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Abstract

Our aim in this dissertation is studying the relationship between semi-
group theory and graph theory. Since it is well known that End(G) , the set
of all endomorphisms of graph is a monoid, we consider the algebraic struc-
tures, such as regular, completely regular, orthodox, Clifford semigroup,
etc., in this endomorphism monoid. Since it is very complicated to charac-
terize the algebraic structures for the monoids of any graph, we study the
algebraic structure of the monoid of some special graphs. We hope that
the results on this special graphs will lead the way to characterize algebraic
structures of the monoids of other graphs.

Except the monoids End(G) and SEnd(G), the set of all strong endo-
morphisms of a graph G, it is well known that

- HEnd(G) the set of all half strong endomorphisms of a graph G and
- LEnd(G) the set of all locally strong endomorphisms of a graph G and
- QEnd(G) the set of all quasi-strong endomorphisms of a graph G

are not necessarily semigroups. In this dissertation, we concentrate on cy-
cles, to find when the set of all non-trivial locally strong endomorphisms of
the cycles of even length (LEnd′(C2n) = LEnd(C2n) \Aut(C2n)) is a semi-
group.

In this dissertation, we give some method to construct the completely
regular subsemigroup of the regular endomorphism monoids of split graphs.
We also give some examples of retractive graphs (graphs whose endomor-
phism monoids and automorphism groups are not equal) whose endomor-
phism monoids are Clifford semigroups.

Moreover, we considered two graph operations, unions and joins. In this
part, we focused on two things. The first one is finding when the monoid
of unions of two graphs End(G ∪ H) is isomorphic to the sum of two en-
domorphism monoids End(G) + End(H). Similarly, we also find when the
monoid of joins of two graphs End(G + H) is isomorphic to the sum of
two endomorphism monoids End(G) + End(H). We did not only consider
on the monoids End(G ∪H) and End(G+H), we also considered the sets
HEnd(G∪H), HEnd(G+H), LEnd(G∪H), LEnd(G+H), QEnd(G∪H),
QEnd(G+H), SEnd(G∪H), SEnd(G+H), Aut(G∪H) and Aut(G+H).
The last topic are the unretractivities of the unions of two connected graphs
G ∪H and of the joins of two connected graphs G+H.
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Abstract

Unser Ziel in dieser Dissertation ist die Untersuchung der Beziehung
zwischen der Halbgruppen Theorie und der Graphen Theorie. Da es bekannt
ist, dass End(G) die Menge aller Endomorphismen von Graphen ein Monoid
ist, konzentrieren wir uns auf die algebraischen Strukturen, wie regulär,
vollständig regulär, orthodox oder Clifford Halbgruppen. Da die allgemeine
Situation zu kompliziert ist, studieren wir die algebraische Struktur auf dem
Monoid einiger spezieller Graphen.

Außer der Monoide End(G) und SEnd(G) die Menge aller starken En-
domorphismen eines Graphen, ist es bekannt, dass

-HEnd(G) die Menge aller halbstarken Endomorphismen eines Graphen
G und

- LEnd(G) die Menge aller lokal starken Endomorphismen eines Graphen
G und

-QEnd(G) die Menge aller quasi-starken Endomorphismen eines Graphen
G
nicht notwendigen Halbgruppen werden. In dieser Arbeit konzentrieren wir
uns auf die Zyklen, für die die Menge aller nicht-triviale lokal stark Endo-
morphismen (LEnd′(C2n) = LEnd(C2n) \Aut(C2n) ) eine Halbgruppe ist.

In dieser Arbeit geben wir eine Methode, die vollständig regulären Un-
terhalbgruppen der regulären Endomorphismen Monoide von Split Graphen
zu konstruieren. Wir geben auch einige Beispiele von retraktiven Graphen
(Graphen, deren Endomorphismen Monoide und Automorphismen Gruppen
nicht gleich sind), deren Endomorphismen Monoide Clifford Halbgruppen
sind.

Darüber hinaus betrachtet man zwei Graphen Operationen, Vereinigung
und Verbindung. In diesem Teil konzentrieren wir uns auf zwei Dinge. Das
erste ist, wann das Monoid der Vereinigung von zwei Graphen End(G ∪
H) isomorph zu der Summe zweier Endomorphismen Monoide End(G) +
End(H) ist. Ebenso wann das Monoid End(G + H) isomorph zu der
Summe zweier Endomorphismen Monoide ist. Wir haben nicht nur die
Monoide End(G ∪H) und End(G+H) geprüft, sondern auch die Mengen
HEnd(G∪H), HEnd(G+H), LEnd(G∪H), LEnd(G+H), QEnd(G∪H),
QEnd(G+H), SEnd(G∪H), SEnd(G+H), Aut(G∪H) und Aut(G+H)
betrachtet. Als letztes betrachten wir die Unretraktivitäten der Graphen
G ∪H und G+H.
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Summary

In this dissertation, we study the relationship between semigroup theory
and graph theory. Ulrich Knauer and Elke Wilkeit questioned for which
graph G is the endomorphism monoid of G regular (see in, L. Marki, Prob-
lems raised at the problem session of the Colloqium on Semigroups in Szeged,
August 1987, Semigroup Forum, 37 (1988), 367-373.). After this question
was posed, the regularity of End(G) is investigated and for the monoid
SEnd(G) of all strong endomorphisms of G is proved that it is always reg-
ular. Furthermore, other algebraic properties such as completely regular,
orthodox, etc., of End(G) and SEnd(G) are studied.

It is too complicated to characterize graphs G whose End(G) is regular.
So, many researchers concentrated on the regularity of the endomorphism
monoids of special graphs. We also study the endo-regularity of special
graphs. In this dissertation, we stated the following lemma which we use to
prove endo-regularity of a connected graph.

Lemma 2.1.4 Let f be endomorphism of a connected graph G. Let Im(f)
be the strong subgraph of G with V (Im(f)) = f(G). If G is endo-regular,
then Im(f) is endo-regular.

For the complete regularity of an endomorphism f of G, we got an in-
spiration from some proposition of Weimin Li’s work ”W. Li, Split Graphs
with Completely Regular Endomorphism Monoids, Journal of mathematical
research and exposition, 26 (2006), 253-263 ” and proved the following theo-
rem describing when an endomorphism f of any graph is completely regular.

Theorem 2.2.3 Let G be a finite graph and f be an endomorphism of G.
Then f is completely regular if and only if for all a, b ∈ V (G), f(a) ̸= f(b)
implies f2(a) ̸= f2(b), i.e., f is square injective. In this case, if f is not
idempotent, we have ff i−1f = f and ff i−1 = f i−1f where f i is the smallest
idempotent power of f .

For the idempotent closed endomorphism monoid of a graph, we gave
some lemmas and corollaries and describe graphs whose endomorphism monoids
are not idempotent closed (see Lemma 2.3.1 and Corollary 2.3.3 in this dis-
sertation).

After we had all above properties, we used them to prove the regularity,
the complete regularity, the idempotent closed property and other algebraic
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properties of endomorphism monoids of special graphs. In this dissertation,
we considered bipartite graphs, -graphs, multiple 8-graphs, split graphs (see
the definitions in the dissertation). We have the results as in the following
table.

Graph G Connected Bipartite Multiple 8-graph Split graph
graph G = Kn ∪ Ir

End(G) is ⇔ G is ⇔ G is ⇔ for all a
regular • Km,n • C(2n+1)(t) ;Pr ∈ Ir one has

• K1, K2, C6, C8, P4 where r ≥ 0, t ≥ 2 |N(a)| = d
• the trees of diameter 3. • C(2n+1)(t),4;P1 where

where t ≥ 1 d ∈ {0, 1, ...
• C(4)(s) ;P2, s ≥ 2. , n− 1}.

End(G) is ⇔ G is one of P1, P2, P3, ⇔ G is C(2n+1)(t) ;Pr ⇔ r = 1.

completely C4, C6. where n ≥ 1, t ≥ 2,
regular r ≥ 0.

End(G) is ⇐ if G is a bipartite ⇔ G is
idempotent graph P1, P2, P3, C4. • Cn1,n2,...,ns ;Pr

closed where r ≥ 0 and
ni ̸= nj are odd for
i ̸= j ∈ 1, 2, ..., s
• C2n+1,2n+1;Pr

where n ≥ 1, r > 0.

End(G) is ⇔ G is one of P1, P2, P3, ⇔ G is C2n+1,2n+1;Pr

orthodox C4. where n ≥ 1, r > 0.

End(G) is ⇔ G is K2. Never Never
Clifford

Furthermore, we consider the set of all locally strong endomorphisms of
a graph which is not necessarily closed. In this dissertation, we found when
the set of all non-trivial locally strong endomorphisms of cycles is closed.
We also found a method to construct the completely regular subsemigroups
of endo-regualr split graphs. We gave some examples of retractive graphs
whose endomorphism monoids are Clifford.

Moreover, we considered two graph operations, unions and joins. In this
part, we focused on two things. The first one is finding when the monoid of
unions of two graphs End(G∪H) is isomorphic to the sum of two endomor-
phism monoids End(G)+End(H). Similarly, we also find when the monoid
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of joins of two graphs End(G+H) is isomorphic to the sum of two endomor-
phism monoids End(G) + End(H). We did not only consider the monoids
End(G ∪H) and End(G+H), we also considered the sets HEnd(G ∪H),
HEnd(G+H), LEnd(G∪H), LEnd(G+H), QEnd(G∪H), QEnd(G+H),
SEnd(G∪H), SEnd(G+H), Aut(G∪H) and Aut(G+H). We considered
only connected graphs. We got the results as the following tables.

M M(G ∪H) ∼= M(G) +M(H)

End ⇔ Hom(G,H) = ∅ and Hom(H,G) = ∅.
HEnd ⇔ HHom(G,H) = ∅ and HHom(H,G) = ∅.
LEnd ⇔ LHom(H,G) = ∅ and for all g ∈ LHom(G,H) one has

g(G) ∩NH(h(H)) ̸= ∅ and g(G) ̸= h(H) for all h ∈ LEnd(H) and
vice versa.

QEnd ⇔ QHom(H,G) = ∅ and for all g ∈ QHom(G,H) one has
g(G) ∩NH(h(H)) ̸= ∅ for all h ∈ QEnd(H) and vice versa.

SEnd ⇔ SHom(G,H) = ∅ or SHom(H,G) = ∅.
Aut ⇔ Iso(G,H) = ∅ ⇔ G is not isomorphic to H.

M M(G+H) ∼= M(G) +M(H)

End, HEnd, LEnd, QEnd, SEnd ⇔ f(G) ⊆ G and f(H) ⊆ H for all
f ∈ M(G+H)

Aut ⇔ f(G) ⊆ G and f(H) ⊆ H for all
f ∈ Aut(G+H)

⇔ Iso(Gi, Hj) = ∅ for all components

Gi of G and Hj of H.

The last topic are the unretractivities of the unions of two connected
graphs G ∪H and the unretractivities of the joins of two connected graphs
G+H. The results are in the following two tables.
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= Aut(G ∪H) SEnd(G ∪H)

SEnd(G ∪H) G, H are S-unretractive

QEnd(G ∪H) G, H are Q-unretractive

LEnd(G ∪H) ⇒ G, H are L-unretractive and
(LHom(G,H) = ∅ or LHom(H,G) = ∅)
⇐ G, H are L-unretractive and
LHom(G,H) = ∅ and LHom(H,G) = ∅

HEnd(G ∪H) G,H are unretractive and G,H are E-S-
Hom(G,H) = Hom(H,G) = ∅ unretractive and

End(G ∪H) Hom(G,H) =
Hom(H,G) = ∅.

= Aut(G+H) SEnd(G+H)

SEnd(G+H) G,H are S-unretractive

QEnd(G+H) G,H are Q-unretractive

LEnd(G+H) G,H are L-unretractive

HEnd(G+H) G,H are H-unretractive G,H are H-S-unretractive

End(G+H) G,H are unretractive G,H are E-S-unretractive
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Zusammenfassung

In dieser Arbeit untersuchten wir die Beziehung zwischen der Halbgrup-
petheorie und der Graphentheorie. Ulrich Knauer und Elke Wilkeit fragten
für welche Graphen das Endomorphismenmonoid regulär ist (vgl. L. Marki,
Problems raised at the problem session of the Colloqium on Semigroups in
Szeged, August 1987, Semigroup Forum, 37 (1988), 367-373.). Nach dieser
Frage, wird die Regularität von SEnd(G) untersucht und bewiesen, dass
es immer regulär ist. Andere algebraische Eigenschaften wie vollständig
regulär, orthodox, etc. werden ebenfalls untersucht. Viele Forscher haben
sich auf die Regularität der Endomorphismen Monoide spezieller Graphen
konzentriert. In dieser Arbeit haben wir, das folgende Lemma, das wir
verwenden, um Endo-Regularität eines zusammenhängenden Graphen zu
beweisen.

Lemma 2.1.4 Sei f ein Endomorphismus eines zusammenhängenden Graphen
G. Sei Im(f) der starke Teilgraph von G mit V (Im(f)) = f(G). Wenn G
Endo-regulär ist, dann ist Im(f) Endo-regulär.

Für die vollständige Regularität eines Endomorphismus f eines G beka-
men wir eine Inspiration von einigen Sätzen von Li Weimin in ”W. Li, Split
Graphs with Completely Regular Endomorphism Monoids, Journal of math-
ematical research and exposition, 26 (2006), 253-263”.

Satz 2.2.3 Sei G ein endlicher Graph und f ein Endomorphismus von G.
Dann ist f vollständig regulär, wenn für alle a, b ∈ V (G) mit f(a) ̸= f(b)
folgt daß f2(a) ̸= f2(b), d.h. f ist square injektiv. In diesem Fall, wenn f
nicht idempotent ist, haben wir ff i−1f = f und ff i−1 = f i−1f wo f i die
kleinste idempotent Potenz von f ist.

Für die idempotent abgeschlossenen Endomorphismen des Endomorphis-
mmonoids, haben wir einige Lemmata und Folgerungen und Beispiele für
Graphen, deren Endomorphismen Monoide nicht idempotent abgeschlossen
sind (siehe Lemma 2.3.1 und Korollar 2.3.3 in dieser Arbeit).

Nachdem wir alle oben genannten Eigenschaften hatten, haben wir die
Regularität, die vollständige Regularität und anderen algebraischen Eigen-
schaften der Endomorphismus Monoiden spezieller Graphen untersucht. In
dieser Dissertation untersuchten wir bipartiten Graphen, 8-Graphen , mul-
tiple 8-Graphen (siehe die Definitionen in der Dissertation). Wir hatten die
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Ergebnisse wie in der folgende Tabelle.

Graph G Connected Bipartite Multiple 8-graph Split graph
graph G = Kn ∪ Ir

End(G) is ⇔ G is ⇔ G is ⇔ for all a
regular • Km,n • C(2n+1)(t) ;Pr ∈ Ir one has

• K1, K2, C6, C8, P4 where r ≥ 0, t ≥ 2 |N(a)| = d
• the trees of diameter 3. • C(2n+1)(t),4;P1 where

where t ≥ 1 d ∈ {0, 1, ...
• C(4)(s) ;P2, s ≥ 2. , n− 1}.

End(G) is ⇔ G is one of P1, P2, P3, ⇔ G is C(2n+1)(t) ;Pr ⇔ r = 1.

completely C4, C6. where n ≥ 1, t ≥ 2,
regular r ≥ 0.

End(G) is ⇐ if G is a bipartite ⇔ G is
idempotent graph P1, P2, P3, C4. • Cn1,n2,...,ns ;Pr

closed where r ≥ 0 and
ni ̸= nj are odd for
i ̸= j ∈ 1, 2, ..., s
• C2n+1,2n+1;Pr

where n ≥ 1, r > 0.

End(G) is ⇔ G is one of P1, P2, P3, ⇔ G is C2n+1,2n+1;Pr

orthodox C4. where n ≥ 1, r > 0.

End(G) is ⇔ G is K2. Never Never
Clifford

Darüber hinaus betrachten wir die Menge aller lokal stark Endomor-
phismen eines Graphen, die nicht unbedingt abgeschlossen ist. In dieser
Arbeit haben wir festgestellt, wann die Menge aller nicht-trivialen lokal
starken Endomorphismen von Zyklen abgeschlossen ist. Wir fanden auch
eine Methode, um die vollständig regulären Unterhalbgruppen von Endo-
reguläre Split Graphen zu konstruieren. Wir haben einige Beispiele von
retraktiven Graphen, deren Endomorphismen Monoide Clifford sind.

Darüber hinaus betrachten wir zwei Graphen Operationen, Vereingung
und Verbindung. In diesem Teil konzentrieren wir uns auf zwei Dinge. Das
erste ist, wann End(G∪H) isomorph zu der Summe zweier Endomorphismen
Monoide End(G)+End(H) ist. Ebenso, wann End(G+H) isomorph zu der
Summe zweier Endomorphismen Monoide End(G)+End(H) ist. Wir haben
auch die Mengen HEnd(G∪H), HEnd(G+H), LEnd(G∪H), LEnd(G+
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H), QEnd(G∪H), QEnd(G+H), SEnd(G∪H), SEnd(G+H) Aut(G∪H),
Aut(G+H) betrachtet und zwar, nur für die zusammenhängende Graphen.
Wir haben Ergebnisse wie in die folgenden Tabellen.

M M(G ∪H) ∼= M(G) +M(H)

End ⇔ Hom(G,H) = ∅ and Hom(H,G) = ∅.
HEnd ⇔ HHom(G,H) = ∅ and HHom(H,G) = ∅.
LEnd ⇔ LHom(H,G) = ∅ and for all g ∈ LHom(G,H) one has

g(G) ∩NH(h(H)) ̸= ∅ and g(G) ̸= h(H) for all h ∈ LEnd(H) and
vice versa.

QEnd ⇔ QHom(H,G) = ∅ and for all g ∈ QHom(G,H) one has
g(G) ∩NH(h(H)) ̸= ∅ for all h ∈ QEnd(H) and vice versa.

SEnd ⇔ SHom(G,H) = ∅ or SHom(H,G) = ∅.
Aut ⇔ Iso(G,H) = ∅ ⇔ G is not isomorphic to H.

M M(G+H) ∼= M(G) +M(H)

End, HEnd, LEnd, QEnd, SEnd ⇔ f(G) ⊆ G and f(H) ⊆ H for all
f ∈ M(G+H)

Aut ⇔ f(G) ⊆ G and f(H) ⊆ H for all
f ∈ Aut(G+H)

⇔ Iso(Gi, Hj) = ∅ for all components

Gi of G and Hj of H.

Zuletzt haben wir Unretractivitäten G ∪ H und G + H für zusam-
menhängende Graphen untersucht. Die Ergebnisse sind in den folgenden
beiden Tabellen.

= Aut(G ∪H) SEnd(G ∪H)

SEnd(G ∪H) G, H are S-unretractive

QEnd(G ∪H) G, H are Q-unretractive

LEnd(G ∪H) ⇒ G, H are L-unretractive and
(LHom(G,H) = ∅ or LHom(H,G) = ∅)
⇐ G, H are L-unretractive and
LHom(G,H) = ∅ and LHom(H,G) = ∅

HEnd(G ∪H) G,H are unretractive and G,H are E-S-
Hom(G,H) = Hom(H,G) = ∅ unretractive and

End(G ∪H) Hom(G,H) =
Hom(H,G) = ∅.
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= Aut(G+H) SEnd(G+H)

SEnd(G+H) G,H are S-unretractive

QEnd(G+H) G,H are Q-unretractive

LEnd(G+H) G,H are L-unretractive

HEnd(G+H) G,H are H-unretractive G,H are H-S-unretractive

End(G+H) G,H are unretractive G,H are E-S-unretractive



Introduction

One of the main trends in the theory of semigroups is the study of math-
ematical objects by means of certain semigroups connected with the ob-
jects in a special way. At present, there are several studies focusing on the
semigroups of mappings of graphs (cf. [3]-[8], [11]-[15], [19]-[28], [32]-[34]).
The endomorphism monoid End(G) and the strong endomorphism monoid
SEnd(G) of any graph G are studied. SEnd(G) is always regular, regular-
ity of End(G) is investigated after Knauer and Wilkeit questioned for which
graph G is the endomorphism monoid of G regular [29]. Furthermore, other
algebraic properties such as completely regular, orthodox, etc., of these two
monoids are studied. Moreover, the sets HEnd(G), LEnd(G), QEnd(G)
are studied when they are monoids. In this dissertation, we continue to
study these things.

The preliminary concepts and terminologies which will be used in this
dissertation are given in Chapter 1, while Chapters 1.4, 2, 3, 4 and 5 con-
centrate on algebraic properties of endomorphism monoids of graphs and
Chapters 6 and 7 focus on graph operations.

In Chapter 1.4, we introduce results with respect to the regularity and
complete regularity of endomorphisms of graphs from [23], [26], [27], and
[34]. We give results usefull for the study of the regularity of endomorphism
monoids of graphs. We give a new way for investigating the complete regu-
larity of endomorphisms of graphs.

In Chapters 2, 3, and 4 we introduce bipartite graphs, 8-graphs, and split
graphs, respectively. The algebraic properties of endomorphism monoids
of each graph will be obtained. A retractive graph whose endomorphism
monoid is a Clifford semigroup was not found from these tree graphs. So,
we gave examples of retractive graphs whose endomorphism monoids are
Clifford semigroup in Chapter 5.

Additional, in Chapter 2 the sets of all non-trivial locally strong endo-
morphisms of cycles LEnd′(C2n) are considered, when do they form semi-
groups? In Chapter 4, we find completely regular subsemigroups contained

1
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in the endomorphism monoids of split graphs. A part in this chapter has
been accepted by the journal Ars Combinatoria for publication and an-
other part has been published in: Semigroups, Acts and Categories
with Applications to Graphs, Proceedings, Tartu 2007, 136-142.

For Chapter 5, an aim is to find examples of retractive graphs whose
endomorphism monoids are Clifford semigroup. We get retractive endo-
Clifford graphs by stating from rigid graphs and unretractive graphs.

Chapter 6, we find the conditions under which for two graphs G and H
the endomorphsim monoid End(G ∪H) (or End(G+H)) is isomorphic to
the sum End(G) + End(H) of endomorphism monoids. In particular, we
also find the conditions for the sets of half strong endomorphisms, the sets
of locally strong endomorphisms, the sets of quasi-strong endomorphisms,
the sets of strong endomorphisms and the set of automorphisms.

In Chapter 7, we study unretractivities of a union of two graphs and a
join of two graphs.

Open problems and further questions will be discussed at the respective
places. All graphs, groups and semigroups in this dissertation are finite.



Chapter 1

Preliminaries

In this chapter, we describe concepts and terminologies from semigroup
theory, categories, and graph theory which will be used in this dissertation.
Specific definitions and notations will be given for more clarification where
they appear. Other basic concepts which are not defined in this study can
be found in [10], [17], [18] and [31].

1.1 Semigroup theory

We start with semigroup concepts.

Definition 1.1.1. A set S together a binary operation, usually called
multiplication , is a groupoid . A groupoid S satisfying the associative
law

a(bc) = (ab)c (a, b, c ∈ S)

is a semigroup. A semigroup having only one element is trivial .

Definition 1.1.2. An element e of a semigroup S is a left (respectively
right) identity if es = s (respectively se = s) for all s ∈ S. Further, e is
a two-sided identity (or simply identity) of S if it is both a left and a
right identity of S. A semigroup S with an identity is a monoid . If S is
a monoid, the maximal subgroup of S whose identity is the identity of S
is the group of units of S; its elements are the invertible element (or
units) of S.

One may always adjoin an identity to a semigroup S by letting e /∈ S
and declaring on S ∪ {e} the multiplication in S and

3
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es = se = s (s ∈ S ∪ {e}).

Let S = S1 if S has an identity, otherwise let S1 be the semigroup S with
an identity adjoined. The identity of any monoid is usually denoted by 1.
We denote by the symbol 1 any trivial (semi)group.

Definition 1.1.3. An element z of S is a left (respectively right) zero of
S if zs = z (respectively sz = z) for all s ∈ S. Further, z is a two-sided
zero (or simply zero) of S if it is both a left and a right zero of S. If S has
a zero and all products are equal to zero, S is a null semigroup. We call
S a left (right) zero semigroup if its elements are left (right) zero.

Denote Ln (Rn) the left (right) zero semigroup with n elements. Left
groups are of the form G × Ln, i.e., they are the unions of n copies of an
arbitrary (finite) group G, analogously G × Rn for right groups, with the
multiplication as given by G× Ln or G×Rn.

Let S be a semigroup with zero 0. Then S∗ = S \{0} denotes the partial
groupoid in which only the products ab are defined where ab ̸= 0 in S.

Definition 1.1.4. A nonempty subset T of S is a subsemigroup of S if
T is closed under the multiplication of S; if also T is a group under the
induced operation, it is a subgroup of S.

Definition 1.1.5. An element e of a semigroup S is idempotent if e2 = e.
A semigroup is idempotent , or is a band , if all its elements are idempotent.
Two elements a and b of S commute if ab = ba; S is commutative if any
two elements of S commute. A commutative idempotent semigroup is a
semilattice .

Definition 1.1.6. Let Y be a semilattice. For each α ∈ Y , let Sα be a
semigroup and assume that Sα ∩ Sβ ̸= ∅. For each pair α, β ∈ Y such that
α ≥ β, let χα,β : Sα → Sβ be a homomorphism such that

(1) χα,α = iSα

(2) χα,βχβ,γ = χα,γ if α ≥ β ≥ γ.
On S =

∪
α∈Y

Sα define a multiplication by

a ∗ b = (aχα,αβ)(bχβ,αβ) (a ∈ Sα, b ∈ Sβ).

With this multiplication S is a strong semilattice Y of semigroups
Sα (given by the structure homomorphisms χα,β), to be denoted by
S = [Y ;Sα, χα,β].
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Definition 1.1.7. An element a of a semigroup S is regular if a = axa for
some x ∈ S; S is regular if all its elements are regular.

Definition 1.1.8. An element a of a semigroup S is completely regular
if a = axa and xa = ax for some x ∈ S; S is completely regular if all its
elements are completely regular. A semigroup S is Clifford semigroup if
it is completely regular and its idempotents commute with all elements of
S; alternatively, we say that its idempotent are central or that they are
n the center .

Theorem 1.1.9. ([31]) The following conditions on a semigroup S are
equivalent:

(i) S is completely regular.
(ii) S is a union of (disjoint) groups.

Theorem 1.1.10. ([17]) Let S be a semigroup. Then the following state-
ments are equivalent:

(i) S is a Clifford semigroup;
(ii) S is a semilattice of groups;
(iii) S is a strong semilattice of groups.

Definition 1.1.11. A regular semigroup S is orthodox if its idempotents
form a subsemigroup. An orthodox completely regular semigroup is called
an orthogroup.

Definition 1.1.12. Let S be a monoid and A ̸= ∅ a set. If we have a
mapping µ from S × A to A defined by µ(s, a) = sa such that 1a = a and
(st)a = s(ta) for a ∈ A, s, t ∈ S, we call A a left S-act or left act over S
and write SA or (S,A).

Definition 1.1.13. Take monoids M , N and left acts (M,G), (N,H). The
sum of monoids M + N := {m + n | m ∈ M,n ∈ N} has multiplication
defined by (m+n)(m′+n′) := mm′+nn′ and identity idM + idN . The sum
M + N operates on G ∪ H as follows: (m + n)x := mx, (m + n)y := ny
for all x ∈ G, y ∈ H, m ∈ M and n ∈ N . This way we get the left act
(M +N,G ∪H).

Definition 1.1.14. Let S be a semigroup and let a and b be two elements
of S. Define a relation L on S such that (a, b) ∈ L if and only if S1a = S1b,
here S1 = S if S is a monoid and S1 = S ∪ {1} otherwise: similarly, define
a relation R on S such that (a, b) ∈ R if and only if aS1 = bS1. L and
R are equivalent relations on S. The relation L is a left congruence and
the relation R is a right congruence . Define H = L ∩R. Denote by [a]L
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(respectively, [a]R and [a]H) the L-class (respectively, R-class and H-class)
of a in S.

1.2 Graph theory

Our graphs in this dissertation are usually undirected graphs without loops
and multiple edges.

Definition 1.2.1. If G is a graph, we denote by V (G) (or simply G)
and E(G) its vertex set and edge set respectively. A graph H is called a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let a, b ∈ V (G). The
vertices a and b are said to be adjacent if {a, b} ∈ E(G).

Definition 1.2.2. Let G be a graph. Denote NG(v) := {x ∈ H|{x, v} ∈
E(H)}, call it the neighborhood of v in G; use N(v) for NG(v) if it is clear
which graph G is referred to.

Definition 1.2.3. A graph G is complete if any two of its vertices are
adjacent. A graph G is called an empty graph if E(G) = ∅. Denote by
Kn (respectively Kn) a complete graph (respectively an empty graph) with
n vertices. A graph G is n-partite (n ≥ 1) if it is possible to partition
V (G) into n subsets V1, V2,..., Vn such that every edges of G joins a vertex
of Vi to a vertex of Vj (i ̸= j). If n = 2, then G is called a bipartite
graph . A complete bipartite graph , denote by Km,n for |V1| = m and
|V2| = n, is a bipartite graph such that for any a1 ∈ V1 and for any a2 ∈ V2,
{a1, a2} ∈ E(Km,n).

Definition 1.2.4. A vertex a of a graph G is said to be connected to a ver-
tex b if there exist a sequence of pairwise distinct vertices a = a0, a1, ..., an =
b ∈ V (G) such that n ≥ 1 and {ai, ai+1} ∈ E(G) for any i ∈ {0, 1, ..., n− 1}.
This vertex sequence with the edges among them is called a-b path, denoted
by Pn, and n, the number of edges among them, is called its length . A
graph is connected if every two of its vertices are connected. A compo-
nent of a graph G is a maximal connected subgraph of G. The distance
between two vertices a and b, denoted by d(a, b), is the minimum of the
lengths of a-b paths of G.

Definition 1.2.5. An independent set or stable set is a set of vertices
in a graph no two of which are adjacent. That is, it is a set I of vertices
such that for every two vertices in I, there is no edge connecting the two.
Equivalently, each edge in the graph has at most one endpoint in I. The
size of an independent set is the number of vertices it contains.
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Definition 1.2.6. A clique in an undirected graph G = (V,E) is a subset
of the vertex set C ⊆ V such that for every two vertices in C, there exists
an edge connecting the two. This is equivalent to saying that the subgraph
induced by C is complete (in some cases, the term clique may also refer to
the subgraph).

A maximal clique is a clique that cannot be extended by adding one
more vertex, and a maximum clique is a clique of the largest possible size
in a given graph. The clique number ω(G) of a graph G is the number of
vertices in the largest clique in G. The opposite of a clique is an independent
set, in the sense that every clique corresponds to an independent set in the
complement graph. The clique cover problem concerns finding as few cliques
as possible that include every vertex in the graph.

Definition 1.2.7. Let G1 and G2 be two graphs with disjoint vertex sets.
The union of G1 and G2, denoted by G1 ∪G2, is a graph such that

V (G1 ∪G2) = V (G1) ∪ V (G2) and
E(G1 ∪G2) = E(G1) ∪ E(G2).

The join of G1 and G2, denoted by G1 +G2, is a graph such that
V (G1 +G2) = V (G1) ∪ V (G2) and
E(G1 +G2) = E(G1) ∪ E(G2) ∪ {{a, b} | a ∈ G1, b ∈ G2}.

The box product of G1 and G2, denoted by G1�G2, is a graph such that
V (G1�G2) = V (G1)× V (G2) and
E(G1�G2) = {{(a1, a2), (a′1, a′2)} | (a1 = a′1 and {a2, a′2} ∈ E(G2)) or

({a1, a′1} ∈ E(G1) and a2 = a′2)}.
The cross product of G1 and G2, denoted by G1×G2, is a graph such that

V (G1 ×G2) = V (G1)× V (G2) and
E(G1×G2) = {{(a1, a2), (a′1, a′2)} | {a1, a′1} ∈ E(G1) and {a2, a′2} ∈ G2}.

