

Thermolabile Metallverbindungen als neuartige Precursoren zur Abscheidung von Metallen und Metalloxiden

Von der Fakultät für Mathematik und Naturwissenschaften der

Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene

Dissertation

von

Steffen Gagelmann

geboren am 07.12.1981 in Merseburg

Die vorliegende Arbeit wurde in der Zeit von November 2008 bis Juni 2012 am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg unter der Anleitung von Herrn Prof. Dr. Mathias S. Wickleder angefertigt.

Erstgutachter: Prof. Dr. Mathias S. Wickleder Zweitgutachter: Prof. Dr. Rüdiger Beckhaus Tag der Disputation: 01.06.2012

Meiner Familie und Freunden gewidmet.

Kurzzusammenfassung

Im Rahmen dieser Arbeit wurden komplexe Nitratometallate und Methansulfonate dargestellt und charakterisiert. Das erste bisher bekannte Nitratoplatinat, $(NO)_2[Pt(NO_3)_6]$, konnte aus der Reaktion von H₂[Pt(OH)₆] mit N₂O₅ bei Raumtemperatur erhalten werden und enthält das von sechs einzähnig angreifenden Nitratgruppen koordinierte Platinatom. Der thermische Abbau des Nitrats führt in einem mehrstufigen Prozeß zu elementarem Platin. Das komplexe Nickelnitrat $(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2$ ·HNO₃ enthält $[Ni_2O_{10}]$ -Oktaederdoppel, die von Nitratgruppen in verschiedenen Koordinationsmodi zu Doppelsträngen verknüpft werden.

Die Umsetzungen von Metallen und Metallverbindungen mit wasserfreier Methansulfonsäure führte sowohl zu Methansulfonaten als auch zu Methansulfonat-Methansulfonsäure-Addukten. Die Struktur von Sn(CH₃SO₃)₂ zeichnet sich durch ein stereochemisch aktives freies Elektronenpaar am Zinnatom aus, dessen Natur mit guantenmechanischen Methoden und mößbauerspektroskopisch analysiert wurde. Der komplexe Abbau der Verbindung wurde thermoanalytisch und pulverdiffraktometrisch untersucht und führt letztlich zu SnO₂. Binäre Methansulfonate $M(CH_3SO_3)_2$ wurden auch für M = Cd, Hg und Pb dargestellt und detailliert hinsichtlich ihrer Kristallstruktur und ihres thermischen Verhaltens untersucht. Pb(CH₃SO₃)₂ und die isotype Hg-Verbindung bilden Schichten mit einer unregelmäßigen Koordination der Metallzentren. In der Cadmiumverbindung wird das Cd²⁺-Ion oktaedrisch umgeben unter Ausbildung einer dreidimensionalen Struktur. Der thermische Abbau dieser Verbindungen verläuft für M = Cd und Pb über eine sulfidische Zwischenstufe und endet für Blei bei einem Gemisch aus elementarem Pb und PbS. Für Cd und Hg konnte kein Rückstand isoliert werden, da hier der Abbau mit dem kompletten Austrag der Verbindungen endet. Höhere Säurekonzentrationen lieferten in einigen Fällen Säureaddukte, wie $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ und $Co(CH_3SO_3)_2(CH_3SO_3H)_2$. Sowohl die Sulfonatanionen als auch die Säuremoleküle tragen in diesen Salzen zur oktaedrischen Koordination der Metalle bei. Die Entfernung der Säuremoleküle gelingt durch gezielten thermischen Abbau. Das pulverdiffraktometrisch charakterisierte Intermediat der Zersetzung wird bei weiterem Erhitzen unter Stickstoffatmosphäre zu Co₉S₈ und unter Sauerstoff zu einem Gemisch aus CoO und Co₃O₄ abgebaut. Der thermische Abbau von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ (isotyp zur Co-Verbindung) verläuft über Zn₃O(SO₄)₂ zu einem Gemisch aus ZnO und ZnS. Ein weiteres, wenn auch säureärmeres Addukt wurde mit $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$ erhalten. Auch hier liegen die Co²⁺-Ionen in oktaedrischer Koordination vor. Eines der Co²⁺-Ionen wird nur von Sulfonationen angegriffen, beim zweiten kommt es zusätzlich zu einem Angriff durch ein Methansulfonsäuremolekül.

Abstract

In this thesis complex nitratometallats and methanesulfonates were prepared and characterized. The first known nitratoplatinate, $(NO)_2[Pt(NO_3)_6]$ could be obtained from the reaction of H₂[Pt(OH)₆] with N₂O₅ at room temperature. It contains the platinum atom in octahedral coordination by six monodentate acting nitrate groups. The thermal decomposition of the nitrate results in a multistage process to elemental platinum. The complex nickel nitrate $(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2$ ·HNO₃ containing $[Ni_2O_{10}]$ -octahedral-dimers that are linked by nitrate groups in different coordination modes to form double strands.

Reactions of metals and metal compounds with anhydrous methanesulfonic acid resulted in both methanesulfonates and methanesulfonate-methanesulfonic acid adducts. The structure of $Sn(CH_3SO_3)_2$ is characterized by a stereochemically active lone pair at the tin atom whose nature was analyzed by Mößbauer spectroscopy and quantum mechanical methods. The complex decomposition of the compound was studied via thermal gravimetric analysis and powder diffraction and leads to SnO_2 . Binary methanesulfonates $M(CH_3SO_3)_2$ were also synthesized for M = Cd, Hg, and Pb, and analyzed in detail in terms of their crystal structure and their thermal behavior. $Pb(CH_3SO_3)_2$ and the isotypic Hg compound form layers displaying an irregular coordination of the metal centers. In the cadmium compound, the Cd²⁺ ion is surrounded octahedrally with formation of a three-dimensional structure. The decomposition of these compounds proceeds for M = Cd and Pb through a sulfide intermediate and ends for lead in a mixture of elemental Pb and PbS. For M = Cd, Hg, no residue could be isolated, since the decomposition ends with the complete discharge of the compounds. Higher acid concentrations provided in some cases acid adducts, such as $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ and $Co(CH_3SO_3)_2(CH_3SO_3H)_2$. Both the sulfonate anions and the acid molecules contribute in these salts to the octahedral coordination of the metals. The removal of the acid molecules is achieved by controlled thermal degradation. The intermediate is characterized via powder diffraction and decomposes on further heating under nitrogen atmosphere to Co_9S_8 and to a mixture of CoO and Co_3O_4 under oxygen atmosphere. The thermal decomposition of $Zn(CH_3SO_3)_2(CH_3SO_3H)_2$ (isotypic to the Co compound) proceeds via Zn₃O(SO₄)₂ to a mixture of ZnO and ZnS. Another, methanesulfonic acid adduct, albeit lower concentration of acid in the compound, was obtained with $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$. Here too, the Co^{2+} ions are in octahedral coordination. However only one is attacked solely by sulfonate anions, whereas the second Co²⁺-ion is additionally coordinated by a methanesulfonic acid molecule.

Inhaltsverzeichnis

1. Einleitung	1
2. Allgemeiner Teil	2
2.1 Arbeitsmethoden	2
2.1.1 Handschuh-Box	2
2.1.2 Schlenktechnik	3
2.2 Röntgenstrukturanalytische Methoden	4
2.2.1 Röntgenstrukturanalyse am Einkristall	4
2.2.2 Pulverdiffraktometrie	5
2.3 Spektroskopische Methoden	6
2.3.1 Mößbauer Spektroskopie	6
2.4 Thermische Analysemethoden	8
2.5 Verwendete Geräte und Programme	9
3. Spezieller Teil	11
3.1 Synthese der Edukte	11
3.1.1 Synthese von N_2O_5	11
3.1.2 Synthese von K ₂ [PtCl ₆]	12
3.1.3 Synthese von H ₂ [Pt(OH) ₆]	13
3.2 Grundlagen zu Nitratometallaten	16
3.3 Das Nitratoplatinat (NO) ₂ [Pt(NO ₃) ₆]	24
3.3.1 Synthese von (NO) ₂ [Pt(NO ₃) ₆]	24
3.3.2 Kristallstruktur von (NO) ₂ [Pt(NO ₃) ₆]	24
3.3.3 Thermischer Abbau von (NO) ₂ [Pt(NO ₃) ₆]	27
3.3.4 Diskussion	29
3.4 Das komplexe Nickelnitrat (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃	30
3.4.1 Synthese von (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃	
3.4.2 Kristallstruktur von (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃	
3.4.3 Diskussion	

3.5 Grundlagen zu Methansulfonaten
3.6 Synthese der Methansulfonate und Methansulfonat-Methansulfonsäureaddukte
3.7 Das Cadmiummethansulfonat Cd(CH ₃ SO ₃) ₂
3.7.1 Kristallstruktur von Cd(CH ₃ SO ₃) ₂
3.7.2 Pulverdiffraktometrische Untersuchung von Cd(CH ₃ SO ₃) ₂ 40
3.7.3 Thermischer Abbau von Cd(CH ₃ SO ₃) ₂
3.8 Die isotypen Methansulfonate $Pb(CH_3SO_3)_2$ und $Hg(CH_3SO_3)_2$
3.8.1 Kristallstruktur von Pb(CH ₃ SO ₃) ₂ und Hg(CH ₃ SO ₃) ₂ 43
3.8.2 Pulverdiffraktometrische Untersuchung von Pb(CH ₃ SO ₃) ₂ und Hg(CH ₃ SO ₃) ₂ 49
3.8.3 Thermischer Abbau von Pb(CH ₃ SO ₃) ₂
3.8.4 Thermischer Abbau von Hg(CH ₃ SO ₃) ₂ 53
3.9 Das Zinnmethansulfonat Sn(CH $_3$ SO $_3$) $_2$
3.9.1 Kristallstruktur von Sn(CH ₃ SO ₃) ₂ 55
3.9.2 Theoretische Analyse der Struktur von Sn(CH_3SO_3) ₂
3.9.3 119 Sn Mößbauer-Spektroskopie an Sn(CH $_3$ SO $_3$) $_2$ [79]61
3.9.4 Pulverdiffraktometrische Untersuchung von Sn(CH ₃ SO ₃) ₂ 63
3.9.5 Thermischer Abbau von Sn(CH ₃ SO ₃) ₂ 64
3.9.6 Temperaturabhängige Pulverdiffraktometrie zur Untersuchung des Abbaus von Sn(CH ₃ SO ₃) ₂ 66
3.10 Das Cadmiummethansulfonat-Methansulfonsäureaddukt Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 69
3.10.1 Kristallstruktur von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 69
3.10.2 Thermischer Abbau von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 74
3.11 Die isotypen Methansulfonat-Methansulfonsäureaddukte $M(CH_3SO_3)_2(CH_3SO_3H)_2$ M=Zn, Co75
3.11.1 Kristallstruktur von M(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ mit M = Zn, Co
3.11.2 Pulverdiffraktometrische Untersuchung von $M(CH_3SO_3)_2$ -($CH_3SO_3H)_2$ mit M = Zn, Co 81
3.11.3 Thermischer Abbau von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ (M = Zn, Co)
3.12 Das Nickelmethansulfonat-Methansulfonsäureaddukt Ni(CH ₃ SO ₃) ₂ (CH ₃ SO ₃) ₂ 90
3.12.1 Kristallstruktur von Ni(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 90
3.12.2 Pulverdiffraktometrische Untersuchung von Ni(CH $_3$ SO $_3$) $_2$ -(CH $_3$ SO $_3$ H) $_2$
3.13 Das Cobaltmethansulfonat-Methansulfonsäureaddukt $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$
3.13.1 Kristallstruktur von $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$

4. Zusammenfassung	96
5. Ausblick	104
6. Literatur	105
7. Abbildungsverzeichnis	109
8. Tabellenverzeichnis	113
9. Danksagung	116
10. Anhang	117
10.1: Kristallographische Daten für (NO) ₂ [Pt(NO ₃) ₆]	117
10.2: Kristallographische Daten für (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃	118
10.3: Kristallographische Daten für Sn(CH ₃ SO ₃) ₂	119
10.4: Kristallographische Daten für Pb(CH $_3$ SO $_3$) $_2$	120
10.5: Kristallographische Daten für Hg(CH ₃ SO ₃) ₂	121
10.6: Kristallographische Daten für Cd(CH ₃ SO ₃) ₂	122
10.7: Kristallographische Daten für Cd(CH $_3$ SO $_3$) $_2$ (CH $_3$ SO $_3$ H) $_2$	123
10.8: Kristallographische Daten für Zn(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	124
10.9: Kristallographische Daten für Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	125
10.10: Kristallographische Daten für $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$	126
10.11 Röntgenographische Daten	127
Erklärung	140
Liste der Publikationen, Tagungsbeiträge, Seminare und Workshops	141
Darstellung des bisherigen Lebens- und Studienweges	143
Persönliche Angaben	143

1. Einleitung

Die strukturierte Abscheidung von Metallen und Metalloxiden auf Oberflächen spielt eine wichtige Rolle im Herstellungsprozess von elektronischen Bauteilen, wie zum Beispiel Transistoren oder Platinen. Sogenannte Vorläuferverbindungen kommen in Verfahren wie der Chemical-Vapour-Deposition (CVD) zum Einsatz [1, 2]. Diese Vorläuferverbindungen, auch Precursoren genannt, werden auf die Oberfläche aufgebracht, um dann durch eine chemische Reaktion, im einfachsten Fall der Thermolyse des Precursors, in die gewünschte Zielverbindung überführt zu werden. Voraussetzung an diese Precursoren ist also eine geringe Zersetzungstemperatur, verbunden mit einer rückstandsfreien Zersetzung. Die kommerziell genutzten Precursoren sind zumeist Metallorganische Verbindungen [1, 2], deren Zersetzung zur Verunreinigung der abgeschiedenen Struktur mit Kohlenstoff führen kann. Um dies zu umgehen werden im Arbeitskreis Wickleder rein anorganische Anionen, dass heißt möglichst kohlenstofffreie komplexe Anionen zum Aufbau der Precursoren verwendet. Um eine möglichst niedrige Zersetzungstemperatur zu erreichen, hat sich die Verwendung von Distickstoffpentoxid (N_2O_5) zur Synthese komplexer Nitrylium- und Nitrosyliumnitratometallate bewährt. Diese konnten für mehrere Edelmetalle [3, 4] und Nebengruppenelemente [5] bereits erfolgreich erzeugt werden. Ein weiterer Weg zur Darstellung von Precursoren sollte durch die solvothermale Umsetzung verschiedener Metalle mit Methansulfonsäure CH₃SO₃H, einem Schwefelsäurederivat, durchgeführt werden. Es ist bekannt, dass sich Methansulfonate ebenfalls rückstandsfrei, dass heisst ohne Kontamination durch Kohlenstoff zersetzen lassen [6], und somit potentiell geeignete Vorläuferverbindungen sind. In diesem Bereich wurden verschiedene Metalle der Haupt- und Nebengruppen eingesetzt.

Die vorliegende Arbeit beschreibt die Synthese thermolabiler Precursoren zur Abscheidung von Metallen und Metalloxiden. Die erhaltenen Verbindungen sind eingehend über Röntgenstrukturanalyse und ihr thermisches Verhalten charakterisiert worden. Die erhaltenen Abbauprodukte wurden anschließend mittels pulverdiffraktometrischer Methoden untersucht um ihr Precursorpotential zur Abscheidung von Metallen und Metalloxiden zu eruieren.

2. Allgemeiner Teil

2.1 Arbeitsmethoden

2.1.1 Handschuh-Box [7]

Um die bei den Reaktionen entstehenden Produkte zu isolieren, TG-Messungen und Proben für die Pulverdiffraktometrie vorzubereiten, wird in einer Handschuh-Box des Typs Unilab (M. Braun GmbH) gearbeitet. Es handelt sich dabei um eine gasdichte Metallbox, welche eine Frontscheibe aus Plexiglas besitzt. In die Plexiglasscheibe sind Handschuhe eingelassen, um das Arbeiten im Innenraum zu ermöglichen (Abbildung 1). Die in der Box herrschende Stickstoffatmosphäre verhindert unerwünschte Reaktionen der Produkte wie Hydrolyse oder Oxidation. Glasgeräte und Chemikalien können über zwei Schleusen unterschiedlicher Größe in die Box bzw. aus ihr heraus befördert werden. Zu diesem Zweck können diese evakuiert und mit Stickstoff geflutet werden.

Abbildung 1: Verwendete Handschuh-Box des Typs Unilab

2.1.2 Schlenktechnik [7]

Alle Reaktionen mit N_2O_5 wurden in speziell angefertigten Ampullen oder Schlenkkolben durchgeführt. Die Schlenkkolben (vgl. Abbildung 2) besitzen zusätzlich zu normalen Rundkolben einen seitlich angebrachten Hahn um das Evakuieren oder Fluten mit Stickstoff zu ermöglichen. So kann auch außerhalb der Handschuh-Box mit hydrolyseempfindlichen Stoffen gearbeitet werden.

Die Ampullen (vgl. Abbildung 3) sind ca. 20 cm lang und haben einen Durchmesser von 1,6 cm. Sie sind mit einem Hahn ausgestattet, um das Evakuieren und Fluten mit Stickstoff zu ermöglichen.

Abbildung 2: Schlenkkolben

Abbildung 3: Ampulle mit Hahn

2.2 Röntgenstrukturanalytische Methoden

2.2.1 Röntgenstrukturanalyse am Einkristall [7]

Die Einkristalluntersuchung ist eine sehr präzise Methode um eine neue Verbindung zu charakterisieren. Dazu muss es bei der Synthese gelingen einen genügend großen Einkristall zu züchten. Die bei der Synthese erhaltenen Kristalle müssen zunächst dem Reaktionsgefäß entnommen werden. Dies geschieht bei unbekannten Substanzen meist unter Schutzgas, um Hydrolyse oder Oxidation zu verhindern. Außerdem müssen die Kristalle von der Mutterlauge getrennt werden, um die Handhabbarkeit zu gewährleisten. Im Fall der hier vorgestellten Versuche wird das noch verbliebene N₂O₅ respektive die noch verbliebene CH₃SO₃H in flüssigen Stickstoff eingefroren, da aufgrund der hohen Reaktivität und des Dampfdruckes die Ampullen nicht ohne Gefahr geöffnet werden können. Die isolierten Kristalle werden auf einen Objektträger mit inertem Öl aufgebracht und mit polarisiertem Licht untersucht. Ein geeigneter Kristall wird so im Röntgendiffraktometer (vgl. Abbildung 4) justiert, dass der Röntgenstrahl direkt durch den Kristall läuft. Die entstehenden Reflexe werden je nach Gerätebauart mit einer CCD-Kamera (Charge-coupled-device) oder einer Bildplatte (Imaging plate) aufgenommen.

Abbildung 4: Verwendetes Stoe IPDS I (links) und Bruker κ Apex2 (rechts)

2.2.2 Pulverdiffraktometrie [7]

Die Pulverdiffraktometrie dient der Untersuchung von mikrokristallinen Stoffen. Ein Pulverdiffraktogramm ermöglicht eine qualitative Aussage über die Phasenreinheit einer Substanz oder eines Gemisches, sofern theoretische Daten zum Vergleich vorliegen. Präparativ werden zwei Methoden in der Pulverdiffraktometrie unterschieden.

Bei der *Debye-Scherrer-Methode* wird die fein verriebene Probe in eine Kapillare eingebracht und diese anschließend abgeschmolzen. Die Probenvorbereitung kann in einer Stickstoff-Handschuhbox durchgeführt werden und ist bei Produkten zu bevorzugen, von denen nicht bekannt ist, ob sie hydrolyse- oder luftempfindlich sind.

Die *Transmissionspulverdiffraktometrie* hingegen wird eingesetzt um bekannte Stoffe qualitativ auf ihre Phasenreinheit zu überprüfen, so dass eine Hydrolyse oder Oxidation des Stoffes ausgeschlossen werden kann. Nach Verreiben der Probe wird sie auf einen Flächenträger aufgebracht und mit Adhäsivfolie fixiert. Anschließend wird bei beiden präparativen Methoden die Probe in einen Probenträger überführt und monochromatischer Röntgenstrahlung ausgesetzt. Durch die feine Verteilung der Kristallite kommt es zur statistischen Reflektion an allen Netzebenen, die die Braggsche Reflektionsbedingung erfüllen. Die Probe rotiert im Röntgenstrahl, um etwaige Textureffekte auszugleichen. Die Reflexe werden entweder mit einem Photofilm oder durch eine Zählelektronik, wie im verwendeten Pulverdiffraktometer (vgl. Abbildung 5), detektiert.

Abbildung 5: Verwendetes Pulverdiffraktometer Stoe STADI P

2.3 Spektroskopische Methoden

2.3.1 Mößbauer Spektroskopie [8]

Der Mößbauer-Effekt, der zusammen mit dem Doppler-Effekt dieser spektroskopischen Methode zugrunde liegt, wurde von Rudolf Ludwig Mößbauer während der Arbeiten an seiner Dissertation am Max Planck-Institut für medizinische Forschung in Heidelberg entdeckt. Wenn ein angeregter Kern (Quelle) in den Grundzustand zurückfällt, wird ein *y*-Quant emittiert, der von einem gleichen Kern im Grundzustand (Absorber) absorbiert werden kann. Wenn diese Emission und Absorption rückstoßfrei ablaufen, so wird dieser Effekt Mößbauer-Effekt genannt (vgl. Abbildung 6).

Abbildung 6: Schematische Darstellung des Mößbauer Effekts [8]

Für diese Kernresonanz gilt die Bedingung, dass sowohl Quelle als auch Absorber eine identische chemische Umgebung aufweisen. Da dies nie der Fall ist, wird diese Energiedifferenz zwischen Quelle und Absorber dadurch ausgeglichen, dass die Energie des Quants der Quelle über den Doppler-Effekt verändert wird. Bei der ⁵⁷FeMößbauerspektroskopie erhält der v-Quant zusätzliche Energie von 5×10⁻⁸ eV pro mm/s durch die Bewegung der Quelle auf den Absorber zu bzw. von diesem weg. Im Normalfall wird die Quelle in einem Bereich von -10 mm/s bis +10 mm/s bewegt. Wird nun die Kernresonanz in Abhängigkeit von der Geschwindigkeit der Quelle gemessen, so erhält man ein Mößbauerspektrum. Aus diesem lassen sich verschiedene Informationen über die chemische Umgebung des sogenannten Mößbaueratoms ableiten. Als erstes ist hier die Monopol-Wechselwirkung zu nennen, d.h. die Wechselwirkung zwischen Atomkern und s-Elektronen. Diese sind in Quelle und Absorber unterschiedlich, so dass eine Übergangsenergie über den Doppler-Effekt zugeführt werden muss. Auf diesem Weg erhält man die Isomerieverschiebung δ , die Information über die s-Elektronendichte liefert. Daraus sind Rückschlüsse auf Oxidationszahl, Koordination und die Elektronegativität der Liganden am Mößbaueratom möglich. Die elektrische Quadrupolwechselwirkung beschreibt das Quadrupolmoment des Kerns mit einem inhomogenen elektrischen Feld. Damit ist zum Beispiel eine nicht kugelsymmetrische Ladungsverteilung am Mößbaueratom gemeint, aus der eine Aufspaltung des angeregten Zustands resultiert. Die Größe und das Vorhandensein der Quadrupolaufspaltung ΔE_{Q} , ihre Größe und ihr Vorhandensein beinhaltet Informationen über die Oxidationszustand, Molekülsymmetrie, Platzsymmetrie, Koordination und Ligandenfeldaufspaltung. Als letztes ist die magnetische Dipol Wechselwirkung zu nennen. Diese kommt durch ein vorhandenes Dipolmoment am Kern mit dem magnetischen Feld zustande. Dadurch werden sowohl der Grund- als auch der angeregte Zustand aufgespalten. Diese magnetische Aufspaltung ΔE_M liefert Information über den magnetischen Zustand (Ferromagnetismus, Ferrimagnetismus) und die Stärke innerer Magnetfelder. In Abbildung 7 sind diese Wechselwirkungen und daraus resultierende Aufspaltungen der Energieniveaus schematisch anhand des ⁵⁷Fe-Kerns dargestellt.

Wechsel-	Elektrische Monopol	Elektrische Quadrupol	Magnetische Dipol
wirkung	Wechselwirkung	Wechselwirkung	Wechselwirkung
Energie- niveaus und Übergänge	Verschiebung der Energieniveaus	Quadrupolaufspaltung des angeregten Zustandes	Magnetische Aufspaltung von Grundzustand und angeregtem Zustand
	Singulett	Dublett	Sextett
Spektrum			
Parameter	δ	ΔE_{Q}	ΔE_M

Abbildung 7: Hyperfeinwechselwirkungen des ⁵⁷Fe-Kerns [8]

2.4 Thermische Analysemethoden [7]

2.2.1 Thermogravimetrie (TG)

Bei thermischen Analysen wird das thermische Verhalten eines Stoffes bei Änderung der Temperatur untersucht. Interessante Punkte sind hierbei Phasenübergänge und die thermische Zersetzung eines Stoffes. Die Thermogravimetrie zeichnet die Masseänderung einer Verbindung bei stetiger Temperaturerhöhung unter Schutzgasatmosphäre auf. Mit diesem Verfahren ist es möglich die thermische Zersetzung einer Verbindung zu registrieren. Präparativ geschieht dies, indem 10-15 mg einer Verbindung in einen speziellen Korund-Tiegel eingebracht werden und dieser auf die geräteinterne Präzisionswaage gestellt wird. Die Probe wird mit konstanter Heizgeschwindigkeit (1-10 °C/min) aufgeheizt. Das Gewicht der Probe vor der Messung und das Gewicht nach der Messung sind spezifisch für jede Substanz. Die Dauer einer Zersetzung ist von der Beschaffenheit der Probe und der Heizrate abhängig.

2.4.2 Differenz-Thermoanalyse (DTA)

Die Differenz-Thermoanalyse ermöglicht es, die Temperaturänderung z. B. bei Phasenübergängen oder anderen thermodynamischen Prozessen zu registrieren, mit denen kein Masseverlust einhergeht. Dazu wird die Temperaturdifferenz zwischen der Probe (T_P) und einem inerten Referenzmaterial (T_R) gemessen. Bei keinerlei ablaufenden thermodynamischen Prozessen soll $\Delta T = 0$ sein. Findet ein *exothermer* Vorgang statt, so erwärmt sich die Probe stärker als das Referenzmaterial, so dass $\Delta T < 0$ wird. Bei *endothermen* Vorgängen erwärmt sich die Probe weniger stark als das Referenzmaterial, so dass $\Delta T > 0$ wird.

2.4.3 Simultane Thermische Analyse (STA)

Die Kombination aus DTA- und TG-Messungen wird STA genannt. Hierbei wird simultan die Masse der Probe sowie deren Temperatur unter den gleichen Bedingungen registriert. Abbildung 8 zeigt das verwendete Gerät.

Abbildung 8: Verwendetes STA-Gerät

2.4.4 Dynamische Differenzkalorimetrie (DSC)

Bei der dynamischen Differenzkalorimetrie handelt es sich um eine Weiterentwicklung der Differenz-Thermoanalyse DTA. In diesem Verfahren wird nicht direkt die Differenz der Temperatur zwischen Probe (T_P) und Referenztiegel (T_R) gemessen. In diesem Verfahren wird der Unterschied der Wärmeströme beider Tiegel als Messgröße bestimmt. Hierzu sind beide Tiegel auf Scheiben positioniert, die über eine gute Wärmeleitfähigkeit verfügen. Der Wärmestrom durch die Scheiben hindurch wird von Temperaturfühler unter diesen registriert. Wenn nun bei einer thermischen Zersetzung eine Reaktion abläuft, so wird dies an der Differenz der Wärmeströme festgestellt. Diese sind proportional zur Änderung der Temperatur der beiden Tiegel. Der Vorteil dieser Methode liegt jedoch in der Möglichkeit, die Wärmeströme quantitativ über die Integration der DSC-Kurve zu bestimmen. Damit können also Größen wie zum Beispiel die Reaktionsenthalpie einer Phasenumwandlung experimentell ermittelt werden. Die gleichzeitige Durchführung einer TG ist im selben Gerät möglich.

2.5 Verwendete Geräte und Programme

Tabelle 1: Verwendete Geräte

Image-Plate Diffraktometer	IPDS I	Stoe & Cie, Darmstadt, Deutschland	
Bruker Diffraktometer	Bruker к Apex2	Bruker AXS GmbH, Karlsruhe, Deutschland	
STA-Gerät	TGA/SDTA ^e	Mettler-Toledo GmbH, Schwerzenbach, Schweiz	
DSC-Gerät	TGA/DSC1	Mettler-Toledo GmbH, Schwerzenbach, Schweiz	
Röhrenofen	Eigenkonstruktion	Universität Oldenburg, Deutschland	
Stickstoff-Handschuhbox	Unilab	M Braun, Garching, Deutschland	
Ozonisator	OZ 502	Fischer Labortechnik, Frankfurt a. Main, Deutschland	
Pulverdiffraktometer	STADI P	Stoe & Cie, Darmstadt, Deutschland	

Tabelle 2: Verwendete Programme

3. Spezieller Teil

3.1 Synthese der Edukte

3.1.1 Synthese von N₂O₅

In einem 500-ml-Dreihalsrundkolben mit Gaseinleitungsrohr, Tropftrichter mit Druckausgleich und Destillationsbrücke werden 50 g P_4O_{10} vorgelegt und sehr langsam rauchende Salpetersäure hinzugetropft. Über das Gaseinleitungsrohr wird ein steter Strom eines trocknen O_2/O_3 -Gemisches eingeleitet. Die Vorlage, ein an der Destillationsbrücke angeschlossener 250-ml-Schlenkkolben, wird mit einem Stickstoff-Ethanol-Kältebad (-90°C) gekühlt. An den Schlenkkolben ist ein Blasenzähler angeschlossen, um das Eindringen von Feuchtigkeit zu verhindern (Synthesevorschrift siehe [23]). Abbildung 9 zeigt schematisch den Versuchsaufbau und Abbildung 10 das fertige Produkt bei Einkondensation.

Abbildung 9: Aufbau zur Synthese von N_2O_5

Abbildung 10: Verwendetes N₂O₅ beim Einkondensieren

3.1.2 Synthese von K₂[PtCl₆]

In siedendem Königswasser werden 3 g Platinpulver gelöst. Nach Eindampfen der Lösung wird der Rückstand mit Salzsäure aufgenommen, und abermals eingedampft. Dies wird solange wiederholt, bis keine nitrosen Gase mehr entweichen. Der zurückbleibende Rückstand wird mehrmals mit Wasser aufgenommen und anschließend eingedampft, bis keine HCI-Dämpfe mehr wahrgenommen werden können. Durch Zugabe von KCI im Überschuss fällt gelber Niederschlag aus. Dieser wird abfiltriert, mit kaltem Wasser gewaschen und anschließend im Exsikkator getrocknet (vgl. Abbildung 11) (Vorschrift zur Synthese siehe [24]). Zur Charakterisierung des Produkts wurde ein Pulverdiffraktogramm in Transmissionsgeometrie aufgenommen. Es ergibt sich nach Gitterkonstantenverfeinerung eine kubische Elementarzelle mit a = 976,16(7) pm und V = 930,17(11) Å³ (Tabelle 54, im Anhang). In Abbildung 12 ist das gemessene Diffraktogramm gegen Literaturdaten mit den verfeinerten Gitterparametern aufgetragen.

Abbildung 11: Reines Kaliumhexachloroplatinat(IV) K₂[PtCl₆]

Abbildung 12: Pulverdiffraktogramm von K₂[PtCl₆] im Vergleich mit Literaturdaten von K₂[PtCl₆] [25] nach Verfeinerung der Gitterkonstanten

3.1.3 Synthese von H₂[Pt(OH)₆]

In ca. 10 g sehr heiße 30%ige NaOH werden 3 g K₂[PtCl₆] eingerührt und solange weiter erhitzt, bis sich alles gelöst hat. Nach Zugabe von 10 ml heißem Wasser wird abgekühlt und mit konz. Essigsäure ein pH-Wert von 5 eingestellt. Die blass-gelbe Fällung wird mit viel Wasser gewaschen (Glasfiltertiegel, Pore 4), bis der positive Nachweis von Cl⁻-Ionen mit AgNO₃-Lösung ausbleibt (Synthesevorschrift siehe [26]). Das an der Luft getrocknete Pulver muss schnellstmöglich verbraucht werden, da dieses bei erhöhten Temperaturen Wasser abgibt. Abbildung 13 zeigt die frisch hergestellte Verbindung.

Zur Charakterisierung des Produkts wurde ein Pulverdiffraktogramm in Transmissionsgeometrie aufgenommen. Es ergibt sich nach Gitterkonstantenverfeinerung der Reflexe eine monokline Elementarzelle in der Raumgruppe *C*2/*c* mit *a* = 846,9(4) pm, *b* = 719,0(3) pm, *c* = 744,1(5) pm, β = 93,71(4) und einem Zellvolumen von 452,2(6) Å³ (vgl.Tabelle 55, im Anhang). In Abbildung 14 ist das gemessene Pulverdiffraktogramm gegen die verfeinerten Gitterparameter aufgetragen. Im Vergleich ist zu erkennen, dass neben der erwünschten Phase noch eine fremde, unbekannte Phase zu finden ist, deren Reflexe mit einer Raute gekennzeichnet sind.

Abbildung 14: Pulverdiffraktogramm von H₂[Pt(OH)₆] im Vergleich mit Literaturdaten von H₂[Pt(OH)₆] [27] nach Verfeinerung der Gitterkonstanten

Zur weiteren Analyse wurde eine Thermoanalyse des Produkts durchgeführt (vgl. Abbildung 15), um anschließend den Rückstand zu untersuchen.

Abbildung 15: DTA/TG-Diagramm von H₂[Pt(OH)₆]

In Tabelle 3 sind die experimentell ermittelten Daten des thermischen Abbaus aufgelistet.

Tabelle 3: Daten zum thermischen Abbau von H ₂ [Pt(0)H) ₆]
---	--------------------

Stufe	T _{Beginn} /°C	T _{Ende} /°C	$\Delta m_{exp.}$ /%	$\Delta m_{calc.}$ /%	Abbauprodukt
I	25	105	1,8	-	-
II	105	270	17,6	-	-
111	270	678	14,2	-	Pt
Σ	25	678	33,6	34,8	Pt

In dem DTA/TG-Diagramm von H₂[Pt(OH)₆] sind ein exothermer (I), ein endothermer (II) und ein weiterer Schritt mit schleichendem Massenverlust und wechselnder Wärmetönung zu erkennen. Als Abbauprodukt bildet sich elementares Platin (vgl. Abbildung 16). Die einzelnen Produkte der Zersetzungsschritte wurden nicht weiter untersucht. Rechnerisch sind für diesen Abbau viele Zersetzungsprodukte möglich. Das System Pt/O/H₂O ist jedoch sehr schlecht charakterisiert, so dass keine zuverlässige Aussage über die Zwischenprodukte getroffen werden kann.

Abbildung 16: Pulverdiffraktogramm des DTA/TG Rückstandes der Zersetzung von H₂[Pt(OH)₆] im Vergleich mit Literaturdaten von elementarem Platin [28]

Das gemessene Pulverdiffraktogramm des Rückstandes der Zersetzung zeigt, dass bei der thermischen Zersetzung elementares Platin entsteht. Das legt die Vermutung nahe, dass es sich bei der Verunreinigung um eine unbekannte Platinoxid- bzw. Platinhydroxidphase handelt.

3.2 Grundlagen zu Nitratometallaten

Nitrate sind Salze der Salpetersäure. Letztere ist eine starke Säure und ein starkes Oxidationsmittel, die in großem Umfang (ca. 30×10⁶ t) hergestellt wird [29]. Sie gehört ebenso wie die Salzsäure HCI und Schwefelsäure H2SO4 zu den Mineralsäuren. Ein Gemisch aus einem Teil Salzsäure und drei Teilen Salpetersäure wird Königswasser genannt und ist in der Lage verschiedenste Edelmetalle, unter anderem Gold, zu lösen. Die Salze der Salpetersäure finden hauptsächlich Anwendung in der Landwirtschaft und als Bestandteil von Explosivstoffen. Bedenkt man die Bedeutung von Salpetersäure, so ist es verwunderlich, dass die Kristallstruktur von wasserfreier Salpetersäure erst 1951 aufgeklärt wurde [30]. Ebenso verwunderlich ist die Tatsache, dass nur wenige Kristallstrukturen von wasserfreien Nitraten bekannt sind. Hierbei handelt es sich meist um Verbindungen mit Alkali- oder Erdalkalimetallen. Dies mag die Motivation für C. C. Addison gewesen sein, sich mit der Chemie und Synthese wasserfreier Nitrate zu beschäftigen. Anfang der 1960er Jahre begann er mit der Nutzung von flüssigem N₂O₄ in Ethylacetat und im späteren Verlauf N₂O₅, um wasserfreie Nitrate zu erhalten [31]. Die erhaltenen Produkte wurden anfangs als N₂O₄-Addukte bezeichnet, da sich eine Charakterisierung der hochempfindlichen Verbindungen als schwierig erwies. In den folgenden Jahren konnte er jedoch über Röntgenstrukturanalyse zeigen, dass es sich um Nitrosylium- bzw. Nitryliumnitratometallate der allgemeinen Formel $(NO)_n[M^{m+}(NO_3)_{m+n}]$ bzw. $(NO_2)_n[M^{m+}(NO_3)_{m+n}]$ handelt. Diese können unter Abspaltung von Stickoxiden in die binären wasserfreien Verbindungen überführt werden. Diese elegante Nutzung Synthesemethode, komplexe anorganische Nitratometallate unter des Distickstoffpentoxids N₂O₅ darzustellen, wurde im Arbeitskreis von M. S. Wickleder aufgegriffen, um neue Nitratometallate zu untersuchen. Anfangs beschränkten sich die Arbeiten auf die komplexen Nitratometallate von Gold des Typs (NO)[Au(NO₃)₄] und $(NO_2)[Au(NO_3)_4]$ (vgl. Abbildung 17 und Abbildung 18) [4, 3].

Abbildung 17: Projektion der Elementarzelle von (NO)[Au(NO₃)₄] auf die (010)-Ebene

Abbildung 18: Kristalle von (NO)[Au(NO₃)₄]

Es konnte gezeigt werden, dass nicht nur ein thermischer Abbau der Verbindungen zum Metall führt, sondern auch die Reduktion durch einen Elektronenstrahl im Elektronenmikroskop. So konnten verschiedene Strukturen auf Siliciumwafer "geschrieben" werden (vgl. Abbildung 19) [3].

Abbildung 19: Mit einem Elektronenstrahl geschriebene Gold-Strukturen auf einem Si-Wafer [3] Aufgrund dieser Ergebnisse wurden die Untersuchungen ausgedehnt, um weitere komplexe Nitratometallate zu erhalten, die als potentielle Precursormaterialien über den thermischen Abbau Metalle bzw. Metalloxide in hoher Reinheit liefern sollten. Als Edukte wurden analog zur Synthese von (NO)[Au(NO₃)₄] die Elemente in Pulverform in Duranglasampullen oder in Schlenkkolben vorgelegt und mit einkondensiertem N₂O₅ umgesetzt. Bei diesen Reaktionen wurde zum Beispiel (NO)₂[Zn(NO₃)₄] erhalten [5] (vgl. Abbildung 20 und Abbildung 21).

