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Abstract

The thesis deals with the following question: given a linear map x : F — G of finite
free modules over a noetherian ring R and another finite free R-module H, when is
there a linear map A : G — H such that grade I, < grade I, and A\x = 07 (By I, we
denote the ideal of maximal minors of y.) If, for example, rank F = 1, rank G = n,
and x is given by a regular sequence xy,...,x, in R, then it was proved by Bruns
and Vetter in [BV4] that the question has a positive answer if and only if rank H = 1
and n is even.

The general version of this question should be very hard to be answered. Some
approach has been done here.

Assume that m = rank F < rank§. Then it turns out that the existence of
a satisfying A is closely connected with the homology of the generalized Koszul
complex associated with the induced map X\ : M = Coker y — H. But what is the
generalized Koszul complex?

For technical reasons it is better to start from the dual map x* : G* — F*. To
avoid notational complication we replace G*, F* and x*, by G, F and ¢. If G and F
are free, with the linear map v : G — F' one associates the Eagon-Northcott family
of complexes C*(¢)). The homology of C'(¢) is well-understood. In particular it is
grade sensitive with respect to the ideal Iy;.

More generally we consider linear maps ¢ : G — F, where only F' has to be
free (weaker assumptions are possible). We construct a family of complexes Cy (%)
associated with 1) which generalizes both the Eagon-Northcott family of complexes,
and the classical Koszul complex. There is a similar construction of a family of
complexes D,(t) for a map ¢ : H — G, where H is free. The complexes just

mentioned are the generalized Koszul complezes. If H 5 G % Fisa complex, we
can compose Cy(t) and D,(t) to our main tool, the bicomplex C_ ().

Further we investigate the homology of C5(¢). The most satisfactory result (see
Theorem is obtained if grade/, has the greatest possible value n —m + 1.
The theorem covers a result of Migliore, Nagel and Peterson (see Proposition 5.1 in
[MPN]) who proved it partially for Gorenstein rings R, using local cohomology. It
also generalizes Theorem 5 in [BV4]. If one further requires that grade I, should be
big enough, a full answer (necessary and sufficient conditions) to our initial question
may be found in Theorem a generalization of Corollary 3 in [BV1].

What can be deduced if grade I, has not the greatest possible value (but is not
too small)? In this case theorem provides some necessary conditions for the
existence of a non-trivial map A. As a consequence we derive Corollary[3.14] a purely
numerical criterion for the non-vanishing of product of matrices.

In the last part we study the homology of C5(t) in the particular case grade I, =
n—m = dim R. We obtain information about the length of the homology in Theorem
3.6, which generalizes unpublished results of Vetter. Finally, in Theorem |3.20] we



give a proof of a Theorem of Naruki (see [Na|, Theorem 2.1.1) by purely algebraic
methods. A partial (algebraic) proof of this Theorem may be found in [BV1] while
a complete proof has already been given by Herzog and Martsinkovsky in [HM].
The thesis is based on results of Bruns and Vetter (see [BV4]). They study the
homology of the Koszul complex associated with a linear form on a module of pro-
jective dimension 1, using a Koszul bicomplex construction obtained from a Koszul
complex and certain Eagon-Northcott complexes. The idea to build and link Koszul
bicomplexes appears also in the the paper [HM] of Herzog and Martsinkovsky (see
in particular the gluing construction for the residue field of a complete intersection).

Zusammenfassung

Die Arbeit beschaftigt sich mit folgender Frage: Gegeben sei eine lineare Abbildung
X : F — G endlich erzeugter freier R-Moduln tiber einem noetherschen Ring R und
ein weiterer endlich erzeugter freier R-Modul H; wann gibt es eine lineare Abbildung
A: G — H, so daf grade I, < gradel, und Ax = 0 gilt? (Dabei bezeichne I, das
Ideal der maximalen Minoren von x.) Ist z.B. rank F = 1, rank G = n, und x die
durch eine regulare Folge z1, ..., x, in R gegebene lineare Abbildung R — G, dann
hat die Ausgangsfrage nach einem Satz von Bruns und Vetter in [BV4] genau dann
eine positive Antwort, wenn rank H = 1 und n gerade ist.

Es diirfte sehr schwierig sein, die Frage in voller Allgemeinheit zu beantworten.
Wir geben in unserer Arbeit einige Naherungslosungen an.

Angenommen m = rank F < rank G. Dann steht die Existenz eines geeigneten A
in engem Zusammenhang mit der Homologie des verallgemeinerten Koszul-Komple-
xes zur induzierten Abbildung A : M = Coker y — H. Was ist dabei ein verallge-
meinerter Koszul-Komplex?

Aus technischen Griinden ist es besser, von der dualen Abbildung x* : G* — F*
auszugehen. Dabei ersetzen wir zur Vereinfachung G*, 7* und x*, durch G, F und .
Sind G und F frei, dann kann man der linearen Abbildung ¢ : G — F eine Familie
von Eagon-Northcott-Komplexen C*(¢)) zuordnen. Die Homologie von C*(1)) hangt
in wohlbekannter Weise ab vom Grad des Ideals I,.

Wir betrachter allgemeiner lineare Abbildungen ¢ : G — F, wobei G nicht
notwendig frei sein muf}, und konstruieren zu ¢ eine Familie Cy,(t) von Komplexen,
die sowohl eine Verallgemeinerung der Eagon-Northcott-Komplexe als auch der
Koszul-Komplexe darstellen. In dhnlicher Weise 148t sich zu einer Abbildung ¢ :
H — G mit einem freien R-Modul H eine Familie D,(t) angeben. Die beiden Fami-
lien sind unsere verallgemeinerten Koszul-Komplexe. Ist H %G Y Fein Komplex,
dann kénnen wir Cy(¢) und D, () zu unserem wichtigsten Werkzeug zusammenfiigen,
dem Bikomplex C_(¢).

Wir untersuchen im weiteren die Homologie von Cx(t). Das beste Resultat er-
halten wir, wenn der Grad von I, den grétmaoglichen Wert n —m+1 hat (Theorem
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3.60). Das Theorem verallgemeinert ein Ergebnis von Migliore, Nagel und Peterson
(vgl. Proposition 5.1 in [MPN]), die es teilweise und mittels lokaler Kohomologie fiir
Gorenstein-Ringe R beweisen. Auflerdem ist es eine Verallgemeinerung von Theorem
5 in [BV4]. Stellt man an den Grad von I, gewisse Minimalitétsanforderungen, dann
lassen sich notwendige und hinreichende Bedingungen fiir eine positive Antwort auf
die Ausgangsfrage angeben (Theorem ; hier handelt es sich um eine Verallge-
meinerung von Corollary 3 in [BV1].

Was a8t sich sagen, wenn grade I, nicht maximal (aber nicht zu klein) ist?
Theorem [3.11|enthélt fiir diesen Fall einige notwendige Bedingungen fiir die Existenz
eines nicht-trivialen A. Als Folgerung ergibt sich ein numerisches Kriterium
fiir das Nicht-Verschwinden von Matrizen-Produkten.

Im letzten Teil untersuchen wir die Homologie von C5(¢) fiir den Fall grade I, =
n —m = dim R. Theorem [3.6] eine Verallgemeinerung von nicht verdffentlichen
Resultaten von Vetter, enthalt Informationen iiber deren Lange. Wir beweisen damit
(s. Theorem ein Theorem von Naruki (vgl. [NA], Theorem 2.1.1) mittels rein
algebraischer Methoden. Ein partieller (algebraischer) Beweis findet sich bereits in
[BV1] und ein vollstédndiger Beweis in [HM].

Die Arbeit basiert auf Ergebnissen von Bruns und Vetter (vgl. [BV4]), die die
Homologie des Koszulkomplexes einer Linearform auf einem Modul der projektiven
Dimension 1 untersuchen. Sie benutzen dabei eine Koszul-Bikomplex-Konstruktion,
die ahnlich der unseren aus einem Koszul-Komplex und gewissen Eagon-Northcott-
Komplexen gewonnen wird. Die Idee der Konstruktion und Zusammenfiigung von
Koszul-Bikomplexen gibt es auch schon in der Arbeit [HM] von Herzog und Martsin-
kovsky (s. insbesondere die Verklebungs-Konstruktion fiir den Restklassenkorper
eines vollstdndigen Durchschnitts).
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Introduction

A natural question: When does the product of two matrices not vanish?

In this thesis we answer to this question in a very special setup. Let R be a
commutative noetherian ring. If we identify an R-morphism with a representing
matrix, we may equivalently ask when the sequence

R —% ., grn Y, Rm

is not a complex, i.e. when 1 # 0. To illustrate the difficulty of the problem, we
propose the reader the following exercise.

EXERCISE A. Let n € N and let x,y,2 € Z be non zero elements. Show that if
n > 2, then the product

xn—l

(z vy 2) |y
_Zn—l

n—1

does not vanish.

The difficulty of the above Exercise is well known. However, the following exercise
admits an easy solution.

EXERCISE B. Let n € N and let z,y, 2 be a regular sequence in R. Show that the
product

does not vanish.

Proof. Remember that € R is called a regular element (non-zero divisor) if zz = 0
for z € R implies z = 0, and that a sequence x = x1, ...,z of elements of R is called
a regular sequence if z; is a regular element of R/(z1,...,2;_1) fori =1,... k. Since
x,y, z is a regular sequence, if ax + by = cz, the definition implies that ¢ € (z,y). In
particular, if ™ + " = 2", then 2""! € (z,y). So ax + by = 2" !, and descending
induction on the exponent of z provides a contradiction. O]

The situation of the second Exercise admits a generalization which we present in
this paper. An important tool for studying regular sequences is the Koszul complex.
If x = 2q,...,2, is a sequence in R, then zie; + ... + x,e, € R", and we may
consider the complex

K(zy,...,7,):0 - R— R* — A\’R" — --- — \"R" — 0,

where the the differential sends an element a to the element a A (x1e1 + ... + zph€,).
Remember that a complex

di—1 d;
. — s 1711—>MZ—7‘>MZ+1—>..‘
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is called exact if Imd;_; = Ker d;. The homology modules H* := Kerd;/Imd;_; are
measuring how far is a complex from being exact. If [ is an ideal and (z1,...,x,) is a
system of generators for I, then we set g = grade I := inf{i : H'(K(z1,...,z,)) # 0}.
The number g depends only on the ideal, and not on the chosen system of generators.
Every maximal regular sequence in I has length g. The homology of the Koszul
complex is grade sensitive.

More general, if M is an R-module, and v : M — R is an R-morphism, then we
consider the complex

K@W):...- N'M — - = N’M — M — R — 0,

where the the differential sends an element mq A ... A my to the element
S (1) (my)my Ay ... Amy. TE M is free, the two complexes are isomor-
phic, and their homology is well understood. If M has a presentation

0 F—2.gq M —— 0

where F, G are free modules, then the homology of IC(%) is studied in [BV4], and
found to be grade sensitive.

Eagon and Northcott have generalized the Koszul complex. If ¢ : G — F is
a map of free R modules of ranks n and m, we set r = n — m and consider the
complexes

C'(¥) : 0= (N'G ® S, (F))* 5.5 (NG @ So(F))* 25 NG @ So(F) 2% -

% NG ® Sy(F) — 0,

where Op(r A Ay ®2) = >0 (=) A g Ay, @9 (yi)z. I we fix bases
9ty gs (ff, ... fr) on G* (F*), and define 6 : A"G* — Rby gf A--- ANgt — 1,
then

vp(a)(y") = 0@ Ay  ANTST A A SR 2t e NTIGT, gt e NG

The complexes C'(1)) are grade sensitive, namely if I = I, is the ideal generated by
the maximal minors of a matrix representing v, and g = grade I, then H*(C'(¢))) =0
for i < g.

Remark that the Koszul (1)) may be defined for all R-modules M, while the
complexes C'(1)) are defined only for maps of free R-modules. In the first chapter
we consider an R-homomorphism v : G — F', where only F' has to be free of rank
m. We introduce the complexes

Colt) -+ = NF™ PG @ Dy(F) 25 - 2 \FMG @ Do(F*) 2 NG @ So(F) 2
L2 AG @ S(F) = 0,



generalizing the Koszul complexes K(v)).
There is a similar construction for a map ¢ : H — G, where now H has to be
free of rank [. We consider the complexes

0 do dy t oy VE * t4+1 v G
D,(t): 0 — Dy(H)@ NG = -+ = Do(H) @ N'G = So(H) @ NG = -+
= S (H) @ NG -
a generalization of the Koszul complex K(xy, ..., z,).

Next we consider a complex H % G F , H and F being free R-modules. We
assemble the complexes Cy(t) and D, () to our main tool, the bicomplex C_(¢).

In the second chapter we analyze C_(t). We suppose G to be also free. ¢* induces
a map ¢* : Coker ¢* — H*. We draw technical results concerning the homology of
(Cs+(t))* and we relate the homology of Cz+(t) to the homology of (C+(1))*.

The third chapter deals with the dual situation. It is mainly concerned with
the study of the homology of Cx(t), where X is a map from an R-module M with a
presentation as above, into a free R-module H. If grade I, has the greatest possible
value rank M + 1, the homology is found to be grade sensitive and the results of
[BV4] are generalized.

Further we investigate when a sequence H % G Y F of free R-modules is a
complex provided that grade I, is not necessarily maximal. Some necessary con-
ditions are found. As a consequence we draw a criterion for the vanishing of a
product of matrices, an answer to a very special case of the question formulated at
the beginning of the introduction.

