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Abstract

The unsteady flow over streamlined bodies is one of the most important problems in
fluid dynamics. The interest for these flows is motivated by their highly non-linear
and unsteady nature, which make them almost impossible to solve analytically. With
the increase in computing power the use and development of high-order computational
methods has become an attractive alternative for the numerical modelling of unsteady
flows over streamlined configurations.

In this thesis we conduct numerical simulations of steady and unsteady flows over
motionless and heaving airfoils using a high-order Spectral Element method for the first
time. Our simulations confirm the suitability of this method to model and characterize
in very good spatial and temporal detail the flow structures and wake transitions.
The results are validated against previously published experimental and computational
studies.

Heaving airfoils shed vortices as they oscillate, and these wakes are classified into
drag-, neutral and thrust-producing wakes, depending on the nature of the force pro-
duced by the airfoil. In this investigation drag, neutral and thrust wakes are success-
fully simulated, and also the transitions from one wake to another. Two new modes are
observed in this investigation and added to the wake classification. We question the
assumption that the Strouhal number is the main and only parameter to characterize
the wake configurations, and thus the nature of the forces produced for oscillating air-
foils. Our findings show that, in order to characterize such flows one needs to consider
the amplitude and frequency of oscillations as independent parameters, and that the
Strouhal number alone is not sufficient to characterize oscillating airfoil wakes.

Finally, we explore the frequency regimes for oscillating airfoils. These regimes de-

pend on the forcing frequency and the forcing amplitude and on the relation between

the forcing frequency and the natural frequency of the airfoil. Three frequency regimes

are defined in the literature: the natural regime, the harmonic regime and the lock-in

regime. These different frequency regimes are successfully simulated in this investiga-

tion. They are related to the shedding process through which the wake undergoes a

transition from a Karman street to a reversed Karman street. The transition between

the different frequency regimes is simulated at both constant frequency and constant

amplitude. We found that the frequency regimes are strongly related to the wake type

exhibited. Wake-types with multiple-vortices-per-half-cycle of oscillation are found in

harmonic regimes and wake-types with one vortex-pair shed per cycle are in the region

where one distinct frequency is in control (lock-in and natural regimes). Wakes where

the leading-edge vortices contribute to the shedding process are also simulated.
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Zusammenfassung

Die instationäre Strömungen über Stromlinienkörpern ist eins der wichtigsten Themen
der Fluiddynamik. Das Interesse an dieser Strömung ist von ihrer Nichtlinearität und
Instationarität motiviert. Die Gleichungen die diese Strömung beschreiben sind de-
shalb analytisch unlösbar. Mit der Zunahme der Rechenleistung von Computern, der
Nutzung, und der Entwicklung von hochauflösenden Computational Fluid Dynamics
Methoden, verfügt man über eine attraktive und effiziente Alternative zur Lösung der
instationären Strömungsgleichungen. In dieser Arbeit führen wir numerische Simulatio-
nen von stationären sowie instatinären Strömungen über unbewegten und absenkenden
Flügelprofilen mit einer hochauflösende Spektralen Elemente Methode (SEM) durch.
Diese Methode wird das erste Mal für die numerische Lösung solcher Strömungen be-
nutzt. Unsere Simulationen bestätigen die Eignung dieser hochauflösenden Methode
zur Lösung und Charakterisierung instationärer Strömungen über Stromlinienkörpern.
Es wird eine sehr detaillierte räumliche und zeitliche Beschreibung der Strömung er-
reicht. Die Ergebnisse, die wir mit der hochauflösenden Spektralen Elemente Methode
bekommen haben sind mit bisher veröffentlichten experimentellen und numerischen
Untersuchungen in dieser Arbeit validiert.

Absenkende Flügelprofile erzeugen Wirbel im Nachlauf während ihrer Bewegung.
Die Nachläufe von absenkenden Flügelprofile sind in drei Modelle bezüglich der von dem
Flügelprofil erzeugten Kraft zu klassifizieren: Widerstand-Nachlauf, Neutral-Nachlauf
und Schub-Nachlauf. Diese Nachläufe wurden in dieser Arbeit erfolgreich simuliert,
außerdem der Übergang von einem Nachlauf-Modelle zu den anderen. Zudem haben wir
zwei bisher unbekannte Modi beobachtet. Wir stellen die Annahme, die Strouhal-Zahl
sei der einzige Charakterisierungsparametern von absenkenden Flügelprofilnachläufen
in Frage. Unsere Ergebnisse zeigen, dass im Hinblick auf solche Strömungen auch die
Amplitude und die Frequenz der Absenkung zu berücksichtigen sind.

Schließlich haben wir die verschiedenen Frequenzregime die bei absenkenden

Flügelprofilen erzeugt werden untersucht. Solche Frequenzregime sind abhängig vom

Verhältnis der Anregungsfrequenz zur Eigenfrequenz der Wirbelablösung. Drei Fre-

quenzregime sind in der Literatur definiert: das Eigenfrequenz-Regime, das harmonis-

che Regime und das Lock-in Regime. Diese Regime wurden in dieser Arbeit erfolgreich

simuliert, ebenso der Übergang von einem Regime zu den anderen. Wir haben fest-

gestellt, dass die Frequenzregime die Nachlaufstruktur bestimmen. Nachlaufmodelle

mit mehr als einem abgelösten Wibel pro Absenkungsperiode sind nur im harmonischen

Regime zu finden. Das Eigenfrequenz- oder Lock-in Regime erzeugen Nachlaufmodelle

mit nur einem abgelösten Wirbel pro Absenkungsperiode.





Chapter 1

Introduction

1.1 Turbulence and unsteadiness

Turbulent flows are present in our everyday life, whether it is smoke from a
cigarette, water running from a waterfall, or just mixing some milk in a tea cup
(see Fig. 1.1). This daily encounter with turbulence offers to us an intuitive
and descriptive understanding of turbulence. One can observe that the main
characteristics of turbulence are unsteadiness, irregularity, randomness, chaotic
behaviour, and the existence of different time and length scales. Turbulence is
very important for a broad range of applications. These applications can range
from turbo-machinery, flow around vehicles and buildings, mixing of fuel in en-
gines, chemical reactions, to the wind blowing on wind turbines blades. Although
turbulence is a very important issue in many domains, a watertight definition of
turbulence is still not available. Turbulence is mostly defined by describing its
properties. According to Tritton [70] ”No short but complete definition of tur-
bulence seems to be possible. One has rather to describe the features that are
implied by the use of the name. One can formulate a brief summary, rather than
a formal definition, that attempts to encapsulate the description. Perhaps the
best is that turbulence is a ’state of continuous instability’”.

Turbulence is thought to arise via the instability of laminar flows. The term
laminar is used to indicate a flow which is not turbulent. When a laminar flow is
subjected to strong enough perturbations (for example, increasing the flow rate
in a pipe flow), instability occurs. The change from a laminar to turbulent flow
is termed transition to turbulence. This transition can be controlled by many
parameters. The most important of these parameters is the Reynolds number
Re = U0D/ν, where U0 is the mean-flow velocity, D is the characteristic length
scale (for example, the diameter of the pipe for pipe flows), and ν is the kinematic
viscosity of the fluid. When the Reynolds number is increased, the nonlinear
convective terms of the Navier-Stokes equation become very large compared to
the viscous terms which act as instability dampers. Thus, large Reynolds numbers



2 1. Introduction

(a)

(b)

Figure 1.1: (a) Turbulent flow in a waterfall cascade (b) the turbulent and irreg-
ular flow resulting from a cigarette smoke.
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are a prerequisite for the onset of turbulence. The transition to turbulence is
achieved either by a sudden change in the flow configuration when the Reynolds
number reaches a critical value or it can occur as a succession of qualitative
changes of the laminar flow leading at the end to a fully turbulent flow (see Fig.
1.2).

Many different techniques and methods are dedicated to study the different
issues concerning turbulence and turbulent flows. It is well known that laminar
and turbulent flows are governed by the Navier-Stokes equations, which have been
known for more than a century. These equations are able to describe all different
flows in great detail. Nevertheless, the power of the Navier-Stokes equations is
transformed to a weakness when dealing with turbulent flows. The Navier-Stokes
provide every detail of the flow covering the smallest time and length scales. This
means that the amount of information contained in the calculated velocity field
is immense and this renders a direct approach in solving the Navier-Stokes a very
difficult one. This difficulty is further increased when considering large Reynolds
numbers, as the computational cost is proportional to Re3 [60]. Therefore indi-
rect methods exist in order to simulate turbulent flow. These methods are based
on a statistical approach, so that the flow is not described in terms of the ve-
locity U(x, t) but using the mean velocity field. Such methods include turbulent
viscosity models (the k− ǫ or k−ω models), Reynold-stress models, Large-Eddy-
Simulations (LES), and models based on the Probability Density Function of the
velocity (PDF) [60].

One of the most interesting examples of turbulent and unsteady flows are
the flows over streamlined and/or bluff bodies. This is partly because they are
important in understanding various flow problems. Some expamples are dynamic
response phenomena, flow detachment and reattachment, boundary-layer dynam-
ics and transition to turbulence. A thorough study of these phenomena can in
principle be achieved by performing Direct Numerical Simulations of the turbu-
lent flow over streamlined and bluffed bodies. However, such simulations are still
computationally expensive. The use of statistical approaches like LES or RANS
on the other hand, while being computationally feasible, involve approximations.
These approximations do not allow for a detailed following of the flow structures
and important transition features like flow attachment and re-attachment. This
type of information is crucial in the study of lift and thrust generation, and power
extraction under unsteady conditions.

In this study, we focus on the direct numerical study of the flow over airfoils
in a mid-point of the parameter space between unsteady conditions and fully
turbulent flow, at low to moderate Reynolds numbers. This allow us to study,
with great spatial and temporal detail, important flow transitions which occur
under unsteady conditions. Our approach is therefore based on a compromise
between fully resolving important flow structures and transitions, which are not
visible when using averaged-field approaches like LES or RANS, and at the same
time being able to perform Direct Numerical Simulations of non-turbulent flow
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Figure 1.2: Transition to turbulence due to the evolution of the flow over a
cylinder. The Reynolds number increases from the upper to the the lower frame.
(From [67].
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transitions under unsteady conditions which occur in the transition from highly
unsteady to fully turbulent flow.

1.2 Unsteady flows over airfoils

In real life applications unsteadiness is always present in the flow over streamlined
bodies. Its consequences are fundamentally important problems which concern
a broad range of applications. During most of the twentieth century, unsteady
flows over airfoils received particularly high attention, mostly because of their
impact on the design and operations of airplanes and helicopters. Other applica-
tions for unsteady flows over airfoils/streamlines bodies include turbomachinery
and animal- and fish-like propulsion. Recently, there is also a large interest in
unsteadiness in the field of wind turbines design and manufacturing, as unsteadi-
ness can influence the power production of wind turbines. In this investigation we
will be mainly discussing incompressible, two-dimensional, unsteady flows over
motionless and oscillating airfoil wakes at low to moderate Reynolds numbers
(Re < 105). The term oscillating airfoils includes vertical (plunging, also called
heaving and flapping) and rotational (pitching) motions. In the reminder of this
investigation the term oscillating airfoils will denote the oscillatory motion of air-
foils in general. The term heaving will be used to specify that the motion of the
airfoil is vertical. This term is equal to using the terms plunging and flapping.
The term pitching will be used to indicate the rotational motion of the airfoil.

In dealing with unsteadiness, extensive studies were concerned mainly with
stall and dynamic stall, which occurs in the retreating blade of helicopters. The
retreating blade stall is a dangerous flight condition which occurs in helicopters
and other rotary wings [13, 44]. Helicopter stall occurs when the rotor blade
rotating away from the direction of flight stalls (called retreating blade) and as
a result the helicopter experiences lift loss. This is mainly resulting from the
excessive angle of attack (AOA) experienced by the blade. This phenomenon
constitutes a limiting factor for the maximum speed of helicopters and other flight
vehicules which use rotating blades. Other undesirable effects of unsteadiness are
flutter [63], vortex-induced-vibrations (VIV) [75], flow-induced-vibrations (FIV)
[6, 53], buffeting and material fatigue [3, 76].

Besides these undesirable effects, unsteady flows over airfoils have also some
desirable effects such as thrust generation by heaving airfoils. A lot of work is
also dedicated to the use of smart control systems which use the unsteadiness in
an efficient way to actively or passively control the airfoils as to reduce the vibra-
tions [31, 51], the acoustic signature or achieve energy efficiency [54, 65]. Other
beneficial aspects of unsteadiness are stall delay to higher incidences, controlled
vortex generation and controlling the unsteady forces in some effective way as to
permit improvements of performance.
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1.3 Dynamic Stall

One of the most common and discussed topics in relation with unsteady flow over
airfoils is the stall. Stall is an aerodynamical phenomenon which can be divided
into two categories. These categories depend on whether the airfoil is static or
moving and are labelled static stall and dynamic stall. Stall is extensively studied
for helicopter blades, as it is associated with constraints on the helicopter speed,
lift and maneuverability [33].

In the following we cite some examples where stall (dynamic and static) plays
an important role. In the field of fish- and bird-like propulsion, it has been found
that the proper timing of the dynamic stall vortex is crucial to the flight process
[17]. On the other hand, it is clear that the limitations on the flight envelope
of helicopters and other flying vehicles is caused by the onset of dynamic stall,
therefore the solution to these limitations passes by a complete understanding of
this phenomenon [18]. Another example where stall is to be taken into account
concerns wind turbines. Wind turbines are subject to large unsteady variations
in loads. This is mainly due to the unsteady nature of the inflow they are ex-
periencing, especially in offshore locations. To predict the performance of wind
turbines, the modelling should take into account the critical situation of the dy-
namic stall. This renders the task of the modelling of the unsteady aerodynamics
a rather difficult one, as pointed out in [66]. There is an abundant literature
concerned with the unsteady conditions experienced by wind turbines and their
modelling. The predicition of the edgewise vibrations in the case of stall was
examined by Petersen et al. [58]. He concluded that the use of dynamic stall
models improved the level of agreement with the experimental measurements.
Schreck & Robinson [64] emphasise that to improve the development of aerody-
namical models, dynamic stall of wind turbines must be characterized and very
well understood. Accounting for dynamic stall can also be achieved by using
semi-empirical models, as the well known Beddoes-Leishman model [24].

1.3.1 Aerodynamics of Stall

Stall (also called static stall) occurs when the angle of attack becomes so great
that the airflow is broken over the upper surface of the aifoil. The critical AOA
at which the stall happens is usually in the interval 8 to 20 degrees, depending on
the Reynolds number and the airfoil geometry. The variation of the lift coefficient
with the angle of attack is illustrated in Fig. 1.3. The lift coefficient increases
with the angle of attack until the critical value of AOA is reached. At this value
the flow is massively detached from the airfoil surface and more lift can not be
produced. When the angle of attack is further increased the lift drops significantly
in what is called the lift-crisis or lift-stall (see Fig. 1.3).

A more complex phenomenon occurs when the airfoil stalls while the airfoil
itself undergoes unsteady motion. This is called dynamic Stall. The dynamic
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Figure 1.3: Variation of the lift coefficient as a function of the angle of attack for
static stall.

stall takes place at a higher critical angle of attack as the static stall, and is
characterized by a higher lift overshoot. It exhibits massive boundary-layer de-
tachment and reatachment, separation and nonlinear effects such as one-degree
of freedom instabilities. The aerodynamic forces during dynamic stall exhibit
larger hysteresis with respect to the instantaneous angle of attack (see Fig. 1.4).
The aerodynamical coefficients can greatly exceed the maximum values reached
during static stall. Dynamic stall is characterized by the creation, the convection,
and the shedding of a leading-edge vortex (LEV). As long as the LEV is on the
airfoil surface, the produced lift is enhanced. However, when the LEV is swept
over the airfoil surface, the aft-moving center of the pressure (ie, moving towards
the trailing-edge) induces very large nose-down pitching moments. These mo-
ments are fundamentally different from their static-stall counterparts, and they
can constitute high torsional dynamical loads on the airfoil. These loads may be
the origin of aeroelastic problems. These problems can cause stall flutter which
consequently lead to fatigue and in the long term to structural failure [44, 47].

It is clear from the previous description, and from the multitude of applica-
tions, that dynamic stall is an aerodynamic phenomenon of great importance. A
better understanding of dynamic stall will allow a more realistic numerical mod-
elling, and this in turn will enable more realistic numerical simulations of other
situations where unsteadiness is involved.

1.3.2 Literature Review on Dynamic Stall

In this section a literature review is presented for analytical, experimental and
computational studies dealing with the prediction of dynamic stall. As mentioned
above, dynamical stall is of complicated nature. This mainly due to its nonlin-
earity and its dependence on several parameters (see Fig. 1.5 for the dependence
on the frequency and amplitude for a pitching airfoil). This complexity resulted
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Figure 1.4: Variation of the lift (or normal forces) CN and the pitching moment
CM as a function of the instantaneous angle of attack for a NACA0012 profile.
The dashed line represents the static stall case. The solid line represents the
pitching airfoil case, where the incidence angle α varies as a function of time in
a sinusoidal fashion (Adapted from [8]).
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in the first prediction tools being mainly based on empirical and semi-empirical
methods. These methods use empirical functions to fit the experimental forces
data. Some examples of these methods are the Boeing-Vertol gamma function
[26] and the semi-empirical method developed by ONERA [71]. It is important
to note that theoretical progress is rather slow on this difficult problem, although
some techniques have been developed and are still being improved and corrected.
Nevertheless, these techniques are restrictive because of the assumptions and
approximations that are made and deal only with a specific and limited range
of flow parameters. Some of these theoretical developments are the linearized
thin-airfoil method [68], the viscid-inviscid interaction method [61] and the su-
perposition method [46].

Experimentally, most test facilities available can only produce steady flows,
and the data acquisition techniques were mostly developed for steady flows. An
important characteristic of the facilities used for experimental studies of dynamic
stall is the ability to reproduce the frequency and amplitude parameters in their
nondimensional range [17]. For example, at small reduced frequencies, the re-
duction of the geometric scaling of the airfoil (or model) implies very high phys-
ical frequency values. Therefore, conventional dynamic testing becomes limited
to deterministically imposed unsteady motions (sinusoidal motion) or a tran-
sient motion of a specific kind (ramp motion). Experimental investigations have
shown that dynamic stall depends of numerous flow parameters and on forcing
conditions [17, 48, 49]. The LEV received a lot of attention and has been well
documented [9, 48]. Leishman [43] showed that the high adverse leading-edge
pressure gradients that accompany the oscillatory motion of the airfoil make it
more sensitive to leading-edge separation. The author concluded that the static
stall characteristics are not useful indicators of how the airfoil will behave under
dynamic stall conditions. Only a limited range of test conditions have been ex-
perimentally explored and examined in detail, and much more experimental work
needs to be achieved before achieving a complete understanding of dynamic stall.
Further measurements are required to explain dynamic stall onset, in particular
the nature of the flow in the boundary-layer region.

With the increase in computational resources and power, more computational
work is dedicated to the numerical simulation and prediction of dynamic stall.
In his review McCroskey [49] concluded that CFD research is mainly concerned
with the understanding and prediction of the nonlinear phenomena of dynamic
stall. These phenomena are beyond the thin-aifoil theory [68, 74]. To simulate
real airfoils in real fluids the numerical methods need to account for the airfoil
shape and camber, finite mean angle of attack, large amplitude motions and the
boundary-layer displacement. Giesing [22] numerically simulates arbitrary airfoil
geometries and motions, and Desopper [15] includes boundary-layer effects. The
trend that emerges from these studies is that the individual surface pressures are
affected much more than the difference in pressure across the airfoil. This explains
the fluctuations observed in the lift and pitching moment. It also explains the
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(a)

(b)

Figure 1.5: Effect of (a) the amplitude and (b) the reduced frequency of oscilla-
tions on the aerodynamicall coefficients for an airfoil oscillating in pitch during
dynamic stall. CL, CD and CM are the lift, drag and momentum coefficients;
respectively. (Adapted from [8]).
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discrepancies observed in comparing the deviations of the lift and momentum
coefficients to the thin-airfoil theory and the agreement observed for the pressure
coefficient. It is important to point out that if boundary-layer calculations are
to be done, this requires a realistic pressure distribution to be implemented [49].
The application of the Kutta condition at the trailing-edge has been a major topic
in the modelling and the computation of dynamic stall. According to McCroskey
[49] further detailed studies are needed to clarify the conditions at the trailing-
edge region, as the correct theoretical modelling of this region is particularly
important to account for trailing-edge stall on heaving airfoils.

In their review Ekaterinaris and Platzer [16] enumerated and discussed the
methods used for the numerical predicition of dynamic stall. These include mainly
the unsteady panel method [77], the boundary-layer method [19] and the viscous-
inviscid interaction methods [32]. The authors concluded that although in recent
years significant progress has been achieved in the numerical investigation of un-
steady flows (particularly dynamic stall phenomena), several issues still remain
to be addressed. According to the authors the aspects which require further
research are the compressibility and transonic effects at high Reynolds num-
bers (Re > 106). Other aspects are the flow reattachment and the transitional
models used to account for the transition from laminar to turbulent regimes,
as a proper transition model can improve the prediction of dynamic stall forces
hysteresis-loops. A challenging area for future studies and improvements are
three-dimensional simulations, which are very expensive in terms of computa-
tional cost.

1.4 Heaving Airfoils Wakes

Small size fixed airfoils used for propulsive purposes are not efficient. This is due
to the increase in the thickness of the boundary-layer which results in an increase
in the viscous drag, this in turn causes lift-loss and a pressure-drag increase. On
the other hand, it is well established that heaving airfoils (or oscillating airfoils
in general) are more efficient than their fixed counterparts when the size and
Reynolds number are decreased. Moreover, at certain combinations of frequency
and amplitude of oscillations, heaving airfoils can produce lift and thrust and
thus propulsion [41]. This is seen everyday in nature, as the propulsion of fish
and birds and other insects relies on flapping wings for flying and flapping fins for
swimming. Insects and birds not only are efficient at low Reynolds numbers but
they use the heaving motion to their advantage by exploiting the aerodynamical
phenomena resulting from such a motion.

The development of Micro Air Vehicles (MAVs) has motivated and stimulated
the research on the subject of oscillating airfoils. MAVs are defined by the US De-
fence Advanced Research Project Agency (DARPA) as a class of unmanned aerial
vehicles (UAV) not larger than 15 cm, and can potentially be reduced to the size
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(a) (b)

Figure 1.6: Schematic representation of Micro Air Vehicles (MAV) based on
birds- and insects-like flight. (a) The Entomopter MAV modell to be used on
missions on the planet Mars [12]. (b) The Ornithopter MAV Mentor, designed
and developed by the University of Toronto and SRI International [50].

of large insects [1]. MAVs have a broad range of applications, ranging from mili-
tary to civil applications. Among these applications are rapid location of trapped
persons in damaged zones, monitoring, sensor carriers, forestry and wildlife sur-
veys. Fig. 1.6 illustrates two different kinds of MAVs. Other applications areas
concerned with studying heaving airfoils are the wake vortices dynamics [42], fish
and marine animals propulsion [45], flow control and the unsteady aerodynamics
of blades undergoing cyclical heaving motions as helicopters and wind turbines
blades [11] and generally low to moderate Reynolds numbers flows [2]. There is a
need to understand heaving airfoils mechanisms which are used in nature and to
adopt or change these mechanisms for the purpose of designing better and more
efficient MAVs. For this end, it is necessary to predict the flow over and in the
wake of these airoils as the forces and loads on them.

1.4.1 Aerodynamics of Heaving Airfoils

Here we present the parameters which are important for heaving airfoils flows
and expose the analysis methods and results that are currently available. Several
parameters govern the heaving motion of airfoils. Among these parameters are
the amplitude and the frequency of oscillations, the shape and the camber of the
airfoil, and the Reynolds number.

Let us consider the airfoil motion as illustrated in Fig. 1.7. The sinusoidal
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Figure 1.7: Schematic representation of the airfoil heaving and pitching motions.
y(t) represents the heaving motion where the vertical coordinate of the airfoil y
vary sinusoidally in time. θ(t) represents the pitching motion of the airfoil where
the angle of attack varies sinusoidally in time. U0 is the free-stream velocity and
c is the airfoil chord length, and Spiv is the pivot-length. (Adapted from [78]).

heaving motion (not to be confused with the pitching motion where the angle of
attack changes in a sinusoidal fashion, or with the hovering motion which is the
combination of the pitching and heaving motion) of the airfoil is defined by

y(t) = h cos(2πft), (1.1)

where y(t) represents the temporal variation of the vertical coordinate of the
airfoil, h/c is the plunge amplitude normalized by the airfoil chord length c, and f
is the frequency of oscillations, normalized as f = fc/U0. Another representation
of the frequency is the non-dimensional reduced frequency defined as k = πfc/U0,
where U0 is the free-stream velocity. Some investigations define the reduced
frequency as k = 2πfc/U0. In the reminder of this investigation, unless otherwise
indicated, we use the first definition of the reduced frequency.

Numerous investigations suggest that the most important control parameter
is the Strouhal number, St = fh/U0 = 2kh/π, as it combines the frequency and
amplitude of oscillations [35, 69]. Recent investigations show that the Strouhal
number is not the only parameter that characterizes the wake and flow over the
surface of the airfoil, and that the frequency and amplitude of oscillations have
to be considered separately [78, 79]. The Reynolds number is also a critical
parameter which influences the heaving airfoil dynamics. This is reflected by the
fact that the strategies used by birds at high Reynolds number are different than
those used for lower Reynolds numbers, where the leading-edge vortex is very
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important. Numerous analytical and computational investigations are dedicated
to study the aerodynamics of heaving airfoils. The background of these methods
is discussed in the following.

If a heaving airfoil/body is exposed to an incoming flow, it will exhibit an
alternate vortex shedding in the wake at a certain critical value of the Reynolds
number. The alternate vortices are produced by the unsteady flow separation
over the body and are called a Karman vortex street [21, 68, 73]. These rows
are constituted of clockwise vortices on the top and anticlockwise vortices at the
bottom of the vortex sheet and they are a signature that the body is producing
drag (see Fig. 1.8a). The time-averaged velocity profiles for these configurations
exhibit a momentum-deficit, which means that the mean velocity inside the wake
is lower than the free-stream velocity. When the rows of vortices are inverted
the configuration is called a reverse or inverted Karman vortex street. This is
a signature of thrust production (see Fig. 1.8b), as the time-averaged velocity
profiles exhibit here a momentum-jet (or excess). This means that the mean
velocity inside the wake is higher than the free-stream velocity. Finally, when the
rows of vortices are perfectly aligned the wake is called neutral, as the inherent
drag equals the produced thrust (see Fig. 1.8c). The time-averaged velocity
profiles for these configurations exhibit an equilibrium of the momentum, that is,
the mean velocity is almost equal to the free-stream velocity.

These wakes were observed and documented experimentally and computa-
tionally [20, 41, 42, 78] (see Fig. 1.10 and Fig. 1.9). One common feature of
these three wakes is that one pair of vortices is shed per cycle of oscillation of the
airfoil/body. Nevertheless, some configurations exhibit more than a pair of vor-
tices per oscillation cycle, which are called multiple-vortex-per-cycle modes (see
Fig. 1.9 and Fig. 1.10). The origin of these modes is still not well understood
and this will be discussed at length in Chapter 5. Using an inviscid vortex lattice
method, Hall and Hall [28] showed that the force on the heaving airfoil is affected
very little by the details of the wake vortices roll-up. The authors extended their
work to k = 1.4. This means that two different wake shapes can give two different
time-averaged velocity profiles but their averaged momentum excess will be the
same. Therefore, the details of the wake structures are not the result of the forces
distribution on the airfoil and more parameters need to be explored to explain
the wake configurations obtained experimentally or computationally.