The lexicographic product (or composition) of G1 and G2, denoted by
G1[G2], is a graph such that

V (G1[G2]) = V (G1)× V (G2) and
E(G1[G2]) = {{(a1, a2), (a′1, a′2)} | {a1, a′1} ∈ E(G1) or a1 = a′1 and

{a2, a′2} ∈ E(G2)}.

Definition 1.2.8. Let G and H be graphs. An adjacency preserving map-
ping f : V (G) → V (H) is called a homomorphism from G to H, i.e. for
any a, b ∈ V (G), {a, b} ∈ E(G) implies {f(a), f(b)} ∈ E(H).

A homomorphism f is called half strong homomorphism if for all
y, y′ ∈ Im(f), {y, y′} ∈ E(H) implies there exist x ∈ f−1(y) and x′ ∈
f−1(y′) such that {x, x′} ∈ E(G).

A homomorphism f is called locally strong homomorphism if for
all y, y′ ∈ Im(f), {y, y′} ∈ E(H) implies for all x ∈ f−1(y) there exists
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x′ ∈ f−1(y′) such that {x, x′} ∈ E(G).
A homomorphism f is called quasi strong homomorphism if for all

y, y′ ∈ Im(f), {y, y′} ∈ E(H) implies there exist x ∈ f−1(y) such that for
all x′ ∈ f−1(y′), {x, x′} ∈ E(G).

A homomorphism f is called strong homomorphism if for all y, y′ ∈
Im(f), {y, y′} ∈ E(H) implies for all x ∈ f−1(y) and for all x′ ∈ f−1(y′),
{x, x′} ∈ E(G).

Moreover, if f is bijective and its inverse mapping is also a homomor-
phism, then we call f an isomorphism from G to H, and in this case we
say G is isomorphic to H (under f), denoted by G ∼= H. By Hom(G,H),
HHom(G,H), LHom(G,H), QHom(G,H), SHom(G,H) and Iso(G,H)
denote the sets of homomorphisms, half strong homomorphisms, locally
strong homomorphisms, quasi strong homomorphisms, strong homomor-
phisms and isomorphisms, respectively.

Definition 1.2.9. A homomorphism from the graph G to itself is called an
endomorphism of G. A bijective endomorphism of a graph G is called au-
tomorphism ofG. By End(G), HEnd(G), LEnd(G), QEnd(G), SEnd(G)
and Aut(G) denote the sets of endomorphisms, half strong endomorphisms,
locally strong endomorphisms, quasi strong endomorphisms, strong endo-
morphisms and automorphisms, respectively. Obviously, Iso(G,H) ⊆ SHom
(G,H) ⊆ QHom(G,H) ⊆ LHom(G,H) ⊆ HHom(G,H) ⊆ Hom(G,H).

It is well-known that End(G) and SEnd(G) are monoids and Aut(G) is
a group with respect to the composition of mappings.

Definition 1.2.10. A graph G is called Q-S-unretractive if QEnd(G) =
SEnd(G). In an analogous manner, we can define other unretractivities
of graphs. If G is E-A-unretractive (S-A-unretractive), then we call it
simply unretractive (S-unretractive). A graph G is called retractive if
it is not unretractive.

Let G andH be graphs with vertex sets V (G) = {1, 2, ..., n} and V (H) =
{c1, c2, ..., cm}. We denote a homomorphism from G to H in the obvious

sense as f =

(
1 2 ... n
a1 a2 ... an

)
and f−1(a) := {b ∈ V (G) | f(b) = a}.

Definition 1.2.11. Let f be an endomorphism of a graph G. If H is a
subgraph of G, by f |H we denote the restriction of f on H; and f(H) :=
{f(x) | x ∈ H}. A subgraph of G is called the endomorphic image of G
under f , denoted by If , if V (If ) = f(G) and {f(a), f(b)} ∈ E(If ) if and
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only if there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such that {c, d} ∈ E(G),
where a, b, c, d ∈ V (G).

Definition 1.2.12. Let G(V,E) be a graph and ρ ⊆ V × V an equivalence
relation on V . Denote by [a]ρ the equivalence class of a ∈ V under ρ.
The graph, denoted by G/ρ, is called the factor graph of G under ρ, if
V (G/ρ) = V/ρ and {[a]ρ, [b]ρ} ∈ E(G/ρ) if and only if there exist c ∈ [a]ρ
and d ∈ [b]ρ such that {c, d} ∈ E(G).

Let f be an endomorphism of G. By ρf we denote the equivalence
relation on V (G) induced by f , i.e., for a, b ∈ V (G), (a, b) ∈ ρf if and only
if f(a) = f(b). The graph G/ρf is simply called the factor graph by f .

Define if : V (G/ρf ) → V (If ) with if ([x]ρf ) = f(x) for all x ∈ V (G).
Obviously, if is well defined. The following Homomorphism Theorem we
cite from [28].

Proposition 1.2.13. ([28]) Let G be a graph and let f be an endomorphism
of G. Then
(1) if is an isomorphism from G/ρf to If .
(2) f ∈ HEnd(G) if and only if If is a strong subgraph of G.

1.3 Categories

In our study we refer to the word ”amalgamated” which is a categorical con-
cept. So in this section we introduce some basic terminologies of categories
to describe the amalgams.

Definition 1.3.1. A category C consists of the following data:
1. A class ObC of the C−objects; if A is a C−objects, then we write

A ∈ ObC or simply A ∈ C.
2. A set C(A,B) for every pair (A,B) of C−objects, such that C(A,B)∩

C(C,D) = ∅ for all A,B,C,D ∈ C with (A,B) ̸= (C,D). The elements of
C(A,B) are called Cmorphisms from A to B. For this set we will also write
MorC(A,B). For f ∈ C(A,B), we call A the domain (source) and B the

codomain (tail, sink) of f and write f : A → B or A
f→B.

3. A composition of morphisms, i.e. a partial relation as follows: for
any three objects A,B,C ∈ C there exists a mapping, then so called law of
composition

◦ :

{
C(A,B)× C(B,C) → C(A,C)

(f, g) 7→ g ◦ f ,
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such that
(ass) the associativity law h ◦ (g ◦ f) = (h ◦ g) ◦ f holds for the

composition of morphisms, whenever all necessary compositions are defined;
(id) there exists identical morphisms, which behave like neutral

elements with respect to the composition of morphisms, i.e., for every object
A ∈ C there exists a morphism idA ∈ C(A,A) such that f ◦ idA = f and
idA ◦ g = g for all B,C ∈ C, f ∈ C(A,B), g ∈ C(C,A).

Definition 1.3.2. A morphism f ∈ C(A,B), A,B ∈ C is called an iso-
morphism , if there exists a morphism g ∈ C(B,A) with the properties
f ◦ g = idB and g ◦ f = idA.

A morphism f ∈ C(A,B), A,B ∈ C is called amonomorphism (epimo-

rphism) if it is left cancellable, i.e.,

f ◦ g = f ◦ h ⇒ g = h (g′ ◦ f = h′ ◦ g ⇒ g′ = h′)

for all g, h ∈ Mor(C,A) (g′, h′ ∈ Mor(B,D)), i.e., f is ,,left cancellable”
(,,right cancellable”) with respect to the composition.

Definition 1.3.3. Let (Ci)i∈I be a non-empty family of objects in C. The
pair ((ui)i∈I , C) with C ∈ C, ui ∈ C(Ci, C) is called the coproduct of the
(Ci)i∈I , if for all ((ki)i∈I , T ) with T ∈ C, ki ∈ C(Ci, T ) there exists exactly
one k ∈ C(C, T ) such that the following diagram is commutative for all i ∈ I.

T C

Ci

ui

k

ki

@
@
@
@
@I 6

�

As usual we write C =
⨿
i∈I

Ci and the morphism ui is called the ith injection .

Definition 1.3.4. Let H, G1, G2 be objects and m1 : H → G1, m2 : H →
G2 monomorphisms in the category C. We call this constellation a pushout
situation . The pair ((u1, u2), G1

⨿
(H,(m1,m2))

G2) is called pushout (amal-

gam, amalgamated coproduct) of G1 and G2 with respect to (H, (m1,m2)),
if

(a) u1 : G1 → G1
⨿

(H,(m1,m2))

G2 and u2 : G2 → G1
⨿

(H,(m1,m2))

G2 are mor-

phisms such that u1m1 = u2m2, i.e., the square in the following diagram is
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commutative, and
(b) ((u1, u2), G1

⨿
(H,(m1,m2))

G2)) solves the following universal problem

in C.
For every pair ((f1, f2), G, f1 : G1 → G, f2 : G2 → G with f1m1 = f2m2

(i.e., the external rectangle is commutative) there exists exactly one mor-
phism f : G1

⨿
(H,(m1,m2))

G2) → G such that both triangles in the following

diagram are commutative.

G1 H

G2G1
⨿

(H,(m1,m2))

G2

G

f1

f2

f

m1

u2

m2u16
6

�

�

J
J
J
J
J
J
J
JJ]

XXX
XXX

XXX
XXX

XXXy

HH
HH

HHY

Denoted by Gra the category of all graphs. In this category, graphs are
objects and graph homomorphisms are morphisms. The next definition we
consider on this category.

Definition 1.3.5. Let H = (V,E), G1 = (V1, E1), G2 = (V2, E2) be graphs
and m1 : H → G1 and m2 : H → G2 injective graph homomorphisms.
The amalgamted coproduct of G1 and G2 with respect to (H, (m1,m2))
is defined by

V (G1
⨿

(H,(m1,m2))

G2) := (V1 \m1(H)) ∪ V ∪ (V2 \m2(H)),

E(G1
⨿

(H,(m1,m2))

G2) := A ∪B ∪ C, where

A := {{xi, yi} ∈ Ei | xi, yi ∈ Vi \mi(H), i = 1, 2},
B := {{xi, z} | z ∈ V, xi ∈ Vi \mi(H), {xi,mi(z)} ∈ Ei, i = 1, 2}
C := {{z, z′} | z, z′ ∈ V, {mi(z),mi(z

′)} ∈ Ei, i = 1, 2}.

For example take C3 and C5 two graphs as follows.
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s s
s1

2

3

��
@@ s

s s
s s

a

b c

e

d
@@
��

Let H = {x1, x2} be a complete graph. Let m1 : H → C3 and m2 : H → C5

be injective homomorphisms define by m1(x1) = 2, m1(x2) = 3, m2(x1) = a
and m2(x2) = b. We get the amalgam C3

⨿
(H,(m1,m2))

C5 as follows.

s s
s1 �
�
@@

s
s s

x1

x2 c

e

d
@@
��

For this amalgam A, B and C in Definition 1.3.5 are {{c, d}, {d, e}},
{{1, x1}, {1, x2}, {c, x2}, {e, x1}} and {{x1, x2}}, respectively.

1.4 Some algebraic properties of endomorphism
monoids of graphs

Monoids of graphs are generalizations of groups of graphs. In recent years
much attention has been paid to monoids of graphs. A main purpose of
this study is to reveal a relationship between graph theory and semigroup
theory. In [29], Knauer and Wilkeit questioned ,,for which graph G, the
endomorphism monoid of G regular?” After this question was posed, many
special graphs and their endomorphism monoids were studied. A character-
ization of all graphs with a regular monoid seems difficult. A possible way
to characterize a regular endomorphism monoid of graphs is observation in
special graphs.

In this section we provide results which describe a regularity of an en-
domorphism of graphs. Moreover, we describe other algebraic properties of
an endomorphism of graphs.

Regular endomorphisms of graphs

In [34], a characterization of a regular endomorphism of a connected
graph is proved by Elke Wilkeit.
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Lemma 1.4.1. ([34]) Let G be a connected graph. An endomorphism f ∈
End(G) is regular if and only if there are idempotents α and β in End(G)
and an isomorphism ϕ : Im(α) → Im(β) such that f = ϕα and Im(f) =
Im(β).

In [23], Weimin Li gave other characterizations of a regular endomor-
phism of a graph.

Theorem 1.4.2. ([23]) Let G be a graph and let f ∈ End(G). Then f
is regular if and only if there exist g, h ∈ Idpt(G) such that ρg = ρf and
Ih = If .

Weimin Li also gave the usefull lemma to considering the regularity of
an endomorphism monoid of graph.

Lemma 1.4.3. ([27]) Let G be a graph and let f ∈ End(G). Then:
(1) f ∈ HEnd(G) if and only if If is an induced subgraph of G.
(2) If f is regular, then f ∈ HEnd(G).

Lemma 1.4.1 and Theorems 1.4.2 and 1.4.3 give a way to prove regularity
of an endomorphism of graph. For any graph G, we call G is an endomor-
phism regular monoid (or simply endo-regular) if End(G) is a regular
monoid. Next we give a lemma describing a way which shows when a graph
is not endo-regular.

Lemma 1.4.4. Let f be an endomorphism of a connected graph G. Let
Im(f) be strong subgraph of G with V (Im(f)) = f(G). If G is endo-regular,
then Im(f) is endo-regular.

Proof. We prove by contraposition. Let f be an endomorphism in End(G)
which Im(f) is not endo-regular. Since End(Im(f)) is not a regular semi-
group, so there exists a non-regular endomorphism g ∈ End(Im(f)). It is
clear that gf is an endomorphism of G. Assume that gf is regular, so there
exists h ∈ End(G) such that (gf)h(gf) = gf . Then we get that

g(fh)g(f(G)) = g(f(G)) ⇒ g(fh)g(Im(f)) = g(Im(f)).

Since fh is an endomorphism and Im(fh) ⊆ Im(f), then fh|Im(f) is an
endomorphism of Im(f), so g(fh|Im(f))g = g. Now we have g is regular
which is a contradiction. Therefore, we could conclude that G is not endo-
regular.
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Completely regular endomorphisms of graphs

In [26], Weimin Li proved the proposition which described a way to find
the complete regularity of an endomorphism of graphs.

Proposition 1.4.5. ([26]) Let G be a graph. Suppose f ∈ End(G) and f
is regular. Then the following four statements are equivalent:

(1) f is completely regular;
(2) Idpt(G) ∩ [f ]H ̸= ∅;
(3) There exists g ∈ End(G) such that g2 = g, If = Ig and ρf = ρg;
(4) There exists g ∈ End(G) such that g2 = g, f(G) = g(G) and ρf = ρg.

We get an inspiration from the above proposition and prove a theorem
describing when an endomorphism f of graphs is completely regular by
considering directly from f . We describe a property of a mapping f of a
finite set G. We denote T (G) the set of all mappings from G to itself.

Lemma 1.4.6. Let G be a (finite) set, if f ∈ T (G) and there exist a, b ∈ G
with f(a) ̸= f(b) and f2(a) = f2(b), then f is not completely regular.

Proof. Take f is a mapping of the set G. Let a, b ∈ G with f(a) ̸= f(b)
and f2(a) = f2(b). Assume that f is completely regular, then there exists
g ∈ T (G) with fgf = f and fg = gf . Consider at vertices a and b, we have

gf2(a) = fgf(a) = f(a) ̸= f(b) = fgf(b) = gf2(b) = gf2(a).

This is a contradiction. Then we get f is not completely regular.

We call this property square injective since it is equivalent to say
f2(a) = f2(b) implies f(a) = f(b).

The next theorem describes another way to show which endomorphisms
are completely regular.

Theorem 1.4.7. Let G be a finite graph and f be an endomorphism of G.
Then f is completely regular if and only if for all a, b ∈ V (G), f(a) ̸= f(b)
implies f2(a) ̸= f2(b), i.e., f is square injective. In this case, if f is not
idempotent, we have ff i−1f = f and ff i−1 = f i−1f where f i is the smallest
idempotent power of f .

Proof. Necessity. This follows from Lemma 1.4.6.
Sufficiency. Let f be a square injective endomorphism of G. Since G is

finite, there exists some i ∈ N such that f i is an idempotent, i.e., (f i)2 = f i.
If f is idempotent, it is clear that f is completely regular. Now we
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suppose that f is not idempotent. So there exists 2 ≤ i ∈ N such that f i is
idempotent.

We will show that f(a) = f i+1(a) for all a ∈ V (G). Let a ∈ V (G). Since
f i is an idempotent, we have f2(f2i−2(a)) = f2i(a) = (f i)2(a) = f i(a) =
f2(f i−2(a)). Since f is square injective, we get that f2i−1(a) = f i−1(a).
By repeating this process for i − 1 times, we get that f i+1(a) = f(a), i.e.,
ff i−1f = f . It is clear that ff i−1 = f i−1f . Now we have f is completely
regular.

Endo-idempotent-closed graphs

In this dissertation, we denote Idpt(G) the set of all idempotent endo-
morphisms of the graph G. We call G an endomorphism idempotent
closed(or simply, endo-idempotent-closed) graph, if Idpt(G) forms a
semigroup.

We begin this section by giving lemmas and corollaries describing which
graphs are not endo-idempotent-closed.

Lemma 1.4.8. Let G be a connected graph and a ∈ V (G). If |N(a)| ≥ 3
and N(d) ⊆ N(c) ⊆ N(b) for some distinct b, c, d ∈ N(a), then G is not
endo-idempotent-closed.

Proof. Let a ∈ V (G) such that |N(a)| ≥ 3 and let b, c, d ∈ N(a) such that
N(d) ⊆ N(c) ⊆ N(b). It is clear that

f(x) =


x, x ∈ V (G) \ {b, c, d}
b, x ∈ {b, c}
d, x = d

and g(x) =


x, x ∈ V (G) \ {b, c, d}
b, x = b
c, x ∈ {c, d}

are idempotent endomorphisms of G. But

(g ◦ f)(x) =


x, x ∈ V (G) \ {b, c, d}
b, x ∈ {b, c}
c, x = d

is not idempotent. So we get that G is not endo-idempotent-closed.

Example 1.4.9. Take G a star graph as follows.

s s s
s

b
a

c

d

@@
��
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We see that N(a) = {b, c, d} has 3 vertices. This graph is not endo-

idempotent-closed since f =

(
a b c d
a b b d

)
and g =

(
a b c d
a b c c

)
are

idempotent endomorphisms but g ◦ f is not idempotent. �

If a connected graph G does not satisfy the condition in Lemma 1.4.8,
it does not follow that G is endo-idempotent-closed. We can consider a
factor graph G/ρf for idempotent endomorphism f of G. If this factor
graph satisfies the condition in Lemma 1.4.8, we will get that G is not endo-
idempotent-closed. The next corollary describes this situation.

Corollary 1.4.10. Let G be a connected graph and a ∈ V (G) such that
|N(a)| ≥ 3. Let b, c, d be distinct elements in N(a). If f is an idempo-
tent endomorphisms of G such that f(i) = i for all i ∈ {a, b, c, d} and
NG/ρf

([d]ρf ) ⊆ NG/ρf
([c]ρf ) ⊆ NG/ρf ([b]ρf ), then G is not endo-idempotent-

closed.

Proof. Let f be an idempotent endomorphisms of G such that f(i) = i for
all i ∈ {a, b, c, d} and NG/ρf

([d]ρf ) ⊆ NG/ρf
([c]ρf ) ⊆ NG/ρf

([b]ρf ). It is clear

that

g(x) =


f(x), x /∈ [b]ρf ∪ [c]ρf ∪ [d]ρf
b, x ∈ [b]ρf ∪ [c]ρf
d, x ∈ [d]ρf

and

h(x) =


f(x), x /∈ [b]ρf ∪ [c]ρf ∪ [d]ρf
b, x ∈ [b]ρf
c, x ∈ [c]ρf ∪ [d]ρf

are idempotent endomorphisms of G. But

(h ◦ g)(x) =


f(x), x /∈ [b]ρf ∪ [c]ρf ∪ [d]ρf
b, x ∈ [b]ρf ∪ [c]ρf
c, x ∈ [d]ρf

is not idempotent. So we get that G is not endo-idempotent-closed.

Example 1.4.11. Take G a graph and some its factor graphs as follows.

ss ss ss
b a

c

d

x y s ss sb
axy

c

d

Then f =

(
a b c d x y
a b c d a a

)
is an idempotent endomorphism of G. We

see that this graph does not satisfy the condition in Lemma 1.4.8 but G
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is not endo-idempotent-closed since g =

(
a b c d x y
a b b d a a

)
and h =(

a b c d x y
a b c c a a

)
are idempotent endomorphisms of G and h◦ g is not

idempotent.
This graph fulfills the condition in Corollary 1.4.10 since NG/ρf

([a]ρf ) =

{[b]ρf , [c]ρf , [d]ρf } andNG/ρf
([b]ρf ) = NG/ρf

([c]ρf ) = NG/ρf
([d]ρf ) = {[a]ρf }.

This confirms that the Corollary 1.4.10 is hold. �



Chapter 2

Bipartite graphs

The bipartite graphs are well-known graphs which are studied with respect
to the regularity of their endomorphism monoids. So, in this chapter, we
review and give results about the algebraic properties of endomorphism
monoids of connected bipartite graphs which will be useful later.

2.1 Endo-regular and endo-completely-regular

In [34], Wilkeit gave a characterization of connected bipartite graphs with
a regular monoid. Before that we introduce some definitions and notations.

Definition 2.1.1. Denoted by Pn a connected graph with V (Pn) = {0, 1, ..., n}
and E(Pn) = {{i, i+1} | 0 ≤ i ≤ n−1}. We call Pn a path with n edges and
n+1 vertices. Denoted by Cn a connected graph with V (Cn) = {0, 1, ..., n−1}
and E(Pn) = {{i, i + 1} | 0 ≤ i ≤ n − 1 (under modulo n)}. We call Cn a
cycle with n edges and n vertices. We call a bipartite graph G a tree if G
is a connected graph which contains no cycle as a subgraph.

Theorem 2.1.2. ([34]) A connected bipartite graph G is endo-regular if and
only if G is one of the following graphs:
• the complete bipartite graphs Km,n including the complete graphs K1 and
K2, the cycle C4 and the trees of diameter 2,
• the trees of diameter 3,
• the cycles C6 and C8, and
• the path P4 of length 4.

In [5], Fan generalized Theorem 2.1.2 for non-connected graphs without
loops and multiple edges.

18
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Theorem 2.1.3. A non-connected bipartite graph G is endo-regular if and
only if G is nK1, (n− 1)K1 ∪K2 or nK2, n ≥ 2.

In this dissertation, for any graph G we call G is endomorphism com-
pletely regular (or simply endo-completely-regular) if End(G) is a com-
pletely regular semigroup. We call G is a endomorphism orthodox (or
simply endo-orthodox ) if End(G) is an orthodox semigroup. And we call
G is an endomorphism Clifford (or simply endo-Clifford) if End(G) is
a Clifford semigroup.

It is easy to see which endo-regular connected bipartite graph is endo-
completely-regular, endo-orthodox and endo-Clifford. We have only 5 and
4 bipartite graphs which are endo-completely-regular and endo-orthodox,
respectively. We also have exactly one bipartite graph (this graph is unre-
tractive) which is endo-Clifford.

Theorem 2.1.4. (1) A connected bipartite graph G is endo-completely-
regular if and only if G is one of P1, P2, P3, C4 and C6.

(2) A connected bipartite graph G is endo-orthodox if and only if G is
one of P1, P2, P3 and C4.

(3) Exactly the path P1 (K2) is a connected bipartite graph which is endo-
Clifford.

It is also easy to check which endo-regular non-connected bipartite graph
is endo-completely-regular, endo-orthodox and endo-Clifford.

Theorem 2.1.5. (1) No non-connected bipartite graph is endo-completely-
regular.

(2) Exactly two non-connected bipartite graphs K1∪K2 and K2∪K2 are
endo-orthodox.

(3) No non-connected bipartite graph is endo-Clifford.

2.2 Endo-idempotent-closed

In this section, we consider only trees, cycles and complete bipartite graphs
which are bipartite graphs. We find when they are endo-idempotent-closed.
We recall again that Idpt(G) is the set of all idempotent endomorphisms of
graph G. We begin this section by considering the trees.

Lemma 2.2.1. Let T be a tree and a ∈ V (T ). If |N(a)| ≥ 3, we get that T
is not endo-idempotent-closed.

Proof. This follows from Corollary 1.4.10.
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It is clear by the above lemma that if a tree T is not a path, then T
is not endo-idempotent-closed. So next we consider which path is endo-
idempotent-closed. It is routine to check that the paths P1, P2 and P3 are
endo-idempotent-closed. For any n ≥ 4 the path Pn is not endo-idempotent-
closed.

Lemma 2.2.2. The paths P1, P2 and P3 are endo-idempotent-closed.

Lemma 2.2.3. For any n ≥ 4, the path Pn is not endo-idempotent-closed.

Proof. First we show the case n = 4. Take a path P4 as follows.

s s ss s
0 1 2 3 4

It is clear that f =

(
0 1 2 3 4
0 1 2 1 0

)
and g =

(
0 1 2 3 4
2 1 2 3 4

)
are

idempotent endomorphisms of P4. But f ◦ g =

(
0 1 2 3 4
2 1 2 1 0

)
is not

idempotent. So we get that P4 is not endo-idempotent-closed.
Now we can prove for any n ≥ 4, if n is even, it is clear that two mappings

f =

(
0 1 ... n

2
n
2 + 1 n

2 + 2 ... n
0 1 ... n

2
n
2 − 1 n

2 − 2 ... 0

)
and

g =

(
0 ... n

2 − 2 n
2 − 1 n

2 ... n− 1 n
n ... n

2 + 2 n
2 + 1 n

2 ... n− 1 n

)
of Pn are idempotent endomorphisms and f ◦g is not idempotent. If n is odd,
similar as case n is even we can construct two idempotent endomorphisms
of Pn with the composition of them is not idempotent.

Now we get the theorem describing which tree is endo-idempotent-closed.

Theorem 2.2.4. Exactly the paths P1, P2 and P3 are endo-idempotent-
closed trees.

Corollary 2.2.5. For any n ≥ 4, the cycle C2n is not endo-idempotent-
closed.

Now we have only two cycles C4 and C6 to considering. It is routine to
check that C4 is endo-idempotent-closed. Next we show that the cycle C6

is not endo-idempotent-closed.

Example 2.2.6. Take the cycle C6 as follows.
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s s
s

s
s s0

1 2

3

5 4

��
@@ ��

@@

It is clear that f =

(
0 1 2 3 4 5
0 1 2 3 2 1

)
and g =

(
0 1 2 3 4 5
4 3 2 3 4 5

)
are idempotent endomorphisms of C6. But f ◦ g =

(
0 1 2 3 4 5
2 3 2 3 2 1

)
is not idempotent. So we get that C6 is not endo-idempotent-closed. �

Theorem 2.2.7. The only endo-idempotent-closed even cycle is C4.

The next theorem follows from Theorems 2.2.4, 2.2.7 and Corollary
1.4.10.

Theorem 2.2.8. The complete bipartite graph Km,n is endo-idempotent-
closed if and only if m,n ≤ 2.

2.3 Locally strong endomorphisms of Pn and C2n

For any graph G, since the set of all endomorphisms End(G) of G is al-
ways a monoid, in this section we consider when the set of all locally strong
endomorphisms LEnd(G) of G, which is not necessarily a semigroup, is a
semigroup. It is well-known that the paths Pn and the cycles C2n are not
E-L-unretractive. So, we mention on the sets LEnd(Pn) and LEnd′(C2n).

Basics
In this section we need to show that an endomorphic image If is a strong
subgraph of G for any f ∈ LEnd(G) where G ∈ {Pn, C2m | n ≥ 1,m ≥ 2}.

Lemma 2.3.1. ([28]) Let C2n (n ≥ 2) be a cycle and let f ∈ End(C2n). If
f is not bijective, If = Pk for some k ∈ {1, 2, ..., n}.

The next observation is clear.

Lemma 2.3.2. Let Pn (n ≥ 2) be a path and f ∈ End(Pn). Then If = Pm

for some k ∈ {1, 2, ..., n}.

Now we get the main result in this section.

Lemma 2.3.3. Let G ∈ {Pn, C2m | n ≥ 1,m ≥ 2} and f ∈ End(G). Then
If is a strong subgraph of G.
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Proof. Let f ∈ End(G) be an endomorphism of G. We consider only the
case G = C2m. The other cases follow analogously. We suppose that f
is not bijective, so we get by Lemma 2.3.1 that If = Pk for some k ∈
{1, 2, ...,m}. Since If is a connected subgraph of C2m and all non-trivial
connected subgraphs of C2m are paths and are strong subgraphs of G, then
If is a strong subgraph of G.

The proof of the next corollary base on Proposition 1.2.13 and Lemma
2.3.3.

Corollary 2.3.4. End(Pn) = HEnd(Pn) and End(Cm) = HEnd(Cm) for
all n ≥ 1 and m ≥ 3.

Main results

We begin this section with the set of all locally strong endomorphisms
LEnd(Pn) of path Pn. In [1], Sr. Arworn, U. Knauer and S. Leeratanavalee
found when the set LEnd(Pn) formed a semigroup and found its cardinal
number. We cite some definitions, lemmas, theorems and corollaries in [1]
which we will use later.

Definition 2.3.5. ([1]) An endomorphism f : Pn → Pn is called a complete
folding if the congruence classes of the relation, ker f = {(x, y) ∈ Pn×Pn |
f(x) = f(y)}, partition Pn in to ℓ+1 classes where ℓ|n and the equivalence
classes are in the form:

[0] = {2mℓ ∈ Pn | m = 0, 1, ...},
[ℓ] = {(2m+ 1)ℓ ∈ Pn | m = 0, 1, ...}

and for any 0 < r < ℓ,
[r] = {2mℓ+ r ∈ Pn | m = 0, 1, ...} ∪ {2mℓ− r ∈ Pn | m = 1, 2, ...}.

We call ℓ the length of f .

Corollary 2.3.6. ([1]) An endomorphism on undirected path is locally strong
if and only if it is a complete folding.

Corollary 2.3.7. ([1]) The set LEnd(Pn) forms a monoid if and only if n
is a prime or 4.

Theorem 2.3.8. ([1]) |LEnd(Pn)| = 2
∑
ℓ|n

(n− ℓ+ 1).

We consider the set LEnd′(C2n). First we give a remark which generalize
a complete folding for homomorphism from any paths to any graphs.
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Remark 2.3.9. (1) We can generalize the definition of complete folding for
a homomorphism f from path Pn to any graph G. This implies that the
condition in Definition 2.3.5 is held for f : Pn → G.

(2) If we replace ,,an endomorphism on undirected path” by ,,a homo-
morphism from undirected path Pn to undirected path Pm” in Corollary
2.3.6, the corollary is still true. But for any graph G the complete folding f
from any undirected paths to G is not necessarily locally strong. For exam-
ple, all bijective homomorphisms from P2 to C3 are complete folding, but
they are not locally strong.

We start finding the cardinal number of the set LEnd′(C2n) wonce we
observe the next example to investigate how many congruence relations,
which have n+1 congruence classes, induced by locally strong endomorphism
in LEnd′(C2n).

Example 2.3.10. Consider the cycle C6 as follows.

��
@@

@@
��

s s
s

s ss
1 2

3

45

0

For any non-trivial endomorphism f of C6, we have 3 possible non-trivial
congruence relations induced by f which have 4 congruence classes including:

ρ1 = {{0}, {1, 5}, {2, 4}, {3}}
ρ2 = {{1}, {2, 0}, {3, 5}, {4}}
ρ3 = {{2}, {3, 1}, {4, 0}, {5}}. �

The following observation is clear.

Lemma 2.3.11. For any cycle C2n, n ≥ 2, we have n possible non-trivial
congruence relations induced by any non-trivial endomorphism of C2n which
have n+ 1 congruence classes each.

We denote by Pn,a the congruence relation induced by non-trivial en-
domorphism of C2n which has n + 1 congruence classes and [a] = {a} and
[a + n] = {a + n}. It is clear that Pn,a is isomorphic to a factor graph
induced by the respective endomorphism of C2n. From above lemma we get
that Pn,0, Pn,1,....,Pn,n−1 are n non-trivial congruence relations which have
n+ 1 congruence classes. The next lemma is clear.
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Lemma 2.3.12. For any cycle C2n,
(1) for any a ∈ V (C2n), Pn,a is a non-trivial congruence relation which

has a maximal congruence classes;
(2) for any non trivial f ∈ End(C2n), there exists b ∈ V (C2n) which

Pn,b ⊆ ρf .

