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Summary

Free energy determination of thermodynamic systems which are analytical intractable is

an intensively studied problem since at least 80 years. The basic methods are commonly

traced back to the works of John Kirkwood in the 1930s and Robert Zwanzig in the

1950s, who developed the widely known thermodynamic integration and thermodynamic

perturbation theory. Originally aiming analytic calculations of thermodynamic proper-

ties with perturbative methods, the full power of their methods was only revealed in

conjunction with modern computer capabilities and Monte Carlo simulation techniques.

In this alliance they allow for effective, nonperturbative treatment of model systems with

high complexity, in specific calculations of free energy differences between thermodynamic

states.

The recently established nonequilibrium work theorems, found by Christopher Jarzyn-

ski and Gavin Crooks in the late 1990s, revived traditional free energy methods in a

quite unexpected form. Whilst formerly relying on computer simulations of microscopic

distributions, in their new robe they are based on measurements of work of nonequi-

librium processes. The nonequilibrium work theorems, i.e. the Jarzynski Equation and

the Crooks Fluctuation Theorem meant a paradigmatic change with respect to theory,

experiment, and simulation in admitting the extraction of equilibrium information from

nonequilibrium trajectories.

The focus of the present thesis lies on three directions: first, on understanding and

characterizing elementary methods for free energy calculations originating from the fluc-

tuation theorem. Second, on analytic transformation of data in order to enhance the

performance of the methods, and third, on the development of criteria which allow for

judging the quality of free energy calculations. Calculation hereby actually means sta-

tistical estimation with data sampled or measured from random distributions. The main

work of the present author is summarized as follows.

Inspired by the work of Charles Bennett on his acceptance ratio method for free en-

ergy calculations and its recent revival in the context of Crooks’ Fluctuation Theorem,

we studied this method in great detail to understand its overall observed superiority over

related methods. The acceptance ratio method utilizes measurements of work in both

directions of a process, and it was finally observed by Shirts and co-workers that it can
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also be understood as a maximum likelihood estimator for a given amount of data, which

greatly explains its exquisite properties from a totally different point of view than that of

Bennett. Yet, a drawback of the maximum likelihood approach to the acceptance ratio

method is the implicit switch to another process of data gathering via Bayes’ Theorem,

which no longer reflects the actual process of measurement. This drawback can be re-

moved, as we have shown, by a slightly different ansatz, which reveals the acceptance ratio

method to be a constrained maximum likelihood estimator. The great difference between

the two approaches is that the latter permits more efficient estimators, whilst the former

does not. Even more efficient estimators can be provided by some other means, but are

always linked to the specific process and require knowledge on the functional dependence

of the work distributions on the free energy. In contrast, the acceptance ratio method is

always a valid method, and in fact the best method we can use with given measurements

of work when having no further information on the work distributions – which is virtually

always the case.

The performance of the acceptance ratio method depends on the partitioning of the

number of work-measurements with respect to the direction of process. Bennett has

already discussed this question in some detail and derived an equation whose solution

specifies the optimal partitioning of measurements. Albeit, he could not gain relevance

for it and suggested the problem to be untreatable in praxis. We have completed this

issue, in first proving that the mean square error is a convex function of the fraction

of measurements in one direction, which guarantees the existence of a unique optimal

partitioning, and then demonstrating its practical relevance for the purpose of free energy

calculations at maximum efficiency. In addition, the convexity of the mean square error

explains analytically why the acceptance ratio method is generically superior to free energy

calculations relying on the Jarzynski Equation.

Building up on Jarzynski’s observation that traditional free energy perturbation can

be markedly improved by inclusion of analytically defined phase space maps, we have

put forward this new and promising direction and derived a fluctuation theorem for a

generalized notion of work, defined with recourse to phase space maps. The generalized

work fluctuation theorem has the same form as Crooks’ Fluctuation Theorem, and can

include it for specific choices of maps. This analogy allowed us to define the acceptance

ratio method also for generalized work.
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The high potential of the mapping methods can also be seen as its drawback: there

is no general receipt for the construction of suitable maps. So the method seems to

depend primarily on the extend of the user’s insight into the problem at hand. However,

we could demonstrate its applicability to the calculation of the chemical potential of

a high-density Lennard-Jones fluid. Thereby we have constructed maps in two ways, by

simulation and by an analytical approach. In the analytic case, the map was parametrized

and the parameter numerically optimized. The maps in conjunction with the acceptance

ratio method yielded high-accuracy results which outperformed those from traditional

calculations by far, in particular with respect to the speed of convergence.

Convergence is critical to be achieved within statistical calculations for obtaining reli-

able results, but is in general not easy to verify - if possible at all. Because of their strong

dependence on rarely observed events, free energy calculations with the Jarzynski Equa-

tion and the acceptance ratio method suffer from the tendency to seeming convergence.

This means that a running calculation obeys the property to settle down on a stable value

over long times – but without having reached the true value of the free energy. Moreover,

seeming convergence is typically accompanied by a small and decreasing sample variance,

which may harden the belief in that the calculation has converged. This is quite problem-

atic, as then there is no reliance on the results of calculations. To resolve this, we have

proposed a measure of convergence for the acceptance ratio method. The convergence

measure relies on a simple-to-implement test of self-consistency of the calculations which

implicitly monitors the sufficient observation of rare events. Our analytical and numerical

studies validated its reliability as a measure of convergence.
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Zusammenfassung

Die Bestimmung freier Energien analytisch unzugänglicher Systeme ist ein seit wenigstens

80 Jahren intensiv studiertes Problem. Die grundlegenden Methoden werden gemein-

hin auf die Arbeiten von John Kirkwood in den 30er Jahren und Robert Zwanzig in

den 50er Jahren zurückgeführt. Obgleich urpsrünglich zur störungstheoretischen Berech-

nung thermodynamischer Eigenschaften entwickelt, entfaltete sich die volle Reichweite

ihrer Methoden erst in Verbindung mit der Leistungsfähigkeit moderner Computer und

Monte-Carlo Simulationstechniken. In dieser Vereinigung erlauben sie die effektive, nicht-

störungstheoretische Behandlung komplexer Modellsysteme, insbesondere die Berechnung

von Differenzen der freien Energie.

Die in jüngster Zeit begründeten Fluktuationstheoreme der Arbeit im Nichtgleich-

gewicht, entdeckt von Christopher Jarzynski und Gavin Crooks in den späten 90ern,

hatten eine Wiederbelebung traditioneller Methoden zur Berechnung der freien Energie

in einer recht unerwarteten Form zur Folge. Ursprünglich auf Computersimulationen

mikroskopischer Verteilungen gestützt, beruhen sie in ihrem neuen Gewand auf Messun-

gen der Arbeit in Nichtgleichgewichtsprozessen. Die Fluktuationstheoreme der Arbeit,

d.h. die Jarzynski Gleichung und das Crooks’sche Fluktuationstheorem, bedeuteten einen

paradigmatischen Wechsel in Bezug auf Theorie, Experiment und Simulation, indem sie

die Bestimmung von Gleichgewichtseigenschaften aus Nichtgleichgewichtstrajektorien er-

lauben.

Die vorliegende Dissertation hat drei Schwerpunkte: Zum ersten, die Charakterisierung

derjenigen elementaren Methoden zur Berechnung von freien Energien, die auf dem Fluk-

tuationstheorem gründen. Zum zweiten, die analytische Datentransformation mit dem

Ziel, die Güte der Methoden zu verbessern; und drittens, die Entwicklung von Kriterien,

die einen Rückschluß auf die Qualität der Berechnungen erlauben. Berechnung bedeutet

hier genauer statistische Schätzung, denn die den Rechnungen zugrundeliegenden Daten

gehorchen statistischen Verteilungen. Die wesentliche Arbeit des gegenwärtigen Autors

lässt sich wie folgt zusammenfassen.

Inspiriert von Charles Bennett’s Arbeit zu seiner “Acceptance-Ratio” Methode zur

Berechnung freier Energien und deren aktueller Wiederbelebung durch das Crooks’sche

Fluktuationstheorem, haben wir diese Methode im Detail untersucht, um ihre allgemein
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beobachtete Überlegenheit über verwandte Methoden zu verstehen. Die Acceptance-

Ratio-Methode nutzt Messungen der Arbeit in beiden Richtungen eines Prozesses und

kann, wie von Shirts und Mitarbeitern gezeigt wurde, als Maximum-Likelihood Schätzer

der freien Energie angesehen werden. Dies erklärt deren vorzügliche Eigenschaften von

einem gänzlich anderen Gesichtspunkte aus als dem Bennett’schen. Ein Nachteil des

Maximum-Likelihood Zugangs zur Acceptance-Ratio-Methode liegt jedoch in seinem im-

pliziten Wechsel zu einem anderen Prozess der Datengewinnung, der demjenigen der

Messung nicht mehr entspricht. Wie wir zeigen konnten, lässt sich dieser Nachteil

durch einen leicht modifizierten Ansatz beseitigen, welcher zeigt, daß die Acceptance-

Ratio-Methode ein Maximum-Likelihood-Schätzer unter Nebenbedingungen darstellt. In-

folgedessen können effizientere Schätzer auf Grundlage derselben Daten existieren, was

bei einem reinen Maximum-Likelihood Schätzer nicht der Fall ist. Es gibt Beispiele für

effizientere Schätzer, allerdings sind sie immer an den speziellen Prozess gebunden und

erfordern die Kenntnis der funktionellen Abhängigkeit der Arbeitsverteilungen von der

freien Energie. Im Gegensatz dazu ist die Acceptance-Ratio-Methode immer zulässig,

und tatsächlich ist sie die beste Methode, die auf Grundlage gegebener Arbeitsmessungen

und des Fluktuationstheoremes genutzt werden kann, solange keine zusätzliche Informa-

tion über die Arbeitsverteilungen vorliegt - was beinahe immer der Fall ist.

Die Güte der Acceptance-Ratio-Methode ist abhängig von der Aufteilung der An-

zahl der Arbeitsmessungen auf die Vorwärts- und Rückwärtsrichtung des Prozesses. Dies

wurde bereits von Bennett diskutiert, der auch eine Gleichung angeben konnte, deren

Lösung die optimale Aufteilung bestimmt. Jedoch hielt er sie für unzureichend lösbar

in der praktischen Anwendung. Wir haben die Erörterung dieser Problemstellung ver-

vollständigt, indem wir zunächst gezeigt haben, daß der mittlere quadratische Fehler der

Acceptance-Ratio-Methode eine konvexe Funktion des Anteils der Arbeitswerte in einer

Richtung ist, womit die Existenz einer eindeutigen optimalen Aufteilung garantiert ist.

Weiterhin konnten wir zeigen, daß die optimale Aufteilung der Messungen in der Praxis

realisiert werden kann, und daß dies eine wesentliche Steigerung der Effizienz der Methode

ermöglicht. Darüberhinaus erklärt die Konvexität des mittleren quadratischen Fehlers an-

alytisch, warum die Acceptance-Ratio-Methode gewöhnlich von großem Vorteil gegenüber

denjenigen Methoden ist, die die Jarzynski Gleichung ausnutzen.

Aufbauend auf Jarzynski’s Beobachtung wonach sich die traditionelle “Free-Energy-
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Perturbation” Methode durch bijektive Abbildungen des Phasenraumes wesentlich

verbessern lässt, haben wir diese neue und vielversprechende Richtung fortgeführt und

ein Fluktuationstheorem für einen verallgemeinerten Begriff der Arbeit aufgestellt, der

unter Einbeziehung von Abbildungen definiert ist. Das Fluktuationstheorem der verallge-

meinerten Arbeit hat dieselbe Form wie das Crooks’sche Fluktuationstheorem und kann

dieses für spezielle Abbildungen enthalten. Diese Analogie erlaubte uns, die Acceptance-

Ratio-Methode auch für verallgemeinerte Arbeit zu definieren.

Das hohe Potenzial der Abbildungsmethode kann auch als ihr Nachteil angesehen wer-

den: Es gibt kein allgemeines Rezept für die Konstruktion geeigneter Abbildungen. Da-

her scheint die Methode in erster Linie von dem Einblick des Nutzers in die behandelten

Probleme abzuhängen. Wir konnten jedoch zeigen, wie man diese Methode erfolgreich zur

Berechnung des chemischen Potentials eines wechselwirkenden Fluides bei hoher Dichte

einsetzen kann. Hierbei haben wir Abbildung auf zwei Wegen konstruiert, analytisch und

durch Simulation. Im analytischen Falle wurde die Abbildung parametrisiert und der

Parameter numerisch optimiert. Die Abbildungen in Kombination mit der Acceptance-

Ratio-Methode zeitigten Ergebnisse von hoher Präzision, die denen vergleichbarer tra-

ditioneller Methoden weit überlegen sind, insbesondere hinsichtlich der Konvergenz der

Berechnungen.

Das Erreichen von Konvergenz einer statistischen Schätzung ist von großer Bedeutung

für die Zuverlässigkeit des Ergebnisses, aber im allgemeinen nicht einfach zu verifizieren

- sofern dies überhaupt möglich ist. Wegen ihrer starken Abhängigkeit von seltenen

Ereignissen leiden Berechnungen der freien Energie mithilfe der Jarzynski Gleichung und

der Acceptance-Ratio-Methode unter der Tendenz zur scheinbaren Konvergenz. Unter let-

zterem verstehen wir die Eigenschaft einer laufenden Berechnung, sich über lange Zeit auf

einem stabilen Plateau einzupendeln - ohne den wahren Wert der freien Energie erreicht

zu haben. Darüberhinaus ist scheinbare Konvergenz typischerweise von einer kleinen,

abnehmenden Stichproben-Varianz begeleitet, was den Eindruck von Konvergenz noch

verstärken kann. Um dieses Problem zu lösen, haben wir ein Konvergenzmaß für die

Acceptance-Ratio-Methode vorgeschlagen. Das Konvergenzmaß beruht auf einem einfach

durchzuführenden Test der Selbstkonsistenz der Berechnungen, welcher implizit die hinre-

ichende Beobachtung seltener Ereignisse prüft. Die Zuverlässigkeit des Konvergenzmasses

konnten wir durch analytische und numerische Studien belegen.
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Preface

This thesis is of cumulative character, i.e. the main work has already been published

in peer-reviewed journals, consisting of the papers [1–3]. We will not repeat all details

concerning that work here, but instead will try to give a comprehensive description of the

scientific context and point to our own achievements at the appropriate place.

The literature on free energy calculation is vast and the methods are numerous. But

concerning the principles, the different techniques are essentially understood by tracing

them back to only a few elementary methods [4]. We will adopt this point of view here,

and begin with an introduction to the basic methods of free energy calculation within their

physical background in section I. The methods are divided into three classes, namely into

equilibrium, nonequilibrium, and mapping methods. But instead of going into the details

of free energy calculation, we merely state three fundamental “source-relations” from

which free energy methods can be deduced. One of these relations is Crooks Fluctuation

Theorem.

In section II elementary free energy estimators are introduced, namely free energy per-

turbation, the acceptance ratio method, umbrella sampling, thermodynamic integration,

together with their generalizations to nonequilibrium and mapping methods. To do this

in a compact way, we have chosen to deduce them all from a unified point of view, namely

from a formal fluctuation theorem, which can be related to any of the three mentioned

classes of methods. This has the benefit that the similarities of methods can be worked

out clearly, based on quite simple notation. Moreover, all properties of free energy estima-

tors observed within this formalized context hold equally well in their specialized versions.

Yet, the drawback of such an approach is also clear: the effort of data gathering when

using one and the same estimator in the different contexts is somewhat obscured. For

example, it makes a great difference whether using free energy perturbation with Monte

Carlo sampling of canonical distributions, or the formal identical Jarzynski estimator with

simulations of nonequilibrium trajectories. Nevertheless, we hope our approach is helpful

to clarify the affinities and interrelations of methods.
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I. INTRODUCTION TO FREE ENERGY METHODS

The central idea bridging the macroscopic laws of thermodynamics with the microscopic,

Hamiltonian description of systems involving a large number of degrees of freedom can

be cast in the notion of statistical ensembles. A statistical ensemble can be expressed as

some probability density on the system’s phase space and provides, if suitably chosen, a

model of thermodynamics [5]. This means that ensemble averages of mechanical phase-

functions associated to thermodynamic observables obey exactly the thermodynamic re-

lations. Despite the long-standing and still highly topical problem of its justification from

mechanical principles [6–14], this approach has proven to be one of the most fruitful in

physics with regard to analytic and computational extraction of equilibrium properties

and near-equilibrium fluctuations of thermodynamic systems. Prominent examples are

the microcanonical, canonical, and grand-canonical ensemble, which can be viewed to

be equivalent in the thermodynamic limit of a large number of particles (at least if no

long-range interactions are present in the system [5]). Each of them is the appropriate

ensemble for a class of experimental setups, defined by those macroscopic state-variables

which are being controlled. The canonical ensemble, in specific, is the adequate ensemble

for closed systems in (weak) contact with a heat bath [15].

In the latter case, the quantity of central interest is the (Helmholtz) free energy, as

knowledge of free energy in dependence of externally controlled state variables allows for

inference on the equilibrium properties of the system under study [16], but is also useful

in the context of stability analysis through the minimum principle of free energy [17]. The

canonical ensemble offers a direct route to free energy by identifying it with the logarithm

of the partition function, which is the normalizing constant of the canonical density.

To provide the notions, let Hλ(x) be the Hamiltonian of the system under study, which,

in addition to the phase space variable x, shall explicitly depend on some externally con-

trolled parameter λ coupled to the microscopic degrees of freedom x. For example, λ

may be the strength of an applied field, the system’s volume (if the spatial confinement

is explicit in the Hamiltonian), or the value of some physical property of the systems

constituents (e.g. charge of particles), but it may also be thought of as a “frozen” gen-

eralized coordinate, e.g. the distance of two bodies. The canconical probability density
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A Equilibrium methods I INTRODUCTION

ρλ(x) associated with the thermodynamic equilibrium state (T, λ) reads

ρλ(x) =
e−βHλ(x)

Zλ
, (1)

with β = 1/kBT the inverse of the heat bath’s temperature T times Boltzmann’s constant

kB, and Zλ the partition function,

Zλ =

∫
e−βHλ(x)dx. (2)

Finally, the free energy Fλ = Fλ(T ) is given by

Fλ = − 1

β
lnZλ. (3)

Due to its connection to free energy, calculation of the partition function is a major aim in

physics, but in general the integral (2) cannot be carried out analytically for interacting

systems, especially if the number of degrees of freedom is large. These difficulties are

typically accompanied by another severe problem: sparse regions of phase space dominate

the value of (2) if Hλ(x) has numerous local minima which are distributed over phase

space and separated by large energetic barriers. This also rules out successful numerical

integration and “blind-shooting” Monte Carlo integration of the partition function; in the

latter case one interprets the integral (2) as an average of the integrand with respect to a

uniform distribution.

A. Equilibrium methods

By means of the Metropolis algorithm [18] or molecular simulation [19], it is possible to

simulate random draws of phase space points x distributed according to the canonical

density ρλ(x) once the Hamiltonian is given, and without needing to know the value of the

partition function. Hence, in principle one has access to the mentioned sparse regions of

phase space. But as the desired partition function Zλ can not be expressed as an average

of a mechanical phase-function in the density ρλ (rather it’s the normalizing constant),

we cannot use this possibility for direct calculation of Zλ.

However, ratios of partition functions, and thus free energy differences, can be ex-
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I INTRODUCTION A Equilibrium methods

pressed as averages in the canonical density. Assume we are interested in the free energy

difference ∆F between two states “0” and “1” at the same temperature 1/β, but with

different values λ0 and λ1 of the parameter λ. Without loss of generality, we may assume

λ0 = 0 and λ1 = 1, which can always be achieved by a suitable change of variables.

Defining the free energy difference with

∆F := F1 − F0 = − 1

β
ln
Z1

Z0

, (4)

and the (microscopic) energy difference by

∆H(x) := H1(x)−H0(x), (5)

the ratio of ρ0 = ρλ0 and ρ1 = ρλ1 reads

ρ0(x)

ρ1(x)
= eβ(∆H(x)−∆F ). (6)

This simple identity is the source for the most fundamental computational free energy

(difference) methods, namely Zwanzig’s free energy perturbation [20], Bennett’s accep-

tance ratio method [21], Torrie and Valleau’s umbrella sampling [22], and in some sense

also of Kirkwood’s thermodynamic integration [23] (by taking λ1 = λ0+dλ). These meth-

ods again form the basis of a large variety of more specialized and generalized techniques,

developed over the decades in adaption to the concrete problems treated [4].

To provide some insight into the very nature of these methods, we take a brief look on

the popular free energy perturbation method. It relies on the identity

∫
e−β∆H(x)ρ0(x) dx = e−β∆F , (7)

which is a simple integral consequence of Eq. (6). The exponential of ∆F is expressed

here as ensemble average of e−β∆H(x) in the canonical density (ensemble) ρ0. Accordingly,

a statistical estimate of ∆F is obtained by calculating a sample average of e−β∆H(x) with a

set of N randomly drawn phase space points x, distributed according to ρ0(x). Denoting
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A Equilibrium methods I INTRODUCTION

ρ0(x)

ρ1(x)

∆H(x) = ∆F

∆H(x) > ∆F∆H(x) < ∆F

FIG. 1: Schematic contour plot of equilibrium densities ρ0(x) and ρ1(x), the drawing plane

representing the phase space (thicker lines indicate larger probability density). The dashed line

is determined by ρ0(x) = ρ1(x), hence ∆H(x) = ∆F (Eq. (6)). It divides the phase space into

regions where ∆H(x) > ∆F and ∆H(x) < ∆F . Precise free energy perturbation calculations

with simulated draws from ρ0(x) require sampling the region where ρ1 has its main probability

mass.

the estimate with ∆̂F , it is explicitly obtained by evaluating the estimator

∆̂F = − 1

β
ln

1

N

N∑

i=1

e−β∆H(xi) (8)

with a set {xi} of N phase-space points, obtained e.g. from Metropolis Monte Carlo

simulations of the distribution ρ0(x).

Hereby we have already indicated a common characteristic of computational free en-

ergy methods: the calculation of ∆F is no longer of bare analytic, but rather of stochastic

nature. This means that the calculated value ∆̂F is a random variable with all its draw-

backs: it spreads, i.e. repeated calculations in the same manner differ from each other,

and it may even be biased, i.e. systematically off the desired value ∆F . The latter is

actually the typical case in free energy calculations, albeit convenient methods (e.g. those

mentioned above) possess the property of converging almost certainly to ∆F with un-

boundedly growing sample size N . Informally written,

lim
N→∞

∆̂F = ∆F. (9)
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I INTRODUCTION B Work theorems

In praxis, of course, only finite sample sizes N are available, and therefore a critical

question is whether the actual sample size is large enough to ensure convergence of the

calculation (within a reasonable spread). Or, the other way round, how large needs the

sample size N to be to obtain converging estimates ∆̂F ? Figure 1 illustrates this problem

for free energy perturbation, which is discussed in greater detail in section II.

In essence, all traditional approaches can be called equilibrium methods, as they either

use samples directly from equilibrium distributions, or from modified, so-called “biased”

equilibrium distributions. For a long time, this seemed to be the only feasible way for

properly obtaining free energy differences. The situation has changed dramatically with

the discovery of nonequilibrium work relations by Jarzynski and Crooks. They have shown

that it is indeed possible to extract equilibrium information, in particular free energy

differences, from nonequilibrium processes, and thus from nonequilibrium distributions.

B. Nonequilibrium work theorems

The Jarzynski Equation [24–27] and Crooks’ Fluctuation Theorem [28–30] are among

the few exact results of nonequilibrium statistical physics which remain valid arbitrarily

far from equilibrium. These closely connected nonequilibrium work theorems relate the

statistics of work which is necessary for the realization of an externally driven, finite-

time process with the equilibrium free energy difference between final and initial states

of that process. Their great importance in view of fundamental theoretical issues results

from the fact that they provide a basis for a new understanding of the second law of

thermodynamics in a probabilistic sense. In specific, the Jarzynski Relation can be viewed

as the second law in terms of an equality [31–33], as it implies the second law inequality

[24]. Within the theoretical framework of the nonequilibrium work theorems, however,

single realizations of nonequilibrium processes which violate the second law can, and even

must occur, but the statistics of realizations in total is such, that it guarantees the validity

of the second law in average.

The possibility of second law violations on the single-trajectory level, i.e. for single

realizations of a process, has already been noticed by Boltzmann [10], and could be

made evident by Evans, Cohen, Morris and Searles with numerical studies of small

systems [34, 35]. Since then, strongly put forward by the nonequilibrium work theorems
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B Work theorems I INTRODUCTION

and experimental verifications of fluctuation theorems [36–43], it has come to attention

that for small systems the laws of thermodynamics can still be expected to hold, but

only in an averaged sense [31]. This has already been anticipated in the 1970s in the

works of Bochkov and Kuzovlev [44], who derived relations similar to the nonequilibrium

work theorems (involving no free energy difference), although with a somewhat different

definition of work [45–47].

To prepare a quantitative formulation of the nonequilibrium work theorems, assume the

following process. Initially in the equilibrium state (T, λ = 0), our earlier defined system

with Hamiltonian Hλ(x) is being driven out of equilibrium by changing λ = λ(t) in a

predefined manner within some finite time t = τ from 0 to 1, while remaining coupled

to the heat bath. The prescription λ(·) := {λ(t)}τ0 is commonly called the protocol.

Schematically:

λ(0) = 0
λ(t)−−−−→ 1 = λ(τ). (10)

The realization of that process requires an amount of work W to be done, whose value

depends on the microscopic trajectory x(·) = {x(t)}τ0 on which the system evolves during

the process. As the mechanical force acting “on the coordinate” λ is given by − ∂
∂λ
Hλ(x)

[15, 48], the work applied to the system along a single trajectory is given by the work

functional W[λ][x(·)] with [24, 31]

W[λ][x(·)] =
1∫

0

∂

∂λ
Hλ(t)(x(t)) dλ(t) =

τ∫

0

∂

∂λ
Hλ(t)(x(t)) λ̇(t) dt. (11)

Due to the random nature of trajectory, the valueW = W[λ][x(·)] of work will be a random

variable, too, distributed according to some probability density p0(W ) (0 indicates the

initial equilibrium state and with this the direction 0 → 1 of process). In total, the process,

which shall be called the forward process, drives the initial equilibrium distribution ρ0(x)

to a final nonequilibrium distribution ρneq0 (x, τ), which will not equal ρ1(x), but rather

“lag behind” [49, 50].

The forward process can be contrasted with its “time-reversed” counterpart, the reverse

process, which also starts in equilibrium, but now in state (T, λ = 1), with λ being traced
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back from 1 to 0 in exactly the opposite manner of the forward process, i.e. according to

the time reversed protocol λ̄(·) = {λ(τ − t)}τt=0. Again, some amount of work W[λ̄][x(·)]
will be necessary, and we denote the probability density of work W = −W[λ̄][x(·)] done
by the system in the reverse process with p1(W ). (We compare the work supplied to

the system in the forward process with the work gained from the system in the reverse

process. To make contact with the common notation, we note that if pR(W ) denotes the

density of reverse work supplied to the system, then p1(W ) = pR(−W ).)

The Crooks Fluctuation Theorem states the forward and reverse probability densities

of work p0(W ) and p1(W ) to be related by [29]

p0(W )

p1(W )
= eβ(W−∆F ). (12)

This relation can be shown to hold under quite general assumptions on the underlying

dynamics, including Hamiltonian dynamics [51], deterministic thermostatted dynamics

[52], stochastic dynamics [30, 53–55], and quantum dynamics [56–59]. In the latter case,

however, work cannot be defined with (11), but rather as difference of energy measure-

ments at final and initial times of the process [60, 61]. In essence, the conditions for

(12) to hold are invariance of the Hamiltonian under time-reversal, and a time-reversible

dynamics [30, 31] which conserves the canonical distribution ρλ if λ is held fixed (i.e. , ρλ

needs to be a stationary solution of a Liouville-type equation once λ = const).

A remarkable property of the fluctuation theorem is its generality with respect to

the choice of protocol λ(·): it is valid for any protocol connecting λ = 0 and λ = 1

within arbitrary process duration τ . Nevertheless, the work densities are functionals of

the protocol, and their shape depends strongly on its choice. But in each case are the

forward and reverse work densities connected by Eq. (12). In specific, they will always

and only intersect at W = ∆F , which is schematically sketched in figure 2, along with

an illustrative example of a forward and reverse process: the compression and expansion

of a fluid, respectively [62–64].
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FIG. 2: Illustration of fluctuation theorem. Left: Example for a process: compression of fluid

by moving a piston. The forward process starts with the fluid in thermal equilibrium with the

surroundings and the piston at position λ0. Then the piston is moved within finite time to the

final position λ1, resulting in a final non-equilibrium state. The reverse process starts likewise

in thermal equilibrium, but with initial position of the piston at λ1. Subsequently the piston is

traced back to λ0 in the opposite manner of the forward process. Right: Schematic forward and

reverse work densities p0(W ) and p1(W ), respectively, which intersect at the equilibrium free

energy difference ∆F . As a consequence of the fluctuation theorem, the average forward work

〈W 〉0 is larger than ∆F , while the average reverse work 〈W 〉1 is smaller than ∆F , in concord

with the second law of thermodynamics.

Immediate consequence of the fluctuation theorem is the Jarzynski Equation [24]

∫
e−βWp0(W ) dW = e−β∆F . (13)

It has been derived even before the fluctuation theorem and states that the average of

the exponentiated work equals the exponentiated free energy difference of the thermal

equilibrium states associated with the final and initial value of λ at equal temperature

T = 1
kβ
. Thereby neither the final distribution of microscopic states x needs to be an

equilibrium distribution (and will not be such for finite τ), nor the temperature needs

to correspond with the system’s temperature along the process (it may not be defined
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at all). The latter difficulty provoked early objections against the Jarzynski relation by

Cohen and Mauzerall [65], but is resolved by accepting the temperature to belong to the

heat bath, which is coupled to the system during the process [27]. Initially, the system

is indeed assumed to be in equilibrium at that temperature, but is then driven out of

equilibrium. Again, the identity (13) is independent of the choice of protocol, the speed

of state transformation λ̇ and process duration τ .

