

Titankatalysierte intermolekulare

Hydroaminoalkylierung

Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels

Doktor der Naturwisenschaften

(Dr. rer. nat.)

angenommene Dissertation

von

Herrn Dipl.-Chem. Raphael Kubiak

geboren am 26.04.1981 in Bremen

Gutachter: Prof. Dr. Sven Doye

Zweitgutachter: Prof. Dr. Jürgen Martens

Tag der Disputation:10.05.2011

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Zudem erkläre ich, dass ich an keiner anderen Stelle die Promotionsprüfung beantragt habe.

Oldenburg, der 9. März 2011

Raphael Kubiak

Die vorliegende Arbeit wurde unter der Leitung von Herrn Prof. Dr. Sven Doye an der Carl von Ossietzky Universität Oldenburg in der Zeit von Dezember 2007 bis zum Januar 2011 durchgeführt. Teile dieser Dissertation wurden bereits veröffentlicht:

- "Titanium-Catalyzed Hydroaminoalkylation of Alkenes by C-H Bond Activation at sp³ Centers in the α-Position to a Nitrogen Atom"
 R. Kubiak, I. Prochnow, S. Doye, *Angew. Chem.* 2009, *121*, 1173-1176; *Angew. Chem. Int. Ed.* 2009, *48*, 1153-1156.
- "Tetrabenzyltitanium: An Improved Catalyst for the Activation of sp³ C-H Bonds Adjacent to Nitrogen Atoms"
 I. Prochnow, R. Kubiak, O. N. Frey, R. Beckhaus, S. Doye, *ChemCatChem* 2009, *1*, 162-172.
- "[Ind₂TiMe₂]: A Catalyst for the Hydroaminomethylation of Alkenes and Styrenes"
 R. Kubiak, I. Prochnow, S. Doye, *Angew. Chem.* 2010, 122, 2683-2686; *Angew. Chem. Int. Ed.* 2010, 49, 2626-2629.
- "Recyclable Gallium as Catalyst Precursor for a Convenient and Solvent-Free Method for the Intermolecular Addition of Sulfonamides to Alkenes"
 D. Jaspers, R. Kubiak, S. Doye, *Synlett* **2010**, 1268-1272.

Zusammenfassung

Aufgrund der großen biologischen und industriellen Bedeutung von Aminen werden seit vielen Jahren Synthesemethoden gesucht, die einen möglichst einfachen Zugang zu dieser Substanzklasse ermöglichen. Hierbei ist die metallkatalysierte Hydroaminoalkylierung von Alkenen als 100% atomökonomisch verlaufende Reaktion von besonderem Interesse, da sie einfache Substrate unter C-C-Bindungsbildung direkt in komplexe Zielmoleküle überführt. Bei der Hydroaminoalkylierung von Alkenen wird die α -C–H-Bindung primären oder sekundären Amins aktiviert und an eine C-Ceines Doppelbindung addiert, wodurch die Amine in der α-Position zum N-Atom alkyliert werden. Die Hydroaminoalkylierungen von terminalen Alkenen sind mit Titan-Katalysatoren wie dem Tetrakis(dimethylamino)titan (Ti(NMe₂)₄) oder Tetrabenzyltitan (TiBn₄) realisierbar. Darüber hinaus wurde mit Bis(indenyl)dimethyltitan (Ind₂TiMe₂) ein weiterer Katalysator identifiziert, der bereits bei einer sehr niedrigen Temperatur von nur 80 °C katalytisch aktiv ist und die hoch regioselektive Addition von Aminen an 1-Alkene ermöglicht. Weiterhin wurde mit TiBn₄ und Ind₂TiMe₂ zum ersten Mal eine Übergangsmetall-katalysierte Hydroaminoalkylierung eines Styrols erreicht. Unter den getesteten Reaktionsbedingungen lassen sich die Ti-katalysierten Hydroaminoalkylierungen von terminalen Alkenen fast ausschließlich mit N-Methylanilinen durchführen. Mit primären Aminen wie zum Beispiel Benzylamin, Dialkylaminen sowie *N*-Propylanilinen konnte unter den gewählten Bedingungen kein Umsatz erzielt werden.

Zusammenfassend lässt sich sagen, dass im Rahmen der Dissertation erstmals gezeigt werden konnte, dass Titan-Katalysatoren für effiziente metallkatalysierte Hydroaminoalkylierungen von terminalen Alkenen eingesetzt werden können. Dabei zeigen elektronisch wie auch strukturell unterschiedliche Titan-Komplexe wie Ti(NMe₂)₄, TiBn₄ oder Ind₂TiMe₂ eine hohe katalytische Aktivität.

Wie die Hydroaminoalkylierung bietet auch die Hydroaminierung von Alkenen einen eleganten und 100 % atomökonomischen Zugang zu komplexen Aminen. Bei der Hydroaminierung werden Amine unter Aktivierung er N–H-Bindung an Alkene oder Alkine addiert. In Anbetracht der gestiegenen Zahl an publizierten und erfolgreichen Hydroaminierungen von Alkenen mit Lewis-Säuren als Katalysatoren wurden die Galliumhalogenide GaCl₃ und GaBr₃ bezüglich ihrer katalytischen Aktivität in der Reaktion von Alkenen mit *p*-Toluolsulfonsäureamid untersucht.

Die hierbei erhaltenen Ergebnisse zeigen, dass die Lewis-Säuren GaCl₃ und GaBr₃ eine viel versprechende Aktivität bei Hydroaminierungen von Alkenen mit p-Toluolsulfonsäureamid aufweisen.

Summary

Because of the great biological and industrial relevance of amines new pathways for an easy and convenient access to this substance class have been investigated over many years. The metal-catalyzed hydroaminoalkylation of alkenes is a 100% atom-efficient reaction of great interest. With this reaction, simple substrates can be transferred into much more complex molecules via a C–C-bond formation. During the hydroaminoalkylation of an alkene the α -C–Hbond of a primary or secondary amine is being activated and added to a C-Cdouble bond thereby alkylating the amine in the α -position to the nitrogen. It could be shown that the hydroaminoalkylation of terminal alkenes with titanium tetrakis(dimethylamino)titanium based catalysts like $(Ti(NMe_2)_4)$ or feasible. tetrabenzyltitanium (TiBn₄) is Furthermore, bis(indenyl)dimethyltitanium (Ind₂TiMe₂) was identified as an additional catalyst which shows catalytic activity and high regioselectivity at temperatures as low as 80 °C. It was also possible to achieve the first successful transition metalcatalyzed hydroaminoalkylations of styrenes with TiBn₄ and Ind₂TiMe₂ as catalysts. Under the reaction conditions, titanium-catalyzed tested hydroaminoalkylations can be achieved almost exclusively with terminal alkenes an N-methylanilines. With primary amines like benzylamine, dialkylamines as well as *N*-propylanilines no reaction could be observed under the selected reaction conditions.

In conclusion, in this doctoral thesis it was shown for the first time that titaniumbased catalysts can be used for efficient metal-catalyzed hydroaminoalkylations of terminal alkenes. Interestingly, Ti-complexes with very different structures like Ti(NMe₂)₄, TiBn₄ or Ind₂TiMe₂ showed a high catalytic activity.

Besides the hydroaminoalkylation, the hydroamination of alkenes is also an elegant and 100 % atom-efficient pathway to more complex amines. The hydroamination involves the activation of an amine N–H-bond and the addition of the amine to alkenes or alkynes. Considering the rising number of publications of successful Lewis-acid-catalyzed hydroaminations of alkenes, the catalytic activity of the gallium-halides GaCl₃ and GaBr₃ was investigated for the reaction of alkenes with *p*-toluenesulfonamide.

The results presented in this doctoral thesis prove that the Lewis-acids $GaCl_3$ and $GaBr_3$ show a promising catalytical activity for the hydroamination of alkenes with *p*-toluenesulfonamide.

Meinen Eltern

Danksagung

Herrn Prof. Dr. Sven Doye danke ich für die Möglichkeit, diese Doktorarbeit in seinem Arbeitskreis anzufertigen, die interessante Aufgabenstellung sowie für die immer konstruktive und freundliche Hilfestellung und Anleitung bei allen Fragen.

Ich danke meinen Eltern Michaele und Josef, meinen Geschwistern Rabea und Ruben, Tante Gudrun und Tante Sigrid für die moralische und finanzielle Unterstützung, sowie für das immerwährende Interesse an meiner Arbeit während des Studiums und der Doktorarbeit.

Mein Dank gilt auch den aktuellen und ehemaligen Mitarbeitern des Arbeitskreises Doye in Oldenburg: Jessica Reimer, Insa Prochnow, Daniel Jaspers, Karolin Born, Jaika Dörfler, René Severin, Kerstin Gräbe und Carsten Müller für die angenehme Zusammenarbeit, eine wundervolle Arbeitsatmosphäre und die schöne gemeinsame Zeit.

Mein Dank gilt auch Okko Frey aus dem Arbeitskreis Beckhaus an der Universität Oldenburg für die Bereitstellung vieler der Katalysatoren, den netten persönlichen Kontakt und die hervorragende wissenschaftliche Zusammenarbeit.

Außerdem möchte ich noch all jenen Menschen danken die sich in den schönen Zeiten mit mir freuten und auch in den weniger schönen immer für mich da waren: Maren, Malte, Ingo, Henning, Roland, Arndt und Anna.

Inhaltsverzeichnis

1.	Ti-katalysierte intermolekulare Hydroaminoalkylierung	2
	1.1. Einleitung	2
	1.2. Zielsetzung	10
	1.3. Ergebnisse und Diskussion	11
	1.3.1. Erste Versuche mit Ti-Komplexen	11
	1.3.2. Versuche mit TiBn ₄	30
	1.3.3. Testreihe mit neuen Ti-Komplexen	46
	1.3.4. Versuche mit Ind ₂ TiMe ₂	49
	1.3.5. Versuche mit Vinyl- und Allylethern	61
	1.3.6. Versuche mit Lewis-Säuren als Katalysatoren	63
	1.4. Zusammenfassung und Ausblick	71
2.	Hydroaminierung mit Galliumhalogeniden	73
	2.1. Einleitung	73
	2.2. Zielsetzung	77
	2.3. Ergebnisse und Diskussion	78
	2.4. Zusammenfassung	81
3.	Experimental Section	83
	3.1. General Remarks	83
	3.2. Synthesis and Characterization of Ind ₂ TiMe ₂	87
	3.3. Synthesis and Characterization of the Products	88
4.	Abkürzungen und Symbole	116
5.	Literatur	117

1. Ti-katalysierte Hydroaminoalkylierung

1.1. Einleitung

Die Knüpfung von Kohlenstoff-Kohlenstoff-Bindungen ist einer der wichtigsten und elementarsten Syntheseschritte in der Organischen Chemie. Aus diesem Grund konzentriert sich ein Großteil der Forschung auf dem Gebiet der Organischen Chemie auf die Optimierung und Weiterentwicklung entsprechender Methoden sowie auf die Erforschung neuer C-C-Unter den vielfältigen Möglichkeiten, Kohlenstoffatome Verknüpfungen. miteinander zu verknüpfen, hat in den letzten Jahren besonders die katalytische Funktionalisierung reaktionsträger C-H-Bindungen, die sogenannte C-H-Aktivierung, ein große Interesse hervorgerufen.^[1] Dieses Verfahren ermöglicht den direkten Aufbau einer C-C-Bindung, ohne dass ein Umweg über eine vorherige Funktionalisierung der Verbindung gewählt werden muss. Dadurch lassen sich bestehende Syntheserouten deutlich verkürzen, was bei Arbeiten im Labor und in der industriellen Anwendung gleichermaßen von immensem Vorteil ist. Auf diese Weise lassen sich Abfallerzeugung, Energie, Zeitaufwand und die damit verbundene Kosten deutlich verringern, was nicht nur aus ökonomischer sondern auch aus ökologischer Sicht höchst erstrebenswert ist. Effizient arbeitende C-H-Aktivierungsprozesse sollten also eine bedeutende Verbesserung gegenüber herkömmlichen Syntheseverfahren bieten. Es findet sich mittlerweile eine große Anzahl an Beispielen für die metallkatalysierte C-H-Aktivierung an sp²-Kohlenstoff-Zentren, wohingegen entsprechende Reaktionen an sp³-Kohlenstoff-Zentren kaum bekannt sind.^[1e] Von besonderem Interesse aus synthetischer Sicht sind dabei Aktivierungen von C-H-Bindungen in der a-Position zu Stickstoff- oder Sauerstoffatomen. Aus einfachen Aminen oder Alkoholen lassen sich so weitaus komplexere Verbindungen erzeugen.^[2] Amine zählen dabei zu den wichtigsten Vertretern der organischen Verbindungen, da Aminofunktion die ein wichtiges Strukturmotiv in bedeutsamen Verbindungsklassen wie z. B. Aminosäuren, Alkaloiden und Vitaminen ist.

Übergangsmetallkatalysierte C–H-Aktivierungen an sp³-Zentren in der α-Position zum Stickstoffatom, die für die Bildung von C–C-Bindungen genutzt worden sind, wurden in der Vergangenheit relativ selten beschrieben.^[3-15] Entsprechend verlaufende Additionen von Alkyl- bzw. Benzylaminen an Alkene konnten z.B. in Gegenwart von Ru-Katalysatoren unter Ausnutzung von Chelatisierungseffekten erreicht werden.^[4] Ebenfalls Ru-katalysiert sind auch Cyanierungen^[5] und Arylierungen^[6] an sp³-Zentren in der α -Position zum Stickstoffatom möglich. Rh-Katalysatoren konnten erfolgreich für analoge Carbonylierungen^[7] sowie für oxidativ verlaufende Mannich-Reaktionen^[8] eingesetzt werden während sich Cu-Katalysatoren für verschiedene Arylierungen^[9] und Ir-Katalysatoren für Alkenylierungen^[10] eignen. Darüber Lewis-Säure-^[11] Fe-katalysierte^[12] weitere hinaus sind noch und Funktionalisierungen von Aminen mit elektronenarmen Alkenen bzw. 1,3-Dicarbonylverbindungen bekannt.

Interessanterweise konnte bereits 1980 gezeigt werden, dass in Gegenwart verschiedener einfacher, homoleptischer Metallamid-Komplexe Dimethylamin (1) mit verschiedenen 1-Alkenen in der α-Position zum Stickstoffatom alkyliert werden kann (Schema 1).^[13] Während diese auch als Hydroaminoalkylierung von 1-Alkenen wie 1-Hexen (2) mit Dimethylamin (1) bezeichnete Reaktion in Gegenwart "katalytischer Mengen" (38 Mol-%) von Ta(NMe₂)₅ sowie entsprechenden Nb- oder Zr-Verbindungen unter drastischen Bedingungen (200 °C) durchführbar ist, erwiesen sich die jeweiligen V-, Mo- und Sn-Amid-Komplexe wie auch Ti(NMe₂)₄ bei diesen Untersuchungen als katalytisch inaktiv.

Schema 1

In einer kurz danach publizierten Studie konnte die analoge Hydroaminoalkylierung von 1-Penten (3) mit Dimethylamin (1) in Gegenwart von einfachen Nb- und W-Amid-Katalysatoren realisiert werden.^[14] Es zeigte sich in dieser Untersuchung, dass die Reaktion mit keinem Metallamidokomplex aus der Gruppe-IV, wie zum Beispiel (Ti(NMe₂)₄, Zr(NMe₂)₄ oder Hf(NMe₂)₄, erreicht werden kann. Ein weiteres eng verwandtes Beispiel für eine katalytische C–H-Aktivierung an sp³-Zentren in der α -Position zum

Stickstoffatom stellt die von Hartwig et al. beschriebene intermolekulare Hydroaminoalkylierung von Alkenen dar. Es konnten mit Hilfe des homoleptischen Katalysators $Ta(NMe_2)_5$ bei der Umsetzung von 1-Octen (**4**) mit verschiedenen sekundären aromatischen Aminen gute bis sehr gute Ausbeuten erzielt werden (Schema 2).^[15]

$$n-C_{6}H_{13} + H_{N}Ar = \frac{4-8 \text{ Mol-\% Ta}(NMe_{2})_{5}}{\text{Toluol, 160 °C, 27-67 h}} n-C_{6}H_{13} + H_{N}Ar$$

Schema 2

Bei dieser Reaktion konnten verschiedene sekundäre N-arylierte Alkylamine an 1-Alkene addiert werden. Primäre Amine sowie ungespannte 1,2-disubstituierte Alkene wie Cyclohexen (5) oder *trans*-2-Octen (6) erwiesen sich dagegen als ungeeignet. Als einziges internes Alken konnte das erheblich gespannte Norbornen (7) erfolgreich eingesetzt werden. Während dieser Studie stellte sich erneut heraus, dass Gruppe-IV Metallkatalystoren offensichtlich ungeeignet sind, C–H-Aktivierungsreaktionen effizient zu katalysieren, denn Zr(NMe₂)₄ erwies sich in einem Katalysatorscreening für die in Schema 2 gezeigte Testreaktion als katalytisch inaktiv (0.1 % Ausbeute nach 24 h).

Mechanistisch wird davon ausgegangen, dass sich aus dem eingesetzten Ta-Amid-Komplex Ta(NMe₂)₅ (I) und dem umzusetzenden sekundären Amin zunächst ein Tantalaazidin bzw. ein η^2 -Imin-Komplex (8, Schema 3) bildet. Da diese Reaktion mit N-arylierten Alkylaminen deutlich schneller verläuft als mit Dialkylaminen,^[16] sind die von Hartwig beschriebenen Umsetzungen deutlich effizienter als die bereits oben erwähnten Ta(NMe₂)₅-katalysierten Additionen von Dimethylamin an Alkene.^[13] Im Anschluss an die Bildung des η^2 -Imin-Komplexes 8 kann ein Alken in die vorliegende Ta–C-Bindung von 8 insertieren, wobei ein Azametallacyclopentan 9 gebildet wird, das durch sukzessive Aminolyse und Produktabspaltung aus 10 den katalytisch aktiven Komplex 8 regeneriert.

Schema 3

Ein Jahr später berichteten Hartwig et al. von einer erfolgreichen Takatalysierten Hydroaminoalkylierung verschiedener Dialkylamine.^[17] Dabei kam [TaCl₃(NEt₂)₂]₂ als verbesserter Katalysator zum Einsatz (Schema 4).

$$n-C_{6}H_{13} + N_{R} = Cy, i-Pr, n-Pr, Et, n-Hex, Ar$$

$$1) 4 \text{ Mol-\% [TaCl_{3}(NEt_{2})_{2}]_{2}} C_{6}D_{6}, 150 \degree C, 24-36 \text{ h}} \xrightarrow{n-C_{6}H_{13}} N_{R}$$

$$n-C_{6}H_{13} + N_{R} \xrightarrow{n-C_{6}H_{13}} N_{R}$$

Vergleichbar gute Resultate mit Ta-Amidat-Komplexen konnten während der Anfertigung dieser Arbeit (2010) auch von Schafer et al. erzielt werden.^[18] Es gelang erstmals, verschiedene Mono- und Bis-Amidat-Komplexe des Tantals wie zum Beispiel I zu synthetisieren und diese erfolgreich in intermolekularen Hydroaminoalkylierungsreaktionen von Alkenen einzusetzen (Schema 5).

Schema 5

Zudem wurde mit einem chiralen Bis-Amidat-Komplex des Tantals die erste enantioselektive Aminsynthese über eine Hydroaminoalkylierungsreaktion durchgeführt (Schema 6).

Schema 6

Kürzlich berichteten Song et al. von einer verbesserten enantioselektiven intermolekularen Hydroaminoalkylierung.^[19] Genau wie schon bei den Versuchen von Schafer et al. wurden dabei chirale Ta-Katalysatoren verwendet (Schema 7).

Ein weiterer interessanter katalytischer Prozess zur Herstellung komplexer Amine ist die Hydroaminierung. Wie auch die Hydroaminoalkylierung bietet die Hydroaminierung einen einfachen und atomökonomischen Syntheseweg, der einen eleganten und direkten Zugang zu höher substituierten Aminen ermöglicht.^[20] Mit diesem Verfahren lassen sich z. B. primäre Amine mit Alkenen oder Alkinen zu den entsprechenden sekundären Aminen bzw. Iminen/Enaminen umsetzten (Schema 8).

Im Verlauf von Studien zur intramolekularen Hydroaminierung von Aminoalkenen mit Gruppe IV Übergangsmetallkatalysatoren wurde von Doye et al. bei der Ti-katalysierten Cyclisierung eines 1-Aminohexens (**11**) neben der Bildung des Hauptproduktes **12** die Entstehung des Nebenproduktes **13** beobachtet.^[21] Dieses Nebenprodukt wurde sowohl bei der Reaktion des Aminoalkens in Gegenwart von Ti(NMe₂)₄ als auch von Ind₂TiMe₂ gebildet (Schema 9).

Schema 9

Die einzige Erklärung für die Bildung des Cyclopentylamins (**13**) wäre eine Tikatalysierte C–H-Aktivierung in der α-Position zum Stickstoff. In Konkurrenz zur Hydroaminierung hatte offensichtlich eine intramolekulare Hydroaminoalkylierung eines primären Amins stattgefunden, die zum ersten Mal in Gegenwart eines Ti-Katalysators beobachtet werden konnte (Schema 10).

Hydroaminierung

Hydroaminoalkylierung

Schema 10

Dieses Ergebnis ist auch deshalb äußerst bemerkenswert, weil die ersten Publikationen mit Metallamid-Komplexen darauf hindeuteten, dass der entsprechende Ti-Komplex Ti(NMe₂)₄ nicht zur Hydroaminoalkylierung fähig ist.^[13] Wie sich bei dieser Untersuchung zeigte, sind Ti-Komplexe aber durchaus in der Lage, intramolekulare Hydroaminoalkylierungen zu katalysieren.

Eine Bildung des C-H-Aktivierungs-Produkts konnte ausschließlich bei der Verwendung von Ti-Katalysatoren wie z.B. Ti(NMe₂)₄ oder Ind₂TiMe₂ beobachtet werden. Analoge Zr- oder Hf-Komplexe katalysierten unter den Versuchsbedingungen mit dem 1-Aminohexen (11) selektiv die nur Hydroaminierung. Dass sich Zr-Komplexe prinzipiell die doch für intramolekulare Hydroaminoalkylierung von primären Aminen eignen, konnte später von Schafer et al. gezeigt werden.^[22] In Gegenwart von 20-40 Mol-% eines Zr-Bisamido-Komplexes (III) konnten verschiedene 1-Aminoheptene in moderaten bis sehr guten Ausbeuten umgesetzt werden (Schema 11).

Schema 11

Interessanterweise gelang es mit dieser Versuchsanordnung jedoch nicht, entsprechende sekundäre Amine umzusetzen (Schema 12).

1.2. Zielsetzung

Im Rahmen der vorliegenden Doktorarbeit sollte die Möglichkeit für eine Realisierung einer Ti-katalysierten intermolekularen Hydroaminoalkylierung von Alkenen ausgelotet werden. Die offensichtlichen Parallelen zwischen den Untersuchungen von Hartwig et al. zur Ta-katalysierten intermolekularen Hydroaminoalkylierung von Alkenen und der von Doye et al. beobachteten ersten intramolekularen Hydroaminoalkylierung in Gegenwart eines Ti-Katalysators ließen vermuten, dass auch Ti-katalysierte intermolekulare Hydroaminoalkylierungen möglich sein sollten. In beiden Fällen wurden für die jeweilige C–H-Aktivierung in der α -Position zu einem Stickstoffatom analoge Dimethylamido-Komplexe verwendet. Deshalb sollte zunächst an Beispielreaktionen des homoleptischen Ti-Amidkomplexes Ti(NMe₂)₄ geprüft sich **Ti-Komplexe** prinzipiell für intermolekulare werden. ob die Hydroaminoalkylierung eignen (Schema 13).

Schema 13

Darüber hinaus sollte bestimmt werden, welche weiteren Ti-Komplexe eine Aktivität bei der intermolekularen Hydroaminoalkylierung von Alkenen zeigen. Anhand ausgewählter Edukte sollten dann die Bandbreite der einsetzbaren Startmaterialien sowie die Effizienz der potentiellen Katalysatoren bestimmt werden, insbesondere im Vergleich zu den von Hartwig et al. verwendeten Ta-Katalysatoren.

