.442310	-5.227758	3.673328
126	1	0	-1.095921	-4.481004	2.199806
107	1	0	0 156595	2 502060	2 225762
127	1	0	-0.136363	-3.303009	3.333203
128	1	0	1.394371	-7.102962	-2.848028
129	1	0	1.240212	-7.291382	-1.095606
130	1	Ο	2 771179	-6.748325	-1.795615
101	± 4	0	2.1/11/J	4 000000	T.1200TO
131	T	U	2.750938	-4.262393	-3.562502
132	1	0	1.507670	-3.000239	-3.458453
133	1	Ω	1 162382	-4 522817	-4 298324
101	±	0	1 740000		
134	Ø	U	-1./40600	-0.2900/1	-0.400690
135	6	0	-2.104905	-5.309275	-3.332717
136	1	0	-3.191673	-5.387152	-3.220424
127	÷ 1	0	_1 73700/	-6 27/657	_3 700300
101	1	U	-1./3/824	-0.2/403/	-3.100328
138	1	0	-1.899671	-4.559951	-4.102964
139	1	0	-2.825824	-6.439792	-0.424059
110	- 1	0	-1 302604	-6 081610	0 5/0115
140	1	0	-1.392004	-0.001010	0.049110
141	1	0	-1.292875	-7.246209	-0.784626
142	6	0	-2.137451	0.418238	-2.137463

143	6	0	-3.950778	-1.679703	-3.417443
144	6	0	-0.969368	-1.618521	-4.040190
145	1	0	-0.885994	-2.653145	-4.385734
146	1	0	0.025646	-1.288183	-3.727482
147	1	0	-1.265507	-0.999844	-4.896805
148	1	0	-2.508483	1.065398	-2.941871
149	1	0	-1.097195	0.688856	-1.927668
150	1	0	-2.711864	0.642696	-1.231999
151	1	0	-4.046422	-2.687028	-3.836946
152	1	0	-4.097691	-0.961176	-4.232813
153	1	0	-4.758911	-1.532547	-2.692865
154	6	0	-4.035309	-4.238437	1.728536
155	6	0	-5.051071	-1.618635	0.464362
156	6	0	-4.972155	-4.231167	-1.107847
157	1	0	-4.866809	-0.840492	-0.286505
158	1	0	-4.849897	-1.191872	1.451521
159	1	0	-6.115453	-1.877880	0.420177
160	1	0	-5.077428	-4.503550	1.946812
161	1	0	-3.634229	-3.739212	2.614384
162	1	0	-3.481826	-5.171640	1.582255
163	1	0	-4.498544	-5.207194	-1.252609
164	1	0	-5.070729	-3.754932	-2.086426
165	1	0	-5.982114	-4.410244	-0.718020
166	14	0	0.00000	1.908105	0.449403
167	14	0	0.00000	-1.908105	0.449403

Center	Atomic Number	Atomic	Coord	dinates (Ang	stroms)
1	72	0	0.000121	-0.000036	-2.163504
2	14	0	-2.625030	-2.094636	0.915172
3	14	0	-4.779146	-1.674169	1.764576
4 5	14	0	-4.970516	0.653332	1.907046
6	14	0	-2.828429	-4.263983	-0.030346
7	14	0	-1.198549	-2.325149	2.783312
8	14	0	-3.633474	3.767650	0.194746
9	14	0	-5.027514	0.978978	-1.910234
10	6	0	-1.306725	2.113340	-2.645384
11	1	0	-2.331198	2.204400	-2.318663
13	0 1	0	-0.865065	1 265513	-3.89/90/
14	6	0	0.553031	1.713106	-3.926484
15	1	0	1.192277	1.425632	-4.751456
16	6	0	0.985860	2.255116	-2.691084
17	1	0	2.010113	2.451696	-2.410621
18	6	0	-0.164863	2.485983	-1.889994
19	1	0	-0.169083	2.873015	-0.878989
20	6 1	0	-6.106236 6 125701	-2.2/090/	0.333322
21	1	0	-5 913824	-1 886062	-0 473853
23	1	0	-7.100591	-1.928096	0.842898
24	6	0	-5.148342	-2.534068	3.423821
25	1	0	-5.050940	-3.621837	3.341766
26	1	0	-6.177678	-2.311656	3.729056
27	1	0	-4.483772	-2.195930	4.224313
28	6	0	-4.256434	1.335063	3.532937
29	1	0	-4.541278	2.386648	3.654116
31	1	0	-4.661547	0.779968	4.387263
32	6	0 0	-6.821216	1.107971	1.953682
33	1	0	-7.229050	0.763257	2.911986
34	1	0	-7.394595	0.631048	1.155852
35	1	0	-6.989972	2.187464	1.892082
36	6	0	-3.870556	-4.366203	-1.613037
3/	1	0	-4.060119	-3.426307	-1.823510
39	1	0	-4.841572	-3.877813	-1.485160
40	6	0	-1.190935	-5.173019	-0.340765
41	1	0	-0.417988	-4.910791	0.392107
42	1	0	-0.795704	-4.960485	-1.339031
43	1	0	-1.361386	-6.253741	-0.270793
44	6	0	-3.803694	-5.296880	1.229720
45	1	0	-4.810149	-4.8952UI -5.361912	1.383369
40	1	0	-3.911231	-6.316168	0.838382
48	6	0	0.591927	-2.033908	2.265054
49	1	0	1.277515	-2.332793	3.067448
50	1	0	0.753756	-0.973549	2.043552
51	1	0	0.866406	-2.589521	1.362035
52	6	0	-1.317506	-4.064450	3.528314
53	1	0	-2.308895	-4.247135	3.957176
54 55	1	0	-0.580384	-4.160543	4.334484 2 793455
56	6	0	-1.556335	-1.103102	4.185578
57	1	0	-2.597549	-1.130022	4.520434
58	1	0	-1.324411	-0.074238	3.894937
59	1	0	-0.920174	-1.353099	5.044124
60	6	0	-2.868682	4.494006	1.770760
61	1	0	-3.281111	5.501172	1.908724
62	1	0	-1./80//1 _3 103836	4.588225 3 908070	1./06016
64	6	0	-5.471533	4.242624	0.269472