Finally we study the homology of C5(t) in a special setup, namely we assume
grade [, = rank M = dim R. In this case some of the homology modules have finite
length, and we are able to deduce information about their length.

The author wishes to thank - in alphabetical order - Winfried Bruns, Violeta
Dinescu, Bernolph von Gemmingen-Guttenberg, Nicolae Manolache, Gigel Militaru,
Dorin Popescu, Udo Vetter for the direct and indirect support in the writing of this
thesis.



1 Koszul Complexes and Koszul Bicomplexes

In the following sections we assume R to be a commutative ring. By )\ we denote
the exterior power, by S the symmetric power, and by D the divided power. If not
specified, ® (A, Hom) denotes tensor product (exterior product, homomorphisms)
over R. * will always mean R-dual (with the usual exception in the graded case, see
section 1.1).

The purpose of this chapter is to introduce a new way of working with the Koszul
complexes and the Koszul bicomplexes.

Usually, if G is an R-module and ¢ : G — R is an R-homomorphism, then the
Kozsul complex associated to v is defined to be the complex

= NG — - = N G—-G—R—0

where the differential sends an element y; A ... Ay,, y; € G to the element

P

S =D A Gi - Ay

=1

In the first section we notice that the differential is exactly the right multiplica-
tion (the right inner product) by 1) € G* with respect to the standard AG*-right
module structure on AG. The interaction between this structure and the AG-left
module structure on A\G proves to be helpful to the study of the Koszul complex.

Eagon and Northcott have generalized the Koszul complex. They study the case
of a homomorphism ¢ : G — F of free modules. Their construction is difficult to
generalize to the case in which either G or F' is not free. We suggest a generalization
for this case in the second section.

In the final section Koszul complexes are linked to Koszul bicomplexes associated
to complexes H — G — F' of R-modules.



1.1 General Definitions and Properties

Let G be an R-module and let ¥ : G — R be an R-homomorphism. Then there is
a unique R-antiderivation 9y of AG which extends ¢ : A'G — A’G. It has degree
(—1) with respect to the grading of AG, and if y; € G for i = 1,...,p, then

p

Oyt A Ayp) = (DM A i Ay
i=1

DEFINITION 1.1. If M is an R-module, then we denote by K%(1), M) the (chain)
complex (AG® M, 0, ®1,). For simplicity the differential of K (1, M) is denoted
by 0y or a{j. As it is a common practice, we sometimes write

= NGOM — - = N GaM - NG M — 0
for KE(y, M).

REMARK 1.2. The differential 9, of K®(1, M) has also degree (—1) with respect
to the grading of A\G®@ M. If y; € G for i =1,...,p and m € M, then

p
&/)(yl/\.../\yp®m):Z(—l)’“@/}(yi)yl/\...yAi.../\yp®m

=D (U0 A Ay @ b(ys)m.

PROPOSITION 1.3. Let A be a commutative R-algebra, let v : G ® A — A be
an A-homomorphism, and let M be an A-module. The complex K*(v, M) can be
canonically identified with the complex (NG ® M, 0y), where

p

Op(n Ao Ay @m) = (=1 Ty A Gi o Ay @ (Y @ La)m
=1

foryi,...,yp € G and m € M.
Proof. Consider the diagram

aA
MG A) @4 M —— AA(G®A) @4 M

l l

ANGeM -2, AGeM
where the vertical arrows are the compositions of the canonical isomorphisms
Aa(G®A) @4 M 2225 NG (Ao M),

6



By @a) Ao Ay ®ap)) =t A . AYp®ay...ap
for y; € G and a; € A, and
NG ® (A®s M) =25 NG ® M,

a being the usual multiplication map. It is obvious that the diagram is commutative.
]

Let ¢ : R — G be an R-homomorphism. The algebra AG can be viewed as a
right AG-module (left AG-module), and there is a unique endomorphism (antien-
domorphism) d, of AG which extends ¢ : A°G — A'G. It has degree (1) with
respect to the grading of AG. If y € AG, then

dy(y) = (1) Ay.

DEFINITION 1.4. If M is an R-module, we denote by Kj(¢, M) the (cochain)
complex (M ® A\G, 1y ® dy,). The differential of Ky(@, M) is denoted by d,, or d.

REMARK 1.5. The differential d, of K(p, M) has also degree (1) with respect to
the grading of M @ AG. If y € AG and m € M, then

dy(m®@y) =m®p(l) Ay.
As is usual, we often write
0= MING—-MING— - — M NG— -
for Kp(p, M).
There is an analogue with Proposition (1.3

PROPOSITION 1.6. Let A be a commutative R-algebra, let ¢ : A — AR G be
an A-homomorphism, and let M be an A-module. The complexr Ky(p, M) can be
canonically identified with the complex (M ® NG, d,), where

do(m ®y) = (1) - (m®y)
fory e NG, m € M.

Proof. Consider the diagram

dA
M @4 Na(A®G) —— M @4 ANa(A®G)

! l

Mo NG —2 MeAG,

where the vertical arrows are canonical isomorphisms. It is obvious that the diagram
iIs commutative. O



Let A, B be commutative R-algebras. Furthermore let ¢ : A — A ® G be an
A-homomorphism and ¢ : G® B — B be a B-homomorphism. If M is an A-module
and N is a B-module, then we obtain a diagram K ,Z(p, M,, N)

MaANGON —¥ Mo AG® N
awl awl
MoANGON 25 M NG® N
in which d, and 9, stand for d, ® 1x and 1y ® 0.
THEOREM 1.7. If the composition

A9B 225 A9GeB % AeB
is the zero homomorphism, then K2 (p, M4, N) is a (cochain-chain) bicompler.
Proof. Let

k
_ 0 o 0
= § a; & 9g;
i=1
0

where af,...,a} € Aand ¢{,...,g) € G. Our hypothesis says that

k
> al @) @1) =0,
=1

and we have to prove that the diagram K (p, M,, N) is anticommutative. Let
m &M, y,...,y, € G,and n € N. Then

k
&pd@(m@yl/\.../\yp(@n)zaw(Za?m@)g?/\yl/\.../\yp@n)
i=1
= am@y A... Ay, @Y(g) @ 1)n
1
k- p

D> D> M ame g Ay A G Ay @ P(y; © Dn

i=1 j=1

k

i

p

k
= YT am @@ Ay AT Ay @(y; @ Dn
i=1 j=1

since

doadm@y AL Ay, @ (gl @ 1)n = Za@wﬂgz D)(m@y A... Ay, @n)



with respect to the (A ® B)-module structure of M ® AG ® N. On the other hand

P
dp,O0yp(my; A ... Ny, @n) = dv(Z(—l)jﬂm@yl ATy Ny @U(y; @ 1)n)

J=1

(=) Madm @@ Ay AL G Ay, @Y(y; @ D)n.

k
— 1

p
=1 j=

]

REMARK 1.8. Theorem may also be proved considering the (A ® B)-module
structure of A ® G ® B and using Proposition 1 in [BO3], §9. Subsequently we shall
obtain a general result which contains Theorem as a particular case.

REMARK 1.9. As usual, one can visualize K Z(p, M,4, N) as a family of maps in
the (p, g)-plane. If we write

A for M@ ANG®N,

we get
0 A° Al N de i+1 Ni+?
| g
O /\0 /\z—l /\z /\H—l
0 — N /\z—2 N /\z—l - /\z




We adopt the following convention for the graded dual of a graded module (see
[E], A2.4 for example). If M = @;50M; is a graded R-module, we shall write M*
for the graded dual of M, that is

M* = M, = ®i>o(M;)"

(instead of M* = Hompg(M, R) as originally). This only makes a difference when M
is not finitely generated. We use it mainly in the case in which M is the symmetric
algebra S(N) or the exterior algebra AN of an R-module N. Then

S(N)* = @i205:(N)*,  (AN)" = @i=o(A'N)*.

*

o of M. The canonical map

Correspondingly M** means the graded bidual (M},)
ey s M — M™ is given by ey = Di>oCh; -
Let N be an R-module. The natural graded algebra homomorphism
00 AN" = (AN)',

is given by
Oy A Ay ) A A yy) = det(y) (y:))

for all y1,...,y, € N and y7,...,y, € N*. If N is finitely generated and projective,
then 6 is an isomorphism (see Proposition 7 in [BO1], Chapter III, § 11.5, and note
that Bourbaki uses the opposite algebra to (AG)*).

REMARK 1.10. As above, let N be an R-module. We define a multiplication on
AN @ AN by

(21 ®@ Y1) (22 ® yo) = (—1) BB (20 A ) @ (y1 A y2)

for all homogeneous elements x1, y1, 9, y2 of AN (the skew tensor product). Then
/AN becomes a bialgebra, the cogebra structure given by the composition of the
multiplication just defined with the diagonal map

Aly)=yR1+1y

forally € N. If y1,...,y, € N, the element A(y; A ... Ay,) is of total degree n in
AN ® AN and its homogeneous component of bidegree (p,n — p) is equal to

D &) Wo) A A o) @ Wopen) A - Alon),

where o runs through the set &,, , of permutations of n elements which are increasing
on the intervals [1, p] and [p + 1,n] (see Example 7 in [BO1] IIT §11.1 ).

The algebra structure on (AN)* is induced by the coalgebra structure of AN,
the product of two elements z*, y* being defined by z*y* = a(z* ® y*)A, where

10



o R® R — R is the multiplication. The right and the left inner products are
given by y — y* = (v* ® 1)A(y) and y* — y = (1 @ y*)A(y) for all y € AN and
y* € (AN)*. They define a (AN)*-bimodule structure on AN. Using € this can be
extended to a /\N*-bimodule structure. If p < n, then one can easily see that
YA Ay = i A Ay =Y e(0) det (4 (Yow)otprn) A - A Yot

1<4,5<p
g

for y1,...,y, € N and 7,...,y, € N*, where o runs through &,,,.
An easy calculation shows that an element n* € N* acts like an antiderivation
on AN in the sense that
(@ Ay) = n* = (z = n") Ay + (=1)*z A (y = n")
for homogeneous elements z,y € AN .

We are now able to state the promised generalization of Theorem . Oy is
the multiplication by ¢ if we view AG as a right AG*-module, and d,, is the left
multiplication by (1) in the algebra AG. Theorem [1.7| may be seen as a particular
case (I = p = 1) of the following result.

THEOREM 1.11. Let z; € G fori=1,...,1, and let 25 € G* for j =1,...,p such

ji\zgt’ Zgh(:é) =0 for all i, j. As above let — denote the right operation of NG* on
T AWy a2 = (0P Ay ) A2

where yr, € G fork=1,...,n.

Proof. If n < p, then both sides are 0. If n > p, then

*

Ty W N (Y Yn 27 2)

= Y e(o) det (2 (Yo())T1 - - T1 A Yo(pe1) - - Yoin)-

e 1<i,5<p
On the other hand
(@1 Ay yn) = 2z

= 28(0) det (27 (Yo(j)—1))%1 - - T A Yo(prit1)—1 - - - Yo (ntl)—1
where o runs through the set &),  of permutations of n + [ elements which are
increasing on the intervals [1,p] and [p + 1,n + [], and have values greater than
I on [1,p]. (Note that z;(x,(;)) = 0 by assumption.) Now we define a bijection

Gnp — GQLH’p, o1 09, by
o1(2) + 1 if i=1,...,p
o9(i) =< i—p if i=p+1,...,p+1
o1(i—1)+1 if i=p+I1+1,....,n+1L
Clearly e(oy) = (—=1)Pe(0y). O
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For further references we recall some well known results from linear algebra.

LEMMA 1.12. If M, N are R-modules, then there is a natural map
¢ =Cun:M*"®N — Hom(M,N),

given by
((m* @mn)(m) =m*(m)n

forallm e M, m* € M* andn € N. Suppose that one of the following assumptions
(a) N is finitely generated projective, or
(b) M is finitely generated projective, or
(¢) M is finitely generated and N is flat

15 true. Then ¢ 1s an isomorphism.

Proof. See Lemma 5 and Corollary in [BO1] Chapter II § 4.2 for (a) or (b). For (c)
see Lemma 3.83 in [R] . O

If G is an R-module, A is a commutative R-algebra and M is an A-module, then
Hom(G, M) and Hom(M, G) are A-modules in a natural way.

LEMMA 1.13. The map
¢ : Hom(G, M) — Homs (G ® A, M),

given by
§(f)ly@a)=af(y)
forally € G, a € A and f € Hom(G, M), is an isomorphism of A-modules.

Proof. The map
Homa(G ® A, M) — Hom(G, M), ¢+ pou,

where ¢ : G — G ® A is the map y — y ® 14, is obviously the inverse of . O]

REMARK 1.14. In order to simplify the presentation, when dualizing a tensor prod-
uct over R, we shall sometimes use, without mentioning, the twist map to change
the order in which the modules appear.

We are ready now to formulate a general result concerning the connection of the
Koszul complex and its dual through natural complex isomorphisms.

12



THEOREM 1.15. Let A be a commutative R-algebra, let M be an A-module, let G
be an R-module, and let ¢ : A — G* ® A be an A-homomorphism. By w we denote
the composition

<
Homu(A4,G* ® A) = G* ® A > Hom(G, A) = Homs(G ® A, A).
Then there are natural complex morphisms
Ky, M*) — (KAw(p), M) and

Ko, M) — (KA wlp), M)

Moreover, if G is finitely generated projective, then the first morphism is a complex
isomorphism. If G is finitely generated projective and M is a graded R-module
such that every homogeneous component is finitely generated projective, then also
the second morphism is a complex isomorphism. (Note that if M is graded, we use
the special conventions previously described).