1.3. Ergebnisse und Diskussion

1.3.1. Erste Versuche mit Ti-Komplexen

Anders als bei der intramolekularen Variante war für die intermolekulare Hydroaminoalkylierung von Alkenen zu Beginn dieser Arbeit kein Beispiel für eine Ti-katalysierte Reaktion bekannt. Auf der Suche nach geeigneten Reaktionsbedingungen wurde deshalb in Anlehnung an die von Hartwig et al. veröffentlichten Ergebnisse ein Testexperiment mit Tetrakis(dimethylamino)titan Ti(NMe₂)₄ als Katalysator durchgeführt. Hierbei wurden 4 Mol-% Katalysator, sowie 1-Octen (4) und *N*-Methylanilin (14) im Verhältnis 1.5:1 eingesetzt (Schema 14). Die Reaktion wurde über 24 Stunden bei 160 °C in Toluol durchgeführt. Hierbei zeigte sich, dass es nicht möglich war mit diesen Versuchsparametern aus 1-Octen (4) und *N*-Methylanilin (14) das gewünschte C–H-Aktivierungsprodukt (15a) zu erhalten.

Schema 14

Da die ersten von Doye et al. vorgestellten Ti-katalysierten C–H-Aktivierungen bei Hydroaminierungsreaktionen mit primären Aminen beobachtet wurden, wurde unter den gleichen Reaktionsbedingungen versucht 1-Octen (4) mit Benzylamin (16) und Cyclopentylamin (18) umzusetzen (Schema 15). Auch hier konnte jedoch keine Bildung der angestrebten Produkte 17 und 19 beobachtet werden.

Schema 15

Nachdem bei keinem dieser orientierenden Versuche ein richtungsweisendes Ergebnis für weitere Studien erzielt werden konnte, wurde über eine Modifikation der Versuchsparameter nachgedacht. Ein erster Ansatz war, das Mol-Verhältnis der Reaktionspartner zu ändern, z. B. eines der beiden Edukte im großen Überschuss zu verwenden. Diese Überlegung führte dazu, ganz auf ein Lösungsmittel wie Toluol zu verzichten und 1-Octen (4) versuchsweise im sechsfachen Überschuss in Bezug auf *N*-Methylanilin (14) einzusetzen. Die Reaktionstemperatur und die verwendete Katalysatormenge wurden beibehalten (Tabelle 1).

Tabelle 1:

Nr.	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	24	30	90:10
2	48	44	91:9
3	72	62	90:10
4	96	75	90:10

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (4 Mol-%), 1-Octen (4, 6 mmol), *N*-Methylanilin (14, 1 mmol), *t*, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie.

Nach 24 Stunden Reaktionszeit konnte ein Produktgemisch aus verzweigtem (**15a**) und linearem Produkt (**15b**) in einem Isomerenverhältnis von 90:10 in moderater Ausbeute isoliert werden (Tabelle 1, Nr. 1). Durch eine schrittweise Verlängerung der Reaktionszeit konnte nach 96 Stunden bei gleichbleibender Regioselektivität eine Ausbeute von 75 % erzielt werden (Tabelle 1, Nr. 4). Im Gegensatz zu den Experimenten mit den Ta-Komplexen von Hartwig et al. konnte mit Ti(NMe₂)₄ neben dem verzweigten Regioisomer auch das lineare Regioisomer erhalten werden. Diese Ergebnisse stellen somit das erste Beispiel für eine erfolgreiche Ti-katalysierte intermolekulare Hydroaminoalkylierung dar.

Nach diesen vielversprechenden ersten Ergebnissen wurde eine Testreihe mit verschiedenen Katalysatoren durchgeführt. Im Vergleich zum bereits als katalytisch aktiv identifizierten Ti(NMe₂)₄ wurden weitere verschiedene Titankomplexe getestet (Schema 16). Als mögliche Katalysatoren wurden vor allem solche Verbindungen in Betracht gezogen, die bereits bei der Hydroaminierung von Alkinen und Alkenen katalytisch aktiv waren. Da die ersten von Doye et al. beschriebenen Hydroaminoalkylierungen als Nebenreaktionen bei der Ti-katalysierten Hydroaminierung von Alkenen

13

auftraten, war zu vermuten, dass eine enge Beziehung zwischen der katalytischen Aktivität eines Ti-Komplexes bei der Hydroaminierung und der Hydroaminoalkylierung besteht.

Ti(NMe₂)₄

Ind₂TiMe₂

 $Me_2Si(C_5H_4)(N-tBu)Ti(NMe_2)_2$

(EBTHI)TiMe₂ Cp₂TiMe₂

Me₂Si(C₅H₄)(N-*t*Bu)TiMe₂

CI CI CI TÍ CI

TiCl₄

Schema 16

Bei diesen Versuchen wurden, mit Ausnahme der Reaktionszeit, die gleichen Bedingungen wie bei der bereits erfolgreichen Umsetzung von 1-Octen (**4**) mit *N*-Methylanilin (**14**) ausgewählt (Tabelle 2). Zwar lieferte Ti(NMe₂)₄ nach 96 Stunden die besten Ergebnisse, aber es erschien sinnvoller mit 72 Stunden eine kürzere Reaktionslaufzeit zu wählen, um eventuell effektivere Katalysatoren, die ein gegenüber dem Ti(NMe₂)₄ vergleichbares Ergebnis in kürzerer Zeit erreichen können, besser identifizieren zu können, Tabelle 2:

Nr.	Katalysator	Ausbeute (a+b)[%] ^[a]	Selektivität [a/b] ^[b]
1	Ti(NMe ₂) ₄	62	90:10
2	Ind ₂ TiMe ₂	16 ^[c]	n. b.
3	(EBTHI)TiMe ₂	< 1% ^[d]	-
4	Cp ₂ TiMe ₂	3 ^[c]	n. b.
5	Me ₂ Si(C ₅ H ₄)(<i>N</i> - <i>t</i> Bu)Ti(NMe ₂) ₂	77	> 99:1
6	Me ₂ Si(C ₅ H ₄)(<i>N-t</i> Bu)TiMe ₂	75	> 99:1
7	(DACH)Ti(NMe ₂) ₂	< 1% ^[d]	-
8	TiCl ₄	< 1% ^[d]	-

[a] Reaktionsbedingungen: Katalysator (4 Mol-%), 1-Octen (4, 6 mmol), *N*-Methylanilin (14, 1 mmol), 72 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Nur verzweigtes Produkt wurde isoliert, aufgrund geringer Produktmenge keine zuverlässigen Aussage über Selektivität möglich. [d] Bestimmt mit GC.

In Tabelle 2 sieht man, dass mit Ind₂TiMe₂ überraschenderweise nur eine sehr geringe Ausbeute erzielt werden konnte (Tabelle 2, Nr. 2). Dies ist insofern ein unerwartetes Ergebnis, da bei der ersten beobachteten Ti-katalysierten Hydroaminoalkylierung Ti(NMe₂)₄ und Ind₂TiMe₂ nahezu identische Mengen des C–H-Aktivierungsprodukts lieferten (Schema 9), was zunächst auf eine ähnliche katalytische Aktivität hingedeutet hatte. Mit Cp₂TiMe₂ konnten lediglich Spuren des Produktes isoliert werden (Tabelle 2, Nr. 4). Dagegen zeigten

sowohl Me₂Si(C₅H₄)(*N*-*t*Bu)Ti(NMe₂)₂ als auch Me₂Si(C₅H₄)(*N*-*t*Bu)TiMe₂ eine hohe katalytische Aktivität mit besseren Ausbeuten und deutlich verbesserter Regioselektivität zugunsten des verzweigten Produktes gegenüber Ti(NMe₂)₄ (Tabelle 2, Nr. 5-6). Bei der Reaktion mit (EBTHI)TiMe₂, wie auch mit (DACH)Ti(NMe₂)₂ und TiCl₄ konnte keine Bildung des angestrebten Produkts (**15a**/**15b**) beobachtet werden (Tabelle 2, Nr. 3, 7-8).

Durch diese Untersuchungen konnte gezeigt werden, dass sich für verschiedene Titankomplexe prinzipiell die intermolekulare Hydroaminoalkylierung von Alkenen eignen, wenn auch mit stark unterschiedlichen Aktivitäten. Obwohl $Me_2Si(C_5H_4)(N-tBu)Ti(NMe_2)_2$ und $Me_2Si(C_5H_4)(N-tBu)TiMe_2$ die beste Ausbeute und Regioselektivität lieferten, wurden die folgenden Experimente zur intermolekularen Hydroaminoalkylierung aufgrund der Menge an benötigtem Katalysator zunächst mit dem kommerziell durchgeführt. erhältlichen Ti(NMe₂)₄ die Titankomplexe da beiden $Me_2Si(C_5H_4)(N-tBu)Ti(NMe_2)_2$ und $Me_2Si(C_5H_4)(N-tBu)TiMe_2$ wegen ihrer äußerst aufwendigen Herstellung nur in sehr begrenzter Menge zur Verfügung standen.

Unter den etablierten Versuchsbedingungen wurden weitere Alkene mit N-Methylanilin (14) umgesetzt (Tabelle 3). Als interne Alkene wurden exemplarisch das aliphatische unsymmetrische 2-Octen (20) und das symmetrische trans-Stilben (21) Für aromatische untersucht. die Vergleichsmöglichkeit mit den Tantal-Katalysatoren wurden wie von Hartwig et al. Norbornen (7), Methylencyclohexan (22) und Allylbenzol (23) verwendet. Als weiteres Alken der Versuchsreihe wurde Styrol (24) eingesetzt.

Tabelle 3:

[[]a] Reaktionsbedingungen: Ti(NMe₂)₄ (4 Mol-%), Alken (6 mmol), *N*-Methylanilin (**14**, 1 mmol), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC. [d] Styrol polymerisiert unter den Reaktionsbedingungen.

Bei keinem der verwendeten Alkene konnte eine Hydroaminoalkylierungsreaktion beobachtet werden, wobei das Styrol unter den Versuchsbedingungen vollständig polymerisierte und so eine Detektion möglicher Produkte unmöglich machte (Tabelle 3, Nr. 7).

Die erste Ti-katalysierte Hydroaminoalkylierung von Alkenen wurde als Nebenreaktion der Hydroaminierung beobachtet. Da sich Alkine wesentlich besser für die intra- und intermolekuaren Hydroaminierungen eignen als Alkene, wurde untersucht, ob dies unter den gewählten Versuchsbedingungen auch für die Hydroaminoalkylierung gilt (Tabelle 4). Dabei wurden als aliphatisches terminales Alkin 1-Octin (**31**) und als symmetrisches aromatisches internes Alkin Diphenylacetylen (**32**) in der Reaktion mit *N*-Methylanilin (**14**) untersucht.

Tabelle 4:

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (4 Mol-%), Alkin (6 mmol), *N*-Methylanilin (**14**, 1 mmol), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Auch bei den Reaktionen mit Alkinen konnte unter den gewählten Reaktionsparametern keine Produktbildung beobachtet werden.

Desweiteren wurden verschiedene primäre und sekundäre Amine untersucht (Tabelle 5). Darunter auch das 1,2,3,4-Tetrahydrochinolin (**35**), welches bereits von Hartwig et al. erfolgreich mit 1-Octen (**4**) umgesetzt werden konnte. Ferner wurden zwei Amine getestet (**39**, **40**), die strukturell dem Aminoalken ähneln, mit dem bereits erfolgreich eine intramolekulare Hydroaminoalkylierung durchgeführt werden konnte (siehe Schema 9).

Tabelle 5:

15a, 42a-48a

15b, 42b-48b

Nr.	Amin	Produkt	Ausbeute (a+b) [%] ^[a]	Selektivität [a / b] ^[b]
1	HN-	15 a/b	75	90:10
2	H N 35	42 a/b	< 1% ^[c]	-
3	HN36	43 a/b	< 1% ^[c]	-
4	HN	44 a/b	< 1% ^[c]	-
5	H ₂ N 38	45 a/b	< 1% ^[c]	-

Nr.	Amin	Produkt	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
6	H ₂ N 39	46 a/b	< 1% ^[c]	-
7	Ph H ₂ N Ph 40	47 a/b	< 1% ^[c]	-
8	H ₂ N	48 a/b	< 1% ^[c]	-

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (4 Mol-%), 1-Octen (4, 6 mmol), Amin (1 mmol), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Auch bei den Reaktionen mit verschiedenen Aminen konnte außer mit *N*-Methylanilin (**14**) unter den gewählten Bedingungen keine Bildung der erwünschten Hydroaminoalkylierungsprodukte (**42a-48a/42b-48b**) beobachtet werden.

Da unter den bisher gewählten Reaktionsbedingungen mit Ausnahme der Reaktion von 1-Octen (4) mit *N*-Methylanilin (14) keine positiven Ergebnisse erzielt werden konnten, wurden die Reaktionsparameter weiter abgeändert. Die eingesetzte Katalysatormenge wurde auf 10 Mol-% erhöht und es wurde wieder Toluol als Lösungsmittel verwendet. In einer Versuchsreihe wurde dabei die Reaktionszeit schrittweise erhöht (Tabelle 6). Tabelle 6:

2	72	17	n.b. ^[c]
3	96	32	93:7

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (10 Mol-%), 1-Octen (**4**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol) Toluol (1 mL), *t*, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Aufgrund der geringen Produktmenge konnten keine zuverlässigen Aussagen über die Selektivität getroffen werden. [d] Bestimmt mit GC.

Nach 48 Stunden war noch kein Umsatz zu beobachten (Tabelle 6, Nr. 1), erst nach insgesamt 72 Stunden konnte unter den neuen Reaktionsbedingungen erstmals eine geringe Menge an Produkt (**15a/15b**) isoliert werden (Tabelle 6, Nr. 2). Schließlich konnte nach 96 Stunden eine Ausbeute von 32 % erhalten werden (Tabelle 6, Nr. 3). Dabei blieb die Regioselektivität der Reaktion bemerkenswerterweise im Vergleich zur vorherigen Reaktionsführung (vgl. Tabelle 1) nahezu unverändert.

Nach diesen erfolgreichen Experimenten wurden mit den neuen Versuchsparametern die bereits untersuchten Alkene (4, 7, 20-24) erneut getestet (Tabelle 7).

Tabelle 7:

15a, 25a-30a

15b, 25b-30b

Nr.	Alken	Produkt	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	4	15 a/b	32	93:7
2	20	25 a/b	< 1% ^[c]	-
3	21	26 a/b	< 1% ^[c]	-
4	7	27 a/b	78	-
5	22	28 a/b	< 1% ^[c]	-
6	23	29 a/b	94	93:7
7	24	30 a/b	< 1% ^[c]	-

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (10 Mol-%), Alken (3 mmol), *N*-Methylanilin (**14**, 2 mmol) Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC. Die internen Alkene (20, 21) wie auch das Methylencyclohexan (22) und Styrol (24) zeigten wiederum keine Reaktion (Tabelle 7, Nr. 2, 3, 5, 7), obwohl das Styrol (24) unter diesen Bedingungen aufgrund der Verwendung eines Lösungsmittels nicht wie bei den ersten Versuchen zuvor komplett polymerisierte. Dagegen konnten erstmals mit Norbornen (7) gute und mit Allylbenzol (23) exzellente Ergebnisse bei intermolekularen der Hydroaminoalkylierung von Alkenen erzielt werden (Tabelle 7, Nr. 4, 6). Mit Allylbenzol konnte dabei eine vergleichbar gute Regioselektivität wie mit 1-Octen (4) erreicht werden.

Ebenso wurden die bereits untersuchten Amine unter diesen neuen Bedingungen getestet. Das primäre Amin Diphenylmethylamin (55) wurde dabei mit in die Versuchsreihe aufgenommen, da es nur ein einzelnes Wasserstoffatom in der α -Position zum Stickstoff besitzt, was möglicherweise die C-H-Aktivierung an dieser Stelle begünstigen könnte (Tabelle 8). Zusätzlich wurden auch mehrere N-Methylanilinderivate untersucht (51-54).

Tabelle 8:

15a, 42a-48a, 56a-62a 15b, 42b-48b, 56b-62b

Nr.	Amin	Produkt	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	HN	15 a/b	32	93:7
2	HN	56 a/b	20	89:11
3	HN F	57 a/b	22	91:9

Nr.	Amin	Produkt	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
4	HN Ph- 51	58 a/b	75	53:47
5		59 a/b	< 1% ^[c]	-
6		60 a/b	< 1% ^[c]	-
7	HN 54	61 a/b	< 1% ^[c]	-
8	H N 35	42 a/b	< 1% ^[c]	-
9	HN	44 a/b	< 1% ^[c]	-
10	H ₂ N 38	45 a/b	< 1% ^[c]	-
11	H ₂ N 39	46 a/b	< 1% ^[c]	-
12	Ph H ₂ N Ph 40	47 a/b	< 1% ^[c]	-
13	H ₂ N	48 a/b	< 1% ^[c]	-
14	Ph H₂N⟨ Ph 55	62 a/b	< 1% ^[c]	-

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (10 Mol-%), 1-Octen (**4**, 3 mmol), Amin (2 mmol) Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Nach wie vor war unter den gewählten Bedingungen mit Ti(NMe₂)₄ als Katalysator keines der primären Amine (**38-41**, **55**) in der Lage eine Hydroaminoalkylierungsreaktion mit 1-Octen (**4**) einzugehen (Tabelle 8, Nr. 10-14). Auch die cyclischen sekundären Amine (**35**, **37**) zeigten keinen Umsatz (Tabelle 8, Nr. 8, 9). Im Vergleich zu *N*-Methylanilin (**14**) zeigten die *para*-substituierten *N*-Methylaniline (**49**, **50**) eine leicht verringerte Ausbeute bei annähernd gleichbleibender Regioselektivität (Tabelle 8, Nr. 1-3). Die Reaktion mit *N*-Benzylanilin (**51**) lieferte eine wesentlich höhere Ausbeute im Vergleich zum N-Methylanilin (**14**) und eine stark abweichende Regioselektivität, da die beiden gebildeten Regioisomere **58a** und **58b** in einem Verhältnis von annähernd 1:1 entstandenen (Tabelle 8, Nr. 4). Im Gegensatz dazu gingen die entsprechenden aliphatischen *N*-substituierten *p*-Methylaniline (**52-54**) keine Reaktion ein.

Da sich Allylbenzol (23) aufgrund seiner höheren Reaktivität mit *N*-Methylanilin (14) bereits als besser geeignetes Alken herausgestellt hatte, wurden damit weitere Untersuchungen mit verschiedenen Aminen durchgeführt (Tabelle 9). Neben den bereits mit 1-Octen (4) verwendeten Aminen kamen dabei zusätzlich das tertiäre Amin *N*,*N*-Dimethylanilin (63), *N*-Methyl-1-*p*-tolylmethylamin (64), verschiedene symmetrische acyclische sekundäre Amine (66-68) sowie Indolin (65) zum Einsatz.
```
Tabelle 9:
```


29a, 69a-83a

29a, 69a-83a

Nr.	Amin	Produkt	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	HN-	29 a/b	94	93:7
2	HN	69 a/b	80	95:5
3	HN Ph 51	70 a/b	84	50:50
4	HN-52	71 a/b	< 1% ^[c]	-
5	HN-52	72 a/b	< 1% ^[c]	-
6	HN 54	73 a/b	< 1% ^[c]	-
7	N	74 a/b	< 1% ^[c]	-
8	64	75 a/b	< 1% ^[c]	-

Nr.	Amin	Produkt	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
9	H N 35	76 a/b	< 1% ^[c]	-
10	H N 65	77 a/b	< 1% ^[c]	-
11	H ₂ N 39	78 a/b	< 1% ^[c]	-
12	Ph H ₂ N Ph 40	79 a/b	< 1% ^[c]	-
13	Ph H₂N< Ph 55	80 a/b	< 1% ^[c]	-
14	N H 66	81 a/b	< 1% ^[c]	-
15	<i>n</i> -C ₈ H ₁₇ N H 67	82 a/b	< 1% ^[c]	-
16	Ph N Ph H 68	83 a/b	< 1% ^[c]	-

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (10 Mol-%), Allylbenzol (**23**, 3 mmol), Amin (2 mmol) Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Wie schon beim 1-Octen (4) waren hier nur das *N*-Methyl-*p*-toluidin (49) und *N*-Benzylanilin (51) in der Lage unter den Versuchsbedingungen eine Hydroaminoalkylierungreaktion einzugehen (Tabelle 9, 2, 3). Jedoch waren die Ergebnisse im Vergleich zu den Versuchen mit 1-Octen (4) deutlich besser (vgl. Tabelle 8, 2, 3; Tabelle 9, 2, 3). Obwohl zwei unterschiedliche Alkene eingesetzt wurden, war die Regioselektivität unter Verwendung der beiden Alkene (4, 23) nahezu identisch. Dies lässt den Schluss zu, dass bei intermolekularen Hydroaminoalkylierungsreaktionen in Gegenwart von Ti(NMe₂)₄ die Substitution des verwendeten Amins einen entscheidenden Einfluss auf die Regioselektivität hat, wohingegen die Art des verwendeten terminalen Alkens keine größere Rolle spielt.

Mit den optimierten Reaktionsparametern wurden nochmals verschiedene Alkine (**31**, **84**, **85**) untersucht (Tabelle 10).

Tabelle 10:

34a, 86a, 87a

34b, 86b, 87b

Nr.	Alkin	Produkt	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	31	34 a/b	< 1% ^[c]	-
2	84	86 a/b	< 1% ^[c]	-
3	————————————————————————————————————	87 a/b	< 1% ^[c]	-

[a] Reaktionsbedingungen: Ti(NMe₂)₄ (10 Mol-%), Alkin (3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Auch unter den neuen Reaktionsbedingungen konnte keine Reaktion von *N*-Methylanilin (14) mit einem der Alkine (31, 84, 85) beobachtet werden (Tabelle 10, Nr. 1-3). Eine mögliche Erklärung dafür wäre, dass die terminalen Alkine 1-Octin (31) und Phenylacetylen (84) unter den Versuchsbedingungen dazu neigen, das acide terminale Wasserstoffatom abzuspalten, welches dann mit dem Amin oder dem Ti-Komplex reagiert und so die Reaktion inhibiert. Das 2-Phenylpropin (85) ist kein terminales Alkin, besitzt dementsprechend auch kein acides Wasserstoffatom. Aus den bisherigen Ergebnissen mit Alkenen geht allerdings hervor, dass eine terminale Mehrfachbindung bis jetzt eine

Grundvoraussetzung für die Ti-katalysierte Hydroaminoalkylierung zu sein scheint, was die Inaktivität des Phenylpropins (85) erklären kann.

Gegenüber den Experimenten mit Ta(NMe₂)₅ ist es mit Ti(NMe₂)₄ möglich, vergleichbare und zum Teil sogar bessere Ergebnisse zu erzielen. Der Ti-Komplex ist zudem in der Lage neben dem verzweigten Regioisomer auch das entsprechende lineare Regioisomer zu erzeugen. Allerdings sind dafür eine höhere Katalysatorladung und eine längere Reaktionszeit nötig. Zudem verfügt Ti(NMe₂)₄ über eine geringere Bandbreite an einsetzbaren Startmaterialien. Parallele Untersuchungen im Arbeitskreis Doye zur Hydroaminoalkylierung von Aminoalkenen mit Ti(NMe₂)₄ als Katalysator zeigten, dass auch intramolekulare sind.^[23] möglich Im Reaktionen Gegensatz zur intermolekularen Hydroaminoalkylierung sind hierbei auch primäre Amine einsetzbar, allerdings lassen sich mit sekundären Aminen nur sehr geringe Ausbeuten erreichen.

1.3.2. Versuche mit TiBn₄

Bei Untersuchungen zur intermolekularen Hydroaminierung von Alkinen wurde festgestellt, dass freies Dimethylamin, welches sich im Laufe der Reaktion vom Katalysator abspaltet, die Reaktion merklich verlangsamt.^[24] Das freie Amin ist in der Lage die katalytisch aktive Spezies zurück in den Präkatalysator umzuwandeln und so die Hydroaminierungsreaktion zu inhibieren. Vergleichbare Abläufe sind auch bei der intermolekularen Hydroaminoalkylierung denkbar. Dieser Annahme folgend könnte die Verwendung eines Präkatalysators mit Liganden, die bei Freisetzung die Reaktion nicht beeinflussen können, eine deutliche Verbesserung der Ausbeute herbeiführen. Als möglicher alternativer Katalysator zu Ti(NMe₂)₄ wurde vom Arbeitskreis Beckhaus das Tetrabenzyltitan (TiBn₄) zur Verfügung gestellt. Bei der Reaktion von TiBn₄ mit einem Amin sollte bei Abspaltung eines Liganden lediglich Toluol entstehen, welches bereits als Lösungsmittel Verwendung findet und so keinerlei Einfluss auf die Reaktion nehmen sollte (Schema 17).