1.4.2 Literature Review on Heaving Airfoils

Birnbaum [5], was the first to analytically study the incompressible flow over
a heaving airfoil, where he presented an analysis for small values of the reduced
frequency. Glauert [23], calculated the forces on an oscillating airfoil for arbitrary
oscillation frequencies. The first to state that an oscillating airfoil can produce
thrust were Knoller [40] and Betz [4] in independent investigations. The thrust
generation results from the fact that heaving airfoils create an effective angle of
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(a)

(b)

(c)

Figure 1.8: Schematic representation of: (a) Karman vortex street, the upper-row
is composed of clockwise vortices and the lower-row is composed of anticlockwise
vortices. This wake configuration indicates a drag-producing wake. (b) The re-
versed Karman vortex street, the upper-row is composed of anticlockwise vortices
and the lower-row is composed of clockwise vortices. This wake configuration in-
dicates a thrust-producing wake. Note that in the two cases there is a vertical
spacing between the rows of opposite rotating vortices. The time-averaged veloc-
ity profiles are supperposed on each wake, represented by the straight arrows. (c)
Neutral wake, the clockwise and anticlockwise vortices are on the same row and
there is no vertical spacing as in the thrust- or drag-producing wakes. This wake
configuration indicates that the inherent drag is equal to the produced thrust.
(From [78])
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(a)

(b)

Figure 1.9: Multiple-vortex-per-cycle wake. (a) Vorticity distribution of a numer-
ically simulated multiple-vortex-per-cycle wake. The simulation is for a heaving
NACA0012 profile at k=4, h=0.02, and Re = 2 × 104 using a laminar Navier-
Stokes solver (from [78]). (b) Vorticity distribution of an experimentally simu-
lated multiple-vortex-per-cycle wake (from [42]). The experiments are conducted
for a heaving airfoil at the same parameters as the numerical simulation. The
black box and the wires visible at the left of the experimental figure are part of
the experimental apparatus used in [42].
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(a)

(b)

(c)

Figure 1.10: Vorticity distributions of experimentally simulated wakes. (a) A
drag-producing wake at k = 3.93 and h = 0.0125. (b) A neutral wake at k = 3.93
and h = 0.025. (c) A thrust-producing wake at k = 3.93 and h = 0.05. The
experiments are conducted for a NACA0012 profile at Re = 2 × 104 (from [42]).
The black box and the wires visible at the left of the experimental figure are part
of the experimental apparatus used in [42].
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Figure 1.11: Schematic representation of incident, resultant velocities and result-
ing forces on the airfoil during the upstroke (right) and downstroke (left) phases
of a heaving motion. (From [59]).

attack, so that an aerodynamic force is generated which decomposes into lift and
thrust forces. This occurs during both the up and down strokes of the heaving
motion (see Fig. 1.11). The ability of heaving airfoils to produce thrust is called
the Knoller-Betz effect. This effect was confirmed experimentally by Katzmayr
[39]. Von Karman and Burgers [73] showed that a wake which consists of rows
of counter-rotating vortices produces thrust.

One aspect of studying heaving airfoils is to obtain expressions or predictions
for the forces acting on the airfoil. Theodorsen [68] calculated these expressions
for the time-dependent lift and momentum forces on a flat plate undergoing an
oscillatory motion, as an approximation to the flow problem. The oscillations
were considered to be very small in order to be able to use the linearised theory.
The potential flow assumption means that the flow is considered incompressible
and inviscid and that flow separation is not accounted for. Garrick [21] extended
the analysis of Theodorsen by analytically calculating the thrust produced by the
airfoil using the integration of the pressure over the airfoil surface and the calcu-
lation of the energy input rate into the vortex wake. Garrick analysis is a starting
point to discuss aerodynamics of oscillating airfoils, as it is a simple method which
permits the calculation of a first guess of the forces over an oscillating airfoil.

The linearized potential analysis assumes that the airfoil is treated as a flat
plate, so that the thickness effects are not considered and the Kutta condition
is valid. The Kutta condition states that there should be no separation at the
trailing-edge of the airfoil, and this condition is likely to be violated at high am-
plitudes and frequencies of oscillations [38]. Another assumption of the linearised
potential analysis is that the wake is considered as frozen, which means that
it can not evolve under the action of its own induced velocity. Although this
analysis showed a fair agreement at low amplitudes and frequency of oscillations,
the assumptions made by these methods are very far from representing what is
happening in a real heaving airfoil wake and is unable to explain the flow features.
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Panel methods were introduced to remove some of the assumptions made
by the linearised potential analysis. These methods became very popular, they
assume airfoils with arbitrary sections and motions. The main idea of the Panel
method is that the geometry of the airfoil is divided into panels and each panel
induces a velocity on itself and the other panels and this can be expressed by
simple equations containing geometric relations. A system of linear equations
is then built up and solved for the unknown panels velocities [38]. In unsteady
situations the wake must be accounted for and it is represented by a finite number
of discrete panels [34]. The angle at which the wake is shed can also vary in time,
as the flow over the airfoil surface varies. This renders the use of the unsteady
Panel method enforcing the Kutta condition questionable.

Young [78] used a linearised analysis based on Garrick [21], an unsteady
panel method code (UPM) and a Navier-Stokes solver for comparison purposes
and to explore the limits of the simplifications on the flow of heaving airfoils.
The author states that because the UPM code cannot account for the viscous
drag from the airfoil, it predicts only thrust-producing wakes. He also found
that neither the Garrick-method-based code nor the UPM code could produce
the multiple-vortex-per-cycle structures observed in the experiments [42], while
the Navier-Stokes solver on the other hand successfully reproduced these results.
This implies that the UPM and the Garrick method were not able to capture the
physics of the problem and this is probably due to the simplifications and the
low-order resolution of these methods. As an example, see Fig. 1.12, where an
unsteady panel code is unable to reproduce the results obtained experimentally
by Lai & Platzer [42]. Note that the turbulent Navier-solver used by Young
in [78] (also plotted in Fig. 1.12) could not also reproduce the experimental
results. This can be attributed to the inefficiency of the turbulent model used.
Or this can also mean that the flow is laminar. The laminar Navier-Stokes solver,
on the other hand reproduced the experimental results. In conclusion, one can
state that there is a need for a high-order method in space and in time, with no
simplifications in order to be able to grasp all the aerodynamic features and flow
transition details. Such a method is used in this investigation.

The choice of using the Spectral Element /hp Method is motivated by the fact
that such method allows a very high spatial resolution without an exceedingly
high computational cost. Additionally, there is no need for remeshing operations,
since convergence can be achieved by increasing the order of the polynomial
approximation in all or some regions of the computational domain. As remeshing
is a very time consuming operation, obtaining convergence without remeshing
allows a substantial reduction of computational time when using Spectral /hp
Element Methods. Moreover, this method allows to perform a Direct Numerical
Simulation (DNS) and therefore no assumptions are made about the laminar or
tubulent nature of the flow. Additionally, there is no need for a turbulence model
(LES or RANS) or a transition-to-turbulence model.
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Figure 1.12: Comparison of vorticity distributions obtained using the experimen-
tal results of Lai & Platzer [42] and the numerical simulation results of Young
[78]. The top frame represent the experimental simulations of the near wake ob-
tained by dye injection at the trailing-edge of the airfoil [42]. The second and
third frames from the top show the vorticity distribution obtained using numeri-
cal simulations [78], where scalar particles representing the dye in the experiments
were released from a vertical plane at the trailing-edge of the airfoil. The nu-
merical simulations were obtained a Navier-Stokes solver which is laminar for
the second frame and a turbulent solver for the third frame. The fourth frame
from the top is obtained numerically using an Unsteady Panel Method (UPM),
presented in [78]. All cases shown in this figure are for a NACA0012 profile which
is heaving at Re = 2×104, k = 8 and h = 0.0125. From this figure it is clear that
the laminar Navier-Stokes solver is able to reproduce the experimental results.
The turbulent Navier-Stokes solver and the unsteady panel method are not able
to reproduce the experimental results.
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Figure 1.13: Thrust coefficient CT (left) and propulsive efficiency η(right) as a
function of the reduced frequency k (from [59]).

1.4.3 Thrust Generation by Heaving Airfoils

The transition from a drag- to a thrust-producing wake occurs when increasing
the frequency of oscillations at constant amplitude, and vice versa (see Fig. 1.15).
Thrust increases when the frequency and amplitude of oscillation increases. Nev-
ertheless, the propulsive efficiency η, defined as the ratio of thrust times the flight
velocity divided by the power needed to set the airfoil in an oscillatory motion,
does not follow this trend. Indeed, it decreases as the frequency of oscillation
increases (see Fig. 1.13). On the other hand, the efficiency increases when the
ampltiude of oscillations increases (see Fig. 1.13). This indicates the complex
nature of the mechanism that leads to thrust production by heaving airfoils. It is
clear that the thrust production (or the transition from a drag-producing wake to
a thrust-producing wake) occurs at a critical value of the Strouhal number (and
the parameter kh). At high Reynolds numbers (Re > 4 × 104) efficient thrust
production is obtained by the shedding of the vortices at the trailing-edge (they
constitute the reversed Karman street). At high Reynolds numbers the thrust
efficiency is obtained near the dynamic stall boundary for a constant value of
Strouhal number [59]. For low Reynolds numbers 1 × 104 < Re < 3 × 104 (which
are of interest for this investigation and for MAVs applications) the flow is much
more complex. This is reflected in the fact that efficiency is achieved by the
shedding at both the trailing- and leading-edge (see Fig. 1.14).

1.5 Frequency regimes in forced airfoil wakes

For motionless bodies exposed to an inflow, it is well know that a Karman vortex
street occurs as soon as a critical Reynolds number is reached [27, 55, 56, 72].
The natural frequency (or Strouhal frequency) is defined as the frequency of
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Figure 1.14: Vorticity contours representing the shedding from both the trailing
and leading edge of the heaving airfoil at Re = 2 × 104. The reduced frequency
and the amplitude of oscillations are: k = 2 and h = 0.75 (left), k = 0.5 and
h = 3 (right) (from [59]).

Figure 1.15: Drag- and thrust-producing wakes and neutral wakes classification
as a function of the reduced frequency k and amplitude of oscillations h. This
classification is obtained via experimental investigations. (From [35]).
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shedding of vortices of the unforced airfoil [27, 37, 78]. On the other hand, the
forced wake of the airfoil can undergo different frequency regimes depending on
the forcing frequency and the forcing amplitude as on the relation between the
forcing frequency and the natural frequency of the static airfoil. Three frequency
regimes are defined in the literature: the natural regime, the harmonic regime and
the lock-in regime [78, 79]. In the natural regime the vortex shedding frequency
is equal to the natural frequency. In the harmonic regime, the vortex shedding
frequency is a mixture or a combination of the natural and the forcing frequency.
Finally, in the lock-in regime, the vortex shedding frequency is locked to the
forcing frequency. These regimes have been studied and observed for oscillating
cylinders [10, 37, 55, 56, 80] and only few studies exist for oscillating airfoils
[78, 79].

1.6 Direct Numerical Simulations (DNS) - High

Order Simulations

Most of the previously cited numerical methods used to investigate the flow over
and in the wake of heaving airfoils are low-order numerical methods. This means
that low-order spatial and temporal discretizations are used to express the un-
known variable. Low-order simulations can rarely capture the real physics of
the problem, especially when few grid points are used. In the case of unsteady
flows and oscillating airfoil wakes, low-order methods can only be used in some
parameters intervals. These methods fail when extreme values are considered, for
example: high angles of attack, high frequency and/or amplitudes of oscillation,
low Reynolds numbers, etc. As these extreme parameters values represent very
interesting phenomena (which are important to the detailed understanding of the
physics of the flow) high-order methods are needed. Low resolution methods can
also spread the vortices, unless a very large number of grid points is used in the
boundary-layer, wake and near-field region [25]. This increases dramatically the
computational cost, especially for three-dimensional simulations based on these
low-order methods. High-order methods are the prime choice if any modelling
of the phenomenon is to be done, as all the details are to be captured for the
establishment of a good model or at least to define the important parameters
which are needed for the modelling.

Some high-order schemes have been developed and used in order to increase
the resolution of numerical simulations. Such approaches have been especially
used in the field of computational aeroacoustics. These high-order schemes which
use only few mesh points per wavelength, have low numerical dissipation and
dispersion. Furthermore, these schemes can solve for a wider range of wavenum-
bers then than low-order schemes. As an example we cite the implicit compact
scheme, which is widely used in acoustics [62] and the high-order McCormack
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schemes [30]. On the other hand, compact high-order methods, such as spectral
elements or p-type finite element techniques provide high accuracy, if the solution
is smooth and if a suitable mapping can be defined between the local subdomains
and the standard region (see Chapter 2 for more details). Highly accurate spec-
tral methods such as the Fourier method, are very successful (when using very
simple geometries) in analyzing fundamental fluid mechanics in combination with
the use of Direct Numerical Simulations (DNS). For complex geometries, Finite
Volumes and Finite Elements based methods are widely used, but their low ac-
curacy makes these methods relatively inefficient in terms of accuracy per unit
of computational power. By applying high-order polynomial expansions within
the elements, the Spectral /hp Element Methods offer the high accuracy of Spec-
tral (or Fourier) based methods and the geometric flexibility and capabilities of
Finite Element Methods. This method provides an efficient tool of obtaining the
highest possible accuracy for a given computational cost [36, 57].

The development of high-order methods allows their combination with DNS
methods [7, 14, 29]. This combination is possible due to the high performance
of modern computers capabilities. This is a very important issue, since DNS is
the preferred tool for fundamental studies. This is mainly due to the absence of
approximations and to the fact that all the flow is resolved at all scales. DNS
allows an accurate representation of the aerodynamical phenomena encountered
in unsteady flow simulations. It is also a very good tool for modelling turbu-
lence and transition to turbulence [52]. The complex flow detachment, reattach-
ment, and the boundary-layer unsteadiness and complex nature, in addition to
the shedding which occurs at the sharp trailing-edge of the airfoil represent a
considerable numerical challenge for methods using low-order accuracy spatial
schemes. Therefore, in this investigation the Spectral /hp Element Method is
used in an attempt to achieve highly accurate temporal and spatial simulations
of the unsteady flow over a heaving airfoil.

1.7 Objectives

The objectives of the present investigation can be detailed as follows:

• The use of a high-order and high-accuracy direct numerical method in order
to obtain highly accurate temporal and spatial simulations, and fully resolve
the flow and all the scales involved without any approximation.

• To investigate the flow over motionless and heaving airfoils, and to study
the dependence of the aerodynamical forces and the wake on several flow
parameters.

• To investigate the specific case of drag- and thrust-producing wakes as well
as neutral wakes at low Reynolds numbers, at low heaving amplitudes and
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at low to high heaving frequencies. This interval is not explored so far in
the literature and it has very interesting properties. These properties arise
from the interaction of the natural frequency of the vortices shedding and
the frequency imposed by the heaving motion.

• To investigate the process of thrust generation by heaving airfoils at low to
moderate Reynolds numbers (Re < 105) in order to provide and explanation
for the experimentally observed heaving airfoil wakes.

• To determine the dependence of thrust production and the wake modes
on the governing parameters such as the amplitude and frequency of the
heaving motion. Most of the investigations in the literature deal with the
pitching motion and there are only very few studies dedicated to the heaving
motion.

• To explore the relation between the observed wakes and the shedding from
the leading- and trailing-edge, especially the multiple-vortices-per-cycle
mode.

• To verify the validity of the single parameter characterization of the thrust
production and the observed wakes.

• To explore the different frequency regimes exhibited by the heaving airfoils
and link these regimes to the wake types and the aerodynamical forces.

• To validate the simualations obtained by the Nǫκταr-solver used in com-
bination with the moving frame of reference technique. This validation is
achieved for motionless cylinders as for motionless and for oscillating air-
foils.

1.8 Outline of the Thesis

This thesis is divided into six chapters. In Chapter 2 we introduce the Spec-
tral /hp Element Method and its mathematical background. In Chapter 3 the
Nǫκταr-solver is validated for a motionless cylinder and a motionless and heaving
airfoil. In Chapter 4 we explore the unsteady flow over motionless and heaving
airfoils and the aerodynamical coefficients generated by these flows. The effect
of varying the flow parameters on the flow over the airfoil surface, the near wake
configuration, and the aerodynamical forces is also adressed. Chapter 4 is based
on a paper submitted to Computers and Fluids and is currently under review.
In Chapter 5 we study the specific case of heaving airfoils. The wakes exhib-
ited by heaving airfoils are explored, and also the transition between these wakes
as a function of the amplitude and frequency of oscillations. The dependence
of the wake types on several parameters is investigated, along with some new
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features about the shedding of vortices at the leading and trailing-edge. The
origin of the multiple-vortex-per-cycle mode is dicussed. Chapter 5 is based on
a paper submittes to Journal of Computational and Applied Mathematics and is
currently under review. In Chapter 6 we investigate the frequency selection in
motionless and heaving airfoils, the different frequency regimes exhibited by the
heaving airfoil, the transition between these regimes, and the relation between
wake types and frequency regimes. Chapter 6 constitutes a paper submitted to
Fluid Dynamics Research and is currently under review.
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Chapter 2

Spectral /hp Finite Element
Method

The numerical simulations presented in this investigation were per-
formed using the Nǫκταr solver, which uses the Spectral /hp Element
Method as a discretization method. The version of the solver that we
used was provided by the group of Prof. S. Sherwin at Imperial Col-
lege (London) [26] and appart from minor changes was kept in its
original form. The solver was previously validated for many geome-
tries, among these cylindrical [7], helical [9] and rectangular [22]. We
chose to validate the solver for the airfoil and cylindrical geometries
(see Chapters 3 and 4). The solver was used previously for the simula-
tion of the unsteady flow over a stationary and moving airfoil [24], but
using the Arbitrary Lagrangian Eulerian Method (ALE) to account
for the airfoil motion. In this investigation we use a moving frame
of reference method, as it offers more flexibility and converges faster
than ALE. The moving frame of reference involves no actual motion
of the grid, therefore no grid-update at each time step is necessary
[22].

The present investigation concentrates on low to moderate
Reynolds numbers (Re ≤ 3 × 104) as the numerical solver being a
Direct Numerical Simulation (DNS) solver is not suitable for higher
Reynolds numbers. This is mainly due to the prohibitively high com-
putational cost. Our goal in using the Spectral /hp Element Method
(SEM) based Nǫκταr-solver is to achieve high accuracy simulations
in order to characterize the highly unsteady and nonlinear flow over
a motionless or oscillating airfoil at low to moderate angles of at-
tack. The Nǫκταr-solver was up to now used only for very low
Reynolds numbers simulations [7, 22]. Encouraged by the potential
of the SEM we used the Nǫκταr-solver for simulations at moderate
to high Reynolds numbers (Re ≤ 3 × 104). The results we obtained
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agree very well with previously published experimental and numerical
results (see Chapter 3 for the validation simulations). Our choice in
using the Nǫκταr-solver is motivated by the capabilities of the Spec-
tral /hp Element Methods in reproducing the flow dynamics with very
high spatial and temporal resolutions and by its exponential conver-
gence properties [10, 17–19, 27, 28].

In Section 2.1 we introduce Computational Fluid Dynamics (CFD)
simulations. In Section 2.2 the Spectral /hp Element Method is briefly
introduced. The framework of weighted residuals and Galerkin for-
mulations are outlined in Section 2.3. The discretization for 2D prob-
lems is discussed in Section 2.4, along with the elemental operations
on standard and general-shaped elements. The solution procedure of
the global system and the global assembly method are described in
Section 2.4. The extension to 3D cases is outlined in Section 2.5, and
the time advancement scheme is explained in Section 2.6.

2.1 Introduction to Computational Fluid Dy-

namics (CFD)

The Navier-Stokes equations have been known for more than a century, but they
can be solved analytically only for a very limited number of flows and simple
geometries. The reason for this lies in the fact that these equations are nonlinear
partial differential equations (PDEs) in almost every real-flow situation. In some
cases, such as one-dimensional flows and Stokes flow, the PDEs can be simplified
to linear equations. The nonlinearity is due to convective acceleration, which is
an acceleration associated with the change in velocity over position. Hence, any
convective flow, whether turbulent or not, will involve nonlinearity. The most
common approach to circumvent these limitations and difficulties in the solution
of the Navier-Stokes equations is based on simplifying them. This simplification is
achieved using approximations, dimensional analysis, and empirical input. This
approach is quite successful when the flow studied can be described by one or two
parameters. Therefore, an extension of such simplifications to complex geometries
or flow situations is not possible.

The non-dimensionalisation of the Navier-Stokes equations can leave the
Reynolds number as the only independent parameter of the problem. This is
used in practical engineering design and is a very valuable and useful method.
However, many flows require several dimensionless parameters for their charac-
terization, as it is the case for flows over airfoils.

Conducting experiments, can also be an efficient way of measuring global
parameters, like drag, lift, pressure and velocity. However, in the cases where
flow details are required, for example separation and boudary-layer details, ex-
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perimental investigation turns out to be costly and/or time consuming and even
in some cases not possible to realize. With the increase of modern computers
calculation and storage capabilities an alternative to empirical, semi-empirical
and experimental investigations is the numerical solution of the partial differen-
tial governing equations. The use of numerical methods to solve flow problems
is known as Computational Fluid Dynamics (CFD). CFD nowadays represents
more than a third of all research in the field of fluid mechanics and this proportion
is still increasing [11].

CFD is a branch of fluid mechanics that uses numerical methods and algo-
rithms to solve and analyze problems that involve fluid flows. As introduced
earlier, CFD is born from the need to solve the governing partial differential
equations (or Navier-Stokes equations) numerically, as these equations can not
be solved analytically. CFD has also became a valuable design tool, as it is very
attractive and cheap alternative to experiments which require big, costly and
hardly adaptive wind tunnels. CFD methods are based on the idea of numeri-
cally obtaining an approximated solution of the Navier-Stokes equations. This is
achieved by using a discretization method which will approximate the differential
equations by a set of algebraic equations. The resulting algebraic equations can
then be solved using different numerical methods. The approximations of the
solution are obtained by applying the numerical methods to small subdomains
in space and in time called sub-domains or sub-elements. The solution is then
obtained at discrete points in space and time called nodes or grid points. The
accuracy of the numerical method is related to the quality of the spatial and
temporal discretization.

CFD Methodology

When applying CFD methods a certain methodology is followed. The main steps
for numerically solving a fluid dynamics probelm are :

• The definition of the mathematical model.

• The choice of the discretization method.

• The choice and the construction of the numerical spatial grid.

• The choice of the solution method and temporal discretization.

In this section the previous points are introduced briefly.

The mathematical model

Choosing the mathematical model which represents the flow-problem to solve
is the first step of any numerical solution method. The mathematical model
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is chosen depending on the problem to be solved. If the flow is compressible,
inviscid, one- or two-dimensional, laminar, or turbulent, the model has to be
written/chosen accordingly. The mathematical model can include simplifications
of the exact conservation laws. In general, the Navier-Stokes equations are used
to account for the motion of the fluid in many situations. These equations de-
scribe how the velocity, pressure, temperature, and density of a moving fluid
are related. The equations are a set of coupled differential equations. In prac-
tice, these equations are too difficult to solve analytically. For a 3D case, these
equations consist of a time-dependent continuity equation for conservation of
mass, three time-dependent conservation of momentum equations and a time-
dependent conservation of energy equation. There are four independent variables
in the problem, three are the spatial coordinates of the solution domain, and
the time t. There are six dependent variables; the pressure p, density ρ, and
temperature T and three components of the velocity vector (u, v, w). All of the
dependent variables are functions of all four independent variables. The Navier-
Stokes equations are therefore partial differential equations. In some cases one
can introduce simplifications to the Navier-Stokes equations based on the flow
problem properties. These simplifications result in general when the the flow is
incompressible, inviscid, one- or two-dimensional.

Discretization methods

When the mathematical model is selected, one has to adopt a suitable discretiza-
tion method. The discretization method is a method of approximating the dif-
ferential equations by a system of algebraic equations for the solution variable.
This approximation is achieved at a set of discrete locations in space and time,
the nodes. Many discretization methods exist, but the most commonly used are:
finite differences method (FD) [21, 29], finite volumes method (FV) [31], and
finite elements method (FE) [1, 12, 16]. The choice of the discretization method
depends on the nature of the flow problem and the geometry of the domain con-
sidered. For example, finite differences are suitable when simple geometries are
involved and finite elements are used when the geometry considered is complex.

Numerical grid

As mentioned above, the approximation of the solution variable is achieved at a
set of discrete locations in space. To define these locations one needs a discrete
representation of the geometrical domain in which the flow problem is to be
solved. The solution domain is divided into a finite number of sub-domains or
elements where the solution variable is to be calculated. This division results in
what is referred to as the numerical or the solution grid. There are in general
two grid types: structured and unstructured grids.
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(a) (b)

Figure 2.1: (a) A partial view of a 3D cylindrical structured grid. (From [23]).
(b) A 2D unstructured grid used to calculate the flow around a circular cylinder
in a channel. (From [11]).

The structured grid is a regular grid with non-overlapping sub-domains. It
consists of groups of grid lines which do not cross each other and cross each
member of the other groups only once. This property is very useful as it allows
the lines of a given group to be numbered consecutively. Each grid point (or
node) has four neighboring grid points in 2D and 6 neighboring grid points in
3D. This property also means that the matrix of the algebraic equation system
(obtained after the discretization of the partial differential equations governing
the flow problem) has a regular shape and can be optimally solved using efficient
solvers. An example of such a grid is shown on Fig. 2.1a.

The unstructured grid, on the other hand is used for complex geometries and
consists the most flexible type of grid as it can be used to fit arbitrary domains.
The sub-domains of such a grid are allowed to have arbitrary shapes (see Fig.
2.1b). There is also no restrictions on the number of neighboring grid points.
Unstructured grids are usually generated automatically using mesh generation
algorithms, for which an extensive literature exists [8, 23, 30]. A disadvantage
of the unstructured grid is that the matrix of the algebraic equation is neither
regular, nor diagonal. Therefore the solvers for algebraic equation systems are
slower for unstructured grids compared to the structured ones.

Solution methods

When a grid type is used, one has to choose the approximation to be used in
the discretization method. In the finite difference method, the approximations
for the derivatives at the grid points are to be selected. In the finite volume
method, the surface and volume integrals have to be approximated. Finally, in
the finite element method one has to choose the appropriate shape functions and
the weighting functions. When the governing equations are discretized, a very
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large sytem of non-linear algebraic equations results. The solution method to
be choosen to solve these equations depends on the nature of the problem at
hand. For example, for unsteady flows one uses initial value problem solution
methods for ordinary differential equations. Steady flow problems on the other
hand, are usually solved using pseudo-time advancing schemes. Since in general
the equations are non-linear, methods which use successive linearization of the
equations systems are used and the resulting equations are almost always solved
using iterative techniques. Efficient solvers are needed to solve the resulting
algebraic equations. Their choice depends on many parameters, like the grid
type and the number of grid points.

2.2 Introduction to Spectral /hp Element

Methods

As stated above, the mathematical modelling of a flow problem gives rise to a
system of partial differential equations which need to be discretized to be solved
numerically. The discretization method used in this work is the Spectral /hp Ele-
ment Method (SEM). In this Section a brief introduction to this method is given.
Readers interested in more details about the derivation and implementation of
the method can refer to the reference book by E.M. Karniadakis and S. Sherwin
[18] and the following references [6, 17, 20, 27, 28].

The Spectral /hp Element Method is a discretization method derived from
the Finite Element Method (FEM) [1, 12, 16] and the classic Spectral Method
(SM) [2, 4, 5, 13]. The main idea of the FEM is the subdivision of the com-
putational domain Ω into sub-domains Ωe (also called elements). The solution
of the differential equations is build-up as a sequence of local (or elemental) ap-
proximations. These local approximations are linear combinations of lower-order
functions such as linear or quadratic polynomials. These functions are subjected
to some conditions to ensure the continuity of the global approximation on Ω.
The convergence strategie in Finite Element Methods is achieved by refining the
subdivisions of the computational domain Ω, i.e, making the subdomains smaller
(this is called mesh refinement). The classic Spectral Method on the other hand
uses high-order functions for the approximation of the solution of the differential
equations in the whole domain without spatial discretization. The convergence in
this case is achieved by increasing the order of the approximation functions. This
method stems from Fourier analysis and it is successfully used for widely diverse
applications, such as wave propagation (for acoustic, elastic, seismic and electro-
magnetic waves), solid and structural analysis, marine engineering, biomechanics,
and even financial engineering.

The Spectral /hp Element Method is based on both the Finite Element
Method and the classic SM: the computational domain is discretized into sub-
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domains where high-order polynomials are used for the approximation functions.
Thus the Spectral /hp Element Method takes advantage of the geometrical flex-
ibility of the Finite Element Method and the high-accuracy of Spectral Method.
In SEM the mesh refinement is called h-convergence, and increasing the order of
the approximation functions is called p-convergence. Thus the /hp in the name
of the Spectral /hp Element Method. One of the most important advantages of
the Spectral /hp Element Method is that for sufficiently smooth problems, the
computational cost in obtaining an approximate solution with very small error
is lower and one can achieve spectral or exponential convergence. According to
Boyd [3] ”a spectral series possesses the property of exponential convergence if
the error decreases faster than any finite inverse power of N as N , the number
of terms in the truncated series, increases”.

The problem that we consider in this investigation is the incompressible, un-
steady and viscous flow over stationary and moving airfoils. The governing equa-
tions for this flow are the Navier-Stokes equations, written in a non-dimensional
form as follows

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
▽2 u. (2.2)

u is the velocity vector, p the pressure, Re = U0c/ν the Reynolds number, ν
the kinematic viscosity, U0 the free-stream velocity, and c the chord length of
the airfoil. The chord length and the free-stream velocity are used to make the
equations non-dimensional.