Proof. Let
k
0*
p(1) =) a) oy,
=1
where a?,...,a? € A and ¢)*,...,g,* € G*. Consider the diagram

M* ® /\pG* L} M* ® /\p+1G>k
u(lM*@w)l #(1M*®9)l

(Ous())”
_

(M@ A\PG)* (M@ APG)*

where 6 : APG* — (APG)* is the map defined above and p is the natural homomor-
phism
M* e (N'G)" — (Mo \PG)*,
p(m* @ y*)(m @ y) = m*(m)y*(y)

for m € M, m* € M*, y € A\PG and y* € (A’G)*. We prove that the diagram is
commutative. Choose elements m* € M, yi,...,y, € G*,m € M, y1,...,yp41 € G,
and set y* =yi A Ay, y=1y1 A Aypy1. Then

k
po Ly ®0) ody(m” @y*) = > pladm” @ 0(g," Ay")),

i=1

13



and therefore

(11 © B)dy(m* @) ) (m @ y) =

On the other hand

So

A 93*(91) g§*<yp+1)

_ Z a®m* (m) yi(y) Y1 (Yp+1)
i=1

Yo (y1) Yo (Ypr1)

k
e)(y; ©1) Za 0*
=1

(@) 1 (L @ O)(m* @) ) (m @ y) = pLas- @ O)(m" © Y )y (m @)

p+1
= (1l @ 0)(m* @ y"‘)(Z(—l)“1 w(@)(y; @ LM Y1 A i oo A Y1)
= Z(—l)j“m*(w(so)(yj @1A)m)OY )W Ay - A Yprr)
: e ) i) i)
= alm*(m) Y (1) (y;) o
=t i=t Yy (Y1) i (y5) Yy (Yps1)
A 9?*(%) 9?*(yp+1)
_ Za?m oy Y1) YY)
= v (y1) Y (Yps1)

The second part has a similar proof. One has just to use ¢y, :

of 1M*'

Moreover, if G is finitely generated projective, then 6 is an isomorphism, and
G* is also finitely generated projective ([BO1] II §2.2, Corollary 2).
that AG* is finitely generated projective ([BO1] III §7.4, Proposition 6).
an isomorphism ([BO1] II §4.4, Corollary 1). If M = @,>0M; is a graded R-module
such that every homogeneous component is finitely generated projective, then cy; is
also an isomorphism.

14
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1.2 Generalized Koszul Complexes

Let
H—*- G and G YL F
be homomorphisms of R-modules. Most of the results of this section are true if

Cng:H ®G— Hom(H,G) and (gr:G" ®F — Hom(G, F)

are isomorphisms (see Lemma |1.12)). For simplicity we restrict the presentation to
the particular case in which H and F are finitely generated free modules.
Since F' is canonically identified with So(F'), we can consider ¢ an element of

Hom(G, S(F)) = Homgp) (G @ S(F), S(F))

(see Lemma [1.13). For every S(F)-module M, 4 gives rise to a Koszul complex
of S(F)-modules K5 (yp, M). If M = @®;>oM; is a graded S(F)-module, then
K5 (4p, M), as a complex of R-modules, splits into direct summands

K30, M)(t), t € Z,

0= NGO M 2% NGO M — - — N G® My 25 NG @ M, — 0.

M* is a graded S(F)-module with graduation M* = @;<oM*,, and K5 (), M*)

as a complex of R-modules splits into direct summands K SE)V (o, M*)(t), t € Z,

o= NTPGRME, 2 /\Hp_lG@Mi(p_n — = N GeME, % NGeM; — 0.

As already noted, the map ¢ : G — F can be viewed as an element of
Homgp) (G ® S(F'), S(F)). The corresponding S(F)-antiderivation dy of Agm) (G ®
S(F)) is nothing but the right multiplication by ¢ on Agr)(G @ S(F)).

Since F' is assumed to be a finitely generated free R-module (in the following
it suffices to know that the canonical map G* ® F' — Hom(G, F') is surjective), we
may also regard ¢ as an element of G* ® S(F') (Lemma 1.12) which is the degree 1
homogeneous part of A\gr)(G* ® S(F)). Furthermore

Nsr) (GT @ S(F)) = NG* @ S(F),

(as S(F')-algebras). So 1) may be viewed as an element of AG* @ S(F'). An easy
computation shows that the right multiplication by ¢ on Ag) (G ® S(F)) = AG®
S(F) this time has the same result as above.

DEFINITION 1.16. Assume that z* € AG* is homogeneous of grade i. If (z* ®
ls(r))® = 0, then the right multiplication by z* ® 1gm on AG ® S(F) is called a
connection homomorphism for v of grade ¢ and is denoted by sz*.

15



PROPOSITION 1.17. If 1/;* is a connection homomorphism for 1, then

Opv, = vy 9y = 0.
Proof. dyvy is the right multiplication by (z* ® 1g(m)1 on AG ® S(F) which is
zero by assumption. Since (2" ® lgp)) = £(a* @ lgp))1, we likewise obtain
Vi Oy = 0. O
REMARK 1.18. The short and easy proof of Proposition [1.17]is a consequence of

our interpretation of 9, and the definition above. See for example [E], proof of
Theorem A2.10 (a). Observe that we do not require G to be free.

Let 1/;'2* be a connection homomorphism for ¢ of grade ¢ and suppose that M =
@i>oM; is a graded S(F)-module with My = R. Then for all t € Z, we splice
K3 (op, M*)(t + i) and K35 (¢p, M)(t) to a complex

*
T

o NG M BB AG e My NG e My -
%AOG(@Mt —)O
denoted by

*

(KSE (4, M)~ KU (3, M)) (1),

There is a similar construction for the map ¢ : H — G. Since H is free and
finitely generated, the natural homomorphism H* ® G — Hom(H, G) is an isomor-
phism. So one may view ¢ as an element of H* ® . Since H* is the degree 1
homogeneous part of the symmetric algebra S(H*), we can consider ¢ an element
of

S(H*) ® G = Homgu«(S(H"),S(H") ® G).
For every S(H*)-module M, ¢ gives rise to a Koszul complex K. (¢, M) of
S(H*)-modules (see Section 1). If M = @;50M; is a graded S(H*)-module, then
KS( H*)(go, M), as a complex of R-modules, splits into direct summands
Koy (o, M)(2), t € Z,
0= My® NG 2 My & NG — - — My 0 N71G % My o NP6 — -
and Kg . (p, M*) splits into direct summands Kg ;. (0, M*)(0), t € Z,

0— M, @ A\NGS M oNG—--— M 0\ 'GS Mo A\G— 0.

S(H*)® G is the degree 1 homogeneous part of Agm+)(S(H*) ® G), and we can
consider ¢ even an element of

As@n(S(H7) @ G) = S(H") ® NG
The differential dy, of K p.)(¢, S(H*)) then turns out to be the left multiplication
by .

16



DEFINITION 1.19. Let € AG be homogeneous of grade i such that (1g+) ®
x)p = 0. Then the left multiplication by lgx+) ® x on S(H*) ® AG is called a
connection homomorphism for ¢ of grade 7 and is denoted by v? .

PROPOSITION 1.20. If v¥ is a connection homomorphism for ¢, then

Proof. With regard to the proof of [1.17] the result is obvious. n

If v¢ is a connection homomorphism for ¢ of grade ¢+ and M = ®;>0M; is a
graded S(H")-module with My = R, then for all ¢ € Z, we splice Kg . (¢, M*)(t)
and K . (¢, M)(t + i) to a complex

0= M, o NG% ... % Mo NG Myo NG5 ..
% M, ® NG - -

denoted by
(Kgay (s M) —"— Koy (. M))(t)-

We shall now establish a natural relation between the complexes introduced
above.

THEOREM 1.21. Suppose that F is a finite free R-module, and let x* € NG* be
such that V;Z* 1s a connection morphism for 1. Then u;f* 1s a connection morphism

for *.
Furthermore let M be a graded S(F')-module such that My = R. Then there is a
natural complex morphism

o*

(K (0", M*) —= Ky (%, M))(1)
(5@, M) L RSy, M))(t))*.

Moreover, if G is finitely generated projective and every homogeneous component of
M s finitely generated and projective over R, then T is a complex isomorphism.

Proof. Our assumptions guarantee that the canonical map F' — F** induces an
isomorphism G* ® F' = ™ ® G* and this again an S(F')-algebra isomorphism
AG* ® S(F) =2 S(F*) ® ANG*. Furthermore the canonical maps (¢ p : G* ® F —
Hom(G, F) and (p+ g+ : F** @ G* — Hom(F*, G*) are isomorphisms. Consequently,
in order to prove that (z* ® lg(r))y = 0 implies (Lg(p) ® 2*)¢* = 0, it suffices to
show that the preimages of 1) and ¢* with respect to (¢ r and (p- g+ are mapped
one to the other by the isomorphism mentioned above.

17



Let fi1,..., fm be a basis for F' and f7,..., f; the dual basis of F™*. We identify
fj with its canonical image in F**. An easy calculation shows that

GG, F Z@D )@ fj) =1 and (pg ij®¢ ) =¢7 (%)

*

So v,. is a connection homomorphism for *.

Now we apply Theorem [1.15} set A = S(F), and let ¢ : A — G* @ A be
the A-homomorphism given by 1 — C};G* (¢*). Using the canonical isomorphism
F* ® G* 2 G* ® F and the equations (%), we obtain that w(p) = £(¥). So we get
natural complex morphisms

and %
K (67, M)(t) —— (K5O, M7)(1))
It remains to show that the diagram

»*

NG SN NG
d d
NGy L (A

is commutative. Let y* € A'G*. Then 0 o % (y*) = 0(z* A y*). To show that this
equals (v )*(6(y*)), we have to prove that (6(y*))(z < z*) = (0(z* Ay*))(z) for all
z € ANG'"". Here one may assume that z* = 2} A... Az}, i € Gyt =yi A Ay

y; € G*, and that z = 21 A ... A 244, 25 € G. Then

Oy ))(z —x*) =0(y *)(Z e(o) det (27(2o(p)))20(ir1) N - -+ A Zo(t44))

1<p,g<i

_Zg det (x (za(p))) det (y;(za(iw)))

1<p,q<i 1<p,q<t
%(Zl) ewi(z) yi(m) o yi(z)
i (zed) 0 2 (2eqa) YT (zers) o Y (Zega)

= (0(z" A y)(2),

where o runs through the set &,4,; of permutations of ¢ + i elements which are
increasing on the intervals [1,4] and [i+1,¢+7] (see [BO1] III §8.6 for the expansions
of a determinant). O
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REMARK 1.22. If M is a free R-module of finite rank, then S(M), S(M)*, and
D(M*) are bialgebras. There is a bialgebra isomorphism I' : D(M*) — S(M)*
given by

* . 0 if S kiAk
F(m(k))(HmH: [Tm*(ma)s if  Ski=k

(2

for all my,...,m, € M and m* € M* (see [BE] A’ and [E] Proposition A2.6).
Moreover, we have bialgebra isomorphisms

S(M) = S(M)™ = D(M*)".

The natural S(M)-module structure of D(M*) is given as follows: if m € S(M)
and y* € D(M*), then (my*)(n) = T'(y*)(mn) for all n € S(M). The interaction
of the S(M)-module structure of D(M*) and the algebra structure of D(M*) is
described by the following result.

PROPOSITION 1.23. If m € M, then m acts like a derivation on D(M™*) in the
sense that

(a) mf*® = f*(m) &Y for all f*€ M*, k>1,
(b) m(f*g*) = (mf*)g" + [*(mg") for all f*,g" € D(M").
Proof. (a) Let m,n;...ng_; € M and set n =ny...ng_1. Then
mf*®(n) = T(f*®)(mn) = f*(m)f*(m) ... f*(nr=1) = £ (m) f*E D (n).

(b) Since S(M) = S(M)**, we may use Proposition 10 in [BO1] IIT §11.8: the
left multiplication by m on D(M*) is a derivation on S(M). O

In particular, we can give now descriptions of K3 (v, D(F*))(t) and
Ky, DIH™))(t) = Ky (¢, D(H))(t) which depend only on the
algebra structure of D(F*) and D(H).

PROPOSITION 1.24. (a) Let z{,...,2; € F*, and y1,...,y, € G. Then
Op(i Ao ANy ® P z;(k’l))

P4
i ~ * *(k *(k;j—1 *
:ZZ(—l)Hyl/\...yi.../\yp®zj(w(yi))zl( 1)...,2]-(3 )...zq(kq).
i=1 j=1

(b) Let xq,...,x€ H, y € NG. Then

q
k k kj—1
dw(xgl)___xgkq)@)y)zg xgl)...lé-ﬂ )...IékQ)®80(xj)/\y'
j=1

19



Proof. (a) Using Proposition and Proposition , we obtain

8¢(y1/\ /\yp®2’1( 1)...Z;(kq))

z -~ *(k %
= Z Hly T /\yp®@/)(yi)zl( 28 ..zq(kQ)
- k (kj—1)
—Z A G A Y W) B,
=1

(b) Let hy, ..., be a basis of H and denote by hj,..., h; the basis of H* dual
to hy,...,h;. Obviously

p = CH,G(Z hy @ o(hy)).

i=1
So, if we view ¢ as a map S(H*) — S(H*) ® G, then ¢(1) = 22:1 hi @ p(hi).
Using Proposition [1.6| and Proposition (applied to M = H*™ = H), we get

dw(ccgkl) : Z h*az:lkl atf) @ (b)) Ay

. k kj—1
:ZZhi(l‘j)mg 1)...935-’ )...x(gkq)®g0(h,-)/\y

i=1 j=1
q !
= ngkl) . .xg-krl) . .x((lkq) ® gp(z hi(x;)h
=1 i=1

q
k kj—1
:ng 1)...a;§-J )...w(g’“‘?)@)go(xj)/\y.

