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Abstract

The thesis deals with the following question: given a linear map χ : F → G of finite
free modules over a noetherian ring R and another finite free R-module H, when is
there a linear map λ : G → H such that grade Iχ ≤ grade Iλ and λχ = 0? (By Iχ we
denote the ideal of maximal minors of χ.) If, for example, rankF = 1, rankG = n,
and χ is given by a regular sequence x1, . . . , xn in R, then it was proved by Bruns
and Vetter in [BV4] that the question has a positive answer if and only if rankH = 1
and n is even.

The general version of this question should be very hard to be answered. Some
approach has been done here.

Assume that m = rankF ≤ rankG. Then it turns out that the existence of
a satisfying λ is closely connected with the homology of the generalized Koszul
complex associated with the induced map λ̄ : M = Cokerχ → H. But what is the
generalized Koszul complex?

For technical reasons it is better to start from the dual map χ∗ : G∗ → F∗. To
avoid notational complication we replace G∗, F∗ and χ∗, by G, F and ψ. If G and F
are free, with the linear map ψ : G→ F one associates the Eagon-Northcott family
of complexes Ct(ψ). The homology of Ct(ψ) is well-understood. In particular it is
grade sensitive with respect to the ideal Iψ.

More generally we consider linear maps ψ : G → F , where only F has to be
free (weaker assumptions are possible). We construct a family of complexes Cψ(t)
associated with ψ which generalizes both the Eagon-Northcott family of complexes,
and the classical Koszul complex. There is a similar construction of a family of
complexes Dϕ(t) for a map ϕ : H → G, where H is free. The complexes just

mentioned are the generalized Koszul complexes. If H
ϕ→ G

ψ→ F is a complex, we
can compose Cψ(t) and Dϕ(t) to our main tool, the bicomplex C.,.(t).

Further we investigate the homology of Cλ̄(t). The most satisfactory result (see
Theorem 3.6) is obtained if grade Iχ has the greatest possible value n − m + 1.
The theorem covers a result of Migliore, Nagel and Peterson (see Proposition 5.1 in
[MPN]) who proved it partially for Gorenstein rings R, using local cohomology. It
also generalizes Theorem 5 in [BV4]. If one further requires that grade Iλ should be
big enough, a full answer (necessary and sufficient conditions) to our initial question
may be found in Theorem 3.2, a generalization of Corollary 3 in [BV1].

What can be deduced if grade Iχ has not the greatest possible value (but is not
too small)? In this case theorem 3.11 provides some necessary conditions for the
existence of a non-trivial map λ. As a consequence we derive Corollary 3.14, a purely
numerical criterion for the non-vanishing of product of matrices.

In the last part we study the homology of Cλ̄(t) in the particular case grade Iχ =
n−m = dimR. We obtain information about the length of the homology in Theorem
3.6, which generalizes unpublished results of Vetter. Finally, in Theorem 3.20, we



give a proof of a Theorem of Naruki (see [Na], Theorem 2.1.1) by purely algebraic
methods. A partial (algebraic) proof of this Theorem may be found in [BV1] while
a complete proof has already been given by Herzog and Martsinkovsky in [HM].

The thesis is based on results of Bruns and Vetter (see [BV4]). They study the
homology of the Koszul complex associated with a linear form on a module of pro-
jective dimension 1, using a Koszul bicomplex construction obtained from a Koszul
complex and certain Eagon-Northcott complexes. The idea to build and link Koszul
bicomplexes appears also in the the paper [HM] of Herzog and Martsinkovsky (see
in particular the gluing construction for the residue field of a complete intersection).

Zusammenfassung

Die Arbeit beschäftigt sich mit folgender Frage: Gegeben sei eine lineare Abbildung
χ : F → G endlich erzeugter freier R-Moduln über einem noetherschen Ring R und
ein weiterer endlich erzeugter freier R-ModulH; wann gibt es eine lineare Abbildung
λ : G → H, so daß grade Iχ ≤ grade Iλ und λχ = 0 gilt? (Dabei bezeichne Iχ das
Ideal der maximalen Minoren von χ.) Ist z.B. rankF = 1, rankG = n, und χ die
durch eine reguläre Folge x1, . . . , xn in R gegebene lineare Abbildung R→ G, dann
hat die Ausgangsfrage nach einem Satz von Bruns und Vetter in [BV4] genau dann
eine positive Antwort, wenn rankH = 1 und n gerade ist.

Es dürfte sehr schwierig sein, die Frage in voller Allgemeinheit zu beantworten.
Wir geben in unserer Arbeit einige Näherungslösungen an.

Angenommen m = rankF ≤ rankG. Dann steht die Existenz eines geeigneten λ
in engem Zusammenhang mit der Homologie des verallgemeinerten Koszul-Komple-
xes zur induzierten Abbildung λ̄ : M = Cokerχ → H. Was ist dabei ein verallge-
meinerter Koszul-Komplex?

Aus technischen Gründen ist es besser, von der dualen Abbildung χ∗ : G∗ → F∗

auszugehen. Dabei ersetzen wir zur Vereinfachung G∗, F∗ und χ∗, durch G, F und ψ.
Sind G und F frei, dann kann man der linearen Abbildung ψ : G→ F eine Familie
von Eagon-Northcott-Komplexen Ct(ψ) zuordnen. Die Homologie von Ct(ψ) hängt
in wohlbekannter Weise ab vom Grad des Ideals Iψ.

Wir betrachter allgemeiner lineare Abbildungen ψ : G → F , wobei G nicht
notwendig frei sein muß, und konstruieren zu ψ eine Familie Cψ(t) von Komplexen,
die sowohl eine Verallgemeinerung der Eagon-Northcott-Komplexe als auch der
Koszul-Komplexe darstellen. In ähnlicher Weise läßt sich zu einer Abbildung ϕ :
H → G mit einem freien R-Modul H eine Familie Dϕ(t) angeben. Die beiden Fami-

lien sind unsere verallgemeinerten Koszul-Komplexe. Ist H
ϕ→ G

ψ→ F ein Komplex,
dann können wir Cψ(t) undDϕ(t) zu unserem wichtigsten Werkzeug zusammenfügen,
dem Bikomplex C.,.(t).

Wir untersuchen im weiteren die Homologie von Cλ̄(t). Das beste Resultat er-
halten wir, wenn der Grad von Iχ den größtmöglichen Wert n−m+1 hat (Theorem
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3.6). Das Theorem verallgemeinert ein Ergebnis von Migliore, Nagel und Peterson
(vgl. Proposition 5.1 in [MPN]), die es teilweise und mittels lokaler Kohomologie für
Gorenstein-Ringe R beweisen. Außerdem ist es eine Verallgemeinerung von Theorem
5 in [BV4]. Stellt man an den Grad von Iλ gewisse Minimalitätsanforderungen, dann
lassen sich notwendige und hinreichende Bedingungen für eine positive Antwort auf
die Ausgangsfrage angeben (Theorem 3.2); hier handelt es sich um eine Verallge-
meinerung von Corollary 3 in [BV1].

Was läßt sich sagen, wenn grade Iχ nicht maximal (aber nicht zu klein) ist?
Theorem 3.11 enthält für diesen Fall einige notwendige Bedingungen für die Existenz
eines nicht-trivialen λ. Als Folgerung ergibt sich 3.14, ein numerisches Kriterium
für das Nicht-Verschwinden von Matrizen-Produkten.

Im letzten Teil untersuchen wir die Homologie von Cλ̄(t) für den Fall grade Iχ =
n − m = dimR. Theorem 3.6, eine Verallgemeinerung von nicht veröffentlichen
Resultaten von Vetter, enthält Informationen über deren Länge. Wir beweisen damit
(s. Theorem 3.20) ein Theorem von Naruki (vgl. [NA], Theorem 2.1.1) mittels rein
algebraischer Methoden. Ein partieller (algebraischer) Beweis findet sich bereits in
[BV1] und ein vollständiger Beweis in [HM].

Die Arbeit basiert auf Ergebnissen von Bruns und Vetter (vgl. [BV4]), die die
Homologie des Koszulkomplexes einer Linearform auf einem Modul der projektiven
Dimension 1 untersuchen. Sie benutzen dabei eine Koszul-Bikomplex-Konstruktion,
die ähnlich der unseren aus einem Koszul-Komplex und gewissen Eagon-Northcott-
Komplexen gewonnen wird. Die Idee der Konstruktion und Zusammenfügung von
Koszul-Bikomplexen gibt es auch schon in der Arbeit [HM] von Herzog und Martsin-
kovsky (s. insbesondere die Verklebungs-Konstruktion für den Restklassenkörper
eines vollständigen Durchschnitts).
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Introduction

A natural question: When does the product of two matrices not vanish?

In this thesis we answer to this question in a very special setup. Let R be a
commutative noetherian ring. If we identify an R-morphism with a representing
matrix, we may equivalently ask when the sequence

Rl ϕ−−−→ Rn ψ−−−→ Rm

is not a complex, i.e. when ψϕ 6= 0. To illustrate the difficulty of the problem, we
propose the reader the following exercise.

EXERCISE A. Let n ∈ N and let x, y, z ∈ Z be non zero elements. Show that if
n > 2, then the product (

x y z
)  xn−1

yn−1

−zn−1


does not vanish.

The difficulty of the above Exercise is well known. However, the following exercise
admits an easy solution.

EXERCISE B. Let n ∈ N and let x, y, z be a regular sequence in R. Show that the
product (

x y z
)  xn−1

yn−1

−zn−1


does not vanish.

Proof. Remember that x ∈ R is called a regular element (non-zero divisor) if xz = 0
for z ∈ R implies z = 0, and that a sequence x = x1, . . . , xk of elements of R is called
a regular sequence if xi is a regular element of R/(x1, . . . , xi−1) for i = 1, . . . , k. Since
x, y, z is a regular sequence, if ax+ by = cz, the definition implies that c ∈ (x, y). In
particular, if xn + yn = zn, then zn−1 ∈ (x, y). So ax + by = zn−1, and descending
induction on the exponent of z provides a contradiction.

The situation of the second Exercise admits a generalization which we present in
this paper. An important tool for studying regular sequences is the Koszul complex.
If x = x1, . . . , xn is a sequence in R, then x1e1 + . . . + xnen ∈ Rn, and we may
consider the complex

K(x1, . . . , xn) : 0 → R→ Rn →
∧

2Rn → · · · →
∧
nRn → 0,

where the the differential sends an element a to the element a∧ (x1e1 + . . .+ xnen).
Remember that a complex

· · · −−−→ Mi−1
di−1−−−→ Mi

di−−−→ Mi+1 −−−→ · · ·
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is called exact if Im di−1 = Ker di. The homology modules H i := Ker di/ Im di−1 are
measuring how far is a complex from being exact. If I is an ideal and (x1, . . . , xn) is a
system of generators for I, then we set g = grade I := inf{i : H i(K(x1, . . . , xn)) 6= 0}.
The number g depends only on the ideal, and not on the chosen system of generators.
Every maximal regular sequence in I has length g. The homology of the Koszul
complex is grade sensitive.

More general, if M is an R-module, and ψ : M → R is an R-morphism, then we
consider the complex

K(ψ) : . . .→
∧
kM → · · · →

∧
2M →M → R→ 0,

where the the differential sends an element m1 ∧ . . . ∧mk to the element∑k
i=1(−1)i+1ψ(mi)m1 ∧ . . . m̂i . . .∧mk. If M is free, the two complexes are isomor-

phic, and their homology is well understood. If M has a presentation

0 −−−→ F χ−−−→ G −−−→ M −−−→ 0

where F , G are free modules, then the homology of K(ψ) is studied in [BV4], and
found to be grade sensitive.

Eagon and Northcott have generalized the Koszul complex. If ψ : G → F is
a map of free R modules of ranks n and m, we set r = n − m and consider the
complexes

Ct(ψ) : 0 → (
∧

0G⊗ Sr−t(F ))∗
∂∗ψ→ · · ·

∂∗ψ→ (
∧
r−tG⊗ S0(F ))∗

νψ→
∧
tG⊗ S0(F )

∂ψ→ · · ·
∂ψ→

∧
0G⊗ St(F ) → 0,

where ∂ψ(y1 ∧ . . .∧ yp⊗ z) =
∑p

i=1(−1)i+1y1 ∧ . . . ŷi . . .∧ yp⊗ψ(yi)z. If we fix bases
g∗1, . . . , g

∗
n (f ∗1 , . . . , f

∗
m) on G∗ (F ∗), and define δ :

∧
nG∗ → R by g∗1 ∧ · · · ∧ g∗n → 1,

then

νψ(x∗)(y∗) = δ(x∗ ∧ y∗ ∧
∧
mψ∗(f ∗1 ∧ · · · ∧ f ∗m)), x∗ ∈

∧
r−tG∗, y∗ ∈

∧
tG∗.

The complexes Ct(ψ) are grade sensitive, namely if I = Iψ is the ideal generated by
the maximal minors of a matrix representing ψ, and g = grade I, then H i(Ct(ψ)) = 0
for i < g.

Remark that the Koszul K(ψ) may be defined for all R-modules M , while the
complexes Ct(ψ) are defined only for maps of free R-modules. In the first chapter
we consider an R-homomorphism ψ : G → F , where only F has to be free of rank
m. We introduce the complexes

Cψ(t) : · · · →
∧
t+m+pG⊗Dp(F

∗)
∂ψ→ · · ·

∂ψ→
∧
t+mG⊗D0(F

∗)
νx
∗
ψ→

∧
tG⊗ S0(F )

∂ψ→

· · ·
∂ψ→

∧
0G⊗ St(F ) → 0,
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generalizing the Koszul complexes K(ψ).
There is a similar construction for a map ϕ : H → G, where now H has to be

free of rank l. We consider the complexes

Dϕ(t) : 0 → Dt(H)⊗
∧

0G
dϕ→ · · · dϕ→ D0(H)⊗

∧
tG

νϕx→ S0(H
∗)⊗

∧
t+lG

dϕ→ · · ·
dϕ→ Sp(H

∗)⊗
∧
t+l+pG→ · · · ,

a generalization of the Koszul complex K(x1, . . . , xn).

Next we consider a complex H
ϕ→ G

ψ→ F , H and F being free R-modules. We
assemble the complexes Cψ(t) and Dϕ(t) to our main tool, the bicomplex C.,.(t).

In the second chapter we analyze C.,.(t). We suppose G to be also free. ψ∗ induces
a map ϕ̄∗ : Cokerϕ∗ → H∗. We draw technical results concerning the homology of
(Cϕ̄∗(t))∗ and we relate the homology of Cϕ̄∗(t) to the homology of (Cϕ̄∗(t))∗.

The third chapter deals with the dual situation. It is mainly concerned with
the study of the homology of Cλ̄(t), where λ̄ is a map from an R-module M with a
presentation as above, into a free R-module H. If grade Iχ has the greatest possible
value rankM + 1, the homology is found to be grade sensitive and the results of
[BV4] are generalized.

Further we investigate when a sequence H
ϕ→ G

ψ→ F of free R-modules is a
complex provided that grade Iχ is not necessarily maximal. Some necessary con-
ditions are found. As a consequence we draw a criterion for the vanishing of a
product of matrices, an answer to a very special case of the question formulated at
the beginning of the introduction.

Finally we study the homology of Cλ̄(t) in a special setup, namely we assume
grade Iχ = rankM = dimR. In this case some of the homology modules have finite
length, and we are able to deduce information about their length.

The author wishes to thank - in alphabetical order - Winfried Bruns, Violeta
Dinescu, Bernolph von Gemmingen-Guttenberg, Nicolae Manolache, Gigel Militaru,
Dorin Popescu, Udo Vetter for the direct and indirect support in the writing of this
thesis.
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1 Koszul Complexes and Koszul Bicomplexes

In the following sections we assume R to be a commutative ring. By
∧

we denote
the exterior power, by S the symmetric power, and by D the divided power. If not
specified, ⊗ (∧, Hom) denotes tensor product (exterior product, homomorphisms)
over R. ∗ will always mean R-dual (with the usual exception in the graded case, see
section 1.1).

The purpose of this chapter is to introduce a new way of working with the Koszul
complexes and the Koszul bicomplexes.

Usually, if G is an R-module and ψ : G → R is an R-homomorphism, then the
Kozsul complex associated to ψ is defined to be the complex

. . .→
∧
pG→ · · · →

∧
2G→ G→ R→ 0

where the differential sends an element y1 ∧ . . . ∧ yp, yi ∈ G to the element

p∑
i=1

(−1)i+1ψ(yi)y1 ∧ . . . ŷi . . . ∧ yp.

In the first section we notice that the differential is exactly the right multiplica-
tion (the right inner product) by ψ ∈ G∗ with respect to the standard

∧
G∗-right

module structure on
∧
G. The interaction between this structure and the

∧
G-left

module structure on
∧
G proves to be helpful to the study of the Koszul complex.

Eagon and Northcott have generalized the Koszul complex. They study the case
of a homomorphism ψ : G → F of free modules. Their construction is difficult to
generalize to the case in which either G or F is not free. We suggest a generalization
for this case in the second section.

In the final section Koszul complexes are linked to Koszul bicomplexes associated
to complexes H → G→ F of R-modules.
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1.1 General Definitions and Properties

Let G be an R-module and let ψ : G → R be an R-homomorphism. Then there is
a unique R-antiderivation ∂ψ of

∧
G which extends ψ :

∧
1G→

∧
0G. It has degree

(−1) with respect to the grading of
∧
G, and if yi ∈ G for i = 1, . . . , p, then

∂ψ(y1 ∧ . . . ∧ yp) =

p∑
i=1

(−1)i+1ψ(yi)y1 ∧ . . . ŷi . . . ∧ yp.

DEFINITION 1.1. If M is an R-module, then we denote by KR
. (ψ,M) the (chain)

complex (
∧
G⊗M , ∂ψ⊗1M). For simplicity the differential of KR

. (ψ,M) is denoted
by ∂ψ or ∂Rψ . As it is a common practice, we sometimes write

· · · →
∧
pG⊗M → · · · →

∧
1G⊗M →

∧
0G⊗M → 0

for KR
. (ψ,M).

REMARK 1.2. The differential ∂ψ of KR
. (ψ,M) has also degree (−1) with respect

to the grading of
∧
G⊗M . If yi ∈ G for i = 1, . . . , p and m ∈M , then

∂ψ(y1 ∧ . . . ∧ yp ⊗m) =

p∑
i=1

(−1)i+1ψ(yi)y1 ∧ . . . ŷi . . . ∧ yp ⊗m

=

p∑
i=1

(−1)i+1y1 ∧ . . . ŷi . . . ∧ yp ⊗ ψ(yi)m.

