
DEVELOPING MOBILE AGENTS THROUGH A FORMAL

APPROACH

by

Andreea Barbu, Dipl.Inf.

Thesis prepared in french-german co-tutelle

Thèse Dissertation

préparée en co-tutelle franco-allemande in französisch-deutscher Doppelbetreuung erstellt

à und dem

l’Université Paris 12 Department für Informatik

Val-de-Marne U.F.R. de Science Carl v. Ossietzky Universität, Oldenburg

présentée pour obtenir vorgelegt zur Erlangung

le grade de Docteur ès Sciences des akademischen Grades eines Doktors

de l’Université Paris 12 der Naturwissenschaften

Verteidigt am 12 September 2005 vor der Prüfungskommission:

Eike Best Direktor (G), Gutachter

Emmanuel Chailloux Gutachter

Fabrice Mourlin Gutachter

Ernst Rüdiger Olderog Gutachter

Elisabeth Pelz Direktorin (F)

Laure Petrucci Gutachter

http://www.bis.uni-oldenburg.de/publikationen/dissertation/2005/bardev05/bardev05.html
http://www.bis.uni-oldenburg.de/publikationen/dissertation/2005/bardev05/bardev05.html

CO-TUTELLE

This thesis is written within the scope of a ”co-tutelle” contract between the universities
Paris12 Val de Marne (France), and C. v. Ossietzky, Oldenburg (Germany). The con-
tract signed between the two universities requires that certain parts of the thesis (short
abstracts and summaries) are given as well in French as in German. The preface gives
a ”Resumé” and a ”Zusammenfassung” which introduce the subject of this thesis and
give an overview of the contents.

Le contrat de thèse en co-tutelle signé entre l’Université Paris12 Val de Marne (France) et
l’Université C. v. Ossietzky, Oldenburg (Allemagne) requiert certaines parties (résumés
courts et résumés) en français et en allemand. Le résumé nous amène dans le sujet de
cette thèse et donne une vue ensemble du contenu.

Der Vertrag über die Doppelbetreuung und gemeinsame Durchführung einer Promotion
zwischen der Universität Paris12 Val de Marne (Frankreich) und C. v. Ossietzky, Olden-
burg (Deutschland) sieht vor, daß bestimmte Teile der Arbeit (Kurzzusammenfassungen
und Zusammenfassungen) in französicher und deutscher Sprache gegeben werden. Die

Zusammenfassung führt in das Thema der Arbeit ein und gibt einen Überblick über
ihren Inhalt.

SHORT ABSTRACT

This thesis deals with the modeling and validation of mobile agent systems. The devel-

opment of a support structure for mobile agents demands the development of solutions

for a set of specific problems that appear due to mobility.

A basic question in software development is if the proposed program is really a solution

for the considered problem. One way to answer this question is through the use of formal

methods. In our approach, the first step is to build a model of the solution (specifica-

tion) using a formal language, the higher-order π-calculus. Having this formal model as

a base, we can: validate the model through simulations; carry out mathematical tests

to guarantee that this model possesses the required properties (verification); follow a

rigorous software development, being able to prove that the implementation is correct

with respect to the specification (generation of correct code).

In a second step we propose three different methods for a mobile agent system implemen-

tation. Making use of our results, we have implemented a prototype called HOPiTool

which allows the possibility of validation of mobile agent systems conceived with higher-

order π-calculus.

Keywords: Mobile agents, formal languages, π-calculus, modeling, validation, verifica-

tion, concurrency, semantics.

RÉSUMÉ COURT

Nous nous intéressons dans cette thèse à la modélisation et à la vérification de systèmes

d’agents mobiles. Le développement d’une structure de soutien pour les agents mobiles

demande le développement de solutions pour un ensemble de problèmes spécifiques qui

apparaissent en raison de la mobilité.

Une question fondamentale dans le développement de logiciel est: le programme pro-

posé est-il vraiment une solution pour le problème considéré. Une façon de répondre à

cette question consiste à utiliser les méthodes formelles. Dans notre approche, dans une

première étape, nous construisons un modèle du problème (la spécification) en utilisant

un langage formel, le π-calcul d’ordre supérieur. En ayant ce modèle formel comme base,

nous pouvons réaliser des preuves mathématiques pour garantir que ce modèle possède

les propriétés voulues (vérification); valider le modèle à travers des simulations; suivre

le développement de logiciel rigoureux, étant capable de prouver que l’implémentation

est cohérente par rapport à la spécification (génération de code correct).

Dans une deuxième étape nous proposons trois méthodes différentes pour l’implémentation

d’un système d’agents mobiles. En profitant de nos résultats, nous avons implémenté

un prototype (appelé HOPiTool) qui permet la validation de systèmes d’agents mobiles

conçus avec le π-calcul d’ordre supérieur.

Mots clés: Agents mobiles, langage formel, π-calcul, modélisation, validation, vérification,

concurrence, sémantique

KURZZUSAMMENFASSUNG

Diese Arbeit beschäftigt sich mit der Modellierung und Validierung von mobilen Agen-

ten. Die Entwicklung einer Unterstützungsstruktur für mobile Agenten fordert die En-

twicklung von Lösungen für eine Reihe spezifischer Probleme, die aufgrund der Mobilität

erscheinen.

Eine grundlegende Frage in der Software-Entwicklung ist, ob das vorgeschlagene Pro-

gramm wirklich eine Lösung für das Problem darstellt. Diese Frage können wir beant-

worten, indem wir von formellen Methoden Gebrauch machen. Der erste Schritt ist,

ein Model des Problems (eine Spezifizierung) zu bauen, das eine formelle Sprache, den

higher-order π-calculus einsetzt. Mit dem formellen Model als Basis, können wir math-

ematische Tests ausführen, um zu versichern, daß dieses Modell die erforderliche Eigen-

schaften besitzt (Verifizierung). Wir können durch Simulationen das Model validieren,

und wir können zeigen, daß die Implementierung des Systems in Bezug auf die Spezi-

fizierung korrekt ist (Generierung des richtigen Codes).

In einem zweiten Schritt schlagen wir drei verschiedene Methoden für die Realisierung

eines mobilen Agenten-System vor. Von unseren Ergebnissen Gebrauch machend, haben

wir einen Prototyp (genannt HOPiTool) implementiert, der die Möglichkeit der Vali-

dierung von mobilen Agenten Systeme die mit dem higher-order π-calculus spezifiziert,

anbietet.

Schlüsselwörter: Mobile Agenten, formelle Sprachen, π-Kalkül, Modellierung, Vali-

dierung und Verifikation, Nebenläufigkeit, Semantik.

ACKNOWLEDGEMENTS

”To make an end is to make a beginning.

The end is where we start from.”

T.S. Eliot

I would like to express my deepest gratitude to all of those who gave me the possi-

bility to complete this thesis. First of all, I would like to thank Prof. Elisabeth Pelz, my

”Doktormutter”, for having been mentor and confidant for me every single step of the

way, from the tedious task of relocating me from Oldenburg to Paris, through valiantly

fighting my administrative battles, to coaching me in the art of scientific and methodical

research and project development.

Many thanks go to my ”Doktorvater”, Prof. Eike Best, for giving me the wonderful

and life changing opportunity to do this co-tutelle, in the first place, for appraising my

work, managing and supporting my research from across the border on the German side,

and for keeping an eye on my progress and being there with advice and/or help when I

needed it.

I would like to express my deepest and sincerest gratitude to my principal ”encad-

rant”, Dr. Fabrice Mourlin. His wealth of knowledge and his logical thinking have been

invaluable for me, as have his understanding, encouragement and personal guidance

provided a sound basis for the present thesis. Thanks to him I have learned so much

and he always lent me the strength to carry on with his energy and ideas.

To Dr. Hans Fleischhack, I would like to extend my appreciation and gratitude for

having gotten me started on the path that led to my research and this thesis.

I would like to thank my thesis reviewers, Prof. Laure Petrucci and Dr. Emmanuel

Chailloux, for accepting to read my work, for their helpful comments and for being part

of the jury committee. I owe gratitude to Prof. Ernst-Rdiger Olderog for also accepting

to participate in the jury.

i

I am very grateful to my husband for his emotional support, an ever open ear and

mind and for spending so many weekends on revising the English of my manuscript.

I am also grateful to my colleague Stefan for helping me with his knowledge in pro-

gram development. His comments, propositions and questions have been greatly helpful

for me.

My warmest thanks go to Katharina, because: ”A problem shared is a problem halved”,

for her moral support, for her remarkable conclusions and for her friendship which helped

me get through this time.

I am also very thankful to my friend, Christine, for helping me to translate the first

chapter into correct (and legible) French.

This thesis is dedicated to my parents and my brother, but especially to my ”mam”,

who always believed in me and gave me the strongest possible of support.

TABLE OF CONTENTS

TABLE OF CONTENTS ii

LIST OF TABLES v

LIST OF FIGURES vi

PREFACE 1

Introduction . 1

Einführung . 11

I STATE OF THE ART 20

1 INTRODUCTION 21

1.1 Motivation and Scientific Contribution 24

1.1.1 The Standardization Challenges 25

1.1.2 A Practical Proposal . 27

1.1.3 A Proposed Scenario for the HOPiTool 28

1.2 Outline . 29

2 MOBILE AGENTS 31

2.1 Why Mobile Agents? . 32

2.1.1 Reasons for Success . 33

ii

TABLE OF CONTENTS iii

2.1.2 Reasons for Downfall . 37

2.1.3 Selected Success Stories . 41

2.2 Code Mobility . 48

2.2.1 Forms of Mobility . 49

2.2.2 Security Issues . 50

2.2.3 Design Paradigms . 52

2.3 Mobile Agents Patterns . 56

2.3.1 Agents Platform and Standardization 58

2.4 Conclusion and Personal Reflections . 61

3 FORMAL SPECIFICATION OF MOBILE AGENTS 64

3.1 The π-Calculus and its Extensions . 66

3.1.1 Basic Definitions - The Monadic π-Calculus 66

3.1.2 Formal Method for Mobility - The Higher Order π-Calculus . . . 71

3.2 The Ambient-Calculus . 77

3.3 Mobile and Dynamic Petri Nets . 79

3.4 Other Formalisms . 80

3.5 Conclusion . 81

II FROM SPECIFICATION TO VALIDATION 83

4 SPECIFICATION PART 84

4.1 Mobile feature of the SLP Protocol . 84

4.2 Formal Specification of the SLP System 88

4.3 Temporal Properties of SLP Protocol . 96

4.3.1 SLP modeled by UPPAAL . 99

4.3.2 Conclusion . 108

5 SYNTHESIS PART 110

TABLE OF CONTENTS iv

5.1 Preliminaries Concepts . 111

5.1.1 Traditional Distributed Systems: Stub and Skeleton 113

5.2 From HOπ Specification to RMI Implementation 115

5.3 A HOπ Specification for a Mobile Agent in Jini 1.2 124

5.3.1 Jini as Our Choice for the Implementation of an Agent System . 126

5.3.2 Case study using Jini 1.2 . 127

5.3.3 Specification Part . 128

5.3.4 Implementation Part . 130

5.4 Mobile Agent with an Enterprise JavaBean Approach 135

5.4.1 Mobile component approach . 136

5.4.2 Printing Component Example (PrintEJB Component) 137

5.5 Discussion and Conclusion . 145

6 A PRACTICAL APPROACH 148

6.1 Related Work . 148

6.2 Brief Introduction to Jini 1.2 . 149

6.3 The Architecture of our Prototype . 151

6.4 Applying Simulation to our SLP Case Study 156

6.5 Summary . 159

7 CONCLUSION AND FUTURE WORK 161

A TECHNICAL DESCRIPTION OF HOPITOOL VERSION 1.0 163

BIBLIOGRAPHY 168

INDEX 177

Glossary 179

VITA 184

LIST OF TABLES

2.1 Overview I: Projects using Mobile Agents 41

2.2 Overview II: Projects using Mobile Agents 42

2.3 Mobile Code Paradigms . 53

2.4 Overview: Agent Systems . 61

v

LIST OF FIGURES

1 Approche fondée sur un scénario . 8

2 Scenario-Based Approach . 17

1.1 Scenario-Based Approach . 28

2.1 Client Server Paradigm . 54

2.2 Remote Evaluation Paradigm . 55

2.3 Code on Demand Paradigm . 56

2.4 Mobile Agents Paradigm . 57

4.1 SLP Communications . 86

4.2 Service Discovery with UA and SA . 87

4.3 Service Discovery with UA, DA and SA 88

4.4 Sequence Diagram of our SLP Case Study 89

4.5 Messages between the agents in a basic system 90

4.6 How to construct the inference tree . 94

4.7 Modeling of UserAgent with UPPAALTool: process UA 101

4.8 Modeling of Service Agent with UPPAAL: process SA 102

4.9 Modeling of DirectoryAgent with UPPAAL: the process of registration

and unregistration a service . 105

4.10 Modeling of DirectoryAgent with UPPAAL: the process of memorizing a

service . 105

vi

LIST OF FIGURES vii

4.11 Modeling of DirectoryAgentMem with UPPAAL: process DAMem . . . 107

5.1 Our System . 115

5.2 Design of Our System . 117

5.3 The Architecture of a Mobile Agent . 119

5.4 The architecture of the Agent Host . 121

5.5 The Architecture of the Print Agent . 122

5.6 The Architecture of the Agent Client . 123

5.7 Typical Jini Configuration Protocols . 127

5.8 Our Route System . 128

5.9 Mobile Agent Host Class Diagram . 132

5.10 Diagram for interactions between MobileAgentHost, MobileAgent, and

Jini Lookup service . 135

5.11 EJB container principle . 138

6.1 How Jini technology works . 150

6.2 From Specification to Implementation 152

6.3 HOπ View Screenshot . 157

6.4 HOPiTool Screenshot . 158

6.5 HOPiTool Screenshot . 159

6.6 SLP Sequence Diagram . 160

A.1 HOPiTool Screenshot . 164

Preface

Introduction

De nos jours, le développement rapide de notre société d’information a généré une ex-

plosion du réseau informatique. En témoigne en particulier la constante augmentation

du nombre d’utilisateurs de réseaux, en particulier d’Internet. Les technologies dans le

secteur de l’électronique grand public offrent soit un accès rapide et simple à Internet,

soit la possibilité d’une connexion ”à la volée” via les réseaux GSM (Global System for

Mobile Communication). En outre, la quantité de ce type de services crôıt à un rythme

effréné.

En lien avec cette évolution dans le domaine des réseaux, une tendance suscite plus

particulièrement de nouvelles interrogations: l’informatique mobile. Non seulement

les ordinateurs portables sont intégrés aux réseaux informatiques, mais également les

téléphones mobiles qui nous ouvrent l’accès aux réseaux via ”Wireless Application Pro-

tocol” (WAP) et ”Wireless Markup Language” (WML). Les ”Personal Data Assistants”

(PDA) sont une option supplémentaire pour établir des connexions aux réseaux mobiles.

Ils utilisent des techniques de connexion comme ”Infrared Data Association” (IrDA) ,

Bluetooth ou encore, comme c’est le cas pour les téléphones mobiles, le GSM et ”Uni-

versal Mobile Telecommunications System” (UMTS). Les applications mentionnées ci-

dessus sont opérationnelles sur des réseaux non restreints dynamiquement, ce qui signifie

que des agents mobiles peuvent être ajoutés à tout moment de l’opération. Les services

utilisés pour ces applications peuvent aussi utiliser d’autres services,

• dont la durée de vie est limitée dans le temps ou octroyant des droits d’accès à

durée variable.

• dont les fournisseurs se perfectionnent. Par exemple, le service d’un annuaire

téléphonique peut être sur une machine ”A” et pour des problèmes divers dus à

”A”, être déplacé sur une machine ”B” plus perfectionnée.

1

PREFACE 2

La propriété centrale de ces applications est donc que les réseaux sont progressifs.

Ce développement a donné lieu à de nombreux problèmes et de nouveaux défis, défis

dont nous n’analyserons ici qu’un certain nombre: la croissance de la capacité du réseau

n’a pas pu jusqu’à présent pallier au nombre en rapide augmentation d’utilisateurs. Bien

que l’on ait vanté Internet pour son réseau aux possibilités inépuisables, il ne peut offrir

qu’un catalogue restreint de services et d’usages, sans qu’un ordinateur y soit connecté

en permanence. La récente émergence de la technologie des agents mobiles apparâıt

comme un moyen de résoudre ce problème.

Les agents mobiles sont des programmes qui peuvent se déplacer (ou ”migrer”) d’un

ordinateur à l’autre au sein d’un réseau et exécuter de manière autonome les commandes

de leurs possesseurs. Cette ”migration” rend possible l’utilisation de l’ensemble des

ressources de l’ordinateur membre au sein d’un réseau local et l’exécution efficiente d’une

tâche donnée au moyen du traitement coordonné du problème par les agents membres.

Par exemple, un agent ”A” récupère un fichier de données C.txt sur une machine ”C”,

puis un fichier de données D.txt sur une machine ”D”. La ”localité” caractéristique est

ici essentielle pour améliorer la fiabilité des applications. Il est plus avantageux qu’un

agent se déplace afin de collecter des fichiers de données plutôt qu’il en fasse une lecture

à distance. Les problèmes inhérents au réseau se trouvent réduits et la sécurité accrue

par cette utilisation d’agents mobiles.

Si l’on tentait de définir ces agents mobiles au moyen d’un exemple de la vie quotidienne,

on pourrait imaginer le scénario suivant:

Supposons que Bob veuille se rendre au cinéma, sans toutefois savoir où son film favori

sera projeté ce soir. Par chance, Bob a un petit frère Jake qui se fait un plaisir de jouer

à l’agent 007 pour lui. Jake a donc pour tâche de trouver où le film favori de Bob va

être projeté. Pour mener à bien sa mission, Jake doit se rendre dans chaque cinéma du

voisinage et, si possible, en revenir avec le ticket espéré. Après s’être acquitté de cette

tâche, il peut choisir de rentrer à la maison faire son compte-rendu ou aller jouer avec

ses amis ”agents secrets”. Le jeune 007 se sent investi d’une mission importante et passe

à l’action. Il décide cependant de s’épargner les allées et venues grâce à l’aide de ses

amis agents. Il les appelle et leur confie la tâche de se rendre au cinéma le plus proche

et de s’y renseigner sur le film préféré de Bob. Après que chacun se soit acquitté de son

compte-rendu, Jake assemble les résultats et transmet l’information à Bob.

Transposé au domaine de la technologie, de l’Internet et particulièrement du World

Wide Web (WWW), cet exemple prendrait l’aspect suivant:

Un agent mobile a pour tâche de rassembler à partir d’une sélection de critères des

données de n’importe quelles source de données (par exemple des serveurs WWW).

L’agent migrerait alors vers les ordinateurs, effectuerait des recherches dans leurs sources

de données et transmettrait les résultats à l’utilisateur, au lieu de simplement charger et

PREFACE 3

examiner les pages des serveurs à travers internet. Les résultats de recherche de la thèse

de Theilmann [96] montrent que ce procédé peut permettre un gain de temps, aussi

bien au niveau de la durée de connexion au réseau que de l’accomplissement de la tâche,

selon l’effort fourni par l’agent et l’étendue des données à explorer et retransmettre au

possesseur. Ces avantages, doublés de la capacité des agents de s’acquitter de leur tâche

de manière asynchrone sans aucun contact supplémentaire avec leurs possesseurs, les

rendent particulièrement intéressants à utiliser avec des outils terminaux.

La recherche et le filtrage dans des sources de données ne sont pas les seules applications

que les agents mobiles sont à même de mener à bien. D’autres applications existent

dans les domaines du commerce électronique, de l’administration des réseaux, de la

distribution de l’information d’ordinateurs parallèles, de services comme WebLogic qui

recourt à des agents mobiles pour détecter de nouveaux services sur le serveur, et de

la détection des intrusions. Diverses publications ont évoqué bien d’autres champs

d’application, comme [72], [46], [94]. Les cinq à six dernières années ont été témoin

de quantité de tentatives de mise en pratique de cette technologie, quand bien même

celles-ci apparaissent à présent peu abouties au regard du niveau de la recherche menée

actuellement. Le projet ”Agents for Remote Action” (Ara) (1997) [84] est une plate-

forme pour une exécution portable et sûre d’agents mobiles, développée par l’Université

de Kaiserslautern. Le but spécifique de Ara, à la différence de plate-formes similaires,

consiste à garantir la fonctionnalité totale des agents mobiles, tout en conservant autant

que possible les modèles de programmation et les langages établis. Les prototypes

entre temps issus de la recherche sont, pour n’en citer que quelques-uns, D’Agents [49]

(dernière version en 2002), MadKit [51] de l’Université de Montpellier (France) et Mole

[9] (achevé avec succès au bout de 5 années en 2000). Le projet Mole à Stuttgart,

consacré aux agents mobiles (MA), les réexaminait dans le contexte d’alors et testait

en particulier leur fiabilité, sécurité et le mélange de Java et CORBA au sein du même

système. D’autres produits ont trouvé des débouchés commerciaux, tels Aglets [61]

(IBM fournit déjà de véritables services obtenus à partir de ce projet, comme TabiCan

sur Internet), Grashopper [10] (cette plate-forme de développement d’agent initiée par

IKV++ en aot 1998, permet à l’utilisateur de créer une profusion d’applications fondées

sur la technologie des agents), LEAP [6] (ce projet s’attaque au besoin en infrastructures

ouvertes et services qui soutiennent les entreprises dynamiques et mobiles) ou Java Agent

DEvelopment Framework (JADE) [11], une plate-forme logicielle pour développer des

applications basées sur les agents en accord avec les spécifications pour les systèmes

interopérationnels intelligents à agents multiples de FIPA [39]). Tous ces exemples sont

des plate-formes très techniques, dont le développeur a besoin pour développer ses agents

mobiles.

Bien que beaucoup d’obstacles technologiques aient été surmontés grâce à la vitesse

PREFACE 4

plus rapide de transfert en réseau, l’utilisation de machines virtuelles et de langages de

programmation indépendants de la plate-forme (à savoir Java, HTML, XML, PostScript,

etc....) et d’ordinateurs plus rapides, efficaces et robustes, certains secteurs restent

problématiques:

Les mécanismes de contrôle: Ce domaine est principalement aux prises avec le pro-

blème de la localisation et de l’arrêt des agents mobiles. Baumann donne un

aperçu ([8]) d’une méthode mise en oeuvre et propose de nouvelles solutions pour

ces tâches.

La sécurité: Ce domaine concerne la protection aussi bien de l’ordinateur que des

agents mobiles contre les attaques d’agents mobiles et/ou d’environnements d’imp-

lémentation malveillants. F. Hohl a étudié ce problème dans [53].

La tolérance aux fautes: La tolérance aux fautes dans la programmation d’agents

mobiles cherche à garantir, entre autre, que des agents mobiles ne soient pas

bloqués ou perdus suite à leurs interactions avec d’autres agents mobiles ou or-

dinateurs, ou dans le cas d’une panne de réseau. Une solution à ce problème est

examinée par M. Strasser dans [94].

ainsi que la large diffusion géographique, les dynamiques de réseau élargi afin, par exem-

ple, de gérer des services d’un type nouveau. Un autre problème significatif réside dans

la difficulté de tester des agents mobiles là où il est difficile de déterminer si des fautes

ont été générées par les agents eux-mêmes ou par un autre élément du milieu, comme

c’est en particulier le cas sur internet. A cela s’ajoute qu’il reste à définir le critère du

test concernant la navigation (un agent est-il d’abord passé par un noeud C puis par

un noeud D?) et l’activité locale d’un agent (pour lire le fichier C.txt sur le noeud C,

utilise-t-il les droits locaux ou un accès à distance?).

Motivation et contribution scientifique

Le travail présenté dans cette thèse se fixe pour but de proposer une technique pour

l’élaboration et l’analyse de systèmes d’agents mobiles et de tenter de combler la brèche

entre les modèles formels d’agents mobiles et les implémentations d’agents mobiles.

Si l’on considère l’exemple donné concernant la tâche d’investigation sur les heures de

projection de film confiée au petit frère de Bob, quelques questions pourraient se poser

durant cette mission: Jake, le petit frère, a-t-il compris que le ticket était requis pour

le soir même? Avait-il l’argent pour l’acheter? A-t-il fait part à ses amis du souhait de

son frère d’acheter ce ticket? Que se serait-il passé si, après l’achat du ticket, Jake avait

PREFACE 5

décidé de ne pas rentrer directement à la maison, mais de jouer d’abord avec ses amis

et avait alors perdu le ticket? Ces questions se posent aussi longtemps que la mission

n’a pas été définie clairement. C’est seulement après avoir clairement établi quel est

l’objectif final et l’enchâınement précis des événements que le jeune 007 peut être assuré

de la bonne issue de sa mission. L’exemple décrit est une spécification naturelle et le

point de départ à partir duquel nous devons réaliser un prototype et une simulation si

nous voulons trouver un vrai cinéma. Pour ce faire, un grand nombre de solutions est

envisageables. Etant donné que la spécification est textuelle, c’est-à-dire non formelle,

il est impossible d’obtenir un prototype complet capable de réussir cette mission.

Ces questions doivent être prises en considération dans la conception des agents mo-

biles. La spécification pour les agents et leurs tâches a-t-elle été correctement ef-

fectuée? Le terme ”spécification” est défini dans le Merriam-Webster-Online-Dictionary

http//:www.merriam-webster.com comme ”a detailed precise presentation of some-

thing or of a plan or proposal for something”, c’est-à-dire comme ”une présentation

précise et détaillée de quelque chose ou d’un plan ou d’une proposition pour quelque

chose”. Nous nous concentrerons ici sur la ”spécification formelle” car, présentée au

sein d’une structure mathématique, elle permet d’établir des preuves ou des analyses et

raisonnements formels.

L’axe majeur de notre réflexion porte sur les points suivants:

• Il donne un aperçu des projets internationaux sur les ”agents mobiles” actuelle-

ment à l’essai et étudie les avantages et inconvénients des agents mobiles. (Chapitre

2)

• Il analyse différents langages de spécification formelle des agents mobiles. (Chapitre

3)

• Il présente et élargit une méthode où les spécifications formelles sont écrites dans

le langage processus-algébrique ”Higher-Order-Calculus” et vérifient quelques pro-

priétés, en utilisant un model-checker existant. (Chapitre 4)

• Il propose trois différentes méthodes pour l’implémentation d’un agent mobile et

étudie leur faisabilité pour choisir la méthode la plus adéquate. (Chapitre 5)

• Après la présentation d’une base théorique qui rend possible le développement d’un

système d’agents mobiles, nous développerons un prototype HOPiTool (abrévi-

ation pour ”Higher-Order-Calculus Tool”), permettant d’effectuer localement sim-

ulations et tests sur des agents mobiles avant leur mise en oeuvre au sein d’un

réseau. (Chapitre 6)

PREFACE 6

Les défis de la standardisation

Les idées concernant le code mobile et son implémentation sont nées d’une approche pra-

tique. La plupart des standards, plate-formes et langages actuellement disponibles et

largement utilisés pour le développement de ce genre de systèmes témoigne de la réalité

suivante: ils ont plutôt été élaborés ad-hoc que sur la base de recherches théoriques. Des

modèles théoriques de calcul aussi bien que des langages de spécification formelle cor-

respondants demeurent indispensables pour donner à ces idées un véritable fondement

permettant une meilleure compréhension (ou clarification des concepts), une meilleure

analyse, comparaison avec d’autres modèles et jusqu’à une prévision de leur évolution.

Sur la base du π-calcul, des efforts ont été fournis dans le domaine des modèles informa-

tiques des systèmes mobiles, en partant par exemple de machines à états abstraites [16]

et d’environnements mobiles [23]. Dans tous les cas, le cadre de l’application pratique

requiert aussi bien des langages de spécification de haut niveau que des langages de

programmation dont la sémantique puisse être décrite en utilisant ces modèles. Il ex-

iste quelques projets de langages de programmation adaptés (par exemple KLAIM [75],

Mobile UNITY [66], Pict [86], Nomadic Pict [104]) mais, au niveau de la spécification

et de la validation/simulation d’applications mobiles, il n’existe toujours pas de méthode

formelle largement utilisée pour construire des système pratiques. Au regard des systèmes

de code mobile, les aspects de distribution complexes comme la localisation et la mobilité,

la communication et, dans certains cas, les erreurs, ne sont pas de simples problèmes

d’implémentation mais font partie des fonctionnalités du système. Sous les auspices

des organes de standardisation comme MASIF [28], FIPA [41], CORBA [85], etc., des

comités de standardisation travaillent constamment à l’établissement de standards pour

les agents et en particulier pour les produits d’agents mobiles, pour lesquels la logique

est d’être implémentée. Dans les premières phases de ces processus, beaucoup de car-

actéristiques, services et fonctionnalités, sont démontrés par des descriptions informelles

opérationnelles, des tableaux et des visuels. Ces descriptions évoluent dynamiquement

et leur traitement et validation deviennent dès lors rapidement difficiles.

Dans ce contexte, il faut se poser les questions suivantes:

• Pendant le design des systèmes et des services dans les stages initiaux, la dis-

cussion pourrait se concentrer sur un niveau de détail trop bas par rapport aux

connaissances (données, messages, composants, etc ...) disponibles à ce moment

là. Les descriptions qui incluent des détails sans intérêt ont tendances à obscurcir

l’idée centrale qui est derrière une caractéristique, un service ou une fonction-

nalité, surtout quand cette dernière à besoin d’être modifiée ou raffinée. Différents

niveaux de détails (d’abstractions) sont souvent mélangés dans une seule descrip-

PREFACE 7

tion. Par exemple, l’énumération des nœuds qu’un agent doit explorer peut être

déclarée mais aussi la manière de trouver le prochain nœud (si la route à suivre

n’est pas connue au début de la mission).

• Il peut y avoir des ambigutés, des incohérences ou des interactions à l’intérieur

ou entre les descriptions des services, ou entre les niveaux d’abstraction d’un ser-

vice donné. Elles demeurent difficiles à repérer avec les méthodes convention-

nelles d’inspection, et souvent restent cachées jusqu’à ce que les erreurs soient

découvertes après l’implémentation, à un moment où les corrections peuvent être

très coûteuses. Par exemple, dans le même cas la structure des messages entre les

agents est plus importante que la structure des requêtes qui sont envoyées à l’hôte,

quand l’agent veut savoir quels fichiers doivent être récupérés.

Une proposition pratique

Le processus d’aller de prérequis informels fonctionnels ou opérationnels à une spécification

formelle de haut niveau a fait l’objet de nombreuses recherches. Cependant beaucoup

de questions demeurent en suspens, en particulier en ce qui concerne les techniques les

plus récentes de définition des prérequis et des spécifications formelles. Des techniques

formelles de description (”Formal Description Techniques” (FDT)), comme le ”Higher-

Order π-Calculus” (HOπ) [90], ont été créés afin d’exprimer de manière formelle les

prérequis fonctionnels. Ils sont particulièrement appropriés pour une définition précise

des systèmes mobiles. Ces quelques dernières années, les milieux universitaire et indus-

triel se sont tous deux penchés avec intérêt sur l’utilisation de scénarios pour élaborer

des systèmes. Pourtant, un grand nombre de significations ont été attribuées au terme

”scénario”. Il a été associé à des traces (d’évènements internes ou externes), à la com-

munication entre des composants, à des séquences d’interaction entre un système et son

utilisateur, à des collections plus ou moins génériques de telles traces, etc. Des nom-

breuses notations sont aussi utilisées pour les décrire: des grammaires, des automates,

des algèbres de processus et des diagrammes de communication.

Plusieurs techniques peuvent être utilisées pour s’attaquer aux problèmes liés aux pro-

cessus de standardisation et aux scénarios. Nous utilisons l’algèbre de processus HOπ

pour décrire la spécification des systèmes d’agents mobiles. Le langage de spécification

(ou plutôt sa force d’expression), est directement lié aux contraintes des propriétés que

l’on souhaite mettre au point. Par exemple, pour tenir compte des propriétés de perfor-

mances, il est essentiel d’utiliser un langage de spécification qui supporte ces contraintes.

Dans notre cas, on s’intéresse à la mobilité et on veut établir des propriétés montrant

que les agents se déplacent correctement d’une machine ”E” à une machine ”F”, il est

PREFACE 8

donc nécessaire que le langage de spécification permette de tels mouvements. Le ”Higher

Order π-Calculus” est un langage de spécification qui prend en compte l’aspect de la

mobilité.

Après le travail préliminaire de sélection et d’amélioration de la structure la plus adéquate,

nous développerons au niveau pratique un prototype HOPiTool pour la validation et

le test à partir de scénarios, afin de détecter dès que possible les irrégularités, les am-

bigüıtés, les incomplétudes et autres problèmes. L’un des résultats pratiques requis par

les développeurs est la mise au point d’une documentation aisément compréhensible et

validée autant que possible, et la production d’une série validée de tests, qui puisse

être réutilisée lors de phases ultérieures incluant l’implémentation. Nous illustrerons

une partie de ce processus par un cas d’étude impliquant le protocole de localisation de

service ”Service Location Protocol” (SLP) [52]:

Proposition d’un scénario pour le ”HOPiTool”

L’utilisation d’un langage formel de premier ordre comme le HOπ dans une approche

fondée sur un scénario constitue un choix judicieux pour la description de systèmes

mobiles et communicants. Elle est bien adaptée à la méthode de conception que nous

proposons dans le schéma 1, où nous avons l’intention de combler la brèche entre les

prérequis informels et la première conception d’un système. Les prérequis ont habituelle-

Figure 1: Approche fondée sur un scénario

ment un caractère évolutif et dynamique, ils se modifient et s’adaptent dans le temps.

PREFACE 9

De ce fait, un processus itératif et incrémental va permettre l’élaboration rapide de

prototypes et la génération directe de tests à partir de scénarios. Le schéma 1.1 pro-

pose une méthode où le cycle principal est en charge de la description des scénarios.

Ceux-ci sont ensuite fusionnés afin de synthétiser (manuellement) une spécification de

premier ordre qui sera le point de départ pour la construction de notre prototype. Dans

un même temps, des cas tests peuvent être directement générés par ces scénarios, puis

être utilisées pour tester le prototype par rapport à sa spécification. Les résultats que

nous pouvons obtenir de ces tests, peuvent nous permettre de savoir si des cas tests

supplémentaires sont nécessaires pour finir de couvrir la spécification souhaitée. Afin

de vérifier et d’analyser les propriétés de notre système, il est nécessaire d’insérer un

”model checker” disponible (comme UPPAAL) au sein de notre prototype. Nous partons

ensuite de l’hypothèse que le prototype correspond aux prérequis. Nous avons observé

plusieurs avantages à cette méthode:

• La séparation des fonctionnalités de la structure sous-jacente: étant donné que

les scénarios sont formalisés à un niveau d’abstraction supérieur aux échanges de

messages, diverses structures ou architectures sous-jacentes peuvent être évaluées

avec plus de flexibilité. Les scénarios deviennent dès lors des entités fortement

réutilisables. Comme nous le mentionnerons plus loin, ils peuvent être réutilisés

pour tester l’implémentation.

• le prototypage rapide: dès que la structure et le scénario sont sélectionnés et

analysés, un prototype peut être rapidement produit.

• La documentation de la conception: la documentation est produite tout au long de

la phase de conception. Très souvent, les concepteurs ne produisent une documen-

tation sur leur conception que s’ils y sont obligés; cet angle d’approche encourage

le concepteur à produire méthodiquement une documentation utilisable.

Les applications des agents mobiles, écrites conformément au langage formel HOπ et

à la méthode indiquée précédemment, peuvent être simulées au moyen du prototype

HOPiTool, de la même manière qu’un code peut être généré automatiquement pour eux

en faisant un mapping direct en classes Java, en prenant en compte l’usage d’une plate-

forme support de mobilité, comme ”Java Intelligent Network Infrastructure” (Jini).

Le HOPiTool est un prototype pour la simulation des agents mobiles et peut être

caractérisé par le mapping d’une spécification ”higher-order π-Calculus” en un modèle

de simulation et la génération d’un code pour une plate-forme support de mobilité.

PREFACE 10

Description du contenu

Le chapitre 2 présente différents systèmes d’agents mobiles ainsi que plusieurs projets

internationaux les concernant. Ce travail traite uniquement des projets actuels à par-

tir de l’année 2000. Le choix de ces projets montre la diversité des applications qui

recourent à des agents mobiles. Le sujet des agents mobiles est introduit par l’analyse

de diverses interprétations du terme ”agents mobiles”, esquissant les possibles applica-

tions des agents mobiles et présentant leur définition telle qu’elle sera abordée dans ce

travail. Le chapitre 3 va ensuite se concentrer sur les différentes méthodes qui seront

utilisées dans la spécification des agents mobiles. Le chapitre 4 analyse une méthode

formelle de premier ordre pour la mobilité et l’utilisation d’un model-checker qui vérifie

certaines propriétés de système d’un protocole de mobilité. Le chapitre 5 propose trois

différentes méthodes pour implémenter au mieux un système d’agents mobiles et analyse

la faisabilité d’une application pratique. Le chapitre 6 propose une application pratique

étayée par notre travail théorique préalable. Le prototype HOPiTool sera introduit et

une étude de cas sera analysée. Le chapitre 7 clôt le travail par un récapitulatif et une

analyse des développements potentiels à venir. Le schéma ci-après met en évidence les

liens entre les différents chapitres.

1.Introduction

2.Mobile Agents 3.Formal Specification of MAS

4.Specification Part

5.Synthesis Part 6.A Practical Approach

7.Conclusion

�
�

�
�

�
�+

Q
Q

Q
Q

Q
Qs

�
�

�
�

�
�+

�
�

�
�

�
�+?

-

�
�

�
�

�
�+

Q
Q

Q
Q

Q
Qs

EINFÜHRUNG 11

Einführung

Die rasante Entwicklung unserer Informationsgesellschaft hat inzwischen zu einer explo-

sionsartigen Evolution der Computervernetzung geführt. Dies zeigt sich besonders im

Internet an einer ständig wachsenden Benutzerzahl. Neue Technologien im Anwendungs-

bereich bieten längst sowohl einen schnellen und unkomplizierten Zugang ins Internet

als auch die Möglichkeit der ”on-the-go”-Verbindung via GSM in die Netzwerke der mo-

bilen Kommunikation. Das vielfältige Angebot an derartigen Dienstleistungen wächst

in immer kürzeren Abständen.

Ein besonderer Trend, der im Zusammenhang mit dieser Evolution im Netzwerkbereich

steht und neue Fragen aufwirft, ist die Mobile Datenverarbeitung. Nicht nur Laptops

werden in Rechnernetze integriert, auch mobile Telefone eröffnen uns über ”Wireless

Application Protocol” (WAP) und ”Wireless Markup Language” (WML) den Zugang.

Personal organizers oder PDA’s ergänzen das Spektrum der Möglichkeiten, Verbindun-

gen in mobile Netze herzustellen. Für den Aufbau der Verbindung werden Techniken wie

”Infrared Data Association” (IrDA), ”Bluetooth” oder im Falle der Mobiltelefone auch

”GSM” und ”Universal Mobile Telecommunications System” (UMTS) genutzt. Diese

Anwendungen operieren auf der Basis nicht dynamisch beschränkter Netze, d.h. mobile

Agenten können während der Ausführung jederzeit hinzugefügt werden.

Die immer höhere Netzwerk-Kapazität genügt nach wie vor nicht den Ansprüchen einer

weiter wachsenden Zahl von Benutzern. Obwohl das Internet für seine unerschöpflichen

Möglichkeiten angepriesen wird, kann es nur einen beschränkten Katalog von Dienstleis-

tungen bedienen. Einen Weg, dieses Problem zu lösen, stellt die Anwendung der jüngst

sich entwickelnden Technologie mobiler Agenten in Aussicht.

Mobile Agenten sind Programme, die sich innerhalb eines Netzes von einem Computer

zu einem anderen bewegen (oder wie man sagt: ”migrieren”) und Befehle im Auftrag

ihrer Eigentümer autonom ausführen können. Diese ”Migration” ermöglicht die gegen-

seitige Benutzung sämtlicher Computerressourcen innerhalb des lokalen Netzes und die

effiziente Ausführung einer festgelegten Aufgabe mittels einer kooperativen Problem-

Verarbeitung, die Mitagenten koordiniert.

Ein Agent ”A” sammelt beispielsweise eine Datei C.txt auf einer Maschine ”C”, dann

eine Datei D.txt auf einer Maschine ”D”. Das ”Orts-Merkmal” ist dabei wesentlich,

denn es bewirkt eine zuverlässigere Anwendung. Es ist vorteilhafter, wenn ein Agent

sich an den Ort der Dateien bewegt, um sie zu sammeln, als wenn er diese aus der

Entfernung liest. Die Anwendung von mobilen Agenten vermindert Netzwerkprobleme

bei gleichzeitiger Steigerung der Sicherheit.