[]

EXAMPLE 1.25. We specialize to the case in which F' = R. One can easily check
that, for all ¢t € Z,

(KS® (g, D(R") —*s KS®(y, S(R))()

is the classical Koszul complex associated with i (¢» € G* is a connection homo-
morphism of degree 1). Moreover, the complex isomorphism is natural for all ¢ € Z.

There are well-known generalizations of the classical Koszul complex in case GG
is a finitely generated free R-module, due to Eagon and Northcott, Buchsbaum and
Rim and others. The usual constructions of these complexes do not work for all
R-modules (just take G a module which has no rank). Suppose G to be finitely
generated free and denote by C'()) the complexes as described in [E] A2.6.1, and
by (1) the classical Koszul complex associated with ¢. If ' = R, then

C'(y) = K(v)
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is a natural complex isomorphism only for ¢ > rank G. In all other cases the complex
isomorphism depends on an orientation of G.

Our purpose now is to identify the complexes C*(1)) among our complexes in case
G is finitely generated free. As we saw in the above example, there seems to be no
way to do this using solely canonical complex isomorphisms. So we shall introduce
a noncanonical map.

REMARK 1.26. Suppose G is a free R-module of rank n. We consider the isomor-
phisms
Q:NG=(N"PGQ)", p=0,...,n,

induced by an orientation on G: Let ¢1,...,¢, be a basis of G, and g¢7,..., g the
basis of G* dual to g1, ..., g,. Then there is an unique R-isomorphism ,, : A\"G —
R with Q,(g1 A ... A gn) = 1. We define Q, : APG = \" PG* by

(Q(2)(y) = Q(x Ay) for ze NG, ye A" PG
PROPOSITION 1.27. If G is free of rank n, then there are (noncanonical) complex
1somorphisms

KSO(, D(F) () — (KO, S(F)n—1))

and
Q

Koy (2, SCH)(8) =2 (Ko, D)) (0 —1))

Proof. We shall prove only the first part of the proposition. The proof of the second
is similar. Let

Q = By20((~ 1), ® Lpge) : AG® D(EY) — (AG)* ® D(F)

i(i

where ¢, = ;1). We have to show that the diagram

ANPG @ D(F?)  —2  APG @ D(FY)
(A"PG) @ D(F*) —— (A" 0-DG)* © D(F*)

is commutative. Let x1,...,%p,y1,.. ., Yn—p-1) € G, f € S(F) and f* € D(F").
Then

QOp(z1 A Az @ [T Y1 Ao A Yn—(p-1) ® )

p

= Q(Z(—l)”lxl NooZi o N2 @U(@) ) Ao A Yn—p—1) @ f)

=1

= (—1)51’*1(2 Qo (=)™ i ATy AT) @U(@) ) Wi A A1) @ f)
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= (—1)° liQn D ey A i ATy AYL A A Y (pe1y) @ () f)
= (=1)7" 1( n®f J((@ A Az, @ F =) A AYn o1y @ 1)),
On the other hand
QAL A AT @ ) A AYn—p1) @ f)
=Q@ AN AT @ )0 A A Y1) @ f)

=Q@i A AT )N A A Y1y @ f — 1)
= (_1)£p(Qn ®f*)((.’L‘1 ARES /\xp® 1)(y1 AR /\ynf(pfl) ®f — ’QZ)))

Since L1 AL AT, AYL A A Yp—(p—1) = 0 and < 9 is an antiderivation (see Remark

, we get
0:.171/\/\.’13'])/\@/1/\/\yn,(pfl)®1;¢
= (@A AR =) A A Y (po1) ® 1)
+ (=P A oA QD) (A e A Yn—(p-1) @ 1 — ).
Obviously €,-1 = ¢, +p—1 (2). So we are done. O
Proposition may be used to link up our approach with the classical theory.
EXAMPLE 1.28. Suppose G to be a free R-module of rank n.

(a) Let fi,..., f be a basis of F, and set «* = ¢*(ff) A... A¢*(fr,). Then v
is a connection homomorphism for 1, and one can identify the complexes

*
3?

(KSE) (1, D(F7)) —— K5, S(F))(2).
with the complexes C'(1)) as defined in [E] A2.6.1.

(b) Let hy,...,Rh; be a basis of H, and set = ¢(h1) A ... A@(h;). Then v¥ is a
connection homomorphism for ¢, and one can identify the complexes

7

(Kg(gy (0, DH)) — = Ky (0, S(H)))(1).
with the D!(¢) as defined in [BV1].

The isomorphisms of (a) and (b) are not canonical since they are given by €.
One may use Theorem to get complex isomorphisms

C!() == (€™ (y))" = DY),
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1.3 Koszul Bicomplexes

Let F', G, H be R-modules. We assume H and F' to be finitely generated and free.
Let

H—*- a2 F
be a complex. Using the canonical isomorphism (g ¢ from Lemma we may
consider ¢ as a map S(H*) — S(H*) ® G. Similarly ¢ can be viewed as a map
G ® S(F) — S(F) if one draws upon the isomorphism ¢ from Lemma So we

obtain a complex

e®1s(F) ls(a*)®y
—_— —_—

S(H*) @ S(F) S(H*) ® G ® S(F) S(H*) ® S(F).

When M is an S(H*)-module and N is an S(F)-module, Theorem provides a
bicomplex Kﬁgﬁ_@, M4, N).

In the following we suppose that M = @®,>oM; is a graded S(H*)-module and
that N = @;>¢NN; is a graded S(F)-module. The bicomplexes

K2 (0, M, N), K2 (o, M4, N),

S(H*) S(H*)
KS(I(LI*))(SO7M7va )a KS(E—[*))(%M 777D>N )7

as bicomplexes of R-modules, split into direct summands which we want to describe
in detail. For this purpose we set

oNe for M, ® A*G® N, NE for MY @ NFG @ N,
oA, for M, ® \N'G® N, oNE, for MF @ A*"Ge N*,

k,p,qg € N. Let t € Z. Then

Ky (0 Mo, (1), K gir), (9, M*, 9, N) (),

UL, S(H").
“S(F * S(F * *
KS(J(LI*))(% M7¢7N )(t)a Kg(ﬁ{*))(@,M ,’QZJ,N )(t)7

one after the other, are the bicomplexes
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l |

0 —— oAb —— 1A

L
o

0 1

0 —— oAl —— 1IN

! l

0 —— 1Al

l |

0 —— No —— —t:1\d

l I

0 —— A}

t+p—1 t+
AV e VAV

—1
pfl/\f — p/\f

| |
p—2 p—1
p*l/\t+1 - P/\t+1

l l

-3 -2
p—1 /\]tp+2 - p/\fw

o

0 —— Al
I
0
0 0
l I

AT —— AT

AP —— oA
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L | |

t+ t+q+1 t+p+q—1 t+p+
0o — /\_qq - 1/\_qq pfl/\_qp AN p/\_qp a...
t+q—1 t+ t+p+q—2 t+p+qg—1
0 —— 0/\7(111 —_— 1/\,qq+1 pfl/\fqp+1q - p/\fqilq

r m
] ]

d
0 —— oA —— AT AT = AT
_ d
0 —— oAy —— AT AT AT
0 0 0 0

| | L

s N —— LAY, SNETE —— AT —— 0
-1 t+q—2 t+q—1
Tet—l /\q*q+1 — *t/\qqurl e -1 fq%rl — 0/\qu+1 — 0

l l l i
l l l l

e Ny —— AL Y\ e, AN —— 0
| I I I

0 — A AT e N —— 0
I I I
0 0 0

The following result shows how the bicomplexes from above can be connected.

THEOREM 1.29. Let x4,..., x; € Kerv, and set x = x1 A ... Nx;. Assume that v¥
1s a connection homomorphism for ¢.

Simalarly let x7,...,2; € G*, and set x* =] N ... N1}

= We suppose that
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(1) zy,...,2; € Kerxy for all k,
(2) i =0 for all k, and that

(3) 1/;”;* is a connection homomorphism for ).
Furthermore let My = Ny = R. Then there are coefficients € = +1 such that the
diagram

: * * . erf®1 . " . .
K gt (0, M* 0, N*)(t + ) =225 KD (0, Mo, N*)(t+ i + )

S(H*).
51®foj*l 81®I/:Z*l
-S(F " v ®1 -S(F .
Ky (o, M0, N) () 255 K)o, M, N)(t +1)

1s a bicomplex for all t € 7.

Proof. To simplify the notation, we shall write VfZ* for 1 ® fo}* and v? for v¥ ® 1.
We have to show that, for all p,q > 0, the following diagrams are commutative or
anticommutative. The first and the second correspond to the vertical arrows of the
diagram in the Theorem while (3) and (4) belong to the horizontal arrows; the last
diagram represents the ‘middle’.

(1)
. d, .
Mip_l ® /\quJflG LN Mip ® /\q+JG

1/17}* l VZZ* J{

Mip71 ® /\Q—lG L Mjp ® /\QG’

My @ NG~ My ® NG

Mp ® /\QG L Mp+1 ® /\q+lG’

/\q+1G® ij—l V_f> /\q+i+1G® ijil

| o

/\CIG ® Nip V_”f> /\q-i—iG ® Nip,

NG®N, —“. AFG®N,

o o |

vE i—
NG ® Nyt —— AT7HG @ Ny,
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AHIG vi NG

vy l v l
NG e NG

Since by assumption x}(z1) = ... = zj(z;) = 0 for all k, the (anti)commutativity of
the last diagram follows immediately from Theorem [I.11]
The first and the second diagram are obtained from the diagram

S(H*) & NG —%— S(H*) ® \G

a a
S(H*) & NG —%— S(H*) @ \G

by tensoring this diagram with M and M* (over S(H*)). The map d, acts on
S(H*) ® A\G as the left multiplication by ¢, viewed as an element of H* ® G, while
fo)* is the right multiplication by 1g(g+) ® 2* (see section 2). Now ¢ = 23:1 Ry @ hy
with elements 2} € H* and hy € Im(y). Since we assumed that zj;¢ = 0 for all k,
a repeated application of Theorem yields v d, = (=1)/d,vy .

The third and the forth diagram are obtained from the diagram

AG ® S(F) % NG ® S(F)

an( an/
24
NG @ S(F) —— NG ® S(F)
by tensoring with N* and N. v¢ is the left multiplication by = ® 15(F'), and 0, is
the right multiplication by ¢ ® 1g(F"). Since ¥(z1) = ... = ¥(x;) = 0 for all k, we
get (% Vf = (—1)ZV}O aw. ]
EXAMPLE 1.30. Fix bases hy,...,h for H and fi,..., f,, for F. Set x) = ¢(h,)

and zj = ¢*(f;). Take M = S(H*) and N = S(F). Then the hypotheses of
Theorem are fulfilled (with i = and j = m).

REMARK 1.31. In addition to the assumptions of the previous example, let H = R.
Then the diagram

APFG e AptmElG

gl %
/\pG L /\pHG
is commutative or anticommutative. This fact can be used in order to simplify the

first part of the proof of Theorem 3.1 in [HM] (consider G free and then apply 2 to
the first line).
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2 Grade Sensitivity

This technical chapter links up the study of the Koszul bicomplexes with the study
of the homology of certain Koszul complexes.

Let R be a commutative ring.

DEFINITION 2.1. If ¢ : H — G is a linear map of R-modules, then I;(¢) is the
image of the map ' '

NH (NG — R

@y =y (Ne)
where 2 € N'H, y* € (N'G)*.

If H and G are finitely generated free, then (A’G)* = A7G* (by virtue of 6, see
section 1.1). So ¢ may be represented by a matrix, and I;(p) is the ideal generated
by the minors of size j of that matrix. We abbreviate

-[go - Imin(rankH,rankG) (@)
We quote the following well known result.

THEOREM 2.2. Let R be noetherian and let H, G be finite free R-modules of ranks
lLandn. Let ¢ : H — G be an R-homomorphism. If I, # R, then

grade I, <|n—1| +1.

NOTATION 2.3. Throughout the rest of this section we shall assume that H, G and
F' are finitely generated free R-modules of ranks |, n and m, and that

H-—*.qc Y. F

s a complex. Although much of what we will do, holds formally for any [, n and m,
the applications will refer to the case in whichn >m andn >1. Sor =n—m > 0,
s=n—12>0. We set g = gradel,;, and h = grade I.

A first question is which restrictions g and h are subjected in a situation as the
one pictured above. In the sequel we shall give some answers to this question. The
following result is a simple consequence of Theorem [2.2]

PROPOSITION 2.4. Let R be noetherian. Set p=1r — .
(1) If g,h > 1, then p > 0.
(2) If g >| p| +1, then I, C Rad I, and in particular, h < g.

(3) Moreover, if g > r+1, then I, C L.
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Proof. If ¢ > 1, then M = Coker+* has rankr. So M* = Kert has rankr,
too. In the same way h > 1 implies that ¢ is injective, so Im ¢ has rank /. Since
Kert D Im ¢, we obtain the first part.

While proving (2) and (3) we may assume that I, # R. Suppose that g >| p | +1.
Take a prime ideal I D I, in R. Then grade(IyR;) > g. If I, ¢ I, then (Imy)R;
would be a free direct summand of G of rank [, (see [BV2],Proposition 16.3 for
example) and therefore 1); can be viewed as a map from a free module of rank
n — [ to a free module of rank m. So grade(IyR;) <| p | +1, which contradicts the
hypothesis. It follows that I, C I which implies that I, C Rad I.