PROPOSITION 1.3. Let A be a commutative R-algebra, let ψ : G ⊗ A → A be
an A-homomorphism, and let M be an A-module. The complex KA

. (ψ,M) can be
canonically identified with the complex (

∧
G⊗M , ∂ψ), where

∂ψ(y1 ∧ . . . ∧ yp ⊗m) =

p∑
i=1

(−1)i+1y1 ∧ . . . ŷi . . . ∧ yp ⊗ ψ(yi ⊗ 1A)m

for y1, . . . , yp ∈ G and m ∈M .

Proof. Consider the diagram

∧
A(G⊗ A)⊗AM

∂Aψ−−−→
∧
A(G⊗ A)⊗AMy y∧

G⊗M
∂ψ−−−→

∧
G⊗M

where the vertical arrows are the compositions of the canonical isomorphisms∧
A(G⊗ A)⊗AM

β⊗1M−−−→
∧
G⊗ (A⊗AM),
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β((y1 ⊗ a1) ∧ . . . ∧ (yp ⊗ ap)) = y1 ∧ . . . ∧ yp ⊗ a1 . . . ap

for yi ∈ G and ai ∈ A, and∧
G⊗ (A⊗AM)

1⊗α−−−→
∧
G⊗M,

α being the usual multiplication map. It is obvious that the diagram is commutative.

Let ϕ : R → G be an R-homomorphism. The algebra
∧
G can be viewed as a

right
∧
G-module (left

∧
G-module), and there is a unique endomorphism (antien-

domorphism) dϕ of
∧
G which extends ϕ :

∧
0G →

∧
1G. It has degree (1) with

respect to the grading of
∧
G. If y ∈

∧
G, then

dϕ(y) = ϕ(1) ∧ y.

DEFINITION 1.4. If M is an R-module, we denote by K
.

R(ϕ,M) the (cochain)
complex (M ⊗

∧
G, 1M ⊗ dϕ). The differential of K

.

R(ϕ,M) is denoted by dϕ or dRϕ .

REMARK 1.5. The differential dϕ of K
.

R(ϕ,M) has also degree (1) with respect to
the grading of M ⊗

∧
G. If y ∈

∧
G and m ∈M , then

dϕ(m⊗ y) = m⊗ ϕ(1) ∧ y.

As is usual, we often write

0 →M ⊗
∧

0G→M ⊗
∧

1G→ · · · →M ⊗
∧
pG→ · · ·

for K
.

R(ϕ,M).

There is an analogue with Proposition 1.3:

PROPOSITION 1.6. Let A be a commutative R-algebra, let ϕ : A → A ⊗ G be
an A-homomorphism, and let M be an A-module. The complex K

.

R(ϕ,M) can be
canonically identified with the complex (M ⊗

∧
G, dϕ), where

dϕ(m⊗ y) = ϕ(1) · (m⊗ y)

for y ∈
∧
G, m ∈M .

Proof. Consider the diagram

M ⊗A

∧
A(A⊗G)

dAϕ−−−→ M ⊗A

∧
A(A⊗G)y y

M ⊗
∧
G

dϕ−−−→ M ⊗
∧
G,

where the vertical arrows are canonical isomorphisms. It is obvious that the diagram
is commutative.
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Let A, B be commutative R-algebras. Furthermore let ϕ : A → A ⊗ G be an
A-homomorphism and ψ : G⊗B → B be a B-homomorphism. If M is an A-module
and N is a B-module, then we obtain a diagram K

.B
A. (ϕ,M,ψ,N)

M ⊗
∧
G⊗N

dϕ−−−→ M ⊗
∧
G⊗N

∂ψ

y ∂ψ

y
M ⊗

∧
G⊗N

dϕ−−−→ M ⊗
∧
G⊗N

in which dϕ and ∂ψ stand for dϕ ⊗ 1N and 1M ⊗ ∂ψ.

THEOREM 1.7. If the composition

A⊗B
ϕ⊗1B−−−→ A⊗G⊗B

1A⊗ψ−−−→ A⊗B

is the zero homomorphism, then K
.B
A. (ϕ,M,ψ,N) is a (cochain-chain) bicomplex.

Proof. Let

ϕ(1) =
k∑
i=1

a0
i ⊗ g0

i

where a0
1, . . . , a

0
1 ∈ A and g0

1, . . . , g
0
k ∈ G. Our hypothesis says that

k∑
i=1

a0
i ⊗ ψ(g0

i ⊗ 1) = 0,

and we have to prove that the diagram K
.B
A. (ϕ,M,ψ,N) is anticommutative. Let

m ∈M , y1, . . . , yp ∈ G, and n ∈ N . Then

∂ψdϕ(m⊗ y1 ∧ . . . ∧ yp ⊗ n) = ∂ψ(
k∑
i=1

a0
im⊗ g0

i ∧ y1 ∧ . . . ∧ yp ⊗ n)

=
k∑
i=1

a0
im⊗ y1 ∧ . . . ∧ yp ⊗ ψ(g0

i ⊗ 1)n

−
k∑
i=1

p∑
j=1

(−1)j+1a0
im⊗ g0

i ∧ y1 ∧ . . . ŷj . . . ∧ yp ⊗ ψ(yj ⊗ 1)n

= −
k∑
i=1

p∑
j=1

(−1)j+1a0
im⊗ g0

i ∧ y1 ∧ . . . ŷj . . . ∧ yp ⊗ ψ(yj ⊗ 1)n

since

k∑
i=1

a0
im⊗ y1 ∧ . . . ∧ yp ⊗ ψ(g0

i ⊗ 1)n = (
k∑
i=1

a0
i ⊗ ψ(g0

i ⊗ 1))(m⊗ y1 ∧ . . . ∧ yp ⊗ n)

8



with respect to the (A⊗B)-module structure of M ⊗
∧
G⊗N . On the other hand

dϕ∂ψ(m⊗y1 ∧ . . . ∧ yp ⊗ n) = dϕ
( p∑
j=1

(−1)j+1m⊗ y1 ∧ . . . ŷj . . . ∧ yp ⊗ ψ(yj ⊗ 1)n
)

=
k∑
i=1

p∑
j=1

(−1)j+1a0
im⊗ g0

i ∧ y1 ∧ . . . ŷj . . . ∧ yp ⊗ ψ(yj ⊗ 1)n.

REMARK 1.8. Theorem 1.7 may also be proved considering the (A ⊗ B)-module
structure of A⊗G⊗B and using Proposition 1 in [BO3], §9. Subsequently we shall
obtain a general result which contains Theorem 1.7 as a particular case.

REMARK 1.9. As usual, one can visualize K
.B
A. (ϕ,M,ψ,N) as a family of maps in

the (p, q)-plane. If we write ∧
i for M ⊗

∧
iG⊗N,

we get

...
...

...
...

...
...y y y y y y

0 −−−→
∧

0 −−−→
∧

1 −−−→ · · · −−−→
∧
i dϕ−−−→

∧
i+1 −−−→

∧
i+2· · ·y y y ∂ψ

y y
0 −−−→

∧
0 −−−→ · · · −−−→

∧
i−1 −−−→

∧
i −−−→

∧
i+1· · ·y y y y

0 −−−→ · · · −−−→
∧
i−2 −−−→

∧
i−1 −−−→

∧
i · · ·y y y

...
...

...

0 −−−→
∧

0 −−−→
∧

1 · · ·y y
0 −−−→

∧
0 · · ·y

0 · · ·

9



We adopt the following convention for the graded dual of a graded module (see
[E], A2.4 for example). If M = ⊕i≥0Mi is a graded R-module, we shall write M∗

for the graded dual of M , that is

M∗ = M∗
gr = ⊕i≥0(Mi)

∗

(instead of M∗ = HomR(M,R) as originally). This only makes a difference when M
is not finitely generated. We use it mainly in the case in which M is the symmetric
algebra S(N) or the exterior algebra

∧
N of an R-module N . Then

S(N)∗ = ⊕i≥0Si(N)∗, (
∧
N)∗ = ⊕i≥0(

∧
iN)∗.

Correspondingly M∗∗ means the graded bidual (M∗
gr)

∗
gr of M . The canonical map

cM : M →M∗∗ is given by cM = ⊕i≥0cMi
.

Let N be an R-module. The natural graded algebra homomorphism

θ :
∧
N∗ → (

∧
N)∗,

is given by
θ(y∗1 ∧ . . . ∧ y∗p)(y1 ∧ . . . ∧ yp) = det(y∗j (yi))

for all y1, . . . , yp ∈ N and y∗1, . . . , y
∗
p ∈ N∗. If N is finitely generated and projective,

then θ is an isomorphism (see Proposition 7 in [BO1], Chapter III, § 11.5, and note
that Bourbaki uses the opposite algebra to (

∧
G)∗).

REMARK 1.10. As above, let N be an R-module. We define a multiplication on∧
N ⊗

∧
N by

(x1 ⊗ y1)(x2 ⊗ y2) = (−1)(deg y1)(deg x2)(x1 ∧ x2)⊗ (y1 ∧ y2)

for all homogeneous elements x1, y1, x2, y2 of
∧
N (the skew tensor product). Then∧

N becomes a bialgebra, the cogebra structure given by the composition of the
multiplication just defined with the diagonal map

∆(y) = y ⊗ 1 + 1⊗ y

for all y ∈ N . If y1, . . . , yn ∈ N , the element ∆(y1 ∧ . . . ∧ yn) is of total degree n in∧
N ⊗

∧
N and its homogeneous component of bidegree (p, n− p) is equal to∑

σ

ε(σ)(yσ(1) ∧ . . . ∧ yσ(p))⊗ (yσ(p+1) ∧ . . . ∧ yσ(n)),

where σ runs through the set Sn,p of permutations of n elements which are increasing
on the intervals [1, p] and [p+ 1, n] (see Example 7 in [BO1] III §11.1 ).

The algebra structure on (
∧
N)∗ is induced by the coalgebra structure of

∧
N ,

the product of two elements x∗, y∗ being defined by x∗y∗ = α(x∗ ⊗ y∗)∆, where

10



α : R ⊗ R → R is the multiplication. The right and the left inner products are
given by y ↼ y∗ = (y∗ ⊗ 1)∆(y) and y∗ ⇀ y = (1 ⊗ y∗)∆(y) for all y ∈

∧
N and

y∗ ∈ (
∧
N)∗. They define a (

∧
N)∗-bimodule structure on

∧
N . Using θ this can be

extended to a
∧
N∗-bimodule structure. If p ≤ n, then one can easily see that

y1 ∧ . . . ∧ yn ↼ y∗1 ∧ . . . ∧ y∗p =
∑
σ

ε(σ) det
1≤i,j≤p

(y∗j (yσ(i)))yσ(p+1) ∧ . . . ∧ yσ(n)

for y1, . . . , yn ∈ N and y∗1, . . . , y
∗
p ∈ N∗, where σ runs through Sn,p.

An easy calculation shows that an element n∗ ∈ N∗ acts like an antiderivation
on

∧
N in the sense that

(x ∧ y) ↼ n∗ = (x ↼ n∗) ∧ y + (−1)degxx ∧ (y ↼ n∗)

for homogeneous elements x, y ∈
∧
N .

We are now able to state the promised generalization of Theorem 1.7. ∂ψ is
the multiplication by ψ if we view

∧
G as a right

∧
G∗-module, and dϕ is the left

multiplication by ϕ(1) in the algebra
∧
G. Theorem 1.7 may be seen as a particular

case (l = p = 1) of the following result.

THEOREM 1.11. Let xi ∈ G for i = 1, . . . , l, and let z∗j ∈ G∗ for j = 1, . . . , p such
that z∗j (xi) = 0 for all i, j. As above let ↼ denote the right operation of

∧
G∗ on∧

G, then

x1 . . . xl ∧ (y1 . . . yn ↼ z∗1 . . . z
∗
p) = (−1)lp(x1 . . . xl ∧ y1 . . . yn) ↼ z∗1 . . . z

∗
p

where yk ∈ G for k = 1, . . . , n.

Proof. If n < p, then both sides are 0. If n ≥ p, then

x1 . . . xl ∧ (y1 . . . yn ↼ z∗1 . . . z
∗
p)

=
∑

σ∈Sn,p

ε(σ) det
1≤i,j≤p

(z∗i (yσ(j)))x1 . . . xl ∧ yσ(p+1) . . . yσ(n).

On the other hand

(x1 . . . xl ∧ y1 . . . yn) ↼ z∗1 . . . z
∗
p

=
∑
σ

ε(σ) det
1≤i,j≤p

(z∗i (yσ(j)−l))x1 . . . xl ∧ yσ(p+l+1)−l . . . yσ(n+l)−l

where σ runs through the set S′
n+l,p of permutations of n + l elements which are

increasing on the intervals [1, p] and [p + 1, n + l], and have values greater than
l on [1, p]. (Note that z∗i (xσ(j)) = 0 by assumption.) Now we define a bijection
Sn,p → S′

n+l,p, σ1 7→ σ2, by

σ2(i) =


σ1(i) + l if i = 1, . . . , p

i− p if i = p+ 1, . . . , p+ l

σ1(i− l) + l if i = p+ l + 1, . . . , n+ l.

Clearly ε(σ1) = (−1)lpε(σ2).

11



For further references we recall some well known results from linear algebra.

LEMMA 1.12. If M , N are R-modules, then there is a natural map

ζ = ζM,N : M∗ ⊗N → Hom(M,N),

given by
ζ(m∗ ⊗ n)(m) = m∗(m)n

for all m ∈M , m∗ ∈M∗ and n ∈ N . Suppose that one of the following assumptions

(a) N is finitely generated projective, or

(b) M is finitely generated projective, or

(c) M is finitely generated and N is flat

is true. Then ζ is an isomorphism.

Proof. See Lemma 5 and Corollary in [BO1] Chapter II § 4.2 for (a) or (b). For (c)
see Lemma 3.83 in [R] .

If G is an R-module, A is a commutative R-algebra and M is an A-module, then
Hom(G,M) and Hom(M,G) are A-modules in a natural way.

LEMMA 1.13. The map

ξ : Hom(G,M) → HomA(G⊗ A,M),

given by
ξ(f)(y ⊗ a) = af(y)

for all y ∈ G, a ∈ A and f ∈ Hom(G,M), is an isomorphism of A-modules.

Proof. The map

HomA(G⊗ A,M) → Hom(G,M), ϕ 7→ ϕ ◦ ι,

where ι : G→ G⊗ A is the map y 7→ y ⊗ 1A, is obviously the inverse of ξ.

REMARK 1.14. In order to simplify the presentation, when dualizing a tensor prod-
uct over R, we shall sometimes use, without mentioning, the twist map to change
the order in which the modules appear.

We are ready now to formulate a general result concerning the connection of the
Koszul complex and its dual through natural complex isomorphisms.
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THEOREM 1.15. Let A be a commutative R-algebra, let M be an A-module, let G
be an R-module, and let ϕ : A→ G∗ ⊗ A be an A-homomorphism. By ω we denote
the composition

HomA(A,G∗ ⊗ A) ∼= G∗ ⊗ A
ζ→ Hom(G,A)

ξ∼= HomA(G⊗ A,A).

Then there are natural complex morphisms

K
.

A(ϕ,M∗) −→
(
KA
. (ω(ϕ),M)

)∗
and

K
.

A(ϕ,M) −→
(
KA
. (ω(ϕ),M∗)

)∗
.

Moreover, if G is finitely generated projective, then the first morphism is a complex
isomorphism. If G is finitely generated projective and M is a graded R-module
such that every homogeneous component is finitely generated projective, then also
the second morphism is a complex isomorphism. (Note that if M is graded, we use
the special conventions previously described).

Proof. Let

ϕ(1) =
k∑
i=1

a0
i ⊗ g

0∗
i

where a0
1, . . . , a

0
k ∈ A and g

0∗
1 , . . . , g

0∗
k ∈ G∗. Consider the diagram

M∗ ⊗
∧
pG∗ dϕ−−−→ M∗ ⊗

∧
p+1G∗

µ(1M∗⊗θ)
y µ(1M∗⊗θ)

y
(M ⊗

∧
pG)∗

(∂ω(ϕ))
∗

−−−−→ (M ⊗
∧
p+1G)∗

where θ :
∧
pG∗ → (

∧
pG)∗ is the map defined above and µ is the natural homomor-

phism
M∗ ⊗ (

∧
pG)∗ → (M ⊗

∧
pG)∗,

µ(m∗ ⊗ y∗)(m⊗ y) = m∗(m)y∗(y)

for m ∈ M , m∗ ∈ M∗, y ∈
∧
pG and y∗ ∈ (

∧
pG)∗. We prove that the diagram is

commutative. Choose elements m∗ ∈M, y∗1, . . . , y
∗
p ∈ G∗, m ∈M, y1, . . . , yp+1 ∈ G,

and set y∗ = y∗1 ∧ . . . ∧ y∗p, y = y1 ∧ . . . ∧ yp+1. Then

µ ◦ (1M∗ ⊗ θ) ◦ dϕ(m∗ ⊗ y∗) =
k∑
i=1

µ(a0
im

∗ ⊗ θ(g
0∗
i ∧ y∗)),
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and therefore(
µ(1M∗ ⊗ θ)dϕ(m

∗ ⊗ y∗)
)
(m⊗ y) =

k∑
i=1

a0
im

∗(m)θ(g
0∗
i ∧ y∗)(y)

=
k∑
i=1

a0
im

∗(m)

∣∣∣∣∣∣∣∣
g

0∗
i (y1) · · · g

0∗
i (yp+1)

y∗1(y1) · · · y∗1(yp+1)
· · ·

y∗p(y1) · · · y∗p(yp+1)

∣∣∣∣∣∣∣∣ .

On the other hand

ω(ϕ)(yj ⊗ 1)
k∑
i=1

a0
i g

0∗
i (yj).

So (
(∂ω(ϕ))

∗ µ (1M∗ ⊗ θ)(m∗ ⊗ y∗)
)
(m⊗ y) = µ(1M∗ ⊗ θ)(m∗ ⊗ y∗)∂ω(ϕ)(m⊗ y)

= µ(1M∗ ⊗ θ)(m∗ ⊗ y∗)(

p+1∑
j=1

(−1)j+1ω(ϕ)(yj ⊗ 1A)m⊗ y1 ∧ . . . ŷj . . . ∧ yp+1)

=

p+1∑
j=1

(−1)j+1m∗(ω(ϕ)(yj ⊗ 1A)m)θ(y∗)(y1 ∧ . . . ŷj . . . ∧ yp+1)

=
k∑
i=1

a0
im

∗(m)

p+1∑
j=1

(−1)j+1g
0∗
i (yj)

∣∣∣∣∣∣∣
y∗1(y1) · · · ŷ∗1(yj) · · · y∗1(yp+1)

· · ·
y∗p(y1) · · · ŷ∗p(yj) · · · y∗p(yp+1)

∣∣∣∣∣∣∣
=

k∑
i=1

a0
im

∗(m)

∣∣∣∣∣∣∣∣
g

0∗
i (y1) · · · g

0∗
i (yp+1)

y∗1(y1) · · · y∗1(yp+1)
· · ·

y∗p(y1) · · · y∗p(yp+1)

∣∣∣∣∣∣∣∣ .