We shall close this section with commenting on some thermodynamic implications of

the nonequilibrium work theorems. Jarzynski observed that from the equality (13) follows

the inequality [24]

〈W 〉0 ≡
∫
Wp0(W ) dW ≥ ∆F, (14)

as a mere consequence of the convexity of the exponential function and Jensen’s inequality.

In words: the average work is larger than the free energy difference. Inequality (14) turns

out to be an equality if and only if the work densities are indistinguishable, p0 ≡ p1.

From the fluctuation theorem, however, it is evident that the latter is possible only if the

work densities degenerate to delta-functions at W = ∆F where any randomness of work

disappears. This can be expected to be case when the duration of process is stretched to

infinity, τ → ∞, i.e. in the limit of quasi-static process [27, 66]. On the other hand, the

second law of thermodynamics, applied to a process in an isothermal environment, asserts

the thermodynamic work Wtd to be larger than the free energy difference, Wtd ≥ ∆F ,

with equality if and only if the state-transformation is carried out reversible [16].

That is, 〈W 〉0 and Wtd behave in full analogy, which can be taken to justify their

identification. A thorough thermodynamic analysis of Parrondo, Cleuren, and van den

Broeck [12] has shown that the dissipated work

Wdiss = 〈W 〉0 −∆F ≥ 0 (15)

can be understood as the entropy change of system plus reservoir, if relaxation of the

system to the equilibrium state (T, λ = 1) subsequent to the process is allowed (the

analysis in [12] assumes that the process is carried out without heat exchange (weak

coupling limit), followed by thermal relaxation; an analogous analysis with heat exchange

during the process leads to the same result).
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C. Nonequilibrium free energy calculations

The nonequilibrium work theorems allow for calculations of free energy differences by

means of measuring a number of work-values of a nonequilibrium process, and evaluating

suitable averages of them [67]. For example, the Jarzynski Equation (13) implies to take

the sample average of the exponentiated work. This aspect of practical relevance has

already been emphasized in the original works of Jarzynski [24] and Crooks [30]. As an

essentially new tool, it overcomes former limitations of experimental determination of free

energy, which was restricted to quasi-static processes (or near-equilibrium transformations

[68]). By definition, such processes are long-lasting, and can even be difficult to realize

for nano-scale systems [69], which are currently of strong interest (e.g. pulling a single

molecule with an optical trap [70]). In fact, the nonequilibrium work theorems develop

their full potential for small systems, only: for large systems, the work densities can be

argued to be heavily peaked at W ≈ 〈W 〉, such that large fluctuations are “invisible”,

i.e. quite unlikely to be observed [24]. And exactly the large deviations are needed for

nonequilibrium free energy calculations.

Besides in “real-world” experiments, work can also be simulated in computer exper-

iments based on models of the physical process [19]. This requires simulation of phase

space trajectories and accumulation of work along these trajectories according to defini-

tion (11). Therefore, the nonequilibrium work theorems considerably enriched the facil-

ities of computational free energy determination, too. Thereby, the new nonequilibrium

techniques appear as natural generalizations of traditional standard methods like free en-

ergy perturbation [20, 23] or the acceptance ratio method [21]. As major advances, the

nonequilibrium methods need no equilibration routines (except for initial configurations),

and the dynamic simulation of trajectory can in principle be carried out arbitrarily fast,

by freedom of choice of τ .

However, certain inherent difficulties limit the advantage of nonequilibrium methods,

whether experimental or computational: the convergence of the free energy calculation

depends strongly on measuring a certain class of rarely observed work values, the so-called

“rare-events” [71], which make the essential contributions to the free energy calculation.

A common feature of the rare events is violation of the second law on the single-trajectory

level, and the probability of observing such trajectories rapidly decreases with growing
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ρ0(x)

ρneq0 (x, τ)
ρ1(x)

W > ∆FW < ∆F

W = ∆F

FIG. 3: Phase space picture of fluctuation theorem for Hamiltonian evolution (schematic,

Eq. (19)). The forward process drives the initial equilibrium distribution ρ0 to a final nonequilib-

rium distribution ρneq0 (x, τ) which overlaps better with the equilibrium density ρ1. The dashed

line is defined by the equation ρ
neq
0 (x, τ) = ρ1(x). Trajectories which end on it correspond to

work values W = ∆F . Two trajectories are indicated by lines with arrows. That on the right

represents a typical event, as it starts in a region of large initial probability ρ0. Its final point

shows that it corresponds to a work value W > ∆F . The other one represents an atypical event

with W < ∆F , starting in a region of low initial probability ρ0. As this trajectory furthermore

ends in the region where ρ1 is large, it is one of the rare events needed for accurate free energy

calculations with the Jarzynski Equation.

speed of state-transformations [66]. Therefore, a large number of work-values has to be

measured in order to enclose the rare events if the process is carried out fast, i.e. far from

equilibrium.

We can understand this situation with the following informal reflection. Assuming a

forward process, we need, in order to calculate ∆F , information on the density ρ1, as

we aim to calculate the ratio of the normalizing constants of ρ1 and ρ0. The dynamic

evolution drives the initial equilibrium density ρ0(x) to a final nonequilibrium density

ρneq0 (x, τ) in the “region” of the equilibrium density ρ1, so that we can nicely obtain the

needed information, as illustrated in figure 3. This is at its best if the process is carried

out very slowly, as then the final nonequilibrium density will almost match with ρ1. On

the other hand, if we carry out the process very fast, the phase space points cannot

“follow” the dynamics properly, and ρneq0 (x, τ) essentially equals ρ0(x). Only very little

trajectories will still explore the region of ρ1(x), namely those which already started near
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that region. These are the rare events, rare if the overlap of the densities ρ0(x) and ρ1(x)

is small. (Note that the latter considerations need not always to apply fully. E.g., for a

boundary switching process like that of figure 2, ρneq0 (x, τ) will deviate considerably from

ρ0(x) for any τ > 0.)

The named problem inspired the development of methods which bias the sampling of

trajectories towards the rare events [72–74]. The main ideas and methods rely essentially

on traditional importance or umbrella sampling techniques [22], transposed from phase

space to trajectory space. In this context, also thermodynamic integration [23] found its

generalization to nonequilibrium processes [72]. A brief description of these methods is

given in section II.

To see where the similarity of traditional and nonequilibrium methods stems from,

we note that Crook’s Fluctuation Theorem originates from a relation in trajectory space

which is reminiscent to the traditional source relation (6). Denoting with P0[x(·)] the
probability density of observing a trajectory x(·) in the forward process, and with P1[x(·)]
the analog for the reverse process, the general form of Crook’s Fluctuation Theorem

formulated in trajectory (or path) space reads [30, 53]

P0[x(·)]
P1[x̄(·)]

= eβ
(
W[λ][x(·)]−∆F

)
. (16)

Thereby, the trajectory x̄(·) denotes the “time-reversed” counterpart to x(·), obtained
by tracing back x(·) in phase space with reversed momenta, cf. figure 4. Explicitly, the

“conjugate” trajectory x̄(·) is defined by

x̄(t) = x†(τ − t), (17)

where the dagger operator means sign-reversal of momenta (more generally, sign-reversal

of those generalized coordinates which are odd under time reversal). The reverse work

along the trajectory x̄(·) exactly equals the forward work along its conjugate x(·) [30]:

−W[λ̄][x̄(·)] = W[λ][x(·)] (18)
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†

p
x(t)

x̄(τ − t) = x†(t)

x(0) x(τ)

x̄(0)

p0

−p0
q

x̄(τ)

FIG. 4: A pair of conjugate trajectories in a two-dimensional phase space, x = (q, p) =

(position,momentum). x̄(·) is obtained from x(·) by mirroring the latter along the q-axis (dagger

operator) and traversing it backwards in time.

(note our sign convention for the reverse work).

Equation (16) is adequate for continuous-time stochastic processes, but formally we can

allow it to include also discrete-time stochastic evolution [30] and deterministic evolution

[24, 52]. In the latter case, the path probability degenerates to a phase space distribution

of initial configurations.

Let us briefly relate (16) to the important case of Hamiltonian dynamics. As Hamilto-

nian evolution is deterministic, we can substitute P0[x(·)] with with ρ0(x(0)), and P1[x̄(·)]
with ρ1(x̄(0)). Further, by Liouville’s theorem [7] we have ρ0(x(0)) = ρneq0 (x(τ), τ), and

from the time-reversal invariance of the Hamiltonian together with definition (17) follows

ρ1(x̄(0)) = ρ1(x
†(τ)) = ρ1(x(τ)). Hence, the Fluctuation Theorem (16) for Hamiltonian

dynamics reads

ρneq0 (x(τ), τ)

ρ1(x(τ))
= eβ(W[λ][x(·)]−∆F). (19)

x(τ) = x(τ ; x(0)) is understood here as the dynamical image of x(0). Finally, the work

functional can be simplified to W[λ][x(·)] = H1(x(τ)) − H0(x(0)) [24]. Relation (19) is

in perfect analogy to the traditional relation (6), but with the nonequilibrium distribu-

tion ρneq0 (x, τ) taking the place of the equilibrium distribution ρ0(x). Figure 3 gives an

account of some implications of the Hamiltonian fluctuation theorem (19). Consequences

of Eq. (19) with regard to dissipation and coarse graining are discussed in [50] and [49].

In the limiting case of an infinitely fast process, τ → 0, the “source-relation” of

nonequilibrium methods (16) can formally be viewed to go over to the “source-relation”

of equilibrium methods (6), and with it the free energy calculation methods relying on
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it. In detail, this limit means that the trajectory degenerates to a single point in phase

space, x(t) = const. = x, hence P0[x(·)] → ρ0(x(0)) = ρ0(x) (as initial configurations

are drawn from ρ0), P1[x̄(·)] → ρ1(x̄(0)) = ρ1(x(τ)) = ρ1(x) (as initial configurations

are drawn from ρ1(x) and by time-reversal invariance of the Hamiltonian), and finally

W[λ][x(·)] → H1(x(τ))−H0(x(0))
∆λ

∆λ = ∆H(x) (Eq.(5)).

It may seem paradoxical that nonequilibrium methods go over to equilibrium methods

in the limit of highest nonequilibrium, τ → 0. In fact, from this point of view one should

call the traditional methods “super-nonequilibrium” methods.

D. Mapping methods

A further conceptual new and promising method for free energy calculations has been

introduced by Jarzynski with targeted free energy perturbation [75], which extends free

energy perturbation by incorporation of bijective phase space maps. Astonishingly, the

same idea has been established simultaneously and independently within mathematical

statistics by Meng and Schilling [76], who called it “warp sampling”. There it is used for

the equivalent problem of estimating ratios of normalizing constants (or likelihood ratios).

Similar to umbrella sampling, the idea behind targeted free energy perturbation is to use

modified sampling-distributions in order to get access to the rare events. But instead

of sampling directly from biased distributions, the targeted approach samples from the

unbiased equilibrium distributions, and maps ordinary events to rare events.

This has far-reaching consequences: targeted free energy perturbation can, in princi-

ple, achieve immediate convergence of the calculation (“one throw of coin”). Immediate

convergence is achieved if the map transforms the equilibrium densities ρ0(x) and ρ1(x)

into each another, just like a reversible isothermal process would do. However, from this

it becomes also clear that the arrangement of such an ideal map can be expected to be as

difficult as equating the partition function itself. Maybe for this reason, targeted free en-

ergy perturbation found only little application up to now [77, 78]. Yet, it’s successful use

does not premise the map to be ideal, rather it suffices to go some way into this direction.

Nevertheless, this also requires some degree of insight into the phase space landscape of

the physical problem at hand and can hardly be automated in a “black-box” fashion. But

also any other free energy method needs a portion of insight to guarantee an appropriate
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design of simulations, e.g. to achieve ergodic sampling. Targeted free energy calculations

allow for analytic inclusion of all we know on the system a priori, but also of what we

learn a posteriori within the simulations in a highly effective manner.

1. Fluctuation theorem of generalized work

Originally formulated for free energy perturbation, we have extended the method to the

“targeted acceptance ratio method” by deriving a fluctuation theorem for a generalized

notion of work, from which the acceptance ratio method can easily be invoked. The

analysis behind shall briefly be introduced, for the details we refer to [1].

A (piecewise) differentiable, bijective map φ(x) of phase space,

x −→ φ(x), (20)

induces a mapped image ρ̃0(x) of the canonical density ρ0(x),

ρ0
φ−→ ρ̃0, (21)

which is related to its preimage by

ρ0(x) = ρ̃0(φ(x)) J(x). (22)

Thereby J(x) denotes the absolute of the map’s Jacobian determinant,

J(x) = |
∣∣∣∣
∂φ(x)

∂x

∣∣∣∣ |. (23)

Then the following identity holds [1]:

ρ̃0(φ(x))

ρ1(φ(x))
= eβ(∆̃H(x)−∆F). (24)
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Here, the function of “generalized work” ∆̃H(x) is introduced,

∆̃H(x) := H1(φ(x))−H0(x)−
1

β
ln J(x). (25)

Relation (24) is in formal analogy with the traditional source relation (6), the latter being

a special case for φ(x) = x, but also with the trajectory formulation of Crook’s Fluctuation

Theorem (16). The similarity can even be enhanced, by noting that

ρ̃0(φ(x))

ρ1(φ(x))
≡ ρ0(x)

ρ̃1(x)
, (26)

where ρ̃1 is the mapped image of ρ1 under the inverse map φ−1(x):

ρ1(x) = ρ̃1(φ
−1(x)) J(φ−1(x))−1. (27)

Finally, from (24) we arrive at the generalized work fluctuation theorem [1]

p̃0(W )

p̃1(W )
= eβ(W−∆F ) (28)

by adequately defining the “forward” and “reverse” densities of generalized work p̃0(W )

and p̃1(W ) through

p̃0(W ) :=

∫
δ
(
∆̃H(x)−W

)
ρ0(x) dx, (29)

p̃1(W ) :=

∫
δ
(
∆̃H(φ−1(x))−W

)
ρ1(x) dx. (30)

From the generalized work fluctuation theorem follow analogies of the well known free

energy estimators in new versions with maps, in specific the acceptance ratio method.

The definitions (29) and (30) of “work”-densities implicitly also show how samples thereof

are obtained: simply by drawing phase space points x from the equilibrium densities ρ0(x)

and ρ1(x), and evaluating ∆̃H(x) and ∆̃H(φ−1(x)), respectively. Figure 5 illustrates the
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ρ0(x)

ρ1(x)

ρ̃0(x)

φ

∆̃H = ∆F

∆̃H < ∆F ∆̃H > ∆F

FIG. 5: Phase space picture of generalized work fluctuation theorem (schematic, Eq. (24)). A

differentiable one-to-one map φ(x) of phase space onto itself causes a mapping of the distribution

ρ0 to a distribution ρ̃0. ρ̃0 and ρ1 obey a fluctuation theorem for generalized work ∆̃H. Targeted

free energy perturbation indirectly draws from ρ̃0, by drawing from the equilibrium distribution

ρ0(x) and applying the map φ(x) to the phase space points drawn (arrow). The dashed line

is defined by ρ̃0(x) = ρ1(x). Points x which are mapped onto the dashed line correspond to

(forward) work values ∆̃H(x) = ∆F . An ideal map is such, that ρ̃0(x) = ρ1(x) holds for all x.

generalized work fluctuation theorem from the phase space perspective.

We note that the mentioned work of Meng and Schilling [76], which came to our atten-

tion only after publishing [1], has already developed the acceptance ratio method including

maps (but without formulating the fluctuation theorem (28) or (24)). Further, Zuckerman

[79] called to our attention that he and Ytreberg had already used the acceptance ratio

method including a constant translation in phase space [80], based on an old idea of Voter

[81]. In our notation, this corresponds to the specific choice φ(x) = x + const. for the

map.
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2. Relation to Crook’s Fluctuation Theorem

The generalized work fluctuation theorem (28) includes the Crooks Fluctuation Theo-

rem (12) for certain types of deterministic dynamics, which is the reason for the notion

“generalized work”. A prerequisite for this is time reversal invariance of the Hamilto-

nian Hλ(x). To see in which sense Crook’s Fluctuation Theorem is contained, we note

that e.g. Hamiltonian dynamics generates a phase space flow which establishes for each in-

stance of time a one-to-one correspondence between initial configurations and their images

under the dynamics. If we identify φ with the dynamical image of the initial configura-

tion x0 at time τ , φ(x0) ≡ x(τ ; x0), the generalized work ∆̃H(x0) equals the physical

work W[λ][x(·)] = H1(x(τ ; x0)) − H(x0) = H1(φ(x0)) − H0(x0) = ∆̃H(x0), as the Jaco-

bian J(x) equals unity for Hamiltonian dynamics. Further, the mapped density equals

the final nonequilibrium density of the Hamiltonian forward process, ρ̃0(x) ≡ ρneq0 (x, τ).

Thus, Eq. (24) becomes the phase space representation of the fluctuation theorem (19)

for Hamiltonian evolution, and therefore too, the generalized work fluctuation theorem

(28) the Crooks Fluctuation Theorem (12).

In a similar manner it can also be shown that fluctuation theorems for deterministic

thermostatted dynamics are included (e.g. Noisé-Hoover dynamics). In this case, the

logarithm of the Jacobian appearing in the definition of the generalized work (25) can be

interpreted as the heat-supply along the trajectory. The latter is worked out in [52]. See

also [31].

Concerning stochastic evolution, Lechner et. al. [77] have pointed out that the

Langevin equation with fixed history of noise can be regarded as deterministic, result-

ing in a bijective map for each realization of noise history. However, in this case the

logarithm of the Jacobian can not be identified with heat [77], and consequently the

generalized work does not equal the physical work.
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3. Construction of suitable maps

We now come to the question of how to choose a map for the purpose of free energy

calculations. Equation (24) shows that if ρ̃0(x) = ρ1(x), i.e. if the map is such, that ρ1

is the mapped image of ρ0, then ∆̃H(x) = const. = ∆F . This is the ideal case, as then

each measured “work”-value already yields the free energy difference.

As a simple example, think of an n-dimensional harmonic oscillator with H0(x) =

1
2
k20x

2 and H1(x) =
1
2
k21(x− c)2, where x is, for now, an n-dimensional spatial coordinate

(without momenta), c, k0 and k1 constants. Choosing the map φ(x) = k0
k1
x + c, we have

∆̃H(x) = − 1
β
k0
k1

= const. Therefore, this map is ideal for the present example, and we

know ∆F = − 1
β
ln k0

k1
, without needing to evaluate n-dimensional integrals (yet the same

is concluded by carrying out the variable transform x→ φ(x) in Z1 =
∫
e−βH1(x)dx).

For most problems, however, it will not be possible to find an ideal map. But their

property of mapping ρ0 to ρ1 is the general guideline for construction of appropriate maps.

What this actually means will depend to a large extend on the specific systems treated.

We have studied the construction of maps for the purpose of calculating the chemical

potential of a high-density Lennard-Jones fluid. Figure 6 gives a comprehensive account

of the essence of our approach (details can be found in [1] on pp. 10-12). The type of map

which proved to be useful for this problem will also be applicable in similar problems. For

other problems, however, prototypes of maps have to be developed first.
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FIG. 6: Calculation of the chemical potential of a high density fluid with mapping methods [1].

(a): System 0, a homogeneous Lennard-Jones fluid of Np particles (brown circles) confined in

a box. (b): System 1, like (a), but with an additional interaction potential, due to a “ghost”

particle (hollow brown circle) fixed in the center of the box. Thus the fluid is inhomogeneous.

The chemical potential µ approximatively equals the free energy difference of these systems [82]

and is difficult to calculate with traditional methods, as the overlap of the densities ρ0 and ρ1 is

very small. This is because in system 1, there is nearly never met a particle within the dashed

sphere of radius ≈ σ, due to the strong repulsive part of interaction with the “ghost” particle for

small distances (σ denotes the spatial parameter of the Lennard-Jones potential). In contrast, in

system 0 we will nearly always find a particle within the same sphere. This fact is visualized in

(c) and (d), which show simulated probability distributions g0(r) and g1(r) of finding a particle

in distance r from the center of the box in the respective systems. Consequently, a simple but

effective mapping scheme employs a suitable radial map, which shifts each particle separately

away from the center of the box. (e): A simulated radial map ψ(r) which maps g0(r) to g1(r).

I.e., ψ is an ideal map of the radial distributions of the systems. It’s application to the calculation

of the chemical potential is shown in (f): Comparison of statistical properties of the targeted

acceptance ratio method (solid line, full circles) with traditional equilibrium methods (dashed

lines), namely the particle insertion (triangles), and the acceptance ratio method (hollow circles).

The application of the radial map results in markedly improved convergence properties of the

calculations. 28
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II. ELEMENTARY FREE ENERGY ESTIMATORS

We shall now come to the heart of free energy calculations, the setting up of appropriate

free energy estimators. In the last section we have introduced three main classes of

free energy methods, namely the equilibrium, nonequilibrium, and mapping methods,

which are condensed in the respective three “source-relations”, Eqs. (6), (16), and (24).

Depending on which class we choose, the methods quite differ with respect to data-

gathering. It means sampling from canonical distributions for equilibrium and mapping

methods, e.g. by Metropolis Monte Carlo simulations, and sampling from trajectory space

for nonequilibrium methods, which is done by numerically solving the equations of motion

for random initial conditions (again canonical), possibly with additional random forces

in the course of time evolution (e.g. when the underlying dynamics is described by the

Langevin equation). But with regard to how free energy is finally calculated, all classes

yield the same types of (optimal) elementary estimators - in terms of work or generalized

work. The reason for this lies in the similarity of the named source-relations, and the fact

that they implicitly show that optimal estimators will be in terms of “work”, whether

using the acceptance ratio method or importance sampling (thermodynamic integration,

however, is of other nature). The essence of reduction to the random variable “work” are

the fluctuation theorems (12) and (28), respectively (the latter including the fluctuation

theorem for equilibrium methods), which are of the same form.

We will not prove these statements in detail (there is probably nothing new in it), but

rather use this point of view to discuss the basic free energy estimators in a unified way,

based on a formal fluctuation theorem

p0(w)

p1(w)
= ew−∆f . (31)

Its specific meaning is only obtained by referring it to the process of raw-data gathering

and the work function. Table I summarizes how these connections are established.
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TABLE I: Overview of source relations of free energy methods which lead to the fluctuation

theorem (31), together with prescriptions of how to calculate work values in forward and reverse

direction with the respective raw data. “∼” means here ”distributed according to”. We note

that the nonequilibrium reverse work can also be written w = +βW[λ][x̄(·)].

equilibrium nonequilibrium mapping
methods methods methods

source relation ρ0(x)
ρ1(x)

= eβ(∆H(x)−∆F ) P0[x(·)]
P1[x̄(·)]

= eβ(W[λ][x(·)]−∆F) ρ̃0(φ(x))
ρ1(φ(x))

= eβ(∆̃H(x)−∆F)

work function ∆H(x) = W[λ][x(·)] = ∆̃H(x) =

H1(x)−H0(x)
τ∫
0

∂
∂λ
Hλ(t)(x(t))λ̇(t)dt H1(φ(x))−H0(x)− 1

β
ln |∂φ

∂x
|

to choose - τ , λ(·) φ(x)

forward work w = β∆H(x) w = βW[λ][x(·)] w = β∆̃H(x)

raw data x ∼ ρ0(x) x(·) ∼ P0[x(·)] x ∼ ρ0(x)

reverse work w = β∆H(x) w = −βW[λ̄][x(·)] w = β∆̃H(φ−1(x))

raw data x ∼ ρ1(x) x(·) ∼ P1[x(·)] x ∼ ρ1(x)

p0(w) =
∫
δ(β∆H(x)− w)·

∫
δ(βW[λ][x(·)]− w)·

∫
δ(β∆̃H(x)− w)·

·ρ0(x)dx ·P0[x(·)]Dx(·) ·ρ0(x)dx

p1(w) =
∫
δ(β∆H(x)− w)·

∫
δ(βW[λ̄][x(·)] + w)·

∫
δ(β∆̃H(φ−1(x))− w)·

·ρ1(x)dx ·P1[x(·)]Dx(·) ·ρ1(x)dx
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To lighten the notation, we go over to express work and free energy in units of the

thermal energy 1/β, denoted by lowercase letters:

w := βW,

∆f := β∆F,

fλ := βFλ

(32)

The work densities pi(w), i = 0, 1, are now understood to be the densities for the dimen-

sionless work (i.e. pnewi (w) ≡ poldi (w/β)/β). In advance, we also summarize some further

definitions.

The ensemble average of an arbitrary function f(w) in the work density pi(w) is ab-

breviated by angular brackets with subscript i:

〈f(w)〉i :=
∫
f(w)pi(w) dw. (33)

In contrast, its sample average with a sample {wk} = {w1, . . . , wN} of N work values

drawn “from” the density pi(w) is written

f(w)
(i)

:=
1

N

N∑

k=1

f(wk). (34)

Finally, we define the variance operator

Vari
(
f(w)

)
:=

〈
f(w)2

〉
i
− 〈f(w)〉2i . (35)
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A. One-sided estimation (free energy perturbation)

As simplest integral consequence of the fluctuation theorem (31), ∆f can be expressed

through an average in p0,

∆f = − ln
〈
e−w

〉
0
, (36)

which implies the definition of a free energy estimator ∆̂f 0 by

∆̂f 0 = − ln e−w
(0)

. (37)

Depending on how work is actually obtained, this estimator is equivalent with free en-

ergy perturbation [20], see Eq. (8), the Jarzynski estimator [24], or targeted free energy

perturbation [75]. We will refer to ∆̂f 0 with one-sided (forward) free energy estimator.

The practical applicability of one-sided estimation is considerably limited by the

amount of overlap (or the distance) of the densities p0(w) and p1(w). This has been

worked out in some detail by Lu, Wu, and Kofke in a series of papers [83–88]. The lim-

itations come from the nonlinear, exponential average involved in (37), which is highly

sensitive to the lowest observed work values. Considerable efforts have been done by Zuck-

erman and Woolf to understand the behavior of one-sided estimation on a firm analytic

basis [89–92].

A precise estimate of ∆f according to (37) requires that the sample size N is large

enough to ensure that the left tail of p0(w) is sampled accurately, i.e. properly according to

the statistical weights prescribed by p0(w), and further stable with respect to repetitions

of drawing samples of the same size N . This applies fortunately not to the total of the left

tail, but up to a certain region within it. The characteristic of this region is that p1(w)

has its main probability mass therein [86, 93], cf. figure 7. Qualitatively, this can be seen

by noting that according to the fluctuation theorem, the properly weighted exponential

of work is proportional to the reverse work density: e−wp0(w)dw ∼ p1(w)dw. We will

call work-values from that region “rare-events” [71]. Therefore, one-sided estimation is

viable only, if we are capable to sample the main region of p1(w), whilst drawing from
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FIG. 7: Illustration of one-sided (forward) free energy estimation. Work is drawn from the

forward density p0(w), but for a precise free energy estimate we need information on the reverse

density p1(w) by sampling work values from the region where p1 has its main probability mass.

This region defines the “rare-events” of one-sided (forward) estimation.

p0(w). If the overlap of the work densities is too small, unattainable large sample sizes N

are needed to sample the named region, resulting in strongly biased free energy estimates

∆̂f 0. This problem inspired the recent development of methods which determine the

asymptotic tails of work distributions [94].

Quantitatively, the performance of one-sided estimation is regulated by a certain mea-

sure of distance between the work densities, namely a chi-square distance. It naturally

appears as proportionality factor of the asymptotic mean square error X0(N) of the esti-

mator ∆̂f 0. The latter reads [90, 92]

X0(N) := lim
N→∞

〈(
∆̂f 0 −∆f

)2
〉

=
1

N
Var0

(
e−w+∆f

)
. (38)

(this is the leading behavior of a power series in 1
N
, provided Var0

(
e−w+∆f

)
exists [90] ).

By application of the fluctuation theorem (31), we see that the variance on the right-hand

side is just the chi-square distance χ2[p1|p0] of the work-densities, defined by

χ2[p1|p0] :=
∫ (

p1(w)− p0(w)
)2

p0(w)
dw ≥ 0. (39)
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Thus

X0(N) =
1

N
χ2[p1|p0]. (40)

The dependence of the mean square error on the chi-square distance shows clearly that

the performance of one-sided estimation is highly sensitive to the extend to which the

left tail of p0 reaches into p1: because if p0(w) is small whenever p1(w) is large, then

χ2[p1|p0] attains very large values. It can even diverge – for example, this happens when

the forward work is defined by a process which consists of decreasing instantaneously the

frequency of a 2-dimensional harmonic oscillator, see [2] and [95]. Finally, we note an

important relation to the Kullback-Leibler divergence KL[p1|p0] [96], defined by

KL[p1|p0] :=
∫
p1(w) ln

p1(w)

p0(w)
dw ≥ 0. (41)

In [1] we have shown the following inequality to hold:

χ2[p1|p0] ≥ eKL[p1|p0] − 1, (42)

with equality if and only if p1 ≡ p0 ((42) holds for any pair of densities and does not

rely on the fluctuation theorem). Thus, the mean square error X0 is bounded from below

with the exponentiated Kullback-Leibler divergence of the work densities. This has an

interesting physical aspect by means of the latter’s well-known relation to the dissipated

work in reverse direction:

KL[p1|p0] = ∆f − 〈w〉1 . (43)

(Note our sign convention for the reverse work.) This connection may seem puzzling,

as ∆̂f 0 uses work values of the forward process, only. But formally, the appearance of

the reverse instead of the forward dissipation 〈w〉0 − ∆f = KL[p0|p1] is evident from

the properties of the Kullback-Leibler divergence. KL[p1|p0], and not KL[p0|p1], behaves
qualitatively like χ2[p1|p0]: from (41) we see that KL[p1|p0] is likewise sensitive to the

extend to which p0 reaches into p1. In specific, it attains large values if p0(w) is small

whenever p1(w) is large.
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The strong dependence of the performance of one-sided estimation from the dissipated

work in reverse direction was already noted e.g. by Jarzynski [71], who estimated the

number N∗ of work-measurements needed for a converging estimate ∆̂f 0 with N∗ ≈
e∆f−〈w〉1 . With aid of inequality (42), we arrived from another direction at the sharpened

statement [1]

N∗ > e∆f−〈w〉1 − 1. (44)

Interest on such relations comes not only from theoretical grounds, but also from

practical questions, e.g. for having criteria on the preferential direction of process (or

“perturbation”) [83]. Or when numerically searching for the optimal protocol λ(·) which
minimizes the error of one-sided estimation, as was done in [97]: minimization of the

mean square error (38) was found there to be numerically quite costly. To resolve this,

one could think of minimizing the reverse dissipation, instead, which is an active field of

current research [98–101].