Abbildung 21: Kristalle von (NO)₂[Zn(NO₃)₄]

Abbildung 20: Elementarzelle von (NO)₂[Zn(NO₃)₄], Projektion auf die (001)-Ebene

Bei der Reaktion von Re-Pulver mit N_2O_5 bildete sich dagegen (NO)[ReO₄] [7]. Hier fungierte N_2O_5 als Oxidationsmittel ohne Einführung von Nitratgruppen (vgl. Abbildung 22).

Abbildung 22: Elementarzelle von (NO)[ReO₄] entlang [100]

Als hinderlich bei der Züchtung von Einkristallen für die Röntgenstrukturanalyse erwies sich das enge Temperaturfenster (von Raumtemperatur - 100°C) in welchem das N₂O₅ sowohl als Edukt, als auch als Lösungsmittel dient. Dennoch war die Oxidation weiterer Elemente mit N₂O₅ zu Nitratometallaten erfolgreich. So lieferte die Reaktion von Kupfer mit N₂O₅ das Nitrosyliumnitratocuprat (NO)Cu(NO₃)₃ [5] (vgl. Abbildung 23).

Abbildung 23: Projektion der Kristallstruktur von (NO)Cu(NO₃)₃ auf die (001)-Ebene

Die Reaktion von elementarem Palladium mit Distickstoffpentoxid in einer abgeschmolzenen Duranglasampulle lieferte das Nitrosyliumtetranitratopalladat $(NO)_2[Pd(NO_3)_4]$ [4] (vgl. Abbildung 24 und Abbildung 25).

Abbildung 24: Elementarzelle von (NO)₂[Pd(NO₃)₄] entlang [010]

Dieses Synthesekonzept, die Umsetzung der Elemente in Pulverform mit Distickstoffpentoxid konnte jedoch nicht immer angewandt werden. Versuche zur Synthese von Nitrosyliumnitratoplatinat aus Platinpulver mit N₂O₅ in einer abgeschmolzenen Duranglasampulle führten auch bei erhöhten Temperaturen nicht zum Erfolg. Dementsprechend wurde versucht durch Variation des Edukts eine Reaktion zu erreichen. So wurde Platinschwarz, Platin-Pulver, verschiedene Alkalihexachloroplatinate A₂[PtCl₆], Alkalitetrachloroplatinate A₂[PtCl₄] und $Cs_2[Pt(NO_2)_4]$ in geschlossenen Duranglasampullen mit Distickstoffpentoxid umgesetzt, ohne eine Reaktion zu erzielen. Erst die Umsetzung von Hexahydroxoplatinsäure H₂[Pt(OH)₆] mit N₂O₅ in geschlossenen Glasampullen führte zu dem gewünschten Produkt (NO)₂[Pt(NO₃)₆] [4], auf welches im folgenden Teil eingegangen wird. Ein überraschendes Produkt lieferte die Umsetzung von Nickelpulver mit Distickstoffpentoxid in einem Schlenkkolben. Bei dieser Reaktion bildete sich kein einfaches Nitrosyliumnitratoniccolat, z. B. (NO)₂[Ni(NO₃)₄], sondern eine kompliziert aufgebaute Struktur der Formel (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ [5], die sich strukturell durch eine Vielzahl von Besonderheiten auszeichnet. Auch diese Struktur wird im folgenden Teil diskutiert. Allen Nitroysliumnitratometallaten ist gemein, dass sie sich durch eine reichhaltige Strukturchemie auszeichnen. In den bisher veröffentlichten Strukturen von Nitrosyliumnitratometallaten werden eine Vielzahl von Verknüpfungsmodi beobachtet, auf welche nun eingegangen werden soll. Der Koordinationsmodus des NO3--Ions kann in den meisten Strukturen bis μ_3 gehen. Beispiele mit höherer Koordinationszahl (bis 9 [32]), sind

nur in den Nitraten der Elemente Hg, Pb, Bi, Sb und Sn bekannt und werden daher hier nicht graphisch dargestellt und diskutiert. Die Nomenklatur sowie die Beispiele der Koordinationsmodi wurden aus [32] übernommen und sind in Abbildung 26 dargestellt.

Abbildung 26: Koordinationsmodi von NO₃⁻-Gruppen nach [32]

Im Modus M¹, M² und M³: greift das NO₃⁻-Ion einzähnig an ein, zwei bzw. drei Metallatome an. Daraus resultiert eine μ_2 - bzw. μ_3 -Verbrückung der Metalle.

Zu mindestens einem zweizähnig chelatisierenden Angriff kommt es in den Modi B⁰¹ und B¹¹. Für den B⁰¹-Modus wird zusätzlich zwischen zweizähnig *asymmetrisch* chelatisierend und zweizähnig *symmetrisch* chelatisierend unterschieden (vgl. Abbildung 26). B¹¹ bezeichnet den Modus in welchem ein Metallzentrum zweizähnig chelatisierend und eines einzähnig angegriffen wird. Ein Sauerstoff Atom ist gleichzeitig sowohl an einem einzähnigen als auch einem zweizähnigen Angriff beteiligt.

Im Koordinationsmodus B^2 werden zwei Metallzentren koordiniert. Dieser Modus wird nur dahingehend unterschieden, in welcher relativen Position sich die beiden Metallzentren zueinander befinden. In allen Fällen, also *anti-anti*, *syn-anti* und *syn-syn* ist der Verbrückungsmodus μ_2 .

Im Modus T¹¹ kommt es sowohl zu einem zweizähnig chelatisierenden als auch zu einem einzähnigen Angriff auf ein Metallatom analog zu Modus B¹¹. Der Unterschied ist hier, dass der einzähnige Angriff durch ein Sauerstoffatom geschieht, welches nicht an der zweizähnigen Koordination beteiligt ist. T⁰² bezeichnet den Modus in dem ein NO₃⁻-Ion μ_2 -verbrückend zweifach chelatisierend angreift. T²¹ und T³ sind μ_3 -verbrückende Modi. Der Unterschied zwischen diesen beiden ist der, dass es in Modus T²¹ außer des zweifach einzähnigen Angriffes auf zwei Metallzentren zu einem zweizähnig chelatisierenden Angriff kommt. In T³ ist jedes Sauerstoffatom des NO₃⁻-Ions einzähnig an ein Metall koordiniert.

Die in der Literatur beschriebenen Kristallstrukturen von Nitrosylium- $((NO)^{+})$ und Nitryliumnitratometallaten $((NO_2)^{+})$ sind in den folgenden Tabellen aufgeführt und nach ihrer Dimensionalität geordnet. In Tabelle 4 und Tabelle 5 sind die Verbindungen nach Anzahl der koordinierenden Nitratgruppen sortiert.

		MEEID	Oxidations-	Anzahl	davon zweizähnig	
Verbindung	ECoN		stufe des	NO₃ [−] -	chelatisierende	Literatur
		/pm	Metalls	lonen	NO₃ ⁻ -Ionen	
$(NO)_2[Pt(NO_3)_6]$	6,0	60,2	+4	6	0	[4]
$(NO)[Zr(NO_3)_5]$	9,9	86,5	+4	5	5	[33]
$(NO_2)[Zr(NO_3)_5]$	9,9	85,3	+4	5	5	[34]
$(NO)[Hf(NO_3)_5]$	9,8	84,7	+4	5	5	[33]
$(NO)_2[Ho(NO_3)_5]$	9,9	100,5	+3	5	5	[35]
$(NO)_2[AI(NO_3)_5]$	5,8	94,9	+3	5	6	[33]
$(NO)_2[Ga(NO_3)_5]$	5,0	53,1	+3	5	0	[33]
		68,3				
$(NO_2)[Fe(NO_3)_4]$	7,9	-	+3	4	4	[34]
		69,3				
(NO ₂)[Ga(NO ₃) ₄]	4,0	48,8	+3	4	0	[36]
(NO)[Au(NO ₃) ₄]	4,0	59,2	+3	4	0	[4]
(NO ₂)[Au(NO ₃) ₄]	4,0	59,3	+3	4	0	[3]
	5,4	66,8				
$(NO)_2[Co(NO_3)_4]$	-	-	+2	4	2	[37]
	6,2	71,2				
$(NO)_2[Zn(NO_3)_4]$	4,9	62,3	+2	4	2	[5]
$(NO)_2[Pd(NO_3)_4]$	4,0	61,0	+2	4	0	[4]
$(NO)_2[Be(NO_3)_4]$	4,0	22,8	+2	4	0	[38]

Tabelle 4: Komplexe Nitrosylium- und Nitryliumnitratometallate

Die Werte für die effektive Koordinationszahl (Effective Coordination Number, ECoN) und für den mittleren fiktiven Ionenradius (Mean Fictive Ionic Radii, MEFIR) wurden mit Hilfe des Programmes MAPLE [19] berechnet. Interessanterweise ordnet sich das Nitrosyliumnitratoplatinat (NO)₂[Pt(NO₃)₆] an der Spitze der Tabelle ein. Das außergewöhnlichste Merkmal dieser Verbindung ist, dass das Maximum an ein Metall gebundener NO₃⁻-Gruppen bei einem verhältnismäßig kleinen Ionenradius realisiert wird. Ebenfalls wird die höchste Oxidationsstufe innerhalb der komplexen Nitratometallate erreicht. Vergleicht man (NO)₂[Pt(NO₃)₆] mit dem gruppenhomologen (NO)₂[Pd(NO₃)₄], so ist auffällig, dass hier das Palladium nur zweiwertig vorliegt. Ein Grund hierfür könnte an der Wahl von Pd-Pulver als Edukt liegen. Im Fall der Synthese von (NO)₂[Pt(NO₃)₆] aus H₂[Pt(OH)₆] wurde von einer vierwertigen Pt-Spezies ausgegangen. Eindimensionale Strukturen der Nitrosyliumnitratometallate sind in der Literatur nicht zu finden. Diese Dimensionalität wird erst erreicht, wenn noch weitere nicht an das Metall koordinierende NO₃⁻-Gruppen in der Kristallstruktur vorliegen würden. Somit ist $(NO)_6[(Ni_4(NO_3)_{12})](NO_3)_2 \cdot HNO_3$ die erste Verbindung eines eindimensional verknüpften Nitratometallates mit $(NO)^+$ als Gegenionen. Die gesamte Struktur wird im folgenden Teil beschrieben. Zur vollständigen Übersicht sollen hier noch die zweidimensional verknüpften Nitratometallate mit aufgeführt werden (vgl. Tabelle 5).

Verbindung	ECoN	MEFIR /pm	Oxidationsstufe des Metalls	Anzahl NO₃ ⁻ - Ionen	davon chelatisierende NO₃ [−] -Ionen	Literatur
(NO)Mn(NO ₃) ₃	5,5 - 6,9	80,5	+2	5	1 (Mn2) 2 (Mn1)	[37]
(NO)Cu(NO ₃) ₃	4,1	55,4	+2	5	0	[5]

Tabelle 5: Nitrosyliumnitratometallate mit Ver	rknüpfung der Metalle in zwei Dimensionen
--	---

Dreidimensional verknüpfte Strukturen sind in der Literatur nicht beschrieben. Für die Beschreibung des Aufbaus von dreidimensionalen Strukturen der Nitrosyliumnitratometallate soll an dieser Stelle auf die Dissertation von Katja Rieß [33] verwiesen werden.

3.3 Das Nitratoplatinat (NO)₂[Pt(NO₃)₆]

3.3.1 Synthese von (NO)₂[Pt(NO₃)₆]

In einer Glasampulle (I = 200 mm, \emptyset = 16 mm) wurden 103 mg frisch hergestellte Hexahydroxoplatin(IV)-säure (H₂[Pt(OH)₆]) vorgelegt und anschließend unter Kühlung der Vorlage im Ethanol-Stickstoff-Bad N₂O₅ einkondensiert. Nach Abschmelzen der Ampulle und Reaktion bei Raumtemperatur bildeten sich im Verlauf von einer Woche gelbe Kristalle (siehe Abbildung 27). Unter inertem Öl konnten die sehr hydrolyseempfindlichen Kristalle präpariert und auf dem Einkristalldiffraktometer Bruker κ Apex 2 gemessen werden.

Abbildung 27: Lichtmikroskopische Aufnahme der Kristalle von (NO)₂[Pt(NO₃)₆]

3.3.2 Kristallstruktur von (NO)₂[Pt(NO₃)₆]

 $(NO)_{2}[Pt(NO_{3})_{6}]$ kristallisiert im monoklinen Kristallsystem in der Raumgruppe $P2_{1}/c$ mit zwei Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $(NO)_{2}[Pt(NO_{3})_{6}]$ sind in Tabelle 6 zusammengefasst.

Kristallsystem	monoklin	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀>2 <i>σ</i> (<i>I</i> ₀)):	0,0259; 0,0698
Raumgruppe	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)	R1; wR2 (alle Daten):	0,0356; 0,0731
Gitterparameter	<i>a</i> = 711,38(2) pm	Restelektronendichte:	-2,284 e⁻/ų
	<i>b</i> = 934,96(3) pm		3,972 e ⁻ /ų
	<i>c</i> = 1156,68(4) pm		
	β = 107,559(2)°		
Z	2	ICSD-Nr.:	423405
Zellvolumen	733,48 (4) Å ³		

Tabelle 6: Kristallographische Daten von (NO)₂[Pt(NO₃)₆]

In der Kristallstruktur von $(NO)_2[Pt(NO_3)_6]$ wird das Pt⁴⁺- Ion verzerrt oktaedrisch von sechs Sauerstoffatomen koordiniert. Die Abstände Pt-O liegen einheitlich bei etwa 200 pm (vgl. Tabelle 7). Diese Sauerstoffatome gehören zu drei kristallographisch unterscheidbaren, einzähnig angreifenden Nitratgruppen N(1)O₃⁻, N(2)O₃⁻ und N(3)O₃⁻ (Abbildung 28).

	Tabelle 7: Interatomare	Abstände Pt	t-O und Winkel	O-Pt-O in	[Pt(NO ₃) ₆] ²
--	-------------------------	-------------	----------------	-----------	---

Abstand Pt-O		Winkel O-Pt-O			
Pt1 – 011	200,5(2) pm	O11 – Pt1 – O21	100,92(8)°		
Pt1 – O21	200,1(2) pm	O11 – Pt1 – O31	78,48(8)°		
Pt1 – O31	200,7(2) pm	O21 – Pt1 – O31	101,17(8)°		

Die Winkel innerhalb des Oktaeders liegen zwischen 78,48(8)° und 101,17(8)° (vgl. Tabelle 7) und weichen somit um 10° vom idealen Oktaederwinkel ab. Das Platinion besetzt die spezielle Wyckofflage 2*b*, während sich alle anderen Atome in der asymmetrischen Einheit auf allgemeinen Lagen befinden. Durch das Inversionszentrum wird das komplexe $[Pt(NO_3)_6]^{2-}$ -Anion erzeugt (Abbildung 28).

Abbildung 28: Verzerrt oktaedrische Koordination des zentralen Pt-Atoms im komplexen [Pt(NO₃)₆]²⁻-Ion Für vierwertiges Platin in einer oktaedrischen Oxidumgebung ist in der Literatur übereinstimmend ein Abstand Pt-O von 195(3) pm bis 202(2) pm mit Winkeln O-Pt-O im Bereich von 90,0(9)° bis 94,3(9)° in Pt(P₂O₇) zu finden [39].

Innerhalb der Nitratgruppen liegen die Abstände N-O für die an das Pt-koordinierten Sauerstoffatome zwischen 133,4(3) pm und 134,8(4) pm und sind somit mehr als 10 pm länger als die Abstände N-O zu den terminalen Sauerstoffatomen (119,9(3) pm bis 123,1(4) pm, vgl. Tabelle 8). Diese Bindungssituation wird auch in [32] für den Modus M¹ beobachtet.

Abstän	de N-O	Abstände NO (terminal)					
(koordir	nierend)	Abstande N-O (terminal)					
N1-O11	133,4(3)	N1-O12	121,4(3)	N2-O22	121,2(3)	N3-O32	119,9(3)
N2-O21	133,7(3)	N1-O13	122,0(3)	N2-O23	122,2(5)	N3-O33	123,1(4)
N3-O31	134,8(4)						

Tabelle 8: Interatomare Abstände N-O in den Nitratgruppen des [Pt(NO₃)₆]²⁻-lons (alle Abstände in pm)

Die negative Ladung des komplexen $[Pt(NO_3)_6]^{2-}$ -Anions wird durch Nitrosyliumionen, $(NO)^+$, ausgeglichen. Innerhalb der asymmetrischen Einheit tritt nur ein NO⁺-Ion auf, welches die allgemeine Wyckofflage Lage 4*e* besetzt. Der Abstand N-O innerhalb des Ions liegt bei 102,9(4) pm und somit im Bereich für bekannte Nitrosyliumverbindungen [40]. Betrachtet man die Koordination der Nitrosylium-Hantel unter Annahme einer positiven Teilladung des Stickstoffatoms, so findet sich eine verzerrt pentagonal-pyramidale Koordination für das NO⁺-Ion mit Abständen N-O von 250,7(3) pm bis 271,9(4) pm (vgl. Tabelle 9 und Abbildung 29).

Tabelle 9: Interatomare Abstände N-O in der Koordinationssphäre des NO⁺-lons in (NO)₂[Pt(NO₃)₆] (alle Abstände in pm)

Abstar	nd N-O	Abstand N-O		Abstand N-O	
N4-O12	261,9(3)	N4-O22	250,7(3)	N4-O33	261,9(4)
N4-O13	271,9(4)	N4-O31	268,6(4)		

Abbildung 29: Verzerrt pentagonal-pyramidale Koordination des N-Atoms im NO⁺-Ion in (NO)₂[Pt(NO₃)₆]

In Abbildung 30 ist eine Projektion der Kristallstruktur von $(NO)_2[Pt(NO_3)_6]$ auf die (101)-Ebene dargestellt.

Abbildung 30: Projektion der Kristallstruktur von (NO)₂[Pt(NO₃)₆] auf die (101)-Ebene

3.3.3 Thermischer Abbau von (NO)₂[Pt(NO₃)₆]

3.3.3.1 DTA/TG-Untersuchungen

In der Stickstoff-Handschuh-Box wurden 9 mg der Substanz in einen Korundtiegel eingewogen und im DTA/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. Der thermische Abbau von (NO)₂[Pt(NO₃)₆] stellt sich als ein zweistufiger Prozess dar, dessen Stufen in Abbildung 31 gezeigt und in Tabelle 10 aufgelistet werden.

Abbildung 31: DTA/TG-Diagramm von (NO)₂[Pt(NO₃)₆]

Da es nicht möglich war, die Substanz ohne Zersetzung komplett vor der thermischen Analyse von N₂O₅ zu befreien, wurde zur Auswertung der DTA/TG Daten die anhaftende Menge von N₂O₅ herausgerechnet. So wurden 37,5% des Masseverlustes nicht mit in die Kalkulation einbezogen. Wird nun der Teil von 81°C bis 550°C betrachtet, so erkennt man eine sehr gute Übereinstimmung der berechneten mit den beobachteten Messdaten. Der im DTA-Experiment beobachtete Zersetzungspunkt von PtO₂ weicht mit 445°C um ca. 100 °C von dem in der Literatur verzeichneten Wert > 350°C ab [41]. Für diese Verbindung findet man jedoch auch einen Schmelz- und nicht Zersetzungspunkt von 450°C [42]. Einer theoretischen Analyse zufolge sollte der Abbau von PtO₂ zu Pt₃O₄ ab ungefähr 476°C beginnen [43]. Dieses konnte mit dieser thermischen Analyse nicht bestätigt werden.

Stufe	T _{Beginn} /°C	T _{Ende} /°C	Δm _{exp.} /%	$\Delta m_{calc.}$ /%	Abbauprodukt
	25	81	37,5		anhaftendes N ₂ O ₅
I	81	379	64,0	63,8	PtO ₂
II	445	550	5,1	5,1	Pt
Σ	81	550	69,1	68,9	Pt

Tabelle 10: Daten zum thermischen Abbau von $(NO)_2[Pt(NO_3)_6]$

3.3.3.2 Pulverdiffraktometrische Untersuchung des Rückstandes der Zersetzung von (NO)₂[Pt(NO₃)₆]

Der Rückstand der DTA/TG-Untersuchung wurde mittels Pulverdiffraktometrie untersucht und als phasenreines, elementares Platin identifiziert. Dazu wurde der Rückstand nach dem Verreiben auf Adhäsivfolie aufgebracht und ein Pulverdiffraktogramm in Transmissionsgeometrie aufgenommen. Es ergaben sich für die Gitterkonstanten nach Verfeinerung der fünf auftretenden Reflexe (vgl. Tabelle 56 im Anhang) a = 392,63(6) pm mit einem Zellvolumen von 60,528(15) Å³ in der Raumgruppe *Fm*-3*m* im kubischen Kristallsystem. In Abbildung 32 ist das gemessene Pulverdiffraktogramm unter Verwendung der verfeinerten Gitterparameter gegen Literaturdaten aufgetragen. Neben elementarem Platin sind keine weiteren Phasen zu erkennen.

Abbildung 32: Pulverdiffraktogramm des DTA/TG-Rückstandes von (NO)₂[Pt(NO₃)₆] im Vergleich mit der Simulation aus Literaturdaten [28] von elementaren Platin nach Verfeinerung der Gitterkonstanten

3.3.4 Diskussion

Bei (NO)₂[Pt(NO₃)₆] handelt es sich um das erste bekannte Nitrat des vierwertigen Platins. Im Folgenden soll es mit den bisher bekannten nulldimensionalen Nitrosyliumnitratometallen verglichen werden (vgl. Tabelle 4). Unter diesen nimmt (NO)₂[Pt(NO₃)₆] eine Sonderstellung ein, denn es weist unter den bekannten nulldimensionalen Nitratometallaten die höchste Anzahl an einzähnig koordinierenden Nitratliganden pro Metallzentrum auf. Im Vergleich mit dem gruppenhomologen $(NO)_2[Pd(NO_3)_4]$ zeigt sich außerdem, dass sich für Platin eine weitaus höhere Oxidationszahl und damit verbunden eine höhere Anzahl an einzähnig koordinierten Nitratgruppen erreichen lässt. Hier gilt es zu untersuchen, ob es daran liegt, dass $(NO)_2[Pt(NO_3)_6]$ ausgehend aus einem Pt(IV)-Edukt synthetisiert wurde, oder ob sich die Oxidationsstufe +IV für Pd unter den gegebenen Bedingungen nicht stabilisieren lässt. Weitere Versuche zur Synthese eines (NO)₂[Pd(NO₃)₄]-analogen Pt-Nitrats wären hier wünschenswert. Wenn die Darstellung gelänge, könnten durch Komproportionierungsreaktionen ungewöhnliche Oxidationsstufen synthetisch zugänglich gemacht werden. (NO)₂[Pt(NO₃)₆] zeigt eine moderate Zersetzungstemperatur von 550°C und könnte als Precursor zur kontaminationsfreien Abscheidung von elementarem Platin dienen. Untersuchungen zur Pt-Abscheidung analog zur Goldabscheidung über einen Elektronenstrahl [3] wären ein weiteres Forschungsprojekt. Wenn dies gelänge, könnte man durch Kombination beider Precursoren definierte Pt/Au Legierungen erzeugen, z. B. für den Erhalt nanoskaliger Pt/Au-Thermoelemente.

3.4 Das komplexe Nickelnitrat (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

3.4.1 Synthese von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

In einer Glasampulle (I = 200 mm, \emptyset = 16 mm) wurden 108 mg Nickelpulver vorgelegt und anschließend unter Kühlung der Vorlage mit einem Ethanol-Stickstoff-Gemisch N₂O₅ einkondensiert. Die abgeschmolzene Ampulle wurde in einem Röhrenofen 48 Stunden bei 100°C gehalten und anschließend innerhalb von 100 Stunden auf Raumtemperatur abgekühlt. Unter inertem Öl konnten die sehr hydrolyseempfindlichen grünen Kristalle (siehe Abbildung 33) präpariert und auf dem Einkristalldiffraktometer Bruker κ Apex 2 gemessen werden.

Abbildung 33: Lichtmikroskopische Aufnahme der Kristalle von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

3.4.2 Kristallstruktur von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

 $(NO)_{6}[Ni_{4}(NO_{3})_{12}](NO_{3})_{2}$ ·HNO₃ kristallisiert in der azentrischen chiralen Raumgruppe $P2_{1}2_{1}2_{1}$ im orthorhombischen Kristallsystem mit vier Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $(NO)_{6}[Ni_{4}(NO_{3})_{12}](NO_{3})_{2}$ ·HNO₃ sind in Tabelle 11 zusammengefasst.

Kristallsystem	orthorhombisch	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀ >2 <i>σ</i> (<i>I</i> ₀)):	0,0398; 0,0762
Raumgruppe	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (Nr. 19)	R1; wR2 (alle Daten):	0,0841; 0,0856
Gitterparameter	<i>a</i> = 1167,68(4) pm	Restelektronendichte:	-0,323 e⁻/ų
	<i>b</i> = 1791,97(6) pm		1,451 e ⁻ /ų
	<i>c</i> = 1834,11(6) pm		
Z	4	ICSD-Nr.:	422792
Zellvolumen	3837,8(2) Å ³	Flack-X:	0,16(2)

Tabelle 11: Kristallographische Daten vor	n (NO)6[Ni4(NO3)12](NO3)2-HNO3
---	--------------------------------

In der Kristallstruktur von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ liegen vier kristallographisch unterscheidbare Ni²⁺-Ionen vor, die von jeweils einer chelatisierend und vier einzähnig angreifenden Nitratgruppen koordiniert werden. Dadurch ist jedes Ni²⁺-Ion verzerrt oktaedrisch von sechs Sauerstoffatomen umgeben. Die so aufgebauten [NiO₆]-Oktaeder bilden ein kantenverknüpftes Dimer (vgl. Abbildung 34), das sich in Richtung [100] über die Verknüpfung durch Nitratgruppen unendlich fortsetzt.

Abbildung 34: [Ni₂O₁₀]-Oktaederdoppel mit NO₃⁻-Umgebung in (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

Die Abstände Ni-O liegen zwischen 200,8(5) pm und 210,0(5) pm (vgl. Tabelle 12). Die Verzerrung der [NiO₆]-Oktaeder äußert sich am stärksten in den Winkeln O-Ni-O, die von den chelatisierend angreifenden Nitratgruppen erzeugt werden. Diese liegen im Bereich von $62,2(2)^{\circ}-63,2(2)^{\circ}$, was eine starke Abweichung von idealen 90° bedeutet. Demgegenüber sind die Winkel Ni-O-Ni mit Beteiligung der verbrückenden Sauerstoffatome aufgeweitet und liegen in der Spanne von 105,8(2)° bis 108,1(2)°. Ähnliche experimentelle Befunde für Abstände Ni-O wurden auch in [44] gemacht.

Abstand Ni-O		Winkel O-Ni-O	
Ni1 – O11	207,9(5) pm	O11 – Ni1 – O12	62,5(2)°
Ni1 – O12	205,6(5) pm	O21 – Ni2 – O22	63,2(2)°
Ni2 – O21	207,3(5) pm	O211 – Ni1 – O121	72,9(2)°
Ni2 – O22	206,6(5) pm	O211 – Ni2 – O121	73,2(2)°
Ni1 – O121	206,3(5) pm	011 – Ni1 – 0121	111,5(2)°
Ni2 – 0121	206,0(5) pm	O21 – Ni2 – O121	175,2(2)°
Ni1 – O211	203,7(5) pm	O11 – Ni1 – O211	175,3(2)°
Ni2 – O211	202,4(4) pm	O21 – Ni2 – O211	111,4(2)°
Ni2 – 051	205,8(5) pm	052 – Ni1 – 062	177,6(2)°
Ni1 – 052	207,9(5) pm	051 – Ni2 – 061	176,3(2)°
Ni1 – O62	206,4(5) pm	O21 – Ni2 – O51	87,1(2)°
Ni2 – 062	207,7(5) pm	052 – Ni1 – O11	85,2(2)°

Tabelle 12: Interatomare	Abstände Ni-O	und Winkel	O-Ni-O in dem	Donnelstrang	¹ [Ni(NO ₂) _{1/4}	NO2)4/2]2
Tabelle 12. Interatornale	Abstanue M-0			Dopperstraing		103/4/2/25

Das "Doppelstrangmotiv" aus kantenverknüpften [NiO₆]-Oktaedern kann am besten mit der Niggli-Formel ${}^{1}_{\infty}{[Ni(NO_3)_{1/1}(NO_3)_{4/2}]_2}^{2-}$ beschrieben werden (vgl. Abbildung 35). Es liegen zwei kristallographisch unterscheidbare Doppelstränge vor, die sich in den Bindungslängen und -winkeln jedoch wenig unterscheiden. Der Übersichtlichkeit halber werden deswegen an dieser Stelle nur die interatomaren Abstände und Winkel eines Dimers aufgeführt.

Abbildung 35: Doppelstrang aus kantenverknüpften [NiO₆]-Oktaedern in der Struktur von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

Die koordinierenden Nitratgruppen in dieser Struktur können in drei Gruppen unterteilt werden. Zur Einordnung der Nitratgruppen soll an dieser Stelle die Terminologie von Morozov verwendet werden [32]. Zum einen wird jedes Ni²⁺-Ion durch eine zweizähnig chelatisierend angreifende Nitratgruppe koordiniert (B⁰¹). Hier liegt der Abstand Ni-O im Bereich von 205,6(5) pm bis 210,0(5) pm. Die zweite Gruppe besteht aus zwei einzähnig angreifenden Nitratgruppen, welche die Ni²⁺-Ionen Ni1 und Ni2 bzw. Ni3 und Ni4 untereinander verknüpfen. Diese Nitratgruppen lassen sich am besten mit dem Modus M² beschreiben. Der Abstand Ni-O liegt hier im Bereich von 202,4(4) pm bis 206,3(5) pm. Die dritte Gruppe bilden die Nitratgruppen, die die Dimere verknüpfen. Sie zeigen Abstände Ni-O von 202,3(5) pm bis 207,9(5) pm. Ihr Verknüpfungsmodus ist B² in der *anti-anti* Position. Die zwei kristallographisch unterscheidbaren Doppelstränge bilden in der *ab*-Ebene eine "Zick-Zack"-Schicht. Die Stapelung der Schichten erfolgt entlang der kristallographischen *c*-Achse (vgl. Abbildung 36).

Abbildung 36: Projektion der Kristallstruktur von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ auf die (100)-Ebene

Zwischen diesen Schichten befinden sich nicht koordinierende NO₃⁻⁻ und NO⁺-Ionen, welche für den Ladungsausgleich sorgen. Der Abstand N-O für die zwei kristallographisch unterscheidbaren, zwischen den Doppelsträngen liegenden NO₃⁻⁻-Ionen liegen im Bereich von 123,8(8) pm bis 130,2(8) pm und so in Übereinstimmung mit der Literatur [4, 32]. Die Winkel O-N-O für die NO₃⁻⁻-Gruppen liegen zwischen 117,1(6)° und 122,1(7)°. Für die sechs NO⁺-Ionen finden sich N-O-Abstände von 96,3(9) pm bis 111,4(9) pm, die im literaturbekannten Bereich liegen [40]. Darüber hinaus lässt sich zwischen den Doppelsträngen ein HNO₃-Molekül anhand der beobachteten Bindungslängen N-O identifizieren (vgl. Abbildung 37 bzw. Tabelle 13).

Abbildung 37: HNO₃-Molekül in der Struktur von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

Tabelle	13:	Interatomare	Abstände	N-O	und	0-Н	im	HNO ₃ -Molekül	in	der	Struktur	von
(NO)₀[Ni⊿	₄ (NO 3)	12](NO ₃) ₂ -HNO ₃	, XeF ₂ ·HNO ₃	und H	NO ₃							

$(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2 \cdot HNO_3$		XeF ₂ ·HNO ₃ [45]		HNO ₃ [46]	
N11 – O111	139,8(8) pm	N11 – O111	136,8(2) pm	N11 – O111	133,77 pm
N11 – O112	125,7(8) pm	N11 – O112	121,6(2) pm	N11 – O112	123,59 pm
N11 – O113	120,7(9) pm	N11 – O113	120,6(2) pm	N11 – O113	119,94 pm
O111 – H111	84,0 pm	O111 – H111	83,27 pm	O111 – H111	85,46 pm

Im HNO₃-Molekül sind zwei kurze Abstände N-O mit 120,7(9) pm (N11-O111) und 125,7(8) pm (N11-O112) zu finden. Mit 139,8(8) pm (N11-O113) liegt eine stark elongierte N-O Bindung vor, was formal für eine Einfachbindung zwischen N11 und O113 spricht. Diese Bindungssituation ist ein Hinweis auf eine –OH-Gruppe an N11, was sich im Vergleich mit in der Literatur beschriebenen Salpetersäureaddukten und wasserfreier Salpetersäure bestätigt (vgl. Tabelle 13) [45, 46].

3.4.3 Diskussion

Die Synthese von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ wurde unter Einsatz von elementarem Nickelpulver durchgeführt. Hier ist nun zu klären, wie das zur Entstehung des Salpetersäuremoleküls nötige Wasser in die Reaktionsmischung eingebracht wurde. Das Einkondensieren von N₂O₅ in die Glasampulle ist eine Möglichkeit zur H₂O-Kontamination Spuren von Feuchtigkeit in der Ampulle eine andere. Deswegen muss versucht werden, (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ in einer definierten Reaktion, zum Beispiel ausgehend von Ni(NO₃)·6H₂O im großen Maßstab zu reproduzieren. Nichtsdestoweniger handelt es sich bei (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ um eine bemerkenswerte Verbindung, die neben einer Vielzahl realisierter Koordinationsmodi der Nitratgruppen auch in der Kristallstruktur vorliegende Salpetersäuremoleküle aufweist. In der Reihe der Nitrosyliumnitratometallate handelt es sich bei dieser Verbindung um das erste eindimensionale Nitrosyliumnitratometallat. Die in der Literatur beschriebenen Nitrosylium- bzw. Nitryliumnitratometallate liegen entweder in Form isolierter Komplexe (vgl. 3.3), als zweidimensionale Schichtstruktur ((NO)Cu(NO₃)₃ [5] bzw. (NO)Mn(NO₃)₃ [37]) oder wie im Falle der Nitrosyliumnitratometallate der Lanthanoide als hochvernetzte dreidimensionale Struktur ((NO)₃SE(NO₃)₉ [33]) vor. In diesem Zusammenhang sollte in weiteren Untersuchungen die Frage geklärt werden, welche Faktoren die Ausbildung von null-, ein-, zwei- bzw. dreidimensionalen Strukturen beeinflusst. Der Vollständigkeit halber wäre auch für diese Verbindung der thermische Abbau zu untersuchen. Dieser konnte aufgrund mangelnder kristalliner Ausbeute dieser Reaktion nicht durchgeführt werden.

3.5 Grundlagen zu Methansulfonaten

Die Methansulfonsäure CH₃SO₃H ist eine farb- und geruchlose starke einprotonige Säure (pKs= -1,9 [47]). Sie ist ein Derivat der Schwefelsäure H₂SO₄, in der formal eine Hydroxygruppe durch eine Methylgruppe ersetzt wurde. Die resultierende Säure ist in jedem Verhältnis mit Wasser mischbar. Verbindungen mit dem CH₃SO₃-Anion werden Methansulfonate genannt. Erste Methansulfonate wurden von F. Charbonnier et al. Mitte der 1970er dargestellt und strukturell untersucht. Dennoch bietet sich auch heute noch ein sehr lückenhaftes Bild wasser- und säurefreier Methansulfonate. Diese findet man mit (NH_4^+) [48], Na⁺ [49], Cs⁺ [50], Ag⁺ [51], Hg⁺ [52], Ca²⁺ [53], Ba²⁺ [54] und Yb³⁺ [55] als Gegenion. Im Bereich der Methansulfonate mit Refraktärmetallen und in Kombination mit Uran sind noch folgende Strukturen zu nennen: (MoO₂)(CH₃SO₃)₂, (UO₂)(CH₃SO₃)₂, (ReO₃)(CH₃SO₃), (VO)(CH₃SO₃)₂ [6]. Erweitert man die Suche auf wasser- und säurehaltige Methansulfonate, so lassen sich in der Literatur (UO₂)(CH₃SO₃)₂·H₂O [56], ScOH(CH₃SO₃)₂ [57], $[Sc(H_2O)_6][Sc(CH_3SO_3)_6]$ [58], Mg(CH_3SO_3)_2·12H_2O [59], M(CH_3SO_3)_3·2H_2O (mit M = La, Nd, M)) Er) [60], Cd(CH₃SO₃)₂·2H₂O [61] und M(CH₃SO₃)₂·4H₂O (mit M=Cu, Zn) [62] finden. Dies verwundert, in Anbetracht des massiven Einsatzes von reiner Methansulfonsäure als Elektrolyt und ihrer Verbindungen in der Galvanik zur Abscheidung von Metallen auf Oberflächen. Hier zeichnet sich die Methansulfonsäure durch verschiedene, für elektrochemische Anwendungen positive Eigenschaften aus, die andere Elektrolyte, wie z.B. Schwefelsäure nicht aufweisen. Zum einen sei hier die gute Löslichkeit von Methansulfonaten in Wasser bzw. in wässrigen Methansulfonsäurelösungen (vgl. Tabelle 14) und die nicht oxidativen Eigenschaften der konzentrierten Säure zu nennen. Sie sind der Grund für die breite Anwendung von CH₃SO₃H im Bereich der Elektrochemie.

Metallkation	-methansulfonat	-sulfat	–chlorid
NH_4^+	6,83	8,17	5,06
Li ⁺	7,06	4,90	9,37
Na⁺	5,65	2,78	5,57
K ⁺	4,48	1,25	3,86
Mg ²⁺	1,40	2,63	5,02
Ca ²⁺	2,92	0,03	5,51
Sr ²⁺	2,55	0	3,04
Ba ²⁺	1,59	0	1,71
Mn ²⁺	2,90	3,52	4,12
Co ²⁺	2,53	2,16	3,87
Ni ²⁺	2,13	2,44	4,38
Cu ²⁺	2,00	1,35	4,87

Tabelle 14: Löslichkeit verschiedener Metallkationen als –methansulfonat, –sulfat und –chlorid in wässriger Lösung bei 22°C in mol/l [63]

+			
Agʻ	3,72	0,06	0
Zn ²⁺	2,16	3,32	13,0
Cd ²⁺	3,20	3,10	5,71
Sn ²⁺	3,73	1,42	4,91
Hg ²⁺	1,81	0	0,24
Pb ²⁺	2,60	0	0,03

In Anbetracht der intensiven Nutzung von Methansulfonaten in der Galvanik ist es wünschenswert dieses lückenhafte Wissen um die Struktur von Methansulfonaten zu verbessern. Hierbei interessieren vor allem die in der Galvanik relevanten Metalle Sn, Pb, Co, Ni, Zn, Cd und Hg, deren Struktur und thermisches Verhalten im folgenden Teil beschrieben wird.

