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Abstract

Endomorphism monoids have long been of interest in universal algebra and also in the
study of particular classes of algebraic structures.

For any algebra, the set of endomorphisms is closed under composition and forms
a monoid (that is, a semigroup with identity). The endomorphism monoid is an inter-
esting structure from a given algebra.

In this thesis we study the structure and properties of the endomorphism monoid
of a strong semilattice of left simple semigroups. In such semigroup we consider mainly
that the defining homomorphisms are constant or isomorphisms. For arbitrary defining
homomorphisms the situation is in general extremely complicated, we have discussed
some of the problems at the end of the thesis.

First we consider conditions, under which the endomorphism monoids are regular,
idempotent-closed, orthodox, left inverse, completely regular and idempotent.

Later, as corollaries we obtain results for strong semilattices of groups which are
known under the name of Clifford semigroups and we also consider strong semilattices
of left or right groups as well. Both are special cases of the strong semilattices of left

simple semigroups.



Abstract

Endomorphismenmonoide schon lange von Interesse in der universellen Algebra und wer-
den fiir die Untersuchung bestimmter Klassen von algebraischen Strukturen eingesetzt.

Fiir jede Algebra ist die Menge der Endomorphismen abgeschlossen unter Kom-
position und bildet ein Monoid (das heifit, eine Halbgruppe mit einem neutralen Ele-
ment).

In dieser Arbeit untersuchen wir die Strukturen und Eigenschaften des Endo-
morphismenmonoids eines starken Halbverbands von links einfachen Halbgruppen. Fiir
solche Halbgruppe betrachten wir vor allem die Situation, dass die definierenden Homo-
morphismen konstant sind oder Isomorphismen. Fiir beliebige definierende Homomor-
phismen ist die Lage im Allgemeinen duflerst kompliziert, wir haben einige von ihnen
diskutiert, aber es bleiben viele offene Probleme.

Zunachst untersuchen wir die Bedingungen, unter denen die Endomorphismen-
monoide reguldr, idempotent abgeschlossen, orthodox, linksinvers, vollstéandig regular
oder idempotent sind.

Spéter erhalten wir als Folgerungen die entsprechenden Ergebnisse fiir starke Hal-
bverbande von Gruppen, die unter dem Namen Clifford Halbgruppen bekannt sind, und
ebenso fiir starke Halbverbande von Links- oder Rechtsgruppen. Alles sind Sonderfalle

der starken Halbverbénde von links einfachen Halbgruppen.



Summary

Endomorphism monoids have long been of interest in universal algebra and also in the
study of particular classes of algebraic structures.

For any algebra, the set of endomorphisms is closed under composition and forms
a monoid (that is, a semigroup with identity). The endomorphism monoid is an inter-
esting structure from a given algebra.

In this thesis we study the structure and properties of the endomorphism monoid
of a strong semilattice of left simple semigroups. In such semigroup we consider mainly
that the defining homomorphisms are constant or bijective. For arbitrary defining ho-
momorphisms the situation is in general extremely complicated, we have discussed some
of the problems at the end of each chapters. The semigroups, which are considered are
finite.

Let Y be a semilattice and let S¢ be a semigroup for each £ € Y with S,NSz =10
if a # 8,a,8 € Y. For each pair o, € Y with a > 8, let ¢ : So — Sz be a
semigroup homomorphism such that ¢, is the identity mapping, and if « > 8 > v

then SDO‘v’Y = 80:877800"5'

Consider S = J S, with multiplication
acY

axb= PLa,anp (a)@ﬂ,oz/\ﬁ(b)

for a € S, and b € Sg. The semigroup S is called a strong semilattice Y of semigroups
S¢. For a, 8 € Y we call p, g the defining homomorphisms of S also called structure
homomorphisms. We denote a strong semilattice of semigroups S, with defining homo-
morphisms ¢, g by S = [Y; 54, va,s]. A strong semilattice of groups is known under the
name a Clifford semigroup.

Since all S, is finite, we denote an idempotent e, as a fixed element with corre-
sponding to S,.

Now we study the endomorphism monoids of the strong semilattices of left
simple semigroups with constant defining homomorphisms c, ¢, and denoted by S =
[Y; Sa,ea,ca,eﬁ].

We obtain the following results:

Theorem: Let S =[Y;S,,eq, ca,eﬂ] be a non-trivial strong semilattice of left
simple semigroups with v = AY.

If the monoid End(S) is regular then the following conditions hold



1) the monoid End(Y') is regular,
2) the set Hom(S,,S,) consists of constant
mappings for all o € Y with v < «, and

3) the set Hom(S, Sg) is hom-regular for every o, 3 € Y.

If the following conditions hold
)Y =Yon,
2) the set Hom(Sp, Sa) consists of constant
mappings for all @ € Y with a # 0,
3) the set Hom(Sy, Sp) is hom-regular for every o, § € Yy p,
4) Sy contains one idempotent e,

then the monoid End(S) is regular.

The monoid End(S) is idempotent-closed if and only if
1) Y =Y, and

2) the monoid End(S¢) is idempotent-closed for every & € Yy .

If monoid End(S) is orthodox then the following conditions hold
1) Y =Yon,
2) the set Hom(Sy, S,) consists of constant
mappings for all a € Y, with o # 0,
3) the monoid End(S¢) is idempotent-closed for all £ € Yy ,, and

4) the set Hom(Sy, Sp) is hom-regular for every o, 8 € Yy .

If the following conditions hold
1Y = Yo,
2) the set Hom(Sp, Sa) consists of constant mappings
for all « € Yy, a # 0,
3) the monoid End(S¢) is idempotent-closed for all £ € Yp 5,
4) the set Hom(Sq, Sg) is hom-regular
for every € € Yp 5, and
5) Sp contains one idempotent e,

then the monoid End(S) is orthodox.

Then the monoid End(S) is left inverse if and only if
1) Y =Y, and



2)the monoid End(Se) is left inverse for every £ € Yo .

If the monoid End(S) is completely regular then the following conditions hold
D IY]=2,
2) the set Hom(S,,S,) consists of constant
mappings for all a € Y with v < «, and

3) the monoid End(S¢) is completely regular for every £ € Y.

If the following conditions hold

Y] =2,

2) the set Hom(S,,S,) consists of constant
mappings for all « € Y, a # v,

3) the monoid End(S¢) is completely regular
for every £ € Y, and

4) S, has only one idempotent,

then the monoid End(S) is completely regular.

Then the monoid End(S) is idempotent if and only if
1) Iv] =2,
2) the set Hom(S,,S,) consists of constant
mappings for all « € Y with v < «, and
3) the monoid End(S¢) is idempotent for every £ € Y.

Moreover, if the defining homomorphisms ¢, g are bijective for all a, 8 € Y such
that 8 < «, we found that:

Let S = [Y;Ta,eq,9a,8), Te = T be a non-trivial strong semilattice of left
simple semigroups. Then the monoid End(S) is regular (idempotent-closed, orthodox,
left inverse, completely regular, and idempotent) if and only if the monoids End(Y") and
End(T) have such property.

We also consider the endomorphism monoids of the strong semilattices of left
simple semigroups with surjective defining homomorphisms ¢, g and Y =Yg j,.

Let Y =Yy, and let S = [Y( 5 Sa, €a; Pa 5] be a non-trivial strong semilattice of
left simple semigroup with surjective defining homomorphisms ¢, 3.

Then the monoid End(S) is regular if and only if the set Hom(Sq, Sg)) is hom-

regular for all o, 8 € Yp .



Then the monoid End(S) is idempotent-closed if and only if the monoid
End(Se) is idempotent-closed for every & € Yp .
Then the monoid End(S) is orthodox if and only if the following conditions
hold
1) the monoid End(S;) is idempotent-closed
for every ¢ € Yp 5, and
2) the set Hom(S,, Sg) is hom-regular
for every o, B € Yy .
Then the monoid End(S) is left inverse if and only if the monoid End(S;) is
left inverse for every & € Yp .
Then the monoid End(S) is completely regular if and only if [Y| = 2 and the
monoid End(Se) is completely regular for every £ € Y.
Then the monoid End(S) is idempotent if and only if |Y| = 2 and the monoid
End(Sg) is idempotent for each § € Y.



Zusammenfassung

Endomorphismenmonoide sind schon lange von Interesse in der universellen Algebra und
werden fiir die Untersuchung bestimmter Klassen von algebraischen Strukturen einge-
setzt.

Fiir jede Algebra ist die Menge der Endomorphismen abgeschlossen unter Kom-
position und bildet ein Monoid (das heifit, eine Halbgruppe mit einem neutralen Ele-
ment).

In dieser Arbeit untersuchen wir die Strukturen und Eigenschaften des Endo-
morphismenmonoids eines starken Halbverbands von links einfachen Halbgruppen. Fiir
solche Halbgruppe betrachten wir vor allem die Situation, dass die definierenden Homo-
morphismen konstant sind oder Isomorphismen. Fiir beliebige definierende Homomor-
phismen ist die Lage im Allgemeinen duflerst kompliziert, wir haben einige von ihnen
diskutiert, aber es bleiben viele offene Probleme. Die Halbgruppen, die angesehen wer-
den, sind endlich.

Sei Y ein Halbverband und sei S¢ eine Halbgruppe fiir jedes £ € Y mit S,NSg = 0,
wenn o # 3, a,f € Y. Fir jedes Paar a, 8 € Y mit o > 3, sei po5 : Sa — 53
ein Halbgruppen Homomorphismus, so dass ¢, die Identitatsabbildung ist, und wenn
a> 3>, dann @, = ©g~4Pa,8-

Wir betrachten S = (J S, mit Multiplikation
acY

axb= @a,aw(a)sﬁﬁ,a/\,@(b)

fir a € S, und b € Sg. Die Halbgruppe S wird als stark Halbverband Y von Halbgruppen
S¢ bezeichnet. Fiir «, 8 € Y nennen wir ¢, g die definierenden Homomorphismen von S
oder auch Struktur Homomorphismen. Wir bezeichnen einen starken Halbverband von
Halbgruppen S, mit definierenden Homomorphismen ¢, g durch S = [Y’; Sq, ¢a,5]. Ein
starker Halbverband von Gruppen ist bekannt unter dem Namen Clifford Halbgruppe.

Da alle S, endlich sind, wahlen wir eines der Idempotenten e, € S, aus.

Jetzt studieren wir die Endomorphismenmonoide der starken Halbverbande von
links einfachen Halbgruppen S = [Y’;54, €q, Ca ;] mit konstanten definierenden Homo-
morphismen Ca,es-

Wir erhalten die folgenden Ergebnisse:

Sei S = [Y;Sa,€a;Caey) €in nicht-trivialer starker Halbverband von links ein-

fachen Halbgruppen mit v = AY.



Wenn das Monoid End(S) regulér ist, dann gelten die folgenden Bedingungen
1) das Monoid End(Y) ist regulér,
2) die Menge Hom(S,, S,) besteht aus konstanten Abbildungen
fiir alle « € Y mit v < o und

3) die Menge Hom(S,, Sp) ist hom-regulér fiir alle ., 5 € Y.

Wenn die folgenden Bedingungen erfiillt sind
1) Y =Yon,
2) die Menge Hom(S,, So) besteht aus
konstanten Abbildungen fiir alle « € Y, mit o # 0,
3) die Menge Hom(S,, Sg) ist hom-regulér fiir alle £ € Yp,,, und
4) Sy enthalt nur ein idempotentes Element,

dann ist das Monoid End(S) regulér.

Das Monoid End(S) ist idempotent-abgeschlossen genau dann, wenn
1) Y =Y, und
2) das Monoid End(Sg) ist idempotent-abgeschlossen
fiir jedes £ € Yp .

Das Monoid End(S) ist orthodox genau dann, wenn
)Y =Yon,
2) die Menge Hom(Sp, S,) besteht aus
konstanten Abbildungen fiir alle a € Y, mit o # 0,
3) das Monoid End(Se) ist idempotent-abgeschlossen
fir alle £ € Yp,5,, und

4) die Menge Hom(Sy, Sp) ist hom-reguldr fiir alle «, 5 € Yy .

Wenn die folgenden Bedingungen erfiillt sind
1) Y =Yon,
2) die Menge Hom(Sp, S,) besteht aus
konstanten Abbildungen fiir alle a € Y, mit o # 0,
3) das Monoid End(Sg) ist idempotent-abgeschlossen
fir alle § € Yo p,
4) die Menge Hom(S,, Sg) ist hom-regulér fiir alle £ € Yy ,,, und

5) So enthélt nur ein idempotentes Element,



dann ist das Monoid End(S) orthodox.

Das Monoid End(S) ist linksinvers genau dann, wenn
1) Y =Y, und
2) das Monoid End(Sg) ist linksinvers
fir alle § € Yo .

Das Monoid End(S) ist vollstandig regulir wenn die folgenden Bedingungen
erfillt sind
1) Y| =2,
2) die Menge Hom(S,, So) besteht aus
konstanten Abbildungen fiir alle « € Y mit v < «, und

3) das Monoid End(Sg) ist vollstédndig regulér fiir alle { € Y.

Wenn die folgenden Bedingungen erfiillt sind
1 Y[=2,
2) die Menge Hom(S,, S,) besteht aus
konstanten Abbildungen fiir alle o € Y mit v < «,
3) das Monoid End(Sg) ist vollstéindig regular fiir alle £ € Y, und
4) S, enthélt nur ein idempotentes Element,

dann ist das Monoid End(S) vollstandig regulér.

Das Monoid End(S) ist idempotent genau dann, wenn
1 Y| =2,
2) die Menge Hom(S,, S,) besteht aus
konstanten Abbildungen fiir alle o € Y mit v < «, und
3) die Monoid End(S¢) ist idempotent fiir alle { € Y.
AuBlerdem, wenn ¢, g fiir alle o, 3 € Y bijektiv ist, so dass 3 < «, finden wir:
Sei S = [Y;Ta, €q,ap), Te = T ein nicht-trivialer starker Halbverband von links
einfachen Halbgruppen. Dann ist das Monoid End(S) regulér (idempotent-abgeschlossen,
orthodox, linksinvers, vollstandig regulér, und idempotent) genau dann, wenn die Monoiden
End(Y) und End(T) eine solche Eigenschaft haben.
Wir betrachten auch die Endomorphismenmonoide der starken Halverband von
links einfachen Halbgruppen mit surjektiv definierenden Homomorphismen ¢, g und

Y =Yy,



Sei Y = Yp,, und sei S = [Yp ;S €a, Pa,p) €in nicht-trivialer starker Halbver-
band von links einfachen Halbgruppen mit surjektiv definierenden Homomorphismen
Pa,8-

Dann ist das Monoid End(S) regulér genau dann, wenn die eingestellte Hom(Sq, S3)
hom-regulér ist fiir alle o, 5 € Yp .

Das Monoid End(S) ist idempotent-abgeschlossen genau dann, wenn das
Monoid End(Se) idempotent-abgeschlossen ist fiir jedes & € Yy .

Das Monoid End(S) ist orthodox genau dann, wenn folgende Bedingungen
erfiillt sind

1) Das Monoid End(S¢) ist idempotent-abgeschlossen
fiir jedes € € Yp , und

2) Die Menge Hom(Sq,Sg) ist hom-regulér
fir jedes a, 8 € Yo p.

Das Monoid End(S) ist linksinvers genau dann, wenn das Monoid End(S¢)
linksinvers ist fiir jedes £ € Yp .

Das Monoid End(S) ist vollstdndig reguldr genau dann, wenn |Y| = 2 und
das Monoid End(Sg¢) vollstandig regulér ist fiir jedes { € Y.

Das Monoid End(S) ist idempotent genau dann, wenn |Y'| = 2 und das Monoid
End(S¢) idempotent ist fiir jedes £ € Y.



Introduction

Endomorphism monoids have long been of interest in universal algebra and also
in the study of particular classes of algebraic structures.

For any algebra, the set of endomorphisms is closed under composition and forms
a monoid (that is, a semigroup with identity). The endomorphism monoid is an interest-
ing structure from a given algebra. Some properties have been investigated, regular for
example. For many algebras the endomorphism monids have been studied, for example,
in [3], posets whose monoids of order-preserving maps are regular, the regularity and
substructures of Hom of modules have been in [6]. The endomorphism monoids of some
special groups were studied. Endomorphism rings of abelian groups have been studied in
[15] and endomorphism monoids of the generalized quaternion groups, dihedral 2-groups,
the alternating group A4 and symmetric groups were considered by Puusemp[16], [18],
[19]. In [20] the endomorphisms of Clifford semigroups were described.

In this thesis we study properties of the endomorphism monoids of strong semi-
lattices of left simple semigroups; namely regular endomorphisms, idempotent-closed
sets of endomorphisms, orthodox sets of endomorphisms, left inverse endomorphisms,
completely regular endomorphisms and idempotent endomorphisms.

This thesis contains 7 chapters; Chapter 1 is of an introductory nature which
provides basic definitions and reviews some of the background material which is needed
for reading the subsequent chapters. We also introduce the concept of homomorphism
regularity of two groups.

In Chapter 2 we mentioned finite semilattices whose endomorphism monoids are
regular and we investigated the above regularity properties of the endomorphism monoids
of finite semilattices and of sets.

In Chapter 3 we consider strong semilattices of left simple semigroups whose
endomorphism monoids have the above regularity properties. In this chapter we consider

strong semilattices of left simple semigroups in which the defining homomorphisms are



constant or isomorphisms.

The results in this chapter are valid for the endomorphism monoids of strong
semilattices of right simple semigroups as well.

In Chapter 4 we consider Clifford semigroups, i.e., strong semilattices of groups
whose endomorphism monoids have the above regularity properties. In this chapter
we consider Clifford semigroups in which the defining homomorphisms are constant or
bijective.

In Chapter 5 we consider strong semilattices of left groups whose endomorphism
monoids have the above regularity properties. In this chapter we consider strong semi-
lattices of left groups in which the defining homomorphisms are constant or bijective.

All results in Chapter 4 and Chapter 5 are as a consequence of Chapter 2.

In Chapter 6 we consider strong semilattices of left simple semigroups whose
endomorphism monoids have the above regularity properties. In this chapter we consider
the strong semilattice of left simple semigroups in which the defining homomorphisms
are surjective with the semilattice Yy .

In Chapter 7 we discuss the strong semilattices of left simple semigroups with a

two-element chain in which the defining homomorphisms are arbitrary.



Symbols

Symbol
E(S)

Pa,B
Hom(G, H)

End(G)

G=AxB
Im(f)
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[Y7 Sas €a, 90047,3]
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m
L, xG

[Y, LTLg X Gng? ‘Poz,ﬁ]

[Y7 Goca <Pa,6]

Description

the set of idempotents of S

defining homomorphisms
homomorphisms from G to H
endomorphism monoid of G

positive integers

group modulo n

the set of inverses of a

the constant map onto x

G is a normal direct sum of A by B
image under f

kernel of f

A is a direct sum with B

the cyclic group of order n

group modulo a prime p

the Quaternion group

the dihedral group D,

the minimal element of Yy,

a bipartite graph

a semilattice with minimum 0

a strong semilattaice of left simple semigroups
the minimal element of a semilattice Y
the maximal element of a semilattice Y’
a left group

a strong semilattaice of left groups

a Clifford semigroup
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Chapter 1

Preliminaries

In this chapter we shall provide some basic knowledge of semigroup theory that
will be used in this thesis. Section 1.2 contains some considerations on ordered Clifford
semigroups showing that all endomorphisms preserve order. So the original idea to study
order preserving endomorphisms of Clifford semigroups does not lead anywhere.

Section 1.3 develops some new aspects in the study of homomorphism sets Hom/(G, H)
where G and H are groups. With a slight generalization of endomorphism we present the
concept of hom-regularity. This section is based on semigroup theory which are found

in [5], [13] and [14].

1.1 General background for semigroups

Definition 1.1.1. Let X be a nonempty set. A binary relation p on X is a subset of

the cartesian product X x X; for membership in p, we write xpy but occasionally also

(z,y) € p.

A semigroup is an algebraic structure consisting of a nonempty set S together

with an associative binary operation.

Definition 1.1.2. A semigroup S is called commutative if ab = ba for any a,b € S. An
element a € S is called idempotent if a> = a. Denote by E(S) the set of all idempotents

of a semigroup S.

Definition 1.1.3. A (meet)-semilattice (S,A) is a commutative semigroup in which
each element is idempotent. A partial ordering is defined on S by a < b if and only if

a A'b = a, with respect to this order, each pair of elements of S has a greatest lower



bound, or meet, which coincides with the operation A. If each pair of elements of S also

has a least upper bound, or join (denoted V), then S is said to be a lattice.

