
Carl von Ossietzky Universität Oldenburg
Fakultät 2, Department für Informatik

Dissertation

OOCOSIM - An Object-Oriented Co-design
Method for Embedded HW/SW Systems

Frank Oppenheimer

zur Erlangung des Grades eines Doktors
der Naturwissenschaften

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2005/oppooc05/oppooc05.html
http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2005/oppooc05/oppooc05.html

Gutachter/Supervisor: Prof. Dr.-Ing. Wolfgang Nebel
Zweitgutachter/Reviewer: Prof. Dr. Franz Rammig
Tag der/Date of Disputation: 9. Februar 2005

Product names described herein are trademarks of the respective companies

c© 2003,2004,2005 by Frank Oppenheimer

To Rie and Mona

Acknowledgements

First of all I would like to thank my supervisor Prof. Dr. Wolfgang Nebel for creating an inspiring
scientific environment. He always found the time for discussions when I asked for but also gave me
the freedom to develop my own ideas. I would also like to thank Prof. Dr. Franz Rammig for taking
the time to review this document.

Let me express my gratitude to my colleagues at OFFIS, and the University of Oldenburg. My
special thanks goes to Dr. Guido Schumacher, Dongming Zhang, Thorsten Schubert, Andreas Schal-
lenberg, and Michael Kersten for many discussions and their valuable comments. And all to the
other people who shared their opinions and advice: thank you.

On a personal note I would like to say thank you to my family for their great support and for
thrusting me during all these years. A special thank goes to Rie and Mona for giving me much
strength by their love. I could not have done this without you.

Finally, my gratitude goes to the Carl v. Ossietzky University of Oldenburg and the DFG for
giving me the opportunity to participate in the OOCOSIM project in which the foundations of the
work at hand were conceived, and the Kuratorium OFFIS e.V. for allowing me to finish this thesis.

v

vi

Contents

Acknowledgements v

1 Introduction 1

2 Basic Terms and Notations 3
2.1 Embedded systems . 3
2.2 Model of computation . 5
2.3 Co-design and co-simulation . 6
2.4 HRT-HOOD . 6
2.5 XML . 8

2.5.1 Document type definition . 8
2.5.2 XML notation . 9

2.6 Ada95 . 9
2.7 VHDL . 10

2.7.1 Object-oriented VHDL . 10
2.8 ASIS . 11
2.9 Object-orientation . 11

3 Related Works 13
3.1 General frameworks . 13
3.2 Co-Design based on a homogeneous system specification 14
3.3 Co-Design methods based on a heterogeneous system specification 18

4 Design of Embedded Systems 23
4.1 Introduction . 23
4.2 Classical embedded system design . 25
4.3 The Co-design approach . 27
4.4 Characteristics of embedded system . 27
4.5 Requirements for design methods . 30

4.5.1 Seamless refinement . 30
4.5.2 Executable heterogeneous specification . 30
4.5.3 Exploring the design space . 31
4.5.4 Sufficient simulation performance . 32
4.5.5 Early integration of real-time behaviour . 32
4.5.6 Modelling hardware/software interfaces . 33
4.5.7 Mastering complexity . 33

4.6 Recap . 34

5 OOCOSIM Design Method 35
5.1 Object-orientation in embedded system design . 35
5.2 Overview on the general flow . 36
5.3 Specification in HRT-HOOD+ . 38

5.3.1 The Root Object and its environment . 38

vii

Contents

5.3.2 System Objects . 39
5.3.3 Refinement of System Objects . 40
5.3.4 Hardware/software partitioning . 40
5.3.5 HRT-HOOD software objects . 41
5.3.6 Communication Objects . 41
5.3.7 Memory Objects . 43
5.3.8 Asynchronous Signals . 44
5.3.9 Asynchronous Memory Objects . 45
5.3.10 Hardware objects . 45

5.4 Example . 46
5.5 Executable specification and mapping to implementation 47
5.6 Recap . 47

6 Hardware/Software Interface Design 49
6.1 Specification of hardware/software interfaces . 51

6.1.1 Mainstream interface design . 51
6.2 Interface design in research . 52

6.2.1 Existing vs. OOCOSIM approach . 53
6.2.2 Requirements for ComiX . 53

6.3 The ComiX language . 54
6.3.1 ComiX Root Element . 55
6.3.2 Architecture Layer 1 . 55
6.3.3 Environment Layer . 58
6.3.4 Declaration Layer 3 . 59
6.3.5 Object Layer 4 . 61

6.4 Consistent ComiX descriptions . 64
6.4.1 Size rules . 66
6.4.2 Resource conflicts . 68
6.4.3 Type rules . 70
6.4.4 Completeness of this rule set . 70

6.5 Automated code generation and consistency checks 70
6.5.1 TempliX language definition . 71
6.5.2 Hierarchical Template Sets . 74

6.6 Implementation aspects . 74
6.7 Code-generation for Ada95 and VHDL . 75

6.7.1 Mapping of ComiX to Ada95 . 76
6.7.2 Mapping of ComiX to VHDL . 77

6.8 Recap . 78

7 Co-simulation 79
7.1 Classification criteria . 80
7.2 Execution models for the software part . 82
7.3 Co-simulation in OOCOSIM . 85

7.3.1 Overview . 86
7.4 Temporal synchronisation . 87

7.4.1 Time in the VHDL model . 88
7.4.2 Time in the software model . 89
7.4.3 Coupling hardware and software models of time 90
7.4.4 Handling asynchronous events . 91
7.4.5 Synchronising the memory-mapped I/O area 91

7.5 Implementation of the co-simulation . 92
7.5.1 Unified co-simulation event queue . 92

viii

Contents

7.5.2 The software co-simulation scheduler . 92
7.5.3 Code transformations for the co-simulation - Automatic pre-compiler 93
7.5.4 Mutual exclusion of hardware and software model - interprocess communication 95

7.6 Recap . 95

8 Evaluation of the OOCOSIM Method 97
8.1 Benchmarks for OOCOSIM . 97

8.1.1 Crane controller benchmark . 97
8.1.2 Elevator system . 101

8.2 Complexity handling . 102
8.3 Seamlessness . 103
8.4 Real-Time modelling . 105
8.5 Hardware/Software partitioning . 106
8.6 Performance of the co-simulation . 106

8.6.1 Assessment of performance . 107
8.6.2 Relative performance and accuracy . 107
8.6.3 Comparison with homogeneous model . 110
8.6.4 Synchronisation and communication effort . 111

8.7 Hardware/Software interfaces . 113
8.8 Recap . 114

9 Conclusion 115

A ComiX Syntax 117

B Templix Syntax 121

List of Figures 124

List of Tables 125

Bibliography 125

Curriculum Vitae 135

Decalration of original work 137

ix

Contents

x

1 Introduction

With the constant technological progress of the miniaturisation of electronic components, embed-
ded systems became a very important part of our daily live. Already today, embedded systems
outnumber desktop and server computer systems by far. They are part of our car, where tens of
microprocessors observe and control almost every subsystem of the vehicle. Embedded systems can
be found in medical devices or in washing machines or in space probes. But not only their number,
also their complexity and in particular their software complexity is increasing. While 4-bit and 8-bit
microcontrollers were dominant in the past, recently 32-bit and even 64-bit processors executing the
software at hundreds of megahertz clock speed are becoming a typical case.

The failure of such a system may have serious consequences. If for example an electronic brake
assistant accelerates the car instead of stopping it or an airbag controller activates the airbag at the
wrong time the consequences can be deadly.

While the design methodology for application software improved significantly after the software
crisis, embedded systems are still developed based on individual design experience instead of a well
defined methodology. This will become a serious problem in an industry facing a lack of qualified
and experienced designers and the pressure to produce increasingly complex systems in ever shorter
time.

The core contribution of this thesis is an object-oriented design flow for embedded hardware/soft-
ware systems named oocosim. It provides a notion to describe and stepwise refine a system into
a set of communicating hardware and software objects. This high-level description is useful as it
provides a design layer that is abstract enough to achieve a complete overview of a complex system
but formal enough to reason about certain properties and identify design mistakes. The objects at
this level define the entities that can be followed seamlessly through the entire design flow.

A particular challenge for the design of embedded systems is the communication across the hard-
ware/software boundaries. To handle this problem, the work at hand introduces dedicated com-
munication objects and integrates them into the graphical hrt-hood [BW95] notation. The unique
property of this extended hrt-hood notation called hrt-hood+ is that is allows the object-oriented
specification of embedded systems with specific emphasis on the hardware/software interface.

Since the communication objects are neither pure software nor hardware a new description lan-
guage, named ComiX is introduced in the work at hand. The aim is, to describe and handle the
hardware/software interface in a consistent way. The ComiX specification can be processed by an
automatic code generator to achieve hardware and software source-code models or the documen-
tation. The formal nature of ComiX allows defining a set of formal consistency rules for interface
specifications. This consistency of ComiX specifications can be checked automatically, which makes
interfaces more efficient and reliable.

Interface code generation highly depends on the target system. This thesis presents a template
based method which enables the definition of arbitrary interface code generators. Thanks to the
separation of interface specification, template specification, and the code generator tool, this method
allows to efficiently adopt new target platforms or domain specific coding standards for interfaces.

Testing and debugging of embedded systems today takes a large and even increasing portion of
the development effort. During testing two different kinds of errors in an embedded control system
design may occur: functional errors and timing requirement violations. The first one is obvious. A
violation of the specified functional behaviour is not acceptable. Many embedded systems are also
subject to certain real-time constraints. If such a control system reacts functionally correct but not
within the required deadlines it is regarded as erroneous.

1

The time-synchronous co-simulation as a core part of the oocosim design flow allows check-
ing both, the functional and timing behaviour of the specified system. Therefore, the objects are
translated into an executable model for interface, hardware, and software which can be tested and
evaluated in a so-called time-synchronous co-simulation. The co-simulation system developed in the
course of this work enables interactive debugging of the system before the first physical prototype
is built. It was necessary to develop the theoretical basis to combine the functional and timing
behaviour of the hardware and the software model. The adoption of the discrete event model to
a source-code software model allows for a time-synchronous co-simulation of a target independent
system model.

oocosim supports a design flow from an abstract object-oriented specification to the implemen-
tation. The refinement steps from the higher levels of abstraction to the lower ones are well defined
and mostly automatic. The co-simulation of hardware and software in the design allows early errors
detection and an extensive exploration of design alternatives. oocosim can therefore reduce the
design effort for complex embedded systems.

The rest of the thesis is organised as follows. The next chapter introduces some basic terms and no-
tations, important for the understanding of the further work. Chapter 3 presents existing approaches
and classifies them. The approaches are also compared with the methodology proposed in this work.
Chapter 4 describes the characteristics of embedded system design and derives requirements for
design methodology in general. The following chapters are dedicated to the different aspects of the
oocosim flow. Chapter 5 gives an overview of the oocosim design flow and then explains how
oocosim fulfils the requirements (from a methodological point of view) identified in Chapter 4.
The interface design problem and the newly defined languages ComiX and TempliX are the focus
of Chapter 6. Chapter 7 explains the mechanisms to achieve a time-synchronous co-simulation of
hardware and software in detail. Chapter 8 evaluates the presented approach (using embedded sys-
tem benchmarks) with respect to the requirements named in Chapter 4. The last chapter concludes
the work and discusses the limitation of the presented approach as well as possible future research
directions.

2

2 Basic Terms and Notations

This chapter will introduce some notations and basic terms, which are essential for the understanding
of the work at hand. Some terms may seem well known but they are used with varying meanings in
different publications. Thus, the major intention is to disambiguate these terms in order to achieve
a common understanding throughout this work. To avoid repetitions, terms like co-simulation and
co-design are only briefly introduced as they are discussed in detail later in this thesis.

Furthermore, this chapter will introduce some methods and notations like hrt-hood or XML
that are used or extended in this work. Those readers who already know them can easily skip these
sections. Due to the spatial limitations of this work, it can impart only superficial knowledge about
these concepts. For a deeper understanding, references to recommended literature are given where
appropriate.

2.1 Embedded systems

Since most of this work is about design methods for embedded systems, this term is of central
importance here. It is however non-trivial to find a generally agreed and unambiguous definition of
embedded systems in general. Thus, the aim here is to achieve a common understanding of what –
in the context of this work – an embedded system is and what is not.

While an embedded system is typically part of a bigger, physical system the term here means only
the electronic components of the device. Embedded systems can be found almost everywhere in our
daily live. From very small and rather simple electronic devices controlling consumer products like
washing machines or toasters to large and complex embedded systems steering an Ariane 5 rocket or
a deep-space probe. Although the applications are fundamentally different, the involved embedded
systems share common aspects, which will be briefly described here1.

Some typical embedded systems with some numbers about their components can be found in
Table 2.1.

Domain
(Example)

Consumer
(PDA)

Automotive
(ESP)

Telecom
(Switch)

Processor MC 68k ARM 7 Multi-Pentium
Memory 16 KB > 1 MB > 2 MB
Hardware < 10 KGates 50 KGates Multi-ASIC
RT-System Simple Scheduler Microkernel Full RTOS
Software 100 KByte (C or

Assembler)
50 KByte (C or
Assembler)

2 MByte (C or
C++)

Table 2.1: Examples for Embedded Systems

All embedded systems relevant for this work contain some software and some application specific
hardware components. Embedded systems use dedicated hardware to fulfil certain (e.g. power or
real-time) constrains. Furthermore, they need hardware blocks to interface with the environment,

1In Section 4.4 a more detailed discussion about the special characteristics will follow.

3

2.1. EMBEDDED SYSTEMS

i.e. to drive the actuators according to a particular protocol or to read sensor values from the
environment.

The CPU, memory and other off-the-shelf hardware components are necessary to execute the
control software in embedded systems. However, since they are usually not designed for a particular
embedded system, they are not regarded as hardware components in the design flow. Instead, these
components are referred to as software execution environment.

Software in the embedded domain can be found in large varieties. In the simplest case, it is only
a short, sequential program. In the other extreme, it may be multi-million lines of code program,
containing several concurrent tasks observing multiple sensors and reacting on asynchronous events
from the environment. In other cases, it can even be a combination of several almost independent
processes running on a single processor or a distributed system running on a multi-core embedded
system.

Real-Time requirements are imposed on many embedded systems. Depending on the criticality
of a deadline-violation, real-time systems are either classified as hard or as soft real-time systems.
In a soft real-time system rarely missing a deadline can be accepted whereas for hard real-time
systems every deadline must be reached to preserve its correctness. For the management of real-
time requirements in the software of such system a RTOS (Real-Time operating system) is typically
part of its embedded system’s architecture.

Depending on the embedded system’s task, application specific hardware components build a
smaller or bigger fraction of the system. Hardware is massively parallel by nature. While this property
is enabling the superior performance of hardware, it is also a challenge for the designer and the co-
design process. The custom digital hardware is implemented either in a FPGA (Field Programmable
Gate Array) or in an ASIC (Application Specific Integrated Circuit) or combinations of both.

The decision process, which parts of an embedded system should be implemented in hardware and
which in software is a called system-partitioning or hardware/software partitioning. The partitioning
decisions are based on the estimated performance and cost on the one hand and the need for flexibility
on the other hand. Generally, performance critical components are implemented in hardware while
highly configurable or flexible part should be implemented in software. However, with upcoming
architectures, i.e. reconfigurable hardware and dynamic computing, the boundary between hardware
and software is blurring, hardware is getting softer [Vah03, SON04]. This brings new alternatives
but make the design space exploration even more difficult. Still, hardware design has to cope with
several limitations2 in the design process. Thus, certainly the effort to implement functionality in
hardware by far exceeds the software design effort.

No matter how the system’s functionality is split among hardware and software; for the coop-
eration of the partitions communication is required. Through a hardware/software interface data,
commands, and events must be transferred across the hardware/software boundary. The interface
provides information about the environment measured through sensors or propagates commands by
which it controls the actuators. If a computation is split into hardware and software components, it
needs to transfer the intermediate results for further computation. As the interface is implemented
partially in hardware and software, it is regarded here as an own category.

All embedded systems share the important property of being designed for a specific purpose.
Very often they are embedded in a machine, a complex device (e.g. a car, a washing machine), or
a production cell in a factory. The environment may be another digital system but in most cases
will also contain non-electronic components. In contrast to personal computer systems, embedded
systems quite often work autonomously. Some systems are designed to work in harsh environments
or in safely critical applications. Thus, the modelling of the environment can not be omitted in
the design process. Figure 2.1 sketches a general embedded system with its subsystems hardware,
software, and interface as described above. The characteristics and the large variety of embedded
systems make it difficult to define a single all-purpose design method. Therefore, the approach
presented in this work focuses on the rather complex embedded systems with a significant and

2Software languages typically have a greater expressiveness and the turn-around times are significantly shorter.

4

CHAPTER 2. BASIC TERMS AND NOTATIONS

Data1

Data1

Environment

Actuators

Sensors

Interface
Software

Task2

Task3
Event1

Compo. A

Compo. C

Hardware

Task1

Compo. B

Embedded System

Figure 2.1: Embedded System

complex software component.

Application specific hardware will not be dominant but remains indispensable for performance and
real-time critical parts of a system. Tasks, which face tough requirements on performance, power
consumption, or reactivity, still must be implemented in application specific hardware.

The hardware/software interface, while not directly implementing any behaviour, is regarded as
an important and critical component in the embedded system design process. The effective and
correct design and implementation of the interface is a challenging task. This becomes evident in
case of modifications or maintenance, where changes of hardware or software components very often
entail changes in the interface.

2.2 Model of computation

A key aspect in co-simulation and co-design is the integration of different so-called models of com-
putation. According to the National Institute of Standards and Technology, a model of computation
is:

A formal, abstract definition of a computer. Using a model one can more easily analyse the
intrinsic execution time or memory space of an algorithm while ignoring many implementa-
tion issues. There are many models of computation which differ in computing power (that is,
some models can perform computations impossible for other models) and the cost of various
operations. (from :http://www.nist.gov/dads/HTML/modelOfComputation.html)

In the research area of this thesis, the term is often applied to characterise simulation models by
the way they describe the behaviour of system or components under design. Prominent examples of
computation models are discrete event model, synchronous model, and continuous time model. Since
the computational model describes two key aspects of the simulation model, namely the temporal
and functional abstraction mechanism, it is often be used synonym.

5

2.3. CO-DESIGN AND CO-SIMULATION

2.3 Co-design and co-simulation

The oocosim design flow as presented in this work is a hw/sw co-design method based on hw/sw
co-simulation. Therefore, almost every chapter is related to aspects of one or both of these terms.

Chapter 4 and Chapter 7 are devoted exclusively to discuss these thematic areas in relation to the
approach presented. To clarify the terms for the following chapters they will be briefly introduced
already here.

As mentioned in the previous section, embedded systems contain components from different do-
mains, namely hardware, software, and interfaces. Due to their fundamental differences, the co-design
paradigm can be clearly distinguished from conventional approaches.

Conventional design methods handle each domain separately while co-design methods are char-
acterised by an integrated process addressing all relevant domains concurrently. In consequence,
conventional design is closer to the sequential waterfall model applied in software design. The inher-
ent risks and benefits of both paradigms are discussed later (Section 4.2, Section 4.3) in detail.

Co-simulation models are characterised by their ability to simulate heterogeneous system specifi-
cations. Such a specification may contain components from different domains modelled in different
formalisms executed using different models of computation. For the integrated development pro-
cess a co-simulation is often a necessary component3 of a co-design method, where usually different
specification languages are used in different domains.

The term co-simulation is also often used to describe the concerted simulation of different specifi-
cation languages (e.g. VHDL, SystemC, and Verilog) describing components from the same domain
(here hardware). While these co-simulation environments are particularly useful to integrate IP or
legacy components into a single design, they provide no means to design an integrated hw/sw system.

To enable early detection of design flaws co-simulation environments usually provide techniques
like debuggers and tracing functionalities to validate the embedded system with all its components
interacting with a simulated environment.

With the above in mind, it becomes obvious that a co-simulation can only show the specified
behaviour under a unified simulation model. Please note, that this does not mean to use a single
simulation model for all sub-model. The unified simulation model may contain different sub-model
unified by means of wrappers allowing the synchronised simulation of the system as a whole.

If the specification is the basis for synthesis of the implementation and the simulation model
reflects all relevant properties, co-simulation provides a virtual prototype of the embedded system
under development4. In summary, a co-simulation can be seen as an executable, heterogeneous
specification of a system.

2.4 HRT-HOOD

The hrt-hood (Hard Real-Time Hierarchical Object Oriented Design) [BW95] method is a spe-
cialisation of hood [Gro95] and was originally developed for the European Space Agency (ESA). It
is a methodology for a structured design capture, based on a formal graphical and textual notation.
The methodology provides strict guidelines for the refinement of objects, which finally guarantee
certain properties of the design. In particular the runtime behaviour can easily be analysed by static
methods like rate-monotonic analysis [KRP+93].

In contrast to other object-oriented notations which – like uml – use a class-based approach, hrt-
hood follows the structural paradigm; that is, a system is represented by a set of communicating
objects5. The absence of classes and thus inheritance in hrt-hood are logical consequences of the
problems of combining inheritance and objects with an own thread of control.
3Necessary because a specification without the possibility for a validation seems useless.
4Some models reflect only a subset of system properties, e.g. they describe only the bus I/O behaviour of the system.

While these models are useful within their specific context, they do not lead to an implementation. Hence, they
are not regarded as prototypes.

5In [MDN+03] the reader can find a good comparison of uml, hood, and hrt-hood.

6

CHAPTER 2. BASIC TERMS AND NOTATIONS

The objects in hrt-hood have two representations – a graphical and a textual representation – to
achieve two different aims. The graphical representation provides an intuitive hierarchical view on
the design. hrt-hood provides six different object-types. These are: Environment, passive, active,
protected, cyclic, and sporadic. While the first three were taken from hood, the later three were
newly introduced to reflect the real-time behaviour of objects. The hard real-time part of a system
designed with the hrt-hood method contains no active objects because they are not fully analysable.
Nevertheless, they are used during the refinement of the design or for non real-time activities. Objects
are displayed by rounded rectangular boxes. In the left-upper corner one or two letters denote the
objects type6. The provided (method) interface is enclosed in a box attached to the objects. Figure
2.2 shows the first decomposition of a hrt-hood design example7.

The figure shows the

S Operator A Plant Environment

ActuatorsA

SensorsPr

A

C Job_Control

Crane_System

Start
Set_Alpha

Init
Set_Vc

Start
Vc_Val
Power_Down
...

ASER
ASATC

ASATC

Read_Alpha
Read_PosCar
Update_PosCar
...

Vc_T

Sig_SwShutDown

Sig_Pos_Desired

P
os

C
ar

_T

A
lp

ha
_T

Figure 2.2: A top-level HRT-HOOD design

top-level active object
Crane System and its
decomposition into the
main functional sub-
objects. The arrows de-
note the use-relation of
objects. For example, the
cyclic Job Control ob-
ject uses the protected
object Sensors and the
active object Actuators.
The arrows with circles
denote the data-flow be-
tween objects. For ex-
ample Job Control re-
ceives the values of type
Alpha T and PosCar T
from the Sensors object.
The flash-shaped arrows
annotate calling conventions describing the blocking behaviour of a method invocation. Obviously,
unbounded or unspecified blocking behaviour leads to non-analysable systems and therefore must be
forbidden. However, limited blocking times can be allowed under certain circumstances. Thus, a for-
mal treatment of calling conventions is necessary to enable the schedulability analysis of hrt-hood
specifications.

In contrast to the textual representation, the graphical representation does typically not contain
all the details. The graphical representation helps mastering the complexity of system design by pro-
viding hierarchical views on different levels of abstraction. Symbolic representations display various
types of relations (use, call, include) between objects.

The textual representation is useful to give a detailed description of each object and its relation-
ship to other components. It defines all attributes required to specify exactly the system and to
generate the (skeleton) source-code from it. The objects define the program elements like packages,
tasks, procedures, and functions. The algorithmic behaviour of methods can be specified by natural
language, pseudo-code, or source-code. Code-generators can integrate these building blocks into the
skeleton.

The objects in hrt-hood may be nested under certain constrains8. The objects have a name,
a type, a provided interface which enables other objects to use them and a required interface that
indicates the components, required by this object. Objects typically have attributes to specify non-
functional requirements. They for example specify the period or the importance of an object. The
6A stands for active, C for cyclic, S for sporadic, Pr for protected, and P for passive.
7The example is a top-level specification for benchmark introduced in Section 8.1.1.
8E.g. a periodic object may contain a passive object but not vice versa.

7

2.5. XML

method’s real-time behaviour within the objects is defined by attributes such as worst case execution
time (wcet).

Commercial hrt-hood design tool like the StoodTM tool from tni-valiosys combine both repre-
sentations into one design environment. The user can draw the system in the graphical representation
and refine the textual representation on demand. The Stood tool is able to generate different map-
pings into target languages such as C++ and Ada95.

2.5 XML

Since XML plays an important role in the definition of ComiX (Section 6.3), this section will shortly
introduce the XML meta language. The eXtensible Markup Language, abbreviated XML [W3C] is
a restricted subset of SGML (Standard Generalised Markup Language [ISO86]). The main goal for
the World Wide Web consortium (W3C) was to provide an easy to use language, which is compatible
with SGML. XML was designed to provide a standardised way to define simple description languages.
Strictly speaking, XML in itself is thus not a language - it is rather a meta language or a notation.

2.5.1 Document type definition

The document type definition (DTD) defines, similar to what BNF is for context free languages,
the syntax of an XML document. It defines the components allowed in a particular class of XML
documents. Possible components in any XML documents are entities for symbolic values, elements
as compounds of data and attributes to define structured data.

A great advantage of XML is the immediate availability of a universal parser API to traverse
and analyse any given XML document. For most programming languages (such as Java, C, C++,
Ada95, or Perl), XML parser implementations are available. An XML parser operates on an internal
data structure called DOM (Document Object Model). Additionally, a validating XML parser can
check, whether an XML document is consistent with a given DTD.

The following Listing 2.1 shows a DTD for a simple address book to illustrate the above-mentioned
terms. It defines one entity GENDERS with the possible values male and female. The root element
AddressBook contains a list of Person elements. Each Person element has a two subelements:
Address and Account and contains three attributes: name, age and gender. The elements Address
and Account are leaf elements with two attributes.�

<!ENTITY % GENDERS "male|female">
<!ELEMENT AddressBook (Person *)
<!ATTLIST AddressBook name ID #REQUIRED >
<!ELEMENT Person (Address , Account)>
<!ATTLIST Person name ID # REQUIRED

age CDATA # IMPLIED
gender (% GENDERS) "female" >

<!ELEMENT Address EMPTY >
<!ATTLIST Address street CDATA # REQUIRED

number CDATA #REQUIRED >

<!ELEMENT Account EMPTY >
<!ATTLIST Account bank CDATA # REQUIRED

number CDATA #REQUIRED >
� �
Listing 2.1: A simple DTD for an address file.

8

CHAPTER 2. BASIC TERMS AND NOTATIONS

2.5.2 XML notation

To explain the structure and the semantics of ComiX in Chapter 6, it is necessary to introduce
some notations that will allow referring to components of an XML document. These notations will
be illustrated by the following XML example in Listing 2.2.�

<!DOCTYPE Address SYSTEM "address.dtd">
<AddressBook file="Customers">

<Person name="John Doe"
age="23"
gender="male">

<Address street="Baker street"
number="12"/>

<Account bank ="Bank of England"
number="123456"/>

</Person >

<Person name="Mary Smith">
<Address street="Pennylane"

number="2..4"
gender="female"/>

<Account bank ="Bank of Scottland"
number="65432112"/>

</Person >
</AddressBook >
� �

Listing 2.2: Address book

XML documents are structured through elements defined in its DTD9 which is given in the DOC-
TYPE declaration (line 1 in the example). Attributes can be defined (by the DTD) to be either
REQUIRED or IMPLIED. While the former denotes that this attribute is mandatory, the latter means
that it is optional. The Person element for example has an IMPLIED gender attribute and for the
second Person (Mary Smith) this attribute has been omitted.

For reader interested in larger examples of DTDs are refered to Appendix A and Appendix B of
this work.

2.6 Ada95

Since Ada95 is the software description language within the oocosim method, this section will
give a brief overview of the special characteristics and the motivation to choose Ada95 for the
software. [Bar95] may help the reader to learn more about programming in Ada95 while the language
reference manual (LRM) [TD97] defines the syntax and semantic of the Ada95 in a formal way.

Ada95 has a modern language concept providing genericity, a flexible library mechanism, an
exception mechanism, and full object-orientation. One of the main concerns, when the language
was developed for the DoD (Department of Defence) was reliability. Therefore, the syntax prefers
readability against shortness. The compilers needed to prove their accordance to the LRM10 to
be regarded in safety critical projects. Many platform-depended issues (e.g. the run-time system)
are encapsulated by language constructs, which enhances the portability of Ada95 across different

9The definition of a DTD is not mandatory for XML documents but for this thesis only XML documents defined by
a DTD will be used.

10This was certified through an independent authority using a large set of conformance tests.

9

2.7. VHDL

platforms. Thus, the language contains many concepts that are useful for embedded system software.
This includes statement for the direct access to shared memory and interrupts for the communication
with the hardware, a detailed and well-defined tasking concept to support concurrent programming,
and a real-time annex to support real-time critical software.

Most other languages use direct operating system calls or target specific libraries to model concur-
rency, timing, and memory-mapped I/O. Among the few exceptions is Java [Coo98], which supports
concurrent programming and is highly portable due to the concept of the so-called Java abstract
machine. Concurrent programming is supported by rather simplified language concepts (so-called
threads) compared to what most operating systems come with. While these language components
could theoretical serve as a basis for more elaborated functionalities, the informally defined real-time
behaviour of Java threads makes this rather difficult.

Finally, yet importantly, Ada95 is the preferred implementation language for hrt-hood, which is
one cornerstone method for the oocosim design approach. The object types defined in hrt-hood
map easily to tasks, packages, and protected objects in Ada9511.

2.7 VHDL

Verilog [Sag98] and VHDL [Ash95] (Very High Speed Integrated Circuit Hardware Description Lan-
guage) are the hardware description languages dominating todays industrial practice in hardware
design. Upcoming languages like SystemC [Swa01,GLMS02] and System Verilog [Acc03] offer promis-
ing advantages for system-level design but still lack tool support to gain the same level of acceptance.
VHDL addresses hardware design at a wide range of abstraction levels as the behavioural level, the
register transfer level down to the very low levels describing gate net lists. As a hardware descrip-
tion language, it supports hardware inherent concepts like parallelism, signals, processes, clocks,
and timing very well. However, it lacks some important features to be a valuable system description
language. While providing high-level concepts like genericity and packages, there is no abstraction
mechanism for communication between design entities. All the communication is handled by signals.
While this is sufficient at a rather low level of abstraction, it becomes a bottleneck for the design
efficiency at system level. Furthermore, there is no support for object-orientation or dynamic cre-
ation of entities. A language like VHDL, being tailored only for hardware design, is semantically
inadequate especially regarding concurrent software12. Besides these conceptual problems, there are
also practical reasons why VHDL should not be used to model software. The performance of current
VHDL simulators is sufficient to observe the fine-grained effects in hardware but far to slow for
effective debugging of software. Moreover, there is no software IDE (integrated development envi-
ronment) for VHDL, containing for example a software compiler translating VHDL into machine
code.

2.7.1 Object-oriented VHDL

In the beginning of this thesis, the oocosim approach was based on an object-oriented extension of
VHDL to describe the hardware. In the following is described why this was abandoned in favour of
VHDL.

In the past, there were three major attempts to add object-orientation to VHDL. These were:
SUAVE13 [AWM98a,AWM98b] by P. Ashenden, G. Schumacher with OO-VHDL [Sch99], and various
participants in the REQUEST project with Objective VHDL [RPRN98c, RPRN98b, MNPRR97].
SUAVE had a very appealing syntax and language concepts like for example channels. Unfortunately,

11 There also exists a mapping for hrt-hood onto C++ implemented for example by the StoodTMtool of tni-
valiosys [Dis00] but with severe limitations regarding the real-time behaviour.

12Processes in hardware are truly parallel, while tasks in software are concurrently using a single resource namely the
processor.

13SUAVE is the abbreviation of a really long expanded name: Savant and University of Adelaide Very High Speed
Integrated Circuit Description Language extension.

10

CHAPTER 2. BASIC TERMS AND NOTATIONS

many advanced concepts of SUAVE are not synthesisable. The work on SUAVE stopped even before
a simulator was available. OO-VHDL has a well-defined formal semantic but was found to be too
difficult to use in industrial practice. Therefore, only the language definition but no tool support
was ever developed.

Objective VHDL was designed to be synthesisable and there was a large EC-funded project
developing the language and the supporting tools at the time when the work for this thesis started.
Therefore Objective VHDL appeared to be the most promising approach. Unfortunately, Objective
VHDL also failed to become an ISO-standard and the tool support was not sufficient. While there
was a prototypic translator for Objective VHDL to VHDL [RPRN98a], it never reached a mature
version. A native Objective VHDL simulation had never been attempted. Therefore, the validation
of an Objective VHDL specification is rather difficult. Similar to the other two approaches, the
development stopped and therefore the only option was to use an existing hardware description
language. As the core aim for the co-simulation was to show the coupling of hardware and software
in a time-synchronous way, VHDL could serve well as a proof of concept. Today, new tools like the
ODETTE synthesizer [GO02] translating SystemC into VHDL allows using object-oriented concepts
into embedded system design together with co-simulation.

2.8 ASIS

The Ada Semantic Interface Specification (ASIS) [Int99] provides an abstract programming interface
(API) to analyse Ada environments14.

An ASIS based application operates on the syntactic tree of the entire application including all
dependent packages. ASIS supports the identification of particular components in the source-code
of an application and to perform semantic transformations. Since ASIS operates on the syntactic
tree according to the Ada95 LRM [TD97], ambiguous keywords like delay or for can be identified
unambiguously.

To achieve the correct co-simulation behaviour in oocosim some complex transformations of real-
time and interface related Ada code segments are necessary. Thus, ASIS plays a significant role in
the implementation. A great advantage of ASIS is its portability to describe a transformation tool
independently of its platform. Even more important was the fact that ASIS is able to analyse a
complete Ada environment. Some transformations are only possible with the knowledge about more
than one compilation unit. An implementation with standard scanner and parser generators like
Yacc [Joh79] and Lex [LS75], which was in fact the approach implemented first, would have been
very difficult to implement, because these tools can only handle one file/context at a time.

While ASIS provides a very powerful and universal API for the analysis of Ada code, it is rather
difficult to handle multiple, complex code transformations. Hence, the implementation in oocosim
uses an object-oriented framework for ASIS called OFRASIS. This framework, developed in Olden-
burg, allows partitioning the transformation into less complex logical tasks. In each of the partitions,
a particular class of Ada statements is identified and translated. The code transformations itself are
explained in detail in Section 7.5.3.

2.9 Object-orientation

Since the term object-oriented is used in so many and so very different contexts such as program-
ming languages, databases, and system analysis methods it seems necessary to define it here. Some
definitions are rather unclear or confusing [BS02]. Others [Mey90] are to restrictive, as in these defi-
nitions object-orientation requires a large set of specific features. The description given here follows
Jähnichen and Herrmann in [JH02] and Xing [XB03] to a large extend.

14 An Ada environment is define by the set of components of an Ada application.

11

2.9. OBJECT-ORIENTATION

For this thesis object-orientation is a paradigm; that is, a general principle instead of a technique
used in particular languages or methods. The paradigm can be characterised by a minimal set of
indispensable concepts. The essential three concepts are:

Natural modelling of reality by objects: Object-orientation is useful because objects are natural
abstractions of real-world things. As a consequence, in object-oriented methods real-world objects a
represented by (model)objects that have at least an identity(name), a state, and a formally defined
interface15.

Sharing of common properties: This concept refers to the fact that objects typically have common
features or resources and need to share them in an efficient way. Inheritance (sharing among classes)
and aggregation/delegation (sharing among objects) are two ways to implement this concept in
object-oriented methods.

Abstract data-types or encapsulation: This concept coined in the context of formal verification
contains three mechanisms. Encapsulation guarantees that the internal state of objects is hidden
to its external users and that it is only accessible through methods defined in an explicit method
interface16. The classification of objects by types guarantees that all objects instantiated from a
particular type have the same external interface. The third concept in abstract data-types is the
defined explicit semantic of types. While rarely fully implemented for object-oriented programming
languages17, it is important for a well-defined system-level specification method.

Other concepts, like (multiple) inheritance, templates/genericity, and polymorphism are regarded
here as closely related but not essential to the object-oriented paradigm. These concepts, if used
carefully, can surely improve the expressiveness of a methodology. Especially for the specification
of reusable so-called IP-components, inheritance, polymorphism, and templates can be useful. A
new class of components could be achieved by simply deriving a new class from the base class or
combining several classes by multiple-inheritance. Polymorphic interfaces can make objects very
flexible in that they are able to handle different but similar data.

However, the semantic of inheritance for the typical objects found in an embedded system like
active objects18 in general is hard to define. An active object like a task or a process inherits
methods/attributes from its parent-class and adds new methods or attributes to it. The difficulty
is to define the own thread of control; that is, to integrate these new methods and attributes in
its behaviour without completely redefining it. Consequently, in this thesis object-orientation is
restricted to the basic features mentioned above.

15Interface denotes the means to access the object.
16Encapsulation was already a concept in non object-oriented languages like Modula 2 [Wir85].
17Some languages try to define the semantic of Acts like e.g. Eiffel by pre/post-conditions. However, Eiffel could never

reach a high practical relevance in general and especially not in embedded system design.
18An active object here denotes an object with an own thread of control.

12

3 Related Works

For many years, hardware/software co-design has been well-recognised research area. The large
amount of publications makes it virtually impossible to cover all existing approaches. Instead, this
chapter tries to give an overview of how previous and actual methods in research and industry
approached the challenges in embedded system co-design, hardware/software interface specification,
and interface synthesis (see also Section 6.2).

Each section gives a short summary and presents the similarities and differences between the
related work and the methods presented in this thesis.

The sections will present the most significant and characteristic approaches in co-design according
to three categories namely General frameworks, homogeneous, and heterogeneous approaches.

General frameworks provide typically only a backplane or a synchronisation standard that allows
domain specific tools or simulators to plug in. These frameworks are rather meta-methods as they
allow building a particular design flow based on that framework. The frameworks presented here
handle only the problem of co-simulation of a heterogeneous design that is using different models
for the component-specifications.

Homogeneous approaches start from a single system description language, which consequently
needs to capture all aspects of an embedded system. Since only one specification language is used,
the simulation model is usually easy to achieve. However, depending on the expressive power of
such system description languages, the mapping of language concepts onto hardware and software is
difficult. Consequently, only small subsets of these languages are supported for the implementation
of systems.