We find when a non-trivial endomorphism f of C2n is locally strong. We
observe the next example to find some arguments which are the proofs in
general cases.

Example 2.3.13. Consider the cycle C6 in Example 2.3.10. Let f be an
endomorphism of C6 which is defined as follows.

��@@

�� @@s ss
s ss ssss1

2

5

0

3

4

1

2

3

4

If
P3,0 ⊆

ss
ss

0

3

2 4

1 5

It is clear that f is locally strong and P3,0 ⊆ ρf . We see that f |{0,1,2,3} is
a homomorphism from {0, 1, 2, 3} to If for some k > 0. It is also complete
folding, i.e., it is locally strong. Let g be an endomorphism of C6 which is
defined as follows.

��@@
@@ ��s ss
s ss sss1

2

5

0

3
4

1

2

3

IgP3,0 ⊆

HHHss
s s
0

3

2 4

1 5

It is clear that g is not locally strong and P3,0 ⊆ ρg. We see that g|{0,1,2,3} is
a homomorphism from {0, 1, 2, 3} to Ig for some k > 0, but it is not locally
strong. �

The next observation is clear by using Lemma 2.3.3, Remark 2.3.9 (2)
and the argument in the above example.

Lemma 2.3.14. Let f ∈ End′(C2n) with Pn,a ⊆ ρf for some a ∈ V (C2n).
Then f is locally strong if and only if f |{a,a+1,...,a+n} is a locally strong
homomorphism from a path {a, a+ 1, ..., a+ n} to a path If .



25

Corollary 2.3.15. Let f be non-trivial endomorphism of C2n with Pn,a ⊆ ρf
for some a ∈ V (C2n). If (|ρf | − 1) - n, f is not locally strong.

To find the cardinal number of the set LEnd′(C2n), we need some lem-
mas. The next lemma is clear by the observation of the next example.

Example 2.3.16. Consider the cycle C6 in Example 2.3.10. If ℓ = 3, we
have 3 congruence relations induced by endomorphisms of C6 which have
4 congruence classes (see Example 2.3.10). Let ρi be congruence relation
in Example 2.3.10. Then ρi = P3,a for some a ∈ V (C6). It is clear that
g(a + j) = a + j for all j ∈ {0, 1, 2, 3} is a locally strong endomorphism of
strong subgraph {a, a + 1, a + 2, a + 3} of G. It is also clear that f(x) =
a + j, x ∈ [a + j]ρi for all j ∈ {0, 1, 2, 3} is an endomorphism of C2n. Now
we get by Lemma 2.3.14 that f is locally strong. This means there exists
locally strong endomorphism whose congruence relations is ρi. So we have
3 congruence relations induced by some locally strong endomorphism of C6

which have 4 congruence classes.
If ℓ = 1, we have 1 possible congruence relation induced by some locally

strong endomorphism which have 2 congruence classes:

ρ4 = {{0, 2, 4}, {1, 3, 5}}.

�

Lemma 2.3.17. For any cycle C2n, n ≥ 2, if ℓ ≤ n and ℓ|n, then there
exists ℓ congruence relations induced by some locally strong endomorphism
of C2n which have ℓ+ 1 congruence classes.

The next lemma shows us for any f ∈ LEnd′(C2n) how many locally
strong endomorphisms of C2n whose congruence relations are ρf .

Lemma 2.3.18. For any cycle C2n, if f ∈ LEnd(C2n), then there exists 4n
locally strong endomorphisms of C2n whose congruence relations are ρf .

Proof. Let f ∈ LEnd′(C2n). Suppose that f has length ℓ. It is clear that
factor graph C2n/ρf is isomorphic to Pℓ, so C2n/ρf is [x]ρf -[x+ ℓ]ρf path for
some x ∈ V (C2n).

To find all locally strong endomorphisms whose congruence relations are
ρf , it is sufficient to find all injective homomorphism from C2n/ρf to C2n

(i.e., find all possible injective homomorphism g as the following graph).
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-

-
-ssp

pps
ssp
pps

[x]ρf

[x+ 1]ρf

[x+ ℓ]ρf

b

b+ 1 (b− 1)

b+ ℓ (b− ℓ)
g

C2n/ρf
∼= Pℓ ⊆ C2n

It is clear that we have 2n ways to send [x]ρf into C2n. If we send
[x]ρf to b for some b ∈ V (C2n), we have 2 ways to send [x + 1]ρf into
C2n, that is [x + 1]ρf is send to b + 1 or b − 1. So, we have 4n possible
injective homomorphism g from C2n/ρf to C2n. So, we have 4n locally
strong endomorphisms of C2n whose congruence relations are ρf .

By Lemmas 2.3.17 and 2.3.18 we get the next theorem describing the
cardinal number of the set LEnd′(C2n).

Theorem 2.3.19. |LEnd′(C2n)| = 4n
∑
ℓ|n

ℓ.

It is well-known that the group Aut(C2n) is isomorphic to the dihedral
group D2n which has 4n elements. So we have 4n automorphisms of C2n.
Therefore, we get the next corollary.

Corollary 2.3.20. |LEnd(C2n)| = 4n(1 +
∑
ℓ|n

ℓ)

Next we will show when the set LEnd′(C2n) forms a semigroup. The
following three observations are clear.

Lemma 2.3.21. Every endomorphism f of length 1 of a cycle C2n is locally
strong endomorphism.

Lemma 2.3.22. Every endomorphism f : C4 → C4 of length 2 is locally
strong endomorphism.

Lemma 2.3.23. Let n ≥ 2 and let f : C2n → C2n be an endomorphism
of length m1 and g : C2n → C2n be an endomorphism of length m2. If
m1 ≤ m2, then f ◦ g and g ◦ f are endomorphisms of length k ≤ m1.

Lemma 2.3.24. The set LEnd′(C4) forms a semigroup.

Proof. This follows from Lemmas 2.3.21, 2.3.22 and 2.3.23 since any non-
trivial endomorphism of C4 has length 1 or 2.

Lemma 2.3.25. The set LEnd′(C6) does not form a semigroup.
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Proof. Take a cycle C6 as follows.
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Take f and g locally strong endomorphisms of C6 as follows.
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f

P3,1 f(C6)
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2

1, 3

0, 4

5

2

3

4

5
g

P3,2 g(C6)

And we get that f ◦ g is an endomorphism as follows

@@
-

-
-ss

s s ss
s

2

1, 3

0, 4

5

2

3

4
f ◦ g

⊇ P3,2 (f ◦ g)(C6)

which is not complete folding with respect to P3,0, P3,1 or P3,2. So f ◦ g
is not a locally strong endomorphism. Hence, LEnd′(C6) does not form a
semigroup.

For any n ≥ 3, we can prove that a cycle LEnd′(C2n) does not form a
semigroup by using the argument of Lemma 2.3.25. So, we get the proposi-
tion and the theorem.

Proposition 2.3.26. For any n ≥ 3, the set LEnd′(C2n) does not form a
semigroup.

Theorem 2.3.27. The set LEnd′(C2n) forms a semigroup if and only if
n = 2.

Consider the cycle C4 as follows.
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It is routine to check that f =

(
0 1 2 3
0 1 2 1

)
and g =

(
0 1 2 3
0 3 2 3

)
are non-trivial locally strong endomorphisms of C4. Since f = fg ̸= gf = g,
then LEnd′(C4) is not a Clifford semigroup.

If we consider when the set of all quasi-strong endomorphism of Pn or
C2m forms a semigroup, we have few cases to consider since it is quite clear
that

(1) Pn is Q-A-unretractive if and only if QEnd(Pn) is a group Aut(Pn)
if and only if n ̸= 2 or n ̸= 3 and

(2) C2m isQ-A-unretractive if and only ifQEnd(C2m) is a groupAut(C2m)
if and only if m > 2.

This means we check only the setsQEnd(P2), QEnd(P3) andQEnd(C4).
We accuraly get these three sets form monoids.

For further studies, the sets of all quasi-strong endomorphisms of Q-A-
retractive graphs will be proved.



Chapter 3

8-graphs

In this chapter, we introduce a graph which we call ,,8-graph” because it
looks like the number 8. For this 8-graph, we got an inspiration from the
molecular graph, spirocompound, in [30]. Some 8-graphs are also bipartite
graphs. We study endo-properties of these 8-graphs. Moreover, we gen-
eralize 8-graphs to multiple 8-graphs and study the endo-properties of the
multiple 8-graphs.

3.1 Definition of 8-graphs

In this section, we introduce the definition of 8-graph and give properties
of cycles which we will use in the proofs of algebraic properties of endomor-
phism monoids of 8-graphs.

Definition 3.1.1. We call graph G an 8-graph if there exist two cycle
subgraphs Cn, Cm with Cn ∪ Cm = G and Cn ∩ Cm = Pr for some r ≥ 0.
We denote this 8−graph by Cn,m;Pr.

In this chapter, we denote by P0 a singleton set.

Example 3.1.2. The three following graphs are C5,6;P2, C5,7;P3 and C7,6;P4,
respectively.

29
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There three graphs are isomorphic as can be seen by redrawing. The next
proposition generalized this property.

Proposition 3.1.3. For all r > 0,

Cn,m;Pr = Cn+m−2r,m;Pm−r = Cn,m+n−2r;Pn−r.

The next observation is clear.

Proposition 3.1.4. If m,n are even integers, the 8-graph Cm,n;Pr is a
bipartite graph for all r > 0.

We also get that all 8-graphs are amalgamated coproduct of cycles.

Example 3.1.5. We will show that the 8-graph C3,3;P0 is an amalgamated
coproduct of cycles. Take H := {a1} and G1, G2 the cycles as follows.
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c2

c3

G1 G2

��
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It is clear that m1(a1) = b1 and m2(a1) = c1 are injective homomorphisms
from H to G1 and G2, respectively. By the Definition 1.3.5 we get the amal-
gamted G1

⨿
(H,(m1,m2))

G2 as follows which is the 8-graph C3,3;P0.
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The next observation is clear.

Proposition 3.1.6. All 8-graphs are amalgamated coproduct of cycles.

Before we show that all 8-graphs are retractive, we need some lemmas.
We cite the next quite obvious lemma from [2].
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Lemma 3.1.7. ([2]) If n,m ≥ 3 and n is odd, then Hom(Cn, Cm) = ∅ if
and only if m is even or m > n.

The next two corollaries are consequences of Lemma 3.1.7.

Corollary 3.1.8. For any 3 ≤ n < m, we get that
(1) for all f ∈ Hom(Cn, Cm), f(Cn) � Cn and
(2) for all f ∈ End(Cm), f(Cm) � Cn.

Corollary 3.1.9. For any 8-graph Cn,m;Pr, if Ck is a smallest odd length
cycle subgraph of Cn,m;Pr, then f(Ck) = Ck for all f ∈ End(Cn,m;Pr).

First we consider an 8-graph Cn,m;Pr where r = 0.

Lemma 3.1.10. For any n,m ≥ 3, the 8-graph Cn,m;P0 is retractive.

Proof. Let P0 = {0}. If m is even, set V (Cm) = {0, 1, 2, ...,m − 1} and
define

f(i) =

{
i , i ∈ Cn

m
2 − j , i ∈ {m

2 − j, m2 + j}; j ∈ {0, 1, ..., m2 }

a mapping from G to itself. It is clear that f ∈ End′(G), so Cn,m;P0 is
retractive.

If n,m are odd, by Lemma 3.1.7, there exists f ∈ End′(Cn,m;P0). So,
we get that Cn,m;P0 is retractive.

Next, we will prove that Cn,m;Pr is retractive where r > 0.

Lemma 3.1.11. For any r > 0, if m ≥ r, there exists f ∈ End(C2m) with
f(C2m) = Pr where Pr a path subgraph of the cycle C2m.

Proof. It is clear that cycle C2m can be mapped homomorphically onto Pm

which is turn goes onto Pr if and only if m ≥ r.

Corollary 3.1.12. For any 0 < r ≤ m, an 8-graph Cn,2m;Pr is retractive.

The next corollary is consequence from Corollary 3.1.12 and Proposition
3.1.3.

Corollary 3.1.13. For any r > 0, an 8-graph Cn,m;Pr is retractive.

Proof. By Proposition 3.1.3 we know that

Cn,m;Pr = Cn+m−2r,m;Pm−r = Cn,m+n−2r;Pn−r.

Since at least one of n,m, n + m − 2r is even, we get by Corollary 3.1.12
that Cn,m;Pr is retractive.

Theorem 3.1.14. All 8-graphs are retractive.

Proof. This follows from Lemma 3.1.10 and Corollary 3.1.13.
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3.2 Regular endomorphisms of 8-graphs

We know from Proposition 3.1.4 that an 8−graph Cn,m;Pr is a bipartite
graph if n and m are even integers. So we refer to Theorem 2.1.2 which
describes all endo-regular connected bipartite graphs.

It is clear that for any even integers n,m, exactly the 8-graph C4,4;P2 is
endo-regular bipartite graph. Then we get the corollary of Theorem 2.1.2.

Corollary 3.2.1. If m,n are even integers, exactly the 8-graph Cn,m;Pr

with n = m = 4, r = 2 is endo-regular.

We turn to consider an 8-graph Cn,m;Pr when n or m is odd. First we
consider when both of them are odd. We begin with the case n = m.

Lemma 3.2.2. The 8-graphs C3,3;P0 and C3,3;P1 are endo-regular.

Proof. Take the 8-graphs C3,3;P0 and C3,3;P1 as follows.
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We will show that End(C3,3;P0) and End(C3,3;P1) are regular monoids. We
first consider End(C3,3;P0). For the 8-graph C3,3;P0, there exist only two
non-trivial congruence relations, i.e.,

ρ1 = {{a1}, {a2, b2}, {a3, b3}} or
ρ2 = {{a1}, {a2, b3}, {a3, b2}}.

We call {a1, a2, a3}, the cycle subgraph of C3,3;P0, an a-cycle. Similarly,
we call {a1, b2, b3} a b-cycle. Now we consider an endomorphism f which
corresponds to ρ1. We may assume that Im(f) is the a-cycle and f in-
duces a non-identical automorphism of this a-cycle. Assume f(a1) = a2 and
f(a2) = a3 then we take for any other rotation of the a-cycle

g =

(
a1 a2 a3 b2 b3
a2 a3 a1 a3 a1

)
which is an endomorphism of C3,3;P0 and fgf = f . So f is regular. Simi-
larly if f is a reflection on the a-cycle, i.e., f(a1) = a1 and f(a2) = a3 then
we get that f3 = f , so f is regular.

Similarly, we also get that f is regular if f corresponds to ρ2.
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Now we consider End(C3,3;P1). There exists only one non-trivial con-
gruence relation: ρ = {{x1}, {x2}, {x3, y3}}. Similar as the 8-graph C5,5;P0

we get that End(C5,5;P1) is a regular monoid.

We can prove that if n is odd, then all endomorphisms of Cn,n;Pr are
regular by using the argument of Lemma 3.2.2. So, we get the next propo-
sition.

Proposition 3.2.3. If n is odd, all endomorphisms of Cn,n;Pr are regular.

Now we consider the 8-graph Cn,m;Pr when n,m are odd and n ̸= m.

Lemma 3.2.4. The 8-graph C3,5;P1 is not endo-regular.

Proof. Take the 8-graph C3,5;P1 with its endomorphic image as follows.
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Then f =

(
x1 x2 x3 y3 y4 y5
x3 x1 x2 x2 y3 x2

)
is the corresponding endomorphism

of C3,5;P1. Assume that there exists g ∈ End(C3,5;P1) such that fgf = f .
Since f−1(y3) = {y4}, f−1(x1) = {x2} and f−1(x3) = {x1} are singleton
sets, then g(y3) = y4, g(x1) = x2 and g(x2) = x3. By Lemma 3.1.7, we have
that g must preserve the cycle C3 = {x1, x2, x3}, a subgraph of C3,5;P1, so
g(x3) = x2. Since {x2, y3} ∈ E(C3,5;P1) and {g(x2), g(y3)} = {x3, y4} /∈
E(C3,5;P1), g is not an endomorphism. So f is not regular.

We can prove the next proposition by using the argument of Lemma
3.2.4. In this situation, we suppose that the cycle Cn is the minimal cy-
cle subgraph of an 8-graph Cn,m;Pr. We construct an endomorphism f of
Cn,m;Pr with f(Cn) = Cn and there exists only one vertex a in Cn,m;Pr \
(Cn∪

∪
x∈Cn

N(x)) such that f(a) ∈ Cn,m;Pr \Cn. We get that this endomor-

phism f is not regular.

Proposition 3.2.5. Let n ̸= m be integers. If
(1) n,m are odd or
(2) n is odd and m is even and |m− 2r| ≥ 2 and (r ̸= 1 or m ̸= 4),

then Cn,m;Pr is not an endo-regular.
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Now we have the following theorem.

Theorem 3.2.6. Let n,m ≥ 3 be odd integers. An 8-graph Cn,m;Pr is
endo-regular if and only if n = m.

Proof. This follows from Propositions 3.2.3 and 3.2.5.

We know by Proposition 3.1.3 that C2n+1,2m;Pm = C2n+1,2n+1;P2n+1−m

for m ≥ 2. So, we get the next corollary.

Corollary 3.2.7. For any m ≥ 2, the 8-graph C2n+1,2m;Pm is endo-regular.

Proposition 3.2.5 does not describe the regularity of 8-graphs Cn,m;Pr

when n is odd and m = 4 and r = 1. Now we will prove that all 8-graphs
Cn,4;P1, where n is odd are endo-regular.

Lemma 3.2.8. The 8-graph C3,4;P1 is endo-regular.

Proof. Take an 8-graph C3,4;P1 as follows.
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It is clear that C3 = {x1, x2, x3} is a smallest odd length cycle sub-
graph of C3,4;P1. By Corollary 3.1.9 we get that f(C3) = C3 for all
f ∈ End(C3,4;P1).

If f is automorphism or f(C3,4;P1) = C3, then it is clear that f is regu-
lar. Now we have another four endomorphisms which are not automorphism
and their image are not cycle C3, namely,

f1 =

(
x1 x2 x3 y3 y4
x1 x2 x3 y3 x2

)
, f2 =

(
x1 x2 x3 y3 y4
x2 x1 x3 y4 x1

)
f3 =

(
x1 x2 x3 y3 y4
x1 x2 x3 x1 y4

)
, f4 =

(
x1 x2 x3 y3 y4
x2 x1 x3 x2 y3

)
.

It is clear that f1 and f3 are idempotent and f2f4f2 = f2 and f4f2f4 = f4.
Then we get that f1, f2, f3 and f4 are regular. So we get that Cn,4;P1 is
endo-regular.

We can prove the next proposition by using the argument of Lemma
3.2.8.
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Proposition 3.2.9. Let n ≥ 3 be odd integer. The 8-graph Cn,4;P1 is
endo-regular.

Now we have the main theorem in this section which describes the endo-
regularity of 8-graphs.

Theorem 3.2.10. Exactly the following 8-graphs are endo-regular:
• C2n+1,2n+1;Pr for any r ≥ 0,
• C2n+1,4;P1,
• C4,4;P2 = K2,3.

3.3 Completely regular endomorphisms of 8-graphs

Here we use the results of the previous section. We first consider the com-
pletely regularity of endo-regular 8-graphs C2n+1,2n+1;Pr for any r ≥ 0.

Lemma 3.3.1. The endo-regular 8-graphs C3,3;P0 and C3,3;P1 are endo-
completely-regular.

Proof. Take the 8−graphs C3,3;P0 and C3,3;P1 as in the proof of Lemma
3.2.2.

First we consider the 8-graph C3,3;P0. In this graph, we have two non-
trivial congruence relations:

ρ1 = {{a1}, {a2, b2}, {a3, b3}} and ρ2 = {{a1}, {a2, b3}, {a3, b2}}
as we already noticed in Lemma 3.2.2 and we also have only two possible
image graphs:

I1 := {a1, a2, a3} and I2 := {a1, b2, b3}
which are isomorphic to C3.

Let f be non-trivial endomorphism of C3,3;P0. Assume that f is not
completely regular, i.e, f is not square injective. So there exist x, y ∈ C3,3;P0

such that f(x) ̸= f(y) and f2(x) = f2(y). Without loss of generality we
suppose that f(x), f(y) are in I1. Since I1 is isomorphic to the odd-length
cycle C3, it is clear that f |I1(I1) = I1. Since f(x) ̸= f(y) ∈ I1, we get
that f2(x) ̸= f2(y). This is a contradiction. So we get that f is completely
regular. Hence the 8-graph C3,3;P0 is endo-completely-regular.

Similarly we get that C3,3;P1 is endo-completely-regular.

We can prove the next proposition by using the argument of Lemma
3.3.1.

Proposition 3.3.2. For any r ≥ 0 and n ≥ 1, an endo-regular 8-graph
C2n+1,2n+1;Pr is endo-completely-regular.



36

From Theorem 3.2.10 we have to consider two more endo-regular 8-
graphs, C2n+1,4;P1 and C4,4;P2. We begin with the next special case.

Lemma 3.3.3. The endo-regular 8-graphs C4,4;P2 and C5,4;P1 are not
endo-completely-regular.

Proof. Since the 8-graph C4,4;P2 is a complete bipartite graph K2,3, so we
get by Theorem 2.1.4 that C4,4;P2 is not endo-completely-regular.

Next, take the endo-regular 8-graph C5,4;P1 and its endomorphic image
as follows.
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Then f =

(
a1 a2 a3 b3 b4
a2 a1 a3 b4 a1

)
is endomorphisms of C5,4;P1. Since

f2(a1) = a1 = f2(b3) and f(a1) ̸= f(b3), then we get that f is not square
injective. By Theorem 1.4.7 we get that f is not completely regular. Then
we get that P5,4;P1 is not endo-completely-regular.

We can prove the next proposition by using the argument of Lemma
3.3.3.

Proposition 3.3.4. For any n ≥ 1, an endo-regular 8-graph C2n+1,4;P1 is
not endo-completely-regular.

Now we get the main theorem in this section which describes the endo-
completely-regularity of 8-graphs.

Theorem 3.3.5. Exactly the 8-graphs C2n+1,2n+1;Pr are endo-completely-
regular where n ≥ 1 and r ≥ 0.

3.4 Endo-idempotent-closed 8-graphs

In this section, we will find which 8-graphs Cn,m;Pr are endo-idempotent-
closed. First we consider the case when n and m are odd integers.

Lemma 3.4.1. The 8-graph C3,3;P0 is not endo-idempotent-closed.
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Proof. Take the 8-graph C3,3;P0 as follows.
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We repeat from Lemma 3.2.2: we call the cycle subgraph {a1, a2, a3} an a-
cycle and call the cycle subgraph {a1, b2, b3} a b-cycle. It is clear that there
exist only two non-trivial congruence relations:

ρ1 = {{a1}, {a2, b2}, {a3, b3}} and ρ2 = {{a1}, {a2, b3}, {a3, b2}}.
Let i1 be an idempotent embedding from the middle graph to the a-cycle

and i2 be an idempotent embedding from the right hand side graph to the
b-cycle. It is clear that i1 and i2 are idempotent endomorphisms but i1 ◦ i2
is not idempotent. So, C3,3;P0 is not endo-idempotent-closed.

In general, it is clear that for any 8-graph C2n+1,2n+1;P0, there exist two
non-trivial congruence relations and there exist only two non-trivial image
sets. It is also clear that there exist two non-trivial idempotent endomor-
phisms f and g whose congruence relations and image graphs are different.
And the composition f ◦ g is not idempotent. Then, we get the next propo-
sition.

Proposition 3.4.2. For any n ≥ 1, the 8-graph C2n+1,2n+1;P0 is not endo-
idempotent-closed.

Lemma 3.4.3. The 8-graph C3,3;P1 is endo-idempotent-closed.

Proof. Take the 8-graph C3,3;P1 as follows.
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It is clear that there exist only two non-trivial idempotent endomor-

phisms: i1 =

(
a1 a2 a3 b3
a1 a2 a3 a3

)
and i2 =

(
a1 a2 a3 b3
a1 a2 b3 b3

)
. We get

that i1 ◦ i2 = i1 and i2 ◦ i1 = i2. So, C3,3;P1 is endo-idempotent-closed.

For any r > 0, it is clear that C2n+1,2n+1;Pr contains only two non-trivial
idempotent endomorphisms i1 and i2. It is also clear that i1 ◦ i2 = i1 and
i2 ◦ i1 = i2. Then, we get the next proposition.
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Proposition 3.4.4. For any r > 0, the 8-graph C2n+1,2n+1;Pr is endo-
idempotent-closed.

Now we consider the 8-graph C2n+1,2m+1;Pr where n ̸= m. We begin to
show that the 8-graph C3,5;P0 is endo-idempotent-closed.

Lemma 3.4.5. The 8-graph C3,5;P0 is endo-idempotent-closed.

Proof. Take an 8-graph C3,5;P0 as follows.
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It is clear that C3 = {a1, a2, a3} and C5 = {a1, b2, b3, b4, b5} are sub-
graphs of C3,5;Pr. Since C3 is the smallest odd length cycle subgraph of
C3,5;P0, by Lemma 3.1.7 we get that f(C3) = C3 for all endomorphisms
f ∈ End(C3,5;P0). Since C5 is an odd cycle, it is clear that for any f ∈
End(C3,5;P0), if x ̸= y ∈ C5 and f(x), f(y) ∈ C5, then f(x) ̸= f(y). Now we
get that g(C3,5;P0) = C3 for all g ∈ End′(C3,5;P0). So for any two idempo-
tent i1, i2 ∈ End′(C3,5;P0), Im(i1) = Im(i2) = C3 and i1(x) = i2(x) = x for
all x ∈ C3. It is clear that Im(i1 ◦ i2) = Im(i1) = Im(i2) and (i1 ◦ i2)(x) = x
for all x ∈ Im(i1 ◦ i2), so i1 ◦ i2 is idempotent. Hence, we get that C3,5;P0

is endo-idempotent-closed.

We can prove the next proposition by using the argument of Lemma
3.4.5.

Proposition 3.4.6. For any r ≥ 0 and n ̸= m, the 8−graph C2n+1,2m+1;Pr

is endo-idempotent-closed.

The next theorem is a consequence from Propositions 3.4.2, 3.4.4, and
3.4.6.

Theorem 3.4.7. For any n,m ≥ 1, 8-graph G = C2n+1,2m+1;Pr is endo-
idempotent-closed if and only if (1) n ̸= m or (2) n = m and r > 0.

We know from Proposition 3.1.3 that
C2n+1,2m+1;Pr = C2(n+m+1−r),2m+1;P2m+1−r = C2n+1,2(m+n+1−r);P2n+1−r

for r > 0. Then we get the next corollary.
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Corollary 3.4.8. For any r > 0, n ≥ 1 and m ≥ 2, we get that C2n+1,2m;Pr

is endo-idempotent-closed.

Now we know that if r > 0, then the 8-graph C2n+1,2m;Pr is endo-
idempotent-closed. Next we give a lemma to show that C3,4;P0 is not endo-
regular.

Lemma 3.4.9. The 8-graph C3,4;P0 is not endo-indempotent-closed.

Proof. Take the 8-graph C3,4;P0 and its factor graphs as follows.
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It is clear that an idempotent embedding i1 from the middle graph to
C3,4;P0, which send b2 and b4 to b4, is an idempotent endomorphism of
C3,4;P0. Similarly an idempotent embedding i2 from the right hand side
graph to C3,4;P0, which send b4 to b4, is an idempotent endomorphism of
C3,4;P0. It is clear that i1 ◦ i2 is not idempotent since (i1 ◦ i2)(b2) = b4 ̸=
a2 = (i1 ◦ i2)2(b2).

We can prove the next proposition by using the argument of Lemma
3.4.9.

Proposition 3.4.10. The 8-graphs Cn,2m;P0 is not endo-idempotent-closed.

Lemma 3.4.11. The 8-graph C4,4;P1 is not endo-idempotent-closed.

Proof. Take the 8-graph C4,4;P1 and its factor graphs as follows.
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a1a3b3a4

a2b4

s
s

ss
s s

a1a4

a2

b4

a3 b3

ss s
a1a3b3a4

a2

b4

Let f be an embedding from the middle graph to C4,4;P1 which f(x) = x for
all x ∈ {a1, a2, a4} and g be an embedding from the right hand side graph
to C4,4;P1 which g(x) = x for all x ∈ {a1, a4, b4}. It is clear that f and g are
idempotent. But the composition f ◦ g (the embedding from below graph
to C4,4;P1 which (f ◦ g)(a1) = a1, (f ◦ g)(a4) = a4 and (f ◦ g)(b4) = a2) is
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not idempotent.

s
s

s
a1a3b3a4

a2

b4

So, we get that C4,4;P1 is not endo-idempotent-closed.

We can prove the next proposition by using the argument in Lemma
3.4.11.

Proposition 3.4.12. For any n,m ≥ 2 and r ≥ 0, the 8−graphs C2n,2m;Pr

is not endo-idempotent-closed.

Now by Theorem 3.4.7, Corollary 3.4.8 and Propositions 3.4.10, 3.4.12
we get the next theorem describing when the 8-graph is endo-idempotent-
closed.

Theorem 3.4.13. Exactly the following 8-graphs are endo-idempotent-closed:
• C2n+1,2m+1;Pr where r ≥ 0 and n ̸= m
• C2n+1,2n+1;Pr where r > 0.

3.5 Other endo-properties of 8-graphs

We know from Theorems 3.2.10 and 3.4.13 that when the 8-graphs are endo-
orthodox.

Theorem 3.5.1. Exactly the 8-graphs C2n+1,2n+1;Pr for some r > 0 are
endo-orthodox.

We get from Theorems 3.3.5 and 3.5.1 that all endo-orthodox 8-graphs
are endo-completely-regular. So, we get the next corollary since orthogroup
means completely regular and orthodox.

Corollary 3.5.2. Exactly the monoids of the 8-graphs C2n+1,2n+1;Pr are
orthogroups where r > 0.

Theorem 3.5.3. No 8-graph is endo-Clifford.

Proof. Let n be an odd integer. Take Cn,n;Pr an endo-completely regular
8−graph. Let {x1, x2, ..., xn} =: C and {x1, ..., xr+1, yr+2, ..., yn} =: C ′ be
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two cycle subgraphs of Cn,n;Pr of length n. It is clear that there exist
i1, i2 ∈ Idt(Cn,n;Pr) with Im(i1) = C and Im(i2) = C ′. And it also clear
that i1 ◦ i2 = i1 ̸= i2 = i2 ◦ i1. Now we get that Cn,n;Pr is not endo-
Clifford.

3.6 Endo-regular multiple 8−graphs

In this section, we generalize 8-graphs to multiple 8-graphs and find when
they are endo-regular.

Definition 3.6.1. We call the connected graph G multiple 8-graph if
there exists r ≥ 0 and there exists s ≥ 2 cycle subgraphs Cn1 , Cn2 , ..., Cns

of G with
s∪

k=1

Cnk
= G and Cni ∩ Cnj = Pr, i ̸= j. We denote the multiple

8-graph by Cn1,n2,...,ns ;Pr.

The next observation is clear.

Lemma 3.6.2. Let Cn1,n2,...,ns ;Pr be a multiple 8-graph.
(1) If Cn1,n2,...,ns ;Pr contains odd-length cycle as a subgraph and Cn1 is

a minimal odd-length cycle subgraph of Cn1,n2,...,ns ;Pr, an 8-graph Cn1,ni ;Pr

is isomorphic to strong subgraph Im(f) for some f ∈ End(Cn1,n2,...,ns ;Pr)
where i ∈ {2, 3, ..., s}.

(2) If Cn1,n2,...,ns ;Pr contains no odd-length cycle as a subgraph, an
8-graph Cni,nj ;Pr is isomorphic to strong subgraph Im(f) for some f ∈
End(Cn1,n2,...,ns ;Pr) where i ̸= j ∈ {1, 2, ..., s}.

Now we turn to find the regularity of endomorphism monoids of multiple
8-graphs.