To accomplish the notions, we note that a second one-sided estimator ∆̂f 1 in reverse

direction exists. It relies on the identity

∫
e+wp1(w) dw = e+∆f (45)

and is defined by

∆̂f 1 = + ln e+w
(1)
. (46)

In contrast to the forward estimator ∆̂f 0, the reverse estimator uses samples of work from

the reverse density p1(w). The formal properties of the reverse estimator are essentially

obtained from those of the forward estimator by interchanging the indices 0 and 1.
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B. Two-sided estimation (acceptance ratio method)

Instead of estimating ∆f with work-values from only one direction, one can also use work

values from both directions of process. This leads to two-sided estimation. The simplest

extension of one-sided estimation to a two-sided method would consist in drawing a pair

of work-samples from the densities p0(w) and p1(w), then to calculate the corresponding

one-sided estimates in each direction separately, and finally to take some average of them.

Yet, any such procedure which combines independent free energy estimates will yield a

suboptimal result, regardless of how they are averaged (arithmetic, harmonic, exponen-

tial, . . .). Figuratively spoken, this is because we then neglect that information on the

interrelation of p0 and p1 which could be obtained from first combining the samples and

then calculating an overall estimate.

The mutual information of the densities is encoded in the fluctuation theorem (31):

if we know, e.g., the value of p0(w) for some w, we can precisely tell which value p1(w)

attains at the same point, given we know ∆f . The other way round, given information

on the work densities via independent samples from both, we can adjust the value of

∆f such, that the fluctuation theorem is empirically optimally satisfied. This is what

the acceptance ratio method essentially does, which was derived by Bennett in 1976 [21],

and independently once again by Meng and Wong in 1996 in the context of estimation of

ratios of normalizing constants [102]. Finally it was observed by Crooks that this method

can also be used for free energy estimation with nonequilibrium work data [30].

In order to get a clear notion of the acceptance ratio method, we need to go somewhat

into the details of its derivation in the following.

1. The ansatz and the estimator

With the fluctuation theorem (31), the identity [21, 30]

〈
t(w)e−w+∆f

〉
0
= 〈t(w)〉1 (47)

holds, for any choice of function t(w). Given a pair of samples from the work densities,

of size n0 > 0 from p0(w) and of size n1 > 0 from p1(w), one can define an estimate ∆̂f
∗
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FIG. 8: Two-sided free energy estimation draws work values from both densities, p0(w) and

p1(w), and then calculates an overall estimate of ∆f . A precise estimate requires that the main

region of the harmonic overlap density pα(w) (here schematically for α ≈ 1
2) is sampled well by

the forward as well as the reverse draws. The value of α is given as the fraction of the number

of forward draws. For α → 1 the overlap density pα converges to the reverse work density p1,

which is the limiting case of one-sided (forward) estimation.

for any choice of t(w) with

t(w)e−w+∆̂f
∗

(0)

= t(w)
(1)

, (48)

or equivalently

∆̂f
∗
= ln

t(w)
(1)

t(w)e−w
(0)
. (49)

If we choose, e.g., t(w) = 1, then this estimator coincides with the one-sided forward

estimator ∆̂f 0 based on n0 draws, Eq. (37), whilst the information on ∆f contained in

the reverse sample is left unused. Therefore, the quality of the estimator (49) will depend

strongly on the choice of t(w), and we may ask (with Bennett) for the optimal choice of

t(w).

This requires some measure of performance. A common choice is the mean square
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error

〈(
∆̂f

∗
−∆f

)2
〉
, which can be calculated explicitly as a functional of t(w) for

large sample sizes, n0, n1 → ∞. Variational minimization of the asymptotic mean square

error with respect to the function t(w) results in a Fermi function [21, 102]:

t(w) =
1

α+ α̃e−w+∆f
. (50)

α and α̃ denote the fraction of forward and reverse number of work values, respectively,

α =
n0

N
, α̃ =

n1

N
= 1− α, (51)

with N the total sample size,

N = n0 + n1. (52)

The optimal t(w) is not of direct use, as it depends itself on the unknown quantity ∆f .

However, by freedom of choice on t(w), one could instead use the function

tc(w) :=
1

α + α̃e−w+c
(53)

for any choice of parameter c. Insertion into Eq. (49) results in a family of estimators

∆̂f
∗
= ∆̂fc [21],

∆̂fc := c+ ln
tc(w)

(1)

tc(w)e−w+c
(0)
. (54)

Yet, as the optimal choice on c is c = ∆f , Bennett proposed to choose c such, that

c = ∆̂fc holds. This is tantamount to solving

t∆̂f (w)e
−w+∆̂f

(0)

= t∆̂f (w)
(1)

(55)

for ∆̂f . Writing the function tc explicitly, the latter equation reads

1

αew−∆̂f + α̃

(0)

=
1

α + α̃e−w+∆̂f

(1)

(56)
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Notably, a solution of Eq. (56) always exists and is unique, essentially because tc(w) is

monotonically decreasing, whilst tc(w)e
−w+c is monotonically increasing in c. We will refer

to this solution with two-sided estimate, and denote it with ∆̂f . This implicit estimator

is commonly referred to as Bennett’s acceptance ratio method (although usually written

in a slightly different form).

The solution of (56) can be obtained iteratively from Eq. (54) by starting with an

arbitrary value of c, then calculating ∆̂fc and using it as the value of c in the next step

of iteration. This iteration can be shown to converge to the solution ∆̂f of (56) [102].

In other words, ∆̂f ≡ ∆̂f ∆̂f is global fixed point of an iterative sequence defined via

∆̂fc.

Interestingly, the two-sided estimator ∆̂f is not within the ansatz (49), as there exists

no function t(w) which would lead to Eq. (56) for any drawn samples. Or differently

expressed: for a given pair of samples, there is such a function, namely tc(w) with the

value of c equal to ∆̂f , and ∆̂f again the solution of (56) for that samples (we could by

chance have chosen c = ∆̂f). But if we want this to hold for any pair of samples, we must

make c a function of all work values, c = ∆̂f
(
{w(0)

i }, {w(1)

k };α
)
, and therefore tc(w) is no

longer a function of a single w, as assumed in the ansatz (49).

Not only for this reason, it is interesting that the two-sided estimator can also be

understood as a maximum likelihood estimator, as demonstrated by Shirts et.al. [103].

Maximum likelihood estimators for parameters of distributions are highly valuable, as they

can be shown to be (asymptotically) optimal in the sense that they reach the Cramér-

Rao lower bound on variance, which is a lower bound for all asymptotically unbiased

estimators relying on the same data [104]. But this does not fully apply to the acceptance

ratio method, as we have shown with its re-derivation by constrained maximum likelihood

methods (see the Appendix of [1] and remark [105]) under reference to [106, 107]. The

conclusion of this re-derivation can be formulated as follows: given we have no further

information on the work densities p0 and p1 despite their relation via the fluctuation theo-

rem (31), the acceptance ratio method is the optimal method for free energy calculations

based on a given amount of work data. Maragakis et.al. came to essentially the same

conclusions with Bayesian considerations [108].

To give a specific example for the difference between the acceptance ratio method and
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a “real” maximum likelihood estimator, assume the work densities are Gaussian. Then

they have to read

p0(w) =
1√
2πσ

e−
1

2σ2 (w−∆f−σ2/2)
2

,

p1(w) =
1√
2πσ

e−
1

2σ2 (w−∆f+σ2/2)
2

, (57)

to be compatible with the fluctuation theorem. Assuming we have drawn samples from the

Gaussian work densities of equal size n0 = n1 = N/2, the maximum likelihood estimator

for ∆f is given by

∆̂fml =
1

2
( w (0) + w (1)) , (58)

which is obtained by maximizing the likelihood of the observed data with respect to ∆f ,

with explicit recourse to the Gaussian form of the work densities. This estimator makes

full sense: as the forward and reverse work densities (57) are symmetric to each other with

respect to ∆f , the average of their mean values equals exactly ∆f : 1
2
(〈w〉0 + 〈w〉1) = ∆f .

The variance of the estimator (58) is readily equated to 1
N
σ2. A somewhat more complex

form for ∆̂fml is found if n0 6= n1, involving estimation of the variance σ2.

We note that Gaussian work densities are not a merely academic example. Rather,

Speck and Seifert have proven that for stochastic dynamics the work densities converge

to Gaussians in the limit of slow processes [66], τ → ∞. However, in general we have no

information on the detailed dependence of the work densities on ∆f . Then, the best we

can do with given amount of forward and reverse work data is applying the acceptance

ratio method.
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2. Rare events of two-sided estimation

The distribution of two-sided estimates ∆̂f is asymptotically normal with mean ∆f and

variance X(α,N), given by [21, 102]

X(α,N) =
1

N
M(α), (59)

with proportionality factor

M(α) =
1

αα̃

(
1

Uα

− 1

)
. (60)

Uα denotes the (harmonic-mean) overlap of densities:

Uα =

∫
p0(w)p1(w)

αp0(w) + α̃p1(w)
dw ≤ 1. (61)

From this we see that the magnitude of the overlap Uα regulates the performance of two-

sided estimation. Moreover, two-sided estimation is intimately related to the (harmonic

mean) overlap density pα(w) [2, 3, 102],

pα(w) :=
1

Uα

p0(w)p1(w)

αp0(w) + α̃p1(w)
. (62)

The region where pα has its main probability mass is the region which defines the rare

events of two-sided estimation [3], i.e. the most important but rarely observed contribu-

tions to ∆̂f . These rare events have to be sampled by both, the forward and reverse

draws. To see this, we note that Uα can alternatively be written as

Uα =

〈
1

αew−∆f + α̃

〉

0

=

〈
1

α + α̃e−w+∆f

〉

1

. (63)

Comparison with Eq. (56) shows that two-sided estimation can essentially be understood

as estimation of Uα - by adjusting ∆̂f such, that the equality (63) is empirically satisfied

[3]:

Ûα :=
1

αew−∆̂f + α̃

(0)

!
=

1

α + α̃e−w+∆̂f

(1)

. (64)
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Therefore, a precise estimate ∆̂f (with small mean square error) is equivalent to a precise

estimate Ûα of the overlap. The latter requires that the region where pα has its main

mass is sampled accurately and stable with the samples of work in each direction, cf.

figure 8. This point of view allows for the characterization of the convergence properties

of two-sided estimation [3].

In contrast to the rare events of one-sided estimation, those of two-sided’ will in general

not lie so far in the tails of work distributions, but are placed somewhere “between” p0(w)

and p1(w). If, for example, the work densities are Gaussian according to (57), then they

are symmetric to each other with respect to ∆f , p0(∆f+c) = p1(∆f−c), and pα(w) with
α ≈ 1

2
is sharply peaked at w ≈ ∆f (“sharply” compared to p0 and p1). A quantitative

example is included in figure 9.

Jarzynski [71] pointed out an interesting physical peculiarity of the rare events of

one-sided estimation: namely that they correspond to typical trajectories of the reverse

process, but observed in time-reversed manner within the forward process – which explains

the unlikeliness of observing them out of equilibrium. Concerning the two-sided estimator,

we may say that here the rare events correspond to trajectories which are equilibrium-like,

in the sense that for these w ≈ ∆f holds, and that they occur with approximate equal

probability in either direction of process – as consequence of the fluctuation theorem:

p0(∆f) = p1(∆f). To confirm the relation to trajectories, we note that the overlap

density pα(w) is “induced” by its analog Pα[x(·)] in path space, i.e.

pα(w) =

∫
δ
(
βW[λ][x(·)]− w

)
Pα[x(·)] Dx(·), (65)

with

Pα[x(·)] :=
1

Uα

P0[x(·)]P1[x̄(·)]
αP0[x(·)] + α̃P1[x̄(·)]

. (66)

This is shown by applying the Fluctuation Theorem (16) in the right-hand side of (65).

Hence, two-sided estimation will typically be dominated by trajectories which occur

with approximate the same probability in forward and (time-reversed) in backward direc-

tion of process, as for these W[λ][x(·)] ≈ ∆f holds, see Eq. (16). Other interrelations of

the acceptance ratio method with the distinguishability of forward and reverse trajectories

have been worked out by Feng and Crooks with different methods and focus [109].
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3. Convexity of mean square error

The two-sided estimator (56) is optimal for a given amount of forward and reverse work

data. On the other hand, its performance depends on the fraction of forward draws

α = n0/N , and thus on the partitioning of the total amount of work values N = n0 + n1

into forward and reverse “measurements”. Consequently, supposed we aim to calculate

∆f with a limited total number of work values N , a critical question is how to choose α

optimally. Is it always α = 1
2
? Or may it also be, e.g., α = 1 or α = 0? In the latter cases,

we would perform one-sided estimation, to which two-sided estimation formally converges

in the limits α→ 0, 1.

If performance is measured with the asymptotic mean square error X(α,N) = 1
N
M(α),

Eq. (59), the optimal choice of α is such, that it minimizes X for fixed N , and thus the

proportionality factor M(α). Figure 9 provides a quantitative example for the function

M(α) for Gaussian work densities (∆f = 0, σ = 4, Eq. (57)), which shows a very strong

dependence of M on α near the boundaries α = 0, 1, and a weak one for a wide range of

intermediate values of α, with minimum at α = 1
2
The symmetry of M with respect to

α = 1
2
results from the symmetry of the Gaussian work densities with respect to ∆f .

We have investigated the general dependence of two-sided estimation on α and could

prove a certain characteristic, namely the strict convexity of the mean square error X =

1
N
M(α) with respect to α:

∂2M(α)

∂α2
> 0, (67)

see theorem and proof in sec. IV of [2]. From this property follow some important

statements for the practical application of two-sided estimation [2]:

(i) the optimal value αo of α is unique;

(ii) for symmetric work-distributions, αo always equals 1
2
;

(iii) for near symmetric work-distributions, αo equals approximatively 1
2
;

(iv) two-sided estimation generically outperforms one-sided estimation.

This suggests α = 1
2
as suitable a priori choice, as was already highlighted by Bennett

[21]. Nevertheless, it is also possible to simulate the optimal fraction αo “on the fly”
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FIG. 9: Left: Proportionality factor M(α) of the mean square error of two-sided estimation in

dependence of the fraction of forward draws α for Gaussian work densities. The inset displays

the corresponding work densities, together with the overlap density pα= 1
2
. Right: Examples

for running free energy calculations with increasing number of the total sample size N . The

one-sided estimations correspond to M(α = 1) (up triangles) and M(α = 0) (down triangles).

Compared with two-sided estimation (α = 1
2), the one-sided’ converge very slowly.

within a simulation run, as will be discussed next.

4. Dynamic sampling strategy

The general equation for the optimal fraction αo, which follows from the requirement

∂M(α)
∂α

= 0, is known since Bennett [21]. In our notation it reads

α̃2Var0

(
1

αew−∆f + α̃

)
= α2Var1

(
1

α + α̃e−w+∆f

)
, (68)

and has to be solved for α (with α̃ = 1 − α) (Eq. (34) in [2]). The solution can, in

principle, be estimated with preliminary samples of work. As this involves estimating the

second moments of the Fermi functions, the convergence of this estimate can be expected

to be too slow to be of practical relevance [21]. Clearly: estimating αo within a simulation

run of finite time makes sense only if we can obtain reasonable estimates with relatively

small sample sizes already, as only then it is possible to adjust the value of α towards αo

through additional draws of work before the simulation time has run out.

However, αo can also be estimated with first moments of the fermi functions, only [2].
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FIG. 10: Optimal fraction of forward draws and dynamic sampling strategy (exponential work

densities). Left: The global minimum of M(α) · costfunction(α) determines the optimal fraction

αo of forward draws used in two-sided free energy estimation, taking into account different costs

c0 and c1 for obtaining a single forward respectively reverse work value. The two graphs shown

are obtained with the same function M(α), but with different assumed cost ratios c1
c0
. As the

optimal fraction αo is a priori unknown, Bennett [21] suggested to use the equal cost strategy,

which chooses α such, that n0c0 = n1c1 holds. Right: Comparison of free energy estimation

with the equal cost strategy and the dynamic sampling strategy, which approaches the optimal

fraction αo iteratively with growing sample size N . Shown is the average
〈
∆̂f

〉
in dependence

of the total costs c = n0c0 + n1c1 spent, with cost ratio c1
c0

= 0.01. The error bars reflect the

standard deviation of ∆̂f .

The key is an appropriate estimator of the function Uα for the entire range α ∈ [0, 1] (see

Eq. (46) in [2]), from which follows an estimate of the function M(α) = 1
αα̃

( 1
Uα

− 1) for

α ∈ [0, 1]. Finally, αo can then be estimated via the minimum of the estimated function

M(α).

Based on this scheme for estimating αo, we have developed a “dynamic” strategy of

sampling work values [2]. This strategy iteratively estimates αo and draws additional

samples such, that the actual fraction α of forward draws approaches the estimated op-

timal fraction αo. (To avoid misleading estimates of αo, the convexity of M(α) enters as

reliability criterion.)

More general, we can also take into account different costs c0 and c1 of single forward and

reverse work values, respectively [2] (the costs can, e.g., be determined by the CPU-time

needed for the simulation of a single work value). In this case, the optimal fraction αo

is determined by minimizing the mean square error X(α,N) with respect to α, subject

to the constraint of fixed total costs c = n0c0 + n1c1. The total number N = n0 + n1 of
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draws becomes then a function of α and c,

N(c, α) =
c

αc0 + α̃c1
. (69)

Consequently, M(α) · costfunction(α) has to be minimized instead of M(α), where

costfunction(α) = αc0 + α̃c1 =
c
N

accounts for the average costs per work-measurement.

Without loss of generality, we may assume the normalization c0 + c1 = 2, which has the

effect that costfunction(α) = 1 and c = N if c1
c0

= 1.

An example for the shift of αo due to different cost ratios c1
c0

is given in figure 10 (left).

The right panel shows an example for the effect of the dynamic sampling strategy in

comparison with Bennett’s equal cost strategy [21] (see also figs. 8 and 9 in [2]). The

equal cost strategy is the best available “static” sampling strategy. It draws according to

a fixed fraction α = αec, where αec is determined by the requirement of equal total costs

for forward and reverse measurements, hence n0c0 = n1c1 or α = c1/c0
1+c1/c0

.

5. Measure of convergence

For an estimator to be of use, we need to have some quantitative notions of its bias and

spread, as otherwise any estimate obtained would be without guarantee, not even within

statistical bounds. Analytic statements on the properties of an estimator can in general

only be made for its asymptotic behavior in the limit of infinitely large sample sizes N .

This is of worth if we can expect to reach this limit at least approximatively for some

finite and available N . But the crux is, we then also need some criterion for whether

we actually have reached this limit in a particular calculation. Typically, this cannot

be judged from the data immediately. Especially with regard to the nonlinear one-sided

and two-sided free energy estimators, which tend to be plagued by large biases for low N

while seemingly converging, this question is of great concern [91, 110]. Figure 11 (which

is fig. 1 of [3]) illustrates this problem with an example of a running two-sided free energy

calculation.

Based on the identification of the rare events of two-sided estimation, we have for-

mulated a measure of convergence for two-sided free energy calculation [3]. In essence,

the convergence measure is a test of consistency of the work-data with the assumption

of being in the limit of large N . The motivation of the convergence measure from the
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FIG. 11: Top: A running free energy calculation with increasing total sample size N up to N =

103. The free energy estimates ∆̂f settle down on a stable plateau with decreasing estimated

standard deviation (shown as error bars) over about one order of magnitude of N -values. Has

the calculation converged? Bottom: Same as before, but with additional samples of work up

to N = 105. The prolonged calculation shows that we had not reached convergence in the

calculations before. Now again, the calculation finally settles down on a stable plateau, raising

the question of convergence once more. The answer is given by the behavior of the convergence

measure a, which is shown in the inset. The fact that a is observed to converge to zero allows

us to be (almost) sure that the corresponding free energy calculation has converged, too. As

a result, we obtain a free energy estimate with trustable confidence interval (error bar). The

exact value of ∆f is indicated by the dashed horizontal line in the lower panel.

question of whether the region of rare events has been sampled sufficiently is reported in

detail in [3], along with analytic investigations of its properties and numerical tests.

Its definition is as follows. Given samples from both work densities, the two-sided

estimate ∆̂f according to Eq. (56) is calculated, along with two dependent estimates Ûα

and Û (II)
α of the harmonic overlap Uα. The estimate Ûα has already been introduced with

Eq. (64), for the definition of Û (II)
α we refer to [3] (Eq. (19) there).

Finally, the convergence measure a is given as the relative difference

a =
Ûα − Û (II)

α

Ûα

. (70)
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〈
(∆̂f −∆f)2

〉
(each data point belongs

to one value of N). The inset shows an enlargement for small values of a (corresponding to

N ≥ 103).

The measure a is bounded from above and below,

−1 < a < 1, (71)

and converges to zero:

a
N→∞−−−→ 0. (72)

It is relatively easy to judge on the convergence of a, as we explicitly know its asymptotic

value. Since we actually want to measure the convergence of ∆̂f , however, the task is to

show when the convergence of a to zero takes place with respect to the convergence of ∆̂f

to ∆f . We could argue and demonstrate that a and ∆̂f converge almost simultaneously,

the measure a slightly later than ∆̂f (which is better than the other way round). These

properties validate a as measure for the convergence of two-sided free energy calculations.

Yet, it must be emphasized that a is not directly correlated with the deviation

∆̂f − ∆f of the free energy estimate from the true value. Instead, it merely converges

together with ∆̂f , with average value 〈a〉 proportional to the mean square error of
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two-sided estimation (in the limit of large N). This is demonstrated in figure 12, which

shows numerical results for exponential work densities (see figs. 8 and 9 in [3] for details).

Hereby we close the discussion of the one-sided and two-sided estimators and introduce

umbrella sampling and thermodynamic integration next. In contrast to the former, the

latter estimators can not be applied to experimental data. We have not studied them in

great detail, and hence will merely state some of their general properties which can also

be found in the named literature. Maybe new and interesting, however, is their unified

derivation from the fluctuation theorem, although somewhat artificial for thermodynamic

integration.

C. Umbrella sampling

Umbrella sampling [22] can be an effective way of solving the rare-event problems with

which one- and two-sided estimations are faced. It means sampling not from the original,

but from modified, so-called “biased” densities of work and is a special case of importance

sampling when applied to estimation of free energy. The biasing, however, is at the cost

of loosing information on the equilibrium states and nonequilibrium processes. A unified

description of umbrella sampling including modern variants of biased path sampling [72–

74] can again be given by starting with the fluctuation theorem (31).

Assuming an arbitrary normalized “umbrella” density q(w) with same support as the

work densities p0(w) and p1(w), we can write Eq. (36) in the modified form

e−∆f =

∫
e−wp0(w)

q(w)
q(w)dw ≡

〈
e−wp0(w)

q(w)

〉

q

. (73)

The average is now in the density q(w), indicated by the subscript q at the angular

brackets. We may think of q being proportional to p0, in order to get rid of the unknown

p0. As, however, we must also assume not to know the normalizing constant of q, which

appears explicitly in the averaged function in (73), this expression is not of use for free

energy estimation. But we can complete it to a useful expression, taking into account
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FIG. 13: Umbrella estimation draws work-values from a “biased” density q(w), which can, in

principle, be chosen freely. Precise free energy calculations require accurately sampling the

regions where p0(w) and p1(w) have most of its mass (“rare events”). Thus, q(w) should be

chosen such, that it has significant overlap with both, p0(w) and p1(w). The suboptimal choice

q(w) = p0(w) results in one-sided (forward) free-energy estimation.

that 1 =
∫ p0(w)

q(w)
q(w)dw:

e−∆f =

〈
e−wp0(w)

q(w)

〉

q〈
p0(w)

q(w)

〉

q

. (74)

Now the unknown constant cancels. The corresponding estimator ∆̂f (q) reads

∆̂f (q) = − ln

e−wp0(w)
q(w)

(q)

p0(w)
q(w)

(q)
. (75)

The overbar with index q indicates a sample average with a sample drawn from the

umbrella density q(w). Similar as before with the t-function in the context of two-sided

estimation, we have freedom of choice on the density q. But here this “auxiliary” density

does not only define the explicit form of the free energy algorithm, but also the density

from which is being drawn.

What is a good choice for q(w)? The important contributions to the numerator of

(75) originate from w-values for which p1 is large, whilst the denominator is dominated
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by values for which p0 is large. Therefore, a convenient umbrella density has good overlap

with both, p0(w) and p1(w), which gave rise for the attribute “umbrella” [22]. See figure

13 for an illustration.

For example, a possible choice is the geometric mean q(w) ∼
√
p0(w)p1(w), which

yields the estimator

∆̂f (q) = − ln
e−

1
2
w

(q)

e+
1
2
w

(q)
. (76)

This estimator has been studied within the nonequilibrium methods by Ytreberg and

Zuckerman, with which they obtained impressive results [73]. It means sampling paths

(trajectories) x(·) from the path density ∼
√
P0[x(·)]P1[x̄(·)] ∼ e−

1
2
βW[λ][x(·)]P0[x(·)], and

calculating work according to w = βW[λ][x(·)], which yields a value distribution of work

q(w) =
√
p0(w)p1(w)/

∫ √
p0(w′)p1(w′)dw′. Algorithms for biased path sampling were

developed by Sun [72] and are essentially based on a Metropolis Monte Carlo-type run

for whole trajectories, starting with “unbiased” initial trajectories which are generated

by the underlying dynamics (and distributed either according to P0[x(·)] or P1[x(·)]).
Yet, the “geometric” choice q ∼ √

p0p1 is still suboptimal. Minimization of the asymp-

totic mean square error

X[q](N) := lim
N→∞

〈(
∆̂f (q) −∆f

)2
〉

=
1

N

∫
(p1(w)− p0(w))

2

q(w)
dw, (77)

with respect to q(w) yields the optimal umbrella density [74, 112]

qopt(w) =
|p1(w)− p0(w)|∫

|p1(w′)− p0(w′)| dw′
. (78)

With this choice, the mean square error becomes

X[qopt](N) =
1

N

[∫
|p1(w)− p0(w)| dw

]2
. (79)

The integral under the square is known as the variational distance. It attains at maximum

the value 2, namely in the limit of vanishing overlap of the densities (p0(w)p1(w) → 0 ∀w).
Note that all methods discussed before become useless in this limit. Further, it can

explicitly be shown that the optimal umbrella estimator outperforms one-sided estimation,
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two-sided estimation, and thermodynamic integration [112] (with respect to the means

square error). However, we cannot directly use it, as the optimal umbrella density depends

itself on ∆f . Investigations of near-optimal choices of q(w) can be found in [112] and [74].

D. Thermodynamic integration

Finally, we come to one of the oldest methods, thermodynamic integration [23]. Actually

it is not directly related to the fluctuation theorem, as it calculates free energy from

thermodynamic forces instead of work. To clarify the notions, we will begin with stating

it from the traditional perspective, and afterwards show that it can also be recovered from

the fluctuation theorem, together with possible extensions.

Taking the derivative of the free energy fλ = βFλ with respect to λ (temperature 1
β

fixed), we have from Eqs. (2) and (3)

d

dλ
fλ = − d

dλ
lnZλ =

∫
ρλ(x)

∂

∂λ
βHλ(x) dx. (80)

Finally, integration with respect to λ yields the thermodynamic integration identity [23]

∆f =

λ1=1∫

λ0=0

〈
∂

∂λ
βHλ(x)

〉

ρλ

dλ. (81)

It is usually used for free energy calculations in the following manner. For a dense

sequence {λi} of λ values between λ0 and λ1, samples from the canonical densities ρλi
(x)

are drawn, and for each λi the average force
〈

∂
∂λ
Hλ(x)

〉
ρλ

is estimated. Finally, the

integral over λ according to (81) is carried out approximatively. For an overview of

optimization issues we refer to [113].

In order to derive thermodynamic integration from the fluctuation theorem, we need to

consider it not only between initial and final values λ0 = 0 and λ1 = 1, but also between

λ = 0 and λ = λ(s) for all s ∈ (0, τ), with λ(0) = 0 and λ(τ) = 1. Thus, we define

the forward work density p0(w|s) and the reverse work density p1(w|s) belonging to the
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“process” between λ = 0 and λ = λ(s). For each s, the fluctuation theorem

p0(w|s)
p1(w|s)

= ew−∆fs (82)

holds, with free energy difference ∆f s = fλ(s) − f0. Therefore we can write

d

ds
∆f s = − ∂

∂s
ln
p0(w|s)
p1(w|s)

, (83)

which yields by multiplication with p1(w|s) and subsequent integration with respect to w

d

ds
∆f s = −

∫
p1(w|s)

∂

∂s
ln p0(w|s) dw. (84)

Up to integration with respect to s, this can be called the work density analog of ther-

modynamic integration, although in this form it is not of practical use for free energy

calculations. To proceed, we need to give an explicit description of the work density

p0(w|s) in terms of the underlying microscopic (path or phase space) density. As an

example, we relate the work densities to the equilibrium methods (cf. table I), i.e.

p0(w|s) =
∫
δ (β∆H(x, s)− w) ρ0(x)dx, (85)

with

∆H(x, s) = Hλ(s)(x)−H0(x), (86)

we have

∂

∂s
p0(w|s) = −

∫
∂

∂s
β∆H(x, s)

d

dw
δ (β∆H(x, s)− w) ρ0(x)dx. (87)

Using this together with (82) in (84) gives

d

ds
∆f s =

∫
dx

∂

∂s
β∆H(x, s)ρ0(x)

∫
dw e−w+∆fs

d

dw
δ (β∆H(x, s)− w)

=

∫
dx

∂

∂s
β∆H(x, s)ρ0(x)e

−β∆H(x,s)+∆fs =

∫
∂

∂s
β∆H(x, s)ρλ(s)(x) dx. (88)

53



D Thermodynamic integration II ELEMENTARY ESTIMATORS

Thus

d

ds
∆f s =

〈
∂

∂s
β∆H(x, s)

〉

ρλ(s)

, (89)

which is equivalent to (80). Of course, this is a rather complicated way for arriving at

this result, but may be of interest with respect to nonequilibrium methods.