Heterogeneous approaches use specialised languages for each domain. The domain specific lan-
guages typically can be synthesised more easily than general-purpose specification languages. The
challenge here lies in a co-simulation model that integrates and synchronises the simulation seman-
tics of the domain model specifications. Similar to Polis1, some heterogeneous approaches are based
on generals frameworks.

3.1 General frameworks

The category general frameworks contains concepts that provide methods to co-simulate different
design languages. These frameworks do not provide the language concepts or notations to describe
the embedded system’s components. They are rather meta models that allow to integrate arbitrary
design languages into a co-design method.

Ptolemy

The most prominent framework for co-simulation systems is Ptolemy [EKL94,KL92,Le99]. It pro-
vides a general method to integrate different description models executed in separate simulation
environments into one co-simulation system. The full Ptolemy framework is far too complex to be
covered here. Thus, this section can only give a superficial overview of the terminology and the
underlying principles of this powerful modelling environment.

The Ptolemy kernel pre-determines the structure of all components in the co-simulation system
by means of a class hierarchy. The basic class is a Block. The Blocks interfaces are called PortHoles
exchanging Particles (messages) for communication through Geodiscs (channels). The Block class

1Polis was implemented using the Ptolemy framework

13

3.2. CO-DESIGN BASED ON A HOMOGENEOUS SYSTEM SPECIFICATION

defines methods for its initialisation (initialise) and execution (go) or the access of its PortHoles. All
other classes are derived from these basic classes to ensure that they all provide at least this basic
interface.

Stars representing basic functional elements are derived from Block. Collections of Stars describing
a subsystem are called Galaxy. It also contains a class Runnable to describe the execution behaviour;
that is, the joint behaviour of Stars, of the Galaxy. A Universe describes the entire simulation system.
Domains are used to combine Galaxies using different computational models. Wormholes connect
domains with each other. EventHorizons synchronise the domains, i.e. coordinate the local schedulers
and convert particles. Since the structure and the interfaces of the components in a Ptolemy system
are predefined, the kernel can coordinate the behaviour of the different sub-models.

Ptolemy provides a collection of pre-defined domains like SDF (Synchronous Dataflow), DE (Dis-
crete Event) or FSM (Finite State Machine) but allows defining additional domains. The strength
of Ptolemy lies in its flexibility and its expressive power. With this framework, arbitrary models
of computation can be connected provided a corresponding domain is defined. The disadvantages
are the high effort required to integrate a new model into the approach and especially the informal
synthesis path to an implementation.

COSMOS(SOLAR) Co-Design environment

The abstraction for system specifications accepted by the COSMOS [CHM+99] design environment
are communicating processes represented in an internal format called SOLAR. Its current imple-
mentation accepts only SDL (see below) as a front-end, but the COSMOS environment was designed
to support multi-language inputs unified by the SOLAR intermediate format.

The behaviour of processes in SOLAR is described by so-called Extended Finite State-machines
(EFSM). The processes communicate via remote procedure calls (RPC) defined in a target specific
library. The general target platform is a distributed multi-processor real-time system composed of
programmable processors and dedicated hardware components communicating through a network.

For co-simulation and analysis, the system-model is translated into SOLAR. For co-synthesis,
the SOLAR model is translated into C (for software) or VHDL (for hardware). The co-simulation
provides two levels. A functional high-level co-simulation and a real-time model, where the C code
is executed in an RT-level model of the target processor. COSMOS takes a very general approach
and aims to address complex systems. The mapping onto the target platform is based on libraries,
providing implementations for the elements of SOLAR2. Hence, the efficiency and applicability of
COSMOS depends to a large extend on the libraries.

3.2 Co-Design based on a homogeneous system specification

The homogeneous design flow approaches as shown in Figure 3.1 use a single specification language to
describe hardware and software. There are obvious advantages of such an approach. All components
of the system can be described using a single formalism, which makes simulation, and partitioning
much easier. The disadvantage however is, that very different domains like hardware and software
must be covered by a single language and a single simulation model. Some semantic concepts,
which are inherent to hardware, like parallelism or signals, are meaningless in software while typical
software concepts like dynamic memory allocation, recursive calls, or pointers are not applicable to
hardware.

Many approaches try to extend existing languages for a particular domain by concepts from
another. However, none of these approaches provides an integrated methodology that allows applying
all modelling concepts to arbitrary components. Due to the semantic differences of hardware and
software up to now, there is no simulation and synthesis semantic that allows the efficient modelling
in a truly common language.

2For example for the mapping of RPC onto hardware and software.

14

CHAPTER 3. RELATED WORKS

homogenous
Specification

(executable)

(Virtual) Prototype

Software

Hardware

Interface
Data1

Data1

Simulation
Software

Event1

Compo. A

Compo. B

Interface

Task2

Task3

Hardware

Task1

Compo. C

P
artitioning

S
ynthesis

C
om

pilation

Embedded System

Figure 3.1: Design flow with homogeneous specifications

C-like languages

The Cosyma (COSYnthesis for eMbedded Architectures) approach from the Technical University of
Braunschweig [BE97] is based on a C-like language called Cx. It augments C with process-oriented
statements to cover the specification of hardware inherent concepts like parallelism and timing. The
specific target architecture contains a single RISC-CPU3, fast RAM, and an application specific
co-processor or accelerator, all connected through a bus. The hw/sw-communication is modelled
by C-functions using abstract channels. The channels are later either removed by optimisation or
mapped onto physical channels, i.e. shared memory. An additional so-called constraint and user
directives file can be used to control the synthesis process.

Cosyma’s simulation model is based on a RT-level model of the target processor. The simulation
mainly aims at helping the hw/sw partitioning into C-code for the software and HDL code for the
hardware. The partitioning strategy starts from a full software system and optimises the performance
by moving certain parts into hardware. Furthermore, Cosyma automatically generates the scheduler
for the application.

Vulcan [GM93] developed in Stanford is based on a language called HardwareC. It is similar to
Cosyma in that it also uses an extension of C and targets the same architecture. The partitioning
strategy here starts from a complete ASIC implementation and tries to reduce the cost by mov-
ing functional blocks into software. Both, Vulcan and Cosyma, assume a single-threaded model of
computation, i.e. if the hardware is active the software on the CPU waits in an idle loop and vice
versa.

Synchronous languages

The LYCOS (LYngby CO-Synthesis) system [MGK97] mainly targets the problem of hardware/soft-
ware partitioning, i.e. ’to find a feasible partition, that is, a partition which fulfils the requirements’
which includes the architecture (CPU, interface, and ASIC). To obtain this goal, all blocks4 are repre-
sented independently of their later implementation using a model of computation called Quenya. The
LYCOS development system provides tools to translate C and VHDL specifications into Quenya5,
which serves as an universal representation upon which serial algorithms operate. Quenya represents
a design by a network of asynchronously communicating CDFGs (Control/Data Flow Graphs). Fi-
nally, after analysis, partitioning, and optimisation, code generators produce assembler-code for the
target processor and VHDL code for the custom hardware to obtain the implementation.

3The TU Braunschweig provides a SPARC processor with the method
4Also called basic scheduling block in LYCOS.
5Lycos could also be characterised as a heterogeneous approach, because C and VHDL can be used as input language.

However, since all major design activities are based on Quenya, Lycos’ core is homogeneous.

15

3.2. CO-DESIGN BASED ON A HOMOGENEOUS SYSTEM SPECIFICATION

SDL

The SDL (Specification and Description Language) [EHS97] aims mainly at formal specification and
definition of systems dominated by communication protocols. Typical examples for such systems
are devices for the DECT or ISDN protocol standard. SDL comes in two representations namely
SDL-PR (textual) and SDL-GR (graphical) describing the structure and behaviour by extended
finite state machines. It is based on a synchronous semantic. SDL has proven its efficiency in its
domain (communication/protocol dominated systems), but it seems not to be suitable for the class
of real-time hardware/software systems targeted in this thesis.

Programming languages in embedded system design

For reactive systems many languages and especially real-time languages [Sto92] have been proposed.
The following list is not exhaustive and instead names only the most prominent with their main
characteristics:

• Esterel [MEI04]: An imperative, well-typed, and parallel real-time language based on the so-
called synchronous assumption, i.e. only explicitly specified time is consumed. All other tran-
sitions occur instantaneous, i.e. without over-head. The communications between subsystems
is realised by broadcasting. The advantage of these simplifying assumptions is that it eases the
formal verification of the design.

• Statecharts [HN96]: Statemachine-based model enriched by hierarchy, parallelism and commu-
nication. Transitions are triggered by events and conditions.

• Software programming languages: Almost all programming languages have been tried with
more or less success for system level specification. On one hand they are usually lacking of
concepts for parallelism, event handing and timing. On the other hand, they provide concepts
like dynamic memory allocation, pointers, or recursive functions that are hardly implementable
in hardware. Thus, the majority of languages were used for functional specification and veri-
fication only.

• Language extensions: Several attempts were made to extend programming languages for the
specification of hardware by adding parallelism and communication to these languages. In
general, the extended languages do no longer fulfil their defined standard and thus commer-
cial tools are no longer applicable. One prominent exception here is SystemC because it is
implemented as a C++ library (see also Section 3.2).

• SpecC [GDPG01]: Uses a combination of finite state machines to describe the control flow
and programming language segments annotated to the states for the data-flow related speci-
fications. It also supports the synthesis based on a generic target architecture, which is very
similar to an application specific processor.

MatlabTM [Hof98] provides an imperative programming language that is integrated in a commer-
cial product of Mathworks Inc.. While Matlab is very powerful for the design of algorithms, it lacks
of the ability to describe hardware at a lower level of abstraction. SimulinkTMwhich is part of the
same tool environment than Matlab is popular in the industry as a graphical entry language for
the so-called golden model6. If the components in a Simulink model are taken from the Realtime
Workshop (Simulink library by MathWorks) it is possible to synthesise the design automatically
from this model. However, the difficulties when additional user defined components are required,
reduces the applicability to general design problems. In MASCOT [BJ00,BJ99] two approaches are
described in which SDL and Matlab are combined to a system-level co-design method.
6The golden model describes the ideal system to be build. It is serves as a reference implementation of the embedded

system, i.e. the final implementation must resemble the input/output behaviour of the golden model as exact as
possible.

16

CHAPTER 3. RELATED WORKS

Hardware description languages (HDLs)

Hardware description languages like VHDL or Verilog [Sag98] provide good concepts for describ-
ing parallelism and hardware specific issues like ports and registers. They cover different levels of
abstraction like behavioural level, register transfer level or at the very low-end gate/transistor level.

However, for the design of software they do not address important key concepts like abstract
communication, data-types, object-oriented design, or dynamic behaviour. Furthermore, HDL sim-
ulators are optimised for hardware debugging. Their performance in a medium complex hardware
design is sufficient in a hardware adequate time resolution7. These simulators are not able to execute
large amount of software for system validation in a co-design environment. Finally, the user interface
of these simulators is designed for hardware simulation and monitoring.

Software can be modelled either by executing the software using a processor model within the
hardware simulation or using the so-called programming language interface (PLI) of the simulator.
The latter allows executing arbitrary C-code on the simulation host machine. This co-simulation
scenario has a superior performance but requires a user defined synchronisation mechanism.

C++ based approaches

SystemC [OSC01a,OSC01b,Swa01] is a system description language based on C++. Consequently,
it contains the full set of object-oriented language concepts inherited from C++.

Additional to C++ it contains language constructs for typical hardware concepts like concur-
rency, signals, and modules. It is implemented using the class-library mechanism for its extensions.
Therefore, every C++ compiler is able to process SystemC descriptions. To run a simulation, simply
means to execute the compiled specification directly or within a C++ debugger.

Until today; that is, with the actual version 2.0, hardware/software co-design is addressed at
a very abstract level. The software part of the system can be modelled within so-called modules
using the full C++ language, but semantically it is handled like any hardware component. In this
respect, modelling of software in SystemC is similar to using the foreign model interface in VHDL.
Consequently, the means to model the software real-time behaviour and the hardware/software
interfaces are hardware oriented. In particular, SystemC 2.0 offers no language concepts to model
concurrency for software containing multiple tasks. The Open SystemC Initiative (OSCI) has already
identified this deficit and plans to integrate abstractions for concurrency for the next major release
SystemC 3.0. A more elaborated description of hardware/software co-verification with SystemC can
be found in [SG00].

Until today, only a small subset [Syn01a, Syn01b] of the full SystemC 2.0 language can be syn-
thesised automatically. The expressive power of this subset is very similar to VHDL or Verilog at
register-transfer or behavioural level. Since higher-level concepts in SystemC (like channels or the
master-slave library) lack universal applicable refinement strategies, the usage of SystemC as system
design language are rather limited.

To overcome some limitations of the SystemC, an object-oriented extension to the synthesisable
subset of SystemC named ODETTE System Synthesis Subset (OSSS) [GO01,GO02,GO03a,GO03b]
has been developed. It adds hardware specific variants of class instantiation, inheritance, polymor-
phism and so-called shared objects to the synthesisable subset. This however, does not address the
core problems in hardware/software co-design.

System Verilog

Recently, a new system level design language called System Verilog was promoted by Synopsys Inc..
It tries to overcome some basic limitations of Verilog by adding higher-level concepts already familiar
from VHDL like enumeration types and user defined data types in general. Furthermore, abstract

7According to [HSK00] the typical performance of a hardware simulation of an embedded processor executed about
5 instructions per second. Thus, 1 millisecond on a 50 MIPS embedded CPU would take about 2.8 hours.

17

3.3. CO-DESIGN METHODS BASED ON A HETEROGENEOUS SYSTEM SPECIFICATION

concepts like communication channels enhance the expressive power of Verilog into the system-
level design domain. System Verilog also integrates concepts for verification into the language, thus
providing a complete language for design. Another advantage is the wide industrial acceptance of
its predecessor Verilog especially in the USA. However, until today there is very little tool support
for System Verilog8. Thus, it is difficult to judge the suitability of the language in the domain of co-
design. The core strength of Verilog was its simplicity and the efficient synthesis tool-chain. System
Verilog adds many new features, which might make it difficult to keep its strengths.

UML

The UML (Unified Modelling Language) [OMG01] is probably the most prominent graphical object-
oriented modelling language. Many of its dialects [Sel98,Neu00,MDN+03,GE03,KBNO03,Kab02]
have been proposed for the design of embedded system. However, none of these have directly ad-
dressed the modelling of application specific hardware or the hardware/software interface. Hence,
there is no seamless refinement flow from UML into a concrete implementation in hardware and
software.

Due to its high expressiveness, UML is applicable for the requirement capture or for modelling
complex, software-dominated systems. For the class of embedded systems addressed in this thesis,
it seems to be not adequate.

Recap

Many of the homogeneous approaches presented above are well suited to express designs in a very
specific application domain, dominated by either hardware or software. Some provide a formal se-
mantic, which enables analysis or formal verification of system properties. The common strength of
these approaches – the principle ability to express the whole design within a single formalism – is
also the source of its weak point when it comes to implementation. Some concepts are extremely
abstract9 as with Esterel or Statecharts, which makes efficient mapping to hardware and/or software
difficult.

Other approaches are restricted to an execution architecture that is easily and efficiently to im-
plement either in hardware (HDLs, FSM and state-based models) or in software (programming
languages). When applied to a system containing hardware and software, these approaches show
severe deficits.

Another problem is how to model communication interfaces between the hardware and software
components. The interfaces and the synchronisation mechanisms for hardware and software are very
different but in a truly homogenous approach, they should be modelled by a common concept.
Consequently, only very abstract concepts covering both domains are applicable. However, such
abstractions like for example abstract channels are rather difficult to implement in hardware and
software. Due to these difficulties, hardware/software interface design in this work is regarded a
different domain, which requires dedicated methodological support. Some of the existing approaches
in this context are presented in Section 6.2.

3.3 Co-Design methods based on a heterogeneous system
specification

The obvious alternative for the design of heterogeneous systems is to use a heterogeneous specifica-
tion; that is, using different description languages to specify the subsystems adequately. Figure 3.2
shows a generic design flow based on heterogeneous specifications.

8Many EDA tool vendors have announced support for System Verilog. In the first releases, they mainly target at
the verification capabilities of the language.

9Abstract here in particular means to use concepts with no immediate representation in hardware or software.

18

CHAPTER 3. RELATED WORKS

Cosimulation

Hardware

Interface

Software

Data1

Data1

Software

Compo. A

Compo. B

Interface

Task2

Task3

Hardware

Task1

Heterogenous Specification

Compo. C

S
ynthesis

C
om

pilation

Embedded System

Figure 3.2: Design flow based on a heterogeneous specification

Within these approaches the designer can choose the appropriate concept or model of computation
to describe and implement the various system components. The methodological challenge is to
merge these modelling concepts into one unified co-design method. The co-design method needs to
provide a notation to define and implement the communication interface and a mechanism for the
synchronisation between distinct domains such as hardware and software. The oocosim method
falls into this category and a large part of this work is indeed dedicated to this unification of models
and concepts.

Polis and Pia

Pia and Polis [BCG+97] are both co-simulation environments built on the PTOLEMY (Section
3.1) framework. A system in Polis is specified by a set of so-called co-design finite state machines
(CFSMs), which can communicate with each other. The CFSMs are mapped to Stars within the
discrete event domain of PTOLEMY. For the refinement of the real-time behaviour, instruction set
simulators (ISS) can be used. Wrappers adopt the particular interface of each ISS to a standard
interface of a PTOLEMY Star. By this mechanism different ISS can be coupled into the simulation
through the same kind of Stars. To enhance the simulation performance, Polis provides a mechanism
to avoid re-evaluation of previously calculated timing information. After the first calculation a key
and the timing information can be stored. If a calculation with the same key occurs again the timing
information is re-used.

Pia describes the system as a set of physical components using the Pia language. The components
have interfaces, which can receive or send events through ports. Wires describe the connections
between ports. The structure is similar to a hardware block diagram or to a hardware description
language. Software components can be described in C-code. The hardware specified in Pia and the
software in C-code is compiled by the Pia-preprocessor into the Pia-domain (an extension of the
discrete event domain) of Ptolemy. The software code can be executed by a model of the target
processor, described as a Pia hardware component or by host code execution10 to speed-up the
simulation. In Pia performance enhancement can also be achieved by abstraction of communication
models between hardware and software or by optimistic scheduling.

10Source-code is compiled for the host machine and executed on it at a much higher speed.

19

3.3. CO-DESIGN METHODS BASED ON A HETEROGENEOUS SYSTEM SPECIFICATION

Coware N2CTM

Initially the CoWare tool-suite [RVBM96] was developed at IMEC, Belgium and later became the
commercial product CoWare N2C [CoW00].

A CoWare design is composed of blocks. The behaviour of blocks can be described in C (untimed),
RTC (C enriched by register transfer level constructs to describe hardware), VHDL, or Verilog
using so-called Host language encapsulation. Blocks communicate via ports and can be decomposed
hierarchically to achieve the desired structure. The CoWare design-flow typically starts with an
untimed, functional C-model, which then can be stepwise refined to a cycle-accurate VHDL or
Verilog model.

The software components (blocks) can be mapped onto a target processor and the hardware/soft-
ware interface to memory mapped I/O. The co-simulation can be achieved using a cycle-accurate
instruction set simulator.

CoWare N2C is a commercial framework including tools for the hardware/software partitioning,
the hardware/software interface generation and the simulation. The execution of VHDL or Ver-
ilog is delegated to commercial HDL-simulators such as ModelSimTM(Mentor Graphics Inc.) or
LeapfrogTM(Cadence Inc.).

Seamless CVETM

Mentor Graphics offers a commercial co-simulation tool called Seamless CVE [KN99]. The software
can be described in C and the hardware in VHDL. The Seamless co-simulation kernel allows executing
the software in an instruction set simulator or untimed as native compiled code. The hardware
as well as the system bus is simulated in an HDL-simulator. The simulation kernel guarantees a
consistent view on the shared memory for hardware and software. Executing each bus access in
the VHDL simulation would slow down the simulation to unacceptable speeds11. Instead, Seamless
allows determining which memory accesses are passed to the VHDL model and which are handled
efficiently in local memory. The optimisation technique sketched above can speed up the simulation
significantly, but requires a lot of non-trivial user input.

The simulation concept for the compiled code has no notion of real-time and is therefore only
useful for pure functional verification, while the real-time capable simulation requires a cycle-accurate
instruction set simulator for the target processor.

PLI based co-simulation

Most HDL simulators provide a so-called programming language interface (PLI), which allows to
execute functions written in C as part of the hardware model. The PLI mechanism provides an
alternative way to describe hardware blocks. This is in particular useful when complex algorithmic
blocks must be executed.

The co-simulation models based on this mechanism typically execute the software model in C
by simply calling these functions without any notion of time. Thus, these co-simulations are useful
only for functional verification. The real-time behaviour of the target software can not be efficiently
modelled with this mechanism. Many more sophisticated co-simulation methods and tools (e.g.
Seamless and CoWare N2C) rely on this mechanism to couple a HDL simulation with the software
simulation environment. The co-simulation approach presented in Chapter 7 also uses extensively this
basic mechanism to implement synchronisation and communication between hardware and software
model.

Recap

Heterogeneous approaches, while making co-simulation and partitioning difficult, offer the great ad-
vantage of providing tailored primitives for each modelling domain. Thus, heterogeneous approaches
11In a full simulation every instruction fetch in the software simulation requires a bus access in the VHDL model.

20

CHAPTER 3. RELATED WORKS

not only model the components in an adequate way. Furthermore, they support the possibility
to automatically implement the system’s components based on their co-design model. Only with
automatic implementation support a seamless design flow can be maintained.

The methods presented above all have particular strengths and weaknesses. HDL-based and ISS-
based techniques support analysis at a very detailed and exact level but lack sufficient simulation
speed to verify the class of embedded systems targeted in this work. The application of other
approaches, like HCE or programming languages, provides abstractions which certainly improve the
simulation performance but cannot cover important aspects such as the real-time behaviour of the
co-design system. Moreover, some abstraction mechanisms (for example synchronous approaches
or Ptolemy) omit important aspects (real-time or hardware/software interfaces), that need to be
defined for an automatic mapping onto efficient implementations.

The method introduced in this thesis will provide a mechanism to model systems in a rather
abstract way without neglecting important aspects such as the real-time behaviour or the hard-
ware/software interface.

21

3.3. CO-DESIGN METHODS BASED ON A HETEROGENEOUS SYSTEM SPECIFICATION

22

4 Design of Embedded Systems

The intention of this chapter is to describe and discuss the design process and the principles applied
in embedded system development. After the introduction in Section 4.1, Section 4.2 and Section
4.3 describe and compare two general approaches to embedded system design. While Section 2.1
describes embedded systems from a more physical point of view, Section 4.4 characterises the class of
embedded systems relevant for this work by their specific properties1. Deduced from these properties,
the requirements on an appropriate design method are discussed in Section 4.5.

In particular, the list of requirements defined here provides a basis for the subsequent introduction
(Chapter 5), detailed description (Chapter 6, Chapter 7), and evaluation (Chapter 8) of the oocosim
design methodology.

4.1 Introduction

The creative process of embedded system design begins with the conceptual idea of an electronic
device to be build, i.e. it starts with needs, which forms only a vague specification of the intended sys-
tem. Requirement capture translates these needs into an abstract but not necessary vague document.
Requirements should not be too narrow for not becoming system specifications.

The choice of the formalism or notation is often directed by the biggest challenge in the design
process. If software complexity is the most important issue, graphical notations like UML or hrt-
hood can be quite useful. Due to their object-oriented and hierarchical character, the design of
complex systems can be mastered with these methods.

If the algorithmic design consumes most of the design effort, often a tool like Matlab and/or
Simulink [Hof98] is more appropriate. These tools provide expressive graphical notations and pow-
erful abstractions for numerical and signal processing problems.

The transition point between requirement document and system specification is sometimes hard
to define. However, at the point where the architecture of the embedded system is defined, the
specification stage is definitely reached. Thus, partitioning the system into hardware and software
is typically at the beginning of this phase. A system specification is a precise and unambiguous
description of the system and its architecture but must not fully determine the implementation.

For a seamless design-flow (Section 4.5.1), the system specification should begin where the re-
quirement capture ends. Since system specification involves many individual design decisions that
are hard to formalise, this transition can hardly be automatic. Nevertheless, it should be supported
in the methodology by providing similar abstractions in the early and the later phases of the design.

After a succession of refinements, the final system specification must lead to the direct input for
building the implementation, i.e. the notation for the system specification must be processable2 for
automatic synthesis tools or software compilers. It should however not over-specify the implemen-
tation in a way that changing the implementation platform (e.g. the embedded CPU or the ASIC
process technology) entails major changes to the specification.

The specification is the first level, where exact reasoning about the intended system becomes
possible. Therefore, it should reflect all the important aspects of the system and enable at least the
validation or verification of the systems functional behaviour.

1Due to the great variety of embedded systems, it seems unavoidable to constrain a design method to a certain class
of systems.

2’Processable’ here does not mean that the specification notation must be the immediate input for the synthesis tool
or compiler. It only requires an automatic path from the final system specification into the implementation flow.

23

4.1. INTRODUCTION

Since embedded control systems consist of application specific hardware, software, and interfaces
the system specification must support modelling at least these (sub-)domains of design. The system
design may also contain analogue hardware components and sometimes the environment is specified
separately, which would require a fourth and fifth sub-domain.

Finally, the specification must be translated into an immediately implementable description. At
least here software must be specified in a programming language and complied for the target pro-
cessor using a cross-compiler3. The hardware can be synthesised based on a description using a
hardware description language (HDL) like VHDL, SystemC, or Verilog. Unfortunately, the hard-
ware synthesis process based on existing tools is far more complex than the compilation of software.
Only a strictly limited subset of the whole HDL is supported [Gro01]. Many of the more abstract
language constructs and data-types must be refined manually to a synthesisable representation, e.g.
bit-vectors. Furthermore, most synthesis tools require a certain coding style to be obeyed. Finally,
the designer must be aware of the target technology and provide additional information to achieve
an acceptable result from the synthesis tools. Consequently, the co-design flow must not only result
in a HDL representation for the hardware but in a practically synthesisable description.

In summary the development process itself can be characterised as stepwise refinement4 with each
step adding more and more details and restrictions to the systems description. In conjunction with
the refinement process, the level of abstraction is decreasing and the design space is shrinking. Finally,
the implementation representing exactly one design alternative is left, covering all requirements.
Figure 4.1 shows the general successive refinement steps relating the preciseness and the effort for
changes in each design phase.

Late changes induce high costs: During refinement the systems description becomes more and
more precise. Therefore, the possibilities for reasoning and validation are increasing. Unfortunately,
the effort for changes in the later stages is also increasing. Obviously, in the first design phase needs
can be added or changed easily. New or modified requirements must be kept consistent with the rest
but this should not impose significant effort5. Changing the final implementation or a prototype,
where all details are fixed even small changes or corrections will result in high costs for redesign.
Therefore, changes should ideally be limited to the earlier design phases.

Costs for the redesign result from three major parts. The first part results from the need to
build a new physical system or prototype. If the hardware is implemented in an application specific
chip which needs to be changed the implied cost are enormous6. According to Gartner Inc. [TS04],
about half of the ASIC (49 %) and FPGA designs (48 %) needed more than two iterations to solve
timing problems. More than 10 % needed five or more iterations. Prototypes based on FPGAs (Field
Programmable Gate Arrays) can help to reduce these physical device costs but since the prototype
brings an additional phase into the design flow it may also incur additional design costs and delay
to the release date.

The second part of the costs is related to the increased design effort. In the implementation,
even minor changes often lead to major redesign steps, especially in a highly optimized system. For
example, changed or added functionality must be integrated into the timing analysis of software or
hardware and often the interface is affected. In the worst case, the changes lead to a full redesign of
the system starting with a new specification. While the execution speed of the implemented design
makes testing, i.e. the identification of errors fast and easy, it is often difficult to find the source
of the erroneous behaviour. In embedded systems, the software cannot be traced as easy as in a
personal computer system. Since typically only input and output are observable, the analysis of
hardware is even more difficult.

3A cross-compiler generates machine code for processor different from the host machine it is executed on.
4Please note that the term ’stepwise refinement’ here has a wider scope than the one Wirth defined in [Wir71].
5This is of course only true, when these new needs or requirement are imposed before the later design phases.
6The production of only the new mask for a 0.18 micron process can cost up to a million dollar and the price is

increasing for every new technology.

24

CHAPTER 4. DESIGN OF EMBEDDED SYSTEMS

Figure 4.1: Refinement process for embedded systems

The large effort of late changes to the design does not only cause direct cost for designer effort
and a new physical device. The third source for costs is due to the delay itself. Tight time-to-
market constrains are imposed upon many products. Very often, only the first product on the
market generates profits. Moreover, a delay may result in the rescheduling of production facilities
and marketing efforts. These effects can easily lead to the complete failure of a project.

Therefore, the last stage where design mistakes or adverse decisions can be discovered and cor-
rected with reasonable effort is the specification phase. In the specification, the system can be
analysed and tested in depth because the behaviour of hardware, interface, and software can be
observed relatively easy. Errors can be corrected by changing the implementation specification. This
is the key reason why this work stresses the importance of an executable and precise specification,
which allows the analysis of functional and non-functional behaviour of the system to be built. Con-
sequently, methods for a precise specification and its validation therefore make the centre of the
work at hand.

Two classes of design flows can be distinguished for embedded design. The traditional methodology
is often used in current industrial practice but the modern co-design approach is gaining more and
more interest and acceptance.

The approaches as described in the following two sections represent the idealised variants of their
class. In the current practice, combinations of both are often applied. The description will neglect
the initial phases (needs and requirements capture) prior to the initial system specification because
they differ only after hardware and software are identified.

4.2 Classical embedded system design

The classical approach as depicted in Figure 4.2 uses a sequential approach where each sub-system
(hardware, software, and interfaces) is developed in a separate design environment. The develop-
ment cycle often begins with building a hardware prototype because embedded software usually

25

4.2. CLASSICAL EMBEDDED SYSTEM DESIGN

can be sufficiently tested only in interaction with the corresponding hardware. The application spe-
cific hardware is modelled using a hardware description language, simulated and tested at different
abstraction levels and finally synthesised into an ASIC implementation.

Special prototyp-

DesignDesign Design
SoftwareHardware Interface

Specification TestingStart End

Phase 3 Phase 4 Phase 5Phase 2Phase 1

Design flaw detected

Figure 4.2: The classical design flow

ing boards carrying
an FPGA (Field Pro-
grammable Gate Array)
chip, optionally a CPU,
memory and some I/O
ports can reduce the ef-
fort to develop the execu-
tion platform for the em-
bedded system. A large
enough FPGA can im-
plement the application

specific hardware and even the CPU as a so-called soft core7 to execute the software. Unfortunately,
building such prototypes is still rather time-consuming and the result is rather inflexible since every
change in the hardware model requires synthesising a new FPGA image.

Based on the execution platform, the target specific part of the software development process and
the interface implementation can begin. Testing of software is done using the hardware prototype.
When both parts are finished, the integration of hardware, software, and development of the interface
in-between into the first prototype can take place.

A major drawback for this design flow is that the implementation and test of embedded software
must be postponed until the hardware prototype reaches a semi-final status in the development
process. The interface design, while being complex and error prone, takes place at the integration
phase in the very end. The real-time behaviour and the hardware/software interaction of the later
system cannot be analysed before it is actually running. If a design flaw is detected here, it might
result in revisions of some design decisions, i.e. in building a new prototype.

Since time-to-market is an increasingly important issue for the success of a product based on
an embedded system, the delay introduced by the classical approach often cannot be accepted.
Moreover, design flaws or real-time problems can be detected only in late design phases. The real-
time behaviour of the prototyping board and the final system is usually not the same as FPGA
implementations of the processor or the ASIC in the finally implementation are functional equivalent
at best. Thus, expensive changes or even redesigns introducing additional delays might be necessary.

The absence of a co-simulation environment is the main source for another serious problem namely
the debugging. Prototype systems resemble the final system very well but they lack of appropriate
debugging facilities. In general, it is impossible to stop the system in a certain situation and analyse
the internal state of it in a comfortable way. It is in particular impossible to link the erroneous
behaviour directly with the implementation specification; that is, the source-code. This makes de-
bugging a difficult and time-consuming task.

In order to overcome the difficulties, the classical design flow is often combined with a strict
version of the so-called platform based design. A rather static platform defining a processor, the bus
system, fixed interfaces, and very limited resources for ASIC components is chosen as a basis for the
embedded system. While this approach is suitable for software-dominated systems, it often leads to
inefficient solutions for highly integrated hardware/software systems or so-called systems on chips
(SoC). Especially in the latter case, tailored solutions become possible because all components of
the system can be created from scratch.

7A soft core is a synthesisable computational component described in a HDL. Typically, the provider delivers the
HDL code with additional synthesis scripts to ease the task of technology mapping, i.e. implementation for a
particular technology process.

26

CHAPTER 4. DESIGN OF EMBEDDED SYSTEMS

4.3 The Co-design approach

Most of the inefficiencies, delays, and extra costs identified for the conventional embedded system
design can be avoided by the co-design approach depicted in Figure 4.3. All components of the
embedded system are developed in an integrated process.

As in the traditional approach, the design begins with a initial specification. It may be based on
a graphical notation or given as a so-called golden model in C++ or Matlab/Simulink. After the
initial system specification is partitioned into hardware, software, and the interface, the development,
refinement, and the validation can begin in parallel.

To be able to start

detected

Hardware
Design

Software
Design

Interface
Design

Testing

Phase 1 Phase 2 Phase 3

Implementation

Design flaw

C
os

im
ul

at
io

n

Start Specification

Figure 4.3: Parallel design in Co-design

productive software de-
velopment, system vali-
dation must be possible
while a working physical
hardware prototype is
not yet available. There-
fore, it is necessary to
provide a realistic ex-
ecutable model of the
embedded system, a so-
called virtual prototype;
that is, a co-simulation.

Within the co-
simulation (Chapter 7),
the hardware and soft-
ware components and
their interaction through
the interface can be tested and design alternatives can be evaluated. The virtual prototype is very
flexible, as it exists only as a (source-code-) model. Source-level simulations help to relate errors and
specification, which eases debugging significantly. The costs for a new version of a virtual prototype
are negligible as it requires only setting up a new instance of the co-simulation model8. Obviously,
there are also some difficulties and disadvantages related with virtual prototypes. The major dis-
advantage is the low performance of virtual prototypes. Since hardware, interface, and software
are only simulated and the slowest component dominates the performance, it is usually orders of
magnitude lower than of the implemented system. The other major back-draw of simulated systems
in general is the accuracy of the model, i.e. the level of detail in which the important characteristics
are represented in the virtual prototype. There is a clear trade-off between accuracy and simulation
speed. The more accurate a simulation is, the slower it typically is. Hence, the challenge is to choose
the right balance between accuracy and performance in a co-simulation environment. Due to great
variety of systems and their requirements, there is no general optimal solution in this trade-off
process. Instead, each class of embedded systems can be represented by a certain type of virtual
prototype.

From the ideal executable model, the first implementation can be achieved through synthesis and
compilation. Since real-time behaviour and the hardware/software interface was integrated early in
the design process the implementation is already well tested which results in lower effort due to
redesign and debugging.

4.4 Characteristics of embedded system

There are two major motivations for this section. One is to make clear that embedded systems fun-
damentally differ from other computational devices like desktop or mainframe computers. A suitable
8Depending on the mechanism chosen to implement the co-simulation, it is often required to modify or compile the

source-code representation to prepare it for the co-simulation .

27

4.4. CHARACTERISTICS OF EMBEDDED SYSTEM

design method must address these characteristics to handle the special challenges closely connected
with embedded systems design. The other motivation is to narrow the scope of the oocosim method
proposed in this work to a particular class of embedded systems.

There are many ways to characterise embedded systems. Giving many examples of representative
embedded systems could be one approach but examples can easily be misinterpreted or be misleading.
Another approach would be to describe them as the sum of their typical components. Due to the
great diversity of embedded system, this would lead either to a detailed but virtual endless list or
to a more general one, not being sufficiently distinguishing.

Hence, to determine the class of embedded systems that is in the scope of this thesis a character-
isation from many different viewpoints is given in the following.

Specific task: As the term embedded already suggests, these systems are typically parts of larger
systems. They are embedded into an environment to perform a specialised task. This gives the
opportunity to optimise the system for this particular task. Special hardware components can be
used to meet critical deadlines or the processors speed could be decreased to reduce the power
consumption as long as the system is able to perform its task correctly. In contrast, a general-
purpose computer is the execution platform for many and diverse applications, where the design
target is being fast in the general case.

Tight non-functional constrains: Embedded systems are quite often hidden inside a complex mass
product like an automobile or a cellular telephone. Due to the high volumes, the price for such
a system often becomes critical for the profit of the selling company. For others, size or power-
consumption (think of a pacemaker) can be the key factor for success. Therefore, the search for the
optimal solution regarding many different constrains is of great importance in embedded system
design. While the explicit modelling of such requirements is not part of this work, the method
presented will allow exploring the design space. Different design decisions can be evaluated leading
to a solution that fulfils the requirements imposed by the physical environment.

Applications with real-time constraints: Applications fall into one of the following categories.
Interactive Systems that respond to external stimuli (often of a human user) as soon as they are
ready. Most desktop applications fall into this category. Transformational or data-streaming systems
process continuously certain blocks of input data into blocks of output data. Typical examples
are telecommunication base stations or Ethernet cards in desktop PCs. The throughput of such
a component is the dominant design goal. Many embedded systems are reactive systems, which
means they react continuously on events from an external environment. Often several sources of
events with different rates and priorities or criticalities exist. Such embedded system must be able
to handle events or data properly; that is, correctly and in time.

Standard application designers often care for speed, whereas embedded system designer care for
timing constraints. Moreover, typically embedded systems needs to be just fast enough to meet
the real-time constrains, whereas the desktop computer should be as fast as possible for common
desktop applications. If the correctness of embedded systems depends on meeting all deadlines, they
are called hard real-time systems. An airbag controller for example, obviously is a hard real-time
system; if it fires too late (or too early), the result is obviously catastrophic. This leads to the next
characteristic.

Safety critical: Many electronic systems like airbags, ESP or ABS in modern automobiles or anti
collision radars in planes are great safety improvements as long as they work correctly but may
also cause an accident if an error occurs. Therefore robustness, gracefully degradation9 and proven

9Gracefully degradation means that a failure of a component leaves the system in a reduced but safe situation. For
example, a broken sensor in an airbag controller cannot cause the ignition of it.

28

CHAPTER 4. DESIGN OF EMBEDDED SYSTEMS

correctness are important features. As stated above, correctness often means not only functional
correctness but also keeping all critical real-time constrains.

Minimal user interaction: Most embedded systems operate almost autonomously. A human user
may set the operational mode in the beginning but from then on the embedded system works in
response to its physical environment.

