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Abstract

Many sounds in our everyday experience exhibit a property called comod-
ulation: they have common amplitude modulations in different frequency
regions. In various situations, these comodulated sounds hamper the under-
standing or even detection of relevant sounds, thus acting as noise maskers
for the signals of interest. In the scientific literature, signal detection in
comodulated noise has been examined with two experimental paradigms, co-
modulation masking release (CMR) and comodulation detection difference
(CDD). The present dissertation is concerned with modeling the processes
underlying these experiments on a neurosensory basis. This means that mod-
els are derived which are based on neurophysiological knowledge of the au-
ditory system. The aim of the present work is to focus on parsimonious
models which preferably cover a wide range of experiments and which can be
examined mostly with analytical methods. By thoroughly examining these
models the contributions of different peripheral sensory mechanisms to the
abovementioned comodulation effects can be estimated.

It is known from investigations of CMR and CDD experiments that hu-
mans and other animals can have lower signal detection thresholds if auditory
signals are embedded in comodulated background noise than if incoherently
modulated or unmodulated background noise is present. During the course
of this thesis, this effect is shown to have two important peripheral contri-
butions. The first one is the extraction of the envelope of the appropriately
filtered stimulus, which happens in the inner ear when basilar membrane vi-
brations are encoded in auditory nerve action potentials. The second contri-
bution is a compressive nonlinearity which is applied to the basilar membrane
vibrations by active mechanisms in the inner ear.

Due to the fact that comodulation does not only occur in the realm of air
pressure vibrations but also in any other medium for which vibrations are
possible, the results of the present thesis may be extended to other areas like
e.g. electromagnetic waves or ultrasound.
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Zusammenfassung

Viele Geräusche aus unserer alltäglichen Umwelt haben eine Eigenschaft, die
als Komodulation bezeichnet wird: Sie haben gleichzeitige Amplitudenmodu-
lationen in verschiedenen Frequenzbereichen. In vielen Situationen erschwe-
ren diese komodulierten Geräusche die Verständlichkeit oder sogar die De-
tektierbarkeit wichtiger Signale und wirken daher als Maskierer. In der wis-
senschaftlichen Literatur ist Signaldetektion in komoduliertem Rauschen mit
zwei experimentellen Paradigmen untersucht worden, comodulation mask-
ing release (CMR) und comodulation detection difference (CDD). Die vor-
liegende Dissertation beschäftigt sich auf Basis der Neurosensorik mit der
Modellierung der Prozesse, die diesen Experimenten zugrunde liegen. Das
bedeutet, dass Modelle hergeleitet werden, die auf neurophysiologischem Wis-
sen über das auditorische System beruhen. Das Ziel der vorliegenden Arbeit
ist es, sich auf Modelle zu konzentrieren, die vorzugsweise eine breite Spanne
von Experimenten abdecken und die größtenteils mit analytischen Methoden
untersucht werden können. Durch eingehende Untersuchung dieser Modelle
können die Beiträge verschiedener peripherer sensorischer Mechanismen auf
die oben genannten Komodulationseffekte abgeschätzt werden.

Aus Untersuchungen von CMR- und CDD-Experimenten ist bekannt,
dass Menschen und andere Tiere niedrigere Signaldetektionsschwellen haben
können, falls die auditorischen Signale in komoduliertes Hintergrundrauschen
eingebettet sind als in Gegenwart von inkohärent moduliertem oder unmo-
duliertem Hintergrundrauschen. Im Verlauf der Dissertation wird gezeigt,
dass dieser Effekt zwei wichtige periphere Beiträge hat. Der erste ist die Ex-
traktion der Einhüllenden des geeignet gefilterten Stimulus, die im Innenohr
geschieht, wenn Basilarmembranschwingungen in Aktionspotentiale des Au-
ditorischen Nervs übersetzt werden. Der zweite Beitrag ist eine kompressive
Nichtlinearität, der die Basilarmembranschwingungen aufgrund von aktiven
Mechanismen im Innenohr ausgesetzt sind.

Da Komodulation nicht nur im Bereich der Luftdruckschwingungen vor-
kommen kann, sondern auch in jedem anderen vibrationsfähigen Medium,
können die Ergebnisse dieser Dissertation auf andere Bereiche wie z.B. elek-
tromagnetische Wellen oder Ultraschall ausgedehnt werden.
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Chapter 1

Introduction

The human auditory system is an extraordinarily powerful organ: it can
adapt to extreme situations and detect sonic signals under various adverse
circumstances. To be more precise, signals are not only detected but also clas-
sified, separated, and occasionally attended to. Usually, a stimulus reaching
the ear may be said to consist of several so-called auditory objects (Griffiths
and Warren, 2004), which refers to the fact that sounds originating from dif-
ferent sources or having certain distinguishing properties can be perceptually
separated while other sounds may be perceptually combined. The process
of disentangling the mixture of sounds arriving at the ear has been termed
auditory scene analysis (e.g. Bregman, 1999). One example where auditory
scene analysis proves necessary is a conversation in a crowded social envi-
ronment which can be followed despite strong background noise. This has
been described as the cocktail party effect; see Arons (1992) and Bronkhorst
(2000) for reviews.

The act of detecting signals in background noise may be viewed as a very
basic form of auditory scene analysis. After millions of years of evolution
(e.g. Manley et al., 2004), the auditory systems of humans and other ani-
mals have developed amazing capabilities of sensing the presence of possibly
meaningful new sounds in ongoing background clutter. For example, it is
vitally important for prey like antelopes to detect the rustling of shrubbery
caused by predators like lions sneaking up to them through the brushwood
in the African savanna. Different cues may guide the auditory system when
performing such signal detection tasks. For example, the spectral content
of a new sound may be different from that of the ongoing sound mixture.
Or the auditory system may take advantage of the general spectro-temporal
structure of everyday sounds and signals when performing signal detection
tasks (e.g. Rieke et al., 1995; Smith and Lewicki, 2006).

It has been pointed out by Nelken et al. (1999) that many natural sounds
have a property that has been termed comodulation: they exhibit common
amplitude fluctuations at many frequency regions. This is in contrast to
sounds with essentially random amplitude fluctuations across the spectrum
(e.g. if many speakers with different voices in one room talk at the same time)
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2 Introduction

or no noteworthy amplitude fluctuations at all (e.g. pure tones or white noise).
Common amplitude modulation may arise, for example, when sounds travel
towards the detector through turbulent air (Richards and Wiley, 1980; Wiley
and Richards, 1982; Embleton, 1996). Even more prevalent may be the origin
of comodulation from the process of sound generation by the vocal tracts of
animals (Singh and Theunissen, 2003). Due to the ubiquitous presence of co-
modulated sounds in natural habitats, it is likely that animals have adapted
in order to cope with the specific features of comodulated sounds (cf. Klump,
1996; Brumm and Slabbekoorn, 2005). Indeed, it has been shown that hu-
mans and other animals can be better at detecting signals in comodulated
background noise than in unmodulated noise. Two prominent experimental
paradigms address the detection of signals in comodulated noise: comodu-
lation masking release (CMR), which was introduced by Hall et al. (1984),
and comodulation detection difference (CDD), which was first described by
McFadden (1987) and Cohen and Schubert (1987). The fundamental ideas
of these two experiments will be illustrated in the following.

Hall et al. (1984) demonstrated that human detection thresholds for sine
tones masked by comodulated noise are lower than in unmodulated noise.
These thresholds are called masked thresholds because the background noise
prevents the tone from being detected at absolute threshold and therefore
masks the presence of the tone signal. Hence, the background noise may
be called a masking noise or masker. In the abovementioned study, the
difference between detection thresholds of a sine tone in comodulated noise
and in unmodulated noise has been termed the comodulation masking release
(CMR), because the amount of masking was reduced when the comodulated
masker was present. Exemplary CMR stimuli are sketched in the top row of
Fig. 1.1. Subsequent studies have investigated this effect in depth in human
psychophysics. Examples are Schooneveldt and Moore (1987, 1989); Verhey
et al. (2003), and Ernst and Verhey (2006). Animal studies on CMR have
been performed in terms of behavior (Langemann and Klump, 2001) and
neurophysiology (Nelken et al., 1999; Hofer and Klump, 2003), where an
effect of similar size to that in humans was found.

The second experimental paradigm, CDD, investigates the detectability
of narrow band noise signals instead of pure tones. In the corresponding ex-
periments the masking noise is usually constructed from several narrow noise
bands that can share the same amplitude fluctuations (comodulated maskers)
or have independent amplitude fluctuations (uncorrelated maskers). Exem-
plary stimuli are sketched in the bottom row of Fig. 1.1. One finds reduced
signal detection thresholds if the signal band has to be detected in comodu-
lated masker bands (the co-uncorrelated condition in the bottom row of Fig.
1.1) compared to the situation of uncorrelated maskers (the all uncorrelated
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Figure 1.1: Sketches of typical stimulus setups for CMR (top row) and CDD (bottom
row) experiments. In every panel, the signal which is supposed to be detected is plotted
in dark color. For CMR experiments, the signal is a tone, which is indicated by the flat
envelope. For CDD experiments, the signal is a narrow band noise with inherent amplitude
fluctuations. The maskers, indicated by light colors, are narrow noise bands with inherent
amplitude fluctuations. Note that for CMR there is a masker at the signal frequency,
while for CDD the signal is spectrally separated from the masker bands. There are three
possible correlation conditions: all noise bands can be correlated (left); the maskers away
from the signal frequency can be comodulated while the noise band at the signal frequency
has independent amplitude fluctuations (middle); or all noise bands can be uncorrelated
(right). There is a second kind of CMR experiments which is not included here, in which
there is only one masker centered on the signal frequency which may either be used as it
is or which may be modulated by multiplication with lowpass noise.

condition in the bottom row of Fig. 1.1). This is generally true if the comod-
ulated maskers and the signal have no correlated amplitude fluctuations. If
signal and maskers fluctuate in the same way (the all correlated condition
in the bottom row of Fig. 1.1), then thresholds are similar to the case with
uncorrelated maskers. The threshold difference in this kind of experiments
has been termed comodulation detection difference (CDD). After the first
psychophysical experiments on CDD by McFadden (1987) and Cohen and
Schubert (1987), further experiments with human listeners have been con-
ducted. Many of them are discussed in Borrill and Moore (2002). CDD
studies with animals have been performed on a behavioral (Jensen, 2007;



4 Introduction

Langemann and Klump, 2007) and a neurophysiological basis (Bee et al.,
2007).

The differences between CMR and CDD are subtle: In CMR experiments,
a tonal signal is masked by at least one noise band centered on the tone, while
in CDD experiments a narrow band noise signal comes along with at least
one additional noise band which usually does not spectrally overlap with the
signal. This is illustrated in Fig. 1.1. Note that there are two classes of
CMR experiments: Either the masker is a single noise band, or the masker
consists of several narrow noise bands. Only the second kind of CMR stimuli
is sketched in Fig. 1.1. A more detailed overview and comparison of CDD
and CMR experiments can be found in Sect. 3.2.

There are several reasons for examining CMR and CDD experiments:
First, due to the ubiquitous presence of comodulated sounds in the envi-
ronment, signal detection in comodulated noise is an everyday task for the
auditory system and is therefore of interest as such. Second, understand-
ing the psychophysical and neurophysiological foundations of the CMR and
CDD effects can lead to an improved comprehension of signal processing in
the auditory system. Specifically, it may allow for finding stimuli which are
particularly well suited for the auditory system. With this, one can devise
ways of manipulating stimuli in such a way as to support the auditory system
in challenging situations, e.g. for hearing-aid users. Third, it is of interest
to replicate the excellent capabilities of the auditory system in technical ap-
plications, for which understanding specific effects like CMR and CDD can
lead to important progress. In order to approach these goals, it is important
to not only perform neurophysiological and psychophysical experiments but
also to combine insights from these experiments into modeling frameworks
which can explain the observed effects on a physiological basis. By addi-
tionally abstracting and simplifying models wherever possible, the very basic
principles leading to the experimental results can be captured. This is the
approach taken in the present thesis.

The present study centers around the topic of modeling auditory signal
detection in comodulated noise for birds and mammals. All models described
here focus on signal processing steps of the peripheral auditory system up
to the level of the auditory nerve. These processing steps are frequency
filtering, envelope extraction, and compression. They are comparable
for all animal classes under consideration. The human auditory system may
serve as an example to illustrate the auditory pathway and the physiological
correlates of the main model processing steps. Therefore, the basic layout of
the human auditory system will be reviewed briefly in the following. More
details can be found e.g. in Moore (2003) and Pickles (1988), being the sources
for the figures stated in the following paragraph.
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Human listeners can detect sounds in a frequency range of roughly 20 Hz
to 20,000 Hz. In this frequency range, reasonable levels of sounds that can be
detected lie approximately between 0 dB SPL and 120 dB SPL, where SPL
means sound pressure level and measures the sound pressure on a logarithmic
scale relative to a reference sound pressure of 20 µPa. Sound arriving as lon-
gitudinal air pressure waves at the ear is initially transduced to vibrations of
the tympanic membrane. This sets the three small middle ear bones malleus,
incus, and stapes into motion which in turn cause vibrations of the oval win-
dow, a membrane covered opening of the cochlea. Vibrations of the cochlear
fluid induced by the motion of the oval window elicit vibrations of the basilar
membrane, which due to its mechanical properties responds strongest to vi-
brations of a certain frequency at certain places: at the base (located at the
oval window) the basilar membrane resonates with high-frequency sounds,
while at the apex (located at the tip of the cochlea) low-frequency sounds
generate the strongest response. Therefore, certain locations on the cochlea
correspond to certain frequencies in the incoming sound mixture. This cor-
responds to the frequency filtering in the auditory system and may be
modeled with a filterbank (e.g. Hohmann, 2002). Deflection of the stereocilia
of inner hair cells caused by basilar membrane motion then results in depo-
larization of the cells. This leads to a release of neurotransmitter into the
synaptic cleft and finally to the generation of action potentials in neurons
of the auditory nerve. The timing of action potentials is coarsely locked to
the phase of the basilar membrane vibrations for low frequency pure tones
of up to approximately 4 kHz. For higher frequencies, the phase locking to
the stimulus fine structure deteriorates. Regardless of the phase locking to
the fine structure the firing rates of auditory nerve neurons roughly follow
the envelope of a stimulus (see e.g. Joris et al., 2004). The range of audible
sound levels (more than 120 dB) covers a range of sound pressures of more
than six orders of magnitude. This very broad range is not transformed into
an equally broad range of vibration velocities and amplitudes on the basilar
membrane. Rather, the range of possible vibration amplitudes is compressed
by an active physiological mechanism which is mainly caused by the outer
hair cells. This compressive nonlinearity is active for sound pressure lev-
els between about 30 dB SPL and 90 dB SPL and means that a change of one
dB in the incoming sound pressure results in a change of less than one dB
in the basilar membrane vibration amplitude. The roughly 30,000 afferent
auditory nerve neurons transmit the action potentials elicited by the roughly
3,500 inner hair cells (Dallos, 1992) to the next stages of the auditory path-
way, which among others pass the brainstem and the thalamus and finally
reach the auditory cortex.

For the purpose of the present work this very brief summary of auditory
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processing stages suffices although it can by no means be complete. The
models derived and described here make many simplifying assumptions in
order to allow for a view at the essential processes influencing signal detec-
tion in comodulated noise. Some of the simplifications made in the course
of the present work are that the influence of the outer and middle ear on
the basilar membrane vibrations are neglected and that the processing of
nerve activity on higher processing stages is reduced to effective descriptions
such as temporal averaging and decision making. Still, the interdisciplinary
work described here allows for insights into the basis of signal detection in
comodulated noise and can hopefully inspire not only further research in the
auditory sciences but also in other areas of science and technology where
signals need to be detected in comodulated noise.

There have been modeling efforts for CMR and CDD experiments long
before the completion of this thesis. From the beginning the CMR effect was
thought to be based on comparisons of the outputs of different filters in the
auditory system (e.g. Hall et al., 1984): filter outputs with coherent ampli-
tude fluctuations were thought to be grouped together, thus enhancing the
possibility to distinguish the masking noise from the tonal signal, while filter
outputs with uncorrelated amplitude fluctuations were assumed to be rather
perceived as distinct auditory objects, competing with the “signal object” for
the attention of the listener. This conclusion was drawn because noise energy
added outside the critical bandwidth of the signal centered filter clearly con-
tributed to the release from masking (e.g. Schooneveldt and Moore, 1987).
Thus, CMR was mostly thought to arise from across-channel processes, re-
ferring to the different filters of the auditory system as channels. Another
possible across-channel process explaining CMR may be that the outputs of
channels remote from the signal can indicate times during which the masking
of the signal is relatively low and therefore the signal may be detected more
easily (listening in the valleys, e.g. Buus, 1985). Yet another possible expla-
nation for CMR that has been described by Hall et al. (1984) is suppression1:
Masker contributions far from the signal frequency may result in suppression
of the masker peaks on the signal and therefore increase the signal-to-noise
ratio for small signal amplitudes (Hall et al., 1988). Due to the fact that the
influence of suppression should not be symmetric with respect to its origins
above or below the signal frequency, suppression could be excluded as the
main contribution to the CMR effect because the amount of CMR is mainly
symmetric for masker bands above or below the signal frequency (Hall et al.,

1Suppression describes the fact that excitation or neuronal activity in response to a
certain frequency can be reduced due to the presence of other frequency components in a
sound (e.g. Moore, 2003).
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1984). However, possible contributions of suppression to CMR are discussed
in Ernst and Verhey (2006). Other possibilities for understanding the CMR
effect qualitatively may be that the auditory system detects changes in the
correlations between outputs of different channels (Richards, 1987; van de
Par and Kohlrausch, 1998a) or uses an equalization-cancellation mechanism
for further processing of channel outputs (Buus, 1985). These and other
conceptual explanations for CMR are summarized in Verhey et al. (2003).

Quantitative psychophysical models for CMR based on the output of only
one filter have been proposed by (i) Berg (1996), (ii) Verhey et al. (1999),
and (iii) Ernst and Verhey (2006). (i) The model by Berg (1996) uses the
output of only one very broadly tuned filter with a bandwidth larger than 2
kHz. By means of half-wave rectification and low-pass filtering, a measure
similar to the envelope of this wide-band filtered stimulus is calculated. The
amplitude spectrum of this quasi-envelope is used for detecting the presence
of the signal in a task comparable to CMR. The quantitative predictions
of that model fit quite well to corresponding experimental results, but they
are not extended to other CMR or CDD situations. (ii) The model by Ver-
hey et al. (1999) is a true within-channel model which holds for a class of
CMR experiments with one broadband masker which may be comodulated
by multiplying it with a lowpass noise. Its main idea is to use a model of the
effective signal processing of the auditory system for modulation detection
(Dau et al., 1997) for simulating signal detection thresholds. The output of
a single gammatone filter at the signal frequency is half-wave rectified, low-
pass filtered, and further processed by several nonlinear feedback loops. This
processed stimulus is subsequently analyzed with a modulation filterbank,
and signal detection is based on comparison of the filterbank output with a
previously estimated template for a stimulus with a supra-threshold signal.
It is concluded that signal detection is based on the effective reduction of the
modulation depth in a stimulus with signal compared to a masker alone stim-
ulus. (iii) In the study by Ernst and Verhey (2006) the role of suppression
for CMR is investigated by within-channel model simulations with the main
processing step being a dual-resonance nonlinear filter (DRNL, see Meddis
and O’Mard, 2001). After modeling the influence of the outer and middle
ear on the stimulus with an appropriate filter, the stimulus is processed with
a DRNL filter which mimics the suppressive nonlinear characteristics of the
cochlea. After this stage the stimulus is squared and smoothed using a sliding
window constructed from three exponential functions modeling forward and
backward masking (see also Plack et al., 2002). Signal detection in the model
is based on the ratio of the maxima of the output of this processing with and
without signal. The simulations with this model can explain main effects
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in accompanying diotic CMR measurements, while dichotic2 experiments are
not well predicted. Differences between model and experiment are attributed
to higher level processing steps like wide-band inhibition at the level of the
cochlear nucleus (e.g. Pressnitzer et al., 2001; Neuert et al., 2004).

Possible neurophysiological correlates of CMR are reviewed in Verhey
et al. (2003). The wide-band inhibition mentioned above can reduce the re-
sponse of neurons tuned to the signal frequency selectively at times when
the comodulated masker bands have a relatively high amplitude and pro-
vide little inhibition at times when the masker bands have a low amplitude.
This tends to emphasize times with a relatively high signal-to-noise ratio and
therefore facilitates signal detection in the case of comodulated maskers (see
Pressnitzer et al., 2001; Verhey et al., 2003, for more details). These ex-
perimental findings have been successfully implemented in a computational
model (Meddis et al., 2002), which can be used to explain psychophysical
experiments with the specific set of stimuli used for that study. A second
possible neuronal mechanism which may underly the CMR effect is a deterio-
ration of firing rate locking to the masker envelope which may be introduced
by the signal tone (Nelken et al., 1999; Las et al., 2005). A computational
model which is able to reproduce these experimental observations has been
described by Fishbach and May (2003), where essentially the rectified time-
derivative of the log-compressed envelope of the stimulus is encoded by neural
activity.

Most modeling efforts for comodulation experiments have been put into
the CMR effect. The basic ideas of qualitative models for CDD are the same
as those for explaining the CMR effect. However, while CMR has been un-
derstood as having important across-channel contributions, there have been
several suggestions attributing the CDD effect mainly to within-channel ef-
fects (Fantini and Moore, 1994; Borrill and Moore, 2002; Moore and Borrill,
2002). Due to the fact that the qualitative explanations for CDD are very
similar to those for CMR, they are only briefly mentioned here: Several au-
thors (e.g. McFadden, 1987; Cohen and Schubert, 1987; Hall et al., 2006)
discuss the possible role of auditory grouping in CDD experiments. Mecha-
nisms comparable to listening in the valleys are discussed e.g. by Cohen and
Schubert (1987), Fantini and Moore (1994), and Moore and Borrill (2002).
The reduction of the modulation depth of the maskers as a possible cue for the
signal is discussed in Wright (1990), who also proposes mechanisms such as
equalization/cancellation or correlation detection as possible bases for CDD.

2Presenting a stimulus diotically to a listener means supplying both ears with exactly
the same sonic waveforms. A dichotic presentation implies that both ears are exposed to
different sounds (in the present case masking noise in one ear and signal in the other ear).
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Fantini and Moore (1994) describe that temporal fine structure cues may
give rise to CDD. Another explanation for CDD which was discussed in Mc-
Fadden (1987) is that combination bands on the cochlea may provide cues
for detecting the signal band.