In case grade I, = r + 1, we consider a rank 1 direct summand H of H. Let 7]
be the restriction of ¢ to H. It was shown in [BV4], Proposition 1 that Iz C I in
this case. Since [, C I3, the conclusion follows. n

The restriction g >| p | +1 in Proposition cannot be dropped as the following
example shows.

EXAMPLE 2.5. Let k be a field and let R = k[x1, 9, 23, 4] be the polynomial ring
over k in the indeterminates x1, z9, 73, 74. Set H = R, G = R* and F' = R?. Let o,
1 be given by the matrices

) XT3
—T1 T4
(ZL’l To9 T3 ZE4) and 7 z 5
4 &1
—T3 T2

respectively. Then Yo =0, h =4 and g = 2 = r (it is easy to see that 2 < g < 3
and Proposition implies g < 3).

Before we continue, we simplify the notation.

NOTATION 2.6. As above set M = Coker¢*. Let hq,...,h; be a basis for H and
set x = @(hy) A ... Ap(hy). We shall write v¥ for the connection homomorphism
v?. Analogously, if fi,..., f,, is a basis for F', fy,..., f} the dual basis, and 2* =
V() N o AYE(fE), the connection homomorphism V;Z* will be denoted by vy,
Furthermore set

D,(t) = (Kgge) (. DH)) == Ky (0. S(H))(1)
Cy(t) = (KSE(y, D(F*)) 2 K55 (3, S(F)))(t)

for all t € Z. Since G is finitely generated, both complexes have only a finite number
of non vanishing components. To identify the homology, we fix their graduations as
follows: position 0 is held by the leftmost non-zero module.

By C._(t) we shall denote the Koszul bicomplex

Kt (o, DU, S(F)) (1) =2 Kgiir), (o, S(H*), 4, S(F)) (1 +1),
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which is the lower part of the bicomplex in Theorem [1.291 We rewrite this complex
as

0 0 0 0 0
0 — 5 000 ., 10 % om0 = om0 % opt20
- .
0 — > Ol ...opt 22 optll . opt2l
@
0 — ...0P2 22, (ptl2 . (Opt22 ...

. (Optlt s (OPt2p ...

0

|

0 ., Optlptl __ OpR2pl
| | |

In other words,

Di(H) ® \°G @ Sy(F) if 0<t,
C™(t) = < So(H*) @ NG @ Sy(F) if —1<t<0,
Sa(H) @ NG ® Sy(F)  if ¢t < —L.

The row homology of C. (t) at CP? is denoted by HE?, the column homology by
HY?. Thus H?® is the p-th homology module of D, (t).

P)
Set N? = Ker (C?° =5 CP1). The canonical injections N? — CP? yield a complex
homomorphism

dy

0 —— N — N 5 ... NP 2, NpHL...
” I | |
0 RN 0070 RN 0170 _ s ... Cp70 L C’erl,O, ..

where the maps d_@ are induced by d,. The homology of the first row N (t) at N?
is denoted by HP.
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The homology of the complexes C,(t) and D_(t) behaves similarly as the homol-
ogy of the usual Koszul complex. The main result is the following.

THEOREM 2.7. We use the notation from[2.3. Furthermore let R be noetherian.
Set Q = Coker ¢, C = Cokert), D = Coker p* and M = Cokervy*. Set So(D) =
/1., S1(D) = NF1Q, So(C) = R/1, and $1(C) = A1 M.

(a) H'(D,(t)) =0 fori < h. Moreover, if t < s+ 1 and grade I;(¢) > n — k +1
for all k with I > k > 1, then D,(t) is a free resolution of Ss+(D). (If
—1 <t <s+1, then it suffices to require that grade [, > s+ 1.)

(b) H'(C,(t)) =0 fori < g. Moreover, ift > —1 and grade I}(¢)) > n—k+1 for all
k withm >k > 1, then C,,(t) is a free resolution of Sy(C). (If =1 <t <r+1,
then it suffices to require that grade I, > r+1.)

Finally, if I, = R (I, = R), then all sequences D, (C,) are split evact.

Proof. As we mentioned in Example [1.28] we get (non-canonical) complex isomor-
phisms
Dl (p) = Déa(t) =(C.(s—1)

)

and

CH ) = Cy(t) = Dy.(r —t).

)
Since grade I, = grade [~ and grade I, = grade I+, (a) follows from Proposition
2.1 in [BV1] while (b) is obtained from Theorem A2.10,(c) in [E]. O

We shall now investigate the homology of N (t). The key is the following result.

THEOREM 2.8. Let R be noetherian and t > 0 be an integer. Assume that
I1<r<g<r+1.

Then, with the notation introduced above, H* = 0 for i = 0,...,min(2,h — 1). Set
C = Coker 1.

(a) Fori odd, 3 <i < min(h— 1,2r,2t + 2), one has a natural exact sequence

i i1 i1 _
0— H’ HDt,%(H)@Sz;l(C) _>H¢2 72 HHZJFI = 0.

(b) Suppose thatt <r andl > 1.

(i) If 3<2t+1 < h, then H**' = Dy(H) ® S;(C);
(ii) H' =0 for 2t +2 <i <min(h,t +r+ 2,2t + 1+ 1);
(iif) if 2t + 1+ 1 < min(h, ¢ +r +2), then H2HH1 = FIFHHL
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(¢) Suppose that t+1 <r. Fori—1 even, 2t +1+ 2 <i <min(h —1,2r — [+ 2),
one has a natural exact sequence

il
5 —1

0= Y= Sty () © Sug_,(C) — BT 1,

Proof. The proof partially consists of a repetition of arguments used in the proof of
Proposition 1 in [BV4].
Set p = min(2, h — 1). Consider the diagram

0 —— 0 _ 0 —_— 0

l

0O —— N — NV ——» N2 £, N3
I

0 —— OO’O - CI,O - CQ,O _ 03,0

|

0O — 0 — Im@i’o —  Imd&*°* —— Imo*°

|

0 —— 0 — 0 —_ 0

with exact columns. The middle row has trivial homology at CP° for p < p (Theorem
. In the fourth row the homology at Im 8;;0 is zero since the homomorphism

Im 8};0 — Im 8;*0 is the restriction of the injective homomorphism C'! Y o2t
Now we use the long exact homology sequence to get the first statement of the
proposition. _

Next we extend the complex C_ (t) to the complex C_(¢) by setting C?~! = NP.
To prove (a), we first mention some facts about the homology of C._(t). To avoid
new symbols, the column homology at C? is again denoted by Hi’q (actually it
differs from that of C_(¢) only at CP). Let 0 < p. Then from Theorem [2.7/ (b) we
get that H" = 0 for 0 < ¢ < min(p — 1,7). If p <t then H}" = D, ,(H) ® S,(C).
Furthermore we draw from Theorem (a) that H?? =0 for p < h and q # —1.

Let R?, ¢ > —1, be the gth row of C_(t) and B?™ be the image complex of R?
in R, We set EP4 = HP(BY).

Now let i be an odd integer, 3 < i < min(h — 1,2r,2t + 2). Since HL? = 0 for
p < h, ¢# —1 and since H* = 0 for ¢ < min(p — 1,7), we obtain the "southwest”
isomorphisms

Hi= B gl = gt

)

it — pitl0 o~ il o o s i

[
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In fact, there is an exact sequence

© ®

and the outer terms in this sequence are 0 for all 7,7 under consideration. We
0 d
abbreviate 077 = (CP4 = CP+) and d2? = (CP4 =5 CP*14). The diagram

0 0 0 0
i—1 i—3 i+l i—3 i+3 i—3 i+5 i—3
——— Im an "2 —— Im 8¢2 R —— Im@w2 2 Ime $2
i—1 1—3 i+1 i—1 1+3 i—1 i+5 i—1
—_— Im@w2 R Ker@f s Ker@f B Kelr@zj2 2
i+l i—1
0 R Hw2 2 —_ 0 —_ 0

i+l =3
is induced by C_ () and has exact columns. Its row homology at Im9,* " * is
i1 e _ i+l Q=1
ES'% = 0, and at Kerd,? " * it coincides with Dt_%(H) ® S%(C) as the
following diagram with exact columns and exact middle row shows:

0 0 0 0
1—1 71—3 i+1 i—1 i+3 i—1 i+5 i—1
Imo,? " * —— Kerg,2’ 2 —— Ker9d ? 2 —— Kerd,? 2
P P () ()
o—— 5% — 55— oS . o
it1 i—1 i+3 i—1 i+5 i—1
0O — D, i1®Si-1 — Imo,> *> —— Imod>* 2 —— Imd2" 2
== 2 Y P Y
0 0 0 0
i+1 i—1 i+1 i+1
In this diagram the row homology at Imd,* * * vanishes since d,* " * is injective.

i+3 i—1
So in the preceding diagram the row homology at Ker Ouf "2 is zero. Altogether
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we obtain an exact sequence

0= H — D, wa(H) @S (C) » HF 7 — E57 -0, (%)
Since L
HZ+1 g E142»3’251

Y

(a) has been proved.

In order to prove (b) we continue to investigate the homology of C._(t). Suppose
that ¢ <7, 1> 1andlett <p. Then H}* = 0 for ¢ < min(p+1—2,7). In particular

Hy"™" =0, and (x) implies (i). Let 2t +2 < i < min(h, ¢ +r + 2,2t + [ + 1). Using
the "southwest” isomorphisms once more, we obtain

Hi— iV~ pi-ll oy o pttli-t-1
Since dF*~"~! is injective, (ii) follows. Now suppose that t+/—1 < r and 2t+1+1 <
h. We get

H2t+l+1 — E2t+l+1,0 ~ E2t+l+1,1 ~ ~ Et+2,t+l—1

Furthermore the diagram

0 0 0
Im afp+17t+l—2 Tm a;+2,t+l—2 Im 3t =2

t+1,¢+1—1  d t+2,t+1—1 t+3,t+—1
0 —— Kelraw+ * — 5 Ker 8¢+ + —_— Ker@w+ *

1t+—1
0 — Hf; it — 0 — 0
0
. 1 -1 . . 1 -
has exact columns, and its row homology at Ker 8? 1 g zero since dfp“’t“ Lis

2,t+1-1
o
(4

injective. If we can show that the row homology at Ker also vanishes, we
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shall obtain (iii). The diagram
0 0 0

t+1, -1 L2, i1 (43 t4—1
0 —— Kelraw+ + — Ker 8¢+ + —_— Kelrazp+ *

0 Ot+Lt+-1 Ot2t+-1 CtH3t+-1

t+1,t4+1—1 d t4+2,t+1—1 t+3,t+1—1
0 —— Img, """ — Imo,*""" —— Imo)>""

0 0 0

has exact columns and exact middle row. Since dfjl’t“ is injective, we get the
desired result.

The proof of (c¢) is similar to the proof of (a). We just mention that, for all 4
under consideration, we have the ”southwest” isomorphisms

. ‘ 4 i
H =p0~p-tle  ~p5tL5-1
r7it+1 i+1,0 i1 i=lyg itl
Htl = g0~ pil o~ ~ p5+25

O

If t is a negative integer, a similar result follows easily. We touch briefly upon
this case.

THEOREM 2.9. Let R be noetherian and let t < 0 be an integer. Assume that
1<r<g<r+1.
We set C' = Coker ¢ and use the notation from above.
(a) Suppose that t +1 > 0 (this implies | > 1 ). Then

(i) H =0 for 0 <i < min(h,r + 1,max(2,t +1));
(i) i 2 <t+1<min(h,r+1), then H* = H}"™

(i) ift+1<r andi—t—1is odd, if furthermore t +1+ 1 < i < min(h —
1,2r —t — 1+ 1), then one has a natural exact sequence

Fri [ RSy TS
OﬁH%éS%(H*)Q@S%(C)_)de CE N e N
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(b) Suppose that t +1 < 0. Then H =0 fori =0,...,min(2,h —1). Fori odd,
3 <i < min(h — 1,2r), one has a natural exact sequence

i+l i—1

0— H — S%HH(H*) ®Si51(0) —Hz2 = H™ — 0.

We shall now investigate the homology of N"(¢) at N".

PROPOSITION 2.10. Under the same conditions as in Theorem [2.8] and with p =
min(h,2r 4 1), let t > & — 1. Then we obtain:

(a) there is an exact sequence

0— Erbt o fgr— H"’f’o;
wn particular, if p < 3, then there is an exact sequence
0— H" — Hf’f’o;

(b) for u > 3 odd there is an exact sequence

ptl p—1
0—>E“_1’1—>Dt7u7—1®5;47—1(0)—>ﬁ 202

(c) for pu >3 even there is an exact sequence

n—2

O—>f[“71—>Dt7L2 ® Su—2(C) — 2 —>H“—>H5’O.
2 2

@mmh:

One may easily deduce similar sequences in caset < § — 1.

Proof. (a) The sequence is obvious.

(b) In order to cover the case u = 2r + 1, we modify the first diagram in the
proof of Theorem [2.8} the diagram

0 0 0 0
p_l p=3 ptl p—3 pt3 p—3 pES p—3
—— Im9,* " F —— Im9,* * —— Imd,* * —— Imo,* ?
p=1 p=3 ptl p—1 pt3 p—1 ptS5 p—1
— Im8¢2 T — Ker@w"’ T — Ker@w2 2 — Ker@w"’ 2
ptl p—1 pt3 p—1 pt5 p—1
0 — H 22 -, H 2z . gz
P P P
0 0 0
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has exact columns. Then, as in the proof of Theorem we obtain an exact
sequence

ptl p—1 ptl p—1 pt3 p—1

0— E%"% =D, y1(H)®Su1(C) — Ker(H,* "2 — H,? "2 )
2 2

Since in this case

we get the desired sequence.