Lemma 3.6.3. Let Cn1,n2,...,ns ;Pr be a multiple 8-graph.
(1) If Cn1 is a minimal odd-length cycle subgraph of Cn1,n2,...,ns ;Pr and

(a) r ̸= 1 and n1 ̸= ni for some i ∈ {2, ..., s} or
(b) r = 1 and ni /∈ {4, n1} for some i ∈ {1, 2, ..., s},

then Cn1,n2,...,ns ;Pr is not endo-regular.
(2) If Cn1,n2,...,ns ;Pr contains no odd-length cycle as a subgraph and

Cn1,n2,...,ns ;Pr is not C4,4,...,4;P2, then Cn1,n2,...,ns ;Pr is not endo-regular.

Proof. (1) First we prove case (a). Suppose that n1 ̸= ni for some i ∈
{2, 3, ..., s}. By Theorem 3.2.10 and Lemma 3.6.2 we get that Cn1,ni ;Pr is not
endo-regular which is isomorphic to Im(f) for some f ∈ End(Cn1,n2,...,ns ;Pr).
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Now by Lemma 1.4.4 we can conclude that Cn1,n2,...,ns ;Pr is not endo-
regular. Similarly, we get that Cn1,n2,...,ns ;Pr is not endo-regular if r = 1
and ni /∈ {4, n1} for some i ∈ {1, 2, ..., s}.

(2) The proof of this case is similar as case (1).

For any s ≥ 2, we instead n, n, ..., n︸ ︷︷ ︸
s times

by (n)(s). Lemma 3.6.3 does not

describe the following 3 multiple 8-graphs:
(1) C(2n+1)(t) ;Pr,
(2) C(2n+1)(t),(4)(s) ;P1 and
(3) C(4)(s) ;P2.

So, we will consider the endo-regularity of them. It is clear that for any s ≥ 2
the multiple 8-graph in case (3) is the complete bipartite graph K2,s+1. So
by Theorem 2.1.2 we get the next lemma.

Lemma 3.6.4. For any s ≥ 2, the multiple 8-graphs C(4)(s) ;P2 is endo-
regular.

Now we turn to the multiple 8-graph C(2n+1)(t) ;Pr for r ≥ 0. We will
show that they are endo-regular. In the proof of endo-regularity of these
graphs we need some proposition. The next observation is clear.

Proposition 3.6.5. Let G := C(2n+1)(t) ;Pr be a multiple 8-graph and f ∈
End(G). Then Im(f) is a strong subgraph of G with Im(f) = C2n+1 or
Im(f) = C(2n+1)(t

′) ;Pr where 2 ≤ t′ ≤ t.

Lemma 3.6.6. For any r ≥ 0 and t ≥ 2, the multiple 8-graph C(2n+1)(t) ;Pr

is endo-regular.

Proof. We prove by induction. The case t = 2 is true by Theorem 3.2.10.
Suppose that C(2n+1)(t) ;Pr is endo-regular. We will prove that C(2n+1)(t+1) ;Pr

is endo-regular. Let f be non-trivial endomorphism of C(2n+1)(t+1) ;Pr. By
Proposition 3.6.5 we get that Im(f) = C2n+1 or Im(f) = C(2n+1)(t

′) ;Pr

where 2 ≤ t′ ≤ t+1. We consider only the case Im(f) = C(2n+1)(t) ;Pr. The
other cases follow analogously.

To prove the regularity of f . It is equivalent to prove the regularity of
f |Im(f) =: g : Im(f) → Im(f). Since Im(f) = C(2n+1)(t) ;Pr is endo-regular
and g ∈ End(Im(f)), then g is regular. So, f is regular. Now the result is
proved.

Next we consider an multiple 8-graph G := C(2n+1)(t),(4)(s) ;P1. First we
will show that if s ≥ 2, then G is not endo-regular.
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Lemma 3.6.7. The multiple 8-graph C3,4,4;P1 is not endo-regular.

Proof. Take the multiple 8-graph C3,4,4;P1 with its endomorphic image as
follows.

s s
s s

s
s
s
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a3
b4

b3

c4

c3
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@@��
s s

s
s
s

a1
b3

a2
c4

a3
b4

b3

b4

c3

��
@@

Then f =

(
a1 a2 a3 b3 b4 c3 c4
a1 a2 a3 a1 b4 b3 a2

)
is the endomorphism of C3,4,4;P1.

Assume that there exists g ∈ End(C3,4,4;P1) such that fgf = f . Since
f−1(b3) = {c3} and f−1(b4) = {b4} are singleton sets, then g(b3) = c3 and
g(b4) = b4. Since {b3, b4} ∈ E(C3,4,4;P1) and {g(b3), g(b4)} = {c3, b4} /∈
E(C3,4,4;P1), then g is not an endomorphism which is a contradiction. So
f is not regular. Hence C3,4,4;P1 is not endo-regular.

We can prove the next proposition by using the argument of Lemma
3.6.7.

Proposition 3.6.8. For any t ≥ 1 and s ≥ 2, C(2n+1)(t),(4)(s) ;P1 is not
endo-regular.

We can prove the next proposition by using the argument of Lemma
3.2.8.

Proposition 3.6.9. For any t ≥ 1, C(2n+1)(t),4;P1 is endo-regular.

Now we get the theorem which describes the regularity of endomorphism
monoids of multiple 8-graphs.

Theorem 3.6.10. Exactly the following multiple 8-graphs are endo-regular:
• C(2n+1)(t) ;Pr where r ≥ 0 and t ≥ 2
• C(2n+1)(t),4;P1 where t ≥ 1
• C(4)(s) ;P2 = K2,s+1.

Proof. This follows from Lemmas 3.6.3, 3.6.4, 3.6.6 and Propositions 3.6.8,
3.6.9.
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3.7 Other endo-properties of multiple 8-graphs

We begin this section by consider the completely regularity of endomorphism
monoids of multiple 8-graphs.

Lemma 3.7.1. No endo-regular multiple 8-graph C(4)(s) ;P2 = K2,s+1 is
endo-completely-regular.

Proof. This follows from Theorem 2.1.4.

Lemma 3.7.2. For any t ≥ 2, the endo-regular C(2n+1)(t) ;Pr is endo-
completely-regular.

Proof. The proof is similar as the proof of Lemma 3.6.6.

For any endo-regular multiple 8-graph C(2n+1)(t),4;P1, it is clear that
there exists an endomorphic image which has the following form.

s s
s s

��
���

PPPPP
C2n+1

By using the argument of Lemma 3.3.3 we can find some non-completely
regular endomorphism f of C(2n+1)(t),4;P1 whose endomorphic image is iso-
morphic to the above graph. So we get the next proposition.

Proposition 3.7.3. For any t ≥ 1, an endo-regular multiple 8-graph
C(2n+1)(t),4;P1 is not endo-completely-regular.

Theorem 3.7.4. Exactly an multiple 8-graph C2n+1,...,2n+1;Pr is endo-
completely-regular where n ≥ 1 and r ≥ 0 .

Next, we consider an endo-idempotent-closed multiple 8-graph. First we
give a lemma describing if the multiple 8-graph contains two cycles C2n and
C2m as strong subgraphs and n ̸= m, then it is not endo-idempotent-closed.
The proof of next lemma follows from Corollary 1.4.10.

Lemma 3.7.5. Let Cn1,n2,...,ns ;Pr be a multiple 8-graph. If ni ̸= nj are even
for some i ̸= j ∈ {1, 2, ..., s}, then Cn1,n2,...,ns ;Pr is not endo-idempotent-
closed.

Next we consider the multiple 8-graph Cn1,n2,...,ns ;P0 which contains two
cycles of n vertices, Cn and C ′

n, as subgraphs and Cn ̸= C ′
n. We can prove

the next lemma by using the argument in the proof of Lemma 3.4.1.
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Lemma 3.7.6. Let Cn1,n2,...,ns ;P0 be a multiple 8-graph. If Cni and Cnj

are two difference cycle subgraphs of Cn1,n2,...,ns ;P0 which have n vertices
for some i ̸= j ∈ {1, 2, ..., s}, then Cn1,n2,...,ns ;Pr is not endo-idempotent-
closed.

Example 3.7.7. Take the multiple 8-graph C3,5,5;P0 and its factor graphs
as follows.
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Then i1 =

(
a1 a2 a3 b2 b3 b4 b5 c2 c3 c4 c5
a1 a2 a3 b2 b3 b4 b5 b2 b3 b4 b5

)
and i2 =(

a1 a2 a3 b2 b3 b4 b5 c2 c3 c4 c5
a1 a2 a3 c5 c4 c3 c2 c2 c3 c4 c5

)
are idempotent endomor-

phisms of C3,5,5;P0. But i1 ◦ i2 is not idempotent, so C3,5,5;P0 is not endo-
idempotent-closed. �

Now we turn to the case C(n)(t) ;Pr where t ≥ 2, r > 0 and n is odd.

Lemma 3.7.8. The multiple 8-graph C3,3,3;P1 is not endo-idempotent-closed.

Proof. Take the multiple 8-graph C3,3,3;P1 and its factor graphs as follows.
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Then i1 =

(
a1 a2 a3 b3 c3
a1 a2 a3 b3 a3

)
and i2 =

(
a1 a2 a3 b3 c3
a1 a2 a3 c3 c3

)
are

idempotent endomorphisms of C3,3,3;P1. But i2◦i1 =
(

a1 a2 a3 b3 c3
a1 a2 a3 c3 a3

)
is not idempotent. So C3,3,3;P1 is not endo-idempotent-closed.

We can prove the next proposition by using the argument of the proof
of Lemma 3.7.8.

Proposition 3.7.9. Let n ≥ 3 be odd, t ≥ 3 and r > 0. Then the multiple
8-graph C(n)(t) ;Pr is not endo-idempotent-closed.
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Now we get the theorem describing when the multiple 8-graph is endo-
idempotent-closed.

Theorem 3.7.10. Exactly the following multiple 8-graphs are endo-idempotent-
closed:

• C2n1+1,2n2+1,...,2ns+1;Pr where r ≥ 0 and ni ̸= nj for i ̸= j ∈ {1, 2, ..., s},
• C2n+1,2n+1;Pr where r > 0.

Theorem 3.7.11. Exactly the multiple 8−graphs C2n+1,2n+1;Pr are endo-
orthodox where n ≥ 1 and r > 0.

Theorem 3.7.12. Exactly the monoids of multiple 8−graphs C2n+1,2n+1;Pr

are orthogroups where n ≥ 1 and r > 0.

Theorem 3.7.13. No multiple 8-graph is endo-Clifford.

3.8 Conclusion

From all previous section, we got the relationship of endo-properties of mul-
tiple 8-graphs and 8-graphs as follows:
(1) endo-regular % endo-completely-regular % endo-orthodox = orthogroup.
(2) (endo-regular or endo-completely reglar) is not a subset of endo-idempotent-
closed and vice versa.
(3) (endo-regular or endo-completely-regular) ∩ endo-idempotent-closed is
not empty.

Finally, we give Table 3.1 and Table 3.2 containing the conclusion of
endo-properties of multiple 8-graphs and containing the examples of multi-
ple graphs which they have difference endo-properties, respectively. In these
2 tables, we use

endo-r. instead of endo-regular,
endo-c.r. instead of endo-completely-regular,
endo-i.c. instead of endo-idempotent-closed,
endo-o.t.d instead of endo-orthodox and
endo-C. instead of endo-Clifford.
We know that all multiple 8-graphs are not endo-Clifford. From Chapter

2, exactly K2 is an endo-Clifford bipartite graph but K2 is not retractive
graph. This means now we do not have any retractive graph which its endo-
morphism monoid is a Clifford semigroup. So, we study more special graph
(split graph) in the next chapter to find a graph which is retractive and
endo-Clifford.
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Chapter 4

Split graphs

Split graphs may be regarded as the graphs between bipartite graphs and
their complements. In this chapter, we find the algebraic structures of the
monoid of split graphs.

4.1 Definition of split graphs

Split graph were introduced by Földes and and Hammer [9]. In this section,
we describe definitions, propositions, lemmas and theorems with respect to
split graph for further investigation in the next sections.

Definition 4.1.1. A graph G(V,E) is called a split graph if its vertex-set
can be partitioned into disjoint (non-empty) sets I and K, i.e., V = K ∪ I,
such that I is an independent set and K is a complete set.

In this dissertation, a split graph G is always written as Kn ∪ Ir where
Kn is a maximal complete subgraph of G and Ir = Kr.

Definition 4.1.2. Let G = Kn ∪ Ir be a split graph where Kn is a (may
be not maximal) complete subgraph of G. We call Kn ∪ Ir be a unique
decomposition of G with the clique size n if for every complete subgraph
K ′

n and every independent set I ′r such that G = K ′
n ∪ I ′r one has K ′

n = Kn

and I ′r = Ir.

Example 4.1.3. Let G be the graph as in Figure 4.1. We see that there
are 2 complete subgraphs size 3, K3 = {1, 2, 3} and K ′

3 = {2, 3, 4}. It is clear
that G can be partitioned to both of K3∪{4, 5} and K ′

3∪{1, 5}. So, there is
no unique decompositions of G with the clique size 3. We have one complete
subgraph K2 = {2, 3} of G with K2 ∪ {1, 4, 5}, i.e., a unique decomposition
of G with the clique size 2. �
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Figure 4.1: A split graph which has no a unique decomposition with the
clique size 3.

This can be formulated in general as follows.

Proposition 4.1.4. If Kn is a maximal complete subgraph of a split graph
G and Kn ∪ Ir is not a unique decomposition with the clique size n, then
Kn−1 ∪ Ir+1 is a unique decomposition with the clique size n− 1.

Definition 4.1.5. For any split graph G = Kn ∪ Ir, let J be a subset of
Ir. We call J a split component of Ir if for any a, b ∈ J , N(a) = N(b)
(including the case whoseN(a) andN(b) are empty) and there is no c ∈ Ir\J
such that N(c) = N(a). And we say that Ir has s split components if Ir

contains s distinct split components, i.e., Ir =
s∪

i=1
Ji, Ji a split component

of Ir for all i = 1, 2, ..., s.

We observe that the split component is a ν-class in the terminology of
[21]. This means that the canonical strong factor graph of Kn ∪ Ir is the
form Kn ∪ Is, if Ir has s split components.
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Figure 4.2: Split graph K4 ∪ I9.

Example 4.1.6. Let G be the split graph as in Figure 4.2. So we consider
G = K4 ∪ I9 where K4 = {1, 2, 3, 4} and I9 = {a, b, c, u, v, w, x, y, z}, the
independent set I9 has 3 split components, J1 = {a, b, c}, J2 = {u, v, w}
and J3 = {x, y, z}. If we consider G = K3 ∪ I10 where K3 = {2, 3, 4} and
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I10 = I9∪{1}, we have that the independent set I10 has 4 split components,
J1, J2, J3 and J4 = {1}. �

The regularity of endomorphism monoids of split graphs were studied
by S. Fan in [8] and by W. Li and J. Chen in [27]. The next two theorems
describe the regularity of endomorphism monoids of split graphs. We cite
them from the results of Li and Chen in [27].

Theorem 4.1.7. ([27]) Let G(V,E) be a connected split graph with V =
Kn ∪ Ir. Then G is endo-regular if and only if for all a ∈ Ir one has
|N(a)| = d, d ∈ {1, ..., n− 1}.

Theorem 4.1.8. ([27]) A non-connected split graph Kn∪ Ir is endo-regular
if and only if N(a) = ∅ for all a ∈ Ir.

Next we give a lemma which describes the image of an endomorphism
on a complete subgraph.

Lemma 4.1.9. For any split graph G = Kn∪ Ir, let f be an endomorphism
of G. If |N(a)| < n− 1 for all a ∈ Ir, then f(V (Kn)) = V (Kn).

Proof. Take V (Kn) = {k1, k2, ..., kn} and f an endomorphism of G. It is
clear that for any i, j ∈ {1, 2, ..., n}, i ̸= j, f(ki) ̸= f(kj).

Next we show that for all i ∈ {1, 2, ..., n}, f(ki) ∈ V (Kn). Assume
that there exists r ∈ {1, 2, ..., n} such that f(kr) = c ∈ I. Then f(Kn) ⊆
N(c) ∪ {c} and |f(Kn)| = n. Thus, |N(c)| = n− 1 which is a contradiction
to the assumption < n− 1.

Lemma 4.1.10. Let G = Kn∪ Ir be an endo-regular split graph. If End(G)
is completely regular, then r < 2.

Proof. Let r ≥ 2. Suppose that a1, a2 ∈ Ir, a1 ̸= a2 and V (Kn) =
{1, 2, ..., n}. Consider a mapping f with f(a1) = a2 and f(Kn) = Kn.
If G is non-connected, set f(x) = 1 for all x ∈ I \ {a1}. If G is con-
nected, set f is a bijective from N(a1) to N(a2) and for any x ∈ Ir \ {a1},
f(x) ∈ V (Kn) \ {f(y)|y ∈ N(x)}. It is easy to check that f is an endomor-
phism in G in both cases. In both cases a1 /∈ Imf . Since G is endo-regular,
then there exists an endomorphism g such that fgf = f . Then

fg(a2) = fgf(a1) = f(a1) = a2,

and thus g(a2) = a1. Since gf(a1) = g(a2) = a1 and a1 /∈ Imf , then
gf(a1) ̸= fg(a1). Hence, we get already that End(G) is not completely
regular.
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Lemma 4.1.11. ([21]) Let G be a graph, x1, x2 ∈ G. There exists a strong
endomorphism f ∈ SEnd(G) with f(x1) = f(x2) if and only if N(x1) =
N(x2).

Remark 4.1.12. (1) If an endo-regular split graphs G = Kn ∪ Ir with Ir
has exactly one split component and |N(a)| = n−1 for all a ∈ Ir, they are of
the form Kn ∪ Ir = K2[Kr+1,Kn−1] (generalized lexicographic product see
[21]). In this case we have by Proposition 4.1.4 that Kn−1∪ Ir+1 is a unique
decomposition of G with the clique size n−1, and the canonical strong factor
graph of Kn−1 ∪ Ir+1 is Kn. Then by Theorem 3.4 in [21], we have that
SEnd(Kn−1∪ Ir+1) ∼= Aut(Kn) wr K where K = {{u} | u ∈ Kn−1}∪{Ir+1}
is a small category (for definitions and notation see [21]). This means that
every strong endomorphism can be described by an automorphism φ of Kn

followed by a family of mappings. For every element x of Kn we take a
mapping from the class [x] of x to the class [φ(x)] of φ(x). For all x ∈ Kn

we get the family of mappings. Here most classes are one element, except
for the class corresponding to Ir+1.

(2) For any endo-regular split graph G = Kn ∪ Ir with Kn is a maximal
complete subgraph of G, if Ir has s > 1 split components, it is clear that
Kn ∪ Ir is a unique decomposition of G with the clique size n.

4.2 Completely regular endomorphisms

We begin this section by specifying the condition in Theorem 1.4.7 for an
endo-regular split graph G. We first prove a lemma which shows an ad-
ditional property of a completely regular f of an endo-regular split graph
G.

Lemma 4.2.1. Let G = Kn ∪ Ir be an endo-regular split graph and let f be
a completely regular endomorphism on G. If |N(a)| < n − 1 for all a ∈ I,
then for any d ∈ Ir, if f(d) ∈ Kn, then d /∈ Im(f).

Proof. Let f be a completely regular endomorphism of G. Let d ∈ Ir with
f(d) ∈ Kn. Assume that d ∈ Im(f). Since |N(a)| < n− 1 for all a ∈ Ir, we
get by Lemma 4.1.9 that f(Kn) = Kn. Then there exists c ∈ Ir such that
f(c) = d. Now we have that f2(c) = f(d) =: x ∈ Kn. Since f(Kn) = Kn,
then there exists u ∈ Kn with f(u) ∈ Kn and f2(u) = x. Since f2(u) = f2(c)
and f is completely regular, by Theorem 1.4.7, we have that f(u) = f(c) =
d ∈ Ir. This a contradiction. Then we get that d /∈ Im(f).

To prove the main theorem in this section we need some notations and
some lemmas. For any f ∈ End(G), define
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Endf (G) := {g ∈ End(G)|ρf = ρg}

the set of all endomorphisms of G with congruence relation ρf . Note that
Endf (G) is Green’s L−class of f .

Lemma 4.2.2. For any endo-regular split graph G = Kn
∪

Ir, let f be an
endomorphism of G. If f is a bijective or f(G) ∼= Kn, then Endf (G) is a
group.

Proof. If f is bijective, we see that Endf (G) = Aut(G). Otherwise:
(a) If |N(a)| = m < n− 1 for all a ∈ Ir, it is clear by Lemma 4.1.9 that

Endf (G) ∼= End(Kn) ∼= Sn.
(b) If |N(a)| = n − 1 for all a ∈ Ir, we have to consider the ways

Im(f) ∼= Kn can be embedded into G. There are r + 1 ways each followed
by all permutation of the image. So we get r + 1 times Sn. Moreover, it is
clear that Endf (G) altogether is isomorphic to the left group Sn×Lr+1.

Theorem 4.2.3. For any endo-regular split graph G = Kn ∪ Ir, End(G) is
completely regular if and only if r = 1.

Proof. Let G = Kn ∪ Ir be an endo-regular split graph. If r = 1, then by
Lemma 4.2.2 and Theorem 1.1.9 we get End(G) is completely regular. If
r > 1, we get that End(G) is not completely regular monoid by Lemma
4.1.10.

Continuing the consideration from Remark 4.1.12 we get the following
proposition.

Proposition 4.2.4. For any endo-regular split graph G = Kn ∪ Ir,
(1) if |N(a)| < n − 1 for all a ∈ Ir, then f ∈ End(G) is a strong

endomorphism if and only if f(c) ∈ Ir ∀c ∈ Ir;
(2) if Kn ∪ Ir is not a unique decomposition of G with the clique size n,

then all f ∈ End(G) are strong endomorphisms.

Proof. (1) Necessity. Let f ∈ End(G) be a strong endomorphism. Assume
that there exists c ∈ Ir with f(c) = u ∈ Kn. By Lemma 4.1.9, we have that
f(Kn) = Kn. Then there exist x ∈ Kn such that f(x) = u, so f(x) = f(c).
Since |N(c)| < n− 1 and |N(x)| ≥ n− 1, by Lemma 4.1.11 we get that f is
not a strong endomorphism. This is a contradiction. Then f(c) ∈ Ir for all
c ∈ Ir.

Sufficiency. Let f ∈ End(G) with f(c) ∈ Ir for all c ∈ Ir. Let
{f(u), f(v)} ∈ E(G). If f(u), f(v) ∈ Kn, it is clear that u, v ∈ Kn, so
{u, v} ∈ E(G). It remains to consider f(u) ∈ Kn and f(v) ∈ Ir. By Lemma
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4.1.9 and hypothesis we have that u ∈ Kn and v ∈ Ir. Since v, f(v) ∈ Ir, by
hypothesis we have |N(v)| = |N(f(v))|. Since f is an endomorphism, then
f(N(v)) = N(f(v)). Since f(u) ∈ N(f(v)) and f(Kn) = Kn, then u ∈ N(v)
so {u, v} ∈ E(G). Then we get that f is a strong endomorphism.

(2) This case is obvious, look for example to the graph in Example 4.1.3
without point 5.

For the endo-idempotent-closed split graph, we ever got the result but
we found later that it was wrong. I will consider this endo-property of split
graph again in the next chance.

4.3 Completely regular subsemigroups

Since exactly endo-regular split graphs G = Kn ∪ I1 are endo-completely-
regular for any n ≥ 1, so in this section we need to characterize some com-
pletely regular subsemigroups of endo-regular split graph G = Kn∪Ir where
r ≥ 1. But it is so complicated to generalize a completely regular subsemi-
groups of an endomorphism monoid of any endo-regular split graph. So we
consider only three cases of endo-regular split graphs G = Kn ∪ Ir:

(1) with exactly one split component of Ir
(2) with s > 1 split components of Ir and |N(a)| = 1 where a ∈ Ir
(3) with s > 1 split components of Ir and |N(a)| ≥ 2 where a ∈ Ir.

In this section, it is natural that we find left groups as subsemigroups of
endomorphism monoids, which of course are completely regular.

Endo-regular split graphs Kn∪Ir with exactly one split component
of Ir

In this section, we characterize completely regular subsemigroups contained
in End(G) where G is endo-regular split graphs with exactly one split com-
ponent. First we give a lemma which describes the image of any endomor-
phism and the composition of any two endomorphisms of an endo-regular
split graph G = Kn ∪ Ir restricted to Kn \N(a) and to N(a).

Lemma 4.3.1. Let G = Kn ∪ Ir be an endo-regular split graph such that
Ir has exactly one split component, i.e., N(a) = N(b) for all a, b ∈ Ir. If
f, g ∈ End(G) with f(G) � Kn and g(G) � Kn, we have f(N(a)) = N(a),
and (f ◦ g)(N(a)) = N(a). If |N(a)| < n − 1 for all a ∈ Ir, we have in
addition f(Kn \ N(a)) = Kn \ N(a), (f ◦ g)(Kn \ N(a)) = Kn \ N(a) and
the statement is also true for f(G) = Kn.
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Proof. Let f be an endomorphism of G which f(G) � Kn. Let u ∈ N(a).
Assume that f(u) /∈ N(a). Then f(u) ∈ (Kn \N(a)) ∪ Ir. We consider two
cases.

Case 1. |N(a)| < n− 1 for all a ∈ Ir. By Lemma 4.1.9, it is impossible
that f(u) ∈ Ir, so f(u) ∈ Kn \ N(a). Since f(G) � Kn and f(Kn) = Kn,
there exists a vertex v ∈ Ir such that f(v) ∈ Ir. Since f(u) /∈ N(a) for all
a ∈ Ir, then f(u) /∈ N(f(v)), i.e., {f(u), f(v)} /∈ E(G). But {u, v} ∈ V (G)
and f is an endomorphism, then this is a contradiction.

Case 2. |N(a)| = n − 1 for all a ∈ Ir. Since Ir has exactly one split
component and Kn is a maximal complete subgraph, there exists one vertex
x ∈ Kn such that x /∈ N(a) and N(x) = N(a). For example, we consider
the graph as in Figure 4.3 where Kn = K3 = {1, 2, x} and Ir = I5 =
{a, b, c, d, e}. It is clear that only vertex x ∈ K3 is such that x /∈ N(a)
and N(x) = N(a). It is obvious that Ir ∪ {x} is an independent set of G.

Figure 4.3: Endo-regular split graph G = K3 ∪ I5 which K3 ∪ I5 is not a
unique decomposition of G with the clique size 3.

Now we assume that f(u) ∈ Ir ∪ {x}. Since f(G) � Kn and f preserves
Kn, there exists v ∈ Ir ∪ {x} such that f(v) ∈ Ir ∪ {x}. Since Ir ∪ {x} is
an independent set, {f(u), f(v)} /∈ E(G). But {u, v} ∈ E(G) and f is an
endomorphism, we have a contradiction.

Moreover, if |N(a)| < n − 1 for all a ∈ Ir, by Lemma 4.1.9 we have
f(Kn) = Kn. So we get that f(Kn \N(a)) = Kn \N(a).

Remark 4.3.2. Lemma 4.3.1 is not true in the case when |N(a)| = n− 1
for all a ∈ Ir and f ∈ End(G) with f(G) ∼= Kn. For example, take G a
graph as in Figure 4.3. We see that K3 = {1, 2, x} is a maximal complete
subgraph of G, I5 = {a, b, c, d, e} is an independent set and N(a) = {1, 2}.

It is obvious that f =

(
1 2 x a b c d e
a 1 2 2 2 2 2 2

)
is an endomorphism of

G with f(G) ∼= K3. But f(N(a)) = f({1, 2}) = {1, a} ̸= N(a).
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Note that if A is any set, then we denote by SA the group of permutations
of the elements in A. For examples, S{1,2,3}, S{{a,b},{c,d}} are the symmetric
group S3 and S2, respectively.

In Theorem 4.3.3 and Corollary 4.3.5, Kn is not necessarily a maximal
complete subgraph of the split graphG = Kn∪Ir, since for some f ∈ End(G)
with f(G) isomorphic to a maximal complete subgraph of G we may have the
following situation. For example, we consider f as in Remark 4.3.2. We see
that f({a, b, c, d}) = {2} * I4 = {a, b, c, d, }, so there is no congruence class
whose a subset of I4. Then we can not construct the set of representatives
A as is defined in Theorem 4.3.3. This implies that we can not construct
the set CREA

f (G). Then in the next theorem and its corollary, we do not
consider the case when f(G) isomorphic to a maximal complete subgraph
of G. Although, we have Lemma 4.2.2 which shows Endf (G) is a group, so
Endf (G) is a completely regular monoid.

Theorem 4.3.3. Let G = Kn ∪ Ir be an endo-regular split graph such that
Ir has exactly one split component and Kn∪ Ir is a unique decomposition of
G with the clique size n. Suppose f ∈ End(G) with f(G) is not isomorphic
to the maximal complete subgraph of G. Suppose that f has q congruence
classes which are subsets of Ir for some q ∈ N, namely, [i1]ρf , [i2]ρf ,...,
[iq]ρf , i1, ..., iq ∈ Ir. For every j = 1, 2, ..., q, choose a representative aj ∈
[ij ]ρf for all j = 1, 2, ..., q and set A := {a1, a2, ..., aq}. Set Ifr := {i ∈
Ir |f(i) ∈ Ir} and

CREA
f (G) := {h ∈ Endf (G)|h c.r., h(Ifr ) = A}

the set of all completely regular endomorphisms in Endf (G) such that their

restrictions on Ifr give the set A. Then we have that CREA
f (G) is the group

Sn−m × Sm × Sq.

Proof. Case 1. Kn is a maximal complete subgraph of G. To illustrate the
situation in this case, i.e., |N(a)| = m < n − 1 for all a ∈ Ir, we consider
the graph as in Figure 4.4. In this graph we use Kn = K5, m = 2 and
q = 3. Take f such that the dotted ovals in the picture are the congruence
classes induced by f which are subsets of Ir. Now take A = {a, d, e}. We
get CREA

f (G) is isomorphic to S3 × S2 × S3 = S{1,2,3} × S{4,5} × SA.
By the graph as in Figure 4.4 and Lemma 4.3.1, it is obvious that

CREA
f (G)|(Kn\N(a)) and CREA

f (G)|N(a), the sets of restrictions of all en-

domorphisms in CREA
f (G) to Kn \ N(a) and to N(a), are isomorphic to

Sn−m and Sm, respectively. For any endomorphism h in CREA
f (G), we get

h(u) = h(aj) for all u ∈ [ij ]ρf , j = 1, 2, ..., q. So we have that CREA
f (G)|

Ifr
is
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Figure 4.4: Endo-regular split graph G = K5 ∪ I6 which K5 ∪ I6 is a unique
decomposition of G with the clique size 5.

isomorphic to CREA
f (G)|A. By inspection it is clear that CREA

f (G)|A is iso-

morphic to Sq. Then we have that CREA
f (G) is isomorphic to Sn−m×Sm×Sq

Case 2. Kn is not a maximal complete subgraph of G. Consider the
graph as in Figure 4.3. Here Kn = K2 = N(a) and q = 3. The three
dotted ovals in the graph are the congruence classes induced by f which are
subsets of Ir. Take now A = {x, c, d}. We get CREA

f (G) is isomorphic to
S2 × S3 = S{1,2} × SA.

Formally, the result is the same as before since now Kn \N(a) = ∅, then
m = n− 1 and CREA

f (G) = Sn−m × Sm × Sq
∼= Sn−1 × Sq.

Before we determine the maximal completely regular subsemigroup con-
tained in Endf (G) for an endo-regular split graph G = Kn∪Ir where Ir has
exactly one split component, we give two examples which show the compo-
sition between the elements of two groups CREA

f (G) and CREB
f (G) which

are contained in Endf (G) where f is an endomorphism of an endo-regular
split graph G.

Example 4.3.4. First, we consider Kn ∪ Ir with a unique decomposition
of G with the clique size n and next we consider Kn ∪ Ir with a non-unique
decomposition of G with the clique size n where Kn is a maximal complete
subgraph of G.