Um die Definition der mobilen Agenten mit einem Beispiel aus dem täglichen Leben

anschaulich zu machen, stelle man sich das folgende Szenario vor:

EINFÜHRUNG 12

Angenommen, Bob möchte ins Kino gehen, ohne jedoch zu wissen, wo sein Lieblings-

film am Abend gezeigt wird. Glücklicherweise hat Bob seinen kleinen Bruder Jake, der

gerne den Agenten 007 für ihn spielt. Jake bekommt also die Aufgabe herauszufinden,

wo Bobs Lieblingsfilm gezeigt wird. Um seine Mission zu erfüllen, soll Jake zu jedem

Kino in der Nachbarschaft gehen und wenn möglich eine Karte für den Lieblingsfilm

besorgen. Nach der Erfüllung dieser Arbeit kann er dann je nach Belieben entweder zu

Hause über seine Ergebnisse berichten oder mit seinen ”Geheimagent”-Freunden spielen

gehen. Jake hält die Mission für seiner würdig und setzt sich in Aktion. Er entscheidet

jedoch, sich die Lauferei zu sparen und die Hilfe seiner Agentenfreunde anzunehmen. Er

ruft sie an und bittet jeden, zum jeweils nächsten Kino zu gehen und sich nach Bob’s

Lieblingsfilm zu erkundigen. Wenn alle ihre Berichte abgeliefert haben, wird Jake die

Ergebnisse zusammenstellen und die Information an Bob weiterleiten.

Auf den Bereich der Technologie, des Internets und vor allem des WWW. übertragen,

würde das Beispiel so klingen:

Ein mobiler Agent bekommt die Aufgabe, anhand einer Auswahl an Kriterien definierte

Daten von verfügbaren Datenquellen (z.B WWW-Server) zu sammeln. Der Agent würde

dann zu den Computern migrieren, ihre Datenquellen erforschen und die Ergebnisse

an den Benutzer übermitteln, anstatt lediglich aus dem Internet die Seiten mit dem

fraglichen Inhalt von den Servern zu laden und zu durchsuchen. Die Forschungsergeb-

nisse von Theilmann’s Arbeit [96] zeigen, daß dieses Verfahren Zeit sowohl hinsichtlich

der Aufenthaltsdauer im Netz als auch bei der Erledigung der Aufgabe spart, je nach

Anstrengung (effort) seitens des Agenten und dem Umfang der Daten, die zum Be-

sitzer zurückübertragen werden sollen. Über diese Vorteile hinaus macht besonders die

Fähigkeit zur asynchronen und vom Kontakt mit ihrem Eigentümer unabhängigen Auf-

tragserledigung Agenten besonders interessant für Anwendungen mit end devices.

Nicht nur das Durchsuchen und Filtern von Datenquellen kann von Mobilen Agen-

ten übernommen werden. Andere Anwendungen finden sich in den Bereichen des E-

commerce, der Netzwerkverwaltung, bei der Informationsverteilung von parallelen Com-

putern, bei Dienstleistungen wie dem WebLogic, die auf mobile Agenten zurückgreifen,

um neue Dienste auf dem Server oder Fremdeindringen ausfindig zu machen. Ver-

schiedene Publikationen erwähnen Anwendungsgebiete über diese genannten hinaus, so

[72] oder [46] oder [94]. In den letzten fünf, sechs Jahren hat es mehr und mehr Ver-

suche einer Umsetzung der Technologie in die Praxis gegeben, wenn sie auch im Vergle-

ich zum Niveau der bis heute geleisteten Forschung eher gering ausfallen. Das ”Agents

for Remote Action”-Projekt (Ara) (1997) [84] ist eine Plattform für eine tragbare und

sichere Erprobung von mobilen Agenten, die an der Universität von Kaiserslautern en-

twickelt wird. Das spezifische Ziel von Ara im Unterschied zu ähnlichen Plattformen

besteht darin, die umfassende Funktionalität mobiler Agenten unter weitestgehender

EINFÜHRUNG 13

Beibehaltung der feststehenden Programmiermodelle und Sprachen zu garantieren. Aus

der Forschung inzwischen hervorgegangene Prototypen sind, um nur einige zu nennen,

D’Agents [49] (letzte Version in 2002), MadKit [51] von der Universität von Montpel-

lier (Frankreich) und Mole [9] (erfolgreich beendet nach 5 Jahren in 2000). Auch das

Mole-Projekt widmete sich Mobilen Agenten (MA) und prüfte diese insbesondere auf

Zuverlässigkeit, Sicherheit und hinsichtlich einer Anwendung von Java und CORBA in-

nerhalb desselben Systems. Zu weiteren, kommerzialisierten, Produkte gehören Aglets

[61] (IBM bietet bereits Dienstleistungen an, wie TabiCan im Internet), Grashopper [10]

(diese durch IKV im August 1998 gestartete Agent-Entwicklungsplattform ermöglicht

dem Benutzer eine Vielzahl von Anwendungen auf der Basis der Agenten-Technologie),

LEAP [6] (dieses Projekt konzentriert sich auf den Bedarf an offenen Infrastrukturen und

Dienstleistungen, welche dynamische, mobile Unternehmen unterstützen) oder JADE

[11] (Agent DEvelopment Framework, eine Software-Plattform zur Entwicklung Agenten-

basierter Anwendungen in Übereinstimmung mit den Spezifizierungen für intelligente

Multiagenten-Systeme der FIPA [39]).

Obwohl viele technologische Hürden, wie schnellere Netz-Transferraten, der Einsatz von

virtuellen Maschinen und plattformunabhängigen Programmiersprachen (d. h. Java,

HTML, XML, PostScript, etc. ...) sowie schnellere, bessere und robustere Computer,

inzwischen genommen sind, bleiben weiterhin bestimmte Problemfelder bestehen wie:

Kontrollmechanismen: Dieses Gebiet ist hauptsächlich mit dem Problem der Lokali-

sierung und der Terminierung mobiler Agenten beschäftigt. Baumann gibt eine

Übersicht ([8]) der existierenden Methoden und stellt weitere Lösungen für diese

Aufgaben in Aussicht.

Sicherheit: Dieses Gebiet befaßt sich mit dem Schutz sowohl des Computers als auch

der mobilen Agenten gegen Angriffe von böswilligen mobilen Agenten und/oder

Programmierumgebungen. F. Hohl in [53] hat dieses Problem untersucht.

Fehler-Toleranz: Die in die mobilen Agenten implementierte Fehler-Toleranz soll u.a.

sicherstellen, daß mobile Agenten nicht blockiert oder aufgrund ihrer Wechsel-

wirkung mit anderen mobilen Agenten oder Computern oder im Falle eines Netz-

Stillstands nicht verloren gehen. Eine Lösung für dieses Problem wird in [94] durch

die M. Strasser besprochen.

sowie die weite geographische Verbreitung, die vergrößerte Netz-Dynamik, um beispiel-

sweise mit Dienstleistungen neuer Art umzugehen. Ein weiteres erhebliches Problem

besteht in der Schwierigkeit, mobile Agenten dort zu testen, wo, wie besonders inner-

halb des Internets, es unklar ist, ob Fehler durch die Agenten selbst oder die Umgebung

EINFÜHRUNG 14

verursacht werden. Hinzu kommt, daß die Testkriterien durch die Navigation (also: ist

ein Agenten zuerst durch einen Knoten ”C” und dann durch ”D” gegangen?) und die

lokale Tätigkeit eines Agenten (also: nutzt dieser, um die Datei ”C.txt” an dem Knoten

”C” zu lesen, die lokalen Rechte oder einen Fernzugriff (remote access)?) definiert wer-

den müssen.

Motivation und wissenschaftlicher Beitrag

Die hier vorgestellte Forschungsarbeit zielt auf eine Technik für den Entwurf und die

Analyse mobiler Agenten-Systeme. Die Arbeit versucht, die Lücke zwischen formellen

Modellen mobiler Agenten und ihrer Anwendung/Implementierung zu überbrücken.

Auf das oben gegebene Beispiel mit den Protagonisten Jake und Bob und der Aufgabe,

Kinoprogramme zu erfragen, zurückkommend, sollen einige Fragen nachgetragen wer-

den, die sich während Jakes Mission ergeben könnten: Hat Jake, der kleine Bruder,

verstanden, daß die Karte für den selben Abend gewünscht wurde? Hatte er Geld, um

eine Karte zu kaufen? Würde er seinen Freunden den Wunsch des Bruders, die Kinokarte

zu kaufen, mitteilen? Was hätte geschehen sollen, wenn ihr Geld nicht ausgereicht hätte?

Was wäre geschehen, wenn Jake nach dem Kauf der Karte entschieden hätte, nicht gleich

nach Hause zu gehen, sondern erst mit seinen Freunden zu spielen und dabei die Karte

verloren hätte? Diese Fragen ergeben sich, solange die Mission nicht deutlich definiert

worden ist. Nur mit klaren Angaben, die das endgültige Ziel sowie die genaue Abfolge

der Ereignisse definieren, kann der junge 007 seine Mission erfolgreich abschließen. Das

beschriebene Beispiel ist eine natürliche Spezifizierung und der Anfangspunkt, von dem

aus wir einen Prototyp und eine Simulation erstellen müssen, falls wir eine echtes Kino

finden wollen. Dafür ist nun allerdings eine Vielzahl an Lösungsmöglichkeiten denkbar.

Weil die Spezifizierung textlich, d. h. nicht-formell ist, ist es unmöglich, zu einem

vollständigen Prototypen zu gelangen, der diese Mission erfolgreich beenden könnte.

Beim Design von mobilen Agenten gilt es genau diese Fragen zu berücksichtigen. Wurde

die Spezifizierung für die Agenten und deren Aufgaben richtig durchgeführt? Der

Terminus ”Spezifizierung” wird im Merriam-Webster-Online-Dictionary http://www.

merriam-webster.com als ”a detailed precise presentation of something or of a plan or

proposal for something”, also als eine genaue und detaillierte Präsentation von etwas

oder einem Plan oder einem Vorschlag für etwas” definiert. Wir konzentrieren uns hier

sogar auf die ”formelle Spezifizierung”, denn innerhalb eines mathematischen Konzepts

präsentiert, erlaubt sie Beweise oder formelle Analysen und Begründungen.

Die wichtigsten Inhalte unserer Arbeit können wie folgt zusammengefaßt werden:

• sie gibt eine Übersicht über die gegenwärtig in der Entwicklung befindlichen inter-

EINFÜHRUNG 15

nationalen Projekte zu ”mobilen Agenten” und bespricht die Vor- und Nachteile

mobiler Agenten. (Kapitel 2)

• sie beschreibt verschiedene formelle Spezifizierungssprachen für mobile Agenten.

(Kapitel 3)

• sie präsentiert und erweitert eine Methode, die formelle Spezifizierungen mit dem

Higher Order π-Kalkül schreibt und überprüft Eigenschaften, indem sie Gebrauch

von einem model-checker macht. (Kapitel 4)

• sie schlägt drei verschiedene Methoden für die Implementierung eines mobilen

Agenten vor und diskutiert ihre Durchführbarkeit, um die angemessenste Methode

auszuwählen. (Kapitel 5)

• Nach der Einführung einer theoretischen Basis für die Entwicklung eines mobilen

Agenten-Systems entwickeln wir einen Prototypen, genannt HOPiTool (Abkürzung

steht für ”Higher Order Pi-Kalkül Tool”), der die Simulation und Überprüfung von

mobilen Agenten vor dem Einsatz innerhalb eines Netzes lokal erlaubt. (Kapitel

6)

Die Standardisierungsherausforderungen

Die Ideen in bezug auf mobile Codes und ihre Implementierung ergaben sich aus der

Praxis. Die meisten gegenwärtig verfügbaren und genutzten Standards, Plattformen

und Sprachen für die Entwicklung dieser Art von Systemen spiegeln diese Tatsache

wieder: sie wurden eher ad hoc konstruiert, als daß sie auf theoretischen Untersuchun-

gen basieren würden. Theoretische rechnerbasierte Modelle sowie entsprechende formelle

Spezifizierungssprachen bleiben notwendig, um diese Ideen auf eine solide Basis zu stellen

und aufgrund klarer Konzepte das Verstehen, die Analyse und den Vergleich mit an-

deren Modellen zu ermöglichen. Angefangen mit dem π-Kalkül wurden einige Versuche

in Richtung rechnerbedingter Modelle für mobile Systeme unternommen, die z.B. auf

abstrakten Zustandmaschinen [16] und mobiler Umgebung gründeten, [23]. Für die

praktische Anwendung bedarf es jedoch Spezifizierungssprachen auf höchstem Niveau

sowie Programmiersprachen, deren Semantik mittels dieser Systeme beschrieben wer-

den kann. Es gibt einige Vorschläge von entsprechenden Programmiersprachen (z.B.

KLAIM [75], Mobile UNITY [66], Pict [86], Nomadic Pict [104]). Aber auf dem Niveau

der Spezifizierung und Gültigkeitserklärung/Simulation von mobilen Anwendungen fehlt

eine in großem Maße nutzbare formelle Methode, um praktische Systeme zu bauen. In

Anbetracht mobiler Codesysteme sind komplexe Verteilungsaspekte wie Lage, Mobilität

EINFÜHRUNG 16

und Kommunikation und, in einigen Fällen, Mißerfolge nicht nur Ausführungsprobleme,

sondern auch ein Teil der Funktionalität des Systems. In der Obhut von Standard-

isierungsorganen wie MASIF [28], MASIF FIPA [41], CORBA[85], Corba etc. arbeiten

Standardisierungskomitees ständig daran, Standards für Agenten und insbesondere für

mobile Agentenprodukte zu erstellen, für die die Hauptlogik in Software umgesetzt wer-

den soll. In den frühen Phasen dieses Prozesses werden viele Eigenschaften, Dienstleis-

tungen, und Funktionalitäten mit Hilfe von informellen operationellen Beschreibungen,

Tabellen und Visualisierungen demonstriert. Diese Beschreibungen entwickeln sich dy-

namisch, und es wird schnell schwierig, mit den Zeichnungen und Gültigkeitserklärungen

umzugehen.

Ein praktischer Vorschlag

Der Entwicklungsprozeß von mobilen Agenten, ausgehend von informellen-funktionellen

oder operationellen Voraussetzungen bis hin zu formellen Spezifizierungen auf höchster

Ebene, ist ein beliebtes Forschungsthema. Jedoch bleiben viele Fragen bestehen, um

Voraussetzungen und formelle Spezifizierungen zu definieren, insbesondere bezüglich

neuerer Techniken. Formelle Beschreibungstechniken (FDT), wie der Higher Order Pi-

Kalkül [90], HOπ wurden geschaffen, um funktionelle Voraussetzungen formell auszudrü-

cken. Insbesondere eignen sie sich sehr gut für die genaue Definition von mobilen Sys-

temen. Auf akademischer wie industrieller Seite zeichnet sich in den letzten Jahren ein

starkes Interesse am Design derartiger Szenarios ab. Eine Vielzahl an Notationen wird

verwendet, um Designszenarien zu beschreiben: Grammatiken, Automaten, Prozeß-

Algebra und Kommunikationsdiagramme.

Mehrere Techniken können für die Lösung von Problemen verwendet werden, die mit

den Standardisierungsprozessen und Szenarien verbunden sind. Wir benutzen die HOπ

Prozeß-Algebra, um die Spezifizierung von mobilen Agenten-Systemen zu beschreiben.

Diese Spezifizierungssprache ist direkt mit den Eigenschaften des Systems verbunden.

Um beispielsweise die Leistungseigenschaften in Betracht zu ziehen, ist es wichtig, eine

Spezifizierungssprache zu benutzen, die solche Einschränkungen unterstützt. In un-

serem Fall interessiert die Mobilität dahingehend, daß die Agenten sich richtig von einer

Maschine ”E” zu einer Maschine ”F” bewegen. Die Spezifizierungssprache muß also

Deklarationen solcher Bewegungen erlauben. Der Higher Order Pi-Kalkül HOπ gehört

zu den Spezifizierungssprachen, die diesen mobilen Aspekt in Betracht zieht.

Nach der vorbereitenden Selektion des geeigneten theoretischen Rahmens und seiner

Verbesserung entwickeln wir einen praktischen Prototypen HOPiTool für die Vali-

dierung und das szenariobasierte Testen, mit dem Ziel, Widersprüchlichkeiten, Am-

EINFÜHRUNG 17

biguitäten, Unvollständigkeiten und andere Probleme so bald wie möglich zu erkennen.

Ein von den Entwicklern erfordertes praktisches Ergebnis besteht in der Erzeugung einer

gültigen Dokumentation, die leicht zu verstehen ist. Außerdem gilt es, eine gültige Test-

folge zu erstellen, die in späteren Entwicklungsphasen wiederverwendet werden kann.

Wir illustrieren einen Teil dieses Prozesses, indem wir den Dienstlokalisierungssprotokoll

(SLP) [52]. als Fallstudie einführen:

Der Vorschlag eines Szenarios für den HOPiTool

Die Verwendung einer formellen Sprache von higher-order wie die HOπ HOπfür einen

szenario-basierten Zugang stellt eine vernünftige Entscheidung für die Beschreibung

von mobilen und kommunizierenden Systemen dar. Sie lassen sich gut in die Desig-

nanordnung einpassen, die wir in Abbildung 2 vorschlagen, wo wir versuchen, die Lücke

zwischen informellen Voraussetzungen und dem ersten System-Design zu überbrücken.

Anforderungen sind gewöhnlich evolutiv und dynamisch; sie ändern sich und werden

Figure 2: Scenario-Based Approach

von Zeit zu Zeit angepaßt. Deshalb wird ein wiederholender Prozeß das schnelle Proto-

typing und die direkte Generierung von Testfällen aus Szenarien erlauben. Abbildung

1.1 schlägt eine Methode vor, wo der Hauptzyklus mit der Beschreibung des Szenarios

beschäftigt ist. Die higher-order Spezifikation wird die Basis für die Entwicklung un-

seres Prototyps sein. Gleichzeitig könnten Testdatensätze direkt aus diesem Szenario

erzeugt und dann benutzt werden, um den Prototyp hinsichtlich der Spezifizierung

EINFÜHRUNG 18

zu überprüfen. Die Ergebnisse, die wir von jenen Tests erhalten, können uns Auf-

schluß darüber geben, ob für die gewünschte Spezifizierung zusätzliche Testdatensätze

nötig sind oder nicht. Um die Eigenschaften des Systems analysieren zu können, ist es

notwendig, einen vorhandenen model checker (wie UPPAAL) innerhalb unseres Proto-

typs einzubetten. Wir nehmen dann an, daß der Prototyp den Anforderungen entspricht.

Aus dieser Methode ergaben sich mehrere Vorteile:

• die Trennung der Funktionalitäten von der zugrundeliegenden Struktur: Szenarien

können wieder verwendet werden.

• Schnelles Prototyping: sobald die Struktur und das Szenario ausgewählt und doku-

mentiert wurden, kann ein Prototyp schnell erzeugt werden.

• Designdokumentation: die Dokumentation wird entlang der Entwicklungsphase

erzeugt. Diese Art der Annäherung ermutigt Designer, nützliche Dokumentationen

methodisch zu erzeugen.

HOPiTool ist ein Simulationsprototyp fr mobile Agenten, das durch die Abbildung der

HOπ-Spezifikation in ein Simulationsmodell sowie durch die automatische Generierung

von Code fr eine Mobilittsuntersttzungsplattform mittels Jini/Java, charakterisiert wer-

den kann.

Inhaltsübersicht

Kapitel 2 führt verschiedene mobile Agenten-Systeme sowie mehrere internationale Pro-

jekte ein. Die Arbeit bespricht nur einige gegenwärtige Projekte ab dem Jahr 2000.

Die Wahl dieser Projekte zeigt die Vielfältigkeit der Anwendungen, die mobile Agenten

gebrauchen. Das Thema der mobilen Agenten wird eingeführt, indem verschiedene In-

terpretationen des Terms ”mobiler Agent”, verschiedene Anwendungen und Definitionen

diskutiert werden. Das folgende Kapitel 3 wird sich auf die verschiedenen Annäherungen,

die in der Spezifikation der mobilen Agenten verwendet werden, konzentrieren. Kapitel

4 bespricht eine higher-order formelle Methode für die Mobilität und das Verwenden

eines model-checkers, der Systemeigenschaften eines mobilen Systems überprüft. Kapi-

tel 5 schlägt drei verschiedene Methoden vor, wie man ein mobiles Agenten-System am

besten durchführt und bespricht die Durchführbarkeit eines praktischen Ergebnisses.

Kapitel 6 schlägt eine praktische, auf unsere vorherige theoretische Arbeit begründete,

Anwendung vor. Das Prototyp HOPiTool wird eingeführt und eine Fallstudie wird

besprochen. Kapitel 7 schließt die Arbeit mit einer Zusammenfassung und eine Diskus-

sion über die zukünftigen möglichen Entwicklungen. Die Illustration unten zeigt die

EINFÜHRUNG 19

Beziehung zwischen den einzelnen Kapiteln.

1.Introduction

2.Mobile Agents 3.Formal Specification of MAS

4.Specification Part

5.Synthesis Part 6.A Practical Approach

7.Conclusion

�
�

�
�

�
�+

Q
Q

Q
Q

Q
Qs

�
�

�
�

�
�+

�
�

�
�

�
�+?

-

�
�

�
�

�
�+

Q
Q

Q
Q

Q
Qs

Part I

STATE OF THE ART

20

Chapter 1

Introduction

Today, the rapid development of our information society has lead to an explosive evo-

lution of computer networking. This is particularly obvious in the continuous growth

in the number of network users, especially within the Internet. New technologies in the

consumer electronics’ sector are either offering fast and simple access to the Internet or

a means to connect ”on-the-go” by way of Global System for Mobile Communication

(GSM) networks. Furthermore, the abundance of such services is growing at an ever-

more accelerated pace.

Associated with this evolution in networking is a trend that is raising more questions:

Mobile Computing. Not only laptops are being integrated in computer networks, but

also mobile telephones are connecting us to networks via Wireless Application Protocol

(WAP) and Wireless Markup Language (WML). Personal organizers, or Personal Data

Assistants (PDA’s), serve as an additional option for mobile network connectivity. They

use techniques of connection such as Infrared Data Association (IrDA), Bluetooth or, like

mobile telephones, GSM and Universal Mobile Telecommunications System (UMTS).

The applications specified above are operational on not dynamically limited networks,

i.e. mobile agents can be added as the execution progresses. The services used by these

applications can also use other services,

• whose lifespan is limited in time or providing rights giving a time variable access.

• whose supplier progresses. For example, a service of a phone book can be on a

machine ”A” and for some problems due to ”A”, moved to a more progressive

machine B.

21

22

The important property of these applications is also that the networks are progressive.

This development has given rise to many problems and new challenges, of which only a

few will be discussed here: the growth of network capacity could not, as yet, cater to

the rapid increase in the number of users. Although the Internet has been touted as

a network of inexhaustible possibilities, it can only provide a limited range of services

and usage without having a permanently connected computer. One way to solve this

problem is the recently emerging mobile agents technology.

Mobile agents are programs that are capable of moving (or migrating) from one com-

puter to another within a network and autonomously carrying out commands on behalf

of their owner. This migration allows for, both the exploitation of all the member com-

puters’ resources within a local network and an efficient execution of a task by means

of cooperative problem processing using fellow agents.

For instance, an agent ”A” collects a data file C.txt on a machine ”C” and then the

same agent collects the data file D.txt on a machine called ”D”. The ”locality” char-

acteristic seen here is essential for the improvement of the applications reliability. It is

preferable for an agent to move in order to collect data files than reading these remotely.

A diminution of networks problems and better security is the advantage of using mobile

agents.

If one were to provide the definition of mobile agents using an example in the context

of daily life, he/she could apply the following scenario:

Imagine that Bob would like to go to the movies, yet he does not know where his favorite

movie is being played tonight. Luckily, Bob has a little brother, Jake, who likes to play

agent 007. Jake has now been given the mission of finding out where Bob’s favorite

movie is shown. To carry out his mission he must go to every cinema in the neigh-

borhood and, if possible, purchase a ticket at the one showing the desired film. After

fulfilling the objective, he can then choose to report home on his findings or go play

with his other ”secret agent” friends. The young 007 feels he has been given a worthy

mission and is now in active service. He decides to save the legwork and enlist the help

of his agent friends. He calls them up and gives them the assignment of going to the

nearest cinema and inquiring about the film. After all have reported in, he collects the

findings together and passes on the information to Bob.

Another suitable example, now back in the realm of technology, the Internet and, espe-

cially, the World Wide Web (WWW), would be:

A mobile agent has been given the task of retrieving data from any number of data

sources (e.g. WWW servers) by sifting through them using a set of defined criteria.

The agent would then migrate to the computers and explore their data sources and

return the results back to the user instead of merely loading and examining pages con-

taining the various content of the servers over the Internet. According to Theilmann’s

23

thesis [96], this procedure can lead to considerable reductions in, both the strain on

the network and the necessary time needed to execute the task, depending on the effort

on the part of the agent and the size of the data to be explored and the data being

transmitted back to the owner. These advantages coupled together with the ability of

agents to carry out their tasks in an asynchronous manner without any further contact

to their owners also make them particularly interesting for use with end devices.

Searching and filtering through sources of data are not the only tasks that mobile agents

are capable of carrying out. Other uses can be found within the realm of e-commerce,

network management, information distribution of parallel computers, services like We-

bLogic, which use mobile agents in order to find new services on the server and intrusion

detection. Various published works have mentioned still other areas of application, such

as [72], [46], [94]. The last five to six years have witnessed more and more attempts

to apply this technology, yet the applications themselves are negligible when compar-

ing them to the level of the research being conducted today. The ”Agents for Remote

Action” (Ara) project [84] (1997) is a platform for the portable and secure execution of

mobile agents under development at the University of Kaiserslautern. Ara’s specific aim

in comparison to similar platforms is to provide full mobile agent functionality while

retaining as much as possible of established programming models and languages. The

projects D’Agents [49] (latest version released in 2002), MadKit [51] from the Univer-

sity of Montpellier (France) and Mole [9] (successfully completed after 5 years in 2000)

constitute a few of the research prototypes. The Mole project in Stuttgart was a project

in mobile agents (MA) which re-examined MA in the current context and examined

such ideas as ”MA and reliability”, ”MA and security” and mixing Java and CORBA

within the same system. Other commercially-driven products include Aglets [61] (IBM

already provides actual services based on this work, such as TabiCan on the Internet),

Grashopper [10] (the agent development platform launched by IKV++ in August 1998,

enables the user to create a wealth of applications based on agent technology), LEAP [6]

(this project is addressing the need for open infrastructures and services which support

dynamic, mobile enterprises) or JADE [11] (Java Agent DEvelopment Framework, a

software framework to develop agent-based applications in compliance with the FIPA

[39] specifications for interoperable intelligent multi-agent systems). All these examples

are very technical platforms, which the programmer needs in order to develop his mobile

agents. The notion of mobile agents in these applications is introduced either through

the semi-formal and non-formal specification of the system, which contains the notion

of mobility, or through a technical library, which is located externally.

Although many technological hurdles have been overcome, such as faster network trans-

fer rates, the use of virtual machines, programming languages that are platform inde-

pendent (i.e. Java, HTML, XML, PostScript, etc...) and faster, better, more robust

1.1. MOTIVATION AND SCIENTIFIC CONTRIBUTION 24

computers, some problems still remain:

Control mechanisms: This area is mainly concerned with the problem of locating

and terminating mobile agents. Baumann gives an overview ([8]) of an existing

approach, and proposes further solutions for these tasks.

Security: This area of security deals with the protection of both the computer and the

mobile agents against attacks from malicious mobile agents and/or implementation

environments. F. Hohl has examined this problem in [53].

Fault tolerance: The fault tolerance in the implementation of mobile agents seeks to

ensure, among other things, that mobile agents are not blocked or lost due to their

interaction with other mobile agents or computers - or in case of network stoppage.

A solution for this problem is discussed in [94] by M. Strasser.

Other problems arise from wide-spread geographic distribution, increased network dy-

namics for dealing with, for example, occurrences of new kinds of services. Another

significant problem is the difficulty in testing mobile agents, where, particularly within

Internet, it is unclear whether errors encountered are due to the agents themselves or to

their environment. Also the test criteria have to be defined concerning the navigation

(has an agent gone first through a node C and second through D?) and local activity

of an agent (for reading the file C.txt on the node C, does it use the local rights or does

it use a remote access?).

1.1 Motivation and Scientific Contribution

The work reported in this thesis is aimed at proposing a technique for modeling and an-

alyzing mobile agent systems, and attempting to bridge the gap between formal mobile

agent models and mobile agent implementations.

Looking at the example given about the little brother’s task of investigating movie show-

ing times, a few questions could possibly present themselves during the mission. Did

Jake, the little brother, understand that the ticket requested was for a show that very

evening? Did he have the money to make the purchase? Would he have expressed his

brother’s desire of buying a ticket to his friends? If so, what were to happen if they

did not have enough money? What would have happened had he bought the ticket, yet

didn’t come home directly deciding, instead, to play with his friends and, in the process,

lost the ticket? These questions arise when the mission has not been clearly defined.

Only after clearly stating what the definitive objective is and what the exact sequence of

1.1. MOTIVATION AND SCIENTIFIC CONTRIBUTION 25

events are, can 007 junior be assured of the end of his mission and, once done, take sat-

isfaction in knowing that his important, secret mission has been successfully completed.

The example described above is a natural specification and starting from that we have

to design a prototype and carry out a simulation if we want to find a real theater. There

are a large number of solutions on how to find a theater. Because the specification is

textual i.e. informal, it is impossible to lead to a complete prototype capable to realize

this mission.

These are the questions that need to be raised in the design of mobile agents. Has the

specification for the agents and their task been correctly made? The word ”specification”

is defined in the Merriam-Webster Online Dictionary http//:www.merriam-webster.

com as ”a detailed precise presentation of something or of a plan or proposal for some-

thing”. Here we even focus on ”formal specification” i.e., presented within some math-

ematical framework it allows proofs or formal analysis and reasoning.

The major contributions of our work can be summarized as follows:

• Give an overview of international ”mobile agent” projects currently under devel-

opment and discuss the advantages and disadvantages of mobile agents. (Chapter

2)

• Discuss different formal specification languages in order to specify a mobile agent.

(Chapter 3)

• Present and extend an approach where formal specifications are written within the

process-algebraic language Higher-Order π-Calculus and also verify some proper-

ties using an existing model-checker. (Chapter 4)

• Propose three different methods to implement a mobile agent and discusses their

feasibility, in order to choose the most convenient method. (Chapter 5)

• After presenting a theoretical basis which enables the development of a mobile

agent system, we develop an prototype called HOPiTool (standing for ”Higher-

Order π-Calculus Tool”) that allows simulation and testing of mobile agents locally

before executing them within a network. (Chapter 6)

1.1.1 The Standardization Challenges

The ideas around mobile code and its implementations emerged from a practical ap-

proach. Most of the standards, platforms and languages currently available and widely

used for the development of this kind of systems reflect this fact: they were constructed

1.1. MOTIVATION AND SCIENTIFIC CONTRIBUTION 26

in an ad hoc way rather than based on corresponding theoretical investigations. The-

oretical computational models as well as corresponding formal specification languages

are still necessary to give a sound basis to these ideas, allowing a better understanding

(or making concepts clearer), analysis, comparison with other models and even predict-

ing their evolution. Starting with the π-calculus, there had been some efforts towards

computational models for mobile systems, e.g. based on abstract state machines [16]

and on mobile ambients [23]. However, to be used in practical applications, high-level

specification languages as well as programming languages whose semantics can be de-

scribed using such models must be provided. There are some proposals of corresponding

programming languages (e.g. KLAIM [75], Mobile UNITY [66], Pict [86], Nomadic Pict

[104]), but on the level of specification and validation/simulation of mobile applications,

there is still no formal method that is largely used to build practical systems. When

considering mobile code systems, complex distribution aspects, like location and mobil-

ity, communication, and, in some cases, failures, are not only implementation issues but

also part of the functionality of the system. Under the auspices of standardization bod-

ies such as MASIF [28], FIPA [41], CORBA [85], etc., standardization committees are

constantly at work to produce standards for agents and in particular for mobile agents

products, for which the main logic is meant to be implemented in software. In the early

stages of this processes, many features, services, and functionalities are described using

informal operational descriptions, tables and visual. These descriptions evolve dynami-

cally, and their drafting and validation quickly become difficult to manage.

In this context, the following issues should be addressed:

• While designing systems and services at the initial stages, the discussion might

focus at a level of detail that is too low with respect to the knowledge (about

data, messages, components, etc.) available at the time. Descriptions that include

irrelevant details tend to obscure the main idea behind a feature/service/function-

ality, especially when the latter needs further modifications or refinements. Several

levels of detail (abstraction) are often mixed in a single description. For instance,

the enumeration of the nodes the agent has to explore can be declared and also the

way how to find out the next node (if the roadmap is not known at the beginning

of the mission).

• There are possibly ambiguities, inconsistencies or interactions inside or between

service descriptions, or between levels of abstraction of a given service. These

remain difficult to detect with conventional inspection methods, and often remain

hidden until errors are discovered after implementation, at which point correction

can be very costly. For instance, in the same case the structure of the messages

between agents is more important that the structure of the requests, which are

1.1. MOTIVATION AND SCIENTIFIC CONTRIBUTION 27

sent to the host when the agent wants to know which file has to be collected.

1.1.2 A Practical Proposal

The process of going from informal functional or operational requirements to a high-

level formal specification is a research subject where much work has been done. How-

ever, many challenges still remain, especially regarding newer techniques for defining

requirements and formal specifications. Formal Description Techniques (FDT), such as

Higher-Order π-calculus (HOπ) [90], were created in order to formally express functional

requirements. In particular, they are well suited for the precise definition of mobile sys-

tems. Over the last few years, there has been a strong interest, from both academia and

industry, in the use of scenarios for system design. However, many different meanings

were associated with the word ”scenario”. They are related to traces (of internal/ex-

ternal events), communication between components, interaction sequences between a

system and its user, to a more or less generic collection of such traces, etc. Numerous

notations are also used to describe them: grammars, automata, process algebras and

communication diagrams.

Several techniques can be used to address the issues related to standardization processes

and scenarios. We use the HOπ process algebra to describe the specification of mobile

agent systems. The specification language (or rather the expression strength of the

specification language) is directly linked to the definition of the system properties which

one wishes to establish. For example, to take into account performance properties, it is

essential to use a specification language that supports these constraints. In our case, one

is interested in the mobility and wants to establish properties stating that the agents

move correctly from a machine ”E” to a machine ”F”, then it is necessary that the spec-

ification language allows declarations of such movements. The Higher-Order π-Calculus

is such a specification language, which takes into account the mobility aspect.

After the preliminary work of selecting and improving the most adequate theoretical

framework, we develop a practical prototype HOPiTool for the validation and for the

scenario based testing, in order to detect inconsistencies, ambiguities, incompleteness,

and other problems as soon as possible. One of the practical results, needed by the

developers, is to produce documentation that is more easily understood and also is val-

idated as much as possible, and to produce a validated test suite that can be reused

at later stages, including implementation. The π-Calculus is hidden within the core of

the test suite. We illustrate part of this process on a case study involving the Service

Location Protocol (SLP) [52].

1.1. MOTIVATION AND SCIENTIFIC CONTRIBUTION 28

1.1.3 A Proposed Scenario for the HOPiTool

The use of a higher-order formal language as the HOπ in a scenario-based approach

represents a judicious choice for the description of mobile and communicating systems.

They fit well in the design approach that we propose in Figure 1.1, where we intend to

bridge the gap between informal requirements and the first system design. Requirements

Figure 1.1: Scenario-Based Approach

are usually evolutive and dynamic; they change and are adapted over time. This is

why an iterative and incremental process will allow rapid prototyping and test cases

generation directly from scenarios. Figure 1.1 proposes an approach where the main

cycle is concerned with the description of the scenarios. They are then merged in order

to (manually) synthesize a higher-order specification, which will be the basis for the

construction of our prototype. Concurrently, test cases could be generated from these

scenarios and then be used to test the prototype with respect to the specification. The

results obtained from those tests will allow us to see whether or not additional test cases

are necessary in order to achieve the desired specification coverage. In order to verify

and analyze properties of our system it is necessary to embed an existing model checker

(like UPPAAL) [12] within our prototype. We then consider that the prototype meets

the requirements. This approach presents several advantages:

• Separation of the functionalities from the underlying structure: since scenarios

are formalized at a higher level of abstraction than message exchanges, different

1.2. OUTLINE 29

underlying structures or architectures can be evaluated with more flexibility. The

scenarios then become highly reusable entities. As mentioned below, they can be

used again to test the implementation.

• Fast prototyping: once the structure and the scenarios are selected and docu-

mented, a prototype can then be generated rapidly.

• Design documentation: the documentation is done as we go along the design cycle.

Very often, designers document their design only when they have to; this kind of

approach encourages designers to methodically produce useful documentation.

Applications of mobile agents, written according to the formal language HOπ and the

approach shown before, can be simulated with the simulation prototype HOPiTool.

Moreover, code can be automatically generated following a straightforward mapping to

Java classes considering the use of a mobility support platform, such as Java Intelligent

Network Infrastructure (Jini)[77].

The HOPiTool is a prototype for the simulation of mobile agents and can be character-

ized by the mapping of a higher-order π-Calculus specification into a simulation model

and the generation of code for a mobility support platform.

1.2 Outline

Chapter 2 introduces different mobile agent systems and several worldwide projects

based on these. The work discusses only some current projects from the year 2000 to

present. The choice of these projects shows the variety of applications using mobile

agents. The topic of mobile agents has been introduced by covering the various inter-

pretations of the term ”mobile agents”, outlining the possible applications of mobile

agents and presenting the definition of mobile agents as used within this work. Then

chapter 3 focuses on the different approaches used in the specification of mobile agents.

Chapter 4 discusses a higher-order formal method for mobility and applying a model

checker that verifies some system properties of a mobility protocol. Chapter 5 proposes

three different methods on how to implement a mobile agent system and discusses the

feasibility of a practical result. Chapter 6 proposes a practical application based on

our previous theoretical work. The prototype HOPiTool will be introduced and a case

study will be discussed. Chapter 7 concludes the work with a summary, a discussion on

transferring the desired results to other areas and an outlook on future developments.

The illustration below shows the chapters as well as the relations between each other.

1.2. OUTLINE 30

1.Introduction

2.Mobile Agents 3.Formal Specification of MAS

4.Specification Part

5.Synthesis Part 6.A Practical Approach

7.Conclusion

�
�

�
�

�
�+

Q
Q

Q
Q

Q
Qs

�
�

�
�

�
�+

�
�

�
�

�
�+?

-

�
�

�
�

�
�+

Q
Q

Q
Q

Q
Qs

Chapter 2

Mobile Agents

A 600 foot waterfall whose face is frozen solid. Pushing in still closer, there is a tiny

black dot inching its way up the ice. A human figure. This is: JAMES BOND, BRITISH

SECRET SERVICE AGENT, 007 [93]. Bond is sweating and straining, four hundred feet

in the air. He has an ice-pick tethered to each hand, ice-cleats on his boots. A black

backpack. Bond climbs. Huffing, sweating, he goes up, and up, until another angle.

Bond pauses. Thinks.

James Bond is a human agent, he can move around the world, he can carry things, he

is autonomous, he always performs some jobs on behalf of his employer and the most

important thing is that he thinks. Like in many others scientific areas, the humanity

progresses by taking examples from his environments and nature. The human agents

were the model of a software agent and researchers over the world are trying to perfect

the software, to make it ”human”. The ideal of a software agent is one, he can act in the

same way a human agent does. Nowadays the software agents are not ”human”, they

use artificial intelligence in stand of thinking and they can move around the network,

are autonomous and carry out some jobs. Mobile agents systems are special software

agents, which provide a particular program paradigm.

This chapter examines the state-of-the-art enabling technologies for mobile agents, where

the term of the mobile agent system will be explained from a description of the term

”mobile code system”. The first part lists a number of potential advantages and dis-

advantages of mobile agents concluding with several recent success stories in this field.

The second part of this chapter deals with code mobility, existing mobility forms, design

patterns and standardizations. The chapter concludes with some personal reflections

about the usefulness of the research on ”mobile agents” nowadays and explains that our

research brings solutions to cover some of the shown disadvantages of mobile agents.

31

2.1. WHY MOBILE AGENTS? 32

2.1 Why Mobile Agents?

Mobile agents are software abstractions that can migrate across the network representing

users in various tasks. This is a contentious topic [71] that attracts some researchers

and repels others. Some dislike the ”mobile” attribute; the others the ”agent” noun.

Mobile agent opponents believe that most problems addressed by mobility can be equally

well, yet more easily and more securely, solved by static clients that exchange messages.

Those who favor mobility justify its advantage over static alternatives with benefits,

such as improved locality of reference, ability to represent disconnected users, flexibility,

and customization. The ideas of mobile abstractions are probably as old as distributed

systems.

