
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Slicing and Reduction Techniques for

Model Checking Petri Nets

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

vorgelegt von

Dipl.-Inform. Astrid Rakow

Disputation am 18. Juli 2011

Erstgutachter: Prof. Dr. E. Best

Zweitgutachter: Prof. Dr. E.-R. Olderog

ii

Zusammenfassung

Model Checking ist ein Ansatz zur Validierung der Korrekheit eines Hard-

oder Softwaresystems. Dazu wird das System durch ein formales Modell be-

schrieben und Systemeigenschaften werden meist in temporaler Logik spezi-

fiziert. Ein Model Checker untersucht dann vollautomatisch, ob das Mod-

ell eine Eigenschaft erfüllt, indem er dessen Zustandsraum untersucht. Da

jedoch die Anzahl der Zustände exponentiell mit der Größe des Systems

wachsen kann –was als Zustandsraumexplosion bezeichnet wird– ist die Ent-

wicklung und Anwendung von Methoden unumgänglich, die es ermöglichen

beim Model Checking mit Systemen umzugehen, die einen großen Zustand-

sraum haben.

Ein etablierter Formalismus zur Beschreibung von asynchronen Systemen,

die durch Nebenläufigkeit, Parallelität und Nichtdeterminismus gekennzeich-

net sind, sind Petri-Netze. Der Petri-Netz-Formalismus bietet eine Fülle von

Analysetechniken und eine intuitive graphische Darstellung.

In der vorliegenden Arbeit werden zwei Reduktionsansätze für Petri-Netze

vorgestellt, Petri-Netz Slicing und Cutvertex Reduktionen. Beide Ansätze

zielen darauf ab, der Zustandsraumexplosion beim Model Checken entgegen-

zuwirken. Dazu transformieren sie ein gegebenes Petri-Netz in ein kleineres

Netz, so dass gleichzeitig die untersuchte Eigenschaft bewahrt wird. Da Petri-

Netz-Reduktionen das Modell transformieren, können sie leicht mit anderen

Methoden kombiniert werden.

Die Kernidee beider Reduktionsansätze ist, dass temporal-logische Ei-

genschaften sich meist auf nur wenige Stellen eines Petri-Netzes beziehen

und daher häufig Teile eines Petri-Netzes identifiziert werden können, die

die untersuchte Eigenschaft nicht oder nur unwesentlich beeinflussen. Wir

iii

iv

nennen die Menge der Petri-Netzstellen auf die sich eine temporal-logische

Formel ϕ bezieht scope(ϕ). Für ein gegebenes Netz Σ und eine temporal-

logische Eigenschaft ϕ bestimmen beide Ansätze ein Netz Σ′, das wenigstens

scope(ϕ) enthält, und vereinfachen das übrige Netz so, dass Σ′ in Bezug auf

ϕ äquivalent zu Σ ist. Wir zeigen, dass es genügt, eine schwache Form von

Fairness anzunehmen, die wir relative Fairness nennnen, um Lebendigkeit-

seigenschaften zu erhalten.

Petri-Netz Slicing, ein durch Program Slicing [112] inspirierter Ansatz,

bestimmt ein reduziertes Netz beginnend von scope(ϕ), indem das Netz um

relevante Transitionen und deren Eingabestellen iterativ erweitert wird. Wir

formulieren zwei solcher Slicingalgorithmen, CTL∗
-X

Slicing und Safety Sli-

cing, und zeigen, dass die so reduzierten Netze Falsifikation von ∀CTL∗-

Eigenschaften erlauben. Wir zeigen weiterhin, dass CTL∗
-X Slicing CTL∗

-X-

Eigenschaften bewahrt, wenn relative Fairness für Σ angenommen wird. Das

üblicherweise aggressivere Safety Slicing bewahrt stotter-invariante Sicher-

heitseigenschaften.

Cutvertex Reduktionen sind ein dekompositioneller Ansatz. Ein mono-

lithisches Petri-Netz wird in einen Kernel, der scope(ϕ) enthält, und Um-

gebungsnetze zerlegt. Die Umgebungsnetze werden durch eines von sechs

vorgegebenen, sehr kleinen Summarynetzen ersetzt. Um das geeignete Sum-

marynetz zu identifizieren, wird ein Umgebungsnetz isoliert vom Gesamt-

system durch Model Checking untersucht. Dieser Identifikationsschritt wird

durch unsere strukturellen Pre/Postset Optimierungen beschleunigt. Wir

führen außerdem Mikroreduktionen ein, die die kleinsten Umgebungen direkt,

das heißt ohne Untersuchung durch einen Model Checker, ersetzen. Wir zei-

gen, dass unter relativer Fairness Cutvertex Reduktionen alle Eigenschaften

erhält, die in LTL-X formulierbar sind.

Abstract

Model checking is a method to validate the correct functioning of a piece of

hard- or software. Specifications are expressed in temporal logic. A model

checking algorithm determines automatically whether or not the checked

model satisfies a given specification by examining the model’s state space. In

their basic form model checking algorithms explore the state space exhaust-

ively. As the number of states may grow exponentially in the size of the

system—which constitutes the infamous state space explosion problem—the

development and application of methods to deal with huge state spaces are

crucial.

Petri nets are a well established formalism to specify asynchronous sys-

tems that involve concurrency, parallelism and nondeterminism. They offer

an intuitive graphical notation along with an abundance of analysis tech-

niques.

In this work we develop two Petri net reduction approaches to tackle the

state space explosion problem for model checking. Petri net reductions are

transformations of the Petri net that decrease its size. As a mean against

the state space explosion problem for model checking they have to preserve

temporal properties and reduce its state space. Petri net reductions can con-

veniently be daisy chained with other methods fighting state space explosion.

The key idea for both of our approaches is that often parts of the net

can be identified not to influence the temporal logic property, which usually

refers to a few places of a net only. In the following scope(ϕ) denotes the set

of places referred to by a temporal logic formula ϕ. For a given net Σ and

temporal logic formula ϕ, both approaches determine a net Σ′ that contains

at least scope(ϕ) and simplifies the remaining net such that Σ′ is equivalent

v

vi Abstract

with respect to ϕ. To preserve liveness properties, we show that it suffices

to assume a form of weak fairness, which we call relative fairness.

Petri net slicing, an approach inspired by program slicing [112], builds

a reduced net starting from scope(ϕ) by iteratively including relevant trans-

itions and their input places. We define two such algorithms, CTL∗
-X slicing

and safety slicing, and formally prove that the slices of both can be used to

falsify ∀CTL∗ properties. We show that CTL∗
-X slicing also preserves CTL∗

-X

properties under relative fairness, whereas the usually more aggressive safety

slicing preserves stutter-invariant safety properties.

Cutvertex reductions is a decompositional approach. A monolithic Petri

net is decomposed into a kernel containing scope(ϕ) and several environment

nets that are replaced by one out of six fixed, small summary nets. To identify

the appropriate summary, an environment is model checked in isolation. We

developed pre/postset optimisation as a structural optimisation to accelerate

this identification step and micro reductions, which are structural reductions,

that even allow to replace very small environments without model checking.

We prove that under relative fairness cutvertex reductions preserve all LTL-X

expressible properties.

Acknowledgements

Many people contributed to this work in various ways and I am glad about the

support I received. First of all, I would like to thank my supervisor Professor

Dr. Eike Best who encouraged and challenged me throughout my academic

program, while at the same time gave me the freedom to self-determinedly

organize my work. He and Dr. Hans Fleischhack guided me through the

dissertation process, always willing to discuss the topics at hand.

I wish to thank my fellow colleagues at the TrustSoft Graduate School.

Doing a PhD poses a lot of new challenges. Thank you guys, I could often

profit from your experiences and sometimes it helped just to know that I am

not the only one facing a problem. Being a member of the TrustSoft Graduate

School also gave me the opportunity to learn much about a researcher’s

trade. I thank the organizers and supervisors of the graduate school for their

ambition to let us benefit from their experiences and for the transparency of

the organizational business.

The DFG scholarship made it possible to spend all my work power on my

studies. Without this financial support it would not have been possible for

me to master the challenge of being a mom and becoming a scientist. I am

very grateful for this opportunity.

I thank Uschi and Karin for providing a loving day care for my daughter,

which gave me the peace of mind to concentrate on my studies.

Of course, my family—my parents, siblings and Andre and Tabea—

deserves many thanks for being there for me, enriching my private live in

so many ways, while I was at times so caught up in work. I would like to

express a special thanks to my brother (and temporary colleague) Jan for so

many fruitful discussions, especially on scientific writing style.

vii

viii Acknowledgements

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Sets and Sequences . 6

2.2 Petri Net Definitions . 6

2.3 Logics . 9

2.3.1 Transition Systems . 9

2.3.2 The Logics . 11

2.3.3 Stutter-invariant Safety Properties 14

2.4 Petri Net Semantics . 16

2.5 Properties of Relative Fairness 19

2.6 Fair Simulation and Stuttering Fair Bisimulation 23

2.7 Summary . 27

3 Alleviating State Space Explosion 29

3.1Alleviating State Space Explosion – An Overview 30

3.2 Classifying Slicing and Cutvertex Reductions 31

3.2.1 Compositional Methods 32

3.2.2 Petri Net Reductions 33

3.3 Alliance Against State Space Explosion 34

3.3.1 Partial Order Reductions 35

3.4 Summary . 38

4 Slicing Petri Nets 41

4.1 Introduction . 41

ix

x Contents

4.1.1 The History of Petri Net Slicing 42

4.2 CTL∗
-X Slicing . 45

4.2.1 Nets, Slices and Fairness 47

4.2.2 Proving CTL∗
-X-Equivalence 52

4.3 Safety Slicing . 58

4.3.1 Proving Safety Slice’s Properties 60

4.4 Related Work . 66

4.4.1 Petri Net Slicing . 67

4.4.2 Slicing for Verification 69

4.4.3 Related Approaches . 70

4.5 Future Work . 72

4.6 Conclusions . 73

5 Cutvertex Reductions 75

5.1 Introduction . 76

5.2 The Reduction Rules . 78

5.3 Preservation of Temporal Properties 84

5.3.1 Outline and Common Results 85

5.3.2 Borrower Reduction 91

5.3.3 Consumer Reduction 104

5.3.4 Producer Reduction 108

5.3.5 Dead End Reduction 113

5.3.6 Unreliable Producer Reduction 117

5.3.7 Producer-Consumer Reduction 125

5.3.8 Summary . 128

5.4 Necessity and Sufficiency . 129

5.5 Decomposing Monolithic Petri Nets 133

5.5.1 Articulation Points and Contact Places 134

5.5.2 1-Safeness of Contact Places 137

5.5.3 Applying Reductions and DFS 143

5.6 Cost-Benefit Analysis . 144

5.7 Optimisations . 146

5.7.1 Micro Reductions . 146

Contents xi

5.7.2 Pre-/Postset Optimisation 149

5.7.3 Order of Formulas . 150

5.7.4 Parallel Model Checking 151

5.8 Related Work . 151

5.9 Future Work . 154

5.10 Conclusion . 156

6 Evaluation 157

6.1 Comparative Evaluation on a Benchmark Set 159

6.1.1 A Generic Evaluation Procedure 159

6.1.2 The Benchmark Set . 165

6.1.3 Tools in the Evaluation 167

6.1.4 Effect on the Full State Space 168

6.1.5 Alliance Against State Space Explosion 176

6.2 Workflow Management . 187

7 Conclusions 193

7.1 Summary . 193

7.2 Future Work . 194

xii Contents

Chapter 1

Introduction

Model checking is a method to validate the correct functioning of a piece of

hard or software. Specifications are expressed in temporal logic. A model

checking algorithm determines automatically whether or not the checked

model satisfies a given specification by examining the model’s state space.

In its basic form model checking algorithms explore the state space exhaust-

ively. As the number of states may grow exponentially in the size of the

system—which constitutes the infamous state space explosion problem—the

development and application of methods to deal with huge state spaces are

crucial.

Petri nets are a prominent formalism to specify asynchronous systems that

involve concurrency, parallelism and nondeterminism. They offer an intuitive

graphical notation along with an abundance of analysis techniques and find

applications in many different domains, e.g. flexible manufacturing systems,

biochemical processes, workflows or asynchronous hardware. Petri nets come

in several variants. Here we consider systems modelled as place/transition

Petri nets, the basic formalism.

t1 t2

p1 p2

2

Figure 1.1: A small place/transition Petri net. For an introduction on P/T
Petri nets see Sect. 2.2.

1

2 1. Introduction

In this work we develop two Petri net reduction approaches to tackle the

state space explosion problem for model checking. Petri net reductions are

transformations of the Petri net that decrease its size. As a means against

the state space explosion problem for model checking they have to preserve

temporal properties and also decrease its state space. Then the reduced

Petri net can be model checked for the considered property instead of the

original. Certainly, other well established methods to alleviate the state space

explosion exist like symbolic model checking, abstraction methods or on-the-

fly model checking. The combination of different approaches promises an

even more effective defence against state space explosion. Petri net reductions

can conveniently be daisy chained with other methods fighting state space

explosion.

reduced

equivalent

Figure 1.2: The principle of Petri net reductions for model checking: The
reduced net preserves the temporal property ϕ and is not only a smaller Petri
net but also has a smaller state space.

The key idea for both of our approaches is that often parts of the net

can be identified not to influence the temporal logic property, which usually

refers to a few places of a net only. For a given net Σ and temporal logic

formula ϕ, both approaches determine a kernel net that contains at least

scope(ϕ) (the places referred to by ϕ) and simplifies the remaining net such

that the reduced net Σ′ is equivalent with respect to ϕ.

We examine which CTL∗ properties are preserved by our reductions. We

face two general restrictions, as we examine systems in interleavings se-

mantics and the reductions may eliminate concurrent behaviours: Firstly,

properties using the next-time operator X are not preserved, since using X it

is possible to count steps until a certain transition fires. But omitting concur-

rent behaviours influences the number of steps until a certain transition fires,

as concurrent behaviours are interleaved in all possible ways. Secondly, when

3

the original system has a divergent subsystem, then there is an interleaving

where only this subsystem evolves whereas other concurrent system parts do

not progress. So eliminating the divergent subsystem will influence liveness

properties. We hence assume a weak fairness notion, which we call relative

fairness, to guarantee progress on the kernel and show that this suffices to

preserve liveness properties.

Petri net slicing is a purely structural approach, i.e. inspecting the Petri

net graph only, and is hence not influenced by the size of the system’s state

space. A reduced net is built by starting from scope(ϕ) and iteratively in-

cluding relevant transitions and their input places until reaching a fix point.

We define two such algorithms, CTL∗
-X slicing and safety slicing, and formally

prove that the slices of both can be used to falsify ∀CTL∗ properties. We

show that a net reduced by CTL∗
-X slicing satisfies a given CTL∗

-X property

under relative fairness if and only if the original net does, whereas the usually

more aggressive safety slicing preserves stutter-invariant safety properties.

Cutvertex reductions is a decompositional approach. A monolithic Petri

net is decomposed into a kernel and several environments that share just

a 1-safe place with the kernel. Each environment is replaced by one out

of six fixed, very small summary nets, yielding a smaller state space. To

identify the appropriate summary, an environment is model checked in isol-

ation. Thus the combinatorial blow up is avoided. This step is optimised

by two structural optimisation approaches. Pre/postset optimisation accel-

erates the identification of the appropriate summary and micro reductions

even allow to replace the very small environments without model checking.

We prove that under relative fairness cutvertex reductions preserve all LTL-X

expressible properties.

An empirical evaluation of our reductions demonstrates their effectiveness

also in combination with partial order reductions.

Thesis Structure

In Chapter 2 we recall basic notions like Petri nets, stutter-invariance, CTL∗

and considered sublogics. There we also introduce relative fairness, examine

4 1. Introduction

its properties and compare it with the more commonly used notions of weak

and strong fairness.

Chapter 3 gives a brief overview of approaches to tackle the state space

explosion problem of model checking. We introduce Petri net reductions

and compositional methods in more detail, since our two approaches, Petri

net slicing and cutvertex reductions, classify as Petri net reductions and

cutvertex reductions classify also as compositional method. Stubborn-set-

type methods as partial order methods and agglomerations as prominent

Petri net reductions are presented.

Chapter 4 presents the algorithms for CTL∗
-X and safety slicing. It is

proven that CTL∗
-X slicing preserves CTL∗

-X properties under relative fairness

and allows for falsification of ∀CTL∗, whereas safety slicing preserves stutter-

invariant safety properties and can also be used to falsify ∀CTL∗ properties.

Cutvertex reductions are developed in Chapter 5. It presents the six re-

duction rules that together allow to reduce any environment net. We examine

which temporal properties are preserved by each reduction rule and give an

algorithm that determines a decomposition into a kernel and environments

that runs in linear time for a 1-safe net. Finally, we present micro-reductions

and pre- and postset optimisations as structural optimisations for determin-

ing the appropriate summary net.

In Chapter 6 we demonstrate the effectiveness of our approaches on a

benchmark set. We compare both our approaches to agglomerations and

CFFD reductions and examine their effect on state spaces condensed by

partial-order reductions.

We conclude in Chapter 7 with a summary of our results and outline ideas

for future work.

Chapter 2

Preliminaries

Contents

2.1 Sets and Sequences 6

2.2 Petri Net Definitions 6

2.3 Logics . 9

2.3.1 Transition Systems 9

2.3.2 The Logics . 11

2.3.3 Stutter-invariant Safety Properties 14

2.4 Petri Net Semantics 16

2.5 Properties of Relative Fairness 19

2.6 Fair Simulation and Stuttering Fair Bisimulation 23

2.7 Summary . 27

In the following chapters we will present two approaches for reducing a

Petri net Σ with the aim to alleviate the state space explosion problem for

model checking temporal logics. Therefore the reduced net Σ′ has to satisfy

the same temporal properties as the original Σ, so that it can be used to

falsify, that is to disprove, and to verify, that is to prove, that the temporal

properties hold on Σ.

5

6 2. Preliminaries

This chapter introduces basic notions (Sect. 2.1 to 2.6) as well as first

results of technical nature that are used for both approaches (Sect. 2.5 to

2.6).

2.1 Sets and Sequences

For a set X we denote the union of finite and infinite words over X, X∗∪Xω,

as X∞. For a finite sequence γ = x1x2...xn ∈ X∞, |γ| is n, the length of γ. If

γ is infinite, |γ| = ∞. γ(i) denotes the i-th element, 1 ≤ i < |γ|+ 1, and γi

denotes the suffix of γ that truncates the first i positions of γ, 0 ≤ i < |γ|+1.

γ′ = projX′(γ) denotes the projection of γ to X ′ ⊆ X, i.e. γ′ is derived from

γ by omitting every xi ∈ X \ X ′. Two sequences γ1 and γ2 are stutter-

equivalent iff unstutter (γ1) = unstutter (γ2), where unstutter merges finitely

many successive repetitions of the same sequence element into one. So γ1 =

x1x2x3 and γ2 = x1x2x2x2x3 are stutter-equivalent whereas γ3 = x1x2x3x3....

is not stutter-equivalent to γ1 or γ2. We extend the functions unstutter and

proj to sets of sequences in the usual way.

2.2 Petri Net Definitions

A Petri net N is a triple (P, T,W) where P and T are disjoint sets and

W : ((P×T)∪(T×P)) → N
1. We consider here only finite nets that is P and

T are finite sets. An element p ∈ P is called a place and t ∈ T a transition.

The function W defines weighted arcs between places and transitions. A

marking M of a Petri net N is a function M : P → N that assigns a number

of tokens to each place.

Petri nets are known for their intuitive graphical representation. A place

is denoted as a circle and a transition as a box. A token is represented by a

black dot within the place the token resides in. There is an arc from p ∈ P to

t ∈ T , if W (p, t) > 0, and, respectively, there is an arc from t ∈ T to p ∈ P ,

if W (t, p) > 0. An arc weight greater one appears as number inscription next

1
N is the set of natural numbers and includes zero.

2.2. Petri Net Definitions 7

to the respective arc. An example Petri net graph is shown in Fig. 2.1.

t1 t2

p1 p2

2

Figure 2.1: The Petri net graph of N = (P, T,W) with P = {p1, p2}, T =
{t1, t2}, W = {(p1, t1) 7→ 1, (t1, p1) 7→ 1, (p1, t2) 7→ 1, (t2, p2) 7→ 2, (t1, p2) 7→
0, (t2, p1) 7→ 0, (p2, t1) 7→ 0} under marking M = {(p1 7→ 1, p2 7→ 0)} is
depicted.

With a given order on the places P = {p1, ..., pn}, a marking M : P → N

can be represented as a vector in N
|P |, where the i-th component is M(pi).

For convenience, we denote markings as row vectors as well as column vectors.

As M q=x we denote the marking that places x tokens on q and M(p) tokens

on any other place p. M |P ′ is the restriction of M to places P ′ ⊆ P . We also

denote the restriction of W to ((P ′×T ′)∪ (T ′×P ′)) as W |(P ′,T ′) for P ′ ⊆ P ,

T ′ ⊆ T .

The preset of t ∈ T is •t = {p ∈ P | W (p, t) > 0}, its postset is t• = {p ∈

P | W (t, p) > 0}. Analogously •p and p• are defined. A transition t ∈ T is

enabled at marking M , M [t〉, iff ∀p ∈ •t : M(p) ≥ W (p, t). If t is enabled

it can fire. The firing of t generates a new marking M ′, M [t〉M ′, which is

determined by the firing rule as M ′(p) =M(p) +W (t, p)−W (p, t), ∀p ∈ P .

In Fig. 2.1 both transitions t1 and t2 are enabled at marking M . Firing

t1 generates marking M and firing t2 generates marking (0 2).

The definition of [〉 is extended to transition sequences σ as follows. A

marking M always enables the empty firing sequence ε and its firing generates

M . M enables a transition sequence σt, M [σt〉, iff M [σ〉M ′ and M ′[t〉. If

M [σ〉, the transition sequence σ is called a firing sequence of N from M .

FsN(M) denotes the set of firing sequences from M on N . The effect of σ

on a place p ∈ P , ∆(σ, p) ∈ Z, is defined by ∆(ε, p) = 0 and ∆(σt, p) =

∆(σ, p) +W (t, p)−W (p, t).

A marking M is final if M does not enable any transition of N . A

marking M ′ is reachable from M if there is a firing sequence from M that

generates M ′. A firing sequence σ from M is maximal iff either σ is infinite

or σ cannot be extended, i.e., ¬M [σt〉, ∀t ∈ T . Given a firing sequence

8 2. Preliminaries

σ = t1t2... with M0[t1〉M1[t2〉M2..., the sequence M0M1M2... is called the

marking sequence from M0, M(M0, σ). As M(M0, σ)|P̃ :=M0|P̃M1|P̃M2|P̃ ...

we denote the elementwise restriction of M(M0, σ) to P̃ ⊆ P . A marking

sequence M(M,σ) is maximal iff it contains a final marking. By convention

(c.f. Sect. 2.4, Def. 2.4.1), we regard a finite maximal marking sequence µ as

equivalent to the infinite marking sequence µ′ that repeats the final marking

of µ infinitely often.

In Fig. 2.1 the firing sequences t2, t1 t2, t1 t1 t2 ,... are all maximal firing

sequences of N from M and generate the final marking (0 2). The infinite

firing sequence t1 t1 t1 ... is the only other maximal firing sequence of N from

M .

A Petri net Σ = (N,Minit) with a designated initial marking Minit is called

a marked Petri net. If a transition sequence σ is enabled at the initial marking

Minit, σ is called a firing sequence of Σ. The set of reachable markings of Σ

is denoted as [Minit〉. A place p is k-bounded if any reachable marking has

at most k tokens at p. Σ is k-bounded if all of its places are k-bounded.

1-boundedness is also referred to as 1-safeness.

A Petri net Σ̃ = (P̃ , T̃ , W̃ , M̃init) is a subnet of Σ = (P, T,W,Minit) with

P̃ ⊆ P , T̃ ⊆ T , W̃ ⊆ W |(P̃ ,T̃) and Minit|P̃ = M̃init. A subnet Σ̃ is called

proper if it is neither empty, P̃ ∪ T̃ 6= ∅, nor equals Σ. A Petri net Σ is

strongly connected iff from each place and each transition every other place

and transition of the net is reachable by following the arcs defined by W .

Convention

• In the following we use N synonymous with its defining triple (P, T,W)

and Σ synonymous with (N,Minit). Also subscripts carry over to com-

ponents, e.g. Σe = (Ne,Minit,e) = (Pe, Te,We,Minit,e).

• A marking generated by firing σ ∈ T ∗ from the initial marking Minit is

denoted as Mσ.

2.3. Logics 9

2.3 Logics

In this section we introduce the temporal logics we consider. Although we are

mainly interested in CTL (computation tree logic) and LTL (linear temporal

logic) as they are very prominent in model checking, we also introduce the

branching-time logic CTL∗ and its universal fragment ∀CTL∗. This allows

us to show stronger results for our approaches that follow as easily as the

more restricted results for CTL and LTL.

We define the semantics based on transition systems. Next we introduce

the notion of transition system and after that define the logics.

2.3.1 Transition Systems

A transition system is one standard model to describe a system. We use

transition systems here as an intermediate: We define the semantics of tem-

poral logics on transition systems and we define the transition system (repres-

entation) of a marked Petri net in order to define the semantics of temporal

logics for Petri nets.

Definition 2.3.1 (Transition System) A transition system TS with ini-

tial state is a tuple (S,Act , R,AP , L, sinit) where

• S is the set of states,

• Act is a set of actions,

• R ⊆ S × Act × S is the transition relation with

∀s ∈ S : ∃α ∈ Act : ∃s′ ∈ S : (s, α, s′) ∈ R,

• AP is a set of atomic propositions,

• L : S → 2AP is a state labelling function.

• sinit is a designated initial state of TS

Note In literature many different types of transition systems are considered.

We use transition systems with action names Act and atomic propositions as

state labels. This way we can conveniently bridge between transition systems

and Petri nets, as we will see in Sect. 2.4.

10 2. Preliminaries

Some authors consider transition systems with terminal states. Terminal

states are states without successor states. Since problems arise when consid-

ering the next-time operator (cf. Def. 2.3.2) it is usually more convenient to

have at least one successor state for every state.

By convention a transition system with terminal states is therefore mod-

ified by extending R by {(s, τ, s) | s is a terminal state}, where τ is a new

action, τ 6∈ Act . Then a terminal state s reaches via τ itself again.

We also use the notion state space of Σ to refer to a transition system

representation of a system Σ.

Notation We denote the number of states and state transitions of the

state space of Σ as |TSΣ| = |SΣ|+ |RΣ|.

Paths, Fair Paths A finite path π from s to sn is a finite sequence of

states π = s0s1s2...sn such that s0 = s and ∀i, 0 ≤ i < n : ∃αi ∈ Act :

(si, αi, si+1) ∈ R. An infinite path from s is an infinite sequence of states

π = s0s1s2... such that s0 = s and ∀i, 0 ≤ i : ∃αi ∈ Act : (si, αi, si+1) ∈ R.

An infinite path π is called relatively fair w.r.t. a fairness constraint

F ⊆ Act iff in case an action α ∈ F is from some point onward executable

in every state of π, then some action α̃ ∈ F occurs infinitely often along

π —α may or may not equals α̃. Formally, an infinite path π = s0s1... is

called relatively fair w.r.t. a fairness constraint F ⊆ Act iff in case there is

an action α ∈ F such that ∃i ∈ N : ∀j, j ≥ i : ∃s̃ ∈ S : (sj , α, s̃) ∈ R, then

there is an action α̃ ∈ F with (si, α̃, si+1) ∈ R for infinitely many si.

In the figure below the infinite path taking α1α1α4α4... from s0 is relatively

fair with respect to {α2, α4}. Both actions α2 and α4 can be executed in s3

but it suffices that α4 is taken infinitely often. The path taking α3α3... from

s0 is not relatively fair with respect to {α2, α4} because α2 is executable in s5

but neither α2 nor α4 are taken infinitely often.

s0

s3 s5
α4 α3

α1 α3

α2 α3

α2

α1

α2

2.3. Logics 11

We simply call a path relatively fair if the fairness constraint F is known

from the context.

Since we study state-based logics, we introduce another important notion:

traces. A trace abstracts from a path by observing only the labels of states

visited along the path. A trace ϑ of a finite path π = s0s1...sn is L(π) :=

L(s0)L(s1)...L(sn). A trace ϑ of an infinite path π = s0s1... is L(π) :=

L(s0)L(s1)... .

Notation ΠTS (s) denotes the set of all paths of TS from s. ΠTS ,fin(s)

denotes the set of all finite paths of TS from s and ΠTS ,inf(s) is the set of all

infinite paths of TS from s. Given a set of fairness constraints Fair ⊆ 2Act ,

ΠTS ,Fair(s) is the set of all (infinite) paths of TS from s that are relatively

fair w.r.t. every F ∈ Fair. TracesTS (s) denotes the set traces of (TS , s), that

is TracesTS(s) :=
⋃

π∈ΠTS (s)
L(π). Analogously, TracesTS ,fin(s) denotes the set

of finite traces, TracesTS ,inf(s) the set of infinite traces and TracesTS ,Fair(s)

the set of traces, generated by paths that are fair w.r.t. Fair.

Convention In the following we use TS and (S,Act , R,AP , L, sinit) syn-

onymously.

2.3.2 The Logics

In this section we define syntax and semantics of the temporal logics CTL∗,

∀CTL∗, LTL and CTL.

Definition 2.3.2 (CTL∗, ∀CTL∗, LTL, CTL) Let TS be a transition sys-

tem.

A CTL∗ formula is a state formula of the following syntax:

Every atomic proposition p ∈ AP is a state formula.

If ϕ1 and ϕ2 are state formulas, then ¬ϕ1, ϕ1 ∨ ϕ2 are state formulas.

If ψ is a path formula, Eψ is a state formula.

If ϕ is a state formula, Dϕ is a path formula.

If ψ1 and ψ2 are path formulas, so are ¬ψ1, Xψ1, ψ1 ∨ ψ2 and ψ1Uψ2.

CTL∗ Semantics: Let Fair ⊆ 2Act be a set of fairness constraints, s a state of

TS and π ∈ Sω an infinite state sequence.

TS , s |=Fair p ⇔ p ∈ L(s).

12 2. Preliminaries

TS , s |=Fair ¬ϕ1 ⇔ not TS , s |=Fair ϕ1.

TS , s |=Fair ϕ1 ∨ ϕ2 ⇔ TS , s |=Fair ϕ1 or TS , s |=Fair ϕ2.

TS , s |=Fair Eψ1 ⇔ there is a path π from s

that is fair w.r.t. Fair and TS , π |=Fair ψ1.

TS , π |=Fair Dϕ1 ⇔ TS , π(1) |=Fair ϕ1

TS , π |=Fair ¬ψ1 ⇔ not TS , π |=Fair ψ1

TS , π |=Fair ψ1 ∨ ψ2 ⇔ TS , π |=Fair ψ1 or TS , π |=Fair ψ2

TS , π |=Fair Xψ1 ⇔ TS , π1 |=Fair ψ1

TS , π |=Fair ψ1Uψ2 ⇔ ∃i, 0 ≤ i : TS , πi |=Fair ψ2 ∧ ∀j, 0 ≤ j < i :

TS , πj |=Fair ψ1

We use the following abbreviations:

true ≡ p ∨ ¬p, ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), Fϕ ≡ trueUϕ, Aϕ ≡ ¬E(¬ϕ),

Gϕ ≡ ¬F (¬ϕ) and ϕRψ ≡ ¬(¬ϕU¬ψ).

An ∀CTL∗ formula is a state formula of the following syntax:

If p ∈ AP is an atomic proposition, p and ¬p are state formulas.

If ϕ1 and ϕ2 are state formulas, ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are state formulas.

If ψ is a path formula, then ∀ψ is an state formula.

If ϕ is an state formula, D(ϕ) is a path formula.

If ψ1 and ψ2 are paths formulas, so are Xψ1, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1Uψ2,

ψ1Rψ2.

An LTL formula is a path formula of the following syntax:

If p ∈ AP , then Dp is a path formula.

If ψ1 and ψ2 are path formulas, then ¬ψ1, ψ1 ∧ ψ2, Xψ1, and ψ1Uψ2 are

path formulas.

A CTL formula is a state formula of the following syntax:

If p ∈ AP , then p is a state formula.

If ϕ1 and ϕ2 are state formulas, then ¬ϕ1, ϕ1 ∨ ϕ2 are state formulas.

If ψ is a path formula, Eψ is a state formula.

If ϕ1 and ϕ2 are state formulas, then X(Dϕ1), G(Dϕ1), and (Dϕ1)U(Dϕ2)

are path formulas.

The semantics of a ∀CTL∗ and CTL formula ϕ is defined by the semantics of

CTL∗, and TS , s |=Fair ϕ for an LTL formula ϕ is defined as TS , s |=Fair Aϕ.

2.3. Logics 13

A CTL∗
-X (∀CTL∗

-X/LTL-X/CTL-X) formula is a CTL∗(∀CTL∗/LTL/CTL)

formula built without using the X operator.

We define the length of a formula ψ to be the number of operators in ψ

expressed as ¬,∧,X,U [6] and denote it by |ψ|.

Convention

• For brevity we omit the operator D in formulas. We introduced the

D-operator to make proofs over the structure of a formula more intel-

ligible.

• Instead of “ |=Fair” we also write more explicitely “ |= relatively fair w.r.t.

Fair”.

• If the transition system TS is known from the context, we also write

s |= ϕ or π |= ψ without referencing the transition system explicitely.

• LTL formulas are often denoted using special symbols, that is 2 denotes

G and 3 denotes F. We refrain from using these extra symbols. Also,

we will often denote an LTL (path) formula ψ by the corresponding

∀CTL∗ (state) formula Aψ.

The semantics is parameterised by a set of fairness constraints Fair. Com-

monly, the semantics is defined considering the maximal paths within the

transition system, i.e. paths that cannot be extended. In our setting any

maximal path is infinite, since every state has at least one successor. The

“standard” semantics is thus derived by using Fair = {Act}.

As we have to make fairness assumptions to derive some of the main

results, we already give a more general definition of the semantics here. The

fairness assumption used is tailored to our needs. We will have a closer look

on relative fairness in Sect. 2.5.

Definition 2.3.3 (TS , s |= ϕ) Let TS be a transition system and s a state

in S. Let ϕ be a CTL∗ formula.

TS , s |= ϕ iff TS , s |=Fair ϕ and Fair of Def. 2.3.2 is the set {Act}.

14 2. Preliminaries

Verification and Falsification Figure 2.2 illustrates the relationship between

the logics introduced in Def. 2.3.2. So CTL and LTL can express different

properties. All properties expressible in LTL are also expressible in ∀CTL∗

and CTL∗ includes all the others.

LTL

∀CTL
∗

CTL
∗

CTL

Figure 2.2: Relationship Between the Logics

If we examine what properties can be verified or falsified, it thus follows

that if “TS 1, s1 |=Fair ϕ⇒ TS 2, s2 |=Fair2 ϕ” holds for the formulas of a more

expressible logic, it follows that “TS 1, s1 |=Fair ϕ ⇒ TS 2, s2 |=Fair2 ϕ” also

holds for the formulas of a less expressible logic. So if we want to show

“TS 1, s1 |=Fair ϕ ⇒ TS 2, s2 |=Fair2 ϕ” does not hold for formulas of a certain

logic, it suffices to show that “TS 1, s1 |=Fair ϕ ⇒ TS 2, s2 |=Fair2 ϕ” does not

hold for a less expressible logic.

If we want to show that neither “TS 1, s1 |=Fair ϕ⇒ TS 2, s2 |=Fair2 ϕ” nor

“TS 1, s1 |=Fair ϕ ⇐ TS 2, s2 |=Fair2 ϕ” holds, it is suffices to show that the

implication in one direction does not hold, if we examine CTL and CTL∗,

because for CTL and CTL∗ formulas ϕ it holds that TS , s 6|=Fair ϕ if and only

if TS , s |=Fair ¬ϕ (c.f. 2.3.2). This is not the case for LTL and ∀CTL∗, be-

cause ∀CTL∗ allows negations only on atomic propositions and the semantics

of LTL is defined by TS , s |=Fair Aψ and A¬ψ is not equivalent to ¬Aψ.

2.3.3 Stutter-invariant Safety Properties

In Sect. 4.3 we present a reduction approach preserving stutter-invariant

safety properties only. In the following we introduce the notion of stutter-

invariance and characterise safety properties following [6]. For the following

we fix a set of atomic propositions AP .

To give safety properties a formal definition, we slightly shift our point

of view. Whereas in Def. 2.3.2 we introduced state and path formulas syn-

2.3. Logics 15

tactically and straight-forwardly gave a satisfaction relation, |=Fair, for states

and paths, we now take a step back and think more abstractly, instead of

formulas, of properties, which may be expressed by a logical formula but are

as such independent of the formalism expressing them. So we formally define

linear time properties. Opposed to branching-time properties, that also con-

sider the branching off of paths at the states of TS , linear-time properties

express constraints on infinite paths or more precisely on infinite traces.

Definition 2.3.4 (LT Property) A linear-time property (LT Property) over

the set of atomic propositions AP is a subset of (2AP)ω.

Although we introduced LTL as sublogic of the branching-time logic CTL∗,

any LTL formula is a path formula and hence specifies a constraint on traces,

the sequences of labels along paths. So LTL is a logic that defines linear-time

properties.

Since linear-time properties refer to traces only, their satisfaction relation

can be expressed more simply than in Def. 2.3.2 but consistently as:

Definition 2.3.5 (Satisfaction Relation for LT Properties) Let P be

an LT property over AP and TS a transition system.

TS , s |= P ⇔ TracesTS ,max(s) ⊆ P.

So if TS , s |= P, then all traces starting from s satisfy P.

Stutter-invariant linear-time properties do not distinguish between stutter-

equivalent traces.

Definition 2.3.6 (Stutter-invariant [65, 80]) Let ϑ and ϑ2 be in (2AP)ω.

A property Pstutter ⊆ (2AP)ω is stutter-invariant if whenever ϑ and ϑ2

are stutter-equivalent then either both ϑ and ϑ2 satisfy Pstutter or both violate

Pstutter .

We are now ready to define safety properties. A safety property can be

thought of as stating that nothing bad will eventually happen [66]. When a

safety property Psafe is violated, a finite prefix already exposes the behaviour

forbidden by Psafe . Formally a safety property is an LT property that, if any

possible infinite trace ϑ violates Psafe , it has a bad finite prefix ϑpref , such

that any other (possible) trace ϑ̃ with prefix ϑpref also violates Psafe .

16 2. Preliminaries

Definition 2.3.7 (safety property) An LT property Psafe over AP is a

safety property if for all words ϑ ∈ (2AP)ω \ Psafe there is a finite prefix ϑpref

of ϑ such that Psafe ∩ {ϑ̃ ∈ (2AP)ω | ϑpref is a prefix of ϑ̃} = ∅.

Any such prefix ϑpref is called a bad prefix for Psafe . The set of all bad

prefixes for Psafe is denoted by BadPref (Psafe).

This definition allows to derive a satisfaction relation referring to the

finite behaviours of TS only. A transition system satisfies a safety property

Psafe from state s iff the set of finite traces from s does not have a bad prefix,

that means nothing bad happens starting from s.

Proposition 2.3.8 (Satisfaction Relation for Safety Properties) For a

transition system TS and safety property Psafe it holds that

TS , s |= Psafe if and only if TracesTS ,fin(s) ∩ BadPref (Psafe) = ∅.

The fact that satisfiability of safety properties can be characterised by the

finite behaviours of TS will allow us to define more effective reductions as

we will demonstrate in Section 4.3.

2.4 Petri Net Semantics

In this section we define the transition system of a Petri net, in order to

give the temporal logics a semantics on Petri nets. We also lift some of

the previously introduced notions on transition systems to Petri nets. This

allows us to shorten proofs by arguing about Petri nets directly.

In the following we assume that AP refers to the token count on a set of

places P ′ ⊆ P . An atomic proposition ap may express that place p5 has 2

tokens (ap = (p5, 2)) or p5 has no tokens (ap = (p5, 0)). AP is hence a subset

of P ′ ×N. We also denote the set of places a temporal logic formula ϕ refers

to as scope(ϕ).

The behaviour of a marked Petri net Σ can be captured by a transition

system TSΣ. The reachable markings of Σ are the states. If M [t〉M ′, then

there is also a transition from state M to M ′ via action t in TSΣ. Hence a

2.4. Petri Net Semantics 17

path µ =M0M1 ...Mn in TSΣ corresponds to the firing sequence σ = t1t2...tn

with marking sequence M(M0, σ) =M0M1...Mn .

A maximal firing sequence may be finite and thus generate a final marking

that does not enable any transition, but every state M of TSΣ has to have

at least one successor. As discussed in the note on page 10, we introduce a

new action symbol τ and define that a final marking M reaches itself via τ .

By this extension any marking sequence corresponds to a path and thus any

maximal firing sequence corresponds to an infinite path.

Definition 2.4.1 (TSΣ) TSΣ is the tuple (SΣ,ActΣ, RΣ,APΣ, LΣ,Minit) with

• SΣ = [Minit〉,

• ActΣ = T ⊎ {τ} ,

• RΣ = {(M, t,M ′) | M,M ′ ∈ [Minit〉 ∧ t ∈ T ∧M [t〉M ′} ∪ {(M, τ,M) |

M ∈ [Minit〉 ∧ ∀t ∈ T : ¬M [t〉}

• APΣ ⊆ P × N

• LΣ = {(M 7→ A) | M ∈ SΣ ∧ A = {(p, x) ∈ APΣ |M(p) = x}}.

We have already noted that (marking sequences of) maximal firing se-

quences of Σ and infinite paths of TSΣ correspond. The following definitions

introduce relatively fair firing sequences, the counterparts of relatively fair

paths. Firstly, we define when a transition is eventually permanently enabled

by a firing sequence. A firing sequence σ eventually permanently enables

a transition t if from some point onward all markings generated during the

execution of σ enable t. Note, that we did not introduce a corresponding

notion on paths, since we mostly argue about the behaviour of a system on

the Petri net model.

Definition 2.4.2 (Eventually Permanently Enabled) Let σ = t1t2... be

an infinite firing sequence of Σ with Mi[ti+1〉Mi+1, ∀i, 0 ≤ i < |σ|.

σ eventually permanently enables t ∈ T iff ∃i, 0 ≤ i : ∀j, i ≤ j :Mj [t〉.

Definition 2.4.3 (Fairness with respect to F) Let F ⊆ T be a fairness

constraint, let σ be a firing sequence of Σ and M be a marking of Σ.

σ is relatively fair w.r.t. F iff

18 2. Preliminaries

• either σ is finite and maximal,

• or σ is infinite, and, if it eventually permanently enables some t ∈ F ,

it then fires infinitely often some transition of F (which may or may

not be t itself).

Let Fair ⊆ 2T be a set of fairness constraints. σ is relatively fair w.r.t. Fair

iff σ is relatively fair w.r.t. every F ∈ Fair.

For infinite firing sequences it is obvious that this notion captures relative

fairness as introduced for transition systems. For Petri nets we also consider

finite, maximal firing sequences. Above, a finite, maximal firing sequence

σmax is defined as relatively fair w.r.t. to any F ⊆ T . σmax generates a final

marking M that by definition does not enable any transition in T and its

marking sequence loops at M . Hence the corresponding path in TSΣ is also

fair w.r.t. F , since only τ can be executed at M .

Notation FsN,Fair(M) := {σ | M [σ〉 and σ is fair w.r.t. Fair} denotes the

set of firing sequences from M , that are relatively fair w.r.t. every F ∈ Fair ⊆

2T . We denote FsN,{T}(M) also as FsN,max(M).

Convention We say “Σ is relatively fair w.r.t. T ′ ” to express that we

only consider firing sequences of Σ that are relatively fair w.r.t. T ′.

We now define Σ |= ϕ via TSΣ for the temporal logics defined in Def

2.3.2.

Definition 2.4.4 (Σ |=Fair ϕ) Let ϕ be a CTL∗
-X formula such that the set

of atomic propositions of ϕ is contained in APΣ and Fair ⊆ 2T be a set of

fairness constraints.

Σ |=Fair ϕ, iff (TSΣ,Minit) |=Fair ϕ.

Convention If we interpret in the following a temporal property ϕ on a

Petri net Σ, we always assume that the set of atomic propositions of ϕ is

contained in APΣ, the set of atomic propositions of TSΣ.

We denote fairness constraints on Petri nets analogously to fairness con-

straints on transition systems. If we refer to the behaviour of Σ that satisfies

a fairness constraint Fair, we also write ΣFair.

2.5. Properties of Relative Fairness 19

2.5 Properties of Relative Fairness

We defined the notion of a relatively fair path of a transition system in Sect.

2.3 and the corresponding notion of relatively fair firing sequence of a Petri

net in Sect. 2.4. We decided to use the non-standard notion of relative

fairness, since it suffices to derive our results. As we will see in what follows,

the more commonly considered notions like weak fairness and strong fairness

are more restrictive.

In the sequel F, F1, F2 ⊆ T denote fairness constraints and Fair ⊆ 2T a

set of fairness constraints. We also fix a Petri net N .

Relative Fairness, Weak Fairness, Strong Fairness We now compare

our notion of relative fairness to the notions of weak and strong fairness. A

firing sequence σ is strongly fair w.r.t. a set of transitions F iff whenever

infinitely often transitions in F are enabled, then transitions in F occur in σ

infinitely often. σ is weakly fair w.r.t. a set of transitions F iff whenever F is

eventually permanently enabled (i.e. from some point onward permanently

transitions in F are enabled), then transitions in F occur in σ infinitely often.

Definition 2.5.1 (Weak Fairness, Strong Fairness) Let N be a Petri

net, and M0 a marking of Σ. Let F ⊆ T be a set of transitions and Fair ⊆ 2T

be a set of fairness constraints. Let σ = t1 t2 t3 ... be an infinite firing se-

quence with Mi[ti+1〉Mi+1, ∀i ≥ 0.

σ is strongly fair w.r.t. F iff

whenever ∀i ∈ N : ∃j ∈ N, j ≥ i : ∃t ∈ F :Mj [t〉,

then ∀i ∈ N : ∃j ∈ N, j ≥ i : ∃t′ ∈ F :Mj [tj+1〉Mj+1 ∧ tj+1 = t′.

σ is weakly fair w.r.t. F iff

whenever ∃i ∈ N : ∀j ∈ N, j ≥ i : ∃t ∈ F :Mj [t〉,

then ∀i ∈ N : ∃j ∈ N, j ≥ i : ∃t′ ∈ F :Mj [tj+1〉Mj+1 ∧ tj+1 = t′.

Any finite, maximal firing sequence σ is strongly and weakly fair w.r.t. F .

20 2. Preliminaries

Notation Fss(Fair)(M) denotes the set of firing sequences from M that are

strongly fair w.r.t. every F ∈ Fair and Fsw(Fair)(M) denotes the set of firing

sequences from M , that are weakly fair w.r.t. every F ∈ Fair.

Strong fairness is more restrictive then weak fairness, i.e. every strongly

fair firing sequence is weakly fair but a weakly fair firing sequence is not

necessarily strongly fair. For place/transition nets (P/T nets)—the kind of

Petri nets we consider—weak or strong fairness is usually assumed w.r.t.

singletons. The more general form introduced here accords to the definition

in [6].

For convenience, we repeat the definition of relative fairness (cf. Def.

2.4.3):

An infinite σ is relatively fair w.r.t. F iff

whenever ∃t ∈ F : ∃i ∈ N : ∀j ∈ N, j ≥ i :Mj [t〉,

then ∀i ∈ N : ∃j ∈ N, j ≥ i : ∃t′ ∈ F :Mj [tj+1〉Mj+1 ∧ tj+1 = t′ 2.

If σ is finite and maximal, it is relatively fair w.r.t. F .

Let us now compare the different fairness notions for the same fairness

constraint F ⊆ T : Obviously our notion is less restrictive than strong fair-

ness, as relative fairness only rules out infinite firing sequences where a trans-

ition in F is eventually permanently enabled and F is fired finitely often

only3. In contrast, strong fairness already rules out infinite firing sequences

where transitions are infinitely often enabled and F is fired finitely often.

The difference between weak fairness and relative fairness is more subtle.

Both notions refer to permanent enabledness. Loosely speaking, weak fair-

ness rules out certain infinite firing sequences where the set of transitions F

is eventually permanently enabled: From some point onward every marking

enables a transition in F ; consecutive markings do not necessarily enable

the same transition. Our notion of relative fairness only rules out infinite

firing sequences where at least one transition of F is eventually permanently

enabled and F is only fired finitely often.

2As F ⊆ T is finite, this is equivalent to ∃t′ ∈ F : ∀i ∈ N : ∃j ∈ N, j ≥ i :
Mj [tj+1〉Mj+1 ∧ tj+1 = t′.

3More precisely: Transitions of F are fired a finite number of times.

2.5. Properties of Relative Fairness 21

Let us contrast the three notions by means of an example. Consider the

net in Fig. 2.3 (a). The firing sequence σ = t1 t2 t1 t2 ... is not strongly fair

w.r.t. {t3}, because t3 is enabled infinitely often and never fired. However, σ

is weakly fair and relatively fair w.r.t. {t3}, since t3 is not eventually perman-

ently enabled. σ is not weakly fair w.r.t. {t3, t4}, because permanently either

t3 or t4 are enabled and neither t3 nor t4 are fired infinitely often. σ is rel-

atively fair w.r.t. {t3, t4}, since neither t3 nor t4 are eventually permanently

enabled.

(a)

t1

t2

t3 t4

(b)

t1
t2 t3

p1

p2 p3

Figure 2.3: Two simple Petri nets.

The above example shows that relative fairness does not imply weak fair-

ness. The following proposition summarises the relations of the three fairness

notions. As discussed, strong fairness implies weak fairness, which implies

relative fairness, but in general not vice versa. Strong, weak and relative

fairness coincide for special fairness constraints.

Proposition 2.5.2 Let N be a Petri net, M a marking of N and Fair ⊆ 2T

a set of fairness constraints.

(i) FsN,s(Fair)(M) ⊂ FsN,w(Fair)(M) ⊆ FsN,Fair(M) for any N , M , Fair, but

there are N , M , Fair such that FsN,w(Fair)(M) 6⊆ FsN,s(Fair)(M) and

there are N,M, Fair such that FsN,Fair(M) 6⊆ FsN,w(Fair)(M).

(ii) For singleton fairness constraints, weak fairness equals relative fairness.

FsN,{{t}}(M) = FsN,w({{t}})(M) for any t ∈ T .

(iii) Relative fairness, weak fairness and strong fairness coincide for the

fairness constraint T .

FsN,{T}(M) = FsN,w({T})(M) = FsN,s({T})(M) = FsN,max(M).

22 2. Preliminaries

Proof For (i) we only show that FsN,w(Fair)(M) ⊆ FsN,Fair(M). Let σ be

a firing sequence that is not relatively fair w.r.t. F ∈ Fair. So there is

a transition t ∈ F eventually permanently enabled but only finitely many

transitions in F are fired. Since t ∈ F is eventually permanently enabled,

also F is eventually permanently enabled, and hence σ is not weakly fair w.r.t.

F . Similarly it can be shown that strong fairness implies weak fairness. We

have seen above examples showing that relative fairness does not imply weak

fairness and weak fairness does not imply strong fairness. Straight-forwardly

(ii) and (iii) follow from the fairness definitions. 2

Basic Properties To get a better intuition for relative fairness, we briefly

summarise its basic properties.