Another important factor is the absence of a human observer. If the embedded system does not
work correctly usually, there is no person to identify and act accordingly. A manual restart or a
manual shutdown is possible in most standard applications but it is often impossible for embedded
systems. The embedded system therefore often runs self-diagnosis tasks in parallel with the core
functional tasks to identify erroneous system behaviour.

Heterogeneous components: As stated above embedded systems consist of hardware components,
software components, and an interface for the internal communication. Systems strongly dominated
by hardware or software, which could easily be modelled by hardware or software design flows are not
in the scope of this work. The strength of the oocosim approach is the ability to model, simulate,
and implement heterogeneous systems.

The computational model and communication primitives in hardware and software models are
fundamentally different. In digital hardware, truly parallel components communicate via electrical
wires. Thus, the hardware is often modelled as a discrete event system where events on clocks or
other signals trigger computations.

Software is essentially sequential; that is, there is a single thread of control in the software execu-
tion. Concurrent software components can be modelled by active or passive objects communicating
via messages or shared objects. Typically, there are several active objects (task) in the application.
A scheduler determines the order of execution; that is, the access to the processor resource according
to a well-defined scheduling policy. This modelling style seems not appropriate for pure hardware
systems since in general there are no such unique resources as the processor is for software. Modern
system description languages such as SystemC (Section 3.2) try to come to a more homogeneous
specification of hardware and software. However, since the fundamental differences remain, the ap-
proaches still are dominated by a single domain. SystemC for example is more an HDL than being
appropriate for complex software models.

The interface is partially hardware and software. Obviously, the interface must be accessible
for certain components in hardware and in software. Consequently, neither hardware nor software
description languages can be appropriate to model the interface. An independent approach is required
to handle interfaces in the design process. A detailed discussion and a proposed solution for this
problem is presented in Chapter 6.

Complex reactive behaviour: Embedded control systems typically contain numerous sensors ob-
serving the environment permanently. Events occurring in the environment and registered by sensors
need to trigger actuators within certain deadlines to achieve the intended correct real-time behaviour.
Eventually asynchronous events can occur, which require immediately actions in the software, thus
pre-empting the running activity. Parallel tasks might observe the validity of sensor values to detect
broken components.

In many consumer products, more and more of their functional features are implemented by
embedded systems. In the past, each functional component was implemented by a different controller.
Nowadays, there is a need to integrate multiple tasks into one controller. While this simplifies the
physical architecture (number of devices and their communication structure) in the product, it
increases the complexity of the embedded software.

Hardware/software interface: Data and control flow between hardware and software is inherent to
embedded systems. Data from the environment collected by sensors and internal state of the hard-

29

4.5. REQUIREMENTS FOR DESIGN METHODS

ware both are stored in special registers located in hardware. These data must be computed in the
software part of the embedded application. The resulting control commands for the hardware must
be propagated through the interface. To bridge the gap between hardware and software, the interface
provides a bidirectional connection carrying data and control to the appropriate components.

Some events in the environment or in the hardware part require an immediate reaction of soft-
ware part. These events are typically propagated by special communication channels implemented
by interrupts. These asynchronous,10 unidirectional channels are also regarded as part of the hard-
ware/software interface.

4.5 Requirements for design methods

The characteristics of embedded systems mentioned above impose certain requirements on design
methods that often differ from the design of software or hardware in general. These requirements
ask for a different design methodology.

Some characteristics like the importance of real-time behaviour lead directly to special require-
ments for a design method of embedded control systems. Others, like for example reactiveness,
have influence on various aspects of the method. The following will name the properties of a design
method capable to develop the above-characterised systems. The oocosim method described in the
following chapter provides a design flow and a set of tools that aims to fulfil these requirements.
Thus, this chapter also serves as a motivation and property-oriented description of the oocosim
method.

In Chapter 8 of this work, benchmarks are presented and discussed to proof that oocosim in fact
provides an approach, maintaining the hereafter presented requirements.

4.5.1 Seamless refinement

As described above embedded system design is a refinement process. During this refinement process,
different formalisms can be employed. The process e.g. may start using a graphical notation like
UML or a block diagram, which then must be translated into an executable specification to enable
simulation and validation of the specification.

In the next phases, the initial simulation model will be refined into source-code for the compilation
and synthesis of software, hardware, and interface components. To achieve a seamless design flow,
these refinement steps must maintain two properties. First, the translation of one representation into
another must be either automatic or following a constructive refinement strategy. Second, specified
characteristics and properties should be propagated traceable into the lower level of abstraction.

While the first property avoids extra manual work and potential errors, the latter is particular
crucial because the design flow is not always running straight. Eventually a requirement cannot be
met at the actual level of abstraction and the designer has to return to an earlier design phase to
correct a wrong design decision.

4.5.2 Executable heterogeneous specification

The heterogeneity of hardware and software components makes it necessary to use different languages
to design them. These languages not only have a different syntax, they are often based on different
computational models especially regarding their timing and communication model. To make testing
of the complete embedded system possible already at specification level, a co-design method needs
a co-simulation model that unifies the different models for hardware and software. In particular, it
needs to synchronise the timing behaviour of hardware and software and provide a communication
interface between them.
10These channels are called asynchronous because their information transfer does not follow the normal synchronisa-

tion schedule of ordinary data channels.

30

CHAPTER 4. DESIGN OF EMBEDDED SYSTEMS

For the design of hardware, specialised languages like VHDL or Verilog define the de-facto standard
in the industrial practice. Almost all hardware designers use these languages at different levels of
abstraction to develop and test their hardware components. These languages provide an adequate
syntax to describe hardware and a clear semantic for simulation and synthesis, which is supported
by commercial tools.

For embedded software, a different paradigm is necessary. Certain software programming languages
like Ada95, C/C++ or Java [Gio98] can be used to specify embedded software11. While C and
Java are widely used for software development in general, they lack of some important properties
necessary for complex embedded control systems. Java has no predictable real-time behaviour and no
low-level programming interface to directly access to memory or interrupts. C or C++ has no notion
of concurrency or time. These deficits can be reduced by extensions but at the price of portability.

Testing the embedded system model in a co-simulation is not enough to guarantee its safety in
a critical application. It is an early and very important component in the verification process to
achieve a reliable system. It should be accompanied by formal methods and operational tests of the
physical system when it is build.

The need to integrate different people into a design project has already been mentioned above.
Since people do not often share a ’common language’, it requires understandable communication
formalisms to bridge their semantic gaps. Each project partner and the customer may have an
individual idea of how the system supposes to behave in particular situations. A simulation model
showing the dynamic behaviour of the system can be understood by all project partners as long as
it shows the relevant properties. An executable model can thus also be seen as a valuable part of
the documentation. The meaning of user requirements can be demonstrated or confirmed best in an
executable model.

4.5.3 Exploring the design space

The intended behaviour of embed-

CPU−Speed

ASIC−Area

Memory

Figure 4.4: The design space

ded systems can be achieved by many
different implementations. Many pa-
rameters need to be determined before
the implementation can take place.
Consequently, the design process can
be seen as the determination of the
best position in a multi-dimensional
space - the so-called design space. Di-
mensions of this space can be for
example memory consumption, CPU-
speed, or ASIC-area. Every implemen-
tation is then a point in this design
space as depicted in Figure 4.4. Other
dimensions are for example the ASIC
respectively FPGA-technology or even
physical parameters like the size of the
embedded system or the type of a cool-
ing device.

At the beginning of the design process, the design space of possible solutions is very large. By
stepwise refinement, more and more alternatives are eliminated and thus the available design space
is reduced.

The embedded system designer wants to explore the design space in its multiple dimensions to find
the best alternative. To allow the exploration and the possible revision of choices, the ideal method
should be flexible enough to change every aspect of the system specification without corrupting the
11For many small systems even assembler is still in use. Since this work focuses on complex system, this approach

appears not suitable.

31

4.5. REQUIREMENTS FOR DESIGN METHODS

consistency of the design.
Hardware/Software partitioning

A key decision for each of the systems design is the distribution of functionality between hardware
and software. The process to determine this central aspect of the architecture is called hardware/-
software partitioning. The general partitioning problem is very difficult. It has influence on many
characteristics of the system, like for example the timing behaviour or the power consumption. Par-
titioning also has influence on non-technical factors such as the flexibility of the design, the overall
design effort, and the system price.

A common rule over the thumb tells the designer to implement performance critical parts in
hardware while control dominated parts or components handling larger amount of data should
better go into software. Unfortunately, this simple rule is much too coarse to guide the partitioning
sufficiently because the partitioning has several side effects on other system properties.

The software components typically share the one processor, which has limited computation power.
Since the computation power mainly depends on the type of CPU, it does not scale steadily but
in discrete steps. As long as the computing power of a particular CPU is sufficient, the system
cost remains constant12. Only if the partitioning requires more than the available processing power
sometimes not only the CPU but also whole the implementation architecture must be changed
because the faster CPU requires a different operating system, bus architecture or peripherals.

For the design flow, this means that the exact implementation architecture should be determined
as late as possible. Since the real-time behaviour should be modelled and checked early in the design
flow, (Section 4.5.5) the methods need to provide suitable abstractions for real-time.

4.5.4 Sufficient simulation performance

Relative (simulation) performance in this work is defined as the ratio between the model time and
the simulation time13. Since a timed co-simulation requires a synchronisation of all components, the
simulation performance is often dominated by the slowest component in the simulation environment.

The amount of model time that must be simulated depends on the granularity at which the system
will be observed. At system level, where the focus lies on interaction of coarse-grained components,
longer periods need to be simulated. In some cases, as for example the portal crane described in
Chapter 8, the controlled process may last minutes or even hours. In other application domains, the
embedded system fulfils its task within milliseconds. However, for the majority of applications the
simulated period interesting at system level ranges from seconds to a few minutes.

Unfortunately high simulation speed cannot be achieved in a very detailed simulation. For the
early design steps like partitioning and design space exploration it is often sufficient to simulate a
rather abstract model of the system, while in later phases the detailed structure and behaviour of
each system component is of great importance.

Sufficient simulation performance is a critical requirement especially for validation and architecture
exploration at system level. The ideal simulation system is able to support many different levels
of abstraction resulting in appropriate simulation speeds. This would allow checking the systems
behaviour for a significant period of real-time in early phases of the design process. With ongoing
refinement, simulation allows observing detailed behaviour, for example the handshaking protocol
of two components in a smaller period.

4.5.5 Early integration of real-time behaviour

Since the real-time behaviour is critical for a large class of embedded systems, the modelling of
real-time behaviour must already begin at specification level.
12Please note that this assumption takes only the price for the CPU into account. Other factors, such as the required

memory and the dynamic power consumption are neglected here.
13Model time denotes the time passed for the embedded system in the simulated environment, whereas simulation

time denotes the time required to run the simulation.

32

CHAPTER 4. DESIGN OF EMBEDDED SYSTEMS

Naturally, at this level only application-driven requirements can be specified. Throughout the
design flow with more and more details about the implementation architecture being specified, these
requirements can be refined accordingly. With the definition of the implementation platform, analytic
estimations of worst-case execution times and latencies are possible. With these data available, the
real-time requirements can be checked against the real-time behaviour of the implementation.

Disobeying the real-time requirements in the early phases of design will typically lead to imple-
mentations, which are either inefficient or even not implementable under the given (cost) constraints.
Therefore, embedded systems must be designed based on a sound method that allows to reason about
their behaviour under realistic circumstances including their real-time properties [Ame01].

4.5.6 Modelling hardware/software interfaces

A design methodology suitable for embedded systems shall put a special emphasis on those aspects of
the targeted systems that are difficult to design. Special abstractions should be provided to overcome
the deficits of for example the implementation languages.

Hardware/software interfaces are crucial for the correctness of embedded systems. They belong
neither fully to hardware nor to software. Consequently, implementation languages for hardware
and software are not suitable as they lack general abstractions to describe interfaces. Therefore, the
methodology must support these components by providing additional abstractions. Such abstraction
must not only describe interfaces in a comfortable way but also need a direct mapping into an
implementation to maintain a seamless design flow.

4.5.7 Mastering complexity

Complexity is an important property to decide about the suitability of a design method. Some
systems have a very simple structure and the application is rather simple. For such designs, it would
be inappropriate to use a high-level co-design method addressing complex systems.

For complex systems however, an unsuitable method could lead to the total failure of the design
project. The work at hand addresses the latter class of systems. The development of complex embed-
ded systems often requires many designers to work together in different teams. Such complexity in
the application and the team structure requires a well-organised process. Therefore, it is indispens-
able to divide the system into manageable portions for sub-teams or even single designers. These
portions must have well-defined interfaces with a clearly specified behaviour while the internal im-
plementation is hidden from the outside. Obviously, this matches perfectly with the object-oriented
paradigm.

With rising complexity, low-level abstractions become more and more inappropriate to design reli-
able, complex embedded systems. A lesson that can be learned from the conventional software design
is that higher abstraction, encapsulation, and separation of concerns help mastering complexity. For
a seamless design flow it is however also required that the methodology allows low-level behaviour
to be specified.

Consequently, co-design methodologies use modern object-oriented methods and provide appro-
priate abstractions for the essential concepts necessary in embedded system design. The method
must in particular support abstractions for the real-time behaviour and the hardware/software com-
munication throughout the full design process.

The design principle separation of concern here means that the modelling of functionality, hard-
ware/software communication, and real-time behaviour should be separated. Obviously, these as-
pects in conjunction define the behaviour of the embedded system but their modelling and validation
should be separated where possible.

Only if these prerequisites are fulfilled the efficient reuse of design components becomes possible.
Reuse is probably a powerful concept to reduce the design effort. However, reuse is only effective
if the components behaviour and interface is fully defined and understandable without looking into
the implementation.

33

4.6. RECAP

Complex systems are often developed in an incremental approach, i.e. the system specification
starts with a core description that is refined to a certain level. Later the core is augmented by
additional functional components. In the course of design-space exploration, some design decisions
may be revised. This often requires returning to an earlier phase of the design flow. Consequently,
the method should be robust to changes; that is, local changes should not affect the overall stability
and consistency of the system description.

4.6 Recap

At first, this chapter introduced the co-design approach in contrast to the classical sequential de-
sign flow. It became obvious that co-design – while not being easy to implement – provides many
advantages over the classical design flow. The parallel design of hardware, software, and the inter-
face in-between can reduce the overall design time by early detection of design mistakes and errors.
Due to the holistic view on the embedded system, new design alternatives can easier be found and
evaluated.

The characterisation of embedded systems and the deduced requirements on design methods lead
to the conclusion that a unified method appropriate for arbitrary embedded systems is very unlikely.
Consequently, the work at hand will concentrate on a methodology for the class of reactive embedded
systems containing significant hardware components and a multitasking software part.

34

5 OOCOSIM Design Method

In the previous chapter, a characterisation of embedded systems and a list of requirements for ap-
propriate design methods were given. This and the following two chapters will describe the oocosim
design method for embedded systems [OSN99,OS99] aiming to fulfil these requirements.

After some general remarks on object-oriented design in the context of embedded systems, an
overview of the design process of the oocosim method (Figure 5.2) will be given. Furthermore, the
specification and partitioning based on hrt-hood+ will be described. The following chapters de-
scribe the design phases after the partitioning more in depth. Examples will illustrate the application
of certain aspects of oocosim where appropriate.

5.1 Object-orientation in embedded system design

Object-orientation as a design principle was first mentioned by Dahl [DMN67] in 1967. Since then,
due to significant work in research and industry to support this approach with languages and tools,
it became the most popular design approach in software development today.

While it cannot solve all problems in software engineering [BS02], it has proven to be of great ad-
vantage in the development of large and complex software systems. In Section 2.9 a brief introduction
of the object-oriented design paradigm has been given.

As described in Section 4.4, embedded systems differ in many aspects form standard software
applications. These differences require a (slightly) different interpretation of the object-oriented
paradigm when applied to this domain. The following will describe how the object-oriented approach
can be applied to embedded system design and show up the similarities and differences to standard
object-oriented design techniques.

An embedded system can be seen as a set of collaborating components or entities as abstractly
depicted in Figure 5.1. Each component contains some data and contributes certain internal and
external services to fulfil the overall task. Thus, these components fit very well with the abstract
concept of objects in general. Components in embedded systems are usually static, i.e. the objects
are not created during runtime. For hardware components, this is obvious and for the software, it
is at least true for real-time systems1. Thus, in hrt-hood and consequently in oocosim, objects
rather than classes are regarded as first-level design entities.

For their collaboration, components need to communicate; that is, they need to exchange data
or to synchronise their behaviour. Object-orientation provides therefore the concept of interfaces2.
Restricted by the interface, an object allows only a well-defined set of services to be used outside
the object. The functional behaviour of the services or methods is specified and visible only within
the object. This allows hiding the implementation to the external system.

The exchange of data and the synchronisation can be modelled by sharing of data objects or by
method invocations. At this rather abstract level, components in embedded systems resemble exactly
the general concept of objects.

Similar to large software systems, complexity is a major challenge for embedded system design.
Object-orientation masters complexity mainly by dividing the design hierarchically into simpler,
collaborating parts.

1The dynamic creation of objects at runtime would make real-time analysis significantly more difficult.
2The term interface refers to the general concept of interfaces defining the outside view of objects rather than the

specific interface in programming languages such as Java.

35

5.2. OVERVIEW ON THE GENERAL FLOW

Relation

Hardware

Interface

Software

Figure 5.1: Collaborating objects

The oocosim approach re-uses many concepts from hrt-hood. Therefore, it differs (again) from
other object-oriented approaches like for example UML where the design is based on a class hierarchy.
In contrast to that, in oocosim the objects topology and their collaboration describe the structure
of the system. A concept similar to a class is present in the definition of the objects by the so-called
provided interface, which defines the signature of an object.

Scheduling and synchronisation of concurrent tasks are important factors in the design process
for reactive embedded systems. Therefore, oocosim provides means to model and validate these
properties throughout the entire flow. Objects in oocosim carry attributes that describe their non-
functional properties. These attributes are propagated from the specification into the co-simulation
behaviour and into the implementation units.

Object-oriented modelling of embedded systems in oocosim is based on the idea that objects
represent components of the design. The objects tie together all relevant properties of the com-
ponents. It is important to note, that oocosim provides the means to describe and analyse an
embedded system rather than automates the designer’s decisions. It provides notations like hrt-
hood+ and ComiX to model the systems architecture or hardware/software interface. Tools, like
the co-simulation framework or deshico interface designer environment enable the transformation
or analysis of the design. However, it remains the designer’s duty to create the system model and to
decide between design alternatives, such as for example different hardware/software partitionings.

5.2 Overview on the general flow

In the scope of this thesis, the design flow starts after the initial specification of the system to be
built. It may be written in a natural language or given as an executable, functional model in C++.
This specification is typically not well structured and rather informal. Hence, it can be taken (at
best) as a functional reference, often called golden model, for the final implementation.

In the first step, the informal specification of the intended system must be translated into a struc-

36

CHAPTER 5. OOCOSIM DESIGN METHOD

tured system-level specification that enables reasoning about the complete system. In oocosim,
hrt-hood+ provides means to model the system as a collection of well-defined objects. The process
of refinement allows to successively dividing the system into smaller sub-objects bringing the speci-
fication closer to its implementation. Partitioning; that is, the allocation of objects to hardware and
software, is supported in oocosim by specialised objects reflecting the characteristics of hardware,
software, and the hardware/software interface.

CPU/RAM ASIC/FPGA

Driver

I/O
VHDL

Objects

Software Interface

Objects

Hardware

Objects

Systemlevel

Co−simulation

HRT−HOOD+

Exec. Model

Implementation

Final Test

Initial Specification

Dev.−Register/IRQ

Automatic
Translation

Compilation
Synthesis

Ada95

Figure 5.2: oocosim design flow

With mostly automatic tools the objects of this level are translate into executable models. Hard-
ware and software objects are translated into corresponding Ada95 and VHDL descriptions while the
interfacing objects must be handled differently. Since they comprise a driver component (software)
and an I/O device-part, interfacing objects must be split into software and hardware parts for the
further design. Hardware, software, and the communication via the interface can then be validated
including their real-time constraints in the co-simulation framework that is part of oocosim. Even-
tually some details of the hardware and software model will be worked out and tested at source-code
level before compilation and synthesis lead to the implementation of the embedded system.

Due to the encapsulation of design components within the object-oriented development process of
oocosim, partial changes to the design can be handled efficiently. If for example new components
are added at system-level, changes can be propagated easily into later phases. The analysis of
real-time requirements and the validation of the extended systems behaviour must reflect these new
components. However, due to the hierarchical character of the specification, the scope that is affected
by changes can often be limited to a certain subsystem. Since the transformations between the levels
are mostly automatic and properties are propagated automatically, the consistency between the
different levels can be achieved easily.

37

5.3. SPECIFICATION IN HRT-HOOD+

5.3 Specification in HRT-HOOD+

Complex embedded systems very often contain numerous distinct components making it very difficult
to design the system based on an unstructured description. Therefore, it is essential for any system-
level method to provide means to decompose the system into simpler sub-system and to define the
relationship between the components.

As the name Hierarchical Object-Oriented Design (HOOD) already suggests, refinement (in
this method) can be achieved by hierarchical decomposition of objects. This principle holds also
for the newly introduced objects types (see below). Furthermore, similar to the original method it
provides guidelines on how objects can be refined. These guidelines refer to legal decompositions
as well as to the way they can interact with each other. For some objects, the definition of certain
attributes is mandatory for a valid design while it is optional for others. Attributes often must obey
certain constraints with respect to other attributes defined in the system. The ultimate goal of these
guidelines is to preserve the consistency of the design.

The following will describe the hrt-hood+ method in a top-down manner. First, the top-level
object types will be introduced and then the refinement process using lower-level objects will be
explained.

5.3.1 The Root Object and its environment

The design process in hrt-hood+ starts with exactly one root object (denoted with an R in the
graphical symbol as depicted in Figure 5.3) that represents the embedded system plus a number of
Environment Objects reflecting the environment. Environment Objects are already defined for hrt-
hood for a very similar modelling aspect. The root object capsules the entire embedded system

R <<Name>>

Object Type

interface
provided

Figure 5.3: root object symbol

to be modelled from its environment. It serves as a container object and provides no functionality
except those defined in its sub-objects. The root object can have a provided interface which is
part of the system; that is, it must be implemented to allow the integration of the embedded system
in its environment.

The required interface of the root object denotes the services or the interface the environment
must provide for the embedded system. Please note that the environment may contain other elec-
tronic devices that need to communicate with the system under design. Furthermore, the required
interface can be used to define requirements on the simulated environment of the embedded system.
It typically includes access functions to external sensors or actuators. Figure 5.4 depicts a simple
initial system containing the root object and one Environment Object.

38

CHAPTER 5. OOCOSIM DESIGN METHOD

EnvironmentE R Embedded System

Figure 5.4: Simple initial system

The root object defines the following attributes:

• Name: The name of the embedded system. All objects in a hrt-hood+ must define this
attribute. Hence, it will not be explicitly mentioned in future. It provides an unambiguous
reference to each object that is for example required to invoke methods of this object.

• Prioritymax, P rioritymin: These attributes define the range of scheduling priorities, that is
the highest and the lowest priority, available to this system. This attribute applies only to the
software part of the system. Either it can be defined by obligations of the application or by
resources, the target platform can provide. In case the software execution processor is already
determined in advance, it is defined as a constraint from the processor.

5.3.2 System Objects

Often the system comprises strongly related partitions of objects performing a particular sub-
functionality. These sub-functionalities are typically implemented by a highly coherent set of imple-
mentation units. Such a set of units from now on will be called logical partition of the system. Logical
partitions are based on a functional view of the system and thus should not be confused with the
architectural partitions between hardware and software. If multiple designers or even multiple teams
are contributing to the development of large systems, logical partitions can serve well as separated
design tasks for the participants.

oocosim introduces so-called system objects3 in hrt-hood+ to provide abstractions for the
above-mentioned logical partitions. They, similar to root objects4, serve only as container objects,
as they provide only an interface to the functionality defined by their sub-objects.

As a first step of refinement, the root object is decomposed hierarchically into system ob-
jects5. The introduction of system objects in hrt-hood+ enables, besides functional decom-
position, an incremental development process for complex systems. The design may start with the
core functionality containing only essential subsystems. Then refinement will eventually lead to a
stable core model. The system can then be augmented by adding new system objects. In an
object-oriented method like oocosim, at first sight inheritance appears to be the natural mecha-
nism to augment the systems functionality. A possibility would be to derive the new system by class
inheritance from the root object or the system objects. However, due to the in general un-
solved problem of inheritance anomalies [SN98] it is (in oocosim) not allowed to apply inheritance
to active objects. Instead, composition through aggregation is supported.

system objects have, like all hrt-hood+ objects, a provided and a required interface to define
the services needed and requirements for external system objects. In the graphical notation similar
3Those readers familiar with hood should note that system objects form an abstraction of the hood object types

Active and Passive.
4In fact, root objects can also be seen as a specialisation of system objects. The main difference is that there is

(by definition) exactly one root object at the top-level of the specification. Consequently, the priority attributes
underlie no inherent restrictions.

5For simple systems the root object could also immediately be divided into specialised objects belonging to one
of the implementation domains hardware, software, or interface objects.

39

5.3. SPECIFICATION IN HRT-HOOD+

to all predefined hrt-hood object types, related system objects are connected with an edge. The
edges may be annotated with data-flow information defining its type and its direction.

To support the analysis of real-time properties, each system object must define its priority
range. The priority range defines the possible priorities software objects can take in a decomposition
of an object. The following rule formalises that the priority (range) of each inner object may take
only priorities within the priority range of the decomposed object:

Rule 5.1 (Valid Priority Ranges) Let S = s1, .., sn, n ∈ N+ be a finite set of objects, a refine-
ment of the object r. Let P (o) = [pmin, .., pmax] denote the priority interval of an object o:
S is valid ⇒ ∀si, 1 ≤ i ≤ n : P (si) v P (r)

For a valid hrt-hood+ specification it is furthermore required that the priority interval of all
system objects are disjoint. More formally:

Rule 5.2 (Disjoint Priority Intervals) Let S and P as defined in Rule 5.1:
S is valid ⇒ ∀si, sj with 1 ≤ i, j ≤ n, i 6= j : P (si) u P (sj) = [].

Please note that since priority intervals are complete, this rule imposes an order on the set of system
objects. This order reflects the importance of the functional partitions within an embedded system.
Hence, the design should start with the most important functional partition and define the respective
system object and its priority interval starting with the maximal available priority. Then the
designer may add successively system object with descending importance.

In order to avoid side effects (unintended coupling) system objects must obey certain con-
straints:

• system objects must not share any objects expect for communication objects resulting
from refinements of data flows between system objects.

• Communication between system objects may only use Asynchronous Execution Request
(ASR), hence only non-blocking method calls. Otherwise, the tight coupling and synchronisa-
tion between system objects would make the design and in particular the real-time analysis
very difficult6.

The restrictions on the sharing of objects, disjoint priority ranges, and on the synchronisation prevent
strong interference between system objects.

Obviously, system objects can be further decomposed hierarchically into lower level system
objects. However, as system objects should represent considerable large subsystems it seems
advisable to stop this refinement process very early.

5.3.3 Refinement of System Objects

system objects are typically refined into combinations of passive objects and active objects
as sketched in Figure 5.5. This refinement allows defining a finer grained systems topology and
serves as a first specialisation of objects. passive objects specify components, which provide only
services that is they contain no thread of control. Note that active objects may be refined into
sets of arbitrary object types while passive objects may only contain passive objects. Moreover,
active objects may use passive objects but not vis versa.

5.3.4 Hardware/software partitioning

The classification of components as being active and passive makes specification about their archi-
tectural distribution over the implementation platform. The allocation of the objects to hardware
6The calculation of a blocking time in such a tightly coupled system would require the analysis of the entire system.

Every change made in one sub-system would invalidate the static analysis of the complete system.

40

CHAPTER 5. OOCOSIM DESIGN METHOD

System_A

Object_3

Object_1A

P

A Object_2

SY

Figure 5.5: System Object containing objects.

and software - the so-called partitioning is thus the next logical step. To provide means to model
the communication between the partitions, communication objects must be introduced. In a
hrt-hood+ design these objects results from the refinement of data-flow and event-flow relations
between functional objects assigned to different partitions, i.e. some allocated to hardware and some
to software.

The hrt-hood+ method contains all object types from the hrt-hood method briefly described
in Section 2.4. Since most of the terminal hrt-hood object types (Cyclic, Sporadic, and Protected
Objects) are applicable only in software systems, hrt-hood+ adds two domains or classes of object
types - namely the communication domain and the hardware domain. These new object types
will be discussed in Section 5.3.6 and Section 5.3.10. For now it should be sufficient to understand
that these objects allow for the specification of software, hardware, and interface components in the
hrt-hood+ model.

To achieve a seamless design flow it is important to provide an implementation for the terminal
objects in a design. The mapping of the different object-types to an implementable specification
(also called implementation units) is discussed in the following sections.

5.3.5 HRT-HOOD software objects

hrt-hood provides an excellent method for the design of hard real-time software. Burns and Welling
describe in [BW95] this method and its application in detail. With further refinement, software ob-
jects are specialised into terminal objects, such as Cyclic, Sporadic, Passive, and Protected Objects.

The challenge for the oocosim methodology was not to enrich the software design method of
hrt-hood but to find a sound modelling technique for a proper coupling with the hardware domain
required for hardware/software co-design. The communication objects described in the following
sections provide this coupling.

5.3.6 Communication Objects

Loose coupling of highly cohesive components is a desired characteristic of an embedded system
and is indeed a prime claim for object-orientation. Modelling the interface as integrated parts of
hardware and software (in contrast to separate entities) would break the capsule of hardware and
software objects.

A communication object hides all implementation details of an interface component to the
outside. It provides only a method interface to the other objects and has no required interface.
Inside it carries all attributes belonging to this communication facility. These attributes determine
the characteristics if the object like the type, the layout, or the address in memory. The major

41

5.3. SPECIFICATION IN HRT-HOOD+

difference between communication objects and other design objects is related to their twofold
implementation. Since communication objects must be accessible by hardware and software their
implementation requires two implementations - one in software and the other in hardware.

In order to achieve a formally analysable specification in the original hrt-hood method objects
do not exchange data by means of rendezvous7. Instead, protected objects and passive ob-
jects provide means to access shared data. However, since these object types are defined only in
the software domain, they cannot be accessed by hardware. Consequently, the modelling of hard-
ware/software communication in oocosim requires an extension to the hrt-hood method. To model
shared memory access for hardware and software, specific communication objects, namely mem-
ory objects and asynchronous memory objects, are added.

Asynchronous external events, typically implemented by means of interrupts, are modelled in hrt-
hood by Sporadic Objects in conjunction with ASER BY IT (Asynchronous Execution Request By
Interrupt). These objects contain exactly one method representing the interrupt handler in software
activated by the external event. Sporadic Objects in hrt-hood defining the minimum arrival time
of the interrupt reflect only the software part of the system. hrt-hood+ defines two new specific
object types to handle interrupt driven communication, combining the hardware and the software
related part.

The communication objects are the major improvement hrt-hood+ brings in comparison to
hrt-hood. They literally bridge the gap between the hardware and the software partition. They
provide an abstract method interface to the physical layer between hardware and software. The com-
munication objects allows exchanging arbitrary typed data and provides a limited asynchronous
event mechanism between hardware and software. hrt-hood+ provides three concrete classes of
communication objects derived from a common abstract8 class called communication objects as
depicted in Figure 5.6. The three concrete classes are the following.

• memory objects model the data-flow between hardware and software based on shared mem-
ory. They provide the core mechanism to communicate across the hardware/software boundary.

• asynchronous signals model the flow of one asynchronous event created in hardware and
handled in software. In the implementation model, asynchronous signals translate into
hardware interrupts and attached interrupt service routines in software. They replace the
above-mentioned Sporadic Object with an ASER BY IT execution constraint.

• asynchronous memory objects also model asynchronous events created in hardware. In
contrast to asynchronous signals these objects carry a data field to transfer data with the
event. This kind of modelling is often referred to as interrupt driven I/O. It allows transferring
data from hardware to software and enabling the hardware to signal that new data is available.

For each class a graphical and a textual view are defined. The graphical view aims at representing
the components of the system under design in comprehensible way at system level. The following
subsections will describe each object type including its attributes visible for this design view.

The textual view aims at describing the communication entities visible to a single object. It
contains all attributes (including the ones from the graphical view) required to fully define the
properties of each communication object. The textual view is based on the ComiX language that
will be introduced in Section 6.3.

The first step to model communication in a hrt-hood+ design is to identify the information
flow between the partitions; that is, between objects allocated to hardware and objects allocated to
software. The communication objects provide the most abstract representation of an information

7A rendezvous in software describes a synchronised communication; that is, the communication between caller and
callee can proceed only when both are ready. As this implies a potentially unbound blocking behaviour it is
forbidden in hard real-time systems.

8Abstract here denotes the fact that it is not possible to derive an implementation unit from such an object. It can
however be used to model abstractly the information flow.

42

CHAPTER 5. OOCOSIM DESIGN METHOD

Asynchronous Memory Object Class

− ComiX_Definition_Name	
− ComiX_Architecture_Name

− Type − Protected
− Address
− Direction

Memory Object Class

Communication Object Class

Asychronous Signal Class

+ Invoke − Start

− IRQ−Number
− Shared

− Invoke

<<Access Methods>>

Figure 5.6: Communication class hierarchy in UML like notation.

flow as they are the root class for all interface objects within a hrt-hood+ specification. It puts no
constraints on its implementation or any data being transferred.

Each communication object must define the attribute ComiX Architecture and ComiX Definition.
These attribute link the objects to the object independent layers of the ComiX specification. These
layers define for examples data types or the available communication resources. Each ComiX
specification must be identified by a unique name. The attribute ComiX Definition serves as a
reference to this name. Every object is furthermore part of a so-called architecture. The attribute
ComiX Architecture is a reference to this architecture that must be defined in the respective
ComiX Definition.

communication objects must be refined into concrete objects to enable an efficient generation
of implementation units for the hardware/software interface.

5.3.7 Memory Objects

In situations where hardware and software exchange data with no constraints on the synchronisation,
memory objects should be applied. This is a common case in designs where for example the
software needs to poll sensor values or it sends commands to the hardware.

For memory objects, the following attributes are defined:

• Type: The data type of the information being exchanged. This refers to a type name defined
in the ComiX specification identified by the ComiX Definition attribute. The type attribute
is mandatory.

• Direction: This attribute defines the direction of the data flow. It can be immediately derived
from the data-flow denoted in the hrt-hood+ model.

43

5.3. SPECIFICATION IN HRT-HOOD+

• Protected : To prevent unintended overwriting of data, mutual exclusive write access might be
useful for memory objects. This attribute defines whether this is required for the objects
implementation.

memory objects, as depicted in Figure 5.7, provide a method interface to access the data
structure allocated in the memory mapped I/O area. The data structure can be of a simple type
or be an aggregation of components (record). The methods allow accessing each component and
the data structure as a whole. The implementation units in hardware and software will provide,
depending on the Direction attribute, the methods as defined in Table 5.1.

Direction Hardware Interface Software Interface
HW to SW Read & Write methods Read methods
SW to HW Read methods Read & Write methods
Bidirectional Read & Write methods Read & Write methods

Table 5.1: Provided method interface of memory objects

In the implementation units, the attribute Pro-

Direction

Type

Protected

Direction

Memory ObjectMO

Figure 5.7: Memory Object (graphical)

tected determines whether mutual exclusive write
access has to be guaranteed to this memory ob-
jects. In the software implementation unit, this
can be achieved by wrapping the data structure
into an Ada95 Protected Object. In hardware, a
semaphore can be used to provide a similar func-
tionality.

In general, it is not recommended to use the Bidi-
rectional mode. The complexity, introduced by mul-
tiple, unsynchronised write accesses in hardware
and software, often leads to erroneous behaviour.
In particular, it is not allowed to enable the Pro-

tected attribute together with the Bidirectional mode as it is not possible to implement this in an
efficient way.

Many attributes are noted only in the textual representation based on ComiX. In particular,
attributes like the size, the access mode (atomic/volatile), or physical address at where the memory
object will be allocated in the memory provide only implementation details. Hence, they are not
included in the graphical notation.

5.3.8 Asynchronous Signals

The asynchronous signal as depicted in Figure 5.8 encapsulates the activation of a physical in-
terrupt and its handling through software. It defines only the Invoke method in its provided method
interface. With this method, the hardware can activate the interrupt. The software is notified by
the handler method Start which is not visible to other objects9. The software aspect is defined
exactly like in the original hrt-hood method as a Sporadic Object that is enclosed in the asyn-
chronous signal. The asynchronous signal object can be also seen as a hardware/software
pattern, where the outer asynchronous signal reflects the hardware aspect and the inner sporadic
object represents the software aspect.

9In the implementation this method is typically registered in the operating system as an interrupt handler

44

CHAPTER 5. OOCOSIM DESIGN METHOD

Number_of_Interrupt

IRQ−HandlerS

Start

AS Asychronous Signal

ASR_BY_IT

Max_Event_Rate
Invoke

Figure 5.8: asynchronous signal symbol (refined)

5.3.9 Asynchronous Memory Objects

asynchronous memory objects provide the functionality of asynchronous events combined with
the access to a data structure in the memory-mapped I/O area. Thus, they combine the functionality
of memory objects and asynchronous signals.

Number_of_Interrupt

MO Memory Object

Direction
Type
Protected

IRQ−HandlerSDirection

Start

AO Asychronous Memory Object

ASR_BY_IT

Max_Event_Rate

Figure 5.9: Asynchronous Memory Object (refined)

asynchronous signals inherit all attributes from the memory object class and the asyn-
chronous signal class. They as well inherit the provided interface of the memory object but
hide the invoke message because the invoke method is implicitly started after each hardware access.

In an asynchronous signal every access of the hardware to this object also activates the
associated interrupt. A handler method defined in the Sporadic Object can be used (depending on
the data flow direction) to either put a new data packet into the memory object or receive the newly
generated data from the hardware. In a typical producer/consumer situation where data packets
are produced in either hardware or software, asynchronous memory objects can handle the
synchronisation. For example the software, as the producer, will generate a new data packet and
store it into the data-structure. After each hardware access, the interrupt handler will trigger the
generation of the next data-packet.

5.3.10 Hardware objects

In hrt-hood, hardware components are modelled by environment objects. This will remain mostly
unchanged in hrt-hood+ for the following reasons. One important objective of hrt-hood was to

45

5.4. EXAMPLE

model the synchronisation between the software objects in an analysable way. There is no need to
do this for hardware objects since they run in parallel in contrast to concurrency of the software
objects.