Definition 1.1.4. Let S and T be semigroups and let f : S — T be a mapping, then
f is called a semigroup homomorphism if f(xy) = f(x)f(y) for all z,y € S. The set of
semigroup homomorphisms is denoted by Hom(S,T) and End(S) = Hom(S,S). The
set End(S) forms a monoid with composition as a multiplicative and mappings are
composed from right to left. For f,g € End(S), the composition of f and g is written
as go f and (go f)(x) = g(f(x)) for all z € S, we write gf instead of g o f.

Definition 1.1.5. Let Y be a meet-semilattice and let S¢ be a semigroup for each
£ €Y with So NSz =0if a # B,a,5 € Y. For each pair o, € Y with a > f3, let
Va8 : Sa — S be a semigroup homomorphism such that ¢, is the identity mapping,
and if & > 8 > 7 then voy = ¥8~Pa,s-

Consider S = |J S, with multiplication
acY

axb= Pa,anp (a)(p,@,a/\ﬁa))

for a € S, and b € Sg. The semigroup S is called a strong semilattice Y of semigroups
Se. For o, € Y we call g, the defining homomorphisms of S also called structure
homomorphisms, for example [14]. We denote a strong semilattice of semigroups S, with
defining homomorphisms ¢, g by S = [Y; Sa, ¢ag]. If we replace 'semigroup’ by ’group’,
we call a strong semilattice of groups [14] which is known under the name Clifford

semigroup.

From now on we write af instead of a A 3.

Definition 1.1.6. A semigroup S is called idempotent-closed, if

for all a,b € S and a? = a, b*> = b, one has (ab)? = (ab).

Example 1.1.7. If T is a commutative semigroup, then T is idempotent-closed because
for idempotents a,b € T we have (ab)? = abab = a*b* = ab. For example, the monoid

End(Z4) is idempotent-closed since End(Zy,0) = (Z4,-) (see [9]) is a commutative semi-

group.



Example 1.1.8. The monoid End(Zs x Z3) is not idempotent-closed. To see this, take
idempotents f,g € End(Zy x Z3) as follows.

f 00 01 10 11
00 01 00 01
and
00 01 10 11
g =
00 10 10 00
but
00 01 10 11
9f =
00 10 00 10

is not idempotent.

Definition 1.1.9. An element a of a semigroup S is called regular if there exists an
element x € S such that a = axa and if ar = za, then a is called completely reqular.
The semigroup S is called regular if all its elements are regular and S is called com-
pletely regular if all its elements are completely regular. A regular semigroup which is
idempotent-closed is called orthodox. A semigroup is called a Clifford semigroup if it is
completely regular and its idempotents commute. A semigroup S is called left inverse if
for any idempotents a,b € S, aba = ab. A semigroup S is called right inverse if for any

idempotents a,b € S, aba = ba.

According to [13], Petrich formulated the fundamental theorem for the global

structure of completely regular semigroups as follows.

Theorem 1.1.10. Let S be a semigroup. Then the following statements are equivalent:
(1) S is completely regular.
(2) S is a union of (disjoint) groups.

(3) For every a € S, a € aSa?.

Remark 1.1.11. We observe that

idempotent = completely regular = regular,

idempotent = idempotent-closed,



commutative = idempotent-closed,

group = inverse = left inverse (right inverse).

In some papers of Puusemp, for example in [17], idempotents of the endomor-
phism monoids of groups are investigated. That is for any group G, and for each idem-
potent f € End(G). Then G can be expressed as a direct product of Im(f) and Ker(f).

The following theorem gives several alternative definitions of a Clifford semigroup

which can be found in [5] Theorem 4.2.1.

Theorem 1.1.12. Let S be a semigroup. Then the following statements are equivalent:
(1) S is a Clifford semigroup,
(2) S is a semilattice of groups,
(3) S is a strong semilattice of groups,

(4) S is regular, and the idempotents of S are central.

In [13] all homomorphisms of Clifford semigroups are described. The following

theorem is Proposition I1.2.8 of [13].

Theorem 1.1.13. Let S = [Y;Gqo,¢a ) and T = [Z; Ha, 1q.8) be Clifford semigroups.
Let n : Y — Z be a homomorphism, for each o € Y, let fo : Go — Hyq) be a

homomorphism, and assume that for any a > (B, the diagram

fa

©ap] L¥nga)n(s)
Gp ﬁ; Hyp)
commutes. Define a mapping f on S by f(a) := fo(a) if a € Go. Then f is a homomor-
phism of S into T. Moreover, f is one-to-one (respectively a bijection) if and only if n
and all f, are one-to-one (respectively bijections). Conversely, every homomorphism of

S into T can be constructed this way.

In [20] Lemma 1.3 has also described all homomorphisms of two Clifford semi-

groups which are shown as follows.



Lemma 1.1.14. Let S = [Y;Gq, 0] and T = [Z;Hy,Yq] be Clifford semigroups.
Given a semilattice homomorphism fr, : Y — Z and a family of group homomorphisms

{fa € Hom(Go, Hy, (o)) | @ € Y} satisfies

f8%a,8 ="V11(0),11(8) s

forall o, B €Y. Then f: S — T defined by f(xq) := fa(a) for every xo € S, a €Y

s a homomorphism of semigroups.

Corollary 1.1.15. Let S = [Y;Go, 008 and T = [Z; Hq, 14 ) be Clifford semigroups.
Let f : S — T be a homomorphism with the set {fo € Hom(Sa, T(o)) | o« € Y} of family

of semigroup homomorphisms. If a, 5 € Y,8 < « then

F3(Im(Pa,8)) € Im(¥pa). f(5))

fa(Ker(pap)) € Ker(vs(a),5(5))-

Lemma 1.1.16. Let S = [Y;Gq, 0] be a Clifford semigroup. Let f,g € End(S).
Write h = gf. Then

forallaeY.

1.2 Partial orders on Clifford semigroups

In this section we study partial orders on Clifford semigroups and find that all

endomorphisms are order-preserving.

Definition 1.2.1. A binary relation p on X is
reflexive if xpx, for all x € X,
symmetric if xpy implies that ypx,
antisymmetric if zpy and ypzr imply that x = y, and
transitive if xpy and ypz imply that xpz.
An equivalence relation on X is a reflexive, symmetric and transitive binary

relation.

Definition 1.2.2. A partially ordered set or poset is a pair (X, <) where < is a reflexive,

antisymmetric, and transitive relation on X.



Definition 1.2.3. Let S be a regular semigroup. For a,b € S, define a partial order as
follows

a <biff a=eb=>f for some e, f € E(S5).

A partial order is compatible if

a < b implies ac < bc and ca < ¢b for all ¢ € S.

This partial order is called the natural partial order. See [5].
An ordered semigroup is a semigroup together with a partial order < which is

compatible.

The partial order in Definition 1.2.3 has several equivalent definitions on a regular

semigroup which are taken from [12].

Lemma 1.2.4. For a regular semigroup (S, -) the following are equivalent:

(i) e = eb=10bf for somee, f € E(S),

(ii) a = aa’b =ba"a for some a',a”" € V(a) = {x € S| a = ava,z = xazx},

(iii) a = aa®b = baa for some a® € V(a),

() a'a = a'b and aa’ = ba’ for some a’ € V(a),

(v) a = ab*b = bb*a, a = ab*a for some b* € V(b),

(vi) a = axb = bra, a = axa, b= bxb for some x € S,

(vii) a = eb for some idempotent e € R, and aS C bS,

(viii) for every idempotent f € Ry there is an idempotent e € R, with e < f and
a = eb,

(iz) a = ab'a for some V' € V(b), aS C bS and Sa C Sb,

(x) a = xb = by, xa = a for some x,y € S,

(zi) a = eb = bx for some e € E(S), x € S.

Proof. See [12]. O

Now we consider the partial order on Clifford semigroups, we use the definition

(vi) above.

Theorem 1.2.5. Let S = [Y;Gq, pap] be a Clifford semigroup. Take a € Gq,b € Gpg,
a,B €Y. Then a <b if and only if o« < B and ¢3.4(b) = a.



1

Proof. Sufficiency. Let pg4(b) = a and o < 8. Since a™! € G, and aa ta = a and

1 1

ba~t = psa(b)at =aa"! and a7b = a" s 4(b) = ala we get a < b.

Necessity. Let a < b. Then an element x € G, C § exists for some v € Y such
that axa = a, xa = xb and ax = bzx. So from axa = a we get a < v and axr = bx implies
a = axa = bra. We have a < f3.

From ax = bz it follows that ejae, = eqarx—t = e brr! = eqbey, thus a =

(easa(b))py.aley) = ¢pa(b). O

To illustrate the Theorem 1.2.5 we use the following example.

Example 1.2.6. Consider the Clifford semigroup S = Zy, U Zo,_, U Z3, U Z4ﬁ, with a
4-element semilattice Y = {v < a < 8,7} and Z,, = {0,1,...,n — 1} the group with
addition modulo n,n € {2,3,4} such that Hasse diagram is shown below. The defining
homomorphisms are according to Theorem 1.2.5, the lines indicate the images of elements

under the defining homomorphisms.

0s 1s 23 33 0y 1, 2,
04 1.
0y 1,

So we have 0, < 23 since ¢g,,(23) = 0,. Thus 0, < 0¢ for all £ € Y, 0, < 2.,

1o < 15 and so on.

Definition 1.2.7. A mapping f € End(S) is called order-preserving homomorphism if

a < b implies f(a) < f(b) with respect to the partial order in Theorem 1.2.5.

We denote by OEnd(S) the monoid of order-preserving endomorphisms of S.

Definition 1.2.8. Let S be a semigroup and a € E(S). A mapping ¢, € End(S) is

defined by ¢, (z) = a for all € S is called a constant mapping.

The following lemma is also true for the case of strong semilattices of left simple

semigroups which will come later.

Lemma 1.2.9. Let S = [Y;Gq,¢a] be a Clifford semigroup and f € End(S). Then
for each a €Y, f(Gy) C Gg for some B €Y.



Proof. Let z,27! € G, be such that f(z) € Gs, f(z71) € G, and f(ea) = €5, B,7,0 €
Y. Then

es = f(ea) = flzz™h) = f(x)f(z™1) € Gg,.
This implies that § = fy < 8. From f(z) = f(zeq) = f(2)f(ea) = f(x)es € Gps, we
get 8 = (3§ <. This implies § = 5.

From 8 =8 = By < v and f(a7!) = f(z7len) = fla™V)flea) = f(z7eg €
G, 3, and therefore v = v < 3. Consequently, § =~ = 0. O

Definition 1.2.10. From Lemma 1.2.9, for f € End(S), the mapping f € End(Y’) such

that f(Ga) C Gy is called the induced index mapping.

We write the restriction fo, = flg, of f with the usual meaning. For each
a €Y, fo € Hom(Gqa, Gy ), we write fo(x,) which implies that z, is considered in G,
and f(x,) if f is defined on all of S such that f(z,) € G-

We will show in the following theorem that OEnd(S) = End(S) for a Clifford

semigroup S.

Theorem 1.2.11. Let S = [Y;Gq,9a ] be a Clifford semigroup. Then OEnd(S) =
End(S).

Proof. Take f € End(S),aqn € Ga,bg € Gg with a, < bg. By Theorem 1.2.5, we get
©8,a(bg) = aq and a < . Suppose that f(aa) = v € Go and f(bg) = yg € Ggr.
From e, = ¢sales) = ©salbsbs™) = 05.a(bs)psa(bs™) = anbs™' we get ey =
flea) = flaabs™) = flaa)f(bs™") = (zor)(yp)~h, so that zo = ygen. We have
0p o (Yg) = o, therefore f(an) = xor < yg = f(bg) by Theorem 1.2.5. Therefore

f € OEnd(S) and consequently End(S) = OEnd(S). O

Problem 1.2.12. It would be interesting to investigate orders and order preserving

endomorphism of strong semilattices of more general semigroups.

1.3 Regular homomorphisms of groups

In many papers regular endomorphisms of various structures have been studied,
for example, the regular endomorphism monoid of groups has been considered in [11],

idempotents of endomorphism monoids of groups have been investigated in [17]. In this



section, we study homomorphisms in Hom(G, H) which have a ”semigroup inverse”,
which we will introduce. This is a relatively unusual access since Hom(G, H) is not a

semigroup (with composition) if G 2 H. The ideas are based on [11].

Definition 1.3.1. An element f in Hom(G, H) is called homomorphism regular if there
exists f' € Hom(H,G) such that ff'f = f. The set Hom(G, H) is called hom-regular
if all its elements are homomorphism regular. An element f’ such that ff'f = f and

f'=f'ff is an inverse of f.

The set Hom(Z1,Z4) is regular since there is only the constant map, but the set
Hom(Zs,7Z4) is not regular since f € Hom(Zs,Z4) with f(1) = 1 has no an inverse.

We recall some definitions and notations which are taken from [11].

Definition 1.3.2. Let G be a group. We say that G is a normal direct sum of N by
K, denoted by G = N x K if G = NK and N N K = {e} where e is the identity of G,
N <G (N is a normal subgroup of G), K is a subgroup of G. In this situation we say

that K has a normal complement in G, and N has a complement in G.

Ifae G=NxK, a=nk, n € N, k € K, then the map mx € End(G) defined
by mx(a) = k is an idempotent endomorphism of G.

The following results are a generalization of Lemma 1.1 and Theorem 1.2 of [11].

Lemma 1.3.3. Let G and H be groups and let f € Hom(G, H) have an inverse f’.
Then

Ker(f) = Ker(f'f), Im(f) =Im(f[’)
Ker(f') = Ker(ff), Im(f') = Im(f'f).

Proof. First x € Ker(f) implies e¢ = f'(eg) = f'f(z), that is x € Ker(f'f) ie.,
Ker(f) € Ker(f'f). On the other hand, let 2 € Ker(f'f) implies ey = f(eq) =
[ f@) = (ff'f)(@) = fz) that is © € Ker(f) ie., Ker(f'f) € Ker(f). We get
Ker(f) = Ker(f'f).

Let = € Im(f), then 2 = f(y) for some y € G. We have z = f(y) = (ff'f)(y) =
ff'(f(y) = ff(z) which € Im(ff') ie., Im(f) € Im(ff’). On the other hand,
let z € Im(ff’), then x = f(f'(y)) € Im(f) for some y € H and f'(y) € G ie.,
Im(f ") € Im(f). We get Tm(f) = Tm(/ f').



Let x € Ker(f'), then ey = f(eq) = f(f'(z)) = (ff')(x), that is x € Ker(ff’)
ie., Ker(f') C Ker(ff'). On the other hand, x € Ker(ff') implies eq = f'(ey) =
F(F (@) = (fff) (@) = f'(z) that is © € Ker(f) i.e., Ker(ff') C Ker(f'). We get
Ker(f') = Ker(ff').

Let z € Im(f’), then z = f/'(y) for some y € H. We have z = f'(y) =
(F1F)) = P W) = f/f(@) which & € Im(f'f) i.e, Im(f’) € Tm(f'f). On the
other hand, let x € Im(f'f), then x = f'f(y) € Im(f’) for some y € G and f(y) € H
ie, Im(f'f) C Im(f"). We get Im(f") = Im(f'f). O

Theorem 1.3.4. Let f € Hom(G, H). Then f has an inverse if and only if Ker(f) has

a complement in G and Im(f) has a normal complement in H.

Proof. Necessity. Let f have an inverse, i.e., there exists f' € Hom(H,G) such that
ff'f=fand f'ff' = f'. We now show that Ker(f) has a complement in G that is
G = Ker(f) x Im(f"). Let z € Ker(f) N Im(f’), then f(z) = ey and z = f/(y) for
some y € H. It follows that ey = f(z) = ff'(y) then we have y € Ker(ff') = Ker(f')
by Lemma 1.3.3. Therefore 2 = f'(y) = eq. Hence Ker(f) N Im(f’) = {eq}.

For all # € G we have f(xz) = ff'f(z) and for 27! € G we have ey =
flea) = flar™) = @) = F@UFHET) = f@f ) which means
that zf'f(z=1) € Ker(f). Thus for each z € G we get * = zeg = z(f' f(z7lz)) =
(xf f(x= ) (f f(x)) € Ker(f)Im(f"). Thus G = Ker(f)Im(f'). Hence G = Ker(f) x
Im(f"). i.e., Ker(f) has a complement in G.

We next show that Im(f) has a normal complement in H, that is H = Im(f) x
Ker(f"). Let € Im(f) N Ker(f'), we get x = f(y) and f'(z) = eq for some y € G. Tt
follows that eq = f'(z) = f'(f(y)) which means that y € Ker(f'f) = Ker(f) by Lemma
1.3.3. Then z = f(y) = em, so Im(f) N Ker(f') = {en}.

For all z € H we have f'(z) = f'ff'(x) and for 1 € H we have eg = f(ex)
Plaz) = P@PE) = P@EFDE) = Faffe) imples of f/() e
Ker(f'). Thus for each x € H, we get * = xey = x(ff'(eg)) = z(ff'(z7 1))
(mff’(z Y)(/f(@)) € Ker(F)Im(f). Thus H = Ker(f')Tm(f). Hence H = Ker(f') x

)-

Im(f

i.e., Im(f) has a normal complement in H.

Sufficiency. Let G = Ker(f) x K and H = Im(f) x N where K is a subgroup
in G and N is a normal subgroup in H. We note that K = G/Ker(f) = Im(f). So
we can define ¢ : K — Im(f) by ¢(k) = f(k) for every k € K. Define f' : H —» G



by f/(h) = (¢ @ rm(s))(h) where Ty sy : H — Im(f) is the projection onto Im(f).
For each © € G = Ker(f) x K we have x = yz for some y € Ker(f) and z € K, so

FIf@) = FF(Fy2) = fF(f(2) = [  Tumep) (F(2) = 671 f(2) = f(2) = f(x). We
note that Im(f) = Im(¢) and K = Im(¢~!). We also have

FIf = omkd ™ mimp = F'o 0= [,

where g : G — K is the projection onto K. Hence f’ is an inverse of f. O

In the case that G is a commutative group, the direct product was mentioned as

a direct sum (see [9]).

Definition 1.3.5. A subgroup A of a group G is called a direct sum of G if there is a
subgroup B of G such that AN B = {e} and A+ B = G, where e is the identity in G.
We write G = A @ B as G is a a direct sum of A and B.

In [9], they found that the endomorphism ring of an abelian group G is regular
if and only if images and kernels of all endomorphisms of G are direct sums of G and

the regularity of endomorphisms of modules can be found in [11].

The following example shows that the set Hom(Zg,Z4) is not regular and the set
Hom(Zs,Zg) is regular.

Example 1.3.6. Consider the set of homomorphisms of Hom(Zg, Z4). Take f € Hom(Ze, Z4)

as follows

J:EZ(;‘012345

f@ezilo 2 0 2 0 2
It can be seen that Im(f) = {0,2} C Z4, which is not a direct sum of Z, while
Ker(f) ={0,2,4} C Zg is a direct sum of Zg. Then we have that f is not regular by
Theorem 1.3.4.
Now, take g € Hom(Zs, Z¢) as follows

T € 73 ‘O 1 2

g(x) € Zg ‘ 0 4 2
It can be seen that Im(g) = {0, 2,4} C Zg such that Zg = Im(g) x {0,3}, and Ker(g) =
{0} C Z3 such that Z3 = Ker(g) x Zs. Then g is regular by Theorem 1.3.4.



We note that in the commutative case the direct product x is written as Xx.

The next result has been proved in [11].

Corollary 1.3.7. A group G, End(G) is regular if and only if every kernel of an endo-
morphism has a complement and every image of an endomorphism has a normal com-

plement.

Example 1.3.8. The monoid End(Zg) is regular since all subgroups of Zg are Zs and

Zo such that each has a complement subgroup. Let QQ be the quaternion group with
Q=<a,b|a*=eb*=a%ba=0d’b>.
The monoid End(Q) is not regular. To see this, take f € End(Q) as follows

e a a®2 a®> b ab a%*b a’b

e e € e a2 CL2 CL2 a2

We have Im(f) = {e,a?} has no complement subgroup in Q. This implies that f is not
regular by Corollary 1.3.7.

Let Zy, be the cyclic group of order n. Then the endomorphism ring (End(Z,,), o, +) =
(Zn-). (See [9]).

We collect groups whose endomorphism monoids are regular, idempotent-closed,
and completely regular. For the finite cyclic group Z, we know from [1] that the endo-
morphism monoid of a finite cyclic group is regular if and only if the order of the group is
square-free. For the other groups, for example the symmetric group S35, the quaternion

group Q we have calculated ourselves.

End(G) | regular | idem-closed | completely regular
Ly v v v
Ly X v X
Zg v v v
7 X v X
Lo X Lo v X X
Ss v v v
Q X v X




Chapter 2

Endomorphisms of semilattices

2.1 Finite semilattices with regular endomorphisms

In this section we provided all of definitions, terminology and property for finite
semilattices whose endomorphism monoids are regular which are investigated in [2].
Before we state the main result of [2], some definitions and notations are needed (see

also [2]).