To the best of the author’s knowledge, there is only one quantitative
model for CDD, and apart from the work presented in the current thesis,
no neuronal models for the CDD effect have been described in the litera-
ture. Borrill and Moore (2002) and Moore and Borrill (2002) describe the
only quantitative psychophysical within-channel model in which it is assumed
that the auditory system can detect times during which the signal-to-masker
ratio is above a certain criterion. Over the course of the signal presentation,
these times are summed to the cumulative detection time which is assumed
to be a measure of the signal detectability. This dip-listening model can
quantitatively explain accompanying CDD experiments with the drawback
that it is not clear how the times of high signal-to-masker ratios are detected
by the auditory system. In Moore and Borrill (2002), the mechanism leading
to a special focus on these times is proposed to be suppression, although no
direct experimental evidence for this suggestion is given.

To sum up the modeling efforts on comodulation experiments, it can be
said that up to now the main focus of modeling has been laid on the CMR
effect. The quantitative psychophysical models have the drawback that their
neurophysiological realization is not entirely clear. The models based on neu-
rophysiological findings on the other hand have many adjustable parameters
and still need to make assumptions which are not yet experimentally verified.
Both kinds of models have not yet been applied to a broad range of CDD
and CMR stimuli.

The modeling approaches described in the present thesis pose a more gen-
eral view on comodulation experiments because they are applied to CDD as
well as CMR situations. At least one of the psychophysical models presented
in this dissertation is directly motivated from neurophysiological experiments
and therefore its neuronal feasibility is known. Despite this proximity to neu-
rophysiology, the model has only three free parameters, which makes it easy
to analyze and relies on the fewest possible assumptions. This parsimony is
also maintained for the second main model detailed in the thesis, such that
a broad range of experimental results can be understood with a minimal set
of prerequisites.



10 Introduction

1.1 Overview

The present thesis is organized in a cumulative way. The three main chapters
2, 3, and 4 are modified versions of either published or submitted manuscripts
and can therefore largely be read independently. However, Chapter 3 de-
scribes an enhanced version of the model derived in Chapter 2, thus referring
back to it at some points. Chapter 4 describes a self-contained model which
takes a step back and looks at the influence of a particular processing step,
the compression, on signal detectability. Differences between the published
or submitted manuscripts and the chapters in this thesis are summarized in
the footnotes at the beginning of each chapter. Due to the modular compo-
sition of the present work, several concepts are repeated at different places.
The reader is kindly asked to pardon these recurrences and view them as aid
for focusing on separate chapters independently.

Chapter 2 consists of two main parts, the first of which has been pub-
lished in a modified form (Buschermöhle, Feudel, Klump, Bee, and Freund,
2006). The aim of that first part is to model neuronal responses to CDD
stimuli and to relate the modeling results to human psychophysics of the
CDD effect. To approach this aim, the results of neurophysiological record-
ings of the activity of field L2 neurons3 of starlings during the playback of
typical CDD stimuli are briefly summarized. It is demonstrated that the
firing rates of these neurons show different patterns with increasing signal
level depending on the correlation condition of the background noise. These
differences are explained with a simple model assuming that the mean firing
rate of the recorded neurons codes the mean compressed envelope of the fil-
tered stimulus consisting of the noise masker and the signal. Therefore, the
observed neuronal activities can be explained by basic peripheral processing
steps. The model is formulated in a largely analytically tractable manner
such that the reason for the differences between the noise correlation condi-
tions may be identified as interference due to phase correlations. The model
predictions for neural activity in response to CDD stimuli are compared to
experimental results for an example recording site, and neurophysiological
signal detection thresholds obtained from the model are compared qualita-
tively to psychophysical signal detection thresholds. The model derived in
this part of the chapter comprises the first quantitative model for CDD which
is based on physiological data.

The second part of Chapter 2 is a modified extract from Bee, Buscher-
möhle, and Klump (2007). Its main goal is to test the validity of the model
introduced in the first part. This is done by numerically simulating the pro-

3Field L2 in birds is comparable to the primary auditory cortex of mammals.
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cessing steps of the model for exactly those stimuli that were used during
the neurophysiological experiments, accounting for the frequency tuning and
rate response characteristics of each individual recording site. Mean neu-
ronal firing rates obtained from these simulations are compared to the actual
recordings, and the neurophysiological signal detection thresholds and CDDs
obtained with the model are compared to those found experimentally. It is
found that the numerically simulated model can explain large parts of the
experimental data with relatively few parameters.

Chapter 3, which has been submitted for publication in a slightly var-
ied form (Buschermöhle, Verhey, Feudel, and Freund, 2007b), intends to
demonstrate the scope of the model introduced in Chapter 2. The original
model for CDD stimuli is expanded to be applicable to CMR stimuli as well.
By including a signal detection step, the model can be applied to various
psychophysical CDD and CMR experiments from the literature. With only
three adjustable parameters, the model which only incorporates peripheral
within-channel effects is capable of reproducing main aspects of the respec-
tive experiments. This procedure allows for a discussion of the possibilities
and limitations of the model. In summary, the chapter describes the first
modeling framework which is applied to various CDD and CMR stimuli at
the same time and which is based on neurophysiological findings.

Chapter 4 has been submitted for publication (Buschermöhle, Feudel, and
Freund, 2007a). Its main intention is to discuss the influence of only one sig-
nal processing step, compression, on signal detection in comodulated noise.
In order to do this analytically, a simple form of comodulated noise is defined
and its general properties are analyzed. Then a variant of the signal-to-noise
ratio (SNR) is defined which is in the following used for the analysis of the
detectability of signals. This is done in simulations as well as by approximat-
ing the power spectrum of compressed stimuli analytically. The final result
stating that improved detection of signals in comodulated noise is already
possible after applying a compressive nonlinearity to the stimulus is shown
to be true for many different forms of modeling compression. Therefore, an
estimate of the influence of compression on the CDD and CMR effects may
be given, and the modeling results are discussed in the light of the experi-
mental literature. The model discussed in Chapter 4 is conceptually different
from the models of the previous chapters, and it is not directly motivated
from experiments. Nevertheless it provides a significant contribution to the
understanding of comodulation experiments because it can be formulated
analytically and it may be applied to CMR and CDD stimuli.

The summarizing statements in Chapter 5 briefly review the preceding
chapters and explain the broader significance of the present work. Possible
future directions of research are described as well.





Chapter 2

Signal Detection in Comodulated Noise1

2.1 Abstract

Signal detection in fluctuating background noise is a common problem in
diverse fields of research and technology. It has been shown in hearing re-
search that the detection of signals in noise that is correlated in amplitude
across the frequency spectrum (comodulated) can be improved compared
to uncorrelated background noise. The mechanism leading to this effect is
shown to be a general phenomenon which may be utilized in other areas
where signal detection in comodulated noise needs to be done with a lim-
ited frequency resolution. A model based on neurophysiological experiments
is introduced which can explain improved signal detection in comodulated
noise. The proposed signal detection scheme evaluates a fluctuating enve-
lope, the statistics of which depend on the correlation structure across the
spectrum of the noise. In the model, signal detection does not require a so-
phisticated neuronal network but can be accomplished through the encoding
of the compressed stimulus envelope in the firing rate of neurons in the au-
ditory system. The proposed model is discussed in two versions. First, an
analytically tractable model is used to demonstrate basic mechanisms. Then,
more detailed numerical simulations are performed allowing for comparisons
between model and experimentally obtained firing rates as well as observed
and predicted signal detection thresholds.

1Sects. 2.1–2.4 have been published with modifications (Buschermöhle, Feudel, Klump,
Bee, and Freund, 2006). The main differences compared with the published version are:
two more subplots in Fig. 2.1, a more detailed description of the experiments in Sect.
2.3, the addition of Fig. 2.3, a second subplot in Fig. 2.4, the insertion of Eq. 2.12, the
omission of the conclusions section, and the inclusion of two appendices. Section 2.5 is an
extract from the submitted manuscript Bee, Buschermöhle, and Klump (2007). The text
represents only the modeling part of the submitted manuscript and has been modified in
order to fit into the present chapter. Table 2.1 has two columns less than the corresponding
table in the submitted manuscript, and Fig. 2.7 has two rows less than the corresponding
figure in the submitted manuscript. All footnotes in this chapter are only included in this
dissertation.

13
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2.2 Introduction

Deciding if a signal is present in background noise is the central problem of
signal detection. The statistical properties of noise masking a signal depend
on the origin of fluctuations: the standard property of Gaussian white noise
is a consequence of the central limit theorem when assuming the fluctuations
to arise from a superposition of many independent individual impacts, as
in Brownian motion, whereas exponentially correlated red noise results from
the Ornstein-Uhlenbeck process (Gardiner, 2004). A not so frequently inves-
tigated but nontheless important situation is the case of comodulated noise.
It occurs when amplitudes at different regions of the frequency spectrum
fluctuate in a coherent, or temporally correlated, fashion. This comodulation
can be generated when sound pressure waves propagate through turbulent air
(Richards and Wiley, 1980) or as a result of the biomechanics of sound pro-
duction in humans and other animals (Singh and Theunissen, 2003). Random
amplitude fluctuations that may be correlated across the frequency spectrum
occur also in other natural phenomena, for example when (star-)light or radio
waves are influenced by turbulences in the atmosphere (Tatarski, 1961), and
in engineering and technology applications, such as radar (Xu et al., 2004)
or sonar (Abraham and Lyons, 2004). Hence, the detection of signals in co-
modulated noise is a problem of general interest across disparate disciplines.

The auditory system continually performs signal detection tasks. One
familiar example is speech perception in noisy social environments, such as
a cocktail party (Bronkhorst, 2000). Background noise that is hampering
the detection of a signal can be called masking noise. We believe a better
understanding of signal detection can be achieved by modeling these processes
in the vertebrate auditory system, which appears to have evolved to exploit
comodulated noise for lowering detection thresholds (Klump, 1996). Here,
we propose such a model based on neurophysiological recordings from the
auditory forebrain of the European starling (Sturnus vulgaris).

In both humans and starlings, thresholds for detecting acoustic signals
in noise can be lower in comodulated noise compared to unmodulated noise
or incoherently modulated noise with independent amplitude fluctuations
across the spectrum (e.g. Verhey et al., 2003). One example of this general
phenomenon is the comodulation detection difference (CDD, see McFadden,
1987). Experimental tests of the CDD effect in humans (e.g. McFadden, 1987;
Cohen and Schubert, 1987; Moore and Borrill, 2002) and starlings (Lange-
mann et al., 2005; Langemann and Klump, 2007) have shown that the detec-
tion of an amplitude modulated narrowband noise signal is improved when
the amplitude envelopes of several spectrally separated narrowband noise
maskers are correlated with each other (i.e., comodulated) and independent
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Figure 2.1: Spectrograms of typical stimuli for the (A) all correlated (AC), (B) co-
uncorrelated (CU), and (C) all uncorrelated (AU) conditions similar to the ones presented
to starlings in the experiments. The signal band here is centered around 2 kHz, flanked
by the six masker bands. Depending on the correlation condition, all bands can share
a common envelope (i.e. amplitude modulations), the masker bands can have the same
envelope while the signal band’s envelope deviates from that, or all bands can have different
envelopes (compare also Fig. 3.1). The stimuli shown here are simplified versions of those
presented to starlings in electrophysiological experiments (see Sect. 2.4.1).

of that of the signal band (the co-uncorrelated [CU] condition; see Fig. 2.1
B). This improvement in signal detection (i.e., lower detection thresholds) is
relative to conditions in which the signal band and each masker band have
either a common envelope (the all-correlated [AC] condition; see Fig. 2.1 A)
or independent envelopes (the all-uncorrelated [AU] condition; see Fig. 2.1
C). Thresholds in the CU condition can be up to 10 dB lower than those
in the AC and AU conditions, which are generally similar (McFadden, 1987;
Moore and Borrill, 2002; Langemann et al., 2005).

These threshold differences have been viewed as arising from either within-
channel or across-channel effects. This nomenclature refers to the inner ear
functioning as a bank of bandpass filters, or channels, in the frequency do-
main. In the present chapter a simple model is described that uses the
output of only one such channel to account for CDD, which is consistent
with current psychophysical findings (Moore and Borrill, 2002) and therefore
describes CDD as a within-channel effect. The model is based on neurophys-
iological data recorded in recent CDD experiments with starlings (see Bee
et al., 2007) and focuses on a statistical evaluation of the fluctuating enve-
lope of a stimulus comprised of a signal band and a number of masker bands
(see Fig. 2.1). The model developed below can predict a number of quali-
tative and quantitative results from experimental studies of the CDD effect.
Moreover, it is based on simple, well-known peripheral processing stages in
the auditory system that may be implemented easily into signal detection
schemes in other fields. The main model stages are frequency filtering, cal-
culation of the envelope, and compression (i.e. a nonlinear transform of the
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envelope).

2.3 Experimental background

The experiments described in this chapter were performed by Mark A. Bee
and Georg M. Klump at the Institut für Biologie und Umweltwissenschaften
of the University Oldenburg. Electrophysiological recordings were made from
six awake and freely moving starlings (three adult females, three adult males)
that did not have to perform any specific tasks. Descriptions of the experi-
mental setup and procedure can be found in Langemann et al. (2005) and will
be detailed in two future papers (Bee et al., 2007; Langemann and Klump,
2007). The mean firing rates of small populations of neurons (about 5 units)
were obtained from extracellular recordings of field L2 (an equivalent of the
mammalian primary auditory cortex) during repeated presentations of stim-
uli similar to those shown in Fig. 2.1. The stimuli consisted of a single signal
band centered at the signal frequency and six masker bands which were placed
symmetrically around the signal band in the frequency domain. The central
frequency of the signal band was set to the frequency at which the neu-
rons were maximally sensitive. The central frequencies of the adjacent noise
bands (masker bands) were separated by 300 Hz, and each noise band had a
bandwidth of 100 Hz. Each single noise band was generated by multiplying
Gaussian lowpass noise with a cutoff frequency of 50 Hz with a sine wave
at the desired center frequency of the band. The final masker consisting of
six noise bands was generated by adding up the individual noise bands. The
level of the masker bands was held constant across all conditions. Overall
masker levels of 42.8 dB SPL (sound pressure level) and 77.8 dB SPL were
tested. For each of the possible stimulus configurations, 30 random stimuli
were generated and played back with a 700 ms silent period between two stim-
uli. The first 20 artifact free recordings were used to determine the average
firing rate of the neurons during the time of signal presentation, taking into
account the delay between stimulus playback and onset of neuronal activity
(on the order of 15 ms). As the level of the signal band was increased in 5 dB
steps, the time- and ensemble-averaged firing rates showed different patterns
in the three correlation conditions (Fig. 2.2 A). Two important trends in the
data are worth noting. First, neural responses in the AU-condition exhib-
ited higher mean firing rates at low signal levels compared to the other two
conditions. Second, the firing rates in the AC-condition exhibited a clearly
nonmonotonic pattern. These general findings were observed for all birds,
two different signal durations (either 60 ms or 400 ms) and two different sig-
nal offsets (either 0 ms (i.e. maskers and signal starting at the same time)
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or 100 ms (i.e. signal starting 100 ms later than the maskers)). The reason
for studying different signal offsets was that effects of auditory grouping (see
Bregman, 1999) were supposed to be analyzed in the experiments. Several
sounds may be perceptually grouped into one auditory object if they start at
the same time, while they may be perceived as distinct objects if they start
at different instances in time. (cf. Bee et al., 2007, for further information).
The influence of signal duration and signal delay are of lesser importance
for the general model results and are therefore first neglected. They will be
discussed in Sect. 2.5.

Signal detection thresholds for the physiological data were determined by
calculating the discriminability index d′, which is defined as the difference of
the mean spike rates when the signal is present and when it is absent divided
by their common standard deviation, assuming both standard deviations are
equal (Green and Swets, 1966). Our experimental results showed that the
firing rate standard deviations do not depend strongly on signal level (see
Appendix 2.7). For the reasonable empirical criterion d′ = 1.8 (see e.g. Green
and Swets, 1966; Hofer and Klump, 2003) the signal is said to have been
detected (Fig. 2.2 B). The rank order of detection thresholds (CU<AC≈AU)
is consistent with perceptual studies of humans (McFadden, 1987; Moore and
Borrill, 2002) and starlings (Langemann and Klump, 2007).

2.4 Analytically tractable model

2.4.1 Model description

The firing rate of auditory neurons can encode the envelope of sound stimuli
(e.g. Schreiner and Urbas, 1988; Joris et al., 2004). Therefore, we assume
that the time- and ensemble-averaged firing rates observed in our physio-
logical recordings are a measure of the mean stimulus envelope during signal
presentation. We first devise an analytically tractable model which translates
the mean envelope of a stimulus into a neuronal firing rate. The stimuli that
serve as the input to our model are comprised of a number of narrowband
noises like the ones shown in Fig. 2.1. The first step of the model consists of
spectrally filtering the stimulus by decreasing the amplitude of the masker
bands with increasing distance from the signal band. This filtering mim-
ics the frequency selectivity of the inner ear. The filtered stimulus can be
understood as the real part of the analytic signal (Gabor, 1946)

s(t) =

M
∑

k=−M

ak

N
∑

n=−N

ei[(ω0+k∆Ω+n∆ω)t+φk,n]. (2.1)
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Figure 2.2: A: Spike discharge rates from a typical recording site averaged across time
and trials and normalized to the average rate if maskers alone are present in the AC con-
dition (recording site: OL03 44 300904, 60 ms signal duration, 0 ms signal offset). B: d′-
analysis of spike discharge rates. C: Expectation values of the time- and ensemble-averaged
compressed envelope amplitudes relative to their value if maskers alone are present in the
AC condition. A saturating function was applied to account for saturation of the neural
firing rate. D: d′-analysis of compressed saturating envelopes. For the model, a constant
standard deviation σ = 0.18 in normalized units was assumed. The solid horizontal line
in graphs B and D indicates the detection criterion of d′ = 1.8. (Model parameters:
α = 0.35, a1 = a−1 = 0.8, a2 = a−2 = 0.5, a3 = a−3 = 0.25.)

Here, 2M is the number of masker bands, 2N + 1 is the number of sinusoids
used to generate the noise bands, ω0 is the central frequency of the signal, and
∆Ω and ∆ω define the spacing between noise bands and component sinusoids,
respectively (Fig. 2.4 A). The real factors ak denote the filtered amplitudes
of the different noise bands and the signal amplitude is determined by a0.
Frequency selectivity is modeled by decreasing ak for increasing |k|. For
the simple version of the model, we use a symmetric filter (a−k = ak) with
a realistic bandwidth for the starling auditory system (Buus et al., 1995,
see also Fig. 2.4 B). The phases φk,n are the distinguishing element for the
different stimulus conditions: if all φk,n are randomly chosen from [0, 2π[,
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then an AU-stimulus is generated; if φk,n are random for all n but equal for
all k, then an AC stimulus is generated; CU stimuli are similar to AC stimuli
except for the fact that only for k, k′ 6= 0 the phases φk,n and φk′,n are the
same.
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Figure 2.3: Comparison of model results when using the abstract version of the stimuli
as described in this chapter (left) and when using original stimuli as they were played
back to starlings in the neurophysiological experiments (right). The masker bands of the
original stimuli were attenuated in the same way as those of the model stimuli. Then the
envelopes were calculated, compressed and finally averaged. The fact that the AC and
CU curves for the original stimuli do not start at the same value is due to the limited
number of sample stimulus realizations, while the model uses the statistics of all possible
realizations. (Same parameters as in Fig. 2.2.)

This is a simplified description of the stimuli for use in the model. The
original stimuli were generated by multiplying lowpass noise with pure sinu-
soids centered at the desired center frequencies of the noise bands (see Sect.
2.3). For the purpose of explaining the general experimental findings, we can
use the simplified stimuli. A comparison of model results for the simplified
and the original stimuli can be seen in Fig. 2.3. The general results are clearly
the same.

The envelope of the filtered stimulus can be easily calculated as the abso-
lute value of the analytical signal s(t). For assessing the envelope statistics,
first of all the ensemble average 〈|s(t)|2〉φ can be determined. Using trigono-
metric addition formulas, one can transform Eq. 2.1 to

|s(t)|2 =

M
∑

k,k′=−M

akak′

N
∑

n,n′=−N

cos(((k− k′)∆Ω + (n−n′)∆ω)t + φk,n −φk′,n′).

(2.2)
Making use of further addition theorems and keeping in mind that

〈cos(φk,n) sin(φk′,n′)〉φ = 〈sin(φk,n) cos(φk′,n′)〉φ = 0, (2.3)
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〈cos(φk,n) cos(φk,n′)〉φ = 0 if n 6= n′, (2.4)

〈cos(φk,n) cos(φk,n)〉φ =
1

2
, (2.5)

one arrives at

〈|s(t)|2〉φ = (2N + 1)

M
∑

k,k′=−M

akak′δ(φk,n, φk′,n) cos((k − k′)∆Ωt). (2.6)

The δ-terms are one if φk,n = φk′,n and zero if φk,n 6= φk′,n. Note that by
taking the mean over all possible phases φ, the dependence on ∆ω disap-
pears while |s(t)| is already independent of the central frequency ω0. For
large N , the distribution of squared envelope amplitudes at a certain time
t can be approximated as an exponential distribution (see e.g. Lawson and
Uhlenbeck, 1950). Assuming symmetrical filtering (ak = a−k, see Fig. 2.4
B for a comparison of model filter factors and a filter shape derived from
an experimental tuning curve), the mean of this distribution for the three
correlation conditions at time t is given by

µ2
AU

= 〈|s(t)|2〉φ,AU = (2N + 1)

[

a2
0 + 2

M
∑

k=1

a2
k

]

, (2.7)

µ2
AC

(t) = 〈|s(t)|2〉φ,AC = (2N + 1)

[

a0 + 2

M
∑

k=1

ak cos(k∆Ωt)

]2

, (2.8)
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µ2
CU

(t) = 〈|s(t)|2〉φ,CU = (2N + 1)

[

a2
0 + 4

(

M
∑

k=1

ak cos(k∆Ωt)
)2
]

. (2.9)

Here, the correlations of the phases were used to substitute the δ-terms. The
cosine terms in Eqns. 2.7–2.9 comprise the important differences between the
three correlation conditions. They may be interpreted as interference terms
due to correlated phases.