2.3 Framework of the weighted residuals and

the Galerkin formulations

The Spectral /hp Element Method makes use of the weighted residuals frame-
work. To introduce this framework we consider the following linear differential
equation in a domain Ω

L(u) = 0. (2.3)

The solution of (2.3) is then expanded in the form

uδ(X, t) = u0(X, t) +
N
∑

k

ûk(t)Φk(X), (2.4)

where ûk are unknown coefficients, Φk(X) are the expansion functions, k is the
element index, N the total number of elements in the domain and u0(X, t) satisfies
the initial and boundary conditions. When (2.4) is inserted in (2.3) one obtains
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a non-zero residual (since Φk(X) are approximations and not exact solutions),
which can be written as

L(uδ) = R(uδ). (2.5)

A unique solution is determined for (2.5) by placing a restriction on the residual
R to obtain a system of ordinary differential equations. In the framework of
weighted residuals the restriction on R is that its inner product with respect to
arbitrary weight (or test) functions v(X) is zero

(v(X), R) = 0, (2.6)

where the inner product is defined as

(v(X), R) =
∫

Ω
v(X) R dX. (2.7)

The weight functions are chosen to be approximated by a linear combination of
known functions

v(X) =
N
∑

l

alvl(X), (2.8)

where vl(X) are known functions. Using the definition (2.7) and inserting (2.8)
and (2.5) into (2.6) we obtain

∫

Ω

N
∑

l

alvl(X) L(uδ) dX = 0. (2.9)

Using equation (2.4) in (2.9) we obtain a system of algebraic equations to deter-
mine the unknowns ûk. Assuming that the operator L is time independent and
using the Equation 2.4 we can write

∫

Ω

Ndof
∑

l=1

alvl(X)L

[

u0(X) +
N
∑

k=1

ûkΦk(X)

]

dX =

Ndof
∑

l=1

al







∫

Ω
vl(X)L[u0(X)]dx+

∫

ω
vl(X)L





Ndof
∑

k=1

ûkΦk(X)



 dX







= 0,

(2.10)

which can be re-written as follows

Ndof
∑

k=1

{

ûk

∫

Ω
vl(X)L[Φk(X)]

}

dX =

−
∫

Ω
vl(X)L[u0(X)]dx, k = 1, ..., Ndof .

(2.11)
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Equation 2.11 can be re-arranged in matrix form as follows

Aû = b, (2.12)

where û is the vector of the unknown coefficients ûk and there components are
given as

Alk =
∫

Ω
vl(X)L [Φk(X)] dX, (2.13)

bl = −
∫

Ω
vl(X)L [u0(X)] dX. (2.14)

(2.15)

In the Galerkin formulation the test (or weighted) functions are the same as
the expansion functions leading to vl(X) = Φj(X). This formulation is chosen
because it has some interesting properties, like the orthogonality of the error to
the test space in the energy norm and minimisation of the energy norm of the
error (for more details see [18]).

2.4 Spectral /hp Element Discretization in two

Dimensions

In this Section, we explain the discretization in two dimensions by introducing
the expansion bases used and the techniques to perform elemental operations
such as integration and differentiation.

The expansion bases introduced here are considered within a standard re-
gion Ωst, which in two-dimensional simulations of the Navier-Stokes equations
are triangular and/or quadrilateral regions/elements. The expansion bases used
throughout this investigation are constructed from a one-dimensional modal ba-
sis, which is defined as follows

φp(ξ) =



































ψa
0 = 1−ξ

2
p = 0,

ψa
p = 1−ξ

2
1+ξ

2
P 1,1

p−1(ξ) 0 6 p 6 P ,

ψa
P = 1+ξ

2
p = P ,

(2.16)

where ξ is the one-dimentional Catesian coordinate (−1 6 ξ 6 1) and P 1,1
p−1(ξ)

is a Jacobi polynomial of order P . The standard two-dimensional quadrilateral
region Q2 is defined as follows

Ωst = Q2 = {−1 6 ξ1, ξ2 6 1}, (2.17)
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(a) (b)

Figure 2.2: Standard regions for the (a) triangular and (b) quadrilateral expan-
sions in the Cartesian coordinates system.

and is illustrated in Fig. 2.2a for triangular and quadrilateral standard regions.
The two-dimensional base is then constructed as the product of one-dimensional
bases such as in equation (2.16), as follows

φpq(ξ1, ξ2) = ψa
p(ξ1)ψ

a
q (ξ2), 0 6 p, q, p 6 P, q 6 Q, (2.18)

where P and Q are the order of the expansion bases ψa
p(ξ1) and ψa

q (ξ2); respec-
tively. P and Q can take the same value or be different. In this investigation
we consider P = Q. In Fig. 2.3, the construct of a two-dimensional base from
the product of two one-dimensional expansions of order P = 4 is illustrated.
Equation (2.18) can be regarded as the tensorial product of two one-dimensional
expansions defined in each Cartesian direction, namely ξ1 and ξ2.

An important property of the modal expansions based on equation (2.18) is
that they can be splitted into boundary and interior modes. The modes that are
non-zero on the boundary Ωst and are zero elsewhere are called boundary modes,
while the modes which are zero on the boundary and non-zero elsewhere are
called interior modes. This property is very useful when a C0 global expansion
is needed, since a global expansion can be created from the local ones simply by
shape-matching of the boundary modes. Further use of this property is discussed
in Section 2.4. In the case of a two-dimensional expansion, the boundary modes
are further decomposed into two modes : vertex modes, having a unit value at
one vertex and zero at the any other vertex, and edge modes having a support on
one edge and zero on any other edge. This decomposition can be considered as
part of the meshing procedure. Fig. 2.3 shows an example of such decomposition.

In order to obtain a generalised tensorial expansion that can be used in differ-
ent domain shapes (for example triangles and quadrilaterals in two-dimensional
domains) it is necessary to introduce a new coordinate system. This coordinate
system is labeled collapsed system, and its coordinates η1 and η2 are introduced
as follows
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Figure 2.3: Construction of a two-dimensional expansion basis from the tensorial
product of two one-dimensional expansions of order P = 4 (Figure adapted from
[14, 18]). The numbering of the modes is explained in Section 2.4.

η1 = 2
1 + ξ1

1 − ξ2

, η2 = ξ2. (2.19)

This collapsed coordinate system is based on a mapping from a quadrilateral
to a triangular region, as in Fig.2.2, thus the name collapsed, as two adjacent
vertices of the quadrilateral region are collapsed to form a triangular region (see
Fig. 2.4).

The standard triangular region resulting from this transformation is

Ωst = τ 2 = (ξ1, ξ2) | −1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 0. (2.20)

The coordinates ξ1, ξ2 can be recovered using the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1, ξ2 = η2. (2.21)

The new triangular standard region is then defined by the coordinate system
(η1, η2) as follows

Ωst = τ 2 = {(η1, η2) | −1 ≤ η1, η2 ≤ 0}. (2.22)

Note that equation (2.22) is identical to equation (2.17), which defines the stan-
dard quadrilateral region in the Cartesian coordinates system. The new collapsed
coordinate system is then used to define the expansion basis φpq(ξ1, ξ2) for a tri-
angular region as
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Figure 2.4: Illustration of the transformation from the trianglar element to the
rectangular element transformation through the collapsed coordinates. The tri-
angular element coordinates (ξ1, ξ2) are related to the rectangular element coordi-
nates (η1, η2) with the transformation relations written on the arrows. (Adapted
from [18]).

φpq(ξ1, ξ2) = ψa
p(η1)ψ

b
pq(η2), (2.23)

where ψb
pq(η2) are the modified one-dimensional expansion bases given by

ψb
pq(η) =



















































ψa
q (η) p = 0, 0 ≤ q ≤ Q,

(1−η
2

)p+1 0 ≤ p ≤ P, q = 0,

(1−η
2

)p+1 1+η
2

P2p+1,1
q−1 (η) 0 ≤ p ≤ P, 0 ≤ q ≤ Q,

ψa
q (η) p = P, 0 ≤ q ≤ Q.

(2.24)

An example of such an expansion (with P = Q = 4) is illustared in Fig. 2.5.
Expansion (2.24), as expansion (2.18), can be splitted into boundary (vortex and
edge) modes and interior modes. The tensorial-product nature of the expansions
simplifies the solution procedure, as many important numerical operations can be
numerically evaluated with a reduced operations count compared to non-tensorial
expansions [18].
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Figure 2.5: The construction of a triangular expansion of the fourth-order (p = 4).
The construction makes use of the tensorial product of two modified principal
functions ψa

p(η1) and ψa
p(η1). The modes are decomposed into boundary and

interior modes. The boundary modes have similar shapes along each edge (Figure
adapted from [14, 18]). The numbering of the modes is explained in Section 2.4.

Elemental operations

Each element or subdomain Ωe from Ω can be mapped to a standard region,
where the expansion basis is defined as shown above. To obtain a C0 continuous
expansion on Ω, the Galerkin formulation requires that the operations such as
integration and differentiation are to be performed at a local level. This means
that the contribution of each element is to be summed up to obtain a global
system [18]. Local or elemental operations are outlined in this Section.

Elemental integration : Gauss quadrature

To perform numerical integration on the elemental level, Gaussian quadrature
is used. The Gaussian quadrature is an approximation of the definite integral,
expressed as weighted sums of functions values at specified points within the
domain of integration, called collocation points.

Consider the one-dimensional integral to be evaluated (expressed in Cartesian
coordinates) as

∫ 1

−1
u(ξ)dξ. (2.25)
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The Gaussian quadrature approximates (2.25) by the following summation

∫ 1

−1
u(ξ)dξ ≈

Q−1
∑

i=0

ωiu(ξi). (2.26)

ωi are weights and ξi are the quadrature points in the interval [−1, 1] where the
integral

∫ 1
−1 u(ξ)dξ is to be evaluated. The integrand is then represented as a

Lagrange polynomial hi(ξ) at the points ξi as follows

u(ξ) =
Q−1
∑

i=0

u(ξi)hi(ξ) + ǫ(u), (2.27)

where ǫ(u) is the approximation error resulting from using the Gaussian quadra-
ture approximation. Inserting (2.27) into (2.25) results in the following equation

∫ 1

−1
u(ξ)dξ =

Q−1
∑

i=0

ωiu(ξi) +R(u), (2.28)

where ωi are the weights defined as

ωi =
∫ 1

−1
hi(ξ)dξ, (2.29)

and R(u) is the residual defined in terms of the integration error as

R(u) =
∫ 1

−1
ǫ(u)dξ. (2.30)

The location of the quadrature points ξi (called zeroes) needs to be specified.
The residual R(u) is zero if u(ξ) is a polynomial of order Q− 1 or less, however
one can choose the zeroes which enable the exact integration of polynomes of
higher-order than Q − 1, these are the zeroes of the Jacobi polynomials [18].
Several variants of Gauss quadrature can be employed to integrate exactly
polynomials of order 2Q − 1 (classical Gauss quadrature rule), of order 2Q − 2
(Gauss-Radau) and of order 2Q − 3 (Gauss-Lobatto). These variants depend
on the nature of the points included in the integration interval (interior points
only, interior points plus one interval-end point, or interior points plus the two
interval-end points).

For two-dimensional standard quadrilateral regions, Gauss quadrature can be
written in the Cartesian coordinates system as
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∫

Q2

u(ξ1, ξ2)dξ1dξ2 =
∫ 1

−1

[
∫ 1

−1
u(ξ1, ξ2) |ξ2

dξ1

]

dξ2 (2.31)

≈
Q1−1
∑

i=0

ωi





Q2−1
∑

j=0

ωju(ξ1i, ξ2j)



 , (2.32)

(2.33)

where Q2 is defined in (2.17), and Q1 and Q2 are quadrature point numbers
defined in the directions ξ1 and ξ2; respectively.

For a two-dimensional triangular region τ 2 = {−1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 0} a co-
ordinate transformation is necessary to obtain constant integration bounds (as
introduced earlier in Section 2.4). This yields the following expression for inte-
grals over τ 2 in function of integrals over the collapsed domain

∫

τ
u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1
u(η1, η2)

∂(ξ1, ξ2)

∂(η1, η2)
dη1dη2, (2.34)

where
[

∂(ξ1,ξ2)
∂(η1,η2)

]

is the Jacobian of the transformation from Cartesian to collapsed
coordinates. Applying the Gaussian quadrature rule results in the following ap-
proximation of the integral in the collapsed quadrilateral system of coordinates

∫ 1

−1

∫ 1

−1
u(η1, η2)

∂(ξ1, ξ2)

∂(η1, η2)
dη1dη2 =

Q1−1
∑

i=0

ωi





Q2−1
∑

j=0

ωju(η1i, η2j)
∂(ξ1, ξ2)

∂(η1, η2)



 , (2.35)

where η1i, η2j are quadrature points in the η1,η2 directions; respectively. Replacing
the Jacobian by its value [∂(ξ1, ξ2)/∂(η1, η2) = (1 − η2)/(2)], makes it possible to
include it in the quadrature weights as follows

∫ 1

−1

∫ 1

−1
u(η1, η2)

1 − η2

2
dη1dη2 =

Q1−1
∑

i=0

ω0,0
i





Q2−1
∑

j=0

ω̂1,0
j u(η1i, η2j)



 , (2.36)

where ω̂1,0
j = ω1,0

j /2. This results in less points needed by the Gaussian quadra-
ture, for the triangular standard region, to reach the same accuracy as for the
quadrilateral standard region.

Elemental differentiation

Consider the following approximation of uδ(x)

uδ(x) =
P
∑

p=0

ûpφp(χ−1) =
P
∑

p=0

ûpφp(ξ), (2.37)
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where χ(ξ) is the mapping from the standard region Ωst to the region containing
x in the interval [a, b]. uδ(x) can be differentiated using the chain rule as follows

duδ(x)

dx
=
duδ(ξ)

dξ

dξ

dx
=

P
∑

p=0

ûp

dφp(ξ)

dξ

dξ

dx
. (2.38)

Considering the fact that the derivatives are always inside integrals when their
evaluation is performed in the framework of the weighted residuals, and that
the Gaussian quadrature is used for local integration, two approximations are
introduced. The first approximation is that the derivatives are to be evaluated
at the quadrature points ξi. The second approximation is that the expansion
functions have to be represented in Lagrange polynomials (see Section 2.4). An
automated technique to obtain the derivative values at the collocation points is
called collocation differentiation [18], and it is outlined in what follows.
Consider the one-dimensional case, where uδ(ξ) is a polynomial of order equal or
less than P , which can be exactly expressed using Lagrange polynomials hi(ξ)
using Q nodal points ξi as follows

u(ξ) =
Q−1
∑

i=0

u(ξi)hi(ξ), (2.39)

where hi(ξ) =
∏Q−1

j=0,j 6=i
(ξ−ξi)

∏Q−1

j=0,j 6=i
(ξi−ξi)

, and Q ≥ P + 1.

The derivative of u(ξ) can be written as follows

du(ξ)

dξ
=

Q−1
∑

i=0

u(ξi)
dhi(ξ)

dξ
. (2.40)

The derivative at the nodal point ξi is then given by

du(ξ)

dξ
|ξ=ξi

=
Q−1
∑

i=0

dhi(ξ)

dξ
|ξ=ξi

u(ξi). (2.41)

This collocation differentiation is then extended to two-dimensions in the fol-
lowing way: consider the expansion, in the standard quadrilateral region, of the
form

uδ(ξ1, ξ2) =
P1
∑

p=0

P2
∑

q=0

ûpqφpq(ξ1, ξ2), (2.42)

φpq(ξ1, ξ2) is replaced by Lagrange polynomials, and (2.42) is re-written as

uδ(ξ1, ξ2) =
Q1−1
∑

p=0

Q2−1
∑

q=0

upqhp(ξ1)hq(ξ2), (2.43)
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where

upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2, (2.44)

and ξ1p and ξ2q are the zeroes of the Gaussian quadrature rule. The partial
derivative with respect to ξ1 is

duδ

dξ1

(ξ1, ξ2) =
P1
∑

p=0

P2
∑

q=0

upq

dhp(ξ1)

dξ1

hq(ξ2) (2.45)

The partial derivatives, with respect to ξ1 and ξ2, are written as follows (using
the fact that for Lagrange polynomials hp(ξi) = δpi)

duδ

dξ1

(ξ1i, ξ2j) =
P1
∑

p=0

upj

dhp(ξ1)

dξ1

|ξ1i
, (2.46)

duδ

dξ2

(ξ1i, ξ2j) =
P2
∑

p=0

uiq

dhq(ξ2)

dξ2

|ξ2j
. (2.47)

(2.48)

The derivatives in the triangular region in terms of the collapsed system are
written as

duδ

dη1

(η1i, η2j) =
P1
∑

p=0

upj

dhp(η1)

dη1

|η1i
, (2.49)

duδ

dη2

(η1i, η2j) =
P2
∑

p=0

uiq

dhp(η2)

dη2

|η2j
, (2.50)

(2.51)

To obtain the derivatives in the Cartesian coordinate system the chain rule is
used as follows

∂

∂ξ1

=
2

1 − η2

∂

∂η1

, (2.52)

∂

∂ξ2

= 2
1 + η1

1 − η2

∂

∂η1

+
∂

∂η2

. (2.53)

(2.54)

It is important to note that since the differentiation is performed in the physical
space and the integration in the transformed space. Going backwards and for-
wards between these spaces is necessary to be able to evaluate the coefficients upq

from the coefficients ûpq and vice-versa.
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General-shaped Elements

The integration and differentiation operations as the expansion bases were intro-
duced within the quadrilateral (and triangular) standard region Ωst. In practice
the elemental regions Ωe can be of general shape and orientation, therefore a map-
ping between the Cartesian coordinates of the general-shaped regions (x1, x2) and
the Cartesian coordinates of the standard (or local) region (η1, η2) is necessary.
This mapping is iso-parametric (also called one-to-one mapping) and is needed
for both straight-sided elements and curvilinear-sided elements.

For the case of straight-sided elements, only the coordinates of the vertices
are needed as input for the mapping. Mapping a triangular region, using the
global coordinates of the triangle {(xA

1 , x
A
2 ), (xB

1 , x
B
2 ), (xC

1 , x
C
2 )} can be done with

the formula

xi = χe
1(η1, η2)

= xA
i

(

1 − η1

2

1 − η2

2

)

+ xB
i

(

1 + η1

2

1 − η2

2

)

+ xC
i

(

1 + η2

2

)

, i = 1, 2.

(2.55)

C is the collapsed vertex. Using the relations (2.19) the mapping can be expressed
in terms of the Cartesian coordinates of the standard region as

xi = χ(ξ1, ξ2)

= xA
i

(

−ξ2 − ξ1

2

)

+ xB
i

(

1 + ξ1

2

)

+ xC
i

(

1 + ξ2

2

)

, i = 1, 2.

(2.56)

Applying the same approach as for the triangular region, the mapping for the
straight-sided quadrilateral region is

xi = χe
1(ξ1, ξ2)

= xA
i

1 − ξ1

2

1 − ξ2

2
+ xB

i

1 + ξ1

2

1 − ξ2

2
(2.57)

+xD
i

1 − ξ1

2

1 + ξ2

2
+ xC

i

1 + ξ1

2

1 + ξ2

2
, i = 1, 2.

(2.58)

Note that to describe a straight-sided region one needs only to know the values of
the vertex coordinates. In the case of a curved region one needs some information
about the edge shape. Thus for these regions the expansion basis are used to map
the curved edge to the standard region as follows
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x = χi(ξ1, ξ2) =
p=P1
∑

p=0

q=P2
∑

q=0

x̂i
pqφpq(ξ1, ξ2). (2.59)

y = χi(ξ1, ξ2) =
p=P1
∑

p=0

q=P2
∑

q=0

ŷi
pqφpq(ξ1, ξ2). (2.60)

After defining the mappings from both straight-sided and curved general-shaped
elements to the standard region, the differentiation and integration needs also to
be defined for these general-shaped elements. The integration is achieved in the
general-shaped element using a coordinate transformation

∫

Ωe
u(x, y)dxdy =

∫

Ωst

u(ξ1, ξ2) |J | dξ1dξ2, (2.61)

where Ωst is the standard region, Ωe is the general-shaped elemental region and
|J | is the Jacobian of the coordinate transformation.
To differentiate the functions within the general-shaped region Ωe the chain rule
is applied

[

∂ξ1

∂ξ2

]

=
1

J
×

[

∂x2

∂ξ2

−∂x1

∂ξ2

−∂x2

∂ξ1

∂x1

∂ξ1

]

×

[

∂x1

∂x2

]

.

From Elemental to Global Operations

After defining the differentiation and integration operation in each element, op-
erations that involve the whole computational domain have to be defined. The
use of a Galerkin formulation requires some form of continuity between elemen-
tal regions. In the classical Galerkin formulation this continuity is imposed by
requiring that the approximations are C

0 continuous. To achieve a globally C
0

continuous expansion from elemental contributions, the global assembly process
(also called direct stiffness summation) is used [25].
Remembering that the approximation of the solution can be written as

uδ(x) =
Ndof −1
∑

i=0

ûiφi(x) =
N
∑

e=1

P
∑

p=0

ûe
pφ

e
p(ξ), (2.62)

where P is the polynomial order and N is the total number of the elements in
the computational domain, and Ndof is the number of degrees of freedom. It is
evident that there are more elemental coefficients (ûe

p) than global coefficients
(ûi). Therefore, more constraints need to be imposed to relate the local and
global definitions of the approximate solution uδ(x). This means that each global
degree of freedom (or coefficient) is related to more than one elemental degree of
freedom. On the other hand, each elemental degree of freedom is related to only
one global degree of freedom [15, 18, 27].
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The global assembly consists in assembling (or summing) the equations for the
local degrees of freedom which correspond to a single global degree of freedom.
Thus a system with a degree equal to the global degrees of freedom is generated.
After solving the global system, the value of the local degrees of freedom cor-
responding to each global degree is known using a reverse operation (explained
later in this Section). The boundary-interior decomposition (introduced in Sec-
tion 2.4) implies that the requirement of C0 and connectivity between elements
can be achieved by matching similar shaped modes on the common edge neigh-
bour elements. This decomposition allows the use of the static condensation
method, that permits the solution of the global system efficiently. This method
can be applied to symmetric and non-symmetric problems and is based on writ-
ing the global system in a particular way. We consider here a symmetric global
system of the form

Mx = f, (2.63)

x is the vector of the global vector expansion coefficients (ûg) which are unknowns,
M is the global matrix and f is the vector of the known coefficients (ûe). The
global boundary degrees of freedom are listed first, followed by the global interior
degrees of freedom. This permits that the matrix M be written as follows

[

Mb Mc

MT
c Mi

]

×

[

xb

xi

]

=

[

fb

fi

]

. (2.64)

Mb is the matrix of boundary-boundary interaction modes, it is sparse and can
be reordened to reduce its bandwidth. Mi is the matrix of interior-interior inter-
action modes and is by nature a bloc diagonal matrix. This matrix is inexpensive
to evaluate since each block can be evaluated individually. Mc is the coupling
matrix between boundary and interior modes and it operates only on known vec-
tors, so it can be calculated once and stored in the form of local vectors. xb and
xi refer to the boundary and interior components of the vector x, and fb and fi

to the boundary and interior components of the vector f ; respectively.
The global system (2.63) can now be solved using block elimination by pre-
multiplication by the matrix

[

I −McM
−
i 1

0 I

]

, (2.65)

which results in the following matrix system

[

Mb −McM
−1
i MT

c 0
MT

c Mi

]

×

[

xb

xi

]

=

[

fb −McM
−1
i fi

fi

]

, (2.66)

where MT
c is the transpose of the matrix Mc. This multiplication results in the

following equation for the boundary unknowns (xb)
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(Mb −McM
−1
i MT

c )xb = fb −McM
−1
i fi, (2.67)

and once we calculate xb we can calculate the interior unknowns (xi) from the
second row of the matrix system (2.66) as follows

xi = M−1
i fi −M−1

i MT
c xb. (2.68)

The solution of the global system (2.63) consists of three operations: the evalua-
tion of Mb −McM

−1
i MT

c , evaluation of M−1
i and finally the evaluation of McM

−1
i .

The latter two operations are done at an elemental level.

2.5 Spectral/hp Element Discretization in three

dimensions

In this investigation only two-dimensional simulations are presented, the ex-
tension of the previous analysis to three-dimensions is briefly discussed in this
Section.

In a wide range of problems, there is at least one homogeneous direction, such
as the flow past a cylinder and an airfoil. If we assume that the homogeneous
direction is represented by the z coordinate, then a three-dimensional expansion
basis can be constructed in terms of the tensorial product of a two-dimensional
expansion and a one-dimensional expansion, that is

φpqr(x, y, z) = φpq(x, y)ϕr(z), (2.69)

where φpqr(x, y, z) is a three-dimensional expansion, φpq(x, y) is a two-dimensional
expansion and ϕr(z) is the expansion in the z direction. Because the direction z is
homogeneous, there is no characteristic length scale in this direction, this favours
the use of a p-type expansion. This expansion has the property of spanning
the entire z direction rather than a multi-domain regions as it is the case if h-
type expansions are used. This method was introduced in [17] and has many
advantages, such as the fact that the FFT can be used for the transformation
between the transformed and physical space. Another advantage is that solving
the three-dimensional problem is reduced to solving two-dimensional problems
over r Fourier planes. This can represent a significant gain in computational time
[17]. When the infinite ends of the airfoil profile in the homogeneous directions
are modeled in a finite computational domain, the periodicity boundary condition
is used. This can be advantageously used in the choice of the p-type expansion
that has to be used for the z direction. A natural choice is to choose Fourier
expansions such as

ϕr(z) = eirβz, (2.70)
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where β = 2π
Lz

and Lz is the periodic length.

2.6 Time Discretization

The Navier-Stokes equations can be written in the form

∂U

∂t
= −∇p+ νL(U) + N(U) (2.71)

where L(U) ≡ ∇2U and N(U) ≡ −U · ∇U +F (U, t) are the linear and non-linear
operators; respectively. U = (u, v, w) is the velocity vector, p the pressure, and
F (U, t) is a forcing term. The temporal discretization is achieved via a numerical
splitting scheme, as introduced in [20]. This scheme involves the propagation of
Un and pn at a time step n, over a time step ∆t, to determine Un+1 and pn+1 at
the next time step n+ 1. This is achieved in three steps and expressed as follows

Û − Un

∆t
=

Je−1
∑

q=0

βN(Un−q), (2.72)

Ũ − Û

∆t
= −∇pn+1, (2.73)

Un+1 − Ũ

∆t
= ν

Ji−1
∑

q=0

γqL(Un+1−q), (2.74)

where in the first step, the non-linear terms are advanced using a convective form
which is integrated in time via a multilevel Adams-Bashforth scheme, represented
by the coefficient βq, (Equation (2.72)). In the second step, the time-averaged
pressure term pn+1 is calculated using the divergence of the equation (2.73). In
the third step, the viscous term is treated implicitly via an Euler backwards (or
Crank-Nicolson) scheme.

2.7 Airfoil motion

To implement the airfoil motion the Navier-Stokes equations and the boundary
conditions are written in a moving frame of reference. The resulting system is
then solved. The method is briefly described here. For further details of the
solution procedure we refer the reader to [22].

Let’s consider that the body is performing a translational motion d defined in
the fixed or absolute frame of reference (Xa, Ya) as d = (a(t), b(t))T . A moving
frame of reference (xm, ym) attached to the airfoil is defined as a function of the
absolute frame as:



56 2. Spectral /hp Finite Element Method

Figure 2.6: Schematic representation of moving frame of reference represented
by the coordinates (xm, ym) and the absolute frame of reference represented by
the coordinates (xa, ya). α is the mean incidence (also called the initial angle of
attack). a(t) and b(t) are the coordinates of the moving airfoil in the absolute
frame of reference.

Xa = a(t) + xmcosθ + ymsinθ (2.75)

Ya = b(t) − xmsinθ + ymcosθ, (2.76)

where θ is the rotational angle in the moving frame of reference and a(t) and b(t)
represent the coordinates of the origin of the moving frame of reference in the
absolute frame of reference (see Fig. 2.6).

In the case of a plunging (non-rotating) airfoil θ and a(t) are constant. Us-
ing matrix notation one obtains the transformation from the coordinates in the
absolute frame of reference to the moving frame of reference as:

Xa = d + Axm, (2.77)

and the inverse transformation as:

xm = AT(Xa − d), (2.78)

where d = (a(t), b(t))T and A is the matrix defined as :

(

cosθ sinθ
−sinθ cosθ

)
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Figure 2.7: Schematic representation of the aifroil for the heave motion, where
the vertical displacement y(t) varies sinusoidally. α is the mean incidence (initial
angle of attack), U0 is the free-stream velocity and c the chord length.