Definition 2.1.1. Elements a,b of a semilattice S are comparable if a ANb € {a,b}, if
a and b are not comparable, we write allb. A A-reducible element is one that can be
expressed as a A b where al|b. If S is a lattice, then a V-reducible element is one that can
be written as a V b for some al|b. A subset C' of S for which all a,b € C' are comparable

is called a chain. An antichain is a subset A of S such that al|b for all distinct a,b € A.

Definition 2.1.2. For an element a of a semilattice Y, the principal ideal generated by
a is the set (a] = {x € Y | x < a}, and the principal filter generated by a is the set
[a) ={z €Y |z >a}. If (a] is a chain for all @ € Y, then Y is said to be a tree. A tree
is said to be binary if for each A-reducible a there are precisely two elements that cover
a. An element a is said to be cover an element b, denoted a > b if @ > b and there is no

c satisfying a > ¢ > b.

The following figure is an example of a binary tree that 0 is a A-reducible element.

0

16



Definition 2.1.3. A semilattice Y is said to satisfying the strong meet property if ag A
a1 = by A by whenever ag, ai, by, by are elements of Y such that ag|la; and b; € [a;)\[a1—;)

for+=0,1.

Note that if Y is a tree, it is equivalent to assert that ag A a1 = bg A by whenever

aplla; and b; € [a;), i =0, 1.
Lemma 2.1.4. Every tree satisfies the strong meet property.
Now definitions of the classes B and B¢ are provided.

Definition 2.1.5. A capped binary tree is the lattice obtained by adjoining a unit, ie.e.,
a greatest element to a binary tree. The wvertical sum of bounded lattices Lo and Ly
is defined (only up to isomorphism) by first replacing each L; by an isomorphic copy
L’ such that the unit of L is the zero, i.e., the smallest element of L} and is the only
element of L; N L. A partial order is then defined on L{; U L] by retaining the ordering
within each lattice and stipulating that = < y whenever x € L; and L}. The resulting

lattice is denoted Lg +v L.

In practice, the distinction between L; and L} will be suppressed and L; will be
regarded as a sublattice of Lo +y L.
Given bounded lattices L;,i < n where n > 1, the vertical sum ), (L;,7 < n) is

defined to be - - -((Lo +v L1) +v La) +v -+ +) +v Lp—1.

The following figure is an example of elements of the class B.

L+ L,

Definition 2.1.6. Let B denote the class of all vertical sums of finite capped binary
trees, and let B? denote the class of all lattices L such that the dual of L lies in B.



Definition 2.1.7. Let Y be a finite lattice. A subsemilattice of (Y;A) is said to be a
A-subsemilattice of Y. A bounded A- subsemilattice T" of Y is said to be smooth if T
does not contain elements a, b, ¢ satisfying c|la Vb and ¢ < a Vb, where V1 denotes join

with respect to T.

Lemma 2.1.8. Let L;, i < n, wheren > 1, be finite lattices, and letY =, (Li,i < n).

If each L; satisfies the strong meet property, then so does Y .

Proof. See [2] Lemma 4.1. O

Moreover, R denote the intersection of all rectilinearly closed classes that contain
the one-element and two-element chains.
The following figure is an example of elements of the class B¢ We observe that

the figure turns the element of the class B down.

I+
Now definitions for the class R are provided.

Definition 2.1.9. Given bounded lattices L;, i < n, where n > 1, their horizontal sum
is defined (only up to isomorphism) as follows. First replace each L; by an isomorphic
copy L; such that L; N L} = () whenever i # j, and choose 0,1 to be any objects not
elements of U(L},i < n). A partial order is then defined on U(L},7 < n) U {0,1} by
retaining the ordering within each lattice and defining 0 < = < 1 for all z € U(L,, i < n).

The resulting lattice is denoted by >, (L;,7 < n).

In practice, the distinction between L; and L, will be suppressed, that is, the L;

will be presumed pairwise disjoint.



Definition 2.1.10. A class K of finite lattices is said to be rectilinearly closed if, for all
n>1,%(Li,i<n)and ) ;(Li,i < n) both belong to K whenever L; € K, i < n.
Let R denote the intersection of all rectilinearly closed classes that contain the

one-element and two-element chains.

Definition 2.1.11. An antichain A in a lattice Y is said to be self-disjoint if ag A aq =
bo A by whenever ag, a1, by, by are elements of A with ag # a1 and by # b1. We say that
Y satisfies strong antichain property if every antichain in Y is self-disjoint or contains

distinct elements a, b, ¢ such that a A (bV ¢) <b.

Proposition 2.1.12. For every Y € R the following hold.
1) Y satisfies the strong meet property.
2) Y satisfies the strong antichain property.

3) Every smooth A-subsemilattice of Y is a member of R.

Proof. See [2] Lemma 5.1. O

The left figure is an element of the class R, but the right figure is not because for
an antichain subset A = {a,b,d} of Y, a Ad =0 but a A b = ¢. This is a contradiction

with the property of R in Proposition 2.1.12.

The next theorem is the main results of [2].

Theorem 2.1.13. For a finite semilattice Y, End(Y) is regular if and only if one of
the following holds

1) Y is a binary tree,

2)Y is a tree with one A-reducible element, or

3) Y is a bounded lattice, Y € BUBYUR.



2.2 Properties of endomorphisms of semilattices and sets

In this section we investigate the properties from Definition 1.1.2, 1.1.6 and
Definition 1.1.9, namely, idempotent-closed, orthodox, left inverse, completely regular

and idempotent, of endomorphism monoids of finite semilattices and of sets.

Lemma 2.2.1. Let Y be a finite semilattice and let s € End(Y), «,58,y€ Y.
1) Ifa< p<~vand s(a) =s(y) =9 for some d €Y, then s(5) = 0.
2) If o = By where B||y and s(B) = s(y) = 0§ for some 6 €Y, then s(a) = 0.

Proof. 1) s(8) = s(87) = s(8)s(7) = s(8)5 < 6 and
5 = s(a) = s(ap) = s(a)s(8) = 85(8) < s(58).
This implies s(3) = 4.
2) s(a) = s(67) = s(8)s(7) = 65 = 4. =

By Y =Yp,, denote the semilattice with minimum 0 and the graph structure of

the complete bipartite graph K1 ,. See the figure of K13 as follows.

Y

0

Lemma 2.2.2. Take s € End(Yp,) not constant. Then s is idempotent if and only if

s(a) # o implies s(a) =0 for a € Yy .
Proof. Necessity. Suppose that s(«) = 3 for some 8 # a. Then s(5) = s(s(a)) = s(a) =
B. Thus 0 = s(0) = s(af) = s(a)s(B) = BB = B and therefore s(a) = 0.

Sufficiency. For each o € Y, if s(«) = a, then s(s(a)) = s(a).
If s(a) # «, then s(a)) = 0 by hypothesis, so that ss(a) = s(0) = 0 and s(«) = 0.

Therefore s is idempotent. O
Lemma 2.2.3. Let Y be a finite semilattice. Then End(Y') is idempotent-closed if and
only if Y =Yy .

Proof. Necessity. Suppose that Y contains a chain {1,2,3}. Take two idempotents
s,t € End(Y) such that s(1) = s(2) =2,s(3) =3 and ¢(1) = 1,#(2) = ¢(3) = 3 and then



(st)2(1) = 3 but (st)(1) = 2. Thus st is not an idempotent. This implies that Y does

not contain a chain. Since Y is a semilattice, we have 1 A2 = 3, so that Y =Y, ,,.

Sufficiency. Take two idempotents s,t € End(Yp,). We use Lemma 2.2.2, and
consider two cases,

if s or t is constant, then (st) is constant and of course, it is idempotent,

if s and ¢ are not constant, then for each a € Yy, st(a) = a if s(o) = o and
t(a) = a. Further, for s(a) # a or t(a) # «, we have stst(a) = 0 = s(t(a)),

Thus st is idempotent, and therefore End(Yy,,) is idempotent-closed. O

We now consider the monoid End(Y) for a finite semilattice Y.

Proposition 2.2.4. Let Y be a finite semilattice. Then the monoid End(Y) is

1) regular if and only if Yis a binary tree or a tree

with one A-reducible or Y € BUB?UR (see Theorem 2.1.13).

2) completely reqular

) prerely e if and only if |Y] < 2.
3) idempotent
4) idempotent-closed
5) orthodox if and only if Y =Yy p.
6) left inverse
7)  right inverse
8) inverse

if and only if |Y] = 1.

9) a group

10) commutative

Proof. Necessities.
1) is taken from [2].
4) and 5) follow from Lemma 2.2.3.

The statements 7), 8), 9) and 10) are trivial.

We verify 2) and 3). Suppose that Y contains a chain {1,2,3} or a semilattice
1 A2 = 3. Take s € End(Y) such that s(1) = 2,s(2) = s(3) = 3. Then any t € End(Y)
such that sts = s, t must fulfill ¢(2) = 1 and then ¢s(1) = 1 but 1 ¢ I'm(st), so s is not
completely regular, and therefore End(Y') is not completely regular. It can be seen that

s is not idempotent. This follows that End(Y") is not idempotent. Hence |Y| < 2.

6) Suppose that Y contains a chain {1, 2, 3}. Take two idempotents s, € End(Y)



such that s(1) =1,s(2) = s(3) =3 and £(1) = #(2) = 2,t(3) = 3. Then tst(1) = tst(2) =
tst(3) = 3 but ts(1) = 2. Thus tst # ts, and therefore End(Y) is not left inverse. Since

Y is a semilattice, we have 1 A2 = 3. Hence Y = Yg ,.
Sufficiency. If |Y| = 1, then everything is obvious.

2) and 3) Take |Y| = 2. Then End(Y) consists of two constant maps and the
identity map.

6) Take Y = Yj,,. We now show that End(Yy,) is left inverse. Take two
idempotents s,t € End(Yy,,). By using Lemma 2.2.2, we have.
If s or t is constant, then we have sts = st.

If s and ¢ are not constant. Then

a if s(a) = a and t(a) = «,
sts(a) =
0  otherwise.

Thus sts = st, and therefore End(Yy,,) is left inverse. O
As a consequence of Proposition 2.2.4 we have:

Corollary 2.2.5. Let Y be a non-trivial finite chain. Then End(Y') is
1) always regular.

2

completely regular

w

idempotent

W

idempotent-closed if and only if |Y] < 2

at

orthodox

~N O

right inverse

Qo

nverse

)
)
)
)
) left inverse
)
; if and only if |Y] = 1.

Ne)

a group

10) commutative

Corollary 2.2.6. Any finite semilattice Y such that End(Y') satisfies any one of the

properties of Proposition 2.2.4, does not contain a three-element chain.

As a consequence we get most of the next corollary which has also been formu-

lated in [7].



Corollary 2.2.7. Let A be a set. Consider the monoid T'(A) of all mappings of A into
itself. T(A) is
1) always regular.

2) completely reqular

w

idempotent-closed
if and only if |A] <2

S

orthodox

ot

)
right inverse

~N

nuverse

(0¢]

a group if and only if |A] = 1.

9 commutative

)
)
)
) left inverse
)
)
)
)

10) idempotent



Chapter 3

Endomorphisms of strong
semilattices of left simple

semigroups

In this chapter we consider the strong semilattices of left simple semigroups
in which the defining homomorphisms are constant or bijective whose endomorphism
monoids are regular, idempotent-closed, orthodox, left inverse, completely regular and
idempotent.

We note that the semilattice Y which is considering, is non-trivial, i.e., |Y| > 1.

Let S = [Y; 54, €q,¢a,) be a non-trivial strong semilattice of semigroups S
with a fixed idempotent e, for o € Y and defining homomorphisms ¢, g for 8 < a.

We collect the results of this chapter as a table in the Overview.

3.1 Homomorphisms of a non-trivial strong semilattice of

semigroups

Definition 3.1.1. A semigroup S is called left simple if S = Sa for all @ € S. An

analogy, S is called right simple if S = a5 for all a € S.
We denote by

E,(S) = {es | pa,s(ea) = e for some idempotent e, € Sy, B < a € Y}

In general if f € End(S), then f may not be a mapping. To see this, we show

the following example. This example is suggested by Professor Norman R. Reilly.
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Example 3.1.2. Consider the semilattice Y = {0,«,,v,d} as shown below and let
S = [Y; 54, €q, Pa,p) be a non-trivial strong semilattice of idempotent semigroups such
that S, = {aq, ba, Ca} With agby = baaa = cq, the remaining semigroups consist of one

idempotent. Take f € End(S) as follows.
€0 Ao bo co €3 ey €5
€p €y €5 € €y €y €o

It can be seen that f ¢ End(Y).

2 (2

€5
@
7

e},’
\‘ !

€

Lemma 3.1.3. Let S be a simple semigroup with idempotent e. Then x = xe for all

rzes.

Proof. Take any z € S. Since S is a left simple semigroup, we have S = Se and = = ye
for some y € S. Then

re = yee = ye = T.

This implies that = ze for all x,e € S. O

The next lemma is a generalization of Lemma 1.3 of [20].

Lemma 3.1.4. Let S = [Y;S5,,€q,a,p] be a non-trivial strong semilattice of semi-
groups. Let s € End(Y') and let {fo € Hom(Sa, Sy(a)) | @ € Y} be a family of semigroup

homomorphisms which satisfies

I8%a.8 = Ps(a),s(8) fa

forall o, €Y. Then f: S — S defined by f(xq) := fa(za) for every xo € Sq, is an

endomorphism on S.



Proof. Tt can be seen that f is well-defined. We verify now that f is a homomorphism.

Take z4,ys €S, a,8 €Y. Then

f@ays) = [f(aas(®a)Ppsas(ys))
= fap(Pa,a8(a)) fap(©s,as(ys))
= Ps(a),s(aB) fo(Ta)Pss),s(a8) f5(Yp)
= falza)f5(ys)
= f(@a)f(ys)-
Then f € End(S). O

Lemma 3.1.5. Let S = [Y; 54, €a, a8 and T = [Z;T,, eq,0,p8] be two strong semi-
lattice of left simple semigroups. Let f : S — T be a homomorphism. Then for a € Y,
f(Sa) € Tp for some B €Y. Thatis f € Hom(Y,Z) and f(eq) € E(1p).

Proof. Let xa,ya € So. Suppose that f(ro) € Tg and f(ya) € Ty for some 3,7 € Z.
Since S, is a left simple semigroup, we have z, € Sy = Sa¥ya and yo € Sq = SaZq, SO
that o, = aqye and y, = byx, for some ag, by € S,.

Assume that f(aq) € T5 and f(ba) € T¢ for some §,( € Z. Then

flaaya) = flaa) € Tp
and
f(aa) f(ya) € Tsy.
This implies that § = dv < ~.
Now we consider
f(baza) = f(ya) € Ty

and

f(ba)f(za) € Tep-

This implies that v = (5 < 3, and therefore 3 = 7. Hence for each v € Y, f(So) C T3
for some 5 € Z. O

Corollary 3.1.6. Let S = [Y;Sa,€a,9a] be a non-trivial strong semilattice of left
simple semigroups. Let f : S — S be an endomorphism of S. Then for a € Y, f(Sa) C
Sg for some B €Y. That is f € End(Y) and f(ea) € E(Sp).



Example 3.1.7. Let S = 53, UZ3,, 9o = ¢(1), be a strong semilattice of groups. The

(D (123), (132), (12), (13)y (23),

diagram is shown below.

From Lemma 3.1.4 we can construct all endomorphisms of S. On the other hand,
if f € End(S) then f € End(Y) and f(G,) € Gp for some 3 € Y by Corollary 3.1.6.

All endomorphisms of S are shown below.
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[Y; Sa, €as Cae,) instead of a non-trivial

From now on we use the notation S

Caeg-

strong semilattice of semigroups with constant defining homomorphisms ¢, g

An endomorphism f of a non-trivial strong semilattice of left simple semigroups

with constant defining homomorphisms ¢, g always satisfies the following equations,

S o

f8%as = Pf(a)

for all o, 8 € Y, which is shown in the next lemma.



Lemma 3.1.8. Let S = [Y; Sq, €q, Ca,eg] be a non-trivial strong semilattice of left simple
semigroups. Let f € End(S). Then f € End(Y) and the set {fo € Hom(Sa, Sf()) |

a €Y} satisfies

f8%0,6 = P 1(a).f(8) fa

foralla,B €Y.

Proof. Since f € End(S), we have f € End(Y) by Corollary 3.1.6 and for 3 < a €Y,

take xo € S, and idempotents eg,e’ﬁ € Sg, suppose that f(eg) = e’i(ﬁ). Since Si(ﬂ) =

Sf(ﬁ)e}(ﬁ), we have efp) = yﬁﬁ)e’[(ﬁ) for some Yr(s) € Sﬂﬁ) and

C18)C5(5) = YEBCI(B)C5) = YEBCI(8) = €1(8):
Thus
f(zaes) = f(Pas(za)es) = fles) = €} g,
and
F(@a)fles) = s(a),18)(F (Ta) €si5) = €5)€s(5) = €5(5)-

This implies that f(eg) = e}(ﬁ) = ef(g)- Consider z, € S € S, a €Y, we have

f8(pa,p(za)) = fo(es) = epp) = Ps(a).f(8) (fa(za))

Thus fs¢a,8 = Pf(a),f(8)fa- -

The next construction is useful and often used later.

Construction 3.1.9. Let S = [Y; 54, €a; a8l Pa,8 = Cey be a non-trivial strong semi-
lattice of left simple semigroups with v = AY. Take fo, € Hom(Sa,Sg), a,B € Y.
Define f : S — S as follows

fa(za) € S ifa=¢&,
f(xf) = fa(ea) GSﬁ if o <,

ey, if € < orallg,

for every x¢, € S, £ €Y. Then f € End(S).

Proof. Tt can be seen that f is well-defined. We check that f is a homomorphism.

Take z,ys € 5, 7,0 € Y.

The case v =0 = a is clear as f, € Hom(Sq, Sg).



Case 1.1. y =, a < §. Then a = ad. We calculate

f@ays) = f(@asa(ys))
= [f(zata)
= f(za)
= falza)
and
f@a)flys) = falwa)falea)
= Jfa(zata)
= falZa).
Case 1.2. v =a, § < aor §||a. Then ad < o. We calculate
f@ays) = f(Paas(®a)Psas(ys))
= fleas)
= e,
and
fxa)f(ys) = falza)ey
= su(falza))es
= e
Case 1.3. a < ,0. Then o < v9.
If & = 70 then
fayys) = f(@ryal@y)esalys)
= flea)
= falea)
and

f@y)f(ys) = falea)falea)
= fa(eata)
= falea)-
If @ < ~6 then

f(yys) = f(@yq6(Ty)0s45(Ys))
= f(€75)
= falea)



and

f($7)f(y6) = falea)falea)
= faleata)
= falea)

Case 1.4. a <y and (§ < a or d0f|cv).
If o« < v and § < a then § = dv. We calculate

flxyys) = fleys(@y)ys)
= flesys)
= e,
and
f@y)f(ys) = falea)ey
= ppu(falea))ey
= e
If o < 7y and d||a then « # 76 since otherwise a = vd < § but «||d.
Moreover « &£ ¢ since otherwise a < y0 < § but a|d. We have
flayys) = fleyq0(29)0576(Ys))
= fleyw)
= e,
and

f($7)f(y6) = fa(ea)el/
= 906,V(foz(€a))eV
= e.
Case 1.5. (y < awor v||v) and (§ < e or df|cv).

If vy <aand § < a then 79 < a. We calculate

flayys) = f(@y06(29)066(Ys))
= fley)
= e,
= fzy)f(ys)-
If v < @ and d||a then 7§ < v < a. We calculate



f@ys) = Fleyne(@y)esqs(ys))
= f(ef)/&)
= el/
= flzy)f(ys)-
If v||a and ]|« then v # « since otherwise o = v0 < v but a|~y.

Moreover « £ 6 since otherwise a < 0 < § but a|d. We have

f(@yys) = [(@y8(24)0s45(s))
= fleys)

= f(@y)f(ys)-
Thus f € End(S5). O

Now we consider the case that the defining homomorphisms ¢, 3 are isomor-
phisms, some places the author write as bijective. In this case we simplify the descrip-
tion of a non-trivial strong semilattice of left simple semigroups S = [Y; T4, €q; Pa,s]
such that the result covers Lemma 2.2 of Gilbert and Samman [4].

For a, €Y, T, = T and ¢, g(eq) = eg can be taken without loss of generality.

Lemma 3.1.10. Let S = [Y; T, eq, 9as] be a non-trivial strong semilattice of semi-
groups with isomorphisms @q 5. For any X € Y, let Sy = [Y; T, €q,ida,q| be the strong
semilattice of semigroups over Y in which each semigroups T, o € Y 1is equal to T and

all the defining homomorphisms are the identity. Then S is isomorphic to S).