3.6 Synthese der Methansulfonate und Methansulfonat-Methansulfonsäureaddukte

In einer Glasampulle (I = 300 mm, Ø = 16 mm) wurde das Metall in elementarer Form oder als Verbindung vorgelegt und wasserfreie CH₃SO₃H hinzugegeben. Nach Abschmelzen der Ampulle wurde diese in einem Röhrenofen einem definiertem Temperaturprogramm unterzogen. Einwaagen der Metalle und eingesetzte Methansulfonsäure sowie die Eckdaten des Temperaturprogrammes sind in Tabelle 15 zu finden.

Verbindung	Metall (-Verbindung)	CH₃SO₃H	Temperaturprogramm	Kapitel
Cd(CH ₃ SO ₃) ₂	50 mg Cd	2 ml	140°C (72h) 140°C → 25°C (120h)	3.7
Pb(CH ₃ SO ₃) ₂	282 mg PbO_2	2 ml	140°C (48h) 140°C → 25°C (80h)	3.8
$Hg(CH_3SO_3)_2$	231 mg HgO	3 ml	140°C (48h) 140°C → 25°C (125h)	3.8
Sn(CH ₃ SO ₃) ₂	160 mg Sn	1 ml	125°C (48h) 125°C → 25°C (125h)	3.9
$Cd(CH_3SO_3)_2(CH_3SO_3H)_2$	110 mg Cd	2 ml	140°C (48h) 140°C → 25°C (80h)	3.10
$Zn(CH_3SO_3)_2(CH_3SO_3H)_2$	97 mg Zn	2 ml	140°C (48h) 140°C → 25°C (80h)	3.11
$Co(CH_3SO_3)_2(CH_3SO_3H)_2$	100 mg Co	2 ml	140°C (48h) 140°C → 25°C (80h)	3.11
$Ni(CH_3SO_3)_2(CH_3SO_3H)_2$	63 mg Ni	3 ml	140°C (48h) 140°C → 25°C (80h)	3.12
$Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$	204 mg	2 ml	125°C (48h) 125°C → 25°C (125h)	3.13

Tabelle 15: Parameter der Synthesen der vorgestellten Verbindungen

3.7 Das Cadmiummethansulfonat Cd(CH₃SO₃)₂

3.7.1 Kristallstruktur von Cd(CH₃SO₃)₂

 $Cd(CH_3SO_3)_2$ kristallisiert in der zentrosymmetrischen Raumgruppe I2/a im monoklinen Kristallsystem mit vier Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $Cd(CH_3SO_3)_2$ sind in Tabelle 16 zusammengefasst. Abbildung 38 zeigt Kristalle der Verbindung.

Kristallsystem	monoklin	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀>2 <i>σ</i> (<i>I</i> ₀)):	0,0170; 0,0424
Raumgruppe	<i>l</i> 2/ <i>a</i> (Nr. 15)	R1; wR2 (alle Daten):	0,0174; 0,0425
Gitterparameter	<i>a</i> = 976,34(6) pm	Restelektronendichte:	-0,894 e ⁻ /ų
	<i>b</i> = 899,84(4) pm		0,894 e ⁻ /ų
	<i>c</i> = 993,59(4) pm		
	$\beta = 117,634(1)^{\circ}$		
Z	4	CCDC-Nr.:	863591
Zellvolumen	773,34(7) Å ³		

Tabelle 16: Kristallographische Daten von Cd(CH₃SO₃)₂

Abbildung 38: Aufnahmen der Kristalle von Cd(CH₃SO₃)₂

In der Struktur von $Cd(CH_3SO_3)_2$ liegt kristallographisch gesehen ein Cd^{2+} -Ion auf der speziellen Wyckoff-Lage 4e der Raumgruppe *I*2/*a*. Dieses wird von sechs einzähnig angreifenden $CH_3SO_3^-$ -Ionen oktaedrisch umgeben (vgl. Abbildung 39). Dabei liegen die Abstände Cd-O im Bereich von 224,93(8) pm bis 227,72(9) pm, was gut mit den Literaturwerten übereinstimmt [64]. Eine komplette Auflistung der Winkel O-Cd-O und Abstände Cd-O ist in Tabelle 17 zu finden.

Abbildung 39: Koordination des Cd²⁺-lons in der Kristallstruktur von Cd(CH₃SO₃)₂

Tabelle 17: Interatomare Abstände Cd-O und Winkel O-Cd-O in der Struktur von Cd(CH₃SO₃)₂

Abstände S-O		Winkel O-Cd-	0
Cd1 – O11	224,93(8) pm	O11 – Cd1 – O11	87,99(5)°
Cd1 – O12	225,58(8) pm	O11 – Cd1 – O12	93,88(4)°
Cd1 – O13	227,72(9) pm	O11 – Cd1 – O13	95,36(3)°
		O12 – Cd1 – O13	87,96(3)°

Ebenso liegt in der Kristallstruktur ein kristallographisch unterscheidbares CH₃SO₃⁻-Ion vor. Dieses greift dreizähnig-verknüpfend an drei Cd1-Atome an (vgl. Abbildung 40). Die Abstände S-O und S-C sind in Tabelle 18 verzeichnet und liegen im Literaturbekannten Bereich [6]

Abstände S-O /pm		Abst	and S-C /pm
S1-O11	146,30(8)	S1-C1	175,36(11)
S1-O12	145,70(8)		
S1-O13	145,83(9)		

Abbildung 40: Umgebung des CH₃SO₃⁻-Ions in Cd(CH₃SO₃)₂

Durch diese dreizähnige Verknüpfung kommt es zur Ausbildung einer dreidimensionalen Struktur, die mit der Niggli-Formel ${}^{3}_{\infty}$ {Cd(CH₃SO₃)_{6/3}} beschrieben werden kann. Eine Projektion von Cd(CH₃SO₃)₂ auf die (010)-Ebene ist in Abbildung 41 dargestellt.

Abbildung 41: Projektion der Kristallstruktur von Cd(CH₃SO₃)₂ auf die (010)-Ebene

3.7.2 Pulverdiffraktometrische Untersuchung von Cd(CH₃SO₃)₂

Ein Pulverdiffraktogramm von Cd(CH₃SO₃)₂ wurde in Debye-Scherrer Geometrie aufgenommen. Mit 18 Reflexen aus dem experimentellen Diffraktogramm wurde eine Gitterkonstantenverfeinerung durchgeführt, deren Ergebnisse in Tabelle 57 aufgelistet sind. Aus der Verfeinerung ergab sich eine innenzentrierte monokline Elementarzelle mit folgenden Gitterparametern: a = 981,2(4) pm, b = 903,2(5) pm, c = 1004,8(4) pm, $\beta = 118,24(2)^{\circ}$ und einem Volumen von 784,5(9) Å³. Mit den verfeinerten Parametern wurde das Pulverdiffraktogramm erneut simuliert. Abbildung 42 zeigt das gemessene und das simulierte Diffraktogramm der Verbindung. Neben den Reflexen, die zu Cd(CH₃SO₃)₂ gehören, tauchen weitere schwache Reflexe auf, die mit einer blauen Raute # gekennzeichnet wurden. Diese zuzüglichen Reflexe konnten keiner bekannten Cd-Phase zugeordnet werden.

Abbildung 42: Pulverdiffraktogramm von Cd(CH₃SO₃)₂ im Vergleich mit der Simulation aus Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten

3.7.3 Thermischer Abbau von Cd(CH₃SO₃)₂

3.7.3.1 DSC/TG-Untersuchungen

Cd(CH₃SO₃)₂ wurde in der Stickstoff-Handschuh-Box mit Ethylacetat gewaschen. 3,4 mg dieser Probe wurde in einen Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. Abbildung 43 zeigt den thermischen Abbau dessen Auswertung in Tabelle 19 aufgeführt ist.

Abbildung 43: DSC/TG-Diagramm von Cd(CH₃SO₃)₂

Cd(CH₃SO₃)₂ zersetzt sich zwischen 416 °C und 475 °C in zwei endothermen Schritten, die jedoch nicht aufgelöst werden konnten. Als Intermediat liegt ab 475 °C CdS in der Modifikation Greenokit vor, was über Pulverdiffraktometrie (vgl. Kap. 3.7.3.2) nachgewiesen wurde. Die Abbauprodukte der thermischen Zersetzung wurden über den Stickstoffstrom komplett aus dem Tiegel ausgetrieben, so dass kein Rückstand zur Untersuchung zur Verfügung stand. Leider liegen keinerlei verlässliche Quellen für die Schmelzpunkte bzw. Sublimationspunkte von CdS vor.

Tabelle 19: Daten zum thermischen Abbau von $Cd(CH_3SO_3)_2$

Stufe	T _{Beginn} /⁰C	T _{Ende} /°C	Δm _{exp.} /%	$\Delta m_{calc.}$ /%	Abbauprodukt
	416	475	51,4	52,3	CdS
П	720	1050	48,6		-
Σ			100		-

3.7.3.2 Pulverdiffraktometrische Untersuchung des Intermediats (T = 500 °C) des thermischen Abbaus von Cd(CH₃SO₃)₂

Intermediat der DSC/TG-Untersuchung Das von $Cd(CH_3SO_3)_2$ wurde mittels Pulverdiffraktometrie untersucht und als phasenreines CdS in der Modifikation des Greenokits (Wurtzit-Typ) identifiziert. Dazu wurde der Rückstand nach Verreiben auf eine Adhäsivfolie aufgebracht und ein Pulverdiffraktogramm in Transmissionsgeometrie aufgenommen. Es ergaben sich nach Verfeinerung der indizierten Reflexe (vgl. Tabelle 58 im Anhang) eine primitiv hexagonale Zelle mit a = 414,33(6) pm und c = 672,46(8) pm und einem Zellvolumen von 99,98(3) Å³ (Raumgruppe $P6_3mc$). In Abbildung 44 ist das gemessene Diffraktogramm gegen die verfeinerten Gitterparameter aus den Literaturdaten aufgetragen.

Abbildung 44: Pulverdiffraktogramm des Intermediats (T = 500 °C) beim Abbau von Cd(CH₃SO₃)₂ im Vergleich mit der Simulation aus Literaturdaten [65] von CdS (Greenokit) mit verfeinerten Gitterkonstanten

3.8 Die isotypen Methansulfonate Pb(CH₃SO₃)₂ und Hg(CH₃SO₃)₂

3.8.1 Kristallstruktur von Pb(CH₃SO₃)₂ und Hg(CH₃SO₃)₂

 $Pb(CH_3SO_3)_2$ und $Hg(CH_3SO_3)_2$ kristallisieren in der azentrischen polaren Raumgruppe *Pca*2₁ im orthorhombischen Kristallsystem mit vier Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $Pb(CH_3SO_3)_2$ sind in Tabelle 20, jene von $Hg(CH_3SO_3)_2$ in Tabelle 21 zusammengefasst. Abbildung 45 und Abbildung 46 zeigen Kristalle der Verbindungen.

Kristallsystem	orthorhombisch	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀ >2 <i>σ</i> (<i>I</i> ₀)):	0,0284; 0,0676
Raumgruppe	<i>Pca</i> 2 ₁ (Nr. 29)	R1; wR2 (alle Daten):	0,0313; 0,0685
Gitterparameter	<i>a</i> = 1424,4 (1) pm	Restelektronendichte:	-1,563 e⁻/ų
	<i>b</i> = 531,49(5) pm		1,868 e⁻/ų
	<i>c</i> = 2012,2(2) pm		
Z	4	CCDC-Nr.	837835
Zellvolumen	1523,4(2) Å ³	Flack-X:	0,127(8)

Tabelle 20: Kristallographische Daten von Pb(CH₃SO₃)₂

Tabelle 21: Kristallographische Daten von Hg(CH₃SO₃)₂

Kristallsystem	orthorhombisch	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀>2 <i>σ</i> (<i>I</i> ₀)):	0,0342; 0,0867
Raumgruppe	<i>Pca</i> 2 ₁ (Nr. 29)	R1; wR2 (alle Daten):	0,0388, 0,0875
Gitterparameter	<i>a</i> = 1457,35(9) pm	Restelektronendichte:	-1,677 e⁻/ų
	<i>b</i> = 503,96(2) pm		2,709 e⁻/ų
	<i>c</i> = 1990,8(1) pm		
Z	4	CCDC-Nr.	837836
Zellvolumen	1462,1(1) Å ³	Flack-X:	0,50(2)

Abbildung 45: Aufnahmen der Kristalle von Pb(CH₃SO₃)₂

Abbildung 46: Aufnahmen der Kristalle von Hg(CH₃SO₃)₂

In den Strukturen liegen zwei kristallographisch unterscheidbare M²⁺-Ionen (Pb1 und Pb2 respektive Hg1 und Hg2) vor. Die interatomaren Abstände M-O liegen im Bereich von 246,4(5) pm bis 303,6(6) pm für das Pb²⁺-Methansulfonat und für das Hg²⁺-Methansulfonat im Bereich von 213,8(11) pm bis 286,1(10) pm (vgl. Tabelle 22). In der Literatur werden für die Abstände Pb-O in Pb(SO₄) [66] 255,03 - 303,45 pm und für die Abstände Hg-O in Hg(SO₄) [67] von 209,23(2) pm - 288,84(2) pm beobachtet. Beide Strukturen lassen sich trotz der unterschiedlichen Ionenradien ihrer Metalle mit der gleichen Niggli-Formel ${}^2_{\infty}$ {M(CH₃SO₃)_{2/2}(CH₃SO₃)_{4/4}} beschreiben.

Ab	stand M-O	Abstand M-O		
Pb1 – 011	248,2(6) pm	Pb2 – O21	246,3(6) pm	
Pb1 – O12	248,6(5) pm	Pb2 – O23	253,2(6) pm	
Pb1 – O31	258,2(5) pm	Pb2 – O31	287,0(5) pm	3)2
Pb1 – O32	303,6(6) pm	Pb2 – O32	255,9(6) pm	So
Pb1 – O33	271,8(6) pm	Pb2 – O33	285,7(5) pm	(CH
Pb1 – O41	263,4(5) pm	Pb2 – O41	272,8(5) pm	Pb(
Pb1 – O42	247,6(5) pm	Pb2 – O42	293,3(6)pm	
		Pb2 – O43	259,1(5)pm	
Hg1 – O11	219,5(11) pm	Hg2 – O12	252,3(9) pm	
Hg1 – O12	286,1(10) pm	Hg2 – O13	253,7(8) pm	
Hg1 – O13	258,3(13) pm	Hg2 – O31	274,6(12) pm	03)2
Hg1 – O21	228,1(10) pm	Hg2 – O32	213,8(11) pm	H ₃ S
Hg1 – O22	222,6(12) pm	Hg2 – O33	279,5(10) pm	lg(C
Hg1 – O31	254,3(9) pm	Hg2 – O41	214,6(10) pm	I
Hg1 – O33	249,9(8) pm	Hg2 – O43	255,2(11)pm	

Tabelle 22: Interatomare Abstände M-O in der Struktur von Pb(CH₃SO₃)₂ und Hg(CH₃SO₃)₂

Im Weiteren sollen die Kristallstrukturen am Beispiel des Hg²⁺-Methansulfonats beschrieben werden. Hg1 wird von fünf CH₃SO₃⁻-Ionen einzähnig und von einem CH₃SO₃⁻-Ion zweizähnig chelatisierend koordiniert. Für Hg2 findet man ebenso fünf einzähnig und ein zweizähnig chelatisierend angreifendes CH₃SO₃⁻-Ion.

Abbildung 47: Koordination der Hg²⁺-Ionen (Hg1 links, Hg2 rechts) in der Kristallstruktur von Hg(CH₃SO₃)₂ Die resultierende Koordinationssphäre kann man als verzerrte pentagonale Bipyramide beschreiben. In der Struktur liegen vier kristallographisch unterscheidbare CH₃SO₃⁻-Ionen vor, gekennzeichnet durch die Schwefelatome S1 bis S4. Die CH₃SO₃⁻-Ionen S2 und S4 verknüpfen jeweils zwei Hg1-Atome (S2) bzw. zwei Hg2-Atome (S4) zweizähnig-verbrückend miteinander (vgl. Abbildung 48).

Abbildung 48: Umgebung der CH₃SO₃⁻-Ionen S2 (links) und S4 (rechts) in Hg(CH₃SO₃)₂

Die beiden CH₃SO₃⁻-Ionen S1 und S3 verknüpfen jeweils vier Hg²⁺-Ionen miteinander (vgl. Abbildung 49). Das CH₃SO₃⁻-Ion S1 greift hierbei einmal zweizähnig-chelatisierend an ein Hg1-Atom an. Zwei Hg2- und ein Hg1-Atom werden noch dreizähnig-verbrückend

angegriffen. Das CH₃SO₃⁻-Ion S3 koordiniert ebenfalls zweizähnig chelatisierend an ein Hg2-Atom. Weiterhin werden zwei Hg1- und ein Hg2-Atome dreizähnig verbrückt.

Abbildung 49: Umgebung der CH₃SO₃⁻-Ionen S1 (links) und S3 (rechts) in Hg(CH₃SO₃)₂

Die Abstände S-O und S-C in den CH₃SO₃⁻-Ionen S1 bis S4 der isotypen Verbindungen sind in Tabelle 23 aufgelistet.

Abstände S-O /pm	Abstände S-C /pm	Abstände S-O /pm	Abstände S-O /pm	
S1-O11 146,6(12)	S1-C1 180(2)	S3-O31 147,2(12)	S3-C3 174(2)	
S1-O12 146,8(9)		S3-O32 147,3(12)		3)2
S1-O13 147,3(11)		S3-O33 146,9(10)		Sos
S2-O21 148,2(12)	S2-C2 172,2(16)	S4-O41 148,3(11)	S4-C4 177,4(14)	CH)
S2-O22 151,9(12)		S4-O42 142,7(13)		Hg
S2-O23 145,7(12)		S4-O43 144,8(11)		
S1-O11 148,5(6)	S1-C1 175,6(8)	S3-O31 146,7(5)	S3-C3 176,8(9)	
S1-O12 147,7(6)		S3-O32 147,8(6)		3)2
S1-O13 145,4(6)		S3-O33 146,5(5)		SOS
S2-O21 148,0(6)	S2-C2 173,6(9)	S4-O41 147,6(5)	S4-C4 175,6(10)	CH
S2-O22 145,3(6)		S4-O42 146,8(5)		Pb(
S2-O23 147,5(6)		S4-O43 146,3(6)		

Wie an der Niggli-Formel ${}^{2}_{\infty}$ {M(CH₃SO₃)_{2/2}(CH₃SO₃)_{4/4}} zu erkennen ist, ergibt sich eine Schichtstruktur. Die Schichten bilden sich in der *ab*-Ebene und werden entlang der kristallographischen c-Achse gestapelt. Die daraus resultierende Stapelung lässt sich am besten mit einer AB-Abfolge der Schichten beschreiben. In Abbildung 50 ist eine Projektion der Struktur von Hg(CH₃SO₃)₂ auf die (010)-Ebene gezeigt. Mit rot sind die Polyeder von Hg1 und mit orange die Polyeder von Hg2 als Zentralteilchen hervorgehoben.

Abbildung 50: Projektion der Kristallstruktur von Hg(CH₃SO₃)₂ auf die (010)-Ebene

Um beide Strukturen vergleichen zu können, wurden Berechnungen mit MAPLE 4 durchgeführt. Die Ergebnisse der Rechnungen sind in Tabelle 24 aufgeführt. Sie zeigen, dass trotz Isotypie der Verbindungen Unterschiede bestehen. Diese sind zum einen in der Koordinationszahl und zum anderen in der effektiven Koordinationszahl deutlich zu erkennen. Beide Werte sind für die Pb²⁺-Verbindung eindeutig höher berechnet. Der Ionenradius des Hg²⁺-Ions ist hingegen kleiner als in der Literatur angegeben [68].

Tabelle 24: Ergebnisse der MAPLE	4-Rechnungen für die Strukturen vo	on Pb(CH ₃ SO ₃) ₂ und Hg(CH ₃ SO ₃) ₂
----------------------------------	------------------------------------	--

Atom	Koordinationszahl	ECoN	MEFIR /pm
Pb1	7	6,0540	111,04
Pb2	8	6,6500	112,31
Hg1	7	4,9020	83,27
Hg2	7	3,5817	79,30

Die höhere Koordinationszahl für Pb1 und Pb2 äußert sich in der Umgebung eines CH₃SO₃⁻-Ions S3, welches zweimal zweizähnig-chelatisierend und zweimal zweizähnig-verbrückend an jeweils ein Pb1 und ein Pb2-Atom koordiniert (vgl. Abbildung 51).

Abbildung 51: Umgebung des CH₃SO₃⁻-lons S3 in Pb(CH₃SO₃)₂

Weitere strukturelle Unterschiede sind in den Verbindungen anhand der Koordinationspolyeder zu sehen, die alle eine starke Verzerrung aufweisen. In der Struktur des Pb(CH₃SO₃)₂ wirkt sich das freie Elektronenpaar nicht als strukturell dirigierender, wenn auch als strukturverzerrender, Ligand aus. Dieser Effekt tritt ebenso in anderen Pb²⁺-Verbindungen mit komplexen Oxoanionen wie PbSO₄ oder dem kürzlich vorgestellten Pb[S₃O₁₀] auf [66, 69].

3.8.2 Pulverdiffraktometrische Untersuchung von Pb(CH₃SO₃)₂ und Hg(CH₃SO₃)₂

Ein Pulverdiffraktogramm von Pb(CH₃SO₃)₂ wurde in Debye-Scherrer Geometrie aufgenommen um die Phasenreinheit der Probe zu überprüfen. Aus dem gemessenen Pulverdiffraktogramm wurden 38 Reflexe ausgewählt und anhand dieser eine Gitterkonstantenverfeinerung für Pb(CH₃SO₃)₂ durchgeführt, deren Ergebnisse in Tabelle 59 im Anhang aufgelistet sind. Es ergab sich eine primitiv orthorhombische Elementarzelle mit a = 1430,62(11) pm, b = 533,40(13) pm, c = 2020,80(16) pm und einem Volumen von 1542,1(5) Å³ in der Raumgruppe *Pca*2₁. Mit den verfeinerten Gitterkonstanten wurde das Pulverdiffraktogramm aus Einkristallstrukturdaten erneut simuliert. Abbildung 52 zeigt das gemessene Pulverdiffraktogramm, aufgetragen gegen das simulierte.

Abbildung 52: Pulverdiffraktogramm von Pb(CH₃SO₃)₂ im Vergleich mit der Simulation aus Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten

Ebenso wurde ein Pulverdiffraktogramm von Hg(CH₃SO₃)₂ in Debye-Scherrer Geometrie aufgenommen. Aus dem gemessenen Pulverdiffraktogramm wurden 62 Reflexe ausgewählt und anhand dieser eine Gitterkonstantenverfeinerung durchgeführt, deren Ergebnisse in Tabelle 60 im Anhang aufgelistet sind. Es ergab sich eine primitiv orthorhombische Elementarzelle mit *a* = 1459,4(8) pm, *b* = 504,2(2) pm, *c* = 1991,4(5) pm und einem Volumen von 1465,4(12) Å³ in der Raumgruppe *Pca*2₁. Mit den verfeinerten Gitterkonstanten wurde das Pulverdiffraktogramm aus Einkristallstrukturdaten erneut simuliert. Abbildung 53 zeigt das gemessene Pulverdiffraktogramm aufgetragen gegen das simulierte. Bei diesem Diffraktogramm ist auffällig, dass es einen starken Unterschied zwischen der simulierten und der experimentellen Intensitätsverteilung besteht. Trotzdem zeigt sich anhand des Pulverdiffraktogramms, dass die Verbindung phasenrein dargestellt wurde. Der Grund für die unterschiedliche Intensitätsverteilung konnte nicht vollständig geklärt werden. Vermutlich wurde der Basisreflex durch eine Vorzugsorientierung der Kristallite zu häufig gemessen.

Abbildung 53: Pulverdiffraktogramm von Hg(CH₃SO₃)₂ im Vergleich mit der Simulation aus Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten

3.8.3 Thermischer Abbau von Pb(CH₃SO₃)₂

3.8.3.1 DSC/TG-Untersuchungen

Zur Präparation der Probe wurde ein Ansatz von Pb(CH₃SO₃)₂ in der Stickstoff-Handschuh-Box mit Ethylacetat gewaschen um noch anhaftende Säure vom Reaktionsprodukt zu trennen. Nach Trocknung der Probe wurden 12 mg Probensubstanz in einen Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. Abbildung 54 zeigt den Abbau, Tabelle 25 die Auswertung der DSC/TG-Daten.

Der thermische Abbau von Pb(CH₃SO₃)₂ verläuft über ein Intermediat. Dieses wurde in sehr guter Übereinstimmung mit den berechneten Masseverlusten, pulverdiffraktometrisch als PbS identifiziert (vgl. 3.8.3.2). Der Rückstand der Zersetzung stellte sich als ein Gemisch aus Pb und PbS heraus, wie pulverdiffraktometrische Untersuchungen zeigen (vgl. 3.8.3.3). Es ist zu erkennen, dass die thermische Zersetzung bei 1050°C noch nicht abgeschlossen ist, da die TG-Kurve noch kein Plateau erreicht hat. Dies würde erklären, warum ein Produktgemisch als Rückstand der thermischen Zersetzung erhalten wird. Warum sich das gebildete PbS zersetzt ist ungeklärt. In [70] ist nur der Schmelzpunkt der Verbindung von 1114°C verzeichnet. Hier muss geklärt werden, ob die Zersetzung aus der spezifischen

Zusammensetzung der Probe resultiert, oder ob in [70] dieser Zersetzungspunkt nicht mit aufgeführt wurde.

Bei 310°C ist ein endothermer Schritt in der DSC-Kurve zu erkennen, dem kein gleichzeitiger Masseverlust zuzuordnen ist. Entweder wird es sich hier um den Schmelzpunkt der Verbindung oder einer Phasenumwandlung handeln. Hierzu wurden jedoch keine weiteren Untersuchungen durchgeführt.

Abbildung 54: DSC/TG-Diagramm von Pb(CH₃SO₃)₂

Tabelle 25: Daten zum therm	ischen Abbau von	Pb(CH ₃ SO ₃) ₂
-----------------------------	------------------	---

Stufe	T _{Beginn} /⁰C	T _{Ende} /°C	$\Delta m_{exp.}$ /%	$\Delta m_{calc.}$ /%	Abbauprodukt	
I	380	460	40,1	39,8	PbS	
П	609	719	1,5			
III	750	1050	43,3			
Σ			84,9		PbS + Pb	

3.8.3.2 Pulverdiffraktometrische Untersuchung des Intermediates der thermischen Analyse von Pb(CH₃SO₃)₂ bei 500°C

Das Intermediat der thermischen Zersetzung bei 500°C wurde mit Hilfe eines Pulverdiffraktogrammes identifiziert und stellte sich als PbS heraus. Die Gitterkonstantenverfeinerung von zehn Reflexen ergab für PbS unter Annahme einer flächenzentrierten kubische Elementarzelle eine Gitterkonstante von a = 594,43(5) pm und ein Volumen von 210,04(3) Å³. Das Diffraktogramm wurde erneut aus Einkristallstrukturdaten simuliert und mit den experimentellen Befunden in Abbildung 55 dargestellt. Tabelle 61 im Anhang zeigt die Ergebnisse der Verfeinerung.

Abbildung 55: Pulverdiffraktogramm des Intermediats des thermischen Abbaus von Pb(CH₃SO₃)₂ bei 500°C im Vergleich mit der Simulation aus Literaturdaten [71] nach Verfeinerung der Gitterkonstanten

3.8.3.3 Pulverdiffraktometrische Untersuchung des Zersetzungsrückstandes von Pb(CH₃SO₃)₂

Das Abbauprodukt der thermischen Zersetzung wurde mit Hilfe eines Pulverdiffraktogrammes identifiziert. Der Rückstand stellte sich als eine Mischung von Pb (ca. 5%) und PbS (ca. 95%) heraus. Das Mischungsverhältnis wurde mit [21] aus den experimentellen Pulverdaten bestimmt. Die Gitterkonstantenverfeinerung von sechs Reflexen ergab für Pb eine flächenzentrierte kubische Elementarzelle mit a = 495,41(6) pm und einem Volumen von 121,59(3) Å³. Mit den verfeinerten Gitterkonstanten wurde das Pulverdiffraktogramm aus Einkristallstrukturdaten simuliert. Tabelle 62 zeigt die Ergebnisse der Verfeinerung und in Abbildung 56 werden das experimentelle Diffraktogramm und die Simulation gezeigt. Die Abbildung stellt auch die Simulation nach Verfeinerung der Gitterkonstanten für PbS dar. Die Verfeinerung der zehn Reflexe für PbS ergibt als Ergebnis eine flächenzentrierte kubische Elementarzelle mit a = 593,66(7) pm und einem Volumen von 209,23(4) Å³. In Tabelle 63 im Anhang sind die Parameter der Verfeinerung aufgelistet.

Abbildung 56: Pulverdiffraktogramm des Zersetzungsrückstandes von Pb(CH₃SO₃)₂ im Vergleich mit der Simulation aus Literaturdaten [71, 72] nach Verfeinerung der Gitterkonstanten

3.8.4 Thermischer Abbau von Hg(CH₃SO₃)₂

3.8.4.1 DSC/TG-Untersuchungen

Hg(CH₃SO₃)₂ wurde in der Stickstoff-Handschuh-Box mit Ethylacetat gewaschen um noch anhaftende Säure vom Reaktionsprodukt zu trennen was nicht vollständig gelang. Nach Trocknung der Probe wurden 3 mg Probensubstanz in einem Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. Abbildung 57 zeigt die thermische Zersetzung von Hg(CH₃SO₃)₂.

Abbildung 57: DSC/TG-Diagramm von Hg(CH₃SO₃)₂

In Tabelle 26 sind die Daten zum vorgeschlagenen Abbau von $Hg(CH_3SO_3)_2$ verzeichnet.

Stufe	T _{Beginn} /⁰C	T _{Ende} /°C	Δm _{exp.} /%	$\Delta m_{calc.}$ /%	Abbauprodukt
	65,5	198	4,5	-	Säure
I	270	317	44,2	48,6	Hg
П	317	495	100	100	-
Σ	270	495	100	100	-

Tabelle 26: Daten des thermischen Abbaus von Hg(CH₃SO₃)₂

Die DSC-Kurve des thermischen Abbaus von Hg(CH₃SO₃)₂ zeigt bei 270°C ein starkes endothermes Signal. Dieses ist dem Zersetzungspunkt der Verbindung zuzuordnen. In der DTG-Kurve ist dieses Signal in zwei Signale aufgespalten. Als Endprodukt des ersten Zersetzungsschrittes wird elementares Quecksilber angenommen. Dieses siedet bei einer Temperatur von 356,73°C [73] und erklärt somit das zweite DTG-Signal bei der Temperatur von 346°C und den Verlust der kompletten Probe durch Austrag des Quecksilbers. Diese Verbindung zeigt insgesamt einen ebenso komplexen Abbau wie Hg₂(CH₃SO₃)₂ [52].

3.9 Das Zinnmethansulfonat Sn(CH₃SO₃)₂

3.9.1 Kristallstruktur von Sn(CH₃SO₃)₂

 $Sn(CH_3SO_3)_2$ kristallisiert in der azentrischen chiralen Raumgruppe $P4_32_12$ im tetragonalen Kristallsystem mit vier Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $Sn(CH_3SO_3)_2$ sind in Tabelle 27 zusammengefasst. Die Kristalle der Verbindung sind in Abbildung 58 gezeigt.

Kristallsystem	tetragonal	R1; wR2 (I₀>2σ(I₀)):	0,0130; 0,0320
Raumgruppe	<i>P</i> 4 ₃ 2 ₁ 2 (Nr. 96)	R1; wR2 (alle Daten):	0,0133; 0,0321
Gitterparameter	a = 745,94(2) pm	Restelektronendichte:	-0,619 e ⁻ /ų
	<i>b</i> = 745,94(2) pm		0,476 e⁻/ų
	<i>c</i> = 1397,68(4) pm		
Ζ	4	CCDC-Nr.:	795638
Zellvolumen	777,71(4) Å ³	Flack-X:	0,01(1)

Tabelle 27: Kristallographische	Daten von	Sn(CH ₃ SO ₃) ₂
---------------------------------	-----------	---

Abbildung 58: Aufnahmen der Kristalle von Sn(CH₃SO₃)₂

In der Kristallstruktur von Sn(CH₃SO₃)₂ liegt das Sn²⁺-Ion auf der Wyckoff-Lage 4*a* und wird von vier CH₃SO₃⁻-Ionen auf allgemeiner Lage (8*b*) koordiniert. Die Verbindung lässt sich am besten mit der Niggli-Formel ${}^{3}_{\infty}$ {Sn(CH₃SO₃)_{4/2}} beschreiben d.h. jedes CH₃SO₃⁻-Ion verknüpft zwei Sn²⁺-Ionen miteinander (vgl. Abbildung 59).

Abbildung 59: Koordination des CH₃SO₃⁻-Ions (links) in der Kristallstruktur von Sn(CH₃SO₃)₂

Jedes CH₃SO₃⁻-Ion greift dabei jeweils einmal einzähnig bzw. zweizähnig chelatisierend an ein Sn²⁺-Ion an (Abbildung 59). Dabei liegt die in Tabelle 28 aufgeführte Bindungssituation für das CH₃SO₃⁻-Ion vor. In der Literatur sind vergleichbare Werte für Methansulfonationen beschrieben [6].

Abstände S-O /pm		Abstand S-C /pm	
S1 - O1	149,84(8)	S1 - C1	175,32(11)
S1 - O2	144,72(9)		
S1 - O3	146,41(9)		

Die Sn²⁺-Ionen werden ihrerseits von vier $CH_3SO_3^-$ -Ionen koordiniert (vgl. Abbildung 60).

Abbildung 60: [4+2]-Koordination des Sn²⁺-lons in der Kristallstruktur von Sn(CH₃SO₃)₂

Hierbei liegen die Abstände Sn-O zwischen 219,23(8) pm und 299,1(1) pm und sind somit vergleichbar mit den literaturbekannten Werten [74, 75]. Die Winkel O-Sn-O liegen im Bereich von 52,70(3)° bis 177.60(3)°. Alle Bindungslängen und -winkel sind Tabelle 29 zu entnehmen.

Tabelle 29: Interatomar	e Abstände Sn-O	und Winkel O-Sn-0	O in der Struktur vo	n Sn(CH ₃ SO ₃) ₂
-------------------------	-----------------	-------------------	----------------------	---

Abstand Sn-O		Winkel O-Sn-O		
Sn1 – O1	219,23(8) pm	O1 – Sn1 – O1	79,10(4)°	
Sn1 – O3	241,23(9) pm	O3 – Sn1 – O3	153,27(4)°	
Sn1 – O2	299,08(9) pm	O2 – Sn1 – O2	177,60(3)°	
		O1 – Sn1 – O2	52,70(3)°	
		O1 – Sn1 – O3	78,36(3)°	
		O2 – Sn1 – O3	100,06(3)°	

Die Koordinationssphäre des Sn²⁺-Ions lässt sich am besten mit einer [4+2]-Koordination beschreiben (vgl. Abbildung 60). Die mit 299,08(9) pm elongierten Sn(1)-O(2) Abstände sind hier durch gestrichelte Linien gekennzeichnet. Insgesamt ergibt sich eine dreidimensionale Verknüpfung (vgl. Abbildung 61). Auffällig ist, dass das Sn²⁺-Ion keine "abgeschlossene" Koordinationssphäre zeigt. Die Ursache dafür ist das freie Elektronenpaar des Sn²⁺-Ions. Der Raumanspruch eines freien Elektronenpaares wird mit jenem eines Oxid- oder Fluoridanions im Abstand von 95 pm zum Sn²⁺ abgeschätzt [76, 77].

Abbildung 61: Projektion der Kristallstruktur von Sn(CH₃SO₃)₂ auf die (100)-Ebene

Zur weiteren Charakterisierung von $Sn(CH_3SO_3)_2$ wurden neben pulverdiffraktometrischen Untersuchungen der Phasenreinheit und Identifikation der Produkte des thermischen Abbaus auch theoretische Analyse (3.9.2) und Mößbauerspektroskopie durchgeführt (3.9.3).

3.9.2 Theoretische Analyse der Struktur von Sn(CH₃SO₃)₂

Um ein besseres Verständnis für den Aufbau dieser Struktur zu erhalten, wurden theoretische Analyse in der Arbeitsgruppe von Prof. Klüner (Universität Oldenburg) im Rahmen der Bachelorarbeit von M. Fabian durchgeführt [78]. Zunächst wurde unter Annahme eines abgesättigten "Monomers" der Verbindung eine Geometrieoptimierung und anschließend die Berechnungen auf MP2-Niveau durchgeführt. Der Basissatz 6-31G* wurde für alle Wasserstoff-, Kohlenstoff-, Sauerstoff- und Schwefelatome gewählt. Für das Zinn-Ion wurde mit dem Basissatz cc-pVDZ-PP gerechnet um relativistische Effekte zu berücksichtigen. In Abbildung 62 ist das experimentell gefundene Monomer im Vergleich mit der theoretisch berechneten Struktur abgebildet. Zur Vereinfachung des Vergleichs wurde dieselbe Atombezeichnung gewählt. Tabelle 30 fasst die Ergebnisse der theoretischen und die experimentellen Befunde vergleichend zusammen. Hierbei Analyse ist bemerkenswert, dass die größte Abweichung der betrachteten interatomaren Abstände nur 2,1% vom gemessenen Wert beträgt und die größte Abweichung der Winkel nur 10,5% aufweist. Der Grund für die größere Abweichung des Winkels ist wahrscheinlich darauf zurückzuführen, dass in den Berechnungen nur von einer monomeren Einheit und nicht von einer ausgedehnten dreidimensionalen Struktur ausgegangen wurde.

Abbildung 62: Vergleich aus Einkristallstrukturanalyse (links) und theoretischer Analyse (rechts)

Interatomare Abstände	exp. /pm	theo. /pm	Abweichung /%
Sn1-O1	219,23(8)	221,6	1,1
Sn1-O3	241,23(9)	236,2	2,1
eingeschlossener Winkel	exp. /°	theo. /°	Abweichung /%
01-Sn1-O1	79,10(4)	77,612	1,9
O1-Sn1-O3	78,36(3)	85,735	9,4
O3-Sn1-O3	153,27(4)	169,339	10,5

Tabelle 30: Ver	aleich experimentell	er und theoretischer	Abstände und Winkel
1480110 001 101	giolon experimenten		

Die experimentell beobachtete [4+2]-Koordination des Sn²⁺-Ions wird durch die theoretische Analyse gestützt. In Abbildung 63 ist eine graphische Repräsentation des für die [4+2]-Koordination ursächlichen Molekülorbitals dargestellt. Die Überlappung der s- und p-Orbitale des Sauerstoff- und des Zinnatoms führt zur Ausbildung einer Bindung.

Abbildung 63: Graphische Darstellung der für die [4+2]-Koordination verantwortlichen Molekülorbitale

Aus theoretischen Analysen kann ebenfalls eine Aussage über die Natur des freien Elektronenpaares am Sn²⁺-Ion erhalten werden. In Abbildung 64 ist das HOMO (*H*ighest Occupied *M*olecular Orbital) des Sn²⁺-Ions dargestellt. Diese Elektronendichte liegt oberhalb des Sn²⁺-Ions. Es stellt ein Hybridorbital aus den Atomorbitalen 2s, 3s und 4s mit geringen Anteilen des $2p_z$ Orbitals dar.