If the distribution of squared envelope values is an exponential distribu-
tion with parameter µ2(t), then the distribution of envelope amplitudes Y at

time t is given by a Rayleigh distribution2 with mean
√

π
2

µ(t):

pY (y, t) =
2y

µ2(t)
exp

(

− y2

µ2(t)

)

(2.10)

Making use of separate time scales (fast fluctuations with multiples of ∆Ω
and slow fluctuations with multiples of ∆ω) and a stimulus duration that is
much larger than 2π/∆Ω, the final envelope distribution and its moments
can be computed by eliminating time. This is done by integrating the time
dependent Rayleigh distribution over one period of its parameter µ2(t). With
Y being the random variable for the envelope amplitude, one gets

E(Y α) =

∫ ∞

0

yα〈pY (y, t)〉T dy

= Γ
(α + 2

2

) 1

T

∫ T

0

|µ(t)|α dt (2.11)

as the expectation value of Y α, where T = 2π
∆Ω

denotes the duration of one
period of µ2(t). This expression holds for any α > 0 and can be used to
compute all moments of the distribution of Y α.

A compressive nonlinearity that is already present in the inner ear (e.g.
Köppl and Yates, 1999; Rhode and Recio, 2000; Robles and Ruggero, 2001) is
implemented in our model by taking the envelope of the filtered stimulus to
the power of α with α < 1 (see Eq. 2.11). We use a compression of α = 0.35,
which is consistent with our own neural data and recordings from the avian
auditory nerve (Köppl and Yates, 1999). Mean and standard deviation (SD)
of the envelope distributions for this compression are shown in Fig. 2.5.

2A short note on notation: Y denotes the random variable for the envelope amplitudes,
while y ∈ [0;∞[ is a real number expressing possible values for Y .
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Figure 2.5: Mean (A) and standard deviation (B) of envelope distributions for increasing
signal level and constant masker level as predicted from Eq. 2.11 (lines) and as found in
sample stimuli (markers) for M = 3, N = 50, ∆Ω/2π = 300 Hz, ω0/2π = 2000 Hz, and
∆ω/2π = 1 Hz. A compressive nonlinearity is accounted for by the exponent α = 0.35.
Variability in the data for sample stimuli results from a finite stimulus duration (400 ms).
Same ak as in Fig. 2.2.

In our model, the translation of compressed envelope values to neuronal
firing rates is assumed to be linear up to a certain value. Then saturation at
firing rate κ is taken into account by the empirical expression

firing rate ∝
{

x for x < x0

x0 + (κ−x0)(x−x0)
κ+x−2x0

for x ≥ x0
(2.12)

where x is the compressed envelope amplitude normalized to the average
compressed envelope amplitude of the AC masker alone. The average firing
rate can be computed as proportional to the time and ensemble expectation
value of the compressed saturating envelope of the filtered stimulus. The
output of this model for realistic parameters κ = 1.7 and x0 = 1.3 is shown
in Fig. 2.2 C (κ and x0 are given without units because the firing rates are
measured relative to the masker alone rate in the AC case). Saturation is
needed for comparison with the experimentally obtained firing rates and can
be omitted without altering the general effect of different thresholds for the
three correlation conditions. Eq. 2.11 can be used in the case of no saturation.

2.4.2 Model results

To estimate the magnitude of the CDD effect predicted by the model, we
implemented the same signal detection scheme that was used to determine
physiological thresholds. We determined d′ by assuming a firing rate standard
deviation σ independent of signal level and stimulus condition. This is con-
sistent with our neural data (see Appendix 2.7). Due to this independence,
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our detection scheme reduces to a comparison of firing rates in the conditions
with and without signal: a certain increase in firing rate indicates signal de-
tection. As shown in Fig. 2.2 D, the model predicts thresholds for the CU,
AC, and AU conditions that are similar to those depicted for the example
recording site (Fig. 2.2 B). The rank order of thresholds agrees with previous
CDD experiments in humans (McFadden, 1987; Moore and Borrill, 2002) and
starlings (Langemann et al., 2005). The amount of CDD as determined from
our experiments and our model is less than found in psychophysics. This
may be understood using the following reasoning: The firing rate standard
deviation of small neural populations is larger than that of large populations
of neurons. A smaller standard deviation for the calculation of d′ results in a
vertical expansion of the curves in Fig. 2.2 D and therefore yields an increase
in CDD if the detection criterion of d′ = 1.8 is kept constant.

The threshold differences between the three correlation conditions can
be understood by noting two important differences in the mean compressed
envelopes (Figs. 2.2 C and 2.5 A). First, there is a prominent “dip” in the AC
condition which is present for 0 < α < 2 (see Appendix 2.8). This dip results
from the beat phenomenon and occurs when the overall signal and masker
levels are approximately equal. At this signal level, beating due to correlated
phases has the biggest effect: destructive interference between the correlated
noise bands leads to many time instances during which the stimulus envelope
is very close to zero, which leads to a relatively small mean compressed
envelope value. The dip causes the corresponding AC discriminability index
(d′) to exceed the detection criterion at a higher signal level compared to
the CU condition (Fig. 2.2 D). Second, the mean envelope of a stimulus
comprised only of the maskers (a0 = 0) is higher in the AU condition than in
the other two conditions (Fig. 2.2 C). This result is also rooted in the beat
phenomenon. In the AU condition, the incoherently modulated masker bands
do not interfere strongly with each other, while in the AC and CU conditions
interference due to common phases leads to a relative reduction of the average
compressed envelope. This explains why d′, which is computed based on the
difference between the signal plus masker and masker alone envelopes, crosses
the threshold criterion at a higher signal level in the AU condition compared
to the CU condition. The influence of the compressive exponent α and the
filter bandwidth on these two features of the mean compressed envelopes is
discussed in Appendix 2.8. It turns out that the described differences in
the mean compressed envelopes are still present with compression α = 1 and
without frequency filtering. Therefore, the extraction of the mean envelope is
the essential step for obtaining threshold differences between the correlation
conditions.
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2.5 Enhanced model with numerical simulations

In the previous section, we presented a largely analytically tractable within-
channel model to explain the CDD effect. The analytical expressions derived
there are valid for infinitely long stimuli and idealized frequency filtering and
stimulus generation. In this section, we make the model more realistic by
numerically simulating the auditory processing stages of the model and using
the exact same stimuli as those used in the original experiments. In these
simulations, all stimulus conditions that were tested in the experiments were
also tested. This means that we looked at two different masker spectrum
levels3 (15 dB SPL and 50 dB SPL, corresponding to overall levels of 42.8
dB SPL and 77.8 dB SPL, respectively), two different signal durations (60
ms and 400 ms), and two different signal onset delays relative to the masker
(0 ms or 100 ms). For each of the two masker spectrum levels, the neuronal
firing rates of 16 recording sites were modeled at the four combinations of
signal duration and signal delay.

2.5.1 Model processing steps

Signal processing was performed numerically according to the scheme shown
in Fig. 2.6. The input to the model was 20 stimulus realizations with the
appropriate levels and combinations of the manipulated variables (Fig. 2.6
A). For each recording site, the stimuli were filtered according to the appro-
priate frequency tuning curve (Fig. 2.6 B). The frequency tuning curve was
smoothed using cubic splines and then a rate response curve as a function
of frequency was calculated by averaging over all levels above 42 dB. This
rate response curve was normalized to 1.0 at its maximum. The filter at-
tenuation factors across the bandwidths of each noise band in the stimulus
were determined from this normalized frequency-rate curve (see Fig. 2.4 B
for an example filter shape deduced from a tuning curve). For simplicity, we
assumed filter shapes to be independent of masker and signal levels (see Gle-
ich, 1994). The Hilbert envelopes of the filtered stimuli were then computed
(Fig. 2.6 C) and compressed (Fig. 2.6 D) by raising them to the exponent
α ≤ 1 (see below). The conversion from compressed envelope y(t) to con-
tinuous, time-dependent firing rates was done using the following empirical

3The spectrum level measures the level of a sound within a 1 Hz wide band. The
spectrum level Lspect is related to the overall level Lovrl by the expression Lspect = Lovrl −
10 log10(BW ), where BW denotes the bandwidth in Hz (see e.g. Hartmann, 1998).
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Figure 2.6: Schematic diagram showing various stages of the peripheral model. Going
clockwise from top left to bottom left, the subplots show (A) the stylized spectrum of the
raw stimulus showing the signal band in black and the flanking bands in gray, (B) the
spectrum of the filtered stimulus along with the corresponding filter shape, (C) the time
signal with its envelope, (D) the time signal with the compressed envelope, (E) the mean
firing rates depending on signal level calculated from the compressed envelopes by using a
saturating function (different line styles for the three correlation conditions), and (F) the
d′-curves with the signal detection criterion shown by the dash-dotted line.

saturating function (Fig. 2.6 E):

r(y(t)) = r0 + (rmax − r0)

(

1 − exp

(

−y(t)

c

))

, (2.13)

where r is the neuronal firing rate (in impulses/s). The parameters r0, rmax,
and c are, respectively, the recording site’s spontaneous firing rate, its satu-
rating firing rate, and a parameter determining the level at which the record-
ing site reached half of its dynamic range. Finally, the continuous, time-
dependent firing rates r(t) were averaged across the signal duration at the
appropriate signal onset delay and across the 20 stimulus realizations that
were input into the model.

A total of four parameters could be adjusted for each recording site and
each combination of signal onset delay and signal duration. Because of the
phasic-tonic response properties of field L2 neurons (e.g. Nieder and Klump,
1999), different fitted parameters for r0, rmax, and c were required to model
responses to the two signal onset delays (0 ms and 100 ms) and the two signal
durations (60 ms and 400 ms). Model parameters were determined as follows.
The four free parameters (α, r0, rmax, and c) were set to realistic initial values
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for each recording site and then varied within physiologically realistic bound-
aries in order to minimize the mean squared differences between the model
firing rates and the experimentally obtained firing rates from field L2 neu-
rons. This procedure was performed independently for all four combinations
of signal duration and signal onset delay to derive initial estimates of the op-
timal model parameters. We assumed that the compression α was constant
for a given recording site; therefore, we averaged the derived values of the
compression α across the four combinations of signal onset delay and signal
duration. With α fixed, the remaining three parameters were readjusted for
each combination of signal onset delay and signal duration by again minimiz-
ing the mean squared differences between the model and experimental firing
rates. Hence, the same value of α was used for a given recording site to model
the rate-level curves for all 12 stimulus conditions tested at that recording
site (3 correlations × 2 signal onset delays × 2 signal durations), whereas
different values of r0, rmax, and c were used to model the rate-level curves for
the different combinations of signal onset delay and signal duration.

Finally, the average firing rates were converted to the discriminability
index (d′) to determine the model’s signal detection threshold as the signal
level at which d′ first exceeded a threshold criterion of 1.8 (Fig. 2.6 F). This
is the same threshold criterion used for determining neural response thresh-
olds in Bee et al. (2007). In the model, d′ was calculated from the model
rate-level curves by subtracting the rate response to the masker alone from
the response to the signal plus masker and then dividing by an average stan-
dard deviation σ of neural firing rates (see Appendix 2.7). Averaged across
experimental conditions, the standard deviations of the impulse rates elicited
in responses to the two signal durations were different (mean ± 95% confi-
dence intervals: 60 ms condition, 50.8 ± 0.4 impulses/s; 400 ms condition,
25.1 ± 0.3 impulses/s); therefore, we used constant standard deviations of
σ60 = 50.8 impulses/s and σ400 = 25.1 impulses/s for all recordings with 60
ms and 400 ms signal duration, respectively. These values are the averages
of all firing rate standard deviations for the recording sites used in this study
obtained experimentally for the respective signal durations. We did not vary
the standard deviation based on other manipulated variables (e.g. correlation
and signal onset delay); therefore, differences in firing rate variability could
not account for any CDD effect in the model results.

2.5.2 Results of model simulations

The rate-level (and d′-level) functions based on the time and trial averaged
firing rates output by the model were similar to those observed for the actual
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Figure 2.7: Representative rate-level and d′-level functions for neural data and model
output. A: Rate-level function for a representative recording site (OL03 46 011104) tested
with the 50-dB masker spectrum level illustrating the changes in impulse rate that occurred
as a function of overall signal level for the AU, AC, and CU correlation conditions (signal
onset delay: 0 ms; signal duration: 60 ms). ’M’ and the filled data points depict the
masker-driven responses in each condition. The plot on the far right depicts data for all
three correlation conditions together. B: Data from the same recording site and conditions
depicted in A after converting impulse rates to the discriminability index (d′) using signal
detection theory (Green and Swets, 1966). Black horizontal lines depict a threshold crite-
rion of d′ = 1.8. Smooth curves represent the model output. Vertical lines show the point
where the d′-level function crossed the threshold criterion. These thresholds are provided
in the far right plot. C and D show the rate-level functions and the d′-level functions from
the model output for a recording site with one of the poorest model fits (OL44 32 021104).

rate-level functions of field L2 neurons (Fig. 2.7). While there was some
variation in how well the model reproduced the rate-level functions from
different recording sites (cf. Figs. 2.7 A, B and 2.7 C, D), the model generally
captured two important aspects of real rate-level functions. First, the masker
driven responses in the AU conditions were higher than those in the AC and
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Table 2.1: The magnitude of the model CDD effect as a function of various stimulus
properties and comparisons to physiologically determined CDD effects in field L2 neurons
(Bee et al., 2007).

Stimulus Properties CDD Effect
Masker Signal Signal Model Neural Difference
Spectrum Delay Duration CDD (dB) CDD (dB) (dB)
Level (dB) (ms) (ms) Mean SD Mean
15 0 60 -1.4 1.9 -3.5 2.1

400 -1.5 1.1 -6.2 4.7
100 60 -1.0 0.6 -2.8 1.8

400 -1.7 1.0 -2.3 0.6

50 0 60 -2.1 4.3 -2.7 0.6
400 -3.9 5.4 -8.3 4.4

100 60 -2.0 6.4 -4.2 2.2
400 -3.7 8.6 -7.4 3.7

CU conditions (e.g. Fig. 2.7 A). Second, the model was able to successfully
reproduce the prominent“dip”in the rate-level functions of the AC conditions
(e.g. Fig. 2.7 A).

Across the eight combinations of signal onset delay, signal duration, and
masker spectrum level, the differences between signal detection thresholds
generated by the model in the CU and AC conditions were always less than
zero, indicating that the model generated a CDD effect in all stimulus con-
ditions tested (Table 2.1; Fig. 2.8 A). The mean magnitudes of CDD in the
model’s output across stimulus conditions (-1.0 dB to -3.9 dB) were uniformly
smaller than those measured in field L2 (Table 2.1). This underestimation
of the CDD effect by the model is directly related to the model’s overesti-
mation of masked neural thresholds. Across stimulus conditions, the model
overestimated neural thresholds by about 3.7 dB (range: 0.3 - 7.2 dB; Fig.
2.8 B). Importantly, however, this overestimation was not random with re-
spect to the three correlation conditions. Rather, the model overestimated
the mean thresholds in the CU, AC, and AU conditions by 5.8 dB, 3.2 dB,
and 1.9 dB, respectively. Given that the actual thresholds in these three
conditions were ranked in the opposite order (i.e., AU > AC > CU), the
threshold overestimations had the effect of reducing the threshold differences
among the correlation conditions (and hence the magnitude of CDD) in the
model’s output.

The following general trends were similar in both the model and physio-
logical results (Fig. 2.8 B): (i) thresholds were highest in the AU condition,
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lowest in the CU condition, and intermediate in the AC condition; (ii) thresh-
olds were lower with the 400 ms signal compared to the 60 ms signal; and
(iii) thresholds were lower at the 50 dB spectrum level compared to the 15
dB spectrum level.

2.5.3 Discussion

In this section, we applied the within-channel model of Sect. 2.4 to a much
larger number of recording sites and stimulus conditions than was done there.
For most recording sites (e.g. Fig. 2.7 A), the model successfully reproduced
the higher masker driven responses in the AU conditions and the prominent
“dip” in the AC rate-level functions. Importantly, both of these features
are already clearly present in the mean compressed envelope values of the
filtered CDD stimuli (see Sect. 2.4). The average compressed envelope of the
uncorrelated flanking bands in the AU condition is larger than that of the
comodulated flanking bands in the AC and CU conditions due to destructive
interference between the correlated bands in the AC and CU conditions. No
such destructive interference occurs between the uncorrelated flanking bands
in the AU conditions. Destructive interference is also responsible for the dip
in the AC rate-level curves. The existing destructive interference between
the comodulated flanking bands in the AC and CU correlation conditions
is enhanced in the AC condition with the addition of a correlated signal
band. Consequently, when the level of the signal approaches the overall level
of the flanking bands, the average compressed envelope gets smaller before
increasing again once the overall envelope becomes dominated by the signal
envelope. No such additional interference occurs when the signal is added
in the CU conditions because the signal is not correlated with the flanking
bands.

In general, the model also performed fairly well in reproducing the effects
of signal onset delay, signal duration, and masker spectrum level on the mag-
nitudes of CDD (Fig. 2.8 A) and masked detection thresholds (Fig. 2.8 B).
Two notable and related features of the model’s performance in these simu-
lations are that it underestimated the mean magnitudes of the neural CDD
effect and overestimated the masked detection thresholds (Fig. 2.8). There
are two general classes of explanation for this shortcoming. First, our model
does not include across-channel processing, which some have hypothesized
could contribute to the CDD effect (e.g. Cohen and Schubert, 1987; McFad-
den, 1987). While the model itself may not exclude the possible operation
of across-channel processes, little evidence for auditory grouping indicating
across-channel processing was found in the patterns of neural thresholds in
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Figure 2.8: CDD and masked detection thresholds from the within-channel peripheral
model. A: The mean (± standard error) magnitude of CDD for the 15 dB (left) and 50
dB (right) masker spectrum levels depicted as a function of signal duration (60 ms or 400
ms) with signal onset delay as the parameter. Negative values indicate a CDD effect. B:
The mean (± standard error) signal-to-masker ratios (SMR in dB) at thresholds for the 15
dB (top) and 50 dB (bottom) masker spectrum levels depicted as a function of correlation
condition (AU, AC, and CU) for each signal duration (60 ms or 400 ms) with signal onset
delay (0 ms or 100 ms) as the parameter. For comparison to neural data, the experimental
results from Bee et al. (2007) are reproduced here in lighter color.
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Bee et al. (2007) and in behavioral thresholds in Langemann and Klump
(2007). Second, and more likely, the model in its current form does not cap-
ture the full breadth of the within-channel processes that may contribute to
CDD. Langemann and Klump (2007) discuss these additional within-channel
cues in more detail. We believe one likely within-channel mechanism that is
not currently implemented in the model, but that could also contribute to
CDD, is the suppression4 that results from cochlear mechanics and that has
been observed in the auditory nerve (see Moore and Borrill, 2002, for further
discussion). Suppressive effects due to nonlinear filtering have been mod-
eled using a dual resonance nonlinear filter (DRNL, see Meddis and O’Mard,
2001). Such a signal processing step instead of linear filtering would allow for
investigating some influences of suppression on the model. It has not been
used in the present work in order to use the measured tuning characteristics
of the original recording sites.

2.6 Conclusions

The present chapter describes a simple model for the CDD effect: general
features of rate-level functions obtained from neurophysiological recordings
in starlings during playback of typical CDD stimuli can be understood by
considering the peripheral signal processing steps filtering, envelope extrac-
tion, compression, and averaging. This within-channel processing can even
explain many of the detailed features of the neurophysiological observations
and therefore argues for understanding CDD as a within-channel effect. Dif-
ferences in the detailed comparison of model predictions and experimental
observations may possibly be explained with the absence of suppression in the
model. Apart from neurophysiology, by employing a signal detection scheme
based on the index of discriminability d′, the rank order of psychophysical
signal detection thresholds in CDD experiments with humans can be repro-
duced. Using an analytical approach, the differences between correlation
conditions can be traced back to interference due to correlated phases. As
this kind of interference may also be important in natural noisy situations,
the extraction and compression of signal envelopes may be a promising strat-
egy for signal processing in various fields outside the narrow boundaries of
hearing research.

4See footnote on page 6.
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2.7 Appendix: Firing rate standard deviations

For modeling the index of discriminability and therefore signal detection, we
assumed the standard deviations of the model firing rates to be independent
of signal level, masker level, signal onset, and correlation condition. The
only factor influencing the model standard deviations was the signal dura-
tion. This model assumption of largely constant standard deviations has
been made in order to keep the model as simple and transparent as possible
and to avoid additional more complex model assumptions. Also, the firing
rate standard deviations cannot be modeled by the envelope standard de-
viations depicted in Fig. 2.5 B because the firing rate standard deviations
measure the variability in spike count within a certain time span, while the
envelope standard deviations measure the variability in envelope amplitude
for an ensemble of stimuli. Indeed, the CDD effect can already be explained
using constant standard deviations, indicating that the firing rate variability
is of secondary importance for the CDD effect.

The assumption of constant firing rate variability is a good first approx-
imation to the experimental data. Exemplary traces of firing rate standard
deviation σ depending on signal level are plotted for the three correlation
conditions in Fig. 2.9 A and D, where results for two typical recording sites
are shown at two different masker spectrum levels and signal durations and
for the same signal delay. The firing rate standard deviations are determined
in the following way: for every one of 20 trials, the temporal mean firing rate
is determined as the number of spikes that occur during the presentation of
the signal divided by the duration of the signal. σ is then defined as the
standard deviation of these 20 mean firing rates.