Proof. We define an isomorphism ¢ : S — S as follows

¢(a) = ¢a(a) = 90)_\731)\()0@&/\(0/)
for every a € T,, C S where ¢, is the restriction to T,. Then ¢ is clearly bijective and

we check only that ¢ is a homomorphism.

Let a € Ty, b € Tg. Then ab = pq,05(a)ep,as(b) € Top and

?(a)p(b) = ¢ala)dp(b)
= Py maPaar(@)e) 528,81 (D)

whereas

¢(ab> = ¢aﬁ (‘Pa,a/o’ (a)()pﬁ,aﬁ (b)>
= ¢o¢ﬂ (‘pa,aﬁ (a))¢aﬁ (@B,aﬁ (b) ) .



Consider

bap(Paapla)) = ‘Piiﬁx@a,@,aﬁk(@a,aﬁ (a))
-1 -1
= (90/\,}34/\3004/\,05/3)\) (@a)\,aBASOa,aA) (a)
= (P;,la)\@a,a)\<a)-

Similarly, ¢as(¢s,a8(b)) = gp)_\bgaﬁﬁ)\(b). Thus ¢ is a homomorphism. O

As we know from Lemma 3.1.10 that the results are similar for the defining
homomorphisms being isomorphisms or identity, so from now on we prove the latter

case, but we write isomorphisms instead.

We now assume that S is a non-trivial strong semilattice of left simple semigroups
over Y in which every left simple semigroup is equal to a fixed left simple semigroup
T and with each defining homomorphism equal to the identity. Hence S is the disjoint
union of copies T, (i.e., T indexed by o € Y'). If x € T, then we denote by z,, the copy

of the element x in T,,. Thus

Tayp = (2Y)as-

Construction 3.1.11. Let S = [Y;T,,eq, Pa,s] be a non-trivial strong semilattice of

semigroups with isomorphisms pa g, i.e., T, = Tg = T. Any g € End(T) and s €
End(Y') determine an endomorphism f € End(S) defined by f(va) := (9(¥))s(a)-

Proof. Tt can be seen that f is well-defined.

Take z4,ys € S. Then

f(xayﬁ) = f(
= f(zapYap)
= (9(zY))s(ap)

Pa,ap(Ta)Ppas(ys))

and

f@a)f(ys) = (9(2))s)(9(¥))s(s)
= Ps(a).s(e)s(8) ((9(2))s(0)) 5(8).5(0)5(8) ((9(¥))s(5))
= (9(2))s(0)s(8)(9(¥))s(a)s(8) € Ts(ap)
= (9(zy))s(ap)-

Since s € End(Y') and g € End(T'), we have f(zqyg) = f(xa)f(ys). Hence f € End(S).
0



Proposition 3.1.12. Let S = [Y;T,, eq, ¢a,p) be a non-trivial strong semilattice of left
simple semigroups with isomorphisms pq g, i.e., To = Tg = T. Take f € End(S). Then
there exists g € End(T) = End(T,) and f € End(Y') such that f(za) = (9()) f(a)-

Proof. Since f € End(S), we have f € End(Y') by Corollary 3.1.6. For each z, € S, a €
Y, we have fo € Hom(To, Ty(a)), but To = Ty = T. Then there exists g € End(T)
such that f, = g and

Fa) = (9)) oy

O]

The following theorem is a consequence of Construction 3.1.11 and Proposition

3.1.12.

Theorem 3.1.13. Let S = [Y; Ty, eq,9a] be a non-trivial strong semilattice of left
simple semigroups T, with isomorphisms pq g, i.e., T, =Ty =T. Every endomorphism
is of the forms such that f € End(S) if and only if there exist g € End(T) and s €
End(Y) with f(za) = (9(7))s) and f(a) = s(a) for every zo € S, a €Y.

Proof. See Construction 3.1.11 and Proposition 3.1.12. O

3.2 Regular monoids

In this section we consider strong semilattices of left simple semigroups whose

endomorphism monoids are regular.

Lemma 3.2.1. Let S = [Y; Sy, €a,Cae,s] be a non-trivial strong semilattice of semi-
groups. If the monoid End(S) is reqular then the set Hom(Sy, Sg) is hom-regular for all

acyY.

Proof. Take f, € Hom(Sq4,Sg), o,B € Y. Using Construction 3.1.9, for every wx¢, €
S, £ €Y, take f € End(S) as follows

fa(za) € Sp ifa=¢,
flxe) = falea) €S5 ifa<é,
ey if £ < v or afE,
By hypothesis there exists f’ € End(S) such that ff'f = f.

For each z, € S, a € Y. We calculate



fa(za) = [f(2a)
= [f'f(za)
= [f'(fa(za))
= folbfalwa)
where f4 € Hom(Sg, S,) for some v € f~{8} and f, € Hom(S,, Sp).
If a < v then fo(za) = f1(ffa(7a)) = falea), i-e., fa is constant, of course f is
regular.
If ylla or v < a then fo(za) = fy(f5fa(za)) = v, i.e., fo is constant onto e, of
course f is regular.

If v = a then fo(za) = fafgfa(za), i€, fo is regular. O

If we take o = 8 in Construction 3.1.9, we have the following lemma.

Lemma 3.2.2. Let S = [Y;Sa,ea,cajeﬂ] be a non-trivial strong semilattice of semi-
groups. If the monoid End(S) is reqular (idempotent-closed, orthodoz, left inverse, com-
pletely regqular, and idempotent), then the monoid End(Sy) is reqular (idempotent-closed,

orthodozx, left inverse, completely regular, and idempotent).

Lemma 3.2.3. Let S = [Y; S, €qa,¥a,p] be a non-trivial strong semilattice of semi-
groups. If the monoid End(S) is reqular (idempotent-closed, orthodoz, left inverse, com-
pletely regular, and idempotent), then the monoid End(Y') is regular (idempotent-closed,

orthodoz, left inverse, completely regular, and idempotent).

Proof. Take s € End(Y). Using Lemma 3.1.4, take f € End(S) as follows

f(xa) = €5(a)

for every z, € S, @ € Y. By hypothesis there exists f' € End(S) such that ff'f = f.
Further we have ey) = f(za) = ff'(f(7a)) = ff'(€sa)) = €sfs(a)- So that s(a) =
sfs(a), and therefore s is regular. Hence the monoid End(Y’) is regular.

The remaining properties can be proved in a similar way. O

Lemma 3.2.4. Let S = [Y; Sa, € Ca,e@] be a non-trivial strong semilattice of semigroups
with v = AY . If the monoid End(S) is regular, then the set Hom(S,,Sy) consists of

constant maps for every « €Y, a # v.



Proof. Take f, € Hom(S,,S,). For each z, € S, we know that f,(z,) € S, then
fu(zy) = yo for some y, € S,. Take s € End(Y) such that s(§) = « for all £ € Y.
Define f € End(S) as follows

fy(zy) S Sa lff =V,
f(ze) == '
fo(ey) € Sy  otherwise,

for every z¢ € S, € Y. For 3,7 € Y, consider

fapy,8(2y) = falep) = fulev)

and
@s(v),s(ﬁ)(f'y(z'y)) = ‘Pa,a(f'y(z'y)) = fw(zw) = fu(ew).

Thus the set {fg € Hom(S3, Ss)) | B € Y} satisfies the equations

f80r.8 = ©s(7),5(8) f+-

Then f € End(S) by Lemma 3.1.4. By hypothesis there exists f' € End(S) such that
ff'f=/f. Then

Yo = fulzv)
= flz)
= fff(x)
= [ (fu(@))
= [ (Ya)-
Thus
F'(yaer) = f'(Pap(ya)es) = [leven) = f'(e)
and
F'(ya) ' (er) = f'(ya)-
That is f'(ya) = f'(ev).
Since f’(yq) must be in S, because ff'(ya) = Yo and by Lemma 2.2 f/(S,) C S,
ie., f'(a) = v, so that

f'v)=fve)=fw)f(e)=fr=r

Now we claim that f/'(S,) = {f'(e,)}. Take any z, € S,. Since f' € End(S), we

have

foleaw(za)) = fllev) = f'(ev)



and
‘Pi’(a),f(u)(fé(za)) = Qi (fo(2a) = falza) = ['(2a)-

We get that f'(Sa) = {f'(ey)}. Then

foley) = fle)
= fff(e)
= ff'(el,) where f(e,) = e, for some €/, € S,
= [[f'(ey) (because f'(Sa) = {f'(ev)})
= ff'(ya) (because f'(ya) = f'(ev))
= Yo
= fulz).
This implies that f, is constant onto f,(e,). Therefore every f, € Hom(S,,S,) is a

constant mapping. Hence Hom(S,, S,) consists of constant maps for all « € Y, a >

V. O

The following lemma is needed later.

Lemma 3.2.5. Let Y = Yy, and S = [Yon; 54, €a; Ca,es] be a non-trivial strong semi-
lattice of left simple semigroups. Take f € End(S). If f(§) = o« for all§ € Y for some
0# a € Yo, then f(xg) = f(eo) for all 0 # 5 € Yo,,. Moreover, f is idempotent if and

only if f(S) = f(eo). In fact, f is constant onto f(ep).

Proof. Take xg € Sg, Be€Y.
Since f € End(S), we have f € End(Yp,) by Corollary 3.1.6 and the set {f, €
Hom(Sa, Sp(a)) | @ € Yo} satisfies the equations

foeso = 1)1 /3

we have

flzg) = fa(xp)
= ¢5).50)f3(xp) (because f(0) = f(B))

Thus f(xzg) = f(eg) for zg € Sp.



Moreover, let f be idempotent. We have shown from above that f(xzg) = f(eo)
for every 0 # 8 € Yy,. So that we need only show that f(Sp) = f(ep). Take xg € Sp.
Then f(xo) = f(f(z0)) = f(ya) for some y, € Sy. But f(yo) = f(ep) from above. Thus
f(x) = f(ya) = f(eg) for all x € S.

On the other hand, the image f(S) = f(eg) is idempotent, and therefore f is

idempotent. O

Now we proceed to a sufficient condition for the case Y = Y, i.e., ¥ has only

one A-reducible element. We have.

o B

W

0

Theorem 3.2.6. Let S = [Y;Sa,ea,ca,eﬁ] be a non-trivial strong semilattice of left
stmple semigroups. If the following hold
1)Y =Yon,
2) the set Hom(Sy, Sa) consists of constant mappings for all o € Yy, o # 0,
3) the set Hom(Sa, Sg) is hom-regular for all o, B € Yo, and
4) So contains only one idempotent ey,

then the monoid End(S) is regular.

Proof. Take f € End(S). Then f € End(Yon).

Case 1. f is constant.

If f(§) =0 for all £ € Yo, then f(Sa) = {f(eo)} for all 0 # o € Yy, by Lemma
3.2.4. Thus f is determined by fo € End(Sy), so that f|s, = fo and f|s, = fopa,0, that
is fa(za) = fo(@ao(za)) = fo(eo) for every x4 € S,. By using that End(Sy) is regular,

we get that f is regular.

If f(§) = a for all £ € Yy, and some 0 # o € Yy, then f is determined by fy €

Hom(507sa) and f‘So = fo and f’Sa = fO(Pa,Oy that is fa(l'a) = fO(‘ch,O(xa)) = fo(eo)
for every z, € S,. By using that 1) Hom(Sy, S,) consists of constant maps, we get that

f is regular.



Case 2. f is not constant.

If f(0) = « for some 0 # a € Yy, then for every 0 # 3,7 € Yy, we have
fB)f(v) = f(By) = f(0) = a. This implies that f(8) = « and f(7y) = a which is
impossible as f is not constant, so that f(0) = 0.

Now consider any o € Yy, with f(a) # 0, say f(a) = § for some 0 # 3 € Yo .
Then f is determined by each f, € Hom(Sq, Sg) and fo € End(Sp) such that f|s, = fo

and fo(p%o = QOi(a),Ofom i.e.,

f0(€0) = fO(QDa,O(:L‘a)) = SOB,O(foz(l'a)) = €0-

If there exists v € Yp, such that f(y) = B8 then 8 = f(v)f(a) = f(ya) =
£(0) =0, but 8 # 0. This means that f~'{8} = {a} and for any two distinct elements
0 # 7,0 € Yy, such that f(vy) = f(6) =7 then n =0, ie., ]ifl(ﬁ)] = 1 (the cardinality
of f7*(B)). By using 2) there exists f5 € Hom(Sg, Sa) such that fofjfo = fo while
1} € End(Sp) with f’(eg) = eq since Sp has only one idempotent ey by 3).

Then f’ € End(S) can be defined by using Lemma 3.1.4

[z if m(f),
f%Q%{(&<a £ € Im(f)

€ otherwise,

for every z¢ € S, £ € Yo, and

FPf@a) = fF(fal@a))
= [f5(falza)) where f(a) = 8
= fafbfalza)
— falza)
— flwa):

Thus f is regular. O

The following lemma will be used later.

We recall that
@) ={B€Y|B>a}.

Lemma 3.2.7. Let S = [Y;54, €a, Ca,es] be a non-trivial strong semilattice of left simple
semigroups. Take f € End(S). If f(a) = f(B), then f(x3) = f(ea) for allzg € Sg, €
[@)\{a}



Proof. Since f € [a), we have g (2g) = eq. Then

flzg) = fa(zp)
= ©5(8).f(a)(f3(25))
= Jfalpgalzs))
= fa(ea)
= flea)-

Therefore f(zg) = f(eq)- O

From Lemma 3.2.7 we note that for 8 > « and both are sent to the same image,

the homomorphism from Ss to Sy(g) will be constant onto f(eq).

Theorem 3.2.8. Let S = [Y;Sa,ea,cmeﬁ] be a non-trivial strong semilattice of left
simple semigroups with v = AY. If the monoid End(S) is regular then the following
conditions hold

1) End(Y) is regular, i.e., Y is a binary tree or Y = Yy, or Y € BUBYUR
(see Theorem 2.1.13),

2) the set Hom(S,,Sa) consists of constant mappings for alla € Y, v < «, and

3) the set Hom(Sy, Sg) is hom-regular for every o, € Y.

If all defining homomorphisms ¢, g are isomorphisms we have.

Theorem 3.2.9. Let S = [Y;Tq,eq, 908 be a non-trivial strong semilattice of left
simple semigroups with isomorphisms g g, i.e., To, =2 T = T. Then the monoid End(S)
is reqular if and only if the following assertions hold

1) the monoid End(Y') is regular,

2) the monoid End(T) is regular.

Proof. Necessity. 1) follows from Lemma 3.2.3.

2) We now show that End(T) is regular. Take g € End(T). Using Construction
3.1.11, take f € End(S) as follows

f(xa) = (9(2))a

for every zo € S, a € Y. It can be seen that f(a) = « for all @ € Y. By hypothesis
there exists f' € End(S) such that ff'f = f. We set (¢'())a = f'(z4) for all z, =z €



T, a €Y such that (99'9(x))a = 99'((9(2))a) = 99'f (za) = 9(f'f(xa)) = (F'f)(xa) =
f(za) = (9(2))a and g € End(T,) = End(T). Therefore End(T) is regular.

Sufficiency. Assume that End(Y) and End(T') are regular. Take f € End(S).
Then f € End(Y) and in fact, flr, : To — T(a) = g for some g € End(T). By
assumption, there exist ¢’ € End(T) and s € End(Y') such that f s f = f and g¢'g = g.
Using Construction 3.1.11, take f’ € End(S) as follows

f/(-’Ea) = (g/(m))s(a)

for every z, € S, a € Y such that ff'f = f. Thus f is regular, and therefore End(S)

is regular. O

Remark 3.2.10. All the results in this chapter hold for the strong semilattices of right

simple semigroups as well.

Example 3.2.11. left zero semigroups are left simple semigroups and the endomorphism
monoids of left zero semigroups are regular since the set of endomorphism monoids of
a left zero semigroup is isomorphic to the set of transformations of a set. For others

properties see also Corollary 2.2.7.

Problem 3.2.12. Investigate left simple semigroups S with regular endomorphism

monoid

3.3 Idempotent-closed monoids

In this section we consider the strong semilattices of left simple semigroups whose

endomorphism monoids are idempotent-closed.

Construction 3.3.1. Let S = [Y;S5,,¢€q,¢q,] be a non-trivial strong semilattice of

semigroups with v = N\Y. Take f, € End(S,). Define f € End(S) as follows

fl/(l'z/) ng =V,
folpen(me)) ifE#v,

for every xze € S, £ €Y. Then f € End(S).

flae) ==

Proof. It can be seen that f is well-defined. Now we show that f is a homomorphism.



Take zq,ys € 5, o, €Y. Then

f(@ays) = [f(®a,a8(®a)es.as(ys))
= Su(@app(Paas(Ta)Psas(ys)))
= ful(PaprPaas(Ta))(Papresas(ys)))
= ful@aw(za))fu(esy(ys))
= f(za)f(ys)-

Therefore f € End(S). O

Lemma 3.3.2. Let S = [Y;Sq,€aq,Cae,s] be a non-trivial strong semilattice of semi-
groups. If the monoid End(S) is idempotent-closed, then Y = Yy, and the monoid
End(Se) is idempotent-closed for every & € Yy .

Proof. From Lemma 3.2.3 we get that End(Y) is idempotent-closed and the monoid
End(Y') is idempotent-closed if and only if Y = Y}, by Proposition 2.2.4.

We verify first that End(Sy) is idempotent-closed. Take two idempotents fo, ho €
End(Sp). Using Construction 3.3.1, for every z¢ € S, & € Yy, take f,h € End(S) as

follows
Fle) = Jo(xo) Tff =0,
folpeo(ze)) HEF#0,
and
h(re) = ho(zo) if £€=0,

ho(peo(ze)) if & # 0.
Then f,h are idempotents. By hypothesis fh is idempotent. Then

fohofoho(zo) = fhfh(xo)
= fh(zo)
= foho(zo).

Thus foho is idempotent, and therefore End(Sy) is idempotent-closed.

We now show that End(S,) is idempotent-closed for each 0 # a € Yp,,. Take
two idempotents fo, ha € End(S,). Using Lemma 3.1.4, for every z¢ € S, € Y, take
the identity map s € End(Y') and take f,h € End(S) as follows

fa(xa) lf& = Oé,

flxe) = .
e¢ if £ # a,



and
ho(za) i &=a,

ee if £ # a.
Then f, h are idempotents. By hypothesis fh is idempotent. Then

h(xe) =

fozhocfoahoa(xa) = fhfh(xa)
= fh(zqa) ( since fh is idempotent)

= faha(wa)-
Thus fahe is idempotent, and therefore End(S,) is idempotent-closed for each «a €

Yo,n- O

)

The converse is also true, which is shown below.

Lemma 3.3.3. Let S = [Yo; S0 €a;Ca,es] be a non-trivial strong semilattice of left
simple semigroups. If the monoid End(S¢) is idempotent-closed for all & € Yo, then

monoid End(S) is idempotent-closed.

Proof. Take two idempotents f,h € End(S). We have f,h € End(Yy,) are also idem-
potents. We now consider f, h.
Case 1. f and h are constant maps.

If f(§) = 0 and h(§) = 0 for every & € Yo,, Then fo,ho € End(Sp) and
f(Sa) = h(Sa) = {fo(eo)} for every 0 # a € Yy,,. This implies that foho € End(Sp) is

idempotent. Thus

fhfh(zo) = fohofoho(zo) = foho(xo) = fh(xo)
and
fhfh(za) = eo = fh(za)
for every 0 # o € Yy ,. Therefore fh is idempotent.

If f(§) = a for some 0 # o € Yy, then f must be a constant map, so that

fh = f is idempotent, and therefore fh is idempotent.

Case 2. f and h are not constant. We have in this case



for each o € Yj,,. In the first case we have

fhfh(xa) = fahafaha(woz) = fochoc(xa) = fh(xa)
and the second case we have
fhfh(za) = fhfho(¢an(za))
= fohofoho(¢a0(za))
= foho(pan(ra))
= fh(za).

Thus fh is idempotent, and therefore End(S¢) is idempotent-closed. O

In the next theorem, we get directly from Lemmas 3.3.2 and 3.3.3.

Theorem 3.3.4. Let S = [Y; 54, ¢€q,Cae,] be a nmon-trivial strong semilattice of left
simple semigroups. Then the monoid End(S) is idempotent-closed if and only if Y =Yy,
and the monoid End(Sg) is idempotent-closed for every & € Yo .

If all defining homomorphisms are isomorphisms, we have:

Theorem 3.3.5. Let S = [Y;Tq,eq, 98] be a non-trivial strong semilattice of left
simple semigroups T, with isomorphisms ¢q g. Then the monoid End(S) is idempotent-

closed if and only if Y =Yy, and the monoid End(T) is idempotent-closed.