The other reason is the lack of an adequate implementation language for hardware objects. Syn-
thesisable object-oriented HDLs like OSSS (ODETTE System Synthesis Subset, Section 3.2) have
not yet reached a mature state. Therefore, hardware components cannot be specified in an object-
oriented language, while maintaining an automatic synthesis, which is required for a seamless design
flow. Since state-of-the-art HDLs do not support a method interface for entities/architectures hard-
ware components can be modelled only in a black box view. The only way to integrate them into the
system design is to show their relation to the software components through the communication
objects.

Thus, there is only one type of hardware objects containing its name and an informal description
of its purpose. The use relations and the data-flow to and from the communication objects are
nevertheless useful to get a clearer picture of the system architecture.

5.4 Example

This section intends to illustrate the hrt-hood+ objects by a simple example. The particular
example was selected because it is easy to understand while maintaining many important issues. In
order to keep it short, it represents a root object with only one system object. The example
will be reused through this thesis to illustrate other aspects of the method.

R Example 1

Direction=hw_to_sw

Protected=no
Type=Temperature_T

Type=Command_T
Protected=no

Direction=sw_to_hw

Heat_Sink

IRQ−Number = 12

AlertS

SY

Start

H

Period = 40 ms

Priority = 5

WCET = 1 ms

Period = 20 ms
Priority = 4
WCET = 2 ms

MO

MO

C

Heat SinkH

AS

ASR_BY_IT

Brocken_Fan

C Monitor

Adjust_Fan_Speed

Temperature

Command

H

Min_arrival=100ms

get_temperature
set_temperature

set_command
get_command

Aquire_Temperature

Priority_min = 0
Priority_max = 15

Priority_min = 4
Priority_max = 6

Invoke

Check_Fan

Figure 5.10: An embedded heat sink controller

46

CHAPTER 5. OOCOSIM DESIGN METHOD

Figure 5.10 shows the simplified graphical representation of the hrt-hood+ design of an embed-
ded controller for a heat sink. The system consists of two software objects, three communication
objects, and one hardware object. The hardware will for example detect the fan failure, read the
temperature sensor, and convert the analogue value according to the sensors characteristic curve
into a valid digital temperature value.

The arrows show the use relationship and the arrows with a small circle on one end the direction
of data-flow between objects. The purpose of the software system is to adjust the speed of the fan
on the heat sink to keep the device in a desired temperature range and to show the temperature
through a display. Therefore, the Cyclic Objects Adjust Fan Speed and Monitor need access to the
temperature of the heat sink provided through the memory object Temperature. The command
to decrease or increase the fan speed is transferred to the hardware through the memory object
Command.

If a failure occurs in the fan hardware the asynchronous signal Broken Fan will propagate
this event asynchronously from the hardware to invoke the handler provided by the Sporadic Object
Alert.

Each communication object defines its method interface according to the type of data to
be accessed. The data-flow determines the visibility of methods to other hardware and software
objects (Table 5.1). For example, the set command method in is only visible to the software while
the set temperature method is only available in hardware10.

The attributes mentioned above are filled with exemplary values obeying the rule defined in the
previous section.

5.5 Executable specification and mapping to implementation

As stated in Section 4.5.1 it is very important for a design method to provide means for an early
validation and the implementation of the specified system. Since hardware objects are not specified
formally in hrt-hood+, it is not possible to map them automatically to an executable specification,
say in VHDL.

For all other objects, which means the software objects and the newly introduced communica-
tion objects, mappings to their respective simulation and implementation models are defined in
oocosim. The models for simulation and implementation differ only in certain minor aspects related
to the specification of the real-time behaviour and to physical resources such as direct memory access
and interrupts (Section 7.5.3).

5.6 Recap

First, a brief overview of the oocosim methodology as a whole was given. Then the graphical
modelling notation hrt-hood+ was introduced. It provides means to decompose complex systems
into simpler sub-systems through the introduction of system objects. It furthermore augments
hrt-hood by the class of communication objects. These object types allow modelling the com-
munication between hardware and software in a comfortable and analysable way.

Even though the work at hand suggests an object-oriented design-flow for entire embedded control
systems the design of hardware is not a central issue in this work. Instead, two other domains will be
addressed here: the design of real-time software and the design of the hardware/software interface.
As stated in previous sections it makes no sense to develop hardware and software independently
while it seems inappropriate to use a single design language for the entire system. To overcome this
dilemma oocosim suggests a temporal coupling mechanism for real-time software and the hardware
while supporting the functional coupling via communication objects.

10In the figure, software methods are coloured green while hardware functions are coloured grey.

47

5.6. RECAP

48

6 Hardware/Software Interface Design

Most embedded systems contain some components implemented in hardware and others implemented
in software, which jointly perform an application specific task. While being divided into many sep-
arate components a close coupling between them is essential to achieve the intended behaviour.
Software components easily communicate by shared variables or by method calls. Hardware com-
ponents communicate through signals or busses. These communication mechanisms are somehow
incompatible because software has no ports and hardware has no runtime system to handle method
calls.

The hardware/software interface plays the important role of bridging this communication gap in
embedded systems. Through such an interface, sensor-data acquired by a hardware component is
transmitted to the software for further calculations. Vice versa, the software can send commands
to actuators connected through with the hardware. The exchange of data and control commands is
often implemented by so-called device registers [Por00]. These registers are stored in shared memory
areas reserved for this purpose.

Some events occurring in the hardware or the environment of the embedded system require an
immediate activity in the software. At the physical layer, these events are transmitted through
interrupts activated in hardware and handled in software by a so-called interrupt service routine.
Interrupts alone can carry only the plain information that an event has occurred. In combination
with a device register, any kind of data can be transmitted with the occurrence of the event. The
central position of the hardware/software interface is depicted in Figure 6.1.

The design activity of modelling

Application specific
Hardware

Interrupts

Task2

Task3

Task1

Communication

Embedded Control System

Controller Software

Compo. A

Compo. B

Compo. C

shared
Memory

Figure 6.1: HW/SW interface in an embedded system

such interfaces is (in general) time
consuming, difficult and error prone.
Many different types of information
must be exchanged between hardware
and software. Some device registers
represent the value of a particular
sensor, for example the temperature
(fixed point real) or pressure (inte-
ger) of a tank. Others contain the con-
trol commands to be send to an ac-
tuator like the discrete mode of an
engine (Off, Standby, Slow, Half,
Full).

Typically, only limited resources
are available to implement the in-
terface. Hence, memory efficiency re-
quirements do not permit to use large
standard data types for the informa-
tion exchange but require ’bit knitting’.

Since components in hardware and software need access to the information stored in the interface,
the location and representation of data types or commands in the shared memory must be the same
for both communicating partners.

The (usually virtual) address of a normal data structure in software and the representation in
memory can be determined automatically by the compiler. In hardware, a synthesis tool can deter-

49

mine the representation. Depending on whether the data structure is located in a random access
memory or in a register, the allocation is determined by either the designer or the synthesis tool.

An isolated approach like this is no solution for the hardware/software interface. First, because the
coherency of the layout in both domains could not be achieved and second, because in many cases
the hardware components contain predefined device registers that must be addressed by specific
software drivers. Thus, the allocation, layout, and representation of data types in memory must be
determined unambiguously either by the designer or a tool, covering the complete interface design
process.

For embedded systems, there is no dominant platform like for PC’s and there is hardly one
approaching because the requirements for embedded systems are so manifold. To match these re-
quirements many hardware platform already exist and more are emerging. Therefore, a universal
concept for the interface design should not rely on primitives taken from a target specific commu-
nication library. The porting effort and the time gap between the appearance of a new architecture
(variation) and the port for the library makes this approach unattractive. The alternative chosen in
this work is to define a target-independent description language for interface objects.

There is no ultimate solution for the synthesis of hardware/software interfaces. Every applica-
tion domain might need a slightly different synthesis for the interface. In some applications, large
amount of data must be transferred between hardware and software. The generation should try to
minimise the access times or the space requirements. Other applications need mutual exclusive ac-
cess to the data structures to avoid interference. Therefore, the interface synthesis should be flexible
and customisable for the designer. Consequently, this work introduces a flexible mechanism for the
generation of the hardware/software interface.

Unfortunately, there is no synthesisable language available for both, hardware and software. Thus,
interfaces need to be synthesised from different description languages. Consequently, the interface
components need to be created twice - once for hardware and once for software. Every detail of
the representation must be determined twice - exactly consistently in different languages. Problems
arising in the manual approach are the large effort for the designer and the danger of difficult to
find mistakes.

Some programming languages provide features to determine the representation of data in the
memory. Ada95 for example does this with so-called representation clauses (Listing 6.1). They allow
determining the size, address, layout, and other attributes for data types and data structures.�

for Temperature T use

record

Temperature High at 0 range 6 . . 0 ;
Temperature Low at 1 range 7 . . 0 ;

end record ;
for Temperature T ’ S i z e use 1 5 ;
Temperature : Temperature T ;
pragma VOLATILE(Temperature) ;
for Temperature ’ Address use To Address (16#1A2#);
� �

Listing (Ada95) 6.1: Representation clauses.

In HDLs like VHDL, device registers are modelled by signal vectors. Theses signals can be assigned
to bit vectors and their layout can be controlled.

Since the hardware/software communication is obviously a key component for the embedded
system, it should be documented very well. This is in particular important since it is literally an
interface between hardware- and software designers. Keeping this documentation up to date through
all the changes during the design process and maintenance of the system can be challenging. Hence,
a mechanism to generate the documentation automatically from the specification is highly desirable.

The approach presented here uses a unified specification of the interface regardless of its im-
plementation in hardware or software. It provides an abstraction-layer that allows to specify the

50

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

interface with communication objects (Section 5.3). The interface description language ComiX
[OZN01b, OZN01a] provides a processable and human readable representation of these objects. It
furthermore provides the so-called textual representation of communication objects.

Based on this representation, automatic tools can generate the implementation in hard- and
software as well as the documentation. In line with the code generation (Section 6.5), consistency
checks improve the reliability of the specification.

All aspects of the interface specification and implementation are implemented in a graphical design
tool called deshico (Section 6.6).

6.1 Specification of hardware/software interfaces

This section starts with a description of the traditional design technique for the hardware/software
interface to identify its shortcomings and a list of required features for an interface definition language
like ComiX. Then the layered structure of the language is presented.

6.1.1 Mainstream interface design

Traditional interface design is based on so-called memory map tables denoting the mapping of shared
data-structures to the memory mapped I/O area. Usually these tables look like in Figure 6.21.

These maps describe in particular the memory address of control information and the access
mode. Since the mapping is usually given for a single memory-word (for example a byte), it is
not immediately possible to define larger data-structures bigger than this. In Table 6.2 the data
structure Temperature used two successive bytes. The work around used in this description is to
use two components Temperature High (higher 7 bit) and Temperature Low (lower 8 bits). This
however requires additional effort when accessing the data structure as a whole.

16#1A0#

Address

16#1A2#

16#1A1#

16#1A3#

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �� � � � � �

� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

Access

ReadWrite

ReadOnly

ReadWrite

ReadWrite

012

Ack

345

Ax

67

Vx Recv

TMode

Temperature_Low

Temperature_High

Figure 6.2: Example of a memory map table

The memory map serves as specification used by hardware and software designers. The software
designer typically encapsulates the memory mapping in functions to access shared variables. The
hardware designer defines similar functions in a VHDL package. This methodology provides at least
a higher maintainability of the code since changes must be applied only to two modules. The coding
and decoding of typed data from and into the shared registers must be done manually2.

The drawbacks of this approach are manifold. The effort to achieve an implementation is huge since
the specification must be mapped manually to hardware and to software. The coding and decoding
of data types like larger integer or enumeration types into bit-vectors has to be done manually
in general. Since two different languages (for example C and VHDL) are involved, inconsistent
encodings can cause errors in the application, which are hard to detect.
1The address is given in hexadecimal numbers. The grey boxes indicate unused bits; the identifiers in white boxes

refer to the components names of the mapped data structures.
2In the above example: Temperature = 256 * Temperature High + Temperature Low

51

6.2. INTERFACE DESIGN IN RESEARCH

6.2 Interface design in research

Even though the problem of hardware/software interface design often is regarded as difficult and
time consuming little research has been done so far in this area. The consistent modelling and
implementation of interfaces requires a formal notation to describe the interface components plus a
mechanism to translate this notation into an implementable representation, e.g. source-code in C or
VHDL, which can be fed into the further design flow.

Hovater presents in [HMB00] an ASIS (Section 2.8, [Int99]) based tool to generate documentation
for device registers described by representation clauses written in Ada. The approach presented in
his paper analyses the code rather than to create it from an abstract specification.

Standards like XDR [SUN87] or ASN.1 [Dub00] provide detailed formal methods to specify data
types but with these methods the designer cannot specify the particular layout of device registers.
While XDR and ASN.1 are able to specify communication using various protocols, the method
presented in this work focuses on a communication architecture based on memory mapped I/O and
interrupts.

In contrast, the approach presented here starts with an abstract interface specification. It gener-
ates the target code for hardware and software as well as the documentation for the specification
automatically. None of the approaches mentioned above provide an appropriate method to specify
a hardware/software interface at this level of detail and generate a synthesisable description for its
hardware and software components.

Many approaches like [LPN98,VSV99] use communication primitives taken from a target specific
I/O library to map abstract communication channels to an implementation. These works intend to
generate automatically the interface from the description of the communicating components. The
problem with these approaches is that these libraries must be implemented for each processor and
operating system. Furthermore, they do not provide a methodology to describe the low-level mapping
and layout of the communication on the memory.

The approach described in [OJ00] separates the platform specific characteristics of the processor
and the operating system in libraries specified in a language called ProGram. Based on this infor-
mation and the interface specification for the software device drivers are generated. This approach
however completely disregards the hardware side of the interface.

The SYNPHONY TM tool that is part of the CoWare N2CTM(Section 3.3) tool suite uses the
methodology described in [VSV99] to generate hardware/software interfaces based on processor
interrupts to guarantee real-time requirements on the communication. The tool depends on the
fact that the entire system including hardware and software is captured and generated with the
CoWare N2C environment. It is therefore unable to support interfaces to hard IP components.
Moreover, it again depends on library implementations for specific processors and operating systems
supported by the tool suite. In [HCL+99] Hessel et al. stress the importance of the ability to connect
heterogeneous models in co-design. The work presents an abstraction concept for communication
based on channels. The models may call methods like send() or receive() to model communication.
The method then selects the appropriate protocol by choosing the required interface connectors from
a library. This library needs to be provided by the user for the different languages used in the design.
It needs to contain the connectors and a cost function that is the base for the protocol selection.
Therefore [HCL+99] rather presents a meta method for interface synthesis than the synthesis itself.
Furthermore, the method addresses communication at a rather abstract level while the approach
presented in this work allows the detailed specification of each interface object.

With the Devil [MRC+00] approach, Merillon et al. present an interface description language
(IDL) to describe a functional model of the hardware implementation of an interface. The Devil
compiler generates C code from this hardware abstraction to provide a set of functions to access
the interface. The concept of the Devil approach has been proven by the implementation of various
device drivers for the Linux kernel. The approach can improve the development of software drivers
if the hardware is given. However, Devil is not able to generate hardware models or documentation
from the specification. Similar to the approach presented in Chapter 6 the Devil compiler can check

52

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

the specification for consistency. In contrast to the work at hand, the code generation is limited to
the Devil compiler. There seems to be no concept to improve or change the code generation by the
user.

The thesis of Lehmann [Leh02] describes a method for the driver synthesis to access so-called
communication channels connecting software and hardware. The approach concentrates on the gen-
eration of software drivers, which are able to access hardware architectures containing multiple
components to implement the data transfer. The hardware structure is first analysed and then de-
scribed in an abstract communication graph. The method is able to (at least partially3) handle even
complex communication infrastructures as they can be found in modern personal computers. In
contrast to the approach to the work at hand, the driver synthesis is based on an existing hardware
architecture.

There is one commercial product called VCI compiler [VCI00] targeting directly the same prob-
lem domain. The tool is web-based and uses an interface specification called VCI Data Model to
generate VHDL and C-header files for the implementation of the hardware/software interface. It
supports data types like boolean, enumeration, integer, and their aggregation. The tool generates
the address allocation and the layout automatically, which reduces the effort for the designer but
also the flexibility since there is no way to control the result of the code generation.

6.2.1 Existing vs. OOCOSIM approach

In contrast to the above, in the following a concept will be presented, which allows (but not requires)
to specify and implement an interface in a very detailed way. It is thus a descriptive and a constructive
method. The concept enables the generation of code for arbitrary target platforms. The generation
scheme as well as consistency checks can be adopted by the designer to the specific application
domain or the preferred modelling language.

None of the existing concepts can offer the expressive power and the flexibility in the code gen-
eration offered by the approach described in this work. The existing approaches are either limited
to the specification like XDR or ASN.1 or allow the synthesis only within the limits defined by a
predefined communication library. The method at hand instead provides an extensible notation as
well as a mechanism to define translation rules to generate arbitrary implementations or checks for
the interface specifications.

The approach presented here regards interface objects as distinct objects and allows the designer
to customise them to their need. These objects are mapped by predefined translation rules to lan-
guage primitives in Ada95 for the software components and VHDL for the hardware blocks. The
specification and implementation method is the seamless continuation of the graphical notation for
communication objects of hrt-hood+ , introduced in Section 5.3.6.

6.2.2 Requirements for ComiX

The main requirement for ComiX is to provide a universal intermediate format to describe hard-
ware/software interfaces. Thus, it is necessary to define an abstract format that depends neither on
a particular input tool at the front end nor on a particular target language at the back-end.

An IDL like ComiX must allow the designer to specify the detailed layout of the intended com-
munication interface. This is especially necessary if parts of the interface are predefined by e.g. an
off-the-shelf component4.

On the other extreme if no off-the-shelf components are involved, it should also be possible to
neglect details in the description, which can be automatically determined by an ’intelligent’ code gen-
erator. In both cases, the consistency of the interface can be guaranteed because the code generator
chooses the required values from a single specification for both sides of the communication.
3In his work, Lehmann states that not all components of driver synthesis can be handled automatically.
4 The reader may think of an off-the-shelf hardware device providing a device register in a particular layout. In such

situations, the designer needs to describe the interface rather than design a new one.

53

6.3. THE COMIX LANGUAGE

As embedded systems become larger and more complex, the interface modelling technique should
be able to split the description into several specification modules possibly organised hierarchically.
The designer might want to reuse some interface components defined in previous designs. Thus, the
IDL should provide an easy-to-use library mechanism.

Flexibility is an important issue. With ongoing research, it might be necessary to extend the IDL
to cope with new requirements. By the time of this thesis version 1.1 of ComiX is in use but later
versions may emerge from further development. For this aspect, it was not sufficient to define the
IDL itself in an extendable manner, since every modification to the language would require a new
code generator. Hence, it was also necessary to introduce a modular and template based concept for
the code generation as described in Section 6.5.

Hardware/software interfaces eventually become very large. Specifications sometime occupying 50
pages and more written down in memory maps are a challenge to the design methodology. Therefore,
the IDL should provide a well-defined structure allowing for changes bound to a certain scope in the
specification and consequently reduce the specification’s complexity.

6.3 The ComiX language

In this section an IDL named ComiX (Communication Interfaces in XML) fulfilling the requirements
mentioned above will be introduced. Like most XML-based languages, ComiX is specified by a
document type definition (DTD)5. The DTD for ComiX can be found in Appendix A. Using XML
as a basis for the language makes ComiX flexible and extensible as the XML notation guarantees
the immediate existence of a parser for every XML compliant language.

A ComiX interface description consists of four layers depicted in Figure 6.3. These layers allow

−name
−alignement
−startaddress

−unitbase
−count

declaration <sub_type>
declaration <new_type>
declaration <constant>

−type
−address

−name
−range
−flow

−at

Architectures
Layer 1

Environments
Layer 2

Declarations
Layer 3

Objects
Layer 4

include <objectsets>
include <typedefinitions>

representation :

declaration enumeration
declaration record
declaration fixed/floating

Object definition :

Figure 6.3: Structure of a ComiX description

specifying and refining the interface in a stepwise manner. The design will probably begin with a
description of the overall architecture (Layer 1), that is the available resources in terms of memory
and interrupts, of the interface. Then it might be considered to reuse some predefined6 components

5A DTD is like a grammar for a XML-document. It defines the allowed tags and attributes for the language. See
also Section 2.5.1.

6Predefined here means interface specifications defined in earlier designs in contrast to predefined by the language.

54

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

of the interface (Layer 2). New data types will be declared in Layer 3 to be used in the definition of
communication objects in Layer 4.

More formally, the ComiX structure is defined by the following.

Definition 6.1 (ComiX Layer Structure) C = 〈L1
?,L2

?,L3
?,L4

?〉, where:

• L1 denotes an Architecture Layer (Section 6.3.2),

• L2 denotes an Environment Layer (Section 6.3.3),

• L3 denotes a Declaration Layer (Section 6.3.4),

• L4 denotes an Object Layer (Section 6.3.5).

Even though this design flow appears to be natural, the designer may choose a different flow
or jump back and forth between the layers. Since these layers build upon each other a complete
interface specification requires the definition of Layer 1, Layer 37, and Layer 4.

The ComiX DTD contains some so-called optional elements. These elements describe parts of the
interface that exists in some but not all specifications. For example, in many interface architectures
no interrupt is reserved. Hence, the reservedinterrupt element is an optional sub-element of Layer 1
which allows to omit this part in the specification.

For each layer specific mandatory information must be provided. In Layer 1 for example, the
start address and the size of the memory mapped I/O area must be defined to allow subsequent
consistency checks (Section 6.4). These properties are called required attributes. Other attributes,
which can be determined by the designer or calculated by a tool, are called implied attributes. The
following will describe the different layers and their elements and attributes providing a detailed
view on the interface specification methodology in oocosim.

6.3.1 ComiX Root Element

The root element of each interface specification in oocosim is the ComiX element containing the
four layers mentioned above plus some descriptive data about the interface specification like the
author and the projects’ name.

Further important is the name attribute, defining a unique identifier for the ComiX document.
This name is in particular useful if this document will be referenced in Layer 2 (Section 6.3.3) of
other ComiX for reuse. It also provides the link between the graphical design entry in hrt-hood+
and the textual ComiX specification.

The Comix version attribute specifies which DTD of ComiX is used in this document8. For
a processing tool, like for example the code generator in deshico, this information is probably
important to decide whether the document uses an appropriate format.

6.3.2 Architecture Layer 1

The first layer describes the overall physical architecture of the interface in the architecture ele-
ment. It describes the properties of the memory mapped I/O area and the interrupts provided by
the processor. Figure 6.4 depicts graphically the scope of Layer 1 and shows exemplary values for
some attributes. This layer separates the target specific physical characteristics from the rest of the
specification. If throughout the design process, the target architecture must be changed this layer
must be adapted. The consistency checks as described in (Section 6.4) will then identify implied
changes in the specification to achieve a consistent ComiX specification.

Formally, Layer 1 is defined by the following:

7Layer 2 is optional but can also replace other layers, as it allows to reuse specifications from previous specifications.
8The version described in this thesis is version 1.1 but there might be successive versions of ComiX in the future.

55

6.3. THE COMIX LANGUAGE

07 Bitorder
(higher_first)

Unitsize (8)

Count (10)

Start (8#100)

Alignment (word)

Figure 6.4: Architecture Layer

Definition 6.2 (Layer 1) L1 = 〈M,a, u, se, he, f, l, Ī〉, where:

• The set M of memory blocks m, which define the available memory areas in the communication
architecture9. A memory block m is defined as the triple m = 〈s, c, M̄〉 with:

– s ∈ N0 ∪ {ν} : The Startaddress s defines the first valid address of the memory mapped
I/O area. To indicate that no memory mapped I/O area is available s takes the value ν
(undefined). Note, that in this case, no memory objects or asynchronous memory
objects can be defined; that is, the interface is restricted to physical interrupts.

– c ∈ N+ ∪ {ν} : The Count c defines the number of storage units available in the memory
mapped I/O areas. Consequently, the last storage unit is at address s + c − 1. Again, ν
represents the undefined value in case that no memory mapped I/O area is available.

– M̄ ⊆ {s, .., s + c − 1} : Denotes the set of reserved memory addresses. In the memory-
mapped I/O area, some addresses might not be usable for this communication interface.
Through M̄ it is possible to exclude some memory addresses from possible use in this spec-
ification (in particular allocating memory objects to these addresses). Every element
reservedaddress in M̄ has only one attribute address that excludes a single storage unit
from further use.

• a ∈ {1, 2, 4, 8, ν} : For many target architectures the memory access is restricted to so-called
aligned addresses. In this case, read or write operations can accesses only addresses at word
(even addresses) or longword (multiples of 4) or even longlongword boundaries. Addressalign-
ment denotes this requirement on legal addresses for communication objects10. Formally,
the set of aligned addresses can be defined as follows:

Aaligned(a) = {v ∈ N0 | ∃i ∈ N : v = i · a} (6.1)
9Please note that the available memory in the communication architecture is not necessary continuous. Instead, it

can be distributed in several blocks within the overall address space.
10Please note that address here refers only the address of the first storage unit of an access.

56

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

• u ∈ {1, 4, 8, 16, 32, 64, ν} :Storageunit determines the size of a storage unit in number of bits,
in the memory mapped I/O. The symbolic value of ν denotes that the storage unit size is
undefined.

• se, he ∈ {big, small} : Softwareendianness and hardwareendianness describes the position of
the most significant bit in a storage unit. It may take the values big and small for big-endian
and small-endian. The endianness of the hardware components may differ from the software.
Hence both (se and he) are required to be defined.

• f, l ∈ N0 ∪ {ν}, f ≤ l : Firstinterrupt and Lastinterrupt determine the interrupts available in
the communication architecture. Only interrupts numbers in the interval between f and l can
be used in Layer 4.

• Ī ⊆ {f, .., l} : Denotes the set of reserved interrupts. Similar to the set of reserved addresses
M̄ this set excludes certain interrupts from further use. This is in particular useful if the com-
munication architecture is shared by multiple applications11. The element reservedinterrupts
contains only the interrupt attribute defining the interrupt number.

Each component in L1 corresponds to an attribute or an element in the Layer 1 part of a ComiX
document. The name of the attribute can be found in the above definition of L1.

The definition of L1 mainly aims at declaring the resources available, that is the accessible memory
and interrupts in a communication architecture. Only resources declared in a Layer 1 specification
can be used to implement the communication objects defined in the Object Layer (Section 6.3.5)
of the specification.

More formally, M̂ denotes the set of storage units in the memory mapped I/O area:

M̂ = {i|i ≥ s ∧ i < s + c} (6.2)

Then M, the set of storage units available for communication objects, is defined as follows:

M = M̂ \ M̄ (6.3)

Furthermore, Î denotes the set of interrupts in a communication architecture:

Î = {i|i ≥ f ∧ i ≤ l} (6.4)

Then I, the set of accessible interrupts, is defined as follows

I = Î \ Ī (6.5)

The resources RL1 of a communication architecture specified by a ComiX Layer 1 is defined by
the 2-Tuple 〈M, I〉

Definition 6.3 (Legal addresses) Let L1 be a Layer 1 in a ComiX specification. Then the set of
legal address in this architecture is defined as follows:

LA = {i ∈ M | ∃n ∈ N0 : i = n · a} (6.6)

Simple communication interfaces will contain only one Architecture Layer. To accommodate also
complex communication interfaces it is also possible to define multiple architecture describing dif-
ferent memories for the interface. In case of multiple Layer 1 specifications, the resources are defined
as the unification of the resources in each Layer 1 specification:

11For example, some interrupts may be already in use for the systems functionality.

57

6.3. THE COMIX LANGUAGE

Definition 6.4 (Resources in ComiX) Let L10 , ..,L1k
, k ∈ N be Layer 1 specifications of an

ComiX interface specification C, let 〈Mi, Ii〉, i ≤ k, i ∈ N the respective resources, then the resources
of this interface are:

RC =
k⋃

i=0

RLi =
k⋃

i=0

Mi ×
k⋃

i=0

Ii (6.7)

This layer may also be included (Section 6.3.3) from a former design. Thus, the Architecture Layer
may be omitted if there is at least one defined by the Environment Layer.

6.3.3 Environment Layer

The Environment Layer (also called Layer 2) allows to include library components such as com-
munication architectures, type definitions, or predefined communication objects. Hence, this layer
enables the reuse of former work as well as the decomposition of complex designs into multiple
specifications.

Since the reuse mechanism is simply based on inclusion of parts of former specifications, there is
no need for a specific formal treatment of Layer 2. Instead, the inclusion can be treated as textual
insertion of the respective parts into the ComiX specification under design12.

The ComiX language element include provides the means to specify the part of an existing
specification to be reused in the specification under design. The include element therefore contains
the following attributes:

interfacename: Defines the name of the ComiX specification from which the specified part is to be
included.

part: The part attribute determines, which kind of component or which set of components will by
added to the ComiX specification under design. The predefined values this attribute can take
and their semantic are defined in the following list.

All: means layers 1 to 4 will be added to the specification under design. Using this value
the designer can for example split the interface specification into disjoint partitions each
defined in a separate document. A master ComiX document includes the partitions into
the final interface.

AllArchitectures: Adds the complete Layer 1 of the referred ComiX document. This can be
in particular useful when many designs use the same target architecture. A specific target
platform usually provides the same interrupts and the same memory mapped I/O area.

AllDeclarations: Adds Layer 3 from a former design to the actual one. This is useful when
a collection of types is used again. A ComiX document can use for example the defini-
tions from a standardised type coding like XDR [SUN87], ASN.1 [Dub00] or an in-house
standard without defining them explicitly in the specification.

AllObjects: Includes all communication objects. This typically only makes sense if also
all declarations were included. Using all objects can be in particular valuable when a
preceding design needs to be enhanced by new interface components while all the old
objects are kept.

Declaration: Adds a single declaration of a type to Layer 3. If the transitive attribute is set to
yes for a subtype, the base-type definition is included and for a record type the transitive
set of component types will be added to Layer 3.

Asynchronoussignalset: Includes a named set of asynchronous signal elements will be
added to Layer 4.

12The mechanism is very similar to the # include preprocessor statement in the C programming language. The
included part in textually inserted before the compiler processes the program.

58

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

Asynchronousobject: Includes the named active object into Layer 4.

Memoryobjectset: Adds a set of memory objects into Layer 4.

Memoryobject: Adds a single memory object to Layer 4.

partname: Depending of the value of the part attribute it might be necessary to specify name of a
particular component. This is required for all part attributes not starting with the prefix ’All’.

Since Layer 2 can include arbitrary elements from an existing ComiX specification, it has potential
impact on all other layers. With careless use of the include element, inconsistent specifications can
be created13. Since, the consistency checks (Section 6.4) apply to the full ComiX specification and
therefore help identifying errors introduced through this layer the risk is limited14.

6.3.4 Declaration Layer 3

This third layer in the ComiX language is enclosed by the XML element declaration and allows
to define constants and to declare types. Constants are defined by their name and their value
attribute. For the processing of the specification, the constants are textually replaced by their values.
The types that can be defined in ComiX include new range types, subtypes, enumeration types,
fixed-point types, floating-point types, and records to aggregate the preceding types. For each type
definition, a ComiX element with a number of attributes defines the desired properties. In contrast
to general programming languages, the type declaration for records in ComiX also contains the
so-called relative layout information (RTI). The RTI defines the bit wise allocation, more exactly
the unit-number, and the bit-range of a component in memory. Together with the start-address of an
object of this type, the layout in memory is then exactly defined. Since communication objects
in ComiX can only be of record types there is no need to define the RTI for other types15.

Every type must have the attribute name defined uniquely to allow an unambiguous definition of
communication objects. The size of each type must be determined - either computed by a tool or
by the designer. The size is in particular useful to enable consistency checks as described in Section
6.4. Other attributes are associated with certain types and will be explained in the following:

New range types: Range types are useful to represent arbitrary intervals of integer values. They are
defined by the rangetype element with the specific attribute range. In the following Example
6.2, a range type named Temperature T for the values from 0 to 300 is defined:�
<rangetype name=”Temperature T”

range=” 0 . . 3 0 0 ”
s i z e=”9” />
� �

Example (ComiX) 6.2: Rangetype in ComiX

Enumeration types are defined using the enumeration element and a number of item sub-elements.
Since enumeration types are specified by an ordered sequence of items, the enumeration ele-
ment itself has only the standard attributes name and size. The item sub-elements have the
attributes itemname and coding to define the literal and its explicit representation in memory.
Enumeration types are in particular useful to communicate system states and commands for
hardware devices. The following ComiX code fragment in Example 6.3 will illustrate this:

13If the design would for example include a certain object set but does not include the required declarations.
14Since no new semantic element are introduced here, the consistency rules defined for the other layers are sufficient

for Layer 2 as well.
15To create a communication objects of a simple type (for example an enumeration type) it is sufficient to define

a simple record with exactly one component of this enumeration type.

59

6.3. THE COMIX LANGUAGE

�
<enumeration name=”State T” s i z e=”2”>

<item name=”Broken” coding=”2#00#” />
<item name=”OK” coding=”2#01#” />
<item name=”unknown” coding=”2#10#” />

</enumeration>
� �
Example (ComiX) 6.3: Enumeration type.

Sub-types are used to specialise already defined types; that is, to specify a reduced range of values.
The ComiX language element subtype carries the attribute basetype to define the base-type,
which can be any defined type except a record type. The range attribute specifies the possible
values of this type. In the Example 6.4, a smaller temperature interval is defined, using only
7 bits in memory.�

<subtype name=”Low Temperature T”
basetype=”Temperature T”
range=” 2 . . 1 0 0 ” s i z e=”7” />
� �

Example (ComiX) 6.4: Subtype.

Real: These types decompose into two numeric categories or representations: floating-point and
fixed-point. The only common16 is the range attribute that defines the minimum and maximum
values of the type.

The specific attributes delta, small and digits are defined by the sub-elements fixed and
float. For fixed-point representation delta defines the accuracy of the type and small the base-
unit for the type; that is, all values are represented by multiples of small.

For the floating-point representation, digits defines the precision of the number. The sub-
element float also allows defining the detailed representation of a float type through the op-
tional attributes signed, mantissasize, exponentsize, exponentbias. While many con-
trol dominated embedded system do not support floating-point types, they can be rather
useful in the prototyping phase. communication objects using floating-point types can be
replaced by fixed-point types in the final system, where preciseness and efficient implementa-
tion in hardware is important. Example 6.5 shows both categories of real types in ComiX.�
<real name=”Angle Float T”

range=” 0 . 0 . . 3 6 0 . 0 ” s i z e=”32”>
<float d i g i t s=”6”/>

</real>

<real name=”Angle Fixed T”
range=” 0 . 0 . . 3 6 0 . 0 ” s i z e=”16”>
<fixed de l t a=” 0 .01 ” />

</real>
� �
Example (ComiX) 6.5: Two different real types.

Records: The record element with only the standard attributes and a list of component sub-elements
defines records (aggregates) in ComiX. Each component sub-element has the following at-
tributes:

16Apart from name, comment, and size which are obligatory for all types.

60

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

name: Defines the name of the component.
type: Defines the type of the component.
private: When a memory object of this record type is declared this attribute determines

whether this component is visible through the objects interface. The default value is no.
unitnumber and bitrange: Define the RTI of this component in the memory. The unitnumer

defines the offset in storage units for this component. The bitrange defines the interval
of bits used by the component. The bitrange can cover more than one storage unit.

init: Defines the initial value for a component. The default value for this attribute is unknown.

The following Example 6.6 defines a record with two components namely Normal Temperature
and State. The component Normal Temperature uses the first seven bits in the first storage
unit and State T the last two bits in the third storage unit. Please note that due to the spread
allocation of its components the size of the record is 24 while the sum of its components is
only 9 bits. The resource requirements for record types will be discussed in greater detail in
Section 6.3.5.�

<record name=”Low Temperature Sensor T” s i z e=”24”>
<component name=”Temperature”

type=”Low Temperature T” pr i va t e=”no”
i n i t=”Normal Temperature”
unitnumber=”0” b i t range=” 0 . . 6 ” />

<component name=” State ”
type=”State T” pr i va t e=”no”
i n i t=”unknown”
unitnumber=”2” b i t range=” 6 . . 7 ” />

</record>
� �
Example (ComiX) 6.6: A record type.

The types defined in Layer 3 form the base for the definition of communication objects in
Layer 4 defined in the following section.

6.3.5 Object Layer 4

The fourth layer in ComiX is called Object Layer and is enclosed in XML element objects. It defines
the communication objects already introduced in Section 5.3.6. While in that earlier section the
graphical representation and the integration with the whole design was the major focus now the
detailed representation of the objects in the implementation platform is the main concern.

Many hardware/software communication interfaces contain large numbers of communication
objects. Hence, ComiX allows decomposing the Object Layer 4 specification into multiple object
sets. An object set may contain only objects belonging to one category of objects, namely memory
objects, asynchronous signals, active objects. For a better structuring, the Object Layer
is decomposed into three parts. Each part contains all object sets of one category of objects (see
following definition).

Definition 6.5 (Object Layer 4) L4 = 〈PM , PS , PA〉, with:

• PM = {OMi
|i ∈ N0, i ≤ p} : The part17 for the Memory Objects Sets OMi

.

• PS = {OSj
|j ∈ N0, j ≤ q} : The part for the Asynchronous Signal Sets OSi

.

• PA = {OAk
|k ∈ N0, k ≤ r} : The part for the Asynchronous Object Sets OAi

.

In the following paragraphs each type of object set is describe in detail.
17Mathematically these parts are sets of sets.

61

6.3. THE COMIX LANGUAGE

Memory Object Sets: Even rather simple embedded (reactive) systems typically exchange data
and control information through many different memory objects. Thus, the largest and usually
most complex section of a ComiX specification contains the memory objects. Therefore, ComiX
allows to group memory objects in so-called memory objects.

Each object set has a unique name and may contain one to arbitrary many memory objects. In
the ComiX language each Memory Object Set is represented by an XML element memoryobjectset
with its sub-elements memoryobject.

Definition 6.6 (Memory Object Set) A Memory Object Set M ∈ PM (Definition 6.5) is defined
as follows: M = {mu|u ∈ N, 0 < u ≤ x} where each mu specifies one memory object.

Memory Objects: While Memory Object Sets are only structural elements to support the overview
in a complex specification, each memory object determines all relevant information for a sin-
gle memory mapped interface object. Hence, the memoryobject element contains the following at-
tributes:

address: The location in the memory mapped I/O area as specified in Architecture Layer 1 (Section
6.3.2).

type: Defines the type of the object. For the definition of a memory object, a record type is
required since only these types allow specifying their detailed representation in memory. Since
record types in ComiX may contain all other types as components this is no hard restriction.

dataflow: The direction in which the data is allowed to flow. Three possible values are allowed:

hs: The hardware to software flow allows the hardware to write a memory object and the
software to read it.

sh: The software to hardware flow allows the software to write a memory object and the
hardware to read it.

bi: Allows both sides to read and write the information located in memory. As already dis-
cussed in Section 5.3.7, this can lead to several problems, but may be valuable in special
situations.

accessmode: The accessmode attribute can have the values atomic18 or volatile. Volatile in this
context means, that the value for the objects component is written into the memory rather
than into processor’s cache. Atomic means that an access to any component of the memory
object must be executed in an atomic transaction.

protected: The attribute can take the values yes or false. If set to yes, similar to an Ada95
protected object, each access method in software is executed mutual exclusive. This option is
usefull, if more than one task in software needs access to one memory object.

size: For a memory object the attribute size determines the maximum amount of bits, this object
may use.