Let us finally mention that Sun derived an interesting free energy formula related

to thermodynamic integration via the moment generating function of the work density.

In our notation, his formula reads [72]

∆f =

1∫

0

〈w〉qs ds, (90)

where the average work 〈w〉qs is calculated with the “moment-generating-density”

qs(w) =
e−swp0(w)∫
e−sw′p0(w′)dw′

. (91)

See [72] for details.

We now close the introduction of elementary estimators and come to some final

remarks.
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III. FINAL REMARKS

The previous sections have shown that three general classes of free energy methods, named

here equilibrium, nonequilibrium, and mapping methods, can be considered in a unified

way through reduction to the random variable “work” and its fluctuation theorem (31).

From the latter follow elementary free energy estimators, which consequently can be

applied within any class of methods by measuring or simulating work-values according to

their respective definitions (table I).

Yet with respect to application, a specific estimator is not equivalent in the distinct

classes. This has two main reasons. First, the way of obtaining the raw-data for the

calculation of work quite differs, ranging from simple Monte Carlo sampling of phase space

distributions to much more involved and time-consuming simulations of nonequilibrium

trajectories. In addition, nonequilibrium and mapping methods require the definition a

suitable protocol λ(·) and phase space map φ(x), respectively. Altogether, these measures

determine the expenses for the simulation of work. Second, the work densities p0(w) and

p1(w) obtained within the different classes will be far distinct. This greatly affects the

convergence properties of the estimators, which depend crucially on the extend of overlap

of the work densities. For example, we have seen that the performance of two-sided

estimation depends on the harmonic overlap Uα =
∫ p0(w)p1(w)

αp0(w)+α̃p1(w)
dw. Relating the work

densities to the equilibrium methods (table I), the overlap can be equivalently written

Uα = Ueq
α =

∫
ρ0(x)ρ1(x)

αρ0(x) + α̃ρ1(x)
dx; (92)

for mapping methods, it equals

Uα = Umap
α =

∫
ρ̃0(x)ρ1(x)

αρ̃0(x) + α̃ρ1(x)
dx; (93)

and for nonequilibrium methods

Uα = Uneq
α =

∫ P0[x(·)]P1[x̄(·)]
αP0[x(·)] + α̃P1[x̄(·)]

Dx(·). (94)

Hence, the overlap of the microscopic distributions is “conserved” when going over to

the corresponding work distributions. But we can expect Uneq
α > Ueq

α and Umap
α > Ueq

α
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(for an appropriate map φ). More general, this “conservation” applies for any overlap

and distance measure which can be written in the generic form
∫
f(p0

p1
)p0dw. Examples

include the harmonic overlap, the chi-square distance, the Kullback-Leibler distance and

the variational distance, i.e. measures which we have seen to regulate the performance of

free energy estimators which are based on the fluctuation theorem.

Therefore, the advantage of nonequilibrium and mapping methods in comparison with

equilibrium methods relies on enhancement of overlap (or reduction of distance) of the

work densities, but is accompanied with increased expenses for the simulation of work.

This touches a long-standing problem, namely the comparison of free energy methods

with respect to efficiency, which needs to take into account both, precision as well as

time and effort. Some studies in that direction have been done recently [114–117], and

some of them indicate that nonequilibrium methods could be less efficient than traditional

equilibrium methods.

The elementary free energy estimators can be taken as the starting point for more

advanced techniques. For example, if the distance of the distributions ρ0(x) and ρ1(x) is

quite large, such that applying one- or two-sided estimation in their basic form is in vain,

a possible extension could be to use some intermediate state ρλi
with λi ∈ (λ0, λ1), and

to carry out free energy calculations once between λ0 and λi, and once between λi and

λ1, thereby having reduced the effective distance between ρ0 and ρ1. Such procedures

are known under the name “staging” or “stratification”, and can be extended to many

intermediates. In the limit of infinitely many intermediates, stratification of two-sided

estimation converges to thermodynamic integration [113]. Another example, referring to

umbrella sampling, is to use adaptive biasing techniques [4] in order to improve the um-

brella density q(w) stepwise within the simulation, based on the growth of our information

on the system with increasing sample size. Further, so far we have only focused on calcu-

lating a single free energy difference ∆F . But in many applications, one is interested in

knowing the free energy function in dependence of λ, or likewise, the free energy difference

∆Fλ = Fλ − F0 for all values of λ ∈ [0, 1]. This can conveniently be achieved with an

extended version of two-sided estimation, as worked out in [118–120].

Nevertheless, the study of elementary estimators is still important, insofar as advanced

techniques do rely on them and share many of their properties. Among the elementary

estimators, the one- and two-sided’ are of special importance for physics because of their
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III FINAL REMARKS

applicability to laboratory measurements of work.

Concerning the present thesis, our main contributions to the problem of free energy

calculations are summarized as follows. We have extended targeted free energy perturba-

tion [75] to a targeted two-sided method by deriving a fluctuation theorem for generalized

work [1]. The utility of this new method could be demonstrated with its application to

the calculation of the chemical potential of a high-density Lennard-Jones fluid, which re-

quired a deepened study of construction and performance of phase space maps. Further,

we have studied the general properties of two-sided estimation and could show that: (a)

two-sided estimation is a constrained maximum likelihood estimator [1], (b) its asymptotic

mean square error X(α,N) is convex in the fraction α = n0

N
of forward draws [2], and (c)

its convergence properties are characterized by the ability of sampling a certain overlap

region of the work distributions [1, 3]. Based on these observations, we have developed

and tested the dynamic sampling strategy [2], which optimizes the efficiency of two-sided

estimation. And finally, we have proposed [1], investigated and tested a measure for the

convergence of two-sided estimation [3].

We belief that in specific the convergence measure could prove to be a valuable standard

instrument for reliable free energy calculations, which closes the lack of appreciation [121]

of the convergence properties of two-sided estimation. But the convergence measure

a can also be used to test something quite different: namely whether the simulated (or

measured) data are distributed according to densities which obey the fluctuation theorem.

If this is not the case, then a will converge to some value 6= 0 [122]. This can be useful,

e.g., to check the consistency of setup of simulations or experiments.
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We derive a fluctuation theorem for generalized work distributions, related to bijective mappings of the
phase spaces of two physical systems, and use it to derive a two-sided constraint maximum likelihood esti-
mator of their free-energy difference which uses samples from the equilibrium configurations of both systems.
As an application, we evaluate the chemical potential of a dense Lennard-Jones fluid and study the construction
and performance of suitable maps.
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I. INTRODUCTION

Extracting free-energy differences from a suitable set of
computer simulation data is an active field of research and of
interest, e.g., for drug design f1g or nonperturbative quantum
chromodynamics f2g. Concerning estimators for the free-
energy difference, an extensive literature can be found. Prob-
ably the most elementary estimator is the traditional free-
energy perturbation f3g, which is briefly introduced in the
following. Assume we have given two systems, arbitrarily
labeled as system 0 and system 1, that are characterized by
Hamiltonians H0sxd and H1sxd, respectively, depending on
the point x in phase space. Further, let risxd denote the ther-
mal equilibrium phase space density of system i,

risxd =
e−bHisxd

Zi

, i = 0,1, s1d

where Zi=ee−bHisxddx denotes the partition function and b

= 1
kT

the inverse temperature. We are interested in the Helm-
holtz free-energy difference DF of the systems, defined as
DF=− 1

b ln
Z1

Z0
. Traditional free-energy perturbation f3g origi-

nates from the equality

r0sxd

r1sxd
= ebfDHsxd−DFg, s2d

with DHsxdªH1sxd−H0sxd. The latter quantity may be inter-
preted as the work performed during an infinitely fast switch-
ing process transforming system 0 to system 1, with initial
configuration x f4g. A direct consequence of Eq. s2d is the
perturbation identity

e−bDF =E e−bDHsxdr0sxddx , s3d

which is frequently used to obtain an estimate of DF in
drawing a sample hx1 , . . . ,xNj from r0sxd se.g., by Monte
Carlo simulationsd and evaluating the estimator

DF̂0
trad = −

1

b
ln e−bDHsxd. s4d

The overbar denotes a sample average fi.e., fsxd
= 1

N
ok=1
N fsxkd where f stands for an arbitrary functiong. As can

be seen by comparison with Eq. s2d, the integrand appearing
in Eq. s3d is proportional to r1, and thus the main contribu-
tions to an accurate estimate of DF with Eq. s4d come from

realizations x sdrawn from r0d that are typical for the density
r1. This means that the performance of such an estimate
depends strongly on the degree of overlap of r0 with r1. If
the overlap is small, the traditional free-energy perturbation
is plagued with a slow convergence and a large bias. This
can be overcome by using methods that bridge the gap be-
tween the densities r0 and r1, for instance the thermody-
namic integration. Since thermodynamic integration samples
a sequence of many equilibrium distributions, it soon be-
comes computationally expensive. Another method is um-
brella sampling f5g which distorts the original distribution in
order to sample regions that are important for the average.
Because of the distortion, the latter method is in general
restricted to answer only one given question, e.g., the value
of the free-energy difference, but fails to give further an-
swers. This is of particular concern, if in addition the values
of some other thermodynamic variables are sought, for ex-
ample, pressure or internal energy. There are dynamical
methods f6g that make use of the Jarzynski work theorem
f4g. They allow to base the estimator on work values of fast,
finite time, nonequilibrium processes connecting system 0
with system 1. However, the dynamic simulation of the tra-
jectories is typically very expensive.

Six years ago, the targeted free-energy perturbation
method f7g was introduced; a promising method which is
based on mapping equilibrium distributions close to each
other in order to overcome the problem of insufficient over-
lap, without the need to draw from biased distributions.
However, this method is rarely used in the literature f8,9g. An
obstacle might be that there is no general description of how
to construct a suitable map. A related idea f10g was applied
in f11g. A recent improvement is the escorted free-energy
simulation f12g which is a dynamical generalization of the
targeted free-energy perturbation.

Any free-energy difference refers to two equilibrium en-
sembles. The above mentioned methods draw only from one
of the two ensembles and propagate the system in direction
of the other. Insofar, they are “one-sided” methods. However,
it is of advantage to draw from both equilibrium distributions
and combine the obtained “two-sided” information. Optimiz-
ing the elementary two-sided estimator for free-energy dif-
ferences results in the acceptance ratio method f13–15g. The
next step of improvement is to implement a two-sided tar-
geted free-energy method that optimally employs the infor-
mation of drawings from both equilibrium distributions. Our
aim is to combine the advantages of the acceptance ratio
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method with the advantages of the targeted free-energy per-
turbation.

The central result of this paper is a fluctuation theorem for
the distributions of generalized work values that is derived
and presented in Sec. III. From this fluctuation theorem, the
desired optimal two-sided targeted free-energy estimator fol-
lows in Sec. IV. In Sec. V, appropriate measures are intro-
duced which relate the overlap of r̃0 with r1 to the mean
square errors of the one- and two-sided free-energy estima-
tors. In Sec. VI, a convergence criterion for the two-sided
estimator is proposed. From Sec. VII on, numerics plays an
important part. In particular, Sec. VII A deals with explicit
numerical applications. Based on the two-sided targeted free-
energy estimator, in Sec. VII B, an estimator for the chemical
potential of a high-density homogeneous fluid is established
and applied to a dense Lennard-Jones fluid. Finally, the con-
struction and performance of suitable maps is studied. In
order to set some notation straight, we start by recalling the
targeted free-energy perturbation method.

II. TARGETED FREE-ENERGY PERTURBATION

Let G0 and G1 denote the phase spaces of the systems 0
and 1, respectively. We require that Gi contains only those
points x for which risxd is nonzero.

Mapping the phase space points of system 0, x→fsxd,

such that the mapped phase space G̃0=fsG0d coincides with
the phase space G1 and such that the mapped distribution r̃0
overlaps better with the canonical distribution r1 results in
the targeted free-energy perturbation f7g where the samples
are drawn effectively from r̃0 instead.

Following the idea of Jarzynski f7g, we introduce such a
phase space map. If G0 and G1 are diffeomorph, there exists
a bijective and differentiable map M from G0 to G1,

M:G0 → G1, M:x → fsxd , s5d

where the absolute value of the Jacobian is

Ksxd = uU ]f

]x
Uu . s6d

The inverse map reads

M
−1:G1 → G0, M

−1:y → f−1syd . s7d

According to M, the phase space density r0 is mapped to
the density r̃0,

r̃0syd = E
G0

dfy − fsxdgr0sxddx , s8d

which can be written as

r̃0„fsxd… =
r0sxd

Ksxd
s9d

or

E
fsGd

r̃0syddy = E
G

r0sxddx, ∀ G , G0. s10d

In analogy to Eq. s2d, the targeted free-energy perturba-
tion is based on the identity

r̃0„fsxd…

r1„fsxd…
= ebfDH˜sxd−DFg

∀ x P G0, s11d

which follows from the densities s1d and s9d with DH̃ being
defined by

DH̃sxd ª H1„fsxd… − H0sxd −
1

b
ln Ksxd . s12d

Multiplying Eq. s11d by e−bDH̃sxdr1(fsxd)Ksxd and integrating
over G0 yields the targeted free-energy perturbation formula,

e−bDF = E
G0

e−bDH˜sxdr0sxddx . s13d

An alternative derivation is given in f7g. The traditional free-
energy perturbation formula s3d can be viewed as a special
case of Eq. s13d. The latter reduces to the former if M is
chosen to be the identity map, fsxd=x. fThis requires that
G1=G0 holds.g

Now an obvious estimator for DF, given a sample hxkj
drawn from r0sxd, is

DF̂0 = −
1

b
ln e−bDH˜sxd, s14d

which we refer to as the targeted forward estimator for DF.
The convergence problem of the traditional forward estima-
tor, Eq. s4d, in the case of insufficient overlap of r0 with r1 is
overcome in the targeted approach by choosing a suitable
map M for which the image r̃0 of r0 overlaps better with r1.
Indeed, suppose for the moment that the map is chosen to be
ideal, namely such that r̃0sxd coincides with r1sxd. Then, as a

consequence of Eq. s11d, the quantity DH̃sxd is constant and
equals DF, and the convergence of the targeted estimator
s14d is immediate. Although the construction of such an ideal
map is impossible in general, the goal of approaching an
ideal map guides the design of suitably good maps.

To complement the one-sided targeted estimator, a second
perturbation formula in the “reverse” direction is derived
from Eq. s11d,

e+bDF = E
G1

e+bDH˜„f−1syd…r1syddy , s15d

leading to the definition of the targeted reverse estimator DF̂1
of DF,

DF̂1 = +
1

b
ln e+bDH˜„f−1syd…. s16d

The index 1 indicates that the set hykj is drawn from r1.
Using the identity map fsxd=x in Eq. s16d gives the tradi-
tional reverse estimator, which is valid if G0=G1 holds.
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It will prove to be beneficial to switch from phase space
densities to one-dimensional densities which describe the

value distributions of DH̃sxd and DH̃(f−1syd), cf. Eqs. s13d
and s15d. This is done next and results in the fluctuation
theorem for generalized work distributions.

III. FLUCTUATION THEOREM FOR GENERALIZED

WORK DISTRIBUTIONS

We call DH̃sxd, xPG0, function of the generalized work

in forward direction and DH̃(f−1syd), yPG1, function of the
generalized work in reverse direction, having in mind that
these quantities are the functions of the actual physical work
for special choices of the map M f16g.

The probability density psW u0;Md for the outcome of a
specific value W of the generalized work in forward direction
subject to the map M when sampled from r0 is given by

psWu0;Md = E
G0

dfW − DH̃sxdgr0sxddx . s17d

Conversely, the probability density psW u1;Md for the ob-
servation of a specific value W of the generalized work in
reverse direction when sampled from r1 reads

psWu1;Md = E
G1

dfW − DH̃„f−1syd…gr1syddy . s18d

Relating the forward and reverse “work” probability densi-
ties to each other results in the fluctuation theorem

psWu0;Md

psWu1;Md
= ebsW−DFd. s19d

This identity provides the main basis for our further results.
It is established by multiplying Eq. s11d with dfW

−DH̃sxdgr1(fsxd) and integrating with respect to fsxd. The
left-hand side yields

E
fsG0d

dfW − DH̃sxdgr̃0„fsxd…dfsxd

= E
G0

dfW − DH̃sxdgr0sxddx = psWu0;Md , s20d

and the right-hand side gives

E
fsG0d

ebfDH˜sxd−DFgdfW − DH̃sxdgr1„fsxd…dfsxd

= ebsW−DFdE
G1

dfW − DH̃„f−1syd…gr1syddy

= ebsW−DFdpsWu1;Md . s21d

It is worthwhile to emphasize that the fluctuation theorem
s19d is an exact identity for any differentiable, bijective map
M from G0 to G1. Especially, it covers known fluctuation
theorems f17–20g related to the physical work applied to a
system that is driven externally and evolves in time accord-

ing to some deterministic equations of motion, e.g., those of
Hamiltonian dynamics, Nosé-Hoover dynamics, or Gaussian
isokinetic dynamics f16g.

As an example, consider the time-reversible adiabatic
evolution of a conservative system with Hamiltonian Hlsxd,
depending on an externally controlled parameter l se.g., the
strength of an external fieldd. Let xstd=f(x0 , t ;ls·d) with
xs0d=x0 be the flow of the Hamiltonian system which is a
functional of the parameter lstd that is varied from ls0d=0
to lstd=1 according to some prescribed protocol that consti-
tutes the forward process. The Hamiltonian flow can be used
to define a map, M :x→fsxdªf(x ,t ;ls·d). Since the evo-
lution is adiabatic and Hamiltonian, no heat is exchanged,
Q=0, and the Jacobian is identical to one, u ]f

]x
u=1. Conse-

quently, the generalized work in the forward direction re-
duces to the physical work applied to the system, W0

ªDH̃sxd=H1(fsxd)−H0sxd=W. For each forward path
hxstd ,lstd ;0ø tøtj we have a reverse path hxTst− td ,lTst
− td ;0ø tøtj, where the superscript T indicates that quanti-
ties that are odd under time reversal ssuch as momentad have
changed their sign. The generalized work in reverse direction
reduces to the physical work done by the system

W1 ª DH̃„f−1syd… = H1syd − H0„f−1syd… − 1
b ln K„f−1syd…

= − fH0„f−1sydT… − H1sy
Tdg = −W .

Starting the forward process with an initial canonical distri-
bution, r0sxd, some probability distribution for the physical
work in forward direction follows, psW u0;Md¬pFsWd.
Starting the reverse process with an initial canonical distri-
bution, r1syd, some probability distribution for the physical
work in reverse direction follows, psW u1;Md¬pRs−Wd.
The distributions pFsWd and pRs−Wd are related to each other
by the identity s19d which coincides with the fluctuation
theorem of Crooks f17g.

From the fluctuation theorem s19d some important in-
equalities follow that are valid for any map M. First of all
we state that the targeted free-energy perturbation formulas
s13d and s15d can be regarded as a simple consequence of the
fluctuation theorem s19d and can be rewritten in terms of the
generalized work distributions, e−bDF= ke−bWl0 and e+bDF

= ke+bWl1, where the angular brackets with subscript i denote
an ensemble average with respect to the density psW u i ;Md,
i=0,1. The monotonicity and convexity of the exponential
function appearing in the above averages allows the applica-
tion of Jensen’s inequality, ke7bWlùe7bkWl. From this fol-
lows the fundamental inequality

kWl1 ø DF ø kWl0, s22d

which shows that the values of the average work in forward
and reverse direction constitute an upper and a lower bound
on DF, respectively.

Concerning one-sided estimates of DF, the targeted for-
ward and reverse estimators s14d and s16d can be written

DF̂0=−
1
be

−bW0
and DF̂1=

1
be

bW1
, where the overbar denotes a

sample average according to a sample hWk
0j and hWk

1j of for-
ward and reverse work values, respectively. Similarly to Eq.

s22d one finds the inequalities DF̂0øW0 and DF̂1ùW1.
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Taking the ensemble averages kDF̂ili=7
1
b kln e7bWi

li, i
=0,1, of the one-sided estimates and applying Jensen’s in-
equality to the averages of the logarithms, kln e7bWi

li
ø lnke7bWi

li=7bDF, one obtains

kWl1 ø kDF̂1l1 ø DF ø kDF̂0l0 ø kWl0. s23d

In other words, the forward and reverse estimators are biased
in opposite directions for any finite size N of the work
samples, but their mean values form closer upper and lower
bounds on DF than the values of the mean work do.

So far, we were concerned with one-sided estimates of DF
only. However, the full power of the fluctuation theorem s19d
will develop when dealing with a two-sided targeted free-
energy estimator where a sample of forward and reverse
work values is used simultaneously, since the fluctuation
theorem relates the forward and reverse work probability
densities to each other in dependence of the free-energy dif-
ference.

In the next section, we will not mention the target map M

explicitly in order to simplify the notation. For instance, we
will write psW u id, but mean psW u i ;Md instead.

IV. TWO-SIDED TARGETED FREE-ENERGY ESTIMATOR

An important feature of the fluctuation theorem s19d is
that it provides a way to answer the following question:
Given a sample of n0 work values hWi

0j= hW1
0 , . . . ,Wn0

0 j in the
forward direction and a second sample of n1 work values
hW j

1j= hW1
1 , . . . ,Wn1

1 j in the reverse direction, what would be
the best estimator of DF that utilizes the entire two samples?

If drawn from an ensemble that consists of forward and
reverse work values, the elements are given by a pair of
values sW ,Yd of work and direction, where Y=0 indicates
the forward and Y=1 the reverse direction. The probability
density of the pairs sW ,Yd is psW ,Yd. The probability den-
sity for the work is psWdªpsW ,0d+psW ,1d, and that for the
direction is pYªepsW ,YddW.

Bayes theorem,

psWuYdpY = psYuWdpsWd , s24d

implies the “balance” equation

p1E ps0uWdpsWu1ddW = p0E ps1uWdpsWu0ddW . s25d

From the fluctuation theorem s19d and Bayes theorem s24d
follows

ps0uWd

ps1uWd
= ebsW−Cd s26d

with

C = DF +
1

b
ln

p1

p0
. s27d

Together with the normalization ps0 uWd+ps1 uWd=1, Eq.
s26d determines the explicit form of the conditional direction
probabilities f15g,

psYuWd =
eYbsC−Wd

1 + ebsC−Wd , Y = 0,1. s28d

Replacing both, the ensemble averages by sample averages
and the ratio

p1

p0
by

n1

n0
, the balance equation, p1kps0 uWdl1

=p0kps1 uWdl0, results in the two-sided targeted free-energy
estimator, n1ps0 uW1d=n0ps1 uW0d, which reads

o
j=1

n1 1

1 + ebSDF̂
01+

1
b
ln

n1
n0
−Wj

1D = o
i=1

n0 1

1 + e−bSDF̂
01+

1
b
ln

n1
n0
−Wi

0D .

s29d

It is worth it to emphasize that this estimator is the optimal
two-sided estimator, a result that is shown with a constraint
maximum likelihood approach in the Appendix. A derivation
of this estimator is also given by Shirts et al. f15g in the
framework of a maximum likelihood approach.

If samples of n0 forward and n1 reverse work values hWi
0j

and hW j
1j are given, but no further information is present, it is

the two-sided estimator s29d that yields the best estimate of
the free-energy difference with respect to the mean square
error. If needed, the samples hWi

0j and hW j
1j can be obtained

indirectly by drawing samples hxij and hy jj of r0 and r1 and

setting Wi
0=DH̃sxid and W j

1=DH̃(f−1sy jd).
Opposed to the one-sided estimators s14d and s16d, the

two-sided targeted free-energy estimator s29d is an implicit

equation that needs to be solved for DF̂01. Note however that

the solution DF̂01 is unique.
Let us mention a subtlety concerning the choice of the

ratio
p1

p0
. The mixed ensemble hsW ,Ydj is specified by the

mixing ratio
p1

p0
, and by the conditional work probability den-

sities psW uYd. With the mixed ensemble we are free to
choose the mixing ratio. For instance, replacing the ensemble
averages in the balance equation s25d by sample averages
results in an estimator p1ps0 uW1d=p0ps1 uW0d for DF that
depends on the value of the mixing ratio. This raises the
question of the optimal choice for

p1

p0
. As shown in the Ap-

pendix, it is optimal to choose the mixing ratio equal to the
sample ratio,

p1

p0
=

n1

n0
. A result that may be clear intuitively,

since then the mixed ensemble reflects the actual samples
best.

Other free-energy estimators follow, if the explicit expres-
sions s28d and the definition of the constant C, Eq. s27d, are
inserted in the balance equation s25d. The latter can then be
expressed as

ebDF = ebC

E 1

1 + ebsC−WdpsWu1ddW

E 1

1 + e−bsC−WdpsWu0ddW

, s30d

and results in the estimator
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DF̂BsCd = C +
1

b
ln

1

n1
o
j=1

n1 1

1 + ebsC−Wj
1d

1

n0
o
i=1

n0 1

1 + e−bsC−Wi
0d

. s31d

The nontargeted version of this estimator, i.e., for M= id, is
due to Bennett f13g who used a variational principle in order
to find the estimator for the free-energy difference that mini-
mizes the mean square error.

Equation s30d is an identity for any value of C, since with
the ratio

p1

p0
the value of C=DF+ 1

b ln
p1

p0
can be chosen arbi-

trarily. However, concerning the estimator s31d, different val-
ues of C yield different estimates. Bennett’s choice is

CB = DF +
1

b
ln

n1

n0
, s32d

i.e.,
p1

p0
=

n1

n0
, which results from minimizing the mean square

error ksDF̂B−DFd2l, where the angular brackets denote an
average over infinitely many repetitions of the estimation
process s31d with n0 and n1 being fixed. According to the
Appendix, Bennett’s choice is also optimal for any target
map M.

With C=CB, Eq. s31d has to be solved in a self-consistent
manner which is tantamount to solve the two-sided targeted

estimator s29d. In other words, DF̂BsCBd is the unique root

DF̂01 of Eq. s29d.

V. OVERLAP MEASURES AND MEAN SQUARE ERRORS

In this section we introduce measures for the overlap of r̃0
with r1, or, equivalently, of psW u0;Md with psW u1;Md
and relate them to the mean square error of one- and two-
sided estimators.

The estimators s14d, s16d, and s29d are subject to both,
bias and variance. Taking both errors into account results in
the mean square error. Let us consider the mean square errors
of the one-sided targeted estimators first. They read X0

ª ksDF̂0−DFd2l0= ksln e−bsW0−DFdd2l0 in forward direction,
and analogously in backward direction. In the forward direc-
tion, it can be quantified by expanding the logarithm into a
power series about the mean value of its argument,
ke−bsW0−DFdl0=1, and neglecting terms of higher order in 1

N
,

which gives

b2X0 <
1

N
kse−bsW−DFd − 1d2l0. s33d

Equation s33d is valid for a sufficiently large sample size N

slarge N limitd f21g. With the use of the fluctuation theorem
s19d, the variance appearing on the right-hand side of Eq.
s33d can be written kse−bsW−DFd−1d2l0= ke−bsW−DFdl1−1
ùe−bskWl1−DFd−1. This yields the inequality

b2X0 ù
1

N
sebsDF−kWl1d − 1d . s34d

In the same manner as above the inequality

b2X1 ù
1

N
sebskWl0−DFd − 1d s35d

is obtained for the mean square error X1 of the reverse esti-

mator DF̂1.
The inequalities s34d and s35d specify the minimum

sample size N that is required to obtain a forward and reverse

estimate DF̂, respectively, whose root mean square error ÎX
is not larger than kT. Namely, NùebsDF−kWl1d is required for
a forward, and NùebskWl0−DFd for a reverse estimate. Similar
expressions are found in Ref. f22g. Since the required sample
size N depends exponentially on the dissipation, it is good to
choose a target map M which reduces the dissipation in the
opposite direction.

The dissipation is related to the overlap of r̃0 with r1. The
overlap of two probability densities paszd and pbszd of a
random variable z can be quantified with the Kullback-
Leibler divergence

Dspaipbd ªE paszdln
paszd

pbszd
dz , s36d

a positive semidefinite measure that yields zero if and only if
pa is identical to pb. Applied to the densities r1 and r̃0, the
Kullback-Leibler divergence turns out to be identical with
the Kullback-Leibler divergence of psW u1;Md with
psW u0;Md and results in the generalized dissipated work in
reverse direction,

Dsr1ir̃0d = D„psWu1;MdipsWu0;Md… = bsDF − kWl1d ,

s37d

which is established with the use of Eqs. s11d and s18d, and
the fluctuation theorem s19d. Similarly, we have

Dsr̃0ir1d = D„psWu0;MdipsWu1;Md… = bskWl0 − DFd .

s38d

For the one-sided targeted free-energy estimators this means
that choosing a target map which reduces the dissipation in
the opposite direction is the same as choosing a target map
which enhances the overlap of r̃0 with r1.