Proof. Necessity follows from Lemma 3.2.3 and End(Y') is idempotent-closed if and only
if Y =Yy, by Proposition 2.2.4.

We verify that End(T) is idempotent-closed. Take two idempotents g,k €
End(T). Using Construction 3.1.11, take f,h € End(S) by

f(xa) = (9(2))a

and

Mza) = (k(2))a
for every xo € S, a € Yy ,,. Then f, h are idempotents. By hypothesis, fh is idempo-
tent. Since (gk(x))q = gk(xq) for z = 24 € G, we have (gkgk(x))a = gkg((k(z))a) =
fhf(h(za)) = fh(za) = (gk(z))a. Therefore gk is idempotent. Hence End(T) is
idempotent-closed.

Sufficiency. Take two idempotents f,h € End(S). Then f,h € End(Y) which

are idempotents, of course End(Yp,) is idempotent-closed implies that fhfh = fh,



and f|7, = g, hlr, = k for some idempotents g,k € End(T). Then gk € End(T) is
idempotent. Thus

Fhih(ze) = (gkgk(2)) tnrnce) = (9F(2)) gne)) = fhlze),

and then fh is idempotent.
Therefore End(S) is idempotent-closed. O

Problem 3.3.6. Investigate left simple semigroups with idempotent-closed endomor-

phism monoid

3.4 Orthodox monoids

In this section we consider the strong semilattices of left simple semigroups whose
endomorphism monoids are orthodox.

In the next theorem we get directly from Theorems 3.2.6, and 3.2.8, 3.3.4.

Theorem 3.4.1. Let S = [Y;Sa,ea,cmeﬁ] be a non-trivial strong semilattice of left
simple semigroups. If the monoid End(S) is orthodox then the following conditions hold
1)Y =Yon,
2) the set Hom(Sy, Sy) consists of constant mappings for all o € Yy ,,, a # 0,
3) the monoid End(S¢) is idempotent-closed for all § € Yo, and
4) the set Hom(Sq, Sg) is hom-regular for every a, B € Yo .

The converse is also true if we add the condition that Sy contains only one

idempotent which is equivalent to Sy is a group since we consider only the finite case.

Theorem 3.4.2. Let S = [Y;Sa,ea,ca,eﬁ] be a non-trivial strong semilattice of left
simple semigroups. If the following conditions hold
1)Y =Yon,
2) the set Hom(Sy, Sa) consists of constant mappings for all o € Yy, o # 0,
3) the monoid End(S¢) is idempotent-closed for all § € Yo,
4) the set Hom(Sqy, Sg) is hom-regular for every o, 8 € Yy, and
5) Sop contains one idempotent ey,

then the monoid End(S) is orthodoz.

If all defining homomorphisms are isomorphisms, we have:



Theorem 3.4.3. Let S = [Y;Tq,eq, 90| be a non-trivial strong semilattice of left
simple semigroups Ty, with isomorphisms ¢q g. Then the monoid End(S) is orthodox if

and only Y =Yy, and the monoid End(T) is orthodoz.

Problem 3.4.4. Investigate left simple semigroups S with orthodox endomorphism

monoid

3.5 Left inverse monoids

In this section we consider the strong semilattices of left simple semigroups whose

endomorphism semigroups are left inverse.

Lemma 3.5.1. Let S = [Y; S,, €q, ca,eﬁ] be a non-trivial strong semilattice of left simple
semigroups. If the monoid End(S) is left inverse, thenY =Yy, and the monoid End(S¢)

is left inverse for every § € Yo .

Proof. Necessity follows from Lemma 3.2.3 and the monoid End(Y) is left inverse if and
only if Y = Yp ,, by Proposition 2.2.4.

We first show that End(Sp) is left inverse. Take two idempotents fo,hy €
End(Ty). Using Construction 3.3.1, for every xz¢ € S, £ € Yy, take f,h € End(S)

as follows
Fle) = Jo(zo) Tff =0,
folpeolze)) HE#0,
and
by o | Mol HTE=0,

ho(peo(ze)) if £#0.
Thus f,h are idempotents. By hypothesis fhf(xz¢) = fh(ze) for all z¢ € S, £ € Yo,,.
This implies fohofo(zo) = fhf(zo) = fh(xo) = foho(xo), and therefore End(Sy) is left

inverse.

For 0 # a € Y),,. We show that End(S,) is left inverse. Take two idempotents
farha € End(S,). Using Lemma 3.1.4, for every z¢ € S, £ € Yy, take f,h € End(S)

as follows
foe($a) if € = qQ,
€¢ if { 75 (e

flze) ==

and



h(ﬂjg) — ha(J:Oz) 1f£ = Q,
ee if £ # a.

Thus f,h are idempotents. By hypothesis fhf(x¢) = fh(xe) for all ¢ € S, £ € Yy .
This implies
fahafoz(xa) = fhf(xoe) = fh(xoe) = foahoa(l"a)a

and therefore End(S,) is left inverse. O]

The converse is also true.

Lemma 3.5.2. LetY =Yp,, and S = [Yon; Sa, €a, ca,eﬁ] be a non-trivial strong semilat-
tice of left inverse semigroups. If the monoid End(Sg) is left inverse for each & € Yy p,
then the monoid End(S) is left inverse.

Proof. Take two idempotents f,h € End(S). We have f,h € End(Yp ) are also idem-

potents. We now consider f, h.

Case 1. f and h are constant maps.

If f(§) =0 and A(§) = 0 for every § € Yo, Then fo, ho € End(Sp) and f(Sy) =
h(Sa) = {fo(eo)} for every 0 # a € Yy,. Thus

fhf(xo) = fohofo(zo) = foho(zo) = fh(z0)

and
fhf(SUa) = €0 = fh(xa)
for every 0 # a € Yy 5,. Therefore fhf = fh.

If f(§) = a for some 0 # o € Yy,, then f must be a constant map, so that
fhf = fh.

Case 2. [ and h are not constant. We have in this case

for each a € Yp p,. In the first case we have

fhf(l'a) = fochozfoz(xa) = faha(woz) = fh(woz)



and the second case we have

fhf(za) = [hfo(eao(za))
= fohofo(pa,0(ra))
= foho(pa,0(za))
= fh(za).

Therefore End(S) is left inverse. O

The following theorem follows from Lemmas 3.5.1 and 3.5.2.

Theorem 3.5.3. Let S = [Y; 54, ¢€q,Caes] be a non-trivial strong semilattice of left
simple semigroups. Then the monoid End(S) is left inverse if and only if Y =Yy, and
the monoid End(S¢) is left inverse for every £ € Yg .

If all defining homomorphisms are isomorphisms we have.

Theorem 3.5.4. Let S = [Y;Tq,eq, a3 be a non-trivial strong semilattice of left
simple semigroups Ty, with isomorphisms v g. Then the monoid End(S) is left inverse

if and only if Y =Yy, and the monoid End(T) is left inverse.

Proof. Necessity follows from Lemma 3.2.3 and the monoid End(Y) is left inverse if and
only if Y = Yj ,, by Proposition 2.2.4.

We verify that End(T) is left inverse. Take two idempotents g,k € End(T).
Using Construction 3.1.11, take f, h € End(S) as follows

f(@a) = (9(2))a
and
Mza) = (k(2))a
for every z, € S, a € Yy ,. Then f, h are idempotents. Then (gkg(x))o = fh(f(za)) =

fh(za) = (gk(x))q. Therefore gk is idempotent. Hence End(G) is left inverse.

Sufficiency. Take two idempotents f,h € End(S). Then f,h € End(Y) are
idempotents and fhf = fh. In fact, fe(x) = fo(z) = g € End(T) and h¢(x) = ho(z) =
k € End(T). This implies

fhf(ze) = (gkg(2)) prye) = (9k(2)) paie) = Fhlwe),

and therefore fhf = fh. Hence the monoid End(S) is left inverse. O



Problem 3.5.5. Investigate left simple semigroups with left inverse endomorphism

monoids

3.6 Completely regular monoids

In this section we consider strong semilattices of left simple semigroups whose

endomorphism semigroups are completely regular.

Theorem 3.6.1. Let S = [Y;Sa,ea,ca,eﬁ] be a non-trivial strong semilattice of left
simple semigroups with v N'Y . If the monoid End(S) is completely regular, then the
following assertions hold

Y[=2,

2) the set Hom(S,,S,) consists of constant mappings for alla € Y, v < «, and

3) the monoid End(S¢) is completely reqular for every § € Y.

Proof. 1) According to Lemma 3.2.3, the monoid End(Y') is completely regular follows
and the monoid End(Y") is completely regular if and only if |Y'| < 2 by Proposition 2.2.4.

2) By Lemma 3.2.4.

3) Assume Y = {v,u},v < p.
First, we verify that End(S,) is completely regular. Take f, € End(S,). Using
Construction 3.3.1, for every z¢ € S, £ € Y, take f € End(S) as follows

fulzy) if§=v,

folbpp(zy)) &= p.
By hypothesis there exists f’ € End(S) such that ff'f = f and ff' = f'f. Thus
foflfv(@y) = ff (@) = f(z) = fulzy) and f)fu(20) = fuf,(2,) and therefore f, is

completely regular. Hence End(S,) is completely regular.

flae) ==

We show that End(S,,) is completely regular.
Take f, € End(S,). Using Lemma 3.1.4, for every z¢ € S, { € Y, take f €
End(S) as follows
fuln) &= p,

ey, if £ =w.

flze) ==

By hypothesis there exists f' € End(S) such that ff'f = f and ff' = f'f. Thus

fpf,&fu(xu) = ff/f(xu) = f(xu) = fu(wu) and f;fu(fvu) = fﬂfl/j,(wﬂ) and therefore fu is
completely regular. Hence End(S)) is completely regular. O



The following theorem shows the converse.

Theorem 3.6.2. Let S = [Y;Sa,ea,cam] be a non-trivial strong semilattice of left
simple semigroups and v = AY . If the following conditions hold

0y =2,

2) the set Hom(S,,S,) consists of constant mappings for allv < a €Y,

3) the monoid End(S¢) is completely reqular for every £ € Y, and

4) S, contains one idempotent e,

then the monoid End(S) is completely regular.

Proof. Assume Y = {v,u},v < p.
Take f € End(S). Then f € End(Y) such that ff'f = fand f'f = ff'.

Case 1. f(v) = f(p) = v. Then v = f(f'(v)) = f'(f(v)) = f'(v). We have
f(Su) = {fv(ev)} and f, € End(S,). By hypothesis, there exists f;, € End(S,) such
that f,f,f, = f, and f.f, = f,f, by Lemma 3.2.1 1). Using Construction 3.3.1, for
every x¢ € S, £ € Yy, take f' € End(S) as follows

fl(zy) if € = v,
f;(90#7V<$#>) if £ = p.

So that ff'f = f and ff' = f'f. Therefore f is completely regular.

fl(xe) =

Case 2. f(v) = f(p) = p. Then p = f(f'(pn) = f/(f(v)) = f(1). In this case
f(Su) = {fu(en)}. By 2) f, € Hom(S,,S,) is constant, so that f is constant, and of

course f is completely regular.

Case 3. f(v) =v and f(u) = p. By Lemma 3.1.5 f,(e,) = foopun () = Quufulty) =
ey, so take f!, € End(S,) with f/(e,) = e, since S, has only one idempotent by 4). Thus
there exist f, € End(S,) and f, € End(S,) such that f,f,f, = f, and f.f, = fuf]
and fu.f)fu = fu and f},fu = fuf,. Using Lemma 3.1.4, for every ¢ € S, £ € Yo, take
1/ € End(S) as follows

fi(z) fE=v,

filzy) & =p.

Thus ff'f = f and ff' = f'f. Therefore f is completely regular. Hence End(S) is

flxe) =

completely regular. O

If all defining homomorphisms are isomorphisms we have.



Theorem 3.6.3. Let S = [Y;T,,eq, va,ps] be a non-trivial strong semilattice of semi-
groups T, with isomorphisms ¢q 3 and v =AY . Then the monoid End(S) is completely
regular if and only if |Y| = 2 and the monoid End(T) is completely regular.

Proof. Necessity follows from Lemma 3.2.3 and the monoid End(Y") is completely regular
if and only if |Y| < 2 by Proposition 2.2.4.

Assume Y = {v, u},v < p.

We show that End(T') is completely regular. Take g € End(T). Using Construc-
tion 3.1.11, take f € End(S) as follows

f(xa) = (9(2))a

for every z, € S, a € Y. By hypothesis f' € End(S) exists such that ff'f = f and
ff'= f'f. It is clear that g is completely regular since f, = f, = g. Hence End(T) is

completely regular.

Sufficiency. Assume Y = {v,u},v < p. Take f € End(S). Then f € End(Y).
By hypothesis there exists s € End(Y) such that fsf = f and fs = sf. We have
fulz) = fu(z) = g(z) where g € End(T) and End(T) is completely regular, there
exists ¢ € End(T) such that g¢'g = g and g9’ = ¢’g. Using Construction 3.1.11, take
f € End(S) as follows

f(xa) = (¢'(%))s(a)
for every zo € S, a € Y. Then ff'(f(za) = ff((9(2))a) = (99'9(2))fsra) =

(9(2)) () = f(2a) and f'f(za) = (9'9(2)sf(0) = (99'()) s(a) = ff'(za) for a € Y.
Then f is completely regular, and therefore End(S) is completely regular. O

Problem 3.6.4. Investigate left simple semigroups with completely regular endomor-

phism monoid

3.7 Idempotent monoids

In this section we consider the strong semilattices of left simple semigroups whose

endomorphism monoids are idempotent.

Lemma 3.7.1. Let S = [Y; Sq, €q, ca,eﬁ] be a non-trivial strong semilattice of left simple
semigroups. If the monoid End(S) is idempotent, then the following hold
1) Y] =2,



2) the set Hom(S,,Sa) consists of constant mappings for allv < o €'Y, and
3) the monoid End(S¢) is idempotent for every £ € Y.

Proof. 1) According to Lemma 3.2.3, the monoid End(Y") is idempotent and the monoid
End(Y) is idempotent if and only if |Y| < 2 by Proposition 2.2.4. Assume Y =
{vouh, v <p.
2) Take f, € Hom(S,,S,). Using Lemma 3.1.4, for every z¢ € S, £ € Y, take
f € End(S) as follows
fo(x,) €S, ifE=v,
fu(ew) if €= p.

By hypothesis f is idempotent. Thus ff(z,) = f(z,) = fu(x,) € S, and f,(x,) must

flwg) ==

be equal to f,(e,). Thus f, is a constant map.

3) First, we verify that End(S,) is idempotent. Take f, € End(S,). Using
Construction 3.3.1, for every z¢ € S, £ € Y, take f € End(S) follows

fu(zy) if &€ =v,

flae) = '
fulbpp(zy) €= p

By hypothesis f is idempotent. Thus

fofu(ay) = ff(@) = f(zn) = fu(ay).
This implies that f, is idempotent. So that End(S,) is idempotent.

We verify now that End(S,) is idempotent. Take f, € End(S,). Using Lemma
3.1.4, for every z¢ € S, £ €Y, take f € End(S) as follows

f/ﬁ(aj/ﬁ) lfg = K,

ey if & =vw.

flag) =

By hypothesis f is idempotent. Thus
Sufu(wy) = ff(en) = flen) = Fuleu).

This implies that f, is idempotent. So that End(S,,) is idempotent. O

The converse is also true.

Lemma 3.7.2. Let S = [Y; 54, €a, Ca,ey] be a non-trivial strong semilattice of left simple

semigroups. If the following conditions hold



1)Y|=2,
2) the set Hom(Sy, Sa) consists of constant mappings for allv < a« €Y, and
3) the monoid End(S¢) is idempotent for each £ € Y,

then the monoid End(S) is idempotent.

Proof. Assume Y = {v,u},v < p. Take f € End(S). Then f € End(Y) which is

idempotent because |Y| < 2. We now consider three cases.

Case 1. f(v) = f(pn) = v. We have f(S,) = {f.(e,)}. Then ff(z,) = fofu(z,) =
fu(zy) = f(x,) where f, € End(S,) and ff(zx,) = f(ev) = e, = f(x,). Thus f is

idempotent.

Case 2. f(v) = f(pn) = p. By 2) f, € Hom(S,,S,) is constant and f(S,) = {f.(e,)}.

This implies f is constant and of course f is idempotent.

Case 3. f(v) = v and f(u) = p. We have f, € End(S,) and f, € End(S,), and
End(S,) and End(S,) are idempotents, so that ff(z,) = fufu(z,) = fu(zn) = f(z)
and ff(xz,) = fufu(ry) = fu(ry) = f(xu). Therefore f is idempotent. Hence End(S) is
idempotent. O

The following theorem follows from Lemmas 3.7.1 and 3.7.2.

Theorem 3.7.3. Let S = [Y; 54, ¢€q;Cae,] be a nmon-trivial strong semilattice of left
simple semigroups and v = A\Y . Then the monoid End(S) is idempotent if and only if
the following conditions hold

1) Y| =2, and

2) the set Hom(S,,S,) consists of constant mappings for allv < o €'Y, and

3) the monoid End(S¢) is idempotent for each { € Y.

If all defining homomorphisms are isomorphisms we have.

Theorem 3.7.4. Let S = [Y;Ty,eq, a8 be a non-trivial strong semilattice of left
simple semigroups T, with isomorphisms pa.g and v = AY . Then the monoid End(S)

is idempotent if and only if |Y| = 2 and the monoid End(T) is idempotent.

Proof. Necessity follows from Lemma 3.2.3 and the monoid End(Y") is idempotent if and
only if |Y| <2 by Proposition 2.2.4.
Assume that Y = {v, p} with v < p.



We show that End(T") is idempotent. Take g € End(T). Using Construction
3.1.11, take f € End(S) as follows

fze) = (9(2))a
for every xz, € S, a € Y. By hypothesis f is idempotent. Then

(99(x)a = f(f(za))
= f(zqa) ( since f is idempotent)

= g(())a-
Thus g is idempotent, and therefore End(T") is idempotent.

Sufficiency. Assume Y = {v,u},v < p. Take f € End(S). Then f € End(Y) is

idempotent, implies that f f = f and f|r, = g for some idempotent g € End(T). Then

ff(xa) = (gg(ﬂf))i fla) = (g(x))i(a) = f(xoz)'

Thus f is idempotent, and therefore End(S) is idempotent. O

Problem 3.7.5. Investigate left simple semigroups with idempotent endomorphism

monoids



Chapter 4

Endomorphisms of Clifford
semigroups with constant or

bijective defining homomorphisms

In this chapter, we study our usual properties of the endomorphism monoids
of Clifford semigroups such as regular, idempotent-closed, orthodox, left inverse, com-
pletely regular, and idempotent. Some results of this chapter have been in [8]. The Clif-
ford semigroups have various equivalent definitions: as completely regular semigroups

I commute; as regular semigroups whose idempotents

where elements of the form zz™
are central; as semilattices of groups; or, in the way used most in this thesis, as strong
semilattices of groups (see [14]). For the definition of a Clifford semigroup as a strong
semilattice of groups is Definition 1.1.5 and Theorem 1.1.12.

We collect the results of this chapter in the Overview.

4.1 Regular endomorphisms

In this section the endomorphism monoids of Clifford semigroups with constant
defining homomorphisms ¢, g and Y as a finite chain are studied [21].
The following corollary is a consequence of Theorem 3.2.6. The Condition 3) of

Theorem 3.2.6 is deduced.

Corollary 4.1.1. Let Y =Yy, and let S = [Y; G, €q, Caey] be a Clifford semigroup. If
the following conditions hold
1) |Hom(Go, Go)| =1 for all a € Yy, with o # 0, and
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2) the set Hom(Gq,Gg) is hom-reqular for every o, 8 € Yy p,
then the monoid End(S) is regular.

Proof. See Theorem 3.2.6. O

Corollary 4.1.2. Let S = [Y;Ga, €q, Caes] be a Clifford semigroup with v = AY . If the
monoid End(S) is reqular then the following conditions hold

1) the monoid End(Y") is reqular,

2) |[Hom(G,,Go)| =1 for alla € Y with v < «, and

3) the set Hom(Gq, Gg) is hom-regular for every a, 5 € Y.

Proof. See Theorem 3.2.8. O

If all the defining homomorphisms are bijective, we have.

Corollary 4.1.3. Let S = [Y; G, €q, Pa,p] be a Clifford semigroup with bijective pq .
Then the monoid End(S) is reqular if and only if the monoids End(Y) and End(G) are

reqular.

Proof. See Theorem 3.2.9. O

Problem 4.1.4. Condition 2) of Corollary 4.1.2 is easy to check, but we do not know
much about the Condition 3) nor about regularity of End(G).

4.2 Idempotent-closed monoids

In this section we investigate Clifford semigroups whose endomorphism monoids

are idempotent-closed.