65	1	0	-5 585184	5 32/321	0 128861
00	1	0	5.005104	2 001470	1 050140
00	1	0	-5.885606	3.9914/8	1.252148
67	1	0	-6.080323	3./381/6	-0.488596
68	6	0	-2.854211	4.718602	-1.244606
69	1	0	-3.256573	4.435257	-2.221304
70	1	0	-1.767071	4.601562	-1.281284
71	1	0	-3.068089	5.783572	-1.089019
72	-	0	-1 130278	-0 585553	-2 803752
72	0	0	-4.430270	-0.000000	-2.003732
13	Ţ	0	-5.128964	-0.852280	-3.606410
74	1	0	-4.341412	-1.445267	-2.127848
75	1	0	-3.440910	-0.415900	-3.246722
76	6	0	-6.878157	0.786700	-1.550411
77	1	0	-7 283863	1 669797	-1 045502
70	1	0	-7 105040	-0.097003	-0 03/379
70	1	0	7.100040	0.007005	0.554570
19	1	0	-/.409065	0.6/1868	-2.503494
80	б	0	-4.952511	2.385469	-3.186202
81	1	0	-5.627054	2.127083	-4.012247
82	1	0	-3.958165	2.544994	-3.614495
83	1	0	-5.297128	3.337007	-2.767200
87	-	0	1 307049	-2 113/29	-2 645084
01	G	0	1.307043	1 (20072)	2.010001
85	0	0	0.865697	-1.628072	-3.89//14
86	6	0	-0.552392	-1.713169	-3.926628
87	6	0	-0.985528	-2.255160	-2.691330
88	6	0	0.165002	-2.486050	-1.889964
89	14	0	2.624875	2.094693	0.915531
90	1 4	0	3 717294	-1 400718	0 047972
01	1	0	0 221/20	2 204509	0.01/0/2
91	1	0	2.331439	-2.204300	-2.310111
92	Ţ	0	1.500061	-1.265611	-4.697038
93	1	0	-1.191431	-1.425668	-4.751752
94	1	0	-2.009856	-2.451658	-2.411075
95	1	0	0.168955	-2.873071	-0.878954
96	1 4	0	4 778846	1 674141	1 765211
07	14	0	2 020456	1 264002	0 020027
97	14	0	2.020400	4.204002	-0.030037
98	14	0	1.198148	2.325236	2./83488
99	14	0	4.970223	-0.653342	1.907787
100	14	0	3.633496	-3.767629	0.195321
101	14	0	5.027742	-0.978955	-1.909523
102	6	0	2.868536	-4,493987	1.771251
103	é	0	5 471567	-1 212521	0 270338
101	6	0	2 954460	1 710602	1 244001
104	6	0	2.034409	-4./10003	-1.244091
105	6	0	4.43066/	0.585606	-2.803103
106	6	0	6.878365	-0.786713	-1.549555
107	6	0	4.952863	-2.385453	-3.185495
108	6	0	4.255956	-1.335078	3.533593
109	6	0	6.820916	-1.107954	1.954597
110	1	0	3 280918	-5 501173	1 000200
111	1	0	1 700005	J.JUI1/J	1 706440
	1	0	1./80625	-4.588155	1.706442
112	1	0	3.103665	-3.908090	2.664422
113	1	0	3.257040	-4.435466	-2.220740
114	1	0	1.767343	-4.601591	-1.280998
115	1	0	3.068249	-5.783649	-1.088347
116	1	0	5 585288	-5 324199	0 129606
117	1	0	5.005200 5.005407	2 001500	1 252124
110	1	0	5.005427	-3.991300	1.233134
118	1	0	6.080494	-3./3/956	-0.48/539
119	Ţ	0	5.627543	-2.127085	-4.011435
120	1	0	3.958581	-2.544955	-3.613942
121	1	0	5.297393	-3.336996	-2.766438
122	1	0	7.284023	-1.669797	-1.044588
123	1	0	7.106135	0.087010	-0.933543
124	1	0	7 400335	-0 671934	-2 502610
105	1	0	7.409333	-0.071934	-2.302010
125	1	0	5.129435	0.852291	-3.605702
126	l	0	4.341811	1.445322	-2.12/19/
127	1	0	3.441321	0.416028	-3.246148
128	1	0	7.228721	-0.763097	2.912862
129	1	0	7.394324	-0.631158	1.156712
130	1	0	6,989657	-2.187459	1.893170
121	- 1	Õ.	1 510001	-2 386503	3 65/020
101 100	⊥ 1	0	3 165000	_1 060500	3 570040
100	Ţ	U	2.102003	-1.200322	3.3/0849
T33	1	0	4.660755	-0.779830	4.387968
134	6	0	6.106130	2.270837	0.534122
135	6	0	5.147977	2.534113	3.424439
136	1	0	5.050662	3.621884	3.342301
137	1	0	6.177292	2.311650	3.729711
120	± 1	0	7 NØ33E0	2 106070	Z 22/0/0
100	1	0	4.403309	2.1900/9	4.224940
T38	1	U	6.135692	3.363948	0.4/3408
140	1	0	5.913851	1.886023	-0.473091
141	1	0	7.100411	1.928007	0.843854
142	6	0	-0.592237	2.033759	2.265079

143	6	0	1.316932	4.064603	3.528344
144	6	0	1.555915	1.103243	4.185799
145	1	0	2.597032	1.130434	4.520929
146	1	0	1.324365	0.074338	3.895000
147	1	0	0.919453	1.352977	5.044199
148	1	0	-1.277929	2.332563	3.067413
149	1	0	-0.753888	0.973369	2.043595
150	1	0	-0.866720	2.589307	1.362025
151	1	0	2.308286	4.247363	3.957253
152	1	0	0.579754	4.160775	4.334451
153	1	0	1.113567	4.850911	2.793370
154	6	0	3.870929	4.366150	-1.612517
155	6	0	1.191023	5.173000	-0.340903
156	6	0	3.803542	5.296970	1.230106
157	1	0	0.417854	4.910775	0.391732
158	1	0	0.796106	4.960424	-1.339285
159	1	0	1.361431	6.253726	-0.270915
160	1	0	4.060424	5.426256	-1.823050
161	1	0	3.389597	3.941182	-2.497103
162	1	0	4.841971	3.877887	-1.484349
163	1	0	4.809978	4.895270	1.384046
164	1	0	3.313991	5.362053	2.205067
165	1	0	3.911142	6.316237	0.838733
166	14	0	-1.907683	-0.164522	-0.342585
167	14	0	1.907663	0.164545	-0.342279

Conter	7 + om - c	7 + or		lipotoc (Arr	
Center	ACOMIC	ACOMIC	Coorc v	unates (Ang v	SUTOINS)
			^	±	
1	22	0	0.00000	0.000000	2.325049
2	32	0	0.000000	1.805127	0.535968
3	14	0	1.906470	2.747713	-0.794038
4	14	0	1.294075	4.860479	-1.627751
5	14	0	-1.045219	4.861667	-1.766773
6	14	0	-1.721595	3.586799	0.102990
7	14	0	4.050318	3.092875	0.158240
8	14	0	2.265389	1.346754	-2.660795
9	14	0	-4.076926	3.346937	0.010861
10	14	0	-1.354940	4.934813	2.040620
11	6	0	-2.031233	1.13/3/8	2.767244
12	1 6	0	-2.200482	2.109433	2.502720
11	1	0	-1 233877	1 275283	4.003378
15	1 6	0	-1 540936	-0 755075	3 959369
16	1	0	-1.220184	-1.416041	4.753290
17	6	0	-2.027516	-1.160655	2.695885
18	1	0	-2.194923	-2.179626	2.382147
19	6	0	-2.312009	0.012842	1.945828
20	1	0	-2.694968	0.041464	0.933179
21	6	0	1.805298	6.230118	-0.405566
22	1	0	2.894380	6.342851	-0.367848
23	1	0	1.456369	6.013797	0.609518
24	1	0	1.382394	7.194844	-0.711132
25	6	0	2.118772	5.292122	-3.289324
26	1	0	3.210586	5.289002	-3.201555
27	1	0	1.811324	6.296090	-3.604566
28	Ĺ	0	1.843367	4.594394	-4.0852/4
29 30	1	0	-2 719379	4.073444	-3 510651
31	1	0	-1 429993	3 004099	-3 432525
32	1	0	-1.143244	4.552607	-4.245041
33	6	0	-1.667046	6.660873	-1.820825
34	1	0	-1.390322	7.093615	-2.790012
35	1	0	-1.224386	7.280575	-1.038049
36	1	0	-2.755723	6.724548	-1.726650
37	6	0	4.066172	4.134493	1.744866
38	1	0	5.109894	4.376560	1.981455
39	1	0	3.643942	3.628576	2.617412
40	1	0	3.532259	5.079953	1.606463
41	6	0	5.012885	1.493538	0.491118
42	1	0	4.825690	0.728636	-0.272419
43	1	0	4./492/9	1.069/10	1.465359
44	1	0	5 051014	4 124540	-1 081592
46	1	0	4.594533	5.107769	-1.235352
47	1	0	5.158002	3.645973	-2.058261
48	1	0	6.056589	4.288038	-0.674304
49	6	0	2.114378	-0.467163	-2.149242
50	1	0	2.493092	-1.121677	-2.944016
51	1	0	1.063872	-0.724406	-1.969609
52	1	0	2.666730	-0.702552	-1.233285
53	6	0	3.992408	1.586923	-3.403853
54	1	0	4.113890	2.589466	-3.828116
55	1	0	4.135824	0.860481	-4.212823
56	1	0	4.788030	1.429190	-2.667868
57	6	U	1.023197	1.593487	-4.070131
58 50	1	U	U. 9/3/13 0 0130/0	2.028361 1 200130	-4.421301
23	1	0	U.UIJ040 1 30006/	T.520130	-3.110/20
61	± 6	0	-4 773433	0.904303 2 533729	-4.91001/ -1 554582
62	1	0	-5.819145	2.847394	-1.662340
63	1	0	-4.760180	1.441080	-1.500981
64	1	õ	-4.236985	2.832287	-2.460181