Abbildung 64: Darstellung des HOMO am Sn²⁺-Ion in Sn(CH₃SO₃)₂

Somit kann die Verzerrung der Struktur von Sn(CH₃SO₃)₂ nicht nur strukturell in der Röntgenstrukturanalyse sondern auch einwandfrei quantenchemisch beschrieben werden. Für alle weiteren Details der durchgeführten Rechnung sei hier auf die Qualifikationsarbeit von *M. Fabian* verwiesen [78].

3.9.3 ¹¹⁹Sn Mößbauer-Spektroskopie an Sn(CH₃SO₃)₂ [79]

An Sn(CH₃SO₃)₂ wurde eine Mößbauer-Messung bei 78K durchgeführt. Die Messung wurde an der Universität Münster von Dipl.-Chem. *T. Langer* in der Arbeitsgruppe von *Prof. R. Pöttgen* durchgeführt. Die Ergebnisse sind in Abbildung 65 dargestellt. In Tabelle 31 sind die Anpassungsparameter aufgeführt, die diese Verbindung charakterisieren.

Abbildung 65: Experiment (Datenpunkte) und Simulation (Linie) des ¹¹⁹Sn Mößbauer-Spektrums von Sn(CH₃SO₃)₂ bei 78 K

Tabelle 31: Anpassungsparameter	des Mößbauer-Spektrums
---------------------------------	------------------------

	SnF ₂ [80]	Sn(CH ₃ SO ₃) ₂	Sn(FSO ₃) ₂ [75]
	4,2 K	78 K	77 K
Isomerieverschiebung δ /mm·s ⁻¹	3,467(3)	3,58(1)	4,19(1)
Quadrupolaufspaltung ΔE_{Q} /mm·s ⁻¹	1,627(5)	1,39(1)	0,65(1)

Aus den Anpassungsparametern des Mößbauer-Spektrums von Sn(CH₃SO₃)₂ lassen sich folgende Aussagen ableiten. Wie in Tabelle 31 gezeigt ist, ordnet sich Sn(CH₃SO₃)₂ zwischen SnF₂ und Sn(FSO₃)₂ ein. Die Isomerieverschiebung von 3,58(1) mm·s⁻¹ weist auf einen starken ionogenen Charakter der Verbindung hin. Dieser wird von SnF₂ über Sn(CH₃SO₃)₂ zu Sn(FSO₃)₂ größer.

Die Quadrupolaufspaltung von 1,39(1) mm·s⁻¹ ist ein Maß für die Abweichung von der kugelsymmetrischen Elektronendichteverteilung des Sn²⁺-Ions. Aus den Werten ist ersichtlich, dass die Elektronendichteverteilung von Sn(FSO₃)₂ über Sn(CH₃SO₃)₂ zu SnF₂ immer stärker von der kugelsymmetrischen Verteilung abweicht. Diese Abweichung der Kugelsymmetrie ist in Abbildung 66 an der Koordinationsumgebung des Sn²⁺-Ions in beiden Verbindungen verdeutlicht.

Abbildung 66: Koordinationssphäre des Sn²⁺-Ions in der Struktur von SnF₂ (links) [81] und Sn(FSO₃)₂ [75] (rechts)

3.9.4 Pulverdiffraktometrische Untersuchung von Sn(CH₃SO₃)₂

Ein Pulverdiffraktogramm der Substanz wurde in Debye-Scherrer Geometrie aufgenommen um die Phasenreinheit der Probe zu überprüfen. Aus dem gemessenen Pulverdiffraktogramm wurden die 23 stärksten Reflexe ausgewählt und anhand dieser eine Gitterkonstantenverfeinerung durchgeführt, deren Ergebnisse in Tabelle 64 im Anhang aufgelistet sind. Es ergab sich eine primitiv tetragonale Elementarzelle mit a = 747,0(3) pm, c = 1405,2(8) pm und einem Volumen von 784,2(9) Å³ in der Raumgruppe P4₃2₁2 bzw. P4₁2₁2. Mit den verfeinerten Gitterkonstanten wurde das Pulverdiffraktogramm aus Einkristallstrukturdaten erneut simuliert. In Abbildung 67 ist das gemessene Pulverdiffraktogramm dem simulierten gegenüber gestellt. Es ist zu erkennen, dass die Verbindung phasenrein erhalten werden konnte.

Abbildung 67: Pulverdiffraktometrische Untersuchung von Sn(CH₃SO₃)₂ im Vergleich mit einer Simulation aus Einkristallstrukturdaten nach Verfeinerung der Gitterparameter

3.9.5 Thermischer Abbau von Sn(CH₃SO₃)₂

3.9.5.1 DSC/TG Untersuchungen

Zur Präparation der Probe wurde ein Ansatz von Sn(CH₃SO₃)₂ in der Stickstoff-Handschuh-Box mit Ethylacetat gewaschen um noch anhaftende Mutterlauge vom Reaktionsprodukt zu trennen. Nach Trocknung der Probe wurden 16 mg Probensubstanz in einen Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. Abbildung 68 zeigt den Abbau, Tabelle 32 die Auswertung der DSC/TG-Daten.

Abbildung 68: DSC/TG-Diagramm von Sn(CH₃SO₃)₂

Der erste Schritt des thermischen Abbaus von Sn(CH₃SO₃)₂ von 81 °C bis 225 °C ist auf noch anhaftendes Lösungsmittel des Waschvorgangs zurückzuführen. Wird dieser Massenverlust nicht berücksichtigt, so ergibt sich ein Massenverlust für die 2. Stufe von 51%. Der Massenverlust von 51% entspricht rechnerisch der Zersetzung von Sn(CH₃SO₃)₂ zu SnO₂.

Stufe	T _{Beginn} /⁰C	T _{Ende} /°C	Δm _{exp.} /%	$\Delta m_{calc.}$ /%	Abbauprodukt
I	81	225	2		Sn(CH ₃ SO ₃) ₂
П	285	629	51	51	SnO ₂
Σ			51	51	SnO ₂
Bei der Temperatur von 244°C zeigt die DSC-Kurve ein stark endothermes Signal, mit welchem keinerlei Massenverlust verbunden ist. Es kann sich hier also nur um den Schmelzpunkt der Verbindung oder eine Phasenumwandlung handeln. In beiden Fällen sollte der auftretende Peak mit einer Hysterese auch beim Abkühlen der Verbindung auftreten. Zu diesem Zweck wurde eine DSC/TG Untersuchung mit 12mg Sn(CH₃SO₃)₂ in einem Korundtiegel unter Stickstoffstrom (60ml/min) und einer Heizrate von 10°C/min durchgeführt. Es wurde auf 265°C aufgeheizt, diese Temperatur für 20 Minuten gehalten und dann mit einer Heizrate von -10°C/min wieder abgekühlt. Dieser Vorgang wurde dreimal durchgeführt. In Abbildung 69 ist das Ergebnis dieser Untersuchung gezeigt. Sehr gut zu erkennen ist der Schmelzpunkt, der bei allen Durchgängen bei 247°C lag. In den Abkühlungskurven ist ein Peak zu sehen, dessen Temperatur sich mit jedem Durchgang mehr oder weniger unterkühlen ließ. Über die beiden endothermen Signale in den Aufheizkurven bei 227°C und 238°C kann keine gesicherte Aussage getroffen werden, da sie nicht in allen Aufheizkurven auftreten.

Abbildung 69: DSC/TG-Diagramm von Sn(CH₃SO₃)₂

Zur weiteren Untersuchung dieses Signals in der DSC-Kurve wurde temperaturabhängige Pulverdiffraktometrie bei 240-248°C durchgeführt, deren Ergebnisse in Kap. 3.9.6 zu finden sind.

3.9.5.2 Pulverdiffraktometrische Untersuchung des Rückstandes der Zersetzung von Sn(CH₃SO₃)₂

Das Abbauprodukt der thermischen Zersetzung wurde anhand des Pulverdiffraktogrammes als SnO₂ identifiziert. Die Gitterkonstantenverfeinerung mit den gemessenen Reflexen ergab eine primitiv tetragonale Elementarzelle mit a = 474,69(4) pm, c = 319,23(3) pm und einem Volumen von 71,933(16) Å³ in der Raumgruppe $P4_2/mnm$. Mit den verfeinerten Gitterkonstanten wurde das Pulverdiffraktogramm aus Einkristallstrukturdaten simuliert. Tabelle 65 im Anhang zeigt die Ergebnisse der Verfeinerung und in Abbildung 70 ist das gemessene gegen das simulierte Pulverdiffraktogramm aufgetragen. Neben SnO₂ sind keine weiteren Phasen im Pulverdiffraktogramm nachweisbar.

Abbildung 70: Pulverdiffraktogramm des Zersetzungsrückstandes von Sn(CH₃SO₃)₂ im Vergleich mit einer Simulation aus Literaturdaten [82] nach Verfeinerung der Gitterkonstanten

3.9.6 Temperaturabhängige Pulverdiffraktometrie zur Untersuchung des Abbaus von Sn(CH₃SO₃)₂

Die thermische Analyse von Sn(CH₃SO₃)₂ zeigt in der DSC-Kurve bei ca. 244°C ein stark endothermes Signal (vgl. 3.9.5.1). Zur weiteren Charakterisierung dieses Signals wurde ein Pulverdiffraktogramm von Sn(CH₃SO₃)₂ bei 244°C in Debye-Scherrer Geometrie aufgenommen. Dazu wurde die feinverriebene Substanz in eine Quarzglaskapillare ($\emptyset = 0.5$ mm) gefüllt, die mit Silikonfett verschlossen wurde. Es wurden neun Pulverdiffraktogramme im Temperaturbereich zwischen 244°C und 252°C aufgenommen. Dazu wurde die Temperatur in 2°C-Schritten von 244°C auf 252°C erhöht und wieder auf 244°C in 2°C-Schritten abgekühlt. Die Aufheizrate bzw. die Abkühlrate betrug 10°C/min respektive -10°C/min. In Abbildung 71 ist das letzte der neun gemessenen Pulverdiffraktogramme bei 244°C im Vergleich mit einer Simulation aus Literaturdaten für SnO₂ und SnS₂ aufgetragen.

Abbildung 71: Pulverdiffraktogramm des Zersetzungsprodukt von Sn(CH₃SO₃)₂ bei 244°C im Vergleich mit einer Simulation aus Literaturdaten [82, 83]

Bei dieser Temperatur kommt es nach Auskunft der Pulverdiffraktogramme zur Zersetzung von $Sn(CH_3SO_3)_2$ unter Bildung von SnO_2 und SnS_2 als pulverdiffraktometrisch nachweisbare Phasen. Für diese Zersetzung lässt sich folgende Reaktion formulieren:

$$2Sn(CH_3SO_3)_2 \xrightarrow{\Delta} SnO_2 + SnS_2 + 2SO_2 + 4C + 6H_2C$$

Demnach verläuft der Abbau von Sn(CH₃SO₃)₂ unter Oxidation von Sn²⁺ zu Sn⁴⁺ (SnS₂ und SnO₂). Dieser vermutete Reaktionsablauf wird durch Abschätzung des Verhältnisses von 1:1 aus den experimentellen Befunden [21] für SnS₂ zu SnO₂ gestützt. Die Messung dieser Pulverdiffraktogramme wurde im Temperaturbereich von 244°C bis 252°C durchgeführt. Aus der formulierten Reaktion ergibt sich, dass die Temperaturen der DSC/TG-Untersuchung nicht 1:1 auf das Verfahren der temperaturabhängigen Pulverdiffraktometrie übertragen werden kann. Um diese Vermutung zu verifizieren wurde eine weitere DSC/TG-Untersuchung durchgeführt. Dazu wurden 10 mg SiO₂ in einen Korundtiegel eingewogen und unter Stickstoffstrom (60ml/min) mit einer Heizrate von 10°C/min auf 700°C erhitzt. Sehr gut ist der Phasenübergang von α -Quarz in β -Quarz zu erkennen. Diese ist mit einer Temperatur von 573°C [84] tabelliert. In der DSC-Kurve der Untersuchung erscheint dieses Signal jedoch bei 554°C, also bei einer um 19°C verschobenen Temperatur (vgl. Abbildung 72). Somit ergibt sich, dass das Pulverdiffraktogramm in Abbildung 71 nicht die Phasenumwandlung von Sn(CH₃SO₃)₂ zeigt, sondern einen seltenen Einblick in die Zersetzung bei höheren Temperaturen.

Abbildung 72: DSC/TG-Diagramm von SiO₂

3.10 Das Cadmiummethansulfonat-Methansulfonsäureaddukt Cd(CH₃SO₃)₂(CH₃SO₃H)₂

3.10.1 Kristallstruktur von Cd(CH₃SO₃)₂(CH₃SO₃H)₂

 $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ kristallisiert in der zentrosymmetrischen Raumgruppe *P*-1 im triklinen Kristallsystem mit zwei Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ sind in Tabelle 33 zusammengefasst. Aufnahmen der Kristalle sind in Abbildung 73 dargestellt.

Kristallsystem	triklin	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀ >2 <i>σ</i> (<i>I</i> ₀)):	0,0322; 0,0842
Raumgruppe	<i>P</i> -1 (Nr. 2)	R1; wR2 (alle Daten):	0,0364; 0,0853
Gitterparameter	a = 847,79(9) pm	Restelektronendichte:	-0,529 e⁻/ų
	<i>b</i> = 849,2(1) pm		1,023 e ⁻ /ų
	<i>c</i> = 1068,1(1) pm		
	α = 89,53(1)°		
	$\beta = 86,23(1)^{\circ}$		
	γ = 79,88(1)°		
Z	2	CCDC-Nr.:	837838
Zellvolumen	755,4(1) Å ³		

Tabelle 33: Kristallographische Daten von Cd(CH₃SO₃)₂(CH₃SO₃H)₂

Abbildung 73: Kristalle von Cd(CH₃SO₃)₂(CH₃SO₃H)₂

In der Kristallstruktur von $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ liegt ein kristallographisch unterscheidbares Cd^{2+} -Ion vor. Dieses wird von sechs Sauerstoffatomen umgeben. Daraus ergibt sich eine stark verzerrt oktaedrische Koordination, die in Abbildung 74 gezeigt ist.

Die Abstände Cd-O liegen im Bereich von 224,3(2) pm bis 232,4(2) pm. In Tabelle 34 sind alle interatomaren Abstände Cd-O und Winkel O-Cd-O aufgelistet. Die Abstände im $[CdO_6]$ -Oktaeder liegen hier im gleichen Bereich, wie die für das $Cd(CH_3SO_3)_2$ (vgl. Kap. 3.7) experimentell bestimmten interatomaren Abstände.

Cd1 – O11	226,1(2) pm	O31 – Cd1 – O32	94,67(9)°
Cd1 – O13	224,4(2) pm	O31 – Cd1 – O13	89,21(9)°
Cd1 – O21	232,4(2) pm	O13 – Cd1 – O11	92,60(9)°
Cd1 – O31	224,3(2) pm	O11 – Cd1 – O32	85,00(9)°
Cd1 – O32	224,3(2) pm	O32 – Cd1 – O21	94,15(9)°
Cd1 – O41	229,6(2) pm	O41 – Cd1 – O13	86,92(8)°
		O41 – Cd1 – O21	177,08(8)°
		O13 – Cd1 – O32	174,17(8)°
		O31 – Cd1 – O11	162,57(9)°

Zwei der Cd-O-Bindungen sind elongiert, was auf eine schwächere Bindung dieser Sauerstoffatome an das Cadmiumion deutet. Diese beiden verlängerten Bindungen lassen sich den axial gebunden Sauerstoffatomen zuordnen. Die Bindungen wurden mit 229,6(2) pm und 232,4(2) pm experimentell ermittelt. Dieses Ergebnis vier kurze und zwei verlängerte Metall-Sauerstoff-Bindungen fanden auch *Strauss et al.* in der Struktur von Cu(CH₃SO₃)₂(CH₃SO₃H)₂ [85]. Die verlängerten Abstände im [CuO₆]-Oktaeder lagen in axialer Position bei 232,3(5) pm und 236,6(5) pm. Aufgrund der in der Kupferverbindung auftretenden Jahn-Teller Verzerrung können diese Abstände jedoch nur als Hinweis dienen. Die sechs Sauerstoffatome des [CdO₆]-Oktaeders gehören kristallographisch gesehen zu zwei CH₃SO₃⁻-Ionen (Schwefelatome S1 und S3) und zwei CH₃SO₃H-Molekülen (Schwefelatome S2 und S4). Die CH₃SO₃H-Moleküle sind jeweils nur an ein Cd²⁺-Ion gebunden (vgl. Abbildung 75, links). Die CH₃SO₃⁻-Ionen greifen zweizähnig verknüpfend an die Cd-Atome an, wodurch es zur Verknüpfung von jeweils zwei Cd²⁺-Ionen kommt (siehe Abbildung 75, rechts).

Abbildung 75: Umgebung der CH₃SO₃H-Moleküle S2 und S4 (links) und der CH₃SO₃⁻-Ionen S1 und S3 (rechts) in der Struktur von Cd(CH₃SO₃)₂(CH₃SO₃H)₂

Die Zuordnung, ob es sich um $CH_3SO_3^-$ -Ionen oder CH_3SO_3H -Moleküle handelte, folgte über die Abstände S-O innerhalb der Struktur. So finden sich für die $CH_3SO_3^-$ -Ionen einheitliche interatomare Abstände von 145,3(2) pm bis 146,8(3) pm. Für die CH_3SO_3H -Moleküle finden sich zwei kurze Abstände S-O von 144,8(2) pm bis 144,(2) pm und ein verlängerter Abstand mit 153,9(3) pm und 154,5(3) pm, was für eine Hydroxidgruppe anstatt eines Sauerstoffatoms spricht. Eine Übersicht über die Bindungssituation der $CH_3SO_3^-$ -Ionen und CH_3SO_3H -Moleküle in $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ ist in Tabelle 35 aufgeführt. Diese entsprechen den erwarteten Werten für Methansulfonsäuremoleküle [85] und $CH_3SO_3^-$ -Ionen [6].

Methansulfonationen			Met	hansulfons	äuremolel	küle	
Abstände	S-O /pm	Abständ	e S-C /pm	Abstände	e S-O /pm	Abständ	e S-O /pm
S1 - O11	146,7(2)	S1 - C1	176,3(3)	S2 - O21	144,8(2)	S2 - C2	175,2(3)
S1 - O12	145,8(2)			S2 - O22	154,5(3)		
S1 - O13	146,6(3)			S2 - O23	142,9(2)		
S3 - O31	146,6(2)	S3 - C3	175,7(3)	S4 - O41	144,9(2)	S4 - C4	174,7(3)
S3 - O32	146,8(3)			S4 - O42	153,9(3)		
S3 - O33	145,3(2)			S4 - O43	142,7(3)		

Tabelle 35: Abstände S-O und S-C in den $CH_3SO_3^-$ -Ionen (S1 und S3) und den CH_3SO_3H -Molekülen (S2 und S4) in der Struktur von $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$

Insgesamt ergibt sich ein oktaedrisch koordiniertes Cd^{2+} -Ion, welches von zwei Methansulfonsäuremolekülen in axialer Position und in äquatorialer Ebene von $CH_3SO_3^{-}$ -Ionen koordiniert wird (vgl. Abbildung 76, $CH_3SO_3^{-}$ -Ionen: gelbe Tetraeder, CH_3SO_3H -Moleküle: blaue Tetraeder).

Abbildung 76: Umgebung des Cd²⁺-Ions mit eingezeichneten CH₃SO₃⁻-Ionen und CH₃SO₃H-Molekülen Durch die Verknüpfung der CH₃SO₃⁻-Ionen kommt es zur Ausbildung von Strängen, die sich entlang der kristallographischen *c*-Achse ausdehnen. Diese lassen sich mit der Niggli-Formel ${}^{1}_{\infty}$ {Cd(CH₃SO₃)_{4/2}(CH₃SO₃H)_{2/1}} beschreiben. Eine Projektion der Kettenstruktur entlang der Ausdehnungsrichtung [001] ist in Abbildung 77 gezeigt. Auch hier sind die Methansulfonsäuremoleküle mit blauen, die CH₃SO₃⁻-Ionen mit gelben Tetraedern hervorgehoben.

Abbildung 77: Kristallstruktur von Cd(CH₃SO₃)₂(CH₃SO₃H)₂ entlang [001]

Cd

Zwischen den Methansulfonsäuremolekülen und den Methansulfonationen finden sich Wasserstoffbrückenbindungen, die nach Jeffrey [86] in den Bereich der mittelstarken Wasserstoffbrücken einzuordnen sind (siehe

Abbildung 78, blau-gestrichelt hervorgehoben). Die dazugehörigen Werte sind in Tabelle 36 zu sehen.

Abbildung 78: Wasserstoffbrückenbindungen in Cd(CH₃SO₃)₂(CH₃SO₃H)₂

Tabelle 36: Parameter der intramolekularen Wasserstoffbrücken in Cd(CH₃SO₃)₂(CH₃SO₃H)₂

D-H	d(D-H) /pm	d(HA) /pm	<dha th="" °<=""><th>d(DA) /pm</th><th>Α</th></dha>	d(DA) /pm	Α
O22-H22	75,4	187,5	164,10	260,09	012
O42-H42	81,9	176,9	164,72	256,9	O33

Diese Struktur kristallisiert isotyp zum von *Strauss et al.* beschriebenen { $Cu_2(H(CH_3SO_3)_2)_4$ }_n [85]. In der Quelle wird die isotype Kupferstruktur nicht als ein Methansulfonat-Methansulfonsäureaddukt verstanden, sondern als ein konjugiertes Säure-Base Paar eines schwach koordinierenden Anions der Form ($H(CH_3SO_3)_2$)⁻. In dieser Arbeit wird die Struktur von Cd(CH_3SO_3)₂(CH_3SO_3H)₂ trotz Isotypie beschrieben, da die Schlüsse, die in [85] aus der Röntgenstrukturanalyse gezogen werden, nicht korrekt sind. Es handelt sich bei den formulierten Anionen nicht um konjugierte Säure-Base-Paare sondern um über Wasserstoffbrücken vernetzte Addukte von $CH_3SO_3^-$ Ionen und CH_3SO_3H -Molekülen. Diese Annahme wird dadurch gestützt, dass alle Bindungslängen S-O der verknüpfenden $CH_3SO_3^-$ Ionen im engen Bereich von 146,6(2) pm bis 146,8(3) pm für die an das Cd1-Atom koordinierende Sauerstoffatom gefunden werden und für das an der Wasserstoffbrücke beteiligte Sauerstoffatom ein kürzerer S-O Abstand von 145,3(2) pm bis 145,8(2) pm. Läge ein solch konjugiertes Säure-Base Paar in der Struktur vor, so wäre der Abstand S-O eher verlängert als verkürzt.

3.10.2 Thermischer Abbau von Cd(CH₃SO₃)₂(CH₃SO₃H)₂

3.10.2.1 DSC/TG-Untersuchungen

Nach Waschen mit Ethylacetat und Trocknung von Cd(CH₃SO₃)₂(CH₃SO₃H)₂ wurden in der Stickstoff-Handschuh-Box 9,2 mg Probensubstanz in einen Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. Abbildung 79 zeigt den Abbau, Tabelle 37 die Auswertung der DSC/TG-Daten. Der thermische Abbau von Cd(CH₃SO₃)₂(CH₃SO₃H)₂ verläuft über zwei Stufen. Der Rückstand der Zersetzung wird über den Stickstoffstrom ausgetragen, weswegen weitere Untersuchungen von diesem nicht möglich waren. Im ersten Schritt werden beide CH₃SO₃H-Moleküle abgegeben, unter Ausbildung von Cd(CH₃SO₃)₂. Als zweiter Schritt folgt der Abbau des Cd(CH₃SO₃)₂ unter Bildung von CdS analog zur thermischen Zersetzung der solvensfreien Verbindung (vgl. 3.7.3.1). Auch hier gilt, dass für die Sublimations- und Zersetzungspunkte von CdS keinerlei verlässliche Quellen existieren. In Tabelle 37 sind die beobachteten und berechneten Massenverluste, sowie die identifizierten Abbauprodukte aufgeführt.

Abbildung 79: DSC/TG-Diagramm von Cd(CH₃SO₃)₂(CH₃SO₃H)₂

Stufe	T _{Beginn} /°C	T _{Ende} /°C	Δm _{exp.} /%	$\Delta m_{calc.}$ /%	Abbauprodukt
I	150	248	24,1	24,1	$Cd(CH_3SO_3)_2$
П	340	488	65,5	70,8	CdS
Ш	806	1050	100		-
Σ			100		-

3.11 Die isotypen Methansulfonat-Methansulfonsäureaddukte $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Zn, Co

3.11.1 Kristallstruktur von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Zn, Co

 $M(CH_3SO_3)_2(CH_3SO_3H)_2$ (M = Zn, Co) kristallisieren in der zentrosymmetrischen Raumgruppe *Pccn* im orthorhombischen Kristallsystem mit vier Formeleinheiten pro Elementarzelle. Die wichtigsten kristallographischen Daten von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ M = Zn, Co sind in Tabelle 38 (M = Zn) und Tabelle 39 (M = Co) zusammengefasst. Die Kristalle der Zinkverbindung sind in Abbildung 80, die der Cobaltverbindung in Abbildung 81 gezeigt.

Kristallsystem	orthorhombisch	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀ >2σ(<i>I</i> ₀)):	0,0283; 0,0493
Raumgruppe	<i>Pccn</i> (Nr. 56)	R1; wR2 (alle Daten):	0,0762; 0,0569
Gitterparameter	<i>a</i> = 1066,69(4) pm	Restelektronendichte:	-0,375 e ⁻ /ų
	<i>b</i> = 1283,87(5) pm		0,470 e⁻/ų
	<i>c</i> = 1043,20(4) pm		
Z	4	CCDC-Nr.:	837837
Zellvolumen	1428,65(9) Å ³		

Tabelle 38: Kristallographische Daten von Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Tabelle 39: Kristallographische Daten von Co(CH₃SO₃)₂(CH₃SO₃H)₂

Kristallsystem	orthorhombisch	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀>2σ(<i>I</i> ₀)):	0,0402; 0,0908
Raumgruppe	<i>Pccn</i> (Nr. 56)	R1; wR2 (alle Daten):	0,0946; 0,0990
Gitterparameter	a = 1070,9(2) pm	Restelektronendichte:	-0,336 e ⁻ /ų
	<i>b</i> = 1286,4(2) pm		0,623 e⁻/ų
	<i>c</i> = 1049,1(1) pm		
Ζ	4	CCDC-Nr.:	837839
Zellvolumen	1445,2(3) Å ³		

Abbildung 80: Kristalle von Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Abbildung 81: Kristalle von Co(CH₃SO₃)₂(CH₃SO₃H)₂

In der Kristallstruktur von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ liegt ein M^{2+} -Ion vor, welches die Wyckoff-Lage 4*c* belegt. Es wird vierfach einzähnig von $CH_3SO_3^-$ -Ionen angegriffen und zweifach von CH_3SO_3H -Molekülen koordiniert, wodurch sich ein stark verzerrter [MO_6]-Oktaeder ergibt (vgl. Abbildung 82 M = Zn links, Co rechts). Die Abstände M-O liegen im literaturbekannten Bereich von 203,6(9) pm bis 212,4(2) pm für die Zink- [87] und zwischen 208,0(15) und 213,6(3) pm für die Cobaltverbindung [88]. Alle interatomaren Abstände M-O sind in Tabelle 40 zusammengefasst.

Abstar	nd M-O	Verbindung
Zn1 – O11	212,4(2) pm	
Zn1 – O21	208,0(9) pm	
Zn1 – O21A	207,8(9) pm	$Zn(CH_3SO_3)_2(CH_3SO_3H)_2$
Zn1 – O22	209,3(9) pm	
Zn1 – O22A	203,6(9) pm	
Co1 – O11	213,6(3) pm	
Co1 – O21	208,1(14) pm	
Co1 – O21A	208,0(15) pm	$Co(CH_3SO_3)_2(CH_3SO_3H)_2$
Co1 – O22	208,8(15) pm	
Co1 – O22A	208,6(16) pm	

Tabelle 40: Interatomare Abstände M-O in M(CH₃SO₃)₂(CH₃SO₃H)₂ mit M = Zn, Co

Abbildung 82: Koordination des M^{2+} -lons in der Kristallstruktur von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ (M = Zn links, Co rechts)

Diese zehn Sauerstoffatome sind einem CH₃SO₃H-Molekül (Schwefelatom S1) und einem CH₃SO₃⁻-Ion (Schwefelatom S2) zuzuordnen. In axialer Position ist ein verlängerter Abstand M-O festzustellen, der zum CH₃SO₃H-Molekül S1 gehört. Dieses greift einzähnig an das Metallatom an. In äquatorialer Ebene ist das Metallatom von acht halb-besetzten anstatt von vier voll besetzten Sauerstoffatomen umgeben, die durch eine Fehlordnung des Methansulfonatanions erzeugt werden. Diese acht Sauerstoffatome sind dem CH₃SO₃⁻-Ion S2 zuzuordnen. S2 greift zweizähnig verknüpfend an zwei Metallatome an. In Abbildung 83 ist die Umgebung von S1 und S2 gezeigt.

Abbildung 83: Umgebung des CH₃SO₃H-Moleküls (S1, links) und des CH₃SO₃-lons (S2, rechts) in der Struktur von M(CH₃SO₃)₂(CH₃SO₃H)₂

Die Einordnung in CH₃SO₃H-Molekül und CH₃SO₃⁻-Ion wurde über die unterschiedlichen Abstände von S-O durchgeführt. In Tabelle 41 sind die beobachteten Abstände aufgeführt. Hervorgehoben sind die verhältnismäßig stark verlängerten Abstände S1-O12 die zu dem Schluss führen, dass O12 statt eines Oxidliganden eine Hydroxidgruppe zuzuordnen ist. Ähnliche Beobachtungen sind in Kapitel 3.10 für Cd(CH₃SO₃)₂(CH₃SO₃H)₂ beschrieben zu dem diese Strukturen starke Ähnlichkeiten, jedoch keine Isotypie aufweisen. Alle gefundenen Bindungslängen S-O liegen im literaturbekannten Bereich [6].

Interatomarer Abstand /pm		Interatomarer Abstand /pm		Verbindung
S1 – O11	145,3(2)	S1 – C1	174,7(3)	
S1 – O12	154,0(2)			
S1 – O13	142,9(2)			
S2 – O21	141,6(9)	S2 – C2	173,9(3)	
S2 – O21A	152,6(10)			
S2 – O22	140,5(10)			
S2 – O22A	153,0(10)			
S2 – O23	145,55(17)			
S1 – O11	144,7(4)	S1 – C1	175,1(4)	
S1 – O12	153,2(4)			
S1 – O13	142,5(4)			
S2 – O21	152,6(15)	S2 – C2	175,1(4)	
S2 – O21A	141,6(15)			$O(O(3))_{2}(O(3))_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O$
S2 – O22	149,2(17)			
S2 – O22A	143,7(16)			
S2 – O23	144,9(3)			

Für die beiden Verbindungen ergibt sich die in Abbildung 84 gezeigte Umgebung (CH_3SO_3H -Moleküle blaue und $CH_3SO_3^-$ -Ionen gelbe Tetraeder).

Abbildung 84: Koordination der M^{2+} -Ionen in M(CH₃SO₃)₂(CH₃SO₃H)₂ (M = Zn links, Co rechts)

Die schon angesprochene Fehlordnung des CH₃SO₃⁻-Ions S2 konnte durch Aufspaltung der Sauerstoffposition O21 und O22 auf zwei Lagen und deren Halbbesetzung gut aufgelöst werden. Zur Überprüfung, ob es sich um eine Überstruktur handelte wurden diese Strukturen wiederholt in einer verdoppelten Zelle (verdoppelte *c*-Achse) gelöst. Auch hier trat die Fehlordnung auf. Ebenso ein Symmetrieabstieg in das trikline Kristallsystem und erneute

Lösung der Strukturen führte zu keinem besseren Ergebnis. Deshalb wurde die Struktur im orthorhombischen Kristallsystem einschließlich Fehlordnung belassen. In Abbildung 85 ist eine Projektion der Kristallstruktur von M(CH₃SO₃)₂(CH₃SO₃H)₂ auf die (001)-Ebene gezeigt.

Abbildung 85: Projektion der Kristallstruktur von M(CH₃SO₃)₂(CH₃SO₃H)₂ auf die (001)-Ebene

In blauen Tetraeder wird das CH_3SO_3H -Molekül dargestellt und im gelben Tetraeder das $CH_3SO_3^{-1}$ -Ion. Bei Betrachtung von Abbildung 85 fällt die strukturchemische Verwandtschaft dieser beiden Strukturen mit der des $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ auf. Beide können mit derselben Niggli-Formel ${}^{1}_{\infty}{M(CH_3SO_3)_{4/2}(CH_3SO_3H)_{2/1}}$ beschrieben werden. Weitere Gemeinsamkeiten dieser Strukturen wurden jedoch nicht gefunden. Wie in der schon beschriebenen Struktur des $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ werden in diesen beiden Strukturen Wasserstoffbrückenbindungen ausgebildet (siehe Abbildung 86). Diese sind nach Jeffrey [86] als mittelstark zu klassifizieren (Details der Wasserstoffbrücken siehe Tabelle 42). Dort sind nochmals die Parameter der Wasserstoffbrücken des $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ als Vergleichsmöglichkeit aufgelistet.

Abbildung 86: H-Brücken in M(CH₃SO₃)₂(CH₃SO₃H)₂

D-H	d(D-H) /pm	d(H···A) /pm	<dha /°</dha 	d(D…A) /pm	A	М
O22-H22	75,4	187,5	164,10	260,09	O12	Cd
O42-H42	81,9	176,9	164,72	256,9	O33	u
O12-H12	84,0	173,8	165,89	256,1	O23	Zn
O12-H12	64,5	195,4	170,57	259,2	O23	Со

Tabelle 42: Parameter der H-Brücken in M(CH₃SO₃)₂(CH₃SO₃H)₂ (M = Zn, Co)

Wird die Fehlordnung des $CH_3SO_3^-$ -Ions erneut betrachtet, so fällt auf, dass die Fehlordnung nur zwei Atome betrifft (siehe Abbildung 87). Die Fehlordnung sollte sich hingegen auf alle drei Sauerstoffatome des $CH_3SO_3^-$ -Ions beziehen, da es sonst zu einer Stauchung der O-S-O Winkel kommen muss. Die Fehlordnung für $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Zn, Co konnte experimentell jedoch nur für zwei Sauerstofflagen festgestellt werden. Das über die Wasserstoffbrückenbindungen "fixierte" Sauerstofflatom liegt ausgeordnet vor. Diese Fixierung durch die Wasserstoffbrücke scheint stark genug zu sein, so dass die O-S-O Winkel gestaucht werden können.

Abbildung 87: Fehlordnung in M(CH₃SO₃)₂(CH₃SO₃H)₂

3.11.2 Pulverdiffraktometrische Untersuchung von $M(CH_3SO_3)_2$ -($CH_3SO_3H)_2$ mit M = Zn, Co

Ein Pulverdiffraktogramm der Substanzen wurde in Debye-Scherrer Geometrie aufgenommen. Aus den gemessenen Diffraktogrammen wurden 16 (Zn) bzw. 21 (Co) Reflexe ausgewählt und mit diesen eine Gitterkonstantenverfeinerung durchgeführt (vgl. Tabelle 66 (Zn) und Tabelle 67 (Co) im Anhang). Für M = Zn ergaben sich die Gitterkonstanten a = 1290,9(6) pm, b = 1067,7(7) pm, c = 1045,1(9) pm und V = 1440,6(12) Å³. Die Verfeinerung für M = Co lieferte die Gitterparameter: a = 1071,1(2) pm, b = 1293,0(4) pm, c = 1051,4(3) pm mit einem Volumen von 1456,2(10) Å³. Mit den verfeinerten Gitterkonstanten wurde das Pulverdiffraktogramm aus Einkristallstrukturdaten erneut simuliert. Abbildung 88 (M = Zn) und Abbildung 89 (M = Co) zeigt das gemessene aufgetragen gegen das simulierte Pulverdiffraktogramm. In diesen ist die Phasenreinheit der Verbindungen zu erkennen.

Abbildung 88: Pulverdiffraktogramm von Zn(CH₃SO₃)₂₍CH₃SO₃H)₂ im Vergleich mit Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten

Abbildung 89: Pulverdiffraktogramm von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Vergleich mit Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten

3.11.3 Thermischer Abbau von M(CH₃SO₃)₂(CH₃SO₃H)₂ (M = Zn, Co)

3.11.3.1 DSC/TG-Untersuchungen

 $M(CH_3SO_3)_2(CH_3SO_3H)_2$ wurde mit Ethylacetat in der Stickstoff-Handschuh-Box gewaschen und getrocknet. Es wurden 13,4 mg (M = Zn) bzw. 16,4 mg (M = Co) Probensubstanz in einen Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Stickstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. In Abbildung 90 ist der thermische Abbau für Zn in Abbildung 91 für Co gezeigt. In Tabelle 43 (Zn) bzw. Tabelle 44 ist die Auswertung der DSC/TG-Daten aufgelistet.

Abbildung 90: DSC/TG-Diagramm von Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Abbildung 91: DSC/TG-Diagramm von Co(CH₃SO₃)₂(CH₃SO₃H)₂

Tabelle 43: Daten zum thermischen Abbau von Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Stufe	T _{Beginn} /°C	T _{Ende} /°C	$\Delta m_{exp.}$ /%	$\Delta m_{calc.}$ /%	Abbauprodukt
I	157	331	46,9	42,9	Zn(CH ₃ SO ₃) ₂
II	354	459	74,8	69,9	$Zn_3O(SO_4)_2$
III	600	720	83,0	81,8	ZnO +(ZnS)
Σ	157	720	83,0	81,8	ZnO + (ZnS)

Tabelle 44: Daten zum thermischen Abbau von Co(CH₃SO₃)₂(CH₃SO₃H)₂

Stufe	T _{Beginn} /°C	T _{Ende} /°C	Δm _{exp.} /%	$\Delta m_{calc.}$ /%	Abbauprodukt
I	146	280	42,9	43,6	Co(CH ₃ SO ₃) ₂
II	415	565	80,3	80,2	Co ₉ S ₈
Σ	146	1050	81,9	80,2	Co ₉ S ₈

Die Zersetzung beider Verbindungen gestaltet sich als mehrstufiger Prozess. Im ersten Schritt (T: 157-331°C (Zn); 146-280°C (Co)) werden in beiden Fällen zwei Moleküle Methansulfonsäure abgegeben. Rechnerisch ergibt sich hier die Bildung der adduktfreien Verbindungen, was im Fall des Co(CH₃SO₃)₂(CH₃SO₃H)₂ experimentell über Pulverdiffraktometrie nachgewiesen wurde (vgl. 3.11.3.4). Der folgende Schritt ist für beide Verbindungen unterschiedlich. Das gebildete Zn(CH₃SO₃)₂ zersetzt sich zu Zn₃O(SO₄)₂ (354-459°C) und schließlich zu einem Produktgemisch aus ZnO und Spuren von ZnS bei einer Temperatur von 720°C. Die Zusammensetzung des Gemisches ZnO:ZnS wurde mit ca.

9:1 abgeschätzt. Dazu wurden die experimentellen Daten ausgewertet [21]. Alle Stufen zeigen eine endotherme Wärmetönung.