Um eine erste Vergleichbarkeit zu $Ti(NMe_2)_4$ herzustellen, wurde $TiBn_4$ zunächst in der Testreaktion eingesetzt, mit der bereits die anderen Ti-Komplexe untersucht wurden (Schema 18).

Isolierte Ausbeute: 44% Regioselektivität (**a**/**b**): 90:10

Schema 18

Die dabei erhaltene Ausbeute von 44 % war jedoch geringer als die mit Ti(NMe₂)₄ erreichte (62 %). Dennoch zeigte sich deutlich eine katalytische Aktivität des TiBn₄ für die Hydroaminoalkylierung und eine mit den Versuchen mit Ti(NMe₂)₄ vergleichbare gute Regioselektivität.

Nach diesem erfolgreichen Vorversuch wurde TiBn₄ als Katalysator mit den gleichen Alkenen (**4**, **7**, **20-24**) eingesetzt, die bereits zuvor in den Versuchen mit Ti(NMe₂)₄ getestet wurden (Tabelle 11). Als zusätzliches Alken wurde 4-Phenylbuten (**88**) mit in die Versuchsreihe aufgenommen. Desgleichen wurden die Reaktionsbedingungen der erfolgreichen Hydroaminoalkylierungen verschiedener Alkene mit Ti(NMe₂)₄ übernommen. In Tabelle 11 sind die Ergebnisse der Versuchsreihen mit Ti(NMe₂)₄ und TiBn₄ als Katalysatoren dargestellt. Tabelle 11:

15a, 25a-30a, 89a

15b, 25b-30b, 89b

Nr.	Alken	Prod.	Kat.	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	$\sim \sim \sim \sim$	15 a/b	Ti(NMe ₂) ₄	32	93:7
2	4	15 d/D	TiBn ₄	77	90:10
3	$\sim \sim \sim$	25 o/b	Ti(NMe ₂) ₄	< 1% ^[c]	-
4	20	25 a/D	TiBn ₄	< 1% ^[c]	-
5		00 e/h	Ti(NMe ₂) ₄	< 1% ^[c]	-
6	21	26 a/d	TiBn₄	< 1% ^[c]	-
7	A	_	Ti(NMe ₂) ₄	78	-
8	7	27 a/b	TiBn₄	83	-
9		29 a/h	Ti(NMe ₂) ₄	< 1% ^[c]	-
10	22	20 d/U	TiBn ₄	6	n. b.
11		20 a/b	Ti(NMe ₂) ₄	94	93:7
12	23	29 d/D	TiBn ₄	24	89:11
13		00 e/h	Ti(NMe ₂) ₄	87	92:8
14	87	89 a/D	TiBn ₄	92	91:9

[a] Reaktionsbedingungen: Katalysator (10 Mol-%), Alken (3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Mit 1-Octen (4) lieferte TiBn₄ eine deutlich bessere Ausbeute als die entsprechende Reaktion mit Ti(NMe₂)₄ (Tabelle 11, Nr. 1, 2). Auch mit Norbornen (7) konnte mit TiBn₄ ein leichte Steigerung der Ausbeute verzeichnet werden (Tabelle 11, Nr. 7, 8). Zudem konnte erstmalig Methylencyclohexan (22) erfolgreich umgesetzt werden, wenn auch nur mit geringer Ausbeute (Tabelle 11, Nr. 10). Mit internen Alkenen wie 2-Octen (20) oder trans-Stilben (21) konnte auch in Gegenwart von TiBn₄ keine Reaktion beobachtet werden. Es zeigte sich ferner, dass die Reaktion mit Allylbenzol (23) entgegen den Erwartungen deutlich schlechter verlief als mit Ti(NMe₂)₄ (Tabelle 11, Nr. 11, 12). Ein solches Ergebnis ist in mehrerer Hinsicht unerwartet, da TiBn₄ im Allgemeinen bessere Ergebnisse als Ti(NMe₂)₄ lieferte und da gerade Allylbenzol (23) in den vorangegangen Versuchen mit Ti(NMe₂)₄ die höchste Reaktivität von allen untersuchten Alkenen gezeigt hatte. Die Verwendung des neuen Katalysators TiBn₄ hatte keinen nennenswerten Einfluss auf die Regioselektivität der Reaktion, das Verhältnis von verzweigtem zu linearem Produkt wies im Vergleich der beiden Katalysatoren Ti(NMe₂)₄ und TiBn₄ keine signifikanten Unterschiede auf.

Bei der Reaktion des neuen Katalysators mit Styrol (24) konnten zum ersten Mal Hydroaminoalkylierungsprodukte isoliert werden (Schema 19). Außerdem konnte neben den zwei erwarteten Regioisomeren 30a und 30b ein weiteres Produkt (30c) identifiziert werden.

Schema 19

Das Produkt **30c** wurde durch eine zweite Hydroaminoalkylierungsreaktion des linearen Produktes **30b** mit einem weiteren Styrolmolekül (**24**) gebildet. Insgesamt repräsentiert die in Schema 19 gezeigte Umsetzung die erste erfolgreiche Übergangsmetall-katalysierte Hydroaminoalkylierung eines Styrols (**24**). Besonders interessant ist zudem, dass hierbei die einzige bisher beobachtete doppelte Hydroaminoalkylierung stattfindet. Das verzweigte und das doppelt alkylierte Produkt waren säulenchromatographisch nicht voneinander zu trennen, es gelang aber, die genaue Produktverteilung durch das ¹H NMR-Spektrum des Gemisches zu bestimmen. Überraschenderweise wies die Hydroaminoalkylierung von Styrol (**24**) im Vergleich zu den anderen bisher untersuchten Alkenen eine wesentlich schlechtere Regioselektivität auf.

Im Weiteren wurde TiBn₄ als Katalysator für die Reaktion von 1-Octen (4) mit verschiedenen Aminen eingesetzt (Tabelle 12). Es wurden dabei die bereits aus den Versuchen mit Ti(NMe₂)₄ bekannten Amine (**14**, **35**, **38**, **49-51**) verwendet, um einen besseren Vergleich ziehen zu können.

Tabelle 12:

15a, 42a, 45a, 56a-58a 15b, 42b, 45b, 56b-58b

Nr.	Amin	Produkt	Kat.	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	HN	152/15h	Ti(NMe ₂) ₄	32	93:7
2	14	130/130	TiBn ₄	77	90:10
3		42a/42b	Ti(NMe ₂) ₄	20	89:11
4	49		TiBn ₄	53	89:11
5	HN-	45a/45b	Ti(NMe ₂) ₄	22	91:9
6	<u>50</u>		TiBn₄	63	91:9
7		56a/56b	Ti(NMe ₂) ₄	75	53:47
8	Pn		TiBn ₄	44	56:44
9	H		Ti(NMe ₂) ₄	< 1% ^[c]	-
10	35	57a/57b	TiBn ₄	12	67:33
11	H ₂ N	58a/58b	Ti(NMe ₂) ₄	< 1% ^[c]	-
12	38		TiBn ₄	< 1% ^[c]	-

[a] Reaktionsbedingungen: Katalysator (10 Mol-%), 1-Octen (4, 3 mmol), Amin (2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Mit TiBn₄ war es möglich, mit den meisten Aminen eine deutlich bessere Ausbeute als mit Ti(NMe₂)₄ zu erzielen. Dabei lagen die Ausbeuten mit den para-substituierten N-Methylanilinen (49, 50) im moderaten bis guten Bereich (Tabelle 12, Nr. 4, 6). Es gelang auch erstmals, mit 1,2,3,4-Tetrahydrochinolin (35) ein cyclisches sekundäres Amin in einer Hydroaminoalkylierungsreaktion

umzusetzen, wenn auch nur mit einer relativ geringen Ausbeute von 12 % (Tabelle 12. Nr. 10). Allerdings ist unter den gewählten es Versuchsbedingungen auch mit dem neuen Katalysator nicht möglich, eine Tikatalysierte Hydroaminoalkylierung mit einem primären Amin wie Benzylamin (38) durchzuführen (Tabelle 12, Nr. 12). Erstaunlicherweise zeigt sich mit N-Benzylanilin (51) mit TiBn₄ ein schlechteres Ergebnis als mit Ti(NMe₂)₄ (Tabelle 12, Nr. 7, 8). Hier zeigen sich Parallelen zu den Versuchen mit Allylbenzol (23) (Tabelle 11, Nr. 11, 12). In beiden Fällen ist der Tetrabenzyl-Komplex TiBn₄ dem Ti(NMe₂)₄ in der Ausbeute deutlich unterlegen. Es handelt sich hierbei aber um genau die zwei Edukte, die in den Versuchen mit Ti(NMe₂)₄ die höchste Aktivität aller untersuchten Startmaterialien gezeigt hatten. Eine Gemeinsamkeit der beiden Substrate ist die Anwesenheit eines Phenylrings in direkter Nähe zu den reagierenden Kohlenstoffzentren. Allerdings ist zu vermuten, dass auch der Abstand des Aromaten zum reagierenden Zentrum einen wichtigen Einfluss ausübt, denn dass das bloße Vorhandensein einer weiteren aromatischen Funktion alleine für diese stark unterschiedlichen Ergebnisse verantwortlich sein kann, ist unwahrscheinlich, wie die Versuche Nr. 13 und 14 in Tabelle 11 zeigen. Die Regioselektivitäten stimmen mit beiden Katalysatoren stets überein. Dazu machten die Ergebnisse mit N-Benzylanilin (51) 1,2,3,4-Tetrahydrochinolin (35) und dem deutlich, dass die Regioselektivität der Reaktion stark von der Substitution des reagierenden Kohlenstoffatoms beeinflusst wird. Bei der Alkylierung substituierter Kohlenstoffzentren in der a-Position zum Stickstoffatom wird deutlich mehr Produkt gebildet als lineares bei den entsprechen Reaktionen an Methylgruppen.

Die den Versuchen mit TiBn₄ zugrunde liegende Vermutung, dass sich durch die Verwendung eines Ti-Komplexes ohne Amido-Liganden wie TiBn₄ die Ausbeuten verbessern lassen, hat sich damit insgesamt nur als teilweise richtig erwiesen. In der Mehrzahl der untersuchten Fälle war der Tetrabenzylkomplex TiBn₄ der effektivere Katalysator. Andererseits zeigen einige Versuche hiervon stark abweichenden Ergebnisse, so dass die Abwesenheit von Amidoliganden, die sich im Verlauf der Reaktion aus dem Komplex abspalten können, nicht zwingend bessere Resultate zur Folge hat. Um dieses Phänomen eingehender zu untersuchen wurde ein Experiment zur Reaktion von Allylbenzol (**23**) mit *N*- Methylanilin (14) unter Zusatz eines Amins durchgeführt (Tabelle 13). Gemäß dem angenommenen Reaktionsmechanismus sollten sich pro Katalysatormolekül zwei Äquivalente freies Amin bilden, wenn man von einem Katalysator wie Ti(NMe₂)₄ ausgeht. So wurden dem Versuch entsprechend zu den 10 Mol-% TiBn₄ 20 Mol-% Amin hinzugefügt. Die Konzentration des Additivs wurde dann schrittweise gesenkt, um zu untersuchen ab welchen Konzentrationen das Additiv beginnt, einen Einfluss auf die Reaktion zu nehmen. Als Amin wurde Piperidin (37) ausgewählt, da es sich in allen bisherigen Untersuchungen zur Ti-katalysierten C-H-Aktivierung als inaktiv herausgestellt hat und so eine eventuelle Reaktion des Allylbenzols (23) mit dem Additiv ausgeschlossen werden konnte.

Tabelle 13:

Nr.	Mol-% Additiv	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	0	24	89:11
2	20	14	90:10
3	15	34	90:10
4	10	48	90:10
5	5	65	90:10
6	2.5	93	90:10

[a] Reaktionsbedingungen: TiBn₄ (10 Mol-%), Allylbenzol (**23**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie.

Erwartungsgemäß nahm die Ausbeute durch den Zusatz von 20 Mol-% Piperidin (**37**) im Vergleich zum Versuch ohne Additiv merklich ab (Tabelle 13, Nr. 2). Eine Senkung der zugesetzten Menge Amins auf 15 Mol-% führte zu einer Steigerung der Ausbeute (Tabelle 13, Nr. 3), allerdings wurde hier überraschend ein besseres Resultat als bei dem Versuch ohne ein Additiv erzielt (Tabelle 13, Nr. 1). Dieser völlig unerwartete Trend setzte sich mit schrittweiser Senkung der Menge an Piperidin (**37**) fort. Die Ausbeute stieg dabei umgekehrt proportional zur Menge des verwendeten Additivs. Dieser Effekt führte schlussendlich zu einer fast quantitativen Ausbeute mit nur 2.5 Mol-% Amin-Zusatz (Tabelle 13, Nr. 6). Dieses Ergebnis steht im starken Widerspruch zu der Hypothese, dass freies Amin den Reaktionsverlauf stört. Es scheint eher so, dass unter den gewählten Versuchsbedingungen mit Allylbenzol (**23**) kleine Mengen an Piperidin (**37**) der Effizienz der Reaktion zuträglich sind. Bemerkenswert ist weiterhin, dass die Regioselektivität durch das Additiv nicht beeinflusst wurde.

Um dieses Phänomen genauer zu untersuchen, wurden weitere Experimente durchgeführt, dabei wurden unter den etablierten Versuchsbedingungen mit TiBn₄ als Katalysator weitere Substrate als Additive getestet (Tabelle 14). Neben verschiedenen sekundären und primären Aminen kamen dabei auch Verbindungen wie Acetamid (**91**), Tolan (**31**) und Triphenylphosphin (**92**) zum Einsatz.

```
Tabelle 14:
```


Nr.	Additiv	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	-	24	89:11
2	HN36	94	90:10
3	HN	65	90:10
4	H N 35	83	90:10
5	H ₂ N 38	94	90:10
6	Ph H₂N─∕ Ph 55	52	90:10
7	H ₂ N	87	90:10
8	H ₂ N 91	0	90:10

[a] Reaktionsbedingungen: TiBn₄ (10 Mol-%), Additiv (5 Mol-%), Allylbenzol (**23**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie.

Interessanterweise führten fast alle der untersuchten Verbindungen als Additive zu signifikant höheren Ausbeuten als beim Versuch ohne einen Zusatz einer weiteren Verbindung. Die einzige Ausnahme bildete das Experiment mit Acetamid (**89**) als Additiv, wo sich keine C–H-Aktivierung mehr feststellen ließ (Tabelle 14, Nr. 8). Dies lag höchstwahrscheinlich an einer Reaktion des TiBn₄ mit dem Sauerstoffatom des Amids, was zu einer Deaktivierung des Katalysators führte. Bemerkenswert ist ferner, dass bei den meisten Versuchen mit Additiven gute Ausbeuten von mehr als 80 % erzielt werden konnten. Lediglich Piperidin (**37**) und Diphenylmethylamin (**55**) zeigten moderate Ausbeuten (Tabelle 14, Nr. 2, 6). Eine Reaktion der Edukte mit den Additiven selbst konnte nicht beobachtet werden, es wurden ausschließlich nur die Hydroaminoalkylierungsprodukte isoliert. Außerdem konnte wie auch bei den Versuchen zuvor keine Änderung der Regioselektivität durch die verwendeten Additive festgestellt werden.

Ein solch enormer Einfluss durch den Zusatz so vieler unterschiedlicher Substanzen auf die Reaktion war unerwartet. Um zu überprüfen, ob es sich allgemeines hierbei um ein Phänomen der intermolekularen Hydroaminoalkylierung handelt, wurde untersucht, inwiefern sich ein ähnlicher Effekt auch bei der Reaktion von N-Methylanilin (14) mit anderen Alkenen beobachten lässt (Tabelle 15). Exemplarisch für die vielen verwendeten Additive wurden Benzylamin (38), Diphenylacetylen (31) und Triphenylphosphin (92) verwendet, da sie in den Versuchen mit Allylbenzol die besten Ergebnisse erzielt haben. Als erstes Alken wurde 1-Octen (4) mit den drei ausgewählten Additiven unter den etablierten Standardbedingungen eingesetzt.

Tabelle 15:

Nr.

[a] Reaktionsbedingungen: TiBn₄ (10 Mol-%), Additiv (5 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie.

Benzylamin (**38**) als Additiv führte zu einem geringfügig verschlechterten Resultat (Tabelle 15, Nr. 2), während das Ergebnis mit Diphenylacetylen (**31**) als Zusatz und das ohne einen Zusatz nahezu identisch waren (Tabelle 15, Nr. 1, 3). Zwar konnte mit Triphenylphosphin (**92**) eine leicht höhere Ausbeute erzielt werden (Tabelle 15, Nr. 4), allerdings war diese geringe Verbesserung mit dem zuvor beobachteten starken Anstieg der Ausbeuten nicht vergleichbar. Die Regioselektivität blieb unverändert. Ein analoger signifikanter Einfluss des Additivs auf die Effizienz der Reaktion wie bei den Versuchen mit Allylbenzol (**23**) war bei der Reaktion mit 1-Octen (**4**) nicht festzustellen.

In einer weiteren Testreihe wurde Methylencyclohexan (22) unter den etablierten Bedingungen eingesetzt (Tabelle 16).

[a] Reaktionsbedingungen: TiBn₄ (10 Mol-%), Additiv (5 Mol-%), Methylencyclohexan (**22**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Nur verzweigtes Produkt wurde isoliert, aufgrund geringer Produktmenge keine zuverlässigen Aussagen über Selektivität möglich. [c] Bestimmt mit GC.

Bei der Reaktion von Methylencyclohexan (22) mit *N*-Methylanilin (14) und Benzylamin (38) als Additiv konnte keine Reaktion beobachtet werden (Tabelle 16, Nr. 2). Der Zusatz von Diphenylacetylen (31) und Triphenylphosphin (92) zeigte keinen Einfluss auf die Reaktion, die erhaltenen Ausbeuten stimmten mit denen ohne Verwendung eines Additivs überein (Tabelle 16, Nr. 1, 3, 4).

Als weiteres Alken wurde Norbornen (7) mit *N*-Methylanilin (14) mit Zusatz von Benzylamin (38), Diphenylacetylen (31) und Triphenylphosphin (92) unter den etablierten Bedingungen untersucht (Tabelle 17).

Tabelle 17:

[[]a] Reaktionsbedingungen: TiBn₄ (10 Mol-%), Additiv (5 Mol-%), Norbornen (7, 3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (1 mL), 96 h, 160 °C.

Im Vergleich zur Reaktion ohne Additiv verringerte sich die Ausbeute bei den Versuchen mit Benzylamin (**38**) und Tolan (**31**) drastisch (Tabelle 17, Nr. 2, 3). Mit Triphenylphosphin (**91**) lässt sich nur eine geringfügige Verbesserung feststellen (Tabelle 17, Nr. 4). Wie auch bei den beiden zuvor untersuchten Alkenen scheint sich der Ausbeute-steigernde Effekt durch den Zusatz verschiedener Verbindungen nicht auf Norbornen (**7**) übertragen zu lassen.

Nachdem sich herausgestellt hatte, dass der Zusatz von Additiven zu anderen Alkenen als dem Allylbenzol (23), der Ausbeute in der Reaktion mit *N*-Methylanilin (14) nicht signifikant förderlich war, wurde untersucht, ob ein Additiv wie Triphenylphosphin (92) die Reaktion möglicherweise merklich beschleunigt. Deshalb wurde die Reaktion von 1-Octen (4) mit *N*-Methylanilin (14) und Triphenylphosphin (92) als Zusatz nochmals mit verschiedenen Reaktionszeiten durchgeführt (Tabelle 18).

Tabelle 18:

Nr.	Additiv	t [h]	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	-	24	37	90:10
2	Ph Ph ⁻ Ph 92	24	48	91:9
3	-	48	75	90:10
4	Ph Ph ^P Ph 92	48	86	89:11

[a] Reaktionsbedingungen: TiBn₄ (10 Mol-%), Additiv (5 Mol-%), 1-Octen (**4**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie.

Es war keine signifikante Beschleunigung der Reaktion durch den Zusatz von Triphenylphosphin (**92**) festzustellen. Die erzielten Ausbeuten mit dem Additiv (Tabelle 18, Nr. 2, 4) waren lediglich leicht höher als die ohne ein Additiv (Tabelle 18, Nr. 1, 3).

Der Tetrabenzyltitan-Komplex TiBn₄ hat sich im Vergleich zu Ti(NMe₂)₄ im Allgemeinen als der effizientere Katalysator erwiesen. Bis auf zwei Ausnahmen zeigte TiBn₄ gegenüber Ti(NMe₂)₄ signifikant verbesserte Ausbeuten. Überdies konnten mit TiBn₄ erstmals Ti-katalysierte Hydroaminoalkylierungen mit Methylencyclohexan (**22**), 1,2,3,4-Tetrahydrochinolin (**35**) und Styrol (**24**) durchgeführt werden. Die verbesserten Ausbeuten durch den Einsatz verschiedener Additive beschränkten sich auf die Reaktion von Allylbenzol (**23**) mit *N*-Methylanilin (**14**).

1.3.3. Testreihe mit neuen Ti-Komplexen

Bisher wurde die katalytische Aktivität verschiedener Ti-Komplexe bei der intermolekularen Hydroaminoalkylierung lediglich unter lösungsmittelfreien Bedingungen mit 1-Octen (4) verglichen. Da sich aber bei den nachfolgenden Untersuchungen herausgestellt hatte, dass 1-Octen (4) das einzige Alken ist, mit dem sich die Hydroaminoalkylierung mit *N*-Methylanilin (14) lösungsmittelfrei durchführen lässt, ist die Aussagekraft der so durchgeführten Testreihen auf diese Reaktion beschränkt. Aus diesem Grund wurde beschlossen, eine weitere Versuchsreihe unter den im Laufe der Experimente mit Ti(NMe₂)₄ optimierten Versuchsbedingungen durchzuführen (Tabelle 19). Neben den bereits untersuchten Ti-Verbindungen, wurden dabei auch verschiedene weitere Übergangsmetallkomplexe als potentielle Katalysatoren getestet (Schema 20).

Schema	20

Hartwig et al. stellten 2008 mit [Ta(Cl₃(NEt₂)₂]₂ einen Katalysator vor, der deutlich effektiver war als das vorher verwendete Ta(NMe₂)₅. Da mit Ti(NMe₂)₄ zum Ta-Amidokomplex analoge Resultate erzielt werden konnten, stellte sich auch die Frage, ob die verbesserten Ergebnisse mit Ta-Chlorokomplexen auch darauf hinweisen, dass Ti-Chlorokomplexe ebenfalls effizientere Katalysatoren für die Hydroaminoalkylierung von Alkenen sind. Aus diesem Grund wurden

mehrere Chlorverbindungen des Titans in die Versuchsreihe mit aufgenommen (Schema 21).

Schema 21

Tabelle 19:

29b

Nr.	Katalysator	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	Ti(NMe ₂) ₄	32	93:7
2	TiBn₄	77	90:10
3	Ind_2TiMe_2	33	92:8
4	(EBI)TiMe ₂	8	n. b. ^[c]
5	ZrBn ₄	< 1% ^[d]	-
6	Cp ₂ Ti(BTMSA)	< 1% ^[d]	-
7	TBFCoFv	< 1% ^[d]	-

Nr.	Katalysator	Ausbeute(a+b) [%] ^[a]	Selektivität [a/b] ^[b]
8	TiFv ₂	< 1% ^[d]	-
9	(AMAC)Ti(NMe ₂) ₂	< 1% ^[d]	
10	(DACH)Ti(NMe ₂) ₂	< 1% ^[d]	-
11	(EBTHI)TiMe ₂	< 1% ^[d]	-
12	Cp ₂ TiMe ₂	< 1% ^[d]	-
13	Bn_2TiBr_2	< 1% ^[d]	-
14	Ind_2TiCl_2	< 1% ^[d]	-
15	TiCl ₄	< 1% ^[d]	
16	(EBI)TiCl ₂	< 1% ^[d]	-
17	THF ₂ TiCl ₄	< 1% ^[d]	-
18	THF ₃ TiCl ₃	< 1% ^[d]	-

[a] Reaktionsbedingungen: Katalysator (0.2 mmol, 10 Mol-%), Allylbenzol (**23**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h, 160 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Nur verzweigtes Produkt isoliert, aufgrund geringer Produktmenge keine zuverlässige Aussage über Selektivität möglich. [d] Bestimmt mit GC.