65	6	0	-4 720449	5 134310	-0 022573
66	1	0	-5 001070	5 146269	0 150257
67	1	0	-J.801879	5.140209	1 007260
67	1	0	-4.545504	5.301044	-1.00/309
68	1	0	-4.244990	5.///884	0./2535/
69	6	0	-4.885887	2.459504	1.473542
./0	1	0	-4.616387	2.892616	2.441131
71	1	0	-4.632172	1.395450	1.498638
72	1	0	-5.974303	2.539957	1.359704
73	6	0	0.265643	4.441503	2.901166
74	1	0	0.506006	5.157007	3.697067
75	1	0	1.115678	4.409328	2.207733
76	1	0	0.170343	3,445125	3.352288
77	6	0	-1 295126	6 794049	1 679398
70	1	0	-2 200060	7 136204	1 102420
70	1	0	-2.209009	7.130204	1.052420
19	1	0	-0.444988	7.078932	1.053959
80	1	0	-1.20/039	/.333/55	2.630381
81	6	0	-2.720486	4./56968	3.351052
82	1	0	-2.487300	5.440347	4.177227
83	1	0	-2.801020	3.750092	3.772379
84	1	0	-3.704141	5.038815	2.960226
85	32	0	0.00000	-1.805127	0.535968
86	6	0	2.031233	-1.137378	2.767244
87	6	0	1.549606	-0.661881	4.003578
88	6	0	1 5/0936	0 755075	3 959369
00	e e	0	2 027516	1 160655	2 605005
09	8	0	2.02/J10	1.100033	2.095005
90	6	0	2.312009	-0.012842	1.945828
91	14	0	-1.906470	-2./4//13	-0./94038
92	14	0	1.721595	-3.586799	0.102990
93	1	0	2.200482	-2.169433	2.502720
94	1	0	1.233877	-1.275283	4.837266
95	1	0	1.220184	1.416041	4.753290
96	1	0	2.194923	2.179626	2.382147
97	1	0	2.694968	-0.041464	0.933179
98	14	0	-1.294075	-4.860479	-1.627751
99	14	0	-4 050318	-3 092875	0 158240
100	1 /	0	1.050510	1 246754	2 660705
100	14	0	-2.203309	-1.340/34	-2.000793
101	14	0	1.045219	-4.861667	-1./66//3
102	14	0	4.0/6926	-3.34693/	0.010861
103	14	0	1.354940	-4.934813	2.040620
104	6	0	4.773433	-2.533729	-1.554582
105	6	0	4.720449	-5.134310	-0.022573
106	6	0	4.885887	-2.459504	1.473542
107	6	0	-0.265643	-4.441503	2.901166
108	6	0	1.295126	-6.794049	1.679398
109	6	0	2.720486	-4.756968	3.351052
110	6	0	1 639640	-4 075444	-3 391764
111	6	0	1 667046	-6 660973	_1 020025
110	0	0	1.00/040	-0.000073	-1.020023
112	1	0	5.819145	-2.84/394	-1.662340
113	1	0	4./60180	-1.441080	-1.500981
114	1	0	4.236985	-2.832287	-2.460181
115	1	0	4.616387	-2.892616	2.441131
116	1	0	4.632172	-1.395450	1.498638
117	1	0	5.974303	-2.539957	1.359704
118	1	0	5.801879	-5.146269	0.159257
119	1	0	4.545304	-5.581044	-1.007369
120	1	0	4,244990	-5.777884	0.725357
121	- 1	0	2 487300	-5 440347	4 177227
122	1	0	2 801020	-3 750092	3 772370
100	1	0	2.001020	5.750052	2 060226
123	1	0	3.704141	-5.038815	2.960226
124	1	0	2.209069	-/.136204	1.182420
125	1	0	0.444988	-7.078932	1.053959
126	1	0	1.207039	-7.333755	2.630381
127	1	0	-0.506006	-5.157007	3.697067
128	1	0	-1.115678	-4.409328	2.207733
129	1	0	-0.170343	-3.445125	3.352288
130	1	0	1.390322	-7.093615	-2.790012
131	1	0	1.224386	-7.280575	-1.038049
132	1	0 0	2 755723	-6.724548	-1.726650
122	± 1	0	2 710270	-1 220202	-3 510651
124	1	U	2./193/9	-4.220302	-3.JIU031
134	1	U	1.429993	-3.004099	-3.432525
135	Ţ	U	1.143244	-4.552607	-4.245041
136	6	0	-1.805298	-6.230118	-0.405566
137	6	0	-2.118772	-5.292122	-3.289324
138	1	0	-3.210586	-5.289002	-3.201555
139	1	0	-1.811324	-6.296090	-3.604566
140	1	0	-1.843367	-4.594394	-4.085274
141	1	0	-2.894380	-6.342851	-0.367848
142	1	0	-1.456369	-6.013797	0.609518

143	1	0	-1.382394	-7.194844	-0.711132
144	6	0	-2.114378	0.467163	-2.149242
145	6	0	-3.992408	-1.586923	-3.403853
146	6	0	-1.023197	-1.593487	-4.070131
147	1	0	-0.973713	-2.628361	-4.421351
148	1	0	-0.013848	-1.290130	-3.776720
149	1	0	-1.320064	-0.964303	-4.918817
150	1	0	-2.493092	1.121677	-2.944016
151	1	0	-1.063872	0.724406	-1.969609
152	1	0	-2.666730	0.702552	-1.233285
153	1	0	-4.113890	-2.589466	-3.828116
154	1	0	-4.135824	-0.860481	-4.212823
155	1	0	-4.788030	-1.429190	-2.667868
156	6	0	-4.066172	-4.134493	1.744866
157	6	0	-5.012885	-1.493538	0.491118
158	6	0	-5.051014	-4.124540	-1.081592
159	1	0	-4.825690	-0.728636	-0.272419
160	1	0	-4.749279	-1.069710	1.465359
161	1	0	-6.088545	-1.704976	0.495493
162	1	0	-5.109894	-4.376560	1.981455
163	1	0	-3.643942	-3.628576	2.617412
164	1	0	-3.532259	-5.079953	1.606463
165	1	0	-4.594533	-5.107769	-1.235352
166	1	0	-5.158002	-3.645973	-2.058261
167	1	0	-6.056589	-4.288038	-0.674304

Center	Atomic	Atomic	Coord	linatos (Ara	stroms)
Number	Number	Type	X	Y	Z
1	40	0	0.00000	0.00000	2.329159
2	32	0	0.000000	1.939174	0.475981
3 4	14	0	1 220866	2.864259 4 946715	-0.882871
- 5	14	0	-1.120555	4.907932	-1.857973
6	14	0	-1.754688	3.671830	0.054931
7	14	0	4.010378	3.236583	0.058370
8	14	0	2.222237	1.414358	-2.712117
9	14	0	-4.106471	3.384918	-0.036827
10	14	0	-1.411192	5.077683	1.952593
12	6	0	-2.153655	2 250025	2.868196
1.3	6	0	-1.677745	0.679801	4.091827
14	1	0	-1.339185	1.258593	4.942352
15	6	0	-1.723892	-0.737934	4.011777
16	1	0	-1.428638	-1.430886	4.789451
17	6	0	-2.240602	-1.089532	2.740079
18	1	0	-2.424503	-2.093344	2.385224
19	6 1	0	-2.486801	0.111623	2.023127
20	- 6	0	1.718779	6.353131	-0.569578
22	1	0	2.805997	6.486099	-0.543133
23	1	0	1.381254	6.151843	0.452616
24	1	0	1.275812	7.303425	-0.891809
25	6	0	2.022145	5.349358	-3.435432
26	1	0	3.112178	5.411277	-3.344001
27	1	0	1.661767	6.318906	-3.798435
∠8 29	I 6	0	-1 735684	4.600367	-4.198855
30	1	0	-2.818257	4.188059	-3.545504
31	1	0	-1.521110	2.982299	-3.438668
32	1	0	-1.257419	4.495660	-4.322382
33	6	0	-1.748863	6.701869	-1.969197
34	1	0	-1.476274	7.100752	-2.954012
35	1	0	-1.300155	7.346877	-1.210714
36	1	0	-2.836709	6.//I/UI / 29//38	-1.8/1992
38	1	0	5.044406	4.516540	1.904257
39	1	0	3.537397	3.814632	2.498174
40	1	0	3.496596	5.249093	1.462556
41	6	0	4.991879	1.650311	0.400050
42	1	0	4.815350	0.883456	-0.363690
43	1	0	4.737293	1.222413	1.374804
44	L	0	6.064564	1.8/6626	0.403514
46	1	0	4.525212	5.240357	-1.361602
47	1	0	5.102372	3.774147	-2.166678
48	1	0	6.000758	4.446727	-0.796735
49	6	0	2.117768	-0.384591	-2.141105
50	1	0	2.514069	-1.058419	-2.910379
51	1	0	1.074851	-0.659352	-1.947545
52	1 G	0	2.672158	-0.566924	-1.214019
54	1	0	2.932294 4 028451	2 679394	-3 919401
55	1	0	4.077846	0.947690	-4.290965
56	1	Ő	4.741226	1.541189	-2.760240
57	6	0	0.949488	1.607110	-4.102182
58	1	0	0.870928	2.634234	-4.470714
59	1	0	-0.046483	1.288537	-3.780123
60	1	0	1.240816	0.968183	-4.945433
62 10	ю 1	0	-4./8/948 -5.8/2927	∠.40/833 2 715787	-1.5495/1
6.3	1	0	-4.744582	1.381104	-1.430301
64	1	Õ	-4.267183	2.725955	-2.476167