Der thermische Abbau von Co(CH₃SO₃)₂(CH₃SO₃H)₂ weist nur noch einen weiteren Schritt auf. Die Zersetzung zu Co₉S₈ beginnt bei 415°C und ist bei 565°C abgeschlossen. Dem schließt sich ein allmählicher Masseverlust von 1,6% an. Röntgenographisch konnte nach abgeschlossener Zersetzung bei 1050°C jedoch nur Co₉S₈ nachgewiesen werden. Die DSC-Kurve zeigt bei den Temperaturen von 772°C und 910°C eindeutige endotherme Peaks, welche jedoch nicht zugeordnet werden konnten. Beiden Verbindungen ist gemein, dass in der DSC-Kurve vor ihrer thermischen Zersetzung ein endothermes Signal zu erkennen ist. Bei M = Zn findet sich dies bei einer Temperatur von 90°C, bei M = Co bei T = 110°C. Hier könnte es sich um Phasenumwandlungen bzw. Schmelzpunkte der Verbindungen handeln. Als Phasenumwandlung wäre der Übergang in eine andere Modifikation denkbar. Cd(CH₃SO₃)₂(CH₃SO₃H)₂ weist starke Ähnlichkeiten zu den hier beschriebenen Verbindungen auf. Deshalb könnte es durchaus möglich sein, dass die etwaige Phasenumwandlung zu einer triklinen Modifikation der Verbindungen führt.

3.11.3.2 Pulverdiffraktometrische Untersuchung des Intermediates (T = 500 °C) der thermischen Analyse von Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Das Intermediat der DSC/TG-Untersuchung von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ wurde über Pulverdiffraktometrie als Zn₃O(SO₄)₂ identifiziert. Dazu wurde vom Intermediat ein Pulverdiffraktogramm in Debye-Scherrer Geometrie aufgenommen. Die Gitterkonstantenverfeinerung von 21 indizierten Reflexe ergab eine primitiv monokline Zelle mit a = 794,0(4) pm, b = 671,2(3) pm, c = 787,1(4) pm, $\beta = 124,449(16)^{\circ}$ und V = 345,9(4) Å³. Abbildung 92 zeigt die Gegenüberstellung der experimentellen Befunde mit den simulierten Daten nach Verfeinerung der Gitterparameter. In Tabelle 68 sind die Parameter der Verfeinerung aufgelistet. Bei dem Intermediat der Zersetzung von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ handelt es sich erkennbar um kein phasenreines Zn₃O(SO₄)₂. Die Verunreinigung konnte jedoch nicht identifiziert werden.

Abbildung 92: Pulverdiffraktogramm der Zersetzung von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ bei 500°C im Vergleich mit der Simulation aus Literaturdaten [89] von Zn₃O(SO₄)₂ nach Verfeinerung der Gitterkonstanten

3.11.3.3 Pulverdiffraktometrische Untersuchung des Rückstandes der thermischen Analyse von Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Das Zersetzungsprodukt von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ wurde über ein Pulverdiffraktogramm identifiziert. Hierbei handelt es sich um eine Mischung aus ZnS (Wurtzit) und ZnO (Zinkit). Für ZnS ergab sich a = 382,79(18) pm, c = 626,8(5) pm und V = 79,54(10) Å³. Die Gitterkonstantenverfeinerung für ZnO a = 325,55(3) pm, c = 521,56(3) pm mit V = 47,870(9) Å³. In Abbildung 93 ist das Ergebnis im Vergleich mit der Simulation abgebildet. In Tabelle 69 (ZnS) bzw. Tabelle 70 (ZnO) im Anhang sind die Ergebnisse der Verfeinerung aufgeführt.

Abbildung 93: Pulverdiffraktogramm des Zersetzungsrückstandes von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ im Vergleich mit Literaturdaten [90, 91] nach Verfeinerung der Gitterkonstanten

3.11.3.4 Pulverdiffraktometrische Untersuchung des Intermediates der thermischen Zersetzung von Co(CH₃SO₃)₂(CH₃SO₃H)₂ bei 350°C

Das Intermediat der thermischen Zersetzung bei 350°C wurde mit einem Pulverdiffraktogramm als Co(CH₃SO₃)₂ identifiziert. Eine Gitterkonstantenverfeinerung von 48 Reflexen ergab für Co(CH₃SO₃)₂ eine C-zentrierte monokline Elementarzelle mit a = 960,76(15) pm, b = 871,29(11) pm, c = 944,01(13) pm und $\beta = 117,518(12)^{\circ}$ und V = 700,83(12) Å³ (vgl. Tabelle 71 im Anhang). Das Pulverdiffraktogramm wurde mit verfeinerten Gitterkonstanten aus Einkristallstrukturdaten simuliert und den experimentellen Daten gegenübergestellt (vgl. Abbildung 94). Die zur Simulation benötigten Lageparameter wurden aus dem *cif*-file von Fe(CH₃SO₃)₂ [92] verwendet zu dem diese Verbindung isotyp kristallisiert.

Abbildung 94: Pulverdiffraktogramm von Co(CH₃SO₃)₂ im Vergleich mit Einkristallstrukturdaten von Fe(CH₃SO₃)₂ [92] nach Verfeinerung der Gitterkonstanten

3.11.3.5 Pulverdiffraktometrische Untersuchung des Rückstandes der thermischen Analyse von Co(CH₃SO₃)₂(CH₃SO₃H)₂

Der Zersetzungsrückstand der Thermolyse von Co(CH₃SO₃)₂(CH₃SO₃H)₂ wurde durch ein Pulverdiffraktogramm als Co₉S₈ identifiziert. Eine Verfeinerung der Gitterkonstanten ergab: a = 993,4(3) pm und V = 980,3(4) Å³ im kubischen Kristallsystem (siehe Tabelle 72 im Anhang). Das Diffraktogramm wurde erneut simuliert und ist in Abbildung 95 gegen die experimentellen Befunde aufgetragen.

Abbildung 95: Pulverdiffraktogramm des Zersetzungsrückstandes von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Vergleich mit Co₉S₈ [93] nach Verfeinerung der Gitterkonstanten

3.11.3.6 DSC/TG-Untersuchungen von Co(CH $_3$ SO $_3$)₂(CH $_3$ SO $_3$ H)₂ im Sauerstoff-strom

Nach Waschen mit Ethylacetat und Trocknung in der Stickstoff-Handschuh-Box von Co(CH₃SO₃)₂(CH₃SO₃H)₂ wurden 25,4 mg Probensubstanz in einen Korundtiegel eingewogen und im DSC/TG-Gerät bei einem Sauerstoffstrom von 60 ml/min und einer Heizrate von 10 °C/min untersucht. In Abbildung 96 ist das DSC/TG-Diagramm dargestellt und in Tabelle 45 finden sich die Daten des thermischen Abbaus.

Stufe	T _{Beginn} /°C	T _{Ende} /°C	$\Delta m_{exp.}$ /%	$\Delta m_{calc.}$ /%	Abbauprodukt
I	160	291	43,5	43,6	Co(CH ₃ SO ₃) ₂
II	432	464	76,2	83,2	CoO
	733	860	82,3	82,0	Co ₃ O ₄
IV	943	970	83,5	83,2	$CoO + Co_3O_4$
Σ			83,5	83,2	$CoO + (Co_3O_4)$

Tabelle 45: Daten zum thermischen Abbau von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom

Abbildung 96: DSC/TG-Diagramm von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom

Der thermische Abbau von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom verläuft bis 432°C analog zur Zersetzung im Stickstoffstrom. Im ersten Schritt, der bei einer Temperatur von 291°C abgeschlossen ist, bildet sich die adduktfreie Verbindung Co(CH₃SO₃)₂. Im zweiten, stark exothermen Abbauschritt, der bei 464 °C abgeschlossen ist, bildet sich eine Cobaltoxidphase, bei der es sich wahrscheinlich um CoO handelt. Nach einer Massenzunahme von ca. 6% bildet sich im Sauerstoffstrom Co₃O₄, welches sich ab 943°C unter Ausbildung von CoO wieder zersetzt. Im Endprodukt des thermischen Abbaus lässt sich eine Mischung von CoO und Co₃O₄ feststellen. Die thermische Zersetzung des Co(CH₃SO₃)₂ und damit einhergehender Bildung verschiedener Cobaltoxide ist mit folgenden Formeln zu beschreiben:

$6 \text{ CoO} + \text{O}_2 \rightarrow 2 \text{ Co}_3\text{O}_4$	Bei Temperaturen von 400-500°C [94]
$2 \text{ Co}_3\text{O}_4 \rightarrow 6 \text{ CoO} + \text{O}_2$	Bei Temperaturen größer 900°C [94]

Im Vergleich mit der DSC/TG im Stickstoffstrom von $Co(CH_3SO_3)_2(CH_3SO_3H)_2$ ist hier ebenso ein endothermes Signal in der DSC-Kurve bei T = $120^{\circ}C$ zu erkennen, mit welchem kein Masseverlust einhergeht. Analog ist hier also zu vermuten, dass es sich um eine Phasenumwandlung in die trikline Phase des $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ oder um den Schmelzpunkt der Verbindung handelt.

3.11.3.7 Pulverdiffraktometrische Untersuchung des Rückstandes der thermischen Analyse von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom

Das Gemisch der thermischen Zersetzung von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom wurde mit einem Pulverdiffraktogramm als CoO und Co₃O₄ identifiziert. Für CoO ergab sich eine Gitterkonstante a = 426,2(3) pm und ein Volumen von 77,40(9) Å³ im kubischen Kristallsystem. Für Co₃O₄ beträgt a = 808,90(7) pm mit V = 529,28(8) Å³. In Abbildung 97 sind beide simulierten Diffraktogramme nach Gitterkonstantenverfeinerung gegen die experimentellen Befunde aufgetragen. In Tabelle 73 (CoO) und Tabelle 74 (Co₃O₄) im Anhang sind die Ergebnisse der Verfeinerung aufgelistet. Neben den zugeordneten Reflexen sind keine weiteren Verunreinigungen in den Diffraktogrammen zu erkennen.

Abbildung 97: Pulverdiffraktogramm des Zersetzungsrückstands von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom im Vergleich mit Literaturdaten [95, 96] nach Verfeinerung der Gitterkonstanten

3.12 Das Nickelmethansulfonat-Methansulfonsäureaddukt Ni(CH₃SO₃)₂(CH₃SO₃)₂

3.12.1 Kristallstruktur von Ni(CH₃SO₃)₂(CH₃SO₃H)₂

 $Ni(CH_3SO_3)_2(CH_3SO_3H)_2$ kristallisiert in der zentrosymmetrischen Raumgruppe *Pccn* im orthorhombischen Kristallsystem mit vier Formeleinheiten pro Elementarzelle. In Tabelle 46 sind die wichtigsten Daten aufgeführt. Es kristallisiert isotyp zu Co(CH_3SO_3)_2(CH_3SO_3H)_2 und konnte über die Messung eines mikrokristallinem Pulvers nachgewiesen werden.

Kristallsystem	orthorhombisch
Raumgruppe	<i>Pccn</i> (Nr. 56)
Gitterparameter	<i>a</i> = 1068,7(3) pm
	<i>b</i> = 1284,8(3) pm
	<i>c</i> = 1041,8(3) pm
Z	4
Zellvolumen	1430,4(9) Å ³

Tabelle 46: Kristallographische Daten von Ni(CH₃SO₃)₂(CH₃SO₃H)₂

3.12.2 Pulverdiffraktometrische Untersuchung von Ni(CH₃SO₃)₂- (CH₃SO₃H)₂

Ein Pulverdiffraktogramm der Substanz wurde in Debye-Scherrer Geometrie aufgenommen um die Probe zu identifizieren. Aus dem gemessenen Intensitäten wurden 21 Reflexe ausgewählt eine Gitterkonstantenverfeinerung durchgeführt. Diese lieferte und $a = 1068,7(3) \text{ pm}, b = 1284,8(3) \text{ pm}, c = 1041,8(3) \text{ pm} \text{ und } V = 1430,4(9) \text{ }^{3} \text{ in der}$ Raumgruppe Pccn. Das Pulverdiffraktogramm wurde erneut simuliert und gegen die experimentellen Ergebnisse aufgetragen (siehe Abbildung 98). Tabelle 75 im Anhang beinhaltet die Daten der Verfeinerung. Die zur Simulation benötigten Lageparameter wurden aus dem cif-File von Co(CH₃SO₃)₂(CH₃SO₃H)₂ verwendet. Der Reflex bei 17,928° 20 (gekennzeichnet durch eine Raute) konnte nicht zugeordnet werden. Dieser könnte ein Hinweis auf eine weitere Phase oder ein Artefakt der Messung sein, was jedoch nicht vollständig geklärt werden konnte.

Abbildung 98: Pulverdiffraktogramm von Ni(CH $_3$ SO $_3$)₂(CH $_3$ SO $_3$ H)₂ im Vergleich mit Einkristallstrukturdaten von Co(CH $_3$ SO $_3$)₂(CH $_3$ SO $_3$ H)₂ nach Verfeinerung der Gitterkonstanten

3.13 Das Cobaltmethansulfonat-Methansulfonsäureaddukt Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

3.13.1 Kristallstruktur von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

 $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$ kristallisiert in der zentrosymmetrischen Raumgruppe *P*-1 im triklinen Kristallsystem mit einer Formeleinheit pro Elementarzelle. Die wichtigsten kristallographischen Daten von $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$ sind in Tabelle 47 zusammengefasst.

Kristallsystem	triklin	<i>R</i> 1; <i>wR</i> 2 (<i>I</i> ₀ >2σ(<i>I</i> ₀)):	0,0386; 0,0836
Raumgruppe	<i>P</i> -1 (Nr.2)	R1; wR2 (alle Daten):	0,0766; 0,0895
Gitterparameter	<i>a</i> = 797,6(1) pm <i>α</i> = 89,39(2)°	Restelektronendichte:	-0,429 e ⁻ /ų
	$b = 954,1(1) \text{ pm } \beta = 87,51(2)^{\circ}$		0,685 e⁻/ų
	$c = 1039,7(2) \text{ pm } \gamma = 67,2(2)^{\circ}$		
Z	1	CCDC-Nr.:	864480
Zellvolumen	728,6(2) Å ³		

Tabelle 47: Kristallographische Daten von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

In der Kristallstruktur von $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$ liegen zwei kristallographisch unterschiedliche Co^{2+} -Ionen vor (siehe Abbildung 99). Das Co^{2+} -Ion Co1 liegt auf der inversionssymmetrischen Wyckoff-Lage 1*c*, während das Co^{2+} -Ion Co2 die allgemeine Wyckoff-Lage 2*i* besetzt. Beide Co-Atome bilden [CoO₆]-Oktaeder aus. In der Struktur wird Co1 sechsmal einzähnig von $CH_3SO_3^-$ -Ionen angegriffen. Der Abstand Co-O liegt hier im Bereich von 206,3(4) pm bis 213,7(3) pm. Co2 wird fünffach einzähnig von $CH_3SO_3^-$ -Ionen und einmal von einem CH_3SO_3H -Molekül, erkennbar am verlängerten Abstand von Co2-O32, koordiniert. Die Abstände Co2-O reichen von 206,7(3) pm bis 214,3(3) pm. In Tabelle 48 sind alle interatomaren Abstände Co-O aufgelistet welche sich im bekannten Bereich von 204,04(12) pm bis 217,02(17) pm für CoSO₄(H₂O) befinden [88].

Tabelle 48: Interatomare Abstände Co-O in Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

Abstär	ide Co-O	Abstände	Co-O
Co1 – O12	213,7(3) pm	Co2 – O11	206,7(3) pm
Co1 – O22	210,9(3) pm	Co2 – O13	209,9(3) pm
Co1 – O42	206,3(4) pm	Co2 – O21	207,9(3) pm
		Co2 – O32	214,3(3) pm
		Co2 – O41	208,7(3) pm
		Co2 – O43	207,5(3) pm

Abbildung 99: Umgebung des Co²⁺-Ions Co1 (links) und des Co2 (rechts) in der Kristallstruktur von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

Die drei in der Struktur vorliegenden $CH_3SO_3^-$ -Ionen, gekennzeichnet durch die Schwefelatome S1, S2 und S4 verbrücken auf unterschiedliche Art und Weise die einzelnen Co^{2+} -Ionen. Die $CH_3SO_3^-$ -Ionen S1 und S4 verknüpfen zwei Co2 und ein Co1-Atom über einen einzähnigen Angriff miteinander, wohingegen das $CH_3SO_3^-$ -Ion S2, jeweils ein Co1und Co2-Atom über einen einzähnigen Angriff verbrückt. Die Verknüpfung aller $CH_3SO_3^-$ -Ionen ist in Abbildung 100 gezeigt.

Abbildung 100: Umgebung der CH_3SO_3 ⁻-Ionen S1 (links), S2 (mitte) und S4 (rechts) in der Struktur von $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$

Auch in dieser Struktur konnte ein CH₃SO₃H-Molekül anhand der vorliegenden Bindungslängen S-O zugeordnet werden. Dieses ist einzähnig an Co2 koordiniert (siehe Abbildung 101). Alle Bindungslängen S-O sind in Tabelle 49 zu finden.

Abbildung 101: Umgebung des CH₃SO₃H-Moleküls S3 in der Struktur von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

Tabelle 49: Abstände S-O der $CH_3SO_3^-$ -Ionen S1, S2, S4 und des CH_3SO_3H -Moleküls S3 in der Struktur von $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$

Interato	omarer	Interat	omarer	Interato	omarer	Interat	omarer
Abstar	nd /pm	Absta	nd /pm	Abstar	nd /pm	Absta	nd /pm
S1 - O11	145,8(3)	S1 - C1	174,7(5)	S3 - O31	142,5(4)	S3 - C3	175,3(6)
S1 - O12	144,9(3)			S3 - O32	144,2(4)		
S1 - O13	145,8(3)			S3 - O33	152,8(4)		
S2 - O21	145,1(4)	S2 - C2	174,7(5)	S4 - O41	145,0(3)	S4 - C4	175,8(5)
S2 - O22	145,3(3)			S4 - O42	144,9(4)		
S2 - O23	146,1(3)			S4 - O43	144,8(4)		

In Tabelle 49 ist der elongierte Abstand S3-O33 deutlich zu erkennen. Dies spricht für eine statt eines Oxids an dieser Position gebundene Hydroxidgruppe und damit für ein CH₃SO₃H-Molekül. Es ergibt sich somit eine Schichtenstruktur, deren Schichten in der kristallographischen *ab*-Ebene liegen und sich entlang der kristallographischen *c*-Achse stapeln (siehe Abbildung 102). Blaue Tetraeder stellen die CH₃SO₃H-Moleküle, gelbe die CH₃SO₃⁻-Ionen dar. Das Co1-Atom ist durch einen roten Oktaeder, Co2 durch einen orangenen dargestellt.

Abbildung 102: Projektion der Kristallstruktur von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂ auf die (100)-Ebene Die Schichten werden durch Wasserstoffbrücken zusammengehalten. Die Parameter dieser Wasserstoffbrücken sind in Tabelle 50 zu finden und können so nach Jeffrey den starken Wasserstoffbrücken zugeordnet werden [86].

Tabelle 50: Parameter der H-Brücken in Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

D-H	d(D-H) /pm	d(H…A) /pm	<dha th="" °<=""><th>d(D…A) /pm</th><th>А</th></dha>	d(D…A) /pm	А
O33-H1	84,0	172,9	176,69	256,8	O23

Die Schichtenstruktur lässt sich über eine Niggli-Formel beschreiben, die die unterschiedliche Umgebung von Co1 und Co2 berücksichtigt. Sie lautet: ${}^{2}_{\infty}$ {[Co(CH₃SO₃)_{4/3}(CH₃SO₃)_{2/2}][Co(CH₃SO₃H)_{1/1}(CH₃SO₃)_{4/3}(CH₃SO₃)_{1/2}]₂}.

Für die Synthese von Co(CH₃SO₃)₂(CH₃SO₃H)₂ und Co₃(CH₃SO₃)₆(CH₃SO₃H)₂ wurden die aleichen Edukte verwendet, jedoch sind die Produkte unterschiedlich. Mit $Co(CH_3SO_3)_2(CH_3SO_3H)_2$ liegt formal ein Methansulfonsäure-reicheres Produkt als Co₃(CH₃SO₃)₆(CH₃SO₃H)₂ vor. Der Grund hierfür könnte in der Ausgangszusammensetzung der Reaktionsmischung liegen. Für die Synthese von Co(CH₃SO₃)₂(CH₃SO₃H)₂ wurde die halbe Menge Metall bei gleicher Menge CH₃SO₃H eingesetzt. Das bedeutet, das über das eingestellte Verhältnis Metall zu Säure, die Produktzusammensetzung gesteuert werden kann. Es sollte zudem noch untersucht werden, ob die maximale Temperatur der Synthese ebenso einen Einfluss auf das gebildete Produkt hat.

4. Zusammenfassung

Im Rahmen dieser Dissertation konnten eine Vielzahl an neuen Nitrosyliumnitratometallaten und Methansulfonaten dargestellt und charakterisiert werden.

Mit dem $(NO)_2[Pt(NO_3)_6]$ wurde erstmals ein komplexes Nitrat des Platin(IV) synthetisiert und über Röntgenstrukturanalyse charakterisiert. Zentrales Motiv dieser Verbindung ist die oktaedrische Koordination des vierwertigen Platinions die durch sechs einzähnig angreifende NO_3^- -Ionen realisiert wird (vgl. Abbildung 103). Als Gegenionen fungieren NO^+ -Ionen, die in der Struktur vorliegen.

Abbildung 103: Oktaedrische Koordination des zentralen Pt⁴⁺-Ions (links), Projektion der Kristallstruktur von (NO)₂[Pt(NO₃)₆] auf die (101)-Ebene (Mitte) und kristallographische Daten der Verbindung (rechts)

Über thermische Analysemethoden (siehe. Abbildung 104) konnte die Zersetzung der Verbindung trotz ihrer Instabilität untersucht werden. Hierbei ergab sich, dass die Verbindung über das Intermediat PtO₂, bei moderaten Temperaturen von 550°C zu elementarem Platin abgebaut wird.

Abbildung 104: DTA/TG-Diagramm von (NO)₂[Pt(NO₃)₆]

Das Nitrat (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃ ist das erste eindimensionale Nitrosyliumnitratometallat und zeichnet sich durch eine reichhaltige Strukturchemie aus. Hier hervorzuheben ist die Ausbildung von [NiO₆]-Oktaedern, die über Kantenverknüpfung zu Dimeren das hervorstechendste Strukturmotiv dieser Verbindung bilden (vgl. Abbildung 105). Diese werden weiter über Nitratgruppen zu Oktaederdoppelsträngen verknüpft von denen zwei kristallographisch unterschieden werden können (vgl. Abbildung 106). Vervollständigt wird die Struktur durch nicht koordinierende NO₃⁻-Ionen, ein HNO₃-Molekül und NO⁺-Hanteln die sich zwischen die gebildeten "Zick-Zack" Ketten einlagern.

Abbildung 105: $[Ni_2O_{10}]$ -Oktaederdoppel mit NO_3^- -Umgebung in der Kristallstruktur von $(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2$ ·HNO₃

Abbildung 106: Oktaederdoppelstrangmotiv (links) und Projektion der Elementarzelle (rechts) in der Struktur von (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

Im Bereich der Methansulfonate und Methansulfonat-Methansulfonsäureaddukte konnten mehrere Verbindungen dargestellt werden. Zur besseren Übersichtlichkeit sind diese in Tabelle 51 zusammengefasst.

Verbindung	Niggli-Formel
Cd(CH ₃ SO ₃) ₂	³ _∞ {Cd(CH ₃ SO ₃) _{6/3} }
$Pb(CH_3SO_3)_2$	2 (M(CHSO) (CHSO)) mit M - Pb Ha
$Hg(CH_3SO_3)_2$	∞ {IN(CH3SO3)2/2(CH3SO3)4/4} THE IN = FD, FIG
Sn(CH ₃ SO ₃) ₂	³ _∞ {Sn(CH ₃ SO ₃) _{4/2} }
Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	¹ ∞{Cd(CH ₃ SO ₃) _{4/2} (CH ₃ SO ₃ H) _{2/1} }
$Zn(CH_3SO_3)_2(CH_3SO_3H)_2$	
$Co(CH_3SO_3)_2(CH_3SO_3H)_2$	$^{1}_{\sim}$ {M(CH ₃ SO ₃) _{4/2} (CH ₃ SO ₃ H) _{2/1} } mit M = Zn, Co, Ni
$Ni(CH_3SO_3)_2(CH_3SO_3H)_2$	
	² _∞ {[Co(CH ₃ SO ₃) _{4/3} (CH ₃ SO ₃) _{2/2}]-
$CO_3(CH_3SO_3)_6(CH_3SO_3H)_2$	$[Co(CH_3SO_3H)_{1/1}(CH_3SO_3)_{4/3}(CH_3SO_3)_{1/2}]_2\}.$

 $Cd(CH_3SO_3)_2$ wurde aus der Reaktion von Cadmiumpulver mit wasserfreier CH_3SO_3H gewonnen. Das oktaedrisch umgebene Cd^{2+} -Ion wird in alle drei Dimensionen über einen dreifachen einzähnigen Angriff von $CH_3SO_3^-$ -Ionen verknüpft. Abbildung 107 zeigt eine Projektion der Struktur entlang der kristallographischen *b*-Achse.

Abbildung 107: Projektion der Elementarzelle auf die (010)-Ebene (links) und kristallographische Daten (rechts) von Cd(CH₃SO₃)₂

Mit Pb(CH₃SO₃)₂ und Hg(CH₃SO₃)₂ wurden zwei isotype Verbindungen dargestellt, welche Schichten ausbilden und durch die Verknüpfung über CH₃SO₃⁻-Ionen zustande kommen. Die Schichten werden entlang [001] in einer *AB*-Schichtfolge gestapelt (siehe Abbildung 108).

Abbildung 108: Schichtenfolge in $M(CH_3SO_3)_2$ mit M =Pb, Hg; Projektion der Struktur auf die (010)-Ebene Mit Sn(CH₃SO₃)₂ ist eine Verbindung erhalten worden, deren Merkmal eine "nicht abgeschlossene" Umgebung um das zweiwertige Zinn ist (siehe Abbildung 109). Diese wird durch das freie Elektronenpaar verursacht, was durch weitere ergänzende Methoden, wie Mößbauer-Spektroskopie (*Pöttgen*, Universität Münster) und theoretische Analysen (*Klüner*, Universität Oldenburg) bewiesen werden konnte.

Abbildung 109: [4+2]-Koordination des Sn²⁺-lons in der Kristallstruktur (links) und kristallographische Daten (rechts) von Sn(CH₃SO₃)₂

Die Methansulfonate wurden nicht nur strukturell charakterisiert, sondern auch thermoanalytisch untersucht (siehe Abbildung 110).

Abbildung 110: Thermischer Abbau der Methansulfonate M(CH₃SO₃)₂ mit M = Cd, Hg, Pb, Sn

Der thermische Abbau des Cd(CH₃SO₃)₂ verläuft über die Zersetzung der Verbindung und Ausbildung von CdS, welches vollständig über den Stickstoffstrom ausgetragen wurde. Das thermische Verhalten von Pb(CH₃SO₃)₂ wurde ebenso experimentell als einstufiger Prozess bestimmt. Die intermediär auftretende Stufe konnte auch hier als PbS identifiziert werden. Die Zersetzung des Sn(CH₃SO₃)₂ verläuft über eine Stufe, der Bildung von SnO₂. Dieses wird durch den oxidativen Abbau der Verbindung gebildet. Die thermische Zersetzung von Hg(CH₃SO₃)₂ erfolgt wahrscheinlich über elementares Quecksilber als Zwischenstufe. Es konnten hier keinerlei Intermediate noch der Rückstand isoliert werden, da das Quecksilber über den Stickstoffstrom ausgetragen wurde.

Neben Methansulfonaten der Art $M(CH_3SO_3)_2$ mit M = Cd, Hg, Pb, Sn konnten auch Verbindungen des Typs $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Cd, Zn, Co, Ni sowie $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$ synthetisiert und charakterisiert werden (siehe Abbildung 111 und Tabelle 52).

$Cd(CH_3SO_3)_2(CH_3SO_3H)_2$	$Zn(CH_3SO_3)_2(CH_3SO_3H)_2$	$Co(CH_3SO_3)_2(CH_3SO_3H)_2$
<i>P</i> -1 (Nr. 2)	<i>Pccn</i> (Nr. 56)	<i>Pccn</i> (Nr. 56)
<i>a</i> = 847,79(9) pm <i>α</i> = 89,53(1)°	<i>a</i> = 1066,69(4) pm	<i>a</i> = 1070,9(2) pm
$b = 849,2(1) \text{ pm } \beta = 86,23(1)^{\circ}$	<i>b</i> = 1283,87(5) pm	<i>b</i> = 1286,4(2) pm
<i>c</i> = 1068,1(1) pm γ = 79,88(1)°	<i>c</i> = 1043,20(4) pm	<i>c</i> = 1049,1(1) pm

	Tabelle 52: Kristallographische Daten von	$M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Cd, Zn, Cc
--	---	---

Abbildung 111: Kristallstrukturen von M(CH₃SO₃)₂(CH₃SO₃H)₂ mit M = Cd (links), Zn und Co (rechts)

Diesen Verbindungen ist dasselbe Strukturmotiv, die Ausbreitung von Ketten entlang der kristallographischen c-Achse gemäß der Niggli-Formel ${}^{1}_{\omega}$ {M(CH₃SO₃)_{4/2}(CH₃SO₃H)_{2/1}}, gemein. Für M = Zn und Co liegt eine Fehlordnung der die Stränge verknüpfenden CH₃SO₃⁻vor, wohingegen in lonen über zwei Positionen der triklinen Struktur von Fehlordnung $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ diese nicht vorhanden ist. Die zu Co(CH₃SO₃)₂(CH₃SO₃H)₂ isotype Verbindung von Ni(CH₃SO₃)₂(CH₃SO₃H)₂ konnte über Pulverdiffraktometrie aufgeklärt werden. In allen Strukturen tragen Wasserstoffbrückenbindungen zur Stabilität der Verbindung bei (Parameter siehe Tabelle 53). Sie sind nach Jeffrey als mittelstark bis stark einzuordnen [86].

D-H	d(D-H) /pm	d(H…A) /pm	<dha /°</dha 	d(D…A) /pm	А	Metall
O22-H22	75,4	187,5	164,10	260,09	012	Cd
O42-H42	81,9	176,9	164,72	256,9	O33	Cu
O12-H12	84,0	173,8	165,89	256,1	O23	Zn
O12-H12	64,5	195,4	170,57	259,2	O23	Со

Tabelle 53: Parameter der Wasserstoffbrückenbindungen in M(CH₃SO₃)₂(CH₃SO₃H)₂ mit M = Cd, Zn, Co

Das thermische Verhalten dieser Verbindungen wurde ebenfalls untersucht (siehe Abbildung 112). Alle Verbindungen zersetzen sich über das intermediär gebildete $M(CH_3SO_3)_2$, welches im Fall des M = Co isoliert und über Pulverdiffraktometrie als isotyp zu Fe(CH₃SO₃)₂ nachgewiesen wurde [92].

Abbildung 112: Thermisches Verhalten von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Cd, Co, Zn im Vergleich

Von dort an verläuft die Zersetzung von $Cd(CH_3SO_3)_2(CH_3SO_3H)_2$ zu CdS, welches Apparatur Stickstoffstrom vollständig aus der über den ausgetragen wird. Zn(CH₃SO₃)₂(CH₃SO₃H)₂ bildet intermediär Zn(CH₃SO₃)₂, welches über das Oxid-Sulfat Zn₃O(SO₄)₂ zu einem Gemisch aus ZnS in der Modifikation des Wurtzits und ZnO abgebaut wird. Die Zersetzung des Co(CH₃SO₃)₂(CH₃SO₃H)₂ wurde nicht nur im Stickstoffstrom sondern auch im Sauerstoffstrom untersucht. Beide verlaufen im ersten Schritt über die Desolvatisierung und Bildung von Co(CH₃SO₃)₂. Im Stickstoffstrom ergibt sich als Rückstand Co₉S₈. Wird jedoch der thermische Abbau im Sauerstoffstrom durchgeführt, so kommt es intermediär zur Bildung von CoO welches bei Temperaturen zwischen 400 und 500°C [94] zu Co₃O₄ reagiert. Dieses zersetzt sich wiederum bei Temperaturen >900°C unter Bildung von CoO [94]. Die erhaltene Struktur von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂ stellt bis jetzt einen Einzelfall mit einem kleineren Verhältnis Metall zu Methansulfonsäure dar. Hierbei handelt es sich möglicherweise um ein Intermediat oder eine Vorstufe bei der Bildung des CH₃SO₃H-reicheren Co(CH₃SO₃)₂(CH₃SO₃H)₂. In der Struktur (vgl. Abbildung 113) liegen zwei kristallographisch unterscheidbare Co²⁺-Ionen vor (Co1, roter Oktaeder; Co2 goldener Oktaeder) und verschiedene CH₃SO₃⁻-Anionen vor (gelbe Tetraeder). Es werden Wasserstoffbrücken zwischen CH₃SO₃H-Molekülen der einen mit CH₃SO₃⁻-Ionen der benachbarten Schicht ausgebildet.

Diese Schichten lassen sich am besten mit der komplizierten Niggli-Formel ${}^{2}_{\infty}$ {[Co(CH₃SO₃)_{4/3}(CH₃SO₃)_{2/2}][Co(CH₃SO₃H)_{1/1}(CH₃SO₃)_{4/3}(CH₃SO₃)_{1/2}]₂} beschreiben.

Abbildung 113: Projektion der Kristallstruktur von Co₃(CH₃SO₃)₆(CH₃SO₃H)₂ auf die (100)-Ebene

5. Ausblick

Im Rahmen dieser Arbeit wurde erstmals ein Nitrosyliumnitratometallat des vierwertigen Platins dargestellt und über Röntgenstrukturanalyse charakterisiert. Des Weiteren konnten erstmalig verschiedene solvensfreie als auch solvatisierte Methansulfonate von Haupt- und Nebengruppenelementen synthetisiert werden. Durch die Ergebnisse dieser Arbeit sind verschiedene Fragen aufgetreten.

Das $(NO)_2[Pt(NO_3)_6]$ stellt ein Analogon zum $(NO)[Au(NO_3)_4]$ dar. Hier gilt es zu untersuchen, inwieweit sich auch aus dieser Verbindung über einen Elektronenstrahl elementares Platin abscheiden lässt. Somit wäre die Möglichkeit gegeben miniaturisierte Au/Pt-Elemente vielleicht auch im nanoskaligen Bereich zu schreiben. Desweiteren sollte evaluiert werden, welche Parameter die Bildung eines Nitrylium- bzw. Nitrosyliumnitratometallats beeinflussen, um gezielt die Bildung der jeweiligen Verbindung steuern zu können. Es sollte auch untersucht werden, ob durch schonende Abspaltung von Stickoxiden eine präparative Route zu einem binären Platinnitrat gegeben ist. Ebenso sollte es versucht werden, das im Rahmen dieser Arbeit dargestellte $(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2$ ·HNO₃ zu reproduzieren, was über das gezielte Einbringen von Feuchtigkeit geschehen könnte. Die Verwendung von Ni(NO₃)·6H₂O als Edukt wäre hierfür eine Möglichkeit.

Im Bereich der Methansulfonate und Methansulfonat-Methansulfonsäureaddukte sollte untersucht werden, welche gasförmigen Abbauprodukte bei der Zersetzung dieser Verbindungen entstehen. Zu diesem Zweck wäre eine simultane massenspektrometrische Untersuchung zur DSC/TG von Vorteil. Mit solchen Untersuchungen könnten auch thermische Zersetzungen die keinerlei isolierbare Intermediate aufweisen, wie die des Hg(CH₃SO₃)₂, über die ausgetragenen Abbauprodukte besser verstanden werden.

Insbesondere sollte ein Augenmerk darauf gelegt werden, welche Bedingungen zur Ausbildung eines solvatisierten bzw. zur Ausbildung eines solvensfreien Methansulfonats führen. Ebenso wäre es bei der Vielzahl von Verbindungen die das CH₃SO₃⁻-Anion enthalten möglich, eine statistische Erhebung durchzuführen, um vom Aufbau des Anions auf dessen Koordination zu schließen.

Temperaturabhängige Pulverdiffraktometrie könnte zur Aufklärung der Abbauprozesse bei den Verbindungen beitragen, die im DSC-Signal einen Peak aufweisen, der nicht mit einem Massenverlust oder Massenzunahme korrelieren. Dabei kann ermittelt werden, ob es sich hierbei um Schmelzpunkte der Verbindungen oder Phasenübergänge handelt.

6. Literatur

- [1] T. H. Baum, C. R. Jones, Appl. Phys. Lett., **1985**, 47, 538-541.
- [2] T. H. Baum, C. R. Jones, J. Vac. Sci. Technol. B, 1986, 4, 1187-1192.
- [3] F. Gerlach, M.S. Wickleder, O. Büchner, M. Necke, K. Al-Shamery, Th. Wich, T. Luttermann, Chem. Mater., 2008, 20, 5181-5185.
- [4] M.S. Wickleder, F. Gerlach, S. Gagelmann, J. Bruns, M. Fenske, K. Al-Shamery, *Angew. Chem.*, 2012, 124, 2242-2246.
- [5] S. Gagelmann, K. Rieß, M.S. Wickleder, Eur. J. Inorg. Chem., 2011, 33, 5160-5166.
- [6] U. Betke, K. Neuschulz, M.S. Wickleder, Chem. Eur. J., 2011, 17, 12784-12801.
- [7] S. Gagelmann, *Diplomarbeit*, Universität Oldenburg, 2008.
- [8] E. Riedel, C. Janiak, *Anorganische Chemie*, 5. Auflage, Walter de Gryuter Verlag, Berlin, 2002, 666-670.
- [9] Stoe & Cie: X-RED 1.22, Darmstadt, 2001.
- [10] Stoe & Cie: X-RED32 1.31, Darmstadt, 2005.
- [11] Stoe & Cie: X-SHAPE 1.06, Darmstadt, 1999.
- [12] Stoe & Cie: WinXPOW 2.20, Darmstadt, 2006.
- [13] G.M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122.
- [14] A.L.Spek, Acta Crystallogr. D, 2009, 65, 148-155.
- [15] K. Brandenburg: Diamond 3.2h, Bonn, 2004.
- [16] Mettler-Toledo GmbH: STARe Software 9.30, Schwerzenbach, 2009.
- [17] K. Brandenburg: *Match! 1.11d*, Bonn, **2011**.
- [18] FIZ Karlsruhe: Findlt 1.8.1, Karlsruhe, 2011.
- [19] R. Hoppe, Z. Kristallogr., 1979, 150, 23-52.
- [20] Stoe & Cie: X-STEP32 1.06f, Darmstadt, 2000.
- [21] PANalytical: Highscore Plus 3.0d, Almelo, 2012.
- [22] OriginLab Corporation: Origin 8G SR5, Northampton, 2009.
- [23] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1975, 473.
- [24] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1975, 1712.
- [25] J. Schefer, D. Schwarzenbach, P. Fischer, T. Koetzle, F.K. Larsen, S. Haussuehl, M. Ruedlinger, G.J. McIntyre, H. Birkedal, H.B. Buergi, *Acta Crystallogr. B*, **1998**, 54, 121-128.