Corollary 4.2.1. Let S = [Y;Gq, €a, Caey) be a Clifford semigroup. Then the monoid
End(S) is idempotent-closed if and only if Y = Yy ,, and the monoid End(G¢) is idempotent-
closed for all £ € Yo p,.

Proof. See Theorem 3.3.4. O

Corollary 4.2.2. Let S = [Y;Gq, 0] be a Clifford semigroup with bijective ¢q .
Then the monoid End(S) is idempotent-closed if and only if Y = Yy, and the monoid
End(G) is idempotent-closed.



Proof. See Theorem 3.3.5. ]

Example 4.2.3. For any group G, the monoid End(G) which is idempotent-closed,
have not been found in any literature. However, we know (End(Zy,),0) = (Zy,-) (see [9])
and (Zy, -) is a commutative semigroup, this implies that it is idempotent-closed and the
monoid End(Zza x Z2) is one example which is not idempotent-closed (see also Example

1.1.8).

Problem 4.2.4. Investigate a group whose endomorphism monoid is idempotent-closed.

4.3 Orthodox monoids

In this section we characterize Clifford semigroups whose endomorphism monoids

are orthodox.
The following corollary follows from Corollaries 4.1.1 and 4.2.1.

Corollary 4.3.1. Let S = [Y;Gq, €q; Cae,) be a Clifford semigroup. Then the monoid
End(S) is orthodox if and only if the following conditions hold:

DY = Yo

2) |Hom(Go,Go)| =1 for all a« € Yy, with oo # 0,

3) the monoid End(G¢) is idempotent-closed for all £ € Yy, and

4) the set Hom(Gq,Gg) is hom-regular for all o, B € Yo .

Proof. See Corollaries 4.1.1 and 4.2.1. O

Now all the defining homomorphisms are bijective, we have.

Corollary 4.3.2. Let S = [Y;Ga,9a] be a Clifford semigroup with bijective pq .
Then the monoid End(S) is orthodox if and only if Y = Yy, and the monoid End(Q)

1s orthodoz.

Proof. See Corollaries 4.1.2 and 4.2.2. O

Problem 4.3.3. Investigate a group whose endomorphism monoid is orthodox.



4.4 Left inverse monoids

In this section we study Clifford semigroups whose endomorphism monoids are

left inverse.

Corollary 4.4.1. Let S = [Y;Gq, €q; Cae,) be a Clifford semigroup. Then the monoid
End(S) is left inverse if and only if Y = Yo, and the monoid End(Gy) is left inverse
for all £ € Yy .

Proof. See Theorem 3.5.3. O

Now all the defining homomorphisms are bijective, we have.

Corollary 4.4.2. Let S = [Y;Gq, 9] be a Clifford semigroup with bijective g .
Then the monoid End(S) is left inverse if and only if Y = Yy, and the monoid End(Q)

is left inverse.

Proof. See Theorem 3.5.4. O

Problem 4.4.3. Investigate a group whose endomorphism monoid is left inverse.

For a group G whose endomorphism monoid is inverse, has been investigated in

[10]. We collect some results also here. The proofs can be found in [10].

Definition 4.4.4. We call a group G with the property that End(G) is an inverse
semigroup, an inverse group. If End(G) = Aut(G) U {0} we call G a basic group.

Proposition 4.4.5. Let G be an inverse group. Let f € End(G). Then Ker(f) has a

unique complement.

Proposition 4.4.6. Let G be an inverse group. Then either G is basic or G = H & K
where H and K are fully invariant subgroups of G, H and K are both inverse groups

and Hom(H, K) = 0.

Proposition 4.4.7. Let H and K be inverse groups such that Hom(H, K) =0, Hom(K, H) =

0. Then H & K is an inverse group.



4.5 Completely regular monoids

We now consider Clifford semigroups whose endomorphism monoids are com-

pletely regular.

Corollary 4.5.1. Let S = [Y;Gq, €q; Cae,) be a Clifford semigroup. Then the monoid
End(S) is completely regular if and only if

1)|Y| =2, orY ={v,pu} withv < pu,

2) [Hom(G,,G,)| =1, and

3) the monoids End(G,) and End(G,) are completely regular.

Proof. See Theorems 3.6.1 and 3.6.2. 0

Now all the defining homomorphisms are bijective, we have.

Corollary 4.5.2. Let S = [Y;Gaq, 0] be a Clifford semigroup with bijective g .
Then the monoid End(S) is completely reqular if and only if |Y| = 2 and the monoid
End(G) is completely reqular.

Proof. See Theorem 3.6.3. ]

Problem 4.5.3. Investigate a group whose endomorphism monoid is completely regular.

4.6 Idempotent monoids

We discuss now Clifford semigroups whose endomorphism monoids are idempo-
tent.

The following is folklore.

Lemma 4.6.1. The endomorphism monoid of a group G is idempotent if and only if

G=171 or G=179

Proof. Sufficiency. It is obvious.

Necessity. Suppose that |G| > 2. It can be define f : G — G as follows
f(z) :=aza™!

for every z € G, for some a € G such that ™! is the inverse of a. It is easily to check

that f is an isomorphism of G and f is not the identity map. O



Corollary 4.6.2. Let S = [Y;Ga,ea,cmeﬁ] be a Clifford semigroup. Then the monoid
End(S) is idempotent if and only if the following hold

)|Y|=2,ie,Y={v,u}, v<u,

2) Gy,Gy € {Z1,Zs}, and

3) |Hom(G,,Gqa)| =1, i.e., Gy # G,,.

Proof. See Theorem 3.7.3. O

Now all the defining homomorphisms are bijective, we have.

Corollary 4.6.3. Let S = [Y;Ga, 0] be a Clifford semigroup with bijective g .
Then the monoid End(S) is idempotent if and only if |Y| = 2 and the monoid End(G)

1$ idempotent.

Proof. See Theorem 3.7.4. O

Problem 4.6.4. Investigate a group whose endomorphism monoid is idempotent.



Chapter 5

Endomorphisms of strong

semilattices of left groups

In this chapter we discuss strong semilattices of left groups with constant defining
homomorphisms and isomorphisms ¢, g whose endomorphism monoids are idempotent-
closed, regular, orthodox, left inverse, completely regular, and idempotent.

It is well-known that a left group S is isomorphic to a direct product of a group
G and a left zero semigroup L, for some a positive integer n. We denote the left zero
semigroup by L, = {li,l2,...,1,} such that [;l; = [; for i,j € {1,2,...,n} and written
S = L, x G as a left group. Dually we denote by T' = H x R, a right group where
H is a group and R, = {1,2,3,...,m} is a right zero semigroup such that r;r; = r; for
i,7€{1,2,3,....,m}.

Denoted by E(L, x G) = {(l,eq) | | € L,, and e is the identity of G} the set of
idempotents of the left group L, x G.

In the case of constant defining homomorphisms, we denoted by (Z’B, eg) a fixed

element in Ly, X G such that ¢, s((la; Ta)) = (l%,eﬁ) for every (o, o) € Ln, X Gq.

We collect the results in this chapter as a table in the Overview.

5.1 Regular monoids
We first provide some auxiliary results which are needed later.

Construction 5.1.1. Let L, x G and Ly, x H be left groups. Take g € Hom(G, H) and
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s € Hom(Ly, Ly,). Define f: L, x G— Ly, x H by

F({,x)) = (s(0), 9(x))

for every (I,x) € L, x G. Then f € Hom(Ly,, x G, Ly, x H).

Conversely, if f € Hom(Ly, X G, Ly, x H), then pi1fiy, € Hom(Ly,L,,) and
pafia € Hom(G, H) where py : Ly, x H — Ly, is the first projection map, p2 : Ly, x H —
H is the second projection map, and i1 : L, — L, X G 1is the first embedding map,

ia : G — L, X G 1is the second embedding map.

Proof. Tt can be seen that f is well-defined. We show that f is a homomorphism. Take
(l,z),(I',y) € L, x G. Then

F(z) s y) = f((ay)
(

Thus f € Hom(L, x G, Ly, x H).
Conversely, let f € Hom(L,, x G,L,, x H). Then pafia € Hom(G,H) and
plfil c Hom(Ln,Lm). O

Corollary 5.1.2. Let L, x G and Ly, x H be left groups. Then Hom(L, X G, Ly, x H) =
Hom(Ly, Ly,) x Hom(G, H).

We remark that the above Construction is also true for the right groups, so we

have the next corollary.

Construction 5.1.3. Let G x R, and H X R,, be left groups. Take g € Hom(G, H)
and s € Hom(R,,, Ry,). Define f: G x R, — H X Ry, by

for every (x,r) € G x R,,. Then f € Hom(G X Ry, H X Ry,).

Conversely, if f € Hom(G x Ry, H X R,), then p1 fiy € Hom(G, H) and pafis €
Hom(Ry,, R,,) where p1 : H x R,, — G is the first projection map, ps : H X Ry, — Ry,
is the second projection map and i1 : G — G X R, is the first embedding map, i2 : R, —

G x R, is the second embedding map.



Corollary 5.1.4. Let GX R,, and H X Ry, be right groups. Then Hom(Gx R,,, HX R,;,) =
Hom(G,H) x Hom(Ry, Ry,).

From now on we prove only the case of non-trivial left groups L, x G, that is

n > 2, but we will get the results for right groups as well.

Lemma 5.1.5. Take any left groups Ly, xG and Ly, x H. If the set Hom(Ly, X G, Ly, x H)

consists of constant mappings, then |Hom(G, H)| = 1.

Proof. Let g € Hom(G, H). Using Construction 5.1.1, take f € Hom(L,, X G, Ly, x H)

as follows
f((,2)) =, 9(x))

for every (I,x) € L, x G. By hypothesis, Hom(L,, X G, L,,, x H) consists of constant
mappings. This means (I, g(z)) = f((I,z)) = (m,ep) for some idempotent (m,ey) €
E(L,, x H). This implies I’ = m, g(x) = ey for every x € G where ey is the identity in
H. Hence |[Hom(G,H)| = 1. O

By taking G = H, n = m in Corollary 5.1.4, we have the following.

Corollary 5.1.6. Let L, x G be a left group. Then End(Ly, x G) = End(Ly) x End(G).

Lemma 5.1.7. Take a left group L, x G. Then the monoid End(L, x G) is regular
(idempotent-closed, orthodox, left inverse, completely reqular, and idempotent) if and
only if the monoids End(G) and End(Ly,) are reqular (idempotent-closed, orthodoz, left

inverse, completely regular, and idempotent).

Proof. This is clear since End(L,, x G) = End(L,) x End(G) by Corollary 5.1.6. O

We repeat the property of the monoid End(L,) which is equivalent to Corollary
2.2.7.

Lemma 5.1.8. Tuke a left zero semigroup L,,. Then the monoid End(Ly,) is



1) always regular,

2) completely reqular
3) idempotent-closed =2
4)  orthodox
5) left inverse
6)  right inverse
7)  inverse
8) a group ifn =1
)

9

commutative

10) idempotent

Corollary 5.1.9. Take a non trivial left group L, x G. Then the monoid End(L,, x G)
is always regular if End(Q) is reqular.

The monoid End(Ly, x G) has the properties 2)-5) if and only if n = 2 and
End(G) has the corresponding property.

The monoid End(L, x G) has the properties 6)-10) if and only if n = 1 and
End(G) has the corresponding property.

Lemma 5.1.10. Let S = [Y;L,, X Ga,¥ap] be a non-trivial strong semilattice of
left groups Ly, X Gu. If the monoid End(S) is reqular (idempotent-closed, orthodoz,
left inverse, completely regular, and idempotent), then the monoid End(Y) is regular

(idempotent-closed, orthodoz, left inverse, completely regular, and idempotent).

Proof. See Lemma 3.2.3. O

Lemma 5.1.11. Let S = [Y; Ly, X Gq,¥ap] be a non-trivial strong semilattice of left
groups Ly, x Go with constant defining homomorphisms pq 5. If the monoid End(S) is
reqular (completely reqular, idempotent-closed, orthodoz, idempotent, left inverse), then
the monoid End(Ly, X Gy) is reqular (completely reqular, idempotent-closed, orthodoz,

idempotent, left inverse).

Proof. See Lemma 3.2.2. O

Lemma 5.1.12. If the set Hom(L,, x G, L, x H) is hom-regular if and only if the sets
Hom(G,H) and Hom(Ly, Ly,) are hom-regular.

Proof. As a consequence of Corollary 5.1.2, the set Hom (L, XG, Ly, xH) = Hom(G, H)x
Hom(Ly, Ly,). O



Lemma 5.1.13. The set Hom(Ly, Ly,) is always hom-regular.
Proof. Take f € Hom(Ly, Ly,). Define f': L,,, — L,, as follows

' ifx € Im(f), for some I’ € f~1{x}
li ifx¢Im(f), 1 €Ly

fi(z) =

for every x € L,,. Then f' € Hom(L,,, Ly) such that ff'f = f. O

We discuss the strong semilattices of left groups whose endomorphism monoids
are regular. The following corollary is a consequence of Theorem 3.2.6. The Condition
2) of Theorem 3.2.6 is deduced by Lemma 5.1.12 and the set Hom(Ly, Ly,) is always
regular by Lemma 5.1.13. The Condition 3) of Theorem 3.2.6 is deduced since Ly, x Gy

must contain only one idempotent, implies that L,, = L.

Corollary 5.1.14. Let Y = Yy, and let S = [Y; Ly, X Ga,cm( be a non-trivial

Igep)]
strong semilattice of left groups Ly, X Gq. If the following conditions hold
1) |Hom(Ly, x Go, Lo X Go)| =1 for all o € Yy, with a # 0,
2) the set Hom(Gq, Gg) is hom-regular for every a, B € Yo, and,
3) [Lno| =1,

then the monoid End(S) is regular.

Proof. See Theorem 3.2.6. O

The following corollary is a consequence of Theorem 3.2.8. The Condition 3) of
Theorem 3.2.8 should be the set Hom(Ly, X Ga, Ly, X Gg) is hom-regular for every
«, B €Y. But this condition will be deduced by Lemmas 5.1.12 and 5.1.13. We have

Corollary 5.1.15. Let S = [Y; L, X Ga, Ca (15,e5)] be a non-trivial strong semilattice of
left groups Ly, x G, with v = AY . If the monoid End(S) is reqular then the following
conditions hold

1) the monoid End(Y') is regular, i.e., Y is a binary tree or Y has only one
A-reducible or Y € BUB?UR. (see Theorem 2.1.13),

2) the set Hom(Ly, X Gy, Ly, x Gq) consists of constant mappings for all v <
a €Y, and

3) the set Hom(Gq, Gg) is hom-regular for every a, S € Y.

Proof. See Theorem 3.2.8. O



The following example is easily to see that the Condition 3) of Corollary 5.1.14

is needed.

Example 5.1.16. Let Y = {0,a} with 0 < « and let S be a strong semilattice of left
groups Tp and T}, with constant defining homomorphism ¢, 0 = C(11,0) where Ty = Lo X7y

and T, = La X Zgy such that |L,,| = 2. Take f as follows.

(llovoo) (l20700) (llavoa) (llavla) (l2a70a) (l2a71a)
(llavooz) (l2a70a) (llaaoa) (llaaoa) (l1a70a) (l1a70a>

f =
Then f has no an inverse element in End(S). This implies that End(S) is not regular.

(11,0) (11,1) (I2,0) (I2,1)

0 [ ]
(11,0) (I2,0)

Now the defining homomorphisms are bijective:

Corollary 5.1.17. Let S = [Y'; Ly, X Ga, 9a,]| be a non-trivial strong semilattice of left
groups Ly, x Go with bijective ¢ 3. Then the monoid End(S) is regular if and only if
the monoids End(Y') and End(L, x G) are reqular.

Proof. See Theorem 3.2.9. O

Since End(L,) is always regular and End(L, x G) = End(L,) x End(G), we

formulate Corollary 5.1.17 as follows.

Corollary 5.1.18. Let S = [Y; Ly, X Ga, 9a,| be a non-trivial strong semilattice of left
groups Ly, x Go with bijective po g. Then the monoid End(S) is regular if and only if
the monoids End(Y) and End(G) are regular.

5.2 Idempotent-closed monoids

In this section we consider the strong semilattices of left groups whose endomor-

phism monoids are idempotent-closed.



Corollary 5.2.1. Let S =[Y;L,, X Gaaca,(lﬁ,eﬁ)] be a non-trivial strong semilattice of
left groups Ly,, x G with v =AY . Then the monoid End(S) is idempotent-closed if and
only if Y = Yo m, no = 2 and the monoid End(G,) is idempotent-closed for all o € Yy .

Proof. See Theorem 3.3.4 and Lemma 5.1.7. O

Now the defining homomorphisms are bijective.

Corollary 5.2.2. Let S = [Y; Ly, x Go,¢a,p] be a non-trivial strong semilattice of left
groups Ly, x Go with bijective po . Then the monoid End(S) is idempotent-closed if
and only if Y = Yy m, n =2 and the monoid End(G) is idempotent-closed.

Proof. By Theorem 3.3.5 and Lemma 5.1.7. 0

The following example shows positive and negative for Corollary 5.2.1.

Example 5.2.3. Let Y = {0,a} = K with 0 < a and let S be a strong semilattice
of left groups Ty = Lo X Zg and T, = Ly X Zg with a0 = ¢4, 0), such that End(Zs)
and End(Zs3) are idempotent-closed (see Example 1.3.8). Then the monoid End(S) is

idempotent-closed by Corollary 5.2.1, the figure is shown as follows.

(11,0)0 (11, 1)a(l1,2)a
(1> 0)0(l2 0)o (11, 1)o (0, 1)o

If we take Ty = Ls x Zg and T, = L; X Zs, then the monoid End(S) is not
idempotent-closed since ng = 3. To see this, we take idempotents f,g € End(S) as

follows.

f=
(11,0)0 (13,0)0 (13,0)0 (l1,1)0 (I3,1)0 (I3,1)o (I3,0)0 (I3,0)0 (I3,0)0

and

. (l1,0)0 (12,0)0 (13,0)0 (1, 1)0 (I2,1)0 (I3,1)0 (1,0)a (1, 1) (I1,2)a

but gf is not idempotent because gfgf((l1,0)0) = (I3,0)o while gf((l1,0)0) = (I2,0)o.



5.3 Orthodox monoids

In this section we consider the strong semilattices of left groups whose endomor-

phism monoids are orthodox.

Corollary 5.3.1. Let S = [Y; Ly, X Ga, oy be a mon-trivial strong semilattice of

g.e5)]
left group Ly, x Go. Then the monoid End(S) is orthodox if and only if the following
conditions hold

1)Y =Yom, ne =2,

2) |[Hom(Go,Go)| =1, no =1 and

3) the monoid End(Gy,) is idempotent-closed, and

4) the set Hom(Gq,Gg) is hom-regular for all o, € Y.

Proof. See Corollaries 5.1.15 and 5.2.1. O

Now the defining homomorphisms are bijective.

Corollary 5.3.2. Let S = [Y'; Ly, X Go, ¢a,p] be a non-trivial strong semilattice of left
groups Ly, x Go with bijective ¢o g. Then the monoid End(S) is orthodox if and only
Y = Yom, na =2 and the End(G) is orthodox.

Proof. See Corollaries 5.1.18 and 5.2.2. O

The following example shows positive and negative for Corollary 5.3.2.

Example 5.3.3. Let Y = {0,a} = K with 0 < a and let S be a strong semilattice
of left groups Ty and T, with bijective defining homomorphism ¢, o where Ty = T;, =
Ly x Zg and the monoid End(Zg) is regular and orthodox since (End(Zg), o) = (Z¢,-)
(see Example 1.3.8), and the set of idempotents of End(Zg) is shown below. Then the

monoid End(S) is orthodox by Corollary 5.3.2, the figure is shown as follows.



011123415
0070|000 ]0|O0
110]1112(3|141]5
2101241024
31013(0(3]0/3
41014121042
510541321

(Ly X Zg)a  (11,0) (I2,0) (i1, 1) (Ia, 1) (11, 2) (I2, 2) (11, 3) (12, 3) (11, 4) (I2, 4) (11, 5) (I5, 5)

LI

(La X Zg)o  (11,0) (I2,0) (11,1) (l2,1) (11,2) (I2,2) (11, 3) (l2,3) (I1,4) (I2,4) (11,5) (I5,5)

If we take Lo x Zg by Lo X Z4, the monoid End(S) is not orthodox (see also
Example 1.3.8) since the monoid End(Z4) is not regular, so End(Ly x Z4) is also not

regular.

5.4 Left inverse endomorphisms

In this section we consider the strong semilattices of left groups whose endomor-

phism monoids are left inverse.

Corollary 5.4.1. Let S = [Y; Ly, X Ga,cCqy be a non-trivial strong semilattice

lﬁ,%@)]
of left groups Ly, x Go. Then the monoid End(S) is left inverse if and only if Y =

Yo,m, ne =2 and the monoid End(Ge) is left inverse for each & € Yy .