CE	C	0	4 7 6 4 9 4 9	E 1 C 1 1 0 0	0 17(220
65	0	0	-4.764849	5.101129	-0.1/6330
66	1	0	-5.851440	5.169090	-0.028109
67	1	0	-4.563280	5.567409	-1.173604
68	1	0	-4 319205	5 841114	0 557720
C 0	± C	0	4.027750	0 507410	1 400100
69	0	0	-4.937759	2.58/410	1.400100
./0	1	0	-4.637302	3.035893	2.417023
71	1	0	-4.744651	1.512196	1.525119
72	1	0	-6 021169	2 72/080	1 358024
72	1 C	0	-0.021109	2.724909	1.330024
73	6	0	0.215564	4.637620	2.828818
74	1	0	0.441053	5.379003	3.605251
75	1	0	1 066702	4 599386	2 137802
70	1	0	1.0000702	2.0000	2.107002
16	T	0	0.13/532	3.652568	3.30/1/0
77	6	0	-1.381548	6.924916	1.527488
78	1	0	-2.292774	7.228695	1.001313
70	- 1	0	0 525710	7 200010	0.000100
19	1	0	-0.525719	7.206919	0.908196
80	1	0	-1.323822	7.499558	2.460079
81	6	0	-2.778903	4.929652	3.263767
82	1	0	-2 552770	5 6/1275	1 067801
02	±	0	2.332770	0.041270	1.007001
83	l	0	-2.85565/	3.93/145	3./18369
84	1	0	-3.762541	5.192919	2.860122
8.5	32	0	0.00000	-1.939174	0.475981
06	6	0	2 152655	1 205220	2 0 6 0 1 0 6
00	0	0	2.153055	-1.203229	2.000190
8.1	6	0	1.677745	-0.679801	4.091827
88	6	0	1.723892	0.737934	4.011777
89	6	0	2 240602	1 089532	2 740079
0.0	0	0	2.240002	111002	2.740075
90	6	0	2.486801	-0.111623	2.023127
91	14	0	-1.870386	-2.864259	-0.882871
92	14	0	1.754688	-3.671830	0.054931
0.2	1	0	2 272702	2 250025	2 621226
93	1	0	2.272703	-2.230023	2.021230
94	1	0	1.339185	-1.258593	4.942352
95	1	0	1.428638	1.430886	4.789451
96	1	0	2 424503	2 093344	2 385224
20	1	0	2.424505	2.000014	2.303224
97	l	0	2.882091	-0.185040	1.01//9/
98	14	0	-1.220866	-4.946715	-1.755095
99	14	0	-4.010378	-3.236583	0.058370
100	 1 /	0	2 222227	1 /1/250	0 710117
100	14	0	-2.222237	-1.414330	-2./1211/
101	14	0	1.120555	-4.907932	-1.857973
102	14	0	4.106471	-3.384918	-0.036827
103	14	0	1 411192	-5 077683	1 952593
104	± 1	0	4 707040	0.407055	1 540571
104	6	0	4./8/948	-2.40/855	-1.5495/1
105	б	0	4.764849	-5.161129	-0.176330
106	6	0	4,937759	-2.587410	1.466166
107	6	0	-0 215564	-1 637620	2 020010
107	0	0	-0.215564	-4.03/020	2.020010
108	6	0	1.381548	-6.924916	1.527488
109	6	0	2.778903	-4.929652	3.263767
110	6	0	1 735684	-4 053859	-3 440250
111	0	0	1 740063	4.0000000	1 000107
$\perp \perp \perp$	6	0	1./48863	-0./01869	-1.96919/
112	1	0	5.842927	-2.745787	-1.665678
113	1	0	4.744582	-1.381104	-1.430301
111	1	0	1 267193	-2 725055	-2 476167
114	1	0	4.207103	-2.725955	-2.4/010/
115	Ţ	0	4.63/302	-3.035893	2.41/023
116	1	0	4.744651	-1.512196	1.525119
117	1	0	6 021169	-2 724989	1 358024
110	- 1	0	E 951440	5 160000	0 020100
110	1	0	5.051440	-3.109090	-0.020109
119	Ţ	0	4.563280	-5.567409	-1.173604
120	1	0	4.319205	-5.841114	0.557720
121	1	0	2 552770	-5 641275	4 067804
100	1	0	2.002//0	2 027145	2 710200
122	1	0	2.855657	-3.93/145	3./18369
123	1	0	3.762541	-5.192919	2.860122
124	1	0	2.292774	-7.228695	1.001313
125	1	0	0 525719	-7 206010	0 908196
100	1	0	1 202000	7.200515	0.000100
126	T	0	1.323822	-/.499558	2.460079
127	1	0	-0.441053	-5.379003	3.605251
128	1	0	-1.066702	-4.599386	2.137802
120	- 1	0	-0 137530	-3 652569	3 307170
100	1	0	-0.13/332	-3.032308	J.JU/1/U
130 1	Ţ	U	1.4/62/4	-/.100752	-2.954012
131	1	0	1.300155	-7.346877	-1.210714
132	1	0	2.836709	-6.771701	-1.871992
100	± 1	~	0 010057	1 100050	
133	Ţ	U	2.81825/	-4.188059	-3.545504
134	1	0	1.521110	-2.982299	-3.438668
135	1	0	1.257419	-4.495660	-4.322382
136	-	0	-1 718770	-6 353131	-0 560570
100	0	0	T. ITO I 13	0.000101	0.0000/0
13.1	6	0	-2.022145	-5.349358	-3.435432
138	1	0	-3.112178	-5.411277	-3.344001
139	1	Ο	-1 661767	-6 318906	-3 798435
140	1	0	1 701 417	0.JI0J00	4 100050
14U	Ţ	U	-1./9141/	-4.600367	-4.198853
141	1	0	-2.805997	-6.486099	-0.543133
142	1	0	-1.381254	-6.151843	0.452616

143	1	0	-1.275812	-7.303425	-0.891809
144	6	0	-2.117768	0.384591	-2.141105
145	6	0	-3.932294	-1.677929	-3.485914
146	6	0	-0.949488	-1.607110	-4.102182
147	1	0	-0.870928	-2.634234	-4.470714
148	1	0	0.046483	-1.288537	-3.780123
149	1	0	-1.240816	-0.968183	-4.945433
150	1	0	-2.514069	1.058419	-2.910379
151	1	0	-1.074851	0.659352	-1.947545
152	1	0	-2.672158	0.566924	-1.214019
153	1	0	-4.028451	-2.679394	-3.919401
154	1	0	-4.077846	-0.947690	-4.290965
155	1	0	-4.741226	-1.541189	-2.760240
156	6	0	-4.004567	-4.294438	1.633700
157	6	0	-4.991879	-1.650311	0.400050
158	6	0	-4.995081	-4.265335	-1.196072
159	1	0	-4.815350	-0.883456	-0.363690
160	1	0	-4.737293	-1.222413	1.374804
161	1	0	-6.064564	-1.876626	0.403514
162	1	0	-5.044406	-4.516540	1.904257
163	1	0	-3.537397	-3.814632	2.498174
164	1	0	-3.496596	-5.249093	1.462556
165	1	0	-4.525212	-5.240357	-1.361602
166	1	0	-5.102372	-3.774147	-2.166678
167	1	0	-6.000758	-4.446727	-0.796735