Now, we proceed with the overlap measure and the mean
square error of the two-sided free-energy estimator s29d. In
order to keep the notation simple, we assume that the
samples of forward and reverse work values are of equal
size, n0=n1=

N

2 , i.e., n0+n1=N. sA generalization to n0Þn1 is
straightforward possible, but not given in this paper.d

Consider the overlap density polsW uMd,

polsWuMd ª
1

Aol

psWu0;MdpsWu1;Md

1

2
fpsWu0;Md + psWu1;Mdg

, s39d

where the normalization constant Aol reads

USING BIJECTIVE MAPS TO IMPROVE FREE-ENERGY … PHYSICAL REVIEW E 79, 011113 s2009d

011113-5



Aol =E psWu0;MdpsWu1;Md

1

2
fpsWu0;Md + psWu1;Mdg

dW

=E r̃0sydr1syd

1

2
fr̃0syd + r1sydg

dy . s40d

Aol is a measure for the overlap area of the distributions and
takes its maximum value 1 in case of coincidence. Using the
fluctuation theorem s19d, the two-sided overlap measure can
be written

1

2
Aol = K 1

1 + ebsDF−WdL
1
= K 1

1 + e−bsDF−WdL
0
. s41d

Comparing Eq. s41d with the two-sided targeted free-energy
estimator s29d, one sees that the two-sided targeted free-
energy estimation method readily estimates the two-sided
overlap measure. The accuracy of the estimate depends on
how good the sampled work values reach into the main part
of the overlap distribution polsW uMd. By construction, the
overlap region is sampled far earlier than the further distant
tail that lies in the peak of the other distribution, cf. Fig. 1.
This is the reason why the two-sided estimator is superior if
compared to the one-sided estimators.

In the large N limit the mean square error X01sNd

= ksDF̂01−DFd2l of the two-sided estimator can be expressed
in terms of the overlap measure and reads

X01sNd =
4

N
S 1

Aol
− 1D , s42d

cf. f13,15g. Note that if an estimated value Âol is plugged in,
this formula is valid in the limit of large N only, but it is not
clear a priori when this limit is reached. Therefore, we de-
velop a simple convergence criterion for the two-sided esti-
mate.

VI. CONVERGENCE

In this section, a measure for the convergence of the two-
sided estimate is developed, again for the special case n0

=n1=
N

2 . First, we define the estimate Âol of the overlap mea-
sure Aol with

1

2
ÂolsNd =

1

n1
o
j=1

n1 1

1 + ebsDF̂
01−Wj

1d
, s43d

which is equal to 1
n0

oi=1
n0 1

1+e−bsDF̂01−Wi
0d
, as we understand the

estimate DF̂01 to be obtained according to Eq. s29d with the
same samples of forward and reverse work values. Since the

accuracy of the estimated value Âol is unknown, we need an
additional quantity to compare with.

Another expression for the overlap measure is

1

2
Aol = KS 1

1 + ebsDF−WdD2L
1
+ KS 1

1 + e−bsDF−WdD2L
0
,

s44d

which can be verified with the fluctuation theorem s19d.
Based on Eq. s44d, we define the overlap estimator of second
order,

1

2
Âol

sIIdsNd =
1

n1
o
j=1

n1 S 1

1 + ebsDF̂
01−Wj

1dD
2

+
1

n0
o
i=1

n0 S 1

1 + e−bsDF̂
01−Wi

0dD
2

. s45d

Because DF̂01 converges to DF, both Âol and Âol
sIId con-

verge to Aol in the limit N→`. However, the second-order

estimator Âol
sIId converges slower and is for small N typically

much smaller than Âol, since the main contributions to the
averages appearing in Eq. s44d result from work values that
lie somewhat further in the tails of the work distributions.

We use the relative difference

asNd =
Âol − Âol

sIId

Âol

s46d

to quantify the convergence of the two-sided estimate DF̂01,

where Âol, Âol
sIId, and DF̂01 are understood to be calculated

with the same two samples of forward and reverse work
values.

From Eqs. s45d, s43d, and s29d follows that 0ø Âol
sIId

ø2Âol holds. Hence, the convergence measure asNd is
bounded by

20 30 40 50 60

0

0.02

0.04

0.06

0.08

βW

FIG. 1. sColor onlined Targeted work probability distributions
for the expansion of a cavity in an ideal gas and the associated
overlap distribution. The up sdownd triangles display the normalized
histogram of a sample of forward sreversed work values. The
smooth solid curves are the exact analytic work distributions
psW u0;Md srightd and psW u1;Md sleftd, and the dashed curve
shows their overlap distribution polsW uMd. The straight vertical
lines show the values of the targeted estimates of DF on the ab-
scissa. From left to right: the reverse, the two-sided swhich is in-
distinguishable from the exact analytic valued, and the forward
estimate.
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− 1 ø asNd ø 1 s47d

for any N. A necessary convergence condition is asNd→0.
This means that only if asNd is close to zero, the two-sided
overlap estimators can have converged. Typically, asNd being
close to zero is also a sufficient convergence condition.

Hence, if asNd is close to zero, the mean square error of DF̂01

is given by Eq. s42d with Aol< Âol. As can be seen from Eq.
s42d, the mean square error and in turn the variance and the
bias are reduced by both, by taking a larger sample size N

and by choosing a map M that enhances the overlap of r̃0
with r1.

With the targeted free-energy estimators at hand, together
with their mean square errors, we are now ready to compute
free-energy differences numerically.

VII. NUMERICAL EXAMPLES

We investigate two numerical applications. One is the
free-energy difference of a fluid subject to the expansion of a
cavity which allows the comparison with published results
f7g. The other is the chemical potential of a fluid in the high
density regime.

Beneath an ideal gas, the fluid is chosen to be a Lennard-
Jones fluid with pairwise interaction

Vsrkld = 4eFS s

rkl
D12 − S s

rkl
D6G , s48d

where rkl is the distance between the kth and lth particle,
rkl= urk−rlu. The parameters used are those of argon, s
=3.542 Å, and e /k=93.3 K f24g.

In all applications, the samples from the densities r0 and
r1 are simulated with the Metropolis algorithm f23g. In order
to simulate macroscopic behavior with a small number Np of
particles, periodic boundary conditions and the minimum im-
age convention f6g are used. Pairwise interactions are trun-
cated at half of the box length Rbox=L /2, but are not shifted,
and the appropriate cutoff corrections are applied f6g.

A. Expansion of a cavity in a fluid

The expansion of a cavity in a fluid is given by the fol-
lowing setup: Consider a fluid of Np point molecules with
pairwise interaction Vsrkld confined in a cubic box of side
length 2Rbox, but excluded from a sphere of radius RøRbox,
compare with Fig. 2. Both the box and the sphere are cen-
tered at the origin r=0. A configurational microstate of the
system is given by a set x= sr1 , . . . ,rNp

d of particle positions
rk. Growing the sphere from R=R0 to R=R1 decreases the
volume accessible to the particles and the fluid is com-
pressed. We are interested in the increase of free-energy DF
subject to the compression of the fluid. Since the kinetic
contribution to the free-energy is additive and independent of
R, the difference DF depends only on the configurational part
of the Hamiltonian. The latter reads

Hisxd =Ho
k,l

Vsrkld if x P Gi,

` if x ¹ Gi,
J s49d

with i=0,1. G0 and G1 denote the accessible parts of con-
figuration space of the system 0 sR=R0d and 1 sR=R1d, re-
spectively. We assume that R0,R1 holds which implies
G1,G0.

Drawing a sample hxkj from r0 and applying the tradi-
tional forward estimator s4d results in the following: e−bDHsxkd

takes the values one and zero depending on whether xk
PG1 or not, i.e., whether the region between the two spheres
of radius R0 and R1 is found vacant of particles or not. A
comparison with Eq. s3d reveals that e−bDF is the probability
for the spherical shell being observed devoid of particles f7g.
Hence, the rate of convergence of e−bDH decreases with the
latter probability and will in general be poor.

Conversely, drawing a sample yk from r1 and applying the

traditional reverse estimator DF̂1
trad= 1

be
bDHsyd fEq. s16d with

fsxd=xg figures out to be invalid, because the term ebDHsykd

takes always the value one. In consequence, the traditional
reverse estimator is inconsistent. The deeper reason for this
is that G1,G0 holds: Eq. s2d is valid only for xPG1. By the
same reason, the traditional two-sided estimator is inconsis-
tent, too.

The mentioned shortcomings are avoided with a well cho-
sen target map. Consider mapping each particle separately
according to

fsxd = Scsr1d
r1

r1
, . . . ,csrNp

d
rNp

rNp

D , s50d

where rk= urku is the distance of the kth particle with respect
to the origin, and c : sR0 ,Rmaxg→ sR1 ,Rmaxg is a bijective and
piecewise smooth radial mapping function. In order not to
map particles out of the confining box, it is required that
csrd=r holds for r.Rbox. The Jacobian for the radial map
s50d reads

R
box

R

FIG. 2. The geometric setup.
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U ]f

]x
U = p

j=1

Np csr jd
2

r j
2

]csr jd

]r j
. s51d

sThis formula is immediately clear when changing to polar
coordinates.d We use the map of Ref. f7g which is designed
to uniformly compress the volume of the shell R0,røRbox
to the volume of the shell R1,røRbox. Thus, for r

P sR0 ,Rboxg the radial mapping function csrd is defined by

csrd3 − R1
3 = csr3 − R0

3d , s52d

with the compression factor c= sRbox
3 −R1

3d / sRbox
3 −R0

3d. Ac-
cording to Eq. s51d, we have ln Ksxd=nsxdln c, where nsxd is
the number of particles in the shell R0,røRbox.

1. Ideal gas

As a first illustrative and exact solvable example we
choose the fluid to be an ideal gas, Vsrkld=0. In this case the
free-energy difference is solely determined by the ratio of the
confined volume Vi=8Rbox

3 − 4
3pRi

3, i=0,1, and is given by
bDF=−Np lnsV1 /V0d. Using the radial map s52d, the work in

the forward direction as a function of x reads DH̃sxd=
− 1

bnsxdln c and takes discrete values only, as nsxd=n holds
with nP h0,1 , . . . ,Npj. Consequently, the probability
psWn u0;Md of observing the work Wn=−

n

b ln c in forward
direction is binomial,

psWnu0;Md = SNp

n
Dq0ns1 − q0d

N−n, s53d

where q0=
4
3psRbox

3 −R0
3d /V0 is the probability of any fixed

particle to be found in the shell R0,røRbox. In analogy, the
probability distribution psWn u1;Md for observing the work
W=Wn in reverse direction is given by replacing the index 0
with 1 in Eq. s53d. Finally, the work probability distributions
srather then the densitiesd obey the fluctuation theorem s19d
for any n=0,1 , . . . ,Np,

psWnu0;Md

psWnu1;Md
=
1

cn
SV1

V0
DNp

= ebsWn−DFd. s54d

A simple numerical evaluation highlights the convergence
properties. Choosing the parameters to be 2Rbox=22.28 Å,
R0=7 Å, R1=10 Å, and Np=125 sb arbitraryd, the free-
energy difference takes the value bDF=42.1064. Because

e−bDH̃sxd can take only the numbers zero and one, the prob-
ability of observing a configuration x with nonvanishing con-
tribution in the traditional forward estimator of DF is e−bDF

<10−19. Hence, in practice it is impossible to use the tradi-
tional method successfully, since it would require at least
Np31019 Monte Carlo trial moves. However, the targeted
approach already gives reasonable estimates with a sample
size of just a few thousands. Figure 1 shows estimates of the
targeted work probability distributions for samples of size
ni=10

4 si=0,1d from r0 and r1 each. While the forward
distribution psW u0;Md is obviously well sampled in the
central region, the sampling size is too small in order to
reach the small values of bW where the reverse distribution
psW u1;Md is peaked. Exactly the latter values would be

required for an accurate exponential average in the targeted
forward estimator, Eq. s14d. Therefore, the targeted forward

estimate of DF is still inaccurate; it yields bDF̂0
=45.060.3. The same is true for the targeted reverse esti-

mate s16d which gives bDF̂1=41.360.5. The errors are cal-
culated using root mean squares and propagation of uncer-
tainty. A more accurate estimate follows from the targeted

two-sided estimator s29d which yields bDF̂01=42.160.1
sn0=n1=10

4d. This is clear, as for the two-sided estimate it is
sufficient yet that the forward and reverse work values
sample the region where the overlap distribution polsW uMd,
Eq. s39d, is peaked, which is obviously the case, cf. Fig. 1.

The ideal gas is an exactly solvable model. This raises the
question of whether a “perfect” or an ideal map can be con-
structed. The answer is yes, however such an ideal map
would not be in the set of radial maps as defined with Eq.
s50d. Instead, the ideal map would also depend on the angles
and would have a more complicated structure. The reason for
this is the geometry of the simulation box: An ideal map
needs to compress the fluid of uniform density with R=R0 to
the fluid of uniform density with R=R1. The radial mapping
function csrd, Eq. s52d, can be viewed as a good approxima-
tion to the ideal map within the set of radial maps.

2. Lennard-Jones fluid

We now focus on particles with Lennard-Jones interaction
s48d. The parameters are chosen to coincide with those of
Ref. f7g, i.e., 2Rbox=22.28 Å, R0=9.209 Å, R1=9.386 Å,
Np=125, and T=300 K. In Lennard-Jones units, the reduced
densities r

i
*=s3Np /Vi of the systems 0 sR=R0d and 1 sR

=R1d are r
0
*=0.713 and r

1
*=0.731, respectively, and T*

=1 / sbed=3.215 holds for both. If we had an ideal gas, the
probability of observing the space between the spheres of
radius R0 and R1 to be vacant of particles would be
sV1 /V0d

Np=0.044. Because of the strong repulsive part of
interaction, this probability is much smaller in case of a
dense Lennard-Jones fluid.

We generate samples of r0sxd and r1sxd with a Metropolis
Monte Carlo simulation. Each run starts with 1000 equilibra-
tion sweeps, followed by the production run. In the produc-
tion run the configurational microstate x is being sampled
every fourth sweep only in order to reduce correlations be-
tween successive samples. The use of decorrelated data is of
particular importance for the self-consistent two-sided esti-

mate DF̂01 because it depends intrinsically on the ratio
n1

n0
of

the numbers of uncorrelated samples, cf. Eq. s29d.
Figure 3 gives an overview of independent runs with dif-

ferent sample sizes N, where the one- and two-sided targeted
estimators can be compared with each other and with the
traditional forward estimator. Displayed is the estimated

mean DF̂sNd in dependence of the sample size N. The error
bars reflect the estimated standard deviation

fDF̂sNd − DF̂sNdg2
1/2

.

Each mean and each standard deviation is estimated using

zsNd independent estimates DF̂sNd. In ascending order of N,
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zsNd reads 440, 170, 40, 13. For the two-sided estimates,
n0=n1=

N

2 is used and Eq. s29d is solved.
Note that the theoretical mean of traditional forward es-

timates of DF is infinite for any finite N, because of the finite
probability of observing a sequence of length N of solely
vanishing contributions to the exponential average e−bDH.
Strictly spoken, the estimator bDF̂0

trad=−ln e−bDH is not well
defined, because G1,G0. Nevertheless, in Fig. 3 there are
two finite observed mean values of traditional forward esti-
mates displayed, what by no means is a contradiction. Infi-
nite values are observed in the cases where N,104 holds.
This is symbolized by the rising dotted line. The mentioned
ill definiteness of the traditional estimator is removed by
using the map s52d. Figure 3 shows that all three targeted
estimators are consistent even for small N in the sense that
the error bars overlap. Whereas the targeted forward and re-
verse estimators show to be decreasingly biased with increas-
ing N, the targeted two-sided estimator does not show any
noticeable bias at all. This example demonstrates how worth
it can be to take all three estimators, forward, reverse, and
two-sided, into account. The one-sided estimators are biased
in opposite directions and may serve as upper and lower
bounds for DF, Eq. s23d, whereas the two sided is typically
placed in between the one sided.

We conclude this example with explicit estimates ob-
tained from a single run with N=106, which are summarized
in Table I. The errors are derived using block averages f25g
and propagation of uncertainty.

B. Chemical potential of a homogeneous fluid

Consider a fluid of Np particles confined within a cubic
box of volume Vc= s2Rboxd

3 with pairwise interaction Vsrijd.

The configurational Hamiltonian for the Np-particle system
at x= sr1 , . . . ,rNp

d reads

HNp
sxd = o

i,j

Np

Vsrijd . s55d

The configurational density for the Np system is given by

rNp
sxd = e−bHNp

sxd
/ZNp

, s56d

with the partition function ZNp
=ee−bHNp

sxddx. Now consider
one particle is added: the position of this new particle may be
rNp+1

. The equilibrium density of the sNp+1d-particle system
reads

rNp+1
sxd = e−bHNp+1

sx,rNp+1
d
/ZNp+1

. s57d

Taking the ratio of the densities s56d and s57d leads to Wi-
dom’s particle insertion method f26g for estimating the ex-
cess chemical potential mex of the Np system, defined as the
excess of the chemical potential m to that of an ideal gas at
the same temperature and density. For sufficiently large Np,
mex can be approximated with

mex = −
1

b
ln

ZNp+1

ZNp
Vc

. s58d

Turning the tables, we use Eq. s58d to be the definition of the
quantity mex. The particle insertion method inserts at a ran-
dom position an extra particle to the Np system and measures
the increase of energy that results from this particle. Since
we consider a homogeneous fluid, we may as well fix the
position of insertion arbitrarily, for instance at the origin,
what is done in the following. We define system 1 through
the configuration-space density r1sxd as follows:

r1sxd = VcE dsrNp+1
drNp+1

sx,rNp+1
ddrNp+1

. s59d

The factor Vc ensures normalization. Written in the usual
form r1sxd=e−bH1sxd

/Z1, we have

H1sxd = HNp
sxd + o

k=1

Np

Vsrkd s60d

and Z1=ZNp+1
/Vc. System 1 can be understood as an equilib-

rium system of Np interacting particles in the external poten-
tial ok=1

Np Vsrkd, due to one extra particle fixed at the origin r

TABLE I. Cavity in a Lennard-Jones fluid. Estimated free-

energy differences bDF̂ for the expansion of a cavity, using targeted
and traditional estimators. N=106.

Method bDF̂

Traditional forward 7.50060.043

Targeted forward 7.43960.003

Targeted two sided 7.44060.002

Targeted reverse 7.42060.009

100 1000 10000 100000

7.0

7.5

8.0

N

β
∆

F

targ. forward

targ. two−sided

targ. reverse

trad. forward

FIG. 3. sColor onlined Free-energy estimates for the expansion
of a cavity in a Lennard-Jones fluid. Shown are the average values
of traditional and targeted estimates of DF in dependence of the
sample size N, with an errorbar of one standard deviation. In order
to distinguish the data points those corresponding to targeted esti-
mates are shifted to the right and are spread, whereas those corre-
sponding to traditional estimates are shifted to the left. For example,
all four data points in the vicinity of N=10 000 refer to N=10 000.
The dashed horizontal line represents a targeted two-sided estimate
with N=106, see Table I.
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=0. Further, we identify system 0 with the Np-particle system
and rewrite

r0sxd = rNp
sxd, H0sxd = HNp

sxd s61d

and Z0=ZNp
. The ratio of r0 and r1 has the familiar form of

Eq. s2d, with DF being identical to mex,

r0sxd

r1sxd
= ebfDHsxd−mexg. s62d

The energy difference DHsxd=H1sxd−H0sxd is the increase
of energy due to an added particle at the origin r=0,

DHsxd = o
k=1

Np

Vsrkd . s63d

Assume a finite potential Vsrd for nonvanishing r si.e., no
hard-core potentiald, but with a strong repulsive part for r
→0 sa so-called soft-core potentiald, e.g., a Lennard-Jones
potential. In this case, the configuration spaces of system 0
and 1 coincide, i.e., G0=G1. Thus a traditional estimate of
mex is in principle valid in both directions, forward and re-
verse. In the forward direction we have the equivalent to the

particle insertion method f26g, bmex̂
0
trad=−ln e−bDHsxd, but

with the fixed position of insertion r=0. Here x is drawn
from r0 and we will typically find a particle in a sphere of
radius r̄ centered at the origin. r̄ can roughly be estimated by
the mean next-neighbor distance sVc /Npd

1/3 of an ideal gas.
The dominant contributions to the exponential average come
from realizations x that resemble typical realizations of sys-
tem 1 f22g. However, typical realizations x of system 1 do
not contain any particle within a sphere of some radius rhc
centered at the origin, because of the extra particle fixed at
the origin and the strong repulsive part of the interaction. rhc
may be regarded as a temperature-dependent effective hard-
core radius of the interaction bVsrd. We conclude that the
insertion method is accurate and fast convergent only if rhc

3

! r̄3, i.e., for low densities. Concerning the reverse tradi-

tional estimator bmex̂
1
trad=ln ebDHsyd, where y is drawn from

r1, the same argumentation reveals the impossibility of ob-
taining an accurate estimate in this way. Effectively, the par-
ticles of system 1 cannot access the vicinity of the origin, no
matter how large the sample size will be. In this sense, G1
can be substituted with an effective G1

eff,G1=G0, implying
that the traditional reverse estimator tends to be inconsistent.

1. Constructing a map

Again, we use a map that changes each particle’s distance
to the origin separately, fsxd= sR1 , . . . ,RNp

d, with Rk

=csrkd
rk

rk
. In searching a suitable radial mapping function

csrd, we are guided by the mean radial properties of the
systems themselves. The radial probability density g0srd of
finding a particle in distance r from origin in system 0 is

g0srd =
1

Np
o
k=1

Np E dsrk − rdr0sxddx , s64d

and that for system 1 is

g1srd =
1

Np
o
k=1

Np E dsrk − rdr1sxddx . s65d

Due to the interaction with the extra particle fixed at the
origin in system 1, g1srd will in general be quite different
from g0srd. The latter is related to a homogeneous fluid and
is proportional to r2 sfor r,Rboxd, whereas the former refers
to an inhomogeneous one and is proportional to r2e−bVsrd in
the limit r→0 f26g. For large r, however, the influence of the
extra particle vanishes and g1srd→g0srd. Evaluation of the
definition s64d of g0 yields

g0srd =
r2

Vc

h0srd , s66d

where h0srd accounts for the decay of volume in the corners
of the confining box and is given by h0srd
=eeAsrd sin udfdu. The integration extends over the fraction
of surface Asrd of a sphere with radius r that lies inside the
confining box. Note that h0srd=4p for r,Rbox. In contrast to
g0, g1 depends on the interaction Vsrd. After some transfor-
mations of the right-hand side of Eq. s65d, g1 can be written

g1srd =
r2e−bVsrd

Vc

h1srd . s67d

The function h1srd can be written scf. f26gd

h1srd = e2bmex
h0srdKexpS− b o

k=1

Np−1

fVsrkd

+ Vsurk − rNp
udgDL

sNp−1d

, s68d

where the angular brackets denote an average with a Np−1
particle density according to Eq. s56d and the vector rNp

is
arbitrarily fixed, but of magnitude r. Further, the approxima-
tion Vc

2ZNp−1
/ZNp+1

<e2mex
is used.

We note that the ratio of g1srd /g0srd equals the well-
known radial distribution function of the Np+1-particle fluid,

Psrd =
g1srd

g0srd
. s69d

Figure 4 shows estimates of g0 and g1 for a dense Lennard-
Jones fluid with parameter values of argon fsee below Eq.
s48dg, obtained from Monte Carlo simulations.

Now define a function c*srd by requiring that it maps the
mean radial behavior of system 0 to that of system 1. This is
done by demanding

E
0

c*srd

g1stddt = E
0

r

g0stddt , s70d

which yields

]c*

]r
=

g0srd

g1„c*srd…
. s71d

In the limiting case of an ideal gas, g1=g0 holds and the map
becomes an identity, c*srd=r. Of practical interest are the
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cases where g1 is unknown and thus Eq. s70d cannot be used
to derive c*srd. However, the function c* can be estimated
with Monte Carlo simulations without knowledge of g1 and
g0 as follows.

Take a sufficiently large amount n of samples x j
= sr1j , . . . ,rNpj

d, j=1, . . . ,n, drawn from r0sxd together with
the same number of samples y j= sR1j , . . . ,RNpj

d drawn from
r1syd. Calculate the distances to the origin rij= uriju and Rij

= uRiju and combine all rij to the set sra ,rb ,rc . . . d, as well as
all Rij to the set sRa ,Rb ,Rc , . . . d. Provided in both sets the
elements are ordered ascending, raørbørcø . . . and Ra

øRbøRcø . . ., c* is simulated by constructing a one-to-one
correspondence ra→Ra, rb→Rb , . . . and estimating c*srad to
be Ra, a=a ,b ,c , . . .. In effect, we have drawn the ra and Ra

from the densities g0srd and g1srd, respectively, and have
established a one-to-one correspondence between the ordered
samples. We refer to this scheme as the simulation of the
map of g0 to g1.

The solid curve shown in Fig. 5 is the result of a simula-
tion of the function c* for a Lennard-Jones fluid sparameters
of argon, r*=0.9, T*=1.2d. The corresponding densities g0
and g1 are plotted in Fig. 4. Noticeable is the sudden “start”
of c* with a value of roughly s. This is due to the strong
repulsive part of the interaction that keeps particles in system
1 approximately a distance s away from the origin. There-
fore, the behavior of c*srd for r→0 is not obtainable from
finite-time simulations. However, the definition of c* implies
that for any soft-core potential c*s0d=0 holds. To model c*

for small r, the limit g1srd →

r→0

ar2e−bVsrd4p /Vc can be used,
where a is a constant. Thus, Eq. s70d can be written

fc*−1srdg3 = 3aE
0

r

r82e−bVsr8ddr8 s72d

in the limit r→0, with c*−1 being the inverse of c*. The
constant a is in general unknown, but here it can be chosen

such that a continuous fit to the simulated part of c*−1 is
obtained.

When the function c* is used in the configuration space
map f according to Eq. s50d, then, by definition of c*, the
radial density g̃0srd of the mapped distribution r̃0sxd, Eq. s8d,
is identical to the one of r1sxd,

g̃0sRd ª
1

Np
o
k

E dsuRku − Rdr̃0sfddf

=E dfcsr1d − Rgr0sxddx

=E E dfcsrd − Rgdsr1 − rdr0sxddxdr

=E dfcsrd − Rgg0srddr = g1sRd . s73d

Therefore we expect that the overlap of the mapped distribu-
tion r̃0 with r1 is larger than the overlap of the unmapped
distribution r0 with r1. However, it must be noted that the
use of c* in the map f is in general valid only in the limit of
an infinite large system sN ,Vc→`; N /Vc=constd, since we
have not yet taken into account the requirement that particles
may not be mapped out of the confining box. If Rbox is cho-
sen large enough, this might not be a serious problem, cf.
Fig. 5.

2. Application of the radial map c*

We now apply c* and estimate the chemical potential of a
dense Lennard-Jones fluid sr*=0.9, T*=1.2, parameters of
argond with Rbox=3.1056s and Np=216 particles. Configu-
rations are drawn from r0 and r1 using a Metropolis algo-
rithm with seven decorrelation sweeps between successive
drawings. From every drawn configuration there results one
value for the traditional work and one for the work related to

0 1 2 3 4
0

0.1

0.2

r/σ

Rbox/σ

g
0

g
1

0.1*g
1
/g

0

FIG. 4. sColor onlined The radial densities g1srd and g0srd for a
dense Lennard-Jones fluid sr*=0.9 and T*=1.2d, estimated from
simulated data. The ratio g1srd /g0srd equals the radial distribution
function.
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FIG. 5. sColor onlined Simulated radial mapping function c*srd
for a dense Lennard-Jones fluid ssolidd. c* maps the radial density
g0srd to g1srd, cf. Fig. 4. For the ideal gas, c* is the identity map
sdashedd.
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the map. The usual cutoff corrections f6g are applied. To
avoid mapping particles out of the confining box, we simu-
late the map on the interval 0ørøRbox subject to the con-
dition c*sRboxd=Rbox and use c*srd=r for r.Rbox. The de-
rivatives of c* and c*−1 are obtained numerically. For the
calculation of the work values in the simulation, the func-
tions c*srd and c*−1srd as well as their derivatives are dis-
cretized in steps Dr with Rbox /Dr=113104.

A comparison of the behavior of the targeted and tradi-
tional forward, reverse, and two-sided estimators in depen-
dence of the sample size N is given in Fig. 6 sfor the two-
sided estimators n0=n1=

N

2 is usedd. Each data point
represents the average value of zsNd independent estimates
mex̂sNd. The error bars display one standard deviation.
zsNd reads zsNd=450,250,45,5 for N=100,1000,10 000,
100 000, respectively.

As can be seen from Fig. 6, the traditional one-sided es-
timators behave quite different. The reverse estimator con-
verges extremely slow in comparison to the forward estima-
tor. This can be understood by comparing the average work
values Wi in forward si=0d and reverse si=1d direction, see
Table II. Since the absolute value of bDF=bmex is small, the
traditional reverse estimator practically never converges,
whereas for an accurate traditional forward estimate we need
some 105 work values, cf. Eqs. s34d and s35d. In contrast, the
targeted one-sided estimators both show a similar conver-
gence behavior if compared with each other. However, the
convergence is slow.

The two-sided estimators converge much faster, in par-
ticular, the targeted two-sided estimator converges fastest,

see Fig. 6. The convergence of the latter was checked with
the convergence measure asNd, Eq. s46d. For instance, the
convergence measure asNd takes the values 0.08 and 0.01 for
the traditional and the targeted estimator, respectively, if n0
=n1=

N

2 =10
5 configurations per direction are sampled.

Investigating the histograms of the generalized work dis-
tributions in the traditional and the targeted case visualizes
the effectiveness of the mapping. The histograms are similar
to those displayed in Fig. 8 for m=0 straditionald and m

=0.005 stargetedd.
A moderate gain in precision for the two-sided targeted

estimator is found if compared to the precision of the two-
sided traditional estimator which can be quantified with the

overlap measure Âol s43d. Namely, Âol=3.0310−4 for the

targeted case, and Âol=2.2310−4 for the traditional case.
We also studied other radial mapping functions c. Some

of them turned out to give much better results and are easier
to deal with.