Die Hypothese, dass wie bei den Versuchen mit Ta-Komplexen Chlor-Liganden auch bei der Ti-katalysierten intermolekularen Hydroaminoalkylierung die Reaktivität erhöhen, konnte nicht bestätigt werden. In der Versuchsreihe nur der Indenyl-Komplex Ind₂TiMe₂ und der verbrückte zeigten Ethylenbis(indenyl)-Komplex (EBI)TiMe₂ eine katalytische Aktivität (Tabelle 19, Nr. 3, 4). Dabei lieferte Ind₂TiMe₂ eine ähnliche Ausbeute wie Ti(NMe₂)₄ (Tabelle 19, Nr. 1-3). Der deutliche Aktivitätsunterschied zwischen dem Bis(indenyl)-Ti-Komplex Ind₂TiMe₂ und dem analogen ansa-verknüpften Ethylenbis(indenyl)-Ti-Komplex (EBI)TiMe₂ lässt sich möglicherweise durch die unterschiedliche Flexibilität in der Ligandensphäre erklären. Bei kinetischen Untersuchungen zur Hydroaminierung von Alkenen mit Ind₂TiMe₂ konnte bereits bei einer Reaktionstemperatur von 105 °C freies Inden in der Reaktionslösung detektiert werden, was zeigt, dass sich unter den hier verwendeten Versuchsbedingungen ein Ligand aus dem Ti-Komplex vollständig lösen kann.^[21b] Es ist anzunehmen, dass der gleiche Vorgang auch bei den Experimenten zur Hydroaminoalkylierung mit höherer Reaktionstemperatur stattfindet. Beim Ti-Komplex (EBI)TiMe mit Ethylen-verknüpften Indenyl-Liganden ist ein vergleichbarer Prozess wegen der Verbrückung nicht so leicht möglich.

1.3.4 Versuche mit Ind₂TiMe₂

Bei eingehender Betrachtung der bisherigen Resultate zur Ti-katalysierten intermolekularen Hydroaminoalkylierung von terminalen Alkenen fällt auf, dass man mit den bisher verwendeten Ti-Katalysatoren immer ein Produktgemisch aus dem verzweigten und dem linearen Regioisomer erhält. Im Gegensatz dazu bildet sich in Gegenwart von Ta-Komplexen exklusiv das verzweigte Produkt (Schema 22).

Schema 22

Weiterhin ist auffällig, dass bislang in keiner publizierten Studie zur intermolekularen Hydroaminoalkylierung von Alkenen eine effiziente Umsetzung mit Styrolen beschrieben worden ist. Eine mögliche Erklärung für diese beiden Erscheinungen könnten die bislang für Hydroaminoalkylierungen normalerweise erforderlichen drastischen Reaktionsbedingungen mit Temperaturen von bis zu 165 °C sein. Demzufolge wäre es denkbar, dass eine Reaktionsführung unter milderen Bedingungen diese Resultate verbessern könnte. Hinzu kommt, dass bereits die ersten überhaupt beobachteten Ti-katalysierten C–H-Aktivierungen, die als Nebenreaktion bei intramolekularen Hydroaminierungen beobachtet worden sind, bei einer Temperatur von nur 105 °C stattfanden (Schema 9). Aus diesem Grund wurden die bereits für die intermolekulare Hydroaminoalkylierung von terminalen Alkenen als katalytisch aktiv identifizierten Ti-Komplexe Ti(NMe₂)₄, TiBn₄ und Ind₂TiMe₂ bei dieser Temperatur erneut anhand der Reaktion von 1-Octen (**4**) mit *N*-Methylanilin (**14**) mit einander verglichen (Tabelle 20).

Tabelle 20:

1	5a
	J a

Nr.	Katalysator	Mol-%	<i>t</i> [h]	<i>T</i> [°C]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	Ti(NMe ₂) ₄	10	96	160	32	93:7
2		10	96	105	< 1% ^[c]	-
3	TiBn ₄	10	96	160	77	90:10
4		10	96	105	0	-
5	Ind ₂ TiMe ₂	10	96	160	84	> 99:1
6		10	96	105	97	> 99:1
7		10	48	105	92	> 99:1
8		10	24	105	96	> 99:1
9		5	24	105	96	> 99:1
10		5	24	90	81	> 99:1
11		5	24	80	86	> 99:1
12		5	24	70	< 1% ^[c]	-
13		2	24	105	90	> 99:1
14		1	24	105	6	n. b.
15		5	6	105	96	> 99:1
16		5	3	105	89	> 99:1
17		5	1/2	105	< 1% ^[c]	-

[a] Reaktionsbedingungen: 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (1 mL). [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Bei 105 °C zeigen weder Ti(NMe₂)₄ noch TiBn₄ eine katalytische Aktivität (Tabelle 20, Nr. 2, 4). Dagegen ist bei der Verwendung Ind₂TiMe₂ mit der niedrigeren Temperatur sogar eine weitere Steigerung der ohnehin guten Ausbeute zu verzeichnen (Tabelle 20, Nr. 6). Dabei ist die Regioselektivität mit Ind₂TiMe₂ bei 105 °C und 160 °C gleichbleibend sehr hoch, es wird ausschließlich das verzweigte Produkt (15a) gebildet (Tabelle 20, Nr. 5, 6). Nach diesen guten Ergebnissen wurden Katalysatormenge, Reaktionszeit und temperatur schrittweise herabgesetzt (Tabelle 20, Nr. 7-17). Es zeigte sich, dass Ind₂TiMe₂ selbst bei 80 °C, nach nur 24 Stunden und mit einer Katalysatorladung von nur 5 Mol-% noch in der Lage ist, 86 % Ausbeute zu liefern (Tabelle 20, Nr. 11). Bei 105 °C konnten mit auf 2 Mol-% weiter reduzierter Katalysatormenge nach 24 Stunden noch 90 % Ausbeute erreicht werden (Tabelle 20, Nr. 13). Ebenfalls war es möglich, zu zeigen, dass mit 5 Mol-% Katalysator bei 105 °C bereits nach 3 Stunden 89 % Ausbeute erzielt werden konnten (Tabelle 20, Nr. 16). Setzt man die einzelnen Reaktionsparameter jedoch weiter herunter, können keine oder nur noch sehr schlechte Umsätze registriert werden (Tabelle 20, Nr. 12, 14, 17). In jedem Fall blieb die Regioselektivität unverändert hoch, es wurde keinerlei Bildung von Nebenprodukten oder dem linearen Regioisomer beobachtet.

Bei den bisher verwendeten hohen Temperaturen für Ti-katalysierte Hydroaminoalkylierungen von Alkenen neigen Styrole zur Polymerisation, was vermutlich der Grund ist, dass bisher noch nie eine effizienten Umsetzung mit Styrolen publiziert worden ist. Da Ind₂TiMe₂ unter sehr milden Bedingungen mit 1-Octen (4) und *N*-Methylanilin (14) exzellente Ergebnisse erzielt hat, ließ sich vermuten, dass sich diese Resultate auch auf andere Alkene und Styrole übertragen lassen. Deshalb wurden die Styrole 24, 93-102 und die Alkene 7, 21, 22, 88, 103-111 untersucht (Tabelle 21). Tabelle 21:

15a, 25a-30a, 89a, 112a-130a

15b, 25b-30b, 89b, 112b-130b

Nr.	Alken	Produkt	Mol-%	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1	4	15a/15b	5	24	96	> 99:1
2	24	30a/30b	5	24	13	85:15
3	24	30a/30b	5	96	71	85:15
4	24	30a/30b	10	96	91	85:15
5	93	112a/112b	10	96	99	90:10
6		113a/113b	10	96	94	75:25
7	95	114a/114b	10	96	< 1% ^[c]	-
8	96	115a/115b	10	96	< 1% ^[c]	-
9	→	116a/116b	10	96	97	87:13

Nr.	Alken	Produkt	Mol-%	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
10	$F \xrightarrow{F} \qquad 98$	117a/117b	10	96	< 1% ^[c]	-
11	CI	118a/118b	10	96	< 1% ^[c]	-
12	MeO100	119a/119b	10	96	95	92:8
13	Ph	120a/120b	10	96	97	82:18
14	N 102	121a/121b	10	96	< 1% ^[c]	-
15		122a/122b	10	96	92	> 99:1
16	21	26a/26b	10	96	< 1% ^[c]	-
17	7	27a/27b	10	96	12	-
18	22	28a/28b	10	96	< 1% ^[c]	-
19	104	123a/123b	10	96	< 1% ^[c]	-
20	105	124a/124b	10	96	< 1% ^[c]	-
21	106	125a/125b	10	96	93	> 99:1
22	23	29a/29b	10	96	40	92:8

Nr.	Alken	Produkt	Mol-%	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
23	88	89a/89b	10	96	35	>99:1
24	H N 107	126a/126b	10	96	< 1% ^[c]	-
25	H N 108	127a/127b	10	96	< 1% ^[c]	-
26	Cl109	128a/128b	10	96	< 1% ^[c]	-
27	H ₂ N-110	129a/129b	10	96	< 1% ^[c]	-
28		130a/130b	10	96	< 1% ^[c]	-

[a] Reaktionsbedingungen: Alken (3 mmol), *N*-Methylanilin (14, 2 mmol) Toluol (1 mL), 105 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Es stellte sich heraus, dass die Bedingungen, mit denen sich mit 1-Octen (4) exzellente Resultate erzielen ließen, nicht auf andere Alkene übertragbar waren. Es musste stattdessen die Reaktionszeit, sowie die Katalysatormenge, wie beispielsweise bei Styrol (Tabelle 21, Nr. 2-4), wieder erhöht werden. Wie im Vorfeld vermutet, ließen sich so mit Styrolen exzellente Ausbeuten erreichen (Tabelle 21, Nr. 4-6, 9, 12-13). Ind₂TiMe₂ ist somit der erste Katalysator, der die Hydroaminoalkylierung von Styrolen effizient katalysiert. Die Regioselektivität der Reaktion ist dabei allerdings nicht so hoch wie bei 1-Octen (4) und schwankt in Abhängigkeit vom benutzten Styrolderivat zum Teil erheblich (vgl. Tabelle 21, Nr. 5-6). Es lassen sich mit einer ganzen Reihe in para-Stellung verschieden substituierter Styrole fast quantitative Ausbeuten erzielen (Tabelle 21, Nr. 5, 6, 9, 12, 13). Besonders bemerkenswert ist hier, dass p-Methoxystyrol (99) einen hohen Umsatz zeigt (Tabelle 21, Nr. 12), denn sauerstoffhaltige Substrate reagieren erfahrungsgemäß eher schlecht bei der Verwendung von oxophilen Verbindungen wie Titankomplexen als Katalysator. Das entsprechende p-Trifluormethyl- (98) und das p-Chlorstyrol (99) zeigten allerdings keine Reaktion (Tabelle 21, Nr. 10, 11). Die o-Methylgruppe des Styrols 94 hatte einen signifikanten Einfluss auf die Regioselektivität (Tabelle die Ausbeute, im Vergleich zum nur p-21, Nr. 6), wohingegen methylsubstituierten Styrol 93, von der zusätzlichen Substitution unbeeinflusst hoch blieb (Tabelle 21, Nr. 5). Im Gegensatz dazu ist mit einem doppelt orthosubstituierten Derivat 95 keinerlei Produktbildung zu beobachten, was vermutlich auf die sterische Abschirmung der Alkenfunktion zurückzuführen ist (Tabelle 21, Nr. 7). Mit Norbornen (7) ließ sich nur eine vergleichsweise geringe Ausbeute erzielen (Tabelle 21, Nr. 17). Desweiteren zeigen nach wie vor interne Alkene, wie Stilben (21) oder Inden (104), keine Reaktivität (Tabelle 21, Nr. 16, 19). Dies gilt auch für alle getesteten Verbindungen, die ein oder mehrere Stickstoffatome enthalten (Tabelle 21, Nr. 14, 24, 25, 27, 28) sowie für di-substituierte Alkene wie p,α -Dimethylstyrol (96) (Tabelle 21, Nr. 8) oder Methylencyclohexan (22) (Tabelle 21, Nr. 18). Ebenso war mit Isopren (105) keine Reaktion zu beobachten (Tabelle 21, Nr. 20). Eine mögliche Erklärung dafür wäre der niedrige Siedepunkt der Verbindung, aufgrund dessen sich das Alken bei der verwendeten Reaktionstemperatur ausschließlich in der Gasphase über der eigentlichen Reaktionslösung befindet und so nicht in der Lage ist mit dem *N*-Methylanilin (14) zu reagieren. Mit 4-Vinylcyclohexen (103) und Cyclopentylpropen (106) hingegen lassen sich hervorragende Ausbeuten und Regioselektivitäten erzielen (Tabelle 21, Nr. 15 und 21). Bei den Versuchen von Ind₂TiMe₂ mit *N*-Methylanilin (14) und den verschiedenen Alkenen stellte sich heraus, dass die Regioselektivität und auch die Ausbeute der Hydroaminoalkylierung davon beeinflusst wurden, ob das Alken aromatisch oder aliphatisch ist. Besonders deutlich wird dies am Beispiel des 4-Vinylcyclohexens (103). Diese Verbindung ließe sich auch als "Tetrahydrostyrol" beschreiben. Vergleicht man nun die Regioselektivität von Styrol (24) mit dieser strukturell sehr ähnlichen Verbindung (103), stellt man fest, dass mit der aromatischen Verbindung (24) beide Regioisomere im Verhältnis 85:15 gebildet werden (Tabelle 21, Nr. 4), während die aliphatische Verbindung (103) ausschließlich das verzweigte Produkt liefert (Tabelle 21, Nr. 15). Dieser Effekt ist bei allen untersuchten Alkenen zu beobachten, die in Gegenwart Ind₂TiMe₂ umgesetzt wurden, beispielsweise von dem Cyclopentylpropen (106, aliphatisch, ein Regioisomer; Tabelle 21, Nr. 21) oder

Allylbenzol (23, besitzt einen Phenylring, beide Regioisomere im Verhältnis 92:8; Tabelle 21, Nr. 22). Ein ähnlicher Effekt konnte bereits bei den Hydroaminoalkylierungen mit *N*-Benzylanilin (51) in Gegenwart von Ti(NMe₂)₄ und TiBn₄ beobachtet werden (Tabelle 12, Nr. 7, 8). Im Vergleich zum *N*-Methylanilin (14) verschob sich die Regioselektivität mit dem Benzylsubstituierten Anilin drastisch in Richtung des linearen Produktes (von 90:10 zu 56:44; vgl. Tabelle 12, Nr. 2 und 8). Vergleicht man die Ergebnisse der Hydroaminoalkylierung von *N*-Methylanilin (14) mit Styrol (24), Allylbenzol (23) und Phenylbuten (88) in Gegenwart des Indenyl-Ti-Komplexes, wird eine Korrelation zwischen der Entfernung des Aromaten zur Doppelbindung und der Ausbeute bzw. der Regioselektivität deutlich.

Ind₂TiMe₂, Alken + *N*-Methylanilin (**14**)

Schema 23

Je weiter sich die Alkenfunktion vom Aromaten entfernt, umso geringer wird die Ausbeute der Reaktion. Die Regioselektivität hingegen verhält sich genau entgegengesetzt, je größer die Distanz zwischen Aromat und Doppelbindung wird, umso besser wird die Regioselektivität der Reaktion.

Im Anschluss an die Versuchsreihe mit Alkenen wurden verschiedene Amine anhand ihrer Reaktion mit 1-Octen (4) untersucht, darunter verschiedene *N*-Methylaniline. Weiterhin wurden 1,2,3,4,-Tetrahydrochinolin (35) und Indolin (65) als cyclische sekundäre Amine und als primäres Amin Benzylamin (38) getestet (Tabelle 22). Tabelle 22:

15a, 42a, 45a, 56a, 58a-61a, 77a, 139a-147a

15b, 42b, 45b, 56b, 58b-61b, 77b, 139b-147b

Nr.	Amin	Produkt	Mol-%	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1		15a/15b	5	24	96	> 99:1
2	HN- 49	56a/56b	5	24	95	> 99:1
3	HN	139a/139b	5	24	84	> 99:1
4	HN	140a/140b	5	24	< 1% ^[c]	-
5	HN- 50	57a/57b	5	24	96	> 99:1
6		141a/141b	5	24	16	> 99:1
7		141a/141b	10	96	43	> 99:1

Nr.	Amin	Produkt	Mol-%	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
8		142a/142b	5	24	< 1% ^[c]	-
9	HN Br 134	143a/143b	5	24	< 1% ^[c]	-
10	HN-CF ₃ 135	144a/144b	5	24	< 1% ^[c]	-
11	HN OMe 136	145a/145b	10	96	< 1% ^[c]	-
12	HN-	146a/146b	10	96	< 1% ^[c]	-
13	HN-52	59a/59b	10	96	< 1% ^[c]	-
14	HN-53	60a/60b	10	96	< 1% ^[c]	-
15	HN 54	61a/61b	10	96	< 1% ^[c]	-
16	Ph HN 138	147a/147b	10	96	< 1% ^[c]	-
17	Ph- HN- 51	59a/59b	10	96	< 1% ^[c]	-

Nr.	Amin	Produkt	Mol-%	<i>t</i> [h]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
18	H N 35	42a/42b	10	96	< 1% ^[c]	-
19	H N 65	77a/77b	10	96	< 1% ^[c]	-
20	H ₂ N 38	44a/44b	10	96	< 1% ^[c]	-

[a] Reaktionsbedingungen: 1-Octen (4, 3 mmol), Amin (2 mmol) Toluol (1 mL), 105 °C. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mir GC.

Es zeigte sich, dass mit p- (49) und m-methylsubstituertem N-Methylanilin (130) exzellente beziehungsweise sehr gute Ausbeuten erzielt werden können (Tabelle 22, Nr. 2, 3), wohingegen eine ortho-Methylsubstitution des N-Methylanilins (131) eine C–H-Aktivierung zu unterbinden scheint (Tabelle 22, Nr. 4). Der Einfluss eines Halogenatoms am Aromaten des *N*-Methylanilins (14) lässt sich nicht eindeutig festlegen, da die erhaltenden Resultate stark variieren. So konnte mit den gewählten Reaktionsparametern p-Fluor-N-methylanilin (50) ein im Vergleich zum N-Methylanilin (14) analoges exzellentes Ergebnis erzielt werden (Tabelle 22, Nr. 5). Das entsprechende p-Chlor-N-methylanilin (131) lieferte hingegen nur eine geringe Ausbeute, welche sich aber durch Erhöhung von Reaktionszeit und Katalysatormenge steigern ließ (Tabelle 22, Nr. 6, 7). Mit m-Chlor-N-methylanilin (133), p-Brom-N-methylanilin (134), p-Trifluormethyl-Nmethylanilin (135) und p-Methoxy-N-methylanilin (136) war keine Reaktion festzustellen (Tabelle 22, Nr. 8-11). Diese Ergebnisse bilden einen interessanten Kontrast zu den Versuchen mit Styrolen. Während bei der Hydroaminalkylierung von Styrolen eine p-Methoxy-Substitution am Styrol toleriert wird (Tabelle 22, Nr. 12), eine p-Chlor-Substitution jedoch nicht (Tabelle 22, Nr. 11), ist es bei den Versuchen mit N-Methylanilinen genau umgekehrt (Tabelle 22, Nr. 7, 11). Mit Ind₂TiMe₂ als Katalysator konnte mit keinem Anilinderivat, welches am Stickstoff einen anderen Substituenten als eine Methylgruppe vorwies, Umsatz festgestellt werden (Tabelle 22, Nr. 12-17). Erstaunlicherweise zählte dazu auch das *N*-Benzylanilin (**51**, Tabelle 22, Nr.

59

17), welches in Gegenwart von Ti(NMe₂)₄ und TiBn₄ gute Resultate gezeigt hatte. Auch mit den cyclischen sekundären Aminen konnten unter den gewählten Versuchsbedingungen keine Hydroaminoalkylierungsprodukte isoliert werden (Tabelle 22, Nr. 18, 19). Primäre Amine wie das Benzylamin (38) scheinen weder mit Ind₂TiMe₂ noch mit den anderen bisher verwendeten Tiintermolekulare C-H-Aktivierungsreaktionen mit Katalysatoren Alkenen einzugehen (Tabelle 22, Nr. 20). Alle erfolgreichen Hydroaminoalkylierungen von 1-Octen (4) und sekundären Aminen mit Ind₂TiMe₂ als Katalysator zeigten eine hervorragende Regioselektivität, es entstand immer nur das verzweigte Isomer.

Insgesamt konnte erstmals gezeigt werden, dass effiziente metallkatalysierte Styrolen Hydroaminomethylierungen von durch die Verwendung eines Ti-Katalysators realisierbar sind. Darüber hinaus wurde mit Ind₂TiMe₂ ein Katalysator identifiziert, der bereits bei einer sehr niedrigen Temperatur von nur 80 °C katalytisch aktiv ist und der bei der Reaktion von terminalen Alkenen mit N-Methylanilinen eine exzellente Regioselektivtät zugunsten des verzweigten Produktes liefert.

1.3.5. Versuche mit Vinyl- und Allylethern

Die Resultate mit *p*-Methoxystyrol (**135**) haben gezeigt, dass es prinzipiell möglich ist, eine Ti-katalysierte Hydroaminoalkylierung mit sauerstoffhaltigen Alkenen durchzuführen. Dies führt zu der Frage, ob und welche anderen sauerstoffhaltigen Alkene sich noch für die Hydroaminoalkylierung eignen. Um dies zu überprüfen, wurden mehrere kommerziell erhältliche Vinylether (**148-152**) mit den drei aktiven Ti-Komplexen Ti(NMe₂)₄, TiBn₄ und Ind₂TiMe₂ in Testreaktionen eingesetzt (Tabelle 23). Dabei wurden für den jeweiligen Katalysator die Reaktionsbedingungen gewählt, bei denen er die höchste Aktivität gezeigt hat.

Tabelle 23:

153a-157a

153b-157b

Nr.	Ether	Produkt	Kat.	7 [°C]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1			Ti(NMe ₂) ₄	160	< 1% ^[c]	-
2		153a/153b	TiBn ₄	160	< 1% ^[c]	-
3	148		Ind ₂ TiMe ₂	105	< 1% ^[c]	-
4	× ~ .0. //		Ti(NMe ₂) ₄	160	< 1% ^[c]	-
5		154a/154b	TiBn ₄	160	< 1% ^[c]	-
6	149		Ind ₂ TiMe ₂	105	< 1% ^[c]	-
7			Ti(NMe ₂) ₄	160	< 1% ^[c]	-
8	150	155a/155b	TiBn ₄	160	< 1% ^[c]	-
9			Ind_2TiMe_2	105	< 1% ^[c]	-
10	~ 0 //		Ti(NMe ₂) ₄	160	< 1% ^[c]	-
11		156a/156b	TiBn₄	160	< 1% ^[c]	-
12	/ \ 131		Ind ₂ TiMe ₂	105	< 1% ^[c]	-
13			Ti(NMe ₂) ₄	160	< 1% ^[c]	-
14	152	157a/157b	TiBn₄	160	< 1% ^[c]	-
15			Ind ₂ TiMe ₂	105	< 1% ^[c]	-

[a] Reaktionsbedingungen: Katalysator (0.2 mmol, 10 Mol-%), Alken (3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (1 mL), 96 h. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.
Mit keinem der untersuchten Vinylether konnte die Bildung der gewünschten Produkte oder alternativer Nebenprodukte beobachtet werden.

Als weitere mögliche sauerstoffhaltige Startmaterialien, wurden Allylether in Betracht gezogen. Wie bei den Vinylethern wurden zwei kommerziell erhältliche Allylether (**158**, **159**) mit den bisher benutzten Katalysatoren Ti(NMe₂)₄, TiBn₄ und Ind₂TiMe₂ untersucht (Tabelle 24).