One can see that each data trace in Fig. 2.9 A and D may be fitted by a
straight line which will generally have a slope close to zero. A linear regression
for each of the measured data sets of firing rate standard deviation in relation
to signal level was performed, and the average slopes of the resulting fits
are displayed in Fig. 2.9 B and E. The abscissae in those panels show the
different combinations of signal duration and signal delay: The first digit
after the ‘s’ may either be a 4 (symbolizing 400 ms signal duration) or a 6
(representing 60 ms signal duration). The digit after the ‘d’ may either be
a 0 (meaning 0 ms signal delay) or a 1 (denoting 100 ms signal delay). One
can see in the two panels that all slopes are on average in the range of ±0.15
imp./s/dB which means that the regression lines are essentially flat, given
that the average standard deviations are on the order of 20 to 50 impulses per
second. This is true for all correlation conditions, masker spectrum levels,
and combinations of signal duration and delay. Therefore, one may conclude
that the assumption of firing rates being independent of signal level is a
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Figure 2.9: Demonstration of constancy of standard deviations. A and D: Examples
for the dependence of firing rate standard deviations σ on signal level for two recording
sites. B and E: A regression line was fitted to each curve of measured standard deviations
depending on signal level. The average slopes and their standard errors are plotted. The
ticks of the abscissa denote signal duration and signal delay: s4d1 symbolizes 400 ms signal
duration and 100 ms signal delay, while s6d0 denotes 60 ms signal duration and 0 ms signal
delay. C and F: Averages and standard errors of firing rate standard deviations across
recording sites. Top: 15 dB masker spectrum level, bottom: 50 dB masker spectrum level.
The most important difference for the standard deviations is that between 400 ms signal
duration and 60 ms signal duration: In the first case, the average standard deviation is
25.1 imp./s, while in the second case it is 50.8 imp./s. These two averages are plotted as
dotted and dashed horizontal lines, respectively, in panels C and F.

reasonable model assumption.

In the above considerations, only the slope but not the absolute value
of the firing rate standard deviations has been taken into account. In Fig.
2.9 C and F, the average values of σ are shown. One can see that the main
influence on the absolute value of σ stems from the signal duration. For a
short signal duration of 60 ms, the firing rates are quite variable with an
average standard deviation of 50.8 imp./s. The long signal duration of 400
ms leads to an average standard deviation of 25.1 imp./s.

Although other statistical dependencies may be found in the firing rate
standard deviations, the main influence of variability on signal detection has
been captured by using two different standard deviations for the different
signal durations in the model. Apart from this, it seems reasonable to assume
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Figure 2.10: Sketch of mean compressed envelope values depending on signal level for
typical CDD stimuli. This sketch defines the variables xAU, xAC, and xdip which are used
for plotting Fig. 2.11. The mean compressed envelope values for the maskers alone in the
AU and AC conditions are denoted by xAU and xAC, respectively. The mean compressed
envelope value at the minimum of the dip is denoted by xdip.

constant firing rate standard deviations in order to maintain a simple and
transparent model.

2.8 Appendix: Influence of filter bandwidth and compression

The choice of the compressive exponent α and of the bandwidth γ of the
auditory filter influence the shape of the modeled rate-level curves and there-
fore also the differences between these curves for the AC, AU and CU cases.
Two features may be used in order to quantify this influence: The reduction
in AC masker alone response xAC releative to the AU masker alone response
xAU and the minimum of the dip in the AC condition xdip (see Fig. 2.10).

The reduction of xAC relative to xAU caused by the phase correlations can
be quantified as xAC

xAU
. This measure is plotted in Fig. 2.11 A depending on

filter bandwidth γ and compressive exponent α. The size of the dip in the AC
condition is quantified as the quotient of the dip’s minimum and the masker
alone response in the AU condition

xdip

xAU
. The deeper the dip, the smaller is

this measure, which is plotted in Fig. 2.11 B.

For the compressive exponent, values up to two are considered although
only α ≤ 1 is physiologically realistic. The fact that for any value of 0 < α <
2 the plotted values in Fig. 2.11 A and B are less than 1 indicates that the
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Figure 2.11: Influence of filter bandwidth γ and compression α on the shape of the AC
curve. A: The relative reduction of masker alone response in the AC case compared to
the AU case is quantified by plotting xAC

xAU
. Panel B shows the depth of the dip in the

AC condition relative to the masker alone response in the AU condition, i.e.
xdip

xAU
. The

variables used here are explained in Fig. 2.10. The filter factors used for this figure are
derived from a gammatone filter (Hohmann, 2002) centered on the 2 kHz signal. The filter
width γ is measured on a human ERB scale as described in Sect. 3.3.2. The thick solid
lines in both subplots mark the parameter values corresponding to those parameters used
in Sects. 2.2 to 2.4. The stimulus setup is the same as in Fig. 2.5.

described differences in the model rate-level curves are present even without
compression, as stated in Sect. 2.4.2. Also, one nicely sees that for α = 2 all
curves are the same, which is indicated by the fact that for that parameter
value both measures are exactly equal to 1. There is an optimal compression
for causing the deepest dip. This compression is α ≈ 0.65, which is larger
than the value of the compressive exponent used in Sects. 2.2 to 2.4. It
is also slightly larger than the range of compressive exponents reported in
Köppl and Yates (1999) for avian auditory nerve neurons. The existence of
an optimal compression can be explained by considering that for α = 0 as
well as for α = 2 all three model curves must be the same5, such that for
intermediate values of α there must be a minimum in both measures plotted

5For α = 0, all compressed envelope values are identical to 1; for α = 2, the Parseval
theorem states that E(Y 2) equals the integrated spectral content of the stimulus, which
is exactly the same in the different correlation conditions.
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in Fig. 2.11 A and B, given that the phase correlations lead to reduced mean
compressed envelopes.

Also the filter bandwidth γ influences the shape of the model curves. Here,
we use filter factors ak obtained from a human gammatone filter centered on
the signal frequency and measure the filter bandwidth in ERB as described
in Sect. 3.3.2. The filter factors used throughout Sects. 2.2 to 2.4 which
have been used for modeling the avian auditory filter can be approximately
obtained from the gammatone filter with γ = 3.6 ERB, which is indicated
by the thick solid lines in Fig. 2.11 A and B. One can see that increasing
the filter width generally increases the differences between the AU and AC
curves, although for the depth of the dip there is an optimal filter width.
With a broader filter, the outer masker bands gain more influence on the mean
compressed envelope and therefore the phase correlations in the AC condition
lead to a more pronounced reduction in the masker alone response. The
nonmonotonic dependence of the dip size on γ may be understood by noting
that there is a tradeoff between the reduction of mean compressed envelopes
due to correlated phases and the growth of mean compressed envelopes due
to increased masker and signal power.



Chapter 3

A Unifying Model Approach to

Comodulation Detection Difference (CDD)

and Comodulation Masking Release (CMR)1

3.1 Abstract

Natural sounds often exhibit correlated amplitude modulations at different
frequency regions, so called comodulation. Therefore, the ear might be espe-
cially adapted to these kinds of sounds. Two effects have been related to the
sensitivity of the auditory system to common modulations across frequency:
comodulation detection difference (CDD) and comodulation masking release
(CMR). Research on these effects has been done on the psychophysical and
on the neurophysiological level in humans and other animals. Until now,
models have focused only on one of the effects. In this chapter, a simple
model based on data from neuronal recordings obtained during CDD exper-
iments with starlings is discussed. This model is capable of qualitatively
reproducing psychophysical signal detection thresholds in response to CDD
and CMR stimuli. Moreover, it is largely analytically tractable. The model
is based on peripheral processing and incorporates the basic steps frequency
filtering, envelope extraction, and compression. Signal detection is performed
based on changes in the mean compressed envelope of the filtered stimulus.
Comparing the results of the model with data from the literature, the scope
of this unifying approach to CDD and CMR is discussed.

3.2 Introduction

One of the prominent aspects of auditory scene analysis is the formation
and discrimination of auditory objects (Griffiths and Warren, 2004). Having

1A modified version of this chapter has been submitted for publication (Buscher-
möhle, Verhey, Feudel, and Freund, 2007b). The main differences between the submit-
ted manuscript and the present chapter are that in the present chapter Fig. 3.2 has been
added and that Sect. 3.5.1 has been modified by adding a sentence. Additionally, several
individual words have been rephrased.

37



38 A unifying model for CDD and CMR

identified an object, listeners can follow it even under adverse circumstances.
Object formation may be guided by many different cues, one of which is am-
plitude modulation. It has been shown that the detectability of signals can
depend on the correlation structure of modulations in an auditory stimulus
(e.g. Nelken et al., 1999; Singh and Theunissen, 2003). As amplitude modu-
lations due to sound production and sound propagation occur frequently in
nature, this cue might be especially important for animals and humans (e.g.
Langemann and Klump, 2001; Hofer and Klump, 2003; Verhey et al., 2003).
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Figure 3.1: Schematic illustration of typical correlation conditions for the noise bands
used in comodulation experiments. The flanking bands (FB) are light-colored while the
signal band (SB) or on-frequency masker (OFM) are dark-colored. Left: FBs and SB/OFM
have correlated amplitude modulations (all correlated, AC). Middle: FBs are comodulated,
SB/OFM has uncorrelated amplitude fluctuations (co-uncorrelated, CU). Right: ampli-
tude fluctuations of FBs and SB/OFM are uncorrelated (all uncorrelated, AU). Compare
also Figs. 1.1 and 2.1.

Several experiments in auditory object formation are concerned with cor-
related amplitude modulations and their effect on signal detection. Two
such experimental paradigms are comodulation detection difference (CDD)
and comodulation masking release (CMR, see Table 3.1 for a summary of all
abbreviations used in this chapter). In the first of these paradigms (e.g. Co-
hen and Schubert, 1987; Fantini and Moore, 1994; Wright, 1990; Hall et al.,
2006), the signal to be detected is a narrow noise band (signal band) in the
frequency domain masked by one or several additional noise bands (flanking
bands). If the envelope of the signal band fluctuates in the same way as that
of the flanking bands, detection thresholds are found to be higher than if the
flanking bands share a common envelope while the signal band has a differing
envelope. The difference in these thresholds is called the comodulation de-
tection difference (CDD). For the case of more than one flanking band, three
main correlation conditions may be distinguished: (i) all correlated (AC),
if all envelopes are the same, (ii) all uncorrelated (AU) for mutually differ-
ent envelopes, and (iii) co-uncorrelated (CU) if the flanking band envelopes
are the same while the signal band has a different envelope (see Fig. 3.1).
Generally, signal detection thresholds in CDD experiments are lowest in the
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Table 3.1: Abbreviations used in this chapter.

Abbreviation Meaning
AC all correlated
AU all uncorrelated
CDD comodulation detection difference
CMR comodulation masking release
CU co-uncorrelated
ERB equivalent rectangular bandwidth
FB flanking band
OFM on-frequency masker
SB signal band
SPL sound pressure level

CU condition. With this nomenclature, CDD is often defined by subtracting
the AC threshold from the CU threshold, and therefore it is usually negative
(McFadden, 1987).

Stimuli commonly used in CMR experiments consist of a narrow noise
band (the on-frequency masker, OFM) masking a pure tone signal and one
or several flanking noise bands serving as additional maskers. If the flanking
bands are modulated in the same way as the OFM (which will be referred to
as the AC condition according to the above terminology), then signal detec-
tion thresholds are lower than if flanking bands and OFM have differing am-
plitude modulations (in the following referred to as the AU condition). This
threshold difference has been termed comodulation masking release (CMR,
Hall et al., 1984). A second kind of CMR experiments exists in which there
is only one on-frequency masker centered on the signal sinusoid. Common
amplitude fluctuations in this case may be obtained by modulating the whole
on-frequency masker with a lowpass noise. This condition can also be called
the AC condition, while the unmodulated case can be termed the AU con-
dition. With increasing OFM bandwidth, threshold differences between AC
and AU condition tend to increase in these experiments, even if the masker
bandwidth exceeds the width of a typical auditory filter. This finding has led
to the hypothesis that across-channel processes may underlie the CMR effect
(Hall et al., 1984), however, see Verhey et al. (1999). In the present work,
CMR is defined as threshold difference between the AU and AC conditions
(AU-AC, usually positive).

Several mechanisms have been hypothesized to account for CMR (see
Verhey et al., 2003, for a review) and CDD (see Moore and Borrill, 2002,
and references therein for further information). Generally, the explanations
can be divided into within-channel and across-channel accounts of the ob-
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served effects. This refers to the number of auditory channels involved in the
processing of the stimuli (The inner ear can be viewed as a filterbank that
analyzes sounds according to a row of auditory filters or channels).

The across-channel explanation for the psychophysical CMR experiments
is that the auditory system compares the output of a channel that is centered
on the signal to those centered on the flanking bands. Model realizations of
such across-channel comparisons may be (i) correlation models, in which
the outputs of several channels are cross-correlated with one another, (ii)
equalization-cancellation models, in which the outputs of several channels
are first equalized in overall level and then subtracted from each other, or
(iii) dip listening models, in which the auditory system is assumed to be able
to detect times of low amplitudes of the flanking band channels in order to
improve the signal-to-noise ratio.

Dip listening, however, does not necessarily have to rely on across-channel
processing. Mechanical suppression on the level of the cochlea and other
mechanisms have been proposed to allow for dip listening also within one
auditory channel (see Moore and Borrill, 2002; Ernst and Verhey, 2006).
Another possibility of a within-channel explanation is that changes in the
temporal waveforms may be registered by the auditory system and lead to
different signal detection thresholds in the various correlation conditions.
A quantitative within-channel model for CMR is proposed in Verhey et al.
(1999). In this model, the most important stage is a spectral decomposition of
the envelope within the auditory filter by means of a modulation filterbank
located after the inner ear’s frequency filterbank on the auditory pathway
(Dau et al., 1997), the output of which is compared to a stored “image” for a
suprathreshold signal by using cross correlation. This within-channel model
can explain the experimental data in the accompanying experiments by an
effective reduction of the modulation depth.

Possible explanations for psychophysical CDD findings are very similar to
those used for CMR. Different qualitative across-channel and within-channel
mechanisms have been proposed. Borrill and Moore (2002) and Moore and
Borrill (2002) conclude that CDD is most likely mainly a within-channel
effect. They introduce a quantitative within-channel model in which the
auditory system can detect times during which the signal-to-masker ratio in
the output of one channel is temporarily above a certain threshold. These
times are combined to the cumulative detection time over the total duration
of the stimulus. If this cumulative time is sufficiently large, then the signal
is detected.

These effective models are quite elaborate and use technical approaches
to explain psychoacoustical data. Their neuronal realization is, however, still
not fully understood. Wide-band inhibition in the cochlear nucleus has been
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proposed as the neural mechanism underlying CMR, where the response of
neurons that are excited by the signal frequency of the stimulus is inhibited
by neurons that react to a wider range of frequencies around the signal fre-
quency (Pressnitzer et al., 2001; Meddis et al., 2002; Neuert et al., 2004).
This mechanism leads to a stronger firing rate response to the signal dur-
ing masker dips in AC conditions than in AU or CU conditions. Another
proposed neuronal explanation for CMR is suppression of firing rate locking
to the masker envelope (Nelken et al., 1999; Las et al., 2005), which means
that the sinusoidal signal prevents the stimulated neurons from locking to the
masker envelope and thus allows for a better signal detectability in comodu-
lated noise (corresponding to the AC condition) than in unmodulated noise
(corresponding to the AU condition). The neuronal networks necessary for
these explanations of CMR require at least a few excitatory and inhibitory
synaptic connections to enable the proposed responses.

For CDD, a much simpler neuronal model based on neurophysiological
recordings was proposed by Buschermöhle et al. (2006), which is explained
in Chapter 2. The model involves only an excitatory stage and uses the
mean value of the compressed envelope of a stimulus filtered by a single
auditory channel as a detection cue. Although all the above mentioned neu-
ronal models can account for general aspects of the respective psychophysical
experiments, their predictions have not yet been compared directly to psy-
chophysics.

To our knowledge, none of the models for CMR or CDD has aimed at
explaining both effects at the same time, and the psychophysical models so
far have not been directly linked to the physiology. The aim of the present
work is to show that a very simple neuronal model can be applied to various
psychophysical CDD and CMR experiments. The physiology-based within-
channel model introduced by Buschermöhle et al. (2006) will be extended in
order to account for both effects. For this purpose, first the basic steps of
the model will be described, then its main mathematical expressions will be
introduced, and subsequently its applicability to CDD and CMR experiments
will be demonstrated. Finally, there will be a comparison of the model’s
predictions with data from the literature.

In the model, it is assumed that the mean firing rate of neuronal popu-
lations covaries with the mean compressed envelope of the filtered stimulus.
Such a locking of neuronal firing rates to the envelopes of auditory stimuli
is described e.g. in Schreiner and Urbas (1988) and Joris et al. (2004). In
Chapter 2, an expression for the time and trial expectation value of the com-
pressed envelope of the filtered stimulus is derived for those CDD stimuli
that were used for the corresponding physiological experiments. With this
expression, the characteristics of neuronal firing rates could be simulated (see
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Figure 3.2: Comparison of mean compressed envelope values predicted by the model
(lines) and obtained from simulations (symbols). The model predictions in both subplots
are the same, only the simulated data points marked by the symbols differ. A: the stimulus
consisting of masker bands and signal band was filtered by attenuating the individual
bands, keeping the phase information intact. B: The stimulus was filtered with a filter
from the gammatone filterbank described in Hohmann (2002), leading to phase distortions
and therefore to deviations between model predictions and numerically obtained data.
(Parameters: α = 0.35, signal frequency f0 = 2 kHz, γ = 2.5; stimulus setup as described
in Chapter 2, overall level of each of the six masker bands: 50 dB SPL.)

Bee et al., 2007 and Chapter 2 for details on the experimental setup). Here,
the calculations are generalized to psychophysics and to describe CMR as
well.

3.3 Model structure

The model is organized in several steps. First, the incoming stimulus is
filtered by applying a bandpass filter that is centered on the signal frequency.
In order to allow for analytical calculations, each noise band is attenuated
as a whole according to the response of a filter centered on the signal using
the magnitude transfer function of the gammatone filterbank described in
Hohmann (2002).

This procedure means that a phase preserving filter is assumed. For the
model results presented here, the difference between this form of frequency-
dependent attenuation and filtering may be neglected: numerical results with
the original filters do not differ qualitatively from the analytical approxima-
tions (see Fig. 3.2). Quantitative differences may be compensated by choosing
adequate parameters.

After frequency filtering, the trial averaged envelope of the resulting stim-
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Figure 3.3: Mean compressed envelope values for CDD (A) and CMR (B) stimuli as well
as the corresponding index of discriminability (d′) curves (C and D). Markers indicate
simulated data, while lines are derived from Eqns. 3.7, 3.8 and 3.9. The overall level is set
to 50 dB SPL for each flanking band, and the overall level of the on-frequency masker is
40 dB SPL. Compression α = 0.3. Center frequency f0 = 2.0 kHz. Flanking bands (and
on-frequency masker in case of CMR) have a bandwidth of 100 Hz and are centered at
1.7 kHz 1.85 kHz, 2.0 kHz, 2.15 kHz, and 2.3 kHz. Each band is attenuated as a whole
according to the magnitude transfer function of a gammatone filter centered at 2.0 kHz
(bandwidth parameter γ = 1). The dotted horizontal line in panels C and D indicates
the decision criterion D = 1.8. The signal levels at which the d′-curves cross this criterion
are the signal detection thresholds. (σ = 0.3)

ulus is calculated. Then a compressive nonlinearity is applied to the envelope
by raising the envelope to the power of α with 0 < α < 1. To finally get an
expression for the mean of this compressed envelope across time and trials,
the statistics of the analytical signal (Gabor, 1946) is analyzed.

The stimuli in CDD as well as in flanking band CMR experiments consist
of a number of noise bands centered at certain frequencies and in the case
of CMR an additional single sinusoid. Numbering the flanking noise bands
from 1 to K and giving the on-frequency masker (or accordingly the signal
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band) the number 0, the analytical signal can be written as:

s(t) = d0be
2πif0t +

K
∑

k=0

akdk

N
∑

n=−N

ei[2π(fk+n∆ν)t+φk,n], (3.1)

where each noise band is regarded as a sum of 2N + 1 pure tones with
random phases. The factors dk produce the attenuation due to the filtering
process. The envelope of the filtered stimulus is |s(t)|, while the filtered
stimulus itself is Re(s(t)). Each individual noise band is centered at fk and
has a bandwidth of 2N∆ν. The noise bands are composed of individual
sinusoids with amplitudes ak, while the sinusoidal signal at f0 for CMR-
experiments has the amplitude b and is attenuated by the filter factor d0

(for CDD-experiments, b = 0). The phases φk,n distinguish the different
correlation conditions: In the AU condition, the φk,n are independent and
uniformly distributed in [0; 2π]. In the AC condition, all phases within one
band (constant k, varying n) are random, while the same set of phases is
used for all the different bands. And finally, in the CU condition, the phases
of the flanking bands (i.e. k ∈ {1, . . .K}) are random within one band but
the same for different bands, while the phases of the signal band (i.e. k = 0)
are independent of the phases of the FBs and randomly distributed.

The trial average of the squared envelope across phases (i.e. the ensemble
average) can be calculated and simplified by splitting the absolute square
|s(t)|2 into a sum of Re2(s(t)) and Im2(s(t)) and by using addition theorems.
Straightforward calculations lead to:

〈|s(t)|2〉φ = d2
0b

2 + (2N + 1)

K
∑

k,k′=0

akdkak′dk′ ·

〈δ(φk,0, φk′,0)〉φ cos(2π|fk − fk′|t). (3.2)

This expression can be split into the three correlation conditions. The sim-
plest case is the AU condidion, where one can write 〈δ(φk,0, φk′,0)〉φ = δ(k, k′):

〈|s(t)|2
AU
〉φ = d2

0b
2 + (2N + 1)

K
∑

k=0

a2
kd

2
k. (3.3)

In the AC condition, the δ-term is always one, such that

〈|s(t)|2
AC
〉φ = d2

0b
2 + (2N + 1)

K
∑

k,k′=0

akak′dkdk′ ·

cos(2π|fk − fk′|t). (3.4)
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Finally, in the CU condition, the δ-term does not vanish for all k, k′ 6= 0 and
if k = k′ = 0. Thus, one gets

〈|s(t)|2
CU
〉φ = d2

0b
2 + (2N + 1)d2

0a
2
0 +

(2N + 1)
K
∑

k,k′=1

akak′dkdk′ ·

cos(2π|fk − fk′|t). (3.5)

In Appendix 3.7, Eqns. 3.3–3.5 are rewritten in a notation using the over-
all levels of the noise bands. The differences between the three correlation
conditions can be seen in the interference terms cos(2π|fk − fk′|t).

Averaging the above equations over time will yield the same result in
all three correlation conditions. The important step for getting quantitative
differences in the temporal averages is to not consider the mean squared enve-
lope but the mean compressed envelope (see also van de Par and Kohlrausch,
1998b; Verhey et al., 2007), which will be done in the following.