(¢) As in the proof of Theorem one has an exact sequence

=3 +2 p—2
2 ENT’HT — 0

B op=2 2
00— F2r 2 — Dt_uT&(H) ®SHT*2(C) - QZ

(just consider ¢ = 1 — 1). Since in this case
—2 — +2 -2
E>"% ~ A* ' and E2 'z x> gl

we glue the sequence and the sequence obtained under (a) to get the result. ]

If we do not require that g > r, we can still deduce a result weaker than Theorem

2.8

THEOREM 2.11. Let R be noetherian and let t > 0 be an integer. Then, with the
notation from above, H* = 0 fori=0,...,min(2,h—1). Set C = Coker). Suppose
thatl > 1 and p+1 < g.

(a) If 3 <2t +1 < h, then H**' = Do(H) ® S;(C). Moreover, if h is odd and

t = =1 then there is an exact sequence

0 — Do(H) ® S,(C) — H*T;

(b) H' =0 for2t +2 <i<min(h,t +g+2,2t +g—p+1);
. . [72t+g—p+1 __ t+1,t+g—p—1
(c) if2t+g—p+1<min(h,t+g+2), then H*97° = H .

The proof is very similar to the proof of Theorem (b); so we may omit it.

NOTATION 2.12. Set M = Cokerv*. By A : M — H* we denote the linear map
induced by ¢*. As above let hy, ..., h; be a basis for H. Set & = A*(hy)A... AN (ly).
We shall write v for the connection homomorphism v§. Furthermore set

VX

(1) = (KPUO(N, D(H)) —— KSHO(X, S(H)))(t)

forallt € Z.
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PROPOSITION 2.13. There is a canonical complex isomorphism
N(t) — (Ci(t)) :

Proof. In Theorem we substitute ¢* for ¢ and S(H*) for M. Using the canon-
ical isomorphisms (APG*)* = APG and S(H*)* = D(H) we then obtain a natural
complex isomorphism

D) — (c, *(t)>*.

@

©

Obviously (C/—\(t)>>k may be viewed as a subcomplex of (C' *(t))*, and

W (1) = (G50)

since

Ker (A\PG*)* % (AP1G* @ F*)7) 2 (A\?M)*.

At this point we must introduce some new notation.

NOTATION 2.14. Let x be as in2.6] By B, (t) we shall denote the Koszul bicomplex

oy

K g (9, D(H), v, D(F*))(t +m) <555 K7 (0, S(H*), 0, D(F))(t +m +1)

which is the upper part of the bicomplex presented in Theorem We rewrite
this complex as

d » d
B0—2 v, pr—2 _ Br+1,-2 @
Oy 0y
7
— 5 Bl ., ppl T petl-l

where
(a) Bovfl(t) =D{(H)® N"G ® Do(F*) if 0 < t,
(b) Boﬂ_l(t) =So(H*) ® /\H”’”G ® Do(F*) if =1 <t <0,
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(¢) BYYt) =S4 (H*) @ N"G @ Do(F*) if t < —L.

Set MP = Coker(B?~2 — BP1). The canonical surjection B»~! — MP yields a
complex homomorphism

1,—1 dyp Bpr—1 , pptl—-1 . ..

l ! | |

MP NV o N

. — B~ N BO,fl

d
C— MY —— MO d

where the maps d;, are induced by d,. The lower row is denoted by M'(¢) .
We obtain an analogue with Proposition [2.13;

PROPOSITION 2.15. Let p = n —m — [ as in Proposition [2.4. Then there is a
(non-canonical) complex isomorphism

M (t) — Cy(p—1)
Proof. As in Example we get (non-canonical) complex isomorphisms
(1) D,(t) = C,.(s—1) and

(2) Cu(t) = Dyu(r —1t)

where as above s =n — [, r =n —m. Next we consider the diagram

o)
D,t+m+1)®F* ——> D (t+m) — M() —— 0

! |

‘ dyr ‘ 4
Clp—t—1)®@F —— C,(p—t) — Cy(p—t) — 0.

The isomorphism (1) assures that the vertical arrows are isomorphisms, while (2)
provides the commutativity of the diagram. The desired isomorphism is induced. [

The following result can be interpreted as an extension of the usual Koszul
duality to the case of a finitely presented module.

THEOREM 2.16. Let R be noetherian. Letr, g, h be as in[2.3 With the graduation
induced by M (t) and N (t), there is a (non-canonical) complex morphism

Cslp—t) —— (G50)) .
such that the following hold.

(a) Suppose that t +1 < 0 orr < t+ 1. Then the v; are isomorphisms for
t>r+1—g, and v,41_4 15 injective.

39



(b) Suppose that | <t+1<r.

(i) If r +1 — g < t, then the v; are isomorphisms for i > r +1— g, and
Uryi—g 18 injective.

(i) If t+1 <r+1—g, then the v; are isomorphisms fori >nr+2 — g —1,
and Vyyo_g— 18 injective.

(i) Ift<r+1—g <t+1, then the v; are isomorphisms for i > t.

(c) Suppose that 0 < t+1 < l. Then the v; are isomorphisms for i > min(0,r +
l—g—1l—t)and, ifr+1—g—1—1t>0, then v, 1_4 4 is injective.

Proof. From Theorem [1.29| we draw the sequence of complexes

0

872 1% . a .
D,(t+m+1)® F* —— D (t+m) —— D,(t) —— D (t—1)® F.

Since M (t) = Coker(B"? — B% ') and N (t) = Ker(C*® — C%!), we obtain an
induced complex morphism

M (t) —Z— N(t).

This, combined with Propositions and [2.15] provides the desired complex mor-
phism. The results about grade sensibility follow easily from Theorem [2.7] O
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3 Generalized Koszul Complexes in Projective
Dimension One

In this chapter we investigate the homology of the generalized Koszul complexes in
projective dimension 1.

Throughout the chapter R is a noetherian ring, and M an R-module which has
a presentation

0 F—2.q M —— 0

where F, G are free modules of ranks m and n. Then in particular r =n —m > 0.

In the sequel we consider R-homomorphisms A : M — H into a finite free R-
module H of rank [ < n. By A we denote the corresponding lifted maps G — H.
We shall investigate the homology of the Koszul complexes

Ci(t) - — Dy(H) @ AFTHPM B oo B Dy (SN M B So(H) @ A'M S
A S, (H) @ A°M — 0.

associated with \.

Dualizing F % G A H we go back to the situation previously studied. So we
set F=F*" G=G* H="H* 1=x* ¢=\, and C = Coker.

The case in which grade I, has the maximally possible value n —m + 1 will be
treated in the first section. We show that the homology, as in the free case, depends
on grade [}.

The second section is concerned with the more general question when there is a
X such that Aoy = 0. We state some criteria which involve the numerical invariants
grade I, grade I, and m,n,.

When dim R = grade I,, = rank M, the homology of C5(#) has finite length. We
derive some formulas in the third section.
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3.1 The Maximal Grade Case

We suppose in this section that g = grade I, has the maximally possible value n —
m+ 1.

DEFINITION 3.1. We say that a homomorphism ¢ of finite free R-modules is min-
imal if I;(p) # R.

The next result may be seen as an extension of the Hilbert-Burch Theorem.

THEOREM 3.2. With the above assumptions we get Iy C I,, and in particular
gradely <r+1. Set p=r—1L.

(a) If there is a A such that grade Iy >| p | +1, then | =1 and r is odd.
(b) The following conditions are equivalent:
(1) grade I >| p | +1;
(2) I =1,.
(c) Suppose in addition that x is minimal. Then the following are equivalent:

(1) There is a A such that grade I >| p | +1;
(2)l=1and (i) r=1o0r(ii) m=1 andr > 3 is odd.

Proof. By Proposition ,(3) we obtain Iy, = I\« C I~ = I,. Since I, # R by
assumption, the first part of the theorem is clear.

Next we prove (a). Set h = grade I,. We have I, C I,, so in particular 2 < h <
r+ 1 and therefore » > 1 and g > 2. Proposition 2.4}(1) implies that p > 0, and
since h > p + 1, Proposition 2.4}(2) yields g < h. Soh=g=r+1>2.

We consider N (r + 1). Since A" M is a torsion module, we get

N (r+1)=Dy(H)® (NTM)* = 0.

Suppose 7 is even. Then r + 1 > 3, and applying Proposition [2.10](a) and (b) for
t =r + 1, we obtain an exact sequence

0 — Drsa(H) ® S3(C) — A — g
since HEQ’% = 0. As we already saw, N"*!(r +1) = 0 which implies that "+ = 0.
But then D (H) ® Sz(C) = 0 and consequently C' = 0 which is in contradiction
with I, # R. So r must be odd.
If r =1, then M* = Kervy has rank 1. Since H — Kert is an injection, we
obtain [ = 1.
Let r > 3 (and odd). Take ¢ = 5! and observe that

r—1
2

Nr( ) — Sr%l(H*) ® (Ar—l—l—lM)*
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since

-1
N'(“o =) = Ker (Se (HY) @ NG — S (H) @ NG @ F).
On the other hand we draw from Theorem [2.8](a) that
—. =1
(") = Dy(H) @ 501 (C) 2 521 ().

If 1 > 1, then (A"""*'M)* = 0 which implies that H"(*5%) = 0. But then 5:21(C) =
0, a contradiction. So [ = 1.

Now we prove (c), (1’) = (2’). Localizing at a prime ideal which contains I; (),
we may assume that R is a local ring. Suppose that » > 3. Since [ = 1, we obtain
N™(*51) = R. Therefore S%(C) must be cyclic, which means m = 1 because R is
local and ) is minimal.

(b), (1) = (2): Equality of ideals in R is a local property. So we may assume
R to be local, and, using the uniqueness of minimal free resolutions, we can easily
reduce to the case in which y is minimal. According to what we have proved already,
it follows that [ =1 and (i) r =1 or (ii) m =1 and r > 3 is odd. If r = 1, then we
can apply the Hilbert-Burch Theorem to get the desired equality I = I,. If m =1
we look at the exact sequence

A% X*

R g* R.
which satisfies the hypothesis of Proposition (3) since gradel, > n — m by
assumption. So

I, =L C Iy =1,

(b), (2) = (1) is trivial.

(c), (2’) = (1’): Suppose that = 1. Let A be a matrix representing y, and
let A; the m-minor of A which arises from A by cancelling the ith column. Then
(A;,—Ay, ..., (—1)"A,) yields an appropriate A\. The implication (ii) = (1’) is a
comparably simple exercise.

O

REMARK 3.3. The case r = 1 in statement (a) of the above Theorem is completely
covered by the Theorem of Hilbert and Burch. If we suppose that » > 3, we only
get that S = (C) must be cyclic. From the exact sequence

G®S%3(F) — S%l(F) — 5%1(0) —0
we deduce an exact sequence
G®S%3(F)®S%1(F) — AQS%(F) — 0.

This implies that the ideal generated by the entries of any two rows of a matrix
representing x is equal to R. We can also deduce that I, may be generated by n
elements, and that I1(x) = ... = I,,_1(x) = R. Unfortunately this seems to be not
enough for a characterization like the one given under (c).
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COROLLARY 3.4. The following conditions are equivalent:
(1) there is a A with grade I, = s + 1;
(2)l=1,m=1andr >1 is odd.

Proof. Only (1) = (2) requires a proof. First h,g > 1, so p > 0. Then we have
s+ 1> p+ 1. Consequently I, = I,. From Theorem [3.2 (a) we obtain that | =1
and r > 1 is odd. Since r = s it follows that m = 1. O

COROLLARY 3.5. Suppose R to be local. Then the following conditions are equiv-
alent:

(1) there is a A with grade I, >| p | +1;

(2) l=1and (i) r =1 or (ii) M has a minimal resolution

0 R R?* M 0

where k > 2.

Theorem implies that A <| p | +2. We shall use this fact in order to simplify
the description of the homology of C5(t).

THEOREM 3.6. With notation as above set So(C) = R/I,. Equip C5(t) with the
graduation induced by the complex isomorphism M (t) — C(t) of Proposition m

Then for the homology H of C5(t) the following holds:

(a) in caset < &,

i Dp_t_%(H*)@)S%(C) if 0<i<h,i#0(2),
B 0 if 0<i<h,i=0(2);

(b) in case & <t < p,

D, , i1i(H)®Si1(C) if 0<i<min(h,2(p—t+1)),i%0 (2),
H =SS, (M) @8 (C) if 20p—t+1)+I<i<h i-1=0(2)
0 otherwise if 0 <1 < h;

~. Si—r;—t—l(H)@SH—r;t—l(C) if r—t+1<1i<h, Z.+T—t§é0(2),
0 otherwise if 0 <1 < h;

44



(d) in case r <t,

- {siﬁ”(ﬂ)osil(o) if 0<i<h, i#0(2),

2

0 if 0<i<h,i=0(2).