Tabelle 24:

Nr.	Ether	Produkt	Kat.	<i>T</i> [°C]	Ausbeute (a+b) [%] ^[a]	Selektivität [a/b] ^[b]
1			Ti(NMe ₂) ₄	160	< 1% ^[c]	-
2		160a/160b	TiBn₄	160	< 1% ^[c]	-
3			Ind ₂ TiMe ₂	105	< 1% ^[c]	-
4			Ti(NMe ₂) ₄	160	< 1% ^[c]	-
5		161a/161b	TiBn₄	160	< 1% ^[c]	-
6	139		Ind ₂ TiMe ₂	105	< 1% ^[c]	-

[a] Reaktionsbedingungen: Katalysator (0.2 mmol, 10 Mol-%), Alken (3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (1 mL), 96 h. [b] Bestimmt mit GC vor der Säulenchromatographie. [c] Bestimmt mit GC.

Es war nicht möglich mit den verwendeten Allylethern in Gegenwart eines Ti-Komplexes eine Hydroaminoalkylierung mit *N*-Methylanilin (**14**) durchzuführen.

Offensichtlich eignen sich die untersuchten Allyl- und Vinylether unter den gewählten Bedingungen nicht als Startmaterialien für die Ti-katalysierte intermolekulare Hydroaminoalkylierung.

1.3.6. Versuche mit Lewis-Säuren als Katalysator

Im Jahr 2009 stellten Tu et al. eine Lewis-Säure-katalysierte C-H-Aktivierung an einem sp³-Zentrum in der α -Position zu einem Sauerstoffatom vor.^[24] Diese Reaktion weist eine große Ähnlichkeit mit der Ti-katalysierten C–H-Aktivierung an einem sp³-Zentrum in der α -Position zu einem Stickstoffatom auf (Schema 24). wirft Frage auf, Dies die ob auch Lewis-Säure-katalysierte Hydroaminoalkylierungen möglich sind. Gestützt wird diese Vermutung auch Hydroaminierungsreaktionen durch Lewis-Säuren dadurch, dass katalysiert werden können.^[25] Wie gezeigt wurde, sind verschiedene Tiin der Komplexe Lage, sowohl Hydroaminierungen als auch Hydroaminoalkylierungen von Alkenen zu katalysieren. Es erscheint deshalb wahrscheinlich, dass auch Lewis-Säuren dazu in der Lage sind, beide Reaktionen zu katalysieren.

Um diese Möglichkeit zu untersuchen, wurden mehrere Lewis-Säuren auf ihre Aktivität hin untersucht (Tabellen 25-26). Als Testsubstrate wurden 1-Octen (4) und N-Methylanilin (14) ausgewählt. Es wurden neben Kupfer(II)oxid (CuO), Kupfer(I)chlorid (CuCl), das von Tu et al. benutzte Eisen(III)chlorid (FeCl₃,) und Kuper(II)triflat (Cu(OTf)₂) eingesetzt. Als Lösungsmittel wurden Toluol und Dichlorethan verwendet. Die Reaktionsgemische wurden bei 65 °C, 105 °C und 160 °C (nur Toluol) für 96 h gerührt.

Tabelle 25:

- 1% ^[b]
< 1% ^[b]

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), 1-Octen (**4**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (2 mL), Schutzgasatmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 26:

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Dichlorethan (2 mL), Schutzgasatmosphäre, 96 h. [b] Bestimmt mit GC.

Es konnte bei keinem der durchgeführten Versuche eine erfolgreiche Hydroaminoalkylierung beobachtet werden. Während bei den Versuchen in Toluol keinerlei Nebenreaktionen festgestellt werden konnten, zeigten sich in Dichlorethan unter den Reaktionsbedingungen Spuren eines Nebenproduktes durch die Reaktion des *N*-Methylanilins (**14**) mit dem Lösungsmittel. Es ließ sich zudem beobachten, dass sich die anorganischen Salze nicht oder nur sehr schlecht in den organischen Lösungsmitteln lösten. In der Annahme, dass sich durch Zugabe von Liganden wie Bipyridin (**160**) oder Cyclohexyldiamin (**161**) (Schema 25) die Reaktivität sowie die Löslichkeit der Lewis-Säuren verbessert, wurden die Versuchsreihen mit den Metallsalzen in Toluol und Dichlorethan nochmals unter Zusatz der beiden Liganden durchgeführt (Tabelle 27-30).

160 2,2'-Bipyridin

161 Cyclohexan-1,2-diamin

Schema 25

Tabelle 27:

Nr.	Katalysator	<i>T</i> [°C]	Ausbeute [%] ^[a]
1	CuO		< 1% ^[b]
2	CuCl	65	< 1% ^[b]
3	FeCl ₃	05	< 1% ^[b]
4	Cu(OTf) ₂		< 1% ^[b]
5	CuO		< 1% ^[b]
6	CuCl	105	< 1% ^[b]
7	FeCl ₃	105	< 1% ^[b]
8	Cu(OTf) ₂		< 1% ^[b]
9	CuO		< 1% ^[b]
10	CuCl	160	< 1% ^[b]
11	FeCl ₃	100	< 1% ^[b]
12	Cu(OTf) ₂		< 1% ^[b]

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Bipyridin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (2 mL), Schutzgasatmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 28:

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Bipyridin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Dichlorethan (2 mL), Schutzgasatmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 29:

		H	10 Mol-% Kat. 10 Mol-% 161	
<i>n</i> -C ₆	H ₁₃ +		Toluol, 96 h, T	<i>II</i> -C ₆ H ₁₃
	4	14		15a
	Nr.	Katalysator	<i>T</i> [°C]	Ausbeute [%] ^[a]
	1	CuO		< 1% ^[b]
	2	CuCl	<u>c</u> e	< 1% ^[b]
	3	FeCl ₃	60	< 1% ^[b]
	4	Cu(OTf) ₂		< 1% ^[b]
	5	CuO		< 1% ^[b]
	6	CuCl	105	< 1% ^[b]
	7	FeCl ₃	105	< 1% ^[b]
	8	Cu(OTf) ₂		< 1% ^[b]
	9	ĊuO		< 1% ^[b]
	10	CuCl	100	< 1% ^[b]
	11	FeCl₃	100	< 1% ^[b]
	12	Cu(OTf) ₂		< 1% ^[b]

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Cyclohexandiamin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (2 mL), Schutzgasatmosphäre, 96 h. [b] Bestimmt mit GC.

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Cyclohexandiamin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Dichlorethan (2 mL), Schutzgasatmosphäre, 96 h. [b] Bestimmt mit GC.

Die Löslichkeit der Metallsalze ließ sich durch den Zusatz der Liganden stark verbessern. Allerdings war wiederum keine erfolgreiche Hydroaminoalkylierung festzustellen.

Um zu überprüfen, ob mit Luftsauerstoff stattfindende oxidative Prozesse die C–H-Aktivierung begünstigen, wurden alle Versuche nochmals unter Normalatmosphäre durchgeführt (Tabelle 31-36).

Tabelle 31:

Nr.	Katalysator	<i>T</i> [°C]	Ausbeute [%] ^[a]
1	CuO		< 1% ^[b]
2	CuCl	65	< 1% ^[b]
3	FeCl ₃	05	< 1% ^[b]
4	Cu(OTf) ₂		< 1% ^[b]
5	CuO		< 1% ^[b]
6	CuCl	105	< 1% ^[b]
7	FeCl ₃	105	< 1% ^[b]
8	Cu(OTf) ₂		< 1% ^[b]
9	CuO		< 1% ^[b]
10	CuCl	160	< 1% ^[b]
11	FeCl ₃	100	< 1% ^[b]
12	Cu(OTf) ₂		< 1% ^[b]

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), 1-Octen (**4**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (2 mL), normale Atmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 32:

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Dichlorethan (2 mL), normale Atmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 33:

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Bipyridin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Toluol (2 mL), normale Atmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 34:

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Bipyridin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Dichlorethan (2 mL), normale Atmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 35:

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Cyclohexandiamin (0.1 mmol, 10 Mol-%), 1-Octen (**4**, 3 mmol), *N*-Methylanilin (**14**, 2 mmol), Toluol (2 mL), normale Atmosphäre, 96 h. [b] Bestimmt mit GC.

Tabelle 36:

[[]a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Ligand Cyclohexandiamin (0.1 mmol, 10 Mol-%), 1-Octen (4, 3 mmol), *N*-Methylanilin (14, 2 mmol), Dichlorethan (2 mL), normale Atmosphäre, 96 h. [b] Bestimmt mit GC.

Auch unter Normalatmosphäre war es unter den gewählten Reaktionsbedingungen nicht möglich, eine erfolgreiche Hydroaminoalkylierung durchzuführen.

Die Vermutung, dass sich eine analoge Reaktion zu der von Tu et al. vorgestellten Lewis-Säure-katalysierten C–H-Aktivierung in α-Position zu einem Sauerstoffatom mit einem Stickstoffatom durchführen lässt, konnte im Rahmen dieser Experimente nicht bestätigt werden.

1.4. Zusammenfassung und Ausblick

Mit den Untersuchungen im Rahmen der vorliegenden Doktorarbeit konnten erstmals erfolgreiche intermolekulare Hydroaminoalkylierungen von Alkenen in Gegenwart von Ti-Komplexen erreicht werden. Dabei wurden mehrere verschiedene aktive Katalysatoren auf Ti-Basis gefunden. Im Gegensatz zu den Ta-Komplexen war es mit Ti-Komplexen möglich, bei intermolekularen Hydroaminoalkylierungen von Alkenen auch lineare Regioisomere zu erhalten. Im Vergleich der untersuchten Ti-Katalysatoren zeigte der Komplex Ti(NMe₂)₄ im Allgemeinen die geringste katalytische Aktivität. Erwähnenswert ist allerdings, dass mit Ti(NMe₂)₄ bei den Reaktionen mit Allylbenzol (23) und N-Benzylanilin (51) die besten Ergebnisse erzielt werden konnten. Die anderen Katalysatoren TiBn₄ und Ind₂TiMe₂ lieferten bei diesen Versuchen deutlich schlechtere Resultate. Bis auf diese Ausnahmen lieferte der Tetrabenzyl-Ti-Komplex gegenüber Ti(NMe₂)₄ durchgehend bessere Ergebnisse mit verschiedenen Alkenen und Aminen. Mit TiBn₄ ist es auch als einzigem bisher bekanntem Ti-Katalysator möglich Methylencyclohexan (22) und 1,2,3,4als Startmaterialien für die Tertrahydrochinolin (35) intermolekulare Hydroaminoalkylierung zu verwenden. Mit dem Indenyl-Ti-Komplex hingegen konnte ein Katalysator identifiziert werden, der bereits bei sehr niedrigen Reaktionstemperaturen von 80 °C aktiv war. Ferner ließen sich mit Ind₂TiMe₂ exzellente Regioselektivitäten erreichen. Auch ist Ind₂TiMe₂ der erste bekannte Katalysator für die intermolekulare Hydroaminoalkylierung überhaupt, mit dem eine effiziente Umsetzung von Styrolen möglich ist. Eine den Ti-Komplexen vergleichbare katalytische Aktivität von Lewis-Säuren wie FeCl₃ oder TiCl₄, konnte bei der Hydroaminoalkylierung nicht beobachtet werden. Mit keiner der untersuchten Lewis-Säuren war es möglich, eine erfolgreiche intermolekulare Hydroaminoalkylierung durchzuführen. Die Ti-katalysierte intermolekulare Hydroaminoalkylierung sceint allerdings auf die Verwendung sekundärer aromatischer Amine beschränkt. Eine Umsetzung von Alkenen mit N-Dialkylaminen, wie mit [TaCl₃(NMe₂)₂]₂, war dagegen bei den in der vorliegenden Arbeit verwendeten sekundären Alkylaminen mit einem Ti-Katalysator nicht realisierbar. Anders als bei der intramolekularen Hydroaminoalkylierung,^[23] ist eine Verwendung primärer Amine ebenfalls nicht möglich. Bis auf wenige

Ausnahmen lassen sich hauptsächlich N-Methylaniline als Amin-Komponente für die intermolekulare Hydroaminoalkylierung einsetzten. Als Alkene lassen sich ausschließlich terminale Alkene oder Norbornen (7) verwenden. Interne Alkene wie das Stilben (21) zeigen keine Reaktivität bei der Ti-katalysierten Hydroaminoalkylierung. Auch Vinyl- und Allylether, sowie Alkine eignen sich unter den untersuchten Reaktionsbedingungen nicht als Edukte.

2. Hydroaminierungen mit Galliumhalogeniden

2.1. Einleitung

Die Hydroaminierung von Alkenen oder Alkinen bietet die Möglichkeit, auf katalytischem Wege zu komplexe Amine gewinnen. Bei der Hydroaminierung werden Amine an ungesättigte Kohlenwasserstoffe addiert. Dieser Prozess läuft zu 100 Prozent atomökonomisch ab, da im Gegensatz zu anderen Verfahren bei dieser Synthese von Aminen keine Nebenprodukte entstehen. Die Hydroaminierung wird erst durch einen Katalysator möglich, da sich die elektronenreiche Mehrfachbindung und das freie Elektronenpaar des Amin-Stickstoffs elektrostatisch abstoßen. Als ungesättigte Ausgangsverbindungen eignen sich Alkene, Alkine sowie Allene. Für die Aminkomponente lassen sich Amine, Amide, Carbamate oder Sulfonsäureamide verwenden (Schema 26).

Schema 26

Während es äußerst viele Publikationen zur Hydroaminierung von Alkinen gibt,^[20] lassen sich für Hydroaminierungen von Alkenen vergleichsweise wenige Beispiele finden. Viele der Katalysatorsysteme für die Hydroaminierung von Alkenen kommen aus der Gruppe der frühen Übergangsmetallkomplexe.^[26] Es sind auch katalytisch aktive Komplexe der Lanthanoiden^[27] und Basen-katalysierte^[28] Hydroaminierungen von Alkenen bekannt. Jedoch weisen alle bekannten Katalysatorsysteme große Defizite in ihrer allgemeinen

Anwendbarkeit auf, dazu zählen unter anderem Intoleranz gegenüber funktionellen Gruppen oder drastische Reaktionsbedingungen. Der Suche nach einem neuen effektiveren Katalysator für die Hydroaminierung von Alkenen kommt deswegen größte Bedeutung zu. Als relativ neue Gruppe der Hydroaminierungs-Katalysatoren erregten in letzter Zeit die Lewis-Säuren ein großes Maß an Aufmerksamkeit. Sie sind eine kostengünstige Alternative zu den bisher etablierten Systemen. So berichteten Ackermann et al. 2004 von einer Lewis-Säure-katalysierten Hydroaminierung von aktivierten Alkenen.^[29] Dabei konnte katalysiert durch TiCl₄ Norbornen (**7**) erfolgreich mit Anilinderivaten wie *o,p*-Dibromanilin (**164**) umgesetzt werden. TiCl₄ war zuvor bereits bei der Hydroaminierung von Alkinen katalytisch aktiv (Schema 27).^[30]

Schema 27

Im Zuge dieser Entdeckung berichteten Ackermann et al. wenig später von der erfolgreichen TiCl₄-katalysierten Hydroaminierung von Styrolen mit Anilinderivaten. Diese Ergebnisse lösten viele weitere Arbeiten zur Hydroaminierung von Alkenen mit Lewis-Säuren aus. Dabei wurden Chlor-Verbindungen wie SnCl₃, BiCl₃,^[31] HfCl₄,^[32] ZrCl₄ oder AlCl₃^[33] als Lewis-Säuren eingesetzt. Takaki et al. und Campagne et al. zeigten, dass mit FeCl₃ auch Hydroaminierungs-Reaktionen ohne Feuchtigkeits- und Sauerstoff Ausschluss möglich sind.^[34, 35] Selbst FeCl₃ mit Kristallwasser als Hexahydrat ließ sich als Katalysator für die Hydroaminierung von Styrol (24) mit p-Toluolsulfonsäureamid (166) verwenden (Schema 28).^[36]

Schema 28

Ferner konnte mit FeCl₃ als Katalysator Styrol (**24**) erfolgreich mit Anilinderivaten und anderen Amiden umgesetzt werden. Aber auch die Hydroaminierung von nicht-aktivierten Alkenen wie Cyclohexen (**168**) mit *p*-Toluolsulfonsäureamid (**166**) ist möglich, wie Huang et al. 2007 mit InBr₃ als Katalysator demonstrierten (Schema 29).^[37]

Schema 29

Der Einfluss von Lewis-Säuren auf die Hydroaminierung von Alkenen wurde bereits 2002 vom Arbeitskreis Doye untersucht.^[38] Dabei wurden vornehmlich Gallium-Halogenide wie GaCl₃ als mögliche Additive und Katalysatoren für die Hydroaminierung von Alkenen in Betracht gezogen. Galliumverbindungen als Katalysatoren bieten den Vorteil, dass die entsprechenden Halogenide im Gegensatz zu vielen anderen anorganischen Salzen sehr gut löslich in organischen Lösungsmitteln wie Toluol sind. Zudem wird Gallium als toxikologisch unbedenklich angesehen, was die Handhabung deutlich einfacher gestaltet. Die damals durchgeführten Experimente zur Addition von Anilin (**171**) an Cycloocten (**170**) und mit Galliumhalogeniden lieferten jedoch nur Spuren des gewünschten Hydroaminierungsprodukts (**172**). Allerdings konnte so bereits gezeigt werden, dass sich Galliumhalogenide prinzipiell für die Verwendung als Katalysatoren für Hydroaminierungen von Alkenen eignen könnten (Schema 30).

Schema 30

2.2. Zielsetzung

In Anbetracht der gestiegenen Zahl an Publikationen und erfolgreichen Hydroaminierungen von Alkenen mit Lewis-Säuren als Katalysatoren sollten die Galliumhalogenide GaCl₃ und GaBr₃ eingehend auf ihre katalytische Aktivität in der Reaktion von Alkenen mit Amiden wie zum Beispiel p-Toluolsulfonsäureamid (**166**) untersucht werden (Schema 31).

Schema 31

Für eine Verwendung der Galliumhalogenide sprechen neben den angesprochenen Vorteilen in der Handhabung (geringe Toxizität und gute Löslichkeit) die Ergebnisse der früheren Arbeiten im Arbeitskreis Doye.

2.3. Ergebnisse und Diskussion

Um die Vergleichsmöglichkeit mit anderen Versuchen zur intermolekularen Hydroaminierung von Alkenen zu gewährleisten wurden Versuchsbedingungen ähnlich zu denen von Campagne et al. bei den Experimenten mit FeCl₃ gewählt (Tabelle 37). Nach diesen Vorgaben wurde *p*-Toluolsulfonsäureamid (**166**) im fünffachen Überschuss gegenüber dem Alken eingesetzt, die Katalysatorladung betrug 10 Mol-% und die gesamte Reaktion fand in Dioxan statt. Lediglich zwei Parameter wurden gegenüber den Versuchen von Campagne et al. mit FeCl₃ leicht abgeändert. Die Reaktionstemperatur wurde auf 105 °C herabgesetzt, die Reaktionszeit dafür auf 24 Stunden erhöht. Dies hatte den Hintergrund, dass im Arbeitskreis Doye Hydroaminierungen von Alkenen üblicherweise unter diesen Bedingungen durchgeführt wurden. Diese beiden Parameter wurden auch für alle anderen nachfolgenden Versuche übernommen. Als Katalysatoren wurden die kommerziell erhältlichen Galliumhalogenide GaCl₃ und GaBr₃ eingesetzt. Es wurde jeweils ein nicht-aktiviertes Alken und ein aktiviertes Alken eingesetzt, dafür wurden Styrol (**24**) bzw. Cyclohexen (**168**) ausgewählt.

Tabelle 37:

Nr.	Katalysator	Alken	Produkt	Ausbeute [%] ^[a]
3	GaBr ₃	24	167	22
4		168	169	47

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 10 Mol-%), Alken (1 mmol), *p*-Toluol-sulfonsäureamid (5 mmol), Dioxan (2 mL), 24 h, 105 °C.

Unter den Versuchsbedingungen beiden verwendeten wurden mit Katalysatoren annähernd gleiche Ergebnisse mit Styrol (24) erhalten (Tabelle 37, Nr. 1, 3). Dabei wurde ausschließlich das verzweigte Produkt gebildet. Die erreichten Ausbeuten waren allerdings gering. Im Gegensatz dazu wurden mit GaCl₃ und GaBr₃ stark unterschiedliche Ausbeuten bei der Reaktion mit Cyclohexen (168) erreicht (Tabelle 37, Nr. 2, 4). Während mit GaCl₃ nur ein äußerst geringer Umsatz festgestellt werden konnte (Tabelle 37, Nr. 2), zeigte GaBr₃ mit Cyclohexen (168) eine mehr als doppelt so gute Ausbeuten wie mit Styrol (24) (Tabelle 37, Nr. 4). Legen die gleichen Ausbeuten bei Einsatz von GaCl₃ und GaBr₃ mit Styrol (24) eine ähnliche katalytische Aktivität der beiden Katylsatoren nahe, deuten die unterschiedlichen Ergebnisse mit Cyclohexen (168) auf das genaue Gegenteil hin. Auch wäre es zu vermuten gewesen, dass Styrol (24) als aktiviertes Alken deutlich reaktiver sein sollte, was auch die anderen bisherigen Veröffentlichungen zur Hydroaminierung von Alkenen mit Lewis-Säuren nahelegen. Für GaCl₃ scheint sich diese Annahme zunächst zu bestätigen, mit GaBr₃ ist jedoch das nicht-aktivierte Cyclohexen (**168**) deutlich umsatzstärker.

Für eine weitere Versuchsreihe wurden die Reaktionsbedingungen modifiziert, es wurden dabei die Vorgaben aus der Veröffentlichung von Huang et al. übernommen (Tabelle 38). Die Katalysatorladung wurde auf 20 Mol-% verdoppelt, diesmal wurde das Alken im vierfachen Überschuss gegenüber *p*-Toluolsulfonsäureamid eingesetzt. Als Lösungsmittel kam Toluol zum Einsatz. Es wurden wiederum Cyclohexen (**168**) und Styrol (**24**) als Alkenkomponenten verwendet.

INI.	Nalalysalui	Aiken	FIUUUKI	Ausbeule [/0]
1	GaCl₃	24	167	< 1% ^[b]
2		168	169	89
3	GaBr ₃	24	167	< 1% ^[b]
4		168	169	78

[a] Reaktionsbedingungen: Katalysator (0.1 mmol, 20 Mol-%), Alken (4 mmol), *p*-Toluol-sulfonsäureamid (1 mmol), Toluol (2 mL), 24 h, 105 °C. [b] Bestimmt mit GC.

Anders als bei der vorangegangen Versuchsreihe wurden mit Cyclohexen (168) mit beiden Katalysatoren gute Ausbeuten erhalten (Tabelle 38, Nr. 2, 4). Hierbei zeigten GaCl₃ und GaBr₃ im Unterschied zu den vorangegangenen Versuchen mit Cyclohexen (168) eine vergleichbare katalytische Aktivität. Überraschenderweise konnte bei den Versuchen mit Styrol (24) keine Bildung des gewünschten Produktes (169) beobachtet werden (Tabelle 38, Nr. 1, 3). Das eingesetzte p-Toluolsulfonsäureamid (166) konnte vollständig reisoliert werden. Mit Styrol (24) war keine Reaktion zu beobachten, was mit möglichen Polymerisationsprozessen des aktivierten Alkens zu erklären wäre. Um die Aktivität der Galliumhalogenide weiter zu untersuchen, wurden Versuche mit weiteren Amiden durchgeführt. Dazu wurden die Versuchsbedingungen gewählt, unter denen Cyclohexen (168) bereits mit p-Toluolsulfonsäureamid (166) sehr gute Ergebnisse lieferten. Da unter diesen Bedingungen beide Halogenide eine vergleichbare Aktivität zeigten, wurden die Reaktionen nur mit GaCl₃ durchgeführt. Als Amide wurden Acetamid (89) und Acetanilid (174) eingesetzt (Schema 32).

Schema 32

Mit beiden Amiden konnte keinerlei Reaktion mit Cyclohexen (**168**) festgestellt werden, beide Amide konnten vollständig reisoliert werden. Im Weiteren wurde untersucht, ob die Reaktion mit anderen nicht-aktivierten Alkenen verläuft. So wurden unter den gleichen Versuchsbedingungen wie auch bei den Versuchen mit den Amiden, 1-Octen (**4**) und *p*-Toluolsulfonsäureamid (**166**) eingesetzt (Schema 33).

Auch in diesem Experiment konnte keine erfolgreiche Hydroaminierung des Alkens beobachtet werden. Das *p*-Toluolsulfonsäureamid (**166**) wurde komplett reisoliert.