Proposition 2.5.3 Let M be a marking of N . Let F1, F2 ⊆ T be fairness

constraints.

(i) FsN,{F1,F2} ⊆ FsN,{F1}(M) holds, but in general

FsN,{F1}(M) ⊆ FsN,{F1,F2}(M) does not hold.

(ii) Neither FsN,{F1∪F2}(M) ⊆ FsN,{F1}(M)

nor FsN,{F1}(M) ⊆ FsN,{F1∪F2}(M) hold in general.

(iii) FsN,{F1,F2}(M) ⊆ FsN,{F1∪F2}(M) holds, but in general

FsN,{F1∪F2}(M) ⊆ FsN,{F1,F2}(M) does not hold.

Proof (i) It follows directly from Def. 2.4.3 that Fs{F1,F2} ⊆ Fs{F1}. Let us

consider the Petri net of Fig. 2.3 (b) and the firing sequence σ = t1 t2 t2

σ is relatively fair w.r.t. {{t2}} but not relatively fair w.r.t. {{t2}, {t3}}.

(ii) σ is also relatively fair w.r.t. {{t2, t3}} but is not relatively fair w.r.t.

{{t3}}, and σ is relatively fair w.r.t. {{t1}} but not relatively fair w.r.t.

{{t1, t3}}.

(iii) Let σ be fair w.r.t. F1 and F2. If there is a t ∈ F1 (or F2) eventually

permanently enabled, then a transition t′ ∈ F1 (F2) is fired infinitely often.

Hence σ is fair w.r.t. F1 ∪ F2. 2

2.6. Fair Simulation and Stuttering Fair Bisimulation 23

2.6 Fair Simulation and Stuttering Fair Bisim-

ulation

In the course of this work we will introduce reduction rules, that allow us

to derive from a given Petri net Σ a reduced net Σ′. We aim to preserve

temporal logic properties, so that we can use the reduced instead of the ori-

ginal net when model checking. We will have to make fairness assumptions

on the original net to derive some of our main results. Bisimulations and

simulations will allow us to derive a couple of results:

• To show that we can use a reduced Petri net Σ′ to falsify ∀CTL∗ prop-

erties on ΣFair, we show that the transition system of Σ, TSΣ, fairly

simulates TSΣ′ .

• To show that the fair Σ and a reduced Σ′ satisfy the same CTL∗
-X

properties, we use stuttering fair bisimilarity.

As stuttering fair bisimulation is not a standard notion, we prove here that

if two transition systems under their respective fairness constraints are stut-

tering fair bisimilar, then they fairly satisfy the same CTL∗
-X formulas. But

first we introduce fair simulation.

Definition 2.6.1 (Fair Simulation) Let TS and TS 2 be transition sys-

tems with AP = AP2. Let sinit ∈ S and sinit2 ∈ S2 be their initial states.

A relation S ⊆ S × S2 is a fair simulation relation between TS and TS 2

if and only if for all s ∈ S and s2 ∈ S2 with (s, s2) ∈ S holds:

(L) L(s) = L2(s2), and

(F) ∀π ∈ ΠTS ,Fair(s) : ∃π2 ∈ ΠTS2,Fair2(s2) : (π(i), π2(i)) ∈ S, ∀i ≥ 1.

TS 2 under fairness constraints Fair2 simulates TS under fairness constraints

Fair if there is a fair simulation relation S between TS and TS2 and (sinit, sinit2) ∈

S.

Condition (F) holds if for any fair path π of TS from s a fair path π2 of TS 2

from s2 exists such that when stepping though both paths simultaneously

similar states are visited. If TS 2 fairly simulates TS , then whatever TS does

24 2. Preliminaries

respecting fairness constraints Fair, TS 2 can do while respecting Fair2. TS 2

can use its fair behaviour to mimic the fair behaviour of TS but TS 2 might

also expose additional behaviour which might be fair or not. Consequently if

(TS 2, sinit2)Fair2 fairly simulates (TS , sinit)Fair, then TS 2, sinit2 |=Fair2 ϕ implies

TS , sinit |=Fair ϕ for any ∀CTL∗ formula ϕ with its atomic propositions in AP

[22].

The definition of stuttering fair bisimulation is more involved, because

stuttering does not require a one to one matching of states. Before we define

stuttering fair bisimulation, we need to introduce the notions partition and

segment [77], which will help us to express the more complicated matching

of corresponding states.

A function θ : N → N is called a partition if θ(0) = 1 and θ is strictly

increasing (i.e. θ(i) < θ(i+ 1), ∀i ≥ 0).

We use a partition to divide an infinite state sequence ρ into segments of

corresponding states. Segment i ranges from index θ(i) to θ(i+ 1)− 1. The

set of states in segment i on ρ is segθ,ρ(i)= {ρ(θ(i)), ..., ρ(θ(i+ 1)− 1)}.

Definition 2.6.2 (Stuttering Fair Bisimilar) Let TS and TS 2 be trans-

ition systems with AP = AP 2. Let Fair ⊆ 2Act and Fair2 ⊆ 2Act2 be sets of

fairness constraints. Let sinit ∈ S and sinit2 ∈ S2 be initial states of TS and

TS 2.

A relation B ⊆ S × S2 is a stuttering fair bisimulation relation between

TS under fairness constraints Fair and TS 2 under fairness constraints Fair2

if and only if for all s ∈ S and s2 ∈ S2 with (s, s2) ∈ B holds:

L L(s) = L2(s2), and

SF1 ∀π ∈ ΠTS ,Fair(s) : ∃π2 ∈ ΠTS2,Fair2(s2) : match(B, π, π2)

SF2 ∀π2 ∈ ΠTS2,Fair2(s2) : ∃π ∈ ΠTS ,Fair(s) : match(B, π, π2).

where match for infinite state sequences π, π2 and relation R ⊆ S × S2 is

defined as: match(R, π, π2) is true iff there are partitions θ and θ2 such

that ∀i ≥ 0 : ∀s ∈ segθ,π(i) : ∀s2 ∈ segθ2,π2(i) : R(s, s2). Otherwise,

match(R, π, π2) is false.

2.6. Fair Simulation and Stuttering Fair Bisimulation 25

TSFair and (TS 2)Fair2 are stuttering fair bisimilar, TS Fair
∼= (TS 2)Fair2, if

such an B exists and also (sinit, sinit2) ∈ B.

The function match(R, π, π2) is true if the states along π and π2 can be

partitioned into infinitely many segments such that any state s in segment i

on π and any state s2 in segment i on π2 are related, i.e. R(s, s2). Figure

2.4 illustrates the matching of paths π and π′. Paths π and π2 match (i.e.

match(R, π, π2) is true), iff all states in correspoding segments match, with

other words if any state in segθ2,π2(i) is in relation R with any state segθ,π(i)

and vice versa.

1 2 3

truncation within corresponding segments

4 5seg. no.

π

π′

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 ...

s′0 s′1 s′2 s′3 s′4 s′5 s′6 s′7
...

Figure 2.4: Matching for bisimulation: Corresponding segments have bisim-
ilar states.

In comparison to condition (F) of Def. 2.6.1, (SF) also requires that

whatever TS does under its fairness constraint, TS 2 can do respecting fair-

ness constraints of TS 2 but in contrast to (F), (SF) allows that TS and TS 2

visit a different number of (equivalent) states along their way.

Next we show that two stuttering fair bisimilar transition systems satisfy

the same CTL∗
-X properties.

We use the following insight in the proof of Prop. 2.6.3: Given two

matching partitions θ of a state sequence π and θ2 of π2. If we truncate

prefixes of π and π2 within corresponding segments such that after truncation

both sequences start within truncated but corresponding segments, we still

get matching partitions for π and π2 by shifting the segments by the length

of the respective truncated prefix. This principle is illustrated by Fig. 2.4.

26 2. Preliminaries

Firstly, we show that states s ∈ S and s2 ∈ S2 satisfy the same CTL∗
-X

state formulas if s and s2 are stuttering fairly bisimilar; and if paths π and

π2 match then π and π2 satisfy the same CTL∗
-X path formulas.

Proposition 2.6.3 Let TS and TS 2 be two stuttering fair bisimilar trans-

ition systems with fairness constraints Fair ⊆ Act , Fair2 ⊆ Act2, respectively.

Let B be a stuttering fair bisimulation relation between TS and TS 2. Let s

be a state of TS and π be one of its infinite paths that is fair w.r.t. Fair. Let

s2 be a state of TS 2 and π2 be an infinite path fair w.r.t. Fair2. Let ϕ be a

CTL∗
-X

state formula and ψ be a CTL∗
-X

path formula.

If (s, s2) ∈ B, then TS , s |=Fair ϕ if and only if TS 2, s2 |=Fair2 ϕ.

If match(B, π, π2), then TS , π |=Fair ψ if and only if TS 2, π2 |=Fair2 ψ.

Proof The proof is by induction on the structure of ψ and ϕ.

ϕ = p: TS , s |= p iff TS 2, s2 |= p follows immediately from L(s) = L2(s2).

The cases ϕ1 ∨ ϕ2 and ¬ϕ1 follow directly by the induction hypothesis.

ϕ = Eψ: Let us assume that TS , s |= Eψ. Hence there is a fair path π from

s with TS , π |= ψ. Since (s, s2) are stuttering fair bisimilar, it follows by Def.

2.6.2 that there is a path π2 that is fair w.r.t. Fair2 such that match(B, π, π2)

holds. By the induction hypothesis follows that TS 2, π2 |= ψ.

Analogously we derive that TS 2, s2 |= Eψ implies TS , s |= Eψ.

ψ = D(ϕ): TS 2, π2 |= D(ϕ) holds iff TS 2, π2(1) |= ϕ holds. We assume

that match(B, π, π2) holds. Hence (π(1), π2(1)) ∈ B holds. By the induction

hypothesis, TS 2, π2(1) |= ϕ iff TS , π(1) |= ϕ.

The cases ψ1 ∨ ψ2 and ¬ψ1 follow again directly by the induction hypo-

thesis.

ψ = ψ1Uψ2: Let us assume that TS , π |= ψ1Uψ2. TS , π |= ψ1Uψ2 iff there

is an index i ≥ 0 with TS , πi |= ψ2 and ∀j, 0 ≤ j < i : TS , πj |= ψ1. Since we

assume match(B, π, π2), there are partitions θ of π and θ2 of π2, that divide π

and π2 into segments of bisimilar states. Let segment k contain the (i+1)-th

state of π. Let segment k on π2 start at the (i2 + 1)-th position. It follows

that match(B, πi, πi22) holds. By the induction hypothesis, TS , πi |= ψ2 iff

TS 2, π
i2
2 |= ψ2.

2.7. Summary 27

We now show that any πj22 , 0 ≤ j2 < i2 satisfies ψ1. Let segment l contain

the (j2+1)-th state of π2. Since segment k starts at the (i2+1)-th position, the

(j2 + 1)-th position is within a preceeding segment, i.e. l < k. Let segment

l on π start at the (j + 1)-th position. It follows that match(B, πj , π2
j2)

holds. Since segment l preceeds segment k, position j preceeds position i

on π. Hence TS , πj |= ψ1 holds. By the induction hypothesis follows that

TS 2, π2
j2 |= ψ1.

Analogously it can be shown that TS 2, π2 |= ψ1Uψ2 implies that TS , π |=

ψ1Uψ2. 2

Theorem 2.6.4 (Stuttering Fair Bisimilarity Implies CTL∗
-X

Equivalence)

Let TS and TS 2 be two transition systems with initial states sinit and sinit2,

respectively, and AP = AP2. Let Fair ⊆ 2Act and Fair2 ⊆ 2Act2 be sets of

fairness constraints. Let ϕ be an CTL∗
-X

formula referring to AP only.

If TS Fair
∼= TS 2Fair2, then

TS , sinit |=Fair ϕ if and only if TS 2, sinit2 |=Fair2 ϕ.

Proof Since TS Fair
∼= TS 2Fair2 , there is a stuttering fair bisimulation relation

with (sinit, sinit2) ∈ B. By Lemma 2.6.3 follows, that TS , sinit |=Fair ϕ if and

only if TS 2, sinit2 |=Fair2 ϕ. 2

Convention When we speak of fairness in the following chapters, we refer

to relative fairness unless stated otherwise.

2.7 Summary

In this chapter we introduced the basic terminology used in the following

chapters.

In particular, we introduced the basic terminology for Petri nets, we

defined the syntax and semantics of the temporal logics CTL∗ ∀CTL∗, LTL

and CTL (with and without X) and presented the notion of stutter-invariant

safety properties. The notion of relative fairness was defined and compared to

weak and strong fairness. Finally, we showed how simulation can be used to

prove the preservation of ∀CTL∗ properties and stuttering fair bisimulation

can be used to prove equivalence w.r.t. CTL∗
-X properties.

28 2. Preliminaries

Chapter 3

Alleviating State Space Explosion

Contents

3.1Alleviating State Space Explosion – An Overview 30

3.2 Classifying Slicing and Cutvertex Reductions . . 31

3.2.1 Compositional Methods 32

3.2.2 Petri Net Reductions 33

3.3 Alliance Against State Space Explosion 34

3.3.1 Partial Order Reductions 35

3.4 Summary . 38

State space explosion is often a major hindrance when model checking

real word systems. To combat state space explosion we developed cutvertex

reductions and two flavours of Petri net slicing. Certainly other methods

exist to combat the state space explosion problem and to accelerate model

checking.

In this chapter we give Petri net slicing and cutvertex reductions a place

within the landscape of approaches fighting state space explosion.

In Sect. 3.1 we coarsely survey approaches fighting state space explosion

and give pointers to literature. In Sect. 3.2 we introduce in more detail

Petri net reductions and decompositional methods, the pigeonholes for our

29

30 3. Alleviating State Space Explosion

approaches. The combination of different approaches promises even more

effective defence against state space explosion, as discussed in Sect. 3.3.

3.1 Alleviating State Space Explosion – An Overview

Formally the model checking problem is the following decision problem:

Given a model M and a temporal logic property ϕ, does M satisfies ϕ?

It is well known that the model checking problem for finite state systems and

CTL∗ properties is decidable. Consequently model checking is also decidable

on finite state systems for all logics introduced in Sect. 2. To determine

whether a system M satisfies a CTL formula ϕ is linear in the size of ϕ and

the size of the system’s state space TSM . LTL and CTL∗ model checking can

be performed in O(|TSM |·2|ψ|) time and space. Since the temporal properties

are usually short, the main hindrance of model checking is the immense size

of state spaces that arise from the most of interesting systems. The number of

states tends to grow exponentially in the system size, which is often referred

to as state space explosion. Systems of loosely coupled components and many

local states suffer more from the state space explosion problem than tightly

coupled with little concurrency.

Many ideas exists on how to combat the state space explosion problem

and made it possible to successfully verify more and more complex systems.

These approaches can be classified according to which aspects of the sys-

tem they exploit into state space based methods on the one side and struc-

tural methods on the other side. Structural methods exploit the system

description—Petri nets in our case—whereas state space based methods tar-

get the state space directly. State space based methods can be subdivided

into methods that handle the state space efficiently (e.g. symbolic [71] or

on-the-fly model checking [49]) or they build an optimised state space (e.g.

partial order reductions [45]) or use another state space representation (e.g.

unfoldings [34]).

Each of these methods has its strengths but also its weaknesses, i.e. they

may work very well for one system but do not lead to any improvement for

another. For instance, symbolic model checking tackles state space explosion

3.2. Classifying Slicing and Cutvertex Reductions 31

by using an efficient encoding of the state space. It examines not single

states and state transitions but rather operates on sets of states and state

transitions that are symbolically represented as propositional logic formulas.

How efficient this encoding is depends on the variable order chosen for the

encoding. Determining an optimal order is computationally hard 1, so that

heuristics are used and in some cases the encoding is of exponential size.

State space based methods are very powerful, as they can use the full

information of the state space. Usually they use of coarse heuristics based

on only some information, as there is a trade-off between their reduction

impact and the cost of applying them. Structural methods analyse the model

structure and do not consider the model’s state space. Hence structural

methods do not suffer from the state space explosion problem and are usually

cheap to apply and even small savings pay off.

For a more detailed overview of methods alleviating state space explosion

the interested reader is referred to [6, 22, 102].

3.2 Classifying Slicing and Cutvertex Reduc-

tions

Our Petri net slicing techniques are purely structural approaches. Based

solely on the Petri net graph an equivalent subnet is determined. Cutver-

tex reductions implement a compositional minimisation approach and are as

such a state based approach. A given monolithic Petri net is decomposed

(based on a structural criterion) into a kernel containing the set of places

ϕ refers to, and environment nets. To determine the appropriate replace-

ment for an environment net, the environment is model checked in isolation.

The optimisations of cutvertex reductions, micro reductions and pre-/postset

optimisations, examine structural criteria.

Both approaches, cutvertex reductions and slicing, are Petri net reduc-

tions, since they transform the Petri net graph decreasing its size. This allows

1Already the problem to decide whether a given variable ordering is optimal is NP-hard
[6]

32 3. Alleviating State Space Explosion

to conveniently combine them with other techniques.

In the sequel we give a short introduction to compositional minimisation

and Petri net reductions.

3.2.1 Compositional Methods

Compositional methods try to bypass the combinatorial blow-up by avoiding

the construction of the global state space. Instead they focus on examining

a system component-wise. Compositional minimisation/reduction constructs

a semantically equivalent representation of the global system out of min-

imised/reduced component state spaces. The resulting minimised/reduced

(global) system can then be model checked. Compositional verification al-

lows to infer global properties from verification of local properties on the sys-

tem’s components. There, a principal challenge is to find the local properties

which are to be checked on the components. Assume-guarantee reasoning is

one example of a compositional verification technique. For assume-guarantee

reasoning it is checked whether a component guarantees the local property

φ, when it can assume that its environment satisfies an assumption ψ. Then

it must be shown that its actual environment satisfies the assumption ψ.

A principal challenge of using compositional methods for monolithic Petri

nets is to find an appropriate decomposition, because of the so called envir-

onment problem. It is possible that a component exposes spurious behaviour

in isolation, that is behaviour that the component does not have as part of

the global system due to context constraints imposed by the component’s

environment.

There are many works on compositional reasoning. In Sect. 5.8 we will

discuss decompositional approaches on Petri nets as related work of cutvertex

reductions. As an entry point to compositional methods we recommend the

survey [8] on compositional model checking techniques used in practice and

the surveys of [92, 81].

3.2. Classifying Slicing and Cutvertex Reductions 33

3.2.2 Petri Net Reductions

Petri net reductions are transformations of the Petri net graph that decrease

its size. Many Petri net reduction rules have been defined over the years

[10, 75, 25, 30] but focus of most of this research was on special properties

like liveness or boundedness rather than the preservation of temporal logic

properties.

Petri net reductions for model checking aim to transform a Petri net

such that the reduced net has a smaller state space but is equivalent with

respect to a given property. Temporal property preserving reductions were

presented in more recent works which were partly based on the former re-

duction rules [85, 38]. Poitrenaud and Pradat-Peyre showed in [85] that the

local net reduction rules called pre- and postagglomeration of Berthelot [9]

preserve LTL-X properties. In [38] Esparza and Schröter presented a set of

reduction rules based on invariants, implicit places and local net reductions

to speed up LTL-X model checking using unfoldings, so that only some the

reductions preserve linear time properties. There they also adopted the pre-

/postagglomerations.

In the following we introduce pre-/postagglomerations, as one of the most

established Petri net reductions for model checking. We mainly follow [85].

Then in Sect. 4.4 we contrast our slicing methods to agglomerations and in

Chap. 6 we compare the effects of agglomerations to our approaches.

Pre- and Postagglomerations To apply an agglomeration we consider

a place, its set of input transitions H and its set of output transitions F .

The aim is to define restrictions so that H and F can be agglomerated—

that is we introduce a transition for each pair (h, f) ∈ H × F and eliminate

place p. More formally, two sets of transitions, F and H , and a place p

satisfy the agglomeration scheme iff (1) •p = H , p• = F , (2) Minit(p) = 0,

(3) ∀h ∈ H, ∀f ∈ F : W (p, f) = W (h, p) = 1 and (4) F ∩ H = ∅. The

agglomeration scheme is illustrated in Figure 3.1 (a).

A set of transitions F is preagglomerateable if there is a place p and a

transition h such that (1) •p = {h} and F , {h}, p satisfy the agglomer-

34 3. Alleviating State Space Explosion

ation scheme, (2) h• = p and (3) •h 6= ∅ and ∀q ∈ •h, q• = {h}. The

preagglomeration rule is illustrated in Fig. 3.1 (b).

Fig. 3.1 (c) illustrates the postagglomeration rule. A set of transitions

H is postagglomerateable iff there is a place p and a set of transitions F such

that F , H , p satisfy the agglomeration scheme, •F = {p} and h• 6= ∅.

Intuitively when transition sets H and F are agglomerateable, the place

p reliably stores the token that transitions in F consume. If F is preagglom-

erateable h just takes tokens from its input place to generate a token onto p

without any other side-effects. If H is postagglomerateable, transitions in F

are enabled right after firing a transition in H .

p

H

F

(a) Agglomeration scheme

p

h

F

(b) Preagglomeration

p

H

F

(c) Postagglomeration

Figure 3.1: The Agglomerations: Preagglomeration is illustrated in (b) and
postagglomeration in (c). In grey dashed lines are parts that rule’s precon-
ditions refer to.

Place p can be removed from the net and transitions in H , F are merged,

i.e. H , F are removed from the net and new transitions (hf) ∈ H × F are

introduced. A transition (hf) has all input places of F and H except the

eliminated p and (hf) has all output places of F and H except the eliminated

p. In [85] it has been shown that agglomerations of transition sets F or H

preserve an LTL-X property ϕ, given F is preagglomerateable and h does not

effect the places referred to by ϕ, or given H is postagglomerateable and

transitions in F do not effect any places ϕ refers to.

3.3 Alliance Against State Space Explosion

In Sect. 3.1 we gave a coarse overview of approaches to tackle the state

space explosion problem. However, it is very difficult to know which method

3.3. Alliance Against State Space Explosion 35

yields the best reduction rate. So several verification tools combine different

approaches to gain a synergetic effect, like SPIN, PROD or NuSMV. There is

also ongoing research on how to develop elaborate combinations of the differ-

ent approaches, e.g. [95, 111, 12]. Petri net reductions—or model reductions

in general—conveniently allow to be daisy chained with other methods. So

our methods can be used as preprocessing step before applying other meth-

ods.

When using Petri net reductions for preprocessing, one has to be aware

of the side effects on the succeeding methods. We discussed in Sect. 3.1

that for instance symbolic model checking uses heuristics to select a variable

ordering for its state space encoding. Similarly, partial order reductions build

a condensed state space by heuristically choosing representatives for a class

of equivalent interleavings (cf. Sect. 3.3.1). When Petri net reductions are

applied first to simplify a net and thereby decrease the size of its state space,

the heuristics may perform differently, that is better or worse. But for most

techniques its worst case performance is bounded by the size of its state

space, so that a reduced net with smaller state space guarantees a better

worst case behaviour.

In Sect. 6 we empirically study the effects of using our methods as a

preprocessor for partial order reductions. As we will see, partial order re-

ductions exhibit some conceptual similarities to both slicing and cutvertex

reductions, but both techniques bring in complementary ideas to further re-

pel state space explosion. In the following we therefore introduce partial

order reductions.

3.3.1 Partial Order Reductions

One reason of state space explosion is that the interleaving semantics repres-

ents concurrency of actions by interleaving them in all possible ways, whereas

the actions’ total effect is independent of their ordering. PORs (Partial or-

der reduction s) condense state spaces by decreasing the number of equivalent

interleavings in the model’s state space TSM .

36 3. Alleviating State Space Explosion

In the following we present stubborn-set-type methods2 following mainly

the presentation of Valmari in [102] but focusing on Petri nets. In [102] the

term stubborn-set-type method is a generic term referring to ample, persistent

or stubborn set methods.

Stubborn-set-type methods build a reduced state space by constructing

representative interleavings postponing independent transitions. Starting at

the initial state, a set of transitions T (s) is computed for each state s that

a stubborn-set-type method encounters during the state space construction,

and only successors reachable via transitions in T (s) are explored.

Valmari introduces the notion of dynamic stubborn sets to specify the

characteristics a stubborn-set-type method has to guarantee for its stubborn

sets.

Definition 3.3.1 A set T (M0) ⊆ T of transitions is dynamically stubborn

at state M0 ∈ [Minit〉, if and only if the following hold:

D1 If ts ∈ T (M0), t1, ..., tn 6∈ T (M0), M0[t1...tn〉Mn and Mn[ts〉M̂n, then

there is M̂0 ∈ [Minit〉 such that M0[ts〉M̂0 and M̂0[t1...tn〉M̂n.

D2 There is at least one tk ∈ T (M0), such that if t1, ..., tn 6∈ T (M0) and

M0[t1...tn〉Mn, then Mn[tk〉.

(a) (b)

t1 t2

t3 t4

p1 p2

p3 p4

p5

(p1, 1), (p2, 1)

(p3, 1)(p2, 1)

(p5, 1)(p2, 1)

(p1, 1)(p4, 1)

(p3, 1)(p4, 1)

(p5, 1)(p4, 1)

t1

t3

t2

t1

t3

t4

t4

t4

Figure 3.2: State space condensation by stubborn set type methods: The
condensed state space is the boldly printed part of (b). This state space
condensation complies with D1 and D2.

2We present here only the strongly dynamic stubborn sets.

3.3. Alliance Against State Space Explosion 37

Fig. 3.2 shows a condensed state space complying with Def. 3.3.1. As

the definition refers to states in the full state space, to implement stub-

born set methods, strategies are necessary to guarantee the independence of

transitions without referring to the full state space. Such strategies define

sufficient criteria based on the modelling formalism to imply that stubborn

sets are dynamic. Different such strategies can be defined depending on how

much effort is spent on analysing the dependencies between transitions. The

following is a simple definition of static stubborn sets for Petri nets guaran-

teeing D1 and D2.

1. If ts ∈ T (M0) and ¬M0[ts〉, then there is p ∈ •ts such that M(p) <

W (p, ts) and •p ⊆ T (M0).

2. If ts ∈ T (M0) and M0[ts〉, then (•ts)
• ⊆ T (M0).

3. T (M0) contains a transition ts such that M0[ts〉.

A more refined definition of stubborn sets is given by:

1. If ts ∈ T (M0) and ¬M0[ts〉, then there is p ∈ •ts such that M0(p) <

W (p, ts) and {t̂ | W (p, t̂) < W (t̂, p) ∧W (p, t̂) ≤ M0(p)} ⊆ T (M0).

2. If ts ∈ T (M0) and M0[tS〉, then for every p ∈ •ts,

{t̂ | min(W (ts, p),W (t̂, p)) < min(W (p, ts),W (p, t̂))} ⊆ T (M0).

3. T (M0) contains a transition ts such that M0[ts〉.

These two definitions of structural stubborn sets are nondeterministic.

Depending on the start transition different stubborn sets are constructed.

Several (or all) this stubborn sets can be computed and based on a heuristics

one is chosen. Usually smaller stubborn sets are preferred.

Preserved Properties Various stubborn-set-type methods have been defined

preserving a variety of different properties like termination, safety, LTL-X or

CTL∗
-X properties. The stubborn sets as defined by D1 and D2 generate a

condensed state space that contains all final markings of a net reachable from

its initial marking. All final states in the condensed state space are also final

38 3. Alleviating State Space Explosion

markings of the net. Furthermore, the reduced state space contains an infin-

ite execution if and only if the full state space contains an infinite execution.

To preserve more complex properties, additional conditions on stubborn sets

are necessary.

The example in Fig. 3.2 demonstrates that D1 and D2 are not sufficient

to guarantee preservation of LTL-X. The LTL-X property G((p3, 1) ⇒ F(p5, 1))

holds on the reduced state space but not on the full state space. This is due

to the so called ignoring problem, i.e. in the reduced state space is a path

on which some transitions can be infinitely postponed. In our example the

transition t1 is ignored on the path corresponding to t2t4t4... .

The conditions V and L, given below, guarantee the preservation of an

LTL-X property ϕ where effect(ϕ) can be any overapproximation of the set

of observable transitions, i.e. it has to hold that t ∈ effect(ϕ), if there are

reachable markings M1,M2 ∈ [Minit〉 and an atomic proposition (p, x) of ϕ

such that (M1[t〉M2) ∧ ((p, x) ∈ L(M1) ⇔ (p, x) 6∈ L(M2)).

V If the stubborn set T (M0) contains a transition tv such that M0[tv〉 and

tv ∈ effect(ϕ), then T (M0) = T .

L If M1[t1〉M2[t2〉M3... is an infinite execution in the reduced state space

starting at a marking M1, then for each tv ∈ effect(ϕ) there is an index

i ≥ 1 such that tv ∈ T (Mi).

Conditions V and L are a sufficient proviso for preserving liveness prop-

erties.

3.4 Summary

In this chapter we gave a coarse overview of methods to tackle the state space

explosion problem of model checking. As pigeonholes of our approaches we

introduced decompositional methods and Petri net reductions. We outlined

that the combination of different methods promises further improvement for

model checking. As two examples for other approaches fighting state space

3.4. Summary 39

explosion, we presented in more detail agglomerations and partial order re-

ductions.

40 3. Alleviating State Space Explosion

Chapter 4

Slicing Petri Nets

Contents

4.1 Introduction . 41

4.1.1 The History of Petri Net Slicing 42

4.2 CTL∗
-X

Slicing . 45

4.2.1 Nets, Slices and Fairness 47

4.2.2 Proving CTL∗
-X-Equivalence 52

4.3 Safety Slicing . 58

4.3.1 Proving Safety Slice’s Properties 60

4.4 Related Work . 66

4.4.1 Petri Net Slicing 67

4.4.2 Slicing for Verification 69

4.4.3 Related Approaches 70

4.5 Future Work . 72

4.6 Conclusions . 73

4.1 Introduction

In this chapter we introduce the approach of Petri net slicing. Slicing is a

technique to syntactically reduce a model in such a way that at best the

41

42 4. Slicing Petri Nets

reduced model contains only those parts that may influence the property

the model is analysed for. It originated as a method for program debugging

but has found applications in many other domains. We introduce slicing as

a means to alleviate the state space explosion problem for model checking

Petri nets. Tailoring slicing for model checking Petri nets, allows to better

exploit the Petri net graph and to fine-tune the slicing algorithms to preserve

relevant classes of properties.

We develop two flavours of Petri net slicing, CTL∗
-X

slicing and safety

slicing. As means for alleviating the state space explosion problem for model

checking, they determine what parts of the Petri net Σ can be sliced away

(i.e. discarded) so that the remaining net is equivalent to the original w.r.t.

ψ. The remaining net is called slice Σ′ and is built for a so called slicing

criterion Crit . We use as Crit the set of places referred to by the examined

CTL∗
-X property, scope(ψ).

We will show that CTL∗
-X slices allow to verify and falsify CTL∗

-X proper-

ties assuming relative fairness on the original net and safety slices allow for

verification and falsification of safety properties (without fairness constraints

on the original net). Slices of both algorithms can be used to falsify ∀CTL∗.

We will see that safety properties allow for more aggressive slicing, while the

CTL∗
-X preserving algorithm will usually produce bigger slices.

Outline In the remainder of the section we will survey the history of Petri

net slicing. The slicing algorithm preserving CTL∗
-X properties is defined in

Sect. 4.2. In Sect. 4.3 we present the safety slicing algorithm. We discuss

related work in Sect. 4.4, before drawing the conclusions in Sect. 4.6 and

outlining possibilities for future work in Sect. 4.5.

4.1.1 The History of Petri Net Slicing

Program Slicing The term slicing was coined by Mark Weiser in his ori-

ginal publication on program slicing [112], where he introduced slicing as

a formalisation of an abstraction technique that experienced programmers

(unconsciously) use during debugging to minimise the program by “slicing

4.1. Introduction 43

away” bits that are not relevant for the current analysis.

The relevant part of the program, the slice, is determined with respect to

a slicing criterion that specifies which aspect of the program is of interest.

Depending on the actual slicing algorithm, the slicing criterion usually is a

line number within the program code and a set of variables plus additional

information the slicing algorithm may use, like an input value.

Let us consider the small example program in Fig. 4.1 to explain the basic

idea of Weiser’s slicing algorithm. As in [112] we take as slicing criterion a

line number and a set of variables, C=(line 9,{sum}). The slice is built

by tracing backwards possible influences on the variables: In line 6 sum is

increased by i, so we also need to know the value of i at line 6. Hence

i becomes a relevant variable. Whether line 6 is executed depends on

the control statement at line 5, which refers to variable n. Hence n is

also relevant. Tracing backwards we see that the relevant variable sum is

set to value zero in line 3. From now on sum is not relevant anymore,

because earlier changes are overwritten in line 3. Analogously, i ceases

to be relevant at line 2. To determine a program slice, Weiser’s algorithm

computed such sets of relevant variables according to data dependencies (e.g.

sum depends on the value of i) and control dependencies (e.g. n determines

how often sum is increased).

1 read (n)
2 i := 1 ;
3 sum := 0 ;
4 prod := 1 ;
5 while (i <= n) {
6 sum := sum + i ;
7 prod := prod ∗ i ;
8 }
9 wr i t e (sum) ;

10 wr i t e (prod) ;

Relevant Variables

{ n }
{ n, i }

{ n, i, sum }
{ n, i, sum }
{ n, i, sum }
{ i, sum }
{ sum }

{ sum }

Figure 4.1: A program slice for slicing criterion (9,{sum}).

Since the original publication of Weiser in 1981, a variety of slicing ap-

proaches have been developed and program slicing has successfully been ap-

44 4. Slicing Petri Nets

plied to support software developers in tasks like program understanding,

integration, maintenance, testing and software measurement [99, 13]. One

major challenge in program slicing is to appropriately capture the relevant

dependencies of high level programming languages.

There are two main classifications of slices: (i) By the direction of slicing

and (ii) by knowledge on the program’s input used by the slicing algorithm.

In the above example we have built a backward slice. Starting from the sli-

cing criterion we traced backwards the possible influences on the variables.

A backward slice contains the statements which may affect the slicing cri-

terion. A forward slice contains the statements that are affected by the slicing

criterion.

Classified by the amount of knowledge on the program’s input, slices

are called static, dynamic or conditioned. The slice in Fig. 4.1 is static.

Static slices are built without any knowledge of the program’s input, whereas

dynamic slices are built for exact input values of the program. Suppose n=0

is the input to the program in Fig. 4.1. A dynamic slicing algorithm could

generate a slice consisting of lines 3 and 9 only. Conditioned slices are built

without knowing the exact input but sets of initial values usually given by a

first-order logic formula on the input variables [28].

Slicing Formal Specifications & Cone of Influence Reduction Re-

search was also undertaken to apply slicing on formal specifications. Without

claiming completeness we representatively survey works on slicing formal

specifications in order to illustrate how wide spread research on this field

developed. In [97] the concept of slicing has been applied to attribute gram-

mars. Heimdahl and Whalen defined slices of hierarchical state machines in

[54]. J. Chang and D. J. Richardson and also Brückner and Wehrheim pub-

lished works on slicing Z- and CSP-OZ-Specifications [15, 14, 17]. An slicing

approach for VHDL is described in [21].

Cone of influence reduction (COI)[8] is a related approach used in hard-

ware verification. To the author’s opinion it is hard to differentiate when a

method classifies as either slicing or COI technique. Both techniques build

a reduced model by analysing dependencies and omitting independent parts.

4.2. CTL∗
-X Slicing 45

Historically the focus for slicing applications is wider and mainly on debug-

ging and testing. Slicing techniques are usually applied to complex high

level languages and most slicing research discusses how to extract various

dependencies necessary for the desired analysis. In contrast, COI was stud-

ied for simplifying models for verification right from the start. Historically

COI is applied on synchronous systems, for which it has been shown to pre-

serve CTL∗
-X[22]. COI usually is applied on simpler modelling formalisms,

e.g. boolean equations describing an asynchronous circuit. Whereas slicing

encompasses a variety of approaches, COI usually refers to the backward

tracing of dependencies only. So the slicing algorithm implemented in the

NuSMV model checker [20] as well as the algorithm for f FSM models as

used in the PeaCE hardware/ software codesign environment[79] are referred

to as COI implementations, whereas Clarke et. al. describe in [21] a slicing

technique for a hardware description language.

4.2 CTL∗
-X

Slicing

The basic idea for our slicing algorithm is to define dependencies based on the

locality property of Petri nets: The token count of a place p is determined

by the firings of incoming and outgoing transitions of p. Whether such a

transition can fire, depends on the token count of its input places.

If we want to observe the marking on a set of places Crit , we can iter-

atively construct a subnet Σ̂ = (P̂ , T̂ , Ŵ , M̂init) of Σ by taking all incoming

and outgoing transitions of a place p ∈ P̂ together with their input places,

starting with P̂ = Crit . The subnet Σ̂ certainly captures every token flow of

Σ that influences the token count of a place p ∈ Crit .

We refine the above construction by distinguishing between reading and

non-reading transitions. A reading transition of places R cannot change the

token count of any place in R. We formally define t to be a reading transition

of R ⊆ P iff ∀p ∈ R : W (p, t) =W (t, p). If t is not a reading transition of R,

we call t a non-reading transition of R. Let us now iteratively build a subnet

Σ′ = (P ′, T ′,W ′,M ′
init) by taking all non-reading transitions of a place p ∈ P ′

together with their input places, starting with P ′ = Crit .

46 4. Slicing Petri Nets

Definition 4.2.1 (slice(Σ,Crit)) Let Σ be a marked Petri net and Crit ⊆ P

a non-empty set, called slicing criterion. The following algorithm constructs

slice(Σ,Crit) of Σ for the slicing criterion Crit .

1 generateSlice(Σ,Crit){

2 T ′, Pdone := ∅ ;

3 P ′ := Crit ;

4 while (∃p ∈ (P ′ \ Pdone)) {

5 while (∃t ∈ ((•p ∪ p•) \ T ′) :W (p, t) 6= W (t, p)) {

6 P ′ := P ′ ∪ •t ;

7 T ′ := T ′ ∪ {t} ; }

8 Pdone := Pdone ∪ {p} ; }

9 return (P ′, T ′,W |(P ′,T ′),Minit|P ′) ; }

The algorithm always terminates and always determines a subnet slice(Σ,Crit)

for any given slicing criterion Crit . Though, the slice may equal the original

net Σ. If Crit ⊆ Crit ′, slice(Σ,Crit) is a subnet of slice(Σ,Crit ′). Figure 4.2

illustrates the effect of generateSlice.

s1

t3

s4 t5

s2

t7

s5s3

s0

t0
t1

t2

t4 t6 s6

Σ′

1

Σ1

Figure 4.2: Slicing a Petri net. The original net Σ1 and its slice Σ′
1 =

slice(Σ1, {s5}).

The slice slice(Σ,Crit) may be smaller than Σ̂, the subnet constructed

without considering reading transitions. Even for certain strongly connected

nets the algorithm generateSlice might produce a slice Σ′ that is smaller

than Σ, whereas Σ̂ for a strongly connected net is always equals to Σ. As

illustrated in Fig. 4.3, such a subnet evolves without tokens being generated

4.2. CTL∗
-X Slicing 47

by the remaining net: Reading transitions are the only incoming transitions.

Σ′ Σ′′ Σ′′′

Figure 4.3: Slices of a Petri net. The net has (at least) four possible slices
Σ′′, Σ′Σ′′, Σ′′Σ′′′ and the original net itself.

Slicing Effects The effect of our slicing algorithm can be classified into

trivial, proper and effective. As already noted slice(Σ,Crit) may equal the

original net Σ, in which case we refer to slice(Σ, P) as trivial. We call a

slice proper, if it is a proper subnet of the original net. A slice is effective

if it is proper and its state space is less than the state space of the original

system. We will show that the slice’s states are a subset of the (projected)

states of the original system and the state transitions are a subset of the

state transitions of original system. So a slice is either (i) trivial, (ii) proper

and ineffective or (iii) effective.

Figure 4.4 shows a proper slice that is ineffective. In Fig. 4.4 (a) the

original Petri net is displayed and its slice for {p5} is marked by a dashed

frame. The reachability graphs of the original system and slice(Σ, {p5}) are

displayed in Fig. 4.4 (b) and (c), respectively.

If we generate the slice of the same system but for place p4 we have an

effective slice. This case is illustrated in Fig. 4.5.

4.2.1 Nets, Slices and Fairness

In this section we want develop an intuition on how precisely a slice captures

the behaviour of the original net with respect to the places mentioned in the

slicing criterion Crit .

48 4. Slicing Petri Nets

p1
p2

p3

p4
p5

p6

t1

t2

t5

t3

(a) (1,0,0,0,0,0)

(0,1,1,0,0,0)

(0,1,0,1,0,0)

(0,1,0,0,1,1) (0,1,0,0,0,1)

t1

t4

t2

t5

t3

(b) (1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1) (0,0,0,0)

t1

t4

t2

t5

t3

(c)

Figure 4.4: Example of a proper but ineffective slice. (a) shows the original
net Σ and slice(Σ, {p5}), (b) the state space of Σ and (c) the state space of
slice(Σ, {p5}).

t1

t2

t5

t3p4

(a) (1,0,0)

(0,1,0)

(0,0,1)

(0,0,0)

t1

t4

t2

t5

t3

(b)

Figure 4.5: Example of an effective slice. (a) shows the original net Σ and
slice(Σ, {p4}) and (b) the state space of slice(Σ, {p4}).

4.2. CTL∗
-X Slicing 49

Firing Sequences on the Original and its Slices So let us consider

the firing sequence σ = t2 t0 t4 t3 t5 of Σ1 in Fig. 4.2. Firing σ generates the

marking with a token on s1, s2, s5 only. σ is certainly not executable on Σ′
1 as

such, since t0, t2 and t3 are not transitions of Σ′
1. Omitting these transitions,

proj T ′

1
(σ) = t4t5 remains. t4t5 is a firing sequence of Σ′

1 and generates the

marking with only a token on s5. So the markings resulting from firing σ on

Σ1 and proj T ′

1

(σ) on Σ′
1 coincide on the places in P ′

1.

Actually, it is always the case that for a firing sequence σ of Σ, proj T ′(σ)

is a firing sequence of its slice Σ′ and that σ and proj T ′(σ) change the token

count on P ′ in the same way. In section 4.2.2 we will formally show that

every firing sequence σ′ of a slice Σ′ is also a firing sequence of Σ, and the

projection proj T ′(σ) of a firing sequence σ of Σ is a firing sequence of Σ′. But

since we are interested in the preservation of temporal properties, reachability

of (sub)markings is not enough.

Temporal Properties and Maximal Firing Sequences According to

Chapter 2 the satisfiability of path formulas is determined by maximal firing

sequences (c.f. Def. 2.3.2 and Def. 2.4.1). Since we would like to preserve

LTL or CTL, we would hence like a correspondence of maximal firing se-

quences of Σ and Σ′. Unfortunately this is not the case and we cannot verify

CTL or LTL using the slice right away, as the following example illustrates.

Let us consider the formula ϕ = AF(s5, 1), which is an LTL-X and CTL-X

property. The slice Σ′
1 satisfies this property: Σ′

1 has two maximal firing se-

quences t4 t5 t6 and t4 t5 t7. Both sequences fire t5 and hence mark eventually

s5 with a token. Σ does not satisfy ϕ, since the maximal firing sequence

σ = t4 t3 t3 t3 ... never generates a token on s5. The projection of σ on T ′
1,

proj T ′

1

(σ) = t4, is not maximal on Σ′.

Intuitively, the reason for the non-correspondence between maximal firing

sequences of Σ and Σ′ is that the net discard—the bit that is sliced away—

exposes a divergence that is not reflected within the slice. As a consequence

maximal firing sequences on Σ are projected onto non-maximal firing se-

quences on Σ′. One way to fix this problem is to rule out divergencies outside

the slice by means of a fairness assumption on the original net.

50 4. Slicing Petri Nets

Fairness Rules out Divergencies In the following we will use a very

weak fairness assumption to rule out divergencies within the net discard. In

Def. 2.4.3 we introduced a firing sequence to be relatively fair with respect to

a fairness constraint F ⊆ T if in case a transition t ∈ F is eventually perman-

ently enabled, some transition of F is fired infinitely often. In the following

we will set F to the set of transitions of the slice. This fairness assumption

guarantees progress within the slice. As long as there are transitions in T ′

permanently enabled, transitions in T ′ will be fired. Our example firing se-

quence σ = t4 t3 t3 t3 ... is not fair with respect to T ′, as t5 is permanently

enabled, but no transition in T ′ is fired.

Note that we do not always need to make this fairness assumption to

verify a property using the slice. Guaranteeing progress is only necessary

when studying liveness properties. Also if we want to falsify a property

using the slice it is not necessary to assume that Σ is fair w.r.t. T ′, as we

will see.

Fairness and Maximality We will show that any firing sequence of Σ

that is fair with respect to T ′ is projected onto a maximal firing sequence

of Σ′ and that any maximal firing sequence of Σ′ corresponds to a fair firing

sequence on Σ.

Other fairness assumptions could be made to guarantee progress on T ′ and

hence to rule out divergencies within the net discard. We may for instance

assume stronger fairness notions like weak fairness or strong fairness.

Stuttering Marking Sequences As we consider state based logics we

are not primarily interested in correspondences of firing sequences but in the

induced changes of the states (=markings). Since a firing sequence of Σ and

its projection proj T ′(σ) fired on Σ′ change the token count on places in P ′ in

the same way, the generated marking sequences are quite similar.

Consider again the net Σ1 in Fig. 4.2 and its slice Σ′
1. σ1 = t4 t1 t5 t6 and

σ2 = t4 t3 t1 t5 t6 are both maximal firing sequences of Σ generating the mark-

ing M with a token on s2 and s6 only. σ′ = t4 t5 t6 is the projection onto T ′
1 of

both σ1 and σ2. Since σ′, σ1 and σ2 are from the slice’s point of view the same,

4.2. CTL∗
-X Slicing 51

we want M(M ′
init, σ

′) correspond to M(Minit, σ1) and M(Minit, σ2). Figure

4.6 illustrates that when we merely restrict the markings of M(Minit, σ1) and

M(Minit, σ2) to P ′
1, the result is the same as M(M ′

init, σ
′) except for stutter-

ing, that is finite repetitions of (sub)markings (c.f. Sect. 2.1). This stuttering

is due to the firing of transitions outside the slice. σ1 fires t1 between the

slice’s transitions t4 and t5, and σ2 fires t3 t1 between t4 and t5.

t4 t5 t6

M(σ′) =

(

1

0

0

) (

0

1

0

) (

0

0

1

) (

0

0

0

)

M(σ1) =















1
1
1

0

0

0





























1
1
0

1

0

0





























0
1
0

1

0

0





























0
1
0

0

1

0





























0
1
0

0

0

1















M(σ2) =















1
1
1

0

0

0





























1
1
0

1

0

0





























1
1
0

1

0

0





























0
1
0

1

0

0





























0
1
0

0

1

0





























0
1
0

0

0

1















Figure 4.6: Correspondence of marking sequences. Marking sequences
M(Minit, σ1), M(Minit, σ2) on Σ1 are both generated from firing sequences
corresponding to σ′ on Σ′

1 (cf. Fig. 4.2).

Stuttering and Next-Time When studying the previous example it be-

comes obvious that by considering the slice we cannot say how many steps (=

transition firings) the original net will make to reach a certain submarking.

But the next-time operator X counts steps. Let us examine what this means

for CTL formulas using X.

In Fig. 4.2 the CTL formulas ϕ1 = EX EX EX (s5, 1) and ϕ2 = EX EX

EX EX (s5, 1) are valid on Σ1. M(Minit, σ1) and M(Minit, σ2) represent such

marking sequences. But there is no marking sequence on Σ′
1 satisfying either

ϕ1 or ϕ2. The CTL formula ϕ3 = AXAX (s5, 1) holds for Σ′
1, but obviously

not for Σ1. Hence the slice can neither be used for verification or falsification

of CTL formulas using X.

52 4. Slicing Petri Nets

Let us now examine LTL properties using X: The LTL property ψ =

AXX (s5, 1) is satisfied by Σ′
1, but not by Σ1. Hence in general Σ′ cannot be

used for verification of LTL formulas using X, as Σ′ |= ϕ 6⇒ Σ |= ϕ. But we

will show later in this section that indeed Σ′ can be used for falsification of

∀CTL∗ and hence LTL properties using X.

4.2.2 Proving CTL∗
-X
-Equivalence

In Sect. 4.2.2.1 we concentrate on the correspondences between Σ and Σ′.

As outlined in the previous section, we consider two transition sequences σ of

Σ and σ′ of its slice Σ′ as correspondent iff proj T ′(σ) = σ′ and two markings

M of Σ and M ′ of Σ′ are correspondent iff M |P ′ = M ′. We first show that

the (sets of) firing sequences of Σ and Σ′ correspond. Then we show that

maximal firing sequences of Σ′ correspond to firing sequences of Σ that are

fair w.r.t. T ′.

In Sect. 4.2.2.2 we examine what the discovered correspondences mean

for the set of formulas that Σ and Σ′ satisfy. We show that Σ and Σ′ satisfy

the same CTL∗
-X formulas, by proving that the two nets have stuttering fair

bisimilar transition systems. We also show that ∀CTL∗ using the next-time

operator X can be falsified via the slice, which implies that LTL using X can

be falsified.

Convention In what follows we denote with Σ′ the slice of a given net

Σ for a slicing criterion Crit ⊆ P . If we interpret a temporal logic formula ϕ

on a net Σ we assume that the formula refers to places of the slice only, that

is we assume that scope(ϕ) ⊆ P ′ holds.

4.2.2.1 Firing Sequences and Slicing

We start with two simple observations:

(i) The occurrence of a transition t ∈ T \T ′ cannot change the token count

of any place in P ′ whereas the occurrence of a transition t ∈ T ′ changes

the token count of at least one place in P ′.

(ii) A marking M of Σ enables a transition t ∈ T ′ if and only if a marking

4.2. CTL∗
-X Slicing 53

M ′ =M |P ′ of Σ′ enables t, since transitions in T ′ have the same input

places in Σ and Σ′.

It follows by induction on the length of the firing sequences, that whatever

one of the nets can do to a marking on P ′, the other can do as well by firing

the same transitions in T ′ in the same order. So for firing sequences there is

a correspondence between Σ and Σ′, i.e. proj T ′(FsN(Minit)) = FsN ′(M ′
init):

Proposition 4.2.2 Let σ be a firing sequence and M be a marking of Σ.

(i) Minit [σ〉M ⇒ M ′
init [proj T ′(σ)〉M |P ′.

Let σ′ be a firing sequence and M ′ a marking of Σ′.

(ii) M ′
init[σ

′〉M ′ ⇒ ∃M ∈ N
|P | :M ′ =M |P ′ ∧Minit[σ

′〉M .

Proof We show Prop. 4.2.2 by induction on the length l of σ and σ′, re-

spectively.

l = 0: The initial marking of Σ and Σ′ is generated by firing the empty

firing sequence ε. By Def. 4.2.1, M ′
init =Minit|P ′.

l → l+1: First we show (i). Let σt be a firing sequence of Σ of length l+1.

Let σ′ be proj T ′(σ). By the induction hypothesis, σ′ is a firing sequence of Σ′

and the markings generated by firing σ and σ′ coincide on P ′, M ′
σ′ =Mσ|P ′.