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 72	0	-0.000049	-0.000213	2.185335
2	32	0	-0.080500	1.933787	0.327260
3	14	0	1.754962	2.939586	-1.013761
4	14	0	1.019187	4.992261	-1.892823
5	14	0	-1.906920	3.589995	-0.095642
7	14	0	3.870381	3.411507	-0.066318
8	14	0	2.177368	1.519463	-2.851881
9	14	0	-4.248900	3.225906	-0.179849
10	14	0	-1.626211	5.01/916 1 105353	1./93804 2 713483
12	1	0	-2.371422	2.140019	2.451611
13	6	0	-1.698713	0.621633	3.943220
14	1	0	-1.387722	1.228891	4.784180
15	6	0	-1.676817	-0.797772	3.883751
17	1 6	0	-2.177892	-1.192267	2.617884
18	1	0	-2.312617	-2.208369	2.276729
19	6	0	-2.486745	-0.014873	1.885150
20	1	0	-2.876487	0.022355	0.875541
21	6	0	1.452779	6.426357	-0.714644
23	1	0	1.131078	6.215923	0.310740
24	1	0	0.963493	7.352620	-1.039586
25	6	0	1.809983	5.418351	-3.572258
26	1	0	2.895902	5.528554	-3.476330
27	1	0	1.409609 1.615579	6.36886U 4 654552	-3.943/32
2.9	6	0	-1.890473	3.961372	-3.588628
30	1	0	-2.974960	4.068301	-3.705653
31	1	0	-1.651285	2.895170	-3.572263
32	1	0	-1.415122	4.404597	-4.471694
33 34	6	0	-2.034053	0.009035 7 009786	-2.130471
35	1	Ő	-1.614140	7.285960	-1.383550
36	1	0	-3.122990	6.621197	-2.023136
37	6	0	3.815759	4.467302	1.509421
38	1	0	4.845455	4.726849	1.785329
40	1	0	3.274168	5.403053	1.335669
41	6	0	4.930506	1.875954	0.276368
42	1	0	4.808609	1.107387	-0.496457
43	1	0	4.687091	1.426238	1.243972
44	I 6	0	5.988924 4 812084	2.161307 4 483540	-1 317926
46	1	0	4.310868	5.444151	-1.474953
47	1	0	4.931488	4.002598	-2.292109
48	1	0	5.813173	4.695026	-0.921682
49	6	0	2.200733	-0.283996	-2.287630
51	1	0	1.185165	-0.626693	-2.060160
52	1	0	2.796564	-0.430809	-1.379698
53	6	0	3.856566	1.893552	-3.644864
54	1	0	3.896214	2.911316	-4.047882
55 56	1	0	4.026321 4 601570	1.195778 1.77/00/	-4.4/3646
57	⊥ 6	0	0.871053	1.640966	-4.217441
58	1	0	0.732651	2.661302	-4.587195
59	1	0	-0.100916	1.274511	-3.873271
60	1	0	1.176174	1.013933	-5.064694
b⊥ 62	6 1	0	-4.912325 -5 969600	2.318525 2 586409	-1.825587
63	1	0	-4.857728	1.231046	-1.601013
64	- 1	0	-4.389394	2.593668	-2.627399
65	6	0	-4.975736	4.978382	-0.284579

66	1	0	-6.059786	4,939663	-0.122680
67	1	0	-4 805425	5 401790	-1 280324
68	± 1	0	-1 5/99/9	5 669987	0 119967
60	L C	0	-4.J49949 5.020212	2 260622	1 212502
09	0	0	-5.039312	2.308033	1.312393
70	1	0	-4./58138	2.814490	2.270758
71	Ţ	0	-4.795923	1.302716	1.352680
72	1	0	-6.128263	2.456234	1.208533
73	6	0	0.023877	4.670285	2.668566
74	1	0	0.215095	5.432296	3.434142
75	1	0	0.874222	4.663493	1.976016
76	1	0	-0 005101	3 689662	3 161120
77	± 6	0	-1 600/0/	6 961905	1 359200
77	0	0	-1.090494	0.001000	1.330299
/8	1	0	-2.612162	7.119480	0.826035
./9	1	0	-0.846035	7.178578	0.740007
80	1	0	-1.662943	7.444879	2.286948
81	6	0	-2.974226	4.801942	3.116982
82	1	0	-2.783727	5.532256	3.913433
83	1	0	-2,984328	3,809809	3.579606
84	1	0	-3 976180	5 000884	2 722396
05	20	0	0 000120	1 022040	0 226055
00	52	0	0.000439	-1.933940	0.320933
86	6	0	2.2035/0	-1.105884	2./13290
8.7	6	0	1.698593	-0.622413	3.943110
88	6	0	1.676683	0.797004	3.883916
89	6	0	2.177768	1.191754	2.618129
90	6	0	2.486658	0.014501	1.885177
91	14	0	-1 754978	-2 939496	-1 014326
92	11	0	1 906902	-3 590051	-0 096150
02	1	0	2 271257	2 140400	0.000100
93	1	0	2.3/133/	-2.140499	2.431231
94	Ţ	0	1.38/582	-1.229837	4./83942
95	1	0	1.348822	1.463554	4.671259
96	1	0	2.312503	2.207926	2.277184
97	1	0	2.876409	-0.022549	0.875564
98	14	0	-1.019136	-4,992067	-1.893587
99	14	0	-3 870412	-3 411559	-0 066989
100	1 /	0	-2 177290	_1 510111	-2 952257
100	14	0	2.177205	1.010000	2.032237
101	14	0	1.31/685	-4.848808	-2.009082
102	14	0	4.248860	-3.225849	-0.180258
103	14	0	1.626236	-5.018215	1.793106
104	6	0	4.912277	-2.318126	-1.707128
105	6	0	4.975738	-4.978280	-0.285359
106	6	0	5.039241	-2.368835	1.312353
107	ĥ	0	-0 023777	-4 670601	2 668011
100	6	0	1 600/10	-6 962043	1 357334
100	0	0	1.090419	-0.002043	1.557554
109	6	0	2.9/4353	-4.8024//	3.116213
110	6	0	1.8904/1	-3.960885	-3.589195
111	6	0	2.034021	-6.608814	-2.131475
112	1	0	5.969587	-2.585876	-1.825778
113	1	0	4.857562	-1.230672	-1.601028
114	1	0	4.389425	-2.593164	-2.627678
115	1	0	4 758053	-2 814836	2 270446
116	1	0	1 795858	-1 302921	1 352501
117	1	0	- 100100	2 45 64 24	1 200200
11/	1	0	0.120192	-2.430434	1.200200
118	Ţ	0	6.059814	-4.939552	-0.123641
119	1	0	4.805261	-5.401546	-1.281138
120	1	0	4.550096	-5.670007	0.449156
121	1	0	2.783846	-5.532836	3.912621
122	1	0	2.984595	-3.810380	3.578913
123	1	0	3,976255	-5,001490	2.721529
124	1	0	2 612023	-7 119654	0 824924
125	± 1	0	0 045000	7 170711	0.720004
125	1	0	1 660067	-7.1/0/11	0.739094
126	1	0	1.662967	-7.445253	2.285899
127	Ţ	0	-0.215024	-5.432715	3.433477
128	1	0	-0.874159	-4.663615	1.975508
129	1	0	0.005319	-3.690059	3.160721
130	1	0	1.791629	-7.009515	-3.123380
131	1	0	1.614324	-7.285751	-1.384443
132	1	0 0	3.122996	-6.621040	-2.024515
1 2 2	- 1	Õ	2 97/972	-4 067660	-3 706220
101	± 1	0	2 · J / I J / Z 1 / E 1 1 F 1	2.00/002	2 5700220
105	1	U	1.001101	-2.894/16	-3.3/269/
135	1	U	1.415188	-4.404050	-4.4/2328
136	б	0	-1.452680	-6.426287	-0.715535
137	6	0	-1.809890	-5.418015	-3.573077
138	1	0	-2.895823	-5.528137	-3.477214
139	1	0	-1.409578	-6.368538	-3.944581
140	1	0	-1.615381	-4.654193	-4.331910
141	1	0	-2.532330	-6.611466	-0.695394
1/2	⊥ 1	0	-1 130006	-6 215076	0 300016
エヨム 1 / つ	1	0	-U 063430	_7 353510	-1 0/0600
THC	1	U	-0.203430	-1.002019	-1.040022