Mobility is an orthogonal property of agents, i.e., not all agents are mobile. An agent

can just sit there and communicate with its environment through conventional means,

such as remote procedure calling and messaging. Agents that do not or cannot move are

called stationary agents. A stationary agent executes only on the system on which it

starts executing. If it needs information on another system or needs to interact with an

agent on another system, it typically uses a communication mechanism, such as remote

procedure calling. In contrast, a mobile agent is not bound to the system on which its

execution starts [60]. It is free to travel among the hosts in the network. Created in

one execution environment, it can transport its ”state” and ”code” with it to another

execution environment in the network, where it resumes execution. The term ”state”

typically means the attribute values of the agent that help it to determine what to

do when it resumes execution at its destination. ”Code” in an object-oriented context

means the class code necessary for an agent to execute. A mobile agent has the unique

ability to transport itself from one system in a network to another in the same network.

This ability allows it to move to a system containing an agent with which it wants to

interact and then to take advantage of being in the same host or network as the agent.

To make use of mobile agents, a system has to incorporate a mobility framework. The

framework has to provide facilities that support all of the agent models, including the

navigation model.

For the life-cycle model, services to create, destroy, start, suspend, stop, etc., agents are

needed.

The computational model refers to the computational capabilities of an agent, which

include data manipulation and thread control primitives.

The security model describes the ways in which agents can access network resources,

as well as the ways of accessing the internals of the agents from the network.

2.1. WHY MOBILE AGENTS? 33

The communication model defines the communication between agents and between

an agent and other entities (e.g., the network or database).

The navigation model All issues referring to transporting an agent (with or without

its state) between two computational entities residing in different locations are

handled by the navigation model.

Obviously, the framework incurs certain costs including increased memory requirements

and execution and access delays on every participating device. The underlying technol-

ogy, however, is evolving rapidly. For example, the footprints of certain Java Virtual

Machines (JVM), which are the basis for many mobile agent frameworks, are very small

making them suitable for embedded systems [58]. Some researchers like in [14] believe

that the use of Java chips will be important in the future networked devices. In ad-

dition, forthcoming new software packages like Jini [59] address many of the needs of

agent-based systems. The size of mobile agents depends on what they do. In swarm

intelligence [103], the agents are very small. On the other hand, configuration or diag-

nostic agents might get quite big, because they need to encode complex algorithms or

reasoning engines. However, agents can extend their capabilities on-the-fly, on-site by

downloading required code off the network. They can carry only the minimum function-

ality, which can grow depending on the local environment and needs. This capability is

facilitated by code mobility.

2.1.1 Reasons for Success

According to [62] and [36] there are many areas that may benefit from appropriate use

of mobile agents instead of, or in addition to, classical client/server models.

1. Mobile agents decrease the network load.

Concurrent and distributed systems often rely on communication protocols engag-

ing multiple interactions to perform a given task. The result is a lot of network

traffic. Mobile agents allow users to package a conversation and dispatch it to a

destination host where interactions take place locally. Mobile agents are also use-

ful when reducing the flow of raw data in the network. When very large volumes

of data are stored at remote hosts, that data should be processed in its locality

rather than transferred over the network. The motto for agent-based data pro-

cessing is simple: Move the computation to the data rather than the data to the

computation.

2. Mobile agents overcome network latency.

2.1. WHY MOBILE AGENTS? 34

Critical real-time systems, such as robots in manufacturing processes, need to

respond in real time to changes in their environments. Controlling such systems

through a factory network of substantial size involves significant latencies. For

critical real-time systems, such latencies are not acceptable. Mobile agents offer

a solution, because they can be dispatched from a central controller to act locally

and execute the controller’s directions directly.

3. Mobile agents encapsulate protocols.

When data is exchanged in a distributed system, each host owns the code that

implements the protocols needed to properly encode outgoing data and interpret

incoming data. However, as protocols evolve to accommodate new requirements

for efficiency or security, it is cumbersome if not impossible to upgrade protocol

code properly. As a result, protocols often become a legacy problem. Mobile

agents, on the other hand, can move to remote hosts to establish ”channels” based

on proprietary protocols.

4. Mobile agents perform asynchronously and autonomously.

Mobile devices often rely on expensive or fragile network connections. Tasks requir-

ing a continuously open connection between a mobile device and a fixed network

are probably not economically or technically feasible. To solve this problem, tasks

can be embedded into mobile agents, which can then be dispatched into the net-

work. After being dispatched, the agents become independent of the process that

created them and can operate asynchronously and autonomously. Mobile agents

can be delegated to perform certain tasks even if the delegating entity does not

remain active.

5. Mobile agents adapt dynamically.

Mobile agents can sense their execution environment and react autonomously to

changes. Multiple mobile agents have the unique ability of distributing themselves

among the hosts in the network to maintain the optimal configuration for solving

a particular problem.

6. Mobile agents support heterogeneous environments.

Mobile agents are separated from the hosts by the mobility framework. If the

framework is in place, agents can target any system. The costs of running a

Java Virtual Machine (JVM) on a device are decreasing. Java chips will probably

dominate in the future, but the underlying technology is also evolving in the

direction of ever-smaller footprints (e.g., Jini [59]).

7. Mobile agents are robust and fault-tolerant.

2.1. WHY MOBILE AGENTS? 35

Mobile agents’ ability to react dynamically to unfavorable situations and events

makes it easier to build robust and fault-tolerant distributed systems. If a host is

being shut down, all agents executing on that machine are warned and given time

to dispatch and continue their operation on another host in the network.

8. Mobile agents generate savings in efficiency.

CPU consumption is limited, because a mobile agent executes only on one node

at a time. Other nodes do not run an agent until needed.

9. Mobile agents require less space.

Resource consumption is limited, because a mobile agent resides only on one node

at a time. In contrast, static multiple servers require duplication of functionality

at every location. Mobile agents carry the functionality with them, so it does not

have to be duplicated. Remote objects provide similar benefits, but the costs of

the middleware might be high.

10. Mobile agents extend online services.

Mobile agents can be used to extend capabilities of applications, for example,

providing services. This allows for building systems that are extremely flexible.

11. Mobile agents facilitate software upgrades.

A mobile agent can be exchanged virtually at will. In contrast, swapping function-

ality of servers is complicated; especially, if we want to maintain the appropriate

level of quality of service (QoS).

One can say that mobile agents will most likely be useful in three general areas:

• One is disconnected computing, such as laptops and PDAs, because they fre-

quently disconnect from the network or use a wireless network that might become

disconnected on short notice.

• The second is information retrieval situations, like applications where the agent

can be sent to a large data source and filter through the data locally.

• The third category is dynamic deployment of software.

Imagine a large organization has hundreds of PDAs in its workforce, and they all need

to be reconfigured with a new software version or some data set. A mobile agent can

convey a new file to everybody’s PDA. But, if it involves some reconfiguration, the code

represented by the mobile agent is useful.

However, a killer application for mobile agents does not exist yet, because almost every-

thing one can do with mobile agents could be done with some other, more traditional

2.1. WHY MOBILE AGENTS? 36

technology (like client to server applications, RMI, etc.). The mobile agents technology

can solve a lot of problems in a uniform way rather than a technology that enables com-

pletely new things that were not possible another way. Several applications [62] clearly

benefit from the mobile agent paradigm:

• E-commerce.

Mobile agents are well suited for e-commerce. A commercial transaction may re-

quire real-time access to remote resources, such as stock quotes and perhaps even

agent-to-agent negotiation. Different agents have different goals and implement

and exercise different strategies to accomplish them. We envision agents embody-

ing the intentions of their creators, acting and negotiating on their behalf. Mobile

agent technology is a very appealing solution for this kind of problem.

• Personal assistance.

Mobile agents’ ability to execute on remote hosts makes them suitable as assistants

performing tasks in the network on behalf of their creators. Remote assistants op-

erate independently of their limited network connectivity. For example, to schedule

a meeting with several other people, a user can send a mobile agent to interact

with the agents representing each of the people invited to the meeting. The agents

negotiate and establish a meeting time.

• Secure brokering.

An interesting application of mobile agents is in collaborations in which not all

collaborators are trusted. The parties could let their mobile agents meet on a

mutually agreed secure host where collaboration takes place without risk of the

host taking the side of one of the visiting agents.

• Distributed information retrieval.

Instead of moving large amounts of data to the search engine so it can create

search indexes, agent creators can dispatch their agents to remote information

sources where they locally create search indexes that can later be shipped back to

the system of origin. Mobile agents can also perform extended searches that are

not constrained by the hours during which a creator’s computer is operational.

• Telecommunication networks services.

Support and management of advanced telecommunication services are character-

ized by dynamic network reconfiguration and user customization. The physical

size of these networks and the strict requirements under which they operate call

for mobile agent technology to function as the glue keeping the systems flexible

yet effective.

2.1. WHY MOBILE AGENTS? 37

• Workflow applications and groupware.

The nature of workflow applications includes support for the flow of information

among coworkers. Mobile agents are especially useful here, because, in addition

to mobility, they provide a degree of autonomy to the workflow item. Also they

represent a method to insure the persistence of a property over a host group.

Individual workflow items fully embody the information and behavior they need

to move through the organization - independent of any particular application.

• Monitoring and notification.

This classic mobile agent application highlights the asynchronous nature of these

agents. An agent can monitor a given information source without being dependent

on the system from which it originates. Agents can be dispatched to wait for

certain kinds of information to become available. It is often important that the life

spans of monitoring agents exceed or be independent of the computing processes

that created them.

• Information distribution.

Mobile agents embody the so-called Internet push model. Agents can distribute

information, such as news, automatic software updates and administration of li-

cences for vendors. The agents bring the new software components, as well as in-

stallation procedures, directly to customers’ computers where they autonomously

update and manage the software.

• Parallel processing.

It is a method to distribute the processing of data. Given that mobile agents can

create a cascade of clones in the network, another potential use of mobile agent

technology is to administer parallel processing tasks. If a computation requires so

much processor power that it must be distributed among multiple processors, an

infrastructure of mobile agent hosts can be a plausible way to allocate the related

processes.

2.1.2 Reasons for Downfall

Mobile agents provide a very appealing, intuitive, and apparently simple abstraction.

Unfortunately there are many difficult problems that have to be addressed in order

to make mobile agent-based applications work reliably. After an enormous enthusiasm

referred to mobile agents in the past ten years, new beliefs and opinions are emerging.

They are some justified worries about the mobile agents but naysayers claim that the

”only widespread incarnation of mobile software agents is malware” [87].

2.1. WHY MOBILE AGENTS? 38

The biggest issue concerning the mobile agents remains the security aspect. For mobile

systems to support security means to consider several problems:

• Servers are exposed to the risk of system penetration by malicious agents, which

may leak sensitive information.

• Sensitive data contained within an agent (such as its user’s credit card number,

personal preferences, etc.) may be compromised, due to eavesdropping on insecure

networks, or if the agent executes on a malicious server.

• The agent’s code, control flow and results could be altered by servers for malicious

purposes.

• Agents may mount ”denial of service” attacks on servers, whereby they hog server

resources and prevent other agents from progressing.

• The name service database could be subjected to tampering. For example, the

public keys of various principals could be modified, or malicious users may create

names in other users’ namespaces.

According to [100] there are ten reasons for failure of mobile agents.

1. Mobile agents do not perform well because in the general case, they provide worse

performance than other mechanisms, such as remote evaluation and they are very

expansive.

2. Mobile agents are difficult to design because it is hard to clearly identify which

components will be interacting and how this interaction can be modeled.

3. Mobile agents are difficult to develop because the development of a mobile agent-

based application is a daunting task. The code has to be implemented so that it

runs in unpredictable environments, possibly interfacing with other mobile agents

and static components never seen before. Being able to foresee the type of operat-

ing environment the mobile agent will be running in is very difficult. In addition,

the technologies that should support the development process are often just pro-

totypes that do not provide the type of support needed to develop real-world

applications.

4. Mobile agents are difficult to test and debug because distribution and mobility from

one node to another in a non pre-defined order add complexity to this process.

2.1. WHY MOBILE AGENTS? 39

5. Mobile agents are difficult to authenticate and control because it is not clear which

identities should be authenticated and how the access control mechanisms should

take into account this information.

6. Mobile agents can be ”brainwashed” because they are vulnerable to attacks coming

from malicious hosts, when they travel across multiple hosts to complete their

tasks. For example, a malicious host can modify the code or memory image of

an agent to change the way the agent behaves. The result of this ”brainwashing”

attack would be the creation of a malicious agent whose actions will be attributed

to one of the identities initially associated with the agent. This type of attack is

extremely difficult (if not impossible) to detect and prevent.

7. Mobile agents cannot keep secrets because they have been advocated as a means

to implement e-commerce and other critical applications. To perform sensitive

transactions (e.g., signing a contract), it is often necessary to perform operations

that require secret material, such as a private key. Unfortunately, a secret cannot

be effectively concealed if it has to be used by an agent on a remote host and the

agent cannot interact with the ”home base”. Even though some solutions based

on the evaluation of encrypted functions have been proposed in [88], no practical

application of this mechanism has been devised.

8. Mobile agents lack a ubiquitous infrastructure because they require an infrastruc-

ture that supports the tasks of marshaling, transfer, and unmarshaling an agent’s

representation. This infrastructure needs to be deployed on every host that can

possibly be the recipient of an agent. This is a requirement that is difficult to meet

especially because existing infrastructures have been proven to be vulnerable to a

number of attacks [40].

9. Mobile agents lack a shared language/ontology because they need to interact with

the environment they visit in order to achieve their goals. This interaction requires

that the format used to exchange data and the meaning that is associated with

the data is understood and agreed upon by both the agent and the partner of

the interaction. Even though a number of these shared languages/ontologies have

been proposed, there is still no widely accepted language or ontology.

10. Mobile agents are suspiciously similar to worms because they are components

that autonomously trigger the transfer of their image to a remote host where they

restart execution. This mechanism has some striking similarity to the way mali-

cious worms spread across networks. Worms have proven to be extremely difficult

to eradicate and some worms are nowadays considered part of the ”background

2.1. WHY MOBILE AGENTS? 40

noise” of the Internet. A mobile agent infrastructure would support the execu-

tion of both benign and malicious agents and, therefore, it would be prone to be

leveraged to launch worm-like attacks.

The conclusion of [100] expresses the conviction of the author, that mobile agents did

not meet the expectation they raised ten years ago in terms of widespread deployment

and use; and advocates the use of other forms of mobility, like remote evaluation or code

on demand.

Other authors conclude in their articles [87] and [15] that the use of Java for mobile ap-

plications was the wrong choice and led to the building of malicious software (malware).

Java makes it impossible to build and maintain a publicly deployed and dependable

mobile agent system. Several deficiencies are given:

• lack of application separation; this is addressed in JSR 121 [24], but respective

extensions will not likely be included before JDK Version 1.6 (the current version

is 1.4);

• there is no safe method to force a Java thread to stop; adverse code may easily

catch any exceptions pertaining to its elimination;

• the Garbage Collector thread may be hijacked by directly or indirectly overriding

finalization methods;

• adverse code may block on globally visible class locks, thereby locking other threads

vital to the functioning of the runtime system;

• the security model is flexible but access control checks are dispersed throughout

the installed classes; a single unguarded privileged action implementation easily

undermines the security of the virtual machine.

2.1. WHY MOBILE AGENTS? 41

2.1.3 Selected Success Stories

This section lists some mobile agents projects, who in spite of the criticism of the last

two years, successfully ended. The tables 2.1 and 2.2 show selected university research

and industrial projects around the world. This list does not claim to be complete, the

used selection criteria among other things were: the project end not older than three

years, a highly public interest on the project, a variation of mobile agent platform used

in this projects and an internationalization (research from the USA, Germany, France,

Pakistan and the European Commission).

Projects
Mobile
Agents

Country Project
Length

State Mobile
Agent
Platform
used

Institution

ActComm
Project

USA 1997-
2002

successfully
completed

D’Agents Dartmouth
College and
MURI

AMASE Germany 1998- open own plat-
form

Deutsche
Telekom
Berkom
GmbH

CoABS USA 1998- open Java-Jini Air Force
Research
Laboratory
DARPA

CogVis Germany 2001-
2005

open Mobile
agent soft-
ware

Information
Society
Technologie

DIAMOnDS Pakistan 2002-
2003

successfully
completed

Jini 1.1 NIIT Uni-
versity of
Islamabad

Dilema IST Eu-
ropean
Commis-
sion

2000-
2002

successfully
completed

LANA European
Industrial
project

HAWK Germany 1998-
2000

closed Java University
of Stuttgart

LEAP France 2000-
2002

successfully
completed

JADE Motorola
France

Table 2.1: Overview I: Projects using Mobile Agents

2.1. WHY MOBILE AGENTS? 42

MadKit France 2002- open Java,
Scheme,
Jess

University
of Mont-
pellier,
France

MANTRIP IST Eu-
ropean
Commis-
sion

2000-
2002

completed MAT Solinet Ger-
many

MAP Germany 1998-
2003

successfully
completed

SeMoA DLR - Ger-
man Center
for Air
and Space-
Travel,
Siemens

MOJAVE USA 2001-
2004

successfully
completed

Jini Motorola
Labs

SysteMATech Germany 1999-
2005

open Mobile
agent soft-
ware

iVS , DFS,
accis

TeleCare IST Eu-
ropean
Commis-
sion

2001-
2004

successfully
completed

own plat-
form

UNINOVA
Uni Am-
sterdam,
Synchronix,
Skill, Ca-
mara,
RoundRose

Table 2.2: Overview II: Projects using Mobile Agents

The ActComm : ”Project on Transportable Agents and Wireless Networks” [48] is

funded by the ”Air Force Office Of Scientific Research” through a ”Department of De-

fence Multidisciplinary University Research Initiative” (MURI) grant.

The goal was to develop technologies that will maximize the usability of complex, global

computer and communications networks, focusing especially on wireless networks, for

modern command-and-control applications.

The technical innovations are: active software, active information, active hybrid net-

works and active resource allocation. The latest version of D’Agents is incorporated

into the demo.

Future military wireless computer and communications networks will be more robust,

more powerful and more flexible under a wide variety of operating environments. Active

elements are coordinated by a novel architecture that uses advanced agents to manage

network, computer and information assets delivering high confidence communications

2.1. WHY MOBILE AGENTS? 43

and computing.

AMASE : ”A Complete Agent Platform for the Wireless Mobile Communication En-

vironment” [83].

AMASE investigates how to enhance existing agent platforms in order to support sta-

tionary and mobile agents for the wireless mobile communication environment, and how

to enable agent based mobile access to Multimedia Information Services.

Objectives are to:

• Identify and develop techniques for agent technology to be efficient and effective

for wireless mobile applications;

• Benchmark stationary and mobile agent techniques in the wireless environment

to understand their efficiency in cost and response time under different operating

conditions;

• Demonstrate how agent technology helps to create customizable and adaptive

applications in the wireless mobile environment; and

• Influence and/or adopt the development of agent-related standards.

The AMASE project develops a generic open communication platform on its own tech-

nology.

CoABS : ”Control of Agent-Based Systems” [19].

The Control of Agent-Based Systems (CoABS) program develops and evaluates a wide

variety of alternative agent control and coordination strategies to determine the most

effective strategies for achieving the benefits of agent-based systems, while insuring that

self-organizing agent systems will maintain acceptable performance and security protec-

tions.

The CoABS program develops and evaluates several control strategies that will allow

military commanders and planners to automate relevant command and control functions

such as information gathering and filtering, mission planning and execution monitoring,

and information system protection. Through the effective control of agent systems, the

intelligent agents will work in harmony to strengthen significantly military capability by

reducing planning time, automating and protecting Command and Control functions,

and enhancing decision-making.

CogVis : ”Cognitive Vision Systems” [26].

The objective of this project is to develop methods and techniques that enable to con-

struct truly cognitive vision systems. In the context of an embodied agent such vision

systems should be able to perform categorization and recognition of objects and events

2.1. WHY MOBILE AGENTS? 44

in a task-oriented manner and in realistic environments. The functionality will for ex-

ample enable construction of mobile agents that can interpret the action of humans

and interact with the environment for tasks such as fetch and delivery of objects in a

realistic domestic setting. The cognitive capabilities of a vision system can be greatly

enhanced by providing it with a memory of past visual experiences, a vision memory.

As the diverse uses of visual experience indicate, a vision memory may by no means be

restricted to the storage of only one particular level of representation. Rather, visual

experiences should describe visual activities as completely as useful and manageable, as

a multi-level and multi-modal pattern. For example, the visual experience of a mobile

agent should associate visual phenomena with attentional and task level information,

ego-motion, relevant spatial and temporal context, etc. The design of a vision memory

is one of the major tasks of this project.

DIAMOnDS: ”Distributed Agents for Mobile and Dynamic Services.” [92]

This project provides a secure and flexible distributed services management infrastruc-

ture which can be used for communications and coupling of distributed services used

in CERN CMS community. The main features of the framework application are the

presentation of agents and their hosts as services; it also allows remote monitoring of

agents by providing remotely downloadable GUI and allows agents to be accessed from

the web.

The prototype system DIAMOnDS, that has been developed, allows a service to send

agents on its behalf to other services to perform data manipulation and processing.

Remote file system access functionality has been incorporated by the agent framework

and allows services to dynamically share and browse the file system resources of hosts

running the services. A generic data base access functionality was also implemented in

the mobile agent framework allowing performing efficiently complex data mining and

processing operations in distributed systems. Agents have been implemented as mo-

bile services that are discovered using the Jini Service Lookup mechanism and used

by other services for task management and communication. Agents provide complex

proxies for the interaction with other services as well as specific GUI to monitor and

control the agent activity. Thus agents acting on behalf of one service cooperate with

other services to carry out a job, providing inter-operation of loosely coupled services in

semi-autonomous way.

DILEMMA : ”Digital Design and Life-cycle Management for Distributed Information

Supply Services in Innovation Exploitation and Technology Transfer” [30].

The aim of the DILEMMA project was to design and develop an integrated system that

would provide the basis for the efficient technology transfer and innovation exploitation

between European enterprizes, research organizations, experts and public or private or-

ganizations, with the assistance of mediators (brokers) by facilitating and improving

2.1. WHY MOBILE AGENTS? 45

information supply and communication between them. The DILEMMA system en-

compasses features expected to dominate in distributed service provision environments,

which adopt a decentralized approach in all aspects related to the service design, pro-

vision and the lifecycle management. A DILEMMA service is formed by fundamental

service elements, which are implemented by means of Mobile Agents technology. The

implementation is platform-independent and uses common components. A mobile agent

infrastructure, called LANA, developed by the Object Systems Group of the University

of Geneva is used to route DILEMMA service elements intelligently, and to carry out

other key information supply-related operations. The DILEMMA agent infrastructure

thus supports the decentralized process execution that is so essential to the dynamic

character of an efficiently networked inter-IRC organization.

The project Hawk : ”Harvesting the Widely Distributed Knowledge” [97] aims at devel-

oping new tools for searching the Internet such that precise and comprehensive searching

becomes feasible in a scalable and efficient way.

So far, the project consists of three subprojects which constitute a hierarchy of solutions

and which are concerned with:

• Search engines that are specialized for single domains.

• Dissemination of mobile agent / mobile code for performing the task of distributed

information filtering much more efficient than it is possible with traditional client-

server techniques.

• Distance Maps of the Internet, that allow estimating the network distance between

arbitrary network hosts.

These subprojects make use of each other, i.e. the specialized search engines use mo-

bile code technology for realizing an efficient resource access and the algorithms for the

optimal coordination of mobile filter programs exploit the network distance knowledge

provided by the distance maps. However, each of these solutions can be also used inde-

pendently of the others and in many different contexts.

LEAP : ”Lightweight Extensible Agent Platform” [6].

The LEAP project is addressing the need for open infrastructures and services which sup-

port dynamic, mobile enterprizes. It developed agent-based services supporting three

requirements of a mobile enterprize workforce: Knowledge management (anticipating

individual knowledge requirements), decentralized work co-ordination (empowering in-

dividuals, co-ordinating and trading jobs) and travel management (planning and coor-

dinating individual travel needs).

Central to these agent-based services is the need for a standardized Agent Platform. The

2.1. WHY MOBILE AGENTS? 46

LEAP project developed an agent platform that is: lightweight, executable on small de-

vices such as PDAs and phones; extensible, in size and functionality; operating system

diagnostic; mobile team management application enabling, supporting wired and wire-

less communications and FIPA compliant.

MadKit [51] is a modular and scalable multi-agent platform written in Java and built

upon the AGR (Agent/Group/Role) organizational model: agents are situated in groups

and play roles. MadKit allows high heterogeneity in agent architectures and commu-

nication languages, and various customizations. MadKit communication is based on

a peer-to-peer mechanism, and allows developers to quickly develop distributed appli-

cations using multi-agent principles. Agents in MadKit may be programmed in Java,

Scheme (Kawa), Jess (rule based engine) or BeanShell. Other script languages may be

easily added. MadKit comes with a full set of facilities and agents for launching, dis-

playing, developing and monitoring agents and organizations. MadKit is a free software

based on the GPL/LGPL license.

MANTRIP : ”MANagement Testing and Reconfiguration of IP based networks using

mobile software agents” [74].

The main goal of the project is to design, develop, test, validate and provide a set of

novel network management applications based on Mobile Agent Technology (MAT) for

managing IP based networks and to evaluate MAT in the context of Network Manage-

ment. More specifically the project produces three network management applications

based on MAT technology:

• An application for Configuration and Alarm management of systems for the access

network.

• An application for configuring QoS parameters within an IP based administrative

domain and accordingly monitoring / auditing the delivered QoS. The QoS param-

eters are considered part of a Service Level Agreement (SLA) with a neighboring

domain (customer or ISP).

• An application for Conformance Testing of network elements and mobile agents

as well as for monitoring signalling and mobile agents’ internal behaviour.

MAP : ”Mobile Adaptive Procedure” [102].

The MAP project will develop a system supporting civil servants while they interact

with citizens; it is a front-end e-assistance system. Special software agents will ”listen”

to the interaction in real-time, using advanced speech-recognition technologies, to iden-

tify the topics discussed. An expert system will select from the knowledge base of the

administration the most pertinent information; then MAP will proactively propose it to

2.1. WHY MOBILE AGENTS? 47

the civil servant. The system will assist the interaction with the citizens in a seamless

way, whenever they contact the administration: while on the move, on the net, face-to-

face.

Mojave : ”MObile Jini Agent enVironmEnt” [98] is an agent-based platform for build-

ing and deploying ”malleable” services, i.e., services that are environment-aware and

that can adapt to changing environment conditions either by migrating to a more suit-

able environment or by reconfiguring themselves to provide the best service possible

under the new conditions. The concept of malleable services lends itself particularly

well to applications that must operate, and survive, in rapidly changing environments.

Ideal candidates include network systems management and intrusion-tolerant systems.

Mobile agents with their inherent capacity for mobility and autonomous behavior –

provide the ideal building block for such malleable services. Such agents must be pro-

grammable, and require the services of a ”container” to host the agents and to provide

the housekeeping services (e.g., create, clone, dispose, or move agents) and support ser-

vices (e.g., communication, event monitoring) required for agent operation. The Mojave

system satisfies both these requirements. It provides a simple set of APIs and utility

classes that can be exploited to develop custom agent applications. It also provides an

infrastructure to support these applications in a robust and extensible manner. The

Mojave infrastructure consists of three components (pods, liaisons and agents), and ex-

ploits two different distributed computing concepts: Jini (distributed computing) and

tuples-paces (distributed shared memory).

The SysteMATech : ”System Management based on Mobile Agent Technology” [95].

SysteMATech is a project that aims to maximize the application of system and network

management platforms based on a prototype tool known as the IntraManager. This pro-

totype uses mobile agents to decentralize network management and equips these agents

with the ability to forecast system states. The result is a management solution designed

to solve some of the common problems in complex networks. The premise is the value of

collaboration, where academia and industry combine forces - this expertise is bringing

research and industry closer together. With the system management market dominated

by expensive, high maintenance solutions, Systematech aims at filling a gap in provid-

ing an effective solution to small to mid-sized companies, as well as to establishing a

European voice in the System Management marketplace.

Partners in this project are: the ”accsis GmbH” [http://www.accsis.de] which focuses

on the exploitation of state-of-the-art information technology know-how and the trans-

fer of technology from research to practice; the ”DFS Deutsche Flugsicherung GmbH”

[http://www.dfs.de] which provides air navigation services to the Federal Republic

of Germany; and the ”iVS - ”Intelligente Netze und Management verteilter Systeme”

[http://www.ivs.tu-berlin.de/] that is a research group for intelligent networks and

2.2. CODE MOBILITY 48

management of distributed systems management at the Technical University of Berlin.

The overall goal in TeleCARE [21] is the design and development of a configurable

framework and new technological solutions for tele-supervision and tele-assistance, based

on the integration of a multi-agent and a federated information management approach,

including both stationary and mobile intelligent agents, combined with the services likely

to be offered by the emerging ubiquitous computing and intelligent home appliances,

and applied to assist elderly people.

The traditional approach to care provision has been either to resort to support from

relatives, or elderly care centers. However, these solutions have become increasingly

inappropriate for the following reasons:

• Shifting the burden of responsibility onto relatives is increasingly impractical, given

the fact that more and more family members have to work to secure steady in-

comes.

• Care centers are costly and invariably necessitate the relocation of the elderly

people, often beyond their home communities. By so doing, elderly people may

lose a degree of autonomy, and control over their daily lives.

• Many elderly people preserve enough robustness to be in their homes, a situation

which is often preferable to the elderly people themselves, and as such, better for

their welfare.

Therefore, the objective of the project is to leverage the potential of information society

technologies, in particular, stationary and mobile intelligent agents and virtual organiza-

tions, to improve the quality of life, and care, for elderly people and their families. The

intended platform will support the establishment of Virtual Elderly Assistance Commu-

nities.

Partners are ”UNINOVA” (Center for Intelligent Robotics - Portugal), Faculty of Science

(Amsterdam - Netherlands) , ”Skill Consejeros de Gestión, S.L.” - Spain, ”Synkronix In-

corporation Ltd.” - United Kingdom, ”Cámara Navarra de Comercio e Industria Unidad

de Promoción y Desarrollo” - Spain, ”Roundrose Associates Ltd.” - United Kingdom.

2.2 Code Mobility

Code mobility can be defined as the capability to dynamically change the bindings be-

tween code fragments and the location where they are executed [44]. Code mobility is

not a new concept. In the past, several mechanisms and facilities have been designed and

2.2. CODE MOBILITY 49

implemented to move code among the nodes of a network such as process migration and

object migration. Examples are remote job submission [17] and the use of PostScript

[55] to control printers or the UNIX ”rsh” command.

Process migration mechanisms manage the bindings between the process and its execu-

tion environment to allow the process to resume its execution seamlessly in the remote

environment. Process migration facilities were introduced at systems operational level to

achieve load balancing across network nodes. Therefore, most of these facilities provide

transparent process migration, i.e. the programmer has neither control nor visibility of

migration.

Object migration makes it possible to move objects among address spaces, implementing

a finer grained mobility with respect to systems providing migration at the process level.

An example of system providing transparent migration is the COOL [64] object-oriented

subsystem.

Process and object migration address the issues that arise when code and state are

moved among the hosts of a loosely coupled, small scale distributed system. However,

they are insufficient when applied in larger scale settings. Nevertheless, the two migra-

tion techniques have been taken as a starting point for the development of a new breed

of systems, called mobile code systems, providing enhanced forms of code mobility.

2.2.1 Forms of Mobility

Existing mobile code systems offer two forms of mobility [44], characterized by the

executing unit constituents that can be migrated:

Strong mobility [9] is the ability of mobile code system (called strong mobile code

systems) to allow migration of both the code and the execution state of an execut-

ing unit to a different computational environment. The agent moves to another

computer in the network and continues its execution from the point where it was

before leaving the previous computer.

Weak mobility [9] is the ability of mobile code system (called weak mobile code sys-

tems) to allow code transfer across different computational environments; code

may be accompanied by some initialization data, but no migration of execution

state is involved. The agent moves to another computer in the network and starts

execution from the beginning.

Strong mobility is supported by two mechanisms: migration and remote cloning. The

migration mechanism suspends an executing unit, transmits it to the destination com-

putational environment, and then resumes it. Migration can be either proactive or

2.2. CODE MOBILITY 50

reactive. In proactive migration, the time and destination for migration are determined

autonomously by the migrating executing unit. In reactive migration, movement is trig-

gered by a different executing unit that has some kind of relationship with the executing

unit to be migrated, e.g., an executing unit acting as a manager of roaming executing

units. The remote cloning mechanism creates a copy of an executing unit at a remote

computational environment. Remote cloning differs from the migration mechanism in

that the original executing unit is not detached from its current computational environ-

ment. As in migration, remote cloning can be either proactive or reactive.

Mechanisms supporting weak mobility provide the capability to transfer code across

computational environments and either link it dynamically to a running executing unit

or use it as the code segment for a new executing unit. Such mechanisms can be clas-

sified according to the direction of code transfer, the nature of the code being moved,

the synchronization involved, and the time when code is actually executed at the des-

tination site. As for direction of code transfer, an executing unit can either fetch the

code to be dynamically linked and/or executed, or ship such code to another compu-

tational environment. The code can be migrated either as stand-alone code or as a

code fragment. Stand-alone code is self-contained and will be used to instantiate a new

executing unit on the destination site. Conversely, a code fragment must be linked in

the context of already running code and eventually executed. Mechanisms supporting

weak mobility can be either synchronous or asynchronous, depending on whether the

executing unit requesting the transfer suspends or not until the code is executed. In

asynchronous mechanisms, the actual execution of the code transferred may take place

either in an immediate or deferred fashion. In the first case, the code is executed as

soon as it is received, while in a deferred scheme execution is performed only when a

given condition is satisfied e.g., upon first invocation of a portion of the code fragment

or as a consequence of an application event.

2.2.2 Security Issues

Access and security problems appear from the instant an agent migrates from one site to

another. It is precisely due to the property of migration, that mobile agents are exposed

to different types of attacks [3]:

Unauthorized Access Malicious mobile agents can try to access the services and re-

sources of the platform without adequate permissions. In order to thwart this

attack, a mobile agent platform must have a security policy specifying the access

rules applicable to various agents, and a mechanism to enforce the policy.

2.2. CODE MOBILITY 51

Masquerading A malicious agent assumes the identity of another agent in order to

gain access to platform resources and services, or simply to cause mischief or even

serious damage to the platform.

Denial of Service A malicious platform can cause harm to a visiting mobile agent

by ignoring the agents request for services and resources that are available on the

platform, by terminating the agent without notification, or by assigning continuous

tasks to the agent so that it will never reach its goal.

Eavesdropping A malicious platform monitors the behavior of a mobile agent in order

to extract sensitive information from it. This is typically used when the mobile

agent code and data are encrypted.

Alteration A malicious platform tries to modify mobile agent information, by perform-

ing an insertion, deletion and/or alteration to the agents code, data, and execution

state.

Prevention techniques for keeping the platform secure against a malicious mobile agent

are discussed in detail in [3], [57], [56]:

Sandboxing In an execution environment, remote code, such as mobile agents and

downloadable applets, is executed inside a restricted area called a ”sandbox”. A

sandboxing mechanism enforces a fixed security policy for the execution of the

remote code. The policy specifies the rules and restrictions that mobile agent

code should comply with. The most common implementation of sandboxing is

in the Java interpreter inside Java-enabled web browsers. A disadvantage of the

sandboxing technique is that it increases the execution time of legitimate remote

code.

Code Signing This technique ensures the integrity of the code downloaded from the

Internet. Code Signing makes use of a digital signature and a one-way hash func-

tion. A well-known implementation of code signing is Microsoft Authenticode,

which is typically used for signing code such as ActiveX controls and Java applets.

Proof-Carrying Code (PCC) In this technique, the code producer is required to

provide a formal proof that the code complies with the security policy of the code

consumer. PCC guarantees the safety of the incoming code providing that there

is no flaw in the verification-condition generator, the logical axioms, the typing

rules, and the proof-checker.

State Appraisal This technique ensures that an agent has not become malicious or

modified as a result of its state alterations at an untrustworthy platform. The

2.2. CODE MOBILITY 52

author needs to anticipate possible harmful modifications to the agent’s state and

to counteract them within the appraisal function. Similarly, the sender, who sends

the agent to act on his behalf, produces another state appraisal function that

determines the set of permissions to be requested by the agent, depending on

its current state and on the task to be completed. If both the author and the

sender sign the agent, their appraisal functions will be protected against malicious

modifications.

Path Histories The list of the platforms visited previously by the agent is the basis of

trust that the execution platform has in the agent. Depending on the information

in the Path History, the new platform can decide whether to run the agent and

what privileges should be granted to the agent. The main problem with the Path

History technique is that the cost of the path verification process increases with

the path history.

Even if several security techniques already exist, none of these provides an optimal

solution for all scenarios. Only a combination of various techniques may yield powerful

solutions.

2.2.3 Design Paradigms

Design paradigms are described in terms of interaction patterns that define the reloca-

tion of and coordination among the components needed to perform a service. Let us

consider a scenario where a computational component A, located at site SA needs the

results of a service. The existence of another site SB, which will be involved in the

accomplishment of the service, is assumed.

There are four main design paradigms exploiting code mobility: client-server, remote

evaluation, code on demand, and mobile agent. These paradigms are characterized by

the location of components before and after the execution of the service, by the compu-

tational component which is responsible for execution of code, and by the location where

the computation of the service actually takes place. The presentation of the paradigms

is based on a metaphor (introduced by G.Vigna et al in [44]) where two friends Laila

and Clara interact and cooperate to make a lemon cake. In order to make the cake (the

results of a service), a recipe is needed (the know-how about the service), as well as the

ingredients (movable resources), an oven to bake the cake (a resource that can hardly

be moved), and a person to mix the ingredients following the recipe (a computational

component responsible for the execution of the code). To prepare the cake (to execute

the service) all these elements must be collocated in the same home (site). In the follow-

2.2. CODE MOBILITY 53

Paradigm Before After
SA SB SA SB

Client-
Server

A know-how,
resource, B

A know-how,
resource, B

Remote-
Evaluation

know-how,
A

resource, B A know-how,
resource, B

Code on
Demand

resource, A know-how,
B

resource,
know-how,
A

B

Mobile
Agent

know-how,
A

resource - know-how,
resource, A

Table 2.3: Mobile Code Paradigms
Table (see 2.3) shows the location of the components before and after the service exe-
cution. For each paradigm, the computational component in bold face is the one that
executes the code. Components in italics are those that have been moved.

ing, Laila will play the role of component A, i.e., she is the initiator of the interaction

and the one interested in its final results.

Client-Server (CS)

Laila would like to have a lemon cake, but she doesn’t know the recipe, and she does

not have at home either the required ingredients or an oven. Fortunately, she knows

that her friend Clara knows how to make a lemon cake, and that she has a well

supplied kitchen at her place. Since Clara is usually quite happy to prepare cakes

on request, Laila phones her asking: ”Can you make a lemon cake for me, please?”

Clara makes the lemon cake and delivers it back to Laila.

The client-server paradigm depicted in figure 2.1 is well-known and widely used. In this

paradigm, a computational component B (the server) offering a set of services is placed

at site SB. Resources and know-how needed for service execution are hosted by site SB

as well. The client component A, located at SA, requests the execution of a service with

an interaction with the server component B. As a response, B performs the requested

service by executing the corresponding know-how and accessing the involved resources

collocated with B. In general, the service produces some sort of result that will be

delivered back to the client with an additional interaction. In this paradigm mobility is

not available.

2.2. CODE MOBILITY 54

Figure 2.1: Client Server Paradigm

Remote Evaluation (REV)

Laila wants to prepare a lemon cake. She knows the recipe but she has at home

neither the required ingredients nor an oven. Her friend Clara has both at her place,

yet she doesn’t know how to make a lemon cake. Laila knows that Clara is happy to

try new recipes, therefore she phones Clara asking: Can you make a lemon cake for

me? Here is the recipe: take three eggs.... Clara prepares the lemon cake following

Lailas recipe and delivers it back to her.

In the REV paradigm depicted in figure 2.2, a component A has the know-how necessary

to perform the service but it lacks the resources required, which happen to be located

at a remote site SB. Consequently, A sends the service know-how to a computational

component B located at the remote site. B, in turn, executes the code using the

resources available there. An additional interaction delivers the results back to A. In

this case we do not really have a code transfer but an execution transfer.

Code on Demand (CoD)

Laila wants to prepare a lemon cake. She has at home both the required ingredients

and an oven, but she lacks the proper recipe. However, Laila knows that her friend

Clara has the right recipe and she has already lent it to many friends. So, Laila

phones Clara asking: Can you tell me your lemon cake recipe? Clara tells her the

recipe and Laila prepares the lemon cake at home.

In the COD paradigm dpicted in figure 2.3, component A is already able to access

the resources it needs, which are co-located with it at SA. However, no information

2.2. CODE MOBILITY 55

Figure 2.2: Remote Evaluation Paradigm

about how to manipulate such resources is available at SA. Thus, A interacts with a

component B at SB by requesting the service know-how, which is located at SB as

well. A second interaction takes place when B delivers the know-how to A, that can

subsequently execute it. In this case we have an execution transfer rather then a code

transfer.