If t is an element of T ′, it follows from Mσ[t〉 that M ′
σ′ enables t. By the

firing rule and since Mσ and M ′
σ′ coincide on P ′, it follows that also Mσt and

M ′
σ′t coincide on P ′, Mσt|P ′ = M ′

σ′t. If t ∈ T \ T ′, proj T ′(σt) = σ′, which is

a firing sequence of Σ′ by the induction hypothesis. A transition in T \ T ′

cannot change the token count of any place p ∈ P ′, thus Mσt|P ′ =Mσ′ |P ′.

For (ii) let σ′t be a firing sequence of Σ′ with length l+1. By the induction

hypothesis σ′ is a firing sequence of Σ and induces the same changes on P ′,

Mσ′ |P ′ = M ′
σ′ . Since M ′

σ′ enables t and t has only input places in P ′, also

Mσ′ enables t. Again by the firing rule, Mσ′t|P ′ =M ′
σ′t. 2

By the next propositions, it holds that whatever maximal firing sequence

the slice Σ′ may fire, Σ can fire a corresponding maximal firing sequence.

The converse does not hold. In the previous section we have already seen a

counterexample. t4 is not a maximal firing sequence of slice(Σ1, {s5}) in Fig.

4.2, but it is the projection of Σ1’s maximal firing sequence t4 t3 t3 t3 t3

So for maximal firing sequences proj T ′(FsN,max(Minit)) ⊃ FsN ′,max(M
′
init).

54 4. Slicing Petri Nets

Proposition 4.2.3 Let σ′
m be a maximal firing sequence of Σ′.

There is a maximal firing sequence σm of Σ that starts with σ′
m and for

which proj T ′(σm) = σ′
m holds.

Proof By Prop. 4.2.2 (ii), σ′
m is a firing sequence of Σ. In case σ′

m is

infinite, it is also a maximal firing sequence of Σ. So let σ′
m be finite. Let

σm be a maximal firing sequence of Σ with σm = σ′
mσ where σ ∈ T∞. Let

σ′ be the transition sequence with σ′ = proj T ′(σm) = σ′
mproj T ′(σ). By Prop.

4.2.2 (i), σ′ is a firing sequence of Σ′. Since σ′
m is maximal, it follows that

proj T ′(σ) = ε. 2

If we assume that Σ is fair w.r.t. T ′, we get a two way correspondence

between sets of fair firing sequences of the original net and maximal firing

sequences of the slice, i.e. proj T ′(FsN,{T ′}(Minit)) = FsN ′,max(M
′
init), as the

following propositions states.

Proposition 4.2.4 Let σ′ be a maximal firing sequence of Σ′.

(i) There is a firing sequence σ of Σ that is fair w.r.t. T ′, starts with σ′

and proj T ′(σ) = σ′.

Let σ be a firing sequence of Σ, that is fair w.r.t. T ′.

(ii) proj T ′(σ) is a maximal firing sequence of Σ′.

Proof We first show (i). Let σ′ be a maximal firing sequence of Σ′. By Prop.

4.2.2 (ii), σ′ is a firing sequence of Σ. If σ′ is infinite, it is fair w.r.t. T ′. So let

σ′ be finite. As σ′ is maximal, M ′
σ′ does not enable transitions of T ′. Since

M ′
σ′ and Mσ′ coincide on P ′, Mσ′ does not either. Let σ2 ∈ (T \ T ′)∞ be

such that σ := σ′σ2 is a maximal firing sequence of Σ, which exists by Prop.

4.2.3. Transitions of σ2 cannot change the token count of places in P ′. Thus

σ is fair with respect to T ′.

We now show (ii) by contraposition. Assume that σ′ := proj T ′(σ) is not

a maximal firing sequence of Σ. By Prop. 4.2.2 (i), σ′ is a firing sequence

of Σ′. Since we assume that σ′ is not maximal, there is a t′ ∈ T ′ enabled

after firing σ′, M ′
σ′ [t

′〉. Let σpr be the minimal prefix of σ with proj T ′(σpr)

equals σ′. By Prop. 4.2.2 (i), σ′ and σpr generate corresponding markings,

4.2. CTL∗
-X Slicing 55

Mσpr |P ′ = M ′
σ′ . Hence Mσpr enables t′. After firing σpr, σ does not fire any

t ∈ T ′ and thus the token count on P ′ is not changed and t′ stays enabled.

Hence σ is not fair with respect to T ′. 2

We conclude with a summary of the main results regarding the corres-

pondence between Σ and its slice Σ′:

• Corresponding firing sequences σ of Σ and σ′ of Σ′ generate corres-

ponding markings Mσ|P ′ =M ′
σ′ (Prop. 4.2.2).

• proj T ′(FsN(Minit)) = FsN ′(M ′
init) (Prop. 4.2.2).

• proj T ′(FsN,max(Minit)) ⊃ FsN ′,max(M
′
init) (Prop. 4.2.3), but

in general proj T ′(FsN,max(Minit)) ⊂ FsN ′,max(M
′
init) does not hold.

• proj T ′(FsN,{T ′}(Minit)) = FsN ′,max(M
′
init), (Prop. 4.2.4).

4.2.2.2 Verification and Falsification Results

In this section we present the main results concerning the preservation of

CTL∗
-X properties: For Σ that is fair w.r.t. T ′ and a CTL∗

-X formula ψ, we

can derive whether or not Σ |= ψ by examining Σ′. For next-time, we can

derive from Σ′ 6|= ψ that Σ 6|= ψ fairly w.r.t. T ′ for ∀CTL∗ formulas (and

hence LTL). We show its contraposition in Theorem 4.2.6.

Theorem 4.2.5 (CTL∗
-X
Equivalence) Let Σ be a Petri net and Crit ⊆ P

a non-empty set of places. Let Σ′ be slice(Σ,Crit). Let ϕ be a CTL∗
-X

formula

with scope(ϕ) ⊆ P ′.

Σ |= ϕ fairly w.r.t. T ′ ⇔ Σ′ |= ϕ

Proof To show that Σ and Σ′ satisfy the same CTL∗
-X formulas, we use

Theorem 2.6.4 and show that TSΣ and TSΣ′ are stuttering bisimilar assuming

that Σ is fair w.r.t T ′.

In a first step we define the bisimulation relation B ⊆ [Minit〉× [M ′
init〉 and

then show according to Def. 2.6.2 that ∀(M,M ′) ∈ B,

(L) L(M) = L′(M ′)

(SF1) ∀µ ∈ ΠTSΣ,{T ′}(M) : ∃µ′ ∈ ΠTS
Σ′ ,inf(M

′) : match(B, µ, µ′)

56 4. Slicing Petri Nets

(SF2) ∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{T ′}(M) : match(B, µ, µ′)

hold.

The bisimulation relation B is simply defined as (M,M ′) ∈ B if and only

if M ′ =M |P ′ . Hence by definition (Minit,M
′
init) ∈ B.

Since we assume that AP ⊆ P ′ × N, the definition of B implies L(M ′) =

L(M).

We now prove that (SF1) holds. Let (M0,M
′
0) be in B. Let µ be a

path in TSΣ from M0 that is fair w.r.t. T ′. Let σ be a fair firing sequence

corresponding to µ, that is µ = M(M0, σ). By Prop. 4.2.4 (ii) proj T ′(σ)

is a maximal firing sequence of Σ′ from M ′
0. Hence the marking sequence

µ′ := M(M ′
0, proj T ′(σ)) generated by proj T ′(σ) is a path in TSΣ′ . Note

that both µ and µ′ are infinite since they are generated by maximal firing

sequences.

To show that match(B, µ, µ′) holds, we have to show that there are par-

titions θ and θ′ such that ∀i ≥ 0 : ∀M ∈ segθ,µ(i) : ∀M ′ ∈ segθ′,µ′(i) :

B(M,M ′) holds. Let l be |proj T ′(σ)|, that is the number of changes in mark-

ings on P ′. We partition µ and µ′ so that a new segment starts with every

change in the marking of P ′ in µ and µ′, respectively. With other words, the

first segment contains the initial marking and all markings with the same

token count on P ′, a new segment starts every time a transition in T ′ is

fired. Note, that a transition t ∈ T ′ changes the token count of at least one

place in P ′ and a transition t ∈ T \T ′ does not change the token count on P ′.

In the case that l 6= ∞, we define the partition such that after the last change

on P ′ all following segments contain one marking only: for i ≥ l segment i

on µ′ contains the final marking of proj T ′(σ) and segment i on µ contains the

next marking—either a final marking of σ or a marking generated by firing

a t ∈ T \ T ′.

Let us first consider segment i where 0 ≤ i < l+1: A marking in segθ,µ(i)

is generated by firing a prefix of σ with i transitions in T ′. A marking in

segθ′,µ′(i) is generated by firing the first i transitions of proj T ′(σ). Let us

now consider the case that l 6= ∞ and i > l: The marking in segθ,µ(i) is

generated by firing σ or a prefix of it that contains all transitions of σ in T ′.

The marking in segθ′,µ′(i) is generated by proj T ′(σ). In both cases it follows

4.2. CTL∗
-X Slicing 57

by Prop. 4.2.2 that ∀i ≥ 0 : ∀M ∈ segθ,µ(i) : ∀M ′ ∈ segθ′,µ′(i) : B(M,M ′)

holds.

(SF2) follows analogously. 2

We now show that we can falsify via a slice Σ′ that an ∀CTL∗ property

using X holds on Σ. Therefore we show that if the original net fairly satisfies

an ∀CTL∗ formula ψ, then also the slice satisfies ψ.

Theorem 4.2.6 (Falsification of ∀CTL∗) Let Σ be a Petri net and Crit ⊆

P a non-empty set of places. Let Σ′ be slice(Σ,Crit). Let ψ be an ∀CTL∗

formula with scope(ψ) ⊆ P ′.

If Σ |= ψ fairly w.r.t. T ′, then Σ′ |= ψ.

Proof We show that (TSΣ,Minit) simulates (TSΣ′,M ′
init){T ′}, which implies

that if Σ |= ψ fairly w.r.t. T ′ then Σ′ |= ψ (c.f. Sect. 2.6). We define the

simulation relation S by (M,M ′) ∈ S if and only if M ′ = M |P ′ . Hence

(Minit,M
′
init) ∈ S. We have to show that all states M of TSΣ and states M ′

of TSΣ′ with (M,M ′) ∈ S satisfy

(L) L(M) = L′(M ′), and

(F) ∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{T ′}(M) : (µ(i), µ′(i)) ∈ S.

As we assume that AP ⊆ P ′ × N, (L) holds by definition of S.

Let us assume that (M0,M
′
0) ∈ S. Let µ′ be an infinite path from M ′

0

in TSΣ′ . Let σ′ be a maximal firing sequence corresponding to µ′, that is

µ′ = M(M ′
0, σ

′). By Prop. 4.2.4 (i) there is a firing sequence σ of Σ that is

fair w.r.t. T ′ and starts with σ′. Consequently, all markings generated on Σ

and Σ′ during the firing of σ′ coincide on P ′. Let us assume that σ′ is finite.

Hence M ′
σ′ is a final marking and all succeeding markings in µ′ equal M ′

σ′ .

Let us consider a marking M of µ := M(M0, σ) succeeding Mσ′ . After firing

σ′, σ did not fire any transition of T ′. Since only transitions in T ′ can change

the token count on P ′, it follows that M |P ′ =Mσ′ |P ′ =M ′
σ′ . 2

The above result can be used for falsification: By contraposition Σ′ 6|= ϕ

implies that Σ 6|= ϕ fairly w.r.t. T ′.

58 4. Slicing Petri Nets

It is not necessary for the above result to assume that Σ is fair w.r.t. T ′,

since if “Σ 6|= ψ fairly w.r.t. T ′” holds, then there is a firing sequence σ that

does not satisfy ψ, is fair w.r.t. T ′ and hence also maximal. So “Σ′ 6|= ψ”

implies also that “Σ 6|= ψ”.

Again we shortly summarise: Using next-time, we can falsify ∀CTL∗ for-

mulas, which include LTL formulas. We can verify and falsify CTL∗
-X, if

the modelled system behaves fairly w.r.t. T ′. In all scenarios it suffices to

examine Σ′ without fairness assumptions.

4.3 Safety Slicing

In this section we will develop a more aggressive slicing algorithm. In ex-

change for building smaller slices, we are not able to verify every CTL∗
-X

but only (stutter-invariant) safety properties—still a very relevant class of

properties.

The Ease of Slicing for Safety Properties The reason why the slicing

algorithm can be more aggressive for safety properties is due to fact that

satisfiability of safety properties can already be determined inspecting finite

prefixes of traces of TSΣ. A transition system satisfies a safety property

Psafe iff its set of finite traces does not have a bad prefix (c.f. Prop. 2.3.8).

As in the previous section we will discard parts of the net possibly exposing

divergencies when building the safety slice. Thus we aim for the preservation

of stutter-invariant safety-properties, i.e. safety properties build without

using X. Two transition systems satisfy the same stutter-invariant safety-

properties if their sets of finite paths are stutter-equivalent:

Proposition 4.3.1 Let TS and TS 2 be two transition systems with the same

set of atomic propositions, AP = AP 2. Let Psafe ⊆ (2AP)ω a stutter-invariant

safety property.

If unstutter (TracesTS ,fin(sinit))=unstutter(TracesTS2,fin(sinit2)),

then TS , sinit |= Psafe if and only if TS 2, sinit2 |= Psafe .

4.3. Safety Slicing 59

Proof We first show that TS , sinit |= Psafe implies TS 2, sinit2 |= Psafe . Let

us assume that TS , sinit |= Psafe . Let ϑ2 be a finite trace of TS 2 from

sinit2. By assumption, TS has a stutter-equivalent trace ϑ, unstutter (ϑ) =

unstutter (ϑ2). Since TS , sinit |= Psafe , ϑ is the prefix of an infinite trace ϑϑsuf

that satisfies Psafe . Since ϑ and ϑ2 are stutter-equivalent, ϑ2ϑsuf |= Psafe .

This implies that ϑ2 6∈ BadPref (Psafe). By Prop. 2.3.8 it follows that

TS 2, sinit2 |= Psafe .

It follows analogously that TS 2, sinit2 |= Psafe ⇒ TS , sinit |= ψsafe . 2

Two Petri nets satisfy the same safety properties if their (sets of) finite firing

sequences generate (sets of) stutter-equivalent marking sequences. Thus we

have now a more relaxed notion of correctness. Whereas previously a fair

firing sequence of the original net had to correspond to a maximal firing

sequence of the slice and vice versa, now the slice has only to execute a

corresponding firing sequence for every finite firing sequence of the original

net.

Building the Safety Slice The basic idea for constructing such a safety

slice is to build a slice for a set of places Crit by taking all non-reading

transitions connected to Crit and all their input places, so that we get the

exact token count on Crit . But for all other places we are more relaxed: We

iteratively take only transitions that increase the token count on places in P ′

and their input places (c.f. Def. 4.3.2).

Definition 4.3.2 (safety slice, sliceS) Let Σ be a marked Petri net and let

Crit ⊆ P be the slicing criterion. The safety slice of Σ for slicing criterion

Crit , sliceS(Σ,Crit), is the subnet generated by the following algorithm.

60 4. Slicing Petri Nets

1 generateSafetySlice(Σ,Crit){

2 T ′:= {t ∈ T | ∃p ∈ Crit : W (p, t) 6= W (t, p)} ;

3 P ′:= •T ′ ∪ Crit ;

4 Pdone := Crit ;

5 while (∃p ∈ (P ′ \ Pdone)) {

6 while (∃t ∈ (•p \ T ′) :W (p, t) < W (t, p)) {

7 P ′ := P ′ ∪ •t ;

8 T ′ := T ′ ∪ {t} ; }

9 Pdone := Pdone ∪ {p} ; }

10 return (P ′, T ′,W |(P ′,T ′),Minit|P ′) ; }

This safety slice allows to verify and falsify linear-time stutter-invariant

safety properties. We will also show that the safety slice can even be used to

falsify ∀CTL∗ and hence LTL properties using X.

Figure 4.7 illustrates the effect of generateSafetySlice. Whereas sliceS(Σ2, {s6})

does not contain the transition t4, the CTL∗ slice slice(Σ2, {s6}) includes it,

as t4 can decrease the token count on s7.

s2

t4

s1

t3

s5 t7 s7t8s6s4

s0

t0 t1

t2

t6

s3

Σ2

Σ′

2

Figure 4.7: Slicing a Petri net for safety. The original net Σ2 and its slice
Σ′

2 = slice(Σ2, {s6}).

4.3.1 Proving Safety Slice’s Properties

We first show that the safety slice preserves indeed stutter-invariant safety

properties. We have seen that it suffices to show that the sets of finite firing

sequences of Σ and Σ′ generate stutter-equivalent traces.

4.3. Safety Slicing 61

Correspondence of Firing Sequences We first show the correspond-

ence of firing sequences. We will show that for a given firing sequence σ of Σ

we can fire the projected firing sequence proj T ′(σ) on the safety slice Σ′. We

can omit transitions in T \ T ′, since they do not increase the token count of

any place in P ′, so the token count on all places will be at least as high as it

is on Σ firing σ. Further, every firing sequence of a safety slice Σ′ is a firing

sequence of Σ.

Firing Sequences, Marking Sequences, Traces We then show that

corresponding firing sequences σ and σ′ generate corresponding markings,

Mσ|Crit =M ′
σ′ |Crit . We now consider markings M of Σ and M ′ of Σ′ as cor-

respondent iff they coincide on Crit , because we assume that scope(ϕ) ⊆ Crit

(not scope(ϕ) ⊆ P ′ as before). It thus follows that two marking sequences

that are stutter-equivalent w.r.t. their submarkings on Crit represent stutter-

equivalent traces, which concludes our proof.

The second result proved is that the safety slice can be used to falsify

∀CTL∗ properties—including properties using next-time.

Note that in contrast to the previous results for slice(Σ,Crit), we now

assume that scope(ϕ) ⊆ Crit , since in a safety slice places in P ′ \ Crit can

be changed by transitions outside the slice.

Convention For the following let Crit ⊆ P be a set of places and Σ′ =

sliceS(Σ,Crit) be the safety slice of Σ. If we interpret a temporal logic

formula ϕ on a net Σ we assume that scope(ϕ) ⊆ Crit .

4.3.1.1 Preservation of Safety Properties

We start with three simple observations: A transition sequence σ of Σ gener-

ates at most as many tokens on P ′ as its projection to T ′, proj T ′(σ), because

in Σ′ a place p′ is connected to all transitions t ∈ T that can potentially

increase its token count.

As W ′ is the restriction of W to P ′ and T ′, a transition sequence in T ′

has the same effect on P ′ in Σ and Σ′.

The effect on Crit of a transition sequence σ of Σ is the same as of

proj T ′(σ), because all transitions that may change the token count on Crit

62 4. Slicing Petri Nets

are in T ′. For the following equations let σ ∈ T∞ be a transition sequence of

Σ and σ′ ∈ T ′∞ be a transition sequence of Σ′.

∀p ∈ P ′ : ∆Σ(σ, p) ≤ ∆Σ′(proj T ′(σ), p). (4.1a)

∀p ∈ P ′ : ∆Σ(σ
′, p) = ∆Σ′(σ′, p). (4.1b)

∀p ∈ Crit : ∆Σ(σ, p) = ∆Σ′(proj T ′(σ), p). (4.1c)

By the next proposition the sets of firing sequences of Σ and Σ′ corres-

pond, i.e. FsN(Minit) = FsN ′(M ′
init).

Proposition 4.3.3 Let σ be a firing sequence and M be a marking of Σ.

(i) Minit [σ〉M ⇒ ∃M ′ ∈ [M ′
init〉 :M

′
init[proj T ′(σ)〉M ′ with

M(p) ≤M ′(p), ∀p ∈ P ′.

Let σ′ be a firing sequence and M ′ a marking of Σ′.

(ii) M ′
init[σ

′〉M ′ ⇒ ∃M ∈ [Minit〉 : M
′ =M |P ′ ∧ Minit [σ

′〉M .

Proof We show Prop. 4.3.3 by induction on the length l of σ and σ′, re-

spectively. For the induction base l = 0 its enough to note that by Def. 4.3.2,

M ′
init =Minit|P ′.

l → l + 1: First we show (i). Let σt be a firing sequence of Σ of length

l + 1. By the induction hypothesis, σ′ := proj T ′(σ) is a firing sequence of

Σ′ and generates a marking M ′
σ′ with at least as many tokens on P ′ as Mσ,

Mσ(p) ≤ M ′
σ′(p), ∀p ∈ P ′. If t is an element of T ′, it follows from Mσ[t〉

that M ′
σ enables t. By Eq. 4.1a, it follows that Mσt(p) ≤ M ′

σ′t(p), ∀p ∈ P ′.

If t ∈ T \ T ′, proj T ′(σ) = proj T ′(σt) which is a firing sequence of Σ′ by the

induction hypothesis. A transition in T \ T ′ can only decrease the token

count on P ′, thus Mσt(p) ≤Mσ(p) ≤M ′
σ′(p), ∀p ∈ P ′.

For (ii) let σ′t be a firing sequence of Σ′ with length l + 1. Since M ′
σ′

enables t and by Eq. 4.1b, also Mσ′ enables t and the generated markings

coincide on P ′, Mσ′t|P ′ =M ′
σ′t. 2

The following proposition implies in combination with Prop. 4.3.3 that

the sets of finite traces of TSΣ and TSΣ′ are stutter-equivalent. It states,

4.3. Safety Slicing 63

that given two marking sequences µ, µ′ generated by corresponding firing

sequences, we can find for any finite prefix of µ′ a stutter-equivalent cor-

responding finite prefix of µ and vice versa. As we are now assuming that

scope(ϕ) ⊆ Crit , we restrict markings to Crit .

At the first glance, Prop. 4.3.4 may seem overly complicated by talking

about prefixes. But note, unstutter (M(Minit, σ)|Crit) = unstutter (M(M ′
init, σ

′)|Crit)

does not necessarily hold, since either just σ or σ′ may be maximal and hence

one marking sequence would be finite whereas the other would be infinite.

Proposition 4.3.4 Let σ ∈ T ∗ be a firing sequence of Σ such that σ′ :=

proj T ′(σ) is a firing sequence of Σ′.

(i) If µ is a finite prefix of M(Minit, σ), then there is a finite prefix µ′ of

M(M ′
init, σ

′) with unstutter (µ|Crit) = unstutter (µ′|Crit).

Let σ′ ∈ T ′∗ be a firing sequence of Σ′.

(ii) If µ′ is a finite prefix of M(M ′
init, σ

′), then there is a finite prefix µ of

M(Minit, σ
′) with unstutter (µ|Crit) = unstutter (µ′|Crit).

Proof We only prove (i), since (ii) follows analogously. So we show that

M(M ′
init, σ

′)|Crit starts with a stutter-equivalent version of µ|Crit . The proof

is by induction on the length l of µ.

First note that the initial markings Minit and M ′
init coincide on Crit and

hence for a prefix of length 1 the above holds.

l → l + 1: Let µM be a prefix of M(Minit, σ) of length l + 1. Let σµt

be the firing sequence generating µM . Let σ′
µ be the projection of σµ to

T ′, proj T ′(σµ). By the induction hypothesis M(M ′
init, σ

′
µ) has a prefix µ′

such that µ|Crit and µ′|Crit are stutter-equivalent. The case that µ|Crit and

µM |Crit are stutter-equivalent follows trivially. Otherwise, t changes the

submarking on Crit and hence t is an element of T ′. Let M ′ be the marking

generated by σ′
µt. So M(M ′

init, σ
′
µt) has a prefix that starts with µ′ and ends

with M ′, µ′µ′
2M

′. By Eq. 4.1c, M coincides with M ′ on Crit . Since µ′

reflects all changes on Crit caused by σµ, there cannot be a change on the

submarking of Crit within µ′
2. So µ′µ′

2M
′ is stutter-equivalent to µ′M ′ and

hence stutter-equivalent to µM . 2

64 4. Slicing Petri Nets

Theorem 4.3.5 (Preservation of Safety Properties) Let Σ be a Petri

net and Crit ⊆ P be a set of places. Let Σ′ be sliceS(Σ,Crit) and ϕ a

stutter-invariant linear-time safety property with scope(ϕ) ⊆ Crit .

Σ |= ϕ if and only if Σ′ |= ϕ.

Proof By Prop. 4.3.1 it is sufficient to show that unstutter (TracesTSΣ,fin(Minit)) =

unstutter (TracesTS
Σ′ ,fin(M

′
init)). Let ϑ be a finite trace of TSΣ. Let σ be a

corresponding firing sequence of Σ, i.e. σ corresponds to a path µ with

L(µ) = ϑ. By Prop. 4.3.3, σ′ = proj T ′(σ) is also a firing sequence of Σ′.

Hence it follows by Prop. 4.3.4, that there is a finite path µ′ in TS ′
Σ such

that µ′|Crit and µ|Crit are stutter-equivalent. Since scope(ϕ) ⊆ Crit , it follows

that µ′ generates a trace ϑ′ that is stutter-equivalent to ϑ.

Analogously follows that for a finite trace ϑ′ of TSΣ′ there is stutter

equivalent trace ϑ of TSΣ. 2

4.3.1.2 Falsification of ∀CTL∗

The small Petri net in Fig. 4.8 illustrates that a safety slice cannot be used

to verify liveness properties. The slice satisfies the LTL (and CTL) liveness

property ψ = AF(p3, 1) which does not hold on the original net.

t2

t1

p2 p3

p1

Figure 4.8: Liveness is not preserved by Safety Slicing. The safety slice for
{p3} is depicted within dashed borders. It satisfies AF(p3, 1) but the original
net does not.

In the following we will show that the safety slice can be used to falsify

∀CTL∗ properties. The next two propositions show that a maximal firing

sequence corresponds to the projection of a fair firing sequence. With these

results we are ready to show that a fair TSΣ simulates TSΣ′ .

Proposition 4.3.6 Let σ′
m be a maximal finite firing sequence of Σ′.

4.3. Safety Slicing 65

There is a maximal firing sequence σm of Σ that starts with σ′
m and for

which proj T ′(σm) = σ′
m holds.

Proof By Prop. 4.3.3 (ii), σ′
m is a firing sequence of Σ. Let σm be a maximal

firing sequence of Σ with σm = σ′
mσ where σ ∈ T∞. Let σ′ be the transition

sequence with σ′ = proj T ′(σm) = σ′
mproj T ′(σ). By Prop. 4.3.3 (i), σ′ is a

firing sequence of Σ′. Since σ′
m is maximal, it follows that proj T ′(σ) = ε. 2

Proposition 4.3.7 Let σ′ be a maximal firing sequence of Σ′.

There is a firing sequence σ of Σ, (i) that is fair w.r.t. T ′, (ii) that starts

with σ′ and (iii) for which proj T ′(σ) = σ′ holds.

Proof Let σ′ be a maximal firing sequence of Σ′. By Prop. 4.3.3 (ii), σ′

is a firing sequence of Σ. If σ′ is infinite, it is fair w.r.t. T ′. So let σ′ be

finite. Let σ2 ∈ (T \T ′)∞ be such that σ = σ′σ2 is a maximal firing sequence

of Σ, which exists by Prop. 4.3.6. As σ′ is maximal, M ′
σ′ does not enable

transitions of T ′ and by Eq. 4.1b, Mσ′ does not either. Transitions of σ2

cannot increase the token count of places in P ′ and hence they cannot enable

transitions in T ′. Consequently, σ is fair with respect to T ′. 2

Theorem 4.3.8 (Falsification of ∀CTL∗) Let Σ be a Petri net and Crit ⊆

P a set of places. Let Σ′ be sliceS(Σ,Crit). Let ψ be an ∀CTL∗ formula with

scope(ψ) ⊆ Crit.

If Σ |= ψ fairly w.r.t. T ′, then Σ′ |= ψ.

Proof We show that TSΣ fairly simulates TSΣ′{T ′}, which implies that if

Σ |= ψ fairly w.r.t. T ′, then Σ′ |= ψ holds.

We define the simulation relation S inspired by the construction of the

fair firing sequence in Prop. 4.3.7. The pair (M,M ′) is in S if M ′ = M |P ′

and M ′ is not a final marking, but in case M ′ is a final marking (M,M ′) is

in S, if M ′|Crit =M |Crit and M(p) ≤M ′(p), ∀p ∈ P ′.

(Minit,M
′
init) is in S because Minit|P ′ =M ′

init.

We show that all states M of TSΣ and states M ′ of TSΣ′ with (M,M ′) ∈

S satisfy (L) L(M) = L′(M ′), and (F) ∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{T ′}(M) :

(µ(i), µ′(i)) ∈ S.

66 4. Slicing Petri Nets

(L) holds, because we assume that AP ⊆ Crit × N and if (M,M ′) ∈ S,

then M |Crit =M ′|Crit holds.

Let us assume that (M0,M
′
0) ∈ S for two statesM0 ∈ [Minit〉,M

′
0 ∈ [M ′

init〉.

Let µ′ be an infinite path from M ′
0 in TSΣ′. Let σ′ be the maximal firing

sequence corresponding to µ′, that is µ′ = M(M ′
0, σ

′).

If M ′
0 is a final marking, µ′ is the infinite sequence M ′

0M
′
0... . Since

M0(p) ≤ M ′
0(p), ∀p ∈ P ′, M0 does not enable any transition in T ′. Since

transitions in T \ T ′ cannot increase the token count on P ′, it follows that

any reachable marking Mj from M0 satisfies Mj(p) ≤ M ′
0(p) and this implies

that Mj |Crit = M0|Crit , as transitions in T ′ stay disabled. So any firing se-

quence from M0 fires only transition in T \ T ′ but also does not enable any

transition in T ′ and hence is fair w.r.t. T ′.

If M ′
0 is not a final marking, M0 and M ′

0 coincide on all places in P ′,

M0|P ′ = M ′
0. By Prop. 4.3.7 there is a firing sequence σ of Σ that is fair

w.r.t. {T ′} and starts with σ′. Consequently, the same markings on P ′ are

generated by during the firing σ′ on Σ and Σ′. If σ′ is infinite, the pair

(µ(i), µ′(i)) is hence in S. So let us assume that σ′ is finite. So M ′
|σ′| is a

final marking and all succeeding markings in µ′ equal M ′
σ′ , which brings us

back to case one. 2

As for Theorem 4.2.6, the slightly weaker result holds as well: Σ′ 6|= ϕ implies

that Σ 6|= ϕ.

We summarise the results of this section: The safety slice can be used

to verify and falsify stutter-invariant linear-time safety properties of Σ (The-

orem 4.3.5). The safety slice can be used to falsify ∀CTL∗ formulas us-

ing X, which include LTL formulas. For both results it is required that

scope(ϕ) ⊆ Crit , whereas in Sect. 4.2.2 scope(ϕ) ⊆ P ′ was required.

4.4 Related Work

The slicing and other reduction approaches are relatively old research areas

and have received much attention.

4.4. Related Work 67

In this section we highlight differences and similarities to the most relev-

ant works.

4.4.1 Petri Net Slicing

In [16] C. K. Chang and H. Wang presented a first slicing algorithm on

Petri nets for testing. For a given set of communication transitions CS ,

their algorithm determines the sets of paths in the Petri net graph, called

concurrency sets, such that all paths within the same set should be executed

concurrently to allow for the execution of all transitions in CS .

Whereas the approach of Chang and Wang does not yield a reduced

net, Llorens et. al. developed an algorithm to generate a reduced Petri

net [68]. They showed how to use Petri net slicing for reachability ana-

lysis and debugging presenting a forward and backward algorithm for Petri

nets with maximal arc weight 1, as shown in Fig. 4.9. A forward slice

is computed for all initially marked places, which makes their approach a

dynamic slicing technique. They presented a second algorithm to compute

a backward slice for a slicing criterion Crit based on our CTL∗
-X slicing al-

gorithm generateSlice as presented in [91, 90]. Their (combined) slice is

defined by Σ′ = (P ′, T ′,W |(P ′,T ′),Minit|P ′) with (P ′, T ′) = forwardSlice(Σ) ∩

backwardSlice(Σ, P).

1 forwardSlice(Σ){
2 T ′ :={t ∈ T |Minit[t〉} ;
3 P ′ := {p ∈ P | Minit(p) > 0} ∪ T ′• ;
4 Tdo := {t ∈ T \ T ′ | •t ⊆ P ′} ;
5 while (Tdo 6= ∅) {
6 P ′:= P ′ ∪ T •

do ;
7 T ′:= T ′ ∪ Tdo ;
8 Tdo := {t ∈ T \ (T ′) | •t ⊆ P ′}
9 }

10 return (P ′, T ′)
11 }

1 backwardSlice(Σ, C){
2 T ′ := ∅ ;
3 P ′:= C ;
4 while (•P ′ 6= T ′) {
5 T ′ := T ′ ∪ •P ′ ;
6 P ′:= P ′ ∪ •T ′ ;
7 }
8 return (P ′, T ′)
9 }

Figure 4.9: Llorens’ forward and backward slice according to [68]

68 4. Slicing Petri Nets

Obviously the forward slice can also be used as a preprocessing step to

model checking and removes dead transitions only. Although they defined

their (combined) slice to find erroneous submarkings, their slice was con-

sidered correct iff for every firing sequence σ of the original net Σ it holds

that the restriction σ′ = proj T ′(σ) can be performed on Σ′ and for every

place p′ of the slice it holds that firing σ′ generates at least as many tokens

as σ. We infer that their slice allows falsification but no verification of lower

bounds, and their slice allows verification and falsification of upper bounds,

but no decision whether a certain submarking is reachable.

The principal difference between the backwardSlice of Llorens et. al.

and our CTL∗
-X slicing algorithm is that backwardSlice includes only those

transitions that increase the token count on slice places whereas CTL∗
-X slicing

also includes transitions that decrease the token count. Now our safety slicing

algorithm combines the two approaches. It uses CTL∗
-X slicing on Crit and a

refined version of backwardSlice on P ′ \ Crit . By exploiting read arcs and

considering arc weights, line 5 in the backwardSlice algorithm (c.f. Fig.

4.9) can be replaced by

T ′:= T ′ ∪ {t | t ∈ •P ′ ∧ ∃p ∈ P ′ : W (t, p) > W (p, t)};

Now the backward algorithm adds new transitions only if they might

produce additional tokens on interesting places. This principle is used in the

safety slicing algorithm of Def. 4.3.2.

Let us compare the three algorithms—the algorithm of Llorens for ex-

amining bounds, our algorithm preserving CTL∗
-X properties and our al-

gorithm preserving safety properties. The idea of forward slicing can be

used for our algorithms as well. It can be seen as a preprocessing step ap-

plied before the backward slicing. The idea to use read arcs and to extend

the algorithm to weighted Petri nets is also applicable to the algorithm of

Llorens et al. So let us compare the algorithms for backward slicing consider-

ing the version of Llorens et al. extended for weighted Petri nets as discussed

above. Our algorithm for slicing of CTL∗
-X properties is the least aggressive

but most conservative algorithm, that is its slices are bigger or as big as

slices generated by the other algorithms but preserves the most properties.

The algorithm for slicing of safety properties is more aggressive than that

4.4. Related Work 69

preserving CTL∗
-X but less aggressive than the algorithm preserving bounds.

The algorithm of Llorens is the most aggressive algorithm and is also the

least conservative. Note, that all three variants produce the same results on

strongly-connected nets.

4.4.2 Slicing for Verification

In the context of the Bandera project [7]—a project for building model check-

ing tools for Java programs—Hattcliff et al. showed in [53, 52] that a program

P and its program slice P ′ either both satisfy an LTL-X formula ψ or do not

satisfy LTL-X formula ψ given the slicing criterion is the set of atomic pro-

positions of ψ. Since they focus on verification of a Java program executed

on a real computer, they assume that no process has to starve.

Brückner developed in his dissertation [14] a method for slicing CSP-OZ-

DC specifications.

He showed that slicing preserves formulas of state/event interval logic SE-

IL. To derive this result he assumed that the slice and the original system

satisfy an unconditional fairness constraint that guarantees some progress

within the slice.

For our approach only the original system has to satisfy a weak fairness

assumption, which allows for model checking the reduced net without fairness

constraints.

Clarke et. al presented a language independent slicing algorithm applied

on the hardware description language VHDL [21]. They illustrated the state

space reductions that can be achieved by applying slicing to some hardware

circuits and planned to develop a theoretical basis for slicing w.r.t CTL spe-

cifications.

Milett and Teitelbaum discussed in [74] applications of their slicing ap-

proach for Promela, the specification language of the SPIN Model Checker

[98]. They stated that slicing can be useful for model checking by helping

understand the system behaviour but does not preserve global properties like

deadlocks. The SPIN tool applies program slicing for so-called selective data

hiding [48] to identify statements that can be omitted from the model. Con-

70 4. Slicing Petri Nets

ditions statements can be mapped to true and other statements to the empty

statement skip. The method preserves LTL properties. For the preservation

of liveness no execution cycle can be added or skipped.

The model checker NuSMV [78] also implements slicing—or rather COI.

NuSMV allows for the representation of synchronous and asynchronous finite

state systems.

Slicing Petri Net Encodings The above works provide a way to slice

Petri nets: In principal it is possible to encode a Petri net into a Java pro-

gram. Petri nets can be encoded into Promela [42] and the PEP tool [84]

already provides a mechanism to encode Petri nets into the input language

of NuSMV.

We examined the slicing effects using SPIN and NuSMV. Their slicing

implementations do not yield good results. SPIN’s slicing algorithm [48]

truncates only the very chain ends. NuSMV’s COI implementation is not

able to reduce a Petri net at all, because NuSMV is a tool focusing on syn-

chronous systems [8] and the asynchronous behaviour of a Petri net cannot

be adequately encoded to allow effective slicing. In both cases the slicing

algorithms were neither able to use reading transitions to build the slice as

in slicing algorithm of Def. 4.2.1 nor arc weight as in Def. 4.3.2.

This underlines why tailoring slicing to Petri nets is important. When

using these algorithms for more powerful models, the characteristics of Petri

nets cannot be exploited like e.g. reading transitions.

4.4.3 Related Approaches

In the following we compare the theoretical concepts of related approaches

and our slicing approach. In Chap. 6 we will also examine these empirically.

4.4.3.1 Petri Net Reductions

Petri net slicing is a structural reduction technique (cf. Chap. 3), as slicing

constructs a smaller net based on the model structure, i.e. the Petri net

graph. As outlined in Chap. 3 there are only a few Petri net reductions

4.4. Related Work 71

that preserve temporal properties. Pre- and postagglomeration are two very

powerful structural reduction rules and probably also the most established

[9, 85]. In the sequel we contrast the LTL-X preserving pre- and postagglom-

eration on the one hand and the CTL∗
-X preserving slicing algorithm on the

other. Similar aspects are relevant in a comparison between agglomerations

and safety slicing.

As we have seen in Sect. 3.2.2, pre- and postagglomerations merge two

transition sets H := •p and F := p• around a place p into a new one, HF .

Applying these rules changes the net structure. So when model checking the

reduced net a counterexample needs a translation first to be executable on

the original net. Whereas slicing preserves the net structure by taking every

place and transition the places in scope(ϕ) causally depends on, agglomer-

ations can also be applied in between to shorten causal dependencies. But

agglomerations are not applicable in the following scenarios: (1) Transition

sets H := •p and F := p• are not agglomerateable, if place p is marked.

(2) Given a place p with more than one input and output transition, if any

transition in F := p• has an input place other than p, H := •p is not postag-

glomerateable. (3) Given a place p with •p = {h}, h ∈ T , if h has an output

place other than p, F := p• is not preagglomerateable and (4) if other trans-

itions consume tokens from the input places of h, h is not agglomerateable

at all. It is easy to build a net that exposes a lot of these constructs but is

nicely sliceable for a given property.

An important conceptual difference is that agglomerations are not able

to eliminate infinite behaviour, as follows from the proof in [85]. Slicing may

eliminate infinite behaviour, which allows additional reductions and neces-

sitates the fairness assumption to preserve liveness properties.

4.4.3.2 Partial Order Reductions

Partial order reductions have already been introduced in Sect. 3.3.1. The

key idea of partial order reductions is to reduce the state space by taking one

interleaving as representative of a set of interleavings that represent the same

concurrent behaviour. Partial order methods reduce the state space whereas

72 4. Slicing Petri Nets

slicing reduces the model description. But both approaches use a notion

of independence as basis of their reductions. Our first slicing algorithm for

instance includes all places and transitions the places in scope(ϕ) causally

dependent on. Partial order methods aim for an efficient way to structurally

define a sufficient condition to guarantee dynamic independence, i.e. inde-

pendence of transitions in a state. Therefrom usually arises a greater degree

of independence. Slicing on the other hand has to capture dependencies for

every (structurally) possible behaviour. Slicing trims causal dependencies,

so that some transitions do not appear at all in the reduced state space.

Only by trimming causal dependencies, slicing also reduces the concurrent

behaviours. Partial order reductions do not aim to trim causal dependencies.

Valmari states in [102], that every Petri net transition has an occurrence as

(label of) a state transition in a state space reduced by stubborn sets to pre-

serve safety properties. So slicing can complement partial order reductions.

4.4.3.3 Summary

Our slicing approach conceptually complements partial order reductions and

pre- and postagglomeration. All three methods may reduce concurrent beha-

viours. Pre- and postagglomerations as well as slicing pare causal dependen-

cies. It has been highlighted that also their impact may be complementary.

An empirical study on these aspects is presented in Chap. 6.

4.5 Future Work

We presented two flavours of slicing, CTL∗
-X slicing and safety slicing. Whereas

CTL∗
-X slicing preserves all properties expressible as CTL∗

-X formulas, safety

slicing allows greater reductions but preserves stutter-invariant safety prop-

erties only. Like we have done for safety properties, it seems worthwhile to

develop refined slicing algorithms for certain (classes of) properties. A good

starting point seems antecedent slicing [108, 109], a form of conditional sli-

cing where information about system input is encoded as antecedent of an

LTL formula. If we study a formula of the form ψ := G (ϕ1 ⇒ Fϕ2), we only

4.6. Conclusions 73

need to include transitions that make the antecedent ϕ1 true, we do not need

to include transitions that are fired when ϕ1 cannot become true [109]. We

conjecture that in this setting a safety slicing like algorithm can be used for

the antecedent places, scope(ϕ1), whereas CTL∗
-X slicing has to be applied to

places in scope(ϕ2). Since both, safety slicing and CTL∗
-X slicing, are not able

to reduce strongly connected nets, it seems worthwhile to explore whether

the antecedent can be used to eliminate transitions when their firing implies

that the antecedent cannot become true.

4.6 Conclusions

In this chapter we introduced two slicing algorithms to reduce the size of a

Petri net in order to alleviate the state space explosion problem for model

checking Petri nets. We formally proved that CTL∗
-X slicing allows falsific-

ation and verification of a CTL∗ formula given scope(ψ) refers to the slice

places only and if we can assume fairness w.r.t. T ′ for the original net. We

also showed that ∀CTL∗ formulas can be falsified by slice(Σ,Crit). Safety

slicing promises greater reductions but sacrifices the preservation of liveness

properties. A safety slice sliceS(Σ,Crit) satisfies the same stutter-invariant

safety properties ϕ as the original net, given that ϕ refers to the places of the

slicing criterion Crit only. A safety slice can also be used to falsify ∀CTL∗

formulas using next-time.

We outlined related work, in particular slicing approaches, and discussed

competitive (and complementary) approaches. An empirical evaluation of

the two slicing algorithms will be given in Chap. 6.

74 4. Slicing Petri Nets

Chapter 5

Cutvertex Reductions

Contents

5.1 Introduction . 76

5.2 The Reduction Rules 78

5.3 Preservation of Temporal Properties 84

5.3.1 Outline and Common Results 85

5.3.2 Borrower Reduction 91

5.3.3 Consumer Reduction 104

5.3.4 Producer Reduction 108

5.3.5 Dead End Reduction 113

5.3.6 Unreliable Producer Reduction 117

5.3.7 Producer-Consumer Reduction 125

5.3.8 Summary . 128

5.4 Necessity and Sufficiency 129

5.5 Decomposing Monolithic Petri Nets 133

5.5.1 Articulation Points and Contact Places 134

5.5.2 1-Safeness of Contact Places 137

5.5.3 Applying Reductions and DFS 143

5.6 Cost-Benefit Analysis 144

75

76 5. Cutvertex Reductions

5.7 Optimisations . 146

5.7.1 Micro Reductions 146

5.7.2 Pre-/Postset Optimisation 149

5.7.3 Order of Formulas 150

5.7.4 Parallel Model Checking 151

5.8 Related Work . 151

5.9 Future Work . 154

5.10 Conclusion . 156

5.1 Introduction

Compositional methods try to bypass the combinatorial blow-up of the state

space by examining the system componentwise. Compositional reduction

techniques generate a reduced state space for each component and compose

the component state spaces to a global reduced state space, on which the

verification task is performed. Compositional verification methods divide

the verification task into local verification tasks on the system components.

The global result is then derived from the results of the local verifications. At

both approaches a similar problem arises: A component as part of a global

system is constrained by its surrounding environment. When a component

is examined in isolation, usually an overapproximation of the environment is

assumed and hence the component may expose behaviour it does not have

within the global system. For compositional reduction techniques this means

that the state space of a single component may in isolation be bigger than the

state space of the overall system; for compositional verification techniques,

the spurious behaviour may imply false local verification results.

In this chapter we present a decomposition approach for monolithic Petri

nets that generates very narrow interfaces to the environment and therefore

reduces the risk of spurious behaviour. For a given LTL-X property we de-

compose a net Σ into a kernel net Σk and environment nets Σe1 , ...,Σen such

that the kernel subnet contains all places mentioned by the LTL-X property

5.1. Introduction 77

ϕ and shares with an environment net a single 1-safe place q only. If the set

p1

qp2

kernel environment

Figure 5.1: Decomposition into kernel and environment.

of 1-safe places of Σ is given, the decomposition of a monolithic Petri net can

be determined in linear time. Hence we can decompose 1-safe nets in linear

time.

Based on this decomposition, we minimise the environments. Every en-

vironment net Σei is replaced by a small summary net S(Σei), which captures

Σei ’s influence on the kernel. Five fixed and distinct summary nets of at most

four nodes (=places+transitions) suffice to describe the influence of any en-

vironment net. To determine the appropriate summary net S(Σei), Σei is

model checked independently to characterise its influence on the kernel. For

this up to three out of five local and fixed LTL-X properties are checked on

Σei .

q1 q2

Σe1 Σe2kernel

check & replace Σe1

check & replace Σe2

equivalent w.r.t. LTL-X

q1 q2

S(Σe1) S(Σe2)kernel

Figure 5.2: Replacement of environment nets.

We establish whether ϕ holds on Σ by model checking whether ϕ holds

on the reduced net. The characterisation of environment nets leads straight

forwardly to structural reduction rules for the smallest environment nets and

to structural optimisations to accelerate the identification of the appropriate

summary net.

We further point out criteria when spurious behaviour is possible and how

it can be identified early on.

78 5. Cutvertex Reductions

Outline In Sect. 5.2 we introduce six reduction rules that define how Σei

in Σ is replaced by the summary net S(Σei). Provided we can assume fairness

w.r.t. Tk (the kernel’s transitions) on Σ, all reductions guarantee that the

reduced net satisfies an LTL-X property ϕ if and only if Σ satisfies ϕ. For

some reduction rules even stronger results haven been shown. The detailed

correctness results are given together with their proofs in Sect. 5.3. We will

show in Sect. 5.4 that our set of reductions is sufficient to reduce any environ-

ment and that five of six reductions are necessary to reduce any environment.

The Dead End rule is not necessary—though it is useful. Section 5.5 illus-

trates a decomposition algorithm and discusses the computational expense

of determining a decomposition. In Sect. 5.6 we discuss costs and benefits

for cutvertex reductions. We present optimisations in Sect. 5.7. Before we

conclude in Sect. 5.10, we survey related work in Sect. 5.8 and outline ideas

for future work in Sect. 5.9.

5.2 The Reduction Rules

In the following we show how to reduce a net Σ composed of a kernel net

Σk and an environment net Σe. An algorithm to determine an appropriate

decomposition is presented in Sect. 5.5.

All of our reductions preserve LTL-X properties and some reductions even

CTL∗
-X. Therefore the following definitions refer more generally to CTL∗

-X

formulas.

Reducible Nets Any subnet Σe of Σ that is free of places the considered

property refers to and shares just a 1-safe place q with the remainder is

reducible by our approach. We will show how such an environment net can

be summarised by a simple net S(Σe) and that the environment net can be

examined independently to determine its summary S(Σe). Before we show

how to reduce a Σ that is composed of Σk and Σe, we formally define how

these two nets compose Σ. Recall that scope(ϕ) denotes the set of places

referred to by a temporal logic formula ϕ.

5.2. The Reduction Rules 79

Definition 5.2.1 (reducible, kernel, environment, contact place) Let

Σ be a marked Petri net and ϕ be an CTL∗
-X

formula.

Σ is reducible for ϕ by Ne iff

there is a 1-safe place q ∈ P and a subnet Nk, such that

• N = (Pk ⊎ (Pe \ {q}), Tk ⊎ Te,W |(Pk,Tk) ⊎W |(Pe,Te)),

• scope(ϕ) ⊆ (Pk \ {q}) and

• q ∈ Pk ∩ Pe.

Σ is reducible by Σe = (Ne,Minit|Pe
) iff Σ is reducible by Ne. We call Σk =

(Nk,Minit|Pk
) the kernel subnet and Σe the environment subnet. A place q is

the contact place of kernel and environment, if q is the single common place

of kernel and environment.

So Σ is reducible by an environment net Ne iff Σ is composed of an environ-

ment netNe and a kernel Nk, such that (i) ϕ does not refer to the environment

Ne and (ii) kernel Nk and environment Ne have only a 1-safe place q in com-

mon, so that the transitions of kernel and environment are disjoint and they

have neither input- nor output places in the other net with exception of q. If

we would remove q (and connected arcs), Ne and Nk will not be connected

anymore. Figure 5.1 shows an example of a reducible net that is decomposed

into kernel and environment subnet for scope(ϕ) = {p1, p2}.

Convention In the sequel let ϕ be an CTL∗
-X formula, let Σk = (Nk,Minit|Pk

)

be the kernel and Σe = (Ne,Minit|Pe
) be the environment subnet of a net Σ,

such that Σ is reducible by Σe according to Def. 5.2.1. Let q be the contact

place shared by Σk and Σe.

Next we first intuitively, then formally introduce the six reduction rules

to reduce Σ by Σe. The reductions are applied to example nets in Fig. 5.3.

We assume that Σ is fair w.r.t. Tk. This guarantees progress on Σk and is a

prerequisite for preserving liveness properties and hence for preserving LTL-X

or CTL-X as we have demonstrated in Sect. 4.2.1 for the slicing approach. To

characterise how Σe may affect the given property ϕ we study Σe’s effect on

the 1-safe place q at the two scenarios, Σe with a token on q and Σe without

a token on q.