144	6	0	-2.200899	0.284272	-2.287772
145	6	0	-3.856408	-1.893173	-3.645431
146	6	0	-0.870855	-1.640347	-4.217726
147	1	0	-0.732351	-2.660625	-4.587597
148	1	0	0.101062	-1.273860	-3.873444
149	1	0	-1.175966	-1.013232	-5.064924
150	1	0	-2.615737	0.930352	-3.071183
151	1	0	-1.185420	0.627080	-2.060087
152	1	0	-2.796923	0.430909	-1.379933
153	1	0	-3.895973	-2.910849	-4.048683
154	1	0	-4.026161	-1.195224	-4.474066
155	1	0	-4.681473	-1.774822	-2.934532
156	6	0	-3.815842	-4.467468	1.508677
157	6	0	-4.930563	-1.876043	0.275791
158	6	0	-4.812022	-4.483510	-1.318739
159	1	0	-4.808693	-1.107429	-0.496992
160	1	0	-4.687125	-1.426381	1.243416
161	1	0	-5.988978	-2.161403	0.296973
162	1	0	-4.845551	-4.727081	1.784475
163	1	0	-3.361820	-3.971399	2.371033
164	1	0	-3.274192	-5.403181	1.334912
165	1	0	-4.310805	-5.444121	-1.475764
166	1	0	-4.931300	-4.002510	-2.292910
167	1	0	-5.813160	-4.694999	-0.922624

$\begin{array}{c} Me_{3}Si \underbrace{SiMe_{3}}{Si} \\ Me_{2}Si \underbrace{Si}{Si} \\ Me_{2}Si \underbrace{Si}{Si} \\ Me_{3}Si \underbrace{SiMe_{3}}{SiMe_{3}} \\ 182 (M06-2X/A), C_{2}, E^{tot} = -3243.50989 a.u. \end{array}$

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	14	0	1.168521	-0.132746	-2.030483
2	14	0	-1.168521	0.132746	-2.030483
3	14	0	1.666836	-0.618120	0.212648
4	14	0	-1.666836 2.011210	0.618120	0.212648
5	14	0	J.011310 1 553807	-2 958572	0.000204
7	14	0	-1.553807	2.958572	0.562019
8	14	0	-3.811318	-0.068487	0.860204
9	6	0	3.816735	1.947953	1.076755
10	1	0	3.098199	2.253525	1.845795
11	1	0	4.807213	2.307104	1.379058
12	1	0	3.546564	2.452041	0.142163
13	6	0	4.299483	-0.743119	2.495540
14	1	0	5.246187	-0.332761	2.865159
15	1	0	3.334070	-0.5/5856	2 376646
17	1	0	4.42/410	-0 394711	-0 465116
18	1	0	4.845881	0.081285	-1.423290
19	1	0	6.084015	-0.069123	-0.167732
20	1	0	5.111019	-1.476726	-0.628913
21	6	0	-1.495646	3.378392	2.405414
22	1	0	-0.554889	3.044874	2.857550
23	1	0	-1.571510	4.463247	2.546266
24	1	0	-2.311537	2.905187	2.960063
25	6	0	0.000000	3.684525	-0.235794
∠0 27	1	0	0.907631	3.232729	-1 319702
28	1	0	0.012000	2.J24040 4 764941	-0.055358
2.9	6	0	-3.077391	3.771177	-0.210765
30	1	0	-3.991050	3.478490	0.318099
31	1	0	-2.995609	4.863397	-0.159515
32	1	0	-3.188948	3.486308	-1.262298
33	6	0	-4.299483	0.743119	2.495540
34	1	0	-4.427418	1.824798	2.376646
35	1	0	-5.246187	0.332761	2.865159
36	1	0	-3.534070	0.304711	3.260910
38	1	0	-6.084015	0.0594711	-0.405110
39	1	0	-5.111019	1.476726	-0.628913
40	1	0	-4.845881	-0.081285	-1.423290
41	6	0	-3.816735	-1.947953	1.076755
42	1	0	-3.546564	-2.452041	0.142163
43	1	0	-3.098199	-2.253525	1.845795
44	1	0	-4.807213	-2.307104	1.379058
45	6	0	0.000000	-3.684525	-0.235794
46	1	0	-0.90/631	-3.232729	U.182/50 _1 319702
4 7	1	0	-0.012008	-4 764941	-0.055358
49	6	0	3.077391	-3.771177	-0.210765
50	1	0	3.991050	-3.478490	0.318099
51	1	0	2.995609	-4.863397	-0.159515
52	1	0	3.188948	-3.486308	-1.262298
53	6	0	1.495646	-3.378392	2.405414
54	1	0	1.571510	-4.463247	2.546266
55	1	0	2.311537	-2.905187	2.960063
56	1	0	0.554889	-3.044874	2.857550
57	6	0	1.742256	-1.501160	-3.223229
ر 20	⊥ 1	0	1.491119	-2.403040	-4.257798
60	1	0	2.829274	-1.628372	-3.163811
61	6	0	2.037302	1.472579	-2.566959
62	1	0	1.683735	1.798140	-3.551825
63	1	0	1.857589	2.284818	-1.857068
64	1	0	3.120279	1.318754	-2.634475
65	6	0	-1.742256	1.501160	-3.223229
66	1	0	-1.491119	1.241285	-4.257798
67	1	0	-2 829274	1 628372	-3 163811

$\begin{array}{c} Me_{3}Si \underbrace{SiMe_{3}}_{Si}\\ Me_{2}Si \underbrace{Si}_{Me_{2}Si-Si}\\ Me_{3}Si SiMe_{3}\\ \textbf{183} \ (M06-2X/A), \ C_{2}, \ \textbf{E}^{tot} = -2957.87849 \ a.u. \end{array}$

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	32		0 000000	0 000000	1 826499
2	14	õ	0.782614	0.879685	-2.114386
3	14	0	-0.782614	-0.879685	-2.114386
4	14	0	1.455285	1.071457	0.127580
5	14	0	-1.455285	-1.071457	0.127580
6	14	0	2.199185	3.221633	0.677406
/	14	0	3.2/0/86	-0.408/66	0.459880
9	14	0	-2.199185	-3.221633	0.677406
10	6	Ő	0.706038	4.370743	0.852679
11	1	0	0.030999	4.020502	1.641410
12	1	0	1.019248	5.390431	1.104984
13	1	0	0.136247	4.415439	-0.082220
14	6	0	3.160971	3.201994	2.306617
15	1	0	3.406184	4.222523	2.622642
17	1	0	2.378403	2.730740	2 203953
18	6	õ	3.320117	3.899342	-0.689886
19	1	0	2.788404	3.951775	-1.646263
20	1	0	3.662518	4.911030	-0.442290
21	1	0	4.203655	3.268480	-0.833757
22	6	0	-3.594991	0.683778	2.305761
23	1	0	-2.783164	1.249156	2.778151
24	1	0	-4.521439	-0 262195	2.445069
2.6	6	0	-2.890670	2.097866	-0.305185
27	1	0	-1.965862	2.520738	0.106842
28	1	0	-2.769022	2.029207	-1.390998
29	1	0	-3.703811	2.804983	-0.102776
30	6	0	-4.844371	-0.287912	-0.325525
31	1	0	-5.152037	-1.213985	0.172435
3Z 33	1	0	-3.666383	-0 507164	-0.233/94
34	6	0	-3.160971	-3.201994	2.306617
35	1	0	-4.101380	-2.648787	2.203953
36	1	0	-3.406184	-4.222523	2.622642
37	1	0	-2.578403	-2.730740	3.105745
38	6	0	-3.320117	-3.899342	-0.689886
39	1	0	-3.662518	-4.911030	-0.442290
40	1	0	-2 788404	-3 951775	-1 646263
42	6	Ő	-0.706038	-4.370743	0.852679
43	1	0	-0.136247	-4.415439	-0.082220
44	1	0	-0.030999	-4.020502	1.641410
45	1	0	-1.019248	-5.390431	1.104984
46	6	0	2.890670	-2.097866	-0.305185
4 / 18	1	0	2 769022	-2.520/38	U.106842
49	1	0	3.703811	-2.804983	-0.102776
50	6	0	4.844371	0.287912	-0.325525
51	1	0	5.152037	1.213985	0.172435
52	1	0	5.666585	-0.431778	-0.233794
53	1	0	4.699778	0.507164	-1.388458
54	6	0	3.594991	-0.683778	2.305761
55	1	0	4.5Z1439 3.69/132	-1.253596	2.445069
57	1	0	2.783164	-1.249156	2.778151
58	6	Ő	2.256437	0.519680	-3.266140
59	1	0	2.779483	-0.402662	-2.993425
60	1	0	1.920364	0.420931	-4.304611
61	1	0	2.979178	1.342837	-3.224787
62	6	0	0.000000	2.500403	-2.732124
63 61	1	0	-U.450606 -0 776305	2.362903	-3./21623
65	⊥ 1	0	0.763519	2.003209	-2.818057
66	6	0	-2.256437	-0.519680	-3.266140
67	1	0 0	-1.920364	-0.420931	-4.304611