According to the description above a memory object can be formally defined as follows:

Definition 6.7 (Memory Object) A memory object m ∈ M (as in Definition 6.6) is defined
as follows: m = 〈ad, ty, df, am, pr, si〉 where each component in the tuple corresponds positional to
the attributes description above.

The following Example 6.7 of a memory object named Engine Temperature will illustrate the
attribute defined above:
18Note, that atomic implies volatile.

62

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

�
<memoryobject name=”Engine Temperature ”

address=”8#100#”
type=”Low Temperature Sensor T”
dataf low=”sh”
accessmode=”atomic”
protec ted=”no”
s i z e=”36”

/>
� �
Example (ComiX) 6.7: A memory object.

Asynchronous Signal Sets: In reactive embedded systems quite often events must be modelled,
which require the immediate reaction of the system. The parallelism and the very high performance in
hardware allow detecting these events very fast. The immediate reaction of the software part however
requires a specific mechanism, called interrupt mechanism to handle these events adequately. This
mechanism is based on the interrupt signals almost every processor provides. The events, typically
propagated through the operating system, are handled by a parameterless procedure called handler
or interrupt service routine (ISR)19.

In ComiX the modelling primitive that contains the hardware and the software part handling
one event is called asynchronous signal. This type of communication objects defines the
handler’s name in the software part and the interrupt in the hardware part of the embedded system.

An asynchronoussignalset element contains a set of asynchronous signals. Each asyn-
chronoussignalset has an attribute setname, which defines a common naming prefix for the access to
all asynchronous signals within one set. An Asynchronous Signal Set S ∈ PS (as in Definition
6.5) is defined as follows:

Definition 6.8 (Asynchronous Signal Set) S = {sv|v ∈ N, 0 < v ≤ y}, where each sv specifies
one asynchronous signal.

Each asynchronous signal is specified by the ComiX XML element asynchronoussignal with
the following two attributes:

interrupt: The identification (typically a number) of the interrupt used for this event.

handler: This attribute defines the name of the interrupt handler to be registered in the operating
system for this event or interrupt.

Definition 6.9 (Asynchronous Signal) An asynchronous signal s ∈ S(as in Definition 6.8)
is defined as follows:

s = 〈irq, hd〉, where irq denotes the interrupt and hd the handler’s name.

The following Example 6.8 of an Asynchronous Signal Sets containing two asynchronous sig-
nals is meant to illustrate the use of the above described ComiX elements.�

<asynchronoussignalset setname=” most important events ”>
<asynchronoussignal handler=” emergency stop pres sed ”

i n t e r r up t=”12”/>
<asynchronoussignal handler=” powe r f a i l u r e ”

i n t e r r up t=”11”/>
</asynchronoussignalset>
� �

Example (ComiX) 6.8: An Asynchronous Signal Set.

19Please note that handler is only the general name and not the name for a specific procedure.

63

6.4. CONSISTENT COMIX DESCRIPTIONS

Asynchronous Memory Object Set: asynchronous memory objects can be used to transfer
data and control asynchronously between hardware and software. Each Asynchronous Memory Ob-
ject Set may contain any number of asynchronous memory objects plus an attribute setname
to define a unique naming prefix for the contained objects. Hence, an Asynchronous Memory Object
Set A ∈ PA (as in Definition 6.5) is defined as follows:

Definition 6.10 (Asynchronous Memory Object Set) A = {aw|w ∈ N, 0 < w ≤ z} , where
each aw specifies one asynchronous memory object.

An asynchronous memory object is specified through the element asynchronousmemoryobject
containing the union of the attributes defined for memory objects and asynchronous signals
except for the handler name. Formally, an asynchronous memory object a ∈ A is defined as
follows:

Definition 6.11 (Asynchronous Memory Object) a = 〈ad, ty, df, am, pr, si, irq〉 with the
components of the tuple as defined in Definition 6.7 and 6.9.

One application scenario of asynchronous memory objects has already been described in
Section 5.3.9. For other embedded applications, more asynchronous events are required than the
number of physical interrupts the processor’s physical architecture (Section 6.3.2) can provide. With
asynchronous memory objects, it is possible to handle any number of events using only one
physical interrupt.

In this case, the event is encoded in the memory object component of the asynchronous
memory object(as in Example 6.9). The interrupt activates asynchronously the master handler20,
which then reads the stored event to determine the correct handler routine for this event.�

<asynchronousobjectset setname=” mu l t i e v en t hand l e r s ”>
<asynchronousobject name=”my mouse”

address=”8#104#”
type=”Mouse Event T”
dataf low=”hs”
accessmode=”atomic”
protec ted=”no”
s i z e=”8”
i n t e r r up t=”14”/>

</asynchronousobjectset>
� �
Example (ComiX) 6.9: An Asynchronous Object Set.

Figure 6.5 concludes the description of the ComiX language elements with a graphical overview
as a DTD tree. The next section will introduce consistency rules based on the formal definitions
given in this section.

6.4 Consistent ComiX descriptions

Only consistent ComiX interface specification can be used to generate correct interfaces implemen-
tations. The consistency of a ComiX document cannot be determined by a single property. Instead,
it needs a set of properties and rules ranging from simple syntactical correctness rules to complex
resource-constraint rules to make a ComiX file a well-formed specification.

Obviously, a ComiX specification must be syntactically correct XML. This property can be
checked by any XML parser. Moreover, every consistent ComiX specification must be a well-formed

20Please note that this master handler is not visible for the application. It serves only to handle the access to the
memory object.

64

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

Figure 6.5: The ComiX DTD

ComiX document, that means it conforms to the grammar defined by the ComiX DTD (Appendix
A). If a so-called validating XML parser is used, this property can be check with the parser as well21.

Similar to most programming languages, syntactical correctness is not enough to guarantee a
correct or consistent specification. Instead, it is required to check the semantic consistency of the
specification to avoid contradictions within the specification. The following sections will define these
consistency rules based on the formal definitions made in the previous sections to allow automated
consistency checks based on the ComiX specification.

An alternative to consistency checks based on the ComiX specification would be to postpone
this task to the compiler translating the target language code generated from the specification. The
disadvantage of this approach would be, that error messages produced by the compiler are related to
the target code and not to the ComiX specification. Thus, the designer would need to understand

21Note that many XML parsers ignore the DTD and thus accept every XML document. A validating XML parser like
the JAXP parser used for the implementation of the code-generator in this thesis validates the document against
its DTD.

65

6.4. CONSISTENT COMIX DESCRIPTIONS

the target code and the way it was generated. Since this is not desirable, an automatic checking
mechanism implemented in the TempliX language for the consistency of ComiX specification is
part of the oocosim method.

Some consistency rules apply only to one element or layer in ComiX. However, many rules apply
to attributes taken from several elements located in different layers. For example, the size attribute
of a type T (defined in Layer 3) must not be larger than the size attribute assigned to a memory
object (defined in Layer 4) of type T. Hence, the subsequent subsections organise consistency rules
mainly by the attribute. Note that the short description given (in parenthesis) with each rule refer
to a violation of the rule. To ease the formalisation of the following rules, a simplified notation
(Definition 6.12) to refer to values of attributes in elements is used.

Definition 6.12 (Attribute Selection) Let E be an element in C and α be an attribute of E then:
E � α refers to the value α of the element E.

Most of the following rules are formalised based on the earlier given definitions of ComiX in
Section 6.3. Additionally they are all illustrated by small (counter) examples with a ComiX code
fragment violating the respective rule.

6.4.1 Size rules

The attribute size, which can be assigned to type elements or object elements defines the maximum
amount of bits that the object or object-component of the type22 in ComiX may occupy. Hence, the
size attribute may but does not need be equal to the so-called representation size of an element23. The
representation size for an element E, %(E), is equal to the number of bits the actual representation
of E occupies in memory. For the types that can be defined in ComiX Layer 3, it is rather simple
to compute the representation size24. For example, the representation size of enumeration types is
determined by the size of the mandatory attribute use, which explicitly defines its representation
or for a rangetype it is: %(rangetype) = dlog2(max(rangetype)−min(rangetype) + 1)e.

Rule 6.1 (Representation size to small) Let E be a ComiX element in a ComiX specification
C:
C is consistent ⇒ ∀E ∈ C : %(E) ≤E � size�

<rangetype name = ”Temperature T”
range = ” −40 . . 120 ”
s i z e = 7
comment = ”Temperature o f the heat s ink ” />
� �

Example (ComiX) 6.10: Invalid size attribute.

In Example 6.10 the given size of 7 bits is too small because the representation of the range -40 ..
120 (161 values) requires at least 8 bits. The following size rules are all related to record types and
their components.

Rule 6.2 (Components greater than record) Let TR be a record type element defined in Layer
3 and C1, ..., Cn be its components with component types TC1 , ..., TCn

:
C is consistent ⇒ ∀TR ∈ C : TR � size ≥

∑
TCi

� size

22Strictly speaking, not types but objects instantiated of a type occupy memory. For simplicity-reasons in the following
speaking of the size of a type will refer to the size a data-structure of that type.

23This is in particular useful in earlier phases of the interface design where object types often are changed or extended.
24Assuming that the compiler or synthesiser chooses the canonical representation of the data structure.

66

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

Rule 6.3 (Bitrange to small) The size of component types must equal to the size of their bitrange
representation for every component in a record. Let C be an arbitrary component of a record and TC

be the element defining the type of C:
C is consistent ⇒ ∀C :TC � size = ρ(C � bitrange) where ρ denotes the size of the bitrange.

In the following example Example 6.11 the bitrange attributes allows only 5 bits for the component
Temperature T. However, the size attribute of that type (Example 6.10) requires 7 bits.�

<component name=”Temperature Value”
type=”Temperature T”
unitnumber=”0” i n i t=”0” b i t range=” 0 . . 4 ” />
� �

Example (ComiX) 6.11: Bitrange too small violation.

Rule 6.4 (Overlapping components) Components in a record type may not overlap. Let TR be
a record type element defined in Layer 3 and C1, ..., Cn be its components. Let S denote the size of
a storage unit. Then:

C is consistent ⇒ ∀Ci, Cj with i 6= j :[
Ci � unitnumber · S +
min(Ci � bitrange)

]
≤

[
Cj � unitnumber · S +
min(Cj � bitrange)

]
⇒[
Ci � unitnumber · S +
max(Ci � bitrange)

]
<

[
Cj � unitnumber · S +
min(Cj � bitrange)

]
,

where min(b) / max(b) denote the first and last bit of a bitrange b.
The idea behind this formula is rather simple: if the first bit of a component A is allocated before

the first one of another component B, than also A’s last bit must be allocated before the first bit of
B.

Rule 6.5 (Layout size violation) The components of a record type must be allocated within the
given record allocation area25. Let TR, C1, ..., Cn, TC1 , ..., TCn

, and S be as defined in Rule 6.4:
C is consistent ⇒ ∀Ci : 0 ≤ Ci � unitnumber · S + min(Ci � bitrange) ∧
Ci � unitnumber · S + max(Ci � bitrange) < TR � size

In the following ComiX fragment, the record allocation area of 16 bits would be large enough for
the two components if allocated denser. But since the Sensor State component is allocated at the
end of the third storageunit, the record requires at least 24 bit to fulfil Rule 6.5.�

<record name=”Temperature Sensor RT” s i z e=”16”>
<component name=”Temperature Value”

type=”Temperature T”
unitnumber=”0” i n i t=”0” b i t range=” 0 . . 7 ” />

<component name=” Senso r Sta t e ”
type=”State T” pr i va t e=”no”
unitnumber=”2” i n i t=”0” b i t range=” 6 . . 7 ” />

</record>
� �
Example (ComiX) 6.12: Layout size violation.

Please note that Rule 6.5 and Rule 6.4 imply Rule 6.2.
25The attributes unitnumber and bitrange in the component elements define the allocation layout in memory. The

size of the record element defines the interval in which this allocation is legal - the so-called record allocation area.

67

6.4. CONSISTENT COMIX DESCRIPTIONS

6.4.2 Resource conflicts

Each communication object declared in Layer 4 allocates resources provided by the communi-
cation architecture. To simplify the following definition let us assume that the ComiX specification
C contains only one L1

26. The resources allocated by a communication object may be used
exclusively and must be declared to be available in the Architecture Layer L1.

Interrupt in asynchronous signals and objects

Rule 6.6 (Interrupt not available) The architecture must provide the interrupt for asyn-
chronous signals and asynchronous memory objects:
Let S denote an asynchronous signal, let A denote an asynchronous memory object in
Layer 4 then:

C is consistent ⇒ ∀S, A : S � interrupt ∈ I, A � interrupt ∈ I,
with I as defined in Equation 6.5.

Rule 6.7 (Multiple use of interrupts) Every interrupt is associated to at most one asyn-
chronous communication object:
Let S, T denote an asynchronous signal or an asynchronous memory objects defined in
Layer 4 then:

C is consistent ⇒ ∀S 6= T : S � interrupt 6= T � interrupt

The following example Example 6.13 violates Rule 6.6 because interrupt 6 is not within the
declared interval between 0 and 3. Moreover, it violates Rule 6.7 because interrupt 6 is used twice.�

<interruptblock

f i r s t i n t e r r u p t=”0”
l a s t i n t e r r u p t=”3” />

. . .
<asynchronoussignal name=” Aler t ”

i n t e r r up t=”6” />
<asynchronoussignal name=” Inva l idSensorData ”

i n t e r r up t=”6” />
� �
Example (ComiX) 6.13: asynchronous signals violating two consistency rules.

Address and size of objects

Every memory object and asynchronous memory object occupies a number of storage units
in the memory mapped I/O area. The exact location and amount is defined by its address and its size
(Definition 6.13). Since both attributes (size and address) are used with the same static semantic in
asynchronous memory objects and memory objects the following rules will not distinguish
between the two object types and refer to them as Storage Objects.

Definition 6.13 (Storage units of Storage Objects) The set of storage units SO allocated for
a Storage Object O is defined as follows: SO = {s ∈ N | s ≥ O � address ∧ s ≤ O � address +
d O�size
L1�storageunite}

Rule 6.8 (Illegal address) The address of every object must be legal; that is, at least being aligned
and within the memory mapped I/O area.

C is consistent ⇒ ∀O ∈ L4 : O � address ∈ LA,
with LA as defined in Equation 6.6.
26The following rules could easily be extended for multiple Layer 1 specification however at the cost of readability.

68

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

Rule 6.9 (Storage Objects in architecture resources) Every memory object O must allocate
only storage units that Architecture Layer 1 defines as available resources.

C is consistent ⇒ ∀O ∈ L4 : SO ⊆ M27

Rule 6.10 (Objects overlap) Storage objects may not allocate overlapping storage units.

C is consistent ⇒ ∀O1, O2 ∈ L4 : SO1 ∩SO2 = ∅

For the following example let us assume that Temperature Sensor RT is defined as in Example
6.12 but with a correct size value of 24.�

. . .
<memoryblock s t a r t add r e s s=”8#104#”

count=”8” s t o r ag eun i t=”byte ”
addressa l ignment=” longword”
b i t o rd e r=” low”
so f twareend iannes s=” big ”
hardwareendianness=” big ”

<reservedaddress address=”8#104#” />
</memoryblock>
. . .

<memoryobject name=”Engine1”
type=”Temperature Sensor RT” s i z e=”24”
dataf low=”sh” accessmode=”atomic ” protec ted=”no”
address=”8#103#” />

<memoryobject name=”Engine2”
type=”Temperature Sensor RT” s i z e=”24”
dataf low=”sh” accessmode=”atomic ” protec ted=”no”
address=”8#104#” />
� �

Example (ComiX) 6.14: Overlapping objects.

The example Example 6.14 illustrates several violations of the above rules:

• Rule 6.10: This example shows two memory objects allocated at different addresses where
the allocated storage units overlap. Since both objects allocate three storage units, which leads
to a violation of Rule 6.10 (overlap at address 8#104#).

• Rule 6.8: This rule is violated by both memory objects. Engine1 is not within the architec-
ture address space between 8#104# and 8#114# and the address of Engine2 is not aligned
on longword.

• Rule 6.9: Finally the address for Engine2 is already reserved. Hence, this storage element is
not in the set M (as in Equation 6.3).

Rule 6.11 (Type size greater than object size) The type size may not be greater than the ob-
ject’s size. Let O denote an Storage Object and TO the respective type:

C is consistent ⇒ ∀O ∈ L4 : O � size ≥ TO � size

The ratio to allow the object’s size to be greater than the type’s size is, that types may increase
or decrease in size during the refinement process. With a stricter rule, demanding the equivalence
of the size, every change in a type declaration would result in changes to all objects of this type.

27Please note that Rule 6.9 implies Rule 6.8. The rules however make sense to classify the consistency violation more
exactly hence giving the designer a more exact indication for the mistake made.

69

6.5. AUTOMATED CODE GENERATION AND CONSISTENCY CHECKS

6.4.3 Type rules

Rule 6.12 (Enumeration order) Enumeration types must be defined in a way that their item
representations are given in ascending order. Let T denote an enumeration type with items elements
I1, .., In with n ∈ N, n > 1.

C is consistent ⇒ ∀j ∈ N, j < n : Ij � coding < Ij+1 � coding

The ratio for this rule is that the order of items in the enumeration items also defines the order-
relation for values of the respective type.

The following ComiX segment (Example 6.15) shows the definition of the enumeration type
State T violating this rule, because the coding of the BROKEN item is larger than that of the other
items.�

<enumeration name=”State T” s i z e=”2”>
<item name=”BROKEN” coding=”2”/>
<item name=”OK” coding=”0”/>
<item name=”UNKNOWN” coding=”1”/>

</enumeration>
� �
Example (ComiX) 6.15: Order violation for enumeration types

Rule 6.13 (Well defined base type) For each subtype element the basetype attribute must refer
to a ComiX type. The range and the size must be smaller or equal than those of the base type. Let
S denote a subtype of a rangetype T in a ComiX specification C:

C is consistent ⇒ S � size ≤ T � size ∧ S � range v T � range

6.4.4 Completeness of this rule set

The rules mentioned given in this section do not cover the rules intrinsically guaranteed by the
DTD of ComiX. Not only syntactic correctness is guaranteed by the DTD. The attributes of
elements in XML can be restricted to guarantee certain consistency properties. The name attribute
of several elements is restricted to be an ID. This restriction guarantees already that the value of
name is a unique identifier hence avoids identifier clashes. From the scientific point of view, however
the formalisation of the missing rules is simple, provided the underlying specification is sufficiently
formal and sound.

The formalisation in combination with the consistency rules offers the potential for a large degree
of automation in the task of specifying a hardware/software interface. For many attributes in such
a specification, consistent values can be computed automatically. As one example, the address of a
memory object can be determined by a tool, as long as the available resources are known. Since the
access function to the interface is generated automatically (Section 6.5) from a single specification
it can be guaranteed all access functions use the same physical address.

6.5 Automated code generation and consistency checks

An efficient process for the design and implementation of hardware/software interfaces should be
maintained by the automation of consistency checks based on formal rules as described in the
previous section and the automatic generation of code for the implementation of the interface. The
code generation takes its complete information from a single specification - namely the ComiX
document - and maps the communication objects to their respective implementations.

The naive approach to implement the required tool support would have been to write specialised
code generators for the target languages (for example Ada95, VHDL and LATEX [Kop92]). Such

70

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

an approach is depicted in Figure 6.6. The code generation would already be based on a single
specification in ComiX. However, three individual tools produce target code in Ada95 (Generator
A), VHDL (Generator B), and for the documentation of the interface LATEX(Generator C). This
approach has the following disadvantages:

• The effort to implement these generators increases with each new target language. Even if the
implementation would be based on an existing generator, the support of a new target language
would require to understand the entire tool, adopt its source-code and finally to recompile it.

• Large portions of the generator are responsible for parsing and editing the specification, gener-
ating output and other common functions necessary for all the generators. These components
must be maintained for all separate generators. A library, which would support these common
tasks and would allow re-using these components, could ease this problem to some degree.

• With isolated tools it would be rather difficult to keep mappings for hardware and software
consistent. The tool maintainers for example have to make sure that changing a mapping for
the software drivers is reflected in an adequate change on the hardware side.

• Finally, such an approach would not allow the designer to modify certain code generation
mappings individually for a specific domain or application.

Specification
Interface

Generator A Generator B Generator C

VHDL
Hardware−InterfaceSoftware−Interface

LaTeX
Documentation

Ada 95

ComiX

Figure 6.6: Individual code generators

Therefore, in the work at hand, the code generation as well as the consistency checks are based
on hierarchical templates described in a language called TempliX(Templates in XML). Literally, a
template set defines an algorithm or target code mapping to be applied on a ComiX document. From
the programmers point of view, the ComiX document can be regarded as the input-data and the
templates as the algorithm that is applied on the data. This approach results in a tool architecture
as depicted in Figure 6.7. It shows the TempliX interpreter, or TempliX Abstract Machine (TAM)
as it will be called in the following, which computes different target languages by executing different
template set on the data extracted from a ComiX specifications28.

6.5.1 TempliX language definition

Simplicity and orthogonality was the major design guideline for the definition of TempliX. There-
fore, TempliX contains only a few and rather application specific language elements plus a mech-
28 In this intuitive view, the TempliX abstract machine is an execution unit for TempliX.

71

6.5. AUTOMATED CODE GENERATION AND CONSISTENCY CHECKS

Specification Pattern
Code GenerationInterface

Interpreter
TempliX

Ada 95
Software−Interface

VHDL
Hardware−Interface

LaTeX
Documentation

ComiX TempliX
Set A

Figure 6.7: Programmable Generators

anism to extend the language with user defined library functions written in Java. TempliX has
proven to be suitable to implement the code generation for three target languages and most of the
consistency checks29 from the previous section.

TempliX contains the following groups of language elements:

File creation: In most cases, the result of a template or a template set is a file containing the target
language. Files are created by using the template element. The attribute name is defining the
name of the template. filename and fileext define the name and extension of the output
file. When the TAM reaches the end tag of the template element, the file is closed. There is
always at most one open file in TempliX .

Output: For the code generation and to give feedback to the user, the following language elements
write to the output file:

• newline: Writes a carriage return to the open file.

• print, println: Write the value of their attribute name to the file. println is equivalent
to a print followed by newline.

• indentfore, indentback: To ease the task of creating pretty printed code, these ele-
ments add or subtract an indent level to the actual output position.

• debug, error: Write the value of their attribute name to the error or debug channel.

Control structures and tree traversal: TempliX provides only a minimum set of control struc-
tures. In contrast to general purpose programming languages (GPPL), it contains mainly
tree-traversing language elements:

• Conditional Branching: With the elements if, elseif, else, and donothing30 arbitrary
branching control flows can be described.

• Sub-template branching: With the &filename operator the control flow can branch into a
sub-template described in filename.

• Recursive Branching: The element section allows to define blocks. With the callsection
element recursive control flows to the start of a section can be specified.

29Some rules where identified after closing the implementation phase of the tool.
30The donothing element is necessary, because the else elements in mandatory for every branching in TempliX .

72

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

• find: The find element is a very flexible language element. It allows searching the first
element or attribute that matches a given expression. The search may start from the
current position in the tree or from the root element. The attribute depth determines,
whether the query is traversing through all sub-elements or is applied only at the given
element.

• Loops: In contrast to GPPL, TempliX does not contain control loops with a loop con-
dition. The only possible iteration is to apply all statement enclosed in a forsibilings
element to a set of siblings31 in the ComiX specification.

• Descending the tree: The child element descends after the start-tag from a parent to
the leftmost child node. The end-tag reverses this step; that is, the control flow is at the
point before the child element has been reached.

Data structures, Expressions The assign element allows to define local variables and assign values
to these variables. Similar to XML TempliX contains no typing concept. The operators % and
& allow accessing the values of variables or attributes.

Java language interface With these limited language elements alone some more sophisticated oper-
ations are difficult or even impossible. Therefore, TempliX provides a Java language interface.
The element check allows to call a method defined in a Java class and to pass arbitrary pa-
rameters to this method. While this concept is very powerful, it is very rarely required for
normal code generation where the basic TempliX elements are sufficient.

The following TempliX code example Example 6.16 tries to give the reader an impression on the
way TempliX works in general. This toy example generates a file Hello.txt. It extracts the attribute
author from the ComiX specification. Then it writes the sentence Hello author ! to the open file.
If the author attribute is left empty, it writes Hello World! instead. Then it branches into the
sub-template described in next template. Finally it closes the file indicated by the </template>
statement.�

<template name=”World” f i l ename=” He l lo ” f i l e e x t=” txt ”>
<find exp r e s s i on=”2” o f=” element ”

from=” root ” depth=” f a l s e ”>
<assign va r i ab l e=”who” value=”World”/>
<find exp r e s s i on=”author ” o f=” a t t r i b u t e ”

from=” cur rent ” depth=” f a l s e ”>
<if exp r e s s i on=”author ” o f=” a t t r i b u t e ” equal=””>

<donothing/>
<else>

<assign va r i ab l e=”who” value=”? author ”/>
</else>

</if>
<print t ex t=” He l lo %who ! ”/>
<newline/>
&next template ;

</find>
</template>
� �

Example (TempliX) 6.16: Hello world.

The next example illustrates the application of TempliX in the context of code generation.
Example 6.17 shows a code fragment that generates the type definition for an enumeration type in
Ada95. Let us assume the code generation has reached exactly the point where this code fragment is

31Siblings in this context denote all child elements of a single parent element.

73

6.6. IMPLEMENTATION ASPECTS

applied to a ComiX enumeration type. It first prints the Ada95 keyword type followed by the name
of the type and the keyword is. The enumeration items are defined by sub-elements in the ComiX
document. Hence, child moves the TempliX scope to the children of the type definition. The
application of the forsibilings loop construct leads to a comma separated list of the enumeration
items’ names in round brackets is printed.�

. . .
<print t ex t=” type ?name i s (”/>
<child>

< f o r s i b i l i n g s >
<lastnode>

<print t ex t=”?name”/>
<else>

<print t ex t=”?name , ”/>
</lastnode>

</ f o r s i b i l i n g s >
</child>
<print t ex t=”) ; ”/>

<print t ex t=”\ t ex tb f { f o r } ?name ! ’ S i z e
\ t ex tb f {use } ? s i z e ; ”/>

. . .
� �
Example (TempliX) 6.17: Enumeration type code template

6.5.2 Hierarchical Template Sets

The TempliX code to generate the target language code for a complete ComiX specification even-
tually becomes too complex for a single TempliX file. The key concept for the decomposition in
TempliX is called hierarchical template set. A template set starts with a top-level template building
the root of hierarchical tree of templates. For the top-level template, the so-called entry point is the
root of the ComiX definition called Comix. With processing the TempliX code in the template, the
ComiX tree is being traversed. The point to which the processing has advanced in the ComiX tree is
called the working point. From any template, so-called sub-templates can be called. The entry point
for a called sub-template is the working point of the caller. When a template is finished (including
all called sub-templates), the working point always returns to the entry point of this particular
template.

With hierarchical TempliX sets, it is even possible to call different template sets for each target
language that needs to be generated from a single master root template.

6.6 Implementation aspects

The Java implementation of a tool called deshico for the specification of hardware/software in-
terfaces with ComiX and the related code-generation with TempliX has been done in a diploma
thesis [Zha01] supervised by Prof. Dr.-Ing. W. Nebel and the author of this thesis.

The screen-shot depicted in Figure 6.8 is meant to give the reader an impression of the graphical
user interface build around the ComiX language and the code generation based on TempliX.

The deshico tool implements the consistency checks from Section 6.4 as well as a code generation
for Ada95 (software), VHDL (hardware), and LATEX(documentation). The following section will
elaborate on the general mappings principles applied for the code generation.

74

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

Figure 6.8: A screen-shot from the Deshico tool

6.7 Code-generation for Ada95 and VHDL

For a seamless design methodology, it is essential to support automatic transformations from an
abstract level to the next lower level. This requires translation schemes from ComiX specifications
into the target languages for documentation, hardware, and software. The concrete templates for
these mappings contain about 4400 lines of TempliX code. Therefore, in this work only the general
idea behind the mapping can be introduced.

The abstract goal of the code generation is the same for hardware and software, which is to
provide a method interface that allows accessing the communication objects. The methods for
each object are defined in a code-package with the objects’ name. The set of methods for each
communication object depends on its type:

• memory objects and asynchronous memory objects: For each component in the record

75

6.7. CODE-GENERATION FOR ADA95 AND VHDL

type a set componentname and a get componentname method is defined. Depending on the
data-flow direction, only set or get method are made public (Table 5.1).

• asynchronous signals: The hardware side contains only the method invoke to activate the
signal. The software side contains the event handler, which is hidden in the object.

Object sets are each translated into a package that contains the packages for all objects in the
object set. The following will briefly describe the target language specific mappings for communi-
cation objects in software, and hardware.

6.7.1 Mapping of ComiX to Ada95

Ada95 contains already a complete set of language primitives to describe memory mapped I/O
and interrupt based communication. Hence, most of the attributes found in the specification for
individual communication object can be naturally mapped onto Ada95 language-primitives.

Let m be a memory object32 of record type R with two components c1, c2 of type t1, t2, then
the code generation must perform tree tasks:

Declare component types t1, t2: The transformation of component types in ComiX into Ada95 is
rather strait-forward. Every required33 type element (Layer 3) is translated into a type declaration.
The coding attributes in the enumeration items is translated into a representation clause for the
Ada95 enumeration type.

�
<rangetype name=” t2 ”

range=” 0 . . 1 2 7 ”
s i z e=”7” />

<enumeration name=” t1 ”
s i z e=”1”>
<item name=”ZERO”

coding=”0” />
<item name=”ONE”

coding=”1” />
</enumeration>
� �
ComiX 6.18: Range and enumeration type.

⇒

�
type t1 is (ZERO, ONE) ;
. . .
for t1 use

(ZERO = > 0 , ONE = > 1);
. . .
type t2 is new I n t eg e r

range 0 . . 1 2 7 ;
� �
Ada95 6.19: Declaration in software.

Declare record type R: For the record type R, a specific type definition is generated using the
Ada95 representation clause for record types as shown in the following example.

32Due to the similarities in principle with the other object types this thesis describes only the mapping for memory
object .

33Note that the ComiX specification may contain type elements that are not used by any communication object.
For these types, code does not need to be generated.

76

CHAPTER 6. HARDWARE/SOFTWARE INTERFACE DESIGN

�
<record

name=”R”
s i z e=”7”>

<component name=”c1”
type=” t1 ” i n i t=”ZERO”
unitnumber=”0”
b i t range=” 7 . . 7 ” />

<component name=”c2”
type=” t2 ” i n i t=”0”
unitnumber=”0”
b i t range=” 0 . . 6 ”/>

</record>
� �
ComiX 6.20: Record type R.

⇒

�
type R is

record

c1 : t1 := ZERO;
c2 : t2 := 0 ;

end record ;

for R use

record

c1 at 0 range 7 . . 7 ;
c2 at 0 range 0 . . 6 ;

end record ;
� �
Ada95 6.21: Generated for R.

Create data-structure in memory: Having defined the types for the data-structure, it can now be
allocated in the memory-mapped I/O area. This again is achieved by simply using the representation
clauses in Ada95. The ComiX attributes address and size can be mapped one-to-one onto the
respective Ada95 attributes.

�
<memoryobject name=”M”

type=”R” s i z e=”8”
dataf low=”sh”
address=”8#110#” />
� �

ComiX 6.22: Memory object M.

⇒

�
for R’ s i z e use 8 ;
M: R;
for M’ Address

use 8#110#;
. . .
function s e t c 1 (v : t1) is

M. c1 := t1 ;
. . .
� �

Ada95 6.23: Generated for M.

6.7.2 Mapping of ComiX to VHDL

Since VHDL lacks a concept like the representation clauses in Ada95, code generation is here a more
difficult. Where in Ada95 the compiler is responsible for the encoding data into the appropriate
bit-pattern, for VHDL this task must be taken over by the code generation.

However, large sections of the generated code look similar. The following code fragment for example
is the result of the code generation in deshico for the component type declarations t1, t2 taken from
Example 6.18. The attribute ENUM ENCODING in this fragment is a pragma to force the synthesis
process to use the same encoding as specified in the ComiX type.�

attribute ENUM ENCODING : s t r i n g ;
type t1 is (ZERO, ONE) ;
attribute ENUM ENCODING of t1 : type is ” 0 1 ” ;

subtype t2 is (0 to 1 2 7) ;
� �
Listing (VHDL) 6.24: Enumencoding for synthesis.

Since further discussion of the more complicated code generation mechanisms would not provide a
significantly deeper insight in the methodology, they are neglected here.

77

6.8. RECAP

6.8 Recap

This chapter presented the following key concepts:

1. A formal and hence analysable interface specification language called ComiX.

2. The notion of a consistent ComiX specification has been defined by a set of consistency rules,
introduced in Section 6.4.

3. A language TempliX to support the flexible implementation of code-generation and consis-
tency checks.

4. Finally, the transformation of a ComiX specification into hardware and software has been
sketched in the last section.

With these concepts at hand, oocosim is capable to specify, analyse, and implement hardware/-
software interfaces in a very efficient and reliable way.

78

7 Co-simulation

This chapter describes the techniques used to co-simulate the functional and temporal behaviour
of software/hardware systems in oocosim. The arguments for the co-simulation of hardware and
software, which is providing an executable specification of the system, are manifold. The dynamic be-
havioural model of the hardware/software system in interaction with its environment model provides
the necessary insight to allow for an in-depth analysis of complex designs.

’Software alone does not hurt anybody - it needs assistance from some hardware device’. In
particular, the collaboration of different components in the system can be analysed only in a co-
simulation. If for example, the hardware delivers slightly wrong sensor values, which is not critical as
such, but the resulting software action may cause a chain-reaction leading to a disaster. This was the
case in the Ariane 5 accident. A type-conversion overflow was caused by a sensor value that was out
of its specified range. The overflow exception led to the shutdown of the primary controller because
a hardware failure was assumed. Since the redundant second controller was an exact replication of
the first it had to shutdown as well. The rocket was then out of control and thus self-destruction
was initiated.

Specifications are not always complete and adequate. Hence, even if one can formally verify that an
embedded system fulfils a specification, this cannot guarantee save behaviour. It is often necessary to
observe the dynamic behaviour under as realistic circumstances as possible in a virtual prototype.1

A simulation is always based on a model of the system to be built and its real environment. There
are two general problems, associated with the validation based on such a model.

One is that tests are inherently incomplete. For the type of systems addressed here, we can
assume that complete and exhaustive testing is virtually impossible. Apart form the numerous
execution paths the software might take, the real-time behaviour and complex stimulus generated
by the environment makes complete testing an almost infeasible task. Well-defined testing strategies,
starting with the first executable model and ending with the operational test of the implemented
system can help to guarantee that at least most requirements are checked.

The other problem lies in the difference between the simulation model and the real system. These
differences may result from the reduced simulation model. In particular, the environment is often
difficult to simulate, because it typically includes analogue components2 that are discretised for
the simulation. A further source for differences is the execution or target platform for the embed-
ded system in contrast to the simulation system executing on a workstation. While the functional
behaviour of the software can be defined almost target independently through the programming
languages, the real-time behaviour of the software is usually not addressed adequately. Since for re-
active systems, the real-time behaviour is often essential for their correctness (Section 4.5.5), one big
challenge for the hardware/software co-simulation lies in the correct simulation and in particular the
synchronisation of temporal aspects of the combined hardware/software system. This thesis presents
an approach, which enables the co-simulation of a real-time system based on a target independent
source-code level model.

Finally, the analysis of hardware/software interfaces needs to be addressed by a co-simulation
method. The interface components of the embedded system must be modelled carefully since errors in
the interface are often the source of severe malfunctions of the system. The previous chapter provides
means to achieve a consistent interface specification. Since this specification cannot guarantee the

1In the crane controller case study with oocosim such an incomplete/erroneous specification could be identified by
a detailed analysis of the simulated behaviour (Section 8.1.1).

2Real-world objects unfortunately very rarely show a discrete behaviour.

79

7.1. CLASSIFICATION CRITERIA

functional and temporal correct use of the interface within the application, the dynamic behaviour
and usage of interface components must be validated in the co-simulation.

For the design-flow introduced in Chapter 5, co-simulation plays an important role. Since the
high-level specification in hrt-hood+ is not executable as such, the co-simulation serves as the
executable specification of the embedded system. Thus, co-simulation allows testing an embedded
system early in the design process, fulfilling the requirement stated in Section 4.5.2. Moreover, the
approach proposed here allows the immediate implementation of the co-simulation model. Therefore,
it can be characterised as executable and implementable specification. To support a seamless design
flow the co-simulation model must be the basis for the implementation - in other words the code-base
for simulation and synthesis must be the same. oocosim supports this requirement (Section 4.5.1)
by providing a translation tool that is transforming the implementation model automatically into
the co-simulation model (Section 7.5.3).

As mentioned above, a seamless design flow requires a simulation model containing the imple-
mentable specifications of hardware, software, and interfaces. The large majority of hardware de-
signs in industrial practice, base on a specification in a hardware description language like VHDL
or Verilog. Such an approach requires the integration of the software model and the definition of
the synchronisation between the hardware and the software model. Consequently, the classification
of co-simulation approaches in Section 7.2 within the narrower scope of this thesis concentrates on
these two aspects.

Since for this thesis mainly the co-simulation of software described in Ada95 and digital hardware
described in VHDL is relevant, a unified simulation semantic for theses languages will be discussed
in Section 7.3. The main challenge here is to achieve simulation behaviour of a source-code model
that matches the functional and temporal behaviour of the embedded system’s implementation.

In order to implement the embedded system, the software parts of the models written in Ada95
will be cross-compiled for the target processor, while the hardware parts written in VHDL will be
synthesised for the ASIC or FPGA technology chosen. The key for a useful co-simulation is that each
individual component as well as the interaction between components in the co-simulation behaves
semantically equivalent to the implementation. It is important to note that semantically equivalence
includes functional and real-time behaviour at the desired level of abstraction.

In Section 7.5, implementation aspects of the co-simulation are discussed. Finally, Section 7.6
recapitulates the chapter.