Proof. See Theorem 3.5.3 and Lemma 5.1.7. O

Now the defining homomorphisms are bijective.

Corollary 5.4.2. Let S = [Y; Ly, x Ga,¥a,pg| be a non-trivial strong semilattice of left
groups Ly, x G with isomorphisms pq 5. Then the monoid End(S) is left inverse if
and only if Y =Yy m, na =2 and End(G) is left inverse.

Proof. See Theorem 3.5.4 and Lemma 5.1.7. O



5.5 Completely regular monoids

In this section we consider the strong semilattices of left groups whose endomor-

phism monoids are completely regular.

Corollary 5.5.1. Let S = [Y; Ly, X Ga,Coy be a mon-trivial strong semilattice of

g.e5)]
left groups Ly, x Go with v = AY. Then the monoid End(S) is completely reqular if
and only if if the following conditions hold

1)Y|=2, ng=2,

2) |[Hom(G,,Go)| =1, n, =1 and

3) the monoid End(G¢) is completely regular for each { €Y.

Proof. See Theorems 3.6.1, 3.6.2 and Lemma 5.1.7. 0

Now the defining homomorphisms are bijective.

Corollary 5.5.2. Let S = [Y'; L, X Go, ¢a,p] be a non-trivial strong semilattice of left
groups Ly, x G with bijective po g and v = AY . Then the monoid End(S) is completely
reqular if and only if |Y| =2, no = 2 and the monoid End(G) is completely regular.

Proof. See Theorem 3.6.3 and Lemma 5.1.7. O

The following example shows positive and negative examples for Corollary 5.5.2.

The following example shows positive and negative examples for Corollary 5.5.2.

Example 5.5.3. We take the Example 5.3.3. Let Y = {0,a} = K1 with 0 < a and
let S be a strong semilattice of left groups Ty and T}, such that Ty = T, = Lo X Zg with
bijective defining homomorphism ¢, . The set of endomorphisms of End(Zs) is shown
in Example 5.3.3. Take any endomorphisms f(1) = 2 and ¢g(1) = 5 such that fff = f
and ggg = g. The monoid End(Zg) is completely regular, and therefore the monoid
End(S) is completely regular by Corollary 5.5.2.

If we replace Zg by Za x Zg such that End(Zsy x Zsa) is not completely regular by
calculating, and therefore the monoid End(S) is not completely regular.
5.6 Idempotent monoids

In this section we consider the strong semilattices of left groups whose endomor-

phism monoids are idempotent.



Corollary 5.6.1. Let S =[Y;L,, X Gaaca,(lﬁ,eﬁ)] be a non-trivial strong semilattice of
left groups Ly, x G with v =AY . Then the monoid End(S) is idempotent if and only
if the following conditions hold

1)Y ={v,u} withv < p, ng =1 forall§ €Y,

2) Gy,Gy € {Z1,Z2}, G, # Gy, and

Proof. See Theorem 3.7.3 and Lemma 5.1.7. O

Now the defining homomorphisms are bijective.

Corollary 5.6.2. Let S = [Y; L,, x Ga,¢a,p] be a non-trivial strong semilattice of left
groups Ly, x Go with bijective po g and v = AY . Then the monoid End(S) is idempotent
if and only if |Y]| =2, no =1 and G € {Z1,Z2}.

Proof. See Theorem 3.7.4 and Lemma 5.1.7. O



Chapter 6

Generalization to surjective

defining homomorphisms

In Chapter 2 we presented strong semilattices of left simple semigroups with
constant defining homomorphisms and isomorphisms whose endomorphism monoids are
regular, idempotent-closed, orthodox, left inverse, completely regular and idempotent.

In this chapter we consider strong semilattices of left simple semigroups with
surjective defining homomorphisms whose endomorphism monoids have such properties.

In this chapter we mainly consider the semilattice Y = Yp .

6.1 Regular monoids

In this section we study strong semilattices of left simple semigroups whose en-

domorphism monoids are regular.

Construction 6.1.1. Let Y =Y, and S = [Yon; Sa;€as Pa,s] be a non-trivial strong
semilattice of left simple semigroup with surjective defining homomorphisms @, 5. Take

a,B €Yon, a,B#0 and take fo € Hom(Sa, Sg). Define f: S — S as follows

fa(ma) S S,B ng = Q,

flae) = ,
@B,O(foe(ya)) € SO zfé 7é «, Spoc,O(ya) = 905,0(335):

for every x¢ € S, € Yo,. Then f € End(S).

Proof. Tt can be checked that f is well-defined. We show that f is a homomorphism.

Take z,ys € S, 7,0 € Yo n-
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Case 1. 7,6 = a. Thus
f(aya) = fa(Tala) = fo(Ta) fa(Ya) = f(2a)f(Ya)-

Case 2. v = «,d # «. Thus

f(@ays) = f(Pao(Ta)pso(ys))

©p,0(fal(2a)) Where pq 0(2a) = ©a,0(Ta)Pso(Ys)

and
f(@a)f(ys) = falza)ppo(falwa)) where va0(wa) = ©s50(ys)

= ppo(fa(®a))pso(fa(wa))
= ¢p0(fa(zawa))
where (Poz,O(Zoz) = (Pa,O(ma)(PJ,O(yz?) = @a,O(xa)¢a,0(wa) = @a,O(xawa)-

Case 3. v # «,d # «. Thus

f(zyys) = flpy0(zy)pso(ys))

©5,0(fa(2a)) Where o 0(2a) = 90'7,0($7)S05,0(?/6)

and

f(x'y)f(yé) = ‘P,B,O(fa(ta))‘P,B,D(fa(wa)) where pq 0(ta) = 907,0(1’7)7 Pa,0(Wa) = 906,0(3/6)
= @B,O(fa(tawa)),

where Sooa,O(ZOc) = ()07,0(%7)()06,0(%5) = Sooa,O(ta)Soa,O(woz) = (pa,[)(tozwoa)-
Thus f € End(S). O

Lemma 6.1.2. Let S = [Yy,;5,€q,¢ap] be a non-trivial strong semilattice of left
simple semigroup with surjective defining homomorphisms g g. If the monoid End(S)

is regular, then the set Hom(Sy, Sg)) is hom-regular for all o, B € Y.

Proof. We remark first that since the defining homomorphisms ¢, g are surjective, for

each yo € S, there exists 3 € S, B < o € Y such that ¢, o3(Ya) = ¢8,08(23)-

Let o, 3 € Y. We show that the set Hom(Sa,Sg)) is regular. Take f, €
Hom(Sq, Sg). We will define f which depends on «, 3.

Case 1. « = 0,8 #0, i.e., fo € Hom(Sy, Sg). Take s € End(Y) ) such that s(§) = f for
all £ € Yj,. Using Lemma 3.1.3, for each z¢ € S, € Y, take f € End(S) as follows

fo(wo) € S if £ =0,

flze) = .
folpeo(ze)) € Sp i £ #0,



By hypothesis there exists f’ € End(S) such that ff'f = f. Thus

fo(zo) = f(zo) = f 1 f(w0) = f5ffo(z0)

where fi € Hom(Sg, S,) such that v € F7B} and f, € Hom(S,,Ss). But by the
definition of f, Im(fo) = Im(f,) for all 0 # a € Y, so that v may be 0.

Case 2. a # 0,5 =0, i.e., fo € Hom(Sq, Sp). In this case we can construct f € End(S)
and f(zq) = folpa0(za)), i-e., fo is determined by each fo € End(Sy) and we have
End(Sp) is regular.

Case 3. a, 3 # 0, i.e., fo € Hom(Sq,Sg). Take s € End(Yy,,) such that s(a) = 3 and
s(y) = 0 for all &« # v € Yy,,. Using Construction 6.1.1, for each z¢ € S, € Y, take
f € End(S) as follows

fa(ra) € Sp if £ =aq,
flxe) = '
pp0(fa(za)) € S0 I € # a, Pap(za) = PeolTe)-
By hypothesis there exists f’ € End(S) such that ff'f = f. Thus

fa(xa) = f(xoz) = ff,f($a) = fozfclea(ma)

where f/, € Hom(Sg, Sa) because f~ {8} = {a} and f, € Hom(Sa, Ss).
Therefore the set Hom(Sq, Sg) is hom-regular for a, 5 € Yy . O

The converse is also true.

Lemma 6.1.3. Let Y = Y, and let S = [Yon;Sa:€a; Pa,s] be a non-trivial strong
semilattice of left simple semigroup with surjective defining homomorphisms ¢ g. If the

set Hom(Sq, Sg)) is hom-regular for all o, B € Y, then the monoid End(S) is regular.

Proof. Take f € End(S). By Corollary 3.1.6 f € End(Yp,.).
Case 1. f(§) = 0 for all { € Yy ,. In this case fo € End(Sy), there exists f; € End(So)

such that fOf(/)fO = fo and foz(xa) = @i(a),i(ﬂ)fa(xa) = fO(SOa,O(xa» forall a € Yy, 0, a #
0. Using Construction 3.3.1, for every z¢ € S, § € Yy, take f' € End(S) as follows

! fo(@o) if £ =0,
fxe) == |
Folpeo(xe)) it € #0.
Thus ff'f = f.



Case 2. f(§) = a for all £ € Yj,, and for some 0 # a € Yy ,. Thus f, € End(S,), there
exists f! € End(Sy) such that fof.fa = fa since End(S,) is regular by hypothesis.
Using Construction 6.1.1, for each z¢ € S, € € Yy ,,, take f' € End(S) as follows

falwa) € 5p if £ = a,

f(xe) = .
vp0(fal(za)) € S0 if € # a, pao(2a) = peolze)-

Thus ff'f = f.

Case 3. f is not constant. Thus f(0) = 0 and for some a # 0 we have f(a) = a or
f(a) = B for some 8 # a. Further, in this case we have fz(z) = fo(@go(zg)). In this
case fo € End(Sp) which is regular, there exists f(, € End(Sp) such that fofifo = fo. If
fa € End(Sy) there exists f!, € End(Sy) such that foflfo = fo- I fo € Hom(Sa,Sp)
there exists f, € Hom(Sg, Sa) such that fof,fa = fa. Using Construction 6.1.1, for
each z¢ € S,§ € Yy, take f' € End(S) as follows

f(/x(xa) ifg = Q,
fl(@e) =14 fh(xo) if § =0,
@ﬁ,ﬂ(f(/x(za)) €Sy if&# a, vao(za) = veo(Te)
Thus ff'f = f. O

Theorem 6.1.4. Let S = [Yy,;50, €q, ¢a,p) be a non-trivial strong semilattice of left
simple semigroup with surjective defining homomorphisms v g. Then the monoid End(S)

is reqular if and only if the set Hom(Sq, Sg) is hom-regular for all a, B €Y.

Problem 6.1.5. Find the conditions when the semilattice more general than Y ,.

6.2 Idempotent-closed monoids

In this section we consider strong semilattices of left simple semigroups whose

endomorphism monoids are idempotent-closed.

Lemma 6.2.1. Let S = [Yy,;5,€q,¢a,p] be a non-trivial strong semilattice of left
simple semigroups with surjective defining homomorphisms @e¢o. Let f € End(S) and
let « € Yy . Then the following hold

1) I £€) = a, then fo(¢ao(®a)) = falwa) = falys) = fol@solys) for al
ys € G such that ¢p0(ys) = Pa,0(Ta)-



In particular, if f is idempotent, then fo(za) = fo(¢a0(za)) = (fo(Pa0))*(a) =
(fa)?(za)-

2) Let za,yg € S, o, B € Yon be such that pa0(za) = ©50(Ys)- Then ©(a),50)(fal(za)) =
©1(8).£0)(f8(ya))-

Proof. 1) We have fOSOOz,O(xa) = Qpi(a),i(o)fa(xa) = Spa,a(fa(xa)) = fa(xa) where fo €
Hom(So, So) and fo € End(S,). Since ¢, o is surjective, there exists yg € Sg, 8 € Yy,

with 0 # a # f such that ¢q0(za) = ©,0(ys). Then

folwan(za)) = foleso(ys))
= %5850 f8(Ys)
= Ya,afs(ys)
= fs(ys)-

Thus we have fo(0a,0(7a)) = fo(za) = f3(ys) = fo(eso(ys)) for all ys € Sg such that
©8.0Ys) = Pa,0(Ta)-

If f is idempotent, we have ff(z¢) = f(x¢) for all ¢ € S, £ € Yy, Thus

Jolpao(@a)) = falza)
= f(za)
= ff(za)
= fafa(za)
= fova,o(fo(pao(za))
= (fova0)*(Ta)-

Then fo = fopa,o € End(S,) for every z, € S,.

2) Since f € End(S), we have f(zqe0) = f(za)f(e0). Then

f(zaeo) = [(pao(za)eo)
= fo(pao(za))
= folepo(ys)) (since pao(za) = ©s0(ys))
= »58).50)(fs(xp))

and

f(za)f(eo) = fa(za)foleo)



Lemma 6.2.2. Let S = [Yy,;5,€q,¢ap] be a non-trivial strong semilattice of left
simple semigroups with surjective defining homomorphisms g g. If the monoid End(S)

is idempotent-closed, then the monoid End(Se) is idempotent-closed for every & € Yy p.

Proof. By Lemma 3.2.3 End(Y’) is idempotent-closed. This implies that ¥ = Y, by
Proposition 2.2.4.
We next show that End(S¢) is idempotent-closed for £ € Yy .

Case 1. We show that End(Sp) is idempotent-closed, take two idempotents fy, hy €
End(Sp). Using Construction 3.3.1, take f,h € End(S) as follows

f(xa) — fo(a}(]) if o = 0,
fO(‘Pa,O(wa)) if a # 0,

and
h(ze) = ho(xo) if « =0,

ho(pao(zq)) if a#0,
for every o, € S, a € Yy ,. Then f, h are idempotents. By hypothesis fh is idempotent.
For each xy € Sy, we have foho foho(zo) = fhfh(xzo) = fh(xg) = foho(xg). This implies
foho is idempotent and therefore End(Sp) is idempotent-closed.

Case 2. We show that End(S,) is idempotent-closed, 0 # a € Yy ,, take two idempotents
farha € End(S,). We note that for each z¢ € Sp, there exists yo € So, 0 # a € Yy
such that ¢a0(ya) = 0. Using Construction 6.1.1, for every z¢ € S, { € Yo, take
fyh € End(S) as follows

fa(za) if £ = a,

flze) = ‘
Spﬂ,O(fa(za)) if £ # a and Soa,O(za> = ‘P&,O(xﬁ)a
ho(Zqo if £ = a,

gy | 1 ¢

vp0(ha(za)) if § # a and 4 0(2a) = e o(ze)-
Then f, h are idempotents. By hypothesis fh is idempotent. Thus

fochocfochoz(xa) = fhfh(xa)
= fh(za)
= fa(ha(za))-

Thus fohe is idempotent. Hence End(Se) is idempotent-closed for all £ € Y . O



Lemma 6.2.3. Let S = [Y; Sq, €q, 9a,p] be a non-trivial strong semilattice of left simple
semigroups with surjective defining homomorphisms o 5. If the monoid End(Sg) is

idempotent-closed for all £ € Yy, then the monoid End(S) is idempotent-closed.

Proof. Take two idempotents f,h € End(S). Then f,h € End(Yo).

Case 1. If f (or h) is constant. Suppose that f(§) = a and h(§) = 3 for all £ € Yy ,.
Then f h(&) = a. For every z¢ € S, £ € Yy n, we have

fhfh(ze) = [hfhe(ze)
= [fhf(ho(peo(ze)))
= [hf(ho(Pa,0(ya))) where (@eo(Te) = Pa,0(ya))
= fghafs(ho(¢a0(ya)))
= fop0hopaofopso(ho(Pan(ya)))
= (fops.0h0©a,0)? (Ya)))
= fop0hopa0(ya)))
= [h(z¢)
where fops.0hopa0 € End(Sa). Thus fh is idempotent.

Case 2. If f and h are not constants. Thus f h(a) = « if f(a) = a and h(a) = a.
Further, in this case we have fu(xo) = f(za) = ff(2a) = fafa(ra) and ho(zs) =
h(zq) = hh(zo) = haha(za), i-€., fa,hq are idempotents. This implies that foha €
End(S,) which is also idempotent, since End(Sy) is idempotent-closed. Thus

fhfh(xoa) = fozhoafoaha(xa) - faha(fﬁoa) = fh(fba).

In other case, we have f h(a) = 0 where f(0) = h(0) = 0. Thus fo(zo) = f(x0) =
ff(CCo) = fofo(l‘o) and ho(l‘o) = h(xo) = hh(Io) = hoho(l‘g). Then fo,ho are idem-
potents. This implies that foho € End(Sp) which is also idempotent, since End(Sp) is

idempotent-closed. Then

fhfh(za) = fhfha(za) = fohofoho(¢a0(a)) = foho(®ao(Ta)) = fh(2a)-

In the next theorem we get from Lemmas 6.2.2 and 6.2.3.

Theorem 6.2.4. Let S = [Yy,;50, €a, a8 be a non-trivial strong semilattice of left

simple semigroups with surjective defining homomorphisms ¢, . Then the monoid



End(S) is idempotent-closed if and only if the monoid End(Sg) is idempotent-closed

for every & € Yo p.

Since groups are left simple semigroups, we have the next example to illustrate

Theorem 6.2.4.

Example 6.2.5. Consider a three-element semilattice Yoo = {0 < «,8}. Let Gy =
Zo,Go = S3 and Gg = Z4 where Zy,Zo are the additive groups modulo 4 and 2, re-
spectively and Ss is the symmetric group order 6. Their monoids End(Zsa), End(Z4)
and End(S3) are idempotent-closed (see Example 1.3.8). Take the strong semilattice of
groups S = G U Ga U G with the defining homomorphisms as shown below.

(Da (123)4(132)4(12)a (13)a (23)a 0g 1z 23 33

0o 1o

(Do (123)a (132)a (12)a (13)a  (23)a

Take the two idempotents f, = and
Do Mo Do (12)a (12)a (12)a
o [0 02 (320 (120 0B @)
Mo Mo Mo (23)a (23)a (23)a
Take the idempotent s = 0 s € End(Y) and for 0, € I'm(s), and let fo = ho
0 o O

be the identity map on Gy = Zg. Then we can construct f, h € End(S) as in Construction

6.1.1, so we have

0o 1o (1o (123)a (132)a (12)a (13)a (23)a O 1z 23 3p
0o 1o (Do (123)s (132)s (12) (12)q (12)a 09 1o 0o 1o

00 1o (Da (123)a (1320 (120 (13)a (29 05 ls 25 3g

h =
0o lo (Do (123)a (132)a (23)a (23)a (23)a 00 1o 0o 1o
Thus f and h are idempotents. It is clear that

00 1o (Do (123 (132 (120 (13)a (23)0 05 1s 25 35

h =
d 0o 1o (1o (123)s (132)s (12) (12)q (12)a 09 1o 09 1o

is idempotent such that fh(xy) = faha(za) for every x, € G,.



6.3 Orthodox monoids

Now we consider strong semilattices of left simple semigroups whose endomor-

phism monoids are orthodox.

The following theorem follows from Theorems 6.1.4 and 6.2.4.

Theorem 6.3.1. Let S = [Yy ;50 €a, a8 be a non-trivial strong semilattice of left
simple semigroups with surjective defining homomorphisms ¢, . Then the monoid
End(S) is orthodox if and only if the following conditions hold

1) the monoid End(Se) is idempotent-closed for every & € Yy, and

2) the set Hom(Sa, Sg) is hom-regular for every o, B € Yy .

6.4 Left inverse monoids

In this section we consider strong semilattices of left simple semigroups with

surjective defining homomorphisms whose endomorphism monoids are left inverse.

Lemma 6.4.1. Let S = [Yo,;5, €a,9a,p] be a non-trivial strong semilattice of left
simple semigroups with surjective defining homomorphisms g g. If the monoid End(S)

is left inverse, then the monoid End(Se) is left inverse for each & € Yy .

Proof. By Lemma 3.2.3, the monoid End(Y) is left inverse. This implies Y = Yp,, by
Proposition 2.2.4.
We show that End(Se) is left inverse for £ € Yy .

Case 1. We show that End(Sy) is left inverse. Take two idempotents fy, hg € End(Sp).
Using Construction 3.3.1, take f, h € End(S) as follows

fo(zo) if&E=0
f(xe) = .
foleeo(ze)) i EF#0,
and
() = ho(o) HE=0

ho(peo(xe)) i € #0,
for every x¢ € S, £ € Yy,. By hypothesis fhf = fh. For each 2o € Sp, we have
fohofo(xo) = fhf(xzo) = fh(xo) = foho(xo). This implies fohofo = foho, and therefore
End(Sp) is left inverse.