3. Other radial mapping functions

The radial mapping function c* was obtained from simu-
lations, because the distribution g1srd is analytically un-
known. However, we are free to use any radial mapping
function csrd and can thus in turn fix the function g1 appear-
ing in Eq. s70d. To do this, we introduce the normalized,
positive definite function g18srd,

g18srd =
r2

c1
e−bfVsrd+Qsrdg, r P f0,Rboxg . s74d

Qsrd is an arbitrary finite function over s0,Rboxg and c1
=e0

Rboxr2e−bfVsrd+Qsrdgdr a normalization constant. Further, let
g08srd be a normalized quadratic density,

g08srd =
r2

c0
, r P f0,Rboxg , s75d

with c0=Rbox
3

/3.
The general smonotonically increasingd radial mapping

function csrd can be expressed in terms of the equation

E
0

csrd

g18stddt = E
0

r

g08stddt s76d

for rP f0,Rboxg. For r.Rbox it shall be understood that
csrd=r. Given the function Qsrd, c and c−1 are determined
uniquely by Eq. s76d. An advantage of defining c with Eq.
s76d is that the derivative ]c /]r is given in terms of V and Q,

]csrd

]r
=

r2

csrd2
ebhV„csrd…+Q„csrd…−fj, s77d

with f =− 1
b ln

c1

c0
. Using c in the configuration space map

fsxd according to Eq. s50d yields the work function

TABLE II. Estimated values of the mean forward and reverse
work, obtained from N=105 sampled work values each.

bW0 bW1

Traditional 1020 −9.8

Targeted 105 −106
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FIG. 6. sColor onlined Targeted estimates of the excess chemical
potential mex of a dense Lennard-Jones fluid sr*=0.9, T*=1.2d
compared to traditional estimates.
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DH̃sxd = o
i,j

Np

hVsuRi − R jud − Vsuri − r judj

− o
riøRbox

hQ„csrid… − fj . s78d

Here Ri is understood to be Ri=csrid
ri

ri
, and the sum in the

second line extends only over those particles for which r

øRbox holds. Note that the potential-energy contribution of
the extra particle fixed at the origin is eliminated in the work
function, due to the definition of c. However, in Eq. s78d we
have already assumed Vsrd to be cut off at r=Rbox, i.e.,
Vsrd=0 for rùRbox. Otherwise we had to add
ori.Rbox

V(csrid)=ori.Rbox
Vsrid to the right-hand side of Eq.

s78d.

4. A family of maps

We now introduce a family hcmj of radial mapping func-
tions, where each member cm is defined by Eq. s76d with the
choice

Qsrd = sm − 1dVsrd s79d

in the expression s74d. This choice is motivated by the fol-
lowing: Consider a one particle system, Np=1. In this case
the optimal radial map can be computed analytically and
results in g18srd=

r2

c1
e−bVsrd. We formally use this map for a

system of Np@1 particles, but weaken the potential Vsrd by
multiplying it with a small parameter m, i.e., g18srd
= r2

c1
e−bmVsrd, since the potential is screened by the Np−1 other

particles. This results in Eq. s79d. Useful maps are obtained
for mP f0,1g. Since we have no a priori knowledge on the
optimal value of m, we determine the best value of m nu-
merically.

Figure 7 depicts some members of the family hcmj for
Lennard-Jones interaction swith parameters of argond. Again,
we apply these functions discretized sin steps Dr with

Rbox /Dr=113104d in the calculation of the targeted forward

and reverse work DH̃sxd and DH̃(f−1sxd). Any pair of for-
ward and reverse targeted work distributions belonging to the
same value of m obeys the fluctuation theorem s19d. In par-
ticular they cross at W=mex sDF=mex hered, see Fig. 9. Nev-
ertheless, the shape of these distributions is sensitive to the
value of m. This is demonstrated in Fig. 8. There, normalized
histograms of bW are shown. They result from 104 work
values per m and per direction. We emphasize that all of the
targeted forward sreversed work values were obtained with
one sample of N=104 configurations x from r0 sr1d. Figure 9
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FIG. 7. sColor onlined Members of the family of radial mapping
functions cm for the Lennard-Jones potential. For m→0, cm con-
verges to the identity map c0srd=r.
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work distributions.d
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FIG. 9. sColor onlined A detailed enlargement of forward sas-
cending linesd and reverse sdescending linesd work distributions of
the Lennard-Jones fluid sr*=0.9, T*=1.2d for two different radial
mapping functions cm. Notice the enhancement of overlap for m
=0.0005. The vertical dashed line displays the estimated two-sided

targeted value, bmex̂
01=1.91.
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is a detailed enlargement where a sample of n0=n1=10
6 for-

ward sreversed configurations is used.
Instructive is the comparison of the mean work kWl re-

lated to different values of m. In Fig. 10 estimated values of
mean work are shown in dependence of m. From these val-
ues one sees that the dissipation is minimal for m=0 in the
reverse direction. Therefore, the best one-sided targeted esti-
mate of mex among the family hcmj is obtained with m=0 in
forward direction, i.e., with the traditional particle insertion.
However, the same is not true for two-sided estimates. Using
the same data as before and performing two-sided estimates
with n0=n1=

N

2 =10
4 work values per direction, we obtain the

displayed values mex̂
01 of Fig. 11. In order to compare the

performance of two-sided estimators for different maps, we
estimate the overlap measures Aol. The latter are shown in
Fig. 10. The maximum value for Aol is found with m being
0.0005. This indicates that m<0.0005 is the optimal choice
for m. The estimates Âol are used to calculate the mean
square errors X01 of the estimates mex̂

01. The square roots of
the X01 enter in Fig. 11 as error bars.

We are left to check the convergence properties of two-
sided estimators. Figure 12 displays the convergence mea-
sure asNd for some parameter values m. Best convergence is
found for m=0.0005 snot shown in Fig. 12, but very similar
to m=0.001d. The same value of the mapping parameter m
was found to maximize the overlap Aol.

Employing the optimal value 0.0005 for the mapping pa-
rameter and using n0=n1=

N

2 =10
6 forward and reverse

samples, we have computed the chemical potential. The re-
sults are given in Table III. The listed error is the square root

of the X01 according to Eq. s42d with Aol= Âol. This is justi-
fied with the observed values of the convergence measure a

which are listed in the table, too.

It should be mentioned that the optimal value of m found
here is not universal, but depends on the density r*. If an-
other value is chosen for r*, the optimal m can again be
found from numerical simulations. Note that the maps used
here can be applied to simulations where particles are in-
serted and deleted at random f26g, too. One simply has to use
the point of insertion sdeletiond as temporary origin of the
coordinate system and apply the map there. This might en-
hance the efficiency of the simulation.
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FIG. 10. sColor onlined The average generalized work kWl0 and
kWl1 in forward and reverse direction, respectively, and the two-
sided overlap measure Aol in dependence of the mapping parameter
m. The forward dissipation is reduced up to 18 orders of magnitude
if compared with the traditional dissipation, cf. Table II. Among the
one-sided estimators the best is found for m=0 in forward direction.
The optimal two-sided estimator results from using the m that maxi-
mizes Aol.
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FIG. 11. sColor onlined Two-sided estimates of mex as function
of the mapping parameter m out of n0=n1=

N

2 =10
4 work values per

direction for each m. The value of the traditional estimate sm=0d is

mex̂
01=4.062.0. The error bars show the square root of the esti-

mated mean square errors X01. For comparison, the dashed line
represents a two-sided estimate with N

2 =10
6 and m=0.0005 sstan-

dard deviation 0.03d.
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VIII. CONCLUSION

The central result of this paper, a fluctuation theorem for
generalized work distributions, allowed us to establish an
optimal targeted two-sided estimator of the free-energy dif-
ference DF. We have numerically tested this estimator and
found it to be superior with respect to one-sided and nontar-
geted estimators. In addition we have demonstrated that this
estimator can be applied successfully to estimate the chemi-
cal potential of a Lennard-Jones fluid in the high density
regime.

In order to use the targeted two-sided estimator it is how-
ever crucial to use a suitable map. We have investigated the
construction of maps and developed appropriate measures
which enabled a quantitative comparison of the performance
of different maps. Especially, a measure for the convergence
of the two-sided estimate was designed. This points the way
for better results when free-energy differences or chemical
potentials need to be estimated numerically.
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APPENDIX: CONSTRAINT MAXIMUM LIKELIHOOD

DERIVATION OF THE TWO-SIDED ESTIMATOR

Deriving the optimal estimator of DF, given a collection
of n0 forward hWi

0j and n1 reverse hW j
1j work values drawn

from psW u0d and psW u1d, respectively, leads to Bennett’s
acceptance ratio method f13g with the target map included.

In Sec. IV, the mixed ensemble is introduced, where the
elements are given by pairs of values sW ,Yd of work and
direction, and which is specified by the probabilities of di-
rection pY and the densities psW uYd. With the mixture en-
semble, the mixing ratio

p1

p0
can be chosen arbitrarily. Crucial

about the mixture ensemble is that, according to the fluctua-
tion theorem s19d, the analytic form of the conditional prob-
abilities psY uWd can be derived explicitly, regardless of
whether psW uYd is known, see Sec. IV. This provides a natu-
ral way to construct a constraint maximum likelihood esti-
mator f27–29g for DF.

Since it is only possible to draw from the ensembles
psW uYd, but not from psY uWd, Y=0,1, the proper log-
likelihood is

ln L = o
i=1

n0

ln psWi
0u0d + o

j=1

n1

ln psW j
1u1d . sA1d

A direct maximization of Eq. sA1d with respect to DF is
impossible without knowledge of the analytic form of the
probability densities psW uYd. However, according to Bayes
theorem s24d the likelihood can be split into

ln L = ln LpostsDFd + ln Lprior + ln LpY
sA2d

with

ln LpostsDFd = o
i=1

n0

ln ps0uWi
0d + o

j=1

n1

ln ps1uW j
1d , sA3d

ln Lprior = o
k=1

n0+n1

ln psWkd , sA4d

and

ln LpY
= n0 ln

1

p0
+ n1 ln

1

p1
, sA5d

where the sum in the prior likelihood sA4d runs over all n
observed forward and reverse work values.

Since the definite form of psWd is unknown, we treat it in
the manner of an unstructured prior distribution and maxi-
mize sA2d with respect to the constant DF and to the func-
tion psWd f29g. Thereby,

1 =E psWddW sA6d

and

p1 =E ps1uWdpsWddW sA7d

enter as constraints. Using Lagrange parameters l and m, the
constrained likelihood reads

ln L
c = ln L + lSp1 −E ps1uWdpsWddWD

+ mS1 −E psWddWD . sA8d

The conditional direction probabilities psY uWd are known
explicitly in dependence of DF, Eq. s28d, and their partial
derivatives read 1

b
]

]DF ln ps0 uWd=−ps1 uWd and
1
b

]

]DF ln ps1 uWd=ps0 uWd=1−ps1 uWd. This allows one to ex-
tremize the constraint likelihood sA8d with respect to DF,

0 =
1

b

]

]DF
ln L

c = n1 − o
k=1

n0+n1

ps1uWkd

− lE f1 − ps1uWdgps1uWdpsWddW . sA9d

Extremizing the conditional likelihood sA8d with respect to
the function psWd gives

TABLE III. Two-sided estimates mex̂
01 of the excess chemical

potential of a Lennard-Jones fluid sr*=0.9, T*=1.2d. Also listed is
the two-sided overlap measure Aol and the convergence measure a.
For the targeted estimate the radial mapping function cm with m

=0.0005 is used. The number of work values in each direction is
106 and the number of particles in the simulation is Np=216.

bmex̂
01 104Âol a

Traditional 1.8860.08 2.4 0.05

Targeted 1.9160.03 19 −0.02
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0 =
d

dpsWd
ln L

c =
1

psWdok=1

n

dsW −Wkd − lps1uWd − m ,

sA10d

which can be solved in psWd,

psWd =
okdsW −Wkd

lps1uWd + m
, sA11d

or written as

lps1uWdpsWd = − mpsWd + o
k

dsW −Wkd . sA12d

If interested in the values of the Lagrange multipliers l
and m, one multiplies Eq. sA10d with psWd and integrates.
This yields

0 = n − lp1 − m . sA13d

A second independent equation follows from inserting Eq.
sA12d into Eq. sA9d which results in

0 = n1 + m − mp1 − n , sA14d

and the Lagrange multipliers take the values

m =
n0

p0
and l =

np0 − n0

p0p1
. sA15d

With the distribution sA11d the constraints sA6d and sA7d
read

1 = o
k

1

lps1uWkd + m
sA16d

and

p1 = o
k

ps1uWkd

lps1uWkd + m
=
p1

n1
o
k

pBs1uWkd , sA17d

where pBs1 uWd denotes ps1 uWd with C=DF+ 1
b ln

n1

n0
. When-

ever the constraint sA17d is fulfilled, the constraint sA16d
and the variational equations sA9d and sA10d are automati-
cally satisfied. In consequence, Eq. sA17d defines the con-
strained maximum likelihood estimate of DF. Note that the
estimator sA17d is independent of the choice of

p1

p0
. More-

over, Eq. sA17d is equivalent to Eq. s29d regardless of the
choice of

p1

p0
.

An alternative derivation of the estimator sA17d was pre-
sented by Shirts et al. f15g. There, the specific choice

p1

p0

=
n1

n0
was necessary. With this choice, the Lagrange parameter

l is identical to zero. Hence, there is no need to take any
constraint into consideration and the posterior likelihood
sA3d results directly in the estimator of DF.
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A powerful and well-established tool for free-energy estimation is Bennett’s acceptance ratio method. Cen-

tral properties of this estimator, which employs samples of work values of a forward and its time-reversed

process, are known: for given sets of measured work values, it results in the best estimate of the free-energy

difference in the large sample limit. Here we state and prove a further characteristic of the acceptance ratio

method: the convexity of its mean-square error. As a two-sided estimator, it depends on the ratio of the

numbers of forward and reverse work values used. Convexity of its mean-square error immediately implies that

there exists a unique optimal ratio for which the error becomes minimal. Further, it yields insight into the

relation of the acceptance ratio method and estimators based on the Jarzynski equation. As an application, we

study the performance of a dynamic strategy of sampling forward and reverse work values.

DOI: 10.1103/PhysRevE.80.031111 PACS numberssd: 02.50.Fz, 05.40.2a, 05.70.Ln

I. INTRODUCTION

A quantity of central interest in thermodynamics and sta-

tistical physics is the sHelmholtzd free energy, as it deter-

mines the equilibrium properties of the system under consid-

eration. In practical applications, e.g., drug design, molecular

association, thermodynamic stability, and binding affinity, it

is usually sufficient to know free-energy differences. As re-

cent progress in statistical physics has shown, free-energy

differences, which refer to equilibrium, can be determined

via nonequilibrium processes f1,2g.
Typically, free-energy differences are beyond the scope of

analytic computations and one needs to measure them ex-

perimentally or compute them numerically. Highly efficient

methods have been developed in order to estimate free-

energy differences precisely, including thermodynamic inte-

gration f3,4g, free-energy perturbation f5g, umbrella sam-

pling f6–8g, adiabatic switching f9g, dynamic methods

f10–12g, asymptotics of work distributions f13g, optimal pro-

tocols f14g, targeted, and escorted free-energy perturbation

f15–19g.
A powerful f20–22g and frequently f23–25g used method

for free-energy determination is two-sided estimation, i.e.,

Bennett’s acceptance ratio method f26g, which employs a

sample of work values of a driven nonequilibrium process

together with a sample of work values of the time-reversed

process f27g.
The performance of two-sided free-energy estimation de-

pends on the ratio

r =
n1

n0

s1d

of the number of forward and reverse work values used.

Think of an experimenter who wishes to estimate the free-

energy difference with Bennett’s acceptance ratio method

and has the possibility to generate forward as well as reverse

work values. The capabilities of the experiment give rise to

an obvious question: if the total amount of draws is intended

to be N=n0+n1, which is the optimal choice of partitioning

N into the numbers n0 of forward and n1 of reverse work

values or, equivalently, what is the optimal choice ro of the

ratio r? The problem is to determine the value of r that

minimizes the sasymptoticd mean-square error of Bennett’s

estimator when N=n0+n1 is held constant.

While known since Bennett f26g, the optimal ratio is un-

derutilized in the literature. Bennett himself proposed to use

a suboptimal equal-time strategy, instead, because his esti-

mator for the optimal ratio converges too slowly in order to

be practicable. Even questions as fundamental as the exis-

tence and uniqueness are unanswered in the literature. More-

over, it is not always clear a priori whether two-sided free-

energy estimation is better than one-sided exponential work

averaging. For instance, Shirts and Pande presented a physi-

cal example where it is optimal to draw work values from

only one direction f28g.
The paper is organized as follows. In Secs. II and III we

rederive two-sided free-energy estimation and the optimal

ratio. We also remind that two-sided estimation comprises

one-sided exponential work averaging as limiting cases for

ln r→ 6`, a result that is also true for the mean-square

errors of the corresponding estimators.

The central result is stated in Sec. IV: the asymptotic

mean-square error of two-sided estimation is convex in the

fraction
n0

N
of forward work values used. This fundamental

characteristic immediately implies that the optimal ratio ro
exists and is unique. Moreover, it explains the generic supe-

riority of two-sided estimation if compared with one sided,

as found in many applications.

To overcome the slow convergence of Bennett’s estimator

of the optimal ratio, which is based on estimating second

moments, in Sec. V we transform the problem into another

form such that the corresponding estimator is entirely based

on first moments, which enhances the convergence enor-

mously.

As an application, in Sec. VII we present a dynamic strat-

egy of sampling forward and reverse work values that maxi-

mizes the efficiency of two-sided free-energy estimation.
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retische Physik, 10623 Berlin, Germany.
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II. TWO-SIDED FREE-ENERGY ESTIMATION

Given a pair of samples of n0 forward and n1 reverse work

values drawn from the probability densities p0swd and p1swd
of forward and reverse work values and provided the latter

are related to each other via the fluctuation theorem f2g,

p0swd

p1swd
= ew−Df , s2d

Bennett’s acceptance ratio method f20,26,27,29g is known to

give the optimal estimate of the free-energy difference Df in

the limit of large sample sizes. Throughout the paper, Df

=DF /kT and w=W /kT are understood to be measured in

units of the thermal energy kT. The normalized probability

densities p0swd and p1swd are assumed to have the same

support V, and we choose the following sign convention:

p0swdªpforwards+wd and p1swdªpreverses−wd.
Now define a normalized density paswd with

paswd =
1

Ua

p0swdp1swd

ap0swd + bp1swd
, s3d

wPV, where aP f0,1g is a real number and

a + b = 1. s4d

The normalization constant Ua is given by

Ua = E
V

p0p1

ap0 + bp1

dw . s5d

The density paswd is a normalized harmonic mean of p0 and

p1,
p0p1

ap0+bp1
= fa 1

p1
+b

1

p0
g−1, and thus bridges between p0 and

p1 ssee Fig. 1d. In the limit a→0, paswd converges to the

forward work density p0swd and, conversely, for a→1 it

converges to the reverse density p1swd. As a consequence of

the inequality of the harmonic and arithmetic mean fa 1

p1

+b
1

p0
g−1#ap1+bp0, Ua is bounded from above by unity,

Ua # 1, s6d

∀aP f0,1g. Except for a=0 and a=1, the equality holds if

and only if p0;p1. Using the fluctuation theorem s2d, Ua can

be written as an average in p0 and p1,

Ua = K 1

a + be−w+DfL
1

= K 1

b + aew−DfL
0

, s7d

where the angular brackets with subscript gP f0,1g denote

an ensemble average with respect to pg, i.e.,

kglg = E
V

gswdpgswddw , s8d

for an arbitrary function gswd.
In setting a=1, Eq. s7d reduces to the nonequilibrium

work relation f1g,

1 = ke−w+Dfl0, s9d

in the forward direction and, conversely, with a=0 we obtain

the nonequilibrium work relation in the reverse direction,

1 = kew−Dfl1. s10d

The last two relations can, of course, be obtained more di-

rectly from the fluctuation theorem s2d. An important appli-

cation of these relations is the one-sided free-energy estima-

tion. Given a sample hw1
0 . . .wN

0 j of N forward work values

drawn from p0, Eq. s9d is commonly used to define the for-

ward estimate D f̂0 of Df with

D f̂0 = − ln
1

N
o
k=1

N

e−wk
0

. s11d

Conversely, given a sample hw1
1 . . .wN

1 j of N reverse work

values drawn from p1, Eq. s10d suggests the definition of the

reverse estimate D f̂1 of Df ,

D f̂1 = ln
1

N
o
l=1

N

ewl
1

. s12d

If we have drawn both, a sample of n0 forward and a

sample of n1 reverse work values then Eq. s7d can serve us to

define a two-sided estimate D f̂ of Df by replacing the en-

semble averages with sample averages,

1

n1
o
l=1

n1
1

a + be−wl
1
+Df̂

=
1

n0
o
k=1

n0
1

b + aewk
0
−Df̂

. s13d

D f̂ is understood to be the unique root of Eq. s13d, which

exists for any aP f0,1g. Different values of a result in dif-

ferent estimates for Df . Choosing

a =
n0

N
, b =

n1

N
, s14d

N=n0+n1, the estimate s13d coincides with Bennett’s optimal

estimate, which defines the two-sided estimate with a least

asymptotic mean-square error for a given value a=
n0

N
or,

equivalently, for a given ratio r=
b

a =
n1

n0
f20,26g. We denote

the optimal two-sided estimate, i.e., the solution of Eq. s13d

under the constraint s14d, by D f̂1−a and simply refer to it as

the two-sided estimate. Note that the optimal estimator can

be written in the familiar form

1/2p

0.9999p

p0.0001

p1

0p

w

w
o

rk
p

ro
b

ab
il

it
y

d
en

si
ty

FIG. 1. sColor onlined The overlap density paswd bridges the

densities p0swd and p1swd of forward and reverse work values, re-

spectively. a is the fraction
n0

n0+n1
of forward work values, here sche-

matically shown for a=0.0001, a=0.5, and a=0.9999. The accu-

racy of two-sided free-energy estimates depends on how good

paswd is sampled when drawing from p0swd and p1swd.
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o
l=1

n1
1

1 + e−wl
1
+Df̂+ln n1/n0

= o
k=1

n0
1

1 + ewk
0
−Df̂−ln n1/n0

. s15d

In the limit a=
n0

N
→1, the two-sided estimate reduces to

the one-sided forward estimate s11d, D f̂1−a →

a→1

D f̂0, and, con-

versely, D f̂1−a →

a→0

D f̂1. Thus, the one-sided estimates are the

optimal estimates if we have given draws from only one of

the densities p0 or p1.

A characteristic quantity to express the performance of the

estimate D f̂1−a is the mean-square error,

ksD f̂1−a − Dfd2l , s16d

which depends on the total sample size N=n0+n1 and the

fraction a=
n0

N
. Here, the average is understood to be an en-

semble average in the value distribution of the estimate

D f̂1−a for fixed N and a. In the limit of large n0 and n1, the

asymptotic mean-square error X swhich then equals the vari-

anced can be written as f20,26g

XsN,ad =
1

N

1

ab
S 1

Ua

− 1D . s17d

Provided the right-hand side of Eq. s17d exists, which is

guaranteed for any aP s0,1d, the N dependence of X is sim-

ply given by the usual
1

N
factor, whereas the a dependence is

determined by the function Ua given in Eq. s5d. Note that if

a two-sided estimate D f̂1−a is calculated then essentially the

normalizing constant Ua is estimated from two sides 0 and 1

fcf. Eqs. s7d and s13dg. With an estimate D f̂1−a, we therefore

always have an estimate of the mean-square error at hand.

However, the reliability of the latter naturally depends on the

degree of convergence of the estimate D f̂1−a. The conver-

gence of the two-sided estimate can be checked with the

convergence measure introduced in Ref. f19g.
In the limits a=

n0

N
→1 and a→0, respectively, the

asymptotic mean-square error X of the two-sided estimator

converges to the asymptotic mean-square error of the appro-

priate one-sided estimator f30g,

lim
a→1

XsN,ad =
1

N
Var0S p1

p0

D =
1

N
Var0se

−w+Dfd , s18d

and

lim
a→0

XsN,ad =
1

N
Var1S p0

p1

D =
1

N
Var1se

w−Dfd , s19d

where Varg denotes the variance operator with respect to the

density pg, i.e.,

Vargsgd = ksg − kglgd2lg, s20d

for an arbitrary function gswd and gP f0,1g.

III. THE OPTIMAL RATIO

Now we focus on the question raised in the introduction:

which value ao of a in the range f0,1g minimizes the mean-

square error s17d when the total sample size N=n0+n1 is

held fixed?

Let M be the rescaled asymptotic mean-square error given

by

Msad = NXsN,ad , s21d

which is a function of a only. Assuming aoP s0,1d, a nec-

essary condition for a minimum of M is that the derivative

M8sad= dM

da of M vanishes at ao. Before calculating M8 ex-

plicitly, it is beneficial to rewrite M by using the identity

Ua = E
V

p0p1sap0 + bp1d

sap0 + bp1d
2

dw

= aK p0
2

sap0 + bp1d
2L

1

+ bK p1
2

sap0 + bp1d
2L

0

. s22d

Subtracting sa+bdUa
2 =Ua

2 from Eq. s22d and recalling the

definition s3d of pa, one obtains

Uas1 − Uad = fau1sad + bu0sadgUa
2 , s23d

where the functions ui are defined as

u1sad = Var1S pa

p1

D =
1

Ua
2
Var1S 1

a + be−w+DfD ,

u0sad = Var0S pa

p0

D =
1

Ua
2
Var0S 1

b + aew−DfD . s24d

u0 and u1 describe the relative fluctuations of the quantities

that are averaged in the two-sided estimation of Df fcf. Eq.
s13dg.

With the use of formula s23d, M can be written as

Msad =
u0sad

a
+

u1sad

b
, s25d

and the derivative yields

M8sad =
u1sad

b2
−

u0sad

a2
+

bu08sad + au18sad

ab
. s26d

The derivatives of the u functions involve the first two de-

rivatives of Ua, which will thus be computed first,

Ua8 ª

d

da
Ua = E

V

p0p1sp1 − p0d

sap0 + bp1d
2
dw , s27d

and

Ua9 ª

d2

da2
Ua = 2E

V

p0p1sp1 − p0d
2

sap0 + bp1d
3
dw . s28d

From this equation, it is clear that Ua is convex in a, Ua9

$0, with a unique minimum in s0,1d sas U0=U1=1d. We can

rewrite the u functions with Ua and Ua8 as follows:

u1sad =
Ua − bUa8

Ua
2

− 1,
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u0sad =
Ua + aUa8

Ua
2

− 1. s29d

Differentiating these expressions gives

u18sad = −
b

Ua
3

sUa9Ua − 2Ua8
2d ,

u08sad =
a

Ua
3

sUa9Ua − 2Ua8
2d . s30d

u0 and u1 are monotonically increasing and decreasing, re-

spectively. This immediately follows from writing the term

occurring in the brackets of Eqs. s30d as a variance in the

density pa,

Ua9Ua − 2Ua8
2 = 2 VaraS p1 − p0

ap0 + bp1

DUa
2 , s31d

which is thus positive.

As a consequence of Eq. s30d, the relation

bu08sad + au18sad = 0 ∀ a P f0,1g s32d

holds and M8 reduces to

M8sad =
u1sad

b2
−

u0sad

a2
. s33d

The derivatives of the u functions do not contribute to M8

due to the fact that the specific form of the two-sided esti-

mator s13d originates from minimizing the asymptotic mean-

square error scf. f26gd. The necessary condition for a local

minimum of M at ao, M8saod=0, now reads as

bo
2

ao
2
=

u1saod

u0saod
, s34d

where bo=1−ao is introduced. Using Eqs. s24d and s2d, the
condition s34d results in

Var1S 1

1 + e−w+Df+ln ro
D = Var0S 1

1 + ew−Df−ln ro
D . s35d

This means, the optimal ratio ro is such that the variances of

the random functions, which are averaged in the two-sided

estimation s15d, are equal. However, the existence of a solu-

tion of M8sad=0 is not guaranteed in general.

Writing Eq. s35d in the form

Var1S p1 − p0

ap0 + bp1

D = Var0S p1 − p0

ap0 + bp1

D s36d

prevents the equation from becoming a tautology.

IV. CONVEXITY OF THE MEAN-SQUARE ERROR

Theorem. The asymptotic mean-square error Msad is con-

vex in a.

In order to prove the convexity, we introduce the operator

Gasfd, which is defined for an arbitrary function fswd by

Gasfd = b Var0sfd + a Var1sfd − Ua Varasfd . s37d

Lemma. Ga is positive semidefinite, i.e.,

Gasfd $ 0 ∀ fswd . s38d

For aP s0,1d and fswdÞconst, the equality holds if and only

if p0;p1.

Proof of the Lemma. Let dfg= fswd− kflg, gP f0,1g. Then

Gasfd = E
V

Sbdf0
2p0 + adf1

2p1 − dfa
2 p0p1

ap0 + bp1

Ddw
= E

V

sbdf0
2p0 + adf1

2p1dsap0 + bp1d − dfa
2
p0p1

ap0 + bp1

dw

= abE
V

sdf1p1 − df0p0d
2

ap0 + bp1

dw + Uasbkfl0 + akfl1

− kflad2, s39d

which is clearly positive. Provided fÞconst and aÞ0,1, the

integrand in the last line is zero ∀w if and only if p0;p1.

This completes the proof of the lemma. h

Proof of the Theorem. Consulting Eqs. s33d and s32d, the
second derivative of M reads as

M9sad = 2Su1sad

b3
+

u0sad

a3 D −
1

a2b
u08sad . s40d

Expressing p0=p−bd and p1=p+ad in center and relative

“coordinates” p=ap0+bp1 and d=p1−p0, respectively, gives

u1sad =
1

Ua
2
Var1S p0

p
D =

b2

Ua
2
Var1Sd

p
D ,

u0sad =
1

Ua
2
Var0S p1

p
D =

a2

Ua
2
Var0Sd

p
D ,

u08sad =
2a

Ua

VaraSd
p
D . s41d

Therefore,
1

2
abUa

2M9=Gas d
p
d, which is positive according to

the lemma. h

The convexity of the mean-square error is a fundamental

characteristic of Bennett’s acceptance ratio method. This

characteristic allows us to state a simple criterion for the

existence of a local minimum of the mean-square error in

terms of its derivatives at the boundaries. Namely, if

M8s0d = Var1se
w−Dfd − Var0se

w−Dfd s42d

is negative and

M8s1d = Var1se
−w+Dfd − Var0se

−w+Dfd s43d

is positive there exists a local minimum of Msad for a
P s0,1d. Otherwise, no local minimum exists and the global

minimum is found on the boundaries of a: if M8s0d.0, the

global minimum is found for a=0; thus, it is optimal to

measure work values in the reverse direction only and to use

the one-sided reverse estimator s12d. Else, if M8s1d,0, the

global minimum is found for a=1, implying the one-sided

forward estimator s11d to be optimal.
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In addition, the convexity of the mean-square error proves

the existence and uniqueness of the optimal ratio since a

convex function has a global minimum on a closed interval.