H =

Proof. If h = 0, then there is nothing to prove. If h > 1 then p > 0 and r > 1.
From Theorem we get a complex morphism C5 (t) — N (p—t) which induces
the following commutative diagram with exact columns:

0 0 0
oct 99
—1 A N
c;h— O o o
%) V1 Vo
)
0 — N° ‘s Nt N?
0 —— Cokeryy 0 0
0
Since C’— is a torsion module and vy is injective, we have 67 =0. If h > 1, then

dy, is injective. ThlS implies that 9 is injective, so H° = 0. If h > 2, Theorem .
(or Theorem [2.9)) says that the row homology at N? and at N!is 0, so

B D, (H*) ® R/I, if t<p,
H' = Coker vy = 0 if p<i<m,
Si—-(H) ® R/I, if r<t.

If h > 3, then H? equals the row homology at N2. Except the case in which

h is even and z' = h — 1, the remaining statements follow easily from Theorem [2.§]
(or Theorem [2 , 1f one uses h < p + 2 and the fact that all H}? which appear in
Theorem - are zero in the case under consideration. In case h is even and
=h—1, see Proposmon 2.10] (b). O

REMARK 3.7. If ¢ = 0 in Theorem then we obtain Proposition 5.1 in [MPN].
We only suppose that R is noetherian (and even this assumption is superfluous if
one uses a generalized notion of grade).

COROLLARY 3.8. Suppose that h = |p| + 1.
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(a) Ifl > 2, then (C/—\(O))* has non-vanishing homology only in grade p+ 1, and
if r > 1, then B
H%p+ 1) = S,(Coker x*).

(b) Ifl > %, then the homology of C5(p + 1) wanishes in positive grades except
for p+1, and B
H " (p+1) = 5,41 (Coker x*).

Proof. (a) Since h > 1, we have p > 0. In positive grades, the homology of (C/—\(O)yk
is almost the same as the homology of C5(p), with the only exception in grade 1
(where the homology of (C’/—\(O))* is 0). If we require that [ > 5%, Theorem m (b)
provides the result.

(b) If » = 1, then the claim is clear. If r > 1, then [ > 1, and the result follows
directly from Theorem m (c). ]

REMARK 3.9. Corollary (a) was inspired by Lemma 5.5 in [MPN]. Corollary
(b) can be seen as an extension of Theorem (b), since [ being big enough,
one can easily deduce similar results. That seems to open the way to the study of
the homology of the Koszul complex in projective dimension > 2, at least in some
particular cases, by taking a module of projective dimension 1 instead of the free
module GG and iterating the methods used here.

REMARK 3.10. In this section we required for g to have the greatest possible value.
If we do the same for h, we can obtain information about the homology of Cs(t), by
studying the upper half of the bicomplex presented in Theorem [1.29]
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3.2 The General Case

The purpose of this section is to generalize Theorem in order to give an answer
to the question contained in the title.
We obtain a result weaker than Theorem [3.2

THEOREM 3.11. Set p=1r—1 and k =r+1—g. Suppose that g = grade I, >| p |
+1.

(a) Iy C Rad I, and in particular grade I < g.
(b) The following conditions are equivalent:

(1) grade I, >| p | +1;
(2) Rad I, = Rad I,

(c) Suppose that there is a A such that grade I, >| p | +1. Thenl =k +1, r > 1,
andr — k is odd.

(c1) Letr =k+1 (=1). The sequence 0 — F 5 G A H as well as its dual
0— H%GY F are evact. This can occur only if I, = I. Furthermore
m =1 occurs if and only if the ith entry of a matriz for x is (—1)" times
the minor of a matriz for A by cancelling the ith row.

(co) Letr > k+3 (i. e. v >1+2). If x is minimal, then m < k+1 (=1).
If X is minimal, then m >k (=1—1).

Proof. (a) With respect to the assumption, Proposition (2) yields Iy = I+ C
Rad I~ = Rad I,.

(b), (1)=-(2) is an immediate consequence of Proposition (2) while (2)=-(1)
is trivial.

Next we prove the main statement of (c¢). From (b) we draw that Rad I, =
Rad I. Since h := gradel, = g > 1, Proposition (1) implies that p > 0, and
r—k+1=g9g>p+1=r—1+1implies that [ > k. If £ = 0, then the claim follows
from Theorem [3.2] (c). So we may suppose that k£ > 1.

Assume that r — k is even. Then r — k > 2 and r» > 3. Consider the complex
N (%) defined in chapter 2 and observe that

r—k

Nrkarl( 5

) — S% (H*) ® (/\r+lko)*

since

r—Fk

Nr—k+1(
2

) = Ker (Sex (H') ® N *rG — Sei(H') ® NG e F).
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Now I > k implies that (A"""*M)* = 0. So N"*! (k) = 0. It follows that
H*+1(ZE) = 0. On the other hand, using Theorem (a) we obtain an exact
sequence

0 —— Do(H)@S%(C) N ﬁ?‘—k—}—l(r;k)'

Because P_I”_k“(%) =0, we get Do(H) ® S%(C) = 0 and consequently C' = 0

which is in contradiction with I, # R. So r — k must be odd.
If r—k =1, then | = k+1 since I < r. Suppose that r —k > 3 (and odd). Then
kE—1

Nr—k(r —

5 ) _ S%ﬁ (H*) ® (/\T—H_k_lM)*.

On the other hand we draw from Theorem [2.11] (a) that

HM(%) = Dy(H) ® S (C).
If I > k+1, then (A" *1M)* =0, so S,—x1(C) = 0, a contradiction. It follows
that [ =k + 1. ’

(c1) The first statement is an immediate consequence of the Buchsbaum-Eisenbud
acyclicity criterion (see [E], Theorem 20.9). The second statement is also due to
Buchsbaum and Eisenbud (see [N], Chapter 7, Theorem 3 or Corollary 5.1 in [BE1]).
(Of course the third statement is a special case of the Theorem of Hilbert-Burch.)

To prove the first claim of (cg) let x be minimal. Localize at a prime ideal P
which contains I1(x). Then g < gradel,Rp. But g < grade I, Rp is impossible:
otherwise, since I, C Radl, C P in view of (a), we have grade \Rp >| p | +1
and consequently | = r + 1 — grade [, Rp + 1 < k in contradiction with the first
claim under (c). So we may assume R to be local. Since r > k+ 3,1 =k + 1 and
M is free in depth 1, we get N"#(*=5=1) = S$(H*) and NT—RH(=E=1) — 0.
So H™F(==1) = S$(C) is a quotient of S$ (H*). Therefore the minimal
number of generators of C' cannot be greater than the minimal number of generators
of H. It follows that m <l =k + 1.

Since r > k+3 and [ = k+ 1, we deduce that p > 2. So h = g > 4. To prove the

second statement of (cy) we dualize the sequence 0 — F 5 G A H. Set ' =n—1
and k' =1"+ 1 — h. From the first claim under (c) we draw that m = &’ + 1. Since
h >4, we get ' > k' + 3. Now let A be minimal. Applying the first part of (cq), we
obtain (k+1=)I <k +1=m. O

COROLLARY 3.12. Set p = r — 1 and suppose that grade I, >| p | +1. Then
grade Iy <| p | +2 for every X\. Moreover, if gradel) =| p | +2, then gradeI,,
grade I, p are even.

Proof. Tt gradeI, >| p | +1, then the above theorem implies that grade I, =
grade, =r+1—k=7r—1+2=|p|+2. Since r — k is odd, grade I, grade I, p
must be even. 0
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REMARK 3.13. Let k e N. If ] = k+ 1 and » — k > 0 is odd, then, in the cases
listed under (c), there are always maps x : R™ — R™ and A : R® — R' such that
Ax = 0 and grade I, = grade [, = r — k + 1, provided there is a regular sequence of
length r — k + 1 in R.

For simplicity, we give examples only for £ = 1. They can easily be generalized
for an arbitrary k.

For r = 2 and m > 1 consider a regular sequence z,y in R. Let y be given by
the m x (m + 2)-matrix

x 0 gy 0 O 0
0O = 0 wy O 0
O ... ... 0 = 0 y

If m = 2k is even, then let A be given by the matrix

y* 0
0 y*
—[L‘yk_l 0
0 —a:ykfl
(=D aty 0
0 _1)1@—11.163/
(—1)kak 0
0 (—1)Fzk

yk+1 0
0 y*
—zyk 0

0 —xyk_l

0 (—1)k_1$k_1y

(—=1)Faz*y 0

0 (—1)Fzk
(—1)k+1l‘k+1 0

yields an appropriate .
Now suppose that » > 4. If m = 2, set r = 2k and let x1,..., 2k, y1,...,yr be a
regular sequence in R. Consider

R2 X R2k+2 A RZ
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where y and A are given by the matrices

0 xy - o1 o 0
Ty Ty - Tk 0 v w
and
—Yk 0
—Yk-1 —Yk
Y1 —Y2
0 —Y1
T 0 ’
Tk—1 Tk
T To
0 I

respectively. If m = 1, take any x with a matrix (z1, ...

is a regular sequence in R, and define A by

—Tp—1 0
Tp—2 0
—XT9 0

T 0
0 1

Finally we state a useful criterion.

COROLLARY 3.14. Letl <n, m <n and set p=n—m

Yk—1 Yk
ye 0)7

, ) such that xq,. ..

— 1. Purthermore let A

be an (I,n)-matriz and B be an (n,m)-matriz with entries in R. Let h = grade I 4,
g = grade Iz and suppose that h,g >| p | +1. Then AB # 0 in each of the following

cases:
1

2) p odd;

(1)
(2)
(3) g #lpl+2;
(4)
and 1 #£n —m

At the end, we propose the following problem.
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EXERCISE 3.15. Let k be a field. Show that the system of equations

Fi@) + ) + f3() + iy 2) + f5(2,9,2) = 0
fl(x)fQ(y) + fQ(y)f3(Z) + f3<z)f4($a Y, Z) + f4(xvya z)f5(:t,y, Z) =0
f1(l‘)f3(2) + fg(y)f4(x,y,z) + f3(2)f5(l’,y,2) =0,

where (f1, fo, f3, f1, f5) € k[x] X k[y] x k[z] x k[z,y,z] x k[x,y,z], f; ¢ k, has no

solution.
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3.3 Appendix: Some Length Formulas

We refer to Theorem [3.6] It seems to be impossible to obtain a comparably smooth
description of the homology of C5(t) in the case under consideration. The following
result deals with the special case in which g = grade I,, = dim R. This will be our
general assumption in the following considerations. Then R/I, has finite length
((R/1L,). (Generally the length of an R-module N is denoted by ¢(N)). We note
that Corollary is used in order to simplify the presentation of the next result.

THEOREM 3.16. Suppose that dim R = r. Equip C5(t) with the graduation induced
by the complex isomorphism M (t) — C5(p—t) of Proposition where p =1 —1
as above. Then the homology modules H' of Cs(t) have finite length for i < min(h—
1,2r).

Set So(C) = R/I, and assume h > 0.

(a) Letl=1. Then for allt € Z and i odd, 0 < i < min(h — 1,2r), we get

C(H?) — 0(H™) = 0(Si=1 (C)) — (S (C)).

2 2

(b) Letl > 1. We distinguish four cases.
(i) Forallt <% andi odd, 0 <i<h—1,

i+l i+3

O(H) — ((HY) = (7" I )6(5“(0)) - (7" e >e<5i+1 ().

2

(ii) Suppose that § <t < p. Ifi is odd, 0 < i < min(h —1,2(p —t)), then

i+1 i+3

O(H) — ((H) = (7“ _lt__l 2 )Z(SH(C)) - (7“ _lt__l 2 )z(sm (©)).

2

Ifi—1lis even, 2(p—t)+1+2<i<h—1, then
T7i Trit1 S pt+t—2
(i) — i = (P s ()
il _
< : lﬂ_+1t 1) (S (C)).
If2(p—t) + L+ 1 < h, then ((H2=DFHY) = (S, _,(C)). Moreover

i )5-(C) i i=2p—t)+1<h,
1 o if 20p—1t)+2<i<min(h,2(p—1t)+1+1).

22



(i) Suppose that p <t <r. Ifi+r —tisodd, r —t+1<1i <h, then

(R — ((BY) = (i_r?_g + l)e(sm?tl (C))—

-1
i—rtt—1
( 2 " l> ((Sierr1(C)).

Ifr —t < h, then ((H™™) = (S,_,(C)). Moreover H' = 0 if 0 < i <
min(h,r — t).

(iv) Suppose that r <t and i odd, 0 <i < h—1. Then

t—p+ 52

ity -y = (V05T ) ason- (VLT ) asion,

2

REMARK 3.17. Observe that in the above formulas we use the fact that h can
reach the maximal value only if it is even. The combinatorial coefficients are not
degenerated. We further notice that if h < oo, then the formulas for [ > 1 cover the
case in which [ = 1. Finally (a) and (b) make sense only if h, g > 0, and consequently
p=0.

Proof. 1If r =0, then M = 0 since y is injective. So we may assume that r > 1.
We recall that C5(t) is the complex

--—>DP(H)®/\t+l+pM—>"'—>D0(H)®/\t—HM
L S(HYRNM — -+ — S,(H)® \°M — 0

where

D, (HY® N'M  ift <p,
C(t) = < So(H*) @ N'M if p<t<r,
S (HY@ N'M  ifr <t

For ¢ > r the support of AYM is contained in the variety of I,. Consequently

C%(t) has finite length if i < 0, which in turn implies that H' has finite length. In
particular, there remains nothing to prove if h = 0. Let h > 1.
From Theorem we get a complex morphism C5(t) — N (p—t) which induces
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the following commutative diagram

0 0 0
ot AL 0 AL ; o2 o
X X A x Y
ml ”l ”J %l
d°

0 —— N© — N1 N2 N3
0 —— Cokervy —— Coker 1y 0 0

0 0

where the columns are exact. If p < ¢t < r, then 14 is injective and 14 is an
isomorphism.