Using the definition of the coordinates (xm, ym) given by the equation (2.75),
the Navier-Stokes equations are re-written in the moving frame of reference as
follows:

∇ · u = 0, (2.79)

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2u + Q(t), (2.80)

Q(t) = −AT d̈, (2.81)

where the term AT d̈ is the result of the unsteady translational motion, in our
case a plunging motion. The boundary conditions are also transformed in the
moving frame of reference, and expressions are derived for Neumann and Dirichlet
boundary conditions [22]. For the present simulations we have considered the
body as being rigid (non-deformable) and forced to oscillate in heave (plunge)
motion as illustrated in Fig. 2.7. The heave motion is defined as

d = y(t) = h cos(2πft). (2.82)

where y(t) is the time-dependent vertical motion, h∗ = h/c is the non-dimensional
heaving frequency, and f ∗ = fc/U0 is the non-dimensional heaving frequency (for
simplicity, the superscript ∗ will be droped). The airfoil is set at a constant initial
angle of attack α = θ (or mean incidence) and is forced to oscillate vertically in
a sinusoidal fashion.
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Aerodynamic forces

The forces and moments are evaluated by calculating their viscous and pressure
contributions. The aerodynamic force applied by the flow on the body can be
expressed as the integration of local stress as:

F =
∫

Ω
σnAdsA = −

∫

Ω
pnAdsA +

∫

Ω
τnAdsA = Fpress,A + Fvisc,A. (2.83)

where σ = −pI + τ is the stress tensor, Ω is the airfoil surface, nA is the unit
normal on the airfoil, Fpress,A are the pressure forces and Fvisc,A are the viscous
forces. The subscript A indicates that the quantities are expressed in the absolute
frame of reference. The forces in Equation (2.83) are expressed in the moving
frame of reference as follows:

F = Fpress,A + Fvisc,A = A(Fpress,m + Fvisc,m). (2.84)

where A is the matrix introduced in Equation (2.78).
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Chapter 3

Validation

In this Chapter we validate the numerical simulations obtained using theNǫκταr-
solver. The validation is performed for a motionless cylinder and both motionless
and heaving airfoils. The validation for the cylinder is conducted here because
it is one of the most studied flow configurations in CFD, for which abundant
computational and experimental data exist. The Nǫκταr-solver was validated
for many flow geometries, among those cylindrical [2], helical [3] and rectangular
[12]. It was also validated for the airfoil experiencing heaving motion against
previously published numerical methods [16]. The Nǫκταr-solver employed by
Kirby in [16] uses an Arbitrary Lagrangian Eulerian (ALE) framework to account
for the heaving motion of the airfoil [8, 18, 21]. The author validated his 2D
simulations against the numerical simulations in [22]. The Nǫκταr-solver we
use in this investigation uses a moving frame of reference approach (previously
introduced in Chapter 2) to account fot the airfoil motion [12]. To the best of our
knowledge, this is the first time that this version of the Nǫκταr-solver is used in
combination with the moving frame of reference technique to simulate flows over
heaving airfoils.

Note that in this investigation only 2D flows over motionless and heaving
airfoils are considered. The main goal is to explore in detail the flow pattern
evolution, especially in the boundary-layer region and the effects of varying the
flow parameters on the flow pattern, on the aerodynamical coefficients, and on
the near-wake configuration and dynamics. 2D simulations were performed as a
first approach (instead of 3D simulations) due to the unsteady nature of the flow.
This unsteadiness requires the use of very high spatial and temporal resolution
to simulate the flow separation, the vortex shedding and and the wake evolution.
Simulating the 3D problem results in high computational time costs and it would
be not possible to achieve, given the time frame and computational resources
dedicated to this investigation. Moreover, many designs for Micro Air Vehicles
use 2D motions for propulsion [6, 9]. Furthermore, Lewin & Haj-Hariri [11]
simulated 2D stating that ”The(ir) paper will concentrate on the heaving of a
two-dimensional airfoil, since many of the phenomena of interest (e.g. thrust
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generation, inversion of the vortex street, leading-edge vortex separation) can be
captured with this simple motion”. 2D simulations can be used as a reference to
be compared to 3D simulations, and it is considered as a reliable tool in its own
right.

3.1 Flow over a motionless cylinder

In this Section, the Nǫκταr-solver is used to simulate the 2D flow around a
circular cylinder subjected to a uniform inflow. Our results are compared with
numerical [5, 7, 14, 15] and experimental studies [1, 4] available in the literature.
We present here the main features of these studies. Dennis & Chang [5] solved
the Navier-Stokes equations in a modified polar coordinates grid using finite-
difference approximations. Liu & all. [15] computed the Reynolds-averaged
Navier-Stokes equations using a pseudo-compressibility approach on a moving
grid. A high-order immersed interface method is used by Linnick & Fasel [14]
which is presented as an alternative to lower-order methods. The same motiva-
tion is shared by Gopalan [7] who used a finite-difference high-order solver on a
moving grid. The high spatial resolution is obtained using an implicit compact
spatial differencing, which achieves a spectral-like resolution. Berger [1] used
hotwire anemomter measurements to experimentally determine the frequency of
vortex shedding the near wake of a fixed and oscillating cylinder. Coutanceau
& Bouard [4] conducted water tank experiments to produce plane flow around
a circular cylinder. Visualisations were then made by illuminating the particle
seeded water tank with a sheet of intense light.

The Reynolds numbers investigated are ReD = 20, 40, 50, 100, 150 and
200, where ReD = ρU0D/µ (D is the cylinder diameter). The mesh used is an
unstructured mesh composed of 1648 squares and triangles as shown in Fig. 3.1.
The numerical order used for the simulations is 9 and the time step ∆t = 10−4.
Note that the Spectral /hp Element Methods implemented in the Nǫκταr-solver
permits the increase of the computational accuracy using two approaches. The
first approach is to decrease the size of the sub-elememts of the numerical grid
(called remeshing). The second approach, which is used in this investigation, is
to increase the polynomial order of the approximation used. This latter approach
is preffered because it is easier and faster to implement than remeshing. We used
a polynomial order of 9 and 13. As the results obtained were almost the same, we
used a polynomial order of 9 for all simulations. The range of Reynolds number
investigated covers the steady, steady-to-unsteady transition, and unsteady flow
regimes. Experimentally, it is established that at 40 ≤ Re ≤ 50 the periodic
shedding of vortices begins, whereas for lower Reynolds numbers the flow remains
steady [5, 19].

For Re ≤ 50 the flow around the motionless cylinder is steady, and composed
of two vortices or cells (called twin vortices [4]) which remain attached to the
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(a) (b)

Figure 3.1: (a) The numerical mesh used for the cylinder simulations. (b) Close-
up of the boundary layer region around the cylinder.

cylinder. These vortices grow in size as the Reynolds number is increased. In
Table 3.1 the geometrical parameters of the steady flow structures around a
motionless cylinder along with the mean value of the drag coefficient obtained
using the Nǫκταr-solver are compared against prviously published results (See
Table 3.1). The meanings of the geometrical parameters are presented in Fig.
3.2.

For Re > 50 the flow around the cylinder is unsteady as the twin vortices pre-
viously mentioned detach from the cylinder and are shed in the wake. The com-
mon quantity that one calculates for unsteady flow over cylinders is the Strouhal
number St = fL U0 (where f is the shedding frequency of the vortices, L is the
characteristic length and U0 is the free-stream velocity). Note that St is obtained
from the CL time series. We compare St, the mean values of drag and lift coef-
ficients obtained by our simulations and simulations found in the literature (see
Table 3.2). Furthermore, the time series of the lift and drag coefficients are also
compared to previously published computational results [14] (see Fig.3.3).

We also compare the vorticity contours obtained numerically at Re = 40, 50
100 and 200 in [14] (Fig. 3.4) and the streamlines at Re = 20 and 40 obtained
numerically in [7] (Fig. 3.5) to the ones obtained using the Nǫκταr-solver.

Overall and for all the validation simulations conducted for the cylinder case,
the results obtained using the Nǫκταr-solver show a very good agreement with
the literature results. These results give confidence in using the solver in the
determination of the natural frequency (or the frequency at which the vortices
are shed).
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Figure 3.2: Nomenclature of the geometrical parameters to be calculated and
compared for the cylinder simulation. (Adapted from [7, 14]).

L a b θ CD

ReD = 20
Dennis & Chang [5] 0.94 - - 43.7 2.05
Coutanceau & Bouard [4] ∗ 0.93 0.33 0.46 45.0 -
Linnick [14] 0.93 0.36 0.43 43.9 2.16
Gopalan [7] 0.92 0.34 0.42 - -
Present study 0.92 0.35 0.43 44.5 2.16

ReD = 40
Dennis & Chang [5] 2.35 - - 53.8 1.52
Coutanceau & Bouard [4] ∗ 2.13 0.76 0.59 53.8.0 -
Linnick [14] 2.23 0.71 0.59 53.4 1.61
Gopalan [7] 2.15 0.70 0.6 - -
Present study 2.21 0.70 0.59 53.8 1.60

Table 3.1: Comparison of geometrical parameters for the flow over a motionless
cylinder. The comparison is between the results of the the present study and
previously published results in [4, 5, 7, 14]. An asterisk ∗ denotes experimental
results and θ denotes the flow separation angle.
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St CD CL

ReD = 100
Berger & Wille [1] ∗ 0.16-0.17 - -
Liu & al. [15] 0.165 1.35 ± 0.012 ± 0.339
Linnick [14] 0.166 1.34 ± 0.009 ± 0.333
Gopalan [7] 0.167 - -
Present study 0.167 1.36 ± 0.007 ± 0.336

ReD = 200
Berger & Wille [1] ∗ 0.18-0.19 - -
Liu & al. [15] 0.192 1.31 ± 0.049 ± 0.69
Linnick [14] 0.197 1.37 ± 0.046 ± 0.70
Present study 0.19 1.35 ± 0.032 ± 0.69

Table 3.2: Comparison of the Strouhal number, the lift and drag coefficients for
the unsteady flow over a motionless cylinder. The comparison is between the
present study and the previously published results in [1, 7, 14, 15]. An asterisk ∗

denotes experimental results. St is determined from the time variation of CL.

Figure 3.3: Lift coefficient time series Re = 200. (a) from [14] and (b) using the
Nǫκταr-solver.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: (a,b) Vorticity contours at Re = 40, (c,d) Re = 50, (e,f) Re = 100,
and (g,h) Re = 200. On the left side are the results obtained in [14] and on the
right side are the results obtained using the Nǫκταr-solver.
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(a)

(b)

Figure 3.5: Streamtraces at (a) Re = 20 and (b) Re = 40. The left frames are
the numerical results of Linnick [14]. The right frames are obtained using the
Nǫκταr-solver.
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3.2 Flow over a motionless airfoil

Next we validate our simulations for a steady and an unsteady flow over a
NACA0012 airfoil against the results obtained by A.V. Shatalov [17]. The au-
thor used a numerical method based on decomposing the velocity as a sum of
irrotational and rotational components. The author also used a viscous-inviscid
interaction method. For the purpose of comparison we simulate several flow cases
at constant angles of attack (α), as done in [17]. The numerical grid used for the
Nǫκταr solver is composed of 4220 triangular and quadrilateral elements (see
Fig. 3.6). The elements density is increased around the airfoil profile and in the
wake. A polynomial order of 9 is used. We used a polynomial order of 9 and 13.
As the results obtained were almost the same, we used a polynomial order of 9
for all simulations and ∆t = 10−4.

steady flow over an airfoil

3.2.1 α = 0◦ and Re = 500

The first case simulated is the incompressible, two-dimensional viscous flow over
a NACA0012 airfoil at a fixed angle of attack α = 0◦ and Re = 500. Fig. 3.7, Fig.
3.8 and Fig. 3.9 illustrate the u-velocity, v-velocity and the iso-pressure contours
obtained by A.V. Shatalov [17]. These results compare well to our simualtions
using the Nǫκταr-solver. The dotted lines on the Figures from [17] represent the
inviscid flow simulations, used by the authors for comparison, but not addressed
in the present study. In Fig. 3.10 the surface pressure distribution around the
airfoil upper surface is plotted for comparison. A very good qualitative and
quantitative agreement is obtained when comparing to the results in [17].

3.2.2 α = 10◦ and Re = 500

A second validation case is simulated at Re = 500 and α = 10◦. The results are
presented in the form of u-velocity, v-velocity, pressure iso-contours and surface
pressure coefficient Cp distributions in the Fig. (3.11-3.14); respectively. In Fig.
3.11 we note the presence of a vortex (indicated by a red arrow on the figure)
which covers approximately 40% of the second half of the airfoil and is captured
by both simulations. The presence of this vortex was confirmed by plotting the
streamlines over the airfoil surface. On Fig. 3.11 to Fig. 3.13 from [17], the flow
over the airfoil is inclined with respect to the horizontal plane due to the fact
that the authors subjected the airfoil to an inclined inflow rather than to incline
the airfoil itself, which is the approach used in the present study.

A very good qualitative agreement is found again between the present results
and the reference, and it is confirmed by a good qualitative and quantitaive
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(a)

(b)

Figure 3.6: (a) The numerical grid used for the airfoil simulations validation. The
resolution is increased around the airfoil surface (the boundary-layer region) and
in the near wake. The mesh is composed of triangular and quadrilateral elements
and the total number of elements is 4220. (b) A close-up of the grid around the
airfoil surface region.
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Figure 3.7: u-velocity contours, from [17] (left) and with the Nǫκταr solver
(right) at Re = 500 and α = 0◦.

Figure 3.8: v-velocity contours, from [17] (left) and with the Nǫκταr solver
(right) at Re = 500 and α = 0◦.
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Figure 3.9: Pressure iso-contours, from [17] (left) and with the Nǫκταr solver
(right) at Re = 500 and α = 0◦.

Figure 3.10: Surface pressure coefficient Cp distribution at Re = 500 and α = 0◦

over the airfoil upper-surface. The open circles correspond to output from the
Nǫκταr-solver and the crosses are taken from [17].
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Figure 3.11: u-velocity contours, from [17] (left) and with the Nǫκταr solver
(right) at Re = 500 and α = 10◦. The red arrows indicate a vortex.

Figure 3.12: v-velocity contours, from [17] (left) and with the Nǫκταr solver
(right) at Re = 500 and α = 10◦.
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Figure 3.13: Pressure iso-contours, from [17] (left) and with the Nǫκταr-solver
(right) at Re = 500 and α = 10◦.

Figure 3.14: Surface pressure coefficient Cp distribution over the airfoil surface
at Re = 500 and α = 10◦. The open circles are generated by the Nǫκταr solver.
The crosses correspond to data extracted from [17].
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agreement for the surface pressure coefficient illustrated in Fig. 3.14, where our
results and the results from [17] coincide.

unsteady flow over an airfoil

To validate the code for the unsteady flow around an airfoil, we simulated three
cases and validated them against the reference [17], for the following parameter
combinations: (α = 20◦, Re = 800), (α = 0◦, Re = 2000) and (α = 5◦ sin 2πt,
Re = 800). All the simulated cases were successfully reproduced by our simula-
tions, but for brevity we will present here only the results of one simulation case
at α = 20◦ and Re = 800.

3.2.3 α = 20◦ and Re = 800

The results are presented in terms of the u-velocity contours at different time
steps (see Fig. 3.15 - Fig. 3.17) together with the surface pressure coefficient
distributions over the airfoil surface (see Fig. 3.18 and Fig. 3.19). Comparison
was also successfully achieved for the v-velocity and the iso-pressure contours
(not presented here).

Our simulations shows a very good agreement with the reference [17], as
they reproduced the vortices and the flow contours. Note that our simulations
captured more flow details than the reference [17]. For example in Fig. 3.15d
(t = 2) more details of the flow structure, the leading- and trailing-edge vortices
and the boundary layer were captured by the present study. Fig. 3.18 and Fig.
3.19 show snapshots of the surface pressure distribution at selected time steps,
compared with the reference [17]. The qualitative agreement found for the u-
velocity components is confirmed by a very good qualitative and quantitative
agreement of the surface pressure distribution.

3.3 Flow over a heaving airfoil

3.3.1 Wake validation

Finally, we present results for the most complex flow case we used for comparison.
Here we validate our results for a heaving airfoil against the experimental results
in [10] and the numerical results in [23]. In [23] the author uses a Navier-Stokes
code based on the work in [20]. The code solves the strong-conservation form of
the non-dimensionalized 2D unsteady compressible Reynolds-Averaged Navier-
Stokes equations in general coordinates. The grid used by Young is a C-grid
and the heaving motion of the airfoil is accounted for by deforming the grid
adjacent to the airfoil. The grid deformation is done as follows: the region
closest to the airfoil is moved as a solid body, an intermediate region is deformed
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(a)

(b)

(c)

(d)

Figure 3.15: u-velocity contours at (a) t=0.1, (b) t=1, (c) t=2, (d) t=3. From
[17] (left) and with the Nǫκταr solver (right), at Re = 800 and α = 20◦.
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(a)

(b)

(c)

(d)

Figure 3.16: u-velocity contours at (a) t=4, (b) t=5, (c) t=6, (d) t=7. From [17]
(left) and with the Nǫκταr solver (right), at Re = 800 and α = 20◦.
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(a)

(b)

(c)

Figure 3.17: u-velocity contours at (a) t=8, (b) t=9, (c) t=10. From [17] (left)
and with the Nǫκταr solver (right), at Re = 800 and α = 20◦.
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(a) t=0.5 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=6

Figure 3.18: Surface pressure distribution over the airfoil surface at (a) t=0.5,
(b) t=1, (c) t=2, (d) t=3, (e) t=4, (f) t=6. The results are for the fixed airfoil at
α = 20◦, Re = 800. The open circles represent the output of the Nǫκταr solver
and the crosses are extracted from [17].
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(a) t=7 (b) t=8

(c) t=9 (d) t=10

Figure 3.19: Surface pressure distribution over the airfoil surface at (a) t=7, (b)
t=8, (c) t=9, (d) t=10. The results are for the fixed airfoil at α = 20◦, Re = 800.
The open circles represent the output of the Nǫκταr solver and the crosses are
extracted from [17].
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via a hyperbolic tangent distribution, and the outer region is left unchanged.
The viscous terms of the Navier-Stokes equations are evaluated using second-
order central differences in space, and the inviscid terms are evaluated using a
third-order upwind scheme. The time discretizaion follows a second-order Crank-
Nicolson scheme [23]. In the experimental study conducted by Lai & Platzer [10]
water-tunnel tests were conducted on an airfoil forced to oscillate sinusoidally in
heave for different values of frequency and amplitude. Dye flow visualization was
also conducted in the midspan plane of the airfoil. The first simulation is done
at Re = 2 × 104, mean angle of attack α = 0◦, heaving amplitude h = 0.0125
and reduced frequency k = 4. To compare the results obtained in [10] and
in [23] to the ones obtained using the Nǫκταr-solver, a region of the wake is
indicated by a circle in Fig. 3.20. The experimental results conducted in [10]
(Fig. 3.20a) show that the wake is composed of two rows of vortices. These rows
are created as the result of the shedding in the wake of two vortices per oscillation
cycle. The numerical results from [23] (see Fig. 3.20b) are obtained using two
solvers, a laminar one and a turbulent one. The numerical simulations of [23]
show that the turbulent solver is unable to capture the experimentally obtained
wake. According to Young [23] this may be due to the fact that the wake is
generated by a laminar process. One can also argue that the turbulent solver is
not efficient and is unable to reproduce the wake observed. Since Nǫκταr is a
DNS-solver, there are no assumptions about the nature of the flow involved in
the calculations (laminar or turbulent) and the wake obtained experimentally in
[10] is reproduced in all its details (see Fig. 3.20c).

For the second simulation the heaving amplitude is increased to h = 0.025
and all the other parameters are kept constant. Again we compare our simulation
results to the experimental results in [10] and the computational results of [23]
(see Fig. 3.21). A region of the wake is indicated by a circle in Fig. 3.21 for
comparison. In [23] the author needed to run two simulations at two different
heaving amplitudes h = 0.025 and h = 0.02 (see Fig. 3.21b and Fig. 3.21c) as
the numerical code used by Young could not reproduce the experimental results
obtained in [10] at h = 0.025. And again the turbulent solver used by Young
could not reproduce the experimental results. Our simulations on the other hand
(see Fig. 3.21d) were able to reproduce the experimentally obtained wake with
the same parameters used in [10], namely k = 4.0 and h = 0.025 and there was
no need to change the value of the heaving amplitude.

3.3.2 Forces validation

We validate the forces obtained using the Nǫκταr-solver by comparing them
to the computational results presented in [13, 23]. Lian & Shyy [13] used a
pressure-based algorithm to solve the full Navier-Stokes equations in curvilinear
corrdinates. The convection terms are discretized using a second-order upwind
scheme and the diffusion terms are discretized using a second-order central differ-
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(a)

(b)

(c)

Figure 3.20: Comparison of the vorticity visualization of the wake. (a) Ex-
perimental results from [10] obtained using dye injection. Red dye was injected
through the upper surface close to the trailing-edge while a green dye was injected
through the lower surface close to the trailing-edge. (b) Vorticity distribution ob-
tained using numerical simulations from [23], where scalar particles representing
the dye in the experiments were released from a vertical plane at the trailing-
edge of the airfoil. A laminar solver (upper frame) and a turbulent solver (lower
frame) are used. (c) Vorticity distribution using the Nǫκταr-solver. The flow
parameters for all cases are Re = 2 × 104, α = 0◦, h = 0.0125 and k = 4.0.
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(a)

(b) (c)

(d)

Figure 3.21: Comparison of the vorticity visualization of the wake. (a) Exper-
imental results [10] at h = 0.0125. (b) Numerical simulations obtained using a
Navier-Stokes code [23]: with a laminar solver (upper frame) and a turbulent
solver (lower frame) at h = 0.025. (c) Numerical simulations from [23]: with a
laminar solver (upper frame) and a turbulent solver (lower frame) at h = 0.02.
(d) Vorticity distribution obtained using the Nǫκταr-solver at h = 0.0125. For
all cases Re = 2 × 104, α = 0◦, and k = 4.0.
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mean CL Stdv CL mean CD Stdv CD

h = 0.0125
Young [23] 0.01768 ∗ 0.75016 ∗ 0.02252 0.00424
Lian & Shyy [13] 0.01768 ∗ 0.75016 ∗ 0.02338 0.00396
Present study 0.0098 0.7959 0.023 0.00436

h = 0.025
Young [23] 0.0521 ∗ 1.6229 ∗ 0.00687 0.01645
Lian & Shyy [13] 0.0521 ∗ 1.6229 ∗ 0.00803 0.01624
Present study 0.04572 1.5628 0.00634 0.0186

Table 3.3: Comparison of mean and standard deviations of the lift, and drag
coefficients. The comparison is between the present study and the previously
published results in [13, 23] for a heaving airfoil at (h = 0.0125, k = 4.0) and
(h = 0.025, k = 4.0). Stdv denotes the standard deviation from the mean value.
∗ denotes that the results concerning CL are assumed to be identical for both
references [13, 23]. This is the result from a comparison plot from [13] where the
CL values are identical to the one obtained by [23].

ence scheme. The time discretization is achieved using a second-order backward
scheme. The numerical approach of Young [23] was introduced earlier in this
chapter (Section 3.3.1). The comparison of the lift and drag mean values and
standard deviations is presented in Table 3.3. The Nǫκταr-solver compares very
well with the numerical results obtained in [13, 23]. These good results give con-
fidence in the ability of the Nǫκταr-solver in calculating the forces over heaving
airfoils.

3.4 Conclusion

In this Chapter, the Nǫκταr-solver simulations were validated for motionless
cylinders subjected to steady and unsteady flows. The results compare very
well with previously published studies. The simulations were also validated for
motionless airfoils with steady and unsteady flows and finally for the more com-
plicated case of heaving airfoils. The Nǫκταr-solver was able to reproduce both
flow configuration and Strouhal numbers for a cylinder geometry. This gives con-
fidence in using the solver to determine the frequency of vortex shedding. This
is very important as we will use the solver in Chapter 5 and Chapter 6 to study
the shedding frequency of heaving airfoils. This study requires the determination
of the shedding frequency with very high precision.

The Nǫκταr-solver was also validated for a motionless airfoil, with both
steady and unsteady flow conditions. The solver was able to reproduce both
flow configurations and surface pressure distributions over the airfoil. The results
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agree qualitatively and quantitatively with previously published studies. Finally,
the solver was validated for the heaving airfoil configuration at a relatively high
Reynolds number (Re = 2 × 104). The solver reproduced previously published
experimental and computational results with very good agreement. Moreover,
the validation was also achieved for the forces produced by the airfoils and a very
good agreement was found with numerical results obtained from the literature.
In conclusion, the Nǫκταr-solver is able to reproduce experimental and compu-
tational results, both qualitatively and quantitavely, at high spatial and temporal
resolution.
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Chapter 4

High-order Numerical
Simulations Of The Flow Around
A Heaving Airfoil 1

We simulate the incompressible, viscous flow over a two-
dimensional NACA 0012 airfoil oscillating in heave at mean
incidences 12◦ < α < 20◦ and Reynolds numbers 800 ≤ Re ≤ 104.
The two-dimensional Navier-Stokes equations are solved using a
Spectral/hp Element Method for the spatial discretization and a
high-order splitting scheme for the evolution in time. A moving-frame
of reference technique accounts for the airfoil motion. We consider
the effects on the aerodynamical flow and the force coefficients caused
by the variation of the mean incidence, the Reynolds number and
the sinusoidal heave motion of the airfoil. The numerical simulations
are in good agreement with previously published experimental
and computational work, in particular the increase in the force
coefficients due to the increase in the Reynolds number and/or the
mean incidence are confirmed by the present study. Furthermore,
we present here new details of the spatio-temporal non-linear flow
pattern evolution where for the first time the Spectral/ hp Element
Method associated with the moving frame of reference is used for
this kind of flow.

1Submitted to publication and currently under review as W. Medjroubi, B. Sto-

evesandt, B. Carmo and J. Peinke: High-order Numerical Simulations Of The Flow Around
A Heaving Airfoil in Computers and Fluids
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4.1 Introduction

Many experimental and computational studies are dedicated to the investigation
of the unsteady flow over streamlined bodies, particularly airfoils. Oscillating
and translating airfoils with their resulting fluctuating aerodynamic loads con-
stitute a very important category of these flow problems. The loads result from
fluctuations (or unsteadiness) of the surrounding flow or the movement of the
airfoil itself. Our study has been motivated by applications of wind turbines and
helicopters, where turbulent wind conditions lead to such situations.

Unsteady flow conditions are generally associated with very interesting, com-
plex, non-linear phenomena such as flutter, vortex-induced vibrations, and dy-
namic stall. The understanding and prediction of the dynamic stall phenomenon
was the motivation of more than three decades of theoretical, computational
and experimental work [25, 26].Unsteady flows over an airfoil include heaving,
pitching and flapping airfoils.

In their experimental work Ohmi et al. [30] conducted water tank experi-
mental studies of the incompressible and viscous flow around an elliptic airfoil
oscillating and translating at large incidences, using solid and electrochemical
tracers. They also performed 2D numerical simulations, which were based on
a finite-difference approximation of the unsteady two-dimensional Navier-Stokes
equations. They investigated the variation of the following parameters, Reynolds
number: 1500 ≤ Re ≤ 104 (where Re = U0cν, c is the airfoil chord length, and
U0 is the free-stream velocity), reduced frequency f ∗ = fc/U0: 0.2 ≤ f ∗ ≤ 2,
mean incidence α: 15◦ ≤ α ≤ 30◦ and angular amplitude of the oscillations
∆α: 7◦ ≤ ∆α ≤ 15◦. The authors found that the effects of f ∗ and the product
f ∗∆α were more significant than changing the Reynolds number. They extended
their work in [31], where the effects of the pitching axis and of a non-elliptic
cross-section airfoil (NACA0012) were included. They concluded that the aero-
dynamic characteristics of an unsteady airfoil oscillating at large incidences are
rather sensitive to any variation of the flow conditions.

In a computational study Akbari & Price [2] investigated the incompressible
and viscous flow over a 2D elliptic airfoil translating and oscillating in pitch
at large angles of attack, with mean angles of attack up to 30◦. They solved
the Navier-Stokes equations in a vorticity-stream-function form using a time-
marching approach. They also investigated the effects of the reduced frequency
of oscillation, the mean angle of attack, the pitch-axis location, and the thickness
of the airfoil at Re = 3000. The authors observed that the frequency of oscillation
has a significant effect on the flow structure at higher reduced frequencies 1 ≤
f ∗ ≤ 2. At these reduced frequencies the vortices are shed from the upper surface
rather than from the trailing-edge and this shedding is controlled by the rotational
motion. Furthermore, the formation of alternate vortices at the trailing-edge is
observed during both the up and downstroke of the elliptic airfoil. The mean
angle of attack was found to have an effect on both the vortex formation and the
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wake pattern. Moving the pitch-axis from the mid- to the quarter-chord, did not
influence the flow characteristics, although it causes the vortices to be stronger,
at both the leading and trailing edge.