- [26] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1975, 1719.
- [27] G. Bandel, C. Platte, M. Troemel, Z. Anorg. Allg. Chem., 1981, 472, 95-101.
- [28] D. Brooksbank, K.W. Andrews, Z. Metallkd., 1972, 63, 12-16.
- [29] E. Riedel, C. Janiak, Anorganische Chemie, 5. Auflage, Walter de Gryuter Verlag, Berlin, 2002, 481.
- [30] V. Luzzati, Acta Crystallogr., 1951, 4, 120-131.
- [31] C.C. Addison, Chem. Rev., 1980, 80, 21-39.
- [32] I.V. Morozov, V.N. Serezhkin, S.I. Troyanov, Russ. Chem. B. Int. Ed., 2008 57, 439-450.
- [33] K. Rieß, *Dissertation*, Universität Oldenburg, **2012**.
- [34] G.A. Tikhomirov, I.V. Morozov, K.O Znamenkov, E. Kemnitz, S. Troyanov, Z. Anorg. Allg. Chem., 2002, 428, 872-876.
- [35] G.E. Toogood, C. Chieh, Can. J. Chem, 1975, 53, 831-835.
- [36] D.G. Colombo, V.G. Young jr., Inorg. Chem., 2000, 39, 4621-4624.
- [37] G.A. Tikhomirov, K.O. Znamenkov, I.V. Morozov, E. Kemnitz, S.I. Troyanov, Z. Anorg. Allg. Chem., 2002, 628, 269-273.
- [38] S.I. Troyanov, G.A. Tikhomirov, K.O. Znamenkov, I.V. Morozov, *Zh. Neorg. Khim.*, 2000, 45, 1941-1948.
- [39] B. Wellmann, F. Liebau, J. Less-Common Met., 1981, 77, 31-39.
- [40] Z. Mazej, M. Ponikvar-Svet, J.F. Liebman, J. Passmore, H.D. Brooke Jenkins, J. Fluorine Chem. 2009, 130, 788-791.
- [41] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag, Stuttgart, 1975, 1717.
- [42] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1984, B124.
- [43] A. Dianat, N. Seriani, M. Bobeth, W. Pompe, L. C. Ciacchi, J. Phys. Chem. C, 2008, 112, 13623-13628.
- [44] I.V. Morozov, A.A. Fedorova, T.A. Rodionova, S.I. Troyanov, *Zh. Neorg. Khim.*, 2003, 48, 985-985.
- [45] M.D. Moran, D.S. Brock, H.P.A. Mercier, G.J. Schrobilgen, J. Am. Chem. Soc., 2010, 132, 13823-13839.
- [46] D.R. Allan, W.G. Marshall, D.J. Francis, I.D.M. Oswald, C.R. Pulham, C. Spanswick, *Dalton Trans.*, 2010, 3736-3743.
- [47] J.H.R. Clarke, L.A. Woodward, Trans. Faraday Soc., 1966, 62, 2226-2233.

- [48] C.H. Wie, Acta Crystallogr. C, 1986, 42, 1839-1842.
- [49] C.H. Wei, B.E. Hingerty, Acta Crystallogr. B, 1981, 37, 1992-1997.
- [50] J.K. Brandon, I.D. Brown, Can. J. Chem., 1947, 45, 1385-1390.
- [51] F. Charbonnier, R. Faure, H. Loiseleur, Acta. Crystallogr. B, 1977, 33,2824-2826.
- [52] M.S. Wickleder, Z. Anorg. Allg. Chem., 2002, 628, 1848-1852.
- [53] F. Charbonnier, R. Faure, H. Loiseleur, Acta Crystallogr. B, 1977, 33, 1478-1481.
- [54] Y. Garaud, F. Charbonnier, R. Faure, J. Appl. Crystallogr., 1980, 13, 190.
- [55] E.M. Aricó, L.B. Zinner, C. Apostolidis, E. Dornberger, B. Kannellakopulos, J. Rebizant, J. Alloys Compds., 1997, 249, 111-115.
- [56] A.S. Wilson, Acta Crystallogr. B, 1978, 34, 2302-2303.
- [57] M.S. Wickleder, I. Müller, Z. Naturforsch., 2004, 59, 33-36.
- [58] P. Lindqvist-Reis, I. Persson, M. Sandstrom, Dalton Trans., 2006, 3868-3878.
- [59] F.E.G. Guner, M. Lutz, T. Sakurai, A.L. Spek, T. Hondoh, *Cryst. Growth Des.*, **2010**, 10, 4327-4333.
- [60] E.M. Aricó, L.B. Zinner, B. Kanellakopulos, E. Dornberger, J. Rebizante, C. Apostolidis, J. Alloys Compds., 2001, 323-324,39-44.
- [61] F. Charbonnier, R. Faure, H. Loiseleur, Acta Crystallogr. B, 1978, 34, 1504-1506.
- [62] F. Charbonnier, R. Faure, H. Loiseleur, J. Appl. Cryst., 1975, 8, 493-494.
- [63] M.D. Gernon, M. Wu, T. Buszta, P. Janney, Green Chem., 1999, 1, 127-140.
- [64] E. Kemnitz, C. Werner, A. Stiewe, H. Worzala, S.I. Troyanov, Z. Naturforsch., 1996, 51, 14-18.
- [65] C. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Phys. Rev. B, 1992, 46, 10086-10097.
- [66] R.W. James, Proc. R. Soc. A, 1925, 109, 598-620.
- [67] P.A. Kokkoros, P.J. Rentzeperis, Z. Kristallogr., 1963, 119, 234-244.
- [68] A.F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102. stark umgearbeitete und verbesserte Auflage von N. Wiberg, Walter de Gryuter Verlag, Berlin, 2007, 2003.
- [69] C. Logemann, T. Klüner, M. S. Wickleder, Z. Anorg. Allg. Chem., 2012, 638, 758-762.
- [70] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1984, B106.
- [71] E. Susa, T. Kobayashi, S. Taniguchi, J. Solid State Chem., 1980, 33, 197-202.
- [72] E.A. Owen, E.L. Yates, *Philos. Mag.*, **1933**, 15, 472-488.
- [73] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1984, B114.
- [74] J. Pannetier, G. Denes, Acta Crystallogr. B, 1980, 36, 2763-2765.

- [75] D.C. Adams, T. Birchall, R. Faggiani, R.J. Gillespie, J.E. Vekris, Can. J. Chem., 1991, 69, 2122-2126.
- [76] M.W. Stoltzfus, P.M. Woodward, R. Seshadri, J.H. Klepeis, B. Bursten, *Inorg. Chem.*, 2007, 46, 3839-3850.
- [77] J. Galy, G. Meunier, J. Solid State Chem., 1975, 13, 142-159.
- [78] M. Fabian, Bachelorarbeit, Universität Oldenburg, 2011.
- [79] T. Langer, unveröffentlichte Ergebnisse, Universität Münster, 2011.
- [80] T. Birchall, G. Denes, K. Ruebenbauer, J. Chem. Soc., Dalton Trans., 1981, 1831-1836.
- [81] G. Denes, J. Pannetier, J. Lucas, 1980, 33, 1-11.
- [82] W.H. Baur, Acta Cryst., 1956, 9, 515-520.
- [83] I. Oftedal, Norsk Geol. Tidsskr., 1926, 9, 225-233.
- [84] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 2004, 4/82.
- [85] O.G. Polyakov, B.G. Nolan, B.P. Fauber, S.M. Miller, O.P. Anderson, S.H. Strauss, *Inorg. Chem.*, 2000, 39, 1735-1742.
- [86] T. Steiner, Angew. Chem., 2002, 114, 50-80.
- [87] S.I. Troyanov, M.A. Simonov, Sov. Phys. Crystallogr., 1989, 34, 136-137.
- [88] Y. le Fur, J. Coing-Boyat, G. Bassi, C. R. Chim., 1966, 262, 632-635.
- [89] L. Bald, R. Gruehn, Naturwissenschaften, 1981, 68, 39-39.
- [90] E.H. Kisi, M.M. Elcombe, Acta Crystallogr. C, 1989, 45, 1867-1870.
- [91] R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, J. Alloys Compds., 2010, 496, 324-330.
- [92] K. Neuschulz, unveröffentlichte Ergebnisse, Universität Oldenburg, 2011.
- [93] O. Knop, C.H. Huang, K.I.G. Reid, J.S. Carlow, F.W.D Woodhams, J. Solid State Chem., 1976, 16, 97-116
- [94] A.F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, 101. verbesserte und stark erweiterte Auflage von N. Wiberg, Walter de Gryuter Verlag, Berlin, 1995, 1553-1554
- [95] S. Sasaki, K. Fujino, Y. Takeuchi, Phase Transition, 1992, 38, 127-220.
- [96] X. Liu, C.T. Prewitt, Phys. Chem. Miner., 1990, 17, 168-172.

7. Abbildungsverzeichnis

Abbildung 1: Verwendete Handschuh-Box des Typs Unilab2
Abbildung 2: Schlenkkolben
Abbildung 3: Ampulle mit Hahn
Abbildung 4: Verwendetes Stoe IPDS I und Bruker κ Apex24
Abbildung 5: Verwendetes Pulverdiffraktometer Stoe STADI P5
Abbildung 6: Schematische Darstellung des Mößbauer Effekts6
Abbildung 7: Hyperfeinwechselwirkungen des ⁵⁷ Fe-Kerns7
Abbildung 8: Verwendetes STA-Gerät8
Abbildung 9: Aufbau zur Synthese von N_2O_5 11
Abbildung 10: Verwendetes N_2O_5 beim Einkondensieren11
Abbildung 11: Reines Kaliumhexachloroplatinat(IV) K ₂ [PtCl ₆]12
Abbildung 12: Pulverdiffraktogramm von K2[PtCl6] im Vergleich mit Literaturdaten von K2[PtCl6] nach
Verfeinerung der Gitterkonstanten
Abbildung 13: Frisch hergestellte Hexahydroxoplatin(IV)-säure H ₂ [Pt(OH) ₆]13
Abbildung 14: Pulverdiffraktogramm von H ₂ [Pt(OH) ₆] im Vergleich mit Literaturdaten von H ₂ [Pt(OH) ₆]
nach Verfeinerung der Gitterkonstanten13
Abbildung 15: DTA/TG-Diagramm von H ₂ [Pt(OH) ₆]14
Abbildung 16: Pulverdiffraktogramm des DTA/TG Rückstandes der Zersetzung von H2[Pt(OH)6] im
Vergleich mit Literaturdaten von elementarem Platin15
Abbildung 17: Projektion der Elementarzelle von (NO)[Au(NO ₃) ₄] auf die (010)-Ebene16
Abbildung 18: Kristalle von (NO)[Au(NO ₃) ₄]16
Abbildung 19: Mit einem Elektronenstrahl geschriebene Gold-Strukturen auf einem Si-Wafer
Abbildung 20: Elementarzelle von (NO) ₂ [Zn(NO ₃) ₄], Projektion auf die (001)-Ebene17
Abbildung 21: Kristalle von (NO) ₂ [Zn(NO ₃) ₄]17
Abbildung 22: Elementarzelle von (NO)[ReO ₄] entlang [100]18
Abbildung 23: Projektion der Kristallstruktur von (NO)Cu(NO ₃) ₃ auf die (001)-Ebene
Abbildung 24: Elementarzelle von (NO) ₂ [Pd(NO ₃) ₄] entlang [010]19
Abbildung 25: Kristalle von (NO) ₂ [Pd(NO ₃) ₄]19
Abbildung 26: Koordinationsmodi von NO3 ⁻ -Gruppen nach [32]20
Abbildung 27: Lichtmikroskopische Aufnahme der Kristalle von (NO) ₂ [Pt(NO ₃) ₆]24
Abbildung 28: Verzerrt oktaedrische Koordination des zentralen Pt-Atoms im komplexen [Pt(NO ₃) ₆] ²⁻ -
lon25
Abbildung 29: Verzerrt pentagonal-pyramidale Koordination des N-Atoms im NO^+ -Ion in
(NO) ₂ [Pt(NO ₃) ₆]
Abbildung 30: Projektion der Kristallstruktur von $(NO)_2[Pt(NO_3)_6]$ auf die (101)-Ebene27
Abbildung 31: DTA/TG-Diagramm von (NO) ₂ [Pt(NO ₃) ₆]27
Abbildung 32: Pulverdiffraktogramm des DTA/TG-Rückstandes von (NO) ₂ [Pt(NO ₃) ₆] im Vergleich mit
der Simulation aus Literaturdaten von elementaren Platin nach Verfeinerung der Gitterkonstanten29
Abbildung 33: Lichtmikroskopische Aufnahme der Kristalle von $(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2$ ·HNO ₃ 30
Abbildung 34: $[Ni_2O_{10}]$ -Oktaederdoppel mit NO_3^- -Umgebung in $(NO)_6[Ni_4(NO_3)_{12}](NO_3)_2$ ·HNO ₃ 31

Abbildung 35: Doppelstrang aus kantenverknüpften [NiO ₆]-Oktaedern in der Struktur von
$(NO)_{6}[Ni_{4}(NO_{3})_{12}](NO_{3})_{2}\cdot HNO_{3}$
Abbildung 36: Projektion der Kristallstruktur von (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃ auf die (100)-Ebene 33
Abbildung 37: HNO ₃ -Molekül in der Struktur von (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃
Abbildung 38: Aufnahmen der Kristalle von Cd(CH ₃ SO ₃) ₂
Abbildung 39: Koordination des Cd ²⁺ -Ions in der Kristallstruktur von Cd(CH ₃ SO ₃) ₂
Abbildung 40: Umgebung des $CH_3SO_3^-$ -Ions in $Cd(CH_3SO_3)_2$
Abbildung 41: Projektion der Kristallstruktur von Cd(CH ₃ SO ₃) ₂ auf die (010)-Ebene
Abbildung 42: Pulverdiffraktogramm von $Cd(CH_3SO_3)_2$ im Vergleich mit der Simulation aus
Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten40
Abbildung 43: DSC/TG-Diagramm von Cd(CH ₃ SO ₃) ₂ 41
Abbildung 44: Pulverdiffraktogramm des Intermediats (T = 500 °C) beim Abbau von $Cd(CH_3SO_3)_2$ im
Vergleich mit der Simulation aus Literaturdaten von CdS mit verfeinerten Gitterkonstanten
Abbildung 45: Aufnahmen der Kristalle von Pb(CH ₃ SO ₃) ₂ 43
Abbildung 46: Aufnahmen der Kristalle von Hg(CH ₃ SO ₃) ₂
Abbildung 47: Koordination der Hg ²⁺ -Ionen in der Kristallstruktur von Hg(CH_3SO_3) ₂ 45
Abbildung 48: Umgebung der $CH_3SO_3^-$ -Ionen S2 und S4 in $Hg(CH_3SO_3)_2$
Abbildung 49: Umgebung der $CH_3SO_3^-$ -Ionen S1 und S3 in $Hg(CH_3SO_3)_2$
Abbildung 50: Projektion der Kristallstruktur von Hg(CH ₃ SO ₃) ₂ auf die (010)-Ebene47
Abbildung 51: Umgebung des $CH_3SO_3^-$ -Ions S3 in Pb(CH_3SO_3) ₂
Abbildung 52: Pulverdiffraktogramm von $Pb(CH_3SO_3)_2$ im Vergleich mit der Simulation aus
Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten49
Abbildung 53: Pulverdiffraktogramm von $Hg(CH_3SO_3)_2$ im Vergleich mit der Simulation aus
Einkristallstrukturdaten nach Verfeinerung der Gitterkonstanten50
Abbildung 54: DSC/TG-Diagramm von Pb(CH ₃ SO ₃) ₂
Abbildung 55: Pulverdiffraktogramm des Intermediats des thermischen Abbaus von $Pb(CH_3SO_3)_2$ bei
500°C im Vergleich mit der Simulation aus Literaturdaten nach Verfeinerung der Gitterkonstanten52
Abbildung 56: Pulverdiffraktogramm des Zersetzungsrückstandes von $Pb(CH_3SO_3)_2$ im Vergleich mit
der Simulation aus Literaturdaten nach Verfeinerung der Gitterkonstanten53
Abbildung 57: DSC/TG-Diagramm von Hg(CH ₃ SO ₃) ₂ 53
Abbildung 58: Aufnahmen der Kristalle von Sn(CH_3SO_3) ₂
Abbildung 59: Koordination des $CH_3SO_3^{-1}$ -Ions (links) in der Kristallstruktur von $Sn(CH_3SO_3)_2$
Abbildung 60: $[4+2]$ -Koordination des Sn ²⁺ -Ions in der Kristallstruktur von Sn(CH ₃ SO ₃) ₂
Abbildung 61: Projektion der Kristallstruktur von $Sn(CH_3SO_3)_2$ auf die (100)-Ebene
Abbildung 62: Vergleich aus Einkristallstrukturanalyse und theoretischer Analyse
Abbildung 63: Graphische Darstellung der für die [4+2]-Koordination verantwortlichen Molekülorbitale
Abbildung 64: Darstellung des HOMO am Sn^{2+} -Ion in $Sn(CH_3SO_3)_2$
Abbildung 65: Experiment (Datenpunkte) und Simulation (Linie) des ¹¹⁹ Sn Mößbauer-Spektrums von
Sn(CH ₃ SO ₃) ₂ bei 78 K61
Abbildung 66: Koordinationssphäre des Sn^{2+} -Ions in der Struktur von SnF_2 und $Sn(FSO_3)_2$

Abbildung 67: Pulverdiffraktometrische Untersuchung von Sn(CH ₃ SO ₃) ₂ im Vergleich mit einer
Simulation aus Einkristallstrukturdaten nach Verfeinerung der Gitterparameter
Abbildung 68: DSC/TG-Diagramm von Sn(CH ₃ SO ₃) ₂ 64
Abbildung 69: DSC/TG-Diagramm von Sn(CH ₃ SO ₃) ₂ 65
Abbildung 70: Pulverdiffraktogramm des Zersetzungsrückstandes von Sn(CH ₃ SO ₃) ₂ im Vergleich mit
einer Simulation aus Literaturdaten nach Verfeinerung der Gitterkonstanten
Abbildung 71: Pulverdiffraktogramm des Zersetzungsprodukt von $Sn(CH_3SO_3)_2$ bei 244°C im
Vergleich mit einer Simulation aus Literaturdaten67
Abbildung 72: DSC/TG-Diagramm von SiO ₂ 68
Abbildung 73: Kristalle von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 69
Abbildung 74: [CdO ₆]-Oktaeder in der Kristallstruktur von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 70
Abbildung 75: Umgebung der CH ₃ SO ₃ H-Moleküle S2 und S4 und der CH ₃ SO ₃ ⁻ -Ionen S1 und S3 in
der Struktur von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 71
Abbildung 76: Umgebung des Cd ²⁺ -Ions mit eingezeichneten CH ₃ SO ₃ ⁻ -Ionen und CH ₃ SO ₃ H-
Molekülen72
Abbildung 77: Kristallstruktur von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ entlang [001]72
Abbildung 78: Wasserstoffbrückenbindungen in Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 73
Abbildung 79: DSC/TG-Diagramm von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 74
Abbildung 80: Kristalle von Zn(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 75
Abbildung 81: Kristalle von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ 76
Abbildung 82: Koordination des M^{2+} lons in der Kristallstruktur von M(CH SO) (CH SO H) 77
Abbildung 83: Umgebung des $CH_3SO_3H-Moleküls und des CH_3SO_3^{-1}-lons in der Struktur von$
Abbildung 83: Umgebung des $CH_3SO_3H-Moleküls und des CH_3SO_3^{-1}-Ions in der Struktur von M(CH_3SO_3)_2(CH_3SO_3H)_2$
Abbildung 83: Umgebung des CH_3SO_3H -Moleküls und des $CH_3SO_3^{-1}$ -Ions in der Struktur von $M(CH_3SO_3)_2(CH_3SO_3H)_2$
Abbildung 83: Umgebung des CH_3SO_3H -Moleküls und des $CH_3SO_3^-$ -Ions in der Struktur von $M(CH_3SO_3)_2(CH_3SO_3H)_2$
Abbildung 83: Umgebung des CH_3SO_3H -Moleküls und des $CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3)/2(CH_3$
Abbildung 83: Umgebung des CH_3SO_3H -Moleküls und des $CH_3SO_3^-$ -Ions in der Struktur von $M(CH_3SO_3)_2(CH_3SO_3H)_2$
Abbildung 83: Umgebung des CH_3SO_3H -Moleküls und des $CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3)/2(CH_$
Abbildung 82: Roordination des M ⁻¹ ons in der Kristalistruktur von M(CH ₃ SO ₃ / ₂ (CH ₃ SO ₃ H) ₂
Abbildung 83: Umgebung des CH_3SO_3H -Moleküls und des $CH_3SO_3/2(CH_3SO_3/2(CH_3SO_3)/$
Abbildung 82: Roordination des M ⁻¹ ons in der Kristalistruktur vorhin(CH ₃ SO ₃) ₂ (CH ₃ SO ₃) ₁) ₂
Abbildung 82: Roordination des MFons in der Rristalistruktur von M(CH_3SO_3/2(CH_3SO_3H)_277Abbildung 83: Umgebung des CH_3SO_3H-Moleküls und des CH_3SO_3^Ions in der Struktur von77M(CH_3SO_3)_2(CH_3SO_3H)_277Abbildung 84: Koordination der M ²⁺ -Ionen in M(CH_3SO_3)_2(CH_3SO_3H)_2 (M = Zn, Co)78Abbildung 85: Projektion der Kristallstruktur von M(CH_3SO_3)_2(CH_3SO_3H)_2 auf die (001)-Ebene79Abbildung 86: H-Brücken in M(CH_3SO_3)_2(CH_3SO_3H)_279Abbildung 87: Fehlordnung in M(CH_3SO_3)_2(CH_3SO_3H)_280Abbildung 88: Pulverdiffraktogramm von Zn(CH_3SO_3)_2(CH_3SO_3H)_2 im Vergleich mitEinkristallstrukturdaten nach Verfeinerung der Gitterkonstanten81Abbildung 89: Pulverdiffraktogramm von Co(CH_3SO_3)_2(CH_3SO_3H)_2 im Vergleich mitEinkristallstrukturdaten nach Verfeinerung der Gitterkonstanten82Abbildung 90: DSC/TG-Diagramm von Zn(CH_3SO_3)_2(CH_3SO_3H)_282
Abbildung 82: Roordination des MHors in der Kristalistruktur von M(CH3SO3)2(CH3SO3)1)277Abbildung 83: Umgebung des CH3SO3H-Moleküls und des CH3SO3 ⁻ -Ions in der Struktur von M(CH3SO3)2(CH3SO3H)277Abbildung 84: Koordination der M2 ⁺ -Ionen in M(CH3SO3)2(CH3SO3H)2 (M = Zn, Co)78Abbildung 85: Projektion der Kristallstruktur von M(CH3SO3)2(CH3SO3H)2 auf die (001)-Ebene79Abbildung 86: H-Brücken in M(CH3SO3)2(CH3SO3H)279Abbildung 87: Fehlordnung in M(CH3SO3)2(CH3SO3H)280Abbildung 88: Pulverdiffraktogramm von Zn(CH3SO3)2(CH3SO3H)2im Vergleich mitEinkristallstrukturdaten nach Verfeinerung der Gitterkonstanten81Abbildung 89: Pulverdiffraktogramm von Co(CH3SO3)2(CH3SO3H)2im Vergleich mitEinkristallstrukturdaten nach Verfeinerung der Gitterkonstanten82Abbildung 90: DSC/TG-Diagramm von Zn(CH3SO3)2(CH3SO3H)282Abbildung 91: DSC/TG-Diagramm von Co(CH3SO3)2(CH3SO3H)283
Abbildung 82: Koordination des M ⁻⁴ -Ions in der Kristalistruktur von M(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂
Abbildung 83: Umgebung des $(H^{3}SO_{3}H)$ -Moleküls und des $(H_{3}SO_{3})_{2}(CH_{3}SO_{3}H)_{2}$
Abbildung 82: Roordination des M Hons in der Kristalistruktur von M(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂
Abbildung 82: Noordination des M ⁻¹ -fons in der Kristalistukten von Wi(Ch ₃ SO ₃) ₂ (Ch ₃ SO ₃) ₁) ₂
Abbildung 02: Noordination des M =lons in der Kristalistuktur von M(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ (H) ₂
Abbildung 82: Notraination des M ⁻¹ dns in der Kristallstruktur vorm (CrigsO ₃) ₂ (Cri ₃ SO ₃) ₁) ₂

Abbildung 95: Pulverdiffraktogramm des Zersetzungsrückstandes von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ im
Vergleich mit Co ₉ S ₈ nach Verfeinerung der Gitterkonstanten87
Abbildung 96: DSC/TG-Diagramm von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ im Sauerstoffstrom
Abbildung 97: Pulverdiffraktogramm des Zersetzungsrückstands von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ im
Sauerstoffstrom im Vergleich mit Literaturdaten nach Verfeinerung der Gitterkonstanten
Abbildung 98: Pulverdiffraktogramm von Ni(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ im Vergleich mit
Einkristallstrukturdaten von $Co(CH_3SO_3)_2(CH_3SO_3H)_2$ nach Verfeinerung der Gitterkonstanten91
Abbildung 99: Umgebung des Co2+-Ions Co1 und des Co2 in der Kristallstruktur von
$Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$
Abbildung 100: Umgebung der $CH_3SO_3^{-}$ -Ionen S1, S2 und S4 in der Struktur von
$Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$
Abbildung 101: Umgebung des CH ₃ SO ₃ H-Moleküls in der Struktur von Co ₃ (CH ₃ SO ₃) ₆ (CH ₃ SO ₃ H) ₂ 94
Abbildung 102: Projektion der Kristallstruktur von Co ₃ (CH ₃ SO ₃) ₆ (CH ₃ SO ₃ H) ₂ auf die (100)-Ebene 95
Abbildung 103: Oktaedrische Koordination des zentralen Pt4+-Ions, Projektion der Kristallstruktur von
(NO) ₂ [Pt(NO ₃) ₆] auf die (101)-Ebene und kristallographische Daten der Verbindung96
Abbildung 104: DTA/TG-Diagramm von (NO) ₂ [Pt(NO ₃) ₆]96
Abbildung 105: $[Ni_2O_{10}]$ -Oktaederdoppel mit NO_3^{-} -Umgebung in der Kristallstruktur von
$(NO)_{6}[Ni_{4}(NO_{3})_{12}](NO_{3})_{2}\cdot HNO_{3}97$
Abbildung 106: Oktaederdoppelstrangmotiv und Projektion der Elementarzelle in der Struktur von
$(NO)_{6}[Ni_{4}(NO_{3})_{12}](NO_{3})_{2}\cdot HNO_{3}97$
Abbildung 107: Projektion der Elementarzelle auf die (010)-Ebene und kristallographische Daten von
Cd(CH ₃ SO ₃) ₂
Abbildung 108: Schichtenfolge in $M(CH_3SO_3)_2$ mit M = Pb, Hg; Projektion der Struktur auf die (010)-
Ebene
Abbildung 109: [4+2]-Koordination des Sn ²⁺ -Ions in der Kristallstruktur und kristallographische Daten
von Sn(CH ₃ SO ₃) ₂
Abbildung 110: Thermischer Abbau der Methansulfonate $M(CH_3SO_3)_2$ mit M = Cd, Hg, Pb, Sn 100
Abbildung 111: Kristallstrukturen von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Cd, Zn und Co101
Abbildung 112: Thermisches Verhalten von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ M = Cd, Co, Zn im Vergleich 102
Abbildung 113: Projektion der Kristallstruktur von Co ₂ (CH ₂ SO ₂) ₆ (CH ₂ SO ₂ H) ₂ auf die (100)-Ebene 103

8. Tabellenverzeichnis

Tabelle 1: Verwendete Geräte	9
Tabelle 2: Verwendete Programme	10
Tabelle 3: Daten zum thermischen Abbau von H ₂ [Pt(OH) ₆]	14
Tabelle 4: Komplexe Nitrosylium- und Nitryliumnitratometallate	22
Tabelle 5: Nitrosyliumnitratometallate mit Verknüpfung der Metalle in zwei Dimensionen	23
Tabelle 6: Kristallographische Daten von (NO) ₂ [Pt(NO ₃) ₆]	24
Tabelle 7: Interatomare Abstände Pt-O und Winkel O-Pt-O in [Pt(NO ₃) ₆] ²⁻	25
Tabelle 8: Interatomare Abstände N-O in den Nitratgruppen des [Pt(NO ₃) ₆] ²⁻ -Ions	26
Tabelle 9: Interatomare Abstände N-O in der Koordinationssphäre des NO ⁺ -Ions in (NO) ₂ [Pt(NO	₃) ₆] 26
Tabelle 10: Daten zum thermischen Abbau von (NO) ₂ [Pt(NO ₃) ₆]	28
Tabelle 11: Kristallographische Daten von (NO) ₆ [Ni ₄ (NO ₃) ₁₂](NO ₃) ₂ ·HNO ₃	30
Tabelle 12: Interatomare Abstände Ni-O und Winkel O-Ni-O in dem Doppels	strang
$\int_{\infty}^{1} \{ [Ni(NO_3)_{1/1}(NO_3)_{4/2}]_2 \}^{2-} $	31
Tabelle 13: Interatomare Abstände N-O und O-H im HNO3-Molekül in der Struktur	von
$(NO)_{6}[Ni_{4}(NO_{3})_{12}](NO_{3})_{2} \cdot HNO_{3}, XeF_{2} \cdot HNO_{3} und HNO_{3} \dots$	33
Tabelle 14: Löslichkeit verschiedener Metallkationen als -methansulfonat, -sulfat und -chlo	orid in
wässriger Lösung bei 22°C in mol/I	35
Tabelle 15: Parameter der Synthesen der vorgestellten Verbindungen	36
Tabelle 16: Kristallographische Daten von Cd(CH ₃ SO ₃) ₂	37
Tabelle 17: Interatomare Abstände Cd-O und Winkel O-Cd-O in der Struktur von Cd(CH ₃ SO ₃) ₂	38
Tabelle 18: Abstände S-O und S-C im $CH_3SO_3^-$ -Ion in $Cd(CH_3SO_3)_2$	38
Tabelle 19: Daten zum thermischen Abbau von $Cd(CH_3SO_3)_2$	41
Tabelle 20: Kristallographische Daten von Pb(CH ₃ SO ₃) ₂	43
Tabelle 21: Kristallographische Daten von Hg(CH ₃ SO ₃) ₂	43
Tabelle 22: Interatomare Abstände M-O in der Struktur von Pb(CH ₃ SO ₃) ₂ und Hg(CH ₃ SO ₃) ₂	44
Tabelle 23: Abstände S-O und S-C in den CH ₃ SO ₃ -Ionen S1 bis S4 in Hg(CH ₃ SO ₃)	2 und
Pb(CH ₃ SO ₃) ₂	46
Tabelle 24: Ergebnisse der MAPLE 4-Rechnungen für die Strukturen von Pb(CH ₃ SO ₃)	2 und
Hg(CH ₃ SO ₃) ₂	47
Tabelle 25: Daten zum thermischen Abbau von Pb(CH ₃ SO ₃) ₂	51
Tabelle 26: Daten des thermischen Abbaus von Hg(CH ₃ SO ₃) ₂	54
Tabelle 27: Kristallographische Daten von Sn(CH ₃ SO ₃) ₂	55
Tabelle 28: Abstände S-O und S-C des CH ₃ SO ₃ ⁻ -Ions in der Struktur von Sn(CH ₃ SO ₃) ₂	56
Tabelle 29: Interatomare Abstände Sn-O und Winkel O-Sn-O in der Struktur von Sn(CH ₃ SO ₃) ₂	56
Tabelle 30: Vergleich experimenteller und theoretischer Abstände und Winkel	59
Tabelle 31: Anpassungsparameter des Mößbauer-Spektrums	61
Tabelle 32: Thermischer Abbau von Sn(CH ₃ SO ₃) ₂	64
Tabelle 33: Kristallographische Daten von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	69
Tabelle 34: Interatomare Abstände Cd-O und Winkel O-Cd-O in Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	70

Tabelle 35: Abstande S-O und S-C in den CH_3SO_3 -Ionen (S1 und S3) und den CH_3SO_3H -Moleki	ülen
(S2 und S4) in der Struktur von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	71
Tabelle 36: Parameter der intramolekularen Wasserstoffbrücken in Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	73
Tabelle 37: Daten zum thermischen Abbau von Cd(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	74
Tabelle 38: Kristallographische Daten von Zn(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	75
Tabelle 39: Kristallographische Daten von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	75
Tabelle 40: Interatomare Abstände M-O in $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Zn, Co	76
Tabelle 41: Interatomare Abstände S-O in S1 und S2 in M(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	78
Tabelle 42: Parameter der H-Brücken in M(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ (M = Zn, Co)	80
Tabelle 43: Daten zum thermischen Abbau von Zn(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	83
Tabelle 44: Daten zum thermischen Abbau von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	83
Tabelle 45: Daten zum thermischen Abbau von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ im Sauerstoffstrom	87
Tabelle 46: Kristallographische Daten von Ni(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂	90
Tabelle 47: Kristallographische Daten von Co ₃ (CH ₃ SO ₃) ₆ (CH ₃ SO ₃ H) ₂	92
Tabelle 48: Interatomare Abstände Co-O in Co ₃ (CH ₃ SO ₃) ₆ (CH ₃ SO ₃ H) ₂	92
Tabelle 49: Abstände S-O der CH3SO3-Ionen S1, S2, S4 und des CH3SO3H-Moleküls S3 in	der
Struktur von $Co_3(CH_3SO_3)_6(CH_3SO_3H)_2$	94
Tabelle 50: Parameter der H-Brücken in Co ₃ (CH ₃ SO ₃) ₆ (CH ₃ SO ₃ H) ₂	95
Tabelle 51: Übersicht der vorgestellten Verbindungen mit der jeweiligen Niggli-Formel	98
Tabelle 52: Kristallographische Daten von $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Cd, Zn, Co	100
Tabelle 53: Parameter der Wasserstoffbrückenbindungen in $M(CH_3SO_3)_2(CH_3SO_3H)_2$ mit M = Cd,	Zn.
	,
Co	101
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆]	101 127
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆]	101 127 127
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO) ₂ [Pt(NO ₃) ₆]	101 127 127 128
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO) ₂ [Pt(NO ₃) ₆] Tabelle 57: Röntgenographische Pulverdaten für Cd(CH ₃ SO ₃) ₂	101 127 127 128 128
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO) ₂ [Pt(NO ₃) ₆] Tabelle 57: Röntgenographische Pulverdaten für Cd(CH ₃ SO ₃) ₂ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd(CH ₃ SO ₃) ₂	101 127 127 128 128 128
Co Tabelle 54: Röntgenographische Daten für $K_2[PtCl_6]$ Tabelle 55: Röntgenographische Daten für $H_2[Pt(OH)_6]$ Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $(NO)_2[Pt(NO_3)_6]$ Tabelle 57: Röntgenographische Pulverdaten für Cd $(CH_3SO_3)_2$ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd $(CH_3SO_3)_2$ Tabelle 59: Röntgenographische Pulverdaten für Pb $(CH_3SO_3)_2$	101 127 127 128 128 129 129
Co Tabelle 54: Röntgenographische Daten für $K_2[PtCl_6]$ Tabelle 55: Röntgenographische Daten für $H_2[Pt(OH)_6]$ Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $(NO)_2[Pt(NO_3)_6]$ Tabelle 57: Röntgenographische Pulverdaten für Cd $(CH_3SO_3)_2$ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd $(CH_3SO_3)_2$ Tabelle 59: Röntgenographische Pulverdaten für Pb $(CH_3SO_3)_2$ Tabelle 60: Röntgenographische Pulverdaten für Hg $(CH_3SO_3)_2$	101 127 127 128 128 129 129 129
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $(NO)_2$ [Pt $(NO_3)_6$] Tabelle 57: Röntgenographische Pulverdaten für Cd $(CH_3SO_3)_2$ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd $(CH_3SO_3)_2$ Tabelle 59: Röntgenographische Pulverdaten für Pb $(CH_3SO_3)_2$ Tabelle 60: Röntgenographische Pulverdaten für Hg $(CH_3SO_3)_2$ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb $(CH_3SO_3)_2$	101 127 127 128 128 129 129 130 132
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO) ₂ [Pt(NO ₃) ₆] Tabelle 57: Röntgenographische Pulverdaten für Cd(CH ₃ SO ₃) ₂ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd(CH ₃ SO ₃) ₂ Tabelle 59: Röntgenographische Pulverdaten für Pb(CH ₃ SO ₃) ₂ Tabelle 60: Röntgenographische Pulverdaten für Hg(CH ₃ SO ₃) ₂ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb(CH ₃ SO ₃) ₂ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb(CH ₃ SO ₃) ₂ Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb(CH ₃ SO ₃) ₂	101 127 127 128 128 129 129 130 132 132
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO) ₂ [Pt(NO ₃) ₆] Tabelle 57: Röntgenographische Pulverdaten für Cd(CH ₃ SO ₃) ₂ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd(CH ₃ SO ₃) ₂ Tabelle 59: Röntgenographische Pulverdaten für Pb(CH ₃ SO ₃) ₂ Tabelle 60: Röntgenographische Pulverdaten für Hg(CH ₃ SO ₃) ₂ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb(CH ₃ SO ₃) ₂ Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb(CH ₃ SO ₃) ₂ Tabelle 63: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb(CH ₃ SO ₃) ₂	101 127 127 128 128 129 129 130 132 132 132
Co Tabelle 54: Röntgenographische Daten für $K_2[PtCl_6]$ Tabelle 55: Röntgenographische Daten für $H_2[Pt(OH)_6]$ Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $(NO)_2[Pt(NO_3)_6]$ Tabelle 57: Röntgenographische Pulverdaten für Cd $(CH_3SO_3)_2$ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd $(CH_3SO_3)_2$ Tabelle 59: Röntgenographische Pulverdaten für Pb $(CH_3SO_3)_2$ Tabelle 60: Röntgenographische Pulverdaten für Hg $(CH_3SO_3)_2$ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb $(CH_3SO_3)_2$ Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb $(CH_3SO_3)_2$ Tabelle 63: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb $(CH_3SO_3)_2$	101 127 127 128 128 129 129 130 132 132 132 133
Co	101 127 127 128 128 129 129 130 132 132 133 133 133
Co	101 127 127 128 128 129 129 130 132 132 133 133 133 134 134
Co Tabelle 54: Röntgenographische Daten für $K_2[PtCl_6]$ Tabelle 55: Röntgenographische Daten für $H_2[Pt(OH)_6]$ Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $(NO)_2[Pt(NO_3)_6]$ Tabelle 57: Röntgenographische Pulverdaten für Cd $(CH_3SO_3)_2$ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd $(CH_3SO_3)_2$ Tabelle 59: Röntgenographische Pulverdaten für Pb $(CH_3SO_3)_2$ Tabelle 60: Röntgenographische Pulverdaten für Hg $(CH_3SO_3)_2$ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb $(CH_3SO_3)_2$ Tabelle 62: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb $(CH_3SO_3)_2$ Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb $(CH_3SO_3)_2$ Tabelle 63: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb $(CH_3SO_3)_2$ Tabelle 64: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb $(CH_3SO_3)_2$ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb $(CH_3SO_3)_2$ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn $(CH_3SO_3)_2$ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn $(CH_3SO_3)_2$ Tabelle 66: Röntgenographische Pulverdaten für Co $(CH_3SO_3)_2(CH_3SO_3H)_2$	101 127 127 128 128 129 129 130 132 132 132 133 133 134 134 135
Co	101 127 127 128 128 129 129 130 132 133 133 133 134 134 134 135 von
Co Tabelle 54: Röntgenographische Daten für $K_2[PtCl_6]$ Tabelle 55: Röntgenographische Daten für $H_2[Pt(OH)_6]$ Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $(NO)_2[Pt(NO_3)_6]$ Tabelle 57: Röntgenographische Pulverdaten für Cd $(CH_3SO_3)_2$ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd $(CH_3SO_3)_2$ Tabelle 59: Röntgenographische Pulverdaten für Pb $(CH_3SO_3)_2$ Tabelle 60: Röntgenographische Pulverdaten für Hg $(CH_3SO_3)_2$ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb $(CH_3SO_3)_2$ Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb $(CH_3SO_3)_2$ Tabelle 63: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb $(CH_3SO_3)_2$ Tabelle 64: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb $(CH_3SO_3)_2$ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn $(CH_3SO_3)_2$ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn $(CH_3SO_3)_2$ Tabelle 65: Röntgenographische Pulverdaten für Co $(CH_3SO_3)_2$ (CH $_3SO_3H)_2$ Tabelle 66: Röntgenographische Pulverdaten für Zn $(CH_3SO_3)_2$ (CH $_3SO_3H)_2$ Tabelle 67: Röntgenographische Pulverdaten für Zn $(CH_3SO_3)_2$ (CH $_3SO_3H)_2$ Tabelle 68: Röntgenographische Pulverdaten für Co $(CH_3SO_3)_2$ (CH $_$	101 127 127 128 128 129 129 130 132 133 133 133 133 134 135 von 135
Co Tabelle 54: Röntgenographische Daten für K ₂ [PtCl ₆] Tabelle 55: Röntgenographische Daten für H ₂ [Pt(OH) ₆] Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO) ₂ [Pt(NO ₃) ₆] Tabelle 57: Röntgenographische Pulverdaten für Cd(CH ₃ SO ₃) ₂ Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd(CH ₃ SO ₃) ₂ Tabelle 59: Röntgenographische Pulverdaten für Pb(CH ₃ SO ₃) ₂ Tabelle 60: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Pb(CH ₃ SO ₃) ₂ Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb(CH ₃ SO ₃) ₂ Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb(CH ₃ SO ₃) ₂ Tabelle 63: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb(CH ₃ SO ₃) ₂ Tabelle 64: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb(CH ₃ SO ₃) ₂ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn(CH ₃ SO ₃) ₂ Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn(CH ₃ SO ₃) ₂ Tabelle 66: Röntgenographische Pulverdaten für Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ Tabelle 66: Röntgenographische Pulverdaten für Zn(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ Tabelle 67: Röntgenographische Pulverdaten für Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ Tabelle 68: Röntgenographische Pulverdaten für das DSC/TG Intermediat Zn(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂ (Zn ₃ O(SO ₄) ₂) Tabelle 69: Röntgenographische Pulverdaten für den Zersetzungsrückstand	101 127 127 128 129 129 129 130 132 132 132 133 133 134 135 von 135 von

Tabelle	70:	Röntgenographische	Pulverdaten	für	den	Zersetzung	gsrückstand	von
Zn(CH₃SC	0 ₃) ₂ (CH	₃ SO ₃ H) ₂ (ZnO)						136
Tabelle	71:	Röntgenographische	Pulverdaten	für	das	DSC/TG	Intermediat	von
Co(CH ₃ SC	0₃)₂(CH	₃ SO ₃ H) ₂ (Co(CH ₃ SO ₃) ₂).						137
Tabelle	72:	Röntgenographische	Pulverdaten	für	den	Zersetzun	gsrückstand	von
Co(CH ₃ SC	0₃)₂(CH	₃ SO ₃ H) ₂ (Co ₉ S ₈)						138
Tabelle	73:	Röntgenographische	Pulverdaten	für	den	Zersetzung	gsrückstand	von
Co(CH ₃ SC	0₃)₂(CH	₃ SO ₃ H) ₂ im Sauerstoffstr	rom (CoO)					138
Tabelle	74:	Röntgenographische	Pulverdaten	für	den	Zersetzun	gsrückstand	von
Co(CH ₃ SC	0₃)₂(CH	₃ SO ₃ H) ₂ im Sauerstoffstr	rom (Co ₃ O ₄)					139
Tabelle 75	: Röntg	genographische Pulverda	aten für Ni(CH ₃ S	SO ₃) ₂ (0	CH₃SO₃	H) ₂		139

9. Danksagung

Als erstes möchte ich Herrn *Prof. Dr. Mathias Wickleder* für die Bereitstellung des interessanten Themas und die Unterstützung während der Promotionszeit danken.