The second part has a similar proof. One has just to use cM : M →M∗∗ instead
of 1M∗ .

Moreover, if G is finitely generated projective, then θ is an isomorphism, and
G∗ is also finitely generated projective ([BO1] II §2.2, Corollary 2). This implies
that

∧
G∗ is finitely generated projective ([BO1] III §7.4, Proposition 6). So µ is

an isomorphism ([BO1] II §4.4, Corollary 1). If M = ⊕i≥0Mi is a graded R-module
such that every homogeneous component is finitely generated projective, then cM is
also an isomorphism.
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1.2 Generalized Koszul Complexes

Let

H
ϕ−−−→ G and G

ψ−−−→ F

be homomorphisms of R-modules. Most of the results of this section are true if

ζH,G : H∗ ⊗G→ Hom(H,G) and ζG,F : G∗ ⊗ F → Hom(G,F )

are isomorphisms (see Lemma 1.12). For simplicity we restrict the presentation to
the particular case in which H and F are finitely generated free modules.

Since F is canonically identified with S0(F ), we can consider ψ an element of

Hom(G,S(F )) ∼= HomS(F )(G⊗ S(F ), S(F ))

(see Lemma 1.13). For every S(F )-module M , ψ gives rise to a Koszul complex
of S(F )-modules KS(F )

. (ψ,M). If M = ⊕i≥0Mi is a graded S(F )-module, then
KS(F )
. (ψ,M), as a complex of R-modules, splits into direct summands

KS(F )
. (ψ,M)(t), t ∈ Z,

0 →
∧
tG⊗M0

∂ψ→
∧
t−1G⊗M1 → · · · →

∧
1G⊗Mt−1

∂ψ→
∧

0G⊗Mt → 0.

M∗ is a graded S(F )-module with graduation M∗ = ⊕i≤0M
∗
−i, and KS(F )

. (ψ,M∗)
as a complex of R-modules splits into direct summands KS(F )

. (ψ,M∗)(t), t ∈ Z,

· · · →
∧
t+pG⊗M∗

−p
∂ψ→

∧
t+p−1G⊗M∗

−(p−1) → · · · →
∧
t+1G⊗M∗

−1

∂ψ→
∧
tG⊗M∗

0 → 0.

As already noted, the map ψ : G→ F can be viewed as an element of
HomS(F )(G⊗S(F ), S(F )). The corresponding S(F )-antiderivation ∂ψ of

∧
S(F )(G⊗

S(F )) is nothing but the right multiplication by ψ on
∧
S(F )(G⊗ S(F )).

Since F is assumed to be a finitely generated free R-module (in the following
it suffices to know that the canonical map G∗ ⊗ F → Hom(G,F ) is surjective), we
may also regard ψ as an element of G∗ ⊗ S(F ) (Lemma 1.12) which is the degree 1
homogeneous part of

∧
S(F )(G

∗ ⊗ S(F )). Furthermore∧
S(F )(G

∗ ⊗ S(F )) ∼=
∧
G∗ ⊗ S(F ),

(as S(F )-algebras). So ψ may be viewed as an element of
∧
G∗ ⊗ S(F ). An easy

computation shows that the right multiplication by ψ on
∧
S(F )(G⊗S(F )) ∼=

∧
G⊗

S(F ) this time has the same result as above.

DEFINITION 1.16. Assume that x∗ ∈
∧
G∗ is homogeneous of grade i. If (x∗ ⊗

1S(F ))ψ = 0, then the right multiplication by x∗ ⊗ 1S(F ) on
∧
G ⊗ S(F ) is called a

connection homomorphism for ψ of grade i and is denoted by νx
∗

ψ .
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PROPOSITION 1.17. If νx
∗

ψ is a connection homomorphism for ψ, then

∂ψν
x∗

ψ = νx
∗

ψ ∂ψ = 0.

Proof. ∂ψν
x∗

ψ is the right multiplication by (x∗ ⊗ 1S(F ))ψ on
∧
G ⊗ S(F ) which is

zero by assumption. Since ψ(x∗ ⊗ 1S(F )) = ±(x∗ ⊗ 1S(F ))ψ, we likewise obtain
νx

∗

ψ ∂ψ = 0.

REMARK 1.18. The short and easy proof of Proposition 1.17 is a consequence of
our interpretation of ∂ψ and the definition above. See for example [E], proof of
Theorem A2.10 (a). Observe that we do not require G to be free.

Let νx
∗

ψ be a connection homomorphism for ψ of grade i and suppose that M =
⊕i≥0Mi is a graded S(F )-module with M0 = R. Then for all t ∈ Z, we splice
KS(F )
. (ψ,M∗)(t+ i) and KS(F )

. (ψ,M)(t) to a complex

· · · →
∧
t+i+pG⊗M∗

−p
∂ψ→ · · ·

∂ψ→
∧
t+iG⊗M∗

0

νx
∗
ψ→

∧
tG⊗M0

∂ψ→ · · ·
∂ψ→

∧
0G⊗Mt → 0.

denoted by

(KS(F )
. (ψ,M∗)

νx
∗
ψ−−−→ KS(F )

. (ψ,M))(t).

There is a similar construction for the map ϕ : H → G. Since H is free and
finitely generated, the natural homomorphism H∗ ⊗G→ Hom(H,G) is an isomor-
phism. So one may view ϕ as an element of H∗ ⊗ G. Since H∗ is the degree 1
homogeneous part of the symmetric algebra S(H∗), we can consider ϕ an element
of

S(H∗)⊗G ∼= HomS(H∗)(S(H∗), S(H∗)⊗G).

For every S(H∗)-module M , ϕ gives rise to a Koszul complex K
.

S(H∗)(ϕ,M) of

S(H∗)-modules (see Section 1). If M = ⊕i≥0Mi is a graded S(H∗)-module, then
K

.

S(H∗)(ϕ,M), as a complex of R-modules, splits into direct summands

K
.

S(H∗)(ϕ,M)(t), t ∈ Z,

0 →M0 ⊗
∧
tG

dϕ→M1 ⊗
∧
t+1G→ · · · →Mp−1 ⊗

∧
t+p−1G

dϕ→Mp ⊗
∧
t+pG→ · · · ,

and K
.

S(H∗)(ϕ,M
∗) splits into direct summands K

.

S(H∗)(ϕ,M
∗)(t), t ∈ Z,

0 →M∗
−t ⊗

∧
0G

dϕ→M∗
−(t−1) ⊗

∧
1G→ · · · →M∗

−1 ⊗
∧
t−1G

dϕ→M∗
0 ⊗

∧
tG→ 0.

S(H∗)⊗G is the degree 1 homogeneous part of
∧
S(H∗)(S(H∗)⊗G), and we can

consider ϕ even an element of∧
S(H∗)(S(H∗)⊗G) ∼= S(H∗)⊗

∧
G.

The differential dϕ of K
.

S(H∗)(ϕ, S(H∗)) then turns out to be the left multiplication
by ϕ.
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DEFINITION 1.19. Let x ∈
∧
G be homogeneous of grade i such that (1S(H∗) ⊗

x)ϕ = 0. Then the left multiplication by 1S(H∗) ⊗ x on S(H∗) ⊗
∧
G is called a

connection homomorphism for ϕ of grade i and is denoted by νϕx .

PROPOSITION 1.20. If νϕx is a connection homomorphism for ϕ, then

dϕν
ϕ
x = νϕx dϕ = 0.

Proof. With regard to the proof of 1.17, the result is obvious.

If νϕx is a connection homomorphism for ϕ of grade i and M = ⊕i≥0Mi is a
graded S(H∗)-module with M0 = R, then for all t ∈ Z, we splice K

.

S(H∗)(ϕ,M
∗)(t)

and K
.

S(H∗)(ϕ,M)(t+ i) to a complex

0 →M∗
−t ⊗

∧
0G

dϕ→ · · · dϕ→M∗
0 ⊗

∧
tG

νϕx→M0 ⊗
∧
t+iG

dϕ→ · · ·
dϕ→Mp ⊗

∧
t+i+pG→ · · · .

denoted by

(K
.

S(H∗)(ϕ,M
∗)

νϕx−−−→ K
.

S(H∗)(ϕ,M))(t).

We shall now establish a natural relation between the complexes introduced
above.

THEOREM 1.21. Suppose that F is a finite free R-module, and let x∗ ∈
∧
G∗ be

such that νx
∗

ψ is a connection morphism for ψ. Then νψ
∗

x∗ is a connection morphism
for ψ∗.

Furthermore let M be a graded S(F )-module such that M0 = R. Then there is a
natural complex morphism

(K
.

S(F )(ψ
∗,M∗)

νψ
∗

x∗−−−→ K
.

S(F )(ψ
∗,M))(t)

τ

y(
(KS(F )

. (ψ,M∗)
νx
∗
ψ−−−→ KS(F )

. (ψ,M))(t)
)∗
.

Moreover, if G is finitely generated projective and every homogeneous component of
M is finitely generated and projective over R, then τ is a complex isomorphism.

Proof. Our assumptions guarantee that the canonical map F → F ∗∗ induces an
isomorphism G∗ ⊗ F ∼= F ∗∗ ⊗ G∗ and this again an S(F )-algebra isomorphism∧
G∗ ⊗ S(F ) ∼= S(F ∗∗) ⊗

∧
G∗. Furthermore the canonical maps ζG,F : G∗ ⊗ F →

Hom(G,F ) and ζF ∗,G∗ : F ∗∗⊗G∗ → Hom(F ∗, G∗) are isomorphisms. Consequently,
in order to prove that (x∗ ⊗ 1S(F ))ψ = 0 implies (1S(F ∗∗) ⊗ x∗)ψ∗ = 0, it suffices to
show that the preimages of ψ and ψ∗ with respect to ζG,F and ζF ∗,G∗ are mapped
one to the other by the isomorphism mentioned above.

17



Let f1, . . . , fm be a basis for F and f ∗1 , . . . , f
∗
m the dual basis of F ∗. We identify

fj with its canonical image in F ∗∗. An easy calculation shows that

ζG,F (
∑
j

ψ∗(f ∗j )⊗ fj) = ψ and ζF ∗,G∗(
∑
j

fj ⊗ ψ∗(f ∗j )) = ψ∗. (∗)

So νψ
∗

x∗ is a connection homomorphism for ψ∗.
Now we apply Theorem 1.15: set A = S(F ), and let ϕ : A → G∗ ⊗ A be

the A-homomorphism given by 1 7→ ζ−1
F ∗,G∗(ψ

∗). Using the canonical isomorphism
F ∗∗ ⊗G∗ ∼= G∗ ⊗ F and the equations (∗), we obtain that ω(ϕ) = ξ(ψ). So we get
natural complex morphisms

K
.

S(F )(ψ
∗,M∗)(t)

τ−−−→
(
KS(F )
. (ψ,M)(t)

)∗
,

and
K

.

S(F )(ψ
∗,M)(t)

τ−−−→
(
KS(F )
. (ψ,M∗)(t)

)∗
It remains to show that the diagram

∧
tG∗ νψ

∗
x∗−−−→

∧
t+iG∗

θ

y θ

y
(
∧
tG)∗

(νx
∗
ψ )∗

−−−→ (
∧
t+iG)∗

is commutative. Let y∗ ∈
∧
tG∗. Then θ ◦ νψ

∗

x∗ (y∗) = θ(x∗ ∧ y∗). To show that this
equals (νx

∗

ψ )∗(θ(y∗)), we have to prove that (θ(y∗))(z ↼ x∗) = (θ(x∗ ∧ y∗))(z) for all
z ∈

∧
Gt+i. Here one may assume that x∗ = x∗1∧ . . .∧x∗i , x∗j ∈ G∗, y∗ = y∗1 ∧ . . .∧y∗t ,

y∗j ∈ G∗, and that z = z1 ∧ . . . ∧ zt+i, zj ∈ G. Then

(θ(y∗))(z ↼ x∗) = θ(y∗)(
∑
σ

ε(σ) det
1≤p,q≤i

(x∗q(zσ(p)))zσ(i+1) ∧ . . . ∧ zσ(t+i))

=
∑
σ

ε(σ) det
1≤p,q≤i

(x∗q(zσ(p))) det
1≤p,q≤t

(y∗q (zσ(i+p)))

=

∣∣∣∣∣∣
x∗1(z1) · · · x∗i (z1) y∗1(z1) · · · y∗t (z1)

· · · · · ·
x∗1(zt+i) · · · x∗i (zt+i) y∗1(zt+i) · · · y∗t (zt+i)

∣∣∣∣∣∣
= (θ(x∗ ∧ y∗))(z),

where σ runs through the set St+i,i of permutations of t + i elements which are
increasing on the intervals [1, i] and [i+1, t+i] (see [BO1] III §8.6 for the expansions
of a determinant).
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REMARK 1.22. If M is a free R-module of finite rank, then S(M), S(M)∗, and
D(M∗) are bialgebras. There is a bialgebra isomorphism Γ : D(M∗) → S(M)∗

given by

Γ(m∗(k))(
∏
i

mki
i ) =

 0 if
∑
ki 6= k∏

i

(m∗(mi))
ki if

∑
ki = k

for all m1, . . . ,mp ∈ M and m∗ ∈ M∗ (see [BE] A’ and [E] Proposition A2.6).
Moreover, we have bialgebra isomorphisms

S(M) ∼= S(M)∗∗ ∼= D(M∗)∗.

The natural S(M)-module structure of D(M∗) is given as follows: if m ∈ S(M)
and y∗ ∈ D(M∗), then (my∗)(n) = Γ(y∗)(mn) for all n ∈ S(M). The interaction
of the S(M)-module structure of D(M∗) and the algebra structure of D(M∗) is
described by the following result.

PROPOSITION 1.23. If m ∈ M , then m acts like a derivation on D(M∗) in the
sense that

(a) mf ∗(k) = f ∗(m)f ∗(k−1) for all f ∗ ∈M∗, k ≥ 1,

(b) m(f ∗g∗) = (mf ∗)g∗ + f ∗(mg∗) for all f ∗, g∗ ∈ D(M∗).

Proof. (a) Let m,n1 . . . nk−1 ∈M and set n = n1 . . . nk−1. Then

mf ∗(k)(n) = Γ(f ∗(k))(mn) = f ∗(m)f ∗(n1) . . . f
∗(nk−1) = f ∗(m)f ∗(k−1)(n).

(b) Since S(M) = S(M)∗∗, we may use Proposition 10 in [BO1] III §11.8: the
left multiplication by m on D(M∗) is a derivation on S(M).

In particular, we can give now descriptions of KS(F )
. (ψ,D(F ∗))(t) and

K
.

S(H∗)(ϕ,D(H∗∗))(t) = K
.

S(H∗)(ϕ,D(H))(t) which depend only on the

algebra structure of D(F ∗) and D(H).

PROPOSITION 1.24. (a) Let z∗1 , . . . , z
∗
q ∈ F ∗, and y1, . . . , yp ∈ G. Then

∂ψ(y1 ∧ . . . ∧ yp ⊗ z
∗(k1)
1 . . . z∗(kq)q )

=

p∑
i=1

q∑
j=1

(−1)i+1y1 ∧ . . . ŷi . . . ∧ yp ⊗ z∗j (ψ(yi))z
∗(k1)
1 . . . z

∗(kj−1)
j . . . z∗(kq)q .

(b) Let x1, . . . , xq ∈ H, y ∈
∧
G. Then

dϕ(x
(k1)
1 . . . x(kq)

q ⊗ y) =

q∑
j=1

x
(k1)
1 . . . x

(kj−1)
j . . . x(kq)

q ⊗ ϕ(xj) ∧ y.
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Proof. (a) Using Proposition 1.23 and Proposition 1.3, we obtain

∂ψ(y1 ∧ . . . ∧ yp ⊗ z
∗(k1)
1 . . . z∗(kq)q )

=

p∑
i=1

(−1)i+1y1 ∧ . . . ŷi . . . ∧ yp ⊗ ψ(yi)z
∗(k1)
1 . . . z∗(kq)q

=

p∑
i=1

(−1)i+1y1 ∧ . . . ŷi . . . ∧ yp ⊗
q∑
j=1

z∗j (ψ(yi))z
∗(k1)
1 . . . z

∗(kj−1)
j . . . z∗(kq)q .

(b) Let h1, . . . , hl be a basis of H and denote by h∗1, . . . , h
∗
l the basis of H∗ dual

to h1, . . . , hl. Obviously

ϕ = ζH,G
( l∑
i=1

h∗i ⊗ ϕ(hi)
)
.

So, if we view ϕ as a map S(H∗) → S(H∗)⊗G, then ϕ(1) =
∑l

i=1 h
∗
i ⊗ ϕ(hi).

Using Proposition 1.6 and Proposition 1.23 (applied to M = H∗∗ = H), we get

dϕ(x
(k1)
1 . . . x(kq)

q ⊗ y) =
l∑

i=1

h∗ix
(k1)
1 . . . x(kq)

q ⊗ ϕ(hi) ∧ y

=
l∑

i=1

q∑
j=1

h∗i (xj)x
(k1)
1 . . . x

(kj−1)
j . . . x(kq)

q ⊗ ϕ(hi) ∧ y

=

q∑
j=1

x
(k1)
1 . . . x

(kj−1)
j . . . x(kq)

q ⊗ ϕ
( l∑
i=1

h∗i (xj)hi
)
∧ y

=

q∑
j=1

x
(k1)
1 . . . x

(kj−1)
j . . . x(kq)

q ⊗ ϕ(xj) ∧ y.

EXAMPLE 1.25. We specialize to the case in which F = R. One can easily check
that, for all t ∈ Z,

(KS(R)
. (ψ,D(R∗))

νψψ−−−→ KS(R)
. (ψ, S(R)))(t)

is the classical Koszul complex associated with ψ (ψ ∈ G∗ is a connection homo-
morphism of degree 1). Moreover, the complex isomorphism is natural for all t ∈ Z.

There are well-known generalizations of the classical Koszul complex in case G
is a finitely generated free R-module, due to Eagon and Northcott, Buchsbaum and
Rim and others. The usual constructions of these complexes do not work for all
R-modules (just take G a module which has no rank). Suppose G to be finitely
generated free and denote by Ct(ψ) the complexes as described in [E] A2.6.1, and
by K(ψ) the classical Koszul complex associated with ψ. If F = R, then

Ct(ψ) ∼= K(ψ)
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is a natural complex isomorphism only for t ≥ rankG. In all other cases the complex
isomorphism depends on an orientation of G.