Mobile Agent (MA)

Laila wants to prepare a lemon cake. She has the right recipe and ingredients, but

she does not have an oven at home. However, she knows that her friend Clara has

an oven at her place, and that she is very happy to lend it. So, Laila prepares the

lemon batter and then goes to Claras home, where she bakes the cake.

In the MA paradigm depicted in figure 2.4, the service know-how is owned by A, which

is initially hosted by SA, but some of the required resources are located on SB. Hence,

A migrates to SB carrying the know-how and possibly some intermediate results. After

it has moved to SB, A completes the service using the resources available there. The

mobile agent paradigm is different from other mobile code paradigms since the associated

interactions involve the mobility of an existing computational component. In other

words, while in REV and COD the focus is on the transfer of the code execution between

components, in the mobile agent paradigm a whole computational component is moved

to a remote site, along with its state, the code it needs, and some resources required to

2.3. MOBILE AGENTS PATTERNS 56

Figure 2.3: Code on Demand Paradigm

perform the task.

2.3 Mobile Agents Patterns

This section deals with the aforementioned described mobile code paradigm, the mobile

agents. [2] proposes a model of an agent system, in which the agents possess a set of

characteristic abilities:

Creation This involves the ability of certain agents in creating other agents, to perform

some specified tasks. The resulting agents can be created to run locally or remotely.

Execution Agents need to be able to execute in order to carry out their tasks. Execu-

tion is usually done through an interpreter that supports a runtime environment

within which an agent can function. This environment is usually specified when

the agent starts up in the machine.

Resource Access This should implement ways in which an agent accesses certain local

resources as well as resources being carried with the agent. Hence, there are

two types of resources present within the execution environment, resulting in two

very different security concerns. The types of resources being considered could

include physical resources as well as logical resources and controlling access to

those resources can be done using many different mechanisms including access

2.3. MOBILE AGENTS PATTERNS 57

Figure 2.4: Mobile Agents Paradigm

control or capabilities. An example would be restricting access to the CPU and

other resources through checking during the interpretation/execution phase.

Migration This implements how an agent can move around from one machine to the

next on its own initiative, while carrying out its task. This aspect of the architec-

ture is what makes agents very interesting and what gives them unique properties.

This migration process can be affected by the move being unrestricted (i.e. from

any machine to another) or restricted (i.e. from the home machine to the server

machine and back). It also involves how and in what form the data is being carried

around within the agent. This point refers to migrating agent resources (in addi-

tion to code migration). There is also the issue of implicit versus explicit transfer

of an agent’s state.

Communication This takes care of the fact that agents need to interact with other

agents to provide their services. There are two types of communication that could

be available. One type would be local while the other is remote. Communication

may also serve as a way to transfer objects (and agents) between other agents.

This also includes the issue of creating synchronization primitives between agents

that can help in organizing their efforts when obtaining a certain service in a

cooperative manner.

Language Support This involves the issue of interpreted versus compiled languages.

It also involves support for just one specialized language versus the support of

many different languages to be used in programming agents.

2.3. MOBILE AGENTS PATTERNS 58

Additional Services Services like authentication, name service, check-pointing, as

well as other system built-ins. The services depend on the communication and

on the access treatment (a distant one if necessary). The issue here is that some

of these services can be implemented through the system while others are easier

to implement using agents.

2.3.1 Agents Platform and Standardization

Nowadays we can find a big number of different agent systems. Table 2.4 at the end of

this section shows only a small overview. Usually agent systems make available basic

classes for the user, with which he is able to build his own agents. These agents can then

be executed on the provided agent platforms. A large problem of today’s agent systems

is the lack of standardization. An agent, who was implemented for an agent system,

does not let itself be executed on another agent system. For this reason, standards for

agent systems were defined. In the following we will present the FIPA standard as well

as the MASIF standard.

An agent framework is a software environment in which software agents run. It provides

support for software agents to execute, to manage their execution, to access system re-

sources, and to guarantee integrity and protection of both agents and the platform itself.

Agents platforms also provide support for migration, naming, location and communi-

cation services. Examples of agent frameworks are: ”IBM’s Aglets”, ”ObjectSpace’s

Voyager”, ”IKV’s Grasshopper” etc.

These systems differ widely in architecture and implementation, thereby impeding in-

teroperability and rapid deployment of mobile agent technology in the marketplace. To

promote interoperability, some aspects of mobile agent technology needs to be standard-

ized.

Currently there are two standards for mobile agents technology: The Object Manage-

ment Group’s Mobile Agent System Interoperability Facility (MASIF) and the specifi-

cations promulgated by the Foundation for Intelligent Physical Agents (FIPA). Object

Management Group (OMG) was formed in 1989 by 11 companies including 3Com, HP,

Canon, Sun, Unisys and American Airlines. Now it includes about 800 members. It is

a no-profit corporation. Its most famous standard is certainly CORBA. The OMG was

formed to create a component-based software marketplace by hastening the introduc-

tion of standardized object software. Its charter includes the establishment of industry

guidelines and detailed object management specifications to provide a common frame-

work for application development. Conformance to these specifications will make it

possible to develop a heterogenous computing environment across all major hardware

2.3. MOBILE AGENTS PATTERNS 59

platforms and operating systems.

In 1995 the OMG started working on a standard, called Mobile Agent Facility (MAF),

in order to promote interoperability among agent platforms. In 1997, a joint submission

by IBM, General Magic, The Open Group, GMD FOKUS, and etc. was presented to

the OMG. And the standard’s name was changed from MAF to Mobile Agent System

Interoperability Facility (MASIF) [28]. In 1998 this specification was accepted as an

OMG standard. The current edition was issued in 2000. MASIF defines two interfaces:

• MAFAgentSystem

• MAFFinder

Both interfaces are specified within the Interface Definition Language (IDL). Basic meth-

ods are defined within the MAFAgentSystem, which every agent system should make

available (see Source Code 1).

Source Code 1— Interface MAFAgentSystem

I n t e r f a c e MAFAgentSystem {

void c r e a t e a g e n t (. . .) ; // c r e a t e s an agent

void r e c e i v e a g e n t (. . .) ; // r e c e i v e s an agent

void su spend agen t (. . .) ; // suspends the agent e x e cu t i on

void resume agent (. . .) ; // resumes the agent e x e cu t i on

void t e rm ina t e a g en t (. . .) ; // d e l e t e s an agent

void t e rm ina t e a g en t s y s t em (. . .) ; // c l o s e s t he agent system

AgentS ta tus g e t a g e n t s t a t u s (. . .) ; // ask s t he agent s t a t u s

NameList l i s t a l l a g e n t s () ; // r e t u rn s the l i s t o f a l l t h e agen t s

NameList l i s t a l l p l a c e s () ; // r e t u rn s c on t e x t s w i t h i n the system

} ;

The MAFFinder makes available methods in order to find agents or rather agent sys-

tems (see Source Code 2).

2.3. MOBILE AGENTS PATTERNS 60

Source Code 2— Interface MAFFinder

I n t e r f a c e MAFFinder {

// r e g i s t e r i n g methods

void r e g i s t e r a g e n t (. . .) ;

void r e g i s t e r a g e n t s y s t em (. . .) ;

void r e g i s t e r p l a c e (. . .) ;

// s ea r ch in g methods

Loca t ions l o o kup ag en t (. . .) ;

Loca t ions l o o kup ag en t s y s t em (. . .) ;

Loca t ions l o o k u p p l a c e (. . .) ;

// u n r e g i s t e r i n g methods

void un r e g i s t e r a g e n t (. . .) ;

void un r e g i s t e r a g e n t s y s t em (. . .) ;

void u n r e g i s t e r p l a c e (. . .) ;

} ;

IKV’s Grasshopper agent system (version 1 available in 1998) is conforming to MASIF.

It is a mobile agent and runtime platform developed in Java, built upon a distributed

object-oriented middleware. As submitters of the MASIF standard, IBM and GMD

FOKUS agreed to implement the MASIF specification within their own agent plat-

forms. (GMD stands for German National Research Center for Information Technology,

FOKUS stands for Research Institute for Open Communication Systems). There is

another mobile agent system called Secure and Open Mobile Agent (SOMA) System,

developed by Universita’ di Bologna in Italy. SOMA has been developed, ”closely con-

sidering compliance with MASIF.”

The Foundation for Intelligent Physical Agents (FIPA) [41] was formed in 1996 to

produce software standards for heterogenous and interacting agents and agent-based

systems. It is a non-profit association formed under Swiss law. Its members include

companies and universities. FIPA identified a list of agent technologies deemed to be

specifiable in 1997 and standardization work started. There is a set of specifications

called FIPA 97 and another called FIPA 98, both are now on Obsolete Status. The

current specification is FIPA 2000, half of which is in the Preliminary Status, another

half on Experimental Status. The focus of FIPA is on Intelligent Agents, Agent Coop-

2.4. CONCLUSION AND PERSONAL REFLECTIONS 61

eration and the whole environment of that software area. This is in contrast to the work

of the MASIF specification, which is mostly applied to Mobile Agents, although these

two main standardization organizations have common points and therefore there exists

a unification of their concepts [47].

Aglets Concordia Grasshopper J-Seal Zeus

Version 2.0.2 1.1.7 2.2.4 2 1.9.4

Producer IBM Mitsubishi
Electric

IKV++ CoCo Soft-
ware

British
Telecom-
munication

Partic-
ularity

MASIF,FIPA
compatible

Graphic
development
environment

Open
Source

x x

Mobility week strong week week week

Commu-
nication

synchronous,
asyn-
chronous

asynchronous,
collabora-
tion

RMI, IIOP,
CORBA,
MAF IIOP

asynchronous asynchronous
TCP/IP,
FIPA ACL

Security
Concept

SSL, X.509 SSL
SSL, X.509

SSL none

Table 2.4: Overview: Agent Systems

2.4 Conclusion and Personal Reflections

”A part of that force which constantly intends evil and yet creates good.”

(Faust I, line 1335)

The Curse and Blessing of Innovation / Science Within the Constraints of the Market

Let us consider a dilemma, one that requires a decision, because it cannot be avoided.

At the dawn of mobile agents as a technology, their role as a catalyst of innovation

is regarded with skepticism, if not outright denial. It is said that this technology is a

bit expensive and is not able to achieve what the orthodox has or will. Additionally,

and most condemning, this technology is not free from abuse and, in fact, may clear

the path for even greater abuse. Neither the arguments nor the underlying discussion

are new. The matter at hand is the ”eternally new” promised according to the sense

- or nonsense - of science and innovation. Nothing more and nothing less is involved

in this debate; a debate on ethics and science measured on criteria that are out of its

2.4. CONCLUSION AND PERSONAL REFLECTIONS 62

scope. Because science in and among itself does not have a norm with which to aid in

its orientation. The objectives of science are not pursued through individual curiosity.

Rather more crucial are the priorities set by those people and institutions who invest

in science financially. Computer science and, specifically, application development is no

exception; profitability is the key objective. On the one hand, science carries a burden of

responsibility for mankind. On the other hand, research does not exist in a vacuum. It

is called upon to anticipate and handle the consequences of the results of an application.

Yet it does not offer a recipe to control the errors and corruptibility of man. Can one

accept the Evil in the creation of the Good? Granted, this is an academic question.

However, the risk that this young child called ”Mobile Agent” falls down this well, has

been with us for some time. The question is then ”resignation or action”?

A layman understands in an instant what mobile agents are, when he is given the techni-

cal definition that what is being referred to are autonomous applications that move from

computer to computer to make use of their local resources. He correctly assumes then

that they are benevolent computer viruses. The term itself, ”agent”, suggests secrecy,

anonymity, espionage, illegal activity. Equally suspicious is the association with virus,

be it benign or otherwise. The fact is that this technology, through its very terminology

unfortunately conveys that, if it is not a problem in itself, it, at least, has one. All of the

positive promises of innovation are moot when faced with the fact that this technology

already exists as a negative occurrence. Computer viruses cannot be dismissed and have

demonstrated that their application cannot be always controlled. That this heretofore

sinister entity should be the potential bearer of good is a concept that will take some

getting used to. Clearly, compared with computer viruses, mobile agents represent the

more significant technological challenge. The ”functional” abuse should be motivation

to tackle the intended progress and convince the skeptics, who fear that the New en-

dangers the Established. The desire to implement technology simply because it is more

innovative, it expands horizons, it could serve as a catalyst, is considered by many to be

unreasonable as no one wishes to find himself in unfamiliar territory when change is not

called for. Crises are thus typically the triggers for technological evolution. The demise

of ”antiquated” technology is the birth of a ”new” one. Crisis and innovation appear so

inseparable that ”makers” of innovation are considered cynics. When the New asserts

itself at the cost of the Old, the results are the same. There are as many examples of

this dramatic relationship between tradition and innovation as there are technologies in

the world. Some of which are named here in order to somewhat diffuse the dogmatic

seriousness of this debate. When the telephone, for instance, was introduced, it was said

to be of little use as a means of communication. The market for computers at the dawn

of the 1940’s amounted to a measly five machines and, at the end of the 70’s, it was

2.4. CONCLUSION AND PERSONAL REFLECTIONS 63

unimaginable that a computer would ever be a desirable fixture in a private household.

The blessings of the Internet far outweighed its curse. And we will call upon the services

of ”mobile agents” as readily in the future as we use a remote control to operate a televi-

sion today. Until that day, the problems of security remain to be resolved. It is futile to

continuously stress that ”mobile agents” be only allowed to roam in approved areas and

that they should only be enabled to access forthcoming data, as long as this assertion

merely conveys a noble notion and not a realization. The most difficult challenge is

not the development of an effective control mechanism to identify the mobile agent and

make their tasks transparent and dependent on the authorization of their destination.

It is, instead, the minimizing of risks through abuse and technical or human error. An

absolute guaranty of security will never be realistic (can man ever truly protect itself

from man?) A dissertation, such as this one, should not be evaluated on the feasibility

of market introduction for the technology it is dedicated to. The young must be allowed

to break new ground in the carefree presumptuousness that is otherwise out of reach

through external constraints. When one only attends to problems that have a certain

solution, then one falls short of his potential.

The ambition of this thesis is to bring a solution to certain problems we have shown

above in this chapter. In the section ”Reasons for Downfall” of mobile agents one dis-

advantage was that mobile agents are difficult to design and another one that they are

difficult to test. One of the solutions we propose, offers a specification language, namely

based on the higher order π-calculus, associated with a code generator, to facilitate the

design of mobile agents and also the verification and validation of such systems.

Chapter 3

Calculi and Specification

Languages for Mobile Agents

One of the system modeling issues is its verification and validation (V&V). There are

three major classes for the verification of concurrent systems: static, dynamic, and

formal analysis.

Static analysis techniques are those which directly analyze the form and structure of a

product without executing the product. Reviews, inspections, audits and data flow

analysis are examples of static analysis techniques. Static analysis techniques are

traditionally applied to software requirements, software design and source code.

They may also be applied to test documentation, especially test cases, to ver-

ify their traceability to the software requirements, their adequacy to fulfill test

requirements, and their accuracy.

Dynamic analysis techniques involve execution, or simulation, of a development ac-

tivity product to detect errors by analyzing the response of a product to sets of

input data. For these techniques, the output values, or ranges of values, must be

known. Testing is the most frequent dynamic analysis technique. Prototyping,

especially during the software requirements V&V activity, can be considered a

dynamic analysis technique; in this case the exact output is not always known but

enough knowledge exists to determine if the system response to the input stimuli

meets system requirements.

Formal analysis is the use of rigorous mathematical techniques to analyze the algo-

64

65

rithms of a solution. Sometimes the software requirements may be written in a

formal specification language (e.g., π-calculus, Z, CSS, CSP, Petri nets or some

kinds of automata) which can be verified using a formal analysis technique like

proof-of-correctness. The term formal often is used to mean a formalized process,

that is, a process that is planned, managed, documented, and is repeatable. In this

sense, all software Verification and Validation techniques are formal, but do not

necessarily meet the definition of the mathematical techniques involving special

notations and languages.

The most difficult part in a V&V process of a concurrent model is the possibly state-

space explosion of the system, that makes the verification impossible for a human being.

Therefore the verification has to be automated, that will impose the use of a formal

model which can be manipulated automatically.

Talking about mobile systems, there exists several formalisms that allow one to model

and reason about mobile systems. One approach is to model mobility as the changing

of communication paths; another is to use explicit notions of location and migration of

processes between these locations.

This chapter will present three formal languages that can express mobility: the π-

calculus with some of its extensions, the ambient calculus and the mobile and dynamic

Petri Nets. The interest is to show how each formalism can be assigned to different

design paradigms introduced in 2.2.3. The criteria, upon which the selection is based,

are:

• the syntax i.e., in our case, the power to express exchanges with synchronization,

• the semantics i.e. the power of validation; we are interested in an operational

semantics,

• the scope of the terms.

The basic π-calculus expresses mobility as the changing of communication paths, whereas

the ambient calculus, has explicit location concepts.

All the formal languages build on a minimal set of primitives; they focus on the com-

munication between processes and abstract away other computation issues. Formal

semantics and equivalence relations have been defined for each language, allowing one

to reason about systems. The equivalence relations are defined in terms of the observ-

able behavior of a system, which in most cases means the possible communication of the

system with the environment. This provides a formal framework for modeling, reasoning

about and verification of systems and programs.

3.1. THE π-CALCULUS AND ITS EXTENSIONS 66

A full formal description of the languages will not be given; only their syntax and the

interesting part of their semantics will be presented. The purpose of this presentation

is to show how the two formalisms work, what they can do w.r.t. one another and

why we chose the higher-order π-calculus in order to express our specifications of the

mobile agents. For a full formal description of the languages the reader is referred to

the literature.

3.1 The π-Calculus and its Extensions

In this work we will adopt the notations and the definitions introduced by Milner in

[68, 67], and given by Parrow in [80, 70]. The π-calculus is a mathematical model

of processes whose interconnections change as they interact. The π-calculus aims at

”the challenge of defining an underlying model, with a small number of basic concepts,

in terms of which interactional behavior can be rigorously described” (Milner p. 3,

Introduction in [68])”. The basic computational step is the transfer of a communication

link between two processes; the recipient can then use the link for further interaction

with other parties. This makes the calculus suitable for modeling systems where the

accessible resources vary over time.

The definition of the π-calculus is not steady and many different evolution of π can be

found in the literature. The π-calculus is actually more a family of calculi than just

a unique calculus. Such evolutions, briefly summarized in [91], include asynchronous,

internal or receptive version of the π-calculus; extensions with primitive for testing the

(in)equality of names; etc. In addition, several process calculi based on name-passing has

been proposed: the fusion calculus of Parrow and Walker [81], a simplification of π with

a more symmetric form of communication; the spi-calculus of Abadi and Gordon [1], an

extension of π designed for the description and analysis of cryptographic protocols, the

join-calculus of Fournet, Gonthier et al [43]; the blue-calculus of Boudol [18]; etc.

There are several extensions of the π-calculus. Three of them are: the monadic π-

calculus, which is the basic form and allows only a single channel name to be sent in

a message. The polyadic π-calculus extends the monadic to allow a tuple of channel

names to be sent in a single message. The higher-order π-calculus also allows agents to

be sent in a message, and it can thus model mobility more directly.

3.1.1 Basic Definitions - The Monadic π-Calculus

Let us consider:

3.1. THE π-CALCULUS AND ITS EXTENSIONS 67

• an infinite set of names N , ranged over by a, b, ..., z, which will function as all of

communication gates, variables and data values,

• a set of identifiers (we will call them also agents or processes) ranged over by A,

each with a fixed nonnegative arity.

The agents, ranged over by P , Q,... are defined in Table 3.1.1. According to this table

we distinguish different agent behaviors:

1. The Output Prefix āx.P can send the name x via the name a and continue as P .

2. The Input Prefix a(x).P can receive any name via a and continue as P with the

received name substituted for x. For instance, a(x).b̄x.0 can receive any name via

a, send the name received via b, and become inactive, while a(x).x̄b.0 can receive

any name via a, send b via the name received, and become inactive.

3. The Silent Prefix τ.P represents an agent that can evolve to P without interaction

with the environment. Parrow in [80] uses α, β to range over a(x), āx and τ and

call them Prefixes.

4. The empty agent 0 cannot perform any action.

5. The Sum P + Q represents an agent that can enact either P or Q. For instance,

a(x).x̄y.0 + b̄z.0 has two capabilities: to receive a name via a, and to send z via

b. If the first capability is exercised and u is the name received via a, then the

continuation is ūy.0; the capability to send z via b is lost. If, on the other hand,

the second capability is exercised, then he continuation is 0, and the capability to

receive via a is lost.

6. The Parallel Composition P |Q represents the combined behavior of P and Q

executed in parallel, where P and Q can proceed independently and interact via

shared names. For instance, (a(x).x̄y.0 + b̄z)|āu.0 has four capabilities: to receive

a name via a, to send z via b, to send u via a, and to evolve invisibly as an effect

of an interaction between its components via the shared name a.

7. The Match [x = y]P can evolve as P if x and y are the same name, and can do

nothing otherwise. For instance, a(x).[x = y]x̄z.0, on receiving a name via a, can

send z via that name just if that name is y; if it is not, the process can do nothing

further, i.e. it is blocked.

8. The Restriction (νx)P behaves as P but the scope of the name x is restricted to

P . Components of P can use x to interact with one another but not with other

3.1. THE π-CALCULUS AND ITS EXTENSIONS 68

processes. For instance, (νx)((a(x).x̄y.0 + b̄z.0)|āu.0) has only two capabilities:

to send z via b , and to evolve invisibly as an effect of an interaction between its

components via a. The scope of a restriction may change as a result of interaction

between agents.

9. The Replication !P can be thought of as an infinite composition P |P |... or, equiva-

lently, an agent satisfying the equation !P = P |!P =!P |P . replication is the oper-

ator that makes it possible to express infinite behaviors. For example, !a(x).!b̄y.0

can receive names via a repeatedly, and can repeatedly send via b any name it

does receive.

10. The Identifier A(y1, ..., yn), where n is the arity of A, has a Definition A(x1, ...xn)
def
=

P where the xi must be pairwise distinct, and the intuition is that A(y1, ..., yn be-

haves as P with yi replacing xi for each i. A Definition can be thought of as an

agent declaration, x1, ...xn as formal parameters, and the Identifier A(y1, ..., yn) as

an invocation with actual parameters y1, ..., yn.

Prefixes α ::= āx Output

a(x) Input

τ Silent

Agents P ::= 0 Nil

α.P Prefix

P + P Sum

P |P Parallel

[x = y]P Match

(νx)P Restriction

!P Replication

A(y1, ..., yn) Identifier

Definitions A(x1, ..., xn) (where i 6= j ⇒ xi 6= xj)

Table 3.1.1: The syntax of the π-calculus

Definition 3.1 (Binding) [90] There are three binding operators:

3.1. THE π-CALCULUS AND ITS EXTENSIONS 69

• the input prefix a(x) (which binds x)

• restriction (νx)P

• identifier A(y1, ...yn),

The occurrence of x is binding with scope P . An occurrence of a name in an agent is

bound if it is, or it lies within the scope of, a binding occurrence of the name.

An occurrence of a name in an agent is free if it is not bound.

Let us define the free names fn(P), and the bound names bn(P) of an agent. Extended

to prefixes; we note:

bn(a(x)) = {x}, fn(a(x)) = {a}

bn(āx) = ∅, fn(āx) = {a, x}

For instance,

fn((āx.0 + b̄y.0)|c̄u.0) = {a, x, b, y, c, u}

and

fn((νa)((a(x).x̄y.0 + b̄u.0)|(νv)(āv.0))) = {y, b, u}

Definition 3.2 (Substitution) [90] A substitution is a function from names to names.

One writes x/y for the substitution that maps y to x and its identity for all other names,

and in general {x1...xn/y1...yn}, where the yi are pairwise distinct, for a function that

maps each yi to xi.

For instance, let us consider

ūa|u(x).P (x) with P (y) = ūy.0 After the communication and substitution the process

P becomes P (a) = āy.0.

Operational Semantics

The operational semantics of the π-calculus is given through a labelled transition system,

where transitions are of kind P
α
→ Q for some set of actions ranged over by α.

There are three labels for the transitions: the silent step τ , the input action a(x) and

the output action āx.

3.1. THE π-CALCULUS AND ITS EXTENSIONS 70

Output action: āx.P
āx
−→ P means that after having sent message x over channel a,

process āx.P behaves like P .

Input Action: a(x).P
a(u)
−→ P{u/x} means that if name u is sent over channel a, then

the process a(x).P , waiting for a process or channel name on a, receives it and replaces

the process or channel name by u, it then behaves like P , where all occurrences of x are

replaced by u.

The communication rule is the most conspicuous for a mobility system. The interaction

between two processes is given by the ”Communication rules Com1 and Com2” in [90]:

Com1 :

P
āx
−→ P ′, Q

a(y)
−→ Q′

P |Q
τ
−→ P ′|Q′{x/y}

Com2 :

P
a(y)
−→ P ′, Q

āx
−→ Q′

P |Q
τ
−→ P ′{x/y}|Q′

i.e. an output action causes P to become P ′, the corresponding input action causes Q

to become Q′ then P and Q in parallel become P ′ and Q′ in parallel.

The labeled transition semantics is given below:

STRUCT
P ′ ≡ P, P

α
−→ Q, Q ≡ Q′

P ′ α
−→ Q′

(3.1)

PREFIX
α.P

α
−→ P

(3.2)

SUM
P

α
−→ P ′

P + Q
α
−→ P ′

(3.3)

MATCH
P

α
−→ P ′

if x = x then P
α
−→ P ′

(3.4)

PAR
P

α
−→ P ′, bn(α) ∩ fn(Q) = 0

P |Q
α
−→ P ′|Q′

(3.5)

COM
P

a(y)
−→ P ′, Q

āx
−→ Q′

P |Q
τ
−→ P ′{x/y}|Q′

(3.6)

RES
P

α
−→ P ′, x /∈ α

(νx)P
α
−→ (νx)P ′

(3.7)

3.1. THE π-CALCULUS AND ITS EXTENSIONS 71

For a detailed explanation of the operational semantics rules see [80].

The particularity of the π-calculus is to allow names of channels to be passed as pa-

rameters. If a process moves, its neighborhood changes and with it the channels it uses

for communication. Transition a(x).P
a(y)
→ P{y/x} means that message y is sent along

the channel a. If we consider that y is not a simple value but a channel name, then

the resulting process P{y/x} is able to use this name as a channel for further commu-

nications. The actual value of the channel is instantiated during the execution of the

process.

3.1.2 Formal Method for Mobility - The Higher Order π-Calculus

This section starts by reviewing the definition of the higher-order π-calculus (HOπ); an

extension of the π-calculus from 3.1.1. The syntax and the operational semantics of this

calculus will be given along with a sequence of examples that illustrates mobility in the

higher-order π-calculus.

The π-calculus provides a conceptual framework for understanding mobility, and math-

ematical tools for expressing mobile systems and reasoning about their behavior. The

first questions we should ask are: What is mobility, what are the entities that move,

and in what space do they move? Two kinds of mobility can be distinguished: ”name

mobility”, which corresponds to the Remote Evaluation paradigm (see 2.2.3) and ”ac-

tion mobility”, which corresponds to the Mobile Agent paradigm (see 2.2.3). In the

first instance, it refers to links that move in an abstract space of linked processes. For

example, in the World Wide Web, the hypertext links can be created, can be passed

and can disappear just like the connections between mobile phones. In the second kind

of mobility, it is an agent or a process that moves in an abstract space of linked pro-

cesses. For instance, a piece of code that can be an agent, can move from a machine to

another over the network in order to accomplish a task; mobile devices can acquire new

functionalities using, for example, the Jini technology.

The π-calculus addresses the first kind of mobility: it directly expresses movement of

links in a space of linked processes. There are two kinds of basic entities in the π-

calculus: names and processes. Names are names of links, and processes can interact by

using names they share.

The higher-order π-calculus (HOπ) treats the second kind of mobility, where it is the

processes (agents) that move. The π-Calculus and its extensions are process algebras

that focus on process mobility. Processes communicate using channels, which define the

configuration of the system. Processes send a channel name in the monadic π-Calculus,

tuples of channel names in the polyadic π-Calculus, and tuples of processes and channel

3.1. THE π-CALCULUS AND ITS EXTENSIONS 72

names in the higher-order π-Calculus (HOπ) [90].

Sangiorgi identifies a first-order paradigm and a higher-order paradigm for mobility

in process algebra. The notion of mobility in process algebra is achieved by sending

messages that change the communication interface between components of the system.

The first-order paradigm allows gates or names to be transmitted as messages. After

the transmission of a gate, the communication can take place through this gate. The

higher-order paradigm allows processes (parameterized or not) to be passed as values

in a communication. After a process has been transmitted, it can start its execution.

This is a process-passing mechanism. Sangiorgi [90] proves that the expressiveness of

higher-order and first-order π-Calculus are the same.

Syntax

A higher-order π-Calculus process is given by the following syntax :

P ::=
∑

i∈(I) αi.Pi | P1|P2 | P1 + P2 | ν x.P | [x = y]P

α ::= x(U) | xK

Here I is a finite indexing set; in the case I = ∅ we write the sum as 0. K and (U) stand

for any tuple of agent (process) or (channel) name and:

• x̄K.P can send the name or process K via the name x and continue as P .

• x(U).P can receive any name or agent U and continue as P with the received

name substituted for U .

• in the composition P1|P2, the two components can proceed independently and

interact via shared names or processes.

• ν x.P is called the restriction and means that the scope of name x is restricted to

P .

• in the sum P1 + P2 either P1 or P2 can interact with other processes.

• The matching [x = y]P denotes the activation of a process which is selected by

other processes depending on a condition ([x = y]) This operator = is a boolean

predicate defined in this algebra.

The difference between first-order and higher-order π-Calculus resides in the fact that

parameters can be channels and/or processes in the higher-order π-Calculus, while in

3.1. THE π-CALCULUS AND ITS EXTENSIONS 73

first-order π-Calculus only channels can be passed as parameters. That means every

channel name in a first-order calculus can be replaced by a parameterized process (if

necessary) in higher-order calculus.

Example: in xP.Q|x(X).X, once the interaction between the two processes has taken

place, the resulting process is Q|P . Indeed, process x(X).X was waiting for X to be sent

along channel x, i.e., it was waiting for a process X defining its subsequent behavior.

Arity and Substitution Issues

The question is, how to treat agents such as x̄K.P | x(U).Q where the arity of the

output is not the same as the arity of the input. J. Parrow proposes in his work about

the polyadic π-calculus [80] to adopt the notion of ”sorting”. His idea is that each name

is assigned a sort, containing information about the agents that can be passed along

that name.

In the polyadic π-calculus, sorts are also essential to avoid disagreement in the arities

of tuples carried by a given name. We write x : s to mean that x belongs to the subject

sort s; this notation is extended to tuples along their components.

We apply his idea to the higher-order π-calculus in order to resolve the substitution

issues generated by the fact that an agent can also be an object, a function, or a name,

and that two or several agents can have a different arities.

Definition 3.3 If S is a set of sorts, a sort context △ is a function from N to S. Then

△(K) is a sort of K.

In a simple system, a sort would be nothing more than a natural number, S = N , such

that △(x) denotes the arity of x, i.e., the number of objects in any prefix where x is the

subject. Formally the notation △ ⊢ P means that P conforms to △, and the rules for

inferring △ ⊢ P can be given by induction over the structure of P :

△ ⊢ P , △(x) = n

△ ⊢ x̄K.P

△ ⊢ P , △ ⊢ Q

△ ⊢ P |Q

Using this idea the agent x̄K.P | x(U).Q is malformed when △(x) in one component is

bigger or smaller then △(x) in the other component.

3.1. THE π-CALCULUS AND ITS EXTENSIONS 74

However, this simple scheme works for this particular example. To be able to capture

not only the immediately obvious arity conflicts, but also any such conflicts that can

arise during execution, more information must be added to the sorts. For each name,

the number of objects passed along the name is not enough; the sort of each such object

must also be included. In the example:

x(u).u(z) | x̄y.ȳK

the left component requires the sort of x to be one object (corresponding to u) which

has the sort 1 because of the subterm u(z). The right component requires the sort of x

to be one object (corresponding to y) of sort of the agent K due to the subterm ȳK. If

the sort is 1, then the term above is well-formed, yet if the sort is different from 1, the

term is malformed.

Arity conflicts can be arbitrarily deep, meaning that the sort of x must contain infor-

mation about the agents which are passed along to their agents, which, in turn, are

then passed along to their agents, etc... To resolve this problem we can associate with

each sort S in S a fixed agent sort ag(S) in S* i.e., the agent sort is a (possibly empty)

sequence of sorts. The intention is that if x has the sort S where ag(S) = 〈S1...Sn〉, and

x(U1...Un) is a prefix, then each Ui has the sort Si. With a slight abuse of notation the

sorting rule for the input becomes:

△ ∪ {K −→ ag(△(x))} ⊢ P

△ ⊢ x(K).P

It should be read as follow: In order to establish that x(K).P conforms to △, find the

agent sort S of x according to △, and verify that P conforms to △ where agent K is

assigned sort S. The rule for output is:

ag(△(x)) = △(K), △ ⊢ P

△ ⊢ x̄K.P

In order to establish that x̄K.P conforms to △ it is enough to show that it assigns K

the agent sort of x, and that P conforms to △.

Definition 3.4 Let us consider an agent variable, ranged over by Y , and let us extend

the definition of agents to include the agent variables and the higher-order prefix forms.

3.1. THE π-CALCULUS AND ITS EXTENSIONS 75

The notion of replacing an agent by an agent, P{Q/Y } and the higher-order interaction

rule gives that:

x(Y).P | x̄Q.R
τ
→ P{Q/Y } | R

The substitution P{Q/Y } is defined with alpha-conversion such that free names in Q

do not become bound in P{Q/Y }.

In the following example:

x(P).y(u).P | x̄〈u(z).0〉.Q

the name u in the right hand-side component is not the same as the bound name u in

the left hand-side component. The agent is alpha-equivalent to:

x(P).y(t).P | x̄〈u(z).0〉.Q

where the names are dissociated. Therefore a transition to y(u).u(z) | Q is not possible.

The binding in this example, corresponds to a static binding: the scope of a name is

determined by its location within the agent.

The alternative dynamic binding, where the scope is determined only when the name is

actually used, cannot use alpha-conversion and it is semantically very complicated.

An expressive power to the higher-order π-calculus brings the fact that a transmitted

agent Q is duplicated by the interaction. Consider the example:

x(Y).(Y |Y) | x̄Q.P
τ
→ Q|Q|P

Replication and Recursion are derivable constructs. Consider:

D = x(Y).(Y | x̄Y)

D accepts an agent along x, and will start that agent and also retransmit it along x.

Let P be any agent with x 6∈ fn(P), and

RP = (νx)(D | x̄〈P |D〉)

Then RP behaves as !P since it will reproduce an arbitrary number of P :

RP
τ
→ (νx)((P |D) | x̄〈P |D〉) ≡ P | RP

τ
→ P | P | RP

τ
→ ...

3.1. THE π-CALCULUS AND ITS EXTENSIONS 76

Obviously, for modeling, programming languages with higher-order constructs (such as

functions with functions as parameters, or processes/agents that can migrate between

hosts), the higher-order calculus is suitable. However, its theory is considerably com-

plicated. Therefore, in some situations, it is advisable to encode it into the first-order

calculus using the algorithm given by Sangiorgi in [89]. Instead of transmitting an agent

P , we transmit a new name which can be used to trigger P . Since the receiver of P

might invoke P several times (because the corresponding agent variable occurs at several

places), P must be replicated. The main idea of the encoding ‖ • ‖ from higher-order

to first-order calculus is as follows, where it is assumed that there exists a previously

unused name y for each agent variable Y :

‖x̄P.Q‖ = (νp)x̄p.(‖Q‖ | !p.‖P‖) where p 6∈ fn(P, Q)

‖x(Y).P‖ = x(y).‖P‖

‖Y ‖ = ȳ

Let us consider the example above, x(Y).(Y |Y) | x̄Q.P
τ
→ Q|Q|P , where Q and P

contain no higher-order prefixes. Using the encoding, and assuming q is not free in Q

or P , we get a similar behavior:

x(y) . (ȳ | ȳ) | (νq)x̄q . (P | !q . Q)
τ
→ (νq)(q̄ | q̄ | P | !q . Q)

τ
→

τ
→ (νq)(0 | 0 | P | Q | Q | !q . Q)

≡ P | Q | Q | (νq)!q . Q

where the component on the right hand-side (νq)!q . Q will never be able to execute

because it is guarded by a private name, so the whole term will behave as Q | Q | P as

expected.

Operational Semantics of the HOπ-calculus

The operational semantics are given in terms of a labeled transition system, where

transitions are of kind P
α
→ for some set of actions ranged over by α (see section 3.1.2).

There are three labels for the transitions: the silent step τ , the input action xK̃ and the

output action xK.

Output action: xK.P
x̄K
−→ P means that after having sent message K (tuples of channels

or processes) over channel x, process xK.P behaves like P .

Input Action: x(K).P
x(U)
−→ P{U/K} means that if message U (tuples of channels or

processes) is sent over channel x, then the process x(K).P , waiting for process or channel

3.2. THE AMBIENT-CALCULUS 77

names on x, receives it and replaces the process or channel names by U . It then behaves

like P , where all occurrences of K are replaced by U . By sending an agent through a

channel, real parameters are used, while (.) stands for formal parameters.

The interaction between two processes is given by the ”Communication rules Com1 and

Com2” in [90]:

ComHO1 :

P
x̄K
−→ P ′, Q

x(U)
−→ Q′

P |Q
τ
−→ P ′|Q′{K/U}

ComHO2 :

P
x(U)
−→ P ′, Q

x̄K
−→ Q′

P |Q
τ
−→ P ′{K/U}|Q′

The output action in ComHO (see above) causes P to become P ′, the corresponding

input action causes Q to become Q′ then P and Q in parallel become P ′ and Q′ in

parallel. For the two rules of the operational semantics, as we have shown above, it is

also necessary to notice that the amount of numbers of parameters of U is the same as

the numbers of parameters of K: △A,P (U) = △A,P (K) (see Def. 3.3) with A a set of

actions x, y, ...; and P a set of agents P, Q, ...

Equivalences: Bisimulation usually identifies processes with the same external behavior.

Higher-order bisimulation identifies higher-order processes if their interactions with the

environment are the same and if their internal processes are bisimilar [69].

3.2 The Ambient-Calculus

”An ambient is a bounded place where computation happens. The interesting property

is the existence of a boundary around an ambient. If we want to move computations

easily we must be able to determine what should move; a boundary determines what is

inside and what is outside an ambient”[63].

An ambient is a sort of a computation environment containing all the necessary data,

code and processes. A whole ambient can move together with its whole content. The

ambient calculus addresses also the problem of security (crossing the firewall).

The syntax of an ambient calculus is:

3.2. THE AMBIENT-CALCULUS 78

P, Q ::= (νn)P | 0 | P |Q | !P |M [P] |M.P | (x).P | < M >

M ::= x | n | in n | out n | open n | ǫ |M.M ′

Where

• n stands for names of ambients, ν is the restriction operator and (νn)P creates a

unique name n within a scope P

• 0 is the inactive process

• | is the parallel operator

• ! is the replication operator

• M [P] are ambients, n[P] denotes an ambient of name n, and process P is running

inside n

• M.P are processes executing an action regulated by capability M and then con-

tinues as the process P

• (x) is an input action

• < M > is an asynchronous output action that causes M to be put in the sur-

rounding ambient where it can be caught by some process as input.

• M is a capability, it is either a variable x or an ambient name n. Mcan either be

empty or a path of capabilities. x is an input action that causes process (x).P to

receive as input the name or capability x which is in its surrounding ambient.

• in for enabling an ambient to enter another ambient

• out for enabling an ambient to leave a surrounding ambient and let them become

sibling ambients

• open for opening up an ambient (for dissolving and revealing the ambient and its

content).

The operational semantics is sketched just for the capabilities an the communication

primitives.

Entry Capability n[in m.P |Q]|m[R]
in m
→ m[n[P |Q]|R] means that the action in m

causes the surrounding ambient n to move to a sibling ambient m. As a result the

whole ambient n (with all the processes inside) moves to ambient m.

3.3. MOBILE AND DYNAMIC PETRI NETS 79

Exit Capability m[n[out m.P |Q]|R]
out m
→ n[P |Q]|m[R] means that ambient n leaves

ambient m and n and m become sibling ambients.

Open Capability open n.P |n[Q]
open n
→ P |Q means that ambient n is removed and the

processes inside are revealed. The process that instructs the ambient to open is

not in the ambient, but resides at the same level as the ambient.

Local anonymous communication (x).P | < M >→ P{x ← M} means that the

output action M is released in an ambient and that it is taken as input (in the

same ambient)by a process. This process behaves after the input like P where

x has been replaced by M . It is also possible to have communication between

ambients (constructed on top of the communication inside an ambient).