80 5. Cutvertex Reductions

p1

q

p3

Nk

Ne

Σ
Borrower

Σq=1
e |= AFG (q, 1)

p1

q

p3

Σ b Σe

p1

q

p3

t1 t2

t3 t4

Nk

Ne

Σ
Consumer

Σq=1
e 6|= AFG (q, 1)

p1

tr

q

p3

Σ c Σe

p1 q p3

Nk

Ne

Σ

Producer

Σq=0
e |= AFG (q, 1)

p1 q p3

Σ p Σe

p1 q p3

Nk

Ne

Σ

Dead-End

Σq=0
e |= AG (q, 0)

p1 p3

Σ d Σe

p1 q p3

Nk

Ne
Unreliable Producer

Σq=0
e |=AG((q, 1) ⇒FG(q, 1))

Σq=0
e 6|= AFG(q, 1), Σq=0

e 6|= AG(q, 0)

p1

tc
pp

tp

q p3

Σ up Σe

p1 q p3

Nk

Ne
Producer-Consumer

Σq=0
e 6|= AG ((q, 1) ⇒ FG (q, 1))

Σq=0
e 6|= AG (q, 0)

p1

tr

q p3

Σ pc Σe

Figure 5.3: The reductions

5.2. The Reduction Rules 81

Notation We denote Σe with a token on q as Σe
q=1= (Ne,M

q=1
init |Pe

), and

Σe without a token on q is denoted as Σe
q=0= (Ne,M

q=0
init |Pe

).

Environments and Reductions An environment subnet Σe is called a

Borrower if it may take a token from q—one or several times—but eventually

permanently marks q. In other words, given q gets a token, Σe can only

temporarily borrow the token. As we study stuttering-invariant properties,

which do not count execution steps [65], Borrower subnets can be omitted

without changing the behaviour on the kernel.

An environment subnet Σe is a Consumer, if Σe may not return the token

from q, i.e. Σe
q=1 has at least one execution that does not eventually per-

manently mark q. Due to our weak fairness notion, progress in Σk is only

guaranteed, if a transition is eventually permanently enabled, i.e. its preset is

permanently (sufficiently) marked. So “permanently borrowing”, i.e. taking

without eventually returning the token permanently, is considered equivalent

to (permanently) removing the token. For an example of a Consumer net

that can permanently borrow see Fig. 5.3. The Consumer environment with

a token on q, Σe
q=1, does not eventually permanently mark q. So after firing

t3 on Σ, t4 might never be fired, since the token may get lost in Σe by firing

infinitely often t2t1. Therefore a Consumer net can be replaced by just one

transition that may remove the token from q, just like the Consumer may

remove the token from q or keep the token for ever.

Σe is called a Producer environment, if Σe
q=0 eventually permanently

marks the initially unmarked q. In case of a Producer environment, it is

enough to place a token on q, as stuttering-invariant properties do not count

the number of steps to generate the token.

We apply a Dead End reduction, if the place q is never marked in Σ. In

case of a Dead End environment we can omit Σe and also the transitions

of Σk that are connected to it. Transitions in •q are never fired because

otherwise q would be marked and since q is never marked, transitions in

q• are never enabled. The Dead End reduction is not necessary to be able

to reduce environments, as we will see in Sect. 5.4. But as the Dead End

reduction usually indicates a design error within the net—there usually is

82 5. Cutvertex Reductions

no reason to include dead transitions—it is a useful reduction rule to have.

Note also, that the Dead End reduction is the only reduction changing the

kernel as well.

Σe is an Unreliable Producer, if Σe
q=0 eventually permanently marks q at

some executions and never marks q at the others. An Unreliable Producer

subnet is replaced by a net that can do the same, i.e. produce a token on q

or never mark q.

An environment subnet Σe is called a Producer-Consumer, if some exe-

cutions of Σe
q=0 generate a token on q but do not eventually permanently

mark q.

We now formally define the reduction rules motivated above.

Definition 5.2.2 (Reduction Rules) Let Σ be reducible by an environ-

ment Σe for a CTL∗
-X

formula ϕ. Let Σk = (Nk,Minit,k) be the kernel and q

be the 1-safe contact place, q ∈ (Pk ∩ Pe).

Σe is a Borrower

iff q is a 1-safe place of Σe
q=1 and Σe

q=1 |= AFG(q, 1).

The Borrower-reduced of Σ by Σe, Σ
b Σe, is the net Σk.

Σe is a Consumer

iff q is a 1-safe place of Σe
q=1 and Σe

q=1 6|= AFG(q, 1).

The Consumer-reduced of Σ by Σe, Σ
c Σe, is the net (Pk, Tk ⊎ {tr},Wk ⊎

{(q, tr) 7→ 1},Minit,k).

Σe is a Dead End

iff q is not 1-safe in Σe
q=1 and Σe

q=0 |= AG(q, 0).

The Dead End-reduced of Σ by Σe, Σ
d Σe, is (P ′, T ′,W |(P ′,T ′),Minit,k|P ′)

with P ′ = Pk \ {q} and T ′ = Tk \ (
•q ∪ q•).

Σe is a Producer

iff Σe
q=0 |= AFG(q, 1).

The Producer-reduced of Σ by Σe, Σ
p Σe, is (Pk, Tk,Wk,M

q=1
init,k).

5.2. The Reduction Rules 83

Σe is an Unreliable Producer

iff Σe
q=0 6|= AG(q, 0), Σe

q=0 6|= AFG(q, 1) and Σe
q=0 |= AG((q, 1) ⇒ FG(q, 1)).

The Unreliable Producer-reduced of Σ by Σe, Σ
up Σe, is the net Σ up Σe =

(Pk⊎{pp}, Tk⊎{tc, tp},Wk⊎{(pp, tp) 7→ 1, (tp, q) 7→ 1,), (pp, tc) 7→ 1},Minit,k⊎

{pp 7→ 1}).

Σe is a Producer-Consumer

iff Σe
q=0 6|= AG(q, 0) and Σe

q=0 6|= AG((q, 1) ⇒ FG(q, 1)).

The Producer-Consumer-reduced of Σ by Σe, Σ
pc Σe, is the net Σ pc Σe =

(Pk, Tk ⊎ {tr},Wk ⊎ {(q, tr) 7→ 1},M q=1
init,k).

Each of these reduction rules preserves LTL-X, i.e., if ϕ does not refer

to the environment, Σ satisfies an LTL-X property ϕ fairly w.r.t. Tk if and

only if its reduced net Σ′ satisfies ϕ. For some reduction rules even stronger

results hold, as will be shown in the following section.

Figure 5.4 illustrates how the appropriate reduction rule to replace an

environment net Σe can be determined.

Σq=0

e |= AG (q, 0)?

Is q 1-safe in Σq=1

e ? Σq=0

e |= AFG (q, 1) ?

Σq=1

e |= AFG (q, 1)? Dead End Producer

ConsumerBorrower

Σq=0

e |= AG ((q, 1) ⇒ FG (q, 1))?

Unreliable Producer Producer-Consumer

yes no

yes no yes no

noyes yes no

Figure 5.4: Decision tree with rule preconditions. Leafs of the decision tree
classify Σe.

1-Safeness and Spurious Behaviour To identify the appropriate sum-

mary S(Σe) for an environment Σe we examine Σe at the two scenarios, Σe

with a token on q and Σe without a token on q. If q is never marked within

84 5. Cutvertex Reductions

Σ, placing a token on q might enable spurious behaviour. We hence only risk

to encounter spurious behaviour for the non-producing environments. Σe
q=1

may even become unbounded, whereas Σe within Σ is bounded. During the

evaluation of this method we never encountered such a case, though it is

theoretically possible.

To avoid examining a possibly enlarged state space of Σe
q=1, additional

knowledge about Σ can be used to identify spurious behaviour early on.

For instance knowing that place p has bound b(p), spurious behaviour is

encountered if Σe
q=1 has a marking with more than b(p) tokens on p. In

this case we can apply the Dead End reduction. Also, if earlier simulation

showed that q can be marked, Σe is consequently not a Dead End. So one

could only use contact places that are known to get marked, to prevent the

risk of encountering spurious behaviour.

Nevertheless, all reductions guarantee that q remains 1-safe in the reduced

net. And the state space of a reduced net is never bigger than the state space

of the original net.

The Dead End rule is not necessary to preserve LTL-X. As we will see in

Sect. 5.3.5, we could as well replace a Dead End environment by a Borrower

or Consumer summary. But it is convenient to single out Dead Ends, since a

Dead End usually indicates a design error, as it implies that q in Σ is never

marked and the transitions in •q ∪ q• are dead.

Summary To summarise, so far we have defined when a net Σ is reducible

and six reduction rules have been introduced to replace environments Σe by

their summaries S(Σe). We discussed scenarios where cutvertex reductions

cause an overhead and sketched countermeasures.

5.3 Preservation of Temporal Properties

In this section we will examine in detail which temporal properties are pre-

served by the reduction rules. All reductions preserve LTL-X and as we will

see the Borrower, Producer and Dead End reductions preserve even CTL∗
-X.

5.3. Preservation of Temporal Properties 85

5.3.1 Outline and Common Results

The reduction rule proofs follow the same general outline as the slicing proofs:

To proof that the reduced net Σ′ preserves satisfiability of a CTL∗
-X or LTL-X

formula ϕ, we first show that any firing sequence of Σ that is fair w.r.t. Tk

corresponds to a maximal firing sequence of the reduced net Σ′. Also, any

maximal firing sequence σ′ of Σ′ corresponds to a firing sequence of Σ that

is fair w.r.t. Tk.
1 We show that corresponding firing sequences generate

corresponding markings.

Firing sequences σ of Σ and σ′ of Σ′ correspond if σ and σ′ fire the same

transitions of Tk in the same order. Two markings M of Σ and M ′ of Σ′

correspond if they coincide on the places in Pk \ {q}, M |Pk\{q} =M ′|Pk\{q}.

To show that a reduction preserves CTL∗
-X properties, a bisimulation rela-

tion is defined based on the correspondence of firing sequences on Σ and Σ′.

To show that LTL-X properties are preserved we show that marking sequences

of corresponding firing sequences satisfy the same LTL-X formulas.

Some reduction rules also allow falsification of ∀CTL∗ formulas using X.

Therefore we need a stronger, that is stepwise, correspondence between firing

sequences. We construct for every firing sequence σ′ of Σ′ a corresponding

fair firing sequence σ of Σ such that σ mimics σ′ step by step. So when σ′

fires a transition in Tk, σ fires a transition in Tk, and when σ′ fires a transition

in T ′ \Tk, σ fires a transition in Te. We then show that Σ fairly simulates Σ′.

We prove every reduction rule separately, though we make use of earlier

results established at other reductions. Since any two rules have distinct

preconditions, we strengthen our assumptions step by step to finally match

the full precondition. In a rule’s proof, we highlight the assumptions in

framed boxes heading the inferred results.

Convention As in the previous sections we denote the original net as

Σ = (N,Minit) and assume that Σ is reducible by an environment net Σe =

(Ne,Minit|Pe
) and further that Σe shares only the place q with the kernel

Σk = (Pk,Minit|Pk
). Σ′ refers to the reduced net.

1For some rules we can even show that every σ′ has a corresponding firing sequence σ

that is fair w.r.t. Tk and Te.

86 5. Cutvertex Reductions

Fairness Rules out Divergencies As discussed in Sect. 4.2.1 for slicing,

we also use here fairness to rule out divergencies outside of the kernel. This

might seem counterintuitive, as the reduction rules characterise the behaviour

of the environment. But the rules’ precondition only constrain behaviour

w.r.t. the contact place. Let us consider the example of a Borrower reduction

in Fig. 5.5. The place q is 1-safe in Σ and Σe
q=1, and Σe

q=1 |= AFG(q, 1), so

Σe is a Borrower indeed. The reduced net satisfies the LTL-X property ϕ =

AF(p3, 1) but the original net does not, because after firing t1 the transition

tω could be fired infinitely often retaining the token on q. Fairness w.r.t Tk

rules out σ = t1tωtω... as being unfair, and Σ |= ϕ fairly w.r.t. {Tk} holds.

tω

t1p1

q

p3

Nk

Ne

Σ

p1

q

p3

Σ b Σe

Figure 5.5: proj Tk(FsN,max(Minit)) 6⊆ FsN ′,max(M
′
init). σ = t1tωtω... is a max-

imal firing sequence of Σ but proj Tk(σ) = t1 is not maximal on Σ b Σe.

5.3.1.1 Common Results

We now give some results that are valid for all six reductions and will be

used throughout the rest of this section. Most of the results presented here

are straightforward but nevertheless necessary for the formal proof.

The token count on Pk\{q} is only affected by transitions in Tk (Eq. 5.1a)

and analogously the token count on Pe \ {q} is only affected by transitions

in Te (Eq. 5.1b). For the following equations let σ ∈ T ∗ and let σ′ ∈ T ′∗ be

a transition sequence with proj Tk(σ) = proj Tk(σ
′).

∀p ∈ (Pk \ {q}) : ∆(σ, p) = ∆(proj Tk(σ), p) = ∆(σ′, p). (5.1a)

∀p ∈ (Pe \ {q}) : ∆(σ, p) = ∆(proj Te(σ), p). (5.1b)

The Eq. 5.1a holds, since proj Tk(σ) omits transitions of σ in Te only and

these do not have input or output places in Pk\{q}. As the newly introduced

5.3. Preservation of Temporal Properties 87

transitions of σ′ in T ′ \ Tk do not have input or output places in Pk \ {q} (q

is the only contact), σ′ affects the token count on places in Pk \ {q} in the

same way as proj Tk(σ). Equation 5.1b follows analogously.

If we have two subnets Σ1 and Σ2 of Σ with only one place in common,

it depends on the temporal logic formula ϕ which one will be called kernel.

The decomposition itself is symmetrical. The next proposition abstracts now

from the roles of kernel and environment, and studies only the two subnets.

A firing sequence from marking M on the original net Σ firing only trans-

itions of one subnet Σi, i ∈ {e, k}, is also a firing sequence of Σi from marking

M |Pi
. Also, a firing sequence from Mi on subnet Σi is also a firing sequence

of Σ from any marking M that coincides with Mi on Pi.

Proposition 5.3.1 Let Σ̃ be either Σe or Σk. Let σ̃ ∈ T̃∞ be a transition

sequence. Let M ∈ N
|P | be a marking of Σ, and M̃ ∈ N

|P̃ | a marking of Σ̃.

(i) If M [σ̃〉Σ and M |P̃ = M̃ , then M̃ [σ̃〉Σ̃ , and

(ii) If M̃ [σ̃〉Σ̃ and M |P̃ = M̃ , then M [σ̃〉Σ .

Proof Every t ∈ T̃ has the same input and output places in Σ and Σ̃. Thus

a transition sequence σ̃ ∈ T̃∞ is either a firing sequence of both Σ and Σ̃ or

cannot be fired on either of them. 2

As direct consequence follows that a k-bounded place in Σ is also k-

bounded in kernel and environment subnets.

Proposition 5.3.2 Let Σ̃ be either Σe or Σk.

If p is a k-bounded place of Σ, then p is a k-bounded place of Σ̃ and of

Σ̃q=0.

Proof Suppose p is not k-bounded in Σ̃. Hence there is a firing sequence σ̃

with Minit|P̃ [σ̃〉M̃ and M̃(q) > k. By Prop. 5.3.1, σ̃ is a firing sequence of Σ.

But then p is not k-bounded in Σ. Analogously follows that p is k-bounded

in Σ̃q=0, since if σ̃ is a firing sequence of Σ̃q=0, then also of Σ. 2

The next three propositions are auxiliaries used for each reduction rule.

As outlined, we show that (i) every maximal firing sequence of reduced net

88 5. Cutvertex Reductions

Σ′ corresponds to a fair firing sequence of the original net Σ, and (ii) every

fair firing sequence of Σ corresponds to a maximal firing sequence of Σ′. To

prove that this correspondence holds, we use that the summary net S(Σe) as

defined by our reductions equivalently captures the effect of maximal firing

sequences of Σe on q.

For (i) we show that a maximal firing sequence of σ′ can be executed on

Σ by emulating the reduction’s effect by behaviour of Σe. For (ii) we show

that a (certain) fair firing sequence σ of Σ contains a maximal firing sequence

σe of Σe and the effect of σe is emulated by the reduction. These proofs are

done by contradiction. They assume that a maximal firing sequence does

not correspond to a fair firing sequence and then derive a contradiction. Of

course the behaviour is only equivalent w.r.t. the interface place q and the

contradiction proofs need only to refer to this behaviour. Before we can argue

about maximality on Σe, we first have to show that the projection of a firing

sequence σ of Σ to Te is a firing sequence of Σ.

Proposition 5.3.3 Let Σ̃ be either Σe
q=1, Σe

q=0, Σq=0
k or Σq=1

k .

If σ is a firing sequence of Σ but σ̃ = proj T̃ (σ) is not a firing sequence of

Σ̃, then there are prefixes σp of σ and σ̃p of σ̃ such that proj T̃ (σp) = σ̃p and

Mσp(q) > M̃σ̃p(q) holds.

Proof If σ is a firing sequence of Σ but σ̃ = proj T̃ (σ) is not a firing sequence

of Σ̃, then σ̃ has a fireable prefix σ̃p, which might be empty, a transition t and

a suffix σ̃s such that σ̃ = σ̃ptσ̃s, so that t is the first disabled transition of σ̃.

Let σp be the prefix of σ corresponding to σ̃p, proj T̃ (σp) = σ̃p. By the Effect

Equations 5.1a and 5.1b, respectively, it follows that Mσp |P̃\{q} =Mσ̃p |P̃\{q}.

So t has q as an input place and Mσp(q) > Mσ̃p(q). 2

Proposition 5.3.4 Let Σ̃ be either Σe
q=1, Σe

q=0, Σq=0
k or Σq=1

k . Let σ be a

firing sequence of Σ and let σ̃ be a firing sequence of Σ̃ with proj T̃ (σ) = σ̃.

(i) If q is 1-safe in Σ̃ and σ is fair w.r.t. T̃ but σ̃ is not maximal, then

σ̃ is finite and M̃σ̃(q) = 1 and σ does not eventually permanently mark

q.

5.3. Preservation of Temporal Properties 89

(ii) If σ̃ is maximal but σ is not fair w.r.t. T̃ , then

σ̃ is finite and M̃σ̃(q) = 0 and σ eventually permanently marks q.

Proof (i) If σ̃ is not maximal, then it has to be finite and there is a transition

t̃ ∈ T̃ that is enabled after firing σ̃, M̃σ̃[t̃〉. If also σ is fair w.r.t. T̃ , it follows

that σ does not eventually permanently enable t̃. Hence there is a finite prefix

σp of σ with proj T̃ (σp) = σ̃ and Mσp does not enable t̃. By Eq. 5.1a or 5.1b,

respectively, it follows that Mσp |P̃\{q} = M̃σ̃|P̃\{q}. So t̃ is enabled at M̃σ̃ and

not at Mσp , because M̃σ̃(q) > Mσp(q). Since q is 1-safe in Σ̃, M̃σ̃(q) = 1 and

Mσp(q) = 0. σ does not eventually permanently mark q, because otherwise

it would eventually permanently enable t̃.

(ii) If σ is not fair w.r.t. T̃ , then it eventually permanently enables a trans-

ition t̃ ∈ T̃ but fires only finitely many transitions in T̃ . Since proj T̃ (σ) = σ̃,

σ̃ is hence finite. Since σ̃ is maximal, M̃σ̃ does not enable t̃. Let σp be a

finite prefix of σ that enables t̃ and contains σ̃, i.e. proj T̃ (σp) = σ̃ and Mσp [t̃〉.

By Eq. 5.1a or 5.1b, respectively, it follows that Mσp |P̃\{q} = M̃σ̃|P̃\{q}. So

t̃ is enabled at Mσp and not at M̃σ̃, because M̃σ̃(q) < Mσp(q). Since q is

1-safe, M̃σ̃(q) = 0 and Mσp(q) = 1. As σ eventually permanently enables t̃,

it eventually permanently marks q. 2

The following proposition is very similar to the previous, but now refers

to a reduced net. Since the reduced net may have transitions additional to

Tk (as e.g. a Consumer-reduced net has tr), the result (i) of the following

proposition varies from the result (i) of the previous proposition.

Proposition 5.3.5 Let Σ′ be the reduced of Σ by an arbitrary reduction of

Def. 5.2.2. Let σ be a firing sequence of Σ and let σ′ be a firing sequence of

Σ′ with proj Tk(σ
′) = proj Tk(σ).

(i) If q is 1-safe in Σ′, σ is fair w.r.t. Tk, σ
′ is not maximal and a transition

in Tk ⊆ T ′ is enabled, then

M ′
σ′(q) = 1 while σ does not eventually permanently mark q.

(ii) If σ′ is maximal but σ is not fair w.r.t. Tk, then

σ′ is finite and M ′
σ′(q) = 0 and σ eventually permanently marks q.

90 5. Cutvertex Reductions

Proof In Σ and Σ′ the token count on Pk \{q} initially coincides and is only

effected by transitions in Tk. So the proof is in its main parts analogous to

the proof of Prop. 5.3.4.

(i) If σ′ is not maximal, then it and also proj Tk(σ) = proj Tk(σ
′) have to be

finite and there is a transition t′ ∈ T ′ enabled after firing σ′. This transitions

may be in T ′ \ Tk or in Tk. We are interested in the latter case.

There is a prefix σp of σ with proj Tk(σp) = proj Tk(σ
′). It holds that

Mσp |Pk\{q} = M ′
σ′ |Pk\{q}. Since we assume that q is 1-safe in Σ′ and σ is fair

w.r.t. Tk, it follows analogously to Prop. 5.3.4 that M ′
σ′(q) = 1 and σ does

not eventually permanently mark q.

(ii) Every firing sequence of any reduced net can fire only finitely many

transitions in T ′ \ Tk by construction. Hence (ii) follows analogously to (ii)

of Prop. 5.3.4. 2

After we have established the correspondence between maximal firing

sequences of Σ′ and fair firing sequences of Σ, we can show by the following

proposition that Σ and Σ′ are equivalent w.r.t. any LTL-X formula ψ that

does not refer to the environment Σe. The proposition states that marking

sequences generated by corresponding transition sequences are equivalent

w.r.t. ψ.

Proposition 5.3.6 Let ψ be an LTL-X formula with scope(ψ) ⊆ Pk \{q} and

Σ′ the reduced of Σ by an arbitrary reduction of Def. 5.2.2.

Let M0 be a marking of N and M ′
0 a marking of N ′ with M ′

0|Pk\{q} =

M0|Pk\{q}.

Let σ be a transition sequence in T∞ and σ′ a transition sequence in T ′∞

such that proj Tk(σ) = proj Tk(σ
′) and such that M(M ′

0, σ
′) and M(M0, σ)

are infinite marking sequences.

M(M0, σ) |= ψ ⇔ M(M ′
0, σ

′) |= ψ

Proof The proof is by induction on the structure of ψ.

ψ = (p, x): As the satisfiability depends on marking of p ∈ Pk \{q} under

M0 and M ′
0 only and since M0|Pk\{q} =M ′

0|P ′\{q}, both directions hold.

5.3. Preservation of Temporal Properties 91

The cases ψ = ¬ψ1, ψ = ψ1 ∧ ψ2 follow directly by the induction hypo-

thesis.

ψ = ψ1Uψ2: Let us assume M(M ′
0, σ

′) = M ′
0M

′
1M

′
2... |= ψ1Uψ2. Let

M(M0, σ) beM0M1M2... . We can find a prefix σ′
1 of σ′ such thatM ′

|σ′
1
|M

′
|σ′

1
|+1... |=

ψ2 and ∀i, 0 ≤ i < |σ′
1| : M ′

iM
′
i+1... |= ψ1. We hence can find a pre-

fix σ1 of σ corresponding to σ′
1, i.e. proj Tk(σ1) = proj Tk(σ

′
1), and σ1 does

not end with a transition t ∈ Te. By the induction hypothesis and Eq.

5.1a M|σ1|M|σ1|+1... |= ψ2. For the case that |σ1| > 0, let σp be a pre-

fix of σ such that |σp| < |σ1|. Let σ′
p be a corresponding prefix of σ′, i.e.

proj Tk(σp) = proj Tk(σ
′
p). Since σp truncates at least one transition in Tk,

|σ′
p| < |σ′

1|. From M ′
|σ′p|
M ′

|σ′p|+1... |= ψ1, it follows by the induction hypothesis

that M|σp|M|σp|+1... |= ψ1.

Analogously, it can be shown that M(M0, σ) |= ψ1Uψ2 ⇒ M(M ′
0, σ

′) |=

ψ1Uψ2 holds. 2

The correspondence of firing sequences is also cental for establishing pre-

servation of CTL∗
-X properties. We proof that CTL∗

-X is preserved by showing

that Σ and the reduced net Σ′ are bisimilar. We define the bisimulation

relation based on the firing of transitions in Tk. But for bisimulation a fur-

ther ingredient besides correspondence of firing sequences is needed. For the

Borrower, Producer and Dead End reductions we have a kind of Uniqueness

Lemma stating that a marking on Σ corresponds to just one marking on Σ′.

5.3.2 Borrower Reduction

In this section we examine Borrower-reducible environments, i.e. environ-

ments Σe where q is a 1-safe place of Σe
q=1 and Σe

q=1 |= AFG(q, 1). We prove

that if Σ is reducible by a Borrower subnet Ne and if the given CTL∗
-X formula

ϕ does not refer to Ne, Σ
b Σe satisfies ϕ if and only if Σ satisfies ϕ fairly

w.r.t. Tk.

Convention In the following we denote Σ b Σe = Σk also as Σ′ = (N ′,M ′
init) =

(P ′, T ′,W ′,M ′
init).

92 5. Cutvertex Reductions

tω

p1

q

p3

Nk

Ne

Σ

p1

q

p3

Σ b Σe

Figure 5.6: Example of a Borrower reduction

For the following we assume: (1) q is 1-safe in Σ.

The next propositions show that (T1) for any firing sequence σ of Σ it

holds that its projections to Tk or Te are also firing sequences of Σk or Σe
q=1,

respectively. We use this to show that (T2) for any firing sequence σ of Σ

that is fair w.r.t. Tk it holds that its projection to Tk is a maximal firing

sequence of the reduced net Σ′.

Proposition 5.3.7 Let σ be a firing sequence of Σ such that proj Tk(σ) is a

firing sequence of Σk.

proj Te(σ) is a firing sequence of Σe
q=1.

Proof Let Me
init be Me

init = (M q=1
init |Pe

). If σ is a firing sequence of Σ but

σe := proj Te(σ) is not a firing sequence of Σe
q=1, then by Prop. 5.3.3, there

are prefixes σp of σ and σep of σe such that Mσp(q) > Me
σep
(q). Since q is

1-safe in Σ, it follows that Mσp(q) = 1 and Me
σep
(q) = 0. So σep consumes a

token from q because q is initially marked on Σe
q=1. Hence with ∆(σp, q) =

∆(σep, q) +∆(σkp , q) where σkp := proj Tk(σp) and from 1 =Minit(q) +∆(σp, q),

it follows that 2 =Minit(q)+∆(σkp , q). But since σkp is a firing sequence of Σk

by assumption, this contradicts the 1-safeness of q in Σk by Prop. 5.3.2. 2

For the following we assume: (1) and (2) q is 1-safe in Σe
q=1.

Intuitively the next proposition says, given a firing sequence σ that is fair

w.r.t. Te, in case proj Tk(σ) eventually permanently marks q, then proj Te(σ)

is a maximal firing sequence of Σe
q=1.

5.3. Preservation of Temporal Properties 93

Proposition 5.3.8 Let σ be a firing sequence from Minit that is fair w.r.t.

Te. Let σk1 , σ
k
2 ∈ T∞

k and σk1 be finite. Let Mk
init be Minit|Pk

.

If proj Tk(σ) = σk1σ
k
2 is a firing sequence of Σk and Mk

σk
1

(q) = 1 and

∀i, 1 ≤ i ≤ |σk2 | : ∆(σk2 (i), q) = 0, then proj Te(σ) is a maximal firing sequence

of Σe
q=1.

Proof Let Me
init be M q=1

init |Pe
and let proj Tk(σ) be σk. By Prop. 5.3.7, σe :=

proj Te(σ) is a firing sequence of Σe
q=1. Assume σe is not maximal on Σe

q=1.

Hence by Prop. 5.3.4, σe is finite, Me
σe(q) = 1 and σ does not eventually

permanently mark q. So there is a finite prefix σp of σ with Mσp(q) = 0 and

σp contains σe and σk1 . From Me
init(q) = 1 and Me

σe(q) = 1 it follows that

∆(σe, q) = 0. It thus follows from Mσp(q) = 0 = Minit(q) + ∆(σp, q) that

0 = Minit(q) + ∆(proj Tk(σp), q). Since we assume that σk2 does not affect q,

it follows 0 = Minit(q) + ∆(σk1 , q). But this contradicts the assumption that

firing σk1 places a token on q, that is Mk
σk
1

(q) = 1. 2

Proposition 5.3.9 Σe
q=0 |= AG(q, 0)

Proof Let Me
init be M q=0

init |Pe
. Suppose that Σe

q=0 6|= AG(q, 0). Thus there is

a firing sequence σe with Me
σe(q) ≥ 1. σe is also a firing sequence of Σe

q=1

generating two tokens on q, which contradicts the 1-safeness of q in Σe
q=1. 2

Now we can show (T1) of the targeted results: By the next proposition

we can fire proj Tk(σ) on Σk for any firing sequence σ of Σ. And by Prop.

5.3.7 also proj Te(σ) is a firing sequence of Σq=1
e .

Proposition 5.3.10 Let σ be a firing sequence of Σ.

proj Tk(σ) is a firing sequence of Σk.

Proof We denote the initial marking Minit|Pk
of Σk asMk

init. If the above does

not hold, then by Prop. 5.3.3, there are prefixes σp of σ and σkp of proj Tk(σ)

such that Mσp(q) > Mk
σkp
(q). Since Mk

init(q) = Minit(q), it follows that

∆(σkp , q) < ∆(σp, q), which implies that 0 < ∆(σep, q) where σep := proj Te(σp).

But since σep is a firing sequence of Σe
q=1 by Prop. 5.3.7, this contradicts

assumption (2), i.e. 1-safeness of q in Σe
q=1. 2

94 5. Cutvertex Reductions

For the following we assume: (1), (2) and (3) Σe
q=1 |= AFG(q, 1).

The following lemma is the Uniqueness Lemma: If σ1 and σ2 generate the

same marking M then proj Tk(σ1) and proj Tk(σ2) will also generate the same

marking. With other words the corresponding marking of M is unique. The

Uniqueness Lemma will be used to show that Σ and the reduced net Σ′ are

bisimilar.

Lemma 5.3.11 (Uniqueness Lemma) Let σ1, σ2 be firing sequences of Σ.

If ∆(σ1, p) = ∆(σ2, p), ∀p ∈ P ,

then ∆(proj Tk(σ1), p) = ∆(proj Tk(σ2), p), ∀p ∈ Pk.

Proof Let σk1 denote proj Tk(σ1) and σk2 denote proj Tk(σ2). Similarly, let

σe1 be proj Te(σ1) and σe2 be proj Te(σ2). As ∆(σ1, p) = ∆(σ2, p), ∀p ∈ P ,

and transitions in Te cannot change the token count on places in Pk, it

follows that ∆(σk1 , pk) = ∆(σk2 , pk), ∀pk ∈ Pk \ {q} holds. Let us assume

that ∆(σk1 , q) 6= ∆(σk2 , q). It follows that also ∆(σe1, q) 6= ∆(σe2, q), because

∆(σe1, q)+∆(σk1 , q) = ∆(σe2, q)+∆(σk2 , q) by assumption. Since σe1 and σe2 are

both firing sequences of Σe
q=1 by Prop. 5.3.7 and q is 1-safe in Σe

q=1, it follows

that ∆(σe1),∆(σe2) ∈ {−1, 0}. Without loss of generality let ∆(σe1, q) = −1

and ∆(σe2, q) = 0. Since Σe is a Borrower and thus Σe
q=1 satisfies AFG(q, 1),

all maximal firing sequences are non-consuming. Hence a firing sequence

σeg is enabled after firing σe1 that eventually marks q. But σeg is also a firing

sequence fromMe
σe
2

and generates two tokens on q. This contradicts 1-safeness

of q in Σe
q=1. 2

Remark 5.3.12 For the Borrower reduction, the reduced net Σ′ is equal to

Σk. So Prop. 5.3.10 and the Uniqueness Lemma 5.3.11 also hold for Σ′

instead of Σk.

With the next two propositions we are ready to show that CTL∗
-X is preserved.

According to the next propositions it holds that

• FsN ′,max(M
′
init) ⊆ proj Tk(FsN,{Tk,Te}(Minit)) and

• proj Tk(FsN,{Tk}(Minit)) ⊆ FsN ′,max(M
′
init).

5.3. Preservation of Temporal Properties 95

Note that FsN,{Tk,Te}(Minit) ⊆ FsN,{Tk}(Minit). So it also follows that

• FsN ′,max(M
′
init) ⊆ proj Tk(FsN,{Tk}(Minit)) and

• proj Tk(FsN,{Tk,Te}(Minit)) ⊆ FsN ′,max(M
′
init).

In summary, we can derive that

FsN ′,max(M
′
init) = proj Tk(FsN,{Tk}(Minit)) = proj Tk(FsN,{Tk,Te}(Minit)) holds.

Proposition 5.3.13 Let σ be a firing sequence of Σ that is fair w.r.t. Tk.

proj Tk(σ) is a maximal firing sequence of Σ′.

Proof Note that Σ′ = Σk. By Prop. 5.3.10, σ′ := proj Tk(σ) is a firing

sequence of Σ′. Let us assume that σ′ is not maximal. By Prop. 5.3.4 σ′ is

finite and M ′
σ′(q) = 1 and σ does not eventually permanently mark q. Let

σp be a prefix of σ that contains σ′ and does not mark q, i.e. proj Tk(σp) = σ′

and Mσp(q) = 0. Hence 0 = Minit(q) + ∆(σ′, q) + ∆(proj Te(σp), q) and 1 =

M ′
σ′(q) = Minit(q) + ∆(σ′, q) holds. It follows that ∆(proj Te(σp), q) = −1.

Since σ′ is finite and σ is maximal, it follows that σ is fair w.r.t. Te. By Prop.

5.3.8, proj Te(σ) is a maximal firing sequence of Σe
q=1. As Σe

q=1 |= AGF(q, 1),

σ eventually permanently enables q (contradiction). 2

A stronger version of Prop. 5.3.13, that requires maximality of σ only,

instead of fairness w.r.t Tk, does not hold, as we have seen while discussing

the need of fairness at the begin of this section. The maximal firing sequence

σ = t1tωtω... of the net in Fig. 5.5 has the proj Tk(σ) = t1, which is not

maximal on Σ b Σe.

By the next proposition it follows FsN ′,max(M
′
init)⊆ proj Tk(FsN,{Tk,Te}(Minit)).

But more than that, it says that for a maximal firing sequence σ′ fromM ′ and

for a pair of markings (M,M ′) = (M,M |Pk
) of respectively Σ and Σ′, we can

find a fair firing sequence σ that visits M and corresponds to σ′. This extra

is necessary to establish bisimulation. Proposition 5.3.13 has a simpler form,

as for a marking M we can pinpoint M ′ (Uniqueness Lemma), whereas, vice

versa, we can find for a marking M ′ more than one corresponding marking

of Σ.

96 5. Cutvertex Reductions

Proposition 5.3.14 Let σ′ = σ′
1σ

′
2 be a maximal firing sequence of the

Borrower-reduced Σ′. Let σ1 be a firing sequence of Σ with proj Tk(σ1) = σ′
1.

If σ1 is finite, then there is a firing sequence σ2 of Σ such that σ1σ2 is

fair w.r.t. Tk and Te, and proj Tk(σ2) = σ′
2.

Proof The algorithm to construct σ2 can be sketched as follows. First, σ

is extended to sufficiently mark q (line 10-16). Then, as long as σ′ fires

transitions whose firing decreases q’s token count, transitions in Te are fired

that do not have q as an input place (line 17-25). Then, if σ′ fires trans-

itions that do not change q’s token count but have q as an input place (line

29-41), first a prefix of σ′ is fired that places a token on q (line 30). In

this case a maximal firing sequence σe of Σe is enabled and we know that σe

behaves like a Borrower sequence. We fire the “borrowing” prefix of a σe, i.e.

the prefix of σe up to the point when the token from q is not removed any

more. Then (line 37-40 or 42-46) we fire in turn transitions in Tk (the suffix

of σ′) and Te (the suffix of σe), since they do not disable each other. In the

following Me
init denotes Minit|Pe

.

1 /∗ The algori thm ’ s input i s the o r i g i n a l net Σ , the

2 k e rn e l Σk , the environment Σe , the f i r i n g sequence

3 σ1 o f Σ and f i r i n g sequences σ′
1 and σ′

2 o f the reduced

4 net Σ′ , such t h a t σ′
1σ

′
2 i s maximal . I t s output i s a

5 f i r i n g sequence o f Σ t h a t i s f a i r w. r . t . Te and Tk . ∗/

6 Input : Σ , Σk , Σe , σ1 , σ′
1 , σ′

2

7 Output : σ2

8 σ := σ1

9 σ′ := σ′
2 /∗ not ye t par t o f σ ∗/

10 i f (Mσ(q) < Mσ′
1
(q)){

11 Let σe be a maximal f i r i n g sequence o f Σe
q=1 with

12 p r e f i x proj Te(σ) and M(Me
init, σ

e) |= FG(q, 1) .

13 Let σe1 be a t r a n s i t i o n sequence where

14 proj Te(σ)σ
e
1 i s a p r e f i x o f σe and Me

proj Te (σ)σ
e
1

(q) = 1 .

15 σ := σσe1

16 }

5.3. Preservation of Temporal Properties 97

17 i f (σ′ conta in s a t′ ∈ q• with W (q, t′) > W (t′, q)){

18 Let σ′
p be the minimal p r e f i x o f σ′ conta in ing a l l

19 t r a n s i t i o n s t′ with W (q, t′) > W (t′, q) .

20 for (i := 1 ; i < |σ′
p|+ 1 ; i := i+ 1){

21 σ := σσ′
p(i)

22 i f (∃te ∈ (Te \ q
•) :Mσ[te〉) σ := σte

23 }

24 σ′ := σ′(|σ
′

p|) /∗ t runca te by p r e f i x σ′
p ∗/

25 }

26 /∗ From now on ho ld s t h a t W (q, σ′(i)) ≤ W (σ′(i), q) ,

27 ∀i, 1 ≤ i < |σ′|+ 1 . ∗/

28 i f (σ′ conta in s a t′ ∈ q•){

29 Let σ′
p be σ′ ’ s minimal p r e f i x that i n c l ude s a t′ ∈ q• .

30 σ := σσ′
p

31 σ′ := σ′(|σ
′

p|) /∗ t runca te by p r e f i x σ′
p ∗/

32 Let σe be a maximal f i r i n g sequence o f Σe
q=1 with

33 p r e f i x proj Te(σ) and M(Me
init, σ

e) |= FG(q, 1) .

34 Let σe1 and σe2 be t r a n s i t i o n sequences with

35 σe = proj Te(σ)σ
e
1σ

e
2 and M(Me

proj Te (σ)σ
e
1

, σe2) |= G(q, 1) .

36 σ := σσe1

37 for (i := 1 ; i < |σe2|+ 1 or i < |σ′|+ 1 ; i := i+ 1){

38 i f (i < |σe2|+ 1) σ := σσe2(i)

39 i f (i < |σ′|+ 1) σ := σσ′(i)

40 }

41 } else { /∗ q 6∈ •σ′(i), ∀i, 1 ≤ i ≤ |σ′| ∗/

42 for (i := 1 ; i < |σ′|+ 1 ; i := i+ 1){

43 σ := σσ′(i)

44 i f (∃te ∈ Te :Mσ[te〉) σ := σte

45 }

46 while (∃te ∈ Te :Mσ[te〉) σ := σte

47 }

98 5. Cutvertex Reductions

48 return σ := σ(|σ1|)

Listing 5.1: Generating a firing sequence fair w.r.t. Te and Tk.

The transition sequence σ, constructed in the first if-block, (line 10-16),

is a firing sequence of Σ: Since 0 = Mσ(q) < Mσ′
1
(q) = 1, it follows that

proj Te(σ) consumed a token from q. But since Σe
q=1 |= AFG(q, 1), there is a

firing sequence σe that (re)generates the token.

The transition sequence σ, constructed in the second if-block, (line

17-25), is a firing sequence of Σ, sinceMinit[σ1〉, since by constructionMσ(q) =

M ′
σ′
1

(q) at line 16 and since transitions in t ∈ Te \ q
• do not disable trans-

itions in Tk. Note that at the end of line 25 Mσ(q) = 0 = M ′
proj T ′ (σ)

(q),

since σ′
p decreases q’s token count. In case σ′

p = σ′ is infinite, σ is by con-

struction fair w.r.t. Tk and obviously fair w.r.t. Te \ q
•. As σ′

p infinitely often

removes the token from q, the place q is not permanently marked, and thus

transitions in q• ∩ Te are not permanently enabled. Hence σ is fair w.r.t. Te.

Next we show that σ constructed at the third if-block (line 28-41), is

a firing sequence of Σ. Since Mσ[σ
′〉 at the end of line 24 , σ of line 30 is

a firing sequence. Let t′ be the last transition of σ′
p. As t′ has q as an input

place and does not decrease the token count on q, q has to be marked at the

end of line 30. Also the firing sequence of line 32-35 exists: As proj Te(σ)

is a firing sequence of Σe
q=1 by Prop. 5.3.7 and since Σe

q=1 |= AFG(q, 1),

proj Te(σ) can be extended to a maximal firing sequence σe whose marking

sequence satisfies FG(q, 1). It follows that σe can be divided into a finite

prefix σep that contains proj Te(σ) and restores the token on q and into a

suffix σe2 that does not remove the token on q, M(Me
σep
, σe2) |= G(q, 1). Let

σe1 be the transition sequence such that σep = proj Te(σ)σ
e
1. The transition

sequence σ of line 36 is a firing sequence of Σ, since by Eq. 5.1bMσ|Pe\{q} =

Mproj Te (σ))
|Pe\{q} holds at the end of line 30, and by construction Mσ(q) =

1 ≥ Me
proj Te (σ)

(q) at the begin of line 36. σ of line 38 and 39 are firing

sequences: σe1 does not change the token count of places Pk\{q} and Mσ(q) =

1 holds at the end of line 36. It follows that Mσ[σ
′〉 and Mσ[σ

e
2〉. Neither

the transitions of σe2 nor the transitions of σ′ remove the token from q .

We now show that σ is fair w.r.t. Tk and Te. We first show that σ is fair

5.3. Preservation of Temporal Properties 99

w.r.t. Tk. If σ′ is infinite, σ is fair w.r.t. Tk. Suppose σ′ is finite. Let σ′
p be the

already considered prefix of σ′, that is proj Tk(σ) =: σ′
p. We show that for each

σ at line 36, 38 and 39 the generated marking Mσ satisfies Mσ|Pk
=M ′

σ′p
,

since at these lines σ may become maximal or the algorithm may infinitely

loop. As σ′ is maximal, Mσ|Pk
= M ′

σ′ = M ′
σ′p

implies that ¬Mσ[t〉, ∀t ∈ Tk.

By Eq. 5.1a it follows that at all times Mσ|Pk\{q} = M ′
σ′p
|Pk\{q}. Mσ(q) =

1 = M ′
σ′p
(q) holds at the end of line 36, which has been shown above.

Neither transitions of σe2 nor transitions of σ′ may change the token count on

q afterwards, thus Mσ|Pk
=M ′

σ′p
holds at line 38 and 39.

Next we show that σ is fair w.r.t. Te. Transitions of σ′ do not change

the token count of q from line 32 to 40. So by construction proj Te(σ) is a

maximal firing sequence of Σe
q=1. At line 36-40 it holds that Mσ(q) = 1,

so it follows that Mσ(q)|Pe
=Me

proj Te (σ)
. Hence it follows that σ is fair w.r.t.

Te.

The σ constructed at the else-block (line 41 to 47) is a firing sequence:

By Eq. 5.1a, M|σ||P\{q} = M ′
|σ′p|

|Pk\{q}. As the enabledness of transitions in

σ′ does not depend on the token count on q, any enabled transition of Te can

be fired in between two transitions of σ′. By construction σ is fair w.r.t. Te,

as transitions in Te are fired as long as there are any enabled. σ is fair w.r.t

Tk because σ′ is maximal and transitions of σ′ do not depend on q. 2

The following proposition establishes that every maximal firing sequence

of Σ′ corresponds to the projection of a firing sequence of Σ that is fair w.r.t.

Tk (not also fair w.r.t. Te), i.e. FsN ′,max(M
′
init) ⊆ proj Tk(FsN,{Tk}(Minit)). The

proposition also guarantees that σ starts with σ′. We need this form to show

that we can use the reduced net for falsification of ∀CTL∗ properties using

the next-time operator X.

Proposition 5.3.15 Let σ′ be a maximal firing sequence of Σ′.

There is a firing sequence σ of Σ such that proj Tk(σ) = σ′ and σ starts

with σ′ and σ is fair w.r.t. Tk.

Proof By Prop. 5.3.1 σ′ is a firing sequence of Σ. If σ′ is finite, we fire

transitions of Te as long as there are any enabled. Let us assume that σ is

100 5. Cutvertex Reductions

not fair w.r.t. Tk. By Prop. 5.3.4 σ′ is finite and M ′
σ′(q) = 0 and σ eventually

permanently marks q. Hence proj Te(σ) generates a token, which contradicts

assumption (2). 2

We are now in the position to show our main verification and falsification

results:

Theorem 5.3.16 Let Σe a Borrower environment net and Σ be reducible by

Σe. Let ϕ be a CTL∗
-X formula referring to P \ Pe only.

Σ b Σe |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk and

Σ b Σe |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk and Te.

Proof We show that (i) TSΣ and TSΣ′ are stuttering bisimilar assuming

that Σ is fair w.r.t Tk and (ii) TSΣ and TSΣ′ are stuttering bisimilar as-

suming Σ is fair w.r.t. Tk and Te. In a first step we define the relation

B ⊆ [Minit〉 × [M ′
init〉 and then show that ∀(M,M ′) ∈ B:

(L) L(M) = L′(M ′)

(SF1) ∀µ ∈ ΠTSΣ,{Tk}(M) : ∃µ′ ∈ ΠTS
Σ′ ,inf(M

′) : match(B, µ, µ′)

(SF2) ∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{Tk,Te}(M) : match(B, µ, µ′)

Note, (SF1) implies ∀µ ∈ ΠTSΣ,{Tk,Te}(M) : ∃µ′ ∈ ΠTS
Σ′ ,inf(M

′) : match(B, µ, µ′)

and (SF2) implies that ∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{Tk}(M) : match(B, µ, µ)

holds, since ΠTSΣ,{Tk,Te}(M) ⊆ ΠTSΣ,{Tk}(M). Thus, it follows from (L),

(SF1), (SF2) that B is a stuttering fair bisimulation assuming that Σ is fair

w.r.t. Tk, and also assuming that Σ is fair w.r.t. Tk and Te.

We now define B ⊆ [Minit〉 × [M ′
init〉. The basic idea is that two markings

M and M ′ are bisimilar iff they correspond, M |P\{q} =M ′|P\{q}, but then for

one marking M there might be several markings M ′
i and we have to be careful

with the token count on q. So let M be a reachable marking of Σ. Hence

there is a firing sequence σ that generates M , Minit[σ〉M . proj Tk(σ) is a firing

sequence of Σ′ by Prop. 5.3.10. Let M ′ be the marking of Σ′ generated by

firing proj Tk(σ), M
′
init[proj Tk(σ)〉M

′. We define that (M,M ′) ∈ B. Defining

B this way, it follows that (Minit,M
′
init) ∈ B and since AP ⊆ (P ′ \{q})×N, it

also follows that ∀(M,M ′) ∈ B : L(M) = L(M ′) holds. Note that by Prop.

5.3. Preservation of Temporal Properties 101

5.3.11, M ′ is uniquely defined, i.e. (M,M ′
1) ∈ B and (M,M ′

2) ∈ B it follows

that M ′
1 =M ′

2.

To show (SF1), consider (M,M ′) ∈ B and a path µ2 from M that is fair

w.r.t. Tk. Let σ2 a the corresponding firing sequence, that is M(M,σ2) = µ2.

Let σ1 be a firing sequence that generates M and µ1 the corresponding path,

that is µ1 = M(Minit, σ1). Hence µ := µ1µ2 is a path from Minit in TSΣ that

is fair w.r.t. Tk. Let σ := σ1σ2 be the corresponding firing sequence. By

Prop. 5.3.13, σ′ := proj Tk(σ) is a maximal firing sequence of Σ′. By definition

of B and by the Uniqueness Lemma 5.3.11 firing proj Tk(σ1) generates M ′. It

follows that the marking sequence µ′
2 generated by proj Tk(σ2) is a path from

M ′ in ΠTS
Σ′ ,inf(M

′).

Based on σ and σ′ we define partitions θ of µ2 and θ′ of µ′
2. Let the

partition θ′ be the identity mapping and let θ be the partition defined as

θ(1) = 1 and ∀i, 1 < i < |σ′
2|+2, θ(i) = j +1 where j is such that σ(j) ∈ Tk

and σ(1)...σ(j) has exactly i−1 transitions in Tk, θ(i) = θ(i−1)+1 otherwise.

Fig. 5.7 illustrates the partitioning of µ2 and µ′
2.

1 2 3 4seg. no.

σ

µ

µ′

σ′

t′1 t2 t3 t′2 t5 t′3 t7 t′4 ...

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
...

M′

0 M′

1 M′

2 M′

3 M′

4 M′

5 M′

6 M′

7
...

t′1 t′2 t′3 t′4
...

Figure 5.7: Partitioning of corresponding marking sequences. µ is divided
into segments according to occurrences of transitions in Tk.

θ partitions µ2 so that segment 1 contains markings without a change

on the token count of Pk \ {q}. Segment i, 1 < i < |σ′
2| + 1, starts with

the marking generated by firing its first (i− 1) transitions in T ′. Note that

this defines θ already well, if σ′
2 = proj Tk(σ2) is infinite. In case σ′

2 is finite,

segment i, |σ′
2|+1 < i, consists of only one marking, the next marking in µ2.

Segment i of µ′
2, 1 ≤ i ≤ |σ′

2| + 1, contains only one marking M ′
i , which

is generated by firing the first i− 1 transitions of σ′
2.

102 5. Cutvertex Reductions

We now show that the partitions of µ and µ′ generate segments of bisimilar

markings. Let us consider a segment i, 1 ≤ i < |σ′
2| + 2. Let M2 be a

marking in segment i on µ2. M2 is generated by firing a prefix σp with i− 1

transitions in Tk. The marking M ′
2 in segment i on µ′

2 is generated by firing

i − 1 transitions in T ′. Hence it follows that proj Tk(σp) = σ′
2(1)...σ

′
2(i − 1)

holds and hence (M2,M
′
2) ∈ B. Let us assume that σ′

2 is finite. Segment i on

µ′
2, i > |σ′|+ 1, contains the final marking generated by firing σ′

2. Segment i

on µ, i > |σ′|+ 1, contains the marking generated by firing a prefix σp of σ2

that contains |σ′
2| transitions of T ′. So it follows that proj Tk(σp) = σ′

2 holds

and hence also (M2,M
′
2) ∈ B.