Our purpose now is to identify the complexes Ct(ψ) among our complexes in case
G is finitely generated free. As we saw in the above example, there seems to be no
way to do this using solely canonical complex isomorphisms. So we shall introduce
a noncanonical map.

REMARK 1.26. Suppose G is a free R-module of rank n. We consider the isomor-
phisms

Ωp :
∧
pG ∼= (

∧
n−pG)∗, p = 0, . . . , n,

induced by an orientation on G: Let g1, . . . , gn be a basis of G, and g∗1, . . . , g
∗
n the

basis of G∗ dual to g1, . . . , gn. Then there is an unique R-isomorphism Ωn :
∧
nG→

R with Ωn(g1 ∧ . . . ∧ gn) = 1. We define Ωp :
∧
pG ∼=

∧
n−pG∗ by

(Ωp(x))(y) = Ωn(x ∧ y) for x ∈
∧
pG, y ∈

∧
n−pG.

PROPOSITION 1.27. If G is free of rank n, then there are (noncanonical) complex
isomorphisms

KS(F )
. (ψ,D(F ∗))(t)

Ω−−−→
(
KS(F )
. (ψ, S(F ))(n− t)

)∗
and

K
.

S(H∗)(ϕ, S(H∗))(t)
Ω−−−→

(
K

.

S(H∗)(ϕ,D(H))(n− t)
)∗
.

Proof. We shall prove only the first part of the proposition. The proof of the second
is similar. Let

Ω = ⊕p≥0((−1)εpΩp ⊗ 1D(F ∗)) :
∧
G⊗D(F ∗) → (

∧
G)∗ ⊗D(F ∗)

where εp = i(i−1)
2

. We have to show that the diagram∧
pG⊗D(F ∗)

∂ψ−−−→
∧
p−1G⊗D(F ∗)

Ω

y Ω

y
(
∧
n−pG)∗ ⊗D(F ∗)

∂∗ψ−−−→ (
∧
n−(p−1)G)∗ ⊗D(F ∗)

is commutative. Let x1, . . . , xp, y1, . . . , yn−(p−1) ∈ G, f ∈ S(F ) and f ∗ ∈ D(F ∗).
Then

Ω∂ψ(x1 ∧ . . . ∧ xp ⊗ f ∗)(y1 ∧ . . . ∧ yn−(p−1) ⊗ f)

= Ω(

p∑
i=1

(−1)i+1x1 ∧ . . . x̂i . . . ∧ xp ⊗ ψ(xi)f
∗)(y1 ∧ . . . ∧ yn−(p−1) ⊗ f)

= (−1)εp−1
( p∑
i=1

Ωp−1((−1)i+1x1 ∧ . . . x̂i . . . ∧ xp)⊗ ψ(xi)f
∗)(y1 ∧ . . . ∧ yn−(p−1) ⊗ f)
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= (−1)εp−1

p∑
i=1

Ωn((−1)i+1x1 ∧ . . . x̂i . . . ∧ xp ∧ y1 ∧ . . . ∧ yn−(p−1))⊗ f ∗(ψ(xi)f)

= (−1)εp−1(Ωn ⊗ f ∗)
(
(x1 ∧ . . . ∧ xp ⊗ f ↼ ψ)(y1 ∧ . . . ∧ yn−(p−1) ⊗ 1)

)
.

On the other hand

∂∗ψΩ(x1 ∧ . . . ∧ xp ⊗ f ∗)(y1 ∧ . . . ∧ yn−(p−1) ⊗ f)

= Ω(x1 ∧ . . . ∧ xp ⊗ f ∗)∂ψ(y1 ∧ . . . ∧ yn−(p−1) ⊗ f)

= Ω(x1 ∧ . . . ∧ xp ⊗ f ∗)(y1 ∧ . . . ∧ yn−(p−1) ⊗ f ↼ ψ)

= (−1)εp(Ωn ⊗ f ∗)
(
(x1 ∧ . . . ∧ xp ⊗ 1)(y1 ∧ . . . ∧ yn−(p−1) ⊗ f ↼ ψ)

)
.

Since x1∧ . . .∧xp∧y1∧ . . .∧yn−(p−1) = 0 and ↼ ψ is an antiderivation (see Remark
1.10), we get

0 = x1 ∧ . . . ∧ xp ∧ y1 ∧ . . . ∧ yn−(p−1) ⊗ 1 ↼ ψ

= (x1 ∧ . . . ∧ xp ⊗ 1 ↼ ψ)(y1 ∧ . . . ∧ yn−(p−1) ⊗ 1)

+ (−1)p(x1 ∧ . . . ∧ xp ⊗ 1)(y1 ∧ . . . ∧ yn−(p−1) ⊗ 1 ↼ ψ).

Obviously εp−1 ≡ εp + p− 1 (2). So we are done.

Proposition 1.27 may be used to link up our approach with the classical theory.

EXAMPLE 1.28. Suppose G to be a free R-module of rank n.

(a) Let f1, . . . , fm be a basis of F , and set x∗ = ψ∗(f ∗1 ) ∧ . . . ∧ ψ∗(f ∗m). Then νx
∗

ψ

is a connection homomorphism for ψ, and one can identify the complexes

(KS(F )
. (ψ,D(F ∗))

νx
∗
ψ−−−→ KS(F )

. (ψ, S(F )))(t).

with the complexes Ct(ψ) as defined in [E] A2.6.1.

(b) Let h1, . . . , hl be a basis of H, and set x = ϕ(h1) ∧ . . . ∧ ϕ(hl). Then νϕx is a
connection homomorphism for ϕ, and one can identify the complexes

(K
.

S(H∗)(ϕ,D(H))
νϕx−−−→ K

.

S(H∗)(ϕ, S(H∗)))(t).

with the Dt(ϕ) as defined in [BV1].

The isomorphisms of (a) and (b) are not canonical since they are given by Ω.
One may use Theorem 1.21 to get complex isomorphisms

Ct(ψ) ∼= (Cn−m−t(ψ))∗ ∼= Dn−m−t(ψ∗).
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1.3 Koszul Bicomplexes

Let F , G, H be R-modules. We assume H and F to be finitely generated and free.
Let

H
ϕ−−−→ G

ψ−−−→ F

be a complex. Using the canonical isomorphism ζH,G from Lemma 1.12, we may
consider ϕ as a map S(H∗) → S(H∗) ⊗ G. Similarly ψ can be viewed as a map
G ⊗ S(F ) → S(F ) if one draws upon the isomorphism ξ from Lemma 1.13. So we
obtain a complex

S(H∗)⊗ S(F )
ϕ⊗1S(F )−−−−−→ S(H∗)⊗G⊗ S(F )

1S(H∗)⊗ψ−−−−−−→ S(H∗)⊗ S(F ).

When M is an S(H∗)-module and N is an S(F )-module, Theorem 1.7 provides a

bicomplex K
.S(F )
S(H∗).(ϕ,M,ψ,N).

In the following we suppose that M = ⊕i≥0Mi is a graded S(H∗)-module and
that N = ⊕j≥0Nj is a graded S(F )-module. The bicomplexes

K
.S(F )
S(H∗).(ϕ,M,ψ,N), K

.S(F )
S(H∗).(ϕ,M

∗, ψ,N),

K
.S(F )
S(H∗).(ϕ,M,ψ,N∗), K

.S(F )
S(H∗).(ϕ,M

∗, ψ,N∗),

as bicomplexes of R-modules, split into direct summands which we want to describe
in detail. For this purpose we set

p

∧
k
q for Mp ⊗

∧
kG⊗Nq, −p

∧
k
q for M∗

−p ⊗
∧
kG⊗Nq,

p

∧
k
−q for Mp ⊗

∧
kG⊗N∗

−q, −p
∧
k
−q for M∗

−p ⊗
∧
kG⊗N∗

−q,

k, p, q ∈ N. Let t ∈ Z. Then

K
.S(F )
S(H∗).(ϕ,M,ψ,N)(t), K

.S(F )
S(H∗).(ϕ,M

∗, ψ,N)(t),

K
.S(F )
S(H∗).(ϕ,M,ψ,N∗)(t), K

.S(F )
S(H∗).(ϕ,M

∗, ψ,N∗)(t),

one after the other, are the bicomplexes
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0 0 0 0y y y y
0 −−−−→ 0

∧
t
0 −−−−→ 1

∧t+1
0 −−−−→ · · · −−−−→ p−1

∧t+p−1
0 −−−−→ p

∧t+p
0 −−−−→ · · ·y y y y

...
...

...
...y y y y

0 −−−−→ 0

∧
0
t −−−−→ 1

∧
1
t −−−−→ · · · −−−−→ p−1

∧p−1
t

dϕ−−−−→ p

∧p
t −−−−→ · · ·y y y ∂ψ

y
0 −−−−→ 1

∧
0
t+1 −−−−→ · · · −−−−→ p−1

∧p−2
t+1 −−−−→ p

∧p−1
t+1 −−−−→ · · ·y y y

0 −−−−→ · · · −−−−→ p−1

∧p−3
t+2 −−−−→ p

∧p−2
t+2 −−−−→ · · ·y y

...
...

0 −−−−→ p

∧
0
t+p −−−−→ · · ·y
0 −−−−→ · · ·

0 0 0 0y y y y
0 −−−−→ −t

∧
0
0 −−−−→ −t+1

∧
1
0 −−−−→ · · · −−−−→ −1

∧t−1
0

dϕ−−−−→ 0

∧
t
0 −−−−→ 0y y y ∂ψ

y
0 −−−−→ −t+1

∧
0
1 −−−−→ · · · −−−−→ −1

∧t−2
1 −−−−→ 0

∧t−1
1 −−−−→ 0y y y

0 −−−−→ · · · −−−−→ −1

∧t−3
2 −−−−→ 0

∧t−2
2 −−−−→ 0y y

...
...

0 −−−−→ 0

∧
0
t −−−−→ 0y

0
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...
...

...
...y y y y

0 −−−−→ 0

∧t+q
−q −−−−→ 1

∧t+q+1
−q −−−−→ · · · −−−−→ p−1

∧t+p+q−1
−q −−−−→ p

∧t+p+q
−q · · ·y y y y

0 −−−−→ 0

∧t+q−1
−q+1 −−−−→ 1

∧t+q
−q+1 −−−−→ · · · −−−−→ p−1

∧t+p+q−2
−q+1 −−−−→ p

∧t+p+q−1
−q+1 · · ·y y y y

...
...

...
...y y y y

0 −−−−→ 0

∧t+1
−1 −−−−→ 1

∧t+2
−1 −−−−→ · · · −−−−→ p−1

∧t+p
−1

dϕ−−−−→ p

∧t+p
−1 · · ·y y y y

0 −−−−→ 0

∧
t
0 −−−−→ 1

∧t+1
0 −−−−→ · · · −−−−→ p−1

∧t+p−1
0

dϕ−−−−→ p

∧t+p
0 · · ·y y y y

0 0 0 0

...
...

...
...y y y y

· · ·−t−1

∧q−1
−q −−−−→ −t

∧q
−q −−−−→ · · · −−−−→ −1

∧t+q−1
−q −−−−→ 0

∧t+q
−q −−−−→ 0y y y y

· · ·−t−1

∧q
−q+1 −−−−→ −t

∧q−1
−q+1 −−−−→ · · · −−−−→ −1

∧t+q−2
−q+1 −−−−→ 0

∧t+q−1
−q+1 −−−−→ 0y y y y

...
...

...
...y y y y

· · ·−t−1

∧
0
−1 −−−−→ −t

∧
1
−1 −−−−→ · · · −−−−→ −1

∧
t
−1

dϕ−−−−→ 0

∧t+1
−1 −−−−→ 0y y y y

0 −−−−→ −t

∧
0
0 −−−−→ · · · −−−−→ −1

∧t−1
0

dϕ−−−−→ 0

∧
t
0 −−−−→ 0y y y

0 0 0
The following result shows how the bicomplexes from above can be connected.

THEOREM 1.29. Let x1, . . . , xi ∈ Kerψ, and set x = x1 ∧ . . .∧ xi. Assume that νϕx
is a connection homomorphism for ϕ.

Similarly let x∗1, . . . , x
∗
j ∈ G∗, and set x∗ = x∗1 ∧ . . . ∧ x∗j . We suppose that
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(1) x1, . . . , xi ∈ Ker x∗k for all k,

(2) x∗kϕ = 0 for all k, and that

(3) νx
∗

ψ is a connection homomorphism for ψ.

Furthermore let M0 = N0 = R. Then there are coefficients ε = ±1 such that the
diagram

K
.S(F )
S(H∗).(ϕ,M

∗, ψ,N∗)(t+ j)
ενϕx⊗1−−−→ K

.S(F )
S(H∗).(ϕ,M,ψ,N∗)(t+ i+ j)

ε1⊗νx∗ψ

y ε1⊗νx∗ψ

y
K

.S(F )
S(H∗).(ϕ,M

∗, ψ,N)(t)
ενϕx⊗1−−−→ K

.S(F )
S(H∗).(ϕ,M,ψ,N)(t+ i)

is a bicomplex for all t ∈ Z.

Proof. To simplify the notation, we shall write νx
∗

ψ for 1 ⊗ νx
∗

ψ and νϕx for νϕx ⊗ 1.
We have to show that, for all p, q ≥ 0, the following diagrams are commutative or
anticommutative. The first and the second correspond to the vertical arrows of the
diagram in the Theorem while (3) and (4) belong to the horizontal arrows; the last
diagram represents the ‘middle’.

(1)

M∗
−p−1 ⊗

∧
q+j−1G

dϕ−−−→ M∗
−p ⊗

∧
q+jG

νx
∗
ψ

y νx
∗
ψ

y
M∗

−p−1 ⊗
∧
q−1G

dϕ−−−→ M∗
−p ⊗

∧
qG,

(2)

Mp ⊗
∧
q+jG

dϕ−−−→ Mp+1 ⊗
∧
q+j+1G

νx
∗
ψ

y νx
∗
ψ

y
Mp ⊗

∧
qG

dϕ−−−→ Mp+1 ⊗
∧
q+1G,

(3) ∧
q+1G⊗N∗

−p−1
νϕx−−−→

∧
q+i+1G⊗N∗

−p−1

∂ψ

y ∂ψ

y∧
qG⊗N∗

−p
νϕx−−−→

∧
q+iG⊗N∗

−p,

(4) ∧
qG⊗Np

νϕx−−−→
∧
q+iG⊗Np

∂ψ

y ∂ψ

y∧
q−1G⊗Np+1

νϕx−−−→
∧
q+i−1G⊗Np+1,
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(5) ∧
t+jG

νϕx−−−→
∧
t+i+jG

νx
∗
ψ

y νx
∗
ψ

y∧
tG

νϕx−−−→
∧
t+iG

Since by assumption x∗k(x1) = . . . = x∗k(xi) = 0 for all k, the (anti)commutativity of
the last diagram follows immediately from Theorem 1.11.

The first and the second diagram are obtained from the diagram

S(H∗)⊗
∧
G

dϕ−−−→ S(H∗)⊗
∧
G

νx
∗
ψ

y νx
∗
ψ

y
S(H∗)⊗

∧
G

dϕ−−−→ S(H∗)⊗
∧
G

by tensoring this diagram with M and M∗ (over S(H∗)). The map dϕ acts on
S(H∗)⊗

∧
G as the left multiplication by ϕ, viewed as an element of H∗⊗G, while

νx
∗

ψ is the right multiplication by 1S(H∗)⊗x∗ (see section 2). Now ϕ =
∑l

λ=1 h
∗
λ⊗hλ

with elements h∗λ ∈ H∗ and hλ ∈ Im(ϕ). Since we assumed that x∗kϕ = 0 for all k,
a repeated application of Theorem 1.11 yields νx

∗

ψ dϕ = (−1)jdϕν
x∗

ψ .
The third and the forth diagram are obtained from the diagram∧

G⊗ S(F )
νϕx−−−→

∧
G⊗ S(F )

∂ψ

y ∂ψ

y∧
G⊗ S(F )

νϕx−−−→
∧
G⊗ S(F )

by tensoring with N∗ and N . νϕx is the left multiplication by x ⊗ 1S(F ), and ∂ψ is
the right multiplication by ψ ⊗ 1S(F ). Since ψ(x1) = . . . = ψ(xi) = 0 for all k, we
get ∂ψ ν

ϕ
x = (−1)iνϕx ∂ψ.

EXAMPLE 1.30. Fix bases h1, . . . , hl for H and f1, . . . , fm for F . Set xλ = ϕ(hλ)
and x∗µ = ψ∗(f ∗µ). Take M = S(H∗) and N = S(F ). Then the hypotheses of
Theorem 1.29 are fulfilled (with i = l and j = m).

REMARK 1.31. In addition to the assumptions of the previous example, let H = R.
Then the diagram ∧

p+mG
dϕ−−−→

∧
p+m+1G

νx
∗
ψ

y νx
∗
ψ

y∧
pG

dϕ−−−→
∧
p+1G

is commutative or anticommutative. This fact can be used in order to simplify the
first part of the proof of Theorem 3.1 in [HM] (consider G free and then apply Ω to
the first line).
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2 Grade Sensitivity

This technical chapter links up the study of the Koszul bicomplexes with the study
of the homology of certain Koszul complexes.

Let R be a commutative ring.

DEFINITION 2.1. If ϕ : H → G is a linear map of R-modules, then Ij(ϕ) is the
image of the map ∧

jH ⊗ (
∧
jG)∗ → R

x⊗ y∗ → y∗(
∧
jϕ(x))

where x ∈
∧
jH, y∗ ∈ (

∧
jG)∗.

If H and G are finitely generated free, then (
∧
jG)∗ =

∧
jG∗ (by virtue of θ, see

section 1.1). So ϕ may be represented by a matrix, and Ij(ϕ) is the ideal generated
by the minors of size j of that matrix. We abbreviate

Iϕ = Imin(rankH,rankG)(ϕ).

We quote the following well known result.

THEOREM 2.2. Let R be noetherian and let H, G be finite free R-modules of ranks
l and n. Let ϕ : H → G be an R-homomorphism. If Iϕ 6= R, then

grade Iϕ ≤| n− l | +1.

NOTATION 2.3. Throughout the rest of this section we shall assume that H, G and
F are finitely generated free R-modules of ranks l, n and m, and that

H
ϕ−−−→ G

ψ−−−→ F

is a complex. Although much of what we will do, holds formally for any l, n and m,
the applications will refer to the case in which n ≥ m and n ≥ l. So r = n−m ≥ 0,
s = n− l ≥ 0. We set g = grade Iψ, and h = grade Iϕ.

A first question is which restrictions g and h are subjected in a situation as the
one pictured above. In the sequel we shall give some answers to this question. The
following result is a simple consequence of Theorem 2.2.

PROPOSITION 2.4. Let R be noetherian. Set ρ = r − l.