Hovering (simultaneously pitching and heaving airfoils) is considered by
Gustafson & Leben in [16] in an attempt to compare compuatational results to
the experimental results of Freymuth [13]. The governing equations are formu-
lated in terms of the stream-function and the vorticity, where a Poisson equation
is solved for the stream function by a covariant multigrid solver, and the vorticity
transport equation is solved by an ADI time-marching scheme. Three hovering
modes are classified with respect to the average angle of attack and the phase
difference between the pitching and the heaving. Excellent spatial and temporal
correlation was found with the experimental results in [13]. The authors con-
cluded that high-thrust and high-lift vortical signatures can be obtained using
a single hovering airfoil, therefore there is no need to involve more complicated
phasing of multiple wing beats in dragonflies. The explanation for these results is
attributed by the authors to the right tuning of the airfoil, which means executing
short plunge combined with large pitch.

An interesting configuration of an immersed plunging and heaving airfoil is
studied by Spagnolie & al. in a recent contribution [35]. The authors studied
through experiments and computational simulations a freely moving wing which
can pitch passively as it is actively heaved in a fluid in order to investigate the
locomotion regimes and capabilities of such flows common in aquatic animals
propulsion [32]. Numerical simulations were performed by coupling the Navier-
Stokes equations in two dimensions to the equations for lateral and rotational
accelerations of an elliptical airfoil. The passive pitch motion is represented by
the restoring force of a spring mounted sytem. The governing parameters are
the Reynolds number based on the heaving frequency (Ref = ρUL/µ = ρafL/µ,
of the order of 105 for the experiments and 50 for the computations. f is the
imposed heaving frequency and L is the half chord of the airfoil), the heaving
amplitude a, the elliptic aspect ratio e = b/a (equal to the ratio of the minor
and the major axes of the elliptical airfoil), the spring constant κ and the mass
ratio M . The results revealed different dynamical regimes with respect to the
heaving frequency, among which two are novel. First, a reversal in the direction
of lateral motion as the heaving increases beyond a critical frequency. Second, a
bistable, hysteretic regime where the airfoil can move either backward or forward
depending on its history. These new regimes were also verified experimentally by
the authors.

For the case of a pure heaving (flapping or plunging) motion there exist nu-
merous experimental and computational studies [21, 37]. Due to the fact that
an airfoil forced to oscillate in heave can produce thrust at certain combinations
of the heaving amplitude and frequency, most of the research is dedicated to the
determination of these combinations [12, 36]. As applications areas for flapping
airfoils we cite the investigation of animal propulsion techniques [18], Micro-Air
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Vehicles (MAV) industry [24] and wind turbine rotor loading and dynamics [17].
Our aim in implementing pure heaving motion in this study is however not mo-
tivated by thrust production optimization, but mainly to investigate the effects
of varying the governing parameters on the flow structure.

Levin & Haj-Hariri presented in [22] a numerical model for the two-
dimensional and viscous flow around an elliptic airfoil subjected to a prescribed
heaving motion. The viscous term of the vorticity transport equation is dis-
cretized using a fourth-order centered differencing and a third-order upwind
scheme is used for the advection terms. Time stepping is achieved using a second-
order Runge-Kutta scheme. Vortex patterns, flow characteristics and power coef-
ficients are examined over a range of reduced frequencies (2.0 ≤ k ≤ 10.0, where
k = 2πfc/U0) and ampltiudes (0.8 ≤ h∗ ≤ 1.5, where h∗ = h/c) at a mean angle
of attack α = 0 and Re = 500. The authors found that the wake patterns depend
on whether the leading-edge vortex (or LEV) is shed or not and on how it inter-
acts with the trailing-edge vortex (TEV). When the LEV is shed, it can either
strengthen the TEV, resulting in a pair of vortices shed per oscillation cycle, or
pair up with the TEV, resulting in two pairs of vortices shed per oscillation cycle.
The LEV dynamics are also correlated to the heaving efficiency of the airfoil, as
significant gain in efficiency occurs when the LEV remains attached during the
duration of each stroke. The authors pointed out that high thrust coefficients
and propulsion efficiencies are achieved as a result of the positive reinforcement
of the TEV by the LEV as found in [5].

The motion of the airfoil can be coupled to the flow, thus the motion of the
flow is not prescribed, but is instead determined by the fluid forces acting on it. In
[3] an implicit method is proposed for computing coupled airfoil-flow dynamics
using a plunging and rising elliptical airfoil in order to probe its instabilty to
horizontal motions. For both airfoil motions (plunging and rising), it is found
that a linear instability to the horizontal motion is present at a critical Reynolds
number, which leads to a stable oscillatory state. The pressure forces are found
to have a destabilizing role, while the viscous forces have a stabilizing role. The
oscillatory state time scales are set either by the external plunge motion or by
the intrinsic flow-airfoil coupling.

With the interest shifted towards numerical solutions of the Navier-Stokes
equations around aerodynamic configurations, it has been recognized that higher-
order accurate approximations significantly enhance the quality of simulation
results and improve the predictive simulation capability for many applications [7,
19]. Computational Fluid Dynamics (CFD) methods are commonly second-order
accurate in both time and space, so the increase of the accuracy levels requires
the use of higher-order methods. The idea behind using high-order numerical
methods is to achieve high accuracy, resolving all the flow length scales at a
reduced cost and avoiding the extra costs of remeshing or excessive grid resolution
[29].

Global spectral methods have been extended to multi-domains (spectral el-
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ements) to provide a better geometric flexibility. Spectral/hp Element Meth-
ods combine the characteristics and the advantages of both finite elements and
spectral methods. Unlike pure spectral methods and finite elements methods,
Spectral/hp Element Methods allow the use of two refinement techniques simul-
taneously: the h-refinement, denoting the increase of the number of elements,
and the p- refinement, denoting the increase of the polynomial order of the ap-
proximation [19].

We use for the first time the Spectral/hp Element Methods combined with a
moving-frame of reference technique to investigate the problem of the flow around
an oscillating airfoil in an attempt to achieve a better accuracy than that obtained
using lower-order numerical methods. In this scope all the simulations presented
in this work are Direct Numerical Simulations (DNS), in order to capture all the
flow details and particularly the spatio-temporal flow evolution. Our choice of
the numerical method is also based on the possibility to obtain highly accurate
temporal and spatial data that can be used in applications such as turbulence
characterization and non-linear analysis of the airfoil response to forced oscilla-
tions. To the authors knowledge this is the first time where the boundary-layer
temporal development is investigated for a heaving airoil using a numerical ap-
proach, as most of the studies for this type of motion were concerned with the
wake configuration [38], [4], [11].

In this paper, we study the particular case of an incompressible viscous flow
over a two-dimensional NACA0012 airfoil forced to oscillate in a sinusoidal heave
motion. In Section 4.2 the numerical method is presented and validated, the
results of the spatio-temporal flow pattern generated by a motionless airfoil are
presented in Section 4.3.1 and Section 4.3.2 . In Section 4.4 a heaving airfoil is
considered at different mean incidences and Reynolds numbers. The parameters
were chosen to exhibit the effects of varying the mean angle of attack and the
Reynolds number on the flow pattern and on the aerodynamical coefficients.

4.2 The numerical method

The governing Navier-Stokes equations of the viscous incompressible flow stud-
ied in this investigation are written in terms of the following nondimensional
quantities:

x∗ =
x

c
, y∗ =

y

c
, (4.1)

t∗ =
tU0

c
, u∗ =

u

U0

, (4.2)

v∗ =
v

U0

, p∗ =
p

ρU2
0

, (4.3)

where the airfoil chord length c and the free-stream velocity U0 are used to obtain
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the nondimensional velocity u∗ = (u, v). The static pressure p is scaled by the
fluid density ρ. t is the time, Re = ρU0c/µ is the Reynolds number, and µ is the
dynamic viscosity of the fluid. For simplicity, the sign ∗ is dropped during the
reminder of this paper.

In the framework of the Spectral /hp Element Method the physical domain
and the governing equations have to be spatially and temporally disretized. The
spatial discretization involves the division of the physical domain into triangu-
lar and/or quadrilateral subdomains for 2D configurations. Within each subdo-
main/element a spectral expansion in the form of Jacobi polynomials of mixed
weight and of order p, is used to represent the solution variable [19]. The tempo-
ral discretization is achieved using a splitting scheme [20]. In the following, the
polynomial expansions and the temporal splitting scheme are introduced.

Polynomial bases/expansions

For a polynomial expansion a basis um,n(r, s) needs to be defined in order to
approximate the function f(x, y) over i triangular subdomains by a C0 continuous
expansion of the form (for rectangular subdomains see [19])

f(x, y) =
N
∑

i

N1
∑

m

N2
∑

n

ui
m,num,n(r(x, y), s(x, y)). (4.4)

ui
m,n are the expansion coefficients in the ith subdomain, (x, y) are the spatial

coordinates and (r, s) are the local coordinates within the subdomains. N is the
total number of subdomains, N1, N2 are the number of the quadrature points in
the r and s directions respectively. The space spanned by the local coordinates
system is defined as

L2 = {(r, s)| − 1 ≤ r, s; r + s ≤ 0} (4.5)

and the orthogonal expansion bases used are Dubiner’s modified bases, defined
as

um,n = P 0,0
m

(

2
(1 + r)

(1 − s)
− 1

)

(1 − s)mP 2m+1,0
n (s). (4.6)

Pα,β
n (x) is the nth-order Jacobi polynomial in the [−1, 1] interval, which satisfies

the orthogonality relationship:

∫ 1

−1
Pα,β

m (x)Pα,β
n (x)(1 − x)α(1 + x)βdx = δm

n , (4.7)

where δm
n is the Kronecker-delta. The Jacobi polynomial is expressed as follows

[1, 15] :



96 4. High-order Numerical Simulations Of The Flow Around A He aving Airfoil

Pα,β
n (x) =

(−1)n

2nn!
(1 − x)−α dn

dxn
[(1 − x)α+n(1 + x)β+n], α, β > −1. (4.8)

The bases are decomposed into boundary and interior modes (thus allowing
the construction of a global C0 expansion). Integration and differentiation are
performed at elemental level, and an elemental mapping which allows the gener-
alisation of the local operations in a standard region to elements of general shapes
is defined. To extend these techniques to a C0 multi-dimensional basis, global
operations such as matrix numbering, connectivity and assembly are introduced.
The spatial discretisation thereby introduced is independent of the Navier-Stokes
solver which will be introduced later in the next Section.

Temporal discretization

The temporal discretization of the Navier-Stokes equations is achieved via a time-
splitting scheme [20], where three steps are required to determine the fields for
the next time step using the velocity at the previous time step. This is achieved
by writing the Navier-Stokes equation in the form:

∂u

∂t
= −∇p+ νL(u) + N(u) (4.9)

where L(u) ≡ ∇2u and N(u) ≡ −u.∇u are the linear and non-linear operators;
respectively. The temporal discretization is achieved via the propagation of un

and pn at a time step n, with a time discretization ∆t, to determine un+1 and
pn+1 at the next time step n+ 1. This is expressed as follows

ũ −
∑Ji−1

q=0 αqu
n−q

∆t
=

Je−1
∑

q=0

βqN(un−q) (4.10)

∇2pn+1 = ∇ · (
ũ

∆t
) (4.11)

γ0u
n+1 − ũ

∆t
+ ∇pn+1 =

1

Re
∇2un+1, (4.12)

where in the first step, the non-linear terms are advanced using a convective form
which is integrated in time via a multilevel explicit Adams-Bashforth scheme, rep-
resented by the coefficient βq. An implicit time scheme is used for the integration
of the linear terms. Je and Ji are the integration orders of the explicit and im-
plicit schemes; respectively. In the second step, the time-averaged pressure term
pn+1 is calculated using the divergence of Eq. (4.10). In the third step, the
viscous term is treated implicitly via an Euler backwards scheme, where γq are
appropriately chosen weights. The coefficients αq, βq, and ω0 take different val-
ues depending on the integration order [8, 20]. This time integration numerical
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scheme requires both velocity and pressure boundary conditions to be defined.
High-order Neumann boundary conditions are imposed for the pressure (to en-
sure that the splitting error is consistent with the overall temporal discretization)
as follows:

∂pn+1

∂n
= n ·







Je−1
∑

q=0

βq

[

N(un−q) −
1

Re
(∇ × (∇ × un−q))

]







. (4.13)

Airfoil motion

To implement the airfoil motion the Navier-Stokes equations and the boundary
conditions are written in a moving frame of reference. The resulting system is
then solved. The method is briefly described here. For further details of the
solution procedure we refer the reader to [23].

Let’s consider that the body is performing a translational motion d defined in
the fixed or absolute frame of reference (Xa, Ya) as d = (a(t), b(t))T . A moving
frame of reference (xm, ym), attached to the airfoil is defined as a function of the
absolute frame as:

Xa = a(t) + xmcosθ + ymsinθ (4.14)

Ya = b(t) − xmsinθ + ymcosθ, (4.15)

where θ is the rotational angle in the moving frame of reference and a(t) and
b(t) represent the coordinates of the origin of the moving frame of reference in
the absolute frame of reference (see Fig. 4.1). In the case of a plunging (non-
rotating) airfoil θ and a(t) are constant. Using matrix notation one obtains the
transformation from the coordinates in the absolute frame of reference to the
moving frame of reference as:

Xa = d + Axm, (4.16)

and the inverse transformation as:

xm = AT(Xa − d), (4.17)

where d = (a(t), b(t))T and A is the matrix defined as :
(

cosθ sinθ
−sinθ cosθ

)

Using the definition of the coordinates (xm, ym) given by the equation (4.14),
the Navier-Stokes equations are re-written in the moving frame of reference as
follows:

∇ · u = 0, (4.18)
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∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2u + Q(t), (4.19)

Q(t) = −AT d̈, (4.20)

where the term AT d̈ is the result of the unsteady translational motion, in our
case a plunging motion. The boundary conditions are also transformed in the
moving frame of reference, and expressions are derived for Neumann and Dirichlet
boundary conditions [23].

For the present simulations we have considered the body as being rigid (non-
deformable) and forced to oscillate in heave (plunge) motion as illustrated in
Figure 4.1. The heave motion is defined as

d = y(t) = a cos(2ωt). (4.21)

where y(t) is the time-dependent vertical motion, a∗ = a/c is the non-dimensional
heaving frequency, ω = 2πf is the angular frequency, and f ∗ = fc/U0 is the non-
dimensional heaving frequency (for simplicity, the superscript ∗ will be droped in
the reminder of this investigation). The airfoil is set at a constant initial angle
of attack α = θ (or mean incidence) and is forced to oscillate vertically in a
sinusoidal fashion.

Aerodynamic forces

The forces and moments are evaluated by calculating their viscous and pressure
contributions. The aerodynamic force applied by the flow on the body can be
expressed as the integration of local stress as:

F =
∫

ω
σnAdsA = −

∫

ω
pnAdsA +

∫

ω
τnAdsA = Fpress,A + Fvisc,A. (4.22)

where σ = −pI + τ is the stress tensor, ω is the airfoil surface, nA is the unit
normal on the airfoil, Fpress,A are the pressure forces and Fvisc,A are the viscous
forces. The subscript A indicats that the quantities are expressed in the absolute
frame of reference. The forces in Equation (4.22) are expressed in the moving
frame of reference as follows:

F = Fpress,A + Fvisc,A = A(Fpress,m + Fvisc,m). (4.23)

where A is the matrix introduced in Equation (4.17).
The boundary conditions are u = 1, v = 0 on the left, upper, and lower

mesh boundaries on Fig. 4.2. On the right boundary ∂u/∂x = 0, ∂v/∂x = 0
are employed, and u = v = 0 on the airfoil surfaces (or walls). The pressure
boundary-conditions are high-order conditions on all boundaries [20] except at
the outflow boundary where p = 0 is considered. The external boundary is
located at 17 chord lengths from the trailing-edge of the airfoil.
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Figure 4.1: Schematic representation of the aifroil for the heave motion, where
the vertical displacement y(t) varies sinusoidally. α is the mean incidence (initial
angle of attack), U0 is the free-stream velocity and c the chord length.

The Nǫκταr solver

Nǫκταr is a general purpose Navier-Stokes solver for simulating incompressible
and compressible flows, based on the Spectral/hp Element Method [34]. The code
was validated for many flow geometries, among those cylindrical [9], helical [10]
and rectangular [23].

We validate our simulations for a steady and an unsteady flow over a
NACA0012 airfoil against the results obtained by A.V. Shatalov and reported
in [33]. Shatalov used a numerical method based on decomposing the velocity
(as a sum of irrotational and rotational components) and on the viscous-inviscid
interaction method. We simulate several flow cases at constant angles of attack α
as in [33]. All our simulations agree well with Shatalov’s results [33]. For brevity
we will present here only the results at α = 20◦ and Re = 800.

The numerical grid used for the Nǫκταr solver is composed of 4220 triangular
and quadrilateral elements, the elements density is increased around the airfoil
profile and in the wake. A polynomial order of 9 and a time step of ∆t = 10−4

are used for the validation. Figure 4.2 shows the numerical mesh and Fig. 4.3
shows close-ups of the grid around the leading and trailing edges, respectively.

The unsteady results are compared in terms of the surface pressure distri-
bution (see Figure 4.4) and u-velocity contours (see Figure 4.5). Comparison
has also been done for the v-velocity and the iso-pressure contours. For the sur-
face pressure distribution, a very good qualitative and quantitative agreement is
found between our simulations and the reference. This agreement is confirmed by
the u-velocity contours, where our results reproduced the vortices and the flow
details.
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Figure 4.2: The numerical grid used in this investigation. The resolution is
increased around the airfoil surface (the boundary-layer region) and in the near
wake. The mesh is composed of triangular and quadrilateral elements and the
total number of the elements is 4220.
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Figure 4.3: Leading- and trailing-edge meshing details.
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(a) t=1 (b) t=2

(c) t=4 (d) t=8

Figure 4.4: Surface pressure distribution at selected time steps for the fixed airfoil
at α = 20◦, Re = 800. The red circles represent the output of the Nǫκταr solver
and the crosses are data extracted from reference [33].
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(a) t=4

(b) t=9

Figure 4.5: u-velocity contours at selected times from [33] (right) and with the
Nǫκταr solver (left), at Re = 800 and α = 20◦. For clarity, our figures are
rotated to the same orientation as in [33].
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4.3 Simulations for a motionless airfoil

4.3.1 Fixed airfoil at α = 12◦

The vorticity contours of the flow over a stationary airfoil at the fixed angle
of attack α = 12◦ and Re = 4500 are presented in Figure 4.6. At t = 0.6
(Figure 4.6a) the flow is attached over all the upper surface and at the trailing-
edge, an anti-clockwise vortex has already been shed and convected in the near-
wake region. A separation bubble (counter-rotating) is formed on the airfoil
upper-surface, it grows in size and detaches further as the simulation is advanced
to t = 2.4 (Figure 4.6b) under the action of a positive vorticity region that
forms under it. In Figure 4.6c, the recirculation region interacts further with the
positive vorticity. This results in the creation of clockwise rotating vortices. At
t = 6 (Figure 4.6d) the first clockwise vortex is shed in the wake at the trailing-
edge, along with an anti-clockwise vortex. At the upper-surface the recirculation
region (counter-rotating) continues to interact with the positive vortices and this
interaction results in a periodic shedding of a pair of counter-rotating vortices (see
Figure 4.6d). We define this periodicity to be spatial, i.e. the spatial distribution
of the flow will be the same for each period. The vortex shedding period is found
to be Ts ≈ 1.4.

The periodicity is confirmed when plotting the lift and drag coefficients time
series (Figure 4.7a). After a short initial transient period, the lift and the drag
coefficients vary periodically with time, reaching a stable oscillatory state at t ≈ 9.
The mean values of the lift and drag coefficients (excluding the initial transients)
are 1 and 0.25; respectively. Thus, the force coefficients time evolution exhibit a
periodic behaviour that is in synchronization with the flow temporal development
and with the vortex shedding.

The Reynolds number is increased to Re = 8000 and the vorticity contours are
the same as at Re = 4500 for t < 2.4 (see Figure 4.8). At t = 2.4 (Figure 4.8a) the
recirculating region interaction with the upper-surface separation bubble results
in the creation of a pair of clockwise vortices. As the simulation is advanced
the vortices are convected downstream over the airfoil (Figures 4.8a, 4.8c), where
they interact again with a recirculation region which is rolling-up at the airfoil
trailing-edge. This results in opposed signs vortices to be shed in the wake (Figure
4.8d). A new flow feature, which is not observed for Re = 4500, is the shedding
of small scale vortices at the airfoil trailing-edge (Figure 4.8c).

The time series of the lift and the drag coefficients at Re = 8000 exhibit an
unsteady behaviour (Figure 4.7b) which can be attributed to the increase of the
Reynolds number and thus to the acceleration of the flow over the airfoil.

Here we analyse the effects of increasing the Reynolds number on the aero-
dynamical coefficients and the flow configuration. First, the lift and the drag
coefficients at Re = 4500 are compared to the simulation at Re = 8000 in Figure
4.7, where for Re = 4500 the time evolution is periodic and aperiodic/unsteady
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(a) t=0.6 (b) t=2.4

(c) t=3.6 (d) t=6

Figure 4.6: Vorticity contours at successive times for a fixed airfoil at α = 12◦

and Re = 4500.

(a) (b)

Figure 4.7: Time series of the lift and drag coefficients for a fixed airfoil at α = 12◦

and (a) Re = 4500 (b) Re = 8000.
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(a) t=2.4 (b) t=3

(c) t=3.6 (d) t=6

Figure 4.8: Vorticity contours at successive times for a fixed airfoil at α = 12◦

and Re = 8000.
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(a) t=8.1, Re = 4500 (b) t=7.2, Re = 8000

(c) t=8.55, Re = 4500 (d) t=7.5, Re = 8000

Figure 4.9: Vorticity contours at different times for a fixed airfoil at α = 12◦,
Re = 4500 and Re = 8000; respectively. The flow configuration is the same at
the two Reynolds numbers, which confirms the spatial periodicity of the flow.
The flow patterns shown were selected at similar lift and drag values.

at Re = 8000. However, if we compare the vorticity contours of the flow at
the two Reynolds numbers, we find that the flow configurations resemble each
other (see Figure 4.9) if we condition the states on similar cD and cL values.
This indicates that at Re = 8000 there are still remains of the spatial period-
icity observed at Re = 4500. The mean values of the lift and drag coefficients
at Re = 8000 are 1.06 and 0.28; respectively. This represents and increase by
7% for the lift and 3% for the drag as a response of increasing the Reynolds
number. Simulations performed at Re = 800 and Re = 1600 at the same mean
incidence (α = 12◦) confirm this trend of the increase in the mean values when
increasing the Reynolds number. Second, increasing the Reynolds number shifts
the separation point upstream by 50% (Figure 4.10).
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(a) t=9.6, Re = 4500 (b) t=9.6, Re = 8000

Figure 4.10: Vorticity contours at t = 9.6 for a fixed airfoil at α = 12◦, Re = 4500
and Re = 8000; respectively. The separation point is shifted upwards for the
simulation at Re = 8000.

4.3.2 Fixed airfoil at α = 20◦

The initial angle of attack is increased to 20◦ and two Reynolds numbers,
Re = 800 and Re = 1600, are considered. At α = 20◦ and Re = 800 the
flow detaches from the airfoil upper surface and an anti-clockwiese vortex is shed
at the airfoil trailing-edge (see Figure 4.11a). The separated boundary-layer (or
separation bubble) region grows under the impulse of the recirculating region
which is beneath it, this results in the growth and the shedding of opposite sign
vortices at the trailing-edge (Figures 4.11b − 4.11d). Due to the high mean inci-
dence the boundary layer detaches massively and directly at the leading-edge. It
reaches a bigger size compared to the simulation at α = 12◦ (compare Figure 4.6c
with Figure 4.11c). Nevertheless, there are less interactions between the positive
and negative vorticity on the upper-surface. This is due to the high incidence
angle which decelerates the flow over the airfoil [30, 31], and to the relatively
small Reynolds number.

The time-histories of the forces are periodic (see Figure 4.12). The mean
values for the drag and the lift coefficients (without the transient fluctuations) at
Re = 800 are 0.45 and 0.9; respectively.

Increasing the Reynolds number from 800 to 1600 exhibits no new flow fea-
tures. The time series of the aerodynamical forces at Re = 1600 are reported in
Figure 4.12. The mean values are 0.46 for the drag coefficient and 0.96 for the
lift coefficient.

To expose the effects of increasing the initial angle of attack α, a simulation
was carried out at Re = 1600 and α = 12◦. The corresponding drag and lift
times series are shown in Figure 4.13. Note that the values of the drag and lift
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(a) t=0.6 (b) t=2.4

(c) t=3.6 (d) t=6

Figure 4.11: Vorticity contours at successive times for a fixed airfoil at α = 20◦

and Re = 800.
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(a) CD (b) CL

Figure 4.12: Time series of the drag and the lift coefficients for a fixed airfoil at
α = 12◦, (a) Re = 800 and (b) Re = 1600.

coefficients are greater for the highest incidence case. The mean values of the drag
and lift coefficients at α = 12◦ are 0.54 and 0.19; respectively. At α = 20◦ the
mean values of the lift and drag coefficients increase by 36% and 27%; respectively.
This increase, which is due to the increase in the mean incidence was observed
and reported in the literature for low and moderate Reynolds numbers [2], where
increasing the mean incidence from 0◦ to 30◦ at Re = 3000 resulted in a dramatic
increase of the lift and drag coefficients, especially the latter, which increased by
one order of magnitude. One can conclude here that the effect of the Reynolds
number is much less important than the mean incidence.

4.4 Simulations for a heaving airfoil

In this section the simulations of the flow around an airfoil forced to oscillate sinu-
soidally in heave are presented in terms of vorticity contours and aerodynamical
coefficients time series. The airfoil motion is implemented using the moving frame
of reference technique introduced in section 4.2. The values of the frequency and
amplitude of oscillation are chosen to be in accordance with the range of values
from simulations found in the literature. The same values are used in the inves-
tigation of the wakes of plunging airfoils [27] and the lock-in phenomenon and
frequency selection in flows over oscillating airfoils [28].

4.4.1 Heaving airfoil at α = 12◦

Figure 4.15 illustrates the vorticity contours at selected time steps for an airfoil
forced to oscillate in the y direction (heave motion) at Re = 4500 and at a fre-
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(a) CD (b) CL

Figure 4.13: Drag and lift coefficients for fixed airfoils at Re = 1600 and α = 12◦,
α = 20◦.

quency and amplitude of oscillation of f = 0.3184 and a = 0.1047; respectively.
Also indicated on the Figures is the ratio t/T ∗, where T ∗ = 3.14 is the period of
the forced oscillations. The vorticity contours are illustrated for 2 oscillation cy-
cles and the vertical position of the airfoil during the oscillation cycle is indicated
on Figure 4.14. At t = 0.6 (Figure 4.15a) the flow is already separated at the
leading-edge, and a first anti-clockwise vortex is shed from the trailing-edge. At
t = 2.4 (Figure 4.15b) the counter-rotating recirculation region is created beneath
the separation bubble and clockwise vortices are created and convected by the
flow towards the trailing-edge. The lower-surface vorticity rolls up at the trailing-
edge to form a clockwise vortex (Figure 4.15c). This vortex is shed along with
a clockwise vortex (Figure4.15d). This vortex shedding continues periodically as
the simulation advances in time (Figure 4.15e).

The flow periodicity is confirmed by the time series of the lift and drag coeffi-
cients (see Figure 4.16). The period of the vortex shedding is Ts = 3.17, which is
close to the period of the forced oscillation motion (Th = 3.14). The lift and drag
coefficients reach a periodic state with mean values 1.07 and 0.28; respectively.
This represents an increase in the mean values compared to the motionless sim-
ulation at the same Reynolds number and mean incidence. This increase is due
to two main reasons triggered by the imposed airfoil heaving motion. First, the
leading-edge vortex is created at a position more afore the airfoil than in the mo-
tionless case, which creates a depression zone which enhances the lift. This can
be observed on Figure 4.17, depicting the vorticity and the pressure distributions
at the vertical positions corresponding to the mid-downstroke and mid-upstroke,
during which the lift reaches its peak values. This phenomenon holds only for
sufficiently small heaving frequencies (less than 0.5) [6]. Second, the leading-edge
vortex convection contributes to the increase of the lift. As the inverse of the
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Figure 4.14: Schematic representation of the vertical positions occupied by the
airfoil during the oscillation cycle at f = 0.3184 and a = 0.1047. Position I:
t = 0.6, position II: t = 1.8, position III: t = 2.4, position IV: t = 3, position V:
t = 3.6 and position VI: t = 6.

heaving frequency indicates the time left for the vortices to form, grow, separate
and travel along the airfoil to be shed, a small value of f results in the vortices
staying longer on the airfoil surface. Moreover, subjecting the airfoil to the heave
motion contributes to an increase in the acceleration and thus an increase in the
vortex circulation (which can also be observed in our simulations when comparing
the Figures 4.6 of the vorticity distributions of the motionless airfoil and Figures
4.15 for the heaving airfoil). The longer time spent by the vortices on the airfoil
surface and the increase in their circulation contributes to the increase in the
lift observed in Figure 4.16. This result is also reported by Andro & Jacquin for
simulations with 0.05 < f < 0.4 [6].