Herrn *Prof. Dr. Rüdiger Beckhaus* danke ich für die freundliche Übernahme des Zweitgutachtens.

Herrn Prof. Dr. Thomas Müller danke ich für die Übernahme des Amts als Drittprüfer.

An dieser Stelle möchte ich zuerst dem gesamten Arbeitskreis Wickleder für die schöne Diplom- und Promotionszeit danken.

Wolfgang Saak danke ich für die ruhige Hand, die er des Öfteren bei der Auswahl der Kristalle bewiesen hat.

Detlev Haase danke ich für die Gespräche über: "Wie arbeite ich eine cif richtig auf?".

Christina Zitzer, Jörn Bruns, Mareike Ahlers, Frauke Gerlach und Katja Rieß danke ich für die DTA- und DSC-Messungen.

Stefan Schwarzer, Christian Logemann und Kai Neuschulz danke ich für die Messungen am Pulverdiffraktometer.

Marcel Fabian danke ich für die Daten, die er berechnet hat und mir zur Verfügung stellte.

Thorsten Langer der Universität Münster danke ich für das gemessene Mößbauer-Spektrum von Sn(CH₃SO₃)₂.

Marit Gudenschwager danke ich dafür, dass sie Farbe in mein Leben brachte und die schöne Zeit, die ich seitdem mit ihr verbringen konnte.

Christian Logemann, Patrick Zark und Katja Rieß danke ich für die schöne Zeit, die ich in ihrer Gegenwart erleben durfte.

Christian Logemann und *Marit Gudenschwager* bin ich abermals zu Dank verpflichtet für das Korrekturlesen meiner Arbeit.

Meiner Familie und meinen Freunden danke ich für die Unterstützung, die ich während dieser Zeit von ihnen erhalten habe.

10. Anhang

10.1: Kristallographische Daten für (NO)₂[Pt(NO₃)₆]

Molmasse	627,17 g/mol				
Kristallsystem	monoklin				
Raumgruppe	<i>P</i> 2 ₁ / <i>c</i> (Nr.14)				
Gitterkonstanten	<i>a</i> = 711,38(2) pm α = 90°				
	$b = 934,96(3) \text{ pm}$ $\beta = 107,559(2)^{\circ}$				
	$c = 1156,68(4) \text{ pm}$ $\gamma = 90^{\circ}$				
Zellvolumen	0,73348(4) nm ³				
Ζ	2				
Dichte (berechnet)	2,840 g/cm ³				
Diffraktometer	Bruker Apex-II				
Strahlung / Wellenlänge	Μο-Κα				
	(Graphit-Monochromator; λ = 71,073 pm)				
Messtemperatur	153,0 K				
Messbereich	5,72° < 2θ < 68,70°				
Indexbereich	-11≤ <i>h</i> ≤ 10				
	$-14 \le k \le 13$				
	-18 ≤ <i>I</i> ≤ 17				
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung				
Absorptionskoeffizient μ	9,709 mm ⁻¹				
gemessene Reflexe	12740				
symmetrieunabhängige Reflexe	3041 [<i>R</i> _{int} = 0,0596]				
davon mit [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	2209				
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]				
Streufaktoren	nach International Tables, Vol. C [X]				
Parameter	134				
Goodness-of-fit	0,991				
Gütekriterien $[l > 2\sigma(l)]$	$R_1 = 0,0258, \ wR_2 = 0,0699$				
Gütekriterien (alle Daten)	$R_1 = 0.0356, wR_2 = 0.0732$				
Max. / Min. Restelektronendichte	4,068 und -2,172 e/Å ⁻³				

10.2: Kristallographische Daten für (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·HNO₃

Molmasse	1346,06 g/mol				
Kristallsystem	orthorhombisch				
Raumgruppe	P2 ₁ 2 ₁ 2 ₁ (Nr.19)				
Gitterkonstanten	$a = 1167,68(4) \text{ pm}$ $\alpha = 90^{\circ}$				
	$b = 1791,97(6) \text{ pm}$ $\beta = 90^{\circ}$				
	$c = 1834,11(6) \text{ pm}$ $\gamma = 90^{\circ}$				
Zellvolumen	3,8379(2) nm ³				
Ζ	4				
Dichte (berechnet)	2,330 g/cm ³				
Diffraktometer	Bruker Apex-II				
Strahlung / Wellenlänge	Μο-Κα				
	(Graphit-Monochromator; λ = 71,073 pm)				
Messtemperatur	153,0 K				
Messbereich	3,18° < 2θ < 50,00°				
Indexbereich	-13≤ <i>h</i> ≤ 13				
	$-21 \le k \le 21$				
	-21 ≤ <i>I</i> ≤ 21				
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung				
Absorptionskoeffizient μ	2,121 mm ⁻¹				
gemessene Reflexe	53559				
symmetrieunabhängige Reflexe	$6745 [R_{int} = 0,0960]$				
davon mit [/>2ơ(/)]	3838				
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]				
Streufaktoren	nach International Tables, Vol. C [X]				
Parameter	687				
Goodness-of-fit	0,809				
Gütekriterien $[l > 2\sigma(l)]$	$R_1 = 0.0398, \ wR_2 = 0.0762$				
Gütekriterien (alle Daten)	$R_1 = 0,0841, \ wR_2 = 0,0857$				
Flack-X Parameter	0,16(2)				
Max. / Min. Restelektronendichte	1,451 und -0,323 e/Å ⁻³				

10.3: Kristallographische Daten für Sn(CH₃SO₃)₂

Molmasse	308,88 g/mol				
Kristallsystem	tetragonal				
Raumgruppe	P4 ₃ 2 ₁ 2 (Nr.96)				
Gitterkonstanten	$a = 745,94(2) \text{ pm}$ $\alpha = 90^{\circ}$				
	$b = 745,94(2) \text{ pm}$ $\beta = 90^{\circ}$				
	$c = 1397,68(4) \text{ pm}$ $\gamma = 90^{\circ}$				
Zellvolumen	0,77771(4) nm ³				
Z	4				
Dichte (berechnet)	2,638 g/cm ³				
Diffraktometer	Bruker Apex-II				
Strahlung / Wellenlänge	Μο-Κα				
	(Graphit-Monochromator; λ = 71,073 pm)				
Messtemperatur	153,0 K				
Messbereich	6,2° < 2 <i>θ</i> < 80,50°				
Indexbereich	-13≤ <i>h</i> ≤ 13				
	-11 ≤ <i>k</i> ≤ 13				
	-15 ≤ <i>I</i> ≤ 25				
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung				
Absorptionskoeffizient μ	3,804 mm ⁻¹				
gemessene Reflexe	24527				
symmetrieunabhängige Reflexe	2445 [<i>R</i> _{int} = 0,0214]				
davon mit [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	2421				
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]				
Streufaktoren	nach International Tables, Vol. C [X]				
Parameter	63				
Goodness-of-fit	1,310				
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0,0130, \ wR_2 = 0,0320$				
Gütekriterien (alle Daten)	$R_1 = 0,0133, \ wR_2 = 0,0321$				
Flack-X Parameter	0,009(14)				
Max. / Min. Restelektronendichte	0,476 und -0,619 e/Å ⁻³				

10.4: Kristallographische Daten für Pb(CH₃SO₃)₂

Molmasse	794,76 g/mol				
Kristallsystem	orthorhombisch				
Raumgruppe					
Gitterkonstanten	$a = 1424,38(12) \text{ pm}$ $\alpha = 90^{\circ}$				
	$b = 531,49(5) \text{ pm}$ $\beta = 90^{\circ}$				
	$c = 2012,24(17) \text{ pm}$ $\gamma = 90^{\circ}$				
Zellvolumen	1,5234(2) nm ³				
Z	4				
Dichte (berechnet)	3,465 g/cm ³				
Diffraktometer	Bruker Apex-II				
Strahlung / Wellenlänge	Μο-Κα				
	(Graphit-Monochromator; λ = 71,073 pm)				
Messtemperatur	153,0 K				
Messbereich	6,06° < 2θ < 60,20°				
Indexbereich	-19≤ <i>h</i> ≤ 20				
	$-7 \le k \le 6$				
	-28 ≤ <i>l</i> ≤ 28				
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung				
Absorptionskoeffizient μ	22,679 mm ⁻¹				
gemessene Reflexe	13909				
symmetrieunabhängige Reflexe	4358 [<i>R</i> _{int} = 0,0758]				
davon mit [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	3956				
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]				
Streufaktoren	nach International Tables, Vol. C [X]				
Parameter	205				
Goodness-of-fit	1,014				
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0.0284, \ wR_2 = 0.0676$				
Gütekriterien (alle Daten)	$R_1 = 0.0313, \ wR_2 = 0.0685$				
Flack-X Parameter	0,127(8)				
Max. / Min. Restelektronendichte	1,868 und -1,563 e/Å ⁻³				

10.5: Kristallographische Daten für Hg(CH₃SO₃)₂

Molmasse	781,56 g/mol				
Kristallsystem	orthorhombisch				
Raumgruppe	<i>Pca</i> 2 ₁ (Nr.96)				
Gitterkonstanten	$a = 1457,35(9) \text{ pm}$ $\alpha = 90^{\circ}$				
	$b = 503,96(2) \text{ pm}$ $\beta = 90^{\circ}$				
	$c = 1990,80(11) \text{ pm}$ $\gamma = 90^{\circ}$				
Zellvolumen	1,46214(13) nm ³				
Ζ	4				
Dichte (berechnet)	3,550 g/cm ³				
Diffraktometer	IPDS I				
Strahlung / Wellenlänge	Μο-Κα				
	(Graphit-Monochromator; $\lambda = 71,073 \text{ pm}$)				
Messtemperatur	153,0 K				
Messbereich	6,06° < 2 <i>θ</i> < 60,20°				
Indexbereich	-19≤ <i>h</i> ≤ 19				
	$-6 \le k \le 6$				
	-26 ≤ <i>l</i> ≤ 26				
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung				
Absorptionskoeffizient μ	21,604 mm ⁻¹				
gemessene Reflexe	17418				
symmetrieunabhängige Reflexe	3427 [<i>R</i> _{int} = 0,0518]				
davon mit [/>2ơ(/)]	2984				
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]				
Streufaktoren	nach International Tables, Vol. C [X]				
Parameter	204				
Goodness-of-fit	1,059				
Gütekriterien $[l > 2\sigma(l)]$	$R_1 = 0,0342, \ wR_2 = 0,0867$				
Gütekriterien (alle Daten)	$R_1 = 0.0388, \ wR_2 = 0.0875$				
Flack-X Parameter	0,503(15)				
Max. / Min. Restelektronendichte	2,709 und -1,677 e/Å ⁻³				

10.6: Kristallographische Daten für Cd(CH₃SO₃)₂

Molmasse	302,59 g/mol					
Kristallsystem	monoklin					
Raumgruppe	/2/a (Nr.96)					
Gitterkonstanten	$a = 976,34(6) \text{ pm}$ $\alpha = 90^{\circ}$					
	$b = 899,84(4) \text{ pm}$ $\beta = 117,6340(19)^{\circ}$					
	$c = 993,59(4) \text{ pm}$ $\gamma = 90^{\circ}$					
Zellvolumen	0,77334(7) nm ³					
Ζ	4					
Dichte (berechnet)	2,599 g/cm ³					
Diffraktometer	Bruker Apex-II					
Strahlung / Wellenlänge	Μο-Κα					
	(Graphit-Monochromator; λ = 71,073 pm)					
Messtemperatur	153,0 K					
Messbereich	6,48° < 2θ < 80,40°					
Indexbereich	-17≤ h ≤ 17					
	-15 ≤ <i>k</i> ≤ 16					
	-18 ≤ <i>I</i> ≤ 18					
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung					
Absorptionskoeffizient μ	3,344 mm ⁻¹					
gemessene Reflexe	10459					
symmetrieunabhängige Reflexe	2427 [<i>R</i> _{int} = 0,0435]					
davon mit [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	2400					
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]					
Streufaktoren	nach International Tables, Vol. C [X]					
Parameter	64					
Goodness-of-fit	1,186					
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0,0170, \ wR_2 = 0,0424$					
Gütekriterien (alle Daten)	$R_1 = 0.0174, \ wR_2 = 0.0425$					
Max. / Min. Restelektronendichte	0,894 und -0,894 e/Å ⁻³					

10.7: Kristallographische Daten für Cd(CH₃SO₃)₂(CH₃SO₃H)₂

Molmasse	494,79 g/mol						
Kristallsystem	triklin						
Raumgruppe	<i>P</i> -1 (Nr.2)						
Gitterkonstanten	$a = 847,79(9) \text{ pm}$ $a = 89,527(13)^{\circ}$						
	$b = 849,17(10) \text{ pm}$ $\beta = 86,229(13)^{\circ}$						
	$c = 1068, 14(11) \text{ pm}$ $\gamma = 79,883(13)^{\circ}$						
Zellvolumen	0,75537(14) nm ³						
Z	2						
Dichte (berechnet)	2,175 g/cm ³						
Diffraktometer	IPDS I						
Strahlung / Wellenlänge	Мо-Ка						
	(Graphit-Monochromator; λ = 71,073 pm)						
Messtemperatur	153,0 K						
Messbereich	6,00° < 2θ < 56,60°						
Indexbereich	-11≤ <i>h</i> ≤ 11						
	$-11 \le k \le 11$						
	-13 ≤ / ≤ 13						
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung						
Absorptionskoeffizient μ	2,053 mm ⁻¹						
gemessene Reflexe	11603						
symmetrieunabhängige Reflexe	3441 [<i>R</i> _{int} = 0,0563]						
davon mit [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	3007						
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]						
Streufaktoren	nach International Tables, Vol. C [X]						
Parameter	196						
Goodness-of-fit	1,031						
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0,0322, \ wR_2 = 0,0842$						
Gütekriterien (alle Daten)	$R_1 = 0,0364, wR_2 = 0,0853$						
Max. / Min. Restelektronendichte	1,023 und -0,529 e/Å ⁻³						

10.8: Kristallographische Daten für Zn(CH₃SO₃)₂(CH₃SO₃H)₂

Molmasse	447,76 g/mol						
Kristallsystem	orthorhombisch						
Raumgruppe	<i>Pccn</i> (Nr.56)						
Gitterkonstanten	$a = 1066,69(4) \text{ pm}$ $\alpha = 90^{\circ}$						
	$b = 1283,87(5) \text{ pm}$ $\beta = 90^{\circ}$						
	$c = 1043,20(4) \text{ pm}$ $\gamma = 90^{\circ}$						
Zellvolumen	1,42865(9) nm ³						
Ζ	4						
Dichte (berechnet)	2,082 g/cm ³						
Diffraktometer	Bruker Apex-II						
Strahlung / Wellenlänge	Мо-Кα						
	(Graphit-Monochromator; λ = 71,073 pm)						
Messtemperatur	153,0 K						
Messbereich	6,32° < 2θ < 56,64°						
Indexbereich	-14≤ <i>h</i> ≤ 14						
	$-17 \le k \le 17$						
	-12 ≤ / ≤ 13						
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung						
Absorptionskoeffizient μ	2,361 mm ⁻¹						
gemessene Reflexe	19724						
symmetrieunabhängige Reflexe	1772 [<i>R</i> _{int} = 0,1077]						
davon mit [<i>I</i> >2 <i>σ</i> (<i>I</i>)]	976						
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]						
Streufaktoren	nach International Tables, Vol. C [X]						
Parameter	117						
Goodness-of-fit	0,786						
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0.0283, \ wR_2 = 0.0493$						
Gütekriterien (alle Daten)	$R_1 = 0,0762, \ wR_2 = 0,0569$						
Max. / Min. Restelektronendichte	0,0470 und -0,375 e/Å ⁻³						

10.9: Kristallographische Daten für Co(CH₃SO₃)₂(CH₃SO₃H)₂

Molmasse	441.32 a/mol						
Kristallsystem	orthorhomhisch						
Raungruppe	<i>РССП</i> (NГ.56)						
Gitterkonstanten	$a = 1070,91(15) \text{ pm}$ $\alpha = 90^{\circ}$						
	$b = 1286,40(16) \text{ pm}$ $\beta = 90^{\circ}$						
	$c = 1049,08(11) \text{ pm}$ $\gamma = 90^{\circ}$						
Zellvolumen	1,4452(3) nm ³						
Ζ	4						
Dichte (berechnet)	2,028 g/cm ³						
Diffraktometer	IPDS I						
Strahlung / Wellenlänge	Μο-Κα						
	(Graphit-Monochromator; λ = 71,073 pm)						
Messtemperatur	153,0 K						
Messbereich	6,30° < 2 <i>θ</i> < 56,62°						
Indexbereich	-14≤ <i>h</i> ≤ 14						
	-17 ≤ <i>k</i> ≤ 17						
	-13 ≤ <i>I</i> ≤ 13						
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung						
Absorptionskoeffizient μ	2,361 mm ⁻¹						
gemessene Reflexe	18613						
symmetrieunabhängige Reflexe	1781 [<i>R</i> _{int} = 0,1027]						
davon mit [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	789						
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]						
Streufaktoren	nach International Tables, Vol. C [X]						
Parameter	120						
Goodness-of-fit	0,762						
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0,0402, \ wR_2 = 0,0908$						
Gütekriterien (alle Daten)	$R_1 = 0,0946, \ wR_2 = 0,0990$						
Max. / Min. Restelektronendichte	0,623 und -0,336 e/Å ⁻³						

10.10: Kristallographische Daten für Co₃(CH₃SO₃)₆(CH₃SO₃H)₂

Molmasse	939,56 g/mol						
Kristallsystem	triklin						
Raumgruppe	<i>P</i> -1 (Nr.2)						
Gitterkonstanten	$a = 797,57(11) \text{ pm}$ $\alpha = 89,387(17)^{\circ}$						
	$b = 954,09(12) \text{ pm}$ $\beta = 87,511(17)^{\circ}$						
	$c = 1039,72(16) \text{ pm}$ $\gamma = 67,180(15)^{\circ}$						
Zellvolumen	0,72855(18) nm ³						
Z	1						
Dichte (berechnet)	2,141 g/cm ³						
Diffraktometer	IPDS I						
Strahlung / Wellenlänge	Μο-Κα						
	(Graphit-Monochromator; λ = 71,073 pm)						
Messtemperatur	153,0 K						
Messbereich	6,30° < 2θ < 56,62°						
Indexbereich	-10≤ <i>h</i> ≤ 10						
	$-12 \le k \le 12$						
	-13 ≤ / ≤ 13						
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung						
Absorptionskoeffizient μ	2,357 mm ⁻¹						
gemessene Reflexe	11199						
symmetrieunabhängige Reflexe	3311 [<i>R</i> _{int} = 0,0684]						
davon mit [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	789						
Strukturbestimmung	SHELXS-97 und SHELXL-97 [X]						
Streufaktoren	nach International Tables, Vol. C [X]						
Parameter	201						
Goodness-of-fit	0,762						
Gütekriterien [$l > 2\sigma(l)$]	$R_1 = 0.0386, \ wR_2 = 0.0836$						
Gütekriterien (alle Daten)	$R_1 = 0,0766, \ wR_2 = 0,0895$						
Max. / Min. Restelektronendichte	0,685 und -0,429 e/Å ⁻³						

10.11 Röntgenographische Daten

Tabelle 54: Röntgenographische Daten für K2[PtCl6]

Gitte	Gitterparameter $a = 976,16(7) \text{ pm}$												
	$V = 930, 17(11) \text{ A}^2$												
Kristallsystem kubisch Raumgruppe													
Anzahl akzeptierter Reflexe 11													
Anza	hl einfach ind	izier	ter	Refl	exe 11	Anzahl	nicht ind	dizierter Reflex	e 0				
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	<i>I_{rel} /%</i>	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm				
1	15,714	1	1	1	15,711	0,0026	100,0	563,49	563,49				
2	18,159	2	0	0	18,161	-0,0022	36,3	488,14	488,08				
3	25,796	2	2	0	25,793	0,0021	37,4	345,10	345,12				
4	30,346	3	1	1	30,344	0,0018	40,2	294,31	294,32				
5	31,724	2	2	2	31,728	-0,0041	5,1	281,83	281,79				
6	36,800	4	0	0	36,800	0,0003	33,0	244,04	244,04				
7	40,239	3	3	1	40,237	0,0017	12,4	223,94	223,95				
8	41,327	4	2	0	41,330	-0,0032	13,8	218,29	218,28				
9	45,481	4	2	2	45,484	-0,0031	12,1	199,27	199,26				
10	48,416	5	1	1	48,414	0,0016	12,3	187,86	187,86				
11	53,027	4	4	0	53,025	0,0025	15,9	172,55	172,56				

Tabelle 55: Röntgenographische Daten für H₂[Pt(OH)₆]

Gitterparameter $a = 846.9(4) \text{ pm}$														
$b = 719,0(3) \text{ pm } \beta = 93,71(4)^{\circ}$														
<i>c</i> = 744,1(5) pm														
	$V = 452,2(6) Å^3$													
Kristallsystem monoklin Raumgruppe C2/e														
Anzahl akzeptierter Reflexe 21														
Anza	hl einfach ind	iziert	ter F	Refle	exe 19	Anza	hl nicht i	ndizierter Refle	exe 0					
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm					
1	19,723	-1	1	1	19,720	0,0028	100,0	449,77	449,83					
2	20,549	1	1	1	20,535	0,0139	93,1	431,88	432,17					
3	20,979	2	0	0	21,005	-0,0268	43,8	423,12	422,59					
4	23,954	0	0	2	23,950	0,0038	37,4	371,20	371,26					
5	24,769	0	2	0	27,450	0,0236	30,3	359,17	359,51					
6	30,930	-2	0	2	30,993	-0,0627	7,8	288,88	288,31					
7	32,675	2	2	0	32,677	-0,0021	23,5	273,84	278,2					
8	33,119	2	0	2	33,106	0,0127	8,4	270,27	270,37					
9	34,714	0	2	2	34,706	0,0079	7,3	258,21	258,26					
10	36,987	3	1	1	36,998	-0,0105	19,1	242,85	242,78					
11	39,273	-1	1	3	39,281	-0,0086	17,3	229,22	229,17					
12	40,048	-2	2	2	40,056	-0,0078	7,0	224,96	224,92					
13	40,711	-1	3	1	40,737	-0,0255	13,3	221,45	221,31					
14	41,169	1	3	1	41,165	0,0048	13,2	219,09	219,11					
15	41,779	2	2	2	41,769	0,0108	10,3	216,03	216,08					
16	49,008	-3	1	3	49,018	-0,0102	8,1	185,72	185,69					
		0	0	4	49,035	-0,0269			185,63					
17	49,939	3	3	0	49,918	0,0212	4,9	182,48	182,55					
18	50,836	-4	2	1	50,903	-0,0679	8,6	179,47	179,24					
19	52,053	3	3	1	52,046	0,0067	6,0	175,55	175,57					
20	54,856	-4	2	2	54,841	0,0142	5,0	167,23	167,27					
		1	3	3	54,849	0,0064			167,24					
21	55,492	2	4	0	55,510	-0,0176	9,4	165,46	165,41					

Gitterparameter $a = 392,63(6) \text{ pm}$											
$V = 60,528(15) \text{ Å}^3$											
Kristallsystem kubisch Raumgruppe									Fm-3m		
Anzahl akzeptierter Reflexe 5											
Anz	ahl einfach ind	dizie	erter	Ref	flexe 5	Anzah	I nicht in	dizierter Reflex	e 0		
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm		
1	39,764	1	1	1	39,730	0,0339	100,0	226,50	226,69		
2	46,226	2	0	0	46,205	0,0213	40,2	196,23	196,32		
3	67,412	2	2	0	67,408	0,0037	23,7	138,81	138,82		
4	81,171	3	1	1	81,187	-0,0158	25,7	118,40	118,38		
5	85,617	2	2	2	85,628	-0,0110	7,9	113,35	113,34		

Tabelle 56: Röntgenographische Pulverdaten für den Zersetzungsrückstand von (NO)₂[Pt(NO₃)₆]

Tabelle 57: Röntgenographische Pulverdaten für Cd(CH₃SO₃)₂

Gitterparameter $a = 981,2(4) \text{ pm}$														
$b = 903,2(5) \text{ pm } \beta = 118,24(2)^{\circ}$														
	c = 1004,8(4) pm													
	$V = 784,5(9) \text{ Å}^3$													
Kristallsystem monoklin Raumgruppe 12/a														
Anza	hl akzeptierte	r Ref	flexe	e	18	_								
Anza	hl einfach ind	iziert	er F	Refle	exe 18	Anzahl	nicht ind	izierter Reflexe	e 0					
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm					
1	14,010	0	1	1	13,997	0,0122	59,5	631,63	632,18					
2	14,162	1	1	0	14,170	-0,0086	100,0	624,88	624,51					
3	20,218	-1	1	2	20,225	-0,0071	16,0	438,86	438,71					
4	20,826	-2	0	2	20,836	-0,0099	35,7	426,18	425,98					
5	26,350	1	2	1	26,349	0,0004	76,7	337,97	337,97					
6	28,204	0	2	2	28,209	-0,0050	15,6	316,15	316,09					
7	28,430	1	1	2	28,403	0,0265	26,4	313,69	313,98					
8	29,107	-2	1	3	29,111	-0,0036	26,5	306,54	306,50					
9	29,539	-3	1	2	29,541	-0,0018	19,3	302,16	302,14					
10	31,361	0	3	1	31,358	0,0033	13,1	285,01	285,04					
11	33,521	-1	2	3	33,525	-0,0038	8,3	267,12	267,09					
12	34,128	-3	2	1	34,130	-0,0012	18,1	262,50	262,49					
13	35,190	2	0	2	35,198	-0,0085	8,2	254,83	254,77					
14	35,771	-2	0	4	35,752	0,0187	4,8	250,82	250,95					
15	36,610	-4	0	2	36,608	0,0020	6,1	245,26	245,28					
16	37,384	-3	2	3	37,376	0,0082	4,5	240,36	240,41					
17	38,174	-1	1	4	38,193	-0,0188	5,4	235,56	235,45					
18	40,440	2	3	1	40,443	-0,0034	27,8	222,87	222,85					

Gitte	rparameter $a = 414,33(6) \text{ pm}$												
<i>c</i> = 672,46(8) pm													
$V = 99,98(3) \text{ Å}^3$													
Krista	P6₃mc												
Anza													
Anza	hl einfach indi	izier	ter F	Refle	exe 20	Anzahl	nicht ind	lizierter Reflex	e 0				
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2 <i>θ</i> /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm				
1	24,800	1	0	0	24,793	0,0069	67,1	358,72	358,82				
2	26,491	0	0	2	26,488	0,0028	63,0	336,19	336,23				
3	28,173	1	0	1	28,166	0,0069	100,0	316,50	316,57				
4	36,596	1	0	2	36,596	-0,0001	28,1	245,35	245,35				
5	43,656	1	1	0	43,657	-0,0001	40,4	207,17	207,17				
6	47,799	1	0	3	47,806	-0,0071	38,8	190,13	190,11				
7	50,854	2	0	0	50,852	0,0021	5,4	179,40	179,41				
8	51,787	1	1	2	51,792	-0,0047	25,85	176,39	176,37				
9	52,764	2	0	1	52,766	-0,0018	11,3	173,35	173,35				
10	54,547	0	0	4	54,542	0,0049	1,9	168,10	168,11				
11	58,234	2	0	2	58,241	-0,0073	4,2	158,30	158,29				
12	60,786	1	0	4	60,795	-0,0095	1,7	152,26	152,23				
13	66,717	2	0	3	66,726	-0,0089	8,4	140,09	140,07				
14	69,212	2	1	0	69,218	-0,0066	3,0	135,63	135,62				
15	70,818	2	1	1	70,818	-0,0005	5,9	132,95	132,95				
16	72,317	1	1	4	72,326	-0,0094	2,9	130,55	130,54				
17	75,439	1	0	5	75,419	0,0193	6,2	125,91	125,94				
18	80,201	3	0	0	80,185	0,0162	3,2	119,59	119,61				
19	83,177	2	1	3	83,188	-0,0105	5,8	116,05	116,04				
20	86,252	3	0	2	86,245	0,0078	3,0	112,68	112,69				

Tabelle 58: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Cd(CH₃SO₃)₂ (CdS)

Tabelle 59: Röntgenographische Pulverdaten für Pb(CH₃SO₃)₂

Gillerparameter $a = 1430, 02(11) \text{ pm}$													
b = 533,40(13) pm													
<i>c</i> = 2020,80(16) pm													
$V = 1542,1(5) Å^3$													
Kristallsystem orthorhombisch Raumgruppe													
Anza	hl akzeptierte	er Re	eflex	ke	30		• • •						
Anza	hl einfach ind	lizie	rter	Refle	exe 23	An	zahl nich	nt indizierter Re	eflexe 0				
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm				
1	8,747	0	0	2	8,745	0,0023	100	1010,14	1010,40				
2	13,117	2	0	1	13,119	-0,0018	6,8	674,40	674,31				
3	17,539	0	0	4	17,541	-0,0019	3,5	505,25	505,20				
4	18,080	2	0	3	18,075	0,0053	5,5	490,25	490,39				
5	18,798	0	1	2	18,797	0,0008	4,3	471,69	471,71				
6	21,220	2	1	1	21,221	-0,0014	10,2	418,37	418,34				
7	24,246	0	1	4	24,246	0,0006	19,0	366,79	366,80				
8	24,639	2	1	3	24,640	-0,0011	25,5	361,02	361,01				
9	25,280	4	0	1	25,268	0,0120	6,1	352,02	352,18				
		2	0	5	25,290	-0,0102			351,88				
10	26,412	4	0	2	26,414	-0,0021	16,0	337,18	337,15				
11	30,411	2	1	5	30,408	0,0030	5,5	293,69	293,72				
12 31,380 4 1 2 31,362 0,0179 13							13,1	284,84	285,00				
		0	1	6	31,387	-0,0064			284,78				
13	33,448	4	0	5	33,428	0,0199	11,4	267,68	267,84				

#	2A (obs) /º	h	k	1	2A (calc) /º	∧ 2 ∂ /º	1.1%	d(obs)/nm	d(calc) /nm
π	20 (003)7	2		7	20 (calc) /	0.0027	rel / /o	d(ops)/piii	267 71
	25.042	2	0	1	35,440	0,0027		050.07	207,71
14	35,013	4	1	4	35,013	0,0000	5,5	256,07	256,07
15	39,440	0	1	8	39,439	0,0016	4,7	228,29	228,29
16	40,079	6	0	3	40,084	-0,0045	2,8	224,79	224,77
17	40,458	4	1	6	40,456	0,0017	7,9	222,77	222,78
18	41,693	6	1	1	41,699	-0,0064	6,4	216,46	216,43
19	42,154	2	0	9	42,148	0,0066	9,9	214,19	214,23
20	43,220	4	2	2	43,217	0,0033	4,7	209,16	209,17
		0	2	6	43,236	-0,0151			209,09
21	43,671	6	1	3	43,664	0,0064	5,0	20710	207,13
		4	1	7	43,687	-0,0165			207,03
22	44,060	6	0	5	44,060	-0,0005	3,4	205,36	205,36
23	47,189	4	1	8	47,193	-0,0044	3,7	192,45	192,43
24	48,122	4	2	5	48,107	0,0152	5,1	188,93	188,99
		0	1	10	48,111	0,0112			188,97
		2	2	7	48,120	0,0024			188,94
25	49,532	6	0	7	49,544	-0,0117	3,1	183,88	183,84
26	51,890	8	0	2	51,882	0,0079	2,8	176,07	176,09
27	54,313	5	2	6	54,297	0,0162	3,4	168,77	168,82
		2	1	11	54,305	0,0077			168,79
28	54,907	4	1	10	54,907	0,0006	5,1	167,08	167,08
29	61,154	8	1	6	61,146	0,0082	2,7	151,43	151,44
30	63,640	2	1	13	63,642	-0,0024	3,6	146,10	146,09

Tabelle 60: Röntgenographische Pulverdaten für Hg(CH₃SO₃)₂

Gitterparameter $a = 1459,4(8) \text{ pm}$											
	•				b = 504.22	2(19) pm					
					c = 1991, 4	4(5) pm					
					V = 1465,	4(12) Å ³					
Kristallsystem orthorhombisch Raumgruppe Pca											
Anza											
Anzahl einfach indizierter Reflexe 31 Anzahl nicht indizierter Reflexe											
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm		
1	8,900	0	0	2	8,874	0,0258	100,0	992,82	995,70		
2	12,919	2	0	1	12,910	0,0085	11,7	684,70	685,16		
3	18,063	2	0	3	18,051	0,0116	10,7	490,71	491,03		
4	19,715	0	1	2	19,720	-0,0053	7,1	449,95	449,83		
5	21,857	2	1	1	21,868	-0,0116	24,6	406,32	406,11		
6	24,362	4	0	0	24,377	-0,0147	34,2	365,07	364,85		
7	24,774	4	0	1	24,789	-0,0148	28,8	359,09	358,88		
8	25,129	0	1	4	25,117	0,0124	61,5	354,09	354,26		
9	25,290	2	1	3	25,297	-0,0075	65,8	351,88	351,78		
10	25,977	4	0	2	25,989	-0,0115	38,7	342,73	342,58		
11	31,109	2	1	5	31,1105	0,0043	13,3	287,26	287,30		
12	31,523	4	1	2	31,548	-0,0248	11,9	283,58	283,36		
13	32,274	0	1	6	32,264	0,0099	39,3	277,15	277,23		
14	33,806	2	0	7	33,790	0,0158	30,0	264,93	265,05		
15	35,268	4	1	4	35,284	-0,0168	16,9	254,28	254,16		
16	35,545	5	1	0	35,509	0,0368	18,1	252,36	252,61		
		0	2	0	35,581	-0,358			252,11		
17	36,081	0	0	8	36,052	0,0284	9,8	248,73	248,92		
		1	2	0	36,126	-0,0455			248,43		
18	36,706	5	1	2	36,673	0,0335	12,0	244,64	244,85		