(1) Take G a graph as in Figure 4.5. Let f =

(
1 2 3 a b c d
1 2 3 a a c c

)
be a mapping from G to G. Note that ab, cd in graph H (in Figure 4.5)
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Figure 4.5: Endo-regular split graph G = K3 ∪ I4 and H a factor graph
induce by f in Example 4.3.4 (1).

mean f({a, b}) = {a} and f({c, d}) = {c}. It is clear that f is an endomor-
phism. The graph H in Figure 4.5 is the factor graph of G induced by f .
It is clear that f is idempotent, so it is completely regular. We have two
congruence classes {a, b} and {c, d} which are subsets of the independent set
I4 = {a, b, c, d}. For every completely regular endomorphism h ∈ Endf (G),
it is impossible that h({a, b})∩h({c, d}) ̸= ∅, since h({a, b})∩h({c, d}) ̸= ∅,
would imply that h(a) ̸= h(c) and h2(a) = h2(c). This contradicts to The-
orem 1.4.7. Now we get that for any completely regular endomorphism
h ∈ Endf (G),

(a) h sends {a, b} to {a, b} if and only if h sends {c, d} to {c, d}
(b) h sends {a, b} to {c, d} if and only if h sends {c, d} to {a, b}.

By Theorem 4.3.3, we know that CRE
{a,c}
f (G) is isomorphic to S2×S1×S2 =

S2 × S2. The 4 endomorphisms in CRE
{a,c}
f (G) are

f1 = f , f2 =

(
1 2 3 a b c d
1 2 3 c c a a

)
, f3 =

(
1 2 3 a b c d
2 1 3 a a c c

)
and f4 =

(
1 2 3 a b c d
2 1 3 c c a a

)
.

Similarly, we know that CRE
{a,d}
f (G) is isomorphic to S2 × S2. The 4 en-

domorphisms in CRE
{a,d}
f (G) are

g1 =

(
1 2 3 a b c d
1 2 3 a a d d

)
, g2 =

(
1 2 3 a b c d
1 2 3 d d a a

)
,

g3 =

(
1 2 3 a b c d
2 1 3 a a d d

)
and g4 =

(
1 2 3 a b c d
2 1 3 d d a a

)
.

We will consider the composition between the elements of CRE
{a,c}
f (G)

and the elements of CRE
{a,d}
f (G). For any h ∈ CRE

{a,c}
f (G) and k ∈

CRE
{a,d}
f (G), it is clear by inspection that (h ◦ k) ∈ CRE

{a,c}
f (G). The

table in Table 4.1 shows the composition between the elements of these two
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groups.
From the Table 4.1, it is clear that we get the left group (S2 × S2) × L2.

◦ f1 f2 f3 f4 g1 g2 g3 g4
f1 f1 f2 f3 f4 f1 f2 f3 f4
f2 f2 f1 f4 f3 f2 f1 f4 f3
f3 f3 f4 f1 f2 f3 f4 f1 f2
f4 f4 f3 f2 f1 f4 f3 f2 f1
g1 g1 g2 g3 g4 g1 g2 g3 g4
g2 g2 g1 g4 g3 g2 g1 g4 g3
g3 g3 g4 g1 g2 g3 g4 g1 g2
g4 g4 g3 g2 g1 g4 g3 g2 g1

Table 4.1: Composition of two completely regular subsemigroups

CRE
{a,c}
f (G) and CRE

{a,d}
f (G) in Example 4.3.4 (1).

Moreover, we have two more groups CRE
{b,c}
f (G) and CRE

{b,d}
f (G) con-

tained in Endf (G). Then we get
∪

i∈{a,b}

∪
j∈{c,d}

CRE
{i,j}
f (G) is isomorphic

to the left group (S2 × S2) × L4 and this is a maximal completely regular
subsemigroup of Endf (G).

(2) Take G = K2 ∪ I5 the split graph as in Figure 4.6, with K2 = {1, 2}
and I = {a, b, c, d, e}.
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Figure 4.6: Endo-regular split graph G = K2 ∪ I5 and H a factor graph
induce by f in Example 4.3.4 (2).

Consider the mapping f =

(
1 2 3 a b c d e
1 2 a a a c c e

)
from G to G.

It is clear that f is an endomorphism. The image graphH = f(G) (in Figure
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4.6) is a subgraph of G. Note that ab, cd in graph H (in Figure 4.6) mean
f({a, b}) = {a} and f({c, d}) = {c}. Now we know that all endomorphisms
in Endf (G) are the embeddings of H into G. By Theorem 4.1.7, we have
that f is regular. And we have three congruence classes {a, b}, {c, d} and
{e} induced by f which are subsets of I5. For every completely regular
endomorphism h ∈ Endf (G), it is impossible that h({a, b}) ∩ h({c, d}) ̸=
∅. Since h({a, b}) ∩ h({c, d}) ̸= ∅, then h(a) ̸= h(c) and h2(a) = h2(c).
This contradicts to Theorem 1.4.7. By the same ways, it is impossible that
h({a, b}) ∩ h({e}) ̸= ∅ and h({c, d}) ∩ h({e}) ̸= ∅. This implies that for
every completely regular endomorphism h ∈ Endf (G), h(I5) is isomorphic
to some element in the symmetric group S{{a,b},{c,d},{e}}.

We have 4 difference sets of representatives, {a, c, e}, {a, d, e}, {b, c, e}
and {b, d, e}. By Theorem 4.3.3, we know that CRE

{i,j,e}
f (G) is isomorphic

to S2 × S3(= S{1,2} × S{i,j,e}) for all i ∈ {a, b} and j ∈ {c, d}.
By inspection, it is clear that

∪
i∈{a,b}

∪
j∈{c,d}

CRE
{i,j,e}
f (G) is isomorphic

to the left group (S2 × S3)× L4. �

Using Theorem 4.3.3 and Example 4.3.4, we get the next corollary.

Corollary 4.3.5. Let G = Kn
∪

Ir be an endo-regular split graph such that
Ir has exactly one split component and Kn∪ Ir is a unique decomposition of
G. Suppose f ∈ End(G) with f(G) is not isomorphic to maximal complete
subgraph of G. Suppose that f has q congruence classes which are sub-
sets of Ir for some q ∈ N, namely, [i1]ρf , [i2]ρf ,..., [iq]ρf , i1, ..., iq ∈ Ir. Set
A := {{a1, a2, ..., aq} | aj ∈ [ij ]ρf , j ∈ {1, 2, ..., q}} the set of sets of represen-
tatives. The maximal completely regular subsemigroup of Endf (G) denoted
by CREf (G) is the union of |A| groups CREA

f (G) where A ∈ A. More
precisely, we have that CREf (G) is the left group (Sn−m×Sm ×Sq)×L|A|.

Endo-regular split graphs Kn ∪ Ir with s > 1 split components of Ir
and |N(a)| = 1 for all a ∈ Ir

In this section we characterize completely regular subsemigroups of endo-
morphism monoids of endo-regular split graphs G = Kn ∪ Ir where Ir has
s > 1 split components J1, J2, ..., Js and |N(a)| = 1 for all a ∈ Ir. Let f be
a completely regular endomorphism of G. This notation will be used every-
where in this section. To get the theorem which describes the structure of
this completely regular subsemigroups, we need 3 lemmas.

The following lemma is the analogue of Lemma 4.3.1 for s > 1 and
|N(a)| = 1.
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Lemma 4.3.6. With the above notation, suppose that J1, J2, ..., Jp are the
split components of Ir with f(Jj) ⊆ Kn for j = 1, 2, .., p. Set J := J1 ∪
J2 ∪ ... ∪ Jp. Then we have f(Kn \

∪
a∈Ir\J

N(a)) = Kn \
∪

a∈Ir\J
N(a) and

f(
∪

a∈Ir\J
N(a)) =

∪
a∈Ir\J

N(a).

Proof. Let u ∈ Kn \
∪

a∈Ir\J
N(a). Assume that f(u) ∈

∪
a∈Ir\J

N(a). Since

f(Kn) = Kn by Lemma 4.1.9, there exists v ∈
∪

a∈Ir\J
N(a) such that f(v) ∈

Kn \
∪

a∈Ir\J
N(a), i.e., f(v) /∈ N(Ir \ J). Suppose that v ∈ N(Jl) for some

Jl /∈ {J1, J2, ..., Jp}. Since |N(a)| = 1 for all a ∈ Ir, by Lemma 4.2.1,
we know that for all d ∈ Ir \ J if f(d) ∈ Ir, then f(d) ∈ Ir \ J . Since
Jl /∈ {J1, J2, ..., Jp}, there exists e ∈ Jl such that f(e) ∈ Ir \ J . Now we
have f(v) /∈ N(f(e)). Since {v, e} ∈ E(G) and f is an endomorphism, we
get that {f(v), f(e)} ∈ E(G), i.e., f(v) ∈ N(f(e)). This is a contradiction.
Thus we have f(Kn \

∪
a∈Ir\J

N(a)) = Kn \
∪

a∈Ir\J
N(a). Consequently, since

f(Kn) = Kn, we get that f(
∪

a∈Ir\J
N(a)) =

∪
a∈Ir\J

N(a).

Lemma 4.3.7. With the above notation, set J
ρf
j := {[i]ρf | i ∈ Jj and [i]ρf ⊆

Jj} and Jf
j := {i ∈ Jj | f(i) ∈ I} for all j = 1, 2, ..., s. Then we have for

any α, β ∈ {1, 2, ..., s} that f(Jf
α) ⊆ Jβ implies |Jρf

α | = |Jρf
β |.

Proof. Let f be a completely regular endomorphism of G and f(Ifα) ⊆ Jβ
for some α, β ∈ {1, 2, ..., s}, α ̸= β. Assume that ℓα := |Jρf

α | ̸= |Jρf
β | =: ℓβ.

First, we consider the case ℓα > ℓβ. Let [a1]ρf , [a2]ρf , ...., [aℓα ]ρf be ℓα

congruence classes in J
ρf
α . Since f(Jf

α) ⊆ Jβ, then for any l ∈ {1, 2, ..., ℓα},
f(al) = bl for some bl in Jβ. By Lemma 4.2.1, we know that bl ∈ Jf

β . Since
ℓα > ℓβ, there exist j ̸= k ∈ {1, 2, ..., ℓα} such that f(aj) = bj ̸= bk = f(ak)
and [bj ]ρf = [bk]ρf , i.e., f2(aj) = f2(ak). That means f is not square
injective, contradicting to Theorem 1.4.7.

Next, we consider the case ℓα < ℓβ. Since Ir is finite, there exists some

split components Jµ and Jν of Ir with f(Jf
µ ) ⊆ Jν and |Jρf

µ | > |Jρf
ν |. As in

the first case we get a contradiction. Then we have that |Jρf
α | = |Jρf

β |.

Now we give an example which illustrates the next lemma.

Example 4.3.8. Take G = K4∪ I9 an endo-regular split graph as in Figure
4.7.
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Figure 4.7: Split graph G = K4 ∪ I5 with Aut(G) = S3 × S3 × S3 × S3.

Here J1 = {a1, a2, a3}, J2 = {b1, b2, b3} and J3 = {c1, c2, c3} are the
three split components of I9. By Lemma 4.3.6, we have f(1) = 1 and
f({2, 3, 4}) = {2, 3, 4} for all f ∈ Aut(G). And by Lemma 4.3.7, we get that
all automorphisms of G permute three split components J1, J2 and J3. And
in any split component, we can permute all vertices to get an automorphism.
Then it is clear that Aut(G) = S1 × S3 × (S3 × S3 × S3). �

Lemma 4.3.9. With the above notation, if |J1| = |J2| = ... = |Js| =: ℓ, we
have that Aut(G) is isomorphic to Sn−s × Ss × Sℓ × Sℓ × ...× Sℓ︸ ︷︷ ︸

s times

.

Theorem 4.3.10. Take an endo-regular split graph G = Kn ∪ Ir where

Ir =
s∪

k=1

Jk with s > 1 split components J1, J2, ..., Js. Suppose that for all

a ∈ Ir, |N(a)| = 1 and |
∪

a∈Ir
N(a)| = m. Take a regular endomorphism f

of G with q congruence classes [i1]ρf , [i2]ρf , ..., [iq]ρf each contained in Ir.

Set Ifr := {i ∈ Ir|f(i) ∈ Ir}, Jf
j := {i ∈ Jj |f(i) ∈ Ir} and take the set

of sets of representatives A := {{a1, a2, ..., aq} | aj ∈ [ij ]ρf , j = 1, 2, ..., q}.
Take A ∈ A and let CREA

f (G) be the same as in Theorem 4.3.3. For

any k = 1, 2, ..., s, if Jf
k ̸= ∅, take u ∈ N(Jf

k ) and set Mf
A(u) := {v ∈

N(Jf
l ) | |Jf

k ∩ A| = |Jf
l ∩ A|, l ∈ {1, ..., s}}. Suppose that there are t

disjoint sets Mf
A(u1), M

f
A(u2),..., M

f
A(ut). Then we have that CREA

f (G) =

Sn−m+p×
t∏

j=1
S
Mf

A(uj)
×

s∏
k=1

S
Jf
k∩A

. Here p is the number of split components

whose vertices are all sent to Kn by f ,
Sn−m+p is the group of permutations of all vertices in (Kn \ N(Ir)) ∪∪

|Jf
j |=0

N(Jf
j ),
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SMf (uj) is a the group of permutations of all vertices in Mf (uj) and

S
Jf
k∩A

is the group of permutations of all vertices in Jf
k ∩A.

The next example shows the idea how to prove the above theorem.

Example 4.3.11. Consider the split graph G = K8 ∪ I11 as in Figure 4.8
and f ∈ End(G) such thatH = Im(f) ∼= G/ρf , where notations b1b2, 2c and
d1d2 are as in Example 4.3.4. We have the 6 split components, J1 = {a1, a2},
J2 = {b1, b2}, J3 = {c}, J4 = {d1, d2}, J5 = {e1, e2} and J6 = {g1, g2}. By
Theorem 4.1.7, we know that all endomorphisms in End(G) are regular.
Take

f =

(
1 2 3 4 5 6 7 8 a1 a2 b1 b2 c d1 d2 e1 e2 g1 g2
1 2 3 4 5 6 7 8 a1 a2 b1 b1 2 d2 d2 e1 e2 g1 g2

)
,

the image graph is H (in Figure 4.8) as a subgraph of G. We see that
f(G) � K8 and we have 8 congruence classes induced by f which are sub-
sets of I11, namely, {a1}, {a2}, {b1, b2}, {d1, d2}, {e1}, {e2}, {g1} and {g2}
only {c, 2} * I11, now we have for p from Theorem 4.3.10 that p = 1.

Choose the set of representatives A = {a1, a2, b1, d1, e1, e2, g1, g2} then

If11 = {i ∈ I11 | f(i) ∈ I11} = {a1, a2, b1, b2, d1, d2, e1, e2, g1, g2}. We will
show that CREA

f (G) is isomorphic to S3 × (S3 × S2 × S2 × S2) × S2. We
have exactly one split component, J3, such that f(J3) ⊆ K8. And the con-
gruence relation for all endomorphisms in Endf (G) is ρf . By definition, it
is clear that CREA

f (G)|({1,2,5}), the set of restrictions of all endomorphisms

in CREA
f (G) to {1, 2, 5}, is isomorphic to S{1,2,5}, the group S3 of permu-

tations of the set {1, 2, 5}.
Since Jf

j = {i ∈ Jj | f(i) ∈ I11} for all j = 1, ..., 6, we see that

2 = |Jf
1 ∩A| = |Jf

5 ∩A| = |Jf
6 ∩A| ̸= |Jf

2 ∩A| = |Jf
4 ∩A| = 1, then we get t = 2,

t from Theorem 4.3.10 , and we have Mf
A(3) = Mf

A(7) = Mf
A(8) = {3, 7, 8},

Mf
A(4) = Mf

A(6) = {4, 6}. By definition of J
ρf
j in Lemma 4.3.7, we have

J
ρf
1 = {{a1}, {a2}}, J

ρf
2 = {{b1, b2}}, J

ρf
4 = {{d1, d2}}, J

ρf
5 = {{e1}, {e2}}

and J
ρf
6 = {{g1}, {g2}}. Since 2 = |Jρf

1 | = |Jρf
5 | = |Jρf

6 | ̸= |Jρf
2 | = |Jρf

4 | = 1,
by Lemma 4.3.7, we know that all endomorphisms in CREA

f (G) do not send

an element in Jf
1 ∪ Jf

5 ∪ Jf
6 to an element in Jf

2 ∪ Jf
4 . Similarly, all endo-

morphisms in CREA
f (G) do not send an element in Jf

2 ∪Jf
4 to an element in

Jf
1 ∪Jf

5 ∪Jf
6 . This implies that all endomorphisms in CREA

f (G) do not send

any vertex in Mf
A(4) to a vertex in Mf

A(3). Similarly, all endomorphisms in

CREA
f (G) do not send any vertex in Mf

A(3) to a vertex in Mf
A(4).

Now we consider CREA
f (G)|

(Mf
A(3)∪Jf

1 ∪J
f
5 ∪J

f
6 )

and CREA
f (G)|

(Mf
A(4)∪Jf

2 ∪J
f
4 )
,
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the set of restrictions of all endomorphisms in CREA
f (G) to Mf

A(3) ∪ Jf
1 ∪

Jf
5 ∪ Jf

6 and to Mf
A(4) ∪ Jf

2 ∪ Jf
4 , respectively.

It is clear that CREA
f (G)|

(Mf
A(3)∪Jf

1 ∪J
f
5 ∪J

f
6 )

∼= Aut(Mf
A(3)∪

∪
j∈{1,5,6}

(Jf
j ∩

A)). Since (Jf
1 ∩A) = {a1, a2}, (Jf

5 ∩A) = {e1, e2} and (Jf
6 ∩A) = {g1, g2} are

split components of the factor graph H and |(Jf
1 ∩A)| = |(Jf

5 ∩A)| = |(Jf
6 ∩

A)| = 2 , then by Lemma 4.3.9, we have that CREA
f (G)|

(Mf
A(3)∪Jf

1 ∪J
f
5 ∪J

f
6 )

is

isomorphic to S
Mf

A(3)
×S

Jf
1 ∩A

×S
Jf
5 ∩A

×S
Jf
6 ∩A

∼= S3×S2×S2×S2. Similarly,

we get that Jf
2 ∩ A = {b1}, Jf

4 ∩ A = {d1} and |Jf
2 ∩ A| = |Jf

4 ∩ A| = 1,
so CREA

f (G)|
(Mf

A(4)∪Jf
2 ∪J

f
4 )

is isomorphic to S
Mf

A(4)
× S

Jf
2 ∩A

× S
Jf
4 ∩A

∼=
S2 × S1 × S1 = S2.

Hence we get that CREA
f (G) is isomorphic to S3×(S3×S2×S2×S2)×S2.

Moreover, it is clear by inspection that for any B,C ∈ A, CREB
f (G) ∼=

CREC
f (G). In this example we have that
{a1, a2, b1, d1, e1, e2, g1, g2}, {a1, a2, b1, d2, e1, e2, g1, g2},
{a1, a2, b2, d1, e1, e2, g1, g2} and {a1, a2, b2, d2, e1, e2, g1, g2}

are 4 distinct sets in A so |A| = 4. Then it is clear that the maximal
completely regular subsemigroup containing in Endf (G) is∪

B∈A
CREB

f (G) ∼= (S3 × (S3 × S2 × S2 × S2)× S2)× L4.
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Figure 4.8: Endo-regular split graph G = K8 ∪ I11 and H a factor graph
induce by f in Example 4.3.11.

Corollary 4.3.12. Take G, f and A as in Theorem 4.3.10. For A ∈ A, the
maximal completely regular subsemigroup of Endf (G) denoted by CREf (G)
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is the left group (Sn−m+p×
t∏

j=1
S|Mf

A(uj)|
×

s∏
k=1

S|Jf
k∩A|)×L|A|. Here S|Mf

A(uj)|

and S|Jf
k∩A| are the symmetric groups on |Mf

A(uj)| and |Jf
k ∩ A| elements,

respectively.

Endo-egular split graph Kn ∪ Ir with s > 1 split components of Ir
and |N(a)| ≥ 2 for all a ∈ Ir

We can use the same idea from two previous sections to find a completely
regular subsemigroup of End(G) where G = Kn∪ Ir is an endo-regular split
graph for which Ir has more than one split component and |N(a)| ≥ 2 for all
a ∈ Ir. But we can not generalize which group is isomorphic to CREA

f (G)
for any the set of representatives A. We give the reason as follows.

For any complete graph Kn and independent set Ir = Kr, we can con-
struct many non-isomorphic endo-regular split graphs whose Ir has s > 1
split components and |N(a)| = m ≥ 2 for all a ∈ Ir. Let G1 and G2 be
two non-isomorphic endo-regular split graphs with the maximal complete
subgraph Kn and the independent set Ir of both G1 and G2. If f is an
endomorphism of both G1 and G2, then CREA

f (G1) may be not isomorphic

to CREA
f (G2) for some possible set of representatives A. The next example

shows this fact.

Example 4.3.13. Consider two graphs G1 and G2 as follows.
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The essential difference between the graph G1 and the graph G2 lies in
the neighborhoods of b2 and of c1. The neighborhood of the split component
{b1, b2} and the neighborhood of the split component {c1, c2, c3} are disjoint
in the graph G1 but are not disjoint in the graph G2. Consider the mapping
as follows

f =

(
1 2 3 4 5 6 7 8 a1 a2 b1 b2 c1 c2 c3
1 2 3 4 5 6 7 8 a1 a2 b1 b1 c1 c1 c3

)
.
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It is clear that f is an endomorphism of G1 and G2. By Lemma 4.1.7, we
have that f is regular. And we have the congruence relation ρf = {{i}|i /∈
{b1, b2, c1, c2}} ∪ {{b1, b2}, {c1, c2}} and we have 5 congruence classes con-
tained in an independent set, that is {a1}, {a2}, {b1, b2}, {c1, c2} and {c3}.
The following pictures H1 and H2 are the image graphs of G1 and G2 under
f , respectively, notation as in Example 4.3.4.
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We see that all endomorphisms in Endf (G1) and Endf (G2) are the
embeddings from H1 to G1 and from H2 to G2, respectively. Choose A =
{a1, a2, b1, c1, c3}. By inspection it is clear that CREA

f (G1) and CREA
f (G2)

are isomorphic to S{1,2}×(S{{3,4},{7,8}}×S{3,4}×S{7,8}×S{a1,a2}×S{c1,c3})×
S{5,6} and S{1,2,5} × (S{3,4} ×S{a1,a2})×S{c1,c3}, respectively. These are the
groups S2×(S2×S2×S2×S2×S2)×S2 and S3×(S2×S2)×S2, respectively.

�

Finally, we give an example to show that for any endo-regular split graph
G, if f, g ∈ End(G) with ρf ̸= ρg, it is not necessary that the composition
between two endomorphisms in CREf (G) and CREg(G) is completely reg-
ular. This means CREf (G) ∪ CREg(G) is not necessarily closed.

Example 4.3.14. Let G be the graph as in Example 4.3.4. It is clear that

f =

(
1 2 3 a b c d
1 2 3 a a d c

)
and g =

(
1 2 3 a b c d
1 2 3 b b b d

)
are en-

domorphisms of G. Now we have the congruence relations
ρf = {{1}, {2}, {3}, {a, b}, {c}, {d}}

and
ρg = {{1}, {2}, {3}, {a, b, c}, {d}}.

It is clear that ρf ⊆ ρg. And we get that

CREf (G) = CRE
{a,c,d}
f (G) ∪ CRE

{b,c,d}
f (G)

and
CREg(G) = CRE

{a,d}
g (G) ∪ CRE

{b,d}
g (G) ∪ CRE

{c,d}
g (G)
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are isomorphic to (S2 × S3)× L2 and (S2 × S2)× L3, respectively. Since f
and g are idempotents, it is clear that f and g are completely regular. Then
f ∈ CREf (G) and g ∈ CREg(G). Consider the following composition

f ◦ g =

(
1 2 3 a b c d
1 2 3 a a a c

)
.

We see that a = (f ◦ g)(c) ̸= (f ◦ g)(d) = c and (f ◦ g)2(c) = a = (f ◦ g)2(d),
i.e., f ◦ g is not square injective. By Theorem 1.4.7, we get that f ◦ g is not
completely regular. This means f ◦ g is not in CREf (G) ∪ CREg(G). �

4.4 Endo-completely-regular split graphs

In this section we find that the set of all non-trivial endomorphisms of endo-
completely-regular split graph Kn ∪ Ir is a left group if it forms the lex-
icographic product K2[Kn−1] and it is a right group if it has exactly one
maximal complete subgraph Kn.

First we will characterize the monoid of endo-completely-regular split
graphs. Before that we characterize the semigroup End′(G) of non-bijective
endomorphisms.

Example 4.4.1. (a) Consider the graph G1 as the follow

��
�H
HHs

s s s
2

1

3 4
G1

we get that End′(G1) = {f1, f2, f3, f4, f5, f6, g1, g2, g3, g4, g5, g6}, where

f1 =

(
1 2 3 4
1 2 3 1

)
, f2 =

(
1 2 3 4
1 3 2 1

)
, f3 =

(
1 2 3 4
2 1 3 2

)
,

f4 =

(
1 2 3 4
2 3 1 2

)
, f5 =

(
1 2 3 4
3 1 2 3

)
, f6 =

(
1 2 3 4
3 2 1 3

)
,

g1 =

(
1 2 3 4
1 2 3 2

)
, g2 =

(
1 2 3 4
1 3 2 3

)
, g3 =

(
1 2 3 4
2 1 3 1

)
,

g4 =

(
1 2 3 4
2 3 1 3

)
, g5 =

(
1 2 3 4
3 1 2 1

)
, g6 =

(
1 2 3 4
3 2 1 2

)
.

Set F := {fi|i = 1, ..., 6} and G := {gi|i = 1, ..., 6}. We consider the
symmetric group S3 := {(1), (12), (13), (23), (123), (132)}. It is easy to see
that the set F corresponds to S3 with congruence relation generated by 1ρ4,
and similarly for G with congruence relation generated by 2ρ4. Now we
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consider multiplication between one endomorphism of F and one from G.
For any fi ∈ F and gj ∈ G, we have
(1) fi|K3 ◦ gj |K3 = fr|K3 = gr|K3 and gj |K3 ◦ fi|K3 = fs|K3 = gs|K3

∃r, s = 1, ..., 6,
(2) (fi ◦ gj)(2) = (fi ◦ gj)(4) and (gj ◦ fi)(1) = (gj ◦ fi)(4).
Then we can conclude that (fi ◦ gj) ∈ G and (gj ◦ fi) ∈ F . And since
ft|K3 = gt|K3 for all t ∈ {1, ..., 6}, then we have for any u, v ∈ {1, ..., 6}
(3) hu|K3 ◦ fv|K3 = hu|K3 ◦ gv|K3 and gv|K3 ◦ hu|K3 = fv|K3 ◦ hu|K3 , where
hu ∈ {fu, gu}.
From these three conditions we can construct the composition table of the
compositions of any two endomorphisms in End(G1) as follows

◦ f1 f2 f3 f4 f5 f6 g1 g2 g3 g4 g5 g6
f1 f1 f2 f3 f4 f5 f6 g1 g2 g3 g4 g5 g6
f2 f2 f1 f5 f6 f3 f4 g2 g1 g5 g6 g3 g4
f3 f3 f4 f1 f2 f6 f5 g3 g4 g1 g2 g6 g5
f4 f4 f3 f6 f5 f1 f2 g4 g3 g6 g5 g1 g2
f5 f5 f6 f2 f1 f4 f3 g5 g6 g2 g1 g4 g3
f6 f6 f5 f4 f3 f2 f1 g6 g5 g4 g3 g2 g1
g1 f1 f2 f3 f4 f5 f6 g1 g2 g3 g4 g5 g6
g2 f2 f1 f5 f6 f3 f4 g2 g1 g5 g6 g3 g4
g3 f3 f4 f1 f2 f6 f5 g3 g4 g1 g2 g6 g5
g4 f4 f3 f6 f5 f1 f2 g4 g3 g6 g5 g1 g2
g5 f5 f6 f2 f1 f4 f3 g5 g6 g2 g1 g4 g3
g6 f6 f5 f4 f3 f2 f1 g6 g5 g4 g3 g2 g1

and we get End′(G1) isomorphic to the right group S3 ×R2.
(b) Consider the graph G2 as follows

��
�H
HH��

�

HH
H s

s ss
3

2

41
G2

we get that End′(G2) = {f1, f2, f3, f4, f5, f6, g1, g2, g3, g4, g5, g6}, where

f1 =

(
1 2 3 4
1 2 3 1

)
, f2 =

(
1 2 3 4
1 3 2 1

)
, f3 =

(
1 2 3 4
2 1 3 2

)
,

f4 =

(
1 2 3 4
2 3 1 2

)
, f5 =

(
1 2 3 4
3 1 2 3

)
, f6 =

(
1 2 3 4
3 2 1 3

)
,
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g1 =

(
1 2 3 4
4 2 3 4

)
, g2 =

(
1 2 3 4
4 3 2 4

)
, g3 =

(
1 2 3 4
2 4 3 2

)
,

g4 =

(
1 2 3 4
2 3 4 2

)
, g5 =

(
1 2 3 4
3 4 2 3

)
, g6 =

(
1 2 3 4
3 2 4 3

)
.

Define F := {fi|i = 1, ..., 6} and G := {gi|i = 1, ..., 6}. Similarly
with (a), we get that F and G are isomorphic to S3. Since the graph
G2 has two complete subgraphs, then set K3 = {1, 2, 3} and I1 = {4}.
Now we know that for any i = 1, ..., 6, Im(fi) = N(4) ∪ {1} =: C and
Im(gi) = N(4) ∪ {4} =: D. Next, we want to consider the multiplication
between two elements of F and G. For any fi ∈ F and gj ∈ G, we have
(fi ◦ gj)(N(4)) ⊆ C. And it is easy to check that (fi ◦ gj)(1) = (fi ◦ gj)(4) ∈
C\(fi◦gj)(N(4)) and Im(fi◦gj) = C. Then we have (fi◦gj) ∈ F . Similarly,
we get (gj ◦ fi) ∈ G. For r ∈ {1, ..., 6} we observe that

(1) fr(a) = gr(a) for all a ∈ N(4) or
(2) there exist only one vertex in N(4) such that fr send it to 1 and gr

send it to 4 and for other vertices fr and gr send them the same.
By all conditions above we can conclude that for any hi ∈ {fi, gi} and any
vertex a ∈ N(4), (hi ◦ fj)(a) = (hi ◦ gj)(a) and we can construct the com-
position table as follows

◦ f1 f2 f3 f4 f5 f6 g1 g2 g3 g4 g5 g6
f1 f1 f2 f3 f4 f5 f6 f1 f2 f3 f4 f5 f6
f2 f2 f1 f5 f6 f3 f4 f2 f1 f5 f6 f3 f4
f3 f3 f4 f1 f2 f6 f5 f3 f4 f1 f2 f6 f5
f4 f4 f3 f6 f5 f1 f2 f4 f3 f6 f5 f1 f2
f5 f5 f6 f2 f1 f4 f3 f5 f6 f2 f1 f4 f3
f6 f6 f5 f4 f3 f2 f1 f6 f5 f4 f3 f2 f1
g1 g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6
g2 g2 g1 g5 g6 g3 g4 g2 g1 g5 g6 g3 g4
g3 g3 g4 g1 g2 g6 g5 g3 g4 g1 g2 g6 g5
g4 g4 g3 g6 g5 g1 g2 g4 g3 g6 g5 g1 g2
g5 g5 g6 g2 g1 g4 g3 g5 g6 g2 g1 g4 g3
g6 g6 g5 g4 g3 g2 g1 g6 g5 g4 g3 g2 g1

and we get End′(G2) isomorphic to the left group S3 × L2. �

By the same way we get the theorem which gives the structure of End′(G)
where G is an endo-completely-regular split graph.