For arbitrary ¢ and arbitrary ¢ the maps v; are isomorphisms at all prime ideals
which do not contain I,,. Consequently Kerv; and Coker v; have finite length. In
particular Ker v equals the torsion submodule of Cf since N? is torsion free. On
the other hand, C’;l\ is a torsion free module, too. So the torsion submodule of Y
is contained in Kerd). If we denote by 7 (09) the maps induced by v (05) on
Cf\) / Ker vy, we get the following commutative diagram

0 0 0 0
L L
CO/Kervy —2 (1 2 .
%l ml ”l wl
0 — NO d—EW Nt N2 N3
| | L
0 —— Cokeryy ———— Cokery 0 0
| I
0 0

with exact columns.
Since h > 1, dY) is injective. Then &) must be injective, which in turn implies
that
Ker vy = Ker 89\.
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On the other hand, Ker v equals H"(C,(0)) ® E where E is some finitely generated
free module. By Lemma 1.2 in [BV1], H"(C,,(0)) has finite length. Since H is a
factor of Ker 0, we deduce that HY has finite length.

In case h = 1, it remains to prove that H = 0 if p <t <r. Since h,g >0 we
have p > 0 and consequently 7 > 1. Then & is injective and H" = 0.

Assume that h = 2 (so r > 2). This implies that the row homology at N° and at
N ! vanishes. Of course, H' = Ker a has finite length. There are statements about
H'onlyfori>1andt=p,t=r—1,p<t=r—2. Inall these cases Cokerv; =0

(see the Theorems and 2.9). So

H" = Coker vy = H"(C,(1)) if t=r—1,
0 it p<t=r-—2.

By Proposition 2.3 in [BV1] we have £(H"(C,,(1))) = £(S:(C)).
Now suppose that h > 3. If [ = 1, then the row homology at N°, N' and N?
vanishes (see the Theorems and [2.9). For i = 1 we have
((H") — ¢(H?) = {(Ker o) — ¢(Coker o) = ¢(Coker vy) — ¢(Coker v).
But Coker 1y = Sp(C) and Cokervy = H"(C (1)), so
C(H") = ((H?) = U(Sy(C)) = L(HT(Cy(1)).
If iis odd, 3 <i < h —1, then we deduce directly from Theorem [2.§| that
1+ 1
))-

Proposition 2.3 in [BV1] implies that ((H"(C,,(k))) = £(Sk(C)) whenever 0 < k < 7.
It remains to prove that H "1 has finite length if A is even. But Proposition m
(c) provides an injection of H"~! into a module of finite length. So we settled the
case in which [ = 1.

Let [ > 1. Only the case in which p <t < r, deserves special attention. The

other cases are similar to the case [ = 1. If p <t <1 — 2, then the row homology at
N° N'. N2 vanishes. Furthermore H? = Coker v, = 0 and

H' = Coker vy = {SO(C) it =p,
0

C(H) = L(H™) = 682 (C)) = L(H"(Cy(

it p<t<r—2

If p =t = r— 2, then again the row homology at N° N' N? vanishes, and
H' = 5,(C). If p<t=r—2ort=r—1, then the row homology at N° and N!
vanishes. Therefore

~ H"(C,(1 if t=r—1
H' = Coker vy = (Cw< ) 1 "
0 it p<t=r-—2.
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Since Coker v; = 0, we get that H? equals the row homology at N2 The remaining
claims follow easily if one uses as pattern the proof for the [ =1 case. O

REMARK 3.18. For | = 1 the results contained in Theorem [3.16] were first obtained
by Vetter (unpublished) who uses local cohomology in order to get the information
about the homology of the Koszul complex associated to .

COROLLARY 3.19. Set So(C) = R/I,. Suppose that dim R = r. Let CN’X(t) be the
complex obtained from Cs(t) by replacing C%(t) with 0 whenever i < 0. By H* we
denote the homology of (Z(t) at the C§(t).

(a) If h = o0, then

((56(C)) = L(51(C)) = ... = £(5:(C))-

(b) If his odd and t < &, then

>

-1 _ htl

ki = (7T s,

2

i

0

(c) If h is even and t < &, then
h—2 N b
St = (7717 ) s

In case t > £ one can easily deduce formulas similar to (a) and (b).

Proof. (a) If h = oo, then [ must be 1. Remark that this result may also be seen as
an easy consequence of Proposition 2.8 in [BV1].
(b) and (c) We may obviously suppose that h > 0. So p > 0. We have to prove
that B
((H(t)) = £(Dp—i(H) @ So(C))

if t < £. From the proof of Theorem we deduce that
H'(t) = Dy(H) @ H' (C,(0)),
and from [BV1], Proposition 2.3 we draw that

((H"(C(0))) = €(S0(C))-
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We specialize to the case in which R is a quasi-homogeneous complete intersection
with isolated singularity. More precisely, we let S = Ek[[X1,..., X,]] where k is a
field of characteristic zero, assign positive degrees a; to the variables X;, and set
R = S/(p1,...,pm) = k[[x1,...,7,]] where the p; € (Xi,...,X,,)? form a regular
sequence of homogeneous polynomials of degrees b;. By the Euler formula we have

bip; = Zaz ijz

Since (p1,...,pm) = (bip1, ..., bmpPm), the b;p; may be viewed as defining elements
for R. 1f we set p; = bjp; and X = a;X;, we get

Z 8p] X/

We suppose m < n and R, to be regular for all prime ideals p different from the
maximal ideal. As usual we denote by €2/, the module of Kahler-differentials of R
over k. There is a presentation

0 F =g Qrjy — 0

where F, G are free R-modules of ranks m, n and gradel, = r (see [BV1] for
details). Moreover the Euler derivation A gives rise to an exact sequence

NQri — N Qg — - — Qgy AR k=0

which is in fact the non-negative grade part of C5. Let A : G — R be the corre-
sponding lifted map. Set ¢ = A*, 1) = x* as above. As in the proof of Theorem [3.16|
we can complement the exact sequence from above to an exact sequence

0= 7N Qrw) = N Qe = N Qg — -+ —= Qg = R— k — 0
where 7 denotes the torsion submodule.
THEOREM 3.20. Set So(C) = R/I,. If 0 <i <r —1, then
H"(Cy(i+ 1)) = 5;(C).

Proof. The commutative diagram

 — /\"_TG —>---L/\”G%R—> 0
0 —>/\0G%R—> L NG _
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is part of the bicomplex introduced in Theorem [1.29] Let g1, ..., g, be a basis of G,
and fi,..., f, a basis of F, such that v is represented by the matrix (8 )Z s While

© is represented by the matrix (2}, ...,z)) (we denote by 21 the image in R of

and by 2/ the image of X[). Let Q, : A"G — R be the umque R-isomorphism Wlth
Qu(g1 A ... Ngn) = 1. We prove that v,.(g1 A ... A g,) generates the homology in
the second row at /A"G (for the original proof see the second part of the proof of

Theorem 3.1 in [HM]). We have

Vet Ao Agn) =1 A - Agn;¢*(ff)A---A¢*(f;>
- Z det *(f;)(ga(i)»gcr(erl) ANA 9o (n),

1<7,]<

where o runs through &, ,, (see Remark [1.10).

On the other hand we have a non-canonical complex isomorphism

d

0 — NG —— -+« —— A"G —— 0
Eﬂol EQHJ,

induced by €, (see Proposition [1.27). The lower row is the Koszul complex asso-

/

ciated with the sequence z, ...,z . If we denote by H;(R) the row homology at

’n

NG, then H,,(R) = A™H;(R) (see Theorem 2.3.11(Tate, Assmus) in [BH]). The

relations
D

imply that H,(R) is generated by the homology classes of the cycles ¥*(fF) (j =
1,...,m) (see pages 73 and 80 in [BH]), so H,,(R) is generated by ¢*(f;) A
Y*(fr). An easy computation shows (see for example Chapter 1.6 in [BH]) th at

1<i,5<m
=P (FOA - AP,

where o runs through &, ,, (see also [BO1] Chapter III, §8.5, Proposition 9).
The first diagram in this proof induces the commutative diagram

Qi N Agn)) == det (V" (f7)(9o(i))) gy N -+ A Go(m)

¢ —> /\TQR/k A /\OQR/k IR _— 0

N N
0 —— NO=R & N ——0
Since v,.(A"G) ¢ Imd,, it follows that 7,(R) ¢ Imd,,.
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Now we prove the theorem for » = 1. R being a complete intersection, the r-th
homology group of the Koszul complex associated with ¢ is k. From the proof of
the first part of Theorem we deduce that, since r = 1, the same holds for N"'. As
in the proof of Theorem |3.16| we have a commutative diagram with exact columns

0 0
0 — QR/k/T(QR/k) —_— R — 0
vy vy
O _— NO Emm— Nl _ O

If we denote by H' the homology of the lowest row, we obtain an exact sequence

0 O =2k A — 0.

Since 7,(R) ¢ Imd,, 3 must be an isomorphism, so « is an isomorphism.

Next we study the case in which 7 = 2. First we show that H?(C,,(1)) = So(C).
Once more referring to the proof of Theorem |[3.16| we obtain a commutative diagram
with exact columns

0 0 0
0 Em— /\2QR/k/T(/\QQR/k) m— QR/k —_— R m— 0
12 1z 1)
0 — N'=R e Nt — s N’=R —— 0
0—— SO e HACM) —— 0
0 0

As above we denote by H' the homology of the lowest row. Obviously H° = 0. Since
the row homology at N' vanishes (see Theorem [2.8)), we get an exact sequence

0 Jig k—2 H(N?)
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where H(N?) denotes the row homology at N2. Because [ is induced by 7, (and
7,(R) ¢ Tmd,), it must be injective, so H* = 0 and « is an isomorphism. Next we
show that H?(C),(2)) = S1(C). Set m = (z1,...,2,). By Proposition 2.3 in [BV1]
and the local duality theorem (see 3.5.8 in [BH]) we have

H?*(C,(2)) = Ext' (N’ Qryi, R) = (Ho(N*Qrp)) " = (S0(C))" =

(H*(Cy(1)))" = (Hao(Qrpr))” =2 Bxt! (Qrye, R) =2 S1(C).

Now let r > 3. Again we have a commutative diagram with exact columns

0 0 0
0 —— A" Qru/T(N" Qi) —— N ' Qi —— N 7Qrpp —— -+
Vo 11
0 —— N°=R e Nt — N? _—
0 —— So(C) —— H"(Cy(1)) — 0
0 0

Since the row homology at N° and at N'! vanishes, we deduce that « is an isomor-
phism and that N has homology only at N”, namely k. Using Theorem (a) and
the above considerations, we obtain that, if 0 < i < %, then

H'(C,\(i + 1)) = Si(C).

Furthermore we have the commutative diagram

0 0 0 0
Nr—2 Nr—l J‘P N N7 N 0
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with exact columns. With the notation introduced in the proof of Theorem we
get an exact sequence

0 — E 11 k-2 k E™ —— 0.
Since ¢«(N") = v.(A"G) (7, is an isomorphism), § must be an isomorphism. We
deduce E"~*! = pr—bl = gl =0,
On the other hand, as in the proof of Theorem (see the sequence (%)), we
have exact sequences

0— B2 - 5,.2(C) — H”(C;b(g)) BTN 0
if r is even, and

or+1

O—>Er*1’1—>5%(0) — H"(Cy( )) = E"' =0

if r is odd. If follows that, if 0 <14 < g, then
H"(Cy(i+ 1)) = .5;(C).

For § < < r, we again use Proposition 2.3 in [BV1] and the local duality theorem
to get

H'(Cy(i + 1)) = Ext (A Qprye, B) = (Hy (N Qrp))” = (S-40)(C)) =
(H"(Cy(r =) = (H (N Qry))” = Ext' (N'Qryr, R) = 8i(C).

O
COROLLARY 3.21. We have
USo(C)) = USIC)) = ... = €(S,(C)),
Proof. Use the isomorphism of Theorem and Corollary 2.2 in [BV1]. O]

REMARK 3.22. In [BV1], section 3, the length formula of Corollary has been
proved for r odd. The reader may find a complete proof in [HM], Proposition 4.9.
Our approach follows the line of [BV1]. The isomorphism of Theorem was
previously obtained only for 0 < ¢ < r — 2, and consequently only the formula

USH(C)) = ... = (S, (C)).

PROPOSITION 3.23. Set M, = Coker ¢, and let E M, — F be the map induced
by ¥. Consider the complex Cy(r) where C’;Z(r) = N"'M, ® Si(F) fori > 0,

ngl(r) = A\"M,. For the homology H of C’;Z(T), the following holds:

H'=0, H =5.(C).
If i +1ris even, —1 <1 < r —2, then

((HY) = ((H™).
If r is odd, then H° = 0.
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Proof. We extend the Koszul bicomplex

K g, (0, R0, S(F))(r),

to the bicomplex C_

Remark that the last column is C’z‘z(r), since \" M, = k, and that H' is the homology
at \"'M, ® S;(F). From the first part of the proof of Theorem we draw
H-1=0. It is easy to deduce also the isomorphism Hr = S(C).

As in Theorem [2.8] for i + r even, —1 < i < r — 2, we obtain exact sequences

i+r _’_17 i;r

As we proved in Theorem [3.20

so the length formula follows. O

CONJECTURE 3.24. Let C(r) be as above. For the homology H of Cy(r), the
following holds:

0 otherwise.

i {&(0) if i=r,
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