In order to proceed, we first consider the case of b = 0 (i.e. CDD). Here,
the stimulus consists of noise bands only. This means that for large N , the
distribution of squared envelope values may be approximated by an expo-
nential distribution (Lawson and Uhlenbeck, 1950). The mean of this distri-
bution at time t is given by µ2(t) := 〈|s(t)|2〉φ. (We define the term µ2(t)
for b = 0.) Now let Y denote the random variable describing the value of
the stimulus envelope. Then for any α > 0 the time dependent expectation
value Et(Y

α) can be computed from the exponential distribution of Y α as

Et(Y
α) = Γ

(

α + 2

2

)

|µ(t)|α (3.6)

Here, Γ(.) denotes the complete gamma function (e.g. Weisstein, 2002). In a
last step, the time- and ensemble averaged value of the compressed envelope
is given by integrating Et(Y

α) over time. If the fk share a common integer
divisor f̃ , the integration only needs to be done over one period T = 1/f̃ .
Else, one needs to take the limit of T → ∞ for getting the expectation value:

E(Y α
CDD

) = Γ

(

α + 2

2

)

1

T

∫ T

0

|µ(t)|αdt. (3.7)

Eqns. 3.6 and 3.7 are derived for the CDD case (b = 0). In the case
of CMR the equations will still be a reasonable approximation for small b
(i.e. b � a0). But with increasing amplitude of the sinusoidal signal in the
CMR stimuli, the distribution of the squared envelope values will not be
exponential anymore. For b � a0 the sinusoid will dominate the envelope
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Table 3.2: Model parameters used in this chapter.

Parameter Range Description
α 0.1–0.6 compressive exponent (no units)
σ 0.1–0.35 internal error (in pα

0 , compressed
reference pressure)

γ 0.8–5.0 filter width (in ERB)

which means that the distribution of Y 2 can be approximated by a δ-peak
at d2

0b
2, such that E(Y α) ≈ dα

0 bα. As the calculations leading to Eq. 3.7
cannot be carried out without making an assumption about the distribution
of squared envelope values, we choose to approximate E(Y α) by getting the
right asymptotic behavior for small b and for large b within one expression.
The simplest way to approximate this asymptotic behavior is to use the
prefactor Γ((α + 2)/2) only for µ2(t), but not as a prefactor for the term
describing the signal sinusoid (i.e. the term including b):

E(Y α
CMR

) =
1

T

∫ T

0

(

d2
0b

2 + Γ
(

α+2
2

)
2
α |µ2(t)|

)
α
2

dt. (3.8)

This expression has the desired asymptotic behavior.

A comparison of the predictions made by Eqns. 3.7 and 3.8 with realiza-
tions of stimuli from simulations is shown in Fig. 3.3 A and B. Although for
simplicity constant amplitudes of the sinusoids making up the stimuli have
been assumed, the calculations hold with good accuracy also for stimuli with
Rayleigh-distributed amplitudes, which are frequently used in experimental
setups. They are also reasonably accurate for describing stimuli where the
noise bands are generated by multiplying lowpass noise with sinusoids cen-
tered at the noise band center frequencies. This means that for explaining
the general effects the model calculations can also be applied to CDD and
CMR stimuli from different authors that have been generated in slightly dif-
ferent ways. A remarkable feature of the model curves shown in Fig. 3.3 A
is that their general shape is very similar to the characteristics of neuronal
firing rates measured in the avian auditory forebrain during presentation of
CDD stimuli (Buschermöhle et al., 2006; Bee et al., 2007). Differences of the
curves for different correlation conditions result from interference between
the components for correlated phases (see the cosine terms in Eqns. 3.4 and
3.5).
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3.3.1 Mechanism of signal detection

A basic signal detection scheme can be envisaged by assuming that the time
averaged compressed envelope of a filtered sample stimulus is represented
somewhere in the auditory system, possibly by the firing rate of a population
of neurons. This estimate y is a random variable and will have an error
σ associated with it which is due to variability within the stimulus as well
as variability in its neural representation. In the following, this error σ is
assumed to be constant (in particular, independent of signal and masker
level), which allows for using the d′-measure from signal detection theory
(Green and Swets, 1966):

d′(LS) =
y(LS) − y(−∞)

σ
, (3.9)

where y(LS) denotes the estimate of the mean compressed envelope value
of the filtered stimulus when the signal level is at LS and y(−∞) denotes
the same estimate when the signal is absent. The larger the value of d′, the
further apart are the two distributions of y with and without signal. If d′

exceeds a predefined criterion D = 1.8, then the signal is said to have been
detected, while for d′ < D, the signal is not detected. The signal detection
threshold can be defined as the signal level at which d′ reaches D. Note that
the parameters σ and D together only comprise one free parameter: a change
in the decision criterion D can be equivalently expressed as a change in the
internal error σ, which essentially rescales the d′ axis.

With this signal detection scheme, one can identify the reason for CDD
and CMR in Fig. 3.3. For CDD, consider the AC and CU curves in Fig. 3.3 A.
Calculating d′ means shifting them to zero and rescaling them by 1

σ
(see Fig.

3.3 C). Because the AC curve is always beneath the CU curve, the former
will cross the detection criterion d′ = D at a higher signal level than the
latter, which directly corresponds to the CDD effect. For CMR (Fig. 3.3 B),
the AU and AC curves are both monotonically increasing and have the same
asymptotic behavior for LS → ∞, but values for vanishing signal are not the
same. Calculating d′ corresponds to shifting both curves vertically relative
to each other, and therefore, the AC curve will always cross the detection
criterion at lower signal levels than the AU curve (see Fig. 3.3 D), i.e. a CMR
is predicted.

3.3.2 Model parameters

Up to now, two free model parameters have been introduced: the compres-
sion α and the internal error σ. The third and final model parameter γ
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describes the width of the auditory gammatone filter in ERB. The ERB
(equivalent rectangular bandwidth) of a bandpass filter with arbitrary am-
plitude response is the bandwidth of a corresponding filter with rectangular
amplitude response that has the same peak response and passes the same
total amount of power. The relation between center frequency fc and ERB
bandwidth for the human auditory system is given by the following empirical
formula from Glasberg and Moore (1990) for γ = 1:

ERB(fc) = γ · (24.7 Hz + 0.1079fc). (3.10)

The prefactor γ is introduced here to be able to change the filter width.
For exploring the model’s ability to explain different CDD and CMR exper-
iments, these three parameters will be adjusted within reasonable ranges in
the following. The parameter meanings and their ranges are summarized in
Table 3.2. The influence of the different parameters is discussed in Sect. 3.5.
The compression in the human auditory system can vary roughly between
α = 0.1 and α = 0.8 (for a review, see Bacon et al., 2003). The internal error
σ is a quantity that is hard to measure, and therefore, its reasonable range
for the human auditory system is not known. We regard σ as an adjustable
parameter which should be positive and smaller than the dynamic range of
mean compressed envelopes that arises at sound pressure levels between 0
dB and 100 dB. The filter bandwidth parameter γ should be close to one
for normal hearing humans. Values up to about 1.5 may be realistic for
within-channel processing of stimuli (see Glasberg and Moore, 1990). If γ
is larger than that, then the processing must be regarded as across-channel
processing.

3.4 Results

The very simple model introduced here has only three free parameters and
has been derived from a model for neuronal firing rates obtained in CDD ex-
periments. The basic modeling steps frequency filtering, envelope extraction,
and compression are directly motivated by peripheral auditory processing.
Only temporal averaging and decision making are presumably central pro-
cesses. Despite its simplicity, the model will now be applied to different CDD
and CMR experiments described in the literature. Model and experimental
results are compared in order to determine the scope of the proposed model.
All relevant parameters for the experiments modeled in the present study are
summarized in Table 3.3.
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Table 3.3: An overview of the experimental setups and respective modeling parameters discussed in this chapter. The experimentally
varied quantities are printed in bold face.

Reference Paradigm Signal FB frequencies Bandwidth Noise band level α σ γ Remarks
frequency

Borrill and Moore (2002) CDD 1.5 kHz ∆f = ±0.1 20 Hz 78 dB SPL 0.3 0.1 1 -
... ±1.4 kHz

Cohen and Schubert (1987) CDD 0.2 ... 1.0 kHz 100 Hz 73 dB SPL 0.6 0.1 1 -
6.0 kHz

McFadden (1987) CDD 2.5 kHz 1.5 ... 3.5 kHz 100 Hz 70 dB SPL 0.6 0.1 1 -
Schooneveldt and Moore (1987) CMR 2.0 kHz 1.0 ... 3.0 kHz 25 Hz 67 dB SPL 0.2 0.1 5 -
McFadden (1987) CMR 2.5 kHz 1.5 ... 3.5 kHz 100 Hz 70 dB SPL 0.2 0.1 5 -
Hall et al. (1984) CMR 1.0 kHz 0.7 ... 1.3 kHz 100 Hz 60 dB SPL 0.2 0.1 5 -
McFadden (1987) CDD 2.5 kHz 2 or 4 bands at 100 Hz 70 dB SPL 0.2 0.1 1 -

1.5 ... 3.5 kHz

McFadden (1987) CMR 2.5 kHz 2 or 4 bands at 100 Hz 70 dB SPL 0.2 0.1 1.4 -
1.5 ... 3.5 kHz

Borrill and Moore (2002) CDD 1.5 kHz 0.9 kHz, 2.1 kHz 20 Hz 53 ... 83 dB SPL 0.3 0.2 0.8 -
Ernst and Verhey (2005) CMR 8.0 kHz 1.0 kHz 100 Hz OFM level: 0.3 0.1 1 off-frequency

20 ... 60 dB SPL listening
Hall et al. (1984) CMR 1.0 kHz 1.0 kHz 100 ... 700 Hz 40 dB SPL 0.25 0.35 1.2 -

spectrum level
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3.4.1 Frequency spacing between signal and flanking bands for CDD

Several experimental studies discuss the effect of frequency distance between
flanking bands and the signal band for CDD (e.g. Borrill and Moore, 2002;
Cohen and Schubert, 1987; McFadden, 1987). In the present study, the model
is applied to stimulus setups comparable to the ones described in these three
studies. The leftmost column in Fig. 3.4 compares model predictions with
experimental data from Borrill and Moore (2002), where the signal band was
flanked symmetrically by two noise bands, at a distance ∆f above and below
the signal frequency, respectively. In the central column of Fig. 3.4, model
and experiment are compared for data published in Cohen and Schubert
(1987). There, the stimulus consisted of a flanking band at a constant center
frequency and signal band at varying distances ∆f from the flanking band.
In the third column of Fig. 3.4, signal detection thresholds for an experiment
described in McFadden (1987) are plotted. Here, the stimulus consisted of
one signal band at a constant center frequency and a flanking band with
varying center frequency.

The general shape of the model thresholds for the AC and CU condi-
tions depending on ∆f in all three experiments qualitatively reproduces the
shape of the experimental thresholds. The difference between AC and CU
thresholds (the CDD) decreases for increasing frequency spacing but does not
reach zero for the largest ∆f . The thresholds are determined by the form of
the auditory filter since the filter used for signal detection is always the one
centered on the signal band. The signal band will be detected as soon as its
influence on the total filter output dominates the mean compressed envelope,
which happens at signal levels close to the level of the attenuated flanking
band. The clearest deviations between model and experiment can be found
for ∆f close to 0 Hz. There, the model predicts quite large CDDs while in
experiments the CDDs are relatively small2. The plot for the experiments by
Cohen and Schubert (1987) is not symmetrical to ∆f = 0 Hz. This reflects
the fact that for each signal frequency a different filter is picked, and that fil-
ters with increasing signal frequencies have larger bandwidths (cf. Eq. 3.10).
In contrast, the plot for data from McFadden (1987) is largely symmetrical
with respect to ∆f = 0 Hz because the signal frequency and therefore the
auditory filter does not change. Here, the thresholds reflect the shape of the
symmetrical filter.

All three experiments could be modeled reasonably well with very similar

2Note that for ∆f = 0 Hz, the AC condition needs to be treated separately (see
Appendix 3.7), because here signal band and masker band are exactly the same except for
level differences. We do not explicitly treat this case here because it is not important for
the general model results.
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Figure 3.4: Effect of frequency spacing between signal and flanking band on CDD. Dark
thin lines mark model results. Light broad lines with symbols indicate experimental data.
The three columns show data from three different CDD experiments. References and
model parameters used are indicated in the figure titles. The top row shows signal detec-
tion thresholds, the bottom row shows the corresponding threshold differences (CDDs).
Experimental parameters are summarized in Table 3.3.

parameters. It is noteworthy that the filter bandwidth is at a value that is
typical for the human ear, indicating that the whole CDD effect may be due
to peripheral within-channel processes.

3.4.2 Frequency spacing between the signal and one flanking band for CMR

The effect of frequency distance between one flanking band and the on-
frequency masker for CMR is discussed amongst others in Schooneveldt and
Moore (1987), McFadden (1987), and Hall et al. (1984). The model is com-
pared to the results reported in these studies in Fig. 3.5. In that figure,
the left column shows data from Schooneveldt and Moore (1987), where the
signal frequency was kept constant and one flanking band was varied in its
center frequency. The frequency distance between the flanking band’s center
frequency and the signal frequency is denoted as ∆f . The second column in
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Fig. 3.5 shows data from McFadden (1987), where the on-frequency masker
and the signal had a constant center frequency while the flanking band was
centered at varying distances ∆f from the signal. In the rightmost column of
Fig. 3.5, experimental results from Hall et al. (1984) are compared to model
predictions. The stimuli here consisted of an on-frequency masker and a sig-
nal at a constant frequency and one flanking band at a frequency distance
∆f . The case ∆f = 0 Hz was treated as a special case in that experiment:
For that case there was only the on-frequency masker present (without the
flanking band) which means that there was no difference between the AC
and AU correlation conditions and therefore both signal detection thresholds
are the same in the model as well as in the experiments.

A general finding for all three experiments is that thresholds in the AU
case increase for decreasing ∆f , while thresholds in the AC case behave in
the opposite way. For large frequency separations, the threshold differences
(i.e. the CMR) decrease, which can also be seen in the experimental data.
The general shape of the depicted model curves can be understood by con-
sidering that for large frequency separations, the flanking band is completely
filtered out by the auditory filter and therefore only the on-frequency masker
determines the signal threshold. The closer the flanking band is to the on-
frequency masker, the more it influences the on-frequency masker. In the AU
case, it increases the power that falls into the auditory filter and therefore
rises thresholds, while in the AC case, the flanking band causes beating with
the on-frequency masker and therefore leads to reduced mean compressed
envelopes and facilitates signal detection.

The parameters used for modeling the three experiments are exactly the
same, which means that in spite of slightly varying experimental conditions,
the model can explain these CMR experiments without the need for fine-
tuning. An important note needs to be made concerning the parameter γ
determining the bandwidth of the auditory filter. The value γ = 5 is well
above the realistic range for typical auditory filters. This means that CMR
is presumably not a within-channel process as it was the case for CDD in
Sect. 3.4.1. However, the model described here does not rely on classical
across-channel processes as they were explained in Sect. 3.2. This point will
be discussed further in Sect. 3.5.1.

3.4.3 Number of flanking bands for CDD and CMR

It has been pointed out that the amount of CDD as well as CMR depends on
the number of flanking bands (McFadden, 1987, Wright, 1990 for CDD, and
Hall et al., 1984, McFadden, 1987 for CMR). This effect is investigated for
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Figure 3.5: Effect of frequency spacing on CMR. Dark thin lines mark model results.
Light broad lines with symbols indicate experimental data. The three columns show
data from three different CMR experiments. References and model parameters used are
indicated in the figure titles. The top row shows signal detection thresholds, the bottom
row shows the corresponding threshold differences (CMRs). In all experiments, the signal
was a pure sine tone at a constant signal frequency, and there were two noise bands
present: the on-frequency masker centered on the signal frequency and the flanking band
with varying frequency distance from the signal ∆f . The signal frequency, noise bandwidth
and noise band levels were different for the different experiments (see Table 3.3). Model
predictions for the experiment by Hall et al. (1984) were obtained only for certain frequency
distances indicated by the symbols.

the model by setting up the stimuli similar to those used in McFadden (1987),
where the consequences of adding further flanking bands are investigated for
both CDD and CMR. The model results are compared to experimental data
in Fig. 3.6. In the experiments, only the AC and CU conditions were consid-
ered, which is why the model results are restricted to these two correlation
conditions.

For CDD (Fig. 3.6 A and C), it is observed in the model and in the
experiments that both thresholds are higher if the flanking bands are closer to
the signal band. This is the case because by shifting the flanking bands closer
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Figure 3.6: Effect of number of bands on CDD (A, C) and CMR (B, D). Dark triangles
mark signal detection thresholds as determined from the model. Light triangles indicate
experimental data from McFadden (1987). C: CDD, gray bars: experimental data, black
bars: model. D: CMR. Model parameters are specified in the titles. Experimental param-
eters are summarized in Table 3.3.

to the signal band, they are less attenuated due to filtering and therefore
contribute to increased thresholds. The amount of CDD in the model grows
the closer the flanking bands come to the signal band. This is not reflected
in the experimental data. Also the experimental finding that by adding two
further noise bands, the amount of CDD increases is not reflected in the
model. These discrepancies between model and experiment are consistent
with those found in Sect. 3.4.1, where the CDDs for very small ∆f increased
in the model while they decreased in the experiments. Still, the general
characteristics of the experimental thresholds (Fig. 3.6 A) are reasonably
close to the model predictions.

Comparison of model predictions and experimental results for CMR is
shown in Fig. 3.6 B and D. Here, the model predicts considerable CMR only
for the cases where the flanking bands are closest to the on-frequency masker.
This generally agrees with the experimental data. The model thresholds
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Figure 3.7: Effect of masker bandwidth on CMR. Dark lines mark model results. Light
lines indicate experimental data from Hall et al. (1984). The on-frequency masker is
composed of up to seven noise bands with a bandwidth of 100 Hz each, and the bandwidth
is increased by symmetrically adding further noise bands to the OFM. A: Signal thresholds,
B: Threshold differences.

also are in the same range as the experimental thresholds, but the measured
threshold differences (CMRs) are quantitatively different from the model pre-
dictions, although the general tendency of increasing CMR by adding further
noise bands is reflected by the model.

A further experiment, described in Hall et al. (1984), investigates the in-
fluence of noise bandwidth on CMR by symmetrically adding 100 Hz wide
noise bands to the right and left of the on-frequency masker. The addi-
tional noise bands can either have the same envelope fluctuations as the first
on-frequency masker (AC) or independent envelope fluctuations (AU). This
experiment can therefore also be seen as an experiment concerning the num-
ber of noise bands. Comparison of the data from Hall et al. (1984) with
model predictions is shown in Fig. 3.7 A and B.

There, the on-frequency masker bandwidth is increased from 100 Hz over
300 Hz and 500 Hz to 700 Hz by repeatedly adding two noise bands of a
bandwidth of 100 Hz above and below the original on-frequency masker. The
model thresholds show a behavior which resembles that of the experimental
CMR thresholds closely. The CMR does not change strongly for on-frequency
masker bandwidths larger than 500 Hz because further masker power is only
added at frequencies outside the filter which does not influence the envelope
statistics significantly.

The parameters used for modeling the CDD and CMR experiments in this
section are similar. The most important difference is the filter bandwidth
γ. Again, for CMR, larger filters were needed than for CDD. However, all
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parameter values can still be viewed as modeling within-channel processes.

3.4.4 Influence of noise band level

A further experimental parameter which may affect signal detection thresh-
olds is the level of the noise bands. For CDD, the dependence of signal
thresholds on flanking band level was explored in Borrill and Moore (2002).
In that study, the signal band was centered between two flanking bands. Ex-
perimental and model data for this setup are compared in Fig. 3.8 A and
C. One finds that signal thresholds generally increase with rising flanking
band level. In the experiments, AC thresholds are generally higher than CU
thresholds. The model explains this order of thresholds as well as the amount
of CDD correctly.

There are several studies involving the dependence of CMR on noise band
level. The dependence of CMR on the level of one flanking band, keeping
the on-frequency masker level constant, is investigated in Schooneveldt and
Moore (1987). In Moore and Shailer (1991), the dependence of CMR on the
level of several flanking bands is examined keeping the on-frequency masker
level constant or varying it with the flanking bands. In Cohen (1991) and
Ernst and Verhey (2005) the influence of on-frequency masker level on the
detection of the signal sinusoid is analyzed while the overall level of one
flanking band is kept constant. As the last two studies report a CMR over
a range of several octaves, we choose to compare the model with the data of
the latter study, Ernst and Verhey (2005).

As can be seen from Fig. 3.5, the basic model setup yields significant
CMRs only for frequency distances of up to 1000 Hz between on-frequency
masker and flanking band, which is considerably less than the 7 kHz separa-
tion between the two bands here. Therefore, the model needs to be changed
from using the filter centered on the signal frequency (on-frequency listening)
to using the filter which attenuates flanking band and on-frequency masker
such that their levels after filtering are the same. This corresponds to an off-
frequency listening strategy (Patterson and Nimmo-Smith, 1980; O’Loughlin
and Moore, 1981) and means that a different filter is picked from the filter-
bank than the one centered on the signal. If the filter used in the model is
chosen in such a way, then beating between on-frequency masker and flank-
ing band after filtering has a big effect on the envelope statistics in the AC
condition and thus facilitates signal detection in the AC condition. Now, the
central frequency of the filter used for signal detection depends on the levels
of on-frequency masker and flanking band. The modeling results for on- and
off-frequency listening are plotted in Fig. 3.8 B and D. One finds a good cor-



3.4 Results 57

CDD

spectrum level of FBs (dB SPL)

si
gn

al
 th

re
sh

ol
d 

(d
B

 S
P

L)

α=0.3, σ=0.2, γ=0.8

40 50 60 70
10

20

30

40

50
AC
CU

CMR

overall OFM level (dB SPL)

si
gn

al
 r

el
. O

F
M

 le
ve

l (
dB

)

α=0.3, σ=0.1, γ=1

20 40 60

−10

−5

0

5

AC
AU

A B

40 50 60 70
−15

−10

−5

0

spectrum level of FBs (dB SPL)

C
D

D
 (

dB
)

overall OFM level (dB SPL)

C
M

R
 (

dB
)

20 40 60
−2

2

6

C D

Figure 3.8: Effect of level of noise bands on CDD (A, C) and CMR (B, D). A: CDD;
dark thick lines mark signal detection thresholds as determined from the model, light
thick lines indicate mean experimental data from Borrill and Moore (2002). The signal
band is centered between two flanking bands. B: CMR; light thick lines indicate data
from Ernst and Verhey (2005). Dark thick lines represent model results for off-frequency
listening. Thin lines show model results for on-frequency listening (filter centered on the
signal frequency). The flanking band is located 7 kHz below the on-frequency masker at
8 kHz. C, D: Threshold differences.

respondence between the off-frequency listening model and the experimental
data: The amount of CMR is nearly independent of on-frequency masker
level.