2.4. Zusammenfassung

Mit den vorliegenden Resultaten konnte gezeigt werden, dass die Lewis-Säuren GaCl₃ und GaBr₃ eine vielversprechende Aktivität bei Hydroaminierungen von Alkenen mit *p*-Toluolsulfonsäureamid (**166**) aufweisen. Die Ergebnisse der Versuche werfen jedoch auch viele Fragen auf, da unter den gewählten Versuchsbedingungen keine schlüssigen Anhaltspunkte in Hinblick auf die optimale Reaktionsführung gefunden werden konnte. Allerdings konnten zum Teil bereits moderate bis gute Ausbeuten erreicht werden, was für weitergehende Studien mit diesen Lewis-Säuren sprach. An diese Ergebnisse anknüpfende Untersuchungen mit Galliumhalogeniden wurden deshalb von Daniel Jaspers im Rahmen seiner Masterarbeit 2009 im Arbeitskreis Doye durchgeführt.^[39, 40]

3. Experimental Section

3.1. General Remarks

Unless otherwise noted all reactions were performed under an inert atmosphere of nitrogen in oven dried Schlenk tubes (Duran glassware, 100 mL, Ø 30 mm) equipped with Teflon stopcocks and magnetic stirring bars (15 × 4.5 mm). Yields refer to isolated yields of pure compounds as gauged by thin layer chromatography (TLC), ¹H and ¹³C NMR spectroscopy. Following the purification process the respective isomers were identified. The ratio of regioisomers and diastereomers was determined by gas chromatography with a sample taken from the crude product prior to purification.

Chemicals

Prior to use, alkenes, vinylether and primary amines were purified and dried by distillation (20 cm vigreux column) from CaH_2 on molecular sieves (4 Å) at ambient pressure under an inert atmosphere. Secondary amines, diphenylacetylene (32) and norbornene (7) were purified by Kugelrohr distillation. 1-Octyne (**31**) and 2-phenylpropyne (**85**) were purchased from Acros Organics and used without further purification. Ti(NMe₂)₄ (99.99 %), (NEt₂)₂TiCl₂ (99.99 %) and MeLi (1.6 M sol. in diethyl ether) were purchased from Acros Organics and used without further purification. (EBTHI)TiMe2, (EBI)TiMe2, (EBI)TiCl₂, Bn₂TiBr₂ and ZrBn₄ were purchased from MCAT GmbH and used without further purification. The catalysts Cp₂TiMe₂, (DACH)TiMe₂, $Me_2Si(C_5H_4)(N-tBu)Ti(NMe_2)_2$, $Me_2Si(C_5H_4)(N-tBu)TiMe_2$ and $TiCl_4$ were in stock of the working group. The complexes TiBn₄, Cp₂Ti(BTMSA), TBFCoFv, TiFv₂, THF_2TiCl_4 and THF_3TiCl_3 were provided by the Beckhaus research group (Institute for Pure and Applied Chemistry, University of Oldenburg). Ind₂TiCl₂, Cu(II)O (99.9999 % trace metal basis), Cu(I)Cl (>99.99 trace metal basis, anhydrous), $Fe(III)Cl_3$ (anhydrous, powder, $\geq 99.99\%$ trace metals basis), Cu(II)(OTf)₂ (98 %), GaCl₃ and GaBr₃ were purchased from Sigma - Aldrich and used without further purification. Toluene (99.85 %, extra dry over molecular sieve) was purchased from Acros Organics and used without further purification. Diethyl ether and dioxane were dried and distilled according to

literature procedures. All alkenes, vinylether, alkynes, amines, toluene and catalysts were stored in a nitrogen filled glovebox (M. Braun, Unilab). The catalyst and highly volatile or sensitive alkenes, alkynes, vinylether and amines were stored in the glovebox fridge at - 30 °C.

Chromatography

TLC Polygram® SIL G/UV254 plates from Macherey-Nagel were used for thin layer chromatography (TLC). The substances were detected with UV light and/or iodine. For flash chromatography, silica gel (230 - 400 mesh) and gauge pressure was used. Prior to use, *n*-hexane, light petroleum ether (b.p. 40-60 °C) and ethyl acetate for flash chromatography were distilled. PE: light petroleum ether (b.p. 40-60 °C). EtOAc: Ethyl acetate.

Characterization

All products were characterized by ¹H NMR, ¹³C NMR and infrared (IR) spectroscopy and mass spectrometry (MS).

NMR spectra were recorded on the following spectrometers: Bruker Avance DPX 300, Bruker Avance DRX 500 and Bruker Avance III 500. All ¹H NMR spectra are reported in δ units ppm relative to the signal of TMS at 0.00 or C₆D₆ at 7.16 ppm. All ¹³C NMR spectra are reported in δ units ppm relative to the central line of the triplet for CDCl₃ at 77.0 ppm. Following abbreviations were used to describe the multiplicity: s = singlet, d = duplet, dd = double duplet, t = triplet, q = quartet, quin = quintet, sext = sextet, m = multiplet, br. s = broad singulett.

Infrared spectra were recorded on a Bruker Tensor 27 spectrometer using an attenuated total reflection (ATR) method.

Mass spectra were recorded on a Finnigan MAT 95 spectrometer (EI with an ionization potential of 70 eV or CI with isobutane as ionization gas) or a Waters Micromass Q-Tof Premier spectrometer (ESI, 8 eV).

GC analyses were performed on a Shimadzu GC-2010 gas chromatograph equipped with a flame ionization detector and DB-5 column (length: 30 m, inner diameter: 0.32 mm, film thickness: 0.25 µm, (94%-Methyl)-(5%-phenyl)-(1%-vinyl)-polysiloxane).

GC/MS analyses were performed on a Thermo Finnigan Focus gas chromatograph equipped with a DSQ mass detector and Agilent DB-5ms column (length: 30 m, inner diameter: 0.32 mm, film thickness: 0.25 µm, (95%-Methyl)-(5%-phenyl)-polysiloxane).

General Procedures

Hydroaminoalkylation; General procedure A: An oven dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was transferred into a nitrogen filled glovebox and charged with the catalyst (0.2 mmol, 10 mol-%). Then toluene (0.5 mL), alkene (3.0 mmol) and amine (2.0 mmol) were added. The mixture was diluted with additional toluene (0.5 mL). The tube was sealed and the resulting solution was stirred at 160 °C for 96 h.

Hydroaminoalkylation of amines with 1-octene (4); General procedure B: An oven dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was transferred into a nitrogen filled glovebox and charged with Ind_2TiMe_2 (31 mg, 0.10 mmol, 5 mol-%). Then toluene (0.5 mL), 1-octene (4, 336 mg, 3.0 mmol) and amine (2.0 mmol) were added. The mixture was diluted with additional toluene (0.5 mL). The tube was sealed and the resulting solution was stirred at 105 °C for 24 h. **Hydroaminoalkylation of N-methylaniline (14) with alkenes; General procedure C:** An oven dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was transferred into a nitrogen filled glovebox and charged with Ind₂TiMe₂ (62 mg, 0.2 mmol, 10 mol-%). Then toluene (0.5 mL), alkene (3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) were added. The mixture was diluted with additional toluene (0.5 mL). The tube was sealed and the resulting solution was stirred at 105 °C for 96 h.

Hydroamination with Lewis-Acids; General procedure D: An oven dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was transferred into a nitrogen filled glovebox and charged with $GaCl_3$ (18 mg, 0.1 mmol, 10 mol-%). Then the alkene (1.0 mmol) and *p*-toluenesulfonamide (**166**) (855 mg, 5.0 mmol) were added. The mixture was diluted with dioxane (2 mL). The tube was sealed and the resulting solution was stirred at 105 °C for 24 h.

3.2. Synthesis and Characterization of Ind₂TiMe₂

Bis-IndenyIdimethyI-Titanium (Ind₂TiMe₂)

To a mixture of Ind_2TiCl_2 (1.0 g, 2.9 mmol) and diethyl ether (30 mL) was added dropwise a 1.6 M solution of MeLi in diethyl ether (5.4 mL, 8.6 mmol) over a period of 5 min at -15 °C. After stirring the mixture for 2 h at -15 °C, the resulting orange solution was carefully poured onto a mixture of water and ice (30 mL). The organic layer was separated and dried by filtration over Na₂SO₄. The Na₂SO₄-residue was washed with diethyl ether (3 x 20 mL) and after concentration under vacuum, Ind_2TiMe_2 (2.7 mmol, 0.82 g, 93 %) was obtained as a yellow crystalline compound.

¹**H NMR** (500 MHz, C_6D_6): δ = -0.49 (s, 6 H), 5.28 (t, *J* = 3.2 Hz, 2 H), 5.79 (d, *J* = 3.1 Hz, 4 H), 6.94 (dd, *J* = 6.5, 3.0 Hz, 4 H), 7.20 (dd, *J* = 6.4, 3.0 Hz, 4 H) ppm.

¹³**C NMR** (125 MHz, C₆D₆): δ = 51.4 (CH₃), 105.3 (CH), 117.6 (CH), 125.5 (CH), 125.6 (C), 125.7 (CH) ppm.

3.3. Synthesis and Characterization of the Products

N-(2-Methyloctyl)aniline (15a)

N-Nonylaniline (15b)

General procedure A was used with $Ti(NMe_2)_4$ (44 mg, 10 mol-%) as catalyst and 1-octene (**4**, 336 mg, 3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 40:1). A mixture of the regioisomers **15a** and **15b** (141 mg, 0.6 mmol, 32 %, 93:7) was obtained as a clear colorless oil.

	Catalyst			Yield (a+b)	Selectivity	
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a / b] ^[a]
Ti(NMe ₂) ₄	10	44	141	0.6	32	93:7
TiBn ₄	10	82	346	1.5	77	90:10
Ind ₂ TiMe ₂	5	31	368	1.6	84	> 99:1

[a] Determined by GC.

¹**H NMR** (300 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **15a**: δ = 0.81 (t, *J* = 6.7 Hz, 3 H), 0.95 (d, *J* = 6.7 Hz, 3 H), 1.14-1.39 (m, 12 H), 1.65-1.75 (m, 1 H), 2.86 (dd, *J* = 12.1, 7.3 Hz, 1 H), 3.03 (dd, *J* = 12.2, 5.8 Hz, 1 H), 3.62 (br. s, 1 H), 6.57 (d, *J* = 8.0 Hz, 2 H), 6.65 (t, *J* = 7.3 Hz, 1 H), 7.14 (t, *J* = 7.8 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomer **15a**: δ = 14.1 (CH₃), 18.0 (CH₃), 22.6 (CH₂), 26.9 (CH₂), 29.6 (CH₂), 31.8 (CH₂), 32.9 (CH), 34.8 (CH₂), 50.3 (CH₂), 112.6 (CH), 116.9 (CH), 129.2 (CH), 148.6 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3420, 2924, 1602, 1505, 747, 691 \text{ cm}^{-1}$.

MS (EI, 70 eV, mixture of regioisomers): m/z (%) = 219 (70) [M]⁺, 106 (100) $[C_7H_8N]^+$, 77 (24) $[C_6H_6]^+$.

N-(Bicyclo[2.2.1]heptan-2-ylmethyl)aniline (27)

General procedure A was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and norbornene (**7**, 282 mg, 3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). **27** (315 mg, 1.6 mmol, 78 %, 10:1 mixture of diastereomeres) was obtained as a clear yellow oil.

	Catalyst		Yield (a+b)		
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]
Ti(NMe ₂) ₄	10	44	315	1.6	78
TiBn ₄	10	82	331	1.7	83
Ind_2TiMe_2	10	62	46	0.2	12

¹**H NMR** (500 MHz, CDCl₃, mixture of diastereomeres): δ = 1.08-1.20 (m, 4 H), 1.32-1.36 (m, 2 H), 1.44-1.56 (m, 3 H), 1.68-1.73 (m, 1 H), 2.13-2.24 (m, 2 H), 2.84 (dd, *J* = 11.8, 6.8 Hz, 1 H), 2.95 (dd, *J* = 11.7, 8.6 Hz, 1 H), 3.58 (br. s, 1 H), 6.58 (d, *J* = 7.7 Hz, 2 H), 6.67 (t, *J* = 7.2 Hz, 1 H), 7.14-7.17 (m, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of diastereomeres): δ = 28.9 (CH₂), 29.9 (CH₂), 35.4 (CH₂), 36.0(CH₂), 36.4(CH), 39.3(CH), 42.2 (CH), 49.4(CH₂), 112.6 (CH), 117.0 (CH), 129.2 (CH), 148.6 (C) ppm.

IR (neat): $\tilde{v} = 3418, 2946, 2867, 2364, 1602, 1505, 746, 691 cm⁻¹.$

MS (EI, 70 eV): m/z (%) = 201 (20) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (10) [C₆H₆]⁺.

General procedure A was used with $TiBn_4$ (82 mg, 0.2 mmol, 10 mol-%) as catalyst and methylenecyclohexane (**22**, 289 mg, 3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). **28a** (23 mg, 0.1 mmol, 6 %) was obtained as a clear yellow oil.

	Catalyst			Selectivity		
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a/b] ^[a]
Ti(NMe ₂) ₄	10	44	-	-	> 1 ^[a]	-
TiBn ₄	10	82	23	0.1	6	n. d.
Ind ₂ TiMe ₂	10	62	-	-	> 1 ^[a]	-

[a] Determined by GC.

¹**H NMR** (300 MHz, CDCl₃): δ = 0.97 (s, 3 H), 1.26-1.38 (m, 5 H), 1.43-1.52 (m, 5 H), 2.93 (s, 2 H), 3.60 (br. s, 1 H), 6.61 (d, *J* = 7.9 Hz, 1 H), 6.65 (t, *J* = 7.3 Hz, 1 H), 7.15 (t, *J* = 7.5 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 21.9 (CH₂), 23.4 (CH₃), 26.4 (CH₂), 34.3 (CH₂), 35.9 (CH₂), 54.8 (CH₂), 112.7 (CH), 116.9 (CH), 129.9 (CH), 149.2 (C) ppm.

IR (neat): $\tilde{v} = 3422, 2923, 2850, 1601, 1505, 1320, 1255, 745, 690 cm⁻¹.$

MS (EI, 70 eV): m/z (%) = 203 (20) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (10) [C₆H₆]⁺.

N-(2-Methyl-3-phenylpropyl)aniline (29a) *N*-(4-Phenylbutyl)aniline (29b)

M = 225.33 g/mol

General procedure A was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and allylbenzene (**23**, 354 mg, 3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). A mixture of the regioisomers **29a** and **29b** (424 mg, 1.9 mmol, 94 %, 93:7) was obtained as a clear colorless oil.

	Catalyst			Yield (a+b)		Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	424	1.9	94	90:10
TiBn₄	10	82	107	0.5	24	89:11
Ind ₂ TiMe ₂	10	62	150	0.7	32	92:8
[a] Data main a dik						

[a] Determined by GC.

¹**H NMR** (300 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **29a**: δ = 1.12 (d, *J* = 6.7 Hz, 3 H), 2.13-2.29 (m, 1 H), 2.64 (dd, *J* = 13.4, 7.8 Hz, 1 H), 2.84 (dd, *J* = 13.5, 6.3 Hz, 1 H), 3.08 (dd, *J* = 12.4, 7.0 Hz, 1 H), 3.23 (dd, *J* = 12.4, 6.0 Hz, 1 H), 3.77 (br. s, 1 H), 6.68 (d, *J* = 8.0 Hz, 2 H), 6.84 (t, *J* = 7.2 Hz, 1 H), 7.28-7.46 (m, 7 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomer **29a**: δ = 18.0 (CH₃), 34.9 (CH), 41.7 (CH₂), 49.7 (CH₂), 112.6 (CH), 117.0 (CH), 126.0 (CH), 128.2 (CH), 129.1 (CH), 129.1 (CH), 140.4 (C), 148.3 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3420, 3026, 2925, 1603, 1506 \text{ cm}^{-1}$.

MS (EI, 70 eV, mixture of regioisomers): m/z (%) = 225 (40) [M]⁺, 106 (100) $[C_7H_8N]^+$, 91 (24) $[C_7H_7]^+$.

29b:

¹**H NMR** (500 MHz, CDCl₃): δ = 1.54-1.60 (m, 1 H), 1.63-1.69 (m, 1 H), 2.58 (t, J = 7.5 Hz, 2 H), 3.04 (t, J = 7.0 Hz, 2 H), 3.50 (br. s, 1 H), 6.45 (d, J = 8.3 Hz, 2 H), 6.58-6.60 (t, J = 7.2 Hz, 1 H), 7.05-7.21 (m, 7 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 28.9 (CH₂), 29.1 (CH₂), 35.6 (CH₂), 43.8 (CH₂), 112.7 (CH), 117.1 (CH), 126.0 (CH), 128.3 (CH), 128.4 (CH), 129.2 (CH), 142.2 (C), 148.4 (C) ppm.

IR (neat): $\tilde{v} = 3420, 3026, 2925, 1603, 1506 \text{ cm}^{-1}$.

MS (EI, 70 eV): m/z (%) = 225 (50) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (15) [C₆H₅]⁺.

N-(2-Phenylpropyl)aniline (30a)

N-(3-Phenylpropyl)aniline (30b)

N-(1,5-Diphenylpentan-3-yl)aniline (30c)

General procedure A was used with $TiBn_4$ (82 mg, 0.2 mmol, 10 mol-%). as catalyst and styrene (**24**, 313 mg, 3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). **30b** (62 mg, 0.3 mmol, 16 %) and a mixture of **30a** and **30c** (62 mg, 16 %, 90:10) were obtained as clear colorless oils.

	Catalyst			Yield (a+b)		Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	-	-	> 1 ^[a]	-
TiBn₄	10	82	124 ^[b]	-	32 ^[b]	n. d.
Ind ₂ TiMe ₂	10 ^[c]	62 ^[c]	382 ^[c]	1.8 ^[c]	91 ^[c]	85:15

[a] Determined by GC. [b] Yield (**30a+30b+30c**). [c] Reaction temperature 105 °C.

30a/30c:

¹**H NMR** (500 MHz, CDCl₃, mixture of products): signals of the major product **30a**: $\delta = 1.33$ (d, J = 7.0 Hz, 3 H), 3.05 (sext, J = 7.0 Hz, 1 H), 3.23 (dd, J = 12.2, 8.4 Hz, 1 H), 3.33 (dd, J = 12.4, 6.2 Hz, 1 H), 3.50 (br. s, 1 H), 6.56 (d, J = 7.6 Hz, 2 H), 6.68 (t, J = 7.3 Hz, 1 H), 7.14-7.19 (m, 5 H), 7.27-7.29 (m, 2 H) ppm; important signals of the minor product **30c**: $\delta = 1.76$ -1.83 (m, 2 H), 1.87-1.94 (m, 2 H), 2.64-2.74 (m, 4 H), 3.39 (quint, J = 6.0 Hz, 1 H) ppm.

¹³**C** NMR (125 MHz, DEPT, CDCl₃, mixture of products): signals of the major product **30a**: δ = 19.7 (CH₃), 39.3 (CH), 51.0 (CH₂), 113.0 (CH), 117.4 (CH), 127.3 (CH), 128.7 (CH), 129.2 (CH), 141.6 (C), 148.1 (C) ppm; important signals of the minor product **30c**: δ = 32.3 (CH₂), 36.8 (CH₂), 51.7 (CH), 142.0 (C), 147.7 (C) ppm.

IR (neat, mixture of products): $\tilde{v} = 3400$, 3216, 2980, 1605, 1508, 1313, 1245, 744, 690 cm⁻¹.

GC/MS: **30a**: m/z (%): 211 (50) $[M]^+$, 106 (100) $[C_7H_8N]^+$, 91 (18) $[C_7H_7]^+$, 77 (20) $[C_6H_5]^+$; **30c**: m/z (%): 315 (20) $[M]^+$, 210 (100) $[C_{15}H_{16}N]^+$, 91 (50) $[C_7H_7]^+$, 77 (4) $[C_6H_5]^+$.

30b:

¹**H NMR** (500 MHz, CDCl₃): δ = 1.93 (quin, *J* = 7.3 Hz, 2 H), 2.72 (t, *J* = 7.6 Hz, 2 H), 3.12 (t, *J* = 7.0 Hz, 2 H), 3.50 (br. s, 1 H), 6.56 (d, *J* = 7.6 Hz, 2 H), 6.68 (t, *J* = 7.3 Hz, 1 H), 7.14-7.19 (m, 5 H), 7.27-7.29 (m, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 31.1 (CH₂), 33.4 (CH₂), 43.4 (CH₂), 112.8 (CH), 117.3 (CH), 126.0 (CH), 128.4 (CH), 129.2 (CH), 141.7 (C), 148.4 ppm (C).

IR (neat): $\tilde{v} = 3412, 3205, 2960, 1602, 1506, 1320, 1258, 748, 694 cm⁻¹.$ **MS**(EI, 70 eV): m/z (%): 211 (18) [M]⁺, 106 (100), 91 (3) [C₇H₇]⁺, 77 (22) [C₆H₅]⁺.

2-(Octan-2-yl)-1,2,3,4-tetrahydroquinoline (42a) 2-Octyl-1,2,3,4-tetrahydroquinoline (42b)

General procedure A was used with TiBn₄ (82 mg, 0.2 mmol, 10 mol-%) as catalyst and 1-octene (**4**, 336 mg, 3.0 mmol) and 1,2,3,4-tetrahydroquinoline (**35**, 266 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1). A mixture of the regioisomers **42a** and **42b** (59 mg, 0.2 mmol, 12 %, 67:33) was obtained as a clear yellow oil.

	Catalyst			Yield (a+b)		Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	-	-	62	-
TiBn₄	10	82	59	0.2	23	67:33
Ind_2TiMe_2	10 ^[b]	62 ^[b]	-	-	>1 ^[b]	-

[a] Determined by GC. [b] Reaction temperature 105 °C.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers) signals of both regioisomers **42a/42b**: δ = 0.89 (t, *J* = 6.3 Hz, 3 H), 0.95 (d, *J* = 7.1 Hz, 3 H), 1.15-1.55 (m, 10 H), 1.65-1.73 (m, 1 H), 1.84-1.8 (m, 1 H), 2.70-2.74 (m, 1 H), 2.78-2.84 (m, 1 H), 3.14-3.23 (m, 1 H), 3.70 (br. s, 1 H), 6.46 (d, *J* = 7.8 Hz, 1 H), 6.60 (q, *J* = 7.3 Hz, 1 H), 6.93-6.96 ppm (m, 4 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers) signals of both regioisomers **42a/42b**: δ = 14.1 (CH₃), 14.9 (CH₃), 15.1 (CH₃), 22.7 (CH₂), 23.7 (CH₂), 25.0 (CH₂), 25.7 (CH₂), 26.4 (CH₂), 26.8 (CH₂), 27.0 (CH₂), 27.3 (CH₂), 27.5 (CH₂), 28.3 (CH₂), 29.6 (CH₂), 29.8 (CH₂), 31.9 (CH₂), 32.7 (CH₂), 33.0 (CH₂), 36.7 (CH₂), 37.6 (CH₂), 37.7 (CH), 51.6 (CH), 56.1 (CH), 113.9 (CH), 114.0 (CH), 116.7 (CH), 116.9 (CH), 121.4 (CH), 121.5 (CH), 126.7 (CH), 129.1 (CH), 129.1 (CH), 129.2 (CH), 144.7 (C), 145.2 (C), 145.2 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3401$, 2954, 2924, 2853, 1607, 1485, 1310, 744 cm⁻¹.

GC/MS 42a: m/z (%) = 245 (10) [M]⁺, 131 (100) [C₉H₁₁N]⁺, 91 (3) [C₇H₇]⁺, 77 (3) [C₆H₅]⁺; **42b**: m/z (%) = 245 (15) [M]⁺, 131 (100) [C₉H₁₁N]⁺, 91 (5) [C₇H₇]⁺, 77 (3) [C₆H₅]⁺.

4-Methyl-*N*-(2-methyloctyl)aniline (56a) 4-Methyl-*N*-nonylaniline (56b)

General procedure A was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and 1-octene (**4**, 336 mg, 3.0 mmol) and *N*,4-dimethylaniline (**49**, 242 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). A mixture of the regioisomers **56a** and **56b** (90 mg, 0.4 mmol, 20 %, 89:11) was obtained as a clear yellow oil.