(1) If g, h ≥ 1, then ρ ≥ 0.

(2) If g >| ρ | +1, then Iϕ ⊂ Rad Iψ, and in particular, h ≤ g.

(3) Moreover, if g ≥ r + 1, then Iϕ ⊂ Iψ.
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Proof. If g ≥ 1, then M = Cokerψ∗ has rank r. So M∗ = Kerψ has rank r,
too. In the same way h ≥ 1 implies that ϕ is injective, so Imϕ has rank l. Since
Kerψ ⊃ Imϕ, we obtain the first part.

While proving (2) and (3) we may assume that Iψ 6= R. Suppose that g >| ρ | +1.
Take a prime ideal I ⊃ Iψ in R. Then grade(IψRI) ≥ g. If Iϕ 6⊂ I, then (Imϕ)RI

would be a free direct summand of GI of rank l, (see [BV2],Proposition 16.3 for
example) and therefore ψI can be viewed as a map from a free module of rank
n− l to a free module of rank m. So grade(IψRI) ≤| ρ | +1, which contradicts the
hypothesis. It follows that Iϕ ⊂ I which implies that Iϕ ⊂ Rad Iψ.

In case grade Iψ = r + 1, we consider a rank 1 direct summand H̃ of H. Let ϕ̃

be the restriction of ϕ to H̃. It was shown in [BV4], Proposition 1 that I
eϕ ⊂ Iψ in

this case. Since Iϕ ⊂ I
eϕ, the conclusion follows.

The restriction g >| ρ | +1 in Proposition 2.4 cannot be dropped as the following
example shows.

EXAMPLE 2.5. Let k be a field and let R = k[x1, x2, x3, x4] be the polynomial ring
over k in the indeterminates x1, x2, x3, x4. Set H = R, G = R4 and F = R2. Let ϕ,
ψ be given by the matrices

(
x1 x2 x3 x4

)
and


x2 x3

−x1 x4

x4 −x1

−x3 −x2

 ,

respectively. Then ψϕ = 0 , h = 4 and g = 2 = r (it is easy to see that 2 ≤ g ≤ 3
and Proposition 2.4 implies g < 3).

Before we continue, we simplify the notation.

NOTATION 2.6. As above set M = Cokerψ∗. Let h1, . . . , hl be a basis for H and
set x = ϕ(h1) ∧ . . . ∧ ϕ(hl). We shall write νϕ for the connection homomorphism
νϕx . Analogously, if f1, . . . , fm is a basis for F , f ∗1 , . . . , f

∗
m the dual basis, and x∗ =

ψ∗(f ∗1 ) ∧ . . . ∧ ψ∗(f ∗m), the connection homomorphism νx
∗

ψ will be denoted by νψ.
Furthermore set

D
.

ϕ(t) = (K
.

S(H∗)(ϕ,D(H))
νϕ−−−→ K

.

S(H∗)(ϕ, S(H∗)))(t)

C
.

ψ(t) = (KS(F )
. (ψ,D(F ∗))

νψ−−−→ KS(F )
. (ψ, S(F )))(t)

for all t ∈ Z. Since G is finitely generated, both complexes have only a finite number
of non vanishing components. To identify the homology, we fix their graduations as
follows: position 0 is held by the leftmost non-zero module.

By C.,.(t) we shall denote the Koszul bicomplex

K
.S(F )
S(H∗).(ϕ,D(H), ψ, S(F ))(t)

ενϕ⊗1−−−→ K
.S(F )
S(H∗).(ϕ, S(H∗), ψ, S(F ))(t+ l),
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which is the lower part of the bicomplex in Theorem 1.29. We rewrite this complex
as

0 0 0 0 0y y y y y
0 −−−→ C0,0 −−−→ C1,0 dϕ−−−→ · · ·Cp,0 ενϕ−−−→ Cp+1,0 dϕ−−−→ Cp+2,0 · · ·y ∂ψ

y y ∂ψ

y y
0 −−−→ C1,1 −−−→ · · ·Cp,1 ενϕ−−−→ Cp+1,1 −−−→ Cp+2,1 · · ·y y y y

0 −−−→ · · ·Cp,2 ενϕ−−−→ Cp+1,2 −−−→ Cp+2,2 · · ·y y y
...

...
...

0 −−−→ Cp+1,t −−−→ Cp+2,p · · ·y y y
0 −−−→ Cp+1,p+1 −−−→ Cp+2,p+1· · ·y y y
...

...
...

In other words,

C0,0(t) =


Dt(H)⊗

∧
0G⊗ S0(F ) if 0 ≤ t,

S0(H
∗)⊗

∧
t+lG⊗ S0(F ) if − l ≤ t < 0,

S−t−l(H
∗)⊗

∧
0G⊗ S0(F ) if t < −l.

The row homology of C.,.(t) at Cp,q is denoted by Hp,q
ϕ , the column homology by

Hp,q
ψ . Thus Hp,0

ϕ is the p-th homology module of D
.

ϕ(t).

SetNp = Ker (Cp,0 ∂ψ→ Cp,1). The canonical injectionsNp → Cp,0 yield a complex
homomorphism

0 −−−→ N0 −−−→ N1 −−−→ · · · Np d̄ϕ−−−→ Np+1 · · ·

‖
y y y

0 −−−→ C0,0 −−−→ C1,0 −−−→ · · ·Cp,0 dϕ−−−→ Cp+1,0· · ·

where the maps d̄ϕ are induced by dϕ. The homology of the first row N .
(t) at Np

is denoted by H̄p.
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The homology of the complexes C
.

ψ(t) and D
.

ϕ(t) behaves similarly as the homol-
ogy of the usual Koszul complex. The main result is the following.

THEOREM 2.7. We use the notation from 2.3. Furthermore let R be noetherian.
Set Q = Cokerϕ, C = Cokerψ, D = Cokerϕ∗ and M = Cokerψ∗. Set S0(D) =
R/Iϕ, S−1(D) =

∧
s+1Q, S0(C) = R/Iψ and S−1(C) =

∧
r+1M .

(a) H i(D
.

ϕ(t)) = 0 for i < h. Moreover, if t ≤ s + 1 and grade Ik(ϕ) ≥ n− k + 1
for all k with l ≥ k ≥ 1, then D

.

ϕ(t) is a free resolution of Ss−t(D). (If
−1 ≤ t ≤ s+ 1, then it suffices to require that grade Iϕ ≥ s+ 1.)

(b) H i(C
.

ψ(t)) = 0 for i < g. Moreover, if t ≥ −1 and grade Ik(ψ) ≥ n−k+1 for all
k with m ≥ k ≥ 1, then C

.

ψ(t) is a free resolution of St(C). (If −1 ≤ t ≤ r+1,
then it suffices to require that grade Iψ ≥ r + 1.)

Finally, if Iϕ = R (Iψ = R), then all sequences D
.

ϕ (C
.

ψ) are split exact.

Proof. As we mentioned in Example 1.28, we get (non-canonical) complex isomor-
phisms

Dt(ϕ) ∼= D
.

ϕ(t)
∼= C

.

ϕ∗(s− t)

and
Ct(ψ) ∼= C

.

ψ(t) ∼= D
.

ψ∗(r − t).

Since grade Iϕ = grade Iϕ∗ and grade Iψ = grade Iψ∗ , (a) follows from Proposition
2.1 in [BV1] while (b) is obtained from Theorem A2.10,(c) in [E].

We shall now investigate the homology of N .
(t). The key is the following result.

THEOREM 2.8. Let R be noetherian and t ≥ 0 be an integer. Assume that

1 ≤ r ≤ g ≤ r + 1.

Then, with the notation introduced above, H̄ i = 0 for i = 0, . . . ,min(2, h − 1). Set
C = Cokerψ.

(a) For i odd, 3 ≤ i < min(h− 1, 2r, 2t+ 2), one has a natural exact sequence

0 → H̄ i → Dt− i−1
2

(H)⊗ S i−1
2

(C) → H
i+1
2
, i−1

2
ψ → H̄ i+1 → 0.

(b) Suppose that t < r and l > 1.

(i) If 3 ≤ 2t+ 1 < h, then H̄2t+1 = D0(H)⊗ St(C);

(ii) H̄ i = 0 for 2t+ 2 ≤ i < min(h, t+ r + 2, 2t+ l + 1);

(iii) if 2t+ l + 1 < min(h, t+ r + 2), then H̄2t+l+1 = H t+1,t+l−1
ψ .
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(c) Suppose that t+ l < r. For i− l even, 2t+ l+ 2 ≤ i < min(h− 1, 2r − l+ 2),
one has a natural exact sequence

0 → H̄ i → S i−l
2
−t−1(H

∗)⊗ S i+l
2
−1(C) → H

i−l
2

+1, i+l
2
−1

ψ → H̄ i+1 → 0.

Proof. The proof partially consists of a repetition of arguments used in the proof of
Proposition 1 in [BV4].

Set µ = min(2, h− 1). Consider the diagram

0 −−−→ 0 −−−→ 0 −−−→ 0y y y y
0 −−−→ N0 −−−→ N1 −−−→ N2 d̄ϕ−−−→ N3

‖
y y y

0 −−−→ C0,0 −−−→ C1,0 −−−→ C2,0 dϕ−−−→ C3,0y y y y
0 −−−→ 0 −−−→ Im ∂1,0

ψ −−−→ Im ∂2,0
ψ −−−→ Im ∂3,0

ψy y y y
0 −−−→ 0 −−−→ 0 −−−→ 0

with exact columns. The middle row has trivial homology at Cp,0 for p ≤ µ (Theorem
2.7). In the fourth row the homology at Im ∂1,0

ψ is zero since the homomorphism

Im ∂1,0
ψ → Im ∂2,0

ψ is the restriction of the injective homomorphism C1,1 dϕ→ C2,1.
Now we use the long exact homology sequence to get the first statement of the
proposition.

Next we extend the complex C.,.(t) to the complex C̃.,.(t) by setting Cp,−1 = Np.

To prove (a), we first mention some facts about the homology of C̃.,.(t). To avoid
new symbols, the column homology at Cp,q is again denoted by Hp,q

ψ (actually it
differs from that of C.,.(t) only at Cp,0). Let 0 < p. Then from Theorem 2.7 (b) we
get that Hp,q

ψ = 0 for 0 ≤ q < min(p− 1, r). If p ≤ t then Hp,p
ψ = Dt−p(H)⊗ Sp(C).

Furthermore we draw from Theorem 2.7 (a) that Hp,q
ϕ = 0 for p < h and q 6= −1.

Let Rq
. , q ≥ −1, be the qth row of C̃.,.(t) and Bq+1

. be the image complex of Rq
.

in Rq+1
. . We set Ep,q = Hp(Bq

. ).
Now let i be an odd integer, 3 ≤ i < min(h − 1, 2r, 2t + 2). Since Hp,q

ϕ = 0 for
p < h, q 6= −1 and since Hp,q

ψ = 0 for q < min(p− 1, r), we obtain the ”southwest”
isomorphisms

H̄ i = Ei,0 ∼= Ei−1,1 ∼= . . . ∼= E
i+1
2
, i−1

2 ,

H̄ i+1 = Ei+1,0 ∼= Ei,1 ∼= . . . ∼= E
i+3
2
, i−1

2 .
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In fact, there is an exact sequence

H i−1,j
ϕ → Ei−1,j+1 → Ei,j → H i,j

ϕ

and the outer terms in this sequence are 0 for all i, j under consideration. We

abbreviate ∂p,qψ = (Cp,q ∂ψ→ Cp,q+1) and dp,qϕ = (Cp,q dϕ→ Cp+1,q). The diagram

0 0 0 0y y y y
−−−→ Im ∂

i−1
2
, i−3

2
ψ −−−→ Im ∂

i+1
2
, i−3

2
ψ −−−→ Im ∂

i+3
2
, i−3

2
ψ −−−→ Im ∂

i+5
2
, i−3

2
ψy y y y

−−−→ Im ∂
i−1
2
, i−3

2
ψ −−−→ Ker ∂

i+1
2
, i−1

2
ψ −−−→ Ker ∂

i+3
2
, i−1

2
ψ −−−→ Ker ∂

i+5
2
, i−1

2
ψy y y y

0 −−−→ H
i+1
2
, i−1

2
ψ −−−→ 0 −−−→ 0y

0

is induced by C.,.(t) and has exact columns. Its row homology at Im ∂
i+1
2
, i−3

2
ψ is

E
i+1
2
, i−1

2 = H̄ i, and at Ker ∂
i+1
2
, i−1

2
ψ it coincides with Dt− i−1

2
(H) ⊗ S i−1

2
(C) as the

following diagram with exact columns and exact middle row shows:

0 0 0 0y y y y
Im ∂

i−1
2
, i−3

2
ψ −−−−→ Ker ∂

i+1
2
, i−1

2
ψ −−−−→ Ker ∂

i+3
2
, i−1

2
ψ −−−−→ Ker ∂

i+5
2
, i−1

2
ψy y y y

0 −−−−→ C
i−1
2
, i−1

2 −−−−→ C
i+1
2
, i−1

2 −−−−→ C
i+3
2
, i−1

2 −−−−→ C
i+5
2
, i−1

2y y y y
0 −−−−→ Dt− i−1

2
⊗ S i−1

2
−−−−→ Im ∂

i+1
2
, i−1

2
ψ

dϕ−−−−→ Im ∂
i+3
2
, i−1

2
ψ −−−−→ Im ∂

i+5
2
, i−1

2
ψy y y y

0 0 0 0

In this diagram the row homology at Im ∂
i+1
2
, i−1

2
ψ vanishes since d

i+1
2
, i+1

2
ϕ is injective.

So in the preceding diagram the row homology at Ker ∂
i+3
2
, i−1

2
ψ is zero. Altogether
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we obtain an exact sequence

0 → H̄ i → Dt− i−1
2

(H)⊗ S i−1
2

(C) → H
i+1
2
, i−1

2
ψ → E

i+3
2
, i−1

2 → 0. (∗)

Since
H̄ i+1 ∼= E

i+3
2
, i−1

2 ,

(a) has been proved.

In order to prove (b) we continue to investigate the homology of C̃.,.(t). Suppose
that t < r, l > 1 and let t < p. Then Hp,q

ψ = 0 for q < min(p+ l−2, r). In particular

H t+1,t
ψ = 0, and (∗) implies (i). Let 2t+ 2 ≤ i < min(h, t+ r + 2, 2t+ l + 1). Using

the ”southwest” isomorphisms once more, we obtain

H̄ i = Ei,0 ∼= Ei−1,1 ∼= . . . ∼= Et+1,i−t−1.

Since dt+1,i−t−1
ϕ is injective, (ii) follows. Now suppose that t+l−1 < r and 2t+l+1 <

h. We get
H̄2t+l+1 = E2t+l+1,0 ∼= E2t+l+1,1 ∼= . . . ∼= Et+2,t+l−1.

Furthermore the diagram

0 0 0y y y
Im ∂t+1,t+l−2

ψ −−−→ Im ∂t+2,t+l−2
ψ −−−→ Im ∂t+3,t+l−2

ψy y y
0 −−−→ Ker ∂t+1,t+l−1

ψ

dϕ−−−→ Ker ∂t+2,t+l−1
ψ −−−→ Ker ∂t+3,t+l−1

ψy y y
0 −−−→ H t+1,t+l−1

ψ −−−→ 0 −−−→ 0y
0

has exact columns, and its row homology at Ker ∂t+1,t+l−1
ψ is zero since dt+1,t+l−1

ϕ is

injective. If we can show that the row homology at Ker ∂t+2,t+l−1
ψ also vanishes, we
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shall obtain (iii). The diagram

0 0 0y y y
0 −−−→ Ker ∂t+1,t+l−1

ψ −−−→ Ker ∂t+2,t+l−1
ψ −−−→ Ker ∂t+3,t+l−1

ψy y y
0 −−−→ Ct+1,t+l−1 −−−→ Ct+2,t+l−1 −−−→ Ct+3,t+l−1y y y
0 −−−→ Im ∂t+1,t+l−1

ψ

dϕ−−−→ Im ∂t+2,t+l−1
ψ −−−→ Im ∂t+3,t+l−1

ψy y y
0 0 0

has exact columns and exact middle row. Since dt+1,t+l
ϕ is injective, we get the

desired result.

The proof of (c) is similar to the proof of (a). We just mention that, for all i
under consideration, we have the ”southwest” isomorphisms

H̄ i = Ei,0 ∼= Ei−1,1 ∼= . . . ∼= E
i−l
2

+1, i+l
2
−1,

H̄ i+1 = Ei+1,0 ∼= Ei,1 ∼= . . . ∼= E
i−l
2

+2, i+l
2
−1.

If t is a negative integer, a similar result follows easily. We touch briefly upon
this case.

THEOREM 2.9. Let R be noetherian and let t < 0 be an integer. Assume that

1 ≤ r ≤ g ≤ r + 1.

We set C = Cokerψ and use the notation from above.

(a) Suppose that t+ l > 0 (this implies l > 1 ). Then

(i) H̄ i = 0 for 0 ≤ i < min(h, r + 1,max(2, t+ l));

(ii) if 2 ≤ t+ l < min(h, r + 1), then H̄ t+l = H0,t+l−1
ψ ;

(iii) if t + l ≤ r and i − t − l is odd, if furthermore t + l + 1 ≤ i < min(h −
1, 2r − t− l + 1), then one has a natural exact sequence

0 → H̄ i → S i−t−l−1
2

(H∗)⊗ S i+t+l−1
2

(C) → H
i−t−l+1

2
, i+t+l−1

2
ψ → H̄ i+1 → 0.
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(b) Suppose that t + l ≤ 0. Then H̄ i = 0 for i = 0, . . . ,min(2, h − 1). For i odd,
3 ≤ i < min(h− 1, 2r), one has a natural exact sequence

0 → H̄ i → S i−1
2
−t−l(H

∗)⊗ S i−1
2

(C) → H
i+1
2
, i−1

2
ψ → H̄ i+1 → 0.

We shall now investigate the homology of N .
(t) at Nh.

PROPOSITION 2.10. Under the same conditions as in Theorem 2.8 and with µ =
min(h, 2r + 1), let t ≥ µ

2
− 1. Then we obtain:

(a) there is an exact sequence

0 → Eµ−1,1 → H̄µ → Hµ,0
ϕ ;

in particular, if µ < 3, then there is an exact sequence

0 → H̄µ → Hµ,0
ϕ ;

(b) for µ ≥ 3 odd there is an exact sequence

0 → Eµ−1,1 → Dt−µ−1
2
⊗ Sµ−1

2
(C) → H

µ+1
2
,µ−1

2
ψ ;

(c) for µ ≥ 3 even there is an exact sequence

0 → H̄µ−1 → Dt−µ−2
2
⊗ Sµ−2

2
(C) → H

µ
2
,µ−2

2
ψ → H̄µ → Hµ,0

ϕ .