To show (SF2), let us consider (M,M ′) ∈ B and an infinite path µ′
2 from

M ′ in ΠTS
Σ′ ,inf(M

′). Again let σ1 be a firing sequence generating M and

σ′
1 = proj Tk(σ1) generating M ′. So µ1 := M(M,σ1) and µ′

1 := M(M ′, σ′
1)

are the corresponding paths. It follows that µ′ = µ′
1µ

′
2 is an infinite path in

TSΣ′. Let σ′ := σ′
1σ

′
2 be the corresponding maximal firing sequence of Σ′

where σ′
2 generates µ′

2. By Prop. 5.3.14 there is a firing sequence σ that is

fair w.r.t. Tk and Te and corresponds to σ′. Let σ2 be the suffix of σ that

corresponds to σ′
2. µ2 := M(M,σ2) is thus a fair path from M . As above it

follows that µ′
2 and µ2 are partitioned into segments of bisimilar markings.

2

We cannot verify LTL or CTL properties using X. Consider the LTL

property ψ = AXX(p3, 1) and the CTL property ϕ = AXAX(p3, 1). The net

Σ bΣe in Fig. 5.6 satisfies both ψ and ϕ but Σ satisfies neither of them.

As ¬ϕ := EXEX(p3, 0) is a valid CTL property on Σ but not on Σ b Σe,

CTL properties using X can also not be falsified, but we can falsify ∀CTL∗

assuming fairness of Σ w.r.t. Tk.

Theorem 5.3.17 Let Σe be a Borrower environment net and Σ be reducible

by Σe. Let ψ be an ∀CTL∗ formula referring to P \ Pe only.

Σ |= ψ fairly w.r.t. Tk ⇒ Σ b Σe |= ψ.

Proof We show that (TSΣ,Minit){Tk} simulates (TSΣ′ ,M ′
init). This implies

that if Σ |= ψ fairly w.r.t. Tk then Σ bΣe |= ψ.

5.3. Preservation of Temporal Properties 103

To define S, we mimic the construction of σ in Prop. 5.3.15. Let M ′ ∈

[M ′
init〉 be a marking of Σ′. Let σ′ be a firing sequence generating M ′. If M ′

is not a final marking, only (Mσ′ ,M
′) ∈ S. But if M ′ is final, we pick several

markings M to correspond to M ′. Let σ be any finite firing sequence starting

with σ′ and proj Tk(σ) = σ′. We set (Mσ,M
′) ∈ S where Mσ is generated by

such a σ. In both cases it holds that (Minit,M
′
init) ∈ S.

We have to show that all (M,M ′) ∈ S satisfy (L) L(M) = L′(M ′), and

(F) ∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{Tk}(M) : (µ(i), µ′(i)) ∈ S. As we

require that scope(ψ) ⊆ Pk \ {q}, (L) holds by Eq. 5.1a. Let (M,M ′) be in

S, let µ′ be an infinite path from M ′ and let σ′ be the corresponding maximal

firing sequence of Σ′, that is µ′ = M(M ′, σ′).

By definition of S, there is a firing sequence σg that generates M on Σ

and σ′
g := proj Tk(σg) generates M ′. By Prop. 5.3.7 σeg := proj Te(σg) is a

firing sequence of Σe
q=1 and hence does not generate additional tokens on q.

In case M ′ is final, µ′ is the infinite marking sequence M ′M ′... . As σeg

does not generate additional tokens, M enables only transitions in Te. So for

any marking Mi reachable from M consequently (Mi,M
′) ∈ S holds.

Let us now consider the case that M ′ is not final. By Prop. 5.3.15 there

is a firing sequence σ with proj Tk(σ) = σ′
gσ

′ that is fair w.r.t. Tk. M is

generated by σ′
g. Let σs be the suffix of σ with proj Tk(σs) = σ′, which is

also fair w.r.t. Tk and starts with σ′. µ = M(M,σs) is hence a fair path

of TSΣ starting with markings corresponding to µ′. So the case that σ′ is

infinite follows trivially. In case σ′ is finite, the markings generated along

σ′ correspond. The case that we reach a final marking has been discussed

above. 2

Theorem 5.3.17 implies that the weaker version “Σ |= ψ ⇒ Σ′ |= ψ” hold.

To see that a stronger version of the theorem assuming fairness of Σ w.r.t. Tk

and Te does not hold, consider the two nets in Fig. 5.6 and the LTL (∀CTL∗)

property ψ = AF((p3, 1) ∧ XXX(p3, 0)). ψ expresses that all paths eventually

mark p3 and then do not mark p3 after three transition firings. Obviously,

ψ does not hold on Σ b Σe, but ψ holds on Σ, assuming Σ is fair w.r.t. Te. Σ

has to fire a transition in Te, since otherwise tω is permanently enabled while

104 5. Cutvertex Reductions

no transition of Te occurs.

5.3.3 Consumer Reduction

A Consumer environment satisfies that q is a 1-safe place of Σe
q=1 and

Σe
q=1 6|= AFG(q, 1). In the following we denote Σ c Σe = (Pk, Tk ⊎ {tr},Wk ⊎

{(q, tr) 7→ 1},Minit,k) also as Σ′.

p1

q

p3

t1 t2

t3 t4

Nk

Ne

Σ

p1

tr

q

p3

Σ c Σe

Figure 5.8: Example of a Consumer reduction

For the following we assume: (1) q is 1-safe in Σ.

Proposition 5.3.18 Let σ′ be a firing sequence of Σ′.

proj Tk(σ
′) is a firing sequence of Σ and Σk.

Proof Since tr decreases only the token count of q, we can omit occurrences

of tk without enabling any transitions of σ′. Since M ′
init = Minit,k, it follows

that proj Tk(σ
′) is also a firing sequence of Σ′ and hence of Σk. By Prop. 5.3.1

proj Tk(σ
′) is a firing sequence of Σ. 2

The following proposition is a direct consequence of Prop. 5.3.18.

Proposition 5.3.19 Let p ∈ Pk be a k-bounded place in Σ.

p is a k-bounded place in Σ′.

Proof Suppose p is not k-bounded in Σ′. Hence there is a firing sequence

σ′ with M ′
init[σ

′〉M ′ and M ′(p) > k. By Prop. 5.3.18, proj T ′(σ′) is a firing

sequence of Σ. But since proj T ′(σ′) may only omit tr, then p is not k-bounded

in Σ. 2

Intuitively, the next proposition says that if we can remove a token from q

right at the start of a firing sequence σ′ of Σ′, the token is forever gone and

all successive transitions do not depend on q.

5.3. Preservation of Temporal Properties 105

Proposition 5.3.20 Let σ′ ∈ T ′∞ be a transition sequence t1t2... such that

trσ
′ is a firing sequence of Σ′ from M ′ ∈ N

|P ′|.

∀i, 1 ≤ i < |σ′|+ 1 : ti 6∈
•q ∪ q•.

Proof Assume σ′ fires a transition t ∈ •q ∪ q•. Since q is 1-safe, tr removes

the only token from q. So a transition in q• is enabled only after a t ∈ •q is

fired. Hence there is a prefix σ′
p of σ′ that ends with a transition t ∈ •q \ q•

and does not contain a t′ ∈ q•. Since M ′[trσ
′
p〉, it follows that M ′[σ′

p〉. As

q is marked after firing trσ
′
p, firing only σ′

p places two tokens on q, which

contradicts Prop. 5.3.19. 2

For the following we assume:

(1) and (2) q is 1-safe in Σe
q=1 and (3) Σe

q=1 6|= AFG(q, 1).

We come already to the three central propositions that establish

• proj Tk(FsN ′,max(M
′
init)) ⊆ proj Tk(FsN,{Tk}(Minit)) and

• proj Tk(FsN,{Tk}(Minit)) ⊆ proj Tk(FsN ′,max(M
′
init)) hold.

• For every maximal firing sequence σ′ of Σ′, we can find a corresponding

fair firing sequence that mimics σ′ step by step.

For the first two results we have to project the firing sequences of the Consumer-

reduced net to Tk, since it has the additional transition tr. We start with the

last result:

Proposition 5.3.21 Let σ′ be a maximal firing sequence on Σ′.

There is a firing sequence σ of Σ that is fair w.r.t. Tk and proj Tk(σ
′) =

proj Tk(σ).

Also, σ has a prefix σp of length |σ′|, σp contains proj Tk(σ
′) and instead

of tr it fires a transition in Te (σ(i) ∈ Te if σ′(i) = tr, 1 ≤ i < |σ|+ 1).

Proof LetMe
init beM q=1

0 |Pe
and σe be a firing sequence of Σe

q=1 that does not

eventually permanently mark q. Such a firing sequence exists by assumption

(3). By Prop. 5.3.18 σ′
k := proj Tk(σ

′) is a firing sequence of Σ. As σ we

fire first σ′ but instead of tr we fire the first transition of σe. If σ′ has an

106 5. Cutvertex Reductions

occurrence of tr and is finite, we fire the remainder of σe at the end. We can

replace tr by the first transition of σe, because to fire tr q has been marked.

Similarly follows that we can fire the remainder of σe at the end. In case σ′

does not fire tr and is finite, after firing σ′ we fire transitions in Te as long as

there are any enabled.

Suppose that σ is not fair w.r.t. Tk. Hence σ′ is finite and M ′
σ′(q) = 0

and σ eventually permanently marks q (Prop. 5.3.5). In case σ′ does not fire

tr, it follows that proj Te(σ) generates a token, which contradicts 1-safeness

of q on Σe
q=1. If σ′ fires tr then σ has as suffix the remainder of σe which by

assumption does not eventually permanently mark q. 2

Fig. 5.9 shows that for a given maximal firing sequence σ′ of Σ′, there is

not always a corresponding firing sequence σ of Σ that is fair w.r.t. Tk and

Te. So the stronger version of Prop. 5.3.21 —that guarantees the existence

of a σ that is fair w.r.t. Tk and Te—does not hold.

p1

q

p3

t1

t2 t3N1

N2Σ

p1

q

p3

tr

t2 t3

Σ c Σe

Figure 5.9: Consumer: proj Tk(FsN ′,max(Minit)) 6⊆ proj Tk(FsN,{T1,T2}(Minit)).
σ′ = t2t3t3... is maximal on Σ′ but there is no σ with proj Tk(σ) = σ′ that is
fair w.r.t Tk and Te, since q is permanently enabled by σ′ after firing t2 and
t1 has to be fired eventually to achieve fairness w.r.t. Te.

Proposition 5.3.22 Let σ be a firing sequence of Σ that is fair w.r.t. Tk.

There is a maximal firing sequence σ′ of Σ′ with proj Tk(σ
′) = proj Tk(σ).

Proof We show that if σk := proj Tk(σ) is not a maximal firing sequence of

Σ′ then σktr is. Firstly, σk is a firing sequence of Σk by Prop. 5.3.10 and

thus a firing sequence of Σ′. Suppose σk is not a maximal firing sequence of

Σ′. Thus σk is finite and M ′
σk
(q) = 1 (Prop. 5.3.5). So σktr is a maximal

firing sequence of Σ′. 2

5.3. Preservation of Temporal Properties 107

We now come to the verification and falsification results for the Consumer

reduction. Again we cannot verify LTL or CTL properties using the next-

time operator X. Consider the LTL property ψ = A(G(p3, 0) ∨ XX(p3, 1) and

the CTL property ϕ = AX(AX((p3, 1) ∨ AG(p3, 0)) on the two nets in Fig.

5.8. Intuitively, both formulas say that after two steps p3 is marked or p3

stays unmarked. Both formulas are satisfied by Σ c Σe, as it first fires t3, then

either tr is fired and p3 is never marked, or firing t4 marks p3. Σ satisfies

neither ψ nor ϕ, because after firing t3t2 the place p3 is unmarked but it is

still possible to marked p3.

Theorem 5.3.23 Let Σe be a Consumer environment net and Σ be reducible

by Σe. Let ψ be an ∀CTL∗ formula referring to P \ Pe only.

Σ |= ψ fairly w.r.t. Tk ⇒ Σ c Σe |= ψ.

Proof We show that (TSΣ,Minit){Tk} simulates (TSΣ′,M ′
init), which implies

that if Σ |= ψ fairly w.r.t. Tk then Σ c Σe |= ψ. We first define S based on

Prop. 5.3.21.

LetM ′ ∈ [M ′
init〉 be a marking of Σ′. Let σ′

g be a firing sequence generating

M ′. Let σg be a the firing sequence corresponding to σ′
g as constructed in

Prop. 5.3.21, i.e. σg equals σ′
g but instead of tr it fires the first transition of

a firing sequence of Σe
q=1 that does not eventually permanently mark q, and

if σ′
g is finite σg may fire a finite suffix in Te as constructed in Prop. 5.3.21.

All such pairs (Mσg ,M
′) are in S.

We show that all (M,M ′) ∈ S satisfy (L) L(M) = L′(M ′), and (F)

∀µ′ ∈ ΠTS
Σ′ ,inf(M

′) : ∃µ ∈ ΠTSΣ,{Tk}(M) : (µ(i), µ′(i)) ∈ S. As we require

that scope(ψ) ⊆ Pk \ {q}, (L) holds by Eq. 5.1a. Let (M,M ′) be in S, let µ′

be an infinite path from M ′ and let σ′ be the corresponding maximal firing

sequence of Σ′, that is µ′ = M(M ′, σ′).

By definition of S, M is generated by a firing sequence σg and there is

a corresponding firing sequence σ′
g that generates M ′. So σ′

gσ
′ is a maximal

firing sequence of Σ and σg can be extended by a suffix σ according to Prop.

5.3.21 such that σgσ is a fair firing sequence from Minit. So µ := M(M,σ) is

a fair path from M . It immediately follows that any marking Mi generated

108 5. Cutvertex Reductions

by prefix σp of σ simulates the marking M ′
i , generated by a prefix σ′

p of σ′ of

the same length, i.e. |σp| = |σ′
p|. 2

The Consumer reduction does not allow for verification of ∀CTL∗
-X or

verification and falsification of CTL-X or CTL∗
-X. Consider the example of an

Consumer reduction as illustrated in Fig. 5.8 and the ∀CTL∗ (and CTL)

formula ϕ = AF((p3, 1) ∨ AG(p3, 0)). The CTL formula ϕ is violated—i.e.

¬ϕ = EG((p3, 0) ∧ EF(p3, 1)) is satisfied—if there is a path µ on which p3

remains unmarked and if a path µs from every visited state s of µ eventually

leads to a state where p3 is marked. The original net in Fig. 5.8 violates

ϕ: It first fires t3. Firing then infinitely often t1t2 never marks p3 but from

every generated state we can fire t4 or t1t4, respectively, to mark p3. The

reduced net satisfies ϕ, because the only maximal firing sequence that does

not eventually mark p3 fires tr and after firing tr it is not possible to mark

p3.

We can verify and falsify LTL-X.

Theorem 5.3.24 Let Σe be a Consumer environment net and Σ be reducible

by Σe. Let ψ be an LTL-X formula referring to P \ Pe only.

Σ c Σe |= ψ ⇔ Σ |= ψ fairly w.r.t. Tk.

Proof As Σ |= ψ fairly w.r.t. Tk ⇒ Σ c Σe |= ψ holds for any ∀CTL∗ formula,

we only need to show Σ c Σe |= ψ ⇒ Σ |= ψ fairly w.r.t. Tk. Let us assume

that Σ 6|= ψ fairly w.r.t. Tk. Hence there is a firing sequence σ of Σ that

is fair w.r.t. Tk and M(Minit, σ) 6|= ψ. By Prop. 5.3.22, there is a maximal

firing sequence σ′ of Σ′ with proj Tk(σ) = proj Tk(σ
′). Since M(Minit, σ) 6|= ψ,

it follows by Prop. 5.3.6 that M(M ′
init, σ

′) 6|= ψ and hence Σ′ 6|= ψ.

2

5.3.4 Producer Reduction

To show that an reducible environment Σe is a Producer, we check that

Σe
q=0 |= AFG(q, 1), i.e. Σe

q=0 is guaranteed to eventually permanently mark

q. For the following we denote Σ p Σe = (Pk, Tk,Wk,M
q=1
init,k) as Σ′.

5.3. Preservation of Temporal Properties 109

p1 q p3

Nk

Ne

Σ

p1 q p3

Σ p Σe

Figure 5.10: Example of a Producer reduction

For the following we assume:

(1) q is 1-safe in Σ and (2’) Σe
q=0 |= EF(q, 1).

Proposition 5.3.25 Minit(q) = 0.

Proof Suppose the initial marking places a token on q, Minit(q) = 1. Because

we assume (2’), there is a firing sequence σe with ∆(σe, q) ≥ 1 in Σe
q=0. Since

σe is also a firing sequence of Σ, this contradicts (1). 2

Proposition 5.3.26 q is 1-safe in Σ′.

Proof Suppose q is not 1-safe in Σ′. Hence there is a firing sequence σ′ with

∆(σ′, q) ≥ 1. Since Σe
q=0 |= EFG(q, 1), there is a firing sequence σe that can

be fired at Minit and marks q. So we can fire Minit[σ
eσ′〉 to generate more

than one token on q in Σ, which contradicts (1), the 1-safeness of q in Σ. 2

Proposition 5.3.27 Let σ be a firing sequence of Σ such that proj Tk(σ) is

a firing sequence of Σ′.

proj Te(σ) is a firing sequence of Σe
q=0.

Proof Let us assume that σ is a firing sequence of Σ but σe := proj Te(σ) is

not a firing sequence of Σe
q=0. By Prop. 5.3.3, there are prefixes σp of σ and

σep of σe such that Mσp(q) > Me
σep
(q). Since Me

init(q) = 0 by definition and

Minit(q) = 0 by Prop. 5.3.25, it follows that ∆(σp, q) > ∆(σep, q) and hence

∆(proj Tk(σp), q) > 0. But then q is not 1-safe in Σ′, which contradicts Prop.

5.3.26. 2

110 5. Cutvertex Reductions

Proposition 5.3.28 Let σ be a firing sequence of Σ.

proj Tk(σ) is a firing sequence of Σ′.

Proof If the above does not hold, then there are prefixes σp of σ and σkp of

proj Tk(σ) such that Mσp(q) > M ′
σkp
(q) by Prop. 5.3.3. Since M ′

init(q) = 1, it

follows that 1 + ∆(σkp , q) < 0 + ∆(σp, q) holds. But then σep := proj Te(σp)

must have generated a token on q, ∆(σep, q) > 1. By Prop. 5.3.27, σep is a

firing sequence of Σe
q=0, which contradicts the 1-safeness of q in Σe

q=0 (cf.

Prop. 5.3.2). 2

The next proposition says that if σ is fair w.r.t. Te and generates a token on

q which Σk does not remove, σe = proj Te(σ) is maximal on Σe
q=0. Intuitively,

this holds because σe generates the token and then behaves undisturbed by

transitions in Tk, as they do not remove the token from q.

Proposition 5.3.29 Let σ = σ1σ2 be a firing sequence of Σ from Minit that

is fair w.r.t. Te. Let σ1 be such that Mσ1(q) = 1 and let σ2 be such that for

σk2 := proj Tk(σ2) holds ∀i, 1 ≤ i < |σk2 |+ 1 : ∆(σk2 (i), q) = 0.

proj Te(σ) is a maximal firing sequence of Σe
q=0.

Proof Let Me
init be M q=0

init |Pe
. By Prop. 5.3.27 and Prop. 5.3.28 holds, that

σe := proj Te(σ) is a firing sequence of Σe
q=0. Let us assume σe is not maximal.

Thus σe is finite andMe
σe(q) = 1 and σ does not eventually permanently mark

q (Prop. 5.3.4). Since Me
σe(q) = 1, it follows that ∆(σe, q) = 1. Let σp be a

prefix of σ2 with Mσ1σp(q) = 0 containing σe. Such a prefix exists because q is

not permanently marked by σ. It follows that 0 =Minit(q)+∆(σ1σp, q). Since

σk2 does not change the token count on q, 0 = ∆(σe, q) + ∆(proj Tk(σ1), q).

It follows that ∆(proj Tk(σ1), q) = −1. But since we assume that Mσ1(q) =

1 = ∆(proj Tk(σ1), q) + ∆(proj Te(σ1), q), proj Te(σ1) = +2, which contradicts

1-safeness of q in Σq=0. 2

For the following we assume: (1) and (2) Σe
q=0 |= AFG(q, 1).

The following lemma is the Uniqueness Lemma for the Producer reduction

(cf. Lemma 5.3.11 for the Borrower reduction).

5.3. Preservation of Temporal Properties 111

Lemma 5.3.30 (Uniqueness Lemma) Let σ1, σ2 be firing sequences of Σ.

If ∆(σ1, p) = ∆(σ2, p), ∀p ∈ P ,

then ∆(proj Tk(σ1), p) = ∆(proj Tk(σ2), p), ∀p ∈ Pk.

Proof Let σk1 denote proj Tk(σ1) and σk2 denote proj Tk(σ2). Similarly, let

σe1 be proj Te(σ1) and σe2 be proj Te(σ2). As ∆(σ1, p) = ∆(σ2, p), ∀p ∈ P ,

and transitions in Te cannot change the token count on places in Pk, it

follows that ∆(σk1 , pk) = ∆(σk2 , pk), ∀pk ∈ Pk \ {q} holds. Let us assume

that ∆(σk1 , q) 6= ∆(σk2 , q). It follows that also ∆(σe1, q) 6= ∆(σe2, q), because

∆(σe1, q) + ∆(σk1 , q) = ∆(σe2, q) + ∆(σk2 , q) by assumption. Since σk1 and σk2

are both firing sequences of Σ′ by Prop. 5.3.28 and q is 1-safe in Σ′, it follows

that ∆(σk1),∆(σk2) ∈ {−1, 0}. Without loss of generality let ∆(σe1, q) = 1

and ∆(σe2, q) = 0. Since Σe is a producer and thus satisfies AFG(q, 1), a

firing sequence σeg is enabled that eventually marks q after firing σe2. σeg is

also a firing sequence from Mσ2 , as Mσ2 |Pk\{q} =Me
σe
2

|Pk\{q} by Eq. 5.1b and

Mσ2(q) ≥ 0 = Me
σe
2

(q). But then σeg is also a firing sequence from Mσ1 and

hence proj Te(σ1σ
e
g) = σe1σ

e
g is a firing sequence of Σq=0

e that generates two

tokens on q. This contradicts 1-safeness of q in Σe
q=0 (Prop. 5.3.2). 2

We now show the two main propositions that imply

• FsN ′,max(M
′
init) ⊆ proj Tk(FsN,{Tk,Te}(Minit)) and

• proj Tk(FsN,{Tk}(Minit)) ⊆ FsN ′,max(M
′
init).

Again this means that

FsN ′,max(M
′
init) = proj Tk(FsN,{Tk}(Minit)) = proj Tk(FsN,{Tk,Te}(Minit))

holds (cf. page 94).

Proposition 5.3.31 Let σ′ = σ′
1σ

′
2 be a maximal firing sequence of Σ′. Let

σ1 be a firing sequence of Σ with proj Tk(σ1) = σ′
1.

If σ1 is finite, then there is a firing sequence σ2 of Σ such that σ1σ2 is

fair w.r.t. Tk and Te and proj Tk(σ2) = σ′
2.

112 5. Cutvertex Reductions

Proof The proof is in most parts equal to the proof of Prop. 5.3.14 for the

Borrower reduction on page 96.

In the first if-Block (line 10-16) we use a maximal firing sequence σe

on Σe
q=0 instead of on Σe

q=1. We use that Σe
q=0 |= AFG(q, 1) instead of

Σe
q=1 |= AFG(q, 1). Except for these changes the proof is the same. 2

Proposition 5.3.32 Let σ be a firing sequence of Σ that is fair w.r.t. Tk.

proj Tk(σ) is a maximal firing sequence of Σ′.

Proof By Prop. 5.3.28, σ′ := proj Tk(σ) is a firing sequence of Σ′. Let

us assume that σ′ is not maximal but σ fair w.r.t. Tk. Thus σ′ is finite

and M ′
σ′(q) = 1 and σ does not eventually permanently mark q. Hence

∆(σ′, q) = 0. Because σ is maximal and only finitely many transitions of Tk

are fired, it follows that σ is fair w.r.t. Te. By Prop. 5.3.29, σe = proj Te(σ) is

a maximal firing sequence of Σe
q=0. Since Σe

q=0 |= AFG(q, 1), we can divide

σe into a prefix σep that marks q and a suffix σes that does not change the

token count on q (σe = σepσ
e
s and M(Me

σp
, σes) |= G(q, 1)). Let σp be a prefix

of σ that contains σ′ and σep. It follows that ∆(σp, q) = 1 holds. But any

prefix σp2 that extends σp also satisfies ∆(σp2 , q) = 1, since σes never effects

q’s token count. Consequently, σ eventually permanently marks q, which is

a contradiction. 2

Theorem 5.3.33 Let Σe a Producer environment net and Σ be reducible by

Σe. Let ϕ be a CTL∗
-X formula referring to P \ Pe only.

Σ p Σe |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk

Σ p Σe |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk and Te.

Proof This follows analogously to the proof of Theorem 5.3.16 on page 100

by Prop. 5.3.28, the Producer’s Uniqueness Lemma 5.3.30, Prop. 5.3.31 and

Prop. 5.3.32. 2

The Producer reduction does not allow for verification or falsification of CTL

or LTL using X. Consider the properties ϕ1 = AX(p3, 1), which is expressible

in CTL and LTL, and ψ = AXX(p3, 1), expressible in LTL. ϕ1 holds on Σ p Σe

in Fig. 5.10 but not on Σ, as Σ has to fire two transitions to mark p3. Hence

5.3. Preservation of Temporal Properties 113

verification of LTL and CTL as well as falsification of CTL is not possible

via Σ p Σe. ψ holds on Σ but not on Σ p Σe, as only p1 is marked after two

transition firings. This shows that LTL cannot be falsified via Σ p Σe.

5.3.5 Dead End Reduction

We defined an environment Σe to be a Dead End, if q is not 1-safe in

Σe
q=1, but Σe

q=0’s behaviour does not change the token count on q (Σe
q=0 |=

AG(q, 0)). Technically the Dead End reduction is not necessary to preserve

LTL-X properties: Although we defined the Dead End-reduced in Def. 5.2.2 as

Σ d Σe = (P̃ , T̃ ,Wk|(P̃ ,T̃),Minit,k|P̃) where P̃ = Pk \{q} and T̃ = Tk \ (q
•∪ •q),

we show here that Σ′ can be either Σ bΣe or also Σ c Σe. In a second step,

we show that q is never marked in Σ and Σ′, which justifies to remove q•∪ •q.

p1

q

p3

tω

2

Nk

Ne

Σ

p1 p3

Σ d Σe

Figure 5.11: Example of a Dead End reduction

For this special case it is convenient to use another effect equation ex-

pressing that if a firing sequence σ has no occurrences of •q ∪ q•, then its

effect on all places in Pk is completely determined by transitions in Tk. Let

σ be a transition sequence in (T \ (•q ∪ q•))∗ and σ′ be a transition sequence

in T ′∗.

∆(σ, p) = ∆(σ′, p), ∀p ∈ Pk. (5.2)

The following proposition says, that if σ is a firing sequence of Σ and every

prefix of proj Te(σ) does not change the token count on q, then proj Tk(σ) is a

firing sequence of Σk.

Proposition 5.3.34 Let σ be a firing sequence of Σ.

If every prefix σep of proj Te(σ) satisfies ∆(σep, q) = 0, then proj Tk(σ) is a

firing sequence of Σk.

114 5. Cutvertex Reductions

Proof As transitions in Te do not change the token count of q, it follows by

Eq. 5.1a, that the token count on Pk is completely determined by transitions

in Tk. 2

For the following we assume: (1) q is 1-safe in Σ and

(2) q is not 1-safe in Σe
q=1 and (3) Σe

q=0 |= AG(q, 0).

The first observation, we make, is that the kernel Σk does not generate

tokens on q.

Proposition 5.3.35 Let σ be a finite firing sequence of Σ.

∆(proj Tk(σ), q) ≤ 0

Proof Let us assume that σk := proj Tk(σ) generates a token on q, ∆(σk, q) >

0. As q is 1-safe in Σ, proj Te(σ) does not generate a token on q. So by Prop.

5.3.34, we can fire σk on Σk and hence on Σ. Since q is not 1-safe in Σe
q=1,

there is a firing sequence σe that generates more than one token, ∆(σe, q) ≥ 1.

Hence the firing σkσe from Minit generates a marking on Σ with more than

one token on q. 2

Proposition 5.3.36 Let σ be a firing sequence of Σ.

proj Te(σ) is a firing sequence of Σe
q=0.

Proof If σ is a firing sequence of Σ but σe := proj Te(σ) is not a firing

sequence of Σe
q=0, then there are prefixes σp of σ and σep of σe such that

Mσp(q) > Me
σep
(q) by Prop. 5.3.3. But then ∆(proj Tk(σp), q) > 0, which

contradicts Prop. 5.3.35. 2

Proposition 5.3.37 Let σ be a firing sequence of Σ.

σ does not fire a transition in •q ∪ q•.

Proof By Prop. 5.3.35, ∆(proj Tk(σ), q) ≤ 0. As σe := proj Te(σ) is a firing

sequence of Σe
q=0, it follows by assumption (3) that also σe does not generate

a token on q. As consequence also a t ∈ q• is never enabled. 2

Proposition 5.3.38 Let σ be a firing sequence of Σ.

proj Tk(σ) is a firing sequence of Σk.

5.3. Preservation of Temporal Properties 115

Proof By Prop. 5.3.35 it holds that ∆(proj Tk(σ), q) ≤ 0. So proj Te(σ) is a

firing sequence of Σe
q=0 by Prop. 5.3.36. Since Σe

q=0 |= AG(q, 0), it follows

by Prop. 5.3.34 that proj Tk(σ) is a firing sequence of Σk. 2

We have shown in Prop. 5.3.37, that Σ never fires a transition in •q ∪ q•.

Now we show that also Σ′ does not fire a transition in •q ∪ q•. This justifies

why we can replace Σe by the non-producing summary nets, i.e. the borrower

or consumer summary. No transition in q• is ever fired in Σ and in Σ′, so it

does not matter if there is a transition.

Proposition 5.3.39 Let σ′ be a firing sequence of Σ′.

σ′ does not fire transitions in •q ∪ q•.

Proof If Σ′ is Σ b Σe, every firing sequence σ′ is also a firing sequence of Σ

by Prop. 5.3.1. If Σ′ is Σ c Σe, proj Tk(σ
′) is a firing sequence of Σ by Prop.

5.3.18. By Prop. 5.3.37 no firing sequence of Σ fires a transition in •q ∪ q•.

Hence it also follows that also Σ c Σe never fires tr. 2

Propositions 5.3.37 and 5.3.39 justify why the Dead End reductions remove
•q ∪ q•.

We now show correspondences between maximal firing sequences of Σ′

and fair firing sequences of Σ.

• We show FsN ′,max(M
′
init) ⊆ proj Tk(FsN,{Tk,Te}(Minit)) and

• proj Tk(FsN,{Tk}(Minit)) ⊆ FsN ′,max(M
′
init).

Again this means that

FsN ′,max(M
′
init) = proj Tk(FsN,{Tk}(Minit)) = proj Tk(FsN,{Tk,Te}(Minit))

holds (cf. page 94).

• We show a stepwise correspondence: For every maximal firing sequence

σ′ of Σ′ there is a fair firing sequence σ that starts with σ′.

Proposition 5.3.40 Let σ′ be a maximal firing sequence of Σ′.

There is a firing sequence σ of Σ that is fair w.r.t. Tk and Te and

proj Tk(σ) = σ′.

116 5. Cutvertex Reductions

Proof By Prop. 5.3.1, σ′ is a firing sequence of Σ. We construct σ by firing

in turn a transition of σ′ and an enabled transition of Te, if it exists, until all

of σ′ has been fired and no transitions of Te are enabled. We now show that

σ is indeed a firing sequence. Minit does not mark q, since q is 1-safe in Σ

but not in Σe
q=1. As the enabled transitions in Te do not change the token

count on q by assumption (3) and Prop. 5.3.36, σ is a firing sequence of Σ.

By construction, σ is fair w.r.t. Te. From maximality of σ′ it follows that σ

is fair w.r.t. Tk. 2

As we will show that Σ′ allows for falsification of ∀CTL∗ formulas assum-

ing that Σ is fair w.r.t. Tk, we need in addition to Prop. 5.3.40 the following

proposition.

Proposition 5.3.41 Let σ′ be a maximal firing sequence of Σ′.

There is a firing sequence σ of Σ that is fair w.r.t. Tk, starts with σ′ and

proj Tk(σ) = σ′.

Proof By Prop. 5.3.1, σ′ is a firing sequence of Σ. After firing σ′ on Σ we

fire enabled transitions of Te as long as there are any. As transitions of Te do

not change the token count on Tk (Prop. 5.3.37), maximality of σ′ implies

that σ is fair w.r.t. Tk. 2

Proposition 5.3.42 Let σ be a firing sequence of Σ that is fair w.r.t. Tk.

proj Tk(σ) is a maximal firing sequence of Σ′.

Proof By Prop. 5.3.38, σ′ := proj Tk(σ) is a firing sequence of Σ′. Let

us assume σ′ is not maximal. Hence σ′ is finite and can be extended by a

transition t ∈ T ′, i.e. M ′
σ′ [t〉. Let σp be the smallest prefix of σ that contains

σ′. By Eq. 5.2 and Prop. 5.3.37 it follows that σ permanently enables t and

hence σ is not fair w.r.t. Tk. 2

Now we present our main result for the Dead End reduction. Σ d Σe can

be used for verification and falsification of a CTL∗
-X formula ϕ.

Theorem 5.3.43 Let Σe be a Dead End environment and Σ be reducible by

Σe. Let ϕ be a CTL∗
-X

formula referring to P \ Pe only.

5.3. Preservation of Temporal Properties 117

Σ d Σe |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk and Te.

Σ d Σe |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk.

Proof This follows analogously to the proof of Theorem 5.3.16 on page 100

by Prop. 5.3.38, Prop. 5.3.40 and Prop. 5.3.42. For the Dead End reduction

the markings on Σ and Σ′ are uniquely corresponds according to Eq. 5.2 and

Prop. 5.3.37 and Prop. 5.3.39 and Eq. 5.2. 2

A Dead End reduced cannot be used to verify LTL or CTL, or to falsify

CTL properties using the next-time operator. Consider the two nets in Fig.

5.11. The property ϕ = AX(p1, 1) is expressible as CTL and LTL formula.

ϕ is satisfied by Σ d Σe but Σ does not satisfy ϕ because of firings of tω in

Σe. We also cannot falsify LTL properties assuming fairness w.r.t. Tk and

Te. To see this, consider the LTL property ψ = AF((p3, 1) ∧ XX(p3, 0)). ψ

does not hold on Σ d Σe but it does hold on Σ assuming fairness w.r.t. Te, as

tω is permanently enabled it has to be fired eventually. We can falsify that

Σ satisfies an ∀CTL∗ property fairly w.r.t Tk using Σ d Σe as the following

theorem states.

Theorem 5.3.44 Let Σe be a Dead End environment net and Σ be reducible

by Σe. Let ψ be an ∀CTL∗ formula referring to P \ Pe only.

Σ |= ψ fairly w.r.t. Tk ⇒ Σ d Σe |= ψ.

Proof The proof is analogously done to the proof of Theorem 5.3.17. We

use Prop. 5.3.36 instead of Prop. 5.3.7 and Prop. 5.3.41 instead of Prop.

5.3.15. 2

5.3.6 Unreliable Producer Reduction

Σe is an Unreliable Producer if Σe
q=0 eventually permanently marks q at

some executions, otherwise never marks q. Formally, we expressed this be-

haviour in Def. 5.2.2 as Σe
q=0 6|= AG(q, 0), Σe

q=0 6|= AFG(q, 1) and Σe
q=0 |=

AG((q, 1) ⇒ FG(q, 1)). In the following we denote Σ up Σe = (Pk ⊎ {pp},

Tk ⊎ {tc, tp},Wk ⊎ {(pp, tp) 7→ 1, (tp, q) 7→ 1, (pp, tc) 7→ 1},Minit,k ⊎ {pp 7→ 1})

also as Σ′.

118 5. Cutvertex Reductions

t1

t2

t3

t4 t5p1 q p3

Nk

Ne

p1

tc
pp

tp

q p3

Σ up Σe

Figure 5.12: Example of an Unreliable Producer reduction

An Unreliable Producer either does not generate any token on q or it

behaves as a Producer and eventually permanently marks q. A Producer-

reduced net places just a token on q. If we fire tp in the Unreliable Producer-

reduced net, we can emulate this. In the following proof of CTL∗
-X preserva-

tion, we can therefore reuse parts shown for the Producer reduction.

For the following we assume:

(1) q is 1-safe in Σ and (2) Σe
q=0 6|= AG(q, 0).

Basically the following proposition says, that the kernel cannot produce a

token on q. The reason simply is that the environment can produce a token

on q and q is 1-safe in Σ. The constraint that tpproj Tk(σ) has to be a

firing sequence of Σ′, can later be dropped as this is the case for every firing

sequence of Σ (Prop. 5.3.47).

Proposition 5.3.45 Let σ be a finite firing sequence of Σ such that tpproj Tk(σ)

is a firing sequence of Σ′.

∆(proj Tk(σ), q) ≤ 0

Proof Let σk denote proj Tk(σ). Since Σe
q=0 6|= AG(q, 0), there is a firing

sequence σe of Σe
q=0 that generates a token on q. We can fire σe from Minit

to mark q. By Eq. 5.1a and since tpσ
k is a firing sequence of Σ′, we can hence

fire σeσk from Minit. If we assume that σk generates a token, ∆(σk, q) ≥ 1, q

is not 1-safe in Σ (contradiction to (1)). 2

Proposition 5.3.46 Let σ be a firing sequence of Σ such that tpproj Tk(σ) is

a firing sequence of Σ′.

5.3. Preservation of Temporal Properties 119

proj Te(σ) is a firing sequence of Σe
q=0.

Proof Let Me
init be Minit|Pe

. If Prop. 5.3.46 does not hold, there are pre-

fixes σp of σ and σep of proj Te(σ) such that Mσp(q) > Me
σep
(q) by Prop.

5.3.3. Since Me
init(q) = 0 and Minit(q) = 0 by Prop. 5.3.25, it follows that

∆(proj Tk(σ), q) > 0. This contradicts Prop. 5.3.45. 2

Given we produce a token on q by firing tp, the projection onto Tk of any

firing sequence of Σ can be executed on Σ′.

Proposition 5.3.47 Let σ be a firing sequence of Σ.

tpproj Tk(σ) is a firing sequence of Σ′.

Proof The proof is by induction on the length l of σ. The case l = 0 follows

trivially.

l → l+1 : Let σt be a firing sequence of length l+1. We denote proj Tk(σ)

as σk. The case t ∈ Te follows directly by the induction hypothesis. Let us

assume that t ∈ Tk and t is not enabled on Σ′ after firing tpσ
k, ¬M ′

tpσk
[t〉.

By Eq. 5.1a it follows that t ∈ q• and M ′
tpσk

(q) = 0 and Mσ(q) = 1.

Since M ′
init(q) = 0 it follows that ∆(tpσ

k, q) = 0 and hence ∆(σk, q) = −1.

According to Prop. 5.3.25, Minit(q) = 0. Since Mσ(q) = 1, it thus follows

that ∆(σ, q) = +1 and ∆(proj Te(σ), q) = +2. By Prop. 5.3.46, proj Te(σ) is

a firing sequence of Σe
q=0. This contradicts 1-safeness of q in Σe

q=0. 2

The next proposition is a rather technical result stating that if a firing

sequence on Σ contains only finite kernel behaviour and if the kernel does

only temporarily change the token count on q, σ contains maximal behaviour

of Σe, since Σe can basically behave undisturbed by Σk. This result will be

used to show that σ has a corresponding maximal firing sequence on Σ′.

Proposition 5.3.48 Let σ be a firing sequence that is fair w.r.t. Tk.

If proj Tk(σ) is finite and ∆(proj Tk(σ), q) = 0, then proj Te(σ) is a maximal

firing sequence of Σe
q=0.

Proof Let Me
init be M q=0

init |Pe
= Minit|Pe

. By Prop. 5.3.46 and Prop. 5.3.47,

σe := proj Te(σ) is a firing sequence of Σe
q=0. As proj Tk(σ) is finite, it follows

120 5. Cutvertex Reductions

that σ is fair w.r.t. Te. Let us assume that σe is not maximal but σ is

fair w.r.t. Tk. Consequently, σe and thus σ are finite and Me
σe(q) = 1.

σ does not mark q, Mσ(q) = 0, according to Prop. 5.3.4. As we assume

that ∆(proj Tk(σ), q) = 0, it follows that ∆(σe, q) = 0. But this contradicts

Me
σe(q) = 1. 2

Again a technical result follows. We have already seen a version of this

proposition on page 110 for the Producer. It says that if σ is fair w.r.t. Te

and generates a token which Σk does not remove, σe := proj Te(σ) is maximal

on Σe
q=0. Intuitively, this holds because σe generates the token and then

behaves undisturbed by transitions in Tk, as they do not remove the token

from q.

Proposition 5.3.49 Let σ = σ1σ2 be a firing sequence of Σ from Minit that

is fair w.r.t. Te. Let σ1 be such that Mσ1(q) = 1 and let σ2 be such that for

σk2 := proj Tk(σ2) holds ∀i, 1 ≤ i < |σk2 |+ 1 : ∆(σk2 (i), q) = 0.

proj Te(σ) is a maximal firing sequence of Σe
q=0.

Proof This follows analogously to Prop. 5.3.29 on page 110 by Prop. 5.3.46

and Prop. 5.3.47. 2

For the following we assume: (1), (2) and

(3) Σe
q=0 |= AG((q, 1) ⇒ FG(q, 1)).

We now show the two main propositions for Unreliable Producers. They

imply

• proj Tk(FsN ′,max(M
′
init)) ⊆ proj Tk(FsN,{Tk ,Te}(Minit)) and

• proj Tk(FsN,{Tk}(Minit)) ⊆ proj Tk(FsN ′,max(M
′
init)).

Again this means that

FsN ′,max(M
′
init) = proj Tk(FsN,{Tk}(Minit)) = proj Tk(FsN,{Tk,Te}(Minit))

holds (cf. page 94).

Proposition 5.3.50 Let σ be a firing sequence of Σ that is fair w.r.t. Tk.

There is a maximal firing sequence σ′ of Σ′ with proj Tk(σ
′) = proj Tk(σ).

5.3. Preservation of Temporal Properties 121

Proof We denote proj Tk(σ) as σk. We show that tcσ
k or tpσ

k is a maximal

firing sequence of Σ′. By Prop. 5.3.47, tpσ
k is a firing sequence of Σ′ and it

holds proj Tk(tpσ
k) = proj Tk(σ).

Suppose tpσ
k is not maximal but σ is fair w.r.t. Tk. By Prop. 5.3.5

σk is finite and M ′
tpσk

(q) = 1 and σ does not eventually permanently mark

q. Since M ′
init(q) = 0, tpσ

k generates a token on q. From ∆(tpσ
k, q) = 1 it

follows ∆(σk, q) = 0.

We replace tp by tc and show that tcσ
k is still a firing sequence of Σ′.

Let us assume that tcσ
k is not a firing sequence. Hence σk fires a trans-

ition t ∈ Tk that consumes from q. Let σkpt be the minimal prefix of σk

that contains a transition t ∈ q•. Let σp be the minimal prefix of σ with

proj Tk(σpt) = σkp t. It follows that after firing σp the place q is marked and

since Minit(q) = 0, that ∆(σp, q) = 1. As we assume that q is not marked after

firing tcσ
k
p ,M

′
tcσkp

(q) = 0, it follows withM ′
init(q) = 0, that ∆(σkp , q) = 0. Since

∆(σp, q) = ∆(proj Te(σp), q)+∆(σkp , q), it holds that ∆(proj Te(σp), q) = 1. So

proj Te(σp) generates a token on q. But then q is eventually permanently

enabled as ∆(σk, q) = 0 and since proj Te(σ) is a maximal firing sequence of

Σe
q=0 according to Prop. 5.3.48, which satisfies AG((q, 1) ⇒ FG(q, 1)). 2

For the following we assume: (1) - (3) and

(4) Σe
q=0 6|= AG(q, 1).

Proposition 5.3.51 Let σ′ be a maximal firing sequence of Σ′.

There is a firing sequence σ on Σ that is fair w.r.t. Tk and Te and

proj Tk(σ
′) = proj Tk(σ).

Proof First note, that if proj Tk(σ
′) 6= σ′, σ′ has one occurrence of either

tp or tc. Let σk1 and σk2 be transition sequences such that σ′ = σk1 tpσ
k
2 or

σ′ = σk1 tcσ
k
2 and proj Tk(σ

′) = σk1σ
k
2 .

In case proj Tk(σ
′) = σ′, also tcσ

′ is a maximal firing sequence of Σ′, so

that this case can be considered as a special case of σk1 tcσ
k
2 .

Let us assume that σ′ fires tp. Since tp decreases the token count of

pp only and thus only disables tc, tpσ
k
1σ

k
2 is a firing sequence of Σ′ with

122 5. Cutvertex Reductions

proj Tk(σ
′) = σk1σ

k
2 . Analogously to the proof of Prop. 5.3.31 on page 111 or

Prop. 5.3.14 on page 96, respectively, it is shown that there is a corresponding

firing sequence σ of Σ that is fair w.r.t. Tk and Te. Since we assume that

Σe 6|= AG(q, 0), there is a finite firing sequence σe1 of Σe
q=0 that marks q. Since

Σe
q=0 |= AG((q, 1) ⇒ FG(q, 1)), any maximal firing sequence σe of Σe

q=0 with

prefix σe1 satisfies M(Me
init, σ

e) |= FG(q, 1). Since Minit|Pe
= Me

init, it follows

that σ of line 13 is a firing sequence of Σ.

1 /∗ The algori thm ’ s input i s the o r i g i n a l net Σ , the

2 k e rn e l Σk , the environment Σe , the f i r i n g sequence

3 σ1 o f Σ and f i r i n g sequence σ′ = tpσ
k
1σ

k
2 o f the

4 reduced net Σ′ . I t s output i s a f i r i n g sequence o f Σ

5 t h a t i s f a i r w. r . t . Te and Tk . ∗/

6 Input : Σ , Σk , Σe , σ′

7 Output : σ

8 Let σe be a maximal f i r i n g sequence o f Σe
q=0 with

9 M(Me
init, σ

e) |= FG(q, 1) .

10 Let σe1 , σe2 be a t r a n s i t i o n sequences where σe = σe1σ
e
2

11 and Me
σe
1

(q) = 1 .

12 σ′ := σk1σ
k
2 /∗ t runca te tp ∗/

13 σ := σe1

14 i f (σ′ conta in s a t′ ∈ q• with W (q, t′) > W (t′, q)){

15 Let σ′
p be the minimal p r e f i x o f σ′ conta in ing a l l

16 t r a n s i t i o n s t′ with W (q, t′) > W (t′, q) .

17 i f (σ′
p i s i n f i n i t e){

18 while (t rue){

19 σ := σσ′
p(i)

20 i f (∃te ∈ (Te \ q
•) :Mσ[te〉) σ := σte }

21 } else { /∗ σ′
p i s f i n i t e ∗/

22 σ := σσ′
p

23 σ′ := σ′(|σ
′

p|) /∗ t runca te by p r e f i x σ′
p ∗/

24 } }

25 /∗ From now on ho ld s t h a t W (q, σ′(i)) ≤ W (σ′(i), q) ,

5.3. Preservation of Temporal Properties 123

26 ∀i, 1 ≤ i < |σ′|+ 1 . ∗/

27 i f (σ′ conta in s a t′ ∈ q•){

28 Let σ′
p be σ′ ’ s minimal p r e f i x that i n c l ude s a t′ ∈ q• .

29 σ := σσ′
p

30 σ′ := σ′(|σ
′

p|) /∗ t runca te by p r e f i x σ′
p ∗/

31 for (i := 1 ; i < |σe2|+ 1 or i < |σ′|+ 1 ; i := i+ 1){

32 i f (i < |σe2|+ 1) σ := σσe2(i)

33 i f (i < |σ′|+ 1) σ := σσ′(i)

34 }

35 } else { /∗ q 6∈ •σ′(i), ∀i, 1 ≤ i ≤ |σ′| ∗/

36 for (i := 1 ; i < |σ′|+ 1 ; i := i+ 1){

37 σ := σσ′(i)

38 i f (∃te ∈ Te :Mσ[te〉) σ := σte

39 }

40 while (∃te ∈ Te :Mσ[te〉) σ := σte

41 }

42 return σ

Listing 5.2: Generating a firing sequence fair w.r.t. Te and Tk.

As the proof is analogous to the proof of Prop. 5.3.14, we refrain from

reproducing it here. The algorithm in Listing 5.2 deviates from the algorithm

in Listing 5.1 in its initialisation and the if-block from line 14-24. Here we

fix in the initialisation one firing sequence σe that satisfies AFG(q, 1). But not

all firing sequences of Σe
q=0 satisfy AFG(q, 1). Therefore we fire transitions

in Te \ q
• only in case σ′

p is infinite (line 18-21), since then we need not

continue firing σe. In case σ′
p is finite (line 21-24), we can fire it without

jeopardising fairness w.r.t. Te.

Let us now consider the case that σ′ fires tc, σ
′ = σk1 tcσ

k
2 . The transition

sequences σk1 and σk2 fire transitions in Tk \ (
•q ∪ q•) only, because q is 1-safe

in Σ′ according to Prop. 5.3.26. There is also a maximal firing sequence σe

of Σe
q=0 that does not fire transitions in •q ∪ q•, as there is a maximal firing

sequence of Σe
q=0 that never marks q by assumptions (2+3), i.e. Σe

q=0 6|=

AFG(q, 1) and Σe
q=0 |= AG((q, 1) ⇒ FG(q, 1)). We construct σ by firing in

124 5. Cutvertex Reductions

turn a transition of σk1σ
k
2 and σe until both firing sequences have been fired.

Since σk1σ
k
2 and σe do not change the token count of q, the maximality of σ′

and σe implies that σ is fair w.r.t. Tk and Te. 2

Theorem 5.3.52 Let Σe be an Unreliable Producer environment net and Σ

be reducible by Σe. Let ψ be an LTL-X formula referring to P \ Pe only.

Σ up Σe |= ψ ⇒ Σ |= ψ fairly w.r.t. Tk.

Σ |= ψ fairly w.r.t. Tk and Te ⇒ Σ up Σe |= ψ .

Proof We first show Σ up Σe |= ψ ⇒ Σ |= ψ fairly w.r.t. Tk . Let us assume

that Σ 6|= ψ fairly w.r.t. Tk. Hence there is a firing sequence σ of Σ that

is fair w.r.t. Tk and M(Minit, σ) 6|= ψ. By Prop. 5.3.50, there is a maximal

firing sequence σ′ of Σ′ with proj Tk(σ) = proj Tk(σ
′). Since M(Minit, σ) 6|= ψ,

it follows by Prop. 5.3.6 that M(M ′
init, σ

′) 6|= ψ and hence Σ′ 6|= ψ.

Analogously follows Σ |= ψ fairly w.r.t. Tk and Te ⇒ Σ up Σe |= ψ by

Prop. 5.3.51. 2

Theorem 5.3.52 implies that Σ up Σe |= ψ ⇒ Σ |= ψ fairly w.r.t. Tk and

Te holds and that Σ |= ψ fairly w.r.t. Tk ⇒ Σ up Σe |= ψ, since Σ |= ψ fairly

w.r.t. Tk implies Σ |= ψ fairly w.r.t. Tk and Te. With other words, according

to Theorem 5.3.52 Σ up Σe |= ψ ⇔ Σ |= ψ fairly w.r.t. Tk and Te ⇔ Σ |= ψ

fairly w.r.t. Tk.