Ambient reduction P→Q
n[P]→n[Q] reflects the fact that a process executes inside an am-

bient. If the process executes in a given manner, then it will execute in the same

manner inside the ambient.

An ambient can perform two different moves: a subjective and an objective one.

The subjective move happens when an ambient enters another ambient with all its

processes inside after being instructed by a process inside this ambient to enter it. The

exit capability is similar: a process inside the ambient instructs the ambient to exit its

surrounding ambient.

An objective move enables a process inside an ambient to move from one ambient to

another. The process that performs the objective ”in move” enters a new ambient, but

its surrounding ambient remains at its place. The process that performs the objective

”out move” exits from the current ambient, the other processes remain in that ambient.

An ambient can be a mobile process which moves from one host (ambient) to another.

An ambient can be a π-calculus channel which enables processes to communicate the

names of other π-calculus channels. An ambient can be a firewall: a process that wants

to cross a firewall has to know the password k (which is an ambient). The firewall itself

is another abient w. A pilot process enters the ambient password k, and with the in w

capability enables the process to enter w provided the password k has been shown.

3.3 Mobile and Dynamic Petri Nets

The Petri nets are a formalism used to model concurrent and parallel systems. The

original place/transition Petri nets have been extended in different ways in order to

capture high-level abstractions which are difficult or impossible to express with pure

3.4. OTHER FORMALISMS 80

place/transition Petri nets.

The Mobile petri nets are introduced in [5]. Process mobility is expressed here using

variables and colored tokens in an otherwise static net. Dynamic Petri nets extend

mobile Petri nets with mechanism for modifying the structure of a Petri net, i.e., for

creating new Petri nets when transitions are fired.

Mobile Petri nets are a variation of place/transition nets with colored tokens allow-

ing names of places to appear as tokens. For instance, ready(PRINTER, TYPE),

job(FILE,TYPE) → PRINTER(FILE) is a transition, whose pre- and post- conditions

are the left and right part of the → symbol respectively. Capital names are variable

names, they will be instantiated to actual names, only at the firing of the transition.

There are two places involved in the pre-condition: ready and job, and one place in the

post-condition PRINTER, a variable not known in advance. This transition means

that if the spooler PRINTER from type TY PE is ready then the job of name FILE

and type TY PE can be sent to the spooler PRINTER. The file FILE has moved from

the place job to the place PRINTER. The binding of variables at the firing time will

determine which file be printed on which printer. The enabling and firing of transitions

depends on a substitution function for the variables.

Mobile Petri nets handle mobility à la π-calculus, i.e., the mobile Petri net expresses the

changing configuration of communication channels between processes. In mobile Petri

nets, names of places are allowed to appear as tokens inside places. In π-calculus, names

of channels are sent along channels.

The dynamic Petri nets are mobile Petri nets extended with a mechanism for creating

new subnets when a transition is fired. This is achieved by allowing the postcondition

of a transition to be an entire net and not only a set of places with a post-condition.

The enabling and firing of dynamic Petri nets depends on a substitution function for

variables. The firing of a transition first removes the unified token determined by the

substitution function and pre-conditions of the transition, then adds new places and

new transitions with pre- and post-conditions given by the subnets appearing in the

post-conditions of the transition.

Mobile petri nets and π-calculus are equivalent in their way of specifying mobility, how-

ever they differ in the sense that Petri nets are well suited for modeling causality relations

between events, while process algebra are well suited for composing processes.

3.4 Other Formalisms

The three formalisms introduced above represent a limited selection among many other

approaches to formally describe concurrent and mobile systems. Modeling mobility,

3.5. CONCLUSION 81

both physical and logic, is an active subject of ongoing research.

The join-calculus [42] and the distributed join-calculus [34] are extensions of the π-

calculus which introduce the notion of names location and distributed failure. Locations

form a tree of embedded locations, and locations can move from one location to another.

In the spi-calculus [1] security plays a bigger role; this π-calculus extension was designed

for the description and analysis of cryptographic protocols.

An important aspect of all these formalisms is whether they can serve as a base for tools

and for verification of properties. In [73] the π-calculus is modeled in terms of history-

dependent automata (with local names in the transitions) that may lead to simpler

and automatic validation procedures. Mobile UNITY [35], an extension of UNITY [25]

that augments the program state with a location attribute and provides a programming

notation for capturing mobility. Petri-nets based approaches called high-level Petri nets,

were also developed in order to model mobility and mobile agent systems. The mobile

Petri-nets [5], the dynamic Petri-nets [5] or the M-Nets [13] are such high-level nets.

3.5 Conclusion

This chapter presented briefly the two formalisms to express mobility. Serugendo et al.

investigate in [65], several formalisms for concurrent systems which they applied to two

mobile code environments Obliq [22] and Messengers [45]. The conclusion they came to,

is that process algebra is more useful for highlighting the parallelism and choice aspect

of processes. They classified the formalisms as follows:

Mobility with π-calculus used by the π-calculus and the mobile Petri nets. It is a

mobility by reference passing. Processes do not move but the communication con-

figuration changes.

Mobile Petri-nets and π-calculus are equivalent in their way of specifying mobility,

however they differ in the sense that Petri nets are well suited for modeling causal-

ity relations between events, while process algebras are well suited for composing

processes.

Mobility with Higher-Order π-calculus The processes can really be sent through

channels, they can move and change their configuration. It is a ”true” mobility.

Mobility with ambient calculus It is a more general kind of mobility as it allows

mobility of processes, of channel names, and of a whole environment (a process

with its surrounding context).

3.5. CONCLUSION 82

Trying to match the two formalisms described in this chapter with section 2.2.3, we can

say that the first formalism, the π-calculus corresponds to a Remote Evaluation (REV)

paradigm and the ambient calculus to the Code on Demand (CoD) paradigm.

We need a calculus which must match the last paradigm, the Mobile Agent (MA), in

order to have a ”real ” mobility and to be able to model a mobile agent system. In the

next chapter we will use the HOπ because this calculus is dedicated to the mobility and

its matches very well the MA paradigm, we are interested in.

Part II

FROM SPECIFICATION TO

VALIDATION

83

Chapter 4

Specification Part

Deriving a detailed design from informal requirements can be a tedious and error-prone

endeavor unless a methodical and rigorous approach is used. When large systems of

software are created, it is important that everything works as intended. An increasing

number of designers are interested in scenario-driven approaches that allow them to focus

on the main functional aspects of the system to be specified. One needs to describe the

system and its behavior in a precise and formal way, in order to make it possible to

assess the behavior of the system and either prove mathematically or validate through

simulations, that the system does indeed what it should do. The best method to do

this is to use both validation and verification. We present an approach where formal

specifications are written within the process-algebraic language Higher-Order π-Calculus

and some properties will be verified using the tool UPPAAL [12] (model-checking) and

simulated using a tool developed for this research. We present the approach, which was

published in [c], by using the Service Location Protocol (SLP) [52] as a case study.

4.1 Mobile feature of the SLP Protocol

An important area is mobile code for providing clients access to network services. By

deploying mobile code for network service access, called service drivers, clients can down-

load code for particular network services when needed exactly as capsules and mobile

code allow routers and other infrastructure elements to download code for processing

protocols that were not previously encountered.

Client application software interacts with the downloaded network service driver through

84

4.1. MOBILE FEATURE OF THE SLP PROTOCOL 85

a standardized programmable interface defined for the service.

The Service Location Protocol (SLP) is an Internet Engineering Task Force (IETF)

standard track protocol [31] that provides a framework to allow networking applications

to discover the existence, location, and configuration of networked services in enterprise

networks.

SLP can eliminate the need for the user to know the technical features of network hosts.

With the SLP, the user needs only to know the description of the service he is interested

in. Based on this description, SLP is then able to return the URL of the desired ser-

vice. SLP is a language independent protocol. Thus the protocol specification can be

implemented in any language. The SLP infrastructure consists of three types of agents:

1. UserAgent (UA) is a software entity that is looking for the location of one or more

services,

2. ServiceAgent (SA) is a software entity that provides the location of one or more

services,

3. DirectoryAgent (DA) is a software entity that acts as a centralized repository for

service location information.

In order to be able to provide a framework for service location, SLP agents communicate

with each other using eleven different types of messages (Figure 4.1). The dialog between

agents is usually limited to very simple exchanges of request and reply messages. The

syntax, semantics and scope of these messages are defined in [31].

• Service Request (SrvRqst)

Message sent by UAs to SAs and DAs to lookup the location of a service.

• Service Reply (SrvRply)

Message sent by SAs and DAs in reply to a SrvRqst. The SrvRply message contains

the URL of the requested service.

• Service Registration (SrvReg)

Message sent by SAs to DAs containing information about a service that is avail-

able.

• Service Unregister (SrvUnReg)

Message sent by SAs to inform DAs that a service is no longer available.

• Service Acknowledge (SrvAck)

A generic acknowledgment that is sent by DAs to SAs as a reply to SrvReg and

SrvUnReg messages.

4.1. MOBILE FEATURE OF THE SLP PROTOCOL 86

Figure 4.1: SLP Communications

• Attribute Request (AttrRqst)

Message sent by UAs to request the attributes of a service.

• Attribute Reply (AttrRply)

Message sent by SAs and DAs in reply to a AttrRqst. The AttrRply contains the

list of attributes that were requested.

• Service Type Request (SrvTypeRqst)

Message sent by UAs to SAs and DAs requesting the types of services that are

available.

• Service Type Reply (SrvTypeRply)

Message sent by SAs and DAs in reply to a SrvTypeRqst. The SrvTypeRply

contains a list of requested service types.

• DA Advertisement (DAAdvert)

Message sent by DAs to let SAs and UAs know where they are.

4.1. MOBILE FEATURE OF THE SLP PROTOCOL 87

• SA Advertisement (SAAdvert)

Message sent by SAs to let UAs know where they are.

SLP is a unicast and a multicast protocol. This means that the messages described

above can be sent to one agent at a time (unicast) or simultaneously to all agents that

are listening (multicast). A multicast is not a broadcast, because multicast messages

are only ”heard” by the nodes on the network that have ”joined the multicast group”.

Multicast traffic from a given group is forwarded by routers to all subnets that have at

least one machine that is interested in receiving the multicast for that group.

The minimal configuration of SLP requires two agent processes: the User Agent (UA)

acts on behalf of a client to acquire service information, and the Service Agent (SA)

acts on behalf of a service provider to disseminate information about the location and

attributes of the service. In its most basic form, SLP is peer-to-peer. However, the ini-

tial service request is multicast to the SLP group address, since the UA does not know

where the Service Agents are located. The UA must be prepared to receive multiple

responses, since every SA within range that meets the service criteria of the request will

respond. Starting the process of service discovery requires only the knowledge of a sin-

gle well-known multicast group address, defined exclusively for SLP. Once a UA knows

where and how to connect to a specific SA, subsequent requests are unicast directly to

the SA (Figure 4.2). Thus, multicasting is limited to initial service discovery. All service

Figure 4.2: Service Discovery with UA and SA

requests include a predicate that is specified in terms of the service scheme attributes.

The extended implementation of SLP includes a Directory Agent (DA), which acts as

a centralized repository of service information - a kind of service switchboard. Service

agents actively seek all directory agents using DA discovery; multicasting requests for

the directory agent service type. A service registration is unicasted to each DA dis-

covered. DAs actively advertise their service by multicasting advertisements. A user

agent attempts to discover a DA initially. If successful, the UA unicasts service requests

directly to the DA (Figure 4.3).

It is interesting to prove properties of applications to ensure that the developed codes

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 88

Figure 4.3: Service Discovery with UA, DA and SA

strictly adhere to their initial specifications. First, we look at a property of this protocol.

This property must be expressed according to its initial specification, which also forms

the base of the implementation of the SLP case study. Let us assume that a particular

system (see figure 4.4) is composed of a UserAgent (UA), a ServiceAgent (SA) and a Di-

rectoryAgent (DA). The UserAgent asks the DirectoryAgent for a service called ”print”,

and the DirectoryAgent must be able to deliver a response. This interaction is one of

many properties of this system. This property is basic and simple to understand, yet

expressive. In order to prove properties of applications, we are interested in a formal

specification language having the capacity to express mobility: the HOπ-Calculus.

4.2 Formal Specification of the SLP System

Our case study SLP [31], described above, is based on the publication of a simple

print service. It uses just a single parameter. Also the Attr Messages (AttrRqst and

AttrRply), the SrvType Messages (SrvTypeRply and SrvTypeRqst) will not be present

in our specification, because they are treated as parameters of the higher-order terms in

the HOπ (i.e. the information is an invariant within the requested property).

We give a formal specification of the SLP system using the HOπ-Calculus introduced

in section 3.1.2, considering the particular scenario given above (see also section 4.1):

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 89

Figure 4.4: Sequence Diagram of our SLP Case Study

UserAgent (UA) asks the DirectoryAgent (DA) for a service called print. A ServiceAgent

(SA) can register or unregister services with the DirectoryAgent (DA), which as far as

it is concerned must send the requested available service to the UserAgent. To simplify

matters, our system is based on only one SA, one DA and one UA. We also assume

that, through an unicast protocol, the UA knows the location of DA and DA knows

the location of SA. Adopting this idea, we can ignore the Advert messages (DAAdvert,

SAAdvert and UAAdvert), which are sent to let somebody know where they are located.

We want to model the state of registered services, and because the specification language

is a functional one, we define two agents called DAMem and IdleDAMem for this purpose.

Therefore, the two agents DAMem and the IdleDAMem are used as a memory for a

DirectoryAgent (DA). The DA saves information in the DAMem and the DAMem in the

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 90

IdleDAMem in order to be able to recover the information. The IdleDAMem is also

necessary to unregister services. In other words, we can say that DAMem models the

information which is available on the DA, then the IdleDAMem models the information

which is already delivered to an agent.

Figure 4.5 shows the general working mechanism of the messages in a basic system that

contains a UserAgent, a ServiceAgent, a DirectoryAgent, a Memory (DAMem) and an

IdleMemory (IdleDAMem) for the DirectoryAgent. The formal specification of the SLP

Figure 4.5: Messages between the agents in a basic system

system is given below:

System = ν(SrvRqst, SrvRply, SrvReg, SrvUnReg, SrvAck)

UA(SrvRqst, SrvRply)

|SA(SrvReg, SrvUnReg, SrvAck)

|DA(SrvReg, SrvUnReg, SrvRqst, SrvAck)

In this specification, the mobility is described through the parameters of the chan-

nel. The system is composed of one UA, one DA and one SA. For each new service

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 91

registered by the SA within the DA, there are a DAMem and a IdleDAMem belonging

to this specific service. In our case the service will be ”Print”. The parameters for each

agent are used for the communication between agents.

UA(SrvRqst, SrvRply) = ν(Print)

SrvRqst(Print, SrvRply) . SrvRply(Name). UA(SrvRqst, SrvRply)

We use gates like SrvRply to specify the communication channel between agents. The

UA specification is described as follows: the term SrvRqst(Print, SrvRply) is used in

order to send to DA over the channel SrvRqst an inquiry about an existing service

”Print” and also the channel for further communication. The reception term SrvRply

reveals the higher-order aspect of this specification, because its scope is from the type

agent.

SA(SrvReg,SrvUnReg,SrvAck) = ν(Print)

SrvReg(Print) . SrvAck . (SA(SrvReg, SrvUnReg, SrvAck) + SrvUnReg(Print) . SrvAck

. SA(SrvReg, SrvUnReg, SrvAck))

The SA can register a service within the DA using the channel SrvReg and also re-

move a registered service within the DA using the channel SrvUnReg.

DA(SrvReg,SrvUnReg,SrvRqst,SrvAck) = ν(input, reset, channel, inputIdle, resetIdle)

(SrvReg(Sreg) . ((DAMem(input, reset, channel, inputIdle)

| IdleDAMem(input, resetIdle, channel, inputIdle) | input(Sreg) . SrvAck)

+SrvUnReg(Sreg) . reset . resetIdle . SrvAck)

|SrvRqst(Srqst, ch) . channel(Srqst, ch))

.DA(SrvReg, SrvUnReg, SrvRqst, SrvAck)

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 92

The DA can register or unregister a service. After having registered a service, the DA

will start a DAMem and an IdleDAMem and will send the information to the memory

DAMem. Along with the request for the service ”Print”, the DA receives the channel

name SrvRply. This channel is used later by IdleDAMem to send the requested service

back to the UA.

DAMem(input, reset, channel, inputIdle) =

input(Sreg) . channel(Srqst, ch) . [Sreg = Srqst] ch(Sreg) .

inputIdle(Sreg) .DAMem(input, reset, channel, inputIdle) + reset.0

After having initially received the first time the registered service over the channel

input and the channel SrvRply over the channel channel from DA, the DAMem sends

the requested service to UA, as long as it matches with the registered service. To be

able to send the service ”Print” several times, the DAMem will store the service and

channel information in the extra memory named IdleDAMem.

IdleDAMem(input, resetIdle, channel, inputIdle) =

inputIdle(Sreg) . channel(Srqst, ch) . [Sreg = Srqst] ch(Sreg) .

input(Sreg) . IdleDAMem(input, resetIdle, channel, inputIdle) + resetIdle.0

The IdleDAMem satisfies the UA’s request by sending the correct service. This an-

swer is done on the SrvRply channel (which substitutes ch). In any case the system

can be modeled by several ServiceAgents and several DirectoryAgents, depending on the

number of services present in the network. The location of these agents is then known

through a multicast request. The UserAgent can also contact several ServiceAgents. For

instance, if it searches two services, a print service and a mail service, one of which is

registered with a DirectoryAgent1 and the second with a DirectoryAgent2 the User-

Agent can exchange data with both of them. There is also a need to provide for each

registered service a proprietary DAMem and an IdleDAMem.

Formal methods may be used to specify and model the behavior of a system and to ver-

ify that the design and implemented system satisfy the expected functional and safety

properties. The higher-order π-calculus is able to describe the behavior of mobile sys-

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 93

tems and, because it possesses formal semantics, it is capable of verification as well.

With the notion of transition graphs and the operational semantics for operators in the

HOπ-Calculus, we can demonstrate the relation between them. The operational rules

will allow us to prove or disprove the correctness of the arcs connecting agent expres-

sions in any transition graphs we construct. We do this by giving a directive (see Figure

4.6) on how to construct inference trees [37] using just the rules we have stated for the

operational semantics. At the root of each successful tree will be the transition we are

trying to prove. Each node in the tree will consist of a transition labeled by the rule

which was used to derive it. A node may only refer to transitions already proved correct

higher up in the tree. The treatment of non-determinism in the specification of our case

study is represented by offering the choice of a channel reset, which is needed in order

to remove the registered services.

The construction of such a tree must start with the principal term which is System in our

case. We consider the same case study, with one exception: the UA will only request the

service ”Print” once. With this consideration, the requested service will be returned by

the DAMem and the IdleDAMem will not be needed. The function of the IdleDAMem,

being the equivalent of the DAMem, will not be discussed in detail. Furthermore we

define and prove that the reachability property (If UA asks for the service ”print” and

if SA subscribes a DA, then UA obtains the ”print” service), has been achieved.

Using the communication rule ComHO1 and ComHO2 between two processes we can

establish the correctness of our property. The communication rules can only be used

if the interacting agents have the same arity, as we demand in the first section of this

chapter.

STEP 1 in the construction of our inference tree consists of the interaction between the

UA and the DA (meaning that UA asks the DA for the service ”print”). At the same

time, the UA communicates to the DA its location and the name of the communication

channel (in this case SrvRply). The interacting channels are written in bold.

UA(SrvRqst, SrvRply) = ν(Print)

SrvRqst(Print, SrvRply) . SrvRply(Name). UA(SrvRqst, SrvRply)

DA(SrvReg, SrvUnReg, SrvRqst, SrvAck) = ν(input, reset, channel, inputIdle, resetIdle)

(SrvReg(SReg) . ((DAMem(input, reset, channel, inputIdle)

| IdleDAMem(input, resetIdle, channel, inputIdle) | input(Sreg) . SrvAck)

+SrvUnReg(Sreg) . reset . resetIdle . SrvAck)

|SrvRqst(Srqst, ch) . channel(Srqst, ch)) .DA(SrvReg, SrvUnReg, SrvRqst, SrvAck)

STEP 1

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 94

Figure 4.6: How to construct the inference tree

STEP 2 consists of the interaction between the SA and the DA (meaning that SA

subscribes the service ”Print” with the DA). The interacting channels are written in

bold.

DA(SrvReg, SrvUnReg, SrvRqst, SrvAck) = ν(input, reset, channel, inputIdle, resetIdle)

(SrvReg(SReg) . ((DAMem(input, reset, channel, inputIdle)

| IdleDAMem(input, resetIdle, channel, inputIdle) | input(Sreg) . SrvAck)

+SrvUnReg(Sreg) . reset . resetIdle . SrvAck)

|SrvRqst(Srqst, ch) . channel(Srqst, ch)) .DA(SrvReg, SrvUnReg, SrvRqst, SrvAck)

SA(SrvReg, SrvUnReg, SrvAck) = ν(Print)

SrvReg(Print) . SrvAck . (SA(SrvReg, SrvUnReg, SrvAck)

+SrvUnReg(Print) . SrvAck . SA(SrvReg, SrvUnReg, SrvAck))

STEP 2

According to the application of the Coms rules for the parallel communication between

the channels written in bold in STEP 1 and STEP 2, the DA and DAMem communi-

4.2. FORMAL SPECIFICATION OF THE SLP SYSTEM 95

cate together through the channels input and channel. Because of the symmetry of the

semantics of the operator |, we can begin the construction of our tree either with STEP

1 or with STEP 2.

The system in STEP 3 becomes:

DA(SrvReg, SrvUnReg, SrvRqst, SrvAck) = ν(input, reset, channel, inputIdle, resetIdle)

(SrvReg(SReg) . ((DAMem(input, reset, channel, inputIdle)

| IdleDAMem(input, resetIdle, channel, inputIdle) | input(Sreg) . SrvAck)

+SrvUnReg(Sreg) . reset . resetIdle . SrvAck)

|SrvRqst(Srqst, ch) . channel(Srqst,ch)) .DA(SrvReg, SrvUnReg, SrvRqst, SrvAck)

DAMem(input, reset, channel, inputIdle) =

input(Sreg) . channel(Srqst, ch) . [Sreg = Srqst] ch(Sreg) .

inputIdle(Sreg) .DAMem(input, reset, channel, inputIdle) + reset.0

STEP 3

The communication between DA and DAMem through the mutual channel input means

that DA sends this information (that the registered service is ”print”) to its memory

DAMem. This communicates with IdleDAMem in order to save the information. We

need this second ”saving element” in order to be able to recover the information when

the SA wants to unregister it or the UA desires the same service several times.

In STEP 4 when the UA asks for the first time for a service ”Print”, the DAMem will

return the desired service using the channel SrvRply

UA(SrvRqst, SrvRply) = ν(Print)

SrvRqst(Print, SrvRply) .SrvRply(Name). UA(SrvRqst, SrvRply)

DAMem(input, reset, channel, inputIdle) =

input(Sreg) . channel(Srqst, ch) . [Sreg=Srqst] ch(Sreg) .

inputIdle(Sreg) .DAMem(input, reset, channel, inputIdle) + reset.0

STEP 4

The channel ch became SrvRply after its substitution. If the registered and the re-

quested service are the same, the DAMem will send it to the UA. After the communi-

cation, the UA receives the requested service ”Print”.

Our specification contains a second memory, called IdleDAMem, used in the case the

UA asks a second time, the same service or the service has to be removed. The DAMem

registered the service ”Print” with the IdleDAMem. After all communications and ap-

plication of ComHO has been terminated, the system becomes:

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 96

UA|SA|DA|DAMem|IdleDAMem with Name := Print. This result means that the last

transition is achieved and the UserAgent can use the requested service ”Print”.

4.3 Temporal Properties of SLP Protocol

Model checking allows the discovery of well hidden errors in a large system. For example,

with the help of the verification tool UPPAAL [12], an error in an audio-video control

protocol from Bang & Olufsen has been discovered and a correction proposal has been

made. In order to verify automatically a system using a model checking method, it is

necessary to first build a formal model (e.g. an automaton). To do this, one needs to

employ a system specification language. Therefore, formal methods are typically used

for the specification of agent systems and agent behaviors. The primary purpose of the

resulting formal agent model is to define which properties are to be realized by the agent

system, e.g. behavioral properties. To prove behavioral properties of our SLP protocol,

we need a properties specification language as, for instance, a temporal logic.

Model checking is a technique in which the verification of a system is carried out by

using a finite representation of its state space. Basic properties, such as an absence

of deadlock or satisfaction of a state invariant (e.g. mutual exclusion), can be verified

by checking individual states. More subtle properties, such as guarantee of progress,

require checking for specific cycles in a graph representing the states and possible tran-

sitions between them. Properties to be checked are typically described by formulae in a

branching time or linear time temporal logic.

There are several model checkers that we could use in order to prove system properties.

Three of the most well-known are the HD-Automata Laboratory (Hal) environment [38],

the mobility Workbench [99] for analyzing π-calculus processes and the UPPAAL [12]

that uses the computation tree logic for the verification of a property. None of them

handle higher-order π-calculus, therefore our case study must be converted into a first-

order calculus (see the translation given by [89]). The HAL is an integrated tool set for

the specification, verification and analysis of concurrent and distributed systems. The

core of HAL consists of the HD-automata: they are used as a common format for the

various history-dependant languages. The HAL environment includes modules which

implement decision procedures to calculate behavioral equivalences, and modules which

support verification of behavioral properties expressed as formulae of suitable temporal

logics. At this moment HAL works only with concurrent and distributed systems ex-

pressed by a basic π-calculus formalism. The HAL environment allows π-calculus agents

to be translated into ordinary automata, so that existing equivalence checkers can be

used to calculate whether the π-calculus is bisimilar. The environment also supports ver-

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 97

ification of logical formulae expressing desired properties of the behavior of π-calculus

agents. The tool is still a prototype and currently only works under Unix or online

[http://fmt.isti.cnr.it:8080/hal/bin/HALOnLine/]. For the online version, there

is no debugger or syntax checker, which makes it difficult to enter the correct data. This

tool does not allow either the expression of matching a polyadic term or of a higher-

order one. The deficient visualization of the automata convinced us to use the UPPAAL

tool which is a good tool for the modeling and verification of concurrent systems which

communicate through synchronization. The tool has a user-friendly interface, is easy

to use and also provides a simulation function. This function is the strength of this

tool, because it allows the manipulation and the observation of the system behavior.

It even delivers useful diagnosis for a large system, which cannot use verification. UP-

PAAL also permits the simulation of unpredictable performances: at every stage where

several transitions are possible, one of them is haphazardly chosen. Finally, during the

verification of a property, it can acquire a diagnosis in the form of an execution leading

to the sought-after configuration. This sequence can be memorized to then be played

again by the simulator. Even though the simulation does not permit the exhaustive

examination of a system’s behavior, it is an important phase in order to have confidence

in the constructed model.

In order to verify properties, the tool allows us to state them in the form of Computation

Tree Logic (CTL) formulae. CTL is a branching time [32] temporal logic which provides

correct behavior of parallel systems by expressing properties concerning the occurrence

of events in time. Different operators and modalities can be used to express impor-

tant properties such as invariance, eventuality and precedence [33]. Given a correctness

property, i.e. a temporal logic formula, there are two principal ways of using temporal

logic. One is to apply an automated synthesis method using a decision procedure to

determine the satisfiability of our property. When the method succeeds, it generates a

synchronization skeleton of the system events [27]. The second one, on which we will

focus our attention, uses a model checking based method, which verifies the truth of the

correctness property in the structure representing the parallel system. This structure is

generally a labeled transition system.

Neither HAL, nor UPPAAL are able to represent a higher-order π-calculus term. In

order to represent this kind of term, we have to transform them into a first-order π-

calculus. A transformation algorithm is given by Sangiorgi in [89]. Following his rules

for the compilation from HOπ to π-calculus we can proceed to the transformation of

our initial HOπ specification into a first-order, one which is necessary if we wish to use

a model checker such as HAL or UPPAAL. No existing model checker can operate on a

HOπ term.

We decided to prove our properties using the UPPAAL tool, because it is a known,

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 98

working tool and not a prototype and we could try it under different platforms. It

uses diagrams for the representation of the agents, making it more convenient and eas-

ier to proceed; it provides diagnostic information and is relatively easy to learn and

use. UPPAAL is an integrated tool environment for modeling, simulation and verifi-

cation of real-time systems, developed jointly by Basic Research in Computer Science

at Aalborg University in Denmark and the Department of Information Technology at

Uppsala University in Sweden. A typical application area includes the communication

protocols. This was one of the reasons for choosing this tool. It is designed mainly

to check invariant and reachability properties by exploring the state-space of a system.

A system in UPPAAL is composed of concurrent processes, each of them modeled as

an automaton. The automaton has a set of locations. Transitions are used to change

location. To control how to fire these transitions, it is possible to have a guard and

a synchronization. A guard is a condition on the variables stating whether or not the

transition is enabled. The synchronization mechanism in UPPAAL is a hand-shaking

synchronization: two processes fire a transition at the same time, one will have a! (send)

and the other a? (receive), a being the synchronization channel. Actions are possible by

taking a transition: assignment of variables.

UPPAAL can be used to verify properties on (real time) systems:

Safety Safety properties are some properties that are required to always hold, i.e. they

are invariants.

• A[]ϕ means that ”for all paths ϕ will always hold”.

• E <> ϕ means that ”for some paths ϕ will eventually hold”.

Reachability A reachable property is a property that can eventually hold.

• A <> ϕ means that ”for all paths ϕ will eventually hold”.

• E[]ϕ means that ”for some paths ϕ will always hold”.

Bounded liveness Bounded liveness properties are properties that have to hold within

a certain time bound.

• F ::= F U<t P means that ”F holds until P and P holds before t” where F and

P are properties (logical expressions) and t is time.

Let us define for our SLP system from the section 4.1, for each category of properties,

a specific property:

• Safety: ”Every agent SA which registers a service within DA is recognized by the

DA and the service becomes available”.

• Reachability: ”If UA asks for the service ”print” and if SA subscribes a DA, then

UA obtains the ”print” service”.

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 99

• Bounded liveness: ”During the registration period within the DA, a service must

be accessible (after SrvReg and before SrvUnReg)”.

UPPAAL’s property specification language is actually a subset TCTL (Timed Compu-

tation Tree Logic) because it does not allow A[], E <>, A <> and E[] to contain one

another. Unlike in complete TCTL these can only be written before a logical expression.

Using this notation, we can specify and verify some key properties of our SLP protocol,

shown above, such as reachability and safeness.

4.3.1 SLP modeled by UPPAAL

The aim of this section is to verify if a given property is satisfied. We consider our SLP

system from section 4.2 and we consider that the UA only requests the service ”Print”

once. This consideration will eliminate the need of a second memory DirectoryIdle-

Mem (which is used only if UA requests the same service several times). The system

is modeled by UPPAAL through a set of automata using exactly the same names for

communication channels. There are some constraints that we have to consider. The first

one is that the initial HOπ specification must be transformed into a first-order one. We

do not use Sangiorgi’s algorithm for the compilation, because we do not need it for such

simple systems. We just consider the service ”Print” as a name. Because ”Print” is the

only agent in our system, this transformation is sufficient. Another constraint is that the

system does not allow the matching of names, we must also consider that the registered

service corresponds to the requested one. Because of the weak power of expression of

UPPAAL, the specification describes, therefore, only the request of a service ”Print”.

The textual description of a system (in Source Code 3) begins with the declaration of

variables, constants and communication channels. The system defines two constants

Print for the requested and registered service and Unknown for an unknown service.

It defines also a global clock and three more constants fast, slow, slowest in order to

define which agent is the fastest. SA is the fastest agent, the UA the slow one and the

other agents even slower. That means that the SA is the first agent to register and

only after that UA can ask for its service. It also defines the channels responsible for

the synchronic communication between agents and the variable ”printcount” in order to

show that the UA can request the same service up to ten times. The variables defined

on line 4 are communication assignments.

Source Code 3— Configuration of SLP System

1 : const Prin t 1 ;

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 100

2 : const Unknown 0 ;

3 : chan pr in tRp ly , p r in tRqs t , pr intReg , printUnReg , ack , input , r e s e t ,

r e s e t I d l e , channel , i n p u t I d l e ;

4 : int [0 , 1] r e q u e s t e d s e r v i c e , r e g i s t e r e d s e r v i c e , u n r e g i s t e r e d s e r v i c e ;

5 : int [0 , 1 0] p r i n t c oun t ;

6 : c l o c k g l o b a l ;

7 : const f a s t 5 ;

8 : const s low 10 ;

9 : const s l ow e s t 15 ;

The specification of the UA process defines two communication channels. We model

them using three control states one between each action. The synchronization action

sync permits us to model the communication. The definition of UserAgent begins with

the list of the control states. We consider systematically that every action (belonging

to α, i.e. receiving, sending or the silent action) has a time duration equal to zero, but

there exists a permanent control state before and after the action. After the definition

of the initial state start UserAgent, we give the transition list, the control states (start

and end), the synchronization action and the variable assignments. The textual descrip-

tion of the UserAgent is given below in Source Code 4.

Source Code 4— Process UserAgent

1 : p roce s s UserAgent

2 : {

3 : s t a t e s : s t a r t UserAgen t , r e q u e s t s e r v i c e P r i n t ,

s e r v i c e P r i n t i s r e c e i v e d ;

4 : s t a r t Use rAgen t −> r e q u e s t s e r v i c e P r i n t

5 : {

6 : a s s i gn r e q u e s t e d s e r v i c e :=Unknown , clockUA :=0;

7 : sync p r i n tRq s t ! ; //This t r a n s i t i o n wa i t s f o r a s ynch ron i z a t i on in

order to send i t s r e q u e s t .

8 : } ,

9 : r e q u e s t s e r v i c e P r i n t −> s e r v i c e P r i n t i s r e c e i v e d

10 : {

11 : guard clockUA > de l a y ;

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 101

12 : a s s i gn r e q u e s t e d s e r v i c e := Pr in t ;

13 : sync p r in tRp l y ? ; //This t r a n s i t i o n wa i t s f o r a s ynch ron i z a t i on in

order to g e t i t s r e qu e s t e d s e r v i c e .

14 : } ,

15 : s e r v i c e P r i n t i s r e c e i v e d −> s t a r t Use rAgen t

16 : }

Instead of a textual description of the system we can also use the graphic editor from

UPPAAL to describe the different automata to define variables, etc... The figures be-

low were created using the latest version of UPPAAL 3.4.8. The modeling of User-

Agent is given by Figure 4.7 and describes the states when the UserAgent sends a

request concerning a ”Print” service. The agent has three locations: one to start the

agent start UserAgent (the start location is marked by a double circle), the second

request service Print which shows the state before and after its request for the service

”Print” and the third service Print is received before and after the service ”Print” is

received.

The specification of process ServiceAgent defines four communication channels, mod-

start_UserAgent

request_service_Print

service_Print_is_received

printRqst!
requested_service:=Unknown,
clockUA:=0

printRply?
requested_service:=Print

clockUA>delay

Figure 4.7: Modeling of UserAgent with UPPAALTool: process UA

eled by UPPAAL through four control states. The textual description of the Ser-

viceAgent below in Source Code 5, shows the process of registering and unregistering

services with the DA. After registering or unregistering an acknowledgment is sent. The

process is also modeled in Figure 4.8.

Source Code 5— Process ServiceAgent

1 : p roce s s Serv i ceAgen t

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 102

2 : {

3 : s t a t e s : s t a r t S e r v i c eAg en t , r e g i s t e r s e r v i c e P r i n t ,

acknow ledgement sen t ; u n r e g i s t e r s e r v i c e P r i n t ;

4 : s t a r t S e r v i c eAg en t −> r e g i s t e r s e r v i c e P r i n t

5 : {

6 : a s s i gn clockSA :=0;

7 : sync pr in tReg ! ;

8 : } ,

9 : r e g i s t e r s e r v i c e P r i n t −> acknowledgement sen t

10 : {

11 : guard clockSA > de l a y ;

12 : sync ack ? ;

13 : } ,

14 : acknow ledgement sen t −> u n r e g i s t e r s e r v i c e P r i n t

15 : {

16 : a s s i gn clockSA :=0;

17 : sync printUnReg ! ;

18 : } ,

19 : u n r e g i s t e r s e r v i c e P r i n t −> s t a r t S e r v i c eAg en t

20 : {

21 : sync ack ? ;

22 : guard clockSA > de l a y ;

23 : } ;

24 : }

start_ServiceAgent register_service_Print

unregister_service_Print acknowledgement_sent

printReg!

clockSA:=0
ack?

ack?
clockSA>delay

ack?

clockSA > delay

printUnReg!
clockSA:=0

Figure 4.8: Modeling of Service Agent with UPPAAL: process SA

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 103

The DirectoryAgent is divided in two automata: DirectoryAgentReg and DirectoryA-

gentSave, as every possible communication has to be taken into account, and we can

have two: one describing the registering and unregistering of services, the second de-

scribing the communication with the UA and the sending of the desired service. As in

the first two processes, the textual descriptions follow the given π-calculus specification.

The textual description of the DirectoryAgentReg is given below in Source Code 6.

Source Code 6— Process DirectoryAgentReg

1 : p roce s s DirectoryAgentReg

2 : {

3 : s t a t e s : s t a r t D i r e c t o r yAg en tRe g i s t e r , s e r v i c e P r i n t i s r e g i s t e r e d ,

s a v e s e r v i c e P r i n t , send acknowledgement ,

s e r v i c e P r i n t i s u n r e g i s t e r e d , d e l e t e s e r v i c e Pr in t f r om Memory ,

d e l e t e s e r v i c e P r i n t f r om Id l eMemor y ;

4 : s t a r t D i r e c t o r yAg en tRe g i s t e r −> s e r v i c e P r i n t i s r e g i s t e r e d

5 : {

6 : a s s i gn r e g i s t e r e d s e r v i c e :=Print , clockDAReg :=0;

7 : sync pr in tReg ? ;

8 : } ,

9 : s e r v i c e P r i n t i s r e g i s t e r e d −> s a v e s e r v i c e P r i n t

10 : {

11 : guard clockDAReg > de l a y ;

12 : sync inpu t ! ;

13 : } ,

14 : s a v e s e r v i c e P r i n t −> s t a r t D i r e c t o r yAg en tRe g i s t e r

15 : {

16 : sync ack ! ;

17 : }//The system can do t h i s t r a n s i t i o n and go back to the i n i t i a l

s t a t e or the nex t one in order to u n r e g i s t e r t he s e r v i c e .

18 : s a v e s e r v i c e P r i n t −> send acknowledgement

19 : {

20 : sync ack ! ; // Using t h i s t r a n s i t i o n an acknowledgement w i l l be s en t

a f t e r t he s e r v i c e ” Pr in t ” i s saved .

21 : guard clockDAReg :=0;

22 : } ,

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 104

23 : send acknowledgement −> s e r v i c e P r i n t i s u n r e g i s t e r e d

24 : {

25 : guard clockDAReg > de l a y ;

26 : a s s i gn u n r e g i s t e r e d s e r v i c e := Pr in t ;

27 : sync printUnReg ? ;

28 : } ,

29 : s e r v i c e P r i n t i s u n r e g i s t e r e d −> de l e t e s e r v i c e Pr in t f r om Memory

30 : {

31 : sync r e s e t ! ; //This t r a n s i t i o n i s used in order to d e l e t e t he

s e r v i c e ” Pr in t ” from the Memory .

32 : } ,

33 : d e l e t e s e r v i c e Pr in t f r om Memory −>

d e l e t e s e r v i c e P r i n t f r om Id l eMemor y

34 : {

35 : sync r e s e t I d l e ! ; //This t r a n s i t i o n i s used in order to d e l e t e t he

s e r v i c e ” Pr in t ” from the IdleMemory .

36 : } ;

37 : d e l e t e s e r v i c e P r i n t f r om Id l eMemor y −> s t a r t D i r e c t o r yAg en tRe g i s t e r

38 : {

39 : a s s i gn clockDAReg :=0;

40 : sync ack ! ;

41 : } ;

42 : }

The graphical DA is described by Figure 4.9 and Figure 4.10. The first schema 4.9

models the process of registering and unregistering the services. The textual description

below in Source Code 7 and the second schema 4.10 depicts the process of memorizing

services in order to be able to reply to requests.

Source Code 7— Process DirectoryAgentSave

1 : p roce s s Direc toryAgentSave

2 . {

3 : s t a t e s : s tar t DAsave , r e q u e s t f o r P r i n t s e r v i c e r e c e i v e d ;

4 : s tar t DAsave −> r e q u e s t f o r P r i n t s e r v i c e r e c e i v e d

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 105

5 : {

6 : a s s i gn clockDASave :=0;

7 : sync p r i n tRq s t ? ;

8 : } ,

9 : r e q u e s t f o r P r i n t s e r v i c e r e c e i v e d −> s tar t DAsave

10 : {

11 : guard clockDASave > de l a y ;

12 : sync channe l ! ; //This t r a n s i t i o n i s used in order to save the

r e qu e s t e d s e r v i c e .