Catalyst			Yield (a+b)			Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	90	0.4	20	89:11
TiBn ₄	10	82	241	1.1	53	89:11
Ind_2TiMe_2	5 ^[b]	31 ^[b]	445 ^[b]	1.9 ^[b]	95 ^[b]	> 99:1 ^[b]

[a] Determined by GC. [b] Reaction time 24 h, reaction temperature 105 °C.

¹**H NMR** (300 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **56a**: $\delta = 0.88$ (t, J = 6.0 Hz, 3 H), 0.95 (d, J = 6.7 Hz, 3 H), 1.14-1.46 (m, 12 H), 1.66 - 1,77 (m, 1 H), 2.23 (s, 3 H), 2.85 (dd, J = 12.1, 7.3 Hz, 1 H), 3.02 (dd, J = 12.1, 5.8 Hz, 1 H), 3.51 (br. s, 1 H), 6.52 (d, J = 8.3 Hz, 2 H), 6.97 (d, J = 8.1 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomer **56a**: δ = 14.1 (CH₃), 18.0 (CH₃), 20.3 (CH₃), 22.7 (CH₂), 26.9 (CH₂), 29.6 (CH₂), 31.9 (CH₂), 32.9 (CH), 34.7 (CH₂), 50.7 (CH₂), 112.8 (CH), 126.1 (C), 129.7 (CH), 146.4 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3420, 2923, 2360, 1620, 1520, 1255, 805 cm⁻¹.$

MS (EI, 70 eV, mixture of regioisomers): m/z (%) = 233 (10) [M]⁺, 120 (100) $[C_8H_{10}N]^+$, 91 (15) $[C_7H_7]^+$.
4-Fluoro-*N*-(2-methyloctyl)aniline (57a) 4-Fluoro-*N*-nonylaniline (57b)

General procedure A was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and 1-octene (**4**, 336 mg, 3.0 mmol) and *N*-methyl-*p*-fluoroaniline (**50**, 250 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). A mixture of the regioisomers **57a** and **57b** (298 mg, 1.3 mmol, 22 %, 91:9) was obtained as a clear yellow oil.

	Catalyst			Yield (a+b)		Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	104	0.5	22	91:9
TiBn ₄	10	82	298	1.3	63	91:9
Ind_2TiMe_2	5 ^[b]	31 ^[b]	457 ^[b]	1.9 ^[b]	96 ^[b]	> 99:1 ^[b]

[a] Determined by GC. [b] Reaction time 24 h, reaction temperature 105 °C.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **57a**: δ = 0.88 (t, *J* = 6.7 Hz, 3 H), 0.95 (d, *J* = 6.8 Hz, 3 H), 1.15-1.44 (m, 10 H), 1.66-1.75 (m, 1 H), 2.83 (dd, *J* = 12.0, 7.3 Hz, 1 H), 3.00 (dd, *J* = 12.0, 5.9 Hz, 1 H), 3.53 (br. s, 1 H), 6.50-6.52 (m, 2 H), 6.86 (t, *J* = 8.7 Hz, 2 H) ppm; important signals of the minor regioisomer **57a**: δ = 1.60 (quin, *J* = 7.3 Hz, 2 H) 3.04 ppm (t, *J* = 7.1 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomere **57a**: δ = 14.1 (CH₃), 18.0 (CH₃), 22.7 (CH₂), 27.0 (CH₂), 29.6 (CH₂), 31.9 (CH₂), 32.9 (CH), 34.8 (CH₂), 51.1 (CH₂), 113.4 (d, *J* = 7 Hz, CH), 115.6 (d, *J* = 22 Hz, CH), 155.6 (d, *J* = 234 Hz, CH) ppm; important signals of the minor regioisomere **57b**: δ = 34.8 (CH₂), 44.8 (CH₂) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3418$, 2955, 2924, 2854, 1614, 1509, 1485, 1220, 816 cm⁻¹.

GC/MS 57a: m/z (%) = 237 (20) [M]⁺, 124 (100) [C₇H₇FN]⁺, 95 (3) [C₆H₄F]⁺; **57b**: m/z (%) = 237 (15) [M]⁺, 124 (100) [C₇H₇FN]⁺, 95 (6) [C₆H₄F]⁺.

N-(2-Methyl-1-phenyloctyl)aniline (58a) *N*-(1-Phenylnonyl)aniline (58b)

C₂₁H₂₉N M = 295.46 g/mol

General procedure B was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and 1-octene (**4**, 336 mg, 3.0 mmol) and *N*-benzylaniline (**51**, 367 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 60:1). A mixture of the regioisomers **58a** and **58b** (442 mg, 1.5 mmol, 75 %, 53:47) was obtained as a clear yellow oil.

	Catalyst			Yield (a+b)		Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	442	1.5	75	53:47
TiBn ₄	10	82	261	0.9	44	56:44
Ind_2TiMe_2	5 ^[b]	31 ^[b]	-	-	> 1 ^[a, b]	-

[a] Determined by GC. [b] Reaction time 24 h, reaction temperature 105 °C.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers) signals of both regioisomers **58a/58b**: δ = 0.87 (t, *J* = 7.4 Hz, 3 H), 1.17-1.48 (m, 13 H), 1.77-1.87 (m, 1 H), 1.82-1.92 (m, 1 H), 4.05 (br. s, 1 H), 4.19 (d, *J* = 5.5 Hz, 1 H), 4.26-4.30 (m, 1 H), 6.54-6.57 (m, 2 H), 6.69-6.66 (m, 1 H), 7.11-7.15 (m, 2 H), 7.24-7.28 (m, 5 H), 7.34-7.40 (m, 4 H) ppm.

¹³C NMR (125 MHz, DEPT, CDCl₃, mixture of regioisomers) signals of both regioisomers 58a/58b: δ = 14.1 (CH₃), 14.6 (CH₃), 22.6 (CH₂), 26.3 (CH₂), 27.4 (CH₂), 29.2 (CH₂), 29.4 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 34.1 (CH₂), 39.0 (CH₂), 40.0 (CH₂), 58.2 (CH₂), 61.6 (CH), 113.1 (CH), 113.2 (CH), 116.9 (CH), 117.0 (CH), 126.3 (CH), 126.5 (CH), 126.8 (CH), 126.9 (CH), 128.2 (CH), 128.5 (CH), 129.0 (CH), 142.9 (C), 144.3 (C), 147.4 (C), 147.7 (C) ppm.

IR (neat, mixture of isomers): $\tilde{v} = 3415$, 3025, 2931, 1600, 1503, 746, 691 cm⁻¹.

GC/MS 58a: m/z (%) = 295 (3) [M]⁺, 182 (100) [C₁₃H₁₂N]⁺, 91 (10) [C₇H₇]⁺, 77 (12) [C₆H₅]⁺; **58b**: m/z (%) = 295 (5) [M]⁺, 182 (100) [C₁₃H₁₂N]⁺, 91 (20) [C₇H₇]⁺, 77 (10) [C₆H₅]⁺.

General procedure B was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and allybenzene (**23**, 354 mg, 3.0 mmol) and *N*,4-dimethylaniline (**49**, 242 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 20:1). A mixture of the regioisomers **69a** and **69b** (382 mg, 1.6 mmol, 80 %, 95:5) was obtained as a clear yellow oil.

¹**H NMR** (300 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **69a**: δ = 0.96 (d, *J* = 6.7 Hz, 3 H), 2.06 (sext, *J* = 6.9 Hz, 1 H), 2.22 (s, 3 H), 2.49 (dd, *J* = 13.4, 7.8 Hz, 1 H), 2.75 (dd, *J* = 13.5, 6.3 Hz, 1 H), 2.92 (dd, *J* = 12.4, 6.9 Hz, 1 H), 3.07 (dd, *J* = 12.5, 6.0 Hz, 1 H), 3.52 (br. s, 1 H), 6.46 (d, *J* = 8.3 Hz, 2 H), 6.96 (d, *J* = 8.1 Hz, 2 H), 7.14-7.30 (m, 5 H) ppm.

¹³**C** NMR (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomer **69a**: δ =18.1 (CH₃), 20.3 (CH₃), 35.0 (CH), 41.4 (CH₂), 50.3 (CH₂), 113.0 (CH), 126.0 (CH), 126.4 (C), 128.3 (CH), 129.1 (CH), 129.7 (CH), 140.5 (C), 146.4 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3417$, 3025, 2919, 2360, 1617, 1520, 1255, 807, 741, 700 cm⁻¹.

MS (EI, 70 eV, mixture of regioisomers): m/z (%) = 239 (20) [M]⁺, 120 (100) $[C_8H_{10}N]^+$, 91 (30) $[C_7H_7]^+$.

N-(2-Methyl-1,3-diphenylpropyl)aniline (70a) *N*-(1,4-Diphenylbutyl)aniline (70b)

General procedure B was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and allylbenzene (**23**, 354 mg, 3.0 mmol) and *N*-benzylaniline (**51**, 367 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 60:1). A mixture of the regioisomers **70a** and **70b** (506 mg, 1.7 mmol, 84 %, 53:47) was obtained as a clear yellow oil.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers) signals of both regioisomers **70a**/**70b**: $\delta = 0.88$ (d, J = 6.9 Hz, 3 H), 1.39-1.47 (m, 1 H),1.61-1.87 (m, 6 H), 2.19-2.24 (m, 1 H), 2.50 (dd, J = 13.5, 8.1 Hz, 1H), 2.58-2.64 (m, 2 H), 2.81 (dd, J = 13.5, 6.9 Hz, 1H), 4.04 (br. s, 1 H), 4.29-4.32 (m, 1 H), 6.47-6.48 (m, 2 H), 6.59-6.63 (m, 1 H), 7.04-7.36 (m, 12 H) ppm.

¹³C NMR (125 MHz, DEPT, CDCl₃, mixture of regioisomers) signals of both regioisomers **70a/70b**: δ = 14.4 (CH₃), 28.0 (CH₂), 35.0 (CH₂), 38.2 (CH₂), 40.6 (CH₂), 42.4 (CH), 58.1 (CH), 60.1 (CH), 113.2 (CH), 113.2 (CH), 117.1 (CH), 117.1 (CH), 126.3 (CH), 126.9 (CH), 128.3 (CH), 128.3 (CH), 128.4 (CH), 128.5 (CH), 129.0 (CH), 129.1 (CH), 140.6 (C), 141.9 (C), 142.6 (C), 144.0 (C), 147.3 (C), 147.4 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3420$, 3024, 2924, 2854, 1600, 1503, 746, 699, 690 cm⁻¹.

GC/MS 70a: m/z (%) = 301 (7) [M]⁺, 182 (100) [C₁₃H₁₂N]⁺, 91 (22) [C₇H₇]⁺, 77 (18) [C₆H₅]⁺; **70b**: m/z (%) = 301 (10) [M]⁺, 182 (100) [C₁₃H₁₂N]⁺, 91 (40) [C₇H₇]⁺, 77 (15) [C₆H₅]⁺.

N-(2-Methyl-4-phenylbutyl)aniline (89a) *N*-(5-Phenylpentyl)aniline (89b)

General procedure A was used with $Ti(NMe_2)_4$ (44 mg, 0.2 mmol, 10 mol-%) as catalyst and phenylbutene (**87**) (336 mg, 3.0 mmol) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as substrates. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1). A mixture of the regioisomers **89a** and **89b** (416 mg, 1.7 mmol, 87 %, 92:8) was obtained as a clear yellow oil.

	Catalyst			Yield (a+b)		Selectivity
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]	[a /b] ^[a]
Ti(NMe ₂) ₄	10	44	416	1.7	87	92:8
TiBn₄	10	82	441	1.8	92	91:9
Ind ₂ TiMe ₂	5 ^[b]	31 ^[b]	167 ^[b]	0.6 ^[b]	35 ^[b]	> 99:1 ^[b]

[a] Determined by GC. [b] Reaction time 24 h, reaction temperature 105 °C.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **88a**: δ = 1.02 (d, *J* = 6.0 Hz, 3 H), 1.48-1.55 (m, 1 H), 1.75-1.83 (m, 2 H), 2.60 (dd, *J* = 18.6, 10.5 Hz, 1 H), 2.71 (dd, *J* = 16.2, 11.6 Hz, 1 H), 2.92 (dd, *J* = 16.2, 11.6 Hz, 1 H), 2.71 (dd, *J* = 12.2, 5.2 Hz, 1 H), 3.59 (br. s, 1 H), 6.56 (d, *J* = 7.8 Hz, 2 H), 6.66 (t, *J* = 7.0 Hz, 1 H), 7.13-7.18 (m, 5 H), 7.25-7.28 (m, 2 H) ppm; important signals of the minor regioisomer **88b**: δ = 1.43-1.46 (m, 2 H), 1.61-1.68 (m, 4 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomere **88a**: δ = 18.00 (CH₃), 32.6 (CH), 33.3 (CH₂), 36.5 (CH₂), 50.2 (CH₂), 112.6 (CH), 117.0 (CH), 125.7 (CH), 128.3 (CH), 128.3 (CH), 129.2 (CH), 142.4 (C), 148.5 (C) ppm; important signals of the minor regioisomere **88b**: δ = 26.7 (CH₂), 29.4 (CH₂), 31.2 (CH₂), 35.8 (CH₂), 43.7, (CH₂) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3418$, 3024, 2929, 2856, 1603, 1509, 1321, 1259, 748, 694 cm⁻¹.

GC/MS 88a: m/z (%) = 239 (8) [M]⁺, 106 (100) [C₇H₈N]⁺, 91 (8) [C₇H₇]⁺, 77 (10) [C₆H₅]⁺; **88b**: m/z (%) = 239 (5) [M]⁺, 106 (100) [C₇H₈N]⁺, 91 (12) [C₇H₇]⁺, 77 (18) [C₆H₅]⁺.

N-(2-*p*-Tolylpropyl)aniline (112a) *N*-(3-*p*-Tolylpropyl)aniline (112b)

General procedure C was used with 1-methyl-4-vinylbenzene (**93**, 355 mg, 3.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give a mixture of the regioisomers **112a** and **112b** (445 mg, 2.0 mmol, 99 %, 90:10) as a clear, yellow oil.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomere **112a**: δ = 1.23 (d, *J* = 6.8 Hz, 3 H), 2.25 (s, 3 H), 2.92-2.97 (m, 1 H), 3.12 (dd, *J* = 12.1, 8.4 Hz, 3 H), 3.23 (dd, *J* = 12.2, 6.1 Hz, 3 H), 3.47 (br. s, 1 H), 6.48 (d, *J* = 7.6 Hz, 2 H), 6.60 (t, *J* = 6.8 Hz, 1 H), 7.04-7.09 (m, 6 H) ppm; signals of the minor regioisomere **112b**: δ = 1.83 (quin, *J* = 7.5 Hz, 2 H), 2.24 (s, 3 H), 2.60 (t, *J* = 7.6 Hz, 2 H), 3.07 (t, *J* = 7.0 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers) signals of the major regioisomere **112a**: δ = 19.9 (CH₃), 21.1 (CH₃), 38.9 (CH), 51.0 (CH2), 113.0 (CH), 117.3 (CH), 127.2 (CH), 129.3 (CH), 129.4 (CH), 136.2 (C), 141.6 (C), 148.3 (C) ppm; signals of the minor regioisomere **112b**: δ = 21.0 (CH₃), 31.3 (CH₂), 33.0 (CH₂), 43.5 (CH₂), 112.8 (CH), 117.3 (CH), 127.3 (CH), 129.2 (CH), 129.3 (CH), 136.2 (C), 138.6 (C), 148.5 (C) ppm.

IR (neat, mixture of two regioisomeres): $\tilde{v} = 3411$, 3019, 2923, 1603, 1506, 1320, 806, 749, 692 cm⁻¹.

GC/MS 112a: m/z (%) = 225 (50) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (12) [C₆H₅]⁺; **112b**: m/z (%) = 225 (20) [M]⁺, 106 (100) [C₇H₈N]⁺, 93 (20), 77 (10) [C₆H₅]⁺.

N-(2-(2,4-Dimethylphenyl)propyl)aniline (113a) *N*-(3-(2,4-Dimethylphenyl)propyl)aniline (113b)

General procedure D was used with 2,4-dimethyl-1-vinylbenzene (**94**, 397 mg, 3.0 mmol), toluene (0.5 mL) and *N*-methylaniline (**14**, 214 mg, 2.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give a mixture of the regioisomers **113a** and **113b** (448 mg, 1.9 mmol, 94 %, 75:25) as a clear, yellow oil.

113a:

¹**H NMR** (500 MHz, CDCl₃): δ = 1.20 (d, *J* = 6.2 Hz, 1 H), 2.19 (s, 3 H), 2.22 (s, 3 H), 3.19-3.25 (m, 3 H), 3.48 (br. s, 1 H), 6.49 (d, *J* = 7.8 Hz, 2 H), 6.60 (t, *J* = 7.3 Hz, 1 H), 6.91-6.94 (m, 2 H), 7.02-7.08 (m, 3 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 19.5 (CH), 19.7 (CH₃), 20.9 (CH₃), 33.9 (CH₃), 50.3 (CH₂), 113.0 (CH), 117.3 (CH), 125.3 (CH), 127.2 (CH), 129.3 (CH), 131.4 (CH), 135.7 (C), 136.1 (C), 139.6 (C), 148.3 (C) ppm.

113b:

¹**H NMR** (500 MHz, CDCl₃): δ = 1.81 (quin, *J* = 7.1 Hz, 2 H), 2.19 (s, 3 H), 2.21 (s, 3 H), 2.60 (t, *J* = 7.7 Hz, 2 H), 3.09 (t, *J* = 7.0 Hz, 2 H), 3.50 (br. s, 1 H), 6.51 (d, *J* = 7.6 Hz, 2 H), 6.61 (t, *J* = 7.3 Hz, 1 H), 6.86-6.89 (m, 2 H), 6.94-6.96 (m, 1 H), 7.02-7.08 (m, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 19.2 (CH₃), 20.9 (CH₃), 30.1 (CH₂), 30.4 (CH₂), 43.8 (CH₂), 112.8 (CH), 117.3 (CH), 126.7 (CH), 128.8 (CH), 129.3 (CH), 131.1 (CH), 135.5 (C), 135.7 (C), 136.8 (C), 148.5 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3411$, 2962, 1601, 1503, 1318, 1256, 817, 746, 691 cm⁻¹.

GC/MS 113a: m/z (%) = 239 (5) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (8) [C₆H₅]⁺; **113b**: m/z (%) = 239 (20) [M]⁺, 106 (100) [C₇H₈N]⁺, 93 (18), 77 (10) [C₆H₅]⁺.

General procedure D was used with *p*-(*tert*-butyl)styrene (**97**, 481 mg, 3.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give a mixture of the regioisomers **116a** and **116b** (516 mg, 1.9 mmol, 97 %, 87:13) as a clear, yellow oil.

116a:

¹**H NMR** (500 MHz, CDCl₃): δ = 1.32-1.33 (m, 12 H), 3.02 (sext, *J* = 7.2 Hz, 1 H), 3.22 (dd, *J* = 12.3, 8.0 Hz, 1 H), 3.31 (dd, *J* = 12.3, 6.3 Hz, 1 H), 3.60 (br. s, 1 H), 6.57 (d, *J* = 7.6 Hz, 2 H), 6.68 (t, *J* = 7.3 Hz, 1 H), 7.14-7.16 (m, 4 H), 7.34 (d, *J* = 8.3 Hz, 2 H).

¹³**C NMR** (125 MHz, DEPT, CDCl₃): *δ* = 16.7 (CH₃), 31.4 (CH₃), 34.4 (C), 38.7 (CH₃), 51.0 (CH₂), 113.0 (CH), 117.3 (CH), 125.5 (CH), 126.9 (CH), 129.2 (CH), 141.4 (C), 148.2 (C), 149.4 (C) ppm.

IR (neat): $\tilde{v} = 3413, 2960, 1602, 1504, 830, 746, 691 cm⁻¹.$

116b:

¹**H NMR** (500 MHz, CDCl₃): δ = 1.31-1.33 (m, 9 H), 1.94 (quint, *J* = 7.2 Hz, 2 H), 2.70 (t, *J* = 7.5 Hz, 2 H), 3.15 (t, *J* = 7.0 Hz, 2 H), 3.60 (br. s, 1 H), 6.57 (d, *J* = 7.7 Hz, 2 H), 6.68 (t, *J* = 7.3 Hz, 1 H), 7.11-7.17 (m, 4 H), 7.30-7.31 (m, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 31.0 (CH₂), 31.4 (CH₃), 32.9 (CH₂), 34.4 (C), 43.6 (CH₂), 112.8 (CH), 117.2 (CH), 125.3 (CH), 128.1 (CH), 129.2 (CH), 138.6 (C), 148.4 (C), 148.8 (C) ppm.

IR (neat): $\tilde{v} = 3414$, 2960, 1602, 1506, 747, 692 cm⁻¹.

GC/MS 116a: m/z (%) = 267 (10) [M]⁺, 207 (38) [C₁₅H₁₄N]⁺, 106 (100) [C₇H₈N]⁺; **116b**: m/z (%) = 267 (8) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (5) [C₆H₅]⁺.

N-(2-(4-Methoxyphenyl)propyl)aniline (119a) *N*-(3-(4-Methoxyphenyl)propyl)aniline (119b)

General procedure D was used with 1-methoxy-4-vinylbenzene (**100**, 402 mg, 3.0 mmol as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give a mixture of the regioisomers **119a** and **119b** (457 mg, 1.9 mmol, 95 %, 92:8) as a clear, yellow oil.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **119a**: $\delta = 1.30$ (d, J = 6.9 Hz, 3 H), 3.00 (sext, J = 7.5 Hz, 1 H), 3.22 (dd, J = 12.2, 8.4 Hz, 1 H), 3.31 (dd, J = 12.3, 6.1 Hz, 1 H), 3.60 (br. s, 1 H), 3.77 (s, 3 H), 6.57 (d, J = 7.0 Hz, 2 H), 6.68 (t, J = 7.3 Hz, 1 H), 7.14-7.16 (m, 2 H), 7.09-7.17 (m, 4 H) ppm; important signals of the minor regioisomer **119b**: $\delta = 1.90$ (quint, J = 7.4 Hz, 2 H), 2.66 (t, J = 7.6 Hz, 2 H), 3.12 (t, J = 7.0 Hz, 2 H), 3.79 (s, 3 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers) signals of both regioisomers: δ = 19.9 (CH₃), 31.2 (CH₂), 32.4 (CH₂), 38.3 (CH), 43.3 (CH₂), 51.0 (CH₂), 55.2 (CH₃), 112.7 (CH), 112.9 (CH), 113.8 (CH), 114.0 (CH), 117.1 (CH), 117.2 (CH), 128.1 (CH), 129.2 (CH), 129.3 (CH), 133.7 (C), 136.5 (C), 148.1 (C), 148.3 (C), 157.8 (C), 158.3 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3407$, 2931, 1602, 1507, 1243, 1177, 1034, 830, 748, 692 cm⁻¹.

GC/MS 119a: m/z (%) = 241 (10) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (10) [C₆H₅]⁺; **119b**: m/z (%) = 239 (30) [M]⁺, 106 (100) [C₇H₈N]⁺, 93 (10), 77 (12) [C₆H₅]⁺.

General procedure D was used with 4-phenylstyrene (**101**, 541 mg, 3.0 mmol), as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give a mixture of the regioisomers **120a** and **120b** (558 mg, 1.9 mmol, 97 %, 82:18) as a clear, yellow oil.

¹**H NMR** (500 MHz, CDCl₃, mixture of regioisomers): signals of the major regioisomer **120a**: $\delta = 1.37$ (d, J = 7.0 Hz, 3 H), 3.11 (sext, J = 7.0 Hz, 1 H), 3.27 (dd, J = 12.4, 8.2 Hz, 1 H), 3.37 (dd, J = 12.4, 6.2 Hz, 1 H), 3.61 (br. s, 1 H), 6.59 (d, J = 8.1 Hz, 2 H), 6.69 (t, J = 7.3 Hz, 1 H), 7.16 (t, J = 7.7 Hz, 2 H), 7.29-7.34 (m, 3 H), 7.41-7.44 (m, 2 H), 7.55-7.59 (m, 4 H) ppm; important signals of the minor regioisomer **120b**: $\delta = 1.98$ (quint, J = 7.1 Hz, 2 H), 2.77 (t, J = 7.6 Hz, 2 H), 3.18 (t, J = 7.0 Hz, 2 H).