|--|

$C_{p_2} = \frac{s_i}{s_i}$ $C_{p_2} = -1263.47387 \text{ a.u.}$

Center	Atomic	Atomic	Cooi	rdinates (Ang	gstroms)
Number	Number	туре	Δ	Ĭ	۷
1	6	0	2 093889	1 036899	-1 144639
2	1	0	2 222845	0 725668	-2 173213
3	£	0	1.592501	2.287368	-0.710605
4	6	0	2,393134	0.265205	0.00000
5	1	0	1.285197	3.104734	-1.348462
6	6	0	1.592501	2.287368	0.710605
7	1	0	2.737434	-0.760378	0.00000
8	6	0	2.093889	1.036899	1.144639
9	1	0	1.285197	3.104734	1.348462
10	1	0	2.222845	0.725668	2.173213
11	6	0	-2.369734	0.303723	0.00000
12	1	0	-2.730690	-0.716127	0.00000
13	6	0	-2.058108	1.070529	1.144643
14	6	0	-2.058108	1.070529	-1.144643
15	1	0	-2.192039	0.761453	2.173245
16	6	0	-1.536611	2.312735	0.710611
17	1	0	-2.192039	0.761453	-2.173245
18	6	0	-1.536611	2.312735	-0.710611
19	1	0	-1.216266	3.125118	1.348418
20	1	0	-1.216266	3.125118	-1.348418
21	22	0	0.015228	0.722071	0.00000
22	6	0	-1.533006	-2.265586	-1.975508
23	1	0	-1.639571	-2.904267	-1.093460
24	1	0	-2.461424	-1.696772	-2.095842
25	1	0	-1.430596	-2.919026	-2.849998
26	6	0	0.009074	-0.127679	-3.534867
27	1	0	0.016590	0.95914/	-3.392090
28	1	0	0.891101	-0.389959	-4.1301/6
29	1 C	0	-0.8/5064	-0.3///66	-4.1322/1
30	6	0	1.514588	-2.290857	-1.9/5045
31	1	0	2.432442	-1./3/609	-2.094004
32	1	0	1 401796	-2.951020	-2 9/0971
34	I 6	0	-1 533006	-2.942149	1 975508
35	1	0	-2 461424	-1 696772	2 095842
36	1	0	-1 639571	-2 904267	1 093460
37	1	0	-1 430596	-2 919026	2 849998
38	£	0	1.514588	-2.290857	1.975045
39	1	0	1,609958	-2.931620	1.093224
40	1	0	2.452442	-1.737609	2.094664
41	1	0	1,401786	-2.942149	2.849871
42	6	0	0.009074	-0.127679	3.534867
43	1	0	0.891101	-0.389959	4.130176
44	1	0	0.016590	0.959147	3.392090
45	1	0	-0.875064	-0.377766	4.132271
46	14	0	0.000421	-1.113937	-1.858345
47	14	0	0.000421	-1.113937	1.858345

Center	Atomic	Atomic	Coo	rdinates (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.156842	-0.309606	-2.538760
2	1	0	0.253744	0.698053	-2.923978
3	6	0	1.226555	-1.162735	-2.174072
4	6	0	-1.058391	-0.989110	-2.287423
5	1	0	2.280267	-0.930373	-2.260839
6	6	0	0.673877	-2.368640	-1.676306
7	1	0	-2.050739	-0.609426	-2.490425
8	6	0	-0.743167	-2.260868	-1.741386
9	1	0	1.231789	-3.228403	-1.328139
10	1	0	-1.454562	-3.026114	-1.458472
11	6	0	-0.156187	-0.307942	2.538836
12	1	0	-0.252448	0.700029	2.923407
13	6	0	-1.226453	-1.160667	2.174822
14	6	0	1.058611	-0.988315	2.287744
15	1	0	-2.280017	-0.927679	2.261656
16	6	0	-0.674546	-2.367198	1.677701
17	1	0	2.051209	-0.609071	2.490348
18	6	0	0.742572	-2.260214	1.742536
19	1	0	-1.233011	-3.226860	1.330175
20	1	0	1.453475	-3.026070	1.460046
21	40	0	0.00001	-0.634734	0.000123
22	6	0	1.971721	2.449533	1.470204
23	1	0	1.079354	3.075400	1.357224
24	1	0	1.919182	1.965315	2.451850
25	1	0	2.845497	3.111763	1.470583
26	6	0	3.820609	0.323196	0.235448
27	1	0	3.884314	-0.287280	1.142254
28	1	0	4.048580	-0.326567	-0.616913
29	1	0	4.607234	1.085018	0.290449
30	6	0	2.270248	2.221993	-1.567096
31	1	0	2.517760	1.594700	-2.431592
32	1	0	1.347818	2.765251	-1.799724
33	1	0	3.072933	2.959900	-1.453089
34	6	0	-2.270216	2.222651	1.566056
35	1	0	-2.517570	1.595673	2.430826
36	1	0	-1.347830	2.766106	1.798404
37	1	0	-3.072995	2.960421	1.451833
38	6	0	-1.971794	2.449116	-1.471283
39	1	0	-1.079641	3.075290	-1.358324
40	1	0	-1.918928	1.964635	-2.452780
41	1	0	-2.845772	3.111079	-1.472005
42	6	0	-3.820449	0.322978	-0.235727
43	1	0	-3.883999	-0.288116	-1.142129
44	1	0	-4.048447	-0.326237	0.61/045
45	1	0	-4.607147	1.084680	-0.291317
46	14	0	-2.097738	1.171572	-0.037514
4 /		0	2.09/804	1.1/1514	0.036868

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.229704	-0.268741	2.540971
2	1	0	-0.398436	0.723488	2.939734
3	6	0	-1.233310	-1.185063	2.139898
4	6	0	1.031676	-0.861935	2.302318
5	1	0	-2.301834	-1.019013	2.197247
6	6	0	-0.593312	-2.344456	1.639989
7	1	0	1.992278	-0.419942	2.529582
8	6	0	0.811940	-2.143388	1.730299
9	1	0	-1.086072	-3.230327	1.260447
10	1	0	1.578857	-2.852487	1.446144
11	6	0	0.229611	-0.269163	-2.540972
12	1	0	0.398250	0.723013	-2.939910
13	6	0	1.233311	-1.185327	-2.139778
14	6	0	-1.031709	-0.862422	-2.302163
15	1	0	2.301818	-1.019197	-2.197204
16	6	0	0.593433	-2.344694	-1.639650
17	1	0	-1.992362	-0.420549	-2.529447
18	6	0	-0.811839	-2.143762	-1.729944
19	1	0	1.086286	-3.230459	-1.259981
20	1	0	-1.578684	-2.852879	-1.445637
21	72	0	0.000012	-0.539249	0.000023
22	6	0	-1.876006	2.598740	-1.425699
23	1	0	-0.972054	3.196261	-1.260725
24	1	0	-1.798498	2.144251	-2.419989
25	1	0	-2.732270	3.283191	-1.436004
26	6	0	-3.803915	0.461285	-0.315532
27	1	0	-3.857934	-0.103135	-1.252239
28	1	0	-4.052681	-0.227571	0.499993
29	1	0	-4.582503	1.232535	-0.346175
30	6	0	-2.308869	2.289275	1.587217
31	1	0	-2.598640	1.640377	2.422263
32	1	0	-1.394265	2.819358	1.874864
33	1	0	-3.101287	3.035643	1.458488
34	6	0	2.308765	2.289129	-1.587519
35	1	0	2.598417	1.640115	-2.422517
36	1	0	1.394160	2.819228	-1.875138
37	1	0	3.101234	3.035471	-1.458954
38	6	0	1.875987	2.598923	1.425406
39	1	0	0.972026	3.196419	1.260400
40	1	0	1.798496	2.144502	2.419730
41	1	0	2.732242	3.283385	1.435651
42	6	0	3.803904	0.461391	0.315454
43	1	0	3.858023	-0.102592	1.252420
44	1	0	4.052529	-0.227864	-0.499777
45	1	0	4.582533	1.232619	0.345634
46	14	0	2.076600	1.280144	0.036184
47	14	0	-2.076620	1.280092	-0.036351