7.1 Classification criteria

For the comparison of different software models and synchronisation mechanisms, the following
aspects will be evaluated in the following sections:

The representation of time: This aspect describes the way in which real-time is represented in the
software model - in other word the discrete steps in which time advances in the software model. For
the classification of software models and the synchronisation between the sub-models, the following
levels of granularity will be distinguished:

• Non: That means time is not specified in the software model and it is therefore pure functional.
The synchronisation of the software model with the inherently timed hardware model can only
be based on function calls between the sub-models.

• RTOS: The software model uses a coarse-grain timing model. It resembles the timing be-
haviour of the software as specified by concepts from the underlying real-time operating system
(RTOS). Section 7.4.2 will define this in detail for the software model in oocosim.

• Instruction: A step in the software model corresponds to the execution of one instruction in
the assembler code of the compiled software.

80

CHAPTER 7. CO-SIMULATION

• Cycle: In this timing model, a step in the software model tyically corresponds to one clock-
cycle of the processor. It is however possible, to define a different simulation cycle. In such
cases, the cycle length is usually chosen as an integer multiples of the processor clock.

• DE (discrete event): A step in the software model corresponds to a discrete event in the
processor model executing the software. Therefore, depending on the processor model, it can
be arbitrarily small.

Synchronisation of heterogeneous models: In a real-world embedded system3, hardware and soft-
ware share a common time and have access to identical interface resources often implemented by
shared memory and interrupts.

In a homogenous model, as for example a system model completely specified in an HDL, the
synchronisation is trivial, since all parts of the model naturally execute using a single model of
computation. Consequently, they (as the real-world embedded system) share a common model of
time and use the same model of interface resources.

Unfortunately, without further effort this is not true for heterogeneous models, that means in
a co-simulation containing separate hardware and software models4. The software model would
advance only depending on the performance of the workstation it executes upon while the hardware
simulation would depend on the performance of the hardware simulator. Obviously, their unrelated
progress would not be as intended. Therefore, it is necessary to synchronise the temporal behaviour
of hardware simulation and software execution using so-called synchronisation events. Furthermore,
the synchronisation mechanism is responsible for the consistent behaviour of the interface model.
Hence, the sub-models exchange the state of the interface model typically at the synchronisation
events.

Relative performance: The relative performance P of a model describes the ratio between the
simulated model-time and the simulation-time.

More formally:

P =
tmodel

thost
(7.1)

The model-time is determined by the performance of the hardware model, the software model, the
communication, and the synchronisation5:

tmodel = tsoft + thard + tcomm + tsync (7.2)

Note that the above Equation 7.2) assumes a heterogeneous simulation model running on a single
CPU. In a homogenous simulation model running on a single CPU, tcomm and tsync can be neglected.

tmodel = max(tM1 , ..., tMn
) + tcomm + tsync (7.3)

Obviously, the relative performance of an approach depends on the computation power of the host
machine used for the simulation. Hence, comparisons between different approaches are only valid
if the same simulation host is used for both approaches. Due to higher communication latencies,
distributed simulation models often show a significant higher synchronization time than local models.
Consequently, distributed simulation models should be applied, where the synchronization is loose
enough.

3The physical embedded system as the result of the development process is called real-world embedded system in
contrast to the simulated one.

4Since the hardware model is executed in an HDL simulator, while the software is executed in a separate process,
two independent processes are necessary to execute the respective models.

5Communication refers here to the effort required to process the interface data before it is transferred to the other
model. Synchronisation refers to the effort incurred by the data transfer and the blocking and unblocking of the
models.

81

7.2. EXECUTION MODELS FOR THE SOFTWARE PART

Model accuracy: Here means, how exact the simulation reflects the behaviour of the implementa-
tion. In general, improved accuracy can only be achieved at the cost of performance, as it requires
a more detailed model. Therefore, it is essential for the software model to reflect all and only the
relevant aspects. Since the relevant aspects as well as the level of detail differ between applications or
design phases, it is impossible to define the ’always right level of accuracy’. Instead, the co-simulation
environment should be flexible enough to allow different levels of detail in the model.

Model availability: An important aspect for a universally valid methodology. If the co-simulation
approach restricts the potential target platforms, for example by proprietary processor models, then
these restrictions must be acceptable for the targeted application domain.

7.2 Execution models for the software part

Co-simulation is a well-investigated research topic. Several approaches have been proposed to enable
co-simulation in different application domains and at various levels of abstraction. Chapter 3 has
already given a general overview of the related works in this field.

Many of these approaches use an HDL-simulator for the application specific hardware and com-
bine/synchronize them with software execution models. For these approaches, three subtypes can
be classified by the processor model or the software execution model:

Full processor hardware model: For this approach, the full system model together with the hard-
ware model6, is executed in a HDL-simulator. The system model therefore contains a processor
model of the target platform, which is used to execute the software model.

The abstraction level for this type of processor models can be very low, describing the processors
behaviour at register-transfer level, or rather abstract, representing only the functionality and the
estimated real-time behaviour. Provided the processor model is correct and detailed enough, the
cycle-accurate behaviour of the system can be simulated. Even internal registers of the processor,
intermediate computational results, or the I/O behaviour at the ports can be observed at bit-accurate
level.

The major disadvantages of this approach are the poor performance of such a simulation model and
the need to have available specific hardware models for the potential target platforms. Since detailed
processor models are not freely available this results in a low model availability7. To achieve a fully
time-synchronous behaviour of the system model, the processor specification must at least reflect
the functional behaviour at a cycle-accurate abstraction level8. Since modern embedded processors
often run at hundreds of megahertz, a simulation of the detailed behaviour (including for example
pipelining and caches) is extremely time consuming.

The poor performance (Table 7.1) makes it almost impossible to simulate the embedded applica-
tion as a whole. Only a few seconds typically take hours of simulation-time. For example, an RT-level
VHDL model of a 80c32 at only 20 MHz needs about 1050 sec of simulation-time9 to simulate about
1 sec of software model-time. Note, that an 80c32 microcontroller has a simple architecture compared
to modern embedded cores.

The poor performance is contradictory to the requirement stated in Section 4.5.4. More abstract
model can ease the performance problem at the cost of lower model accuracy. With higher abstrac-
tion, the timing behaviour of the processor model can no longer be (at cycle-level) synchronous

6Please remember that the term hardware model in this thesis refers only to the application specific (in particular
non-processor) hardware.

7Processor manufactures are very reluctant to publish HDL-models of their cores, because with such models it is
rather simple for competitors to analyse and copy key ideas of a CPU.

8Otherwise the synchronisation with the cycle-oriented hardware model is problematic.
9Executed on a SPARC Solaris 5.8 workstation with 500 MHz.

82

CHAPTER 7. CO-SIMULATION

with the hardware. The more abstract the HDL-models becomes, the closer they get (in terms of
performance and accuracy) to instruction set simulators.

Software model on an instruction set simulator (ISS): To overcome some problems with the
previous approach, highly optimised simulators for particular processors can be used to execute the
software model. These simulators called instruction set simulators typically model the behaviour of
the processors at cycle-level or instruction-level accuracy. The advantage of such a more abstract
model is a significant higher performance than HDL based processor models can offer. Recent publi-
cations like [NBS+02,RBMD03,RMD03] report a simulation performance of 8 to 12 MIPS (million
instructions per second) for their retargetable ISS of an ARM7 and SPARC V7 processors at in-
struction level accuracy. While this is much faster than typical HDL based models, it is still about
a hundred times slower than the host machine10.

In such a co-simulation, the hardware simulator still simulates the application specific hardware,
but the software model is executed using the ISS for a specific target processor. Since the ISS process
is running independently from the HDL simulation, the hardware model and software model need to
be synchronised. The co-simulation system therefore defines synchronisation points for both models.
Usually these synchronisation points are chosen as multiples of the system-clock or instruction
executions. Both sub-models execute, until the synchronisation point is reached. In a distributed
simulation, hardware and software can even execute in parallel. Then the hardware/software interface
is updated before the next simulation-cycle starts.

Depending on the framework, the hardware/software interface model can be modelled using either
abstract communication channels or low-level models. The CoWare N2CTM, as a prominent com-
mercial example, allows defining a memory map for the interface and Mentor CVSTMallows mixing
channels at different abstraction levels.

While this approach significantly speeds up the system simulation, the performance of ISS is
still far lower than modern embedded processors. Moreover, many co-design frameworks support
only a small set of embedded processors. With such restrictions, it is difficult to achieve a target
independent design flow, required to enable full design space exploration (Section 4.5.3).

Recent developments, like the LISA language [RWT], enable the automatic generation of instruc-
tion set simulators based on an abstract processor specification. These approaches, if widely adopted,
can probably help mastering problem of diversity of embedded processors.

Host code execution (HCE): In this approach, also known as compiled code execution, the software
source-code model is compiled for the simulation host machine. Naturally, this delivers the best
performance among the here presented approaches. Since the host computer is usually faster than
the target platform, the performance in general will be higher than the performance of the target
system.

Within a co-simulation system, the software model technically can be synchronized with the hard-
ware model through a call-mechanism like remote procedure calls (RPC), which means at functional
level.

There are several disadvantages associated with this approach:

• The processor internal state is not visible, as the HCE model does not contain the target
processor model.

• The temporal behaviour is different. This includes not only the performance but also the
scheduling behaviour of the underlying operating system.

• Hardware/software interfaces cannot be modelled adequately because the host machine does
not support the same interface facilities like memory mapped I/O or interrupts as the target
platform.

10Noll et al. [NBS+02] reach about 8 MIPS on a Athlon 1.2 GHz. Reshadi, Mishra, and Dutt [RBMD03] reach up to
12 MIPS on a Pentium III 1.0 GHz for common benchmarks.

83

7.2. EXECUTION MODELS FOR THE SOFTWARE PART

Consequently, such models can be used only for early functional tests. With a HCE model as such,
nothing meaningful can be said about the hardware/software interaction or performance of the
integrated system. It is however possible to augment the HCE model with mechanism to simulate
the operation system or the real-time behaviour as shown in the co-simulation approach presented
in this thesis.

Bus functional model (BFM): While the previous approach only models the functional behaviour,
the so-called bus functional model concentrates on the evaluation of the correct bus and the I/O
behaviour.

Bus Functional Models of Processors and Buses Bus-functional models of pro-
cessors, controllers, and buses are used for early hardware debug. The models simu-
late the bus cycles of the device or bus, providing a complete model of the pins, cy-
cles and on-chip-functions – everything except the instruction core. (from :Synopsys Inc.,
http://www.synopsys.com/products/lm/swmodel ds.html)

The functional behaviour is modelled here in the most abstract way. The BFM usually describes
a timed sequence of signal transitions on the bus-interface of the processor - typically specified
in a command language or a C-subset. The benefit of co-simulation systems using a BFM is the
possibility of a detailed validation of the interaction between the processor and its environment
through busses. Since such a model is rather a (meta-)testbench-like substitute of a full software
model, this approach is not in the central scope of this thesis.

Quantitative comparison: With the categories mentioned above, it is possible to classify processor
models. Since the classification is rather coarse, every class contains a large variation of concrete
models. These models differ in many aspects. In particular, the performance of models shows a
significant variation, as for example the complexity of the processor architecture and the efficiency
of the model implementation have impact on its speed. Due to the large variations, it is difficult to
compare the classes of approaches on a quantitative scale. Table 7.1 provides therefore only a rough
overview with respect to their timing model, their performance class, and the scope in which they
are typically applied.

Attribute/ Timing Perfor. Scope/Size
SW-Model Non RTOS Instr. Cycle DE

HCE X ++
Functional,
large

BFM X X − Bus I/O, small
or medium

ISS X X ◦ Functional,
medium

HDL X X −− RT-Level,
small

OOCOSIM X +
Functional,
large

Table 7.1: Comparison of processor models in co-simulation (part 1).

Table 7.2 supplements the previous table with a comparison with respect to accuracy, availability,

84

CHAPTER 7. CO-SIMULATION

and the interface resource model.

Attribute Accuracy Availabilty Interface ressource model
HCE −− ++ abstr. values in RPC
BFM (+) −− low-level physical
ISS + − (abstr.) memory, interrupt

signals
HDL ++ −− low-level physical

OOCOSIM
+ ++ memory array, async. inter-

rupt signals

Table 7.2: Comparison of processor models in co-simulation (part 2).

Recap Regarding these aspects, the above approaches all have their benefits and drawback. The
host-code execution is fast but not accurate enough to allow for an analysis of the temporal and the
interface behaviour. This is contradictory to the requirements stated in Section 4.5.5 and 4.5.6. HDL
based CPU models provide a very high model-accuracy, but their poor performance does not allow
to validate real complex hardware/software systems. This is a violation of the requirement stated
in Section 4.5.4. Co-simulation based on ISS models offer a better performance but still are often to
slow for complex embedded systems. Moreover, fast models are (at best) available for mainstream
embedded processors. Bus-functional models allow analysing the physical interface of processors and
busses very well but due to their restricted applicability do not represent a vital alternative for a
complete functional validation.

7.3 Co-simulation in OOCOSIM

The overall goal of the co-simulation in oocosim is to provide a so-called time-synchronous exe-
cutable model of a heterogeneous system model. Time-synchronous in this context means that the
synchronisation mechanism in the co-simulation is based on real-time synchronisation events in
hardware and software in contrast to a purely functional synchronisation.

More concretely, the system model in oocosim contains a software model written in Ada95 using
its real-time annex11 and a hardware model written in VHDL. These models communicate via an
interface model representing an abstract model of memory mapped I/O and interrupts.

The communication objects as described in Section 5.3.6 implemented in a real-world em-
bedded system must have access to physical interrupts and objects in the physical memory. On
the simulation host system these resources may not be existent and if, access to these could not
be granted12. Hence, it is necessary to provide a mechanism, which simulates the behaviour of the
communication architecture (Section 6.3.2) - in other word an interface model.

From these facts is obvious that the interface models for simulation and for implementation cannot
be identical. The models for real-world hardware and software, mapped via compilation and synthesis
onto the target system, will be called implementation models.

For the co-simulation a few modifications at source-code level regarding operations affecting syn-
chronisation and the hardware/software interface behaviour are necessary. The modified model will

11The real-time annex is standardised with the Ada95 language.
12The target system may have more or other interrupts than the host system. Moreover, direct access to physical

memory resource would usually lead to a segmentation fault.

85

7.3. CO-SIMULATION IN OOCOSIM

be called co-simulation model. Naturally, the goal is to guarantee that the co-simulation model shows
functionally13 and temporally the same behaviour as the implementation model.

The real-time behaviour of the software implementation model in general depends on the software
target architecture; that is, it depends on the performance of the processor, the memory system,
and others. To solve this problem, an implementation independent timing model for the software-
simulation will be defined based on the Ada95 real-time annex. This standardised annex contains
statements that specify the real-time behaviour of the source-code model independently from the
target architecture. The real-time annex provides similar concepts to an RTOS (scheduling, task
suspension), which are than mapped by the Ada95 compiler onto the target runtime system.

Before presenting the co-simulation in detail, a brief overview or the ’big picture’ will be given in
the following section. Section 7.5 introduces the techniques implementing the co-simulation system
in oocosim.

7.3.1 Overview

The co-simulation in oocosim advances in so-called co-simulation cycles (CSC) as depicted in
Figure 7.114. Every co-simulation cycle contains a Hardware Execution Phase (HEP) and a Software
Execution Phase (SEP). While the co-simulation advances in one phase, the other phase is blocked.
Furthermore, an Initial Synchronisation Phase (ISP) is needed, which is executed before the simula-
tion enters the first HEP or SEP to achieve a clearly defined initial state for the co-simulation. The

Run until all tasks in Software until
all tasks reached an event

Determine es2 and send it

Send time ts1,

block hardware

block software

release hardware

release software

Inital

Software Execution Phase (SEP)

Hardware Execution Phase (HEP)

Execute hardware until next event in

Update Memory (invoke Handler)

and memory (interrupts)
Update Memory

Transfer Memory

Insert event es2 into queue

software (es1) or an interrupt occurs

Set software clock to ts1

Initial Synchronisation
Phase (ISP), es1 = <0>

Figure 7.1: The co-simulation cycle

co-simulation execution semantic depends to a large extend on the notion of events. While they will

13This includes the interface behaviour.
14Please note that the figure shows only the ISP and the first simulation cycle of the co-simulation.

86

CHAPTER 7. CO-SIMULATION

be introduced formally in the following subsections for this overview, it will be sufficient to regard
events as ’defined points in model-time’.

Initial Synchronisation Phase (ISP)

Before the co-simulation enters the first simulation-cycle, exactly one ISP sets the co-simulation
model into a defined state. In particular, it sets the simulation model-time to zero and the interface
becomes initialised. In the software model all task are initialised and then started. The co-simulation
system determines the earliest software synchronisation event eS1 .

Then hardware simulation model receives this first synchronisation event eS1 . The execution of
the software will be blocked until the first HEP is finished. Now the co-simulation can enter the first
simulation cycle with the first HEP.

Hardware Execution Phase (HEP)

The hardware simulation model advances until the earliest software synchronisation event; that is,
until the model-time reaches the first software event or an interrupt occurs15. If eSi

is reached, the
state of the memory interface and the actual model-time (tSi) are transferred to the software model.
Then the simulation enters the SEP. By updating the model-time in the software model at least one
task becomes active16

If an interrupt has occurred the actual model-time (tSa
) will be transferred and the asynchronous

event will be signalled to the software model. This will release the associated interrupt service routine
in the SEP to handle the event.

Software Execution Phase (SEP)

Since there are two ways possible, to enter the SEP (synchronisation event or asynchronous event)
there are consequently two ways to execute the SEP:

1. If the SEP was released by an interrupt, the model-time is set to eSa
. The handler associated

with the handler is executed. The handler may possibly release some previously block tasks,
which can generate new synchronisation events.

2. If the SEP was unblocked by a synchronisation event, after updating the memory interface,
the software model will be unblocked by setting its clock to eSi

, that is the time of the actual
synchronisation event. Now the software model executes until all tasks are blocked again by
reaching synchronisation events or other blocking calls, for example calls to protected objects.

The earliest synchronisation event eSnext
will be determined by the simulation system and trans-

ferred to the hardware model together with the state of the memory interface. eSnext
is the earliest

synchronisation event after either eSa or eSi . Now this SEP ends by blocking the software model
and transfers the control to the hardware model. Now the next cycle can start.

7.4 Temporal synchronisation

The above overview already introduced the basic concept of the synchronisation of the hardware
and the software model in the co-simulation integrated in the oocosim design flow. This section will
define in detail the underlying timing model that is required to adopt the discrete event simulation
concept to the software model execution.

First, the notion of time in a VHDL model will be described. Second, a similar model for the
software, based on the real-time annex of Ada95, will be defined. Finally, a mechanism to integrate
these timing models into one consistent timing model for the co-simulation will be introduced.
15An interrupt marks an asynchronous event.
16This is guaranteed by definition of the software events.

87

7.4. TEMPORAL SYNCHRONISATION

7.4.1 Time in the VHDL model

The hardware simulation model is taken as is for the co-simulation. Hence, it will be introduced here
only briefly. For a detailed description, the reader might be referred to [Ash95].

A VHDL model can be seen as a collection of processes, which are sensitive to events on certain
connecting signals. Whenever such an event occurs, it will stimulate every sensitive process. The
stimulated process will then execute and eventually schedule value changes to signals later in the
simulation. Such a scheduled assignment to a signal in the future is called transaction (Definition
7.1). If the signal value changes through the transaction, it is called an event (Definition 7.1).

During the initialisation of the VHDL model at model-time zero, each process becomes active
and executes its sequential statements, which may schedule transactions for the future. When all
processes have reached a wait statement (or the end of the process) and scheduled their transactions
and events, the initialisation phase has finished and the sequence of simulation cycles can begin.

At the beginning of each simulation cycle, the time advances until the first transaction that is
scheduled. Then all events scheduled for the actual simulation-time are executed, that is the values
are assigned to the signals. If the transaction was an event, it may activate processes, which are
sensitive on the modified signals. The execution of sequential statements in the activated processes
will typically schedule new transactions. When all processes have suspended at a wait statement the
simulation cycle is over. The simulation ends when no more transactions are scheduled at the end
of a simulation cycle.

In such a simulation model, time advances non-contiguous - in so-called discrete steps. Hence, it
is called a discrete event model.

Definition 7.1 (Transactions and Events) A transaction t is a triple t = 〈s, v, t〉 comprising
a signal s, a scheduled value v, and a time stamp t. A transaction is called an event, if the actual
value of v is different from the actual value of s.

Definition 7.2 (Temporal order of events) Let ei = 〈si, vi, ti〉 and ej = 〈sj , vj , tj〉 be events.
ei is called earlier than ej, if ti < tj:

ei < ej ⇔ ti < tj (7.4)

A sequence S = e1, ..., en, n ∈ N of events is called temporally ordered if:

∀i, j ≤ n, i < j : ei < ej ∨ ti ≤ tj (7.5)

Definition 7.3 (Event queue) The central component in the implementation of a discrete event
simulation is the so-called event queue. It keeps the temporally ordered sequence of all scheduled
events.

For the execution of a discrete event simulation, the events in the event queue are executed in the
given order. Please note that every event can trigger new events, which are then inserted into the
event queue.

Definition 7.4 (Execution of an event) Let Q be an event queue as defined in Definition 7.3.
Let e0 = 〈s0, v0, t0〉 be the first event in the queue and tm with tm < t0 be the actual model-time.
Then the execution of e0 consists of three steps:

1. tm ⇐ t0: Assign t0 to tm. Since e0 is the earliest pending event, there is no point in time that
needs to be reached in the simulation between tm and t0.

2. s0 ⇐ v0: Assign v0 to s0. Now, that the scheduled time for the assignment has come, the
assignment can take place17.

17This step is omitted if the event is a software event.

88

CHAPTER 7. CO-SIMULATION

3. Q′ ⇐ Q r e0: Delete e0 from the event queue Q. The event is executed and can therefore be
removed.

If there is more than one event at a point in time in the queue, only the first event needs to set the
time. The order of executions for events with the same time stamp is then non-deterministic.

As described above during the simulation new events created by active processes need to be
inserted into the event queue. The following defines an insertion operation, which maintains the
temporal-order properties of the event queue.

Definition 7.5 (Insert an event in Q) Let Q = |e0, ..., en| be an event queue as defined in Def-
inition 7.3 at model-time tm and ej = 〈sj , vj , tj〉 be a new event with ti ≥ tm. Then Q’, the event
queue after insertion of ej is:

Q′ =

 |ej , e0, ..., en| : tj < t0
|e0, ..., en, ej | : tj ≥ tn
|e0, ..ei, ej , ..., en| : t0 ≤ tj < tn, @ek : ek > ei ∧ ek < ej

,

7.4.2 Time in the software model

Software languages in contrast to hardware languages typically have no inherent notion of time.
However, to achieve a time-synchronous execution, a concept of time for the entire co-simulation
system is essential.

The real-time annex of Ada95 provides a set of statements that describe and enforce the real-time
behaviour of the specified software to a certain extent18. Three of these statements allow defining
events in the software model and forming the basis for the co-simulation concept of time in this
thesis.

• The function clock returns the current time and allows relating the behaviour to the system’s
real-time clock.

• The delay until t statement suspends the execution of the invoking task until time t is
reached. For example delay until 10.0 ms suspends the invoking task until clock reaches
the value 10.0 ms. The expiration time of a statement delay until t is defined by its param-
eter (here t).

• For the clock-relative delay t statement the expiration time is given based on to the value
of clock at the time the statement is invoked. For example delay 10.0 ms at the actual
simulation-time c suspends the invoking task until clock reaches the value c + 10.0 ms. The
expiration time of a statement delay t is therefore t+clock().

The concept of time in the software model defined in this thesis advances similar to the hardware
concept of time based on a discrete event model. Due to the fundamental differences between hard-
ware and software - in particular software lacks the concepts of parallelism and signals - events in
software are defined differently. Therefore a software event can simply be defined by its expiration
time, which is the time it is scheduled for execution. The other two components in the event-triple
(Definition 7.1) can be omitted or remain undefined.

There are two sources for events in the software model:

1. The delay and delay until statements. Every invocation of such a statement D creates a
synchronisation event e with a time stamp equal to the expiration time of D.

2. The interrupts invoked by the hardware model. The time of such an asynchronous event is the
invocation-time from the hardware model.

18 Naturally, due to limited processor resources not all the specified real-time behaviour can be achieved.

89

7.4. TEMPORAL SYNCHRONISATION

Definition 7.6 (Software Event Queue) To define the execution of the software model according
to the discrete event model we need to agree on the following notations. Let denote:

t0 the model-time at the start of the simulation,

∆(t) the set of synchronisation events at model-time t.

then:

Initial Queue : QS(t0) = ||

Software Event Queue : QS(t) = |e1, ..., en|, where e1, ...en
19 denotes the temporally ordered se-

quence of events (Definition 7.2) in ∆(t).

Step in Simulation : A step in simulation in this software model describes the transition from Q(t1)
to Q(t2), t2 > t1, in other words, the co-simulation system steps from time t1 to time t2. It
is defined by the execution of all events with a time stamp equal to t2 (Definition 7.4). With
the execution of an event in the software model, the expiration time of the earliest event in ∆
has been reached. The respective tasks now can proceed until it creates an event through the
invocation of its next delay/delay until statement or it is blocked.

7.4.3 Coupling hardware and software models of time

Data

TaskAC

TaskCC

CompBH

CompA

Pr

H

CompC

H

H

R

...

e

e

e

e

e

e

h2

s1

h1

s2

s3

h3

t

t

t

t

t

t

s1

h1

h2

s2

s3

h3

e

e

e

h1

h2

h3

t

t

t

h1

h2

h3

e

e

e

s1

s2

s3

t

t

t

s1

s2

s3

System Events

Software Events Hardware Events

Event
Event

Event
Time

TimeTime

Hardware ModelSoftware Model

...

Figure 7.2: Unifying the event queues

19Please note that n can take different values between 0 and the number of tasks + 1 during the simulation.

90

CHAPTER 7. CO-SIMULATION

In order to achieve time-synchronous co-simulation behaviour the models of time in hardware and
software must be coupled into one unified time model. For that purposed the co-simulation is based
on a conceptual unified co-simulation event queue that merges the events created in hardware and
software in the correct temporal order as depicted in Figure 7.2.

Definition 7.7 (Unified co-simulation Event Queue) Let QS = |es1, ..., esn| denote the soft-
ware event queue (Definition 7.6) and QH = |eh1, ..., ehm| denote the hardware event queue. Then
the Unified co-simulation Event Queue QC is defined as the result of the merger (]) of QS and
QH :

QC = QS]QH = |e1, ..., en+m|, with : (7.6)

∀i ∈ 1, .., n ∃j ∈ 1, .., n + m : esi = ej ,
∀k ∈ 1, ..,m ∃l ∈ 1, .., n + m : ehk = el,
∀r, s ∈ 1, .., n + m, r 6= s : r < s ⇔ er ≤ es

7.4.4 Handling asynchronous events

As mentioned above, the second source for events in the software model and therefore in the co-
simulation model are the interrupts resulting in asynchronous events. An asynchronous event can
only be created while the hardware model is active but must be handled by the software immediately
at the activation time of the event.

Hence, an asynchronous event immediately blocks the further execution of the hardware model
and initiates an (asynchronous) simulation cycle (Section 7.3.1). The software model gains control
and the actual state of the hardware model is transferred. This state contains the state of the
interface memory, the actual time, and the asynchronous event that occurred. The co-simulation
scheduler dispatches the asynchronous event (interrupt) to the designated method representing the
handler for the co-simulation. The execution of the handler may cause side effects on other tasks in
the software model. A blocked task can be released and then executes until it creates a new software
event or it is blocked again.

From the formal point of view, an asynchronous event is equivalent to the external creation of a
software event. Hence, the event is inserted into the software event queue and the execution proceeds
as described in Definition 7.4.

7.4.5 Synchronising the memory-mapped I/O area

In the target system, the interface is implemented by a memory-mapped I/O area and a number of
interrupts. The main goal of the interface synchronisation is to approximate the behaviour of such
a physical interface within the co-simulation.

Since the simulation models for hardware and software are implemented as loosely coupled pro-
cesses, they both have their own representation of the interface model. They read and write inde-
pendently to and from this interface model and propagate their changes at each software event; that
is, at transitions between hardware and software model.

As described in Section 7.3.1, the co-simulation model executes the hardware and the software
model in mutual exclusive phases. At the transition between the phases, the state of the memory
model is transferred. All transformations of the memory state within one phase are concealed from
the other. Consequently, the design should avoid multiple write accesses to a single memory location
within one simulation cycle. The easiest way to achieve this property is to restrict the access to a
communication object to a single write access from a single active component20 in the design.
The hrt-hood+ model as described in Section 5.3 helps to identify such write-conflicts in the
graphical model, but the designer is responsible to guarantee this property.

20A task or process in hardware or software.

91

7.5. IMPLEMENTATION OF THE CO-SIMULATION

Please note, that this is not only useful due to the restrictions of the co-simulation model. It also
keeps the model robust with respect to changes in its real-time behaviour. If for example, the content
of a memory object is written multiple times within one invocation of a task, a minor change in
the performance of the target system can have severe impact on the functional behaviour.

7.5 Implementation of the co-simulation

To prove (the co-simulation) concept, a simulation environment has been implemented. Only the
key aspects of this implementation will be described here, as most of the implementation is rather
straightforward.

In this implementation, the hardware model is described in VHDL and simulated by the
ModelSimTM VHDL simulator. The software model described in Ada95 is generated in two steps.
First, some source-code modifications related to the interface model and real-time statements in
the software model are required (Section 7.5.3). These modifications are applied automatically by
means of a pre-compiler implemented in the course of this work. Second, the modified source-code is
compiled using a standard Ada95 compiler. The resulting executable then contains the co-simulation
software model.

Since hardware and software model are executed in separate processes, they need to synchronise
their behaviour; that is, execute in mutual exclusive phases and exchange information about the
memory mapped I/O area, interrupts, and the actual model-time. The communication itself is
implemented by standard UNIX inter process communication (IPC, Section 7.5.4).

7.5.1 Unified co-simulation event queue

The hardware simulation model is based on the event queue of the ModelSim simulator. To synchro-
nise the hardware and the software model as described above it is necessary to insert events from
the software model into the simulator’s internal event queue.

In the actual implementation the so-called Foreign Language Interface (FLI) of the ModelSim
simulator is used for this purpose.

FLI routines are C programming language functions that provide procedural access to infor-
mation within Model Technology’s HDL simulator, vsim. A user-written application can use
these functions to traverse the hierarchy of an HDL design, get information about and set the
values of VHDL objects in the design, get information about a simulation, and control (to
some extent) a simulation run. The header file mti.h externs all of the FLI functions and
types that can be used by an FLI application. (from :ModelSim Foreign Language Interface
Reference Manual)

The top-level architecture of the VHDL model needs to be extended by a pre-defined component
called cosim interface, which contains a so-called foreign process. This foreign process is acti-
vated at each software event. It immediately blocks the hardware model, and is responsible for the
communication and synchronisation with the software model via IPC.

7.5.2 The software co-simulation scheduler

A time-synchronous co-simulation can only be achieved if the progress of the software simulation is
under control of the co-simulation system.

This goal was be achieved by replacing the access to the real-time part of the runtime system
of Ada95 in the software model. The runtime system constitutes an abstraction layer between the
application and the underlying operating system. In particular, this runtime system controls the real-
time clock and the suspension and activation of tasks caused by delay and delay until statements.

92

CHAPTER 7. CO-SIMULATION

Obviously, the value of clock delivered by the host operating system and the derived behaviour of
the real-time statements is not appropriate for the co-simulation.

In the actual implementation of the co-simulation, a protected object replaces the original runtime
system. It provides the application with suitable replacements for the original clock, delay, and
delay until statements. The implementation make extensive use of some advanced features like
guards, re-queueing, queueing policy of Ada95 protected objects to achieve the desired behaviour.
The implementation of the core software co-simulation scheduler is rather small21, which makes it
quite easy to verify the scheduler for an experienced Ada95 programmer.

7.5.3 Code transformations for the co-simulation - Automatic pre-compiler

As mentioned above the correct behaviour of the software model in the co-simulation is based on the
replacement of the real-time related statements, access to memory mapped I/O and to the interrupts
in the implementation software model. Since the manual replacement of all such statements would
be tedious and error-prone, in the course of this work a tool has been implemented to automate this
work.

Transformation of real-time related Ada95 statements

With respect to the real-time behaviour, the pre-compiler needs to perform the following modifica-
tions in the software model:

1. Extend the implementation software model by the SimuTime package, containing the co-
simulation scheduler and the replacements for the real-time statements. This could be achieved
by adding the following source-code fragment to every Ada95 package in the implementation-
model that needs access to any real-time statement:

�
−− add the SimuTime package
with SimuTime ;

−− a l l ow un qu a l i f i e d acces s to f unc t i on s in SimuTime
use SimuTime ;
� �

2. Replace clock statement: Since the original clock function would deliver the wall-clock rather
than the co-simulation clock, it is replaced by SimuClock from the SimuTime package.

�
-- original statement
-- start_time := clock;

-- replacement for co-simulation
start_time := SimuClock;
� �

3. Replace delay and delay until statements: Similar to the clock function, the suspending
statements need to be replaced by their counterparts for the co-simulation.

21Less than a hundred lines of Ada95.

93

7.5. IMPLEMENTATION OF THE CO-SIMULATION

�
-- original statement
-- delay until clock + offset;

-- replacement for co-simulation
SimuDelayUntil(SimuClock + Period);
...
-- original statement
-- delay 10 ms;

-- replacement for co-simulation
SimuDelayUntil 10 ms;
� �

Note that real-time statements can also be part of expressions. Hence, the implementation of
the pre-compiler was more complex than it might seem at first sight.

Transformations related to memory-mapped I/O access and interrupts

The communication between hardware and software in embedded systems is often implemented using
interrupts and direct mapped shared memory. Obviously, the co-simulation cannot provide access
to the required physical resources. Hence, all physical accesses to these resources must be replaced
by co-simulation counterparts.

1. Replace declaration of direct memory-mapped data-structures: To avoid the access of non-
virtual memory addresses the pre-compiler replaces the representation clause by its co-
simulation counterpart. Please note that the data-structure itself (P IF) remains unchanged.
Only the mapping onto the physical address is replaced.�
-- declaration of data -structure
P_IF : My_T;

-- original statement
-- for P_IF’Address use P_IF_Address;

-- replacement for co-simulation
P_IF_Handle : DevRegHandle(

To_Integer(P_IF’Address), P_IF’Size ,
StorageUnitSizeOfRegister(P_IF’Size),
WantedAddress => P_IF_Address

);
� �
The P IF Handle is declared as a so-called limited type pointing to the original interface data-
structure P IF. This handle allows the co-simulation to track every access to P IF and map it
onto the simulation model memory.

2. Replace the binding of interrupts to ISR in the implementation model. The co-simulation
scheduler evaluates the asynchronous event received from the hardware model and calls the
dispatcher method in the co-simulation Interrupts package. This dispatcher resembles ex-
actly the dispatcher in the operating system by calling the method (ISR) associated with the
asynchronous event.

94

CHAPTER 7. CO-SIMULATION

7.5.4 Mutual exclusion of hardware and software model - interprocess
communication

As described in Section 7.3.1, a co-simulation cycle consists of two phases, namely the HEP and
SEP, which are executed mutual exclusively. At the transition from either phase to the other, the
simulation model-time and the actual state of the interface memory is encoded into a compact data
structure22 and transferred between the models. Both aspects, the mutual exclusion as well as the
data transfer is implemented by means of IPC [Ste98,Ste99] using a single UNIX socket.

Since a blocking protocol has been chosen for the socket, each communication participant (here
each model) is blocked whenever it is awaiting a data-packet being send by the other participant.
Consequently, the hardware (software) model is blocked at the end of the HEP (SEP) by awaiting
the next data-packet from the software (hardware) model.

7.6 Recap

In this chapter, the following aspects of oocosim have been presented:

• A concept of time for the software model based on the real-time annex of Ada95.

• The merging of the concept of time for the hardware and the software model into a unified
co-simulation model.

• The key ideas behind the implementation of the co-simulation in oocosim.

This concludes the description of the oocosim methodology, which starts with a graphical speci-
fication in hrt-hood+, proceeds with the interface design based on ComiX and finishes with an
executable and implementable model in hardware and software.

22To improve the efficiency of the co-simulation , the time stamp and the state of the interface are both coded into
one data-packet.

95

7.6. RECAP

96

8 Evaluation of the OOCOSIM Method

The aim of this chapter is to discuss and evaluate the oocosim design flow as presented in Chapter
5-7. The evaluation will follow the criteria as defined in Section 4.5.

Two of these criteria, namely performance and modelling of hardware/software interfaces can be
underpinned by quantitative data. Some criteria are not measurable in principle like for example
the seamlessness of the design flow or the adequacy of abstractions. For such criteria, the following
sections will discuss the means that oocosim provides to support them.

The first section will briefly introduce the benchmarks used in this evaluation chapter. The follow-
ing sections will focus on different requirements on design methods and discuss them with respect
to the approaches in oocosim.

8.1 Benchmarks for OOCOSIM

A major motivation for benchmarks in general is to validate the effectiveness of an approach and
compare the results with other methods. Practical use of a method also promises to identify poten-
tial improvements. This section presents two embedded system benchmarks that focus on different
methodological aspects. The crane controller benchmark is used mainly for the evaluation of hrt-
hood+ and the co-simulation. The hardware/software interface in this application is fairly simple.
Due to the importance of this aspect, a second benchmark is used to evaluate the ComiX-based
interface design approach in a larger context. The elevator system contains a large number of com-
munication objects to exchange data and control commands between the software controller and
various sensors/actuators located in hardware.

8.1.1 Crane controller benchmark

This benchmark was created in the apron of the DATE’99 (Design Automation and Test in Europe)
conference, where a panel was held to discuss the pros and cons of different design languages. In the
run-up of the conference, the competing languages, namely Ada95, SpecC, Java, and VHDL-AMS,
were applied to this common benchmark.

A few month later at the FDL’99 (Forum on Design Languages), a second panel about the same
topic took place. This time other language settings (Simulink, occam, and oocosim [OSN00b,
OSN00a]) were applied to the same benchmark. Each participating research group received the
specification [MN99] containing the functional specification, timing requirements, and some test
cases. The main tasks to be fulfilled in the design contest were:

• Model the physical crane in its environment and the embedded system controlling it.

• Apply a set of test scenarios to the model to validate the model.

• Present the results and discuss them in the panel.

The comparison documented in [GMNV00] gives an overview on the different strengths and weak-
nesses of the approaches. All models (Ada95, occam, VHDL-AMS, Matlab/Simulink, and Java) are
executable1, but the design aspects represented in these model are very different. The Java model

1There was no working model and simulator for VHDL-AMS available by the end of the comparison. This however
is no general property of the language.