Although the thresholds determined by the on-frequency listening model
are lower than those predicted by the off-frequency listening model and there-
fore represent the better signal detection strategy, the performance of the
auditory system in this experiment is better described by the off-frequency
listening model. This is not the case for the previously modeled experiments.
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3.5 Discussion

In this chapter it is proposed that main features of CDD and CMR exper-
iments can be understood by registering changes in the mean compressed
envelope of a stimulus filtered by a single auditory channel. The model con-
sists of the five stages frequency filtering, envelope extraction, compression,
averaging, and signal detection, which may be realized at very early stages
of the auditory pathway. There are three free parameters for the model: the
filter bandwidth γ, the compressive exponent α, and the internal error σ.
When applying the model to experiments from the literature, these model
parameters are adjusted within reasonable ranges to demonstrate the scope
of the model.

3.5.1 Filter bandwidth γ

The bandwidth of the auditory filters is usually kept close to the values
given in Glasberg and Moore (1990) (corresponding to γ ≈ 1 in Eq. 3.10).
This choice is valid for most normal hearing subjects. The good correspon-
dence between data and model predictions indicates that CDD and CMR
effects in most of the experiments are due to within-channel effects. Only for
the CMR experiments investigating the effect of frequency spacing between
on-frequency and flanking bands, a standard auditory filter bandwidth can-
not account for the experimental thresholds. By increasing γ, the present
within-channel model can also explain across-channel contributions to CMR.
This finding is comparable to suggestions by Berg (1996), who proposed that
some CMR experiments can be explained by an analysis of the output of
only one broadly tuned filter. The general discussion of comodulation exper-
iments in the literature indicates that CDD experiments can be accounted for
by within-channel processes (see Borrill and Moore, 2002), while CMR also
needs across-channel processing (e.g. Verhey et al., 2003). This is in agree-
ment with the findings in the present study. Compared to other models,
the presented model has the advantage that it does not involve suppression
(Ernst and Verhey, 2006), inhibition (Pressnitzer et al., 2001), or analysis
of temporal features (Verhey et al., 1999; Nelken et al., 1999) but only se-
quential excitatory feed-forward processing to account for within- as well as
across channel processes.
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3.5.2 Compression α

The values of the parameter α describing compression in the auditory sys-
tem are within the realistic range for humans (e.g. Bacon et al., 2003; Plack,
2004; Rosengard et al., 2005). For model simplicity, the compression is as-
sumed to be independent of the stimulus level. This suffices as an explanation
for the general trends in the data presented in this study. A more realistic
level dependent compression would have been possible but at the cost of a
more complex model which could not have been treated analytically. Due to
the fact that the different experiments described in the present study were
performed with different subjects and at varying overall stimulus levels, ad-
justing the compressive exponent to the different experiments is a reasonable
assumption.

3.5.3 Signal detection criterion D and internal error σ

The criterion for signal detection D = 1.8 has been chosen because of the fact
that two Gaussian distributions with their means separated by 1.8 standard
deviations can be distinguished quite well and because this criterion has been
used in other studies as well (e.g. Klump and Nieder, 2001; Langemann and
Klump, 2001; Bee et al., 2007). As discussed in Section 3.3.1, this parame-
ter can be scaled by choosing a different value for σ and may therefore be
regarded as a constant rather than a free parameter of the model.

The parameter σ for the supposedly constant internal error that the audi-
tory system faces when detecting changes in the mean compressed envelope
has been chosen by fitting the model thresholds to the data. The variability
of the estimate of the compressed envelope by the auditory system is affected
by at least two contributions: on the one hand, the signal statistics yield a
time-varying envelope value, and on the other hand, the partly random firing
of auditory nerve fibers makes the number of spikes in a certain time interval
a random number. In Buschermöhle et al. (2006) it is assumed that the stan-
dard deviation of firing rates of small populations of neurons in the starling’s
auditory forebrain only marginally depends on the level of the signal in CDD
experiments (see also Section 2.7). This may be taken as a hint that the
biggest contribution to σ is the firing rate variability due to random spiking
and not due to the stimulus variability, as the variability of the stimulus
envelope in CDD experiments changes with signal level. For simplicity, the
parameter σ is regarded as a constant although the firing rate variability of
auditory nerve neurons may depend on the overall level of a stimulus. Surely
there is also an intersubject variability concerning the exact value of σ. The
different psychophysical procedures and stimulus or signal durations used in
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the experiments can affect this parameter as well (Section 2.7 demonstrates
the influence of signal duration on the firing rate standard deviation). This
may be an explanation for the fact that σ needs to be adjusted slightly in
order to model the discussed experiments.

3.5.4 Parameter dependence of the model results

Even if the model has only three free parameters, its results may depend
critically on their specific choice. To get an idea of the influence of a certain
parameter set on the model, we discuss the results for an example stimulus
setup for the range of parameters used in this chapter (see Fig. 3.9 and
Table 3.2). The example stimulus setup is the first frequency spacing CMR
experiment discussed in Sect. 3.4.2. The dependence of thresholds on the
compression α for given σ and γ (Fig. 3.9 B) is easily understood: The
larger α, the quicker do the mean compressed envelopes increase with signal
level and the lower is the signal level at which the signal is detected. Also
the general dependence of thresholds on σ (Fig. 3.9 C) is easy to explain:
larger values of σ cause the d′-curves to reach the detection criterion D at
higher signal levels, which means that the signal is harder to detect and the
thresholds increase to higher levels. The influence of the filter bandwidth γ
on the model thresholds (Fig. 3.9 D) is to increase the frequency region in
which the noise band centered on the signal frequency and the flanking bands
can interact to influence the mean compressed envelopes. In the example
shown here, a broader filter (larger γ) leads to a broader region of increased
thresholds around ∆f = 0 Hz.

One can generally say that by increasing α or by decreasing σ the absolute
value of the thresholds can be adjusted while by reducing γ, the size of the
affected frequency region can be reduced.

3.5.5 Influence of temporal processing

For determining the mean value of compressed envelopes in the model, the
average with respect to infinite time and the whole ensemble of possible stim-
ulus realizations is computed. This means that the duration of intervals in
the experiments is not explicitly taken into account. There are two possible
ways of extending the model by considering the stimulus duration: on the
one hand, the parameter σ may be changed accordingly (larger σ for shorter
signal intervals). On the other hand, one can perform Monte Carlo simula-
tions of the experiments and use the realizations of stimuli to compute mean
compressed envelope values. These kinds of simulations may also be used for
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Figure 3.9: Influence of parameter choice on model results for the exemplary case of data
from Schooneveldt and Moore (1987). A: Replot of the AU signal detection thresholds
shown in the top left subplot of Fig.3.5. B, C, D: Dependence of the AU threshold on
α, σ, and γ, respectively. Each surface plot shows the thresholds in the AU condition
predicted by the model while the light colored connected symbols show the experimental
data.

determining signal detection thresholds in cases where the stimulus statistics
is not calculated as easily as in the cases discussed here.

A further aspect that indicates a possible oversimplification in the pro-
posed model is that for human listeners it is possible to perceive the temporal
fine structure of the stimuli. This is not included in the model, as the model
averages over time. Different perceptual impressions of maskers alone and
maskers plus signal in the model are only possible for one stimulus attribute,
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which might correspond to the overall loudness. But surely, subjects do not
only perceive loudness differences in stimuli with and without signal. There-
fore, the model might be improved by taking into account temporal aspects
of the stimuli (such as it is e.g. assumed in Verhey et al., 1999).

3.6 Conclusions

In this chapter, a very simple within-channel model essentially based on pe-
ripheral processing is introduced that is able to reproduce many general as-
pects of psychophysical CDD and CMR experiments while being derived from
physiological investigations. Despite the fact that the model is very parsimo-
nious (only three free parameters) and involves nearly no higher level pro-
cessing, many aspects of experimental results can be reproduced reasonably
well. The model gives insights into the causes of psychophysical thresholds
and their dependence on different experimental parameters. One notable
feature of the model is the possibility of performing analytical calculations
which gives a basic understanding of the importance of the parameters and
how they may change the model’s behavior. The proposed model constitutes
a unifying approach to CDD and CMR and may be instrumental in develop-
ing more sophisticated numerical models for experiments with comodulated
stimuli.

3.7 Appendix: Envelope statistics with levels

Denoting the overall level of noise band k by Lk and the overall level of the
signal sinusoid for CMR by Lb, Eqns. 3.3–3.5 can be written in terms of levels
instead of sinus amplitudes. The RMS-value of a sum of 2N + 1 sinusoids of
amplitude a with independent random phases is a

√

(2N + 1)/2. Setting the
reference sound pressure to an RMS value of p0 (for dB SPL, p0 = 20µPa),

the level of the mentioned sum of sinusoids is L = 20 log10(
a
√

(2N+1)/2

p0
). This

expression can be solved for a to give

a = p010
L
20

√

2

2N + 1
. (3.11)
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Inserting Eq. 3.11 into Eqns. 3.3–3.5 and remembering that Lb = 20 log10(
b√
2p0

)

when normalizing to an RMS value of p0, one gets:

µ2
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= 2p2
0d

2
010

Lb
10 + 2p2

0

K
∑
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k (3.12)
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Eqns. 3.12–3.14 are independent of the bandwidth of the noise bands and
the frequency spacing ∆ν of the component sinusoids. They rely on the
assumptions that all phases of the summed sinusoids within one band are
independent and random and that the number of added sinusoids is large
(i.e. N � 1).

The equations do not hold if two identical bands are superimposed at
the same frequency (this happens for band spacing experiments in the AC
condition for ∆f = 0 Hz). In that case, the two superimposed bands with
their sine amplitudes a1 and a2 can be viewed as one band with the sine
amplitude a1 +a2 resulting in an RMS-value of (a1 +a2)

√

(2N + 1)/2, which
changes Eqns. 3.12–3.14 accordingly.





Chapter 4

Enhanced Signal Detectability in

Comodulated Noise Introduced by

Compression1

4.1 Abstract

Many examples of natural noise show common amplitude modulations at dif-
ferent frequency regions. This kind of noise has been termed comodulated
noise and is used predominantly in hearing research, where an enhanced
detectability of pure tones and narrow noise bands in comodulated noise
compared to unmodulated noise is well known as the CMR or CDD effects,
respectively. Here it is shown that only one signal processing step, a compres-
sive nonlinearity motivated by the peripheral auditory system, is sufficient
to explain a considerable contribution to these effects. Using an analytical
approach, the influence of compression on the detectability of periodic and
narrow band signals in the presence of unmodulated and comodulated noise
is investigated. This theoretical treatment allows for identifying the mech-
anism leading to improved signal detection. The compressive nonlinearity
constitutes an adaptive gain which selectively boosts a stimulus during time
spans of inherently increased signal-to-noise ratio and attenuates it during
time spans dominated by noise. On average, these time spans are more pro-
nounced in stimuli with comodulated noise than with unmodulated noise,
thus giving rise to the observed CMR and CDD effects.

4.2 Introduction

Signal detection in noisy environments is performed by all living organisms
as well as by many technical devices. In many cases, the background noise
in these situations may be assumed to be Gaussian white noise. On other
occasions, the noise can be described as colored noise. However, a typical

1A modified version of this chapter has been submitted (Buschermöhle, Feudel, and
Freund, 2007a). The modifications are subtle and comprise only changes of individual
words.
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property of many naturally generated kinds of noise is that they have common
amplitude modulations at various frequency regions (Nelken et al., 1999).
Such a kind of noise has been termed comodulated noise (see e.g. Hall et al.,
1984).

For sine tones as signals, it is well known from hearing research that sig-
nal detection is facilitated in comodulated noise compared to unmodulated
noise for humans and other animals (e.g. Hall et al., 1984; Langemann and
Klump, 2001). The effect that signal detection thresholds for sine tones are
lower in comodulated noise than in uncorrelated noise has been termed co-
modulation masking release (CMR). In the real world, most signals that need
to be detected are no pure tones but have a certain spectral width, as for
example animal calls. Also for narrowband noise signals an improved signal
detectability in the presence of comodulated noise compared to unmodu-
lated noise is known from hearing research if the signal’s inherent amplitude
modulations are different from those of the comodulated noise. The result-
ing threshold difference has been called the comodulation detection difference
(CDD). CDDs have been found for humans (e.g. McFadden, 1987; Borrill and
Moore, 2002) as well as for animals (Jensen, 2007; Langemann and Klump,
2007).

Different models which treat either CDD or CMR have been published.
Most of them are rather complex and aim at mimicking the signal process-
ing steps of the auditory system accurately (Verhey et al., 1999; Borrill and
Moore, 2002; Meddis et al., 2002). Also simpler models have been proposed
that still follow the processing steps of the auditory pathway (e.g. Buscher-
möhle et al., 2006). Many of these models involve compression, which is a
signal processing step that is present in the healthy peripheral auditory sys-
tem (see e.g. Carlyon and Jaysurya Datta, 1997; Oxenham and Bacon, 2003,
and references therein). Here, we demonstrate that a compressive nonlin-
earity is a sufficient minimal condition for the CMR and CDD effects and
develop an analytically tractable model exhibiting both effects within the
same theoretical framework. Using this model, we quantify the possible con-
tribution of peripheral compression to the observed threshold differences in
comodulation experiments.

For carrying out our investigations, we will first introduce a suitable def-
inition of comodulated noise and compare its properties to the properties
of Gaussian white noise. Subsequently, we will derive approximations for a
modified version of the signal-to-noise ratio (SNR) for stimuli consisting of
signals in comodulated and unmodulated noise after a simple nonlinear trans-
formation (compression). These analytical expressions will help to identify
the mechanisms leading to the threshold differences. Finally, we will discuss
the implications of our findings for experiments and their interpretation in
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hearing research. Our conclusions may be generalized to other systems that
have to perform similar tasks on acoustic, electromagnetic, seismic or other
signals.

4.3 Properties of comodulated noise

In spite of the simple sounding definition of comodulated noise as being
noise with common amplitude modulations at different frequency regions,
there have been many different ways of generating comodulated noise in the
literature. In some studies, comodulated noise was generated by adding up
several narrow bands of noise at different center frequencies that shared the
same temporal envelope (for example Schooneveldt and Moore, 1987; Ernst
and Verhey, 2006). In the present chapter, we follow the approach of other
studies (e.g. Hall et al., 1984; Verhey et al., 1999), which define comodulated
noise by multiplying two independent time signals, a broadband noise η(t)
and a comodulator ρ(t):

χ(t) = ρ(t) · η(t) (4.1)

Different authors selected various choices for ρ(t) and η(t). For example,
Verhey et al. (1999) used a broadband Gaussian noise (cutoff frequency 10
kHz) as η(t) and a narrowband lowpass noise (varying bandwidths on the
order of 100 Hz) as the comodulator ρ(t). On the other hand, Bacon and Lee
(1997) used a sine tone as the comodulator ρ(t) for a noise band η(t) that was
centered at a certain frequency. Here, we use Gaussian white noise (cutoff
at the Nyquist frequency, Fη = fs/2, where fs is the sampling rate) with a
standard deviation of ση as η(t) and Gaussian lowpass noise (cutoff frequency
Fρ) as ρ(t). Since we choose 〈ρ〉 = 〈η〉 = 0, the standard deviation of χ(t)
is σχ = σρση. In the following, we will use unit standard deviation for η(t)
and ρ(t), and therefore σχ = ση = σρ = 1. Sample traces of unmodulated
and comodulated noise are compared in Fig. 4.1. As long as Fρ � Fη, the
comodulation may also be viewed as randomly time varying noise intensity.

The power spectra of comodulated and unmodulated noise as defined
above are indistinguishable (cf. Fig. 4.1 C, D). This can be seen by con-
sidering that the power spectrum of white noise is flat up to the Nyquist
frequency in simulations (or extending to infinity in the idealized case) and
that the power spectrum of the comodulator is a box extending up to Fρ.
The Fourier transform of a product of time signals is the convolution of the
Fourier transforms of the individual signals. Therefore, the power spectrum
of the comodulated noise χ(t) is flat up to the frequency Fη−Fρ and then falls
off linearly to zero at Fη + Fρ (this holds if Fρ � Fη and Fη + Fρ ≤ fs/2).
If Fη = fs/2, then due to the aliasing effect (e.g. Priestley, 1983) the nu-
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Figure 4.1: Top row: sample traces of unmodulated (A) and comodulated (B) noise with
corresponding amplitude distributions (solid lines in the distribution plots mark theoretical
distributions: Normal distribution in A and normal product distribution in B, see Eq. 4.2).
Bottom row: Power spectral densities estimated from time series for unmodulated (C) and
comodulated (D) noise. Parameters: fs = 44.1 kHz, Fη = fs/2 Fρ = 50 Hz.

merically obtained spectrum of the comodulated noise χ(t) cannot be distin-
guished from a flat spectrum of white noise η(t). This also holds true for the
idealized case of white noise that has an infinite frequency content. Follow-
ing from the Wiener-Khinchin theorem (stating that the Fourier transform of
the power spectrum of a stationary stochastic process is the autocorrelation
function), the autocorrelation function of χ(t) is δ-peaked at zero time lag
and shows no first order correlations in the comodulated noise. The clear
temporal structure of comodulated noise therefore must stem from higher
order correlations.

As the two noises used for generating χ(t) are Gaussian, the amplitude
distribution of χ is a normal product distribution (see Weisstein, 2002):

pχ(χ) =
K0(

|χ|
σρση

)

πσρση

, (4.2)

where K0(z) is a 0th order modified Bessel function of the second kind. The
amplitude distribution of the unmodulated Gaussian white noise η obviously
is a normal distribution.
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The signal used in the present chapter will be denoted as s(t). In the
CMR case, it is a sinusoid at the signal frequency f0 with random initial
phase φ0:

s(t) = cos(2πf0t + φ0). (4.3)

In the CDD case, the signal is a bandpass limited noise with corner frequen-
cies f0 − fBW

2
and f0 + fBW

2
which we choose to have unit standard deviation.

The complete stimulus (noise masker and sinusoidal or bandpass limited sig-
nal) in the comodulated noise condition may be written in the form

γco(t) = as(t) + σχ(t), (4.4)

The stimulus in the unmodulated condition is

γun(t) = as(t) + ση(t). (4.5)

In both cases, the masking noise (impairing signal detection) has an intensity
σ2, while the intensity of the signal is proportional to a2. The total intensity
of the stimulus is determined by the combination of a and σ.

4.4 Envelope compression

One of the most important features of signal processing in the inner ear apart
from frequency filtering is the incorporation of a compressive nonlinearity (see
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Bacon et al., 2003; Oxenham and Bacon, 2003; Buchholz and Mourjopoulos,
2004). This means that the intensity of the processed stimulus does not in-
crease linearly with the intensity of the input stimulus but rather increases
with a reduced slope of less than one dB per dB. There have been many
approaches for modeling compression (see e.g. Harte et al., 2005). A possible
way for implementing a compressive nonlinearity without introducing consid-
erable frequency distortions has been described in Bernstein et al. (1999) and
van der Heijden (2005) as envelope compression or automatic gain control.
We use this approach here because it turns out to be analytically tractable.
As discussed in Sect. 4.5.4 and 4.5.5, the general results of the present chapter
do also occur for other implementations of compression. Envelope compres-
sion is implemented by splitting the stimulus into its instantaneous amplitude
(the Hilbert envelope) and its instantaneous phase:

γ(t) = R(t) · cos(Φ(t)), (4.6)

where R(t) and Φ(t) are defined via the analytic signal A(t) (Gabor, 1946)
and the Hilbert transform H (e.g. Hartmann, 1998). The analytic signal of
a stimulus γ(t) is defined as

A(t) = |A(t)|eiΦ(t) = R(t)eiΦ(t) = γ(t) + iH[γ(t)], (4.7)

and the Hilbert transform H[γ(t)] of γ(t) is given by the integral

H[γ(t)] =
1

π
P.V.

∫ ∞

−∞

γ(t′)

t − t′
dt′, (4.8)

where the integral is taken in the sense of the Cauchy principal value (P.V.).
Now, the stimulus can be compressed using the compressive exponent 0 <
α < 1 by the simple relation

γ̂(t) = Rα(t) cos(Φ(t)) = Rα−1(t)R(t) cos(Φ(t))

= Rα−1(t)γ(t), (4.9)

which introduces only modest frequency distortions due to the fact that the
stimulus fine structure is largely contained in the instantaneous phase and
not in the instantaneous amplitude being the only compressed part of the
stimulus. The influence of the compressive nonlinearity on a stimulus can be
most easily understood for a pure sine wave of amplitude a. In that case, the
stimulus envelope is a constant, and the compressed stimulus simply remains
a sinusoid with amplitude aα (note that the term compression does not imply
that the amplitude is reduced but that the growth of the compressed stimulus
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with increasing a is reduced compared to the uncompressed stimulus). As an
example, the compressed and uncompressed version of a narrow band noise
stimulus are depicted in Fig. 4.2 A. The minor effect (on a linear scale) of
envelope compression on the spectral shape of the stimulus can be seen in
Fig. 4.2 B.

4.4.1 Influence of compression on the standard deviation of unmodulated
noise

Without changing the temporal waveforms strongly, the compression has an
important effect on the intensity (i.e. variance) of the stimulus. In the fol-
lowing, we will derive an expression for the standard deviation of compressed
unmodulated Gaussian white noise which originally had a standard deviation
σ.