One may easily deduce similar sequences in case t < µ
2
− 1.

Proof. (a) The sequence is obvious.

(b) In order to cover the case µ = 2r + 1, we modify the first diagram in the
proof of Theorem 2.8: the diagram

0 0 0 0y y y y
−−−→ Im ∂

µ−1
2
,µ−3

2
ψ −−−→ Im ∂

µ+1
2
,µ−3

2
ψ −−−→ Im ∂

µ+3
2
,µ−3

2
ψ −−−→ Im ∂

µ+5
2
,µ−3

2
ψy y y y

−−−→ Im ∂
µ−1

2
,µ−3

2
ψ −−−→ Ker ∂

µ+1
2
,µ−1

2
ψ −−−→ Ker ∂

µ+3
2
,µ−1

2
ψ −−−→ Ker ∂

µ+5
2
,µ−1

2
ψy y y y

0 −−−→ H
µ+1

2
,µ−1

2
ψ −−−→ H

µ+3
2
,µ−1

2
ψ −−−→ H

µ+5
2
,µ−1

2
ψy y y

0 0 0
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has exact columns. Then, as in the proof of Theorem 2.8, we obtain an exact
sequence

0 → E
µ+1

2
,µ−1

2 → Dt−µ−1
2

(H)⊗ Sµ−1
2

(C) → Ker(H
µ+1

2
,µ−1

2
ψ → H

µ+3
2
,µ−1

2
ψ )

→ E
µ+3

2
,µ−1

2 → 0.

Since in this case
E

µ+1
2
,µ−1

2 ∼= Eµ−1,1,

we get the desired sequence.

(c) As in the proof of Theorem 2.8 one has an exact sequence

0 → E
µ
2
,µ−2

2 → Dt−µ−2
2

(H)⊗ Sµ−2
2

(C) → H
µ
2
,µ
2

ψ → E
µ+2

2
,µ−2

2 → 0

(just consider i = µ− 1). Since in this case

E
µ
2
,µ−2

2 ∼= H̄µ−1 and E
µ+2

2
,µ−2

2 ∼= Eµ−1,1,

we glue the sequence and the sequence obtained under (a) to get the result.

If we do not require that g ≥ r, we can still deduce a result weaker than Theorem
2.8.

THEOREM 2.11. Let R be noetherian and let t ≥ 0 be an integer. Then, with the
notation from above, H̄ i = 0 for i = 0, . . . ,min(2, h−1). Set C = Cokerψ. Suppose
that l > 1 and ρ+ 1 < g.

(a) If 3 ≤ 2t + 1 < h, then H̄2t+1 = D0(H) ⊗ St(C). Moreover, if h is odd and
t = h−1

2
, then there is an exact sequence

0 → D0(H)⊗ St(C) → H̄2t+1;

(b) H̄ i = 0 for 2t+ 2 ≤ i < min(h, t+ g + 2, 2t+ g − ρ+ 1);

(c) if 2t+ g − ρ+ 1 < min(h, t+ g + 2), then H̄2t+g−ρ+1 = H t+1,t+g−ρ−1
ψ .

The proof is very similar to the proof of Theorem 2.8 (b); so we may omit it.

NOTATION 2.12. Set M = Cokerψ∗. By λ̄ : M → H∗ we denote the linear map
induced by ϕ∗. As above let h1, . . . , hl be a basis for H. Set x̄ = λ̄∗(h1)∧ . . .∧ λ̄∗(hl).
We shall write νλ̄ for the connection homomorphism ν x̄

λ̄
. Furthermore set

C
.

λ̄
(t) = (KS(H∗)

. (λ̄, D(H))
νλ̄−−−→ KS(H∗)

. (λ̄, S(H∗)))(t)

for all t ∈ Z.
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PROPOSITION 2.13. There is a canonical complex isomorphism

N .
(t) −−−→

(
C
.

λ̄
(t)

)∗
.

Proof. In Theorem 1.21 we substitute ϕ∗ for ψ and S(H∗) for M . Using the canon-
ical isomorphisms (

∧
pG∗)∗ ∼=

∧
pG and S(H∗)∗ ∼= D(H) we then obtain a natural

complex isomorphism

D
.

ϕ(t)
τ−−−→

(
C
.

ϕ∗(t)
)∗
.

Obviously
(
C
.

λ̄
(t)

)∗
may be viewed as a subcomplex of

(
C
.

ϕ∗(t)
)∗

, and

τ(N .
(t)) =

(
C
.

λ̄
(t)

)∗
,

since

Ker
(
(
∧
pG∗)∗

dψ∗→ (
∧
p−1G∗ ⊗ F ∗)∗

) ∼= (
∧
pM)∗.

At this point we must introduce some new notation.

NOTATION 2.14. Let x be as in 2.6. By B.,.(t) we shall denote the Koszul bicomplex

K
.S(F )
S(H∗).(ϕ,D(H), ψ,D(F ∗))(t+m)

ενϕx⊗1−−−→ K
.S(F )
S(H∗).(ϕ, S(H∗), ψ,D(F ∗))(t+m+ l)

which is the upper part of the bicomplex presented in Theorem 1.29. We rewrite
this complex as

...
...

...y y y
· · · −−−→ B0,−2 −−−→ · · · dϕ−−−→ Bp,−2 ενϕ−−−→ Bp+1,−2 dϕ−−−→ · · ·y ∂ψ

y ∂ψ

y
· · · −−−→ B0,−1 −−−→ · · · −−−→ Bp,−1 ενϕ−−−→ Bp+1,−1 −−−→ · · · .y y y

0 0 0

where

(a) B0,−1(t) = Dt(H)⊗
∧
mG⊗D0(F

∗) if 0 ≤ t,

(b) B0,−1(t) = S0(H
∗)⊗

∧
t+l+mG⊗D0(F

∗) if −l ≤ t < 0,
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(c) B0,−1(t) = S−t−l(H
∗)⊗

∧
mG⊗D0(F

∗) if t < −l.

Set Mp = Coker(Bp,−2 → Bp,−1). The canonical surjection Bp,−1 → Mp yields a
complex homomorphism

· · · −−−→ B−1,−1 −−−→ B0,−1 −−−→ · · · dϕ−−−→ Bp,−1 −−−→ Bp+1,−1 −−−→ · · ·y y y y
· · · −−−→ M−1 −−−→ M0 −−−→ · · · d̄ϕ−−−→ Mp −−−→ Mp+1 −−−→ · · ·

where the maps d̄ϕ are induced by dϕ. The lower row is denoted by M.
(t) .

We obtain an analogue with Proposition 2.13:

PROPOSITION 2.15. Let ρ = n − m − l as in Proposition 2.4. Then there is a
(non-canonical) complex isomorphism

M.
(t) −−−→ C

.

λ̄
(ρ− t)

Proof. As in Example 1.28 we get (non-canonical) complex isomorphisms

(1) D
.

ϕ(t)
∼= C

.

ϕ∗(s− t) and

(2) C
.

ψ(t) ∼= D
.

ψ∗(r − t)

where as above s = n− l, r = n−m. Next we consider the diagram

D
.

ϕ(t+m+ 1)⊗ F ∗ ∂ψ−−−→ D
.

ϕ(t+m) −−−→ M.
(t) −−−→ 0y y

C
.

ϕ∗(ρ− t− 1)⊗ F ∗ dψ∗−−−→ C
.

ϕ∗(ρ− t) −−−→ C
.

λ̄
(ρ− t) −−−→ 0.

The isomorphism (1) assures that the vertical arrows are isomorphisms, while (2)
provides the commutativity of the diagram. The desired isomorphism is induced.

The following result can be interpreted as an extension of the usual Koszul
duality to the case of a finitely presented module.

THEOREM 2.16. Let R be noetherian. Let r, g, h be as in 2.3. With the graduation
induced by M.

(t) and N .
(t), there is a (non-canonical) complex morphism

C
.

λ̄
(ρ− t)

ν−−−→
(
C
.

λ̄
(t)

)∗
,

such that the following hold.

(a) Suppose that t + l ≤ 0 or r < t + l. Then the νi are isomorphisms for
i > r + 1− g, and νr+1−g is injective.
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(b) Suppose that l ≤ t+ l ≤ r.

(i) If r + 1 − g ≤ t, then the νi are isomorphisms for i > r + 1 − g, and
νr+1−g is injective.

(ii) If t + l ≤ r + 1 − g, then the νi are isomorphisms for i > r + 2 − g − l,
and νr+2−g−l is injective.

(iii) If t < r + 1− g < t+ l, then the νi are isomorphisms for i > t.

(c) Suppose that 0 < t + l < l. Then the νi are isomorphisms for i > min(0, r +
1− g − l − t) and, if r + 1− g − l − t ≥ 0, then νr+1−g−l−t is injective.

Proof. From Theorem 1.29 we draw the sequence of complexes

D
.

ϕ(t+m+ 1)⊗ F ∗ ∂−2
ψ−−−→ D

.

ϕ(t+m)
ν−−−→ D

.

ϕ(t)
∂0
ψ−−−→ D

.

ϕ(t− 1)⊗ F.

Since M.
(t) = Coker(Bt,−2 → Bt,−1) and N .

(t) = Ker(Ct,0 → Ct,1), we obtain an
induced complex morphism

M.
(t)

ν−−−→ N .
(t).

This, combined with Propositions 2.13 and 2.15, provides the desired complex mor-
phism. The results about grade sensibility follow easily from Theorem 2.7.
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3 Generalized Koszul Complexes in Projective

Dimension One

In this chapter we investigate the homology of the generalized Koszul complexes in
projective dimension 1.

Throughout the chapter R is a noetherian ring, and M an R-module which has
a presentation

0 −−−→ F χ−−−→ G −−−→ M −−−→ 0

where F , G are free modules of ranks m and n. Then in particular r = n−m ≥ 0.
In the sequel we consider R-homomorphisms λ̄ : M → H into a finite free R-

module H of rank l ≤ n. By λ we denote the corresponding lifted maps G → H.
We shall investigate the homology of the Koszul complexes

C
.

λ̄(t) : · · · → Dp(H∗)⊗
∧
t+l+pM

∂λ̄→ · · · ∂λ̄→ D0(H∗)⊗
∧
t+lM

νλ̄→ S0(H)⊗
∧
tM

∂λ̄→

· · · ∂λ̄→ St(H)⊗
∧

0M → 0.

associated with λ̄.
Dualizing F χ→ G λ→ H we go back to the situation previously studied. So we

set F = F∗, G = G∗, H = H∗, ψ = χ∗, ϕ = λ∗, and C = Cokerψ.
The case in which grade Iχ has the maximally possible value n −m + 1 will be

treated in the first section. We show that the homology, as in the free case, depends
on grade Iλ.

The second section is concerned with the more general question when there is a
λ̄ such that λ̄◦χ = 0. We state some criteria which involve the numerical invariants
grade Iχ, grade Iλ and m,n, l.

When dimR = grade Iχ = rankM , the homology of C
.

λ̄
(t) has finite length. We

derive some formulas in the third section.
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3.1 The Maximal Grade Case

We suppose in this section that g = grade Iχ has the maximally possible value n −
m+ 1.

DEFINITION 3.1. We say that a homomorphism ϕ of finite free R-modules is min-
imal if I1(ϕ) 6= R.

The next result may be seen as an extension of the Hilbert-Burch Theorem.

THEOREM 3.2. With the above assumptions we get Iλ ⊂ Iχ, and in particular
grade Iλ ≤ r + 1. Set ρ = r − l.

(a) If there is a λ̄ such that grade Iλ >| ρ | +1, then l = 1 and r is odd.

(b) The following conditions are equivalent:

(1) grade Iλ >| ρ | +1;

(2) Iλ = Iχ.

(c) Suppose in addition that χ is minimal. Then the following are equivalent:

(1’) There is a λ̄ such that grade Iλ >| ρ | +1;

(2’) l = 1 and (i) r = 1 or (ii) m = 1 and r ≥ 3 is odd.

Proof. By Proposition 2.4,(3) we obtain Iλ = Iλ∗ ⊂ Iχ∗ = Iχ. Since Iχ 6= R by
assumption, the first part of the theorem is clear.

Next we prove (a). Set h = grade Iλ. We have Iλ ⊂ Iχ, so in particular 2 ≤ h ≤
r + 1 and therefore r ≥ 1 and g ≥ 2. Proposition 2.4,(1) implies that ρ ≥ 0, and
since h > ρ+ 1, Proposition 2.4,(2) yields g ≤ h. So h = g = r + 1 ≥ 2.

We consider N .
(r + 1). Since

∧
r+1M is a torsion module, we get

N r+1(r + 1) = D0(H)⊗ (
∧
r+1M)∗ = 0.

Suppose r is even. Then r + 1 ≥ 3, and applying Proposition 2.10,(a) and (b) for
t = r + 1, we obtain an exact sequence

0 → D r+2
2

(H)⊗ S r
2
(C) → H̄r+1 → Hr+1,0

ϕ

since H
r+2
2
, r
2

ψ = 0. As we already saw, N r+1(r+1) = 0 which implies that H̄r+1 = 0.
But then D r+2

2
(H) ⊗ S r

2
(C) = 0 and consequently C = 0 which is in contradiction

with Iψ 6= R. So r must be odd.
If r = 1, then M∗ = Kerψ has rank 1. Since H → Kerψ is an injection, we

obtain l = 1.
Let r ≥ 3 (and odd). Take t = r−1

2
and observe that

N r(
r − 1

2
) = S r−1

2
(H∗)⊗ (

∧
r−l+1M)∗
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since

N r(
r − 1

2
) = Ker

(
S r−1

2
(H∗)⊗

∧
r−l+1G→ S r−1

2
(H∗)⊗

∧
r−lG⊗ F

)
.

On the other hand we draw from Theorem 2.8,(a) that

H̄r(
r − 1

2
) ∼= D0(H)⊗ S r−1

2
(C) ∼= S r−1

2
(C).

If l > 1, then (
∧
r−l+1M)∗ = 0 which implies that H̄r( r−1

2
) = 0. But then S r−1

2
(C) =

0, a contradiction. So l = 1.

Now we prove (c), (1’) ⇒ (2’). Localizing at a prime ideal which contains I1(χ),
we may assume that R is a local ring. Suppose that r ≥ 3. Since l = 1, we obtain
N r( r−1

2
) = R. Therefore S r−1

2
(C) must be cyclic, which means m = 1 because R is

local and ψ is minimal.

(b), (1) ⇒ (2): Equality of ideals in R is a local property. So we may assume
R to be local, and, using the uniqueness of minimal free resolutions, we can easily
reduce to the case in which χ is minimal. According to what we have proved already,
it follows that l = 1 and (i) r = 1 or (ii) m = 1 and r ≥ 3 is odd. If r = 1, then we
can apply the Hilbert-Burch Theorem to get the desired equality Iλ = Iχ. If m = 1
we look at the exact sequence

R
λ∗−−−→ G∗ χ∗−−−→ R.

which satisfies the hypothesis of Proposition 2.4,(3) since grade Iλ > n − m by
assumption. So

Iχ = Iχ∗ ⊂ Iλ∗ = Iλ.

(b), (2) ⇒ (1) is trivial.

(c), (2’) ⇒ (1’): Suppose that r = 1. Let A be a matrix representing χ, and
let Ai the m-minor of A which arises from A by cancelling the ith column. Then
(A1,−A2, . . . , (−1)n−1An) yields an appropriate λ. The implication (ii) ⇒ (1’) is a
comparably simple exercise.

REMARK 3.3. The case r = 1 in statement (a) of the above Theorem is completely
covered by the Theorem of Hilbert and Burch. If we suppose that r ≥ 3, we only
get that S r−1

2
(C) must be cyclic. From the exact sequence

G⊗ S r−3
2

(F ) → S r−1
2

(F ) → S r−1
2

(C) → 0

we deduce an exact sequence

G⊗ S r−3
2

(F )⊗ S r−1
2

(F ) →
∧

2S r−1
2

(F ) → 0.

This implies that the ideal generated by the entries of any two rows of a matrix
representing χ is equal to R. We can also deduce that Iχ may be generated by n
elements, and that I1(χ) = . . . = Im−1(χ) = R. Unfortunately this seems to be not
enough for a characterization like the one given under (c).
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COROLLARY 3.4. The following conditions are equivalent:

(1) there is a λ̄ with grade Iλ = s+ 1;

(2) l = 1, m = 1 and r ≥ 1 is odd.

Proof. Only (1) ⇒ (2) requires a proof. First h, g ≥ 1, so ρ ≥ 0. Then we have
s + 1 > ρ + 1. Consequently Iλ = Iχ. From Theorem 3.2, (a) we obtain that l = 1
and r ≥ 1 is odd. Since r = s it follows that m = 1.

COROLLARY 3.5. Suppose R to be local. Then the following conditions are equiv-
alent:

(1) there is a λ̄ with grade Iλ >| ρ | +1;

(2) l = 1 and (i) r = 1 or (ii) M has a minimal resolution

0 −−−→ R −−−→ R2k −−−→ M −−−→ 0

where k ≥ 2.

Theorem 3.2 implies that h ≤| ρ | +2. We shall use this fact in order to simplify
the description of the homology of C

.

λ̄
(t).

THEOREM 3.6. With notation as above set S0(C) = R/Iχ. Equip C
.

λ̄
(t) with the

graduation induced by the complex isomorphism M.
(t) → C

.

λ̄
(t) of Proposition 2.15.

Then for the homology H̃
.
of C

.

λ̄
(t) the following holds:

(a) in case t ≤ ρ
2
,

H̃ i =

{
Dρ−t− i−1

2
(H∗)⊗ S i−1

2
(C) if 0 ≤ i < h, i 6≡ 0 (2),

0 if 0 ≤ i < h, i ≡ 0 (2);

(b) in case ρ
2
< t ≤ ρ,

H̃ i =


Dρ−t− i−1

2
(H∗)⊗ S i−1

2
(C) if 0 ≤ i < min(h, 2(ρ− t + 1)), i 6≡ 0 (2),

S i−l
2
−ρ+t−1(H)⊗ S i+l

2
−1(C) if 2(ρ− t + 1) + l ≤ i < h, i− l ≡ 0 (2),

0 otherwise if 0 ≤ i < h;

(c) in case ρ < t < r,

H̃ i =

{
S i−r+t−1

2
(H)⊗ S i+r−t−1

2
(C) if r − t+ 1 ≤ i < h, i+ r − t 6≡ 0 (2),

0 otherwise if 0 ≤ i < h;
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(d) in case r ≤ t,

H̃ i =

{
S i−1

2
+t−r(H)⊗ S i−1

2
(C) if 0 ≤ i < h, i 6≡ 0 (2),

0 if 0 ≤ i < h, i ≡ 0 (2).