Case 2. We show that End(S,) is left inverse, 0 # a € Yy,. Take two idempotents
farsha € End(Sy). For each zp € Sp, there exists yo € So such that va0(ya) = 2o
since q,0 is surjective. Using Construction 6.1.1, for every z¢ € S, { € Yp,, take

fyh € End(S) as follows

fa(Ta) if € = a,
f(xe) = -
QOa,O(fa(ya))) if £ # o and Qoa,O(ya) = 905,0(x€)7
and
ho(Zqo if £ = «,
g =4 o e

©a,0(ha(ya))) if §# a and va0(Ya) = Pe0(ze).
Then f, h are idempotents. By hypothesis, fh is idempotent. Then

fahafa(xa) = fhf(xa)
= fh(za)
= falha(za))-

Thus foha is left inverse. Hence End(Se) is left inverse for all £ € Y j,. O

Lemma 6.4.2. Let S = [Yy,;5,€q,¢ap] be a non-trivial strong semilattice of left
simple semigroups with surjective defining homomorphisms ¢ g. If the monoid End(Se)

is left inverse for each & € Yy, then the monoid End(S) is left inverse.

Proof. Take two idempotents f,h € End(S). Then f,h € End(S) which are idempo-

tents.
Case 1. If f and h) are constant.

1.1 f(§) = 0 and A(§) = 0. Then fy, ho € End(So) and fo, hy are determined by
fo and hg respectively for 0 # a € Y. That is

foleao(@a)) = @10 (falza))
= ¢o0(falza))
= falza)
and
ho(Pao(ta)) = @n(a)n©) (halza))
= ©0,0(ha(za))
= ha(zqa).



By using that End(Sp) is left inverse, so that fohofo = foho. Thus

fhf(ze) = fohofo(peo(ze))
= foho(peo(ze))
= fh(xe)

1.2 f(&) = 0 and h(§) = a for some 0 # o € Yy ,. Then fo,hy € End(Sp) and
fas ha are determined by fo and hg respectively for 0 # o € Yp,,. That is

foleao(@a)) = @pa).r0)(falza))
= ¢0,0(fa(®a))
= fa(za)
and
ho(¢a0(a)) = ¢n(a) a0 (halTa))
= ¢0,0(ha(za))
= ho(za).
By using that End(Sp) is left inverse, so that fo(¢a,0h0)fo = fo(¢a,0ho) Where pq0ho €
End(Sp). Thus
fhf(ze) = fhfoleeo(@e))
= fhofo(peo(ze))
= fo(pao(hofolpeo(ze))))
= fo(pa,0ho)folpeo(ze))
= fo(a0ho)(peo(ze))
= folpao(h(z¢)))
= fh(ze)
1.3 f(§) = a and h(§) = 8 for some 0 # o, € Yy ,,. Then fhf = fh and we
have @q.0fo, ps,0h0 € End(Sp). Thus (¢a,0f0)(#8,0h0)(¢a,0f0) = (Pa,0f0)(¥s0ho). Thus

fhf(xe) = [hfo(peo(we))
= fhowaofolweo(ze))
= fowpohopaofoleeo(re))
= (©a,0f0)(98,0h0)(0a,0f0)(Pe0(ze))
= (¥a,0/f0)(¥s0h0) (e o(ze))
= fo(@a,0ho)h(ze)
= fo(Pa,0ho)(peo(w¢))
= folwapo(h(ze)))
= fh(ze)



Suppose that f(§) = a for all { € Yp,. Then f h(§) = a. In fact, for every
zg €5, § € Yon fhf(xe) = fwe) = fhlxe).
Case 2. If f and h are not constant. Then for each a € Yy, f h(a) = aif f(a) = o and

h(a) = a. Thus fo(7a) = f(7a) = [f(Ta) = fafa(za) and ha(za) = h(2a) = hh(2a) =
haho(za), 1.€., fo, ho are idempotents. This implies that fohafo = foha which is also

idempotent, since End(S,) is left inverse. Thus

fhf(xoz) = fahafa($a) = faha(xa) = fh(xa)-

In other cases, we have f h(a) = 0 where f(0) = h(0) = 0. Thus fo(zo) = f(x0) =
ff(xo) = fofo(zo) and ho(zo) = h(xo) = hh(zo) = hoho(zo). Then fy, ho are idempo-
tents. This implies that fohofo = foho which is also idempotent, since End(Sp) is left

inverse. Then

fhf(xa) = fhfa(za) = fohofo(Pao(za)) = foho(Pao(Ta)) = fh(za).

In the next theorem we get from Lemmas 6.4.1 and 6.4.2.

Theorem 6.4.3. Let S = [Yy ;50 €a, a8 be a non-trivial strong semilattice of left
simple semigroups with surjective defining homomorphisms o 3. Then the monoid

End(S) is left inverse if and only if the monoid End(S¢) is left inverse for every & € Yo .

6.5 Completely regular monoids

We now consider strong semilattices of left simple semigroups whose endomor-

phism monoids are completely regular.

Lemma 6.5.1. Let Y = {u,v} with v < p and let S = [Y'; Sq, €a, Pa,p] be a non-trivial
strong semilattice of left simple semigroups with surjective defining homomorphisms @, g.

Let f € End(S). If f(n) = f(v), then Im(f,) = Im(f,).

Proof. We have Im(f,) € Im(f,). Let x € Im(f,). There exists y, € S, such that
x = f,(yv). Since ¢, , is surjective, there exists z, € S, such that ¢, ,(2,) = y,. Thus
z= fu(y) = fulpur(zu) = Pru)f) = fu(zy). This implies € Im(f,), and therefore
Im(fu) = Im(f.). 0



Lemma 6.5.2. Let S = [Y'; Sq, €qa, Pa,p] be a non-trivial strong semilattice of left sim-
ple semigroups with surjective defining homomorphisms g 5. If the monoid End(S) is
completely reqular, then |Y| = 2 and the monoid End(S¢) is completely regular for each
Eey.

Proof. By Lemma 3.2.3, the monoid End(Y") is completely regular. This implies |Y| = 2
by Proposition 2.2.4. Assume Y = {v, u},v < p.
We show that End(S¢) is completely regular for £ € Y.

Case 1. We show that End(S,) is completely regular. Take f, € End(S,).
Take s € End(Y) with s(u) = s(v) = v. Using Construction 3.3.1, for every
xe €5, £€Y, take f € End(S) as follows

fu(zy) if &=,

Ffolpun(zy)) if &=
By hypothesis, there exists f' € End(S) such that ff'f = f and ff' = f'f. That is
F'(fo(z)) = f'f(x,) = ff'(x) for each z, € S,. This implies f'|g, € End(S,). Thus

fufl/,fu(xu) = ff,f(xu) = f(xl/) = fu(fl:u) and f/,,fl,(.%’,,) = fuf,y(-ru) for each x, € S,.
This implies f, is completely regular and therefore End(S,) is completely regular.

flae) ==

Case 2. We show that End(S,) is completely regular, take f, € End(S,) and take
s € End(Y') such that s(pu) = p, s(v) = v. Let z, € S,, there exists y, € S, such that

Ouw(Yu) =y, since ¢, , is surjective. Using Construction 6.1.1, for every z¢ € S, £ € Y,

take f € End(S) as follows

Ju(wy) if £ = p,
flag) =3 " _
Cup(fulyn)) fE&=vand pu.(y.) =z,
By hypothesis, there exists f' € End(S) such that ff'f = f and ff’ = f'f. In this
case f'|s, € End(Sy). Thus f.f, fu(vu) = [ f(xn) = f(zn) = fu(zy) and [, fu(z,) =
fuf' () for each z;, € S),. This implies f, is completely regular and therefore End(S),)

is completely regular. O

The converse is also true.

Lemma 6.5.3. Let Y = {u,v} with v < p and let S = [Y'; Sq, €, Pa,p] be a non-trivial
strong semilattice of left simple semigroups with surjective defining homomorphisms @, g.
If the monoid End(Sg) is completely reqular for each & € Y, then the monoid End(S) is

completely reqular.



Proof. Take f € End(S). Then f € End(Y') which is completely regular. Then there
exists s € End(Y') such that fsf = f and fs = sf. Let z, € S,, there exists y, € S,
such that ¢, ,(yu.) = x, since ¢, , is surjective.

Case 1. f(u) = f(v) = v, then we have v = fs(v)) = s(f(v)) = s(v). Then fop.., = fu
where f, € End(S,) and End(S,) is completely regular, there exists f, € End(S,) such

that f,f,f, = f, and f,f, = f,f,. Using Construction 3.3.1, for every z¢ € S, { € Y,
take f € End(S) as follows

fl(xe) = Jola) ?fg =Y
(o) i E=p.
Then ff/f = f and

ff,(xu) == fuf,i(xu)
= f)fu,(z,) (End(S,) is completely regular)

ff ()

and

ffn) = f(flpup(u))

= fifuleup(zu)))

= fu(fl(our(zy))) (End(S,) is completely regular)

= ff(zu).
Case 2. f(u) = f(v) = p, then p = f(s(v)) = s(f(v)) = s(u). Then fop,, = fu. where
fu € End(S),) and End(S,) is completely regular, there exists f, € End(S,) such that
fufufu = fuand fuf), = f,fu. Using Construction 6.1.1, for every z¢ € S, § € Y, take
1 € End(S) as follows

, en it =4,
fiwe) = '
Sou,u(f;/;(yu))) if § =v and Sp,u,u(yu) = Ty.
Then ff'f = f and

ff,(xu) = fl"flll(xﬂ)
= fifu(zy) (End(S,) is completely regular)

= flf(fﬂu)



and

fP(ay) = floup(fi(yu))) ( where @0 (y.) = z)

= Soleur(fl(yn))

= (foleuw))(fu(yu))

= Julf ()

— F(Julu)) (Bnd(S,) is completely regular)

= [1(Puw(yy)

= ffl(z)

= [f'(z).
Case 3. f(u) =, f(v) =v. Let s € End(Y) with s(v) = v, s(u) = psuch that fs = sf.
Since f, € End(S,) and End(S),) is completely regular, there exists f, € End(S,) such
that f.f,f. = fu and f.f), = f,fu. Using Construction 6.1.1, for every z¢ € S, { €Y,
take f/ € BEnd(S) as follows

o) m { fulan) o=
SOM,V(f;IL(yu))) if £ =vand ¢u.(yu) = 20,

Then ff'f = f and

P () = fuf(@u)
= fifu(zy) (End(S,) is completely regular)
= f,f(mu)
and
ff@) = F(fo(euw(yn))) ( where o, (y,) = )
= SU(ur(fu(yn))
= fo(up(fu(yn)))
= o (ffu(yu
= Py, V(fuf, (yu
= fu(uu(fli(yu)))
= fufy(%pu u(yu)
= [f(z).
Therefore f is completely regular. Hence End(S) is completely regular. O

)
)
)
)
)
)

In the next theorem we get from Lemmas 6.5.2 and 6.5.3.

Theorem 6.5.4. Let S = [Y'; Sa, €, Pa,g] be a non-trivial strong semilattice of left sim-

ple semigroups with surjective defining homomorphisms g g. Then the monoid End(S)



is completely reqular if and only if |Y'| = 2 and the monoid End(Sg) is completely regular
for every £ €Y.

6.6 Idempotent monoids

In this section we consider strong semilattices of left simple semigroups with

surjective defining homomorphisms whose endomorphism monoids are idempotent.

Lemma 6.6.1. Let S = [Y'; Sq, €, Pa,p] be a non-trivial strong semilattice of left sim-
ple semigroups with surjective defining homomorphisms pq 5. If the monoid End(S) is

idempotent, then |Y'| =2 and the monoid End(S¢) is idempotent for every { €Y.

Proof. By Lemma 3.2.3, the monoid End(Y’) is idempotent. This implies |Y| = 2 by
Proposition 2.2.4. Assume Y = {v, u},v < p. We next show that End(S¢) is idempotent
for every £ € Y.

Case 1. We show that End(S,) is idempotent, take f, € End(S,). Using Construction
3.3.1, for every x¢ € S, £ €Y, take f € End(S) as follows

fu(zy) if &=,

folepp(zy)) i E=p

By hypothesis f is idempotent. Thus f, f,(x,) = ff(xy) = f(xy) = fu(z,). This implies

flxe) =

that f, is idempotent and therefore End(S,) is idempotent.

Case 2. We show that End(S,) is idempotent. Take f, € End(S,). Let xz, € S,,
there exists y,, € S, such that ¢, ., (y.) = x, since @, is surjective. Let f, € End(S),)
with f,(z,) == @uu(fu(yu)) where ¢, ,(y,) = x,. Using Construction 6.1.1, for every
xze €5, £€Y, take f € End(S) as follows

fu(l‘u) if & = p,
flze) = .
Ouv(fulyy)) if &€ =v where v, (yu) = z.

By hypothesis f is idempotent. Then

fulfu(zp) = ff(zu)
= f(xu)
= fu(l”u)~

Thus f, is idempotent, and therefore End(S,) is idempotent. O

The converse is also true.



Lemma 6.6.2. Let Y = {v,u} withv < p and let S = [Y'; Sq, €, Ya,s] be a non-trivial
strong semilattice of left simple semigroups with surjective defining homomorphisms @, g.
If the monoids End(S,) and End(S,) are idempotent, then the monoid End(S) is idem-

potent.
Proof. Take f € End(S). Then f € End(Y) is a semilattice endomorphism on Y.

Case 1. f(u) = f(v) =v. Then

folpp(@y)) = ‘Pf(u),i(u)(fu(xu)) = fulzu)

where f, € Hom(S,,S,) and f, € End(S,) in this case. By hypothesis, End(S,) is
idempotent, so that f, is idempotent.

We now consider

ff('ru)) = fu(fu(xu)) = fu(xu) = f(mu)

and

ffn) = f(fulzp) = fo(foleup () = fulops(@0) = fulzn) = flzu).

Thus f is idempotent.

Case 2. f(u) = f(v) = p. Then

fulep(zy)) = ‘Pi(u),i(u)(fu(xu)) = fu(xy)
where f, € Hom(S,,S,) and f, € End(S,) in this case. ff(zu)) = fu(fulzy)) =
fu(wy) = f(z,) and

() = ffolaw))

= [(Jo(@uup(yn)) where @ () = o

= f(fulyp))

= Sulfulyn))
()
(Lo (Yp))
(zv)

= flaw).
Thus f is idempotent.
Case 3. f(u) = p, f(v) = v. Then f, € End(S,) and f, € End(S,) with both are
idempotents by hypothesis, and therefore f is idempotent. Thus End(S) is idempotent.
O



The following theorem follows directly from Lemmas 6.6.1 and 6.6.2.

Theorem 6.6.3. Let S = [Y'; Sq, €q, Pa,g] be a non-trivial strong semilattice of left sim-
ple semigroups with surjective defining homomorphisms ¢q 5. Then the monoid End(S)

is idempotent if and only if Y = {v,u} and the monoids End(S,) and End(S,) are
idempotent for each £ € Y.



Chapter 7

Arbitrary defining

homomorphisms

Now we consider strong semilattices of semigroups in which the defining homo-

morphisms are arbitrary and Y = {v, u}, v < p.

7.1 Regular monoids

If the defining homomorphisms ¢, g are not isomorphisms or constant, then
further complications arise. Take the following example (see also [4]), consider strong
semilattices of semigroups with the two-element chain Y = {v,u}, v < p. There are
three endomorphisms of the chain v < . They give three types of endomorphisms of S.

(1) f(v) = f(p) = v then f, € End(S,) and f, € Hom(Sy,S,) such that

fulzn) = fopuu(z,) for every x, € Sy,
(2) f(v) = f(u) = p then f, € Hom(S,,S,) and f, € End(S,) such that

fulzyn) = fopup(zy) for every x, € Sy,
(3) f(v) = v and f(u) = p then f, € End(S,) and f, € End(S,) such that

Ouvfu(zy) = fuous(xy,) for every z, € S,,. We rewrite

© ={(fv, fu) € End(S,) x End(Sy,) | fveuy = uvful-

It is clear that for (f,, f.) € © then f,(Im(¢u)) C Im(p,,,) and f,(Ker(pu,,)) €

Ker(pu,) where

Ker(euy) = {(2,y) € Sy | 0un(®) = 0un(y)}.
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If ¢, is surjective, then the condition f,(Ker(¢u,)) € Ker(y,, ) implies that

fu determines f,, so we simplify the description of © to

0={f¢€ End(Su) | fu(Ker(‘Pmu)) - Ker(gow,)}.

If ¢, is injective, then f, determines f,, so we simplify the description of © to

© = {f € End(S,) | fu(Im(puv)) € Im(ep.)}-

Lemma 7.1.1. Let Y = {v,pu} with v < p and let S = [Y; S0, €q, Pa,8ls Py # Ce, be
a non-trivial strong semilattice of semigroups with v = AY . Then End(S) is reqular if

and only if the following conditions are satisfied:

(R1) End(S,) is regular,

(R2) for every f, € Hom(S,,S,), there exists f,, € End(S,) such that f,f,puvfv = fv,

(R3) for every (fu,fu) € ©, there exists (f},f,) € ©, such that f,f,f, = f,, and
fujifu= fu.

Proof. Necessity. 1) Take f, € End(S,). Using Construction 3.3.1, for every z¢ € S, £ €
Y, take f € End(S) as follows

fu(y) if &€ =,
fulepv(zy) €= p

By hypothesis there exists f' € End(S) such that ff'f = f. Then f,f,f, = f, where
1}, € End(S,), so that f, is regular and therefore End(S,) is regular.

flag) ==

2) Take f, € Hom(S,,S,). Using Construction 3.3.1, for every z¢ € S, £ € Y,
take f € End(S) as follows

fo(zy) €S, ifé=v,

folppp(zy)) &= p.
By hypothesis there exists f' € End(S) such that ff'f = f. In this case f’ must be
of the type (2), i.e., f, € Hom(S,,S,) and f, € End(S,). Since f' € End(S) we have

L (oup(zy)) = fl’l(:cu). Therefore

flze) ==

Jo(xy) = fuf,:fu(wl/) = fufé@u,ufu(xu)

for every x, € S.



3) For every (f,, fu) € (End(S,)) x (End(S,)) with foeu, = @uuvfu. Define
f € End(S) as follows f(z,) = f,(x,) and f(x,) := fu(x,) such that fLe,, = ¢ufu
By hypothesis there exists f’ € End(S) such that ff'f = f and f,p.., = ¢uuf, where
1}, € End(S,), flL € End(S,) such that f,f, f, = fo, fuf;qu = fu-

Sufficiency. Take f € End(S). Then f € End(Y') consists of three types.

(1) If f(v) = f(u) = v then f, € End(S,) and f, € Hom(S,,S,) such that
fulzp) = fupuu(x,) for every z, € S, by Condition 1) there exists f}, € End(S,) such
that f, f,f, = f,. Using Construction 3.3.1, for every z¢ € S, £ € Y, take f' € End(S)
as follows

fiav) if £ =v,
folup(@y)) i &= p.
(2) If f(v) = f(u) = p then f, € Hom(S,,S,) and f, € End(S,) such that

f(xe) =

fulzy) = fupuw(z,) for every x, € S,, by Condition 2) there exist f, € End(S,)
such that f, = f,f,puuvfy. Using Construction 3.3.1, for every z¢ € S, £ € Y, take
f € End(S) as follows

fizy) if ¢ = v,
folup(zy) i€ =p.
(3) If f(v) = v and f(u) = p, by Condition 3) we define f' € End(S) with

f/(xV) = f{,(&?y) and f/(xu) = f;Q(w/A) with fL‘Pu,V = ‘Pu,uf;lr
Thus we get ff'f = f, and therefore f is regular. O

flxe) =

Example 7.1.2. Consider a two-element semilattice Y = {v,u}, v < p. Let G, =
G, = Zg where Zg is the additive groups modulo 6. Take the strong semilattice of

groups S = G, U G, with the defining homomorphisms as shown below.
O, 1, 2, 3, 4, 5,

Take f, = € Hom(G,,G,)

0, 1, 2, 3, 4, 5
Thus ¢, f, = v T T ) does not exist f, € End(G,) such that

o 0, 0, 0, 0, O,
fof,uvfy = fo. This implies that End(S) is not regular since there exists



such that f has no an inverse element in End(S).



Overview

The following table concludes all the results of this thesis. We observe that we
do not know that for which groups G, the monoid End(G) is left inverse or completely

regular or other properties except for the monoid End(G) is idempotent if and only if

G e {Zl, Zg}.
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left inverse, 46, 58 .
regular abelian groups, 14

of left groups, 61
orthodox, 45, 57

regular elements, 6
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restriction function, 11
right groups, 61
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right zero semigroups, 61

self-disjoint, 19
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semigroup homomorphism, 5
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