13 : } ;

14 : }

start_DirectoryAgentRegister

service_Print_is_registered

save_service_Print
send_acknowledgement

service_Print_is_unregistered

delete_service_Print_from_Memory

delete_service_Print_from_IdleMemory
input!

clockDAReg>delay

printReg?
registered_service:=Print,
clockDAReg:=0

ack!

clockDAReg:=0

printUnReg?

unregistered_service:=Print

clockDAReg>delay

reset!

resetIdle!

ack!
clockDAReg:=0 ack!

Figure 4.9: Modeling of DirectoryAgent with UPPAAL: the process of registration and
unregistration a service

start_DAsave request_for_Print_service_received

printRqst?

clockDASave:=0

channel!
clockDASave>delay

Figure 4.10: Modeling of DirectoryAgent with UPPAAL: the process of memorizing a
service

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 106

The last figure 4.11 and the textual description below in Source Code 8 show the mem-

ory of the DirectoryAgent, the DirectoryAgentMem which is introduced as a container

for saving information such as services. To be able to recover or delete these services we

also use another container called IdleDirectoryAgentMem. The schema of this container

is identical to the DirectoryAgentMem schema; it uses only its own variables, which are

defined within the formal specification. If the UA requests several different services, the

DA has to start one DirectoryAgentMem and one IdleDirectoryAgentMem for each

service. The expression power of CTL forces the system to be constant and does not

permit the dynamic evolution of the number of the saved services.

The entire system, which we depict using UPPAAL, respects the π-Calculus formal

specification given above.

Source Code 8— Process DirectoryAgentMem

1 : p roce s s DAMem

2. {

3 : s t a t e s : start DAMem , s e r v i c e P r i n t i s s a v e d ,

r e q u e s t f o r s e r v i c e P r i n t i s s a v e d , s e n d r e q u e s t e d s e r v i c e P r i n t ;

4 : start DAMem −> start DAMem

5: {

6 : sync r e s e t ? ;

7 : } , //This t r a n s i t i o n or the nex t one can f i r e f i r s t .

8 : start DAMem −> s e r v i c e P r i n t i s s a v e d

9 : {

10 : a s s i gn r e g i s t e r e d s e r v i c e :=Print , clockDAMem:=0;

11 : sync inpu t ? ;

12 : } ,

13 : s e r v i c e P r i n t i s s a v e d −> r e q u e s t f o r s e r v i c e P r i n t i s s a v e d

14 : {

15 : a s s i gn p r i n t c oun t := p r i n t c oun t +1; // Af t e r each r e q u e s t f o r t he same

s e r v i c e , t h e v a r i a b l e p r i n t c oun t i n c r e a s e s .

16 : sync channe l ? ;

17 : } ,

18 : r e q u e s t f o r s e r v i c e P r i n t i s s a v e d −> s e n d r e q u e s t e d s e r v i c e P r i n t

19 : {

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 107

20 : guard clockDAMem > de l a y ;

21 : sync p r in tRp l y ! ;

22 : } ,

23 : s e n d r e q u e s t e d s e r v i c e P r i n t −> start DAMem

24: {

25 : sync i n p u t I d l e ! ;

26 : a s s i gn clockDAMem:=0;

27 : } , //This t r a n s i t i o n or the nex t one can f i r e f i r s t .

28 : s e n d r e q u e s t e d s e r v i c e P r i n t −> start DAMem

29: {

30 : sync r e s e t ! ;

31 : } ;

32 : }

start_DAMem

service_Print_is_saved request_for_service_Print_is_saved

send_requested_service_Print

input?
registered_service:=Print,
clockDAMem:=0

channel?

printcount :=printcount +1

printRply!

clockDAMem>delay

inputIdle!
clockDAMem:=0reset?

reset?

Figure 4.11: Modeling of DirectoryAgentMem with UPPAAL: process DAMem

Finally, the system, our network from section 4.1, is realized by an instruction of the

type system UA, SA, DAReg, DASave, DAMem, IdleDAMem.

While we build a model, the simulation is one of the most practical approaches to reveal

its validation. Simulation allows us, with the help of a graphical interface, to repre-

sent a system configuration with its different possible transitions. In a ”step-by-step”

simulation, we can choose a particular transition, get a new configuration and restart

it. This allows us to manipulate the automata and observe its behavior. This sequence

can be memorized in order to be played again by the simulator. In any case, we have

to remember that the simulation does not comprehensively examine the behavior of a

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 108

system, and it is not possible to definitively conclude whether the system is correct or

not at this stage.

The next step is to verify if a given property is satisfied using the model checker from

UPPAAL.

S.r expresses that the automaton S is in state r.

The property is defined: ”If UA requests a service ”Print”, the DirectoryAgentMem or

the DirectoryAgentIdleMem is able to save the requested service”. The first formula P0

states that, in the reachability graph of SLP model, for all paths the states will always

hold in the next state:

P0 = A <> ((UA.request service Print or DASave.request for Print service received)

imply

(DAMem.request for service Print is saved or IdleDAMem.service Print is saved))

UPPAAL evaluates that the first formula P0 is true.

The states will only eventually hold because the DirectoryAgentIdleMem will save the

service only if UA requests the same service at least twice.

The second formula P1 establishes that in the reachability graph of our SLP model there

exists a path where:

P1 = E[]((DAReg.service Print is registered and UA.request service Print) imply

(DAMem.send requested service Print)) holds in the next state. This property ex-

presses the case when the SA has already registered a service ”Print”, and the UA

requests a service ”Print” then the DAMem will deliver this service to UA. UPPAAL

evaluates that the second formula P1 is true. Consequently, the two properties are

satisfied.

4.3.2 Conclusion

This section discusses how to specify a real protocol with mobile features, called SLP

and also how to verify liveness properties of this protocol by using an existing verification

tool called UPPAAL.

We have encountered two main limits. The first one occurred with the use of the π-

Calculus language, its operational semantics and the tree inference construction. Model

checking techniques can be used to prove some behavioral properties such as safety,

reachability or correctness of the inheritance mechanism. We give the directive idea

how to built an inference tree for proving that a transition ”print” was achieved. This

approach is not automatic and it is essential to explore the whole algebraic term before

concluding that a specific state has been reached. This kind of proof is too specific. We

last looked at an evaluation of a global term and cannot conclude anything about the

4.3. TEMPORAL PROPERTIES OF SLP PROTOCOL 109

other possible evaluations. Moreover, our inference tree describes one UA, one SA and

one DA. However, if we change the initial configuration, this tree must be built again

from scratch.

Thus we used a model checking technique and temporal logic to establish a more general

property about all the evaluations of a term. We have used the UPPAAL tool to

accomplish this, yet we encountered a second limit; a sequence of actions is described by

an automaton, yet between two automata there is no exchange of data. There is only

one possible operation: the synchronization. In that case, we were not able to express

the mobile aspect of the ”print” service. After trying to verify such a system we can say

that the verification as a tool is inefficient because there are no adequate technologies

in order to deal with mobile systems. We can, however, verify reachability or safety

properties of the system.

Both approaches stress the lack of a temporal logic for higher-order process specification.

An extension of CTL seems to be the correct approach. Some work exists on that

subject [29], but higher-order processes are not taken into account and the mobility is

only applied with names. Also, there is no tool and the proofs are built manually.

A second solution consists of translating a higher-order process specification into a first-

order description and to establish properties on a logical model (built for the previous

description). However, in this case, it is also necessary to extend CTL language to

consider the exchange of names.

A suitable solution is to consider both: the verification of the system, as we have done

above, and the validation of a prototype through simulations. In addition to proving

key behavioral properties of our protocol, our formal method approach is also of value

in creating a clear understanding of the structure of the agents, which can increase

confidence in the correctness of a particular agent’s system design.

In chapter 5, we will discuss different methods of implementing a mobile agent starting

from a given formal language specification. The last step will be the development of a

prototype of a mobile agent system starting from the specification of the HOπ-calculus.

Chapter 5

Synthesis Part

This chapter reveals the reflective process that we went through and which helped us

to make a choice between the available mobile agent system technologies for the de-

velopment of our prototype. We must remark that the temporal process also concerns

the employed technologies, i.e., we used methods and approaches, which, at the time of

development, were up-to-date. Nowadays, recent or improved versions are available and

one reason for this is the fact that the mobility community is growing and developing

quickly. We will focus on the feasibility of a prototype starting from its formal specifi-

cation, which will allow us to simulate a mobile agent system. We will not address the

problem of efficiency in this work. Three different ways and technologies to implement

our prototype (through Remote Method Invocation (RMI) [50], Java Intelligent Network

Interface (Jini) [4] and JavaBeans [76]), will be discussed here. The technologies RMI

and JavaBeans will be used to implement the same case study, the SLP protocol, as

described in the previous chapter. We have decided to choose a different case study to

explain how the implementation with Jini works, as the SLP example will be treated in

the next chapter, when an exact description of our prototype construction and imple-

mentation is given. We will also show that the unreliability of the first method leads to

the employing of a second or third one.

This chapter is organized into three main parts: the first one confronts the reader with

the introductory idea of the development and function of a mobile agent; the second

one shows the three examples using different mobile agent technologies: RMI, EJB and

Jini; and, finally, the last part, which is a discussion about the employed technologies

and, consequently, a conclusion for further work.

We do not claim that our solution is the only viable one. The decision on which tech-

110

5.1. PRELIMINARIES CONCEPTS 111

nology we choose was also based on our existing system requirements and on previous

work.

5.1 Preliminaries Concepts

To develop an agent system, one needs a platform which allows distribution and mobility.

One of the most common reasons to have distributed systems is to allow a set of agents

to access shared resources or databases and to perform tasks depending on this data.

This kind of system often involves building servers with functionality such as database

connection pools, logging facilities or configuration tools. It is clear that some of these

features are highly reusable and not limited solely to the original application. For

example, mailing a message, communicating with a database and printing files are tasks

that are commonplace in many kinds of applications.

For these reasons, developers often describe three kinds of code:

System logic is the kind of architecture code described previously; it can be reused in

a wide variety of applications such as printing onto a specific plotter.

Business logic is code that is related to problems of specific domains such as intrusion

detection systems or order processing.

Application logic is the part of the code that binds together various business logic

parts to form a unified application that can be used by customers.

Typically, business logic is not bound to a particular application, but instead can be

reused in many applications through the use of various kinds of application logic.

Because system logic is so common, we should be able to write code where the business

and application logic parts are able to plug into a framework that provides system logic

features, just as a desktop application would use an operating system to provide things

such as a file system or environment variables. The object technology is well adapted to

implement a system logic layer. More precisely, such an Application Programming In-

terface (API) already exists for the implementation of the system logic part. It provides

guidelines for how to interact with the system framework. The Enterprise JavaBean

(EJB) [76] specification is one such kind of API. It provides us with a standardized

specification of how applications and business components can be plugged into any sys-

tem logic implementation provider and how to have them executed by the framework

in a clearly defined manner. Since EJB is a component-based development model one

can build reusable components that can even be customized at deploy time without

5.1. PRELIMINARIES CONCEPTS 112

touching the Java code. A component is a little more coarse-grained than just a Java

class, so it is the next level of reuse. And since the components (i.e., beans) are deployed

using an XML document that describes how the server should handle the bean, one can

configure issues like security, transactions, resource use, etc. all declaratively, in XML,

just by pushing a few buttons in a deployment tool. This file tells the EJB server which

classes make up the bean implementation, the home interface and the remote interface.

If there is more than one EJB in the package, it indicates also how the EJBs interact

with one another. Most commercial EJB servers are supplied with graphical tools for

constructing the deployment descriptor. JBoss [http://www.jboss.com] for example

does have an XML editor, but it is just as easy to construct the deployment descriptor

manually.

The system logic part is a suitable domain for an EJB approach. It includes many basic

functions requiring technical values such as the domain name server, the mail server

(both its protocol and its port), the names of all the printers on the network (with their

IP addresses, the settings and their status), etc. An EJB is a kind of component, which

encapsulates within a private part the technical aspects and provides us with a public

part containing some meaningful service names. This information is network dependent

and the system logic part must recognize these features itself without the help of the

user.

The most important and widely used distributed object systems are the RMI [50] mech-

anism and the Common Object Request Broker Architecture (CORBA) [85]. RMI is a

framework developed at the same time as Java, consequently compatible with the rest of

our platform. We also chose RMI because it seems to be easier to master, it permits the

administration of the access rights within Java and because we are building our system

from scratch, with no hooks to legacy systems and fairly mainstream requirements in

terms of performance and other language features. RMI is a distributed object system

that enables one to easily develop distributed Java applications. In RMI, the developer

has the illusion of calling a local method from a local class file, when in fact the argu-

ments are shipped to the remote target and interpreted, and the results are sent back

to the callers.

In systems like RMI and CORBA, the central connecting tissue between two programs

are the client-side stub and the server-side skeleton. For a better understanding of how

communication is accomplished in traditional remote procedure call systems, we will

briefly explain the notion of stub and skeleton that we adopt from Jim Waldo, from Sun

Microsystems in [101]. We nate that, with the RMI version 1.2, there is no skeleton use

anymore.

5.1. PRELIMINARIES CONCEPTS 113

5.1.1 Traditional Distributed Systems: Stub and Skeleton

The stub is a piece of code that implements an interface to a remote object or service in

the address space of a client of that service. The job of the stub is to open up a commu-

nication channel to the server, convert all the arguments to be sent to the server into a

form that can be transmitted across the wire, and dispatch those converted arguments.

The stub code then waits for the response from the server, converting any return value

from its wire representation to the internal form used in the process, and handing these

results back to the program or thread that made the call.

The skeleton code provides similar functionality on the side of the server. The skeleton

code receives the information transmitted by a stub, converts the information that has

been transmitted over the network into a form that can be understood by the server

program, and makes the appropriate up-call to that server program. That means that

everything that can be transferred must be converted or encoded, and this represents a

constraint because we cannot transfer an agent, for example, during its execution. The

server program will return any result value to the stub code, which will translate these

results into a form that can be transmitted over the wire, and send them back to the

calling client (where the stub code receives them, as outlined above).

Comparing to the newest version of RMI where applying the ”Proxy” pattern is suffi-

cient, in the older version of RMI the code for the stub and the skeleton is produced

by a compiler that takes as input, a definition of the interface between the client and

the service written in some programming language-neutral declarative language (which,

seemingly no matter what its form is, is called IDL). These compilers produce source

code (sometimes in various languages) that can be compiled by the native compilers for

the machines on which the client or service is going to run. The stub and skeleton can

then be linked (either statically or at run time) into the client and the service.

A client, in such a system, uses a single stub to communicate with any service that

implements a particular interface, and a service uses a single skeleton to talk to any

client that is calling it through a particular interface. This works because the stubs and

skeletons produced by the IDL compiler all correspond with a single wire protocol that

is defined as part of the overall RPC system. This gives such systems their language-

and processor-independence. It does not matter what the environment of the client is,

nor the environment of the server. The system defines what is on the wire, and each

system, both client and server, understands that protocol in a way that is appropriate

to the language and environment running on the client or the server.

This independence from language and processor was a requirement when RPC systems

were first invented. At that time, every computer company had their own processor, its

own operating system, and one or more system languages. Furthermore, the computers

5.1. PRELIMINARIES CONCEPTS 114

at that time were so slow that no one was willing to give up the efficiency of statically

compiled binary code to obtain communication between machines. Since the computing

world was unable to reach any consensus on a computing environment, communication

was enabled by reaching consensus on the communication protocols between those en-

vironments.

However, systems based on protocols also have their limitations. Since the protocol

needs to be translated into any possible language, the types of information that can be

represented in the protocol must be limited to the kinds of data found in all of those

languages. If some kind of information needs to be transmitted that is not a part of

one of the target languages, conventions for that particular language must be defined

to allow artificial representation in the environment, which always adds complexity and

often subtly alters the information transmitted.

Systems that are based on a protocol must also fit the needs of all clients and services to

the single protocol. The protocol must be completely general, and as is often the case

when something needs to be good for everything, these protocols are often less than

optimal for particular, specialized communications. RMI preserves the typing and the

notion of an agent and they an be exchanged without being forced to encode or decode

them manually. Therefore, RMI looks more attractive for us then TCP sockets, where

everything must be encoded in binary (for example by MadKit project [51]). Protocol

design, like any engineering design, is often a trade-off between efficiency and generality.

In systems that are designed around a one-size-fits-all protocol, such decisions need to

favor generality.

The most serious problems with such systems, however, is their rigidity once deployed.

Since the skeleton code is part of the server, and the skeleton code is part of the client,

any change in one has to be reflected in a change in the other. This means that if

the server wishes to update its skeleton code, either to change the basic protocol, or to

change the information transmitted to the server or returned to the client, the skeleton

code in all of the clients using that server needs to be updated simultaneously. When

client/server networks consisted of dozens of machines and the changes in services were

slow, such simultaneous updates were possible. However, in the current network envi-

ronment now grown to global proportions, where services are being defined and refined

all the time, the requirement for simultaneous update has become a serious problem for

protocol-based systems.

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 115

5.2 From HOπ Specification to RMI Implementation

Parts of this work were already published in [c]. We show the implementation using the

SLP protocol described before. In order to have mobility within RMI, it is necessary to

adopt an architecture which can ensure the disposal of mobile agents. This architecture

is composed of four different parts and will be used for the SLP prototype. The code that

is developed from the formal description of the Service Location Protocol is a mobile

agent system prototype involving:

• the agents themselves

• an application server to run them on

• a client that creates and deploys agents

• and a management application that can work with agents running inside an agent

server

Figure 5.1: Our System

The key feature in the RMI framework of figure 5.1 is the dynamic class loading that

allows us to have mobile objects whose code is not preinstalled on the servers they visit.

We chose a particular way to implement the mobile aspects. This choice can be first

explained by the definition of design patterns, which drive the translation from the

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 116

specification to implementation. These patterns are influenced by RMI. Creating a

mobile agent system with RMI is quite straightforward and only requires some ability

with network features. There are also four parts of code which play together on the

network:

Agent host: the agent host corresponds to the SA (Service Agent) from section 4.1.

Hosts are the equivalent of users and are used to host mobile agents. It is possible

for a host to accept mobile agents, which are then made accessible as remote

objects, so that someone can talk to the agent later on. It is also possible to

list the currently hosted agents and remove agents when they are done with their

tasks. Preferably, there should be a way for hosted agents to access resources

at the host (for instance via security properties); otherwise there would be little

reason for having them there.

Mobile agent: it corresponds to the service ”Print” from section 4.1. It is important

to implement a mobile agent as simply as possible. That is why we consider an

agent as a remote object. The definition of mobile agents does not require the

possibility to talk to them after their deployment. However, we added this feature

by making them remote objects. For this reason, an agent consists of at least two

parts: the remote interface that can be used to talk to it and the implementation

of the remote interface that is the agent itself. After that, it can be instantiated

and sent to an agent host if demanded, after which it will be exported as a regular

remote object. The remote objects can then access the resources of the agent host

in order to perform their perspective imported or local tasks (for our example to

print a message, if the permissions are set up). In our case study, AgentPrint can

be considered as a mobile agent.

Agent client: the client that corresponds to the UA (User Agent), in our scenario, is

responsible for creating an agent and sending it to the first agent host. The agent

host accesses the implementation classes of the mobile agent through dynamic

classloading. So, for this purpose, it is necessary to let the client run on a smaller

web server (or ”Agent provider”) that provides the agent classes. Our choice of

using a web server is due to the administration of the rights. It is, of course,

possible to have only one web server in the system to serve this purpose, but in

this way, the clients are completely independent of each other. This is why each

client has its own web server.

Agent manager: it corresponds to the DA (Directory Agent) also from section 4.1.

Although it is essential to control the entire system, we decided to add this com-

ponent, which is used to manage and to interact with the agents that are hosted

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 117

on a particular server. It is able to ask the host for a list of its agents. It can

then ask each agent for the management interface used for communication. The

manager will not have any of the agent classes available when it starts, so it will

have to be accessed through dynamic classloading. The agent manager is useful

for observing the steps of the distributed application. For instance, the mobility

of an agent is detected by the agent manager and its ability to view the state of

all the agent hosts.

A component diagram is shown Figure 5.2, where each component or functionality is

highlighted. A node of our system such as AgentHost can be described by several

components. There is also an RMI registry that can be embedded in the Agent Manager

Figure 5.2: Design of Our System

that finds the agent host so that clients and managers can access it. Also, instead of

having a web server in the server to allow the clients and any external registry to load

the host’s stub through dynamic classloading, it is possible to have an additional web

server located at the client. Because of that, when the agent is sent to the agent host,

the host can get the classes from the client’s web server. So, in this scenario, we are

using dynamic classloading in both ways. The web server located at the client would be

used in order to download information like stubs or complete ”.jar packages” .

Therefore, the presence of several web servers can be explained in 2 ways:

• There are physically several machines, therefore, for security reasons, we have at

least one web server per machine.

• Because there are several directories, where it is possible to download data, we

can add several web servers (e.g. one per directory).

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 118

In addition, when the agent manager accesses the agent host and gets the list of agents,

it requires the classes for the stubs. Although these classes are not available from the

agent host, the agent manager is able to get these from the client. This is done when

the agent host receives the agent. It does not have the agent’s implementation classes.

It has to retrieve them from the client by creating a URL ClassLoader that points to

the URL that is embedded in the remote call to the agent host. This class loader then

loads the agent classes that have been associated with this class loader. This means

that it is possible to know if an agent is local to a host or not. So, when the agent’s

stub is later sent to another client through a RMI call, the codebase annotation comes

with it. Because the classes were loaded with a URL class loader, the URLs for this

class loader are sent along with the call. The RMI implements the agent manager and

client and then uses this information to access the classes from the client’s web server.

The notion of ClassLoader fits perfectly with the notion of exported data as described

by R. Milner in the definition of the π-calculus. Each site who possesses its own class

loader, also possesses a naming space. The partition is, thus, made between the original

data and the copy on the receiver.

By default, an RMI program does not have a security manager installed, and no re-

striction is placed on remotely loaded objects. The java.rmi package provides a default

security manager implementation that one can install with the following code:

i f (System . getSecur ityManager () ==null)

{

System . setSecur i tyManager (new RMISecurityManager ()) ;

}

Java looks for a system-wide policy file in java.home/lib/security/java.policy, where

java.home is the directory where the JDK or JRE is installed. If a security policy file is

not specified, the JVM also looks for a user-defined policy file in user.home/.java.policy,

where user.home is a user’s home directory. The policy file syntax is described in the

docs/guide/security/PolicyF iles.html file that is included with the JDK documenta-

tion. A sample policy file that grants full access permissions to everyone looks like:

grant

{

permis s ion java . s e c u r i t y . Al lPermis s ion ;

} ;

Policy files are used to grant permissions, represented by the Permission classes in the

java.security package, to sets of classes or access grants to specific resources.

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 119

It is essential to note that the mobile feature in our architecture is not a move of an

entity from one node to another, but, instead, a substitution (or rather a cloning). This

concept is similar to the mobile feature present in the higher-order π-calculus language.

A mobile object is sent as a parameter of a remote method on the host. When a remote

object through RMI is exported to a client, it will be substituted with its remote stub.

This concept is explained in Java semantics with the idea that remote objects that are

not exported will not be substituted with their stubs, but will be sent as is through

normal serialization. To sum up, the scenario is:

• to keep the remote objects unexported,

• to send them to the host,

• to export them there,

• to send them back (This corresponds to an exportation. The remote stub is

returned to the agent, which is now at the server. The client can then use this

stub to communicate with the agent. This is the core idea that our example is

based upon.)

The agent interface represents the ”contract” class of the mobile agent system. It is

based on two remote interfaces and an exception class. The first remote interface is

the one that is used by the agent’s hosts, and the second is a remote interface that

contains methods that all the agents must support. The exception is used by one of

the host methods to indicate that the requested agent is not there. Figure 5.3 below

shows the architecture of a mobile agent. In this special case the mobile agent needs

another object in order to be sent or received. This object is not autonomous during its

life cycle. Because this interface already extends ”java.rmi.Remote”, there is no need

Figure 5.3: The Architecture of a Mobile Agent

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 120

for a sub-interface to do this as well. We need only to extend this interface. The ”get-

Component” method is used to get a Graphical User Interface component, which can

be used to interact with the agent. The implementation of this can simply return some

visual component that contains static information, and it is used to communicate with

the agent. It needs to hold on to the stub of the agent so that it can call it. The last

method is used to get a name (in Source Code 9) for the agent that is displayed.

Source Code 9— The Mobile Agent Interface in Java.

1 : package mob i l i t y . agent . i n t e r f a c e s ;

2 : import j a va . rmi . Remote ;

3 : import j a va . rmi . RemoteException ;

4 : publ ic interface Agent extends Remote

5 : {

6 : publ ic j a va . awt . Component getComponent ()

7 : throws RemoteException ;

8 : publ ic S t r i n g getName ()

9 : throws RemoteException ;

10 : }

The server is divided into two main parts: the implementation of the remote interface

that provides the actual service to be provided and a manager class that sets it up along

with the necessary environment.

The agent host (Figure 5.4) is a remote object that implements the ”AgentHost” re-

mote interface. Its purpose is to keep a list of agents and to provide them with services

they can use to perform their task. The construction of this component is based on

the ”BeanContext” API, which is a standard API for the development of JavaBeans.

The agent is added in such a tree, and any service can be added similarly to make

them accessible to the agents. In the manager class we will use an export method of

the ”java.rmi.UnicastRemoteObject” class to allow the client to receive the agent. The

method ”to add the agent” receives the agent as a regular object because it has not

been exported to the client. Also, the first important thing to do is to export it. After

this point, if the agent is sent as a parameter or a return value it will be substituted

with the corresponding stub. Then, the agent is added to the host. Because the host

class extends ”java.beans.beancontext.BeanContextServicesSupport”, which itself imple-

ments ”java.util.Collection”, the addition is handled by the ”BeanContextServicesSup-

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 121

Figure 5.4: The architecture of the Agent Host

port” super-class. When the agent is returned, the client actually gets its stub because

the agent is now exported. The client can then use this stub to call the agent remotely,

just as with any other remote object. If a client wants to remove an agent for some

reason, it can send the agent’s stub to the ”removeAgent” method. If the agent is found

in the list it is unexported; thus making it yet a normal Java object in terms of how RMI

treats it. So the agent is returned with its state. This state has to be serialized. The

client can then extract any state it wants from the agent by calling it locally. Whenever

an agent is requested several times, a cloning of the agent and its state will be carried

out.

The manager class of the agent is shown in Source Code 10. The service startup code

instantiates an agent host, exports it and binds it into the naming service. In this case,

this service is called ”rmiregistry”.

Source Code 10— The Manager Class of the Agent in Java.

1 : publ ic Main ()

2 : {

3 : // S t a r t s e r v e r

4 : try

5 : {

6 : s tar tWebServer () ;

7 : s tar tNamingServer () ;

8 : s t a r tAgen tS e r v e r () ;

9 : System . out . p r i n t l n (”Server has been started and registered”) ;

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 122

10 : } catch (Excep t ion e)

11 : {

12 : System . e r r . p r i n t l n (”The server could not be started”) ;

13 : e . p r in tS tackTrace (System . e r r) ;

14 : }

15 : }

The implementation of the mobile agent begins by a definition of what it should do.

Basically, our agent is an adaptation of the print service we described in the specification

part 4.1. When the User Agent, which is the Agent client, asks its Directory Agent (the

Agent manager), it wants to receive something that allows it to print. In addition, the

agent will keep track of how many times it has been called and it will start up a thread

that continuously prints the current state. Its state will be the visualization of the

status print service. Another requirement for an agent is the ability to get a graphical

user interface from it with which the user can interact. This part is not specified in

our specification part, but it is a natural approach of a new service. The interface

Figure 5.5: The Architecture of the Print Agent

”PrintAgent” (Figure 5.5) is a regular remote interface with one difference: It extends

the agent interface instead. This means that the ”PrintAgent” implementation not only

has to provide the methods in the ”PrintAgent” interface, but also the methods of the

agent interface.

The class ”PrintAgentImpl” implements the agent functionality. This agent extends

5.2. FROM HOπ SPECIFICATION TO RMI IMPLEMENTATION 123

the ”BeanContextChildSupport” class. This allows the agent to be placed within a

surrounding ”BeanContext”, which can be used to access other agents and services.

Next it implements ”PrintAgent” and the ”Runnable” interface. Thus, it can start a

thread that continuously prints its activity. The agent itself provides the code to be

executed in that thread, which means that the ”Runnable” interface is essential.

The attributes of an agent include:

• the name of the local host, which is used for the status,

• a runner thread, which executes the ”Runnable” feature of this agent. This runner

will belong to a ”ThreadGroup”, which represents the set of all the mobile agents

present and active on the host.

• a counter is used to keep track of the numbers of thread loops and to print a file

with respect to the attributes.

The ”print” method of the class ”PrintAgentImpl” can be used by the caller to get an

output on a printer in the room called ”office”. The counter is increased and the new

status is printed on the screen.

The status code can be returned to the caller, but an essential feature is to use the

critical section. It is used to prevent two or more clients from calling this object at the

same time, which could lead to the counter being improperly updated.

The agent (Figure 5.6) in our scenario is a Service Agent and performs two things. First

of all, it creates a Print agent, which is registered with the Agent manager. Secondly,

it allows the user to call the print method on the agent. The client is composed of a

Figure 5.6: The Architecture of the Agent Client

web server, which is used to serve up the classes for the agent. The ”findHost” method

locates the host and then the agent can be created and registered with that host. In

return, the user gets the stub to the agent so that the user can talk to it.

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 124

The Java-RMI solution we propose shows the capacity of encoding a specification. This

solution is polyvalent, as parts of the code can be reused. Nevertheless, there are some

limitations in using this approach, for instance ”how to choose the right service when

several services with the same signature are being proposed”.

5.3 A HOπ Specification for a Mobile Agent in Jini 1.2

During the evolution of protocol-based distributed systems, the environment requiring

such systems has changed dramatically. The safety of the Java technology environment

provides a single, uniform environment in which code can be dynamically loaded into a

running process no matter what the underlying processor or operating system is. Java’s

safety means that users are willing to allow such downloaded code to run. The result

is a system in which portable binary code is available to the developer of distributed

systems. It is this functionality that RMI, and through the semantics of RMI, Jini,

exploit to change the protocol-centric nature of distributed systems.

In RMI and Jini version 1.2, the stub code used by the client is not owned by the client.

Instead, that stub code comes from the service that the client is wanting to use. In

RMI, such stubs are the RMI references, which implement not just the remote interfaces

expected by the client but all of the remote interfaces supported by the service. In Jini

version 1.2, these stubs are the proxy objects obtained from the Jini Lookup Service,

which are often RMI references but need not be.

In both cases, the Java language equivalent of a stub is dynamically downloaded (if

needed) to the client. The code that gets downloaded for the class comes from the service

itself. Different services that implement the same interface may well have different code

for their reference or proxy; a fact that is hidden from the client of the service who only

needs to know the Java interface. But like any other object in a true object-oriented

system, the implementation behind an interface can change without the client of that

interface knowing or needing to know.

An immediate outcome of this is that the protocol between the client and the server is

not the nexus of interaction between those two entities. Since the server provides the

stub code to the client on the fly and on demand, that code can change. In particular,

an RMI-based server can implement an extension of a previously supported interface

without their needing to be any change on the part of the clients. The extension means

there is new stub code for the client to use, but the client will receive that new stub code

the next time it receives a reference to the service. This allows the service to change,

and the clients to automatically update themselves on an as-needed (rather than on a

coordinated) basis.

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 125

This also means that the RMI protocol (sometimes called JRMP) is an accidental, rather

than an essential, feature of RMI. The protocol can be expanded and altered (within

certain limits, caused by the RMI system’s provision for distributed garbage collection)

without changing the RMI system. Again, such changes are possible because the stub

code, encapsulated in the RMI reference to the service, is a dynamically loaded and

executed piece of code rather than something that has been associated (forever) with

the client.

Jini and Protocol Independence

Jini proxy code is even less tied to a protocol than RMI. A Jini proxy object is only

required to be an implementation of an interface (which is used to identify the object

in the Jini Lookup service). This allows the client of the service to know what calls to

make to gain access to the service. But how (or even if) the proxy communicates with

the service itself is completely up to the proxy and the service from which it comes. The

proxy can be an RMI reference (a common, and easily supported case), an object that

communicates using some other common and well known protocol (such as CORBA’s

IIOP protocol), a piece of code that uses a specialized protocol known only to the proxy

and the service itself, or a full implementation of the service that runs locally in the

client’s address space. All of this is transparent to the client, who only sees the Java

interface. In the Jini world, the protocol used between a proxy and a service is a private

matter between those two objects.

This works because the Jini version 1.2 system uses the RMI semantics notion of as-

sociating the proxy with the service and dynamically loading the proxy on demand.

Effectively, the proxy and the service form a single object that is itself distributed, with

part of the object living in the address space of the client and part of the object living

at the location of the service.

This approach gives greater flexibility to what protocol is actually used. Different ser-

vices can invent their own specialized protocols that are optimized for that particular

pair of proxy and service. Protocols can evolve over time as new ideas are tried out.

But this also explains why the client’s access to the network is Java environment-centric.

For this approach to be viable, there needs to be a way of dynamically downloading code

from the service to the client-code that the client can safely load into its address space

and call. Java technology provides this kind of environment, and is the environment of

choice for both RMI and Jini. The requirement of a service that wants to participate

in Jini is that the service (be it hardware or software) be able to register a Java object

in the Jini lookup service (and keep that registration alive throughout the renewal of

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 126

leases) that can communicate with the service. This Java proxy can use any protocol it

likes to talk to the service. And the service can have the registration with the lookup

service initiated and maintained through other Jini services, like those that are currently

available in the Jini 2.0 beta release. Clients wishing to use these services need to be

able to load and run the Java code that is the reference or proxy to the service.

5.3.1 Jini as Our Choice for the Implementation of an Agent System

Jini [4] version 1.2 as a tool based on Java, it enables us to realize, in a rather simple

way, shared applications. It promotes the concept of a federation of services that col-

laborate dynamically over a network. A service, for Jini, is essentially a Java interface.

Therefore, any object could be turned into a service. Some examples of services are

printing, controlling a remote camera or an electronic fund transfer. Jini differs from

other distributed architectures, such as RMI or CORBA, because it emphasizes a very

dynamic approach. With Jini, as new services are plugged on the network, they immedi-

ately become available. For example, when one plugs a Jini printer on the network, it is

immediately possible to use it from other Jini-enabled devices such as a PC, a PDA, or

even a camera. For a few years, Jini [4] has been more and more essential on the frame-

work market, allowing the development in distributed networks. Just as robots automate

many aspects of manufacturing a computer, Jini automates and abstracts distributed

applications’ underlying details. These details include the low-level functionality (socket

communication, synchronization) necessary to implement high-level abstractions (such

as the service registration, discovery, lease and use) that Jini provides.

The ideas behind Jini corresponding to Jim Waldo’s description (from Sun Microsys-

tems) are simple: ”Jini is designed so that chunks of code can find other chunks of code

without people.” Jini was designed with the assumption that the network is not reliable.

Things join the network and leave the network. There is no central control. Also, Jini

blurs the distinction between hardware and software, dealing only with services. In this

case Jini represents the ideal framework for the type of mobility we are looking for: the

mobile agents (as seen in section 2.2.3).

Jini architecture is based upon three distinct communication pathways, each with its

own unique on-the-wire protocol (see Figure 5.7).

• Jini device services use a discovery/join protocol to announce their presence to,

and register their access objects with, the Jini Lookup Service (JLS).

• The client in Jini version 1.2 uses RMI to communicate with the JLS, to enable it

to retrieve these access objects by ”type” (for example, PRINTER).

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 127

Figure 5.7: Typical Jini Configuration Protocols

• The client then uses the access object to communicate with the Jini service. This

communication is based upon a ”prearranged” protocol (for example, RMI, UDP,

HTTP, IIOP) between the access object and the service from which it first origi-

nated.

As a result, when accessing the service, the client sees only the interface to the access

object, and remains independent of the underlying protocol used to support the com-

munication.

The objective of this section is to describe the modeling of mobile agents or code in Java

integrated within the Jini platform. For a better understanding of their behavior and

to validate their properties, such as for example, their return on their starting machine,

it is necessary to formalize these aspects as we showed in the previous chapter.

The specification of our system will be given using the formal language higher-order

π-calculus. In our case study, we are going to focus on the mobile aspect of agents that

can move around between different servers to accomplish a task given by a task manager

(EMPLOYER).

5.3.2 Case study using Jini 1.2

Our objective is to simulate a MOBILEAGENT that wants to get a job from a service

collector called EMPLOYER. The MOBILEAGENT operates in a ROUTE system composed by a

finite number of agent hosts, which we call OFFICES. Each OFFICE is able to make jobs

and routes available by registering these to the EMPLOYER system. The EMPLOYER contacts

the MOBILEAGENT to give him a certain job to do (in our case it will be collect) and a route

map called Mapchannel. With this information, the MOBILEAGENT contacts the OFFICE

directly, moves and gets the desired information from him (import of SQL orders into

its bag). A MOBILEAGENT can also ask for services and contact many EMPLOYERS. It

is possible to have more than one EMPLOYER service for a big ROUTE system. We can

specialize many EMPLOYERS in order to make the offers of services manageable. To

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 128

simplify matters we will not discuss this option here. The MONITOR is a waiting room,

where all the MOBILEAGENTS wait for some jobs. The MONITOR is also the starting and the

ending machine for the MOBILEAGENTS. After carrying out the job, an acknowledgement

ack will be sent back to the monitor. The higher-order aspect in our case study is

represented through the MOBILEAGENT that contains the job to do (collect), the route

map (Mapchannel) or even another agents. Figure 5.8 depicts this simulation. In

Figure 5.8: Our Route System

the context of our mobile agent framework, the agent host(s) provides Jini ”collect”

services. The mobile agent(s) is the Jini client. It can have a lease for a particular

node and this can be modified during the action of the agent. Our ”collect” service

provides a set of SQL statements, which have to be executed later on a database. Jini

services register with one or more Jini lookup-services by providing a service proxy for

prospective clients. In turn, clients query the lookup service(s) for particular services.

More detailed information about Jini structure are given by [4].

5.3.3 Specification Part

The higher-order π-calculus specification of our case study is given by our system

ROUTE and all elements are in a parallel relation to each other in order to be able to

communicate.

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 129

ROUTE = ν (out, outAH , outA, ack, service)

OFFICE(out) |EMPLOY ER(out, outAH , outA) |MONITOR(outAH , ack)

OFFICE(out) = ν(mapchannel, collect)

out(mapchannel, collect) .mapchannel(agent) . (agent(o, s, a) |OFFICE(out))

EMPLOYER(out, outAH, outA) =

out(channel, service) . outAH(channel) . outA(channel, service) . EMPLOY ER(out, outAH , outA)

MONITOR(outAH, ack) = ν(MOBILEAGENT)

outAH(x) . x(MOBILEAGENT) . ack .MONITOR(outAH , ack)

MOBILEAGENT(outA, service, ack) =

outA(channel, service) . ack .MOBILEAGENT (outA, service, ack)

We specified as follows:

1. ROUTE: describes our entire system with all its components.

2. OFFICE: represents service-hosts, which make different services (jobs) available and

notify their availability to the EMPLOYER service.

3. MOBILEAGENT: represents our mobile agents that are able to migrate to an OFFICE

in order to apply for a job. The job is: collect database information and add it to

its ”bag”.

4. EMPLOYER: plays a kind of reference book of all the tasks or jobs which are available

on the local network.

5. MONITOR: is the waiting platform for the mobile agents.

We use gates like out, outA, outAH to specify the communication channel between the

agents, employers, offices and monitor. In this specification the mobility is described by

the channel parameters.

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 130

5.3.4 Implementation Part

Let us now take a look at a mobile agent framework that consists of two main compo-

nents. This framework uses the Jini(1.2)/RMI platform given by [e] and implemented by

[20]. The first component is the mobile agent MOBILEAGENT, that is an entity given some

job to perform. The second component is the mobile agent host MONITOR, the service

that provides the mobile agents execution platform. In a distributed environment, we

can have one-to-many agent hosts as well as one-to-many agents. To be an active agent

platform, a given node in the system must have at least one active agent host.

These two components map quite nicely to the Jini model. Jini, at the highest level,

provides the infrastructure that enables clients to discover and use various services. Jini

also provides a programming model for developers of Jini clients and services. In the

context of this mobile agent framework, the agent host(s) provide(s) Jini services. The

mobile agent (the MOBILEAGENT), is the Jini client. The Jini service, OFFICE, registers

one or more Jini services by providing a service proxy for prospective clients. In turn,

clients query the lookup service(s) for particular services that might be of interest. The

Jini service collect will register at one or more Jini Lookups (in our case at the Jini

Lookup Service 1, EMPLOYER). The analysis of the specification makes it possible to ex-

tract the emissions from higher-order, such as x(MOBILEAGENT). This exchange

identifies:

• the support of the exchange: the channel ”x”,

• the mobile agent: MOBILEAGENT,

• the transmitter: MONITOR,

• the discoverer: EMPLOYER,

• the receiver: OFFICE.