Compared to the fixed airfoil simulations, the flow phenomenology is the
same, in the sense that there are no new flow features. Those results are to
be expected, since the frequency of the forced oscillations (f = 0.3184) is less
than 1. For this particular case it was reported for various experimental and
computational studies that the flow features for the oscillating airfoil are the
same as for the fixed (static) airfoil at the same incidence angle [2, 14, 30, 31].
However, the motion of the airfoil reduces the strength of the recirculation zone
and restricts its effect at the trailing-edge. Another effect of the airfoil motion on
the flow is that the shed vortices are lifted to a higher vertical position (compared
to Figure 4.6d).

Moreover, the upward motion delays the flow separation and favours a more
stable flow creating smaller leading-edge vortices. Compare Figure 4.6d and 4.15e,
where the flow is clearly more separated for the motionless simulation. On the
other hand, the downward motion promotes the leading-edge separation (Figure
4.15d). These previous results have been also reported in the literature for the
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(a) t=0.6, t/T*=0.19, I (b) t=2.4, t/T*=0.76, III

(c) t=3, t/T*=0.95, IV (d) t=3.6, t/T*=1.15, V

(e) t=6, t/T*=1.91, VI

Figure 4.15: Vorticity contours at successive times for a heaving airfoil at α = 12◦,
Re = 4500, f = 0.3184 and a = 0.1047. The roman numbers indicate the
horizontal position of the airfoil as on Figure 4.14.
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(a) CD (b) CL

Figure 4.16: Time series of (a) drag and (b) lift coefficients for the fixed airfoil
at α = 12◦ and Re = 4500 and the heaving airfoil at α = 12◦, Re = 4500,
f = 0.3184 and a = 0.1047.

pitching case [2, 30] and will be confirmed by the next simulation at a higher
Reynolds number.

Increasing the Reynolds number to Re = 8000 accentuates the effects of the
airfoil motion due to the flow acceleration. As for the simulation at Re = 4500,
the upward motion of the airfoil delays the separation and the size of the vortices
is smaller (compare 4.18d with 4.8b and Figure 4.18f with 4.8d). During the
downward motion of the airfoil the separation of the main leading-edge vortex
is promoted and small-scale clockwise vortices form in the wake. An example
of this can be seen at t = 2.4 (Figure 4.8a) where for the motionless airfoil the
separation-bubbles are small and are not completely detached from the upper-
surface, and the leading-edge vortex is small. While for the forced airfoil (at
the same simulation time, t = 2.4, Figure 4.15b) the separation-bubbles are
detached from the upper-surface and the leading-edge vortex has already reached
an important size and is about to be shed. Small clockwise vortices are shed in
the near wake for the forced simulation. Moreover, the downward motion shifts
the shed vortices at a higher vertical position. As previously mentioned these
results have been also reported for the pitching case [2, 30], but the small scale
vortices are anti-clockwise for the pitch case.

The lift and drag coefficient mean values at Re = 4500 are 1.05 and 0.23;
respectively. At Re = 8000 the drag coefficient mean value is 0.20 and the mean
value of the lift coefficient is 1.09.
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(a) (b)

(c) (d)

Figure 4.17: Vorticity (left) and pressure contours (right) during a heaving cycle
(a)-(b) mid-downstroke, (c)-(d) mid-upstroke at Re = 4500, f = 0.3184 and
a = 0.1047.
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(a) t=0.6, t/T*=0.19, I (b) t=1.8, t/T*=0.57, II

(c) t=2.4, t/T*=0.76, III (d) t=3, t/T*=0.95, IV

(e) t=3.6, t/T*=1.15, V (f) t=6, , t/T*=1.91, VI

Figure 4.18: Vorticity contours at successive times for the heaving airfoil at α =
12◦, Re = 8000, f = 0.3184 and a = 0.1047. The roman numbers indicate the
horizontal position of the airfoil as on Figure 4.14.
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Figure 4.19: Time series of the drag and lift coefficients for the heaving airfoil at
α = 12◦ for Re = 4500 and Re = 8000 both forced to oscillate at a frequency
and amplitude of oscillations of f = 0.3184 and a = 0.1047; respectively.

4.4.2 Heaving airfoil at α = 20◦

The mean incidence of the heaving airfoil is increased to α = 20◦. Even for the
relatively low Reynolds number considered different flow and wake structures are
observed. These wake structures were not observed in the previous simulations.

The simulation is first conducted for a motionless airfoil atRe = 800, and after
reaching the steady state the airfoil is forced to oscillate in heave at a frequency
and amplitude of f = 0.25 and a = 0.7958 respectively. Figure 4.21 illustrates the
vorticity contours at successive times covering one cycle of the airfoil oscillation.
Also indicated on the Figures is the ratio t/T ∗, where T ∗ = 3.14 is the period of
the forced oscillations. The vorticity contours are illustrated for one oscillation
cycle and the vertical position of the airfoil during the oscillation cycle is indicated
on Figure 4.20. In Figure 4.21a the flow is separated at the upper-surface. A
leading-edge vortex is formed at t = 116.5 and it detaches partially under the
action of the counter-rotating separation zone that develops underneath it (see
Figure 4.21b). Note that unlike the previous simulations, the action region of the
counter-rotating separation zone is shifted in the upstream direction. At the same
time counter clockwise vorticity continues to be shed from the trailing-edge (see
Figure 4.21b) and it has an elongated shape under the downward motion of the
airfoil. As the simulation advances, the leading-edge vortex reaches an important
size (almost 80% of the chord length) and is shed directly at the leading-edge,
while negative vorticity continues to be shed at the trailing-edge (Figure 4.21c).
Note again that the anti-clockwise vortex is convected upstream as a result of
the airfoil motion, and of the suction effect of the clockwise vortex. In Figure
4.21d the clockwise rotating vortex is convected towards the trailing-edge and
interacts with the anti-clockwise vorticity. The fact that the leading-edge vortex
returns on the airfoil upper-surface (after being shed at t = 116.5) is due to the
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Figure 4.20: Schematic representation of the vertical positions occupied by the
airfoil during the oscillation cycle at f = 0.25 and a = 0.7958. Position I: t = 0.6,
position II: t = 1.8, position III: t = 2.4, position IV: t = 3, position V: t = 3.6
and position VI: t = 6.

airfoil motion, as the airfoil is moving upwards at this time. The clockwise and
and anti-clockwise vortices are both shed in the near wake (Figure 4.21e-4.21f)
in a jet-like flow. The scenario described is repeated periodically. The high mean
incidence coupled to the airfoil motion at a high frequency and amplitude triggers
much stronger interactions between the vortices and generates a new wake type,
which is different from the one for the low mean incidence combined with a fixed
airfoil. To isolate the effect of the mean incidence a simulation was carried for a
lower heaving amplitude and frequency at α = 20◦, f = 0.0796, h = 0.1047 and
Re = 1200. The results of this simulation (not presented here for brevity) indicate
that the detachment of the leading-edge vortex at an advanced position on the
airfoil surface is due to the increase in the mean incidence. The same applies to
the increase in the circulation of the trailing-edge and its detachment at the rear
of the airfoil. These two phenomena were not observed for simulations performed
at α = 12◦, f = 0.3184, h = 0.1047 (not presented here for brevity). The high
heaving amplitude of the simulation presented in Figure 4.21 may trigger high
circulation vortices, the detachment of vorticity from both surfaces of the airfoil
and the arm-like vorticity shedding.

The periodical behavior is confirmed when plotting the forces coefficients time
series (Figure 4.22). The values of the drag and lift are very high compared to the
previous simulations. This may be due to the high frequency and amplitude of
oscillations and to the high mean incidence considered. The mean value of the lift
and drag coefficients are 3.19 and 0.91 respectively. Compared to a motionless
case, the lift coefficient increased by a factor of 3.5 and the drag by a factor
of 2. This dramatic increase in the values of the aerodynamical coefficients is
representative of the increase in the loads that the airfoil is subjected to when it is
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(a) t=116.2, , t/T*=29.05, I (b) t=116.5, t/T*=29.12, II

(c) t=118, t/T*=29.5, III (d) t=118.6, t/T*=29.65, IV

(e) t=119.5, t/T*=29.87, V (f) t=120.1, t/T*=30.02, VI

Figure 4.21: Vorticity contours at selected times for the heaving airfoil at α = 20◦,
Re = 800, f = 0.25 and a = 0.7958. The roman numbers indicates the horizontal
position of the airfoil as on Figure 4.20.
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Figure 4.22: Time series of the drag and lift coefficients for the motionless airfoil
at Re = 800 and the heaving airfoil at α = 20◦, Re = 800, f = 0.25 and
a = 0.7958. For the heaving simulation, the mean values are 3.19 and 0.91 for
the lift and drag coefficients; respectively.

forced to oscillate at high incidences. It is also an indication of the much stronger
interactions taking place in the boundary-layer. The periods of oscillation of
the lift and drag coefficients are approximately equal to the imposed oscillation
period.

4.5 Conclusion

The flow field around a NACA0012 airfoil forced to oscillate in heave has been
simulated for a combination of mean incidences and Reynolds numbers.

The Spectral/hp Element Method was used to simulate steady and unsteady
flows over fixed airfoils and the results were validated against published studies.
The method was also used for the first time in combination with the moving frame
of reference technique to simulate an oscillating airfoil in heave and describe the
boundary-layer temporal development, for different values of the mean incidence,
the Reynolds number and the amplitude and frequency of oscillations.

For the fixed airfoil it was observed that increasing the Reynolds number
slightly increases the mean value of the aerodynamic coefficients. The flow devel-
opment is faster due to its acceleration but in general it has the same phenomeno-
logical development as that at a lower Reynolds number. The mean incidence
is found to have more effects on the flow development. The flow is delayed in
response to the increase in the mean incidence and the force coefficients increase,
like it was previously reported in the literature.

For the oscillating airfoil at a reduced frequency less than 1 the fixed airfoil
and the heaving airfoil exhibit similar flow fields, thus confirming previous ex-
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perimental and computational findings. Nevertheless, the mean values of the lift
and drag coefficients increase.

Increasing the Reynolds number while keeping the same frequency and am-
plitude of oscillations has no major effects neither on the flow structure nor on
the aerodynamical loads. However, increasing the mean incidence has a dramatic
influence on the flow field and the wake which is characterized by vortices of
greater size and strength. The values of the lift and drag increase dramatically
even if the Reynolds number considered is low.

Setting the airfoil in motion has the same effect as for increasing the mean
incidence for motionless airfoils.
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Chapter 5

Plunging Airfoil Wakes
classification Using Spectral/hp
Element Method 1

In this contribution the two dimensional unsteady flow over a
plunging NACA0012 airfoil is simulated using a high-order numeri-
cal method associated with a moving frame of reference technique,
in order to obtain more accurate and high resolution data. This
data can be used to characterize oscillating airfoil wakes with very
fine temporal and spatial detail. The mean incidence investigated
is α = 0◦ and Reynolds number Re = 104. The transition from a
drag-producing wake, to a neutral, and a thrust-producing wake is
observed and analyzed. The results obtained are in accordance with
previously published experimental and computational investigations.
Furthermore, a more detailed wake classification is presented, where
two more wake configurations are captured. The role of the trailing-
edge, and the interaction of the natural shedding frequency of the
airfoil and the imposed forcing frequency in the creation of multiple-
vortices-per-half-cycle shedding mode is investigated. These results
clarify the role of the interaction of the natural shedding frequency
of the airfoil and the shedding frequency of the imposed motion into
the appearance of the multiple-vortices-per-half-cycle mode. The re-
lation between the interaction of the two aforementioned frequencies
and the observed shedding modes is established.

1Submitted to publication as W. Medjroubi, B. Stoevesandt and J. Peinke: Plunging
Airfoil Wakes classification Using Spectral/hp Element Method in Journal of Computational
and Applied Mathematics
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5.1 Introduction

Thrust generation by plunging airfoils is highly dependent on the qualitative
wake structure behind the trailing-edge of the airfoil [12]. It has been proven
theoretically [1, 4, 10] and experimentally [9] [11] that plunging airfoils produce
thrust at certain values of frequency and amplitude of oscillations. The wake
structure depends on the Reynolds number, the reduced frequency, the mean
angle of attack and the amplitude of oscillations. At low reduced frequencies the
wake is a Karman vortex street with one pair of opposite vortices shed during
each oscillation cycle. This wake is a drag-producing wake. At high reduced
frequencies the wake becomes an opposite or reversed Karman vortex street, with
one pair of opposite vortices shed per oscillation cycle. The sense of rotation of
the vortices is inverted compared to the Karman street. This latter configuration
produces thrust. During the transition from drag to thrust-producing wakes, a
neutral mode appears where the produced thrust equals the inherent drag, thus
the name neutral. This mode is in some cases accompanied by the shedding
of more than one vortex pair per oscillation cycle and is thus referred to as the
multiple-vortex-per-half-cycle mode. This wake is not well understood and Young
in [18] attributes its origin to the interaction between the natural shedding of the
airfoil and the imposed plunging frequency.

The transition from a drag-producing to a thrust-producing wake can be
achieved by varying either the frequency or the amplitude of the imposed os-
cillations. The approximate boundaries defining the different wake types, which
were determined experimentally [17], do not coincide with either the lines of
constant thrust coefficient (as predicted by the Garrick model in [4]), nor with
lines of constant kh or the Strouhal number (as in [5]). This observation is more
pronounced at low values of h.

In this contribution plunging airfoils are investigated for different applications
such as Micro-Air Vehicles (MAVs), bird and fish-like propulsion, airfoils in flutter
or gusts and turbomachinery. The two dimensional unsteady flow over a plunging
NACA0012 airfoil is simulated using a high-order numerical method associated
with a moving frame of reference technique introduced in Section 5.2. The region
of low amplitude of oscillations, where the borders between the different wake
types are not well defined experimentaly and computationally, is explored in order
to obtain a more accurate wake classification. In Section 5.3 the transition from a
drag to a thrust producing wake is observed when increasing the plunge frequency
(at constant amplitude) and when increasing the amplitude of oscillations (at
constant frequency). Furthermore, the different simulated wakes are classified and
the formation and the origin of the multiple-vortex-per-cycle mode is presented
and analyzed. The role of the trailing-edge and the natural and forcing frequency
interactions are also investigated.
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5.2 Numerical Method

The Navier-Stokes equations for an incompressible, unsteady and viscous flow
are written as:

∂u

∂t
+ (u · ∇)u = −∇p+

▽2u

Re
, (5.1)

where u is the velocity vector that satisfies the incompressibility condition (∇·u =
0) where p is the pressure, Re = U0c/ν is the Reynolds number based on the airfoil
chord length c, ν is the kinematic viscosity and U0 is the free-stream velocity.

In the Spectral /hp Element Method the physical domain is divided into tri-
angular and/or quadrilateral subdomains. Within each subdomain a spectral
expansion in the form of Jacobi polynomials of mixed weight and order n is used
to represent the solution variable. The temporal discretization of the Navier-
Stokes equations is achieved via a time-splitting scheme [8], where three steps
are required to determine the fields for the next time step using the velocity at
the previous time step. This is achieved by forcing the incompressibility con-
straint over an intermediate velocity field and a Poisson equation is solved for
the pressure. The final velocity field is obtained by solving a Helmholtz equation.
Equation (5.1) is discretized in 2D with the linear term treated implicitly and
the nonlinear term treated explicitly. For further details about the the derivation
of the method see [6].

To implement the airfoil motion, the Navier-Stokes equations and the bound-
ary conditions are re-written in a moving frame of reference. The resulting sys-
tem is then solved [13]. For the present simulations we have considered the
body as being rigid (non-deformable) and forced to oscillate in plunge, with
y(t) = h cos(2πft), where y(t) is the time dependent vertical motion, f ∗ = fc/U0

and h∗ = h/c are the dimensionless frequency and amplitude of oscillations, re-
spectively. Commonly, the reduced frequency defined as k = 2πfc/2U∞ is used
to characterize the flow. The geometrical angle of attack is set in this investiga-
tion to α = 0◦. The thrust coefficient is defined as CT = −1/T

∫ T
0 CD(t)dt, where

T = 1/f is the oscillation period and CD is the drag coefficient. For simplifi-
cation, during the reminder of this investigation the non-dimensional frequency
and amplitude of oscillation will be noted as f and h; respectively.

In this paper a general purpose Navier-Stokes solver is used where the afore-
mentioned numerical method is implemented. The solver called Nǫκταr [16] was
validated for many flow geometries, among those cylindrical [2], helical [3] and
rectangular [13]. We have also validated the solver for the airfoil geometry for
steady and unsteady flows [14] and found a very good agreement with previously
published numerical results [15]. All the simulations of oscillating airfoils were
started from fully converged motionless airfoil solutions.
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5.3 Results

The results presented here were obtained using a 2D unstructured grid composed
of 4220 elements [14]. The polynomial order n has been varied from 9 to 15. The
boundary conditions at the domain surfaces are inflow conditions at the entry
and outflow conditions at the exit. Periodic boundary conditions were used for
the upper and lower part of the domain. At the airfoil surface no-slip conditions
are considered.

5.3.1 Constant amplitude transition

In this section the amplitude of oscillations is kept constant at h = 0.02 and
the frequency is increased in order to exhibit a drag- to thrust-producing wake.
For a motionless airfoil at α = 0◦ and Re = 104, the wake exhibits a typical
drag-production configuration (see Fig. 5.1a). The vortex wake in this case is a
Karman street, which consists of alternating rows of clockwise vortices (at the
top of the centerline) and anticlockwise vortices (at the bottom of the centerline).
This configuration results from the shedding of one pair of counter-rotating vor-
tices during each oscillation cycle (one vortex is shed in each half oscillation cycle).
Note here that the cores of the vortices are not aligned with the centerline, but
that the wake vortices present a mushroom-like structure tilted upstream. This is
the signature of a drag-producing wake [12, 18], and it is confirmed by the time-
averaged velocity profile, which is clearly a momentum deficit one (Fig. 5.2a).
This means that the mean velocity in the wake is lower than the free-stream
velocity.

The airfoil is then forced to oscillate in heave at a frequency k = 4.52 and
amplitude h = 0.02. Fig. 5.1b shows the vorticity countours, where the two rows
of vortices are now separated vertically. The time-averaged horizontal velocity
profile (Fig. 5.2b) exhibits what is labelled as a neutral wake [18], and the
velocity presents both a deficit and a jet around the free-stream velocity. This
means that the mean velocity in the wake is almost equal to the free-stream
velocity. The total momentum is close to zero, as the inherent drag is balanced
by the produced thrust. In the present case the total momentum is slightly less
than zero, which can explain the slightly upstream tilted vortices near the trailing-
edge. The presence of a double peak on each side of the horizontal velocity profile
is due to the presence of the two vortex rows, which are now clearly separated
horizontally. It is important to note that in this case two pairs of vortices are shed
per oscillation cycle in oposition to the motionless case where only one pair of
vortices is shed per cycle. Thus this mode is labelled multiple-vortices-per-half-
cycle mode. In the vicinity of the trailing-edge the vortex structure appears to
be tilted upstream as in a drag-producing wake, however this is adjusted further
downstream. Such a behaviour was also reported in [18].

The plunging frequency is further increased to k = 7.85, which results in
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(a) (b)

(c)

Figure 5.1: (a) Vorticity contours for a motionless airfoil representing a drag-
producing wake at Re = 104 and α = 0◦. (b) Vorticity contours for a plunging
airfoil at k = 4.52, h = 0.02, Re = 104 and α = 0◦; representing a neutral wake.
(c)Vorticity contours for a plunging airfoil at k = 7.85, h = 0.02, Re = 104 and
α = 0◦; representing a thrust-producing wake.

another wake transition. The wake obtained is labelled the reverse or inverted
Karman street, and consists of alternating rows of anticlockwise vortices (on the
top of the centerline) and clockwise vortices (on the bottom of the centerline).
Again only one pair of counter-rotating vortices is shed per oscillation cycle. This
transition is from a neutral to a thrust-producing wake. The thrust-producing
wake is characterized by mushroom-like vortex structures tilted downstream (see
Fig. 5.1c). The time-averaged horizontal velocity profile is a jet-like (or mo-
mentum surfeit) profile indicating a net thrust production (see Fig. 5.2c). This
means that the mean velocity in the wake is higher than the free-stream velocity.

When plotting close-ups of the trailing-edge region in the vorticity countour
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(a) (b)

(c)

Figure 5.2: Time averaged horizontal velocity profiles at α = 0◦ and Re = 104 for
(a) a motionless airfoil (drag-producing wake), (b) a plunging airfoil at k = 4.52,
h = 0.02 (neutral wake) and (c) for a plunging airfoil at k = 7.85, h = 0.02
(thrust-producing wake).

distributions for the previous simulations (not presented here for brevity) the
transition cited above can be followed with very good detail. The main observa-
tion for the simulations at constant amplitude h = 0.02 and 4.52 ≤ k ≤ 7.85 is
that the transition from a neutral to a thrust producing wake has two distinct
phases, namely the rolling-up of the vorticity and its shedding at each side of
the trailing-edge tip. The vorticity is shed when the airfoil is at its upper- and
lowermost vertical position. The rolling-up of the vorticity at the traling-edge
occurs when the airfoil is at the vertical position y = 0.

Note that different vortex configurations, corresponding to different combi-
nations of the frequency and amplitude of oscillations, can give rise to different
neutral wakes [12, 18]. The latter can exhibit one vortex pair shedding per cycle
or a multiple-vortices-per-half-cycle shedding [18].
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5.3.2 Constant frequency transition

In this Section the frequency of oscillation is kept constant at k = 3.92 and the
amplitude is increased in order to obtain a transition from a drag- to a thrust-
producing wake. Fig. 5.3a shows the vorticity contours of the flow at h = 0.001.
Although the mushroom-like vortices are tilted upstream, the pairs of vortices are
not equidistant and of the same size as observed for the drag-producing wake for
the motionless airfoil (see Fig. 5.1a). The drag-nature of the wake is confirmed
by the time-average velocity profile, which is a deficit one (Fig. 5.4a). This
configuration was observed in [18] too and will be discussed in this investigation.

(a) (b)

(c) (d)

Figure 5.3: Vorticity contours snapshots at Re = 104, α = 0◦, k = 3.92. The
amplitude of oscillation is (a) h = 0.001, (b) h = 0.02, (c) h = 0.035 and (d)
h = 0.05.

Increasing the amplitude to h = 0.02 results in a wake transition (see Fig.
5.3b) as more than a vortex pair is shed per oscillation period. The vortices
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are slightly tilted downstream, which is confirmed by the non-alignement of the
vortices cores on the centerline. The time-averaged velocity profile shows that
a transition occured as the profile at the center of the wake points upward al-
though the mean value of the drag coefficients is still negative (indicating drag
production, see Fig. 5.4b). On the border of the bell shaped velocity profile
the deficit in the mean velocity increased, which can be explained by the fact
that the rows of vortices in the wake are more horizontally separated. This also
explains that although the profile is pointing upwards there is an overall drag
production. At h = 0.035, the multiple-vortices-per-half-cycle shedding persists,
although the wake nature changed from drag to a neutral wake, as confirmed
by the time averaged horizontal profile (see Fig. 5.3c). This is also reflected in
the alignement of the vortices cores on the centerline and the vortices becom-
ing untilted (the average horizontal velocity profiles which are symmetric around
y = 0). A thrust-producing wake is obtained at h = 0.05 (see Fig. 5.3d), with
the vortices now tilted downstrean and the cores are again non-aligned on the
centerline. This is again confirmed by the average velocity profile on Fig. 5.4d.
Fig. 5.4 summarizes the drag to thrust transition when increasing the amplitude
of the forced oscillations. This transition was observed experimentally in [12] at
k = 7.85, Re = 2 × 104 and 0.0125 ≤ h ≤ 0.075, and computationally in [18].
The variation of the thrust coefficient for the constant frequency transition (not
shown here for brevity reason) indicates an increase in the thrust coefficient value
as the amplitude of oscillations is increased.

When plotting close-ups of the trailing-edge region in the vorticity countour
distributions at k = 3.92 and 0.001 ≤ h ≤ 0.05 (not presented here for brevity),
and as for the constant amplitude drag/thrust transition, the transition has two
distinct phases. These phases are the rolling-up of the vorticity and its shedding
at each side of the trailin-edge region as well. The vertical position corresponding
to the rolling-up and the shedding of the vorticity is switched along the transi-
tion process. This can be attributed to the variation in the amplitude of the
oscillations.

5.3.3 Wake structures classification

The approximate boundaries defining different wakes types, determined experi-
mentally, do not coincide with either the lines of constant thrust coefficient (as
predicted by the Garrick model in [4]), or lines of constant kh (as concluded
in [5]). This behaviour is more pronounced at low values of h which motivated
the simulation of this configuration in the present investigation. Young in [18]
classified plunging airfoils wake types based on several computational and ex-
perimental investigations (see Fig. 5.19 from [18]). Fig. 5.5 shows the wake
classification for the simulations conducted in the present investigation. In Fig.
5.5 the three wakes, namely the drag-, thrust-producing and neutral wakes are
simulated. As discussed above, the neutral wake zone is a transition between the
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(a) (b)

(c) (d)

Figure 5.4: Time averaged horizontal velocity profiles at α = 0◦, Re = 104

and k = 3.92. The amplitudes of oscillations simulated are (a) h = 0.001, (b)
h = 0.02, (c) h = 0.035 and (d) h = 0.05.

drag- and thrust-producing wakes.

Comparing the results obtained by the present investigation to the ones ob-
tained in [18] new features are present. The wakes described in [18] are well
captured in the present investigations. Interestingly, two wake modes appear,
which where not reported by [18] in his schematic wake classification. The first
mode consists of multiple-vortices-per-cycle shedding with a thrust-producing
wake. This mode is represented by the black circles on Fig. 5.5 for the com-
binations k = 1.96 (h = 0.1) and k = 1.96 (h = 0.08). The vorticity contours
distribution for these two combinations are shown on Fig. 5.6. The second mode
consists of a single pair of vortices per cycle shedding with a neutral wake. This
mode appears as the open circles on Fig. 5.5 for the combinations k = 4.14
(h = 0.025) and k = 5.18 (h = 0.02). The vorticity contours distribution for
these two combinations are shown on Fig. 5.7.

The use of the Spectral /hp Element Method (SEM) permits a better spatial
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Figure 5.5: Wakes classification as function of the amplitude and frequency of the
forced oscillations. The triangles are for drag-producing wakes with one vortex
pair shedding per oscillation cycle. The stars represent thrust-producing wakes
with one pair of vortices shed per oscillation cycle. The squares are for neutral
wakes with multiple-vortices-per-cycle shedding. The open circles represent neu-
tral wakes with one pair of vortices shed per oscillation cycle and the black circles
are for thrust-producing wakes with multiple-vortices-per-cycle shedding.

(a) (b)

Figure 5.6: Vorticity contours snapshots at Re = 104 and α = 0◦. (a) k = 1.96
and h = 0.1, (b) k = 1.96 and h = 0.08.
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(a) (b)

Figure 5.7: Vorticity contours snapshots at Re = 104 and α = 0◦. (a) k = 4.14
and h = 0.025, (b) k = 5.18 and h = 0.02.

and temporal resolution and therefore made the appearance of the aforementioned
modes possible. This contributes to a more accurate wake visualization and
classification, in the sens that SEM captures more flow and transition details. As
it can be seen in Fig. 5.5, SEM allows the distinction between the airfoil wakes
even at the border of the different mode regions.

As mentioned above, neither the value kh (also reffered to as the plunge ve-
locity) nor the thrust coefficient are sufficient to characterize the different plung-
ing airfoil wakes. In the following, two different wakes are simulated at the
same kh value and the thrust coefficient is calculated. In Fig. 5.8 two wakes at
kh = 0.08 are simulated using two different combination of the amplitude and
the frequency of oscillations. In Fig. 5.8a the wake is a drag producing-wake
(CT = −2.61 × 10−2) and more than a vortex pair is shed per oscillation cycle.
In Fig. 5.8a the wake is a complex wake where 3 pairs of counter-rotating vor-
tices and a positive vortex are shed per oscillation cycle. This complex shedding
behaviour will be discussed in Section 5.3.4. Nevertheless, this wake is also a
drag-producing wake (CT = −2.36 × 10−2), but it has a fundamentally different
structure as the one in Figure 5.8a. Note that these two simulations have approx-
imately the same thrust coefficient value, indicating that the thrust coefficient
can also be discarded as the only wake classification parameter. To further assess
this trend another simulation is performed at kh = 0.1 using again two different
combination of the amplitude and the frequency of oscillations. In this case the
wakes produced are not only different in their shape and the number of vortices
shed per cycle of oscillation but also in their nature as one is drag-producing
and the other is thrust-producing (see Fig. 5.9). In Fig. 5.9a the wake is drag-
producing (CT = −1.48 × 10−2) and is a multiple-vortex-per-half-cycle wake. On
the other hand, in Fig. (5.9b) only one pair of counter-rotating vortices is shed



136 5. Plunging Airfoil Wakes classification Using Spectral/ hp Element Method

per cycle and the wake produced thrust (CT = 6.44 × 10−2).