Theorem 4.4.2. For any endo-completely-regular split graph G = Kn∪{a}
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set |N(a)| := m. We have:
(1) if 0 ≤ m < n− 1, then End′(G) = Sn ×Rn−m,
(2) if m = n− 1, then End′(G) = Sn × L2.

Next we give some example for the group of an endo-completely-regular
split graph G.

Example 4.4.3. (a) Consider the graph G3 as follows.
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3

5 G3

We know that I1 = {5} and N(5) = {3, 4}. Set C := K4 \ N(5). Now
we can apply Lemma 4.1.9 that

(1) all automorphisms of this graph fix 5.
And automorphisms permute only 1 and 2, or 3 and 4. Then we can conclude

(2) f(C) = C and f(N(5)) = N(5) for any automorphism f .
By these two conditions we can find all automorphisms as follows

id, (12), (34), (12)(34)

and thus Aut(G3) = S2 × S2.
(b) Consider the graph G2 in Example 4.4.1. Similar as (a), we get

Aut(G2) = S2 × S2. �

From the above example we know that the group of an endo-completely-
regular split graph G = Kn ∪ {a} is the cartesian product of two symmetric
groups where the indices depend on the cardinal number of N(a). The next
theorem describes the monoids of endo-completely-regular split graphs. Its
proof is clear from the preceding examples.

Theorem 4.4.4. For any endo-completely-regular split graph G = Kn∪{a},
set |N(a)| := m. We have:

(1) if m = 0, then End(G) = Sn ∪ (Sn ×Rn),
(2) if 0 < m < n− 1, then End(G) = (Sn−m × Sm) ∪ (Sn ×Rn−m),
(3) if m = n− 1, then End(G) = (Sn−1 × S2)

∪
(Sn × L2).

Remark 4.4.5. Note that from Theorem 4.4.4 we have in case (1) all en-
domorphisms are half strong, locally strong endomorphisms are automor-
phisms, so these graphs have endotype 2, in case (2) all endomorphisms are
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locally strong, quasi strong endomorphisms are automorphisms, so these
graphs have endotype 4, and in case (3) all endomorphisms are strong, so
these graphs have endotype 16.

To prove when a split graphs is endo-Clifford. We need lemmas which
we will give in the next chapter. So, in the next chapter we will show that
all connected split graphs are not endo-Clifford.



Chapter 5

Some Clifford endomorphism
monoids

In previous chapters, we saw that retractive connected bipartite graphs and
retractive 8-graphs were not endo-clifford. In this chapter, we get that
retractive split graphs are also not endo-Clifford. So, our main aim in
this chapter is finding some examples of retractive graphs which are endo-
Clifford.

5.1 Retractive graphs which are not endo-Clifford

In this section, we give lemmas which we will use to construct the endo-
Clifford retractive graphs. By observation on the 8-graph C3,3;P1 which is
endo-completely-regular, but it is neither endo-Clifford nor S-A-unretractive.
We have idea to prove the next lemma.

Lemma 5.1.1. Let G be a retractive connected graph. If End(G) is Clifford
semigroup, then G is S-A-unretractive.

Proof. Let G be not S-A-unretractive. So there exists x ̸= y ∈ G such

that N(x) = N(y). It is clear that f(z) =

{
z, z ̸= x, y
x, z = x, y

and g(z) ={
z, z ̸= x, y
y, z = x, y

are idempotent endomorphisms of G. But f ◦ g = f ̸= g =

g ◦ f . Hence we get that End(G) is not Clifford semigroup.

The converse of Lemma 5.1.1 is not true. For example the connected split
graph K3 ∪ {a} with |N(a)| = 1 is S-A-unretractive and endo-completely-

71
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regular but is not endo-Clifford. This split graph gives us an idea to prove
the next lemma.

Lemma 5.1.2. Let G be a retractive connected graph. If End(G) is endo-
Clifford, then for all a ∈ V (G) there is at most one vertex b ∈ V (G) such
that N(a) ⊆ N(b).

Proof. Let b, c be two distinct vertices in G such that N(a) is a subset of

both of N(b) and N(c). It is clear that f(x) =

{
x, x ̸= a
b, x = a

and g(x) ={
x, x ̸= a
c, x = a

are idempotent endomorphisms of G. But f ◦g = f ̸= g = g◦f .

Hence we get that End(G) is not Clifford semigroup.

Corollary 5.1.3. Let G be a retractive connected graph. If End(G) is
Clifford semigroup, then for any a ∈ V (G), |N(a)| > 1.

Proof. Let a be a vertex in G such that |N(a)| = 1, i.e., |N(a)| = {b} for
some b ∈ V (G). Since G is the retractive connected graph and a is adjacent
to b and |N(a)| = 1, then G has at least 3 vertices and |N(b)| ≥ 2. If G is
tree (contains no cycle), since |V (G)| ≥ 3, it is clear by Theorem 2.1.4 that
End(G) is not an endo-Clifford.

Now we consider the case when G contains a cycle. We consider two
cases. First b is in the cycle. In this case we get that |N(b)| = 3, i.e.,

N(b) = {a, c, d} for some c, d ∈ V (G). It is clear that f(x) =

{
x, x ̸= a
c, x = a

and g(x) =

{
x, x ̸= a
d, x = a

are idempotent endomorphisms of G. But f ◦ g =

f ̸= g = g ◦ f . Hence, we get that End(G) is not Clifford semigroup.
Next we consider the case b is not in any cycle. We have four possible

strong subgraphs of G as follows.

s
s s s s

c b a��
@@ s

s sp p p s s s
c b a��

@@ s
s sp p p s s ss

c b a��
@@ �� s

s sp p p s s ss
c b a��

@@ ��

Similar as the proof of Lemmas 5.1.1 and 5.1.2 we can find two idempotent
endomorphisms f, g of G such that fg = f ̸= g = gf . So, we get that
End(G) is not an endo-Clifford.
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We get the next theorem, which describes that all connected split graphs
are not endo-Clifford, by using Theorem 4.2.3, Lemma 5.1.1, and Corollary
5.1.3.

Theorem 5.1.4. No connected split graph is endo-Clifford.

5.2 Endo-Clifford and rigid graphs

In this section, we construct the retractive endo-Clifford graphs from some
rigid graphs. Recall that graph G is called rigid if |End(G)| = 1.

Example 5.2.1. Take a rigid graph G (see in [19]) as follows.
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Add a vertex a to graph G. We consider which connected graph G ∪ {a} is
endo-Clifford. We get by Corollary 5.1.3 that

(1) |N(a)| must more than 1.
Since we need G∪ {a} is retractive graph and all vertices in G can not per-
mute themselves, then

(2) N(a) must be subset of N(c) for some c ∈ G.
By Lemma 5.1.2 we get that

(3) exactly c ∈ G such that N(a) ⊆ N(c).
By (1), (2), (3) we choose the graph G ∪ {a} as follows.
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It is routine to check that End(G∪{a}) has 2 endomorphisms: identity and

f =

(
1 2 3 4 5 6 7 8 a
1 2 3 4 5 6 7 8 1

)
. They are idempotent. It is obvious

that End(G ∪ {a}) is endo-Clifford.
Add vertex b in the graph G ∪ {a} by consider same as (1), (2) and (3).
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Consider two non-isomorphic graphs H1 = G ∪ {a, b} and H2 = G ∪ {a, b}
as follows.
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We check by inspection that there exists 3 and 4 endomorphisms of H1

and H2, respectively. All endomorphisms of H1 are idH1 ,

f1 =

(
1 2 3 4 5 6 7 8 a b
1 2 3 4 5 6 7 8 a 7

)
and

f2 =

(
1 2 3 4 5 6 7 8 a b
1 2 3 4 5 6 7 8 1 7

)
. And all endomorphism of H2 are

idH2 , g1 =

(
1 2 3 4 5 6 7 8 a b
1 2 3 4 5 6 7 8 a 5

)
,

g2 =

(
1 2 3 4 5 6 7 8 a b
1 2 3 4 5 6 7 8 1 b

)
and

g3 =

(
1 2 3 4 5 6 7 8 a b
1 2 3 4 5 6 7 8 1 5

)
.

All of them are idempotent. It is clear that End(H1) and End(H2) are
endo-Clifford. We can see their strong semilattices of groups in Table 5.1.�

strong semilattice of groups defining homomorphism

End(G ∪ {a}) ssZ1

Z1

isomorphism

End(H1)
ss
s
Z1

Z1

Z1

isomorphism

End(H2)
ss ss
Z1

Z1
Z1

Z1

��@@
�� @@

isomorphism

Table 5.1: Strong semillatices of groups with respect to endomorphism
monoids in Example 5.2.1
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From above example we observe a graph whose endomorphism monoid
is the strong semilattice of groups

∪
α∈Pn

Z1α with defining homomorphism

between groups is isomorphism (or identity map) where Pn is a chain with
n+ 1 elements. The next construction is clear by observation.

Construction 5.2.2. Let G be a rigid graph in Example 5.2.1 and for any
m ≥ 0, let Cm

3 be a graph with vertex set and edge set as follows:
V (Cm

3 ) = {x1, x2, ...., x3+m} and
E(Cm

3 ) = {{x1, x2}} ∪ {{xi, xi−1}, {xi, xi−2} | i = 3, ..., 3 +m}.
Let H be a path P1 = {a, b} and let m1 : H → G and m2 : H → Cm

3

be injective homomorphisms from H to G and Cm
3 , respectively, define by

m1(a) = 7, m1(b) = 8, m2(a) = x1 and m2(b) = x2. We get that the
amalgamated G

⨿
(H,(m1,m2))

Cm
3 is endo-Clifford and

End(G
⨿

(H,(m1,m2))

Cm
3 ) =

∪
α∈Pm+1

Z1α

with defining homomorphisms are isomorphisms where Pm+1 is a chain with
m+ 2 elements.

We call graph Cm
3 in above construction that C3-chain .

Example 5.2.3. Take G the rigid graph in Example 5.2.1 and take C2
3 a

C3-chain graph as follows.

ss ss sx1
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x5

����

Let P1 = {a, b} be a path and let m1 : P1 → G and m2 : P1 → C2
3

be injective homomorphisms from H to G and C2
3 , respectively, define by

m1(a) = 7, m1(b) = 8, m2(a) = x1 and m2(b) = x2. We get the amalga-
mated G

⨿
(P1,(m1,m2))

C3
3 =: Q as follows.
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ssZ1(= {idQ})
Z1(= {f1})
Z1(= {f2})
Z1(= {f3})



76

It is routine to check that End(Q) is a Clifford semigroup which contains

4 endomorphisms: idQ, f1 =

(
1 2 3 4 5 6 a b x3 x4 x5
1 2 3 4 5 6 a b x3 x4 b

)
,

f2 =

(
1 2 3 4 5 6 a b x3 x4 x5
1 2 3 4 5 6 a b x3 a b

)
,

f3 =

(
1 2 3 4 5 6 a b x3 x4 x5
1 2 3 4 5 6 a b 1 a b

)
.

And End(G
⨿

(H,(m1,m2))

C3
3 ) is a strong semilattice of groups

∪
α∈P3

Z1α which

shows in the above graph. �

Example 5.2.4. Add 1 vertex and 2 vertices on graph H2 in Example 5.2.1
as follows.
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We check by inspection that End(H3), End(H4) and End(H5) are the
strong semilattice of groups 5Z1, 8Z1 and 9Z1, respectively, as the following
graphs.
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Defining homomorphisms between any two groups of these strong semi-
lattice of groups are isomorphisms. �

From the observation on examples in this section, we have some questions
which we do not get the results.

Question 5.2.5. If G is a retractive graph with End(G) is a strong semi-
lattice of groups

∪
α∈Y

Z1α, then G contains rigid graph as a strong subgraph?
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Question 5.2.6. Which retractive graph G whose endomorphism monoid
End(G) forms a strong semilattice of groups as follows?

s p p p s p p p
s

s
s

Z1

Z1 Z1

Z1

Z1
�
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�

@
@
@�
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@
@
@

Question 5.2.7. For any semilattice Y , for which graph G whose endomor-
phism monoid End(G) is strong semilattice of groups

∪
α∈Y

Z1α?

5.3 Endo-Clifford and unretractive graphs

In previous section, we used rigid graphs to construct the graphs which are
endo-Clifford. In this section, we find an endo-Clifford retractive graph by
construct from an unretractive graph which is not rigid. We consider the
unretractive graphs with 7 vertices in [19].

Example 5.3.1. Let G be a graph as follows.

s s ss s
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If we add vertex 7 with |N(7)| = 2 to G, we have three difference al-
gebraic properties. If N(7) is one kind of {0, 2}, {1, 3}, {3, 6} and {4, 5},
we by Lemma 5.1.2 that G ∪ {7} is not endo-Clifford. If N(7) = {1, 6}, we
get that End(G ∪ {7}) = End(G) = Aut(G) ∼= D4. If N(7) is one kind of
{0, 1}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
{2, 6}, {3, 4}, {3, 5}, {4, 6} and {5, 6}, we get that End(G ∪ {7}) is a union
of groups Z2 ∪D4. We will show you the case N(7) = {3, 4}. For this case,
we have 10 endomorphisms of G ∪ {7} as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, f1 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 7

)
,

f2 =

(
0 1 2 3 4 5 6 7
0 1 2 3 5 4 6 4

)
, f3 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 5

)
,
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f4 =

(
0 1 2 3 4 5 6 7
2 1 0 3 5 4 6 4

)
, f5 =

(
0 1 2 3 4 5 6 7
5 6 4 3 0 2 1 2

)
,

f6 =

(
0 1 2 3 4 5 6 7
5 6 4 3 2 0 1 0

)
, f7 =

(
0 1 2 3 4 5 6 7
4 6 5 3 0 2 1 2

)
,

f8 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 5

)
, f9 =

(
0 1 2 3 4 5 6 7
4 6 5 3 2 0 1 0

)
.

The next table shows the multiplication of any two above endomor-
phisms.

id f1 f2 f3 f4 f5 f6 f7 f8 f9
id id f1 f2 f3 f4 f5 f6 f7 f8 f9
f1 f1 id f4 f8 f2 f6 f5 f9 f3 f7
f2 f2 f4 f3 f2 f8 f7 f9 f5 f4 f6
f3 f3 f8 f2 f3 f4 f5 f6 f7 f8 f9
f4 f4 f2 f8 f4 f3 f9 f7 f6 f2 f5
f5 f5 f7 f6 f5 f9 f4 f8 f2 f7 f3
f6 f6 f9 f5 f6 f7 f2 f3 f4 f9 f8
f7 f7 f5 f9 f7 f6 f8 f4 f3 f5 f2
f8 f8 f3 f4 f8 f2 f6 f5 f9 f3 f7
f9 f9 f6 f7 f9 f5 f3 f2 f8 f6 f4

It is clear that End(G ∪ {7}) is the union of groups Z2 ∪ D4. In this
case, we let Z2 and D4 be the sets {id, f1} and {f2, f3, f4, f5, f6, f7, f8, f9},
respectively. We also get that End(G∪{7}) = Z2∪D4 is a strong semilattice
of groups by using defining homomorphism φ : Z2 → D4 which φ(id) = f3
and φ(f1) = f8. �

Example 5.3.2. Let G be a graph as follows.
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If we add vertex 7 with |N(7)| = 2 to G, we have three difference alge-
braic properties. If N(7) is one kind of {0, 2}, {0, 5}, {0, 6}, {1, 3}, {1, 4},
{1, 6}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {3, 6} and {4, 6}, we by Lemma 5.1.2
that G ∪ {7} is not endo-Clifford. If N(7) is one kind of {0, 1}, {1, 2} and
{1, 5}, we get that End(G∪ {7}) = Aut(G∪ {7}) ∼= Z2. If N(7) is one kind
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of {0, 3}, {0, 4}, {2, 3}, {2, 6}, {4, 5} and {5, 6}, we get that End(G ∪ {7})
is a union of groups Z1 ∪ S3. We will show you the case N(7) = {2, 6}. For
this case, we have 7 endomorphisms of G ∪ {7} as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, f1 =

(
0 1 2 3 4 5 6 7
5 1 2 6 4 0 3 6

)
,

f2 =

(
0 1 2 3 4 5 6 7
5 1 0 4 6 2 3 4

)
, f3 =

(
0 1 2 3 4 5 6 7
2 1 0 3 6 5 4 3

)
,

f4 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 3

)
, f5 =

(
0 1 2 3 4 5 6 7
0 1 5 4 3 2 6 4

)
,

f6 =

(
0 1 2 3 4 5 6 7
2 1 5 6 3 0 4 6

)
.

The next table shows the multiplication of any two above endomorphisms.

id f1 f2 f3 f4 f5 f6
id id f1 f2 f3 f4 f5 f6
f1 f1 f4 f5 f6 f1 f2 f3
f2 f2 f3 f6 f5 f2 f1 f4
f3 f3 f2 f1 f4 f3 f6 f5
f4 f4 f1 f2 f3 f4 f5 f6
f5 f5 f6 f3 f2 f5 f4 f1
f6 f6 f5 f4 f1 f6 f3 f2

It is routine to check that End(G ∪ {7}) is the union of groups Z1 ∪ S3.
In this case, we let Z1 and S3 be the sets {id} and {f1, f2, f3, f4, f5, f6},
respectively. We also get that End(G∪{7}) = Z1∪S3 is a strong semilattice
of groups with the defining homomorphism φ : Z1 → S3 (which is identity
map) define by φ(id) = f4. �

Example 5.3.3. Let G be a graph as follows.
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This G is unretractive and has 2 endomorphisms: idG and

f =

(
0 1 2 3 4 5 6
4 3 2 1 0 6 5

)
. Add vertex 7 to G with |N(7)| = 2. Con-

sider the two possible graphs H1 = G ∪ {7} and H2 = G ∪ {7} as follows.
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First we consider the monoid End(H1) which contains 4 endomorphisms:

idH1 , f1 =

(
0 1 2 3 4 5 6 7
6 5 4 3 2 1 0 7

)
, f2 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 3

)
and f3 =

(
0 1 2 3 4 5 6 7
6 5 4 3 2 1 0 3

)
. The next table shows the composi-

tions of any two endomorphisms in End(H1).

◦ idH1 f1 f2 f3
idH1 idH1 f1 f2 f3
f1 f1 idH1 f3 f2
f2 f2 f3 f2 f3
f3 f3 f2 f3 f2

It is routine to check that End(H1) is a strong semilattice of groups Z2α∪Z2β

where Z2α = {idH1 , f1} and Z2β = {f2, f3} and the defining homomorphism
φ1 from Z2α to Z2β define by φ1(idH1) = f2 and φ1(f1) = f3 (φ1 is an
isomorphism).

Now we consider the monoid End(H2) which contains 3 endomorphisms:

idH2 , g1 =

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 2

)
, g2 =

(
1 2 3 4 5 6 7 8
7 6 5 4 3 2 1 6

)
.

Similar as the monoid End(H1), we get that End(H2) is a strong semilattice
of groups Z1α∪Z2β where Z1α = {idH2} and Z2β = {g1, g2} and the defining
homomorphism φ2 from Z1α to Z2β define by φ2(idH2) = g1 (φ2 is an iden-
tity map). If N(7) is one kind of {0, 5}, {1, 3}, {1, 6}, {2, 3}, {3, 4}, {3, 5}
and {4, 6}, we also get that End(G ∪ {7}) is a strong semilattice of groups
Z1∪Z2 with defining homomorphism from Z1 to Z2 is an identity map. For
the other possible neighborhood of vertex 7, we get that the endomorphism
monoid End(G ∪ {7}) is not a Clifford semigroup. �
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Example 5.3.4. Take an unretractive graph G as follows.
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If we add vertex 7 with |N(7)| = 2 to G, we have four difference algebraic
properties.
Case. 1 If N(7) is one kind of {0, 2}, {0, 5}, {1, 3}, {1, 4}, {2, 5}, {3, 6},
{4, 5} and {5, 6}, we by Lemma 5.1.2 that G ∪ {7} is not endo-Clifford.
Case. 2 If N(7) is one kind of {0, 1}, {0, 3}, {0, 4}, {0, 6}, {1, 2}, {2, 3},
{2, 4} and {2, 6}, we get that End(G ∪ {7}) is the union of groups Z1 ∪
(Z2 × Z2). We will show for the case N(7) = {0, 3}. For this case, we have
5 endomorphisms as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, f1 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 2

)
,

f2 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 0

)
, f3 =

(
0 1 2 3 4 5 6 7
0 3 2 1 6 5 4 2

)
,

f4 =

(
0 1 2 3 4 5 6 7
2 3 0 1 6 5 4 0

)
.

The next table shows the multiplication of any two above endomorphisms.

id f1 f2 f3 f4
id id f1 f2 f3 f4
f1 f1 f1 f2 f3 f4
f2 f2 f2 f1 f4 f3
f3 f3 f3 f4 f1 f2
f4 f4 f4 f3 f2 f1

It is routine to check that End(G∪{7}) is the union of groups Z1∪(Z2×Z2).
In this case, we let Z1 and Z2 × Z2 be the sets {id} and {f1, f2, f3, f4},
respectively. We also get that End(G ∪ {7}) = Z1 ∪ (Z2 × Z2) is a strong
semilattice of groups with the defining homomorphism φ : Z1 → (Z2 × Z2)
(which is identity map) define by φ(id) = f1.
Case. 3 If N(7) is one kind of {1, 5}, {1, 6}, {3, 4} and {3, 5}, we get that
End(G ∪ {7}) is the union of groups Z2 ∪ (Z2 × Z2). We will show for the
case N(7) = {3, 4}. For this case, we have 6 endomorphisms as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, g1 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 7

)
,
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g2 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 5

)
, g3 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 5

)
,

g4 =

(
0 1 2 3 4 5 6 7
0 3 2 1 6 5 4 5

)
, g5 =

(
0 1 2 3 4 5 6 7
2 3 0 1 6 5 4 5

)
.

The next table shows the multiplication of any two above endomorphisms.

id g1 g2 g3 g4 g5
id id g1 g2 g3 g4 g5
g1 g1 id g3 g2 g5 g4
g2 g2 g3 g2 g3 g4 g5
g3 g3 g2 g3 g2 g5 g4
g4 g4 g5 g4 g5 g2 g3
g5 g5 g4 g5 g4 g3 g2

It is routine to check that End(G∪{7}) is the union of groups Z2∪(Z2×Z2).
In this case, we let Z2 and Z2 × Z2 be the sets {id, g1} and {g2, g3, g4, g5},
respectively. We also get that End(G ∪ {7}) = Z2 ∪ (Z2 × Z2) is a strong
semilattice of groups with the defining homomorphism φ : Z2 → (Z2 × Z2)
define by φ(id) = g2 and φ(g1) = g3.
Case. 4 If N(7) = {4, 6}, we get that End(G ∪ {7}) is the union of groups
(Z2 × Z2) ∪ (Z2 × Z2). For this case, we have 8 endomorphisms as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, h1 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 7

)
,

h2 =

(
0 1 2 3 4 5 6 7
0 3 2 1 6 5 4 7

)
, h3 =

(
0 1 2 3 4 5 6 7
2 3 0 1 6 5 4 7

)
,

h4 =

(
0 1 2 3 4 5 6 7
0 3 2 1 6 5 4 5

)
, h5 =

(
0 1 2 3 4 5 6 7
2 3 0 1 6 5 4 5

)
.

h6 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 5

)
, h7 =

(
0 1 2 3 4 5 6 7
2 1 0 3 4 5 6 5

)
.

The next table shows the multiplication of any two above endomorphisms.

id h1 h2 h3 h4 h5 h(6) h7
id id h1 h2 h3 h4 h5 h6 h7
h1 h1 id h3 h2 h5 h4 h7 h6
h2 h2 h3 id h1 h6 h7 h4 h5
h3 h3 h2 h1 id h7 h6 h5 g4
h4 h4 h5 h6 h7 h6 h7 h4 h5
h5 h5 h4 h7 h6 h7 h6 h5 h4
h6 h6 h7 h4 h5 h4 h5 h6 h7
h7 h7 h6 h5 h4 h5 h4 h7 h6
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It is clear that End(G ∪ {7}) is the union of groups (Z2 × Z2) ∪ (Z2 × Z2).
In this case, we let the first Z2 × Z2 and the last Z2 × Z2 be the sets
{id, h1, h2, h3} and {h4, h5, h6, h7}, respectively. We also get that End(G ∪
{7}) = (Z2 × Z2) ∪ (Z2 × Z2) is a strong semilattice of groups with the
defining homomorphism φ : (Z2 × Z2) → (Z2 × Z2) define by φ(id) = h6,
φ(h1) = h7, φ(h2) = h4 and φ(h3) = h5. �

Example 5.3.5. Take an unretractive graph G as follows.
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If we add vertex 7 with |N(7)| = 2 to G, we have four difference algebraic
properties.
Case. 1 If N(7) is one kind of {0, 1}, {0, 4}, {0, 5}, {0, 6}, {1, 3}, {1, 4},
{1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 5}, {3, 6} and {4, 5}, we get by Lemma
5.1.2 that G ∪ {7} is not endo-Clifford.
Case. 2 If N(7) = {1, 6}, we get that End(G ∪ {7}) is a group Z2 × Z2.
Case. 3 If N(7) is one kind of {0, 1}, {1, 2}, {4, 6} and {5, 6}, we get that
End(G ∪ {7}) is the union of groups Z1 ∪ (Z2 × Z2). We will show for the
case N(7) = {4, 6}. For this case, we have 5 endomorphisms as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, f1 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 5

)
,

f2 =

(
0 1 2 3 4 5 6 7
2 1 0 3 5 4 6 4

)
, f3 =

(
0 1 2 3 4 5 6 7
5 6 4 3 2 0 1 0

)
,

f4 =

(
0 1 2 3 4 5 6 7
4 6 5 3 0 2 1 2

)
.

The next table shows the multiplication of any two above endomorphisms.

id f1 f2 f3 f4
id id f1 f2 f3 f4
f1 f1 f1 f2 f3 f4
f2 f2 f2 f1 f4 f3
f3 f3 f3 f4 f1 f2
f4 f4 f4 f3 f2 f1

It is routine to check that End(G∪{7}) is the union of groups Z1∪(Z2×Z2).
In this case, we let Z1 and Z2 × Z2 be the sets {id} and {f1, f2, f3, f4},
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respectively. We also get that End(G ∪ {7}) = Z1 ∪ (Z2 × Z2) is a strong
semilattice of groups with the defining homomorphism φ : Z1 → (Z2 × Z2)
(which is identity map) define by φ(id) = f1.
Case. 4 If N(7) is one kind of {0, 4} and {2, 5}, we get that End(G∪{7}) is
the union of groups Z2∪ (Z2×Z2). We will show for the case N(7) = {2, 5}.
For this case, we have 6 endomorphisms as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, g1 =

(
0 1 2 3 4 5 6 7
4 6 5 3 0 2 1 7

)
,

g2 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 3

)
, g3 =

(
0 1 2 3 4 5 6 7
2 1 0 3 5 4 6 3

)
,

g4 =

(
0 1 2 3 4 5 6 7
5 6 4 3 2 0 1 3

)
, g5 =

(
0 1 2 3 4 5 6 7
4 6 5 3 0 2 1 3

)
.

The next table shows the multiplication of any two above endomorphisms.

id g1 g2 g3 g4 g5
id id g1 g2 g3 g4 g5
g1 g1 id g5 g4 g3 g2
g2 g2 g5 g2 g3 g4 g5
g3 g3 g4 g3 g2 g5 g4
g4 g4 g3 g4 g5 g2 g3
g5 g5 g2 g5 g4 g3 g2

It is routine to check that End(G∪{7}) is the union of groups Z2∪(Z2×Z2).
In this case, we let Z2 and Z2 × Z2 be the sets {id, g1} and {g2, g3, g4, g5},
respectively. We also get that End(G ∪ {7}) = Z2 ∪ (Z2 × Z2) is a strong
semilattice of groups with the defining homomorphism φ : Z2 → (Z2 × Z2)
define by φ(id) = g2 and φ(g1) = g5. �

Example 5.3.6. Take an unretractive graph G as follows.
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Similar as the other examples, if we add a new vertex 7 to G with
|N(7)| = 2, we also get the endomorphism monoids which are not a Clifford
semigroups where N(7) is one kind of {0, 2}, {0, 5}, {1, 5}, {1, 6}, {2, 4},
{2, 5}, {2, 6}, {3, 5}, {3, 6}, {4, 5} and {5, 6}. If N(7) = {0, 4}, we get that
End(G ∪ {7}) is a group Z2. If N(7) is one kind of {0, 1}, {0, 3}, {0, 6},
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{1, 2}, {1, 4}, {2, 3}, {3, 4} and {4, 5}, we get that End(G∪{7}) is a strong
semilattice of groups Z1 ∪ Z2 which defining homomorphism from Z1 to Z2

is an identity map. If N(7) = {1, 3}, we get that End(G ∪ {7}) is a strong
semilattice of groups Z2 ∪ Z2 which defining homomorphism from Z2 to Z2

is an isomorphism. �
Example 5.3.7. Take an unretractive graph G as follows.
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Similar as the other examples, if we add a new vertex 7 to G with
|N(7)| = 2, we also get the endomorphism monoids which are not a Clifford
semigroups where N(7) is one kind of {0, 2}, {0, 3}, {0, 5}, {0, 6}, {1, 2},
{1, 3}, {1, 4}, {1, 6}, {2, 4}, {2, 5}, {3, 4}, {3, 6}, {4, 5} and {5, 6}. If N(7)
is one kind of {0, 1}, {0, 4}, {1, 5}, {2, 3}, {2, 6}, {3, 5} and {4, 5}, we get
that End(G ∪ {7}) is a strong semilattice of groups Z2 ∪D7 which defining
homomorphism from Z2 to D7 define by send identity to identity and the
other one send to some element which has order 2. We will show you the
case N(7) = {0, 1}. For this case we have 16 endomorphisms as follows:

id =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

)
, 1 =

(
0 1 2 3 4 5 6 7
1 0 2 6 5 4 3 7

)
,

2 =

(
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 2

)
, 3 =

(
0 1 2 3 4 5 6 7
3 2 0 4 5 6 1 0

)
,

4 =

(
0 1 2 3 4 5 6 7
5 3 4 6 1 2 0 4

)
, 5 =

(
0 1 2 3 4 5 6 7
6 2 1 5 4 3 0 1

)
,

6 =

(
0 1 2 3 4 5 6 7
1 5 6 2 0 3 4 6

)
, 7 =

(
0 1 2 3 4 5 6 7
2 3 0 1 6 5 4 0

)
,

8 =

(
0 1 2 3 4 5 6 7
3 5 4 0 2 1 6 4

)
, 9 =

(
0 1 2 3 4 5 6 7
4 6 5 3 0 2 1 5

)
,

10 =

(
0 1 2 3 4 5 6 7
1 0 2 6 5 4 3 2

)
, 11 =

(
0 1 2 3 4 5 6 7
2 6 1 0 3 4 5 1

)
,

12 =

(
0 1 2 3 4 5 6 7
6 4 5 1 2 0 3 5

)
, 13 =

(
0 1 2 3 4 5 6 7
0 4 3 2 1 6 5 3

)
,

14 =

(
0 1 2 3 4 5 6 7
4 0 3 5 6 1 2 3

)
, 15 =

(
0 1 2 3 4 5 6 7
5 1 6 4 3 0 2 6

)
.