The Unreliable Producer reduction does not preserve CTL-X. Consider

the example of an Unreliable Producer reduction as illustrated in Fig. 5.12

at the start of this section. As for the Consumer reduction on page 108 the

CTL formula ϕ = AF((p3, 1) ∨ AG(p3, 0)) distinguishes the reduced and the

original net, Σ′ |= ϕ and Σ 6|= ϕ: Firing t1 and then infinitely often t2 never

marks p3 but from every generated state we can fire t3t5 to mark p3. The

reduced net satisfies ϕ, because the only maximal firing sequence that does

not eventually mark p3 fires tc and after firing tc it is not possible to mark

p3.

We cannot verify or falsify CTL or LTL using X via Σ up Σe. Consider the

LTL properties ψ1 = A(XX(p3, 1) ∨ G(p3, 0)) and ψ2 = A(XX(p3, 0)) and the

two nets in Fig. 5.12. Whereas ψ1 holds on Σ up Σe, it does not hold on Σ.

5.3. Preservation of Temporal Properties 125

ψ2 holds on Σ, since Σ has to fire at least three transitions to mark p3, but

ψ2 does not hold on Σ up Σe.

To see that we cannot verify or falsify CTL properties consider the net

in Fig. 5.13 and ϕ = EX(EX(p3, 0) ∧ EX(p3, 1)), which means that after one

step we can take a second step and p3 is unmarked or we can mark p3 taking

a different second step. So ϕ does not hold on Σ as we cannot mark p3 after

two steps but does hold on Σ up Σe.

t1

t2

t3

t4 t5p1 q p3

Nk

Ne

p1

tc
pp

tp

q p3

Σ up Σe

Figure 5.13: Unreliable Producer Reduction does not preserve X for CTL

5.3.7 Producer-Consumer Reduction

An environment net Σe is a Producer-Consumer if it has at least one firing

sequence σe that generates a token on q and also consumes the token it gen-

erated, i.e. Σe
q=0 6|= AG(q, 0) and Σe

q=0 6|= AG((q, 1) ⇒ FG(q, 1)). In the

following we denote Σ pcΣe = (Pk, Tk ⊎ {tr},Wk ⊎ {(q, tr) 7→ 1},M q=1
init,k) also

as Σ′.

t1 t2

t3p1 q p3

Nk

Ne

p1

tr

q p3

Σ pc Σe

Figure 5.14: Example of a Producer-Consumer reduction

For the following we assume:

(1) q is 1-safe in Σ and (2) Σe
q=0 6|= AG(q, 0).

Proposition 5.3.53 Σe
q=0 |= EF(q, 1)

126 5. Cutvertex Reductions

Proof Σe has a firing sequence σg that marks q due to assumption (2). Since

q is 1-safe in Σe by Prop. 5.3.2, it gets at most 1 token. 2

Proposition 5.3.54 Let σ be a firing sequence of Σ that is fair w.r.t. Tk.

There is a maximal firing sequence σ′ of Σ′ with proj Tk(σ
′) = proj Tk(σ).

Proof We will show that either σk := proj Tk(σ) or σktr is a maximal firing

sequence of Σ′. σk is a firing sequence of (Nk,M
q=1
init |Pk

) by Prop. 5.3.28 and

by Prop. 5.3.53. Hence σk is also a firing sequence of Σ′. Suppose σk is not

a maximal firing sequence of Σ′. Thus by Prop. 5.3.5 and Prop. 5.3.26 σk

is finite, Mσk(q) = 1, and after firing σk a transition t′ ∈ T ′ is enabled. If

t′ ∈ Tk, then σk does not eventually permanently mark q, but then σ′tr is a

maximal firing sequence of Σ′. 2

For the following we assume:

(1), (2) and (3) Σe
q=0 6|= AG((q, 1) ⇒ FG(q, 1)).

We now establish the two central propositions.

• proj Tk(FsN ′,max(M
′
init)) ⊆ proj Tk(FsN,{Tk}(Minit)) and

• proj Tk(FsN,{Tk}(Minit)) ⊆ proj Tk(FsN ′,max(M
′
init)) hold.

Proposition 5.3.55 Let σ′ be a maximal firing sequence of Σ′.

There is a firing sequence σ on Σ with proj Tk(σ
′) = proj Tk(σ) and σ is

fair w.r.t. Tk.

Proof Let Me
init be M q=0

init |Pe
and let σe be a firing sequence of Σe

q=0 that

eventually marks q but does not eventually permanently mark q. σe exists

by Prop. 5.3.53 and by assumption (3) Σe
q=0 6|= AG((q, 1) ⇒ FG(q, 1)). Let

σe be divided into prefix σeg and suffix σes such that σe = σegσ
e
s and σeg marks

q, Me
σeg
(q) = 1. We fire a transition sequence σ consisting of up to three

parts, σ = σegσ
kσet . We only fire a tail σet in T∞

e , if σk is finite. If σegσ
k marks

q, we fire σes as tail. Otherwise we fire as σet transitions in Te as long as there

are any enabled. Let us call this tail σes2. Because firing σeg on Σ enables

σk := proj Tk(σ
′) and because we fire σes only if Mσegσ

k(q) = 1, σ is a firing

sequence of Σ.

5.3. Preservation of Temporal Properties 127

Suppose σ is not fair w.r.t. Tk. By Prop. 5.3.5, σ′ is finite and σ eventu-

ally permanently marks q and M ′
σ′(q) = 0. Since q is initially marked at Σ′

but q is not marked after firing σ′, σ′ consumes a token from q, ∆(σ′, q) = −1.

Its projection to T k, σk, might omit tr, hence ∆(σk, q) ≤ 0. In case we fired

σ = σegσ
kσes , σ does not eventually permanently mark q, because σe = σegσ

e
s

does not eventually permanently mark q by assumption and since σk does

not generate a token. Let us consider the case we fired σ = σegσ
kσes2. Since

we fired σes2 from a marking where q has no token, it follows that also σegσ
e
s2

is a firing sequence of Σ. Since q is 1-safe in Σ and σeg generates a token on q,

σes2 does not generate a token on q. Thus σ does not eventually permanently

mark q. 2

Figure 5.15 shows that a stronger version of Prop. 5.3.55 for fairness

w.r.t. Tk and Te does not hold.

q p3

t1t0

t2 t3

N1

N2

Σ

q p3

tr

t2 t3

Σ pc Σe

Figure 5.15: Producer-Consumer: proj Tk(FsN ′,max(Minit)) 6⊆
proj Tk(FsN,{Tk ,Te}). σ′ = t2t3t3... is maximal on Σ′ but there is no σ
of Σ with proj Tk(σ) = proj Tk(σ

′) that is fair w.r.t Tk and Te.

Theorem 5.3.56 Let Σe be a Producer-Consumer environment net and Σ

be reducible by Σe. Let ψ be an LTL-X formula referring to P \ Pe only.

Σ pc Σe |= ψ ⇔ Σ |= ψ fairly w.r.t. Tk.

Proof This follows analogously to the Consumer’s Theorem 5.3.24 at page

108 by Prop. 5.3.55, Prop. 5.3.54. 2

Like the Consumer and the Unreliable Producer reduction, the Producer-

Consumer reduction does not preserve CTL. Consider the Producer-Consumer

example at the start of this section in Fig. 5.14. Yet again the CTL formula

128 5. Cutvertex Reductions

ϕ = AF((p3, 1) ∨ AG(p3, 0)) (cf. page 108) distinguishes the reduced and the

original net: Firing infinitely often t1t2 never marks p3 but from every gen-

erated state we can fire t3 or t1t3 to mark p3. So the original net does not

satisfy ϕ, whereas the reduced net Σ′ satisfies ϕ, because the only maximal

firing sequence of Σ′ that does not eventually mark p3 fires tr and after firing

tr it is not possible to mark p3.

Σ pc Σe does not allows for verification or falsification of CTL or LTL using

X. Consider the properties ψ = A(X(p3, 1) ∨ G(p3, 0)), expressible in LTL,

and ϕ = A(X(p3, 0)), which is expressible in CTL and LTL. Σ pcΣe satisfies

ψ but Σ does not. ϕ does not hold on Σ pc Σe but holds on Σ, has Σ first

fires t1 which does not mark q.

5.3.8 Summary

In this section we have studied in detail what temporal properties each re-

duction preserves and under which fairness constraints. As summary we list

here all results proved. Again Σe refers to the reducible environment of Σ

and Σ′ to the net reduced by the appropriate reduction rule. We first list the

results for stutter-invariant properties.

If Σe is a Borrower, Producer or Dead End and ϕ a CTL∗
-X formula re-

ferring to P \ Pe only, then Σ′ |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk and

Σ′ |= ϕ ⇔ Σ |= ϕ fairly w.r.t. Tk and Te holds (cf. Theorem 5.3.16, 5.3.33,

5.3.43).

If Σe is an Unreliable Producer and ψ and LTL-X formula referring to P \Pe

only, then it holds that Σ up Σe |= ψ ⇔ Σ |= ψ fairly w.r.t. Tk ⇔ Σ |= ψ

fairly w.r.t. Tk and Te (cf. Theorem 5.3.52).

If Σe is a Consumer or a Producer-Consumer and ψ is an LTL-X formula

referring to P \ Pe only, then Σ′ |= ψ ⇔ Σ |= ψ fairly w.r.t. Tk holds (cf.

Theorem 5.3.24, 5.3.56).

Only the Borrower, Consumer and Dead-End reduced can be used for

falsification of properties using X: Given an ∀CTL∗ formula ψ, Σ |= ψ fairly

w.r.t. Tk ⇒ Σ′ |= ψ (cf. Theorem 5.3.17, 5.3.23,5.3.44).

Note, that in case there are several environment nets Σe1 , ...,Σen, the

5.4. Necessity and Sufficiency 129

results of this section justify that all nets are checked simultaneously, since

which reduction rule is applicable depends on Σei only.

5.4 Necessity and Sufficiency

In this section we will first examine whether the set of reduction rules is

sufficient to reduce any environment and whether all six reductions are ne-

cessary to replace any environment while preserving LTL-X. Then we discuss

sufficiency for CTL-X preserving reductions. Of course, our reductions are

not sufficient to replace every environment equivalently w.r.t. CTL-X, as the

results of the previous section show. We will show that any set of reductions

that is sufficient to replace every environment net by an CTL-X equivalent

summary has far more reduction rules.

Necessity and Sufficiency for LTL
-XPreservation The reduction rules’

preconditions can be arranged in a full binary decision tree, where every node

except a leaf has two children. Such a binary tree is given in Fig. 5.4 on

page 83. Since this tree defines a route for every outcome of each inner node’s

decision, our set of reduction rules is sufficient to classify all environment nets.

The results for the Dead End reduction (c.f. Sect. 5.3.5) show that a

Dead End environment can also be replaced by a Borrower or a Consumer

summary. Hence the Dead End reduction is not necessary and we can build

a decision tree like in Fig. 5.16. Although the Dead End reduction is not

necessary to reduce environment nets, it is convenient to single out Dead

Ends since they imply dead transitions and hence indicate a design error of

the net.

We will now show, that all reduction rules of Fig. 5.16 are necessary by

proving that we cannot find another set of reductions preserving LTL-X with

less rules.

We give example nets ΣA and ΣB for every two distinct environment net

classes such that they are distinguishable by an LTL-X formula only due to

their environment nets. Any set of LTL-X preserving reduction rules has to

distinguish these.

130 5. Cutvertex Reductions

Σq=0

e |= AG (q, 0)?

Is q 1-safe in Σq=1

e ? Σq=0

e |= AFG (q, 1) ?

Σq=1

e |= AFG (q, 1)?
Borrower/

Consumer
Producer

ConsumerBorrower

Σq=0

e |= AG ((q, 1) ⇒ FG (q, 1))?

Unreliable Producer Producer-Consumer

yes no

yes no yes no

noyes yes no

Figure 5.16: Decision tree without Dead End environment.

In Fig. 5.17 we give two nets with the same kernel where the right one has

a Borrower environment whereas the left one has a Consumer environment

instead. The LTL-X property ψ = AF(p3, 1) holds for the Borrower net,

because the Borrower environment can fire its transitions at most once and

eventually places the token on q permanently. So the kernel transition has

to mark p3. In contrast, the Consumer net may fire tr and in this case p3 is

not eventually marked.

p1

q

p3

Borrower

Σ |= ψ

ψ = AF(p3, 1)

p1
tr

q

p3

Consumer

Σ 6|= ψ

Figure 5.17: Borrower versus Consumer

Figure 5.18 demonstrates how a non-producing environment can be dis-

tinguished from a producing environment. In the Borrower net the place p3

is never marked, whereas p3 can eventually be marked if the environment

is producing. It is shown analogously that a net with a Borrower or Con-

sumer environment is distinguishable from a net with a Producer, Producer-

Consumer or Unreliable Producer environment.

We are left to show that the producing environments are also distinguish-

able from each other by LTL-X formulas. A net with Producer environment

can be distinguished from a net with Producer-Consumer environment, be-

cause the Producer is guaranteed to place the token on q. Hence p3 is even-

5.4. Necessity and Sufficiency 131

p1

q

p3

ψ = AG(p3, 0) Borrower

Σ |= ψ

p1

q

p3

Producer

Σ 6|= ψ

Figure 5.18: Borrower versus Producer

tually marked in the Producer net of Fig. 5.19. A Producer-Consumer

environment can decide remove the token from q and an Unreliable Producer

environment can decide not mark q. Hence there is an execution that does

not eventually mark p3.

p1

q

p3

Producer

Σ |= ψ

ψ = AF(p3, 1)

p1

q

p3

Producer-Consumer

Σ 6|= ψ

Figure 5.19: Producer versus Producer-Consumer

Finally, we show that Producer-Consumer environments must be distin-

guished from Unreliable Producer environments in Fig. 5.20. The net with

an Unreliable Producer environment satisfies ψ, i.e. if p3 eventually gets

marked, then it always will eventually be marked again, as the token will

cycle within the kernel. In the net with Producer-Consumer environment

the token may also cycle within the kernel but every time the token is placed

on q the environment may decide to remove the token.

p1

q

p3

ψ = A((F(p3, 1)) ⇒ GF(p3, 1)) Producer-Consumer

Σ 6|= ψ

p1

q

p3

Unreliable Producer

Σ |= ψ

Figure 5.20: Producer-Consumer versus Unreliable Producer

So we have now shown that the set of rules is sufficient to replace any

environment net and that all reductions are necessary to preserve LTL-X.

Sufficiency for CTL
-X Preservation Only the Borrower, Producer and

Dead End reductions preserve CTL∗
-X and hence CTL-X, as we have seen in

132 5. Cutvertex Reductions

Sect. 5.3. We will show that any sufficient set of CTL-X preserving rules is

much larger than our set of LTL-X preserving rules.

Using CTL we can also distinguish the environment nets discussed above

and hence a set of CTL preserving reductions has to distinguish at least

all these five environments. Above we used LTL properties that are also

CTL properties for all but the last case. The CTL formula ϕ = EF((p3, 1) ∧

EF(EG(p3, 0))) distinguishes the Producer-Consumer from the Unreliable Pro-

ducer in Fig. 5.20. ϕ holds on the Producer-Consumer as p3 can be marked

and the token can be removed every time it is placed on q. ϕ does not hold

on the Unreliable Producer net, because after q is marked the token circles

within the kernel forever.

Since not all reductions preserve CTL we have to extend the set of reduc-

tions. Fig. 5.21 shows four nets with the same kernel but different Producer-

Consumer environments that can be distinguished from each other by CTL-X

formulas. In the following we present and explain the distinguishing formulas.

The formula ϕA = AGEF(p3, 1) holds for the net in (A) but not for the nets

in (B)-(D), because in (B)-(D) the token can be removed from the contact

place q and then p3 is never marked again. The formula ϕB = EG((p3, 0) ∧

EF(p3, 1)) is satisfied if there is a path where every visited state does not

mark p3 and from every visited state a path leads to a state where p3 is

eventually marked. ϕB does not hold on (B) as the only firing sequence that

never marks p3 fires t1t2 and then it is not possible to mark p3. ϕB holds

on (C) and (D) since the token can circle within the environment net. We

can distinguish (C) from (D) by ϕC = EF((p3, 1)∧EFEG((p3, 0)∧EF(p3, 1))).

We omit some of the quantifiers and motivate the slightly simpler formula

ϕ′
C = EF((p3, 1)∧ FG((p3, 0)∧ EF(p3, 1))) instead. ϕ′

C is satisfied if there is a

path that leads to a state where p3 is marked and also eventually only visits

states where p3 is not marked and where a path starts that leads to a state

where p3 is marked. So ϕ′
C and ϕC hold on (C), since t0 can fire, then the

token can finitely often circle within the kernel and finally the token circles

forever within the environment net. While circling within the environment

net, the token can always be placed onto p3 by firing t4 or t0t4, respectively.

The net in (D) does not satisfy ϕC because p3 can only be marked after t1

5.5. Decomposing Monolithic Petri Nets 133

has been fired and then eventually t2 has to be fired to guarantee that p3 is

never marked again, but then no possibility remains to mark p3.

t3 t4
t1 t2

p3

t5

(A)

t3 t4
t1 t2

p3

t5

(B)

t3 t4
t0 t2

p3

t5

(C)

t3 t4
t1

t0
t2

p3

t5

(D)

Figure 5.21: CTL-X distinguishable nets

This demonstrates that at least four reduction rules have to be introduced

just to replace the Producer-Consumer. Additional reductions have to be

introduced to also replace the Consumer and Unreliable Producer reductions.

So a sufficient set of CTL-X preserving rules has to have a lot more reduction

rules than our set of reductions. To have more reduction rules usually means

that the appropriate reduction is less efficiently determined in the worst case.

5.5 Decomposing Monolithic Petri Nets

So far our results justify the replacement of a reducible environment net

Σe by its summary net S(Σe). In this section we show that there is an

efficient way to determine environment nets for a given monolithic Petri

net. For a connected net Σ with a given set of 1-safe places Psafe ⊆ P , we

present an linear-time algorithm that decomposes Σ into (i) a kernel net Σk

that contains all places mentioned by the temporal logic property ϕ and (ii)

possibly several reducible environment nets Σe1 , ...,Σen . The connectedness

assumption simplifies the following but does not impose a strong restriction,

as we can consider every connected subnet of Σ on its own.

If we know a set of 1-safe places in Σ, the task of finding environment

nets of Σ is basically the task of finding contact places q ∈ (Psafe \ scope(ϕ)),

i.e. after removing q from Σ, Σ is not connected anymore, since kernel and

environment are connected by a single contact place only. We will show

that with a simple modification of Σ, finding contact places is the graph

theoretic problem of finding articulation points q ∈ (Psafe \ scope(ϕ)). Since

the set of articulation points can be determined in linear time by a depth-first

134 5. Cutvertex Reductions

search (DFS) algorithm, we can decompose a net Σ with 1-safe places Psafe

in linear time. In the next section we show how articulation points relate to

contact places. In Sect. 5.5.2 we discuss the 1-safeness constraint of contact

places. A decomposition algorithm is described in Sect. 5.5.3 and different

decompositions strategies are outlined.

5.5.1 Articulation Points and Contact Places

Before we discuss how articulation points can be used to decompose a given

monolithic Petri net, we formally introduce the graph theoretic terms con-

nected component and biconnected component mainly following [32].

Biconnected Components and Articulation points A graph is a pair

G = (V,E) where V is a set of vertices (or nodes) and E ⊆ (V ×V) is a set of

edges (or lines). An edge e = {v, w} is indicated by a line between vertices v

and w. We denote a vertex as a small circle. The graph G∅ = (∅, ∅) is called

the empty graph. A graph G̃ = (Ṽ , Ẽ) is a subgraph of graph G = (V,E), if

Ṽ ⊆ V and Ẽ ⊆ E.

A path P = (VP , EP) is a non-empty graph of the form VP = {v0, v1, ..., vk}

and E = {v0v1, v1v2, ..., vk−1vk} where all the vi are distinct. The vertices

v0 and vk are linked by P and v1, ..., vk−1 are the inner vertices of P . Two

or more paths are independent if none of them contains an inner vertex of

another.

A non-empty graph is said to be connected if there is a path between any

two nodes. A subgraph G̃ is a connected component of G, if G̃ is a maximal

connected subgraph of G, that is G̃ is not contained in any other connected

subgraph of G.

If A,B,C ⊆ V are such that every path between a node a ∈ A and a

node b ∈ B contains a vertex in C, then C separates the sets A and B.

Now we introduce the two main notions, articulation points and bicon-

nected components.

A vertex a ∈ V is an articulation point (or cutvertex), if there are vertices

v and w of the same component such that v, w and a are distinct, and {a}

5.5. Decomposing Monolithic Petri Nets 135

separates {v} and {w}. Alternatively, a is said to be an articulation point if

the deletion of a increases the number of connected components in the graph.

A graph G is said to be biconnected if and only if it has no articulation

points. A graph G̃ is a biconnected component of G iff G̃ is a maximal

biconnected subgraph of G.

Any two nodes of a biconnected graph (or component) are joined by two

independent paths—except for the two examples given in Fig. 5.22.

(a) (b)

Figure 5.22: Smallest biconnected graphs

As illustrated in Fig. 5.23, articulation points divide the graph into bicon-

nected components, so that neighbouring biconnected components share an

articulation point. The biconnected components of G define a partition of

G’s edge set.

Figure 5.23: A graph and its biconnected components. A biconnected com-
ponent is the subgraph within a dashed bubble. Articulation points are
boldly bordered.

Articulation Points as Contact Places The key idea for the decom-

position algorithm is to use a DFS algorithm for determining articulation

points. A good presentation of a DFS algorithm to determine articulation

points can be found in [64]. Formally articulation points are vertices of a

graph. Contact places are special places of a Petri net. We define the graph

GΣ of a Petri net Σ as the graph (V,E) with vertices V = P ∪ T and edges

E = {{x, y} | (x, y) ∈ ((P × T) ∪ (T × P)) : W (x, y) 6= 0}. So GΣ basically

136 5. Cutvertex Reductions

forgets that the bipartite Petri net graph has two kinds of vertices and that

arcs have an direction and weight.

We say that p ∈ P is an articulation place of Σ, iff p is an articulation

point of GΣ. An articulation place q is a contact place iff (i) it is 1-safe and

(ii) it does not separate any two places in scope(ϕ), as the kernel contains

all places of scope(ϕ). To guarantee (ii), we extend GΣ by a vertex vϕ and

edges connecting all nodes of scope(ϕ) to vϕ. With this extension all nodes

in scope(ϕ) are connected via two independent paths, since we assume that

they are initially connected and a second path exists via vϕ.

Now every articulation point a ∈ Psafe\ scope(ϕ) corresponds to a contact

place and the biconnected component containing scope(ϕ) corresponds to the

kernel.

The initial net, Σ:

Grey places are referenced by ϕ.

Boldly bordered places are articu-

lation places.

The modified graph, ĜΣ :

GΣ is extended by vϕ and edges

connecting vϕ to scope(ϕ).

a1 a2 a3
a4

vϕ
E1 E2

Figure 5.24: Extension of GΣ.

Complexity Let us now consider the complexity of decomposing a mono-

lithic Petri net Σ by a DFS algorithm for determining articulation points

when a set of 1-safe places Psafe is given. A good presentation of such an

algorithm is given in [64].

To build the graph GΣ takes O(|P |+ |T |+ |W |), where |W | = |{(x, y) ∈

((P×T)∪(T×P)) |W (x, y) 6= 0}|. To extend this graph by vϕ and connect it

to scope(ϕ) takes time of O(|scope(ϕ)|+1). Determining articulation points

via DFS, takes again time O(|P | + 1 + |T | + |W | + |scope(ϕ)|). Hence the

algorithm determines contact places in O(|P |+ |T |+ |W |) time.

5.5. Decomposing Monolithic Petri Nets 137

5.5.2 1-Safeness of Contact Places

Given we know which places of Σ are 1-safe, we can very efficiently determine

contact places, but to determine whether a given P/T net is 1-safe, is known

to be PSPACE complete [18]. Hence determining whether a single place is

1-safe is at least PSPACE hard. So determining whether an articulation

place is 1-safe is as difficult as LTL model checking itself. But often nets

are known to be 1-safe or it may for instance be possible to determine a

structural bound by linear programming techniques, which can be done in

polynomial time [25].

In the sequel we will prove that we can also modularly determine whether

the (candidate) contact place q is 1-safe: Instead of checking whether q is 1-

safe in the whole net Σ, we can examine the environment Σe and the reduced

net Σ′. This allows us to “guess” which (candidate) contact places are 1-

safe, replace the environment and check afterwards, whether we did guess

correctly. But if we guessed wrongly, we have to undo the replacement.

5.5.2.1 Inducement of 1-Safeness

We will now prove that if we assume additional constraints on the environ-

ment, we can guarantee that q is 1-safe in the original net. Although we

have to check the constraints additionally on the environments, they do not

restrict the sufficiency of our reductions. If we replace an environment at a

1-safe contact place q, these constraints are implied by 1-safeness of q in Σ

(cf. Sect. 5.3).

For the sequel let Σ consist of the two subnets Σe and Σk with contact

place q.

Outline We prove for each reduction that the additional constraints we

make suffice to guarantee that q is 1-safe in Σ. We show that any firing

sequence σ of Σ generates at most one token, by showing that proj Tk(σ) and

proj Te(σ) are constrained to generate together at most one token. Therefore

it is shown that proj Te(σ) is a firing sequence of Σe
q=0 or Σe

q=1, respectively,

and that proj Tk(σ) corresponds to a firing sequence of Σ′. As we assumed

138 5. Cutvertex Reductions

in Sect. 5.3 that q is 1-safe in Σ, we cannot reuse the results accomplished

there.

Borrower and Consumer Reduction

For the following we assume:

(1) q is 1-safe in Σ′ and (2) Σe is a Borrower or Consumer.

Proposition 5.5.1 Let σ be a firing sequence of Σ such that proj Tk(σ) is a

firing of Σk.

proj Te(σ) is a firing sequence of Σq=1
e .

Proof Let Me
init be M q=1

init |Pe
. If the above does not hold, then by Prop.

5.3.3 there is a prefix σp of σ such that for σep := proj Te(σp) it holds that

Mσp(q) > Me
σep
(q). Hence it follows that Minit(q) + ∆(proj Tk(σp), q) > 1. As

we assume that proj Tk(σp) is a firing sequence of Σk and hence of Σ′, this

contradicts to 1-safeness of q in Σ′. 2

Proposition 5.5.2 Let σ be a firing sequence of Σ.

proj Tk(σ) is a firing sequence of Σk.

Proof This follows with Prop. 5.5.1 as for Prop. 5.3.10 2

Theorem 5.5.3 Let Σe be a Borrower or a Consumer environment and let

Σ′ be respectively the Borrower- or Consumer-reduced of Σ.

If the contact place q is 1-safe in Σ′, then q is 1-safe in Σ.

Proof Let σ be a finite firing sequence of Σ. Since proj Te(σ) is a firing

sequence of Σe
q=1 by Prop. 5.5.1 and q is 1-safe in Σe

q=1, ∆(proj Te(σ), q) < 1.

Since proj Tk(σ) is a firing sequence of Σ′ by Prop. 5.5.2 and q is 1-safe in Σ′,

∆(proj Tk(σ), q) ≤ 1. Hence σ generates at most one token on q. 2

Dead End Reduction

As the Dead End-reduced net we study Σ′ := Σk, just like we have done in

Sect. 5.3.5. There we have shown that the reduced net never fires transitions

in •q ∪ q• and that they can hence be removed. For the following result

5.5. Decomposing Monolithic Petri Nets 139

it is more convenient though to consider again Σk as the reduced net, be-

cause we can formulate a simpler and more intuitive constraint. Later on we

will show how to formulate the constraint in case we removed •q∪q• from Σ′.

For the following we assume:

(1) q is never marked in Σ′ and (2) Σe is a Dead End.

Proposition 5.5.4 Let σ be a firing sequence of Σ such that proj Tk(σ) is a

firing sequence of Σ′.

proj Te(σ) is a firing sequence of Σe
q=0.

Proof Let Me
init be M q=0

init |Pe
. If the above does not hold, then by Prop.

5.3.3 there is a prefix σp of σ such that for σep := proj Te(σp) it holds that

Mσp(q) > Me
σep
(q). But then M ′

init(q)+∆(proj Tk(σ), q) > 0, which contradicts

our assumption that q is never marked in Σ′. 2

Proposition 5.5.5 Let σ be a firing sequence of Σ.

proj Tk(σ) is a firing sequence of Σ′.

Proof Let Me
init be M q=0

init |Pe
. If the above does not hold, then by Prop. 5.3.3

there is a prefix σp of σ such that for σkp := proj Tk(σp) it holds that Mσp(q) >

Mk
σkp
(q). Hence σep := proj Te(σp) generates a token on q. But σep cannot

generate a token, since σep is a firing sequence of Σe
q=0 and Σe

q=0 |= AG(q, 0).

2

Theorem 5.5.6 Let Σe be a Dead End environment of Σ.

If the contact place q is never marked in Σ d Σe, then q is never marked

in Σ.

Proof Let σ be a finite firing sequence of Σ. Since σe := proj Te(σ) is a firing

sequence of Σe
q=0 and Σe

q=0 |= AG(q, 0), σe does not generate tokens on q,

∆(σe, q) = 0. Since σk := proj Tk(σ) is a firing sequence of Σ′ and since is q

never marked in Σ′ by assumption, σk also does not generate tokens on q,

∆(proj Tk(σ), q) ≤ 0. 2

140 5. Cutvertex Reductions

An analogous result can be established for a Dead End-reduced, where the

transitions in •q ∪ q• have been deleted. Instead of disallowing a token on q,

we disallow markings that would have enabled transitions in •q. Let Mt be

the minimal enabling marking of t in Σ, i.e. Mt(p) = W (p, t), ∀p ∈ P . For

the case that transitions •q∪q• have been removed, the analogous result can

then be formulated as:

If for every transition t ∈ •q \ q• in Σ′ it holds that (∀M ′ ∈ [M ′
init〉 : ∃p ∈

P ′ :M ′(p) <Mt(p)), then q is never marked in Σ.

To check this result when the set of transitions (•q∪q•) has been removed,

it would hence be necessary to store all forbidden markings that might enable

(the removed) transitions in •q \ q•.

Producer and Producer-Consumer Reduction

For the following we assume:

(1) Minit(q) = 0, (2) q is 1-safe in Σe
q=0 and

(3) q is 1-safe in Σ′ and (4) Σe is a Producer or a Consumer.

Proposition 5.5.7 Let σ be a firing sequence of Σ such that proj Tk(σ) is a

firing of Σ′.

proj Te(σ) is a firing sequence of Σq=0
e .

Proof Let Me
init be M q=0

init |Pe
. If σ is a firing sequence of Σ but σe := proj Te(σ)

is not a firing sequence of Σe
q=0, then by Prop. 5.3.3, there is a prefix σp of σ

such that for the prefix σep := proj Te(σp) of σe it holds that Mσp(q) > Me
σep
(q).

But then ∆(proj Tk(σp), q) > 0, which contradicts assumption (3). 2

Proposition 5.5.8 Let σ be a firing sequence of Σ.

proj Tk(σ) is a firing sequence of Σ′.

Proof If the above does not hold, then by Prop. 5.3.3, there is a prefix σp of σ

such that for σ′
p := proj Tk(σ) it holds that Mσp(q) > M ′

σ′p
(q). Since M ′

init(q) =

1 by definition and Minit(q) = 0 by assumption (1), ∆(proj Te(σ), q) > 1,

which contradicts assumption (2). 2

5.5. Decomposing Monolithic Petri Nets 141

Theorem 5.5.9 Let Σe be a Producer or Producer-Consumer environment

of Σ and Σ′ be the Producer- or Producer-Consumer-reduced. Let q be the

contact place.

If q is 1-safe in Σe
q=0, Minit(q) = 0 and q is 1-safe in Σ′, then q is 1-safe

in Σ.

Proof Let σ be a finite firing sequence of Σ. Since σe := proj Te(σ) is a firing

sequence of Σe
q=0 by Prop. 5.5.7 and q is 1-safe in Σe

q=0, σe generates at

most one token on q. σk := proj Tk(σ) is a firing sequence of Σ′ by Prop.

5.5.8. Since q is 1-safe and initially marked in Σ′, σk does not generate a

token on q, ∆(σk, q) ≤ 0. 2

Unreliable Producer Reduction

For the following we assume:

(1) Minit(q) = 0, (2) q is 1-safe in Σe
q=0 and

(3) q is 1-safe in Σ′ and (4) Σe is an Unreliable Producer.

Proposition 5.5.10 Let σ be a firing sequence of Σ such that tpproj Tk(σ) is

a firing sequence of Σ′.

proj Te(σ) is a firing sequence of Σe
q=0.

Proof Let Me
init be M q=0

init |Pe
. If the above does not hold, then by Prop. 5.3.3,

there is a prefix σp of σ such that for σep := proj Te(σp) it holds that Mσp(q) >

Me
σep
(q). Since Me

init(q) = 0 = Minit(q), it follows that ∆(proj Tk(σp), q) > 0.

But since tpproj Tk(σp) is a firing sequence of Σ′, this contradicts 1-safeness

of q in Σ′. 2

Proposition 5.5.11 Let σ be a firing sequence of Σ.

tpproj Tk(σ) is a firing sequence of Σ′.

Proof The proof is by induction on the length l of σ. The case l = 0 follows

trivially.

l → l+1 : Let σt be a firing sequence of length l+1. We denote proj Tk(σ)

as σk. The case t ∈ Te, follows directly by the induction hypothesis. If

142 5. Cutvertex Reductions

t ∈ Tk and t is not enabled after firing tpσ
k on Σ′, then it follows that

M ′
tpσk

(q) < Mσ(q). Since M ′
init(q) = Minit(q) = 0, ∆(tpσ

k, q) < ∆(σ, q). It

follows that ∆(proj Te(σ), q) > 1. But this contradicts 1-safeness of q in Σe
q=0,

since proj Te(σ) is a firing sequence of Σe
q=0 by Prop. 5.5.10. 2

Theorem 5.5.12 Let Σe be an Unreliable Producer. Let q be the contact

place.

If q is 1-safe in Σe
q=0, Minit(q) = 0 and q is 1-safe in Σ up Σe, then q is

1-safe in Σ.

Proof Let σ be a finite firing sequence of Σ. Since σe := proj Te(σ) is a firing

sequence of Σe
q=0 by Prop. 5.5.10 and q is 1-safe in Σe

q=0, ∆(proj Te(σ), q) ≤

1. tpproj Tk(σ) is a firing sequence of Σ′ by Prop. 5.5.11. Since q is 1-safe in

Σ′ by assumption, ∆(proj Tk(σ), q) ≤ 0. 2

Conclusion We have shown that if the contact place q is 1-safe in a

Borrower- or Consumer-reduced net Σe
q=0, then q is also 1-safe in the ori-

ginal net Σ. If q is never marked in a Dead End-reduced, then q is also never

marked in the original net Σ. If q is initially unmarked in Σ, q is 1-safe in

Σe
q=0 and q is 1-safe in Σ′, then q is 1-safe in the original net Σ, where Σ′ is

the Producer- or Unreliable Producer- or Producer-Consumer-reduced of Σ.

As observed at the outset, we have shown here that Σe satisfying addi-

tional constraints induces that q is 1-safe in Σ and we have shown in Sect.

5.3 that if q is 1-safe in Σ these additional constraints on Σe are implied.

The results of this section also justify the replacement of an environment

Σe1 by another environment Σe2 satisfying the same constraints. To see this

suppose we have two nets Σ1 and Σ2 both with the same kernel but Σ1 has

environment Σe1 and Σ2 has environment Σe2 . If we can replace Σe1 and Σe2

both by the same summary S(Σe1) = S(Σe2), then the reduced nets Σ′
1 = Σ′

2

are equivalent w.r.t. LTL-X properties referring to Pk \ {q} from Σ1 and Σ2

(assuming fairness) by the results of Sect. 5.3. Hence also Σ1 and Σ2 are

indistinguishable by LTL-X properties referring to Pk \ {q}.

5.5. Decomposing Monolithic Petri Nets 143

5.5.3 Applying Reductions and DFS

In the following we describe how we use a DFS-algorithm determining bicon-

nected components [64] in combination with our reduction rules.

Input of the algorithm is a given net Σ, a set of places scope(ϕ), as well as

a set of 1-safe places of Σ, Psafe. The algorithm reduces the net following the

DFS, such that contact places are in Psafe \ scope(ϕ) and the kernel contains

all of scope(ϕ).

1. Generate the modified GΣ, GΣ̃.

Initialise GΣ = (VΣ, EΣ) := (P ∪T, {{x, y} | (x, y) ∈ (P ×T)∪(T×P) :

W (x, y) 6= 0}). Then, as illustrated in Fig. 5.24, connect every vertex

in scope(ϕ) with vϕ to build GΣ̃ := (VΣ ∪ {vϕ}, EΣ ∪ {{vϕ, p} | p ∈

scope(ϕ)}).

2. Perform a DFS to determine biconnected components of GΣ̃.

The DFS uses a stack to keep track of the currently traversed com-

ponent. Visited edges are put onto the stack. If an articulation point

a ∈ Psafe \ scope(ϕ) is found, edges are removed from the stack’s top

down to the first encounter of a.

(a) The search starts at a place p ∈ scope(ϕ), so that the first and

thus the last component on the stack is the biconnected component

containing all places in scope(ϕ). This component corresponds to

the kernel of Σ.

(b) When an articulation point is found, the removed edges define a

reducible environment E. Replace the subnet ΣE corresponding

to E by its summary S(ΣE).

Replacement Strategies By implementing the algorithm as described

above, the smallest environment subnets are successively replaced. Figure

5.25 contrasts this with a strategy to replace maximal environment subnets.

There are many possible replacement strategies in between these two ex-

tremes. To avoid the combinatorial blow-up it is theoretically best to replace

144 5. Cutvertex Reductions

(a)

Σk Σe

p1 p2

(b)

p1 p2

Σk Σe1Σe2

Figure 5.25: Decomposition into kernel and (a) maximal and (b) minimal
environments.

the smallest possible environment. But to determine the appropriate reduc-

tion, we have to model check every environment at most three times (cf. Fig.

5.4) and in the end we might replace the environment by a summary net with

as many states. If we replace smallest environments that risk increases. This

inspired us to optimise our algorithm by micro reduction rules. The appro-

priate reduction rule for an environment consisting of an articulation point,

a transition and up to one additional place is determined by matching the

net structure instead of model checking. Micro reductions will be presented

in Sect. 5.7.

5.6 Cost-Benefit Analysis

As shown in Sect. 5.5.1 the decomposition of Σ can be determined in time

linear in the size of Σ given we know whether cutvertex places are 1-safe. We

discussed in Sect. 5.5.2 approaches that allow to use our technique even if

the set of 1-safe places is not known in advance.

In the following we make a cost-benefit analysis of a net like the one in

Fig. 5.26 by replacing minimal environment nets.

Convention We refer to the net Σ of Fig. 5.26 as Σk ◦Σe1 ◦Σe2 to stress

that Σ chains up Σk,Σe1 and Σe2 . Analogously we denote the reduced net Σ′

as Σk ◦ S(Σe1 ◦ S(Σe2)). We use |TSΣ1
|Σ to denote the number of states and

state transitions of a subnet Σ1 has within Σ.

If Σ mainly evolves sequentially, the size of the state space of Σ can be

approximated as the sum of the state space sizes of its subsystems |TSΣ| =

|TSΣk
|Σ + |TSΣe1

|Σ + |TSΣe2
|Σ, but if kernel and environment evolve con-

currently the state space size is better approximated as |TSΣ| = |TSΣk
|Σ ·

|TSΣe1
|Σ · |TSΣe2

|Σ. The state space size of the reduced net is analog-

5.6. Cost-Benefit Analysis 145

ously approximated as |TSΣ′ | = |TSΣk
|Σ′ + |TSS(Σe1

+S(Σe2
))|Σ′ or |TSΣ′ | =

|TSΣk
|Σ′ · |TSS(Σe1

+S(Σe2
))|Σ′ where |TSS(Σe1

+S(Σe2
))|Σ′ is at most 3 and it is

guaranteed that |TSΣ′| ≤ |TSΣ|. Consequently the reduced net saves the

more the more concurrent Σk,Σe1 and Σe2 evolve and the bigger their state

spaces. As LTL model checking is in O(|TSΣ| ·2
|ψ|) the balance is even better

when complex formulas are examined. But to determine the reduction we

also have expenses.

Σk ◦ (Σe1 ◦ Σe2)

q2

q1

Σe2

Σe1

Σk

1. check & replace Σe2

2. check & replace Σe1 ◦ S(Σe2)

Σk ◦ S(Σe1 ◦ S(Σe2))

q2 q1

S(Σe1 ◦ S(Σe2))
Σk

Figure 5.26: Replacement of minimal environment nets.

To replace Σe2 we have to identify the appropriate summary net, S(Σe2).

In the worst case this entails checking up to three LTL formulas (cf. Fig.

5.4), either (i) AG(q, 0), AFG(q, 1) and AG((q, 1) ⇒ FG(q, 1)) on Σq=0
e2

, or (ii)

AG(q, 0) on Σe
q=0 and AG((q, 0) ∨ (q, 1)) and AFG(q, 1) on Σq=1

e2
. The states

on Σq=0
e2

are also reachable within Σ, so that |TSΣe2

q=0 | ≤ |TSΣe2
|Σ follows.

If q is eventually marked on Σ, all states of Σq=1
e2

are also reachable on Σe2

within Σ , so that |TSΣe2

q=1 | ≤ |TSΣe2
|Σ is guaranteed. But if q is never

marked on Σ, then spurious behaviour in Σe2
q=1 is possible, since the token

on q might enable additional transitions. In this case it is not possible to

give an upper bound on the expense, as Σq=1
e2 might become unbounded. In

Sect. 5.2 we discussed ways to deal with these cases.

So suppose we do not encounter spurious behaviour. Determining the

appropriate summary net for Σe2 is in O(|TSΣe2
| · 28), since the longest

formula AG((q, 1) ⇒ FG(q, 1)) has eight operators when expressed as via

¬,∧,X and U. Determining the replacement for Σe1 ◦ S(Σe2) is hence in

O(|TSΣe1
◦S(Σe2

)| · 2
8). TSΣe1

◦S(Σe2
) might be much smaller than |TSΣe1

◦Σe2
|,

especially if Σe1 and Σe2 have many states and evolve concurrently. But in

the worst case Σe2 has as many states as S(Σe2), which means that Σe2 has

146 5. Cutvertex Reductions

a very small state space of at most 3 states.

To summarise, our method saves ∆TS := |TSΣk◦Σe2
◦Σe1

|−|TSΣk◦S(Σe2
◦S(Σe1

))|

states. For each replacement we risk to spend O(|TSΣe
· 28|), where Σe is

the environment without any prior replacements. As a rule of thumb, our

method pays off when state spaces of the component nets are bigger than

the state spaces of their summaries and if the component nets evolve concur-

rently. As LTL model checking is in O(|TSΣ| · 2
|ϕ|) the method usually also

pays off when formulas more complex than AG((q, 1) ⇒ FG(q, 1)) are model

checked. We might get an overhead when we apply our method to a net

where its components evolve sequentially and a simple formula is checked.

Of course, the above analysis is a worst case analysis. For instance we

only have to check the three formulas under (ii) if they all evaluate to false.

But usually it is not necessary to explore the full state space to find a counter-

example. Also—as outlined in the following section—it is straight forward to

implement optimisations based on the structure of the environments. These

optimisations do not rule out the worst case behaviour but make it less likely.

5.7 Optimisations

In the sequel we will introduce two structural optimisations, namely micro

reductions and pre/postset optimisations for connected environment nets.

We then examine optimising the order of formulas in the decision tree clas-

sifying the summary nets. Last we discuss optimising the replacement time

by parallelising the identification of the appropriate reduction.

5.7.1 Micro Reductions

Micro reductions determine the appropriate summary net for the smallest

environment nets by just inspecting the net structure. We implemented two

such replacement algorithms for connected environment nets. The summary

net for an environment net Σe with just one transition and upto two places

is determined by the algorithm in Listing 5.3. Since the environment has

just one transition, it either behaves as a producer, a consumer or does not

5.7. Optimisations 147

change the token count on q, in which case we can replace it by a borrower

net. If the transition t is connected to q via arcs with arc weight greater one,

then t can never be fired in Σ since q is 1-safe (line 7). Σe is a consumer if

t can consume a token from q. We have to only check that p is sufficiently

marked to allow at least one firing of a consuming transition t—the contact

place q might get marked later on (line 9).

1 l e t q be the contact p la ce and t be the t r a n s i t i o n ;

2 l e t p be the other p la ce i f i t e x i s t s ;

3 i n t ∆q := W (t, q)−W (q, t) ;

4 bool enabled_p := true ;

5 i f (p e x i s t s) enabled_p := W (p, t) ≤Minit(p) ;

6 bool enabled := W (q, t) ≤ Minit(q) ∧ enabled_p ;

7 i f (W (t, q) > 1 ∨ W (q, t) > 1) borrower ;

8 e l s e i f (∆q == 1 ∧ enabled) producer ;

9 e l s e i f (∆q == −1 ∧ enabled_p) consumer ;

10 else borrower ;

Listing 5.3: Micro reductions for one transition and up to two places.

The summary net for an environment net Σe with just two transitions,

contact place q and upto one additional place p and maximal arc weight 1 is

determined by the algorithm in Listing 5.4.

We replace Σe with a borrower if q is read only by t1 and t2. If |q•| < | •q|

holds, then either both transitions have q as output place and one of them

may have q as input place or only one transition has q as output. We check

whether one transition can produce. A transition t1 ∈ •q \ q• has a second

input place p as input place, since q is 1-safe. If Minit(p) == 1 then t1 can

generate a token on q. If t2 may consume the token from p, then Σe is

an unreliable producer, else a producer (line 8-9). If Minit(p) == 0 then

neither t1 nor t2 can change the token count on q and we can replace Σe by

a borrower net.

If |q•| > | •q| holds, then either both transitions have q as input place and

one of them may also have q as output place or only one transition has q as

input and q has no input transitions. A transition t1 ∈ q• \ •q can consume

148 5. Cutvertex Reductions

a token from q, if it either has no further or its other input p is marked or

can get marked by firing t2. If t1 cannot consume, then because of p being

not sufficiently marked. We then check whether t2 can consume. If neither

t1 nor t2 are enabled, the token count on q cannot be changed and we replace

Σe by a borrower net.

If | •q| = |q•| but not •q = q•, then q has an input transition t1 and an

output transition t2. Again p has to be input place of t1, since q is 1-safe

in Σ. Line 20 handles the case that t1 has output q and reads p. The

place p can never get marked, since q is 1-safe in Σ. Hence if t2 has p only as

output, q can never be marked since this would enable t2. We replace such an

environment by a dead end. If p is initially marked, t1 can produce. If t2 can

also fire, then Σe is a producer-consumer else a producer. Transition t2 can

fire, if does not depend on the token count on p. As p will be unmarked after

t1 fired. If p is initially unmarked, then t1 cannot produce (but regenerate).

If t2 has p as input also t2 is disabled and Σe does not change the token count

of q. Hence we replace Σe by a borrower. If t2 has no further input place,

then Σe is a consumer.

1 l e t q be the contact p la ce ;

2 l e t p be the other p la ce i f i t e x i s t s ;

3 i f (•q == q•) borrower ;

4 else i f (|q•| < | •q|) {

5 l e t t1 be the t r a n s i t i o n in •q \ q• ;

6 l e t t2 be the other t r a n s i t i o n ;

7 i f (Minit(p)==1) {

8 i f (t2 ∈ p• ∧ q 6∈ t•2) un r e l i a b l e _producer ;

9 else producer ;

10 } else borrower ;

11 } e l s e i f (|q•| > | •q|) {

12 l e t t1 be a t r a n s i t i o n in q• \ •q ;

13 l e t t2 be the other t r a n s i t i o n ;

14 i f ((| •t1| == 2) ⇒ (Minit(p) > 0 ∨ (t2 ∈
•p \ p•))) consumer ;

15 else i f (t2 ∈ q• \ •q ∧ | •t2| == 1) consumer ;

5.7. Optimisations 149

16 else borrower ;

17 } else {

18 l e t t1 be the t r a n s i t i o n in •q ;

19 l e t t2 be the t r a n s i t i o n in q• ;

20 i f (p ∈ (•t1 ∩ t
•
1) ∧ p ∈ t•2 ∧ ¬(p ∈ •t2)) deadend ;

21 i f (Minit(p) == 1) {

22 i f (p ∈ •t2) producer ;

23 else producer−consumer ;

24 else {

25 i f (p ∈ •t2) borrower ;

26 else consumer ;

27 }

28 }

Listing 5.4: Micro reductions for two transitions, contact place, upto one

additional place and arc weights in {0, 1}.

By using micro reductions we can efficiently replace the smallest envir-

onment nets and do not have to model check this small nets (upto three

times) exploring the full state space. Also we do not risk to explore spurious

behaviour when examining the graph structure only.

5.7.2 Pre-/Postset Optimisation

A further means to decrease the costs of determining the appropriate sum-

mary net is to inspect the initial marking of the contact place q and its

pre-/postsets within the environment. Obviously, if the cutvertex has an

empty postset within the environment, the environment net cannot consume

a token, and if the cutvertex has an empty preset or if the cutvertex is ini-

tially marked, the environment net cannot produce a token. We can be even

more precise, if we take reading transitions into account. Let read(q) denote

the set of transitions reading q and let q•e a short hand for the postset of q

within the environment, q•e = q• ∩ Te, and analogously •qe = •q ∩ Te. An

environment Σe cannot consume if q•e \ read(q) = ∅, and Σe cannot produce

150 5. Cutvertex Reductions

may_produce := •qe \ read(q) 6= ∅ ∧Minit(q) == 0
may_consume := q•e \ read(q) 6= ∅

environment type prerequisite

producer may_produce

producer-consumer may_consume ∧ may_produce

unreliable producer may_produce

dead end may_produce ∧ (q•e 6= ∅)
consumer may_consume

Table 5.1: Structural prerequisites for the environment types

if •qe \ read(q) = ∅. It is easy to see, that an environment that can neither

produce nor consume can be replaced by a Borrower net. Tabular 5.1 lists

prerequisites for the different environment types. A Producer environment

needs to be able to produce, hence there has to be a transition that can

put a token onto the contact place q. Similarly, the producing environments

Producer-Consumer, Unreliable Producer and Dead End need to be able to

place a token on q. The Producer-Consumer also has to be able to consume

the token. A Dead End environment has to consume a token from q or at

least read q, since otherwise q could not be 1-safe in the original net. Using

these criteria, the traversal of the decision tree (cf. Fig. 5.4) to determine

the appropriate summary may be considerably shortened.

5.7.3 Order of Formulas

How many states are explored to determine the appropriate summary net,

depends also on the order in which the formulas are checked on Σe. For

instance if an oracle tells us that the environments are in majority producing,

then we start by checking AFG(q, 1) first and postpone the check of AG(q, 0)

(cf. Fig. 5.4). So if we have an environment net and its contact place q such

that |q•| = 0, then we start by checking AFG(q, 1). Also |q•| = 0 implies

that Σe cannot be a Producer-Consumer environment. If | •q| = 0, then Σe

cannot generate a token on q. So we do not have to check AG(q, 0) on Σe
q=0

or whether Σe
q=1 is 1-safe.