This confirms that neither kh or the thrust coefficient can be considered as the
only parameters characterizing the plunging airfoils wakes. Rather the amplitude
and the frequency (or reduced frequency) of oscillations have to be considered
as separate control parameters. This is a further indication of the complicated
nature of the unsteady flow produced by plunging (oscillating) airfoils.

(a) (b)

Figure 5.8: Vorticity contours snapshots at Re = 104, α = 0◦ and kh = 0.08 .
(a) h = 0.02 and k = 3.92, (b) h = 0.04 and k = 1.96.

(a) (b)

Figure 5.9: Vorticity contours snapshots at Re = 104, α = 0◦ and kh = 0.1 . (a)
h = 0.05 and k = 1.96, (b) h = 0.05 and k = 4.14.
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5.3.4 The multiple-vortices-per-half cycle mode

Investigating the multiple-vortex-per-cycle mode, the leading-edge shedding can
be dismissed as the only reason for the appearance of this mode. Although the
leading-edge becomes more important at high amplitudes of oscillations and par-
ticipate to the creation of more than a vortex pair per oscillation cycle, multiple-
vortices-per-cycle mode exist even when there is no leading-edge shedding. It is
important to point out the presence of a second frequency associated with the nat-
ural shedding at the trailing-edge and a frequency associated with the shedding
resulting from the forced airfoil motion. These two frequencies are likely to inter-
act over the oscillation cycle. This interaction offers a more plausible explanation
for the origin of the multiple-vortex-per-cycle mode [18, 19]. In this investigation,
a relation between the interaction of the two aforementioned frequencies and the
observed shedding modes is established.

Fig. 5.10 is a close-up of the trailing-edge region for the case of the neutral
wake (at k = 3.92 and h = 0.02) with plotted streamlines, for one oscillation
cycle. In Fig. 5.10a there is a separation region on the upper side of the airfoil
trailig-edge. During a cycle of plunging motion (see Fig. 5.3.4) the separation
region develops on both sides of the airfoil and its shape and size changes. This
separation region induces an effective blunt-edge-like body configuration and will
have a natural shedding associated with it.

It has been established for the forced wakes of cylinders, that the wake can
be in three possible states. These states are dominated either by the natural
frequency shedding, or by the forcing frequency shedding (this mode is called the
lock-in mode) or by a harmonic shedding (which is the interaction region of the
natural and the forced shedding frequency) [7]. This is well captured on a plot
representing the forcing frequency over the natural frequency as a function of
the oscillations amplitude. This plot is called the lock-in boundary graph and is
shown in [7] (Fig. 24). A similar conclusion can be made for the forced wakes of
airfoils, although the presence of the sharp trailing-edge makes that the shape of
the lock-in boundary is different from the one for a cylinder. The main difference
is that the lock-in boundary is not symmetric and that the harmonic boundary
meets the lock-in boundary at k/knat = 0.5 (where knat is the natural shedding
frequency). This is due to the fact that any harmonic (multiple) of the forcing
frequency will be greater than the natural shedding frequency.

Indeed we observed, when examining a number of simulations, that at certain
regimes there is an interaction between the natural and the forcing frequency
resulting in a harmonic response, where the dominant frequency in the wake is
the combination of these two frequencies. This state results in the shedding of
more than one pair of counter-rotating vortices. In other regimes, where either
the natural or the forcing frequency is the dominant response frequency, only one
pair of vortices is shed. At high values of k and h multiple vortices pairs can be
shed in one cycle, indicating the presence of a threshold value for h and k, at
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which value the leading-edge shedding becomes important and participates in the
shedding of more than a pair of vortices per oscillation cycle. This phenomenon
of frequency interactions may also be the origin of the different wake behaviour
observed for flows with the same kh obtained with different combinations of k
and h.

These findings are of great importance when considering flow control issues.
The identification of the flow states is closely related to flow control as the forc-
ing imposed on the airfoil can be considered as an active control system and its
performance can be determined from the state of the airfoil wake [7]. This deter-
mination can provide valuable information as to which control strategy is better
to achieve the purpose seeked from using the control device.

(a) (b)

(c) (d)

Figure 5.10: Close-up of the vorticity contours at the trailing-edge region with
streamlines at α = 0◦, Re = 104, k = 4.52 and h = 0.02. The four close-ups
correspond to one cycle of oscillation: (a) lowermost y position, (b)y = 0 , (c)
uppermost y position, and (d)y = 0 , thus covering one cycle of oscillation.
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5.4 Conclusion

We successfully simulated the two dimensional unsteady flow on both a motionless
and a heaving airfoil using a high order CFD method. The high spatial and
temporal resolution achieved by the Spectral Element Method permits a detailed
analysis of the flow over the airfoil and the near wake. This enables the description
of the shedding process through which the wake undergoes a transition from a
Karman street to a reversed Karman street. We could successfully simulate drag,
neutral and thrust wakes and the transition between these wakes. We were able to
reproduce previous results obtained in the literature. New and interesting results
are presented concerning the interaction of the natural shedding frequency of
the airfoil and the imposed forcing frequency and their role in the formation
of more than a vortex per oscillation cycle. These results confirm for the first
time for the airfoil geometry that it is in the harmonic regime (resulting from
the interaction of the natural shedding frequency of the airfoil and the shedding
frequency of the imposed motion) that the multiple-vortices-per-half-cycle mode
appears. Moreover, more shedding modes are captured, which assess the ability
of the computational method to produce more accurate wake classification and
wake transitions. Two more modes are observed here and added to the wake
classification are a multiple-vortex-per-half-cycle in a thrust producing wake and
one pair of vortex shedding in a neutral wake.
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Chapter 6

Frequency Selection in Plunging
Airfoil Wakes Using a
High-Order Method 1

In this contribution the two dimensional unsteady flow over a
plunging NACA0012 airfoil is simulated using a high-order numer-
ical method associated with a moving frame of reference technique.
The goal of using a high-order numerical method is to characterize
heaving airfoil wakes with very fine temporal and spatial resolution.
This characterization is essential in understanding the transition pro-
cess which oscillating airfoils undergo, and can enable more control
on the transition. The response of motionless and periodically forced
airfoils is considered separately. The flow is investigated at a mean
incidence α = 0◦, Reynolds number Re = 104, and over a range of
heaving frequencies and amplitudes. The airfoil wakes are analyzed
with respect to their frequency response and to their type. It is shown
that for forced airfoils three regimes of frequency response exist: (a)
a natural regime where the response frequency is equal to the nat-
ural frequency, (b) a lock-in regime where the response frequency is
equal to the forcing frequency, and (c) a harmonic regime where the
response frequency is a mixture of the natural frequency and the forc-
ing frequency. The transition between these regimes is presented at
constant frequency and constant amplitude of the forcing oscillations.
The frequency regimes are then explored in detail and related to the
wake types and to the wake-types transition. The results obtained are
in accordance with previously published experimental and computa-
tional investigations. Furthermore, a more detailed wake classifica-

1Submitted to publication as W. Medjroubi, B. Stoevesandt and J. Peinke: Frequency
Selection in Plunging Airfoil Wakes Using a High-Order Method in Physics of Fluids.
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tion is presented, where two more wake configurations are captured.
The role of the trailing-edge and the interaction of the natural shed-
ding frequency of the airfoil with the imposed forcing frequency in
the creation of multiple-vortices-per-half-cycle shedding mode is in-
vestigated. These results show that the frequencies interaction can
be related to the appearance of the multiple-vortices-per-half-cycle
mode.

6.1 Introduction

Oscillating airfoils have received much attention and interest in the framework
of different contexts and applications. This attention is due to the unsteadiness
and the complex nature of these flows, rendering their numerical simulation a
challenging task. Unsteadiness and its consequences are fundamentally impor-
tant problems which concern a broad range of applications. These undesirable
consequences can range from flutter [37], vortex-induced-vibrations (VIV) [44],
and flow-induced-vibrations (FIV) [5, 31], which can be the cause of buffeting and
material fatigue [3, 45]. Other areas of interest for unsteadiness are turbomachin-
ery and, recently, the field of wind turbines design and manufacturing. On the
other hand, unsteadiness can be used in a beneficial way, as oscillating airfoils
can generate propulsion. This latter application motivated research on Micro Air
Vehicles (or MAVs) and Unmanned Arial Vehicles (UAVs) [29, 41]. MAVs have a
broad range of applications, ranging from military to civil applications, as moni-
toring, remote sensing, forestry and wildlife surveys. Some work is also dedicated
to the use of smart control systems, which use the unsteadiness in an efficient
way to actively or passively control airfoils to reduce vibrations [15, 27], acoustic
signature or achieve higher energy efficiency [32, 40]. Other beneficial aspects of
unsteadiness are stall delay to higher incidences, controlled vortex generation and
controlling the unsteady forces in some effective way as to permit improvements
of performance.

The most studied aspect of oscillating airfoils is the ability to generate thrust
and/or lift using such simple motions. And it is well established that flapping (or
oscillating) airfoils are more efficient than their fixed counterparts when the size
and thus the Reynolds number are decreased [16, 22]. The thrust production is
achieved at certain combinations of frequency and amplitude of oscillations. This
production results from the fact that flapping airfoils create an effective angle of
attack, so that an aerodynamic force is generated which decomposes into lift and
thrust forces during both the up and down strokes of the flapping motion. This
effect is called the Knoller-Betz effect. This effect was confirmed experimentally
by Katzmayr [21] and it motivated research in the areas of animal-like propulsion
and the development of insect-like and MAVs. Therefore, there is a need to
understand flapping wings/airfoils mechanisms which are used in nature and to
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adopt or change these mechanisms for the purpose of designing better and more
efficient MAVs. For this purpose, it is necessary to predict the flow over and in
the wake of these airoils as well as the forces and loads they experience.

Oscillating airfoils include: Heaving (or plunging), pitching and flapping air-
foils. Pure heaving airfoils have received less attention compared to pitching
airfoils. This is mainly due to the applications involving dynamic stall on heli-
copters, which are more concerned by the pitching motion. Nevertheless, heaving
airfoils exhibit a rich variety of wakes, which are classified into three types as
drag-producing, neutral and thrust-producing wakes [11, 23, 46]. This classifica-
tion depends on the frequency and amplitude of the heaving oscillations. At low
reduced frequencies the wake is a Karman vortex street with one pair of oppo-
site vortices shed during each oscillation cycle. The vortex pairs for mushroom-
like structures which are tilted upstream and the wake produces drag. At high
reduced frequencies the wake becomes an opposite or reversed Karman vortex
street, with one pair of opposite vortices shed per oscillation cycle tilted down-
stream. The sense of rotation of the vortices is inverted compared to the Karman
street and this configuration produces thrust. During the transition from drag
to thrust-producing wakes, a neutral mode appears where the produced thrust
equals the inherent drag (thus the name neutral wake). The vortex pairs are
untilted and in in some cases this mode is characterized by the shedding of more
than one vortex pair per oscillation cycle and is thus referred to as the multiple-
vortex-per-half-cycle mode. The details of the wake structure formation, and the
lift and drag production are not well understood, especially the multiple-vortex-
per-half-cycle mode [46, 47]. The multiple-vortex-per-half-cycle mode origin is
thought to be the result of the interaction between the natural shedding of the
airfoil and the imposed heaving frequency [26, 46].

Freymuth [11], showed experimentally that an airfoil subjected to oscillations
either in pitch or in heave can produce thrust. Koochesfahani [22], studied the
flow patterns of a pitching NACA0012 profile experimentally using water tunnel
measurements. The airfoil was pitching around its quarter chord at Reynolds
number Re = 12 × 103 and two different amplitudes (2◦ and 4◦). The results
also demonstrated that pitching airfoils can generate thrust and that the flow
dynamics are solely described by the Strouhal number St (St = fA U0, where f is
the forcing frequency, A is defined as twice the forcing amplitude h, and U0 is the
mean-stream velocity). These findings are confirmed by the experimental work of
Jones & Dohring [16]. The authors used Laser-Doppler Velocimetry (LDV) and
an unsteady potential-flow code. The experiments and the simulations covered
a wide range of heaving frequencies and amplitudes, 0 < k < 15, 0 < h < 0.8,
where k is the reduced frequency (k = 2πfc/U0). The authors found that a line
of constant heave velocity Vp = kh, which is equivalent to the strouhal number,
separates the different flow regimes where thrust or drag is produced. These
results confirmed the analytical results previously obtained by Triantafyllou & al.
[42]. Nevertheless, the experimental work in [4, 36] challenged the validity of the
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single-parameter characterisation of oscillating airfoils propulsive efficiency, wake
patterns, and thrust production. Young conducted several numerical studies over
a wide range of heaving amplitudes and frequencies at Re = 2 × 104 [35, 46–48]
and compiled the results of several experimental results [23] and found that the St
number can not be considered as the only parameter controlling the aerodynamics
of heaving airfoil flows. He found that the aerodynamics depends on both the St
number and the flapping frequency independently. In this paper we challenge the
assumption of a unique control-parameter characterizing the oscillating airfoils
thrust production. We also challenge the assumption that the Strouhal number
is sufficient in characterizing the oscillating airfoils wake types.

The forced wake of the airfoil can undergo three different regimes, depending
on the forcing frequency and the forcing amplitude and the relation between the
forcing frequency and the natural frequency of the airfoil. The natural frequency
(or Strouhal frequency) is defined as the frequency of shedding of vortices of the
unforced airfoil [19, 46]. The three regimes exhibited are called natural, harmonic,
and lock-in regimes. In the natural regime the vortex shedding frequency is
equal to the natural frequency. In the harmonic regime, the vortex shedding
frequency is a mixture or a combination of the natural and the forcing frequency.
Finally, in the lock-in regime, the vortex shedding frequency is locked to the
forcing frequency. These regimes have been extensively studied and observed for
oscillating cylinders [9, 19, 33, 34, 49] and less explored for oscillating airfoils
[46, 48]. The objective of this paper is to explore these flow regimes and to
determine the relation between the flow frequency regimes and the wake types.

Most of the numerical methods used to model the flow around and in the
wake of oscillating airfoils employ low-order spatial and temporal discretizations.
These methods are unable to capture the flow details unless a very large number of
grid points is used and therefore are computationally cost-ineffective, especially if
highly resolved data is to be extracted. This cost is further increased if adaptivity
is to be implemented. The use of high-order numerical methods offers on the other
hand the advantage of higher spatial and temporal discretization using less grid
points and the possibiliy of more advantageous adaptivity techniques [6, 18].

We use Spectral/hp Element Methods combined with a moving-frame of ref-
erence technique to investigate the problem of the flow around an oscillating
airfoil in an attempt to achieve a better accuracy than that obtained using lower-
order numerical methods. In this scope all the simulations presented in this work
are Direct Numerical Simulations (DNS), in order to capture all the flow details
and particularly the spatio-temporal flow evolution. Our choice of the numerical
method is also based on the possibility to obtain highly accurate temporal and
spatial data that can be used in applications such as turbulence characteriza-
tion and non-linear analysis of the airfoil response to forced oscillations. To the
authors knowledge, this is the first time where the frequency-regimes are investi-
gated for a heaving airoil using a high-order numerical approach, as most of the
studies for this type of motion were concerned with the wake configuration [46],
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[2], [10].
In this paper the incompressible, 2D and unsteady flow over a stationary and

a heaving NACA0012 airfoil is simulated. The Reynolds numbers considered are
moderate (Re = 104 − 3 × 104), which corresponds to MAVs applications. A
range of heaving amplitudes and frequencies of oscillation is simulated in order
to expose the frequency regimes introduced earlier and to achieve a transition
between these regimes. This transition is simualted by varying the amplitude
of oscillation (at constant frequency) and by varying the frequency of oscillation
(at constant amplitude). The dependency of the frequency regimes on the rela-
tion between the natural and forcing frequency is explored as the origin of the
multiple-vortex-per-half-cycle shedding mode. The Spectral /hp Element Method
and the moving-frame of reference technique are introduced in Section 6.2. The
charecterisation of the wake modes in function of the interaction of the natural
shedding frequency and the imposed heaving frequency interaction are presented
in Section 6.3. Finally, Section 6.4 contains a summary of the findings of this
paper.

6.2 The Numerical Method

The main idea behind using high-order numerical methods is to achieve high ac-
curacy, resolving all the flow length scales at a reduced cost and avoiding the extra
costs of remeshing or excessive grid resolution [30]. In this context, global spec-
tral methods have been extended to multi-domains (spectral elements) to provide
a better geometric flexibility. Spectral/hp Element Methods combine the charac-
teristics and the advantages of both finite elements and spectral methods. Unlike
pure spectral methods and finite elements methods, Spectral/hp Element Meth-
ods allow the use of two refinement techniques simultaneously: the h-refinement,
denoting the increase of the number of elements, and the p-refinement, denoting
the increase of the polynomial order of the approximation [18]. The p- refine-
ment is a powerful tool, as it offers the possibility of increasing the simulations
accuracy without any remeshing by increasing the order of the approximation in
all or parts of the computational domain, which can be considered as a way of
implementing adaptivity.

In the framework of the Spectral /hp Element Method the physical domain
and the governing equations have to be spatially and temporally discretized. The
method used in this paper was developed by Sherwin & Karniadakis [17, 18, 20]
and is shortly introduced in this Section.

The incompressible, unsteady and viscous flow over an airfoil is governed by
the Navier-Stokes equations, written as follows

∂u

∂t
+ (u · ∇)u = −∇p+

▽2u

Re
, (6.1)
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where u is the velocity vector that satisfies the incompressibility condition (∇·u =
0), p is the pressure, Re = U0c/ν is the Reynolds number based on the airfoil
chord length c, ν is the kinematic viscosity, and U0 is the free-stream velocity.

Spatial discretization

For 2D problems, the physical domain discretization is achieved through its di-
vision into triangular and/or quadrilateral subdomains. Within each subdomain
a spectral expansion in the form of a high-order polynomial is used to represent
the solution variable, as follows

u(x, y) =
N
∑

i

N1
∑

m

N2
∑

n

ui
m,num,n(r(x, y), s(x, y)), (6.2)

where um,n(r, s) is a polynomial expansion basis used to approximate u over i
triangular subdomains by a C0 continuous expansion (for rectangular subdomains
see [18]), ui

m,n are the expansion coefficients in the ith subdomain, (x, y) are
the cartesian spatial coordinates and (r, s) are the local coordinates within the
subdomains. N is the total number of subdomains, and N1, N2 are the number of
the quadrature points in the r and s directions, respectively. The space spanned
by the local coordinates system is defined as

L2 = {(r, s)| − 1 ≤ r, s; r + s ≤ 0} , (6.3)

and the orthogonal expansion bases used are Dubiner’s modified bases, defined
as

um,n = P 0,0
m

(

2
(1 + r)

(1 − s)
− 1

)

(1 − s)mP 2m+1,0
n (s), (6.4)

Pα,β
n (x) is the nth-order Jacobi polynomial in the [−1, 1] interval, which satisfies

the orthogonality relationship

∫ 1

−1
Pα,β

m (x)Pα,β
n (x)(1 − x)α(1 + x)βdx = δm

n , (6.5)

δm
n is the Kronecker-delta. The Jacobi polynomial is expressed as follows [1, 12]

Pα,β
n (x) =

(−1)n

2nn!
(1 − x)−α dn

dxn
[(1 − x)α+n(1 + x)β+n], α, β > −1. (6.6)

The bases are decomposed into boundary and interior modes (thus allowing
the construction of a global C0 expansion). Integration and differentiation are
performed at elemental level, and an elemental mapping which allows the gener-
alisation of the local operations in a standard region to elements of general shapes
is defined. To extend these techniques to a C0 multi-dimensional basis, global
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operations such as matrix numbering, connectivity and assembly are introduced
[17, 18].

Temporal discretization

The temporal discretization of the Navier-Stokes equations is achieved via a time-
splitting scheme [20], where three steps are required to determine the fields for
the next time step using the velocity at the previous time step. This is achieved
by writing the Navier-Stokes equation in the form:

∂u

∂t
= −∇p+ νL(u) + N(u), (6.7)

where L(u) ≡ ∇2u and N(u) ≡ −u.∇u are the linear and non-linear operators;
respectively. The temporal discretization is achieved via the propagation of un

and pn at a time step n, over a time step ∆t, to determine un+1 and pn+1 at the
next time step n+ 1. This is expressed as follows

ũ −
∑Ji−1

q=0 αqu
n−q

∆t
=

Je−1
∑

q=0

βqN(un−q), (6.8)

∇2pn+1 =
∇ · ũ

∆t
, (6.9)

γ0u
n+1 − ũ

∆t
+ ∇pn+1 =

1

Re
∇2un+1, (6.10)

where in the first step, the non-linear terms are advanced using a convective form
which is integrated in time via a multilevel explicit Adams-Bashforth scheme, rep-
resented by the coefficient βq. An implicit time scheme is used for the integration
of the linear terms. Je and Ji are the integration orders of the explicit and implicit
schemes; respectively. In the second step, the time-averaged pressure term pn+1 is
calculated using the divergence of Eq. (6.8). In the third step, the viscous term is
treated implicitly via an Euler backwards scheme, where γq are appropriately cho-
sen weights. The coefficients αq, βq, and ω0 take different values depending on the
integration order [7, 20]. This time integration numerical scheme requires both
velocity and pressure boundary conditions to be defined. High-order Neumann
boundary conditions are imposed for the pressure (to ensure that the splitting
error is consistent with the overall temporal discretization) as follows

∂pn+1

∂n
= n ·







Je−1
∑

q=0

βq

[

N(un−q) −
1

Re
(∇ × (∇ × un−q))

]







. (6.11)
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Airfoil motion

To implement the airfoil motion the Navier-Stokes equations and the boundary
conditions are written in a moving frame of reference. The method is briefly
described here. For further details of the solution procedure we refer the reader
to [24].

Let’s consider that the body is performing a translational motion d defined in
the fixed or absolute frame of reference (Xa, Ya) as d = (a(t), b(t))T . A moving
frame of reference (xm, ym) attached to the airfoil is defined as a function of the
absolute frame as:

Xa = a(t) + xmcosθ + ymsinθ, (6.12)

Ya = b(t) − xmsinθ + ymcosθ, (6.13)

where θ is the rotational angle in the moving frame of reference and a(t) and
b(t) represent the coordinates of the origin of the moving frame of reference in
the absolute frame of reference (see Fig. 6.1). In the case of a heaving (non-
rotating) airfoil θ and a(t) are constant. Using matrix notation one obtains the
transformation from the coordinates in the absolute frame of reference to the
moving frame of reference as:

Xa = d + Axm, (6.14)

and the inverse transformation as:

xm = AT(Xa − d), (6.15)

where d = (a(t), b(t))T and A is the matrix defined as :

(

cosθ sinθ
−sinθ cosθ

)

Using the definition of the coordinates (xm, ym) given by the equation (6.12),
the Navier-Stokes equations are re-written in the moving frame of reference as
follows:

∇ · u = 0, (6.16)

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2u + Q(t), (6.17)

Q(t) = −AT d̈, (6.18)

where the term AT d̈ is the result of the unsteady translational motion, in our
case a heaving motion. The boundary conditions are also transformed in the
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moving frame of reference, and expressions are derived for Neumann and Dirichlet
boundary conditions [24].

For the present simulations we have considered the body as being rigid (non-
deformable) and forced to oscillate in heave (plunge) motion, as illustrated in
Figure 6.1. The heave motion is defined as

d = y(t) = h cos(2πft), (6.19)

where y(t) is the time-dependent vertical motion, h∗ = h/c is the non-dimensional
heaving frequency, and f ∗ = fc/U0 is the non-dimensional heaving frequency (for
simplicity, the superscript ∗ will be droped in the reminder of this paper). The
airfoil is set at a constant initial angle of attack α = θ (or mean incidence) and
is forced to oscillate vertically in a sinusoidal fashion.

Figure 6.1: Schematic representation of the absolute and moving frame of ref-
erences. The subscript a refers to the absolute frame of reference and m to the
moving frame of reference. θ is the angle at which the airfoil is set, it can be
considered as the mean angle of attack α

Aerodynamic forces

The forces and moments are evaluated by calculating their viscous and pressure
contributions. The aerodynamic force applied by the flow on the body can be
expressed as the integration of local stresses as:

F =
∫

Ω
σnAdsA = −

∫

Ω
pnAdsA +

∫

Ω
τnAdsA = Fpress,A + Fvisc,A. (6.20)
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where σ = −pI + τ is the stress tensor, Ω is the airfoil surface, nA is the unit
normal on the airfoil, Fpress,A are the pressure forces and Fvisc,A are the viscous
forces. The subscript A indicates that the quantities are expressed in the absolute
frame of reference. The forces in Equation (6.20) are expressed in the moving
frame of reference as follows:

F = Fpress,A + Fvisc,A = A(Fpress,m + Fvisc,m), (6.21)

where A is the matrix introduced in Equation (6.15).
The geometrical angle of attack is set in this paper to α = 0◦. The viscous

and pressure contributions of the aerodynamical forces are calculated to obatain
the lift and drag forces and coefficients (CL and CD). Commonly, the reduced
frequency defined as k = πfc/U0 is used to characterize the flow. The Strouhal
number for the heaving osicllatory motion is defined as St = 2kh/π. For simpli-
fication, during the reminder of this paper the flow will be characterized by the
reduced frequency k instead of the frequency f .

The general purpose Navier-Stokes solver Nǫκταr is used, based on the Spec-
tral /hp Element Method. The solver was validated for many flow geometries,
among those cylindrical [8] and rectangular [24]. We have also validated the
solver for the airfoil geometry for steady and unsteady flows [26] and found a
very good agreement with previously published numerical results [13, 25, 39]. All
the simulations of oscillating airfoils were started from fully converged motionless
airfoil solutions.

6.3 Results

The results presented here were obtained using a 2D unstructured grid composed
of 4220 elements, illustrated on Fig. 6.2 (with details of the spatial resolution at
the leading- and trailing-edge regions on Fig. 6.3). The mesh is refined around
the airfoil surface and the near wake region, as they are regions of interest where
the most important fluid phenomena occur. The polynomial order n has been
varied from 9 to 15, and the time step ∆t is of the order of 10−4. The boundary
conditions are u = 1, v = 0 on the left, upper, and lower mesh boundaries (see
Fig. 6.2). On the right boundaries ∂u/∂x = 0,∂v/∂x = 0 and u = v = 0 are
employed, and u = v = 0 on the airfoil surfaces (or walls). The pressure boundary
conditions are high-order conditions on all boundaries (Eq. 6.11) except at the
outflow boundary, where p = 0 is considered.

In this Section the wake of a stationary airfoil is simulated. This flow is used
as a reference in analyzing the flow topology when considering heaving airfoils.
This flow also serves to otain the frequency at which the vortices are shed from
the motionless airfoil. Heaving airfoils are also simulated at different frequencies
and amplitude of oscillations. This is perfomed in order to exhibit the different
frequency regimes experienced by oscillating airfoils and the transition between
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Figure 6.2: The numerical grid used in this paper. The resolution is increased
around the airfoil surface (the boundary-layer region) and in the near wake. The
mesh is composed of triangular and quadrilateral elements.
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Figure 6.3: (a) Leading- and (b) trailing-edge meshing details. The coordinates
system has its origin at the leading-edge of the airfoil.

these regimes. These transitions are achieved at constant frequency (and varying
amplitude) and constant amplitude (and varying frequency) of oscillations. The
shedding frequencies of these regimes are extracted and compared to the shedding
frequency of motionless airfoils.
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6.3.1 Unforced airfoil wakes

The flow is simulated at α = 0◦ and at three Reynolds numbers Re = 104,
= 2 × 104 and 3 × 104. Fig. 6.4 illustrate the vorticity distribution for these
simulations. At the three simulated Reynolds numbers the flow exhibits a typical
Karman vortex-street configuration. The upper-row of vortices rotates clockwise
and the lower-row of vortices rotates anti-clockwise. The flow is attached over
all the surface of the airfoil and leaves the airfoil parallel to the trailing-edge
(see Fig. 6.5 for a close-up of the trailing-edge region for the simulations at
Re = 104 and Re = 3 × 104). The vortices are shed at a certain distance from
the trailing-edge due to the wake instability [38] and this distance decreases as
the Reynolds number is increased as does the rolling-up of the shed vortices. The
wakes observed for the simulated Reynolds numbers are drag-producing wakes
(confirmed by the values of the thrust coefficient), where the vortices are tilted
upstream. The thrust coefficient increases with increasing Reynolds number as
the drag decreases.