The next table shows the multiplication of any two above endomorphisms.
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id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

id id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 id 10 5 9 3 13 11 12 4 2 7 8 6 15 14

2 2 10 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 7 3 14 12 10 11 13 9 15 7 2 6 8 4 5

4 4 8 4 12 11 13 3 9 5 10 8 14 2 15 6 7

5 5 11 5 15 8 2 7 6 4 14 11 10 13 12 9 3

6 6 15 6 11 3 9 4 5 7 13 15 12 14 10 2 8

7 7 3 7 10 15 14 8 2 6 12 3 13 9 11 5 4

8 8 4 8 13 10 12 15 14 2 11 4 9 5 3 7 6

9 9 12 9 8 7 6 5 4 3 2 12 15 10 14 13 11

10 10 2 10 5 9 3 13 11 12 4 2 7 8 6 15 14

11 11 5 11 2 14 15 12 10 13 8 5 6 4 7 3 9

12 12 9 12 6 2 8 14 15 10 7 9 4 3 5 11 13

13 13 14 13 7 5 4 9 3 11 6 14 8 15 2 10 12

14 14 13 14 4 6 7 2 8 15 5 13 3 11 9 12 10

15 15 6 15 9 13 11 10 12 14 3 6 5 7 4 8 2

It is routine to check that End(G∪{7}) is the union of groups Z2∪D7. In this
case, we let Z2 andD7 be the sets {id, 1} and {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15}, respectively. We also get that End(G ∪ {7}) = Z2 ∪D7 is a strong
semilattice of groups with the defining homomorphism φ : Z2 → D7 define
by φ(id) = 2 and φ(1) = 10. �

From all examples in this section, we can conclude the results for all re-
tractive graphs which construct from any unretractive graph with 7 vertices
(refer from [19]). Not we get Table 5.2.

Remark 5.3.8. From Table 5.2 if we consider 3 ≤ |N(a)| ≤ 6 the split graph
K7∪{a} is still not endo-Clifford. But for the (C5+K2)∪{a}, if 3 ≤ |N(a)| ≤
7, its endomorphism monoid is possibly endo-Clifford Z1 ∪ (D5 × Z2).

In this chapter, we only gave examples of retractive graphs whose endo-
morphism monoids are strong semilattices of groups. For the next chance,
we would like to characterize a graph for a given strong semilattice of groups.
But it is so difficult to get a characterization. May be we consider a special
case. For example, we consider a graph for a strong semilattice of groups∪
α∈Y

Gα where a semilattice Y is chain.
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G End(G ∪ {a}) with |N(a)| = 2
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(2) Z1 ∪ Z2 or

(3) Z2 ∪ Z2 or

(4) Z2

(1) not endo-Clifford or

Table 5.2: Endomorphism monoids of G∪ {a} where G is a 7-vertices unre-
tractive graph and |N(a)| = 2.



Chapter 6

Monoids and graph
operations

In this chapter, we consider two graph operations: unions and joins. We
will describe the relationship between a set of endomorphisms of unions (or
joins) and a sum of two sets of endomorphisms of two graphs.

6.1 Basics

In this section we introduce some terminologies which we will use later.

Remark 6.1.1. ([20]) Let M1, M2 be transformation monoids, h ∈ M1 +
M2, h = h1 + h2. Then h is idempotent if and only if h1 and h2 are
idempotent.

For any graphsG andH, it is well-known that End(G), End(H), SEnd(G)
and SEnd(H) are transformation monoids. This means we can use the
above remark for these monoids. But in graph theory, we also have the
sets HEnd(G), HEnd(H), LEnd(G), LEnd(H), QEnd(G) and QEnd(H)
which are not necessarily monoids. The next lemma we extend the result in
Remark 6.1.1 for these sets.

Lemma 6.1.2. For any M ∈ {∅,H, L,Q, S}, an element h = h|G + h|H ∈
MEnd(G) + MEnd(H) is an idempotent if and only if h|G and h|H are
idempotent.

Proof. Necessity. Let h = hG + hH ∈ MEnd(G) +MEnd(H) be an idem-
potent. For any x ∈ V (G), we have h2G(x) = h2(x) = h(x) = hG(x), so h|G
is idempotent. Similarly, we get that h|H is idempotent.

88
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Sufficiency. For any x ∈ V (G), we have that h2(x) = h2|G(x) = h|G(x) =
h(x). Analogously for any x ∈ V (H). So h is an idempotent.

Lemma 6.1.3. ([21]) Let G be a graph, x1, x2 ∈ G, x1 ̸= x2. There exists
a strong endomorphism f ∈ SEnd(G) with f(x1) = f(x2) if and only if
N(x1) = N(x2).

Theorem 6.1.4. For any graph G, Aut(G) = Aut(G).

Lemma 6.1.5. 1. Idempotent endomorphisms of G are in HEnd(G).
2. If G is finite with End(G) ̸= HEnd(G), then HEnd(G) ̸= SEnd(G).

Proof. 1. Let f be an idempotent endomorphism of G. Let {x, y} ∈ E(G).
Since f is an idempotent, then f2(x) = f(x) and f2(y) = f(y), i.e., f(x) ∈
f−1(f(x)) and f(y) ∈ f−1(f(y)). Since f is an endomorphism, then {f(x), f(y)} ∈
E(G). Then we get that f ∈ HEnd(G).

2. Let f ∈ End(G) \HEnd(G). Then there exists {f(x), f(y)} ∈ E(G)
such that for any u ∈ f−1(f(x)) and v ∈ f−1(f(y)), {u, v} /∈ E(G). Since G
is finite, there exists a i ∈ N with f i is an idempotent endomorphism. It fol-
lows from 1. that f i ∈ HEnd(G). In particular, since {f i(x), f i(y)} ∈ E(X)
we have that f i(x) and f i(y) are fixed under f i, and thus they are adjacent
preimages. Moreover, f i /∈ SEnd(G), since not all preimages are adjacent,
namely {x, y} /∈ E(X).

6.2 The sums of endomorphisms sets

For any two graphs G and H, recall that the union G ∪H is defined as the
graph with vertex set V (G)∪̇V (H) and edge set E(G) ∪ E(H) and recall
that the join G + H is defined as the graph with vertex set V (G)∪̇V (H)
and edge set E(G) ∪ E(H) ∪ {{x, y} | x ∈ V (G), y ∈ V (H)}.

In this part, we describe the relations betweenM(G)+M(H) andM(G+
H) where M ∈ {End, HEnd, LEnd, QEnd, SEnd, Aut} and G, H are
graphs.

Theorem 6.2.1. Let G and H be disjoint graphs and consider
M ∈ {End, HEnd, LEnd, QEnd, SEnd, Aut}. Then we get that

(a) M(G) +M(H) ⊆ M(G ∪H);
(b) M(G) +M(H) ⊆ M(G+H).

Proof. Let f be an endomorphism in M(G) + M(H). Since f ∈ M(G) +
M(H), we have that f := g+h for some g ∈ M(G) and for some h ∈ M(H).

(a) It is clear that f ∈ M(G ∪H).
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(b) We show that f ∈ M(G+H). Let {x, y} be an edge in E(G∪H) such
that x ∈ V (G) and y ∈ V (H). We have that f(x) := (g + h)(x) = g(x) ∈
V (G) and f(y) := (g + h)(y) = h(y) ∈ V (H). So {f(x), f(y)} ∈ E(G ∪H)
by definition of join. Then f is an endomorphism of G+H.

In general, we can not compare the sets M(G∪H) and M(G+H). For
example, if G and H are isomorphic to K2, then End(G+H) is not a subset
of End(G ∪H) and End(G ∪H) is also not a subset of End(G+H).

The converses of (a) and (b) in Theorem 6.2.1 are not necessarily true.
We will show this fact in the next example.

Example 6.2.2. Take G a path P1 and H a complete graph K3 as follows.
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It is clear that f =

(
1 2 x1 x2 x3
x1 x2 x1 x2 x3

)
is an endomorphism of G ∪

H. But f /∈ End(G) + End(H) because f |G /∈ End(G). This implies
End(G∪H) * End(G)+End(H). And for the join of G+H, we know that
|End(G)+End(H)| = |End(G)| · |End(H)| = 2 ·6 = 12 and |End(G+H)| =
|End(K5)| = |Aut(K5)| = 5! = 120. Thus, End(G + H) is not isomorphic
to End(G) + End(H). �

For any graph G, we know that the sets HEnd(G), LEnd(G) and
QEnd(G) are not necessarily closed with respect to composition. The next
corollary will show that ifHEnd(G), LEnd(G) andQEnd(G) are not closed,
then HEnd(G + H), LEnd(G + H) and QEnd(G + H) are not closed for
any graph H. It also formulates consequences for unretractivities.

Corollary 6.2.3. Let G and H be disjoint graphs.
1. If M(G) is not closed as a monoid, then M(G +H) and M(G ∪H) are
not closed for all M ∈ {HEnd,LEnd,QEnd}.
2. If M(G) ̸= N(G), then M(G+H) ̸= N(G+H) and M(G∪H) ̸= N(G∪H)
where M ̸= N ∈ {HEnd,LEnd,QEnd}.
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Proof. Let G and H be disjoint graphs. We will consider the case when
M = HEnd.

1. Suppose thatHEnd(G) is not closed, then there exist f, g ∈ HEnd(G)
such that fg /∈ HEnd(G). Then (f + idH), (g + idH) ∈ HEnd(G) +
HEnd(H) ⊆ HEnd(G ∪ H) (HEnd(G + H), respectively). Set h :=
(fg + idH) = (f + idH)(g + idH). We show that h /∈ HEnd(G ∪ H)
(HEnd(G + H), respectively). Since h|G = fg /∈ HEnd(G) , there ex-
ists {x, y} ∈ E(G) for some x, y ∈ Im(fg) such that for all x′ ∈ (fg)−1(x)
and y′ ∈ (fg)−1(y), {x′, y′} /∈ E(G). Since h(H) = H, there are no u, v ∈ H
with u ∈ h−1(x) and v ∈ h−1(y), so we get that for all x′ ∈ (h)−1(x) and
y′ ∈ (h)−1(y), {x′, y′} /∈ E(G ∪ H) (E(G + H), respectively). This means
h /∈ HEnd(G ∪H) (HEnd(G+H), respectively).

2. Let M,N ∈ {HEnd,LEnd,QEnd} with M ̸= N and M(G) ̸= N(G),
say N(G) ⊂ M(G). Take f ∈ M(G) \ N(G). We have that (f + idH) ∈
M(G)+M(H) ⊆ M(G∪H) (M(G+H), respectively). Since M(G) ̸= N(G)
and G,H are disjoint, we have that (f + idH) /∈ N(G ∪H) (N(G+H), re-
spectively).

6.3 Endomorphisms of unions

In this part, we find the conditions which make the converse of (a) in The-
orem 6.2.1 true.

Definition 6.3.1. For any graphs G and H, we call f ∈ End(G ∪ H) a
mixing endomorphism if f(G) * G or f(H) * H.

It is obvious that if there is no mixing endomorphism in End(G ∪ H),
then End(G ∪H) ∼= End(G) + End(H). Now we get the next lemma.

Lemma 6.3.2. For any graphs G, H and M ∈ {End,HEnd,LEnd,QEnd,
SEnd,Aut}, the following statements are equivalent:

(i) M(G ∪H) is isomorphic to M(G) +M(H),
(ii) there is no mixing endomorphism in M(G ∪H),
(iii) f(G) ⊆ G and f(H) ⊆ H for all f ∈ M(G ∪H).

Lemma 6.3.3. For any connected graphs G and H, if MHom(G,H) =
∅ and MHom(H ,G) = ∅, we have that MEnd(G ∪ H) ∼= MEnd(G) +
MEnd(H) where M ∈ {∅,H, L,Q, S}. And if Iso(G,H) = ∅, we have that
Aut(G ∪H) ∼= Aut(G) +Aut(H).

Proof. By Theorem 6.2.1, we know thatMEnd(G)+MEnd(H) ⊆ MEnd(G∪
H). We will show that MEnd(G ∪H) ⊆ MEnd(G) +MEnd(H). By the
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assumption we get that f(G) ⊆ G and f(H) ⊆ H for all f ∈ MEnd(G∪H),
i.e., there is no mixing endomorphism in MEnd(G ∪ H). Since G and
H are disjoint, we get that f |G ∈ MEnd(G) and f |H ∈ MEnd(H), so
f = f |G + f |H ∈ MEnd(G) +MEnd(H).

Corollary 6.3.4. For any graphs G and H, if MHom(Gi,Hj) = ∅ and
MHom(Hj , Gi) = ∅ for all components Gi of G and Hj of H, we have that
MEnd(G ∪H) ∼= MEnd(G) +MEnd(H) where M ∈ {∅,H, L,Q, S}. And
if Iso(Gi,Hj) = ∅ for all components Gi of G and Hj of H, we have that
Aut(G ∪H) ∼= Aut(G) +Aut(H).

Lemma 6.3.5. For any connected graphs G,H and M ∈ {∅,H}, if
MHom(G,H) ̸= ∅, then MEnd(G ∪H) � MEnd(G) +MEnd(H).

Proof. Let g ∈ HHom(G,H). Define f := g + id(H). It is clear that f is a
mixing half strong endomorphism of G∪H since f(G) * G. By Lemma 6.3.2
we have that HEnd(G ∪H) is not isomorphic to HEnd(G) +HEnd(H).

Furthermore, f is also a mixing endomorphism, so we get that End(G∪
H) � End(G) + End(H).

Corollary 6.3.6. For any graphs G, H and M ∈ {∅,H}, if MHom(Gi,Hj)
̸= ∅ for some component Gi of G and Hj of H, we get that MEnd(G∪H) �
MEnd(G) +MEnd(H).

Theorem 6.3.7. Let G and H be connected graphs.
1. End(G) + End(H) ∼= End(G ∪ H) if and only if Hom(G,H) = ∅ and
Hom(H,G) = ∅.
2. HEnd(G)+HEnd(H) ∼= HEnd(G∪H) if and only if HHom(G,H) = ∅
and HHom(H,G) = ∅.

Proof. 1. Necessity. Assume that there exist g ∈ Hom(G,H). Now we
define f := h+ idH . It is clear that f ∈ End(G∪H). Since End(G∪H) ∼=
End(G) + End(H), we get that f |G + f |H = f ∈ End(G) + End(H), i.e.,
f |G ∈ End(G) and f |H ∈ End(H) which is not possible if f(G) * G. So we
have a contradiction.

Sufficiency. It follows directly from Lemmas 6.3.3 and 6.3.5.
2. Similar as 1.

Corollary 6.3.8. Let G and H be graphs.
1. End(G) + End(H) ∼= End(G ∪H) if and only if Hom(Gi,Hj) = ∅ and
Hom(Hj , Gi) = ∅ for all components Gi of G and Hj of H.
2. HEnd(G)+HEnd(H) ∼= HEnd(G∪H) if and only if HHom(Gi,Hj) = ∅
and HHom(Hj , Gi) = ∅ for all components Gi of G and Hj of H.
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Example 6.3.9. It is trivial that for mutually rigid graphsG andH one has
End(G)+End(H) ∼= End(G∪H) consisting only of the identity. Mutually
rigid meansHom(G,H) = Hom(H,G) = ∅ and |End(G)| = |End(H)| = 1.
The following two graphs are mutually rigid.
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Note that G = H = K1 do not fulfill the condition of Theorem 6.3.7 and
indeed |End(K1) + End(K1)| = 1 but |End(K1 ∪K1)| = 4.

Add a vertex x to the graph G and a vertex y to the graph H as follows.
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It is clear that the graphs G ∪ {x} and H ∪ {y} are not rigid graphs, i.e.,
|End(G∪{x})|, |End(Y ∪{y})|> 1, but |Hom(G∪{x},H∪{y})|=|Hom(H∪
{y}, G ∪ {x})|= ∅. By Theorem 6.3.7 we get that

End(G ∪ {x}) + End(H ∪ {y}) ∼= End((G ∪ x) ∪ (H ∪ {y})),

which can also be seen directly. The same is true for HEnd. �

Next we consider the set of all automorphisms of the union of two graphs.
For any connected graphs G and H, it is clear that Iso(G,H) ̸= ∅ if and
only if Iso(H,G) ̸= ∅. Now we can prove the next theorem.

Theorem 6.3.10. Let G, H be connected graphs. The following statements
are equivalent:

(i) Aut(G) +Aut(H) ∼= Aut(G ∪H)
(ii) Iso(G,H) = ∅.
(iii) f(G) ⊆ G and f(H) ⊆ H for all f ∈ Aut(G ∪H).

Proof. (i) ⇒ (ii). Assume that Iso(G,H) ̸= ∅, it is clear that Iso(H,G) is
also not empty. So there exist g ∈ Iso(G,H) and h ∈ Iso(H,G). We also
have that |G| = |H|. Since G, H are disjoint, it is clear that
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f(x) :=

{
g(x) , x ∈ G
h(x) , x ∈ H

is a mixing automorphism, i.e., f does not belong to Aut(G)+Aut(H). This
contradicts to the assumption, so Iso(G,H) = ∅.

(ii) ⇒ (i). This follows directly from Lemma 6.3.3.
(i) ⇔ (iii). This follows directly from Lemma 6.3.2.

Corollary 6.3.11. Let G, H be graphs. The following statements are equiv-
alent:

(i) Aut(G) +Aut(H) ∼= Aut(G ∪H)
(ii) for any components Gi of G and Hj of H, Iso(Gi, Hj) = ∅.
(iii) f(G) ⊆ G, f(H) ⊆ H for all f ∈ Aut(G ∪H).

Next we will consider a monoid of all strong endomorphisms of the union
of two connected graphs. From Lemma 6.3.3, we know that for any graphs
G and H if both of SHom(G,H) and SHom(H,G) are empty sets, we get
that SEnd(G) ∼= SEnd(G) + SEnd(H). Now we consider a case when one
of SHom(G,H) and SHom(H,G) is not empty and the other one is empty.

Example 6.3.12. Consider a graph as follows.
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It is clear that SHom(K1, C4) ̸= ∅ but SHom(C4,K1) = ∅. Since N(1) =
N(3) and N(2) = N(4), by Lemma 6.1.3, there exists h ∈ SHom(C4) such
that h(1) = h(3) or h(2) = h(4). So it is clear that |Im(h)| ≥ 2. If
|Im(h)| = 2, it is not possible that Im(h) = {1, 3} or Im(h) = {2, 4}, i.e.,
two vertices in Im(h) must be adjacent. It is clear that SEnd(K1 ∪ C4) ∼=
SEnd(K1) + SEnd(C4). �

Before we will prove Theorem 6.3.16 describing when SEnd(G ∪ H) is
isomorphic to SEnd(G) + SEnd(H), we need some more lemmas.

Lemma 6.3.13. For any connected graph H ̸= K1, N(h(H)) = H for all
h ∈ SEnd(H).

Proof. Let h ∈ SEnd(H). Since H is connected, there exists an edge in
h(H) and h(H) is connected. Suppose that N(h(H)) ̸= H. So there exists
x /∈ N(h(H)), i.e., {x, h(y)} /∈ E(H) for all h(y) ∈ h(H) and for all y ∈ H.
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Since h is a strong endomorphism, then {h(x), h(h(y))} /∈ E(H) for all
y ∈ H. This is not possible since h(H) is connected.

Corollary 6.3.14. For any connected graphs G and H both not K1, there
is no f ∈ SEnd(G ∪H) such that f(G ∪H) ⊆ G or f(G ∪H) ⊆ H.

Lemma 6.3.15. Let G and H be connected graphs with SHom(G,H) ̸= ∅
and SHom(H,G) = ∅. We have that SEnd(G∪H) ∼= SEnd(G)+SEnd(H).

Proof. Assume that SEnd(G ∪ H) � End(G) + End(H), so there exists
a mixing strong endomorphism f ∈ SEnd(G ∪ H), i.e., f /∈ SEnd(G) +
SEnd(H). Since SHom(G,H) ̸= ∅ and SHom(H,G) = ∅, there exists x ∈
G such that f(x) ∈ H and f(H) ⊆ H. Since G and H are disjoint, we have
that f |H ∈ SEnd(H). We have by Lemma 6.3.13 that N(f |H(H)) = H.
Since f(x) ∈ H, then f(x) ∈ N(f |H(H)). So {f(x), f |H(y)} ∈ E(H) ⊆
E(G ∪ H) for some y ∈ f |H(H). Since f is a strong endomorphism, then
{x, y} ∈ E(G ∪ H). This is a contradiction since G and H are disjoint.
Hence SEnd(G ∪H) ∼= SEnd(G) + SEnd(H).

Theorem 6.3.16. Let G and H be connected graphs. Then SEnd(G∪H) ∼=
SEnd(G)+SEnd(H) if and only if SHom(G,H) = ∅ or SHom(H,G) = ∅.

Proof. Necessity. Assume that SHom(G,H) ̸= ∅ and SHom(H,G) ̸= ∅,
i.e., there exist g ∈ SHom(G,H) and h ∈ SHom(H,G). It is clear that
f := g+ h /∈ SEnd(G) +SEnd(H). Since G and H are disjoint, then f is a
mixing strong endomorphism of G∪H. This contradicts to the assumption,
so SHom(G,H) = ∅ or SHom(H,G) = ∅.

Sufficiency. This follows directly from Lemmas 6.3.3 and 6.3.15.

Example 6.3.17. Consider the paths P1 and P2 as follows.

s s1 2

P1

s s sa b c

P2

It is clear that f =

(
1 2 a b c
a b 1 2 1

)
is a mixing strong endomorphism of

P1 ∪P2. Then we get that SEnd(P1 ∪P2) is not isomorphic to SEnd(P1)+
SEnd(P2). This two graphs do not fulfill the condition in Theorem 6.3.16,
i.e., SHom(P1, P2) ̸= ∅ and SHom(P2, P1) ̸= ∅. �
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Next we will consider the set of all locally (quasi-) strong endomor-
phisms of the union of two graphs G and H. By Lemma 6.3.3 we see that
if LHom(G,H) = LHom(H,G) = ∅ (QHom(G,H) = QHom(H,G) =
∅), then LEnd(G ∪H)∼= LEnd(G)+LEnd(H) (QEnd(G ∪H)∼= QEnd(G)
+QEnd(H)). Then we consider two graphs G,H which exactly one of
LHom(G,H) and LHom(H,G) (QHom(G,H) and QHom(H,G)) being
empty. Of course, if both ofG andH are L-S-unretractive (Q-S-unretractive),
we get by Theorem 6.3.16 that LEnd(G∪H)∼= LEnd(G)+LEnd(H) (QEnd
(G ∪H)∼= QEnd(G) +QEnd(H)). Hence, we consider the case when G or
H is not L-S-unretractive (Q-S-unretractive).

Example 6.3.18. (1) Consider graphs as follows.

su
K1

s s s sa b c d

P3

Now QHom(K1, P3) ̸= ∅ and Hom(P3,K1) = ∅, and then QHom(K1, P3) ̸=

∅ and QHom(P3,K1) = ∅. It is clear that h =

(
u a b c d
a c d c d

)
∈

QEnd(K1 ∪ P3) ⊆ LEnd(K1 ∪ P3) is mixing and h /∈ End(K1) + End(P3).
So we have that QEnd(K1 ∪ P3) � QEnd(K1) + QEnd(P3). This implies
also that LEnd(K1 ∪ P3) � LEnd(K1) + LEnd(P3).

(2) Consider the graphs K1 = {u} and H as follows.
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5

H ∼= P3 +K1

It is clear that f =

(
1 2 3 4 5
1 2 1 2 5

)
is a quasi strong but not strong

endomorphism of H, so we have that H is not Q-S-unretractive, so is
not L-S-unretractive. Next we show that LEnd(K1 ∪ H) is isomorphic
to LEnd(K1)+LEnd(H). Since K1, H are disjoint and LHom(H,K1) = ∅,
then g(H) ⊆ H for all g ∈ LEnd(K1 ∪H). Since H contains a triangle and
5 is in every triangle, we get that 5 ∈ g(H) for all g ∈ LEnd(K1 ∪H).

Assume that there exists h ∈ LEnd(K1 ∪H) such that h(u) = v ∈ H.
Since K1 and H are disjoint, then h(a) /∈ h(H), so h(u) ̸= 5. Now we have
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h−1(v) = {u} and h−1(5) ⊂ H. Since {v, 5} ∈ E(H) and u is not adjacent to
all vertices in h−1(5), then h is not a locally strong endomorphism of K1∪H.
Hence, we get that LEnd(K1 ∪H) is isomorphic to LEnd(K1)+LEnd(H).
Similarly we get that QEnd(K1 ∪H) ∼= QEnd(K1) +QEnd(H). �

The above examples show that in general the condition ,,LHom(G,H) =
∅ or LHom(G,H) = ∅ (QHom(G,H) = ∅ or QHom(G,H) = ∅)” is not
sufficient for LEnd(G ∪ H) ∼= LEnd(G) + LEnd(H) (QEnd(G ∪ H) ∼=
QEnd(G) +QEnd(H)).

Theorem 6.3.19. For any connected graphs G and H, there is no mixing
endomorphism f ∈ QEnd(G ∪H) if and only if QHom(H,G) = ∅ and for
all g ∈ QHom(G,H) one has g(G) ∩NH(h(H)) ̸= ∅ for all h ∈ QEnd(H)
and vice versa.

Proof. Necessity. It is quite clear that at least one of QHom(G,H) and
QHom(H,G) is empty. Now we let QHom(H,G) = ∅.

Suppose that QHom(G,H) ̸= ∅. Let g ∈ QHom(G,H) and h ∈
QEnd(H). Assume that g(G) ∩ NH(h(H)) = ∅. This means all vertices
in g(G) not adjacent to any vertex in h(H). Since G and H are disjoint, it
is clear that f := g + h is a mixing quasi strong endomorphism of G ∪ H.
This is a contradiction. Thus we get that g(G) ∩NH(h(H)) ̸= ∅.

Sufficiency. Let QHom(H,G) = ∅ and let f ∈ QEnd(G∪H) be mixing.
Then we have only the case f(G ∪ H) ⊆ H, so by hypothesis there exists
x ∈ G with {f(x), f(y)} ∈ E(H) for some y ∈ H. But then f is not quasi
strong. This is a contradiction. So we get that f is not mixing.

From the Example 6.3.18 it seems likely that the condition ,,QHom(H,G)
= ∅ and if QHom(G,H) ̸= ∅, then G1 ̸= K1 or for all h ∈ QEnd(H),
h(H) ̸= P3” implies QEnd(G ∪H) ∼= QEnd(G) +QEnd(H). But the next
example shows that this is not true.

Example 6.3.20. (1) Consider K1 = {u} and the graph H as follows.
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By inspection we get that for all h ∈ QEnd(H), h(H) ̸= P3. It is clear that

f =

(
1 2 3 4 5 6 7 8 9 u
1 3 3 5 5 7 7 9 9 8

)
is a mixing quasi strong endomor-

phism of K1 ∪H. This follows by Lemma 6.3.2 that QEnd(K1 ∪H) is not
isomorphic to QEnd(K1) +QEnd(H).

(2) Consider the complete graph K2 = {a, b} and the graph H as follows.
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It is clear that g =

(
1 2 3 4 5 6 7 8 9 10
1 3 3 7 7 7 7 10 10 10

)
is a quasi strong

endomorphism of H. Thus it is also clear that f(x) =


g(x), x ∈ H
4, x = a
8, x = b

is

a mixing quasi strong endomorphism of K2 ∪ H. This follows by Lemma
6.3.2 that QEnd(K2 ∪H) is not isomorphic to QEnd(K2) +QEnd(H). �

Now we consider the set of all locally strong endomorphisms of the union
of two connected graphs G and H.

Theorem 6.3.21. For any connected graphs G, H, there is no mixing en-
domorphism f ∈ LEnd(G ∪H) if and only if LHom(H,G) = ∅ and for all
g ∈ LHom(G,H) one has g(G) ∩ NH(h(H)) ̸= ∅ and g(G) ̸= h(H) for all
h ∈ LEnd(H) and vice versa.

Proof. Necessity. It is clear that at least one of LHom(G,H) and LHom(H,G)
is empty. Now we let LHom(H,G) = ∅.

Suppose that LHom(G,H) ̸= ∅. Let g ∈ LHom(G,H) and h ∈ LEnd(H).
Assume that g(G) ∩ NH(h(H)) = ∅. This means all vertices in g(G) not
adjacent to any vertex in h(H). Since G and H are disjoint, it is clear that
g+h is a mixing locally strong endomorphism of G∪H. This is a contradic-
tion. Thus we get that g(G)∩NH(h(H)) ̸= ∅. Assume that g(G) = h(H), it
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is clear that g + h is a mixing locally strong endomorphism of G ∪H. This
is a contradiction. So we get that g(G) ̸= h(H).

Sufficiency. Let LHom(H,G) = ∅ and f ∈ LEnd(G∪H). Assume that f
is mixing. Since LHom(H,G) = ∅, then we have only case f(G∪H) ⊆ H, so
by hypothesis we get that f |G(G) ̸= f |H(H) and f |G(G)∩NH(f |H(H)) ̸= ∅.
If f |G(G) ( f |H(H), then there exists f(x) ∈ f |G(G) and f(y) ∈ f |H(H) \
f |G(G) such that {f(x), f(y)} ∈ E(H) since h(H) is connected. Now we
have that f−1(f(y)) ⊆ H and there exists x′ ∈ f−1(f(x)) ∩G. Since G and
H are disjoint, then x′ is not adjacent to all vertices in f−1(f(y)). This is a
contradiction. Similarly we get a contradiction if f(H) ( f(G). Hence f is
not mixing.

For any connected graph G, we can find some connected graph H which
is not L-S-unretractive and LHom(G,H) ̸= ∅ and LHom(H,G) = ∅ but
LEnd(G ∪H) is not isomorphic to LEnd(G) + LEnd(H).

Example 6.3.22. Consider a graph K2 = {x, y} and graph H as follows.
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1 2 3 4 5 6 7 8 9 10

11

H

It is clear that

f =

(
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 3 2 1 2 3 4 11

)
and

g =

(
1 2 3 4 5 6 7 8 9 10 11 x y
1 2 3 4 3 2 1 2 3 4 11 8 9

)
are locally strong endomorphism of H and H ∪K2, respectively. So we have
that g is a mixing locally strong endomorphism of H ∪ K2. Hence we get
that LEnd(H ∪K2) is not isomorphic to LEnd(H) + LEnd(K2). And it is
also clear that f is not a strong endomorphism of H, so we get that H is
not L-S-unretractive. �

The conditions in Theorems 6.3.19 and 6.3.21 are not ,,good”, since in
general it will be difficult to check. But we do not have better ones.
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M M(G ∪H) ∼= M(G) +M(H)

End ⇔ Hom(G,H) = ∅ and Hom(H,G) = ∅
HEnd ⇔ HHom(G,H) = ∅ and HHom(H,G) = ∅
LEnd ⇔ LHom(H,G) = ∅ and ∀g ∈ LHom(G,H) one has

g(G) ∩NH(h(H)) ̸= ∅ and g(G) ̸= h(H) ∀h ∈ LEnd(H)
and vice versa

QEnd ⇔ QHom(H,G) = ∅ and ∀g ∈ QHom(G,H) one has
g(G) ∩NH(h(H)) ̸= ∅ ∀h ∈ QEnd(H) and vice versa

SEnd ⇔ SHom(G,H) = ∅ or SHom(H,G) = ∅
Aut ⇔ Iso(G,H) = ∅ ⇔ G � H

Table 6.1: M(G ∪ H) is isomorphic to M(G) + M(H) where M ∈
{End,HEnd, LEnd,QEnd, SEnd,Aut} and G,H are connected graphs.

6.4 Endomorphisms of joins

In this section, we get a theorem describing when the setM(G+H) is isomor-
phic to M(G) +M(H) where M ∈ {End,HEnd,LEnd,QEnd, SEnd,Aut}
and G, H are graphs.

Theorem 6.4.1. Let G, H be graphs and M ∈{End,HEnd, LEnd, QEnd,
SEnd, Aut}. We have that M(G) + M(H) ∼= M(G + H) if and only if
f(G) ⊆ G and f(H) ⊆ H for all f ∈ M(G+H).

Proof. 1. Necessity. Let M(G) +M(H) ∼= M(G +H) and f ∈ M(G +H).
Then we have that f = g + h with g ∈ M(G) and h ∈ M(H). It is clear
that f(G) ⊆ G and f(H) ⊆ H.

Sufficiency. By Lemma 6.2.1, we have that M(G)+M(H) ⊆ M(G+H).
It remains to prove that M(G+H) ⊆ M(G) +M(H). Since f(G) ⊆ G and
f(H) ⊆ H for all f ∈ M(G+H), it is clear that f |G and f |H are in M(G)
and M(H), respectively. Hence f = f |G + f |H ∈ M(G) +M(H) for all f ∈
M(G+H). Now we get that M(G+H) is isomorphic to M(G)+M(H).