Corollary. If a solution of M8sad=0 exists, it is unique

and Msad attains its global minimum saP f0,1gd there.

V. ESTIMATING THE OPTIMAL RATIO WITH FIRST

MOMENTS

In situations of practical interest, the optimal ratio is not

available a priori. Thus, we are going to estimate the optimal

ratio. There exist estimators of the optimal ratio since Ben-

nett. In addition, we have just proven that the optimal ratio

exists and is unique. However, there is still one obstacle to

overcome. Yet, all expressions for estimating the optimal ra-

tio are based on second moments fsee, e.g., Eq. s35dg. Due to

convergence issues, it is not practicable to base any estimator

on expressions that involve second moments. The estimator

would converge far too slowly. For this reason, we transform

the problem into a form that employs first moments only.

Assume we have given n0 and n1 work values in forward

and reverse direction, respectively, and want to estimate Ua,

with 0#a#1. According to Eq. s7d, we can estimate the

overlap measure Ua by using draws from the forward direc-

tion,

Ûa
s0d =

1

n0
o
k=1

n0
1

b + aewk
0
−Df̂

, s44d

where b equals 1−a and for D f̂ the best available estimate of

Df is inserted, i.e., the two-sided estimate based on the n0

+n1 work values. Similarly, we can estimate the overlap

measure by using draws from the reverse direction,

Ûa
s1d =

1

n1
o
l=1

n1
1

a + be−wl
1
+Df̂

. s45d

Since in general draws from both directions are available, it

is reasonable to take an arithmetic mean of both estimates

Ûa = aÛa
s1d + bÛa

s0d, s46d

where the weighting is chosen such that the better estimate

Ûa
s0d or Ûa

s1d contributes stronger: with increasing a the esti-

mate Ûa
s1d becomes more reliable, as Ua is the normalizing

constant of the bridging density pa fEq. s3dg and pa →

a→1

p1,

and conversely for decreasing a.

From the estimate of the overlap measure, we can esti-

mate the rescaled mean-square error by

M̂sad =
1

abS 1

Ûa

− 1D s47d

for all aP s0,1d, a result that is entirely based on first mo-

ments. The infimum of M̂sad finally results in an estimate âo

of the optimal choice ao of
n0

N
,

âo: ⇔ M̂sâod = inf
a

M̂sad . s48d

When searching for the infimum, we also take

M̂s0d =
1

n0
o
k=1

n0

ewk
s0d

−Df̂
−

1

n1
o
l=1

n1

ewl
s1d

−Df̂
,

M̂s1d =
1

n1
o
l=1

n1

e−wl
s1d

+Df̂
−

1

n0
o
k=1

n0

e−wk
s0d

+Df̂
, s49d

into account which follow from a series expansion of Eq.

s47d in a at a=0 and a=1, respectively.

VI. INCORPORATING COSTS

The costs of measuring a work value in forward direction

may differ from the costs of measuring a work value in re-

verse direction. The influence of costs on the optimal ratio of

sample sizes is investigated here.

Different costs can be due to a direction dependent effort

of experimental or computational measurement of work sun-
folding a RNA may be much easier than folding itd. We

assume the work values to be uncorrelated, which is essential

for the validity of the theory presented in this paper. Thus, a

source of nonequal costs, which arises especially when work

values are obtained via computer simulations, is the differ-

ence in the strength of correlations of consecutive Monte

Carlo steps in forward and reverse direction. To achieve un-

correlated draws, the “correlation lengths” or “correlation

times” have to be determined within the simulation too.

However, this is advisable in any case of two-sided estima-

tion, independent of the sampling strategy.

Let c0 and c1 be the costs of drawing a single forward and

reverse work value, respectively. Our goal is to minimize the

mean-square error X=
1

N
M while keeping the total costs c

=n0c0+n1c1 constant. Keeping c constant results in

Nsc,ad =
c

ac0 + bc1
, s50d

which in turn yields

Xsc,ad =
1

Nsc,ad
Msad . s51d

If a local minimum exists, it results from
]

]aXsc ,ad=0,

which leads to

bo
2

ao
2
=
c0u1saod

c1u0saod
, s52d

a result Bennett was already aware of f26g. However, based

on second moments, it was not possible to estimate the op-

timal ratio ro accurately and reliably. Hence, Bennett pro-

posed to use a suboptimal equal-time strategy or equal cost

strategy, which spends an equal amount of expenses to both

directions, i.e., n0c0=n1c1=
c

2
or
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bec

aec

=
c0

c1
, s53d

where aec=1−bec is the equal cost choice for a=
n0

N
. This

choice is motivated by the following result:

Xsc,ad $
1

2
Xsc,aecd ∀ a P f0,1g , s54d

which states that the asymptotic mean-square error of the

equal cost strategy is at most suboptimal by a factor of 2

f26g. Note, however, that the equal cost strategy can be far

more suboptimal if the asymptotic limit of large sample sizes

is not reached.

Since we can base the estimator for the optimal ratio ro on

first moments ssee Sec. Vd, we propose a dynamic strategy

that performs better than the equal cost strategy. The infi-

mum of

X̂sc,ad =
ac0 + bc1

c
M̂sad s55d

results in the estimate âo of the optimal choice ao of
n0

N
,

âo: ⇔ X̂sc,âod = inf
a

X̂sc,ad . s56d

We remark that opposed to Msad, Xsc ,ad is not necessarily

convex. However, a global minimum clearly exists and can

be estimated.

VII. A DYNAMIC SAMPLING STRATEGY

Suppose we want to estimate the free-energy difference

with the acceptance ratio method but have a limit on the total

amount of expenses c that can be spend for measurements of

work. In order to maximize the efficiency, the measurements

are to be performed such that
n0

N
finally equals the optimal

fraction ao of forward measurements.

The dynamic strategy is as follows:

s1d In absence of preknowledge on ao, we start with Ben-

nett’s equal cost strategy s53d as an initial guess of ao.

s2d After drawing a small number of work values, we

make preliminary estimates of the free-energy difference, the

mean-square error, and the optimal fraction ao.

s3d Depending on whether the estimated rescaled mean-

square error M̂sad is convex, which is a necessary condition

for convergence, our algorithm updates the estimate âo of

ao.

s4d Further work values are drawn such that
n0

N
dynami-

cally follows âo, while âo is updated repeatedly.

There is no need to update âo after each individual draw.

Splitting the total costs into a sequence 0,cs1d, . . . ,cspd

=c, not necessarily equidistant, we can predefine when and

how often an update in âo is made. Namely, this is done

whenever the actually spent costs reach the next value csnd of

the sequence.

The dynamic strategy can be cast into an algorithm.

Algorithm. Set the initial values n0
s0d=n1

s0d=0, âo
s1d=aec. In

the nth step of the iteration n=1, . . . ,p determine

n0
snd = ⌊âo

sndNsnd⌋ ,

n1
snd = ⌊b̂o

sndNsnd⌋ , s57d

with

Nsnd =
csnd

âo
sndc0 + b̂o

sndc1

, s58d

where ⌊ ⌋ means rounding to the next lower integer. Then,

Dn0
snd=n0

snd−n0
sn−1d additional forward and Dn1

snd=n1
snd−n1

sn−1d

additional reverse work values are drawn. Using the entire

present samples, an estimate D f̂ snd of Df is calculated accord-

ing to Eq. s13d. With the free-energy estimate at hand,

M̂sndsad is calculated for all values of aP f0,1g via Eqs.

s44d–s47d and s49d discretized, say in steps Da=0.01. If

M̂sndsad is convex, we update the recent estimate âo
snd of ao to

âo
sn+1d via Eqs. s55d and s56d. Otherwise, if M̂sndsad is not

convex, the corresponding estimate of ao is not yet reliable

and we keep the recent value, âo
sn+1d= âo

snd. Increasing n by

one, we iteratively continue with Eq. s57d until we finally

obtain D f̂ spd, which is the optimal estimate of the free-energy

difference after having spend all costs c.

Note that an update in âo
snd may result in negative values

of Dn0
snd or Dn1

snd. Should Dn0
snd happen to be negative, we set

n0
snd=n0

sn−1d and

n1
snd = ⌊c

snd − c0n0
sn−1d

c1
⌋ . s59d

We proceed analogously, if Dn1
snd happens to be negative.

The optimal fraction ao depends on the cost ratio c1 /c0,

i.e., the algorithm needs to know the costs c0 and c1. How-

ever, the costs are not always known in advance and may

also vary over time. Think of a long-time experiment which

is subject to currency changes, inflation, terms of trade, in-

novations, and so on. Of advantage is that the dynamic sam-

pling strategy is capable of incorporating varying costs. In

each iteration step of the algorithm, one just inserts the actual

costs. If desired, the breakpoints csnd may also be adapted to

the actual costs. Should the costs initially be unknown se.g.,
the “correlation length” of a Monte Carlo simulation needs to

be determined within the simulation firstd one may use any

reasonable guess until the costs are known.

VIII. EXAMPLE

For illustration of results, we choose exponential work

distributions

piswd =
1

mi

e−w/mi, w P V = R
+, s60d

mi.0, i=0,1. According to the fluctuation theorem s2d, we

have m1=
m0

1+m0
and Df =lns1+m0d.

Exponential work densities arise in a natural way in the

context of a two-dimensional harmonic oscillator with Bolt-

zmann distribution rsx ,yd=e−s1/2dv2sx2+y2d
/Z, where Z
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=2p /v2 is a normalizing constant spartition functiond and

sx ,ydPR
2 f28g. Drawing a point sx ,yd from the initial den-

sity r=r0 defined by setting v=v0, and switching the fre-

quency to v1.v0 instantaneously amounts in the work
1

2
sv1

2−v0
2dsx2+y2d. The probability density of observing a

specific work value w is given by the exponential density p0

with m0=
v1

2−v0
2

v0
2 . Switching the frequency in the reverse direc-

tion v1→v0, with the point sx ,yd drawn from r=r1 with

v=v1, the density of work swith interchanged signd is given

by p1 with m1=
v1

2−v0
2

v1
2 =

m0

1+m0
. The free-energy difference of the

states characterized by r0 and r1 is the log ratio of their

normalizing constants Df =−ln
Z1

Z0
=lns1+m0d. A plot of the

work densities for m0=10 is enclosed in Fig. 2.

Now, with regard to free-energy estimation, is it better to

use one- or two-sided estimators? In other words, we want to

know whether the global minimum of Msad is on the bound-

aries h0,1j of a or not. By the convexity of M, the answer is

determined by the signs of the derivatives M8s0d and M8s1d
at the boundaries. The asymptotic mean-square errors s18d
and s19d of the one-sided estimators are calculated to be

Ms1d = Var0se
−w+Dfd =

m0
2

1 + 2m0

, s61d

for the forward direction and

Ms0d = Var1se
w−Dfd =

m0
2

1 − m0
2
, m0 , 1, s62d

for the reverse direction. For m0$1, the variance of the re-

verse estimator diverges. Note that Ms0d.Ms1d holds for all
m0.0, i.e., forward estimation of Df is always superior if

compared to reverse estimation. Furthermore, a straightfor-

ward calculation gives

M8s1d =
m0

3sm0 + j−dsm0 − j+d

s1 + 2m0d
2s1 + 3m0d

, s63d

where j6=
1

2
sÎ1763d, and

M8s0d = −
m0

3s2 + s1 − 2m0dm0d

s1 − m0
2d2s1 − 2m0d

, m0 ,
1

2
, s64d

and M8s0d=−` for m0$
1

2
. Thus, for the range m0P s0,j+d

we have M8s0d,0 as well as M8s1d,0 and therefore ao

=1, i.e., the forward estimator is superior to any two-sided

estimator s13d in this range. For m0P sj+ ,`d, we have

M8s0d,0 and M8s1d.0, specifying that aoP s0,1d, i.e.,

two-sided estimation with an appropriate choice of a is op-

timal.

Numerical calculation of the function Ua and subsequent

evaluation of Msad allows to find the “exact” optimal frac-

tion ao. Examples for Ua and M are plotted in Fig. 3.

The behavior of ao as a function of m0 is quite interesting

ssee Fig. 4d. We can interpret this behavior in terms of the

Boltzmann distributions as follows. Without loss of general-

ity, assume v0=1 is fixed. Increasing m0 then means increas-

ing v1. The density r1 is fully nested in r0 scf. the inset of

Fig. 2d sremember that v1.v0d and converges to a delta

peak at the origin with increasing v1. This means that by
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sampling from r0 we can obtain information about the full

density r1 quite easily, whereas sampling from r1 provides

only poor information about r0. This explains why ao=1

holds for small values of m0. However, with increasing v1

the density r1 becomes so narrow that it becomes difficult to

obtain draws from r0 that fall into the main part of r1. There-

fore, it is better to add some information from r1, hence, ao

decreases. Increasing v1 further, the relative number of

draws needed from r1 will decrease, as the density converges

toward the delta distribution. Finally, it will become suffi-

cient to make only one draw from r1 in order to obtain the

full information available. Therefore, ao converges toward 1

in the limit m0→`.

In the following, the dynamic strategy proposed in

Sec. VII is applied. We choose m0=1000 and c0=c1. The

equal cost strategy draws according to aec=0.5, which is

used as initial value in the dynamic strategy. The results of a

single run are presented in Figs. 5–7. Starting with N=100,

the estimate of ao is updated in steps of DN=100. The actual

forward fractions a together with the estimated values of the

optimal fraction ao are shown in Fig. 5. The first three esti-

mates of ao are rejected because the estimated function M̂sad
is not yet convex. Therefore, a remains unchanged at the

beginning. Afterward, a follows the estimates of ao and

starts to fluctuate about the exact value of ao. Some esti-

mates of the function M corresponding to this run are de-

picted in Fig. 6. For these estimates, a is discretized in steps

Da=0.01. Remarkably, the estimates of ao that result from

these curves are quite accurate even for relatively small N.

Finally, Fig. 7 shows the free-energy estimates of the run

snot for all values of Nd compared with those of a single run

where the equal cost strategy is used. We find some increase

in accuracy when using the dynamic strategy.

In combination with a good a priori choice of the initial

value of a, the use of the dynamic strategy enables a superior

convergence and precision of free-energy estimation ssee
Figs. 8 and 9d. Due to insight into some particular system

under consideration, it is not unusual that one has a priori
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knowledge which results in a better guess for the initial

choice of a in the dynamic strategy than starting with a
=aec. For instance, a good initial choice is known when es-

timating the chemical potential via Widom’s particle inser-

tion and deletion f31g. Namely, it is a priori clear that insert-

ing particles yields much more information than deleting

particles since the phase space which is accessible to par-

ticles in the “deletion system” is effectively contained in the

phase space accessible to the particles in the “insertion sys-

tem” scf., e.g., f19gd. A good a priori initial choice for a may

be a=0.9 with which the dynamic strategy outperforms any

other strategy that the authors are aware of.

Once reaching the limit of large sample sizes, the dy-

namic strategy is insensitive to the initial choice of a since

the strategy is robust and finds the optimal fraction ao of

forward measurements itself.

IX. CONCLUSION

Two-sided free-energy estimation, i.e., the acceptance ra-

tio method f26g, employs samples of n0 forward and n1 re-

verse work measurements in the determination of free-

energy differences in a statistically optimal manner.

However, its statistical properties depend strongly on the ra-

tio
n1

n0
of work values used. As a central result, we have

proven the convexity of the asymptotic mean-square error of

two-sided free-energy estimation as a function of the fraction

a=
n0

N
of forward work values used. From here follows im-

mediately the existence and uniqueness of the optimal frac-

tion ao, which minimizes the asymptotic mean-square error.

This is of particular interest if we can control the value of a,

i.e., can make additional measurements of work in either

direction. Drawing such that we finally reach
n0

N
=ao, the ef-

ficiency of two-sided estimation can be enhanced consider-

ably. Consequently, we have developed a dynamic sampling

strategy which iteratively estimates ao and makes additional

draws or measurements of work. Thereby, the convexity of

the mean-square error enters as a key criterion for the reli-

ability of the estimates. For a simple example, which allows

to compare with analytic calculations, the dynamic strategy

has shown to work perfectly.

In the asymptotic limit of large sample sizes, the dynamic

strategy is optimal and outperforms any other strategy. Nev-

ertheless, in this limit it has to compete with the near optimal

equal cost strategy of Bennett, which also performs very

good. It is worth mentioning that even if the latter comes

close to the performance of ours, it is worthwhile the effort

of using the dynamic strategy since the underlying algorithm

can be easily implemented and does cost quite anything if

compared to the effort required for drawing additional work

values.

Most important for experimental and numerical estima-

tion of free-energy differences is the range of small and mod-

erate sample sizes. For this relevant range, it is found that the

dynamic strategy performs very good too. It converges sig-

nificantly better than the equal cost strategy. In particular, for

small and moderate sample sizes it can improve the accuracy

of free-energy estimates by half an order of magnitude.

We close our considerations by mentioning that the two-

sided estimator is typically far superior with respect to one-

sided estimators: assume the support of p0 and p1 is symmet-

ric about Df f32g; then, if the densities are symmetric to each

other, p0sDf +wd=p1sDf −wd, the optimal fraction of forward

draws is
n0

N
=

1

2
by symmetry. Therefore, if the symmetry is

violated not too strongly, the optimum will remain near 0.5.

Continuous deformations of the densities change the optimal

fraction ao continuously. Thus, ao does not reach 0 and 1,

respectively, for some certain strength of asymmetry. It is

exceptionally hard to violate the symmetry such that ao hits

the boundary 0 or 1. In consequence, in almost all situations,

the two-sided estimator is superior.
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The nonequilibrium work fluctuation theorem provides the way for calculations of sequilibriumd free-energy
based on work measurements of nonequilibrium, finite-time processes, and their reversed counterparts by

applying Bennett’s acceptance ratio method. A nice property of this method is that each free-energy estimate

readily yields an estimate of the asymptotic mean square error. Assuming convergence, it is easy to specify the

uncertainty of the results. However, sample sizes have often to be balanced with respect to experimental or

computational limitations and the question arises whether available samples of work values are sufficiently

large in order to ensure convergence. Here, we propose a convergence measure for the two-sided free-energy

estimator and characterize some of its properties, explain how it works, and test its statistical behavior. In total,

we derive a convergence criterion for Bennett’s acceptance ratio method.
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I. INTRODUCTION

Many methods have been developed in order to estimate

free-energy differences, ranging from thermodynamic inte-

gration f1,2g, path sampling f3g, free-energy perturbation f4g,
umbrella sampling f5–7g, adiabatic switching f8g, dynamic
methods f9–12g, optimal protocols f13,14g, asymptotic tails
f15g, to targeted and escorted free-energy perturbation

f16–20g. Yet, the reliability and efficiency of the approaches
have not been considered in full depth. Fundamental ques-

tions remain unanswered f21g, e.g., what method is best for
evaluating the free-energy? Is the free-energy estimate reli-

able and what is the error in it? How can one assess the

quality of the free-energy result when the true answer is un-

known? Generically, free-energy estimators are strongly bi-

ased for finite sample sizes such that the bias constitutes the

main source of error of the estimates. Moreover, the bias can

manifest itself in a seemingly convergence of the calculation

by reaching a stable value, although far apart from the de-

sired true value. Therefore, it is of considerable interest to

have reliable criteria for the convergence of free-energy cal-

culations.

Here we focus on the convergence of Bennett’s accep-

tance ratio method. Thereby, we will only be concerned with

the intrinsic statistical errors of the method and assume un-

correlated and unbiased samples from the work densities. For

incorporation of instrument noise, see Ref. f22g.
With emerging results from nonequilibrium stochastic

thermodynamics, Bennett’s acceptance ratio method f23–26g
has revived actual interest.

Recent research has shown that the isothermal free-energy

difference Df = f1− f0 of two thermal equilibrium states 0 and

1, both at the same temperature T, can be determined by

externally driven nonequilibrium processes connecting these

two states. In particular, if we start the process with the ini-

tial thermal equilibrium state 0 and perturb it towards 1 by

varying the control parameter according to a predefined pro-

tocol, the work w applied to the system will be a fluctuating

random variable distributed according to a probability den-

sity p0swd. This direction will be denoted with forward. Re-

versing the process by starting with the initial equilibrium

state 1 and perturbing the system towards 0 by the time

reversed protocol, the work w done by the system in the

reverse process will be distributed according to a density

p1swd. Under some quite general conditions, the forward and
reverse work densities p0swd and p1swd are related to each

other by Crooks fluctuation theorem f27,28g

p0swd

p1swd
= ew−Df . s1d

Throughout the paper, all energies are understood to be mea-

sured in units of the thermal energy kT, where k is Boltz-

mann’s constant. The fluctuation theorem relates the equilib-

rium free-energy difference Df to the nonequilibrium work

fluctuations which permits calculation sestimationd of Df us-

ing samples of work values measured either in only one di-

rection sone-sided estimationd or in both directions stwo-
sided estimationd. The one-sided estimators rely on the

Jarzynski relation f29g e−Df=ee−wp0swddw which is a direct

consequence of Eq. s1d, and the free-energy is estimated by

calculating the sample mean of the exponential work. In gen-

eral, however, it is of great advantage to employ optimal

two-sided estimation with Bennett’s acceptance ratio method

f23g, although one has to measure work values in both direc-
tions.

The work fluctuations necessarily allow for events which

“violate” the second law of thermodynamics such that

w,Df holds in forward direction and w.Df in reverse di-

rection, and the accuracy of any free-energy estimate solely

based on knowledge of Eq. s1d will strongly depend on the

extend to which these events are observed. The fluctuation

theorem indicates that such events will in general be expo-

nentially rare; at least, it yields the inequality kwl1#Df

# kwl0 f29g, which states the second law in terms of the

average work kwl0 and kwl1 in forward and reverse direction,
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respectively. Reliable free-energy calculations will become

harder the larger the dissipated work kwl0−Df and Df

− kwl1 in the two directions is f20g, i.e., the farther from

equilibrium the process is carried out, resulting in an increas-

ing number N of work values needed for a converging esti-

mate of Df . This difficulty can also be expressed in terms of

the overlap area A=eminhp0swd ,p1swdjdw#1 of the work

densities, which is just the sum of the probabilities e−`
Df p0dw

and eDf
` p1dw of observing second law “violating” events in

the two directions. Hence, N has to be larger than 1 /A. How-

ever, an a priori determination of the number N of work

values required will be impossible in situations of practical

interest. Instead, it may be possible to determine a posteriori

whether a given calculation of Df has converged. The

present paper develops a criterion for the convergence of

two-sided estimation which relies on monitoring the value of

a suitably bounded quantity a, the convergence measure. As

a key feature, the convergence measure a checks if the rel-

evant second law “violating” events are observed sufficiently

and in the right proportion for obtaining an accurate and

precise estimate of Df .

Two-sided free-energy estimation, i.e., Bennett’s accep-

tance ratio method, incorporates a pair of samples of both

directions. Given a sample hwk
0j of n0 forward work values,

drawn independently from p0swd, together with a sample

hwl
1j of n1 reverse work values drawn from p1swd, the as-

ymptotically optimal estimate D f̂ of the free-energy differ-

ence Df is the unique solution of f23–26g

1

n0
o
k=1

n0
1

b + aewk
0
−Df̂

=
1

n1
o
l=1

n1
1

a + be−wl
1
+Df̂

, s2d

where a and bP s0,1d are the fraction of forward and re-

verse work values used, respectively,

a =
n0

N
and b =

n1

N
, s3d

with the total sample size N=n0+n1.

Originally found by Bennett f23g in the context of free-

energy perturbation f4g, with “work” being simply an energy
difference, the two-sided estimator s2d was generalized by

Crooks f30g to actual work of nonequilibrium finite-time

processes. We note that the two-sided estimator has remark-

ably good properties f21,23,24,31g. Although in general bi-

ased for small sample sizes N, the bias

b = kD f̂ − Dfl , s4d

asymptotically vanishes for N→` and the estimator is the

one with least mean-square error sviz. varianced in the limit
of large sample sizes n0 and n1 within a wide class of esti-

mators. In fact, it is the optimal estimator if no further

knowledge on the work densities besides the fluctuation

theorem is given f20,22g. It comprises one-sided Jarzynski

estimators as limiting cases for a→0 and a→1, respec-

tively. Recently f32g, the asymptotic mean square error has

been shown to be a convex function of a for fixed N, indi-

cating that typically two-sided estimation is superior if com-

pared to one-sided estimation.

In the limit of large N, the mean-square error

m = ksD f̂ − Dfd2l , s5d

converges to its asymptotics

XsN,ad =
1

N

1

ab
S 1

Ua

− 1D , s6d

where the overlap sintegrald Ua is given by

Ua =E p0p1

ap0 + bp1
dw . s7d

Likewise, in the large N limit the probability density of the

estimates D f̂ sfor fixed N and ad converges to a Gaussian

density with mean Df and variance XsN ,ad f24g. Thus,
within this regime a reliable confidence interval for a particu-

lar estimate D f̂ is obtained with an estimate X̂sN ,ad of the
variance,

X̂sN,ad ª

1

NabS 1

Ûa

− 1D , s8d

where the overlap estimate Ûa is given through

Ûa ª

1

n0
o
k=1

n0
1

b + aewk
0
−Df̂

=
1

n1
o
l=1

n1
1

a + be−wl
1
+Df̂

. s9d

To get some feeling for when the large N limit “begins,”

we state a close connection between the asymptotic mean-

square error and the overlap area A of the work densities as

follows:

1 − 2A

NA
, XsN,ad #

1 −A

abNA
, s10d

see Appendix A. Using a<0.5 and assuming that the esti-

mator has converged once X,1, we find the “onset” of the

large N limit for N.
1
A . However, this onset may actually be

one or more orders of magnitude larger.

If we do not know whether the large N limit is reached,

we cannot state a reliable confidence interval of the free-

energy estimate: a problem which encounters frequently

within free-energy calculations is that the estimates “con-

verge” towards a stable plateau. While the sample variance

can become small, it remains unclear whether the reached

plateau represents the correct value of Df . Possibly, the

found plateau is subject to some large bias, i.e., far off the

correct value. A typical situation is displayed in Fig. 1 which

shows successive two-sided free-energy estimates in depen-

dence of the sample size N. The errorbars are obtained with

an error-propagation formula for the variance of D f̂ which

reflects the sample variances, see Appendix C after reading

Sec. III. If we take a look on the top panel of Fig. 1, we

might have the impression that the free-energy estimate has

converged at N<300 already, while the bottom panel

reaches out to larger sample sizes where it becomes visible

that the “convergence” in the top panel was just pretended.

Finally, we may ask if the estimates shown in the bottom

panel have converged at N*10000? As we know the true
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value of Df , which is depicted in the figure as a dashed line,
we can conclude that convergence actually happened.

The main result of the present paper is the statement of a
convergence criterion for two-sided free-energy estimation in
terms of the behavior of the convergence measure a. As will
be seen, a converges to zero. Moreover, this happens almost

simultaneously with the convergence of D f̂ to Df . The pro-
cedure is as follows: while drawing an increasing number of
work values in both directions swith fixed fraction a of for-

ward drawsd, successive estimates D f̂ and corresponding val-
ues of a, based on the present samples of work, are calcu-
lated. The values of a are displayed graphically in
dependence of N, preferably on a log scale. Then the typical
situation observed is that a is close to it’s upper bound for

small sample sizes N,
1
A , which indicates lack of “rare

events” which are required in the averages of Eq. s2d si.e.,
those events which “violate” the second lawd. Once N be-

comes comparable to
1
A , single observations of rare events

happen and change the value of D f̂ and a rapidly. In this

regime of N, rare events are likely to be observed either

disproportionally often or seldom, resulting in strong fluctua-

tions of a around zero. This indicates the transition region to

the large N limit. Finally, at some N@
1
A , the large N limit is

reached, and a typically fluctuates close around zero, cf. the

inset of Fig. 1.

The paper is organized as follows. In Sec. II, we first

consider a simple model for the source of bias of two-sided

estimation which is intended to obtain some insight into the

convergence properties of two-sided estimation. The conver-

gence measure a, which is introduced in Sec. III, however,

will not depend on this specific model. As the convergence

measure is based on a sample of forward and reverse work

values, it is itself a random variable, raising the question of

reliability once again. Using numerically simulated data, the

statistical properties of the convergence measure will be

elaborated in Sec. IV. The convergence criterion is stated in

Sec. V, and Sec. VI presents an application to the estimation

of the chemical potential of a Lennard-Jones fluid.

II. NEGLECTED TAIL MODEL FOR TWO-SIDED

ESTIMATION

To obtain some first qualitative insight into the relation

between the convergence of Eq. s9d and the bias of the esti-
mated free-energy difference, we adopt the neglected tails

model f33g originally developed for one-sided free-energy

estimation.

Two-sided estimation of Df essentially means estimating

the overlap Ua from two sides, however in a dependent man-

ner, as D f̂ is adjusted such that both estimates are equal in

Eq. s9d.
Consider the snormalizedd overlap density paswd, defined

as harmonic mean of p0 and p1

paswd =
1

Ua

p0swdp1swd

ap0swd + bp1swd
. s11d

For a→0 and a→1, pa converges to p0 and p1, respectively.