5.8. Related Work 151

5.7.4 Parallel Model Checking

In order to reduce the reduction time, our approach conveniently allows par-

allelisation of model checking: To identify the appropriate reduction rule for

an environment, the five LTL-X properties making up the rules’ preconditions

(cf. Fig. 5.4) can be checked in parallel. The outcome is then combined to

determine the appropriate summary net.

5.8 Related Work

Since the first works on compositional reasoning in the beginning of 1980s,

many works on compositional reasoning have been published. In the following

we compare our works with the works we believe are most relevant to ours.

Decompositional Methods tailored to Petri Nets The work of Vogler

and Wollowski et al. focuses on decomposition for logic synthesis. In [110, 93]

an approach is presented to decompose Signal Transition Graphs—a version

of Petri nets for the specification of asynchronous circuit behaviour—into

components that together implement the global behaviour. The decompos-

ition process starts from an initial partition of the output signals, which

determines initial components. These components are then stepwise trans-

formed by place deletion or transition contraction until a valid final decom-

position is found. Logic synthesis is then applied to yield one circuit per

component.

Concerned with verification is the work of Lee et al. [67], where a net is de-

composed based on minimal linear invariants to check boundedness and live-

ness compositionally. The generated components may overlap, that is share

places and transitions. The components’ reachability graphs are reduced and

(re)composed to analyse the global behaviour, where shared transitions have

to be synchronised.

An iterative approach to decompose a monolithic Petri net for checking

LTL-X properties2 is presented by Klai et al. in [62]. The generated com-

2There action-based properties are studied, i.e. the LTL
-X formulas refer to transition

152 5. Cutvertex Reductions

ponents approximate the global behaviour. To reduce the risk of spurious

behaviour, abstraction places are added representing the place invariants of

the global net—and thereby representing an abstraction of the component’s

environment. If a component does not satisfy the property ϕ under con-

sideration, the validity of the counterexample has to be checked by means

of a so-called non-constraining relation, which represents the environment’s

constraints. If this relation is not satisfied, the net is reexamined under a

coarser partition. In case ϕ holds on all components, it is checked on a

reduced synchronised product.

In the approach of Lee et al. spurious behaviour is ruled out by synchron-

ising the transitions shared among components. In the approach of Klai et

al. spurious behaviour may lead to repartition such that the global beha-

viour is captured more accurately with each iteration. Our decomposition

allows us to accurately characterise the influence of the environment net on

the kernel net, so that neither local components need to be synchronised as

in the approach of [67] nor an iterative refinement as in [62] is necessary.

Whereas the decomposition approach of Signal Transition Graphs [110,

93] is driven by an initial partition of output signals, the idea to use structural

characteristics of a Petri net to derive a decomposition underlies our and

the decomposition approaches of [67] and [62]. In our approach a small

interface of just one place is chosen. Additionally this place has to be 1-

safe. The decomposition approach of [67] is based on linear invariants and

[62] rather mechanically derives components based on pre- and postsets but

adds abstractions places representing linear invariants to reduce spurious

behaviour.

Compositional Reduction/Minimisation of Petri Nets Valmari et

al. and Juan et al. have published approaches to compositional reduction

for Petri nets, that is they assume an initial decomposition of a net and

minimise parts of the net preserving certain properties. Both present failure-

based semantics for asynchronously communicating systems and state based

information is preserved. Also, both works introduce algorithms to reduce

occurrences rather than to the token count.

5.8. Related Work 153

the components’ transition systems.

Valmari et Kaivola introduced in [105] two behavioural semantics, chaos-

free failure divergencies (CFFD) and nondivergent failure divergencies (NDFD)

semantics. They showed that CFFD is the weakest compositional equivalence

with respect to parallel composition and hiding operators in CSP for syn-

chronous communication systems preserving LTL-X with an extra operator

distinguishing deadlocks from divergencies. NDFD-equivalence is the weak-

est compositional equivalence preserving standard LTL-X. Although these

results do not directly apply to asynchronous systems and place fusion, the

semantics are the weakest known LTL-X preserving semantics according to

[102].

In [103] Valmari applied the above approach for state-based properties to

(already decomposed) Petri nets whose subnets share a set of places only. It

is assumed that the given net is divided into an environment component and

an interesting component, i.e. a kernel. A labelled transition system repres-

enting the environment net’s behaviour is condensed by a CFFD-semantics

(or NDFD) preserving algorithm. The environment net is then replaced by

a net corresponding to the condensed labelled transition system.

Juan et al. introduce in [59, 58] the condensation theories IOT-failure,

IOT-state equivalence and firing-dependency theory. Their technique can

analyse several state-based properties: boundedness, reachable markings,

reachable submarkings and deadlock states. They develop condensation rules

to minimise the components’ transition systems.

We list the main differences to our work:

• Valmari et al. give an approach to preserve LTL-X and divergencies/dead-

locks and just LTL-X, respectively. Juan et. al. preserve boundedness,

reachable (sub)markings and deadlock states. In our work we preserve

at least LTL-X but assuming fairness w.r.t. the kernel. A deadlock in

a cutvertex reduct may not be a deadlock in the original net. We also

preserve reachable (sub)markings.

• Whereas in [103] and [59] the replacement net is the result of a con-

densation, we identify six fixed summary nets that suffice to describe

154 5. Cutvertex Reductions

the influence of any environment net.

• We use model checking to determine the replacement and thus can dir-

ectly make use of the various methods that have been invented to speed

up model checking. In contrast, Juan et al. use condensation rules on

the components’ transition systems and Valmari et al. transform the

transition system into a kind of deterministic automaton and minimise

this automaton using the functional coarsest partition algorithm [105].

• Our approach be conveniently be parallelised (cf. Sect. 5.7). The ap-

proaches of Valmari et al. and Juan et al. do not explore the potential

of parallelisation.

• The works of Valmari et al. and Juan et al. do not consider the Petri

net structure in their condensation procedures. Micro reductions can

easily be combined with their condensation approaches, whereas pre-

/postset optimisations are tailored to our classification of environment

nets (cf. Fig. 5.4).

• We characterise cases when spurious behaviour may be encountered:

Spurious behaviour may only be encountered when examining Σe
q=1

and this is necessary only when we replace a Borrower, Consumer or

Dead End environment. Our approach also allows to disable these

rules, so that no spurious behaviour may occur. Valmari acknowledges

that spurious behaviour may be encountered and examines in [102] the

use of interface processes as a means to decrease the risk of spurious

behaviour. Juan et al. suggest the use a coverability graphs to at least

identify components whose state space are infinite when examined in

isolation. Both works lack a characterisation of “risky” components.

5.9 Future Work

Cutvertex reductions are able to replace any subnet connected to the kernel

via only a 1-safe place by a summary net. This allows a successive replace-

ment of subnets from the chain ends.

5.9. Future Work 155

q2

q1q3

Σe2

Σe1Σe0

Σk

Figure 5.27: Decomposition by cutvertices. The chain of environments is
tackled from the outside: First Σe2 is replaced and then Σe1 .

An interesting extension of the current approach are reduction rules that

allow replacements from within a net, so that nets with a higher connectivity

can also be reduced. Considering subnets with two contact places—we call

them bridge subnets in the sequel—would allow replacements from within

a net and can be combined with cutvertex reductions to yield a more fine

grained decomposition, as illustrated in Fig. 5.28. Bridge subnets correspond

to triconnected components, which can be determined in linear time [50].

Σb3

Σb1
Σb2

Figure 5.28: Decomposition into bridge nets. Bridge nets allow replacements
from within a net and are an addition to cutvertex reductions.

In our benchmark set (cf. Sect. 6) 61 of 73 nets have bridge subnets.

Decompositions into triconnected components have already proven to be

useful in the area of business process modelling, where certain bridge nets

are replaced by a single transition. In [107] Vanhatalo et al. presented an

approach to check soundness of workflow nets3. Their approach decomposed

IBM WebSphere Business models, which are basically extended free choice

nets, into single-entry-single-exit (SESE) fragments, that are certain bridge

nets. Soundness of a workflow can be checked by checking soundness of each

fragment in isolation. They also gave structural heuristics to show soundness

or unsoundness of some fragments in linear time.

3Intuitively, a workflow net is sound iff every task is executable and the workflow process
can properly terminate. For more information see Sect. 6.2

156 5. Cutvertex Reductions

The above results characterise only when a free-choice SESE bridge net

can equivalently be replaced by a transition. The extension of our approach

is more general. Structural heuristics similar to micro reductions or as for

SESE fragments as in [107] will certainly play an important role to efficiently

determine the appropriate reductions. Also, an important aspect of the ex-

tension to bridge nets will be the identification of replacements that are risky

in terms of encountering spurious behaviour when identifying the appropriate

reduction.

5.10 Conclusion

We presented a decompositional approach to alleviate the state explosion

problem of model checking an LTL-X formula ϕ. We suggested to decompose

the Petri net into a kernel net containing scope(ϕ) and environment nets

so that kernel and environment share a 1-safe place only. For a 1-safe net

the decomposition can be determined in linear time and every environment

net can be replaced. To determine the applicable reduction an environment

net is checked in isolation, thus avoiding the combinatorial blow-up. The

empirical evaluation of this approach is presented in the next chapter.

Chapter 6

Evaluation

Contents

6.1 Comparative Evaluation on a Benchmark Set . . 159

6.1.1 A Generic Evaluation Procedure 159

6.1.2 The Benchmark Set 165

6.1.3 Tools in the Evaluation 167

6.1.4 Effect on the Full State Space 168

6.1.5 Alliance Against State Space Explosion 176

6.2 Workflow Management 187

Many approaches exist to combat state space explosion, as outlined in

Chapter 3. In this work we developed two further techniques for Petri nets,

slicing and cutvertex reductions. When introducing a new method an im-

portant question is how the new method compares with existing techniques.

In the Chapters 4 and 5 we discussed conceptual differences and similarities

to existing approaches, in particular to agglomerations, compositional re-

ductions and POR. This section is dedicated to empirically evaluating, how

our methods perform in comparison to and in combination with this three

approaches.

In Sect. 6.1 we will first compare the effects on the full state space of

cutvertex reductions, safety slicing and CTL∗
-X slicing with agglomerations

157

158 6. Evaluation

method references used tool

CTL∗
-X slicing [89] own implementation

safety slicing Sect. 4.3 own implementation
cutvertex reduction [88] own implementation

agglomerations [9, 51] implementation following [51]
CFFD reduction [105, 103] TVT [100]
stubborn set reductions [104, 102] PROD [83]

Table 6.1: Methods in the evaluation. The first three methods have been
developed by the author. Their performance is compared to agglomera-
tions, stubborn set reduction and compositional reduction based on CFFD
semantics (cf. Sect. 3).

and compositional reduction based on CFFD semantics (cf. Sect. 6.1.4). We

then analyse the performance of the methods on state spaces condensed by

stubborn set reductions (Sect. 6.1.5). Table 6.1 lists the original references

for the considered methods.

Section 6.2 illustrates the usefulness of our reductions for business process

management. Therefore we first give a brief introduction to business process

management and the role of Petri nets therein and then study the effects of

our techniques on a small case study.

We believe that rather than presenting cases where our methods work

best, it is equally interesting to see where other methods excel, so that we

will present a comparative evaluation on a benchmark set.

In oder to compare our techniques to agglomerations, CFFD and partial

order reductions, we developed a generic and fully automatic evaluation pro-

cedure. This evaluation procedure works on any benchmark set and does not

require that temporal properties are specified for the benchmark nets. The

evaluation procedure is introduced in Sect. 6.1.1.

To compare the different techniques we defined key indicators that sum-

marise the performance of a technique on the benchmark set and thereby

allow a comparison to key indicators of other methods on the same bench-

mark set. In order to give an impression on the absolute effect of the methods

on the benchmark set, we describe their impact in terms of percental state

6.1. Comparative Evaluation on a Benchmark Set 159

space savings.

In Sect. 6.1.2 we introduce and briefly characterise our benchmark set.

In Sect. 6.1.4 we examine CTL∗
-X slicing, safety slicing, cutvertex reductions,

agglomerations and CFFD reduction on the full (=uncondensed) state space.

We start Sect. 6.1.5 by analysing the effect of combining slicing and cutvertex

reductions. We then examine the combination of the five methods with

partial order reductions to analyse whether these methods yield (further)

reductions on condensed state spaces.

6.1 Comparative Evaluation on a Benchmark

Set

In this section we introduce our generic evaluation procedure that was em-

ployed to compute our key indicators. The evaluation procedure does not

rely on given temporal properties and works on any benchmark set. Key

indicators summarise the impact of the reductions and thereby allow a com-

parison of different techniques. The key indicators are discussed in Sect.

6.1.1.1.

6.1.1 A Generic Evaluation Procedure

An ideal evaluation procedure to collect data for a comparison of different

methods may be sketched as follows:

1 f o ra l l nets Σ in the benchmark s e t {

2 f o ra l l r e l e van t temporal p r o p e r t i e s ϕ o f Σ {

3 model check ϕ on Σ ;

4 f o ra l l methods m o f the comparison {

5 use method m when model checking ϕ ;

6 a s s e s s / quant i f y the e f f e c t o f m ;

7 } } }

Every net of a benchmark set is examined for all relevant properties. The

impact of the examined method is analysed by comparing its effect to the

160 6. Evaluation

results without reductions. Based on the collected data, a comparison or

further analysis can be applied.

Unfortunately, it is usually infeasible to determine all relevant properties

and it is not possible to determine automatically which sets of places of a

net correspond to interesting properties. But as all methods examined in

this section take care of the places referred to in the temporal property, the

choice of the property can be an important influence on the reduction effects.

As we use a rather large benchmark set, the evaluation procedure has to

be automatic. So we chose to apply the methods for every single place of the

net. This seemed to be a reasonable choice, because all examined methods

work the better the fewer places are used and because applying the methods

for every one-elementary place set already requires extensive computational

resources.

We refrained from measuring the model checking performance for auto-

matically built temporal properties referring to the single place, as we cannot

tell which properties are interesting. Instead we measured the reductions’ ef-

fect in terms of state space decrease (=the decrease in the number of states

and state transitions).

Our generic evaluation procedure is sketched below:

1 f o ra l l nets Σ in the benchmark s e t {

2 generate Σ ’ s s t a t e space ;

3 f o ra l l p l a c e s p o f Σ {

4 f o ra l l methods m o f the comparison {

5 generate Σ ’ s s t a t e space us ing m and

6 observ ing p ;

7 a s s e s s / quant i f y the e f f e c t o f m ;

8 } } }

Quantifying Reduction Effects by State Space Decrease Using the

state space decrease to quantify the reduction effect enables us to run the

benchmark on different machines, and also to examine nets with small state

spaces where measuring time becomes problematic for technical reasons.

6.1. Comparative Evaluation on a Benchmark Set 161

Undoubtedly the size of the state space has a strong influence on time

and space needed for model checking. LTL model checking can be performed

in O(|TSM| · 2|ψ|) space and time, and CTL model checking is in O(|TSM| ·

|ψ|). By using the state space as a measure, we neglect the influence of the

temporal property. So state space savings may be multiplied when model

checking temporal properties on the reduced system.

Filtering Not every place necessarily corresponds to a meaningful temporal

logic formula. For a fair comparison we have to take into account how this

decision influences the different methods of the comparison.

Slicing starts with the slicing criterion place and iteratively includes other

relevant parts of the net. Slicing produces especially small reducts when the

slicing criterion is within an initialisation subnet as illustrated in Fig. 6.1.

In this case slicing discards everything but this initialisation subnet. The

places of such a small initialisation subnet probably do not represent any

interesting property.

p1

p2

t1

t2

Figure 6.1: Filtering out smallest slices is necessary: The slice slice(Σ, p1)
for place p1 consists of place p1 and transition t1 only. Similarly slice(Σ, p2)
consists only of p2 and t2 only.

Cutvertex reductions are similarly able to fold away anything but this

initialisation subnet. Agglomerations on the other hand may generate small

reducts by compressing subnets between two places. So that a small agglom-

eration reduct may summarise behaviour of a big subnet.

We hence applied a filter eliminating the smallest reducts of slicing and

cutvertex reductions. Based on inspections of the smallest reducts, a reduct

is considered as meaningful, if it has at least 20 states and in case it has less

than 3% of places, it has to have at least 5 transitions and places.

162 6. Evaluation

6.1.1.1 Key Indicators

Our evaluation procedure generates a data flood: We take a measurement for

every place of every net of the benchmark set for every examined technique.

Key indicators summarise the measurements to quantify the performance of

the examined technique on the benchmark set. The key indicators have to be

chosen carefully, to sufficiently reflect the impact of a technique.

One difficulty is that the effect of our reductions on the nets is very het-

erogeneous. Table 6.2 illustrates the effect of CTL∗
-X slicing on four very

different nets. Whereas the net dac_15 (modelling a divide and conquer

computation) has many slices of small to medium size, elevator_4 (model-

ling a controller for 4 elevators) has only very small and very big slices. An-

other extreme example is furnace_4 (modelling temperature management of

4 furnaces) where slicing only removes reading transitions, which results in

substantial reduction in the number of state transitions but in no reduction

of the number of states.

Table 6.2: Four exemplary nets of the benchmark. For every net (a) gives
net size, its state space size and the number of properly effective slices, and
(b) gives the percental size of its smallest and biggest properly effective slice
and percentage of places covered by some properly effective slice.

(a)

system |Σ| |TSΣ| #properly effective
(places,trans.) (states,state trans.) reducts

dac_15 105,73 114685, 794642 44
elevator_4 736, 1938 47436, 150066 10
furnace_4 66, 139 221041, 1757106 1
q_1 163, 194 123596, 584896 14

The large number of reduced nets (e.g. 1388 CTL∗
-X slices have been built)

paired with the heterogeneity of the reduction effects make a concise sum-

mary difficult.

As a first step we categorise the reduction effects into trivial, proper,

effective, properly effective and limited effective. If the reduced net equals

6.1. Comparative Evaluation on a Benchmark Set 163

(b)

system smallest reduct greatest reduct covered
[%] (states, state trans.) [%](states,state trans.) [%] places

dac_15 0.11, 0.03 49.99, 46.39 90.48
elevator_4 0.05, 0.03 100, 98.52 99.86
furnace_4 100, 89.24 100, 89.24 100
q_1 75.97, 75.26 95.19, 95.05 96.93

the original, the reduced net (or reduct) is called trivial. If the reduced net

differs from the original, we call the reduced net proper. A reduced net is

called effective, if its state space is smaller than the original’s state space.

Our approaches guarantee that the state space of a reduct is at most as

big as the original’s state space. When applying cutvertex reductions, an

overhead may be caused when the appropriate summary for an environment

is determined. A reduced net is called limited effective if its state space

together with the states and state transitions inspected to determine the

appropriate summary net is bigger than the original’s state space. A reduced

net is called properly effective if its state space together with the states and

state transitions inspected to determine the appropriate summary is less than

the original’s state space.

Our benchmark set (cf. Sect. 6.1.2) contains several scaled up instances.

We say that nets generated from the same system blue print belong to the

same family. These nets are of a similar structure and hence the reductions’

effects on the net graph are similar.

To allow a succinct comparison for the different approaches we chose the

following values as key indicators:

1. the number of families with properly effective/limited effective reduced

nets,

The number of properly effective families gives a rough estimate of the

scope of a technique. The number of limited effective reduced nets meas-

ures cases when the techniques cause an overhead. Of the here con-

sidered methods only cutvertex and CFFD reductions can cause limited

effective reducts.

164 6. Evaluation

2. the mean size of the state space and of the Petri net graph of reduced

nets,

Some families are better reducible than others. To reflect the influence

of each family equally, we built the mean over all families by first com-

puting the mean over all reducts of a net (after applying the filter), and

then the mean per family to then determine the mean over all families.

As the mean values are computed considering all nets of the benchmark

but not all nets are reducible by a given method, the untouched nets

dilute the reduction effect and make the savings seem marginal. But

for the comparison of different techniques we need to consider every

net of the benchmark. These two mean values describe the total effect

on the benchmark set.

3. the mean (place) coverage for a state space saving of y.

A mean coverage of x% expresses that in average for x% percent of the

places in the original net there is an effective reduced net saving at least

y.

We say that we have a saving of x of the states (state transitions / state

space) per reduct, if the reduced net has factor x less states (state trans-

itions / state space size) than the original net. Analogously, we say that we

have an expense or cost of x of states (state transitions / state space), if factor

x of the states (state transitions / state space) of the original’s state space

has been inspected to determine the summary. We refer to the difference of

saving minus expense as benefit. If the difference of saving minus expense is

negative, we also refer to the benefit as overhead. The mean saving per net

is the average build over the reducts for every place of the net. The mean

saving per family is the average build over mean savings per net of all reducts

of the family. Analogously, we use mean expense, mean overhead and mean

benefit per net and per family. We say that a net Σ has a saving of x, if there

is a reduct of Σ with a saving of x.

The key indicators listed above are generated to allow a succinct compar-

ison. To show how great the reduction effect of a method can be, we give

the greatest percental savings for every benchmark net and the coverage for

6.1. Comparative Evaluation on a Benchmark Set 165

a percental saving of at least 10%.

Before we present the results of our evaluation (cf. Sect. 6.1.4 and 6.1.5),

we first introduce the set of examples we use as a benchmark, and then briefly

discuss tool specific issues for the evaluation.

6.1.2 The Benchmark Set

To evaluate our approach we used a set of case studies of James C. Corbett

[27, 26]. Originally this set of systems was compiled to study the methodical

issues of empirically comparing different deadlock detection techniques on

Ada tasking programs. The set of benchmark examples consists of real Ada

tasking programs as well as standard benchmark examples from the concur-

rency analysis literature as Corbett states in [26]. The aim was to collect as

many examples as possible to cover a wide range of systems with different

characteristics. In the benchmark set there are five non-scalable systems and

seventeen systems were scaled and are present in four different sizes.

In the original publication the systems were used in various formats,

among others in the input formalism of the SPIN model checker [98]. Petri

net encodings of several systems of this benchmark have been used in other

publications e.g. in [72, 37, 35, 55, 56, 57, 61, 60]. To make all systems of the

benchmark available, we implemented a translation from the SPIN encodings

to Petri nets —which is done straightforwardly and has been validated by

using SPIN.

Table 6.2 characterises the benchmark nets. Column state space gives

the state space of the biggest system instance; in case of the non-scalable

examples, which are at the bottom of the table, there is thus one instance

only. The column titled m gives the step sizes for the scalable families. In

the sequel we frequently refer to the nets by their names as in the original

benchmark set, which are mnemonics for the description as given in Table

6.2.

166
6.

E
valu

ation
system description state space m

cyclic(m) cyclic scheduler 77822, 501760 3, 6, 9, 12
dac(m) divide and conquer computation 114685, 794642 6, 9, 12, 15
dp(m) dining philosopher 531440, 4251516 6, 8, 10, 12
dpd(m) phil. with dictionary 111444, 674139 4, 5, 6, 7
dpfm(m) phil. with fork manager 200, 1211 2, 5, 8, 11
dph(m) phil. with host 104680, 615875 4, 5, 6, 7
elevator(m) controller for m elevators 47436, 150066 1, 2, 3, 4
furnace(m) temperature data management of m furnaces 221041, 1757106 1, 2, 3, 4
gasnq(m) non queueing self-service gas station 115743, 430703 2, 3, 4, 5
gasq(m) queueing self-service gas station 15430, 46681 1, 2, 3, 4
hartstone(m) program which starts and stops worker tasks 202, 202 25, 50, 75, 100
key(m) keyboard/screen interaction management 398760, 1041364 2, 3, 4, 5
mmgt(m) memory management scheme 66308, 218955 1, 2, 3, 4
over(m) highway overtake protocol 33506, 163618 2, 3, 4, 5
ring(m) token ring mutual exclusion protocol 211684, 1188828 3, 5, 7, 9
rw(m) reader writers on a database 32784, 491551 6, 9, 12, 15
sentest(m) sensor test program 381, 777 25, 50, 75, 100

abp alternating bit protocol 112, 167 1
bds border defence system 36096, 263302 1
ftp file transfer protocol 113927, 805043 1
q RPC based client/server user interface 123596, 584896 1
speed program monitoring and regulating speed 8689, 30369 1

.

F
igu

re
6.2:

C
h
aracteristics

of
th

e
b
en

ch
m

ark
set

6.1. Comparative Evaluation on a Benchmark Set 167

6.1.3 Tools in the Evaluation

In the sequel we compare our methods—CTL∗
-X slicing, safety slicing, cutver-

tex reductions—with agglomerations, CFFD reductions and also examine

whether the methods further reduce state space condensed by POR (=par-

tial order reduction).

Agglomerations/Slicing As listed in Table 6.1 we implemented the pre-

and postagglomerations as described in [51]. The costs of applying agglom-

erations (and slicing) is linear to the size of net graph, so that we neglect

their application costs.

The two decompositional reduction methods—cutvertex and CFFD reductions—

both examine the state space of subnets to determine the appropriate replace-

ment.

Cutvertex Reductions For cutvertex reductions we can exactly determ-

ine the costs, as the employed model checkers output the number of inspected

states and state transitions.

CFFD Reductions The tool TVT [100] is the only current tool known to

us that allows to reduce a given labelled transition system (LTS) based on

the CFFD semantics. To apply CFFD reductions on Petri nets as described

in [103], we used the same decomposition as for cutvertex reductions and

generated the LTS of the resulting environment nets. In [103] an LTS is

generated assuming that the contact place has arbitrarily many tokens, so

that environment transitions are never disabled because of the marking on

the contact place. We instead generated the LTSs by adding the knowledge

about 1-safeness of the contact places, so that our generated LTS is at most

as big as in [103]. We used TVT to reduce the LTS. The reduced LTS is then

translated back to a Petri net and recomposed with the kernel as described

in [103].

For CFFD reduction, TVT runs a script on the LTS, that transforms

the LTS into a so-called acceptance graph, normalises and reduces it and

168 6. Evaluation

transforms the acceptance graph back to an LTS. We roughly approximate

the cost for the LTS condensation as the sum of the sizes of the input LTS

plus twice the size of the output LTS. This underestimates the actual costs,

as the script applies three times reductions that are in O(N log N) [76] plus

transforms the LTS and normalises the initial acceptance graph.

Partial Order Reductions We used several partial order tools on the

given examples, namely SPIN, Tina and PROD. PROD was chosen for the

comparison as its stubborn set reductions yielded by far the greatest reduc-

tions on the benchmark set.

6.1.4 Effect on the Full State Space

In this section we present the results of the five methods—CTL∗
-X slicing,

safety slicing, agglomerations, cutvertex and CFFD reductions—on the full

state space. In Sect. 6.1.4.1 we will examine the effect of the structural op-

timisations implemented for cutvertex reductions. In Sect. 6.1.4.3 we discuss

how concurrency and model size influence the effectiveness of our methods.

In Sect. 6.1.4.2 the role of limited effective reducts is examined.

We start by inspecting the key indicators summarised for the five meth-

ods in the tables 6.3-6.5. If we consider the savings in terms of the state

space, CTL∗
-X slicing and cutvertex reductions have about the same impact

on this benchmark set. By far, safety slicing gains the greatest savings and

CFFD reductions the least savings. Agglomerations affect the fewest fam-

ilies, whereas cutvertex reductions affect the most families. But on closer

inspection, we see that about one third of the nets affected by cutvertex

reductions, is only marginally affected.

The mean savings in tables 6.3 and 6.4 may seem marginal, but keep

in mind that the mean values are computed over all nets of the benchmark

and unreduced nets dilute the effect on very effectively reduced nets. Figure

6.3 illustrates the state space savings the five techniques are capable of by

clustering the nets according to their greatest savings.

6.1. Comparative Evaluation on a Benchmark Set 169

#properly red. families
#familes

properly mean state space size

effect. reducts (states, state trans.)

safety slicing 10/23 714 (33528.43, 202306.84)
CTL∗

-X slicing 9/23 625 (37152.91, 211526.34)
cutvertex reds. 17/23 183 (37063.17, 212210.59)
CFFD reds. 8/23 64 (39772.73, 232651.90)
agglomerations 7/23 124 (38155.49, 222034.95)

Table 6.3: Mean savings on the full state space I

mean state space savings mean net graph savings
(states, state trans.) (places, trans.)

safety slicing (0.16, 0.13) (0.10, 0.03)
CTL∗

-X slicing (0.07, 0.09) (0.09, 0.02)
cutvertex reds. (0.07, 0.09) (0.01, 0.01)
CFFD reds. ∼(0,0) ∼(0,0)
agglomerations (0.04, 0.05) (0.01, 0.01)

Table 6.4: Mean savings on the full state space II

#properly red. families
#familes

coverage on reducible coverage on all nets

places [%] places [%]

safety slicing 9/23 85.36 35.39
CTL∗

-X slicing 6/23 48.38 18.58
cutvertex reds. 6/23 99.48 21.48
CFFD reds. 5/23 9.48 1.64
agglomerations 3/23 99.33 11.27

Table 6.5: Reducts with a state space saving of 10%

170 6. Evaluation

≥ 20%

≥ 10%

≥ 5%

> 0%

sentest 75,100

ring 5,7,9

bds 1

elevator 2

over 3,4,5

sentest 50

elevator 1,3

sentest 25

gas q 3,4

gas nq 3,4,5

(a) CFFD reductions

> 0%

≥ 5%

≥ 10%

≥ 20%

≥ 30%

≥ 90%

dac 6-15

elevator 1

over 4,5

over 2,3

elevator 2

elevator 3

bds 1

elevator 4

key 2,3,4

(b) agglomerations

> 0%

≥ 5%

≥ 10%

≥ 20%

≥ 90%

dac 6-15

elevator 3,4

sentest 25-100

q 1

furnace 1

speed 1

bds 1

ftp 1

furnace 2

elevator 1,2

furnace 3,4

mmgt 1-4

(c) CTL-x slicing

≥ 90%

≥ 70%

≥ 60%

≥ 40%

≥ 20%

≥ 10%

≥ 5%

> 0%

dac 6-15

elevator 3,4

sentest 25-100

mmgt 4

mmgt 1,2,3

key 4,5

key 3

q 1

speed 1

ftp 1

furnace 1

key 2

bds 1

furnace 2

elevator 1,2

furnace 3,4

(d) safety slicing

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

≥ 5%

> 0%

ring 9

ring 7

over 4,5

ring 5

sentest 75,100

sentest 25,50

ring 3

bds 1

elevator 2

over 2

elevator 3

furnace 1

ftp 1

furnace 2

gas nq 2

gas q 2

key 2

abp 1

dpfm 11,8

dph 4,5

elevator 4

furnace 3,4

gas nq 3,4,5

gas q 3,4

hartstone 25-100

key 2-5

mmgt 1-4

speed 1

(e) cutvertex reductions

Figure 6.3: Properly effective reduced nets clustered by their state space savings. Each column
displays the savings of the respective reduction technique. A net name appears within a cluster
when a net has a properly effective reduct with a saving within the cluster’s range. The earliest
occurrence of a family is marked in black.

6.1. Comparative Evaluation on a Benchmark Set 171

Figure 6.3 indicates that the five techniques have different capabilities, i.e.

some nets are very effectively reduced by one method but not by the other.

For instance nets of the dac family are effectively reduced by agglomerations

and slicing but not by cutvertex and CFFD reductions, and nets of the over

family are effectively reduced by agglomerations and cutvertex reductions

but not by slicing. The ring nets are only reducible by cutvertex and CFFD

reductions and only safety slicing has a real reduction impact on mmgt.

We already know from the Table 6.4 that safety slicing gains the greatest

savings on this benchmark set. Comparing the results of CTL∗
-X slicing (c)

and safety slicing (d) in Fig. 6.3 shows that safety slicing is also able to

reduce more nets more effectively than CTL∗
-X slicing.

We noticed in Table 6.3 that cutvertex reductions affect a large number

of nets. Figure 6.3 (e) shows that cutvertex reductions also affect the widest

range of families. But only for 10 of 16 properly effective reduced families the

savings are at least 5% of the state space. Cutvertex and CFFD reductions

are the only methods examined here that can cause limited effective reducts.

For cutvertex reduction the rw family had limited effective reducts only and

only the rw family had limited effective reducts. In total there were nine

limited effective reducts. In average 0.69 states and 1.2 state transitions

were inspected to determine the appropriate summaries.

6.1.4.1 Structural Optimisations for Cutvertex Reductions

We have already analysed the effect of cutvertex reductions using micro re-

ductions and pre-/postset optimisations. In this section we analyse the effect

of these optimisations. Therefore we apply cutvertex reductions (i) without

any structural optimisations, (ii) using pre-/postset optimisations, and (iii)

using pre-/postset optimisations and micro reductions.

The optimisations do not change the generated reducts but reduce the

costs of determining the summary. As it turned out the application of the

optimisations did not change the average benefit. Even without any op-

timisations the costs were small enough not to decrease the benefits of the

overall benchmark set, but Table 6.6 shows that the optimisations decrease

172 6. Evaluation

the mean cost of determining the appropriate summary and further increase

the number effective reducts.

mean cost # effective # limited effect.
(states, state trans.) reducts reducts

no optimisations 14.73, 15.24 171 29
pre-/postset 6.05, 6.56 172 26
micro & pre-/postset 0.69, 1.2 183 9

Table 6.6: Cutvertex reductions and structural optimisations

As we have seen cutvertex reductions generated nine limited effective

reducts even with both optimisations—all reducts are from the rw family.

Without optimisations 29 limited effective reducts are generated from seven

different families. In the following we will analyse limited effective reducts, in

particular we will discuss the meaning of limited effective reducts for model

checking and demonstrate that a limited effective reduct may in certain cases

accelerate model checking nevertheless.

6.1.4.2 Limited Effective Reductions

In Sect. 6.1.1.1 we chose the number of limited effective reducts as an in-

dicator for cases when cutvertex reductions do not pay off and we defined a

reduct to be limited effective iff the state space of the original unreduced net

is smaller than the state space of the reduct plus states and state transitions

inspected to determine the appropriate summary. We believe that counting

limited effective reducts is a good enough indicator to study general effects,

but it is not accurate. A limited effective reduced net does not necessarily

mean an overhead when it comes to model checking temporal properties.

When a complex formula is verified, the reductions’ savings may pay off the

reduction costs. Let us consider as an example the reducts of the rw family

illustrated in Table 6.7. As already mentioned, all reducts of the rw family

are limited effective.

By means of the net rw_12 Table 6.8 illustrates that limited effective re-

ducts may accelerate model checking. For each of its limited effective reducts

6.1. Comparative Evaluation on a Benchmark Set 173

|TS | #insp. |Σ| overhead
(states, state trans.) (states, state trans.) (places, trans.) [%]

rw_15 32784,491551 – 78,481 –
rw_15_red1 17,31 32927,491717 32,31 0.07
rw_15_red2 32769,491521 35, 63 46,451 0.01

rw_12 4109, 49177 – 63,313 –
rw_12_red1 14,25 4215,49298 26,25 0.5
rw_12_red2 4097,49153 29,51 37,289 0.08

rw_9 522,4627 – 48,181 –
rw_9_red1 11,19 533,4637 20,19 0.99
rw_9_red2 513,4609 23,39 28,163 0.68

rw_6 71,397 – 33,85 –
rw_6_red1 3,2 114,455 2,2 22.65
rw_6_red2 8,13 97,428 14,13 16.67
rw_6_red3 65,385 17,27 19,37 5.56

Table 6.7: Cutvertex reductions on the rw family.

a formula is given that is checked more effectively on the reduct taking into

account the costs of determining the summary. Note, that CFFD reductions

also generated limited effective reducts for the rw nets, but no other method

examined here (including stubborn set reduction) was able to properly ef-

fectively reduce nets of the rw family!

insp. on rw_12 reduced net # insp. on red. benefit
(states, state trans.) (states, state trans.) [#] (states, state trans.)

AG((state_2_17, 0) ⇒ (F(state_15_0, 0)))

8230,147554 rw_12_red1 42,128 3973,98128

AG ((state_2_2, 0) ⇒ ((F (state_14_0, 0)) ∧ (F (state_10_0, 0))))

17426,478298 rw_12_red2 17382,478112 15,135

Table 6.8: Model checking rw_12 and its reducts.

We analysed the cases when cutvertex reduction without optimisations

cause an overhead. In all but one case an overhead was caused by replacing

very small environments. The rw family is the only family whose reduction

caused an overhead while not having very small environments.

174 6. Evaluation

6.1.4.3 Scalability, Concurrency and Model Size

We now briefly discuss for slicing and cutvertex reductions whether the gained

state space reductions scale with the system/model size.

How much of the model in terms of the net graph is discarded depends

on the model structure for both approaches, whereas the effect of discarding

model parts depends on the system dynamics.

So there are systems like sentest (Table 6.9) for which the savings decrease

with increasing system size but also like dac (Table 6.10) where a system is

more effectively sliced with increasing model size.

system state space savings net graph savings covered
[%] (states, state trans.) [%] (places,trans.) [%]

sentest_25 85.57, 91.02 62.97, 77.95 93.27
sentest_50 84.75, 91.35 64.64, 56.52 96.09
sentest_75 83.65, 90.95 65.27, 55.33 97.24
sentest_100 82.7, 90.44 65.61, 54.48 97.87

Table 6.9: Mean savings and coverage of the sentest family as percentage.

When measuring the reductions’ effects as the savings of the original’s

state space, a strong influence on the savings is the degree of concurrency

between the remainder (=kernel,slice) and the net discard (or environment,

respectively). This effect is illustrated in Figures 6.4 and 6.5 for CTL∗ slicing.

Slicing saves one-third of states for the sequential system given in Fig. 6.4

but for the concurrent system it saves two-thirds (cf. Fig. 6.5) although as

many places and transitions are discarded.

system state space savings net graph savings covered
[%] (states, state trans.) [%] (places,trans.) [%]

dac_6 75.17, 78.93 61.12, 50.07 88.1
dac_9 76.03, 78.08 48.78, 35.88 92.06
dac_12 82.12, 83.23 51.17, 38.49 94.05
dac_15 85.72, 86.41 53.7, 41.77 90.48

Table 6.10: Mean savings and coverage of the dac family as percentage.

6.1. Comparative Evaluation on a Benchmark Set 175

t1

t2

t3

t4

t5

p1

p2

p3

p4

p5

p6

(a) {p1}

{p2}

{p3}

{p4}

{p5}

{p6}

t1

t2

t3

t4

t5

(b) {p1}

{p2}

{p3}

∅

t1

t2

t3

(c)

Figure 6.4: Slicing sequential systems. (a) a sequential net system Σs with
slice(Σs, p3) within the dashed area, (b) state space of the original, (c) state
space of slice(Σs, p3)

t1

t2

t3

t4

t5

p1

p2

p3

p4

p5

p6

(a)
{p1, p4}

{p1, p5}

{p1, p6}

{p1}

{p2, p4}

{p2, p5}

{p2, p6}

{p2}

{p3, p4}

{p3, p5}

{p3, p6}

{p3}

t3 t3 t3

t4 t4 t4

t5 t5 t5

t1

t1

t1

t1

t2

t2

t2

t2

(b) {p4}

{p5}

{p6}

∅

t1

t2

t3

(c)

Figure 6.5: Slicing concurrent systems. (a) a concurrent net system Σc with
slice slice(Σc, p5) within the dashed area, (b) state space of the original, (c)
state space of slice(Σc, p5)

176 6. Evaluation

Both approaches, slicing and cutvertex reductions, may gain greater sav-

ings by eliminating concurrency: If a slice is properly effective, then causal

dependencies have been truncated or concurrent behaviours have been omit-

ted. A net is properly effectively reduced by cutvertex reductions (without

optimisations), if an environment has been replaced by a summary net and

the cost of determining the appropriate summary is less than the state space

reduction gained by the replacement.

So, whether a net is reducible depends on the model structure, whereas

the impact of the reductions depends on the system dynamics. Both methods

profit from concurrency. As the dynamics is difficult to predict by just study-

ing the model structure, the impact of the reductions is difficult to predict

as well.

6.1.4.4 Summary and Conclusions

The results of this section show that slicing and cutvertex reductions can

efficiently speed up model checking. On the benchmark set CTL∗
-X slicing

and cutvertex reductions save about the same percentage, whereas agglom-

erations gain less savings on the state space. All three methods differ in the

range of effected nets.

Safety slicing is the most effective method. It gains the greatest reductions

on the state space and the net graph.

6.1.5 Alliance Against State Space Explosion

In this section we will evaluate combinations of different methods.

In the first subsection we examine cutvertex reductions on slices. As we

will see, slicing may lead to additional articulation points. Thus we want to

evaluate whether the combination of slicing and cutvertex reductions has a

synergetic effect on the benchmark set.

We pointed out that cutvertex reductions yield savings primarily by avoid-

ing the state space blow-up caused by concurrency and that slicing profits

from concurrency within the original system. With POR a class of methods

exists that has been especially developed to avoid the blow-up caused by con-

6.1. Comparative Evaluation on a Benchmark Set 177

current behaviours. In the following we hence empirically examine, whether

our methods combined with POR contribute to further reductions or whether

their effect is subsumed by POR or even adversary to POR. In Sect. 6.1.5.2

we use condensed state spaces as reference state spaces to analyse the impact

of our reductions.

6.1.5.1 Cutvertex Reductions on Slices

In this section we evaluate the effect of slicing followed by cutvertex reduc-

tions on the benchmark set.

The results of the previous section indicate that slicing and cutvertex re-

ductions affect a different range of nets, so the effects of the one method are

not entirely subsumed by the other’s. Slicing can generate further articula-

tion points, as Figure 6.6 (from [11]) illustrates. Hence slicing a net before

applying cutvertex reductions can lead to further savings.

Customer Support

query

answer

request

thanks

information

Production

Figure 6.6: A customer/support/production system.
Slicing makes cutvertex reductions possible. The original net has no artic-
ulation point, its slice has (i.e. the place marked with the hollow token).
Cutvertex reductions on the slice (within dashed lines) yield the reduct to
the right of the dotted line and with the hollow token.

But —as Fig. 6.7 shows— the effect of slicing and cutvertex reductions

is for certain nets the same.

In the following we present the results of applying (i) CTL∗
-X slicing fol-

lowed by cutvertex reductions and (ii) safety slicing followed by cutvertex

178 6. Evaluation

Figure 6.7: Truncation of chain ends by slicing and cutvertex reductions.
The reduced/sliced net is displayed within the dashed area.

properly ef- mean state space size mean # insp. mean state
fect. reducts space savings

(states,state trans.) (states,state trans.) (states,state trans.)

CTL∗
-X slicing 270 34723.63, 197289.74 2.98, 3.78 0.13, 0.15

safety slicing 594 30833.83, 186874.7 0.72, 1.23 0.22, 0.2

Table 6.11: Mean values of cutvertex reductions on slices

reductions.

Table 6.11 summarises the key indicators for cutvertex reductions on

CTL∗
-X and safety slices. In both cases 18 families had properly effective

reducts.

CTL∗
-X

Slicing and Cutvertex Reductions The results of Table 6.11

show that the combination of cutvertex reductions with slicing increases the

state space savings, i.e. applying both methods yields greater savings than

just applying one method. Comparing the results with those in tables 6.3

and 6.4, we see that the state savings of slicing and cutvertex reductions

approximately add up (even better if no filtering is applied) whereas the

reductions in state transitions are slightly less than the sum.

In general, applying cutvertex reductions after slicing bears an increased

risk of an overhead w.r.t. the state space of the slice, since slicing might have

reduced the concurrency within the net so much that cutvertex reductions

do not pay off any more (cf. Fig. 6.8). When analysing the combined

application, we are interested in the total effect. This means for example, (i)

if slicing very efficiently reduces the original system—lets say it saves 80%—

6.1. Comparative Evaluation on a Benchmark Set 179

but cutvertex reductions on the slice are limited effective—lets say it has an

overhead of 20% on the slice—, the total effect is beneficial—saving 79.6%,

but also (ii) if slicing has no effect, but cutvertex reductions very efficiently

reduces a net, the total effect equals the effect of cutvertex reductions.

shortens causal
chains and
reduces concur-
rency

reduces concurrency

Σ slice(Σ)
cutvertex reds.
on slice(Σ)

Figure 6.8: Daisy chaining slicing and cutvertex reductions

The coupled application generated more limited effective slices. This is

possible as slicing generates additional cutvertices. Whereas applying only

cutvertex reductions resulted in only the rw family having limited effective

reduced nets, the combined application generated two additional limited ef-

fective reduced nets for dac_6. In both cases an environment as shown in

Fig. 6.9 is replaced by an Unreliable Producer environment. 9 states and 10

state transitions were inspected to determine this replacement.

Σk Σk

Figure 6.9: Limited effective reduction of dac_6.

For nets of the dac family applying cutvertex reductions after CTL∗
-X

slicing caused an overhead with respect to the state space solely reduced by

slicing —but in total the combined application was beneficial for all but the

dac_6 instances mentioned above. Additionally to the replacement described

180 6. Evaluation

in Fig. 6.9 an overhead was caused when cutvertex reductions were applied

to purely sequentially evolving slices. For instance the greatest costs—125

states and 140 state transitions—were caused when cutvertex reductions were

applied on a slice of dac_15, which had 24 places and transitions with a state

space of 24 states and state transitions. Cutvertex reductions reduced this

slice to a net of 3 places and 5 transitions with a state space of 4 states and

4 state transitions. For this case the benefit with respect to the original net

was still about 99.97%.

The coupled application led to further state space savings for 5 families.

The net q_1 is even only properly effective reducible by cutvertex reductions

if it is sliced first.

Safety Slicing and Cutvertex Reductions Like the coupled application

with CTL∗
-X slicing, applying safety slicing before cutvertex reductions gained

further state space savings.

Whereas the filtered state savings roughly add up, the unfiltered state

saving of the coupled application even exceeds the sum of the single reduc-

tions. The reductions in state transitions are slightly less than the sum of

savings by safety slicing and cutvertex reductions.

Of the 18 families with properly effective reduced nets, the state spaces of

8 families were further reduced by the combined application of safety slicing

and cutvertex reductions. Only the rw family had limited effective reduced

nets.

Again q_1 was the only net, for which slicing was necessary to properly

effectively apply cutvertex reductions.

Summary and Conclusions In both cases the combination was beneficial

and the effects approximately add up. The combined application of CTL∗
-X

and cutvertex reductions stresses the risk of an overhead when cutvertex re-

ductions are applied to small or sequentially evolving nets. The combination

also has synergetic effects for instance on the net q_1 illustrated in Table

6.12.

6.1. Comparative Evaluation on a Benchmark Set 181

states state trans. places trans.
[%] [%] [%] [%]

CTL∗
-X slicing and cutvertex reductions

slice_4_16 24.3 24.96 16.57 5.16
cutvertex reduced slice_4_16 0.36 0.29 2.86 1.08

safety slicing and cutvertex reductions
slice_7_11 9.61 9.9 9.82 2.06
cutvertex reduced slice_7_11 5.05 5.21 1.35 0.53

Table 6.12: Exemplary savings of slicing plus cutvertex reductions on q_1.
The values on the slice line describe the savings gained by slicing. The values
on the cutvertex reduced line give the savings gained by cutvertex reductions
relative to the slice’s state space.

6.1.5.2 Stubborn Sets

In this section we measure the results with respect to state spaces that are

condensed by the stubborn set technique. As for the previous results we filter

out the smallest reducts with respect to the full state space. The condensed

state space was generated by PROD’s implementation of the stubborn set

method. PROD [83] is an analysis tool for Predicate/Transitions nets (PrT-

nets). We encoded P/T-nets as special case of PrT-nets like it is described

in [43].

Results with respect to Condensed State Spaces Since we now meas-

ure the results with respect to the condensed state space (=state space re-

duced by POR), we say that we have a saving of x of states (state transitions),

if the reduct has factor x less states (state transitions) than the original net

has in its condensed state space. Analogously, we use overhead, benefit and

cost with respect to the condensed state space.

Of course, the condensed state space of a reduced net generated by the

stubborn set technique is smaller than (or equals) the full state space of the

reduced net and hence also smaller than the full state space of the original,

but the condensed state space of a reduced net may not be smaller than the

condensed state space of the original net if the stubborn set performs worse

on the reduced net (cf. Fig. 6.10). Consequently the overhead may have

182 6. Evaluation

≥

≥

?

≥

full TSΣ

condensed
TSΣ

full TSΣ′

condensed
TSΣ′

Figure 6.10: Condensed and reduced state spaces. TSΣ refers to the state
space of the original system and TSΣ′ to the state space of a reduct.

values greater one, whereas the saving ranges between 0 and 1.

It may be counterintuitive that the condensed state space of the reduced

net can be bigger than the condensed state space of the unreduced net even

when the full state space of the reduced net is substantially smaller than the

full state space of the unreduced net. But as PORs usually implement a

heuristic to determine which transitions can be considered as independent,

such a heuristic can work for one net better than for the other so that the

stubborn set condensation on the original may be more effective than the

condensations on the reduced net.

Using Condensed State Spaces as Reference State Space The

order of transitions in the specification of the input net significantly influences

the state space reductions gained by PROD’s partial order implementation.

PORs heuristically choose the set of transitions that have to be executed

at each state, if several candidate sets exist. A common heuristic is to use the

smallest such set. In case there are sets of the same size this nondeterminism

has to be resolved. We conjecture that this resolution is influenced by the

order of transitions within the net description.

The fact that the result is influenced by the order of transitions hinders

a direct comparison, since structural Petri net reductions change the Petri

net graph and the same order is not reproducible since it is not the same

6.1. Comparative Evaluation on a Benchmark Set 183

only properly prop. & limited only limited effective
families # families # families # families

safety slicing 6 3 2 11
CTL∗

-X slicing 5 4 2 11
cutvertex reductions 11 1 5 17
CFFD reductions 0 3 11 14
agglomerations 5 1 0 6

Table 6.13: Properly and limited properly reduced families.

net. To compensate this effect we measured the reductions on six different

permutations including the original order and built the mean over all six

results.

Another difficulty when using the condensed state space as reference state

space is the selection of observable places for the generation of the condensed

state space. In a CTL∗
-X slice the temporal properties may refer to all places,

and in a cutvertex reduct the temporal properties may refer to all places

of the kernel but the cutvertices. Partial order techniques that preserve

temporal logics have to preserve the order for observables. So if we would

declare all places as observable, the condensed state space would equal the

full state space. But usually temporal logic formulas refer to only a few

places of the net. Keeping this in mind, a good choice would be to generate

condensed state spaces for all place subsets upto a certain size. But even

generating the condensed state spaces for the original and its slices for every

single place would be intractable—even the more so as we compute the state

spaces several times permuting the transitions’ order. So in a sense a fair

comparison is not possible.

We hence chose to condense the state space by deadlock preserving stub-

born sets. Usually a state space condensed to preserve deadlocks is expected

to be smaller than (or equal to) a state space condensed to preserve safety

properties or e.g. LTL-X properties [102]. We hence belief that the results

presented in the following allow to study the general effects of combining

Petri net graph reductions with stubborn sets.