Lemma 6.4.2. For any graphs G and H, Iso(Gi, Hj) = ∅ for all component
Gi of G and Hj of H if and only if f(G) ⊆ G and f(H) ⊆ H for all
f ∈ Aut(G+H).

Proof. By Corollary 6.3.11 we get that Iso(Gi,Hj) = ∅ for all components
Gi of G and Hj of Hj if and only if Aut(G ∪H) ∼= Aut(G) + Aut(H). By
definition of the join and the complement of graph, we have that G+H =
G ∪H. So by Theorem 6.1.4 we get that
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Aut(G+H) ∼= Aut(G ∪H) ∼= Aut(G) +Aut(H) ∼= Aut(G) +Aut(H).

By Theorem 6.4.1 we get the result.

Corollary 6.4.3. For any graphs G and H, the following statements are
equivalent:

(i) Aut(G+H) = Aut(G) +Aut(H)
(ii) f(G) ⊆ G and f(H) ⊆ H for all f ∈ Aut(G+H)
(iii) Iso(Gi, Hj) = ∅ for all components Gi of G and Hj of H.

Example 6.4.4. Take a graph P2 + P3 as follows.
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It is routine to check that Aut(P2+P3) and Aut(P2)+Aut(P3) are iso-
morphic which they have 4 elements. Next we show that all automorphisms
of P2 + P3 send P2 and P3 to P2 and P3, respectively.

For any graph G, it is clear that degG(f(x)) = degG(x) for all x ∈ G
and f ∈ Aut(G). Let g be an automorphism of P2 + P3. From the above
graph we see that exactly vertex 2 has degree 6. This implies that g(2) = 2.
Similarly we get that all g({a, d}) = {a, d}, since deg(a) = deg(d) = 4. Since
{3, a}, {3, d} ∈ E(P2 +P3), {c, a}, {d, b} /∈ E(P2 +P3) and g is an endomor-
phism, we get that g(3) /∈ {b, c}. Similarly we get that g(1) /∈ {b, c}, so
g({1, 3}) = {1, 3}. Now we get that g(P2) = P2 and g(P3) = P3. Moreover,
we have the complements of P2 and P3 as follows.

ss
s

ss
ss
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b
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P 2 P 3

We see that P 2 has 2 components; {1, 3} and {2}. And component of
P 3 is itself. It is clear that all components of P 2 are not isomorphic to P 3.
This confirms that Corollary 6.4.3 is hold. �

There are many operations which are defined on the set of graphs, for
instance, box product and cross product. In the future we will look for the
endomorphism monoids of two graphs which conjunct by these operations.



Chapter 7

Unretractivities of graph
operations

In this chapter, we find the unretractivities of a union of two graphs and the
unretractivities of a join of two graphs.

7.1 Basics

We give some terminologies which we will use later.

Theorem 7.1.1. ([21]) A graph G is S-A-unretractive if and only if N(x) ̸=
N(y) for all x, y ∈ G with x ̸= y.

Lemma 7.1.2. For any graph G and M ∈ {L,Q}, if f ∈ MEnd(G), then
fn ∈ MEnd(G) for any 2 ≤ n ∈ N.

Proof. We prove only the case M = L. The other case follows analogously.
Let f ∈ LEnd(G). First we consider n = 2. Let {f2(x), f2(y)} ∈ E(G).
It is clear that f(x) is exactly one vertex in f−1(f2(x)) and f(y) is exactly
one vertex in f−1(f2(y)). Since f is a locally strong endomorphism, we
get that {f(x), f(y)} ∈ E(G). Let x′ ∈ (f2)−1(f2(x)) = f−1(f(x)). Since
{f(x), f(y)} ∈ E(G) and f is a locally strong endomorphism, we get that
there exists y′0 ∈ f−1(f(y)) = (f2)−1(f2(y)) such that {x′, y′0} ∈ E(G).
So we have that f2 ∈ LEnd(G). Proceeding in this manner we get the
result.

Lemma 7.1.3. ([20]) Let G be a graph. Then G is unretractive if and only
if End(G) contains only one idempotent.

102
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Lemma 7.1.4. Let G be a finite graph and take M ∈ {L,Q}. Then G is
M-A-unretractive if and only if MEnd(G) contains only one idempotent.

Proof. Necessity. It is obvious.
Sufficiency. We prove by contraposition. Suppose that G is not M-A-

unretractive, so there exists f ∈ MEnd(G) \ Aut(G). Since G is a finite
graph, there exists i ∈ N such that f i is an idempotent power of f . By
Lemma 7.1.2, we get that f i is in MEnd(G). It is clear that f i is not an
identity. So we get that MEnd(G) contains more than one idempent.

7.2 Unretractivities of unions

In this section, we find conditions for different unretractivities of the union
of graphs. We begin with E-M-unretractive and H-M-unretractive, M ∈
{SEnd,Aut}.

Theorem 7.2.1. Let G, H be finite connected graphs and M ∈ {SEnd,Aut}.
The following statements are equivalent:
(i) End(G ∪H) = M(G ∪H).
(ii) HEnd(G ∪H) = M(G ∪H).
(iii) End(G) = M(G), End(H) = M(H) and Hom(G,H) = Hom(H,G) =
∅.

Proof. (i) ⇒ (ii). For anyM ∈ {SEnd,Aut}, since End(G∪H) ⊇ HEnd(G∪
H) ⊇ M(G∪H) and End(G∪H) = M(G∪H), we have thatHEnd(G∪H) =
M(G ∪H).

(ii) ⇒ (i). For any M ∈ {SEnd,Aut}, since HEnd(G∪H) ⊇ SEnd(G∪
H) ⊇ M(G∪H) and HEnd(G∪H) = M(G∪H), we have that HEnd(G∪
H) = SEnd(G ∪ H). By Lemma 6.1.5 2., we have that HEnd(G ∪ H) =
End(G ∪H), so we get that End(G ∪H) = M(G ∪H).

(iii) ⇒ (i) By Theorem 6.3.7 and hypothesis, we have that
End(G ∪H) = End(G) + End(H) = M(G) +M(H) = M(G ∪H).

(i) ⇒ (iii). Assume that there exists h ∈ Hom(G,H). Set

f(x) :=

{
h(x) , x ∈ V (G)
idH(x) , x ∈ V (H)

, then f ∈ End(G∪H) better type setting.

By hypothesis we have that f ∈ SEnd(G ∪H). Since h(G) ∩ Im(idH) ̸= ∅,
there exists an edge {f(u), f(v)} ∈ E(H) with u ∈ V (G) and v ∈ V (H).
Since G and H are disjoint, then {u, v} /∈ E(G ∪ H). This contradicts to
f ∈ SEnd(G∪H), so Hom(G,H) = ∅. Similarly we get that Hom(H,G) =
∅.

Let k ∈ End(G). We will show that k ∈ M(G). By Theorem 6.2.1, we
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know that End(G) + End(H) ⊆ End(G ∪H) = M(G ∪H), so there exists
l ∈ End(G ∪H) such that l = k + idH . Since l ∈ M(G ∪H) and G, H are
disjoint, then we get that k ∈ M(G), so End(G) = M(G). Similarly we get
that End(H) = M(H).

Next we find a condition for L-A-unretractivity of unions of graphs. We
need some lemmas.

Lemma 7.2.2. Let G1, G2, ..., Gℓ,H1,H2, ..., Hℓ be connected graphs and

fi ∈ Hom(Gi,Hi) for any i ∈ {1, 2, ..., ℓ}. Set G :=
ℓ∪

i=1
Gi and H :=

ℓ∪
i=1

Hi.

Then f := f1+f2+ ...+fℓ ∈ LHom(G,H) if and only if fi ∈ LHom(Gi,Hi)
for all i ∈ {1, 2, ..., ℓ}.

Proof. We prove only the case ℓ = 2. The other cases follow analogously.
Necessity. Let f := f1+ f2 ∈ LHom(G,H). It is clear that fi = f |Gi for

all i ∈ {1, 2}. Since f is a locally strong homomorphism and G1, G2,H1, H2

are pairwise disjoint, we get that f |Gi is a locally strong homomorphism
from Gi to Hi for all i ∈ {1, 2}. Now we have that fi ∈ LHom(Gi,Hi) for
all i ∈ {1, 2}.

Sufficiency. Let f := f1 + f2 with fi ∈ LHom(Gi,Hi) for all i ∈
{1, 2}. So we get that f |Gi = fi ∈ LHom(Gi,Hi) for all i ∈ {1, 2}.
Since G1, G2,H1,H2 all are pairwise disjoint and fi is a locally strong
homomorphism from Gi to Hi for all i ∈ {1, 2, ..., ℓ}, we have that f ∈
LHom(G,H).

Lemma 7.2.3. Let G1, G2 and H be connected graphs, f1 ∈ LHom(G1,H)
and f2 ∈ LHom(G2,H).

(a) If f1(G1) = f2(G2), then f = f1 + f2 ∈ LHom(G1 ∪G2,H);
(b) If f1(G1) ̸= f2(G2) and f1(G1) ∩ f2(G2) ̸= ∅, then f = f1 + f2 /∈

LHom(G1 ∪G2,H).

Proof. (a) Since f1(G1) = f2(G2), we have that Im(f) = Im(f1 + f2) =
Im(f1) = Im(f2). Let {u, v} be an edge in E(H) with u, v ∈ Im(f). Then
f−1(u) = f−1

1 (u) ∪ f−1
2 (u) and f−1(v) = f−1

1 (v) ∪ f−1
2 (v). Since G1, G2 are

disjoint, f−1
1 (u) ∩ f−1

2 (u) = ∅ and f−1
1 (v) ∩ f−1

2 (v) = ∅. Since fi is locally
strong homomorphism from Gi to H, i ∈ {1, 2}, for all x ∈ f−1

i (u) there
exists y ∈ f−1

i (v) such that {x, y} ∈ E(Gi), i ∈ {1, 2}. This implies that for
all x0 ∈ f−1(u) there exists y0 ∈ f−1(v) such that {x0, y0} ∈ E(G1 ∪ G2),
so we get that f ∈ LHom(G1 ∪G2,H).

(b) Suppose that there exist u ∈ f1(G1)∩f2(G2) and v ∈ f2(G2)\f1(G1)
with {u, v} ∈ E(f(G1 ∪ G2)). Let v0 ∈ f−1

2 (v) = f−1(v) ⊆ G2 and u0 ∈
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f−1
1 (u) ⊆ f−1(u) ∩ G1. Since G1 and G2 are disjoint, then {u0, v0} /∈
E(G1 ∪G2), so f is not a locally strong homomorphism.

Lemma 7.2.4. Let G and H be connected graphs, both not K1, where G∪H
is L-Q-unretractive. If there exists g ∈ LHom(G,H), then g(G) ̸= h(H)
for all h ∈ LEnd(H).

Proof. Assume that there exist g ∈ LHom(G,H) and h ∈ LEnd(H) with
g(G) = h(H). By Lemma 7.2.3(a), we get that f := g+h ∈ LEnd(G∪H), so
E(f(G∪H)) ⊆ E(H). Since G,H are connected and are not K1, then there
exists {u, v} ∈ E(f(G ∪H)). Now we know that f−1(u) = g−1(u) ∪ h−1(u)
and f−1(v) = g−1(v) ∪ h−1(v). Since g(G) = h(H), then f−1(u) ∩ G ̸= ∅,
f−1(u) ∩ H ̸= ∅, f−1(v) ∩ G ̸= ∅ and f−1(v) ∩ H ̸= ∅. Since G and H
are disjoint, there is no u0 ∈ f−1(u) such that {u0, v0} ∈ E(G ∪H) for all
v0 ∈ f−1(v) ⊆ G ∪ H, so f is not quasi strong homomorphism. This is a
contradiction. Hence we get that g(G) ̸= h(H) for all h ∈ LEnd(H).

Lemma 7.2.5. Let G and H be graphs such that G∪H is L-A-unretractive.
If LHom(G,H) \ Iso(G,H) ̸= ∅, then LHom(H,G) = ∅.

Proof. Let g ∈ LHom(G,H) \ Iso(G,H). Assume that there exists h ∈
LHom(H,G). By Lemma 7.2.2, we get that f := g+h ∈ LEnd(G∪H) but
f is not an automorphism of G∪H. This is a contradiction, so we get that
LHom(H,G) = ∅.

Lemma 7.2.6. Let G and H be graphs such that G∪H is L-A-unretractive.
Then G � H.

Proof. Assume thatG ∼= H, so there exists g ∈ Iso(G,H). Define a mapping
f from G ∪H to itself by

f(x) =

{
g(x) , if x ∈ V (G)
idH , if x ∈ V (H).

It is clear that f is an endomorphism of G ∪H but not an automorphism.
This contradicts to the hyphotesis, so G � H.

Now we turn to prove the theorem which describes when the union of
two graphs is L-A-unretractive.

Theorem 7.2.7. Let G and H be finite connected graphs, both not K1. We
get that

(1) If LEnd(G∪H) = Aut(G∪H), then (a) G,H are L-A-unretractive
and (b) LHom(G,H) = ∅ or LHom(H,G) = ∅.
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(2) If (a) G,H are L-A-unretractive and (b) LHom(G,H) = LHom(H,G)
= ∅, then LEnd(G ∪H) = Aut(G ∪H).

Proof. (1). Let LEnd(G ∪H) = Aut(G ∪H).
First, we prove (a). By Theorem 6.2.1, we have that LEnd(G)+LEnd(H)

⊆ LEnd(G∪H) = Aut(G∪H). Let g ∈ LEnd(G) and h ∈ LEnd(H). Then
f := g + h ∈ Aut(G ∪H). Since f(G) = g(G) ⊆ G and f(H) = h(H) ⊆ H,
G and H are disjoint, then g ∈ Aut(G) and h ∈ Aut(H).

Next, we prove (b). Suppose that LHom(G,H) ̸= ∅, i.e., there exists
k ∈ LHom(G,H). Since LEnd(G ∪ H) = Aut(G ∪ H), we get by Lemma
7.2.6 that G � H, so not both are K1. By (a), we have that g(G) = G
for all g ∈ LEnd(G) and h(H) = H for all h ∈ LEnd(H). Since G ∪H is
also L-Q-unretractive, we get by Lemma 7.2.4 that k(H) ̸= g(G) = G and
k(G) ̸= h(H) = H. Since G � H, we get that k is not an isomorphism from
G to H. So by Lemma 7.2.5 we have that LHom(H,G) = ∅.

(2). Let f ∈ LEnd(G ∪ H). We will show that f ∈ Aut(G ∪ H).
Since LHom(G,H) = LHom(H,G) = ∅, so we get that f(G) ⊆ G and
f(H) ⊆ H. We get by (a) that f |G ∈ LEnd(G) = Aut(G) and f |H ∈
LEnd(H) = Aut(H), i.e, f |G(G) = G and f |H(H) = H. Since G and H
are disjoint, we get that f = f |G + f |H ∈ Aut(G ∪H).

Before we prove when G∪H is Q-A-unretractive, we need some lemmas.

Lemma 7.2.8. Let G and H be Q-S-unretractive connected graphs not both
K1. Then we have that for all f ∈ QEnd(G ∪H) and for any K ∈ {G,H}

(1) f(K) ⊆ K ′ for some K ′ ∈ {G,H}
(2) if f(K) ⊆ K ′ for some K ′ ∈ {G,H}, then f((G∪H) \K)∩K ′ = ∅.

Proof. (1) Assume that f(K) ∩ G ̸= ∅ and f(K) ∩ H ̸= ∅. Since f(K) is
connected, then there exists x ∈ f(K) ∩ G and y ∈ f(K) ∩ H such that
{x, y} ∈ E(G ∪H). This is a contradiction since G and H are disjoint. So
we get that f(K) ⊆ K ′ for some K ′ ∈ {G,H}.

(2) We consider only the case f(G) ⊆ H the another cases follow anal-
ogously. Assume that f(H) ∩ H ̸= ∅. It is clear that f |H is a quasi
strong endomorphism of H. Since H is Q-S-unretractive, we get that f |H
is strong, so by Lemma 6.3.13 we can conclude that N(f |H(H)) = H. Since
f |H(H) is connected, there exists {x, y} ∈ E(H) for some x ∈ f(G) and
y ∈ f |H(H) = f(H). Since G and H are disjoint, it is clear that there is no
z ∈ f−1(y) such that {u, z} ∈ E(G ∪H) for all u ∈ f−1(x). Then f is not
quasi strong. This is a contradiction. So we get that f(H) ∩H = ∅.
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Theorem 7.2.9. Let G and H be finite connected graphs. The following
statements are equivalent.

(i) QEnd(G ∪H) = Aut(G ∪H).
(ii) QEnd(G) = Aut(G) and QEnd(H) = Aut(H).

Proof. (i) ⇒ (ii). By Theorem 6.2.1 and the hypothesis we have that

(a) QEnd(G) +QEnd(H) ⊆ QEnd(G ∪H) = Aut(G ∪H).

Let g ∈ QEnd(G) and h ∈ QEnd(H). By (a) we get that f := g + h ∈
Aut(G ∪ H). Since G, H are disjoint and f ∈ Aut(G ∪ H), it is clear
that f |G = g ∈ Aut(G) and f |H = h ∈ Aut(H). Now we have that
QEnd(G) = Aut(G) and QEnd(H) = Aut(H).

(ii) ⇒ (i). Let QEnd(G) = Aut(G) and QEnd(H) = Aut(H). Then
QEnd(G) andQEnd(H) contain only one idempotent endomorphism, namely
idG and idH , respectively. By Lemma 7.1.4 we get that

QEnd(G) +QEnd(H) = Aut(G) +Aut(H)

contains exactly one idempotent endomorphism idG + idH .
Assume that there exists f ∈ QEnd(G ∪H) \ Aut(G ∪H). So we have

that f(x) = f(y) for some x, y ∈ V (G ∪H). By Lemma 7.2.8 we get that
x, y ∈ G or x, y ∈ H. Since G ∪ H is a finite graph, there exists i ∈ N
such that f i is an idempotent power of f . By Lemma 7.1.2 we get that
f i is a quasi strong endomorphism of G ∪ H. Similar as f we get that
f i(u) = f i(v) if and only if u, v ∈ G or u, v ∈ H. Since f i is idempotent,
we get that f i(z) = z for all z ∈ Im(f i). Now we have that f i|G and f i|H
are quasi strong endomorphism of G and H, respectively. Now we get that
f i = f i|G + f i|H ∈ QEnd(G) +QEnd(H). This is a contradiction since f i

is not idG + idH which is exactly one idempotent in QEnd(G) +QEnd(H).
Hence we get that QEnd(G ∪H) = Aut(G ∪H).

For the last theorem in this section, we give a condition which union of
graphs is S-A-unretractive.

Theorem 7.2.10. Let G and H be finite connected graphs. Equivalent are
(i) SEnd(G ∪H) = Aut(G ∪H).
(ii) SEnd(G) = Aut(G) and SEnd(H) = Aut(H).

Proof. By Theorem 7.1.1, we have that SEnd(G ∪ H) = Aut(G ∪ H) is
equivalent to N(x) ̸= N(y) for all x, y ∈ G ∪ H and x ̸= y. This is also
equivalent to N(x1) ̸= N(y1) for all x1, y1 ∈ G, x1 ̸= y1 and N(x2) ̸= N(y2)
for all x2, y2 ∈ H, x2 ̸= y2. Again by Theorem 7.1.1, we get that SEnd(G∪
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H) = Aut(G ∪ H) if and only if SEnd(G) = Aut(G) and SEnd(H) =
Aut(H).

The other expected results

We think that the next hypothesis is also true. But we have no more
time to prove it. We only give an idea to prove it in this section.

Hypothesis 7.2.11. Let G and H be connected graphs. Then G ∪ H is
Q-S-unretractive if and only if G and H are Q-S-unretractive.

Lemma 7.2.12. Let G be S-unretractive connected graph and let H be a
connected graph. If f ∈ SHom(G,H), then ρf is trivial.

Proof. Since G is S-unretractive, then N(x) ̸= N(y) for all x ̸= y ∈ G.
Let f ∈ SHom(G,H). Suppose that ρf is not trivial. Then there exist
a ̸= b ∈ G with f(a) = f(b). Since N(a) ̸= N(b), suppose that exists a
vertex c ∈ N(a) \N(b). Since {a, c} ∈ E(G) and f is homomorphism, then
{f(a), f(c)} ∈ E(H). Now we have that b ∈ f−1(f(a)), c ∈ f−1(f(c)) and
{b, c} /∈ E(G). So f is not strong. This is a contraction. So ρf is trivial.

Example 7.2.13. Take the cycle C9 and C3 as follows.
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It is well-known that C9 and C3 are unretractive, so they are also L-

A-unretractive. It is clear that f =

(
0 1 2 3 4 5 6 7 8
a b c a b c a b c

)
is a

locally strong homomorphism from C9 to C3. This shows that ρf is not
trivial. �

We expect that if G is a Q-A-unretractive connected graph and H is a
connected graph, then ρf is trivial for any f ∈ QHom(G,H).

Hypothesis 7.2.14. If G is a Q-A-unretractive connected graph and H is
a connected graph, then ρf is trivial for any f ∈ QHom(G,H).

Let G be a Q-S-unretractive connected graph and H is a connected
graph. If the Hypothesis 7.2.14 is true, we get that for any f ∈ QHom(G,H)
there exists g ∈ QEnd(G) such that ρf = ρg. We expect that the next
hypothesis is also true.
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Hypothesis 7.2.15. Let G be a Q-S-unretractive connected graph and H
is a connected graph. If f ∈ QHom(G,H), then ρf = ρg for some g ∈
QEnd(G).

The next hypothesis is a corollary of the above hypothesis.

Hypothesis 7.2.16. Let G be a Q-S-unretractive connected graph and H
is a connected graph. If f(x) = f(y) for some f ∈ QHom(G,H), then
g(x) = g(y) for some g ∈ QEnd(G).

Sketch of the proof of Hypothesis 7.2.11
(i) ⇒ (ii). By Theorem 6.2.1 and the hypothesis we have that

(a) QEnd(G) +QEnd(H) ⊆ QEnd(G ∪H) = SEnd(G ∪H).

Let g ∈ QEnd(G) and h ∈ QEnd(H). By (a) we get that f := g + h ∈
Aut(G ∪ H). Since G, H are disjoint and f ∈ SEnd(G ∪ H), it is clear
that f |G = g ∈ SEnd(G) and f |H = h ∈ SEnd(H). Now we have that
QEnd(G) = SEnd(G) and QEnd(H) = SEnd(H).

(ii) ⇒ (i). Assume that there exists f ∈ QEnd(G∪H) \ SEnd(G∪H).
Then there exists x ̸= y ∈ V (G ∪ H) such that f(x) = f(y). Since G
and H are disjoint, it is clear by definition of quasi strong that x, y ∈ G
or x, y ∈ H. Since QEnd(G) = SEnd(G), QEnd(H) = SEnd(H) and G,
H are connected and disjoint, by Lemma 7.2.8 we have two cases to con-
sider: (1) f(G) ⊆ G and f(H) ⊆ H and (2) f(G) ⊆ H and f(H) ⊆ G.
First we consider case (1). Since G, H are disjoint, we get that f |G ∈
QEnd(G) = SEnd(G) and f |H ∈ QEnd(H) = SEnd(H). Then we get
that f = f |G + f |H ∈ SEnd(G) + SEnd(H). By Theorem 6.2.1 we also get
that f ∈ SEnd(G ∪H). This is a contradiction.

Next we consider case (2). Since f ∈ QEnd(G) and G, H are dis-
joint, then f |G ∈ QHom(G,H) and f |H ∈ QHom(H,G), so we get that
QHom(G,H) ̸= ∅ and QHom(H,G) ̸= ∅. If x, y ∈ G, then f |G(x) = f |G(y).
By Hypothesis 7.2.16 we get that g(x) = g(y) for some g ∈ QEnd(G). This
contradicts to QEnd(G) = SEnd(G). Similarly we get a contradiction if
x, y ∈ H. So it is impossible to be this case.

Hence we get that QEnd(G ∪H) = SEnd(G ∪H). �

For a graph G ∪ H, it is not easy to find the sufficient condition for
which graphs G and H whose union of them is L-S-unretractive. Although,
in the future we will try to find this sufficient condition and also find other
unretractivities of graph G ∪H.
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7.3 Unretractivities of joins

In this section, unretractivities of joins of graphs are characterized. In [20],
we know that when the joins of graphs G + H are unretractive or S-A-
unretractive.

Lemma 7.3.1. ([20]) If f2 = f ∈ End(G+H), then f ∈ End(G)+End(H).
If f2 = f ∈ SEnd(G+H), then f ∈ SEnd(G) + SEnd(H).

Theorem 7.3.2. ([20]) Let G and H be graphs. The join G+H is (S-A-)
unretractive if and only if G and H are (S-A-) unretractive.

Remark 7.3.3. From Lemma 6.1.5, we get that the graph which has endo-
types 1 and 17 do not exists. So by Theorem 7.3.2, we have now that G+H
is H-A-unretractive if and only if G and H are H-A-unretractive.

Next we give a theorem describing when G +H is L-A-unretractive or
L-A-unretractive.

Theorem 7.3.4. Let G and H be finite graphs without loops and take M ∈
{L,Q}. The following statements are equivalent:

(i) MEnd(G+H) = Aut(G+H).
(ii) MEnd(G) = Aut(G) and MEnd(H) = Aut(H).

Proof. We prove the case M = L, the other cases follow analogously.
(i) ⇒ (ii). By Theorem 6.2.1, we know that LEnd(G) + LEnd(H) ⊆
LEnd(G + H). Since LEnd(G + H) = Aut(G + H), then LEnd(G) +
LEnd(H) ⊆ Aut(G +H). If there exists f ∈ LEnd(G) \ Aut(G), we have
that f + idH is in LEnd(G) + LEnd(H) but is not in Aut(G +H). So we
have that LEnd(G) = Aut(G). Similarly, we get that LEnd(H) = Aut(H).
(ii) ⇒ (i). Let LEnd(G) = Aut(G) and LEnd(H) = Aut(H). Then
LEnd(G) and LEnd(H) contains only one idempotent endomorphism, namely
idG and idH , respectively. And by Lemma 6.1.2, we have that LEnd(G) +
LEnd(H) also contains only one idempotent endomorphism idG + idH .

Assume that there exists f ∈ LEnd(G+H) \ Aut(G+H). So we have
that f(x) = f(y) for some x ̸= y ∈ V (G + H). By definition of the join
G +H we know that for any a ∈ V (G) a adjacent to all vertices in H and
vice versa. Since f is an endomorphism and graph G + H has no loops,
then x, y ∈ G or x, y ∈ H. Since G+H is a finite graph, there exists i ∈ N
such that f i is an idempotent power of f . By Lemma 7.1.2 we get that f i

is a locally strong endomorphism of G + H. And we also know that f i is
not automorphism since f i(x) = f i(y) and x ̸= y. Similar as f we get that
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f i(u) = f i(v) if and only if u, v ∈ G or u, v ∈ H. Since f i is idempotent,
we get that f i(z) = z for all z ∈ Im(f i). Now we have that f i(G) ⊆ G
and f i(H) ⊆ H. Since f i is a locally strong endomorphism of G + H, we
get that f i|G and f i|H are locally strong endomorphisms of G and H, re-
spectively. Now we get that f i = f i|G + f i|H ∈ LEnd(G) + LEnd(H) =
Aut(G) + Aut(H) ⊆ Aut(G +H). This is a contradiction. Hence we have
that LEnd(G+H) = Aut(G+H).

The other expected results

In this section, we think Hypothesis 7.3.6 is true. But we have no more
time to prove it. We give a sketch of proof of it. Before that we need a
lemma.

Lemma 7.3.5. Let G,H be graphs and take M ̸= N ∈ {∅,H, L,Q, S}. If
MEnd(G +H) = NEnd(G +H), we get that MEnd(G) = NEnd(G) and
MEnd(H) = NEnd(H).

Proof. Suppose that NEnd(G +H) ⊆ MEnd(G +H). By Theorem 6.2.1,
we know that MEnd(G) +MEnd(H) ⊆ MEnd(G+H) = NEnd(G+H).
Assume that there exists f ∈ MEnd(G) \ NEnd(G). It is clear that f +
idH is in MEnd(G) + MEnd(H) but is not in NEnd(G + H). This is a
contradiction. Then we get that MEnd(G) = NEnd(G). Similarly we have
that MEnd(H) = NEnd(H).

Hypothesis 7.3.6. Let G,H be connected graphs. The following statements
are equivalent:

(i) QEnd(G+H) = SEnd(G+H).
(ii) QEnd(G) = SEnd(G) and QEnd(H) = SEnd(H).

sketch of the proof
(i) ⇒ (ii). This follows directly from Lemma 7.3.5.
(ii) ⇒ (i). Suppose that QEnd(G) = SEnd(G) and QEnd(H) =

SEnd(H). Assume that f ∈ QEnd(G + H) \ SEnd(G), so there exists
x ̸= y ∈ V (G+H) such that f(x) = f(y) and NG+H(x) ̸= NG+H(y). Since
G +H has no loop, by the definition of the join of the graphs we get that
x, y ∈ G or x, y ∈ H.

If x, y ∈ G, we get that NG(x) ̸= NG(y). It is clear that f |G ∈
QHom(G,G + H). By Hypothesis 7.2.16 we get that there exists g ∈
QEnd(G) such that g(x) = g(y). Since QEnd(G) = SEnd(G), then g
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is also strong, so we get that NG(x) = NG(y). This is a contradiction. Sim-
ilarly we get a contradiction if x, y ∈ H. Then we get that QEnd(G+H) =
SEnd(G+H). �

We also think the next hypotesis is true.

Hypothesis 7.3.7. Let G,H be connected graphs. The following statements
are equivalent:

(i) LEnd(G+H) = SEnd(G+H).
(ii) LEnd(G) = SEnd(G) and LEnd(H) = SEnd(H).

Next chance we will find the other unretractivities of graph G+H. The
next table conclude all results which we get in this section.

= Aut(G+H) SEnd(G+H)

SEnd(G+H) SEnd(G) = Aut(G), -
SEnd(H) = Aut(H)

QEnd(G+H) QEnd(G) = Aut(G), see Hypothesis 7.3.6
QEnd(H) = Aut(H)

LEnd(G+H) LEnd(G) = Aut(G), see Hypothesis 7.3.7
LEnd(H) = Aut(H)

HEnd(G+H) HEnd(G) = Aut(G), HEnd(G) = SEnd(G),
HEnd(H) = Aut(H) HEnd(H) = SEnd(H)

End(G+H) End(G) = Aut(G), End(G) = SEnd(G),
End(H) = Aut(H) End(H) = SEnd(H)

Table 7.2: Unretractivities of G+H where G, H are connected graphs.

In this chapter, we consider only two graph operations: union and join.
Moreover, we are also interested to consider box product and cross product
which we mentioned in the end of the previous chapter. We will continue
to study unretractivities with these operations by using the similar idea as
the union and join in the future. We hope that my dissertation is usefull for
citing in further work on this field.
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commutative semigroup, 4
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complete graph, 6
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completely regular semigroup, 5
component of graph, 6
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independent set, 6
isomorphism (graph), 8
isomorphism (category), 10
join of two graphs, 7
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locally strong homomorphism, 7
maximal clique, 7
mixing endomorphism, 91
monoid, 3
monomorphism, 10
morphisms, 9
multiplication, 3
mutually rigid graph, 93
neighborhood, 6
n-partite graph, 6
null semigroup, 4
orthodox semigroup, 5
orthogroup, 5
path, 18
quasi strong homomorphism, 8
regular, 5
regular semigroup, 5 retractive, 8
right congruence, 5
right identity, 3
right zero element, 4
right zero semigroup, 4
rigid graph, 73
semigroup, 3
semilattice, 4
split component, 49
split graph, 48
square injective, 14
stable set, 6
strong homomorphism, 8
strong semilattice of semigroups, 4
subgraph, 6
subgroup, 4
subsemigroup, 4
tree, 18
trivial semigroup, 3
two-sided identity, see identity
two-sided zero (or zero), 4
union of two graphs, 7
unique decomposition of split graph,
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unretractive, 8
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