щ	20 (aha) /8	1-	1-	,	20 (aala) /º	A 3 0 /8	1 /0/	dia ha) /mm	
#	29 (005) /	n	ĸ		20 (calc) /		I _{rel} /%	a(oos) /pm	a(caic) /pm
		0	2	2	36,743	-0,0370			244,40
		1	1	7	36,763	-0,0565			244,27
19	37,865	4	1	5	37,874	-0,0093	12,5	237,42	237,36
20	40,392	0	1	8	40,377	0,0159	29,4	223,12	223,21
21	40,839	3	1	7	40,839	-0,0010	34,3	220,79	220,78
		4	1	6	40,848	-0,0097			220,74
		1	1	8	40.867	-0.0284			220.64
22	41.377	6	1	1	41,432	-0.0549	20.4	218.04	217,76
23	42 160	6	1	2	42 203	-0.0428	16.3	214 17	213,96
24	42 685	2	0	a	42,666	0 0101		211.66	211 75
25	42,000	6	1	2	42,000	0,0151	177	207.70	208.04
23	43,319	6		5	43,404	0,0333	17,7	201,19	200,04
20	44 404	4	1	5	43,504	-0,0440	110	204 77	207,50
20	44,194	4			44,148	0,0464	14,0	204,77	204,97
27	44,550	4	2	2	44,588	-0,0383	15,6	203,22	203,05
28	45,141	0	2	6	45,125	0,0157	17,8	200,69	200,76
		1	1	9	45,141	-0,0007			200,69
		6	1	4	54,182	-0,0412			200,52
29	45,541	0	0	10	45,513	0,0280	12,8	199,02	199,14
		1	2	6	45,574	-0,0330			198,89
30	47,297	2	0	10	47,276	0,0207	10,4	192,03	192,11
		6	1	5	47,318	-0,0212			191,95
31	47,725	4	1	8	47,728	-0,0028	17,7	190,41	190,40
32	48,561	5	2	2	48,545	0,0156	6,0	187,33	187,38
		1	2	7	48,617	-0,0562			187,12
33	49.187	0	1	10	49,151	0.0369	19.9	185.09	185.22
	,	7	1	3	49.204	-0.0162	,	,	185.03
34	49.861	6	1	6	49,834	0.075	21.3	182.74	182.84
•	,	2	2	7	49,881	-0.0201	,•	,	182.67
35	50 118	8	0	1	50 177	-0.0599	19.3	181 87	181 67
36	52 010	1	2	8	51,961	0.0495	23.3	175 69	175.84
00	02,010	2	0	11	52 003	0.0074	20,0	110,00	175 71
37	52 304	1	0	10	52,000	0,0007	12.5	174 77	174.80
38	52,504	6	0	8	52 562	-0.0215	16.9	174,77	173 07
20	55 225	0	0	12	55 214	0,0210	27.5	165.90	165.05
39	55,555	2	1	14	55 222	0,0209	27,5	105,09	165.00
		~		5	55,323	0,0114			105,92
		0	0	0	55,340	-0,0131			100,00
40	50 400	0	3	2	55,393	-0,0566	10.0	400 70	100,73
40	56,133	2	3	0	56,109	0,0241	12,8	163,72	163,79
4.4	50 740	6	0	9	56,150	-0,0171	04.0	400.40	163,68
41	56,713	8	1	4	56,712	0,0008	21,9	162,18	162,19
		4	0	11	56,718	-0,0053			162,17
		2	2	9	56,728	-0,0154			162,14
42	57,414	6	2	5	57,460	-0,0458	8,5	160,37	160,25
43	57,832	4	2	8	57,817	0,0145	9,3	159,31	159,35
		0	3	4	57,857	-0,0258			159,24
44	58,490	0	1	12	58,506	-0,0165	19,0	157,67	157,63
		8	1	5	58,539	-0,0493			157,55
45	59,970	6	0	10	59,989	-0,0186	11,6	154,13	154,09
		2	1	12	59,992	-0,0219			154,08
46	62,154	1	3	6	62,186	-0,0317	8,9	149,23	149,16
47	62,934	3	3	5	62,938	-0,0047	12,9	147,57	147,56
		9	1	4	62,991	-0,0575			147,44
48	64,845	2	1	13	64,830	0,0155	38,1	143,67	143,70
		4	2	10	64,856	-0,0105			143,65
49	67,372	10	1	2	67,408	-0,0353	14,7	138,88	138,82

#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm
50	71,188	6	1	12	71,227	-0,0386	13,5	132,34	132,28
51	73,625	8	0	11	73,661	-0,0362	6,4	128,55	128,50
52	75,078	2	3	10	75,027	0,0513	16,4	126,42	126,50
		2	1	15	75,065	0,0130			126,44
		3	2	13	75,083	-0,0054			126,42
53	75,358	0	4	0	75,335	0,0231	14,5	126,02	126,06
		10	2	1	75,338	0,0203			126,05
		11	1	3	75,392	-0,0340			125,97
54	75,656	4	3		75,619	0,0367	12,6	125,60	125,65
		1	4	0	75,665	-0,0088			125,59
		6	1	13	75,699	-0,0437			125,54

Tabelle 61: Röntgenographische Pulverdaten für das DSC/TG-Intermediat von Pb(CH₃SO₃)₂ (PbS)

Gitte	rparameter				a = 59	4,43(5) pm				
					V = 21	0,04(3) Å ³				
Krista	allsystem				kubisc	h Raumo	gruppe		Fm-3m	
Anza	hl akzeptierte	r Re	flex	e	10	_				
Anza	hl einfach ind	izier	ter	Refl	exe 10	Anzahl	I nicht ind	dizierter Reflex	e 0	
#	# 2θ (obs) /° $h k l$ 2θ (calc) /° $\Delta 2\theta$ /° I_{rel} /% d (obs) /pm									
1	25,945	1	1	1	25,941	0,0038	91,0	343,15	343,20	
2	30,048	2	0	0	30,042	0,0065	100,0	297,15	297,22	
3	43,004	2	2	0	43,003	0,0016	66,0	210,16	210,16	
4	50,905	3	1	1	50,908	-0,0028	41,3	179,24	179,23	
5	53,337	2	2	2	53,3346	-0,0094	21,0	171,63	171,60	
6	62,438	4	0	0	62,442	-0,0037	9,8	148,62	148,61	
7	68,777	3	3	1	68,784	-0,0070	13,3	136,38	136,37	
8	70,833	4	2	0	70,834	-0,0010	23,6	132,92	132,92	
9	78,819	4	2	2	78,816	0,0036	15,2	121,33	121,34	
10	84,660	5	1	1	84,652	0,0083	8,1	114,39	114,40	

Tabelle 62: Röntgenographische Pulverdaten für den Zersetzungsrückstands von Pb(CH₃SO₃)₂ (Pb)

Gitt	erparameter				<i>a</i> = 49	95,41(6) pm	า					
	V = 121,59(3) Å ³											
Kris	tallsystem				kubiso	ch Raum	gruppe		Fm-3m			
Anz	ahl akzeptierte	er R	efle	xe	6							
Anzahl einfach indizierter Reflexe 6 Anzahl nicht indizierter Reflexe 0												
#	2θ (obs) /°	h	k	1	2θ (calc) /°	<i>d</i> (calc) /pm						
1	31,255	1	1	1	31,247	0,0085	100,0	285,95	286,02			
2	36,235	2	0	0	36,236	-0,0009	35,9	247,71	247,70			
3	52,177	2	2	0	52,181	-0,0039	22,6	175,16	175,15			
4	62,086	3	1	1	62,088	-0,0020	25,4	149,37	149,37			
5	65,173	2	2	2	65,181	-0,0080	8,8	143,03	143,01			
6	88,119	4	2	0	88,113	0,0064	7,2	110,77	110,78			

Gitte	rparameter				a = 593	3,66(7) pm	1						
	$V = 209,23(4) \text{ Å}^3$												
Krista	allsystem				kubisc	h Raumo	gruppe		Fm-3m				
Anza	hl akzeptierte	r Re	flex	e	10	-							
Anza	hl einfach ind	izier	ter	Refl	exe 10	Anzahl	I nicht ind	dizierter Reflex	e 0				
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm				
1	26,018	1	1	1	25,975	0,0426	71,6	342,20	342,75				
2	30,122	2	0	0	30,082	0,0408	100,0	296,44	296,83				
3	43,087	2	2	0	43,061	0,0259	47,9	209,77	209,89				
4	50,993	3	1	1	50,979	0,0143	28,7	178,95	179,00				
5	53,427	2	2	2	53,421	0,0066	12,6	171,36	171,38				
6	62,534	4	0	0	62,532	0,0013	8,3	148,41	148,42				
7	68,789	3	3	1	68,886	-0,0069	8,1	136,21	136,20				
8	70,933	4	2	0	70,940	-0,0068	14,5	132,76	132,75				
9	78,925	4	2	2	78,938	-0,0132	9,5	121,20	121,18				
10	84,764	5	1	1	84,787	-0,0235	5,9	114,28	114,25				

Tabelle 63: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Pb(CH₃SO₃)₂ (PbS)

Tabelle 64: Röntgenographische Pulverdaten für Sn(CH₃SO₃)₂

Gitte	rparameter				a = 747,0((3) pm			
					c = 1405,2	2(8) pm			
					V = 784,2	(9) Å ³			
Krista	allsystem				tetragonal	Ra	umgrupp	е	P4 ₃ 2 ₁ 2
Anza	hl akzeptierte	r Re	flex	е	20		• • •		
Anza	hl einfach ind	izier	ter F	Refle	exe 17	Anz	zahl nich	t indizierter Re	flexe 0
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm
1	13,430	1	0	1	13,413	0,0177	100,0	658,74	659,61
2	17,935	1	1	1	17,925	0,0100	68,8	494,17	494,45
3	22,401	1	0	3	22,385	0,0159	31,2	396,56	396,84
4	23,804	2	0	0	23,803	0,0007	57,4	373,50	373,51
5	25,371	0	0	4	25,333	0,0377	62,5	350,78	351,29
		1	1	3	25,394	-0,0237			350,46
6	26,658	2	1	0	26,662	-0,0038	39,7	334,13	334,08
7	27,415	2	1	1	27,419	-0,0041	54,4	325,07	325,02
8	32,899	2	1	3	32,904	-0,0049	32,6	272,03	271,99
9	33,899	2	2	0	33,914	-0,0154	21,7	264,23	264,11
10	34,064	1	0	5	34,057	0,0064	26,3	262,99	263,04
11	35,034	2	0	4	35,038	-0,0032	22,5	255,92	255,90
12	38,298	3	0	2	38,319	-0,0212	17,0	234,83	234,70
13	38,594	3	1	1	38,617	-0,0225	28,9	233,09	232,96
14	40,223	3	1	2	40,244	-0,0210	31,7	224,03	223,91
15	41,966	2	1	5	41,977	-0,0109	22,2	215,11	215,06
16	42,799	2	2	4	42,801	-0,0022	33,9	211,12	211,11
		3	1	3	42,840	-0,0410			210,92
17	50,353	4	1	0	50,321	0,0318	18,5	181,07	181,18
18	53,641	3	3	2	53,617	0,0246	16,8	170,72	170,79
		3	0	6	53,684	-0,0421			170,60
19	63,531	2	2	8	63,562	-0,0317	12,8	146,32	146,26
20	68,893	5	2	2	68,945	-0,0521	14,9	136,18	136,09

$c = 319,23(3) \text{ pm}$ $V = 71,933(16) \text{ Å}^3$ Kristallavstom	าฑ
$\frac{V = 71,933(16) \text{ Å}^3}{\text{Kristallaystam}}$	าฑ
Kristallevstom totragonal Paumgruppo P4 /m	าฑ
Anzahl akzeptierter Reflexe 8	
Anzahl einfach indizierter Reflexe 8 Anzahl nicht indizierter Reflexe 0	
# 2θ (obs) /° h k l 2θ (calc) /° $\Delta 2\theta$ /° I_{rel} /% d (obs) /pm d (calc) /	m
1 26,538 1 1 0 26,534 0,0038 100 335,61 335,66	
2 33,809 1 0 1 33,810 -0,0008 79,6 264,91 264,90	
3 37,875 2 0 0 37,876 -0,0016 20,7 237,36 237,35	
4 51,663 2 1 1 51,668 -0,0050 56,5 176,79 176,77	
5 54,641 2 2 0 54,643 -0,0015 13,5 167,83 167,83	
6 61,752 3 1 0 61,748 0,0040 11,2 150,10 150,11	
7 64,606 1 1 2 64,604 0,0019 11,9 144,14 144,15	
8 65,822 3 0 1 65,823 -0,0009 14,01 141,77 141,77	

Tabelle 65: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Sn(CH₃SO₃)₂ (SnO₂)

Tabelle 66: Röntgenographische Pulverdaten für Zn(CH₃SO₃)₂(CH₃SO₃H)₂

<u></u>						· / `						
Gitte	rparameter				a = 1067,7	a = 1067,7(7) pm						
					b = 1290,9	D = 1290,9(6) pm						
					<i>c</i> = 1045,1	(9) pm						
Krista		Pccn										
Anza	hl akzeptierte	r Re	flex	е	16							
Anza	hl einfach indi	zier	ter I	Refl	exe13	Anza	ahl nicht i	indizierter Refl	exe O			
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm			
1	10,772	1	1	0	10,744	0,0275	100,0	820,68	822,77			
2	13,726	1	1	1	13,686	0,0393	6,,1	6644,63	646,48			
		2	0	0	13,708	0,0179			645,47			
3	16,601	0	2	0	16,592	0,0084	14,2	533,59	533,86			
4	18,902	0	1	2	18,892	0,0100	5,9	469,12	469,36			
5	19,892	1	2	1	19,885	0,0068	8,2	445,98	446,13			
6	21,591	2	2	0	21,584	0,0067	7,5	411,26	411,38			
7	21,876	2	0	2	21,866	0,0103	13,6	405,96	406,15			
8	22,269	3	1	0	22,256	0,0128	12,1	398,89	399,12			
9	23,814	0	2	2	23,808	0,0065	40,5	373,34	373,44			
		3	1	1	23,846	-0,0313			372,86			
10	27,609	2	2	2	27,573	0,0360	30,2	322,83	323,24			
		4	0	0	27,617	-0,0079			322,74			
11	28,104	3	1	2	28,110	-0,0065	7,7	317,26	317,19			
12	31,133	1	3	2	31,159	-0,0258	13,5	287,04	286,81			
13	34,270	0	0	4	34,293	-0,0233	9,9	261,45	261,28			
14	35,739	5	1	0	35,751	-0,0112	4,9	251,03	250,96			
15	37,769	0	4	2	37,815	-0,0470	9,3	238,00	237,71			
16	48,749	0	4	4	48,729	0,0192	5,2	186,65	186,72			

Gitterparameter $a = 1071,13(21) \text{ pm}$											
•					h = 1293.0	(4) pm					
					c = 1051.4	(3) pm					
					V = 1456.2	(0) pin P(10) Å ³					
Krist	allsystem				orthorhom	oisch Rau	maruppe	1	Pccn		
Anza	hl akzentierte	r Re	flexe	2	21	21					
Anza	hl einfach ind	izier	ter F	Refle	exe 21	Anza	ahl nicht	indizierter Refl	lexe 0		
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	Irel /%	d(obs)/pm	d(calc) /pm		
1	10,716	1	1	0	10,717	-0,0006	100,0	824,91	824,86		
2	13,666	0	2	0	13,686	-0,0203	5,9	647,46	646,51		
3	16,543	2	0	0	16,539	0,0042	13,2	535,43	535,57		
4	18,780	1	0	2	18,788	-0,0077	10,6	472,14	471,94		
5	19,817	2	1	1	19,815	0,0021	13,7	447,66	447,70		
6	21,535	2	2	0	21,529	0,0061	12,4	412,32	412,43		
7	21,772	0	2	2	21,771	0,0000	21,6	407,89	407,89		
8	22,220	1	3	0	22,215	0,0053	12,0	399,76	399,85		
9	23,310	1	2	2	23,317	-0,0077	8,5	381,31	381,18		
10	23,710	2	0	2	23,696	0,0141	42,1	374,95	375,17		
11	25,867	3	1	0	25,867	0,0003	4,1	344,16	344,16		
12	27,582	0	4	0	27,572	0,0103	30,6	323,14	323,25		
13	28,006	1	3	2	28,014	-0,0077	6,7	318,34	318,26		
14	31,034	3	1	2	31,033	0,0012	15,6	287,94	287,95		
15	33,541	2	2	3	33,527	0,0142	5,4	266,96	267,07		
16	34,075	0	0	4	34,081	-0,0057	12,4	262,90	262,86		
17 35,246 4 1 1					35,247	-0,0006	3,5	254,43	254,43		
18 35,687 1 5 0					35,688	-0,0010	4,7	251,39	251,38		
19	36,283	4	2	0	36,282	0,0010	4,0	247,39	247,40		
20	37,670	4	0	2	37,668	0,0026	10,8	238,60	238,61		
21	53,174	6	2	0	53,184	-0,0099	4,2	172,11	172,08		

Tabelle 68: Röntgenographische Pulverdaten für das DSC/TG Intermediat von $Zn(CH_3SO_3)_2(CH_3SO_3H)_2$ ($Zn_3O(SO_4)_2$)

Gitterparameter					a = 794.0(4	4) pm				
					$b = 671.2(3) \text{ pm } \beta = 124.449(16)^{\circ}$					
					c = 787,1(4)	4) pm	, (,		
Krist	allsystem				monoklin	Rau	$P2_1/m$			
Anza	ahl akzeptierte	r Re	flex	е	21		0 11		·	
Anza	hl einfach ind	iziert	ter F	Refle	exe 18	Anzahl nicht indizierter Reflexe 0				
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm	
1	12,660	-1	0	1	12,646	0,0139	24,5	698,65	699,42	
2	13,560	1	0	0	13,512	0,0475	25,6	652,48	654,77	
3	13,610	0	0	1	13,632	-0,0223	26,2	650,10	649,04	
4	18,930	1	1	0	18,919	0,0108	27,5	468,43	468,69	
5	22,440	-2	0	1	22,438	0,0020	30,6	395,88	395,91	
6	22,660	-1	0	2	22,658	0,0019	26,5	392,09	392,12	
7	24,130	1	0	1	24,139	-0,0090	93,2	368,53	368,39	
8	25,460	-2	0	2	25,450	0,0101	41,2	349,57	349,71	
9	26,530	0	2	0	26,539	-0,0085	82,8	335,71	335,60	
10	27,213	2	0	0	27,217	-0,0047	23,2	327,44	327,38	
11	27,469	0	0	2	27,462	0,0072	29,5	324,44	324,52	
12	28,750	-2	1	2	28,763	-0,0122	26,0	310,27	310,14	

#	24 (aba) /º	h	k	1	20 (aala) /º	A20 /º	I /0/	d(aba) /nm	d(aala) /nm
#	20 (005) /	п	ĸ	1	20 (Calc) /	Δ20/	I _{rel} / 70	a(one) /huu	a(caic) /pill
13	29,480	-1	2	1	29,498	-0,0179	26,2	302,75	302,57
14	29,910	1	2	0	29,894	0,0162	69,9	298,50	298,66
		0	2	1	29,950	-0,0402			298,11
15	34,129	-3	0	2	34,132	-0,0032	17,6	262,50	262,48
16	34,370	-2	0	3	34,382	-0,0115	13,6	260,71	260,63
17	35,160	-3	0	1	35,167	-0,0066	42,3	255,03	254,99
		-1	2	2	35,169	-0,0094			254,97
18	35,555	-1	0	3	35,555	0,0001	36,7	252,29	252,29
19	36,170	1	2	1	36,178	-0,0080	100,0	248,14	248,09
20	37,085	2	0	1	37,068	0,0169	43,4	242,23	242,33
		-2	2	2	37,099	-0,0140			242,14
21	39,500	2	1	1	39,504	-0,0042	11,3	227,96	227,93

Tabelle 69: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ (ZnS)

Gitterparameter					a = 382,7	<i>a</i> = 382,79(18) pm					
					c = 626,80	c = 626.8(5)					
	V = 79,54(10) Å ³										
Kristallsystem					hexagona	hexagonal Raumgruppe					
Anzahl akzeptierter Reflexe 5											
Anz	ahl einfach ind	dizie	rter	Ref	lexe 5	e 5 Anzahl nicht indizierter Reflexe 0					
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm		
1	26,867	1	0	0	26,872	-0,0057	68,7	331,58	331,51		
2	28,474	0	0	2	28,458	0,0167	100,0	313,21	313,39		
3	30,477	1	0	1	30,480	-0,0030	25,9	293,07	293,05		
4	51,661	1	0	3	51,673	-0,0117	14,7	176,79	176,75		
5	88,391	3	0	0	88,387	0,0037	8,9	110,50	110,50		

Tabelle 70: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Zn(CH₃SO₃)₂(CH₃SO₃H)₂ (ZnO)

Gitterparameter					a = 325,55	a = 325,55(3) pm						
•					c = 521.56	c = 521.56(3)						
					V = 47,870	$V = 47.870(9) Å^3$						
Krista	allsystem				hexagonal	Rau	$P6_3mc$					
Anza	hl akzeptierte	r Re	flex	e	13 ^ĭ	13						
Anza	hl einfach ind	izier	ter	Refl	exe13	Anzahl nicht indizierter Reflexe 0						
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm			
1	31,715	1	0	0	31,712	0,0029	62,8	281,91	281,93			
2	34,361	0	0	2	34,361	0,0006	49,2	260,78	260,78			
3	36,189	1	0	1	36,189	-0,0000	100,0	248,02	248,02			
4	47,460	1	0	2	47,453	0,0079	25,3	191,41	197,44			
5	56,483	1	1	0	46,489	-0,0061	30,1	162,79	162,77			
6	62,733	1	0	3	62,737	0,0037	24,2	147,99	147,98			
7	66,247	2	0	0	66,247	0,007	3,8	140,96	140,97			
8	67,808	1	1	2	67,815	-0,0066	19,0	138,09	138,08			
9	68,950	2	0	1	68,950	-0,0002	9,4	136,08	136,08			
10	72,418	0	0	4	72,422	-0,0046	1,8	130,40	130,39			
11	76,804	2	0	2	76,803	0,0008	3,0	124,01	124,01			
12	81,219	1	0	4	81,217	0,0025	1,6	118,34	118,35			
13	89,423	2	0	3	89,417	0,0058	5,6	109,49	109,50			
Gitterparameter					<i>a</i> = 960,76	<i>a</i> = 960,76(15) pm						
-----------------	-----------------	-------	-------	-------	-------------------	--------------------------	---------------------	-----------------	-------------	--	--	
	•				b = 871,29	(11) pm β	$= 117,5^{\circ}$	18(12)°				
					c = 944,01	(13) pm		()				
					V = 700,83	(12) Å ³						
Krist	allsystem				monoklin	Rau	mgruppe	Э	C2/c			
Anza	ahl akzeptierte	r Re	flex	е	48		0 11					
Anza	ahl einfach ind	izier	ter F	Refle	exe 36	Anz	ahl nicht	indizierter Ref	lexe 2			
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	d(obs) /pm	d(calc) /pm			
1	14,541	1	1	0	14,529	0,0121	68.3	608,68	609,18			
2	14,888	-1	1	1	14,880	0,0072	100.0	594,58	594,86			
3	19,454	-	ni	icht	indiziert	,	3,3	455,92	,			
4	20,833	2	0	0	20,834	-0,0009	9,7	426,05	426,03			
5	21,214	0	0	2	21,207	0,0067	40.3	418,47	418,61			
6	23,01	0	2	1	22,995	0,0147	5,0	386,21	386,46			
7	24.072	_	ni	icht	indiziert	- , -	2.8	369,40	, -			
8	27.647	-2	2	1	27.637	0.0096	92.4	322,39	322.50			
9	29,303	2	2	0	29,298	0,0050	11.8	304,54	304,59			
10	29,599	0	2	2	29.571	0.0282	47.2	301,56	301.84			
-	-,	1	1	2	29,593	0.0057	,		301.62			
11	29.968	-3	1	1	29.952	0.0157	11.6	297.93	298.08			
12	30.489	-3	1	2	30,484	0.0047	27.8	29.296	293.00			
	,	-1	1	3	30,485	0.0041	,_	,	293.00			
13	32.547	1	3	0	32.546	0.0010	6.5	274.89	274.90			
14	34.519	2	2	1	34,471	0.0477	6.3	259.62	259.97			
15	35,729	-2	2	3	35,714	0.0159	9.3	251.10	251,21			
16	37.472	-4	0	2	37,465	0.0073	5.1	239.87	239.86			
17	38,136	-2	Ō	4	38,122	0.0146	4.2	235.79	235.88			
18	39,696	1	1	3	39,689	0.0076	4.7	226.87	226.92			
19	41,416	0	4	Ő	41,420	-0.0034	5.0	217.84	217.82			
20	42,142	-3	3	1	42,151	-0.0085	3.6	214.25	214.21			
21	42 554	-3	3	2	42 548	0.0057	26.7	212 28	212,30			
- ·	.2,001	-1	3	3	42 549	0.0053	_0,.	2:2,20	212,30			
22	43,195	0	0	4	43,188	0.0064	3.9	209.27	209.30			
23	44,586	3	3	0	44,586	0.0005	6,6	203.06	203.06			
24	47.333	-2	4	2	47,292	0.0416	3.0	191,90	192,06			
	17,000	3	1	2	47,367	-0.0340	0,0	101,00	191 77			
25	48 193	0	2	4	48 197	-0.0033	28	188 67	188.66			
26	49,176	-5	1	3	49,161	0.0150	5.8	185,13	185,18			
27	49,531	3	3	1	49.522	0.0087	6.3	183,88	183,91			
28	50,504	-5	1	1	50 531	-0.0278	4 1	180,57	180,48			
	00,001	1	1	4	50,533	-0.0287	.,.	,	180,47			
29	51,266	-3	3	4	51,261	0.0049	7.4	178.06	178.08			
30	51,590	-1	1	5	51,566	0.0246	4.0	177.02	177,10			
31	53 291	4	2	1	53,308	-0.0171	4.0	171 76	171 71			
01	00,201	0	4	3	53,308	-0.0179	1,0		171.71			
32	53,749	-1	5	1	53,751	-0.0023	5.6	170.41	170,40			
33	55,916	1	5	1	55,906	0.0099	10.9	164.30	164.33			
00	00,010	-4	2	5	55,936	-0.0197	. 0,0	,	164.25			
34	56 469	3	3	2	56,479	-0.0106	5.8	162.83	162.80			
35	57,529	-5	1	5	57,536	-0.0070	8.6	160.07	160.06			
	0,020	-5	3	2	57,543	-0.0136	5,5		160.04			
		-2	4	4	57.5488	-0.0190			160.03			
36	57,804	-4	4	1	57,798	0,0059	5,5	159.38	159.39			

Tabelle 71: Röntgenographische Pulverdaten für das DSC/TG Intermediat von Co(CH $_3$ SO $_3$) $_2$ (CH $_3$ SO $_3$ H) $_2$ (Co(CH $_3$ SO $_3$) $_2$)

#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm
37	58,606	-4	4	3	58,638	-0,0318	2,6	157,39	157,31
38	59,068	0	2	5	59,056	0,0119	3,6	156,27	156,30
39	60,398	1	5	2	60,371	0,0273	2,6	153,14	153,20
40	61,737	-6	2	3	61,748	-0,0115	3,4	150,14	150,11
41	65,463	-2	4	5	65,484	-0,0204	4,1	142,46	142,42
42	66,754	1	5	3	66,774	-0,0206	3,6	140,02	139,98
43	67,672	-3	3	6	67,704	-0,0325	3,0	138,34	138,28
44	68,180	2	6	0	68,170	0,0102	3,1	137,43	137,45
45	69,183	-6	0	6	69,179	0,0042	4,4	135,68	135,69
46	70,147	4	2	3	70,178	-0,0317	5,0	134,05	134,00
47	77,278	-4	6	1	77,275	0,0028	2,9	123,36	123,37
		-7	1	6	77,317	-0,0389			123,31
48	83,855	-8	2	3	83,806	0,0491	3,4	115,28	115,34
		0	2	7	83,808				115,33
		2	4	5	83,828				115,31
		-7	1	7	83,854	0,0008			115,28
		-5	1	8	83,855	-0,0001			115,28
		5	5	1	83,872	-0,0169			115,26

Tabelle	72: Röntgenographische	Pulverdaten für den	Zersetzungsrückstand v	von Co(CH ₃ SO ₃) ₂ (CH ₃ SO ₃ H) ₂
(Co ₉ S ₈)				

Gitterparameter a = 9					<i>a</i> = 993,4	(3) pm			
					V = 980,3	$(4) Å^3$			
Kris	tallsystem				kubisch	Rau	umgrupp	е	Fm-3m
Anz	ahl akzeptierte	er R	efle	xe	6		• • • •		
Anzahl einfach indizierter Reflexe					flexe6	Anzahl nicht indizierter Reflexe 0			
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm
1	15,477	1	1	1	15,437	0,0404	43,7	572,05	573,54
2	29,822	3	1	1	29,805	0,0171	100,0	299,35	299,52
3	31,170	2	2	2	31,163	0,0068	26,5	286,71	286,77
4	39,516	3	3	1	39,510	0,0065	21,8	227,87	227,90
5	47,506	5	1	1	47,521	-0,0153	39,7	191,24	191,18
6	52,019	4	4	0	52,035	-0,0153	98,6	175,66	175,61

Tabelle 73: Röntgenographische Pulverdaten für den Zersetzungsrückstand von Co(CH₃SO₃)₂(CH₃SO₃H)₂ im Sauerstoffstrom (CoO)

Gitterparameter a =				<i>a</i> = 426,2	(3) pm					
	V = 77,40(9)Å ³									
Kristallsystem ku				kubisch	Rai	umgrupp	e	Fm-3m		
Anzahl akzeptierter Reflexe 4										
Anzahl einfach indizierter Refl				Ref	flexe4	(e 4 Anzahl nicht indizierter Reflexe 0				
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm	
1	36,499	1	1	1	36,489	0,0107	97,2	245,98	246,05	
2	42,381	2	0	0	42,385	-0,0038	100,0	213,10	213,08	
3	61,473	2	2	0	61,493	-0,0201	54,7	150,72	150,67	
4	73,679	3	1	1	73,666	0,0132	27,1	128,47	128,49	

Tabelle 74: Röntgenographische Pulverdaten für den Zersetzungsrückstand von $Co(CH_3SO_3)_2(CH_3SO_3H)_2$ im Sauerstoffstrom (Co_3O_4)

Gitterparameter					<i>a</i> = 808,90)(7) pm			
					V = 529,28	$B(8) Å^{3}$			
Krista	allsystem				kubisch	Rau	mgruppe	9	Fd-3m
Anza	ahl akzeptierte	r Re	flex	е	11				
Anza	hl einfach indi	izier	ter l	Refl	exe11	Anza	ahl nicht	indizierter Ref	lexe 0
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	<i>d</i> (calc) /pm
1	18,982	1	1	1	18,987	-0,0054	24,0	467,15	467,02
2	31,249	2	2	0	31,251	-0,0015	37,7	286,00	285,99
3	36,824	3	1	1	36,823	0,0010	100,0	243,89	243,89
4	38,530	2	2	2	38,523	0,0068	11,1	233,47	233,51
5	44,783	4	0	0	44,780	0,0030	17,0	202,21	202,22
6	55,610	4	2	2	55,517	-0,0074	9,3	165,14	165,12
7	59,322	5	1	1	59,316	0,0061	25,5	155,66	155,67
8	65,190	4	4	0	65,089	0,0005	30,2	142,99	142,99
9	74,018	6	2	0	74,066	-0,0480	2,7	127,97	127,90
10	77,291	5	3	3	77,284	0,0070	6,9	123,35	123,36
11	78,337	6	2	2	78,347	-0,0099	3,3	121,96	121,95

Tabelle 75: Röntgenographische Pulverdaten für Ni(CH₃SO₃)₂(CH₃SO₃H)₂

Gitte	rparameter				<i>a</i> = 1068,7	'(3) pm			
· .					b = 1284,8	3(3) pm			
c = 1041.8 (3) pm									
	$V = 1430.4(9) \text{ Å}^3$								
Kristallsystem orthorhombisch Raumgruppe Pccn									Pccn
Anza	hl akzeptierte	r Re	flex	e	21		• • •		
Anza	hl einfach indi	izier	ter l	Refl	exe19	Anza	ahl nicht	indizierter Ref	lexe 1
#	2θ (obs) /°	h	k	1	2θ (calc) /°	Δ2θ /°	I _{rel} /%	<i>d</i> (obs) /pm	d(calc) /pm
1	10,761	1	1	0	10,759	0,0016	100,0	821,48	821,60
2	13,755	0	2	0	13,774	-0,0193	4,9	643,29	642,39
3	16,581	2	0	0	16,577	0,0039	11,7	534,21	534,33
4	17,928						7,2	494,36	
5	18,946	1	0	2	18,938	0,0086	6,8	468,02	468,23
6	19,893	2	1	1	19,896	-0,0032	12,5	445,96	445,89
7	21,619	2	2	0	21,615	0,0039	9,5	410,72	410,80
8	21,949	0	2	2	21,951	-0,0022	17,9	404,63	404,59
9	22,342	1	3	0	22,346	-0,0039	9,9	397,60	397,53
10	23,501	1	2	2	23,492	0,0087	6,6	378,25	378,38
11	23,852	2	0	2	23,837	0,0149	31,5	372,76	372,99
12	25,930	3	1	0	25,935	-0,0049	3,7	343,34	343,27
13	27,758	0	4	0	27,752	0,0060	22,9	321,13	321,19
14	28,216	1	3	2	28,217	-0,0008	6,5	316,02	316,01
15	31,179	3	1	2	31,179	0,0003	11,8	286,63	286,63
16	33,800	1	4	2	33,815	-0,0151	4,3	264,98	264,87
		3	3	1	33,815	-0,0151			264,87
17	34,396	0	0	4	34,406	-0,0101	10,3	260,52	260,45
18	35,349	4	1	1	35,351	-0,0028	3,9	253,72	253,70
19	35,917	1	5	0	35,916	0,0006	4,5	249,83	249,84
20	37,811	4	0	2	37,814	-0,0035	7,9	237,74	237,72
21	49,016	2	6	2	49,014	0,0024	4,0	185,69	185,70

Erklärung

Hiermit versichere ich, dass die von mir vorgelegte Dissertation selbständig verfasst und ich keine anderen Quellen und Hilfsmittel als die angegebenen verwendet habe.

Oldenburg, Mai 2012

Liste der Publikationen, Tagungsbeiträge, Seminare und Workshops

Publikationen:

Steffen Gagelmann, Katja Rieß, Mathias S. Wickleder;

Metal Oxidation with N_2O_5 : The Nitrosylium Nitrates (NO)Cu(NO₃)₃, (NO)₂[Zn(NO₃)₄] and (NO)₆[Ni₄(NO₃)₁₂](NO₃)₂·(HNO₃)

Eur. J. Inorg. Chem., 2011, 33, 5160 - 5166.

Mathias S. Wickleder, Frauke Gerlach, Steffen Gagelmann, Jörn Bruns, Mandus Fenske, Katharina Al-Shamery;

Thermolabile Edelmetallvorstufen: $(NO)[Au(NO_3)_4]$, $(NO)_2[Pd(NO_3)_4]$ und $(NO)_2[Pt(NO_3)_6]$

Angew. Chem., 2012, 124, 9, 2242 - 2246.

Angew. Chem. Int. Ed., **2012**, 51, 9, 2199 - 2203.

Tagungsbeiträge:

Katja Rieß, Steffen Gagelmann, Jörn Bruns, M. S. Wickleder;

(NO)₂[Zn(NO₃)₄], (NO)₂[Pd(NO₃)₄] und (NO)Cu(NO₃)₃:

Synthese, Struktur und thermischer Abbau.

17. Jahrestagung der Deutschen Gesellschaft für Kristallographie, 2009.

Katja Rieß, Steffen Gagelmann, M. S. Wickleder;

Crystal Structures and Thermal Decomposition of $(NO)_2[Al(NO_3)_5]$ and $(NO)_2[Zn(NO_3)_4]$.

ECSSC XII - European Conference on Solid State Chemistry, 2009.

Steffen Gagelmann, M. S. Wickleder;

(NO)₂[Pt(NO₃)₆] Kristallstruktur eines neuen Nitrosyliumnitratometallats.

15. Vortragstagung der Fachgruppe "Festkörperchemie und Materialforschung" der Gesellschaft Deutscher Chemiker, **2010**.

Steffen Gagelmann, M. S. Wickleder; (NO)₂[Pt(NO₃)₆] und (NO)₂[Zn(NO₃)₄]: Kristallstrukturen von zwei neuen Nitrosyliumnitratometallaten.

12. Norddeutsches Doktorandenkolloquium, 2009.

Steffen Gagelmann, M. S. Wickleder;
Ungewöhnliche Sn²⁺-Koordination in Sn(CH₃SO₃)₂.
13. Norddeutsches Doktorandenkolloguium, 2010.

Seminare und Workshops

"9. Seminar für anorganische und physikalische Festkörperchemie zu Rothenberge" der Westfälischen Wilhelms-Universität Münster, **2009**.

"10. Seminar für anorganische und physikalische Festkörperchemie zu Rothenberge" der Westfälischen Wilhelms-Universität Münster, 2010.

"11. Seminar für anorganische und physikalische Festkörperchemie zu Rothenberge" der Westfälischen Wilhelms-Universität Münster, 2011.

8. Kieler Workshop über "Fehler, Fallen und Probleme in der Einkristallstrukturanalyse" des Arbeitskreises Chemische Kristallographie der Fachgruppe Analytische Chemie der Gesellschaft Deutscher Chemiker und des Gesellschaft Arbeitskreises "Molekülverbindungen" Deutschen der für Kristallographie, 2010.

Darstellung des bisherigen Lebens- und Studienweges

Persönliche Angaben						
Name:	DiplChem. Steffen Gagelmann					
Anschrift:	Bürgereschstr. 55					
	26123 Oldenburg					
	Telefon: 0441/8007272					
_	E-Mail: Steffen.Gagelmann@uni-oldenburg.de					
Geburtsdatum:	07.12.1981					
Geburtsort:	06217 Merseburg					
Staatsangehörigkeit:	Deutsch					
Familienstand:	ledig					
Schulischer Werdegang	g					
Grundschule:	1988 – 1989 Salvador Allende Schule, Bad Lauchstädt					
	1989 – 1992 Grundschule Hage					
Orientierungsstufe:	1992 – 1994 Orientierungsstufe Wildbahn, Norden					
Gymnasium:	1994 – 2001 Ulrichsgymnasium, Norden					
Studium						
Okt. 2002 – Nov. 2008	Studium des Diplomstudienganges Chemie an der Carl von					
	Ossietzky Universität, Oldenburg					
22.11.2005	Vordiplom					
07.11.2008	Diplomabschluss, Titel der Diplomarbeit:					
	"Versuche zur Synthese komplexer Nitrate mit N ₂ O ₅ "					
Dezember 2008	Beginn des Promotionsstudiums an der Carl von Ossietzky					
	Universität, Oldenburg					
Tätigkeiten an der Univ	ersität					
Dezember 2008 –	Wissenschaftlicher Mitarbeiter im Institut für Reine und					
	Angewandte Chemie, Arbeitsgruppe Prof. Dr. Wickleder					
	Betreuung des integrierten Synthesepraktikums in der					
	anorganischen Chemie					
	Betreuung des Anorganisch-chemischen Grundpraktikums					
	für den fachwissenschaftlichen und 2-Fächer-Bachelor					
	Studiengang Chemie					
	Betreuung einer Bachelor Kandidatin wahrend der					
	Antertigung Inter Bachelorarbelt					
	betreuung des arbeitskreiseigenen Pulverdiffraktometers					

inklusive Probenpräparation und Auswertung