The dominant contributions to Ua come from the overlap

region of p0 and p1 where pa has its main probability mass,

see Fig. 2 stopd.
In order to obtain an accurate estimate of Df with the

two-sided estimator s2d, the sample hwk
0j drawn from p0 has

to be representative for p0 up to the overlap region in the left

tail of p0 and the sample hwk
1j drawn from p1 has to be

representative for p1 up to the overlap region in the right tail

of p1. For small n0 and n1, however, we will have certain

effective cut-off values wc
0 and wc

1 for the samples from p0
and p1, respectively, beyond which we typically will not find

any work values, see Fig. 2 sbottomd.
We introduce a model for the bias s4d of two-sided free-

energy estimation as follows. Assuming a “semilarge” N

=n0+n1, the effective behavior of the estimator for fixed n0
and n1 is modeled by substituting the sample averages ap-

pearing in the estimator s2d with ensemble averages, how-

ever truncated at wc
0 and wc

1, respectively,

E
wc
0

`
p0swd

b + aew−kDf̂l
dw = E

−`

wc
1

p1swd

a + be−w+kDf̂l
dw . s12d

Thereby, the cutoff values wc
i are thought fixed sonly depend-

ing on n0 and n1d and the expectation kD f̂l is understood to
be the unique root of Eq. s12d, thus being a function of the

cut-off values wc
i , i=0,1.

In order to elaborate the implications of this model, we

rewrite Eq. s12d with the use of the fluctuation theorem s1d
such that the integrands are equal,
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FIG. 1. Displayed are free-energy estimates D f̂ in dependence of

the sample size N, reaching a seemingly stable plateau if N is re-

stricted to N=1000 stop paneld. Another stable plateau is reached if
the sample size is increased up to N=100 000 sbottom paneld. Has
the estimate finally converged? The answer is given by the corre-

sponding graph of the convergence measure a which is shown in

the inset. The fluctuations around zero indicate convergence. The

exact value of the free-energy difference is visualized by the dashed

horizontal line.
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ekDf̂−Dfl =

E
−`

wc
1

p0swd

aew−kDf̂l + b
dw

E
wc
0

`
p0swd

aew−kDf̂l + b
dw

, s13d

and consider two special cases:

s1d Large n1 limit: assume the sample size n1 is large

enough to ensure that the overlap region is fully and accu-

rately sampled slarge n1 limitd. Thus, wc
1 can be safely set

equal to ` in Eq. s13d, and the right-hand side becomes

larger than unity. Accordingly, our model predicts a positive

bias.

s2d Large n0 limit: turning the tables and using wc
0=−` in

Eq. s13d, the model implies a negative bias.

In essence, kD f̂l is shifted away from Df towards the in-

sufficiently sampled density. In general, when none of the

densities is sampled sufficiently, the bias will be a trade off

between the two cases.

Qualitatively, from the neglected tails model, we find the

main source of bias resulting from a different convergence

behavior of forward and reverse estimates s9d of Ua. The

task of the next section will be to develop a quantitative

measure of convergence.

III. CONVERGENCE MEASURE

In order to check convergence, we propose a measure

which relies on a consistency check of estimates based on

first and second moments of the Fermi functions that appear

in the two-sided estimator s9d. In a recent study f20g, we
already used this measure for the special case of a=

1

2
. Here,

we give a generalization to arbitrary a, study the conver-

gence measure in greater detail, and justify its validity and

usefulness. In the following we will assume that the densities

p0 and p1 have the same support.

It was discussed in the preceding section that the large N

limit is reached and hence the bias of two-sided estimation

vanishes if the overlap Ua is sin averaged correctly estimated
from both sides, 0 and 1. Defining the complementary Fermi

functions tcswd and bcswd sfor given ad with

tcswd =
1

a + be−w+c
,

bcswd =
1

aew−c + b
, s14d

such that atcswd+bbcswd=1 and tcswd=ew−cbcswd holds. The
overlap s7d can be expressed in terms of first moments,

Ua =E tDfswdp1swddw =E bDfswdp0swddw , s15d

and the overlap estimate Ûa, Eq. s9d, is simply obtained by

replacing in Eq. s15d the ensemble averages by sample aver-
ages,

Ûa = tDf̂
s1d
= bDf̂

s0d
. s16d

According to Eq. s2d, the value of D f̂ is defined such that the

above relation holds. Note that D f̂ =D f̂sw1
0 , . . . ,wn1

1 d is a

single-valued function depending on all work values used in

both directions. The overbar with index sid denotes an aver-
age with a sample hwk

i j drawn from pi, i=0,1. For an arbi-

trary function gswd it explicitly reads

ḡsid =
1

ni
o
k=1

ni

gswk
i d . s17d

Interestingly, Ua can be expressed in terms of second mo-

ments of the Fermi functions such that it reads

Ua = aE tDf
2
p1dw + bE bDf

2
p0dw . s18d

A useful test of self-consistency is to compare the first-order

estimate Ûa, with the second order estimate Ûa
sIId, where the

latter is defined by replacing the ensemble averages in Eq.

s18d with sample averages

Ûa
sIId = at

Df̂
2

s1d

+ bb
Df̂
2

s0d

. s19d

Thereby, the estimates D f̂ , Ûa, and Ûa
sIId, are understood to be

calculated with the same pair of samples hwk
0j and hwl

1j.
The relative difference of this comparison results in the

definition of the convergence measure,
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FIG. 2. Schematic diagram of reverse p1, overlap pa, and for-

ward p0 work densities stopd. Schematic histograms of finite

samples from p0 and p1, where in particular the latter is imperfectly

sampled, resulting in a biased estimate D f̂ of the free-energy differ-

ence sbottomd.
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a =
Ûa − Ûa

sIId

Ûa

, s20d

for all aP s0,1d. Clearly, in the large N limit, a will con-

verge to zero, as then D f̂ converges to Df and thus Ûa as

well as Ûa
sIId converge to Ua. As argued below, it is the esti-

mate Ûa
sIId that converges last, hence a converges somewhat

later than D f̂ .

Below the large N limit, a will deviate from zero. From

the general inequality

Ûa
2 # Ûa

sIId , 2Ûa, s21d

ssee Appendix Bd follow upper and lower bounds on a which

read

− 1 , a # 1 − Ûa , 1. s22d

The behavior of a with increasing sample size N=n0+n1

swhile keeping the fraction a=
n0

N
constantd can roughly be

characterized as follows: a “starts” close to its upper bound

for small N and decreases towards zero with increasing N.

Finally, a begins to fluctuate around zero when the large N

limit is reached, i.e., when the estimate D f̂ converges.

To see this qualitatively, we state that the second order

estimate Ûa
sIId converges later than the first order estimate Ûa,

as the former requires sampling the tails of p0 and p1 to a

somewhat wider extend than the latter, cf. Fig. 3. For small

N, both, Ûa and Ûa
sIId, will typically underestimate Ua, as the

“rare events” which contribute substantially to the averages

s16d and s19d are quite likely not to be observed sufficiently,

if at all. For the same reason, generically Ûa
sIId, Ûa will hold,

since bDf̂sw0d2#bDf̂sw0d holds for w0$D f̂ and similar

tDf̂sw1d2# tDf̂sw1d for w1#D f̂ . Therefore, a is typically posi-

tive for small N. In particular, if N is so small that all work

values of the forward sample are larger than D f̂ and all work

values of the reverse sample are smaller than D f̂ , then Ûa
sIId

becomes much smaller than Ûa, resulting in a<1.

Analytic insight into the behavior of a for small N results

from the fact that nx̄2$x2 for any set hx1 , . . .xnj of positive
numbers xk. Using this in Eq. s19d yields

Ûa
sIId # 2NabÛa

2 , s23d

and

1 − 2abNÛa # a # 1 − Ûa. s24d

This shows that as long as NÛa!1 holds, a is close to its

upper bound 1− Ûa<1. In particular, if a=
1

2
and N=2, then

a=1− Ûa holds exactly.

Averaging the inequality for some N sufficiently large to

ensure kal<0 and kÛal<Ua, we get a lower bound on N

which reads N$
1

2abUa
. Again, this bound can be related to

the overlap area A taking a=
1

2
and using U1/2#2A ssee

Appendix Ad, we obtain N$
1
A , in concordance with the

lower bound for the large N limit stated in Sec. I.

Last we note that the convergence measure a can also be

understood as a measure of the sensibility of relation s2d with

respect to the value of D f̂ . In the low N regime, the relation

is highly sensible to the value of D f̂ , resulting in large values

of a, whereas in the limit of large N, relation s2d becomes

insensible to small perturbations of D f̂ , corresponding to a

<0. The details are summarized in Appendix D.

IV. STUDY OF STATISTICAL PROPERTIES OF THE

CONVERGENCE MEASURE

In order to demonstrate the validity of a as a measure of

convergence of two-sided free-energy estimation, we apply it

to two qualitatively different types of work densities, namely

exponential and Gaussian, see Fig. 4. Samples from these

densities are easily available by standard spseudodrandom
generators. Statistical properties of a are obtained by means

of independent repeated calculations of D f̂ and a. While the

two types of densities used are fairly simple, they are entirely

different and general enough to reflect the statistical proper-

ties of the convergence measure.

A. Exponential work densities

The first example uses exponential work densities, i.e.,

piswd =
1

mi

e−w/mi, w $ 0, s25d

mi.0, i=0,1. According to the fluctuation theorem s1d, the
mean values mi of p0 and p1 are related to each other, m1
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FIG. 3. Schematic plot which shows that the forward work den-

sity, p0swd, samples the Fermi function bDfswd=1 / sb+aew−Dfd
somewhat earlier than its square.
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=
m0

1+m0
, and the free-energy difference is known to be Df

=lns1+m0d.
Choosing m0=1000 and a=

1

2
, i.e., n0=n1, we calculate

free-energy estimates D f̂ according to Eq. s2d together with
the corresponding values of a according to Eq. s20d for dif-
ferent total sample sizes N=n0+n1. An example of a single

running estimate and the corresponding values of the conver-

gence measure are depicted in Fig. 1. Ten thousand repeti-

tions for each value of N yield the results presented in Figs.

5–10. To begin with, the top panel of Fig. 5 shows the aver-

aged free-energy estimates in dependence of N, where the

errorbars show 6 the estimated square root of the variance

ksD f̂ − kD f̂ld2l. For small N, the bias kD f̂ −Dfl of free-energy
estimates is large, but becomes negligible compared to the

standard deviation for N*5000. This is a prerequisite of the

large N limit, therefore we will view N<5000 as the onset of

the large N limit.

The bottom panel of Fig. 5 shows the averaged values of

the convergence measure a corresponding to the free-energy

estimates of the top panel. Again, the errorbars are 6 one

standard deviation Îka2l− kal2, except that the upper limit is
truncated for small N, as a,1 holds. The trend of the aver-

aged convergence measure kal is in full agreement with the

general considerations given in the previous section. For

small N, kal starts close to its upper bound, decreases mono-
tonically with increasing sample size, and converges towards

zero in the large N limit. At the same time, its standard

deviation converges to zero, too. This indicates that single

values of a corresponding to single estimates D f̂ will typi-

cally be found close to zero in the large N regime.

Noting that a is defined as relative difference of the over-

lap estimators: Ûa and Ûa
sIId of first and second order, respec-

tively, we can understand the trend of the average conver-

gence measure by taking into consideration the average

values kÛal and kÛa
sIIdl, which are shown in Fig. 6. For small

sample sizes, Ua is typically underestimated by both, Ûa and

Ûa
sIId, with Ûa

sIId, Ûa.

The convergence measure takes advantage of the different

convergence times of the overlap estimators: Ûa
sIId converges
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FIG. 5. Statistics of two-sided free-energy estimation sexponen-
tial work densitiesd: shown are averaged estimates of Df in depen-

dence of the total sample size N. The error bars reflect the standard

deviation. The dashed line shows the exact value of Df and the inset

the details for large N stopd. Statistics of the convergence measure a
corresponding to the estimates of the top panel: shown are the av-

erage values of a together with their standard deviation in depen-

dence of the sample size N. Note the characteristic convergence of

a towards zero in the large N limit sbottomd.
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sIId and Ûa is con-
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somewhat slower than Ûa, ensuring that a approaches zero

right after D f̂ has converged. The large standard deviations

shown as errorbars in Fig. 6 do not carry over to the standard

deviation of a, because Ûa and Ûa
sIId are strongly correlated,

as is impressively visible in Fig. 7. The estimated correlation

coefficient

ksÛa
sIId − kÛa

sIIdldsÛa − kÛaldl

ÎVarsÛa
sIIddVarsÛad

, s26d

is about 0.97 for the entire range of sample sizes N. In good

approximation, Ûa and Ûa
sIId are related to each other accord-

ing to a power law, Ûa
sIId<cNÛa

gN, where the exponent gN and

the prefactor cN depend on the sample size N sand ad. We

note that gN has a phase-transitionlike behavior: for small N,

it stays approximately constant near two; right before the

onset of the large N limit, it shows a sudden switch to a value

close to one where it finally remains.

Figure 8 accents the decrease in the average kal with de-
creasing mean square error s5d of two-sided estimation. The
small N behavior is given by the upper right part of the

graph, where kal is close to its upper bound together with a

large mean-square error of D f̂ . With increasing sample size,

the mean-square error starts to drop somewhat sooner than

kal, however, at the onset of the large N limit, they drop both

and suggest a linear relation, as can be seen in the inset for

small values of kal. The latter shows that kal decreases to
zero proportional to

1

N
for large N sthis is confirmed by a

direct check, but not shown hered.
The next point is to clarify the correlation of single values

of the convergence measure with their corresponding free-

energy estimates. For this issue, figure 9 is most informative,

showing the deviations D f̂ −Df in dependence of the corre-

sponding values of a for many individual observations. The

figure makes clear that there is a strong relation, but no

one-to-one correspondence between a and D f̂ −Df: for large

N, both a and D f̂ −Df approach zero with very weak corre-

lations between them. However, the situation is different for

small sample sizes N where the bias kD f̂ −Dfl is consider-
ably large. There, the typically observed large deviations oc-

cur together with values of a close to the upper bound,

whereas the atypical events with small snegatived deviations
come together with values of a well below the upper limit.

Therefore, small values of a detect exceptional events if N is

well below the large N limit, and ordinary events if N is

large.

To make this relation more visible, we split the estimates

D f̂ into the mutually exclusive events a$0.9 and a,0.9.

The statistics of the D f̂ values within these cases are depicted

in the inset of Fig. 10, where normalized histograms, i.e.

estimates of the constrained probability densities psD f̂ ua

$0.9d and psD f̂ ua,0.9d are shown. The unconstrained

probability density of D f̂ can be reconstructed from a likeli-

hood weighted sum of the constrained densities, psD f̂d
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shows averaged estimates of Df over the total sample size N subject

to the constraints a$0.9 and a,0.9, respectively.

MEASURING THE CONVERGENCE OF MONTE CARLO… PHYSICAL REVIEW E 81, 041117 s2010d

041117-7



=psD f̂ ua$0.9dpa$0.9+psD f̂ ua,0.9dpa,0.9. The likelihood

ratios read pa$0.9 /pa,0.9=6.2 and 0.002 for N=32 and 1000,

respectively. Finally, the inset of Fig. 10 shows the average

values of constrained estimates D f̂ over N with errorbars of

6 one standard deviation, in dependence of the condition on

a.

B. Gaussian work densities

For the second example the work densities are chosen to

be Gaussian,

piswd =
1

sÎ2p
e−sw − mid

2
/2s2, w P R , s27d

i=0,1. The fluctuation theorem s1d demands both densities

to have the same variance s2 with mean values m0=Df

+
1

2
s2 and m1=Df −

1

2
s2. Hence, p0 and p1 are symmetric to

each other with respect to Df , p0sDf +wd=p1sDf −wd. As a
consequence of this symmetry, the two-sided estimator with

equal sample sizes n0 and n1, i.e. a=0.5, is unbiased for any
N. However, this does not mean that the limit of large N is

reached immediately.

In analogy to the previous example, we proceed in pre-

senting the statistical properties of a. Choosing s=6 and

without loss of generality Df =0, we carry out 104 estima-

tions of Df over a range of sample sizes N. The forward

fraction is chosen to be equal to a=0.5, and for comparison,
a=0.999, and a=0.99999, respectively. In the latter two

cases, the two-sided estimator is biased for small N. We note

that a=0.5 is always the optimal choice for symmetric work
densities which minimizes the asymptotic mean-square error

s6d with respect to a f32g.
Comparing the top and the bottom panel of Fig. 11, which

show the statistics smean value and standard deviation as

error barsd of the observed estimates D f̂ and of the corre-

sponding values of a, we find a coherent behavior for all

three cases of a values. The trend of the average kal shows
in all cases the same features in agreement with the trend

found for exponential work densities.

As before, the characteristics of a are understood by the

slower convergence of Ûa
sIId compared to that of Ûa, as can

be seen in Fig. 12. A scatter plot of Ûa
sIId versus Ûa looks

qualitatively such as Fig. 7, but is not shown here.

Figure 13 compares the average convergence measures as

functions of the mean-square error of D f̂ for the three values

of a. For the range of small kal, all three curves agree and
are linear. Again kal decreases proportionally to

1

N
for large

N. Noticeable for small N is the shift of kal towards smaller
values with increasing a. This results from the definition of

a: the upper bound 1− Ûa of a tends to zero in the limits a

→0,1, as then Ûa→1.

The relation of single free-energy estimates D f̂ with the

corresponding a values can be seen in the scatter plot of Fig.

14. The mirror symmetry of the plot originates from the sym-

metry of the work densities and the choice a=0.5, i.e., of the
unbiasedness of the two-sided estimator. Opposed to the

foregoing example, the correlation between D f̂ −Df and a

vanishes for any value of N. Despite the lack of any corre-

lation, the figure reveals a strong relation between the devia-

tion D f̂ −Df and the value of a: they converge equally to zero

for large N.

Last, Fig. 15 shows averages of constrained Df estimates

for the mutually exclusive conditions a$0.9 and a,0.9,

now with a=0.99999 in order to incorporate some bias. We

observe the same characteristics as before, cf. the inset of

Fig. 10: the condition a,0.9 filters the estimates D f̂ which

are closer to the true value.

C. General case

The characteristics of the convergence measure are domi-

nated by contributions of work densities inside and near the
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FIG. 11. Gaussian work densities result in the displayed aver-
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gence measure a corresponding to the estimates of the top panel

sbottomd.
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region where the overlap density paswd, Eq. s11d, has most of
its mass. We call this region the overlap region. In the over-
lap region, the work densities may have one of the following
characteristic relation of shape:

s1d Having their maxima at larger and smaller values of

work, respectively, the forward and reverse work densities

both drop towards the overlap region. Hence, any of both

densities sample the overlap region by rare events, only,

which are responsible for the behavior of the convergence

measure.

s2d Both densities decrease with increasing w and the

overlap region is well sampled by the forward work density

compared with the reverse density. Especially the “rare”

events w,Df of forward direction are much more available

than the rare events w.Df of reverse direction. Hence, more

or less typical events of one direction together with atypical

events of the other direction are responsible for the behavior

of the convergence measure. Likewise if both densities in-

crease with w.

s3d More generally, the work densities are some kind of

interpolation between the above two cases.

s4d Finally, there remain some exceptional cases. For in-

stance, if the forward and reverse work densities have differ-

ent support or if they do not obey the fluctuation theorem at

all.

With respect to the exceptional case, the convergence

measure fails to work, since it requires that the forward and

reverse work densities have the same support and that the

densities are related to each other via the fluctuation theorem

s1d.
In all other cases, the convergence measure certainly will

work and will show a similar behavior, regardless of the

detailed nature of the densities. This can be explained as

follows. In the preceding subsections, we have investigated

exponential and Gaussian work densities, two examples that

differ in their very nature. While exponential work densities

cover case number two and Gaussians cover case number

one, they show the same characteristics of a. This means that

the characteristics of the convergence measure are insensi-

tive to the individual nature of the work densities as long as

they have the same support and obey the fluctuation theorem.

To this end, we want to point to some subtleties in the text

of the actual paper. While the measure of convergence is

robust with respect to the nature of work densities, some

heuristic or pedagogic explanations in the text are written

with regard to the typical case number one, where the over-

lap region is sampled by rare events, only. This concerns

mainly Sec. II where we speak about effective cut-off values

in the context of the neglected tail model. These effective

cut-off values would become void if we would try to explain

the bias of exponential work densities qualitatively via the

neglected tail model. Also the explanations in the text of the

next section are mainly focused on the typical case number

one. This concerns the passages where we speak about rare

events. Nevertheless, the main and essential statements are

valid for all cases.

The most important property of a is its almost simulta-

neous convergence with the free-energy estimator D f̂ to an a

priori known value. This fact is used to develop a conver-

gence criterion in the next section.

V. CONVERGENCE CRITERION

Elaborated the statistical properties of the convergence

measure, we are finally interested in the convergence of a

single free-energy estimate. In contrast to averages of many
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independent running estimates, estimates based on individual

realization are not smooth in N, see e.g., Fig. 1.

For small N, typically Ûa
sIId underestimates Ua more than

Ûa does, pushing a close to its upper bound. With increasing

N, D f̂ starts to “converge;” typically in a nonsmooth manner.

The convergence of D f̂ is triggered by the occurrence of rare

events. Whenever such a rare event in the important tails of

the work densities gets sampled, D f̂ jumps, and between

such jumps, D f̂ stays rather on a stable plateau. The measure

a is triggered by the same rare events, but the changes in a

are smaller, unless convergence starts happening. Typically,

the rare events that bring D f̂ near to its true value are the rare

events which change the value of a drastically. In the typical

case, these rare events let a even undershoot below zero,

before D f̂ and a finally converge.

The features of the convergence measure,

s1d it is bounded, aP s−1,1− Ûag,
s2d it starts for small N at its upper bound,

s3d it converges to a known value, a→0,

s4d and typically it converges almost simultaneously with

D f̂ ,

simplify the task of monitoring the convergence signifi-

cantly, since it is far easier to compare estimates of a with

the known value zero than the task of monitoring conver-

gence of D f̂ to an unknown target value. The characteristics

of the convergence measure enable us to state: typically, if it

is close to zero, D f̂ has converged.

Deviations from the typical situation are possible. For in-

stance, D f̂ may not show such clear jumps, neither may a.

Occasionally, D f̂ and a, may also fluctuate exceedingly

strong. Thus, a single value of a close to zero does not guar-

antee convergence of the free-energy estimate as can be seen

from some few individual events in the scatter plot of Fig. 14

that fail a correct estimate while a is close to zero. A single

random realization may give rise to a fluctuation that brings

a close to zero by chance, a fact that needs to be distin-

guished from a having converged to zero. The difference

between random chance and convergence is revealed by in-

creasing the sample size, since it is highly unlikely that a

stays close to zero by random. It is the behavior of a with

increasing N, that needs to be taken into account in order to

establish an equivalence between a→0 and D f̂→Df .

This allows us to state the convergence criterion: if a fluc-

tuates close around zero, convergence is assured, implying

that if a fluctuates around zero, D f̂ fluctuates around its true

value Df , the bias vanishes, and the mean-square error

reaches its asymptotics which can be estimated using Eq. s8d.
a fluctuating close around zero means that it does so over a

suitable range of sample sizes, which extends over an order

of magnitude or more.

VI. APPLICATION

As an example, we apply the convergence criterion to the

calculation of the excess chemical potential mex of a

Lennard-Jones fluid. Using Metropolis Monte Carlo simula-

tion f34g of a fluid of Np particles, the forward work is de-

fined as energy increase when inserting at random a particle

into a given configuration f35g, whereas the reverse work is
defined as energy decrease when a random particle is deleted

from a given Np+1-particle configuration. The densities

p0swd and p1swd of forward and reverse work obey the fluc-
tuation theorem s1d with Df =mex f20g. Thus, Bennett’s ac-
ceptance ratio method can be applied to the calculation of the

chemical potential.

Details of the simulation are reported in Ref. f20g. Here,
the parameter values chosen read: Np=120, reduced tempera-

ture Tp=1.2, and reduced density rp=0.5.

Drawing work values up to a total sample size of 106 with

fraction a=0.9 of forward draws swhich will be a near-

optimal choice f32gd, the successive estimates of the chemi-
cal potential together with the corresponding values of the

convergence measure are shown in Fig. 16. The dashed hori-

zontal line does not show the exact value of mex, which is

unknown, but rather the value of the last estimate with N

=106. Taking a closer look on the behavior of the conver-

gence measure with increasing N, we observe a near unity

for N#102, indicating the low N regime and the lack of

observing rare events. Then, a sudden drop near to zero hap-

pens at N=102, which coincides with a large jump of the

estimate of mex, followed by large fluctuations of a with

strong negative values in the regime N=102 to 104. This

behavior indicates that the important but rare events which

trigger the convergence of the mex estimate are now sampled,

but with strongly fluctuating relative frequency, which in

specific cases causes the negative values of a sbecause of too
many rare eventsd. Finally, with N.104, a equilibrates and

converges to zero. The latter is observed over two orders of

magnitude, such that we can conclude that the latest estimate

of mex with N=106 has surely converged and yields a reliable

value of the chemical potential. The confidence interval of

the estimate can safely be calculated as the square root of Eq.

s6d sone standard deviationd and we obtain explicitly mex̂=

−2.45160.005.

Interested in the statistical behavior of a for the present

application, we carried out 270 simulation runs up to N

=104 to obtain the average values and standard deviations of
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mex̂ and a which are depicted in Fig. 17. The dashed line

marks the same value as that in Fig. 16. Again, we observe

the same qualitative behavior of a as in the foregoing ex-

amples of Sec. IV, especially a positive average value of kal
and a convergence to zero which occurs simultaneously with

the convergence of Bennett’s acceptance ratio method.

VII. CONCLUSIONS

Since its formulation a decade ago, the Jarzynski equation

and the Crooks fluctuation theorem gave rise to enforced

research of nonequilibrium techniques for free-energy calcu-

lations. Despite the variety of methods, in general little is

known about their statistical properties. In particular, it is

often unclear whether the methods actually converge to the

desired value of the free-energy difference Df , and if so, it

remains in question whether convergence happened within a

given calculation. This is of great concern, as usually the

calculations are strongly biased before convergence starts

happening. In consequence, it is impossible to state the result

of a single calculation of Df with a reliable confidence inter-

val unless a convergence measure is evaluated.

In this paper, we presented and tested a quantitative mea-

sure of convergence for two-sided free-energy estimation,

i.e., Bennett’s acceptance ratio method, which is intimately

related to the fluctuation theorem. From this follows a crite-

rion for convergence relying on monitoring the convergence

measure a within a running estimation of Df . The heart of

the convergence criterion is the nearly simultaneous conver-

gence of the free-energy calculation and the convergence

measure a. Whereas the former converges towards the un-

known value Df , which makes it difficult or even impossible

to decide when convergence actually takes place, the latter

converges to an a priori known value. If convergence is de-

tected with the convergence criterion, the calculation results

in a reliable estimate of the free-energy difference together

with a precise confidence interval.

APPENDIX A

The derivation of inequality s10d relies on the close con-
nection between the overlap Ua and the overlap area A,

Ua =E p0p1

ap0 + bp1
dw $E p0p1

sa + bdmaxhp0,p1j
dw

=E minhp0,p1jdw =A , sA1d

U1/2 = 2E 1

1/p1 + 1/p0
dw , 2E minhp0,p1jdw = 2A .

sA2d

Together with the inequality
1

2
XsN , 1

2
d#XsN ,ad of Bennett

f23g, we obtain

1 − 2A

NA
,

1 − U1/2

1

2
NU1/2

=
1

2
XSN, 1

2
D # XsN,ad #

1

N

1

ab
S 1
A
− 1D
sA3d

which directly yields inequality s10d.

APPENDIX B

Inequality s21d can be obtained as follows. Noting that

tcswd,
1

a and bcswd,
1

b , cf. Eq. s14d we have

2Ûa = tDf̂
s1d
+ bDf̂

s0d
. at

Df̂
2

s1d

+ bb
Df̂
2

s0d

= Ûa
sIId sB1d

and further,

Ûa
sIId = Ûa

2 + astDf̂ − Ûad2
s1d

+ bsbDf̂ − Ûad2
s0d

$ Ûa
2 ,

sB2d

which results in Eq. s21d.

APPENDIX C

The error bars in Figs. 1 and 16 are obtained via the

error-propagation formula for the variance of Bennett’s ac-

ceptance ratio method.

A possible estimate ŝep
2 of the variance of the two-sided

free-energy estimator obtained from error propagation reads

ŝep
2 =

1

n1

t
Df̂
2

s1d

− tDf̂
s1d2

tDf̂
s1d2 +

1

n0

b
Df̂
2

s0d

− bDf̂
s0d2

bDf̂
s0d2

. sC1d

Alternatively, ŝep
2 can be expressed through the overlap esti-

mates Ûa and Ûa
sIId of first and second order, Eqs. s16d and

s19d,

ŝep
2 =

1

abN

Ûa
sIId − Ûa

2

Ûa
2

. sC2d

In the limit of large N, ŝep
2 converges to the asymptotic mean

square error XsN ,ad, Eq. s6d. An upper bound on ŝep
2 follows

from inequality s23d:
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ŝep
2 # 2 −

1

abN
. sC3d

Finally let us mention that the convergence measure a, Eq.

s20d, is closely related to the relative difference of the esti-

mated asymptotic mean square error X̂, Eq. s8d, and ŝep
2

a = s1 − Ûad
X̂ − ŝep

2

X̂
. sC4d

APPENDIX D

Consider the family f̂scd of Df estimators, parameterized

by the real number c f23g

f̂scd = c + ln
tc

s1d

bc
s0d . sD1d

For any fixed value of c, f̂scd defines a consistent estimator

of Df , f̂scd →

N→`

Df ∀c. For finite N, however, the perfor-

mance of the estimator strongly depends on c. The soptimald
two-sided estimate s2d is obtained by the additional condition

f̂scd=c such that tc
s1d
=bc

s0d
holds, and thus c=D f̂ . A pos-

sible measure for the sensibility of the estimate f̂scd on c is

it’s derivative with respect to c. Using
]

]c
tc=−btcbc,

]

]c
bc

=atcbc, and atc+bbc=1, we obtain

]

]c
f̂scd = − 1 + a

tc
2

s1d

tc
s1d + b

bc
2s0d

bc
s0d . sD2d

Taking the derivative at c=D f̂ directly results in the conver-

gence measure a,

]

]c
f̂scduDf̂ = − a . sD3d
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