From this point, we have the possibility of the application of our pattern AgentMobile

which consists to:

• develop the class MOBILEAGENT implementing the services imposed by the interface

”AgentInterface”;

• develop the class EMPLOYER implementing the services implemented by the interface

AgentHostRemoteInterface, DiscoveryListener of the package

net.jini.discovery.

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 131

• develop the class MOBILEAGENT publishing the object of the class collect to the

directory Jini (reggie) via a fixed service, JoinManager of package

”package.net.jini.lookup”. Reggie can be replaced by a web server.

Agent host construction

In our case study we will represent the agent host through MONITOR. The OFFICE will

publish a service at the corresponding Jini Lookup service.

The first step in building the agent host is to create a remote interface, the service

template that agents will look for via the Jini lookup service. The AgentHost Remote

Interface provides one method, acceptAgent(), which agents call to travel to the im-

plementing agent host as in Source Code 11.

Source Code 11— AgentHostRemoteInterface in Java.

1 : publ ic interface AgentHostRemoteInter face extends Remote {

2 : publ ic void acceptAgent (Agen t In t e r f a c e a i) throws

RemoteException ;

3 : }

The advantage of Jini is that objects can publish several interfaces that provide mul-

tiple services. For instance, if we had a distributed datawarehouse, we might have an

agent host that provides a local data access service. In this instance, a data-mining

agent might look for a host that provides the data access service and move to that host

to perform localized mining operations. Therefore, we can have agents with different

missions share hosts that provide multiple services.

The second step in building the agent host is to provide an implementation of this remote

interface that is the actual Jini service collect. We have provided a MobileAgentHost

class that implements the AgentHostRemoteInterface.

Figure 5.9 shows the class diagram for MobileAgentHost. The class extends the

”java.rmi.server” package’s UnicastRemoteObject class, which allows clients to obtain

a remote reference and call its methods. The MobileAgentHost also implements the

ServiceIDListener interface, which is passed as a unique ServiceID object via the

serviceIDNotify() method when the service first registers with a Jini lookup service

(1 and 2).

The MobileAgentHost constructor takes the agentObject object reference stored as

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 132

Figure 5.9: Mobile Agent Host Class Diagram

member data and passed to arriving agents via the doWork() method. The constructor

itself performs two basic functions. First, it creates a LookupDiscovery Manager to lo-

cate the Jini lookup service. Second, it creates a JoinManager, with the LookupDisco−

veryManager as a parameter, to add this lookup service (for example collect) to the Jini

service federation. In the acceptAgent() method implementation, the MobileAgentHost

binds incoming agents to an AgentThread as in Source Code 12.

Source Code 12— acceptAgent Method in Java.

1 : publ ic void acceptAgent (Agen t In t e r f a c e a i) throws RemoteException

2 : {

3 : AgentThread a t = new AgentThread (a i) ;

4 : a t . s t a r t () ;

5 : }

In turn, an inner class instance, AgentThread, is created to run the bounded agent by

calling its doWork() method, passing the LookupDiscoveryManager and agent object

references. For each arriving agent a new thread is created (see Source Code 13):

Source Code 13— AgentThread

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 133

1 : private c lass AgentThread extends Thread

2 : {

3 : private Agen t In t e r f a c e myAgent = nul l ;

4 : AgentThread (Agen t In t e r f a c e a i)

5 : {

6 : myAgent = a i ;

7 : }

8 : publ ic void run ()

9 : {

10 : myAgent . doWork (myLDM, myAgentObject) ;

11 : }

12 : }

Agent construction

In our case study the Jini client is the mobile agent MOBILEAGENT which collects the data

collect. The MOBILEAGENT receives a proxy object from the Jini Lookup Service and it

thus becomes able to communicate with the service through the proxy. The first step

in building an agent is to create an interface for remote services. For this, we create

an AgentInterface that extends the Serializable interface. The Serializable interface

marks the implementer as a serializable entity, or one that can be sent across the wire.

Source Code 14— The Serializable Interface.

1 : publ ic interface Agen t In t e r f a c e extends S e r i a l i z a b l e

2 : {

3 : publ ic void doWork (LookupDiscoveryManager ldm , Ob jec t workObject)

;

4 : }

The AgentInterface consists of a doWork() (Source Code 14) method that is called

when an agent arrives on a given host. This method takes two parameters. The first

parameter is a reference to the LookupDiscoveryManager maintained by the current

5.3. A HOπ SPECIFICATION FOR A MOBILE AGENT IN JINI 1.2 134

host. The agent uses this reference if and when it decides to look for new service

providers, such as when it wants to travel to a new agent host. The second param-

eter is an optional (possibly null) object parameter, which contains data necessary

for the agent to complete its job. The second step in agent construction is provid-

ing an AgentInterface implementation for which an abstract MobileAgent class was

created. This class constructor builds a service template that locates services of type

MobileAgentHostInterface. It also provides three additional methods: doWork(),

moveToRandomHost(), and getMobileAgentHosts():

1. To perform an agent-specific task, subclasses override the abstract doWork()

method.

2. When the agent wants to move, subclasses call the moveToRandomHost() method,

which performs the following three steps:

• Get a list of the currently available mobile agent hosts with a call to

getMobileAgentHosts().

• Randomly select a host from this list.

• Move to a new host by calling the acceptAgent() method. If the call on the

selected host fails, select a new host.

3. To obtain a list of currently available agent hosts, subclasses call the

getMobileAgentHosts(). This process requires the following steps:

• Call getRegistrars() to obtain a current list of lookup services.

• Iterate through each lookup service to find services that match the desired

template; in this case, AgentHostRemoteInterfaces. Note that we might

have duplicated the same agent host registered with multiple lookup services.

The myMOBILEAGENTServiceTemplate object, a ServiceTemplate class

instance, passed to the lookup() method initializes in the MobileAgent con-

structor.

• Add each matching service to a vector of AgentHostRemoteInterfaces.

Diagram 5.10 depicts the interactions between the MobileAgent, MobileAgentHost,

and the Jini lookup service.

The solution we propose within this section uses mobility and, even if the result is more

complicated, it is progressive, in particular because of the administration of lookups.

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 135

Figure 5.10: Diagram for interactions between MobileAgentHost, MobileAgent, and Jini
Lookup service

5.4 Mobile Agent with an Enterprise JavaBean Approach

Traditionally, a protocol such as SLP [31](that we described in this thesis as the major

case study) was used for the recognition of services for printing and mailing. This

protocol is based on mobile aspects where the application logic part queries, for example,

the location of a particular printer and, depending on where this part is executed, a

directory agent provides one or more specific services. This protocol allows the client to

download codes for particular network services as necessary. Thus, the application logic

part can interact with the downloaded network service driver through a standardized

API defined for the service.

We use an EJB structure to hide the technical aspects, which ensure mobility. With

this approach, we offer a framework of Java components that are inherently mobile. We

present the basis of our approach and its consequences in an n-tier application. First,

we introduce the definition of the EJB component and its mobile version. Then, using

as an example our case study SLP, we explain how it can be implemented. Finally, we

compare our solution with previous works based on Jini technology and conclude with

the domain dependent technology. Our interest is also the employment of application

servers such as JBoss or Jonas [http://jonas.objectweb.org].

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 136

5.4.1 Mobile component approach

The EJB specification declares what is essential in order to enable a component to

be plugged into an EJB container and also what the EJB container must do with the

component. This specification defines an API that the bean provider can use to interact

with the container and another API that the container can use to interact with the

component. Because it is preferable to allow many kinds of implementations of system

logic layer, most of the specification is declarative in the sense that it is essential to

declare what we want to happen, but not how it should happen.

For example, a component can declare that it wants to access a particular printer, that

it wants exchanges of data to be handled in a particular way or that only a specified

set of users can call it. Exactly how the container decides to implement this request is

irrelevant as only the result is important. This allows the EJB component to be fairly

loosely coupled to any particular container and, as a consequence, it can be used with

various containers without any code changes.

Once components have been deployed in an EJB-container, it is necessary to access

them somehow. This is done by the use of Remote Method Invocation (RMI) [50]. So

it is important to use a remote interface, stubs and remote exceptions.

A container should provide the following services:

Transaction Some actions in a component can involve several steps, and, especially if

an automaton is used such as a database or a printer, where each page is sent to

the printing service. A transaction contains all of these actions to perform. It rep-

resents a sequence of atomic actions that either completely succeed or completely

fail. EJB allows the bean provider to declare which transactional requirements

the components have. The EJB container implements the requirements by coor-

dinating printer interaction accordingly. EJB containers use the Java Transaction

API (JTA) and Java Transaction Service (JTS) to do this.

Security EJB allows the bean provider to declare who is allowed to call the operations

of the components. The EJB container then authenticates the client and makes

sure that they are only able to invoke methods that they are allowed to access.

EJB uses the Java Authentication and Authorization Service (JAAS) to perform

this. JAAS is an API that allows clients to declare their identity and servers to

access this information for authorization purposes.

Environment properties The component may have features that are configurable.

Because of this, EJB allows the bean provider to declare the environment prop-

erties and their respective values. The component can then look up the values of

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 137

their respective properties at runtime. This makes it possible to configure compo-

nents without having to either hardcode values or to provide custom configuration

files.

Distribution Because EJB is a framework for distributed components, there needs to

be a way for clients to invoke the components through the JNDI naming system and

allow clients to access them through RMI. EJB containers may use the RMI over

Internet Inter-Orb protocol (IIOP) technology to allow Common Object Request

Broker Architecture (CORBA) clients to access EJB components.

Server connectivity Because components can typically access any server, such as mail

servers or database servers, EJB must be able to provide this functionality. Com-

ponents can declare their server needs via an XML description;

Component relationships Components seek to make use of other components. For

example, application logic components typically access business logic components

in order to perform certain complex tasks. EJB allows the bean provider to de-

clare which other components a specific component wants to access, and the EJB

container then makes those components easily accessible.

EJB uses many other standard specifications such as JTA and JDBC to perform its

action. Many of the preceding features are declared by letting the bean provider write

a special XML file with descriptions of the component and its needs and requirements.

5.4.2 Printing Component Example (PrintEJB Component)

JBoss, as an EJB server has several interesting features with regard to RMI and Jini.

Instead of making each component a remote object, there is one object to which all

calls go. This means that only one remote stub has to be generated. This is done when

the EJB container itself is compiled without requiring user interaction. Accessing the

components without having to make remote objects is realized because the single remote

object contains the following remote method:

public java.rmi.MarshalledObject invoke(java.rmi.MarshalledObject mo);

These marshalled objects contain information about which component the call is meant

for, which specific component instance should get it and the method and the parameters

for the actual call. With this information, the container can forward the call to the right

instance for invocation.

For the construction of our case study, a manager of objects is not necessary as the EJB

container implements the manager functionality for their users itself by taking care of

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 138

Figure 5.11: EJB container principle

the lifecycle of the object and placing references to it in the naming service. The user

can, thus, solely focus on the behavior of the components and ignore the administration.

By taking care of the routine tasks, the business logic developer can focus and spend

more time on writing the business logic code instead of the system level code of the

component. Now we will walk through the different parts of our components called

”PrintEJB” and ”MailEJB” and conclude with a client that uses them. The structure

is similar for both kinds of components.

The PrintEJBHome Interface

The primary difference compared to an ordinary remote interface is that it extends

javax.ejb.EJBHome instead of java.rmi.Remote, and it contains a couple of methods

that are always available to the clients: Source Code 15.

Source Code 15— PrintEJBHome Interface in Java.

1 : import j a va . rmi . ∗ ;

2 : publ ic interface PrintEJBHome extends j a vax . e j b .EJBHome

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 139

3 : {

4 : publ ic Prin t c r e a t e () throws j a vax . e j b . CreateExcept ion ,

RemoteException ;

5 : }

The method that has been declared is used to create ”EJBObject” to talk to the stateful

session bean. The ”EJBObject” implements our interface ”Print”, which will be looked

at next. The create method also throws the EJB-specific exception if the creation fails.

As usual, this is a remote method that also throws the java.rmi.RemoteException. The

EJB container provides the implementation of this object and makes it available through

JNDI.

The PrintEJBRemote Interface

This is the interface (Source Code 16) used to communicate with the component once

it has been created through the ”EJBHome” object.

Source Code 16— PrintEJBRemote Interface in Java.

1 : import j a va . rmi . ∗ ;

2 : import j a va . t e x t . ∗ ;

3 : publ ic interface Prin t extends j a vax . e j b . EJBObject

4 : {

5 : publ ic void p r i n t (S t r i n g f i leName , Format f) throws

RemoteException ;

6 : }

As with ”EJBHome”, this remote interface does not extend java.rmi.Remote directly,

using instead the javax.ejb.EJBHome interface. And, just as with ”EJBHome”, the

”EJBObject” interface contains methods that are available regardless of what the com-

ponent does. This EJBObject interface looks like a regular remote interface: the method

parameters and return value can be serialized, and the throw clause must include the

java.rmi.RemoteException. We can already conclude that this solution depends also on

RMI.

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 140

The PrintEJB Bean Implementation

The component implementation (Source Code 17) is fairly straightforward. The biggest

difference compared to regular Jini approach is that any EJB component must imple-

ment the proper sub-interface of javax.ejb.EnterpriseBean. In this case, as a session

bean is being developed, the javax.ejb.SessionBean interface is implemented. This con-

tains various callbacks that the container uses throughout the lifecycle of the component

instance. For example, once it has instantiated the Print class, it calls ”setSessionCon-

text” to give the component an object that can be used to access the container.

Source Code 17— Component Implementation in Java.

1 : import j a va . rmi . ∗ ;

2 : import j a va . t e x t . ∗ ;

3 : import j a va . awt . p r i n t . ∗ ;

4 : publ ic c lass PrintBean implements SessionBean , Pr in t

5 : {

6 : S t r i n g name ;

7 : publ ic void p r i n t (S t r i n g f i leName , Format f) throws

RemoteException

8 : {

9 : Fi leOutputStream outs tream ;

10 : S t r eamPr in tServ i ce p sPr in t e r ;

11 : S t r i n g psMimeType = ”application/postscript” ;

12 :

13 : S t r eamPr in tServ i ceFac tory [] f a c t o r i e s =

14 : Pr in t e rJob . l oo kupS t r eamPr in tSe r v i c e s (psMimeType) ;

15 : i f (f a c t o r i e s . l e n g t h > 0)

16 : {

17 : try

18 : {

19 : outs t ream = new F i l e (f i l eName) ;

20 : p sPr in t e r = f a c t o r i e s [0] . g e tP r i n t S e r v i c e (f o s) ;

21 : // p sPr in t e r can now be s e t as t he s e r v i c e on a

Pr in t e rJob

22 : }

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 141

23 : catch (Fi leNotFoundExcept ion e)

24 : {

25 : e . p r in tS tackTrace () ;

26 : }

27 : }

28 : }

29 : }

The component implementing the javax.ejb.SessionBean interface also has an attribute

and a name. Because EJB components do not have to implement the remote interface,

it is easy to get them to mismatch. This will not lead to compile time errors, but will

cause the deployment within the container to fail. To get around this, the remote inter-

face is split into two parts: one regular interface with all of the methods and another

that extends the first interface and the javax.ejb.EJBObject. The implementation of the

EJB calls corresponding to the home interface is as follows in Source Code 18.

Source Code 18— EJB calls in Java.

1 : publ ic void e j bCrea t e () throws CreateExcep t ion

2 :{

3 : try

4 : {

5 : // Re t r i e v e the name from the environment s e t t i n g s

6 : name = (S t r i n g)new I n i t i a l C o n t e x t () . l ookup (”java :comp/env/print”) ;

7 : } catch (NamingException e)

8 : {

9 : throw new CreateExcep t ion (”Could not get name for component”) ;

10 : }

11 :}

Although the ”EJBHome” interface does not contain a method called ”ejbCreate”, it

does contain a ”create” method. When the client (UserAgent) calls create, the container

may create an instance and call ”ejbCreate” on this new instance. The instance may

then be used to execute calls to the ”EJBObject”. However, because the instance is

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 142

not bound to the UserAgent, the container may use this instance to handle calls from

another UserAgent as well. This mechanism is called instance pooling. Because of this,

when another UserAgent calls the create method on the ”EJBHome” object, the con-

tainer may find that it has already created a component instance and will not create

another.

An EJB component is not composed entirely of Java code. It also contains a descriptor

as in Source Code 19, that tells the EJB container how to deploy and execute the com-

ponent. The descriptor for our case study contains information about the component

called PrintEJB, as well as security roles and permissions.

Source Code 19— Descriptor in XLS.

<e jb−j a r>

<d e s c r i p t i o n>PrintEJB case s tudy f o r t he SLP example </ d e s c r i p t i o n>

<d i s p l a y −name>PrintEJB </ d i s p l a y −name>

<en t e r p r i s e −beans>

<s e s s i o n>

<d i s p l a y −name>PrintEJB f o r SLP</ d i s p l a y −name>

<e jb−name>s l p . p r i n t e j b . i n t e r f a c e s . PrintEJB</ e jb−name>

<home>PrintEJBHome</home>

<remote>s l p . p r i n t e j b . i n t e r f a c e s . PrintEJB </ remote>

<e jb−c l a s s>s l p . p r i n t e j b . i n t e r f a c e s . PrintBean</ e jb−c l a s s>

<s e s s i on−t ype>S t a t e f u l</ se s s i on−t ype>

<t r an sac t i on−t ype>Container</ t r an sac t i on−t ype>

<s e s s i on−env>

<env−entry−name>name</env−entry−name>

<env−entry−t ype>j a va . l ang . S t r i n g</env−entry−t ype>

<env−entry−va l u e>PrintEJB</env−entry−va l u e>

</ se s s i on−env>

</ s e s s i o n>

</ en t e r p r i s e −beans>

<assembly−d e s c r i p t o r>

<s e c u r i t y −r o l e>

<ro l e−name>Guest</ ro l e−name>

</ s e cu r i t y −r o l e>

<method−permis s ion>

<d e s c r i p t i o n>Guest Access</ d e s c r i p t i o n>

<ro l e−name>Guest</ ro l e−name>

<method>

<e jb−name>PrintEJB</ e jb−name>

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 143

<method−name>∗</method−name>

</method>

</method−permis s ion>

</ assembly−d e s c r i p t o r>

</ e jb−j a r>

This first part contains a description of every component that is included. Next, the

deployment descriptor that deals with how the container should execute this component

is described.

A Client

The client for this component uses JNDI to look it up, and it is called in a similar

way as with RMI; the main difference being that it is essential to create it before an

”EJBObject” forms the ”EJBHome” object. The code is given in Source Code 20. This

approach corresponds to the REV paradigm from section 2.2.3.

Source Code 20— A client in Java.

1 : publ ic c lass Pr i n tC l i e n t

2 : {

3 : publ ic s ta t i c void main (S t r i n g [] a rg s) throws Except ion

4 : {

5 : new Pr i n tC l i e n t () ;

6 : }

7 : publ ic Pr i n tC l i e n t () throws Except ion

8 : {

9 : PrintEJBHome home ;

10 : try

11 : {

12 : Context c t x = new I n i t i a l C o n t e x t () ;

13 : home=(PrintEJBHome) Portab leRemoteObjec t . narrow

14 : (c t x . l ookup (”PrintEJB”) , PrintEJBHome . c lass) ;

15 : c t x . c l o s e () ;

16 : }

5.4. MOBILE AGENT WITH AN ENTERPRISE JAVABEAN APPROACH 144

17 : catch (NamingException ne)

18 : {

19 : System . out . p r i n t l n (”Could not lookup PrintEJBHome”) ;

20 : throw ne ;

21 : }

22 : Pr in t printEJB ;

23 : try

24 : {

25 : printEJB = home . c r e a t e () ;

26 : }

27 : catch (Crea teExcep t ion ce)

28 : {

29 : System . out . p r i n t l n (”Could not lookup PrintEJB”) ;

30 : throw ce ;

31 : }

32 : S t r i n g f i l ename = ”report . tx t” ;

33 : try

34 : {

35 : printEJB . p r i n t (f i l ename , new Format ()) ;

36 : }

37 : catch (RemoteException re)

38 : {

39 : System . out . p r i n t l n (”Could not get print from PrintEJB”) ;

40 : throw re ;

41 : }

42 : f i na l l y

43 : {

44 : printEJB . remove () ;

45 : }

46 : }

47 :}

The ”EJBHome” object is first looked up from the JNDI namespaces. The use of the

class ”PortableRemoteObject” is useful because the container may be CORBA-based,

5.5. DISCUSSION AND CONCLUSION 145

in which case an externalized reference is stored in JNDI instead of a real object. The

narrow() call then replaces the externalized reference with a real object implementing

the given Home interface. The EJB server is responsible for starting the namespaces

that clients can use to access the components. When the component is deployed, the

server binds the created EJBHome object in the JNDI namespaces. Next, we create

an ”EJBObject” that implements the component’s remote interface and we then invoke

the print() method on it. The call is forwarded by the container’s ”EJBObject” to the

component and sends the file to the printer. Using these methods we encounter some

disadvantages, such as the large number of services that must be started, the use of a

web server and the use of a container and a descriptor (with the system configuration)

in order to ensure that the communication can be managed successfully.

5.5 Discussion and Conclusion

In the first example (5.2) we have shown a way to implement an agent system proceeding

from a formal specification of the system, using the RMI method. The question now is

whether or not the RMI is the only and/or best solution for agent implementations. It

is obvious that RMI is not the only solution and, if we look at the newly-emerging Java

technologies for building distributed computing systems, we find, among other technolo-

gies, the framework Jini and RMI provided by Sun. The main difference between the

two concepts of RMI proxy and Jini proxy, is that the Jini proxy concept is protocol

independent and the proxy carries out requests by itself or it can also use an RMI call

or its own proxy provider. Also, using RMI in mobile systems, we cannot really move

the code as in Jini, but only a copy of it. We do move a copy as well in Jini, but in

this case it concerns a complete copy. When the service is published a total copy will

be transferred to the Lookup service (in this case, if the service provider is stopped or

killed, the service will survive on Lookup). Also a total copy will be moved at the time

of requesting the service (the client receives a copy and that permits other agents to

request the same service). These features are innovative and useful for a network, but

they also lead to difficulties, which concern the service state or information during its

execution. By using Jini we also obtain service-provider independence. Jini clients do

not need to know where a service is located; they simply use the discovery mechanism

to obtain a proxy to the service they want to use. Conversely, in RMI (Remote Method

Invocation), one must know the URL of the server he wants to use. That logical next

step convinced us to provide an implementation within the Jini platform.

The number of supporters for Jini are increasing every year. We are convinced that Jini

is a good choice for the implementation of our prototype for an agent system , especially

5.5. DISCUSSION AND CONCLUSION 146

given that it supports better small to medium-scale applications and offers loosely cou-

pled federations with dynamic administration. After the implementation of the second

example (5.3), we show another technology used for the development of mobile agents

because of comparison matters.

Nowadays, many global applications with complex business logic and potentially thou-

sands of concurrent users are developed on J2EE compliant platforms, because it sup-

ports large-scale systems and provides a centralized service.

The last example 5.4 gives an approach of our prototype using EJB.

EJB or Jini?

EJB versus Jini is a problem, which is no easier to solve using such a simple example.

The feature set provided by Jini is quite similar to those of EJB. They both provide

transactions, distributed services and lookup services. Many EJB containers also pro-

vide fault tolerance and scalability features, as do Jini’s to some degree. So the following

question may seem logical at first: Should we use Jini or EJB?

However, the question has a serious flaw. The problem is that the functional overlap is

only superficial because the two specifications serve different purposes: Jini is primarily

used to create system logic code, and EJB is used to create application and business

logic code. Hence, the system logic code that is used to implement an EJB container

can use Jini to provide its services to the EJB components that have been deployed in

it. For example, the JNDI implementation of the EJB container can use the Jini lookup

service as the basis of the implementation, and the failure features of the container can

take advantage of Jini mechanisms to handle service failures.

For this reason, the question should really be: should we use EJB and Jini? And the

answer could very well be yes, since they complement each other rather well. It is also

quite possible to expose EJB components through the Jini lookup service; that is, use

the Jini lookup service to wrap the JNDI implementation of the EJB container. This

allows Jini clients to access EJB components as though they were a standard Jini ser-

vice.

In our approach of a mobile protocol like SLP with the Enterprise JavaBeans technology,

the Enterprise JavaBeans introduces an API and semantics for that API, which allow

system logic to be written so that application and business logic components can easily

be plugged into it. This allows the component developer to focus on the problem domain

of the application and use the features provided by an EJB implementation provider to

supply the system logic parts.

This skeleton seems to be a suitable scheme for the use of mobile features based on the

5.5. DISCUSSION AND CONCLUSION 147

Jini framework. Yet neither framework is concurrent and both have different applicabil-

ity. They have differing degrees of robustness depending on network traffic and it is not

possible to ensure the same fault tolerance with both approaches. This is why EJB API

and Jini API are neither interchangeable in mobile code nor transaction architecture.

As a conclusion we can confirm that the Jini society is distinguishing itself more and

more, and that Jini will become a more stable and viable solution.

Chapter 6

A Practical Approach

This chapter proposes a practical approach for a mobile system agent, making use of

our previous results. We have implemented a prototype, called HOPiTool, which offers

the possibility to validate mobile agent systems conceived with higher-order π-calculus

and to automatically generate Jini code. This prototype can be enriched with a model

checker in order to verify properties of the system.

6.1 Related Work

Models written according to the formal language HOπ can be simulated with our simula-

tion tool HOPiTool. Additionally, code for them can be generated following a straight-

forward mapping to Java classes considering the use of a mobility support platform.

Altogether we have a framework for the development of mobile code applications. The

innovative aspect of the framework is the use of HOπ formal language as the underlying

unifying formal method. Our achievements can be characterized by the mapping of a

HOπ specification into a simulation model and the generation of code for a mobility

support platform. Under these assumptions we could not find in the literature projects

that address the same points that our environment does attempt to address. According

to our review from section 2.1.3, we have found projects that use formal methods to de-

velop applications based on code mobility; some of them providing analysis tools. The

KLAIM [75] (Kernel Language for Agent Interaction and Mobility) project aims at the

creation of a language supporting the paradigm of code mobility programming. KLAIM

explicitly uses localities for accessing data or computational resources, and has a type

148

6.2. BRIEF INTRODUCTION TO JINI 1.2 149

system to control access rights. In the KLAIM structure there is a net coordinator that

has control over the net (there is a special coordination language) and processes. One

special feature of KLAIM, that is similar to our project is the possibility to generate code

through the Java implementation of KLAIM, named KLAVA. There are also projects

available that use formal verification techniques. Although planned, our environment

does not yet address this point. The main projects under this approach are MobiS [71],

Mobile UNITY [35] and Mobility WorkBench [99].

MobiS is a specification language whose specifications denote a tree of nested spaces

that dynamically evolves over time. There is the possibility of automatic verification of

specified properties. Mobile UNITY, unlike MobiS, is a model to analyze key concepts

and ideas of mobility. The Mobility WorkBench is a tool and not a specification lan-

guage. It has been designed to analyze concurrent systems over specifications written

in the polyadic π-calculus formalism. One major advantage of using a simulation model

is the possibility of validating strategies as well as control algorithms for complex cases

where the use of formal verification could lead to a state explosion problem. These

models may be used to check if the components of an application behave as expected, if

they are independent from each other such that the replacement of a simulated compo-

nent by a more sophisticated version becomes possible and also to check the application

behavior under various environment conditions. Of special concern for open systems,

we have a tool and a method that allow us to interactively reason through simulation

about mobile applications in the presence of selected failures, helping the developer to

formally specify robust applications.

6.2 Brief Introduction to Jini 1.2

Making the computations mobile means that agent hosts have to explicitly decide where

in the net a computation should take place. The term ”mobile agent” captures best the

view that computations can decide for themselves to move or to stay. There have been

various systems proposed to implement mobile agents. The common feature is the mobil-

ity of code between the agent hosts. Each host becomes an agent execution environment

(i.e., virtual machine or interpreter for portability reasons) that understands a common

set of agent instructions or a common programming language. One of the newest plat-

forms is Jini [78] from Sun. At the highest level, Jini provides an architecture enabling a

distributed system for services to become available on a network. The Jini architecture

exists in a layer above the Java technology, but below the application and services.

The infrastructure is a set of components that provides for federating services in a dis-

tributed system. It provides mechanisms for devices, services, and users to join and

6.2. BRIEF INTRODUCTION TO JINI 1.2 150

detach from a network. Joining into and leaving a Jini system is an easy, often auto-

matic, occurrence. The infrastructure of a Jini system includes the following:

• A distributed security system, integrated into RMI, which extends the Java plat-

form’s security model to the world of distributed systems.

• The discovery and join protocols; service protocols that allow services (both hard-

ware and software) to discover, become part of, and advertise supplied services to

the other members of the federation.

• The lookup service, which serves as a repository of services. Entries in the lookup

service are objects that can be downloaded as part of a lookup operation and act

as local proxies to the service that placed the code into the lookup service.

Jini technology uses a lookup service, with which devices and services register. When

a device plugs in, it goes through an add-in protocol, called discovery and join-in. The

device first locates the lookup service (discovery) and then uploads an object that imple-

ments all of its services interfaces (join). The lookup service acts as an intermediary to

connect a client, looking for a service, with that service. Once the connection is made,

the lookup service is not involved in any of the resulting interactions between that client

and that service. Figure 6.1 depicts how this all works in the Jini architecture [79]. As

Figure 6.1: How Jini technology works

part of the system, the service must first register itself with the lookup service through

RMI. Upon service registration the service’s proxy is uploaded onto the lookup service.

The client can initiate communication with the service device by requesting the service

6.3. THE ARCHITECTURE OF OUR PROTOTYPE 151

from the lookup service and the service proxy. The communication with client and

server can take any form defined by the provider of the service. The details of this can

be found in [77].

Jini network technology consists of an infrastructure and programming model that ad-

dresses the fundamental issues of how clients and services discover and connect with

each other to form an spontaneous community. Written entirely in Java language and

utilizing its object-oriented features, Jini technology uses the mechanisms pioneered by

the Java Remote Method Invocation API to move objects around the network.

Services employ a proxy (an object with service attributes and communication instruc-

tions) to move around the network. Through the processes of discovery and join, services

are found and registered on a network. Registering means that the service has sent a

service proxy to all lookup services on the network, or a selected subset. A lookup

service is equivalent to a directory or index of available services, where proxies to these

services and their code are stored. When a service is requested, its proxy is sent to the

requesting client so that the service can be used. After that, the proxy conducts all

communication between the client and the service.

To preserve the network flexibility and resilience, Jini technology introduces the concept

of leasing. When a service joins the network, it registers its availability for a certain

leased time. Before the time expires, the service may renegotiate the lease. If the service

is removed from the network, its entry in the lookup is removed automatically when the

lease expires.

6.3 The Architecture of our Prototype

The specification and validation platform architecture is where functionalities are di-

rected. Figure 6.2 below emphasizes, not only the functionalities, but also the dependen-

cies of data. The rectangles represent the functional entities, whereas the parallelograms

are strategic data. Our HOPiTool prototype consists theoretically of five parts:

1. The graphical editor used to write a specification down.

The objective is to manage a set of perspectives. Each of them is an observation

of a specified problem but all are coherent together. This approach needs a unique

representation of the problem; all perspectives can be considered as views with

several control features. By default, we propose five perspectives:

(a) an eXtensible Markup Language (XML) perspective, where the XML files

will be validated by the given HOπ Document Type Definition (DTD). The

6.3. THE ARCHITECTURE OF OUR PROTOTYPE 152

Figure 6.2: From Specification to Implementation

XML format is the intermediate format for all the tools which belong to the

platform HOPiTool. It checks the input file and offers a myriad of functions

(for instance, a fold editor). It also validates the syntax with the DTD of the

π-Calculus language. This part of the tool corresponds to a pilot of a Java

code generator from an XML input file which formally describes a π-Calculus

language specification. It is used to create the charts. Any change of a chart

has consequences on this intermediate representation. The structure of each

perspective is based on the Model View Controller (MVC) design pattern.

(b) a π-calculus visualization respecting the style given by R. Milner. This per-

spective is the main one for the specifiers, or those who formally design proto-

cols. The π-calculus syntax is preserved. This part is a pilot of a translation

from this syntax into the XML syntax.

(c) an HTML visualization. This perspective stands for the documentation of

the specified agent. It is used by people who learn or manage formal pro-

tocols. This perspective is only an observation and can be published on a

web server for information. Moreover, HTML documents describing the doc-

umentation are generated by our tool, which takes into consideration the

comments written within the specification.

(d) Because UML does not take into account mobile features, the UML perspec-

tive is complementary information which gives a solution to this descriptive

6.3. THE ARCHITECTURE OF OUR PROTOTYPE 153

problem. We chose a way to describe mobility that combines collaboration

diagrams with class diagrams. The collaboration diagram is the main support

to show both the causality of the messages and the agents which exchange

data. Class diagrams describe not only classes which correspond to the ob-

jects being exchanged or to the collaboration diagrams, but also classes which

are entities of the sequence diagram. This perspective pilots the translation

from UML into XML and is the basic one for a technical approach, but its

descriptor is the most suitable for having an object-oriented prototype. Thus,

it is the closest representation of a Java Jini source representation.

(e) The simulation perspective offers another data source. It provides observa-

tions of a particular execution of the Java Jini prototype. Also, it is the most

technical perspective (the user has to provide the list of lookup services and

the port numbers for the exchanger).

The context of a project involves the use of some techniques such as: the use of

preferences, internationalization and also resource file management. Internation-

alization helps to maintain a single source code base for all language versions of

our product. It also facilitates translations because all localizable resources are

identified and isolated. These techniques are applied throughout the project. Fur-

thermore, it concerns, not only the graphical interface, but also the simulation

part: database access or log file access.

The major idea is to have a rigorous framework to control two important stages:

the generation of test scenarios and the generation of code. As we can observe

in Figure 6.2, the steps ”Generation of test scenarios” and ”Generation of mo-

bile code” are independent, but both are based on the XML representation of the

specification.

2. The generation of test scenarios

From XML files describing a π-calculus specification, which means a set of mobile

agents communicating through the services they specify, the goal of this function-

ality is to generate test scenarios respecting the criteria given by the specifier. If

we consider an agent specification as a set of automata, building a test generation

corresponds to a tuple of paths, one path per automaton. The criteria are essential

for reducing the number of tuples. When the set of criteria is not sufficient, it is

possible to limit the length of an elementary path.

These criteria are meta rules useful for the generation of test sequences. The ob-

jective is to build tests which are used by the Certifier entity. For example, a

criterion can express a property such that ”navigates through all the agent decla-

ration” to be sure that all declarations are taken into account for a test. Another

6.3. THE ARCHITECTURE OF OUR PROTOTYPE 154

criterion can be to ”navigate through the channel name, ch1, ch2” with a precise

list of gates and, possibly, a number of exchanges for each of them. That property

is essential to validate the higher-order communication, when an agent is exported

to another one.

Each criteria corresponds to a set of Java assertions which are inserted into the

generated code. Thus, the properties can be validated during simulations. Each

simulation places its results (meaning the evaluation of the assertion) in specific

log files (called by the name and the date of the simulation step). In other words,

our first goal is to build structural ”white boxes” and not functional tests, called,

more commonly, ”black boxes”. Each output file describes a script of tests and

the essential measurement points for the work executed by the Certifier.

3. The generation of the mobile code

This functionality is initiated by the graphic interface and is used to obtain a

code prototype from valid HOπ specifications. A set of source files from the XML

files describing a π-calculus specification is generated in order to obtain a proto-

type. The aim is to gain the ability to do simulations and to validate the prototype

through the tests we defined before. A specification consists of agents declarations.

Each construction of the higher-order π-calculus language has a code generation

pattern. For instance, the operator | for the parallel constructor involves the cre-

ation of Thread, one per operand. When this operator is evaluated, the threads

are started. Following the same scheme, each communication is also an object.

Because communication is synchronous in a π-calculus language, the generated

code has to ensure this property. This is the reason why a communication is an

object which locks the sender or the receiver until both are ready to exchange. In

addition to using the synchronous method of Java, this pattern also used a serial-

ization interface. This perspective is visualized through the source code view.

When the data exchange does not concern a value, but an agent, the mechanism

is not the same and we have used another pattern adopted to the migration of

code. In that case, this pattern encapsulates Jini techniques (see chapter 5.3).

This means that a sender has to define a lookup service and to publish its new

service with it. The receiver uses a broadcast to find out the lookup service where

the desired service is published.

The mobile aspects take shape through the use of the technical framework Java

Intelligent Network Interface (Jini) from Sun. The fundamental element is the

utilization of Remote Method Invocation (RMI), which allows us to consider the

network to be object-oriented. The services and clients in a Jini architecture can

be more easily integrated within the object interface. Jini also possesses identifi-

6.3. THE ARCHITECTURE OF OUR PROTOTYPE 155

cations and collection services, constitutes an important feature when considering

the development of a mobile agent system. We also defined several subclasses of

agent, because our framework can be used for different application domains, such

as intrusion detection, data collection and log file collaboration. In the case of a

security agent, the exchanges of data are encrypted and the author is checked via

a signature for the reception of all data. Java toolkit contains a framework Java

Cryptography Environment (JCE) from Sun, which handles the security questions.

4. The certifier

This entity takes a Java prototype as input but also an abundance of assertions.

Each assertion is evaluated over the prototype in order to determine if the proto-

type validates the criteria. Because a specific log file is generated for each simu-

lation, the certifier module is called only after simulations are realized. Its work

can be considered as a post-mortem analysis. The format of a log file is also based

on an XML representation and contains information about the step when the as-

sertions are evaluated (not only the result of this evaluation, but also the state of

the current agent and its context). This perspective is an important metric for

the specifier and some changes in the initial specification can be decided after this

step. It is visualized through the simulation view.

We can distinguish two cases: the prototype satisfies the test and this simulation

will enrich the database or the prototype does not satisfy the test, an anomaly

is lifted and a log file describes the context of the anomaly. The analysis is not

included in this project.

5. Execution under control

As it is essential to catch a lot of behavior, every simulation is saved through the

use of watch points. This kind of observation is placed by the specifier or can be

placed automatically at each call of agent. This source of data is also used by

the certifier module. This data is saved in XML files and some metrics can be

computed. This perspective is the closest to the simulation visualization.

The technical description of HOPiTool Version 1.0 is given in the appendix A. We would

next like to show, on the basis of a case study, how our HOPiTool creates agents that

are able to communicate.

6.4. APPLYING SIMULATION TO OUR SLP CASE STUDY 156

6.4 Applying Simulation to our SLP Case Study

We now turn to the practical contribution in this chapter - the practice of the HOPiTool.

HOPiTool is intended to provide the necessary facilities for agent implementation based

on the formal agent model described previously. As shown above, the implementation

platform provides the standard computer technologies, such as the Jini middleware and

the Java Virtual Machine (JVM), for agent implementation.

Let us now consider the case study and its higher-order π-calculus specification described

in section 4.2. In this specification, the mobility is described as the exchange of agents

over several channels. XML is used in a first step in order to describe the whole system

of our case study. The XML data uses a DTD in Source Code 21 (we show here only a

portion of the DTD), which defines the HOπ syntax with all its elements. Each element

has attributes that catch essential information used for the synthesis of code or a graph,

such as the depth of a control structure. A parser will check the correctness of the XML

file regarding the HOπ syntax with all its elements.

Source Code 21— DTD: The HOπ Syntax

<?xml version=”1.0” encoding=”UTF−8”?>

< !ELEMENT SPECIFICATION (#PCDATA|AGENT) ∗>

< !ATTLIST SPECIFICATION

name CDATA #REQUIRED

>

< !ELEMENT AGENT (#PCDATA|ARGUMENT|DEF) ∗>

< !ATTLIST AGENT

name CDATA #REQUIRED

argNumber CDATA #IMPLIED

>

< !ELEMENT DEF (#PCDATA|CALL |CHOICE |LABEL |PARALLEL |RECEIVE |SEQUENCE |SEND |ZERO) ∗>

< !ELEMENT LABEL EMPTY>

< !ATTLIST LABEL

name CDATA #REQUIRED

depth CDATA #REQUIRED

param CDATA #IMPLIED

>

< !ELEMENT CHOICE (#PCDATA|LABEL |PARALLEL |SEQUENCE |RECEIVE |SEND | INTERNAL ACTION |

MATCH|ZERO) ∗>

< !ATTLIST CHOICE

a l t e r n a t i v e CDATA #REQUIRED

6.4. APPLYING SIMULATION TO OUR SLP CASE STUDY 157

>

< !ELEMENT PARALLEL (#PCDATA|CHOICE |SEQUENCE |LABEL |MATCH| INTERNAL ACTION |ZERO |

CALL |RECEIVE |SEND) ∗>

< !ATTLIST PARALLEL

f l ow CDATA #REQUIRED

>

In a first step, using the defined DTD, we validate the case study through its appropriate

XML file. The second step consists of a translation to π notation using the HOPiTool.