We denote the original Gaussian white noise by η(t). Without compres-
sion (i.e. α = 1), η(t) at any point in time may be regarded as a random
variable

z = <(reiφ), (4.10)

where r is Rayleigh-distributed according to

pr(r) =
r

σ2
exp(− r2

2σ2
) (4.11)

and φ is uniformly distributed,

pφ(φ) =
1

2π
for φ ∈ [−π; π[. (4.12)

The compressed version of η(t) may be written as

Z = <(rαeiφ) = rα cos φ. (4.13)

If we introduce the new random variable y = cos φ, then we have

py(y) =
1

π
√

1 − y2
. (4.14)

Introducing a further random variable x = rα, we can write

px(x) = pr(r) ·
∣

∣

∣

∣

dr

dx

∣

∣

∣

∣

=
1

σ2α
x

2
α
−1 exp

(

− x
2
α

2σ2

)

for x ∈ [0;∞[ (4.15)
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The distribution of the random variable Z = xy can be calculated as (see
e.g. Papoulis and Unnikrishna Pillai, 2002):

fZ(Z) =
∫ 1

y=−1
dy

1

|y|
1

σ2απ
√

1 − y2

(

Z

y

)
2
α
−1

· exp






−

(

Z
y

)2/α

2σ2






Θ

(

Z

y

)

(4.16)

Here, Θ(.) denotes the Heaviside step-function. As the expectation value of
Z is zero, the variance of Z may be calculated by determining E(Z2). This
results in the following formula for the standard deviation of compressed
Gaussian white noise:

std(ηα) =
√

2α−1Γ(α + 1)σα (4.17)

In the above equation, ηα is used as a symbol for the compressed unmodulated
noise (cf. Eq. 4.13), not for η(t)α.

4.4.2 Influence of compression on the standard deviation of comodulated
noise

The standard deviation of compressed comodulated noise can be approxi-
mated analytically. We write down the uncompressed (but comodulated)
noise χ(t) in the same way as in Eq. 4.10. This time we need to make an
assumption about the distribution of r. As long as Fρ � Fη, an exponential
distribution is a reasonable approximation to this distribution (see Appendix
4.7 and Fig. 4.6). Therefore,

pr(r) =
1

σ
e−

r
σ . (4.18)

The phase φ may again be assumed to be uniformly distributed. Using
the same argumentation as before, one finds the standard deviation of the
compressed comodulated noise to be

std(χα) =

√

1

2
Γ(2α + 1)σα (4.19)

The predictions of Eqns. 4.17 and 4.19 are compared to simulations in
Fig. 4.3, where one can see that the standard deviation of compressed noise
(α < 1) increases more slowly than that of uncompressed noise (α = 1). For
comparison, we also show the case of expanded noise (α > 1). This case
is physiologically not realistic and will therefore not be considered in the
following.
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Figure 4.3: Effect of compression on the intensity of unmodulated and comodulated
noise. In all panels, the thin lines show the functions σα while the thick dark lines show
simulations and the very thick light colored lines show the predictions by Eqns. 4.17 and
4.19. A, B: standard deviation of compressed noise depending on standard deviation
of uncompressed noise for unmodulated and comodulated noise, respectively, for three
different values of α, the compressive exponent. C, D: standard deviation of compressed
noise depending on α for unmodulated and comodulated noise, respectively, for three
different values of initial standard deviations.

4.5 Signal detection in (un)compressed noise

For quantifying the detectability of a sinusoidal signal in noise (the CMR
case), we employ a variant of the signal-to-noise ratio (SNR) that is also
used in the literature on stochastic resonance (McNamara and Wiesenfeld,
1989). There, the SNR is defined as the total amount of power contained in
a frequency region of width ∆f centered on the signal frequency f0 divided
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by the power in this region without the signal contribution:

SNR =
N∆f + S

N∆f
. (4.20)

When writing this equation, we assume that the spectrum within a region of
size ∆f around the signal frequency can be approximated as the sum of a
flat noise contribution N and a δ-peaked signal contribution Sδ(f − f0).

With this definition, one could rather speak of the signal-plus-noise-to-
noise ratio. We use this measure because it has two advantages (see Mc-
Namara and Wiesenfeld, 1989): First, it can be more easily estimated in
numerical simulations (and experiments) with small signal amplitudes than
the usual definition of the SNR because the numerator can be estimated by
integrating the power spectral density over a narrow region around the sig-
nal frequency without having to subtract the noise contribution. Second, for
vanishing signal, its value becomes 1.0 (or 0 dB, respectively) instead of hav-
ing a singularity on a logarithmic scale. Thus, our definition of the SNR is
presumably more directly comparable to measures the auditory system may
use for signal detection.

The SNR for the case of a narrowband noise signal of bandwidth fBW is
analogously defined as

SNR =
NfBW + SfBW

NfBW

. (4.21)

where the spectrum is assumed to consist of a flat noise part and a box-shaped
signal part.

We assume that the signal can be detected as soon as the SNR exceeds
a certain value. The signal level at which this value is reached is the sig-
nal detection threshold. According to the experimental evidence described
earlier, we expect that signal detection thresholds are lower in comodulated
noise than in unmodulated noise.

We will now derive analytical approximations for the SNR of compressed
stimuli for several stimulus configurations. For this purpose, we first need
to approximate the compressed stimulus (for small signal amplitudes linear
in a, for large signal amplitudes linear in σ). Then we will calculate the
autocorrelation function of this approximated compressed stimulus. Finally,
we determine the power spectral density as the Fourier transform of the
autocorrelation function, following the Wiener-Khinchin theorem. From the
spectrum, the SNR can be determined in a straightforward manner. For our
calculations, there are four different cases to be considered:

• CDD, small signal (i.e. a < σ),
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• CDD, large signal (i.e. a > σ),

• CMR, small signal (i.e. a < σ),

• CMR, large signal (i.e. a > σ).

The necessary calculations are carried out in Appendix 4.8. We will state
the results in the following section.

4.5.1 SNR for narrowband noise signals (CDD)

The CDD stimulus consists of the broadband un- or comodulated noise
masker

m(t) =

{

η(t) for unmodulated noise
χ(t) = ρ(t)η(t) for comodulated noise

(4.22)

and a narrowband noise signal s(t), yielding

γ(t) = σm(t) + as(t) = <(rmeiφm + rse
iφs). (4.23)

In the second step of this equation we made use of the notation introduced
in Sect. 4.4 by splitting the masker and the signal into their instantaneous
envelope and fine structure and writing the stimulus as the real part of the
analytic signal, keeping in mind that rm, φm, rs, and φs are actually rm(t),
φm(t), rs(t), and φs(t).

With this notation, the calculations in Appendix 4.8 result in the following
expressions for the SNR. The SNR for small signals is

SNRCDD,small ≈ 1+
αa2〈rα−1

m 〉2
[

1
2
〈r2α

m 〉 + 1
2
(α2 + 1)a2〈r2α−2

m 〉 − αa2〈rα−1
m 〉2

]

fBW

Fη

, (4.24)

and the SNR for large signals is

SNRCDD,large ≈ 1 +
2α−1Γ(α + 1)a2α

1
4
(α2 + 1)〈r2

m〉2α−1a2α−2Γ(α)fBW

Fη

. (4.25)

These expressions hold for unmodulated as well as for comodulated noise. For
unmodulated noise, rm is Rayleigh-distributed, and the expectation values
for any power of rm can be given analytically as 〈rz

m〉un = 2z/2σzΓ(z/2 + 1).
For comodulated noise, the distribution of rm can be approximated by an
exponential distribution (see Appendix 4.7), giving also analytical expres-
sions for powers of rm, namely 〈rz

m〉co = σzΓ(z + 1). This approximation is
not very good for strong compression (i.e. small values of α) because of the
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fact that the actual distribution of rm for comodulated noise differs from an
exponential distribution for very small values of rm, and these values gain
increasing importance for stronger compression. When comparing numeri-
cal simulations with the analytical expressions, we therefore do not obtain
the expectation values for rm for comodulated noise from the exponential
distribution but rather estimate them numerically.

4.5.2 SNR for pure tone signals (CMR)

For the CMR case, the signal is s(t) = cos(ω0t + φ0), where φ0 is a random
initial phase. The masking noise m(t) stays the same as before, and therefore,
we can write the stimulus as

γ(t) = σm(t) + as(t) = <(rmeiφm + aeiω0t+iφ0). (4.26)

As described in Appendix 4.8, the SNR for small signals can be approximated
as

SNRCMR,small ≈ 1+
1
8
a2(α + 1)2〈rα−1

m 〉2
[

1
2
〈r2α

m 〉 + 1
4
a2(α2 + 1)〈r2α−2

m 〉 − 1
8
a2(α + 1)2〈rα−1

m 〉2
]

fBW

Fη

,

(4.27)
and the SNR for large signals is given by

SNRCMR,large ≈ 1 +
1
2
a2α

1
4
(α2 + 1)〈r2

m〉a2α−2 fBW

Fη

. (4.28)

Again, the expectation values for rm may be expressed analytically by assum-
ing a Rayleigh-distribution in the unmodulated noise case and an exponential
distribution in the comodulated noise case.

4.5.3 Improved signal detectability in comodulated noise after compression

Signal-to-noise ratios for different amounts of compression and for the two
possible kinds of signal are plotted in Fig. 4.4. For the case of a pure sinu-
soid as signal (that is, for the CMR case), the top row of that figure shows
the numerically obtained SNRs in the compressed stimuli as markers. The
numerics are compared to the analytical expressions derived from Eqns. 4.27
and 4.28.

The bottom row of Fig. 4.4 compares the numerical data and the analyt-
ical expressions derived from Eqns. 4.24 and 4.25 for a narrow band of noise
as signal (the CDD case). Although in Fig. 4.4, the signal levels are given
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Figure 4.4: Signal-to-noise ratio (SNR, see Eqns. 4.20 and 4.21) in relation to the signal
level for compressed (first two columns) and uncompressed (last column) noise. Top rows
show the case for a pure tone signal (the CMR paradigm). Bottom rows show the case for
a narrow band noise signal (the CDD paradigm). Lines denote theoretical approximations
according to Eqns. 4.24, 4.25, 4.27, and 4.28. Symbols show results from numerical sim-
ulations. The stronger the compression, the larger are the differences for signal detection
between comodulated and unmodulated noise. Parameters: f0 = 2.0 kHz, fBW = Fρ = 50
Hz, fs = 44.1 kHz, masker level is 60 dB SPL. Signal levels are measured relative to the
masker level.

relative to the masker level, the expressions for the SNR are not functions
of a/σ, which means that the figure looks slightly different for other masker
levels.

For both cases of CMR and CDD, without compression (α = 1), the SNR
does not differ for the two kinds of masking noise. This is how the stimuli
are constructed. If α is reduced towards zero, the amount of compression
increases. At the same time, due to the nonlinear transform of the stimulus,
the SNR curves for the different kinds of maskers are not the same anymore.
While for small signal levels, the masker dominates the SNR and for large
signal levels the signal dominates the SNR, for intermediate signal levels,
the SNR is influenced by the signal and the masker at the same time. In
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Figure 4.5: Same data as in the leftmost column of Fig. 4.4, but only the simulation
results with a better resolution. In both panels, the dashed horizontal line marks a detec-
tion criterion of an SNR of 5 dB. The dashed vertical lines indicate the signal detection
thresholds according to this criterion. A double arrow indicates the threshold difference,
which corresponds to the CMR (comodulation masking release) in the left panel and the
CDD (comodulation detection difference) in the right panel. The threshold difference in
both cases is roughly 8.5 dB for the CMR case and 8 dB for the CDD case.

this range of signal levels, the SNR for stimuli with comodulated compressed
noise raises earlier than that for stimuli with unmodulated compressed noise.
The stronger the compression, the larger the difference between both kinds
of noise gets.

These results show that a signal may be detected more easily in comod-
ulated noise than in unmodulated noise if the stimulus is compressed. This
corresponds to what is known experimentally from psychophysical research.
In the experiments, the differences between signal detection thresholds are
determined. Signal detection thresholds in our case may be defined as the
signal level at which a certain SNR value is reached. Fig. 4.5 again shows
the numerically obtained SNR values for a compressive exponent of α = 0.3.
Compressive exponents close to this value have been used in auditory model-
ing (e.g. Lopez-Poveda and Meddis, 2001; Sumner et al., 2002) and are found
in experiments with humans and other animals (cf. Köppl and Yates, 1999;
Plack, 2004). For a signal detection criterion of an SNR of 5 dB, one can
determine the signal detection thresholds (indicated by vertical dashed lines
in Fig. 4.5) and determine the amount of CMR or CDD that is due only to
compression. Although the exact threshold difference depends on the signal
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detection criterion, signal detection in comodulated noise can be improved
by about 5 dB to 10 dB solely due to a compressive nonlinearity.

4.5.4 Causes of signal detection differences

The fact that we have approximate analytical expressions for the signal and
noise contributions to the spectra of the compressed stimuli allows us to get
a deeper insight into why compression results in better signal detectability
in comodulated noise than in unmodulated noise. We will discuss this for
the case of a narrowband noise signal (CDD). The CMR case can be treated
analogously.

For the threshold differences, the parts of the SNR-curves with small
signal contributions are most important. It turns out that the a-dependent
part of the noise contribution to the SNR,

N =

[

1

2
〈r2α

m 〉 +
1

2
(α2 + 1)a2〈r2α−2

m 〉 − αa2〈rα−1
m 〉2

]

1

Fη
, (4.29)

is smaller than the signal contribution

S =
αa2

fBW

〈rα−1
m 〉2. (4.30)

This observation is true for unmodulated as well as for comodulated noise
and is explained by the fact that fBW � Fη. Therefore, the main factor
influencing the initial increase in SNR is the signal contribution S. For given
compression α and comodulator bandwidth fBW , the only difference in S for
unmodulated and comodulated noise can be located in 〈rα−1

m 〉2. The reason
for Sco being larger than Sun is therefore, that 〈rα−1

m 〉co > 〈rα−1
m 〉un.

Indeed, if we remember that rm is Rayleigh-distributed in the unmodu-
lated noise case and approximately exponentially distributed in the comod-
ulated noise case, we can calculate the above expectation values as

〈rα−1
m 〉co ≈ σα−1Γ(α) (4.31)

and

〈rα−1
m 〉un = 2

α−1
2 σα−1Γ

(

α + 1

2

)

. (4.32)

The ratio of these two expressions for any α < 1 is always larger than one.
For the case of no compression (α = 1), it is equal to one:

〈rα−1
m 〉co

〈rα−1
m 〉un

≈ 2
1−α

2
Γ(α)

Γ(α+1
2

)
≥ 1. (4.33)
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Figure 4.6: Distribution of rm (left column) and rα−1
m (right column) for unmodulated

(top row) and comodulated (bottom row) noise. The patches show distributions obtained
from numerical histograms, while the solid lines show analytical expressions (Rayleigh-
distribution for rm in unmodulated noise and exponential distribution for rm in comod-
ulated noise; the other two distributions can be derived similarly to Eq. 4.15 from these
distributions). The numerical mean values are denoted by dashed vertical lines. One can
see that the assumption of an exponential distribution for the envelopes of comodulated
noise is only approximately correct. Here: α = 0.5, Fρ = 50 Hz.

If α decreases towards zero, the above ratio is monotonically increasing, which
corresponds to the numerically found fact that the difference between comod-
ulated and unmodulated signal detection thresholds increases monotonically
when reducing α towards zero. For very strong compression, the differences
between an exponential distribution and the real distribution of rm in the
comodulated noise case become increasingly important, but the general idea
one gets from this analytical consideration is still correct. See Fig. 4.6 for
a comparison of the numerically obtained and the analytically calculated
distributions of rm and rα−1

m .

From these considerations, one can see why there are differences between
compressed comodulated noise and compressed unmodulated noise. The fac-
tor rα−1

m is roughly the prefactor to the original stimulus when our form of
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envelope compression is applied at small signal levels. For small signal am-
plitudes, we have:

γ̂(t) = R(t)α−1γ(t) ≈ rm(t)α−1γ(t). (4.34)

Therefore, the on average larger prefactor to the complete stimulus in the
comodulated noise condition when applying the compression is the cause of
the SNR differences between the two kinds of noise.

One can also interpret compression as automatic gain control (van der
Heijden, 2005): if the stimulus gets temporarily very intense, the compression
attenuates it, while a temporarily faint stimulus is amplified. This can be
seen intuitively when writing

γ̂(t) =
1

R(t)1−α
γ(t) ≈ 1

rm(t)1−α
γ(t). (4.35)

The gain 1/R(t)1−α scales up the stimulus when the noise is small. As comod-
ulated noise has more pronounced periods of low noise compared to unmod-
ulated noise (cf. left column of Fig. 4.6), the complete stimulus (including
the signal) is amplified more often in a stimulus consisting of comodulated
noise with small signals.

This also shows why other forms of compression (not only instantaneous
compression) lead to a similar shift in SNR curves for comodulated and un-
modulated noise: The gain factor that introduces the compressive nonlin-
earity boosts the stimulus specifically at periods of inherently high signal-
to-noise ratio, such that the CDD and CMR effects will be found for many
different kinds of compression.

4.5.5 Example: instantaneous compression

Our results have been derived for the special case of instantaneous envelope
compression, but they can be generalized to other kinds of compression as
well. As an example for a different compression scheme, we may look at
instantaneous compression introduced by compressing the absolute value of
the stimulus and multiplying it with the sign of the stimulus (see e.g. Harte
et al., 2005). In this case, the compressed stimulus is given as

γ̂(t) = |γ(t)|αsign(γ(t)) = |γ(t)|α−1γ(t). (4.36)

For unmodulated noise, the distribution of instantaneous amplitude values
is Gaussian, while for our form of comodulated noise, it is a normal product
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distribution (see Eq. 4.2). In the case of small signals, one gets for the
expectation values of the gain factor |γ|α−1:

〈|χ|α−1〉co =
1

π
2α−1σα−1Γ

(α

2

)2

(4.37)

and

〈|η|α−1〉un =
1√
π

2
α−1

2 σα−1Γ
(α

2

)

. (4.38)

For α < 1, one finds 〈|χ|α−1〉co > 〈|η|α−1〉un, which therefore also introduces
differences in the SNR curves. Other kinds of compression can be analyzed
in a similar way.

4.6 Discussion and conclusions

We have shown that considerable contributions to the CMR and CDD effects
may already be introduced by a compressive nonlinearity which is known to
be present in the peripheral auditory system. This conclusion is based on the
assumption that signal detection in the auditory system is carried out by a
measure related to the SNR as introduced in the present chapter. By means of
analytical approximations for the SNR, it could be shown that the cause for
this contribution to an improved signal detectability in comodulated noise
compared to unmodulated noise is the adaptive gain of the active system
employing the compression which is on average larger for comodulated than
for unmodulated background noise.

The order of magnitude of the threshold differences found for the CMR
and CDD paradigms is the same as found in psychophysical experiments (cf.
Borrill and Moore, 2002; Verhey et al., 2003). Still, the threshold differences
found in experiments tend to be larger than those found here indicating that
other mechanisms besides compression contribute to the CMR and CDD
effects. Furthermore, we have disregarded one of the most important sig-
nal processing steps of the auditory system, the frequency filtering, in order
to be able to treat the problem analytically. If a realistic auditory filter-
bank is included in the signal processing pathway (e.g. the one described
in Hohmann, 2002), the general result of earlier increasing SNR for signals
with comodulated noise compared to unmodulated noise remains the same,
but the amount of CMR and CDD is reduced. This also suggests further
contributions to both effects from other mechanisms.

Our result that compression plays an important role in comodulation ex-
periments is in agreement with experimental findings for hearing impaired
subjects with cochlear hearing loss. Usually, the compression in these sub-
jects is reduced (corresponding to α ≈ 1, see Oxenham and Bacon, 2003).
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Generally, subjects with cochlear hearing loss show smaller CMRs than nor-
mal hearing subjects (e.g. Hall et al., 1988; Moore et al., 1993; Hall and Grose,
1994; Grose and Hall, 1996). Further experimental support for our findings
can be obtained from the fact that compression is strongest (α closest to
zero) for intermediate sound pressure levels (above 30 dB SPL), while it is
nearly absent for sound pressure levels below that (see e.g. Harte et al., 2005).
Therefore, with the results of the present chapter, one expects a reduction of
CMR and CDD values for very low masker levels. Indeed, Borrill and Moore
(2002) found a reduced CDD for low masker levels. Moore and Shailer (1991)
found that the monotic CMR for masker spectrum levels below 30 dB SPL
nearly vanishes. Both of these experimental observations are in accordance
with the idea of an important contribution of compression to both effects.

Nevertheless, when comparing the results of the present chapter with
experimental data, one has to be aware that our stimuli are only similar
to those used in experiments, not exactly the same. Especially for the CDD
case, the maskers in experiments usually consist of several narrow noise bands
instead of being one broadband noise masker. The main difference is that for
CDD experiments, the masker has no contribution at the signal frequency,
while in our model, the masker has no spectral notch at the frequencies of
the signal band. Still, we believe that our model stimulus can be used to
understand the contributions of compression to the CDD effect.

An important finding of the present chapter is that the differences between
the SNR curves for unmodulated and comodulated masking noise increase
monotonically with decreasing α. This means that the optimal compres-
sion for utilizing the differences between the two kinds of noise would be a
compression that only keeps the temporal fine structure of the stimulus and
completely discards the stimulus envelope (α = 0). While this may be the
optimal compression for the presently discussed task, other tasks that have to
be performed by the auditory system (like loudness perception) may require
a more subtle compression. This and mechanical constraints may be reasons
why the evolution has not led to extreme compression in the auditory system
but rather to compressions that may be described by α ≈ 0.3.

As comodulated noise does not only occur in the auditory environment
but possibly also in various other fields of nature or technology, the results
of the present chapter indicate that a compressive nonlinearity could be an
advantageous processing step for signal detecting devices.
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4.7 Appendix: Envelope distribution of comodulated noise

According to Eq. 4.1, comodulated noise with a standard deviation of σ may
be written as σχ(t) = σρ(t) · η(t), where ρ and η are Gaussian distributed
with unit standard deviation. If Fρ � Fη, one can interpret the comodulated
noise as Gaussian noise with a slowly varying standard deviation σρ(t). As
stated in Eq. 4.11, the envelope distribution of Gaussian noise with standard
deviation x = σρ is given by

p(r|x) =
r

x2
exp(− r2

2x2
). (4.39)

If we denote the Gaussian distribution of x with px(x) =
√

2πσ2
−1

exp(−x2/2σ2),
then we can determine the envelope distribution of comodulated noise by

pr(r) =

∫ ∞

−∞
p(r|x)px(x)dx

=

∫ ∞

−∞

r√
2πx2σ

exp

(

− r2

2x2
− x2

2σ2

)

dx

=
1

σ
exp

(

− r

σ

)

. (4.40)

This exponential distribution describes the envelope distribution of comod-
ulated noise reasonably well (cf. Fig. 4.6) as long as the temporal variations
of the comodulator are slow compared to the fastest variations of η(t) and
as long as the comodulator varies fast enough to sample an adequate part of
the distribution of ρ within the total duration of the comodulated noise.