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.904743	0.889787	-2.175155
2	1	0	-1.560329	0.102620	-2.519847
3	6	0	-1.313529	2.142268	-1.647229
4	6	0	0.513119	0.899159	-2.262558
5	1	0	-2.333059	2,434312	-1,426903
6	6	0	-0.159808	2.927261	-1.434106
7	1	0	1.132793	0.110365	-2.665530
8	6	0	0.967167	2.159967	-1.796059
9	1	0	-0.139451	3.921655	-1.007548
10	1	0	2.002285	2.463942	-1.698566
11	6	0	0.091272	0.565186	2.386778
12	1	0	0.205822	-0.449981	2.741978
13	6	0	1.140613	1.446546	2.044393
14	6	0	-1.135014	1.220022	2.136972
15	1	0	2.199422	1.230113	2.109447
16	6	0	0.567147	2.649286	1.569543
17	1	0	-2.119881	0.806084	2.307767
18	6	0	-0.847126	2.508877	1.622685
19	1	0	1.111290	3.519471	1.226928
20	1	0	-1.573688	3.255322	1.329306
21	22	0	-0.061564	1.038523	0.016432
22	6	0	-1.749537	-2.208202	1.652660
23	1	0	-0.812736	-2.760660	1.775727
24	1	0	-1.929866	-1.623932	2.560561
25	1	0	-2.561425	-2.936269	1.551112
26	6	0	-3.542192	-0.271798	-0.134860
27	1	0	-3.720823	0.523953	0.595532
28	1	0	-3.697163	0.144718	-1.136137
29	1	0	-4.289764	-1.056513	0.024313
30	6	0	-1.633284	-2.372985	-1.516471
31	1	0	-0.894446	-2.106249	-2.276665
32	1	0	-1.383650	-3.370028	-1.141242
33	1	0	-2.619654	-2.424549	-1.989988
34	6	0	2.267906	-1.807661	1.665857
35	1	0	2.528760	-1.108007	2.466244
36	1	0	1.448217	-2.441847	2.017538
37	1	0	3.136135	-2.450277	1.483255
38	6	0	1.770495	-2.405516	-1.351011
39	1	0	1.074424	-3.179820	-1.016147
40	1	0	1.490483	-2.113715	-2.367240
41	1	0	2.776763	-2.837689	-1.384175
42	6	0	3.479633	0.129097	-0.536250
43	1	0	3.486385	0.369805	-1.604805
44	1	0	3.581202	1.064394	0.025273
45	1	0	4.354296	-0.494656	-0.322486
46	32	0	1.796123	-0.880467	-0.051643
47	32	0	-1.690206	-1.065403	0.008819

Cp₂Zr(GeMe₃)₂ (M06-2X/A), C₁, E^{tot} = -680.867131 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Z
1	6	0	0.184389	0.520579	2.538133
2	1	0	0.316661	-0.483108	2.922558
3	6	0	1.223901	1.409338	2.170359
4	6	0	-1.053877	1.160725	2.295040
5	1	0	2.285212	1.208918	2.247206
6	6	0	0.630258	2.597983	1.679548
7	1	0	-2.032598	0.749477	2.503209
8	6	0	-0.782411	2.443692	1.749790
9	1	0	1.158129	3.476010	1.329886
10	1	0	-1.519900	3.186569	1.473866
11	6	0	-0.185358	0.521755	-2.537977
12	1	0	-0.318366	-0.481683	-2.922793
13	6	0	-1.224157	1.411110	-2.169611
14	6	0	1.053421	1.160943	-2.294939
15	1	0	-2.285622	1.211390	-2.246194
16	6	0	-0.629571	2.599154	-1.678529
17	1	0	2.031813	0.749133	-2.503547
18	6	0	0.782965	2.443911	-1.749155
19	1	0	-1.156737	3.477395	-1.328343
20	1	0	1.521037	3.186154	-1.473078
21	40	0	0.000012	0.849688	0.000104
22	6	0	2.004622	-2.353844	-1.504125
23	1	0	1.148363	-3.019600	-1.355047
24	1	0	1.902129	-1.878716	-2.485511
25	1	0	2.914011	-2.963963	-1.513017
26	6	0	3.902771	-0.118434	-0.239481
27	1	0	3.955805	0.498112	-1.142467
28	1	0	4.130671	0.520394	0.620446
29	1	0	4.679650	-0.887561	-0.305569
30	6	0	2.319909	-2.086765	1.649151
31	1	0	2.575783	-1.447342	2.501577
32	1	0	1.403769	-2.634629	1.892316
33	1	0	3.128184	-2.813617	1.516856
34	6	0	-2.319716	-2.086716	-1.649619
35	1	0	-2.577491	-1.447278	-2.501461
36	1	0	-1.402994	-2.633052	-1.894016
37	1	0	-3.126700	-2.814896	-1.516781
38	6	0	-2.005198	-2.353904	1.503921
39	1	0	-1.148056	-3.018821	1.356181
40	1	0	-1.904555	-1.878510	2.485376
41	1	0	-2.913990	-2.964917	1.511614
42	6	0	-3.902535	-0.118195	0.238767
43	1	0	-3.955372	0.499134	1.141230
44	1	0	-4.130495	0.519914	-0.621674
45	1	0	-4.679516	-0.887153	0.305634
46	32	0	-2.100389	-0.998885	0.024880
47	32	0	2.100521	-0.998717	-0.025200

G_{e} G_{e} $Cp_2Hf(GeMe_3)_2$ (M06-2X/A), C₁, E^{tot} = -681.838029 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.199814	-0.442927	-2.540262
2	1	0	0.346857	0.555549	-2.932560
3	6	0	1.225074	-1.341551	-2.154919
4	6	0	-1.047620	-1.062458	-2.293019
5	1	0	2.289409	-1.154291	-2.223863
6	6	0	0.613274	-2.515575	-1.652928
7	1	0	-2.019855	-0.638227	-2.505316
8	6	0	-0.797161	-2.341966	-1.729639
9	1	0	1.127251	-3.395323	-1.287594
10	1	0	-1.546879	-3.069350	-1.445968
11	6	0	-0.200133	-0.441033	2.540289
12	1	0	-0.348828	0.557529	2.931741
13	6	0	-1.223855	-1.341730	2.155672
14	6	0	1.048367	-1.058648	2.293597
15	1	0	-2.288510	-1.156182	2.224394
16	6	0	-0.610046	-2.515135	1.654713
17	1	0	2.019872	-0.632720	2.505820
18	6	0	0.800079	-2.339071	1.731324
19	1	0	-1.122527	-3.396060	1.290123
20	1	0	1.551061	-3.065376	1.448229
21	72	0	0.000092	-0.733992	0.000112
22	6	0	2.00000	2.467971	1.498243
23	1	0	1.145554	3.134830	1.343021
24	1	0	1.889287	1.994845	2.479942
25	1	0	2.910013	3.076863	1.512978
26	6	0	3.903669	0.228896	0.248955
27	1	0	3.956889	-0.377018	1.159282
28	1	0	4.130737	-0.420870	-0.603207
29	1	0	4.681946	0.997231	0.305504
30	6	0	2.331348	2.188721	-1.654169
31	1	0	2.593289	1.544321	-2.501149
32	1	0	1.416161	2.733952	-1.907200
33	1	0	3.137807	2.917405	-1.521712
34	6	0	-2.332935	2.188351	1.653055
35	1	0	-2.594327	1.544050	2.500283
36	1	0	-1.418251	2.734512	1.905878
37	1	0	-3.140085	2.916217	1.520292
38	6	0	-2.002066	2.466233	-1.499604
39	1	0	-1.148328	3.134084	-1.344785
40	1	0	-1.890914	1.992658	-2.481037
41	1	0	-2.912725	3.074156	-1.514648
42	6	0	-3.903916	0.226601	-0.248978
43	1	0	-3.956640	-0.380054	-1.158844
44	1	0	-4.130653	-0.422671	0.603647
45	1	0	-4.682692	0.994377	-0.306225
46	32	0	2.100804	1.107579	0.023628
47	32	0	-2.101582	1.106574	-0.024224