Proof. If h = 0, then there is nothing to prove. If h ≥ 1 then ρ ≥ 0 and r ≥ 1.
From Theorem 2.16 we get a complex morphism C

.

λ̄
(t) → N.(ρ−t) which induces

the following commutative diagram with exact columns:

0 0 0y y y
C−1
λ̄

∂−1
λ̄−−−→ C0

λ̄

∂0
λ̄−−−→ C1

λ̄
−−−→ C2

λ̄

ν0

y ν1

y ν2

y
0 −−−→ N0

d̄0ϕ−−−→ N1 −−−→ N2y y y
0 −−−→ Coker ν0 −−−→ 0 −−−→ 0y

0

Since C−1
λ̄

is a torsion module and ν0 is injective, we have ∂−1
λ̄

= 0. If h ≥ 1, then

d0
ϕ is injective. This implies that ∂0

λ̄
is injective, so H̃0 = 0. If h ≥ 2, Theorem 2.8

(or Theorem 2.9) says that the row homology at N0 and at N1 is 0, so

H̃1 = Coker ν0 =


Dρ−t(H∗)⊗R/Iχ if t ≤ ρ,

0 if ρ < i < r,

St−r(H)⊗R/Iχ if r ≤ t.

If h ≥ 3, then H̃2 equals the row homology at N2. Except the case in which
h is even and i = h − 1, the remaining statements follow easily from Theorem 2.8
(or Theorem 2.9), if one uses h ≤ ρ + 2 and the fact that all Hp,q

ψ which appear in
Theorem 2.8,(a)-(c) are zero in the case under consideration. In case h is even and
i = h− 1, see Proposition 2.10 (b).

REMARK 3.7. If t = 0 in Theorem 3.6, then we obtain Proposition 5.1 in [MPN].
We only suppose that R is noetherian (and even this assumption is superfluous if
one uses a generalized notion of grade).

COROLLARY 3.8. Suppose that h = |ρ|+ 1.
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(a) If l ≥ r−1
2

, then
(
C
.

λ̄
(0)

)∗
has non-vanishing homology only in grade ρ+1, and

if r > 1, then
H̄0(ρ+ 1) = Sρ(Cokerχ∗).

(b) If l ≥ r+1
2

, then the homology of C
.

λ̄
(ρ + 1) vanishes in positive grades except

for ρ+ 1, and
H̃ρ+1(ρ+ 1) = Sρ+1(Cokerχ∗).

Proof. (a) Since h ≥ 1, we have ρ ≥ 0. In positive grades, the homology of
(
C
.

λ̄
(0)

)∗
is almost the same as the homology of C

.

λ̄
(ρ), with the only exception in grade 1

(where the homology of
(
C
.

λ̄
(0)

)∗
is 0). If we require that l ≥ r−1

2
, Theorem 2.16 (b)

provides the result.

(b) If r = 1, then the claim is clear. If r > 1, then l > 1, and the result follows
directly from Theorem 2.16 (c).

REMARK 3.9. Corollary 3.8 (a) was inspired by Lemma 5.5 in [MPN]. Corollary
3.8 (b) can be seen as an extension of Theorem 2.7 (b), since l being big enough,
one can easily deduce similar results. That seems to open the way to the study of
the homology of the Koszul complex in projective dimension ≥ 2, at least in some
particular cases, by taking a module of projective dimension 1 instead of the free
module G and iterating the methods used here.

REMARK 3.10. In this section we required for g to have the greatest possible value.
If we do the same for h, we can obtain information about the homology of C

.

λ̄
(t), by

studying the upper half of the bicomplex presented in Theorem 1.29.
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3.2 The General Case

The purpose of this section is to generalize Theorem 3.2 in order to give an answer
to the question contained in the title.

We obtain a result weaker than Theorem 3.2.

THEOREM 3.11. Set ρ = r− l and k = r+ 1− g. Suppose that g = grade Iχ >| ρ |
+1.

(a) Iλ ⊂ Rad Iχ, and in particular grade Iλ ≤ g.

(b) The following conditions are equivalent:

(1) grade Iλ >| ρ | +1;

(2) Rad Iχ = Rad Iλ.

(c) Suppose that there is a λ̄ such that grade Iλ >| ρ | +1. Then l = k + 1, r ≥ l,
and r − k is odd.

(c1) Let r = k + 1 (= l). The sequence 0 → F χ→ G λ→ H as well as its dual

0 → H
ϕ→ G

ψ→ F are exact. This can occur only if Iχ = Iλ. Furthermore
m = 1 occurs if and only if the ith entry of a matrix for χ is (−1)i times
the minor of a matrix for λ by cancelling the ith row.

(c2) Let r ≥ k + 3 (i. e. r ≥ l + 2). If χ is minimal, then m ≤ k + 1 (= l).
If λ is minimal, then m > k (= l − 1).

Proof. (a) With respect to the assumption, Proposition 2.4 (2) yields Iλ = Iλ∗ ⊂
Rad Iχ∗ = Rad Iχ.

(b), (1)⇒(2) is an immediate consequence of Proposition 2.4 (2) while (2)⇒(1)
is trivial.

Next we prove the main statement of (c). From (b) we draw that Rad Iχ =
Rad Iλ. Since h := grade Iλ = g > 1, Proposition 2.4 (1) implies that ρ ≥ 0, and
r− k+ 1 = g > ρ+ 1 = r− l+ 1 implies that l > k. If k = 0, then the claim follows
from Theorem 3.2 (c). So we may suppose that k ≥ 1.

Assume that r − k is even. Then r − k ≥ 2 and r ≥ 3. Consider the complex
N .

( r−k
2

) defined in chapter 2 and observe that

N r−k+1(
r − k

2
) = S r−k

2
(H∗)⊗ (

∧
r+l−kM)∗

since

N r−k+1(
r − k

2
) = Ker

(
S r−k

2
(H∗)⊗

∧
r+l−kG→ S r−k

2
(H∗)⊗

∧
r+l−k−1G⊗ F

)
.
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Now l > k implies that (
∧
r+l−kM)∗ = 0. So N r−k+1( r−k

2
) = 0. It follows that

H̄r−k+1( r−k
2

) = 0. On the other hand, using Theorem 2.11 (a) we obtain an exact
sequence

0 −−−→ D0(H)⊗ S r−k
2

(C) −−−→ H̄r−k+1( r−k
2

).

Because H̄r−k+1( r−k
2

) = 0, we get D0(H) ⊗ S r−k
2

(C) = 0 and consequently C = 0

which is in contradiction with Iχ 6= R. So r − k must be odd.
If r− k = 1, then l = k+1 since l ≤ r. Suppose that r− k ≥ 3 (and odd). Then

N r−k(
r − k − 1

2
) = S r−k−1

2
(H∗)⊗ (

∧
r+l−k−1M)∗.

On the other hand we draw from Theorem 2.11, (a) that

H̄r−k(
r − k − 1

2
) = D0(H)⊗ S r−k−1

2
(C).

If l > k + 1, then (
∧
r+l−k−1M)∗ = 0, so S r−k−1

2
(C) = 0, a contradiction. It follows

that l = k + 1.
(c1) The first statement is an immediate consequence of the Buchsbaum-Eisenbud

acyclicity criterion (see [E], Theorem 20.9). The second statement is also due to
Buchsbaum and Eisenbud (see [N], Chapter 7, Theorem 3 or Corollary 5.1 in [BE1]).
(Of course the third statement is a special case of the Theorem of Hilbert-Burch.)

To prove the first claim of (c2) let χ be minimal. Localize at a prime ideal P
which contains I1(χ). Then g ≤ grade IχRP . But g < grade IχRP is impossible:
otherwise, since Iλ ⊂ Rad Iχ ⊂ P in view of (a), we have grade IλRP >| ρ | +1
and consequently l = r + 1 − grade IχRP + 1 ≤ k in contradiction with the first
claim under (c). So we may assume R to be local. Since r ≥ k + 3, l = k + 1 and
M is free in depth 1, we get N r−k( r−k−1

2
) = S r−k−1

2
(H∗) and N r−k+1( r−k−1

2
) = 0.

So H̄r−k( r−k−1
2

) = S r−k−1
2

(C) is a quotient of S r−k−1
2

(H∗). Therefore the minimal

number of generators of C cannot be greater than the minimal number of generators
of H. It follows that m ≤ l = k + 1.

Since r ≥ k+3 and l = k+1, we deduce that ρ ≥ 2. So h = g ≥ 4. To prove the

second statement of (c2) we dualize the sequence 0 → F χ→ G λ→ H. Set r′ = n− l
and k′ = r′ + 1− h. From the first claim under (c) we draw that m = k′ + 1. Since
h ≥ 4, we get r′ ≥ k′ + 3. Now let λ be minimal. Applying the first part of (c2), we
obtain (k + 1 =) l ≤ k′ + 1 = m.

COROLLARY 3.12. Set ρ = r − l and suppose that grade Iχ >| ρ | +1. Then
grade Iλ ≤| ρ | +2 for every λ̄. Moreover, if grade Iλ =| ρ | +2, then grade Iχ,
grade Iλ, ρ are even.

Proof. If grade Iλ >| ρ | +1, then the above theorem implies that grade Iλ =
grade Iχ = r + 1 − k = r − l + 2 =| ρ | +2. Since r − k is odd, grade Iχ, grade Iλ, ρ
must be even.
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REMARK 3.13. Let k ∈ N. If l = k + 1 and r − k > 0 is odd, then, in the cases
listed under (c), there are always maps χ : Rm → Rn and λ : Rn → Rl such that
λχ = 0 and grade Iχ = grade Iλ = r − k + 1, provided there is a regular sequence of
length r − k + 1 in R.

For simplicity, we give examples only for k = 1. They can easily be generalized
for an arbitrary k.

For r = 2 and m > 1 consider a regular sequence x, y in R. Let χ be given by
the m× (m+ 2)-matrix 

x 0 y 0 0 . . . 0
0 x 0 y 0 . . . 0

. . .
. . .

0 . . . . . . 0 x 0 y

 .

If m = 2k is even, then let λ be given by the matrix

yk 0
0 yk

−xyk−1 0
0 −xyk−1

...
...

(−1)k−1xky 0
0 (−1)k−1xky

(−1)kxk 0
0 (−1)kxk


,

and if m = 2k + 1 is odd, then the matrix

yk+1 0
0 yk

−xyk 0
0 −xyk−1

...
...

0 (−1)k−1xk−1y
(−1)kxky 0

0 (−1)kxk

(−1)k+1xk+1 0


yields an appropriate λ.

Now suppose that r ≥ 4. If m = 2, set r = 2k and let x1, . . . , xk, y1, . . . , yk be a
regular sequence in R. Consider

R2 χ−−−→ R2k+2 λ−−−→ R2
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where χ and λ are given by the matrices(
0 x1 · · · xk−1 xk 0 y1 · · · yk−1 yk
x1 x2 · · · xk 0 y1 y2 · · · yk 0

)
,

and 

−yk 0
−yk−1 −yk

...
...

−y1 −y2

0 −y1

xk 0
xk−1 xk

...
...

x1 x2

0 x1


,

respectively. If m = 1, take any χ with a matrix (x1, . . . , xn) such that x1, . . . , xn−1

is a regular sequence in R, and define λ by

−xn−1 0
xn−2 0

...
...

−x2 0
x1 0
0 1


.

Finally we state a useful criterion.

COROLLARY 3.14. Let l ≤ n, m ≤ n and set ρ = n −m − l. Furthermore let A
be an (l, n)-matrix and B be an (n,m)-matrix with entries in R. Let h = grade IA,
g = grade IB and suppose that h, g >| ρ | +1. Then AB 6= 0 in each of the following
cases:

(1) h 6= g;

(2) ρ odd;

(3) g 6=| ρ | +2;

(4) the ideals generated by the entries of A and B are proper ideals of R and l 6= m
and l 6= n−m.

At the end, we propose the following problem.
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EXERCISE 3.15. Let k be a field. Show that the system of equations

f 2
1 (x) + f 2

2 (y) + f 2
3 (z) + f 2

4 (x, y, z) + f 2
5 (x, y, z) = 0

f1(x)f2(y) + f2(y)f3(z) + f3(z)f4(x, y, z) + f4(x, y, z)f5(x, y, z) = 0

f1(x)f3(z) + f2(y)f4(x, y, z) + f3(z)f5(x, y, z) = 0,

where (f1, f2, f3, f4, f5) ∈ k[x] × k[y] × k[z] × k[x, y, z] × k[x, y, z], fi /∈ k, has no
solution.
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3.3 Appendix: Some Length Formulas

We refer to Theorem 3.6. It seems to be impossible to obtain a comparably smooth
description of the homology of C

.

λ̄
(t) in the case under consideration. The following

result deals with the special case in which g = grade Iχ = dimR. This will be our
general assumption in the following considerations. Then R/Iχ has finite length
`(R/Iχ). (Generally the length of an R-module N is denoted by `(N)). We note
that Corollary 3.12 is used in order to simplify the presentation of the next result.

THEOREM 3.16. Suppose that dimR = r. Equip C
.

λ̄
(t) with the graduation induced

by the complex isomorphism M.
(t) → C

.

λ̄
(ρ− t) of Proposition 2.15 where ρ = r− l

as above. Then the homology modules H̃ i of C
.

λ̄
(t) have finite length for i ≤ min(h−

1, 2r).
Set S0(C) = R/Iχ and assume h > 0.

(a) Let l = 1. Then for all t ∈ Z and i odd, 0 < i < min(h− 1, 2r), we get

`(H̃ i)− `(H̃ i+1) = `(S i−1
2

(C))− `(S i+1
2

(C)).

(b) Let l > 1. We distinguish four cases.

(i) For all t ≤ ρ
2

and i odd, 0 < i < h− 1,

`(H̃ i)− `(H̃ i+1) =

(
r − t− i+1

2

l − 1

)
`(S i−1

2
(C))−

(
r − t− i+3

2

l − 1

)
`(S i+1

2
(C)).

(ii) Suppose that ρ
2
< t ≤ ρ. If i is odd, 0 < i < min(h− 1, 2(ρ− t)), then

`(H̃ i)− `(H̃ i+1) =

(
r − t− i+1

2

l − 1

)
`(S i−1

2
(C))−

(
r − t− i+3

2

l − 1

)
`(S i+1

2
(C)).

If i− l is even, 2(ρ− t) + l + 2 ≤ i < h− 1, then

`(H̃ i)− `(H̃ i+1) =

(
i+l
2
− ρ+ t− 2
l − 1

)
`(S i+l

2
−1(C))−(

i+l
2
− ρ+ t− 1
l − 1

)
`(S i+l

2
(C)).

If 2(ρ− t) + l + 1 < h, then `(H̃2(ρ−t)+l+1) = `(Sr−t(C)). Moreover

H̃ i =

{
Sρ−t(C) if i = 2(ρ− t) + 1 < h,

0 if 2(ρ− t) + 2 ≤ i < min(h, 2(ρ− t) + l + 1).
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(iii) Suppose that ρ < t < r. If i+ r − t is odd, r − t+ 1 ≤ i < h, then

`(H̃ i)− `(H̃ i+1) =

(
i−r+t−3

2
+ l

l − 1

)
`(S i+r−t−1

2
(C))−(

i−r+t−1
2

+ l
l − 1

)
`(S i+r−t+1

2
(C)).

If r − t < h, then `(H̃r−t) = `(Sr−t(C)). Moreover H̃ i = 0 if 0 ≤ i <
min(h, r − t).

(iv) Suppose that r ≤ t and i odd, 0 < i < h− 1. Then

`(H̃ i)− `(H̃ i+1) =

(
t− ρ+ i−3

2

l − 1

)
`(S i−1

2
(C))−

(
t− ρ+ i−1

2

l − 1

)
`(S i+1

2
(C)).

REMARK 3.17. Observe that in the above formulas we use the fact that h can
reach the maximal value only if it is even. The combinatorial coefficients are not
degenerated. We further notice that if h <∞, then the formulas for l > 1 cover the
case in which l = 1. Finally (a) and (b) make sense only if h, g > 0, and consequently
ρ ≥ 0.

Proof. If r = 0, then M = 0 since χ is injective. So we may assume that r ≥ 1.
We recall that C

.

λ̄
(t) is the complex

· · · → Dp(H)⊗
∧
t+l+pM → · · · →D0(H)⊗

∧
t+lM

ν→ S0(H
∗)⊗

∧
tM → · · · → St(H

∗)⊗
∧

0M → 0

where

C0
λ̄(t) =


Dρ−t(H)⊗

∧
rM if t ≤ ρ,

S0(H
∗)⊗

∧
tM if ρ < t < r,

St−r(H
∗)⊗

∧
rM if r ≤ t.

For q > r the support of
∧
qM is contained in the variety of Iχ. Consequently

Ci
λ̄
(t) has finite length if i < 0, which in turn implies that H̃ i has finite length. In

particular, there remains nothing to prove if h = 0. Let h ≥ 1.
From Theorem 2.16 we get a complex morphism C

.

λ̄
(t) → N.(ρ−t) which induces
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the following commutative diagram

0 0 0y y y
C−1
λ̄

∂−1
λ̄−−−→ C0

λ̄

∂0
λ̄−−−→ C1

λ̄
−−−→ C2

λ̄
−−−→ C3

λ̄

ν0

y ν1

y ν2

y ν3

y
0 −−−→ N0

d̄0ϕ−−−→ N1 −−−→ N2 −−−→ N3y y y y
0 −−−→ Coker ν0

α−−−→ Coker ν1 −−−→ 0 −−−→ 0y y
0 0

where the columns are exact. If ρ < t < r, then ν0 is injective and ν1 is an
isomorphism.

For arbitrary t and arbitrary i the maps νi are isomorphisms at all prime ideals
which do not contain Iχ. Consequently Ker νi and Coker νi have finite length. In
particular Ker ν0 equals the torsion submodule of C0

λ̄
since N0 is torsion free. On

the other hand, C1
λ̄

is a torsion free module, too. So the torsion submodule of C0
λ̄

is contained in Ker ∂0
λ̄
. If we denote by ν̄0 (∂̄0

λ̄
) the maps induced by ν0 (∂0

λ̄
) on

C0
λ̄
/Ker ν0, we get the following commutative diagram

0 0 0 0y y y y
C0
λ̄
/Ker ν0

∂̄0
λ̄−−−→ C1

λ̄
−−−→ C2

λ̄
−−−→ C3

λ̄

ν̄0

y ν1

y ν2

y ν3

y
0 −−−→ N0

d̄0ϕ−−−→ N1 −−−→ N2 −−−→ N3y y y y
0 −−−→ Coker ν0

α−−−→ Coker ν1 −−−→ 0 −−−→ 0y y
0 0

with exact columns.
Since h ≥ 1, d̄0

ϕ is injective. Then ∂̄0
λ̄

must be injective, which in turn implies
that

Ker ν0 = Ker ∂0
λ̄.
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On the other hand, Ker ν0 equals Hr(C
.