Let us study the results summarised in Tables 6.13 and 6.14. Table 6.13

lists the numbers of families that have properly effective reducts only or

184 6. Evaluation

mean state space relative mean # limited # properly
state space effective effective

(states,state trans.) (states,state trans.) # nets # nets

safety slicing 7843.58, 25296.81 0.637, 0.735 14 714
CTL∗

-X slicing 12226.40, 34026.95 0.993, 0.988 41 631
cutvertex reds. 12526.33, 34709.27 1.017, 1.008 34 95
CFFD reds. 12328.4 , 34516.28 1.001, 1.002 96 18
agglomerations 12297.62, 34422.27 0.999, 1 2 118

Table 6.14: Mean values for a comparative evaluation.

properly and limited effective reducts, or limited effective reducts only. The

sum of the three values gives the number of effectively reduced nets. Again

cutvertex reductions affect the most net families, followed by CFFD reduc-

tions, followed by the two slicing methods. Agglomerations affect by far the

least nets and also causes fewest limited effective reducts. CFFD reductions

causes the most limited effective reducts. Cutvertex reductions and CTL∗
-X

slicing cause limited effective reducts for six net families, whereas safety sli-

cing causes limited effective reducts for five families. We think the main

reason that agglomerations cause less families to have limited effective re-

ducts, is that it affects less families and the other methods affect a wide

range of nets only marginally, which just tips the stubborn set method off to

take different representatives.

According to Table 6.14 applying CTL∗
-X slicing, agglomerations, cutver-

tex or CFFD reductions generates state spaces of similar sizes. In all four

cases the mean state space of the reducts is about as big as the mean con-

densed state space. The only method that significantly decreases the mean

state space is safety slicing, which yields a benefit of 36.3% of the states

and 26.5% of the state transitions with respect to the condensed state space,

which is about twice as much safety slicing could save on the full state space

(cf. Table 6.4). This is mainly due to three families that are more effectively

condensed by stubborn set reductions when sliced.

For the mean reduction effect it makes nearly no difference whether CTL∗
-X

slicing, agglomerations, cutvertex or CFFD reductions are applied or not.

Table 6.13 shows that there are nevertheless many instances where the ap-

6.1. Comparative Evaluation on a Benchmark Set 185

plication of the reductions increases the state space savings and that the

majority of reducts improves the state space savings. The number of prop-

erly effective reducts exceeds the number of limited effective reducts by many

times—except for CFFD reductions.

According to Fig. 6.11 some nets were reduced so much by slicing and

agglomerations that they now appear in a higher savings cluster while all

other nets remain in the same savings cluster. Comparing the savings by

only the stubborn set method (a) to the results of cutvertex reductions (e)

in Fig. 6.11, we notice that when cutvertex reductions are applied, nets of

the sentest family appear in clusters of less savings whereas only elevator_1

appears in a cluster of greater savings. This seems to indicate that cutvertex

reductions actually work against POR. So we inspected the reducts with the

greatest overheads.

Reducts with the greatest overhead are of bds_1, ftp_1, speed_1 and

sentest. If we would ignore the reducts of the first two nets, applying cutver-

tex reductions would lead to an increase in the mean savings. To evaluate

whether cutvertex reductions decrease the savings gained by the stubborn set

reduction when verifying temporal logic formulas, we picked for each of these

nets sample reducts with greatest overheads. Each reduct and its respective

original were checked for a temporal property1 referring to one place only

but causing the model checker to examine the full state space and this was

done for each of its (non-contact) places. The states and state transitions

inspected were measured. Table 6.15 presents the results. It turns out that

when we consider LTL-X preserving stubborn set reductions, the combination

of cutvertex reductions and stubborn sets works quite well.

Summary and Conclusions In this section we examined the effect of

combining POR with slicing, agglomerations, CFFD and cutvertex reduc-

tions. To examine the general effects of such a combination we used deadlock

preserving stubborn sets of PROD.

1We checked A(F(G(p, 0) ∨ G(F(p, 1))).

186 6. Evaluation

≥ 90%

≥ 80%

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

> 0%

dpd 7

ring 9

ftp 1

dac 9,12,15

bds 1

furnace 1

over 4,5

q 1

dpd 6

ring 7

dac 6

sentest 25-100

over 3

mmgt 4

dpd 5

ring 5

furnace 2,3,4

speed 1

gas nq 5

mmgt 2,3

gas q 4

dph 7

over 2

gas nq 4

mmgt 1

dpd 4

ring 3

gas q 3

dph 6

gas nq 3

gas q 2

elevator 1

elevator 2

dph 5

key 2,3,4,5

gas nq 2

elevator 3,4

gas q 1

dph 4

abp 1

(a)
partial order red.
(=po)

≥ 90%

≥ 80%

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

> 0%

dpd 7

ring 9

ftp 1

dac 6-15

bds 1

over 5

furnace 1

over 4

q 1

dpd 6

ring 7

sentest 25-100

over 3

mmgt 4

dpd 5

ring 5

furnace 2,3,4

speed 1

gas nq 5

mmgt 2,3

gas q 4

dph 7

elevator 1

gas nq 4

mmgt 1

dpd 4

ring 3

gas q 3

dph 6

gas nq 3

gas q 2

elevator 2

dph 5

key 2,3,4,5

gas nq 2

elevator 3,4

gas q 1

dph 4

abp 1

(b)
po + agglomerations

≥ 90%

≥ 80%

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

> 0%

dpd 7

ring 9

ftp 1

dac 6-15

bds 1

sentest 25,50,75

elevator 3,4

furnace 1

over 4,5

q 1

dpd 6

ring 7

sentest 100

over 3

mmgt 4

dpd 5

ring 5

furnace 2,3,4

speed 1

gas nq 5

mmgt 2,3

gas q 4

dph 7

over 2

gas nq 4

mmgt 1

dpd 4

ring 3

gas q 3

dph 6

gas nq 3

gas q 2

elevator 1

elevator 2

dph 5

key 2,3,4,5

gas nq 2

gas q 1

dph 4

abp 1

(c)
po + CTL∗

-X slicing

≥ 90%

≥ 80%

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

> 0%

dpd 7

ring 9

ftp 1

dac 6-15

bds 1

sentest 25-100

elevator 3,4

key 3,4,5

furnace 1

over 4,5

q 1

dpd 6

ring 7

mmgt 3,4

key 2

over 3

mmgt 2

dpd 5

ring 5

furnace 2,3,4

speed 1

gas nq 5

mmgt 1

gas q 4

dph 7

over 2

elevator 1

gas nq 4

dpd 4

ring 3

gas q 3

dph 6

gas nq 3

gas q 2

elevator 2

dph 5

gas nq 2

gas q 1

dph 4

abp 1

(d)
po + safety slicing

≥ 90%

≥ 80%

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

> 0%

dpd 7

ring 9

ftp 1

dac 9,12,15

bds 1

furnace 1

over 4,5

q 1

dpd 6

ring 7

dac 6

sentest 25,50

over 3

mmgt 4

dpd 5

ring 5

furnace 2,3,4

speed 1

gas nq 5

mmgt 2,3

gas q 4

sentest 75

dph 7

over 2

elevator 1

gas nq 4

mmgt 1

dpd 4

ring 3

gas q 3

sentest 100

dph 6

gas nq 3

gas q 2

elevator 2

dph 5

key 2,3,4,5

gas nq 2

elevator 3,4

dph 4

abp 1

dpfm 8,11

hartstone 25-100

(e)
po + cutvertex red.

≥ 90%

≥ 80%

≥ 70%

≥ 60%

≥ 50%

≥ 40%

≥ 30%

≥ 20%

≥ 10%

> 0%

dpd 7

ring 9

ftp 1

dac 9,12,15

bds 1

furnace 1

q 1

dpd 6

ring 7

dac 6

over 4,5

mmgt 4

dpd 5

ring 5

furnace 2,3,4

speed 1

gas nq 5

mmgt 2,3

gas q 4

dph 7

over 3

gas nq 4

mmgt 1

dpd 4

gas q 3

sentest 25,75,100

dph 6

dph 5

gas nq 3

gas nq 2

elevator 1,2

ring 3

sentest 50

key 3,4,5

dph 4

elevator 3

gas nq 2

key 2

over 2

elevator 4

(f)
po + cffd red.

Figure 6.11: Properly effective reduced nets for condensed state spaces. (a) lists the savings
gained by PROD’s stubborn set reduction. (b) to (e) show the reductions on the condensed
state space when the respective reduction technique is applied. The earliest occurrence of a
family is marked in black. Nets reduced by the respective reduction are set in bold face. Nets
left unchanged by the respective reductions are set in italics.

6.2. Workflow Management 187

inspected states, state cutvertex savings #saving instances

total#observables

trans. on the original (states, state trans.)

bds_1 9610.39, 33957 0.378, 0.512 32/44
ftp_1 47481.41, 210594.78 0.204, 0.276 152/171
sentest_100 385.49, 632.71 -0.097, -0.113 10/326
speed_1 13131.93, 34949.12 0.008, 0.014 18/32

Table 6.15: Verification on reduced nets with condensed state spaces.
The last column gives the number of places p for which cutvertex reductions
increased the savings when the temporal property referred to p.

Safety slicing increased the state space savings considerably. CTL∗
-X sli-

cing, agglomeration and cutvertex reductions had about no effect on the

mean state space but for many concrete instances further state space savings

were gained. For nets with the greatest overhead we examined the savings

when model checking a temporal property: Even for those nets the reductions

were beneficial in average for three out of four examined nets.

The benchmark set we used has been compiled trying to cover a wide

range of systems. The results of this section show that some nets profit

from one technique but not the other. This makes it difficult to predict the

effectiveness of our techniques on other (sets of) examples. To evaluate the

relevance of our techniques more real world case studies would have to be

undertaken. A class of system models that seem very apt to our reductions

are workflow nets.

6.2 Workflow Management

In this section we present a workflow net case study representing a class

of system models that lately received a lot of attention in the Petri net

research community because of their industrial relevance for business process

modelling.

Business processes are marked-centred descriptions of an organisation’s

activities for a certain service or product. A workflow models a business

process on the conceptual level either for understanding, evaluating and re-

188 6. Evaluation

designing the business process, or for describing process requirements [44].

Business process management involves the design and specification of

business processes (business process modelling), analysis and optimisation

(business process reengineering), definition (workflow modelling), execution

and administration (workflow enactment) and monitoring and evaluation.

Workflow management means the IT-based support of business process man-

agement [69]. So a workflow management system is a “system that defines,

creates and manages the execution of workflows through the use of software,

running on one or more workflow engines, which is able to interpret the

process definition, interact with workflow participants and, where required,

invoke the use of IT tools and applications” [113].

Typically workflows are case-based [1] and every case has a beginning and

an end. A workflow process is designed to handle similar cases by defining a

route of tasks to be executed for a specific case. The routing is also called

workflow process definition. A task that needs to be executed for a specific

case is called a work item. Most work items are executed by a resource, which

may be a person or machine like a fax.

For example, the processing of insurance claims can be described by a

workflow. A case of such a workflow process is a specific insurance claim,

e.g. the insurance claim of Mr. J. Smith. An example of a work item is the

execution of the task send notification for the case of the insurance claim of

Mr. J. Smith.

Workflow specifications describe various perspectives: The control flow

perspective (or process perspective) specifies tasks and their execution order-

ing. The data perspective deals with business and processing data. The

resource perspective is concerned with roles of humans or devices executing

tasks. The operational perspective describes the elementary actions that are

executed by tasks and that map into underlying applications [47].

Because of their graphically intuitive notation and abundance of analysis

techniques, Petri nets have been advocated by many as formalism for mod-

elling business processes, for instance in [2, 4, 40]. Using the Petri net form-

alism, tasks are modelled by transitions, conditions, on which tasks depend,

are modelled by places, and cases are modelled by tokens. Often, high-level

6.2. Workflow Management 189

Petri nets (with coloured tokens, time and hierarchy) are used to model a

workflow and classical P/T nets are studied when analysing the control flow.

One line of research is concerned with the analysis of workflow processes.

As fixing errors later on is costly, a focus is to define correctness criteria

that allow to detect errors as early as possible. Van der Aalst suggested

WorkFlow-nets (WF-nets) [2] to define workflow processes. A WF-net has a

distinct input place, pin, and an output place, pout, and has no dangling tasks,

i.e. every transition is on a path from the input place pin to the output place

pout. A prominent correctness criteria for WF-nets is soundness. Intuitively,

a workflow process is sound iff every task is executable and the workflow

process can properly terminate, that is it can always terminate and that

after termination there are no objects left behind. More formally, a WF-net

is sound if (1) if it is possible to fire any transition given a token on pin,

(∀t ∈ T : ∃M ∈ [Minit〉 : M [t〉), (2) the marking with only tokens on pout is

the only marking placing tokens on pout (∀M ∈ [Minit〉 :M(pout) ≥ 1 ⇒ ∀p ∈

P \ {pout} :M(p) = 0), and (3) for every marking reachable from Minit there

is a firing sequence placing a token on pout (∀M ∈ [Minit〉 : ∃σ ∈ T ∗ : ∃M ′ ∈

[Minit〉 : M [σ〉M ′ ∧M ′(pout) = 1) [2], where Minit marks pin with one token

and marks no other place. Van der Aalst showed that soundness for acyclic,

free-choice WF-nets can be proven in polynomial time and argued that many

workflow processes can be modelled as free-choice and acyclic nets.

Soundness is a minimal property any workflow process definition should

satisfy. More intricate errors within the control flow can be found by model

checking, as demonstrated for instance in [70, 63]. Our techniques are es-

pecially apt to reduce workflow nets. By definition workflow nets are not

strongly connected and since they model work flows slicing can effectively

reduce such nets. Mendling argued in [73] that the ratio articulation points

per nodes in a process definition can be seen as a measure of separabil-

ity. A high ratio implies a decrease in the error probability of the overall

model. Hence reasonable workflow nets should have articulation points and

cutvertex reductions promise further reductions. When we restrict cutvertex

reductions to micro reductions and structural optimisations only, there is no

risk of applying them to even small and sequentially evolving nets. Although

190 6. Evaluation

for instance interorganisational workflows, which model business processes

where several organisations participate, quite naturally exhibit concurrency.

To illustrate the potential of both techniques for workflow nets, we ana-

lyse the Petri net of Fig. 6.12, which models the workflow of a business

process for dealing with insurance claims like in [3]. An incoming claim is

recorded first. A claim may be accepted or rejected, depending on the insur-

ance cover. For a rejected claim, a rejection letter is written. If the claim is

accepted, emergency measures, if necessary, are provided. After an assess-

ment -possibly done by an expert- a settlement is offered to the customer,

who may either accept or reject. A rejected offer may be followed by legal

proceedings or a revision. If a settlement is agreed upon, money is paid [89].

We want to verify that every accepted claim is settled, i.e. ϕ = AG((ac, 1) ⇒

F (cs, 1)). The slice of Σins. for {ac, cs} is the subnet within the dashed bor-

ders. If we also apply cutvertex reductions, the slice is further reduced as

illustrated in 6.12. So slicing can truncate chain/flow ends and cutvertex

reductions can additionally summarise initial flows.

When model checking, we learn that ϕ does not hold due to the offer/re-

vise loop. The counter example on the original is found inspecting 23 states

and 24 state transitions; the counter example on the slice is found even faster

by inspecting 12 states and state transitions. So we assume strong fairness

and modify ϕ to express that revise is executed only finitely often, that is

ϕ′ = A(FG (as, 0)) ⇒ (G((ac, 1) ⇒ F (cs, 1))). To model check ϕ′ on the ori-

ginal 218 states and 564 state transitions were inspected. The combination

of slicing and cutvertex reductions reduced this to 68 states and 112 state

transitions. The combination of slicing and cutvertex reductions also saved

the most compared with agglomerations and when partial order reductions

are applied.

Summary We gave a brief introduction to business process modelling and

introduced workflow nets as a class of systems that have industrial relevance

and are seemingly very apt to slicing and cutvertex reductions. We presented

a small case study to illustrate the potential of our techniques for this class

6.2. Workflow Management 191

record
accept

reject

rejection

letter

assess

by expert

emergency

measure

offer

accept

revise

legal proceedings

pay

close

start

cs

ac

end

as

Figure 6.12: A WF-net, Σins. modelling an insurance claim process. The
dashed border marks the slice for {ac, cs}. When cutvertex reductions are
applied the place start, transitions record and reject are summarised as
producer-consumer, that is they are eliminated and replaced by the hollow
token and dotted transition).

192 6. Evaluation

of systems.

Chapter 7

Conclusions

Contents

7.1 Summary . 193

7.2 Future Work . 194

We first give a summary of this work and refer to accompanying public-

ations. Then we briefly recapitulate ideas for future work as given in detail

in Sect. 4.5 and 5.9.

7.1 Summary

In this work we presented two Petri net reduction approaches as further

means to combat the state space explosion problem: slicing and cutvertex

reductions. For both approaches we examined the preservation of several rel-

evant classes of temporal properties. For preservation of liveness properties,

we introduced and examined a weak fairness notion, referred to as relative

fairness. We demonstrated the effectiveness of our approaches on a workflow

case study and in comparison to three prominent approaches for mitigating

state space explosion on a benchmark set.

Relative Fairness We showed that although relative fairness is indeed

weaker than fairness notions like weak and strong fairness, it suffices for

193

194 7. Conclusions

liveness preservation by CTL∗
-X slicing as well as by cutvertex reductions.

Slicing We developed two flavours of slicing: safety slicing and CTL∗
-X sli-

cing. We proved that whereas the latter preserves all CTL∗
-X properties under

relative fairness, safety slicing preserves only stutter-invariant safety proper-

ties but reduces a net more aggressively. CTL∗
-X slicing has been published

in [90, 91] and safety slicing in [87].

Cutvertex Reductions We introduced LTL-X preserving cutvertex reduc-

tions as a decompositional approach to Petri net reductions where a mono-

lithic net is decomposed into a kernel containing scope(ϕ) and environments

that are to be replaced by small summary nets. We identified six distinct

behavioural classes of environment nets and determined their replacement

summary. We gave a decomposition algorithm that runs in linear time when

1-safeness of contact places is known a priori. As structural optimisations we

developed the so-called pre-/postset optimisations, which accelerate the iden-

tification of the behavioural class an environment belongs to. As structural

reductions we implemented micro reductions which reduce the smallest en-

vironment nets directly. Cutvertex reductions are presented in [89]. Best and

the author herself illustrate the effectiveness of CTL∗
-X slicing and cutvertex

reductions on a business process model in [11].

Evaluation The evaluation on the benchmark set showed that our ap-

proaches compare well with pre- and postagglomerations and CFFD reduc-

tions, and that our approaches can lead to further state space reductions

even for state spaces condensed by partial order reductions.

7.2 Future Work

We have shown that structural Petri net reductions can further accelerate

model checking of temporal logic properties. Especially safety slicing showed

good results in combination with stubborn set reductions. So it seems worth-

while to develop refined slicing algorithms for special classes of properties

7.2. Future Work 195

that allow for more aggressive slicing. As we argued in Sect. 4.5, antecedent

slicing seems a good starting point. Cutvertex reductions are limited to en-

vironment nets with a single contact place only. Further research could lift

the approach to environment nets with two contact places. We conjecture

that the classification will be more complex, so that a focus should be on the

development of structural reductions and optimisations for the classification

of environments.

Index

agglomerations, 33, 168

postagglomeration, 34

preagglomeration, 34

articulation place, 136

articulation point, 134

assume-guarantee reasoning, 32

benefit, 164, 181

biconnected, 135

bisimulation, 23

stuttering fair, 24

borrower, 81, 82, 104, 138

bounded, 8

business process, 187

CFFD-semantics, 153

COI, 44

compositional

verification, 32

minimisation, 32

reasoning, 32

reduction, 32

condensed state space, 181

consumer, 81, 82, 104–108, 138

contact place, 78, 137

cost, 164, 181

CTL, 12

∀CTL∗
-X, 13

CTL∗, 11

CTL-X, 13

CTL∗
-X slicing, 45–58, 168

CTL∗
-X slice, 46

cutvertex, 134

cutvertex reductions, 75–156, 168

dead end, 81, 82, 113–117, 138

effective reduct, 162

environment, 78

environment problem, 32

eventually permanently enabled, 17

fairness

relative, 10, 17

strong, 19

weak, 19

fairness constraint, 10

firing sequence, 7

maximal, 7

kernel, 78

key indicator, 162

LT property, 15

LTL, 12

LTL-X, 13

marking, 6

196

Index 197

final, 7

reachable, 7

marking sequence, 8

maximal, 8

NDFD-semantics, 153

overhead, 164, 181

partial order reduction, 35, 181

partition, 24

path, 10

relatively fair, 10

Petri net, 6

marked, 8

Petri net graph, 7

place, 6

POR, 35, 176

postset, 7

preset, 7

producer, 81, 82, 108–113, 140

producer-consumer, 82, 83, 125–128,

140

program slicing, 42

proper reduct, 162

properly effective reduct, 162

P/T net, 20, 189

relativefairness, 17

relative fairness, see fairness

safeness, 8

safety property, 15

safety slicing, 58–66, 168

safety slice, 59

saving, 164, 181

scope(ϕ), 16

simulation, 23

fair, 23

slicing, 41–73

slicing criterion, 46

soundness, 189

state space based methods, 30, 31

state space explosion, 30

strong fairness, see fairness

strongly-connected, 8

structural methods, 30, 31

stutter-equivalent, 6

stuttering fair bisimulation, 24

token, 6

trace, 11

transition, 6

enabled, 7

transition system, 9

trivial reduct, 162

unreliable producer, 82, 83, 117–125,

141

weak fairness, see fairness

WF-net, 189

workflow, 187

workflow management, 188

workflow process definition, 188

198 Index

List of Figures

1.1 A place/transition Petri net 1

1.2 Petri Net Reductions for Model Checking 2

2.1 A Petri net graph . 7

2.2 Relationship Between the Logics 14

2.3 Two Petri nets under Fairness 21

2.4 Matching for Bisimulation . 25

3.1 Agglomerations . 34

3.2 State Space Condensation by Stubborn Set Type Methods . . 36

4.1 A Program Slice . 43

4.2 Slicing a Petri Net . 46

4.3 Slices of a Petri Net . 47

4.4 Example of a Proper but Ineffective Slice 48

4.5 Example of an Effective Slice 48

4.6 Correspondence of Marking Sequences 51

4.7 Slicing a Petri Net . 60

4.8 Safety Slices do not Preserve Liveness 64

4.9 Llorens’ Forward and Backward Slice 67

5.1 Kernel and Environment . 77

5.2 Replacement of Environments 77

5.3 The Reductions . 80

5.4 Decision Tree with Rule Preconditions. 83

5.5 Borrower: proj Tk(FsN,max(Minit)) 6⊆ FsN ′,max(M
′
init) 86

199

200 List of Figures

5.6 Example of a Borrower Reduction 92

5.7 Partitioning of Corresponding Marking Sequences 101

5.8 Example of a Consumer Reduction 104

5.9 Consumer: proj Tk(FsN ′,max(Minit)) 6⊆ proj Tk(FsN,{T1,T2}(Minit)) . 106

5.10 Example of a Producer Reduction 109

5.11 Example of a Dead End Reduction 113

5.12 Example of an Unreliable Producer Reduction 118

5.13 Σ up Σe does not preserve CTL using X 125

5.14 Example of a Producer-Consumer reduction 125

5.15 Producer-Consumer: proj Tk(FsN ′,max(Minit)) 6⊆ proj Tk(FsN,{Tk,Te})127

5.16 Decision Tree without Dead End Environment 130

5.17 Borrower versus Consumer . 130

5.18 Borrower versus Producer . 131

5.19 Producer versus Producer-Consumer 131

5.20 Producer-Consumer versus Unreliable Producer 131

5.21 CTL∗ Distinguishable Nets . 133

5.22 Smallest Biconnected Graphs 135

5.23 Articulation Points . 135

5.24 Extension of GΣ. 136

5.25 Maximal/Minimal Environment Nets 144

5.26 Replacement of Minimal Environments 145

5.27 Decomposition by Cutvertices 155

5.28 Decomposition into Bridge Nets 155

6.1 Filtering Out Smallest Slices 161

6.2 Characteristics of the Benchmark Set 166

6.3 Properly Effective Reduced Nets 170

6.4 Slicing Sequential Systems . 175

6.5 Slicing Concurrent Systems 175

6.6 A Customer/Support/Production System 177

6.7 Truncation of Chain Ends . 178

6.8 Daisy Chaining Slicing and Cutvertex Reductions 179

6.9 Limited Effective Reduction of dac_6 179

List of Figures 201

6.10 Condensed and Reduced State Spaces 182

6.11 Properly Effective Reduced Nets on Condensed State Spaces. . 186

6.12 A WF-net, Σins. Modelling an Insurance Claim Process 191

202 List of Figures

List of Tables

5.1 Structural Prerequisites for the Environment Types 150

6.1 Methods in the Evaluation . 158

6.2 Four Exemplary Nets of the Benchmark 162

6.3 Mean Savings On the Full State Space I 169

6.4 Mean Savings On the Full State Space II 169

6.5 Reducts with a State Space Saving of 10% 169

6.6 Cutvertex Reductions and Structural Optimisations 172

6.7 Cutvertex Reductions on the rw Family 173

6.8 Model Checking rw_12 and its Reducts 173

6.9 Mean Savings and Coverage of the sentest Family 174

6.10 Mean Savings and Coverage of the dac Family as percentage . 174

6.11 Mean Values of Cutvertex Reductions on Slices 178

6.12 Exemplary Savings of Slicing plus Cutvertex Reductions on q_1 181

6.13 Properly and Limited Effective Reduced Families 183

6.14 Mean Values for a Comparative Evaluation 184

6.15 Verification on Reduced Nets with Condensed State Spaces . . 187

203

204 List of Tables

Bibliography

[1] van der Aalst, W.M.P.; Loosely Coupled Interorganizational Workflows:
Modelling and Analyzing Worklfows Crossing Organizational Boundar-
ies In: Information and Management, 37 (2), 2000, Elsevier, 67 – 75.

[2] van der Aalst, W.M.P.: The Application of Petri Nets to Workflow
Management. In: The Journal of Circuits, Systems and Computers, 8
(1), 1998, World Scientific Publishing, 21–66.

[3] van der Aalst, W.M.P.; van Hee, K.: Workflow Management - Models,
Methods, and Systems. The MIT Press, 2002.

[4] Adam, N. R.; Atluri, V.; Huang, W.-K.: Modeling and Analysis of
Workflows Using Petri Nets. In: Journal of Intelligent Information Sys-
tems, 10 (2), Special issue on workflow management systems, Kluwer
Academic Publishers 1998, 131–158.

[5] Aziz, A.; Singhal, V.; Balarin, F.; Brayton, R.; Sangiovanni-Vincentelli,
A.-L.: Equivalences for fair kripke structures. In: Automata, Languages
and Programming, Proceedings of 21st ICALP, Jerusalem, 1994, 364–
375.

[6] Baier, C.; Katoen, J.-P.: Principles of Model Checking. The MIT Press,
2008, 112–120.

[7] Bandera. http://bandera.projects.cis.ksu.edu

[8] Berezin, S.; Campos, S.; Clarke, E.M.: Compositional reasoning in
model checking. In: Revised Lectures of the International Symposium
COMPOS’97, Lecture Notes in Computer Science 1536, 1998, 11–22.

[9] Berthelot, G.: Checking Properties of Nets Using Transformation. In:
Advances in Petri Nets 1985, Lecture Notes in Computer Science 222,
1985, Springer Verlag, 19–40.

205

http://bandera.projects.cis.ksu.edu

206 Bibliography

[10] Berthelot, G.: Verification de Réseaux der Petri. Université Paris VI,
1983.

[11] Best, E.; Rakow, A.: A Slicing Technique for Business Processes, In:
Proc. of the 2nd International United Systems Conference on Inform-
ation Systems and e-Business Technology, Klagenfurt, Austria, 2008,
LNBIP 5, 2008, 45–51.

[12] Billington, J.; Gallasch, G.E.; Kristensen, L.M.; Mailund, T.: Exploiting
equivalence reduction and the sweep-line method for detecting terminal
states. In: IEEE Transactions on Systems, Man and Cybernectics, Part
A: Systems and Humans 34 (1), 2004, IEEE, 23–37.

[13] Binkley, D. W.; Gallagher K. B.: Program Slicing. In Zelkowitz. M. V.
ed.: Advances in Computers, 43, 1996, Academic Press San Diego, 2–52.

[14] Brückner, I.: Slicing Integrated Formal Specifications for Verification.
PhD thesis. University of Paderborn, March 2008.

[15] Brückner, I.: Slicing CSP-OZ specifications. In: Nordic Workshop on
Programming Theory (2004).

[16] Chang, C.K., Wang, H.: A slicing algorithm of concurrency modeling
based on Petri nets. In Hwang, K., Jacobs, S.M., Swartzlander, E.E.,
eds.: Proc. of the 1986 Int. Conf. on Parallel Processing, Washington,
IEEE Computer Society Press, 1987, 789–792.

[17] Chang, J., Richardson, D.J.: Static and dynamic specification slicing.
In: Proceedings of the Fourth Irvine Software Symposium, 1994, .

[18] Cheng, A.; Esparza, J.; Palsberg, J.: Complexity Results for 1-safe
nets. In: Foundations of Software Technology and Theoretical Computer
Science 1993, Lecture Notes in Computer Science 761, 1993, Springer
Verlag, 326–337.

[19] Cheng, Y.; Tsai, W.T.: An Algebraic Approach to Petri Net Reduction
and Its Application to Protocol Analysis. Technical Report, University
of Minnesota, 1990.

[20] Ciamatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.; Pistore, P.;
Roveri, M.; Sebastiani, R.; Tacchella, A.: NuSMV2: An OpenSource
Tool for Symbolic Model Checking. In: Proc. of Computer Aided Veri-
fication 2002 (CAV 02), Lecture Notes in Computer Science 2404, 2002,
Springer Verlag, 359–364.

Bibliography 207

[21] Clarke, E. M.; Fujita, M.; Rajan, S. P:; Reps, T.; Shankar S.; Teitel-
baum, T.: Program Slicing for VHDL. In: Software Tools for Technology
Transfer (STTT) 2 (4), 2000, Springer Verlag, 343–349.

[22] Clarke, E. M.; Grumberg, O.; Peled, D. A.: Model Checking. The MIT
Press, 1999, 171–176.

[23] Clarke, E. M.; Filkorn, T.; Jha, S.: Exploiting Symmetry in Temporal
Logic Model Checking. In: Computer Aided Verification, Lecture Notes
in Computer Science 697, Springer Verlag, 1993, 450–462.

[24] Clarke, E. M.; Emerson, E. A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Logic of Programs
1981, Lecture Notes in Computer Science 131, 1981, Springer Verlag,
428–437.

[25] Colom, J. M.; Teruel, E.; Silva, M.; Haddad, S.: Structural Methods. In
Girault, C.; Valk, R. (eds.): Petri Nets for System Engineering: A Guide
to Modeling, Verification, and Applications, Springer Verlag, 2003, 277–
316.

[26] Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent
Software. In: IEEE Transactions on Software Engineering 22 (3), 1996,
161–180.

[27] Corbett, J.C.: An empirical evaluation of three methods for deadlock
analysis of Ada tasking programs. In: Proceedings of the 1994 Inter-
national Symposium on Software Testing and Analysis (ISSTA), 1994,
110–116.

[28] Danicic, S.; De Lucia, A; Harman, M.: Building Executable Union Slices
using Conditioned Slicing. In: 12th IEEE International Workshop on
Program Comprehension (IWPC’04), 2004, IEEE Computer Society,
89–99.

[29] Desel, J.: Basic Linear Algebraic Techniques for Place/Transition Nets.
In Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer
Science 1492, 1998, Springer Verlag, 257–308.

[30] Desel, J.; Esparza, J.: Free choice Petri Nets. Cambridge University
Press, New York, 1995.

[31] Desel, J.: Reduction and Design of Well-Behaved Concurrent Systems.
In: Proc. of CONCUR’90, Lecture Notes in Computer Science 458, 1990,
Springer Verlang, 166–181.

208 Bibliography

[32] Diestel R.: Graph Theory. Graduate Texts in Mathematics, Volume 173,
Electronic Edition 2005, Springer Verlag, 2005.

[33] Emerson, E.; Sistla, A.: Symmetry and Model Checking. In: Computer
Aided Verification, Lecture Notes in Computer Science 697, Springer
Verlag, 1993, 450–462.

[34] Esparza, J.; Heljanko, K.: Unfoldings – A Partial-Order Approach
to Model Checking. Monographs in Theoretical Computer Science,
Springer Verlag, 2008, 172 pp.

[35] Esparza, J.; Heljanko, K.: Implementing LTL Model Checking with Net
Unfoldings. Research Report A68, Laboratory for Theoretical Computer
Science, Helsinki University of Technology, Espoo, Finland, March 2001,
29p.

[36] Esparza, J.; Nielsen, M.: Decidability Issues for Petri nets: A Survey. In:
Journal of Information Processing and Cybernetics 30 3, 1994, 143–160.

[37] Esparza, J.; Römer, S.: An Unfolding Algorithm for Synchronous
Products of Transition Systems. In: Proc. of CONCUR’99, Lecture
Notes in Computer Science 1664, 1999, Springer Verlang, 2–20.

[38] Esparza, J.; Schröter, C.: Net Reductions for LTL Model-Checking.
In: Proceedings of the 11th IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods 2001,
Lecture Notes in Computer Science 2144, 2001, Springer Verlag, 310–
324.

[39] Esparza, J.; Silva, M.: On the analysis and sythesis of free choice sys-
tems. In: Advances in Petri Nets 1990, Lecture Notes in Computer
Science 483, 1991, 243–286.

[40] Flores-Badillo, M.; López-Mellado, E.; Padilla-Duarte, M.; Modeling
and Simulation of Workflow Processes Using Multi-level Petri Nets. In:
Proceedings of the 4th International Workshop on Enterprise & Organiz-
ational Modeling and Simulation held in conjunction with the CAiSE’08
Conference, EOMAS’08, 2008, CEUR Workshop Proceedings, 338, 50–
63.

[41] Furia, C. A.: A Compositional Word: A Survey of recent works on
compositionality in formal methods. Technical Report 2005.22, Diparti-
mento di Elettronica e Informazione, Politecnico di Milano, 2005.

Bibliography 209

[42] Gannod, G. C.; Gupta, S.: An Automated Tool for Analyzing Petri
Nets Using Spin. In: Proceedings of the 16th International Conference
on Automated Software Engineering, 2001, IEEE, 404–407.

[43] Genrich, H. J.: Predicate/Transition Nets. In Adavances in Petri Nets
1986, Part I, Proceedings of an Advanced Course, Lecture Notes in
Computer Science 254, 1987, Springer Verlag, 207–247.

[44] Georgakopoulos, D.; Hornick, M.; Seth, A.: An Overview of Workflow
Management: From Process Modelling to Worklfow Automation Infra-
structure. In: Distributed and Parallel Databases, 3, Kluwer Academic
Publishers, 1995, 119-153.

[45] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent
Systems Springer Verlag, 1996.

[46] Godefroid, P.: Using Partial Orders to Imporve Automatic Verification
Methods. In: Computer Aided Verification 1990, Lecture Notes in Com-
puter Science 531, 1990, Spinger Verlag, 321–340.

[47] ter Hofstede, A. H. M.; van der Aalst, W. M.: YAWL: yet another
workflow language. In: Information Systems, 30 (4), 2005, Elsevier, 245–
275.

[48] Holzmann, G. J.: The Spin Model Checker. Primer and Reference
Manual. Addison Wesley, 2004, 231–235.

[49] Holzmann, G. J.; Peled, A.; Yannakakis, M.: On nested depth first
search. In: The Spin Verification System, American Mathematical Soci-
ety, 1996, 23–32.

[50] Hopcroft, J.E.; Trajan, R.E.: Dividing a Graph into Triconnected Com-
ponents In: SIAM Journal on Computing 2 (3), 1975, Society for Indus-
trial and Applied Mathematics, 135–158.

[51] Haddad, S.; Pradat-Peyre, J.-F.: New Efficient Petri Nets Reductions
for Parallel Programs Verification. In: Parallel Processing Letters 16 (1),
2006, World Scientific Publishing Company, 101–116.

[52] Hatcliff, J.; Dwyer, M.; Zheng, H.: A Formal Study for Multi-threaded
Programs with JVM Concurrency Primitives. In: Higher-Order and
Symbolic Computation 13 (4), 2000, Springer-Verlag, 315–353.

210 Bibliography

[53] Hatcliff, J.; Corbett, J.; Dwyer, M.; Solowski, S.; Zheng, H.: Slicing soft-
ware for model construction. In: Proceedings of the 6th. International
Static Analysis Symposium (SAS’99), Lecture Notes in Computer Sci-
ence (1694), 1999, Springer Verlag, 315–353.

[54] Heimdahl, M.P.E., Whalen, M.W.: Reduction and slicing of hierarch-
ical state machines. In Jazayeri, M., Schauer, H., eds.: Proceedings of
the Sixth European Software Engineering Conference (ESEC/FSE 97),
1997, Springer-Verlag, 450–467.

[55] Heljanko, K.: Minizing Finite Complete Prefixes. In Burkhard, H.-D.,
Czaja, H.-D., Nguyen, H.-S., Starke, P., eds.: Proc. of the Workshop
Concurrency, Specification & Programming 1999, 1999, Warsaw Uni-
versity, 83–95.

[56] Heljanko, K.: Deadlock and reachability checking with finite complete
prefixes. Research Report A56, Helsinki University of Technology, De-
partment of Computer Science and Engineering, Laboratory for Theor-
etical Computer Science, Espoo, Finland, December 1999, 70p.

[57] Heljanko, K.; Khomenko, V.; Koutny, M.: Parallelisation of the Petri
Net Unfolding Algorithm. In: Proc of TACAS 2002, Lecture Notes in
Computer Science 2280, 2002, Springer Verlang, 371–385.

[58] Juan, E.Y.T.; Tsai, J.J.P.: Compositional Verification of Concurrent
and Real-Time Systems. Kluwer Academic Publishers, 2002, 83–117.

[59] Juan, E.Y.T.; Tsai, J.J.P.: Compositional Verification of Concurrent
Systems Using Petri-Net-Based Condensation Rules. In: ACM Transac-
tions on Programming Languages and Systems 20 (5), 1998, 917–979.

[60] Khomenko, V.; Koutny, M.: Verification of bounded Petri nets using
integer programming. In: Formal Methods in System Design 30 (2),
2007, Springer Netherlands, 143–176.

[61] Khomenko, V.; Koutny, M.: Towards An Efficient Algorithm for Unfold-
ing Petri Nets. In : Proc. of CONCUR 2001, Lecture Notes in Computer
Science 2154, 2001, Springer Verlag, 266–280.

[62] Klai, K.; Petrucci, L.; Reniers, M.: An Incremental and Modular Tech-
nique for Checking LTL\X Properties of Petri nets. In: Formal Tech-
niques for Networked and Distributed Systems 2007, Lecture Notes in
Computer Science 4574, 2007, Springer Verlag, 280–295.

Bibliography 211

[63] Köhler, J.; Tirenni, G.; Kumaran, S.; From Business Process Model to
Consistent Implementation: A Case for Formal Verification Methods. In:
Proc. of Sixth International Enterprise Distibuted Object Computing
Conference (EDOC 2002), IEEE Computer Society Press, 2002, 96 –
106.

[64] Biconnected Components. http://sparcs.kaist.ac.kr/~lacrimosa/

algorithm/2003/CS300-09.ppt

[65] Lamport, L.: What Good is Temporal Logic? In: Information Pro-
cessing 1983: Proceedings of the IFIO 9th World Computer Congress,
1983, 657-668.

[66] Lamport, L.: Proving the Correctness of Multiprocess Programs In:
IEEE Transactions on Software Engineering SE-3, 2, 1977, IEEE, 125–
143.

[67] Lee, W.J.; Cha, S.D.; Kwon, Y.R.; Kim, H.N.: A Slicing-based Ap-
proach to Enhance Petri Net Reachability Analysis. In: Journal of Re-
search and Practice in Information Technology 3, 2000, 131–143.

[68] Llorens, M.; Oliver, J.; Silva, J.; Tamarit, S.; Vidal, G.: Dynamic Slicing
Techniques for Petri Nets. Second Workshop on Reachability Problems
(RP’08), Liverpool (UK). In: Proceedings of the Second Workshop on
Reachability Problems in Computational Models (RP 2008), Electronic
Notes in Theoretical Computer Science 223, December 2008, 153–165.

[69] Martens, A.: Verteilte Geschäftsprozess: Modellierung und Verifika-
tion mit Hilfe von Web Services. Institut für Informatik, Humboldt-
Universität zu Berlin, Berlin, Germany, 2003.

[70] Matousek, P.: Verification of Business Process Models. PhD thesis, 2003,
100 pp. .

[71] McMillan, K. L.: Symbolic Model Checking: An approach to the State
Explosion Problem. Kluwer academic Publishers, 1993.

[72] Melzer, S.; Römer, S.: Deadlock Checking Using Net Unfoldings In:
Proc. of CAV’97, Lecture Notes in Computer Science 1254, 1997,
Springer Verlag, 164–174.

[73] Mendling, J.: Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness. Lecture
Notes in Business Information Processing 6, 2009, Springer Verlag, 193
pp.

http://sparcs.kaist.ac.kr/~lacrimosa/
algorithm/2003/CS300-09.ppt

212 Bibliography

[74] Millett, I. L.; Teitelbaum, T.: Issues in Slicing Promela and its Applic-
ations to Model Checking, Protocol Understanding and Simulation. In:
Software Tools for Technology Transfer (STTT) 4 (2), 2002, Springer
Verlag, 125–137.

[75] Murata, T.: Petri nets: Properties, Analysis and Applications. In: Pro-
ceedings, of the IEEE 77 (4), 1989, IEEE, 541–580

[76] Nieminen, J.; Kilamo, T.; Kivelä, T.; Geldenhuys, J.; Erkkilä, T.:
Tampere Verification Tool - TVT tutorial. Tampere Univerity of Tech-
nology, Institute of Software Systems, 2003, 43 pp.

[77] Namjoshi, K.S.: A Simple Characterization of Stuttering Bisimulation.
In: Foundations of Software Technology and Theoretical Computer Sci-
ence, 1997, Springer-Verlag, 284–296.

[78] NuSMV. http://nusmv.irst.itc.it

[79] Park, S.; Kown, G.: Avoidance of State Explosion Using Dependency
Analysis in Model Checking Control Flow Model. In: Proc. of Com-
putational Science and its Applications (ICCSA06), Lecture Notes in
Computer Science 3984, 2006, Springer Verlag, 905–911.

[80] Peled, D.; Wilke, T.: Stutter-Invariant Temporal Properties are Ex-
pressible Without the Next-time Operator. In: Information Processing
Letters 63, 5, 1997, Elsevier, 243–246.

[81] Peng, H.; Tahar, S.: A Survey on Compositional Verification. Technical
Report, Concordia University, Department of Electrical and Computer
Engineering, December 1998.

[82] Pnueli, A.: A temporal logic of concurrent programs. In: Proc. of the
18th Annual Symposium on Foundations of Computer Science (FOCS
1977), IEEE Computer Society Press, 1977, 46–57.

[83] PROD. http://www.tcs.hut.fi/Software/prod/

[84] PEP. http://peptool.sourceforge.net

[85] Poitrenaud, D.; Pradat-Peyre, J.-F.: Pre- and Post-agglomerations for
LTL Model Checking. In: International Conference on Application and
Theory of Petri Nets 2000, Lecture Notes in Computer Science 1825,
2000, Springer Verlag, 387–408.

http://nusmv.irst.itc.it
http://www.tcs.hut.fi/Software/prod/
http://peptool.sourceforge.net

Bibliography 213

[86] Queille, J. P.; Sifakis, J.: Specification and Verification of Concurrent
Systems in CEGAR. In: Proc. of the 5th international Symposium on
Programming, Lecture Notes in Computer Science 137, 1982, Springer
Verlag, 337–351.

[87] Rakow, A.: Safety Slicing Petri Nets. In: Proceedings of the Interna-
tional Conference on Application and Theory of Petri Nets 2012, Lecture
Notes in Computer Science, 2012, Springer Verlag, to be published.

[88] Rakow, A.: Decompositional Petri Net Reductions. In: 7th Confener-
ence on Integrated Formal Methods (IFM 2009), Lecture Notes in Com-
puter Science 5423, 2009, Springer Verlag, 352–366.

[89] Rakow, A.: Slicing Petri nets with an Application to Workflow Verifica-
tion. In: Theory and Practice of Computer Science 2008, Lecture Notes
in Computer Science 4910, 2008, Springer Verlag, 436–447.

[90] Rakow, A.: Slicing Petri Nets. In: Proceedings of the Workshop on
FABPWS’07 (2007), Satellite Event of the ICATPN 2007, Siedlce, 56–
70.

[91] Rakow, A.: Slicing petri nets. Technical Report,
Carl von Ossietzky Universität Oldenburg, 20 pages,
parsys.informatik.uni-oldenburg.de/pubs/SlPN_tr.pdf, 2007.

[92] de Roever, W.: The Need for Compositional Proof Systems: A Survey.
In: Revised Lectures of the International Symposium COMPOS’97, Lec-
ture Notes in Computer Science 1536, 1998, 11–22.

[93] Wist, D.; Wollowski, R.; Schaefer, M.; Vogler, W.: Avoiding Irreducible
CSC Conflicts by Internal Communication. In: Application of Concur-
rency to System Design, Fundamenta Informaticae 95 (1), 2009, 1–29.

[94] Schnoebelen, Ph.: The Complexity of Temporal Logic Model Check-
ing. In: Selected Papers from the 4th Workshop on Advances in Modal
Logics (AiML’02), 2003, King’s College Publication, 393–436.

[95] Shatz, S.M.; Tu, S.; Murata, T.; Duri, S.: An Application Of Petri Net
Reduction For Ada Tasking Deadlock Analysis. In: IEEE Transactions
on Parallel and Distributed Systems 7 (12), 1996, IEEE Press, 1307–
1322.

[96] Silva, M.: Las redes de Petri: en la Automática y la Informaática.
Editorial AC, Madrid, 1985.

parsys.informatik.uni-oldenburg.de/pubs/SlPN_tr.pdf

214 Bibliography

[97] Sloane, A.M., Holdsworth, J.: Beyond traditional program slicing. In:
International Symposium on Software Testing and Analysis, San Diego,
CA, ACM Press, 1996, 180–186.

[98] SPIN. http://spinroot.com/spin/whatisspin.html

[99] Tip, F.: A survey of program slicing techniques. In: Journal of program-
ming languages 3, 1995, 121–189.

[100] TVT. http://www.cs.tut.fi/ohj/VARG/TVT/

[101] Valmari, A.: Composition and Abstraction. In: Modeling and Verific-
ation of Parallel Processes (MOVEP 2000), Lecture Notes in Computer
Science 2067, 2001, Springer Verlag, 58–98.

[102] Valmari, A.: The State Explosion Problem. In: Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, Lecture Notes in Computer
Science 1491, 1996, Springer Verlag, 429–528.

[103] Valmari, A.: Compositional Analysis with Place-Bordered Subnets. In:
International Conference on Application and Theory of Petri Nets 1994,
Lecture Notes in Computer Science 815, 1994, Springer Verlag, 531–547.

[104] Valmari, A.: On-the-Fly Verification with Stubborn Sets. In: Com-
puter Aided Verification 1993, Lecture Notes in Computer Science 697,
1993, Springer Verlag, 397–408.

[105] Kaivola, R.; Valmari, A.: The Weakest Compositional Semantic Equi-
valence Preserving Nexttime-less Linear Temporal Logic. In: CON-
CUR’92, Lecture Notes in Computer Science 630, 1992, Springer Verlag,
207–221.

[106] Valmari, A.: A Stubborn Attack on State Explosion. In: Computer
Aided Verification 1990, Lecture Notes in Computer Science 531, 1990,
Springer verlag, 156–165.

[107] Vanhatalo, J.; Völzer, H.; Leymann, F.: Faster and More focused
control-Flow Analysis for Business Process Models Through SESE De-
composition. In: Service-Oriented Computing- Proceedings of the 5th
ICSOC 2007, Lecture Notes in Computer Science 4749, 2010, Springer
Verlag, 43–55.

[108] Vasudevan, S.; Emerson, E.A.; Abraham, J.A.: Efficient model check-
ing of hardware using conditioned slicing. In: Proc. of the 4th Interna-
tional Workshop on Automated Verification of Critical Systems (AVOCS

http://spinroot.com/spin/whatisspin.html
http://www.cs.tut.fi/ohj/VARG/TVT/

Bibliography 215

2004), Electronic Notes in Theoretical Computer Science (ENTCS) 128
(6), 2005, Elsevier Science Publishers, 279–294.

[109] Vasudevan, S.; Emerson, E.A.; Abraham, J.A.: Improved Verification
of Hardware Designs Through Antecedant Conditioned Slicing. In: In-
ternational journal of Software Tools and Technology Transfer (STTT)
9, 1, 2007, Springer Verlag, 89-101.

[110] Vogler, W.; Wollowski, R.: Decomposition in Asynchronous Circuit
Design. In: Concurreny and Hardware Design, Advances in Petri Nets,
Lecture Notes in Computer Science 2549, 2002, Springer Verlag, 152–
190.

[111] Wang, C.; Yang, Z.; Kahlon, V.; Gupta, A.: Peephole partial order
reduction. In: Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS 2008), Lecture Notes In Computer Science
, 2008, Springer Verlag, 283–396.

[112] Weiser, M.: Program slicing. In: Proceedings of the 5th international
conference on Software engineering, IEEE Press Piscataway, NJ, USA,
1981, 439–449.

[113] The Workflow Management Coalition: Terminology & Glossary.
http://www.wfmc.org/reference-model.html, 3, 1999.

http://www.wfmc.org/reference-model.html

	Title
	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	Introduction
	Preliminaries
	Sets and Sequences
	Petri Net Definitions
	Logics
	Transition Systems
	The Logics
	Stutter-invariant Safety Properties

	Petri Net Semantics
	Properties of Relative Fairness
	Fair Simulation and Stuttering Fair Bisimulation
	Summary

	Alleviating State Space Explosion
	Alleviating State Space Explosion – An Overview
	Classifying Slicing and Cutvertex Reductions
	Compositional Methods
	Petri Net Reductions

	Alliance Against State Space Explosion
	Partial Order Reductions

	Summary

	Slicing Petri Nets
	Introduction
	The History of Petri Net Slicing

	CTL*-X Slicing
	Nets, Slices and Fairness
	Proving CTL*-X-Equivalence

	Safety Slicing
	Proving Safety Slice's Properties

	Related Work
	Petri Net Slicing
	Slicing for Verification
	Related Approaches

	Future Work
	Conclusions

	Cutvertex Reductions
	Introduction
	The Reduction Rules
	Preservation of Temporal Properties
	Outline and Common Results
	Borrower Reduction
	Consumer Reduction
	Producer Reduction
	Dead End Reduction
	Unreliable Producer Reduction
	Producer-Consumer Reduction
	Summary

	Necessity and Sufficiency
	Decomposing Monolithic Petri Nets
	Articulation Points and Contact Places
	1-Safeness of Contact Places
	Applying Reductions and DFS

	Cost-Benefit Analysis
	Optimisations
	Micro Reductions
	Pre-/Postset Optimisation
	Order of Formulas
	Parallel Model Checking

	Related Work
	Future Work
	Conclusion

	Evaluation
	Comparative Evaluation on a Benchmark Set
	A Generic Evaluation Procedure
	The Benchmark Set
	Tools in the Evaluation
	Effect on the Full State Space
	Alliance Against State Space Explosion

	Workflow Management

	Conclusions
	Summary
	Future Work

	Index
	List of Figures
	List of Tables
	Bibliography