4.8 Appendix: Calculations of the SNR

Here, we will derive Eqns. 4.24, 4.25, 4.27, and 4.28. The cases of a small
amplitude narrow band signal and a large amplitude pure tone signal will
be demonstrated in detail, while the cases of a large amplitude narrow band
signal and a small amplitude pure tone signal can be treated analogously and
will therefore be explained only briefly.

4.8.1 Approximations for small narrowband signals (CDD)

As stated in Eq. 4.23, the CDD stimulus consists of the broadband un- or
comodulated noise masker m(t) and a narrowband noise signal s(t):

γ(t) = σm(t) + as(t) = <(rmeiφm + rse
iφs). (4.41)
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The compressed stimulus is

γ̂(t) = |A(t)|α−1γ(t). (4.42)

The absolute value of the analytic signal raised to the power of α− 1 can be
written as

|A(t)|α−1 = |rmeiφm + rse
iφs|α−1

= [r2
m + r2

s + 2rsrm ·
(cos φm cos φs + sin φm sin φs)]

α−1
2

= rα−1
m

[

1 +
r2
s + rsy

r2
m

]
α−1

2

, (4.43)

where we substituted y = 2rm(cos φm cos φs + sin φm sin φs). Newton’s gen-
eralized binomial theorem states that the series

(1 + z)r =
∞
∑

k=0

(

r

k

)

zk (4.44)

converges for |z| < 1. Therefore, for small rs, we can write

|A(t)|α−1 = rα−1
m

∞
∑

k=0

(

α−1
2

k

)(

r2
s + rsy

r2
m

)k

≈ rα−1
m + rα−3

m rs
α − 1

2
y (4.45)

This results in an approximation for the compressed stimulus linear in rs:

γ̂(t) = γ(t)|A(t)|α−1

≈ rsr
α−1
m cos φs + rα

m cos φm + (α − 1)rα−1
m rs ·

cos φm (cos φm cos φs + sin φm sin φs) (4.46)

For calculating the spectrum, we first look at the autocorrelation function
(the individual expectation values of γ̂ vanish):

Cγ̂γ̂(τ) = 〈γ̂(t)γ̂(t − τ)〉t,r,φ (4.47)

After some calculations one arrives at

Cγ̂γ̂(τ) ≈
[

1

2
〈r2α

m 〉 +
1

4
(α2 + 1)〈r2

s〉〈r2α−2
m 〉 −

α〈rα−1
m 〉2〈s(t)2〉t

]

δ(τ) +

α〈rα−1
m 〉2〈s(t)s(t − τ)〉t. (4.48)
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Here, 〈s(t)s(t − τ)〉t denotes the autocorrelation function of the uncom-
pressed signal band. We can now calculate the power spectral density of the
compressed stimulus as the Fourier transform of the autocorrelation func-
tion:

Sγ̂γ̂(f)CDD,small ≈
1

2
〈r2α

m 〉 +
1

4
(α2 + 1)〈r2

s〉〈r2α−2
m 〉 −

α〈rα−1
m 〉2〈s(t)2〉t + α〈rα−1

m 〉2Sss(f). (4.49)

In this expression, Sss(f) is the power spectrum of the uncompressed signal
band alone. The signal band is a bandpass limited Gaussian noise with stan-
dard deviation a and bandwidth fBW . Therefore, its power spectral density
is a box of height a2/fBW and width fBW centered on the signal frequency
f0. For comparing the SNR determined from the analytical expressions to
the SNR determined in numerical simulations, a factor 2/fs = 1/Fη has to
be included in the following expression for the signal-to-noise ratio from the
onesided power spectral density:

SNRCDD,small ≈ 1+

αa2〈rα−1
m 〉2

[

1
2
〈r2α

m 〉 + 1
4
(α2 + 1)〈r2

s〉〈r2α−2
m 〉 − αa2〈rα−1

m 〉2
]

fBW

Fη

(4.50)

We can further simplify this expression by noting that rs is Rayleigh-distributed
and therefore 〈r2

s〉 = 2a2. This finally leads to Eq. 4.24.

4.8.2 Approximations for large pure tone signals (CMR)

For the case of pure tone signals, we proceed in the same way as before for
the narrow band noise signals. The analytic signal can now be written as

A(t) = rmeiφm + aeiω0t+iφ0 , (4.51)

where φ0 is a random initial phase. If the signal amplitude a is large, we
approximate the compressed stimulus linearly in rm, which is now in general
small compared to a. For the approximate compressed stimulus, using again
Eq. 4.44, one arrives at

γ̂(t) ≈ rmaα−1 cos φm + aα cos(ω0t + φ0) +

(α − 1)aα−1rm cos(ω0t + φ0) ·
(cos φm cos(ω0t + φ0) + sin φm sin(ω0t + φ0)) . (4.52)
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For calculating the autocorrelation function, we now also average across the
initial phase φ0 (McNamara and Wiesenfeld, 1989) and get

Cγ̂γ̂(τ) ≈
[

1

4
(α2 + 1)〈r2

m〉a2α−2

]

δ(τ) +

1

2
a2α cos ω0τ. (4.53)

Therefore, the onesided power spectral density is

Sγ̂γ̂(f)CMR,large ≈
1

4
(α2 + 1)〈r2

m〉a2α−2 +

1

2
a2αδ(f − f0). (4.54)

The numerical signal-to-noise-ratio finally is given by the expression

SNRCMR,large ≈ 1 +
1
2
a2α

[

1
4
(α2 + 1)〈r2

m〉a2α−2
]

fBW

Fη

(4.55)

4.8.3 Approximations for large narrowband signals and small pure tone sig-
nals

The expressions for the power spectral densities in the cases of large narrow
band signals and small pure tone signals can be obtained following the same
steps as described in Sections 4.8.1 and 4.8.2. They are

Sγ̂γ̂(f)CDD,large ≈
1

4
(α2 + 1)〈r2

m〉〈r2α−2
s 〉 + Ssαsα(f) (4.56)

and

Sγ̂γ̂(f)CMR,small ≈
1

2
〈r2α

m 〉 +
1

4
(α2 + 1)a2〈r2α−2

m 〉 −
1

8
a2(α + 1)2〈rα−1

m 〉2 +

1

8
a2(α + 1)2〈rα−1

m 〉2δ(f − f0). (4.57)

In Eq. 4.56, the term Ssαsα(f) refers to the power spectrum of the compressed
signal alone, which can be very well approximated by a box of width fBW

and height 2α−1Γ(α + 1)a2α/fBW , using Eq. 4.17 for the standard deviation
of compressed Gaussian noise. Remembering that rs is Rayleigh-distributed,
one can furthermore write 〈r2α−2

s 〉 = 2α−1a2α−2Γ(α).





Chapter 5

Summary and concluding remarks

It is well known that humans and other animals are better at signal detection
in comodulated noise than in unmodulated noise. This is expressed by the
investigation of the CMR and CDD effects. For reviews see e.g. Verhey et al.
(2003) and Borrill and Moore (2002), respectively. The central question of
the present thesis is which mechanisms these effects can be attributed to.
By means of neurophysiological data analysis and theoretical considerations,
this question has been addressed in the preceding chapters. It turns out that
many general aspects of CMR and CDD can be understood by peripheral
within-channel processing: a model incorporating frequency filtering, enve-
lope extraction, and compression can reproduce neuronal firing patterns as
well as psychophysical signal detection thresholds. Therefore, higher level
processing like across-channel comparison seems to be of lesser importance
for signal detection in comodulated noise. It could also be shown that just
a single compressive processing stage plays an important role for the CDD
and CMR effects.

5.1 Summary of Chapters 2 to 4

In Chapter 2 neuronal firing rates of avian field L2 neurons in response to
CDD stimuli are found to be different for the three correlation conditions AC
(all correlated), AU (all uncorrelated), and CU (co-uncorrelated). The CU
condition is known to be associated with the lowest signal detection thresh-
olds in psychophysics. One finds that the neural response to the maskers
alone is generally higher in the AU case than in the AC and CU cases. With
increasing signal level the mean spike discharge rates in the AU and CU cases
generally increase monotonically, and both saturate at the same value. By
contrast, increasing the signal level in the AC condition leads to a nonmono-
tonic rate-level function which decreases at first and only starts increasing for
signal levels close to the masker level. The differences in the rate-level curves
could be attributed to interference due to correlated phases in the CDD stim-
uli. This result could be reached due to a very simple and therefore largely
analytically tractable model of the essential processing stages for reproducing
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the firing rates. The model detailed in Chapter 2 incorporates a frequency
filtering stage, the extraction of the envelope of the filtered stimulus, and
the compression and averaging of the envelope values. In the analytical ex-
pressions differences between the correlation conditions could be traced back
to interference terms that appear due to phase correlations in the spectra of
the stimuli. These interference terms are the reason for the increased masker
alone response in the AU condition and for the dip in the AC condition in
the model. These two features of the model rate-level curves are present for
any compressive exponent 0 < α < 2, but a realistic compression of α = 0.35
was used in the first part of Chapter 2. Employing a simple signal detection
scheme (d′ based on the assumption of constant standard deviations), the
rank order of signal detection thresholds predicted by the model is found to
be consistent with psychophysical findings in the literature.

In the second part of Chapter 2 the model processing steps are numer-
ically simulated for the recording sites and the original stimuli used in the
experiments in order to predict the neuronal firing rates while fitting as few
parameters as possible. It turns out that this numerical model can generally
reproduce the neuronal firing rates quite well although there are some differ-
ences that may be explained by the fact that the model simulates the signal
processing in the auditory system of living animals in a rather abstract way.
For example, nonlinearities in the filtering process are not considered, which
would lead to suppression, and suppression has been hypothesized to be im-
portant for signal detection in comodulated noise (e.g. Moore and Borrill,
2002; Ernst and Verhey, 2006). Despite these drawbacks the dependence of
neuronal signal detection thresholds on experimental parameters like signal
duration, signal offset, and masker level can largely be reproduced using only
the mentioned peripheral processing steps. One possible model prediction
for neuronal responses which may be tested with previously published data
is that the masker alone response in the case of correlated masker bands
should be lower than with uncorrelated masker bands. In Hofer and Klump
(2003) the responses of small neural populations of field L2 neurons of Eu-
ropean starlings to two narrow noise bands which are either uncorrelated or
correlated are reported. For the case in which these two bands are presented
at frequencies within the excitatory region of the tuning curve, a difference
in response amplitude as predicted by the model can be seen in the data,
although it is not statistically significant in all cases.

In Chapter 3 the model introduced in Chapter 2 for a special case of
CDD experiments is generalized to be applicable to other CDD experiments
and to CMR experiments as well. A survey of the literature shows that CMR
and CDD have mostly been modeled separately, possibly due to the prevalent
view that CMR has considerable across-channel contributions while CDD can
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be understood as a within-channel process. By contrast, the model discussed
in the remaining parts of that chapter addresses both CMR and CDD and
is based on within-channel processes (although for some cases this within-
channel modeling may be interpreted as an effective description of across-
channel processes, see Sect. 3.5.1). This psychophysical signal processing
scheme is based on neuronal measurements as described in Chapter 2 and is
very parsimonious by using only three free parameters. These parameters are
the filter bandwidth γ, the compressive exponent α, and the internal noise
σ. Despite its simplicity the model can qualitatively explain many aspects
of CMR and CDD experiments that are linked to the frequency spacing of
noise and signal bands (Sects. 3.4.1 and 3.4.2), the number of flanking bands
(Sect. 3.4.3), and the noise band level (Sect. 3.4.4). Therefore, by using the
model, one can get an intuitive idea of how and why certain experimental
parameters may influence experimental outcomes. This is expressed directly
by an analysis of the influence of free parameter changes on model predic-
tions, and indirectly by the findings related to the change of experimental
parameters.

Despite the simplicity of the different model variants described in Chap-
ters 2 and 3, it is still possible to further simplify the modeling efforts in order
to find the minimal sufficient prerequisites for obtaining the CDD and CMR
effects. It has been stated in Sect. 2.4.2 that the general differences between
the rate-level curves in the AC, AU, and CU conditions, which are respon-
sible for the CDD effect, are still present without compression (i.e. in the
case α = 1) and without frequency filtering. That means that the extraction
of the envelope alone contributes to the CDD effect and therefore consti-
tutes one minimal sufficient condition for finding improved signal detection
in comodulated noise. A second possible sufficient condition for improved
signal detection in comodulated noise is discussed in Chapter 4, where the
detectability of signals after only one signal processing step, namely compres-
sion, is investigated. For a convenient analytical treatment of the problem a
generalized form of comodulated noise is defined and analyzed for its prop-
erties at the beginning of Chapter 4. Then, as an example for instantaneous
compression, envelope compression as used by Bernstein et al. (1999) and
van der Heijden (2005) is explained, and the effect of compression on noise
intensity is described. By deriving analytical approximations to the signal-to-
noise ratio in compressed stimuli, the detectability of signals in compressed
comodulated and unmodulated noise is discussed. An increased detectabil-
ity of signals in comodulated noise compared to uncorrelated noise which is
introduced due to the compressive nonlinearity can be explained intuitively
when interpreting compression as automatic gain control: the compressive
nonlinearity selectively boosts stimulus epochs with relatively low amplitude
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while attenuating stimulus epochs with high amplitude. In comodulated
noise with small signals, the low intensity epochs are the times at which the
signal-to-noise ratio is inherently higher than during times of large intensity.
Therefore, the increased signal detectability in comodulated noise can be
understood as a dip listening mechanism. In unmodulated noise with small
signals, there are no epochs with significantly increased or decreased intensity
which means that compression has no positive effect on signal detectability
in this case. These findings are generalized to other kinds of compression,
such that an important contribution to the CDD and CMR effects can be
attributed to the cochlear compressive nonlinearity.

5.2 General conclusions

The main conclusions that can be drawn from the present thesis are summa-
rized in the following five points:

• Enhanced signal detection in comodulated noise as demonstrated by
CMR and CDD experiments has at least two important peripheral
within-channel contributions: (i) the extraction of the stimulus enve-
lope, which may be localized in the auditory system at the stage where
mechanical vibrations of the basilar membrane are transduced to neu-
ronal impulses (spikes), and (ii) the compressive nonlinearity which is a
result of active processes in the cochlea mainly generated by the outer
hair cells.

• These within-channel contributions to the CDD and CMR effects can
be best understood in models which reduce the complex processes in
the auditory system to their most essential steps and thus facilitate
analytical or semianalytical calculations.

• It is possible to understand many aspects of CDD and CMR experi-
ments with a single model which is at the same time very parsimonious
(having only three free parameters). Although CDD and CMR have
been linked by various authors, such a model has not been developed
before.

• A reduction in spike discharge rates with increasing signal level does
not necessarily have to be explained by inhibitory or suppressive mech-
anisms: The dip in the neuronal firing rates obtained for the AC stimuli
in CDD experiments can be understood by looking at the statistics of
the compressed stimulus envelopes without the need for other mecha-
nisms.
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• As detection of signals in comodulated noise does not only pose a chal-
lenge for the auditory system but possibly also for other sensory systems
or even technical applications, the insights gained in the present work
may be generalized and applied to other fields.

5.3 Possibilities for future research

The final point in the conclusions already names one of the main lines of
possible future research. Any combination of signal and noise which is trans-
mitted by vibrations (mechanical, electromagnetic or other) can be compared
to the situations described in the present thesis. It has been mentioned on
several occasions during this thesis that comodulated noise may occur quite
frequently in our everyday lives. Therefore, an expansion of the results of
the present thesis to other fields (e.g. touch, vision, seismic waves, commu-
nication devices, radio astronomy, or even research on gravitational waves)
may be interesting, and a thorough analysis of the properties of comodu-
lated noise and its effect on other phenomena like e.g. stochastic resonance
is desirable. For example, according to the predictions of the model in this
thesis, it might be possible to find the CDD and CMR effects also for tactile
vibrations if the envelope of such vibrations is the quantity responsible for
their perception.

First results on the comparison between comodulated noise and unmod-
ulated noise for stochastic resonance have been obtained numerically during
the course of this thesis. These findings have not been prepared for publica-
tion yet, but they may be of importance for signal detection by the auditory
system at low sound pressure levels: Zeng et al. (2000) and Ward (2004)
discuss the psychoacoustics and psychophysics of stochastic resonance, and
Jaramillo and Wiesenfeld (1998) and Henry (1999) investigate physiological
evidence for stochastic resonance in the auditory system. The cited refer-
ences essentially use white noise for their considerations. As comodulated
noise is quite ubiquitous in nature, the question arises what influence the
presence of this kind of noise has on stochastic resonance. To answer this
question, numerical simulations with a standard paradigm of stochastic reso-
nance (nondynamical or threshold stochastic resonance, see Moss et al., 1994;
Gingl et al., 1995) have been performed. It turns out that there is a range
of noise levels for which the beneficial effect of noise on the detectability of a
signal is larger with comodulated noise than with unmodulated white noise.
This is demonstrated in Fig. 5.1, where the signal-to-noise ratio at the out-
put of a thresholding and spiking nonlinearity is compared for unmodulated
and comodulated noise. The data in that figure was obtained numerically by
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Figure 5.1: Numerical results of simulations for threshold stochastic resonance with
unmodulated noise (solid line) and comodulated noise (dashed line). The signal-to-noise
ratio as defined in Eq. 4.20 was determined for a spike train generated by eliciting a spike
of unit height each time the stimulus (noise of standard deviation σ and sinusoidal signal
with amplitude a) crossed a threshold θ from below. Note that due to the definition of
the SNR, there is a lower bound for SNR values at 0 dB. (Parameters: a = 0.5, θ = 1,
Fρ = 50 Hz, Fη = 5.0 kHz, f0 = 2.0 kHz, fs = 44.1 kHz.)

the following procedure: A stimulus consisting of comodulated or unmodu-
lated noise as defined in Sect. 4.3 and a sinusoidal signal was converted to
a spike train by generating a spike each time the stimulus crossed a con-
stant threshold θ from below. The spikes had unit height and a temporal
extent of 1/fs, where fs is the sampling rate used in the simulations. The
SNR (signal-to-noise ratio) in this spike train is determined as defined in
Eq. 4.20 and is plotted depending on the standard deviation of the noise,
keeping a and θ constant. The solid line in Fig. 5.1 shows the well-known
characteristics of stochastic resonance: there is a certain noise intensity at
which the SNR reaches a maximum. This can be explained by the fact that
at this noise intensity, the noise is just enough to drive the stimulus across
the threshold each time the signal has a maximum, but the noise intensity
is small enough to still keep the spikes locked to the signal’s phase. In the
case of comodulated noise, the region of increased SNR values extends across
a wider range of noise intensities. Although the maximal SNR is smaller
than in the case of unmodulated noise, the beneficial effect of the noise is
already visible for smaller noise amplitudes, which is due to the fact that
comodulated noise has epochs of relatively high noise amplitudes, in which
spikes can already be elicited when this would not have been possible with
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unmodulated noise. There is also an increased SNR for relatively high noise
intensities for comodulated noise compared to unmodulated noise. This can
be explained by the fact that even for high noise intensities, comodulated
noise has epochs of relatively low noise amplitudes, which now can still elicit
spikes that are locked to the signal phase, while this is not possible anymore
with unmodulated noise of the same intensity.

These general insights on stochastic resonance with comodulated noise
may be more thoroughly investigated in order to formalize the above state-
ments and possibly understand them analytically. The positive influences
of comodulated noise on detecting subthreshold signals may also be investi-
gated in psychophysical experiments, where the absolute threshold of hearing
might be lowered by the introduction of very low levels of noise (see Zeng
et al., 2000; Long et al., 2004, for experimental results with white noise).
Stochastic resonance may also be of importance for cochlear implants (e.g.
Stocks et al., 2002).

Another promising line of research is a more detailed investigation of the
dip found in the firing rates of field L2 neurons in the AC condition of CDD
experiments. It would be interesting to know if this dip is also present in
the brain response of human listeners and if so, which are the perceptual
correlates of that reduced neuronal activity. The first of these two questions
is currently being addressed in a research collaboration with André Rupp at
the Universitätsklinikum Heidelberg. Using the model described in Chapter 3
with realistic human parameters, a stimulus configuration leading to a strong
dip is determined. This AC stimulus configuration and the corresponding CU
stimulus (not causing a dip in the model) are then played back to human sub-
jects in an MEG (magnetoencephalography) setup. The measured responses
(auditory evoked fields) to both kinds of stimuli may be compared to a refer-
ence situation with only the masker bands present, such that the hypothesis
can be tested, if the AC stimulus does result in reduced neuronal activity
compared to the CU stimulus and the masker alone stimulus. If a reduction
in neuronal activity can indeed be observed, psychoacoustical experiments
for determining the perceptual consequences of this reduced activity would
be highly desirable. One might imagine that the reduction of activity corres-
ponds to a reduced perceived loudness, but preliminary tests do not seem to
support this view (unpublished own experiments).

Directly linked to the possible presence of a reduction in neuronal activity
for the AC stimulus is yet another line of possible future research: the mod-
els used in the present thesis for investigating CDD and CMR stimuli on a
neurosensory basis were intentionally kept as simple as possible. It is impor-
tant to find out if more sophisticated models of neuronal auditory processing
such as those used e.g. in Meddis and O’Mard (2005) and Meddis (2006) or
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Heinz et al. (2001) can reproduce the model findings of the present thesis
(e.g. the dip in the AC condition). Own unpublished data suggests that this
is the case, but this question has to be addressed more thoroughly in order to
be able to compare the simple model described in Chapter 3 with the more
sophisticated models and to identify the main sources of possible differences.
This would lead to a better understanding of the origins of reduced activity
possibly measured in MEG experiments, and it could contribute to explain-
ing the perceptual correlates of this reduced activity. Apart from that, the
influence of suppression and other mechanisms on the neuronal activity in the
auditory nerve and higher centers may be investigated using more detailed
modeling approaches than those used in the present thesis. For example,
suppression may be examined by using the DRNL (dual resonance nonlin-
ear) filter described by Meddis and O’Mard (2001) instead of the filterbank
of Hohmann (2002), which was used mostly in the present thesis.

In summary one can say that many questions were addressed and an-
swered during the course of this thesis, but there are still many challenging
and exciting questions that wait to be answered. I hope that at least some
of the topics mentioned above will be investigated soon.
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And Helge Lüddemann told me about the implementation of compression
which I used in Chapter 4. Of course I also really enjoyed the private and
professional meetings with all those graduates whom I have not mentioned
here.

I also wish to thank all the members of the complex systems research
group at the ICBM who were always at hand when I needed help. I am
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