(a) (b)

Figure 6.4: Vorticity distribution at α = 0◦ (a) Re = 104 and (b) Re = 2 × 104.

The time trace of the horizontal velocity u is shown on Fig. 6.6a at Re = 104

and α = 0◦. Note that the temporal variation of u is periodic. A Fast Fourier
Transform (FFT) is performed on the u(t) in order to obtain its frequency content.
This technique is used to characterize the frequency content of the airfoil response
either for the motionless airfoil or for the oscillating (heaving) airfoil. Fig. 6.6b
illustrates the FFT of the time trace plotted in Fig. 6.6a. The peak frequency
k = knat = 7.85 is called the natural shedding frequency and it characterizes the
frequency response of the motionless airfoil to the incoming inflow at a certain
Reynolds number [14]. This is the frequency at which the vortices are shed into
the wake of the airfoil. The frequency response contains also some other weaker
peaks at the superharmonics of the natural shedding frquency. This behaviour is
typical for a motionless object response to an incoming inflow [5, 19, 28, 43].

The same behaviour is observed at Re = 2 × 104. u(t) varies periodically (see
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(a) (b)

Figure 6.5: Vorticity distribution close-up view of the trailing-edge region at
α = 0◦ (a) Re = 104 and (b) Re = 3 × 104. The horizontal distance at which
the shed flow begins to roll in the wake decreases when the Reynolds number
increases.

Fig. 6.6c) and the FFT exhibits a strong peak at the natural shedding frequency
and weaker peaks at its superharmonics (see Fig. 6.6d). The FFT of the time
signal of the horizontal velocity U at Re = 2 × 104 is k = knat = 10.15.

At Re = 3 × 104, u(t) is less periodic due to the acceleration of the flow
in response to the increase in the Reynolds number (see Fig. 6.6e). The peak
frequency at this Reynolds number is k = Knat = 12.91 (see Fig. 6.6f).

6.3.2 Forced airfoil wakes

The response of the airfoil wake to a harmonic forcing is presented in this Section.
The airfoil is forced to oscillate in heave at a prescribed frequency and amplitude
at Re = 104 and a mean angle of attack α = 0◦. The frequency of the imposed
motion is called the forcing frequency and is labelled kf . The frequency response
of the flow to the imposed heave oscillation is obtained by analyzing the fre-
quency content of the temporal signal of the horizontal velocity u(t) by means of
a Fast Fourier Transform (FFT). The dominant frequency in the response signal
is labelled kr and it charaterizes the response of the airfoil. The frequency and
amplitude values considered in this simulation are chosen to exhibit the heaving
airfoil wake in different response regimes. These regimes are defined as follows:
the natural regime, where the response frequency is equal to the natural shed-
ding frequency of the motionless airoil, also called the Strouhal frequency. The
lock-in regime corresponds to the response frequency being locked to the forcing
frequency. Finally, the harmonic regime corresponds to the response frequency
being a mixture of the natural and the forcing frequency.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: (a) Time trace of the horizontal velocity u for a motionless airfoil
at Re = 104. (b) The Fast Fourier Transform of u(t) for a motionless airfoil at
Re = 104. (c) Time trace of the horizontal velocity u for a motionless airfoil at
Re = 2 × 104. (d) The Fast Fourier Transform of u(t) for a motionless airfoil at
Re = 2 × 104. (e) Time trace of the horizontal velocity u for a motionless airfoil
at Re = 3 × 104. (f) The Fast Fourier Transform of u(t) for a motionless airfoil
at Re = 3 × 104. All the cases above are for α = 0◦ and u(t) is extracted at the
location (x = 1.62, y = 0.09).
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Constant frequency regime transition

In this section the forcing frequency is kept constant and the forcing amplitude
is varied. The amplitude is increased in order to identify the possible response
states (or modes) exhibited by the forced airfoil. Note that for each case the
unforced flow response is used as an initial flow and the computation is performed
until an assymptotic state is reached. The frequency content of the horizontal
velocity time signal at a location in the near wake (x = 1.63, y = 0.09) is then
determined by performing an FFT analysis. This location is chosen according to
the assumption that it is in the near wake that the forcing and natural frequency
are competing with each other. The result of this frequency competition or
interaction determines the final state of the wake [19].

The time trace of the horizontal velocity and the FFT analysis of the natural
regime (or mode) are shown in Fig. 6.7a and Fig. 6.7b. Note that u(t) is
quasi-periodic in time. This regime is obtained at k = 1.96 (corresponding to
k/knat = 1/4) and h = 0.001. The dominant peak occurs at the natural shedding
frequency knat = 7.85 and its first superharmonic. Another peak occurs at the
forcing frequency but it is weaker than the ones at knat and its superharmonic.
Some other weak peaks are present around the dominant peaks, this behaviour
was also observed for a cylinder in a non-lock-in state and reported in [19].

Increasing the amplitude to h = 0.04 and keeping the frequency of oscillation
constant results in a dramatic change in the frequency response of the flow. Fig.
6.7c shows the time-series of u (which are now periodic in time) and Fig. 6.7d
shows its FFT analysis. The peak frequency is kr = 5.93 and it can be written as
a linear combination of the natural shedding frequency and the forcing frequency
(kr = knat/2 + kf ). This indicates that we are in the harmonic regime where kn

and kf are interacting together. The result of this interaction is that the peak
frequency is some mixture of the natural shedding frequency and the imposed
forcing frequency. Other weaker peaks are present at some other combinations
of these two frequencies (knat + kf , 1/4knat + kf ). Compared to the frequency
response of the natural regime it is important to note that the kf peak becomes
more important and the peak corresponding to the natural shedding frequency
knat is less prominent. This indicates that the forcing frequency is gaining im-
portance at the expense of the natural shedding frequency. This is also visible
in the time trace of u, where two distinct frequencies can be identified. These
frequencies correspond to kr and knat.

A further increase in the amplitude of oscillation to h = 0.1 results in a lock-
in regime where the response frequency is locked to the forcing frequency. Fig.
6.7e (where u(t) is again quasi-periodic in time) illustrates the time trace of the
horizontal velocity u. Fig. 6.7f shows the FFT of the time trace of u where the
peak frequency now corresponds to the forcing frequency kf = kr = 1.96. There
are less important peaks at the superharmonics of the forcing frequency. This is
typical for a lock-in regime, as this regime is similar to the non-forced case in its
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: (a) Time trace of the horizontal velocity u and its (b) Fast Fourier
Transform h = 0.001, k = 1.96. (c) Time trace of u and its (d) Fast Fourier
Transform at h = 0.04, k = 1.96. (e) Time trace of u and its (f) Fast Fourier
Transform at h = 0.1, k = 1.96. All precedent simulations are at Re = 104,
α = 0◦, and u(t) is plotted at the location (x = 1.63, y = 0.09).
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frequency response (see Fig. 6.6b) [19].

The frequency regime transition described embodies another transition in the
wake type (or pattern). This transition is from a drag-producing wake to a
thrust-producing wake via a neutral wake at constant frequency. Fig. 6.8 shows
the vorticity distributions of the simulations described above. These wake types
are typical of heaving airfoils and the transition between them has been reported
in the literature [23, 26, 35, 46, 48]. On Fig. 6.8a the wake exhibits a Karman
vortex-street, where the upper-vortices are clockwise and the lower-vortices are
anti-clockwise. A pair of counter-rotating vortices is shed per oscillation cycle.
These vortices are mushroom-like structures which are tilted upstream and are
typical of a drag-producing wake. The wake type changes as the amplitude of
the heaving oscillation increases. The vortices are now untilted and more than a
pair of counter-rotating vortices is shed per oscillation cycle (see Fig. 6.8c). This
wake type is called a neutral wake (also labeled multiple-vortices-per-half-cycle
mode), as the inherent drag balances the produced thrust. This mode is not well
understood. The mechanism by which more than a vortex is shed per half-cycle is
not well known [46]. We propose here that this mode (or wake type) results from
the interaction between the shedding frequency and the imposed frequency, as
already explained earlier in this Section by means of FFT analysis. This result will
be further confirmed by the simulations of the frequency transition at constant
amplitude in the next Section. This explanation for the multiple-vortices-per-
half-cycle regime was also provided by Young [46]. The author briefly discussed
this mode and did not provide any frequency analysis. His conclusions were only
based on observing the time trace of u for one cycle of oscillations.

A further increase of the amplitude results in a transition to a thrust-
producing wake (see Fig. 6.8e). This wake type is characterized by mushroom-like
structures tilted downstream. Note here that more than one pair of counter-
rotating vortices is shed per oscillation-cycle. This thrust-producing wake is
different from the typical thrust-producing wake, as the latter looks like the drag-
producing wake in Fig. 6.8a (but with the vortices structures tilted downstream).
This new thrust-producing wake is due to the increase in the amplitude of the
heaving oscillation. The increase in the amplitude triggers the shedding of more
vortices per oscillation cycle [48]. This is mainly due to the fact that at higher
amplitudes the leading-edge also contributes to the vortices shed at the trailing-
edge. This is confirmed by the presence of vortices on the upper and lower airfoil
surface. Note that for the multiple-vortices-per-half-cycle for the neutral regime
(see Fig. 6.8c) there are no contributions from the leading-edge, although the
flow is slightly detached close to the trailing-edge region. The rolling-up and the
vorticity increase with the amplitude and the thrust coefficient also increases.
This increase is due to the increase in the heaving velocity.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Vorticity distribution at α = 0◦, Re = 104 for (a) a drag-producing
wake (k = 1.96, h = 0.001), (b) view of the near wake region. (c) A neutral wake
(k = 1.96, h = 0.04), (d) view of the near wake region. (e) A thrust-producing
wake (k = 1.96, h = 0.1), (f) view of the near wake region.

Constant amplitude regime transition

In this Section the forcing amplitude is kept constant at h = 0.05 and the forcing
frequency is increased to achieve a frequency regime transition. As for the case



6.3 Results 161

(a) (b)

(c) (d)

Figure 6.9: (a) Time trace of the horizontal velocity u and its (b) Fast Fourier
Transform at k = 1.96, h = 0.05. (c) Time trace of the horizontal velocity u and
its (d) Fast Fourier Transform at k = 3.92, h = 0.05. All precedent simulations
are at Re = 104, α = 0◦, and u(t) is plotted at the location (x = 1.63, y = 0.09).

of a constant-frequency-regime transition the unforced flow response is used as
an initial flow and the computation is performed until an asymptotic state is
reached. The frequency content of u(t) is analyzed at the same location as for
the constant frequency regime transition.

The time trace of u at h = 0.05 and k = 1.96 (see Fig. 6.9a) is periodic. The
peak frequency of the time trace of u corresponds to a mixture of the natural
shedding frequency and the forcing frequency (kr = 1/4Knat + kf=3.92). A
second frequency peak corresponds to another combination of these frequencies
(k = 1/2Knat + kf=5.88) (see Fig. 6.9). There are weaker peaks at the natural
shedding frequency and the forcing frequency and their sum (k = knat +kf=9.81).
This response is typical of a harmonic regime, as shown earlier in this paper for
the simulation at k = 1.96, h = 0.04. However, it is important to note that for
the present simulation (k = 1.96, h = 0.05) the peak at the natural frequency
knat = 7.85 is more important than the one at the forcing frequency kf = 1.96,
while this is inverted for the simulation at k = 1.96 and h = 0.05. This may
indicate that the response of the airfoil to the forcing motion depends on the
amplitude of the oscillations.

Increasing the frequency to kf = 3.92 results in a transition to a lock-in
regime (see Fig. 6.9d), where the dominant frequency peak is equal to the forcing
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frequency kr = 3.92. The time trace of the velocity is periodic (see Fig. 6.9c).

During the transition from the harmonic to the lock-in regime a wake tran-
sition occurs from a neutral to a thrust producing wake. The vorticity contours
of the neutral wake are shown in Fig. 6.10a, where the wake presents a multiple-
vortices-per-half-cycle regime. Again for a neutral multiple-vortices-per-half-cycle
regime there is no vortices contribution from the leading-edge and the flow is at-
tached over all the airfoil surface. Increasing the frequency of oscillations results
in a wake transition to a thrust-producing wake (see Fig. 6.10c), where one pair
of counter-rotating vortices is shed per oscillation cycle. The wake configura-
tion is typical of a thrust-producing wake [46, 47], and although there is a slight
contribution of leading-edge to the shed vortices this does not create a multiple-
vortices-per-half-cycle configuration. This phenomenon is discussed in the next
Section.

(a) (b)

(c) (d)

Figure 6.10: Vorticity contours at α = 0◦, Re = 104 for (a) a neutral wake
(k = 1.96, h = 0.05), (b) view of the near wake region. (c) A thrust-producing
wake (k = 3.92, h = 0.05), (d) view of the near wake region.
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6.3.3 Frequency regimes classifications - a frequency pat-
tern

Several simulations are conducted at different combinations of frequency and
amplitude of the forcing oscillations in order to obtain a phase diagram of the
frequency regimes. The simulations are conducted at low heaving amplitudes and
at moderate to high heaving frequencies. This region of the k/knat vs h plot is
associated with aeroelastic and aeroacoustic phenomena and is not well explored
in the literature. Moreover, the boundaries of the wake-types in this region are
not well defined [46]. This phase diagram is obtained by identifying the different
frequency regimes using the FFT analysis and expressing it in function of the
amplitude and frequency of oscillation, more precisely the oscillation frequency
normalized by the natural frequency of vortex shedding (k/knat).

On Fig. 6.11 a schematic representation is shown, based on the simulations
performed in this paper of the natural, harmonic, and lock-regimes as a function
of h and k/knat. At low forcing frequencies (h < 10−2) an increase in the frequency
at a constant amplitude triggers a transition from the natural regime to the lock-
in regime without going through a harmonic regime. This is also valid for a
transition varying the amplitude at a constant forcing frequency for k/knat > 0.5.
This is because above k/knat = 0.5, any harmonic of the forcing frequency will be
higher than the natural shedding frequency and the flow will lock to the forcing
frequency value. This is mainly due to the trailing-edge of the airfoil which
dictates the separation point for k/knat > 0.5 and enforces the dominance of the
forcing frequency (lock-in) even in the presence of leading-edge vortex shedding
(as in Fig. 6.10c). On Fig. 6.12 the vorticity contours at h = 0.05 and k = 3.92
(corresponding to k/knat = 0.5, represented on Fig. 6.11 with a star pointed
to by a red arrow) are shown for one forced-oscillation cycle for a simulation
belonging to the lock-in region. Note that the vortices are shed at the trailing-
edge when the airfoil is at its maximum (minimum) vertical position; respectively
(see Fig. 6.12). This confirms that in this case the trailing-edge motion imposes
the shedding process. And this even if vortices are shed from the both the upper
and lower airfoil surface.

On the other hand, Fig. 6.13 shows the vorticity countours at h = 0.1 and
k = 1.96 (k/knat = 0.25, represented by a square pointed to by a red arrow
on Fig. 6.11). These values of k and h correspond to a wake in the harmonic
regime region. The shedding of vortices occurs not only when the airfoil is at
its maximum (minimum) vertical position but also when the airfoil is at y = 0.
This explains how more than one vortex-pair is shed per oscillation cycle. These
vortices are stronger than the ones at h = 0.05,k = 3.92. This is an indication
that the trailing-edge motion does not control the shedding process at this stage.
Additionally, the frequency resulting from the interaction between the imposed
motion and the natural shedding of the airfoil is responsible for this particular
mode. The frequency at which the vortices are shed is k = 1.24, not kf but
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Figure 6.11: Phase diagram of the wake-types classification as a function of the
amplitude h and the normalized forcing frequency k/knat. The triangles are
for drag-producing wakes with one vortex pair shedding per oscillation cycle.
The stars represent thrust-producing wakes with one pair of vortices shed per
oscillation cycle. The squares are for neutral wakes with multiple-vortices-per-
cycle shedding. The open circles represent neutral wakes with one pair of vortices
shed per oscillation cycle and the black circles are for thrust-producing wakes
with multiple-vortices-per-cycle shedding. The frequency regimes boundaries are
approximately indicated based on the simulations performed in this paper.

a combination of both knat and kf . When plotting the streamlines around the
trailing-edge region (see Fig. 6.14) a recirculation region is observed on both
sides of the trailing-edge, thus creating a blunt-like body. The bluntness of the
traling-edge varies with the heaving cycle and has a frequency associated with it.
This results in the shedding frequency being neither the natural nor the forcing
frequency but a mixture of both frequencies.

In the region defined by h > 10−2 and k/knat < 0.5 the transition at constant
frequency or amplitude from the natural to the lock-in regime passes via the
harmonic regime, as observed in the previous Section.

The phase diagram of the frequency regimes provides an idea of the complexity
of the frequency regimes transition and the frequencies interplay in the case of
a heaving airfoil. There is a rich variety of wake-types and frequency regimes.
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(a) (b)

(c) (d)

(e)

Figure 6.12: Vorticity contours at α = 0◦, Re = 104, h = 0.05 and k = 3.92
(k/knat = 0.5) during one oscillation cycle. y is the vertical position of the airfoil.
(a) y is at its maximum vertical position, (b) y=0, (c) y is at its minimum vertical
position, (d) y=0, and (e) y is at its maximum vertical position.
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(a) (b)

(c) (d)

(e)

Figure 6.13: Vorticity contours at α = 0◦, Re = 104, h = 0.1 and k = 1.96 during
one oscillation cycle. (a) y=0, (b) y at its minimum vertical position, (c) y=0,
(d) y is at its maximum vertical position, (e) y=0.
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(a) (b)

(c) (d)

(e)

Figure 6.14: Streamlines at α = 0◦, Re = 104, h = 0.1 and k = 1.96 during one
oscillation cycle. (a) y=0, (b) y at its minimum vertical position, (c) y=0, (d) y
is at its maximum vertical position, (e) y=0.
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One can conclude that the wake-type is strongly related to the frequency regime.
For example, wake-types with multiple-vortices-per-half-cycle of oscillation are
in a region where the forcing and the natural frequency of vortex shedding are
interacting together (the harmonic regime). Wake-types with one vortex-pair
shed per cycle are in the region where one distinct frequency is in control. Note
that the phase diagram is not symmetric as it is the case for the cylinder [19, 46].
This can be attributed to the presence of the sharp trailing-edge of the airfoil
and to the fact that at certain values of the control parameters, the airfoil sheds
vortices from both the leading- and trailing-edge, for example at k = 1.96 and
h = 0.1 (see Fig. 6.8).

The phase diagram presented in this paper agrees very well with the one
presented by J. Young in [46] at Re = 2 × 104, although the author noted the
presence of only three wake types in his diagram and no frequency analysis was
presented to confirm the nature of the frequency regimes. A less similar diagram
for the pitching airfoil is shown by T. Schnipper et al. (see [38], Fig.2). Although
it is important to note that for both the pitching and heaving cases there exist a
region where the shedding of more than a vortex pair per oscillation occurs and
that this region is confined at high amplitudes and low frequencies of oscillations.

6.4 Conclusion

We successfully simulated the two dimensional unsteady flow on both a motionless
and a heaving airfoil using a high-order spectral CFD method. The high spatial
and temporal resolution achieved by the Spectral /hp Element Method permits
a detailed analysis of the flow over the airfoil and the near wake. The high-
order numerical methods enabled the simulation and the characterization of the
frequency response regimes. These regimes are: (a) the natural regime, (b) the
lock-in regime, and (c) the harmonic regime. These frequency response regime are
related to the shedding process through which the wake undergoes a transition
from a Karman street (a drag-producing wake) to a reversed Karman street (a
thrust-producing wake). The transition between the different frequency regimes
is simulated at both constant frequency and constant amplitude. This transition
is successefully related to the wake-types regimes and the transition between
them. It is found that the frequency regimes are strongly related to the wake
type exhibited. Wake-types with multiple-vortices-per-half-cycle of oscillation are
found in harmonic regimes and wake-types with one vortex-pair shed per cycle
are in the region where one distinct frequency is in control (lock-in and natural
regimes). Regimes where the leading-edge vortices contribute to the shedding
process were also simulated.
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Chapter 7

Conclusions and Outlook

7.1 Synopsis of motivation and results

In this thesis we have studied numerically the unsteady flow over oscillating
(heaving and plunging) airfoils using a high resolution method for the first time.

In Chapter 1 we presented a review of the literature on unsteady flows over
airfoils, dynamic stall, oscillating airfoils and their wakes, the generation of thrust
by plunging (heaving) airfoils, and the frequency regimes exhibited by forced
airfoil wakes. This Section also included a presentation of Direct Numerical
Simulations (CFD) and the use of high-order methods.

The literature review revealed that unsteadiness is a phenomenon which can
not be avoided when dealing with flows over airfoils. Although unsteadiness
presents serious challenges for their numerical simulation, high resolution spectral
numerical studies can be used to improve and/or control airfoils performance.It
is also important to point out that oscillating airfoils generate thrust and lift.
Moreover, at low Reynolds numbers and for small-size airfoils, oscillating airfoils
produced more thrust than their motionless counterparts and therefore achieved
a better propulsive efficiency. This was one of the main motivations for the
simulation of motionless and oscillating airfoils in the present investigation.

In Chapter 2 we introduced the Spectral /hp Element Method, the framework
of the weighted residuals and the Galerkin formulation. The discretization for
2D problems was discussed along with the elemental operations on standard and
general-shaped elements. The solution procedure of the global system and the
global assembly method were described, as the extension to 3D cases. We also
discussed the time advancement scheme and the implementation of the airfoil
motion using the moving frame of reference.

In Chapter 3 the Nǫκταr-solver was validated against the experimental and
computational results published in the literature for the steady and unsteady
flow over motionless cylinders and motionless and heaving airfoils. The Nǫκταr-
solver was able to reproduce the flow configuration and both qualitatively and
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quantitatively agreement was achieved.
In Chapter 4 the simulation of steady and unsteady flows over a fixed air-

foil were conducted and the results were validated against previously published
experimental and computational studies. Heaving airfoils were also simulated
for different values of the mean incidence, Reynolds number and amplitude and
frequency of oscillations and a detailed description of the the boundary-layer
temporal development was achieved. The main results of this Chapter are the
following:

• For the fixed airfoil it was observed that increasing the Reynolds number
slightly increases the mean value of the aerodynamic coefficients. Moreover,
the flow development is faster due to its acceleration but in general it has the
same phenomenological development as that at a lower Reynolds number.
The mean incidence is found to have more effects on the flow development.
The flow is delayed in response to the increase in the mean incidence and
the force coefficients increase, as it was previously reported in the literature.

• For the oscillating airfoil at a reduced frequency less than 1 the fixed airfoil
and the heaving airfoil exhibit similar flow fields, thus confirming previous
experimental and computational findings. Nevertheless, the mean values of
the lift and drag coefficients increase.

• Increasing the Reynolds number while keeping the same frequency and am-
plitude of oscillations has no major effects neither on the flow structure nor
on the aerodynamical loads. However, increasing the mean incidence has
a dramatic influence on the flow field and the wake which is characterized
by vortices of greater size and strength. The values of the lift and drag
increase dramatically even at low Reynolds numbers.

• It can be concluded that setting the airfoil in motion has the same effect
as for increasing the mean incidence for motionless airfoils.

Plunging (or heaving) airfoil wakes shed vortices as they oscillate, and these
wakes are classified into drag-, neutral and thrust-producing wakes, depending on
the nature of the force produced by the airfoil. A typical drag-producing wake
exhibits a Karman vortex street which consists of two alternating rows of clock-
wise (upper row of vortices) and anticlockwise vortices (lower row of vortices).
The vortex pairs are shaped as mushroom-like structures tilted downstream, and
the time-averaged horizontal velocity exhibits a momentum-deficit. A typical
thrust-producing wake exhibits a reversed Karman vortex street, where the vor-
tices sense of rotation is reversed compared to the Karman vortex street. The
vortex pairs are also shaped as mushroom-like structures but tilted upstream,
and the time-averaged horizontal velocity presents a momentum-surfeit. Finally,
for a typical neutral wake the vortex-pairs shed are untilted and are on the same
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horizontal line (on one row). Nevertheless, some studies show that the wake pat-
tern is weakly correlated to the produced thrust as many wake configurations can
exist for drag-, neutral or thrust-producing wakes.

To explore plunging airfoils wakes we conducted a parametrical study in Chap-
ter 5, which enabled the description of the shedding process through which the
wake undergoes a transition from a Karman street to a reversed Karman street.
Drag, neutral and thrust wakes were successfully simulated, and also the tran-
sition from one wake to another. Furthermore, new and interesting results were
presented concerning the interaction of the natural shedding frequency of the
airfoil and the imposed forcing frequency. The role of this interaction in the
formation of more than one vortex per oscillation cycle was also investigated.
These results confirm for the first time for the airfoil geometry that it is in the
harmonic regime that the multiple-vortices-per-half-cycle mode appears. The
harmonic regime is a regime characterized by the dominant frequency being a
mixture of the natural shedding frequency and the forcing frequency.

More shedding modes are captured when using the Nǫκταr-solver, which
assess the ability of the computational method to produce more accurate wake
classification and wake transitions. Two more modes are observed here and added
to the wake classification. These modes are: (1) a multiple-vortex-per-half-cycle
wake producing thrust and (2) a neutral wake with one pair of vortices shed per
cycle.

The assumption that the Strouhal number is the main and only parameter
to characterize the wake configurations and thus the nature of the forces pro-
duced for oscillating airfoils was questioned in this investigation. To characterize
such flows one needs to consider the amplitude and frequency of oscillations as
independent parameters, and that the Strouhal number alone is not sufficient to
characterize oscillating airfoil wakes.

The forced wake of the airfoil presents several frequency regimes. These
regimes depend on the forcing frequency and the forcing amplitude. They also
depend on the relation between the forcing frequency and the natural frequency
of the airfoil. Three frequency regimes are defined in the literature: the natu-
ral regime, the harmonic regime and the lock-in regime. In the natural regime
the vortex shedding frequency is equal to the natural frequency. In the har-
monic regime, the vortex shedding frequency is a mixture or a combination of
the natural and the forcing frequency. Finally, in the lock-in regime, the vortex
shedding frequency is locked to the forcing frequency. In the published literature
the frequency regimes have been studied for oscillating cylinders. The case of os-
cillating airfoils is less investigated. In this investigation we study heaving airfoils
in an attempt to shed more light on the mechanisms behind the different wakes
observed experimentally and computationally. We also establish a preliminary
phase diagramm to explain some aspects of the frequency regimes observed for
heaving airfoils.

In Chapter 6 we explored the frequency regimes for oscillating airfoils. These
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different frequency regimes were successfully simulated and were also related
to the shedding process through which the wake undergoes a transition from
a Karman street (a drag-producing wake) to a reversed Karman street (a thrust-
producing wake). The transition between the different frequency regimes was
simulated at both constant frequency and constant amplitude. It was found that
the frequency regimes are strongly related to the wake type exhibited. Wake-types
with multiple-vortices-per-half-cycle of oscillation are found in harmonic regimes
and wake-types with one vortex-pair shed per cycle are in the region where one
distinct frequency is in control (lock-in and natural regimes). Wakes where the
leading-edge vortices contribute to the shedding process were also simulated.

7.2 Future Work

Based on the encouraging results obtained using the Spectral /hp Element
Method, this study can be extended in several ways. A large number of pa-
rameters govern the flow over oscillating airfoils, even for the simple 2D plung-
ing/heaving motion. Thus, further parametric studies are necessary in order to
grasp the importance of each parameter and the interplay between them. In the
same spirit, the study can be extended to other oscillatory motions and even
non-oscillatory ones. Additionally, one can also combine two oscillatory motions
(for example pitch and heave motions).

The Reynolds numbers considered in this investigation are relatively low (of
the order of 104) and it can be interesting to consider higher Reynolds numbers,
in the range 2 × 104 ≤ Re ≤ 5 × 104. These Reynolds number correspond to the
conditions at which Micro Air Vehicles (MAVs) operate.

Another interesting aspect of oscillating airfoils research is the investigation
of flexible airfoils (or membranes), as opposed to rigid airfoils. Bird- and fish-
like propulsion is achieved by oscillating flexible wings/fins, and it is essential to
investigate these airfoils in order to gain more understanding of the animal-like
propulsion to be implemented in MAVs and other insect-like robotic applications.
The extension of this investigation to non-symmetric airfoil profiles and other
airfoil shapes will permit the understanding of the role played by the airfoil
geometry on the flow configuration and the forces production and will permit
improvements in airfoils design for propulsive purposes.

A very important aspect of studying oscillating airfoils is the extension of the
simulations to 3D flows. This can include the study of 3D effects on the wake
structure, the frequency regimes and on the aerodynamical forces. This study will
permit the understanding of more realistic flow configurations and will provide a
valuable input to airfoils and MAVs design.
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