97

8.1. BENCHMARKS FOR OOCOSIM

provides a graphical real-time animation to demonstrate the dynamic behaviour of the crane. The
VHDL-AMS design concentrates on modelling the continuous aspects of the benchmarks. occam
and the oocosim represented the parallelism of system components explicitly by language primi-
tives. The key difference between oocosim and the other methods presented is, that the oocosim
approach bases on the implementation model of the system, which is already partitioned between
hardware (Objective VHDL) and software (Ada95). It contains, in contrast to the others, a model
of the physical interface. This leads to a more detailed model enabling an in-depth analysis of the
system’s functional and timing behaviour also with respect to implementation decisions. On the
downside, this costs significantly more design and simulation effort as documented in the com-
parison2. Due to the different aspects in the design studies, a comparison of the result reported
in [GMNV00] with the quantitative figures about the oocosim method (Section 8.6) is difficult.
Instead, the comparison of the co-simulation model with a homogenous model that provides similar
accuracy in functional and timing behaviour will be presented in Section 8.6.3.

Basic functionality

The benchmark describes a so-called portal crane as depicted in Figure 8.1.
The crane car moves along a track,

��

x

xc 0.0

crane car

a

d

xl

PosMin PosMax

mc

cable

ml
f

load

0.0

Figure 8.1: The crane system. Source: [MN99]

carrying a load ml attached to the car
with a flexible cable of fixed length.

Six sensors (PosCar, SwPosCarMin,
SwPosCarMax, Alpha, SwShutDown,
PosDesired)3 provide data about the
physical system in which the embed-
ded system controls the crane. Three
actuators can be applied to the crane
car: The driving voltage Vc accelerates
the car via a motor, the brake stops it,
and emergency-stop stops and applies
a circuit breaker immediately in case
of a system failure.

When the car accelerates, the car-
cable-load system begins to swing.

The dynamic physical system is given as a fourth-order linear system. The benchmark specification
describes the control algorithm and certain real-time requirements for the controller. In particular,
the formula and parameters to compute the driving voltage VC as well as the control flow for all
mode-changes (e.g. operational mode to emergency stop) are described in detail.

First, the crane moves slowly to the left and right limit of the track to check the function of its
safety sensors (SwPosCarMin and SwPosCarMax). After successfully passing this safety check,
the system enters the operational mode. In operational mode, the job-control task of the embedded
control system awaits a desired position (via PosDesired sensor) to be set and moves the load to that
position. The acceleration of the car can be controlled by the voltage Vc within a range of ± 40V
applied to the motor of the car and the brake to stop the car.

In parallel with the job-control, a diagnosis task applies periodical sensor plausibility checks. If
for example the Alpha sensor fails, the diagnosis task will detect this and the crane enters a specified
emergency mode4.

2It should be noted that by the time of the benchmark, especially the co-simulation environment in oocosim was very
prototypic. With the actual co-simulation tools, the simulation performance is about a factor 20 better (Section
8.6).

3The ’Sw’ in the sensor names indicates that the sensor is a switch. ’PosDesired’ is the target position of the load.
It is (in accordance with the specification) modelled as a sensor.

4In the emergency mode, the control algorithm calculates Vc and controls the break only based on the PosCar sensor.

98

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

Also part of the benchmark is a suite with three different test scenarios. These scenarios contain
the sensor checks and regular jobs to drive the load to different target positions. One scenario includes
a disturbance (e.g. wind) modelled by an external force fd applied on the load; others contain the
failure of certain sensors leading to emergency mode or an emergency stop.

The benchmark can be described by the following characteristics:

Detailed physical model: As mentioned above, the physical system (car, load, and disturbance) has
been defined by a fourth-order linear system. The benchmarks specification recommends to
use the Runge-Kutta algorithm [RK24] to solve the differential equations. Hence, modelling
the environment surrounding the embedded controller took large portions of the design effort.

High accuracy requirements: The parameter matrices (A and B in [MN99]) applied in the control
algorithm contain values in the range between 10−8 to 104. Since these matrices are iteratively
multiplied, numerical accuracy requirements are high. Hence, this benchmark was also a good
opportunity to check whether the design languages (Ada95 and VHDL coupled by the co-
simulation) are able to provide an adequate level of accuracy in terms of numerical precision.

Hard real-time constraints: Several mode changes are specified according to functional and real-
time conditions. If, for example, Alpha > AlphaMax for more than 50 ms within a period of
100 ms, the diagnosis task initiates the emergency-mode5. Naturally, such a specification can
only be checked with a co-design method, which regards real-time in its model representations.

Long model-times: The crane is a rather large physical system. With 10 m distance between
PosCarMin and PosCarMax, it takes about 40 minutes model-time to perform each of the
given test scenarios in the benchmark. Most of the time (36 minutes) is consumed by the
sensor check preceding the full operational mode6.

Limited parallelism: The benchmark specification describes only two explicit parallel activities for
the controller: the job-control and the observer. However, the actual model for the embedded
controller in this experiment contains also active objects for the power-up, the voltage-control
(in hardware), and the polling of interface values (in software). Other parallel components in
the model were the environment, the operator, and the monitoring tasks.

The HRT-HOOD+ model

The top-level specification of the codesign model of the crane system as depicted in Figure 8.2
contains six first-level objects that resemble the basic structure.

• The Operator and the Physical Plant are objects, which obviously do not need to be im-
plemented by the embedded system. Nevertheless, they are required for the testbench in the
simulation model of the portal crane.

• The Job Control object, here assigned to the software partition, implements the main control
process for the crane.

• The Voltage Control, here implemented in hardware, calculates the driving voltage and de-
tects the breaking condition. Due to strict real-time constraints, this object was allocated to
the hardware partition.

• Two abstract communication objects, namely Sensor Values and Actuator Values,
model the communication between the hardware and software objects.

5The specification moreover defines a minimum arrival time for sensor events of 2 ms. This allows a discrete integration
of sensor value times with a period of 2 ms.

6The sensor check runs before the crane enters operational mode; that is, the brake can not be applied. Hence, only
very small driving voltage (2 mV) can be applied to the motor to safely accelerate and stop the car.

99

8.1. BENCHMARKS FOR OOCOSIM

OperatorS

Physical PlantA

Crane_SystemR

CO

H
CO

Actuator_Values

Voltage_Cntl
Sensor_Values

C Job_Control

PosCar_T

Alpha_T

Start

P
os

C
ar

_T
A

lp
ha

_T

...

Start
Set_Vc
Power_Down

Start
Stop

Read_Alpha
Read_PosCar

Vc_T

V
c_

T

Set_SwShutDown
Set_Pos_Desired

Start

Break_T

Figure 8.2: Initial HRT-HOOD+ model

Based on this top-level model, the hierarchical refinement added more details to the model. Soon
the specification became too complex to be depicted in a single diagram. The hierarchical decompo-
sition resulted in several sub-diagrams. Figure 8.3 shows such a sub-diagram with special emphasis
on the actuators of the system. All other objects are depicted as simple boxes indicating only the
type and the name of the object7. This refinement of certain components allows the designer to
analyse the relations and data-flows between fine-granular objects – here some communication
objects for the actuators – and the rest of the model.

The executable models

From the hrt-hood+ model two executable models have been derived: A pure Ada95 model and
a co-simulation model containing a hardware sub-model in (Objective) VHDL8 and a software sub-
model in Ada95. Since both models are based on the same hrt-hood+ specification, they can easily
be compared in terms of size, function, and performance (see Section 8.6).

Table 8.1 compares the two models according to their size in lines of code and size of the executable
in kilobytes.

Full Ada95 Generic code Co-sim. Ada95 Co-sim.VHDL
Code [LoC] Exec. [kByte] Code [LoC] Code [LoC] Exec. [kByte] Code [LoC]

8035 559 2096 6847 1100 1477

Table 8.1: Comparison of model size.

7In hrt-hood these objects are called Uncle Objects.
8The hardware objects in hrt-hood+ first have been modelled in Objective VHDL and then automatically translated

into VHDL.

100

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

MO PosDesSensor

MO VC_Actuator

set_vc

get_vc

MO EmergencyStop

Apply

MO Brake

BrakeStopsCar

Apply

Release

Vc_T

E Environment

C JobControl

C Connector

C Plant

CO Sensors

Operator

SwPosCarMin

SwPosCarMax

Alpha

PosCar

PosDesired

SwPosCarMaxPosCar

SwPosCarMinAlpha

Vc_T

x_d

Vc_T

Alpha_T

x_c

PosDesired

MO ShutDownSwitch

SwShutDown

SwShutDown

SwPosCarMaxStuckAtValue

SwPosCarMinStuckAtValue

AlphaStuckAtValue

initial_condition

BrakeStopsCar
E

Figure 8.3: Actuators in detail

It can be observed that the co-simulation model is only slightly bigger than the pure software
model. Both models contain a large portion (about 25%) generic code; that is, library code for the
Runge-Kutta algorithm and matrix arithmetic. In the functional behaviour, only small numerical
deviations (in the order of 10−6 m in the position of the load) have been observed. The deviations
could be traced to the slightly different representations of real numbers in VHDL and Ada959.

8.1.2 Elevator system

The second benchmark models a passenger hoist, transporting people between different floors in a
building. It is equipped with several comfort features (e.g. air condition) and safety mechanisms (fire
sensor, sprinkler). The elevator system as depicted in Figure 8.4 has been modelled using oocosim
in a student research project [Zha99]. The model contains the following subsystems:

Cabin: The cabin carries the passengers between the floors. It contains the cabin panel (e.g. floor
select buttons), sensors (e.g. smoke, temperature), and actuators (e.g. lights, sprinkler).

Elevator control (ECU): This central controller receives all data provided by the sensors and gen-
erates the commands for the actuators.

Motor: The motor receives commands from the ECU to move the cabin to the desired position and
sends data about the motor temperature to the ECU.

Floor panels: On each floor of the building, there is one simple panel with a call button and the
arrival signal.

9Ada95 allows user-defined floating point types, while VHDL supports only a standard IEEE-floating point type.

101

8.2. COMPLEXITY HANDLING

Motor-control

Current-floor

Motor-temperature

Door-lock-sensor

Floor-display

Arrival-signal

Floor-buttons

Door-open-button

Door-motor

Aircondition

Sprinkler

Emergency-call

Emergency-break

Door-close-button

Status

Call-button

Payload

Floor-display

Smoke

Elevator-controller

Door-locker

Light

Entrance-sensor

Figure 8.4: The elevator system. Source: [Zha99]

Many independent control processes (for example multiple user inputs, monitoring of safety sen-
sors) result in a complex reactive behaviour, including several asynchronous signals for emergency
sensors. The large number of sensors and actuators makes the elevator system case study especially
useful for the evaluation of the interface modelling capabilities in oocosim (Section 8.7).

8.2 Complexity handling

oocosim provides several mechanisms to handle complex embedded systems. The graphical represen-
tation of hrt-hood+ supports the visualisation of complex relations between system components.
The graphical overview helps the designers to communicate with each other or with externally in-
volved persons, for example the customer. The core techniques to handle complexity in oocosim
are abstraction, decomposition, and decoupling of system components. The main ratio behind this
approach is that primary the interaction between components, rather than the components as such,
are the cause for system complexity. In the first design phase, system objects allow decomposing
the system into loosely coupled sub-systems also called logical partitions. These partitions can then
be handled - maybe by different design teams - almost in isolation. In the crane benchmark, the
design team decided to split the hrt-hood+ design into three sub-systems: The physical plant, the
job-control and the voltage-control (Figure 8.2). These loosely coupled sub-systems have been refined

102

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

almost independently. This helped to split the design into simpler design tasks. Due to the clearly
defined interfaces and the specified real-time requirements in the graphical model, the integration
of the sub-systems was rather easy.

Abstraction allows to defer low-level decisions to a later design phase or to concentrate on a certain
aspect of the design problem. Figure 8.3 depicts an example of this principle called separation of
concerns, where only the role of the actuators in the crane system is concerned. Decoupling allows
the component-wise refinement of a single component without corrupting the rest of the system.
Decoupling is supported by two major principles of the object-oriented design paradigm: Well-defined
component interfaces specifying the outside view of a component, and encapsulation10 avoids the
access to non-public attributes or methods of component.

oocosim supports the modelling of hardware/software communication throughout the entire de-
sign flow. It augments the graphical modelling language hrt-hood by communication objects
for the design capture and analysis of interface aspects. With this early explicit interface model the
identification of communication bottlenecks and potential conflicts (e.g. multiple writers to a com-
munication object) becomes possible. The detailed specification of the interface architecture and
the implementation of the refined communication objects is supported by the languages ComiX
and TempliX (see also Section 8.7).

An aspect of embedded system design, oocosim does not fully cover, is the early phase of ap-
plication specific hardware design. For this domain, hrt-hood+ does not provide adequate means
to model and refine the concurrent behaviour of hardware objects. Due to this over-simplification
in hrt-hood+, hardware cannot be maintained at the same level as software or hardware/software
interface design.

The validation of complex embedded hardware/software systems requires efficient and sufficiently
accurate models. oocosim provides a co-simulation mechanism based on the source-code models
which are automatically generated from the implementation model of the embedded system (Section
7.5.3). The performance and the modelling of real-time aspects is subject to Section 8.4 and Section
8.6.

8.3 Seamlessness

The seamlessness of a design flow refers to way the transformations between different representations
can be handled. For a seamless design flow these transitions must be well-defined or – where possible
– even be automated. Typically, such transitions include the transformation of one model notation
into another. Note that not all transitions are refinements as some of them do not add details to the
model. These transformations are depicted by horizontal arrows.

Figure 8.5 illustrates the different model representations11 and transformations supported in the
oocosim design flow. The rounded boxes contain graphical representations and the straight boxes
contain textual representations. Three different types of transformations are indicated by three types
of edges:

Solid edges: Denote automatic transformations; that is, supported by a complete set of rules de-
scribing the transformation, which can be implemented in an automatic tool. Please note
that most automatic transformations in oocosim are performed by automatic tools (see also
below).

Dashed edges: Denote transformations, which are guided by specific refinement guidelines. Theses
transformations cannot be automated but the methodology provides guidelines how to find
suitable transformations or refinements.

10Also known as information hiding.
11The figure contains only such models, which are covered by oocosim.

103

8.3. SEAMLESSNESS

Dotted edges: Denote manual transformations. In this case the designer needs to decide between
different design-alternatives and manually implement them.

ComiX
Co−Simulation
Model

Implementation
Model

Co−Simulation
Model

Implementation
Model

Implementation

Fully automated

Manual

Refinement guides
Refined HRT−HOOD+

Software Objects Hardware ObjectsInterface Objects

Notation
Grahical

Textual
Notation

System−Level HRT−HOOD+

1

2a 2b 2c

3b 3c

4a 4b 4c4d

5b

3a

5a

Figure 8.5: Model transformations in OOCOSIM

Furthermore, grey edges indicate pre-existing transformations in contrast to black edges, which
indicate transformations defined in the course of this thesis. The following list comments on each of
the edges in Figure 8.5.

1: The system-level model in hrt-hood+ describes the overall system architecture by using system
objects as described in Section 5.3.2. The first transformation leads to a refined hrt-hood+
model containing active objects and passive objects. oocosim defines some (simple)
modelling guidelines for this first decomposition (Section 5.3.3).

2a, 2c: Transformations 2a and 2c refer to hardware/software partitioning of the system; that is, the
allocation of objects to hardware or software and the specification of communication objects.
This is a critical and difficult design decision. hrt-hood+ provides the notation to partition
the model but does not assist the decision in itself. Hence, this transformation is regarded as
manual.

2b: Provided transformations 2a and 2c have been done, the identification of communication
objects can follow methodological guidelines. First, the data-flow between hardware and
software objects is modelled by abstract communication objects, which are then refined
into implementable, concrete communication objects as defined in Section 5.3.6.

3a: This transformation is inherited from the original hrt-hood method and therefore indicated by
a grey edge. The code templates defined by Burns and Wellings in [BW95] are implemented in
commercial tools like the graphical STOODTM tool of tni-valiosys Inc., which has been used
in the crane benchmark. Hence, this transformation is regarded as automatic.

104

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

3b: The transformation of communication objects into their textual ComiX representation is
fully determined. For each graphical communication objects, an equivalent textual ComiX
representation is defined. Please note that the ComiX specification itself must be refined before
it can be transformed into the implementation model using transformations 4a and 4b.

3c: As already mentioned in Section 5.3.10, hardware objects in hrt-hood+ can be modelled
similar to environment objects known in the original hrt-hood method. Hence, they can be
transformed only manually into the implementation models.

4a, 4b: These transformations are fully automated and implemented in the deshico tool as de-
scribed in Section 6.5.

4c: For this transformation only a few lines of constant VHDL code must be added to the imple-
mentation model. Since this transformation is very simple, it is marked as automatic – even
though an appropriate tool has not yet been implemented.

4d: This non-trivial transformation has been described in Section 7.5.3 and is implemented by an
automatic tool.

5a, 5b: The transformation into the lower-level implementation models and finally the synthesis
and compilation of hardware and software components is beyond the scope of this thesis. The
result of 3a, 3b, 4a, and 4b can directly be transferred into the implementation. 5a and 5b are
therefore depicted by (grey) solid and dotted arrows, respectively.

The crane benchmark design experiment has been carried out in 1999. By that the transformations
3a, 4c, and 4d were already supported by automatic tools. Especially the missing tool support
for the interface generation resulted in significant design effort. The elevator benchmark has been
carried out twice. As the first experiment started with an UML specification of the system, it was
done only with support for the transformations 4c and 4d. The second experiment could benefit
from (automated) support for transformations 3a, 3b, 4a, 4b, 4c, and 4d. The interface related
transformations significantly reduced the design time.

The different aspects are for both benchmarks discussed in detail in Section 8.7.

8.4 Real-Time modelling

oocosim supports the modelling and in particular the co-simulation of real-time aspects in an
embedded hardware/software system at a high level of abstraction. Chapter 7 describes in detail the
timing model of the co-simulation and the means available to specify the real-time behaviour of the
system.

The modelling of timing aspects of the software model is based on the real-time attributes defined
already in the original hrt-hood method and propagated by means of the real-time annex Ada95
into the source-code model. As mentioned above, hardware is not covered well in hrt-hood+.
Timing can therefore only be specified in the hardware model at source-code level. The co-simulation
in oocosim maintains the validation of real-time behaviour in the heterogeneous model by the time-
synchronous execution model as described in Section 7.3.

In the benchmarks, complex reactive behaviour including software parallelism and interrupts cre-
ated in the hardware could be modelled and simulated adequately in the co-simulation. Several
errors in the model and even some in the specification have been identified with the help of the
co-simulation. It should however be noted that this co-simulation operates at a high level of abstrac-
tion. Hence, it can only support a coarse-grained timing model. Consequently, the co-simulation in
oocosim alone is not sufficient to verify the real-time behaviour especially of safety critical em-
bedded systems. In such cases, a detailed analysis is mandatory. The role of the co-simulation is
to evaluate quickly the behaviour of the model in a coarse-grained real-time model. Especially in

105

8.5. HARDWARE/SOFTWARE PARTITIONING

complex systems with long model times involved, the co-simulation can serve as a virtual prototype
and help to identify design mistakes early in the design flow.

8.5 Hardware/Software partitioning

As already mentioned before, oocosim does not automate partitioning; that is, the designer must de-
cide, which component should be implemented in hardware or software. However, oocosim methodo-
logically supports partitioning decisions by the following means:

1. Decomposition of the design into objects. First, structural hrt-hood+ objects like system
objects help to divide the system into simpler sub-systems. Then subsequent hierarchical
decompositions allow refining the design towards an executable and finally implementable
model.

2. Specification of objects as hardware, software, and interface. This allows expressing and ex-
ploring different partitionings, while considering an explicit interface model.

3. Executing the model in a time-synchronous co-simulation. This allows analysing (manually)
the suitability of the partitioning according to functional and timing aspects.

4. Abstraction, decoupling, and encapsulation of objects allow changing partitioning decisions
without affecting the entire design.

8.6 Performance of the co-simulation

The co-simulation in oocosim operates at a high level of abstraction12 in order to maintain the high
performance demands of complex embedded system validation. It follows a heterogeneous approach
allowing the detailed and adequate modelling of hardware and software in dedicated languages. This
approach incurs overhead for the synchronisation and communication between the hardware and
software sub-models. This section will evaluate the relative performance (Equation 7.1) of the co-
simulation; that is, the ratio between model time and simulation time. Furthermore, the impact of
the synchronisation and communication overhead will be analysed. In oocosim, the some operations
required for the communication are an integral part of the processes simulating the hardware model
and the software model. Hence, Tcomm can not be measured separately. Consequently, it is necessary
for the assessment of the performance to deviate from the conceptual components of simulation time
as introduced with Equation 7.1. The computational effort for the co-simulation of a model (tmodel)
in oocosim contains the measurable components, as depicted in Figure 8.6:

1. Ada95 software model execution, from now on called software model execution effort (SMEE),

2. VHDL hardware model execution, from now on called hardware model execution effort
(HMEE),

3. (Process) synchronisation effort (SYNE); that is, the computational effort for the exchange
of data via the interprocess communication mechanism and the blocking/unblocking of the
simulation processes in the host’s operating system. This part of the co-simulation mainly
requires system calls to the operating system. Hence, it is almost equal to the system time
reported by the UNIX time command13.

12Compared to other timing-accurate approaches as described in Section 7.2.
13Other processes could have side effects on the measurements. Hence, during the measurements, it had to be guar-

anteed that only the co-simulation processes were executed on the simulation host.

106

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

HMEE

SMEE

SYNE SYNE

Figure 8.6: The computational effort in a co-simulation cycle.

The model state encoding effort (MSEE) refers to the computational effort needed to prepare the
data for the transition between SEP and HEP (and vis versa). In the simulation, it is part of the
hardware simulation and the software model execution. Hence, in the measurements reported by the
time command, it can not be separated from SMEE and HMEE. The impact of the MSEE in the
co-simulation will be discussed using models of different interface sizes (Section 8.6.4).

8.6.1 Assessment of performance

The assessment of the relative performance uses the computationally complex crane benchmark
(Section 8.1.1). The measurements are all based on the first 600 sec = 10 minutes of model-time.
The relative performance of the crane model is (almost) constant over the complete benchmark.
The difference between the relative performance measured based on the full benchmark; that is 2700
seconds of model-time, and the 600 sec time frame used here, is below 1 %. Hence, this limited time
frame is long enough for the evaluation.

For the crane benchmark (besides the co-simulation model), a functionally equivalent homoge-
neous Ada95 model exists. The comparison between these two models allows assessing the absolute
performance of a heterogeneous model compared with a homogeneous model.

To discuss the impact of the synchronisation (SYNE) and communication (MSEE) effort in the
co-simulation, an artificial benchmark is used. This benchmark contains only a minimal hardware
and software model (Section 8.6.4). The only purpose of this model is to perform a defined number
co-simulation cycles containing (almost) only SYNE and MSEE.

All co-simulation models have been created, simulated, and measured on the following host system:

SUNBlade 100 workstation (500 MHz Ultra SPARC IIe, 640 MB memory) equipped with the
SolarisTM8 operating system provides the host execution platform for the benchmarks;

GNAT3.13p Ada95 compiler to create the executable program representing the software model;

ModelSim 5.8 VHDL simulator to simulate the hardware model;

UNIX time command to measure the execution time of the processes. The time command in partic-
ular delivers the computation time spend for the user application and for calls to the operating
system.

8.6.2 Relative performance and accuracy

Figure 8.7 and Figure 8.8 depict the simulation time (Thost, y-axis) of the co-simulation model
for the crane in relation to the model time (Tmodel, x-axis). The black diamonds show the overall

107

8.6. PERFORMANCE OF THE CO-SIMULATION

simulation time at multiples of 100 seconds model time. The overall simulation time contains the
time for the Ada95 model (SMEE) depicted by the green squares, for the hardware model (HMEE)
depicted by blue squares, and the synchronisation time (SYNE) shown in red triangles. The dashed
lines show the linear interpolations through the measuring points. For a better comparability the
grey line shows the performance of a fictitious model with a relative performance of 1.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

Model-Time [sec]

Si
m

ul
at

io
n-

Ti
m

e
[s

ec
]

1x Performance
SYNE
HMEE
SMEE
Co-Simulation
Linear (SYNE)
Linear (HMEE)
Linear (SMEE)
Linear (Co-Simulation)

Figure 8.7: Relative performance of the co-simulation with 1 ms minimum cycle-time.

The crane benchmark specification proposes the Runge-Kutta method with a step size of 1 ms to
solve the fourth-order linear system describing the plant. Variations of the model accuracy and the
simulation performance are achieved by changing this step size from 1 ms to 10 ms. The variations
in the model behaviour with different step sizes are acceptable for the first validations. The positions
of the load in the model with 1 ms and 10 ms typically differ by less than 1 cm. Please see below
for more details about the accuracy of the models. Since the Runge-Kutta requires quite complex
computations, the impact on the relative performance is dominant. Moreover, the task calculating the
Runge-Kutta algorithm has the shortest period in the co-simulation model. Hence, with increasing
its period from 1 ms to 10 ms, the number of synchronisation events can be reduced by a factor of
ten14.

The comparison of the results depicted in the Figure 8.7 and Figure 8.8 underpins two properties of
the co-simulation. First, the performance of the co-simulation model scales with the accuracy of the
simulation. While the most accurate model delivers a relative performance of approximately 0.19, the

14Please note that the periods of all other tasks are integer multiples of 10 ms. The next greater period in the
benchmark is 20 ms.

108

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

Model-Time [sec]

S
im

ul
at

io
n-

Ti
m

e
[s

ec
]

1x Performance
SYNE
HMEE
SMEE
Co-Simulation
Linear (SYNE)
Linear (HMEE)
Linear (SMEE)
Linear (Co-Simulation)

Figure 8.8: Relative performance of the co-simulation with 10 ms minimum cycle-time.

less accurate model provides a relative performance of nearly 1.9. Second, the high-level co-simulation
concept in oocosim demonstrates to be fast enough to simulate complex hardware/software system
at a reasonable speed allowing for efficient model validation. With the same constrains, the co-
simulation model is clearly slower than the homogenous model. Hence, the extra effort15 for a
co-simulation model can only justified, if the interaction of hardware and software components is
relevant for the validation of the embedded system or a validation based on the implementation
model is required.

Accuracy Figure 8.9 depicts the position of the load in crane simulations16 with different step sizes
or periods for the controller. The green line shows the target positions for the load (posdesired);
that is, the position to which the controller should move the load. With the step size as specified in
the benchmark (1ms, light-blue), all positions are reached exactly. With 10 ms step size (black), the
controller needs a little more time and produces bigger overshoots, but reaches the desired positions.
Note that in worst case, the difference between the models (for 1ms and 10 ms step size) reaches
73.4 cm. This difference results from the stronger and delayed overshot in the model with 10 ms
step size. Whether this is acceptable or not depends on the focus of the validation.

For 11 ms step size (red), the two first target positions are nearly reached17; the remaining positions
(-3.5, 3.5, 3.7) can not be reached at all. With 15 ms step size, even the first position can not be
reached. The model behaviour for these step sizes is not sufficiently accurate for an analysis of the
crane system.

15 That is, the design time spend for modelling and simulation.
16It shows only the time frame between 2300 and 2640 sec model-time to provide a better resolution in the diagram.
17The load is near the desired position but swings cannot be eliminated.

109

8.6. PERFORMANCE OF THE CO-SIMULATION

0,19

0,38

0,76

1,14

1,52
1,90

3,69

7,35

13,83

19,59
24,65

35,38

0,10

1,00

10,00

100,00

1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00

Minimal cycle time [ms]

R
el

at
.p

er
fo

rm
an

ce
 (L

og
) [

]

Co-simulation
Homogenous Ada95 model
Linear (Co-simulation)
Linear (Homogenous Ada95 model)

Figure 8.9: Behaviour of the crane with different step sizes.

These experiments illustrate the importance of accuracy and the coverage of timing aspects in
the simulation model. It was possible to relax the constraints given by the benchmark in order to
improve the performance of the model. With step sizes greater the 10 ms, the behaviour of the model
changed drastically into an unstable system. Hence, increasing the step sizes is no general solution
to the performance problem in general.

8.6.3 Comparison with homogeneous model

Since the relative performance relates only the simulation time and the model time, it provides no
evidence for the absolute performance or the overhead of the co-simulation compared to a homoge-
neous version of the model. Figure 8.10 shows a comparison of the co-simulation model of the crane
benchmark with the functionally equivalent homogeneous Ada95 simulation model. It shows the
performance (y-axis, co-simulation in black squares, homogeneous model in purple triangles) using
step sizes for the Runge-Kutta algorithm between 1 ms and 10 ms.

Two aspects in this comparison are evident. First, it shows that the homogeneous model is signif-
icantly (approximately by factor of 19) faster than the co-simulation model. There are two factors
responsible for this effect:

1. The hardware model simulated in the HDL simulator is slower than its software counterpart
in the co-simulation.

2. The synchronisation and communication overhead associated with the co-simulation.

While the first factor can not be substantiated directly (due to the lack of a complete and functionally
equivalent VHDL model of the crane), the qualitative impact of the second factor will be discussed

110

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

0,19

0,38

0,76

1,14

1,52
1,90

3,69

7,35

13,83

19,59
24,65

35,38

0,10

1,00

10,00

100,00

1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00

Minimal cycle time [ms]

R
el

at
.p

er
fo

rm
an

ce
 (L

og
) [

]

Co-simulation
Homogenous Ada95 model
Linear (Co-simulation)
Linear (Homogenous Ada95 model)

Figure 8.10: Relative performance of the homogeneous software model vs. co-simulation.

in the next section.
Second, the performance gap between the two simulation approaches remains almost constant,

regardless of different levels of accuracy. That means, both models benefit to a similar extend from the
relaxed accuracy requirements. With the least accurate model, both simulation approaches achieve a
performance increased by a factor of 10 compared to the most accurate model. For the co-simulation
this results in a maximum relative performance of 1.9; that is, the co-simulation is here even faster
than the system in real-time.

8.6.4 Synchronisation and communication effort

The synchronisation and communication overhead can (without significant implementation effort)
only be measured indirectly. For this purpose, a co-simulation model with only a trivial hardware
and software model has been used. For the further discussion, this model will be called the NULL-
model. The software model contains only the main procedure with an infinite loop containing one
delay until statement and the interface model. The period of the loop is 1 ms. The hardware model
contains a single process with a single wait statement. Due to this simplicity, in the NULL-model,
Thard and Tsoft are negligible small18.

The diagram in Figure 8.11 shows the components of the simulation effort (y-axis) for 600 sec
model time with interface models of different sizes (x-axis). The green triangles represent the effort
in the software model (SMEE); blue squares the represent hardware model (HMEE). Please note
that both (SMEE and HMEE) contain almost only the effort for encoding and decoding the interface
model to be transferred to the other model. The synchronisation effort (SYNE) is depicted in orange

18After removing the interface model, both models completed 1 million cycles in less than 300 ms CPU time.

111

8.6. PERFORMANCE OF THE CO-SIMULATION

0

50

100

150

200

250

300

350

400

450

500

32 64 96 128 160 192 224 256
Interface Size [Bits]

Si
m

ul
at

io
n

Ti
m

e
[s

ec
]

SYNE
SMEE
HMEE
Linear (SMEE)
Linear (HMEE)
Linear (SYNE)

Figure 8.11: Simulation times for different interface sizes.

diamonds and corresponds to the effort spend for operation system functions responsible for process
control and the exchange of data packages between hardware and software model.

From these results, the following characteristics can be observed:

1. The effort for synchronisation increases only slowly with the size of the interface; with an
interface size of 64 bits it needs 26 seconds and 44 seconds for a 256 bit interface. Since the
complete interface fits into one so-called socket frame,19 only one data packet needs to be
transfered between the models. Hence, this observation has been anticipated.

2. The effort for SMEE and HMEE increases almost linearly with the size of the interface.20

While both models use the same C-library for encoding und decoding the data, the effort
in the hardware model is higher than on the software side. This effect can be explained by
the different mechanisms used to call the library routines. The software model uses an Ada95
language concept to call C-functions, while the ModelSim simulator uses the foreign model
interface mechanism. It seems that the lower efficiency of the latter is responsible for the
significant difference with respect to the total effort.

For large interfaces the communication overhead takes significant amount of the overall simulation
time. Obviously, there are two ways to reduce the communication overhead for larger interfaces.
One is to implement a more efficient encoding and decoding, especially in the hardware model. The
other is to reduce the total number of co-simulation cycles in a simulation run. This however would
19A socket frame in an UNIX IPC contains 8192 bytes, which seems to be large enough for the vast majority of

possible applications.
20For example, an interface of 64 bits needs 12 seconds on the software side and 78 second on the hardware side.

With 256 bits it needs 60 sec. (SMEE) and 468 sec. (HMEE).

112

CHAPTER 8. EVALUATION OF THE OOCOSIM METHOD

also lead to a less accurate model with respect to the synchronisation of the hardware and software
model.

8.7 Hardware/Software interfaces

The hardware/software interface of both benchmarks (crane and elevator) has been modelled twice.
Once by manually writing the models in Ada95/VHDL and a second time using the automated
ComiX-based method as described in Chapter 7. For the ComiX-based approach, the deshico
design tool (see also Section 6.6) has been used extensively.

The quantitative results for these experiments are shown in Table 8.2 for the manual approach and
Table 8.3 for the ComiX-based approach, respectively. The last two rows of the tables contain the
lines of code and the size of the code, including the comments. The numbers in brackets correspond
to the comments only.

For the automatic interface generation, the designer only provides the specification in ComiX.
The interface models for hardware, software, and the documentation are generated automatically
from the specification.

In the manual design approach, hardware and software models must be written by the designer.
Due to the high modelling effort, for elevator example only a simplified model with 12 instead of 21
communication objects has been used in the manual experiment.

Benchmark Model Type Language Lines of Code Code in Bytes
Crane Controller Software Ada95 438 (75) 13595 (3631)

Hardware VHDL 293 (81) 10843 (4121)
Elevator System Software Ada95 612 (202) 20348 (7695)
(12 objects) Hardware VHDL 408 (126) 15211 (6756)

Table 8.2: Model sizes for the manual interface design approach

From the quantitative figures given in the tables, the following conclusions can be drawn:

1. The ComiX models in the automatic approach are much smaller then the hardware or the
software models. Moreover, the ComiX models were created with the assistance of the deshico
tool. Hence, the effort to write the model was very low compared to the manual approach.

2. The models for hardware and software generated by the deshico tool are significantly larger
than the manual ones. This is due to the fact, that (in general) human designers write more
efficient code than automatic generators. Moreover, the ComiX-based approach automatically
generates comments to improve the readability of the source-code model.

Please also note that there is documentation available for the ComiX-based model, while there
is none for the manual approach. Since documenting often is a disliked job for designers, they tend
to avoid the extra effort for writing documentation. It is however often necessary to have an exact
description of the interface, in particular to maintain it for long times of operation.

The design effort in the ComiX-based approach was much lower than in the manual design ex-
periment. For the crane controller, it took about 1.5 hours to specify the model in ComiX. For the
elevator, it took about 1 person day to specify the systems interface. The time for the consistency
checks or the generation of the code and the documentation was negligible. For the manual design
approach, the development effort for the interface code cannot completely be separated from the
overall design effort. Hence, it is difficult to determine the effort exactly. An estimation of the mini-
mum design effort for the manual approach came to the result that it took about 6 person days for

113

8.8. RECAP

Benchmark Model type Language Lines of Code Code in Bytes
Specification ComiX 64 3545

Crane Controller Documentation LaTeX 311 (10) 22510 (226)
Software Ada95 695 (261) 15835 (5942)
Hardware VHDL 541 (142) 18753 (5517)
Specification ComiX 235 17792

Elevator System Documentation LaTeX 984 (10) 49643 (192)
(21 objects) Software Ada95 2180 (723) 59527 (16904)

Hardware VHDL 1405 (263) 55998 (11746)

Table 8.3: Model sizes for the automatic interface generation (ComiX-based)

the elevator interface and about 4 person days for the crane interface. These times include signifi-
cant effort needed for modifications in both models and debugging of errors caused by inconsistent
hardware and software interface models.

While the consistency of the manually created models can only be checked by extensive tests, the
models derived from the ComiX specification are consistent by construction. In particular in large
and complex interfaces, this is a real improvement over the manual state-of-the-art approach.

Without methodological support, hardware/software interface design costs a lot of effort and
is prone to errors. In both benchmarks, the manual design of the interface took large portions
of the design effort. In the crane benchmark one problem was to find the right encoding of real
numbers for some interface objects. Since this problem could have been solved by a library supporting
the encoding, the associated effort is not included in the effort estimation given above. Still, the
layout for the interface objects must be determined correctly in both models. The problems in the
elevator interface were caused by the large number and complexity21 of user defined data types and
their efficient layout. The resources for this interface were quite limited. Hence, a very compact
representation of the data types was required. The ComiX-based approach presented in this thesis
improved the productivity significantly. Moreover, the consistency guaranteed by automatic synthesis
helped to increase the safety of the design.

8.8 Recap

In this section the oocosim design flow has been evaluated according to the requirement for design
methods defined in Section 4.5. Due to their informal character, many aspects like e.g. seamlessness
or managing of complexity could only be discussed rather than being measured. The quantitative
requirements; that is, the performance and the productivity have been assessed in two benchmarks
and the results have been related to state-of-the-art approaches where possible.

The performance of the co-simulation has shown its ability to deliver a performance, which allows
to analyse the timing and functional behaviour of complex or at least non-trivial hardware/software
systems. The relative performance in this particular benchmark application is significantly lower
than that of the corresponding homogenous model. In contrast to the homogenous model, the co-
simulation model allows describing and analysing the hardware and the hardware/software interface
based on an implementable specification.

The interface modelling approach based on ComiX and the respective code generation mechanism
have shown their benefits for the designer, first in terms of productivity and second in terms of
reliability.

21Due to the large number of sensors (Figure 8.4) and the requirement to handle interrupts for the emergency
situations, the interface design in this benchmark was quite difficult.

114

9 Conclusion

To conclude this thesis, in this chapter the main contributions of this work will be summarised.
Some problems could not be solved within the scope of this work and therefore had to remain open.
First ideas for possible solutions are presented.

The key achievement of the work at hand is a new co-design method named oocosim for embedded
hardware/software systems. The method starts with an abstract specification using the hrt-hood+
notation (Section 5.3). hrt-hood+ is an extension of the hrt-hood method, which is used for the
design of hard real-time software programs. communication objects have been added to the basic
method to create a formal and logical bridge between hardware and software.

The hardware part of the embedded system is encapsulated in abstract hardware objects in hrt-
hood+. Unfortunately, no sound refinement for the hardware object of hrt-hood+ could be found.
The reasons for this results mainly from the conceptual differences of hardware and software and
the way they are described at language level1.