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of regioisomers): signals of the major regioisomer **120a**: δ = 19.7 (CH₃), 38.9 (C), 50.1 (CH₂), 113.0 (CH), 117.4 (CH), 127.0 (CH), 127.2 (CH), 127.4 (CH), 127.7 (CH), 128.7 (CH), 129.2 (CH), 139.6 (C), 140.9 (C), 143.6 (C), 148.1 (C) ppm; important signals of the minor regioisomer **120b**: δ = 31.1 (CH₂), 33.0 (CH₂), 43.5 (CH₂), 112.8 (CH), 117.3 (CH), 127.0 (CH), 128.7 (CH), 128.8 (CH), 139.0 (C), 140.8 (C), 141.0 (C), 148.4 (C) ppm.

IR (neat, mixture of regioisomers): $\tilde{v} = 3412$, 3025, 2929, 1601, 1504, 1486, 1319, 1257, 838, 748, 693 cm⁻¹.

GC/MS 120a: m/z (%) = 287 (8) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (5) [C₆H₅]⁺; **120b**: m/z (%) = 267 (35) [M]⁺, 106 (100) [C₇H₈N]⁺, 93 (10), 77 (10) [C₆H₅]⁺.

N-(2-(Cyclohex-3-enyl)propyl)aniline (122a)

General procedure D was used with 4-vinylcyclon-hexane-1-ene (**103**, 324 mg, 3.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give the regioisomer **122a** (415 mg, 1.8 mmol, 92 %, mixture of diastereomers, 85:15) as a clear, yellow oil.

¹**H NMR** (500 MHz, CDCl₃, mixture of diastereomers): signals of the major diastereomer: $\delta = 0.97$ (t, J = 7.1 Hz, 3 H), 1.26-1.41 (m, 1 H), 1.16-2.11 (m, 7 H), 2.90-2.96 (m, 1 H), 3.14-3.20 (m, 1 H), 3.63 (br. s, 1 H), 5.68 (br. s, 2 H), 6.59 (d, J = 8.0 Hz, 2 H), 6.67 (t, J = 7.3 Hz, 1 H), 7.16 (t, J = 7.7 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃, mixture of diastereomers): δ = 14.4 (CH₃), 14.8 (CH₃), 25.0 (CH₂), 25.8 (CH₂), 26.0 (CH₂), 26.9 (CH₂), 27.3 (CH₂), 29.6 (CH₂), 36.5 (CH), 36.7 (CH), 37.3 (CH), 37.4 (CH), 47.8 (CH₂), 47.9 (CH₂), 112.6 (CH), 117.0 (CH), 126.6 (CH), 126.7 (CH), 127.1 (CH), 129.2 (CH), 148.6 (C), 148.6 (C) ppm.

IR (neat): $\tilde{v} = 3418$, 3020, 2918, 1602, 1506, 1321, 1259, 747, 692, 658 cm⁻¹.

MS (EI, 70 eV): m/z (%) = 217 (10) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (10) [C₆H₅]⁺.

N-(3-Cyclopentyl-2-methylpropyl)aniline (125a)

General procedure D was used with allylcyclopentane (**106**, 331 mg, 3.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give the regioisomer **125a** (403 mg, 1.9 mmol, 93 %) as a clear, yellow oil.

¹**H NMR** (500 MHz, CDCl₃): $\delta = 0.96$ (d, J = 6.8 Hz, 3 H), 0.99-1.12 (m, 2 H), 1.19-1.25 (m, 1 H), 1.35-1.41 (m, 1 H), 1.49-1.55 (m, 2 H), 1.57-1.61 (m, 2 H), 1.71-1.77 (m, 3 H), 1.84-1.93 (m, 1 H), 2.83 (dd, J = 12.5, 7.5 Hz, 1 H), 3.03 (dd, J = 12.1, 5.6 Hz, 1 H), 3.62 (br. s, 1 H), 6.57 (d, J = 8.0 Hz, 2 H), 6.66 (t, J = 7.3 Hz, 1 H), 7.13-7.16 (m, 2 H) ppm. ¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 18.3 (CH₃), 25.1 (CH₂), 25.1 (CH₂), 32.0 (CH₂), 32.6 (CH), 33.3 (CH₂), 37.5 (CH), 41.5 (CH₂), 50.5 (CH₂), 112.5 (CH), 116.8 (CH), 129.1 (CH), 148.6 (C) ppm.

IR (neat): $\tilde{v} = 3421, 2948, 2866, 1601, 1504, 1319, 1257, 745, 691 cm⁻¹.$

MS (EI, 70 eV): m/z (%) = 217 (10) [M]⁺, 106 (100) [C₇H₈N]⁺, 77 (10) [C₆H₅]⁺.

3-Methyl-N-(2-methyloctyl)aniline (139a)

General procedure C was used with *N*-methyl-*m*-toluidine (**130**, 233 mg, 2.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give the regioisomer **139a** (393 mg, 1.7 mmol, 84 %) as a clear, yellow oil.

¹**H NMR** (500 MHz, CDCl₃): $\delta = 0.92$ (t, J = 6.6 Hz, 3 H), 0.99 (d, J = 6.7 Hz, 3 H), 1.19-1.49 (m, 12 H), 1.71-1.80 (m, 1 H), 2.30 (s, 3 H), 2.90 (dd, J = 12.1, 7.3 Hz, 1 H), 3.07 (dd, J = 12.1, 5.8 Hz, 1 H), 3.63 (br. s, 1 H), 6.43-6.49 (m, 2 H), 6.53 (d, J = 7.3 Hz, 1 H) 6.53 (d, J = 7.5 Hz, 1 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 14.1 (CH₃), 18.1 (CH₃), 21.6 (CH₃), 22.7 (CH₂), 26.9 (CH₂), 29.6 (CH₂), 31.9 (CH₂), 33.0 (CH), 34.8 (CH₂), 50.4 (CH₂), 109.8 (CH), 113.4 (CH), 117.9 (C), 129.1 (CH), 138.9 (C), 148.7 (C) ppm.

IR (neat): $\tilde{v} = 3421, 2955, 2923, 2854, 1604, 1326, 766, 691 cm⁻¹.$

MS (EI, 70 eV): m/z (%) = 233 (15) [M]⁺, 120 (100) [C₈H₁₀N]⁺, 91 (8) [C₇H₇]⁺.

4-Chloro-N-(2-methyloctyl)aniline (141a)

Н CI 141a C₁₅H₂₄CIN M = 253.81 g/mol

General procedure C was used with 4-chloro-*N*-methylaniline (**132**, 254 mg, 2.0 mmol) as a substrate. The crude product was purified by flash chromatography (*n*-hexane/EtOAc, 30:1) to give the regioisomer **141a** (81 mg, 0.3 mmol, 16 %) as a clear, yellow-brown oil.

¹**H NMR** (500 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.8 Hz, 3 H), 0.95 (d, *J* = 6.7 Hz, 3 H), 1.14-1.43 (m, 10 H), 1.66-1.75 (m, 1 H), 2.84 (dd, *J* = 12.2, 7.3 Hz, 1 H), 3.00 (dd, *J* = 12.2, 5.9 Hz, 1 H), 3.69 (br. s, 1 H), 6.50 (d, *J* = 8.9 Hz, 2 H), 7.09 (d, *J* = 8.9 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 14.1 (CH₃), 18.0 (CH₃), 22.9 (CH₂), 26.9 (CH₂), 29.6 (CH₂), 31.8 (CH₂), 32.8 (CH), 34.7 (CH₂), 50.4 (CH₂), 113.6 (CH), 121.4 (C), 129.0 (CH), 147.2 (C) ppm.

IR (neat): $\tilde{v} = 3424$, 2955, 2924, 2854, 1601, 1499, 1467, 1316, 812 cm⁻¹.

GC/MS: m/z (%) = 253 (18) [M]⁺, 140 (100) [C₇H₇CIN]⁺, 104 (5).

Intermolecular addition of sulfonamides to alkenes

N-Cyclohexyl-4-methylbenzenesulfonamide (169)

General procedure D was used with cyclohexene (**168**, 493 mg, 6.0 mmol) as a substrate. The crude product was purified by flash chromatography (PE/EtOAc, 4:1), to give the product **169** (38 mg, 0.5 mmol, 7 %) as a colorless solid.

	Catalyst			Yield (a+b)	
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]
GaCl₃	10	18	38	0.1	7
$GaBr_3$	10	31	119	0.5	47

¹**H NMR** (500 MHz, CDCl₃): δ = 0.97-1.21 (m, 5 H), 1.38-1.47 (m, 1 H), 1.50-1.59 (m, 2 H), 1.63-1.70 (m, 2 H), 2.35 (s, 3 H), 2.98-3.10 (m, 1 H), 4.67 (d, *J* = 7.4 Hz, 1 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 7.70 (d, *J* = 8.2 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 21.5 (CH₃), 24.6 (CH₂), 25.1 (CH₂), 33.8 (CH₂), 52.5 (CH), 126.9 (CH), 129.6 (CH), 138.4 (C), 143.0 (C) ppm.

IR (neat): $\tilde{v} = 3305, 2931, 2851, 1323, 1156, 662 \text{ cm}^{-1}$.

MS (EI, 70 eV): *m*/*z* (%) = 253 (49) [M]⁺, 210 (100), 155 (61), 98 (18), 91 (62), 65 (15).

4-Methyl-N-(1-phenylethyl)benzenesulfonamide (167)

General procedure D was used with styrene (**24**, 493 mg, 6.0 mmol) as a substrate. The crude product was purified by flash chromatography (PE/EtOAc, 4:1), to give the product **167** (55 mg, 0.2 mmol, 20 %) as a pale yellow oil.

Catalyst			Yield (a+b)		
Name	[mol-%]	[mg]	[mg]	[mmol]	[%]
GaCl₃	10	18	55	0.2	20
$GaBr_3$	10	31	60	0.2	22

¹**H NMR** (500 MHz, CDCl₃): δ = 1.33 (d, J = 6.9 Hz, 3 H), 2.30 (s, 3 H), 4.38 (quin, J = 6.9 Hz, 1 H), 5.05 (d, J = 7.0 Hz, 1 H), 7.00-7.04 (m, 2 H), 7.07-7.11 (m, 5 H), 7.54 (d, J = 8.2 Hz, 2 H) ppm.

¹³**C NMR** (125 MHz, DEPT, CDCl₃): δ = 21.40 (CH₃), 23.50 (CH₃), 53.61 (CH), 126.19 (CH), 127.11 (CH), 127.35 (CH), 128.47 (CH), 129.37 (CH), 137.73 (C), 142.10 (C), 143.02 (C) ppm.

IR (neat): $\tilde{v} = 3250, 2970, 1429, 1321, 1154 \text{ cm}^{-1}$.

MS (EI, 70 eV): m/z (%) = 260 (5) [M-CH₃]⁺, 155 (23), 120 (19), 104 (49), 91 (100), 77 (33), 65 (25).

4. Abkürzungen und Symbole

AMAC	Aminoacrylat
Bn	Benzyl
bzw.	beziehungsweise
b.p.	engl.: Boiling point
BTMSA	Bis(trimethylsilyl)acetylen
Ср	Cyclopentadienyl
DACH	1,2-Diaminocyclohexyl
DCE	Dichlorethan
DEPT	engl.: Distortionless enhancement by polarization transfer (NMR)
EBI	Ethylenebis-indenyl
EBTHI	rac-Ethylenebis-(4,5,6,7-tetrahydro-1- indenyl)-dimethyl
et al.	lat.: et alii = und andere
Fv	η ⁶ -6,6'-di- <i>p</i> -Tolylfulven
GC	Gaschromatgraphie
GC/MS	Gaschromatgraphie gekoppelte Masse [EI]
Ind	η ⁵ -Indenyl
IR	Infrarot
Kat.	Katalysator
MS	Massenspektrometrie
М	Molmasse
m/z	Masse-zu-Ladungs-Verhältnis
NMR	engl.: Nuclear Magnetic Resonance = magnetische Kernresonanz
0	ortho
р	para
PE	Petrolether
ppm	engl. :parts per million (NMR)
sol.	engl.: Solution
TBF	η ^s -Tetrabenzo[<i>a,c,g,i</i>]fluorenyl
<i>t</i> Bu	<i>tert</i> -Butyl
TLC	engl.: Thin layer chromatography
Ts	Tosyl
δ	Chemische Verschiebung
Ñ	Wellenzahl

5. Literatur

[1] Ausgewählte Übersichtsartikel zu katalytischen C–H-Aktivierungen: a) A. E. Shilov, G. Shul'pin, *Chem. Rev.* **1997**, *97*, 2879-2932; b) G. Dyker, *Angew. Chem.* **1999**, *111*, 1808-1822; *Angew. Chem. Int. Ed.* **1999**, *38*, 1698-1712; c) F. Kakiuchi, S. Murai, in *Activation of Unreactive Bonds and Organic Synthesis* (Ed: S. Murai), Springer, Berlin, **1999**, pp. 47-79; d) S.-I. Murahashi, H. Takaya, *Acc. Chem. Res.* **2000**, *33*, 225-233; e) *Handbook of C-H Transformations* (Ed: G. Dyker), WILEY-VCH, Weinheim, **2005**; f) A. R. Dick, M. S. Sanford, *Tetrahedron* **2006**, *62*, 2439-2463; g) M. Tobisu, N. Chatani, *Angew. Chem.* **2006**, *118*, 1713-1715; *Angew. Chem. Int. Ed.* **2006**, *45*, 1683-1684; h) J.-Q. Yu, R. Giri, X. Chen, *Org. Biomol. Chem.* **2006**, *4*, 4041-4047; i) R. G. Bergman, *Nature* **2007**, *446*, 391-393.

[2] Ausgewählte Beispiele: a) Y. Lin, D. Ma, X. Lu, *Tetrahedron Lett.* **1987**, *28*, 3249-3252; b) R. F. Jordan, D. F. Taylor, *J. Am. Chem. Soc.* **1989**, *111*, 778-779; c) Y. Ishii, N. Chatani, F. Kakiuchi, S. Murai, *Tetrahedron Lett.* **1997**, *38*, 7565-7568; d) Y. Ishii, N. Chatani, F. Kakiuchi, S. Murai, *Organometallics* **1997**, *16*, 3615-3622; e) L. Shi, Y.-Q. Tu, M. Wang, F.-M. Zhang, C.-A. Fan, Y.-M. Zhao, W.-J. Xia, *J. Am. Chem. Soc.* **2005**, *127*, 10836-10837; f) J. C. Lewis, R. G. Bergman, J. A. Ellman, *J. Am. Chem. Soc.* **2007**, *129*, 5332-5333.

[3] Übersichtsartikel zu katalytischen C–H-Aktivierungen in der α-Position zum
 N-Atom: a) K. R. Campos, *Chem. Soc. Rev.* 2007, *36*, 1069-1084; b) S. Doye,
 Angew. Chem. 2001, *113*, 3455-3457; *Angew. Chem. Int. Ed.* 2001, *40*, 3351-3353.

[4] a) C.-H. Jun, D.-C. Hwang, S.-J. Na, *Chem. Commun.* **1998**, 1405-1406; b)
N. Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi, S. Murai, *J. Am. Chem. Soc.* **2001**, *123*, 10935-10941.

[5] S.-I. Murahashi, N. Komiya, H. Teraki, *Angew. Chem.* 2005, *117*, 7091-7093;
 Angew. Chem. Int. Ed. 2005, *44*, 6931-6933.

[6] S. J. Pastine, D. V. Gribkov, D. Sames, *J. Am. Chem. Soc.* **2006**, *128*, 14220-14221.

[7] N. Chatani, T. Asaumi, T. Ikeda, S. Yorimitsu, Y. Ishii, F. Kakiuchi, S. Murai, *J. Am. Chem. Soc.* **2000**, *122*, 12882-12883. [8] A. J. Catino, J. M. Nichols, B. J. Nettles, M. P. Doyle, *J. Am. Chem. Soc.***2006**, *128*, 5648-5649.

[9] a) Z. Li, C.-J. Li, J. Am. Chem. Soc. 2005, 127, 6968-6969; b) O. Baslé, C. J.
Li, Org. Lett. 2008, 10, 3661-3663.

[10] S. Sakaguchi, T. Kubo, Y. Ishii, *Angew. Chem.* **2001**, *113*, 2602-2604; *Angew. Chem. Int. Ed.* **2001**, *40*, 2534-2536.

[11] S. J. Pastine, K. M. McQuaid, D. Sames, *J. Am. Chem. Soc.* 2005, 127, 12180-12181.

[12] Z. Li, R. Yu, H. Li, Angew. Chem. **2008**, 120, 7607-7610; Angew. Chem. Int. Ed. **2008**, 47, 7497-7500.

[13] M. G. Clerici, F. Maspero, Synthesis 1980, 305-306.

[14] W. A. Nugent, D. W. Ovenall, S. J. Holmes, *Organometallics* **1983**, *2*, 161-162.

[15] S. B. Herzon, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 6690-6691.

[16] N. Coles, M. C. J. Harris, R. J. Whitby, J. Blagg, *Organometallics* **1994**, *13*, 190-199.

[17] S. B. Herzon, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 14940-14941.

[18] P. Eisenberger, R. O. Ayinla, J. M. P. Lauzon, L. L. Schafer, Angew.

Chem., 2009, 121, 8511-8515; Angew. Chem., Int. Ed. 2009, 48, 8361-8365.

[19] G. Zi, F. Zhang, H. Song, Chem. Comm. 2010, 46, 6296-6298.

[20] Ausgewählte Übersichtsartikel zur Ti-katalysierten Hydroaminierung von Alkinen: a) F. Pohlki, S. Doye, *Chem. Soc. Rev.* 2003, *32*, 104-114; b) I. Bytschkov, S. Doye, *Eur. J. Org. Chem.* 2003, 935-946; c) S. Doye, *Synlett* 2004, 1653-1672; d) F. Alonso, I. Beletskaya, M. Yus, *Chem. Rev.* 2004, *104*, 3079-3160; e) A. Odom, *Dalton. Trans.* 2005, 225-233; f) R. Severin, S. Doye, *Chem. Soc. Rev.* 2007, *36*, 1407-1420.

[21] a) C. Müller, W. Saak, S. Doye, *Eur. J. Org. Chem.* 2008, 2731-2739; b) C.Müller, *Dissertation*, Universität Oldenburg, 2008.

[22] J. A. Bexrud, P. Eisenberger, D. C. Leitch, P. R. Payne, L. L. Schafer, *J. Am. Chem. Soc.* **2008**, *131*, 2116-2118.

[23] I. Prochnow, Universität Oldenburg, geplante Dissertation.

[24] K. Gräbe, *Dissertation*, Universität Oldenburg, 2009.

[25] S. Y. Zhang, Y. Q. Tu, C. A. Fan, F. M. Zhang, L. Shi, *Angew. Chem.*, **2009**, *121*, 8917-8921; *Angew. Chem.*, *Int. Ed.* **2009**, *48*, 8761-8765.

[26] Ausgewählte Artikel zur Hydroaminierung von Alkenen mit frühen Übergangsmetallen: a) J. A. Bexrud, J. D. Beard, D. C. Leitch, L. L. Schafer, *Org. Lett.* **2005**, *7*, 1959-1962; b) C. Müller, C. Loos, N. Schulenberg, S. Doye, *Eur. J. Org. Chem.* **2006**, 2499-2503.

[27] M. R. Gagne, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 275-294.

[28] Ausgewählte Artikel zur Basen-katalysierten Hydroaminierung von Alkenen:
a) B. W. Howk, E. L. Little S. L. Scott, G. M. Whitman, *J. Am Chem. Soc.* 1954, 76, 1899-1902;
b) J. Seayad, A. Tillack, C. G. Hartung, M. Beller, *Adv. Synth. Catal.* 2002, 344, 795-813;
c) P. Horrillo-Martínez, K. C. Hultzsch, A. Gil, V. Branchadell, *Eur. J. Org. Chem.* 2007, 3311-3325;
d) C. Quinet, P. Jourdain, C. Hermans, A. Ates, I. Lucas, I. E. Marcó, *Tetrahedron* 2008, 64, 1077-1087.

[29] L. Ackermann, L. T. Kaspar, C. Gschrei, Org. Lett. 2004, 6, 2515-2518.

[30] L. Ackermann, Organometallics 2003, 22, 4367-4368.

[31] L. T. Kaspar, B. Fingerhut, L. Ackermann, Angew. Chem. 2005, 117, 61266128; Angew. Chem. Int. Ed. 2005, 44, 5972-5974.

[32] J. Michaux, V.Terrasson, S. Marque, J. Wehbe, D. Prim, J.-M. Campagne, *Eur. J. Org. Chem.* **2007**, 2601-2603.

[33] H. Wei, G. Qian, Y. Xia, K. Li, Y. Li, W. Li, *Eur. J. Org. Chem.* **2007**, 4471-4474.

[34] X. Cheng, Y. Xia, H. Wei, B. Xu, C. Zhang, Y. Li, G. Qian, X. Zhang, K. Li,W. Li, *Eur. J. Org. Chem.* **2008**, 1929-1936.

[35] L. Ackermann, L. T. Kaspar, A. Althammer, Org. Biomol. Chem. 2007, 5, 1975-1978.

[36] J.-M. Huang, C.-M. Wong, F.-X. Xu, T.-P. Loh, *Tetrahedron Letters* **2007**, *48*, 3375-3377.

[37] K. Komeyama, T. Morimoto, K. Takaki, *Angew. Chem.* **2006**, *118*, 3004-3007; *Angew.Chem. Int. Ed.* **2006**, *45*, 2938-2941.

[38] E. Haak, *Dissertation,* Universität Hannover, **2002**.

[39] D. Jaspers, *Masterarbeit,* Universität Oldenburg, 2009.

[40] D. Jaspers, R. Kubiak, S. Doye, Synlett **2010**, 1268-1272.

Dipl.- Chem. Raphael Kubiak

Welgenhöhe 7 27793 Wildeshausen Germany	Office: +49 441 7983721 Lab:+49 441 7983705 Mobile:+49 176 83089314 Email:raphael.kubiak@mail.uni- oldenburg.de
Geburtsdatum und -ort	26. April 1981 in Bremen
Staatsangehörigkeit	Deutsch
Familienstand	Ledig
Doktorarbeit	
seit Dez. 2007	Dissertation, Universität Oldenburg
Studium	
10. Dez. 2007	Diplom (Chemie), Universität Oldenburg
	"Titan-Amidinat-Komplexe zur Hydroaminierung von
	Alkinen"
April 2007 - Dez. 2007	Diplomarbeit, Universität Oldenburg,
	Kooperationsprojekt mit dem Arbeitskreis Gade,
	Universität Heidelberg
Sep. 2005 – Feb. 2006	Auslandsemester an der Uniwersytet Jagielloński,
	Krakau, ERASMUS-Programm
April 2004	Vordiplom (Chemie), Universität Oldenburg
Okt. 2001	Beginn des Studiums (Diplom-Chemie), Universität
	Oldenburg

Lebenslauf

Berufliche Tätigkeit

Berufliche Tätigkeit					
Seit Dez. 2007	Wissenschaftlicher Mitarbeiter, Carl v. Ossietzky				
	Universität Oldenburg				
Okt. 2002 – Sep.	Aushilfe an der BAB-Tankstelle Wildeshausen-Süd				
2005,					
April 2006 – Nov.					
2007					
April – Juni 2005	Studentische Hilfskraft an der Universität Oldenburg				
April – Juni 2006					
Mai 2001 – Sept.	Aushilfe beim sozialen Fahrdienst des Malteser				
2001	Hilfsdienst Wildeshausen				
Mai 1999 – Juni 2000	Schüler-Aushilfe im McDonald's Restaurant				
	Wildeshausen				
Zivildienst					
Juli 2000 – Mai 2001	Zivildienst im sozialen Fahrdienst des Malteser				
	Hilfsdienst, Wildeshausen				
Cohulhildung					
Schulblidung					
Juni 2000	Abitur, Gymnasium Wildeshausen				
	Prüfungsfächer: Chemie, Biologie, Latein, Kath. Religion				
	Auszeichnung im Fach Chemie				

Ehrenamtliches Engagement

April 2002 – Dez. 2007 Mitglied der Fachschaft Chemie, Universität Oldenburg, aktiv als studentisches Mitglied im Promotionsausschuß und der Berufungskommission der Organischen Chemie

Persönliche Interessen

Kochen, Uni-Hockey, Muay Thai, Kino, Reisen