The screenshot 6.3 below shows the graphical representation of the HOπ view. The

Figure 6.3: HOπ View Screenshot

prototype is also able to generate an HTML view (Figure 6.4) after the translation

of the XML file, in order to deliver a documentation view. The last view shows a

collaboration view of the same example. The third step is the code generation of the

mobile agents (Figure 6.6). For each specified agent, a Jini/Java code will be generated

automatically as the corresponding documentation file. As we mentioned before, the

6.4. APPLYING SIMULATION TO OUR SLP CASE STUDY 158

Figure 6.4: HOPiTool Screenshot

Jini middleware is used in order to resolve the problem of network administration by

providing an interface where different components of the network can join or leave the

network. Our tool has its own lookup service where user mobile services are published.

Also, a simulation can be launched when the code generation is completed. The results

are displayed in the simulation view. Because services can be bugged, the simulation

view represents not only the results of mobile agents, but also a browser of all the

services, their properties and their leases. In this case, a simulation is an evolution of

the state of this simulation view. Since agents only interact with each other through

asynchronous message passing, the service provided by an agent through Jini is designed

as an interface to let other agents send asynchronous messages to that agent. The agent

who sends out the messages then becomes the service consumer. The whole mechanism

is explained in diagram 6.6. After Lookup initializes the first time, the DirectoryAgent

and the ServiceAgent will publish their location in order to be found through unicast

by other agents and clients. The UserAgent is the client that searches a service. For

this purpose it will connect to the Lookup and get the available DirectoryAgent. Now

it can begin its request within the DirectoryAgent for a service called ”print”. The

6.5. SUMMARY 159

Figure 6.5: HOPiTool Screenshot

DirectoryAgent creates a new Lookup, where the ServiceAgent will register its service

”print”. After the DirectoryAgent gets the service, it will send it to the UserAgent,

which, at the end, will be able to perform it. The Lookup and the new Lookup play the

role of the DirectoryAgentMem and IdleDirectoryAgentMem.

6.5 Summary

Although a number of mobile-oriented systems have been built in the past few years,

there is very little work on bridging the gap between theory, systems, and application.

The purpose of this chapter is to use the mobile-oriented higher-order π-calculus model,

which is a formal model, as a specification for the development of mobile agents. We thus

bring formal methods directly into the design phase of the agent development. With the

automatic generation of code for the UserAgent, ServiceAgent and the DirectoryAgent

and the use of Jini, we are able to simulate mobile agents in a network to test and

validate their behavior. The possibility of integrating an external model checker (for

example the UPPAAL) into our system exists. With this model we will be able to both

verify and validate mobile systems simultaneously, thereby employing the most efficient

means in proving their correctness.

6.5. SUMMARY 160

Figure 6.6: SLP Sequence Diagram

Chapter 7

Conclusion and Future Work

The addition of mobility could be considered a contribution to parallel systems in the

same way that parallelism was to sequential programming. Initially, the introduction of

mobility satisfied a need (for instance, a security need: the code migrates and not the

data, or a reliability need: a client/server relation is replaced by a client/service relation,

where the service comes to the client). Later, it was possible to introduce the notion

of mobility by default within every problem and conceive it such that all data transfer

would be replaced by an agent movement. This ensured independence: actually, this

agent can transfer data very well (as it did before), but it can also transfer the processing

of the requested data. We can notice that the introduction of mobility to these kinds of

examples can bring more generality compared to the solution we have now. This new

proposal will not make the use of older ones obsolete, but will bring new solutions. The

difficulty of manipulating the notion of mobility, as well as in a specification case and in

a coding case, shows the need of tools such as HOπTool. A further approach, concerning

the use of programming patterns, such as IncaX [http://www.incax.com], can also be

utilized, where it is possible to draw the mobility graph and to ask the tool to generate

the Jini route in the same manner as for an automaton. This approach (GUI Builder)

will surely be developed as soon as the designer can describe his route differently from

an oriented graph, considering the movement cost as a property.

The work presented here deals with the modeling, validation and simulation of mobile

agents. The contribution of this thesis was to provide a theoretical framework for the

concept of mobile agents, and a prototype for their development and simulation allow-

ing further the verification of properties by UPPAAL (which can be integrated within

the prototype). After introducing the mobile agents with their mobility paradigms,

161

162

we described some selected successful national and international projects. Interesting

discussion points were also given concerning the advantages and the disadvantages of

mobile systems. Furthermore, the higher-order pi-calculus was introduced and its arity

extended. We have shown that this language is consistent with the notion of mobility

and is sufficient in order to model mobile agents. Finally, we have developed the proto-

type called HOPiTool based on this specification language.

Before starting the implementation of the prototype, we exposed three different methods

for modeling a mobile agents system. The concluding discussion helped us in the selec-

tion of the most appropriate solution, which, in our case, was the use of Jini/Java. The

architecture of this prototype has been designed in an effort to exploit the extensions

and improvements. In addition, this prototype can be adapted to other programming

environments which support mobile agents.

In subsequent future work, after improving the simulation view, security issues can also

be taken into account. Another improvement is to add a higher-order unification mech-

anism to the HOPiTool. This is an important and difficult task due to the lack of

research available on the implementation of higher-order algorithms. The linking of a

model checker to our prototype constitutes another important and future development.

The presented tool UPPAAL can, for example, be linked to the HOPiTool in order to

verify properties of the designed mobile system. The verification together with the sim-

ulation, will improve the correctness of the developed system. The prototype also lends

itself as an important aide for system designers, who wish to develop mobile agents.

Through the combination of the specification and simulation views, this task is easier to

accomplish and bugs can be detected more easily. The work we have proposed allows for

the verification (together with the validation and the simulation) of the mobile systems

designed using our HOPiTool. The results we obtain using this prototype depend on the

reliability of the model-checker chosen. The improvement of the selected technologies

such as Jini (current version 2.2) presents new ways of dealing with mobile systems.

The absence of RMI within the latest version of Jini makes the new model protocol

independent. Ultimately, the designer will have less and less manual work to do.

The originality of this research is based the fact that the modelling of a mobile agent

system does not occur in any ad-hoc manner, but, instead, on corresponding theoretical

investigations using a process algebra called π-calculus. There is currently no similar

ongoing research that employs π-calculus in order to model mobile agent systems.

Appendix A

Technical Description of

HOPiTool Version 1.0

The HOPiTool prototype implements five packages:

1. hopitool.gui package contains all the viewers which belong to the graphical part

of the tools. The graphical user interface (called GUI) has several features:

• each window created with HOPiTool has six tabs:

– a tab for the XML view of the specification,

– a tab for the Tree view, generated using the DOMViewer from the Batik-

framework provided by Apache [http://xml.apache.org/batik/]. Batik

is a Java technology based toolkit for applications or applets that use im-

ages in the Scalable Vector Graphics (SVG) format for various purposes,

such as viewing, generation or manipulation.

– a tab for the textual higher-order π-calculus specification,

– a tab for the HTML view (or web documentation) of the specification,

– a tab for the agent diagram (or UML collaboration diagram),

– a tab for the simulation view described by the input specification

• some dialog boxes are used for diagnostics such as:

– a dialog for each previous tab,

– a help manual for developers,

– a start guide for the specifier.

163

164

This package is divided into several sub-packages which correspond to the views.

Also, it is easier to add another one. In the current version, the GUI (see figure

A.1) is used to display some information about the specification. In the current

version only the XML view allows interactions from users. The modifications are

propagated on to the other views. When the user clicks on a tab, the update of

the corresponding view is computed. A given specification is observable only in a

HOPiTool window. In the next version each view will support interactions from

the user.

Figure A.1: HOPiTool Screenshot

2. hopitool.lang package contains contains the set of definitions for keywords used

in the formal language higher-order π-calculus. It contains all patterns of code

generation. This means that the Java/Jini semantic of higher-order π-calculus is

defined within that package. Thus, it is easy to add some new features to that

language such as: new operators (bounded iteration, oriented communication.

etc). For each of the structures, there is a Java class. The design of these packages

follows a classical approach. Also Factory patterns are used for the creation of

the object, Template patterns are used for the implementation of code generation.

Each class contains a method called ”generatedCode” which describes the code

generation step. The input specification file is an XML file and the default handler

is defined in the file PiCalculusHandler.java.

3. hopitool.model represents the interface between View and Model. Since each

HOπ specification is available as a XML file, we had to transform it into an in-

ternal java object in order to work with it. For this purpose we used the JAXB

Framework. It generates automatically for each XML element java classes (for

Example, all classes were automatically generated in hopitool.model.jaxb). Un-

165

fortunately, the possibilities to work with automatically generated java classes are

limited, because some methods are missing. Concerning the use of JGraph, we

needed information about the connections between objects, which are not deliv-

ered by the automatically generated methods (through JAXB). Because of that,

we introduced additional proxy classes (in hopitool.model.proxy), that implement

the missing methods. This method of implementation would help us to add new

features to the simulation view in future work. The external interface (therefore

the one used for the editor) is the class ModelResource on the higher level.

4. hopitool.parsing package contains all the classes used for the analysis and the

management of the symbol table. Some classes are used for a validation check.

5. hopitool.unification package contains all the classes used for the unification

feature of the higher-order π-calculus language. It is used in several contexts:

• during a communication between a send action and a receive action.

• during the call of a process between a call action and a declaration of a

process.

This current unification is defined as a first-order mechanism. This means that

agent definition or communication can have deeply structured parameters, yet the

level of that structure is not bounded and the identifier of the non-atomic term is

not free and closed within the sub-term. A declaration is realized:

• with the use of a restriction operation which can be considered as a declara-

tion statement,

• with the use of parameters in the declaration of a process,

• with the receive statement which involves the use of a variable for the input

data.

In a language like higher-order π-calculus language, a free variable is an identifier

which supports a global renaming. It is the opposite of a bound variable which

cannot support a local renaming. There is an important difference between a

modifier (free or bound) and the value which is associated during the execution

step. All variables have a values but the modifier (free or bound) is essential for

the unification step. This operation appears during a communication and a call

to an agent.

A free variable is used to define the identifiers which occur in :

• the parameters of an agent declaration,

166

• the right part of a reception statement,

• a restriction of the scope of identifiers.

One of the next objectives is to add a higher order unification mechanism under

some restrictions [54], which will allow the computation of a unification of the

name of a process.

6. hopitool.security package contains a specific approach of mobile agents and

stresses the security features. All exchanges are encrypted. It is a specialization

of hopitool.lang package.

7. hopitool.communication package describes some communication schemes. A lot

of specifications use a communication graph, which is predefined or, more often,

a scheme is well known in the domain of the specifier. For instance, a circular

circuit or a multicast scheme are considered to be predefined in a framework.

Some patterns are also used to allow a developer to build a new scheme such as a

cube graph.

In summary, the important technical features are the Java 1.4.2 Swing Framework, the

inputs and outputs are written in XML (with an external validation in the form of

a DTD file), Java Intelligent Network Interface Jini 2.0., Remote Method Invocation

(RMI) and Oracle 9i (used to manage the data). Other types of database can be used

as Oracle features are not essential in our project. We can replace it by MySql or some

other free database which completely respects the SQL language. We assume the use of

a more powerful database for the more concrete studies, such as real protocols or when

the specification describes more than one hundred agents. Our HOPiTool reads and

generates Jini code from the XML file. The XML file is read and parsed using Java

Architecture for XML Binding (JAXB) from Sun [http://java.sun.com/xml/jaxb/].

A DTD document describes how these XML files should be structured and states that

an XML agent file contains a series of agents which play together in a mobile system.

This DTD file comes from the definition of the higher-order π-calculus. Each agent has

a name, a number of arguments and a definition of its form and its objective. We have

defined each agent with the corresponding attributes and arguments. Based on this

XML description of our mobile system, and with help of our HOPiTool, we are able to

generate Jini code for a further simulation of communicating agents in a network.

MY PUBLICATIONS

(a) Andreea Barbu. ”Une Spécification d’ordre Supérieur π-Calculus d’un Agent Mo-

bile”, In Congrès Francophone MAJECSTIC’03, October, 2003.

(b) Andreea Barbu. A tool for Supporting the Development of Correct Mobile Ap-

plications Based on Higher-Order π-Calculus, In ESM’2004 European Simulation

and Modelling Conference, UNESCO, Paris, France, October, 2004.

(c) Andreea Barbu and Fabrice Mourlin. Mobile Properties and Temporal Logic, In

First Eurasian Conference on Advances in Information and Communication Tech-

nology, Shiraz, Iran, pages 1-6, Austrian Computer Society, October, 2002.

(d) Andreea Barbu and Fabrice Mourlin. From Higher-Order π-Calculus Specifi-

cation to RMI Implementation, In International Conference on Computer Sci-

ence, Software Engineering, Information Technology, e-Business and Applications,

CSITeA’03, Rio de Janeiro, Brazil, June, 2003.

(e) Andreea Barbu and Fabrice Mourlin. Higher-Order π-Calculus Specification for a

Mobile Agent in JINI, In 4th International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’03),

pages 250-256, ACIS, 2003.

(f) Andreea Barbu and Fabrice Mourlin. From π-Calculus Specification to a Sim-

ulation of a Mobile Agent Using Jini, In ESM 2004, 18th European Simulation

Multiconference, Magdeburg, Germany, June, 2004.

167

BIBLIOGRAPHY

[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. In

Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM,

1997.

[2] M. Abdalla, W. Cirne, L. Franklin, and A. Tabbara. Security issues in agent based com-

puting. In 15th Brazilian Symposium on Computer Networks, São Carlos/Brasilien, May

1997.

[3] M. Alfalayleh and L. Brankovic. An overview of security issues and techniques in mobile

agents. In Conference on Communications and Multimedia Security, September 2004.

[4] K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler, and J. Waldo. The Jini Specification.

AW, 1999.

[5] A. Asperti and N. Busi. Mpn. Technical Report UBLCS-96-10, University of Bologna,

1996.

[6] B. Bauer, D. Bonnefoy, F. Bergenti, and R. Evans. The lightweight extensible agent

platform. In Proceedings of the Autonomous Agent Conference, February 2001.

[7] B. Bauer and R. Höllerer. Übersetzung Objektorientierter Programmiersprachen. SV, 1998.

[8] J. Baumann. Mobile agents: Control algorithms. In Lecture Notes in Computer Science,

volume 1658. SV, 2000.

[9] J. Baumann, K. Rothermel, and M. Strasser. Mole - concepts of a mobile agent system.

World Wide Web Journal, Science Publishers, Holland, 1, 3, Baltzer:123 – 137, 1998.

168

BIBLIOGRAPHY 169

[10] C. Bäumer and T. Magedanz. Grasshopper - a mobile agent plat-

form for active telecommunication. In IATA, pages 19 – 32,

http://link.springer.de/link/service/series/0558/bibs/1699/16990019.htm, 1999.

[11] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. Jade: A White Paper.

http://exp.telecomitalialab.com, September 2003.

[12] J. Bengtsson, P. Christensen, P. Jensen, K.-G. Larsen, F. Larsson, and P. Pettersson.

UPPAAL: a Tool Suite for Validation and Verification of Real Time Systems - User Guide

Version 2. Uppsala University, http://www.docs.uu.se/rtmv/uppaal/uppaal-guide.ps.gz,

1996.

[13] E. Best, W. Fraczak, R. P. Hopkins, H. Klaudel, and E. Pelz. M-nets: An algebra of

high-level petri nets, with an application to the semantics of concurrent programming

languages. Acta Informatica, 35:813 – 857, 1998.

[14] A. Bieszczad and T. White. Mobile agents for network management. Technical Report 1,

IEEE Communications Surveys, http://www.comsoc.org/pubs/surveys, Fourth Quarter

1998.

[15] W. Binder and V. Roth. Secure mobile agent systems using java: Where are we heading?

In 17th ACM Symposium on Applied Computing, Special Track on Agents, Interactions,

Mobility, and Systems (SAC/AIMS), Madrid, Spain. ACM, March 2002.

[16] A. Blass, Y Gurevich, and J. V. den Bussche. Abstract state machines and computationally

complete query languages. Technical report, Microsoft, http://research.microsoft.com,

December 1999.

[17] J. K. Boggs. Ibm remote job entry facility: Generalize subsystem remote job entry facility.

Technical Report 752, IBM Technical Disclosure Bulletin, August 1973.

[18] G. Boudol. The π-calculus in direct style. Higher-Order and Symbolic Computation, 11:177

– 208, 1998.

[19] D. E. Brake, G. Emami, and GLOBAL INFOTEK VIENNA VA. Control of

agent based systems (coabs) grid. Technical Report A522524, Storming Media,

http://www.stormingmedia.us/52/5225/A522524.html, June 2004.

[20] J. Byassee. Unleash mobile agents using jini. In WWDC in Moscone Center, San Francisco,

CA, pages 23 – 27, June 2003.

BIBLIOGRAPHY 170

[21] L. M. Camarihna-Matos and H. Afsarmanesh. telecare: Collaborative virtual elderly sup-

port communities. In Proceedings of the 1st Workshop on Tele-Care and Collaborative

Virtual Communities in Elderly Care, TELECARE, ISBN: 972-8865-10-4. ICEIS 2004,

2004.

[22] L. Cardelli. Obliq: A language with distributed scope. Technical Report 122, Digital

Equipment Corporation Systems Research Center, June 1994.

[23] L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In

POPL’00, pages 365 – 377. ACM Press, 2000.

[24] Patrick Chan. The Java(TM) Developers Almanac 1.4, Volume 1. Sun, http://www.jcp.og,

2002.

[25] K. Chandy and J. Misra. Parallel program design. In AW, 1988.

[26] H. Christensen. Cognitive (vision) systems. In ERCIM News, Special: Cognitive Systems,

2003.

[27] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branch-

ing time temporal logic. In LNCS, volume 131, pages 52–71, 1981.

[28] General Magic Inc. GMD Focus Crystaliz, Inc. and IBM Coorp. Mobile agent facility

specification. Technical report, OMG, 1997.

[29] M. Dam. Proof systems for the π-calculus logics. Technical report, Dept. of Teleinformatics,

Royal Institute of Technology, Sweden, 1996.

[30] M. Dam. Digital design and life-cycle management for distributed information supply

services in innovation exploitation and technology transfer. Technical Report IST-1999-

10092, Hellenic TeleCommunications and Telematics Applications Company, 2001.

[31] C.Perkins E. Guttman. Service Location Protocol (SLP), Version 2. Sun Microsystems,

http://www.ietf.org/rfc/rfc2608.txt.

[32] E. Emerson and J. Halpern. Sometimes and not never revisited: On branching versus

linear time. In Proc. 10th Annual ACM Symp. on Principles of Programming Languages,

Austin, pages 127–140, 1983.

[33] E. Emerson and J. Srinivasan. Branching time temporal logic. In LNCS, volume 354,

pages 123–172, 1983.

BIBLIOGRAPHY 171

[34] C. Fournet et al. A calculus of mobile agents. In 7th International Conference on Con-

currency Theory (CONCUR’96), 1996.

[35] G.-C. Roman et al. Mobile unity: Reasoning and specification in mobile computing.

Technical Report 6, ACM Transactions on Software Engineering and Methodology, 1997.

[36] S. Green et al. Software Agents: A Review. Department of Computer Science, Trinity

College, Dublin, Ireland.

[37] C. Fencott. Formal Methods for Concurrency. TCP, 1996.

[38] G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. Verifying mobile processes

in the hal environment. In Computer Aided Verification (CAV’98) LNCS, volume 1427,

http://fmt.isti.cnr.it:8080/hal/, 1998.

[39] FIPA. Foundation for Intelligent Physical Agents. FIPA, http://www.fipa.org/, 1999.

[40] S. Fischmeister, G. Vigna, and R. Kemmerer. Evaluating the security of three java-based

mobile agent systems. In 5th International Conference on Mobile Agents (MA 01), Atlanta,

GA, December 2001.

[41] Foundation for Abstract Architecture Specification. Intelligent physical agents (fipa). Tech-

nical report, http://www.fipa.org, 2001.

[42] C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Conference

Record of POPL’96, The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of pro-

gramming Languages, ACM Press, New York, pages 372–385, 1996.

[43] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus.

In Proc. of POPL, ACM Press, pages 372 – 385, 1996.

[44] A. Fuggette, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Transactions

on Software Engineering, 24(5):342 – 361, May 1998.

[45] M. Fukuda. MESSENGERS: A Distributed Computing System Based on Autonomous

Objects. PhD thesis, University of Washington, Bothel, 1997.

[46] S. Fünfrocken and F. Mattern. Mobile agents as an architectural concept for internet-

based distributed applications. In KiVS 99, Kommunikation in Verteilten Systemen, R.

Steinmetz, Ed., Informatik Aktuell, pages 32 – 43. SV, 1999.

BIBLIOGRAPHY 172

[47] M. Grabner, F. Gruber, L. Klug, and W. Stockner. Agent technology: State of the art.

Technical report, Software Competence Center Hagenberg, August 2000.

[48] B. Gray. Soldiers, agents and wireless networks: A report on the actcomm scenarios and

testbed. In Proceedings of the 2000 Conference on the Practical Application of Intelligent

Agents and Multi-Agent Technology, 2000.

[49] R.S. Gray, D. Kotz ad G. Cybenko, and D. Rus. D’agents: Security in a multiple-language,

mobile-agent system. VIGNA, pages 154 – 187, 1998.

[50] W. Grosso. Java RMI. O’Reilly, 2001.

[51] O. Gutknecht and J. Ferber. Madkit: a generic multi-agent platform. In Agents, pages 78

– 79, 2000.

[52] Silvia Hagen. Guide to Service Location Protocol. ISBN 1-893939-359. Podbooks Com.

Llc, http://www.srvloc.org, 1999.

[53] F. Hohl. Sicherheit in Mobile-Agenten-Systemen. PhD thesis, Fakultät Informatik, Uni-

versität Stuttgart, http://elib.uni-stuttgart.de/opus/volltexte/2001/893, 2001.

[54] G. Huet. Higher-order unification 30 years later. In 15th International Conference TPHOL,

volume 2410, pages 3–12, September 2002.

[55] Adobe Systems Inc. PostScript Language Reference Manual, addison wesley edition, 1985.

[56] W. Jansen and T. Karygiannis. Mobile agent security. In PNIST Special Publication

National Institute of Standard and Technology, volume 19, 2000.

[57] N. Karnik. Security in Mobile Agent Systems. PhD thesis, Department of Computer

Science, University of Minnesota, 1998.

[58] J. Keogh. J2ME - The Complete Reference. ISBN 0072227109. Osborne/McGraw-Hill,

2003.

[59] S. I. Kumaran. Jini Technology. ISBN 013033859. Prentice Hall, 2002.

[60] D. Lange and M. Oshima. Programming and Deploying Java Mobile. Addison-Wesley

Longman, 1998.

[61] D. B. Lange and M. Ishima. Programming and Deploying Java Mobile Agents with Aglets.

AW, 1998.

BIBLIOGRAPHY 173

[62] D. B. Lange and M. Oshima. Seven good reasons for mobile agents. ACM, 42(3):88 – 89,

1999.

[63] L.Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science and

Computation Structures, Lisbon, 1998.

[64] R. Lea, C. Jacquemont, and E. Pillevesse. Cool: System support for distributed object

oriented programming. ACM, 36(9):37 – 46, November 1993.

[65] G. Di Marzo, M. Muhugusa, and C. F. Tschudin. A survey of theories for

mobile. In World Wide Web Journal, Special Issue on Distributed World Wide

Web Processing: Applications and Techniques of Web Agents, pages 139–153,

http://gdimarzo.home.cern.ch/gdimarzo/webjournal.ps, 1998. Baltzer Science Publishers.

[66] P. J. McCann and G.-C. Roman. Mobile unity: A language and logic for concurrent mobile

systems. Technical report, WUCS-97-01, Department of Computer Science, Washington

University in St. Louis, December 1996.

[67] R. Milner. The polyadic π-calculus: a tutorial. ECS-LFCS-89-85 91–180, University of

Edinburgh, 1991.

[68] R. Milner. Communication and Concurrency. PHL, 1998.

[69] R. Milner. Communicating and Mobile Systems: The pi-Calculus. Cambridge University

Press, 1999.

[70] R. Milner, J.Parrow, and D. Walker. A calculus of mobile processes i and ii. Information

and Computation, 100(1):1–77, 1992.

[71] Dejan Milojicic. Mobile agent applications. IEEE Concurrency, 7(3):89 – 90, July 1999.

[72] Y. Minsky, R. Renesse, F. B. Schneider, and S.D. Stoller. Cryptographic support for fault-

tolerant distributed computing. In Distributed Computing , Proceedings of the Seventh

ACM SIGOPS European Workshop, pages 109 – 114, 1996.

[73] U. Montanari and M. Pistore. History-dependent automata. Technical report, Technical

Report Dipartimento di Informatica, Universita di Pisa, Italy, 1997.

[74] T. Mota, S. Gouveris, G. Pavlou, A. Michalas, and J. Psoroulas. Quality of service manage-

ment in ip networks using mobile agent technology. In Proceedings of the IEEE/ACM Inter-

national Workshop on Mobile Agents for Telecommunication Applications (MATA’2002),

October 2002.

BIBLIOGRAPHY 174

[75] R. De Nicola, G. Ferrari, and R.Pugliese. Klaim: A kernel language for agents interactions

and mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

[76] Sun Org. Enterprise JavaBean Technologies. Inc., California, USA,

http://java.sun.com/products/ejb.

[77] Sun Org. Surrogate project. The Jini Community, http://wwws.sun.com/ software/jini/,

2000.

[78] Sun Org. Jini Network Technology. Inc., California, USA, 2001.

[79] Sun Org. Jini Network Technology: Datasheet. Inc., California, USA, 2001.

[80] J. Parrow. Handbook of Process Algebra. Elsevier, ISBN: 0-444-82830-3, 2001.

[81] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile

processes. In Proc. of LICS, IEEE Computer Society Press, pages 176 – 185, 1998.

[82] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile

processes. LICS’98, Computer Society Press, pages 176–185, 1998.

[83] R. Pascotto. AMASE: A Complete Agent Platform for the Wireless Mobile Communi-

cation Environment. T-Nova Deutsche Telekom Innovationsgesellschaft mbH Berkom,

http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch3/amase.htm,

1998.

[84] H. Peine and T. Stolpmann. The architecture of the ara platform for mobile agents. In

First International Workshop on Mobile Agents MA’97, volume 1219, pages 50–61, Berlin,

Germany, april 1997. SV.

[85] L. M. Peña. Techniques for the Development of Fault-Tolerant Distributed Application on

Corba and Java-RMI Architectures. PhD thesis, Computer Science School. Universidad

Complutense de Madrid, http://grasia.fdi.ucm.es/sensei/docs/sensei.pdf, May 2002.

[86] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus.

Technical report, CSCI 476, Computer Science Department, Indiana University, 1997.

[87] V. Roth. Obstacles to the adoption of mobile agents. In 5th IEEE International Conference

on Mobile Data Management (MDM 2004), 19-22 January 2004, Berkeley, CA, USA,

pages 296–297, 2004.

BIBLIOGRAPHY 175

[88] T. Sander and C. Tschudin. Towards mobile crypthography. In IEEE Symphosium on

Security and Privacy, Oakland, CA, 1998.

[89] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis, University of Edinburgh, 1992.

[90] D. Sangiorgi and D. Walker. The π-Calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001.

[91] P. Sewell. Applied pi - a brief tutorial. Technical Report 498, University of Cambridge,

2000.

[92] A. Shafi, U. Farooq, S. L. Kiani, M. Riaz, A. Shehzad, A. Ali, I. Legrand, and H. B. New-

man. Diamonds - distributed agents for mobile & dynamic services. CoRR, cs.DC/0305062,

2003.

[93] Roger Spottiswoode. Tomorrow Never Dies: James Bond 007, 1997.

[94] Markus Strasser. Fehlertoleranz Mobiler Agenten. PhD thesis, Universitaet Stuttgart

Department of Computer Science, 2002.

[95] SysteMATech. http://www.systematech.org/index.php?Project.

[96] W. Theilmann. Themenspezifische Informationssuche im Internet mit Hilfe mobiler

Programme. PhD thesis, Fakultät Informatik, Universität Stuttgart, http://elib.uni-

stuttgart.de/opus/volltexte/2000/703, 2000.

[97] W. Thielmann and K. Rothermel. Hawk: Harvesting the widely distributed knowledge.

[98] V. Vasudevan and S. Landis. Malleable services. In Proceedings of the 34th Hawaii Inter-

national Conference on System Sciences, October 2001.

[99] B. Victor and F. Moeller. The mobility workbench - a tool for the π- calculus. In Proc of

CAV, volume 818, pages 428 – 440. Springer, 1994.

[100] G. Vigna. Mobile agents: Ten reasons for failure. In Proceedings of MDM Berkeley, CA,

pages 298–299, January 2004.

[101] J. Waldo. The end of protocols. Technical report, Sun Org.,

http://java.sun.com/developer/technicalArticles/jini.

[102] M. Weiss, C. Busch, and W. Schrter. Multimedia Arbeitsplatz der Zukunft - Assistenz und

Delegation mit mobilen Softwareagenten. Talheimer Verlag, 2003.

BIBLIOGRAPHY 176

[103] T. White and B. Pagurek. Towards multi-swarm problem solving in networks. In Proc. of

the 3rd Intl Conf. on Multi-Agent Systems (ICMAS 98), July 1998.

[104] P. Wojciechowski and P. Sewell. Nomadic pict: Language and infrastructure design for

mobile agents. IEEE Concurrency, 8(2), 2000.

INDEX

π-calculus, 66, 71

, 16, 17

ActComm, 42

Aglets, 23

AMASE, 43

Ambient calculus, 77

API, 111

Ara, 23

Bluetooth, 21

client-server, 52

client-server paradigm, 53

CoABS, 43

Code mobility, 48

code on demand, 52

Code on Demand Paradigm, 54

CogVis, 43

Computation Tree Logic, 97

COOL, 49

CORBA, 112

Corba, 26

CTL, 109

DIAMOnDS, 44

DILEMMA, 44

EJB, 111, 146

FIPA, 16, 23, 26, 58, 60

Grashopper, 23

GSM, 21

Hawk, 45

HOπ, 27, 28, 71

HOPiTool, 27, 29, 148, 151, 152, 155–157, 163,

166

Internet, 22

IrDA, 21

Jade, 23

JavaBeans, 110

Jini, 29, 33, 110, 146

JSR 121, 40

JVM, 33

LEAP, 23, 45

MadKit, 23, 46

MAF, 59

MANTRIP, 46

MAP, 46

MASIF, 26, 58–61

migration mechanism, 49

177

INDEX 178

mobile agent, 52

Mobile Agent paradigm, 55

Mobile agents, 31, 32, 35, 36, 38, 122, 126, 128–

130, 146

Mojave, 47

Mole, 23

OMF, 59

OMG, 58

PDA, 21

proactive migration, 50

reactive migration, 50

remote cloning mechanism, 50

Remote Evaluation paradigm, 54

remote-evaluation, 52

RMI, 110, 112, 115

skeleton code, 113

SLP, 17, 27, 84, 85, 87, 88

SOMA, 60

stationary agent, 32

Strong mobility, 49

stub code, 113

SysteMATech, 47

TeleCARE, 48

UMTS, 21

UPPAAL, 28, 96–99, 108

WAP, 21

Weak mobility, 49

WebLogic, 23

WML, 21

Glossary

Bluetooth Wireless personal area network (PAN) standard that enables data connections

between electronic devices such as desktop computers, wireless phones, electronic

organizers and printers in the 2.4 GHz range at 720kbps within a 30-foot range.

Bluetooth depends on mobile devices equipped with a chip for sending and receiving

information. Page 21.

EJB-container A container that implements the EJB component contract of the J2EE ar-

chitecture. This contract specifies a runtime environment for enterprise beans that

includes security, concurrency, life-cycle management, transactions, deployment,

naming, and other services. An EJB container is provided by an EJB or J2EE

server. Page 136.

GSM Global System for Mobile communications: Digital cellular radio technology. Op-

erates in the 900 MHz waveband. Page 21.

HTTP Hypertext Transfer Protocol: protocol used to browse World Wide Web sites on

the Internet (Computers). Page 127.

IDL Interface Definition Language that facilitiates interfacing between servers and IDL

compliant client computers. For example, a Java IDL enables Java to communicate

with non-Java objects on networks. Page 113.

IIOP Internet Inter-ORB Protocol: A protocol used for communication between CORBA

object request brokers. Page 127.

IrDA Infrared Data Association: A membership organization founded in 1993 and dedi-

cated to developing standards for wireless, infrared transmission systems between

computers. With IrDA ports, a laptop or PDA can exchange data with a desktop

179

GLOSSARY 180

computer or use a printer without a cable connection. Like a TV remote control,

IrDA requires line-of-sight transmission. IrDA products began to appear in 1995.

Page 21.

J2EE Java 2 Platform, Enterprise Edition: An environment for developing and deploying

enterprise applications. The J2EE platform consists of a set of services, application

programming interfaces (APIs), and protocols that provide the functionality for

developing multi-tiered, Web-based applications. Page 146.

JAAS Java Authentication and Authorization Service: (1) In J2EE technology, a standard

API for performing security-based operations. JAAS implements a Java version of

the standard Pluggable Authentication Module (PAM) framework. (2) A package

through which services can authenticate and authorize users while enabling the

applications to remain independent from underlying technologies. Page 136.

JavaBean A specification developed by Sun Microsystems that defines how Java objects in-

teract. An object that conforms to this specification is called a JavaBean.

JBoss The JBoss/Server is the leading Open Source, standards-compliant, J2EE based

application server implemented in pure Java. Page 137.

Jini Jini is defined as an infrastructure and programming model which allow devices to

connect with each other to create an instant.

JLS Jini lookup service, the central component of Jini’s runtime infrastructure, offers

Jini clients a flexible and powerful way to find Jini services. It enables service

providers to advertise their services and enables clients to locate and enlist the help

of those services. Page 126.

JNDI Java Naming and Directory Interface: An extension to the Java platform that

provides a standard interface for heterogeneous naming and directory services.

Page 137.

JNI Java Native Interface: A programming interface that allows Java code to interop-

erate with functions that are written in other programming languages.

JTA Java Transaction API: An API that allows applications and J2EE servers to access

transactions. Page 136.

GLOSSARY 181

JTS Java Transaction Service. Specifies the implementation of a transaction manager

which supports JTA and implements the Java mapping of the OMG Object Trans-

action Service (OTS) 1.1 specification at the level below the API. Page 136.

JVM Java Virtual Machine. (Computers) software that serves as interpreter between

Java bytecode and a specific operating system (allows Java applications to run on

any platform without changing the code). Page 33.

PDA Personal Digital Assistant: A small, handheld wireless device capable of storing and

transmitting pages, data messages, voice calls, faxes and e-mails. A typical PDA

can function as a cellular phone, fax device, Web browser and personal organizer.

Unlike portable computers, most PDAs began as pen-based devices that used a

stylus rather than a keyboard for input. Many PDAs subsequently incorporate

handwriting recognition features. Some PDAs can also react to voice input by

using voice recognition technologies. Most PDAs are available in either a stylus or

keyboard version. PDAs are also called palmtops, hand-help computers, Personal

Information Managers (PIMs), and pocket computers. Page 21.

PostScript A page description language (PDL) developed by Adobe Systems. Widely sup-

ported by both hardware and software vendors, it represents the current standard

in the market. John Warnock and Chuck Geschke of Adobe both worked for Xe-

rox at the Palo Alto Research Center where PDLs were invented and set up their

company to commercially exploit the concepts they had helped develop. Page 49.

reggie is the Lookup Service implemented by Jini. Page 131.

RPC Remote Procedure Call: An easy and popular paradigm for implementing the client-

server model of distributed computing. In general, a request is sent to a remote

system to execute a designated procedure, using arguments supplied, and the re-

sult returned to the caller. There are many variations and subtleties in various

implementations, resulting in a variety of different (incompatible) RPC protocols.

Page 113.

rsh Remote Shell. Page 49.

software Object modelling language specifically designed for the creation of micromodels.

Page 32.

GLOSSARY 182

SSL An SSL digital certificate is an electronic file that uniquely identifies individuals

and servers. Digital certificates allow the client (Web browser) to authenticate the

server prior to establishing an SSL session. Typically, digital certificates are signed

by an independent and trusted third party to ensure their validity. Page 61.

UDP User Datagram Protocol: protocol with no connection required between sender

and receiver that allows sending of data packets on the Internet (though unreliable

because it cannot ensure the packets will arrive undamaged or in the correct order).

Page 127.

UMTS Universal Mobile Telecommunications System: UMTS is the European standard of

the IMT2000 family of third generation mobile cellular standards (3G). In addition

to the telephony service, UMTS will in particular allow the provision of multimedia

services (data, images, sound) at data transfer rates of 144 kbps (vehicles), 384

kbps (pedestrians) and 2 Mbps (buildings). Page 21.

UNIX A computer operating system, originally developed at ATT Bell Laboratories, that

is compatible with a wide range of computer systems. Ultrix, Solaris, AIX, HP/UX,

BSD, Linux, and SystemV are among its numerous descendants. Page 49.

WAP The Wireless Application Protocol (WAP) is an open, globally recognized, protocol

specification that empowers mobile services subscribers to use wireless devices to

easily access and interact with information and services similar or identical to those

available on the ’Web’ or ’Net’. Overcoming the constrains of (relatively) slow and

intermittent nature of wireless links for mobile communications, together with the

limited screen size and computing power of mobile devices, is the central goal of

WAP technology. Page 21.

WML Wireless Mark-up Language, or WML, is similar to HTML in many ways and serves

a similar purpose. However, WML has been specially designed and optimized to

take into account the constraints of mobile communications and mobile subscriber

equipment such as cell phones and PDAs. Page 21.

WWW World Wide Web or W3 or The Web: a distributed HyperText-based information

system conceived at CERN to provide its user community an easy way to access

global information. Page 22.

GLOSSARY 183

X.509 A widely used standard for defining digital certificates. X.509 is actually an ITU

Recommendation, which means that it has not yet been officially defined or ap-

proved for standardized usage. As a result, companies have implemented the stan-

dard in different ways. For example, both Netscape and Microsoft use X.509 certifi-

cates to implement SSL in their Web servers and browsers. But an X.509 Certificate

generated by Netscape may not be readable by Microsoft products, and vice versa.

Page 61.

XML An acronym for eXtensible Markup Language: XML is a flexible way to create

common information formats and share both the format and the data on the World

Wide Web, intranets, and elsewhere. For example, computer makers might agree

on a standard or common way to describe the information about a computer prod-

uct (processor speed, memory size, and so forth) and then describe the product

information format with XML. Such a standard way of describing data would en-

able a user to send an intelligent agent (a program) to each computer maker’s Web

site, gather data, and then make a valid comparison. XML can be used by any

individual or group of individuals or companies that wants to share information in

a consistent way. Currently a formal recommendation from the World Wide Web

Consortium (W3C). XML is similar to the language of today’s Web pages, HTML.

Both XML and HTML contain markup symbols to describe the contents of a page

or file. HTML, however, describes the content of a Web page (mainly text and

graphic images) only in terms of how it is to be displayed and interacted with.

Page 112.

VITA

Name: Andreea Barbu

Born: September 16th, 1974

Nationality: German

Education:

2000 - 2005 PhD Thesis at the department of computer science of ParisXII University,

France and Carl von Ossietzky, University of Oldenburg, Germany.

1994 - 2000 Student of Computer Science with applications to Psychology at the

University of Oldenburg, Germany.

Final examination: Diploma in Computer Science.

1994 High school Diploma (Abitur) at the Alvin Lonke Gymnasium,

Bremen, Germany

Working Experience:

2000 - 2005 Scientific assistant at the department of Computer Science

at the University ParisXII Creteil, France.

1998 - 2000 Assistant as an undergraduate at the department of Computer Science

at the Carl von Ossietzky University in Oldenburg

Scholarships:

2000 - 2003 Supported by the ministry of research in France.

184

	DEVELOPING MOBILE AGENTS THROUGH A FORMAL APPROACH
	CO-TUTELLE
	SHORT ABSTRACT
	RESUME COURT
	KURZZUSAMMENFASSUNG
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Preface
	Introduction
	Einf uhrung

	STATE OF THE ART
	Introduction
	Mobile Agents
	Calculi and Specification Languages for Mobile Agents

	FROM SPECIFICATION TO VALIDATION
	Specification Part
	Synthesis Part
	A Practical Approach

	Conclusion and Future Work
	Technical Description of HOPiTool Version 1.0

	MY PUBLICATIONS
	BIBLIOGRAPHY
	INDEX
	Glossary
	VITA

	link: Zur Homepage der Dissertation