With the appearance of OSSS [GO01, GO02], this could be changed. The method interface of
so-called shared objects in OSSS serves well for an object-oriented design method like oocosim and
the fact that it is synthesisable maintains the seamless design flow advocated here. Further work
could identify additional object types in the hardware domain based on OSSS and define a high-level
abstraction of it similar to the hrt-hood+ objects. Maybe a shift from hrt-hood to UML could
improve the industrial acceptance and provide a broader tool support.

Like for the basic hrt-hood method, it was necessary to provide code generation templates for
the introduced communication objects. Since interfaces contain hardware and software compo-
nents it was not possible to adopted any existing programming language for the textual description
of the objects or the definition of the templates. The approach presented here, was to separate the
specification of the communication objects from the definition of the templates. For the commu-
nication objects, a new language called ComiX (Section 6.3) based on XML has been introduced.
The role of ComiX is central to this work, as it serves as textual representation of the graphical
communication objects in hrt-hood+ and captures the properties of the interface in an im-
plementation independent representation required for the automatic code generation into hardware
and software. Thanks to its formal basis, a definition for consistent ComiX interface specifications
(Section 6.4) could be found. Since this property can be checked automatically, it enables an efficient
design of more reliable interfaces.

With the here introduced language TempliX, templates for a wide range of target languages can
be defined. A tool processing ComiX and TempliX has been implemented to prove the applicability
of this concept. With the also implemented templates, it is possible to generate synthesisable VHDL
for the hardware, Ada95 for the software, and LATEX for the documentation of a consistent ComiX
specification.

The concept of validation is essential for the co-design of embedded systems. The work presents
a co-simulation technique (Chapter 7) based on a discrete event simulation for the entire system
model. This approach became possible with the definition of a discrete event timing-model for the
software based on the real-time annex of Ada95. The translation of real-time specific and hard-
ware/software interface related parts in the specification allows to concurrently simulate hardware
and software in a target independent but time-synchronous way. This concept enables early design
space exploration with the real-time behaviour already modelled and simulated. Due to the lack of an
object-oriented hardware description language, hardware is not integrated well into the co-simulation

1The exact reasons are presented in Section 5.3.10.

115

presented here. With the introduction of object-orientation into hardware design (for example with
so-called transaction level modelling in SystemC), these problems can possibly be solved in the fu-
ture. With the current advances in the system description languages, another vital alternative for
the validation might come up. If for example SystemC would include also software and interface
aspects appropriately2, the need for a heterogeneous co-simulation would possibly disappear.

All techniques and concept have been evaluated in modelling experiments using prototypic tools
and were check for applicability. The implementation ideas for the interface synthesis tool, the
translator, and the co-simulation environment are presented in this work. The benchmarks are
described and the major insights from these are discussed in Chapter 8.

2The integration of language concepts to model at least the runtime behaviour of software has been announced for
version 3.0 of SystemC. However, the release of this version has been postponed year after year.

116

A ComiX Syntax
�
<!−−==============En t i t i e s De f i n i t i on s================−−>

<!−− −−>

<!ENTITY % LOGICAL ”yes | no”>

<!ENTITY % ENDIAN ”big | smal l ”>

<!ENTITY % PART ” a l l | a r ch i t e ch tu r e |memory | i n t e r r up t s |
a l l d e c l a r a t i o n s | s i n g l e d e c l a r a t i o n | a l l o b j e c t s |
asynchronousob j ec t s e t | a synchronous s i gna l s e t |
v i r t u a l a s yn ch r onou s s i g na l s e t | memoryobjectset ”>

<!ENTITY % FLOW ” bi | sh | hs”>

<!ENTITY % UNIT ”byte |word | longword | f ourbyte | e i gh tbyte | ze ro ”>

<!ENTITY % ACCESS ” v o l a t i l e | atomic ”>

<!ENTITY % BITORDER ”low | high ”>

<!−−================ComiX Layer 1−4==================−−>

<!ELEMENT ComiX (a r c h i t e c t u r e ? , environment ? ,

d e c l a r a t i o n ? , ob j e c t s ?)>

<!ATTLIST ComiX

name ID #REQUIRED

templ ix IDREF #REQUIRED

source CDATA #IMPLIED

projectname CDATA #IMPLIED

author CDATA #IMPLIED

o r gan i s a t i on CDATA #IMPLIED

date CDATA #IMPLIED

version CDATA #IMPLIED>

<!ELEMENT a r c h i t e c t u r e (i n t e r rup tb l o ck ∗ , memoryblock∗)>
<!ATTLIST a r c h i t e c t u r e

name ID #REQUIRED

s t o r ag eun i t (%UNIT ;) ”byte ”

addressa l ignment (%UNIT ;) ”byte ”

b i t o rd e r (%BITORDER;) ” low”

so f twar e end iane s s (%ENDIAN;) ” big ”

hardwareendianess (%ENDIAN;) ” big ”

comment CDATA #IMPLIED>

<!ELEMENT i n t e r r up tb l o ck (r e s e r v ed i n t e r r up t ∗)>
<!ATTLIST i n t e r r up tb l o ck

f i r s t i n t e r r u p t CDATA #REQUIRED

l a s t i n t e r r u p t CDATA #REQUIRED>

<!ELEMENT r e s e r v ed i n t e r r up t EMPTY>

<!ATTLIST r e s e r v ed i n t e r r up t

i n t e r r up t CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT memoryblock (r e s e rvedaddre s s ∗)>
<!ATTLIST memoryblock

s t a r t add r e s s CDATA #REQUIRED

count CDATA #IMPLIED

comment CDATA #IMPLIED>

117

<!ELEMENT r e s e rvedaddre s s EMPTY>

<!ATTLIST r e s e rvedaddre s s

address CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT environment (in c lude ∗ , a l i a s ∗)>

<!ELEMENT i n c lude EMPTY>

<!ATTLIST i n c lude

name ID #REQUIRED

part (%PART;) ” a l l ”

partname NMTOKEN #IMPLIED

path CDATA #IMPLIED

comment CDATA #IMPLIED>

<!ELEMENT a l i a s EMPTY>

<!ATTLIST a l i a s

name ID #REQUIRED

value CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT de c l a r a t i o n (constant ∗ ,

(subtype | rangetype | r e a l | enumeration | r ecord)∗)>

<!ATTLIST de c l a r a t i o n s t r i c t (%LOGICAL ;) ”no”>

<!ELEMENT constant EMPTY>

<!ATTLIST constant

name ID #REQUIRED

value CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT rangetype EMPTY>

<!ATTLIST rangetype

name ID #REQUIRED

range CDATA #REQUIRED

s i z e CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT subtype EMPTY>

<!ATTLIST subtype

name ID #REQUIRED

basetype NMTOKEN #REQUIRED

range CDATA #REQUIRED

s i z e CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT r e a l (f i x e d | f l o a t)>

<!ATTLIST r e a l

name ID #REQUIRED

range CDATA #REQUIRED

s i z e CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT f i x e d EMPTY>

<!ATTLIST f i x e d

de l t a CDATA #REQUIRED

smal l CDATA #IMPLIED>

118

APPENDIX A. COMIX SYNTAX

<!ELEMENT f l o a t EMPTY>

<!ATTLIST f l o a t

d i g i t s CDATA #REQUIRED

s igned (%LOGICAL ;) ” yes ”

mant i s s a s i z e CDATA #IMPLIED

exponent s i z e CDATA #IMPLIED

exponentbias CDATA #IMPLIED>

<!ELEMENT enumeration (item)+>

<!ATTLIST enumeration

name ID #REQUIRED

s i z e CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT item EMPTY>

<!ATTLIST item

name NMTOKEN #REQUIRED

coding CDATA #REQUIRED>

<!ELEMENT r ecord (component+)>

<!ATTLIST r ecord

name ID #REQUIRED

s i z e CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT component EMPTY>

<!ATTLIST component

name NMTOKEN #REQUIRED

type IDREF #REQUIRED

pr i va t e (%LOGICAL ;) ”no”

unitnumber CDATA #REQUIRED

i n i t CDATA #IMPLIED

b i t range CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT ob j e c t s (a synchronousob j ec t s e t ∗ ,

a synch ronous s i gna l s e t ∗ ,

memoryobjectset∗)>
<!ATTLIST ob j e c t s

name ID #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT asynchronousob j ec t s e t (asynchronousobject)+>

<!ATTLIST asynchronousob j ec t s e t

name ID #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT asynchronousobject EMPTY>

<!ATTLIST asynchronousobject

name ID #REQUIRED

packagename IDREF #REQUIRED

handlername CDATA #REQUIRED

type IDREF #REQUIRED

s i z e CDATA #REQUIRED

dataf low (%FLOW;) ” sh”

accessmode (%ACCESS ;) ” atomic”

protec t ed (%LOGICAL ;) ”no”

address CDATA #REQUIRED

comment CDATA #IMPLIED>

119

<!ELEMENT a synchronous s i gna l s e t (a synchronouss igna l)+>

<!ATTLIST a synchronous s i gna l s e t

name ID #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT asynchronouss igna l EMPTY>

<!ATTLIST asynchronouss igna l

name CDATA #REQUIRED

i n t e r r up t CDATA #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT memoryobjectset (memoryobject)+>

<!ATTLIST memoryobjectset

name ID #REQUIRED

comment CDATA #IMPLIED>

<!ELEMENT memoryobject EMPTY>

<!ATTLIST memoryobject

name ID #REQUIRED

type IDREF #REQUIRED

s i z e CDATA #REQUIRED

dataf low (%FLOW;) ” sh”

accessmode (%ACCESS ;) ” atomic”

protec t ed (%LOGICAL ;) ”no”

address CDATA #REQUIRED

comment CDATA #IMPLIED>
� �

120

B Templix Syntax

�
<!ENTITY % CONTROLS ”(%CHECK; |%SIMPLE; |%SEGMENTS; | c a l l s e c t i o n)+”>
<!ENTITY % ITEMS ”element | a t t r i b u t e | va r i ab l e ”>
<!ENTITY % FILETYPE ”ads | adb | vhd | tex | l og ”>
<!ENTITY % BOOL ” f a l s e | t rue ”>
<!ENTITY % FROM ” root | cur rent ”>
<!ELEMENT TempliX (%CONTROLS;)+>
<!ATTLIST TempliX s t a r t NMTOKEN #REQUIRED

i n d en t s i z e CDATA #REQUIRED>

<!ELEMENT template (%CONTROLS;)>
<!ATTLIST template name NMTOKEN #REQUIRED

f i l e e x t (%FILETYPE;) # REQUIRED
f i l ename CDATA #REQUIRED>

<!ELEMENT f o r s i b l i n g s (%CONTROLS;)>

<!ELEMENT s e c t i o n (%CONTROLS;)>
<!ATTLIST s e c t i o n name NMTOKEN #REQUIRED>

<!ELEMENT c a l l s e c t i o n EMPTY>
<!ATTLIST c a l l s e c t i o n name NMTOKEN #REQUIRED>

<!ELEMENT i nd en t f o r e EMPTY>
<!ELEMENT indentback EMPTY>
<!ELEMENT e r r o r EMPTY>
<!ATTLIST e r r o r message CDATA #REQUIRED>
<!ELEMENT donothing EMPTY>
<!ELEMENT pr in t EMPTY>
<!ATTLIST pr in t t ex t CDATA #REQUIRED>
<!ELEMENT p r i n t l n EMPTY>
<!ATTLIST p r i n t l n t ext CDATA #REQUIRED

message CDATA #IMPLIED>
<!ELEMENT a s s i gn EMPTY>
<!ATTLIST a s s i gn va r i ab l e CDATA #REQUIRED

value CDATA #REQUIRED>
<!ELEMENT newl ine EMPTY>

<!ELEMENT ch i l d (%CONTROLS;)>
<!ELEMENT f i nd (%CONTROLS; , e l s e ?)>
<!ATTLIST f i nd name CDATA #REQUIRED

o f (%ITEMS ;) ” element ”
from (%FROM;) ” root ”
depth (%BOOL;) ” t rue ”>

<!ELEMENT i f (%CONTROLS; , (e l s e i f | e l s e)?)>
<!ATTLIST i f e xp r e s s i on CDATA ” t h i s ”

o f (%ITEMS ;) ” element ”
equal CDATA #REQUIRED>

<!ELEMENT e l s e i f (%CONTROLS; , (e l s e i f | e l s e)?)>
<!ATTLIST e l s e i f e xp r e s s i on CDATA #REQUIRED

o f (%ITEMS ;) ” element ”
equal CDATA #REQUIRED>

<!ELEMENT e l s e (%CONTROLS;)>
<!ELEMENT f i r s t n o d e (%CONTROLS; , e l s e ?)>
<!ELEMENT l a s tnode (%CONTROLS; , e l s e ?)>

<!ELEMENT check EMPTY>
<!ATTLIST check c l a s s NMTOKEN #REQUIRED

param CDATA #IMPLIED>
� �

121

122

List of Figures

2.1 Embedded System . 5
2.2 A top-level HRT-HOOD design . 7

3.1 Design flow with homogeneous specifications . 15
3.2 Design flow based on a heterogeneous specification 19

4.1 Refinement process for embedded systems . 25
4.2 The classical design flow . 26
4.3 Parallel design in Co-design . 27
4.4 The design space . 31

5.1 Collaborating objects . 36
5.2 oocosim design flow . 37
5.3 root object symbol . 38
5.4 Simple initial system . 39
5.5 System Object containing objects. 41
5.6 Communication class hierarchy in UML like notation. 43
5.7 Memory Object (graphical) . 44
5.8 asynchronous signal symbol (refined) . 45
5.9 Asynchronous Memory Object (refined) . 45
5.10 An embedded heat sink controller . 46

6.1 HW/SW interface in an embedded system . 49
6.2 Example of a memory map table . 51
6.3 Structure of a ComiX description . 54
6.4 Architecture Layer . 56
6.5 The ComiX DTD . 65
6.6 Individual code generators . 71
6.7 Programmable Generators . 72
6.8 A screen-shot from the Deshico tool . 75

7.1 The co-simulation cycle . 86
7.2 Unifying the event queues . 90

8.1 The crane system. Source: [MN99] . 98
8.2 Initial HRT-HOOD+ model . 100
8.3 Actuators in detail . 101
8.4 The elevator system. Source: [Zha99] . 102
8.5 Model transformations in OOCOSIM . 104
8.6 The computational effort in a co-simulation cycle. 107
8.7 Relative performance of the co-simulation with 1 ms minimum cycle-time. 108
8.8 Relative performance of the co-simulation with 10 ms minimum cycle-time. 109
8.9 Behaviour of the crane with different step sizes. 110

123

List of Figures

8.10 Relative performance of the homogeneous software model vs. co-simulation. 111
8.11 Simulation times for different interface sizes. 112

124

List of Tables

2.1 Examples for Embedded Systems . 3

5.1 Provided method interface of memory objects . 44

7.1 Comparison of processor models in co-simulation (part 1). 84
7.2 Comparison of processor models in co-simulation (part 2). 85

8.1 Comparison of model size. 100
8.2 Model sizes for the manual interface design approach 113
8.3 Model sizes for the automatic interface generation (ComiX-based) 114

125

List of Tables

126

Bibliography

[Acc03] Accellera Organisation, Inc., http://www.eda.org/sv/SystemVerilog 3.1 final.pdf. Sys-
tem Verilog 3.1 - Extensions to Verilog, 2003.

[Ame01] Peter Amey. Logic versus magic in critical systems. In Alfred Strohmeier
Dirk Craeynest, editor, Proceedings 6th International Conference on Reliable Software
Technologies - Ada-Europe 2001, volume 2043, pages 49–67. Springer, 2001.

[Ash95] Peter J. Ashenden. The Designers Guide to VHDL. Morgan Kaufmann, New York,
1995.

[AWM98a] P. J. Ashenden, P. A. Wilsey, and D. E. Martin. SUAVE: Object-oriented and genericity
extension to VHDL for high-level modeling. In Proceedings of the Forum on Design
Languages, FDL ’98, 1998.

[AWM98b] Peter J. Ashenden, Philip A. Wilsey, and Dale E. Martin. SUAVE: Extending VHDL
to improve data modeling support. IEEE Design & Test of Computers, pages 34–44,
1998.

[Bar95] John Barnes. Programming in Ada95. Addison-Wesley, 1995.

[BCG+97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-
Software Co-Design of Embedded Systems The Polis Approach. Kluwer Academic
Publishers, 1997.

[BE97] Th. Benner and R. Ernst. An approach to mixed systems co-synthesis. In Procedings
of the 5th International Workshop on Hardware/Software Codesign, pages 45–52, 1997.

[BJ99] Per Bjuréus and Axel Jantsch. Heterogeneous system-level cosimulation with SDL and
Matlab. In Proceedings of the Forum on Design Languages, FDL ’99, pages 477–487,
1999. NJR.

[BJ00] Per Bjureus and Axel Jantsch. MASCOT: A specification and cosimulation method
integrating data and control flow. In Proceedings of Design Automation and Test in
Europe, DATE’00, 2000.

[BS02] Manfred Broy and Johannes Siedersleben. Objektorientierte programmierung und soft-
wareentwicklung. Informatik Spektrum, 25(1):3–11, February 2002.

[BW95] Alan Burns and Andy Wellings. HRT-HOOD: A Structured Design Method for Hard
Real-Time Ada Systems. Elsevier, 1995.

[CHM+99] P. Coste, F. Hessel, Ph. Le Marrec, Z. Sugar, M. Romhdani, R. Suescuin, N. Zergainoh,
and A.A. Jerraya. Multilanguage design of heterogenous systems. In Proceedings of
the CODES ’99, 1999.

[Coo98] Rick Cook. Java embeds itself in the control market, 1998.

127

Bibliography

[CoW00] CoWare Inc. CoWare N2C User Manual - V2.2, August 2000.

[Dis00] Pierre Dissaux. Stood Users Manual V4.1. TNI - Techniques Nouvelles de Informatique,
January 2000.

[DMN67] O.-J. Dahl, B. Mhyrhaug, and K. Nygaard. Simula 67 common base language. Tech-
nical report, Norwegian Computing Center, 1967.

[Dub00] Olivier Dubuisson. ASN.1 - Communication between heterogeneous systems. Morgan
Kaufmann Publishers, 2000.

[EHS97] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL - Formal Object-oriented
Language for Communication Systems. Prentice Hall, 1997.

[EKL94] B. Evans, A. Kamas, and E. Lee. Design and simulation of heterogeneous systems
using Ptolemy. In Proceedings of ARPA RASSP Conference, pages 97–105, 1994.

[GDPG01] A. Gerstlauer, R. Dömer, J. Peng, and D. Gajski. System Design - A Practical Guide
with SpecC . Kluwer Academic Publishers, Boston, 2001.

[GE03] Peter Green and Martyn Edwards. Platform modelling with UML and SystemC. In
Proceedings of the Forum on Design Languages 2003 (CDROM), page 11. ECSI, 2003.

[Gio98] Rinaldo Di Giorgio. Java in embedded systems.
http://cloak.wpi.com:7378/javaworld/jw-09-1996/jw-09-javadev.html, 1998.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with
SystemC. Kluwer Academic Press, 2002.

[GM93] R.K. Gupta and G. De Micheli. Hardware/software cosynthesis for digital systems.
IEEE Design & Test of Computers, pages 29–41, September 1993.

[GMNV00] Gulian Gorla, Eduard Moser, Wolfgang Nebel, and Eugenio Villar. System specification
experiments on a common benchmark. IEEE Design & Test of Computers, 17(3):22–33,
July-September 2000.

[GO01] Eike Grimpe and Frank Oppenheimer. Object oriented high level synthesis based on
SystemC. In Proceedings of the ICECS 2001, 2001.

[GO02] Eike Grimpe and Frank Oppenheimer. System on Chip Design Languages, chapter
Aspects of Object-Oriented Hardware Modelling with SystemC-Plus, pages 213–224.
Kluwer Academic Publishers, 2002.

[GO03a] Eike Grimpe and Frank Oppenheimer. Extending the SystemC synthesis subset with
object oriented features. In Proceedings of the CODES/ISSS 2003, New Port Beach,
California, USA, 2003.

[GO03b] Eike Grimpe and Frank Oppenheimer. SystemC Methodologies and Applications, chap-
ter Object-Oriented Hardware Sesign and Synthesis based on SystemC 2.0. Kluwer
Academic Publishers, 2003.

[Gro95] HOOD Technical Group. HOOD Reference Manual Release 4. HOOD User’s Group,
1995.

[Gro01] VSI Working Group. Ieee p1076.6/d2.01 - draft standard for VHDL register transfer
level synthesis. unapproved draft. Technical report, IEEE, 2001.

128

Bibliography

[HCL+99] F. Hessel, P. Coste, P. LeMarrec, N. Zergainoh, JM. Daveau, and A.A. Jerraya. Com-
munication interface synthesis for multilanguage specifications. In Procedings of the
Tenth Workshop on Rapid System Prototyping 1999, pages 15–20, 1999.

[HMB00] S. Hovater, W. Marksteiner, and A. Butturini. Generation of interface design descrip-
tion using asis. In Proceedings of Reliable Software Technologies Ada-Europe 2000,
number 1845 in LNCS, pages 138–148, 2000.

[HN96] David Harel and Amnon Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, 1996.

[Hof98] Josef Hoffmann. MATLAB und SIMULINK : Beispielorientierte Einführung in die
Simulation dynamischer Systeme. Addison-Wesley, 1998.

[HSK00] David Harris, DeVerl Stokes, and Russel Klein. Executing an RTOS on simulated hard-
ware using co-verification. In Procedings of the ECS (Embedded System Conference)
2000, 2000.

[Int99] International Standard ISO/IEC 1529. Ada Semantic Interface Specification (ASIS),
1999.

[ISO86] ISO. ISO 8879:1986(e), standard generalized markup language (SGML). Technical
report, International Organization for Standardization, 1986.

[JH02] Stefan Jähnichen and Stephan Herrmann. Was, bitte, bedeutet Objektorientierung?
Informatik Spektrum, 25(8):266–276, August 2002.

[Joh79] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY, USA,
1979.

[Kab02] Laila Kabous. An Object Oriented Design Methodology for Hard Real Time Systems:
The OOHARTS approach. PhD thesis, Carl von Ossietzky Universität Oldenburg,
2002.

[KBNO03] Michael Kersten, Ramon Biniasch, Wolfgang Nebel, and Frank Oppenheimer. Er-
weiterung der UML um Zeitannotationen zur Analyse des Zeitverhaltens reaktiver
Systeme. In Rolf Drechsler, editor, Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen, pages 11–20. Aachen: Shaker,
2003.

[KL92] A. Kalavade and E. Lee. Hardware/software co-design using Ptolemy – a case study.
1992.

[KN99] Russ Klein and Ross Nelson. Seamless cve(tm) hardware/software co-verification tech-
nology. Technical report, Mentor Graphics Corporation, 1999.

[Kop92] Helmut Kopka. LateX: Eine Einführung. Addison-Wesley, 1992.

[KRP+93] M. Klein, T.A. Ralya, B. Pollak, R. Obenza, and M.G. Harbour. A Practioner’s
Handbook of Real-Time Analysis: A Guide to Rate Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers, 1993.

[Le99] Edward A. Lee and et.al. Overview of the PTOLEMY Project. Department of Electrical
Engineering and Computer Science University of California, 1999.

[Leh02] Thomas Lehmann. Towards Device Driver Synthesis. PhD thesis, Department of
Mathematics and Computer Science of the University of Paderborn, 2002.

129

Bibliography

[LPN98] Karsten Lüth, Thomas Peikenkamp, and Jürgen Niehaus. Hw/sw cosynthesis using
statecharts and symbolic timing diagrams. In Proceedings of the 9th IEEE International
Workshop on Rapid System Prototyping. IEEE Computer Society, 1998.

[LS75] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer generator. Technical Report No.
39, Murray Hill, N.J., 1975.

[MDN+03] Silvia Mazzini, Massimo D’Alessandroy, Marco Di Natale, Andrea Domenici, Giuseppe
Lipari, and Tullio Vardanega. Hrt-uml: Taking hrt-hood onto uml. In Proceedings of
the Ada Europe 2003, LNCS 2655, pages 406–416. Springer-Verlag Berlin Heidelberg,
2003.

[MEI04] MEIJE Team : Concurrency, Synchronisation, Reactivity, http://www-
sop.inria.fr/meije/esterel/esterel-eng.html. The ESTEREL Language, 2004.

[Mey90] Bertrand Meyer. Objektorientierte Softwareentwicklung. Hanser, Prentice-Hall, 1990.

[MGK97] Jan Madsen, Jesper Grode, and Peter V. Knudsen. Hardware/software partitioning
using the Lycos system. In J. Staunstrup and W. Wolf, editors, Hardware/Software
Codesign - Principles and Practice, pages 283–305. Kluwer Academics Publishers, 1997.
Good definition of partitioning.

[MN99] E. Moser and W. Nebel. Case study: System model of crane and embedded control.
In Proceedings of Design Automation and Test in Europe, DATE’99, pages 721–723.
IEEE Computer Society, 1999.

[MNPRR97] Serge Maginot, Wolfgang Nebel, Wolfgang Putzke-Röming, and Martin Radetzki. Fi-
nal Objective VHDL language definition. Technical report, ESPRIT Project 20616 :
Request, 1997.

[MRC+00] Fabrice Merillon, Laurent Reveillere, Charles Consel, Renaud Marlet, and Gilles
Muller. Devil : An IDL for hardware programming. Technical report, INRIA Rennes,
France, http://www.inria.fr/rrrt/rr-3977.html, July 2000.

[NBS+02] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr, and
Andreas Hoffmann. A universal technique for fast and flexible instruction-set archi-
tecture simulation. In Proceedings of the 39th conference on Design automation, pages
22–27, http://doi.acm.org/10.1145/513918.513927, 2002. ACM Press.

[Neu00] Dr. Horst A. Neumann. Interaction of active objects via shared protected objects:
UML design and ada realisation. In Ada Europe Conference 2000, Potsdam, 2000. Not
in the Proceedings.

[OJ00] Mattias O’Nils and Axel Jantsch. Operating system sensitive device driver synthesis
from implementation independent protocol specification. In Proceedings of the DATE
Conference and Exibition 1999, 2000.

[OMG01] OMG, http://www.omg.org. OMG Unified Modeling Language Specification (Ver-
sion1.4), Sep 2001.

[OS99] Frank Oppenheimer and Guido Schumacher. OOCOSIM - objektorientierte Spezi-
fikation und Simulation eingebetteter Realzeitsysteme. In Hubert B. Keller, editor,
Workshop Objektorientierung und sichere Software mit Ada, pages 1–11. Institut für
Angewandte Informatik, FZI Karlsruhe, 1999.

[OSC01a] OSCI (Open SystemC Initiative), http://www.SystemC.org. Functional Specification
for SystemC2.0 - Final Version, 2001.

130

Bibliography

[OSC01b] OSCI (Open SystemC Initiative), http://www.SystemC.org. SystemC2.0 Users Guide,
2001.

[OSN99] Frank Oppenheimer, Guido Schumacher, and Wolfgang Nebel. OOCOSIM - eine ob-
jektorientierte methode zur Spezifikation und Simulation eingebetteter Systeme in Re-
alzeitumgebungen. it+ig Schwerpunktthema: Entwurfsmethoden für eingebettete Sys-
teme, 41(2):27–31, 1999.

[OSN00a] Frank Oppenheimer, Guido Schumacher, and Wolfgang Nebel. Modellierung und Sim-
ulation eines Portalkrans mit der OOCOSIM-Methode. In Proceeding of the AES2000,
Paderborn, pages 123–129, 2000.

[OSN00b] Frank Oppenheimer, Guido Schumacher, and Wolfgang Nebel. Section: Portal crane
cosimulation in Ada95/Objective VHDL in system specification experiments on a com-
mon benchmark. IEEE Design & Test of Computers, 17(3):26–27, July-September
2000.

[OZN01a] Frank Oppenheimer, Dongming Zhang, and Wolfgang Nebel. COHSID: ComiX
HW/SW Interface Designer. In Jürgen Ruf and Carsten Schulz-Key, editors, Demon-
strations at University Booth at the DATE Conference 2001, page 10. Wilhelm-
Schickard-Institute for Computer Science, 2001.

[OZN01b] Frank Oppenheimer, Dongming Zhang, and Wolfgang Nebel. Modelling Communica-
tion Interfaces with ComiX. In Alfred Strohmeier Dirk Craeynest, editor, Proceedings
6th International Conference on Reliable Software Technologies - Ada-Europe 2001,
volume 2043 of Lecture Notes in Computer Science, pages 347–358. Springer, 2001.

[Por00] Brett Porter. Ada 95 suits embedded programming. Embedded Developers Journal,
pages 24–29, May 2000.

[RBMD03] Mehrdad Reshadi, Nikhil Bansal, Prabhat Mishra, and Nikil Dutt. An efficient
retargetable framework for instruction-set simulation. In Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software codesign & system
synthesis, pages 13–18, 2003.

[RK24] C. Runge and H. König. Vorlesung über numerisches Rechnen. Julius Springer, Berlin,
1924.

[RMD03] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. Instruction set com-
piled simulation: a technique for fast and flexible instruction set simulation.
In Proceedings of the 40th conference on Design automation, pages 758–763,
http://doi.acm.org/10.1145/775832.776026, 2003. ACM Press.

[RPRN98a] M. Radetzki, W. Putzke-Röming, and W. Nebel. Übersetzung von Objektorientiertem
VHDL nach Standard VHDL. In 9. GI/ITG/GMM Workshop: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, 1998.

[RPRN98b] Martin Radetzki, Wolfram Putzke-Römig, and Wolfgang Nebel. A unified approach to
object-oriented VHDL. Journal of Information Science and Engineering, 14:523–545,
1998.

[RPRN98c] Martin Radetzki, Wolfram Putzke-Röming, and Wolfgang Nebel. Objective VHDL:
Tools and application. In Proceedings of the Forum on Design Languages, FDL’98,
1998.

131

Bibliography

[RVBM96] Karl Van Rompaey, Diederik Verkest, Ivo Bolsens, and Hugo De Man. CoWare - a
design environment for heterogeneous hardware/software systems. In Proceedings of
the EURODAC 1996, 1996.

[RWT] RWTH Aachen - Lehrstuhl fur integrierte Systeme der Signalverarbeitung,
http://servus.ert.rwth-aachen.de/lisa/. LISA - Language for Processor Design.

[Sag98] Vivek Sagdeo. The complete Verilog book. Kluwer Academic Press, 1998.

[Sch99] Guido Schumacher. Object-oriented hardware specification and design with a language
extension to VHDL. PhD thesis, Carl v. Ozzietzky University of Oldenburg, 1999.

[Sel98] Bran Selic. Using UML for modeling complex real-time systems. In A. Bestavros
F. Mueller, editor, Languages, Compilers, and Tools for Embedded Systems - ACM
SIGPLAN Workshop LCTES’98, number 1474 in LNCS, pages 250–260. Springer,
1998.

[SG00] Luc Séméria and Abhijit Ghosh. Methodology for hardware/software co-verification in
C/C++. Technical report, OSCI, http://www.systemC.org/papers/05b 4.pdf, 2000.

[SN98] Guido Schumacher and Wolfgang Nebel. How to avoid the inheritance anomaly in
ada. In L. Asplund, editor, Reliable Software Technologies - Ada-Europe‘98, Uppsala,
Schweden, pages 53–64, 1998.

[SON04] Andreas Schallenberg, Frank Oppenheimer, and Wolfgang Nebel. Designing for dy-
namic partial reconfigurable fpgas with systemc and osss. In Proceedings of the Forum
on Design Languages 2004, 2004.

[Ste98] Richard W. Stevens. UNIX network programming - 1. Networking APIs : sockets and
XTI. Prentice Hall, 1998.

[Ste99] Richard W. Stevens. UNIX network programming - Interprocesses communications.
Prentice Hall, 1999.

[Sto92] Alexander D. Stoyenko. The evolution and state-of-the-art of real-time languages. The
Journal of Systems and Software, pages 61–84, April 1992.

[SUN87] SUN Microsystems, Inc., http://jandfield.com/rfcs/rfc1014.html. XDR : External Data
Representation standard, RFC 1014, 1987.

[Swa01] Stuart Swan. An introduction to system-level modelling in SystemC 2.0. Technical
report, Cadence, http://www.systemc.org/papers/SystemC WP20.pdf, 2001.

[Syn01a] Synopsys, Inc. CoCentric SystemC Compiler Behavioral Modelling Guide, 2001.

[Syn01b] Synopsys, Inc. CoCentric SystemC Compiler RTL User and Modelling Guide, 2001.

[TD97] S. Tucker Taft and Robert A. Duff. Ada95 Reference Manual. Number 1246 in LNCS.
Springer, 1997.

[TS04] Sharon Tan and Gary Smith. Conservative times, conservative design in EDA. Tech-
nical report, Gartner Inc., Feb. 2004.

[Vah03] Frank Vahid. The softening of hardware. IEEE Computer, pages 27–34, April 2003.

[VCI00] VCI Inc., http://www.EASICS.com/wwwtools/vcic/vcic whitepaper/
vcic whitepaper.html. Hardware-software interface design, 2000.

132

Bibliography

[VSV99] Steven Vercauteren, Jan Van Der Steen, and Diederik Verkest. Combining software syn-
thesis and hardware/software interface generation to meet hard real-time constrains.
In Dominique Borrione and Rolf Ernst, editors, Proceeding of Design, Automation and
Test in Europe DATE 1999, pages 556–561. IEEE Computer Society, 1999.

[W3C] W3C, http://www.w3.org/TR/REC-xml. Extensible Markup Language (XML) 1.0.

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Communication of the
ACM, 14(4):221–227, 1971.

[Wir85] Niklaus Wirth. Programming in Modula 2. Springer, 1985.

[XB03] Cong-Cong Xing and Bourmediene Belkhouche. On pseudo object-oriented program-
ming considered harmful. Communication of the ACM, pages 115–117, October 2003.
Discussion of what is essential in OO design style. In particular it states that classes
are non-essential for OO.

[Zha99] Dongming Zhang. Modellierung eines eingebetteten Echtzeitsteuerungssystems am
Beispiel eines Personenaufzugs. Technical report, Carl von Ossietzky University of
Oldenburg, 1999.

[Zha01] Dongming Zhang. Kommunikationsmodellierung für HW/SW-Systeme. Master’s the-
sis, Carl von Ossietzky University of Oldenburg, 2001.

133

Bibliography

134

Curriculum Vitae

1967 Born in Delmenhorst
1973 - 1977 Grundschule Adelheide in Delmenhorst

Elemenatry school
1977 - 1979 Orientierungsstufe Schulzentrum Süd in Delmenhorst
1979 - 1984 Realschule Königsberger Strae in Delmenhorst
1984 - 1988 Fachgynasium Technik at the BBS II in Delmenhorst
1988 - 1989 Military training
1989 - 1997 Study of ’Allgemeine Informatik’

General computer science
at the Carl von Ossietzky University Oldenburg
with Diplom in Informatik (MSc in Computer Science)

1997 Work as freelancer and consultant for computer applications
01/1998 - 09/2001 Research assistant at the Carl von Ossietzky University Oldenburg
10/2001- date Group manager System Design Methodology

at Kuratorium OFFIS e.V.

135

Bibliography

136

Decalration of original work

I herewith declare to have written this thesis only based on the sources listed and without the help
of others. I have not submitted or prepared the submission of this or any other doctoral thesis at
the Carl von Ossietkzy University Oldenburg or any other university.

Hiermit erkläre ich, diese Arbeit ohne fremde Hilfe und nur unter Verwendung der angegebenen
Quellen verfasst zu haben. Ich habe bis dato weder an der Carl von Ossietzky Universität Olden-
burg noch an einer anderen Universität die Eröffnung eines Promotionsverfahrens beantragt oder
anderweitig eine Promotion vorbereitet.

(Doktorand)

137

	Title
	Acknowledgements
	Contents
	Introduction
	Basic Terms and Notations
	Embedded systems
	Model of computation
	Co-design and co-simulation
	HRT-HOOD
	XML
	Document type definition
	XML notation

	Ada95
	VHDL
	Object-oriented VHDL

	ASIS
	Object-orientation

	Related Works
	General frameworks
	Co-Design based on a homogeneous system specification
	Co-Design methods based on a heterogeneous system specification

	Design of Embedded Systems
	Introduction
	Classical embedded system design
	The Co-design approach
	Characteristics of embedded system
	Requirements for design methods
	Seamless refinement
	Executable heterogeneous specification
	Exploring the design space
	Sufficient simulation performance
	Early integration of real-time behaviour
	Modelling hardware/software interfaces
	Mastering complexity

	Recap

	OOCOSIM Design Method
	Object-orientation in embedded system design
	Overview on the general flow
	Specification in HRT-HOOD+
	The Root Object and its environment
	System Objects
	Refinement of System Objects
	Hardware/software partitioning
	HRT-HOOD software objects
	Communication Objects
	Memory Objects
	Asynchronous Signals
	Asynchronous Memory Objects
	Hardware objects

	Example
	Executable specification and mapping to implementation
	Recap

	Hardware/Software Interface Design
	Specification of hardware/software interfaces
	Mainstream interface design

	Interface design in research
	Existing vs. OOCOSIM approach
	Requirements for ComiX

	The ComiX language
	ComiX Root Element
	Architecture Layer 1
	Environment Layer
	Declaration Layer 3
	Object Layer 4

	Consistent ComiX descriptions
	Size rules
	Resource conflicts
	Type rules
	Completeness of this rule set

	Automated code generation and consistency checks
	TempliX language definition
	Hierarchical Template Sets

	Implementation aspects
	Code-generation for Ada95 and VHDL
	Mapping of ComiX to Ada95
	Mapping of ComiX to VHDL

	Recap

	Co-simulation
	Classification criteria
	Execution models for the software part
	Co-simulation in OOCOSIM
	Overview

	Temporal synchronisation
	Time in the VHDL model
	Time in the software model
	Coupling hardware and software models of time
	Handling asynchronous events
	Synchronising the memory-mapped I/O area

	Implementation of the co-simulation
	Unified co-simulation event queue
	The software co-simulation scheduler
	Code transformations for the co-simulation - Automatic pre-compiler
	Mutual exclusion of hardware and software model - interprocess communication

	Recap

	Evaluation of the OOCOSIM Method
	Benchmarks for OOCOSIM
	Crane controller benchmark
	Elevator system

	Complexity handling
	Seamlessness
	Real-Time modelling
	Hardware/Software partitioning
	Performance of the co-simulation
	Assessment of performance
	Relative performance and accuracy
	Comparison with homogeneous model
	Synchronisation and communication effort

	Hardware/Software interfaces
	Recap

	Conclusion
	ComiX Syntax
	Templix Syntax
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae
	Decalration of original work

	link: Zur Homepage der Dissertation