ψ(0))⊗E where E is some finitely generated

free module. By Lemma 1.2 in [BV1], Hr(C
.

ψ(0)) has finite length. Since H̃0 is a

factor of Ker ∂0
λ̄
, we deduce that H̃0 has finite length.

In case h = 1, it remains to prove that H̃0 = 0 if ρ < t < r. Since h, g > 0 we
have ρ ≥ 0 and consequently r > 1. Then ∂0

λ̄
is injective and H̃0 = 0.

Assume that h = 2 (so r ≥ 2). This implies that the row homology at N0 and at

N1 vanishes. Of course, H̃1 = Kerα has finite length. There are statements about
H̃1 only for l > 1 and t = ρ, t = r− 1, ρ < t = r− 2. In all these cases Coker ν1 = 0
(see the Theorems 2.8 and 2.9). So

H̃1 = Coker ν0 =


S0(C) if t = ρ,

Hr(C
.

ψ(1)) if t = r − 1,

0 if ρ < t = r − 2.

By Proposition 2.3 in [BV1] we have `(Hr(C
.

ψ(1))) = `(S1(C)).
Now suppose that h ≥ 3. If l = 1, then the row homology at N0, N1 and N2

vanishes (see the Theorems 2.8 and 2.9). For i = 1 we have

`(H̃1)− `(H̃2) = `(Kerα)− `(Cokerα) = `(Coker ν0)− `(Coker ν1).

But Coker ν0 = S0(C) and Coker ν1 = Hr(C
.

ψ(1)), so

`(H̃1)− `(H̃2) = `(S0(C))− `(Hr(C
.

ψ(1)).

If i is odd, 3 ≤ i < h− 1, then we deduce directly from Theorem 2.8 that

`(H̃ i)− `(H̃ i+1) = `(S i−1
2

(C))− `(Hr(C
.

ψ(
i+ 1

2
)).

Proposition 2.3 in [BV1] implies that `(Hr(C
.

ψ(k))) = `(Sk(C)) whenever 0 ≤ k ≤ r.

It remains to prove that H̃h−1 has finite length if h is even. But Proposition 2.10
(c) provides an injection of H̃h−1 into a module of finite length. So we settled the
case in which l = 1.

Let l > 1. Only the case in which ρ ≤ t < r, deserves special attention. The
other cases are similar to the case l = 1. If ρ ≤ t < r− 2, then the row homology at
N0, N1, N2 vanishes. Furthermore H̃2 = Coker ν1 = 0 and

H̃1 = Coker ν0 =

{
S0(C) if t = ρ,

0 if ρ < t < r − 2.

If ρ = t = r − 2, then again the row homology at N0, N1, N2 vanishes, and
H̃1 = S0(C). If ρ < t = r − 2 or t = r − 1, then the row homology at N0 and N1

vanishes. Therefore

H̃1 = Coker ν0 =

{
Hr(C

.

ψ(1)) if t = r − 1

0 if ρ < t = r − 2.
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Since Coker ν1 = 0, we get that H̃2 equals the row homology at N2.The remaining
claims follow easily if one uses as pattern the proof for the l = 1 case.

REMARK 3.18. For l = 1 the results contained in Theorem 3.16 were first obtained
by Vetter (unpublished) who uses local cohomology in order to get the information
about the homology of the Koszul complex associated to λ̄.

COROLLARY 3.19. Set S0(C) = R/Iχ. Suppose that dimR = r. Let C̃
.

λ̄
(t) be the

complex obtained from C
.

λ̄
(t) by replacing Ci

λ̄
(t) with 0 whenever i < 0. By H̃k we

denote the homology of C̃
.

λ̄
(t) at the C̃k

λ̄
(t).

(a) If h = ∞, then

`(S0(C)) = `(S1(C)) = . . . = `(Sr(C)).

(b) If h is odd and t ≤ ρ
2
, then

h−1∑
k=0

(−1)k`(H̃k) =

(
r − t− h+1

2

l − 1

)
`(Sh−1

2
(C)).

(c) If h is even and t ≤ ρ
2
, then

h−2∑
k=0

(−1)k`(H̃k) =

(
r − t− h

2

l − 1

)
`(Sh−2

2
(C)).

In case t > ρ
2

one can easily deduce formulas similar to (a) and (b).

Proof. (a) If h = ∞, then l must be 1. Remark that this result may also be seen as
an easy consequence of Proposition 2.8 in [BV1].

(b) and (c) We may obviously suppose that h > 0. So ρ ≥ 0. We have to prove
that

`(H̃0(t)) = `(Dρ−t(H)⊗ S0(C))

if t ≤ ρ
2
. From the proof of Theorem 3.16 we deduce that

H̃0(t) ∼= Dρ−t(H)⊗Hr(C
.

ψ(0)),

and from [BV1], Proposition 2.3 we draw that

`(Hr(C
.

ψ(0))) = `(S0(C)).
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We specialize to the case in whichR is a quasi-homogeneous complete intersection
with isolated singularity. More precisely, we let S = k[[X1, . . . , Xn]] where k is a
field of characteristic zero, assign positive degrees ai to the variables Xi, and set
R = S/(p1, . . . , pm) = k[[x1, . . . , xn]] where the pi ∈ (X1, . . . , Xn)

2 form a regular
sequence of homogeneous polynomials of degrees bi. By the Euler formula we have

bjpj =
n∑
i=1

ai
∂pj
∂Xi

Xi.

Since (p1, . . . , pm) = (b1p1, . . . , bmpm), the bjpj may be viewed as defining elements
for R. If we set p′j = bjpj and X ′

i = aiXi, we get

p′j =
n∑
i=1

∂pj
∂Xi

X ′
i.

We suppose m < n and Rp to be regular for all prime ideals p different from the
maximal ideal. As usual we denote by ΩR/k the module of Kähler-differentials of R
over k. There is a presentation

0 −−−→ F χ−−−→ G −−−→ ΩR/k −−−→ 0

where F , G are free R-modules of ranks m, n and grade Iχ = r (see [BV1] for
details). Moreover the Euler derivation λ̄ gives rise to an exact sequence∧

rΩR/k →
∧
r−1ΩR/k → · · · → ΩR/k

λ̄→ R→ k → 0

which is in fact the non-negative grade part of C
.

λ̄
. Let λ : G → R be the corre-

sponding lifted map. Set ϕ = λ∗, ψ = χ∗ as above. As in the proof of Theorem 3.16
we can complement the exact sequence from above to an exact sequence

0 → τ(
∧
rΩR/k) →

∧
rΩR/k →

∧
r−1ΩR/k → · · · → ΩR/k → R→ k → 0

where τ denotes the torsion submodule.

THEOREM 3.20. Set S0(C) = R/Iχ. If 0 ≤ i ≤ r − 1, then

Hr(C
.

ψ(i+ 1)) ∼= Si(C).

Proof. The commutative diagram

· · · −−−→
∧
n−rG −−−→ · · · dϕ−−−→

∧
nG ∼= R −−−→ 0

ν0

y νr

y
0 −−−→

∧
0G ∼= R −−−→ · · · dϕ−−−→

∧
rG −−−→ · · ·
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is part of the bicomplex introduced in Theorem 1.29. Let g1, . . . , gn be a basis of G,
and f1, . . . , fm a basis of F , such that ψ is represented by the matrix (

∂pj
∂xi

)i,j, while

ϕ is represented by the matrix (x′1, . . . , x
′
n) (we denote by

∂pj
∂xi

the image in R of
∂pj
∂Xi

and by x′i the image of X ′
i). Let Ωn :

∧
nG→ R be the unique R-isomorphism with

Ωn(g1 ∧ . . . ∧ gn) = 1. We prove that νr(g1 ∧ . . . ∧ gn) generates the homology in
the second row at

∧
rG (for the original proof see the second part of the proof of

Theorem 3.1 in [HM]). We have

νr(g1 ∧ . . . ∧ gn) = g1 ∧ . . . ∧ gn ↼ ψ∗(f ∗1 ) ∧ . . . ∧ ψ∗(f ∗m)

=
∑
σ

ε(σ) det
1≤i,j≤m

(ψ∗(f ∗j )(gσ(i)))gσ(m+1) ∧ . . . ∧ gσ(n),

where σ runs through Sn,m (see Remark 1.10).
On the other hand we have a non-canonical complex isomorphism

0 −−−→
∧

0G −−−→ · · · dϕ−−−→
∧
nG −−−→ 0

εΩ0

y εΩn

y
0 −−−→

∧
nG −−−→ · · · ∂λ−−−→

∧
0G −−−→ 0

induced by Ωn (see Proposition 1.27). The lower row is the Koszul complex asso-
ciated with the sequence x′1, . . . , x

′
n. If we denote by Hi(R) the row homology at∧

iG, then Hm(R) ∼=
∧
mH1(R) (see Theorem 2.3.11(Tate, Assmus) in [BH]). The

relations

p′j =
n∑
i=1

∂pj
∂Xi

X ′
i

imply that H1(R) is generated by the homology classes of the cycles ψ∗(f ∗j ) (j =
1, . . . ,m) (see pages 73 and 80 in [BH]), so Hm(R) is generated by ψ∗(f ∗1 ) ∧ . . . ∧
ψ∗(f ∗m). An easy computation shows (see for example Chapter 1.6 in [BH]) that

Ωr(νr(g1 ∧ . . . ∧ gn)) = ±
∑
σ

det
1≤i,j≤m

(ψ∗(f ∗j )(gσ(i)))g
∗
σ(1) ∧ . . . ∧ g∗σ(m)

= ±ψ∗(f ∗1 ) ∧ . . . ∧ ψ∗(f ∗m),

where σ runs through Sn,m (see also [BO1] Chapter III, §8.5, Proposition 9).
The first diagram in this proof induces the commutative diagram

· · · −−−→
∧
rΩR/k −−−→ · · · λ̄−−−→

∧
0ΩR/k = R −−−→ 0

ν̄0

y ν̄r

y
0 −−−→ N0 ∼= R −−−→ · · · d̄ϕ−−−→ N r −−−→ 0

Since νr(
∧
nG) 6⊂ Im dϕ, it follows that ν̄r(R) 6⊂ Im d̄ϕ.
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Now we prove the theorem for r = 1. R being a complete intersection, the r-th
homology group of the Koszul complex associated with ϕ is k. From the proof of
the first part of Theorem 2.8 we deduce that, since r = 1, the same holds for N .

. As
in the proof of Theorem 3.16 we have a commutative diagram with exact columns

0 0y y
0 −−−→ ΩR/k/τ(ΩR/k) −−−→ R −−−→ 0

ν̄0

y ν̄1

y
0 −−−→ N0 −−−→ N1 −−−→ 0y y
0 −−−→ S0(C)

α−−−→ H1(C
.

ψ(1)) −−−→ 0y y
0 0

If we denote by H̄
.
the homology of the lowest row, we obtain an exact sequence

0 −−−→ H̄0 −−−→ k
β−−−→ k −−−→ H̄1 −−−→ 0.

Since ν̄r(R) 6⊂ Im d̄ϕ, β must be an isomorphism, so α is an isomorphism.
Next we study the case in which r = 2. First we show that H2(C

.

ψ(1)) ∼= S0(C).
Once more referring to the proof of Theorem 3.16 we obtain a commutative diagram
with exact columns

0 0 0y y y
0 −−−→

∧
2ΩR/k/τ(

∧
2ΩR/k) −−−→ ΩR/k −−−→ R −−−→ 0

ν̄0

y ν̄1

y ν̄2

y
0 −−−→ N0 = R −−−→ N1 −−−→ N2 = R −−−→ 0y y y
0 −−−→ S0(C)

α−−−→ H2(C
.

ψ(1)) −−−→ 0y y
0 0

As above we denote by H̄
.
the homology of the lowest row. Obviously H̄0 = 0. Since

the row homology at N1 vanishes (see Theorem 2.8), we get an exact sequence

0 −−−→ H̄1 −−−→ k
β−−−→ H(N2)
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where H(N2) denotes the row homology at N2. Because β is induced by ν̄2 (and
ν̄r(R) 6⊂ Im d̄ϕ), it must be injective, so H̄1 = 0 and α is an isomorphism. Next we
show that H2(C

.

ψ(2)) ∼= S1(C). Set m = (x1, . . . , xn). By Proposition 2.3 in [BV1]
and the local duality theorem (see 3.5.8 in [BH]) we have

H2(C
.

ψ(2)) ∼= Ext1(
∧

2ΩR/k, R) ∼= (H1
m(

∧
2ΩR/k))

∨ ∼= (S0(C))∨ ∼=

(H2(C
.

ψ(1)))∨ ∼= (H1
m(ΩR/k))

∨ ∼= Ext1(ΩR/k, R) ∼= S1(C).

Now let r ≥ 3. Again we have a commutative diagram with exact columns

0 0 0y y y
0 −−−→

∧
rΩR/k/τ(

∧
rΩR/k) −−−→

∧
r−1ΩR/k −−−→

∧
r−2ΩR/k −−−→ · · ·

ν̄0

y ν̄1

y y
0 −−−→ N0 = R −−−→ N1 −−−→ N2 −−−→ · · ·y y y
0 −−−→ S0(C)

α−−−→ Hr(C
.

ψ(1)) −−−→ 0y y
0 0

Since the row homology at N0 and at N1 vanishes, we deduce that α is an isomor-
phism and that N .

has homology only at N r, namely k. Using Theorem 2.8 (a) and
the above considerations, we obtain that, if 0 ≤ i < r−2

2
, then

Hr(C
.

ψ(i+ 1)) ∼= Si(C).

Furthermore we have the commutative diagram

0 0 0 0y y y y
· · · −−−→ N r−2 −−−→ N r−1 d̄ϕ−−−→ N r −−−→ 0y y ι

y y
· · · −−−→ Cr−2,0 −−−→ Cr−1,0 dϕ−−−→ Cr,0 −−−→ Cr+1,0 −−−→ · · ·y y y y
· · · −−−→ Im ∂r−2,0

ψ −−−→ Im ∂r−1,0
ψ −−−→ Im ∂r,0ψ −−−→ Im ∂r+1,0

ψ −−−→ · · ·y y y y
0 0 0 0
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with exact columns. With the notation introduced in the proof of Theorem 2.8 we
get an exact sequence

0 −−−→ Er−1,1 −−−→ k
β−−−→ k −−−→ Er,1 −−−→ 0.

Since ι(N r) = νr(
∧
nG) (ν̄r is an isomorphism), β must be an isomorphism. We

deduce Er−2,1 = Er−1,1 = Er,1 = 0.
On the other hand, as in the proof of Theorem 2.8 (see the sequence (∗)), we

have exact sequences

0 → Er−2,1 → S r−2
2

(C) → Hr(C
.

ψ(
r

2
)) → Er−1,1 → 0

if r is even, and

0 → Er−1,1 → S r−1
2

(C) → Hr(C
.

ψ(
r + 1

2
)) → Er,1 → 0

if r is odd. If follows that, if 0 ≤ i < r
2
, then

Hr(C
.

ψ(i+ 1)) ∼= Si(C).

For r
2
≤ i < r, we again use Proposition 2.3 in [BV1] and the local duality theorem

to get

Hr(C
.

ψ(i+ 1)) ∼= Exti(
∧
i+1ΩR/k, R) ∼= (Hr−i

m (
∧
i+1ΩR/k))

∨ ∼= (Sr−(i+1)(C))∨ ∼=

(Hr(C
.

ψ(r − i)))∨ ∼= (Hr−i
m (

∧
iΩR/k))

∨ ∼= Exti(
∧
iΩR/k, R) ∼= Si(C).

COROLLARY 3.21. We have

`(S0(C)) = `(S1(C)) = . . . = `(Sr(C)).

Proof. Use the isomorphism of Theorem 3.20 and Corollary 2.2 in [BV1].

REMARK 3.22. In [BV1], section 3, the length formula of Corollary 3.21 has been
proved for r odd. The reader may find a complete proof in [HM], Proposition 4.9.
Our approach follows the line of [BV1]. The isomorphism of Theorem 3.20 was
previously obtained only for 0 ≤ i ≤ r − 2, and consequently only the formula
`(S0(C)) = . . . = `(Sr−1(C)).

PROPOSITION 3.23. Set Mϕ = Cokerϕ, and let ψ̄ : Mϕ → F be the map induced

by ψ. Consider the complex C
.

ψ̄
(r) where C

i

ψ̄
(r) =

∧
r−iMϕ ⊗ Si(F ) for i ≥ 0,

C−1
ψ̄

(r) =
∧
nMϕ. For the homology H̃

.
of C

.

ψ̄
(r), the following holds:

H̃−1 = 0, H̃r = Sr(C).

If i+ r is even, −1 ≤ i ≤ r − 2, then

`(H̃ i) = `(H̃ i+1).

If r is odd, then H̃0 = 0.

61



Proof. We extend the Koszul bicomplex

K
.S(F )
S(H∗).(ϕ,R, ψ, S(F ))(r),

to the bicomplex C.,.

0 0 0y y y
−−−→ N r−1 −−−→ N r −−−→ k −−−→ 0y y y
−−−→

∧
r−1G⊗ S0(F ) −−−→

∧
rG⊗ S0(F ) −−−→

∧
rMϕ ⊗ S0(F ) −−−→ 0y y y

−−−→
∧
r−2G⊗ S1(F ) −−−→

∧
r−1G⊗ S1(F ) −−−→

∧
r−1Mϕ ⊗ S1(F ) −−−→ 0y y y

−−−→
∧
r−3G⊗ S2(F ) −−−→

∧
r−2G⊗ S2(F ) −−−→

∧
r−2Mϕ ⊗ S2(F ) −−−→ 0y y y

...
...

...

Remark that the last column is C
.

ψ̄
(r), since

∧
nMϕ

∼= k, and that H̃ i is the homology

at
∧
r−iMϕ ⊗ Si(F ). From the first part of the proof of Theorem 3.20 we draw

H̃−1 = 0. It is easy to deduce also the isomorphism H̃r ∼= Sr(C).
As in Theorem 2.8, for i+ r even, −1 ≤ i ≤ r − 2, we obtain exact sequences

0 → H̃ i → S i+r
2

(C) → H
i+r
2

+1, i+r
2

ψ → H̃ i+1 → 0.

As we proved in Theorem 3.20,

S i+r
2

(C) ∼= H
i+r
2

+1, i+r
2

ψ ,

so the length formula follows.

CONJECTURE 3.24. Let C
.

ψ̄
(r) be as above. For the homology H̃

.
of C

.

ψ̄
(r), the

following holds:

H̃ i =

{
Sr(C) if i = r,

0 otherwise.
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